
1 

,I'" 

, 
'1 
f • 

Program Product 

SH20-9026-4 

IMS/VS Version 1 
Application Programming 
Reference Manual 

Program Number 5740-XX2 

Release 1.2 



Fifth Edition (May 1976) 

This edition replaces the previous edition (numbered SH20-9026-2),its technical newsletter 
(numbered SN20-9110), and the reprint (numbered SH20-9026-3), and makes them 
obsolete. 

This edition applies to Version 1 Release 1.2 of IMS/VS, program number 5740-XX2, and 
to all subsequent releases unless otherwise indicated in new editions or technical 
newsletters. 

Technical changes are summarized under "Summary of Amendments" following the list of 
figures. In addition, miscellaneous editorial and technical changes have been made 
throughout the publication. Each technical change is marked by a vertical line to the left of 
the change. 

Information in this publication is subject to significant change. Any such changes will be 
published in new. editions or technical newsletters. Before using the publication, consult the 
latest IBM System/370 Bibliography, GC20-0001, and the technical newsletters that amend 
the bibliography, to learn which editions and technical newsletters are applicable and 
current. 

Requests for copies of IBM publications should be made to the IBM branch office that 
serves you. 

Forms for readers' comments are provided at the back of the publication. If the forms have 
been removed, comments may be addressed to IBM Corporation, General Products 
Division, Programming Publishing-Department J57, 1501 California Avenue, Palo Alto, 
California 94304. All comments and suggestions become the property of IBM. 

© Copyright International Business Machines Corporation 1974, 1975, 1976 

'-

( 



This manual describes the functions of the Information Management 
System/Virtual Storage (IMS/VS) available to the application pro9rammer 
using the data base and/or data communication facilities of IMS/VS. 
The rea1er should be familiar with the concepts and terminology 
discussed in prerequisite and associated publications of the IMS/VS 
reference library (cited below). 

~his manual contains seven chapters and two appendixes: 

• Chapter 1, "IMS/VS·Environment for Application Progcamming," 
describes the effect of IMS/VS on the application programmers, new 
application programs, and existing programs, and the major 
consid~rations in implementing an IMS/VS application. 

• Chapter 2, "Data Base Batch programming," describes application 
programming using the IMS/VS data base facility. It covers the 
details that applications analysts and programmers require to use 
an IMS/VS logical data structure, and the manner in which a batch 
application program interfaces with the processing capabilities of 
IMS/VS. . 

• Chap-+:er 3, "Data Base processing: Advanced Functions," describes 
the more advanced data base processing functions provided by IMS/VS. 

• Chapter 4, "Data Communication: Application programming," describes 
application programming using the IMS/VS data communication 
facility. It includes a discussion of the teleprocessing 
application interface and the logical terminal concept. 

• Chapter 5, "Data Communication: Conversational Processing," 
describes application programming for programs that process 
transactions defined as conversational. 

• Chapter 6, "Application program Examples," contains examples of 
TMS/VS application programs. 

• Chapter 7, "Application programmin g Testing Aids," describes use 
of the UL/! Test Program (DFSDDLTO) and the requirements (those 
that pertain, for example, to interfaces, JCL, control statements, 
and execution in different types of regions) that govern use of 
this application program. This chapter also describes use of the 
Message Processing Region Simulation facility to check out a message 
processing program, in a batch processing region, with a set of 
data bases designed for testing purposes. 

• Appendix A is a quick-reference chart of the DL/I status codes 
IMS/VS returns to application programs. 

• Appendix B contains a description of the status codes described in 
Appendix A. 

Preface iii 



PREREQUISI~E PUBLICATION: 

ASSOCIATED PUBLICATIONS: 

Figure P-1 is a guide to using the IMS/VS system publications. This 
guide is divided into three parts, each dealing with a specific IMS/VS 
component -- Data Base System, Data Communication feature, and 
Interactive Query Facility (IQF) feature. For each component, one or 
more functional areas is identified. For each functional area, one or 
more tasks is specified, and the IMS/VS manual or manuals that contain 
major information regarding this task are noted. The titles of the 
IMS/VS manuals are abbreviated as followSi 

GIM 

SADG 

IG 

SPRM 

APRM 

UTRM 

OPRM 

1~2LY2 ~yst~L!~~ic~1io~ Design g~ig~ 

l~~!~ In~1~!1~1iQn Quide 

1~~LY~ ~yst~ID grogrammi~ Ref~£g ~~nY~! 

IMsLvS ~~~!ig~1iQn grog£~mming Referen~ ~~ng~l 

iv IMS/VS Application Programming Reference Manual 



(, 

• 

c 

Four IMS/VS manuals are not referred to in Figure P-1: 

• I"SLY~ ~g~~~gg~ ~ng £od~ ~~!~£~n£~ Manual: This manual supports 
essentially all tasks noted in Figure P-1. 

• I~2L!2 1Q! 19yel £Qg~L£QB1!nYi!I Check iD ~1LI: ~£Qqram ]~!~£~~£~ 
~nd QEg~~1!Qn ~~nY~!: This manual supports the Data Base System 
when ~he LLC/CC function is used. 

• I"SLY~ ~g~~~gg !Q£ID~! ~ervi~~ ~~~;~~ Gu~de: This manual supports 
the Data Communication feature when MFS is used. 

• I~2L!2 !~y~~~g [y~tiQn 1Q£ Communications: This manual supports 
the Data Communication feature when an AFC system is used. 

Th~ IQF section of Figure P-1 refers only to IMS/VS system library 
m~nuals that contain informat{on on lQF. Additional lOF information 
can he found in: 

• lQE 1sngy~gg GU!gg, GH20-1222 

Preface v 



Data Design Generate 
Base 

SADG I- UTRM 

System 
Design Define 

Data 
Base SADG, - IG 
System SPRM 

Design Generate 

SADG, ""-
Applications APRM 

UTRM 

Terminals 
Configure Ntwk Dsgn 

GIM 
I-

Data System 
Design 

Communication I-SADG, 
Feature * SPRM 

Design 

SADG, -
Introduce 

Applications APRM 

GIM 

Design 
IOF SADG, -Feature** 

SPRM 

* References for the DC feature are in addition to 
those for the DB System. 

**References for this feature are in addition to 
those for the DC feature. 

SADG 

Define 

IG 

Generate 

UTRM 

Define 

IG 

Load Reorganize Recover Tune 

I- UTRM, I- UTRM I- UTRM t-- UTRM,IG SADG 

Install Modify Tune 

I- - SPRM -IG UTRM 

Code Test 

I- ""-
APRM APRM 

Define Operate 

- -IG DPRM 

Install Execute Modify Tune 

- -IG - SPRM, ~ UTRM, DPRM 
DPRM IG,DPRM 

Code Test 

--! -APRM APRM 

Generate 

- SPRM 

Figure P-1. Guide to Using the IMS/VS System Publications 

vi IMS/VS Application programming Reference Manual 

r 

• 



r­
~. 

c 

PREFACE. . •.•.••.•.••••• 
Guide to Using IMS/VS System Publications. 

FIGURES. 

SUMMAFY OF AMENDMENTS •• 
Version 1, Release 1.2 ••••. 

Other Changes. • • • . • • • • • 
version 1, Modification Level 1.1 ••.••••. 
Version 1, Modification Level 1 .•. 
Version 1, Modification Level 0.1 •• 

CHAP~ER 1. IMS/VS ENVIRONMENT FOR APPLICATION PROGRAMMING. 
Effect on Application Programmers. 

Pr~-DB/DC Organizational Procedures. • 
DB/DC Organizational Procedures •• 

Fff.ect on New Programs • • . . . • • • • 
IMS/VS Data Base versus OS/VS File Design and Access • 
IMS/VS Data Communication versus OS/VS Teleprocessing. 
IMS/VS versus Non-IMS/VS Program structure • • • • • • 

Converting Existing Programs • • • • • •••• 
Major Considerations in Implementing an IMS/VS Application • 

CHAPTER 2. nATA BASE BATCH PROGRAMMING. 
IMS/VS Data Base Organization. • • 

Structure: Hierarchical.... 
Relationships of Data Elements. 
Levels • • . . • . . • • • • 
Traversal •.•.••..... 

Basic Element: The Segment •••• 
Hierarchical Interrelationships. 

Root Segments. • 
Pat h • • • . • • • . 
Data Base Record . . . • • • 

Limits on the Design of Data structures. 
Design and Definition of IMS/VS Data Bases. 

Physical Data Bases ..•.•••.• 
Loqical Data Bases . . • 
Design and Definition of Application and Logical Data 
Structures. • • . . . • . • . • •. •••• 

Application Data-Structure Design. • ••• 
Application and Logical Data-Structure Definition. • 
References . . . • . • 

Initially Loading a Data Base ••••••• 
Accessinq a Data Base. • • • • • • • • • • • 

Program Structure and Interface to IMS/VS •• 
Language and Compilation • • • • • • • • • 
Entry Points to Application Programs ••• 

Initial Invocation of a PL/I Transaction 
Examples . . . • . • • • • • • 

Data Base PCB Masks. • . . . • • 
Calls to Data Language/I (DL/I) •• 

Examples • • • • . 
Function • • • • • • • • 
PCB-Name . • . • •• • • • • • • 
I/O W 0 r k Are a • . • • • • 
Segment Search Arguments • • • • • 

iii 
iv 

xiii 

xv 
xv 
xv 
xv 
xv 
xvi 

1 .1 
1. 1 
1 .1 
1 .1 
1.3 
1 .3 
1.5 
1.5 
1 .5 
1.6 

2.1 
2.2 
2.3 
2.3 
2.4 
2.4 
2.5 
2.5 
2.5 
2.5 
2.6 
2.1 
2.8 
2.8 
2.8 

2.8 
2.9 
2.9 
2.10 
2.10 
2.10 
2.11 
2.14 
2.14 
2.15 
2.15 
2.16 
2.20 
2.20 
2.22 
2.23 
2.23 
2.24 

contents vii 



Detailed Description of DL/I Processing Functions. • 
Get Calls. . . . • • • • 

Uses of Get Calls. • • • 
Setting of Parentage • • 
Processing within Parentage. 
Resetting of Parentage . . • • • • • • • 
Rules for Get Calls .• 

Insert Calls • . • • . • 
Rules for Insert Calls • 
Using Insert Calls for Updating ••• 
Using Insert Calls for Loading a Data Base . 

Delete and Replace Calls • • • •. • • • • • • • • 
Use of Delete and Replace Calls. • • • • 
Rules for Delete and Replace Calls • • • • • 
Delete Requests Issued against a Logical Data Base • 

Pormat of Segments in the I/O Area • . • • • • 
Fixed-Length Segments. • • • . • • 
Variable-Length Segments • • • • • 

Termina ting the Application Program. • • • • • • • • • 
Examples of Batch-Program Structures • 

ANS COBOL Batch-Program structure •. 
PL/I Optimizing Compiler Batch-Program Structure 
Assembler Language Batch-Program Structure • • • 

Sta tus Codes for DL/I 110 Calls. • • • • • • . . . • 
status Codes for Successful Completion of Get Calls •• 
Status Codes for Valid Exceptional Conditions in the 

Data Base • • • • • • • • • • • 
position in the Data Base ••••• 

PCB and Position for "Not-Found" Calls • 
Access to Multiple Data Bases •. 
System Service Calls • • • • • 

Checkpoint (CHKP) .•. 
Examples of the Basic CHKP Call. 
Examples of the Symbolic CHKP Call • 

Festart (XRST) • 
Examples . • 

Dequeue (DEQb) • 
Examples • • 

Rollback (ROLL). • 
Examples • 

Log (LOGb) 
Examples 

Get SCD (GSCD) 
F-xample. 

Statistics (STAT). 
Examples • • • . 

Examples of Data Base Processing Using DL/I I/O Functions. • 
Data Base Crea tion • • • • • 

Skill Segmen t Insert ion. • • . • • • 
Name Segment Insertion • • • 
Experience Segment Insertion 
~ducation Segment Insertion. • •••• 
Skill, Name, and Experience Segment Insertion •• 
Education Segment Insertion •••••••• 
Name and Experience Segment Insertion. 

Data Base Retrievals • • • • • 
. '. . 

Data Base Updates. • • • • • • • 
Data Base Deletions. • ~ • • • 
Data Base Insertions • • • • • • • • • 

Using a Batch Region to Check Out Online Message Programs •• 
Examples . • • • • • • • • • • • • 

Generalized Sequential Access Method (GSAM). • 
GSAM Data Base Restrictions. • 
GSAM Functions • 
Dat a Base Acce ss • • • • • • • 

viii IMS/VS Application Programming Reference Manual 

2.28 
2.29 
2.29 
2.30 
2.30 
2.30 
2.31 
2.32 
2.32 
2.33 
2.33 
2.33 
2.33 
2.35 
2.35 
2.35 
2.35 
2.36 
2.37 
2.38 
2.38 
2.41 
2.43 
2.43 
2.44 

2.44 
2.44 
2.44 
2.46 
2.47 
2.48 
2.49 
2.50 
2.51 
2.51 
2.52 
2.53 
2.53 
2.53 
2.54 
2.54 
2.55 
2.55 
2.56 
2.56 
2.60 
2.61 
2.62 
2.62 
2.62 
2.62 
2.63 
2.63 
2.64 
2.64 
2.65 
2.65 
2.66 
2.66 
2.67 
2.67 
2.67 
2.68 
2.68 

"-...• / 

' ....... 

• 



l 

• 

c 

G~AM Calls .. 
Status Codes •• 

Record Formats . • • • • 
Fixed-Length Records 
Variable-Length Records. 
Undefined-Length Records • 
Dat a Set I/O A rea. • • . 
User Area. • . • • • • . • . . • • • 
Direct Retrieval by Record Search Argument (RSA) 
Record Search Argument (RSA) 
Record Search Argument (RSA) Usage . • • • • 

Bufferinq .•••.•.•••• 
Checkpoint/Restart . . • • • • 

Checkpoint Restrictions. 
Jct. . . . . . . 
IMSBATCH Jct PROC. • • • . 

CHAPTER 3. DATA BASE PROCESSING: ADVANCED FUNCTIONS •• 
Se~ment Search Arguments Using Advanced Functions. • • • • • • • 

General Characteristics of Segment Search Arguments. • 
Command Codes. . . • . • • • . • • ••• 

Call Function. • • •• . ••• 
Segment Qualification. 
Settinq of Parentage • 

Boolean Qualification Statements 
Use of Field Names in Segment Search Arguments for 
Concatenat~d Segments • • . • . • • • • • • • 

Multiple Positioning . • • . • • • . . • • • • • 
Effect of Multiple Positioning on DL/I Call Functions. 

GN and GNP Calls Using Multiple Positioning ••••• 
GU and ISRT Calls Using Multiple Positioning •••• 
DLE~ and REPL Calls Using Multiple Positioning • . • • • • • 

Examples of Call Sequences Using Single and Multiple 
Positioning . . . • • • ••• 

Use of Multiple Positioning .•••.••••.•• 
Increased Data Independence •••.••••••• 
Parallel processing of Dependent Segment Types. 

Mixing Calls with and without Segment Search Arguments and 
Multiple Positioning. . . • • • • • • • ••• 

Summary. • . • . . • . • • . • • • 
Secondary Indexing . . . • . • . • • • 

Indexed Segments -- Indexed Fields 
Index Target Segment • • . • 
Index Pointer Segmen t. • • • • • . 
Index Source Segment • • . • • • 

Secondary processing Sequences • • • 
Secondary Data Base Structure Made Possible by 

Secondary Indexes . • • • • • • • 
Options and Rules for Secondary Indexing ••• 
Considerations • • • • • • • • • • • • • • • 

Processing a Secondary Index As a Data Base. • • ••• 
Secondary Indexes and Segment Search Arguments • • 

Independent and Dependent AND Boolean Operators. 

CHAPTER 4. DATA COMMUNICATION APPLICATION PROGRAMMING • 
Teleprocessing Application Program Interface to IMS/VS • 
~p PCBs. . . • • • • • • • 

I/O PCB. . . . . . . • . . . . ••••.•. 
Alternate PCB. . • • • • • ••• 

TP-1?CB Mask. . • 
COBOL Example of a TP-PCB Mask •• 
PL/I Example of a TP-PCB Mask. 

Entry to the Teleprocessing Application program •• 

2.69 
2.70 
2.70 
2.70 
2.70 
2.71 
2.71 
2.71 
2.71 
2.72 
2.72 
2.73 
2.73 
2.7q 
2.7q 
2.15 

3.1 
3.1 
3.3 
3.4 
3.Q 
3.6 
3.7 
3.8 

3.9 
3.10 
3.12 
3.12 
3.12 
3.12 

3.12 
3.13 
3.14 
3.14 

3.14 
3.15 
3.16 
3.18 
3.18 
3.18 
3.18 
3.19 

3.19 
3.21 
3.22 
3.23 
3.24 
3.24 

4 .1 
4.2 
4.3 
Q.4 
Q.4 
4.5 
4.6 
4.7 
4.7 

Contents ix 



TP Calls • • • • • • • • • • • • 
Input Message Segment Calls. • 

G et Call s (G U, G N) • . • • • 
Output Message Segment Calls . 

Insert Call (ISRT) ••••••• 
Additional TP Calls ...•• 

Purge Call (PU RG). • 
Change Call" (CHNG) ••••••••• 

Message Formats. • • • • 
Input Message Format ••••• 
Device Dependent Input Message Considerations. 

2260-1, 2260-2, 2265-1 •• 
2770 System components •••.••• 
2972/2981) Components • . • • • 

output Message Format .•••• 
Terminal Destination Output ••••• 
Online Message Format Considerations -- MFS Not Used 
Proqram-to-Program Message Switching •••••• 

Teleprocessing or Batch/Teleprocessing Environments. 
ANS COBOL Message Program Structure. • • • • • • • 
PLII Optimizing Compiler Message program Structure • • 
Assembler Language Message Program st~ucture ••• 
Abends Issued by Application Programs ••••••• 

CHAPTER 5. DATA COMMUNICATION: CONVERSATIONAL PROCESSING. 
Scratchpad Area Format • • • • • • 
Input Message Format • • • ••• 

Example •••••••••••• 
Saving Information in the SPA. • 
output Messaqe Format •.•••••••• 
passing Conversational Control to Another Conversational 
Program • • • • • • • • • . • • • • • • • • 

Termi na ting a Conversation • • • • • • • • • 
Rules for Writing conversational Programs. 

General. • • . • • ••••••• 
Message Response • • • • . • • • • • • • • • • 

CHAPrER 6. APPLICATION PROGRAM EXAMPLES 
Data Base Load Program Example • • 

ANS COBOL Application Program. • • • • 
Data Base Dump P rogra m • • • • • • • • • 

Assewbler Language Application Program Example 
Batch processing Program Example • 
Message Processing Program Example 

ANS COBOL Application Program •• 
Conversational Application Program Examples Using PL/I • 
PL/I Optimizing Compiler Example • 

Message Format Services. • • • • • • • • • • • • • • • 

CHAPTER 7. APPLICATION PROGRAMMING TESTING AIDS 
Data Langu~ge/I Test Program (DFSDDLTO). 

General Description. • • • • • 
Interfaces ••••• '. 
JCL Requirements • • • • • • • • • • • • 
Control ~tatements • • • • • • 

S TA T US S tat e me n t • • • • • • 
COMMENTS Statement ••••• 
CALL Statement ••.•••• 
DATA Statement • • • • 
COMPARE Statement Format for PCB Comparisons 
COMPARE Statement Format for User 1/0 Area Comparisons • 
OPTION Statement Format. 

x IMSIVS Application Programming Reference Manual 

4.8 
4.9 
4.9 
4. 11 
4.11 
4.13 
4.13 
4.15 
4.15 
4.16 
4.18 
4.19 
4.19 
4.20 
4.23 
4.23 
4.29 
4.32 
4.32 
4.32 
4.35 
4.37 
4.37 

5.1 
5.1 
5.2 
5.2 
5.3 
5.3 

5.3 
5.4 
5.5 
5.5 
5.6 

6.1 
6.1 
6.1 
6.5 
6.5 
6.8 
6.19 
6.19 
6.26 
6.28 
6.34 

1 .1 
7.1 
7.1 
7.1 
1.2 
7.3 
1.3 
1.5 
7.5 
7.1 
7.9 
7.11 
1.12 

..... ...... ,~ ... 

• 



Special Control Statement Porm ats. · 1.13 
PUNCH Statement. . . · 1.13 
PUNCH nn Statement . · ~ · 1.14 

/ SYSIN2 DD statement. 1.14 

"- Other Control Statement Pormats. · . . · · . . . . 1.15 
Special CALL Statement Format. · · 1.15 

Format of Display of DL/I Blocks · 1.16 
Execution in Different Types of Regions. . . . · · 1.16 
Hints on Usage . 1.17 
Sample Jet . · · · · 1.18 
Sample Control Statement Input · 1.18 

Data Base Load . · · · · 1.18 
Data Base Retrieve and Update. · · 7.18 

~essage processing Region Simulation · 1.19 
Examples . · · · · · · · · 7.21 

Simulator Interface A. 1.21 
Message Processing Program · · · · · 1.21 
Simulator Interface B. 7.22 

APPENDIX A. DL/I STATUS CODES QU ICK -R EFERENCE TABLE · · A.1 

APPE~TDIX B. DATA LANGUAGE/I STATUS CODES. . B .1 

INDEX. . , · · · . . . . I.l 

c'-

• 

contents xi 



'. 

• 



• 

P-1. 
1-1. 
1-2. 

1-3. 
1- 4. 

1-5. 

2-1. 

2-2. 

2-3. 
2- 4 •. 
2-5. 
2-6. 
2-7. 
2-8. 
2- 9. 
2-10. 
2-11 • 
2-12. 

2-13. 

2-14 • 
3-1. 
3 -2. 
3-3. 

3- 4. 
3-5. 

·3 -6. 
3-1. 
4-1. 
4-2. 

4-3. 
4- 4. 
4-5. 
4-6. 
4-7 • 

4- 8. 
4- 9. 
4-10. 
4-11 • 
4-12. 
4- 13. 
4-14. 

7-1. 
A-1. 

Guide to Using the IMS/vS System Publications • 
Basic Functions of a User Installation. • • • • • 
Application Analysis Joint Interface with Data 
Base Administration •••••.••••••••• 
OS/VS Data Management Data Structure ••••••• 
Com~arison of OS/VS Physical Record and IMS/VS Logical 
S~gment Relationship. • • • • . • • • • • • • • • • • • • 
Decisions, Actions, and Responsibilities for the 
Design, Implementation and Continued Use of an 
1MSI'S Sistem • • • • • • • • • • • • • • • • • 
Schematic Representation of a Hierarchical Data 
Structure • . • . . • • • • • • • • • • • 
OS/VS Data Management -- IMS/VS Data Base 
P~lationship. • • • • • • • • • 
IT1S/VS Da t~ Base Record • • • • • • • • .• 
Data Base Structural L;mits ••••••••••• 
IMS/VS Interface with Application Program •• 
structure of a Batch Application Program •• 
IMS/VS Batch Environment Comparison to OS/VS. 
Application Program Data Base-PCB Mask. • • • 
Concateriated Keys •••••••••••••• 
ANS COBOL Batch-Program structure •••••••••••• 
PL/I Optimizing Compiler Batch-Program structure ••••• 
Accessing Multiple PCBs in an IMS/VS Batch 
Fnvironment • . • • • • • • • • • • • • • • • 
Multiple Logical Data structures for the Same 
Data Base • . • • • • • • • • • • • • 
Logical Data Base Record Structure •••••• 
5SA Structure • • • • • • • • • • • • • • • • 
Fffect of Using Logical-parent Sequence Fields •• 
Assumed Data Base to Illustrate Single and Multiple 
Positioning • • • • • • • • • . • • • • • • • 
Indexing a Data Base with Secondary Indexes • 
Secondary structures by Secondary Indexes • • 
Example of Independent AND. • • • • • • • • • 
Example of Dependent AND ••••••••••• 
IMS/VS Data Communication Facility. • • • • • • . • ••• 
Relationship of Teleprocessing Application program 
to'DB PCBs and TP PCBs •••••• ~ ••••• 
Teleprocessing Application Program Execution. 
Layout of a TP-PCB Mask •• • • • • • • • • • 
Message Relationships to Its Segments • • • • 
Call Functions for Segments of Messages A and B • • ••• 
Call Functions for Segments of an Output Message 
and Call Statements • • • • • • • • • • • • • • • 
output Message as One Segment and its Call Statement. 
Grouping of Message Segments (PURG Call). 
2980 Model 1 Special Character Set. 
2980 Model 4 Special Character Set. • • • 
2980 Model 4 Function Key Translate Table • 
COBOL Message Program structure • • • • • 
General PL/I Optimizing Compiler Message program 
structure • • • • • • • • • • • • • • • 
Message Processing Region Simulation. • ••• 
DL/I Status Codes Quick Reference • • • • • • • • 

Figures 

vi 
1. 1 

1.3 
1.4 

1.4 

1.7 

2.4 

2.6 
2.7 
2.7 
2.11 
2.13 
2.15 
2.17 
2.20 
2.38 
2.41 

2.46 

2.47 
2.61 
3.2 
3.10 

3.11 
3.19 
3.20 
3.25 
3.25 
4. 1 

4.3 
lL3 
4.5 
4.8 
4.10 

4.12 
4.12 
4.14 
4.21 
4.22 
4.23 
4.33 

4.35 
1.19 
A.2 

xiii 



/ 

• 



," 
I 

~---

• 

This release reflects technical changes to this publication in 
support of the following devices: 

• 3761 Communication Terminal 

• 3770 Data Communication System 

OTHER CHANGES 

• A symbolic call interface for the extended checkpoint/restart 
facility has been added. With this facility, COBOL and PL/I 
application programs can now issue extended CHKP/XRST DL/I calls 
and also CHKP DL/I calls that specify OS checkpoints. 

• Updates have been made to PL/I information, and a revised example 
is included for the PL/I Optimizing Compiler. 

• Chapter 7 of this edition comprises the ffDL/I Test Program" that 
was formerly Appendix C of the In§L!2 [tiliti~ [~fe£§n£g n~nY~1, 
and "Message Processing Region Simulation" that was formerly 
Appendix B of the 1~§LY2 ~y~temL!£Elicati~u Design gYig~. 

• Support has been added for the 3140 Data Entry System. IMS/VS 
supports the 3141 Data Station, Model 2, and the 3141 Programmable 
Work Station, Model 4, attached on a switched line using BTAM. 

• The restriction against the Utility Control Facility (UCF) has been 
lifted • 

Summary of Amendments xv 



The foll~wing new and/or enhanced IMS/VS functions have been added: 

• Generalized Sequential Access Method (GSAM). 

• Expanded restart (restart call), GET SeD call, and Statistics call 

• Response Alternate PCBs. 

• Fixed-length SPAs. 

• Program Isolation. 

• Application program output limits. 

• Message Format Service (MFS) support for additional terminals. 

NQi§: Information in this manual about the Utility Control Facility 
(UCF) is for planning purposes only until that facility becomes 
available. 

• Support for the IBM 2260 Display Station, Model 1 and 2, and for 
~he IBM 2265 Display Station, Model 1. 

xvi IMS/VS Application programming Reference Manual 

• 



c/ 

The objectives of the IMS/VS Data Base (DB) facility are to enable 
multi-application use of shared data, with greater integrity of the 
data itself, and with greater independence from data management for 
the proqrams, the application programmers, and the users. For the full 
~ata Base/Data Communications (DB/DC) facility of IMS/VS, these 
obiectives extend to multi-application use of shared terminals, with 
greater integrity of the transmission, and with greater independence 
from the mechanics of terminal hardware and teleprocessing procedures. 

~he real effect of IMS/VS on application programming groups occurs 
in organizational procedures. There will be a significant difference 
in how a data organization is designed, who does it, and at what point 
in time. The manner in which data is administered and maintained will 
change, and a significant change should occur in the interface between 
an application programming group and the systems function in the central 
data processing organization. 

PRE-DB/DC ORGANIZATIONAL PROCEDURES 

In most companies, application programming has been scattered 
throughout the various functional areas of the company. The central 
data processing organization provided an interface advisory function, 
establishing procedures for using the system and determining resource 
requirements for these functional groups. But each group designed and 
implemented its independent programs and independent data files, and 
each group negotiated and programmed for its own teleprocessing 
terminals. 

nB/DC ORGANIZATIONAL ~ROCEDURES 

To obtain the most effective use of an IMS/VS system, users may wish 
to consider an adjustment in functions and procedures. There must be 
a central coordination of the data base structures and contents, since 
these structures are to be shared by multiple functional areas. 
Accordingly, a new function of "Data Base Administrator" may be found 
desirable in the central data processing organization, as illustrated 
in Figure 1-1. 

r--------------------------------------------------------------, , 
, !EEli£~1iQn§ , 
,Interface and 
I Design 
1 , , 

]~:t~ Ba§~ 1 
!gID.!.ni§!!:~.!.!Q!!1 

coordinate: 
• Design, 
• Generation, 
• Usage 

I 
I 
I 
I 
I 
I 

Analysis, 
Design and 
Installation 

Installation 
Opera tion, 
Pro cedur es, 
Libraries 

I 
I 
1 
1 
I 
I 
1 , 

L-------------------------------------------------------------~~ 

Fiqure 1-1. Basic Functions of a User Installation 

IMS/VS Environment for Application Programming 1.1 



Since the decision to install IMS/VS is actually a decision to make 
an integrated data organization fulfill the requirements of multiple 
application programs, a focal management function becomes desirable 
to: 

• coordinate current application requirements; 

• anticipate future requirements of current and future applications; 

• plan, schedule, and control the design, installation, and access 
to data bases; generate all data bases; 

• inform applications personnel of existing· data structures and 
provide guidelines as to their use; 

• analyze and evaluate the effect of current or planned data 
structures on overall system performance; 

• coordinate with systems and operations organizations the development 
of effective procedures for data protection. 

Naturally, the other three functional areas are very much affected 
by and involved in designing and installing a data base system. But 
the important interface with the DP organization now becomes, for 
application programming groups, the Data Base Administration function. 

Figure 1-2 exemplifies the functional relationship which develops 
bet.ween applicat ion programming groups and data base administra tion. 
Whereas application groups used to design both programs and data files, 
now the design of the data structures referenced by application programs 
becomes a joint task. Developing the procedures for implementing that 
joint design function can be one of the most important tasks an 
installation faces. 

Second, and equally important, an equivalent focal point is required 
to coordinate and control the teleprocessing network; to keep track of 
the location and use of physical terminals; to map logical ~sers onto 
the physical network; and to plan, schedule, and control the dynamics 
of message traffic, and the load on the central data processing system. 

1.2 IMS/VS Application Programming Reference Manual 

'-_/ 



--------.~.---.--... -.. ---------------.- - .. --------

c 

• 

c' 

--_. __ ._---._, .. _--

r---------------------------------------, 
I Data Base Administration I 
1---------------------------------------, 
1 , 
I. Design phys,ical data bases I 
,. Define logical relationships , 
I. Generat@ and maintain all data bases, 
,. Coordinate multi-application use of , 
I data bases I 
,. Insure availability, integrity, and , 
1 security of data bases I 
I I 
L---------------------------------------J 

r-------------------------------------------------------, 
, Joint punction , 

,-------------------------------------------------------t 
1 t 
t Desiqn logical data structures for each application , 
I I 
L-------------------------------------------------------J 

r------------------------------, r-------------------------------l 
, proqramminq Group A 1 , programminq Group N I 
1------------------------------1 1-------------------------------, , , , 1 
I. Define A's data requirements, ,. Define N's data requirements, 1 
,. Desiqn A's application , ,. Design N's applications I 
I , , , 
L------~-----------------------~ L-------------------------------J 

Figure 1-2. Application Analysis Joint Interface with Data Sase 
A dministra tion 

The changes described above are procedural and organization~l. The 
net effect on conventional, pre-IMS/VS application Dr~qramminq tasks 
is simplification: 

• New applications usinq IM5/VS will require much simpler data I/O 
and message I/O procedures • 

• Follow-on maintenance of any IMS/VS application should be 
siqnificantly reduced due to the logical independ~nce from da~a 
files and teleprocessing hardware. 

I~S/VS DATA -SA SE VER SUS OS/VS FI LE DESIG N AND ACCESS 

Application analvsts and programmers converting to use of IM5/VS 
for new applications find their task considerably simplified because 
all data description and file definition occur externally. The 
proqrammer is relieved of the need to build these functions into the 
application, and can concentrate on the symbQlic representation of the 
application data and their logical interrelationships. 

IMS/VS Environment for Application Pr~qramminq 1.3 



Under the System/370 operating systems and data management services, 
a "data set" is considered the major unit of data storage and retrieval. 
A data set is made up of physical records each of which in turn, may 
contain multiple logical records. 

r-------------------------------------------------------------------, 
, Logical Record A1 1 Logical Record A2 I tRB1 I LRB2 I LRB3 I LRB4 I 
,-------------------------------------------------------------------1 
, Physical Record A ,Physical Record B I 
1-------------------------------------------------------------------. 
, DATA SET I 
L-------------------------------------------------------------------~ 

Figure 1- 3. OS/VS Data Management Data Structure 

This as/vs structure is shown in Figure 1-3. The application program 
is constrained by this structure: its definition must be a part of 
the program, the logical representation of data must be within the 
bounds of the physical structure, and any change in the structure almost 
surely will require a change in the program. 

Under IMS/VS, logical elements are identifiable and processable by 
the programmer with no knowledge of or reference to the physical format. 
Figure 1-4 illustrates the difference. 

OS/VS DATA MANAGEMENT 
PHYSICAL RECORD 

NAME ADDRESS PAYROLL 

LOGICAL RECORDS 

IMS/VS 

LOGICAL SEGMENTS 

I 
ADDRESS 

Figure 1- 4. 

NAME 

I 
1 

PAYROLL 

Comparison of OS/VS Physical Record and IMS/VS Logical 
Segment Relationship 

1.4 IMS/VS Application. programming Reference Manual 

. ......... 

• 



• 

----------------~- --------------~---------

IMS/VS DATA COMMUNICATION VERSUS OS/VS TELEPROCESSING 

The task of application programmers writing data communications 
programs is simplified to a large degree by being able to deal just 
with loqical terminals within the program. IMS/VS handles the 
teleprocessing access method, the correlation between logical and 
physical terminals, and distinctions between the hardware 
characteristics of various terminal devices. 

IMS/VS VERSUS NON-IMS/VS PROGRAM STRUCTURE 

The IMS/VS system capabilities which enable the programmer to deal 
exclusively at a logical level with data and terminals consist of two 
principal facilities: 

• an offline facility for generating control blocks which accomplish 
the mapping between logical and actual data and between logical 
and actual terminals. This facility is intended to be administered 
by DB/DC administration in the central data processing organization; 

• an inline high-level language called Data Language/I (DL/I) which 
interprets and processes data and/or message input/output requests 
during program execution. Programmers invoke DL/I via structured 
CALLs from PL/I, COBOL or Assembler Language programs. 

A detailed description of these features with respect to batch data 
processing and online message processing constitute the remaining 
cha pters. 

The task of converting an existing application program to enable 
its use of IMS/VS data structures requires analysis by the application 
group in consultation with the data base administrator and other DP 
systems personnel. Two factors are important in this analysis: data 
integrity and program performance. 

If data integrity is critical and can be markedly improved by 
shifting to an IMS/VS structure, and if the present I/O procedures in 
the application can be located and converted to IMS/VS I/O procedures 
in a straight-forward manner, then the installation may find that an 
initial conversion can be accomplished by altering just the program 
I/O areas. At the same time, program performance should be analyzed 
so that the effect of this initial change on the system and on the 
application users can be evaluated. 

Where performance is critical, IMS/VS users generally find it 
desirable to redesign the application so as to take full advantage of 
the facilities IMS/VS offers. This is particularly true where the 
application has been accessing sequential files and doing minimal 
process ing. 

IMS/VS Environment for Application Programming 1.5 



Fi'gure 1-5 describes the major steps required to activate an If!S/YS 
system. The items to the right are some of the decisions which must 
be made before any of the center actions can be taken. This figure 
shows the context in which, an If!S/YS application is implemented. 

Looking just at the activity of creating an application program, it 
would appear that aside from the logic of the application itSelf, an 
application programmer need be concerned only with selecting the 
programming language and observing the IMS/VS interface conventions. 
This can be quite true for individual application programmers. 

concurrently, however, the application programming management and 
the application analysts must actively participate in the design of 
the logical data structures and the definition of how the program viII 
use its data bases. The vertical columns on the left shov that these 
tasks: 

• must occur earlier than they previously may have been undertaken; 

• must b~ shared, in an organized fashion, between systems and 
application personnel. 

1.6 IMS/VS Application Programming Reference Manual 

, 
',,-

• 



• 

PRIMARY RESPONSIBILITY 

. SYSTEMS APPLICATION 
PERSONNEL PERSONNEL 

ACTION 

STRUCTURE 
THE 
EN VI RONMENT 

GENERATE 
THE 
IMSSYSTEM 

GENERATE 
THE DATA BASE 
DESCRIPTIONS 

GENERATE 
THE PROGRAM 
SPECIFICATION 
BLOCKS 

CREATE THE 
APPLICATION 
PROGRAMS 

MEASURE 
EFFECTIVENESS 
TUNE & MAINTAIN 
SYSTEM & PROGRAM 
& PROCEDURES 

DECISIONS 

DB or DB/DC? 
NO. OF REGIONS 
PROJECTED NO. OF - DATA BASES 

- TERMINALS 
-PROGRAMS 
- USERS 

PROJECTED FREQUENCY OF USE 

SCHEDULE THE IMPLEMENTATION SEQUENCE 
DESIGN TEST PROCEDURES 
DESIGN PERFORMANCE MEASUREMENT TOOLS 
DESIGN SYSTEM PROTECTION PROCEDURES 

DATA BASE STRUCTURE 
NO. OF ELEMENTS 

, NO. OF LEVELS 
FIXED OR VARIABLE LENGTH 

DATA BASE ORGANIZATION & ACCESS 

APPLICATIONS PER DATA BASE 
DATA BASES PER APPLICATION 
DATA BASE USAGE 

CREATE 
RETRIEVE 
UPDATE 

SENSITIVE SEGMENTS 
POSITIONING 
LOGICAL TERMINALS 
MESSAGE CHARACTERISTICS 

LANGUAGE 
APPLICATION LOGIC 
IMS INTERFACE CONVENTIONS 

RESPONSIVENESS 
RELIABILITY 
USE OF RESOURCES 

Figure 1- 5. Decisions, Actions, and Responsibilities for the Design, 
Implementation, and Continued Use of an IMS/VS System 

IMS/VS Environment for Application Programming 1 .7 



.. 

• 



(-

• 

c. 

This chapter provides application analysts and programmers with 
reference material on the basic capabilities of the IMS/VS Data Base 
(DB) facility. The DB facility is available to and used by all IMS/VS 
application programs, whether operating in a batch mode, batch message 
processing mode, or message processing mode. The Data Communications 
(DC) facility of IMS/VS is required for the latter two modes of 
operation. Application programming for the DC facility is described 
in later chapters of this manual. 

~his chapter concentrates on the DB facility and addresses the two 
fundamental aspects of the IMS/VS application programming task: 

• Designing application views of data (logical data structures) 

• Interfacing the application program with IMS/VS 

With respect to data design, the application analyst wants to know 
how to: 

• Define each of the elements of data required by the program and 
the ways each element will be processed 

• Organize the data elements and indicate their relationships 

With respect to interfacing with IMS/VS, both the application analyst 
and the programmer want to know: 

• How the program can access data 

• How the program can identify the basic data elements and the way. 
they can be processed 

• How, where, and in what form IMS/VS responds to the program requests 

Data design is shared by the application analyst and the data base 
administrator. Whereas application programming is concerned with 
logical views of data, data base administration is concerned with 
providing ~hysical data structures to make those logical views possible 
while at the same time meeting the requirements of other applications, 
system performance, and data protection. The details of IMS/VS data 
structures, from the application analyst's and programmer's viewpoint, 
are described in the first section of this chapter. 

The second concern, the operational interface between the application 
program and IHS/VS, is covered in the second section. It describes 
what is contributed to the interface by IMS/VS: 

• Data Language/I (DL/I) 

• The Program Communication Blocks (PCBs) 

and by the programmer: 

• DL/I calls 

• PCB masks 

Data Base Batch programming 2.1 



It is assumed that the reader of this chapter is familiar with the 
1!12L!12 ~~!!~!:g,! Info!:!!!atiQ!!' l1~!!.Y~1:, and has attended an IMS/VS "Concepts 
and Facilities" class, or the equivalent. 

It is suggested that the reader also refer to relevant portions of 
the lMSL.!2 ~I§i.§1!tL:Ag2!1£,9;liQn ~§iqn !ZYi£,g and the 111~L!2 Qiilities 
E~!.§!~n£.§ !lg,!!!!~!. 

The Il1~L!~ ~.§§§~gg§ ~nQ Cod~§ Reference Manual will be a necessary 
tool, once the programmer begins to-develop-and-check out the 
application program. 

The cornerstone of the IMS/VS Data Base (DB) facility is the 
capabili ty to overlay rou It iple n logical" (application- oriented) da ta 
structures on non-repetitive "physical" data organizations. It is this 
concept which enables an application programmer to consider only the 
data witb which the application is concerned, structured in a manner 
which satisfies the functional requirements of the program logic rather 
than the interests of physical storage or access methods. The 
application programmer, and in many instances the application analyst, 
need not be concerned with any data that is extraneous to the program 
or the physical organization of data. 

In this chapter, four distinct kinds of IMS/VS data structures are 
identified: 

• Physical data bases 

• Logical data bases 

• Logical data structures 

• Application data structures 

Physical and logical data bases are "internal", system-oriented 
structures. Logical and application data structures are "external," 
application-oriented structures. 

Physical data bases define to I~IS/VS the format of each actual data 
element, the relationships between data elements, and how these elements 
are to be organized in physical storage. Logical data bases (using 
"logical relationships" specified in physical data bases) define a 
structural relationship among actual data elements in one or more 
physical data bases which is different from the structural relationship 
defined in the physical data base(s). Physical and logical data base 
structures are designed by the data base administrator to meet the 
combined requirements of multiple application programs. Definition of 
these structures to IMS/VS is accomplished via the DBDGEN utility 
program. 

An application data structure specifies to IMS/VS what data the 
program will process and what structural view the program takes of that 
data. One and only one application data structure must be defined for 
each program. An application data structure consists of one or more 
logical data structures. A logical data structure specifies what data 
the program will process within a particular logical or physical data 
base. Application data structures are functionally designed by the 
application analyst. Logical data structures are designed by the data 
base administrator often together with the application analyst, using 
the application data structure. Definition of these structures to 
IMS/VS is accomplished via the PSBGEN utility program: a logical data 

2.2 IMS/VS Application Programming Reference Manual 

,. 

.. 

• 



" 

c.; 

• 

L, 

structure is that structure defined in a PCB; an ~pplication data 
structure is that structure defined in the PSB. 

These four structures are discussed in the sections "Design and 
Definition of IMS/VS Data Bases" and "Design and Definition of 
Application and Logical Data structures" later in this chapter. The 
remainder of this section describes aspects which are common to all 
four structures: 

• structure -- hierarchical 

• Basic element -- the segment 

• Hierarchical interrelationships 

• Limits on the design of data structures 

STRUCTURE: HIERARCHICAL 

In IMS/VS, all data is organized in hierarchical structures. These 
structures consist of elements of data interconnected to show 
relationships. The elements of data are called "segments" and are 
described below. In a hierarchical structure, the relationships 
indicate either dependency or equivalence. In IMS/VS, dependency is 
called a "parent-child" relationship; equivalence is called a "twin" 
relationship. The schematic convention for representing an IMS/VS data 
structure is shown in Figure 2-1. 

In Figure 2-1, B1is a child of A1 and a parent of C1 through G1, 
but not of F1 whose parent is E2. Elements D1, D2, and D3 are twins, 
F,1 and P,2 are also twins, as are 11 and 12. Elements Cl through G1 
(except for F1) are children of B1, and elements I1 through J1 are 
children of Hl. Element K1 is a child of J1. D1 and E1 are not 
considered twins, even though they have a sibling relationship under 
B1. Elements Gl and 11 have different parentage and hence are not 
related. A parent may have 0 to n children; a child may, have only one 
parent; a child may have f) to n twins • 

Data Base Batch Programming 2.3 



A1 

B1 H1 

I 03 
, 02 E2 , 12 

I-

e1 01 r- E1 G1 11 ~ 
J1 

F1 K1 

Figure 2-1. Schematic Representation of a Hierarchical Data Structure 

The successive dependencies 
"levels." In Figure 2-1 there 
and H, the second level, C, D, 
F and K are the bottom level. 
of 15 levels. 

of a hierarchical structure are called 
are 4 levels: A is the top level, B 
E, G, I, J make up the third level; and 
An IKS/VS data base may have a maximum 

By convention, IMS/VS traverses a hierarchical structure from top 
to bottom, front to back, left to right. At every position, it seeks 
a lower level; if none exists, it seeks the next-right element on the 
same level; if none exists, it seeks, in the level immediate~y above, 
the element which is next-right to the last element it had reached 
earlier at that level. The data base in Figure 2-1 would be traversetl 
in alphabetic sequence, A1, B1, el, D1, D2, D3, El, E2, F1, Gl, H1, 
Il, I2, J1, K1. 

When an application retrieval request says to get the next segment, 
this traversal order is used by IMS/VS. 

'hen the term "position" is used later in this chapter, position 
along this sequence is meant, and "forward from current positionfl means 
forward according to this sequence. 

2.4 IMS/VS Application programming Reference Manual 

r--- " 
\ 
'--

• 



• 

BASIC ELFMENT: THE SEGMENT 

The basic element of data in any IMS/VS data structure is called a 
"segment." 

All segment types may be either fixed or variable length. 

Segments may comprise one or more "fields." One field per segment 
in a loqical data base may be identified as a "key field." A key field 
is used by IMS/VS for indexing, searching, and sequencing purposes. 
Searches can he carried out also on non-key fields. In defining the 
structure of a data base to IMS/VS, each element of the structure is 
iden tified as a "segment type." In Figure 2 -1, each of the alphabet ic 
elements, A through K would be defined at data base definition time as 
"segment types." Later at load time, there can be 0 to n 
"segment-occurences" of any segment type. In Figure 2-1, D1,D2,D3 are 
seqment-occurences of segment type D. In discussing a data base, it 
is important to distinguish between the generic term "segment type" 
and specific "segments" or "segment-occurences." 

HIERARCHICAL INTERRELATIONSHIPS 

In the hierarchy of an IMS/VS data structure, the highest ~op) 
level segments are called "root segments." A root segment can be only 
a parent, never a child. 

A hierarchical "pa th" is the sequence of segment occurrences, one 
per level, leading directly from a segment at one level to a particular 
segment at a lower level. In figure 2-1, A1-B1-E2-F1 is a path. Paths 
are used in processing to reach a segment below the root level • 

Data Base Batch Programming 2.5 



A single occurrence of a root segment and all of its dependents is 
defined as a "data base record." The concept of data base record is 
more useful to systems personnel setting up the physical storage of a 
data base than to application analysts or programmers. 

Figur~ 2-2 compares a conventional OS/VS data management physical 
record with an IMS/VS data base structure. 

OS/VS DATA MANAGEMENT 

PHYSICAL RECORD 

SKILL NAME EXPERIENCE EDUCATION 

IMS/VS 

LOGICAL SEGMENTS 

SKILL 

NAME 

I I 
EXPERIENCE .EDUCATION 

Figure 2- 2. OS/VS Data Management -- IMS/VS Data Base Relationship 

2.6 IM.S/VS Application programming Reference Manual 

.. 



( 

~. 

.. 

C,I 

.... _-_._----_ ..... __ .. __ ._-------_._ .. _._----

~igure 2-3 shows a typical data base record which the IMS/VS 
structure of Figure 2-2 might contain. (Notice the data redundancy 
implied: If this were an OS/VS record, "Adams" might occur 5 times, 
Jones 6, and Smith 2. "Skill" (the root segment) might occur 13 times). 

SKILL 

(ARTIST) 

EXPERIENCE EDUCATION EXPERIENCE EDUCATION EDUCATION 

Figure 2-3. IMS/VS Data Base Record 

LIMITS ON THE DESIGN OF DATA STRUCTURES 

The rules which constrain the size and extent of an IMS/VS data 
structure are summarized in Figure 2-4. 

Dependents 
No. per per 
Data Parent-
Base Segment 

Type 

Levels 1 to 15 o to 14 

Segment types 1 to 255 o to 254 

Segment 1 to n o to n 
occurrences 

Figure 2-4. Data Base structural Limits 

Data Base Batch programming 2.7 



PHYSICAL DATA BASES 

Physical data bases represent the organization and acceSs method of 
actual data on the storage medium. They define the actual format and 
content of each data segment type, as well as all the physical ' 
relationships which exist between segment types. In addition they 
include all the "logical relationships" by means of which potential 
alternate paths between segment types can be defined. The existence 
of these logical relationships enable the definition of logical data 
bases fsee below). 

Physical data bases must be designed by the data base administrator, 
who has the responsibility of coordinating the data requirements of 
multiple application programs. 

Physical data bases are defined to IMS/VS via the "Data Base 
Definition Generation" (DBDGEN) utility program which is part of the 
IMS/VS program product package. The definition, like the deSign, of 
Physical data bases should be the responsibility of the data base 
administrator. 

LOGICAL DATA BASES 

Logical data bases define logical hierarchical structures. These 
structures are composed of segment types defined in physical data bases, 
and are implemented by means of the "logical relationships" defined in 
those data bases for those segments. Any given logical data base is 
a hierarchical view of segment types selected from one or more physical 
data bases; segment types from any given physical data base can "belong 
to" multiple logical data bases. 

Logical data bases must be designed by the data base administrator, 
based on functional specifications of data requirements provided by 
application analysts. 

Logical data bases are defined to IMS/VS via the same "DBDGEN" 
utility program used to define physical data bases. conceivably, 
'generating a new logical data base may require multiple "DBDGEN" runs: 
one to define the logical data base, preceded by one or more additional 
runs to specify the required logical relationships in the referenced 
physical data base(s). 

DESIGN A~D DEFINITION OF APPLICATION AND LOGICAL DATA STRUCTURES 

An application data structure defines the complete hierarchy of 
segment types which is unique to a single application and describes 
the kind of processing intended by the application against each segment 
type. An application data structure enables IMS/VS to tailor its DB 
facility to the requirements of each application as it is executed. 
An application data structure, once it is designed and defined, consists 
of one or more logical data structures. The design of these logical 
data structure subsets evolves during the process of designing the 
application data structure. 

2.8 IKS/VS Applica tion programming Reference Manual 

.. 



.. 

c 

The design of an application data structure is based on functional 
specifications provided by the application analyst to the data base 
administrator. These functional specifications should describe, at 
minimum, the data elements (segment types) to be processed, their 
hierarchical relationships, and the processing intent of the program 
against each segment type. Additional information to be included in 
the specifications must be determined by each installation, as well as 
the manner in which the specifications are communicated. 

From these specifications, the data base administrator designs an 
application data structure (and its logical data structure subsets) 
which will satisfy the data and processing requirements of the program, 
will optimize system and program performance, and will protect the 
integrity of the program, the other programs which share the use of 
the data, and the data bases themselves. 

In most installations, the data base administrator needs the active 
participation of the application analyst during this design task. The 
design of an application data structure is essentially a "mapping" 
process in which the external program "view" of its data is mapped onto 
portions of existing or proposed internal structure (that is, physical 
and/or logical data bases). Usually, several alternative mappings are 
possible, and the effect of each on the design and performance of the 
program needs to be evaluated by the application analyst. 

The final result of the application data structure deSign process 
is a set of logical data structures. Each of these structures 
identifies an IMS/VS data base (physical or logical) the program will 
access, the segment types the program will use (be "sensitive" t~, 
and the type of processing the application program will perform on each 
segment type. In addition, the design process may disclose that: 

• An existing data base satisfies the requirements. 

• A cross-section of one or more existing data bases can be used. 

• A new logical data base must be defined. 

• A new physical data base must be generated, or an existing physical 
data base must be reconstructed. 

• The program requirements must be redefined -- data cannot be made 
available as requested. 

Application and logical data structures are defined to IMS/VS by 
using ~he Program SpeCification Block Generation (PSBGEN) utility 
program. The Program Specification Block (PSB) thus generated consists 
of Program Communication Blocks (PCBs). Each PCB identifies a physical 
or logical data base (definea, in turn, by DBDGEN) which the program 
will access. (PSBGEN also identifies resources associated with the 
use of the IMS/VS DC facility; this aspect is discussed in a later 
chapter.) 

The basic information provided to IMS/VS by each PCB definition is 
the identification of each segment type within the physical or logical 
data base which will be processed, and the type of processing which 
will be done. (Additional information specifies concatenated key 
length, a.nd options on t he advanced functions" multiple positioning" 
and" secondary indexing" described in the next chapter). The contents 

Data Base Batch Programming 2.9 



of the actual PCB generated by the IMS/VS PSBGEN utility program are 
described in detail later in t~is chapter. 

PROCESSING OPTIONS: The processing options which can be specified are 
combinations of the DL/I call functions (get, insert, replace, delete) 
and additional processing logic such as read only and load' only. A 
processing option may be specified for each segment type to which the 
program is sensitive. If it is not, IMS/VS defaults to the processing 
option which must be specified for the entire data base. 

SEGMENT-TYPE SENSITIVITY: PSBGEN also identifies the specific segment 
types within a data b'ase which the application program intends to 
process. An application program can be key-sensitive, data-sensitive, 
or not sensitive to segment types. If a program is not sensitive to 
a segment type, then it cannot access occurrences of that segment type 
or their dependents. Dependents of key-sensitive segments can be 
accessed if there is data sensitivity to the dependent segments. If 
the program is key-sensitive to a segment, the program can specify that 
segment in an SSA but cannot access the segment itself. If it is 
data-sensitive, it can access the segment. Data sensiti~ity implies 
key sensitivity. 

DATA B1.SE IDENTIFICATION: A logical or physical data base may be 
specified more than once in the PSBGEN for an application program. 
This can be a useful processing tool: for example, when it is desirable 
to maintain multiple positions in a data base, or to separate one 
processing option from another. See the discussion later in this 
chapter on "Access to Multiple Data Bases." 

To work effectively with the data base administrator, applications 
analysts should be familiar with source documents for the PSBGEN and 
DBDGEN utility programs as described in the IMS/VS .§ystemLlJ2.1!lication 
Q~2iED Gui£~ and the IMSL~ ~!!!~!i~§ Ref~~ Manual. The program 
Communication Blocks (PCBs) which make up the PSB for any application 
are described in further detail in this chapter, particularly in terms 
of their use to an application programmer. 

INITIALLY LOADING A DATA BASE 

Once a data base structure is defined, data can be loaded into it. 
Data base loading is accomplished by a user-written application program 
as described in the l~.§L!§ In21~~latiorr 2Yig~. The program employs 
one of the data processing Call functions IMS/VS provides for this 
purpose. All of these Call functions are described in the next section. 
Certain pointer relationships must be resolved when a data base is 
initially loaded. IMS/VS utilities are provided for this purpose and 
are described in the "Data Base Reorganization/Load Processing" chapter 
of t he I~'§L!'§ !!:t.il!:t.!g§ R~f~~~ MaID!al. Other considerations of 
initial load are also discussed there. 

ACCESSING A DAT A BAS E 

Application programs for which a PSB has been generated are able to 
access their relevant data bases by issuing calls to DL/I. T~e call 
format names the PCB of the logical structure, identifies the segDlent(S) 
desired, and specifies the processing function to be performed. 

2.10 IMS/VS Application Programming Reference Manual 

" 

• 

II' 



• 

c 

The operational interface which IMS/VS provides to the application 
proqram is composed of two components, DL/I and the Program 
communication Blocks (PCBs). They provide communication between IMS/VS 
and the running program, and enable an application to process data in 
an IMS/VS data base. 

Figure 2-5 illustrates the elements of the interface and their 
relationships. 

OSNS 

-!lC[Ms/vD ~MsiVD - -
DATA DB 

BASES SYSTEM 

- - _. LIBRARIES -- -- -........ -' OL/I MOOU LES ........ ..;' - -
" -~MS/VD 

I MSIVS --PCB -- CONTROL 
BLOCK , 

/ 
LIBRARIES / / 

/ / .......... _ .......... 
/ / 

/ / 

" / / 
APPLICATION' v 
PROGRAM/ /; -

/ / CMSIV-:1 
/ / -- APPLICATIO -- LIBRARIES 

~ MASK ......... _-" 

N 

Figure 2-5 • IMS/VS Interface with Application Program 

Prior to execution of the application program, the data base 
administrator must execute the IMS/VS Program Specification Block 
Generation utility program (PSBGEN) to create the PCBs. The PCBs (one 
for each logical data structure the application will access) are placed 
in a system library, ready for use by IMS/VS whenever the application 
is ex ecuted. 

DL/I is a set of IMS/VS modules which reside in the batch ~egion 
with the application program. Dt/I interprets the data-processing CALL 
requests issued by the program. 

The application program interfaces with these two 1MS/VS components 
via- the following program elements: 

Data Base Batch Programming 2.11 



• An ENTFY statement specifying the PCBs for the program 

• A PCB-mask which echoes the information maintained in the 
pre-constructed I"5/V5 PCB and which receives retarn information 
from DL/I 

• An IIO area for passing data segments to and from IMS/VS data base~; 

• Calls to DL/I sp~cifying processing functions 

• A termination statement 

The PCB mask(s) and I/O areas are described in the program's data 
declaration portion. Program entry, calls to IM5/V5, processing, and 
program termination are described in the program's procedural portion. 
Calls to IM~/VS, processing statements, and program termination may 
reference PCB mask(s) and/or I/O areas. In addition, IKS/VS may 
reference these data areas. 

2.12 IMSjVS Application Programming Reference Manual 

• 

(~ 
\ 
~ .. 



/' 
~-. 

( 

Pigure 2-6 illustrates how these elements are functionally structured 
in a program and how they relate to DL/I. The elements are discussed 
in the text that follows. 

APPLICATION PROGRAM COMPONENTS 

PCB· MASK 

RETURN 
INFORMATION ~ 

from 
"""IIIIIIII( 

I 
Dl/l I 

I 
I 

IO/AREA I 
I 

SEGMENT(s) 
~. I 

to I from -- I DATA BASE 

I 

- PROGRAM ENTRY I -- CAllS TO Dl/I DB FUNCTIONS - - - - - - - - -.1 ,. 

RETRIEVE I INSERT 
REPLACE I DELETE 

I 
l 

PROCESSING - - - ------ -~I 

I 
I 

-TERMINATION I 
I 

" " I 
E C E 
N A X 
T L I OUI R L T 
Y 

Figure 2- 6. Structure of a Batch Application Program 

Data Base Batch Programming 2.13 



LANGUAGE AND COMPILATION 

The application program is written in one of three languages: PL/I. 
COBOL, or Assembler Language. All of the examples in this manual employ 
versions of these languages. The program is compiled through the 
user-selected language compiler and placed in the appropriate program 
library. 

After the PSB for an application program has been generated and the 
program itself has been compiled, the program can be executed in an 
IMS/VS batch environment. Figure 2-7 depicts two environments. One 
is the conventional application program with its embedded file 
description and its use of the operating system data management 
directly. The second environment is IMS/VS. Here, under IMS/VS 
control, both the application program to be executed and its associated 
PSB are loaded from their respective libraries. The PSB contains the 
PCBs of the data structures to be used by the application program. 

ENTFY POINTS TO APPLICATION PROGRAMS 

As illustrated in Figure 2-7, when the operating system gives control 
to the IMS/VS control facility, the IMS/VS control program in turn 
passes control to the application program (through the entry points as 
defined in the following examples) and specifies all the pcb-names used 
by the application program. The order of the pcb-names in the entry 
statement must be in the same sequence as specified in the PSB 
generation run for this application program. The sequence of PCBs in 
the linkage section or declaration portion of the application program 
need not be the same as the sequence in the entry statement. 

Batch DL/I programs cannot be passed parameter field information 
from the EXEC statement PARM keywords. 

Programs that are OS/VS subtasks of an application program called 
by IMS/VS must not issue DL/I calls. If they do, the results will be 
unpredictable. 

It should be noted that with PL/I, whenever PL/I multitasking is 
used, al! tasks, even the apparent main task, operate as subtasks to 
a hidden PL/I control task. PL/I tasking is therefore not allowed in 
an I~S/VS program. 

2.14 IMS/VS Application programming Reference Manual 

" 

\ .... 



.. 

as/vs 
DATA MANAGEMENT 

as/vs 

FD -------
APPL. 

PROGRAM 

1MS/VS 

as/vs 

I 
,..--....It..----. I r---

I I 
APPL. I 

I I 

~I 
PROGRAM 

1MS/VS 
PSB LIBRARY 

PROGRAM 
LIBRARY 

Figure 2-7. 1MS/VS Batch Environment Comparison to as/vs 

Programs generated by the OS PL/I optimizing compiler can be entered 
by one of three entry points -- PL1START, PLICALLA, and PLICALLB. These 
entry points differ in the parameter list each expects to receive. 
PLISTAFT is the default that is used for entry directly from the as 
Scheduler. For this reason, it is not suitable for use by programs 
running under 1MS/VS. Either PLICALLA or PLICALLB can be used under 
1MS/VS, but the following considerations apply: 

• If the PL/1 execution options (for example, ISASIZE) are specified 
through PLIXOPT (see the description of this module in the fLII 
f£QEI~IDm~f~§ ~g~g~, SC33-0006) or have satisfactory defaults 
(specified during installation of PL/I), PLICALLA can be used by 
including an ENTRY PLICALLA control statement during link-editing. 

• If PLIXOPT cannot be used to specify the options (because, for 
instance, the scanning of PLIXOPT by PL/I initialization routines 
is time-consuming), and the default options are not suitable for 
this particular transaction, PLICALLB can be used as the entry 
point. PL1CALLB must be called, however, by a user-written 
assembler program which passes a parameter list that describes the 
execution options. The load module entry point must be included 
in the assembler routine • 

For COBOL, the following entry appears first, in the beginning of 
the Procedure Division: 

ENTRY 'DLITCBL' USING pcb-name1, ••• pcb-namen. 

For PL/T, the first procedure of a program should be: 

D LIT PL1: PROCEDURE (pcb_name 1, ••• pcb_namen) OJ;>T10U S (MAIN) ; 

Data Base Batch programming 2.15 



The MAIN procedure statement of a PL/I program should be: 

OLITPLI: PROCEDURE (pcb_ptr1, ••• ,pcb_ptr) OPTIONS (MA IN) ; 

Note that the parameters are £Qinte~2. The actual PCBs are declared: 

DCL 1 pcb_namei BASED(pcb_ptri), 

Note also that OL1TPL1 will not be the load module entry point. 
With IMS/VS, PL/T programs are entered through entry points PLICALLA 
or PLICALLB. 

For an Assembler Language program that utilizes OL/1, the entry 
point can have any name. However, Register 1, upon entry to the 
application program, contains the address of a variable length fullword 
parameter list. Each word in this list contains a control block address 
which must be saved by the application program. The high-order byte 
of the last word in the parameter list has the 0 bit set to a value of 
one to indicate the end of the list. The addresses (PCB control block 
addresses) in this list are subsequently used by the application program 
when executing DL/1 calls. 

DATA BASE PCB MASKS 

A data base-PCB mask or skeleton must be provided in the application 
program through which it views a logical data base. One PCB is required 
for each data base. The details are shown in Figure 2-8. 

2.16 IMS/VS Application programming Reference Manual 

", .. __ .", 

.. 



APPLICATION PROGRAM 
~\}C1\}~;" .,..,. --

1p..S1 __ .".,. 

C
f:>.\..Of:>. __ .,..,. 

OG\ .".,. 

S
MASK -----~- 8--~~;:..--.,..... 
PCB PCB 

-----~- , 
I " ' 
I ' , , , 
I ' , I , , 

I , ~ 

I ',,' 

NAME 

I 
I I 

ADDR PAYROLL 

, (LINKAGE , 
MASK WRITTEN IN COBOL SECTION) ,..:.. __________ .., 

r-==--=====-==-=---=------- --------, BYTES FUNCTION 
01 PCBNAME. I~--------------------~ 

02 DBD-NAME PICTURE X(8):------- -f I-- 8 
02 SEG-LEVEL PICTURE XX.--------J.-2 
02 STATUS-CODE PICTURE XX;--__ I 
02 PROC-OPTIONS PICTURE XXXX. __ - - - -I -2 
02 RESERVE-DL/I PICTURES9(5)- ...... ---_ I 

COMPUTATIONAL-:--....... .. r- 4 
02 SEG-NAME-FB PICTURE X(8).__ ............... .J 
02 LENGTH-FB-KEY PICTURE S9(5) ............. ---__ It- 4 

COMPUTATIONAL-:--............. 1-8 
02 NUMB-SENS-SEGS PICTURE S9(5)....... ....... ..... 

COMPUTATIONAL"':'....... I r- 4 
02 KEY-FB-AREA. --..L 
03 NAME-KE~ I -4 

04 NAME-KEY1 PICTURE X(12). I 
04 FI LLER PICTURE X(5). I -N 

03 NAME-ADDR-KEY REDEFINES NAME-KEY. -I 
04 NAME-KEY2 PICTURE X(12). I 
04 ADDR-KEY PICTURE X(2). I 
04 FI LLER PICTURE X(3). I 

03 NAME-PAYROLL-KEY REDEFINES NAME-KEY. 1 
04 NAME-KEY3 PICTURE X(12). l 

DATA BASE NAME 
SEGMENT HIERARCHY 

LEVEL INDICATOR 
DL/I RESULTS 

STATUS CODE 
DL/I PROCESSING 

OPTIONS 
RESERVED FOR DL/I 
SEGMENT NAME 

FEEDBACK AREA 
LENGTH OF 

FEEDBACK KEY 
NUMBER OF SENSITIVE 

SEGMENTS 
KEY FEEDBACK AREA 

04 PAYROLL-KEY PICTURE X(5). 
L.. __________________________ J '--~-----------I 

MASK WRITTEN IN PL/I FOR THE OPTIMIZING COMPILER 

DECLARE 1 PCBNAME BASED (PCB_PTR), 
2 DBD_NAME CHAR(8), 
2 SEG_LEVEL CHAR(2), 
2 STATUS_CODE CHAR(2), 
2 PROC_OPTIONS CHAR(4), 
2 RESERVE_DLI FIXED BIN(31,0), 
2 SE"G_NAME_FB CHAR(8), 
2 LENGTH_FB_KEY FIXED BIN(31,0), 
2 NUMB_SENS_SEGS FIXED BIN(31,0), 
2 KEY _FB_AREA CHAR(17); 

DECLARE KEY _FB_AREA_PTR POINTER; 
DECLARE NAME_KEY CHAR(12) BASED (KEY _FB_AREA_PTR); 
DECLARE 1 NAME_ADDR_KEY BASED (KEY _FB_AREA_PTR); 

2 NAME_KEY2 CHAR(12), 
2 ADDR_KEY CHAR(2); 

DECLARE 1 NAME_PAYROLL_KEY BASED(KEY _FB_AREA_PTR), 
2 NAME_KEY3 CHAR(12), 
2 PAYROLL_KEY CHAR(5); 

KEY _FB_AREA_PTR=ADDR(KEY _FB_AREA); 

PCB_PTR is in the parameter 
list for the PL/I PROCEDURE. 

Bytes and function as 
above 

Figure 2- 8. Application Program Data Base-PCB Mask 

Data Base Batch Programming 2.17 



The data base PCB provides specific areas used by DL/I to advise 
the application program of the results of its calls. At execution 
time, all PCB entries are controlled by DL/I. Access to the PCB entries 
by the application program are for read-only purposes. 

The following items comprise a PCB for a logical data structure from 
a data base. 

1. Name of the PCB. This is the name of the area which refers to 
the entire structure of PCB fields and is used in program 
statements. This name is not a field in the PCB. It is the 01 
level name in the COBOL mask in Figure 2-8. 

2. Name of Data Base. This is the first field in the PCB and 
provides the DBD name from the library of Data Base Descriptions 
associated with a particular data base. It contains character 
data and is eight bytes long. 

3. Segment-Hierarchy-Level Indicator. Data Language/! (DL/I) loads 
this area with the level number of the last segment encountered 
which satisfied a level of the call. When a retrieve is 
successfully completed, the level number of the retrieved segment 
is placed here. If the retrieve is unsuccessful, the level 
number returned is that of the last segment that satisfied the 
search criteria along the path to the desired segment. This 
field contains character data; it is two bytes long and is a 
right-justified numeric. 

q. DL/I status Code. A status code that indicates the results of 
a DL/I call is placed in this field and remains here until 
another DL/I call uses this PCB. This field contains two bytes 
of character data. When a successful call is executed, this 
field is returned blank or with an informative status ihdication. 
DL/I status codes are summarized for quick reference in Appendix 
A, and described in detail in Appendix B. 

5. DL/I Processing Options. This area contains a character code 
which tells DL/I the "processing intent" of the program against 
this data base, -- the kinds of calls that can be used by the 
program for processing data in this data base. This field is 

2. 18 

four bytes long. It is left-justified. It does not change 
from call to call. It gives the value coded in the PCB PROCOPT 
parameter. 

Possible values for the processing options are: 

G - Get function 
I - Insert function 
R - Replace function 
D - Delete function 
A - All, includes the above four functions 
P - Required if D command code is to be used on get type or 

insert function calls 
E - Exclusive use of the data base or segment; to be used 

in conjunction with G, I, D, R, A, and L 
L - Load function for data 'base loading (except HIDAM) 
S - Segments in ascending sequence only; to be used in 

conjunction with G, I,D, R, A, and L 
GS- Get segments in ascending sequence only (HSAM only) 
LS- segments loaded in ascending sequence only (HIDAM, HDAM) ; 

required for HIDAM 

IMS/VS Application Programming Reference Manual 
c' 



------.. - .• ---~ .... -_ ..•... _ •... _ ... _--

!Qig: The L or L5 processing options cannot be used in a single 
PCB with a processing option of G, I, R, D, A or G5. GSAM 
supports only G, L, GS, and LS, where S implies large-scale 
sequ~ntial accessing requiring multi-buffering. 

6. Reserved Area for DL/I. DL/I uses this area for its own internal 
linkage related to an application program. This field is one 
fullword (4 bytes) 

7. Segment-Name-Feedback Area. DL/I fills this area with the name 
of the last segment encountered which satisfied a level of the 
call. When a retrieve is successful, the name of the retrieved 
segment is placed here. If a retrieve is unsuccessful, the name 
returned is that of the last segment, along the path to the 
desired segment, that satisfied the search criteria. This field 
contains eight bytes of character data. This field may be useful 
in GN and GNP calls. If the status code is AI (data management 
open error), the DD name is returned into this area. 

8. Length of Key-Feedback Area. This entry specifies the current 
active length of the key feedback area described below. This 
field is four bytes long. 

9. Number of Sensitive Segments. This entry specifies the number 
of segment types in the data base to which the application 
program is sensitive. This would represent a count of the number 
of segments in the logical data structure viewed through this 
PCB. This field is one fullword (4 bytes). 

10. Key-Feedback Area. DL/I places in this area the concatenated 
key of the last segment encountered which satisfied a level of 
the call. When a retrieve is successful, the key of the 
requested segment and the key field of each segment along the 
path to the requested segment are concatenated and placed in 
this area. The key fields are positioned from left to right, 
beginning with the root segment key and following the 
hierarchical path. Keys for both key-sensitive and 
data-sensitive segments are placed in the key feedback area. 
When a retrieve is unsuccessful, the keys of all segments along 
the path to the requested segment for which the search was 
successful are placed in this area. See Figure 2-9. 

The application program contains a mask of the PCB. All of the 
actual PCBs associated with an application program are contained in a 
Program Specification Block (PSB) accessible only to IM5/VS. There is 
normally a one-to-one relationship between PSBS and application 
programs. A PSB and the PCBs associated with it are created by a PSB 
gener.ation utility program. The result of PSB generation is to place 
a compiled PSB in a library called the PSB Library. 

]Qlg: A batch ptogram PSB can contain an I/O PCB as well as data base 
PCBs. See the section "Using a Batch Region to Check Out Online Message 
Programs" later in this chapter. See also the description of the CMPAT 
option of the PSBGEN procedure in the I~~VS Qi!iiti~ ~efe£~D~ Manual. 

Data Base Batch Programming 2.19 

_ ..•..... ,." •.•• -___ ._1 ....••. ,. ___ _ 



SKILL 

~k_eY __ =_S~TC __ LE_R_K~STCLERK~ 

NAME CONCATENATED KEYS 

STCLERKSMITH ~ 

EXPR 

key = RW8 key = PHAR 

STCLERKSMITHRW8 STCLERKSMITHPHAR 

Figure 2-9. Concatenated Keys 

CALLS TO DAT~ LANGUAGE/I (Dt/!) 

Actual processing of IMS/VS data bases is accomplished using a set 
of input/output functional call requests. 

A call request is composed of a CALL statement with an argument 
list. ~he argument list describes a particular processing function 
and the hierarchic path to the element of data operated upon. One 
segment or multiple segments along the hierarchical path of segments 
may be operated upon with a single input/output call. 

The arguments contained within any call request include the addresses 
of the: 

• Input/output function to be performed 

• PCB 

• Segment input/output work area 

• Identification of the data segment(s) to be operated upon 

Examples of how these 1/0 processing calls might appear in COBOL, 
PL/T, or Assembler Language programs are given below, followed by a 
list of definitions for all of the arguments. The following sections 
describ~ the processing considerations of each argument. 

For COBOL: 

CALL 'CBLTDLI' USING [parmcount,]function, PCB-name, 
I/OArea, SSA-1, ••• SSA-n. 

2.20 IMS/VS Application programming Reference ~anual 

(--"'\ 

c.~ 



For PL/T: 

CALL PLI"'DLI (parmcount,function,PCB_ptr,I/OArea, ••• SSA_n); 

~or Assembler Language: 

ICBLTDLII 
CALf.. ASMTDLI, ([.parmcount,]function, PCB-name, I/OArea, ••• SSA-n) [,VL] 

parmcount 
a binary fullword which is the address of the parameter count 
or argument count of the number of arguments following. IMS/VS 
will accept either of two types of parameter lists. One type 
is the explicit, in which the first argument in the list is the 
number of entries in the list. The other type is the implicit 
·in which the end of the list is indicated by the last entry in 
the list having the leftmost bit on. PL/I must always pass an 
explicit list. COBOL always passes an implicit list. Either 
~y?e may be passed by Assembler Language. IMS/VS dynamically 
determines the type of list for each call. This is done by 
testing the leftmost byte of the first argument. If zero, the 
argument is assumed to be a count of the number of entries in 
the list and therefore explicit. If non-zero, it is assumed to 
be an IMS/VS function and therefore an implicit list. This 
means that even though COBOL will set on the leftmost bit in 
the last entry, it is possible to make the list appear to IMS/VS 
to be an explicit list merely by providing a count as the first 
entry in the list. This can be handled conveniently by allowing 
a common call list of maximum length and adjusting the first 
entry, the count, to the current number of entries. 

function 
is the address of a DL/I CALL input/output function. This 
argument is the name of a 4-character field which describes the 
desired I/O operation. The DL/I functions are described briefly 
below, and in full detail in the following section entitled 
"Detailed Description of DL/I Processing Functions." 

'lame 
is the address of a data base Program Communication Block (PCB). 
See the section "PCB-name." 

Note: If the standard form of the OS/VS CALL macro is used, 
this parameter must be a register which has' been loaded with 
the address of the PCB. 

I/O Area 
is ~he address of an I/O work area name. See the section "I/O 
Work Area." 

SSA-1 to SSA-n (optional) 

VL 

are the addresses of Segment Search Arguments. There can be a 
maximum of 1 SSA per level along the hierarchic path being 
accessed. See the section "Segment Search Arguments" later in 
this chapter. 

should be designated in Assembler Language as shown if parmcount 
is not used. This parameter sets the flag indicating the end 
of a variable parameter list. 

Data Base Batch Programming 2.21 



The I/O functions specified in the "function" argument of the call 
statement are the data services of DL/I. The functions provide a full 
data processing repertoire of retrieving, updating, .adding, and deleting 
da ta. 

Listed below are all of the DL/I call functions. The righthand 
column indicates whether the call may be employed against data. base 
segments, message segments, or both. Message segments may be processed 
in both message and batch message programs. Data base segments may be 
processed by any program type. 

Type of PCB 
!1~s1!.!1!g £~ll_l!!n£.tiQ1! !hich_~~!!gg 

GET UNIQUE GUbb Message or Data Base 

GET NEXT GNbb Message or Data Base 

GET NEXT WITHIN GNPb Data Base only 
PARENT 

GET HOLD UNIQUE GHUb Data Base only 

GET HOLD NFXT GHNb Data Base only 

GET HOLD NEXT GHNP Data Base only 
WITHIN PARENT 

INSERT ISRT Messa ge or Da ta ·Base 

DELETE DLET Data Base only 

REPLACE REPL Data Base only 

PURGE PURG Message only 

SNAP SNAP Message or Da ta Base 

CHA NGE CHNG Message only 

CHECKPOINT CHKP Message only 

RESTART XRST Message only 

DEQUEUE DEQb Message only 

ROLLBACK ROLL Message only 

LOG LOGb Message or Data Base 

GET SCD GSCD Message or Data Base 

STATISTICS STAT Data Base only 

The calls listed above fall into two main categories: (1) Da ta Base 
calls comprising GET, Insert (ISRT), Delete (DLET) and Replace (REPL) 
calls, and (2) System Service calls, the last ten calls in the above 
list. These calls are discussed separately, near the end of this 
chapter. The manner in which each of the data processing functions 
(that is, Get, Insert, Delete, Replace) is executed by DL/I depends on 
a combination of several factors. These include control options 
specified at DBDGEN for the data base being called, processing options 

2.22 IMS/VS Application Programming Reference Manual 

.. 

(~ 
\ , •.. / 

.. 



/' 
\ '--_. 

c 

specified at PSBGEN for the data base being called, the other arguments 
in the call (;or example, the SSAs), and the processing dynamics (that 
is, the preceiing calls, and the current position of DL/I in the data 
base). A detailed discussion of the DL/I execution logic of these 
functions is preceded in this chapter by a description of the remaining· 
arquments in the call: the PCB, I/O Work Area, and SSAs. 

The pcb-name is the third argument in the call statement. It is 
the name of the block that identifies for DL/I which specific logical 
data structure the application program wishes to process. This means 
that the data the application program accesses at this pOint in the 
program execution resides in the data structure identified by this 
PCB-name. 

See Figure 2-8 for an example of how to code PCBs in COBOL and PL/I. 

The 1/0 work area name is the fourth argument (I/O AREA) in the call 
statement. The wO,rk area is an area in the application program into 
which rLII puts a requested segment, or from which D~/I takes a 
,designated segment. Only segments to which the program is 
data-sensitive will be placed in or taken from the I/O work area by 
DL/I. If a common area is used to process multiple DL/I calls, it must 
be as long as the longest path of segments to be processed. The work 
area name points to t.he leftmost byte of the area. Segment data is 
always left-justified within a work area. 

~hen inserting or retrieving a hierarchical path of segments with 
one call, the I/O work area must be large enough to hold the longest 
concatenation of segments to be retrieved or inserted. 

IDENTIFICATION DIVISION. 
DATA DIVISION. 
WORKING-S~ORAGE SECTION. 
01 INP UT-ARE A. 

02 K~V PICTURE X(6). 
02 FIELD PICTURE X(84). 

When the data base segment is to be placed in this area, the 
following call statement is used, and the length of this work area is 
90 bytes: 

CALL 'CBtTDLI' USING function, PCB-name, INPUT-AREA, SSA-1. 

Data Base Batch Programming 2.23 



In PL/I, the name used to specify the I/O area can be a major 
structure, an array, a fixed-character string {for example, CHAR (100», 
adjustable character string (for example, CHAR(N», a pointer to any 
of these, or a pointer to a minor structure. The name cannot be a 
minor structure or a VARYING character string. 

nECL~RE 1 INPUT_AREA 1* major structure used as I/O area*/ 
2 KEY CHAR (6) , 
2 FIELD CHAR(84); 

CALL PLITDLI (parmcount,function,PCB_name,I_0_AREA,SSA1); 

CONCEPT AND FUNCTION: The concept and the basic functions of SSAs 
(segment search arguments) are described in this section of this 
chapter. The fully augmented capabilities of SSAs are discussed in 
the "Advanced DataBase Functions" chapter of this manual. A CALL 
statement is considered "qualified" or "unqualified" dep ending on the 
presence or absence of SSAs within the CALL. 

In concept, SSAs answer two processing needs: to relieve the 
application from as much processing as possible, if the programmer so 
desires, or to provide IMS/VS with sufficient information to satisfy 
the call. Hence SSAs are required for INSERT calls, optional for GET 
calls, and only conditionally allowed for DELETE/REPLACE calls. The 
rules for usage are described for each type of call function in the 
section "Detailed Description of DL/I Processing Functions" of this 
chapter. 

The basic'function of the SSA permits the application program to 
apply three different kinds of logic to a call: 

• Narrow the field of search to a particular segment type, or to a 
par~icular segment occurrence 

• Bequest that one segment or a path of segments (type or occurrence) 
be processed; 

• Alter the traversal procedure for this call or the data base 
position for a subsequent call 

!he SSAs represent the fifth through last arguments (SSA-l thru 
SSA-n) in the CALL statement. There can be 0 or 1 S5As per level, and 
since IMS/VS permits a maximum of 15 levels per data base, a call can 
contain from 0 to 15 SSAs.They do not appear directly in the CALL 
statement arguments pro~ided to DL/I, an 5SA name is given whic~ points 
to an area in the user's program which contains the SSA. 

2.24 I~S/VS Application programming Reference Manual 

"-... 



STRUCTURE: The SSA may consist of from one to three main elements: 
the segment name, and (as required) a command code(s), and one or more 
qualification statements. In this chapter, only SSAs with one 
qualification statement are considered. The three main elements of an 
SSA are shown in the following diagram. 

r-------------------------------------------------------------------, 
I SEG ME NT I COM MAND I QU ALIFICATION STA TEMENT (QS) I 
,NAME I CODE I------------------------------------------~-I 
1 , ,Begin QSIField NamefR.O. I Value I End QS I 
1-------------------------------------------------------------------1 
1 8 bytes I vbl. I 1 , a, 2,1 - 2551 , I 
L-------------------------------------------------------------------J 

SEGMENT NAME 
The segment name must be eight bytes long, left-justified with 
trailing blanks as required. It is the segment name that 
pertains to a specific segment type in the hierarchical structure 
viewed through the associated data base PCB. The segment name 
must be defined as sensitive to the using application program 
in the PCB associated with the program. Only the names of 
segments to which the program is key- or data-sensitive can be 
specified. 

COr'lMAND CODES 
The command codes are optional. They provide functional 
variations to be applied to the call for that segment type. An 
asterisk (*) following the segment name indicates the presence 
of one or more command codes. A blank or a left parenthesis is 
the ending delimiter for command codes. Blank is used when no 
qualification statement exists. The designation "vbl" means 
variahle. 

QUALIFICATION STATEMENT 
The presence of a qualification statement is indicated by a left 
parenthesis following the segment name or, if present, command 
codes. Each qualification statement consists of a field name, 
a relational operator, and a comparative value. 

Begin Qualification Character 
The leftparenthesis, ( , indicates the beginning of a 
qualification statement. If the SSA is unqualified, the a-byte 
segment name, or, if used, the command codes should be followed 
by a blank. 

Field Name 
is the name of a field which appears in the description of the 
specified segment type in the DBD. The name is eight characters 
long, left-justified with trailing blanks as required. The . 
named field may be either the key field or a data field within 
a segment. The field named is used for searching the data base, 
and must have been defined ~n the DBD. 

Data Base Batch programming 2.25 



RO = Re lational operator 
is a set of two characters which express the manner in which 
the contents of the field, referred to by the field name, are 
to be tested against the comparative-value. The choice of 
relational operator does not affect the starting point of the 
search nor the order of search. 

Q.£~:ta:tQ.£ 1:!~~ning 

b= or EQ must be equal to 
>= or GE must be greater than or equal to 
<= or LE must be less than or equal to 
b> or GT must be greater than 
b< or LT must be less than 
,= or NE must be not equal to 

Note: As used above, the lowercase "btl represents a blank 
character. The non-alphabetic operators above can be used in 
the reverse combination, -- the single-character operators can 
be in the first position followed by a blank, as well as in the 
second position preceded by a blank. 

Comparative value 
is the value against which the contents of the field, referred 
to by the field name, is to be tested. The length of this field 
must be equal to the length of the named field in the segment 
of the data base, that is, it includes leading or trailing blanks 
(for alphameric) or zeros ~sually needed for numeric field~ 
as required. A collating sequence, not an arithmetic, compare 
is performed. 

End Qualification Character 
The right parenthesis ') , indicates the end of the qualification 
statement. 

QUALIFICATION: Just as calls are "qualified" by the presence of an 
55A, 5SAs are categorized as either "qualified" or "unqualified," 
depending on the presence or absence of a qualification statement. 
Command codes may be included in or omitted from either qualified or 
unqualified SSAs. 

In its simplest form, the 5SA is unqualified and consists only of 
the name of a specific segment type as defined in the Data Base 
Description (OBO). In this form, the SSA provides OL/I with enough 
information to define the segment type desired by the call. 

Example: SEGNAMEb 

Oualified SSAs (optional) contain a qualification statement composed 
of three parts: a field name defined in the DBO, a relational operator, 
and a comparative value. OL/I uses the information in the qualification 
statement to test the value of the segment's key or data fields within 
the data base and thus to determine whether the segment meets the user's 
specifications. Using this approach, OL/I performs the data base 
segment searching and the program need process only those segments 
which precisely meet some logical criteria. 

Example: SEGNAMEb(FIELDxxx>=VALUE) 

The qualification statement test is terminated either when the test 
is satisfied by an occurence of the segment type, or when it is 
determined that the request cannot be satisfied. 

2.26 IMS/VS Application Programming Reference Manual 

'. ----" 



1 

\, C
-" 

COMMAND CODES: Both unqualified and qualified SSAs can contain one or 
more optional command codes which specify functional variations 
applicable to either the call function, the segment qualification, or 
the setting of parentage. 

A complete discussion of command codes is presented in the "Data 
Base Processing: Advanced Functions" chapter in this manual. An 
example of the D command code is presented for introductory purposes. 
The D command code has a widespread, basic value in that it enables 
the issuance of path calls. A path call enables a hierarchical path 
of segments to be inserted or retrie ved with one call. (A "path" was 
defined earlier in this chapter as the hierarchical sequence of 
segments, one per level, leading from a segment at one level to a 
particular segment at a lower level., The meaning of the D command 
code is as follows: 

• For retrieval calls, move the segment which satisfies this level 
of the call ~f data-sensitive to that segment type) to the user's 
I/O area. This allows the retrieval of multiple segments in a 
hierarchical path in a single call. This type of call will 
subsequently be referred to as a path call. The first through the 
last segment retrieved are concatenated in the user's 1/0 area. 

Intermediate SSAs can be present without the D command code. If 
so, these segments are not moved to the user's 1/0 area. The 
segment named in the PCB "segment name feedback area" is the 
lowest-level segment retrieved, or the last level satisfied in the 
call in case of a not-found condition. 

Higher-level segments associated with SSAs having the D command 
code will have been placed in the user's 110 area even in the 
not-found case. The D command code is not necessary for the last 
5SA jn the call since the segment which satisfies the last level 
is always moved to the user's 110 area. A processing option of 
"P" must be specified in the PSBGEN for any segment type for which 
a D command code will be/used. 

• For insert calls, the D command code designates the first segment 
type in the path to insert. The SSAs for lower-level segments in 
the path need not have the D command code set. 

An examlJle of SSA construction using the D command code appears at 
the end of this chapter. 

Both command codes and qualification statements are discussed in 
the "Data Base processing: Advanced Functions" chapter of this manual. 

GENERAL CHAFACTERISTICS OF SEGMENT SEARCH ARGUMENTS (SSAs): 

• An SSA may consist of the segment name only (unqualified). It may 
optionally also include one or more command codes and a 
qualification statement. 

• SSAs following the first SSA must proceed down a hierarchical path. 
All- SSAs in the hierarchical path need not be specified, that is 
there may be missing levels in the path. DL/I will provide, 
internally, SSAs for missing levels according to the rules given 
later in this chapter. 

!Qi~: More specific statements which apply to the use of SSAs with a 
particular function such as GU, or ISRT are provided later in this 
chapter. 

Data Base Batch Programming 2.27 

----,. "--'~"---"-"~---'----



Examples of SSAs with the DL/I call I/O functions are included in 
the section "Exa mples of Da ta Base processing Using DL/I I/O Functions" 
later in this chapter. 

For application programs written in PLII, the SSA can be specified 
to PL/I as a major structure, an array, a fixed-character string (for 
example, CHAR(100», an adjustable character string (for example, 
CHAR (N», a pointer to any of these, or a pointer to a minor structure. 
An example follows: 

DCL SS A_PTR POINTER; 
DCL 1 SS A, 

2 SEGNAME CHAR(8), 
2 SEGQU AL CHAR (1) , 
2 SEGFLDNAME CHAR(8), 
2 SEGFLDVALUE CHAR(23), 
2 SEGENDCHAR CHAR(1); 

S SA _ PT R;:: ADD R (S SA) ; 

CALL PLITDLI(THREE,'GUbb',PCB-PTR,SSA-PTR) 

Two terms need to be defined prior to discussing how DL/I executes 
the processing functions of get, insert, delete, and replace. The 
terms are "current position in the data base" and "segment on which 
position is established at that level." 

The curr~nt position in the data base is the starting position which 
will be used by 1M S/VS to sa tisf y an y GN calls and any GNP calls. 

The segment on which position is established at that level relates 
to retrieving or inserting a particular segment occurrence. When a 
segment occurrence is either retrieved or inserted, position is 
established on that §ggm~n! and on all parent leyg!§ (if any) of that 
segment occurrence. 

It is assumed that the reader understands the meaning of various 
IMS/VS terms used tb describe data base structures (for example, 
"physical child," "logical child", and "sensitivity"). Data base 
structure is discussed in detail in the "Data Base Design 
Considerations" chapter of the 111S/Va, ~2i'§J!!L!.EE..!ica.t.iQ!l Des!ru! ,§Y.i.9~. 

2.28 IMS/VS Application Programming Reference Manual 

,.. 

------ ---_._- --_.-._. 



(.~ 

GET CALLS 

~he GET calls are get unique (GUbb), get next (GNbb), get next within 
parent (GNP.b) and all forms of get hold (GHUb, GHNb, and GHNP) . 

THE tET UNIQUE CALLs (GUbb or GHUb) - DATA BASE: The get unique call 
is used to retrieve a segment occurrence independent of current position 
within the data base. The get unique call can therefore be used for 
random processing, or it can be used to establish a position in the 
data base for sUb.sequent sequential processing. See GU rules for 
e xc e p ti 0 n s . 

THE GET NEXT CALLs (GNbb or GHNb) - DATA BASE: The get next calls are 
used to retrieve a segment or a path of segments by proceeding forward 
from a previously established position within the data base until a 
segment occurrence is found at each level which satisfies the search 
criteria at that level. The SSAs determine the search criteria. 

The basic difference between get next and get unique calls is the 
initial position used in attempting to satisfy the call. The get unique 
call will be satisfied by finding the earliest level-one (root) segment 
in the logical data base which satisfies that level in the call and 
then attempting to satisfy all lower levels with the first occurrence 
of that segment type under its parent. The get next call, on the other 
hand, proceeds forward from the current position in the data base in 
attempting to satisfy the current call. (An exception to this is the 
F c~mmand code which allows the get next call to move back to the first 
occurrence of this segment type under its parent.) 

The execution of a get next call without SSAs returns the next data 
sensitive segment occurrence within the data base relative to the 
positioning of the data base during the previous GU, GN, GNP,. ISRT, 
REPL, or DLET call •. An uninterrupted series of get next call statements 
could be used to retrieve each segment occurrence from the data base, 
beginning with the first, and proceeding sequentially through the last 
for all sensitive segments. The parameters for this form of a get next 
call are the ca 11- function, db-pcb-name, and I/O area. 

The execution of a get next call with an unqualified SSA returns 
the next segment occurrence of the segment type specified in the SSA 
relative to the current position in the data base.. An uninterrupted 
series of get next calls with unqualified SSAs could be used to retrieve 
all segment occurrences of a specified type in the data base. 

A get next call following an ISRT or DLET call delivers the first 
sensitive segment hierarchically above or to the right of the inserted 
or deleted segment. That is, the position established by an ISRT call 
1S the same as if the inserted segment had been retrieved with a get 
unique or get next call. The position following a delete is immediately 
following the deleted segment, or if the deleted segment had dependent 
segments then immediately following those dependent segments (because 
dependents of a deleted segment are also deleted). 

The .get next call only progresses forward from the position in the 
data base established in the preceding call in an attempt to satisfy 
the curren t call requirements. (An exception to this rule is the use 
of the F command code, which allows backing up to the first occurrence 
of this segment type under its parent. Also, this limitation does not 
apply when "Multiple Positioning" is in effect. Command codes and 
multiple positioning are discussed in the "Data Base Processing: 
Advanced Function" chapter of this manual.) 

Data Base Batch programming 2.29 



THE GET NEXT-WITHIN-PARENT CALLs (GNPb or GHNP) - DATA BASE: The GNP 
call is similar to the GN call except that segments which may satisfy 
a GNP call are limited to the lower-level dependent segments of the 
established parent. 

Parentage is set by means of a GNP call or a P command code under 
the following conditions: 

• Parentage is set at the issuance of the first GNP call that follows 
a completely satisfied get next or get unique call. The parentage 
will be set at the lowest level segment that was retrieved by the 
preceding get next or get unique call. Parentage that is 
established by the first GNP call following a get next or get unique 
call remains constant for successive GNP calls • 

• parentage can be set at other than the lowest level segment that 
was returned by a get next or get unique call by using the P command 
code. For additional information, see. the description of the P 
command code in the section "Command Codes" in the "Data Base 
processing: Advanced Functions" chapter of this manual. 

If a series of GNP calls without SSAs is issued, the calls retrieve 
all segment occurrences under the segment on which parentage was 
established going up and down hierarchical levels and crossing 
boundaries in the structure E~n~~i~ the parent for all sensitive 
se~ments. A "not-found" condition results when DL/I encounters the 
next segment occurrence that is at the same level as the parent or 
higher. 

If a GNP with SSAs is issued, it also is restricted to occurrences 
of that segment type named in the SSA, and will return a not-found 
concrition if the requested segment cannot be found within the dependents 
of the established parent. 

Parentage is only conditioned for reset (actually reset by a GNP) 
by the issuance of a get unique or get next call. Intervening ISRT, 
DLET or RE?L calls therefore do not affect parentage. A GNP call 
(qualified or unqualified) which results in a GE status code (not-found 
condi tion) does not affect parentage. 

l!Q!.~§: 

1. If no parent'has been established on the GNP following a GU or GN, 
a GP status is returned for the GNP call. No parent has been 
established if the prior GU or GN call was not satisfied and did 
not contain a P command code, or if the call was partially satisfied 
but none of the satisfied levels contained a P command code. 

2. Although the ISRT call does not affect parentage, it should be 
noted that position following an ISRT call is established 
immediat.ely following the inserted segment. For this reason, if 
the inserted segment is at a level equal or closer to the root than 
the parent, then succeeding GNP calls following the ISRT cannot be 
sat.isfied. 

2.30 IM S/VS A pplica tion Programming Reference Manual 



The following rules apply to GET calls:-

1. The call mayor may not have 55As. 

2. For any level, the 55A mayor may not include command codes or 
a qualification statement. 

3. If an 5SA without a qualification statement (unqualified 55A) 
is f:pecified, any occurrence of that segment type under its 
parent will satisfy the call. 

4. A get unique call with an unqualified 5SA at the root level will 
a~tempt to satisfy the call by starting to scan from the 
beginning of the data base. 

5. If the application program does not specify SSAs for one or more 
of the levels above the lowest level specified, then DL/I will 
process the call with the following implied SSAs used to fill 
the missing levels. 

a. GET NEXT or GET NEXT WITHIN PARENT CALLS -

b. 

unqualified SSAs are always implied for missing levels. 

GET UNIQUE CALLS -

(1) If the prior call established position on an implied 
segment type, an S5A qualified with current position is 
assumed. If a parent level qualified SSA is provided 
for other than the parent's current position, an 
unqualified SSA is assumed by DL/I for all missing levels 
below that parent. 

(2) If the prior call did not establish position on any 
implied segment type, then DL/1 assumes an unqualified 
5SA at that level. 

THE GET HOLD CALLS (GHUb, GRNb, GRNP) - DATA BA5E: To change the 
contents of a segment in a data base, through a DLET or REPL call, the 
program must first obtain the segment. It then changes its contents 
and requests OL/1 to ,place the segment back in the data base. 

When a segment is to be changed, this must be indicated to DL/I at 
the time the segment is obtained. This indication is given by using 
the get hold calls. These function codes are like the standard get 
function, except the letter "R" immediately follows the letter "G" in 
the code; that is, the hold form of the standard get next within parent 
(GNPb) is GHNP. There are three get hold calls:: GHUb, GHNb, and 
GHNP. They function like the standard get calls. They also indicate 
to OL/1 that the segment can be changed or deleted. (When a hold call 
is issued in a batch message, or message processing program, the segment 
retrieved is enqueued single update. No enqueue is issued in a batch 
mod'e. ) 

After OL/1 has returned the requested segment to the user, one or 
more fields, but not the key field, in the segment can be changed. 

Oata Base Batch programming 2.31 



After the user has changed the segment contents, he is ready to ca] 
DL/I to return the segment to the data base. If, after issuing a get 
hold call, the program determines that it is not necessary to change 
the retrieved segment, the program may proceed with other processing, 
and the enqueue will be freed when positioning changes because of a. 
subsequent call to the PCB. 

Examples of get calls appear at the end of this chapter. 

INSER':!' CALLS 

The DL/I insert call is used for two distinct purposes: It is used 
to initially load the segments for creation of a data base. It is also 
used in HISAM, HDAM, and HIDAM organizations to add new occurrences of 
an existing segment· type into an established data base. The processing 
options field in the PCB indicates whether the data base is being added 
to or loaded. The format of the insert call is identical for either 
use. 

When loading or inserting (except in a path insert), the last SSA 
specifies the segment being inserted. To insert a path of segments, 
the D command code is set for the highest level segment in the path; 
this SSA must he unqualified. 

Lower-level unqualified'SSAs designate the other segment types in 
the path. The segment corresponding to the SSA with the D command code 
must be the first segment in the I/O area, with the other segments in 
the path concatenated behind it. 

ryp to the level to be inserted, the SSA evaluation and positioning 
for an insert call ~s exactly the same as for a GU call. For the level 
to be inserted, the value of the sequence field in the segment in the 
user I/O area is used to establish the insert position. 

If there is no sequence or key field for the segment, or if a 
non-unique sequence field was defined, then the "first", "last", or 
"here" insert rules are used. If the "here" insert rule is used, the 
F or L command code will also be used if specified. See the following 
chapter for the meaning of these command codes. 

These rules apply to ISRT calls: 

1. The call must have at least one unqualified SSA. 

2. If a D command code is not used (that is, it is not a path call), 
the lowest-level SSA specifies the segment being inserted and 
this SSA must be unqualified. 

3. If a D command code is specified in an SSA, that SSA and all 
lower level SSAs must be unqualified. 

4. Since the positioning for SSAs above the level of the segment~l 
to be inserted is identical to GU calls, rules 3, 4 and 5 under 
G~T call apply for inserting SSAs above the level to be inserted 
just as they apply to GU calls. 

2.32 IMS/VS Applicatio~ Programming Reference Manual 

.. 



c' 
The ISRT call can be used with other DL/I segment processing calls 

i.n a messaqe processing program. In this environment, the ISRT call 
is used to place new occurrences of existing segment types into an 
established HISAM, HDAM, and HIOAM data base. Of course, the ISRT call 
can also be used for updating by batch and batch message processing 
programs. 

When inserting segments into an existing data base involving logical 
relationships, a logical child segment cannot be inserted into a path 
with its parents and/or dependent segments. A logical child or logical 
child/logical parent combination cannot be inserted in a path call.' 

qhen inserting a segment into an existing data base, qualified SSAs 
for higher levels are normally provided to establish the position of 
the segment to insert. . 

When inserting to a hierarchical sequential (HSAM) data base, ISRT 
means to load an output data base. The PCB processing option L is 
used. option A is invalid for HSAM. Inserts to an established HSAM 
data base cannot be made without reprocessing the whole data base or 
by adding to the end, and must be in sequence. 

In a message processing program, it is not possible to perform a 
HDAM, HISAM or HIOAM load. The program to load a HDAM, HISAM and HIDAM 
data base must be a DL/I batch program. 

When loading a data base, higher level qualified SSAs for the parents 
of the segment being loaded are not necessary, since there is no 
position to establish. They may, however, be provided and, if provided, 
the comparative-value in the qualification statement must equal the 
key field values of the parents of the segment being loaded. 

For HISAM and HIDA~ organizations, IMS/VS uses the high-values key 
(X'FF' •• FF"). A return code of LB will be given on any attempt to insert 

t his key. 

Examples of ISRT calls appear at the end of this chapter. 

DELETE AND REPLACE CALLS 

THE DELETE CALL (DLET) - DATA BASE: To delete the occurrence of a 
segment from a data base, the segment must first be obtained by issuing 
a GHbb call through DL/I. Once the segment has been acquired, the OLET 
call may be issued. 

If OL/1 calls which use the same PCB intervene between the GHbb call 
and the OLET call, the DLET call is rejected. Quite often a program 
may want to process a segment prior to deleting it. This is permitted 
as long as the processing does not involve a OL/I call which refers to 
the data base PCB used to get the segment. However, other PCBs may be 
referred to between the GHbb and DLET calls. 

DL/I is advised that a segment is to be deleted when the user issues 
a call that has the function DLET. When the DLET call is executed, 
the specified segment occurrence may not be physically deleted, but 
simply flagged "as being deleted. The deletion of a parent, in effect, 

Data Base Batch programming 2.33 

"'._----- "._--_.,----",,,.,, .. _---- ._-, .".-_----_._--. __ ._" --------"'--------- -----,.,' -_.,,---



deletes all the segment occurrences beneath that parent. If the segment 
being deleted is a root segment, all dependent segments under that root 
are deleted. All subordinate data set groups must be available for 
processing prior to the delete call being issued. If they are not, an 
AI s~atus code is returned. All physical dependents of the deleted 
segm~nt are deleted, regardless of the logical data structure used by 
the program. Furthermore, deletion may carry across logical 
rela tionships. 

If the DLET call follows a GHbb call which retrieved a path of 
segments, and there is no SSA in the call, then the highest level 
segment obtained on the prior call and all its children are deleted. 
One SSA is allowed on DLET calls following path GHbb calls. It must 
be for one of the segment types retrieved on the prior hold call. The 
SSA specifies the highest-level segment to be deleted. This segment 
and its children will be deleted, but higher level segments obtained 
on the prior GHbb call will not be deleted. 

The segment to be deleted must occupy the area referred to by the 
I/O work area in the DLET call. If the previous GHbb call returned 
multiple segments, the segment(s) to be deleted should occupy the same 
relative position in the I/O area as on the retrieve call. 

For a program which processes hierarchical sequential (HSAM) data 
bases where each record is rewritten on a new data base, the DLET call 
has no meaning and is rejected as an invalid call function. If a 
seqment occurrence is to be deleted, it is simply not written to the 
output data base. 

THE REPLACE C~LL (REPL) - DATA BASE: The purpose of the REPL call is 
to allow a segment, or path of segments, that has been retrieved through 
a GHbb call and modified through program processing, to be replaced in 
the data base. The segment or segments to be modified and replaced 
must first be obtained by a GHbb call. No intervening calls involving 
the associated data base PCB may be made between the GHbb and the REPL 
call. If this rule is violated, the REPL call is rejected. 

In the modification of a segment to be replaced in the data base, 
care must be taken not to modify the segment key field. If modification 
of the key field is attempted, the REPL call.is rejected. All data, 
including fields which are indexed through secondary indexes, but with 
the exception of the keyes} of the logical child or the concatenated 
key of the logical parent, may be changed. This subject is treated in 
greater detail in the IMS/V2 ~~§temL!~~liQ~1i~~ DesigQ ~uide. 

The segmen~ or segments to be replaced must occupy the area referred 
to by I/O work area in the REPL call. The segment or segments in the 
DL/T buffer area is overlaid with the 110 work area in the REPL call. 

~ ~) 

When a GHbb path call· is made, DL/I "remembers" the format of the 
segments concatenated in the user I/O work area. If a REPL call without 
SSAs follows a path call, all segments in the 1/0 area for which the 
user has replace sensitivity will replace the corresponding segments 
in the data ·base. To preclude having segments replaced in the pa th, 
SSAs with N command codes can be used to prevent DL/I from replacing 
corresponding segments in the data base. 

Fo·r a program which process es hierarchical sequential (HS AM) data 
bases where each record is rewritten on a new data base, the REPL call 
has no meaning. If a segment occurrence is to be replaced, it is simply 
placed in the output data base with an ISRT call. 

When a held segment is updated vi th a REPL or DLET call, the enqueue 
level is raised from single update to exclusive (batch message or 
message processing only). 

2.34 IMS/VS Application Programming Reference Manual 

.. 

c 



/ 

"'-, 

.. 

(, 

c 

~Yl~§ ~2~ ~!g~~ ~ng R~~~ £~!ls 

The following rules apply to both the DLET call and the REPL call: 

1. The segment, or path of segments, to be deleted or replaced must 
have been obtained with a get hold call (GHUb, GHNb, or GHNP). 

2. Consecutive replace calls to the same segment are allowed, but 
no intervening calls to the same data base PCB are allowed 
between the get hold call and the DLET or REPL call. 

3. The sequence or key field of the segment, or path of segments, 
to be deleted or replaced may not be changed in the user's 1/0 
work area. Fora logical-child segment, three field types must 
not be changed: 

a. The physical-twin sequence fi'eld 

b. The logical-twin sequence field (the sequence field specified 
for the virtually-paired logical child, if any)' 

c. The portion of the logical child which is the concatenated 
key of the logical parent. 

4. Segment search arguments (SSls) are only applicable to DLET or 
RFPL calls when the prior get hold call retrieved a path of 
segments. When this situation applies, one unqualified SSA for 
one of the segments in the path is allowed for DLET calls, and 
multiple unqualified SSAs for segments in the path are allowed 
for REPL calls. 

~el~~~ Rggue§~2 I~§g~g a~ainst ~ Logical y~~~ Ba~ 

Delete calls differ from other DLII calls in that their effects are 
generally propagated down to the dependent segments of a deleted 
segment. 

For segments participating in logical relationships, DL/I provides 
various options for propagation. These options are specified in the 
DBD generation ,and allow for various degrees of selective deletion of 
segment types that may be reach~d fr~m alternative paths. Options are 
also provided to allow the delete request to be accepted or rejected, 
depending on the status of segments participating in logical 
r elat ionships. 

The data base administrator should be specifically involved in 
setting up the delete processing capabilities for programs working with 
logical data bases. This is .of particular importance when multiple 
logical relationships exist, or when a segment can be reached from its 
dependent segment types through logical relationships. 

Implications of delete propagation and delete rule options are 
discussed further in the ln~L!a ~Istem/A~cati~ Design ~~i~~. 

Examples of DLET and REPL calls appear at the end of this chapter. 

FOR~AT OF SEGMENTS IN THE 1/0 AREA 

li!~g-L~ngth ~~~~ni2 

Within the structure of a data base, the 18S/VS segment format 
consists of a prefix portion and a data portion. The prefix serves a 

Data Base Batch Programming 2.35 



structural putpose which is transparent to the application program. 
Within the prefix are all the necessary identity, usage, and pointer 
data required by IMS/VS for control and traversal purposes. (A detailed 
discussion can be found in the IftS/V§. 2Y2:t.~!!L!I!.£lication ~~2!g~" Guidg,.) 
It is only the data portion of the segment which an application program 
obtains from or returns to a data base. The length of fixed-length 
segments are defined at DBD generation. This length refers to the 
length of the data portion. 

!~!i~blg~1g~gih Segments 

The format of variable-length segments, both in the data base and 
in the application IIO area, differs from the format of fixed-length 
segments in only one respect: The first two bytes of the data portion 
contain the binary value of the length of the data portion of the 
segment (including the 2-byte length count) • Since this 2-byte field 
describes the segment length as the user sees it, the minimum valid 
value in this field is two. Specification of a value less than 2 at 
execution time will be ignored, and a default value of two vi~l be 
assumed. The following illustrations show' the format of variable-length 
segments in the application I/O area: 

Variable-Length Physical Segment 

111-1 Segment Data 
L-----------------~------~-------------J 

11-1 = segment length 

Variable-Length concatenated Logical Segment 

1 LP/PP LC LP/PP 
111-2 Concat Key, Data 11-31Data 
L--------------~---------------------~-J 

LC = logical child 
LP = logical parent 
PP = P hysical parent 
11-2 = segment length for LC 
11-3 = segment length for LP/PP 

Segment retrieval, including path calls, follows normal retrieval 
rules. After the segment has been accessed, replacement of existing 
data can occur with a REPL call. If the segment length has not changed, 
a one-for-one replacement takes place. If the length of a segment is 
increased or decreased during a replace operation, the new segment 
length must be placed in the segment-size field by the user. For an 
insert operation, the use~ places the segment'size in the appropriate 
field, followed by the ~orresponding segment data, and the ISRT call 
is issued. . 

Since the segment-size field is actually a part of the segment, all 
starting positions for fields are in reference to the first position 
of the segment-size field in a segment, not the· start of the user data. 
Except for the required 2,-byte binary field describing the segment 
length, the content and data alignment, as well as the eXistence" of 
any defined data fieldi, 'are the responsibility of the user. 
Segment-sequence fields, if defined, must always exist in their 
DBD-defined position and cannot be altered by. REPL calls. The length 
field of ~ segment can be'referenced in an SSA by defining a 2-byte 
hexadecimal field with a $tarting position of one. 

2.36 IMS/VS Application Programming Reference Hanual 



.. 

TERMINATING THE APPLICATION PROGRAM 

At the completion of processing of any application program (message 
or batch), control must be returned to the IMS/VS control facility. 
The RETURN or GOBACK statement must be given in every program as 
follows: 

. E1Ll ASS EMBLl!] 

GOBACK. RETURN; RETURN (14,12),RC=O 

The'RETURN or GOBACK statement in a batch program returns control 
to the IHS/VS control facility. However, the IMS/VS control facility 
subsequently returns control to the operating system job terminator 
after DL/I resources are released. 

The RETURN or GOBACK statement in a message processing program causes 
control to return to the IMS/VS control facility in a message processing 
region. The IMS/VS control facility records accounting information 
and passes to the IMS/VS scheduling facility a request for rescheduling 
in the message processing region. 

If the program is terminating normally, the RETURN statement from 
an application program written in Assembler Language must have the 
contents of Register 15 equal to zero. 

Since IMS/VS links to application programs, the return to IMS/VS 
causes storage occupied by the application program to be released. If 
non-IMS/VS initiated I/O operations are outstanding against open DCBs, 
various ABENDS in IDS and POST may occur. Final termination of the 
job step may also produce abends in CLOSE. 

Data Base Batch programming 2.31 



EXAMPLES OF BATCH-PROGRAM STRUCTURES 

!H~ £~Q1 Rs!Qh~prQg~am St~u~YI~ 

Figure 2-10 outlines the fundamental parts of a batch program. Each 
item should be considered when designing a batch program. This program 
retrieves data from a detail file to update a master data base. Neither 
the detail nor the master is a teleprocessing data base. A similar 
structure must be used to create a teleprocessing or batch processing 
data base in a batch region. 

FE'P 
NO. 

1 

2 
3 

4 

5 

6 

7 

8 

9 

10 

11 

ENVIRONMENT DIVIS ION. 
• 
• 

DATA DIVISION. 
WORKING-STORAGE SECT ION. 

77 FUNC-DB-IN1 PICTURE XXXX VALUE 'GUbb'. 
77 FUNC-DB-IN2 PICTURE XXX X VALUE 'GBUb'. 
77 FUNC-DB-OUT PICTURE XXXX VALUE 'REPL'. 
77 FUNC-DB-NEXT PICTURE XXXX VALUE 'GBNb'. 
77 CT PICTURE S9 (5) COMPUTATIONAL VALUE +4. 
• 
01 
01 
01 

LINKAGE 
01 
01 

SSA-NAME. 
R AST-S EG-IO-AREA. 
DET-SEG-IN-AREA. 
SECTION. 
DB-PCB-MAST. 
DB-PCB-DETAIL. 

PROCEDURE DIVISION. 

ENTRY 'DLITCBL' USING DB-PCB-MAST, 
DB-PCB-DETAIL. 

• 
CALL 'CBLTDLI' USING FUNC-DB-IN1, DB-peB-DETAIL, 

DET-S EG-IN-AREA, SSA-NAME. 
• 
CALL 'CBLTDLI' USING CT, FUNC-DB-IN2, 

DB-PCB-MAST, MAST-SEG-IO-AREA, SSA-NAME. 

CALL 'CBLTDLI' USING FU'NC-DB-NEXT, DB-PCB-MAST, 
MAST";'SEG-IO-AREA. 

• 
CALL 'CBLTDLI' USING PUNe-DB-OUT, DB-PCB-MAST 

KAST-SEG-IO-AREA. 
• 
GOBACK. 

COBOL-LANGUAGE INTERFACE 

Figure 2-10. ANS COBOL Batch~Program Structure 

2.38: I8S/VS Application programming Reference Manual 

.. 



.. 

c) 

The foll:>wing explanation relates ,to the reference numbers alonq 
the left side of Figure 2-10. 

1. A 77 level or n1 level working storage entry defines each of the 
CALL functions used by the batch program. Each picture clause is 
defined as four alphameric characters and has a value assigned for 
each function (for example, GUbbl. 

2. An 01 level workinq storage entry defines each segment search 
arqument used by an application proqram. An example of an SSA 
definition, with lowercase "b" representinq blan~k, is: 

01 SSA-NAr!E. 

02 SEG-NAr!E PlcrURE X (B) VALUE t ROOTbbbb'. 
02 SEG-QU AL PICl'URE X VALUE '('. 
02 SEG-KEYNAME PICTURE X(Bl VALUE 'KEYbbbbb'. 
02 SEG-OPERATOR PICTURE XX VALUE 'b='. 
02 SEG-KEY-VALUE PICTURE X(6l VALUE 'vvvvvv'. 
02 SEG-END-CHAR PICTURE X VALUE'l' • 

¥hen this COBOL syntax is decoded, it will be in a data string ~s 
follows: 

P03Tbbbb(KEYbbbbbb=vvvvvv) 

3. An 01 level working storage entry defines the progra,m segment I/O 
work area. 

4. An 01 level linkage section entry describes the DB-PCB entry for 
every input or output data base. No TP PCBs can be included. It 
is through this linkage that a COBOL program may access the status 
codes after a DL/I call. 

5. This is the standard entry point in the procedure division of a 
batch program. After IMS/VS control has loaded and completed the 
PSB for the program in the batch region, IMS/VS gives control to 
this entry point. The PSB contains all the PCBs used by the 
program. The USING statement at the entry point to the batch 
proqram must contain the same number of names in the same sequence 
as there are PCBs in the PSB. 

6., 7. 
These are typical CALLs used to retrieve data from a data base 
using a qualified search argument. 

Item 7 also shows the use of another argument (parm-countl in the 
call made from COBOL to DL/I. This additional explicit argument 
is a binary counter (fullword) of the number of remaining arguments 
in the current DL/I call. This allows the user to set up the 
parameters of a call in the working storage section of his data 
division and to·truncate or expand this call through the use of 
the binary counter. 

B. This is a typical call used to retrieve data from a data·base usinq 
an· unqualified search. This CALL is also a HOLD call for a 
subsequent delete or replace. 

CALL 'CBLTDLI' USING call-function, db-pcbname, work-area. 

9. This is used to update data from a batch program in a data base. 

10. GOBACK causes the batch program to return control to IMS/VS control 
facilities. 

Data Base Batch Programming 2.39 

_ ... __ ... __ .. '-"--_ .. """'_."--_. 



11. A language interface module (DFSLIOO~) is provided by I~S/VS. This 
module must be link-edited to the batch program after compilation 
and provides a common interface to IMS/VS and DL/I. 

The language interface function of IMS/VS is reenterable r and 
compatible with that of IMS/360 Version 2. In order to take 
advantage of the reenterable capability of the IMS/VS language 
interface r application modules must be re-link-edited, replacing 
the I~S/360 Version 2 language interface with th~ IMS/VS language 
interface. The IMS/360 Version 1 lanquage interface is not 
available in IMS/VS. Existing I~S/360 Version 2 programs can be 
executed without re-link-editinq them with the I~S/VS languaqe 
interface. 

IMS/VS Application Programming Reference Manual 

--------- -------- -----------------

f"\ 



c. 

/ 

~-' 

c' 

R.1LI QEi!miz!.ng Compiler Batch=.froq!2~ §.truc~ 

Figure 2-11 outlines the fundamental parts of a PL/I optimizing 
compiler batch program. Each item should be considered when designing 
a batch program. This program retrieves data from a detail file to 
update a master data base. Both the detail and the master PCBs 
represent data bases. 

FEF 
NO. 

1 

2 

3 

4 

5 

6' 

7 

8 

9 

10 

11 

12 

1* ------------~----------------------------------- *1 
1* ENTRY POINT *1 
1* ------------------------------------------------ *1 

DLITPLI: PROC(MAST_PTR,DETAIL_PTR) OPTIONS (MAIN); 

DCL FUNC_GU CHAR(4) STATIC INIT ('GU'), 
DCL FUNC_GHU CHAR(4) STATIC INIT ('GHU'), 
DCL FUNC_REPL CHAR(4) STATIC INIT ('REPL'), 
DCL FUNC-GHN CHAR(4) STATIC INIT ('GHN'), 

DCL SSA_NA ME 

DCL 
DCL 

1 DB PCB MAST 
1 DB:PCB::DETAIL 

BASED (ffAST_PTR) , ••• ; 
BASED (DETAIL_PTR) , ••• ; 

DCL THREE FIXED BINARY~1) STATIC INITIAL(3); 
DCL FOUR FIXED BINARY (31) STATIC INITIAL(4); 

CALL PLITDLI(FOUR,FUNC_GU,DETAIL_PTR,DET_SEG_IO_AREA, 
SSA_NAME) ; 

CALL PLITDLI(FOUR,FUNC_GHU,MAST_PTR,MAST_SEG_IO_AREA, 
SS A_NAME) ; 

CALL PLITDLI(THREE,FUNC_GHN,MAST_PTR,MAST_SEG_IO_AREA); 

CALL PLITDLI (TH REE,F U NC_REPL, ftAST_PT R, M AST_S EG_ IO_IREA) ;' 
; 

END DLITPLI; 

PL/I LANGUAGE INTERFACE 

Figura 2-11. PL/I optimizing Compiler Batch-program Structure 

The following explanation relates to the reference numbers along 
the left side of Figure 2-11: 

1. This is the main standard entry point to a PL/I batch program. 
After the IMS/vS control program has loaded and completed the PSB 
for the program in the batch region, it gives control to this entry 
point. The PSB contains all the PCBs used by the program. The 
entry-point statement of the batch program must contain the same· 
number of names in the same sequence as there are PCBs in the PSB. 

Data Base Batch prograaming 2.41 



I 2. These declarations define the call functions used by the PL/I batch 
program. Each character string is defined as four alphameric 
characters, with a value assigned for each function (for example, 
GU). other constants can be defined in the same manner. 

3. This declaration defines storage for SSAs. In the following 
example, the SSA is declared as a structure; other methods can be 
used (see the example under t he section "General Cha racteristics 
of Segment' Search Arguments" in Chapter 3 of this manual). 

Example: (lower case "btl represents blank) 

DCL 1 SSA_NAME STATIC, 
2 S EG_N AM E CHAR (8) 
2 SEG_QUAL CHAR (1) 
2 S EG_KEY_N AME CHAR (8) 
2 SEG _0 PERATOR CHA R (2) 
2 SEG_KEY_ VALUE CHAR (6) 
2 S EG_END_CHAR CHAR (1) 

INIT('ROOT') , 
I NIT ( , (') , 
INIT('KEY') , 
I NIT ( , b=') , 
INIT (' vvvvvv') , 
INIT(')'); 

When the above PL/I syntax is decoded, it will be in a data string 
as follows: 

ROOTbbbb(KEYbbbbbb=vvvvvv) 

4. The 1/0 area is most efficiently passed to DL/I as a fixed-length 
character string or through a pointer variable; other methods can 
be used, however, (see the PL/I example under the section "I/O Work 
Area" earlier in this chapte~. An example follows. 

I 5. A major structure declaration describes the DB-PCB entry for every 
input or output data base. It is through this description that a 
PL/i program. may access the status codes after a DL/I call. 

6. This is a descriptive statement used to identify a binary number 
(full word) that represents the parameter count of a call to DLII. 
T.he parameter count value equals the remaining number of arguments 
following the parameter count set off by commas. 

7., 8. 
These are typical calls used to retrieve data from a data base 
using a qualified search argument. 

9. This is a typical call used to retrieve data from a data base using 
an unqualified search argument. This call is also a HOLD call for 
a subsequent delete or replace. 

10. This call is used to replace data from a DL/1 batch program on to 
a data base. 

11. This END statement causes the batch program to return control to 
the 1MS/VS control facilities. Another statement that causes the 
batch program to return control to the 1MS/VS control facilities 
is the RETURN statement. The RETURN statement mayor may not 
immediately precede the END statement. . 

2.42 IMS/VS Application Programming Reference Manual 



-------------------------------_ .. -_ ... _--

12. A language interface (DFSLIOOO) is provided by IMS/VS. This module 
must be link-edited to the batch program and provides a common 
interface to IMS/VS and OL/I. 

The language interface function of IMS/VS is reenter able and 
compatible with that of IMS/360 Version 2. To take advantage of 
the reenterable capability of the IMS/VS language interface, 
application modules must be re-link-edited, replacing the IMS/360 
Version 2 language interface with the IMS/VS language interface. 
The IMS/360 Version 1 language interface is not available in IMS/VS. 
Existing IMS/360 Version 2 programs can be executed without 
re-linking them with the IMS/VS language interface. 

The entry point to an Assembler Language program which utilizes OL/I 
may have any desired name. However, Register 1, upon entry to the 
application program, contains the address of a variable-length.fullword 
parameter list. Each word in this list contains a PCB control block 
base address which must be saved by the application program. The 
high-order byte of the last word in the parameter list has the 0 bit 
set to a value of one to indicate the end of the list. The PCB 
addresses from this list are subsequently used by the application 
program when executing DL/I calls. 

All DL/I calls from an Assembler Language program should be executed 
with the CALL macro instruction. Register 1 must be constructed prior 
to execution of the CALL statement to point to the variable-length 
full word parameter list. This may be done through operands of the CALL 
macro instruction. The parameters in this list are addresses of: 

• The input/output function 

• The PCB address associated with data base 

• Input/output work area 

• Zero or more segment search argument identifiers 

The entry point for the CALL macro instruction is CBLTDLI. The 
IMS/VS-supplied language interface module (DFSLIOOO) must be link-edited 
with the compiled Assembler Language program. 

Application programs· used in the batch OL/I environment can use both 
OL/1 for data base processing and standard as/vs data management for 
non-data base input/output operation. 

At the completion of a DL/I call, a status code that indicates the 
results of the call tha~ was made is presented to the application 
program in the PCB status-code field. 

The user should follow each call in his program with statements 
which examine the status codes return~d in the PCB to determine if the 
requested action was completed properly. 

The IMS/VS installation should normally provide application programs 
with a standardized status code checking procedure to be applied after 
each call. 

Appendix A provides a quick reference of DL/I status codes. The 
status codes are described in full detail in Appendix B. 

Data Base Batch Programming 

----_. __ .. ,.,._-_._-" .. "." ---_ ... _---

2.43 



STATUS COD~S FOR SUCCESSFUL COMPLETION OF GET CALLS 

If the GET call was successfully completed, the 2-byte status code 
is blank or GA, or GK; otherwise, another status code applies. 

The GA status code is a warning indication. When a GN or GNP call 
without SSAs is issued, DL/1 may return this status-code to indicate 
the crossing of hierarchical boundaries. This status code indicates 
that DL/! has passed from one segment in the logical data structure at 
level X to another segment in the logical data structure at level I, 
where Y is less than X. In other words, it has proceeded upward in 
t he hierarchy towa rd the root segment. This cod"e is not returned to 
the using application program when a GU, GN with SSAs, or GNP with SSAs 
is issued, because the user is explicitly asking, through the presence 
of the SSAs, to traverse a knoxn path in the data base. The GA status 
code is thus a warning to the user of the GN or GNP call" that Dt/I has 
"taken him implicitly from a segment at one level of the hierarchy to 
a se9ment at another, higher, level of the hierarchy. 

Similarly, OL/I returns the G K status code to GN or GNP calls wit hout 
SSAs to indicate the crossing of a lateral boundary from one segment 
type too another. GK (like GA) is not returned to the using application 
program if a GU, GN or GNP with SSAs is issued. The GK status code is 
a warning that OL/I has proceeded implicitly from the last segment 
occurence of one segment type to "the first segment occurence of the 
next segment type, at the same level in the hierarchy. 

STATUS CODES FOR VALID EXCEPTIONAL CONDITIONS IN THE DATA BASE 

When the GET call is not completed due to exceptional but valid 
conditions in the data base, either the GB or the GE status c~de is 
returned. GB indicates that DL/I has encountered the end of the data 
base. GE means that DL/! has not found the segment occurence specified 
in the GET call. 

PCB A ND POSITION FOR "NOT-FOUND" CALLS 

The terms "current position in the data base" and" segment in which 
position is established at that level" were defined earlier in this 
chapter under "Detailed Description of DL/I Processing Functions." 
These terms are particularly relevant and require further clarification 
when discussing the PCB and position in a data base for IInot-found" 
calls. 

The segment on which position is established at that level is 
relevant for GU and ISRT calls which do not specify all levels in the 
call and also for GU, GN and ISRT when the U and V command codes are 
used. The position of the parent is relevant when F and L command 
codes are u~ed, and the position of the parent is relevant if the P 
command code was specified for the parent and a GNP call follows. The 
current position in the data base is the same as th~ segment on which 
position is establishe~ at the lowest level in the call when the call 
is fully satisfied. They may differ, however, when the call is not 
fully satisfied. 

Earlier in this chapter (see the section "PCB Masks") , it was stated 
that the segment level, segment name, and key feedback areas of the 
PCB always reflect the last segment and keys for higher levels which 
satisfied a level of the call. If the call is completely satisfied, 
this shows the lowest level segment requested on the call. If the call 

IMS/VS Application Programming Reference Manual 

r-", 

..... ... _.<" 



is not completely satisfied, it shows the last segment which satisfied 
a level of the call. The PCB therefore reflects the lowest level 
segment on which position is established. Position is also established 
for all parent levels, if any exist for that segment. 

No position is established on the segment that could not satisfy 
the request and on lower level segments. 

If level-one (root) SSA could not be satisfied, the segment name is 
cleared to blank, and the level and key-feedback length are set to 
zero. The key-feedback area is never cleared. Segment-key field values 
are concatenated in this area as the segment levels are satisfied. The 
segment name in the PCB. or the key-feedback length field may be used 
to determine the length of the relevant data in the key-feedback area. 
contents of the feedback area beyond the length value is indeterminate 
as the feedback area is never re~urned to zero from previous calls. 

In considering current position in the data base, it must .be 
remembered that DLtI must first establish a starting position to be 
used in satisfying the call. This starting position is the current 
position in the data base for GN calls and is a unique position normally 
established by the root SSA for GU and ISRT calls. DL/I will then scan 
segmeri~ occurrences in a forward direction based on the logical 
hierarchical data base structure. For "found" calls without 55As, the 
position in the data base is clearly the position of the lowest level 
segment retrieved in the call. For "not-found" calls, the current 
position in the data base is immediately preceding the earliest segment 
encountered in attempting to satisfy this call which could be used by 
DL/I to determine that the call could not be satisfied. The segment 
which will be returned if an unqualified get next call is now issued 
is the segment which indicated the not-found condition, above. 

This not-found position, then, is dependent on the SSAs used in the 
call. If all S5As are qualified with an equal operator (=) and a key 
field, then the not-found position is fairly easily determined. If, 
however, some of the SSAs are qualified on data fields or use 
greater-than operands (», the not-found position may be further in 
the data base than when equal operands (=) are used on key fields. If 
the application program is depending on the not-found position, then 
it must realize that ~his pOSition is based on the CALL function 
(particularly GNP functions) and on the 55As used in the CALL. 

If an 55A is qualified on a sequence field and the sequence field 
is defined as non-unique (more than one segment occurence of this type 
may have the same key value) , the retrieval search for a segment to 
meet an equal qualification will stop when the first occurence with 
the qualified value is found. If lower level 5SAs for this call cannot 
then be satisfied, the next occurence with the same non- unique sequence 
field value will be retrieved and an attempt will be made to satisfy 
the lower level 5SAs. When attempting to satisfy a level which is 
qualified on a non-unique sequence field and a segment with a high~ 
key is encountered, the search will stop. That segment with the higher 
key will be the not-found position and the next GN call will start from 
that point. In the above situation, if the end of a segment-twin chain 
is reached before a higher-key value.is found, the position is assumed 
to be at the next segment hierarchically above or to the right. 
Therefore, all dependents of the segment type with the non-unique 
sequence field have been passed and cannot be retrieved with any kind 
of GN call (*F command code excepted) unless an intervening GO or ISRT 
call is issued for repositioning. 

To reestablish known position in a data base after an unsuccessful 
GN call which was qualified on a data field or a non-unique sequence 
field, the application program can issue a fully qualified GU call. 

Data Base Batch Programming 2.45 



The following clarifications apply to the current position in the 
data base for special situations: 

• If no current position exists in the data base, the assumed current 
position is the start of the data base. This applies to the first 
call issued by either a batch or online program. 

• If the end of the data base is encountered, the assumed current 
position to be used by the next call is the start of the data base. 

An application program can access data segments in more than one 
physical or logical data base. The program may also access more than 
one logical data structure in the same data base. The use of multip1e 
data structures means that the PSB loaded from the PSB library at 
initiation of an application program has multiple data base PCB blocks 
within it. Upon entry to the application program, each PCB name is 
provided. to the application program (see Figure 2-12). 

OS/VS 
IMS/VS 

PSB LIBRARY 

A/P LIBRARY 

PROGRAM~----~~---'I 

Figure 2-12. Accessing Multiple PCBs 'in an IMS/VS Batch Environment 

The use of more than one data base PCB requires the ENTRY or 
PROCEDURE statement in the application program to contain multiple PCB 
names. The sequence of PCB names in the'ENTRY or PROCEDURE statement 
must be the same as their sequence in the PS B associated with the 
application program. 

Access to multiple logical data structures in the same data base 
(via the specificaiton of multiple PCBs against that d.at a base) enables 

I application programs to: 

• Achieve parallel processing 

• Simplify replace and delete call sequences when the action could 
only be determined after other segments have been examined 

• Be used by the data base administrator for a proper choice of 
internal OL/I procedures in using OS/VS data management routines 

2.46 IMS/VS Application Programming Reference Manual 



( 

Application PSB Data Base 

A-1 

PCB-X 
A-1 X 

PCB-Y 

PCB-Z 

Y 
A-2 

PCB-X 
A-2 

PCB-Z 

Z 
PCB-Z 

Figure 2- 1 3. Multiple Logical Data structures for the Same Data Base 

In Figure 2-13, the PSB for application program A-1 shows that the 
application is processing three logical data structures, one from each 
of three different data bases. The PSB for application program A-2 
also contains PCBs for three logical data structures. Two of these 
logical structures, however, identify the same data base. They mayor 
may not identify different segment types or processing options. 

System service calls control the system rather than transmit data. 
The following system service calls are available to IMS/VS application 
programs: 

CHECKPOINT (CHKP). The CHKP call informs IMS/VS that the user has 
reached a logical synchronization point and that the program can be 
restarted at this point. IMS/VS can optionally invoke an OS checkpoint. 
The current position is maintained in GSAM data bases. 

RESTART (XRST) •. The XRST call requests IMS/VS to restore 
checkpointed user areas and reposition GSAM data bases for sequential 
processing if a checkpoint ID for restarting has been supplied by the 
call or in the JCL. XRST is only valid for a batch or BMP region. 

DEQUEUE (DEQb). The DEQ call is used to make available for general 
use any segments previously enqueued by the user with the Q command 
code in an SSA of a data base call. 

ROLL'BACK (ROLL). The ROLL call is used to request that any data 
base updates be backed out and output messages generated by the caller 
not be sent. It is treated as a user program abend, but the program 
and transaction are not stopped. 

LOG (LOGb). The LOG call allows the user to put information on the 
system log. 

Data Base Batch programming 



GET SCD (GSeD). The GSCD call obtains the address of the IKS/VS 
system Contents ~Directory (SCD). 

STATISTICS (STAT). The STAT call is used to obtain various 
statistics from DL/I. 

The DEQb and ROLL calls are only valid from a message or batch 
message processing region. The CHKP call is valid from any IMS/VS user 
region,. hut the action taken varies with the type of region. The LOGb 
call is valid from any IMS/VS region. If issued from a batch region 
which has no system log, no action is taken. 

The CHKP, DEQ, and LOG system service calls must reference the I/O 
PCB. The I/O PCB for a batch program is defined at PSBGEN time by use 
of the CMPAT option. For additional information on the CMPAT option, 
see t he I!t~L.!~ !!ti!i1.t~§ Ref~~n.~ fi.2!U!.21. 

CREC KPOI NT (CHKP) 

When DL/I receives a CHRP call, it writes to the data base all 
buffers that were modified by the user. A log record is also created 
which contains the checkpoint identification passed with the call. The 
posi1::ion of each data base PCB is set to the beginning of the data 
base. See the section "Batch Checkpoint Restart Considerations" in 
the "Application program Design" chapter of the System/AI!.E.llcation 
~~§jgn !iyi,de. 

If CHKP is issued from either a message or a batch message processing 
region, the following additional actions are taken: 

• All data base resources enqueued for this user are released • 
• 

• If the user program references a transaction code, the message 
queue for that transaction is checkpointed. After the checkpointing 
action is completed, a GU call to the input message queue is 
interna~ly generated, and a new message (if one is available) is 
returned in the work-area location. 

The CHKP call is used in a message processing region in conjunction 
with multiple-mode scheduling of transactions. It allows the ~ser to 
determine the grouping of messages for backout and restart purposes. 
For single mode scheduling or multiple mode scheduling where no grouping 
is necessary, Program Isolation will handle all checkpoint functions. 
The grouping IMS/VS uses is either that each message is unique or that 
all messages read at a given schedule of the program are considered to 
be connected. The basic CHRP call allows the user to specify groupings 
in between. 

Batch or batch-message programs can use either the basic CHKP call 
or the symbolic CHKP call to coordinate logical synchronization points 
with the I~S/VS recovery log. If the basic CHKP call is used, the 
following rules apply: 

• The user can request that IMS/VS issue an OS checkpoint for the 
user's region. 

• The user cannot issue an as check~oint. 

2.48 IMS/VS Application Programming Reference Banual 



c. 
'j ]!s~El~§ of 1h~ Ea§!£ CHKP Ca!! 

The format of the basic CHKP call for an ANS COBOL program is: 

CALL 'CBLTDLI' USING (parmcount,] call-func, 
IOPCB-name, I/O-area (,chkp-func]. 

Th~ format of the basic CHKP call for a PL/I program is: 

CALL PLITOLI (parmcount,call-func,IOPCB-name,I/O-area 
[ ,chkp-func]) ; 

The format if the basic CHKP call for an Assembler Language program 
is: 

CALL ASMTOLI «(parmcount, ]call-func,IOPCB-name, 
lID-area [, I chkp-func I] ) [ ,VL] 

chkp-DCB f 

parmcount 
is the address of a binary fullword c9ntaining the number of 
parameters that follow (required for PL/I). 

call- func 
is the address of the call function "CHKP". 

IOPCE-name 
is the address of the I/O PCE. 

I/O-.area 
is the address of the 1/0 area. In applications that access 
the IMS/VS message queues, the CHKP call implies a message GU, 
and a message can be returned. In batch or batch-message 
programs, the I/O area must contain the 8-byte checkpoint 
identification. This is used for operator or programmer 
communication and should consist of EBCDIC characters. 

chkp-func (optional) 
is the address of an 8-byte area containing the value "OSVSCHKP". 
If this parameter is specified and DO statements are provided 
for an OS checkpoint data set, IMS/VS will provide DCBs for the 
user and issue an OS/VS checkpoint for the user's region before 
proceeding with the OL/I CHKP call. 

!!Q1~: 'The optional parameters "chkp-func" and "chkp-DCB" are mutually 
exclusive and are valid only for batch or batch-message programs written 
in Assembler Language. 

The symbolic CHKP call is used in conjunction with the XRST call 
and is valid only if the batch or batch-message program issued a restart 
(XRST) call. The following functions are provided by the symbolic 

CHKP call: 

• Th. fully-qualified key of the last record processed by the 
application program for each IMS/VS data base is recorded on the 
IMS/VS recovery log • 

• User-specified areas (for example, application variables, control 
tables, and position information for non-IMS/VS data sets) are 
optionally recorded on the IMS/VS recovery log. 

Data Base Batch Programming 2.49 



E!!~El~~ Qf 1hg ~!~21i£ CHKP ~~!! 

The fo~mat of the symbolic CHKP call for an lNS COBOL program is: 

CALL 'CBLTDLI' USING (parmcount,]call-func,IOPCB-name, 
I/O-area-len,I/O-area 
( , 1st-area-len, 1st-ar ea, ••• , nth-area-len, nth- area]. 

The format of the symbolic CHKP call for a PL/I program is: 

CALL PLITDLI (parmcount,call-func,IOPCB-name,I/O-area-len, 
I/O-area[ ,1st-area-Ien,1st-area, ••• ,nth-area-Ien,nth-area]); 

The format of the symbolic CHKP call for an Assembler Language 
program is: 

CALL ASMTDLI ((parmcount,] call-func,IOPCB-name,I/O-area-Ien, 
llO-area[ ,1st-aera-Ien,1st-area, ••• ,nth-area-len, 
nth-area]) [,VL] 

parmcount, call-func, IOPCB-nam~, and I/O-a,rea 
are the same as for the basic CHKP call. 

I/O-area-len 
is the address of the length of the largest 1/0 area used by 
the application program. 

1st-area-Ien (optional) 
,is the address of the length of the first area to checkpoint. 

1st-area (optional) 
is the address of the first area to checkpoint. 

nth-area-len, (optional) is the address of the length' of the nth area 
to checkpoint. 

Note: A checkpoint can be taken on a maximum of seven areas 
1n;7). . 

nth-area (optional) 
is the address of the nth area to checkpoint. 

!Q!~: A checkpoint can be t'aken' o'n a maximum of seven areas 
(n=7) • 

In addition to the status codes returned from GU calls, the following 
status code is also returned from the CHKP call: 

XD 185/VS is terminating; further DL/I calls must not be 
issued • . 

The application program should test the status code returned from 
a DL/I CHKP call. If the status code indicates that IKS/VS is 
undergoing a checkpoint freeze (code "XD"), t.he application should 
termina te wi thout issuing further DL/I calls. (This code viII only be 
returned to a batch-message application.) If another DL/I call is 
issued, the application program viII abend. 

The user must re-establish his position in all 1KS/VS data bases 
(except GSAK) after return from the checkpoint. 

2.50 I8S/VS Application Programming Reference Kanual 

... 

.. 



RESTA RT (XRST) 

Upon receiving this call, IMS/VS checks whether a checkpoint 
identification (10) has been supplied in the PARM field of the EXEC 
card or in the work area pointed toby the XRST call. If no ID has 
been supplied, the call is treated as a NOP, except that a flag is set 
to trigqer storing of repositioning data and user areas on subsequent 
CHKP calls. 

If the checkpoint at which restart is to occur has been supplied, 
the IMS/VS batch restart routine reads backward on the log defined in 
the //IMSLOGR DD statement to locate the checkpoint records. 

User-program areas are restored. If the user does not specify main 
storage locations, IMS/VS obtains storage for him from subpool O. 
Addresses and lengths of the areas are returned in the area list 
specified by the call. 

Each GSAM data base that is active at the checkpoint is repositioned 
for sequential processing by issuing a GU for the last record processed 
at that point. Data bases being loaded are not repositioned except 
for GSAM data bases defined to use BSAM accessing. No data is returned 
from this automatic GU. Key feedback information is provided in the 
PCB for each data base that is active ~t the checkpoint. The user 
program must reposition itself on all non-GSAM data bases, just as it 
must do after taking a checkpoint. 

The format of the XRST call for an ANS COBOL program is: 

CALL 'CBLTDLI' USING [parmcount,]call-func,IOPCB-name, 
I/O-area-len,work-area[,1st-area-Ien,1st-area, ••• , 
nth-area-Ien,nth-area]. 

The format of the XRST call for a PL/I program is: 

CALL PLITDLI (parmcount,call-func, IOPCB-name", I/O-area-Ien, 
work-area[ ,1st-area-len,1st-area, ••• ,nth-area-Ien, 
nth-area n ; 

The format of t~e XRST call for an Assembler Language program is: 

CALL ASMTDLI ([parmcount, ]call-func,IOPCB-name,I/O-area-Ien, 
work-area[ , 1st-area-Ien, 1 st-area, ••• , nth-area-len, 
nth-area]) [VL] 

parmcount 
is the address of a binary fullword containing the number of 
parameters that follow (required for PL/I). 

call- func 
is the address of the call function "XRST". 

IOPCB-name 
is the address of a poin ter to either the I/O PCB or the "dummy" 
I/O PCB supplied by the CMPAT option during PSBGEN. 

I/O-area-Ien 
is the address of the length of the largest I/O area used by 
the user program. 

Data Base Batch Programming 2.~1 



work-area 
is the address of a 12-byte work area. This area should be set 
to blanks (X'40') before the call and tested on return. If the 
program is being st artednormally, the area will be unchanged. 
If the program is being restarted from a checkpoint, the ID 
supplied by the user and specified in the PAR~ keyword on the 
EXEC statement in his CHKP call will be placed in the first 
eight byt?s. 

If the user wishes to use his own restart method, the XR5T call 
can be used to reposition G5AM data bases by placing the 
checkpoint 10 in this area before issuing the call. This ID 
can be either the 8-byte left-aligned user-supplied 10, or the 
12-byte YYODO/HHM~SS 10. 

1st-area-Ien 
is the address of the length of the first area to be restored. 

1st-area 
is the address of the first area to be restored. 

nth-area-len 
is the address of the length of the nth area to be restored. 

!!Qi,g: The maximum number of areas that can be restored is seven 
(n=7) • 

nth-area 
is the address of the nth area to be restored. 

1. The number of areas specified on the XRST call must be equal to 
the maximum specified on any symbolic CHKP call. 

2. The lengths of the areas specified on the XRST call must equal the 
maximum lengths of the corres-ponding areas (in sequential order) 
of any symbolic CHKP call. 

J. The XRST call is issued only once and is the first request that is 
made to 1M S/VS. 

4. The maximum number of areas that can be restored is seven (n=7). 

DEQUEUE (DEQb) 

DEQ is used by the user's program to release resources that had 
previously been reserved with the Q command code in an 5SA. If the 
resource to be freed had been upgraded to the exclusive-use level as 
a result of being modified since being reserved with the Q call, the 
resource will be released by the next synchronization point. If, 
however, the resource to be freed had not been upgraded as described 
above, it will be released (dequeued) to other users who request it. 
(The Q command code is described in the following chapter.) 

The PCB passed with the DEQ call must be the I/O PCB. It is used 
only for returning a status code. 

The work area must contain the ID of the queue ~lass to be released. 

2.52 I~S/VS Application Programming Reference Manual 



.. 

( 
'---

c 

The format for an ANS COBOL program is: 

CALL 'CBLTDLI' USING deg-func, pcb-name, work-area. 

The format for a PL/I program is: 

CALL PLITDLI (THREE, DEQ_FUNC, PCB_NAME,WORK_AREA) ; 

~he format for an Assembler Language program is: 

, ASMTDLII 
CALL CBLTDLI, (PARMCOUNT, DEQ FUNe, (R p) , (R w) ) 

Rp J 

is the register pointing to the PCB, and Rv is the register 
point to the work area 

D~Q issues only the "bb" status code • 

P.OLJ.BACK (ROLL) 

ROLL is issued by a user program when it determines that some 
invalidity exists in the processing it has done. All data bases and 
message activity (except EXPRESS) since the last sync point are backed 
out. This call is recognized and processed in the user region and 
therefore no parameters other than the function code are required. 

A user 0778 abend is generated in the user region. This abend code 
is recognized in the control region and special abend action is taken. 
All DL/I activity is backed out for the current message (or group of 
messages) back to the last synchronization point. No output messages 
are sent, except those inserted with the express facility. The input 
message (or group of message~ is dequeued. The transaction will be 
rescheduled, and processing will continue with the next message. If 
the 'ROLL' call is issued by a DL/I (independent batch) program, it 
will cause the user 0778 abend. The DL/I activity must be backed out, 
however, using the IMS/VS Data Base Backout utility~ See the discussion 
of the "Data Base Backout Utility" in the "Data Base Recovery" chapter 
of the I~2LY2 Q1 i l i ties ~~!~~~n£~ Manual. 

The format for an ANS COBOL program is: 

CALL 'CBLTDLI' USING roll-func. 

The format for a PL/I program is: 

CA LL PLITDLI (ONE, ROLL_PUNC) ; 

The format for an Assembler Language program is: 

I ASMTDLIl 
CALL CBLTDLlf, (PARMCOUNT,ROLL) 

No status codes are returned for a ROLL call. 

Data Base Batch programming 2.53 



LOG (LOGb) 

The LOG call causes a user record to be written to the system log. 
The record must be of the following format: 

LL 

ZZ 

C 

, LL I ZZ , C, VARIABLE 
L-----~----------------------J 

is a halfword containing the length of the message. 

When PL/I is used, the LL field must be defined as a binary 
fullword. The PL/I user must place the length of the text to 
be written in this field. The value must represent the total 
of: 

2 for the count field (even t hough it is physically 4 bytes 
in the PL/T environment) 

2 for the ZZ field 

1 for the C field 

n for the variable field 

is a halfword of zeroes. 

is a 1-byte user code which must be equal to or greater than 
X'AD' in value. 

The length of the area must be 4 bytes less than the length of the 
LRECL for the system log. 

The PCB passed with the LOG call must be the I/O PCB. It is used 
only for returning a status code. 

The format for an ANS COBOL program is: 

CALL 'CBLTDLI' USING log-func, pcb-name, record-area. 

The format for a PL/I program is: 

CALL PLITDLI (THREE,LOG_FUNC,PCB_NA~E,RECORD_AREA); 

The format for an Assembler Language program is: 

CALL 

RP 

, ASMTDLI , 
CBLTDLI , (PARMCOUNT, LOGFUNC, (Rp). (Rr)) 

is the register pointing to the first PCB in the list of 
PCBs passed at entry, and Rr is the register pointing to 
the record a~ea. 

2.54 IMS/VS Application Programming Reference Manual 



(, 

c,. 

C
· 

I 

There are 

, . "AT" 

2. "G L" 

3 • "b b" 

three possible status codes from the LOG call: 

The record length in the LL field is too long. No 
logging is done. 

The log code is not a valid user code. 

Everything is fine. 

The GSCD call is used to obtain the addresses of the IMS/VS System 
Contents Directory (SCD) and Partition Specification Table (PST). It 
is suggested that any program that references these control blocks use 
the DSECTS provided by macros in. the macro library for the IMS/VS 
system. The macro for the SCD DSECT is ISCD SLDBASE=O; the macro for 
the PST DSECT is IDLI PSTBASE=O. 

An example of a GSCD call format for an Assembler Language program 
is: 

CALL I ASMTDLI J 
CBLTDLI , «(parmcount, ]function,pcb-name,work area)(,VL] 

parmcount 
is 3 if provided 

function 
is the address of the call function 'GSCD' 

pcb-name 
is the address of any valid PCB 

work area 

VL 

is the address, of an 8-byte area. The call will place the 
address of the SCD in the first ~ bytes and the address of the 
PST in the second 4 bytes. 

VL must be specified if parmcount is not used. 

]Q1~: When running a MSG or BMP region type, using either the VS2 
Operating System or the VS, Operating System with fetch protect 
specified, the GSCD call functions normally. The operating system, 
however, does not permit a p,rogram in one region (the MS-G or BMP region) 
to access data in another region (the CTL region). Therefore, the 
addresses returned on the GSCD call cannot be used in either a MSG or 
BMP region type. An OC4 system abend results if they are used in the 
above situation. Since the SCD an,d PST are in the same Operating System 
region as the application program when running in a DLI or DBB region 
type, these addresses can be used by a DLI or DBB region. 

Data Base Batch programming 2.55 



STATISTIC 5 (STAT) 

The STAT call is used to obtain statistics in various forms from 
the IMS/VS system. 

The format of the STAT call for a COBOL program is: 

CALL 'CBLTDLI' USING [parmcount,]call-func,pcb-name, 
I/O-area,stat-func. 

The format of the STAT call for a FL/I program is: 

CALL FLITDLI (parmcount,call-func,pcb-name,I/O area, 
sta t-func) ; 

The format of the STAT call for an Assembler Language program is: 

CALL ASMTDLI, ((parmcount,] call-func, 
pcb-name, I/O-area,stat-func) ( ,VL] 

parmcount 
is an optional parameter except for PL/I. If present it is the 
address of a binary fullword containing the value 4. 

call- func 
is the address of the call-function STAT. 

pcb-name 
is the address of a data base PCB. This PCB is used to pass 
status back to the application program. The OS access method 
used by the data sets associated with this PCB are not related 
to the type of statistics that will be returned from the STAT 
call. 

I/O-area 
is the address of an area in the application program large enough 
to hold the statistics requested. 

stat- func 
is the statistics function and the address of a 9-byte area 
whose contents describe the type and form of statistics required. 
The first 4 bytes define the type of statistics desired and the 
5th byte defines the format to be provided. The remaining 4 
bytes should contain EBCDIC blanks. If the stat-function 
proyided is not one of the defined functions, then an AC status 
code is returned to the user. 

Stat Functions - ISAM/OSAM Buffer Pool 
For ISAM/OSA8 buffer pool statistics, the following are the 
possible values for the stat-function parameter ·and the for.at 
of the data that will be returned to the application program. 
If there is no ISAM/OSA" buffer pool present., then a GE status 
code will be returned. 

2.56 I"S/VS Application Programming Reference Manual 

It 

.......--~,,' 



DBASF 

DBASU 

o 

This function value will provide the full ISAM/OSAM data base 
buffer pool statistics in a formatted form. The application 
program 1/0 area must be at least 360 bytes. Three 120 bytes 
formatted (for printing) records are provided; two beading lines 
and one line of statistics. 

The format of the data is as follows: 

BLOCK FOUND READS BUFF OSAM BLOCKS NEW CHAIN 
REQ IN POOL ISSUED ALTS WRITES WRITTEN BLOCKS WRITES 

nnnnnnn nnnnnnn nnnnn nnnnnnn nnnnnnn nnnnnnn nnnnn nnnnn 

WRITTEN POOL BUFF BUFFS RET ISAM ISAM 
ON CHNS CO~PACT COMB MOVED BY KEY GT NXT SETLS ERRORS 
nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnn nnnnn nnnnn nn/nn 

BLOCK REQ = 
FOUND IN POOL = 

READS ISSUED = 
BUFF ALTS = 
OSAM l-IRITES = 
BLOCKS WRITTEN = 
NEW BLOCKS = 
CHAIN WRITES = 
WRITTEN ON CHNS= 
POOL CaMP ACT = 

number of block requests received 
number of times the block requested 
was found in the buffer pool 
number of OSAM reads issued 
number of buffers altered in the pool 
number of OSAM writes issued 
number of blocks written from the pool 
number of new blocks created in the pool 
number of chained OSAM writes issued 
number of blocks written on OSAM chains 
number of times the buffer pool 
was compacted 

BUFF COMB = number of buffers combined during pool 
compactions 

BUFF MOVED = number of buffers moved during pool 
compactions 

= number of ISAM records retrieved by key RET BY KEY 
ISAM GT NXT = number of ISAM get next calls received by 

the buffer handler 
ISAM SETLS 

ERROR S 

= number of ISAM SETLs issued by the buffer 
handler 

= number of write error buffers currently in 
the pool/the largest number of errors in 
the pool during this execution 

This function val ue will provide the full ISAM/OSAM da ta base 
buffer pool statistics in an unformatted form. The application 
program 1/0 area must be at least 72 bytes. Eighteen fullwords 
o~ binary data are provided. The first word is a count of the 
number of words that follow; the second through eighteenth words 
are the statistic values in the same sequence as presented with 
the DBASF function value above. 

Data Base Batch Programming 2.57 



DBASS 
This function value viII provide a summary of the ISA8/0SA8 data 
base buffer pool statistics in a formatted form. The application 
program I/O area must be at least 180 bytes. Three 60-byte 
formatted (for printing) records are provided. 

The format of the data is: 

DATA BASE BUFFER POOL: SIZE nnnnnnn 
REQ1 nnnnn REQ2 nnnnn READ nnnnn BISAM nnnnn WRITES nnnnn 
KEYC nnnnn COMP nnnnn COMB nnnnn MOVES nnnnn ERRORS nn/nn 

SIZE 
RE01 
REQ2 

REA.D 
BISAM 
WRITES 
KEYC 
COMP 
COMB 
MOVES 
ERRORS 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

buffer pool size 
number of block requests 
number of block requests satisfied in the pool 
plus nev blocks created 
number of read requests issued 
number of BISAK reads issued 
number of OSA8 vrites issued 
number of retrieve by key calls 
number of pool compactions 
number of buffers combined by compaction 
number of buffers moved by compaction 
number of permanent errors nov in the 
pool/largest number of permanent errors 
during this execution 

Stat Functions - VSAM Buffer Subpools 

2.58 

Since there may be several buffer subpools for VSAM data bases, 
the STAT call is iterative when requesting these statistics. 
The first time the call is issued, the statistics for the subpool 
vith the smallest buffer size vill be provided. For each 
succeeding call (without intervening use of the PCB), the 
statistics for the subpool with the next larger buffer size vill 
be provided. The final call for the series will return a GA 
status code in the PCB and the statistics returned vill be totals 
for all subpools. If there are no VSAM buffer subpools present, 
a GE status code vill be returned. 

I8S/VS Application Programming Reference Manual 



VBASF 

~ 

I 
\.---.-

VBASU 

This function value will provide the full V5A" data base subpool 
statistics in a formatted form. The application program 110 
area must be at least 360 bytes. Three 120-bytes formatted (for 
printing) records are provided; two heading lines and one line 
of statistics. Each successive call will return the statistics 
for the next sub pool. 

The format of the data is: 

BUFFER HANDLER STATISTICS 
BSIZ NBUF RET RBI RET KEY ISRT ES ISRT KS BFR ALT BGWRT 5YN PTS 
nnnK nnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn 

v 5 I" 5 TAT I S TIC S 
GET5 SCHBFR FOUND READS USR iTS NUR WTS ERRORS 

nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnlnn 

BSIZ 

NBUF 

RET RBA 

RET KEY 

ISRT ES 
ISRT KS 
BFR ALT 

BGWRT 

SYN PTS 

GETS 

SCHBPR 

FOUND 

READS 

USR iTS 
NUR WTS 

ERRORS 

= the size of the buffers in this sub pool 
In final total this is the total size of 
all subpools. 

= the number of buffers in this sub pool 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

In final total this is the total number 
of buffers in all subpools. 
the number of retrieve by RBA calls 
received by the buffer handler 
the number of retrieve by key calls received by 
the buffer handler . 
the number of logical records inserted into ESDSs 
the number of logical records inserted into KSDSs 
the number of logical records altered in this 
subpool 
the number of times the Background Write function 
was invoked by the buffer handler 
the number of synchronization calls received by 
the buffer handler 
the number of VSA" GET calls issued by the buffer 
handler 
the number of VSA" SCHBFR calls issued by the 
buffer handler 
the number of times VSA! found the control 
interval requested already in the sub pool 
the number of times VSA" read a control interval 
from external storage 
the number of VSA" writes initiated by I"S/VS 
the number of VSA" vrites initiated in order to 
make space in the subpool 
the number of write error buffers curren.tly in 
the sub pool I the largest number of write errors 
in the subpool during this execution 

This function value vill provide the full VSA" data base subpool 
statistics in an unformatted fora. The application prograa 110 
area must be at least 72 bytes. Eighteen fullwords of binary 
data are provided for each subpool. The first word is a count 
of the nu.ber of words that follow; the second through eighteenth 
words are the statistics values in the same sequence as presented 
with the VBASF function value above. 

Data Base Batch Progra •• ing 2.59 



VBASS 
This function value will provide a summary of the VSAM data base 
subpool statistics in a formatted form. The application program 
I/O area must be at least 180 bytes. Three 60-byte formatted 
(for printing) records are provided. 

The format of the data is: 

DATA BASE BUFFER POOL: BSIZE nnnnnnn 
RRBA nnnnn RKEY nnnnn BFALT nnnnn NREC nnnnn SIN PTS nnnnn 
NMBUFS nnn VRDS nnnnn FOUND nnnnn ViTS nnnnn ERRORS nn/nn 

BSIZE 
RRBA 
RKEY 
BFALT 
NREC 
SYN PTS 
NMBUFS 
VRDS 
FOUND 

ViTS 
ERRORS 

= the size of the buffers in this VSAM subpool 
= number of retrieval requests by RBA 
= number of retrieval requests by key 
= number of logical records altered 
= number of new VSAM logical records created 
= number of synchronization point requests 
= number of buffers in this VSAM subpool 
= number of VSAM control interval reads 
= numbe~ of control.intervals VSAM found in the 

sub pool thru lookasiae 
= number of VSAK control interval writes 
= number of permanent write errors now in the 

subpool / largest number of errors in this 
execution 

In the examples which follow, a very simple form of qualified SSAs 
is used. SS A qualificat ion is discussed in detail in the following 
chapter. 

Consider Figure 2-14. The name of the skill segment type is 
SKILLINV, and its key field name is SKILCODE. The SSA for GU of the 
skill segment with skill code equal to artist appears as: . 

SKILLINV{SKILCODEb=ARTIST) 

The portion of the SSA within the parentheses is called the 
qualification statement. 

For unique retrieval or addition of a root segment, only one ·SSA 
must be provided. The unique retrieval or insertion of a dependent 
segment normally requires multiple SSAs to be provided in the functional. 
request. Each SSA in the list describes a segment to which the 
dependent segment to be operated upon is dependent. The SSAs for a 

·given DL/I call must be in proper hierarchical relationship. If the 
generic name of a name segment type is NAME, its key field name is 
NAME. Note that there is an employee with a key field value of ADAMS 
whose parent is a skill segment having a key field value of ARTrST. 
Unique retrieval is accomplished by two SSAs included within the 
parameter list of the DL/I call: 

SKILLINV(SKILCODEb=ARTIST) 

NAMEbbbb(NAMEbbbbb=ADAMS\ 

The definition of the data base to be operated upon is provided in 
each DL/I call by a data base PCB. All data base PCBs used by a 
particular application program for data base operations are contained 
within the PSB for that program. At execution time, the base addresses 
of the PCBs are passed to the application program. Each PCB contains 
the 1- to 8-byte name of the DBD associated with the data base. 

2.60 IMS/VSApplication Programming Reference Manual 

• 



SKILL 

(ARTIST) 

NAME 

(SMITH) 
NAME 

(JONES) 
NAME 

(ADAMS) 

I I I I 

EXPERIENCE 

(6185 ) 

EDUCATION 

(70342) 

EXPERIENCE 

('142B) 

EDUCATION 

(70397) 

EDUCATION 

(8497) 

Figure 2-14. Logical Data Base Record structure 

DATA BASE CREATION 

A data base is created by an application program issuing DL/I calls 
to insert data base records presorted by the key field of the root 
segment. This is a requirement of HSAM, HISAK, and HIDAK databases. 
An HDAM data base load can receive sorted or unsorted keys of data base 
records. 

In an HSAM, HISAM, and HIDAM data base, when a data base record is 
composed of more than the root segment, all segments within the data 
base record must be presorted by their hierarchical relationship and 
key-field value and must be inserted in their hierarchical order. 
Consider the process of inserting the segments of a skill inventory 
data base record described in Figure 2-14. First, the Skill (root) 
segment is inserted. The name segment for Adams is inserted next. 
Then the experience segment of Adams is inserted, followed by the 
education segment of Adams. This continues with the name segment 
(Jones), its experience segment and education segment, then name segment 
(Smith) and its education segment. If this data base record represented 
the segments of data associated with skill X, the segments to be 
inserted into the data base next would be those associated with SKILLINV 
X + 1. 

The insert function is used to create or load (recreate or 
reorganize) a data base. Prior to the execution of a DL/I call to 
cause segment insertion, the segment to be' inserted must be moved into 
a segment input/output.work area and the proper list of an 5SA or SSAs 
must be assembled. Let us assume that we are creating the skill 
inventory data base and we are about to load the segments of data 
associated with SKILL value ARTIST. The first four segments to be 
loaded would be skill, name (Adams), experience (Adams), and education 
(Adams). The associated segment search arguments and work area contents 
for these four OL/! ISRT calls are as follows. Note that lowercase 
b's indicate blanks. 

Data Base Batch programming 2.61 



SSA1 SKILLINV 

~ork Area - (containing skill segment) 

, I I 
, Key Field , Data Fieldl 
L-----------------------~ 
Key =ARTIST 

( SSA 1 - SKILLINV (SKILCODEb=ARTIST) ] 

S5A2 - NAKEbbbbb 

Work Area - (containing name segment) 

, , I 
, Key Field I Data Pieldl 
L-----------------------~ 
Key =ADAKS 

SSA1 - SKILLINV(SKILCODEb=ARTIST) 

SSA2 - NAMEbbbb(NAKEbbbbb=ADAKS) 

S5A3 - EXPERIENb 

OPTIONAL 

OPTIONAL 

OPTIONAL 

Work A·rea - (containing experience seg.ent) 

I 
, Key Field , Data Pield, Data Pieldl 
L-----------------------------------J 
Key =6185 

SSA1 - SKILLIIV(SKILCODEb=ARTIST) 

SSA2 - NAMEbbbb(NAKEbbbbb=ADAKS) 

SSA3 - EDUCbbbbb 

Work Area - (contains education segment) 

, 

OPTIONAL 

OPTIONAL 

Key Field Data Pieldl Data Pieldl 
L-----------------------------------~ Key =703Q2 

Notice that the SSAs of a Dt/I call for inserting a seg.ent into a 
data base may describe the complete hierarchical path to the segment. 
It is not necessary, however, to describe the complete path. DL/I 
assumes existing position when no SSA i~ specified. When creating a 
data base, therefore, it is only necessary to supply the segment na.e 
of the segment being inserted. Notice that the last 5SA within each 
ISRT call does not (and n§£ not) include the qualification state.ent 

2.62 I!S/V5 Application Program.ing Reference Manual 



---------------- ------------------------------

• 

portion. The qualification information is taken from the image of the 
segment in the input/output work area. 

A hierarchical path of segments may be inserted into the data base 
with one call by concatenating the segments to be inserted in the I/O 
area and supplying a corresponding list of unqualified segment search 
arguments. The SSA for the first segment in the path to be inserted 
by this call must have the D command code set. The hierarchical path 
must proceed downward in the hierarchy, with each segment in the I/O 
area being a child of the segment preceding it in the I/O area. The 
example shown below illustrates the insertion of the first six seg.ents 
shown in Figure 2-15 by using a path of insert calls. 

SSA - SKILLINV*Db 

SSA - NAMEbbbbb 

SSA - EXPERIENb 

Work Area (containing Skill, Name, and Experience segments) 

r------------------------------------------------------------------, 
I , I I I SKILL SEGMENT ,NAME SEGMENT 1 EXPERIENCE SEGMENT, 
, I , I 
,--------~-------------,-----------------------I-------------------1 
I I I I I I I I 
IKEY FIELD ,DATA FIELD IKEY FIELD I DATA FIELD IKEYFIELDIDATAIDATA I 
I , I , I I I I 
L------------------------------------------------------------------~ 
KEY=ARTIST KEY=ADAMS KEY=6185 

SSA - EDUCbbbbb 

Work Area (conta~ning Education segment) 

r---------------------------------------------------, , I 
, EDUCATION SEGMENT 1 , , 
1---...;-----------------------------------------------1 
, 1 I 
, KEY FIELD ,DATA FIELD I 
1 1 I 
L---------------------------------------------------~ 

KEY=70 342 

Data Base Batch Programming 2.63 

------_ .. _--------_ ..... ,---



SSA - NAMEbbbb*Db 

SSA - EXPERIENb 

Work Area (containing Name and Experience segments) 

r---------------------------------------------------l , , I 
, NAME SEGMENT 1 EXPERIENCE SEGMENT I 
, 1 I 
1-------------------------1-------------------------1 
1 I , I I I 
, KEY FIELD , DATA FIELD I KEY FIELD IDATA IDATA I 
, I I I 1 I 
L---------------------------------------------------J 
KEY=JONES KEY=7Q28 

All data base creation and reorganization must be performed in a 
batch processing region of IMS/VS. If the physical organization is 
HDAM, presorting by key field of the root is not required for data base 
creation. HISAM, HSAM, and HIDAM all require presorted root segments 
by key field sequence. 

DATA BASE RETRIEVALS 

The retrieval of segments within a data base is accomplished by the 
three GET call functions: get unique, get next, and 
qet-next-within-parent segment. Get unique provides for the retrieval 
of a specific segment by direct reference into the data base. G~t next 
provides for sequential segment retrieval. Usually the get next 
function is used after a get unique or get next which has provided 
"positioning" to a unique segment within the data base. A get next 
may be used, however, without positioning being supplied by a previous 
get unique or qet next. If DL/I has no position established within a 
data base when a get next call is issued, the request is satisfied by 
proceeding from the beginning of the data base. The 
get-next-within-parent segment allows sequential retrieval of all 
segments subordinate to a parent segment. An example, using Figure 
2-1Q, would be all experience and education segments within the skill 
inventory data base for a given skill code and ~mployee number. The 
parent segment is a unique name segment, and parentage must have been 
previously established with a get unique or get next request. 

Once all the experience and education segments for a given skill 
code and employee number have been retrieved by a succession of get 
next within parent requests, an indication is returned to the 
application program. This indication provides definition of the end 
of subordinate segments for the particular skill code and employee 
number. 

In addition to direct retrieval of a unique segment and sequential 
retrieval of segments, an ability to sequentially skip from one segment 
to another of a common type is provided. Assume that it becomes 
necessary to retrieve all name segments within a particular skill 
segment but not those segments subordinate to each name segment (that 
is, experience and education data segments). The first name segment 
would be retrieved with a call where the function equals get unique. 
The SSAs would be: 

2.6Q 

SS! 
~SA 

SKILLINV(SKILCODEb=ARTIST) 
EMPLOYEEb 

IMS/VS Application Programming Reference Manual 

• 



c. 

- - ----------.- ------------------ -------------

By changing the function to get next and repeating the above SSAs, 
all name segments whose SKILL=ARTIST would be retrieved with a not-foune 
status returned when there were no more employee segments for 
SKILL =ARTI ST. 

DATA BASE UPDATES 

The updating of data within a segment of a data base is performed 
through the replace input/output function. Before a OL/I call to . 
replace a segment can be executed, the segment to be updated must be 
retrieved through a call with a GET function. The GET functions which 
can be specified a re those pre viousl y di scussed; they mu st, however, 
include the addition of a Hold definition (get hold unique, get hold 
next, and get hold next within parent). The replace function must then 
be executed in the ~g~! call by tbis program against the data base PCB. 
Any intervening calls against the same data base PCB by this program 
cause the rejection of the subsequent replace call. No SSAs are 
permitted with the replace function unless command codes for segment 
path replacement are employed. The key field of the segment to be 
updated through the replace function call ~~1 ~g! be modified. 

The following is an example of how to change the data in the field 
of the skill segment of artist from COMMERCIAL to COftMERCIAL-CARTOON: 

The first PL/I call statement is: 

CALL PLITOLI (FOUR,FUNC_GHU,OB_PCB,WORK_AREA,SSA1); 

SSA1 is SKILLINV(SKILCOOEb=ARTIST) 

WORK_AREA is then , ARTISTI COMMERCIAL 
L-----------------------J 

The second PL/I call statement is: 

CALL PLITOLI (THREE, FUNC_REPL,OB_PCB, WORK_AREA) ; 

I ARTISTI COMMERCIAL-CARTOON 
L-------------------------------J 

and this is the data that is placed· back in the data field of 
the skill segment. 

DATA BASE DELETIONS 

The deletion of an entire segment (all fields) within a data base 
is performed through the delete input/output function. Before a OL/I 
call to delete a segment may be executed, the segment to be-deleted 
must be retrieved through a get hold call. The delete function mus~ 
be executed as the ~ext call against the data base, through the same 
PCB, or the delete function is rejected. The deletion of a parent 
segment normally causes deletion of all segments subordinate to the 
deleted segment. All subordinate data set groups must be available 
for processing prior to the delete call being issued. If they are not, 
a status code of AI is returned. Subordinate segments that could be 
accessed are deleted. 

Data Base Batch Programming 2.65 



The following is an example of how to delete the skill segment data 
(both key and data fields) of artist: 

The first PL/I call statement is: 

CAL L PLITDLI (POUR, FUNC_GHU, DB_PCB, WORK_AREA, SSA 1) ; 

SSA1 is SKILLINV(SKILCODEb=ARTIST) 

WOPK_AREA is then I ARTIST I COMMERCIAL-CARTOON 
L--------------------------------J 

The second PL/I call statement is: 

WORK_AREA is still , ARTIST I COMMERCIAL-CARTOON 
L--------------------------------J 

and dependent segments under this root or parent are deleted. 
That is, name segment (ADAMS) , experience segment (ADAMS), and 
education segment (ADAMS) are deleted as well as all other name, 
experience, and education segments under this root. 

If a GU call is made to this particular skill segment, a status code 
of GE (not found) will be returned, but the WORK AREA, if not blanked 
out, may still contain the above data. 

DATA BASE INSERTIONS 

The addition or insertion of a new segment (all fields) into an 
existing data base is performed through the insert input/output 
function. The techniques used for performing an insert function to 
add a segment to an existing data base are identical to those used with 
the insert function when creating a new data base. Remember that the 
addition of a dependent-level segment is not permitted unless all parent 
segments in the complete hierarchical path already exist in the data 
base. An example, using Figure 2-14, would be the addition' of an 
experience segment subordinate to a particular name segment. The name 
segment must already exist in the data base or be added before any 
experience segment subordinate to that name segment may be added. 

A natural stage in the development of online DC programs intended 
to be executed in BMP or MPP regions is first to test the DB portion 
of the program in a batch region. 

The CMPAT option of the IMS/VS PSBGEN procedure (see the l~§L!§ 
Q1ili1ig§ Rgf~~gn£g ~~gsl) circumvents the need to recompile the 
program between batch and online executions. 

When the CMPAT option is exercised, the PSB parameters passed by 
the DB facility to a program executing in a batch region will contain 
the I/O PCB and the alternate PCBs specified in the PSBGEN. 

The application programmer must be responsible for determining that 
the parameter list of the application program contains entries ih PSBGEN 
sequence for the teleprocessing and data base PCBs. 

2.66 IMS/VS Application Programming Reference Manual 

c.~ 

• 



EXA MPLES 

Examples of teleprocessing programs to be run in a batch region are 
as follows. 

For COBOL: 

ENTRY 'DLITCBL' USING IO-PCBNAME, ALT-PCBNAME1, ALT-PCBNAMEN, 
DB-PCBNAM E1 • 

For PL/I: 

DLITPLI: PROCEDURE(IO_PCB_PTR,ALT_PCB_PTR1,ALT_PCB,PTRN,DB_PCB_PTR) 
OPTIONS (MAIN) ; 

Q~!]E!11~~Q ~]QrrEN!1!1 !CCESS ~]T]Q~ (GSA~) 

The Generalized Sequential Access Method (GSAM) implemented under 
DL/I provides sequential data base management capabilities. GSAM is 
intended especially for non-hierarchical sequential data bases. 

GSAM supports data sets organized according to the following OS/VS 
access methods: 

• Sequential Access Method (SAM) 

• Virtual Storage Access Method (VSA~ 

GSAM supports the Basic Sequential Access Method (BSAl'l) on DASD, 
unit record, and tape devices, and the ESDS Virtual Storage Access 
Method (VSAM) on DASO devices. 

Record formats can be specified as fixed, or variable (or undefined 
in BSAM). The terms "segment," "segment type," "hierarchical," and 
"parent'age" are not applicable to GSAM data sets, and the concepts of 
key and field do not apply. 

GSAM DATA BASE RESTRICTIONS 

The following restrictions apply to GSAM data bases: 

• GSAM data bases can be alloca ted in a user region Q~l!. 

• GSAM data bases do not have keys. 

• GSAH data bases do not have segments (or segment types) • 

• VSAM data bases are non-keyed, non-indexed entry sequenced data 
sets (ESO S) • 

• Checkpoint cannot be supported during a VSAM data base load. 

• VSAM load operations are not restartable. 

• VSAM data bases must reside on DASD devices. 

• Temporary, SYSIN, SYSOUT, and unit-record files are not supported 
in VSAM. 

• Temporary data sets should not be used if program restartability 
is desired. 

Data Base Batch programming 2.67 



• SYSOUT data set restart provides redundant data output if output 
occurred after the restart checkpoint. 

• Update/delete functions are not supported. 

• Records cannot be randomly added to GSAK data bases. The data base 
can be extended using the ISRT function code (with DISP=MOD for 
BSA 1'1) • 

GSAI1 FUNCTIONS 

The functional capabilities of GSAM are the same for BSAI1 and VSAM 
data bases. There are three major functions: 

• ISRT for file creation or extension only 

• GN for sequential accessing 

• GU for unique record accessing. 

A GSAM data base can be created or extended with ISRT. The data 
base will be created in the sequence order of the input from the load 
program. 

A GSAM data base can also be a data set previously created by use 
of :J/S BSAK, QSAI1, or VSAl'1. A GSAI1 data base may conversely later be 
accessed by other programs using those 015 processing methods. 

GN is used for sequential processing of a GSAM data base. The 
starting point of the sequential retrieval can be established by GO, 
with the Becord Search Argument (RSA). 

An RSA can be supplied for data bases in which other than standard 
sequential retrieval is required. This argument will position the data 
set at the particular record desired. 

GU can also be used for random accessing of any GSAI1 data base. 
This would be practical, however, only on DASD and should be limited 
in tape accessing. 

DATA BASE ACCESS 

All accessing to GSAI1 data bases is done with DL/I calls. A check 
is made by II1S/VS to determine whether a user request is for a GSAM 
data base. If so, control is passed to GSAI1, which will be resident 
in the user region. If not, control is passed to the IMS/VS control 
region, or to Batch DL/I, and standard IMS/VS hierarchical processing 
w ill result. 

Calls to be used for GSAl'1 Accessing are: 

• OPEN 

• CLSE 

• GU 

• GN 

• ISRT 

Open GSAI1 data base 

Close GSAI1 data base 

Retrieve a unique record or reset sequential processing 
base 

Retrieve next sequential record 

Insert a new logical record (at end of data base only) 

2.68 IMS/VS Application programming Reference Manual 

• 

c.= 



• CHKP 

• XRST 

• DUMP, or 
SNAP 

To request a region checkpoint 

To request a region/program restart 

To send GSAM control blocks to IMSERR or secondarily to 
SYSPRINT. (No return code is used - status codes and 
control blocks remain the same.) 

The open and close call are optional calls to be used to explicitly 
initiate or terminate data base operations. The data base will 
automatically be opened by the issuance of the first processing call 
used and automatically closed at "end-of-data" or at program 
termi na tion. 

Records cannot be randomly added to GSAM data sets. The data set 
may be extended by opening in the load mode r with DISP=MOD, and using 
the ISRT function code. 

GSAM CALLS 

The IMSIVS user communicates with IMS/VS through a DL/I call 
statement. The IMS/VS calls are generated as follows: 

• COBOL CALL 'CBLTDLI' USING [argO,]arg1,arg2 r arg3[,arg4]. 

• PLII CALL PLITDLI (arqO, arg1, arg2, arg3[ ,arg4]) ; 

• ASSEMBLER CALL ASKTCLI, ([ argO, ]arg1, arg2,arg3[ ,arg4]) 

where: 

Arguments 0 and 4 are optional. 

is the optional address of the parameter count or 
argument count of the number of arguments following 
argument O. 

is the address of the function code 

is the address of the GSAM PCB 

is the address of the I/O area (lOA) for access Calls, 
or the optional address of the OPEN-option for an OPEN 
Call 

is the optional address of the record search argument 
(RS~ (It is n21 a segment search argument -- GSAM has 

no concept of segments; it is required only for G U.) 

The first word contains the: 

• BSAM tape relative block address, or 

• BSAM DASD TTRZ, or 

• VSAM relative byte address 

For BS!M, the second word contains·the volume-sequence 
number in the high half word and the BSAM record 
displacement in the block in the low halfword. 

Data Base Batch programming 2.69 



The OPEN option is either INP, OUT, or, in the case of SYSOUT data 
sets, OUTA or OUTM to include control characters. 

The PL/I description of the RSA is: 

DCL 

DCL 

1 GSAM RSA, 
2 BLOtK_ID FIXED BIN' (31) , 
2 VOL_SEQ_NO FIXED BIN (15), 
2 RECORD_DISP FIXED BIN (15); 

1 FIRST_RCD_RSA, 
2 (BLOCK1,DISPO) ~IXED BIN (31) INIT (1); 

Status codes inform the user program of situations that are normally 
encountered and abnormal situations caused by violations of IKS/VS 
conventions. No data is transferred from data base to user area, or 
vice-versa, when a nonblank code is returned. 

GSAM initializes the ~CB status code to blanks before processing 
each user request. 

The common status codes, used to indicate the status of an I/O 
request after it has been processed, are passed to the PCB from the 
GSAM access modules. These status codes are included in Appendix B of 
this manual. 

RECORD FORMATS 

Records may be fixed or variable length, blocked or unblocked. 
Records must be unkeyed. Undefined data set format is supported only 
for BSAM. The inclusion of carriage control characters may also be 
indicated in the JCL RECFM subparameter (for example, RECPM=FBA) for 
all record formats. An optional control character may be used in th~ 
first byte of each record. 

!i!~g=1~ng1D Re£org§ 

With fixed-Iength-record data sets, the user need not include a 
record length at the beginning of a data record. User records include 
only data bytes and are returned to the user in that form. The data 
set is built in the fixed- or fixed-blocked format by GSA!, with the 
logical record length com~ng from the DBD or JCL into the DCB. 

The user must specify the record format (RECFM) subparameter as 
RECFM=F, or FB, in the definition of the data set DBD. 

The specification of RECFM=F can be overridden by the JCL 
specification DCB=RECFM=FB. 

Variable length records contain the length field in the first two 
bytes of the record. When the record is retrieved, the length of the 
record is in~erted into this field by GSA!. 

The user requests variable length support by specifying the record 
format (RECFM) subparameter as RECFM=V or VB in the ~efinition of the 
data set DBD. A definition of RECFM=V in the DBD can be overridden by 
specifying RECFM=VB in the JCL. 

2.70 IMS/VS Application Programming Reference Manual 

(~ 
\ ........ ~ 

.. 



( 

.,.. 

gn~~!1n~£=1~~g!D B~£Q~£~ 

Undefined length records are supported only for BSAM data sets. 
Undefined length records, under 0/5 BSAM, relieve the user of including 
a record length at the beginning of a data record. The user records 
include only data bytes and are returned to the user in that fotm. 
However, undefined length records are of variable length. (The number 
of bytes of data moved cannot be taken from any LRECL constant.) When 
loading, therefore, the user must specify the record length. When 
retrieving records, the length of the record retrieved must be returned 
in this same area. That area is defined as a fullword in the PCB, 
known as the PCB Length Feedback Area (DBPCBURL). Any length less than 
or equal to the logical record length, and greater than eleven (by 0/5 
convention) can be loaded to an "undefined" data set. To allow for 
these undefined records of variable lengths, each block is treated as 
a record. This is accomplished by specifying RECFM=U • 

Records of undefined length have been provided to permit the 
processing of any records that do not conform to the fixed (F) or 
variable (V) formation. 

~~1~ 2§~ ILQ !~~~ 

The user area and the information placed on the device are dependent 
upon whether the data set has fixed or variable length records, and 
whether there is carriage control information. 

The user's IOAREA (for variable records) is as follows: 

0,1 

2 

2-"n-1" 

Halfword length field in fixed binary 

Carriage control character (specified only if it is 
a print record or a punc~ 

Data (begins in position 3 if carriage control 1s 
specified) 

Fixed length, and undefined length records do not include the length 
field. Data, or control characters, begin in position O. 

The length for undefined length records is passed, in both 
directions, in the PCB length feedback area as a fullword. 

Yi~~~! B~tri~x~! hy B~Q~£ ~~h A~~~§~! (~) 
A Record Search Argument (RSA) accessing facility is supported on 

all GSAM data bases. This facility allows the user to request 
particular records via the GU call. The RSA for the particular record 
desired is supplied by the user by what is normally the SSA address 
parameter, the fourth in the parameter list. 

An RSA parameter is defined under GSAM as two fullwords, on a 
fullword or doubleword boundary, addressed by the fourth parameter in 
the CALL parameter list (replacing the standard SSA parameter pointer). 

The contents of that doubleword vary according to the access method 
and device type. The actual contents is irrelevant to the application 

Data Base Batch Programming 2.11 



program since the program saves and supplies on a GU call whatever had 
been returned previously by GSAM. 

Selective use of RSA can be used to enhance partial retrieval. For 
instance, at the end of a lbng string of sequential accessing, retrieval 
can be resumed in some midpoint of a data base without having to 
reaccess all preceding records. Any string of such retrievals must be 
initiated by a GU. GNs can be issued until end-of-data. 

The RSA for a particular record can be obtained if the user either 
loads the data set with the ISRT macro (requesting that the RSA be 
returned), or issues subsequent GN calls. This argument is returned 
to the application for each call (provided the RSA pointer exists and 
is non-zero) for all sequential I/O requests (ISRT and GN). 

That argument can then be supplied for a GU request to position the 
data base at the physical block containing the record, "position" GSAM 
at the particular logical record, and return that record to the 
application program. 

Subsequent GN calls result in the sequential return of the following 
logical records, and their RSAs, until end-of-data occurs. 

RecQ£~ ~~~I£h !£~!~nl (RSA) 

In VSAM, RBA means the Relative Byte Address (RBA) of the specific 
record within the data set; it has no bearing on the block number or 
device position (that is, track number). Since VSAM uses a fixed 
"blocksize" regardless of the record format the VSAM RBA for a given 
record in a data set is a constant value which is device-independent. 
The VSAM RBA is passed in the first word of the IMS/VS GSAK "RSA" 
parameter. 

GSAM provides the flexibility of "direct" accessing by ~lways 
maintaining the current volume-sequence number. 

The BSAM IMS/VS ~ecord Search Argument (RSA) parameter is a 
dQubleword used to locate individual records within a block. The first 
word contains the SAM RBA, and the second word contains the 
volume-sequence number in the first halfword and the displacement within 
the block to the specified record in the second halfword. 

A GO call with the doubleword RSA equal to F'1,O', is interpreted 
as a request to reposition on a GSAM data base to the first record. 
OPEN and CLOSE will be issued only if the current accessing is on other 
than the first volume. 

This feature does not apply after end-of-data since that condition 
causes an immediate CLOSE to be issued. A GN call after end-of-data 
PCB status code GB obtains the first record on the data set. 

RSAs will be returned, or must be supplied, under the following 
con dit ions: 

• GO 

• GN or 
ISRT 

The RSA doubleword must contain the RSA of the record 
desired. The address of the RSA must be provided by 
the fourth parameter of the call. 

The RSA will be returned if the fourth parameter 
is provided with a valid add~ess. 

2.72 IKS/VS Application programming Reference Manual 

( "", 
,. ---

.. 



• 

CI 

BUPFFRING 

VSAM's hiq~ performance is due, in part, to its self-optimizinq 
buffer management and usage of virtual and auxiliary memory. It 
automatically calculates the optimum sized units in which to s~ore data 
and the total amount of memory required. It optimizes the use of 
virtual memory for I/O buffers. 

BSAM does not provide suc~ hiqh performance services. Multi-buffered 
I/O is provid9d within GSAM for sequential services. Any number of 
buffers may be requested via the DCB BUFNO parameter. Any direct 
request (with RSA) will cause only the specified block to be re~d into 
one buffer. Subsequent sequential accessinq will initiate 
multi-buffering. Anticipatory READs will be issued to attempt to keep 
at least half of the buffers full at all times durinq seguential 
retrieval. 

GS~M dynamically acquires buffers for BSAM data sets when they ~rp. 
opened. An OS OPEN is issued whenever a data base is opened by an 
IMS/VS access request or OPEN request and an OS CLOSR is issued in 
response to a user CLSE request or at end-of-data. 

Por data bases being loaded, GSAM will use the DBD blocksize if the 
user does not provide blocksize information in the DCB parameter of 
the DD card for the dat~ set. If the blocksize is qiven, validity 
=hecks are made. If DBDGFN computes the blocksize, the actual length 
assigned is dependent upon the record format (fixed, variable, blocked, 
or unblocked) and upon the DBD BLOCKS= blocking factor and LRECL= recor1 
lenqth. BL~CKS defaults to 1 or unblocked, wi~h BLKSIZE= LRECL (+4 if 
Variable' . 

For loadinq a DASD SAM file, use of the RSA option will decrease 
the effectiveness of buffered I/O. This is because every time RSA is 
requested, a NOTE must be issued to obtain the SAM RBA, if it has not 
already been done for this block. In an output environment, any WRITEs 
on the queues must be purged, thereby negating the savings of 
anticipatory buffering. 

Buffered 1/0 may be specified by: (1) including "S" as one of the 
PCB processing options or, (2) codinq on the JCL DD statement: 

DCB= OPTCD=[;C] , BUFNO=m 

OPTeD= [;c]specifies chained scheduling and is ignored in a V=V 
region. 

Unless' specified in the JCL DCB parameter, the number of buffers 
1efaults to twice the number of blocks per track. DCB=(BUFNO=1) 
overrides the PCB processing specification of'S'. 

CHECKPOINT/FESTART 

The IMS/VS extend~d checkpoint/restart facility allows long-running 
application proqrams to be restarted from intermediate synchronization 
points. 

An application program issues a CHKP call to inform IMS/VS that the 
user has reached a logical synchronization point and that it can be 
restarted at that point. When a CHKP call is issued, IMS/VS saves 
certain system information on the IMS/VS recovery log which can be used 
by the applicatLon proqram to reposition its data bases at restart 
time. 

Data Base Batch Programminq 2.73 



During a checkpoint operation, RSA information is stored in the 
system journal. If a subsequent program restart is required, all GSAM 
data bases in use at that time will be repositioned to their checkpoint 
locations, without producing either reprocessing of sequential input 
or redundant sequential output on tape or direct access devices. 

A program loading VSAM files cannot be restarted, although 
checkpoints may be issued to release system resources. 

SYSIN and SYSOUT data sets can also be used through GSAM. If output 
unit-record devices are repositioned, however, duplicate output or 
separated output is produced. SYSIN data sets are repositioned. 

IMS/VS cannot completely determine whether a program is capable of 
being restarted from any checkpoint. For instance, the program may 
have non-IMS/VS files or transient data sets which IMS/VS cannot 
reconstruct. The programmer must be aware of such a condition before 
issuing a checkpoint. 

The following JCL restrictions are recommended: 

• Temporary data sets cannot be reset. 

• Volume requests for new files must be specific. 

• Data set disposition cannot be DELETE or UNCATLG. 

• Data sets cannot be used if they have been passed. 

• Backward references to data sets in previous steps cannot be used. 

• DISP=NEW must be used for all output data sets. 

Note: GSAM dogs not enforce these guidelines explicitly. They should 
be-established as conventions. 

JCL 

JCL guidelines for initializing a BMP region is very similar except 
for the inclusion of //IMS ••• DD statements and GSAM DD statements. 

For example: 

IISTEP 
IISTEPLIB 
II 
IllMS 
II 
IISYSPRINT 
IISYSUDUMP 
/Iddnamex 

1* 

EXEC 
DD 
DD 
DD 
DD 
DD 
DD 
DO 

PGM=DFSRRCOO,PARM='BMP, ••••••••••••••• ' 
OSN=reslib-name,DISP=SHR 
DSN=pgmlib-name,DISP=SHR 
OSN=psblib-name ,DISP=SHR 
OSN=dbdlib-name,DISP=SHR 
SYSOUT=A 
SYSOUT=A 
(add OD statements for required GSAM data bases) 

2.74 IMS/VS Application programming Reference Manual 

• 



I. 

/ 
( 
",--, ' 

IMSBATCH JCL PROC 

• Two additional DD statements are required for PSB lookup and GSAM 
control block building. The DD' statements are: 

IIIMS/VS 
II 

DD DSN=IMS/VSVS.PSBLIB,DISP=SHR 
DD DSN=IMS/VSVS.DBDLIB,DISP=SHR 

GSAM data base JCL DCB and RECFM parameters will override the DBD 
parameters. Thus a DBD indicating RECFft=F,RECORD=80, SIZE=80 maY,be 
overridden by JCl ••• RECFM=FB,DCB=(BlKSIZE=400). Refer to the OS/~S 
JCL Reference Manual for BSAM and VSAM details. 

The GSAM Control Block Dump module will, if an error occurs, provide 
a formatted dump of the GSAM control blocks on the device specified by 
the //SYSPRINT or //IMSERR DD ca~d. 

Some JCL restrictions are indicated in the sections follo~ing on 
checkpoint-restart. 

In BSAM usage, the following DCB parameters can be used. 

BLKSIZE to specify block size if it is not in the DBD, or to 
override the DBD block size 

lRECl in the same manner 

CODE, DEN, TRTCH, MODE, and STACK 

BUFNO and/or OPTCD to invoke BUFFIO, although BUFNO is sufficient 

DSORG=PS, although it is unnecessary 

PRTSP if RECFM does not include A or M 

RECFM, if not in the DBD, using either F, FB, V, VB, or (for BSAM) 
U 

The RECFM parameter can also include A or M (that is, FBA) for unit 
record out put devices 

The following should not be used: 

BFALN,BUFL, BUFOFF, FUNC, NCP, or KEY lEN 

Data Base Batch programming 2.75 



• 

C~ 



• 

This chapter describes the following additional data base 
capabilities that IMS/VS makes available to application programs: 

• Segment Search Argument (SSA) advanced functions 
Command codes 
Boolean qualification statements 

• Multiple positioning 

• Secondary indexing 

These optional facilities provide the experienced user with more 
powerful and sophisticated techniques for organizing and processing 
data base structures. 

The application programmer and data base administrator should jOintly 
evaluate tradeoffs before making a decision to use these features in 
an application, since the candidate application, other applications, 
and the overall IMS/VS system may be affected. Multiple positioning 
will require earlier PSBGEN planning; secondary indexing will require 
both PSBGEN and DBDGEN planning and implementation, and can have 
significant performance considerations. 

The reader of this chapter is assumed to be familiar with the 
immediately preceding chapter. Before approaching the topic of 
secondary indexing, the reader should become acquainted with the "Data 
Base Design" chapter in the l!:lliL!.§ §.Y§.temL!Q.pli£s.tio!!. Design .§!!!.9~. 

In the pre~ious chapter, the basic function of the SSA vas defined 
as identifying a specific data base segment called by an application 
program. The rules pertaining to the use of SSAs by each DL/I 
functional call are enumerated in that discussion. 

Frequently, however, an application wishes to retrieve a segment 
based on some conditional retrieval logic or on some qualification of 
the segment, or on some variation in the call function. 

To accommodate this requirement and to remove the need for 
incorporat~ng such conditional logic in the application program, IMS/VS 
provides the fully expanded SSA capability described below. 

The SSA can consist of from one to three main elements: a segment 
name, command code(s), and a Boolean qualification statement. The 
segment name alone provides DL/I with enough information to define 
simply the segment type desired by the program, thus the segment name 
may itself be the total SSA, as described in the previous chapter. In 
its complete form, the SSA may be augmented by command codes and/or a 
set of field qualifications logically related by Boolean logic elements. 

The command codes are optional and provide specification of 
functional variations applicable to either the call function, the 
segment qualification, or the setting of parentage. 

The qualification statement is also optional and contains information 
which DL/I uses to test the value of the segment's key or data fields 
within the data base 'to determine whether the segment meets the user's 

Data Base Processing: Advanced Functions 3.1 



specifications. Using this approach, DL/I performs the data base 
segment searching and the program need process only those segments in 
which it is interested. 

Each qualification statement is composed of three parts: a field 
name, a relational-operator, and a comparative-value. Boolean 
qualification may be performed by connecting qualification statements 
together with the AND and OR Boolean operators. The complete set of 
qualifications for each segment is contained between the left and right 
parenthesss. In a segment search argument, there may be a maximum of 
eight qualification statements connected by Boolean operators. 

The SSA structure is shown in Figure 3-1: 

(optional) (optional\ 

Com· BOOLEAN STATEMENT 
Segment 

mand elements Name 
Codes Begin Qualification 

Operator Qualification \ \1 
Qualif. Statement !II 1 Statement # 2 

Operator Qualification End 
Statement !lin Qualif. 

Field R.O. Compar. Field R.O. Compo \ \ Field R.O. Compar. 

Name of Name Value 
'!II' 

Name Val. 
'f!' 

Name Value 

contents Segment· '(' ,*, 
type Code . Char· or 

')' 

or 

acters '+' '+' 

no. of bytes 8 1 VBL. 1 8 2 1 to 255 1 8 2 
\ 

8 2 1 to 255 

Figure 3-1. SSA structure 

SEGMENT NAME 
The segment name must be left-justified in the field and padded 
on the right with blanks to make eight bytes. It is the segment 
name that pertains to a specific segment type in the hierarchical 
structure of a data base record and which is established in the 
Data Base Description. 

COMMAND CODES 
The command codes are optional. They provide functional 
variations to be applied to the CALL for that segment type. An 
asterisk (*) following the segment name indicates the presence 
of one or more command codes. A blank or a left parenthesis is 
the ending delimiter for command codes. The functions of the 
command codes are documented later in this chapter. 

BEGIN QUALIFICATION CHARACTER 
The left parenthesis, '(' , indicates the beginning of a 
qualification statement. Any character other than a '(' implies 
an unqualified SSA. If the 55A is unqualified, the eight-byte 
segment name, or, if used, the command codes must be followed 
by a blank. 

QUA LIFICATION 5T AT EM ENT 
The presence of a qualification statement is indicated by a left 
parenthesis following either the segment name or, if present, 
command codes. Each qualification statement consists of a field 
name, a relational operator, and a comparative value. 

3.2 IMS/V5 Application programming Reference Manual 

.. 



c 

(// 
END 

Field Name 
is the name of a segment search field which appears in the 
description of that segment type in the Data Base Description. 
The name must be left-justified in the 8-character field and 
padded on the right with blanks. The named field can be either 
the key field or a data field within a segment. 

HO = Relational opera tor 
is a set of two characters which express the manner in which 
the contents of the field, referred to by the field name, are 
to be tested against the comparative-value. The choice of 
relational operator does not affect the starting point of the 
search or the order of search. 

QE.§.lliQ.£ t!§.5!.!linq 

b= or EQ must be equal to 
>= or GE must be great er than or equal to 
(= or LE must be less than or equal to 
b> or GT must be great er than 
b( or LT must be less than 
,= or NE must be not equal to 

1!2i,g: As used above, the lowercase "b" represents a blank 
character. The symbols in the non-alphabetic relational 
operators can be reversed without changing the meaning (that 
is, "GE" is eguivalent to ">=" or "=)"). 

Comparative-value 
is the value against which the contents of the field, referred 
to by the field name, is to be tested. The length of this field 
must be equal to the length of the named field in the segment 
of the data base, that is, it includes leading or trailing blanks 
(for alphameric) or zeros (usually needed for numeric fields) 
a~ required. 

QUALIFICATION CHARACTER OR BOOLEAN OPERATOR 
Following the comparative-value is either a Boolean operator, 
relating this qualification statement to the next qualification 
statement, or a right parenthesis as the ending delimiter 
indicating the last qualification statement for this segment. 
The Boolean operators are documented later in this chapter. 

The qualification statement test is terminated either when an 
occurrence of the requested segment type is found, or when it is 
determined that the request cannot be satisfied. 

Examples of SSAs with the DL/I calls are contained in the previous 
chapter. 

GENERAL CHARACTERISTICS OF SEGMENT SEARCH ARGUMENTS 

• An SSA may consist of the segment name only (unqualified). It may 
optionally also. include one or more command codes (unqualified) 
and/or a qualification stat ement for that segment (qualified) • 

• SSAS following the first SSA must proceed down a hierarchical path. 
All SSAs in the hierarchical path need not be specified; that is, 
there may be missing levels in the path. DL/1 will provide, 
internally, SSAs for ~issing levels according to the rules specified 
in the section on each functional call in the previous chapter. 

Data Base Processing: Advanced Functions 3.3 



• A search field specified as a "field name" in an SSA must be defined 
for the segment during DBD generation • 

• Any of the valid relational operators may be specified. All 
comparisons on key or data fields are logical bit-for-bit 
comparisons. 

HQ~~: More specific SSA statements which apply to a specific function 
such as GU or ISRT are provided in the discussion unique to that 
function in the ~revious chapter of this manual. 

( COMMA ND CODES 

Command codes can be divided into three categories: those which 
modify the call function, the segment qualification, and the setting 
of parentage. 

Command 
~Qg§ .ttgan.in.g 

F Start with the first occurrence of this segment type under its 
parent in attempting to satisfy this level of the call. It is 
possible to either back up to the first occurrence of the segment 
type on which position is established or to back up to the first 
occurrence of a segment defined earlier in the hierarchy than 
the one on which position is established. 

For GN type calls, this command allows backing up at this level 
within a data base record. This command applies only to GN type 
calls, sin~e GU calls operate this way, normally. 

For ISRT calls, this command says that segments having non-unique 
or no sequence fields and RULE=(,HERE) are to be inserted as 
the first segment on the twin chain. 

The F command code used at the root level is disregarded. 

Retrieve the last occurrence of this segment type under its 
parent which satisfies the qualification statement; or, if 
unqualified, retrieve the last occurrence of this segment type 
under its parent. 

Only applies for segments with non-unique or no sequence field. 
Otherwise the key field in the segment determines the insert 
position. 

Used to insert "last" segment in "twin" chain for segments 
defined with non-unique or no key fields and RULE=(,HERE) • 

For example, suppose a data base has an insert rule of HERE, 
and that "HERE" happens to be just past the last segment in a 
twin chain. Suppose that at that point the application program 
wishes to insert a segment with no key field defined at the end 
of the twin chain. Without the L command code, DL/I would 
position itself on the following segment type, recognize that 
it could not insert HERE because it is the wrong segment type, 
and default to the first segment occurrence of the desired 

3.4 IMS/VS Application programming Reference Manual 



/ 
( ,,--, 

c' 

Command 
£Q!!~ !1~~!li!lg 

D 

segment type. Using the L command code on the segment being 
inserted allows DL/! to position for insert such that the segment 
is inserted following all other segment occurrences. 

If the L command code is used at the root,level, it is 
disregarded. 

The ,interaction of insert rUles with the F and L command codes 
is summarized in the following table. 

Command Insert RUles 
Codes F~R5T HERE LAST 

F (N.A., CC Rule (**) 
overrides overrides 

L CC CC (N. A. ) 
overrides overrides 

(**) This combination would be poor programming practice 
since it forces extra processing by telling DL/I, in 
effect, to start at the first and insert at the last. 

For retrieval calls, move the segment which satisfies this level 
of the call to the user's I/O area. This allows the retrieval 
of multiple segments in a hierarchical path in a Single call. 
This type of call will subsequently be referred to as a path 
call. The first through the last segment retrieved are 
concatenated in the user's I/O area. Intermediate 55As may be 
present without the D command code. If they are present, these 
segments are not moved to the user's I/O area. The segment name 
in the PCB is the lowest level segment retrieved, or the last 
level satisfied in the call in case of a not-found condition. 
Higiter level segments having the D command code will ha ve been 
placed in the user's I/O area even in the not-found case. The 
"D" is not necessary for the last 55A in the call, since the 
segment which satisfies the last level is always moved to the 
user's 1/0 area. The processing option of "PH must be specified 
in P5BGEN for any segment for which the D command code will be 
used in the P5B associated with the application program. It 
should be noted that the retrieval search logic is not affected 
by tite D command code. The only effect is to move all segments 
with the D command code into the I/O work area. 

For insert calls, the U command code designates the first segment 
type in the path to insert. The 55As for lower level segments 
in the ~ath need not have the D command code set. 

N When a replace call follows a path retrieval call, it is assumed 
that all segments in the path are being replaced. If any of 

Q 

the segments have not been changed, and, therefore, need not be 
replaced, the N command code may be set at those levels, telling 
DL/I not to attempt to replace the segment at this level of the 
path. 

The Q command code causes DL/I to enqueue the segment described 
by the 55A for single update. If the segment is a root segment, 
no other user will be able to obtain any position in the data 
base record. If it is a dependent segment, other users can 
retrieve the segment with a non-hold call, but it cannot be 
obtained using a hold call. 

Data Base Processing: Advanced Functions 3.5 



Command 
£Q~~ l1.§s.nilHI 

The purpose of the Q command coda is to provide a facility for 
users to cause segments to be enqueued and also control the 
duration of the engueue. One case where this could be useful 
is when the application needs to examine a number of segments 
and none of them may change while the others are being examined. 
The application can obtain the segments using the Q command code 
and then retrieve them again wi th the assurance t hat none of 
them can be modified until the application issues a DEQ call or 
reaches a sync point. 

If no DEQ is issued by the application program, t he enqueued 
segments will be dequeued when a synchronization point is 
reached. A synchronization point is reached when anyone of 
t he following occ ur,s: 

1. A GU to the message queue is issued and the scheduled 
transaction MODE=5NGL. 

2. A CHKP call is issued. 

3. The application program ~erminates. 

The DEQ call is described in the previous chapter. 

In order to provide a degree of flexibility in selectively 
degueueing the enqueued resource, the Q command code must be 
followed by a single byte in the range of "A" through "J" which 
specifies the class. This same class identifier is specified 
on the dequeue call which dequeues all resources enqueued by 
this user using the Q command code and that class. The sole 
usage of 'the class identifier is for selective dequeue; it does 
not allow one user to obtain a resource of a particular class 
and a different user to obtain the same resource of a different 
class. 

!Q1~: By definition the Q command is always followed by a one 
character class. This means that the second byte after the 'Q' 
command code must be another command code, left parenthesis, or 
blank. 

~~~~rrt 2~~lifi£~ti~B 

C The data enclosed in parentheses immediately following the 
command code is the concatenated key of the named segment (for 
example, '*C' (concatenated key». Qualification to this level 
is treated identically to a call specifying all 55AS of all 
parents of the named segment qualified on their respective 
sequence fields. 

Using this command code may be more convenient than using 
separate 5SAs, when the concatenated key is available and can 
be used as is, rather than moving each portion of the 
concatenated key into a separate 55A. . 

Only one 55 A with a C command code is allowed per call and it 
must be the first 55A in the call. 

3.6 IM5/V5 Application Programming Reference Manual 

" 



(. 

c.· 

Com1land 
£Q~~ l1~g!!i!!g 

u 

V 

The U command code indicates that no occurrence of the segment 
type specified in the SSA (other than the segment type upon 
which position is already established) under the parent of the 
segment type will be used to satisfy the call. If position is 
not currently established for the named parent, this code has 
no effect. 

The U code prevents position being moved from a segment during 
a search of its hierarchical dependents. If the segment has a 
unique sequence field, use of this code is equivalent to 
qualifying the SSA such that it is equal to the current value 
of the key field. When a call is being satisfied, if position 
is moved to a level above that at which the U code is issued 
the code has no effect for the segment type whose parent changed 
position. 

The U code is especially useful when dependents that are unkeyed 
or non-unique keyed segments are being process'ed. The position 
on a specific occurrence of an unkeyed or non-unique keyed 
segment can only be held by use of this code. 

The U command code is disregarded if it is used at the lowest 
level or if the 5SA is qualified, or if used in conjunction with 
command code F or L. 

The V command code is the same as the U command code, except 
that the command code is automatically set at all higher leve~s 
in the call. This means that Dt/I, in attempting to satisfy 
this call, cannot move from the existing position at the level 
at which the V is specified, unless the command code is 
disregarded. See the U command code for the condition under 
which it will be disregarded. 

~~11ing Q! ~g~~g~ 

P Set parentage at this level. Succeeding GNP-type calls vill 
treat this level as the parent level rather than the lowest 
level segment returned on this call. The parentage viII remain 
in effect for succeeding GNP, I5RT, DLET, and REPL calls. The 
parentage will be destroyed whenever a GO or GN call is executed. 

If the P command code is used at multiple levels in the same 
call, the lowest level is set. 

If the call is not fully satisfied (GE status code) but the 
level at vhich the P code is used is satisfied, parentage is 
set by the P command code. 

If the call is not fully satisfied and the level at which the 
P code is used is not satisfied, parentage is not established 
and a GP status will be returned on succeeding GNP calls. 

If the P command code is specified on a GNP call, the call is 
pr~cessed based on the parentage that was in effect or 
established by preceding calls. The parentage is set based on 
the P command code that was used at the completion of the GNP 
call. 

Data Base Processing: Advanced Functions 3.7 



In addition to the codes in the three categories above, there is 
also a null (hyphen "_tl) command code. Its purpose is to simplify the 
building of SSAs using command codes since the program can set aside 
a fi xed number 0 f bytes for command codes and turn them on and off ~ y 
means of the hyphen. 

The following table indicates which command codes are applicable to 
which functions. If the command code is used with a function where it 
is not applicable, the command code has no effect. 

Use of Command 

Command GU 
£Q~~-- !H!'!! 

C A 

D A 

F A 

L A 

N D 

P A 

Q A 

U A 

V A 

A = Applicable 
D = Disregarded 

Codes 

GN 
glI! 

A 

A 

A 

A 

D 

It. 

A 

A 

A 

by Function 

GNP 
GHNE D~~1 !!~E~ IS!l1 

A D D A 

A D D A 

A D D A 

A D D A 

D D A D 

A D D D 

A D I> A 

A D D A 

A D D A 

No combinations of command codes are declared. invalid by returning 
an error status code. However, when F or L is used in conjunction with 
U or v, the U orV is disregarded. 

BOOLEAN QUALIFICATION STATE~ENTS 

Boolean logic qualifications can be performed on each segment by 
spgcifying up to eight qualification statements for each segment. The 
qualification statements can be logically related to each other by 
using the Boolean AND and OR operators between the quali'fica tion 
statements. 

All Boolean state-ments connected by AND operators are consider·ed a 
"set" of qualification statements. An OR operator between two 
qualification statements begins a new set of qualification statements. 
A set can consist of one or more statements. To satisfy an SSA, a 
segment can satisfy any set of qualification statements. To satisfy 
any setr the segment must satisfy all statements within the set. 

If a GU call for a root segment has one or more Boolean qualification 
statements, and if any set of qualification statements does not contain 
at least one sta tement qualified on tl)e key field of the root segment r 
then t.he initial position that will be used in attempting to satisfy 
the call will be the beginning of the data base. 

3.8 I~S/VS Application programming Reference ~anual 

\.--J' 

'--_./ 



If all sets have at least one statement qualified on the key field 
of the root segment, then the lowest key field value will be the initial 
position used in attempting to satisfy the call. 

The qualifica tion scan will be made sequentially in a forward 
direction similar to a GN call. Each root encountered will be examined 
to see if the search can continue. It- should be noted that in an HDAM 
data base the roots are not stored in key sequence and therefore using 
Boolean statements for root qualification may not produce the desired 
results. 

Example: 

SF.GMENTA(FIELDAAAb)099*FIELDAAAb<201+FIEtDBBBb=O) 

For the above SSA, those segments called SEGMENTA whose FIELDAAA is 
in the range between 100 and 200, or whose FIEtDBBB is eqtial to zero, 
will satisfy the SSA. 

The logical "And" is expressed by the EBCDIC character "*,, or "&". 
The logical "Or" is expressed by the EBCDIC "+" or "I". A special 
"independent" AND operator, expressed by the "#" character is de scribed 
later in this chapter in the section concerning secondary indexing. 

USE OF FIELD NAMES IN SEGMENT SEARCH ARGUMENTS FOR CONCATENATED SEGMENTS 

The field names used in the qualification statement of SSAs for 
concatenated segments may be fields defined for either of the two 
segments making up the concatenated segment. In other words, if the 
concatenated segment consists of the logical child and the logical 
parent, then fields-defined for either of these two segments may be 
used. If the sequence field of the logical parent is used, however, 
it is treated as a data field, not as a sequence field. An example 
illustrates why this must be so. Suppose that DL/I is positioned at 
the beginning of the chain of logical children illustrated in Figure 
3-2. If the application program issues a call: 

GN FLC=4 

DL/I gets, sequentially, the first, second, and third logical Child; 
recognizes that the sequence field of 5 is greater than 4, and stops. 

If, however, the application program issues a call: 

GN FtP=8 

DL/I will traverse the entire chain of logical children because the 
logical parents are not examined sequentially by their sequence fields. 
DL/I cannot assume, in this instance, for example, that because the 
first logical child pointed to a logical parent whose sequence field 
is 40 that it has passed (or that there does not exist) a logical parent 
with a sequence field of 8. Hence, DL/I must treat logical parent 
sequence fields as if they were data fields. 

Data Base processing: Advanced Functions 3.9 



IDL/'..,. 
position) 

Figure 3-2. 

FLC 1 

FLP 10 • • • FLP40 ••• FLP50 

Effect of Using Logical-Parent Sequence Pields 

If the concatenated segment consists of the virtual segment and its 
logical parent, then the fields used may be any field defined for the 
virtual segment or any field defined for the logical parent. Pields 
defined for the pair of th~ virtual segment may be used also, as long 
as no part of the field falls within the part of the segment which is 
the concatenated key of the paired segment's logical parent. 

When the concatenation is the virtual segment and its logical parent, 
the only field which is treated as a sequence field is the sequence 
field defined for the virtual segment. 

The data base administration function should make available logical 
data structure definitions and segment layouts. The segment layout 
should indicate the field names for the sequence field and other 
searchable fields. Thus it would be immaterial to the application 
programmer whether or ~ot the segment is a concatenation of tvo physical 
segments. 

~Y1Ilf1~ ~Q~I!IQNI!~ 

Two alternatives are provided by DL/I regarding the current position 
in the data base. These are single or multiple positioning_ This 
option is specified in the PCB statement at PSB generation. 

• When 2i~g!g posil!Qni~ i~ specified for a PCB, DL/I maintains. only 
one position in that data base for that PCB. This is the position 
which will be used in attempting to satisfy all subsequent GN ca~ls • 

• If ~~~ti~!g pos~lioning is spec~fied, DL/I will maintain a unique 
position in each hierarchical path in the data base. 

An example of how multiple positioning might be used is illustrated 
in Figure 3-3. 

3.10 IMS/VS Application Programming Reference Manual 

' ......... , .. ,' 



L, 

A1 ~- -------- - A2 

~ ______ L-_______ ~ 

811 - C 11 r-- 821 -- C21 

812 C 12 

C 13 

I I I I 
0111 - E 111 r--- E 121 0221 E221 

Figure 3-3. 

t 0112 l E 112 

Assumed Data Base to Illustrate Single and ftultiple 
Positioning 

In Figure 3-3, assume that under each A segment an application 
program desires to examine every C segment based on each B segment. 
Using multiple positioning, the following sequence of calls would 
suffice: 

£A11 !!~uli 

GN A get A1 

GNP. B get B11 

GNP C get C 11 

GNP C get C12 

GNP C get C13 

GNP C get not found 

GNP B get B12 

GNP C * F get C11 

GNP C get C12 

etc. 

Data Base Processing: Advanced Functions 3.11 



As can be seen from the example above, multiple positioning provides 
a capability of processing, in parallel, different segment types under 
the same parent. 

EFFECT OF MULTIPLE POSITIONING ON DL/I CALL FUNCTIONS 

IMS/VS attempts to satisfy GN calls from the existing position by 
analyzing segments in a forward direction only. Since multiple 
positioning allows position to be maintained at each level in all 
hierarchical paths rather than at each level in only one hierarchical 
path, the get next call will be satisfied using the existing position 
established on the path of the hierarchy in which the get next call is 
qualified. If the get next call is not qualified, IMS/VS will use the 
position established by the prior call. The position can be reset by 
a GU call to a new root or to the same root; position cannot be reset 
by a path call under the previously accessed root-segment occurence. 

~Q sng I~E! ~~!!§ ~§!ng tlultiple R2§iii2DiD9 

The only time multiple positioning has an effect on GU and ISRT 
calls is when these calls have missing SSAs in the hierarchical path. 
These missing levels are internally completed by the system according 
to the rules for GET calls described earlier in this chapter. 

Since this internal completion is based on current position, multiple 
positioning allows a completion to be made independent of current 
positions established for other segment types under the same parent 
occurrence. 

Q1~! sn~ E~R1 ~~ll§ g§!ng tl~lti£le fQ§i1i2D1D9 

These calls are not affected by single or multiple positioning. 
However the necessary preceeding GET HOLD calls are as described 
pre viousl y. 

EXAMPLES OF CALL SEQUENCES USING SINGLE AND MULTIPLE POSITIONING 

The following examples compare the results of single and multiple 
positioning, using the data base of Figure 3-3. 

EX~ID.E!.§._l 

GU A (KEY= A1) 

GNP B 

GNP C 

GNP B 

GNP C 

GNP B 

Result of 
.§.1M.le Po§itioni,M. 

A1 

B11 

C11 

Not found 

C12 

Not found 

Result of 
tl~ltiple Positioning 

A1 

B11 

C 11 

B12 

C12 

Not found 

3.12 IMS/VS Application programming Reference Manual 

C. 



C 

/ 

~. 

c· 

Result of Resul t of 
£~!.!_ S e~lY.'§!!£~ ~in9.le PQsitiQ!lin~ ~ultiple Pos!ti~!.ll~ 

GNP C C13 C13 

GNP B Not found Not found 

GNP C Not found Not found 

!!Qi~: Segment types Band C ar e pro cess ed in parallel. 

~!s1!!'ple_~ 

GU A (KEY=A1) A1 A1 

GN B B11 B 11 

GN C C 11 C11 

GN B B 21 B12 

GN C C21 C12 

~z~!!n~lg_J 

GU A (KEY=A 1) A1 A1 

GN C C11 C11 

GN B B21 B11 

GN B B22 B12 

GN C C21 C12 

~!~1!!Ele_!!. 

GU A (KEY= A 1) A1 A 1 

GN B B 11 B 11 

GN C C 11 C 11 

GN D D111 D111 

GN E E111 E111 

GN B B21 B12 

GN D D221 D 112 

GN C C under next A C12 

GN E E under next A E 121 

USE OF MULTIPLE POS IT IONING 

By specifying multiple positioning, a user may be able to design 
application programs with greater data independence. Multiple 
positioning also makes it possible to achieve parallel proceesing. of 
dependent segment types. 

Data Base Processing: Advanced Functions 3.13 



Multiple positioning allows a user to develop application programs 
using GN and GNP calls and ISRT and GU calls with missing levels in a 
manner independent of the relative order of segment types defined at 
the same level in the logical DB structure. 

Hence, if performance could be improved by changing the relative 
order of segment types, and all application programs which access those 
segment types use multiple positioning, then the change could be made 
with no impact on previously produced application programs. It should 
be noted, however, that this ability depends on the proper use of the 
calls relevant to multiple positioning (GN, GNP and incompletely 
specified ISRT and GU calls). It also presents an increased 
responsibility for the application programmer to keep track ~f all 
positions maintained by DL/I. There are other alternatives to decrease 
an application program's exposure to future changes as for instance 
increased use of explicitly given call specifications when possible. 
These alternatives may require additional application program coding. 
Such trade-offs must be determined in the user's own environment. 

When an application program needs to process dependent segment 
occurrences in parallel (that is, to switch alternately from one 
dependent segment type to another under a parent), the program may 
specify multiple positioning to accomplish such processing. An 
alternative parallel processing technique would be to give the program 
two or more PCBs using the same data base. Under this alternative, 
the program processes the data base as though it were two or more 
different data bases. This approach may be more useful if the update 
of a segment depends on the analysis of other subsequent segments. The 
use of multiple PCBs may decrease the number of get hold calls required 
but increase the number of other calls required to maintain proper 
positioning in two or more data base structures. Internal control 
block requirements will also increase with each added PCB. However, 
there are circumstances when the use of multiple PCBs for a single data 
base will increase performance. Multiple PCBs may be of particular 
value when an application desires to compare information in many 
segments of two or more data base records. The selection of multiple 
positioning or multiple PCBs for a single data base must be evaluated 
in the user's environment. 

It should be emphasized that multiple positioning uses position 
differently from single positioning. If an application program changes 
from one option to another, the user must not assume the same results 
will be produced. An application program must be developed for one 
alternative or the other. 

MIXING CALLS WITH AND WITHOUT SEGMENT SEARCH ARGUMENTS AND MULTIPLE 
POSITIONING 

The multiple positioning feature is intended to be used for DL/I 
requests which specify SSAs, thereby providing for parallel processing 
and increased data independence. Retrieval calls without SSAs can also 
be used, however, when multiple positioning is specified to accomplish 
a sequential retrieval of segment occurrances independent of segment 
types. 

certain restrictions apply if retrieval calls without SSAs are mixed 
with DL/I requests that specify SSAs in processing a single logical 
data base record. 

3.14 IMS/VS Application Programming Reference Manual 

',_ ..... / 

c 



._-_._--_ .....•...... -- .. 

1. No position may previously have been established on segment 
types which retrieval calls without 55A specifications may 
encounter within the processing of that logical data base record. 

~. rZ~£lg (using Figure 3-3) 

£!11 

GU A(KEY=A1) 

GN c 

GN B 

GN B 

GN 

B~§Y11-1!i!h_~uliiEle-EQ§itio~inq) 

gets A1 

gets C11 

gets B11 

gets B12 

Unpredictable 

The GN calls may not attempt to retrieve occurrences of the C 
segment type because a position has already been established on 
this segment type u~ing the mu1~iple positioning feature. The 
result of the call is unpredictab1e. 

2. When segment types have previously been processed with retrieval 
calls not specifying 55As, a position is established on the last 
retrieved segment type an d its parent (hierarchical pa th) • 
Multiple positions are no longer maintained. 

£!11 E.§§!!!:Llwith multiEle Eosi tioning) 

GU A (KEY= A 1) gets A1 

GN C gets C11 

GN B gets B11 

GN C gets C12 

GN gets E121 

GN B unpredictable 

Multiple positions on ~ are no longer maintained. The result 
of the GN B call is unpredictable. 

It should be noted that although mixed use of retrieved calls with 
and without 5SAs in processing a single logical DB record may be valid 
for some types of parallel processing, it may decrease the degree of 
data independence created by the use of multiple positioning. The 
implications of the two restrictions stated above should be carefully 
considered b.efore application programming is based upon mix~d use of 
retrieval with and without 55As within a single DB record. If possible 
retrieval calls without S5As should be limited to GNP calls to avoid 
potentially inconsistent retrieval situations. 

SUMMARY 

The essential difference is that with multiple positioning, position 
can be maintained on different segment types under the same parent, 
while with single positioning a single position is maintained for 
different segment types under the same parent. The difference in the 
internal operation of DL/I is as follows. 

Data Base processing: Advanced Punctions 3.15 



With single positioning, whenever a segment is obtained, position 
for all dependent segments and all segments on the same level is 
cleared. With multiple positioning, whenever a segment is obtained, 
position for all dependent segments is cleared but position for segments 
at the same level is maintained. The blocks in either case are the 
same (multiple positioning does not require more storage). There is 
no significant performance difference, even though in some cases 
multiple positioning will require slightly more CPU time. Multiple 
positioning is not supported for the HSAM Access Method. 

The use of multiple PCBs by an application program to process a 
single data base essentially allows the multiple positioning concept 
within a data base record to be expanded to multiple data base records. 
Thus, an application can process segments from one data base record in 
parallel with segments from one or more other data base records •. DL/I 
can maintain a position on segments within a data base record with each 
PCB. Since DL/I can maintain position in multiple data base records, 
increased performance ma y' be obtained in certain circumstances relative 
to a single PCB for all accesses to the data base. 

One of the features of IMS/VS is a $econdary indexing facility. 
This facility is a data base structuring technique which ordinarily 
would concern only the data base administrator of an IMS/VS installation 
and be transparent to the majority of the application programmers. 

However, in those installations which employ secondary indexing, 
two factors make it desirable that the experienced application 
programmers have some familiarity with the secondary indexing facility. 
First, secondary indexes are used to establish alternate entries to 
physical or l~gical data bases for application programs. The existence 
of a secondary index on a segment can affect the manner in which DL/I 
processes the SSAs for that segment. Second, secondary indexes can be 
processed as data bases themselves. 

A complete discussion of secondary indexing can be found in the 
IMSL!2 2Y§1~~L!EE11£ation ]~§ign ~uide which addresses the IMS/VS access 
methods and the design and implementation (as opposed to processing) 
aspects of data base structures. This is the necessary context for a 
discussion of secondary indexing, and the application analyst or 
programmer who is interested in this facility is referred to that 
document for adequate familiarization. The discussion which follows 
simply summarizes the characteristics of secondary indexing and 
describes the effect of secondary indexing on data base processing. 

The application analyst or programmer who has read the l~S/VS 
~I§~~~L!EEli£~11Qll ]g§ign ~uid~ or attended a formal IMS/VS education 
course is aware that physical data bases are organized in either 
hierarchical sequential or hierarchical direct organization and employ 
one of the four access methods called HSAM, HIS AM, HIDAM, or HDAM. 
These are considered basic access methods. Physical data bases can be 
connected to form logical data bases, the "access method" of which 
would be an appropriate combination of these basic access methods. 

An INDEX data base is an auxiliary data base used to locate data in 
an HISAM, HDAM, or HIDAM type of data base. HIDAM always has one INDEX 
data base which is called a primary index and which indexes only on 
the sequence field of the root segment. All other Indexes are secondary 
indexes, and they may index segment types at any level of the data base 
structure including root segments. HSAM and INDEX data bases cannot 
be indexed. 

3.16 IMS/VS Application programming Reference Manual 

\ . .... _,-_./ 



c. 

_._-_._-_._ .. _ .. _------_._-_._----

Logical data bases can have secondary indexes, that is, secondary 
indexes existing for a physical data base that participates in a logical 
relationship often can be used when accessing the logical data base. 

Unlike primary indexes as used with HISAM and HIDAM, secondary 
indexes can: 

• Index any field or combination of fields (not necessarily 
contiguous) in a segment of a HIDAM, HDAM, or HISAM data base at 
any level 

• Index non-unique data, which means that different occurrences of 
a segment type with identical values in the indexed fields are 
allowed 

• Be processed as data bases themselves, in addition to serving as 
alternative access paths to a data base 

• Carry, in addition to the indexed data and pointers, other source 
data which are system-maintained replications of data from the 
indexed data base 

• Include user-maintained data in addition to the system-maintained 
data 

• Be created as sparse indexes through system provided means to 
suppress creation of an index entry for certain data base records 
by allowing user options and/or exits 

A secondary index can be used: 

• To sequentially process all or a part of a data base in an order 
which is different from its primary processing sequence 

• To sequentia lly. process a da ta base as if its struct ure had been 
inverted, that is, the data base appears to be a differently 
structured data base 

• To randomly retr:j.eve and process single segments faster than with 
the primary addressing scheme, if the secondary index provides a 
unique identification of the requested segment 

• As a data base itself in order to do scan-type processing in the 
index rather than in the indexed data base 

• To access a segment in a data base based on data located in one of 
its dependent segments in the same physical data base 

If several indexes exist for a segment type, it may be possible to use 
in1exes in a preparatory step as data bases themselves in order to 
merge or match index entries before access to the indexed data base is 
attempted. Time consuming accesses to not-qualifying segments could 
thus be avoided. 

Data Base Processing. ~uvanced Functions 3.17 



INDEXED SEGMENTS -- INDEXED FIELDS 

To provide an adequate basis for describing and discussing the 
concepts of secondary indexing, a specific nomenclature has been 
adopted. This nomenclature distinguishes between the segment type 
being indexed, the segment type used to access the indexed segment, 
and the segment type containing the indexed fields. These three segmen 
types are called, respectively: 

• index target segment 
• index pointer segment 
• index source segment 

A segment type being indexed is called the index target segment if 
it is 'pointed to' by the index pointer segment. In a secondary index, 
the indexed data (indexed field) can be contained in the index target 
segment, or it can come from any segment hierarchically below the index 
target segment in the same physical data base. 

The segment in the secondary index data base which is used to access 
the index target segment is called the index pointer segment. It is 
composed of up to four classes of system maintained data: constant, 
search, subsequence, and duplicate data. Of the four, only se~ch data 
is required for index pointer segments; the ~her three ~re optional. 
In addition, there is a direct or symbolic pointer to the index target 
segment. A more comprehensive description of each of these field 
classes is contained in the IM~VS ~Y§!~~L!Epli£ation De2!gll Guide, 

r~~~! ~QY!£~ ~g~!~n! (I~~) 

The segment type .which contains the indexed field or fields is called 
an index source segment (ISS). In secondary indeXing, as contrasted 
with primary indexing, the ISS can be the inde~ target segment itself 
or it can be anyone of the target segment's dependent segments. 

There is only one index source segment type for each index . 
relationship. If a combination of several fields is to be used to form 
the search data of an index pointer segment, all these fields must be 
contained in the same index source segment. 

Whenever a segment type is being updated which has been designated 
as an index s~urce segment, all indexes with which it is associated as 
an ISS must be available to IMS, whether sensitive or not sensitive. 

An example is shown in Figure 3-4, where the index data base X1 
inaexes a segment on the second level based on data from the third 
level. SEGMB is the index target segment; SEGMC is the index source 
segm~nt. For ·the index data base X2, SEGME is both index target segment 
and index source segment. Secondary index X1 is based on the two 
non-contiguous fields FLDC2 and FLDC1. Note that there are two 
non-unique index entries for the same SEGMB because two of its SEGMC 
children have the same indexed .data. 

3.18 IMS/VS Application Programming Reference Manual 



c. 

L 

Figure 3-4. Indexing a Data Base with Secondary Indexes 

SECONDARY PROCESSING SEQUENCES 

A secondary processing sequence is an alternate sequence that is 
normally n6t based on a root key. This alternate sequence allows data 
access in a sequence that is not related to the primary sequence field. 
The alternate processing sequence can be based on a field or fields in 
a root segment or a dependent segment. For those secondary indexes 
which have a dependent segment as their index target segment, the index 
relationship introduces a new data base processing capability. It 
provides the possibility of processing the indexed data base as if it 
were a differently structured data base. 

If a secondary index is chosen as the main addressing algorithm for 
a data base, that is, if a secondary index determines the processing 
sequence for that data base, then the data base is treated as if its 
structure had been changed to a secondary data structare. 

The secondary data structure, a definition of which follows, is 
established by the PSBGEN and needs no additional specification by the 
user. It offers some of the advantages provided by the logical data 
base concept without requiring the logical DBDGEN and prefix resolution 
necessary for the creation of logical data bases. In addition, it 
offers the advantage of processing a structure in which the logical 
root segment is not a root in any physical structure. 

If a secondary index is selected to determine the processing sequence 
of a data base, then t~e data base appears to have a structure with 
the following characteristics: 

1. The index target segment is the root segment of the secondary 
structure. 

Data Base Processing: Advanced Functions 3.19 



2. Parents, if any, of the index target segment in the physical 
structure become dependents in reverse order in the secondary 
structure. 

3. ~he segment which was hierarchically first below the index target 
segment, if any, becomes the next second level segment. 

4. Hierarchical relations existent among the index target segment 
and its dependents, if any, are taken over into the secondary 
structure without change. 

5. No other segments occur in the secondary structure. 

6. The root of a secondary structure may not be a logical child 
segment, nor may it be a concatenated segment. 

Figure 3-5 illustra tes these rules. It shows the secondary 
structures of the data base from Figure 3-4, as indexed by i'ndexes X1 
and X2. Note that the structure caused by X2 no longer contains 
segments SEGMC and SEG MD, since the inde x target segment ,in t his cas e, 
SEGME, was not a dependent of those, nor were they dependents of SEGME. 

Note that the rules for secondary structures, when applied to an 
indexed root, do not change the structure of the data base. 

The user specifies in his program specification block generation 
which, if any, secondary index is to be used as processing sequence 
for his data base; he also defines the structure in which the data base 
appears to the application program. For every indexing relationship, 
the index target segment and index source segment have been, of course, 
previously determined when the DBD parameters were specified. 

Xl X2 

SEGMB SEGME 

SEGMB 

1 
SEGMA I SEGMD SEGMA 

SEGME 
SEGMC -

Figure 3-5. Secondary Structures by Secondary Indexes 

3.20 IMS/VS Application programming Reference Manual 



c' 

Some restrictions exist when processing a data base in its secondary 
structure through the secondary index. These restrictions are: 

1. No attempt must be made to insert or delete occurrences of 
segments of the index target segment's type or of the segment 
types of which the index target segment was dependent in the 
original structure. 

2. Any data fields, except the sequence key fields but including 
all fields designated as source fields for secondary indexes, 
can be changed. The replacement of any ISS associated with the 
index being used as the secondary processing sequence may result 
in an anomaly in processing. If the search fields in the index 
source segment are changed, then the index will be updated to 
reflect that change and the user processing sequentially could 
encounter the index entry for the associated ISS again with a 
different search key value. (The search and other classes of 
fields are described in the IMS/VS Utilities Refe~ ~~nY~!.) 

A secondary index can be defined using: 

• Up to five non-contiguous fields of unique or non-unique data in 
the index source segment type as the search field of a secondary 
index 

• Up to five non-contiguous fields from the index source segment or 
from system-related data as the subsequence field of the index 
pointer segment 

To enhance the usefulness of processing a secondary index as a data 
base: 

• The user can specify that up to five fields of the index source 
segments be duplicated in the index pOinter segment generated from 
each index source segment. 

• Index pointer segments can contain any additional user data desired. 

• Protec~ion of system-maintained data from modification is an option. 

A secondary index can be used to: 

• Access only significant or representative segments through sparse 
indexing by using an option and/or exit provided to enable 
suppressing the creation of index entries for desired index source 
segments; 

• Access segment types in a Single hierarchic path of a data base 
using the index target segment type as the root for all segment 
+ypes in that path without having to use logical relationships; 

• Selectively access a given segment, through data contained in that 
segment or a dependent of that segment; 

• Directly access a non-root segment type in an HDAM or HIDAM data 
base in less time than is normally required through the primary 
accessing method. 

Following are the rules that must be observed in s'econdary indexing: 

1. In a physical data base, a logical child, or a dependent of a 
logical child cannot be an index target segment type. 

Data Base Processing: Advanced Functions 3.21 



2. A concatenated segment type, or a dependent of a concatenated 
segment type cannot be used as a root segment in a secondary 
data structure for a logical data base. 

3. When using a secondary processing sequence, the application 
cannot insert or delete an index target segment, or any segment 
on which an index target segment is dependent in its physical 
data base. 

4. Data in any fields of segments can be changed except for da ta 
in sequence fields. If data in fields of an index source segment 
is changed and those fields are used in the search or subsequence 
fields of an index pointer segment, the index pOinter segment 
is deleted from the position determined by its old key, and 
reinserted into the position determined by its new key. 

In using secondary indexing, consideration should be given to the 
following: 

• When an index source segment is inserted into or deleted from a 
data base, a respective index pointer segment is inserted into or 
deleted from the respective secondary index. This maintenance 
occurs in all cases, regardless of whether or not the application 
program doing the updating actually uses the secondary index. 

• When replacing data in an index source segment that is used in the 
search, subsequence or data fields of an index, the index is updated 
by IMS/VS to reflect the change. When data used in the ddata field 
of an index pointer'segment is replaced in an index source segment, 
the index pointer segment is updated with the ne~ data. When data 
used in the search or subsequence fields of an index pointer segment 
is replaced in an index source segment, the index pointer segment 
is updated with the new data, and in addition, the position of the 
index pointer segment within the secondary index is changed. The 
position is changed since a change to the content of the sea rch or 
subsequence field of an index pointer segment changes the key of 
that segment. The secondary index is updated by deleting the 
segment from the position determined by the old key and inserting 
the index pointer segment in the position determined by the new 
key. 

• The use of secondary indexes will increase storage requirements of 
all steps which include within the PSB: ,. a PCB for the indexed 
data base, and 2. the processing option which allows the index 
source segment to be updated. The additional storage requirements 
for each index data base will range from 6K to 10K. A percentage 
of this additional storage will be fixed in real memory by VSAM. 
For additional information on storage reqUirements, refer to the 
topic "VSAM Data Base Buffer Pools" in the section on VSAM support 
for IMS/VS in this manual. 

• The use of a secondary index must be considered relative to 
alternate means of achieving the same function. As an example, it 
may be desired to produce a report from an HOAM data base in root 
key sequence. A secondary index will conveniently provide this 
capability. However, the access of each sequential root will, in 
most cases, be a random operation. It would be a very time 
consuming operation to fully scan a large data base where each root 
access is random. It may be more efficient to scan the data base 
in physical sequence (GET NEXT not using a secondary index), and 
then sort the results by root key so that the final report can be 
produced in root key sequence. 

3.22 IMS/VS Application Programming Reference Manual 

\ ...... , " 



c' 

• A secondary index uses only a key sequenced data set if all index 
pointer segment keys are un"ique, and both a key sequenced and entry 
sequenced data set when index pointer segment keys are non-unique. 
Whenever possible, the data used for keys should be unique to 
eliminate the need for the entry sequenced data set, which in turn, 
eliminates the additional I/O operations required to search the 
entry sequenced data set. 

• ~hen calls for an index target segment type are qualified on the 
search field of a secondary index, additional 1/0 operations are 
required since the index must be accessed each time an occurrence 
of the index target segment type is inspected to see if that 
occurrence satisfies the call. Since the data contained in the 
search field of a secondary index is a duplication of data in a 
source segment, the user should determine whether or not an 
inspection of source segments in their data base might yield the 
same result faster. 

• ~hen reorganizing an indexed data base, maintenance of data in the 
user data portion of index pointer segments is the responsibility 
of the user. During reorganization, IMS/VS maintains data in all 
portions of index pointer segments in a secondary index data base 
except the user data portion. To carry user data forward through 
~eorganization, the user must retrieve the data from the old index 
and replace it· in the new index. 

PROCESSING A SECONDARY INDEX AS A DATA BASE 

A secondary index may be processed as a data base by providing a 
PCB which references the DBD of the index. The purpose of processing 
an index- alone could be to scan the subsequence ot duplicated data 
fields; to perform logical comparisons or data reduction between two 
or more indexes; or to add to or change the user maintained data area. 
Whatever the purpose of processing an index separately, the following 
guidelines and restrictions apply. 

• No changes to system-maintained data fields in the index pointer 
segment will be allowed unless NOPROT is specified in the 
ACCESS=operand in the index DBD. Attempts to change 
system-maintained data without the NOPROT option will result in an 
AM status code. 

• Inserts will not be permitted to any data base in which ACCESS=INDEX 
is specified. 

• Any changes to system-maintained data in an index may render the 
index as unusable and unmaintainable. 

• Deletion of index pointer entries by the user when the associated 
index source segments (ISS) exist will result in 'NE' status codes 
if the user makes updates to the ISS which will result in index 
maintenance. 

• Qualification on the key of index pointer segments in SSA's must 
supply a value which includes not only the search portion of the 
key but also the constant and subsequence data if supplied. This 
is the only case in secondary indexing that the user is aware of 
the constant and subsequence data in the key. 

• In processing a secondary index which is a member of a shared index 
it must still be regarded as a separate index data base. A series 
of GN calls will not violate the boundaries of the index data base 
for which it was intended. Each index in the shared index has its 
unique DBD name and root segment name. 

Data Base Processing: Advanced Functions 3.23 



SECONDARY INDEXES AND SEGMENT SEARCH ARGUMENTS 

Although the secondary data structure feature as provided by 
secondary indexes may be a very convenient way to process a data base 
for some applications, especially because it allows immediate retrieval 
of the index target segment, it is nevertheless possible to utilize 
secondary indexes for qualification only at any segment level without 
changing the apparent data base structure. 

If a segment type on any level is indexed, the SSA for this segment 
may contain field names which have been defined as indexed fields and 
thereby make use of the existing index. The use of a field of the 
segment defined during Data Base Definition by an XDFLD statement, 
rather than a FIELD statement, specifies the use of an index to qualify 
that part of the call. If the SSA specifies that an index should be 
used, DL/1 will obtain a candidate segment using the processing 
sequence, or prior positioning (that is, in the same way as if indexing 
hai not been specified in the SSA), and then interrogate the index 
within the range specified in the SSAs to search for an index entry 
which points to the candidate segment. This may be more efficient and 
can save time-consuming data base accesses if the content of the indexed 
field is from a segment at a lower level than the index target segment. 
However, a warning might be appropriate here. Satisfying a SSA by 
inspecting the index means that the index is checked to ascertain 
whether or not the pointer provided through the index entry matches 
the segment currently under consideration. This mayor may not be 
efficient. If there are several segments with the same indexed field 
value, there will be several index entries for this SSA. It may then 
be necessary to compare all their pointers until it is found that this 
segment does not satisfy the call, while a single access to the data 
base ·would have yielded the same result much faster. An SSA for 
instance, of the type "field:/: value" will normally be unsuitable for 
an index search because several complete index data base scans might 
result to fulfill one data base call. 

Allowing XDFLD field names to be used in SSAs has added another 
degree of freedom to qua lifica tions in SS As using Boolean operators. 
In order to fully utilize this degree of freedom, another Boolean AND 
operator has been added to the system specifications. The symbol for 
this new,AND is the "!" and it is called the independent AND. The "*" 
as used with indexed fields is now called the depen~ent AND. 

The distinction is made for the purpose of setting limits on the 
scan of an index while attempting to satisfy an SSA qualification. The 
following examples explain the difference between the dependent and 
independent AND operators. 

3.24 IMS/VS Application Programming Reference Manual 

/~ 
I ' 



c. 

c 

NAME ..... 
< 

I 
SKILL 

I 
I 

Target 

I 
Source 

/ XDFLD 
NAME=LOC 

.... EDUC EXPR < 

Figure 3-6. Example of Independent AND 

Example 1 - To illustrate the need for and use of the independent 
AND, assume a requirement to search the data structure of Figure 
3-6 for personnel having had experience in specific locations. 
For example, to request a person with experience in both 
Greenland and Mexico, the following call would be used: 

GU NAME (LOCb=GREENLAND#LOCb=MEXICO) 

This would retrieve the first person who had had experience in 
both places. Internally, this means that DL/I will independently 
search through the index entries for Mexico, looking for those 
which point to the same target segments as are being pointed to 
by entries for Greenland. 

XDFLD 
NAME=EDLVL 

Figure 3-1. 

~ ,/ Target 
~ 

"> NAME .. 

I 
1\. SKILL 

t 
I I 

Source 
EOUC EXPR 

Example of Dependent AND 

Data Base processing: Advanced Functions 3.25 



Example 2 - To illustrate the need for and use of the dependent 
AND r assume the data structure of Figure 3-7 and an index which 
indexes the name segment based on Education level. To retrieve 
the first name segment having an education level between 3 and 
7 but excluding level 5, the qualification would use the 
dependent AND as follows: 

GU NAME (EDLEVELb>3*EDLEVELb<7*EDLEVEL-,=5) 

This call would retrieve the Name segment pointed to by the 
first index pointer segment whose search field met all three 
conditions. 

The difference (as illustrated in the previous examples) between 
the dependent and independent ANDs is as follows: with the independent 
AND, the conditions can be satisfied by two or more different pOinter 
segments having the same target; with the dependent AND, all conditions 
must be met by one index pointer segment. Additional examples follow. 

Assume an index data base in which two index entries point to the 
index target segment being considered. The two index pointer segments 
have key values of 5 and 20 and the XDFLD has the name of XF1. (This 
implies that the indexed field content comes from a dependent of the 
indexed segment.) 

3.26 

Example 3 - Use of the Dependent AND. The SSA qualification 
is: 

(XF1 b >2* IF 1 b<1 0* IF1-,=5) 

Since the dependent AND is used, these three qualifications are 
considered to be a ~gEgn~~ni group and all three qualifications 
will be used to set the limits for a sing!g scan of the index. 
The scan will begin with XF1=3 and stop at XF1=9, but any index 
pointer segment(s) with XF1=5 will be skipped over. The result 
is that none of the index pointer segment{s) in the range will 
satisfy the SSA since the only associated index pointer 
segment(s) have XF1=5 and XF1=20, and it is not possible to 
satisfy all three qualifications with anyone of them. 

Example q - Use of the Independent AND. The SSA qualification 
is: 

(XF 1 b) 2*XF 1 b< 1 OIIF 1-,=5) 

Notice now that there are only two qualifications in the 
dependent group. The conditional XF1-,=5 is an independent 
qualification. There will be two separate scans of the index 
conducted. The first scan will start at XF1=3 and proceed 
sequentially until the index pointer segment(s) with XF1=5 is 
found. Since this is associated with the index target segment 
the qualification of the first AND group is satisfied. The next 
step is to consider the qualification XF1-,=5. In order to 
satisfy the independent qualification, the scan is begun at the 
beginning of the index data base and every index pointer segment, 
except those with XF1=5, can satisfy the qualification. Since 
there is one with XF1=20 it will be found and the index target 
segment will have met this qualification. That is, there is an 
index entry which will sa tisf y the first AND group an d there is 
an index entry which will satisfy the independent qualification. 

IMSjVS Application Programming Reference Manual 

,. 

C: 



C/, 

The reader should verify for himself that 

XF1b>18#XF1b<8 or XF1b=5#XF1~=5 

would be satisified in the ab·ove situation whereas 

XF1b>18*XF1b<8 and XF1b=5·XF1~=5 

can never be satisified because they have contradictions. 

In summary, qualifications connected by an independent AND are 
satisfied if there exists an index entry which satisfies the first and 
there exists an index entry which satisfies the second. Two 
qualifications connected by a dependent AND are satisfied if there 
exists an index entry which satisfies both. 

The use of the "." for XDFLD field-qualifications can form dependent 
AND groups only for like field names since all limits thus specified 
apply only to a single index scan. Two unlike field names connected 
with "*" will therefore be treated as "#". 

The distinction between independent and dependent ANDs is made QnlJ 
in the case of XDFLD field qualifications. Unless both the connected 
qualifications involve XDFLD field-qualifications, the u*" and the "#" 
have exactly the same function that the "*" previously had. 

Data Base processing: Advanced Functions 3.27 

.----...... ,.,." .. , "." -----



I~ 



This chapter describes application programming for a teleprocesing 
environment using the Data Communication facility of IMS/VS. The 
emphasis is on the interface between a teleprocessing application 
program and the Data Communication facility. Figure 4-1 provides an 
overview of the IMS/VS teleprocessing environment. Both major IMS/VS 
components, i:he Data Base facility and the Data Communication fac~·lity, 
are used in this environment. The interface between the Data Base 
facility and its related application program (as described in the 
previous chapter) is the same in both the batch and teleprocessing 
environments. 

COMPUTER 
APPLICATION 
PROGRAM APPL. 

PROGRAM 
LIBRARY 

-------------' 

DATA 
BASE 

DATA BASE FACILITY 

DATA COMMUNICATIONS FACILITY 

Pig ure 4 -1 . IMS/VS Data Communication Facility 

Application programmers who use the IMS/VS Data Communication 
facility should be aware of two major options available to the Data 
communication user: 

• Message Format Service 
• Conversational processing 

Data Cbmmunication Application programming 4.1 



Message Format Service (MFS) is a facility available to users of 
the 2740 Data Communication Terminal, 2741 Data Communication Terminal, 
3270 Information Display System, 3600 Finance Communication System, 
3767 Communication Terminal, and 3770 Data Communication System. 
Application programming information for MFS users is contained in the 
l~~L!~ ~~22~g~ Eormat 2~~~i£~ Us~r's 2Yi~~. 

Conversational processing is described in the next chapter of this 
manual. When conversational processing. is used, an applic~ion program 
can retain information acquired through multiple interchanges with a 
terminal even though the program lea ves the message region between 
interchanges. 

TELE.fRO£~SS!1!2 !~!CATION .fEQ§EAl1 I.NTER~ IQ IMS/!~ 

When the IMS/VS Data Communication feature is used, application 
programs can communicate with teleprocessing (TP) devices as well as 
access data bases. The program communicates with a dev~ce logically 
through IMS/VS rather than directly to the device. This type of 
communications is made possible by the IMS/VS concept of logical 
t~rminals. A logical terminal is a name related to the actual device, 
the physical terminal. One physical terminal can have one or more 
associated logical terminals. The logical terminal name or names for 
each physical terminal are defined by the IMS/VS system programmer 
during IMS/VS system definition. The IH~L!~ System/Ap£bicati2n Desi~ 
gYig~ contains a complete description of logical terminals. 

The logical terminal concept allows an application program to be 
independent of a particular physical terminal. Generally, the 
application programmer need not be concerned about the actual location 
or address of the device. If a physical terminal becomes inoperative, 
its associated logical terminal(s) can be reassigned to another physical 
terminal, thereby causing output messages to be sent to another physical 
terminal. Also, each logical terminal can have unique security checking 
associated with it. 

To an application program, therefore, a logical terminal can be 
viewed as just another sequential data input source or output 
destination. The application program iriterface to the logical terminal 
is through essentially the same call interface mechanics as that 
described for data base access. Access to a data base requires the 
use of a data base Program Communication Block (DB-PCB). Accordingly, 
communications with a TP device requires the use of a teleprocessing 
PCB (TP-PCB). 

Application programs that operate in a teleprocessing environment 
normally reference both DB-PCBs and TP-PCBs, and must contain a mask 
to handle each PCB type. Figure 4-2 shows that the TP application 
program views terminals and data from a logical view point. Any changes 
to the physical terminal configuration or to actual data structures 
have a minimum effect on the application program. 

4.2 IMS/VS Application Programming Reference Manual 

...._"./ 

• 



l .. 

c 

APPLICATION PROGRAM 

...... ---------
TP -PCB 

MASK 

----...----
TP 

PCB 

--

I -T--...... --t - - - - --- --r--~- - - - --
L --­,..-----.- - - - ~--~r--- - LOGICAL STRUCTURE 

DB 
PCB 

MASK 

" , 
I 

I I 

" 
Fiqure 4-2. Relationship of Teleprocessing Application Program to 

DB PCBs and TP PCBs 

TP PCBs 

There are two types of TP PSBs -- the I/O PCB and the alternate PCB. 
An I/O PCB is always provided by IMS/VS to the application program that 
executes in a TP environment. Alternate PCBs are optional and are 
created as part of a Program Specification Block (PSB). A PSB is 
created by the IMS/VS PSB Generation Utility program (PSBGEN) and 
resides in the IMS/VS PSB library (IMSVS.PSBLIB). Both the I/O and 
alternate PCBs are read into and retained in main storage during 
execution of the application program. See Figure q-3. 

OSNS 

I MSNS 
CONTROL 

APPLICATION PROGRAM " 
~~ .. ~----~-TP , 

PCB // 
MASK ~ ____ _ 

""-:D:':!B~----- --+-..-.--. 
PCB 

MASK 
------~~---... 

IMSNS 
PSB LIBRARY 

PROGRAM LIBRARY 

F i gll r e 4- 3 • Teleprocessing Application program Execution 

Data Communication Application Programming 4.3 



To obtain an input message and to reply to it, the application 
program must reference the I/O PCB. To send a reply to a terminal 
other than the terminal that originated the input message, or to.another 
application program, the program references an alternate PCB. 

To be able to test TP application programs in a batch region without 
having to recompile before online testing, specify CMPAT=YES in the 
PSBGEN statement of the PSBGEN utility program. When CKPAT=YES is 
specified, IKS/VS provides PCBs to the program as if a message region 
was being used. 

An I/O PCB is the mechanism required by a TP application program 
to: 

• Obtain an input message from a terminal. 

• Return a reply to the terminal that originated the input message. 
Application programs returning replies to terminals operating in 
response mode, conversational mode, or exclusive mode must direct 
such replies to the I/O PCB or an alternate PCB that has been 
defined as ALTRESP=YES. 

When IKS/VS receives an input message, it queues the message according 
to transaction code and schedules the application program that processes 
the transaction. When scheduling the program, IMS/VS passes to the 
program the address of its I/O PCB plus the alternate PCB (s) (if any) 
and the DB-PCB (s) (if any) defined in its P5B. The I/O PCB contains 
the name of the logical terminal that entered the message (source) and 
can receive the reply (destina tion) • 

!!1~I!ls~~ .f£~ 

An alternate PCB is the mechanism required by a TP application 
program to send an output message to a destination other than the TP 
device that originated the input message. An alternate PCB specifies 
a destination of either a logical terminal or a transaction code defined 
during I"S/V5 system definition. The destination can be specified 
during PSB generation or during program execution. When an alternate 
PCB specifies a transaction code as a destination, IMS/VS routes the 
message built using that alternate PCB to the application program that 
processes the specified transaction code (this is known as a 
program~to-program message switc~ • 

To be able to specify a destination during program execution, the 
alternate PCB must be defined as modifiable during P5B generation. 
When an application program uses modifiable alternate PCBs, the program 
must specify the output message destination before beginning to build 
the output message. 

Alternate PCBs can also be defined with the express message option, 
EXPRESS=YES. l'!essages destined for alternate PCBs so defined are 
considered complete and sent even if the application program abends. 
Express alternate PCBs should be used judiciously--they are primarily 
intended for a program when it detects that some invalid processing 
occurred and that it must issue a rollback (ROLL) call to resume 
processing at its most recent synchronization point. The express 
message PCB provides a vay for the· program to notify the terminal 
operator of the situation. If used in circumstances other than the 
above, express alternate PCBs can cause duplicate transaction or output 
message processing by an application program if an Il'!S/V5 control region 
abends. 

4.4 IMS/VS Application programming Reference Manual 

.. 



Alternate PCBs can also be defined with the response option 
ALTRESP=YES. When so defined, a response to a terminal in response 
mode, conversational mode, or exclusive mode can be directed to the 
alternate PCB instead of to the I/O PCB.. An alternate PCB so defined 
meets the I/O PCB requirements for these operating modes and is known 
as a response alterante PCB. Such a response alternate PCB must have 
as its destination a logical terminal. Using response alternate PCBs 
allows the application program to send output to a logical terminal 
other than the one that originated the input message and still satisfy 
the requirements of these operating modes. If specified during PSB 
generation (SAMETRM=YES), IMS/VS will verify that the logical terminal 
named in this response alternate PCB is assigned to the same physical 
terminal as the logical terminal that originated the input message. 
(This check is always made for conversational programs and response 
mode transactions.) 

TP-PCB MASK 

To support communication with IMS/VS, the TP application program 
must contain a TP-PCB mask. As shown in Figure 4-4, a TP-PCB mask must 
provide for seven fields of information. 

SOURCE/DESTINATION NAME 

8 Bytes 

RESERVED FOR IMS/VS 
2 Bytes 

2 

STATUS CODE 
2 Bytes 

3 

4 CURRENT DATE 
·4 Bytes 

~ ~ 
LL LL 
W W 

5 
a: CURRENT TIME a: 
0.; 

4 Bytes 
Q.. 

l- I-
:::> :::> 
Q.. Q.. 

:2 :2 - -
6 INPUT MESSAGE SEQUENCE NUMBER 

4 Bytes 

MESSAGE OUTPUT DESCRIPTION 
7 NAME 

8 Bytes (I/O PCB only) 

Figure 4-4. Layout of a TP-PCB Mask 

1. SOORCE/DESTINATION NAME - For input, this field contains the 
name of the logical terminal that entered the message, or blanks. 
For output, this field contains the name of a logical terminal 
or a transaction code. The name is 1 to 8 bytes long, 
left-justified, and padded with blanks. 

2. RESERVED AREA - a 2-byte area reserved for 1M S/VS. 

Data Communication Application programming 4.5 



3. STATUS CODE - a status code that is the resul t of a TP call is 
placed in this 2-byte field. When a successful call is executed, 
this field is returned" blank. A non-blank status indicator is 
returned on an unsuccessful call. 

4., 6. 
INPUT PREFIX - is available only for the I/O PCB. The length 
of the input prefix is 12 bytes: 

4. 4 bytes - Julian date (YYDDD-packed decimal) when the input 
message was completely received from the physical 
terminal. 

5. 4 bytes - time (HHPlMSS. S-packed decimal) when"" t he input 
message was completely received from the physical 
terminal. 

6. 4 bytes - sequence number (binary) of the input message. 

7. ftESSAGE OUTPUT DESCRIPTION NA!!E - is available only for the I/O 
PCB. This field has meaning only when output messages are sent 
to terminals that use the IMS/VS Message Format Service (MrS). 

When IMS/VS supplies the first segment of an input message, it 
fills this field" with either the name of a message output 
description or blanks. The contents of this field can be changed 
by using the output PlOD name parameter of the TP output call 
that contains the first segment of an output message. Further 
information on the use of the output !!OD name paralleter is 
contained in the I"S{VS A~§§~~ f~~ ~~vice ~er'§ ~de. 

The following example is an I/O PCB mask for an Aaerican National 
Standard (ANS) COBOL message processing program. This mask would be 
found in the linkage section of the program. A mask for an alternate 
PCB would be similar but without the IN-PREFIX and MOD-NAME fields. 

DATA DIVISION. 

LINKAGE SECTION. 

01 IO-PCB. 
02 tTERK-NAPIE PICTURE X(8). 
02 DtI-RESERVE PICTURE XX. 
02 STATUS-CODE PICTURE XX. 
02 IN-PREFIX. 

03 JULIAN-DATE PICTURE S9(~ 
03 PCB-TIME-OF-DAY PICTURE S9 ~) 
03 PISG-SEQ PICTURE S9(~ 

02 KOD-HAKE PICTURE X(8). 

COMPUTATIONAL-3. 
COMPUT AT ION AL-3. 
COftPUTATIONAL. 

4.6 I!!S/VS Application Programming Reference ftanual 



L 

g1Ll ExamE!g Q! ~ TP-PCB ~~§! 

The following is an example for PLII Optimizing Compiler message 
processing programs. A mask for an alternate PCB would be similar but 
without the IN_PREFIX and MOD_NAME fields. 

DECLARE 1 IO_PCB BASED (IO_PCB_PTR), 
2 IO_TERMINAL CHARACTER(S), 
2 IO_RESERVE CHARACTER(~, 
2 IO_STATUS CHARACTER(2), 
2 IN_PREFIX, 

3 PRE_DATE FIXED DECIMAL (7), 
3 PRE_TIME FIXED DECIMAL (7) , 
3 PRE MSG COUNT FIXED BINARY(31), 

2 MOD_NAME CHARACTER (S) ; 

ENTRY TO THE TELEPROCESSING APPLICATION PROGRAM 

The entry statement to a TP application program names the TP-PCBs 
and the DB-PCBs. The TP-PCBs must precede the DB-PCBs, and at least 
one TP-PCB must be specified to provide for the IIO PCB • 

• The format for an ANS COBOL program is: 

ENTRY 'DLITCBL' USING IO-PCBNAME, ALT-PCBNAME1, ALT-PCBNAMEn, 
DB-PCBNAME1, DB-PCBNAMEn. 

• The format for a PL/I optimizing compiler program is: 

DLITPLI: PROCEDURE (IO_PCB_PTR,ALT1_PCB_PTR,ALT2_PCB_PTR, 
DB1PCB_PTR,DB2_PCB_PTR) OPTIONS (MAIN) ; 

Programs that are OS/VS subtasks of an application program called 
by IMS/VS must not issue DL/I calls. If they do, the results will be 
unpredictable. With PLII, whenever PL/I multitasking is used, ~ll 
tasks, even the apparent main task, operate as subtasks to a hidden 
PL/I control task. PL/I tasking is therefore not allowed in an IMS/VS 
program. 

Data Communication Application programming 4.7 



This section describes the call functions available to IMS/VS 
application programs in' a TP environment.. These TP calls rela te to 
messages. A message is comprised of one or more segments. Figure 4-5 
shows two messages: Message A is made up of segments A1, A2, and A3; 
Message B is made up of segments B4 and B5. 

r- ---- ------, 
1 SEGMENT A 1, 
I -----------, 
1 SEGMENT A 21 
I -----------1 
I SEGMENT A 31 
L-----------.J 

r-----------, 
, SEGMENT B41 
,-----------1 
, SEGMENT B51 
L- - - - - - - - - - ;... J 

Figure 4- 5. Message Relationships to Its Segments 

The messages received from terminals and placed in the message queues 
are accessible to a message program by TP calls. The TP call functions 
available are: . 

• GUbb 
• GNbb 
• ISFT 
• PURG 
.• CHNG 

(get unique) 
(get next) 
( insert) 
(purge) 
(change) 

The TP call forma t is sligh tly different from DL/I calls because 
there is no hierarchical stru'cture with which to be concerned. SSAs 
(Segment Search Arguments) are not used for TP calls. 

• The format for an ANS COBOL program is: 

CALL 'CBLTDLI' USING CALL_FUNC, TP_PCB, WORK_AREA. 

• The format for a PL/I program is: 

When a transaction or input message is available for processing, 
the associated application program is scheduled into a message 
processing region. After being loaded, the program should issue a get 
unique (GU) call to obtain the first segment of its input message. 
Each subsequent segment of that message is obtained with a get next 
(GN) call. GU and GN calls can be made only to the I/O PCB. 

If the program is serially-reusable or reentrable between GU calls, 
GU calls can be issued for subsequent input messages until all messages 
are retrieved. If a program is not serially-reusable or reentrable 
between GU calls, the program must terminate after each GU call so that 
it will be reloaded and re-initialized. 

4.8 IMS/VS Application programming Reference Manual 

\ ......... 



An insert (ISRT) call is used to build output messages. Each segment 
of an output message can have appropriate terminal control characters 
embedded in the text. The purge (PURG) call can be used to delimit 
output messages being inserted. The output message may be sent as a 
reply to the terminal that originated the input message or to other 
terminals. 

Insert and purge calls can be issued to any TP-PCB. Message replies 
to input should be directed to the I/O PCB for return to the inputting 
terminal. Messages destined for any terminal other than the inputting 
terminal, or for an application program, must be directed to an 
alternate PCB. Replies to a terminal in either response mode, 
conversational mode, or exclusive mode must be made to either the I/O 
PCB or an alternate PCB defined during PSB generation as ALTRESP=YES. 

Messages ?laced into the queu e by an application program are not 
transmitted to their destination simultaneously with the insertion of 
the segments. Unless the "message destination is an alternate PCB 
defined as EXPRESS=YES during PSB generation, IMS/VS places the output 
message in a temporary destination queue until the program reaches a 
synchronization (sync) point. When the sync point occurs, IMSIVS moves 
the complete message to its final destination queue. If the application 
program abends, all activity is backed out as if it never occurred. 
Activity backed out includes all messages and transactions created, 
and all data base updates. Backout occurs prior to the termination 
sync point. 

!Q!g,: ,A DC application program sync point is program termination. The 
checkpoint call, if used, is also a sync point. If the transaction to 
be processed by the program was defined as MODE=SNGL during IMS/VS 
system definition, each request for a new message (get unique) is also 
a sync point. 

If the message destination is an alternate PCB defined as 
EXPRESS=YES, 1MS/VS bypasses the temporary queue and moves completed 
messages to the final destination queue. These messages vill be 
considered complete and sent if the application program abends. The 
only condition that viII prevent these messages from being sent is a 
deadlock situation that occurs prior to completion of these messages. 

The change (CHNG) call is used during program executi~n to set an 
output message destination, to an alternate PCB. 

At the completion of a TP call, 1MS/VS returns a status code, 
indicating the results of the call, in the 2-byte status code field of 
the TP-PCB associated with the call. The application program should 
interrogate the status code after each TP call. 

If the call is completed successfully, the status code consists of 
two EBCDIC blanks; otherwise it is one of the codes shovn in Appendix 
A (quick reference) or B (status code descriptions). 

INPUT MESSAGE SEGMENT CALLS 

The get calls are used to retrieve segments of an input message. 
For each get unique (GU) or get next (GN) call, one segment is returned 
to the application program. IMS/VS returns the retrieved segment to 
a work area defined in the application program. Since the length of 
a message segment is variable, the work area must be large enough to 
contain the longest segment expected by the program. 

Data Communication Application programming 4.9 



The first segment of an input message is obtained with a GU call 
against the 1/0 PCB. In response to a GU calli IMS/VS returns the 
first message segment and fills in the following I/O PCB fields: 1) 
source name (name of the logical terminal that originated the message), 
2) status code, 3) input prefix, and 4) message output description name 
(when present and message is from a MFS-supported device). 

• The format for an ANS COBOL program is: 

CALL 'CBLTDLI' USING GET-UNIQUE-FUNC, IO-PCB, WORK-AREA. 

• The format for a PLII program is: 

For programs that process multiple transaction cod~s, the text of 
the input message can be examined to determine the transaction code. 

The second and subsequent segments of an input message are retrieved 
with a GN call. 

• The format for an ANS COBOL program is: 

CALL 'CBLTDLI' USING GET-NEXT-FUNC, IO-PCB, WORK-AREA. 

• The format for a PL/I program is: 

Figure 4-6 shows the call functions used to obtain the various 
segments of messages A and B. 

!1ES~AQ] ! £AL&:.FUli£1ION 

r---------------, , SEGMENT A1 , <-------------- GET UNIQUE 
, ----~----------I , SEGMENT A2 1 <-------------- GET NEXT 
1----------·----1 , SEGMENT A3 , <-------------- GET NEXT 
1---------------1 , CQD Status) , <-------------- GET NEXT 
L---------------J 
r1ES2!Q~ ~ 

r---------------, , SEGMENT B1 I <-------------- GET UNIQUE 
1---------------1 , SEGMENT B2 , <-------------- GET NEXT 
1---------------1 , CQD status) , <-------------- GET NEXT 
L------------ ---J 

Figure 4-6. Call Functions for Segments of Messages A and B 

The application program should inspect the status code field of the 
I/O PCB after each get call. A blank status indicates a segment was 
retrieved successfully. A QD status after a GN call indicates there 
are no more segments to retrieve. 

4.10 IMS/VS Application programming Reference Manual 

,r--....., 
( 

" ... / 



/"'. 

L, 

To retrieve all the segments of a message, a GU call and successive 
GN calls must be issued until a QD status is returned. It is not 
necessary to retrieve all the segments of a message. A GU call can be 
issued at any time to retrieve the first segment of the next message. 
A QC status after a GU call indicates there are no more messages in 
the Queue. If a batch message processing program issues a GU after 
receivinq a QC status, a message will be returned if there is one. 

In addition to the status code, IMS/VS fills in the 
source/destination name field of the I/O PCB after each successful GU 
call. When the message source is a logical terminal, IMS/VS places 
the logical terminal name in the name field. When the source is 
unknown, IMS/VS sets the field to blanks. This occurs in the following 
instances: 

Message processing grogram 
(MPP) 

• MPP did a program-to- program, message 
switch after a GU of an input message 
wit hout a source 

• MPP inserted a message before issuing 
a successful GU call. 

Batch message program (BMP) • BMP has not issued a successful GU 
call 

OUTPUT MFSSAGE SEGMENT CALLS 

The insert call is used to build output messages. To build an output 
message in reply to the terminal that originated the input message, 
output message segments must be inserted to the I/O PCB. output message 
segments can also be inserted to alternate PCBs. If an alternate PCB 
has been defined as modifiable, a change call must be used before the 
first insert call. The change call sets the destination of the output 
message (refer to "Change Call" in the section "Additional TP Calls" 
later in this chapter). 

The ISRT call format is similar to that for message get calls • 

• The format for an ANS COBOL program is: 

CALL 'CBLTDLI' USING ISRT-FUNC, TP-PCB, MSG-SGMT-IO-AREA, 
OUTPUT-MOD -N AM E • 

• The format for a PL/I program is: 

CALL PLITDLI (PARM_COUNT,ISRT_FUNC,TP_PCB,MSG_SGMT_IO_AREA, 
OUTPUT_MOO_NAME) ; 

The output MOD name parameter is optional and only meaningful to 
IMS/VS systems that include MFS. It can be specified only on the insert 
call that provides the first segment of the output message. OUTPUT 
MOD NAME is the label of an 8-byte field containing the name of the 
message output description; the name must be left-justified and padded 
with blanks. ' 

Data C6mmunication Application programming 4.11 



Figure U-7 shows an ANS COBOL example of output message segment 
calls for output message A. These three call statements create one 
output message. 

r---------------, 
I SEG MENT A 1 I <------------- INSERT 
1---------------1 
, SEGMENT A2 ,<------------- INSERT 
,---------------t 
I SEGMENT A3 t <------------- INSERT 
L---------------J 
CALL 'CBLTDLI' USING INSERT-PUNC, TP-PCB, SEGMENT 1, OUTPUT-KOD-NAME. 

CALL 'CBLTDLI' USING INSERT-PUNC, TP-PCB, SEGMENT 2. 

CALL 'CBLTDLI' USING"INSERT-FUNC, TP-PCB, SEGMENT 3. 

Figure U-7. Call Functions for Segments of an Output Message and 
Call Statements 

Figure U-8 shows an example of an output message as one message 
segment called Message A. The insert call function creates one message 
segment which would produce three lines on a 1050. If the segment vas 
sent to a MFS-supported device, it would be edited based on the message 
output description named MSGFMTX7 (carrier-return characters perform 
no function other than occupying a position in the output segment). 

~'ESSAGE A 

FMT-A 

fQ~!]!12 OF ~QR~ ARE! 

NO STOCK ON HAND~i* BACK ORDERS ARE 
PRESENT££ THE NEXT SCHEDULED ARRIVAL 
IS XX-XX-XX.~£ 

MSGFMTX7 

CALL 'CBLTDLI' USING INSERT-PUNC, TP-PCB, MESSAGE A, PMT-A. 

*nl = new line 

Figure 4-8. Output Message As One Segment and Its Call Statement 

output message segments cannot be distinguished as first and 
subsequent segments by the insert call. Any required distinction must 
be made by the programmer. All message segments inserted to a given 
TP-PCB during the processing of a single input message are treated by 
IMS/VS as a single message unless the PURG call is used. Output message 
segments may be created by insert calls prior to retrieval of an input 
message. 

If an application program processes a transaction code for which 
the maximum number and size of output segments has been limited (through 
system definition or the /ASSIGN command), the program must be prepared 
to accept the status codes IMS/VS returns if the limits are violated. 
When an application program inserts a segment that violates the size 
or number limit, the insert call is not honored and an error status 
code is returned. If the program attempts to insert an excess number 

4.12 IMSjVS Application programming Reference Manual 

c 



of segments more than once for the same input message, IMS/VS abends 
the application program. 

output messages sent in reply to terminals in conversational mode, 
response mode, or exclusive mode must be inserted to either the I/O 
PCB or an alternate PCB defined as ALTRESP=YES. All segments of one 
message must be inserted to the same PCB. If specified during PSB 
generation, (SAMETRM=YES), and if the application program is 
conversational, or if the physical terminal is in response mode, IMS/VS 
will verify that the logical terminal named by that response alter.nate 
PCB is assigned to the same physical terminal as the logical terminal 
that originated the message. 

If the TP application program has DB-PCBs defined, one or more data 
base calls may be executed. The normal sequence of operation may be 
to obtain the input message, issue data base calls based upon input 
message content, and create an output message based upon input message 
content and data base calls. . 

ADDITIONAL TP CALLS 

The purge call causes all message segments that have been inserted 
to a TP-PCB to be collected together as a message and enqueued on the 
TP-PCB's destination. Completed messages are handled as described in 
the introduction to this section. 

The purge call can be specified with an I/O area. In this format, 
the purge call performs the purge function and then treats the data 
contained in the I/O area as the first segment of a new message. 

Message segments are normally grouped into a message and made ready 
for transmission at the time the program issues a GU for a new input 
message or the program terminates. The purge call allows the program 
to insert multiple messages to the same destination while processing 
a single input message~ 

• The format for an ANS COBOL call is: 

CALL 'CBLTDLI' USING PURG-FUNC, TP-PCB. 

or 

CALL 'CBLTDLI' USING PURG-FUNC, TP-PCB, MSG-IO-AREA, 
OUTPUT-MOO-NAME • 

• The format for a PL/I cali is: 

or 

CALL PLITDLI (PARM_COUNT,PURG_FUNC,TP_PCB,IOAREA, 
OUTPUT_MOD_NAME) ; 

The output MOD name parameter is optional and is only meaningful to 
IMS/VS systems that include MPS. It can be specified only on the purge 
call that provides the first segment of an output message. OUTPUT MOD 
NAME is the label of an 8-byte field containing the name of the message 
output description; the name must be left-justified and padded with 
blan ks. 

Data Communication Application Programming 4.13 

'"_ . .,---_ ........ __ ... _--- ----



Figure 4-9 shows how message segments may be grouped into messages 
by the application program. 

The purge call causes IMS/VS to consider the output message ~omplete 
even if the application program that issued it subsequently abends. 
If the message destination was an alternate PCB defined during PSB 
generation as EXPRESS=YES, this could result in a terminal receiving 
a response from the application program even though it abended without 
fully processing this transaction. If the destination of the alternate 
PCB was a transaction (program-to-program message switch), the program 
for that transaction will be scheduled even though the originating 
program abended. 

CALL FUNC!ION 
MESSAGE A 

r---------, 
, SEG A1 I <------------------- INSERT SEG 1 
, ---------1 
, SEG A2 I <------------------- INSERT SEG 2 
1 ---------1 
, SEG A3 ,<------------------- INSERT SEG 3 
L---------J 

MESSAGE B <------------------- PURGE (WITHOUT SEGMENT) 
r-------- -, 
I SEG B1 I <------------------- INSERT SEG 4 
l---------t 
I SEG B2 ,<------------------- INSERT SEG 5 
1---------1 
, SFG B3 ,<------------------- INSER T SEG 6 
L---------J 

MESSAGE C 
r---------, 
, SFG C1 , 

<--
< ---~ =~=--::-':::.::.:::-~ PURGE SEG 7 

1---------1 
1 SEG C2 , <------------------- INSERT SEG 8 
1---------1 
I SEG C3 , <------------------- INSERT SEG 9 
L---------J 

<------------------- GET UNIQUE 

Figure 4 -9. Grouping of Message Segments (PURG Call) 

If a purge call is issued for a message to a terminal in response 
mode, output messages may be transmitted out of sequence. 

Conversational programs are not allowed to utilize the purge call. 

The purge call must not reference an alternate PCB defined as 
ALTR ESP=YES. 

If a purge call is used with no parameters, or with the I/O area 
parameter missing and the optional MFS parameter specified, the results 
are unpredictable. 

4.14 IMS/VS Application Programming Reference Manual 

('-.~ 

( 

....... _/ 

c 



c 

The change call is used to set the destination of an alternate PCB 
to any valid logical terminal or transaction code in the system. To 
use the change call, the alternate PCB must have been defined as 
modifiable during PSB generation. The destination of the modifiable 
PCB must be set with the change call before any segments are inserted. 
CHNG can be used to set the PCB destination to a conversational 
transaction only by a conversational program. 

When used for program-to-program message switching, the terminal 
from which the message is entered must pass the security check for the 
new transaction code. If the source terminal is not known to IMS/VS, 
and the destination has security, the call is rejected with an error 
status code. 

The new destination remains set until either the application program 
issues another CHNG, issues a GU, or terminates. At that time, IMS/VS 
resets the destination to blanks. 

A change call for an alternate PCB cannot be issued while that PCB 
is being used to form a message. Therefore, unless PURG is issued, 
multiple modifiable PCBs must be defined if messages are to be sent to 
several destinations while processing a single input message. 

• The format for an ANS COBOL call is: 

CALL 'CBLTDLI' USING CHNG-FUNC, ALT-PCBNAME, DEST-NAME. 

• The format for a PL/I call is: 

CALL PLI'rDLI (THREE ,CHNG_FUNC,ALT_PCBNAME,DEST_NAME) ; 

The destination name parameter (DEST NAME) specifies the label of 
an 8-byte field containing the name of the logical terminal or 
transaction code to be assigned as the destination for this PCB. The 
name must be 1 to 8 bytes, uppercase EBCDIC, left-justified, and padded 
with blanks. 

Three message formats are used within IMS/VS: 

• Input message 

• Output message 

• Program-to-proqram message switch 

The formats shown represent message segments as they would be 
received or constructed in the message segment I/O work area. A message 
segment and a single message line are synonymous. 

The formats are different when either conversational processing or 
Message Format Service is used. Formats for conversational processing 
are described in the next chapter. MFS formats are described in the 
I~~L!~ ~~§§~g~ XQ£IDE~ Usg~~ gy~~~. 

Data Communication Application Programming 4.15 



INPUT MESSAGE FORMAT 

Input message segments originate at a communications terminal and 
are delivered to the application program's message segment I/O work 
area by means of a GU or GN call. The length of the input message 
segment (text portion) is directly related to the line length of the 
specific communications terminal that originated the message. 

The first segment of an input message may not contain a transaction 
code if the message was switched from another program. 

The maximum number of bytes allowed by each terminal supported by 
IMS/VS is shown below. 

1050, 2740-1, 2740-2, 2741 

2260-1, 2265-1 with 
12/80 screen 

2260-2 

2770 

2780 

2980 

3270 

3600, 3790 

3741 

3767, 3770· 

7770 

33/35 Teletypewriter 

Local Card Reader (2501, 
2520, 2540, 1442) 

System!3 
System/7 

System!37Q console 

130. If MFS is us ed for the 
2740/2741, see the IM~/VS 
~~2~~g~ rQf~! ~~~y!£~ 
!!~er'2 Guide. 

80 

40 

Variable, depending on component. 

80 

Variable, depending on user edit. 

Variable; see the l~~L!~ 
Me§.2~~ !Q!:.mat ~~~y!~~ 
!!ser' 2 IDlide. 

Variable; refer to the ~S/VS 
Advanced Function for 
communications manual, or, if 
MFs-Is used, to the IMS/V~ 
11~~ r.Q£!!@! Seu!£~ Us~ 
~uid~. 

128 

512. If Message Format Service 
(MFS) is used, the length of 
the message segment is defined 
by the user to MFS. 

Variable, depending on user edit. 

80 

80 

Variable, dependent on user's 
program in the System/3 or 
System!1. 

122 

4.16 IMS/VS Application Programming Reference Manual 



The format of each input message segment is: 

r---------------------------------------------------------, 
, LL 'ZZ ,TEXT I L--------------------------_--________________________ ----J 

LL 

zz 

is a 2-byte binary field representing the total length of the 
message segment, including LL and ZZ. The value of LL equals 
the -number of bytes in text plus 4. The LL value is provided 
by IMS/VS for input messages. 

When PL/I is used, the LL field must be defined as a binary 
fullword. The value contained in the LL field is the actual 
segment length minus 2 bytes. For example, if the input message 
segment is 16 bytes, LL is equal to 14 and represents the sum 
of ~he lengths of LL (4 bytes minus 2 bytes), ZZ (2 bytes), and 
TEXT (10 bytes). 

is a 2-byte field reserved for IMS/VS. 

TEXT 
is the message segment in EBCDIC as it was entered at the 
terminal. IMS/VS edits a message segment before passing it to 
the application program. 

• First or only segment 

A single-segment message, or the first segment of a multisegment 
message, contains a transaction code and the segment text. A 
transaction code does not exceed 8 bytes, and is followed by a 
blank. IMS/VS has removed any of the following items if they 
appeared in the terminal input stream: 

• Leading control characters 
• Leading blanks 
• Backspaces 
• Trailing control characters 

If a password is present, IMS/VS: 

• Removes the password 

• Replaces the password with a blank unless the first 
byte following the password is a blank 

• Left-justifies the segment text 

• Non-first segments 

The text of the second and subsequent segments of a multisegment 
message contains message text only. The IMS/VS edit functions are 
the same as above except IMS/VS does not remove leading blanks. 

• Preset Mode Segment Edit 

For the first or only segment of a message from a terminal in preset 
mode, I~S/VS inserts the transaction code. IMS/VS also inserts a 
blank following the transaction code unless the first byte of 
message text is a blank. The second and subsequent segments are 
treated as described above for non-first segments. 

Data Communication Application Programming 4.17 



The input of segment 1 of Message A at a 1050 or 2740 Model 1 terminal 
may b,e: 

b b CE 
ORDER(PURCH)bNUMBERb42746k5bPAWkRTbNBRb576325RO 

s s B 

P P 
<---------------47 CHARACTERS-----------------) 

But the received segment 1 of Message A in the input segment I/O work 
area of the application program (specified in the CALL statement) is: 

1 

2 

3 

s 

6 

7 

123 5 6 7 

LLZZORDERbNUHBERb42745bPARTbNBRb576325 
<----------38 CHARACTERS-------------) 

LL is the 2 bytes containing the length of the message 
segment. This message segment is 38 bytes long. 

ZZ is the 2 bytes reserved by IMS/VS. 

ORDERb is now the transaction code and a blank where before 
there was also a password which is edited out before being 
received at the application program. 

NUMBER is the first 6 bytes of the text of this message segment. 

45b shows that the incorrect character (6) and the backspace 
have been edited out by IMS/VS, leaving the next character (5). 

PART shows that the incorrect character (W) and the backspace 
have been edited out by IMS/VS~ leaving the next character (R). 

shows that the CR (carrier return) and the EOB (end-of-block) 
have been edited out. 

DEVICE DEPENDENT INPUT MESSAGE CONSIDERATIONS 

The I~~L!~ QE§~siQ~~~ Reference H~nYsl describes the input message 
format and operating characteristics for each terminal type supported 
by IMS/VS. The remainder of this section on input message formats 
lists input me~sage considerations that should be reviewed by the 
application programmer responsible for supporting the 2260 Display 
Station Models 1 and 2, the 2265 Display Station Model 1, components 
of the 2110 Data Communication System~ and the 2972/2980 General Banking 
Term inal System. 

4.18 IMS/VS Application Programming Reference Manual 

.. ~ .. _./ 

... 



c. 

• The input message is broken into segments whose length is variable: 

2260-1,2265-1 
2260-2 (2848-1) 
2260- 2 (284S-2) 

1 to SO (12 segments per screen) 
1 to 40 (6 segments per scree n) 
1 to 40 (12 segments per screen) 

A segment contains the number of bytes on one screen line unless 
a New Line (NL) symbol is entered; when a NL symbol is used, the 
se~ment is truncated at the NL symbol. 

• A START MI symbol must precede entry of an input message. Only 
one START HI symbol per screen is allowed. The START PlI symbol 
can be entered by the operator from the keyboard or can be placed 
on the screen by the application program (when placed by the 
application program, the START PlI must be one character, 
multipunched X'4A' or C'¢'). 

If ENTER is pressed when no START HI is displayed, no data is sent 
to IMS/VS; IPIS/VS displays a START PlI and flags the screen as 
reserved for an input message 

• An input message is considered to be that data contained between 
the START HI and the position of the cursor when ENT ER is pr essed. 
Any data outside these bounds when ENTER is pressed is ignored and 
not transmitted to IKS/VS. 

2265- 2 

• The input message is broken into segments whose length is variable: 

12xSIJ 
15x64 

1 to 80 (12 segments per screen) 
1 to 64 (15 segments per screen) 

A segment co~tains the number of bytes on one screen line unless 
a New Line (NL) symbol is entered; when a NL symbol is used, the 
segment is truncated at the NL symbol. 

• A SPIM symbol should precede any entry of an input message. Only 
one SMM symbol is allowed per screen. The 2770 system defaults to 
a beginning of screen read to cursor if no SMM symbol is present 
on the screen, unless the screen has been erased before the ENTER 
key is depressed. A SMPI symbol is not recognized if it is placed 
on the screen following an NL character on the same line • 

• The terminal operator can enter the SMM symbol from his keyboard 
or the application program can place it on the display screen. 
(The symbol must be one character, multipunched X'4A', or a CI¢'). 
IMS/VS also provides that if the operator presses KEYBOARD REQUEST, 
ERASE FULL, ENTER, IMS/VS displays a SMPI symbol on the screen and 
flags the screen as reserved for an input message. 

• The input message is considered to be that data contained between 
the SPIM symbol and the position of the cursor symbol at the time 
the ENTER key is pressed. 

Data Communication Application programming 4.19 



Card Reader 

• The input segments may be a maximum of 80 bytes. The segment may 
be smaller for one of two conditions. If the 2772 control unit 
has the Buffer Expansion Feature installed, any trailing blanks in 
an individual card are deleted. If the "I." sequence is used by 
the terminal operator to indicate the end of a transaction input 
text, th e "I." sequence is d elet ed from the message segment. If 
the terminal operator punches an end of media (EM) character in 
the card, the card is truncated from the position before the EM 
character. 

Keyboard 

• The maximum input segment size is dependent on the size of the 2772 
line buffer or the size of the IMS/VS queue message buffer minus 
the prefix length, whichever is smaller. 

Paper Tape Reader 

• The maximum input segment size is dependent on ~he value specified 
in the PTSEG= keyword of the TERMINAL statement during IMS/VS system 
definition. 

Magnetic Ink Character Reader (MICR) 

• A message is considered to be all documents read from the component 
until an End of File Document is detected. 

• The input message segment size is dependent upon the MICR features 
and terminal operator field selections. 

• Each document from the MICR is treated as a segment. 

Magnetic Data Inscriber (MDI) 

• The maximum input segment si"Ze is dependent upon the value specified 
in the MDISEG= operand of the TERMINAL statement during IMS/VS 
system definition. 

• The input message is considered to be all data records processed 
from the first input until an End of Data Code is detected from 
the MDT. 

• If the ERROPT=ACCEPT option of the TERMINAL statement is selected 
during TMS/VS system definition, the contents of an input segment 
for which an error occurred are undefined. 

When a 298Q Model 1 or Model 4 teller station is used as the input 
terminal; there are characters that can be entered which are not 
translatable into EBCDIC. Figures 4.10 and 4.11 list the hexadecimal 
values used by IMS/VS to represent the non-EBCDIC characters that can 
be entered from a teller station. Figure 4-12 identifies 2980 Kodel 
4 function key entries. 

4.20 IMS/VS Application Programming Reference Manual 

" 



c 

Figure 4-10 represents the IMS/VS translation of numeric entry data 
from a 2980 Model 1 teller terminal. Alphabetic entry data is presented 
to the application program in the standard EBCDIC charac ter set. 

GRAPHIC GRAI'HIC 8RAPHIC 
KEY SYHBOL HEX KEY SYMBOL HEX KEY SYHBOL HEX 

NUMBER PRINTED VALUE NUHBER PRINTED VALUE NUMBER PRINTED VALUE 

0 t 41 18 S 54 36 3 F3 

1 R 67 19 C 55 37 + 4E 

2 C 73 20 . 4B 38 - 71 

3 H 9A 21 0 56 39 F 75 

4 V B7 22 w 57 40 T 70 

5 Q 69 23 H 58 41 $ 63 0 

6 T 42 24 0 FO 42 t 64 F 

7 ~ 43 25 7 F7 

8 t1 44 26 4 F4 

9 X B2 27 ! 72 

10 N 45 28 1 F1 B 

11 H 46 29 8 F8 

12 f. 47 30 5 FS 

13 A 48 31 S 62 

14 2 49 32 2 F2 

15 r 51 33 9 F9 

16 ~ 52 34 6 F6 

17 B 53 35 U 98 

Figure 4-10. 2980 Model 1 Special Character Set 

Data Communication Application Programming 4.21 



Figure 4-11 represents the IHS/VS translation of numeric entry data 
from a 2980 Model 4 teller terminal. Except alphabetic entry of keys 
11, 15 and 40 as indicated on the above chart, alphabetic entry data 
is presented to the application program in the standard EBCDIC character 
set. 

GRAPHIC 
HEX GRAPHIC HEX GRAPHIC HLX KEY SYl4BOL KEY Syr.mOL KEY Syr.mOL 

NUHBER VALUE NUMBER VALUE NUHBER VALUE 
PRINTED PRINTED PRINTED 

0 C 62 18 G 76 36 0 FO 

1 L 67 19 J 64 37 5 F5 

2 A 68 20 B 77 38 2 F2 

3 C 55 21 / 61 39 9 F9 

4 . 87 22 P 78 40 .f. 70 

5 * 69 23 0 49 41 6 F6 8 

6 $ 71 24 N 79 42 3 F3 

7 I 4F 25 H 46 

8 N 45 26 J 81 11 2 85 8 

9 E 72 27 # 89 15 3 86 

10 ? 6F 28 X 82 40 • 90 

11 M 88 29 0 83 

12 C 73 30 K 84 

13 - 74 31 7 F7 

14 F 75 32 , 80 

15 I 59 33 4 F4 

16 " 65 34 1 F1 

17 6. 66 as 8 F8 

Figure 4-11. 2980 Model 4 Special Character set 

4.22 IMS/VS Application programming Reference Manual 



( 

_ ..•.• _------_ .... _ .. _--- -----_ ..• _ ........ _---- ..• _-.... _ .... _-

Figure 4-12 illustrates the character presented to the application 
program when the corresponding function key is entered. Because of 
hardware design, IMS/VS cannot distinguish function key entry from a 
corresponding keyboard entry; the application programmer must therefore 
be warned of possible conflicts. 

rUNG HEX rUNG HEX rUNG HEX rUNG HEX 
KEY VALUE KEY VALUE KEY VALUE KEY VALUE 

1 61 7 6r 13 B3 19 67 

2 66 8 65 14 78 20 68 

3 74 9 71 15 75 21 77 

4 72 10 69 16 76 22 73 

5 46 11 79 17 Bl 23 r2 

6 B2 12 45 18 B4 24 F3 

Figure 4-12. 2980 Model 4 Function Key Translate Table 

OUTPUT MESSAGE FORMAT 

This section describes the output message formats supported by 
IMS/VS. IMS/VS supports two output destinations -- terminals and 
programs. The output· formats are essentially the same for both but 
each has unique application program considerations. 

Terminal d9stination output message segments originate in the 
application program and are sent to a logical terminal defined by a TP 
PCB. Each output message segment is enqueued to be sent by means of 
an insert call. The format of each segment is: 

r---------------------------------------------------------, 
I LL I Z 1 I Z 2 , T EXT I 
L---------------------------------------------------------~ 

LL 
is a 2-byte binary field representing the total length of the message 
segment, including LL, Z1, and Z2. The value of LL equals the number 
of bytes in text plus 4. The application program must fill in this 
count. If a size limit was defined for output segments of a 
transaction being processed, LL must not exceed the defined limit. 

When PL/I is used, the LL field must be defined as a binary fullword. 
The value provided by the PLII application program must represent 
the actual segment length minus 2 bytes. For example, if an output 
message segment is 16 bytes, LL is equal to 14 and represents the 

Data Communication Application programming 4.23 



Z1 

Z2 

sum of the length of LL (4 bytes minus 2 bytes, Z1 (1 byte), Z2 (1 
byte), and TEXT (10 bytes). 

is a 1-byte field that must contain binary zeros and is reserved 
for IMS/VS. 

is a 1-byte field that must contain binary zeros and is reserved 
for IMS/VS. This Z2 definition applies to all terminals except 
terminals that use the Message Format Service (MFS), switched 
terminals, the 2260, the 2265-1, the 2265-2, some 2770 components, 
and the 2980. 

• Z2 for Terminals Using MFS 

For terminals supported by MFS, the field is used to denote the 
beginning of a logical page. See the IM~/VS ~~~ ~!~! ~ervi~ 
n2~!~§ ~gigg for a complete description of MFS formats. 

• Z2 for Switched Devices 

For switched devices, Z2 is a 1-byte binary field that can be used 
by the application program to request that the destination terminal 
be disconnected from the line after the message containing this 
request is written to the terminal. This disconnect request is 
recognized i~ present in any segment of the output message and is 
indicated by a value of X'80' in the Z2 field. This feature is not 
supported for a switched 3275 or 3741. 

• Z2 for 2260/2265 

For th~ 2260 and 2265, Z2 is a 1-byte binary field that denotes the 
type of WRITE command to be effected to the display screen. These 
types of WRITE commands affect the format of the display screen. 
For 2260 operation, the IBM 2848 Display Control must .ha ve the Line 
Addressing feature (4787) to accomplish Items 2 and 3 belove 

4.24 IMS/VS Application Programming Reference Manual 

c 



., 

1 • WRITE 

2. 

3. 

4. 

flRITE AT LINE 
ADD RESS (iL It) 

ERASE SCREEN 
START AT LINE 

WRITE ERA SE (WE) 

Indicates that it will Binary zeros 
begin writing output 
segment at the current 
cursor position 

Indicates that it will 
begin writing at the 
line specified (from 
one through fifteen 
depending on model) 

Indicates that the 
screen will be erased 
first; the output 
segmen t will be 
written at line address 
specified (line one 
through fifteen 
depending on model) 

Indicates the screen 
will be erased first; 
the output segment 
will be written 
starting on the upper 
left corn er of the 
screen 

X'01' through X'OP' 
for lines 1 through 
15.. Values above X' 06' 
depend on the type of 
displ ay st ation and/or 
its features. 

X' 11 ' through X' 1 F ' 
for lines 1 through 
15 • Values above 
X' 06' dep en d on the 
type of display 
station and/or its 
fea tures 

X'20' 

Any code not the same as that designated for the WRITE commands 
above defaults to binary zeros. No error messages are given. Since 
the screen may have up to 15 lines, line addresses may range from 
X'01' to X'OF' depending on model. 

If video-paging is included in the system, multiple-page output 
messages may be designated by inserting an X'40' in the Z2 field of 
the segment representing the first segment of each page. This flag 
can be in addition to other video-screen format characters (for 
example, X'60' for first segment of page and write erase). To page 
forward and backward within a series of pages, these flags must be 
contained within a single message; no purge calls or get unique 
calls to the I/O PCB may be issued while building a multiple-page 
message. If a page flag is not found in the first segment of a 
message, subsequent page flags are ignored. 

Example: 

Z1 Z2 TEXT 

Insert iLLiQ~Q_i_~EG-11 
Insert i11lQQlOO_~EG~1 Page , 
Insert 1111QQl~Q_1-~EG_]1 
Insert 1111001QQ_1-~~§_~1 Page 2 ~essage 1 
Insert 1111QQ1Q2_1_~EG_21 

Insert 111100122_1_~EG_§1 Page 3 

These three screens can be displayed by the operator multiple times 
or not at all and may be displayed either in or out of sequence as 
the operator chooses. 

Data Communication Application Programming 4.25 



Z1 Z2 TEXT 

Insert 1111QQjlQ_1-~~-11 
Insert 1111QQ1QQ_l-~~_ll ~age 1 Message 1 

Purge lLL1QQl~Q_l~~ 
Insert lLL10010~_1.2EG~i Page 1 Message 2 
Insert 1!1l00102--L2~ 

Purge lLL1Q.Qll£_L2EG 6L Page 1 Message 3 

The above sequences would produce t he same images to the terminal 
as the paged example above and would not require the paging feature. 
However, these images would be displayed once and only once and must 
be displayed in sequence • 

• Z2 for 2980 

output messages reguiring a passbook on a 2980 Model 1 or a 2980 
Model 4, or requiring the insertion of the auditor's key on a 2980 
Model 2 must contain a X'10' in the Z2 field of each output message 
segment. If the terminal PCB is the common buffer of the 2972 
control field, the Z2 field value is ignored. 

If the required passbook is not properly inserted in the output 
terminal when IMS/VS attempts transmission of a passbook message 
segment, the segment will be prefixed with two carrier returns, a 
FEED-OPEN (if 2980 Model 4), a MESSAGE LIGHT (if 2980 Model 1) , or 
a TURN PAGE (if 2980 Model 4) indicator, and the required number of 
tab characters to position the type element to the passbook area of 
the output terminal. This allows the telle,r operator to insert the 
passbook to the proper print line. When the indicator is turned 
off (MESSAGE LIGHT or TURN PAGE), the type element tabs to the 
passbook area and begins printing the output message segment. IMS/VS 
positions the type element whenever the required passbook is not 
properly positioned in the output terminal, or if the passbook has 
been indexed beyond the last printable line when the passbook message 
segment was first transmitted. For these reasons, output message 
segments should not contain data for both the journal/audit tape 
area and the passbook area, since this may cause undesirable results. 
Output messages requiring, the auditor's key on a 2980 Model 2 are 
not transmitted to the output terminal unless the auditor's key is 
inserted. Refer to the l~aL!~ Operator's Reference ~snYA! for 
procedures on receiving auditor key messages. 

TEXT 
is the output message segment in EBCDIC as it is transmitted to 
a specific logical terminal. The length of an output message 
segment is governed by the specific communication terminal 
receiving the output message. The maximum number of bytes for 
each message segment text is: 

1 05(1 , 27 4 0- 1 , 
2740-2, and 2741 

2260-1, 2265-1 
2260-2 with 2848-1 
2260-2 with 2848-2 

!!!m be ~ of Byt ~§. 

130 (can be larger if CRs are 
empedded at 130 bytes or less) • 
If Message Format Service (MFS) 
is used for the 2740/2741, 
refer to the IMS/VS ~~§~9~ 
1.2!:.!S:! Servic~ User's .§!!i~~. 

960/screen* 
240/screen* 
480/screen * 

4.26 IMS/VS Application programming Reference Manual 

('" 
.~ ....... ".-... 

(
-~ 

" ~--.' 



C. 

/ 

(,-- -

!~I.!!!!!!~! 

1 (' 53/2 84 8 

1053/2845 

2770 
2265- 2 

card punch 
printer & pa per tape punch 

2780 
printer 

punch 

2972/2980 

Common buffer 
Terminal buffer 

with buffer expansion 

3270 

3600, 3790 

3741 

3761, 3770 console, printers 

3770 punch 

7770 

33/35 Teletypewriter (ASR) 

System/3 
System/7 

System/370 console 

RY~~~I of Byt~ (Continued) 

*Anything over will wrap the 
screen and overlay the first 
part of the message. 

960; anything over will truncate. 

240; anything over will truncate. 

Variable, based on component. 
960; anything over will wrap 
the screen and overlay the first 
part of the message. 
80; anything over will truncate. 
less than 32768. 

Variable 
80 or 120, or 144, based on 2780 
printer specifications; anything 
over will truncate. 
80; anything over will truncate. 

The following applies: 

23 
47 
95 

Refer to the IHpL~ Me§~g~ 
!QI~l Servicg Us~ 2Y!~~. 

Variable; refer to the 1~~L!2 
!dvan~ lY!!£tiQ1! for 
Communications manual, or, if 
MFS is used, to the lAaL!~ 
H§2§.s~ l~i ~rvice !!§§I~§ 
§Yig~· 

12-8 or less, ba sed on 3741 
specification; segments will be 
padded with blanks or truncated 
to this value. 

Up to the message size. If 
Message Format Service (MFS) is 
used, the length of the message 
segment is defined by the user 
to MFS and is limited by the 
MSGQUEUE macro statement 
speCification at system 
definition. 

80; anything over will truncate. 

Any length. 

80 

Variable, dependent on 
user's program in the System/3 
or System/7. 

126; anything over vill truncate. 

Data Communication Application programming 4.27 



SYSOUT Print 
Direct 

Spooled 

!umbe~ of Byt~2 (Continued) 

Variable, based on device, 
the segment is truncated to the 
record length specified for the 
particular device. When the 
output device is a printer, 
default segment maximum lengths 
are: 

120* for 1443, 1403 
132* for 3211 

Default segment size is 120*. 

*These sizes do not include carriage-return characters as 
specified later in the section "Online Message Format 
Considerations." If carriage control is present, these maximums 
can be increased by 2. 

2980 optional Features 

The reader should refer to Component ~~2£ription: 1~~ 2972 ~2g~!§ 
~ ~rrQ 11 2~rr~£~! ~~n!~~g Termingl ~1§!g!2' GL27-3020 for a complete 
discussion of the optional features available on a 2980 Kodel 4 and 
how an application program might make use of them. The discussion 
following is limited to the use of those features in the IKS/VS 
env ironment • 

• ' 2980 Message Lights 

The 2980 Model 1 and Model 4 teller terminals incorporate a message 
light feature that prevents the printing of an output message at the 
terminal until some operator action is taken. An application program 
can utilize this message light feature on a 2980 Model 1 by inserting 
a X'17' in the text of the output message segment. The data folloving 
the mes.sage light character viII not be printed at the terminal until 
the terminal operator presses the message light key. Any combination 
of six message lights at a 2980 Model 4 teller terminal can be caused 
to 'turn on by the insertion of a two-character message light sequence 
as the first two (or only) characters of an output message segment. 
The data following the me~sage lig~t sequence vill not be printed ~ntil 
the terminal operator presses the message light key. The message light 
sequence for a 2980 Model 4 consists of an X'17' followed by any 
character whose hexadecimal.value is greater'than X'3F', an X'40' vill 
be substituted for invalid values. Refer to the above mentioned SRL 
for detailed information on ,the use of and setting of message lights 
on the 2980 Model 4.. IMS/VS precedes all system-generated messages 
with an X'1740' if the message is for a 2980 Kodel 1 or 2980 Kodel 4 • 

• 2980 Function Keys 

IMS/VS cannot distinguish a function key entry from a data key entry 
that causes transmission of the same character to the cpu. Pigure 4-13 
lists the character received by the application program vhen the 
corresponding function key is entered. The application programmer must 
be avare that, since function keys are an optional feature, in each 
instance there 'is a corresponding keyboard entry vhich results in the 
same character being received. No direct facility is provided which 
would give a unique distinction to the application program betveen 
entry of function keys 23 and 24 and the graphic numeric characters 2 
and 3, respectively. To do so would require the terminal operator to 
enter alpha shift to enter these numbers. (The application programmer 

4.28 IM S/VS Application programming Reference Kanual 

c 



c' 

may require operator entry of keyboard keys 11 and 15 in alpha shift 
for those number~ if such distinction is necessary.) 

Qnli!l§. t1g2§~,g~ fQ£!!l~1 Consideratio!l2 -- 111:2 Not ,!!sed 

When Message Format Service (MFSt is not used, it is the application 
programmer's responsibility to provide all horizontal and vertical 
format control required to properly display an output message. An 
output message can contain multiple message segments. It is not 
necessary to include a logical. terminal name ~n an output message since 
the destination is determined by the logical terminal PCB. 

Certain device control characters must be inserted into an output 
message when it is desired to format a message at a terminal output 
device. Output message formatting for the devices supported by IMS/VS 
may be accomplished as follows: 

• When output is to be printed on a typewriter-like device (for 
example, 2740), the following hexadecimal characters found' within 
the output text function as indicated: 

X'05' Skip to tab stop (BT), but stay on same line. 

X'15' start 'new line (Nt) at left margin (carriage return). 

X'25' Skip tb new line (LF), but stay at same print position 
horizontally. 

The most e·fficient way to skip mn! tiple lines is by including a 
combination of one Nt character and multiple LF char acters. 

Forms feed control can be provided for a 1052 or 1053 printer by 
including the forms control characters as the first two bytes of 
output message segment text. output message segments may contain 
multiple typed lines (carriage returns should be embedded at 130 
characters or less). 

• When output is to be printed on a 1050 printer and vertical forms 
control is used, the forms control sequence must be the first tvo 
characters in a segment. 

• When output· is to be printed on a 2780 or local printer, a message 
segment is considered to be a print line, and message text over 
the designated printer's capability is truncated on output. NL 
and LF characters are ignored. Control other than single line 
spacing (which is default) may be achieved by inserting an ESC 
character (X'27') as the first character of the output message 
segment text, followed by one of the following carriage control 
characters (the X'27' and the carriage control characters' are not 
considered part of the message text for truncation purposes) : 

S Double space after this line is printed. 

T Triple space after this line is printed. 

A through L Skip to channel 1 through 12 after this line is 
printed (local print). 

A through H -- Skip to channel 1 through 8 after line is printed 
(2780) • 

M -- Suppress spacing after printing (local print only). 

Data Communication Application Programming 



J 

• When output is to be written to the OS/VS system console, a message 
segment is considered to be a print line. If the output message 
segment text does not begin with the characters DFS followed by 
three numeric characters, lMS/VS inserts a prefix of DFSOOOI. All 
embedded Nt characters are replaced by blanks (X·qO·) as required 
by OS/VS WTO. output message segment text (including DFSOOOI, if 
inserted by 1MS/VS) in excess of 126 characters is truncated as 
required by as/vs WTO. 

• When output is to be punched (with, for example, the 27Sb terminal 
or the 3770 card punch), a message segment is considered to be a 
card, and message text over SO characters is truncated upon output. 

• When output is to be displayed on a 2260-1, 2260-2, or 2265-1, the 
following are output message considerations: 

An ou~put message can be composed of multiple segments that make 
up a single screen. Total segment and message length is 
variable: 

Lines per Bytes per Bytes per 
Q~!i~~ ~n ~~.9~nt ~22M.! 

2260-1, 2265-1 12 SO 960 
2260-2 (2848-1) 6 40 2qO 
2260- 2 (2848-2) 12 qO 480 

If the length of the message exceeds the capacity of the screen, 
the screen will wrap, destroying the data previously displayed. 
New Line (Nt) characters are honored; Line Feed (tF) characters 
are ignor ed. 

Multiple screen output is allowed. 

Each segment can specify a write-type request (Z2 field bits). 
IMS/VS ignores WRITE-ERASE requests except on the first segment 
of an output message. 

• When output is to be displayed on the 2265-2 component of a 2710 
·system ,the following are output message considerations: 

An output message can be composed of multiple segments that make 
up a single screen (960 bytes). 

If the length of the message exceeds the capacity of the screen, 
the screen will wrap, destroying data previously displayed. NL 
characters are honored except as described below. LF characters 
are not honored. 

Multiple screen output is allowed. 

An Nt character in text that is being written on the last line 
of the display screen does not cause a screen wrap operation to 
occur. The Nt character(s) is displayed on the last line of 
the screen. 

An S~M symbol on the screen after an NL symbol does not transfer 
data if the ENTER key is pressed. 

Each output message segment .ay specify its write-type request • 

• When output is to be printed on a 2770 printer component, the 
following are output message considerations: 

Segments over the printer line length cause an autoaatic hardware 
carriage return before printing of the remainder of the seg.ent. 

4.30 If!S,lVS Application Programming Reference !Jannal 

/'--~ 

I 

(~ 

'''---- .. / 

C .. -' 



If no control operations are embedded in the message segment, 
the printer is single spaced by the insertion of an IRS 
character. 

If a trailing NL character is in the segment, the printer 
component double spaces after printing the line. 

Explicit carriage control can be accomplished by limiting segment 
length to the length of a print line (this depends on the printer 
component type and features) and inserting an ESC character 
(X'27') as the first character of the output message segment 
text, followed by one of the carriage control characters fbr 
the 2770 printer component. See ~yst~ ~Qmponent§: 1~~ £110 
~~1£ £~~~i£~!iQn~ Syst~, GA27-3013, for a description of 
these codes. 

• When output is to be punched on the 2770 paper tape punch component, 
the following are output message considerations: 

IMS/VS inserts an end 'of media character at the end of each 
output message to the paper tape punch. 

If segments whose size is larger than the value specified on 
the PTSFG= operand of the TERMINAL statement during system 
definition are sent to this component, the ~egment will not be 
properly deblocked on subsequent reentry to IMS/VS. 

• When output is to be printed on a 2980 terminal, the following 
hexadecimal characters function as indicated: 

X'OS' Skip to tab stop (HT), but stay on same line. 

X'1S' Start new line (NL) at left margin, if the present position 
of the type element is within the audit/journal tape area; 
or the type element will be repositioned at the intermediate 
carriage stop, if the present position of the type element 
is within the passbook area. In the latter instance, 
printing'will resume on the same print line. 

X'25' lo1hen the output message segment is destined for the passbook 
area of the terminal, this character will cause the start 
of a new line at the intermediate carriage stop. IMS/VS 
will ensure that the passbook is properly inserted at a 
printable line on all transmissions to the passbook area. 

output message segments may contain multiple print lines. Care 
should be taken to insert carriage returns (X'1S') and/or passbook 
index (1'25') characters in long message segments to prevent typing 
past the audit/journal tape or passbook. 

• When the output device is a 7770-3 line, it is the responsibility 
of tne application programmer to format the output message with 
7770 vocabulary Drum Address characters as required for th~ 
application. 

output device independence may be achieved by generating output 
message segment text no greater than 80 bytes, including a trailing NL 
character. Output message segment text should not contain any forms 
or carriage control characters. If video terminals are included in a 
system, no more .data than will fit on a single screen should be 
generated per output message. It should be noted that the output device 
independence described above may restrict efficient use of certain 
output devices, and may restrict use of special output device functions. 

Data Communication Application programming 4.31 



frQ~£~m~~Q~R£Qg£~ Me~~ ~~ii£hing 

An output message destined to another application program is a 
program-to-program message switch. The message switch destination can 
be specified during PSB generation or during program execution using 
the change call. The destination must be a transaction code defined 
during system definition. The receiving program must contain an I/O 
area large enough to hold the largest segment sent by the transmitting 
program. 

Insert calls are used to create the segments of a program-to-program 
message. When inserting a segment, an alternate PCB must be used. The 
destination of the alternate PCB must be set prior to the first insert 
call. 

Message security procedures mayor may not be invoked during 
program-to-program message switching. They are invoked when a change 
call is used to set the destination; the current.entering terminal must 
be authorized to enter the transaction code set by ~he change call. 
No checking is performed on insert calls. 

The format of a message switch segment is: 

r---------------------------------------------------------, 
1 LL I Z 1 , Z 2 I T EXT I 
L---------------------------------------------------------J 

The format is essentially the same as for output messages to logical 
terminals. The following areas should be noted: 

• Z1 and Z2 are one-byte fields that must contain binary zeroes; the 
use of Z1 and Z2 is reserved for IMS/VS • 

• TEXT is the message segment that is to be sent to the specified 
destination. 

Since IMS/VS does not prefix a switched message with a transaction 
code, the application program can put the transaction code at the 
beginning of the first segment. This assures that messages arriving 
at the destination are in the same format, whether originating from a 
program or from a terminal. 

ANS COBOL MESSAGE PROGRAM STRUCTURE 

Figure 4-13 outlines the fundamental parts of an ANS COBOL message 
processing program. Each item should be considered when designing a 
message program. This program processes an inquiry from a terminal, 
makes a reference to a data base for information, and sends a message 
to a different terminal or to an application program. 

4.32 IMS/VS Application Programming Reference Manual 

(-" 

\.' ....... _,/ 

c 



REF 
NO. ENVIRONMENT DIVISION. 

1 

2 

3 

5 

6 

7 

8 

9 

10 

• 
DATA DIVISION. 
WORKING-STORAGE SECTION. 

77 GU-CALL PICTURE XXXX VALUE 'GU '. 
77 ISRT-CALL PICTURE XXXX VALUE 'ISRT'. 
77 CT PICTURE S9(5) COMPUTATIONAL VALUE +q 
• 
01 SSA-NAME. 
• 
()1 
C1 
01 

LINKAGE 
01 
01 
01 

MSG-SEG-IO-AREA. 
DB-SEG-IO-AREA. 
ALT -MS G-S EG-OUT. 
SECTION. 
IO-PCB. 
ALT-PCB. 
DB-PCB. 

PROCEDURE DIVIS ION. 

ENTRY 'DLITCBL' USING Io-PCB, ALT-PCB, DB-PCB. 
• 
CALL 'CBLTDLI' USING GU-CALL, IO-PCB, 

M SG-SEG-IO-A REA. 
• 
CALL 'CBLTDLI' USING GU-CALL, DB-PCB, 

DB-SEG-IO-AREA, SSA-NAME. 
• 
CALL 'CBLTDLI' USING ISRT-CALL, ALT-PCB, 

A LT-M SG-SEG-OUT. 
• 
GOBACK. 

COBOL - LANGUAGE INTERFACE 

Figure 4 -13. COBOL Message Program Structure 

The following explanations are keyed to the numbers along the left 
side of Figure q-13. 

1. A 77 level or 01 level working storage statement defines each 
of the call functions used by the message program. Each picture 
clause is defined as four alphameric characters and has a value 
assigned for each function (for example, ISRT). 

2. An ~1 level working storage statement describes each segment 
search argument (SSA) used for a data base call. An example of 
an SSA definition, with a ~owercase b representing a blank and 
a lowercase v representing the symbolic value in the field, is: 

01 S ~A -NAME. 
02 SEG-NAME PICTURE X(8) VALUE 'ROOTbbbb'. 
02 SEG-QUAL PICTURE X VALUE '(I. 
ry2 SEG-KEYNAME PICTURE X(8) VALUE 'KEYbbbbb'. 
02 SEG-OPERATOR PICTURE XX VALUE 'b='. 
02 SEG-KEY-VALUE PICTURE X(6) VALUE 'vvvvvv'. 
02 SEG-END-CHAR PICTURE X VALUE ') I. 

Data Communication Application programming 4.33 



When the above COBOL syntax is decoded and placed in storage, 
it will be in a data string as follows: 

ROOTbbbb(KEYbbbbbb=vvvvvv) 

(For further discussion, see the section "Segment Search 
Arguments n in the "Data Base Batch Programming" chapter of this 
manual. ) 

3. An 01 level working storage statement describes each segment 
I/O work area within the message program. 

4. An 01 level linkage section entry describes the PCB statement, 
first for the input terminal for the current message being 
processed (the I/O PCB), second for each output destination 
other than the input terminal (alternate PCBS), and third for 
each data base. It is through this linkage description that a 
COBOL program can access the status codes after a DL/I call. 

5. This is the message program entry point and must be the first 
executable COBOL statement in the procedure division. There 
must be a name for every PCB used by the message program. The 
first PCB name must be for the I/O PCB. The remaining PCB names 
must be specified in the same order, following the I/O PCB, as 
they are presented in the program's associated PSB generation. 
The PCB names could be specified in the linkage section in the 
same order, but this is not a requirement. ' 

6. This is a typical call used to read the input (source) logical 
terminal. The first time this call is executed with function 
equal to get unique, the first segment of the message that caused 
the message program to be scheduled is brought into this program. 
If the input message consists of more than one segment, 
subsequent segments can be obtained with a similar call but with 
the function equal to get next. 

7. This call is used to access data from a data base. The format 
is the same as that in Item 6 above, except that the PCB refers 
to a data base and the segment search arguments define a 
particular data base segment. 

8. This call is used to reply to an output destination other than 
the terminal representing the source of the input message. If 
the output destination is the input terminal, this call must 
utilize the I/O PCB. 

9. This operation causes the message program to return control to 
t~e IMS/VS control facilities. 

1~. A language interface (DFSLIOOO) is provided by IMS/VS for all 
COBOL programs. This module must be link-edited to the message 
processing program after compilation and provides a common 
interface to IMS/VS and DL/I for all call statements. 

The language interface function of IMS/VS is reenterable and 
compatible with that of IMS/360 Version 2. To take advantage 
of the reenterable capability, application modules from IMS/360 
must be re-linkedited, replacing the IMS/360 Version 2 language 
interface with that of IMS/VS. The IMS/360 Version 1 language 
interface is BQ.! compatible with IMS/VS. 

IMS/VS Application programming Reference Manual 

... 

(\ 
\ , ,-_'/ 



C:. ~ 

C, 

c 

---------_._-_._-_ ...... _ ... _---

PL/I OPTIMIZING COMPILER MESSAGE PROGRAM STRUCTURE 

Figure 4-14 outlines the fundamental parts of a PL/I optimizing 
compiler message processing program. Each item should be considered 
when designing a message program. This program processes an inquiry 
from a terminal, makes a reference to a data base for information, and 
sends a message to a different terminal or to an application program. 

REF 
NO. 

, 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1* 
1* 
1* 

ENTRY POINT 

D LI TPLI: PROCEDURE (I O_PTR, ALT_PT R, DB_PTR) 
OPTIONS (MAIN); 

*1 
*1 
*1 

DECLARE FUNC_GU CHARACTER(4) STATIC INITIAL('GU'); 
DECLARE FUNC_ISRT CHARACTER (4) STATIC INITIAL ('ISRT') ; 

DECLARE SSA_NAME ••• 

DECLARE MSG_SEG_IO_AREA CHAR (24); 
DECLARE DB_SEG_IO_AREA CHAR(180); 
DECLARE ALT_MSG_SEG_OUT CHAR(24); 

DECLARE 1 la_PCB BASED(IO_PTR), ••• ; 
DECLARE 1 ALT_PCB BASED(ALT_PTR) , ••• ; 
DECLARE 1 DB_PCB BASED(DB_PT~ , ••• ; 

DECLARE THREE FIXED BINARY(31) STATIC INITIAL(3); 
DECLARE FOUR FIXED BINARY(31) STATIC INITIAL (4) ; 

CALL PLITDLI(THREE,FUNC_GU,IO_PTR,MSG_SEG_IO_AREA); 

CALL PLITDLI(FOUR,FUNC_GU,DB_PTR,DB_SEG_IO_AREA); 

CALL PLITDLI (THREE ,FUNC_I SRT, ALT_PTR, ALT_MS G_S EG_OUT) ; 

END D LI TPLI ; 

PL/I - LANGUAGE INTERFACE 

Figure 4-14. General PL/1 optimizing Compiler Message program 
Structure 

The following explanations are keyed to the numbers along the left 
side of Figure 4-14: 

1. This is the main standard entry point to a PL/I optimizing 
compiler message program. There must be a pointer for every 
PCB used by the message program. The first PCB pointer must be 
for the 110 PCB. The remaining PCB pointers mnst be specified 
in the same order, following the 110 PCB, as they are presented 
in the program's associated PSB generation. 

Data Communication Application programming 4.35 



2. These declarations define the call functions used by the PL/I 
message program. Each character string is defined as four 
alphameric characters and a value assigned for each function 
(for example, ISRT1. Other constants and working areas may be 
defined in this manner. 

3. This declaration defines storage for SSAs. In the following 
example, the SS A is declared as a structure; other methods can 
be used (see the section "General Characteristics of Segment 
Search Arguments" in Chapter 3 of this manual). 

Example (lower case "b" represents a blank and lower case nvu 

represents the symbolic value in the field): 

2 
2 
2 
2 
2 
2 

SEG_NAME CHAR(8) 
SEG_QUAL CHAR (1) 
S EG_KEY_NAME CHAR (8) 
SEG_OPERATOR CHAR (2) 
SEG_KEY_ VALUE CHA R (6) 
S EG_END_CHAR CHAR (1) 

INIT('ROOT') , 
INIT (' (') , 
INIT (' KEY') , 
INIT( 'b=') , 
INIT (' vvvvvv') , 
INIT(')'); 

4. The 110 area is most efficiently passed to DL/I as a 
fixed-Iength-character string or through a pointer variable; 
other methods, however, can be used (see the PL/I example under 
the section "1/0 Work Area" in Chapter 2 of this manual). An 
example follows: 

5. A level 1 declarative describes the PCB statement first for the 
input terminal for the current message being processed (the 110 
PCB), second for each output destination other than the input 
terminal (alternate PCBs) , and third for each data base. It is 
through this description that a PL/I program can access the 
status codes after a DL/I call. (For the PL/I optimizing 
compiler, the PCBs must be BASED structures.) 

6. This is a descriptive statement used to identify a binary number 
(fullword) that represents the "parameter count" of a call to 
DL/I. The parameter count value equals the remaining parameters 
following the parameter count set off by commas. 

7. This is a typical call used to read the input (source) logical 
terminal. The first time this call is executed with function 
equal to get unique, the first segment of the message that caused 
the message program to be scheduled will be brought into this 
program. If the input message consists of more than one segment, 
subsequent segments can be obtained with a similar call but with 
the function equal to get next. 

8. This call is used to access data from a data base. The format 
is the same as the one in Item 7 above, except that the PCB 
refers to a data base and the segment search argument defines 
a particular data base segment. 

9. This call is used to reply to an output destination other than 
the terminal representing the source of the input message. If 
the output destination is the input terminal, this call .ust 
utilize the I/O PCB. 

q.36 I~S/VS Application Programming Reference Manual 

\ .......... ....,/' 

(~. 
I, 

.. ,,_ ...• / 

., 

c 



c_ 

l. 

, 

... _----_._------_._------

10. This END statement causes the message program to return control 
to the 1HS/VS control facilities. Another statement that causes 
the message program to return control to the IMSlvS control 
facilities is the RETURN statement. The RETURN statement may 
or may not immediately precede the END statement. 

11. A language interface (DFSL1000) is provided by 1MS/VS for all 
programming languages. This module must be link-edited to the 
compiled message program and provides a common interface to 
I8S/VS and DL/I. 

The language interface function of I8S/VS is reenterable and 
compatible with that of IMS/360 Version 2. To take advantage 
of the reenterable capability, application modules from IMS/360 
must be re-linkedited, replacing the 1MS/360 Version 2 language 
interface with that of IMS/VS. The 185/360 Version 1 language 
interface is Eg~ compatible with IMS/VS. 

ASSEMBLER LANGUAGE MESSAGE PROGRAM STRUCTURE 

The structure of an Assembler Language message program is the same 
as for the Assembler Language batch. program described in the section 
"Assembler Language Ba tch Program structure" in the "Dat a Base Batch 
Programming" chapter of this manual. In addition, the user should 
remember that an Assembler Language message program receives, upon 
entry, a PCB parameter list address in register 1. The first address 
in this list is a pointer to the I/O PCB. Any alternate PCB addresses 
follow, and finally any data base PCB addresses. Bit 0 of the last 
address parameter i~ set to 1 in accordance with operating system 
conventions for variable parameter lists. 

ABENDS ISSUED BY APPLICATION PROGRAMS 

Actions taken by IMS/VS on all types of application program abends 
are described in the 1112L!~ §..I2iemtAIU!li~tiQ.!!. g~sig.n Gu ide. 

If an application program is going to issue the ABEND macro, the 
STEP parameter must not be used. The use of the STEP parameter prevents 
the message or batch message region from notifying the IMS/VS control 
reqion that an application program has abended. This in turn may 
prevent the release of resources or a normal checkpoint shutdown. 

Data Communication Application programming 4.31 



, 



( 

,. 

Conversational processing allows a user's application program to 
retain information acquired through interchanges with a terminal even 
though the application program leaves the message region between 
interchanges. Special facilities are provided in IMS/VS to allow the 
retention of information. Data base facilities are not required for 
information retention. 

The conversational option is specified during IMS/VS system 
definition so that IMS/VS can relate to transaction codes that utilize 
the conversational mode. When an application program that processes 
a conversational transaction type is scheduled, a get unique (GU) call 
against the I/O PCB causes the contents of a Scratchpad Area (SPA) of 
user-defined length to be passed from IMS/VS to an I/O area defined in 
the user's application program. Subsequent get next (GN) calls cause 
the message segments entered from the terminal to be passed to another 
I/O area defined in the user's application program. Data saved in a 
SPA can be in any form: bit string, character, binary numbers, or 
packed decimal. 

The SPA forma tis: 

LL 

where: 

LL 

XXXX 

xxxx TRAN CODE USER WORK AREA 

is a halfword binary field containing the total number of 
character·s in the SPA, including LL, XXXX, TRAN CODE, and USER 
WORK AREA. This field should not be modified by the user. 

When PL/I is used" the· LL field must be defined as a binary 
fullword. The value contained in the LL field is the actual 
scratchpad area length minus 2 bytes. For example, if the 
scratchpad area is 26 bytes, LL is equal to 24 and represents 
the sum of LL (4 bytes minus 2 bytes), XXXX (2 bytes), TRAN CODE 
(8 bytes), and text (10 bytes). 

is a 4-byte area reserved for I~S/VS. XXXX must not be modified 
by the user. 

TRAN CODE 
is an a-byte field containing the transaction code that caused 
the program to be scheduled. The transaction code can be from 
1 to a bytes, left-justified, and padded with blanks. 

If this code is changed by the user, a different program is 
scheduled for the next message input from the terminal. 

The transaction code does not appear in the message segment. 
(When option 3 of the Message Format Service is used, the 
transaction code is not removed. Refer to the IK~L!~ ~sage 
!2~!~! ~~£!if~ Us~ gYi~~.) 

Data Communication: Conversational Processing 5.1 



USER WORK AREA 
is a variable-length area 14 bytes less than that defined by 
the user during I~S/vS system def1nition for each conversational 
transaction code and cleared to binary zeros on first entry to 
the application program for this conversation. This area is 
for retaining user information (for example, intermediate 
calculations or data retrieved through one or more data base 
calls) required by an application program. 

From a terminal operator's viewpoint, the format of the input message 
segment that starts the conversation is the same as any 
nonconversationa1 transaction-type message. IKS/VS removes the 
transaction code from the first message segment (except as noted above) 
and always places it in the scratchpad area. The first message segment 
is left-justified to remove the transaction code. (Transaction code 
formats are described under "Message Formats" in the chapter "DC: 
Application Programming".) It is retrieved by the first GN call issued 
after the GU call that retreived the scratchpad. Additional message 
segments of an input message are formatted the same as for 
nonconversationa1 processing. 

EXA M'PLE 

1. First conversational message segment entered at input terminal: 

CONV +32546.12-1235.27 

2. First CALL statement using PL/I: 

3. The SPA_AREA now looks like this after the first GU call: 

r--- .. , I TRAN CODE I USER WORK AREA , , ,---------------1---------------------------1 
1 I 1 binary zeros I 
1 LL XXX X I CONVbbbb 1 0--------------------0 I 
L-

4. The first segment of the conversational message now looks like 
this: 

+32546.12-1235.21 

Thus, to bring this text into the application program I/O work 
area, a GN call must be made. 

5. Second PL/I CALL statement using a GN call function to obtain 
the text of the first message segment: 

This brings the text as shown in item 4 above into the I/O work 
area of the application program. 

6. To get subsequent message segments, the CALL statement is the 
same as in item 5 above. 

5.2 IMS/VS Application programming Reference Manual 

"''"-- -' 

.. 



• 

After the input scratchpad area and input message have been obtained, 
one or more data base calls may be made and one output message may be 
built. The application program may wish to retain data entered from 
the terminal or obtained from data bases. This data is saved in the 
user work area portion of the scratchpad. 

If the application program modifies or initializes any SPA fields, 
it must return the SPA to IMS/VS before issuing another GU or 
terminating. An SPA is returned to IMS/VS by inserting it to the I/O 
PCB. 

The insert (ISRT) call for PL/I is handled as follows: 

or, in ANS COBOL: 

CALL 'CBLTDLI' USING ISRT, la-PCB, SPA-NA~E. 

A response to the originating terminal is required to allow the 
conversation to continue. The terminal operator is prevented from 
entering more data to be processed (except IMS/VS commands) until he 
has received this response. 

The response is accomplished in one of two ways: 

1. The conversational program can issue ISRT calls to the I/O PCB 
or an alternate PCB defined as ALTRESP=YES prior to the next GU 
call or program termination. 

2. Control may be passed to another conversational program by 
inserting the SPA and a message to an alternate PCB. 

The switched-to-conversational program may then perform 1 above 
(which will wait for terminal input) or perform 2 again (program 
switch) • 

The output message segment format for a conversational application 
program is the same as for any nonconversational. output message format. 

Conversational message processing programs can pass control of a 
conversation to another conversational program. Two methods of passing 
control are supported: 

• The program in control can change the transaction name in the SPA 
before returning the SPA to I~S/VS. IMS/VS will route the next 
terminal input to the program that handles the specified transaction 
code. Any intervening program switches can change the transaction 
name in the SPA. 

Data Communication: Conversational Processing 5.3 



• For a proqram-to-program switch, the program in control can insert 
a message to an alternate PCB that has its destination set to 
another conversational program. The SPA must be the first segment 
inserted to the alternate PCB; neither the SPA nor a response can 
be returned to IMS/VS through the I/O PCB or response alternate 
PCB if this is done. 

If the new program requires a larger or smaller SPA, and the 
conversation did not start with a fixed-length SPA, IHS/VS will 
intercept the SPA and extend or truncate it for the new program, while 
preserving the data that may have been truncated. 

If differing sizes for SPAs have been defined at system definition 
for disk and incore SPAs, care must be exercised by the user to prevent 
scheduling conversational programs within a series of programs which 
require SPAs larger th~n the maximum SPA size allowed by the original 
program to be scheduled. The first program scheduled sets the !X~~ of 
SPA that will be used for the duration of the conversation. 

Example: Main storage maximum defined as 100 bytes; disk maximum 
defined as 1000 bytes. 

TRAN A - main storage 50 SPA bytes 

TRAN B - main storage 75 SPA bytes 

TRAN C - disk 100 SPA bytes 

TRAN D - disk 1000 SPA bytes 

If TRAN A or TRAN B is the first conversational program called by 
a terminal operator, the conversation can switch control to TRAN A, B, 
or C, but not to TRAN D, since D requires a larger SPA than the maximum 
allowed for incore SPAs. 

If TRAN C or TRAN D is the first conversational progr am called by 
the terminal operator, control can switch to any other transaction. 

A conversation is terminated by either the conversational program, 
terminal operator, master terminal operator, or IMS/VS. A 
conversational program terminates a conversation .by: 

• Blanking the transaction 'code in the SPA and returning the SPA to 
IMS/VS through an ISRT call. This terminates the conversation as 
soon as the terminal has received the response. 

• Inserting the name of a nonconversational transaction code in the 
transaction code field of the SPA and returning the SPA to IMS/VS 
through .an ISRT call to the I/O PCB. This causes the conversation 
to remain active until the next message is entered by the terminal. 
Except for MFS formatting option 3 messages, the transaction code 
will be inserted into the input message from the SPA. This message 
will then be routed to the named transaction code prior to 
terminating the conversation; the nonconversational program will 
not get the SPA. 

The terminal operator terminates a conversation by: 

• Fntering a /EXIT command or /EXIT CONVnnn from the terminal that 
is participating in the conversation. 

• Entering the /HOLD command from the terminal that is partiCipating 
in the conversation. This action .temporarily suspends operation 
and allows the terminal operator to enter other transactions while 
the first conversation is being "held" inactive. The response to 
a /HOLD command furnishes the terminal operator with an identifier 

5.4 IMS/VS Application Programming Reference Manual 
c: 



c. 

• 

of his conversation so that he can reactivate it later by means of 
the /RELEAsE command. A held conversation is considered to be 
active when the number of current conversations is calculated. 

The master terminal operator terminates a conversation by: 

• Entering a 1ST ART LINE (no PTERM specified) for a terminal in 
conversa tion. 

IMs/VS terminates a conversation if, after a successful GU or 
insertion of the SPA, a conversational application program fails to 
insert a message. When this situation occurs, IMS/VS sends the message 
DFS32721 NO RESPONSE, CONVERSATION TERMINATED to the terminal, 
terminates the conversation, and completes synchronization point 
processing. 

GENERAL 

• The first 6 bytes of the SPA cannot be modified in any way by the 
application program. (IMS/VS uses these 6 bytes to identify the 
SPA. ) 

• If a conversation is started for a transaction with a fixed-length 
SPA, all succeeding transactions used for the duration of the 
conversation must be defined with and use fixed-length SPAs of the 
same lengt h. 

• The SPA transaction code (beginning in position 7) can be changed 
by the application program to switch control to a new transaction 
upon receipt of the next input from the terminal. The conversation 
is terminated if this transaction is a nonconversational transaction 
or if it is blanked. 

• If modified by an application program, the SPA must be returned to 
IHS/VS through an ISRT call or the SPA against which a GU call was 
issued will be reused. 

• The SPA cannot be returned to IMS/VS more than once. (Example: 
ISRT to I/O PCB, then ISRT to alternate PCB for program-to-program 
Messa ge switch.) 

• The SPA cannot be inserted to an alternate PCB representing a 
nonconversational transaction or logical terminal. A response 
alternate PCB is permissible if it represents the input PTERM. 

• If control is being given to another conversational program through 
a program-to-program message switch, the SPA must be the first 
segment inserted. (Example: IsRT to alternate PCB defined as a 
conversational transactio~.) 

Data Communication: Conversational processing 5.5 



MESSAGE RESPONSE 

• An output message response to the 110 PCB or to an alternate PCB 
defined as ALTRESP=YES is required, unless the SPA has been passed 
to another conversational program through an insert to an alternate 
PCB, in which case the response must be given by that program. For 
addi+ional information, see the section "Alternate PCB" in the 
"Data Commun ication: Application Programmin 9 ft chapt er of this 
manual. 

• Only one message response is allowed for each conversational entry. 
This message can consist of as many segments as required; however, 
a PURG call cannot be issued to generate multiple output messages. 
If a PURG call is issued, the sy nchronization- point processor 
returns the AZ status code and does not process the call. 

• Conversational programs must'be designed to handle the condition 
in which the first GU call to the 110 PCB may produce no'. message 
to process. This condition can occur if the operator cancels the 
conversation through an /EXIT command, prior to the p<rogram issuing 
a GU call, if this was the only message in the queue to be 
processed. 

• It is not permissible to use a PURG call for an I/O PCB, response 
alternate PCB, or an alternate PCB that represents another 
conversational transaction. 

5.6 IMS/VS Application Programming Reference Manual 

" .. -.. '/ 

.. 



c 

I 

The examples of application programs included in this chapter 
represent application programs that normally operate in an IMS/VS 
environment. At least one of the programming languages (COBOL, PL/I, 
or Assembler) has been selected for each type of application program. 
Most of the application programs represent source programs used in the 
sample problem included in the lH~LY~ In~i~llation ~uide. 

The following types of programs are presented: 

Data Base Load Program 
Data Base Dump program 
Batch processing Program 
Message processing program 
Conversational processing Program 

ANS COBOL APPLICATION PROGRAM 

COBOL 
Assembler 
COBOL and Assembler 
COBOL 
PL/I 

In this example, the batch application program DFSSAM01 uses the 
SYSIN data to load a data base, named DI21PART, whose hierarchical 
logical data structure is: 

PARTROOT 

I 
I I 

STAN INFO STOKSTAT 

I 
I I 

CYCCOUNT BACKORDR 

Application program Examples 6.1 



FILE: DVSS~M01 ASSEMBL~ A PALe ALTO DEVELOPMENT CENTER 

IDENTtF'ICA'rION DIVIS ION. 
PR OG R A'M-IT) • I OF'SS AM 01 I 

~UTHOR. DON TRUDELL. 
REMARKS. DATA BASE LOAD PROGRAM. 

~NVI10N"'!':N" nT VI STON. 
CONPIGUR~TION SECTION. 
SO fJR Cf,- co~p TJT EP. IB M- 36 O-H 50. 
OBJF:C T- CO", PUT ER. !B M- 360- H SO. 
INPUT-OrrTPU~ SECTION. 
FII. E-CO NTR OT .... 

sm, EC'l' INPUT-FILE ASSIGN TO UT-S-INPUT. 
DATA DIVISION. 
F'TLB SECTION. 
FD INPU,,{,-"F'IL~ 

RF.CORI) CONTAINS no CHARACTERS 
BLOC K C0NT!\INS 0 R FCOR DS 
RECOPDING MODE JS F 
LABRt RECORDS ARE OMITTED 
DAT 11 ~EC()RD IS INPUT-R ECOR D. 

o , TNPU"r- REe ORD • 
02 If'lP-St:;G-NliMF. 
02 FILL ER 
02 INP-DAT~ 
02 INP- 5EQUT<'NCE- NO 

WORKrN~-STOR!\GE SECTION. 
01 DL1-FUNCTION 
01 PREV-SEG-NAME 
01 PREV-SEQfJRNCE-NO 
01 fHJILT)-SEGMRNT-ARF.A. 

01 

Q 1 

01 

01 

02 BUItD-DATA-AREA 

MI SC-ARITH!1 ETIC- FIELDS 
02 SUB-1 
S EGOOO 1 O-SSA • 
02 SRG-N.~~E-000 10 
02 FEGIN-OP-00010 
02 KEY- Nfl ME-OOO 10 
02 Tn~r.-OPE~-01(, 10 
f)2 KtY-VAT,UE-')OO 10 
() 2 E ND- op- 000' 0 
SEG00060-SSA, • 
02 SP,G-N AM E-0l1060 
02 B EGI N-OP-Of)06 0 
02 KEY-NAME-00060 
02 RRL-OP ER-000 60 
02 K~Y-VALUF.-00060 
1)2 END-OP-00060 
SEG020,)O-SSA. 
02 SRG-NAME-02000 
02 BEGIN-OP-02000 
02 KEY- NA MR-O 2000 
02 REL-O? ER-0200Q 
I) 2 KEY-VAVn.:-02000 
02 PND-OP-02000 

01 SEG 02200-S5A. 

PICTURE X(08). 
PICTURE X(01). 
P IC T UR E X (67 ) • 
prCTURE X(04). 

PICTURE x (04). 
PICTUR E X (08) 
PICTURE X(04) 

VALUE SPACE. 
VALUE SPACE. 

OCCURS 14 TIMES 
PICTURE X (67) • 
USAGE COMPUTATIONAL. 
PICTURE S 9 (02) VALUE ZEROS. 

PICTURE 
PICTURE 
PICTUR E 
PICTURE 
PICTURE 
PICTUR E 

PICTURE 
P ICTtm E 
PICTURE 
PICTURE 
PICTURE 
PICTURE 

PICTURE 
PICTUR E 
PICTURE 
PICTURE 
PI C'l'UR E 
PICTURE 

x ( 08) VAL UE I FARTROOT '. 
X{Ol) VALUE' ('. 
1(08) VALUE 'PARTKEY • 
X(02) VALUE • = '. 
x ( 17) • 
X(01) VALUE ')'. 

X (08) VALUE • STANINFO'. 
X(01) VALUE • ('. 
X(08) VALUE 'STANKEY f 

X (02) VALUE • ='. 
x (02) • 
X(01) VALUE .) I. 

X(08) VALUE 'STOKSTAT'. 
X(O 1) VALUE '('. 
x (08) V At UE 'STOC KE Y f. 

1(02) VALUE' ='. 
x (16) • 
X(01) VALUE ') '. 

6.2 IMS/VS Application Programming Reference Manual 

, 

C.: 

---- _ .. _-_ ... _----------



--------------------- ---------- --------- ---"-----,--

C
" 
-' 

C
" 
-

, 

PIt E: DF5SA'0 1 AS5RMRLE A PALO ALTO DEVELOPrfENT CENTER 

02 SEG-NAME-02200 
02 R~GIN-OP-02200 
02 KEY- NA ME -02200 
02 REL-OPER-0220a 
02 KEY-VALUE-02200 
02 E NT) -OP-02200 

01 SRG0230()-SS.!.. 
02 SRG-N AM E-O 2300 
02 BRGIN-OP-02300 
02 KEY- NA M~-02]_OO 
02 REL-OPFR-02300 
02 K~Y-VALUE-02JOO 
02 END-OP-O~3f)O 

01 SEG00010-INSER'T'-I\REA. 
02 FILL ER 

01 SEGC'0060-TNSERT-AREA. 
02 FTT.LRR 
02 RIGHT-M AK E-SPAN 
02 FI.LLER 
02 WRONG-MlI.KE-SPAN 
02 FILL F'R 

01 SEG02000-INSErtT-ARP.A. 
02 FILLER 

01 SEG0220f)-INSERT-AREA. 
02 FIT.LER 

01 SEG02300-INSERT-AREA. 
02 PILLER 

L INK A GE SEC 'rION. 
01 PCB-AREA-1. 

02 T)8D-NAMF. 
02 SEGMENT-lEVET. 
()2 STA'rUS-CODES 

PI CTUR E 
PICTORE 
PICTUB E 
PICTURE 
PICTURE 
PICTURE 

PICTURE 
PICTURE 
PICTUR E 
PICTURE 
P,ICTURR 
PICTURE 

PICTURE 

PICTURE 
PICTURE 
PICTURE 
PICTun E 
PICTURE 

PICTURE 

PI CTUR F. 

PICTURE 

X (08l VALUE 
X (01) VALUE 
X (08) VALUE 
X (02) VALUE 
X (02) • 
X (0 1) VALUE 

X (C8) VAL UE 
X (01) VALUE 
X (O8) VALUE 
X (02) VAL UE 
X'(10) • 
~ (0 1) VALUE 

X(050). 

X(61) • 
59( 03) • 
X (06) • 
9 (03l. 
X (12) • 

X (160) • 

X (025) • 

X (015) • 

X (08) • 
X (0 2) • 
X (02) • 

'CYCCOUNT I. . ( .. 
'CYCLKEY • , = '. 
.) .. 
' BACKORDR '. . ( .. 
'BACKKEY 

, 
' ='. 
' ) .. 

02 PROCESS-OPTIONS 
02 FIT.LF. R 

PICTURE 
P IeTUR E 
PICTURE 
PICTURE 
PICTURF. 
PICTUR E 

X ( 04) • 
59(05) 

X (08) • 
COMPUTATION AL. 

02 SEG-RPtf1E-FEEODACK 
PROCEDU~ F DIVISIO~. 

ENTRY'DLTTCBL' USING PCB-AREA-1. 
DISPL1I.Y 'STAFT DB LOAD1 UPON CONSOLE. 
OPEN INPUT INPUT-FltE. 
MOVE'1SB'" TO DL 1-FUNCTION. 

REA 0- I N purr -FIY.F. • 
REA D I NPUT-FJLE AT END 

GO TO END-INP-FILE. 
BUILD-SEGMENT. 

IF INP-SF.G-NAME NOT roUAL TO SPACES 
PERFORM WRITE-BUILT-SEGMENT THBU WRITE-SEGMENT-EXIT 
[10 VF. ZEROS TO SU B- 1 
MOVB SPACES TO BU1LD-SEGl!ENT-AREA 
MOVE INP-SFG-NAME TO PREV-SEG-NAPIE. 

ADD 1 '1'0 StfP-1. 
IF SUE-l IS GREATER THAN 14 

DISPLAY 'MORE THAN 14 CARDS PER SRGMENT' UPON CONSOLE 
DISPLAY 'SEGMENT IS PREV-SEG-NAME UPON CONSOLE 
GO TO TJOC KEO- HA LT. 

M OV E T N P -l) A T A TO BOIL D- D A T A - ARE A (S U B-1) • 

Application Program Examples 6.3 



FILE: DFSSAM01 ASSEMBLE A PAL C ALTO DEVELOPI1ENT CENTER 

GO TO R FA D-INPUT- FILE. 
WRrTE-BUILT~SEGM!NT. 

IF PREV-SEG-'AME EQUAL TO SPACES 
GO 1'0 WRITF"-SEGftENT-EXIT. 

IF PREV-S FG-N AM E = , PARTROOT ' 
IP PRRV-SEG-NAME = • STANINFO' 
I P PR EV-g EG- NA ME = , STOKSTAT.' 
I~ PREV-S EG-N AM E = • CYCCOU.NT ' 
IF PRRV -SEG -N AM R :: • BACKOR DR ' 

IN VA L ID- SEG ffE NT- NA ME. 

GO TO SEGMENT-IS-SEG00010. 
GO TO SEGl'IENT-IS -SEG 00060. 
GO TO SEGMENT-IS-SEG02000. 
GO TO SEGl'I ENT-IS-S EG02200. 
GO TO SEG ME NT-IS -S RG 02 300. 

DISPLAY 'INVALID SEGMENT NAME = • PREV-SEG-NAME. 
GO '1'0 LOCKED-HALT. 

SEGM ENT-IS-SRGOOO 10. 
~OVE nUTLD-SEGMENT-AREA TO SEG00010-IN.5ERT-AREA. 
MOVE BUILD-SEGMENT-AREA TO KEy-VALUE-00010. 
~OVE SPACE TO BEGIN-O~-OOO'O. 
CALL 'C~LTDLI' USING DL1-PUNCTION, PCB-AREA-l, 

SEGOO~10-INSERT-AREA, SEG00010-SSA. 
lIIJ OV F. '( • TO BEG IN - 0 P - 0 0 0 1 0 • 
If" STATUS-CODES NOT = SPACES, GO TO SEG~RNT-INSERT-ERROR. 
GO TO WRITE-S EGM ENT- EX IT. 

S EG ME NT -I S- SEG Of)06 0. 
MOVE BUILD-SEGMENT-AREA TO SEG00060-IMSERT-AREA. 
~OVE WRONG-MAKE-SPAN TO RIGHT-MAKE-SPAN. 
MOVE BUILD-SEGMENT-AREA TO KEY-VALUE-00060. 
MOVE SPACE TO REGIN-OP-OOQ60. 
CALL 'CRL'rDT .. I' USING DL1-.PUNCTION, PCB-AREA-1, 

SEG 0006 O-IN SERT-AR RA, S EG00010-SSA, 
SEG00060-SSA. 

MOVE '(' TO BEG IN -OP-(,006 O. 
IF STATUS-CODES NOT = SPACES, GO TO SEGPlENT-INSERT-ERROR. 
GO TO WFI'l'P-SFGMENT-EXIT. 

S E G ME NT -I 5 - SE G 0200 n • 
MOVE BUILD-SEGMENT-AREA ~O SEG02000-INSERT-AREA. 
~OVE RUILD-SEGMENT-AREA TO KEY-VALUR-02000. 
MOVE SPACE TO BEGIN-OP-02000. 
CAI.L 'CBLTDLI' USING DL1-PUNCTION, PCB-AREA-1, 

SEG02000-INSERT-AREA, SEG00010-SSA, 

MOVE t (' TO BRGIN-OP-02000. 
~EGO 20 OO-SSA • 

IF STATUS-CODES NOT = SP ACES, GO TO SEG ME NT-I NSERT-ERROR. 
GO ~o WRITE-SEG~ENT-EXIT. 

SEGMENT-IS-SEG02200. 
~OVE RUliO-SEGMENT-AREA TO SEG02200-INSERT-AREA. 
MOVE BnILn-SEGt1ENT-AREA TO K EY-VALUE-O 2200. 
MOVE SPACE TO BEGIN-CP-02200. 
CALL • CBLTDLI' USING Dt1-FU KeTION, PCE-AREA-1, 

SEGO 2200-1 NSR RT -ARE A, SEG0001 O-SSA, 
SEGO 2000-SSA, 
SEG02200-SSA. 

rfOVE '(f TO BEGIN-OP-02200. 
IF STATUS-CODES NOT = SPACES, 00 TO SEGftENT-INSERT-ERROR. 
GO TO WRITE-SEGMENT-EXIT. 

SRG~ENT-1S-SEG02300. 
!!OVE BUILD-SEGM EN T-AR r:A TO SEG02l00-INSERT- AREA. 

6.4 IKS/VS Application Programming Reference ftanual 



C_' 

FILE: npSSAM~1 ASSE~BLE A PALe ALTO DEVELOPMENT CENTER 

MOVE RUrLD-SEGMENT-ARE~ TO KEY-VALUE-02300. 
~OVF. SP~CE TO BEGIK-OP-02300. 
C~L L t CBI.TtH.I· USI KG DL l-FU KCTION., PCB-AR EA- 1., 

SEG02300-INSERT-AR EA., SEG00010-SSA., 
SEG02000-SSA, 
SEGO 2300-SSA • 

MOVE • (. TO BEGIN-OP-O 230 O. 
'IF STATUS-CODES NOT = SPACES, GO TO SEGftENT-IHSERT-ERROR. 
GO TO WRTTE-SEGMENT-EXIT. 

WRITE-SEGMENT-EXI1.'. EXIT. 
SEG I'!E NT -IN S'ERT- ERROR. 

1)15 PtA Y f SEGM EN T • 
PREY -SEG -N AM E 
, INSERT ERROR, • 
• STATUS CO DE= • 
STATUS-CODES UPON CONSOLE. 

GO 'fO WRITE-SEGMENT-EXIT. 
END - IN P-PI 1. E. 

CLOSE INPH'1'-FILF.. 
PER FORM wn ITE- B UI LT-SEG ME NT TH au WRlTE-SEGPt ENT- EXIT. 
01 SPL 1\Y • EN D DB LOAD' UPON CON SOLE. 

LOCKEn-HALT. 
GOBACK. 

ASSEMBLER LANGUAGE APPLICATION PROGRAM EXAMPLE 

In this example, the application program DFSSAM08 is a program used 
to dump a data base named DI21PART. This is a batch processing program 
that is the rev~rse of the data base load program, DFSSAM01, shown 
previously. The procedure MFDBDUMP (in conjunction with the sample 
problem'in the IMSL!§ In§talla tiQ!l gy.!.Q§) uses DFSS,AM08 as t he source 
program. The listing follows. 

Application Program Examples 6.5 



FYLE: DPSSAK08 PT011J8 A PALO ALTO DEVELOPftENT eEtfTER 

REPL NA~R=npSSA"08 
TITLF. 'OFSSAKOS - DU PIP SA"PLE· DA'ABASE 1"5/'5' 
PRI NT NOG EN 

DFSSA "0 8 CSECT 
SPACE 1 

PCB"REG 
BASEl 

EQU 4 
EQU 12 
~NTRY DUTCRL 
SPACE 1 
U Sf KG * .. "B AS E 1 

l.)LITCBL SAV~ (14,12) •• 5AK08-120 
LR 12, 15 
ST 13.SAV~REGS+4 
LA 15,SAVEREGS 
5T 15, 8 (, 13) 
LR 13,15 
SPACE 1 
L PCB REG, <'(1) 
ST PCHREG,PCBADDR 
"VI PCRAnna,x '00' 
USING DLIPCB,PCBR EG 
OPEN (OUTFILE, (OUTPUT)) 

GlTDISK OS OR 

LOAD BASE REGISTER WITH EP 
FORIARD CHAIN SAVE AREAS 
A (S A V EAR E A ) 
BA~ CHAIN SAVE AREAS 
A(SAVE AREA) 

A (PCB) PASSED BY CALLER 
PUT A (PCB) IN CA LL LIS'!' 
CLEAR HI BYT~ 

CALL CBLTDLI,l1 F= (E,DLILINK) ISSUE DL/I CALL 
CY.C D1.1 STAT,=C' WAS CA tt OK ? 
BE CAI..LOK YES, THEN PRINT SEGftENT 
CLC DLISTAT,=C'GA' DID CALI.. CROSS BOUNDARY? 
BE CALLOK YES, TREN FRINT SEGftENT 
CLC DLISTAT,=C'GK' IS THIS SIBLING SEGftENT ? 
BE CAtLOK YES, THEN PRINT SEGftENT 
Ctc DtI STAT ,=C' GB' IS THIS END OF DATA BAS E ? 
BE ENDDISK YES, THEN RETURN 
iTO 'RRROR IN GET N'EXT DL/I CALL'. 
B AB RND 

* ••• BUILD OUTPUT RECORD 
CALLOK DS OR 

PlVC OUT~FC(8) ,DL1SEGFB 
Hve OTJTREC+9(100) ,SEGltETRN 
PUT OUTPILE,OUTREC 
K vc OU1'I.l E,C (8) ,=C L8' , 
"VC OO'.rREC+9(100) .. SEGRETRN+100 
PUT OUTPILE,OU1'REC 
11 VI S EGR ETR N • X ' 40 • EL AN K 
MVC SEGR ETRN+ 1 (L' SEGBETR N-1), SEGRETRN 
B GF.TDI Sl{ 

EJECT 
ABEND EQU * 
ENDDISK CLOSE (0 UTPIL E) 

L 13, S~VEBRGS .. 4 
RETURN (1Q,12)"RC=O 
EJECT 

* .•. CONSTANTS .AND OSECTS 
DLIPUNC DC C L4 'G N ' 
* ••. DtI CALL TA IST 
·OLYLINK DC A(DLIPUNq 

GET NEXT CALI. FUNCTION 

~ (pU NCTION) 

6.6 ItJS/VS Application Programming Reference Manual 

II 



PItE: DPSSAIH'B pt.11118 A PALO At TO DEYBLOPftEtrr CER'l'BI 

PCBADDR DC ~ (0) A (PCB) 

(. DC X' BO' ERD OF LIST P'tAG 
DC A L J (SEG RP!T RR) A(I/O AREA) 
SPACE 1 

SAVEBBGS DC lAF'I)' REGIS,.ER SAVE AREA 
OU'l'REC DC dr.11(" , OUTPUT REC OJm 
SEGRE'rRH DC CL200 • 

, 1,10 AREA 
DC' CL10'" • 
SPACE 1 
LTORG 
SPACE 1 

OUTPILE DCB DSORG=P.S,r!ACRP= (Pft), X 
LRECL=ll 0, BLK SI Z f= '·10 ,R ECl' ft=PB ,DD RAftE =OU'fPUT 

SPACR '1 
I"SPCB DS!CT 
f) LIPCB DS OR 
DLTl'IIE 1)S CT..8 
OLISGT.EV ns CL2 
DLIST At ns CL2 
OLIPROC DC C'T..4'G 

DC 1" 0 • 
DLISBGP' B DS CLa 

RND 

• 

c 
Application Prograa EXaaples 6.7 



§!I£H ~RO~E~~!!~ ~GRAM ]!!~F1] 

The two programs previously shown, DFSSAM01 and DFSSAM08, are batch 
processing programs, written in COBOL and Assembler Language, 
respectively. Refer to them for details as they are not repeated here. 
Instead, the SYSIN data for DFSSAM01 is provided. Refer to the listing 
of DFSSA~O' to interpret the format and content of this data. 

PA~TROOT 02ANYhOC10 
SIAN INFO 02 

WA~HER 
1200 

(\1)01 
0002 
(00) 
01)04 SlIJK)TAT 

STOlt STU 

STnKSTU 

PA!~ TRnOT 
STANI~FO 

STI)K STA1 

STOK STAT 

stnK5TU 

"Alf TRnaT 
srANfNFO 

ST'.JKSUT 

STnKSTAT 

PA:M.TROOT 
STAN INFO 

STOIC. STAT 

UACIWRDK 

PAR1ROOT 
STAN INFO 

~TOKSTU 

STOI(5UT 

STOI( SUT 

STOKSTAT 

06C 
00 AA 1611 11 000(100000 fACHOOnnoOOO(lOoonooooo 

512 0000000 noo0131 00000I~ 0000n20 (1000126 OO~OI04 OOtH'OIIl')05 
OUII" CU~OJ(lOOOO OOOO~OJ 0 l~I'~ 

~o AKld"f MOC~~OUOD" 
lbO ooooouo l)lH}llill'tI 

a00ucnoooo 0000000 0 Z'~ON 
CO~~OO~IZ~ 000000000 
OO~U~I~511517S0rOOOooononOb30 
04 U00010000000IJOO 0 494' 

t AU'~lnCH\(\!'(,O"l'O{\} 70(l0(1 !'rill' 
nUllOOOIl UUOlltl,lU 1101'110~1'I (lUf'IJOO) ?tlnOllll, "'h'I\ 

~I)n" 
[ACH ooooooOOOOOOOOOOOOOl~ 

ooouooo.ooooooo 00006~O 0001053 000000131 

OlCKO~tWlijlK CAPACITOR 
Dna 
0142 
(14) 
0144 

02 7~2 
Ot,c. 

00 Vf'l906 000001000 
245 0000000 OOOOO~O 

ORI)\'O(lOOOO 000(001) 0 Hllt~N 
OUZ~~OO~Zb OOOOOU340 

51051050liOOOUOO"0013Z0 
OO~POOCJOOO"OOOOOOOO 
002~~11l926 0~OU00340 

5105105000000000000006 
ononooouuOOOOOO"O~OO 

120l) 

EACH000000000000400000 016Q 
0000000 0000000 0000001'00000007.0000000110 

0171 
oooono 0172 

OOOOODOOOOOOhbO OOOl)bbO 0000000(00001)0173 
0174 

000000 0175 
000000000000000 0000008 00000000000000176 

oze ~N 13e:; 1'l4Kl KMIJSOKS 
OU7 
0178 
017Q 
0180 

Ol 742 
OM: 

00 ~n1ltS5R MOOOOOZ710 
4~~ OOOOOOU 0000014 

OO'IOOCUl:!,>o OOOUOOU a V4K5N 
00 SK2l711 M000002110 

260 0000000 0000004 
00100UCOOO 0000000 a V2bON 
OOZ~~02~?'b 000000000 

412412S000000000000014 
04 00000000000000000 

1200 82 

EAtHOOOOOOOOOOOOOOOOOO OIRI 
0000000 0000000 00000I4~000000b00000001~Z 

0183 
EAtHOOOOOOOOOOOOOOOOOO 01~~ 

0000000 0000000 00000~0000000200000001R5 
0186 

008000 0187 
OO~OOOO 000000000000014 0000050 000000188 

OZJAN1NqrbR DIODE CODE-A 
0189 
0202 
0203 
020~ 

02 14? 
abC 

00'-~50q12b 000000000 
513515S000000000000011 

03 ooooooooooouooooo S13 
30PR2379ltZ 

1200 72 

004000 0208 
OOOOUoo 000020000000011 0000068 0000007.09 

0210 
00000211 

201)0 
0214S16«195-28 
02 

SCREW 
0212 
0217 
n218 
0219 

742 
!)6C 

00 4416511 000000152 
4ij9495NOll00000 0000026 

0000000000 0000000 0 V489N 
00 8A16515 OC0000069 

455 0000000 0000006 
0000000000 0000000 0 V455N 
00 F F 55460 "OOOOOOObl 

440 0000000 0000044 
0000000000 0000006 0 V448N 
00Z59109Z6 000006980 

491498S000000000000095 

1200 

EACHOOOOOOOOOOOOOOOOOO 0220 
0000000 0000000 0000030 0000003 000000221 

07.22 
EACHOOOOOOOOOOOOOOOOOO OZ23 

OCOOOOO ooooaoo 0000008000000000000000224 
0225 

EACHOOOOOOOOOOOOOOOOOO 0226 
001)0000 0000000 0000043000000000000000227 

0228 
000000 OZ29 

0000000 0000000 0000100 00000000000000230 

6.8 1M5/VS Application Programming Reference Manual 

• 

c 



c: __ 

c' 

· .. _ ....•. _ .. _-_._._-_ .... - ----

OO~OCOOOCOOOOOOOOOOO y 0231 
P.~lKUO' 02~51P300JFOOO SCREW 0232 

0231 
02:i" 

S TAN1NFO 02 742 IZOO 14 

$ TCIK STAT 

C YCCOU~T 
Pi\RTRUOT 
S UN1~FO 

:. TOKST AT 

STIJIC.STAT 

CYCeOUNT 
STOIC STAT 

PAR TROOT 
STAN INFO 

STIlK STA T 

!) Tal( S rAT 

S TIlK STAT 

PARTROOT 
STAN INFO 

03 
00l5~nhOlb 000000000 
oo~u ~04404S000000000000313 
00 OOOOQOOOOOOOOOO 0 
20~~0036QO 00003bOO 

00000000 ooooooooodoOOOOOOPZ~l 
0000000 0000000 0000360 0001209 OOOOOOZ~2 

OZIt1 
O~-'4 

02KeOl(iF171J RES I ST!lK 0l't7 
0i'''8 
1)249 

01 742 
06e 

00 AK2~571 000000240 
11J 0000000 0000033 

ooaooooooo 0000000 0 V213N 
00~8COqllh 000000000 
OU0051b511511S00000uQOOOOQ011 
00 oo~cnooooooOOOO 1 465Y 
ZO~OOOOlqn 0000011 
0026011126 ~CQOOOOOO 

4,q~5qSOOOOoooooonOOlb 
2q OOOOOCOOOOOOOOOOO 

17.00 OZ 

EACHOOOOOOOOOOOOOOOOOO 02~O 
0000000 0000000 000001300000oal00ooOOOl51 

OZ52 
00900000 OOOOOOOQonooonOOOQ'b" 
0000000 0000000 0000011 0000057 OO1)000'b5 

(\1"'~ 
(lH.7 

012000 01b~ 

0000000 000000000000021> 0000240 OOOOOOlb9 
o HI) 

02t06A1ZQ1P009 ~ESISTOR OH1 
0372 
0111 

02 142 
1(1 

00~~qOOJ2b 000000000 
OOon1114914~4S0000000000010,~ 
22 ('C(l~JOOCOOOOOOOO 0 
OO,-~q0602b oenoooooo 
OOllll Z'JJ 000000000000000 
01 000cooonOOOOl04 0 
OOl~qlOQ26 OCOUOlftlO 

4~2483S000000000000320 

lZ00 0'-
0(1000000 007005 0000000000011" 
0000200 onooooo 0001055 000"180 000010315 

0176 
00000000 000000000000000000180 
00000000000000000000000 0001808 000000381 

0382 
onoooo 0183 

0000000 000007.0 0000320 00000000000000384 
0365 00000000000000000000 

0215023&-001 CAP4CITOR Olaf» 
0)1)7 
0188 

02 1200 8.2 
04 

~TUKSTAT CQ2~q~01lh oeooooooo 00000000 007010 000000000003K9 
0000010 000051>1 000000]90 

0391 
0000n"i90 

03'l0 
OOOI}') \90 

OiqO 
()OOI)O\'l1) 

O-t'lO 
uooooooo 001000000000000000195 
00000000000000000000000 0000551 000000)Q6 

OiH 

OU")O 3'H4~RIt""~00000000I100041U 0000200 0000600 
38 OOQCOOOOOOOU~OO 0 1t~8Y 

UAe)(()MO!t 30PR1o~"4 3 
lOll,) 

IIAt:KlIRUI( )OjJH.H7'1l1 

I\ACKIlKOR 
7();)') 

30 II R It 2 b 1 )It 
~U(l() 

OOI..,'HlbU).t, OCIIIIOOOOIJ 
ocua 4~~440SUOOOoooOO~OOOOO 
10 occooooC)OOOOOOO 0 

c;TllKSUT OOI.~910qlb 00000Jbl0 000000 0198 
~11~1~SOOOOoooOoon007Z 

OOO~COOOOOOUOOOOOOOO ,17Y 
UOOOOOO 0000000 0000012 0000045 00000019Q 

PARTROOl 
$T"~INFO 

02250239 TkANSISTOR 
02 742 

05A 
1200 02 

S10KSTAT 0025910926 OOOOObSOO 00"o00 
511~16S0000000000000b8 0000000 0000001 00000b7 0000045 

02 00000000000000000 517Y 
PARTROOT 02250241-001 CONNfCTOR 

0400 
0401 
0402 
OltO) 
Oltll 

00000041" 
0415 
0 ... 6 

Application program Ex amples 6.9 



STANtNFO 02 142 !ZOO 42 o .. n 
0..18 0 .. 

PAR TKUOT 02·1.ljon .. 
STAN1NFO 01. 

Rf.SISTOK 0 .. 31 
7~1. lZ00 02 0431. 

10 0 .. 3\ 
Sll1K~1&T 001."t900.\l& OOOOUOOOO 00000000 005005 00000000000"J4 

OO~03~'4el"88S00000~OOO~00003 0000000 0000000 0000003 0001176 000000435 
64 000000000000000 ~ 4B8Y 04'6 

S IIlK SU T 00ZS')1)602& oconul)Oou 00000000 00000000000000000(441) 
OO~O .... ~ .. 40NOOOOOOoonOOOO~1) OO~OOOOOOOOOOOOoooooono 000122Y OOOOOa.41 
8" OOOOOOOI)OOOUOOO 0 0 .... 2 

STOKSTAT 00l.5Ql0q1.6 00000I1"~ O~OOOO 0 .... 3 
~17~18SnOOOOo0000003qO 0000000 OOOOr.OO 0000381 0000110 OOOOn~4" 

O~OUCOOCOOOOOOOOOOOO 511Y n44~ 
puntorn C)Z!~0,q6 S .. nCH 04 .... 
UANINFO U2 221 120n 54 nit .. , 

06 044' 
5T"KSrAr OOl~90~Q'6 000000000 uoonoooo OnUOOOOOOOOOOOOOOO~". 

00:)0 ........ 4fl~nOOOOOOOOOOOOOI 'OOooooooooonOOOOOOOOO')1 0000062 000000450 
02 OQOOOOOOOOOU02) 0 n451 

SJQKsr,r OO!511~~I.~ 000015350 oooono 0452 
~ U"13S000oo00U0000020 0(1)0000 0000010 0000005 000000(\000000'J453 

0000')0000000001)00000 04 ~4 
'A~TMOOT 01l~~~91 SEMVO VALVE 045~ 
ST~NINFO 02 742 1200 16 0456 

06C ~451 
STIIKSUT OOI.!»"OhOl~ OCOOOOOOO OOllOOOOO 0IltOOOOOOOOOOO(\OOOIt'U 

00"0 ""6"46nooooouocooon004 0000000 OOOOOOtt 001)0000 0000516 00000045. 
7~ OCOOC~J0000002' 0 0"60 

S',lKSUT 0lll5910Ql6 OCOH50(';O 000000 (1"61 
~19440KOOOOOOODO~'023S 0000000 00001~0 OOOOO~5 0000005 00000n .. 62 

OOI)OOOOOOOOO~OOOOOOO 509 0'.11) 
, AA TROOT 022 52252- 01) J GOfJPL I ,.G 0"64 
5TANINFO Ol 742 1200 1& Ott 6' 

06C O~66 
SlnKS1AT 00lS~00326 OCCJUOOOUO 000000 0"61 

.. a54~~ooOOUOOUOU000092 0000005 OOOOO~2 000000~OOOUOOOOOOOf)OD0468 
00100~0~OOOOOO~OOOOO Y 04hl) 

S 10KS' AT n02~f)I)t.\ll6 uonoonO(lO 00000000 . 00700000000000000n470 
0000 ~4~4~~SU()U~uuoounuuooo no~oooo ooooono oooonl0 ooon8ll nonOO~ltl1 
81 OOO"O~JOOI)UU460 0 0412 

S,"K5"1 00lS~lO·).?6 OOU0164~0 000000 nltU 
SO'507S~00000000~00076 0000005 0000010 OO()~076 0000008 000000474 

OOOOOOOOOOO~OOOUO~OU ~03 0475 
PAR'ROQT 02tnUJ~02 CHASSIS 0476 
SUN'NFO 02 222 1200 34 Ott 71 

0& 0478 
STOKSTAl D025Q003?6 000007900 ooo~oo 041Q 

.... 41t9 .. S(lOOUOOt'nonOOOll~ 0000000 0000000 0000005 0000113 oooollO .. a/) 
OUOOO~O~ooucoouu~OO~ "~4 O .. Al 

S'UKSTU 00,!!»90602& 000000000 OOIJOOOOO eH 10(lOOOOMC'OO(.\OOO"ez 
0000 lQ) OOOOOuOUOOOOOOO 00000000000000000000000 0001L.8 000020 .. 81 
04 OOOOUOOO')OOOOOO \) 0484 

S'~KSTAT 00Z59l0Q26 00000190~ 000000 C~8S 
~1'~10S00000000UOOOOO" 0000000 0000000 onoooo .. 0000016 n00000486 

ooooooocoooooooooooo 517 0"8? 
PARTAunt Ol1003ftOb SwiTCH n~8A 
SfANINfO 02 H1. .1200 ,.. 04. •• 

6.10 I!S/VS Application prograaaing Reference !annal 

........ ~ -" 



06C 0~9~ 
STnKST'T OO~5900]2b OOOOI12b) 02~000 0491 

SId518S000000000000090 0000005 ooOOOlZ OOOOO~l 0000300 000on049Z 
12 0000121 OO~OOOOO~ ~ISY 0493 

nACKORDR lO~)S36bC? A1404 36609 on~00494 
1110 0495 

DACKORDR 30SnS3bbi0 H3404 36610 000~04q6 
OlhO 0497 

~TOKSTAT OOl~~Oh01h UOOOOOOCU 00000000 0~10000000000~000049B 
0000 40lt OOI}OOOOQI)OOOOOO OllOOOOoooooonnooooooOOO 0001 n4 00C'OO04QQ 
.. } IJOCO) .. ·.(Jl)rhJO .. ')5 0 0'.00 

STnKSUT 0025910'126 00~CO"b20 100000 00;01 
51'~18S000000000000004 0000002 0000000 0000004 0000036 000000502 

36 Ooo,ooooonooooooo S17 0-'01 
PA~TknnT 023U07228 HGUSING 0~04 
S TAN INfO 02 222 1200 lit 1)"i05 

C4 0506 
STOKSTAT ~OZ5qObOlh 000000000 oo~noooo ooooocoooooOOOOO~0507 

ouoo 44ij448NOOOOOOOOOOOUOIO 00000000000000000001)010 0000125 000000508 
II oOOOOOOOI)OOOOlJ 0 0"i09 

~TOK~TAT OUl~q1092h OC0012000 000000 0~10 

4QS4'1SS0000000J0000013 0000000 0000000 0000013 on00006 000000511 
OOOOODoocoono~uoooOO 4~8 0~12 

PA~ TKIJlH 01 iOO"027 tAKD FKONT (1')13 
S TAN INFO 02 Itt.A 7246 tl4 0514 

07.F 0')15 
STOKSTAT 00259060lb OOOOOOOUO 00000000 016000~00000~00000516 

OO'JO)4b 000000u00000001 00000000000000000000001 0000044 00000nSl1 
07 000000000000029 0 0518 

STOKSTAT OOlSqlO~2b ooooououo 000000 O~19 

It~q4~9~000~00000000003 0000000 000000] 0000000000000000000000570 
OOOUOQooonUooQO~OOOO n~11 

·PAR1~UUT nl\~O~27~ CAPACITOR 0531 
ST'NINFO Ol 742 Iloa 82 0,)J2 

06C ~~11 
srnKSTAT OOZS900J~6 oeooooooo 000000 0514 

~005000000\lOOOCOOOOOOl 000')009 000001000000001 0000014 0(001)053' 
00 uooo~ocooo~oooaou V O~16 

ST~KSTAT OOZ5qQ~n26 000000000 00000000 013000~OOOOOOOO(lOO~31 

OOJO 47641bNO~OOOOOOOOOOOII ooOoOOoooooonoooooOOOOI 0000083 000000538 
II ocooaoo~ooooooz 0 05J9 

PARTROOT Ol40C~~70 HOUSING 0540 
·STANINFU 02 222 1200 1" 0541 

04 0542 
STOKSTAT 00l~9060Zb 000000000 00000000 0050000000o0000000~43 

oono 448 OOOOOOOOQOOOOOO 00000000000000000000000 0000044 0000~0~4~ 
04 ooocaoonoooo~oo 0 0545 

l/ 
STQKST4T 0025910916 OOOO~OOOO 000000 0546 

44844~KOOOOOooo0000002 0000002 000000200000002 00000000000000547 
OO~OOOOOOOOOOOOOOOOO O~48 

·PARTROOT 02100~2~0 HCUSING CONY 0549 
S TAN INFO OZ· 222 1200 18 0550 

04 0551 
S TUK SU T 0025910926 OCOZ93')00 000000 ~5~2 

511452Koooaoooo0000002 0000000 0000000 0000002 00~00000000000553 
00000000000000000000 0554 

P~~TKOOT OZ301i405-00Z MOUNTING 0555 
S TAN I~FO 02 22 646· 055 • 

• 

Application Program Examples 6.11 



~TOKSJAT 

STJKSfAT 

S WK SUT 

-PAR THOOT 
STA~I~FO 

STOKSTAT 

PAR TRUUT 
5' ~N INFO 

SruKSTAT 

Sl()KSTAT 

-PA~ TROOT 
STAN INFO 

STOKSTAT 

STllK STAT 

S TOt( S1 AT 

'PARTROOT 
S TI\Nl NfO 

STIlI<. SlA T 

S TOt( S TI\T 

STOt( STA T 

PARTROOT 
STANINFO 

U(llJ 
OO}~q003!'o OOOUOOOOO 
OO.IU Vl i~()1J'+114S0UOJOOOOOI)OOOOO 
21 1000000000000~1 0 
001.5~06ul6 OCOOOOOOO 
OO~O J?q 0001000~Ooooooo 

14 ooooocroooooo,~o 0 
00Z5110~26 U00019650 

51H51~sonOOOOOOOOOOOOl 

00 ocounooonnouooaoo 518" 

1)'5'5. 
OOOJOOOO 004000000000000000~~A 
0000000 onooooo 0000000 0000720 OOOOOO~~q 

05&0 
00000000 0030000000000000005&1 
00000000000000000000000 0000'560 0000005&Z 

05#>} 
000000 O~h~ 

0000004 0000003 0000001 0000008 000000565 

02i0134ll COVER 
0~66 

0567 
0568 02 227. 

0& 
OO!59Q6076 COOOOOOOO 
0000 44R440S000JOOOOOOOOOll 
36 COOOOZ10OQ004Zo 0 
007.~qlU9Z6 000012100 

512512S000000000000047 
ooouoonOOCOUOOOOOJOO 51l 

1200 66 
O'5hQ 

00000000 002000000000000000,70 
0000005 OOOOOZO 0000000 OOOO~OO 000000571 

O'\1Z 
000000 0'573 

0000010 0000005 0000041 0000011 000000574 

02 '01 t47'l-01)1 CGV[R I\S:)V 
0575 
057" 
0'>71 
01)18 

02 222 
0" 

00l59n6016 COOOOOOOO 
00-)038044 S"'tONOOOOOOOOOOOOOOO 
C1 OCOCVOOOOOOOU05 0 
002S910Q26 000003700 

513513~OOOOOooooooooOO 
ooouoocnooooooOOOOOo 513 

1200 66 

00000000 00100000000000000051Q 
00000000000000000000000 0000394 000000'580 

0581 
000000 0582 

0000000 0000015 0000083 OOOOOO~ 000000583 
(1584 

02301341.0-001 CAPAC nOR OS85 
0586 
0581 

02 742 
04 

00J.59003l6 000000000 
r0103q347~418n000000000000004 
73 ocooooooonooooo 0 
002~q06026 OCUOOOOOO 
OOJO 44~4.0~000000000000010 

21 OCooocoon000001 0 
002~91097h OC0001530 

~14515nooooooOOOOU0349 

OooooooooononooooooO 514Y 

1200 82 

00000000 006005 00000000000588 
0000005 000000000000004 0002Q15 0000l058Q 

O"iQO 
0(1(100000 000000000000000000594 
0000000 0000000 0000000 000224~ 0000 595 

1)596 
000000 OSq7 

0000000 0000755 000009~ 0000108 000000598 
0599 

OZlOI~~4B-OU2 CHASSI~ 0600 
0601 
0602 

02 222 

OOl5Q00370 000000000 
OO'10J1j4q146UOUuOOOOO~00~OOOO 

11 oonoooooo~OOOOo 0 Y 
0015906026 OCOOOOOOO 
OOOU 293 000000000000020 
01 000000000000505 0 
0025910126 000000000 

512512K000000000000002 
oo~nooooooOOOOOOOOOO 

lZ00 

UOOOOOOO 001005 OOOOOOOOOOO~Ol 
OOO~OOO OOOOOOO.OOOOO~O 000118& OOOQOO~O~ 

OoO~ 
00000000 OOOOOOOOOOOOOOOOOO~UQ 
00000000000000000000000 0000498 000000010 

0611 
000000 0612 

0000000 OooOOOZ OOOOOOOOOOOOOOOOOOOOOO~13 
0614 

02%134-016 NAS671Cl NUT 0015 
0616 
0"11 

02 742 lZ00 14 
03 

STOKSTAT 0025900326 000003033 00000000 004010 00000000000618 
0000886 0002316 000000619 

Ob20 

fi • 12 

COOU3Q]4934Q5S0C0000000000886 0000200 0000000 
86 OOQOOOOOOOOOOOO 0 

IMS/VS Application Programming Reference Manual 

• 

C,I 



c. 

C 

• 

c 

:. H1KSTAT 

'iTllK 'i JA T 

t Yt.CUUNT 
PAI(T~l.lI)T 

SUNINFO 

OUl~~~h02~ OOOOOOOUO 
UlhJO 4" 144 "<;;U0000000000001" 
4b 1100" 101)00000000 0 
0~l~~lU9~b cco6ooooo 

~bI4bl~OO~OouocoonOl15 
C00000nnnouonuouoooo 
2000001100 00001150 

ooonoooo 0040~0000~oooooonn624 

ooooooooOOOOOOOOOOOOOl~ 0000904 00~000625 
0626 

000000 0621 
1)0fJOOIO 0000000 0000115 0000000000000062A 

0"29 
0~2') 

02,,(101)3-118 173~30~P8661TO RfS Ob30 
02 142 1200 02 0631 

10 0632 
S TI1K:iU T OOJ.r,QOOVb 000000000 \lOUOOOOO 020010 00000000000633 

0010]q34Sa~RASOOOUOUUOOOOOO\l6 oeooooo 0000000 0000006 0000644 000010h34 
l6 ocoo~coooouooao 0 4~HY 0635 

S rtJK STA TOO? 5C)ChC'.!b lJOO·)()O\lOQ I)OI)OI}OOO OOOOOOI)OOOOOOOOOOO~ '\9 
OU,)\l 44.i (h)O'')OOO(J'JOUuOCf) 00000000000030000000\l00 00021 CJQ Ol)I)01)I)b40 
39 OOI)COOOJOO\l\l\lSl 0 Oh41 

STtlKSTAT OOZ5'HOCJ2h C.COOU0130 000000 0/.42 
51~51~sonooooouaoon64~ OO~OOOO 00000210000621 OOOOOQl 000\l00"43 

OOI)OCOC~OOOCOOOO~OOO 51~Y Ob44 
PA~rH.nOT OZ:J5Z540-0OZ WIRF W~AP 1),.,,,5 
srhNINFO 02 222 1200 42 n~46 

SfrJKSTAT 
0" °'141 

OO~7~O~12b OOOOOUOOO OOCOOOOO oooooooooooonoooonh"8 
OUOO 4bO oaoooouooounObO 00000200000000000000000 0000012 OOOOOO~4q 
00 000000000000000 0 Db50 

STnK SUT OOZ~OOqllb OCoOOOOO~ 000000 06~1 
51~515000000000000001l (}I)OOOOO 0000012 0000000 00000000000000~52 

12 OOQO~OOOOOUOOOOOO Y 0653 
PAR T~UOT 02hSl79? PuL~~ T~ANSFOR"ER 0654 
STAN INro 02 101 8300 0655 

14 ~h56 
S T:IK STA T OOlftOOC)126 ocooooooo 00000000 oOOOOOOOOOOOOOOOUO~Sl 

oouu 514~I~SOOO~OOOD0000004 oeouooo 0000001 0000003 0000008 00000065R 
00 oaQOOOOooooo~ao 0 4~jy Oh5q 

PAO(Tkl10T 02~86b3-1J2 t~U~tlOOK03 n660 
srANINFO 02 1~2 120n ~2 Ohhl 

VhC 0hb2 
~ JIIK STAT 00J.'5c)06tllh IlCJlluOOOi) OOl'OOOOO OOllJOOOOIlOOOOO('l('OOlth3 

OOOOJ0444~440500U~00000000UOO nooooooOOOOOO~O 0000000·0001186 OOOOIlO~h4 
C9 ocoonoOOOOOU\l56 0 Ob6~ 

STOKSTU 00Z~11n9J.b CCUCOOOOO OUOOOO Ohbh 
S1USlasoouOoooUOOOOl~2 OOOOC~Z 000001S 000023l 000(0)1 0000~Oh~7 

OO!)()CGCOI)()OO<lOUUOOuO 51 H (I;.',d 
PAR rl<UIlT OluhhbJ-I04 CP40!llJlOIl.J03 0"','1 
STAN INFO 02 147 1?00 H2 Oh70 

ObC Oh71 
STOK STU OO?~90bOlh OCOOOOOOO 00000000 001000000000000000h12 

OOUO 44~ 000000000000015 uC00007000nOO~3 noooooo oooo,~~ OOOOOOh73 
OS OOOOOOUUOOilOUOO 0 Oh'4 

S TIlK STAT 00l~qlOq26 . OCOQUOOOO 000000 Oh1S 
':Jll,nso:)000000()01)009~ 00()001~ OOOOOOfl 00000'15 000000') 1)00001)"'1& 

00000000000000000000 511 0671 
-PAP TRUOT 02b98~1-b3~ CP09A1KE153Kl CAPAC O~7~ 

STAN INFO 02 7~l 1200 ~2 Oh1Q 
06C I)ftftl) 

STOKSTAT 0025906026 OOOOOuOOO 00000000 002000000000000000~81 
0000200 00003~~ OOOOOflb8Z 

0683 
0000 44~4flOSOOOOOOOOOOOOOOO 0000000 0000000 
16 UQOOOOOU0000011 0 

Application Program Examples 6.13 



STnKSflT OOlS'HO<}Z& 000000500 000000 I)~A4 

~1551"r)00(JOOOOOooooo'n 0000000 oOOOOSO 0000052 0000009 
OOO~CCOOOOOOryOOOOOCO 51~ 

PI\R TROIIT 0210b0654P()IJl 
STANINFn OZ H2 

ELE TUBE 
1200 10 

OOOOO(lb~5 
01,36 
Ob87 
0688 
O-,R9 

STUKSUT 

SJOKSTAT 

PAR. TROOT 
!.TANINFO 

SlOK STAT 

STUKSlAT 

PAR TknOT 
S lANINFO 

S T(lK STAT 

SJ,lKSnT 

S ToK STAT 

PARTROOT 
STAN INFO 

srllKSTU 

AACKUROR 

ijACKOROR 

8ACKORDR 

AA'CKOROR 

IlACKIJROR 

STfJKSTAT 

SlOKST IT 

PM JRUOT 
Sr4NINfO 

6. 14 

06C 
0025906026 000000000 
OUOO 44& 000000000000000 
lZ 00000000"000003 0 
00l5?109Z6 OC010aoco 

515511flOOOOOOOO,1000038 
OOOOOQOOO~OOOOOOOJOO 515 
071431\991)1'002 NUT 
02 HZ 

U3 
00259003Z6 000000000 
avoo 44U440S000000000001136 
00 000000000000000 0 
OO!~q16U2& oonouoooo 
0000 79b 00000000UOCOOl1 
00 OCOOllOOU0000015 0 

00000000 003000000000000000690 
OOOOOOOOOOOQOOOOOOOOOOO 0000400 000000691 

0~92 

000000 0~93 
0000000 0000002 0000036 0000004 0000006~ 

01,95 
0696 

1200 14 Ob'H 
O~q" 

00000000 000005 00000000001)~q9 
00000000000000000002512 0000443 01)1)001) 7 00 

0101 
00000000 000000000000000000702 
00000000000000000001)033 0000880 0000001U3 

0104 
0274549491',)01 LAMP HOLOf:R 0705 

010b 
0707 

02 742 
O&C 

OOl~90032b 0000Pblb~ 
')1Ar;ltl!.00000000000I)Obl 

80 OCOOOOOOOOOOOOJOO 50~ 

00l59C602b 000000000 
OO~O 193 000000000000000 
88 000CIOQOOOQ0065 a 
OOl5910926 000005J~0 

511~1~~U001000000U0004 
ooooooooooonnooooooo 5Jl 

1200 82 

046000 0708 
0000000 0000040 00000~4 0000173 OOOOl)070Q 

(1710 
00000000 022000000000000000711 
00000000000000000000003 0001301 0000207 1Z 

0111 
000000 0714 

0000000 0000000 0000004 0000036 000001715 

C17b16032P 11'1 1 CAPAt I TnR 
07lb 
0711 
07l1t 
0119 

02 742 
04 

OO~~900326 0000UI0Cl 
OU~OJ934q14Q2S000000000000013 
4q OCOCI)0000000000 0 4~5Y 

30rR14Q3l91301603 04a5 
00\0 
30P~149316\103603 

OUIO 
30PR1530961303b03 
0010 
3OPk15309S1303603 
0010 
30~Rlb950b1303603 
00'i0 

0465 

0485 

04~5 

001.~q060?b 000000000 
00')0 ) f, 1 OUOOOOOOOOOO()OO 
18 oooooor00000119 0 
00l~ql09?b ~OOOOOOOO 

4544S41l000000000000022 
OOOOO"OOOOOOOOOOOOO~ 

1200 82 

OLlo.)OOOOO 006005 OOOOOO()('O(l1l120 
0000009 0000000 0000~13 0002601 0000107Z1 

82446 301 :\609-001 

10 1 360f)- 00 1 

101 1609-001 

0122 
00000123 

()124 
f)00()0125 

012" 
00000721 

012'1 
00(100129 

0730 
00000131 

013Z 
OODOOOOO 00ZOOOOOOOOOOOI)OOf)736 
0000000000000000(1000000 0000952 000000137 

073e 

1l24Sl 3013609-001 

R2484 3013609-001 

OOOO~O 013Q 
0000000 000007.2 0000000000000000000000740 

07.ft)lii1AQP1)49 
02 

Cll(CUlf BREA 
01 ',1 
07 .. ? 
() 143 
0144 

742 1200 06 
06C 

IMS/VS Application programming Reference Manual 

• 



STI)KSTAT Oo:? 5?0l>02 6 000000000 00000000 000000000OOOO~OOO074S 
OU')/) 4~0 00000(000001)015 00000000000000000000011 0000033 00000074~ 
03 OOOO~OOOOOOOOOl 0 0741 

STOkSTU 002591092b OCOOOOOOO 00000(\ 0148 
r 'tQS't9SIJ000OOOOOOOOOO02 0000000 000001)1 0000001 0000002 000000749 

l_ Ooooooonoooo~oOOOOOO 498 0750 
PARTROOT 0276301143P513 ItESISTflR 07')1 
STAN INFO O~ 142 1200 02 0152 

ObC 1)753 
~ 10K STAT OOl~qOC32fJ OOlIOOOO(1() OO~OOOOO 000000000000000000754 

0000 ~18 0000001)0OOlJOOO2 00000000000000000000002 0000000 000000755 
00 OCC000000000002 0 075#» 

STUKSUT 0025906026 OOOUO:lUOO 00000000 001000000000000000151 
0000 44a442S00000000000uOOO 1)00000000000000 0000000 0009555 000000758 
q9 0000000~0000080 0 0759 

S TIJI( SU7 00l591092& OCOOOOOOO 000000 0760 
51d>18000000uOOOOO140) 0000000 0000300 001)1203 0000858 000000701 

OOOOOOOOO~OOOOOOOOOC SlAY 0762 
PA~TKOOT 02773b847POOI TRAN SFORMER 07b) 
5 TANI NFO 02 142 1200 CHI 016., 

10 0165 
~ WI( SU T 00l5'100.il6 000000000 00000000 000003 00000000000766 

OOa03Q3511511S00000oociooOO179 0000001 0000150 0000040 Q001411 000000767 
05 OOOOO~9 0000128 0 (l76S 

DACKURDR 30?1(1350't0 046~ B3,tlJ 0000A)5~4 ~"8506-100 00000769 
1 'j00 0770 

STrJK$UT 00l5?Oh02b 1)00000000 OOCOOOOO 005000nOOoooOOOOOn174 
OO'JO ~57 000000000000005 00000000000000000000005 00004)0 000000775 
20 OCP003300000040 0 0776 

C; TUK STA T OOl5'HOQ26 000U15100 000000 01H 
~95497KO"0000000000010 0000000 ooooMo OPOOOIO 000OOOOOOOOOO?178 

00 00000000000000000 077'1 
I'ARTROOT Oli03001J0l5 GASKF.T 0780 
S TANINFO 02 221 1200 A4 07K1 

04 078Z 
STOKSTAT OO~5~060l6 00000"000 00000000 006000000000000000183 

0000 zln 00000UOOOOOO049 00000000000002000000019 0000176 000000784 
11 ~OOOOOOOOOOOOOO 0 07H5 

S TIJK STAT 0025'H09ZI) 0"0002580 000000 078/) 
51051uSOOOOOOOCOOOOO12 0000000 0000000 0000012 0000008 0()OOo)i\7lt1 

OUOn000000JOoooooaoo 510 07811 
PM. TKUOT 02:iZll4-05fJ RN&\JC31.61 f 0789 
S TAN INfO 02 74Z 1200 02 07QO 

10 /)1ql 
STlIK STA T 00l59003Z6 000000000 00000000 000007 00000OOOOO07Q2 

JO\J0)9\'t8A4RRSOOOOOOOOOOCOO08 0000000 0000000 0000008 0001116 0000O()7Q) 
",,,,, ... ~ .... 02 OOOOOOCOO~00028 0 48t1Y Q794t 

L 
STn~ STI\ T 00l.,9109Z6 OCUOOI>OOO 000000 O~Ol 

51151USOOOOOOOOOOOOJ22 0000000 0000000 0000340 0000190 000000'\02 
OOOOOOOOOOOUOOOOOOOO 517Y O~O) 

PARTKUOT n2~2124-640 RNb5C90nF 0'\04 
STANINFO 02 74tZ 1200 02 0"05 

048 oaOb 
STOK'iUT 0015900326 JOOOOOOOO 000000 OIlOT 

4q44~40000000000000000 001)0000 0000000 0000000 0000008 000000808 
00000000000000000000 494Y 090CJ 

S TOKST AT 0020;906026 000000000 00000000 OOOOOOOOOOOOOOOOOOAIO 
OOQO 402 000000000000000 00000000000000000000000 0000075 OOOOOO~ll 

• 

c 
Applicat ion program Examples 6.15 



03 000000000000000 0 
PAR TROUT 02ct2125-1S6Q RN75C8252F 

0"12 
0813 
OBI4 
O~15 

SUHIHFO 02 71t2 1200 02 

STOK STAT 

STnKSTAT 

PAR TlUlIlT 
S rAN INfO 

1J6C 
00ZS?Ob026 (;00000000 
OO~O 4.~ 000000000000100 
03 000000000000013 0 
002SQ1097.6 000000780 

51t51]~OOOOOOOOOOOUOqo 
0001.)0000001'1000000000 513 

00000000 00IOOOOOOOOOOOOOOO~16 
OOQOOOOOOOOOOOOOOOOOO~O 0000424 000000811 

ORIA 
000000 0~19 

0000000 0000000 0000090 0000060 000000A20 
0"21 

021J435l-456 RWblV412 OR22 
02 742 1200 Og23 

06C ~~2" 
5TtJKSTAT OOZS'l00311J 000000000 00000000 002000000000000000"25 

0000 41Q,,'?SOOOOOOOOOOOO?'80 0000000 00001.00 0000110 000016' 000000626 
01 000000000000004 0 0~21 

STOKSTAT 002~910926 000000000 000000 0831 
509S17S000000000000009 0000000 0000000 0000009 0000012 000000932 

00 00000000000000000 ~Oqy 0~33 

PAk TRIJOT 0290- 3033334 Bn~DED ASSV 01U4 
SUNWFO ('12 4U 1236 0~35 

010 0'36 
STUKSTAT 002800912b ~COCOOOOO 003000 0837 

51 .. 515S00000000oo00010 0000000 0000014 0000001 0000032 000000"38 
01 OOOCOOOOOOOOOOOOO 503Y 0839 

PARTROOT 02~o-30336b5 BCNOtO ASSV 0~40 
STAHIHFO 02 41A 721<» 01141 

015 0842 
STOKSTAT 0018009126 CCOOOOOOO 000('100 OS43 

514~lS00000000~OO00024 0000000 0000024 0000000 0000048 000000B44 
OCOOOOOOOOOCO~OOOOOO ~R2Y OB45 

PARTROOT 02?05537-~a4 CAPACITOR O~46 
S TANI HFO 02 742 1200 I)BIt7 

ObC Od~8 
STOK~T~T 00Z8002~2~ oeooooooo 002000 OR49 

497461461S000000000000004 0000000 0000000 0000004 0000050 OOOOOO~50 
01 Ol'lOCOOC0000000100 0~~1 

STnKSTAT OOl8COQ126 000000000 000000 OP.52 
5144440000~000000('lOOOO 0000000 0000000000000000000000000OOOOOB53 

OOOOOOOOOO~ooooooooo Y 0~54 
P_RTROOT 0290b07'-040 CAPACITOR 08~5 
SlAHINFO 02 742 1200 82 O~Sb 

ObC oa~7 

STCKSTAT 00Z~01'l912h 000000000 00000000 001000000000000000~~8 
0000 511515S00000000000001~ 0000000 0000020 001'10004 0000028 000000~~9 
02 000000000000000 0 Y OBbO 

PARTROOT OZ9~7021-787. CAPACITOR 0961 
SUN INFO 02 142 1200 82 Oltb2 

06C 0863 
STOKSlAT 0028009126 000001700 00000000 006000000000000000864 

0000 5115170000000000000008 0000000 0000005 0000003 0000018 OOOOOOR65 
01 000000000000000 0 S03Y 0866 

PARTKOOT 02972294-002 CONNECTOR OR7Q 
STANINFO 02 742 1200 "2 0880 

ObC • 0 .. 81 
ST~KSTAT 00 TF3~67A M000003390f. FACHOOOOOOOOOOOOOOOOOO 0~~2 

467 0000000 0000000 0000000 0000000 0000000000000000000000883 
0100000000 0000000 0 V467N OBS4 

IMS/VS Application Programming Reference Kanual 

\' .... , ..... ; 

\ 
'-., .... / 



( 

/"" 

L 

srUKSTAT 00 rf5~77N HOOOOll540 FACHOOOOOOOOOOOOOOOOOO OR85 
~bl ooooono 0000001 

OGJOOOOOOO OOOOGOO 0 V4b1N 
ST~KSTAr 002U009026 OCOOOOOGO 

0000015 0000000 000000100000000000000088b 
OR87 

00000000 020000000000000000K88 
00000000000000000000001 0000015 000000889 00Q045241641~SOOOOOOOOOOOOOOl 

03 OCOC00000000001 0 
H£lKSTAT 002800'H26 000000000 

01190 
00000000 OOOOOOOOOOOOOOOOOOSQl 
0000000 0000000 0000007 0000030 00000089Z 0010 51451SS000000000000017 

00 OCOCOOOOOOOOOOO U Y 
PARTRUOT 02~22399-001 CCNNEtTOR 

0893 
0891t 
0"95 
0'196 

SfANINFO 02 742 1200 

S fOK STAT 

PAR TlUlOT 
STAN INfO 

S TUKSU T 

""CKIJROR 

PARTKOflT 
STANINfU 

abC 
002d0091Z6 000011430 

517S11S000000000000006 
01 OOOOOOOOOQOOOOOOO 501Y 

005000 0"97 
0000000 0000005 0000005 0000019 0000008QR 

02'125363-116 DIODE ZENER 
0"99 
O~OO 

0'101 
1)90Z 

02 742 
ObC 

00lB009126 000000000 
0000 5145150000000000000005 
02 000000000000000 0 Y 
30PK 12q~)7 

lZ00 72 

00000000 007000000000000000903 
0000030 OOOOO~ 0000001 0000030 OOOOOO'~ 

09'o~ 
00000'»05 

0040 
02'l25J1i0-101 
02 

nlnOE 
71t 112 

000 
PART~OflT Ol"OJ11-10? 
STAIH NFO 02 816 

Fill ER 
0000 

O.,O~ 

0<)06 
O'lOl 
090" 
OCHO 

00 OQ13 
STOKS1AT OO?~00qI2h OOOOOOOOU 00000000 ooooo~000000000000q14 

ooua 514515S000000000000~0~ 0000000 0000004 0000004 00000Z5 000000Q15 
no 000000000000000 0 4SHY OQ16 

PARTROflT 02"30331-1Z3 FILTEI\ OQl1 
srANINFO 01 81~ 0000 0918 

00 OQ19 
~ IIIK ~ fA TOOl KOO'HZ'" OOOOuOOOO 00000000 OOO(lOOOOOOooooooon') 20 

OO~O ~14515S00000000000000H 0000000 OOOOOOS 0000003 000002S 000000911 
00 000000000000000 0 4S7Y 09ZZ 

PARTROOT Cl~30333-001 OISCRI~INATO OQ23 
SrANINfO 02 816 0000 0921t 

00 0925 
ST~KST~T 002ij009126 COoooooon 00000000 013000000000000000926 

OO~O S1451~nOOOOoo000000002 0000000 0000002 0000000 0000008 000000Q27 
01 000000000000001 0 Y 0928 

rAKTRunT 02Q46325-08b PIN 092Q 
~TANINFO 02 742 1Z00 16 0930 

06C 0931 
STOKSTAT 00 RF3467~ HOC0000890 EACHOOOOOOOOOOOOOO~OOO 0~32 

376 0000000 0001313 0000000 0000000 000111300000000000Q000933 
OOOOCOOOOO 0000000 0 ~37oN OQ34 

srnKSTAT 00 Vf34610 HOCOOOOOUO EACHOOOOOOO~~OOOOOOOOO 0935 
170 0000000 000005750<100000 0000000 0OO0059000000t'00000000936 

0000000000 0000000 0 V170N 0937 
STaKSTAT CO'-8C0902~ 000000000 00000000 850000000000000000935 

0000452481452S000000000000000 00000000000000000000000 0000004 000000939 
14 OC0000000001010 0 0940 

STOKSTAT 0028009126 000000000 00000000 0~0000000000000000941 
OOJO ~14515S00000000000000B 0000000 0000000 0000008 0000016 000000Qlt2 

Application Program Examples 6.11 



C8 000000000000000 0 49JY OQ43 
PA~TROOT 02q500~o-006 RELAY Oq4~ 
SfANINFO 02 742 1200 96 0~45 

06C OQ46 
STOKSTAT GOl8Cr.91Z6 U00015)00 00000000 00000000000000~000941 

0000 S17518S00000000000000q 0000000 0000000 onQOOoq 0000021 OijOOOU~46 
00 000000000000000 0 4dJY OQ4q 

PARTKOoT 02QS4017-00\ RESISTOR O~~O 
S TAN INFO 02 142 121)0 02 0'l51 

ObC 09S2 
STOKSTAT 00 JF14b7A M000002SZ~ EACHOOOOOOOOOOOOOOOOOO OQ53 

907 0000000 000000& 0000000 0000000 ~0000060000000!0000000q54 
0000000000 0000000 0 VQ07N OQ55 

STOKSTAT 00 rF34~lA MOOOOI0000E EACHOOOOOOOOOOOOOOOOOO 0?5& 
401 0000000 OOOOOQO 0000000 0000000 OOOOOOOOOOOooooooOOOOOQ57 

0000000000 000000) 0 V40lN OQ58 
STOKSTAT 00 lF5077N M000002525 EACHOOOOOOOOOOOOOOOOOO OQ59 

474 0000000 0000002 0000000 0000000 0000002000000010000000Q60 
0000000000 0000000 0 V474N 0~61 

STOKSTAT 00lHOOQI2& 000000000 00000000 000000000000000000Q62 
0000 514S15S00000000000000~ 0000000 0000003 0000001 0000008 OOOOOOQb1 
00 000000000000000 0 ~86Y 0964 

PAR1ROOT 02<J58007-180 RESISTOR 096'5 
STAN INFO 02 1~2 1200 02 0966 

06C Qq67 
STOKSTAT 00Z80091Z6 OC0000650 00000000 005000000000~00000q68 

0000 511517S000000000000046 0000000 0000000 00000)9 0000021 000000Q6q 
01 OOOOOCOOOOOOOOO 0 V 0970 

PARTROOT 01Qh052R-067 RFSISTOR OQ71 
STAN INFO 02 7~2 1200 02 0972 

ObC OQ1) 
SrUKSTAT 00 DF)~b71 M000007000 EACHOOOOOOOo0000030000 Oq7~ 

\40 0000000 OOUOOOO 0000000 0000000 0000000000000100000000975 
0300000~00 0000000 0 V140N 0976 

SrQKSTAT 00l80090Z6 000000000 OQOOOOOO 100000000000000000977 
0000~52481479NOOOOOOOOOOOOOOO 000000000000000 0000090 0000003 OOOOOOQ18 
O} OOOOO~OOOOOOOO) a 0919 

STnKSTAT 001.~OOq\Z6 0000u~2JO 00000000 1040000000000000~Oq~0 
0000 517,1700000000000000C9 0000000 0000005 0000004 0000027 000000Q81 
2M 000000000000000 0 505Y 0982 

P~RTRUUT 02968534-001 SOCKET OQRl 
SlANINfO 02 742 1200 Ib OQd~ 

ObC 0~85 

S1UKSUT 00l1J00912~ 000050000 00000000 029000000000000000986 
0000 514~15S000000000000008 0000000 0000003 0000005 0000007 000000987 
02 OC0000000000000 0 Y 0988 

PAR TRllOT 02'H481o-01 i } THE~MOSTAT 0989 
~fANINFO 02 1~2 1200 16 09QO 

ObC OQ91 
STnKSTAT 002800252h OOOOI32~0 00000000 007000000000000000QQZ 

000049~51b~17~000000000000006 0000000 OOOOO~O 0000006 0000057 0000009Q) 
O~ 000000000000000 0 516 0994 

STOkSTAT 002800917.6 0000091~0 001000 0995 
517517S0U0000000000021 0000000 0000005 0000016 00000I~ onOOOO?96 

01 00000000000000000 Y 0?9T 
rARTROOT OZQ7S\05-001 TRANSFORMER 998 
STAN INFO 02 14Z 1200 16 09Q9 

ObC 1000 
STOKSTAT 0028009126 u0010000Q 024000 1001 

514515S000000000000029 0000000 0000001 0000028 0000021 000001002 
05 00000000000000000 Y 1003 

PA~TROOT 02~89036-001 TRANSFORMER 1004 
S'ANINFo 02 742 1200 96 1005 

ObC 1006 
STOKSTAT 0028009126 000019)00 112000 

5115170000000000000007 0000000 0000n04 n000003 0000017 O~OOO 
19 00000000000000000 Y 

t 

c=, 
6.18 IMS/VS Application programming Reference Manual 



ANS COBOL APPLICATION PROGRAM 

This message processing program, DFSSAM03, provides you with the 
ability to inquire about the total inventory of a part in all locations. 
This program is one of several message processing programs used in the 
Sample Problem, included in the lMSL1~ I~stallai!Qll Guid~. 

The transaction code DSPINV retrieves the data from the data base, 
DI21PART, loaded by a previous program. Assume that it wishes to 
display, on a communication terminal, only the third inventory entry 
listed in the above output. The inventory location key is obtained by 
concatenating AREA, INVDEPT, PROJCD, and DIV. 

The input format for this transaction is: 

transaction code part number inventory key 

despinv an960c10, 28009126 

The output is: 

PART=AM960C10 ; DESC=WASHER ; PROC CODE=74 

AREA=2; INV DEPT=80; PRJ=091; DIV=26; PRICE= .000; STK CT DATE=513; UNIT=EACH 

CURR REQMTS= 

DISB PLANNED= 

630 ; ON ORDER= 0 

1053 ; DISB UNPLANNED= 

TOTAL STOCK= 680 

4 ; STK CT VARIANCE= o 

Application Program Examples 6.19 



The program listing is: 

FILE: DPSSA~O] ASSE~BLE A PALe ALTO DEVELOP"ENT CENTER 

IDENTIFICATION DIVISION. 
PR OG RAP1-ID. 'DFSSAl'! 03' 
AUTHOR. DON TRUDE LL. 
REMA·RKS. SIKGLE-LOCATION INVENTORY DISPLAY PROGRA". 

THE TRANSACTION CODE WHICH ACTIVATES THE PROGRA~ IS 
DSPINV. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBK-360. 
OBJECT-COMPUTER. IBM-360. 
DATA DIVISION. 
WORKING -STORAGE SECTION. 
01 NEXT-14'UNC 
o 1 IJNIQ- FO NC 
01 I SR T- FUNe 
01 5'l'OKSTAT-IfRI'rE-Sli 
01 PARTROOT-SSA. 

02 POOT-NAME 
')2 PEG IN -op 
02 KF.Y -N AM E 
')2 RELAT! ON-OP 
02 KEY-VALUE 
02 END -op 

01 STO~STAT-SSA. 

O~ FILLER 
02 FILL FR 
02 FILtER 
02 FIt L F.R 
02 5S-SSA-KEY. 

0] FIT.LEt? 
03 SS-SSA-KRY-VAtUE 
(I] FILL ER 

02 FILLER 
01 TERM-TN-AREA. 

02 FItL ER 
01· REFORM-MESSAGE. 

02 REFOR l'I-T HA NS-CD 
02 PAR1'-NO 
02 TNPUT-SS-K EY 
02 FILLER 

01 WOR K-AREAS. 

01 

01 

02 ROOT-KEY-WA. 
04 ROO'l'-P~EFIX 
04 PH-WORK 

02 MSG-SEG-CN"t' 
PAR AM -T A PL E. 
02 FILLER 
02 FILLER 
02 FILL ER 
02 'PILJ4'P.P 
02 END-TABLE 
PART-LINK. 
02 P ART-NO- EDIT 
02 FILLER 
02 REJECT-CODE 

PICTURE I(OQ) VALUE 'GN 
PI CT UR E X ( 04) VA LUB 'G U 
PICTURE X(04) VALUE'ISRT'. 
PICTURE X(02) VALUE SPACES. 

PICTURE 
PICTURE 
PICTURE 
PICTURE 
PICTURE 
PICTURE 

X(8) VALUE 'PAR'l'ROOT'. 
X VALUE,(t. 
X (8) VALUE' PA RTK BY , 
XX V~LUE' ='. 
x (17) • 
X VALUE ')'. 

PICTURE 1(08) 
PICTURE X (01) 
PICTURE X (08) 
PICTURE X(02) 

PICTURE X (02) 
PICTURE X (08) • 
prCTU RE x ( 06) 
P ICTtJRE X (01) 

PI CT U REI (14 0) 

PICTURE X (8). 
PI C T U REX (15) • 
PICTURE X (08) • 
PICTURE X (109) • 

VAL UE 'STO KSTA l' t. 
VALUE '('. 
VALUE 'STOCKEY'. 
VALUE ' = '. 
V A LU E ZEROS. 

VALUE SPACES. 
VALUE')'. 

VAL DE SPACES. 

PICTURE IX VALUE '02'. 
PICTUR E X ( 15) • 
PICTURE S9 COrlPUTATIONAI VALU.E ZERO. 

PICTURE S9 (2) VALUE +15 CO!lP. 
PICTURE XX _VALUE 't '. 
PICTURE S99 VALUE +8 COftP. 
PICTURE X(02) VALUE 'L '. 
PICTUR E 599 VALUE ZERO COrtPUTATIONAL. 

PICTURE 1(17) • 
PICTURE XXXX. 
PICTUR E X. 

6.20 IMS/VS Application Programming Reference Manual 

, . 
' ..... ~' . ./ 

...... ....... ,/ 

• 



c .. 

* 

c 

PILE: DFSSAM03 ASSEMBLE A PALO AI,'1'O DEVELOPMENT CENTER 

01 SEG-RRT-AFEA. 
() 2 FILLER PICTUR E X (02). 
02 PA-RT.-NO PICTtJRF X(15). 
02 FILL ER PICTU RE X (09) • 
02 J'ESC PICTURE X (15) • 
02 FILLER PICTtJR E X (119). 

01 STAN-INFO-RET REDEFINES SEG-RE'f-AREA. 
02 .F1I.L ER PICTURE X (18) • 
02 PROC-("ODE PICTURE XX. 

nl STOCK-STATUS-RET REDEFINES STAN-INFO-RET. 
o 2 F IL L ER PI CT UR E X X • 
02 SS-AREA PICTURE X. 
02 SS-D Po PT P ICTtJR E ,XX. 
02 SS- PRO.J PICTUR E XXX. 
02 ss-nrv prCTUFE IX. 
02 FILLER PICTURE X(10). 
02 SS-UNIT-PRICE PICTUFE 9(6)V999. 
07. FILLER PICTURE X(05). 
r2 SS-UNT'l'-OF-MEAS PICTURE X(04). 
02 FILLER PICTURE I(]3). 
02 SS-STOCK-D~TE PICTUBEX(03). 

(') 2 F ILL F. R PI CT OR E X ( 15 ) • 
02 SS-CtJR-REQMTS PICTURP. S9 (7) V9. 
02 SS-UNPL-REQMT5 PICTURE S9(7) Vq. 
02 55-aN-ORDER PICTURE 59(7)V9. 
02 SS-IN-STOCK PICTURE S9(7)V9. 
1)2 SS-PLAN-015P- PICTURE S9(7) V9. 
02 SS-UNPL-DISB PICTURR S9(7)V9. 
O? 'F ILL E R PI CT OR E 1 (2 3) • 

01 Bi\CK-O~nF.R-RET REDE.FINES STOCK-STATUS-RET. 
02 FILL ER PICTURE X (02) • 
02 WORK-OPDER PICTORE X (08). 
02 FILLF.R PICTURE X (53). 
02 WO-QTY PICTURE 59 (07) V9. 

01 CYCLE-COUNT-RET REDEFINES BACJ{-ORDER-RET. 
02 FILLER PICTURE X (02) • 
02 PHYSICAL-COUNT PICTURE 59 (07)V9. 
02 FILLF.R PICTURE X(04). 
02 TOTAL-STOCK PTCTURE S9(07) V9. 

o 1 T~IRF. -1 -ARE A. 
02 FILLER PICTURE 599 COMPUTATIONAL VALUE +62'. 
02 FILLER PICTURE 599 VALUE ZERO 

02 FILLE~ 
02 FILLER 
02 PART-NO 
02 "F II.L F.R 
02 DESC 
1)2 FILLER 
02 PROC-CODE 
02 CARR-I? ET 

o 1 L IN E- 2 - ARE A • 
02 PILL ER 

02 FILLER 

COJ!ll PUTATION AL. 
PICTURE x (01) VALUE". 
P ICTUR E X (05) VALUE ' PART=' • 
P I CT DR E X ( '5) • 
PICTURE X(7) VALUE '; DESC='. 
PICTURE X (15) • 
PICTURE 1(12) VALUR '; PROC CODE='. 
PICTURE xx. 
P ICT U RE X ( 01) 'I AL U E ' , 

PICTURE 59(02) VALUE +88 
CO"PUTATION AL. 

PICTURE S9 (02) VALUE ZERQ 

Application Program Examples 6.21 



FIT>~: DFSSAM03 .a.S5E~BLE A P hLO ALTO DEVELOPl'IENT CENTFR 

COM PUTA nON AL. 

C 02 FI LIIER P.ICTUR E X (0 1) VA LUE , • 
02 FT LLF. R PICTURE X (05) VALUE ' AR EA=' • 
02 5S-APEA PICTURE X (0 1) • 
02 PILL ~R PICTURE X (11) VALUE ' . INV DEPT=' • • 
02 55-DEPT PICTURE X (02) • 
02 PILLER PICTURE X (06) VALUE • • PRJ:' • • 
02 ss- PRO .. 1 PICTURE X (0]) • 
02 PILI. FP PICTURE X (06) VALUE ' . DIV=' • • 
02 55-DIV PICTURE X(02). 
02 FTI.LER PICTUR E X (08) VALUE ' . PRICE=' • • 
02 55-UN IT-PR ICE PICTURE Z (6) .q99. 
02 FILLER P rCTURE x (14) VALUE ' . STK CT DAT E=' • • ()2 S 5 - 5 T OC K - D ATE PICTUR E X (03) • 
02 PItL F.P PICTUR E X (07) VALUE ' . UNIT=' • • 
02 S ~ -UN! T-O F-M EA S PICTUPE X (04) • 
02 C."RR-RET PICTUR F X (0 1) VA LUE • • 

01 LI NE - 3 - A RF A. 
02 FILLER PICTUR E S9 (02) VALUE +67 

CO{l!PUTATIONAL. 
02 FILl. ER PICTU BE S9 (02) VAL UE ZERO 

COMPUTATION AL. 
I)?, FILLER I?1:CTUR E X (0 1) VA LUE • , . 
02 fIT.LER P'JCTORB X (12) VALUE ' CDRR REQ~TS=' • 
02 SS':'CUR- RE QMTS PICTUR E 'l (06) 9- • 
02 FILL ER PI CTUR r: x ( 11) VALUE •• ON ORDER=' • , 
02 55-0N-OR DER PICTU BE Z(06)9-. 
02 FItLER PICTURE X (14) V ALUF- •• TOTAL STOCK=' • • 
')2 SS- r N-S'l'OC K PICTURE Z(06)9-. 
02 C ARR-R ET PICTURE X (01) VAL U E ' • 

01 LJNE-4-ARFA. 
O~ FILL ER PICTUBE Sq (02) VALUE +79 r-" 

CO~ PUTATION AL. \ 
' ....... _-_/ 

02 'PILLER PICTURE 59 (0:2) VA LUE ZERO 
COMPUTATIONAL. 

02 prItL ~R PICTURE X (01) VALUE • • 
02 FltL P.P PICTURE X (13) VALUE 'DISB PLANNP.D=' • 
02 SS-PL AN- nrs B PICTU BE Z (06) 9-. 
02 FILL~F PICTURE X (17) VALUE .. DISB U NPL ANN ED=' • , 
02 C:;S-UNPL-DI5T3 PICTUR E Z (06) 9-. 
02 "PILL ER PJCTUBE X (18) VALUE . . STK CT V ARI ANCE=' • • 
'1? STOCK-VAR PTC'J'UR"F. Z(07)9-. 
02 C ARR-R ET PICTURE X (01) VALUE , • 

01 LIN E-5- AR EA. 
02 FILL ER prCTU RE S9 ( 02) VALUE +57 

COMPUTATION AL. • 02 FILLER PICTUR E S9 (02) VALUE ZERO 
COM PUT.ATTO NAL. 

O~ FILL ER PICTURE X (01) VALUE • • 
02 DESC- 1 PI CTtJP E X (24) • 
02- WORK·-OROER . PICTURE X (08) •. 
02 DE SC-2 PICTUFE X(11). 
02 lJO-QTY PICTUR ~ Z (06) 9-. 

6.22 IM5/VS Application Programming Reference Manual 



C-

FILE: DFSSA~03 A5SEMnLE A 

02 CARR-RET 
Ol NO- FART ROOT-PI SG. 

') 2 FIL.LER 

01 PILL RR 

02 FILLER 
02 PILLER 
02 PART-NO 
02 FILL ER 

02 CARR-llET 
01 NO-STOK STAT-l1 SG. 

02 FILlER 

02 PILL ER 

02 FILLER 
02 FILLER 
02 STOCK-KEY 
02 FILLER 

PALO ALTO DEVELOPMENT CENTER 

PICTURE X (01) VALUE • 
, 

prCTUR E S9 (02) VALUE +48 
COr!PUTAT 10 NA L. 

PICTU RE 59 (02) VIL UE ZERO 
COlli PUTATION AL. 

PICTUR E X (0 1) VALUE • , . 
PICTURE X (10) VA.LUE 'PART NO. 
PICTUR E X (15) 
PICTURE X (17) VALUE 

• NOT IN DATA BASE' • 
PICTURE X (01) VALUE ' • 
PICTUR E 59 (02) VA LU.E +45 

COr!PUTAT 10 NA L. 
PICTU RE S9 (02) VAL UE ZERO 

COft PUTATION At. 
PICTURE X(01) VALUE' '. 
PICTURR X (14) VALUE 'STOCK RECORD 
PICTUR E X (08) • 
PICTUR E X (17) VALUE 

, NOT IN DATA BASE'. 
02 CARR-RET 

LI NKAGE SEC TI ON. 
01 TO-TER M- PCB. 

P IeTURE X (01) VALUE" 

02 IO-TER MINA T. 
02 IO-RESERVE 
02 TO-STATUS 
02 INPUT-PTlEFIX 

01 PARTFIL E-PCB. 
02 PN-TlRD-N Apt E 
02 P N-S EG-LEVEL 
02 PN-STATUS-CODE 
02 PN-PRoe-OPTIONS 
02 RRSE RVR-DLI 
02 PN-SRG-NAl'fE-FB 

PROCEDUR E DIVISION. 

PI CT (J REX (8) • 
PICTURE XX. 
PICTURE XX. 
PICTURE X(12). 

P IeTURE 
PICTUR E 
PICTURE 
PICTURE 
PICTURE 
PICTUR E 

X (8} • 
XX. 
ix. 
XXXX. 
S9 (5) 
X (8) • 

COftPUTATION AL. 

EN'l'RT 'nL ITCBL' US ING TO-TER ~- PCB, PARTFIL E-PCB. 
INI'T'IAT.I7.E. 

MOVE SPACRS TO STOK5TAT-WRITE-SW. 
MOVE 'OUTSTANDING WORK ORDEES=' TO DESC-l OF LINE-5-AREA. 
MOV E '; OU ANTI 'rY=' TO DESC -2 op· LI NE-5 -AR EA. 

GET-TRA NSACTION. 
CALL 'CBLTDLI' USING UNIC-PUNC, IO-TERPI-PCB, TERft-IM-AREA. 

CALL-I NPUT - AN At JZ ER. 
CAT.L 'INPANAL' USING PARMI-TABLE, TERM-IN-AREA, 

REFORM-MESSAGE, PlSG-SEG-CNT. 
CALL-PART-E DIT. 

MOVE PART-NO O? REPoa~-MES5AGE TO PART-NO-EDIT. 
CALL 'PNEDIT' USING FART-LINK. 

FIND -PART-IN- DATA-BASE. 
MOVE PART-NO-EDIT TO PH-WORK. 
MOVE ROO'I.'-KEY-WA TO KEY-VALUE. 
CALL 'CBLTDLI' UCING UNIQ-FUNC, PARTFILE-PCB, SEG-RET-AREA, 

PARTROOT-5SA. 

Application Program Examples 6.23 



FILE: DFSS~~03 ASSEMBLE A PALO ALTO DFVELOP'ENT CENTER 

IP PN-STATUS-CODE NOT EQUAL TO SPACE5, 
GO TO P~RTROOT-NOT-FOUND. 

PARTROOT.-POU ND. 
~OVE CORRESPONDtNG SEG-RET-AREA 'IQ LINE-l-AREA. 

FIND - 5 TAN INFO - 'I F- PRES ENT • 
CA.LL 'CBT.TDLl' USING NEXT-PUNC, PARTFILE-PCB, SEG-RET-AREA. 
IF (PN-ST ATUS -CODE EQUAl. TO • GB') 

OR 
(PN-5EG-NAME-FB NOT EQUAL TO 'STANINFO') 

MOVE SPACES TO PROC-CODE OF LlNE-l-AREA 
ELSE 

MOVF. CORRESPONDING STAN-INFO-RET TO LINE-l-AREA. 
PEFPOFM iPUTE-T.INE-l THRO WRITE-LINE-l-EXIT. 

GET-UNlQUE-STOKSTAT. 
5S-SSA-KEY-VALUE. MOVE INPUT-55-KEY TO 

C A.LL • CELTDLI' US IN G UNIQ-FUNC, PAR'l'"FIL E-PCB, SEG-RET-AREA, 
PARTRCCT-SSA, STOKSTAT-SSA. 

IF P N- 5TA TUS -CODE ROU At TO 'GE' 
GO 'f0 STOKSTAT-NOT-FOU NO •• 

ST OKS't'A T-POUND. 
MOVE CORRESPONDING STOCK-STATUS-RET TO LlNE-2-AREA. 
PEP FORM WRITE-LlNE-2 THRU VRITE-tINE-2-FXIT. 
MOVE CORR ESPON 0 IN G STOCK-STATU S-RET TO LIN E-3-AR EA. 
PERPORM WRITE-LTNB-3 THRU WRITE-LINE-J-EXIT. 
t!OVF. CORRESPONDING S'IOCK-STATUS-RET TO LlNE-4-AREA. 
MOVP. 'ON' TO S'l'OKSTAT-iRITE-Sil. 
MOVE ZEROS TO STOCK-VAR OF LtNE-4-AREA. 

GET- NPoX". 
CAr.L 'CBI.TDtl' USI NG NEXT-FUNC, PARTFILE-PCB, SEG-RET-AREA. 
IF' PN-STA'1'US- CO DE EQUA 1 TO 'GB' 

GO TO END-CURR-ROOT. 
IP PN-SEG-NAME-PB EOUAL TO 'PARTROOT' 
IF PN-SEG-NA~E-FB EQUAL TO '5TOKSTAT' 
IP ?N-SEG -N AM B-FB 'eQUAL '1'0 'Cyce: CU NT' 
IF PN-SEG-NAME-PB EQUAL TO 'BACKORDR' 
GO TO GET-NEXT. 

CYCC au NT-POUND. 

GO TO END-CURR-ROOT. 
GO TO END-CURR-ROOT. 
GO TO CYCCOONT-FOUND. 
GO TO BACKORDR-FOUN D. 

COMPUTE STOCK-VAR OF LINE-4-AREA = PHYSICAL-COUNT OF 
CYCLE-COUNT-RET 
TOTAL-STOCK OF 
eyc LE-COUNT-RET. 

PERFORM WRITE-LTNE-4 THRU WRITE-LINE-4-EXIT. 
GO TO GET-NEX'!'. 

BACKORD R-FO UN D. 
TF STOKST1tT-V1UTE-SW EQUAL TO 'ON' 

PERFORM i~ITE-LINE-4 THRU WRITE-LINE-4-EXIT. 
r!O V"E CORR ESPONDI NG BACK-ORDER-RET TO LINE-5-AREA. 
PERF'ORl'! WRITE-LINE-5 THRU WRITE-LINE-5-EXIT. 
MOVR SPACES TO DESC-1 OF LINE-S-AREA. 
MOVE SPACES TO DESC-2 OF LINE-S-AREA. 
GO '10 G E'1'-N EXT. 

END-CURR-ROOT. _______ _ 
- ----------- . -- IF --ST OKST 1\ T-::WRI-TE-:';'-SW--EfitfAt-T(f--'-ON ,-- ---------

PER FOR [Ill WRT'1'P-LI WE -4 TH RU WRI 'rE-L INE-4- EXIT. 
GO 'TO EN D- IT. 

6.24 IMS/VS Application programming Reference Manual 

I 

'- ... / 

---.. -~---- .. ---------~--.-----. 

.. 



.. 

c' 

"FIt F: DFSSAMO 3 ASSF.MBLE A PAL 0 ALTO DEV ELOP PlEHT CE NTER 

PAR'l'ROOT-NO'l'- FOUND. 
MOVE PH-WORK TO PART-NO OF NC-FARTBOOT-MSG. 
CAL L 'CB LTD L1 I U SING I SRT- PUN C, IO- TER l1- PCB, NO-PARTROO T-Pl SG. 
GO TO END- IT. 

ST OK STAT-NOT- POUN D. 
PlOV~ INPUT-SS-KEY TO STOCK-KEY OF NO-STOKSTAT-l'ISG. 
CALL 'CRLTDLI' USING ISRT-FUNC, IO-TERPl-PCB, NO-STOKSTAT-PiSG. 
GO TO END- IT. 

WRITE-LINE-1. 
CAL L 'CBLTOLI' U SING I SRT- FUN C , IO-TER M- PCB, LI ME -1 -ARE A. 

WRI TE-L IN F- 1- EXIT. EXIT. 
'if RITE -LIN E-2. 

CA LT. 'CRLTDLI' 
WE ITF.- L 1 NE- 2- EXIT. 
WRITF.-T,INE-] • 

CAL t ' C B LTD I, I ' 
WR I1'E- LINF'- 3-EXIT. 
WRITE-L IN R- 4. 

CALL • C EL "I'D~I' 
,.OVE S PACES TO 

llRI TE-LTN E- 4- EX IT. 
W RI TE -L r N E-5 • 

C ~ L I, ' C B LTD L I ' 
WR 1T£- L1 NE- 5-EXTT. 
ENlJ-I T. 

GOBACK • 

USING ISRT-PUNC, I()-TERl'!-PCB, LINR-2-AREA. 
EXIT. 

USING TSRT-FUNC, Io-TEBPl-PCB, LINE-3-AREA. 
EXIT. 

USING ISRT-FUNC, IC-TERrt-PCB, LIHE-4-AREA. 
STOKS1AT-iRITE-Si. 
EXIT. 

USING ISRT-FUNC, IC-TERPI-PCB, LINE-5-AREA. 
EXIT. 

Application Program Examples 6.25 



This application program illustrates use of the 3270 Model 2 as a 
simple calculator. The program provides for addition, subtraction, 
multiplication, and division. 

A sample problem for this transaction (whose PSB=HIMAJC03) is provided 
in the I~~LY~ !nstallatiQll ~Yi£~. The examples that follow, however, 
are entirely independent of the sample problem. No data base is used, 
and only input to and output from the application program are 
illustrated. 

/FOR DFSM02 

/FOR TUBFMT 

(for the 3270, Model 1) 

(for the 3270, Model 2) 

The first entry is the MOD name (/FOR DFSM02). Tube is the transaction 
code. 

Display back says: 

START INPUT HERE.¢ 

You enter one number, the sign (+,-,*,/), and the second number. 

START INPUT HERE.¢ 555+444.55 

Display back is the answer, followed by two questions; these are to be 
answered either YY, YN, or NN. The fourth possibility is NY, which is 
not correct.in this program; 

YOUR ANSWER IS 999.55 

TWO QUESTIONS. DO YOU WISH TO CONTINUE? 
AND SHOULD THIS RESULT BE USED AS SUBTOTAL? 
ANS QUESTIONS BY YY OR YN OR NN. ANSWER HERE. t NY 

Display back, and the application program ends the conversation: 

NOT CORRECT ANSWER. WILL ASSUME ANS=NN. PROBLEM END. 

Entry to 3270: 

/r'OR TUBE 

Display back asks for input. 

START INPUT HERE. t 1234.34+1234 

Display back gives answer to the problem and asks two qu~stions •. 

YOUR ANSWER IS 2468.34 

TWO QUESTIONS. DO YOU WISH TO CONTINUE? 
AND SHOULD THIS RESULT BE USED AS SUBTOTAL? 
ANS QUESTIONS BY YY OR YN OR NN. ANSWER HERE. ¢ YY 

6.26 IMSjVS Application programming Reference Manual 

f 

c= 



l 

L 

Because you want the answer to be used as a SUbtotal, internally in 
the scratchpad user work area, this is stored: 

SPA.IN_TEXT=000000000246834+; 

The display returned, and the new subtraction problem is entered: 

RESULT WILL BE USED AS SUBTOTAL. START INPUT HERE. e 1234.34-2468.34 

The display returned is the answer to the above subtraction problem 
add~d to the subtotal stored in the scratchpad work area, and the two 
questions are asked again. This time you want to continue the 
conversation, but do not want to have a subtotal carried over to the 
next problem: 

YOUR ANSWER IS 1234.00 

TWO QUESTIONS. DO YOU WISH TO CONTINUE? 
AND SHOULD THIS RESULT BE USED AS A SUBTOTAL? 
ANS QUESTIONS BY YY OR YN OR NN. ANSWER HERE. ¢ YN 

The display returned a message, after which you entered a multiplication 
problem: 

CONTINUE, START INPUT HERE. e 4444*44 

The display returned the answer to the multiplication problem and the 
two questions. The answer to the questions was YN: 

YOUR ANSWER IS 195536.00 

TWO QUESTIONS.. DO YOU WISH TO CONTINUE? 
AND SHOULD THIS RESULT BE USED AS SUBTOTAL? 
ANS OUESTIONS BY YY OR YN OR NN. ANSWER HERE. e YN 

The display returned a message, after which you entered a division 
problem: 

CONTINUE, START INPUT HERE. ¢ 335561.56/33 

The display returned the answer to the division problem and the two 
questions. The answer to the questions was NN: 

YOUR ANSWER IS 10168.71 

TWO QUESTIONS. DO YOU WISH TO CONTINUE? 
AND SHOULD THIS RESULT BE USED AS SUBTOTAL? 
ANS QUESTIONS BI II OR YN OR NN. ANSWER HERE. e NN 

The message displayed then was: 

ANS WAS NN. CONVERSATION ENDED. 

The conversation is over. 

Application Program Examples 6.21 



PILE: PLIPBOG1 TEST A GPO CCMrlON CMS 

1***** PL/I EXAMPLE OF A CONVERSATIONAL FRCGBAM *****1 
1*******************************************************1 

DLITPLI: PROCEDURE ('IERMINAL) OPTIONS (MAIN r EEEN'IEANT) REORDER; 

1********************************************************************1 
1* *1 
1* THIS PROGRAM IS AN EXAMPLE OF CCNVERSATIONAL PROCESSING. IT *1 
1* IS WRITTEN IN PL/I FOR THE PIlI CPTIMIZING COMPILER. *1 
1* *1 
1* THE PROGRAM WILL ACCEPT A SIMPLE EXPRESSION CONSISTING OF TWO *1 
1* OPERANDS SEPARATEC BY AN OPERATOR, WILL CCMPUTE THE VALUE OF *1 
1* THE EXPRESSION AND RETURN THE ANSWER. THE EXPRESSION MUST BE *1 
1* IN THE PORM: NNNOMMM r WHERE NNN AND MMM ARE NUMBERS WITH NO */ 
1* ftORE THAN 7 DIGITS, AND 0 IS ONE OF THE OPERATORS +,-,* OR I. *1 
1* A MAXIMUM OF SEVEN CHARACTERS CAN PRECEDE eR FOLLOW THE *1 
1* OPERATOR. IF ONE OR BOTH OP THE OPERANDS IS OMITTED, IT WILL *1 
1* BE ASSUMED TO BE ZERO. IF MORE THAN ONE OPERATOR IS ENTERED, *1 
1* ALL BUT TAE L~ST WILL BE CONVERTED TO ZERO AND THE COMPUTATION*I 
1* WILL PROCEED. ANY BLANKS OR NON-DIGITS EMEEDDED IN EITHER *1 
1* OPERAND WILL BE CONVERTED TO ZERO AND THE COMPUTATION WILL *1 
1* PROCEED. OPTIONALLY YOU CAN REQUEST IHAT THE ANSWER BE ADDED*I 
1* TO A SUBTOTAL MAINTAINED OPPRECEDING COMPUTATIONS. */ 
1* *1 
1********************************************************************1 

1/***********************************1 
1* DECLARE LOGICAL TERMINAL PCB *1 
1***********************************1 

DECLARE TERMINAL PCINTER; 
DECLARE 1 IOPCB BASED (TERMIN~L), 

2 10_ T E R MIN A L C H A R ACT E R ( 8) , 
2 10 RESERVED CHABACTER (2), 
2 STAT_conE CHAR~CTER (2) r 

2 IN_PREFIX, 
3 PRE DATE FIXED DEClr1AL (7), 
3 PRE-rIME FIXED DECIMAL (7), 
3 PRE:MSG_COUNT FIXED BINARY (31); 

1*****************************1 
1* DECLARE SCRATCHPAD AREA *1 
1*****************************1 

DECLARE 1 SPA, 
2 DL FIXED BINARY (31)r 
2 X CHARACTER (1), 
2 FLAG CHARACTER (1) r 

"-2"RESER~ED"CHARACTER (2)~ 
2 TRAN CHARACTER (8) r 

2 COUNT CHARACTER (1), 
2 IN_TEXT FIXED DECIMAL (15 r 2)r 
2 PADDING CHARACTER (75); 

1******************************************1 

6.28 IMS/VS Application Programming Reference Manual 

r"-" 
I 
\ ...... , .. _ .. ",,' 

c 



c' 

PILE: PLIPBOG1 TEST A GPD CCl!P!ON CMS 

1* DECLARE INPUT AND OUT MESSAGE AREAS *1 
1****************·**·**********************1 

DECLARB 1 INPUT_MSG, 
2 LLIN FIXED BINARY (31), 
2 ZZIN FIXED BIHARY (15), 
2 TXTIN CHARACTER (80), 

1 OUTPUT_MSG, 
2 LLOUT FIXED BINARY (31), 
2 ZZOUT FIXED BINARY (15) INITIAL (ERASE), 
2 TXTOUT CHARACTER (178): 

1/·****··*******··**·****··*****1 
1* DECLARE MESSAGE CONTENTS *1 
1·*·····***····*****·***·***···1 

DECLARE 
(l'tSG9 CHARACTER (18) INITIAL 

('START INPUT HERE.t l ), 1* LAST CHAR SMI *1 
M SG 1 0 C H A R ACT E R ( 4 1 ) I N I 'I I A L 

(' TWO QUESTIONS. DO YOU WISH TO CONTINUE?') , 
MSG11 CHARACTER (46) INITIAL 

(' AND SHOULD THIS RESULT BE USED AS SUBTOTAL?'), 
MSG12 CHARACTER (35) INITIAL 

(f ANS QUESTIONS BY YY OR YN OB NN. '), 
MSG 14 CHAR ACTER (33) INITIAL 

('RESULT WILL BE USED AS SUETOTAL. '), 
MSG15 CHARACTER (55) INITIAL 

(' NOT CORRECT ANSWER. WILL ASSUME NN. PROBLEM END.'), 
MSG16 CHARACTER (34) INITIAL 

C' ANS WAS NN. CONVERSATION ENDED. '), 
M SG 17 CHAR ACTER (49) INITIAL 

('YOU MUST ENTER 2 OPERANDS WITH OPERATOR BETWEEN. '), 
l1SG19 CHARACTER (40) INITIAL 

(' YOU ARE NOT ALLOWED TO DIVIDE BY ZERO.'), 
MSG20 CHARACTER (9) INITIAL 

(' REENTER. '), 
MSG21 CHARACTER (44) INITIAL 

(' ONE OR BOTH OPERANDS EXCEEDS 7 CHARACTERS. '), 
MSG22 CHARACTER (38) INITIAL 

('UNSPECIFIED ERROR. PGM ENDS. ONCODE = '), 
MSG23 CHARACTER (15) INITIAL 

('YOUR ANSWER IS: I), 
MSG24 CHARACTER (10) INITIAL 

{'CONTINUE, '}, 
MSG25 CHARACTER (23) INITIAL 

('SPA RETURN STAT CODE = '), 
l1SG26 CHARACTER (23) INITIAL 

('GET UNIQUE STAT CODE = '), 
MSG27 CHARACTER (21) INITIAL 

('GET NEXT STAT CODE = '), 
MSG28 CHARACTER (27) INITIAL 

('NO VALID OPERATOR ENTERED.') 
) STATIC; 

Application Program Examples 6.29 



PILE: PLIPROG1 TEST A GPD COMMON CMS 

1/******************'·*************1 
/* ftISCELLANEOUS DECLARATIONS *1 
/********************************1 

DECLARE 
RESULT FIXED DECIMAL (15,2), 
CRESULT PIC'S,SSS,SSS,SSS,SS9.V99', 
STRING CHARACTER (80) VARYING, 

(OPERAND1,OPERAND2) FIXED DECIMAL (9,2), 
( A , S , M , D , L , 0 PER A TOR') P I XED BIN A R Y (15), 
THREE FIXED BINARY (31) STATIC INI'1IAL (3), 
GU CHARACTER (4) STATIC INITIAL ('GU') /I 

GN CHARACTER (4) STATIC INITIAL (',GN'), 
ISRT CHARACTER (4) STATIC INITIAL ('ISRT'), 
TXTANS CHARACTER (2), 
PLITDLI ENTRY, 
RETURN_POINT LABEt (TERMINATE, SAVE_INFO) , 
ERASE PIXED BINARY (15) STATIC INITIAL (32), 

1* ERASE INITIALIZED TC X'002C' *1 
NL CHARACTER (1) STATIC; , 
UNSPEC"(NL) = '00010101'E; 1* INITIALIZE NL TO X'lS' *1 

1**************1 
/* ON UNITS *1 
1**************1 

ON CONVERSION BEGIN; 
DECLARE ONCHAR BUILTIN; 
o NC H A R == '0'; 
END: 

ON ZERODIVIDE BEGIN; 
IF COUNT = '2' THEN COUNT = '1'; 
RETURN POINT = SAVE INFO: 
LLOOT ; LENGTH (KSG19) + LENGTH (MSG20) + LENGTH (MSG9) + 5; 
TXT OUT = MSG19 11 MSG20 II Nt II ftSG9; 
GO TO OUTPUT_MESSAGE; 
END; 

ON ERROR BEGIN: 
DECLARE ONCODE BUILTIN, 

CONCODE'PIC'9999': 
CONCODE = ONCODE; 
RETURN_POINT = TERMINATE: 
LLOUT = LENGTH' (MSG22) + LENGTH (CONCODE) .. 4; 
TITOUT = MSG22 I I CORconE; 
GO TO OUTPUT_MESSAGE; 
END; 

1/******************************1 
___ . ___ l* _____ BEGIlf-EXECUTABLE---PROGRAM--- *1 --

-- 1******************************/ 

/***********************/ 

6.3~ IMS/VS Application Programming Reference Manual 

c 



C
-·_--

) 

---- -------------------------~------

PILE: PLIPROG1 TEST A GPD COMMON CMS 

1* FIRST CALL TO SPA *1 
1***********************1 

BEGINNING: 
CALL PLITDLI (THREE,GU,TERMINAL,SPA); 
IF STAT_CODE -= 'QC' THEN RETURN; 
IF STAT_CODE ~=, 'THEN GO TO BAD_GU; 
IF (COHNT < "') (COUNT> '4') THEN CCUNT = "'; 

1**********************1 
1* GET TEXT SEGMENT *1 
1**********************1 

CALL PLITDLI (THREE,GN,TERI1INAL,INPUT MSG); 
IF STAT_CobE = 'QD' THEN GO TO BAD_NN~ 
IF STAT_CODE ~=' 'THEN GO TO EAD_GN; 
IF COUNT = ", I COUNT = '3' I COUNT = "4' 

1**************************1 
1* PERFORM CALCULATIONS *1 
1**************************1 

THEN DO; 
L -= LLIN - 4; 
IF L > 15 THEN GO '1'0 LNG_ERROR; 1* (2*7) + 1 = 15 *1 
STRING = SUBSTR (TXTIN,1,1); 
A = INDEX (STRING,'+'); 
S = INDEX (STRING,'-'); 
M = INDEX (STRING,' *') ; 
o = INDEX (STRING,' I') ; 
OPERATOR = MAX (A,S,M,D); 
IF OPERATOR > 8 THEN GO TO LNG_ERROR; 
IF L - OPERATOR > 7 THEN GO TO LNG_ERROR; 
IF OPERATOR = 0 THFN GO TO OF ERROR; 
OPERAND1 = SUBSTR (STRING,l,OPERATOR-l); 
OPERAND2 -= SUESTR (STRING,OPERATOR+l,L-OPERATOR); 
IF A ) 0 THEN RESULT = OPE~AND1 + OPERAND2; 

ELSE IF S > 0 THEN RESUL! -= OPERAND' - OPERAND2; 
ELSE IF M > 0 THEN ~ESUL! = OPERAND1 * OPERAND2; 
ELSE RESULT = OPERAND1 I OPEEAND2; 

IF COUNT = '1' THEN COUNT = '2'; 
IF COUNT = '3' THEN DO: 

RESOLT = RESULT + IN_TEX!; 
COUNT = '2'; 
END; 

iF COUNT = '4' THEN DO; 
IN_T~XT = 0; 
COUNT -= '2'; 
END: 

1/*************************************1 
1* OUTPUT ANSWER AND TWO QUESTIONS *1 
1*************************************1 

IN_TEXT, CRESULT = RESULT; 

Application Program Examples 6.31 



fILE: PLIPBOGl TEST A GPD COMMON CMS 

LLOUT = LENGTH (MSG23) + LENG'IH (CRESULT) .. 
L EN G T H ( M S G 1 0 ) .. LEN G'I Ii ( M S G 1 1) .. 
LENGTH (MSG12) + LENG'IH (MSG9) + 7; 

TXTOUT = MSG23 I J CRESULT I I NL " 
MSG 10 I I Nt II 
MSG 1 1 I I Nt I I 
MSG12 II MSG9: 

RETURN_POINT = SAVE_INFO; 

END; 

1*****************************1 
1* CONTINUING CONVERSATION *1 
1*****************************1 

ELSE no; 1* COUNT = '2' *1 
TXTANS= SUBS'IR (TXTIN,1,2); 

IF TXTANS = 'YY' THEN DO; 
RETURN_POINT = SAVE_INFO; 
LLOUT = LENGTH (MSG14) .. LENGTH (MSG9) .. 4; 
TXTOOT = MSG14 t t MSG9; 
COUNT = '3': 
END; 

ELSE IP TXTANS = 'YN' THEN DO; 
RETURN_POINT = SAVE_INFO; 
LLOUT = LENGTH (I1SG24) + LENGTH (MSG9) .. 4; 
TXTOOT = MSG24 II MSG9; 
COUNT = '4'; 
END; 

ELSE IF TXTANS = 'NN' THEN DO; 
RETURN_POINT = TERMINATE; 
LLOUT = LENGTH (MSG16) + 4; 
TXTOUT = MSG16 I I NL; 
END; 

ELSE GO TO BAD_NN; 

END; 

1/***************************1 
1* INSERT OUTPUT ~ESSAGE *1 
/***************************/ 

OUTPUT_MESSAGE: 
CALL PLITDLI (THREE,ISRT,TERMINAL,OUTPUT_MSG); 
GO TO RETURN_POINT; 

1*****************************/ 
___ /~ _____ SAVE __ INP_ORM ATION -IN ---SPA-----*/-

/*****************************/ 

6.32 IMSjVS Application programming Reference Manual 

.,. 



/ '. 

l_ 

c· 

FILE~ PLIPROG1 TEST GPD COMMON CMS 

CALL PLITDLI (THREE.ISRT.TF.RMINAL.SFA); 
IF STAT_CODE = I I THFN GO TO BEGINNING; 

ELSE GO TO SAVE_ERROR; 

/****************/ 
/* TERMINATE *1 
/****************/ 

TERMINATE: 
TRAN = I '; 

CALL PLITDLI (THREE,ISRT,TERMINAL,SP~); 

RETURN; 

1/********************/ 
1* ERROR ROUTINES */ 
1********************/ 

LNG_ERROR: 
RETURN_POINT = SAVE INFO; 
LLOUT = LENGTH (MSG17) + LENGTH (MSG21) + LENGTH (f'fSG20) + 

LENGTH (l1SG9) + 7; 
TITOUT = MSG11 II Nt J 1 MSG21 II NL II fIISG20 II NL II f'fSG9: 
GO TO OUTPOT_MESSAGE; 

OP_ERBOR: 
RETURN_POINT = SAVE_INFO; 
LLOUT = LENGTH (l1SG28) • LENGTH (l1SG20) + LENGTH (l1SG9) + 6; 
TXTOUT:: l1SG28 11 NL II l1SG20 I I NL II MSG9; 
GO TO OUTPUT_~ESSAGE; 

SAVE_ERROR: 
RETURN POINT = TERMINATE; 
LLOUT ;; LENGTH (l1SG25) + LENGTH (STAT_CODE) + 4; 
TITOUT = l1SG25 II STAT_CODE; 
GO TO OUTPUT_MESSAGE; 

BAD_NN: 
RETURN POINT = TERftINATE; 
LLOUT -;' LENGTH (MSG 15) + 4; 
TXTOUT :: I1SG1S; 
GO TO OUTPUT_MESSAGE; 

BAD_GU: 
RETURN POINT = TERMINATE; 
LLOUT ; LENGTH (l1SG26) • 4; 
TITOUT :: ftSG26 I I STAT_CODE; 
GO TO OUTPUT_MESSAGE; 

BAD_GN: 
RETURN POINT = TERMINATE; 
LLOUT -; LENGTH (l1SG27) + 4; 
TXTOUT = l1SG21 I I STAT_CODE; 
GO TO OUTPUT_MESSAGE; 

END DLI! PLI; 

Application Program Examples 6.33 



MESSAGE FORMAT SFRVICES 

The following message format service statements show the message 
descriptions and device formats used in conjunction with the 
conversational PL/I programs illustrated elsewhere in this chapter. 
This format applies only to the 3270 Model 2. 

MEMBER NAME TUBFMT 

TUBFMT FMT 

****** FORMAT FOR TU BE PROGRAM 
DEV TYPE=3270,FEAT=IGNORE 

DP~GE1 DPAGE CURSOR= «5,22» 
FLD1{ DFLD POS=(03 ,02) ,LTH=1 O,ATTR= (NODISP,PROT) 
FLDY nFLD POS=(04,02),LTH=9,ATTR=PROT 
FLD1 DFLD POS=(05,O~ ,LTH=05,ATTR=PROT 
FLD2 D'F.LD POS= (05, 08) , LTH=13, ATTR=PROT 
INPUT DFLD POS=(05,2~ ,LTH=18,ATTR=HI 
DPAGE2 DPAGE CURSOR= «5,22» 
FLDl DFLD POS=(01,02) ,LTH=04,ATTR=PROT 
FLD2 DFLD POS= (01 ,07) , LTH=2 6, ATTR= PROT 
FLD3 DFLD POS=(02,02) ,LTH=41,ATTR=PROT 
FLD4 OFLD POS=(03,02) ,LTH=46,ATTR=PROT 
FLU5 DFLD POS=(04,02) ,LTH=35,ATTR=PROT 
FLD6 DFLD POS=(05,08) ,LTH=13,ATTR=PROT 
INPUT DFLD POS=(05,22) ,LTH=02,ATTR=HI 
FLDN DFLD POS= (18 ,02) ,LTH=4 ,ATTR= (NODISP, PROT) 
DPAGE3 DPAG~ CU RS 0 R= ( (5, 22 ) } 
FLDA DFLO POS= (03,02) , LTH=O 6, ATTR = (NODI SP ,PROT) 
FLDB OFLD POS=(04,02) ,LTH=6,ATTR=PROT 
FLDC DFLD POS=(04,09) ,LTH=27,ATTR=PROT 
FLDD OFLD POS=(05,04) ,LTH=17,ATTR=PROT 
INPUT DFLD POS=(05,2~ ,LTH=18,ATTR=HI 
DPAGE4 DPAGE 
F1 DFLD POS = (03, 02) , LT H= 5, A TTR = (N OD I SP , PR 0 T) 
F2 OFLO POS=(03 ,08) ,LTH=06,ATTR=PROT 
F3 DFLD POS=(03,15),LTH=10,ATTR=PROT 
F4 D1"LO POS=(11,34) ,LTH=12,ATTR=(PROT,HI) 
F5 OFLD PO S = ( 1 3 ,3 7) , LTH = 0 6 , AT T R= (PROT , HI) 
DPAGE5 DPAGE 
FLl DFLO POS=(03,02) ,LTH=5,ATTR=(NODISP,PROT) 
FL2 DFLD POS=(03,08},LTH=03,ATTR=PROT 
FL3 DFLD POS=(03,1~ ,LTH=17,ATTR=PROT 
FL4 DFLO PO S = (04 ,06) , LT H = 2 1 , AT T R= PROT 
FL5 DFLD POS=(11,37) ,LTH=07,ATTR=(PROT,HI) 
FL6 DFLD POS= (13,38) ,LTH=04,ATTR= (PROT ,HI) 
DPAGE6 DPAGE CURSOR= ( (5, 22) ) 
Al DFLD POS=(02,02) ,LTH=52,ATTR=PROT 
A2 DFLD POS=(03,02) ,LTH=49,ATTR=PROT 
A3 DFLD POS=(05,02) ,LTH=05,ATTR=PROT 
A4 DFLD POS=(05,08) ,LTH=ll,ATTR=PROT 
INPUT DFLD POS=(05,22) ,LTH=18,ATTR=HI 
A6 DFLD POS= (04,02) , LTH=08, ATT R= PROT 

--A 1 - ---------- -------DFLD- - --POS= (04, 11)-;- LTH=O 8i-ATTR = (NODI SP~PRO T) 
FKTEND 

TUBE MOD1 MSG TYPE=OUTPUT,SOR=(TUBFMT,IGNORE) ,NXT=TUBEHID 
MFLD FLD1 , LTH=5 
MFLD FLD2, LTH=13 
MFLD (I NPUT , ,----- ') 
MSGEND 

TUBRMOD MSG TYPE=OUTPUT,SOR=(TUBFMT,IGNORE),NXT=TUBEMID 
LPAGE S OR= DPAGE1, COND= (MSG 1, =, , STAR T' ) 

MSG1 I1FLD FLDX,LTH=5 
MFLD (FL D1 , , ST ART' ) 

6.34 IMS/VS Application Programming Reference Manual 

~ 
I 

'\..- ./ 

(.~, 
--_/ 



MEMBER NAME TUBFMT 

MFLD FLD2,LTH=12 

C_' LPAGE SOR=DPAGE2,COND=(MSG2,=,'YOUR') 
SEG 

MSG2 MFLD FLDN, LTH=4 
MFLD ( FL D 1 , , YOU R ' ) 
MFLD FLD2, LTH=26 
SBG 
MFLD F LD 3, LTH =41 
SEG 
MFLD F LD 4, LTH=46 
SEG 
MFLD F LD 5, LTH=35 
MFLD FLD6, LTH=13 
MFLD (INPUT,'--') 
LPAGE SOR=DPAGE3,COND=(MSG3,='RESULT') 

MSG3 MFLD FLOA, LTH=6 
MFLD (FLDB " RESULT' ) 
MFLD FLDC, LTH=27 
MFLD FLDO, LTH=17 
LPAGE SOR=DPAGE4,CONn=(MSG4,=, • AN S') 

MSG4 MFLO F1,LTH=5 
MFLO ( F 2, • AN S W ER • ) 
MFLD F3,LTH=10 
MFLD F4,LTH=12 
MFLD F 5 ,LTH=06 
LPAGE SOR=DPAGE5,COND=(MSG5,=,' NOT' ) 

MSG5 MFLD FL 1 ,LTH=5 
MFLD (FL2, 'NOT') 
MFLD FL3,LTH=17 
MFLD FL4,LTH=21 
MFLD FL5,LTH=7 

c:/ MFLD FL6,LTH=4 
LPAGE SOR=DPAGE1,COND=(MSG6,=,'CONTINUE, , ) 

MSG6 MFLD FLDX, LT H= 10 
MFLD (FLDY, 'CONTINUE: ') 
MFLD FLD1,LTH=5 
MFLD F L02, LTH=12 
LPAGE SOR=OPAGE6,CONO=(MSG7,=,'REENTER.') 
MFLD A1,LTH=51 

MSG7 MFLD A 7, LT H=8 
MFLD (A 6, , REE NTE R. ') 
MFLD (A3,'START') 
MFLD (A 4 , • IN PUT HERE:') 
LPAGE SOR=DPAGE6,COND=(MSG8,=,'REENTER. ') 
M1"LD A2, LT H=40 

MSG8 MFLD A7,LTH=8 
MFLD (A6,' REENTER.') 
MFLD (A3,' START') 
MFLO (A4,'INPUT HERE:') 
LPAGE SOR=DPAGE6,COND=(MSG9,=,'REENTER.') 
MFLD A 1 ,LTH=52 
M1"LD A2, LT H=49 

MSG9 MFLD A7,LTH=8 
MFLD (A6,' REENTER •• ) 
MFLD (A3,'START') 
MFLD (A4,'INPUT HERE:') 
MSGEND 

TUBEM ID MSG TYPE=INPUT,SOR=(TUBFMT},NXT=TUBEMOD 
MFLD IN PU T , LT H= 18 
MSGEND 
END 

C 
Application Program Examples 6.35 



r~' 
\,~ ... ./ 



The Data Language/I (DL/I) test program is an IMS/VS application 
proqram that issues calls to DL/I based upon control statement 
information. It compares, optionally, the results of those calls with 
expected results that are also provided in control statements. It is 
used to test DL/I. 

To a limited extent, this program can be used as a general purpose 
data base utility program. However, the control statement language 
does not lend itself well to executing large volumes of calls. It is 
useful as a debugging aid because it can display DL/I control blocks. 
It provides an easy method of execut ing any call against any data bas,e. 

GENERAL DESCRIPTION 

The DL/I test program is a control statement processor. There are 
four types of control statements used by the program: 

• Status statements--establish print options and select processing 
PCB. 

• Comments statements--conditionally or unconditionally print 
comments. 

• Call statements--format the desired DL/I call. 

• Compare statements--compare anticipated results with actual results. 

The status statement is used to establish print options and to select 
which PCB within a PSB will be used. The call to be issued is provided 
in the CALL statement. A COMPARE statement is optional and is used to 
tell the program what the results of this call should be in the data 
base PCB and in the user input/output area. Various print and display 
options are available; these are based on whether the results of the 
call agree with the data in the COMPARE statement. COMMENTS statements 
are also optional. As the name implies, they are only comments and 
can be used by the programmer at his discretion. As will be seen later, 
there are two types of comments: conditional and unconditional. 

The general sequence of operation is to read CALL statements until 
a noncontinued CALL statement is detected. The DL/I call is issued 
based on data in the CALL statements. The program then reads the next 
control statement. If a COMPARE statement is read, it compares the 
contents of the COMPARE statement with the corresponding field in the 
PCB, or, if a data COMPARE statement, with the data in the user 
input/output area. The comments, call, compare, PCB, input/output 
area, and compare data are printed if requested. If any control 
stat~ment other than a COMPARE statement is read after a call was 
issued, the results of the prior call are printed first and the new 
control statement is then processed. 

INTERFACES 

~odule DFSDDLSO must be link-edited with DFSLIOOO and placed in 
IMSVS.PESLIB under the name DFSDDLTO. 

Application Programming Testing Aids 7.1 



JCL REQUIREMENTS 

r--------------------------------------------------------------, 
1 I 
, JOB This statement initiates the job. 1 
I I 
1--------------------------------------------------------------, 
, EXBC , , , 
1 
1 
1 

This statement specifies the program name, or 
invokes a cataloged procedure. The required 
forma tis: 

PGM=DFSRRCOO,PARM='AAA,DFSDDLTO,BBBBBBBB, 
CCCCCCCC,DDDDDDDD' 

1 where AAA is the region type and BBBBBBBB is the 
I name of the PSB to be used. Parameters CCCCCCC and 
, DDDDDDD are optional, and can be used to specify 
, symbolic input terminal and output terminal names, 
, respectively. Refer to the 1~2L!2 [YEtem 
, Er~gr~!ing Ref~~~ Manygl for other parameters 
1 that can be used. 
1--------------------------------------------------------------1 
, STEPLIB Defines the partitioned data set named IMSVS.~ESLIB.' 
, DD If EXIT routine modules are used, they should be 1 
, placed into this library or into another PDS 1 
1 concatenated to this library. 1 
1-~------------------------------------------------------------f 
, I 
1 IMS This statement defines two concatenated data sets. 1 
, DD The first DD statement defines the library contain- 1 
, ing the PSB to be used by the test program. The I 
1 second DD statement defines the library containing 1 
1 the· DBD of the data base to be processed. 1 
1--------------------------------------------------------------1 
I 1 
1 database This statement references a specific data base. I 
I DD There should be one statement for each data base to I 
, be processed. In each statement the ddname must I 
, agree with the ddname specified in the DBD. 1 
, I 
1--------------------------------------------------------------1 
1 1 
1 IEFRDER This statement defines the log data set, if one is I 
1 DD desired. A DD DUMMY stat ement may be used if a log I 
1 is not desired. One form or the other of this 1 
, statement. is required. I 
1--------------------------------------------------------------1 
1 I 
1 PRINTDD This statement defines the output data set for ( 
, DD the test program, including displays of control I 
, blocks using the SNAP call. It must conform to the 1 
I OS SNAP data set requirements. I 
,---------------------------------~~~;~~~~~-~~~----~~~~~~-~~~--I 
1 t 
, SYSUDUMP This statement ,is optional and is used by the I 
1 DD test program only when normal termination is I 
1 not possible. I 

7.2 IMS/VS Application Programming Reference Manual 

. ~ ..... -, .' 



L 

1--------------------------------------------------------------1 
, I 
I SYSIN This statement defines the control statement input I 
I D D d a t a se t . I 
1--------------------------------------------------------------1 
,SYSIN2 This is an optional secondary input statement. See I 
, DD the description of "Special Control Statement I 
, Forma ts" for details. I 
L--------------------------------------------------------------~ 

CONTROL STATEMENTS 

In the control statement formats below, the "$" indicates those 
fields which are usually filled in; the absence of the "$" indicates 
that the field can be.left blank and the default used. If position 1 
is left blank on any control statement, the statement type defaults to 
the prior statement type. 

The STA~US statement establishes print options and determines the 
PCB that subsequent calls are to be issued against. 

The format of the STATUS statement is as follows: 

$ 1 = 
2 = 

3 .= 

4 = 
5 = 

6 = 

7 = 

8 = 

S identifies this as a STATUS statement. 

Output device option. 
blank - use PRINTDD when in a DLI region; 

use IIO PCB in the MSG region. 
1 use PRINTDD in MSG region if the DD 

statement is provided; otherwise, use I/O 
PCB. 

A - same as if 1, and disregard all other fields 
in this STATUS statement. 

Print cQmment option. 
blank - do not print. 
1 - print al ways. 
2 - print only if compare done and unequal. 

Not used. 

Print call option. 
blank - do not print. 
1 - print always. 
2 - print only if compare done and unequal. 

Not used. 

Print compare option. 
blank - do not print. 
1 - print always. 
2 - print only if compare done and unequal. 

blank. 

Application Programming Testing Aids 7.3 



= 

10 

11 = 

12 - 15 :: 

16 - 23 = 

24 = 

25 - 28 :: 

29 - 8') = 

Print PCB option. 
blank - do not print. 
1 - print always. 
2 - print only if compare done and unequal. 

Not used. 

Print segment option. 
blank - do not print. 
1 - print always. 
2 - print only if compare done and unequal. 

Reserved. 

DBD name. 

Thi~ determines the PCB against which subsequent 
calls will be issued; hence, it must be a DBD name 
given in one of the PCBs in the PSB. The. default 
PCB is the first data-base-PCB in the PSB. If 
positions 16 through 23 are blank, the current PCB 
is used. If positions 16 through 18 are blank, and 
positions 19 through 23 are not blank, then the 
non-blank positions are interpreted as the relative 
number of the desired data-base-PCB in the PSB. The 
number must be right-justified to position 23, but 
need not contain leading zeroes. The user must 
insure that the relative data-base-PCB exists in 
the PSB because no checks are made to insure that 
a proper PCB is obt ained in this ma nner. 

Print 
1 
2 
3 

sta tus opti on. 
- do not use print option in this statement. 
- do not print this STATUS statement. 
- do not print this STATUS statement or use 

print option. 
blank - use print o?tion "and print this statement. 

PCB processing option -- This is optional and is 
only used when two PCBs have the same DBD name but 
different processing options. If non-blank, it is 
used in addition to the DBD name in positions 16 
through 23 to select which PCB in the PSB to use. 
This must appear as it does in the processing option 
of the PCB desired. 

}10t used. 

If no STATUS statement is read, the default PCB is first data 
base-PCB in the PSB, and the print status option is 2. New STATUS 
statements can be an y"here" 1n" til e SY_SINs:tream,"_ changingei therthe 
-data -Jja:-se" to-" be "re-fere-ncedo-r-- the options. 

7.4 IMS/VS Application programming Reference Manual 



---- ...... _ .•.....•. _---_ .. - ._----- -... -------

~Q~~~R12 [i~ig~2nt 

There are two types of COMMENTS statements. The first, the 
unconditional statement, allows for unlimited comments, all of Khich 
are printed. The second type, the conditional statement, allows only 
limited comments, which are printed or not depending on other factors 
as described below. 

AS the name implies, information on these statements is treated by 
the system as comments only. No action, other than printing, is .taken 
when a COMMENTS statement is read. 

Uncon di tiona I: 

$ 1 

2 - 80 

Condi tional: 

$ 1 

2 - 80 

= 

= 
::: 

~Q!ltents 

U specifies an unconditional COMMENTS statement. 

comments - any number of unconditional COMMENTS 
statements are allowed; they are printed when read. 
Time and date of printing are printed with each 
unconditional COMMMENTS statement. 

T specifies a conditional COMMENTS statement. 

Comments - up to 5 conditional COMMENTs statements 
per call are allowed; no continuation mark in 
position 72 is required. printing is conditioned 
on the STATUS statement. Printing is deferred until 
after the following call and optional compare are 
executed, but prior to the printing of the following 
call. 

The CALL statement identifies the type of IMS/VS call to be made, 
and supplies information to be used by the call. 

$ 1 = 

3 ::: 

4 = 

fQ!l!~!!i.2 

L identifies this as either a CALL or DATA statement. 

SS A level (optional) 

Forma t option s--
U, if columns 16 onward are unformatted, with no 
blanks separating fields. 
Blank, for formatted calls with intervening blanks 
in positions 24, 34, and 37. 
v, for the first statement describing a variable 
length segment, when inserting or replacing only 
one variable length segment. It is also used for 
the first statement describing the first segment of 
multiple variable length segments. 
M, for the second through last statements that begin 

Application programming Testing Aids 7.5 



5 - 8 

$ 11) - 13 

$ 16 - 23 

24 

$ 25 

26 - 33 

34 

$ ~ - 36 

37 

$ 38 - XX 

$ xx + 1 

'f: 72 

= 

data for a variable length segment, when ins~rting 
or replacing multiple variable length segments. 
P, when inserting or replacing via path calls. It 
is used only in the first statement of fixed length 
segment statements in path calls containing both 
variable and fixed length s~gments~ 

Number of times to repeat this call (optional) in 
the range of 0001 through 9999. 

DL/I, application program call function. 

= DATA, indicates that this statement contains data 
to be used in an ISRT, REPL, SNAP, CHPT, or LOG 
call. See the following section on DATA statements 
for usage. 

= CONT, if a continuation statement for field data 
that was too long for previous CALL statement. 

= 

= 
= 

= 
= 
= 

= 
= 

= 

= 

55! segment name. 

Not used. 

(, if segment is qualified. 

SSA field name. 

Not used. 

DL/1 call operator or operators. 

Not used. 

Field value (where the maximum value of XX=70) • 

), en d char acter. 

Nonblank, if more SSAs. Blank, if this is the only 
or la st SSA. 

Position 3, the SSA level, is usually blank. If blank, the first 
CALL statement fills SSA 1, and each following CALL statement fills 
the next lower SSA. If the SSA level, position 3, is nonblank, the 
statement fills the SS! at that level, and the following CALL statement 
fills the next lower S5A. 

position 4 contains a,U to indicate an alternative format for the 
CALL statement. In this case, from position 16 on is the exact 55A 
with no intervening blanks in positions 24, 34 and 37. If command 
calls (for example, *D) are to be used, then the U must specified. 

Positions 5 through 8 are usually blank, but if· used, must_be 
. right- justified·~·-The··identicaTcall·is--re·pe-a"f·ed· as· specified in 
positions 5 through 8. 

Positions 10 through 13 - the DL/I call function is required only 
for the first 55A of the call. 

Positions 16 through 23 - the segment name is not specified for 
unqualified calls. 

7.6 IM5/VS Application programming Reference Manual 

"-_ .• / 



If there are multiple SSAs in the call, each SSA should be entered 
in positions 16 through 23 of a separate statement. A non-blank in 
position 72 of any statement indicates that another SSA follows. 
Positions 1 and 10 through 13 are blank for the second through last 
SSAs. 

If the fi~ld value extends past 71, there is a nonblank in position 
72 and CONT in posit ions 10 through 13 0 f the next sta te ment, vi th the 
field value continued starting in position 16. Maximum field value is 
256 bytes. 

An alternate format for the CALL statement is available by putting 
a U in position 4. If you use this option, you must start the exact 
SSA in position 16, with no intervening blanks in positions 24, 34, 
and 37. To continue an unformatted SSA, put a nonblank character in 
position 72, a U in position 4, and CONT in positions 10-13 of the next 
statement. Include the data of the 5SA that is continuing in positions 
16 throuqh 71. Maximum size for an 55A is 290 bytes. For additional 
information on SSAs, refer to the section "Segment Search Argument" in 
the "Data Base Batch Programming" chapter of this manual. 

The maximum number of levels for this program is the same as the 
IMS/VS limit, which is 15. 

DATA statements provide IMS/VS with segment information required 
for ISRT, ~RPL, SNAP, LOG, and C~KP calls. 

For an ISRT, REPL, SNAP, LOG, or CHKP call, statements containing 
segment data must follow immediately after the last (non-continued) 
CALL statement. The DATA statements must have an L in column 1, and 
DATA in positions 10 through 13. The segment data appears in positions 
16 through 71. Data continuation is indicated with a non-blank in 
position 72. On the continuation statement, positions 1 through 15 
are blank, and the data is resumed in position 16. The maximum length 
of a segment is set at 1500 bytes, but the user can change this by 
reassembling the program with the U5ER5EG field altered. 

Note: On 15FT calls, the last 5SA can have only the segment name, with 
no-qualification or continuation. 

~hen inserting or replacing variable length segments, as defined in 
a DBDGEN, or including variable length data for a CHKP or LOG call, 
position 4 of the CALL statement must contain either a V or M. V must 
be used if only one segment of variable length is being processed. 
Positions 5 through 8 must contain the length of the data, 
right-justified, with leading zeroes. This value is converted to 
binary, and becomes the first two bytes of segment data. 
Seqment-data-statements can be continued, as described above, with the 
subsequent statements blank in positions 1 through 15, and the data 
starting in position 16. 

Application Programming Testing Aids 1.1 



If multiple variable-~ength segments are required (that is, 
concatenated logical child/logical parent segments both of which are 
variable-length) for the first segment, there must be a V in position 
U and the length of that segment in positions 5-8. If that segment is 
longer than 56 bytes, then the data is continued as above except that 
the last card to contain data for this segment must have a non-blank 
in position 72. The next statement applies to the next variable-length 
segment, and must contain an M in position 4 and the length of this 
segment in positions 5-8. Any number of variable-length segments can 
be concatenated in this manner, up to 1500 bytes of total length. The 
~ or V and the length must appear only in statements that begin data 
for a variable-length segment. 

When inserting or replacing via path calls, a P in position 4 causes 
the length field to be used as the length the segment will occupy in 
the user I/O area, without the length (LL) field of variable-length 
segments, as in the instructions for H, above. V, M, and P can be 
mixed in successive statements. The P appears in only the first 
statement of fixed-length segment DATA statements, in path calls which 
contain both variable- and fixed-length segments. 

PARAMETER LENG~H, SNAP CALLS: On SNAP calls, the length of the SNAP 
parameters must be in positions 5-8. This number must be egual to the 
length of the SNAP parameters starting in position 16 plus an additional 
two bytes. The TEST program converts the length to binary and places 
it in the first half-word of the user I/O area passed to DL/I. The 
parameters from position 16 are placed in the I/O area immediately 
following this half-word. If positions 5-8 are blank, a default of 22 
is used as the parameter length. For additional information on SNAP 
calls, see sections 2 and 6 in Volumes 1 and 3, respectively, of the 
I~~L!~ ~tQgt£ID 1Qgi£ Mali~~l· 

All parameters are passed without change, with the following 
exception: If the SNAP destination field specifies "DCB-addr" or ddname 
of PRINTDD, and if a PRINTDD statement is supplied to the test program, 
the test program replaces this parameter with the DCB address of the 
test program PRINTDD data set. If a PRINTDD DD statement is not 
supplied, the test program defaults to LOG~~~~. 

PARAMETER LENGTH, LOG CALL: The LOG call is normally used with the 
I/O PCB. It can be used in batch mode only if the CMPAT option of the 
PSBGEN statement (see the I~!~ ~!i!i1i~§ Refer§D£~ tl~ual) is 
specified. 

The LOG call can be specified in two ways: 

1. A LOG call statement followed by a DATA statement with an L in­
column 1, a V in column 4, and the record length (in decimal) 
in columns 5-8, right-justified, and padded with zeroes. An 
example: 

COL 
1 

L 
--L-

COL 
4 

COL 
10 

LOG 

COL 
16 

V0016 - DATA- - - OOASEGMENT --ONE 

~hen this method is used, the first halfword of the record is 
eliminated. However, the specified length must include the 2 
bytes that are eliminated. 

1.8 IMS/VS Application Programming Reference Manual 

\ 
'"--



c ... 

C/ 

2. A LOG call statement followed by a DATA statement with an L in 
column 1 and the record ~ength (in binary) as the first halfword 
of the record. The second halfword of the record is binary 
zeros. An example: 

COL 
1 

L 
L 

COL 
4 

COL 
10 

LOG 
DATA 

COL 
16 

1000BSEG~ENT TWO 

When this method is used, columns 5-8 should be blank. 

SEGMENT LENGTH AND CHECKING, ALL CALLS: Because this program does not 
know segment lengths, the length of the segment displayed on REPL or 
ISRT calls is the number of DATA statements that have been read, times 
56. IMS/VS knows the segment length and uses the proper length. 

This program does no checking for errors in the call; invalid 
functions, segments, fields, operators, or field lengths are not 
detected by this program. 

This is the format of the COMPARE statement used for PCB comparisons. 

RQsi1~Q!l 

1 = 
2 = 

3 = 

E identifies this as a CO~PARE statement. 

H indicates hold COMPARE statement (see below for 
details) • 
Blank indicates a reset of the hold condition or a 
single COMPARE statement. 

Option requested if results of the compare are 
unequal: Blank means "Use the default for the SNAP 
option." The normal default is 5. For an explanation 
of how to change the default, see the description 
of the "OPTION Statement Format." 
1 request SNAP of the complete I/O buffer pool. 
2 request SNAP of entire region. 
4 request SNAP of DL/I blocks. 
8 abort this step; go to end of job. 
S S NAP sub poo 1 s 0 -1 27 • 

R~te: ~ultiple functions of the first 4 options 
can be obtained by summing their respective 
hexadecimal values. For example, a value of 5 is 
a request for a print of the IIO buffers and the 
DLtI blocks; and a value of D snaps the I/O pool, 
snaps the DL/I blocks, and aborts the program run. 

Application programming Testing Aids 7.9 



= 

5 - f; = 

7 = 

8 - 9 = 

10 = 

11 - 18 = 
19 = 
20 - 22 = 

23 = 

24 - xx = 

72 = 

Extended SNAP options, if results of a compare are 
unegu al: 
Blank: this extended option is ignored; P the 
complete buffer pool is snapped; S subpools 0-127 
are sna pped • 

HQt~: In no case will an area be snapped twice; 
that is, a combination of 1P in positions 3 and 4 
results in just one snap of the buffer pool. 
Similarly, a combination of SS results in just one 
snap of subpools 0-127. 

Segment level. 

Not used. 

Status code, or one of the following: 
XX - do not check status code. 
OK - allow blank"GA, or GK. 

Not used. 

Segment name. 

Not used. 

Length of feedback key. 

Not used. 

Concaten ated key feedback. 

Nonblank to continue key feedback. 

Th,e COMPARE sta tem ent is opt ional. It can be used to do regression 
testing of known data bases, or to call for a ~rint of blocks or buffer 
pool (s) • 

Any fields left blank are not compared to the corresponding field 
in the PCB. Since a bla'nk is a valid status code, to not compare status 
codes, put XX in positions 8 and 9. To accept any valid status code, 
(that is, blank, GA, or GK), use OK in position 8 and 9. 

To execute the same COMPARE after each call, put an H in position 
2. This is useful when loading a data base to compare to a blank status 
code only. Since the compare was done, the current control statement 
type is E in position 1; the next control statement read must therefore 
have its type in position 1 or it will default to E. The ,HOLD-COMPARE 
statement stays in effect until another COMPARE statement is read. If 
a new COMPARP. statement is read, two compares will be done for the 
preceding call, since the HOLD-COMPARE and optional printing are done 
priC:>,r ,tor:e_a~~n.9,t,h!= ne~, ~QMP,ARE statement. 

The total number of unequal compares will be reflected in the 
condition code returned for that step. 

7.10 IMS/VS Application Programming Reference Manual 



c 

This is the format of the COMPARE statement used for user I/O area 
comparisons. 

$ 

3 

4 

5 - 8 

10 - 13 

16 - 71 

72 

= 

= 

E identifies this as a COMPARE statement. 

Blank, the LL field of the segment is not included 
in the ·comparison, only data is compared. 

= L, the length in positions 5-8 is converted to binary 
and compared against the LL field of the segment. 

= v, if variable-length segment only, or if the first 
variable-length segment of multiple variable-length 
segments in a path call or concatenated logical 
child/logical parent segment. 

P, if fixed-length segment in a path call. 

M, if the second or subsequent variable-length of 
a path call, or concatenated logical child/logical 
parent segment. 

= Blank, not variable-length or non-path call data 
compare. 

= 

= 

= 
= 

nnnn, length ~f a variable-length segment, 
right-justified ~ith leading zeroes. If position 
4 contains V, P, or M, then a value must appear in 
positions 5-8. If position 3 contains an L then 
this value is compared against the LL field of the 
returned segment. If position 3 is blank and the 
segment is not in a path call, then this value is 
used as the length of the comparison. The rules 
for continuations are the same as those described 
for the variable-length segment DATA statement in 
the description of the CALL statement. 

If this is a path call comparison, and position 4 
contains P, then the value in positions 5-8 must be 
the exact length of the fixed segment used in the 
pa th call. 

DATA, this has to be specified in the first COMPARE 
DATA statement only. 

Data against which the segment is to be compared. 

Blank identifies the last COMPARE DATA st at em ent 
for the current call, and causes the comparison to 
be made. 

= Non-blank, if the comparison data exceeds 56 
characters, data is continued in positions 16-71 of 
the subsequent statements for a maximum total of 
1500 bytes. 

Application Programming Testing Aids 7.11 



This COMPARE statement is optional. Its purpose is to COMPARE the 
segment returned by IMS/VS to the data in this statement to verify that 
the correct segment was retrieved. 

The length in positions 5-8 is optional except as already noted; if 
present, this length is used in the COMPARE and in the display. If no 
length is specified, the shorter of either the length of data moved to 
the I/O area by' IMS/VS, or the number of DATA statements read times 56 
is used for the length of the comparison and display. 

If both a COMPARE DATA and a COMPARE PCB statement are present, the 
COMPARE DATA statement must precede the COMPARE PCB statement. 

The conditions for printing the COMPARE DATA statement are the same 
as for printing a COMPARE PCB statement; position 7 of the STATUS 
statement is used. The same unequal switch is set for either the 
COMPARE DATA or COMPARE PCB. However, if control block displays are 
requested for. unequal comparisons, a COMPARE PCB statement is required 
to request these options. 

The total number of unequal comparisons will be· reflected in the 
condition code returned for that step. 

The purpose of the OPTION statement is to set the default SNAP option 
and/or the number of unequal comparisons before aborting the step. The 
default value for the number of unequal comparisons before aborting is 
5. 

The format of the statement is explained below. 

1 = 

2 - 80 = 

o identifies' this as an OPTION statement. 

Free-form coding. 

The first operand is SNAP=x, where "x" is the default 
SNAP option to be used. 

The second operand is ABORT=xxxx, where "xxxx" is 
a 4-digit numeric value that 'sets the number of 
unequal comparisons before aborting the step. 

Use of the following example of the OPTION statement will cause the 
DL/T test program to operate as it did prior to the release of IMS/VS 
version 1, Modification Level 1: 

Col. 1 

0~SNAP=~,ABORT=9999 

7.12 IMS/VS Application Programming Reference Manual 

C~ 



c 

SPECIAL CONTROL STATEMENT FORMATS 

The PUNCH control statement provides the facility for this program 
to produce an output data set consisting of the PCB COMPARE statements, 
the user IIO area COMPARE statements, all other control statements 
read, or any combination of the above. An example of the use of this 
facility is to code the call, but not the COMPARE statements for a new 
test. Then, after verifying tha t the calls were e'xecuted as 
anticipated, another run is made where the PUNCH statement is used to 
caus e the test program to merge the proper COMPARE statements, based 
on the results of the call, with the CALL statements read, producing 
a new output data set. This is then used as input for subsequent 
regression tests. If segments.in an existing data base are changed, 
the use of this control statement causes a new test data set to be 
produced with the proper COMPARE statements. This eliminates the need 
to manually change the COMPARE statements because of a change in the 
segments of the test data base. 

The PCB COMPARE statements are produced based on the information in 
the PCE after the call is completed. The COMPARE DATA statements are 
produced based on the data in the I/O area after the call is completed. 
All input control statements, other than COMPARE statements, can be 
produced to provide a new composite test with the new COMPARE statements 
properly merged. The data set produced can be sequenced. 

Since the key feedback area of the PCB COMPARE statement can be 
long, two options are provided for producing these COMPARE statements. 
Eitner the complete key feedback can be provided, or the portion of 
the key feedback that does not fit on one statement can be dropped. 
Forty-eight bytes of key feedback fit on the first statement. 

Getting the full data from the I/O area into the data COMPARE 
statement might also be excessive. An option is to put it all on the 
data COMPARE statements, or put only the first 56 bytes on the first 
statement and drop the rest. The test program only compares the first 
56 bytes if it only receives one COMPARE DATA statement. 

PUNCH STATEMENT FORMAT: 

1 - 3 = 
10 - 13 = 

16 = 

rTL identifies this statement type. 

PUNC further identifies this statement type as 
controlling the punch output data set, and tells 
the program to start punching. 

NPUN stop punching. 

Starts keyword parameters controlling the various 
options. These keywords are: 

PCBL, produce the full PCB COMPARE statement. 

PCBS, produce the PCB COMPARE, dropping ~he key 
feedback if it exceeds one statement. 

DATAL, produce the complete COMPARE DATA statements. 

DATAS, produce only one statement of com'pare da ta. 

Application programming Testing Aids 1.13 



OTHER, reproduce all control statements except 
COMPARE control statements. 

START, starting sequence number to be punched in 73 
through 80. Eiqht numeric characters must follow 
the START= parameter; leading and/or trailing zeroes 
a re required. 

INCR, increment to be added to the sequence number 
of each statement. Four numeric characters must 
follow the INCR= parameter; leading and/or trailing 
zeroes are required. 

Some examples of the PUNCH control statem ent are: 

1 10 

CTL PUNe PCBL,DATAL,OTHER,START=00000010,INCR=0010 
CTL NPUN 

The DD statement for the output data set is labelled PUNCH; the data 
set characteristics are fixed, unblocked , with a logical record lengt h 
of 80. 

An example of the PUNCHDD statement is: 

//PUNCHDD DD SYSOUT=B 

The data set specified by the SYSIN DD statement is the normal input 
data set for this program. It is sometimes desirable when processing 
an input data set that is on direct access or tape, to override or 
insert some control statements into this input stream. This is 
especially useful to obtain a SNAP after a particular call. 

To provide this capability, a second input data set (SYSIN2) will 
be reaa if the DD statement is present in the JCL for the step. The 
records from the SYSIN2 data set are merged with records from the SYSIN 
data set, and the merged records become the input for this program. 

The merging is done based on the sequence numbers in positions 13 
through 80, and is a two-step process: first, pOSitions 73 and 74 of 
SYSIN2 must be equal to the corresponding positions of SYSIN; then the 
merge is done based on positions 75 to 80. 

This peculiarity of merging allows for multiple data sets (each with 
a different high-order sequence number in 73-74) that have been 
concatenated to form SYSIN, in other than positions 73-74 numeric 

-sequence. -----The - two-step-merge:logic-permlts -SYSIN2 -input: to -be merged 
appropriately into each of the concatenated data sets. 

When the sequence numbers are equal, SYSIN2 overrides SYSIN. 

Any statements or records in this data set must contain sequence 
numbers in columns 73-80. They will replace the same sequence number 
in the SYSIN data set, or be inserted in proper sequence if the number 
in SYSIN2 does not exist in SYSIN. Replacement or merging is done only 
for the run being made. The orginal SYSIN data is not changed. 

7.14 IMS/VS Application Programming Reference Manual 

c 



~--.--------.. - ...... -~-

c 1 - 4 = 

10 - 17 = 

1 - 4 = 

1 - 3 

1 = 
- 5 = 

$ 1 = 

5 - 8 = 

10 - 13 = 

DLCK - issues OS/VS checkpoint, followed by a DL/I 
checkpoint. 

contains a 1- to 8-character checkpoint ID 
(left-justified) • 

WTOR - puts message in remainder of statement on 
system console and waits for any reply, then 
continues. 

WTO same as WTOR, but does not wait for reply. 

• or N; disregard this statement. 

ABEND - issues user ABEND 252 with the DUMP option. 

L identifies this as a CALL statement. 

Number of times to repeat a series of calls with a 
range from 0001 t hru 9999 (default is 1) • 

STAK - start stacking control cards for later 
execution. 

END - stop stacking control cards and begin 
execution. 

The STAK function enables the user to repeat a series 
of calls which have been read from SYSIN and held 
in storage. All control statements between the STAK 
card and the END card are read and saved. When the 
END card is encountered, the series of calls is 
executed as many times as the number punched in 
positions 5 through 8 of the STAK card. This can 
be used to test exclusive control and scheduling by 
having two different regions executing stacks of 
calls concurrently. 

STAT - Print the current buffer pool statistics. 

Cols. 16-20 One of the following values is used to 
obtain the type and form of statistics 
required: 

VBASF 

VBASU 

provides the full VSAM data base 
subpool statistics in a formatted 
form. 

provides the full VSAM data base 
subpool statistics in an 
unformatted form. 

Application programming Testing Aids 7.15 



VBASS 

DBASF 

DBASU 

DBASS 

provides a summary of the VSAM 
data base sub pool sta tistics in 
a formatted form. 

provides the full ISAM/OSAM data 
base buffer pool statistics in 
a formatted form. 

provides the full ISAM/OSAM data 
base buffer pool statistics in 
an unformatted form. 

provides a summary of the 
ISAM/OSAM data base buffer pool 
statistics in a formatted form. 

For more information on the STAT call, see the 
"System Service Calls" section in the "Data Base 
Batch Programming" chapter of this manual. 

SNAP - Issue the DL/I Call. See sections 2 and 6, 
Volumes 1 and 3, respectively, of the IMSL!~ g~QgIs~ 
1Qg~£ !1Stn ua 1 ~ 

DLCK - For any dependent region, DLCK gives an OS/VS 
checkpoint to a DD statement labelled CHKDD whose 
DSORG=PO. This is followed by a DL/I checkpoint 
call. 

CHKP - Same as DLCK. 

SKIP - Skip SYSIN statements until START statement 
encountered. 

START- start making DL/I calls again. 

FORM~T OF DISPLAY OF DL/I BLOCKS 

The IMS/VS SNAP call is used to 'display the DL/I blocks. For 
additional information on the SNAP call, see the "Process SNAP Call" 
diagram and the "SNAP Call Facility" discussion in Sections 2 and 6, 
Volumes 1 and 3, respectively, of the IMS/VS PrQg~ 1Qg~£ A~!. 

EXECUTION IN DIFFERENT TYPES OF REGIONS 

This program is designed to operate in a DL/I or BMP region but can 
also be executed in a MSG region. The input and output devices are 
dynamically established based on the type of region in which the' program 
is executing. In a BMP or DL/I region, the EXEC statement allows the 
program name to be different from the PSB name. There is no problem 
executing calls against any data base in a BMP or DL/I region. In a 
MSG-region, the--program namemust-be--the same as the PSB name.- In 
order to execute in a MSG reg~on, the DFSDDLTOprogram must be given 
the name or an alias of the PSB ~amed in the IMS/VS dgfinition. 

When in a DL/I region, input is read from SYSIN and 0 utput is written 
to PRINTDD. 

7.16 IMS/VS Application Programming Reference Manual 



c,. 
When in a BMP region, if a symbolic input terminal was specified as 

the fourth parameter of the EXEC sta teme,nt, input is obtained from that 
5MB, and output is sent to the I/O PCB. The name of the I/O PCB can 
be specified as the fifth parameter of the EXEC statement. If 5MB is 
not specified on' the EXEC statement, SYSIN is used for input and PRINTDD 
is used for output, as in the DL/I region. 

In the MSG region, the I/O PCB is used for both input and output 
unless position 2 of the STATUS statement is either a 1 or an A. In 
either of these cases, PRINTDD is used for output if the DD card is 
present in the JCL for that message region. A limit of 50 lines per 
schedule is sent to the I/O PCB and, after that, PRINTDD is used for 
output if present. If PRINTDD is not present, the program terminates. 

Because the input is in fixed form, it is difficult to key it from 
a terminal. For ease of entry, however, Message Format Service (MFS) 
facilities can be used from a terminal to create the fixed-format input. 
One way to test DL/I in a message region, using this program, is to 
first execute another message program which, based on a message from 
the terminal, reads control statements stored as a member of a 
partitioned data set. Insert these control statements into an 5MB. 
This program is then scheduled by IMS/VS to process those transactions. 
This allows the same control statements to be used to execute in any 
region type. 

HINTS ON USAGE 

1 • 

2 • 

To load a data base: 

This program is applicable for loading small data bases, because 
all calls and data must be provided to it rather than it 
generating data. It can be used to load large volume data bases 
if the control statements were generated as a sequential data 
set. 

To display a data base: 

To display a data base, the following sequence of control 
statements can be used. 

S 1 2 2 2 1 
L GN 
EHB OK 

DBDNAME Display comments and segment 
DO 1 Get Next 
Hold compare, GA, ,GK, OK, terminate 
on GB 

L 9999 GN DO 9,999 Get Next calls 

3. To do regression testing: 

This program can be used for regression testing. By using a 
known data base, calls can be issued and the results compared 
to expected results using COMPARE statements. The program then 
can determine if DL/I calls are being executed correctly. By 
making the print options of the STATUS statement all twos, only 
those calls not satisfied properly are displayed. 

To'use as a debugging aid: 

When doing debugging work, usually a print of the DLjI blocks 
is required. By use of COMPARE statements, the blocks can be 
displayed at appropriate times. Sometimes the blocks are needed 
even though the call is executed correctly, such as the call 
before the failing call. In those cases, a SNAP call can be 
inserted. This causes the blocks to be displayed even though 
the call was executed correctly. 

Application Programming Testing Aids 7.17 



5. To verify how a call is executed: 

Because it is easy to execute a particular call, this program 
can be used to verify how a particular call is handled. This 
is of value when DL/I is suspected of not operating correctly 
in a specific situation. The calls that are suspected can be 
issued using this program, and the results examined. 

SAMPLE JCL 

IIJCLSAMP JOB ACCOUNTING,NAME,MSGLEVEL=(1,1) ,ftSGCLASS=3,PRTY=8 
/IGET EXEC PGM=DFSRRCOO,PARM='DLI,DFSDDLTO,PSBNAME' 
IlsrEPLIB DO DSN=IMSVS.RESLIB,DISP=SHR 
/II~S DO OSN=IMSVS.PSBLIB ,DISP= (SHR, PASS) 
II DD OSN=IMSVS.DBDLIB,DISP=(SHR,PASS) 
IIDOCARD DD DSN=DA TA SET, Dr SP= (OLD, KEEP) 
IIIEFRDER DD DUMMY 
IIPRINTDD DD SYSOUT=A 
I/SYSUDUMP DD SYSOUT=A 
I/SYSIN DD * 
S 1 , 1 1 DBDNAME 
1* 

SAMPLE CONTROL STATEMENT INPUT 

IISYSIN DD * 
U START TEST LOAD 
T ISRT ROOT SEGMENT A060000111 
L ISRT A11'1111 
L DATA A06000 11 
EH 
T ISRT 
L 

ROOT, SEGMENT A06000511 
I SR T A 111111 

1069999888 ROOT SEG1 

L 
L 

DATA A060000511 
I SR T . A 1 111 11 

1069999488 ROOT SEG2 
(A""111 = A0600005") x 

DATA 
1* 

IISYSIN DO * 
S , 1 1 1 1 
L GHU 

S 1 1 1 1 1 
L ISRT 

L DATA 
S 1 1 1 1 1 
L REPL 
L DATA 
1* 

AA222222 
XAA 04051' Z 

JHNIXX 
JM2PAB.CX 

1 

2 

(J11NIXX = A10Hl02000) 
(JM2PABCX = DIOHI02A10) * 

J 11NXIIX - . --(J-l1N-XXIX = 
JK2P!DXX 
A10HD02000D10HD02A1U 

A 10H02000) . C 

1 

A10HD0200DB10HD02A10 

7.18 IMS/VS Application programming Reference Manual 

..... , ... ~; 



Message processing region simulation is not supplied as a part of 
the IB! IMS/VS program. 

The checkout of any message processing program in the online termina1 
environment is often impractical. To enable a more practical and 
efficient checkout environment, a message processing region simulation 
can be used. The object of the simulator is to enable checkout of a 
message processing program, in a hatch processing region, with a set 
of test data bases. Messages are read and written with unit record, 
tape, or disk data sets as opposed to input and output message queues. 
To be effective, the simulator should incur no, or minimal, change to 
the message processing program when it is moved from the simulated to 
the ~ctual message processing region environment. 

The user can accomplish simulation by appending the Simulator 
Interface A and Simulator Interface B modules to the message processing 
program in addition to the language interface. (See Fiugre 7-1.) 

~: DLlTCBL 
OR 

DLITPLI 

SIMULATOR 
INTERFACE 

A 

MESSAGE 
PROCESSING 
PROGRAM 

MESSAGE CALLS 

DATA BASE CALLS 

~:--------------------~--+---~ CBL TDLI or PLITDLI 

LANGUAGE INTERFACE 

~:~-------------------r------" GEORGEI 

Figure 7-1. 

SIMULATOR 
INTERFACE 

B 

(MESSAGE INPUT) (MESSAGE OUTPUT) 

!!essage Processing Region Simulation 

Application Programming Testing Aids 1.19 



When the PSB is generated for the associated message program, the 
PCBs within the PSB are normally for Data Language/I data bases only. 
No PCB for an input and output terminal is provided. When the message 
program is loaded into a batch processing region, the PCB addresses 
are passed to the message program •. No terminal PCB is provided. 

When Simulator Interface·A is link-edited with the message program 
with entry point DlaITCBL or DLITPLI, the Simulator Interface A is 
entered. The interface prefixes the PCB address list with an . 
input/output termin,al PCB address. The PCB exists within Simulator 
Interface A, and its address is added as the first PCB address in the 
PCB address list passed to the message program. This PCB address is 
used by the message program·as are the other PCB addresses in the list, 
except that this PCB address is used in calls from the message program 
to Simulator Interface B. 

When a call is made from the message program to Simulator Interface 
B, the message program makes a Data Language/I call, with the terminal 
PCB address provided by Simulator Interface A. Simulator Interface B 
then utilizes OS/VS SYSIN and SYSOUT data sets as if messages vere 
being read from and written to message queues. You may includ~ 
alternate terminal PSBs within your PSB generation. The addresses for 
these PCBs are provided, upon entry to the user message program, in 
the order specified by PCB statements in PSB generation. If a Data 
Language/I call (CALL CBLTDLI) is issued with an alternate terminal 
PCB address in an IMS/VS batch region, an AL status code 'is returned 
in the PCB. 

Data L'anguage/I data base calls are executed with the appropriate 
PCBs to the link-edited language interface. 

The following changes must be made when the message processing 
program is moved to a message processing region: 

• Both Simulator Interface modules should be omitted. 

• The entry point name of the message program must be renamed DLITCBL 
(COBOL or Assembler) or DLITPLI (PL/I). 

• The CALL statement operand must be renamed from GEORGE! to the 
language interface entry pOint CBLTDLI or PLITDLI. 

7.20 IMS/VS Application Programmin 9 Reference Ranual 

I",~. _,/ 



EXA MPLES 

The following example shows a typical COBOL program that might be 
written to test a message program in a batch processing region. (Refer 
to Figure 1-1 in conjunction with this example.) 

IDENTIFICATION DIVISION. 
PROGRAM-ID. 'CAB', 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
0' INOUT-PCB 

02 IO-TERMINAL 
02 IO-RE SERVE 
02 IO-ST ATtJS 
C2 IO-PREFIX 

LINKAGE SECTION. 
01 DB-PCB. 

02 DATA-BAS-DESC 
PROCEDURE DIVISION. 

PICTURE X (8) • 
PICTURE XX. 
PICTURE XX. 
PICTURE X (12) • 

PICTURE X(71) • 

ENTRY 'DLITCBL' USING DB-PCB. 
CALL 'TEST' USING INOUT-PCB, DB-PCB. 
STOP RUN. 

The following is an example of a section of the message processing 
program being tested. It shows the entry point and call to the Message 
Input and Output (Message Simulator Interface B). (Refer to Fiugre 
7-1 in" conjunction with this example.) 

START-OUT. 
ENTRY 'TEST' USING TERMINAL INOUT-PCB,DB-PCB. 
CALL 'GEORGEI' tJSING GET-UNIQUE,INOUT-PCB,LINE-INPtJT. 

Application Programming Testing Aids 1.21 



~imY!llQ!: J1!1~!:!~~ !! 

The foll~wing example of message output should be revi~ved in 
conjunction with the previous example and with Figure 7~1. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. 'IMSTEST'. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT MESSAGE-FILE ASSIGN TO 'TESTIN' UTILITY. 
SELECT TEST-OUTPUT-FILE ASSIGN TO 'TESTOUT' UTILITY. 

DATA DIVISION. 
FILE SECTION. 
FD MESSAGE-FILE 

RECORDING MODE IS V 
DATA RECORD IS INPUT-MESSAGE. 
01 INPUT-MESSAGE 

FD TEST-OUTPUT-FILE 
BLOCK CONTAINS 10 RECORDS 
DATA RECORD IS PRINT-LINE. 
01 PRINT-LINE 

WORKING-STORAGE SECTION, 
77 OPEN-SWITCH PICTURE X 
77 END-SWITCH PICTURE X 
77 MESSAGE-SIZE-WORK PICTURE S9(4) 

77 
77 
77 
77 
77 

USAGE COMPUTATIONS. 
BAD-FUNCTION-CODE PICTURE XX 
NO-DATA-CODE PICTURE XX 
REC-SWT PICTURE X VALUE ' " 
MESS-OUT PICTURE' X VALUE ' " 
C-329 PICTURE S9(6) VALUE 329 

USAGE COMPUTATIONAL. 
01 MESSAGE-IN-WORK-AREA. 

02 HEADER-OAT A-IN. 
03 MESSAGE-COUNT 
03 MESSAGE-TYPE 
03 TERMINAL-NAME 

02 MESSAGE-TEXT. 

PICTURE IS X(I43). 

PICTURE IS X(l33). 

VALUE' '. 
VALUE' '. 
VALUE 0 

VALUE 'QA'. 
VALUE 'QC'. 

PICTURE 9(4). 
PICTURE X. 
PICTURE XeS). 

03 FILLER PICTURE X OCCURS 130 TIMES 
DEPENDING ON MESSAGE-SIZE-WORK. 

01 TEST-OUTPUT-HEADER. 

7.22 

02 FILLER PICTURE X(l8) VALUE 
, MESSAGE TYPE = '. 

02 FILLER. 
03 IN-OR-OUT -MESSAGE 
03 HEAD-OR-BODY 

02 FILLER PICTURE X(l8) 
" MESSAGE COUNT = '. 

02 OUTPUT -COUNT 
02 FILLER PICTURE X(I3) 

" TERMINAL = '. 
02 OUTPUT-TERMINAL 

PICTURE X. 
PICTURE X. 
VALUE 

PICTURE 9999. 
VALUE 

PICTURE XeS). 

IKS/VS Application Programming Reference Manual 

.. 



• 

c 

02 FILLER PICTURE XX VALUE SPACES. 
02 OUT-RUN PICTURE XXXX. 

01 TEST-OUTPUT-TEXT. 
02 T~ST-OUTPUT-CHAR OCCURS 130 TIMES 

PICTURE X. 
LINKAGE SECTION. 

01 INOUT-PCB. 
02 IO-TERMINAL PICTURE X(8). 
02 IO-RESERVE PICTURE XX. 
02 IO-STATUS PICTURE XX. 
02 I-PREFIX PICTURE X(12). 

01 FUNCTION PICTURE XXXX. 
01 IO-AREAS-RECORD. 

02 RCC PICTURE S9 (4) USAGE C01'lPUTATION1\L. 
02 RCC-ZEROS PICTURE XX. 
02 TEXT. 

03 FILLER PICTURE X OCCURS 130 TIHES. 
PROCEDURE DIVISION. 

ENTRY 'GEORGEI' USING FUNCTION, INOtJT-PCB, IO-AREAS-RECORD. 
OPEN-FILES • 

IF OPEN-SWITCH = '1' GO TO PROCESS-X. 
MOVE 0 TO TALLY. 

OPEN INPUT MESSAGE-FILE 
OUTPUT TEST-OUTPUT-FILE. 

HOVE '1' TO OPEN-SWITCH. 
PROCESS-X. 

IF FUNCTION = 'GU 'GO TO GET-HEADER. 
IF FUNCTION = 'GN 'GO TO GET-BODY. 
IF FUNCTION = 'ISRT' GO TO WRITE-REPLY. 
MOVE BAD-FUNCTION-CODE TO IO-STATUS. 

RETURN-TO-APPLICATION. 
RETURN. 

FORMAT-INPUT-MESSAGE. 
MOVE 'I' TO IN-OR-OUT-l·lESSAGE. 
MOVE HESSAGE-TYPE TO HEAD-OR-BODY. 
MOVE MESSAGE-COUNT TO OUTPUT-COUNT. 
MOVE TERHINAL-NAr.1E TO OUTPUT-TERHINAL. 
MOVE HESSAGE-TEXT TO TEST-OUTPUT-TEXT. 

SET-UP-FOR-USER, 
MOVE MESSAGE-COUNT TO RCC. 
MOVE LOW-VALUES TO RCC-ZEROS. 
MOVE TERl1INAL-NAME TO IO-TERHINAL. 
MOVE r-1ESSAGE-TEXT TO TEXT. 
1-10VE' 'TO IO-STATUS. 

READ-MESSAGE-FILE. 
IF END-SWITCH = '1' GO TO FINISH-UP. 
READ MESSAGE-FILE INTO MESSAGE-IN-WORK-AREA 

AT END NOVE '1' TO· END-SWITCH 

Application programming Testing Aids 1.23 



GO TO READ-HESSAGE-FILE. 
COMPUTE MESSAGE-SIZE-WORK = MESSAGE-COUNT 
PERFORM FORHAT-INPUT-MESS1\GE. 
PERFORM WRITE-TEST-OtJTPUT-FILE. 

WRITE-TEST-OUTPUT-FILE. 
110VE FUNCTION TO OUT-RUN. 

WRITE PRINT-LINE FROB TEST-OUTPUT-HEADER. 
WRITE PRINT-LINE FROH TEST-OUTPUT-TEXT. 

GET-HEADER. 
IF REC-SWT NOT = 'H' 

COMPUTE 
PERFOm~ 

PERFORM 
REC-GOT. 

PERFORM READ-MESSAGE-FILE 
GO TO REC:-GOT. 

HESSAGE-SIZE-WORI{ = MESSAGE-COUNT 
FORHAT-INPUT-MESSAGE. 
~"1RITE-TES T-OUTPUT-FILE. 

-,4. 

- 4. 

IF HESSAGE-TYPE NOT = TO 'H' GO TO GET-HEADER. 
PERFORM SE~-UP-FOR-USER. MOVE • • TO REC-SWT. 
GO TO RETURN-TO-APPLICATION. 

GET-BODY. 
PERFORM READ-MESSAGE-FILE. 

IF MESSAGE-TYPE = 'B' NEXT SENTENCE ELSE 
MOVE 'H 'TO REC-m'1T 
MOVE '00' TO IO-STATUS 
GO TO RETURN-TO-APPLICATION. 

PERFORH SET-UP-FOR-USER. 
GO TO RETURN-TO-APPLICATION. 

WRITE-REPLY .. 
MOVE IO-TERMINAL TO OUTPUT-TER11INATJ. 

COMPUTE MESSAGE-SIZE-WORK = RCC - 4. 
MOVE RCC TO OUTPUT-COUNT. 
MOVE '0' TO IN-OR-OUT-MESSAGE. 
MOVE • , TO HEAD-OR-BODY. 
1-iOVE TEXT TO TEST-OUTPUT-TEXT. 
,HOVE MESS-OUT TO IO-STATUS. 
PERFORM WRITE-TEST-OUTPUT-FILE. 

FINISH-UP. 
IF FUNCTION = 'GU 'MOVE 'DC' TO IO-STATUS. 
IF FmlCTION = 'GN 'MOVE '00' TO IO-STATUS. 
GO TO RETURN-TO-APPLICATION. 

7.24 IMS;VS Application programming Reference Manual 

• 



• 

c 

At the completion of a DL/I call, a status code that indicates the 
results of the call is returned to the application program in the PCB 
status' code field. The user should follow each call in his program 
with statements which examine the returned status cod~s to determine 
if the requested action was completed properly. 

Status codes fall into four different categories: 

1. Exceptional but valid conditions encountered for the call (for 
example, GE, GB) 

2. Warning or indicative status codes on successful calls (for 
example, GA, GK, II, QC, and QD) 

3. Improper user specifications (the Brincipal category) 

4. Error conditions encountered during the actual execution of I/O 
requests 

An IMS/VS installation should normally provide application programs 
with a standardized status code checking procedure to be applied after 
each call. 

• Status codes from categories 1 and 2 can be handled by each 
application program according to its specific needs. 

• Status codes from category 3 result from programming errors, and 
should be handled in a generalized way which supplies the 
application programmer with the information required to correct 
the error. 

• Status codes from category 4 must be handled by procedures set up 
by the data base administrator; they should not be handled by each 
individual application programmer. category 4 status codes often 
require recovery procedures which could affect other application 
programs and the integrity of the entire data base environment. 

Figure A-1 provides a quick reference of DL/I statas codes. These 
status codes are described in detaii in Appendix B. 

DL/I status Codes Quick References 1.1 



I-zj > ...,- : DATA BASE CALLS MSG CALLS SYSTEM SERVICE CALLS 
I 

f\.J \Q STATUS GU: GN GNP DLET ISRT ISRT CALL ERROR I/O OR CATE· 
~ CODE GHU GHN GHNP REPL (LOAD) (ADD) GU GN ISRT CHNG PURG CHKP ROLL DEO LOG SNAP COMPLETED IN CALL SYST ERROR GORY DESCRIPTION 

t1 
(1) 

f-i 

AA X CHNG CALL FOR RESPONSE ALTERNATE PCB CAN ONLY 

X 
3 SPECIFY LOGICAL TERMINAL DESTINATION; TRANSACTION 

CODE DESTINATION SPECIFIED_ 

»I :3 
I til 

AB X X X X X X X X X X X X X X 3 SEGMENT I/O AREA REOl!IRED, NONE SPECIFIED 
IN CALL 

........ -' AC X; X X X X X 3 HIERARCHICAL ERROR IN SSAs 
<: 
til 

"'C 
I» »I 

AD X 3 INVALID FUNCTION PARAMETER 
AH X X X 3 CALL REOUIRESSSAs, NONE PROVIO£D 

AI X , X X X X X X 4 DATA MANAGEMENT OPEN ERROR 

"'0 t1 AJ X X X X X X 3 INVALID SSA OUALlFICATION FORMAT 

"'0 cT AK X , X X X X X 3 INVALID FIELD NAME IN CALL 

~ AL X , X X X X X X 3 CALL USING LT PCB IN BATCH PGM 

-' 1-'-
n AM X X X X X X X 3 CALL FUNCTION NOT COMPATIBLE W/PROCESSING 

OPTION OR SGMT SENSITIVITY 

0 I» 
I-tt r+ 

..,-
~ 0 

::s 

AD X X X X X X X 4 1/0 ERROR ISAM, OSAM, BSAM, OR VSAM 

AO X X X X 4 READ 1/0 ERROR, MESSAGE CHAIN CANNOT BE 
FOLLOWED, MINIMUM OF ONE MESSAGE LOST 

AR X X X X 
4 

READ I/O ERROR, MESSAGE SEGMENT HAS BEEN 
LOST, MESSAGE CHAIN ISSTILL INTACT 

'"d AT X X X X X X X X 3 USER I/O AREA TOO LONG 

t1 
0 0 AU X X X X X X X 3 SSAs TOO LONG 

~ I.Q 

"-t1 
AY X X RESPONSE ALTERNATE PCB REFERENCED BY ISRT CALL 

3 HAS MORE THAN ONE PHYSICAL TERMINAL ASSIGNED FOR 

I» H INPUT PURPOSES_ NOTIFY MASTER TERMINAL 

S 
til S 

AZ X X 
3 CONVERSATIONAL PROGRAMS WILL ISSUE 

PURG CALLS TO WRONG PCB 

cT ..,-
PI ::s 
c+ \Q 

~ 
r.n ~ 

<D 
(1 I-tt 
0 ct> 

Al X X 3 
CALL ATTEMPTED WITH 8-CHAR LOGICAL TERMINAL 
NAME NOT KNOWN TO SYSTEM 

A2 X X 3 
CHANGE ATTEMPTED WITH 
INVALID PCB 

A3 X X X 3 
INSERT/PURGE ATTEMPTED TO A MOD 
TP PCB WITH NO DESTINATION SET 

A4 X X 3 SECURITY VIOLATION 

PI 11 
(1) ct> 

A5 X X X FORMAT NAME SPECIFIED ON 2ND OR SUBSEQUENT 
3 

MSG ISRT OR PURG 

r.n ::s 
0 

A6 X X 3 OUTPUT SEGMENT SIZE LIMIT EXCEEDED ON ISRT CALL 

CD !O A7 -
~ 

X X 3 
NUMBER QF OUTPUT SEGMENTS INSERTED EXCEEDED THE 
LIMIT BY ONE_ 

1-" :J: 
0 PI 

A8 X X 3 ISRT TO RESPONSE ALTERNATE PCB FOLLOWED ISRT TO 
1/0 PCB, OR VICE VERSA_ 

"" ::s 
~ 

A9 X X RESPONSE ALTERNATE PCB REFERENCED BY ISRT CALL 
3 REQUIRES THAT SOURCE PHYSICAL TERMINAL RECEIVE 

PI ~ THE OUTPUT RESPONSE_ 

<t> ~ 
I-t) 
(l) 

DA X X 3 SEGMENT KEY FIELD HAS BEEN CHANGED 

OJ X X 3 NO PRECEDING SUCCESSFUL GET HOLD CALL 

t1 OX X X 3 VIOLATED DELETE RULE 

CD 
::s 
0 
<t> 

GA X X X CROSSED HIERARCHICAL BOUNDARY INTO 
2 HIGHER LEVEL (RETURNED ON UNQUALIFIED 

CALLS ONLY) 

GB X 1 END OF DATA SET, LAST SEGMENT REACHED 

GE X X X X 1 SEGMENT NOT FOUND 

GK X X X 01 FFERENT SEGMENT TYPE AT SAME LEVEL 
2 RETURNED (RETURNED ON UNOUALIFIED 

CALLS ONLY) 

Gl X X 3 INVALID USER LOG CODE_ 

GP X X A GNP CALL AND NO PARENT ESTABLISHED 
3 OR REQUESTED SEGMENT LEVEL NOT LOWER 

THAN PARENT LEVEL 

II X 1 SEGMENT TO INSERT ALREADY EXISTS IN 
DATA BASE 

() /----'" 

\ ) (-) 
.. 



r i (\ 
.. 

(\ 

I-zj 
~. 

o..Q 

DATA BASE CALLS MSG CALLS SYSTEM SERVICE CALLS 

I 

STATUS GU GN GNP DLET ISRT ISRT CALL ERROR 110 OR CATE· 
CODE GHU GHN GHNP REPL (LOAD) (ADD) GU GN ISRT CHNG PURG CHKP ROLL DEQ LOG SNAP COMPLETED IN CALL SYST ERROR GORY DESCRIPTION 

~ 
H 
({) 

IX X X 3 VIOLATED INSERT RULE 

LB X 
1 

SEGMENT TO INSERT ALREADY EXISTS IN 

I DATA BASE 

~ 
LC X 3 KEY FJELD OF SEGMENTS OUT OF SEQUENCE I 

I LD X 3 NO PARENT FOR THIS SEGMENT HAS BEEN LOADED 
, 

~ LE X 
3 

SEOUENCE OF SIBLING SEGMENTS NOT THE SAME 
AS DBD SEQUENCE 

I 

~ 
NE X X 4 DUI CALL ISSUED BY INDEX MAINTENANCE CANNOT FIND 

I SEGMENT 

PI 
H 
rl" 

NI X X X X 4 
INDEX MAINTENANCE UNABLE TO OPEN AN INDEX DB. OR j FOUND DUPLICATE SEGMENT IN INDEX 

I 
NO X X X X 4 1/0 ERROR ISAM. OSAM. BSAM. OR VSAM 

I 
tv QC X X 1 NO MORE INPUT MESSAGES 

0 
t-ta 

QD X 1 NO MORE SEGMENTS FOR THIS MESSAGE 
I 

OE X X 3 GET NEXT REQUEST BEFORE GET UNIQUE I 

tv 
QF X X X X SEGMENT LESS THAN FIVE CHARACTERS (SEG 

3 LENGTH IS MSG TEXT LENGTH PLUS FOUR I 
CONTROL CHARACTERS) J 

QH X X X TERMINAL SYMBOLIC ERROR OUTPUT 

i 
3 DESIGNATION UNKNOWN TO IMSNS 

(LOGICAL TERMINALS OR TRAlJ CODE) 

t:::1 
RX X X 3 VIOLATED REPLACE RULE 

0 
~ 
H 

UC 1 CHECKPOINT" TAKEN 

UK 1 RESTART" 

t;-t US 1 STOP' 

" H 
til 
r+ 
PI 

UX 1 CHECKPOINT AND STOP' 

VI X X X X 3 INVALID LENGTH FOR VARIABLE LENGTH SEGMENT 

til 
r+ 

r+ 

PI 
~ 

r+ 
en 

~ 
en 

n 
0 
OJ 

Xl X X X 4 1/0 ERROR WRITING SPA 

X2 X X X 3 
1ST INSERT TO TRAN CODE PCB THAT IS CONVERSATIONAL. 
IS NOT AN SPA 

X3 X X X 3 INVALID SPA 

X4 X X X 3 
INSERT TO A TRArJ CODE PCB THAT IS NOT 
CONVERSATIONAL AND THE SEGMENT IS AN SPA 

n CD X5 X X X J INSERT OF MULTIPLE SPAs TO TRAN CODE PCB 

0 en X6 X X X 3 INVALID TRAN CODE NAME INSERTED INTO SPA 

OJ 
({) 10 

X7 X X X 3 
LENGTH OF SPA IS INCORRECT (USER MODIFIED 
FIRST SIX BYTES) 

Ul ~ 
~. 

X8 X X X 4 
ERROR ATTEMPTING TO OUEUE AN SPA ON A 
TRAN CODE PCB 

10 
~ 

n 
~ 

X9 X X X 3 
INCOMPATIBLE CONVERSATIONAL PROGRAM 
CALL PATH 

f-J. 
n ~ 

• XA. X X X 
3 

ATTEMPT TO CONT. PROC. CONV. BY PASSING SPA VIA 
PGM-TO-PGM SW. AFTER ANSWERING TERMINAL 

~ CD 
HI 

XB X X X 
3 

PGM PASSED SPA TO OTHER PGM 
BUT TRYING TO RESPOND 

~ 
ro 

CD 
t1 

XC X X X 
3 

PGM INSERTED MSG WITH Zl FLD BITS 
SET RESERVED FOR SYSTEM USE 

....., 
CD 

CD 
=' 

XD 
X 1 

IMS IS TERMINATING. FURTHER DUI CALLS MUST NOT BE 
X ISSUED. NO MESSAGE RETURNED. 

H 
ct> 

n 
ro XE X X X 3 TRIED TO ISRT SPA TO EXPRESS PCB 

=' n 
ct> 
rn 

XF X X ALTERNATE PCB REFERENCED IN ISRT CALL FOR SPA HAD 
3 DESTINATION SET TO A LOGICAL TERMINAL. BUT WAS NOT 

DEFINED AS ALTRESP=YES 

XG X X CURRENT CONVERSATION REOUIRES FIXED-LENGTH SPAS. 
3 ATTEMPT WAS MADE TO INSERT SPA TO TRANSACTION 

WITH A DIFFERENT OR NON-FIXED LENGTH SPA. 

> M X X X X X X X X X X X X X X X GOOD. NO STATUS CODE RETURNED. PROCEED. 
~ r>1) mdlcates blanks 

w 
'Utliity Clllltlol F.lCillty SI.nus Codes 



• 

c.:= 



The status codes that appear in tabular form in Appendix A are 
described in full detail in this section. 

AA 

AB 

AC 

AD 

Errol:' in call. 

~KQ1~~1iQn: The change call was ignored because the 
response alternate PCB specified a transaction code 
destination. Response alternate PCBs can only reference a 
logical te~minal destination. 

~£liQn: Correct the application program. 

Error in call. 

~!Q!~natiQn: On a data base or message call, the segment 
I/O area is required but was not specified in the call. 

!£liQnl Correct program. 

Errol:' in call. 

~K~!~~i1Qn: SSA(s) contains an error in hierarchical 
sequence. 

Possible causes: 

1. No segment name equal to that specified in SSA was found 
within the scope of this PCB. 

2. The level at which this 5SA appears is out of sequence 
with tha t specified by the PCB. 

3. Two segments of the same level a~e specified in the same 
call. 

U. The statistics function that was specified or a STAT 
call was not a defined function. 

!£ibQn: Correct the program. 

Error in call. 

~!2!~nsliQn: An invalid function parameter was supplied. 

Possible causes: 

1. A GU or GN vas reques,ted for a terminal PCB other than 
the I/O PCB. 

2. An invalid function string exists. 

3. An invalid request type was made for a TP PCB. 

4. A call has been issued to the message queues with a DB 
PCB. 

!£11Qn: Correct program. 

DL/I Status Codes B.1 



AH 

AI 

Error in call. 

~K~1~nati2n: No 55A(s) was specified in the call. The call 
required at least one 5SA (or RSA if GSA! being use~, and 
none was specified. 

!£!iQn: Correct the program by specifying SSA (or RSA) in 
call. 

I/O, system, or user error 

~!~!~~!iQn: Data management open error. 

possible causes: 

1. An error exists in the DD statements. 

2. The data set was opened for something other than load 
mode, but it is not loaded. 

3. The buffer is too small to hold a record that vas read 
at open time. See the IMS/VS ~§tem PrQg~!!i~g 
]gf~£~n£~ Manual for specification of the minimum buffer' 
pool size. 

4. nD statements for logically related data bases not 
supplied. 

5. For an OSAM data set, the DSORG field of the OSA! DCB, 
DSCB, or JPCB does not specify PS or DA. 

6. For, an old OSAM data set, the BUFL or BLKSIZE field in 
the DS CB is zero. 

1. The data set is being opened for load, and the processing 
option for one or more segments is other than L or LS. 

8. The allocation of the OSAM data set is invalid; the 
allocation is probably (1,,1) rather than (1,1) and this 
causes the DSORG to be po. 

9. The processing option is L, the OSAM data set is old, 
and the DSCB LRECL and/or BLKSIZE does not match the 
DBD LRECL and/or BLKSIZE. 

10. Incorrect or missing information prevented computation 
of block size or the determination of the logical record 
length. 

11. A catalog vas not available for accessing a VSA! data 
base that was requested. 

12. as could not perform on OPEN, but the I/O request is 
valid. Information is either missing, or data definition 
information is incorrect. 

Action: Check the DO statements: ensure that the ddname 
is-the same 'as the name specified on the DATASET statement 
of the DBD. The segment name area in, the PCB has the ddname 
of the da ta set which could not be opened'. 

B.2 IMS/VS Application programming Reference Manual 

• 

.; 



AJ 

c 

.. 

AK 

c. 

At 

Error in call. 

~!E!~natiQ~: The SSA qualification format vas invalid. 

i? ossible ca uses: 

1. Invalid command codes were used. 

2. Invalid relational operators were used. 

3. A right parenthesis or Boolean connector vas missing. 

4. More than eight Boolean members w~re specified. 

5. The OLET call has multiple SSAs or qualified SSAs. 

6. The "FEPL call has qualified SS As. 

7. The ISRT call has the last SSA qualified • 

8. A path insert call into an existing data base involves 
a logical child segment. 

9. The Record Search Argument (RS A) para mete r is invalid. 

A£iiQ~: Correct the program. 

Error in call. 

~!~!~~iiQn: An invalid field name was supplied in the 
call. 

Possible ca uses: 

1. Unable to find the specified field name. 

2. When accessing a logical child from the logical parent 
path, the field specified has been defined for the 
logica~ child segment and at least partially inCludes 
the portion of the logical child that contains the 
concatenated key of the logical parent. 

!£iiQn: Correct program. 

Error in call. 

~!~!~natiQn: The call is using a terminal PCB in a OL/! 
program. 

!£1ion: Correct program. 

OL/1 status Codes B.3 



AM 

AD 

lQ 

AT 

Error in call. 

~!~~~~~iQn: The call function was not compatible with the 
processing option, segment sensitivity, or transaction-code 
definition. 

!Qi1Qn: Correct program, PSB, or system definition. 

Possible causes: 

1. The D command code was used for a path retrieval call 
without path sensitivity. 

2. The processing option of L and call function is not 
insert. 

3. A DLET, REPL, or ISRT call was made without corresponding 
segment sensitivity. 

U. A DLET, REPL, or ISRT call was issued by a program while 
a transaction defined as inquiry was being processed. 

A GET call was attempted for a segment with KEY 
sensitivity. Correc~ the error by specifying DATA 
sensitivity. 

5. This status code occurs for a checkpoint (not restart) 
call if a GSAM/VSAM data set is opened for output. 

6. An invalid request was included in a GSAM call. 

IIO error 

~!E!~BA1i2n: There is a BSAM, GSAK, ISAM, VSAK, or an OS!M 
physical I/O error. When issued from GSAM, this status code 
means that the error occurred when: (1) a da ta set was 
accessed, or (2) the CLOSE SYNAD routine was entered. The 
error occurred when the last block of records was written 
prior to closing of the data set. 

!Q1iQ~: Determine whether the error occurred during input 
or output, and correct the problem. 

Read TID error 

]!!E.!s!lS!i2n: The message chain cannot be followed; a minimum 
of one message is lost. 

!Q1iQB: If it is imperative to recover any messages that 
are lost, perform an emergency restart with the BLDQ option. 

I/O error 

B!E.!~!lSi1Qn: There is a read I/O error. A.message segment 
h as been lost, but the m_e!;_~~ge_<::ll.ain is_still intact. 

Error in call in a VS system. 

~!E!~natiQn: The length of the user's I/O area data ,is 
greater than the area reserved for it in the control region. 
The length of the area-reserved was determined by the AeB 
utility program, DFSUACBO, and printed as part of its output. 

!Qi1Qn: Correct the PSB or the program in error. 

B.q 'IMS/VS Application Programming Reference Manual 



AU 

c. 
AY 

AZ 

A1 

A2 

c 

Error in call in a vs system. 

~!El~Mti.Q!l: The total length of the user's SSAs is greater 
than the area reserved for them in the control region. The 
length of the area reserved was determined by the ACB utility 
program, DFSUACB0, and printed as part of its output. 

!£i!Qu: Correct the PSB or the program in error. 

Error in call. 

~!21~~iiQn: Insert call ignored because the logical 
terminal referenced by the response alternate PCB currently 
has more than one physical terminal assigned to it for input 
purposes. 

~£i1.Qn: Ask the master terminal operator to determine (use 
/DISPLAY ASSIGNMENT LTERM X) which physical terminals (2 or 
more) refer to this logical terminal. Use the /ASSIGN 
command to correct the problem. 

Error in call. 

~!~l~~!iQn: This status code is used to prevent 
asynchronous conditions involving the MPP, SPA content, and 
terminal. Possible causes for this status code are: 

1. The conversational program inserted the SPA with a PURG 
call. 

2. The TP-PCB destination is a conversational 5MB; and 
there is no way to determine if the SPA was inserted to 
this PCB. 

3. The TP-PCB destination is a logical terminal, and the 
TP-PC8 is the IIO PCB or a response alternate PCB. 

4. PURG is the only parameter (no PCB was specified), and 
, 'status is returned; no action is taken if conditions 
1, 2, or 3 (above) exist. 

A£tiQn: Correct the application program and rerun. 

Error in call. 

~!2ls!lgiiQn: The CHNG call was attempted with an 
eight-character logical terminal name which was unknown to 
the system. 

~£i~Qn: Correct program. 

Error in call. 

~!E!~natiQn: The CHNG call was attempted with an invalid 
PCB. It was either not an alternate PCB, vas not defined 
as modifiable, or had a message in process but incomplete. 

~£i1.Qn: Correct program. 

DL,II Status Codes 8.5 



A3 

A4 

AS 

A6 

A7 

AS 

A9 

Error in call. 

~!E!~nat!Qn: An INSERT or PURGE call was attempted to a 
modifiable al ternate PCB which had no destination set. 

!£1!Qn: Issue a CHNG call to set the PCB destination, and 
reissue the INSERT or PURGE call. 

Security violation 

R!E!~natiQn: The terminal entering the current transaction 
did not have the security to allow a message to the named 
5MB. 

!£1i211: User determined. 

Error in call. 

g!~!~natiQn: An invalid call list was supplied. A fourth 
parameter (MOD name) was supplied, but the fu nction vas not 
PURG or ISRT for the first segment of an output message. 

Action: Correct the ISRT or PURG call and retry the 
applIcation program. 

Error in call. 

~~2!~~1!Qn: Insert call ignored because output segment 
size exceeded specified limit. 

!£!i211: Correct the application program. 

'Error in call. 

~!g!~ng1!Qn: Insert call ignored because number of output 
message segments inserte~ exceeded specified limit by one. 
If another attempt is made to insert too many segments before 
the program issues another GU, the program is abended. 

!£1i211: Correct the application program. 

Error in call. 

~~E!sna tiQ1!: Insert call ignored because an insert call to 
a response alternate PCS must not follow an insert call to 
the I/O PCB, or vice versa. 

!£1i211: Correct the application program. 

Error in call. 

~!E!~1iQ11: Insert call ignored because it 'referenced a 
response alternate PCB that requires (SAMETRM=YES) the source 
physical terminal to receive the output response. 

,- 'This "status--code --can -also occur if the input terminal is in 
response mod~ and the response alternate PCB is not 
associated with the input terminal. 

!£1iQn: Determine whether the application program is in 
error, the output logical terminal has been erroneously 
reassigned (/ASSIGN command), or if SAKETRK=YES should not 
have been specified. 

B.6 IMS/VS Application Programming Reference Manual 

I~" 
I 



DA 

DJ 

DX 

11 

GA 

GB 

GE 

Error in call. 

~!E!~~tiQn: Segment key field has been changed. 

Error in call. 

~!E!snatiQn: No previous successful GET HOLD call. 

!£~1Q~: Check and correct. 

Error in call. 

E!£!~~liQn: Violated delete rule. Review the delete rule 
in the "Data Base Design Consideration" cha pter of the 111~LVS 
~Y~ig!LA£Eli£sti2n Design §ui~~. 

!£li2n: Correct program. 

Call is completed 

~!B!a~tiQn: A hierarchical boundary into a higher level 
was crossed (see the discussion on hierarchical pointers in 
the "Data Base Design Considerations" chapter of the 11!§L!§ 
~Y~ig!LA£E!!£Al!Qn ~~sign §Yi~~), or the final call in a 
series of STAT calls was issued for VSAM buffer subpool 
statistics. This status code is returned on unqualified 
calls only. 

!£~iQn: User determined. 

Call is not completed. 

~!~!~~tiQn: An attempt was made to satisfy a GH call and 
the end of the da ta base was encountered. (If this situation 
occurs on a·GU or ISRT call, a GE status code is returned.) 
This status code is also returned when a GSAK data set has 
been closed. 

!cti2n: User determined. 

Call is not completed. 

~!Ela~l!Qn: This status code is returned when: (1) an 
attempt is made to satisfy a GU or GN call but a segment 
cannot be found tha t satisfies the qualification, (2) an 
attempt is made to position for an ISRT call but one of the 
parents of the segment to be inserted cannot be found, (3) 
a STAT call is issued for ISAK/OSAK buffer pool statistics 
when the buffer pool does not exist, (4) a STAT call is 
issued for VSAM buffer subpool statistics when the subpools 
do not exist, and (5) a statistics function is specified on 
a STAT call for 1SAM/OSA8 buffer pool statistics. 

!£l!Q~: User determined. 

DL/I Status Codes B.7 



GK 

GL 

GP 

II 

Call is completed. 

~~B1~ns1!Qn: Different segment type at same level returned. 
This status code is returned on unqualified calls only. 

!£i!Qn: User determined. 

call is not completed. 

~~E.!~!lSi!Q!l: Log code is not a valid user code. (Only 
codes X'AO' through X'EO' are reserved for users.) 

!£!iQ~: Check and correct. 

Error in call. 

!~E.!~!lSi!Q!l: No parent for this GNP call, or the requested 
segment level is not lower than the parent level. 

!£!iQn: User determined. 

Call is not completed. 

R~~l~natiQn: The segment that the user tried to insert 
already exists in the data base. 

Possible Causes: 

1. Segment with equal physical twin sequence field already 
exists for parent 

2. Segment with equal logical twin sequence already exists 
for parent 

3. Logical parent has logical child pointer, logical child 
does not have logical twin pOinter, and segment beinq 
inserted is second logical child for logical parent 

4. Segment type does not have physical twin forward pointer 
and segment being inserted is second segment of this 
type for parent or is second HDAM root for one anchor 
point 

5. The segment being inserted is in an inverted structure; 
that is, the immediate parent of this segment in the 
logical structure is actually its physical child in the 
physical structur e. 

!£!1Qn: User determined. 

B.8 IMS/VS Application programming Reference Manual 

', .. / 

• 



IX 

c. 

• 

LB 

• LC 

LD 

c 

Error in call. 

~KE!~natiQn: Violated insert rule. Review the insert rule 
in the IM2LVS 2I'§!~.IDL!E.E!ic~!i.Qn Desi9.!l ~uide. 

Possi hIe Causes: 

1. Insert of logical child and logical parent (insert rule 
of logical parent is physical and the logical parent 
does not exist) 

2. Insert of logical child and logical parent (insert rule 
is logical or virtual and the logical parent does not 
exist) and, in the user 1/0 area, the key of the logical 
parent does not match the corresponding key in the 
concatenated key in the logical child. 

3. Insert of logical child (insert rule of logical parent 
is virtual and logical parent exists) and, in the user 
110 area, t he key in the logical parent does not ma tch 
the corresponding key in the concatenated key in the 
logical child. 

4. ISRT request after previous Open, Close or 1/0 error 
status code. 

5. A GSAM ISRT call was issued after a previous AI or AD 
status code was returned. 

!£1i.2n: Correct program. 

Call is not completed. 

~XE!~natiQn: The segment that the user tried to load already 
exists in the data base. Other possible causes are: 

1. A segment with an equal physical-twin-sequence field 
already exists for the parent. 

2. A segment type does not have a physical-twin-forward 
pointer, and the segment being inserted is either the 
second segment of this segment type for the parent or 
the second HDAM root for one anchor point. 

3. An application program inserted a key of X'FP' •• PP' into 
a HISAM or HIDAM data base. 

!£ii.2n: User determined. 

Call is not completed. 

~KE!~~i!Qn: Key field of segments is out of sequence. 

!gii.2n: Check and correct. 

Call is not completed. 

RXE!~nati~: No parent has been loaded for this segment. 

!giiQn: Check and correct. 

DL/I status Codes B.9 



LE 

NE 

NI 

B.1~ 

Call is not completed. 

~~E!~~11on: Sequence of sibling segments is not the same 
as the sequence in the DBD. 

!~tiQn: Check and correct. 

Call is not completed. 

~~Ql~~~!Qn: Indexing maintenance issued a DL/I call, and 
the segment has not been found. 

!£!i2n: User determined. 

Data management open error or duplicate segment. 

~!El~~tiQn: Index maintenance was unable to open an index 
data base, or there was a duplicate segment in the index. 

possible causes for being unable to open the index data 
base: 

1. Error in DD cards 

2. The data set was opened for something other than load 
mode, but it is not loaded. 

3. Buffer too small to hold record read at open time. See 
the 1~2lY2 ~yst~ RfQ~~!~!llg Ref~£~ ~~nY~l for 
minimum buffers pool size. 

4. nn cards for logically related data bases not supplied. 

5. For an OSAM data set, the DSORG field of the·OSAM DCB, 
DSCB, or JFCB does not specify PS or DA: 

6. For an old OSAM data set, the BUFL or BLKSIZE field in 
the DSCB is zero. 

7. The data set is being opened for load and the processing 
option for one or more segments is other than L or LS. 

8. The allocation of the OSAM data set is invalid; 
alloca tion is probabl y (1,,1) rather than (1, 1) and this 
causes the DSORG to be PO •. 

9. processing option is L, the OSAM data set is old, and 
the DseB LRECL and/or BLKSIZE does not match the DBD 
LRECL and/or BLKSIZE. 

!£1!Qn: Check DD cards; ensure ddname same as name specified 
on DATASET card of DBD. Segment name area in PCB has ddname 
of data set which could not be opened • 

. Possible---ca uses-for-ad uplicate---s egm en to-in -- the --in-dex: 

1. Index segment was incorrectly deleted earlier - Index 
should be rebuilt. 

2. Index DBD incorrectly specities. unique key value -
secondary index only. 

I~S/VS Application Programming Reference Manual 

II 



NO 

I QC 

QD 

• 
QE 

QF 

QH 

RX 

• 
UC 

I/O error 

~~£l~~!~Qn: There was a BSAM, ISAM, VSAM, or OSAM physical 
1/0 error during a DL/I call issued by indexing maintenance. 

!£1i2n: Check and correct. 

CHKP was successful; GU was not successful (no more 
messages) • 

~~£!~~!iQn: There are no more input messages. 

~£!iQn: As appropriate. 

Call is not completed. 

~~£!~~!iQn: There are no more segments for this message. 

~£!iQn: As appropriate • 

Error in call. 

E~~!~ngiiQn: A GET NEXT call was issued before a GET UNIQUE. 

!£!iQn: Check and correct. 

Error in call. 

~~El~~tiQn: Length of segment is less than five characters. 
(Allowable segment length is length of message text plus 
four control characters.) 

!£!i2n: Check and correct. 

Error in call. 

~~2!~ng!iQn: This is a terminal symbolic error -- the output 
designated is unknown to IM$/VS (logical terminal or 
transaction code) • 

!£!i~~: Check and correct. 

Error in call. 

~~El~na1iQn: Violated replace rule. Review the replace 
rule in the "Da ta Ba se Design Considerations" chapter of 
the IMSL!~ ~21~IDL!E.l!.!.icatiQ.!!. J1.§§ign Guid.§ 

!£!i~n: Correct program • 

Checkpoint record written to UCF Journal data set. 

~~El~na!iQn: During the processing of a HD Reorganization 
Reload or a user's Initial Load program under the supervision 
of the Utility Control Facility (UCF), a checkpOint record 
was written to the UCF Journal Data set. This status code 
is returned to indicate that the last ISRT call was correct 
and the User Initial Load program may continue or perform 
his checkpointing procedure before continuing. 

DL/I Status Codes B.' , 



UR 

us 

UX 

V1 

X1 

X2 

B.12 

The user's Initial Load program is being restarted under 
the UCF. 

~!E.!.s!lSi!Qn: Duri.ng the processing of a user's Initial Load 
program under the UCF, a termination had occurred. The job 
was resubmitted with a Restart request. 

!£tiQu: The user's Initial Load program must get itself 
back in step with Data Base Loading.' . Examination of the 
User I/O area or' PCB key-feedback area can be used. 

The user's Initial Load program is preparing to stop 
proce ssing. 

~!E.!~n2i!Qn: During the processing of a HD Reorganization 
Reload or a user's Initial Load program under the supervision 
of the Utility Control Facility (UCF), the operator replied 
to the WTOR from UCF and r,equested the current function to 
terminate, The last ISRT call was processed. 

Action: The user's Initial Load program should checkpoint 
its-data sets and return with a non-zero value in Register 
15. 

A checkpoint record was written and processing stopped. 

~!E.!.~~i!Qn: This is a combination of UC and US status 
codes; see the descriptions of those codes for further 
explanation. 

!£ti~u: Refer to UC and US status codes. 

Error in call. 

~!E!~nati2n: An invalid length was supplied for a 
variable-length segment. The LL field of the variable-length 
segment is either too large or too small. The length of 
the segment must be equal to or less than the maximum length 
specified in the DBD. The length must be long enough to 
include the entire reference field; if the segment is a 
logical child, it must include the entire concatenated key 
of the logical parent and all sequence fields for the paired 
segment. 

This status code is also returned when an invalid record 
length is specified in a GSA~ call. 

!cti2n: Correct the program. 

System error. 

~!E.!~n~i!Qn~ An I/O error occurred while IMS/VS was reading 
or writing the SPA. 

-------!cti.Qru· ---Terminate the- -conversati-on.·· 

Error in call. 

~!E.!~ngtiQnl The first insert to a transaction code PCB 
that is conversational is not a SPA. 

!£ii2ru Insert the SPA; then reinsert the data segment. 

I~S/VS Application programming Reference Manual 

........ _ .... ,/ .. 

• 

• 

('~ 
'-.. .. _ .... ' 



X3 

c. 
X4 

XS 
it 

X6 

X1 

X8 

X9 

• 
XA 

Error in call. 

g~E1~~!1Qnl Invalid SPA (user modified the first six 
bytes) • 

!£i1Qnl Correct ,the program, and restore the original bytes. 

Error in call. 

~~~~~ll~t!Qlll An insert was made to a transaction code PCB 
that is not conversational and the segment is a SPA. 

!£ii2nl Do not pass the SPA to the transaction code. Send 
only data segments. 

Error in call. 

~~E1E~ti2n~ Multiple SPAs were inserted to a transaction 
code PCB. 

!£tiQ!l Only one SPA is allowed per message. 
program. 

Correct the 

Error in call. 

~~El~~tiQn: An invalid transaction code name was inserted 
into SPA. 

!£tiQ~ Correct the program to set the proper transaction 
code na me. 

Error in call. 

~!E!~~tiQnl The length of the SPA is incorrect 
(user -modified first six bytes). 

!£i12nl Correct the program. 

System error 

~!E!~n~t!Qnl Error attempting to queue an SPA on a 
transaction cod~ PCB. 

!£i!Qnl Terminate the conversation. 

Error in call. 

!'l!E!.~MtiQ!!l Incompa tible conversational program call path. 

!£tiQ~ Design error. Report this to your system 
programme r • 

Error in call. 

~!E!E~tiQn: An attempt has been made to continue processing 
the conversation by passing the SPA to another program 
through a program-to-program message switch after already 
responding to the terminal. 

!£tiQn: If a response has been generated, the SPA should 
be passed back to the I/O PCB. Review the rules for 
conversational programs in this manual and correct the 
program. 

DL/I Status Codes B.13 



IB 

xc 

XD 

XE 

XF 

XG 

bb 

Error in call. 

~!Bl~~tiQ~: The program has passed the SPA on to another 
program for processing but is trying to respond to the 
terminal. 

!£1iQn: No response is allowed by a program which has passed 
control of the program through a program-to-program message 
switch. Review the rules for con~ersational programs in 
this ~anual. 

Error in call. 

~!Ql~ng1iQn: Program has inserted a message which has some 
Z1 field bits set which are reserved for IMS/VS use. 

!£1iQn: Correct the program to prevent it from setting 
those bits. 

IMS/VS is terminating by a CHECKPOINT FREEZE or DUMPQ. 

~!~~ngliQn: This code is returned only from a CHKP call 
issued by a batch-message application program. If the 
application accesses the message queues, no message is 
returned. 

!£1iQn: Any subsequent DL/I call will result in an abend. 
The application should terminate. 

Error in call. 

~!21~ng1iQn: An attempt has been made to insert a SPA to 
an alternate PCB which was generated with the EXPRESS=YES 
option. 

Action: Regenerate th~ PSB and remove the EIPRESS=YES option 
from-the PCB or define another PCB (whose mode is not 
express) to be used in the insert call. 

Error in call. 

~!~1~ng1iQn: Insert call for SPA ignored because the 
referenced alternate PCB had its destination set to a logical 
terminal but was not defined as ALTRESP=YES during PSB 
generation. 

Action: Correct the application program or change the PSB 
generation for that alternate PCB to specify ALTRESP=YES. 

Error in call. 

~!~1~ng1iQn: Insert call ignored because the current 
conversation requires fixed length SPAs and the insert vas 
to a transaction with a different or Don-fixed length SPA • 

. ·-!£ij·~n:- --Correct --th-e· pr()cir-am---or---r-rfslvs System Definition. 

Call completed. 

~~l~natiQn: Your call was completed! 

!£1iQn: Proceed! 

B.14 , I8S/VS Application programming Reference Manual 



(~ 

• 

c 

abend, application program 
ABEND macro statement 4.37 
during output using PURG 4.14 
TP call 4.9 

accessing multiple data bases 2.46-2.47 
description of 2.46-2.47 
purpose of 2.46-2.47 

alternate PCB, data communication 4.4-4.5 
defined with lLTRESP=YES 4.5,4.9 
defined with EXPRESS=YES 4.4-4.9 
defining 4.4-4.5 
description 4.4 
message formats, types of 4.15 
restriction with PURG call 4.14 

INS COBOL, conventions and uses of 
batch program structure 2.38-2.40 
building output messages 

requirements 4.11 
using ISRT call 4.11-4.12 

call format for data communication 
calls 4.8 

data base load example 6.1-6.2 
listing 6.2-6.4 

entry statement, data communication 4.7 
message processing 6.19 

input and output formats 6.19 
listing 6.20-6.25 

message processing program 
structure 4.32-4.34 

PCB-mask, data communication 
description 4.5-4.6 
linkage section 4.6 

retrieving segments of an input 
message 4.9 , 

call formats using GU and G~ 4.10 
saviBg information in scratchpad 

areas 5.3 
input message format using ISRT 

call 5.3 
system service call formats 

checkpoint (CHKP), basic 2.49 
checkpoint (CHKP), symbolic 2.50 
dequeue (DEQ) 2.53 
log (LOG) 2.54 
restart (XRST) 2.51-2.52 
rollback (ROLL) 2.53 

terminating application programs (data 
base batch) 2.37 

application program examples 6.1 
batch processing (assembler language and 

COBOL) 6.8 
listing 6.8-6.18 

conversational (PL/I) 6.26-6.27 
description 6.26 
entries and displays at 3270 
terminals 6.26-6.27 

message format service 6.34-6.35 
PL/I optimizing compiler. 6.28-6.33 

data base dump (assembler language) 6.5 
list ing 6.5-6.7 

data base load (INS COBOL) 6.1-6.2 
listing 6.2-6.4 

message processing (INS COBOL) 6.19 
input and output formats 6.19 . 
listing 6.20-6.25 

application program, IKS/VS 
data base PCB masks, use of 2.16-2.17 
entry points to 2.14-2.15 

rules 2.14 ' 
examples 2.15-2.16 

language and compilation 2.14-2.15 
PCB mask used with' 2.19 

application progra.ming, data 
communication 4.1 

abends issued by application 
programs 4.37 

lNS COBOL message p~ocessing program 
structure 4.32-4.34 

exaaple 4.33-4.34 
assembler language message processing 

proqram structure 4.37 
data base PCBs 4.2-4.3 
device-dependent input messages 4.18 

2260-1, 2260-2, 2265-1 4.19 
2270 system components 4.19-4.20 
2972/2980 components 4.20-4.21 
2980 Kodel 1 4.20-4.21 
2980 Kodel 4 4.22-4.23 

entry statements to TP application 
programs 4.7 

ANS COBOL example 4.7 
PL/I optimizing compiler example 4.7 

input message formats 4.16-4.17 
first or only segment 4.17 
non-first segment 4.17 
preset mode segment edit 4.17-4.18 
terminal types of 4.16 

interface to IftS/VS 4.2 
logical terminal concept 4.2 
message format service (ftPS), use 
of 4.15,4.1-4.2 

output message format 4.23 
online meSSage formatting without 

ftF S 4 • 29 -4 • 3 1 
program-to-program message 

swi tching 4.32 
terminal destination . 

output 4.23-4.24 
terminal types 4.27-4.29 
text 4.26 
video-paging 4.25-4.26 
WRITE command, uses of 4.25 

PL/I optimizing compiler message 
processing proqram structure 4.35 

example 4.35-4.37 

Index I.1 



teleprocessing calls 4.8 
building output messages 4.9 
CHNG call, use of 4.9;4.15 
delimiting oritput messages being 
inserted 4.9 

grouping of message segments v ith 
PURG call 4.14 

input message segment calls 
(GU, GN) 4~9-4.11 

ISRT call, uses of 4.9,4.11-4.12 
message destination 4.9 
aessage relationships to 

segaen+s 4.8 . 
output message segment calls using 

ISRT 4. 11- 4. 13 
PURG call, uses of 4.9,4.13 
setting an output message destination 
to ~n alternate PCB 4.9 

synchronization points, uses of 4.9 
telepr9cessing PSBs 4.3 

alternate PCB 4.3-4.5 
I/O PC B 4 • 3 -4 • 4 

'l'P~PCB mask 4.5 
COBOL example 4.6 
f1elds required for 4.5-4.6 
layout 4.5-4.6 
PL/I example 4.1 

~pplication programming and data base 
adainistratiori, relationships 
between 1.2-1.3 

a,plication programming, environment 
for 1.1 

application programming for data 
communications 1.5 

application programming testing aids 
Data ~anguage/I (DLIT) test program 

(DFSDDLTO) 1. 1 . 
control statements 1.3 
DATA statement 1.1 
JCL requirements 1.2-1.3 

message processing region 
simulation 7.19 

description of 7.19 
examples (COBOL) 1.21-7.22 
executing DL/I data base calls 
for 1.20 

moving a message processing program 
to a message processing 
region 7.20 

PSB generation for 7.20 
asse.mbler language, conventions and uses of 

batch processing program 6.8 
example (listing) 6.8-6.18 

batc_ program structure 2.43 
------------- -------cal-ls--to-DL~I ,--data-base- -batch---2-:-2 r-

d'ata base dUIlP, example of 6.5-6.1 
ent.ry point to data base batch 

application program 2.15 
GSA" call formats 2.69-2.70 

system service call formats 
checkpoint (CHKP), basic 2.49 
checkpoint (CHKP), symbolic 2.50 
dequeue (DEQ) 2.53 
get SCD (GSCD) 2. 55 
log (LOG) 2.54 
rollback (ROLL) 2.53 
statistics (STAT) 2.56 

terminatin~ application programs (data 
base batch) 2.37 

basic edit, 1MS/VS 4.17-4.18 
basic functions of a user 
installation 1.1 

batch programming, data base 2.1 
accessing a data base 2.10 
accessing multiple data 
bases 2.46-2.47 

applic~tion and logical data 
structures, designing and 
defining 2.8-2.10 

checking out online message programs 
in batch regions 

description of 2.66 
examples (COBOL, PL/1) 2.61 

data base organization 2.2 
data elements, relationship~ 
of 2.3-2.4 

levels 2.4 
path, definition of 2.5-2.7 
record, definition of 2.6-2.7 
root segment, definition of 2.5-2.7 
segment types 2.5 
size and extent of data 
structures 2.7 

traversal of a structure 2.4 
data structures 

application 2.2-2.3 
loqical 2.2-2.3 
logical data bases 2.2-2.3 
physical data bases 2.2-2.3 

designing logical data 
structures 2.1,2.7 

DL/I calls 
description of 2.20 
examples of (assembler language, 

COBOL, and PL/I) , 2.20-2.22 
functions 2.22-2.23 
segment search arguments (SSAs) used 

in 2.24,2.27 
DL/I processing functions 2.28 

"delete and replace calls 2.33-2.35 
______________ g~.t ___ calls--2 .29~-2.31----- ---- -- --------

insert calls 2.32-2.33 
DL/I status codes 

description of 2.43 
for get calls 2.44 
for exceptional conditions 2.44 

entry points to application 
programs 2.14-2.15 

examples of 2.15-2.16 
PL/I transaction, initial invocation 
of 2.15- 2.16 

1.2 IMS/VS Application Programming Refer,ence Manual 

c 



• 

examples, batch-program structure 
ANS COBOL 2.38-2.40 
assembler language 2.43 
PL/I optimizing compiler 2.41-2.43 

generalized sequential access method 
(GSAM) 

buffer management 2.73 
calls 2.69 
checkpoint/restart 2.73 
data base accessing 2.68-2.69 
functions of 2.68 
JCL 2.74-2.75 
record formats 2.70 
restrictions 2.67 
uses 2.67 

interface to application programs, 
IMS/VS 2.11-2.13 

program communication blocks 
(PCBs) 2.11-2. 12 

DL/I 2.11-2.12 
interfacing with I~S/VS 2.1 
languages used and compilation 2.14 
loading a data base, initially 2.10 
logical data bases, designing and 
defining 2.8 

PCB elements 2.18-2.19 
data base name 2.18 
DL/I processing options 2.18 
DL/I reserved area 2.19 
DL/I status codes 2.18 
key-feedback area 2.19 
length of key-feedback area 2.19 
PCB name 2.18 
segment-hierarchy-Ievel 
indicator 2. 18 

segment-name-feedback area 2.19 
sensitive segments, number of 2.19 

PCB masks 2.16,2.19 
description of 2.16 
examples (COBOL, PL/I) 2. 17 

physical data bases, designing and 
defining 2.8 

position in a data base 2.44-2.45 
processing with DL/I I/O functions 

description of 2.60-2.61 
data base creation 2.61 
data base deletions 2.65 
data base insertions 2.66 
data base retrievals 2.64 
data base updates 2.65 

segments, format of 2.35 
fixed-length 2.35-2.36 
variable-length 2.36 

system service calls 
CHKP 2.47-2.48 
DEQ 2.47,2.52 
GSCD 2.47-2.48,2.55 
LOG 2.47,2.54-2.55 
ROLL 2.47,2.53 
STAT 2.47,2.56 
XRST 2.Q7,2.51 

terminating application programs 2.37 

calls to DL/I 2.20 
description of 2.20 
examples of I/O' processing 
calls 2.20-2.21 

assembler. language 2.21 
COBOL 2.20 
PL/I 2.21 

examples of I/O work area 
COBOL 2.23 
PL/I 2.24 

segment search arguments (SSAs) 2.24 
command codes for 2.27 
concept and function of 2.24 
qualification of 2.26 
structure 2.25 
characteristics of 2.27 

checking out online message programs in 
a batch region 2.66 

C!PAT option, uses of 2.66 
examples (COBOL, PL/I) 2.67 

checkpoint call (§ee caKP call) 
CHKP call (data base) 2.47-2.48 

basic, examples of 2.49 
symbolic, examples of 2.50 

CaNG call (data communication) 4.9,4. 15 
COBOL, conventions and uses of 

batch processing program example 6.8 
calls to DL/I, data base batch 

programming 
description of 2.20 
checking out online message programs 

in batch regions 2.67 
I/O processing call 2.20-2.22 

entry point to data base batch 
application programs 2.15 

GSA! call formats 2.69-2.70 
PCB mask, data base 

application programming 
requirements 2.16 

linkage section 2.17-2.19 
system service call format 

statistics (STAT) 2.56 
conversational processing 

description 5~' 
input message format 5.2 

example of first message segment 
entered at terminal 5.2 

example of first CALL statement, 
PL/I 5.2 

output message format 5.3 
response to originating 
terminal 5.3 

passing conversational control to 
another conversational progra. 5.3 

by program in control 5.3 
for program-to-program switch 5.4 
size of scratchpad area (SPA), 
changing 5.4 

Index I.3 



rules for writing conversational programs 
fixed-length SPAs, defining 5.5 
message response 5.6 
modifying first six bytes of SPA, 
restriction against 5.5 

proqram-to-proqram switches 5.5 
returning the SPA to I8S/VS 5.5 
SPA transaction code, changing 5.5 

saving information in SPAs 5.3 
ISRT call, use of 5.3 
example of ISRT call, ANS COBOL 5.3 
example of ISRT call, PL/I 5.3 
returning the SPA to I85/VS, using 

ISRT call for 5.3 
scheduling application programs for 
conversational transactions 5.1 

GU and GN calls used for 5.1 
scratchpad area (SPA,. format 5.1-5.2 
terminating a conversation, methods 
of 5." 

by conversational program 5.4 
by I8S/VS 5.5 
by master terminal operator 5.5 
by terminal operator 5.4-5.5 

converting existing programs for use by 
I8S/VS 1.5 

converting from OS/VS file design and 
access to IKS/VS 1.3-1.4 

advantages 1.4 

data base creation 2.61 
HIDA8, HISAK, and 8SA! 2.61 
insert function, use of 2.61 
segment search arguments for 2.62-2.64 

data base deletions 2.65 
examples (PL/I) 2.66 

data base dump 6.5 
example (assembler language) 6.5-6.7 

data base insertions 2.66,2.61 
data base load 

description 6.1 
example (lNS COBOL) 6.1-6.2 
initial 2.10 

data base organization, IKS/VS batch 
application data structure 2.2-2.3 
logical data structure 2.2-2.3 
physical and logical data base 
structures 2.2-2.3 

data base retrievals 2.64-2.65 
data base structure, I8S/VS 2.35 

fixed-length segments 2.35-2.36 
format of 2.35-2.36 

variable-length segments 2.36 _____________ _ 
-------------- ---------format-of- -2~36-- ------------------

segment retrieval 2.36 
data base updates 2.65 

examples (PL/I) 2.65 

data bases, I8S/VS 
accessing 2.10 
application and logical data 
structures 2.8 

defining 2.9- 2. 10 
designing 2.9 

loading 2.10 
logical 2.8 

Data Language/I (DL/I) test program: 
DFSDDLTO 7.1-

DATA statement of DFSDDLTO 7.7 
control statements 7.3 

CALL 7.5-7.7 
CO~PARE for PCB comparisons 7.9-7.10 
CO~PARE for user I/O area 
comparisons 7.11-7.12 

C088ENTS 7.5 
DATA 7.7-7.8 

parameter length, LOG 
calls 7.8-7.9 

parameter length, SNAP calls 7.8 
OPTION 7.12 
STATUS 7.3-7.4 
sample input 7.18 
execution in different types of 
regions 7. 16 

format of display of DL/1 
blocks 7.16 

general description 7.1 
hints on usage 7.17 
interfaces 7. 1 

JCL requirements 7.2-7.3 
example 7.18 

other formats 7.15 
CALL 7.15 
PUNCH 7.13 
5YS1I2 7.14 

data set, definition of 1.4 
DEQb call 2.52,2.47 

examples of 2.53 
dequeue call (§~~ DEQb call) 
design and definition of IKS/V5 data 

bases 2.8 
accessinqa data base 2.10 
application and logical data 
structures 2.8 

defining 2.9-2.10 
designinq 2.~ 

loading a data base, initially 2.10 
logical data bases 2.8 
physical data bases 2.8 

DLET call (data base) 2.33-2.35 
DL/I call functions - 2.22-2.23 

____ DL/I--processing-functions ---2.28 ---­
delete calls 2.33-2.34 

issued against logical data 
bases 2.35 

rules for using 2.35 
qet calls 2.29-2.30 

rules for using 2.31 
get hold calls 2.31-2.32 
insert calls 2.32 

loading a data base with 2.33 
rules for using 2.32 
updating data bases with 2.33 

1.41MB/VB Application Programming Reference Manual 

• 

\,--_/ 

- ----------.-

c 



c, 

.. 

r 

replace calls 2.33-2.34 
rules for using 2.35 

status codes for 2.43-2.44 
(§g~ glsQ DL/I status codes) 

DL/I status codes 
description of 2.43-2.44,A.l 
detailed description of B.l 

AA B.1 
AB B.1 
AC B.l 
AD B.1 
AH B.2 
AI B.2 
AJ B.3 
AK B.3 
AL B.3 
AM B.4 
AO B.4 
AQ B.4 
AR B.4 
AT B.4 
AU B.5 
AY B.5 
AZ B.5 
A1 B.5 
A2 B.5 
A3 B.6 
A4 B.6 
AS B.6 
A6 B.6 
A7 B.6 
AB B.6 
A9 B.6 
DA B.7 
DJ B.7 
DX B.7 
GA B.7 
GB 'B.7 
GE B.7 
GK B.B 
GL B.B 
GP B.B 
II B.B 
IX B.9 
LB B.9 
LC B.9 
LD B.9 
LE B.l0 
HE B.l0 
NI B.l0 
NO B.ll 
QC B.11 
QD B.11 
OE B.11 
OF B.11 
OH B.l1 
RX B.l1 
UC B.l1 
UR B.12 
US B.12 
UX B.12 
Vl B.12 
Xl B.12 
12 B.12 
X3 B.13 

X4 B. 13 
IS B.13 
X6 B.13 
X7 B.13 
X8 B.13 
X9 B.13 
XA B.13 
XB B.14 
XC B.14 
XD B.14 
XE B.14 
IF B.14 
XG B.14 
bb B.14 

quick-reference table A.1-A.3 

field, key 
description of 2.5 
uses of 2.5 

generalized sequential access method 
(§~§ GSA!!) 

get calls (data base) 2.29 
GHN 2.29,2.31 
GHNP 2.30- 2.31 
GHU 2.29,2.31 
GN 2.29-2.30 
GNP 2.30 
GO 2.29- 2.30 

get calls (data communication) 
GN 4.9 
GU 4.9 

get SCD call (§g~ GSCD call) 
GSAM 

accessing data bases 2~68 
calls used for 2.68-2.69 

buffer management with 2.73 
calls 2.69 

examples (assembler, COBOL, 
FL/I) 2.69-2.70 

checkpoint/restart with ,2.73-2.74 
checkpoint restrictions 2.74 
JCL guidelines 2.74-2.75 

data base restrictions 2.67 
description of 2.67 
functions 2.68 
record formats with 2.70 

data set I/O area 2.71 
fixed-length 2.70 
undefined-length 2.71 
user area 2.71 
variable-length 2.70 

record search argument (RSA), uses 
of 2.71-2.72 

status codes 2.70 
GSCD call 2.55,2.48 

examples of 2.5'5 
guide to using IKS/VS system 
publications iv-v 

Index 1.5 



illustrations (.§~ Preface) 
implementing an IMS/VS 
application 1.6-1.7 

IMS/VS interface to application 
programs 

DL/I 2.11-2.12 
program communication blocks 

(PCBs) 2.11-2.12 
program elements required 
for 2.11-2.12 

IMS/VS system publications, guide to 
using iv-v 

I/O PCB 4.4 
ISRT call (data base) 2.32-2.33~2.30 
ISRT call (data communication) 4.9, 
4.11~4.12 

LOGb call 2.54, 2.47 
examples of 2.54 

logical data bases 
defining 2.8-2.10 
description of 2.8 
designing 2.8-2.10 
message format service (MFS) 

example with PL/I 6.34-6.35 

message processing region simulation 7.19 
description of 7.19 
examples of (COBOL) 7.21-7.22 

entry point and call statement 7.21 
message output 7.22-7.24 
testing a message program in a batch 

processing region 1.21 
executing DL/I data base calls for 7.20 
moving a message processing program 
to a message processing region 7.20 

PSB generation for 7.20 
multiple application programs, 

requirements of 1.2 
multiple positioning 3.10-3.11 

effects on DL/I call functions 
DLET and REPL calls 3.12 
GN and GNP calls 3.12 
GU and ISRT calls 3.12 

examples of call sequences 
for 3.12-3.13 

maintaining position in a data 
base 3.10 

mixing calls with and without SSAs and 
multiple positioning 3.14 

example 3.15 
restrictions ___ 3 __ 14~3 .-15 --

--------- --- -----paralfel-i)i--ocessing of dependent 
segment types 2.14 

single positioning versus multiple 
positioning 3.10-3.12,3.15-3.16 

examples 3.10-3.12 
uses of 3.13-3.14 

organization of data, IMS/VS i.3 
design of data structures, 
limits on 2.7 

rules 2.7 
hierarchical data structures 2.3 

relationships of data 
elements 2.3-2.4 

hierarchical interrelationships 2.5 
data base record 2.6 
path 2.5 
root segments 2.5 

levels 2.4 
segment 

fields 2.5 
segment occurrence 2.5 
segment type 2.5 

traversal of hierarchical 
structures 2.4 

path calls 2.27,3.5 
path, hierarchical 

definition of 2.5 
example 2.4 

PCB for a logical data structure 2.18 
DL/I areas 2.18-2.19 
key-feedback area 2.18-2.19 

concatenated keys 2.19-2.20 
length of 2.19 

name of data base 2.18 
name of PCB 2.18 
segment-name feedback area 2.19 
sensitive segments, number of 2.19 

PCB mask, data base 
description 2.16-2.17 
COBOL example 2.17-2.19 
PL/I optimizing compiler 

example 2.17-2.19 
PCB mask, TP 

COBOL example 4.6 
fields required for 4.5-4.6 
layout 4.5-4.6 
PL/I example 4.7 

physical data bases 
defining 2.8-2.10 
description of 2.8 
designing 2.8- 2. 10 

PL/I, conventions and uses of 
building output messages 

requirements 4.11 
using ISRT call 4.11 

call format for data communication 
calls ___ L!._~ _____________________ _ 

---------caTIs--to DL/I, data base batch 
description of 2.20 
I/O processing call 2.20-2.22 

checking out online message programs 
in batch regions 2.67 

conversational application program 
example 6.26-6.27 

message format service (MFS) 
statements used with 6.34-6.35 

I.6 1MS/VS Application Programming Reference Manual 

- ,-- -- --,--- --------- -------'., 



l._-

data base processing using DL/I 
input/output function 

data base deletions 2.66 
data base updates 2.65 

entry point to data base batch 
application programs 2.15-2.16 

GSAM call formats 2~69-2.70 
input message format, 
conversational 5.2 

retrieving segments of an input 
message 4.9 

call formats using GO and GN 
calls 4.10 

saving information in scratch pad 
areas 5.3 

segment search arguments (data base 
batch), specifying 2.27-2.28 

system service call formats 
change (CHNG) 4.15 
checkpoint (CHKP), basic 2.49 
checkpoint (CHKP), symbolic 2.50 
dequeue (DEQ) 2.53 
log (L OG ) 2 • 54 
purge (PORG) 4.13 
restart (XRST) 2.51-2.52 
rollback (ROLL) 2.53 
statistics (STAT) 2.56 

terminating application programs 2.37 
PL/I optimizing compiler, conventions and 

uses of 
batch program structure 2.41-2.43 
conversational application program 

using the 3270 as a calculator 6.26 
examples 6.26-6.27 

conversational processing, 
example of 6.28-6.33 

messaqe processing program 
structure 4.35-4.37 

PCB-mask, data base 
application programming 
requirements 2.16 

example 2.17-2.19 
PCB-mask, data communication 

application programming 
requirements 4.5-4.6, 

example 4.7 
position, data base 2.44 

current 2.44-2.46 
not-found 2.44-2.45 
reestablishing known position 2.45 

preface iii-vi 
PORG call (DC) 4.9,4.12-4.14 

record, data base 
definition of 2.6 
example 2.7 

REPL call (data base) 2.34-2.35 
ROLL call 2.53,2.47 

examples of 2.53 
rollback (§g~ ROLL call) 

secondary indexing , 
considerations, special 3.22 
creating a secondary data base 
structure 3.19-3.20 

definition of 3.19 
defining 3.21 
description of 3.16-3.17 
examples 3.25-3.27 
depen~ent AND, use of 3.26-3.27 
independent AND, use of . 3.25-3.26 
indexed segments and fields 

index pointer segment 3.18 
index source segment 3.18 
index target segment 3.18 

options and rules 3.21-3.22 
processing a secondary index as a 
data base 3.23 

secondary indexes versus primary 
indexes 3.17 
se~ment search arguments 3.34 

independent and dependent 1ND 
Boolean operators 3.24-3.25,3.27 

XDFLD field names in 3.24 
uses of 3.17,3.12 

segment 
d~finition of 2.5 
example 2.4 

segment search arguments (SSAs), 
data base batch programming 2.27 

characteristics 2.27 
command codes for 2.27 
concept and function of 2.24 
example (PL/I) 2.27 
qualification of 2.26 
structure of 2.25-2.26 

segment search arguments .(SS1s), 
advanced techniques for data base 
processing 3.1' , 

Boolean qualification statements used 
in 3.8 

logical operators, use with 3.8-3.9 
call function, modifying 3.4-3.5 
characteristics of 3.3-3.4 
command codes used with 3.4,3.2 

C 3.6 
D 3.5 
F 3.4 
L 3.4-3.5 
N 3.5 
P 3.7 
Q 3.5 
o 3.7 
V 3.7 

independent and dependent AND Boolean 
operators, uses of 3.24 

examples 3.25-3.27 
logical-parent sequence fields, 
effects of using 3.9-3.10 

main elements of 3.1 
Boolean qualification statements 3.1 
command codes 3.1 
segment name 3.1 

In,dex 1.7 



qualification statement, 
description of 3.1-3.2 . 

comparative value 3.2-3.3 
field name 3.2-3.3 
relational operator 3.2-3.3 

segment qualification 3.6 
setting of parentage 3.7-3.8 

structure 3.2 
command codes 3.2 
segment name 3.2 
qualification character 3.2-3.3 
qualification statement 3.2-3.3 

use of field names for concatenated 
segments 3.9-3.10 

STAT call 2.56,2.48 
examples of 2.56 

terminating an application program 2.37 
RETURN and GO BACK statements, 

use of 2.37 
with ANS COBOL 2.37 
with assembler language 2.37 
with PL/I 2.37 

testing aids (§gg Data Language/I test 
program; message processing region 
simulation) 

TP PCBs 4.3-4.4 

XRST call 2.51,2.47 
examples of 2.51-2.52 

statistics 33135 Teletypewriter (ASR) 
ISAM/OSAM buffer pool 2.56 input message length 4.16 
ISAM/OSAM data base buffer online message formatting without 

pool 2.57-2.58 MFS 4.29 
VSAM buffer subpool 2.58-2.60 output message length 4.27 

statistics call (§~ STAT call) 1050 Data Communication System 
symbolic call interface for CHKP/XRST input message length 4.16 

DL/I calls xv online message formatting 
checkpoint (CHKP) call, description without MFS 4.29 
of 2.48 output message length 4.27 

basic CHKP call, example of 2.49 2260 Display Station Models 1 and 2 
symbolic CHKP call, input message considerations 4.16-4.17 

example of 2.50 output message 
restart (XRST) call, description considerations 4.24,4.26,4.30 
of 2.51 video paging 4.25-4.26 

examples 2.51-2.52 WRITE commands 4.25 
system service~alls 2.47 2265 Display Station Model 1 

checkpoint (CHKP) 2.47-2.48 input message considerations 4.16-4.17 
examples of basic CHKP '2.49 output message 
examples of symbolic CHKP 2.50 considerations 4.24,4.26,4.30 

dequeue (DEQb) 2.52,2.47 video paging 4.25-4.26 
examples of 2.53 WRITE commands 4.25 

qet SCD (GSCD) 2.55,2.48 2265 Display Station Model 2 (2770) 
examples of 2.55 input message considerations 4.16-4.17 

log (LOGb) 2.54,2.47 output message 
examples of 2.54 considerations 4.24,4.26,4.31 

restart (XRST) 2.51,2.47 video paging 4.25-4.26 
examples of 2.51-2.52 WRITE commands 4.25 

rollback (ROL~ 2.53,2.47 2740 Data Communications Terminal 
examples of 2.53 Models 1 and 2 

statistics (STAT) 2.56,2.48 input message length 4.16-4.17 
examples of 2.56 online message formatting 

System/3 4.16,4.27 without MFS 4.29 
System/7 4.16,4.27 output message length 4.26 
System/370 console 2741 Data Communication Terminal 

input message length 4.16 input message length 4.16-4.17 
online message formatting without online message formatting 

MFS 4.29 without MFS 4.29 
_____________ o_u :tpu t __ mess a ge _length ---4 • 27---- ----- - --- - ------------------------, --out pu t--- m es s a-g e -re-n-gt h---- 4.-26 

-- -------------------- --------1-

2770 Data Communications System 
input message considerations 4.16-4.17 
output message considerations 4.27 
v ideo paging (2265- 2) 4.25 
WRITE commands (2265-2) 4.25 

1.8 IMS/VSApplication Programming Reference Manual 



2780 Data Transmission Terminal 
Models 1, 2, 3 and 4 

input message length 4.16-4.17 
online message formatting without 

MFS 4.29-4.30 
. output message length 4.27 

2980 General Banking Terminal System 
Models 1, 2, and 4 

function keys 4.23-4.24,4.28-4.29 
input message 

considerations 4.16,4.21-4.23 
message lights 4.28 
online message formatting without 

MFS 4.31 
output message 
considerations 4.24,4.26-4.28 

2980-6 function key translate 
table 4.23 

2980-1 special character set 4.21 
2980-4 special character set 4.22 

3270 Information Display System 
input message considerations 4.16 
output message considerations 4.27 

3600 Finance Communication System 
input message considerations 4.16 
output message considerations 4.27 

3741 Data Stations, Models 2 and 4 
input message considerations 4.16 
output message considerations 4.27 

3767 Communication Terminal 
input message considerations 4.16 
message format service (MFS) 
support 4.2 

output message considerations 4.27 
3770 Data Communication System 

input message considerations 4.16 
message format service (MFS) 

support 4.2 
output message considerations 4.27 

3790 Insuranqe Communication System 
input message considerations 4.16 
output message considerations 4.27 

7770 Audio Response unit Model 3 
input messaqe length 4.16 
output message considerations 4.27 

Index 1.9 



SH20-9026-4 

I~ternational Business Machines Corporation 
Data Processing Division 

1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(I nternational) 

s:: 
en -< en 
< 
CD ., 
en o· 
:J 

» 
'0 
'£ 
o· 
Q) 

~. 
o 
:J 

-0 ., 
o r.c ., 
Q) 

" 

• 

3 "-
~. 
:J 

r.c 
:0 
CD 
-to. 

!!1 
CD 
:J 
(') 
CD 

s:: 
Q) 

:J 
c:: 
~ 

en 
:c , '-----1\,) , 

o 
cO 
o 
I\,) 
0') 

.i::. 

- -- -- ---i ---- -



o 

IMS/VS Version 1 
Application Programming Reference Manual 
SH20-9026-4 

Your comments about this publication will help us to improve it for you. 
Comment in the space below, giving specific page and paragraph references 
whenever possible. All comments become the property of IBM. 

, Please do not use this form to ask technical questions about IBM systems and 
programs or to request copies of publications. Rather, direct such questions or 
requests to your local IBM representative. 

If you would like a reply, please provide your name, job title, and business 
address (including ZIP code). 

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere, 
any IBM representative will be happy to forward your comments.) Thank you for your 
cooperation. 

Reader's 
Comment 
Form 



SH20-9026-4 

Fold and Staple 

Business Reply Mail 
No postage necessary if mailed in the U.S.A. 

Postage will be paid by: 

IBM Corporation 
P. O. Box 50020 
Programming Publishing 
San Jose, California 95150 

Fold and Staple 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(I nternationaU 

First Class Permit 
Number 6090 
San Jose, California 

S 
en -< en 
< 
CD .., 
(I) 

c)' 
::J 

» 
'0 
'2. o· 
OJ 
.-+ o· 
::J 

iJ .., 
0 
to .., 
OJ 

3 
~. 
::J 
to 

:0 
CD 
-+> 
CD .., 
CD 
::J 
0 
CD 

S 
OJ 
::J 
C 
~ 

iJ .., 
:;' 
.-+ 
CD 
Q. 

:;' 
C en 
l> 

------en-­
:c 
I\) 
o 
cO 
o 
I\) 
m .;:. 

t-

., 
• 

.r---..... 

I' 
I 

------ --i----


