L2 e Tn Y

N

()

Program Product

SH20-9026-4

IMS/VS Version 1

- Application Programming

Reference Manual

Program Number 5740-XX2

Release 1.2

Fifth Edition (May 1976)

This edition replaces the previous edition (numbered SH20-9026-2),its technical newsletter
(numbered SN20-9110), and the reprint (numbered SH20-9026-3), and makes them
obsolete.

This edition applies to Version 1 Release 1.2 of IMS/VS, program number 5740-XX2, and
to all subsequent releases unless otherwise indicated in new editions or technical
newsletters.

Technical changes are summarized under “Summary of Amendments” following the list of
figures. In addition, miscellaneous editorial and technical changes have been made
throughout the publication. Each technical change is marked by a vertical line to the left of
the change.

Information in this publication is subject to significant change. Any such changes will be
published in new. editions or technical newsletters. Before using the publication, consult the
latest IBM System/370 Bibliography, GC20-0001, and the technical newsletters that amend

the bibliography, to learn which editions and technical newsletters are applicable and
current.

Requests for copies of IBM publications should be made to the IBM branch office that
serves you.

Forms for readers’ comments are provided at the back of the publication. If the forms have
been removed, comments may be addressed to IBM Corporation, General Products
Division, Programming Publishing—Department J57, 1501 California Avenue, Palo Alto,
California 94304. All comments and suggestions become the property of IBM.

© Copyright International Business Machines Corporation 1974, 1975, 1976

e

L D d

PRS-

™

(\

This manual describes the functions of the Information Management
System/Virtual Storage (IMS/VS) available to the application programmer
using the data base and/or data communication facilities of IMS/VS.

The reader should be familiar with the concepts and terminology
discussed in prerequisite and associated publications of the IMS/VS
reference library (cited below).

This manual contains seven chapters and two appendixes:

e Chapter 1, "IMS/VS Environment for Application Programming,”
describes the effect of IMS/VS on the application programmers, new
application programs, and existing programs, and the major
considerations in implementing an IMS/VS application.

e Chapter 2, "Data Base Batch Programming,!" describes application
programming using the IMS/VS data base facility. It covers the
details that applications analysts and programmers require to use
an TMS/VS logical data structure, and the manner in which a batch
application program interfaces with the processing capabilities of
TMS/VS.

¢ Chapter 3, "Data Base Processing: Advanced Functions," describes
the more advanced data base processing functions provided by IMS/VS.

e Chapter 4, "Data Communication: Application Programming," describes
application programming using the IMNS/VS data communication
facility. It includes a discussion of the teleprocessing
application interface and the logical terminal concept.

e Chapter 5, "Data Communication: Conversational Processing,"
describes application programming for programs that process
transactions defined as conversational.

e Chapter 6, "Application Program Examples," contains examples of
TMS/VS application programs.

e Chapter 7, "Application Programming Testing Aids," describes use
of the DL/I Test Program (DFSDDLTO) and the requirements (those
that pertain, for example, to interfaces, JCL, control statements,
and execution in different types of regions) that govern use of
this application program. This chapter also describes use of the
Message Processing Region Simulation facility to check out a message
processing program, in a batch processing region, with a set of
data bases designed for testing purposes.

e Appendix A is a quick-reference chart of the DL/I status codes
IMS/VS returns to application programs.

e Appendix B contains a description of the status codes described in
Appendix A.

Preface iii

PREREQUISIT™E PUBLICATION:

INS/VS General Information Manual, GH20-1260

ASSOCIATED PUBLICATIONS:

IMS/VS Installation Guide, SH20-9081

IMS/VS System/Application Design Guide, SH20-9025

INS/VS System Programming Reference Manual, SH20-9227

INS/VS Operator's Reference Manuval, SH20-9028

IMS/VS Otilities Reference Manual, SH20-9029

IMS/VS Messages and Codes Reference Manual, SH20-9030
IMS/VS Messaqge Format Service User's Guide, SH20-9253

Ins/vs Advanced Function for Communications, SH20-3054

IMS/VS Low level Code/Continuity Check In Data Langquage/I

Program Reference and Operation Manual, SH20-9047

IMS/VS Program Logic Manuwal, Volune

of 3, Logic, LY20-8004

INS/VS Program Logic Manual, Volune

of 3, LY20-8005

IMS/VS Program Logic Manual, Volume

W=

of 3, LY20-80M1

GUIDE TO USING IMS/VS

SYSTEM PUBLICATIONS

Figure P-1 is a guide to using the IMS/VS system publicatioms.

guide is divided into

three parts, each dealing with a specific INS/VS

component -- Data Base System, Data Communication feature, and
Interactive Query Facility (IQF) feature. For each component, one or

more functional areas

is identified. PFor each functional area, one or

more tasks is specified, and the IMS/VS manual or manuals that contain
major information regarding this task are noted. The titles of the
IMS/VS manuals are abbreviated as follows;

Abbreviation

GIM

SADG

IG

SPRM

APRM

UTRM

OPRM

Full Manual Title

INS/Vs General Information Manual

IMS/VS System/Application Design Guide

INMS/VS Installation Guide

IMS/VS System Programming Reference Manual

IMS/VS Application Programming Reference Manual

IMS/VS Utilities Reference Manual

IMS/VS Operator's Reference Manual

iv IMS/VS RApplication Programming Reference Manual

This

'
‘\../‘ ’

T

man

Four IMS/VS manuals are not referred to in Figure P-1:

INS/VS Messages and Codes Reference Manual: This manual supports
essentially all tasks noted in Figure P-1.

IMS/VS Low Level Code/Continuity Check in PL/I: Program Reference
and Operation Manual: This manual supports the Data Base System
when the LLC/CC function is used.

INS/VS Message Format Service User's Guide: This manual supports
the Data Communication feature when MFS is used.

IMS/VS Advanced Punction for Communications: This manual supports

the Data Communication feature when an AFC system is used.

The IQF section of Figure P-1 refers only to IMS/VS system library
uals that contain information on IQF. Additional IQF information

can bhe found in:

IQ0F General Information Manuwal, GH20-1074

IQF Langquage Guide, GH20-1222

e TOF Terminal User's Reference Guide, GH20-1223

Preface v

vi IMS/VS Application Programming Reference Manual

gata Design Generate Load Reorganize Recover Tune
ase
UTRM,
sapG [utem [] UTRM r- UTRM UTRM UTRM, IG
Design Define Install Modify Tune
Data System
SADG - —
Base SPRM' IG 1G SPRM UTRM
System
Design Generate Code Test
Applications | aprar uthm [aprm [T Aprm
. Configure Ntwk Dsgn Define Operate
Terminals
GIM SADG 1G OPRM
Data System Design Define Install Execute Modify Tune
Communication SADG, G — G — OPRM SPRM, UTRM,
Feature* SPRM OPRM 1G, OPRM
Design Generate Code Test
SADG —
icati ‘ UTRM APRM APRM
Imroduce Applications APRM
‘GIM
Design Define Generate
(o1 - -
Feature z's‘RD,a' 1G SPRM
* References for the DC feature are in addition to
those for the DB System.
**References for this feature are in addition to
those for the DC feature.
Figure P-1. Guide to Using the IMS/VS System Publications

PREFACE. o ¢ ¢ ¢ ¢ ¢ ¢ o o o e o o o s o o o o o o o o
Guide to Using IMS/VS System Publications. . « « « « «

FIGURES: « ¢ « ¢ o o o o o o o o o o s o o o o s o s o s

SUMMARY OF AMENDMENTS. .« . + ¢« ¢« « o &
Version 1, Release 1.2 « o « o o o s o s o o o« o«

Other Changes. e e e e e s e
Version 1, Hoalflcatlon Level 1. 1 e e e e e e e o
Version 1, Modification Level 1. « « « &« <« &
Version 1, Modification Level 0.1. + . ¢ « ¢ ¢ o o & o &

e s & o
o« o s o
* o ¢ o

CHAPTER 1. TIMS/VS ENVIRONMENT FOR APPLICATION
Effect on Application ProgrammersS. . « « « « « o « o« s &
Pre-DB/DC Organizational Procedures. . « « « « « o o &
DB/DC Organizational Procedures. . « « « « « « « « & &
Fffact on New Programs . « « « + « « o o . e o o « o
IMS/VS Data Base versus 0S/VS File De81gn and Access .
IMS/VS Data Communication versus 0S/VS Teleprocessing.
INS/VS versus Non-IMS/VS Program Structure«
Converting Existing Programs e e e o o
Major Considsrations in Implementing an IHS/VS

CHAPTER 2. DATA BASE BATCH PROGRAMMING. . .
IMS/VS Data Base Organization. . . . « « « &
Structure: Hierarchical o« .
Relationships of Data Elements
LevelsS ¢ ¢ ¢ ¢« ¢ ¢ v v e e e e e o s s e
Traversal. . « ¢ o« ¢ ¢ ¢ o o « «
Basic Element: The Segment. . . .
Hierarchical TInterrelationships. .
Root Segments. o o . .
Path o ¢ ¢ v ¢« ¢« ¢ ¢ ¢ o e & o o s o
Data Base Record .
Limits on the Design of Data Structures.
Design and Definition of IMS/VS Data Bases . . .
Physical Data BaS€S. « « « ¢ o o s o o o o o o o o
Logical Data Bases . . . s e e e e e o s s e s o @
Design and Definition of Appllcatlon and Logical Data
Structures. « ¢« .« ¢ ¢ v i d e e e e e e e e s s s =
Application Data-Structure Design. « .« .
Application and Logical Data-Structure Definition.
References e e e & o o e e e e e e e e
Initially lLoading a Data Base@. ¢« ¢« ¢ « « ¢ o o .
Accessing a Data BaSE. « « « « o « o o o o o8 o @
Program Structure and Interface to IMS/VS.
Language and Compilation« .
Entry Points to Application Programs . . .
Initial Invocation of a PL/I Transaction
EXamples . ¢ ¢ ¢ o ¢ ¢ o o « o o o o
Data Base PCB Masks. . . . « o o o o
Calls to Data Language/I (DL/I). o o o .

* o s 4 o
e o o o

e & o o
.
.
.
.
.
a & o &
.

e & o o 8 4 ¢
e ® o o * o
S s e 4 o
® o 8 4 o 0 4 o
« * o a
¢ o ® o4 o o o @

. o

.
.« o
. o o
P

.
«

.
.
.
.
.

PROGRAMMING . . .

Application . . .

@ ® o & ® 9 o & o & 4 o
. o o
¢ o o o

e ® o s ° & & o .

.
e o & 4 o s e o & o ° 4 4 & 4
e & & o & o o .

3
.
* 8 o & s

Examples .
Function .
PCB-Name .

.

I/0 Work Area.
Segment Search Arguments

-

s & o 4

e ® s o o o s
.
.
.
.

.
.
.
.

« & 4, & 4 & 4 o
.

Contents

iii
iv

xiii

MM b MK
<dd<d

ol
<
'.J-

J T S
. *® & e o e o o e« o o e o L] s o s & & o L]
VOV WW== o=

Pl = Ve e o] CooNoc M UuULeg EFWLWN A

e & o o o

NN DN NN NN

3
-~
[=]

2.23

2.24

vii

Detailed Description of DL/I Processing Functions.
Get Calls. . . ¢ v v ¢ o ¢« ¢ o o o &
Uses of Get Calls. . ¢« « ¢ o o o &
Setting of Parentage
Processing within Parentage. . . .
Resetting of Parentage

. . . .

. .

e e

.

Rules for Get Calls.

.
L S

L
P Y TP

Insert Calls ¢« ¢« ¢ ¢ ¢ o o « o o+
Rules for Insert Calls

ANS COBOL Batch-Program Structure.
PL/I Optimizing Compiler Batch-Program Structure
Assembler Language Batch-Program Structure . . .
Status Codes for DL/I I/0 Calls. « ¢ o ¢ ¢ o o « .
Status Codes for Successful Completion of Get Calls.
Status Codes for Valid Exceptional Conditions in the
Data BaSe « « ¢ o o« ¢ o o s ¢ o s o o o o o
Position in the Data Base. . « « « « + &
PCB and Position for "Not-Found" Calls
Access to Multiple Data Bases. . « « « o
System Service Calls . « « & ¢ « o o« &
Checkpoint (CHKP).« . .- .
Examples of the Basic CHKP Call. .
Examples of the Symbolic CHKP Call
Restart (XRST) .

| Fxamples . . .
Degqueue (DEQDb) .
Examples . . .

Using Insert Calls for Updating. . . e s e e o
Using Insert Calls for Loading a Data Base
Delete and Replace Calls e s e s e e e e e e e o o
Use of Delete and Replace Calls. ¢ ¢ ¢ ¢ o o o « @
Rules for Delete and Replace Calls « .« .
Delete Requests Issued against a Logical Data Base
Format of Segments in the I/0 Area . e e e e e e e
Fixed-Length Segments., . « . +. + ¢« ¢ ¢« & o o & .
Variable-Length Segments . « . . « « o « « « & .
Terminating the Application Program. . « . « . . .
Examples of Batch-Program Structures

.
. ®
.

.
.
-

¢ a2 e
.
.
.

.

.
.
.

.

Rollback (ROLL).
Exanples . .
Log (LOGhYy . .
Examples . .
Get SCD (GSCD)
Fxample. . . .

e o o o & o o °

« o & o o
o e o o o
« s s e
¢« s o o o
« 5 e e

« ® o o
.
.
.
.
.

e 4 o
« * . .
e o a s o s o o o
« & o o

.
e 8 % s e * 4 2 4, e & 4
4 & e o s 4 % o 4 &
S 4 * o o 0 s & , 5, * ,
® a % & s * 2t 4 s ¢
® s & a2 o & 4 & 4, & s

Statistics (STAT): o« + 4 « o o o o o s o o o o o o
EXaMPleS « o « ¢ o o o o o o o ¢ o o o o o o o o @
Exanples of Data Base Processing Using DL/I I/0 Functio
Data Base Creation « . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o « o o o @
Skill Segment Insertion. « « « ¢ ¢ « o & @ ¢ o o o
Name Segment Insertion . « ¢« « « o + o o o o o o o
Experience Segment Insertion « « ¢« « ¢ &« ¢ o o o o
Education Segment Insertion. . . <« ¢ .« & o . .« o
Skill, Name, and Experience Segment Imnsertion. . .
Education Segment InsertionN. . « « + « ¢ ¢ o o o
Name and Experience Segment Insertion. . . . ' . .
Data Base Retrievals . . .+ ¢ ¢ « ¢ ¢ « o o o o o o s
Data Base UpdatesS. « ¢« ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o o o o o
Data Base DeletionS. . « ¢ ¢ ¢ ¢ « ¢ o o s o o o o »
Data Base Insertions e e e e o o o
Using a Batch Region to Check Out Onllne Message Progra
| EXAMPleS . ¢ ¢ o ¢ o o o o ¢ o o o o o s o o o o o o
Generalized Sequential Access Method (GSAM).
GSAM Data Base Restrictions. ¢« ¢ ¢ ¢ « « o &
GSAM PUnRcCtions . ¢ ¢ ¢ v o ¢ o o o o o 2 o o o o o
Data BasSe ACCESS « ¢ « « o o o o s o o o o ¢ o o o o

viii IMS/VS Application Programming Reference Manual

¢ 4 e 4 o

¢ e & o & o 4 8 4 s o

..‘.‘E.....l‘...‘.b...l.‘...l'..‘c

o o 6 8 o e 4 o

e & ® o & 8 4 & 4, e o 4, o 4 o

S o 0o ¢ o

e & & 8 8 o & 4, e & 4 8 4 o o 4 s 4, o s

¢ © ¢ o ® ¢ ® & 4 & 4 & @

e« o & & ¢ o o 8 4 o

e & 4 @& % & B 8 o * 4 & 4 g % o+ & 4 & 43 * s 4 * 42 e 8 g * ¢ & & 3 & 4 s * .

6 8 & o ® a 8 ® o 6 e 8 o o & e @ & 4 & ¢ & s s ° s 4 & o © q & o 4

e o & & @& 6 4 & 4 & & 4 0 4 & s g b 4, 0o s g s 4 o

o & o

o 8 4 o 8 s s o & s 4 s o s o

8 & ¢ & & ¢ o o o & 4 o s 4

e & o & 6 o s 8 g & o4 6 4 6 % 4 * o e % e & 2 o

2.28
2.29
2.29
2.30
2.30
2.30
2.31
2.32
2.32
2.33
2.33
2.33
2.33
2.35
2.35
2.35
2.35
2.36
2.37
2.38
2.38
2.41
2.43
2.43
2.44

2.44
2.44
2.4y
2.46
2.47
2.48
2.49
2.50
2.51

2.51
2.52
2.53
2.53
2.53
2.54
2.54
2.55
2.55
2.56
2.56
2.60
2.61

2.62
2.62
2.62
2.62
2.63
2.63
2.64
2.64
2.65
2,65
2.66
2.66
2.67
2.67
2.67
2.68
2.68

w/ v\\

GSAM CallsS .« . v o ¢ o o o o o o o o o o o o s o o o a o s o« =
Status COAES v v ¢ ¢ o o o« o o o s s o s o o « s o o o o o o

Record Formats . . . © e o s 6 e 6 e 4 e o e o o s s s e« o
a Fixed-Length Records c e e e s e s e e e e e s e e e e e
<\~ Variable-Length Records. . « .« o ¢ o o « « ¢ « s o o« & .« .

Undefined-Length Records . « ¢« o o« ¢ ¢ o ¢ o o« « o o o &
Data Set T/0 AT€a.: « o « o o o o o o o s o s o o s o o o o =«
User Area. e s s e e e s e e e s e e o
Direct Retrieval hy Record Search Argument (RSA)
Record Search Argument (RSA)
Record Search Argument (RSRA) Usage .
Buffering. . . . “ e e e e e e 4 e e o e
Checkp01nt/Restart « e 6 e & e o o o o
Checkpoint Restrictions. « ¢ ¢ ¢ ¢ ¢ o o o « o o o o o o o

JCL. « + « « & & ¢« t 4 e e e 4 e e s 4 e s e e s s e e e

* IMSBATCH JCL PROC. e e s e s e e s e e 4 e e o o e = e s e e s

e * o o o

CHAPTER 3. DATA BASE PROCESSING: ADVANCED FUNCTIONS.
Segment Search Arguments Using Advanced Functions. « .
General Characteristics of Segment Search Arguments. .
Command Codes. « « « o « ¢ ¢ ¢ o o «
Call Punction. . « « « . « .« .
Segment Qualification.
Setting of Parentage . .
Boolean Qualification statements o .
Use of Field Names in Segment Search
Concatenated Segments
Multiple Positioning . .« ¢« . ¢ ¢ ¢ ¢ ¢ ¢ . .
BEffect of Multiple Positioning on DL/I Call Functions.
GN and GNP Calls Using Multiple Positioning. « . .
GU and ISRT Calls Using Multiple Positioning
DLE™ and REPL Calls Using Multiple Positioning
Examples of Call Sequences Using Single and Multiple
7 Positioning . . e e s 4 e s s 4 o e o % e e e e e e * e o
&\’, Use of Multiple P051t10n1ng e o o s s s s e % s e s s v 8 e a
Increased Data IndependeNCe. . ¢ ¢ « o o o o o s o o o o o =
Parallel Processing of pependent Segment Types« o« « &
Mixing Calls with and without Segment Search Arguments and
Multiple Positioning. . . « o ¢ ¢ 4 o o« « o o o o ¢ o o o
SUMMATYe « =+ o o s o o o o s o

e ® o 0o o o

.
.

)
-

¢ e o o o o
H
(Ve
=
=2
(1]

o« - . . . - e« e

nts for

Secondary Indexing . . . e e e e e e e e s e e e e o« e
Indexed Segments -- Indexed Fields . v v v ¢ o o o o o« « o
Index Target Segment e e e e e e e e e .«

Index Pointer Segment.
Index Source Segment
Secondary Processing SeqUENCEeS . « « « « o o s o s o o
Secondary Data Base Structure Made Possible by
Secondary INAEXeS . « + o o o« o o o o o o o o o o o
Options and Rules for Secondary Indexing . . . « « « &
Considerations . . « . . &« e s 4 o e o o o o o s o @

¢ o a
.
.
.
.
[
.
.
.
.
.
.

Processing a Secondary Index As a Data Base. . . « . &
Secondary Indexes and Segment Search Arguments . .« o
Independent and Dependent AND Boolean Operators. e e e e e

CHAPTER 4. DATA COMMUNICATION APPLICATION PROGRAMMING
Teleprocessing Application Program Interface to IMS/VS . . .
TP PCBS. - - . . o . . . o . . -
I/0 PCB. . . « . =
Alternate PCB. . « « ¢ ¢ « o ¢ s o @
TP-PCB Mask.
COBOL Example of a TP- PCB uask .« o

. - o« o . * ¢ e .

¢ & o .
.

.
.
.
.
.
.

PL/I Example of a TP~PCB Mask. . .
Entry to the Teleprocessing Appllcatlon Program

Contents

2.74

2.75

Wwwwww ww
e o & & & o
NN EEWa=

.
o

wwWww
.

-
NN O

3.12
3.12

3.12
3.13
3.14
3.14

3.14
3.15
3.16
3.18
3.18
3.18
3.18
3.19

3.19
3.21
3.22
3.23

SeEEesEees
e o & 9
NNV e R WN

ix

TP Calls . . . « .+ .

Input Message Segment Calls. .

Get Calls (GU, GN) . .

Output Message Segment

Insert Call (ISRTY .
‘Additional TP Calls.

_ Purge Call (PURG). .

Change Call’ (CHNG) .

Message Formats.

Input Message Format . .
M

Device Dependent Input
226C0-1, 2260-2, 2265-1

es

)

Calls

2770 System Components .

.2972/2989 Components .
Output Message Format. .

sage

Terminal Destination OQutput.

Online Message Format Considerations -- MFS Not Use
Program-to-Program Message Switching
Teleprocessing or Batch/Teleprocessing Environments.
ANS COBOL Message Program Structure. . . .+ « « . .
PL/I Optimizing Compiler Message Program Structure
Assembler Language Message Program Structure . . .
Abends Issued by Application Programs. . . « « « .

CHAPTER 5.
Scratchpad Area Format . .
Input Message Format . . .

Example. . . . « . . .

Saving Information in the SPA.

Output Message Format. . .

Passing Conversational Control

Program . « o« « « o o o &
Terminating a Conversation

Rules for Writing Conversational Progra

General. . .« ¢« « « o o o
Message Response

CHAPTER 6.

DATA COMMUNICATION:

e e o s o o

. .

APPLICATION PROGRAM EXAMPLES e . e

Data Base Load Program Example .
ANS COBOL Application Program.

Data Base Dump Program . .

Asserbler Language Application
Batch Processing Program Example

Message Processing Program Example

ANS COBOL RApplication Program.

Conversational Application Program Examples 051ng PL/I

PL/I Optimizing Compiler Example

Message Format Services.

CHAPTER 7.

Data language/I Test Program

General Description. . .
Interfaces . « « « .
JCL Requirements . . .
Control Statements . .
STATUS Statement . .
COMMENTS Statement .
CALL Statement . . .

DATA Statement

® o ¢ o & o

COMPARE Statement Format
COMPARE Statement Format for
OPTION Statement Format.

for

Considsrations. « . .

« o e -

s * s s
® 4 0 4 e * e 4 e 4 * o 8 6 4 0 4 4 & o @

CONVERSATIONAL PROCESSING

. L] . L] - . . . L] . » L] L]
Another Conversational
o ms. L] L] L] L] L] . . L]

e« o & 4

o

Program Example

e« o . .) * e . . .

e 8 4 & 4 o & ,
.

« e

e. ¢ o o

o e e e

APPLICAT ION PROGRAMMING TESTING AIDS
(DPSDDLT0). .

.
.
.

.
.

.

.
.

.
.
.
)
-
.
.

PCB Comparisons
User I/0 Area Comp

=

. m e b o o o o & 4, o &
. |-‘ e & o & & 4 & 4 s 4
. o e & ¢ 8 o o 8 o o4 &
e {1 « & o © o 4 8 4 & &

b 4 IMS/VS Application Programming Reference Manual

e * s e * a2 & 4 4 & 4 8 4 o o

® & o © 4 8 4 8 & 4 ¢ o ¢ & o o

e & o & o g & o o o o e & o o o e o & o o o e« o * ¢ o ¢ o

e ° o 8 0

® * e s & o o

e ® 4 o 8 4 o o s & o 8 4 o o

o« ° o & o e & o & o s o & s & e & o o o e o & 8 o o

® & e o & o o

NNSNONGNNGSNO9NN aonoo o000y OV LGNS RO RS RS

[GRGECRG R RS)] & &
s o o .

www

N~ »

e o .

WWwoN = o

. . . . L]
AUV eWw

e« & o . .
WNN =2 00N -

£ 00 NOO

e & o o &

SSOUINAWWN = @

[S

8 e & & o & o o s @ & & o

-

~

Special Control Statement FPormats.
PUONCH Statement. . . <« « ¢« « .« .
PUNCH DD Statement &
SYSIN2 DD Statement. . « ¢« « o
Other Control Statement Formats.
Special CALL Statement Format. .

Format of Display of DL/I Blocks .

Execution in Different Types of Regio

Hints on Usage « « « +« &+ o o « &
Sample JCL« . « « « . .
Sample Control Statement Input .
Data Base Load . « « « .+ . .
Data Base Retrieve and Update.
Message Processing Region Simulation
Examples . . . e s e e e e e
Simulator Interface Ao o o o o
Message Processing Program . . .
Simulator Interface B.

APPENDIX A. DL/I STATUS CODES QUICK-REFERENCE

APPENDIX B. DATA LANGUAGE/I STATUS CODES.

INDEX. s & e o e o o ¢« o e ¢« o o s »

e o &
« o * o
e o o o

e e o o
s & o & s g & 5 4 v o
e ® e ® & s & o & * o

o 8 4 e 4 & s o o o o 8 o
.

C & 4 8 g ® 6 4 ® 4 o o o

“ 8 4 e 4 e & 4 o

.oooouo.bo.oc.tc
.

.
e o o & o % & o & ¢ ® e 4 =

® 6 e ® ¢ b 8 4 & 4 & 0 4 O 4 e * o
® o e & ¢ & s g 8 o o 8 4, 0 o s o o
. o« o ® . . o e & Y . . o o Y . o .
® o o & o & & 4 & o & & o & & o4 o o

® o & * o
* e e & o
¢ o & *
¢ o o * o
S o o & ¢ & o
® o o o o o o

Contents

7.13
7.13
7.14
T.14
7.15
7.15
7.16
7.16
7.17
7.18
7.18
7.18
7.18
7.19
7.21
7.21
7.21
7.22

xi

‘/— -\\

Vo

- a
)

N a2

e o o

—
]

wn s w

L L L]

-
[}

t
-
.

I\l) N
N
.

}
=S eSO W

N = O
« o

N NN NNDNNON
|

1
-
w
.

[|
WN -
« ° o =

.

Trrwuwwww wWwwh
1 t [I S T T |
e o o ¢ e s o

'
N OV esWw Nagone
.

se s R~]
[}]

- 0

O e e .

.

4-11.
4-12.
4-13,
4-14,

7-1.
A-1.

Guide to Using the IMS/VS System Publications
Basic Functions of a User Installation. « . .
Application Analysis Joint Interface with Data

Base Administration ¢ 0 0 0 00 0. .
0S/VS Data Management Data Structure. . . .

Comparison of 0S/VS Physical Record and IMS/VS Loglcal

Segment Relationship. c o o e e
Decisions, Actions, and Respon51b111t1es for the
Design, Implementation and Continued Use of an

IMS/VS SYStem ¢« & 4« o o o o o o o « o o o o o o o o o
Schematic Representation of a Hierarchical Data
Structure . . . < < . . . e o e e o . « e e e o
0S/VS Data Management -- IMS/VS Data Base
Relationship. . . « . . . ¢ ¢ o o
IMS/VS Data Base RecOrd « « « o o o o o.,0 o
Data Base Structural limits « . . .

IMS/VS Interface with Appllcatlon Progranm .
Structure of a Batch Application Program. .
IMS/VS Batch Environment Comparison to 0S/VS.
Application Program Data Base-PCB Mask. . . .
Concatenated K@YS + « o« o « « « s o o o o o

tu

S 4 ¢ o o o o o
¢ 4 8 4 s & o o

ANS COBOL Batch-Program Structure
PL/I Optimizing Compiler Batch-Program Struc
Accessing Multiple PCBs in an IMS/VS Batch
Fovironment « .« « « o ¢ o o o o o o @ « e e e e o
Multiple Logical Data Structures for the Same
Data Base « « « « .« & . « e 4 s 4 e s e e o
Logical Data Base Record Structure. “ e e e o
SSA Structure . o « o ¢ & ¢ ¢ o o o o o o o .
FPffect of Using Logical-Parent Sequence Flelds.
Assumed Data Base to Illustrate Single and Multi
Positioning o e o« e e e e .
Indexing a Data Base Hlth Secondary Indexes .
Secondary Structures by Secondary Indexes . .
Example of Independent AND. « .« o . .
Example of Dependent AND. . « « + « o« « « o o &
IMS/VS Data Communication Facility.
Relatlonshlp of Teleprocessing Application Progr

ur

e.

1

.0.-"U.-o-

e ¢ o+ % o o (De ¢ o o

to DB PCBs and TP PCBS. . + ¢ « ¢ « o o ¢ o«
Teleprocessing Application Program Execution.
Layout of a TP-PCB Mask . . « o« ¢ o « o o o o
Message Relationships to Its Segments . . .

Call Functions for Segments of Messages A and B
Call Functions for Segments of an Output Message
and Call Statements o .
Output Message as One Segment and 1ts Call Statement.
Grouping of Message Segments (PURG call). . . .
2980 Mod=1l 1 Special Character Set. . « « « .«
2980 Model 4 Special Character Set. . « . « . .

.oo.o‘»..

2980 Model 4 Punction Key Translate Table . .
COBOL Message Program Structure
General PL/I Optimizing Compiler Message Program
Structure .« ¢ ¢« ¢ ¢ ¢ 4 e ¢t e o e e e e 4 s e e o o o
Message Processing Region Simulation. . . « . . « .« &
DL/I Status Codes Quick Reference « . « « o« o« o« o o &«

e o & o o
¢ s & o o
s o & o o

e o o 4 o e & o o o o o @

s e & & o o

. . - . o

Figures

4.33

xiii

/‘\!

~

-

SUMMARY OF AMENDMENTS

VERSION 1, RELEASE 1.2

This release reflects technical changes to this publication in
support of the following devices:

e 3767 Communication Terminal

e 3770 Data Communication System

OTHER CHANGES

e A symbolic call interface for the extended checkpoint/restart
facility has been added. With this facility, COBOL and PL/I
application programs can now issue extended CHKP/XRST DL/I calls
and also CHKP DL/TI calls that specify 0S checkpoints.

e Updates have been made to PL/I information, and a revised example
is included for the PL/I Optimizing Compiler.

e Chapter 7 of this edition comprises the "DL/I Test Program" that
was formerly Appendix C of the IMS/VS Utilities Reference Manual,
and "Message Processing Region Simulation" that was formerly
Appendix B of the IMS/VS System/Application Design Guide.

VERSION 1, MODIFICATION LEVEL 1.1

e Support has been added for the 3740 Data Entry System. IMS/VS
"~ supports the 3741 Data Station, Model 2, and the 3741 Programmable
Work Station, Model 4, attached on a switched line using BTAM.

e The restriction against the Utility Control Facility (UCF) has been
lifted.

Summary of Amendments Xv

VERSION 1, MODIFICATION LEVEL 1

The following new and/or enhanced IMNS/VS functions have been added:

e Generalized Sequential Access Method (GSAM).

e Expanded restart (restart call), GET SCD call, and Statistics call

e Response Alternate PCBs.

e Fixed-length SPAs.

e Program Isolation.

e Application program output limits,

e Message Format Service (MFS) support for additional terminals.
Note: Information in this manual about the Utility Control Facility

(UCF) is for planning purposes only until that facility becomes
available, ,

VERSION 1, MODIFICATION LEVEL C.1

e Support for the IBM 2260 Display Station, Model 1 and 2, and for
the IBM 2265 Display Station, Model 1.

xvi IMS/VS Application Programming Reference Manual

N
A

c

CHAPTER 1. IMS/VS ENVIRONMENT FOR APPLICATION PROGRAMMING

The objectives of the IMS/VS Data Base (DB) facility are to enable
multi-application use of shared data, with greater integrity of the
data itself, and with greater independence from data management for
the progranms, the application programmers, and the users. For the full
NData Base/Data Communications (DB/DC) facility of IMS/VS, these
objectives extend to multi-application use of shared terminals, with
greater integrity of the transmission, and with greater independence
from the mechanics of terminal hardware and teleprocessing procedures.

EFFFCT O8N APPLICATION PROGRAMMERS

The real effect of IMS/VS on application programming groups occurs
in organizational procedures. There will be a significant difference
in how a data organization is designed, who does it, and at what point
in time. The manner in which data is administered and maintained will
change, and a significant change should occur in the interface between
an application programming group and the systems function in the central
data processing organization.

PRE-DB/DC ORGANIZATIONAL PROCEDURES

In most companies, application programming has been scattered
throughout the various functional areas of the company. The central
data processing organization provided an interface advisory function,
establishing procedures for using the system and determining resource
requirements for these functional groups. But each group designed and
implemented its independent programs and independent data files, and
each group negotiated and programmed for its own teleprocessing
terminals.

NB/DC ORGANIZATIONAL PROCEDURES

To obtain the most effective use of an IMS/VS system, users may wish
to consider an adjustment in functions and procedures. There must be
a central coordination of the data base structures and contents, since
these structures are to be shared by multiple functional areas.
Accordingly, a new function of "Data Base Administrator" may be found
desirable in the central data processing organization, as illustrated
in Figure 1-1.

| A it 1
| | Data Base 1 | i
| Applications | Administration} Systenms | Operations |
| | { 1 |
fInterface and | Coordinate: | Analysis, | Installation |
| Design | e Design, | Design and | Operation, |
] | ® Generation, | Installation | Procedures, |
i | ® Usage | t Libraries f
| | { { 1
L e e e e e r e~ e e oo - - - - =t - - -—- - = e > s - o
Figure 1-1. Basic Functions of a User Installation

IMS/VS Environment for Application Programming 1.1

Since the decision to install IMS/VS is actually a decision to make
an integrated data organization fulfill the requirements of multiple
application programs, a focal management function becomes desirable
to: N

e coordinate current application requirementss ~—
e anticipate future requirements of current and future applications;

e plan, schedule, and control the design, installation, and access
to data bases; generate all data bases;

o inform applications personnel of existing data structures and
provide guidelines as to their use;

e analyze and evaluate the effect of current or planned data -
structures on overall system performance;

e coordinate with systems and operations organizations the development
of effective procedures for data protection. -

Naturally, the other three functional areas are very much affected
by and involved in designing and installing a data base system. But
the important interface with the DP organization now becomes, for
application programming groups, the Data Base Adwinistration function.

Figure 1-2 exemplifies the functional relationship which develops
between application programming groups and data base administration.
Whereas application groups used to design both programs and data files,
now the design of the data structures referenced by application programs
becomes a Jjoint task. Developing the procedures for implementing that
joint design function can be one of the most important tasks an
installation faces.

Second, and equally important, an equivalent focal point is required
to coordinate and control the teleprocessing network; to keep track of -
the location and use of physical terminals; to map loglcal users onto
the physical network; and to plan, schedule, and control the dynamics
of message traffic, and the load on the central data processing systen.

1.2 IMS/VS Application Programming Reference Manual

e

|
Design physical data bases |
Define logical relationships |
Generate and maintain all data bases |}
Coordinate multi-application use of |
data bases |
e Insure availability, integrity, and |
security of data bases |

|

L ot v o o s o o et e e - " - e e . - - - - J

| |

| {

! {

| |

! §
l'-—-----'--"_' 1 r“”""""”‘: ------------------ 1
| Progqramming Group A | i Programming Group N {
|-~ =mmrmr e Il ees |==-mmmso-—mrmooome s s me oo |
| { | {
e De2fins A's data requirements	{e Define N's data requirements:
® Design A's application {	Design N's applications
1	
lec e e e e c e e r o e cm ——-—- - A [R R R R bt R P 1
Figure 1-2. Application Analysis Joint Interface with Data Base

Adminis*ration

EEFECT ON NEW PROGRAMS

The changes described above are procedural and organizational. The
net effect on conventional, pre-IMS/VS application programming tasks
is simplification:

e Yew applications using IMS/VS will require much simpler data I/0
and message I/0 procedures.

e Follow-on maintenance of any IMS/VS application should be
significantly reduced due to the logical independ2nce from da+a
files and teleprocessing hardware.

INS/VS DATA BASE VERSUS OS/VS FILE DESIGN AND ACCESS

Application analvsts and programmers converting to use of IMS/VS
for new apnlications find their task considerably simplified because
all data description and file definition occur externally. The
programmer is relieved of the need to build these functions into the
aprlication, and can concentrate on the symbqQlic representation of the
application data and their logical interrelationships.

IMS/VS Environment for Application Programming 1.3

Under the System/370 operating systems and data management services,
a "data set" is considered the major unit of data storage and retrieval.
A data set is made up of physical records each of which in turn, may
contain multiple logical records. T

- - —_—— - - - - - - - " - - " - e W - W - " > - - - -

-
| Logical Record A1 { Logical Record A2 | LRB1 | LRB2 | LRB3 { LRB4 |

Figure 1-3. 0S/VS Data Management Data Structure

This 0S/VS structure is shown in Figure 1-3. The application program
is constrained by this structure: its definition must be a part of
the program, the logical representation of data must be within the
bounds of the physical structure, and any change in the structure almost
surely will require a change in the program.

Under IMS/VS, logical elements are identifiable and processable by
the programmer with no knowledge of or reference to the physical format.
Figure 1-4 illustrates the difference.

0S/vVS DATA MANAGEMENT
PHYSICAL RECORD

-
NAME ADDRESS PAYROLL L
A,
LOGICAL RECORDS
IMS/VS
LOGICAL SEGMENTS
NAME
ADDRESS PAYROLL
Figure 1-4. Comparison of 0S/VS Physical Record and IMS/VS lLogical
Segment Relationship
/' ~.
N

1.4 IMS/VS Application Programming Reference Manual

IMS/VS DATA COMMUNICATION VERSUS 0S/VS TELEPROCESSING

The task of application programmers writing data communications
programs is simplified to a large degree by being able to deal just
with logical terminals within the program. IMS/VS handles the
telsprocessing access method, the correlation between logical and
physical terminals, and distinctions between the hardware
characteristics of various terminal devices.

IMS/VS VERSUS NON-IMS/VS PROGRAM STRUCTURE

The IMS/VS system capabilities which enable the programmer to deal
exclusively at a logical level with data and terminals consist of two
principal facilities:

e an offline facility for generating control blocks which accomplish
the mapping between logical and actual data and between logical
and actual terminals. This facility is intended to be administered
by DB/DC administration in the central data processing organization;

e an inline high-level language called Data Language/I (DL/I) which
interprets and processes data and/or message input/output requests
during program execution. Programmers invoke DL/I via structured
CALLs from PL/I, COBOL or Assembler Language programs.,

A detailed description of these features with respect to batch data

processing and online message processing constitute the remaining
chapters.

CONVERTING EXISTING PROGRAMNS

The task of converting an existing application program to enable
its use of IMS/VS data structures requires analysis by the application
group in consultation with the data base administrator and other DP
systems personnel. Two factors are important in this analysis: data
integrity and program performance.

If data integrity is critical and can be markedly improved by
shifting to an IMS/VS structure, and if the present I/O0 procedures in
the application can be located and converted to IMS/VS I/0 procedures
in a straight-forward manner, then the installation may find that an
initial conversion can be accomplished by altering just the program
I/0 areas. At the same time, program performance should be analyzed
so that the effect of this initial change on the system and on the
application users can be evaluated.

Where performance is critical, IMS/VS users generally find it
desirable to redesign the application so as to take full advantage of
the facilities IMS/VS offers. This is particularly true where the
application has been accessing sequential files and doing minimal
processing.

IMS/VS Environment for Application Programming 1.5

MAJOR CONSIDERATIONS IN IMPLEMENTING AN IMS/VS APPLICATION

Figure 1-5 describes the major steps required to activate an IMS/VS
system. The items to the right are some of the decisions which must
be made before any of the center actions can be taken. This figure
shows the context in which an IMS/VS application is implemented.

Looking just at the activity of creating an application program, it
would appear that aside from the logic of the application itself, an
application programmer need be concerned only with selecting the
programming language and observing the IMS/VS interface conventions.
This can be quite true for individual application programmers.

‘Concurrently, however, the application programming management and
the application analysts must actively participate in the design of
the logical data structures and the definition of how the program will
use its data bases. The vertical columns on the left show that these
tasks:

e must occur earlier than they previously may have been undertaken;

e must be shared, in an organized fashion, between systems and
application personnel.

1.6 INS/VS Application Programming Reference Manual

N

PRIMARY RESPONSIBILITY ACTION
- SYSTEMS APPLICATION
PERSONNEL PERSONNEL
STRUCTURE
THE
ENVIRONMENT
ORG.
0/S
S/370

GENERATE
THE
IMS SYSTEM

i

GENERATE
THE DATA BASE
DESCRIPTIONS

_

GENERATE
THE PROGRAM
SPECIFICATION
BLOCKS

_C

CREATE THE
APPLICATION
PROGRAMS

MEASURE
EFFECTIVENESS
TUNE & MAINTAIN
SYSTEM & PROGRAM
& PROCEDURES

Figure 1-5.

DECISIONS

DB or DB/DC?

NO. OF REGIONS

PROJECTED NO. OF — DATA BASES
— TERMINALS
—~ PROGRAMS
— USERS

PROJECTED FREQUENCY OF USE

SCHEDULE THE IMPLEMENTATION SEQUENCE
DESIGN TEST PROCEDURES

DESIGN PERFORMANCE MEASUREMENT TOOLS
DESIGN SYSTEM PROTECTION PROCEDURES

DATA BASE STRUCTURE
NO. OF ELEMENTS
. NO. OF LEVELS
FIXED OR VARIABLE LENGTH

DATA BASE ORGANIZATION & ACCESS

APPLICATIONS PER DATA BASE
DATA BASES PER APPLICATION
DATA BASE USAGE

CREATE

RETRIEVE

UPDATE
SENSITIVE SEGMENTS
POSITIONING
LOGICAL TERMINALS
MESSAGE CHARACTERISTICS

LANGUAGE
APPLICATION LOGIC
IMS INTERFACE CONVENTIONS

RESPONSIVENESS
RELIABILITY
USE OF RESOURCES

Decisions, Actions, and Responsibilities for the Design,

Implementation, and Continued Use of an IMS/VS Systenm

IMS/VS Environment for Application Programming 1.7

a

. DATA BASE BATCH PROGRAMMING

iﬂ
o]
=g
bl
-3
td
joo
([}

This chapter provides application analysts and programmers with
reference material on the basic capabilities of the IMS/VS Data Base
{DB) facility'., The DB facility is available to and used by all IMNS/VS
application programs, whether operating in a batch mode, batch message
processing mode, or message processing mode. The Data Communications
(DC) facility of IMS/VS is required for the latter two modes of
operation. Application programming for the DC facility is described
in later chapters of this manual.

This chapter concentrates on the DB facility and addresses the two
fundamental aspects of the IMS/VS application programming task:

e Designing application views of data (lLogical data structures)
e Interfacing the application program with IMS/VS

With respect to data design, the application analyst wants to know.
how to:

e pDefine each of the elements of data required by the program and
the ways each element will be processed

e Organize the data elements and indicate their relationships

With respect +to interfacing with IMS/VS, both the application analyst
and the programmer want to know:

e How the program can access data

e How the program can identify the basic data elements and the way
they can be processed

e How, where, and in what form IMS/VS responds to the program requests
Data design is shared by the application analyst and the data base
administrator. Whereas application programming is concerned with
logical views of data, data base administration is concerned with
providing physical data structures to make those logical views possible
while at the same time meeting the requirements of other applicatioms,
system performance, and data protection. The details of IMS/VS data
structures, from the application analyst's and programmer's viewpoint,
are described in the first sectiomn of this chapter.
The second concern, the operational interface between the application
program and IMS/VS, is covered in the second section. It describes
wvhat is contributed to the interface by IMS/VS:
e Data Language/I (DL/I)
e The Program Communication Blocks (PCBs)
and by the programmer:
e DL/I calls

e PCB masks

Data Base Batch Programming 2.1

It is assumed that the reader of this chapter is familiar with the
I4S/VS General Information Manual, and has attended an IMS/VS "Concepts
and Facilities"™ class, or the equivalent.

Tt is suggested that the reader also refer to relevant portions of
the IMS/VS System/Application Design Guide and the IMS/VS Utilities
Reference Manual.

The IMS/VS Messages and Codes Reference Manual will be a necessary
tool, once the programmer begins to develop and check out the
application program.

The cornerstone of the IMS/VS Data Base (DB) facility is the
capability to overlay multiple "logical" (application-oriented) data
structures on non-repetitive "physical" data organizations. It is this
concept which enables an application programmer to consider only the
data with which the application is concerned, structured in a manner
which satisfies the functional requirements of the program logic rather
than the interests of physical storage or access methods. The
application programmer, and in many instances the application analyst,
need not be concerned with any data that is extraneous to the program
or the physical organization of data.

In this chapter, four distinct kinds of IMS/VS data structures are
identified:

e Physical data bases

® Logical data bases

e Logical data structures

e Application data structures

Physical and logical data bases are "internal", system-oriented
structures. Logical and application data structures are "external,"
application-oriented structures.

Physical data bases define to INS/VS the format of each actual data
element, the relationships between data elements, and how these elements
are to be organized in physical storage. Logical data bases (using
"logical relationships" specified in physical data bases) define a
structural relationship among actual data elements in one or more
physical data bases which is different from the structural relationship
defined in the physical data base(s). Physical and logical data base
structures are designed by the data base administrator to meet the
combined requirements of multiple application programs. Definition of
these structures to IMNS/VS is accomplished via the DBDGEN utility
program.

An application data structure specifies to IMNS/VS what data the
program will process and what structural view the program takes of that
data. One and only one application data structure must be defined for
each program. An application data structure consists of one or more
logical data structures. 1A logical data structure specifies what data
the program will process within a particular logical or physical data
base. Application data structures are functionally designed 'by the
application analyst. Logical data structures are designed by the data
base administrator often together with the application analyst, using
the application data structure. Definition of these structures to
IMS/VS is accomplished via the PSBGEN utility program: a logical data

2.2 IMS/VS Application Programming Reference Manual

-

structure is that structure defined in a PCB; an application data
structure is that structure defined in the PSB.

These four structures are discussed in the sections "Design and
Definition of IMS/VS Data Bases" and "Design and Definition of
Application and Logical Data Structures" later in this chapter. The
remainder of this section describes aspects which are common to all
four structures:

e Structure -- hierarchical
e Basic element -- the segment
e Hierarchical interrelationships

e Limits on the design of data structures
STRUCTURF: HIERAPRCHICAL

Relationships of Data Elements

In IMS/VS, all data is organized in hierarchical structures. These
structures consist of elements of data interconnected to show
relationships. The elements of data are called “segments" and are
described below. 1In a hierarchical structure, the relationships
indicate either dependency or equivalence. In IMS/VS, dependency is
called a "parent-child" relationship; equivalence is called a "twin"
relationship. The schematic convention for representing an IMS/VS data
structure is shown in Figure 2-1.

In Fiqure 2-1, B1 is a child of A1 and a parent of C1 through G1,
but not of FP1 whose parent is E2. Elements D1, D2, and D3 are twins,
F1 and F2 are also twins, as are I1 and I2., Elements C1 through G1
(except for F1) are children of B1, and elements I1 through J1 are
children of Ht. Element K1 is a child of J1. D1 and E1 are not
considered twins, even though they have a sibling relationship under
B1. Elements G1 and I1 have different parentage and hence are not
related. A parent may have 0 to n children; a child may have only one
parent; a child may have O to n twins.

Data Base Batch Programming 2.3

A1l

B1 H1
D3
D2 E2 12
C1 D1 E1 G1 11 3
F1 K1
Figure 2-1. Schematic Representation of a Hierarchical Data Structure

Levels

The successive dependencies of a hierarchical structure are called
"levels." In Figure 2-1 there are 4 levels: A is the top level, B
and H, the second level, C, D, B, G, I, J make up the third level; and
F and K are the bottom level. An IMS/VS data base may have a maximum
of 15 levels.

Traversal

By convention, IMS/VS traverses a hierarchical structure from top
to bottom, front to back, left to right. At every position, it seeks
a lower level; if none exists, it seeks the next-right element on the
same level; if none exists, it seeks, in the level immediately above,
the element which is next-right to the last element it had reached
earlier at that level. The data base in Figure 2-1 would be traversed
in alphabetic sequence, A1, B1, C%1, Dp1, D2, D3, E1, E2, F1, G1, HI1,
i1, 12, 31, K1,

When an application retrieval request says to get the next segment,
this traversal order is used by IMS/VS.

When the term "position" is used later in this chapter, position

along this sequence is meant, and "forward from current position” neans
forward according to this sequence.

2.4 IMS/VS Application Programming Reference Manual

N’

e

~

BASIC ELFMENT: THE SEGMENT

The basic element of data in any IMS/VS data structure is called a
"segment."

A1l segment types may be either fixed or variable length.

Segments may comprise one or more "fields." One field per segment
in a logical data base may be identified as a "key field." A key field
is used by IMS/VS for indexing, searching, and sequencing purposes.
Searches can be carried out also on non-key fields. 1In defining the
structure of a data base to IMS/VS, each element of the structure is
identified as a "segment type." In Figure 2-1, each of the alphabetic
elements, A through K would be defined at data base definition time as
"segment types." lLater at load time, there can be 0 to n
"segment-occurences" of any segment type. In Figure 2-1, D1,D2,D3 are
segment-occurences of segment type D. In discussing a data base, it
is important to distinguish between the generic term "segment type"
and specific "segments" or "segment-occurences."

HIERARCHICAL INTERRELATIONSHIPS

Root Segments

In the hierarchy of an IMS/VS data structure, the highest (top)
level segments are called "root segments."™ 1A root segment can be only
a parent, never a child.

Path
A hierarchical "path"” is the sequence of segment occurrences, one
per level, leading directly from a segment at one level to a particular

segment at a lower level. In figure 2-1, A1-B1-E2-F1 is a path. Paths
are used in processing to reach a segment below the root level.

Data Base Batch Programming 2.5

Data Base Record

B single occurrence of a root segment and all of its dependents is

defined as a "data base record."™ The concept of data base record is N
more useful to systems personnel setting up the physical storage of a | ‘
data base than to application analysts or programmers. e

Figure 2-2 compares a conventional 0S5/VS data management physical
record with an IMS/VS data base structure.

0S/VS DATA MANAGEMENT

PHYSICAL RECORD

SKILL NAME EXPERIENCE EDUCATION
L]
IMS/VS
LOGICAL SEGMENTS
SKILL
Ve
\\,_
NAME
EXPERIENCE EDUCATION
Figure 2-2. 0S/VS Data Management -- IMS/VS Data Base Relationship
»>
N

2.6 INS/VS Application Programming Reference Manual

Figure 2-3 shows a typical data base record which the IMS/VS
structure of Figure 2-2 might contain. (Notice the data redundancy
implied: TIf this were an 0S/VS record, "Adams" might occur 5 times,
Jones 6, and Smith 2. "Skill" (the root segment) might occur 13 times).

.

SKILL

(ARTIST)

SMITH
NAME

‘ JONES

EXPERIENCE EDUCATION EXPERIENCE EDUCATION EDUCATION
L L 1 L L
L 1 L
= Figure 2-3. IMS/VS Data Base Record

LIMITS ON THF DESIGN OF DATA STRUCTURES

The rules which constrain the size and extent of an IMS/VS data
structure are summarized in Figure 2-4,.

Dependents
No. per per
Data Parent-
Base Segment
Type
Levels 1 to 15 0 to 14
-
Segment types 1 to 255 0 to 254
Segment 1 ton 0 ton
occurrences
Figure 2-4, Data Base Structural Limits

Data Base Batch Programming 2.7

DESIGN AND DEFINITION OF IMS/VS DATA BASES

PHYSICAL DATA BASES

Physical data bases represent the organization and access method of
actual data on the storage medium. They define the actual format and
content of each data segment type, as well as all the physical
relationships which exist between segment types. 1In addition they
include all the "logical relationships" by means of which potential
alternate paths between segment types can be defined. The existence
of these logical relationships enable the definition of logical data
bases f{see below).

Physical data bases must be designed by the data base administrator,
who has the responsibility of coordinating the data requirements of
multiple application progranms.

Physical data bases are defined to IMS/VS via the "Data Base
Definition Generation" (DBDGEN) utility program which is part of the
IMS/VS program product package. The definition, like the design, of
Physical data bases should be the responsibility of the data base
administrator.

LOGICAL DATA BASES

Logical data bases define logical hierarchical structures. These
structures are composed of segment types defined in physical data bases,
and are implemented by means of the "logical relationships" defined in
those data bases for those segments. Any given logical data base is
a hierarchical view of segment types selected from one or more physical
data bases; segment types from any given physical data base can "belong
to" multiple logical data bases.

Logical data bases must be designed by the data base administrator,
based on functional specifications of data requirements provided by
application analysts.

Logical data bases are defined to INMS/VS via the same "DBDGEN"
utility program used to define physical data bases. Conceivably,
‘generating a new logical data base may require multiple "DBDGEN" runs:
one to define the logical data base, preceded by one or more additional
runs to specify the required logical relationships in the referenced
physical data base(s).

DESIGN AND DEFINITION OF APPLICATION AND LOGICAL DATA STRUCTURES

An application data structure defines the complete hierarchy of
segment types which is unique to a single application and describes
the kind of processing intended by the application against each segment
type. An application data structure enables IMS/VS to tailor its DB
facility to the requirements of each application as it is executed.
An application data structure, once it is designed and defined, consists
of one or more logical data structures. The design of these logical
data structure subsets evolves during the process of designing the
application data structure.

2.8 I¥S/VS Application Programming Reference Manual

N

~—

M

Application Data-Structure Design

The design of an application data structure is based on functional
specifications provided by the application analyst to the data base
administrator. These functional specifications should describe, at
minimum, the data elements (segment types) to be processed, their
hierarchical relationships, and the processing intent of the program
against each segment type. Additional information to be included in
the specifications must be determined by each installation, as well as
the manner in which the specifications are communicated.

From these specifications, the data base administrator designs an
application data structure (and its logical data structure subsets)
which will satisfy the data and processing requirements of the progranm,
will optimize system and program performance, and will protect the
integrity of the program, the other programs which share the use of
the data, and the data bases themselves.

In most installations, the data base administrator needs the active
participation of the application analyst during this design task. The
design of an application data structure is essentially a "mapping"
process in which the external program "view" of its data is mapped onto
portions of existing or proposed internal structure (that is, physical
and/or logical data bases). Usually, several alternative mappings are
possible, and the effect of each on the design and performance of the
program needs to be evaluated by the application analyst.

The final result of the application data structure design process
is a set of logical data structures. Each of these structures
identifies an IMS/VS data base (physical or logical) the program will
access, the segment types the program will use (be "sensitive" to),
and the type of processing the application program will perform on each
segment type. 1In addition, the design process may disclose that:

e An existing data base satisfies the requirements.
e A cross-section of one or more existing data bases can be used.
e A new logical data base must be defined.

e A new physical data base must be generated, or an existing physical
data base must be reconstructed.

e The program requirements must be redefined -- data cannot be made
available as requested.

Application and logical data structures are defined to IMS/VS by
using the Program Specification Block Generation (PSBGEN) utility
program. The Program Specification Block (PSB) thus generated consists
of Program Communication Blocks (PCBs). Each PCB identifies a physical
or logical data base (defined, in turn, by DBDGEN) which the program
will access. (PSBGEN also identifies resources associated with the
use of the IMS/VS DC facility; this aspect is discussed in a later
chapter.)

_The basic information provided to IMS/VS by each PCB definition is
the identification of each segment type within the physical or logical
data base which will be processed, and the type of processing which
will be done. (Additional information specifies concatenated key
length, and options on the advanced functions "multiple positioning"
and "secondary indexing" described in the next chapter). The contents

Data Base Batch Programming 2.9

of the actual PCB generated by the IMS/VS PSBGEN utility program are
described in detail later in this chapter.

PROCESSING OPTIONS: The processing options which can be specified are
combinations of the DL/I call functions (get, insert, replace, delete)
and additional processing logic such as read only and load only. A
processing option may be specified for each segment type to which the
program is sensitive., If it is not, IMS/VS defaults to the processing
option which must be specified for the entire data base.

SEGMENT-TYPE SENSITIVITY: PSBGEN also identifies the specific segment
types within a data base which the application program intends to
process. An application program can be key-sensitive, data-sensitive,
or not sensitive to segment types. If a program is not sensitive to

a segment type, then it cannot access occurrences of that segment type
or their dependents. Dependents of key-sensitive segments can be
accessed if there is data sensitivity to the dependent segments. If
the program is key-sensitive to a segment, the program can specify that
segment in an SSA but ‘cannot access the segment itself. If it is
data-sensitive, it can access the segment. Data sensitivity implies
key sensitivity. ‘

DATA BRSE IDENTIFICATION: A logical or physical data base may be
specified more than once in the PSBGEN for an application progranm.

This can be a useful processing tool: for example, when it is desirable

to maintain multiple positions in a data base, or to separate one
processing option from another. See the discussion later in this
chapter on "Access to Multiple Data Bases."

References

To work effectively with the data base administrator, applicatiomns
analysts should be familiar with source documents for the PSBGEN and
DBDGEN utility programs as described in the IMS/VS System/Application
Design Guide and the IMS/VS Utilities Reference Manual. The Progranm
Communication Blocks (PCBs) which make up the PSB for any application
are described in further detail in this chapter, particularly in terams
of their use to an application programmer.

INITIALLY LOADING A DATA BASE

Once a data base structure is defined, data can be loaded into it.
Data base loading is accomplished by a user-written application program
as described in the IMS/VS Installation Guide. The program employs
one of the data processing Call functions IMS/VS provides for this

purpose. All of these Call functions are described in the next section.

Certain pointer relationships must be resolved when a data base is
initially loaded. IMS/VS utilities are provided for this purpose and
are described in the "Data Base Reorganization/Load Processing" chapter
of the IMS/VS Utilities Reference Manual. Other considerations of
initial load are also discussed there. '

\
ACCESSING A DATA BASE
Application programs for which a PSB has been generated are able to
access their relevant data bases by issuing calls to DL/I. The call

format names the PCB of the logical structure, identifies the segment(s)
desired, and specifies the processing function to be performed.

2.10 IMS/VS Application Programming Reference Manual

e

PROGRAM STRUCTURE AND INTERFACE TQ IMS/VS

The operational interface which IMS/VS provides to the application
program is composed of two components, DL/I and the Progranm
Communication Rlocks (PCBs). They provide communication between IMS/VS
and the running program, and enable an application to process data in
an IMS/VS data base.

Figure 2-5 illustrates the elements of the interface and their
relationships.

0s/vs
<IMS/VS>
DATA
BASES
-
DL/t MODULES
IMS/VS
PCB
v
7/
V4
/ /
Yy _/
APPLICATION’ J
PROGRAM./ /
/ / l@‘
/ / < APPLICATION
. LIBRARIES
PCB
MASK
Figure 2-5. IMS/VS Interface with Application Program

Prior to execution of the application program, the data base
administrator must execute the IMS/VS Program Specification Block
Generation utility program (PSBGEN) to create the PCBs. The PCBs (one
for each logical data structure the applicatiom will access) are placed
in a system library, ready for use by IMS/VS whenever the application
is executed.

DL/I is a set of IMS/VS modules which reside in the batch cegion
with the application program. DL/I interprets the data-processing CALL

requests issued by the program.

The application program interfaces with these two IMS/VS components
via the following program elements:

Data Base Batch Prograaming 2.1

e An ENTRY statement specifying the PCBs for the progranm

e A PCB-mask which echoes the information maintained in the
pre-constructed IMS/VS PCB and which receives return information
from DL/I ' ~

e An I/0 area for passing data segments to and from IMS/VS data base:;
e Calls to DL/I specifying processing functions
e A termination statement
The PCB mask(s) and I/0 areas are described in the program's data
declaration portion. Program entry, calls to IMS/VS, processing, and
program termination are described in the program's procedural portion.
Calls to INMS/VS, processing statements, and program termination may

reference PCB mask(s) and/or I/0 areas. In addition, IMS/VS may
reference these data areas.

2.12 IMS/VS Application Programming Reference Manual

e

Pigure 2-6 illustrates how these elements are functionally structured

in a program and how they relate to DL/I.

in the text that follows.

APPLICATION PROGRAM COMPONENTS

PCB - MASK

RETURN
INFORMATION

from
DLN

10/AREA

SEGMENT (s)

DATA BASE

————»PROGRAM ENTRY

RETRIEVE
INSERT
REPLACE
DELETE

r— TERMINATION

to / from -«

——» CALLS TODL/I DB FUNCTIONS = — — — — — — — —-Pl

PROCESSING — — — — —

|
|
|
|
_____ >
|
|
|
I

rre»0 <&
~—=xXm |k

DL/

<Dn-—H2m

Figure 2-6. Structure of a Batch Application Program

Data Base Batch Programming

The elements are discussed

2.13

LANGUAGE AND COMPILATION

The application program is written in one of three languages: PL/I,
COBOL, or Assembler Lanquage. All of the examples in this manual employ
versions of these languages. The program is compiled through the
user-selected language compiler and placed in the appropriate program
library. .

After the PSB for an application program has beén generated and the
program itself has been compiled, the program can be executed in an
IMS/VS batch environment. PFiqure 2-7 depicts two environments. One
is the conventional application program with its embedded file
description and its use of the operating system data management
directly. The second environment is IMS/VS. Here, under IMS/VS
control, both the application program to be executed and its associated
PSB are loaded from their respective libraries. The PSB contains the
PCBs of the data structures to be used by the application progranm.

ENTRY POINTS TO APPLICATION PROGRAMS

As illustrated in Figure 2-7, when the operating system gives control
to the IMS/VS control facility, the IMS/VS control program in turn
passes control to the application program (through the entry points as
defined in the following examples) and specifies all the pcb-names used
by the application program. The order of the pcb-names in the entry
statement must be in the same sequence as specified in the PSB
generation run for this application program. The sequence of PCBs in
the linkage section or declaration portion of the application program
need not be the same as the sequence in the entry statement.

Batch DL/I programs cannot be passed parameter field information
from the EXEC statement PARM keyvwords.

Programs that are 0S/VS subtasks of an application program called
by IMS/VS must not issue DL/I calls. If they do, the results will be
unpredictable.

It should be noted that with PL/I, whenever PL/I multitasking is
used, all tasks, even the apparent main task, operate as subtasks to
a hidden PL/I control task. PL/I tasking is therefore not allowed in
an IMS/VS program.

2.14 IMS/VS Application Programming Reference Manual

N

0Ss/Vs

DATA MANAGEMENT IMS/VS
IMS/VS
0Ss/vVs 0S/Vs PSB LIBRARY
v
! IMS/VS [PsB |
[__FD_] CONTROL !
PSB
APPL. ‘A
/| PCB
PROGRAM y /
APPL. {/ PROGRAM
/b LIBRARY
PCB |/ >
PROGRAM \ A/P
Figure 2-7. IMS/VS Batch Environment Comparison to 0S/VS

Initial Invocation of a PL/I Transaction

Programs generated by the 0S PL/I optimizing compiler can be entered
by one of three entry points -- PLISTART, PLICALLA, and PLICALILB. These
entry points differ in the parameter list each expects to receive.
PLISTART is the default that is used for entry directly from the OS
Scheduler. For this reason, it is not suitable for use by programs
running under IMS/VS. Either PLICALLA or PLICALLB can be used under
IMS/VS, but the following considerations apply:

e If the PL/I execution options (for example, ISASIZE) are specified
through PLIXOPT (see the description of this module in the PL/I
Programmer's Guide, SC33-0006) or have satisfactory defaults
(specified during installation of PL/I), PLICALLA can be used by
including an ENTRY PLICALLA control statement during link-editing.

e If PLIXOPT cannot be used to specify the options (because, for
instance, the scanning of PLIXOPT by PL/I initialization routines
is time-consuming), and the default options are not suitable for
this particular transaction, PLICALLB can be used as the entry
point. PLICALLB must be called, however, by a user-written
assembler program which passes a parameter list that describes the
execution options. The load module entry point must be included
in the assembler routine.

For COBOL, the following entry appears first, in the beginning of
the Procedure Division:

ENTRY 'DLITCBL' USING pcb-namel,...pcb-namen,
For PL/I, the first procedure of a program should be:

DLITPLY: PROCEDURE (pcb_namel,...pcb_namen) OPTIONS(MAIN) ;

Data Base Batch Programming 2.15

The MAIN procedure statement of a PL/I program should be:
DLITPLI: PROCEDURE (pcb_ptr1,...,pcb_ptr) OPTIONS(MAIN);

Note that the parameters are pointers. The actual PCBs are declared:
DCL 1 pcb_namei BASED(pcb_ptri),

Note also that DLITPLI will not be the load module entry point.
With IMS/VS, PL/I programs are entered through entry points PLICALLA
or PLICALLB,

For an Assembler Language program that utilizes DL/I, the entry
point can have any name. However, Register 1, upon entry to the
application program, contains the address of a variable length fullword
parameter list., Each word in this list contains a control block address
which must be saved by the application program. The high-order byte
of the last word in the parameter list has the 0 bit set to a value of
one to indicate the end of the list. The addresses (PCB control block
addresses) in this list are subsequently used by the application program
when executing DL/I calls.

DATA BASE PCB MASKS
A data base-PCB mask or skeleton must be provided in the application

program through which it views a logical data base. One PCB is required
for each data base. The details are shown in Figqure 2-8.

2.16 IMS/VS Application Programming Reference Manual

/'\1

APPLICATION PROGRAM

l MASK WRITTEN IN PL/I FOR THE OPTIMIZING COMPILER

DECLARE 1

DECLARE
DECLARE
DECLARE 1

DECLARE 1

NNNMNNNNNNDN

2
2

2
2

PCBNAME BASED (PCB_PTR),

DBD_NAME CHAR(8),
SEG_LEVEL CHAR(2),
STATUS_CODE CHAR(2),
PROC_OPTIONS CHAR(4),
RESERVE_DLI FIXED BIN(31,0),
SEG_NAME_FB CHAR(8),

LENGTH_FB_KEY FIXED BIN(31,0),
NUMB_SENS_SEGS FIXED BIN(31,0),

KEY_FB_AREA CHAR{17);

KEY_FB_AREA_PTR POINTER;
NAME_KEY CHAR(12) BASED (KEY_FB_AREA_PTR);
NAME_ADDR_KEY BASED (KEY_FB_AREA_PTR);

NAME_KEY2 CHAR(12),
ADDR_KEY CHAR(2);

NAME_KEY3 CHAR(12),
PAYROLL_KEY CHAR(5);

KEY_FB_AREA_PTR=ADDR(KEY_FB_AREA);

Figure 2-8.

-
Asﬂ’\\mﬁ -
DP:‘ -
\CN- -
- \,OG =t
MASK WEW -
C -t
- PCB pcs [NAME
—————T——=C\ I
NN
\
: \ | 1
\
I NN\ ADDR PAYROLL
: \
l N\
NN
‘ \
\
. (LINKAGE \
MASK WRITTEN IN COBOL SECTION)
=== ————— —lBYTES FUNCTION
| 01 PCBNAME. 1
| 02 DBD-NAME PICTURE X(8)m—————— -8 DATA BASE NAME
- | 02 SEG-LEVEL PICTURE XX——————— +—2 SEGMENT HIERARCHY
| 02 STATUS—CODE PICTURE XX=—— _ _ _J' LEVEL INDICATOR
I 02 PROC—OPTIONS PICTURE XXXX~ _ - ,T—z DL/l RESULTS
| 02 RESERVE-DL/I PICTURE S9(5)~ __ ~—1 STATUS CODE
| COMPUTATIONAL>~~ _ 14 DL/t PROCESSING
: 02 SEG-NAME-FB PICTURE X(8)~ _ _ \\\l g OPTIONS
| 02 LENGTH-FB-KEY PICTURESI(GI~ _—~ =~ _|"4 RESERVED FOR DL/I
I COMPUTATIONAL=~ T8 SEGMENT NAME
| 02 NUMB-SENS-SEGS PICTURE S9(5\. ~4 FEEDBACK AREA
1 COMPUTATIONAL™ i LENGTH OF
1 02 KEY—FB—AREA. >~ FEEDBACK KEY
| 03 NAME-KEY. 114 NUMBER OF SENSITIVE
| 04 NAME—KEY1 PICTURE X(12). | SEGMENTS
| 04 FILLER PICTURE X(5). [N KEY FEEDBACK AREA
| 03 NAME—ADDR—KEY REDEFINES NAME—KEY.{ |
: 04 NAME-KEY2 PICTURE X(12). |
: i 04 ADDR—KEY PICTURE X(2). |
Q | 04 FILLER PICTURE X(3). |
- | 03 NAME—-PAYROLL—KEY REDEFINES NAME—KEY.| |
| 04 NAME-KEY3 PICTURE X(12). 1
I 04 PAYROLL—KEY PICTURE X(5). J
e e e e et et e e e e e = . - — — — — — — —————

NAME_PAYROLL_KEY BASED(KEY_FB_AREA_PTR),

PCB_PTR is in the parameter

Bytes and function'as
above

Application Program Data Base-PCB Mask

Data Base Batch Programming

L list for the PL/I PROCEDURE.

The data base PCB provides specific areas used by DL/I to advise
the application program of the results of its calls. At execution
time, all PCB entries are controlled by DL/I. Access to the PCB entries
by the application program are for read-only purposes.

The following items comprise a PCB for a logical data structure from
a data base.

1. Name of the PCB., This is the name of the area which refers to
the entire structure of PCB fields and is used in program
statements. This name is not a field in the PCB. It is the 01
level name in the COBOL mask in Fiqure 2-8.

2. Name of Data Base. This is the first field in the PCB and
provides the DBD name from the library of Data Base Descriptions
associated with a particular data base. It contains character
data and is eight bytes long.

3. Segment-Hierarchy-Level Indicator. Data Language/I (DL/TI) loads
this area with the level number of the last segment encountered
which satisfied a level of the call. When a retrieve is
successfully completed, the level number of the retrieved segment
is placed here. 1If the retrieve is unsuccessful, the level
number returned is that of the last segment that satisfied the
search criteria along the path to the desired segment. This
field contains character data; it is two bytes long and is a
right-justified numeric.

4. DL/I Status Code. 1A status code that indicates the results of
a DL/I call is placed in this field and remains here until
another DL/I call uses this PCB. This field contains two bytes
of character data. When a successful call is executed, this
field is returned blank or with an informative status indication.
DL/I status codes are summarized for quick reference in Appendix
A, and described in detail in Appendix B.

5. DL/I Processing Options. This area contains a character code
which tells DL/I the "processing intent" of the program against

this data base, -- the kinds of calls that can be used by the
program for processing data in this data base. This field is
four bytes long. It is left-justified. It does not change
from call to call., It gives the value coded in the PCB PROCOPT
parameter.

Possible values for the processing options are:

- Get function

- Insert function

- Replace function

Delete function

- All, includes the above four functions

- Required if D command code is to be used on get type or

insert function calls

F - Exclusive use of the data base or segment; to be used
in conjunction with 6, I, D, R, A, and L

L - Load function for data base loading (except HIDAMN)

S - Segments in ascending sequence only; to be used in
conjunction with 6, I, D, R, A, and L

GS- Get segments in ascending sequence only (HSAM only)

LS- Segments loaded in ascending sequence only (HIDAM, HDAM) ;

required for HIDAM

g™ g O+ @
|

2.18 IMS/VS Application Programming Reference Manual

Note: The L or LS processing options cannot be used in a single
PCB with a processing option of G, I, R, D, A or GS. GSAM
supports only G, L, GS, and LS, where S implies large-scale
sequential accessing requiring multi-buffering.

6. Reserved Area for DL/I. DL/I uses this area for its own internal
linkage related to an application program. This field is one
fullword (4 bytes)

7. Segment-Name-Feedback Area. DL/I fills this area with the name
of the last segment encountered which satisfied a level of the
call. When a retrieve is successful, the name of the retrieved
segment is placed here. If a retrieve is unsuccessful, the name
returned is that of the last segment, along the path to the
desired segment, that satisfied the search criteria. This field
contains eight bytes of character data. This field may be useful
in GN and GNP calls. If the status code is AI (data management
open error), the DD name is returmned into this area.

8. Length of Key-Feedback Area. This entry specifies the current
active length of the key feedback area described below. This
field is four bytes long.

9. Number of Sensitive Segments. This entry specifies the number
of segment types in the data base to which the application
program is sensitive. This would represent a count of the number
of segments in the logical data structure viewed through this
PCB. This field is one fullword (4 bytes).

10. Key-Feedback Area. DL/I places in this area the concatenated
key of the last segment encountered which satisfied a level of
the call. When a retrieve is successful, the key of the
requested segment and the key field of each segment along the
path to the requested segment are concatenated and placed in
this area. The key fields are positioned from left to right,
beginning with the root segment key and following the
hierarchical path. Keys for both key-sensitive and
data-sensitive segments are placed in the key feedback area.
When a retrieve is unsuccessful, the keys of all segments along
the path to the requested segment for which the search was
successful are placed in this area. See Figure 2-9.

The application program contains a mask of the PCB. All of the
actual PCBs associated with an application program are contained in a
Program Specification Block (PSB) accessible only to IMS/VS. There is
normally a one-to-one relationship between PSBs and application
programs. A PSB and the PCBs associated with it are created by a PSB
generation utility program. The result of PSB generation is to place
a compiled PSB in a library called the PSB library.

Note: A batch program PSB can contain an I/0 PCB as well as data base

PCBs. See the section "Using a Batch Region to Check Out Online Message
Programs" later in this chapter. See also the description of the CMPAT
option of the PSBGEN procedure in the IMS/VS Utilities Reference Manual.

Data Base Batch Programming 2.19

SKILL

key = STCLERK| STCLERK

NAME CONCATENATED KEYS

key = SMITH | STCLERKSMITH

EXPR EDUC
key = RW8 key = PHAR
STCLERKSMITHRWS STCLERKSMITHPHAR
Figure 2-9. Concatenated Keys

CALLS TO DATA LANGUAGE/I (DL/I)

Actual processing of IMS/VS data bases is accomplished using a set
of input/output functional call requests.

A call request is composed of a CALL statement with an argument
list. T™he argument list describes a particular processing function
and the hierarchic path to the element of data operated upon. One
segment or multiple segments along the hierarchical path of segments
may be operated upon with a single input/output call,

The arguments contained within any call request include the addresses
of the:

e Input/output function to be performed
e PCR
e Segment input/output vwork area

e Tdentification of the data segment (s) to be operated upon

Examples of how these I/0O processing calls might appear in COBOL,
PL/I, or Assembler Lanquage programs are given below, followed by a
list of definitions for all of the arguments. The following sections
describe the processing considerations of each argument.

For COBOL:

CALL *'CBLTDLI' USING [parmcount, Jfunction, PCB-name,
I/OArea, SSA-1,...SSA-n.

2,20 IMS/VS Application Programming Reference Manual

TN

‘.\“/,

(3

e

Por PL/T:
CALL PLIT™DLI (parmcount,function,PCB_ptr,I/OArea,...SSA_n);
For Assembler Language:

CBLTDLII
I

CALI |ASMTDLI!, ([parmcount, Jfunction, PCB-name, I/OArea,...SSA-n) [,VL]

parmcount

a binary fullword which is the address of the parameter count

or argument count of the number of arguments following. INS/VS
will accept either of two types of parameter lists. One type

is the explicit, in which the first arqument in the list is the
number of entries in the list. The other type is the implicit
in which the end of the list is indicated by the last entry inm
the list having the leftmost bit on. PL/I must always pass an
explicit list. COBOL always passes an implicit list., Either
+ype may be passed by Assembler Language. IMS/VS dynamically
determines the type of list for each call. This is done by
testing the leftmost byte of the first argument. If zero, the
arqgument is assumed to be a count of the number of entries in
the list and therefore explicit. If non-zero, it is assumed to
be an IMS/VS function and therefore an implicit list. This
means that even though COBOL will set on the leftmost bit in

the last entry, it is possible to make the list appear to IMS/VS
to be an explicit list merely by providing a count as the first
entry in the list., This can be handled conveniently by allowing
a common call list of maximum length and adjusting the first
entry, the count, to the current number of entries.

function

is the address of a DL/I CALL input/output function. This
argument is the name of a #-character field which describes the
desired I/0 operation. The DL/I functions are described briefly
below, and in full detail in the following section entitled
"Detailed Description of DL/I Processing Functions.”

name
is the address of a data base Program Communication Block (PCB).
See the section "PCB-name."

Note: If the standard form of the 0S/VS CALL macro is used,
this parameter must be a register which has‘ been loaded with
the address of the PCB.

I/0 Area

is the address of an I/0 work area name. See the section "I/0
Work Area."

SSA-1 to SSA-n (optional)

VL

are the addresses of Segment Search Arquments. There can be a
maximum of 1 SSA per level along the hierarchic path being
accessed. See the section "Segment Search Arquments"™ later in
this chapter.

should be designated in Assembler Language as shown if parmcount
is not used. This parameter sets the flag indicating the end
of a variable parameter list.

Data Base Batch Programming 2.21

Function

The I/0 functions specified in the "function" argument of the call
statement are the data services of DL/I. The functions provide a full

data processing repertoire of retrieving, updating, adding, and deleting

data.

Listed below are all of the DL/I call functions. The righthand
column indicates whether the call may be employed against data base
segments, message segments, or both. Message segments may be processed
in both message and batch message programs. Data base segments may be
processed by any program type.

Type of PCB

Meaning) Call_Function Which_Can_Be Used
GET UNIQUE GUbb Message or Data Base
GET NEXT . GNbb Message or Data Base
GET NEXT WITHIN GNPD Data Base only
PARENT

GET HOLD UNIQUE GHUD Data Base only

GET HOLD NEXT GHND Data Base only

GET HOLD NEXT GHNP Data Base only
WITHIN PARENT

INSERT ISRT Message or Data Base
DELETE | DLET Data Base only
REPLACE REPL Data Base only

PURGE PURG Message only

SNAP SNAP Message or Data Base
CHANGE CHNG Message only
CHECKPOINT CHKP Message only

RESTART | XRST Message only

DEQUEUE DEQb Message only
ROLLBACK ROLL Message only

LOG LOGb Message or Data Base
GET SCD GSCD Message or Data Base
STATISTICS STAT Data Base only

The calls listed above fall into two main categories: (1) Data Base
calls comprising GET, Insert (ISRT), Delete (DLET) and Replace (REPL)
calls, and (2) System Service calls, the last ten calls in the above
list. These calls are discussed separately, near the end of this
chapter. The manner in which each of the data processing functions
(that is, Get, Insert, Delete, Replace) is executed by DL/I depends on
a combination of several factors. These include control options
specified at DBDGEN for the data base being called, processing options

2.22 IMS/VS Application Programming Reference Manual

//\

M.

specified at PSBGEN for the data base being called, the other arguments
in the call (.or example, the SSAs), and the processing dynamics (that
is, the prece®ing calls, and the current position of DL/I in the data
hase). A detailed discussion of the DL/I execution logic of these
functions is preceded in this chapter by a description of the remaining-
arquments in the call: +the PCB, I/O Work Area, and SSAs.

The pcb-name is the third argument in the call statement. It is
the name of the block that identifies for DL/I which specific logical
data structure the application program wishes to process. This means
that the data the application program accesses at this point in the
program execution resides in the data structure identified by this
PCB-name.

See Fiqgure 2-8 for an example of how to code PCBs in COBOL and PL/I.

I/0 ¥Work Arsa

The I/0 work area name is the fourth argument (I/0 AREA) in the call
statement. The work area is an area in the application program into
which PL/I puts a requested segment, or from which DL/I takes a
designated segment., Only segments to which the program is
data-sensitive will be placed in or taken from the I/0 work area by
DL/T. If a common area is used to process multiple DL/I calls, it must
be as long as the longest path of segments to be processed. The work
area name points to the leftmost byte of the area. Segment data is
always left-justified within a work area.

When inserting or retrieving a hierarchical path of segments with
one call, the I/0 work area must bhe large enough to hold the longest
concatenation of segments to be retrieved or inserted.

COBOL Exampl

IDENTIFICATION DIVISION.
DATA DIVISION.
WORKING-SPORAGE SECTION.
01 TINPUT-AREA.

02 KEY PICTURE X(6).

N2 FIELD PICTURE X (84).

When the data base segment is to be placed in this area, the
following call statement is used, and the length of this work area is
90 bytes:

CALIL 'CBLTDLI' USING function, PCB-name, INPUT-AREA, SSA-1.

Data Base Batch Programming 2.23

-4

PL/I Exapmple:

In PL/I, the name used to specify the I/O area can be a major
structure, an array, a fixed-character string (for example, CHAR (100)),
adjustable character string (for example, CHAR(N)), a pointer to any
of these, or a pointer to a minor structure. The name cannot be a
minor structure or a VARYING character string.

DECLARE 1 INPUT_AREA /* major structure used as I/0 area*/
2 KEY CHAR(6),
2 FIELD CHAR(84) ;

.

CALL PLITDLI (parmcount,function,PCB_name,I_O_AREA,SSA1);

Segment Search Arguments

CONCEPT AND FUNCTION: The concept and the basic functions of SSAs
(segment search arguments) are described in this section of this
chapter. The fully augmented capabilities of SSAs are discussed in
the "Advanced Data Base Functions" chapter of this manuwal. A CALL
statement is considered '""qualified" or "unqualified" depending on the
presence or absence of SSAs within the CALL.

In concept, SSAs answer two processing needs: to relieve the
application from as much processing as possible, if the programmer so
dasires, or to provide IMS/VS with sufficient information to satisfy
the call. Hence SSAs are required for INSERT calls, optional for GET
calls, and only conditionally allowed for DELETE/REPLACE calls. The
rules for usage are described for each type of call function in the
section "Detailed Description of DL/I Processing Functions" of this
chapter.

The basic'function of the SSA permits the application program to
apply three different kinds of logic to a call:

e Narrow the field of search to a particular segment type, or to a
par*icular segment occurrence . '

e Request that one segment or a path of seaments (type or occurrence)
be processed;

e Alter the traversal procedure for this call or the data base
position for a subsequent call

The SSAs represent the fifth through last arguments (SSA-1 thru
SSA-n) in the CALL statement. There can be 0 or 1 SSAs per level, and
since IMS/VS permits a maximum of 15 levels per data base, a call can
contain from 0 to 15 SSAs. 'They do not appear directly in the CALL
statement arguments provided to DL/I, an SSA name is given which points
to an area in the user's program which contains the SSA.

2.24 IMS/VS Application Programming Reference Manual

N

STRUCTURE: The SSA may consist of from one to three main elements:
the segment name, and (as required) a command code(s), and one or more
qualification statements. In this chapter, only SSAs with one
gualification statement are considered. The three main elements of an
SSA are shown in the following diagram.

25t h]
| SEGMENT | COMMAND | QUALIFICATION STATEMENT (QS) i
| NAME | CODE Rttt et l bbbttt Bt bk Dl DDt 2 |
f | {Begin QS{Field Name{R.O.| Value | End QS |
[e e e e — s - |
] 8 bytes | vbl. | 1 | 8 1 2 11 - 255] 1 |
L e ot e e e e e e o e o it v e e = = = = - o = = " = - - = = - = - - A

SEGMENT NAME)
The segment name must be eight bytes long, left-justified with
trailing blanks as required. It is the segment name that
pertains to a specific segment type in the hierarchical structure
viewed through the associated data base PCB. The segment name
must be defined as sensitive to the using application program
in the PCB associated with the program. Only the names of
segments to which the program is key- or data-sensitive can be
specified.

COMMAND CODES
The command codes are optional. They provide functional
variations to be applied to the call for that segment type. &n
asterisk (*) following the segment name indicates the presence
of one or more command codes. A blank or a left parenthesis is
the ending delimiter for command codes. Blank is used when no
qualification statement exists. The designation "vbl" means
variable.

QUALIFICATION STATEMENT
The presence of a qualification statement is indicated by a left
parenthesis following the segment name or, if present, command
codes., Fach qualification statement consists of a field name,
a relational operator, and a comparative value.

Begin Qualification Character
The left parenthesis, (, indicates the beginning of a
qualification statement. If the SSA is unqualified, the 8-byte
segment name, or, if used, the command codes should be followved
by a blank.

Field Name
is the name of a field which appears in the description of the
specified segment type in the DBD. The name is eight characters
long, left-justified with trailing blanks as regquired. The
named field may be either the key field or a data field within
a segment. The field named is used for searching the data base,
and must have been defined in the DBD.

Data Base Batch Programming 2,25

RO = Relational Operator
is a set of two characters which express the manner in which
the contents of the field, referred to by the field name, are
to be tested against the comparative-value. The choice of
relational operator does not affect the starting point of the
search nor the order of search.

Operator Meaning

b= or EQ must be equal to

>= or GE must be greater than or equal to
<= or LE must be less than or equal to

b> or GT must be greater than

b< or LT must be less than

7= or NE must be not equal to

Note: BAs used above, the lowercase "b" represents a blank
character. The non-alphabetic operators above can be used in
the reverse combination, -- the single-character operators can
be in the first position followed by a blank, as well as in the
second position preceded by a blank.

Comparative value
is the value against which the contents of the field, referred
to by the field name, is to be tested. The length of this field
must be equal to the length of the named field in the segment
of the data base, that is, it includes leading or trailing blanks
(for alphameric) or zeros (usually needed for numeric fields)
as required. A collating sequence, not an arithmetic, compare
is performed.

Fnd Qualification Character
The right parenthesis ') ' indicates the end of the qualification
statement.

QUALIFICATION: Just as calls are "qualified" by the presence of an
SSA, SSAs are categorized as either "qualified" or "unqualified,"
depending on the presence or absence of a qualification statement.
Command codes may be included in or omitted from either qualified or
unqualified SSAs.

In its simplest form, the SSA is unqualified and consists only of
the name of a specific segment type as defined in the Data Base
Description (DBD). 1In this form, the SSA provides DL/I with enough
information to define the segment type desired by the call.

Fxample: SEGNAMED

Qualified SSAs (optional) contain a qualification statement composed
of three parts: a field name defined in the DBD, a relational operator,
and a comparative value. DL/I uses the information in the qualification
statement to test the value of the segment's key or data fields within
the data base and thus to determine whether the segment meets the user's
specifications. Using this approach, DL/I performs the data base
segment searching and the program need process only those segments
which precisely meet some logical criteria,

Example: SEGNAMEb(FIELDxxx>=VALUE)
The qualification statement test is terminated either when the test

is satisfied by an occurence of the segment type, or when it is
determined that the request cannot be satisfied.

2.26 IMS/VS Application Programming Reference Manual

AR

COMMAYD CODES: Both ungualified and qualified SSAs can contain one or
more optional command codes which specify functiomnal variations
applicable to either the call function, the segment qualification, or
the setting of parentage.

A complete discussion of command codes is presented in the "Data
Base Processing: Advanced Functions'" chapter in this manual. An
example of the D command code is presented for introductory purposes.
The D command code has a widespread, basic value in that it enables
the issuance of path calls., A path call enables a hierarchical path
of segments to be inserted or retrieved with one call. (A Ypath" was
defined earlier in this chapter as the hierarchical sequence of
segments, one per level, leading from a segment at one level to a
particular segment at a lower level.) The meaning of the D command
code is as follows:

e For retrieval calls, move the segment which satisfies this level
of the call (if data-sensitive to that segment type) to the user's
I/0 area. This allows the retrieval of multiple segments in a
hierarchical path in a single call. This type of call will
subsequently be referred to as a path call. The first through the
last segment retrieved are concatenated in the user's I/0 area.

Intermediate SSAs can be present without the D command code. If
so, these seqgments are not moved to the user's I/0 area. The
segment named in the PCB "segment name feedback area" is the
lowest-level segment retrieved, or the last level satisfied in the
call in case of a not-found condition.

Higher-level segments associated with SSAs having the D command
code will have been placed in the user's I/0O area even in the
not-found case. The D command code is not necessary for the last
SSA in the call since the segment which satisfies the last level
is always moved to the user's I/0O area. A processing option of
"pY must be specified in the PSBGEN for any segment type for which
a D command code will be/used.

e For insert calls, the D command code designates the first segment
type in the path to insert. The SSAs for lower-level segments in
the path need not have the D command code set.

An example of SSA construction using the D command code appears at
the end of this chapter.

Both command codes and qualification statements are discussed in
the "Data Base Processing: Advanced Functions" chapter of this manual.

GENERAL CHARACTERISTICS OF SEGMENT SEARCH ARGUMENTS (SSAs):

e An SSA may consist of the segment name only (unqualified). It may
optionally also include one or more command codes and a
qualification statement.

e SSAs following the first SSA must proceed down a hierarchical path.
All- SSAs in the hierarchical path need not be specified, that is
there may be missing levels in the path. DL/I will provide,
internally, SSAs for missing levels according to the rules given
later in this chapter.

Note: More specific statements which apply to the use of SSAs with a

particular function such as GU, or ISRT are provided later in this
chapter.

Data Base Batch Programming 2.27

Examples of SSAs with the DL/I call I/0O functions are included in
the section "Examples of Data Base Processing Using DL/I I/0 Functions"
later in this chapter.

PL/I Fxample

For application programs written in PL/I, the SSA can be specified
to PL/T as a major structure, an array, a fixed-character string (for
example, CHAR(100)), an adjustable character string (for example,

CHAR (N)), a pointer to any of these, or a pointer to a minor structure.
An example follows:

DCL SSA_PTR POINTER;
DCL 1 SSA,

SEGNAME CHAR(8),
SEGQUAL CHAR(1),
SEGFLDNAME CHAR (8),
SEGFLDVALUE CHAR(23),
SEGENDCHAR CHAR(1);
SSA_PTR=ADDR (SSA) ;

.

NN NN

CALL PLITDLI (THREE,'GUbb',PCB-PTR,SSA-PTR) ;

DETAILFD DESCRIPTION OF DL/I PROCESSING FUNCTIONS

Two terms need to be defined prior to discussing how DL/I executes
the processing functions of get, insert, delete, and replace. The
terms are "current position in the data base" and "segment on which
position is established at that level."

The current position in the data base is the starting position which
will be used by IMS/VS to satisfy any GN calls and any GNP calls.

The segment on which position is established at that level relates
to retrieving or inserting a particular segment occurrence. When a
segment occurrence is either retrieved or inserted, position is

segment occurrence.

It is assumed that the reader understands the meaning of various
IMS/VS terms used to describe data base structures (for example,
"physical child," "logical child", and "sensitivity"). Data base
structure is discussed in detail in the "Data Base Design

—— e

2.28 IMS/VS Application Programming Reference Manual

@,

AN
N’

GET CALLS

The GET calls are get unique (GUbb), get next (GNbb), get next within
parent (GNPb) and all forms of get hold (GHUb, GHNb, and GHNP).

THE GET UNIQUE CALLs (GUbb or GHUb) - DATA BASE: The get unique call

is used to retrieve a segment occurrence independent of current position
within the data base. The get unique call can therefore be used for
random processing, or it can be used to establish a position in the

data base for subsequent sequential processing., See GU rules for
exceptions.

THE GET NEXT CALLs (GNbb or GHNDb) - DATA BASE: The get next calls are
used to retrieve a segment or a path of segments by proceeding forward
from a previously established position within the data base until a
segment occurrence is found at each level which satisfies the search
criteria at that level. The SSAs determine the search criteria.

The basic difference between get next and get unique calls is the
initial position used in attempting to satisfy the call. The get unique
call will be satisfied by finding the earliest level-one (root) segment
in the logical data base which satisfies that level in the call and
then attempting to satisfy all lower levels with the first occurrence
of that segment type under its parent. The get next call, on the other
hand, proce=zds forward from the current position in the data base in
attempting to satisfy the current call. (An exception to this is the
F command code which allows the get next call to move back to the first
occurrence of this segment type under its parent.)

The execution of a get next call without SSAs returns the next data
sensitive segment occurrence within the data base relative to the
positioning of the data base during the previous GU, GN, GNP, ISRT,
REPL, or DLET call. An uninterrupted series of get next call statements
could be used to retrieve each segment occurrence from the data base,
beginning with the first, and proceeding sequentially through the last
for all sensitive segments. The parameters for this form of a get next
call are the call-function, db-pcb-name, and I/0 area.

The execution of a get next call with an unqualified SSA returns
the next segment occurrence of the segment type specified in the SSaA
relative to the current position in the data base.. An uninterrupted
series of get next calls with unqualified SSAs could be used to retrieve
all segment occurrences of a specified type in the data base.

A get next call following an ISRT or DLET call delivers the first
sensitive segment hierarchically above or to the right of the inserted
or deleted segment. That is, the position established by an ISRT call
i's the same as if the inserted segment had been retrieved with a get
unique or get next call., The position following a delete is immediately
following the deleted segment, or if the deleted segment had dependent
segments then immediately following those dependent segments (because
dependents of a deleted segment are also deleted).

The get next call only progresses forward from the position in the
data base established in the preceding call in an attempt to satisfy
the current call requirements. (An exception to this rule is the use
of the F command code, which allows backing up to the first occurrence
of this segment type under its parent. Also, this limitation does not
apply when "Multiple Positioning®" is in effect. Command codes and
multiple positioning are discussed in the "Data Base Processing:
Advanced Function" chapter of this manual.)

Data Base Batch Programming 2.29

THE GET NEXT-WITHIN-PARENT CALLS (GNPb or GHNP) -~ DATA BASE: The GNP
call is similar to the GN call except that segments which may satisfy
a GNP call are limited to the lower-level dependent segments of the
established parent.

Setting of Parentage

Parentage is set by means of a GNP call or a P command code under
the following conditions:

e Parentage is set at the issuance of the first GNP call that follows
a completely satisfied get next or get unique call. The parentage
i1l be set at the lowest level segment that was retrieved by the

preceding get next or get unique call. Parentage tha*t is
established by the first GNP call following a get next or get unique
call remains constant for successive GNP calls.

e parentage can be set at other than the lowest level segment that
was returned by a get next or get unique call by using the P command
code. For additional information, see the description of the P
command codz in the section "Command Codes" in the "Data Base
Processing: Advanced Functions" chapter of this manual.

Processing within Parentage

If a series of GNP calls without SSAs is issued, the calls retrieve
all segment occurrences under the segment on which parentage was
established going up and down hierarchical levels and crossing
boundaries in the structure beneath the parent for all sensitive
segments. A "not-found" condition results when DL/I encounters the
next segment occurrence that is at the same level as the parent or
higher.

If a GNP with SSAs is issued, it also is restricted to occurrences
of that segment type named in the SSA, and will return a not-found
condition if the requested segment cannot be found within the dependents
of the established parent.

Resetting of Parentage

Parentage is only conditioned for reset (actually reset by a GNP)
by the issuance of a get unique or get next call. Intervening ISRT,
DLET or REPL calls therefore do not affect parentage. A GNP call
(qualified or unqualified) which results in a GE status code (not-found
condition) does not affect parentage.

Notes:

1. If no parent has been established on the GNP following a GU or GN,
a GP status 1is returned for the GNP call. No parent has been
established if the prior GU or GN call was not satisfied and did
not contain a P command code, or if the call was partially satisfied
but none of the satisfied levels contained a P command code.

2. Although the ISRT call does not affect parentage, it should be
| noted that position following an ISRT call is established
immediately following the inserted segment. For this reason, if
the inserted segment is at a level equal or closer to the root than
the parent, then succeeding GNP calls following the ISRT cannot be
satisfied.

2.30 IMS/VS Application Programming Reference Manual

()

VS

"

TN

The following rules apply to GET calls:.
1. The call may or may not have SSAs.

2. For any level, the SSA may or may not include command codes or
a qualification statement.

3. Tf an SSA without a qualification statement (unqualified SSAi)
is specified, any occurrence of that segment type under its
parent will satisfy the call.

4, A get unique call with an unqualified SSA at the root level will
attempt to satisfy the call by starting to scan from the
beginning of the data base.

5. If the application program does not specify SSAs for one or more
of the levels above the lowest level specified, then DL/T will
process the call with the following implied SSAs used to fill
the missing levels.

a. GET NEXT or GET NEXT WITHIN PARENT CALLS -
ungualified SSAs are always implied for missing levels.

b. GET UNIQUE CALLS -

(1) If the prior call established position on an implied
segment type, an SSA qualified with current position is
assumed. If a parent level qualified SSA is provided
for other than the parent's current position, an
ungqualified SSA is assumed by DL/I for all missing levels
below that parent.

(2) If the prior call did not establish position on any
implied segment type, then DL/I assumes an unqualified
SSA at that level.

THE GET HOLD CALLS (GHUb, GHNb, GHNP) - DATA BASE: To change the
contents of a segqment in a data base, through a DLET or REPL call, the
program must first obtain the segment. It then changes its contents
and requests DL/I to place the segment back in the data base.

When a segment is to be changed, this must be indicated to DL/I at
the time the segment is obtained. This indication is given by using
the get hold calls. These function codes are like the standard get
function, except the letter "H" immediately follows the letter “G" in
the code; that is, the hold form of the standard get next within parent
(GNPb) is GHNP. There are three get hold calls:: GHUDb, GHNb, and
GHNP. They function like the standard get calls. They also indicate
to DL/I that the segment can be changed or deleted. (fhen a hold call
is issued in a batch message, or message processing program, the segment
retrieved is enqueued single update. No enqueue is issued in a batch
mod=a.)

After DL/I has returned the requested segment to the user, one or
more fields, but not the key field, in the segment can be changed.

Data Base Batch Programming 2.31

After the user has changed the segment contents, he is ready to cal
DL/I to return the segment to the data base. If, after issuing a get
hold call, the program determines that it is not necessary to change
the retrieved segment, the program may proceed with other processing,
and the enqueue will be freed when positioning changes because of a.
subsequent call to the PCB,

Fxamples of get calls appear at the end of this chapter.

INSERT CALLS

The DL/I insert call is used for two distinct purposes: It is used
to initially load the segments for creation of a data base. It is also
used in HISAM, HDAM, and HIDAM organizations to add new occurrences of
an existing segment. type into an established data base. The processing
options field in the PCB indicates whether the data base is being added
to or loaded. The format of the insert call is identical for either
use.

When loading or inserting (except in a path insert), the last SSA
specifies the segment being inserted. To insert a path of segments,
the D command code is set for the highest level segment in the path;
this SSA must be unqualified.

Lower-level unqualified SSAs designate the other segment types in
the path. The segment corresponding to the SSA with the D command code
must be the first segment in the I/0 area, with the other segments in
the path concatenated behind it.

Tp to the level to be inserted, the SSA evaluation and positioning
for an insert call is exactly the same as for a GU call. For the level
to be inserted, the value of the sequence field in the segment in the
user I/0 area is used to establish the insert position.

If there is no sequence or key field for the segment, or if a
non-unique sequence field was defined, then the "first", "last", or
“"here" insert rules are used. If the "here" insert rule is used, the
F or L command code will also be used if specified. See the following
chapter for the meanring of these command codes.

Rules for Insert Calls

These rules apply to ISRT calls:
1. The call must have at least one unqualified SSA.

2. If a D command code is not used (that is, it is not a path call),
the lowest-level SSA specifies the segment being inserted and
this SSA must be unqualified.

3. If a D command code is specified in an SSA, that SSA and all
lovwer level SSAs must be unqualified.

4, Since the positioning for SSAs above the level of the segment (s)
to be inserted is identical to GU calls, rules 3, 4 and 5 under
GRT call apply for inserting SSAs above the level to be inserted
just as they apply to GU calls.

2.32 IMS/VS Application Programming Reference Manual

"

Using Insert Calls for Opdating

The ISRT call can be used with other DL/I segment processing calls
in a message processing program. In this environment, the ISRT call
is used to place new occurrences of existing segment types into an
established HISAM, HDAM, and HIDAM data base. Of course, the ISRT call
can also be used for updating by batch and batch message processing
progranms.

When inserting segments into an existing data base involving logical
relationships, a logical child segment cannot be inserted into a path
with its parents and/or dependent segments. A logical child or logical
child/logical parent combination cannot be inserted in a path call.

Yhen inserting a segment into an existing data base, qualified SSAs

for higher levels are normally provided to establish the position of
the segment to insert.

Using Insert Calls for Loading a Data Base

When inserting to a hierarchical sequential (HSAM) data base, ISRT
means to load an output data base. The PCB processing option L is
used. Option A is invalid for HSAM, Inserts to an established HSAM
data base cannot be made without reprocessing the whole data base or
by adding to the end, and must be in sequence.

In a message processing program, it is not possible to perform a
HDAM, HISAM or HIDAM load. The program to load a HDAM, HISAM and HIDAM
data base must be a DL/I batch program.

When loadihg a data base, higher level qualified SSAs for the parents
of the segment being loaded are not necessary, since there is no
position to establish. They may, however, be provided and, if provided,
the comparative-value in the qualification statement must equal the
key field values of the parents of the segment being loaded.

For HISAM and HIDAM organizations, IMS5/VS uses the high-values key
(X'FF..FF'). A return code of LB will be given on any attempt to insert
*his key.

Examples of ISRT calls appear at the end of this chapter.
DELETE AND REPLACE CALLS

Use of Delete and Replace Calls

THE DELETE CALL (DLET) - DATA BASE: To delete the occurrence of a
segment from a data base, the segment must first be obtained by issuing
a GHbb call through DL/I. Once the segment has been acquired, the DLET
call may be issued. .

If DL/T calls which use the same PCB intervene between the GHbb call
and the DLET call, the DLET call is rejected. Quite often a program
may want to process a segment prior to deleting it. This is permitted
as long as the processing does not involve a DL/I call which refers to
the data base PCB used to get the segment. However, other PCBs may be
referred to between the GHbb and DLET calls.

DL/TI is advised that a segment is to be deleted when the user issues
a call that has the function DLET. When the DLET call is executed,
the specified segment occurrence may not be physically deleted, but
simply flagged'as being deleted. The deletion of a parent, in effect,

Data Base Batch Programming 2.33

deletes all the segment occurrences beneath that parent. If the segment
being deleted is a root segment, all dependent segments under that root
are deleted., All subordinate data set groups must be available for
processing prior to the delete call being issued. If they are not, an
AT ségtus code is returned. All physical dependents of the deleted
segnént are deleted, regardless of the logical data structure used by
the program. Furthermore, deletion may carry across logical
relationships.

If the DLET call follows a GHbb call which retrieved a path of
segments, and there is no SSA in the call, then the highest level
segment obtained on the prior call and all its children are deleted.
One SSA is allowed on DLET calls following path GHbb calls. It must
be for one of the segment types retrieved on the prior hold call. The
SSA specifies the highest-level segment to be deleted. This segment
and its children will be deleted, but higher level segments obtained
on the prior GHbb call will not be deleted.

The segment to be deleted must occupy the area referred to by the
I/0 work area in the DLET call. If the previous GHbb call returned
multiple segments, the segment(s). to be deleted should occupy the same
relative position in the I/0 area as on the retrieve call.

For a program which processes hierarchical sequential (HSAM) data
bases where each record is rewritten on a new data base, the DLET call
has no meaning and is rejected as an invalid call function. If a
segment occurrence is to be deleted, it is simply not written to the
output data base.

THE REPLACE CALL (REPL) - DATA BASE: The purpose of the REPL call is

to allow a segment, or path of segments, that has been retrieved through
a GHbb call and modified through program processing, to be replaced in
the data base. The segment or segments to be modified and replaced
must first be obtained by a GHbb call. Yo intervening calls involving
the associated data base PCB may be made between the GHbb and the REPL
call,. If this rule is violated, the REPL call is rejected.

In the modification of a segment to be replaced in the data base,
care must be taken not to modify the segment key field. If modification
of the key field is attempted, the REPL call is rejected. All data,
including fields which are indexed through secondary indexes, but with
the exception of the key(s) of the logical child or the concatenated
key of the logical parent, may be changed. This subject is treated in
greater detail in the IMS/VS System/Application Design Guide.

The segment or segments to be replaced must occupy the area referred
to by I/0 work area in the REPL call., The segment or segments in the
DL/T buffer area is overlaid with the I/0 work area in the REPL call.

When a GHbb path call. is made, DL/I "remembers" the format of the
segments concatenated in the user I/0 work area. If a REPL call without
SSAs follows a path call, all segments in the I/0 area for which the
user has replace sensitivity will replace the corresponding segments
in the data base. To preclude having segments replaced in the path,
SSAs with N command codes can be used to prevent DL/I from replacing
corresponding segments in the data base.

For a program which processes hierarchical sequential (HSAM) data
bases where each record is rewritten on a new data base, the REPL call
has no meaning. If a segment occurrence is to be replaced, it is simply
placed in the output data base with an ISRT call.

When a held segment is updated with a REPL or DLET call, the enqueue

level is raised from single update to exclusive (batch message or
message processing only).

2.34 IMS/VS Application Programming Reference Manual

/‘\‘
v

-

Rules for Delete and Replace Calls

L2 4] -

The following rules apply to both the DLET call and the REPL call:

1. The segment, or path of segments, to be deleted or replaced must
have been obtained with a get hold call (GHUb, GHNb, or GHNP).

2. Consecutive replace calls to the same segment are allowed, but
no intervening calls to the same data base PCB are allowed
between the get hold call and the DLET or REPL call.

3. The sequence or key field of the segment, or path of segments,
to be deleted or replaced may not be changed in the user's I/0
work area. For a logical-child segment, three field types must
not be changed:

a. The physical-twin sequence field

b. The logical-twin sequence field (the sequence field specified
for the virtually-paired logical child, if any):

c. The portion of the logical child which is the concatenated
key of the logical parent.

4. Segment search arquments (SSAs) are only applicable to DLET or
RFPL calls when the prior get hold call retrieved a path of
segments. When this situation applies, one unqualified SSA for
one of the segments in the path is allowed for DLET calls, and
multiple unqualified SSAs for segments in the path are allowed
for REPL calls.

Delete Reguests Issued against a Logical Data Base

belete calls differ from other DL/I calls in that their effects are
generally propagated down to the dependent segments of a deleted '
segment.

For segments participating in logical relationships, DL/I provides
various options for propagation. These options are specified in the
DBD generation and allow for various degrees of selective deletion of
segment types that may be reached from alternative paths. Options are
also provided to allow the delete request to be accepted or rejected,
depending on the status of segments participating in logical
relationships,

The data base administrator should be specifically involved in
setting up the delete processing capabilities for programs working with
logical data bases. This is .of particular importance when multiple
logical relationships exist, or when a segment can be reached from its
dependent segment types through logical relationships.

Imnplications of delete propagation and delete rule options are
discussed further in the IMS/VS System/Application Design Guide.

Examples of DLET and REPL calls appear at the end of this chapter.

FORMAT OF SEGMENTS IN THE I/O AREA

Fixed-Length Segqments

Within the structure of a data base, the INS/VS segment format
consists of a prefix portion and a data portion. The prefix serves a

Data Base Batch Programming 2.35

structural purpose which is transparent to the application program.
Within the prefix are all the necessary identity, usage, and pointer
data required by IMS/VS for control and traversal purposes. (A detailed
discussion can be found in the IMS/VS System/Application Design Guide.)
It is only the data portion of the segment which an application program
obtains from or returns to a data base. The length of fixed-length
segments are defined at DBD generation. This length refers to the

length of the data portion.

Variable-Length Segments

The format of variable-length segments, both in the data base and
in the application I/0 area, differs from the format of fixed-length
segments in only one respect: The first two bytes of the data portion
contain the binary value of the length of the data portion of the
segment (including the 2-byte length count). Since this 2-byte field
describes the segment length as the user sees it, the minimum valid
value in this field is two. Specification of a value less than 2 at
execution time will be ignored, and a default value of two will be
assumed. The following illustrations show the format of variable-length
segments in the application I/0 area:

Variable-length Physical Segment

11-1 1 Segment Data {

Variable-Length Concatenated Logical Segment

{ LP/PP LC 1§ LP/PP |

111-2 | Concat Key! Data | 11-3|Dbata |
g g g g gy 1
LC = logical child
LP = logical parent
PP = physical parent
11-2 = segment length for LC
11-3 = segment length for LP/PP

Segment retrieval, including path calls, follows normal retrieval
rules. After the segment has been accessed, replacement of existing
data can occur with a REPL call. If the segment length has not changed,
a one-for-one replacement takes place. If the length of a segment is
increased or decreased during a replace operation, the new segment
length must be placed in the segment-size field by the user. For an
insert operation, the user places the segment size in the appropriate
field, followed by the corresponding segment data, and the ISRT call
is 1ssued

Since the segment-size field is actually a part of the segment, all
starting positions for fields are in reference to the first position
of the segment-size field in a segment, not the start of the user data.
Except for the required 2-byte binary field describing the segment
length, the content and data alignment, as well as the existence of
any defined data fields, ‘are the responsibility of the user.
Segment-sequence fields, if defined, must always exist in their
DBD-defined position and cannot be altered by REPL calls. The length
field of & segment can be referenced in an SSA by defining a 2-byte
hexadecimal field with a starting position of one.

2.36 IMs/Vs Application Programming Reference Manual

2

a

TERMINATING THE APPLICATION PROGRAM

At the completion of processing of any application program (message
or batch), control must be returned to the IMS/VS control facility.
The RETURN or GOBACK statement must be given in every program as
follows:

ANS COBOL PL/I ~ ASSEMBLER

GOBACK. RETURN; RETURN (14,12),RC=0

The RETURN or GOBACK statement in a batch program returns control
to the INS/VS control facility. However, the IMS/VS control facility
subsequently returns control to the operating system job terminator
after DL/I resources are released.

The RETURN or GOBACK statement in a message processing program causes
control to return to the IMS/VS control facility in a message processing
regqion. The IMS/VS tontrol facility records accounting information
and passes to the IMS5/VS scheduling facility a request for rescheduling
in the message processing region.

If the program is terminating normally, the RETURN statement from
an application program written in Assembler Language must have the
contents of Register 15 equal to zero.

Since IMS/VS links to application programs, the return to IMS/VS
causes storage occupied by the application program to be released. If
non-IMS/VS initiated I/0 operations are outstanding against open DCBs,
various ABENDS in I0S and POST may occur. Final termination of the
job step may also produce abends in CLOSE,.

Data Base Batch Programming 2.37

EXAMPLES OF BATCH-PROGRAM STRUCTURES

ANS COBOL Batch-Program Structure

Figure 2-10 outlines the fundamental parts of a batch program. Each
item should be considered when designing a batch program. This program
retrieves data from a detail file to update a master data base. Neither
the detail nor the master is a teleprocessing data base. A similar
structure must be used to create a teleprocessing or batch processing
data base in a batch region.

REF
NO.
ENVIRONMENT DIVISION.
.
°
DATA DIVISION.
WORKING-STORAGE S ECT ION.
77 FUNC-DB-IN1 PICTURE XXXX VALUE *‘GUDbDb*.
1 77 FUNC-DB-IN2 PICTURE XXXX VALUE 'GHUDb',
77 FUNC-DB-OUT PICTURE XXXX VALUE 'REPL'.
77 FUNC-DB-NEXT PICTURE XXXX VALUE °*GHND'.
77 CT PICTURE S9(5) COMPUTATIONAL VALUE +4,
L J
01 SSA-NAME. '
01 MAST-SEG-TIO-AREA.
01 DET-SEG-IN-AREA.
LINKAGE S ECTION.
4 01 DB-PCB-MAST.
01 DB-PCB-DETAIL.

w N

PROCEDURE DIVISION.

5 ENTRY 'DLITCBL' USING DB-PCB-MAST,
DB-PCB-DETAIL.
[)
6 CALL 'CBLTDLI' USING PUNC-DB-IN1, DB-PCB-DETAIL,
DET-SEG-IN-AREA, SSA-NAME.
[J
7 CALL 'CBLTDLI' USING CT, FUNC-DB-IN2,
DB-PCB-MAST, MAST-SEG-IO-AREA, SSA-NAME,
8 CALL 'CBLTDLI' USING FUNC-DB-NEXT, DB-PCB-MAST,
MAST-SEG-IO-AREA.
[J
9 CALL 'CBLTDLI' USING FUNC-DB~OUT, DB-PCB-MAST
MAST-SEG-IO-AREA.
L]
10 GOBACK.
1 COBOL-LANGUAGE INTERFACE

Figure 2-10. ANS COBOL Batch-Program Structure

2.38 INS/VS Application Programming Reference Manual

SN
1‘ //

The following explanation relates to the reference numbers along

the left side of Figure 2-10.

1.

10.

A 77 level or N1 level working storage entry defines each of the
CALL functions used by the batch program. Each picture clause is
defined as four alphameric characters and has a value assigned for
each function (for example, GUbb).

An 71 level working storage entry defines each segment search
argument used by an application program. An example of an SSA
definition, with lowercase "b" representing blank, is:

01 SSA-NAME.

02 SEG-NAME PICTURE X (8) VALUE *ROOTbbbb’.

D2 SEG-QUAL PICTURE X VALUE '(°',

02 SEG-KEYNAME PICTURE X(8) VALUE 'KEYbbbbb?',
02 SEG-OPERATOR PICTURE XX VALUE 'b=t,

N2 SEG-KEY-VALUE PICTURE X(6) VALUE ‘vvvvvv'.
02 SEG-END-CHAR PICTURE X VALUE ')°'.

Vhen this COBOL syntax is decoded, it will be in a data string as
follows:

ROOThbbb (KEYbbbbbb=vvvvvy)

An 01 level working storage entry defines the program segment I/O
work area.

An 01 level linkage section entry dsscribes the DB~PCB entry for
every input or output data base. No TP PCBs can be included. It
is through this linkage that a COBOL program may access the status
codes after a DL/I call.

This is the standard entry point in the procedure division of a
batch program. After IMS/VS control has loaded and completed the
PSB for the program in the batch region, IMS/VS gives control to
this entry point. The PSB contains all the PCBs used by the
program. The USING statement at the entry point to the batch
program must contain the same number of names in the same sequence
as there are PCBs in the PSB.

7.
These are typical CALls used to retrieve data from a data base
using a qualified search argument.

Item 7 also shows the use of another argument (parm-count) in the
call made from COBOL to DL/I. This additional explicit argument

is a binary counter (fullword) of the number of remaining arguments
in the current DL/Y call. This allows the user to set up the
parameters of a call in the working storage section of his data
division and to truncate or expand this call through the use of

the binary counter.

This is a typical call used to retrieve data from a data base using
an unqualified search. This CALL is also a HOLD call for a
subsequent delete or replace.

CALL 'CBLTDLI' USING call-funétion, db-pcbname, work-area.

This is used to update data from a batch program in a data base.

GOBACK causes the batch program to return control to INS/VS control
facilities.

Data Base Batch Programming 2.39

11. A lanquage interface module (DFSLIOC?) is provided by IMS/VS. This
module must be link-edited to the batch program after compilation
and provides a common interface to IMS/VS and DL/I.

The language interface function of IMS/VS is reenterable, and
compatible with that of TMS/360 Version 2. 1In order to take
advantage of the reenterable capability of the IMS/VS language
interface, application modules must be re-link-edited, replacing
the TMS/360 Version 2 language interface with the IMS/VS language
interface. The INS/360 Version 1 language interface is not
available in IMS/VS. ©Existing IMS/360 Version 2 programs can be
executed without re-link-editing them with the IMS/VS lanqguage
interface.

2.40 IMS/VS Application Programming Reference Manual

N
}
/

C

(—\

o e e s o

Figure 2-11 outlines the fundamental parts of a PL/I optimizing
compiler batch program. Each item should be considered when designing
a batch program. This program retrieves data from a detail file to
update a master data base. Both the detail and the master PCBs
represent data bases.

REF
YO.
/* -- */
/% ENTRY POINT x/
W oo om o mn e o an o e e e o > o o = @ = o = = o - - - - - - */

1 DLITPLI: PROC(MAST_PTR,DETAIL_PTR) OPTIONS (MAIN) ;
2 DCL FUNC_GU CHAR(Y4) STATIC INIT ('GUY),

DCL FUNC_GHU CHAR(4) STATIC INIT ('GHU'),
DCL FUNC_REPL CHAR(U4) STATIC INIT ('REPL'),
DCL FUNC-GHN CHAR(4) STATIC INIT ('GHN'),

3 DCL SSA_NAME

4 DCL DET_SEG_IO_AREA...:

5 DCL 1 DB_PCB_MAST BASED (MAST_PTR) ,...;

DCL 1 DB_PCB_DETAIL BASED(DETATL_PTR),...;
6 DCL THREE FIXED BINARY (31) STATIC INITIAL(3);
DCL FOUR FIXED BINARY (31) STATIC INITIAL (4);
7 CALL PLITDLI(FOUR,FUNC_GU,DETAIL_PTR,DET_SEG_IO_AREA,
SSA_NAME) ;
8 CALL PLITDLI (FOUR,FUNC_GHU,MAST_PTR,MAST_SEG_IO_AREA,
SSA_NAME) ;

9 CALL PLITDLI (THREE,FUNC_GHN,MAST_PTR, MAST_SEG_IO_AREA);
10 CALL PLITDLI (THREE,FUNC_REPL,MAST_PTR,MAST_SEG_IO_AREA);
11 END DLITPLI; ’

12 PL/I LANGUAGE INTERFACE

FPigure 2-11. PL/I optimizing Compiler Batch-Program Structure

The following explanation relates to the reference numbers along
the left side of Pigure 2-11:

1. This is the main standard entry point to a PL/I batch program.
After the IMS/VS control program has loaded and completed the PSB
for the program in the batch region, it gives control to this entry
point. The PSB contains all the PCBs used by the program. The
entry-point statement of the batch program must contain the same-
number of names in the same sequence as there are PCBs in the PSB.

Data Base Batch Prograaming 2.41

5.

10.

11.

2.42

These declarations define the call functions used by the PL/I batch
program. Fach character string is defined as four alphameric
characters, with a value assigned for each function (for example,
GU). Other constants can be defined in the same manner.

This declaration defines storage for SSAs. In the following
example, the SSA is declared as a structure; other methods can be

used (see the example under the section "General Characteristics
of Segment’ Search Arguments" in Chapter 3 of this manual).

Example: (lower case "b" represents blank)

DCL 1 SSA_NAME STATIC,

2 SEG_NAME CHAR(8) INIT(*ROOT'),

2 SEG_QUAL CHAR(1) INIT(' (')

2 SEG_KEY_NAME CHAR (8) INIT(*KEY'),

2 SEG_OPERATOR CHAR(2) INIT('b="),

2 SEG_KEY_VALUE CHAR (6) INIT (*vvvvvv'),
2 SEG_END_CHAR CHAR(T) INIT(')") s

When the above PL/I syntax is decoded, it will be in a data string
as follows:

ROOTbbbb (KEYbbbbbb=vvvvvv)

The I/O0 area is most efficiently passed to DL/I as a fixed-length
character string or through a pointer variable; other methods can
be used, however, (see the PL/I example under the section "I /O Work
Area" earlier in this chapter). An example follows.

DCL MAST_SEG_IO_AREA CHAR(256) ;

A major structure declaration describes the DB-PCB entry for every
input or output data base. It is through this description that a
PL/I program. may access the status codes after a DL/I call.

This is a descriptive statement used to identify a binary number
(fullword) that represents the parameter count of a call to DL/I.
The parameter count value equals the remaining number of arguments
following the parameter count set off by comnmas.

8.
These are typical calls used to retrieve data from a data base
using a qualified search argument.

This is a typical call used to retrieve data from a data base using
an unqualified search argument. This call is also a HOLD call for
a subsequent delete or replace.

This call is used to replace data from a DL/I batch program on to
a data base.

This END statement causes the batch program to return control to
the IMS/VS control facilities. Another statement that causes the
batch program to return control to the IMS/VS control facilities
is the RETURN statement. The RETURN statement may or may not
immediately precede the END statement.

IMS/VS Application Programming Reference Manual

12. A language interface (DFSLIO00) is provided by IMS/VS. This module
must be link-edited to the batch program and provides a common
interface to IMS/VS and DL/I.

The language interface function of IMS/VS is reenterable and
compatible with that of IMS/360 Version 2. To take advantage of
the reenterable capability of the IMS/VS language interface,
application modules must be re-link-edited, replacing the INMS/360
Version 2 language interface with the IMS/VS language interface.

The IMS/360 Version 1 language interface is not available in IMS/VS.
Existing INS/360 Version 2 programs can be executed without
re-linking them with the IMS/VS language interface.

Assembler lanquage Batch-Program Structure

The entry point to an Assembler Language program which utilizes DL/I
may have any desired name. However, Register 1, upon entry to the
application program, contains the address of a variable~length fullword
parameter list. Each word in this list contains a PCB control block
base address which must be saved by the application program. The
high-order byte of the last word in the parameter list has the 0 bit
set to a value of one to indicate the end of the list. The PCB
addresses from this list are subsequently used by the application
program when executing DL/I calls.

A1l DL/T calls from an Assembler Language program should be executed
with the CALL macro instruction. Register 1 must be constructed prior
to execution of the CALL statement to point to the variable~length
fullword parameter list. This may be done through operands of the CALL
macro instruction. The parameters in this list are addresses of:

e The input/output function

e The PCB address associated with data base

e TInput/output work area

e 7Zero or more segment search argument identifiers
A The entry point for the CALL macro instruction is CBLTDLI. The
IMS/VS-supplied language interface module (DFSLIO00) must be link-edited
with the compiled Assembler language program.

Application programs used in the batch DL/I environment can use both

DL/I for data base processing and standard 0S/VS data management for
non~data base input/output operation.

STATUS CODES FOR DL/I I/O CALLS

At the completion of a DL/I call, a status code that indicates the
results of the call tha*t was made is presented to the application
program in the PCB status-code field.

The user should follow each call in his program with statements
which examine the status codes returned in the PCB to determine if the
requested action was completed properly.

The IMS/VS installation should normally provide application progranms
with a standardized status code checking procedure to be applied after
each call. -

Appendix A provides a quick reference of DL/I status codes. The
status codes are described in full detail in Appendix B.

Data Base Batch Programming 2.43

/

STATUS CODES FOR SUCCESSFUL COMPLETION OF GET CALLS

If the GET call was successfully completed, the 2-byte status code
is blank or GA, or GK; otherwise, another status code applies.

The GA status code is a warning indication. When a GN or GNP call
without SSAs is issued, DL/I may return this status code to indicate
the crossing of hierarchical boundaries. This status code indicates
that DL/I has passed from one segment in the logical data structure at
level X to another segment in the logical data structure at level ¥,
where Y is less than X. 1In other words, it has proceeded upward in
the hierarchy toward the root segment. This code is not returned to
the using application program when a GU, GN with SSAs, or GNP with SSAs
is issued, because the user is explicitly asking, through the presence
of the SSAs, to traverse a known path in the data base. The GA status
code is thus a warning to the user of the GN or GNP call that DL/I has
‘taken him implicitly from a segment at one level of the hierarchy to
a segment at another, higher, level of the hierarchy.

Similarly, DL/I returns the GK status code to GN or GNP calls without
SSAs to indicate the crossing of a lateral boundary from one segment
type to another., GK (like GA) is not returned to the using application
program if a GU, GN or GNP with SSAs is issued. The GK status code is
a warning that DL/I has proceeded implicitly from the last segment
occurence of one segment type to the first segment occurence of the
next segment type, at the same level in the hierarchy.

STATUS CODES FOR VALID EXCEPTIONAL CONDITIONS IN THE DATA BASE

When the GET call is not completed due to exceptional but valid
conditions in the data base, either the GB or the GE status code is
returned. 6B indicates that DL/I has encountered the end of the data
base. GE means that DL/I has not found the segment occurence specified
in the GET call.

POSITION IN THE DATA BASE

PCB AND POSITION FOR "NOT-FOUND" CALLS

The terms "current position in the data base" and "segment in which
position is established at that level" were defined earlier in this
chapter under "Detailed Description of DL/I Processing Functions."
These terms are particularly relevant and require further clarification
when discussing the PCB and position in a data base for "not-found"
calls.

The segment on which position is established at that level is
relevant for GU and ISRT calls which do not specify all levels in the
call and also for GU, GN and ISRT when the U and V command codes are
used. The position of the parent is relevant when F and L command
codes are used, and the position of the parent is relevant if the P
command code was specified for the parent and a GNP call follows. The
current position in the data base is the same as the segment on which
position is established at the lowest level in the call when the call
is fully satisfied. They may differ, however, when the call is not
fully satisfied.

BEarlier in this chapter (see the section "PCB Masks"), it was stated
that the segment level, segment name, and key feedback areas of the
PCB always reflect the last segment and keys for higher levels which
satisfied a level of the call. TIf the call is completely satisfied,
this shows the lowest level segment requested on the call. If the call

2.4y IMS/VS Application Programming Reference Manual

0

is not completely satisfied, it shows the last segment which satisfied
a level of the call. The PCB therefore reflects the lowest level
segment on which position is established. Position is also established
for all parent levels, if any exist for that segment.

No position is established on the segment that could not satisfy
the request and on lower level segments.

If level-one (root) SSA could not be satisfied, the segment name is
cleared to blank, and the level and key-feedback length are set to
zero. The key-feedback area is never cleared. Segment-key field values
are concatenated in this area as the segment levels are satisfied. The
segment name in the PCB or the key-feedback length field may be used
to determine the length of the relevant data in the key-feedback area.
Contents of the feedback area beyond the length value is indeterminate
as the feedback area is never returned to zero from previous calls.

In considering current position in the data base, it must .be
remembered that DL/I must first establish a starting position to be
used in satisfying the call. This starting position is the current
position in the data base for GN calls and is a unique position normally
established by the root SSA for GU and ISRT calls. DL/I will then scan
segment occurrences in a forward direction based on the logical
hierarchical data base structure. For "found" calls without SSAs, the
position in the data base is clearly the position of the lowest level
segment retrieved in the call. For "not-found" calls, the current
position in the data base is immediately preceding the earliest segment
encountered in attempting to satisfy this call which could be used by
DL/I to determine that the call could not be satisfied. The segment
which will be returned if an unqualified get next call is now issued
is the segment which indicated the not-found condition, above.

This not-found position, then, is dependent on the SSAs used in the
call. 1If all SSAs are qualified with an equal operator (=) and a key
field, then the not-found position is fairly easily determined. 1If,
however, some of the SSAs are qualified on data fields or use
greater-than operands (>), the not-found position may be further in
the data base than when equal operands (=) are used on key fields. 1If
the application program is depending on the not-found position, then
it must realize that this position is based on the CALL function
(particularly GNP functions) and on the SSAs used in the CALL.

If an SSA is qualified on a sSequence field and the sequence field
is defined as non-unique {(more than one segment occurence of this type
may have the same key value), the retrieval search for a segment to
meet an equal qualification will stop when the first occurence with
the gqualified value is found. If lower level SSAs for this call cannot
then be satisfied, the next occurence with the same non-unique sequence
field value will be retrieved and an attempt will be made to satisfy
the lower level SSAs. When attempting to satisfy a level which is
qualified on a non-unique sequence field and a segment with a higher
key is encountered, the search will stop. That segment with the higher
key will be the not-found position and the next GN call will start from
that point. In the above situation, if the end of a segment-twin chain
is reached before a higher-key value.is found, the position is assumed
to be at the next segment hierarchically above or to the right.
Therefore, all dependents of the segment type with the non-unique
sequence field have been passed and cannot be retrieved with any kind
of GN call (*F command code excepted) unless an intervening GU or ISRT
call is issued for repositioning. ’

To reestablish known position in a data base after an unsuccessful

GN call which was qualified on a data field or a non~unique sequence
field, the application program can issue a fully qualified GU call.

Data Base Batch Programming 2.45

The following clarifications apply to the current position in the
data base for special situations:

e If no current position exists in the data base, the assumed current
position is the start of the data base. This applies to the first
call issued by either a batch or online progranm.

o If the end of the data base is encountered, the assumed current
position to be used by the next call is the start of the data base.

ACCESS TO MULTIPLE DATA BASES

An application program can access data segments in more than one
physical or logical data base. The program may also access more than
one logical data structure in the same data base. The use of multiple
data structures means that the PSB loaded from the PSB library at
initiation of an application program has multiple data base PCB blocks
within it. Upon entry to the application program, each PCB name is
provided, to the application program (see Figqure 2-12).

IMS/VS

0s/vs PSB LIBRARY '
v PSB
B1
IMS/VS 1;c -~
CONTROL c

A/P LIBRARY

A/P

Figure 2-12, Accessing Multiple PCBs‘in an IMS/VS Batch Environment

The use of more than one data base PCB requires the ENTRY or
PROCEDURE: statement in the application program to contain multiple PCB
names. The sequence of PCB names in the ENTRY or PROCEDURE statement

must be the same as their sequence in the PSB associated with the
application progranm.

Access to multiple logical data structures in the same data base
(via the specificaiton of multiple PCBs against that data base) enables
' appliecation programs to:

* Achieve parallel processing

e Simplify replace and delete call sequences when the action could
only be determined after other segments have been examined

e Be used by the data base administrator for a proper choice of
internal DL/I procedures in using 0S/VS data management routines

2.46 IMS/VS Application Programming Reference Manual

®

N

N

/‘\

Application PsSB Data Base

A1
PCB-X
A1 X
PCB-Y
PCB-Z
Y
A-2
PCB-X
A2
z
PCB-Z — '

Figure 2-13. Multiple Logical Data Structures for the Same Data Base

In Figure 2-13, the PSB for application program A~1 shows that the
application is processing three logical data structures, one from each
of three different data bases., The PSB for application program A-2
also contains PCBs for three logical data structures. Two of these
logical structures, however, identify the same data base. They may or
may not identify different segment types or processing optionms.

SYSTEM SERVICE CALLS

System service calls control the system rather than transmit data.
The following system service calls are available to IMS/VS application
programs:

CHECKPOINT (CHKP). The CHKP call informs IMS/VS that the user has
reached a logical synchronization point and that the program can be

- restarted at this point. IMS/VS can optionally invoke an 0S checkpoint.

The current position is maintained in GSAM data bases.

RESTART (XRST).. The XRST call requests IMS/VS to restore
checkpointed user areas and reposition GSAM data bases for sequential
processing if a checkpoint ID for restarting has been supplied by the
call or in the JCL. XRST is only valid for a batch or BMP region.

DEQUEUE (DEQb). The DEQ call is used to make available for general
use any segments previously enqueued by the user with the Q command
code in an SSA of a data base call.

ROLLBACK (ROLL). The ROLL call is used to request that any data
base updates be backed out and output messages generated by the caller
not be sent. It is treated as a user program abend, but the program
and transaction are not stopped.

LOG (LOGb). The LOG call allows the user to put information on the
system log.

Data Base Batch Programming 2.47

GET SCD (GSCD). The GSCD call obtains the address of the IMS/VS
System Contents .Directory (SCD).

STATISTICS (STAT). The STAT call is used to obtain various
statistics from DL/I.

The DEQb and ROLL calls are only valid from a message or batch
message processing region. The CHKP call is valid from any IMS/VS user
region, but the action taken varies with the type of region. The LOG)D
call is valid from any IMS/VS region. If issued from a batch region
which has no system log, no action is taken.

The CHKP, DEQ, and LOG system service calls must reference the I/0
PCB. The YI/0 PCB for a batch program is defined at PSBGEN time by use
of the CMPAT option. For additional information on the CHMPAT optionm,
see the IMS/VS Utilities Reference Manual.

CHECKPOINT (CHKP)

¥hen DL/I receives a CHKP call, it writes to the data base all
buffers that were modified by the user. R log record is also created
which contains the checkpoint identification passed with the call. The
position of each data base PCB is set to the beginning of the data
base. See the section "Batch Checkpoint Restart Considerations" in
the "Application Program Design" chapter of the System/Application

——m Sl =

If CHKP is issued from either a message or a batch message processing
region, the following additional actions are taken:

e A1l data base resources enqueued for this user are released.

L]

e If the user program references a transaction code, the message
queue for that transaction is checkpointed. After the checkpointing
action is completed, a GU call to the input message queue is
internally generated, and a new message (if one is available) is
returned in the work-area location.

The CHKP call is used in a message processing region in conjunction
with multiple-mode scheduling of transactions. It allows the user to
determine the grouping of messages for backout and restart purposes.

For single mode scheduling or multiple mode scheduling where no grouping
is necessary, Program Isolation will handle all checkpoint functionms.
The grouping IMS/VS uses is either that each message is unique or that
all messages read at a given schedule of the program are considered to
be connected. The basic CHKP call allows the user to specify groupings
in between.

Batch or batch-message programs can use either the basic CHKP call
or the symbolic CHKP call to coordinate logical synchronization points
with the IMS/VS recovery log. If the basic CHKP call is used, the
following rules apply:

e The user can request that IMS/VS issue an 0S checkpoint for the
user's region.

e The user cannot issue an 0S5 checkpoint.

2.u8 IMS/VS Application Programming Reference Manual

)

N

\
SN

_ Examples of the Basic CH

P Call

The format of the basic CHKP call for an ANS COBOL program is:

CALL *'CBLTDLI' USING [parmcount,] call-func,
IopPCB-name, I/O-area [,chkp-func].

The format of the basic CHKP call for a PL/I program is:

CALL PLITDLI (parmcount,call-func,IOPCB-name,I/O-area
[,chkp~-func));

The format if the basic CHKP call for an Assembler Language program
is:

CALL ASMTDLI ([parmcount, Jcall-func,IOPCB-name,
I/0-area ,lchkp-func' Y(,VL]
chkp-DCB

parmcount
is the address of a binary fullword containing the number of
parameters that follow (required for PL/I).

call-func
is the address of the call function "CHKP".

IOPCB-name
is the address of the I/O PCB.

I/0-area
is the address of the I/0 area. In applications that access
the IMS/VS message queues, the CHKP call implies a message GU,
and a message can be returned. 3In batch or batch-message
programs, the I/0O area must contain the 8-byte checkpoint
identification. This is used for operator or programmer
communication and should consist of EBCDIC characters.

chkp-func (optional)
is the address of an 8-byte area containing the value "OSVSCHKP".
If this parameter is specified and DD statements are provided
for an 0S checkpoint data set, IMNS/VS will provide DCBs for the
user and issue an 0S/VS checkpoint for the user's region before
proceeding with the DL/I CHKP call.

Note: The optional parameters "chkp-func" and "chkp~DCB" are mutually
exclusive and are valid only for batch or batch-message programs written
in Assembler language.

The symbolic CHKP call is used in conjunction with the XRST call
and is valid only if the batch or batch-message program issued a restart
(XRST) call. The following functions are provided by the symbolic
CHKP call:

e The fully-qualified key of the last record processed by the
application program for each IMS/VS data base is recorded on the
IMS/VS recovery log.

o User-specified areas (for example, application variables, control
tables, and position information for non-IMS/VS data sets) are
optionally recorded on the IMS/VS recovery log.

Data Base Batch Programming 2.49

Examples of the Symbolic CHKP Call

The format of the symbolic CHKP call for an ANS COBOL program is:

CALL 'CBLTDLI' USING [parmcount, Jcall-func, IOPCB-name, :
I/0-area-len,I/O-area S
Ce 1st-area-1en 1st-area,...,nth-area-len,nth-areaj.

The format of the symbolic CHKP call for a PL/I program is:

CALL PLITDLI {(parmcount,call-func,IOPCB-name,I/O-area-len,
I/0-areaf ,1st~area-len,ist-area,...,nth-area-len,nth-areal);

The format of the symbolic CHKP call for an Assembler Language
program is:

CALL ASMTDLI ([parmcount,] call-func,IOPCB-name,I/O-area-len,
I/0-area[,1st-aera-len 1st-area,...,nth-area-len,
nth- area])[VL]

parmcount, call-func, IOPCB-name, and I/O-area
are the same as for the basic CHKP call.

I/o-aréa-len _
is the address of the length of the largest I/0 area used by
the application program.

1st-area-len (optional)
-is the address of the length of the first area to checkpoint.

1st-area (optional)
is the address of the first area to checkp01nt

nth-area-len. (optional) is the address of the length of the nth area N
to checkpoint. '

te: A checkpoint can be taken on a maximum of seven areas

=7 .

nth~area (optional)
is the address of the nth area to checkpoint.

Yo
(n

Note: A checkpoint can be taken on a maximum of seven areas
(n=7) .

In addition to the status codes returned from GU calls, the following
status code is also returned from the CHKP call:

XD IMS/VS is terminating; further DL/I calls must not be
issued.

The application program should test the status code returned from
a DL/Y CHKP call. If the status code indicates that IMS/VS is
undergoing a checkpoint freeze (code "XD%"), the application should
terminate without issuing further DL/I calls. (This code will only be
returned to a batch-message application.) If another DL/I call is
issued, the application program will abend.

The user must re-establish his p051t10n in all IMS/VS data bases
(except GSAM) after return from the checkpoint.

2.50 IMS/VS Application Programming Reference Manual

RESTART (XRST)

Opon receiving this call, IMS/VS checks whether a checkpoint
identification (ID) has been supplied in the PARM field of the EXEC
card or in the work area pointed to by the XRST call. If no ID has
been supplied, the call is treated as a NOP, except that a flag is set
to trigger storing of repositioning data and user areas on subsequent
CHKP calls.

If the checkpoint at which restart is to occur has been supplied,
the IMS/VS batch restart routine reads backward on the log defined in
the //IMSLOGR DD statement to locate the checkpoint records.

User-program areas are restored. If the user does not specify main
storage locations, IMS/VS obtains storage for him from subpool 0.
Addresses and lengths of the areas are returned in the area list
specified by the call.

Each GSAM data base that is active at the checkpoint is repositiomed
for sequential processing by issuing a GU for the last record processed
at that point. Data bases being loaded are not repositioned except
for GSAM data bases defined to use BSAM accessing. No data is returned
from this automatic GU., Key feedback information is provided in the
PCB for each data base that is active at the checkpoint. The user
program must reposition itself on all non-GSAM data bases, just as it
must do after taking a checkpoint.

xamples

The format of the XRST call for an ANS COBOL program is:

CALL 'CBLTDLI' USING {parmcount, Jcall-func,IOPCB-nane,
I/0-area-len,vwork-area[,1st-area-len, ist-area,...,
nth-area-len,nth-area].

The format of the XRST call for a PL/I program is:

CALL PLITDLI (parmcount,call-func,IOPCB-name,I/O-area-len,
work-areaf ,1st~area-len,1st-area,...,nth-area-len,
nth-areal]);

The format of the XRST call for an Assembler Language progranm is:

CALYL ASMTDLI ([parmcount, }call-func,IOPCB-name,I/O-area-len,
work-area[,1st-area-len,1st-area,...,nth-area-len,
nth-area]J) (VL]

parmcount
is the address of a binary fullword containing the number of
parameters that follow (required for PL/I).

call- func
is the address of the call function "XRST".

JOPCB-name
is the address of a pointer to either the I/O0 PCB or the "dummy"
I/0 PCB supplied by the CMPAT option during PSBGEN,

I/0-area-len

is the address of the length of the largest I/0 area used by
the user progranm.

Data Base Batch Programming 2.51

" work-area

is the address of a 12-byte work area. This area should be set
to blanks (X'uU0') before the call and tested on return., If the
program is being started normally, the area will be unchanged.
If the program is being restarted from a checkpoint, the ID
supplied by the user and specified in the PARM keyword on the
EXEC statement in his CHKP call will be placed in the first
eight bytes.

If the user wishes to use his own restart method, the XRST call
can be used to reposition GSAM data bases by placing the
checkpoint ID in this area before issuing the call. This ID
can be either the 8-byte left-aligned user-supplied ID, or the
12-byte YYDDD/HHMMSS ID.

1st-area-len

is the address of the length of the first area to be restored.

1st-area

is the address of the first area to be restored.

nth-area-len

is the address of the length of the nth area to be restored.

Note: The maximum number of areas that can be restored is seven
(n=7) .

nth-area

is the address of the nth area to be restored.

The number of areas specified on the XRST call must be equal to
the maximum specified on any symbolic CHKP call.

2. The lengths of the areas specified on the XRST call must equal the
maximum lengths of the corresponding areas (in sequential order)
of any symbolic CHKP call.

3. The XRST call is issued only once and is the first request that is
made to IMS/VS.

4, The maximum number of areas that can be restored is seven (n=7).

DEQUEUE (DEQb)

DEQ is used by the user's program to release resources that had
‘previously been reserved with the Q command code in an SSA. If the
resource to be freed had been upgraded to the exclusive-use level as
a result of being modified since being reserved with the Q call, the
resource will be released by the next synchronization point. 1If,
however, the resource to be freed had not been upgraded as described
above, it will be released (dequeued) to other users who request it.
(The Q command code is described in the following chapter.)

The PCB passed with the DEQ call must be the I/0 PCB. It is used
only for returning a status code.

The work area must contain the ID of the queue cglass to be released.

2.52 IMS/VS Application Programming Reference Manual

The format for an ANS COBOL program is:

CALL 'CBLTDLI' USING deg-func, pcb-name, work-area.
The format for a PL/I program is:

CALL PLITDLI (THREE,DEQ_FUNC,PCB_NAME,WORK_AREA) ;
The format for an Assembler Language program is:

, ASMTDLI
CALL | CBLTDLI| , (PARMCOUNT, DEQ FUNC, (RP), (RW))

Rp 1
is the register pointing to the PCB, and Rw is the register
point to the work area

DEQ issues only the "bb" status code.

ROLLBACK (ROLL)

ROLL is issued by a user program when it determines that some
invalidity exists in the processing it has done. All data bases and
message activity (except EXPRESS) since the last sync point are backed
out. This call is recognized and processed in the user region and
therefore no parameters other than the function code are required.

A user 0778 abend is generated in the user region., This abend code
is recognized in the control region and special abend action is taken.
All DL/I activity is backed out for the current message (or group of
messages) back to the last synchronization point. No output messages
are sent, except those inserted with the express facility. The input
message (or group of messages) is dequeued. The transaction will be
rescheduled, and processing will continue with the next message. If
the 'ROLL' call is issued by a DL/I (independent batch) program, it
will cause the user 0778 abend. The DL/I activity must be backed out,
however, using the IMS/VS Data Base Backout utility, See the discussion
of the "Data Base Backout Utility" in the "Data Base Recovery" chapter
of the IMS/VS Utilities Reference Manual.

The format for an ANS COBOL program is:
CALL 'CBLTDLI' USING roll-func.
The format for a PL/I program is:
CALL PLITDLI (ONE,ROLL_FUNC) ;
The format for an Assembler Language program is:

lASMTDLI
CALL { CBLTDLI| , (PARMCOUNT, ROLL)

No status codes are returned for a ROLL call.

Data Base Batch Programming 2.53

LOG (LOGbh)

The LOG call causes a user record to be written to the system log.
The record must be of the following format: N

{f LL | 22 | C | VARIABLE | S
L T - r 4

LL
is a halfword containing the length of the message.

When PL/T is used, the LL field must be defined as a binary
fullword. The PL/I user must place the length of the text to
be written in this field. The value must represent the total
of:

2 for the count field (even though it is physically 4 bytes
in the PL/I environment)

2 for the 27 field "
1 for the C field
n for the variable field
YAA
is a halfword of zeroes.
is a 1-byte user code which must be equal to or greater than

X'A0' in value.

The length of the area must be 4 bytes less than the length of the
LRECL for the systenm log. TN

The PCB passed with the LOG call must be the I/0 PCB. It is used RN
only for returning a status code.

The format for an ANS COBOL program is:

CalLL YCBLTDLI' USING log-func, pcb-name, record-area.
The format for a PL/I program is:

CALL PLITDLI (THREE,LOG_FUNC,PCB_NAME, RECORD_AREAM) ;

The format for an Assembler Language program is:

I ASMTDLI,
CALL CBLTDLI|, (PARMCOUNT, LOGFUNC, (Rp), (Rr))

RP s -
is the register pointing to the first PCB in the list of
PCBs passed at entry, and Rr is the register pointing to
the record aTea.

2.54 IMS/VS Application Programming Reference Manual

There are three possible status codes from the LOG call:

1. "ATH The record length in the LL field is too long. No
logging is done.

2, weL" The log code is not a valid user code.

3. ‘"bhb" Everything is fine,

GET SCD (GSCD)

The GSCD call is used to obtain the addresses of the IMNS/VS System
Contents Directory (SCD) and Partition Specification Table (PST). It
is suggested that any program that references these control blocks use
the DSECTS provided by macros in_ the macro library for the IMSAVS
system. The macro for the SCD DSECT is ISCD SLDBASE=0; the macro for
the PST DSECT is IDLI PSTBASE=0.

Example

An example of a GSCD call format for an Assembler Language programn
is:
lASMTDLI
CALL CBLTDLI|, ([parmcount,]Jfunction,pcb-name,work area){,VL]

parmcount
is 3 if provided

function
is the address of the call function 'GSCD!

pcb-name
is the address of any valid PCB

work area
is the address of an 8-byte area. The call will place the
address of the SCD in the first 8 bytes and the address of the
PST in the second 4 bytes.

VL
VL must be specified if parmcount is not used.

Note: When running a MSG or BMP region type, using either the VS2
Operating System or the VS1 Operating System with fetch protect
specified, the GSCD call functions normally. The operating systen,
however, does not permit a program in one region (the MSG or BMP region)
to access data in another region (the CTL region). Therefore, the
addresses returned on the GSCD call cannot be used in either a MSG or
BMP region type. An OCYH system abend results if they are used in the
above situation. Since the SCD and PST are in the same Operating Systenm
region as the application program when running in a DLI or DBB region
type, these addresses can be used by a DLI or DBB region.

Data Base Batch Programming 2.55

STATISTICS (STAT)

The STAT call is used to obtain statistics in various forms from
the IMS/VS system.

The format of the STAT call for a COBOL program is:

CALL °'CBLTDLI' USING [parmcount, Jcall-func,pcb-nanme,

I/0-area,stat-func.

The format of the STAT call for a PL/I program is:

CALL PLITDLI (parmcount,call-func,pcb-name,I/0O area,

stat-func) ;

The format of the STAT call for an Assembler Language program is:

CALL ASMTDLI, ([parmcount,] call-func,

parmcount
is

pcb-name, I/0-area,stat-func){ ,VL]

an optional parameter except for PL/I. If present it is the

address of a binary fullword containing the value 4.

call- func
is

pcb-name
is

the address of the call-function STAT.

the address of a data basé PCB. This PCB is used to pass

status back to the application program. The 0S access method
used by the data sets associated with this PCB are not related

to

the type of statistics that will be returned from the STAT

call.

I/0-area
is
to

stat- func
is

the address of an area in the application program large enough
hold the statistics requested.

the statistics function and the address of a 9-byte area

whose contents describe the type and form of statistics required.
The first % bytes define the type of statistics desired and the
5th byte defines the format to be provided. The remaining 4
bytes should contain EBCDIC blanks. If the stat-function
provided is not one of the defined functions, then an AC status
code is returned to the user.

Stat Functions - ISAM/0SAM Buffer Pool
For ISAM/0SAM buffer pool statistics, the following are the

possible values for the stat-function parameter and the format
of the data that will be returned to the application progranm.
If there is no ISAM/0SAM buffer pool present, then a GE status
code will be returned.

IMS/VS Application Programming Reference Manual

(\\

)

DBASF

DBASU

This function value will provide the full ISAM/OSAM data base
buffer pool statistics in a formatted form. The application
program I/0 area must be at least 360 bytes. Three 120 bytes
formatted (for printing) records are provided; two heading lines
and one line of statistics.

The format of the data is as follows:

BLOCK FOUND READS BUFF OSAM BLOCKS NEW CHAIN
REQ IN POOL ISSUED ALTS WRITES WRITTEN BLOCKS WRITES
nnnnnni NDNRNOND NnNDbn NONDDNN RONDONND DRODNDRDD QnDnn nnonn

WRITTEN POOL BUFF BOFFS RET Isam IsaM
ON CHNS COMPACT COMB MOVED BY KEY GT NXT SETLS ERRORS
nnnunnnn nhnnnnh nhNnNnn NNONDNNNn Nnnnn DNnnnn nhannn non/nn

BLOCK REQ
FOUND IN POOL

numrber of block requests received
number of times the block requested

was found in the buffer pool

number of OSAM reads issued

number of buffers altered in the pool
number of OSAM writes issued

number of blocks written from the pool
number of new blocks created in the pool
number of chained OSAM writes issued
numnber of blocks written on OSAM chains
number of times the buffer pool

was compacted

READS ISSUED
BOFF ALTS

OSAM WRITES
BLOCKS WRITTEN
NEW BLOCKS
CHAIN WRITES
WRITTEN ON CHNS
POOL COMPACT

| | | R T I P 1 B 1}

BUFF COMB = number of buffers combined during pool
compactions

BUFF MOVED = number of buffers moved during pool
compactions

RET BY KEY number of ISAM records retrieved by key

non

ISAM GT NXT number of ISAM get next calls received by

the buffer handler

ISAM SETLS = number of ISAM SETLs issued by the huffer
handler
ERRORS = number of write error buffers currently in

the pool / the largest number of errors in
the pool during this execution

This function value will provide the full ISAM/0SAM data base
buffer pool statistics in an unformatted form. The application
program I/0 area must he at least 72 bytes. Eighteen fullwords
of binary data are provided. The first word is a count of the
number of words that follow; the second through eighteenth words
are the statistic values in the same sequence as presented with
the DBASF function value above.

Data Base Batch Programming 2.57

DBASS
This function value will provide a summary of the ISAM/OSAM data
base buffer pool statistics in a formatted form. The application
program I/O area must be at least 180 bytes. Three 60-byte
formatted (for printing) records are provided.

The format of the data is:
DATA BASE BUFFER POOL: SIZE nnnnnnn

REQ1 nnnnn REQ2 nnnnn READ nnnnn BISAM nnnnn WRITES nnnnn
KEYC nnnnn COMP nnnnn COMB nnnnn MOVES nnnnn ERRORS nn/nn

SIZE = buffer pool size

“REO1 = number of block reguests

REQ2 = number of block requests satisfied in the pool
plus new blocks created

READ = number of read requests issued

BISAM = number of BISAM reads issued

WRITES = number of OSAM writes issued

KEYC. = number of retrieve by key calls

COMP = number of pool compactions

COMB = number of buffers combined by compaction

MOVES = number of buffers moved by compaction

ERRORS = number of permanent errors now in the

pool / largest number of permanent errors
during this execution

Stat Functions - VSAM Buffer Subpools
Since there may be several buffer subpools for VSAM data bases,
the STAT call is iterative when requesting these statistics.
The first time the call is issued, the statistics for the subpool
with the smallest buffer size will be provided. For each
succeeding call (without intervening use of the PCB), the
statistics for the subpool with the next larger buffer size will
be provided. The final call for the series will return a GA
status code in the PCB and the statistics returned will be totals
for all subpools, If there are no VSAM buffer subpools present,
a GE status code will be returned.

2.58 IMNS/VS Application Programming Reference Manual

VBASF

VBASU

This function value will provide the full VSAM data base subpool
statistics in a formatted form. The application program I/0
area must be at least 360 bytes. Three 120-bytes formatted (for
printing) records are provided; two heading lines and one line
of statistics. Each successive call will return the statistics
for the next subpool.

The format of the data is:

BUFPFER HA NDLER STATISTICS
BSIZ NBUF RET RBA RET KEY ISRT ES ISRT KS BFR ALT BGWRT SYN PTS
nnnk nnn nonnnnn NONDRANN DNONODD DOONRAND NNRAODDD DRNOnnnn nonnnon

VSAM STATISTICS
GETS SCHBFR FOUND READS USR WTS NUR WIS ERRORS
NNNNNNn NONNRND DNRORDR NORDDNAD DODOODOD RNDDRAD nn/nn

BSIZ = the size of the buffers in this subpool
In final total this is the total size of
all subpools.

NBOF = the number of buffers in thls subpool
In final total this is the total number
of buffers in all subpools.

RET RBA = the number of retrieve by RBA calls
received by the buffer handler

RET KEY = the number of retrieve by key calls received by
the buffer handler

ISRT ES = the number of logical records inserted into ESDSs

ISRT KS = the number of logical records inserted into KSDSs

BFR ALT = the number of logical records altered in this
subpool '

BGWR'T = the number of times the Background Write function
was invoked by the buffer handler

SYN PTS = the number of synchronization calls received by
the buffer handler

GETS = the number of VSAM GET calls issued by the huffer
handler

SCHBFR = the number of VSAM SCHBFR calls issued by the
buffer handler

FOUND = the number of times VSAM found the control
interval requested already in the subpool

READS = the number of times VSAM read a control interval
from external storage

USR WTS = the number of VSAM writes 1n1t1ated by IMS/VS

NUR WTS = the number of VSAM writes initiated in order to
make space in the subpool

ERRORS = the number of write error buffers currently in

the subpool / the largest number of write errors
in the subpool during this execution

This function value will provide the full VSAM data base subpool
statistics in an unformatted form. The application program I/O
area must be at least 72 bytes. Eighteen fullwords of binary
data are provided for each subpool. The first word is a count

of the number of words that follow; the second through eighteenth
words are the statistics values in the same sequence as presented

~with the VBASF function value above.

Data Base Batch Programming 2.59

VBASS

EXAMPLES

This function value will provide a summary of the VSAM data base

subpool statistics in a formatted form. The application program
I/0 area must be at least 180 bytes. Three 60-byte formatted
(for printing) records are provided. :

The format of the data is:

DATA BASE BUFFER POOL: BSIZE nnnnnnn
RRBA nnnnn RKEY nnnnn BFALT nnnnn NREC nnnnn SYN PTS nnnnh
NMBUFS nnn VRDS nnnnn FOUND nnnnn VATS nnnnn ERRORS nn/nn

of
of
of
of
of
of
of
of

the size of the buffers in this VSAM subpool

retrieval requests by RBA
retrieval requests by key

logical records altered

new VSAM logical records created
synchronization point requests
buffers in this VSAM subpool

VSAM control interval reads

control .intervals VSAM found in the

subpool thru lookaside i

BSIZE =

RRBA = number
RKEY = number
BFALT = number
NREC = number
SYN PTS = number
NMBUFS = number
VRDS = number
FOUND = number
VATS =

ERRORS =

number of VSAM control interval writes
number of permanent write errors now in the

subpool / largest number of errors in this
execution (

OF DATA BASE PROCESSING USING DL/I I/O FUNCTIONS

In the examples which follow, a very simplé form of qualified SSAs

is ysed.

chapter.

Consider Pigure 2-14,

SSA qualification is discussed in detail in the following

The name of the skill segment type is
SKILLINV, and its key field name is SKILCODE. The SSA for GU of the
skill segment with skill code equal to artist appears as:

SKILLINV (SKILCODEb=ARTIST)

The portion of the SSA within the parentheses is called the
qualification statement.

For unique retrieval or addition of a root segment, only one SSA

must be provided.

request.

The unique retrieval or insertion of a dependent
segment normally requires multiple SSAs to be provided imn the functional
Each SSA in the list describes a segment to which the

dependent segment to be operated upon is dependent. The SSAs for a
.given DL/I call must be in proper hierarchical relationship. If the
generic name of a name segment type is NAME, its key field name is
Note that there is an employee with a key field value of ADAMS
whose parent is a skill segment having a key field value of ARTIST.
Unique retrieval is accomplished by two SSAs included within the
parameter list of the DL/I call:

NAME.

SKILLINV (SKILCODEb=ARTIST)

NAMEbbbb (NAMEbbbbb=ADANMS)

The definition of the data base to be operated upon is provided in
each DL/I call by a data base PCB. All data base PCBs used by a
particular application program for data base operations are contained
within the PSB for that program. At execution time, the base addresses
of the PCBs are passed to the application program. Each PCB contains
the 1- to B8-byte name of the DBD associated with the data base.

2.60

IMS/VS ‘Application Programming Reference Manual

7N

SKILL

(ARTIST)
NAME
(SMITH)
NAME
(JONES)

NAME

(ADAMS)

EXPERIENCE EDUCATION EXPERIENCE EDUCATION EDUCATION
(6185) (70342) (7428) (70397) (8497)

Figure 2-14, logical Data Base Record Structure

DATA BASE CREATION

A data base is created by an application program issuing DL/I calls
to insert data base records presorted by the key field of the root
segment. This is a requirement of HSAM, HISAM, and HIDAM databases.

An HDAM data base load can receive sorted or unsorted keys of data base
records.

In an HSAM, HISAM, and HIDAM data base, when a data base record is
composed of more than the root segment, all segments within the data
base record must be presorted by their hierarchical relationship and
key-field value and must be inserted in their hierarchical ordecr.
Consider the process of inserting the segments of a skill inventory
data base record described in Figure 2-14., Pirst, the Skill (root)
segment is inserted. The name segment for Adams is inserted next.

Then the experience segment of Adams is inserted, followed by the
education segment of Adams. This continues with the name segment
(Jones), its experience segment and education segment, then name segment
(Smith) and its education segment. If this data base record represented
the seqgments of data associated with skill X, the segments to be
inserted into the data base next would be those associated with SKILLINV
X + 1.

The insert function is used to create or load (recreate or
reorganize) a data base. Prior to the execution of a DL/I call to
cause segment insertion, the segment to be inserted must be moved into
a segment input/output work area and the proper list of an SSA or SSAs
nrust be assembled. Let us assume that we are creating the skill
inventory data base and we are about to load the segments of data
associated with SKILL value ARTIST. The first four segments to be
loaded would be skill, name (Adams), experience (Adams), and education
(Adams). The associated segment search argquments and work area contents
for these four DL/I ISRT calls are as follows. Note that lowercase
b's indicate blanks."-

Data Base Batch Programming 2.61

Skill Segment Insertion

SSa1 - SKILLINV

Hork Area - (containing skill segment)

! | f
1 Key Field | Data Field|

Key -ARTIST
Name Segment Insertion
[SSA1 - SKILLINV(SKILCODEb=ARTIST)] OPTIONAL

SSA2 - NAMEDDDDD

Work Area - (containing name segnent)

{ { {
| Key Field | Data Field|

Key =ADAMS

Experience Seqment Insertion

SKILLINV (SKILCODEb=ARTIST) OPTIONAL

SsA1 -
SSA2 - NAMEbbbD (NAMEbDbbb=ADANS) OPTIONAL
SSA3 - EXPERIEND

Work Area - (containing experience segment)

1 | { |
| Key Field { Data Field| Data Field}

Key =6185

Education Segment Insertion

SSA1 - SKILLINV(SKILCODEb=ARTIST) OPTIONAL
SSA2 - NAMEbbbb (NAMEbbbbb=ADAMS) OPTIONAL
SSA3 - EDUCbbbbD

Work Area - (contains education segment)

| | { |
| Key Field | Data Field] Data Field|j
Key -70362

Notice that the SSAs of a DL/I call for inserting a segment into a
data base may describe the complete hierarchical path to the segment.
It is not necessary, however, to describe the complete path. DL/I
assumes existing position when no SSA is specified. When creating a
data base, therefore, it is only necessary to supply the segment name
of the segment being inserted. Notice that the last SSA within each
ISRT call does not (and must not) include the qualification statement

2.62 IMS/VS Application Programming Reference Manual

portion. The qualification information is taken from the image of the
segment in the input/output work area.

A hierarchical path of segments may be inserted into the data base
with one call by concatenating the segments to be inserted in the I/O
area and supplying a corresponding list of unqualified segment search
arquments. The SSA for the first segment in the path to be inserted
by this call must have the D command code set, The hierarchical path
must proceed downward in the hierarchy, with each segment in the I/0
area being a child of the segment preceding it in the I/0 area. The
example shown below illustrates the insertion of the first six segments
shown in Figure 2-15 by using a path of insert calls.,

SSA - SKILLINV*DD
SSA - NAMEbbbbDDb

SSA - EXPERIEND
Work Area (containing Skill, Name, and Experience segments)

{
] SKILL SEGMENT

‘
] | | |]
{KEY FIELD |{DATA FIELD (KEY FIELD |DATA FIELD {KEYFIELD|DATA|DATA |

KEY=ARTIST KEY=ADANS KEY=6185

Education Segment Insertion

SSA - EDUCbbbbb

Work Area (containing Education segment)

KEY=70342

Data Base Batch Programming 2.63

SSA - NAMEbbbb*Db
SSA - EXPERIEND

Work Area (containing Name and Experience segments)

KEY=JONES KEY=7428

All data base creation and reorganization must be performed in a
batch processing region of IMS/VS. If the physical organization is
HDAM, presorting by key field of the root is not required for data base
creation. HISAM, HSAM, and HIDAM all require presorted root segments
by key field sequence,

DATA BASE RETRIEVALS

The retrieval of segments within a data base is accomplished by the
three GET call functions: get unique, get next, and
get-next-within-parent segment. Get unique provides for the retrieval
of a specific segment by direct reference into the data base. Get next
provides for sequential segment retrieval. Usually the get next
function is used after a get unique or get next which has provided
"positioning"” to a unique segment within the data base. A get next
may be used, however, without positioning being supplied by a previous
get unique or get next. If DL/I has no position established within a
data base when a get next call is issued, the request is satisfied by
proceeding from the beginning of the data base. The
get-next-within-parent segment allows sequential retrieval of all
segments subordinate to a parent segment. An example, using Figure
2-14, would be all experience and education segments within the skill
inventory data base for a given skill code and employee number. The
parent segment is a unique name segment, and parentage must have been
previously established with a get unique or get next request.

Once all the experience and education segments for a given skill
cod2 and employee number have been retrieved by a succession of get
next within parent requests, an indication is returned to the
application program. This indication provides definition of the end
of subordinate segments for the particular skill code and employee
number.

In addition to direct retrieval of a unique segment and sequential
retrieval of segments, an ability to sequentially skip from one segment
to another of a common type is provided. Assume that it becomes
necessary to retrieve all name segments within a particular skill
segment but not those segments subordinate to each name segment (that
is, experience and education data segments). The first name segment
would be retrieved with a call where the function equals get unlque.
The SSAs would be:

SSA - SKILLINV(SKILCODEb=ARTIST)
SSA - EMPLOYEED

2.64 IMS/VS Application Programming Reference Manual

N

™

.

~

By changing the function to get next and repeating the above SSas,
all name segments whose SKILL=ARTIST would be retrieved with a not-founc¢
status returned when there were no more employee segments for
SKILL=ARTIST.

DATA BASE UPDATES

The updating of data within a segment of a data base is performed
through the replace input/output function. Before a DL/I call to
replace a segment can be executed, the segment to be updated must be
retrieved through a call with a GET function. The GET functions which
can be specified are those previously discussed; they must, however,
include the addition of a Hold definition (get hold unique, get hold
next, and get hold next within parent). The replace function must then
be executed in the next call by this program against the data base PCB.
Any intervening calls against the same data base PCB by this program
cause the rejection of the subsequent replace call. No SSAs are
permitted with the replace function unless command codes for segment
path replacement are employed. The key field of the segmemt to be
updated through the replace function call must not be modified.

The following is an example of how to change the data in the field
of the skill segment of artist from COMMERCIAL to COMMERCIAL-CARTOON:

" The first PL/I call statement is:
CALL PLITDLI (FOUR,FUNC_GHU,DB_PCB,WORK_AREA,SSA1);
SSA1 is SKILLINV(SKILCODEb=ARTIST)

WORK_AREA is then | ARTIST| COMMERCIAL |

The second PL/I call statement is:
CALL PLITDLI (THREE,FUNC_REPL,DB_PCB, WORK_ARER) ;

WORK_AREA is now | ARTIST| COMMERCIAL-CARTOON |

and this is the data that is placed back in the data field of
the skill segment.

DATA BASE DELETIONS

The deletion of an entire segment (all fields) within a data base
is performed through the delete input/output function. Before a DL/I
call to delete a segment may be executed, the segment to be. deleted
must be retrieved through a get hold call. The delete function must
be executed as the next call against the data base, through the same
PCB, or the delete function is rejected. The deletion of a parent
segment normally causes deletion of all segments subordinate to the
deleted segment. All subordinate data set groups must be available
for processing prior to the delete call being issued. If they are not,
a status code of AI is returned. Subordinate segments that could be
accessed are deleted.

Data Base Batch Programming 2.65

The following is an example of how to delete the skill segment data
(both key and data fields) of artist:

The first PL/I call statement is:
CALL PLITDLI(FOUR,FUNC_GHU,DB_PCB,WORK_AREA,SSA1) ;
SSA1 is SKILLINV(SKILCODEb=ARTIST)

WORK_AREA is then | ARTIST | COMMERCIAL-CARTOON |

The second PL/I call statement is:
CALL PLITDLI (THREE,FUNC_DLET,DB_PCB,WORK_ARE}) ;

WORK_AREA is still | ARTIST | COMMERCIAL-CARTOON |

and dependent segments under this root or parent are deleted.
That is, name segment (ADAMS), experience segment (ADAMS), and
education segment (ADAMS) are deleted as well as all other nanme,
experience, and education segments under this root.

If a GU call is made to this particular skill segment, a status code
of GE (not found) will be returned, but the WORK AREA, if not blanked
out, may still contain the above data.

DATA BASE INSERTIONS

The addition or insertion of a new segment (all fields) into an
existing data base is performed through the insert input/output
function. The techniques used for performing an insert function to
add a segment to an existing data base are identical to those used with
the insert function when creating a new data base. Remember that the
addition of a dependent-level segment is not permitted unless all parent
segments in the complete hierarchical path already exist in the data
base. An example, using Figure 2-14, would be the addition’' of an
experience segment subordinate to a particular name segment. The name
segment must already exist in the data base or be added before any
experience segment subordinate to that name segment may be added.

USING A BATCH REGION TO CHECK OUT ONLINE MESSAGE PROGRAMS

A natural stage in the development of online DC programs intended
to be executed in BMP or MPP regions is first to test the DB portion
of the program in a batch region.

Utilities Reference Manual) circumvents the need to recompile the
program between batch and online executions.

When the CMPAT option is exercised, the PSB parameters passed by
the DB facility to a program executing in a batch region will contain
the I/0 PCB and the alternate PCBs specified in the PSBGEN.

The application programmer must be responsible for determining that

the parameter list of the application program contains entries ih PSBGEN
sequence for the teleprocessing and data base PCBs.

2.66 IMS/VS RApplication Programming Reference Manual

N

EXAMPLES

Examples of teleprocessing programs to be run in a batch region are
as follows.

For COBOL:

ENTRY 'DLITCBL' USING IO~PCBNAME, ALT-PCBNAME1, ALT-PCBNAMEN,
DB-PCBNAME1T.

For PL/I:

DLITPLI: PROCEDURE(IO_PCB_PTR,ALT_PCB_PTR1,ALT_PCB,PTRN,DB_PCB_PTR)
OPTIONS (MAIN) ;

GENERALIZED SEQUENTIAL ACCESS METHOD (GSAM)

The Generalized Sequential Access Method (GSAM) implemented under
DL/I provides sequential data base management capabilities. GSAM is
intended especially for non-hierarchical sequential data bases.

GSAM supports data sets organized according to the following 0S/VS
access methods:

e Sequential Access Method (SAM)
e Virtual Storage Access Method (VSAMN)

GSAM supports the Basic Sequential Access Method (BSAM) on DASD,
unit record, and tape devices, and the ESDS Virtual Storage Access
Method (VSAM) on DASD devices.

Record formats can be specified as fixed, or variable (or undefined
in BSAM). The terms "segment," "segment type," "hierarchical," and
"parentage" are not applicable to GSAM data sets, and the concepts of
key and field do not apply.

GSAM DATA BASE RESTRICTIONS

The following restrictions apply to GSAM data bases:

e GSAM data bases can be allocated in a user region only.
e GSAM data bases do not have keys.

e GSAM data bases do not have segments (or segment types).

e VSAM data bases are non-keyed, non-indexed entry sequenced data
sets (ESDS).

® Checkpoint cannot be supported during a VSAM data base load.
e VSAM load operations are not restartable.
e VSAM data bases must reside on DASD devices.

e Temporary, SYSIN, SYSOUT, and unit-record files are not supported
in VsSaM.

e Temporary data sets should not be used if program restartability
is desired.

Data Base Batch Programming 2.67

e SYSOUT data set restart provides redundant data output if output
occurred after the restart checkpoint.

e Updates/delete functions are not supported.

e Records cannot be randomly added to GSAM data bases. The data base
can be extended using the ISRT function code (with DISP=MOD for
BSAM) .

GSAM FUNCTIONS

The functional capabilities of GSAM are the same for BSAM and VSAM
data bases. There are three major functions:

e ISRT for file creation or extension only
e GN for sequential accessing
e GU for unique record accessing.

A GSAM data base can be created or extended with ISRT. The data
base will be created in the sequence order of the input from the load
program.

A GSAM data base can also be a data set previously created by use
of /5 BSAM, QSAM, or VSAM., A GSAM data base may conversely later be
accessed by other programs using those 0/S processing methods.

GN is used for sequential processing of a GSAM data base. The
starting point of the sequential retrieval can be established by GU,
with the Record Search Argument (RS2).

An RSA can be supplied for data bases in which other than standard
sequential retrieval is required. This argument will position the data
set at the particular record desired.

GU can also be used for random accessing of any GSAM data base.
This would be practical, however, only on DASD and should be limited
in tape accessing.

DATA BASE ACCESS

All accessing to GSAM data bases is done with DL/I calls. A check
is made by IMS/VS to determine whether a user request is for a GSAM
data base. If so, control is passed to GSAM, which will be resident
in the user region. If not, control is passed to the IMS/VS control
region, or to Batch DL/I, and standard IMS/VS hierarchical processing
will result.

Calls to be used for GSAM Accessing are:

s OPEN Open GSAM data base

e CISE Close GSAM data base

e GU Retrieve a unique record or reset sequential processing
base

e GN Retrieve next sequential record

e ISRT Insert a new logical record (at end of data base only)

2.68 IMS/VS Application Programming Reference Manual

N

N

N

e CHKP To request a region checkpoint
e XRST To request a region/program restart
e DUMP, or To send GSAM control blocks to IMSERR or secondarily to
SNAP SYSPRINT. (No return code is used - status codes and
control blocks remain the same.)

The open and close call are optional calls to be used to explicitly
initiate or terminate data base operations. The data base will
automatically be opened by the issuance of the first processing call
used and automatically closed at "end-of-data" or at progranm
termination.

Records cannot be randomly added to GSAM data sets. The data set

may be extended by opening in the load mode, with DISP=MOD, and using
the ISRT function code.

GSAM CALLS

The IMS/VS user commnunicates with IMS/VS through a DL/I call
statement. The IMS/VS calls are generated as follows:

e COBOL CALL 'CBLTDLI' USING [arg0, }Jargl1,arg2,arg3[,argi].
e PL/T CALL PLITDLI (arg0,arqgl,arg2,arg3f ,argi4]);
e ASSEMBLER .CALL ASMTCLI, ([arg0, Jargil,arg2,arg3[,argi])
where:
Arguments 0 and 4 are optional.
arqgument 0 is the optional address of the parameter count or

--------- argument count of the number of arguments following
arqgument 0.

arqument 1 is the address of the function code

arqument 2 is the address of the GSAM PCB

arqument_ 3 is the address of the I/O area (IOA) for access Calls,
or the optional address of the OPEN-option for an OPEN
Call

arqument 4 is the optional address of the record search argument

(RSA) (It is not a segment search arqument -- GSAM has
no concept of segments; it is required only for GU.)

The first word contains the:

o BSAM tape relafive block address, or

L] BSAM DASD TTRZ, or

L VSAM relative byte address

For BSAM, the second word contains the volume-sequence

number in the high halfword and the BSAM record
displacement in the block in the low halfword.

Data Base Batch Programming 2.69

The OPEN option is either INP, OUT, or, in the case of SYSOUT data
sets, OUTA or OUTM to include control characters.

The PL/I description of the RSA is:

DCL 1 GSAM RSA,
2 BLOCK_ID FIXED BIN (31),
2 VOL_SEQ_NO FIXED BIN (15),
2 RECORD_DISP FIXED BIN (15);
DCL 1 FIRST_RCD_RSA,
2 (BLOCK?,DISPO) FIXED BIN (31) INIT (1);

Status Codes

Status codes inform the user program of situations that are normally
encountered and abnormal situations caused by violations of IMS/VS
conventions. No data is transferred from data base to user area, or
vice-versa, when a nonblank code is returned.

GSAM initializes the PCB status code to blanks before processing
each user request.

The common status codes, used to indicate the status of an I/0
request after it has been processed, are passed to the PCB from the
GSAM access modules. These status codes are included in Appendix B of
this manual.

RECORD FORMATS

Records may be fixed or variable length, blocked or unblocked.
Records must be unkeyed. Undefined data set format is supported only
for BSAM. The inclusion of carriage control characters may also be
indicated in the JCL RECFM subparameter (for example, RECFM=FBA) for
all record formats. An optional control character may be used in the
first byte of each record.

Fixed-Length Records

With fixed-length-record data sets, the user need not include a
record length at the beginning of a data record. User records include
only data bytes and are returned to the user in that form. The data
set is built in the fixed- or fixed-blocked format by GSAM, with the
logical record length coming from the DBD or JCL into the DCB.

The user must specify the record format (RECFM) subparameter as
RECFM=F, or FB, in the definition of the data set DBD.

The specification of RECFM=F can be overridden by the JCL
specification DCB=RECFM=FB.

Variable-Length Records

Variable length records contain the length field in the first two
bytes of the record. When the record is retrieved, the length of the
record is inserted into this field by GSANM.

The user requests variable length support by specifying the record
format (RECFM) subparameter as RECFM=V or VB in the definition of the
data set DBD. A definition of RECFM=V in the DBD can be overridden by
specifying RECFM=VB in the JCL.

2.70 IMS/VS Application Programming Reference Manual

g \\

Undefined-Length Records

Undefined length records are supported only for BSAM data sets.
Undefined length records, under 0/S BSAM, relieve the user of including
a record length at the beginning of a data record. The user records
include only data bytes and are returned to the user in that form.
However, undefined length records are of variable length. (The number
of bytes of data moved cannot be taken from any LRECL constant.) When
loading, therefore, the user must specify the record length, When

_retrieving records, the length of the record retrieved must be returned

in this same area. That area is defined as a fullword in the PCB,
known as the PCB Length Feedback Area (DBPCBURL). Any length less than
or equal to the logical record length, and greater than eleven (by 0/S
convention) can be loaded to an "undefined" data set. To allow for
these undefined records of variable lengths, each block is treated as

a record. This is accomplished by specifying RECFM=U.

Records of undefined length have been provided to permit the
processing of any records that do not conform to the fixed (F) or
variable (V) formation.

o+

Data Se

I/0 Area
The user aréa and the information placed on the device are dependent

upon whether the data set has fixed or variable length records, and
whether there is carriage control information.

The user's IOAREA (for variable records) is as follows:

Position Contents

0,1 Halfword length field in fixed binary

2 carriage control character (specified only if it is
a print record or a punch)

2-up-1n Data (begins in position 3 if carriage control is
specified)

Fixed length, and undefined length records do not include the length
field. Data, or control characters, begin in position 0.

The length for undefined length records is passed, in both
directions, in the PCB length feedback area as a fullword.

Direct Retrieval by Record Search Argqument (RSA)

A Record Search Argument (RSA) accessing facility is supported on
all GSAM data bases. This facility allows the user to request
particular records via the GU call. The RSA for the particular record
desired is supplied by the user by what is normally the SSA address
parameter, the fourth in the parameter list.

An RSA parameter is defined under GSAM as two fullwords, on a
fullword or doubleword boundary, addressed by the fourth parameter in
the CALL parameter list (replacing the standard SSA parameter pointer).

The contents of that doubleword vary according to the access method
and device type. The actual contents is irrelevant to the application

Data Base Batch Programming 2.71

program since the program saves and supplies on a GU call whatever had
been returned previously by GSAM.

Selective use of RSA can be used to enhance partial retrieval. For
instance, at the end of a long string of sequential accessing, retrieval
can be resumed in some midpoint of:a data base without having to
reaccess all preceding records. Any string of such retrievals must be
initiated by a GU, GNs can be issued until end-of-data. :

The RSA for a particular record can be obtained if the user either
loads the data set with the ISRT macro (requesting that the RSA be
returned), or issues subsequent GN calls. This argument is returned
to the application for each call (provided the RSA pointer exists and
is non-zero) for all sequential I/O requests (ISRT and GN).

That argument can then be supplied for a GU request to position the
data base at the physical block containing the record, "position" GSAM
at the particular logical record, and return that record to the
application program.

Subsequent GN calls result in the sequential return of the following
logical records, and their RSAs, until end-of-data occurs.

Record Search Arqument (RSH)

In VSAM, RBA means the Relative Byte Address (RBA) of the specific
record within the data set; it has no bearing on the block number or
device position (that is, track number). Since VSAM uses a fixed
"blocksize" regardless of the record format the VSAM RBA for a given
record in a data set is a constant value which is device-independent.
The VSAM RBA is passed in the first word of the IMS/VS GSAM "RSAY
parameter.

GSAM provides the flexibility of "direct" accessing by always
maintaining the current volume-sequence number.

The BSAM IMS/VS Record Search Argument (RSA) parameter is a
doubleword used to locate individual records within a block. The first
word contains the SAM RBA, and the second word contains the
volume-sequence number in the first halfword and the displacement within
the block to the specified record in the second halfword.

A GU call with the doubleword RSA equal to F'1,0', is interpreted
as a request to reposition on a GSAM data base to the first record.
OPEN and CLOSE will be issued only if the current accessing is on other
than the first volume.

This feature does not apply after end-of-data since that condition
causes an immediate CLOSE to be issued. A GN call after end-of-data
PCB status code GB obtains the first record on the data set.

RSAs will be returned, or must be supplied, under the following
conditions: S

e GU The RSA doubleword must contain the RSA of the record
desired. The address of the RSA must be provided by
the fourth parameter of the call.

e GN or The RSA will be returned if the fourth parameter
ISRT is provided with a valid address.

2.72 IMS/VS Application Programming Reference Manual

N

7

BUFFFRING

VSAM's high performance is due, in part, to its self-optimizing
buffer management and usage of virtual and auxiliary memory. It .
automatically calculates the optimum sized units in which to store data
and the total amount of memory required. It optimizes the use of
virtual memory for I/0 buffers.

BSAM does not provide suct high performance services. Multi-baffered
T/0 is provid=ed within GSAM for sequential services. Any number of
bu ffers may be requested via the DCB BUFNO parameter. Any direct
request (with BSA) will cause only the specified block to be read intd
one buffer. Subsequent sequential accessing will initiate
multi-buffering. Anticipatory READs will be issued to attempt to keep
at least half of the buffers full at all times during sequential
retrieval.

GSAM dynamically acquires buffers for BSAM data sets when they are
opened. An 0OS OPEN is issued whenever a data base is opened by an
IMS/VS access request or OPEN request and an 0S CLOSF is issued in
response to a user CLSE request or at end-of-data.

For data bases being loaded, GSAM will use the DBD blocksize if the
user does not provide blocksize information in the DCB parameter of
the DD card for the data set. If the blocksize is given, validity
checks are made. If DBDGFN computes the blocksize, the actual length
assigned is dependent upon the record format (fixed, variable, blocked,
or unblocked) and upon the DBD BLOCKS= blocking factor and LRECL= recori
length. BLJICKS defaults to 1 or unblocked, wi*h BLKSIZE= LRECL (+4 if
Variable) .

For 1loading a DASD SAM file, use of the RSA option will decrease
the effectiveness of buffered I/0. This is because every time RSA is
requested, a NOTE must be issued to obtair the SAM RBA, if it has not
already been done for this block. 1In an output environment, any WRITEs
on the queues must be purged, thereby negating the savings of
anticipatory buffering.

Buffered I/70 may be specified by: (1) including "S" as one of the
PCB processing options or, (2) coding on the JCL DD statement:

c
DCB= 0PTCD=[WC] +BUFNO=m

C
OPTCD=[WC]specifies chained scheduling and is ignored in a V=V
reqion.

OUnless'specified in the JCL DCB parameter, the namber of buffers
ja2faults to twice the number of blocks per track. DCB=(BUFNO=1)
overrides the PCB processing specification of 'S?',.

CHECKPOINT/RESTART

The IMS/VS extendad checkpoint/restart facility allows long-running
application programs to be restarted from intermediate synchronization
points.

An application program issues a CHKP call to inform IMS/VS that the
user has reached a logical synchronization point and that it can be
restarted at that point. When a CHEKP call is issued, IMS/VS saves
certain system information on the IMS/VS recovery log which can be used
by the application program to reposition its data bases at restart
time.

Data Base Batch Programming 2.73

During a checkpoint operation, RSA information is stored in the
system journal. If a subsequent program restart is required, all GSAM
data bases in use at that time will be repositioned to their checkpoint
locations, without producing either reprocessing of sequential input
or redundant sequential output on tape or direct access devices.

A program loading VSAM files cannot be restarted, although
checkpoints may be issued to release system resources.

SYSIN and SYSOUT data sets can also be used through GSAM. If output

unit-record devices are repositioned, however, duplicate output or
separated output is produced. SYSIN data sets are repositioned.

Checkpoint Restrictions

IMS/VS cannot completely determine whether a program is capable of
being restarted from any checkpoint. For instance, the program may
have non-IMS/VS files or transient data sets which IMS/VS cannot
reconstruct. The programmer must be aware of such a condition before
issuing a checkpoint.

The following JCL restrictions are recommended:

e Temporary data sets cannot be reset.

e Volume requests for new files must be specific.

e Data set disposition cannot be DELETE or UNCATLG.

e Data sets cannot be used if they have been passed.

e Backward references to data sets in previous steps cannot be used.

e DISP=NEW must be used for all output data sets.
Note: GSAM does not enforce these guidelines explicitly. They should
be established as conventions.

JCL

JCL guidelines for initializing a BHMP regidn is very similar except
for the inclusion of //IMS...DD statements and GSAM DD statements.

For example:

//STEP EXEC PGM=DFSRRCOOQ, PARM="BNP, cecevescacoancal
//STEPLIB DD DS¥N=reslib-name,DISP=SHR

// DD DSN=pgmlib-name, DISP=SHR

//Ins DD DSN=psblib-name,DISP=SHR

// DD DSN=dbdlib-name, DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSUDOMP DD SYSOUT=A

//ddnamex DD (add Db statements for required GSAM data bases)
/*

2.7 IMS/VS Application Programming Reference Manual

R

a

\\

o~

IMSBATCH JCL PROC

e Two additional DD statements are required for PSB lookup and GSAM
control block building., The DD statements are:

//INS/VS DD DSN=IMS/VSVS.PSBLIB,DISP=SHR
/7 DD DSN=IMS/VSVS.DBDLIB,DISP=SHR

GSAM data base JCL DCB and RECFM parameters will override the DBD
parameters. Thus a DBD indicating RECFM=F,RECORD=80, SIZE=80 may be
overridden by JCL...RECFM=FB,DCB=(BLKSIZE=400) . Refer to the 0S/VS
JCL Reference Manual for BSAM and.VSAM details.

The GSAM Control Block Dump module will, if an error occurs, provide
a formatted dump of the GSAM control blocks on the device specified by
the //SYSPRINT or //IMSERR DD card.

Some JCL restrictions are indicated in the sections following on
checkpoint-restart.

In BSAM usage, the following DCB parameters can be used.

BLKSIZE to specify block size if it is not in the DBD, or to
override the DBD block size

LRECL in the same manner

CODE, DEN, TRTCH, MODE, and STACK

BUFNO and/or OPTCD to invoke BUFFIO, although BUFNO is sufficient
DSORG=PS, although it is unnecessary

PRTSP if RECFM does not include A or M

RECFM, if not in the DBD, using either F, FB, V, VB, or (for BSAM)
U

The RECFM parameter can also include A or M (that is, FBA) for unit
record out put devices

The following should not be used:

BFALN,BUFL, BUFOFF, FUNC, NCP, or KEYLEW

Data Base Batch Programming 2.75

&

CHAPTER 3. DATA BASE PROCESSING: ADVANCED FUNCTIONS

This chapter describes the following additional data base
capabilities that IMS/VS makes available to application programs:

e Segment Search Argument (SSA) advanced functions
Command codes
Boolean gqualification statements

e Multiple positioning
¢ Secondary indexing

These optional facilities provide the experienced user with more
powerful and sophisticated techniques for organizing and processing
data base structures.

The application programmer and data base administrator should jointly
evaluate tradeoffs before making a decision to use these features in
an application, since the candidate application, other applications,
and the overall IMS/VS system may be affected. Hultiple positioning
will require earlier PSBGEN planning; secondary indexing will require
both PSBGEN and DBDGEN planning and implementation, and can have
significant performance considerations.

The reader of this chapter is assumed to be familiar with the
immediately preceding chapter. Before approaching the topic of
secondary indexing, the reader should become acquainted with the "Data
Base Design" chapter in the IMS/VS System/Application Design Guide.

SEGMENT SEARCH ARGUMENTS USING ADVANCED FUNCTIONS

In the previous chapter, the basic function of the SSA was defined
as identifying a specific data base segment called by an application
program. The rules pertaining to the use of SSAs by each DL/I
functional call are enumerated in that discussion.

Frequently, however, an application wishes to retrieve a segment
based on some conditional retrieval logic or on some qualification of
the segment, or on some variation in the call function.

To accommodate this requirement and to remove the need for
incorporating such conditional logic in the application program, IMS/VS
provides the fully expanded SSA capability described below.

The SSA can consist of from one to three main elements: a segment
name, command code(s), and a Boolean qualification statement. The
segment name alone provides DL/I with enough information to define
simply the segment type desired by the program, thus the segment name
may itself be the total SSA, as described in the previous chapter. 1In
its complete form, the SSA may be augmented by command codes and/or a
set of field qualifications logically related by Boolean logic elements.

The command codes are optional and provide specification of
functional variations applicable to either the call function, the
segment qualification, or the setting of parentage.

The qualification statement is also optional and contains information

which DL/I uses to test the value of the segment's key or data fields
within the data base to determine whether the segment meets the user's

Data Base Processing: Advanced Functions 3.1

specifications. Using this approach, DL/I performs the data base
segment searching and the program need process only those segments in
which it is interested.

Each qualification statement is composed of three parts: a field
name, a relational-operator, and a comparative-value. Boolean
qualification may be performed by connecting qualification statements
together with the AND and OR Boolean operators. The complete set of
qualifications for each segment is contained between the left and right
vrarentheses. 1In a segment search argument, there may be a maximum of
eight qualification statements connected by Boolean operators.

The SSA structure is shown in Figure 3-1:

(optional) {optional}
Com- [« BOOLEAN STATEMENT =
Segment
elements Name mand
Codes | Begin Qualification Operator Qualification Operator Qualification End
Qualif. Statement #1 Statement #2 Statement #n Qualif.
Field [R.O.] Compar. Field |R.O.|Comp. Field [R.O.|Compar.
Name of Name Value e Name Val. " Name Value
contents Segment- K P e)
type Code
» | Char- or or
acters + +
no.ofbytes | 8 |1|vBL| 1 8 2 [1t0285] 1 8 2 \(1 8 2 [1to285(1
Figure 3-1. SSA Structure

SEGMENT NAME
The segment name must be left-justified in the field and padded
on the right with blanks to make eight bytes. It is the segment
name that pertains to a specific segment type in the hierarchical
structure of a data base record and which is established in the
Data Base Description.

COMMAND CODES
The command codes are optional. They provide functional
variations to be applied to the CALL for that segment type. An
asterisk (*) following the segment name indicates the presence
of one or more command codes. A blank or a left parenthesis is
the ending delimiter for command codes. The functions of the
command codes are documented later in this chapter.

BEGIN QUALIFICATION CHARACTER
The left parenthesis, '(' , indicates the beginning of a
qualification statement. Any character other than a ' (' implies
an unqualified SSA. If the SSA is unqualified, the eight-byte
segment name, or, if used, the command codes must be followed
by a blank.

QUALIFICATION STAT EMENT
The presence of a qualification statement is indicated by a left
parenthesis following either the segment name or, if present,
command codes. Each qualification statement consists of a field
name, a relational operator, and a comparative value.

3.2 IMNS/VS Application Programming Reference Manual

O

Pield Name
is the name of a segment search field which appears in the
description of that segment type in the Data Base Description.
The name must be left-justified in the 8-character field and
padded on the right with blanks. The named field can be either
the key field or a data field within a segment.

RO = Relational Operator
is a set of two characters which express the manner in which
the contents of the field, referred to by the field name, are
to be tested against the comparative-value. The choice of
relational operator does not affect the starting point of the
search or the order of search.

Operator Meaning

b= or EQ must be equal to

>= or GE must be greater than or equal to
<= or LE must be less than or equal to

b> or GT must be greater than

b< or LT must be less than

1= or NE must be not equal to

Note: As used above, the lowercase "b" represents a blank
character, The symbols in the non-alphabetic relational
operators can be reversed without changing the meaning (that
is, "GE" is equivalent to ">=% or "=>n),

Comparative-value
is the value against which the contents of the field, referred
to by the field name, is to be tested. The length of this field
must be equal to the length of the named field in the segment
of the data base, that is, it includes leading or trailing blanks
(for alphameric) or zeros (usually needed for numeric fields)
as required.

END QUALIFICATION CHARACTER OR BOOLEAN OPERATOR
Following the comparative-value is either a Boolean operator,
relating this qualification statement to the next qualification
statement, or a right parenthesis as the ending delimiter
indicating the last gqualification statement for this segment.
The Boolean operators are documented later in this chapter.

The qualification statement test is terminated either when an
occurrence of the requested segment type is found, or when it is
determined that the request cannot be satisfied.

Examples of SSAs with the DIL/I calls are contained in the previous
chapter.

GENERAL CHARACTERISTICS OF SEGMENT SEARCH ARGUMENTS

e An SSA may consist of the segment name only (unqualified). It may
optionally also. include one or more command codes (enqualified)
and/or a qualification statement for that segment (qualified).

e SSAs following the first SSA must proceed down a hierarchical path.
All SSAs in the hierarchical path need not be specified; that is,
there may be missing levels in the path. DL/I will provide,
internally, SSAs for missing levels according to the rules specified
in the section on each functional call in the previous chapter.

Data Base Processing: RAdvanced Functions 3.3

e A search field specified as a "field name" in an SSA nmust be defined

for the segment during DBD generation.

e Any of the valid relational operators may be specified. All

Note:

comparisons on key or data fields are logical bit-for-bit
comparisons.

More specific SSA statements which apply to a specific function

such as GU or ISRT are provided in the discussion unique to that
function in the previous chapter of this manual.

(COMMAND CODES

Command codes can be divided into three categories: those which
modify the call function, the segment qualification, and the setting
of parentage. :

Comnmand

Code

Meaning

Call Function

F

3.4

Start with the first occurrence of this segment type under its
parent in attempting to satisfy this level of the call. It is
possible to either back up to the first occurrence of the segment
type on which position is established or to back up to the first
occurrence of a segment defined earlier in the hierarchy than

the one on which position is established.

For GN type calls, this command allows backing up at this level
within a data base record. This command applies only to GN type
calls, singe GU calls operate this way, normally.

For ISRT calls, this command says that segments having non-unique
or no sequence fields and RULE=(,HERE) are to be inserted as
the first segment on the twin chain,

The F command code used at the root level is disregarded.

Retrieval:

Retrieve the last occurrence of this segment type under its
parent which satisfies the qualification statement; or, if
unqualified, retrieve the last occurrence of this segment type
under its parent.

Insert:

Only applies for segments with non-unique or no sequence field.
Otherwise the key field in the segment determines the insert
position.

Used to insert "last" segment in "twin" chain for segments
defined with non-unique or no key fields and RULE=(,HERE).

For example, suppose a data base has an insert rule of HERE,
and that "HERE" happens to be just past the last segment in a
twin chain. Suppose that at that point the application program
wishes to insert a segment with no key field defined at the end
of the twin chain. Without the L command code, DL/I would
position itself on the following segment type, recognize that
it could not insert HERE because it is the wrong segment type,
and default to the first segment occurrence of the desired

IMS/VS Application Programming Reference Manual

()

7N
\' e

/”“\

Command

Code

Meaning

segment type. Using the L command code on the segment being
inserted allows DL/I to position for insert such that the segment
is inserted following all other segment occurrences.

If the L command code is used at the root.level, it is
disregarded.

The interaction of insert rules with the F and L command codes
is summarized in the following table.

Command Insert Rules
Codes FIRST HERE LAST

F (N.A.) cc Rule (**)
overrides overrides

L (of ¢ cc (N.n.)
overrides overrides

—_—

{**) This combination would be poor programming practice
since it forces extra processing by telling DL/I, in
effect, to start at the first and insert at the last.

For retrieval calls, move the segment which satisfies this level
of the call to the user's I/0 area. This allows the retrieval
of multiple segments in a hierarchical path in a single call.
This type of call will subsequently be referred to as a path
call. The first through the last segment retrieved are
concatenated in the user's I/O area. Intermediate SSAs may be
present without the D command code. If they are present, these
segments are not moved to the user's I/0 area. The segment name
in the PCB is the lowest level segment retrieved, or the last
level satisfied in the call in case of a not-found condition.
Higher level segments having the D command code will have been
placed in the user's I/O area even in the not-found case. The
"D" is not necessary for the last SSA in the call, since the
segment which satisfies the last level is always moved to the
user's I/0 area. The processing option of "P" must be specified
in PSBGEN for any segment for which the D command code will be
used in the PSB associated with the application program. It
should be noted that the retrieval search logic is not affected
by the D command code. The only effect is to move all segments
with the D command code into the I/0 work area.

For insert calls, the U command code designates the first segment
type in the path to insert. The SSAs for lower level segments
in the path need not have the D command code set.

When a replace call follows a path retrieval call, it is assumed
that all segments in the path are being replaced. If any of

the segments have not been changed, and, therefore, need not be
replaced, the N command code may be set at those levels, telling
DL/I not to attempt to replace the segment at this level of the
path.

The Q command code causes DL/I to enqueue the segment described
by the SSA for single update. If the segment is a root segment,
no other user will be able to obtain any position in the data
base record. If it is a dependent segment, other users can
retrieve the segment with a non-hold call, but it cannot be
obtained using a hold call.

Data Base Processing: Advanced Functions 3.5

Command

Cod

2

Meaning

3.6

The purpose of the Q command cods is to provide a facility for
users to cause segments to be enqueued and also control the
duration of the enqueue. One case where this could be useful

is when the application needs to examine a number of segments
and none of them may change while the others are being examined.
The application can obtain the segments using the Q command code
and then retrieve them again with the assurance that none of
them can be modified until the appllcatlon issues a DEQ call or
reaches a sync point.

Tf no DEQ is issued by the application program, the enqueued
segments will be dequeued when a synchronization point is
reached. A synchronization point is reached when any one of
the following occurs:

1. 1 GU to the message queue is issued and the scheduled
transaction MODE=SNGL.

2. A CHKP call is issued.
3. The application program terminates.
The DEQ call is described in the previous chapter.

In order to provide a degree of flexibility in selectively
degueueing the enqueued resource, the Q command code must be
followed by a single byte in the range of “A" through “J" which
specifies the class. This same class identifier is specified
on the dequeue call which dequeues all resources enqueued by
this user using the Q command code and that class. The sole
usage of the class identifier is for selective dequeune; it does
not allow one user to obtain a resource of a particular class
and a different user to obtain the same resource of a different
class.

Note: By definition the Q command is always followed by a one

character class. This means that the second byte after the 'Q'
command code must be another command code, left parenthesis, or
blank.

Seqment Qualification

c

The data enclosed in parentheses immediately following the
command code is the concatenated key of the named segment (for
example, '*C' (concatenated key)). OQualification to this level
is treated identically to a call specifying all SSAs of all
parents of the named segment qualified on their respective
sequence fields.

Using this command code may be more convenient than using
separate SSAs, when the concatenated key is available and can
be used as is, rather than moving each portion of the
concatenated key into a separate SSA. '

Only one SSA with a C command code is allowed per call and it
must be the first SSA in the call.

IMS/VS Application Programming Reference Manual

S

g ‘

Command

The U command code indicates that no occurrence of the segment
type specified in the SSA (other than the segment type upon
which position is already established) under the parent of the
segment type will be used to satisfy the call, If position is
not currently established for the named parent, this code has

The U code prevents position being moved from a segment during

a search of its hierarchical dependents., 1If the segment has a
uniqgue sequence field, use of this code is equivalent to
qualifying the SSA such that it is equal to the current value

of the key field. When a call is being satisfied, if position
is moved to a level above that at which the U code is issued

the code has no effect for the segment type whose parent changed

The U code is especially useful when dependents that are unkeyed
or non-unique keyed segments are being process'ed. The position
on a specific occurrence of an unkeyed or non-unique keyed
segment can only be held by use of this code.

The U command code is disregarded if it is used at the lowest
level or if the SSA is gualified, or if used in conjunction with
command code F or L.

Code Meaning
U
no effect.
position.
v

The V command code is the same as the U command code, except
that the command code is automatically set at all higher levels
in the call. This means that DL/I, in attempting to satisfy
this call, cannot move from the existing position at the level
at which the V is specified, unless the command code is _
disregarded. See the U command code for the condition under
which it will be disregarded.

Set parentage at this level. Succeeding GNP-type calls will
treat this level as the parent level rather than the lowest
level segment returned on this call. The parentage will remain
in effect for succeeding GNP, ISRT, DLET, and REPL calls. The
parentage will be destroyed whenever a GU or GN call is executed.

If the P command code is used at multiple levels in the same
call, the lowest level is set.

If the call is not fully satisfied (GE status code) but the
level at which the P code is used is satisfied, parentage is
set by the P command code.

If the call is not fully satisfied and the level at which the
P code is used is not satisfied, parentage is not established
and a GP status will be returned on succeeding GNP calls.

If the P command code is specified on a GNP call, the call is
processed based on the parentage that was in effect or
established by preceding calls. The parentage is set based on
the P command code that was used at the completion of the GNP
call.

Data Base Processing: Advanced PFunctions 3.7

In addition to the codes in the three categories above, there is
also a null (hyphen "-") command code. 1Its purpose is to simplify the
building of SSAs using command codes since the program can set aside
a fixed number of bytes for command codes and turn them on and off by
means of the hyphen.

The following table indicates which command codes are applicable to
which functions. If the command code is used with a function where it
is not applicable, the command code has no effect.

Use of Command Codes by Function

Command GU GN GNP

Code___ ||cHD GHN GHNP DLET REPL ISRT
C A A A D D A
D A A A D D A
F A A A D D A
L A A A D D A
N D D D D A D
P A R A D D D
Q A A A D D A
g A A A D D A
v A A A D D A

A = Applicable

D = Disregarded

No combinations of command codes are declared invalid by returning
an error status code. However, when F or L is used in conjunction with
U0 or V, the U or V is disregarded.

BOOLEAN QUALIFICATION STATEMENTS

Boolean logic gqualifications can be performed on each segment by
specifying up to eight gualification statements for each segment. The
qualification statements can be logically related to each other by
using the Boolean AND and OR operators between the qualification
statements.

All Boolean statements connected by AND operators are considered a
"set" of qualification statements. An OR operator between two
qualification statements begins a new set of qualification statements.
A set can consist of one or more statements. To satisfy an SSA, a
segment can satisfy any set of qualification statements. To satisfy
any set, the segment nmust satisfy all statements within the set.

If a GU call for a root segment has one or more Boolean qualification
statements, and if any set of qualification statements does not contain
at least one statement qualified on the key field of the root segment,
then the initial position that will be used in attempting to satisfy
the call will be the beginning of the data base.

3.8 INS/VS Application Programming Reference Manual

N

)

N

If all sets have at least one statement qualified on the key field
of the root segment, then the lowest key field value will be the initial
position used in attempting to satisfy the call.

The qualification scan will be made sequentially in a forward
direction similar to a GN call. Each root encountered will be examined
to see if the search can continue. It should be noted that in an HDAM
data base the roots are not stored in key sequence and therefore using
Boolean statements for root qualification may not produce the desired
results.

Example:
SFGMENTA (FIELDAAAbL>099*FIELDAARAD<201+FIELDBBBb=0)

FPor the above SSA, those segments called SEGMENTA whose FIELDAAA is
in the range between 100 and 200, or whose FIELDBBB is equal to zero,
will satisfy the SSA.

The logical "And" is expressed by the EBCDIC character "x" or “gw,
The logical "Or" is expressed by the EBCDIC "+" or "|", A special
"independent" AND operator, expressed by the "#" character is described
later in this chapter in the section concerning secondary indexing.

USE OF FIELD NAMES IN SEGMENT SEARCH ARGUMENTS FOR CONCATENATED SEGMENTS

The field names used in the qualification statement of SSAs for
concatenated segments may be fields defined for either of the two
segments making up the concatenated segment. 1In other words, if the
concatenated segment consists of the logical child and the logical
parent, then fields defined for either of these two segments may be
used. If the sequence field of the logical parent is used, however,
it is treated as a data field, not as a sequence field. An example
illustrates why this must be so. Suppose that DL/I is positioned at
the beginning of the chain of logical children illustrated in Figure
3-2. 1If the application program issues a call:

GN FLC=4

DL/I gets, sequentially, the first, second, and third logical child;
recognizes that the sequence field of S5 is greater than 4, and stops.

If, however, the application program issues a call:
GN FLP=8

DL/I will traverse the entire chain of logical children because the
logical parents are not examined sequentially by their sequence fields.
DL/I cannot assume, in this instance, for example, that because the
first logical child pointed to a logical parent whose sequence field

is 40 that it has passed (or that there does not exist) a logical parent
with a sequence field of 8. Hence, DL/I must treat logical parent
sequence fields as if they were data fields.

Data Base Processing: Advanced Functions 3.9

FLP 40 e oo FLP 50

FLC 1

(DL/| ENp»

position}

Figure 3-2. Effect of Using Logical-Parent Sequence Fields

If the concatenated segment consists of the virtual segment and its
logical parent, then the fields used may be any field defined for the
virtual segment or any field defined for the logical parent. P¥ields
defined for the pair of the virtual segment may be used also, as long
as no part of the field falls within the part of the segment which is
the concatenated key of the paired segment's logical parent.

When the concatenation is the virtual segment and its logical parent,
the only field which is treated as a sequence field is the sequence
field defined for the virtual segment.

The data base administration function should make available logical
data structure definitions and segment layouts. The segment layout
should indicate the field names for the sequence field and other
searchable fields. Thus it would be immaterial to the application
programmer whether or not the segment is a concatenation of two physical
segments.

MULTIPLE POSITIONING

Two alternatives are provided by DL/I regarding the current position
in the data base. These are single or multiple positioning. This
option is specified in the PCB statement at PSB generation.

e When single positioning is specified for a PCB, DL/I hmaintains.only
one position in that data base for that PCB. This is the position
which will be used in attempting to satisfy all subsequent GN calls.

e Tf multiple positioning is specified, DL/I will maintain a unique
position in each hierarchical path in the data base.

An example of how multiple positioning might be used is illustrated
in Figure 3-3,

3.10 INS/VS Application Programming Reference Manual

(f‘\

Al — — — ———] A2

B 11 c1 B 21 c21
B 12 c12 B 22
c13 B 23
D111 E 111 E 121 D 221 E 221
D112 E 112
Fiqure 3-3. Assumed Data Base to Illustrate Single and Multiple
Positioning

In Figure 3-3, assume that under each A segment an application
program desires to examine every C segment based on each B segment.
Using multiple positioning, the following sequence of calls would
suffice:

CALL Result
GN A get A1
GNP B get B11
GNP o get C11
GNP C get C12
GNP o get €13
GNP c get not found
GNP B get B12
GNP C xF get C11
GNP c get C12
etc.

Data Base Processing: Advanced Functions 3.11

As can be seen from the example above, multiple positioning provides
a capability of processing, in parallel, different segment types under
the same parent.

EFFECT OF MULTIPLE POSITIONING ON DL/I CALL FUNCTIONS

GN and GNP Calls Using Multiple Positioning

IMS/VS attempts to satisfy GN calls from the existing position by
analyzing segments in a forward direction only. Since multiple
positioning allows position to be maintained at each level in all
hisrarchical paths rather than at each level in only one hierarchical
path, the get next call will be satisfied using the existing position
established on the path of the hierarchy in which the get next call is
qualified. If the get next call is not qualified, INS/VS will use the
position established by the prior call. The position can be reset by
a GU call to a new root or to the same root; position cannot be reset
by a path call under the previously accessed root-segment occurence.

GU and ISRT Calls Using Multiple Positioning

The only time multiple positioning has an effect on GU and ISRT
calls is when these calls have missing SSAs in the hierarchical path.
These missing levels are internally completed by the system according
to the rules for GET calls described earlier in this chapter.

Since this internal completion is based on current position, multiple

positioning allows a completion to be made independent of current
positions established for other segment types under the same parent
occurrence.

These calls are not affected by single or multiple positioning.
However the necessary preceeding GET HOLD calls are as described
previously,

EXAMPLES OF CALL SEQUENCES USING SINGLE AND MULTIPLE POSITIONING

The following examples compare the results of single and multiple
positioning, using the data base of Figure 3-3.

Result of Result of
Call_ Sequence Single Positioning Multiple Positioning
Example 1
GU A (KEY=A1) A1 a1
GNP B B11 B11
GNP C c11 c11
GNP B Not found B12
GNP C c12 c12
GNP B Not found Not found

3.12 IMS/VS Application Programming Reference Manual

Result of Result of

Call Sequence Single Positioning Multiple Positioning
GNP C - Cc13 c13

GNP B Not found Not found

GNP C Yot found Not found

Note: Segment types B and C are processed in parallel.

Example 2

GU A (KEY=1A1) A1 A1
GN B B11 B11
GN C c11 c11
GN B B21 B12
GN C c21 c12
Example 3

GU A(KEY=A1) A1 A1
GN C c11 c11
GN B B21 B11
GN B B22 B12
GN C c21 c12
Example 4

GU A (KEY=A1) A1 a1
GN B B11 B11
GN C c11 c11
GN D D111 D111
GN E E111 E111
GN B B21 B12
GN D D221 D112
GN C C under next A c12
GN E E under next A E121

USE OF MULTIPLE POSITIONING

By specifying multiple positioning, a user may be able to design
application programs with greater data independence. Hultiple
positioning also makes it possible to achieve parallel proceesing. of

<:;f dependent segment types.

Data Base Processing: Advanced Punctions 3.13

Increased Data Independence

Multiple positioning allows a user to develop application programs
using GN and GNP calls and ISRT and GU calls with missing levels in a
manner independent of the relative order of segment types defined at
the same level in the logical DB structure.

Hence, if performance could be improved by changing the relative
order of segment types, and all application programs which access those
segment types use multiple positioning, then the change could be made
with no impact on previously produced application programs. It should
be noted, however, that this ability depends on the proper use of the
calls relevant to multiple positioning (GN, GNP and incompletely
specified ISRT and GU calls). It also presents an increased
responsibility for the application programmer to keep track of all
positions maintained by DL/I. There are other alternatives to decrease
an application program's exposure to future changes as for instance
increased use of explicitly given call specifications when possible,
These alternatives may require additional application program coding.
Such trade-offs must be determined in the user's own environment,

Parallel Processing of Dependent Segment Types

When an application program needs to process dependent segment
occurrences in parallel (that is, to switch alternately from one
dependent segment type to another under a parent), the program may
specify multiple positioning to accomplish such processing. An
alternative parallel processing technique would be to give the program
two or more PCBs using the same data base. Under this alternative,
the program processes the data base as though it were two or more
different data bases., This approach may be more useful if the update
of a segment depends on the analysis of other subsequent segments. The
use of multiple PCBs may decrease the number of get hold calls required
but increase the number of other calls required to maintain proper
positioning in two or more data base structures. Internal control
block requirements will also increase with each added PCB. However,
there are circumstances when the use of multiple PCBs for a single data
base will increase performance. Multiple PCBs may be of particular
value when an application desires to compare information in many
segments of two or more data base records. The selection of multiple
positioning or multiple PCBs for a single data base must be evaluated
in the user's environment.

It should be emphasized that multiple positioning uses position
differently from single positioning. If an application program changes
from one option to another, the user must not assume the same results
will be produced. An application program must be developed for one
alternative or the other.

MIXING CALLS WITH AND WITHOUT SEGMENT SEARCH ARGUMENTS AND MULTIPLE
POSITIONING

The multiple positioning feature is intended to be used for DL/I
requests which specify SSAs, thereby providing for parallel processing
and increased data independence. Retrieval calls without SSAs can also
be used, however, when multiple positioning is specified to accomplish
a sequential retrieval of segment occurrances independent of segment
types.

Certain restrictions apply if retrieval calls without SSAs are mixed

with DL/T requests that specify SSAs in processing a single logical
data base record.

3.14 IMS/VS Application Programming Reference Manual

1. No position may previously have been established on segment
types which retrieval calls without SSA specifications may
encounter within the processing of that logical data base record.

Fxample (using Figure 3-3)

CALL Result (with_multiple positioning)
GU A(KEY=21) gets A1

GN C gets C11

GN B gets B11

GN B gets B12

GN Unpredictable

The GN calls may not attempt to retrieve occurrences of the C
segment type because a position has already been established on
this segment type using the multiple positioning feature. The
result of the call is unpredictable.

2. When segment types have previously been processed with retrieval
calls not specifying SSAs, a position is established on the last
retrieved segment type and its parent (hierarchical path).
Multiple positions are no longer maintained.

CALL Result (with multiple positioning)
GU A(KEY=Aa1) gets A1

GN C gets C11

GN B gets B11

GN C gets C12

GN gets E121

GN B unpredictable

Multiple positions on B are no longer maintained. The result
of the GN B call is unpredictable.

It should be noted that although mixed use of retrieved calls with
and without SSAs in processing a single logical DB record may be valid
for some types of parallel processing, it may decrease the degree of
data independence created by the use of multiple positioning. The
implications of the two restrictions stated above should be carefully
considered before application programming is based upon mixed use of
retrieval with and without SSAs within a single DB record. If possible
retrieval calls without SSAs should be limited to GNP calls to avoid
potentially inconsistent retrieval situations.

SUMMARY

The essential difference is that with multiple positioning, position
can be maintained on different segment types under the same parent,
while with single positioning a single position is maintained for
different segment types under the same parent. The difference in the
internal operation of DL/I is as follows.

Data Base Processing: Advanced Functions 3.15

With single positioning, whenever a segment is obtained, position
for all dependent segments and all segments on the same level is
cleared. With multiple positioning, whenever a segment is obtaineg,
position for all dependent segments is cleared but position for segments
at the same level is maintained. The blocks in either case are the
same (multiple positioning does not require more storage). There is
no significant performance difference, even though in some cases
multiple positioning will require slightly more CPU time. Multiple
positioning is not supported for the HSAM Access Method.

The use of multiple PCBs by an application program to process a
single data base essentially allows the multiple positioning concept
within a data base record to be expanded to multiple data base records.
Thus, an application can process segments from one data base record in
parallel with segments from one or more other data base records.. DL/I
can maintain a position on segments within a data base record with each
PCB. Since DL/I can maintain position in multiple data base records,
increased performance may be obtained in certain circumstances relative
to a single PCB for all accesses to the data base.

SECONDARY INDEXING

One of the features of IMS/VS is a secondary indexing facility.
This facility is a data base structuring technique which ordinarily
would concern only the data base administrator of an IMS/VS installation
and be transparent to the majority of the application programmers.

Howéver, in those installations which employ secondary indexing,
two factors make it desirable that the experienced application
programmers have some familiarity with the secondary indexing facility.
First, secondary indexes are used to establish alternate entries to
physical or logical data bases for application programs. The existence
of a secondary index on a segment can affect the manner in which DL/I
processes the SSAs for that segment. Second, secondary indexes can be
processed as data bases themselves.

A complete discussion of secondary indexing can be found in the
IMS/VS System/Application Design Guide which addresses the IMS/VS access
methods and the design and implementation (as opposed to processing)
aspects of data base structures. This is the necessary context for a
discussion of secondary indexing, and the application analyst or
programmer who is interested in this facility is referred to that
document for adequate familiarization. The discussion which follows
simply summarizes the characteristics of secondary indexing and
describes the effect of secondary indexing on data base processing.

The application analyst or programmer who has read the IMS/VS
System/Application Design Guide or attended a formal IMS/VS education
course is aware that physical data bases are organized in either
hierarchical sequential or hierarchical direct organization and employ
one of the four access methods called HSAM, HISAM, HIDAM, or HDAM.
These are considered basic access methods. Physical data bases can be
connected to form logical data bases, the "access method" of which
would be an appropriate combination of these basic access methods.

An INDEX data base is an auxiliary data base used to locate data in
an HISAM, HDAM, or HIDAM type of data base. HIDAM always has one INDEX
data base which is called a primary index and which indexes only on
the sequence field of the root segment. All other Indexes are secondary
indexes, and they may index segment types at any level of the data base
structure including root segments., HSAM and INDEX data bases cannot
be indexed.

3.16 IMS/VS Application Programming Reference Manual

-

)

Logical data bases can have secondary indexes, that is, secondary
indexes existing for a physical data base that participates in a logical
relationship often can be used when accessing the logical data base.

Unlike primary indexes as used with HISAM and HIDAM, secondary
indexes can:

e Index any field or combination of fields (not necessarily
contiguous) in a segment of a HIDAM, HDAM, or HISAM data base at
any level

e Tndex non-unique data, which means that different occurrences of
a segment type with identical values in the indexed fields are
allowed

e Be processed as data bases themselves, in addition to serving as
alternative access paths to a data base

e Carry, in addition to the indexed data and pointers, other source
data which are system-maintained replications of data from the
indexed data base

e Include user-maintained data in addition to the system-maintained
data ,

e Be created as sparse indexes through system provided means to
suppress creation of an index entry for certain data base records
by allowing user options and/or exits

A secondary index can be used:

e To sequentially process all or a part of a data base in an order
which is different from its primary processing sequence

e To sequentially process a data base as if its structure had been
inverted, that is, the data base appears to be a differently
structured data base

e To randomly fetrieve and process single segments faster than with
the primary addressing scheme, if the secondary index provides a
unique identification of the requested segment

e As a data base itself in order to do scan-type processing in the
index rather than in the indexed data base ,

e To access a segment in a data base based on data located in one of
its dependent segments in the same physical data base

If several indexes exist for a segment type, it may be possible to use
injexes in a preparatory step as data bases themselves in order to
merge or match index entries before access to the indexed data base is
attempted. Time consuming accesses to not-qualifying segments could
thus be avoided.

Data Base Processing: auvanced Functions 3.17

INDEXED SEGMENTS -- INDEXED FIELDS

To provide an adeguate basis for describing and discussing the
concepts of secondary indexing, a specific nomenclature has been
adopted. This nomenclature distinquishes between the segment type
being indexed, the segment type used to access the indexed segment,
and the segment type containing the indexed fields. These three segmen
types are called, respectively:

e index target segment

e index pointer segment
e index source segment

Index Target Segment

A segment type being indexed is called the index target segment if
it is 'pointed to' by the index pointer segment. In a secondary index,
the indexed data (indexed field) can be contained in the index target
segment, or it can come from any segment hierarchically below the index
target segment in the same physical data base.

Index Pointer Segment

The segment in the secondary index data base which is used to access
the index target segment is called the index pointer segment. It is
composed of up to four classes of system maintained data: constant,
search, subsequence, and duplicate data. Of the four, only search data
is required for index pointer segments; the other three are optional.
In addition, there is a direct or symbolic pointer to the index target
segment. 1A more comprehensive description of each of these field -
classes is contained in the IMS/VS System/Application Design Guide,

Index Source Segment (ISS)

The segment type .which contains the indexed field or fields is called
an index source segment (ISS), In secondary indexing, as contrasted
with primary indexing, the ISS can be the index target segment itself
or it can be any one of the target segment's dependent segments.

There is only one index source segment type for each index
relationship. If a combination of several fields is to be used to form
the search data of an index pointer segment, all these fields must be
contained in the same index source segment.

Whenever a segment type is being updated which has been designated
as an index source segment, all indexes with which it is associated as
an ISS must be available to IMS, whether sensitive or not sensitive.

An example is shown in Figure 3-4, where the index data base X1
indexes a segment on the second level based on data from the third
level. SEGMB is the index target segment; SEGMC is the index source
segment. For the index data base X2, SEGME is both index target segment
and index source segment. Secondary index X1 is based on the two
non-contiguous fields FLDC2 and FLDC1. VNote that there are two
non-unique index entries for the same SEGMB because two of its SEGNMC
children have the same indexed data.

3.18 IMS/VS Application Programming Reference Manual

(-

~

~——

(‘\

INDEXED DATA BASE

SECONDARY INDEX X1

7] [raz00]] [AA200]4]) [C

AB200] 4

SEGMB
|
i H
1 1
200]| AA
200 [| AB SEGMD
| 200 AA
SEGMC
|FLDC1| FLDC2
Figure 3-4. Indexing a Data Base with Secondary Indexes

SECONDARY PROCESSING S EQUENCES

A secondary processing sequence is an alternate sequence that is
normally not based on a root key. This alternate sequence allows data
access in a sequence that is not related to the primary sequence field.
The alternate processing sequence can be based on a field or fields in
a root segment or a dependent segment. For those secondary indexes
which have a dependent segment as their index target segment, the index
relationship introduces a new data base processing capability. It
provides the possibility of processing the indexed data base as if it
were a differently structured data base.

If a secondary index is chosen as the main addressing algorithm for
a data base, that is, if a secondary index determines the processing
sequence for that data base, then the data base is treated as if its
structure had been changed to a secondary data structure.

The secondary data structure, a definition of which follows, is
established by the PSBGEN and needs no additional specification by the
user. It offers some of the advantages provided by the logical data
base concept without requiring the logical DBDGEN and prefix resolution
necessary for the creation of logical data bases. In addition, it
offers the advantage of processing a structure in which the logical
root segment is not a root in any physical structure.

Secondary Data Base Structure Made Possible by Secondary Indexes

If a secondary index is selected to determine the processing sequence
of a data base, then the data base appears to have a structure with
the following characteristics:

1. The index target segment is the root segment of the secondary
structure.

Data Base Processing: Advanced Functions 3.19

6.

Figure 3-5 illustrates these rules.
structures of the data base from Figure 3-4, as indexed by indexes X1

and X2.

segments SEGMC and SEGMD, since the index target segment .in this case,
SEGME, was not a dependent of those, nor were they dependents of SEGME.

Note that the rules for secondary structures, when applied to an
indexed root, do not change the structure of the data base.

The user specifies in his program specification block generation
which, if any, secondary index is to be used as processing sequence
he also defines the structure in which the data base

Parents, if any, of the index target segment in the physical
structure become dependents in reverse order in the secondary

structure.

The segment which was hierarchicaily first below the index target
segment, if any, becomes the next second level segment.
Hierarchical relations existent among the index target segment
and its dependents, if any, are taken over into the secondary

structure without change.

No other segments occur in the secondary structure.

The root of a secondary structure may not be a logical child
segment, nor may it be a concatenated segment.

It shows the secondary

Note that the structure caused by X2 no longer contains

for his data base;
appears to the application progranm.

For every indexing relationship,
the index target segment and index source segment have been, of course,
previously determined when the DBD parameters were specified.

X1
Y
SEGMB
—
SEGMA SEGMD
SEGME
SEGMC
Fiqure 3-5. Secondary Structures by Secondary Indexes
3.20 IMS/VS Application Programming Reference Manual

X2

SEGME

SEGMB

SEGMA

S
N

Some restrictions exist when processing a data base in its secondary

structure through the secondary index. These restrictions are:

1. No attempt must be made to insert or delete occurrences of

segments of the index target segment's type or of the segment
types of which the index target segment was dependent in the
original structure,

2. Any data fields, except the sequence key fields but including

all fields designated as source fields for secondary indexes,
can be changed. The replacement of any ISS associated with the
index being used as the secondary processing sequence may result
in an anomaly in processing. If the search fields in the index
source segment are changed, then the index will be updated to
reflect that change and the user processing sequentially could
encounter the index entry for the associated ISS again with a
different search key value. (The search and other classes of
fields are described in the IMS/VS Utilities Reference Manual.)

Options and Rules for Secondary Indexing

A s=condary index can be defined using:

Up to five non-contiguous fields of unique or non-unique data in
the index source segment type as the search field of a secondary
index

Up to five non-contiguous fields from the index source segment or
from system-related data as the subsequence field of the index
pointer segment

To enhance the usefulness of processing a secondary index as a data
base:

The user can specify that up to five fields of the index source
segments be duplicated in the index pointer segment generated from
each index source segment.

Index pointer segments can contain any additional user data desired.

Protection of system-maintained data from modification is an option.

A secondary index can be used to:

Access only significant or representative segments through sparse
indexing by using an option and/or exit provided to enable
suppressing the creation of index entries for desired index source
segments;

Access segment types in a single hierarchic path of a data base
using the index target segment type as the root for all segment
+ypes in that path without having to use logical relationships;

Selectively access a given segment, through data contained in that
segment or a dependent of that segment;

Directly access a non-root segment type in an HDAM or HIDAM data
base in less time than is normally regqguired through the primary
accessing method.

Following are the rules that must be observed in secondary indexing:

1. In a physical data base, a logical child, or a dependent of a
logical child cannot be an index target segment type.

Data Base Processing: Advanced Functiomns 3.21

2. A concatenated segment type, or a dependent of a concatenated

cons

segment type cannot be used as a root segment in a secondary
data structure for a logical data base.

. When using a secondary processing sequence, the application
cannot insert or delete an index target segment, or any segment
on which an index target segment is dependent in its physical
data base.

. Data in any fields of segments can be changed except for data
in sequence fields. If data in fields of an index source segment
is changed and those fields are used in the search or subsequence
fields of an index pointer segment, the index pointer segment
is deleted from the position determined by its old key, and
reinserted into the position determined by its new key.

iderations

In using secondary indexing, consideration should be given to the

foll

L

3.22

owing:

When an index source segment is inserted into or deleted from a
data base, a respective index pointer segment is inserted into or
deleted from the respective secondary index. This maintenance
occurs in all cases, regardless of whether or not the application
program doing the updating actually uses the secondary index.

When replacing data in an index source segment that is used in the
search, subsequence or data fields of an index, the index is updated
by IMS/VS to reflect the change. When data used in the ddata field
of an index pointer segment is replaced in an index source segment,
the index pointer segment is updated with the new. data. When data
used in the search or subsequence fields of an index pointer segment
is replaced in an index source segment, the index pointer segment
is dpdated with the new data, and in addition, the position of the
index pointer segment within the secondary index is changed. The
position is changed since a change to the content of the search or
subsequence field of an index pointer segment changes the key of
that segment. The secondary index is updated by deleting the
segnent from the position determined by the old key and inserting
the index pointer segment in the position determined by the new
key.

The use of secondary indexes will increase storage requirements of
all steps which include within the PSB: 1. a PCB for the indexed
data base, and 2. the processing option which allows the index
source segment to be updated. The additional storage requirements
for each index data base will range from 6K to 10K. A percentage
of this additional storage will be fixed in real memory by VSAM.
For additional information on storage requirements, refer to the
topic "VSAM Data Base Buffer Pools" in the section on VSAM support
for IMS/VS in this manual.

The use of a secondary index must be considered relative to
alternate means of achieving the same function. BAs an example, it
may be desired to produce a report from an HDAM data base in root
key sequence. A secondary index will conveniently provide this
capability. However, the access of each sequential root will, in
most cases, be a random operation. It would be a very time
consuming operation to fully scan a large data base where each root
access is random. It may be more efficient to scan the data base
in physical sequence (GET NEXT not using a secondary index), and
then sort the results by root key so that the final report can be
produced in root key sequence.

INS/VS Application Programming Reference Manual

™

e A secondary index uses only a key sequenced data set if all index
pointer segment keys are unigue, and both a key sequenced and entry
sequenced data set when index pointer segment keys are non-unique.
Whenever possible, the data used for keys should be unique to
eliminate the need for the entry sequenced data set, which in turn,
eliminates the additional I/O operations required to search the
entry sequenced data set.

e When calls for an index target segment type are qualified on the
search field of a secondary index, additional I/0 operations are
required since the index must be accessed each time an occurrence
of the index target segment type is inspected to see if that
occurrence satisfies the call, Since the data contained in the
search field of a secondary index is a duplication of data in a
source segment, the user should determine whether or not an
inspection of source segments in their data base might yield the
same result faster.

e When reorganizing an indexed data base, maintenance of data in the
user data portion of index pointer segments is the responsibility
of the user. During reorganization, IMS/VS maintains data in all
portions of index pointer segments in a secondary index data base
except the user data portion. To carry user data forward through
reorganization, the user must retrieve the data from the o0ld index
and replace it:in the new index.

PROCESSING A SECONDARY INDEX AS A DATA BASE

A secondary index may be processed as a data base by providing a
PCB which references the DBD of the index. The purpose of processing
an index alone could be to scan the subsequence or duplicated data
fields; to perform logical comparisons or data reduction between two
or more indexes; or to add to or change the user maintained data area.
Whatever the purpose of processing an index separately, the following
guidelines and restrictions apply.

e Yo changes to system-maintained data fields in the index pointer
segment will be allowed unless NOPROT is specified in the
ACCESS=operand in the index DBD. Attempts to change
system-maintained data without the NOPROT option will result in an
AM status code.

e Inserts will not be permitted to any data base in which ACCESS=INDEX
is specified.

e Any changes to system-maintained data in an index may render the
index as unusable and unmaintainable.

e Deletion of index pointer entries by the user when the associated
index source segments (ISS) exist will result in 'NE' status codes
if the user makes updates to the ISS which will result in index
maintenance.

e Qualification on the key of index pointer segments in SSA's must
supply a value which includes not only the search portion of the
key but also the constant and subsequence data if supplied. This
is the only case in secondary indexing that the user is aware of
the constant and subsequence data in the key.

e In processing a secondary index which is a member of a shared index
it must still be regarded as a separate index data base. A series
of GN calls will not violate the boundaries of the index data base
for which it was intended. Each index in the shared index has its
unique DBD name and root segment name.

Data Base Processing: BAdvanced Functions 3.23

SECONDARY INDEXES AND SEGMENT SEARCH ARGUMENTS

Although the secondary data structure feature as provided by
secondary indexes may be a very convenient way to process a data base
for some applications, especially because it allows immediate retrieval
of the index target segment, it is nevertheless possible to utilize
secondary indexes for qualification only at any segment level without
changing the apparent data base structure.

If a segment type on any level is indexed, the SSA for this segment
may contain field names which have been defined as indexed fields and
thereby make use of the existing index. The use of a field of the
segment defined during Data Base Definition by an XDFLD statement,
rather than a FIELD statement, specifies the use of an index to qualify
that part of the call. TIf the SSA specifies that an index should be
used, DL/T will obtain a candidate segment using the processing
sequence, or prior positioning (that is, in the same way as if indexing
had not been specified in the SSA), and then interrogate the index
within the range specified in the SSAs to search for an index entry
which points to the candidate segment. This may be more efficient and
can save time-consuming data base accesses if the content of the indexed
field is from a segment at a lower level than the index target segment.
However, a warning might be appropriate here. Satisfying a SSA by
inspecting the index means that the index is checked to ascertain
whether or not the pointer provided through the index entry matches
the segment currently under consideration. This may or may not be
efficient. 1If there are several segments with the same indexed field
value, there will be several index entries for this SSA. It may then
be necessary to compare all their pointers until it is found that this
segment does not satisfy the call, while a single access to the data
base would have yielded the same result much faster. An SSA for
instance, of the type "field # value" will normally be unsuitable for
an index search because several complete index data base scans might
result to fulfill one data base call.

Allowing XDFLD field names to be used in SSAs has added another
degree of freedom to qualifications in SSAs using Boolean operators.
In order to fully utilize this degree of freedom, another Boolean AND
operator has been added to the system specifications. The symbol for
this new AND is the "#" and it is called the independent AND. The "kw
as used with indexed fields is now called the dependent AND.

The distinction is made for the purpose of setting limits on the
scan of an index while attempting to satisfy an SSA qualification. The
following examples explain the difference between the dependent and
independent AND operators.

3.24 IMS/VS Application Programming Reference Manual

SN

~

"~

NAME Target
XDFLD
NAME=LOC
SKILL \
Source
EDUC EXPR <
Figure 3-6. Example of Independent AND

Example 1 - To illustrate the need for and use of the independent
AND, assume a requirement to search the data structure of Figure
3-6 for personnel having had experience in specific locations.
For example, to request a person with experience in both
Greenland and Mexico, the following call would be used:

GU NAME (LOCb=GREENLAND#LOCb=MEXICO)

This would retrieve the first person who had had experience in
both places. 1Internally, this means that DL/I will independently
search through the index entries for Mexico, looking for those
which point to the same target segments as are being pointed to
by entries for Greenland.

Target ~
NAME

XDFLD
NAME=EDLVL

TN SKILL

u Source
EDUC EXPR

Fiqure 3-7. Example of Dependent AND

Data Base Processing: Advanced Punctions 3.25

Example 2 - To illustrate the need for and use of the dependent
AND, assume the data structure of Figure 3-7 and an index which
indexes the name segment based on Education level. To retrieve
the first name segment having an education level between 3 and
7 but excluding level 5, the qualification would use the
dependent AND as follows:

GU NAME(EDLEVELbB>3*EDLEVELDbL<7*EDLEVEL-=5)

This call would retrieve the Name segment pointed to by the
first index pointer segment whose search field met all three
conditions.

The differsnce (as illustrated in the previous examples) between
the dependent and independent ANDs is as follows: with the independent
AND, the conditions can be satisfied by two or more different pointer
segments having the same target; with the dependent AND, all conditions
must be met by one index pointer segment. Additional examples follow.

Assume an index data base in which two index entries point to the
index target segment being considered. The two index pointer segments
have key values of 5 and 20 and the XDFLD has the name of XF1. (This
implies that the indexed field content comes from a dependent of the
indexed segment.)

Example 3 - Use of the Dependent AND. The SSA qualification
is:

(XF1b>2%XF1b<10%XF1-=5)

Since the dependent AND is used, these three qualifications are
considered to be a dependent group and all three qualifications
will be used to set the limits for a single scan of the index.
The scan will begin with XF1=3 and stop at XF1=9, but any index
pointer segment(s) with XF1=5 will be skipped over. The result
is that none of the index pointer segment(s) in the range will
satisfy the SSA since the only associated index pointer
segnent (s) have XF1=5 and XF1=20, and it is not possible to
satisfy all three qualifications with any one of them.

Example 4 - Use of the Independent AND. The SSA qualification
is:

(XF1b>2*XF 1b< 10#XF 1-=5)

Notice now that there are only two qualifications in the
dependent group. The conditional XF1-=5 is an independent
qualification. There will be two separate scans of the index
conducted. The first scan will start at XF1=3 and proceed
sequentially until the index pointer segment(s) with XF1=5 is
found. Since this is associated with the index target segment
the qualification of the first AND group is satisfied. The next
step is to consider the qualification XF1-=5. 1In order to
satisfy the independent qualification, the scan is begun at the
beginning of the index data base and every index pointer segment,
except those with XFP1=5, can satisfy the qualification. Since
there is one with XF1=20 it will be found and the index target
segment will have met this qualification. That is, there is an
index entry which will satisfy the first AND group and there is
an index entry which will satisfy the independent qualification.

3.26 IMS/VS Application Programming Reference Manual

-

&

The reader should verify for himself that

XF1b>18#XF1b<8 or XF1b=5#XF1-=5

would be satisified in the above situation whereas
XF1b>18%XF1b<8 and XF1b=5%YXF1-=5

can never be satisified because they have contradictions.

In summary, qualifications connected by an independent AND are
satisfied if there exists an index entry which satisfies the first and
there exists an index entry which satisfies the second. Two
qualifications connected by a dependent AND are satisfied if there
exists an index entry which satisfies both,

The use of the "*" for XDFLD field-qualifications can form dependent
AND groups only for like field names since all limits thus specified
apply only to a single index scan. Two unlike field names connected
with "*" will therefore be treated as "#",

The distinction between independent and dependent ANDs is made only
in the case of XDFLD field qualifications. Unless both the connected
qualifications involve XDFLD field-qualifications, the "*" and the "#©
have exactly the same function that the "*" previously had.

Data Base Processing: Advanced Functions 3.27

CHAPTER 4.

DATA COMMUNICATION APPLICATION PROGRAMMING

This chapter describes application programming for a teleprocesing

environment
emphasis is
program and
overview of
components,
are used in

using the Data Communication facility of IMS/VS. The

on the interface between a teleprocessing application

the Data Communication facility. Figure 4-1 provides an
the IMS/VS teleprocessing environment., Both major IMS/VS
the Data Base facility and the Data Communication facility,
this environment. The interface between the Data Base

facility and its related application program (as described in the
previous chapter) is the same in both the batch and teleprocessing

environments.
- J— —— — /“\
— —
r
\
\ TERMINAL
\
\
A\
\
\
\ COMPUTER
. \ APPLICATION
PROGRAM APPL.
\ — . |PrRoGRAM
\ ﬁ LIBRARY

Y

DATA
BASE

DATA BASE FACILITY

| DATA communicaTiONS FaCILITY |

Figure 4-1,

IMS/VS Data Communication Facility

Application programmers who use the INS/VS Data Communication
facility should be aware of two major options available to the Data
Communication user:

e Message

Format Service

e Conversational processing

Data Communication Application Programming 4.1

Message Format Service (MFS) is a facility available to users of
the 2740 Data Communication Terminal, 2741 Data Communication Terminal,
3270 Information Display System, 3600 Finance Communication System,
3767 Communication Terminal, and 3770 Data Communication System.
Application programming information for MF¥S users is contained in the
IMS/VS Message Format Service User's Guigde.

Conversational processing is described in the next chapter of this
manual. When conversational processing is used, an application program
can retain information acquired through multiple interchanges with a
terminal even though the program leaves the message region between
interchanges.

TELEPROCESSING APPLICATION PROGRAM INTERFACE TO IMS/VS

When the IMS/VS Data Communication feature is used, application
programs can communicate with teleprocessing (TP) devices as well as
access data bases. The program communicates with a device logically
through IMS/VS rather than directly to the device. This type of
communications is made possible by the IMS/VS concept of logical
terminals. 1A logical terminal is a name related to the actual device,
the physical terminal. One physical terminal can have one or more
associated logical terminals, The logical terminal name or names for
each physical terminal are defined by the IMS/VS system programmer
during IMS/VS system definition. The IMS/VS System/Application Design
Guide contains a complete description of logical terminals. ,

The logical terminal concept allows an application program to be
independent of a particular physical terminal. Generally, the
application programmer need not be concerned about the actuwal location
or address of the device. If a physical terminal becomes inoperative,
its associated logical terminal(s) can be reassigned to another physical
terminal, thereby causing output messages to be sent to another physical
terminal. Also, each logical terminal can have unique security checking
associated with it,

To an application program, therefore, a logical terminal can be
viewed as just another sequential data input source or output

destination. The application program interface to the logical terminal

is through essentially the same call interface mechanics as that
described for data base access. Access to a data base requires the
use of a data base Program Communication Block (DB-PCB). Accordingly,
communications with a TP device requires the use of a teleprocessing
PCB (TP-PCB).

Application programs that operate in a teleprocessing environment
normally reference both DB-PCBs and TP-PCBs, and must contain a mask
to handle each PCB type. Figure 4-2 shows that the TP application
program views terminals and data from a logical view point. Any changes
to the physical terminal configuration or to actual data structures
have a minimum effect on the application progranm.

4.2 IMS/VS Application Programming Reference Manual

APPLICATION PROGRAM

™ — -
PCB TP
MASK PCB

LOGICAL
TERMINAL

—_— e —————

L |

LOGICAL STRUCTURE

DB e
PCB D8 1
MASK PCB
N
N
N
Fiqgure 4-2. Relationship of Teleprocessing Application Program to

DB PCBs and TP PCBs

TP PCBs

There are two types of TP PSBs ~- the I/0 PCB and the alternate PCB.
An I/0 PCB is always provided by IMS/VS to the application program that
executes in a TP environment. Alternate PCBs are optional and are
created as part of a Program Specification Block (PSB). A PSB is
created by the IMS/VS PSB Generation Utility Program (PSBGEN) and
resides in the IMS/VS PSB library (IMSVS.PSBLIB). Both the I/0 and
alternate PCBs are read into and retained in main storage during
execution of the application program. See Figure #-3,

IMS/VS
0s/vs . PSB LIBRARY

IMS/VS ——1 ?

CONTROL >
Pd llo .-8991
Pl PCB L DB
APPLICATION PéOG Rl}M A

r—-ﬁ—!--{-——-g——- \)
e

ALT [
PCB Pl
MASK PCB PROGRAM LIBRARY

A
m—‘-—-—_ DB o

pcB iyl
MASK
- v o o A/P
= —11AP]
Figqure 4-3. Teleprocessing Application Program Execution

Data Communication Application Programming 4.3

To obtain an input message and to reply to it, the application
program must reference the I/0 PCB. To send a reply to a terminal
other than the terminal that originated the input message, or to another
application program, the program references an alternate PCB.

To be able to test TP application programs in a batch region without
having to recompile before online testing, specify CMPAT=YES in the
PSBGEN statement of the PSBGEN utility program. When CMPAT=YES is
specified, IMS/VS prov1des PCBs to the program as if a message region
was being used.

I/0 RBCB

An I/0 PCB is the mechanism required by a TP application program
to:

e Obtain an input message from a terminal.

e Return a reply to the terminal that originated the input message.
Application programs returning replies to terminals operating in
response mode, conversational mode, or exclusive mode must direct
such replies to the I/0O PCB or an alternate PCB that has been
defined as ALTRESP=YES.

When IMS/VS receives an input message, it queues the message according
to transaction code and schedules the application program that processes
the transaction. When scheduling the program, IMS/VS passes to the
program the address of its I/0 PCB plus the alternate PCB(s) (if any)
and the DB-PCB (s) (if any) defined in its PSB. The I/0O PCB contains

the name of the logical terminal that entered the message . (source) and
can receive the reply (destination).

AR - P A 4

An alternate PCB is the mechanism required by a TP application
program to send an output message to a destination other than the TP
device that originated the input message. An alternate PCB specifies
a destination of either a logical terminal or a transaction code defined
during IMS/VS system definition. The destination can be specified
during PSB generation or during program execution. When an alternate
PCB specifies a transaction code as a destination, IMS/VS routes the
message built using that alternate PCB to the application program that
processes the specified transaction code (this is known as a
program-to-program message switch).

To be able to specify a destination during program execution, the
alternate PCB must be defined as modifiable during PSB generation.
When an application program uses modifiable alternate PCBs, the progranm
must specify the output message destination before beginning to build
the output message.

Alternate PCBs can also be defined with the express message option,
EXPRESS=YES. Messages destined for alternate PCBs so defined are
considered complete and sent even if the application program abends.
Express alternate PCBs should be used judiciously--they are primarily
intended for a program when it detects that some invalid processing
occurred and that it must issue a rollback (ROLL) call to resume
processing at its most recent synchronization point. The express
message PCB provides a way for the program to notify the terminal
operator of the situation. If used in circumstances other than the
above, express alternate PCBs can cause duplicate tramsaction or output
message processing by an application program if an IMS/VS control region
abends.

u.u IMS/VS Application Programmning Reference Manual

Alternate PCBs can also be defined with the response option
ALTRESP=YES. When so defined, a response to a terminal in response
mode, conversational mode, or exclusive mode can be directed to the
alternate PCB instead of to the I/0 PCB. An alternate PCB so defined
meets the I/0 PCB requirements for these operating modes and is known
as a response alterante PCB. Such a response alternate PCB must have
as its destination a logical terminal. Using response alternate PCBs
allows the application program to send output to a logical terminal
other than the one that originated the input message and still satisfy
the requirements of these operating modes, If specified during PSB
generation (SAMETRM=YES), IMS/VS will verify that the logical terminal
named in this response alternate PCB is assigned to the same physical
terminal as the logical terminal that originated the input message.
(This check is always made for conversational programs and response
mode transactions.)

TP-PCB MASK
To support communication with IMS/VS, the TP application program

must contain a TP-PCB mask. As shown in Figure #4-4, a TP-PCB mask must
provide for seven fields of information.

SOURCE/DESTINATION NAME
8 Bytes

2 RESERVED FOR IMS/VS
2 Bytes

STATUS CODE
2 Bytes

4 CURRENT DATE
" 4 Bytes

CURRENT TIME
4 Bytes

a
INPUT PREFIX
INPUT PREFIX

6 INPUT MESSAGE SEQUENCE NUMBER,|
4 Bytes

MESSAGE OUTPUT DESCRIPTION
7 NAME

8 Bytes (1/0 PCB only)

Figure 4-4. Layout of a TP-PCB Mask

1. SOURCE/DESTINATION NAME - For input, this field contains the
name of the logical terminal that entered the message, or blanks.
For output, this field contains the name of a logical terminal
or a transaction code. The name is 1 to 8 bytes 1long,
left~justified, and padded with blanks.

2. RESERVED AREA - a 2-byte area reserved for IMNS/VS.

Data Communication Application Programming 4.5

3. STATUS CODE - a status code that is the result of a TP call is
placed in this 2-byte field. When a successful call is executed,
this field is returned blank. A non-blank status indicator is
returned on an unsuccessful call. ' '

4., 6.
INPUT PREFIX - is available only for the I/O PCB. The length
of the input prefix is 12 bytes:

4, 4 bytes - Julian date (Y!DDD#packed decimal) when the input
message was completely received from the physical
terminal.

‘5., 4 bytes - time (HHMMSS.S-packed decimal) when the input
message was completely received from the physical
terminal.

6. U bytes - sequence number (binary) of the input message.

7. HMESSAGE OUTPUT DESCRIPTION NAME ~ is available only for the I/0
PCB. This field has meaning only when output messages are sent
to terminals that use the IMS/VS Message Format Service (MFS).

When IMS/VS supplies the first segment of an input message, it
fills this field with either the name of a message output
description or blanks. The contents of this field can be changed
by using the output MOD name parameter of the TP output call

that contains the first segment of an output message. Further
information on the use of the output MOD name parameter is
contained in the IMS/VS Message Format Service User's Guide.

COBOL Example of a TP-PCB Mask

)

The following example is an I/0 PCB mask for an American Natiomnal
Standard (ANS) COBOL message processing program. This mask would be
found in the linkage section of the program. A mask for an alternate
PCB would be similar but without the IN-PREFIX and MOD-NAME fields.

DATA DIVISION.
LINKAGE SECTION.

N1 I0-PCB.
02 LTERM-NAME PICTURE X(8).
N2 DLI-RESERVE PICTURE XX.
02 STATUS-CODE PICTURE XX.
02 IN-PREFIX..

03 JULIAN-DATE PICTURE S59(7) COMPUTATIONAL-3.
03 PCB~TIME-OF-DAY PICTURE 59 (7) COMPUTATIONAL-3.
03 MSG-SEQ PICTURE S9(7) COMPUTATIONAL.

02 MOD-NAME PICTURE X(8).

4.6 IMS/VS Application Programming Reference Manual

a

PL/Y Example of a TP-PCB Mask

The following is an example for PL/I Optimizing Compiler message
processing programs. A mask for an alternate PCB would be similar but
without the IN_PREFIX and MOD_NAME fields.

DECLARE 1 JO_PCB BASED (TO_PCB_PTR),
2 IO_TERMINAL CHARACTER(8),
2 TO_RESERVE CHARACTER (2),
2 IO_STATUS CHARACTER (2),
2

IN_PREFIX,
3 PRE_DATE FIXED DECIMAL (7),
3 PRE_TIME FIXED DECIMAL (7).,

3 PRE_MSG_COUNT FIXED BINARY (31),
2 MOD_NAME CHARACTER (8) ;

ENTRY TO THE TELEPROCESS ING APPLICATION PROGRAM

The entry statement to a TP application program names the TP-PCBs
and the DB-PCBs. The TP-PCBs must precede the DB-PCBs, and at least
one TP-PCB must be specified to provide for the I/O PCB.

e The format for an ANS COBOL program is:

ENTRY 'DLITCBL' USING IO-PCBNAME, ALT-PCBNAME1, ALT-PCBNAMEn,
DB-PCBNAME1, DB-PCBNAMEn.

e The format for a PL/Y optimizing compiler program is:

DLITPLI: PROCEDURE (IO_PCB_PTR,ALT1_PCB_PTR,ALT2_PCB_PTR,
DB1PCB_PTR,DB2_PCB_PTR) OPTIONS (MAIN) ;

Programs that are 0S/VS subtasks of an application program called
by INS/VS must not issue DL/I calls. If they do, the results will be
unpredictable. With PL/I, whenever PL/I multitasking is used, all
tasks, even the apparent main task, operate as subtasks to a hidden
PL/I control task. PL/I tasking is therefore not allowed in an IMS/VS
program. '

Data Communication Application Programming 4.7

This section describes the call functions available to IMS/VS
application programs in a TP environment. These TP calls relate to
messages. A message is comprised of one or more segments., Figure 4-5
shows two messages: Message A is made up of segments A1, A2, and A3;
Message B is made up of segments B4 and BS5.

Figure 4-5. Message Relationships to Its Segments

The messages received from terminals and placed in the message queues
are accessible to a message program by TP calls. The TP call functions
available are:

e GUbb (get unigue)
e GNbb (get next)

e ISRT (insert)

e PURG (purge)

o CHNG {change)

The TP call format is slightly different from DIL/I calls because
there is no hierarchical structure with which to be concerned. SSAs
(Segment Search Arquments) are not used for TP calls.

e The format for an ANS COBOL program is:
CALL 'CBLTDLI' USING CALL_FUNC, TP_PCB, WORK_AREA.
e The format for a PL/I program is:
CALL PLITDLI (PARM_COUNT,CALL_FUNC,TP_PCB,WORK_AREA) ;

When a transaction or input message is available for processing,
the associated application program is scheduled into a message
processing region. After being loaded, the program should issue a get
unique (GU) call to obtain the first segment of its input message.
Fach subsequent segment of that message is obtained with a get next
(GN) call. GU and GN calls can be made only to the I/O PCB.

If the program is serially-reusable or reentrable between GU calls,
GU calls can be issued for subsequent input messages until all messages
are retrieved. If a program is not serially-reusable or reentrable
between GU calls, the program must terminate after each GU call so that
it will be reloaded and re-initialized.

4.8 IMS/VS Application Programming Reference Manual

An insert (ISRT) call is used to build output messages. Each segment
of an output message can have appropriate terminal control characters
embedded in the text. The purge (PURG) call can be used to delimit
output messages being inserted. The output message may be sent as a
reply to the terminal that originated the input message or to other
terminals.

Insert and purge calls can be issued to any TP-PCB. Message replies
to input should be directed to the I/0 PCB for return to the inputting
terminal. Messages destined for any terminal other than the inputting
terminal, or for an application program, must be directed to an
alternate PCB. Replies to a terminal in either response mode,
conversational mode, or exclusive mode must be made to either the I/0
PCB or an alternate PCB defined during PSB generation as ALTRESP=YES.

Messages placed into the queue by an application program are not
transmitted to their destination simultaneously with the insertion of
the segments. Unless the message destination is an alternate PCB
defined as EXPRESS=YES during PSB generation, IMS/VS places the output
message in a temporary destination queue until the program reaches a
synchronization (sync) point., When the sync point occurs, IMS/VS moves
the complete message to its final destination queue. If the application
program abends, all activity is backed out as if it never occurred.
Activity backed out includes all messages and transactions created,
and all data base updates, Backout occurs prior to the termination
sync point.

Note: A DC application program sync point is program termination. The
checkpoint call, if used, is also a sync point. If the transaction to
be processed by the program was defined as MODE=SNGL during IMS/VS
system definition, each request for a new message (get unique) is also
a sync point.

If the message destination is an alternate PCB defined as
EXPRESS=YES, IMS/VS bypasses the temporary queue and moves completed
messages to the final destination queue. These messages will be
considered complete and sent if the application program abends. The
only condition that will prevent these messages from being sent is a
deadlock situation that occurs prior to completion of these messages.

The change (CHNG) call is used during program execution to set an
output message destination, to an alternate PCB.

At the conpletion of a TP call, IMS/VS returns a status code,
indicating the results of the call, in the 2-byte status code field of
the TP-PCB associated with the call. The application program should
interrogate the status code after each TP call.

If the call is completed successfully, the status code consists of
two EBCDIC blanks; otherwise it is one of the codes shown in Appendix
A (quick reference) or B (status code descriptiomns).

INPUT MESSAGE SEGMENT CALLS

Get Calls (GU, GN)

The get calls are used to retrieve segments of an input message.
For each get unique (GU) or get next (GN) call, one segment is returned
to the application program. IMS/VS returns the retrieved segment to
a work area defined in the application program. Since the length of
a message segment is variable, the work area must be large enough to
contain the longest segment expected by the progranm.

Data Communication Application Programming 4.9

The first segment of an input message is obtained with a GU call
against the I/0 PCB. In response to a GU call, IMS/VS returns the
first message segment and fills in the following I/0 PCB fields: 1)
source name (name of the logical terminal that originated the message),
2) status code, 3) input prefix, and 4) message output description name
(when present and message is from a MFS-supported device).

e The format for an ANS COBOL program is:
CALL ‘'CBLTDLI' USING GET-UNIQUE-FUNC, IO-PCB, WORK-AREA.
e The format for a PL/I program is:
CALL PLITDLI (PARM_COUNT,GET_UNIQUE_FUNC,IO_PCB,WORK_AREA);

For programs that process multiple transaction coda2s, the text of
the input message can be examined to determine the transaction code.

The second and subsequent segments of an input message are retrieved
with a GN call.

e The format for an ANS COBOL program is:
CALL 'CBLTDLI' USING GET-NEXT-FUNC, IO-PCB, WORK-AREA.
e The format for a PL/I program is:
CALL PLITDLI (PARM_COUNT,GET_NEXT_FUNC,IO_PCB,WORK_AREA) ;

Figure 4-6 shows the call functions used to obtain the various
segments of messages A and B.

HESSAGE A CALL-FUNCTION
FTTTT ST ST T T 3
{ SEGMENT a1 | <=mm=mmm—me——ee GET ONIQUE
R P S — GET NEXT
e D S —— GET NEXT
110D Status) | <ommmmmmmmnmmes GET NEXT
Lo mc e ———- J4
MESSAGE B
[1
| SEGMENT B1 | <e==-mommmomeee GET UNIQUE
:-;;;;;;;-;5_---1 e GET NEXT
e R —

Figure 4-6. Call Functions for Segments of Messages A and B

The application program should inspect the status code field of the
I/0 PCB after each get call. 1A blank status indicates a segment was
retrieved successfully., A QD status after a GN call indicates there
are no more segments to retrieve.

4.10 IMS/VS Application Programming Reference Manual

To retrieve all the segments of a message, a GU call and successive
GN calls must be issued until a QD status is returned. It is not
necessary to retrieve all the segments of a message. A GO call can be
issued at any time to retrieve the first segment of the next message.
A QC status after a GU call indicates there are no more messages in
the queue. If a batch message processing program issues a GU after
receiving a QC status, a message will be returned if there is one.

In addition to the status code, IMS/VS fills in the
source/destination name field of the I/0 PCB after each successful GO
call. When the message source is a logical terminal, IMNS/VS places
the logical terminal name in the name field. When the source is
unknown, IMS/VS sets the field to blanks. This occurs in the following
instances:

Message_Source Reason
Message processing program ° MPP did a program-to-program message
(MPP) switch after a GU of an input message

without a source

® MPP inserted a message before issuing
a successful GU call.

Batch message program (BMP) ° BMP has not issued a successful GU
call

OUTPUT MFSSAGE SEGMENT CALLS

Insert Call (ISRT)

The insert call is used to build output messages. To build an output
message in reply to the terminal that originated the input message,
output message segments nust be inserted to the I/0 PCB. Output message
segments can also be inserted to alternate PCBs. If an alternate PCB
has been defined as modifiable, a change call must be used before the
first insert call. The change call sets the destination of the output
message (refer to "Change Call" in the section "Additional TP Calls"
later in this chapter).

The ISRT call format is similar to that for message get calls.
e The format for an ANS COBOL program is:

CALL 'CBLTDLI' USING ISRT-FUNC, TP-PCB, MSG-SGMT-IO-AREA,
OUTPUT-MOD-NAHNE.

¢ The format for a PL/I program is:

CALL PLITDLI (PARM_COUNT,ISRT_FUNC,TP_PCB,MSG_SGMT_IO_AREA,
OUTPUT_MOD_NAME) ;

The output MOD name parameter is optional and only meaningful to
IMS/VS systems that include MFS. It can be specified only on the insert
call that provides the first segment of the output message. OUTPUT
MOD NAME is the label of an 8-byte field containing the name of the
message output description; the name must be left-justified and padded
with blanks. '

Data Communication Application Programming 4.1

Fiqure 4-7 shows an ANS COBOL example of output message segment
calls for output message A. These three call statements create one
output message.

MESSAGE R CALL-FUNCTION
| pabetehebhaihh 1

| SEGNENT a1 | €=mmmmommmmme INSERT

| SEGRENT A2 | Kemmmemmmmmmee INSERT

| SEGHENT B3 | <=--emmmmmmmn INSERT

| R J

CALL 'CBLTDLI' USING INSERT~-FUNC, TP-PCB, SEGMENT 1, OUTPUT-MOD-NAME.
CALL 'CBLTDLI'* USING INSERT-FUNC, TP-PCB, SEGMENT 2.

CALL 'CBLTDLI' USING INSERT-FUNC, TP-PCB, SEGMENT 3.

Figure 4-7. Call Functions for Segments of an Output Message and
Call Statements

Piqure 4-8 shows an example of an output message as one message
segment called Message A. The insert call function creates one message
segment which would produce three lines on a 1050. If the segment was
sent to a MFS-supported device, it would be edited based on the message
output description named MSGFMTX7 (carrier-return characters perfornm
no function other than occupying a position in the output segment).

WORK ARER NAME CONTENTS OF WORK AREA

MESSAGE A NO STOCK ON HANDnl* BACK ORDERS ARE
PRESENTcr THE NEXT SCHEDULED ARRIVAL
IS XX-XX-XX.cr

FMT-A MSGFMTX7

CALL 'CBLTDLI' USING INSERT-FUNC, TP-PCB, MESSAGE A, FMT-A.

*nl = new line

Fiqure U4-8. Output Message As One Segment and Its Call Statement

Output message segments cannot be distinguished as first and
subsequent segments by the insert call. Any required distinction must
be made by the programmer. All message segments inserted to a given
TP-PCB during the processing of a single input message are treated by
IMS/VS as a single message unless the PURG call is used. Output message
segments may be created by insert calls prior to retrieval of an input
message.

If an application program processes a transaction code for which
the maximum number and size of output segments has been limited (through
system definition or the /ASSIGN command), the program must be prepared
to accept the status codes IMS/VS returns if the limits are violated.
¥hen an application program inserts a segment that violates the size
or number 1limit, the insert call is not honored and an error status
code is returned. If the program attempts to insert an excess number

4,12 IMS/VS Application Programming Reference Manual

of segments more than once for the same input message, IMS/VS abends
the application progranm.

Output messages sent in reply to terminals in conversational mode,
response mode, or exclusive mode must be inserted to either the I/0
PCB or an alternate PCB defined as ALTRESP=YES. A1ll segments of one
message must be inserted to the same PCB. If specified during PSB
generation, (SAMETRM=YES), and if the application program is
conversational, or if the physical terminal is in response mode, IMNS/VS
will verify that the logical terminal named by that response alternate
PCB is assigned to the same physical terminal as the logical terminal
that originated the message.

If the TP application program has DB-PCBs defined, one or more data
base calls may be executed. The normal sequence of operation may be
to obtain the input message, issue data base calls based upon input
message content, and create an output message based upon input message
content and data base calls.

ADDITIONAL TP CALLS

Purge Call (PURG)

The purge call causes all message segments that have been inserted
to a TP-PCB to be collected together as a message and enqueued on the
TP-PCB's destination. Completed messages are handled as described in
the introduction to this section.

The purge call can be specified with an I/O area. In this format,
the purge call performs the purge function and then treats the data
contained in the I/0 area as the first segment of a new message.

Message segments are normally grouped into a message and made ready
for transmission at the time the program issues a GU for a new input
message or the program terminates. The purge call allows the program
to insert multiple messages to the same destination while processing
a single input message.

e The format for an ANS COBOL call is:
CALL *CBLTDLI' USING PURG-FUNC, TP-PCB.
or

CALL ‘CBLTDLI' USING PURG-FUNC, TP-PCB, MSG-IO-AREA,
OUTPUT-MOD-NAME.

e The format for a PL/I call is:
CALL PLITDLI (PARM_COUNT,PURG_FUNC,TP_PCB_PTR)
or

CALL PLITDLI (PARM_COUNT,PURG_FUNC,TP_PCB,IOAREA,
OUTPUT_MOD_NAME) ;

The output MOD name parameter is optional and is only meaningful to
IMS/VS systems that include MPS. It can be specified only on the purge
call that provides the first segment of an output message. OUTPUT MOD
NAME is the label of an 8-byte field containing the name of the message
output description; the name must be left-justified and padded with
blanks.

Data Communication Application Programming 4.13

Figure 4-9 shows how message segments may be grouped into messages
by the application progranm.

The purge call causes IMS/VS to consider the output message complete
even if the application program that issued it subsequently abends.
If the message destination was an alternate PCB defined during PSB
generation as EXPRESS=YES, this could result in a terminal receiving
a response from the application program even though it abended without
fully processing this transaction. If the destination of the alternate
PCB was a transaction (program-to-program message switch), the progranm
for that transaction will be scheduled even though the originating
program abended.

CALL FUNCTION

MESSAGE A

FoTTTTET TS h]

{ SEG A1 | <-=—-—=--rmmmrme INSERT SEG 1
| --====--- f

| SEG A2 | krmmrmmrr e e INSERT SEG 2
| === |

| SEG A3 | dermmmmmmmrm e INSERT SEG 3
Leememe——— ¥

MESSAGE B G e it ket dod PURGE (WITHOUT SEGMENT)
FTTTT TS h]

| SEG Bl | (===-=====--=———————o- INSERT SEG 4
Rt {

| SEG B2 | === memmmer e INSERT SEG S
|-=o=-===-- [

| SEG B3 | {-==mmermmrm e INSERT SEG 6
[e i)

r
{ SFG C1 | <-=---=-—-ccoom——=- = PURGE SEG 7
fmemm—mm—— {
| SEG C2 (| (mm=—cmwcem—cm—ceaea—- INSERT SEG 8
fm—=m———-- |
| SEG C3 | (===-mm-meme—ccee——- INSERT SEG 9
b e = 4

{rmmm o ~ GET UNIQUE

Figure 4-9. Grouping of Message Segments (PURG Call)

If a purge call is issued for a message to a terminal in response
mode, output messages may be transmitted out of sequence.

Conversational programs are not allowed to utilize the purge call.

The purge call must not reference an alternate PCB defined as
ALTRESP=YES.

If a purge call is used with no parameters, or with the I/0 area

parameter missing and the optional MFS parameter specified, the results
are unpredictable.

4.14 IMS/VS Application Programming Reference Manual

7N

N~

Change Call (CHNG)

The change call is used to set the destination of an alternate PCB
to any valid logical terminal or transaction code in the system. To
use the change call, the alternate PCB must have been defined as
modifiable during PSB generation., The destination of the modifiable
PCB must be set with the change call before any segments are inserted.
CHNG can be used to set the PCB destination to a conversational
transaction only by a conversational program.

When used for program-to-program message switching, the terminal
from which the message is entered must pass the security check for the
new transaction code. If the source terminal is not known to IMS/VS,
and the destination has security, the call is rejected with an error
status code.

The new destination remains set until either the application program
issues another CHNG, issues a GU, or terminates. At that time, IMS/VS
resets the destination to blanks.

R change call for an alternate PCB cannot be issued while that PCB
is being used to form a message. Therefore, unless PURG is issued,
multiple modifiable PCBs must be defined if messages are to be sent to
several destinations while processing a single input message.

e The format for an ANS COBOL call is:

CALL 'CBLTDLI' USING CHNG-FUNC, ALT-PCBNAME, DEST-NAME.
e The format for a PL/I call is:

CALL PLITDLY (THREE,CHNG_FUNC,ALT_PCBNAME,DEST_NAME) ;

The destination name parameter (DEST NAME) specifies the label of
an 8-byte field containing the name of the logical terminal or
transaction code to be assigned as the destination for this PCB. The

name must bz 1 to 8 bytes, uppercase EBCDIC, left-justified, and padded
with blanks.

MESSAGE FORMATS

Three message formats are used within IMS/VS:

e ITnput message

e Output message

e Program-to-program message switch

The formats shown represent message segments as they would be
rec2ived or constructed in the message segment YX/O work area. A message
segment and a single message line are synonymous.

The fcrmats are different when either conversational processing or
Message Format Service is used. Formats for conversational processing

are described in the next chapter. MFS formats are described in the
IMS/VS Message Format User's Guigde.

Data Communication Application Programming 4.15

INPUT MESSAGE FORMAT

Input message segments originate at a communications terminal and
are delivered to the application program's message segment I/0 work
area by means of a GU or GN call. The length of the input message
segment (text portion) is directly related to the line length of the
specific communications terminal that originated the message.

The first segment of an input message may not contain a transaction
code if the message was switched from another program.

The maximum number of bytes allowed by each terminal supported by
IMS/VS is shown below.

Terminal Number of Bytes
1050, 2740-1, 2740-2, 2741 130. If MFS is used for the

274C/2741, see the IMS/VS
Message Format Service
User's Guide.

2260-1, 2265-1 with 80

12/80 screen

2260-2 40

2770 Variable, depending on component.
2780 80

2989 Variable, depending on user edit.
3270 Variable; see the IMS/VS

Message Format Service
User's Guide.

3600, 3790 Variable; refer to the IMS/VS
Advanced Function for
Commpunications manual, or, if
MFS is used, to the INMS/VS
Message Format Service User's

Guide.
3741 128
3767, 3770 512. 1If Message Format Service

(MFS) is used, the length of
the message segment is defined
by the user to MFS,

7770 Variable, depending on user edit.

33/35 Teletypewriter 80

Local Card Reader (2501, 80

2520, 2540, 1442)

System/3 Variable, dependent on user's

Systen/7 program in the System/3 or
Systemn/7.

System/370 console 122

INS/VS Application Programming Reference Manual

7N

/,

a

The format of each input message segment is:

-

ZZ

TEXT

is a 2-byte binary field representing the total length of the
message segment, including LL and ZZ. The value of LL equals
the number of bytes in text plus 4. The LL value is provided
by IMS/VS for input messages.

When PL/I is used, the LL field must be defined as a binary
fullword. The value contained in the LL field is the actual

segment length minus 2 bytes. For example, if the input message

segment is 16 bytes, LL is equal to 14 and represents the sum
of the lengths of LL (4 bytes minus 2 bytes), ZZ (2 bytes), and
TEXT (10 bytes).

is a 2-byte field reserved for IMS/VS.

is the message segment in EBCDIC as it was entered at the
terminal., IMS/VS edits a message segment before passing it to
the application progranm.

e First or only segment

A single-segment message, or the first segment of a multisegment

message, contains a transaction code and the segment text. A
transaction code does not exceed 8 bytes, and is followed by a
blank. IMS/VS has removed any of the following items if they
appeared in the terminal input stream:

e Leading control characters

e Leading blanks

e Backspaces

e Trailing control characters

If a password is present, IMS/VS:
e Removes the password

e Replaces the password with a blank unless the first
byte following the password is a blank

e Left-justifies the segment text
Non-first segments
The text of the second and subsequent segments of a multisegment
message contains message text only. The IMS/VS edit functions are
the same as above except IMS/VS does not remove leading blanks.

Preset Mode Segment Edit

For the first or only segment of a message from a terminal in preset

mode, IMS/VS inserts the transaction code. IMS/VS also inserts a
blank following the tramnsaction code unless the first byte of
message text is a blank. The second and subsequent segments are
treated as described above for non-first segments.

Data Communication Application Programming 4.17

The input of segment 1 of Message A at a 1050 or 2740 Model 1 termimal
may be:

VR
b b CE - ‘
ORDER (PURCH) bNUMBERD42746k5bPARKk RTbNBRbS76325 RO .
S S B
e 47 CHARACTERS=--==-====—m=m=== >

But the received segment 1 of Message A in the input segment I/0 work
area of the application program (specified in the CALL statement) is:

1 2 3 4 s 6 7

LLZZORDERbNUMBERbU42745bPARTbN BRb576325
Cmmmmmmmm oo 38 CHARACTERS--------==--- >

LL is the 2 bytes containing the length of the message
segment. This message segment is 38 bytes long.

ZZ is the 2 bytes reserved by IMS/VS.

ORDERD is now the transaction code and a blank where before
there was also a password which is edited out before being
received at the application progranm.

NUMBER is the first 6 bytes of the text of this message segment.

45b shows that the incorrect character (6) and the backspace a

have been edited out by IMS/VS, leaving the next character (5).

PART shows that the incorrect character (W) and the backspace
have been edited out by IMNS/VS, leaving the next character (R).

shows that the CR (carrier return) and the EOB (end-of-block)
have been edited out.

DEVICE DEPENDENT INPUT MESSAGE CONSIDERATIONS

The IMS/VS Operator's Reference Manual describes the input message
format and operating characteristics for each terminal type supported
by IMS/VS. The remainder of this section on input message formats
lists input message considerations that should be reviewed by the
application programmer responsible for supporting the 2260 Display
Station Models 1 and 2, the 2265 Display Station Model 1, components
of the 2770 Data Communication System, and the 2972/2980 General Banking
Terminal System.

r\!

4.18 IMS/VS Application Programming Reference Manual

2260-1, 2260-2, 2265-1

e The input message is broken into segments whose length is variable:

Display Station Number of Bytes per Segqment (Screen Line)
2260-1,2265-1 1 to 80 (12 segments per screen)
2260-2 (2848-1) 1 to 40 (6 segments per screen)
2260-2(28u8-2) 1 to 40 (12 segments per screen)

A segment contains the number of bytes on one screen line unless
a New Line (NL) symbol is entered; when a NL symbol is used, the
segqment is truncated at the NL symbol.

e A START MI symbol must precede entry of an input message. Only
one START MI symbol per screen is allowed. The START MI symbol
can be entered by the operator from the keyboard or can be placed
on the screen by the application program (when placed by the
application program, the START MI must be one character,
multipunched X'4A' or C'g').

If ENTER is pressed when no START MI is displayed, no data is sent
to IMS/VS; IMS/VS displays a START MI and flags the screen as
reserved for an input message

e An input message is considered to be that data contained between
the START MI and the position of the cursor when ENTER is pressed.
Any data outside these bounds when ENTER is pressed is ignored and
not transmitted to IMS/VS.

———— e ol o

Screen Size Number of Bytes per Segment (Screen Line)
12x89 1 to 80 (12 segments per screen)
15x 64 1 to 64 (15 segments per screen)

A segment contains the number of bytes on one screen line unless
a New lLine (NL) symbol is entered; when a NL symbol is used, the
segment is truncated at the NL symbol.

e A SMM symbol should preced2 any entry of an input message. Only
one SMM symbol is allowed per screen. The 2770 system defaults to
a beginning of screen read to cursor if no SMM symbol is present
on the screen, unless the screen has been erased before the ENTER
key is depressed. A SMM symbol is not recognized if it is placed
on the screen following an NL character on the same 1line.

e The terminal operator can enter the SMM symbol from his keyboard
or the application program can place it on the display screen.
(The symbol must be one character, multipunched X'4A', or a C'#?'),
IMS/VS also provides that if the operator presses KEYBOARD REQUEST,
ERASE FULL, ENTER, IMS/VS displays a SMM symbol on the screen and
flags the screen as reserved for an input message.

e The input message is considered to be that data contained between

the SMM symbol and the position of the cursor symbol at the time
the ENTER key is pressed.

Data Communication Application Programming 4.19

Card Reader

e The input segments may be a maximum of 80 bytes. The segment may
be smaller for one of two conditions. If the 2772 control unit
has the Buffer Expansion Feature installed, any trailing blanks in
an individual card are deleted. If the "/." sequence is used by
the terminal operator to indicate the end of a transaction input
text, the "/." sequence is deleted from the message segment. If
the terminal operator punches an end of media (EM) character in
the card, the card is truncated from the position before the EM
character.

Keyboarad
e The maximum input segment size is dependent on the size of the 2772
line buffer or the size of the IMS/VS queue message buffer minus
the prefix length, whichever is smaller.
Paper Tape Reader
e The maximum input segment size is dependent on the value specified
in the PTSEG= keyword of the TERMINAL statement during IMS/VS systenm
definition.

Magnetic Ink Character Reader (MICR)

e A message is considered to be all documents read from the component
until an End of File Document is detected.

e The input message segment size is dependent upon the MICR features
and terminal operator field selections.

e Each document from the MICR is treated as a segment.
Magnetic Data Inscriber (MDI)

e The maximum input segment size is dependent upon the value specified
in the MDISEG= operand of the TERMINAL statement during IMS/VS
system definition.

e The input message is considered to be all data records processed
from the first input until an End of Data Code is datected fron
the MDI.

e Tf the ERROPT=ACCEPT option of the TERMINAL statement is selected

during IMS/VS system definition, the contents of an input segment
for which an error occurred are undefined.

2972/298C Components

When a 2980 Model 1 or Model 4 teller station is used as the input
terminal, there are characters that can be entered which are not
translatable into EBCDIC., TFigures 4.10 and #.11 list the hexadecimal
values used by IMS/VS to represent the non-EBCDIC characters that can
be entered from a teller station. Figure 4-12 identifies 2980 Model
4 function key entries.

4,20 IMS/VS Application Programming Reference Manual

(”\

C

Fiqure 4-10 represents the IMS/VS translation of numeric entry data
from a 2987 Model 1 teller terminal. Alphabetic entry data is presented
to the application program in the standard EBCDIC charac ter set. ’

GRAPHIC GRAIHIC GRAPHIC
KEY sympoL | HEX KEY I|sympor | HEX KEY |SYMBOL HEX
NUMBER (prrnTED|VALUL NUMBER |prInTED |VALUE |INUMBER |pRINTED | VALUE

0 ! 41 18 (] 54 36 3 F3

1 R 67 19 c 55 37 + LE

2 c 73 20 . 4B 38 - 71

3 H 9A 21 D 56 39 F 75

4 v B? 22 o 57 40 T 70

5 Q 69 23 ¥ 58 41 $ 63

6 ¥ 42 24 0 FO 42 $ 64
7 1] 43 25 7 F7
8) uh 26 A Fu
9 X B2 27 I 72
10 H 45 28 1 F1
11 M 46 29 8 F8
12 $ 47 30 5 F5
13 A 48 31 c 62
14 H L9 32 2 F2
15 L 51 33 9 F9
16 H 52 34 6 F6
17 B 53 35 U 9B

Figure &4-10C. 2980 Model 1 Special Character Set
Data Communication Application Programming 4.21

Figure 4-11 represents the IMS/VS translation of numeric entry data

from a 298N Mod=2l 4 teller terminal.

Except alphabetic entry of keys

11, 15 and 40 as indicated on the above chart, alphabetic entry data
is presented to the application program in the standard EBCDIC character

set.
KEY |ovnomiCl| nex KEY [ovnrbrC| HEX KEY [oRBPETCL mEX
NUMBER [prrnTEp | VALUE || NUMBER |prrnrep] VALUE || NUMBER|ppryrep| VALUE

0 ¢ 62 18 G 76 36 0 FO
1 L 67 19 3 64 37 5 F5
2 A 68 20 B 77 38 2 F2
3 ¢ 55 21 / 61 39 9 Fo
4 . 87 22 p 78 40 $ 70
5 * 69 23 g 49 61 6 F6
6 $ 7 24 N 79 42 3 F3
7 1 uF 25 A 46

8 H 45 26 J B1 11 2 85
9 E 72 27 # B9 15 3 B6

10 ? 6F 28 X B2 40 . 90

11 M B8 29 0 B3

12 c 73 30 K BY

13 - 7 31 7 F7

14 F 75 32 . 80

15 1 59 33 4 Fi

16 v 65 34 1 F1

17 A 66 35 8 F8

Figure 4-11.

4.22

2980 Model 4 Special Character Set

IMNS/VS Application Programming Reference Manual

—
AN

Figure 4-12 illustrates the character presented to the application
program when the corresponding function key is entered. Because of
hardware design, IMS/VS cannot distinguish function key entry from a
corresponding keyboard entry; the application programmer must therefore
be warned of possible conflicts.

FUNC | HEX ruNc | eEx || Func | mex || FuNc | HEX
KEY VALUE KEY VALUE KEY VALUE KEY VALUE

1 61 7 6F 13 B3 19 67
2 66 8 65 14 78 20 68
3 74 9 71 15 75 21 77
4 72 10 69 16 76 22 73
5 46 11 79 17 Bl 23 F2
6 B2 12 45 18 B4 24 F3

Figure 4-12, 2980 Model 4 Function Key Translate Table

OUTPUT MESSAGE FORMAT

This section describes the output message formats supported by
IMNS/VS. 1IMS/VS supports two output destinations -- terminals and
programs. The output formats are essentially the same for both but
each has unique application program considerationmns.

Terminal Destination Output

Terminal destination output message segments originate in the
application program and are sent to a logical terminal defined by a TP
PCB. Fach output message segment is enqueued to be sent by means of
an insert call. The format of each segment is:

is a 2-byte binary field representing the total length of the message
segment, including LL, Z1, and Z2. The value of LL equals the number
of bytes in text plus 4. The application program must £fill im this
count. If a size limit was defined for output segments of a
transaction being processed, LL must not exceed the defined limit.

When PL/I is used, the LL field must be defined as a binary fullword.
The value provided by the PL/I application program must represent
the actual segment length minus 2 bytes. For example, if an output
message segment is 16 bytes, LL is equal to 14 and represents the

Data Communication Application Programming 4,23

Z1

Z2

sum of the length of LL (4 bytes minus 2 bytes, Z1 (1 byte), Z2 (1
byte), and TEXT (10 bytes).

is a 1-byte field that must contain binary zeros and is reserved
for IMS/VS.

is a 1-byte field that must contain binary zeros and is reserved
for IMS/VS. This 22 definition applies to all terminals except
terminals that use the Message Pormat Service (MFS), switched
terminals, the 2260, the 2265-1, the 2265-2, some 2770 components,
and the 2980.

. 22 for Terminals Using MFS

For terminals supported by MFS, the field is used to denote the
beginning of a logical page. See the IMS/VS Message Format Service

] 722 for Switched Devices

For switched devices, %22 is a 1-byte binary field that can be used
by the application program to request that the destination terminal
be disconnected from the line after the message containing this
request is written to the terminal. This disconnect request is
recognized if present in any segment of the output message and is
indicated by a value of X'80' in the 22 field. This feature is not
supported for a switched 3275 or 3741.

. 22 for 2260/2265

For the 2267 and 2265, Z2 is a 1-byte binary field that denotes the
type of WRITE command to be effected to the display screen., These
types of WRITE commands affect the format of the display screen.
For 2260 operation, the IBM 2848 Display Control must have the Line
Addressing feature (4787) to accomplish Items 2 and 3 below.

.24 IMS/VS Application Programming Reference Manual

N

)

WRITE Command

2. WRITE AT LINE
ADDRESS (WLR)

3. ERASE SCREEN
START AT LINE

Description

Indicates that it will
begin writing output
segment at the current
cursor position

Indicates that it will
begin writing at the
line specified (from
one through fifteen
depending on model)

Indicates that the
screen will be erased
first; the output
segment will be

Designation

Binary zeros

X'01' through X'OF?
for lines 1 through
15. Values above X'06"
depend on the type of
display station and/or
its features.

X*11" through X'1PF!
for lines 1 through
15. Values above

X'06' depend on the

written at line address type of display
specified (line one station and/or its
through fifteen features

depending on model)

Indicates the screen X'20°"
will be erased first;

the output segment

will be written

starting on the upper

left corner of the

screen

4. WRITE ERASE (WE)

Any code not the same as that designated for the WRITE commands
above defaults to binary zeros. No error messages are dgiven. Since
the screen may have up to 15 lines, line addresses may range fron
X'01' to X'0OF' depending on model.

If video-paging is included in the system, multiple-~page output
messages may be designated by inserting an X'40°' in the Z2 field of
the segment representing the first segment of each page. This flag
can be in addition to other video-screen format characters (for
example, X'60' for first segment of page and write erase). To page
forward and backward within a series of pages, these flags must be
contained within a single message; no purge calls or get unique
calls to the I/0 PCB may be issued while building a multiple-page
message. If a page flag is not found in the first segment of a
message, subsequent page flags are ignored.

Example:
Z1 72 TEXT
Insert JLL]100J60 | SEG 1}
Insert LLLIN0JI00 | SEG 2|1 Page 1
Insert 1LLI00)40 | SEG 31
Insert JLL]100100_ | SEG 4] Page 2 Message 1
Insert JLLI00105 | SEG 51
Insert {LL]00152 | SEG_6] Page 3

These three screens can be displayed by the operator multiple times
or not at all and may be displayed either in oxr out of sequence as
the operator chooses.

Data Communication Application Programming 4.25

Z21 z2 TEXT

Insert 111100120 | SEG_1})
Insert 1LL100400 | SEG_21 ™Mage 1 Message 1
Purge 1LL100J00 | _SEG_3]
Insert JLL]00J00 | SEG 41 Page 1 Message 2
Insert LLLI00IONS | SEG S|
Purge LLL100{12 | SEG 6f Page 1 Message 3

The above sequences would produce the same images to the terminal

as the paged example above and would not require the paging feature.
However, these images would be displayed once and only once and must
be displayed in sequence.

e 72 for 2980

Output messages requiring a passbook on a 2980 Model 1 or a 2980
Model 8, or requiring the insertion of the auditor's key on a 2980
Model 2 must contain a X'10' in the Z2 field of each output message
segment. If the terminal PCB is the common buffer of the 2972
control field, the 22 field value is ignored.

If the required passbook is not properly inserted in the output
terminal when IMS/VS attempts transmission of a passbook message
segment, the segment will be prefixed with two carrier returns, a
FFED-OPEN (if 2980 Model #), a MESSAGE LIGHT (if 2980 Model 1), or

a TURN PAGE (if 2980 Model 4) indicator, and the required number of
tab characters to position the type element to the passbook area of
the output terminal. This allows the teller operator to insert the
passbook to the proper print line. When the indicator is turned

off (MESSAGE LIGHT or TURN PAGE), the type element tabs to the
passhook area and begins printing the output message segment. IMS/VS
positions the type element whenever the required passbook is not
properly positioned in the output terminal, or if the passbook has
been indexed beyond the last printable line when the passbook message
segment was first transmitted. For these reasons, output message
segments should not contain data for both the journal/audit tape
area and the passbook area, since this may cause undesirable results.
Output messages requiring. the auditor's key on a 2980 Model 2 are
not transmitted to the output terminal unless the auditor's key is
inserted. Refer to the IMS/VS Operator's Reference Manual for
procedures on receiving auditor key messages.

TEXT
is the output message segment in EBCDIC as it is transmitted to
a specific logical terminal. The length of an output message
segment is governed by the specific communication terminal
receiving the output message. The maximum number of bytes for
each message segment text is:

Terminal Number of Bytes
1050, 2740-1, 130 (can be larger if CRs are
2740-2, and 2741 embedded at 130 bytes or less).

If Message Format Service (MFS)
is used for the 2740/2741,
refer to the IMS/VS Message
Format Service User's Guide.

2260-1, 2265-1 960/screen*
2260-2 with 2848-1 240/screen*
2260-2 with 2848-2 480/screen*

u.26 IMS/VS Application Programming Reference Manual

\.

105372848
1053/2845
2770
2265-2
card punch
printer & paper tape punch
2780
printer
punch
2972/2980
Common buffer
Terminal buffer

with buffer expansion

3270

3600, 3790

3741

3767, 3770 console, printers

3770 punch

7770

33/35 Teletypewriter (ASR)
Systenm/3

System/7

System/370 console

Number of Bytes (Continued)
*Anything over will wrap the
screen and overlay the first
part of the message.

960; anything over will truncate.
240; anything over will truncate.

Variable, based on component.
960; anything over will wrap

the screen and overlay the first
part of the message.

80; anything over will trunca te.
less than 32768.

Variable

80 or 120, or 144, based on 2780
printer specifications; anything
over will truncate.

80; anything over will truncate.

The following applies:

23
47
95

Refer to the IMS/VS Message
Pormat Service User's Guide.

Variable; refer to the IMS/VS
Advanced Function for
Communications manuwal, or, if
MPFS is used, to the IMS/VS
Message Format Service User's

128 or less, based on 3741
specification; segments will be
padded with blanks or truncated
to this value.

Up to the message size. If
Message Format Service (MFS) is
used, the length of the message
segment is defined by the user
to MFS and is limited by the
MSGQUEUE macro statement
specification at system
definition.

80; anything over will truncate.
Any length.

80

Variable, dependent on

user's program in the System/3

or System/7.

126; anything over will truncate.

Data Communication Application Programming 4.27

Terminal ~Number of Bytes (Continued)

SYSOUT Print Variable, based on device;
Direct : the segment is truncated to the
record length specified for the
particular device. When the
output device is a printer,
default segment maximum lengths
are:

120* for 1443, 1403
132* for 3211

Spooled Default segment size is 120%*.

*These sizes do not include carriage-return characters as
specified later in the section "Online Message Format
Considerations." If carriage control is present, these maximums
can be increased by 2. '

298¢ Optional Features

The reader should refer to Component Description: IBM 2972 Models
8 and 11 General Banking Terminal Systems, GL27-3020 for a complete
discussion of the optional features available on a 2980 Model 4 and
how an application program might make use of them. The discussion
following is limited to the use of those features in the INS/VS

environment.

e. 2980 Message Lights

The 2980 Model 1 and Model U4 teller terminals incorporate a message
light feature that prevents the printing of an output message at the
terminal until some operator action is taken. An application program
can utilize this message light feature on a 2980 Model 1 by imserting
a X'17' in the text of the output message segment. The data following
the message light character will not be printed at the terminal until
the terminal operator presses the message light key. Any combination
of six message lights at a 2980 Model 4 teller terminal can be caused
to turn on by the insertion of a two-character message light sequence
as the first two (or only) characters of an output message segment.

The data following the message light sequence will not be printed until
the terminal operator presses the message light key. The message light
sequence for a 2980 Model 4 consists of an X'17' followed by any
character whose hexadecimal value is greater than X'3F'; an X'40' will
be substituted for invalid values. BRefer to the above mentioned SRL
for detailed information on the use of and setting of message lights

on the 2980 Model 4. IMS/VS precedes all system-generated messages
with an X'1740' if the message is for a 2980 Model 1 or 2980 Model 4.

e 2980 Function Keys

INS/VS cannot distinguish a function key entry from a data key entry
that causes transmission of the same character to the CPU., PFigure 4-13
lists the character received by the application program when the
corresponding function key is entered. The application programmer must
be aware that, since function keys are an optional feature, in each
instance there is a corresponding keyboard entry which results in the
same character being received. No direct facility is provided which
would give a unique distinction to the application program between
entry of function keys 23 and 24 and the graphic numeric characters 2
and 3, respectively. To do so would require the terminal operator to
enter alpha shift to enter these numbers. (The application programmer

4,28 IMS/VS Application Programming Reference Manual

a

may require operator entry of keyboard keys 11 and 15 in alpha shift
for those numbers if such distinction is necessary.)

Online Message Format Considerations -- MFS Not Used

fhen Message Format Service (MPS) is not used, it is the application
programmer's responsibility to provide all horizontal and vertical
format control required to properly display an output message. An
output message can contain multiple message segments. It is not
necessary to include a logical. terminal name in an output message since
the destination is determined by the logical terminal PCB.

Certain device control characters must be inserted into an output
message when it is desired to format a message at a terminal output
device. Output message formatting for the devices supported by IMS/VS
may be accomplished as follows:

e When output is to be printed on a typewriter-like device (for
example, 2740), the following hexadecimal characters found within
the output text function as indicatead:

X'05* sSkip to tab stop (HT), but stay on same line.
X'15* Start new line (N1) at left margin (carriage return).

X*25* Skip to new line (LF), but stay at same print position
horizontally.

The most efficient way to skip multiple lines is by including a
combination of one NL character and multiple LF characters.

Forms feed control can be provided for a 1052 or 1053 printer by
including the forms control characters as the first two bytes of
output message segment text. Output message segments may contain
multiple typed lines (carriage returns should be embedded at 130
characters or less).

e When output is to be printed on a 1050 printer and vertical forms
control is used, the forms control sequence must be the first two
characters in a segment.

e When output- is to be printed on a 2780 or local printer, a message
segment is considered to be a print line, and message text over
the designated printer's capability is truncated on output. NL
and LF characters are ignored. Control other than single line
spacing (which is default) may be achieved by inserting an ESC
character (X'27') as the first character of the output message
segment text, followed by one of the following carriage control
characters (the X'27f' and the carriage control characters are not
considered part of the message text for truncation purposes):

S -- Double space after this line is printed.
T -- Triple space after this line is printed.

A through L -- Skip to channel 1 through 12 after this line is
printed (local print).

A through H -- Skip to channel 1 through 8 after line is printed
(2780) .

M ~-- Suppress spacing after printing (local print only).

Data Communication Application Programming 4.29

e When output is to be written to the 0S/VS system console, a message
segment is considered to be a print line. If the output message
segment text does not begin with the characters DFS followed by
three numeric characters, IMS/VS inserts a prefix of DFS000I., All
embedded NI characters are replaced by blanks (X'40') as required
by 0S/VS WTO. Output message segment text (including DFS000X, if
inserted by IMS/VS) in excess of 126 characters is truncated as
reguired by 0S/VS WTO.

4.30

When output is to be punched (with, for example, the 2780 terminal
or the 3770 card punch), a message segment is considered to be a
card, and message text over 80 characters is truncated upon output.

When output is to be displayed on a 2260-1, 2260-2, or 2265-1, the
following are output message considerations:

An output message can be composed of multiple segments that make
up a single screen. Total segment and message length is
variable:

lines per Bytes per Bytes per
Device Screen Segnment Message
2260-1, 2265-1 12 80 960
2260-2 (2848-1) 6 40 240
2260-2 (2848-2) 12 40 480

If the length of the message exceeds the capacity of the screen,
the screen will wrap, destroying the data previously displayed.

New Line (NL) characters are honored; line Feed (LF) characters

are ignored.

Multiple screen output is allowed.
BEach segment can specify a write-type request (22 field bits).

IMS/VS ignores WRITE-ERASE requests except on the first segment
of an output message.

When output is to be displayed on the 2265-2 component of a 2770
system, the following are output message considerations:

An output message can be composed of multiple segments that make
up a single screen (960 bytes).

If the length of the message exceeds. the capacity of the screen,
the screen will wrap, destroying data previously displayed. NL

characters are honored except as described below. LF characters
are not honored.

Multiple screen output is allowed.

An NL character in text that is being written on the last line
of the display screen does not cause a screen wrap operation to
occur. The NL character (s) is displayed on the last line of
the screen.

An SMM symbol on the screen after an NL symbol does not transfer
data if the ENTER key is pressed.

Each ountput message segment may specify its write-type request.

When output is to be printed on a 2770 printer component, the
following are output message consideratiaons:

Segments over the printer line length cause an automatic hardware

carriage return before printing of the remainder of the segment.

IMS/VS Application Programming Reference Manual

RN

/‘\

N

- If no control operations are embedded in the message segment,
the printer is single spaced by the insertion of an IRS
character.

- If a trailing NL character is in the segment, the printer
component double spaces after printing the line.

- Explicit carriage control can be accomplished by limiting segment
length to the length of a print line (this depends on the printer
component type and features) and inserting an ESC character
(X'27') as the first character of the output message segment
text, followed by one of the carriage control characters for
the 2770 printer component. See System Components: IBM 2770
Data Communications System, GA27-3013, for a description of
these codes.

When output is to be punched on the 2770 paper tape punch component,
the following are output message considerations:

- IMS/VS inserts an end of media character at the end of each
output message to the paper tape punch.

- If segments whose size is larger than the value specified on
the PTSEG= operand of the TERMINAL statement during system
definition are sent to this component, the segment will not be
properly deblocked on subsequent reentry to IMS/VS.

When output is to be printed on a 2980 terminal, the following
hexadecimal characters function as indicated:

X'05' Skip to tab stop (HT), but stay on same line.

X*'15* Start new line (NL) at left margin, if the present position
of the type element is within the audit/journal tape area;
or the type element will be repositioned at the intermediate
carriage stop, if the present position of the type element
is within the passbook area. In the latter instance,
printing-will resume on the same print line.

X'25' VFhen the output message segment is destined for the passbook
area of the terminal, this character will cause the start
of & new line at the intermediate carriage stop. INS/VS
will ensure that the passbook is properly inserted at a
printable line on all transmissions to the passbook area.

Output message segments may contain multiple print lines. Care
should be taken to insert carriage returns (X'15') and/or passbook
index. (X'25') characters in long message segments to prevent typing
past the audit/journal tape or passbook.

Rhen the output device is a 7770-3 line, it is the responsibility
of the application programmer to format the output message with
7770 vocabulary Drum Address characters as required for the
application.

Dutput device independence may be achieved by generating output

message segment text no greater than 80 bytes, including a trailing NL

character. Output message segment text should not contain any forms
or carriage control characters. If video terminals are included in a
system, no more .data than will fit on a single screemn should be

generated per output message. It should be noted that the output device

independence described above may restrict efficient use of certain

output devices, and may restrict use of special output device functions.

Data Communication Application Programming 4.31

Program-to-Program Message Switching

An output message destined to another application program is a

program-to-program message switch. The message switch destination can

be specified during PSB generation or during program execution using
the change call. The destination must be a transaction code defined
during system definition. The receiving program must contain an I/0

area large enough to hold the largest segment sent by the transmitting

progran.

Insert calls are used to create the segments of a program-to-program
message. When inserting a segment, an alternate PCB must be used. The
destination of the alternate PCB must be set prior to the first insert

call.

Message security procedures may or may not be invoked during
program-to-program message switching. They are invoked when a change

call is used to set the destination; the current . entering terminal must

be authorized to enter the transaction code set by the change call.
No checking is performed on insert calls.

The format of a message switch segment is:

- —— = - - - - - - - —— . - = - — - - n - Ge - > e - - - - -

The format is essentially the same as for output messages to logical

terminals. The following areas should be noted:

e 71 and 22 are one-byte fields that must contain binary zeroes; the

use of Z1 and %22 is reserved for INMS/VS.

e TEXT is the message segment that is to be sent to the specified
destination,

Since IMS/VS does not prefix a switched message with a transaction
code, the application program can put the transaction code at the
beginning of the first segment. This assures that messages arriving
at the destination are in the same format, whether originating from a
program or from a terminal.

TELEPROCESSING OR BATCH/TELEPROCESSING ENVIRONMENTS

ANS COBOL MESSAGE PROGRAM STRUCTURE

Figure 4-13 outlines the fundamental parts of an ANS COBOL message
processing program. Each item should be considered when designing a
message program. This program processes an inquiry from a terminal,
makes a reference to a data base for information, and sends a message
to a different terminal or to an application program.

4.32 IMS/VS Application Programming Reference Manual

N

Van

C

REF
NO.

ENVIRONMENT DIVIS ION.

DATA DIVISION.
WORKING~STORAGE SECTION.

77 GU-CALL PICTURE XXXX VALUE
77 ISRT-CALL PICTURE XXXX VALUE ‘ISRT"'.
77 CT PICTURE S9(5) COMPUTATIONAL VALUE +4

L]

01 SSA-NAME.

L]

01 MSG-SEG-IO-AREA.
C1 DB~-SEG-IO-AREA.
C1 ALT-MSG-SEG-OUT.

LINKAGE SECTION.

01 TIO-PCB.
01 ALT-PCB.
01 DB-PCB.

'Go v,

PROCEDURE DIVISION.

ENTRY 'DLITCBL' USING IO-FPCB,

L

CALL *‘CBLTDLI* USING GU~CALL,
MSG-SEG-IO-AREA.

L J

CALL 'CBLTDLI' USING GU-CALL,
DB-SEG-IO-AREA, SSA-NAME.

CALL 'CBLTDLI' USING ISRT-CALL, ALT-PCB,

ALT-MSG-SEG-OUT.

GOBACK.

DB-PCB,

ALT-PCB, DB-PCB.

I0-PCB,

10

COBOL -~ LANGUAGE INTERFACE

Figure 4-13.,

COBOL Message Program Structure

The following explanations are keyed to the numbers along the left
side of Figure 4-13.

1.

A 77 level or 01 level working storage statement defines each

of the call functions used by the message program.

Each picture

clause is defined as four alphameric characters and has a value
assigned for each function (for example, ISRT).

An 71 level working storage statement describes each segment

search argument (SSA) used for a data base call.

An example of

an SSA definition, with a lowercase b representing a blank and
a lowercase v representing the symbolic value in the field, is:

01

SSA~NAME.

02 SEG-NAME PICTURE X (8)
02 SEG-QUAL PICTURE X
N2 SEG-KEYNAME PICTURE X (8)
02 SEG-OPERATOR PICTURE XX

VALUE ‘*ROOTbbbb'.
VALUE *(°‘.

VALUE 'KEYbbbbb'.
VALUE 'b=*.

02 SEG-XKEY-VALUE PICTURE X(6) VALUE 'vvvvvv?',
02 SEG-END-CHAR PICTURE X VALUE '),

Data Communication Application Programming 4.33

L

Vhen the above COBOL syntax is decoded and placed in storage,
it will be in a data string as follows:

ROOTbbbb (KEYbbbbbb=vvvvvv)

(For further discussion, see the section "Segment Search
Arguments" in the "Data Base Batch Programming" chapter of this
manual.,)

An "1 level working storage statement describes each segment
1/0 vwork area within the message progranm.

An 01 level linkage section entry describes the PCB statement,
first for the input terminal for the current message being
processed (the I/O PCB), second for each output destination
other than the input terminal (alternate PCBs), and third for
each data base. It is through this linkage description that a
COROL program can access the status codes after a DL/T call.

This is the message program entry point and must be the first
executable COBOL statement in the procedure division. There
must be a name for every PCB used by the message program. The
first PCB name must be for the I/0 PCB. The remaining PCB names
must be specified in the same order, following the I/0O PCB, as
they are presented in the program's associated PSB generation.
The PCB names could be specified in the linkage section in the
same order, but this is not a requirement.

This is a typical call used to read the input (source) logical
terminal., The first time this call is executed with function

equal to get unique, the first segment of the message that caused
the message program to be scheduled is brought into this program.

If the input message consists of more than one segment,
subsequent segments can be obtained with a similar call but with
the function equal to get next.

This call is used to access data from a data base. The format
is the same as that in Item 6 above, except that the PCB refers
to a data base and the segment search arguments define a
particular data base segment.

This call is used to reply to an output destination other than
the terminal representing the source of the input message. If
the output destination is the input terminal, this call must
utilize the I/O PCB.

This operation causes the message program to return control to
the IMS/VS control facilities.

A language interface (DFSLIO00) is provided by IMS/VS for all
COBOL programs. This module must be link-edited to the message
processing program after compilation and provides a common
interface to IMS/VS and DL/I for all call statements.

The language interface function of IMS/VS is reenterable and
compatible with that of IMS/360 Version 2. To take advantage
of the reenterable capability, application modules from IMS/360
must be re-linkedited, replacing the INMS/360 Version 2 language
interface with that of IMS/YS. The IMS/360 Version 1 language
interface is not compatible with IMS/VS.

I¥NS/VS Application Programming Reference Manual

PL/I OPTIMIZING COMPILER MESSAGE PROGRAM STRUCTURE

Figure 4-14 outlines the fundamental parts of a PL/I optimizing
compiler message processing progran.
when designing a message program.
from a terminal, makes a reference to a data base for information,

Each item should be considered
This program processes an inquiry
and

sends a message to a different terminal or to an application program.

REF
NO.

10

11

/K e e e — e */
/* ENTRY POINT %/
2T %/

DLITPLI: PROCEDURE(IO_PTR,ALT_PTR,DB_PTR)
OPTIONS (MAIN);

DECLARE FUNC_GU CHARACTER (4) STATIC INITIAL('GU');
DECLARE FUNC_ISRT CHARACTER (4) STATIC INITIAL ('ISRT');

DECLARE SSA_NAME...
DECLARE MSG_SEG_IO_AREA CHAR (24);
DECLARE DB_SEG_IO_AREA CHAR (180) ;
DECLARE ALT_MSG_SEG_OUT CHAR(24) ;
DECLARE 1 IO_PCB BASED(IO_PTR),...;
DECLARE 1 ALT_PCB BASED(ALT_PTR) ,...;
DECLARE 1 DB_PCB BASED (DB_PTR) ,...;

DECLARE THREE FIXED BINARY(31) STATIC INITIAL (3);
DECLARE FOUR FIXED BINARY(31) STATIC INITIAL(UL4);

CALL PLITDLI(THREE, FUNC_GU,IO_PTR,MSG_SEG_IO_AREA);
CALL PLITDLI (FOUR,FUNC_GU,DB_PTR, DB_SEG_IO_AREA);
CALL PLITDLI (THREE,FUNC_ISRT,ALT_PTR,ALT_MSG_SEG_OUT);

END DLITPLI;

PL/I - LANGUAGE INTERFACE

Figure 4-14. General PL/I Optimizing Compiler Message Progranm

S tructure

The following explanations are keyed to the numbers along the left
side of Figure 4-14:

1.

This is the main standard entry point to a PL/I optimizing

compiler message program. There must be a pointer for every

PCB used by the message program. The first PCB pointer must be
for the I/0 PCB. The remaining PCB pointers must be specified
in the same order, following the I/0O PCB, as they are presented

in the program's associated PSB generation.

Data Communication Application Programming

4.35

4.36

These declarations define the call functions used by the PL/I
message program. Fach character string is defined as four
alphameric characters and a value assigned for each function
(for example, ISRT). Other constants and working areas may be
defined in this manner.

This declaration defines storage for SSAs. In the following
example, the SSA is declared as a structure; other methods can
be used (see the section "General Characteristics of Segment
Search Arguments"™ in Chapter 3 of this manual).

Example (lower case "b" represents a blank and lower case "v"
represents the symbolic value in the field):

DCL 1 SSA_NAME,

2 SEG_NAME CHAR(8) INIT('ROOT'),

2 SEG_QUAL CHAR (1) INIT (' ("),

2 SEG_KEY_NAME CHAR (8) INIT (*KEY'),

2 SEG_OPERATOR CHAR({2) INIT('b="),

2 SEG_KEY_VALUE CHAR(6) INIT (*vvvvvv'),
2 SEG_END_CHAR CHAR (1) INIT(') ')

The I/0 area is most efficiently passed to DL/I as a
fixed-length-character string or through a pointer variable;
other methods, however, can be used (see the PL/I example under
the section "I/0 Work Area" in Chapter 2 of this manual). An
example follows:

DCL MAST_SEG_TO_AREA CHAR(100) ;

A level 1 declarative describes the PCB statement first for the
input terminal for the current message being processed (the I/0
PCB), second for each output destination other than the input
terminal (alternate PCBs), and third for each data base. It is
through this description that a PL/I program can access the
status codes after a DL/I call. (For the PL/I optimizing
compiler, the PCBs must be BASED structures.)

This is a descriptive statement used to identify a binary number
(fullword) that represents the "parameter count" of a call to
DL/I. The parameter count value equals the remaining parameters
following the parameter count set off by commas.

This is a typical call used to read the input (source) logical
terminal. The first time this call is executed with function

equal to get unique, the first segment of the message that caused

the message program to be scheduléed will be brought into this

program. If the input message consists of more than one segment,

subsequent segments can be obtained with a similar call but with
the function equal to get next.

This call is used to access data from a data base. The format
is the same as the one in Item 7 above, except that the PCB
refers to a data base and the segment search argument defines
a particular data base segment.

This call is used to reply to an output destination other than
the terminal representing the source of the input message. If
the output destination is the input terminal, this call must
utilize the I/0 PCB.

IMS/VS Application Programming Reference Manual

D

10, This END statement causes the message program to return control
to the INS/VS control facilities. Another statement that causes
the message program to return control to the IMS/VS control
facilities is the RETURN statement. The RETURN statement may
or may not immediately precede the END statement.

11. A language interface (DFSLIQ000) is provided by IMS/VS for all
programming languages. This module must be link-edited to the
compiled message program and provides a common interface to
INS/VS and DL/I.

The language interface function of INS/VS is reenterable and
compatible with that of IMS/36C Version 2. To take advantage
of the reenterable capability, application modules from IMNS/360
mnust be re-linkedited, replacing the IMS/360 Version 2 language
interface with that of IMS/VS. The TMS/360 Version 1 language
interface is not compatible with IMS/VS.

ASSEMBLER LANGUAGE MESSAGE PROGRAM STRUCTURE

The structure of an Assembler Lanquage message program is the same
as for the Assembler Language batch program described in the section
"Assembler Language Batch Program Structure®" in the "Data Base Batch
Programming" chapter of this manual. In addition, the user should
remember that an Assembler language message program receives, upon
entry, a PCB parameter list address in register 1. The first address
in this list is a pointer to the I/0O PCB. Any alternate PCB addresses
follow, and finally any data base PCB addresses. Bit 0 of the last
address parameter i$ set to 1 in accordance with operating system
conventions for variable parameter lists.

ABENDS ISSUED BY APPLICATION PROGRAMS

Actions taken by IMS/VS on all types of application program abends
are described in the IMS/VS System/Application Design Guigde.

If an application program is going to issue the ABEND macro, the
STEP parameter must not be used. The use of the STEP parameter prevents
the message or batch message region from notifying the IMS/VS control
region that an application program has abended. This in turn may
prevent the release of resources or a normal checkpoint shutdown.

Data Communication Application Programming 4.37

e

CHAPTER 5. DATA COMMUNTCATION: CONVERSATIONAL PROCESSING

Conversational processing allows a user's application program to
retain information acquired through interchanges with a terminal even
though the application program leaves the message region between
interchanges. Special facilities are provided in IMNS/VS to allow the
retention of information. Data base facilities are not required for
information retention.

The conversational option is specified during IMS/VS system
definition so that IMS/VS can relate to transaction codes that utilize
the conversational mode. When an application program that processes
a conversational transaction type is scheduled, a get unique (GU) call
against the I/0 PCB causes the contents of a Scratchpad Area (SPA) of
user-defined length to be passed from IMS/VS to an I/0 area defined in
the user's application program. Subsequent get next (GN) calls cause
the message segments entered from the terminal to be passed to another
I/0 area defined in the user's application program. Data saved in a
SPA can be in any form: bit string, character, binary numbers, or
packed decimal.

SCRATCHPAD ARER FORMAT

The SPA format is:

L) L
| LL | XXXX | TRAN CODE | USER WORK AREA |

where:

LL
is a halfword binary field containing the total number of
characters in the SPA, including LL, XXXX, TRAN CODE, and USER
WORK AREA. This field should not be modified by the user.

‘When PL/I is used, the LL field must be defined as a binary
fullword. The value contained in the LL field is the actual
scratchpad area length minus 2 bytes. For example, if the
scratchpad area is 26 bytes, LL is equal to 24 and represents
the sum of LL (4 bytes minus 2 bytes), XXXX (2 bytes), TRAN CODE
(8 bytes), and text (10 bytes).

XXXX
is a 8-byte area reserved for IMS/VS. XXXX must not be modified
by the user. ’

TRAN CODE
is an 8-byte field containing the transaction code that caused
the program to be scheduled. The transaction code can be from
1 to 8 bytes, left-justified, and padded with blanks.

If this code is changed by the user, a different program is
scheduled for the next message input from the terminal.

The transaction code does not appear in the message segment.
(When option 3 of the Message Format Service is used, the
transaction code is not removed. Refer to the IMS/VS Message
Format Service User's Guide.)

Data Communication: Conversational Processing 5.1

USER WORK AREA

is a variable-length area 14 bytes less than that defined by
the user during IMS/VS system definition for each conversational
transaction code and cleared to binary zeros on first entry to
the application program for this conversation. This area is

for retaining user information (for example, intermediate
calculations or data retrieved through one or more data base
calls) required by an application program.

INPUT MESSAGE FORMAT

From a terminal operator's viewpoint, the format of the input message

segment that starts the conversation is the same as any
nonconversational transaction-type message. IMS/VS removes the
transaction code from the first message segment (except as noted above)
and always places it in the scratchpad area. The first message segment

is

left-justified to remove the transaction code. (Transaction code

formats are described under "Message Formats" in the chapter "DC:
Application Programming",) It is retrieved by the first GN call issued
after the GU call that retreived the scratchpad. Additional message
segments of an input message are formatted the same as for
nonconversational processing.

EXAMPLE

1. PFirst conversational message segment entered at input terminal:
CONV +32546,12-1235.27

2. First CALL statement using PL/I:
CALL PLITDLY (THREE,GET_UNIQUE_FUNC,IO_PCB,SPA_ARER);

3. The SPA_AREA now looks like this after the first GU call:

(o n -y

{ TRAN CODE
' ———————————————

|
XXXX | CONVbbbb

USER WORK AREA

LL

[}
[}
]
[}
t
[}
]
]
t
1
[}
]
1
[}
]
]
1
]
]
[]
[}
\
]
)
[}
]
]
Y RS

5.2

4. The first segment of the conversatlonal message now looks like
this:

+32546. 12-1235. 27

Thus, to bring this text into the application program I/O work
area, a GN call must be made.

5. Second PL/I CALL statement using a GN call function to obtain
the text of the first message segment:

CALL PLITDLI (THREE,GET_NEXT_FUNC,I0_PCB,WORK_AREA):

This brings the text as shown in item 4 above into the I/0 work
area of the application program.

6. To get subsequent message segments, the CALL statement is the
same as in item 5 above.

INMS/VS Application Programming Reference Manual

P

(‘\,

SAVING INFORMATION IN THE SPA

After the input scratchpad area and input message have been obtained,
one or more data base calls may be made and one output message may be
built. The application program may wish to retain data entered from
the terminal or obtained from data bases. This data is saved in the
user work area portion of the scratchpad.

If the application program modifies or initializes any SPA fields,
it must return the SPA to IMS/VS before issuing another GU or
terminating. An SPA is returned to IMS/VS by inserting it to the I/0
PCB.

The insert (ISRT) call for PL/I is handled as follows:

CALL PLITDLI (THREE,ISRT_FUNC,IO_PCB,SPA_NAME);
or, in ANS COBOL:

CALL 'CBLTDLI* USING ISRT, IO-PCB, SPA-NAME.

OUTPUT MESSAGE FORMAT

A response to the originating terminal is required to allow the
conversation to continue. The terminal operator is prevented from
entering more data to be processed (except IMS/VS commands) until he
has received this response.

The response is accomplished in one of two ways:

1. The conversational program can issue ISRT calls to the I/O PCB
or an alternate PCB defined as ALTRESP=YES prior to the next GU
call or program termination.

2. Control may be passed to another conversational program by
inserting the SPA and a message to an alternate PCB.

The switched-to-conversational program may then perform 1 above
(which will wait for terminal input) or perform 2 again (program
switch) .

The output message segment format for a conversational application
program is the same as for any nonconversational output message format.

PASSING CONVERSATIONAL CONTROL TO ANOTHER CONVERSATIONAL PROGRAM

Conversational message processing programs can pass control of a
conversation to another conversational program. Two methods of passing
control are supported:

e The program in control can change the transaction name in the SPA
before returning the SPA to IMS/VS. 1IMS/VS will route the next
terminal input to the program that handles the specified transaction
code. Any intervening program switches can change the transaction
name in the SPA.

Data Communication: Conversational Processing 5.3

e For a program-to-program switch, the program in control can insert
a message to an alternate PCB that has its destination set to
another conversational program. The SPA must be the first segment
inserted to the alternate PCB; neither the SPA nor a response can
be returned to INS/VS through the I/0 PCB or response alternate
PCB if this 1is done.

If the new program requires a larger or smaller SPA, and the
conversation d4id not start with a fixed-length SPA, INS/VS will
intercept the SPA and extend or truncate it for the new program, while
preserving the data that may have been truncated.

If differing sizes for SPAs have been defined at system definition
for disk and incore SPAs, care must be exercised by the user to prevent
scheduling conversational programs within a series of programs which
require SPAs larger than the maximum SPRA size allowed by the original
program to be scheduled. The first program scheduled sets the type of
SPA that will be used for the duration of the conversation.

Example: Main storage maximum defined as 100 bytes; disk maximum
defined as 1007 bytes.

TRAN A - main storage 50 SPA bytes TRAN C - disk 100 SPA bytes
TRAN B - main storage 75 SPA bytes TRAN D - disk 1000 SPA bytes
If TRAN A or TRAN B is the first conversational program called by

a terminal operator, the conversation can switch control to TRAN A, B,

or C, but not to TRAN D, since D regquires a larger SPA than the maximum
allowed for incore SPAs.

If TRAN C or TRAN D is the first conversational program called by
the terminal operator, control can switch to any other transaction.

TERMINATING A CONVERSATION

A conversation is terminated by either the conversational program,
terminal operator, master terminal operator, or IMS/VS., 1A
conversational program terminates a conversation by:

e Blanking the transaction '‘code in the SPA and returning the SPA to
IMS/VS through an ISRT call. This terminates the conversation as
soon as the terminal has received the response.

e Tnserting the name of a nonconversational transaction code in the
transaction code field of the SPA and returning the SPA to IMS/VS
through an ISRT call to the I/0 PCB. This causes the conversation
to remain active until the next message is entered by the terminal.
Except for MPS formatting option 3 messages, the transaction code
will be inserted into the input message from the SPA. This message
will then be routed to the named transaction code prior to
terminating the conversation; the nonconversational program will
not get the SPA.

The terminal operator terminates a conversation by:

e Fntering a /EXIT command or /EXIT CONVnnn from the terminal that
is participating in the conversation.

e Entering the /HOLD command from the terminal that is participating
in the conversation. This action .temporarily suspends operation
and allows the terminal operator to enter other transactions while
the first c¢onversation is being "held" inactive. The response to
a /HOLD command furnishes the terminal operator with an identifier

5.4 IMS/VS Application Programming Reference Manual

of his conversation so that he can reactivaté it later by means of
the /RELEASE command. A held conversation is considered to be
active when the number of current conversations is calculated.

The master terminal operator terminates a conversation by:

e Entering a /START LINE (no PTERM specified) for a terminal in
conversation.

IMS/VS terminates a conversation if, after a successful GU or
insertion of the SPA, a conversational application program fails to
insert a message, When this situation occurs, IMS/VS sends the message
DFS3272I NO RESPONSE, CONVERSATION TERMINATED to the terminal,
terminates the conversation, and completes synchronization point
processing.

RULES FOR WRITING CONVERSATIONAL PROGRAMS

GENERAL

e The first 6 bytes of the SPAR cannot be modified in any way by the
application program. (IMS/VS uses these 6 bytes to identify the
SPA.)

e If a conversation is started for a transaction with a fixed-length
SPA, all succeeding transactions used for the duration of the
conversation must be defined with and use fixed~length SPAs of the
same length.

e The SPA transaction code (beginning in position 7) can be changed
by the application program to switch control to a new transaction
upon receipt of the next input from the terminal. The conversation
is terminated if this transaction is a nonconversational transaction
or if it is blanked.

o If modified by an application program, the SPA must be returned to
IM¥S/VS through an ISRT call or the SPA against which a GU call was
issued will be reused.

e The SPA cannot be returned to IMS/VS more than once. (Example:
ISRT to I/0 PCB, then ISRT to alternate PCB for program-to-program
message switch.)

e The SPA cannot be inserted to an alternate PCB representing a
nonconversational transaction or logical terminal. A response
alternate PCB is permissible if it represents the input PTERM.

e If control is being given to another conversational program through
a program-to-program message switch, the SPA must be the first
segment inserted. (Example: ISRT to alternate PCB defined as a
conversational transaction.)

Data Communication: Conversational Processing 5.5

MES

5.6

SAGE RESPONSE

An output message response to the I/0 PCB or to an alternate PCB
defined as ALTRESP=YES is required, unless the SPA has been passed
to another conversational program through an insert to an alternate
PCB, in which case the response must be given by that program. For
addi+tional information, see the section "alternate PCB" in the
"Data Communication: Application Programming” chapter of this
manual.

Only one message response is allowed for each conversational entry.
This message can consist of as many segments as required; however,
a PURG call cannot be issued to generate multiple output messages.
If a PURG call is issued, the synchronization-point processor
returns the AZ status code and does not process the call.

Conversational programs must be designed to handle the condition

in which the first GO call to the I/O PCB may produce no .message
to process. This condition can occur if the operator cancels the
conversation through an /EXIT command, prior to the program issuing
a GU call, if this was the only message in the gqueue to be
processed.

It is not permissible to use a PURG call for an I/0 PCB, response

alternate PCB, or an alternate PCB that represents another
conversational transaction.

IMS/VS Application Programming Reference Manual

CHAPTER 6. APPLICATION PROGRAM EXAMPLES

The examples of application programs included in this chapter
represent application programs that normally operate imn an IMS/VS
environment. At least one of the programming languages (COBOL, PL/I,
or Assembler) has been selected for each type of application program.
Most of the application programs represent source programs used in the
sample problem included in the IMS/VS Installation Guide.

The following types of programs are presented:

Iype Lanquage

Data Base Load Program COBOL

Data Base Dump Program Assembler

Batch Processing Progran COBOL and Assembler
Message Processing Program COBOL
Conversational Processing Program PL/X

DATA BASE LOAD PROGRAM EXAMPLE

ANS COBOI APPLICATION PROGRAM

In this example, the batch application program DFSSAMO1 uses the
SYSIN data to load a data base, named DI21PART, whose hierarchical
logical data structure is:

PARTROOT

STANINFO STOKSTAT

CYCCOUNT BACKORDR

Application Program Examples 6.1

FILE: D¥SSAMO1 ASSEMBLE 2

IDENTIFICATION DIVISION,
PROGRAM-ID. "NDFSSAMOT?
AUTHOR. DON TRUDELL.

PALC ALTO DEVELOPMENT CENTER

REMARKS, DATA BASE LOAD PROGRAN,

FNVIRONMENT NDTVISION.
CONFIGURATION SECTION.
SOURCE-COMPITER.
OBJECT-COMPUTER,
INPUT-0OUTPUT SECTION.
FILE-CONTROL.

SFLRECT INPUT-FILE
DATA DIVISION.
PTLE SECTION.

IBM-360-HSO0.
IBM-360-H50.

ASSIGN TO UT-S-INPUT.

FD

01

INPUT-FILE
RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS ¢ RECORDS
RECORDTING MODE IS F

LABFL RECORDS ARE OMITTED
DATA RECORD IS INPUT-RECORD.
INPUT-RECORD.

02 INP-SEG-NAME

72 FILLER

02 INP-DATRA

N2 TINP-SEQU¥NCE-NO

PICTURE X(08).
PICTURE X (01).
PICTURE X (67).
PTCTURE X{04).

WORKI NG -STORAGF SECTION.

01
01
01
01

01
01

01

0

01

PICTURE X (04).
PICTURE X(08)
PICTURE X (04)

DL1-FUNCTION
PREV-SEG- NAME
PREV-SEQUFENCE-NO
RUILD-SEGMENT-ARFA.
02 BUTLD-DATA -AREA OCCURS 14 TIMES

PICTURE X(67).

MI SC-ARITHMETIC-FIELDS USAGE COMPUTATIONAL,

02 5UB-1
SEG00N10-S3A.

02 SEG-NAME-00T 10
N2 REGIN-0P-00010
02 KEY-NAME-00010
2 REL-0PER-00010
N2 ¥XEY-VALUE-200 10
02 END-OP-0N010
SEGOOD60-SSA.

02 SEG-NAME-0N0&0
02 BEGIN-0P~012060
02 KEY-NAME-0N0060
02 RFPL-0OPER-00760
02 KEY=-VALUE-00060
92 END-OP-C0060
SEG020N0-SSA,

02 SEG-NAME-02000
02 REGIN-0P-02000
02 KEY-NAME-02000
02 REL-0PER-02000
N2 KEY-VALUE-02000
02 FND-0P-02000
SEG02200-SSA.

PICTURE S9{02)

PICTURE X(08) VALGUE
PICTURE X{01) VALUE
PICTURE X (08) VALUE
PICTURE X(02) VALUE
PICTURE X (17).

PICTURE X (01) VALUE

PICTURE X (08) VALUE
PICTURE X(01) VALUE
PICTURE X(08) VALUE
PICTURE X (02) VALUE
PICTURE X (02).

PICTURE X{01) VALUE

PICTURE X (08) VALUE
PICTURE X(01) VALUE
PICTUORE X{(08) VALUE
PICTORE X {02) VALUE
PICTURE X(16).

PICTURE X(01) VALUE

6.2 IMS/VS Application Programming Reference Manual

VALUE SPACE.
YALUE SPRACE.

VALUE ZEROS.

YPARTROOT *.
LIS
'PARTKEY °*.

1 =29
.

e,
" STANINFO',
V(.

'STANKEY °'.

¢ =9
')l.

' STOKSTAT®.
LU
'STOCKEY *.

" !.

\

DPSSAMO1 ASSEMRLE A PALO ALTO DEVELOPMENT CENTER

02 SEG-NAME-02200 PICTURE X(08) VALUE *CYCCOUNT'.
02 BRGIN-0P-02200 PICTURE X (01) VALUE ' ('.
D2 KEY- NAME-02200 PICTURE X (08) VALUE 'CYCLKEY .
02 REL-OPER-02200 PTCTURE X(02) VALUE ' =1,
02 KEY~-VALUE-02200 PICTURE X (02).
N2 END-0P-02200 PICTURE X (01) VALUE ')'.
01 SFG02300-SSA.
02 SEG-NAME-02300 PICTURBE X (C8) VALUE 'BACKORDR®.
02 BEGIN-0P-02300 PICTURE X (01) VALUE * ('.
02 KEY- NAME-02300 PICTURE X(08) VALUE 'BACKREY °*.
02 REL-OPFR-02300 PICTURE X(02) VALUE ' =7,
02 KEY-VALUE-02300 PICTURE X' (10).
02 END-OP-02300 PTCTURE X (01) VALUE ')°.
01 SEGDON10- INSERT-AREA.
02 FILLER PICTURE X (050) .
01 SEGONO6N-TNSERT-AREA.
02 FILLER PICTDRE X(61).
02 RIGHT-MAK E-SPAN PICTURE S9(03).
02 FILLER PICTURE X (06).
02 WRONG-MAKE~SPAN PICTURE 9 (03).
02 FILLER PICTURE X(12).
01 SEGO02000-INSERT-ARFA.
02 FILLER P ICTURE X (160) .
01 SEG0220N-INSERT-AREA.
02 FILLER PICTURE X(025).
01 SEG02300-INSERT-AREA.
02 FILLER PICTURE X (075).

LINKAGE SECTION.
01 PCB-AREA-1.

02 DBD-NANE PICTURE X (08).
02 SEGMENT~1EVEL PICTURE X {(02).
02 STATUS-CODES PICTURE X(02).
02 PROCESS-OPTIONS PICTURE X (04) .
02 FILLER PICTURE S9(05) COMPUTATIONAL.
02 SEG- NAME-FEEDBACK PICTURE X {08).

PROCEDURFE DIVISION.
ENTRY 'DLITCBL' USING PCB-AREA-1.
DISPLAY *START DB LOAD' UPON CONSCLE.
OPEN TINPUOT INPUT-FILE.
MOVE 'ISRT' TO DL1-FUNCTION.
READ-INPUT-FILE,
READ INPUT-PILE AT F¥ND
GO TO END-INP-FILE.
BUILD-SEGMENT.
IF INP-SFG-NAME NOT FEQUAL TO SPACES
PERFORM WRITE-BUILT-SEGMENT THRU WRITE-SEGMENT-EXIT
MOVE ZEROS TO SUB-1
MOVE SPACES TO BUILD-SEGMENT-AREA
MOVE INP-SFG-NAME TO PREV-SEG-NAHME.
ADD 1 TO SUPR-1.
I¥ SUB-1 IS GREATER THAN 14

DISPLAY 'MORE THAN 14 CARDS PER SEGMENT' UPON CONSOLE

DISPLAY 'SEGMENT IS ' PREV-SEG-NAME UPON CONSOLE

GO T0O TOCKED-HALT.
MOVE INP-DATA TO BUILD-DATA-AREA (SUB-1).

Application Program Examples

6.3

PILE: DFSSAMD1 ASSEMBLE A PALC ALTO DEVELOPMENT CENTER

GO TO READ~INPUT-FILE.
WRITE-BUILT-SEGMENT.
IF PREV-SEG-NAME EQUAL TO SPACES
GO TO WRITF-SEGMENT-EXIT.
I¥ PREV-SFG-NAME 'PARTROOT' GO TO SEGMENT-IS-SEG00010.
I¥ PREV-SEG-NAME " STANINFO' GO TO SEGMENT-IS-SEGC0060.
I? PREV-SEG-NANME *STOKSTAT' GO TO SEGMENT-IS-SEG02000.
I PREV-SEG-NAME YCYCCOUNT' GO TO SEGMENT-IS-SEG02200.
IF TPREV~-SEG-NAME ' PACKORDR' GC TO SEGMENT-IS-SEG02300.
INVALID-SEGMENT-NAME.
DISPLAY 'INVALID SEGMENT NAME = ' PREV-SEG-NAME.
GO TO LOCKED-HALT.
SEGM ENT-IS~-SEGN0010.
MOVE RUTLD-SEGMENT-AREA TO SEGOOO10-INSERT-AREA.
MOVE BOILD-SEGMENT-AREA TO KEY-VALUE-00010.
MOVE SPACE TO BEGIN-0P-00010,
CALL ‘*CRLTDLI* USING DL1-FUNCTION, PCB-AREA-1,
SEGOOC10-INSERT-AREA, SEG00010-SSA.
MOVE ' (' TO BEGIN-0P-00010,
IF¥ STATUS-CODES NOT = SPACES, GO TO SEGMENT~INSERT-ERROCR.
GO TO WRITE-SEGMENT-EXIT.
SEGMENT -IS-SEGON0G6N,
MOVE BUILD-SEGMENT-AREA TO SEGO0060-INSERT-AREA.
MOVE WRONG-MAKE-SPAN TO RIGHT-MAKE-SPAN.
MOVE BUILD-SEGMENT-ARFA TO KEY-VALUE-00060.
MOVE SPACE TO BEGIN-0P-00060.
CALL 'CRLTDLI* USING DL1-FUNCTION, PCB-AREA-1,
SEGOO0O060-INSERT-ARFEA, SEGO0O 10-SsaA,
SEGD0060-SSA.

MOVE ' (' TO BEGIN-O0P-00060.
I¥ STATUS-CODES NOT = SPACES, GO TO SEGMENT-INSERT-ERROR.
GO TO WRITF~SFGMENT-EXIT.
SEGMENT -IS-SEG02000.
MOVE BUILD-SEGMENT-AREA TO SEGO2000-INSERT-AREA.
MOVE RUILD-SEGMENT-AREA TO KEY-VALUE-02000.
MOVE SPACE TO BEGIN-0P-02000.
CALL 'CBLTDLI* USING DL1-PUNCTION, PCB-AREA-1,
' SEG02000- INSERT-AREA, SEG00010-SSa,
SEG02000-SSA.
MOVE * (' TO BRGIN-OP-02000.
IF STATUS-CODES NOT = SPACES, GO TO SEGMENT-INSERT-ERROR.
GO TO WRITE-SEGMENT-EXIT.
SEGMENT-IS-SEG02200.,
MOVE BUITLD-SEGMENT-AREA TO SEG02200-INSERT-AREA.
MOVE BUILD-SEGMENT-AREA TO K EY-VALUE-02200.
MOVE SPACE TO BEGIN-CP-02200.
CALL '"CBLTDLI' USING DL1-FUNCTION, PCE-AREA-1,
SEG02200-INSERT -AREA, SEG0O0010-SSA,
SEG0 2000-SSA,
SEG02200-SSA.
MOVE ' (' TO BEGIN-0P-02200.
IF STATUS-CODES NOT = SPACES, GO TO SEGMENT-INSERT-ERROR.
GO TO WRITE-SEGMENT-EXIT.
SEGMENT-T S-SEG02300,
MOVE BUILD-SEGMENT-ARFA TO SEG02300-INSERT-AREA.

6.4 IMS/VS Application Programming Reference Manual

N

.

7

FILE: DPSSAM01 ASSENBLE A PALC ALTO DEVELOPMENT CENTER

MOVE BUTLD-SEGMENT-AREA TO KEY-VALUE-02300.
MOVE SPACE TO BEGIN-0P-02300.
CALL *CBLTDLI' USING DL1-PUNCTION, PCB-AREA-1,
SEG02300-INSERT-AREA, SEG00010-SSA,
SEG02000-SSA,
SEG02300-SSA.
MOVE ' (' TO REGIN-OP-02300.
IF STATUS-CODES NOT = SPACES, GO TO SEGMENT-INSERT- ERROR.
GO TO WRTTE-SEGMENT-EXIT.
WRITE-SEGMENT-EXIT. EXIT.
SEGMENT-INSERT-FERROR.,
DISPLAY 'SEGMENT ¢
PREV -SEG -N AME
' INSERT ERROR, !
' STATUS CODE= !
STATUS-CODES UPON CONSOLE.
G0 TO WRITE-SEGMENT-EXIT.
END-INP-FILE.

CLOSE INPUT-FILF.
PERFORM WRITE-BUILT-SEGMENT THRU WRITE~SEGMENT-EXIT.

DISPLAY ' END DB LOAD* UPGON CONSOLE.

LOCKED-HALT.
GOBACK.

DATA BASE DUMP PROGRAM

ASSEMBLER LANGUAGE APPLICATION PROGRAM EXAMPLE

In this example, the application program DFSSAM08 is a program used
to dump a data base named DI21PART. This is a batch processing program
that is the reverse of the data base load program, DFSSAMO1, shown
previously. The procedure MFDBDUMP (in conjunction with the sample
problem-in the IMS/VS Installation Guide) uses DFSSAM08 as the source
program. The listing follows.

Application Program Examples 6.5

PILE: DFPSSAMO8 PTC1138 A PALO ALTO DEVELOPMENT CENTER

o/ REPL NAME=DPSSAM08
TITLE °*DFSSAM0O8 - DUMP SAMPLE DATABASE IMS/VS*
PRINT NOGEN

DFSSAMO8 CSECT
SPACE 1

PCBREG EQU 4

BASE1 EQU 12
ENTRY DLITCBL
SPACE 1
USING *,BASE1

DLITCBL SAVE (14,12),, SAMOB-120

LR 12,15 LOAD BASE REGISTER WITH EP
ST 13 ,SAVEREGS+4 FORVARD CHAIN SAVE AREAS
LA 15, SAVEREGS A (SAVE AREA)

ST 15,8(,13) BACK CHAIN SAVE AREAS

LR 13,15 A(SAVE AREA)

SPACE 1

L PCBREG, 0 (1) A (PCB) PASSED BY CALLER

ST PCBREG, PCBADDR PUT A(PCB) IN CALL LIST
MVI PCRBADDR ,X'00* CLEAR HI BYTE

USING DLIPCB,PCBREG
OPEN (OUTFILE, (OUTPUT))

GETDISK DS 0R
CALL CBLTDLI ,MP={E,DLILINK) ISSUE DL/I CAL
CLC DLI STAT,=C* ¢ WAS CAlL CK ? '
BE CALLOCK YES, THEN PRINT SEGMENT
CLC DLISTAT ,=C'GA"* DID CALL CROSS BOUNDARY ?
BE CALLOK YES, THEN ERINT SEGMENT
CLC DLISTAT, =C*' GK' IS THIS SIBLING SEGMENT ?
BE CALLOK YES, THEN PRINT SEGHENT
CLC DLISTAT,=C"* GB! IS THIS END OF DATA BASE ?
BE ENDDI SK YES, THEN RETURN
WTO 'ERROR IN GET NEBXT DL/I CALL'
B ABFND)

*...BUILD OGUTPUT RECORD

CALLOK Ds 0H

MVC OOTREC(8) ,DLISEGFB

MVC OUTREC+9(100) ,SEGRETRN
PUT OUTFILE,OUTREC

MVC OUTREC(8) ,=CLB' !

MVC OUTREC+9(100) ,SEGRETR N+ 100
PUT OUTPILE,OUTREC

MVI SEGRETRN,X'UQ?* EL ANK
Mvc SEGRETRN# 1(L*SEGRETRN-1) , SEGRETRN
B GRTDI SK
EJECT
ABEND EQU * .
ENDDISK CLOSE (QUTFILE)
L 13, SAVEREGS+U4
RETORN (14,12),,RC=0
EJECT
*..o CONSTANTS .AND DSECTS
DLIFUNC DC CLY'GN ! GET NEXT CALL FUNCTION
¥,...DLT CALL LIST

DLILINK DC A{DLIFUNC) A (FUNCTION)

6.6 IMS/VS Application Programming Reference Manual

)

(N\
)

FPILE: DPFSSAMO8

PCRADDR

SAVEBEGS
OUTREC
SEGRETRN

OUTFILE

INSPCB
DLIPCB
DLTPILE
DLISGLEV
DLISTAT
DLIPROC

. DLYSEGFB

DC

DC

nc
SPACE
DC

DC

DC

DC
SPACE
LTORG
SPACE
DCB

SPACE
DSECT
DS

DS

ns

ns

DC

DC

DS
END

PTO1138 1 PALO ALTO DEVELOPMENT CENTER

A (0) A (PCB)

X' 80* ERD OF LIST PLAG
AL3 (SEG RETRN) A(I/0 AREA)

1

18P0 BREGISTER SAVE AREA
Cr110v * OUTPUT RECORD
CL200! I/0 AREA

CL10DY

1

1

DSORG=PS,MACRP= (PN),

LRECL=110, BLKSIZ2F= 110 ,RECF&=FB,DDNANE=0UTPUT
1 . g

oH
CL8
cL2
CL2
cLu4'c
F'O?
CL8

Application Program Examples

6.7

BATCH

PROCESSING PROGRAM FXAMPLE

The two programs previously shown, DFSSAMO1 and DFSSAMO08, are batch
processing programs, written in COBOL and Assembler Language,

respectively.

of DFSSAMO1 to interpret the format and content of this data.

PARTROOT G2ANY6OCLO WASHER 0901
STANINFO 02 142 1200 14 0002
06 0003
STUKSTAT 00 AAL6S11 000000000 £ACHDOO0ODO0O0O0NN00000 0004
512 0000000 0UU0L31 CNOOO01S 0000N20 CNOEL26 00VOL0& 000000NVS
CLVLIONOCGY QOVOGID @ 514N N00A
STOKSTAT 00 AK231!7F LIV IHUAIMVIV VIV EACHCOQOONC000002 TU000 (A113
60 COOVOLO YOLDVRR DYLOODY VUOVOND COVNVIAOHOVCD I TUNNNDT A
400GCO0UND VOVOGN0 O 2I6UN agoa
STOKSTAT C0280G9126 0G00N000N EACH 000000000000000000019
000051351 7517S000000000000630 000U000, 000000N 00006A0 0001053 600000137
04 000UNDOO00OOV00 O 494Y 0138
PAR TRIOT 02CKOSLWIBLK CAPACITOR 0142
STANINFO 02 742 1200 €2 0143
06C 0144
STIKSTAT 00 VF 52906 000001000 EACHO00000000000400000 0169
245 0000000 0UCVOLO 000N0D0 0000000 0GOCNON0000000200000001 70
0R’N000000 0000CON U H245N o017t
STOKSTAT 0025900326 000000340 000000 0172
510510501:0000000001320 000000000000660 0000660 000000000000001 73
009204003000000000000 0174
SINKSTAT 0025910926 000000340 000000 0175
5105105 000000000Q00008 000000000000000 000008 000000000000001 76
0N000000V000000000000 [ANAS
PAR TROOT 02C SK 136G 194KL KR1 J50KS 0178
STANINFO 02 142 1200 82 o179
06C. 0180
STOKSTAT 00 LDT4S5R M000002710 EACHU00000000000000000 o1al
435 00000V NH00014 NNOOOO0 0000NCO 00000140000000600000001 82
00000CUNN0 000UOVG O VaBsN 0183
STOIKSTAT 00 SK217113 MO00002710 EACH000000000000000000 0184
260 0000000 00VO0VL4 0000000 0000000 0000004 0000000200000001 85
0017000C000 0000000 O V260N ol86
STNKSTAT 0025502526 000000000 . . 008000 o187
4724725000000000000014 0000000 000000000000014 0000050 000001 88
04 00001000V000000000 0189
PARTROOT 0ZJANINYT6R DIUDE CODE-A 0202
STANINFO 02 o 742 1200 72 0203
06¢ 0204
STOKSTAT 0025509126 000000000 004000 0208
5135155000000000000017 0000000 000020000000017 0000068 000000209
03 00000000000UV0000 513 0210
BACKURDR 30PR237942 00000211
2000 0212
PARTRONDT 02M516995~-28 SCREW 0217
STANINFO 02 742 1200 14 0218
26¢C 0219
STUKSTAT 00 AAl6511 000000152 EACHO00000000000000000 0220
4894958 0000000 0000026 0000000 0000000 0000030 0000003 000000221
0000000000 0000000 0 V489N 0222
STOKSTAT 00 BA16515 0C0000069 EACHO00000000000000000 0223
455 0000000 0000006 0COO000 0000000 0000008000000000000000224
0000000000 0000000 0 V455N 0225
STOKSTAT 00 FF55460 M000000061 £ACHO00000000000000000 0226
448 0000000 0000044 OVV0000 0000000 0000043000000000000000227
0000000000 0NV000S O V448N 0228
STOKSTAT 0025910926 600006980 000000 0229
4974985000000000000095 0000000 0000000 0000100 N000000 0000000230

6.8 INS/VS Application Programaming Reference Manual

Refer to them for details as they are not repeated here.

Instead, the SYSIN data for DFSSAM01 is provided. Refer to the listing

'

(M

PARTRUOY
STANINFO

STOXKSTAT
CYCCOUNT
PARTRUOT
STANINFO
STOKSTAY

STUKSTAT

CYCCOUNTY
STUKSTAT

PARTROOTY
STANINFD

STNKSTATY
STOKSTAT
STIKSTAT
PAR TROOT
STANINFQ

STUKSTAT

BACKORDR
BACKURDR
BACKORDR

STNKSTAT
STUKSTAT
PARTRONY
STANINFO

STOKSTAT

PARTRDOT

0020C€000C00000000000 A\ 0231

02N51P3003F000 SCREW 0232
02 T42 1200 14 0233
03 0234
0025906026 000000000 00000000 000000000000000000241
00%) 4044045000000000000313 0C00000 0000000 0000360 0001209 000000242
00 000000000000000 © 0243
2010003690 00003600 ' ' 0244
02RCOTGF2TY) RESISTOR 0247
02 T42 1200 02 0248
06C N249

00 AK24527 000000240 EACHO00000000000000000 0250
213 0000000 0000033 0000000 0000000 0000033000000910000000251
0030000000 0NVY000 O V213N 0252
0028C09126 00000V000 006200000 0000000CON0Q0N0ONNA64
0UN0516517517500090uN0V0000L7 000000 000000N 00NONLT Q000057 N0NNOD3IGS
00 000CNAN00N00V0O0 1 4B85Y LETYY
2000000190 0000017 0367
0028011126 ¢€0000000 012000 0368
4594595000000000090026 0000000 000000000000026 N000240 000000369

29 00000CV0N00000000 0370
02106B1293P0N9 RESISTOR 0371
02 742 1200 02 0372
10 nat3
0025900326 0Cn000000 00000000 007005 (0000000000374
0010 393491476450C0000000001055 0000200 0NOOCO0 0N001055 0004780 000030375
22 1C0ua0CN0000000 0 Ni76
0025906026 0CN0V0000 00000000 000000000000000000380

0000 293 000000000000000 00000000000000000000000 0001808 000000381

01 000CNO0N0000104 O - 0382
0025910926 0CUVOLA20 , 000000 0383
4824835000000000000320 0000000 0000020 0000320 0000000 0000000384
002000000000000C 0000 0385
02250236-001 CAPACITOR 0386
02 742 1200 82 0387
04 01388
€0259C0326 0C0000000 00000000 007010 0000000000349
000 3934 384585000000000000410° 0000200 0000600 0000010 0000567 000000390
38 00NCO000000UV00 U 488Y 0391
30PR265943 00000390
1009 0390
30PRIHNTY2L 000003390
2009 0390
30PR420134 00000390
N0 . n190
00259060206 6C000000u V0000000 001000000000000000195
0CYO 44A4405000000000000000 NOVOQ000000000000000000 0000551 000000396
10 0CC0000NND00000 O 0397
0025910926 000003670 000000 0398
$175185000000000000072 V000000 0000000 000N0T2 0000045 000000399
000NCO0NOOVVOVOOVOVD 51TY 0400
02250219 TRANSISTOR 0401
02 742 1200 02 . 0402
058 0403
0025910926 000006500 004000 0413
5175185000000000000068 0000000 0000001 0000067 0000045 000000414

02 00000000000000000 517Y 0415
02250241-001 CONNECTOR 0416

Application Program Examples

609

STANINFO
PAR TROOT

STANINFO
STUKSIAT
STUKSTAT
STOKSTAT
PARTRONT
STANINFO
STUKSTAT
STOKSTAT
PAK TROOT
STANINFO
STIKSTAT
STOXSTAT
PARTROOT
STANINFO
STOKSTAT
STOKSTAT
SINKSTAY
PARTRUOT
SYANINFO
STOKSTAY
STUKSTAT

STIKSTAT

PAR TRUOT
STANINFO

6.10

02 T42 1200 &2 Ne617

06 04ls
02250796 RESISTOR . 06411
02 T2 1200 o2 0432

10 Ne33
0025900326 0000LV000 00000000 00500% 000000000004 34
00UU3T34R84885000000000000003 0000000 0000000 ©000003 00011 76 GO00NNG35
64 000003000000000 UV &B8Y LURTY
00254906026 cCconuNoCo 00000000 000000000000000000440
0010 448440N000000000000000 00200000000000000000000 0001229 000000441
80 006000000000VU000 O - 0842
0025910926 000001 740 070000 0443

$175185000000000000390 0000000 0000C00 0000381 0000180 00000N4&&
QLouUCO0CUQUUACN00000 S1T7Y Nead
02250796 SWITCH [XYY
02 222 1200 54 044t

1] 04468
002590A026 Q00000000 VONNVOOO 000000000000000000449
0090 44H6665000000000000001 00VO00000NON0000NVO0ONT 0000062 000000450
02 0YOONNON0001023 O N4as51
002571020 000015359 000000 0652

512%135000000000000020 0000000 0000010 DO0000S 0000000 0000009453
00001000000000100000 0454
02250891 SERV(} VALVE 04655
n2 T42 1200 16 0456

06C n457
0025906026 0COo00u00N0 0U23UL000 N16000000000000000658
o0no 446446N0000000C00V00004 0000000 0000N04 00NODOO0 0000536 000NVNGS59
73 0C00C0300000029 0O nN460
0025910926 0C03950¢0 000000 0461
579440KN00000000070235 0000000 0G001AC 00NONSS 0000005 00NONN&K2
0000000C0000Y°0000000 509 0463
02252252~093 COUPLING WLT-1 9
02 T2 1200 16 D405
06C D4H6
0025900324 0C0Y000V0 000000 0467

4854850000000000000092 0000005 0000092 0000000000V0NNO0ONNONNL68
00300001)000000000000 14 . 0469
0025906026 00n0NNOCY 00000000 - 0A70000000000000004 70
0000 &4a20450N0JVVOONNVVOCY NODOVO0 0000000 0000010 00ONS3I2 NONOONGTY
87 00005 3N0NVV460 O) 06472
0025910926 00V0 1 6450 000000 LIYX)

50 750750V0000000000076 0000005 QUOCOLO 0NNA0T6 0000008 OVOOON4T4

00000000000000000000 S03 0615
0230V3802 CHASSIS 0476
02 . 222 : 1200 34 0477
[+ ’ N&78
00259003256 000007900 000000 0479
494494500000000N000005 0000000 0000000 0000005 0000173 03000N48ND
0VDO0000NO0VCO0VVUIVOY 494 04nl
0025906026 000600000 00000000 017000000000000000682
0000 293 000000000000000 00000000000000000000000 0001198 000020483
04 000000009V00000 0 : 0484
0025910920 €00007900 000000 G485
517%1850000000000C0004 0060000 0000000 0000004 0000036 00000N&E86
0000000C0000000V00000 S17 : 0487
021003806 SWITCH LEY.T]
02 142 1200 Se 04089
IMS/VS Application Programming Reference Manual

Va

STOKSTAT

BACKORDR
BACKORDR

STOKSTAT

STOKSTATY

PAR TRONT

STANINFO

STNKSTAT

STOKSTAT

PAR TRODT

STANINFO

STUKSTAT

STOKSTAT

‘PARTRUDT

STANINFO
STNKSTAT

STOKSTAT

PAR TROOT

STANINFO

STOKSTAT

SINKSTAT

PAR TROOT

STANINFO

STOKSTAT

PAR TROOT
STANINFO

06C
0025900326 000011263

0490
024000 0491

5145185000000000000090 0000005 0000012 0000041 0000300 000070492

72 0000127 00000000V S15Y

I0SN5360C9 R3404
1110

305N536610 83404
0160

00259060726 0aNNoO0Cy 00000000

0493

36609 00000494
0495

36610 0009n496
0497

on2000000000000000498

090U 414 0000000010000000 N(00000000000N0N000ONVO 0001 754 000000499

%2 00NCOISH00N00455 0
0025910926 000C06620

0400
100000 0501

5175185000000000000004 0000002 0000000 0000004 0000036 000000502

36 000C0000000000000 SL7

023007228 HGUSING
02 222

e :
0U259060264 000000000 00000000

0503

N504

1200 34 Ns05
0506
00000€000000000000507

ovuo 44H8448N00000000000UQL0 000N0000000000000000010 0000125 000000508

11 000000000000NL3 O
0025910926 0€0012000

0509
000000 0510

4984985000000030000013 0000000 0000000 0000013 0000006 000000511

00N00bN0COONNVUVO0000 498

023008027 CARD FRONT
02 h6A

02F
0025906020 000000000 00000000

0812

0513

7246 B84 05146
0515
016000000000000000516

00v0 346 0000000000000VU1 00000000000000000000001 N000044 0000N0517

07 0000001700000029 O
00259109206 0guovuann

0518
000000 0519

49$9459X000000009000003 0000000 0000003 00N0NN000C0000N00000NNN520

000UNN00NMVNNYNVOI0V

0521

0531

1200 82 0532
1533

000000 0534

$0050000000090¢0000001 000009 000001000000N001 00000L4 000000535

NZ2300o922u CAPACITOR
02 742
GoC
C025900326 0C0u00000
00 GQO0OUCCV92I000900 Y
0025904026 000000000 0GO00000

0536
013000000000000000537

0090 4764T6N000000000000011 00029000000000000000001 0000083 000000538

11 0C0000000000002 O

0230C9270 HOUSING
02 222
04
0025906026 GC0000000 00000000

05139

0540

1200 1A 0561
0542
005000000000000000543

0000 448 00U0V000020000C0 00000000000000000000000 0000044 000000544

G4 000C008006000000 O 0545
0025910926 000000000 000000 0546
448448X000000000000002 0000002 000000200000002 00000000000000547
00000000000000000000 T D58
0230092R0 HCUSING CONV 0549
02- 222 1200 18 0550
04 0551
0025910926 0C0293500 000000 0552
513452K000000000000002 0000000 0000000 0000002 00000000000000553
00000000000000000000 0554
02301 3405-002 MOUNTING 0555
02 22

646 0356

Application Program Examples

6.11

STOKSFAT
STOKSTAT
STOKSTATY
~PARTROOT
STANINFO
STUKSTAT
STOKSTAT
PARTROQT
STANINFU
STUKSTAT
STOKSTAT
-PARTROOT
STANINFO
STOKSTAT
STOKSTAT
STUKSTAT
“PARTROOT
STANINFO
STOKSTAT
STOKSTAT
STOKSTAT
PARTROOT

STANINFO

STOKSTAT

6.12

Quo
0025900324 400000000
009039 35004345000000000000000
27 100000000000067 O

nssS,
00030000 0040000000000000005548
0000000 0N0C00Q0 0000000 0N0C0T720 000000559
0560

00259906026 0C0000000 00000000 003000000000000000561
(e V) 329 0C07000N10000000 00000000000000000000000 0000560 000000562
14 000007000000540 0 0563
0025710926 000029650 000000 N564
514513500000000000000L 0000004 0000003 0000001 0000008 000000565

00 0COU0NEVONJIU0CIA00 518Y 0566
023013412 COVER 0567
02 222 1200 66 0568
06 0569
0025906026 €00000000 00000000 002000000000000000570

000" 44R4405000000000000012

0000005 0000020 0000000 0000400 000000571

36 COU0U23000004206 O 05872
0025910926 €00012100 000000 0573
5125125000000000000047 Q000010 0000005 0000047 0000017 000000576
000uy00NN0CNHVNV00000D 512 0575
02101 13429-001 COVER ASSY 0576
02 222 1200 66 oS77
06 0578
0025506026 C00000000 00000000 001000000000000000579

00:)0380448440N000000000000900

00000000000000000000000 0000394 000000580

€3 0C0C0000NN00L0S5 0 0ss8l
0025910926 000003700 000000 0582
5135135000000000000000 0000000 0000075 0000083 000CO0S GQO0000583
000U00CN00YINV00Y000 S13 0584
023013460-001 CAPACITOR 0585%
02 T42 1200 82 0586
04 0587
0025900326 000000000 00000000 006005 00000000000598

C0203793478478N000000000000004
73 GCO00000NN00000 O

0025906026 0CV000000
0090 443440N000000000900010

€0003934934955000000000000886
86 00000V000000000 O

0000005 000000000000004 0002915 000010589

n590
00000000 000000000000000000594
0000000 0000000 G000N00 0002248 0000 595

27 0CCNOCO0NNO000T 0 0596
0025910926 QC0001530 000000 0597
5145150000000000000349 0000000 0000255 0000094 0000108 000000598
00000000000000000000 SlaY 0599
023013548-002 CHASSIS 0600
02 222 1200 34 0601
09 0602
0025900320 G0N00000d 00000000 001005 000000000004503
00703734934600000000000000000 0007000 0000000. 0000020 0001186 V0ONVVS06
11 000000000NV0000 0 Y - 0605
0025916026 Q0C0000000 00000000 000000000000000000509
0090 293 010000000000029- 00000000000000000000000 0000498 000000610
01 000000000000505 O o611
0025910926 000000000 000000 0612
. 512512K000000000000002 0000000 0000002 0000000000000000000000413
00200000000000000000 0614
V256134-016 NAS6TICL NUT 0615
02 742 1200 14 0ol6
03 0617
0025900326 000003033 00000000 004010 000000000005618

0020200 0000000 0000886 0002376 000000619
0620

IMS/VS Application Programming Reference Manual

STOKSTAT

STOKSTAT

CYLCUUNT
PARTRUNT
STANINFO

STOKSTAT
STUKSTAT
STHKSTAT
PARTROOT
STANINFO
STUK STAT
STNKSTAT
PARTRUNT
STANINFO
STUKSTAT
pARTROOT
STANINFO
STUKSTAT
STOKSTAT
PAR TRUDT
STANINFO
STOK STAT
STOKSTAT

-PARTRUGT

STANINFOD
STOKSTAT

0025706026 000000900 0000D000 004090000000000000624
QUUD 4474475000000000000014 20000000000000000000014 0000904 000000625
46 100N 10000000000 O 0626
002591U9 20 €C0009000 000000 0627
«6146150009000€0000115 0000010 0000000 0000115 00000000000000628
C02000000000000Y0000 0629
2000001100 00001150 0629
025M003-118 7734304PB661TO RES 0630
02 742 1200 02 0631
.10 0632
0025900326 000000000 VOU00000 020010 00000000000633
007013934834B8RSN00C0VUO0000006 OCO0000 0000000 0000006 0000644 000010634
26 0CONNEH000U00N0 O &RBY 0635
0025906026 000300000 NOVENONO 000000N00000000000539
00U 441 000)0009300VICH NOV00V00000030000000V00 0002190 §NN0N0640
19 000€00000000081 0 - 0641
0025910026 €C00LO0130 000000 0642
5195145000000000001648 0000000 0000021 0000627 0000091 0000VNNAK43
0000C0CHO00CN0000000 S518Y 0646
02552540-002 WIRF WRAP 0645
02 222 1200 42 LLYYA
04 0ReT
0027909126 000000000 00C00000 000000000000000000648
0000 460 000000000000060 00000200000000000000000 N0N0012 000000649
00 000000000000000 0 0650
0028009126 0C0000009 000000 0651
5145150000000000000012 7000000 0000012 000NJ0N 00000000000000652

12 00000000000009300 Y 0653
02652799 PULSE TRANSFORMER 0654
02 1ot 8300 0655
4 1656
0028009126 0CN00000N QUNNI000 0000000000000000V0A57
000U 5145155000000000000004 OCOV000 0000001 0000003 NOOONIB 000NONGSA
00 0100000000000L00 U 443Y 0659
0268663-192 CMUSCLO0KO03 0660
02 T42 1200 a2 0661
06C DHh62
0025906126 NCULLOONI 00L0N000 001000000000000000463
0000 3B444144405000300000000000 NOLNOC00VANNNS0 00NONND. 0001186 000000LH
€9 0CONNN0U0N0VLS6 O 0665
0025916926 €CuC00000 000000 0hoh
S$185185000000000000232 3000C52 0000075 0000232 000003i 000004Un6T

001706 CCHNN0I000Y0U0 S1H On6d
0208663~-104 CMUSN200403 0469
02 T42 1200 82 0670
06C 0AT1
0025906026 060000000 00000000 001000000000000000472
000U 448 200000060000015 UCOV00T000N0C23 NANON0A ANV0IY4 ONOO00ATI
05 0000000UNNIVUVY O Qh 14
0025910926 0€0GL000V 000000 0675
5135135000000000000095 0000015 00NNONN NO0C0Y9S 0000009 000000ATE
00000000000000000000 513 0677
0269857-63% CPO9ALKELS3K3 CAPAC 0474
02 T42 1200 82 0479
06C N6A0
0025906026 000000000 00000000 002000000000000000681
0000 44#400S000000000000000 0000000 0000000 0000200 000039 000000682
16 00N0V00UOVOVOLL O 0683

Application Program Examples

6.13

STAOKSTAY

PAR YRODT
STANINFQ

STOKSTAT

STOK STAT

PAR TROQT
STANINFO

STOKSTATY

STUKSTAT

‘PARTRNDT
STANINFO

STOKSTATY

STIKSTAT

STOKSTAT

PARTROOT
STANINFO

STUKSTAT

BACKURDR
BACKORDR
BACKORDR
RACKOROR
DACKORDR

STOUKSTAT

STOKSTATY

PAR TRUDT
STANINFO

6.14

0025910926 000000500 000000 NhAs
515515N0000000CG0000093 0030000 0000050 0000052 0000009 0000006ES
000N1CCNN0000N00009C0 515 0636
N27060654PNU1L ELE TUBE 0687
02 T42 1200 10 0688
06C 0AR9
0025906026 000000000 00000000 003000000000000000690
ovuo 446 000000000000000 00000000000000000000000 0000400 0V0000691
12 0000000)0000003 O 04/92
00259710926 0C01039C0 000000 0493
5155171000000000000038 0000000 0000002 0000036 0000004 00000064
00200000000000000J00 515 0A95
0274313995P002 NUT 04696
02 142 1200 14 0697
U3 0699
0025900326 000000000 00000000 000005 0000000000N0499
0000 4404405000000000001 736 00000000000000000002512 0000443 000000700
00 000000V30N000V0 O orol
0025996026 00N0LA000 06000000 000000000000000000T702
0090 296 0000000000CD017 000V0000000000000000033 0000880 000000703
00 0CO0V00V00000LS O 0704
027454949P991 LAMP HOLDER 0705
02 742 1200 82 01086
06C 0707
0025900326 0000061643 046000 0708
5185185000000000000061 0000000 0000040 0000024 0000173 0Q0NGNOTOY
80 0CO00N0NONONV0I00 505 _ 0710
00259C6026 000000000 00900000 022000000000000000711
0090 293 Q0V200000000000 00000000000000000000003 0001301 000020712
88 000C1N900000065 O 0713
0025910926 000005 360 000000 0714
5175145000900000000004 0002000 0000000 0000004 00000346 0000ONTLS
Q0V0N000000ONN00V000 SIT 0116
C2T1618032P1N1 CAPACITUR 07117
02 742 1200 82 0718
04 arle
0025900326 0000010C1 0VV00000 006005 000000000010720
0UV03934914925000000000000013 0000009 0000000 C00NN13 0002601 000010721
49 0COCNOOCV000000 O 435Y nr22
30PR 1493291303603 0435 B2446 3013609-001 00000723
0010 0724
30PK1493761303603 0485 B2446 3013609-001 noonNoT2s
oulL0 0726
30PR1530961303603 0485 B2449 3013609~-001 00000727
oolro nr29
30PKR1530981303603 0485 B2451 3013609-001 nooenT29
0ot o 0730
30PR1695661303603 04R5 R2484 3013609-001 00000731
00s0 0732
0025906026 000000000 0LO200000 002000000000007000736
0090 3n3 0U0000000000000 00000000000000000000000 0000952 000000737
18 000000CN00O0UOLLY O 0738
0025910926 200000000 000000 0739
45445413000000000000022 0000000 0000022 00000000000000000N0000T40
G00N0N0N00V0N000000Y 0741
0216142R9P 049 CIKCUIT BREA 07«2
02 T42 1200 0& 0143
06C 0744
IMS/VS Application Programming Reference Manual

N

N’

STOKSTAT

STOKSTAY

PAR TROOT

STANINFO

STOKSTAT

STUKSTAT

STUKSTAT

PARTROOT

STANINFO

STOKSTAT

BACKORDR

STNKSTAT
STUKSTAT
PARTRODT
STANINFO
STOKSTAT
STOKSTAT
PARTRUOT
STANINFQ
STUKSTAT
STOKSTAT
PARTROOT
STANINFQ

STOKSTAT

STOKST AT

0025906026 000000000 00000000 000000000000090000745
ounn 450 000000000000015 00900000000000000000017 0000033 000000746
03 000020000000001 O 0747
0025910926 0Cv000000 000000 0748
4984980000000000000002 0000000 0000001 0000001 0000002 000000749
00000009000000000000 498 0750
027630843P513 RESISTOR 0751
02 142 1200 02 0752
06C 0753
002590C326 000000000 00300000 000000000000000000754
000u 338 0000000000LQV02 00000000000000000000002 0000000 0000CCT55
00 0CCCN0000000002 O 0754
00255806026 000U0oU00 06000000 ©01000000000000000757
0000 4434642500000000000U000 200000000000000 0000000 0009555 000000758
$9 000000000000080 0 0759
0025910926 0C0000000 000000 0760
5185180000000000001403 0000000 0000300 0001203 0000858 000000761
000000000C000000000C 518Y 0762
027736847P001 TRAN SFORMER 0763
02 742 1200 94 0764
10 0765
0025900326 000000000 00000000 000003 00000000000766
00003935115115000000000000179 0000001 0000150 0000040 0001417 000000767
05 0000089 0000128 © 0768
30PR 135640 048y 83323 0000A3564 448506-100 00000769
1500 n7170
0025906026 n00000000 00C00000 N0500000000000000N774
0020 57 000000000000005 00000000000000000000005 0000430 000000775
20 0CC003300000040 0 0776
0025910926 000Ul 5100 000000 or1?
495497KN00000000000010 0000000 0000020 0000010 00000000000000778

00 00000000000000000 0179
02303008035 GASKET 0780
02 222 1200 84 0741
04 0782
0025906026 000000000 00000000 006000000000000000 783
0000 293 000000000000049 000N0000000002000000019 0000176 000000784
11 ©00000000000000 C 0T8s
0025910926 0000625380 000000 0786
5105105 0000000C0000012 0090000 0000000 0000012 0000008 000CNNTHT
C00001900003900000000 510 0788
02342124-056 RN6UC3161F 0789
02 742 1200 02 9790
10 0791
0025900326 000000000 00000000 000007 00000000000792
J0U03934884885000000000000008 0000000 0000000 0000008 0001176 00000N793
02 000000C0N0700028 0 488Y 0794
0025910926 0Cu00V000 000000 0401
5175185000000000000322 0000000 0000000 0000340 0000190 000000902
00000000000000000000 517Y 0803
N232124-640 RN65C9092F 0404
02 . 742 1200 02 0905
048 0306
0025900326 300000000 000000 0807
©944940000000000000000 0000000 0000000 0000000 0000008 000000808
€0000000000000000000 4934Y 0309
0025906026 00000000 00000000 000000000000000000810

0000 402 000000000000000 00000000000000000000000 0000075 000000811

Application Program Examples

6.15

PAR TROUT
STANINFO

STOKSTAT

STOKSTAT

PAR TRODY
STANINFO

STIKSTAT
STORSTAY
PAK TROOT

STANINFO
STUKSTAT

PAR TROOT
STANINFO

STOKSTAT
PARTROOT
STANINFO
STOKSTAT

STOKSTAT

PARTROOT
STANINFO
STCKSTAT
PAR TROOT
STANINFO

STOKSTAT
PARTROOT
STANINFO

STOKSTAT

6.16

03 000000000000000 O on12

0222125~469 RNT5C8252F 0813
02 742 1200 02 0814
26C 0815
0025906026 600000000 00000000 001000000000000000816
0090 446 000000000000100 00000000000000000000050 0000424 000000817
€3 v000V000000n00L3 © 0a1A8
0025910926 000000780 000000 0819
5135135000000000000090 0000000 0000000 0000090 0000060 000000820
000N00V9000NN00V0V0000 513 0921
0234353=4%6 RW6TV4T2 0822
02 142 1200 0823
06C 0924
0025900324 €00000000 00000000 002000000000000000925
0000 4794 719500000000000028U 00UVUOO 0000200 0G00EL0 0000165 000000826
03 000000000000004 0 . 0821
0025910926 000000000 000000 0831
5095175000000000000009 0000000 0000000 0000009 0000012 000000832
00 00000000000000000 SUYY 0833
0290-3033334 BONDED ASSY 08136
02 414 1236 0835
v1D 0336
0028009126 ¢€0C00000 003000 0837
5145155000000000000010 0000000 0000014 0000001 0000032 000000838
01 000€0000000000000 503Y 0839
02903033665 BCNDED ASSY 0840
02 414 7219 NK61
015 0842
0028009126 €C0000000 000000 0843
$145150000000000000024 0000000 0000024 0000000 0000048 000000844
0G000000000CVO0000000 4R2Y . 0845
02905537-384 CAPACITOR 0946
02 142 1200 nB47
06C 0848
0028002526 0€0000000 002000 0849
497461461 5000000000000004 0000000 0000000 0000004 0000050 0G00ANASO
01 0n0C00C0000000200 0851
c028C09126 0000000QU 000000 0rs52
514444D000V000G0000000 0000000 000000000000000000000000000000853
00000000000000000000 A\ LTS
02906029-040 CAPAC ITOR 0855
02 742 1200 82 0456
06C o8s7
0023009126 000000000 00000000 007000000000000000358
0000 513515S000000000000024 0000000 0000020 O00N0VO& 0000028 000000859
02 006000000000000 O Y 0860
029y7021-782 CAPACITOR 0361
02 142 1200 82 0962
06C 03863
6026009126 000061700 00000000 006000000000000000864
0000 5175170000000000000008 0000000 0000005 0000003 000CCLE 000030865
01 000000000000000 0 S03Y 0866
02922294~002 CONNECTQOR 0’79
02 T2 1200 42 0880
o6C 0981
00 TF346TA M000003390F FACH000000000000000000 0882
467 0000000 0000000 0000000 0000000 00000000000000000000N0863
0100000000 0000000 O V467N 03B4s
IMS/VS Application Programming Reference Manual

P

STOKSTAT 00 TF5877N MO00012540
467 0000000 0000001
06J20000000 0000G00 O V467N
STNOKSTAT 0028009026 - 0CV000000
00004524764745000000000000001
03 0CNC00000000V03 0
STOKSTAT 0028009126 030000000
00170 5145155000000000000017

FACH000000000000000000 Ca85
0060015 0000000 0000001 000000000000000886
0A87

00000000 020000000000000000888
00000000000000000000001 0000015 000000889
: 0390

00000000 000000000000000000891
0000000 0000000 0000007 0000030 000000892

00 0¢0C00000000000 v Y 0893

PARTHUOT 024922399-001 CCNNECTQR 0894
STANINFD 02 T42 1200 0895
o6C 08396

STOKSTAT 0023009126 000011430 005000 0897
5175175000000000000006 0000000 0000005 0000005 0000019 00000089A

01 00000000090000000 507Y 0899

PAR TRUQT 02925363-136 DIUDE ZENER 0900
STANINFO 02 T42 1200 72 0901
06C 0902

STUOKSTAT 0028009126 030000000
0000 5145150000000000000005

00000000 007000000000000000903
0000030 0000004 0000001 0000030 000000904

02 000000000000000 0 \{ 0905

HACKURDR 30PR729437 00000705

0040 0905

PARTRONT 02925380-101 DIGOE 0906

STANINFU 02 74 172 0907

000 0968

PARTRONT 02130331-102 FILTER 0910
STANINFO 02 8l6 0000

00 0713

STOKSTAT 0028009126 000000004
0090 51451550000000000000V08

00000000 000000000000000000914
0000000 0000004 0000004 0000025 000000915

00 000000000000000 0 488Y 0916

PARTRONT 02930331~-123 FILTER 0917
STANINFO 02 815 0000 u9ls
00 0919

STOKSTAT 0028009124 000000000
0090 5145155000000000000008

QU000000 000000000000000000920
0000000 0000005 0000003 0000025 000000921

00 000000000000000 O 48T7Y 0922

PAR TRODT C2330333-001 DISCRIMINATO 0923
STANINFO 02 8ls 0000 0924
00 0925

STOKSTAT £028009126 €00000000 00000000 013000000000000000926
0090 5145150000000000000002 0000000 0000002 (000000 0000008 000000927

01 000000000000001 O Y 0928

PARTRONT 02946325-086 PIN 0929
STANINFO 02 742 1200 16 0930
06C ' 0931

STOKSTAT 00 RF 34674 M0C0000899 EACH000000000000000000 0932
376 0000000 0001313 0000000 0000000 0001113000000000000000933

0000C00000 0000CU0 O V3IT6N 0934

STOKSTAT 00 VF34610 ° M3C00000u0 EACH0000000000N0000000 0935

170 0000009 000095750000000 0000000 0000059000000000000000936

0000000000 000V000 O V1ITON

STOKSTAT CO02BC09025 900000000
00004524814525000000000000000
74 0€0000000001010 0

STOKSTAT 0028009126 000000000

0937
00000000 850000000000000000938
00000000000000000000000 0000004 000000939
0940

00000000 050000000000000000941

0090 5145155000200030000008 0000000 0000000 0000008 0000016 000000742

Application Program Examples

6.17

PARTROOT
STANINFO

STOKSTAT
PAR TROOT
STANINFO
STOKSTAT
STOKSTAT
STOKSTAT
STOKSTAT
PAR TRAOT
STANINFO
STOKSTAT
PARTROGT
STANINFO
STUKSTAT
STOKSTAT
SINKSTAT
$AR TRUOT
STANINFO
STUKSTAT
PAR TRUOT
STANINFO
STNKSTAT
STOKSTAT
PAR TROOT
STANINFO
STOKSTAT
PARTROOT

STANINFO

STOKSTAT

6.18

C8 000000000000000 O 493Y 0943

02950060~006 RELAY 0944
02 T42 1200 96 0345
06C . 0946
€028CCI126 000015300 00000000 000000000000000000947
0000 5175185000000000009009 0000000 0000000 0NNJ009 0000027 ONO0VHI&B
00 000C00000000000 0 483V 0949
02954017-001 RESISTOR 0950
02 T42 1200 02 0951
06C 0952
00 JF3407A MU00002525 EACH000000000000000000 0953
907 0000000 0000066 0000000 0000000 0000N06000000030000000954
0000000000 NNOVOO0 O VIOIN 0955
00 TF3447A MOC0010000E EACHO00000000000000000 0956
401 0000000 0000000 0000000 0000000 0000000000000000000000957
00000C0000 00V0003 O V401N 0958
00 TF5877N M000002525 EACH000000000000000000 0959
474 0000000 0000002 0000000 0000000 0000002000000010000000960
0000000000 0000000 O V&T4N 0361
0028009126 000000000 00000000 000000000000000000962
0000 5145155000000000000004 2000000 0000003 0000001 0000008 000000963
00 000000000000000 O 486Y 0964
02958007-180 RESISTOR 0965
02 742 1200 02 0966
06C : n967
0028009126 0C€0000650 00000000 005000000000000000968
0000 5175175000000000000046 0000000 0000000 0000039 0000021 000000969
01 000006000000000 U A\ 0970
02960528~ 067 RFSISYOR 0971
02 T42 1200 02 0972
06C : 0973
00 DF 34671 M000007000 EACH000000000000030000 0974
140 0000000 00V0000 0000000 0000000 0000000N0N00010NN00000ITS
0300000000 0000000 O V140N 0976
0028009026 0C¢0000200 0Q009000 10000000000000000NIT7
0000452481479N000000000000000 000000000000000 0000090 0000003 NO00NOITE
¢3 000002000000003 O N9 19
00213009126 000018230 00000000 1040000000000000170980
0000 517%1700000000000000C9 0000000 0000005 00N0004 0000027 000000981
28 000000000000000 0 S505Y 0982
02968534-001 SOCKET 0983
02 142 1200 16 0984
06C 0985
0028009125 000050000 00000000 029000000000000000986
0000 514%155000000000000008 0000000 0000003 0N00QNS 0000007 000000987
02 0C0N0N000MN0V000 O \ 4 0988
02774810-019 THERMOSTAT 0989
02 T42 1200 16 0990
06C 0991
0028002526 000013250 00000000 007000000000000000992
00004955165175000000000000006 0000000 0000000 0000006 0000057 000000993
04 000000000000000 O S16 0994
0028009126 000009750 007000 0995
5175175000000000000021 0000000 0000N0S 0000016 0000014 000000996
Cl 00000000000000900 Y Q997
02975105-001 TRANSFORMER 998
02 T42 1200 16 0999
06C 1000
0028009126 000106000 024000 1001
5145155000000000000029 0000000 0000001 0000028 0000021 000001002
05 00000000000000300 Y 1003
023989036-001 TRANSFORMER 1004
02 142 1200 96 1005
06C 1006
0028009126 000019300 112000

511751 7n0000000000000007 0000000 0000004 0000003 0000017 02000
19 00000000000000000 A

IMS/VS Application Programming Reference Manual

-

~,

MESSAGE PROCESSING PROGRAM EXAMPLE

ANS COBOL APPLICATION PROGRAM

This message processing program, DFSSAMO3, provides you with the
ability to inquire about the total inventory of a part in all locations,
This program is one of several message processing programs used in the
Sample Problem, included in the IMS/VS Installation Guide.

The transaction code DSPINV retrieves the data from the data base,
DI21PART, loaded by a previous program. Assume that it wishes to
display, on a communication terminal, only the third inventory entry
listed in the above output. The inventory location key is obtained by
concatenating AREA, INVDEPT, PROJCD, and DIV.

The input format for this transaction is:

transaction code part number inventory key
despinv an960c10, 28009126

The output is:

PART=AM960C10 ; DESC=WASHER ; PROC CODE=74

AREA=2; INV DEPT=80; PRJ=091; DIV=26; PRICE= .000; STK CT DATE=513; UNIT=EACH
CURR REQMTS= 630 ; ON ORDER= 0 ; TOTAL STOCK= 680

DISB PLANNED= 1053 ; DISB UNPLANNED= 4 ; STK CT VARIANCE= 0

Application Program Examples 6.19

The program listing is:

FILE: DFSSAM03 ASSEMBLE A PALC ALTO DEVELOPMENT CENTER

IDENTIFICATION DIVISION.

PROGRAM-ID. 'DFSSAMO3*

AUTHOR. DON TRUDELL.

REMARKS. SINGLE-~LOCATION INVENTCRY DISPLAY PROGRAN,
THE TRANSACTION CODE WHICH ACTIVATES THE PROGRAM IS
DSPINV.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION,

SOURCE-COMPUTER. IBM-360.

OBJECT-COMPUTER, IBM-360.

DATA DIVISION.

WORKING ~STORAGE SECTION.

01 NEXT-FUNC PICTURE X {O4) VALUE °'GN °*,
01 UNIQ-FUNC PICTURE X(04) VRLUE °‘GU °*.
01 ISRT-FONC PICTURE X{(04) VALUE °*ISRT'.
01 STOKSTAT-WRITE-SHW PICTURE X {02) VALUE SPACES.
01 PARTROOT-SSA.
02 ROOT-RAME PICTURE X(8) VALUE *PARTROOT'.
N2 PREGIN-OP PICTURE X VALUE * (°.
02 EKRY-NAME PICTURE X (8) VALUE *PARTKEY °'.
N2 RELATION-OP PICTURE XX VALOE * =°,
02 KEY-VALUE PICTURE X(17) .
02 END-OP PICTORE X VALUE Y)°'.
01 STOKSTAT-SSA.
02 FILLER PICTURE X (08) VALUE 'STOKSTAT'.
D2 FILLER PICTURE X(01) VALUE * (‘.
02 FILLER PICTUORE X(08) VALUE 'STOCKEY'.
02 FILLER PICTURE X(02) VALUE ' =79,
02 SS-SSA-KEY.
03 PILLER PICTURE X(02) VALUE ZEROS.
03 S5-SSA-KEY-VALUE PICTURE X(08).
03 PILLER PICTURE X{06) VALUE SPACES,
02 FILLER PICTURE X(01) VALUE *')°*.
01 TERM-TN-AREA.
02 FILLER PICTURE X (140) VALUE SPACES.
01 REFORM-MESSAGE.
02 REFORM-TRANS-CD PICTURE X (8).
02 PART-NO PICTURE X(15).
02 INPUT-SS-KEY PICTURE X (08) .
N2 FILLER PICTURE X {109).

01 WORK-AREAS.
02 ROOT-KEY-WA,

04 ROOT-PREFIX PICTURE XX VALOE '02°,
04 PN-WORK PICTURE X({15).
02 MSG-SEG-CNT PICTURE S9 COMPUTATIONAL VALUE ZERO.
N1 PARMM-TAPLE.
02 FILLER PICTURE S9 (2) VALUE +15 CONP.
02 FILLER _ ~ __ PICTURE XX _VALUE 'L ¢,
02 FILLER PICTURE S99 VALUE +8 COMP.
02 PILLEP PICTURE X (02) VALUE 'L .
02 END-TABLE PICTURE S99 VALUE ZERO COMPUTATIONAL.
01 PART-LINK. ,
02 PART-NO-EDIT PICTURE X (17) .
02 FILLER PICTUBE XXXX.
02 REJECT-CODE PICTURE X.

6.20 IMS/VS Application Programming Reference Manual

FILE: DFSSAMO03 ASSEMBLE A

01

01

01

01

01

01

01

SEG -RET-AREA,
D2 FILLER

02 PART-NO

02 PILLER

02 NDESC

02 FILLER

PICTURE
PICTURF
PICTURE
PICTURE
PICTORE

PALO ALTO DEVELOPMENT CENTER

X(02).
X(15) .
X(09) .
X{15).
X{119).

STAN-INFO-RET REDEFINES SEG-RET-AREA.

02 FILLFR

02 PROC-CODE
STOCK-STATUS-RET
02 FILLER

02 SS-AREA

02 SS-DEPT

02 SS-PROJ

02 SS-DIV

02 FILLER

02 SS-UNIT-PRICE
02 FILLER

(2 SS-UNTT-OF-MEAS
02 FILLER

02 SS-STOCK-DATE
02 FILLFR

02 SS-CUR-REQMTS
02 SS-UNPL-REQMTS
02 SS-ON-ORDER
02 SS-IN-STOCK
N2 SS-PLAN-DISP
02 SS-UNPL-DISB
02 FILLER
BACK-ORDER-RET
02 FILLER

02 WORK-0ORDER

02 FILLER

02 WO-QTY
CYCLE-COUNT-RET
02 FTLLER

02 PHYSTCAL-COUNT
02 FILLFR

02 TOTAL-STOCK
LINE-1-AREA.

02 FILLER

02 FILLER

02 FILLER

72 FILLER
02 PART-NO
02 FILLER

02 DESC

92 PTLLER

02 PROC-CODE
02 CARR-RET
LINE-2-AREA.
02 PILLER

02 FILLER

PICTUORE
PICTURE

PICTURE
PICTURE
PICTURE
PICTURE
PICTORE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTORE
PICTURR
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

X{18) .
XX.

RECEFINES STAN-INFO-RET.

XX
x.

vxx.

XXX.

XX.
X(10) .
9(6)V999.
X (05).
X(084) .
X(33).

X (03).

X(15).

S9(7) V9.
S9(7) V9.
59(7)v9.
S9(7) V9.
S9(7) V9.
S9(7) V9.
X (23).

REDEFINES STOCK-STATUS-RET.

PICTURE
PICTURE
PICTURE
PICTURE

X(02) .
X (08) .
X(53).
S9(07) V9.

REDEFINES BACK-ORDER-RET.

PICTURE
PICTURE
PICTURE
PICTURE

PICTURE
PICTURE

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTORE
PICTURE
PICTURE

PICTURE

PICTURE

X (02) .
59 (07) V9.
X (04) .
S9(07) V9.

S99 COMPUTATIONAL VALUE +62.

S99 VALUE ZERO
COMPUTATIONAL.

X(01) VALUE ' °.

X (05) VALUE 'PART='.

X (15).

X{7) VALUE '; DESC="'.
X(15). .

X (12) VALUE *; PROC CODE='.

XXx.
X(on YALUE ' °.

S9(02) VALUE +88
CONPUTATIONAL.
S9(02) VALUE ZERQ,

Application Program Examples 6.21

FILE:

6.22

DFSSAM(03 ASSEMBLE A

02 FILLER PICTURE
02 FILLFR PICTURE
N2 SS-AREA PICTURE
02 PILLFR PICTURE
02 SS-DEPT PICTURE
02 FILLER PICTURE
N2 SS-PROJ PICTURE
02 FILLFR PICTURE
02 SS-DIV PICTURE
02 FILLER PICTURE
02 SS-UNIT-PRICE PICTURE
D2 PILLER PICTURE
N2 SS-STOCK-DATF PICTURE
N2 FPILLER PICTURE
02 S<-UNIT-0F-MEAS PICTURE
02 C..RR-RET PICTURF
D1 LINE-3-ARFA.
02 FILLER PICTURE
N2 FILLER PICTURE
N2 FILLER PICTURE
02 PILLER PICTORE
02 S5-CUR-REQMTS PICTURE
02 FILLER PICTURE
N2 SS-ON-ORDER PICTURE
02 FILLER PICTURE
N2 SS-TN-STOCK PICTURE
02 CARR-RET PICTURE
01 LINE-U-ARFA,.
N2 FILLER PICTURE
N2 PTLLER PICTURE
02 FILLER PICTURE
02 FILLER PICTURE
02 SS-PLAN-DISB PICTURE
02 FILLRR PICTURE
02 SS~UNPL-DISR PICTURE
02 FILLER PICTURE
N2 STOCK-VAR PICTURE
N2 CARR-RET PICTURE
N1 LINE-S-AREA.
N2 FILLER PICTURE
02 FILLER PICTURFE
0?2 PILLER PICTURE
02 DESC-1 PICTUPE
02- WORK--ORDER -~ - - -PICTORE
02 DESC-2 PICTURE
02 WO-QTY PICTURFE

PALC ALTO DEVELOPNENT

CENTER
COMPUTATIONAL.

X(01) VALUE * .,

X (05) VALUE *AREA=',

X(0"n.

X(11) VALUE *; INV DEPT='.

X (02) .

X (06) VALUE '; PRJ='.

X(03) .

X(06) VALUE *; DIV=",

X (02).

X(08) VALUE '; PRICE='.

Z (6) .999.

X (14) VALUE *; STK CT DATE='.

X(03).

X(07) VALUE *; ONIT="',

X (04) .

X(01) VALUE ' ',

S9(02) VALUE +67
COMPUTATIONAL,

S9(02) VALUE ZERO
COMPUTATIONAL.

X(01) VALUE * v,

X (12) VALUE 'CORR REQMTS=',

7 (06)9-.

X(11) VALUE '; ON ORDER=',

7 (06) 9-.

X {14) VALUE *; TOTAL STOCK=',

2(06)9~-.

X(C1) VALUE v o,

$9(02) VALUE +79
COMPUTATIONAL.

S9 {02) VALUE ZERO
COMPUTATIONAL.

X(01) VALUE * v,

X(13) VALUE *DISB PLANNED=',

2(06) 9-.

X (17) VALUE

*s DISB UNPLANNED=!.
7(06) 9-.

X (18) VALUE
¥; STK CT VARTANCE='.

Z(07)9-.

X(01) VALUE * *,

$9(02) VALUE 457
COMPUTATIONAL.

S9 (02) VALUE ZERO
COMPUTATIONAL.

X(01) VALUE * ',

X(24).

X (08) . "

X(11).

2(06)9-.

IMS/VS Application Programming Reference Hanual

®

/R\

DFSSAM(03 ASSEMBLE A PALO ALTO DEVELOPMENT CENTER

N2 CARR-RET PICTURE X (01) VALUE * ',
01 NO-EARTROOT-MSG.

n2 FILLER PICTURE S9 (02) VALUE +48
COMPUTATIONAL.

02 FILLER PICTURE S9(02) VALUF ZERO

COMPUTATIONAL.

02 PILLER PICTURE X(01) VALUE ' v,

02 PILLER PICTURE X (10) VALUE *PART NO. °.

02 PART-NO PICTURE X (15)

02 FILLER PICTURE X(17) VALUE
' NOT IN DATA BASE'.

02 CARR-RET PICTURE X (01) VALUE ¢ v,

01 NO-STOKSTAT-MSG.

02 FILLER PICTURE S9(02) VALUE #45
COMPUTAT IONA L.

02 PILLER PICTURE S9(02) VALUE ZERO

COMPUTATIONAL.

N2 FILLER PICTURE X(01) VALUE ' °,

02 FILLER PICTURE X (14) VALUE 'STOCK RECORD .

02 STOCK-KEY PICTURE X (08).

02 FILLER PICTURE X(17) VALUE
' NOT IN DATA BASE'.

02 CARR-RET PICTURE X (01) VALUE * ',

LINKAGE SECTION.
01 TO-TERM-PCB.

02 IO-TERMINAL PICTORE X(8) .
02 IO-RESERVE PICTURE XX.

02 TO-STATUS PICTURE XX.

02 INPUT-PREFIX PICTURE X{(12).

01 PARTFILE-PCB. ‘

02 PN-DBD-NAME PICTURE X (8}.
02 PN-SEG-LEVEL PICTURE XX.

02 PN-STATUS-CODE PICTURE XX.

02 PN-PROC-OPTIONS PICTURE XXXX.
02 RESERVE-DLI PICTURE S9(5) COMPUTATIONAL.
02 PN-SEG-NAME-FB PICTURE X (8).

PROCEDURE DIVISION.
ENTRY *DLITCBL' USING IO-TERM-ECB, PARTFIL E-PCB.
INITTALIZE.
MOVE SPACES TO STOKSTAT-WRITE-SW.
MOVE 'ODTSTANDING WORK ORDERS=' TO DESC-1 OF LINE-S5-AREA.
MOVE '; OQUANTITY=' TO DESC-2 OF LINE-5-AREA.
GET-TRANSACTION.
CALL *CBLTDLI' USING UNIC-FUNC, IO-TFRM-PCB, TERM-IN-AREA.
CALL-INPUT-ANALYZER.
CALL 'INPANAL' USING PARAN-TABLE, TERM-IN-AREA,
REFORM~-MESSAGE, MSG-SEG-CNT.
CALL~-PART-EDIT.
MOVE PART-NO OF REPOBRM-MESSACGE TO PART- NO-EDIT.
CALL 'PNEDIT' USING EART-~LINK.
FIND-PART-IN-DATA-BASE.
MOVE PART-NO-EDIT TO P N-WCRK.
MOVE ROCT-KEY-WA TO KEY-VALUE.
CALL 'CBLTDLI' G<ING UNIQ-FUNC, PARTFILE-PCB, SEG-RET-AREA,
PARTROOT-SSA.

Application Program Examples 6.23

T TP TSTOKSTAT-WRITE-SW EQUAL TO ON'

DFSSAMO3 ASSEMBLE A PALO ALTO DEVELOPMENT CENTER

IF PN-STATUS-CODE NOT EQUAL TO SPACES,
GO TO PARTROOT-NOT-FOUND.
PARTROOT-FOUND.
MOVE CORRESPONDTING SEG-RET-AREA TO LINE- 1-AREA.
FIND-STANINFO-TF-PRESENT.
CALL 'CBLTDLI' USING NEXT-FUNC, PARTPILE-PCB, SEG-RET-AREA.
IF (PN-STATUS-CODE EQUAL TO 'GB')
OR
(PN-SEG-NAME-FB NOT EQUAL TO 'STANINFO')
MOVE SPACES TO PROC-CODE OF LINE- 1-AREA
ELSE
MOVF CORRESPONDING STAN-INFO-RET TO LIN E-1-AREA.
PERFORM WRITE-LINE-1 THRU WRITE-LINE-1-EXIT.
GET-UNIQUE-ST OKSTAT.
MOVE INPUT-SS-XEY TO SS-SSA-KEY-VALUE.
CALL ' CELTDLI' USING UNIQ-FUNC, PARTFILE-PCB, SEG-RET-AREA,
PARTRCCT-SSA, STOKSTAT-SSA.
IF PN-STATUS-CODE FOUAL TO * GE!
GO TO STOKSTAT-NOT-FCUND. .
STOKSTAT=-FOUND.
MOVE CORRESPONDING STOCK-STATUS-RET TO LINE-2-AREA.
PEP FORM WRITE-LINE-2 THRU WRITE-LINE~2-PFXIT.
MOVE CORRESPONDING STOCK-STATUS-RET T0 LINE-3-AREA.
PERFORM WRITE-LIN®-3 THRU WRITE-LINE-3-EXIT.
MOVFE CORRES PONDING STOCK-STATUS-RET TO LINE-4-AREA.
MOVE 'ON' TO STOKSTAT-WRITE-SW,
MOVE ZEROS TO STOCK-VAR OF LINE-U4-AREA.
GET- NFXT.
CALL 'CBLTDLI' USING NEXT-PUNC, PARTFILE-PCB, SEG-RET-AREA.
IF PN-STATUS-CODE EQUAL TO *GB!
GO TO END-CURR-ROOT.
IP PN-SEG-NAME-FB EQUAL TO 'PARTROOT! GO TO END-CURR-ROOT.
IF PN-SEG-NAME-FB EQUAL TO *STOKSTAT' GO TO ERD-CURR-ROOT.
I? PN-SEG-NAME-FR EQUAL TO 'CYCCCUNT' GO TO CYCCOUNT-FOUND.
IF PN-SEG-NAME-FB EQUAL TO *BACKORDR' GO TO BACKORDR-FOUNE.
GO TO GET-NEXT.
CYCCOUNT-FOUNE.
COMPUTE STOCK-VAR OF LINE-4-AREA = PHYSICAL-COUNT OF
CYCLE-COUNT-RET -
TOTAL-STOCK OF
CYCLE-COUNT-RET.
PERFORM WRITE-LINE-4 THRO WRITE-LINE-4-EXIT.
GO TO GET-NEXT.
BACKORDR-POUN D.
TF STOKSTAT-WRITF-SW EQUAL TO *ON®
PERFORM WRITE-LINE-4 THRU WRITE-LINE-U4-EXIT.
MOVE CORRESPONDING BACK-ORDER-RET TO LINE-S-AREA.
PERPORM WRITE-LINE-5 THRU WRITE-LINE-5-EXIT.
MOVE SPACES TO DESC-1 OF LINE-5-AREA.
MOVE SPACES TO DESC-2 OF LINE-5-AREA.
GO TO GFT-NEXT.
END-CORR-ROQOT,

PERFORM WRITF-LINE-4 THRU WRITE-LINE-U4-EXIT.
GO TO END-IT.

IMS/VS Application Programming Reference Manual

™

N

a

FILF: DPSSAMO3 ASSEMBLE A PALO ALTO DEVELOPMENT CENTER

PARTROOT~ROT- FOUND.
MOVE PN-WORK TO PART-NO OF NC-BPARTROOT-MSG.
CALL *CBLTDLI' USING ISRT-FUNC, JO-TERM~-PCB, NO-PARTROOT-MSG.
GO TO END-IT.
STOKSTAT-NOT-FOUND.
MOVE® INPUT-SS-KEY TO STOCK-REY OF NC-STOKSTAT-MSG.
CALL 'CRLTDLI* USING ISRT-FUNC, IO-TERM-PCB, NO-STOKSTAT-MSG.
GO TO END-IT.
WRITE-LINE-1.
CALL 'CBLTDLI' USING ISRT-FUNC, IO-TERM-PCB, LINE-1-AREA.
ARITE-LINP- 1-EXIT. EXIT.
WRITE-LINE-2.
CALL 'CBLTDLI' USING ISRT-FUNC, IC-TERM-PCB, LINE-2-AREA.
WRITE-LINE-2-EXIT. EXIT.
WRITE-LINE-3,
CALL 'CRLTOLI' USING ISRT-FUNC, IO-TERN-PCB, LINE-3-AREA.
SFRITE-LINE-3-EXIT. EXIT.
WRITE-LINE-4.
CALL ?CELTDLI' USING ISRT-PUNC, IC-TERH~PCB, LINE-4-AREA.
MOVE SPACES TO STOKSTIAT-SRTITE-SRW.
WRITE-LINE-4-EXIT. EXIT.
WRITE-LINE-5.
CALL 'CBLTDLI' USING ISRT-FUNC, IC-TERM-PCB, LINE-S5-AREA.
WRITE-LINE-5-EXIT. EXIT.
END-IT.
GOBACK.

Application Program Examples 6.25

CONVERSATIONAL APPLICATION PROGRAM EXAMPLES USING PL/I

This application program illustrates use of the 3270 Model 2 as a
simple calculator. The program provides for addition, subtraction,
multiplication, and division.

A sample problem for this transaction (whose PSB=HIMAJCO03) is provided
in the IMS/VS Installation Guide. The examples that follow, however,
are entirely independent of the sample problem. No data base is used,
and only input to and output from the application program are
illustrated.

Example Number 1:

/FOR DFSMO2 (for the 3270, Model 1)
/FOR TUBFMT (for the 3270, Model 2)

The first entry is the MOD name (/FOR DFSMO2). Tube is the transaction
code.

Display back says:
START INPUT HERE.¢
You enter one number, the sign (+,-,%*,/), and the second number.
START INPUT HERE. ¢ 555+444,55
Display back is the answer, followed by two questions; these are to be
answered either YY, YN, or NN. The fourth possibility is NY, which is
not correct in this program;
YOUR ANSWER IS 999,55
TWO QUESTIONS. DO YOU WISH TO CONTINUE?
AND SHOULD THIS RESULT BE USED AS SUBTOTAL?
ANS QUESTIONS BY YY OR YN OR NN, ANSWER HERE. £ NY

Display back, and the application program ends the conversation:

NOT CORRECT ANSWER. WILL ASSUME ANS=NN. PROBLEM END.

/FOR TUBE
Display back asks for input.
START INPUT HERE. £ 1234,.34+1234
Display back gives answer to the problen andmgsks_Fvo questiomns.
" YoUR ANSWER IS 2068.3
TWO QUESTIONS. DO YOU WISH TO CONTINUE?

AND SHOULD THIS RESULT BE USED AS SUBTOTAL?
ANS QUESTIONS BY YY OR YN OR NN. ANSWER HERE. ¢ YY

6.26 IMS/VS Application Programming Reference Manual

C

N

Because you want the answer to be used as a subtotal, internally in
the scratchpad user work area, this is stored:

SPA.IN_TEXT=000000000246834+;
The display returned, and the new subtraction problem is entered:
RESULT WILL BE USED AS SUBTOTAL. START INPUT HERE. £ 1234,34-2468.34
The display returned is the answer to the above subtraction problenm
add2d to the subtotal stored in the scratchpad work area, and the two
questions are asked again. This time you want to continue the
conversation, but do not want to have a subtotal carried over to the
next problem:
YOUR ANSWER IS 1234.,00
THO QUESTIONS. DO YOU WISH TO CONTINUE?
AND SHOULD THIS RESULT BE USED AS A SUBTOTAL?
ANS QUESTIONS BY YY OR YN OR NN. ANSWER HERE. ¢ YN

The display returned a message, after which you entered a multiplication
problen:

CONTINUE, START INPUT HERE. £ 444444

The display returned the answer to the multiplication problem and the
two questions. The answer to the questions was ¥N:

YOUR ANSWER IS 195536. 00
TWO QUESTIONS. DO YOU WISH TO CONTINUE?
AND SHOULD THIS RESULT BE USED AS SUBTOTAL?
ANS OUESTIONS BY YY OR YN OR NN. ANSWER HERE. ¢ YN

The display returned a message, after which you entered a division
problem:

CONTINUE, START INPUT HERE. ¢ 335567.56/33
The display returned the answer to the division problem and the two
questions. The answer to the questions was NN:
YOUR ANSWER IS 10168.71
TWO QUESTIONS., DO YOU WISH TO CONTINUE?
AND SHOULD THIS RESULT BE USED AS SUBTOTAL?
ANS QUESTIONS BY YY OR YN OR NN. ANSWER HERE. £ NN
The message displayed then was:

ANS WAS NN. CONVERSATION ENDED.

The conversation is over.

Application Program Examples 6.27

PL/I OPTIMIZING COMPILER EXAMPLE

PILE: PLIPROG1 TEST A GPD CCMMON CMS

/¥*%%%x PL/I EXAMPLE OF A CONVERSATIONAL FRCGRAM ***%%x/
/R ok ok Kok ROk ok K Kok ok KR Kk kKR ok Kok Rk Rk Rk ok R Rk)

DLITPLI: PROCEDURE (TERMINAL) OPTIONS (MAIN,REENTFANT) RECRDER;

/2R ok ok ok ko ok ko ook ok ok e ok ok ok ok koo ok oK 0K R R OF Ok KOk ok ok ok kokok ko Rk Rk ok okok ok ok /

/*

THIS PROGRAM IS AN EXAMPLE OF CCNVERSATIONAL PROCESSING.

IS WRITTEN IN PL/I FOR THE PL/I CPTIMIZING COMPILER.

THE PROGRANM WILL ACCEPT A SIMPLE EXPRESSION CONSISTING CF TWO
OPERANDS SEPARATEL BY AN OPERATOR, WILL CCMPUTE THE VALUE OF
THE EXPRESSION AND RETURN THE ANSWER. THE EXPRESSION MUST BE
IN THE FORM: NNNOMMM, WHERE NNN AND MMM ARE NUMBERS WITH NO
MORE THAN 7 DIGITS, AND O IS ONE OF THF OPERATORS +,-,* QR /.

A MAXTIMUM OF SEVEN CHARACTERS CAN PRECEDE CR FOLLOW THE

OPERATOR. IF ONE OR BOTH OF THE QPERANDS IS OMITTED, IT WILL
BE ASSUMED TO BE ZERO. IF MORE THAN GNE OPFRATCR IS ENTERED,

*/

ALL BUT THE LAST WILL BE CONVERTED TC ZERO AND THE COMPUTATIONX*/

WILL PROCEED. ANY BLANKS CR NON-DIGITS EMEEDDED IN EITHER
OPERAND WILL BE CONVERTED TO ZERO AND THE COMPUTATION WILL

*/
*/

PROCEED. OPTIONALLY YOU CAN REQUEST THAT THE ANSWER BE ADDED*/

TO A SUBTOTAL MAINTAINED OF FRECEDING COMPUTATICNS.

*/
*/

/******t***#***/

1/******************************#****/

/*

DECLARE LOGICAL TERMINAL PCB */

/R ko ok ok ok ok ok bk ke ok ok koK ok ok dok ok Kok dokok /

DECLARE TERMINAL PCINTER;
DECLARE 1 IOPCB BASED (TERMINAL),

IO_TERMINAL CHARACTER (8),
I0_RESERVED CHARACTER (2),
STAT_CODE CHARACTER (2),
IN_PREPIX,

3 PRE_DATE FIXED DECIMAL (7),

3 PRE_TIME PIXED DECIMAL (7),

3 PRE_MSG_COCUNT FIXED BINARY (31);

NN

/AR ok ok ok ok KoKk Kok ok kokkok Kok /

/*

DECLARE SCRATCHPAD AREA */

/R Rk kR Ok ok ok ok ok ok ko koK Rk /

DECLARE 1 SPA,

DL FIXED BINARY (31),

X CHARACTER (1),

FLAG CHARACTER (1),

‘RESERVED -CHARACTER (2),
TRAN CHARACTER (8),

COUNT CHARACTER (1),

IN_TEXT FIXED DECIMAL (15,2),
PADDING CHARACTER (75);

NN

/**/

6.28

IMS/VS Application Programming Reference Manual

N

FILE: PLIPROG1 TEST A GPD CCHMMON CHMS

/* DECLARE INPUT AND OUT MESSAGE AREAS */
/AR AR K A K AR KRR OR R RO R R R R KRk Rk R kKKK

DECLARE 1 INPUT_MSG,
2 LLIN FIXED BINARY (31),
2 2ZZIN FIXED BINARY (15),
2 TXTIN CHARACTER (80),

1 OUTPUT_MSG,
2 LLOUT FIXED BINARY (31),

2 Z20UT FIXED BINARY (15) INITIAL (ERASE),

2 TXTOUOT CHARACTER (178);
100k Rk KRR KRR AR KRR KK

/* DECLARE MESSAGE CONTENTS */
/AR AR K K R Kok ok Kok ok ok Rk ok ok ok /

DECLARE

(MSG9 CHARACTER (18) INITIAL
(*START INPUT HERE.#'), /% LAST CHAR SMI */
MSG 10 CHARACTER (41) INITIAL
(* T¥O0 QUESTIONS. DO YOU WISH TO CONTINUE?'),
MSG11 CHARACTER (46) INITIAL

(' AND SHOULD THIS RESULT BE USED AS SUBTOTAL?'),

MSG12 CHARACTER (35) INITIAL

(* AWS QUESTIONS BY YY OR YN OR NN. '),
MSG 14 CHARACTER (33) INITIAL

(*RESULT WILL BE USED AS SUBTCTAL. '),
MSG15 CHARACTER (55) INITIAL

(" NOT CORRECT ANSWER. WILL ASSUME NN. PROBLEM END.!'),

MSG16 CHARACTER (34) INITIAL
(' ANS WAS NN. CONVERSATION ENDED.'),
MSG17 CHARACTER (49) INITIAL

(*YOU MUST ENTER 2 OPERANDS WITH CPERATOR BETWEEN.

MSG19 CHARACTER (40) INITIAL

(* YOU ARE NOT ALLOWED TO DIVIDE BY ZERGC.'),
MSG20 CHARACTER (9) INITIAL

(*REENTER. '),
MSG21 CHARACTER (44) INITIAL

(* ONE OR BOTH OPERANDS EXCEEDS 7 CHARACTERS. '),

MS5G22 CHARACTER (38) INITIAL
(*UNSPECIFIED ERROR. PGM ENDS. ONCODE = '),
MSG23 CHARACTER (15) INITIAL
(*YOUR ANSWER IS:'),
MSG24 CHARACTER (10) INITIAL
{*CONTINUE, '),
MSG25 CHARACTER (23) INITIAL
(*SPA RETURN STAT CODE = '),
MSG26 CHARACTER (23) INITIAL
(*GET UNIQUE STAT CODE = '),
MSG27 CHARACTER (21) INITIAL
(*GET NEXT STAT CODE = '),
MSG28 CHARACTER (27) INITIAL
(*NO VALID OPERATOR ENTERED.')
) STATIC;

Application Program Examples

'),

6.29

PILE: PLIPROG1 TEST A GPD COMMON CHS

1R Rkiokokkok ok Rk kAo R Rk Rk kKK KK/

/* MISCELLANEOUS DECLARATIONS */
/R R oK ok K KoK KKKk K Rk Kk Rk kK ok

DECLARE

RESULT PIXED DECIMAL (15,2),

CRESULT PIC'S,SSS,SSS,5SS,S59.V99¢*,

STRING CHARACTER (80) VARYING,

(OPERAND1,0PERAND2) FIXED DECIMAL (9,2),

(A,S,M,D,L,0PERATOR) FIXED BINARY (15),

THREE FIXED BINARY (31) STATIC INITIAL (3),

GU CHARACTER (4) STATIC INITIAL ('GU'),

GN CHARACTER (4) STATIC INITIAL ('GN'),

ISRT CHARACTER (4) STATIC INITIAL ('ISRT'),

TXTANS CHARACTER (2),

PLITDLI ENTRY,

RETURN_POINT LABEL (TERMINATE,SAVE_INFOQ),

ERASE FIXED BINARY (15) STATIC INITIAL (32),
/* ERASE INITIALIZED TC X'002C' */

NL CHARACTER (1) STATIC;

UNSPEC " (NL) = *00010101'B; ,/* INITIALIZE NL TO X'15°

JEERRkkRkkkkkk /

/% ON UNITS */
JEEREREERE KKK KK /

ON CONVERSION BEGIN;
DECLARE ONCHAR BUILTIN;
ONCHAR = '0';
END;

ON ZERODIVIDE BEGIN;
IF COUNT = '2' THEN COUNT = *1';
RETURN_POINT = SAVE_INFO;

LLOUT = LENGTH (MSG19) ¢+ LENGTH (MSG20) + LENGTH (MSG9) + 5

TXTOUT = MSG19 |t MSG20 || NL || MSG9Y;
GO TO OUTPUT_MESSAGE;
END;

ON ERROR BEGIN;
DECLARE ONCODE BUILTIN,
CONCODE PIC'9999°;
CONCODE = ONCODE;
RETURN_POINT = TERMINATE;

LLOUT = LENGTH (MSG22) + LENGTH (CGCNCODE) + 4;

TXTOOT = MSG22 || CONCODE;
GO TO OUTPUT_MESSAGE;
END;

T/ Aok ok ok ook ok ok ok ok ok R kokokokok Kk ok /

___/* BEGIN_EXECUTABLE PROGRAM... %/ oo o
JFERERR kR Rk R kAR Rk kR kR kKK)

JRekpRkEkkkkkkk R kkkkkkkk)

6.39 IMS/VS RApplication Programming Reference Manual

*/

N

PILE: PLIPROG1 TEST A GPD COMMON CHMS

/* FIRST CALL TO SPA */
/AR AR Rk Rk Rk Rk KK/

BEGIKNING:
CALL PLITDLI (THREE,GU,TERMINAL,SPA);
IF STAT_CODE = *'QC' THEN RETURN;
IF STAT_CODE -= ' ' THEN GO TG BAD_GU;
IF (COUNT < *'1') | (COUNT > *4') THEN CCUNT = '"1°';

/***t******************/

/¥ GET TEXT SEGMENT */
/R Rk ok ok ok ok kKR KKK/

CALL PLITDLI (THREE,GN,TERMINAL,INPUT_MSG);
IF STAT_CODE = 'QD' THEN GO TQ BAD_NN;

IF STAT _CODE -»= ' ' THEN GO TO BAD_GN;

IP COUNT = *1' | COUNT = '3% | COUNT = "4

/AR AR K Ok Kok ok ok ok kR koK Kok

/*¥ PERFORM CALCULATIONS */
/AR OK Rk ok ok ok ok ok R KKk K ok Kk

THEN DO;
L = LLIN - 43
IF L > 15 THEN GO TO LNG_ERROR; /* (2%7) + 1 = 15
STRING = SUBSTR (TXTIN,1,1):

A = INDEX (STRING,'+');
S = INDEX ({STRING,'-');
M = INDEX (STRING,'#*7');
D = INDEX (STRING,'/');

OPERATOR = MAX (A,S,M,D);

IF OPERATOR > 8 THEN GO TO LNG_ERRCR;

IF L - OPERATOR > 7 THEN GO TC LNG_ERROR;

IF OPERATOR = 0 THEN GG TC CF_ERROCR;

OPERAND1 = SUBSTR (STRING,1,0PERATOR-1);

OPERAND2 = SUBSTR (STRING,OPERATOR+1,L-OPERATOR);
IF A > 0 THEN RESULT = OPERAND1 + OPERAND2;

*/

ELSE IF S > ¢ THEN RESULT = OPERANDY - OPERAND2;
ELSE IF M > 0 THEN RESULT = OPERAND1 * OPERAND2;

ELSE RESULT = OPERAND?'1 , OPEEKAND2;
IP COOUNT = *1' THEN COUNT = '2';
IF COUNT = '3' THEN DO;
RESULT = RESULT + IN_TEXT;
COUNT = 1'2';
. END;
IF COUNT = *'4' THEN DO;
IN_TRXT = 03
COUNT = '2°¢;
END;

1 /%% ook ok ok ok kol ook Aok Kok ok K R OK KKk kR kR KXok K/
/* OQUTPUT ANSWER ANL TWO QUESTIONS */
ko o KK Kok okl ok ok ok KOk 0K ok R K Kk KRR OR ok

IN_TEXT, CRESULT = RESULT;

Application Program Examples

FILE: PLIPROGY TEST A GPD COMMON CHMS

LLOUT = LENGTH (MSG23) + LENGTH
LENGTH (MSG10) + LENGTH
LENGTH (MSG12) + LENGTH

TXTOUT = MSG23 |} CRESULT ||

MSG10 || NL |}
MSG11 | NL }|
MSG12 || MSG9;

RETURN_POINT = SAVE_INFO;
END;
/******t*#********************/

/¥ CONTINUING CONVERSATION */
/2 Ak oK ok KK ok koK ok KoK Kk Kk

ELSE NO; /* COUNT = '2% */
TXTANS = SUBSTR (TXTIN,1,2);

IF TXTANS = 'YY' THEN DO;

RETURN_POINT = SAVE_INFC;

LLOUT = LENGTH (MSG14)

TXTOUT = MSG14 (| MSG9;
COUNT = t3°;
END;

ELSE IF TXTANS = *YN' THEN DO;
RETURN_POINT = SAVE_INFGQ;

LLOUT = LENGTH (MSG24)
TIXTOUOT = MSG24 || MSGYI;
COUNT = '4rv;

END;

ELSE IF TXTANS = !NN' THEN DO;
RETURN_POINT = TERMINATE;
LLOUT = LENGTH (MSG16) + 4;

TXTOUT = MSG16 || NL;
END;

ELSE GO TO BAD_NN;
END;
1/ ok ok ok ok ok ok ok ok ok ok kK kK

/* INSERT OUTPUT MESSAGE */
/R AOR ARk Kk ok ok ko ok Kok KKk

OUTPUT_MESSAGE:

CALL PLITDLI (THREE,ISRT,TERMINAL,OUTPUT_MSG) ;

GO TO RETURN_POINT:

/R ok ok ok ek ok ok koK sk ok ok ok ok koK ok Xk

/% _ _SAVE_INFORMATION - -IN--SPA--%/- - --— oo

/R ROk ROk Rk ko ok ok ok R kR k ko ok kokok f

SAVE_INFO:

6.32 IMS/VS Application Programming Reference Manual

{CRESULT) +

(MSGY) + 7;

+ U3

(MSG9) + 4;

/”\

~”

77N

N’

[

(N

FILE: PLIPROG1 TEST ‘A GPD COMMON CHS

CALL PLITDLI (THREE,ISRT,TERMINAL,SERA);
IF STAT_CODE = ' * THEN GO TO BEGINNING;
ELSE GO TO SAVE_ERROR;

/t***************/

/* TERMINATE */
JRERREE RN Rk

TERMINATE:
TRAN = ' ¢,
CALL PLITDLI (THREE,ISRT,TERMINAL,SPA);
RETURN

T/7%kkkkkdokkkkkkkhkkkkx /

/* ERROR ROUTINES */
JRERRRRRRRKRRKKERK KKK KK/

LNG_ERROR:
RETURN_POINT = SAVE_INFO;
LLOUT = LENGTH (MSG17) + LENGTH (MSG21) + LENGTH (MSG20) +
LENGTH (MSG9) + 7;
TXTOUT = MSG17 || NL }| MSG21 || NL || MSG20 || NL || MSG9;
GO TGO CUTPUT_MESSAGE;

OP_ERROR:
RETURN_POINT = SAVE_INFO;
LLOUT = LENGTH (MSG28) + LENGTH (MSG20) + LENGTH (MSG9) + 6;
TXTOUT = MSG28 (| NL {{ MSG20 {| NL || MSG9;
GO TO OUTPUT_MESSAGE;

SAVE_ERROR:
RETURN_POINT = TERMINATE;
LLOUT = LENGTH (MSG25) + LENGTH (STAT_CCDE) + U4;
TXTOUT = MSG25 || STAT_CODE;
GO TO OUTPUT_MESSAGE;

BAD_NN:
RETURN_POINT = TERBINATE;
LLOUT = LENGTH (MSG15) + 4;
TXTOUT = MSG15;

GO TO OUTPUT_MESSAGE;

BAD_GU:
RETURN_POINT = TERMINATE;
LLOUT = LENGTH (MSG26) + 4;
TXTOUT = MSG26 || STAT_CODE;
GO TO OUTPUT_MESSAGE;

BAD_GN:
RETURN_POINT = TERMINATE;
LLOUT = LENGTH (MSG27) + 4;
TXTOUT = MSG27 || STAT_CODE;
GO TO OUTPUT_MESSAGE;

END DLITPLI;

Application Program Examples 6.33

MESSAGE FORMAT SFRVICES

The following message format service statements show the message
descriptions and device formats used in conjunction with the
conversational PL/I programs illustrated elsewhere in this chapter.
This format applies only to the 3270 Model 2.

MEMBER NAME TUBFMT

TUBF MT FMT
e e e e FORMAT FOR TUBE PROGRAM
DEV TYPE=3270,FEAT=IGNORE
DPAGE1 DPAGE CURSOR=((5,22))
FLDX DFLD POS=(03,02) ,LTH=10,ATTR= (NODISP,PROT)
FLDY DFLD POS=(C4,02),LTH=9,ATTR=PROT
FLD1 DFLD POS=(05,02) ,LTH=05,ATTR=PROT
FLD2 DFLD POS=(05,08) ,LTH=13,ATTR= PROT
INPUT DFLD POS=(05,22) ,LTH=18, ATTR=HI
DPAGE2 DPAGE CURSOR= ((5,22))
FLD1 DFLD POS=(01,02) ,LTH=04, ATTR=PROT
FLD2 DFLD POS=(01,07) ,LTH=26,ATTR= PROT
FLD3 DFLD POS=(02,02) ,LTH=41, ATTR=PROT
FLDU4 DFLD POS=(03,02) ,LTH=46,ATTR= PROT
FLD5 DFLD POS=(04,02) , LTH=35, ATTR=PROT
FLD6 DFLD POS=(05,08) ,LTH=13,ATT R= PROT
TNPUT DFLD POS= (05, 22) ,LTH=02, ATTR=HI
FLDN DFLD POS=(18,02) ,LTH=4 ,ATTR= (NODISP, PROT)
DPAGE3 DPAGE CURSOR= ((5, 22))
FLDA DFLD POS=(03,02) ,LTH=06, ATTR=(NODISP,PROT)
FLDB DFLD POS=(04,02) ,LTH=6 ,ATTR=PROT
FLDC DFLD POS=(04,09) ,LTH=27, ATTR=PROT
FLDD DFLD POS=(05,04) ,LTH=17,ATTR= PROT
INPUT DFLD POS=(05,22) ,LTH=18,ATTR=HI
DPAGEY DPAGE
F1 DFLD POS=(03,02) ,LTH=5,ATTR= (NODISP,PROT)
F2 DFLD POS=(03,08) ,LTH=06,ATTR= PROT
F3 DFLD POS=(03,15),LTH=10, ATTR=PROT
F4 DFLD POS=(11,34) ,LTH=12,ATTR=(PROT,HI)
F5 DFLD POS=(13,37) ,LTH=06,ATTR= (PROT ,HI)
DPAGES DPAGE ‘
FL1 DFLD POS=(03,02) ,LTH=5,ATTR= (NODIS P, PROT)
FL2 DFLD POS=(03,08),LTH=03, ATTR=PROT
FL3 DFLD POS=(03,12) ,LTH=17, ATTR=PROT
FLU DFLD POS=(04,06) ,LTH=21, ATT R= PROT
FL5 DFLD POS=(11,37) ,LTH=07,ATTR=(PROT ,HI)
FL6 DPLD POS=(13,38) ,LTH=04,ATTR= (PROT , HI)
DPAGE6 DPAGE CURSOR= ((5,22))
A1 DFLD POS=(02,02) ,LTH=52, ATTR=PROT
A2 DFLD POS=(03,02) ,LTH=49,ATTR=PROT
A3 DFLD POS=(05,02) ,LTH=05, ATTR=PROT
AL DFLD POS=(05,08) ,LTH=11, ATT R= PROT
INPUT DFLD POS=(05,22) ,LTH=18, ATTR=HI
A6 DFLD POS=(04,02) ,LTH=08, ATTR= PROT
e A7 DPLD----POS=(04;11);LTH=08; ATTR=(NODISP,PROT)
FMTEND
TUBEMOD1 MSG TYPE=OUTPUT,SOR=(TUBFMT, IGNORE) ,NXT=TUBEMID
MFLD PLD1,LTH=5
MFLD FLD2, LTH=13
MFLD (INPUT,'-=--- 3
MSGEND
TUBEMOD M SG TYPE=OUTPUT,SOR= (TUBFMT, IGNORE) , NXT=T UBEM ID
LPAGE SOR=DPAGE1,COND=(MSG1,=,' START!')
MSG1 MFLD FLDX,LTH=5
MFLD (FLD1,*START')

6.34 IMS/VS Application Programming Reference Manual

e

N

N

MEMBER NAME TUBFMT

MSG2

MSG3

NsSGu

MSGS

MSG6

MSG7

MsGs8

MSG9

TUBEMID

MFLD
LPAGE
SEG
MFLD
MFLD
MFLD
SEG
MFLD
SEG
MFLD
SEG
MFLD
MFLD
MFLD
LPAGE
MFLD
MFLD
MFLD
MFLD
LPAGE
MFLD
MFLD
MFLD
MFLD
MFLD
LPAGE
MFLD
MFLD
MFLD
MFLD
MFLD
MFLD
LPAGE
MFLD
MFLD
MFLD
MFLD
LPAGE
MFLD
MFLD
MFLD
MFLD
MFLD
LPAGE
MFLD
MFLD
MFLD
MFLD
MFLD
LPAGE
MFLD
MFLD
MFLD
MFLD
MFLD
MFLD
MSGEND
MSG
MFLD
MSGEND
END

FLD2,LTH=12
SOR=DPAGE2,COND=(MSG2,=,'YOUR')

FLDN,LTH=4
(FLD1,'YOUR')
FLD2,LTH=26

FLD3,LTH=41
FLDY4,LTH=46

FLD5,LTH=35

FLD6, LTH=13

(INPUT,'--1)
SOR=DPAGE3, COND= (MSG3,='RESULT')
FLDA,LTH=6

(FLDB,'RESULT!')

FLDC, LT H=27

PLDD,LTH=17

SOR=DPAGEU4, COND=(MSG4,=,! ANS')
F1,LTH=5

(F2,' ANSWER?')

F3,LTH=10

F4,LTH=12

FS5,LTH=06

SOR=DPAGES, COND=(MSG5,=,' NOT')
FL1,LTH=5

(FL2, 'NOT?')

PL3,LTH=17

FLY4,LTH=21

FL5,LTH=7

FL6,LTH=4
SOR=DPAGE1,COND= (MSG6 ,=, ' CONTINUE, *)
FLDX, LT H=10

(FLDY, 'CONTINUE: ")

FLD1,LTH=5

FLD2,LTH=12

SOR=DPAGE6, COND=(MSG7, =, ' REEN TER. ')
A1,LTH=51

A7,LTH=8

(A6, 'REENTER. ')

(A3, "START')

(A4 ,'INPUT HERE:')
SOR=DPAGE6 ,COND= (MSG8,=, ' REENTER. ')
A2,LTH=40

A7,LTH=8

{A6, ' REENTER.')

(A3,'START')

(A4, ' INPUT HERE:')

SOR=DPAGE6, COND=(MSG9, =, '"REENTER. ')
A1,LTH=52

A2,LTH=49

A7,LTH=8

(A6, ' REENTER. ')

(A3,7START"')

(A8, " INPUT HERE:')

TYPE=INPUT,SOR= (TUBFMT) , NXT=TUBEMOD
INPUT ,LTH=18

Application Program Examples

~

CHAPTER 7. APPLICATION PROGRAMMING TESTING AIDS

DATA LANGUAGE/I TEST PROGRAM (DFSDDLTO)

The Data Language/I (DL/I) test program is an IMS/VS application
program that issues calls to DL/I based upon control statement
information. Tt compares, optionally, the results of those calls with
expected results that are also provided in control statements. It is
used to test DL/I.

To a limited extent, this program can be used as a general purpose
data base utility program. However, the control statement language
dozss not lend itself well to executing large volumes of calls. It is
useful as a debugging aid because it can display DL/I control blocks.
It provides an easy method of executing any call against any data base.

GENERAL DESCRIPTION

The DL/I test program is a control statement processor. There are
four *ypes of control statements used by the program:

o Status statements--establish print options and select processing
PCB.

e Comments statements--conditionally or unconditionally print
comments.

e Call statements--format the desired DL/T call.
e Compare statements--compare anticipated results with actual results.

The status statement is used to establish print options and to select
which PCR within a PSB will be used. The call to be issued is provided
in the CALL statement. A COMPARE statement is optional and is used to
tell the program what the results of this call should be in the data
base PCB and in the user input/output area. Various print and display
options are available; these are based on whether the results of the
call agree with the data in the COMPARE statement. COMMENTS statements
are also optional. As the name implies, they are only comments and
can be used by the programmer at his discretion. BAs will be seen later,
there are two types of comments: conditional and unconditional.

The general sequence of operation is to read CALL statements until
a noncontinued CALL statement is detected. The DL/I call is issued
based on data in the CALL statements. The program then reads the next
control statement. If a COMPARE statement is read, it compares the
contents of the COMPARE statement with the corresponding field in the
PCB, or, if a data COMPARE statement, with the data in the user
input/output area. The comments, call, compare, PCB, input/output
area, and compare data are printed if requested. If any control
statement other than a COMPARE statement is read after a call was
issued, the results of the prior call are printed first and the new
control statement is then processed.

INTERFACES

Module DFSDDLSO must be link-edited with DFSLIQ00 and placed in
IMSVS.PESLIB under the name DFSDDLTO.

Application Programming Testing Aids 7.1

JCL REQUIREMENTS

- -

EX®C

-

- =t m— s wm e e " ——— - > =m = = - . = -

o e s e = - - W~ = - - - - = " e = —— - —— = - -

This statement specifies the program name, or
invokes a cataloged procedure. The required
format is:

PGM=DFSRRCO0 ,PARM='AAA,DFSDDLTO,BBBBBBBB,
c¢ccececccec, ppbppDphD Y

wvhere AAA is the region type and BBBBBBBB is the
name of the PSB to be used. Parameters CCCCCCC and
DDDDDDD are optional, and can be used to specify
symnbolic input terminal and output terminal names,
respectively. Refer to the IMS/VS System
Programming Reference Manual for other parameters
that can be used.

- - . - - - - ——— s = . - - W W - = - - . - . . = - - -

ey, Py s, S e . s —— ey T oy, — oy = o

STEPLIB Defines the partitioned data set named IMSVS.RESLIB.}|

DD

data
DD

IEFR
DD

- -

— iy, W ey D gy .y T s T s e, T ey T gy e g T iy ey oy S s g . — i, " iy A i D s s i . iy D) D gy

DD

blocks using the SNAP call. It must conform to the
0S SNAP data set requirements. T
------------------------ ----------;&:;;Z-;;;;--_--_-------—---|
{
SYSUDUMP This statement is optional and is used by the |
DD test program only when normal termination is |
not possible, |

7.2 IMS/VS Application Programming Reference Manual

If EXIT routine modules are used, they should be |
placed into this library or into another PDS {
concatenated to this library. |

------—--_-_—--_-----_--—--------————-—----------------'

: |
This statement defines two concatenated data sets. |

The first DD statement defines the library contain- |
ing the PSB to be used by the test program. The I
second DD statement defines the library containing |
the DBD of the data base to be processed. |

base This statement references a specific data base. |
There should be one statement for each data base to |

be processed. In each statement the ddname must 1
agree with the ddname specified in the DBD. |

|

DER This statement defines the log data set, if one is |
desired. A DD DUMMY statement may be used if a log |
is not desired. One form or the other of this i
statement is required. {

PRINTDD This statement defines the output data set for

|
|
the test program, including displays of control I
|
|

| SYSIN This statement defines the control statement input |
| DD data set. |

| SYSIN2 This 1is an optional secondary input statement. See |
{ DD the description of "Special Control Statement i
{ Formats"™ for details. |

CONTROL STATEMENTS

In the control statement formats below, the "$" indicates those
fields which are usually filled in; the absence of the "$" indicates
that the field can be left blank and the default used. If position 1
is left blank on any control statement, the statement type defaults to
the prior statement type.

STAIUS Statement

The STAT™US statement establishes print options and determines the
PCB that subsequent calls are to be issued against.

The format of the STATUS statement is as follows:

Position Contents
$ 1 = S identifies this as a STATUS statement.
2 = Output device option.

blank - use PRINTDD when in a DLI region;
use I/0 PCB in the MSG region.

1 - use PRINTDD in MSG region if the DD
statement is provided; otherwise, use I/0
PCB.

A - same as if 1, and disregard all other fields

in this STATUS statement.

3 = Print comment option.
blank - do not print.
1 - print always.
2 - print only if compare done and unequal.

4 = Not used.
5 = Print call option.
blank - do not print.
1 - print always.
2 - print only if compare done and unequal.
6 = Not used.
7 = Print compare option.
blank - do not print.
1 - print always.
2 - print only if compare done and unequal.

8 = blank.

Application Programming Testing Aids 7.3

Position Contents

9 = Print PCB option.

blank - do not print.

1 - print always.

2 - print only if compare done and unequal.
10 = Not used.
11 = Print segment option,

blank - do not print.

1 - print always.

2 - print only if compare done and unegqual.
12 - 15 = Reserved.
16 - 23 = DBD name.

This determines the PCB against which subsequent
calls will be issued; hence, it must be a DBD name
given in one of the PCBs in the PSB. The default
PCB is the first data-base-PCB in the PSB. 1If
positions 16 through 23 are blank, the current PCB
is used. If positions 16 through 18 are blank, and
positions 19 through 23 are not blank, then the
non-blank positions are interpreted as the relative
number of the desired data-base-PCB in the PSB., The
number must be right-justified to position 23, but
need not contain leading zeroes. The user must
insure that the relative data-base-PCB exists in
the PSB because no checks are made to insure that

a proper PCB is obtained in this manner.

2u = Print status option.
1 - do not use print option in this statement.
2 - do not print this STATUS statement.
3 - do not print this STATUS statement or use

print option.
blank - use print option -and print this statement.

25 - 28 = PCB processing option -- This is optional and is
only used when two PCBs have the same DBD name but
different processing options. If non-blank, it is
used in addition to the DBD name in positions 16
through 23 to select which PCB in the PSB to use.
This must appear as it does in the processing option
of the PCB desired.

29 - 89

Yot used.

If no STATUS statement is read, the default PCB is first data
base-PCB in the PSB, and the print status option is 2. New STATUS
statements can be anywvhere in the SYSIN stream, changing either the .
“~data base to be referenced or the options.

7.4 IMS/VS Application Programming Reference Manual

COMMENTS Statement

There are two types of COMMENTS statements. The first, the
unconditional statement, allows for unlimited comments, all of which
are printed. The second type, the conditional statement, allows only
limited comments, which are printed or not depending on other factors
as described below.

As the name implies, information on these statements is treated by
the system as comments only. ©¥No action, other than printing, is taken
when a COMMENTS statement is read.

Unconditional:

Position Contents
$ 1 = U specifies an unconditional COMMENTS statement.
2 - 80 = Comments - any number of unconditional COMMENTS

statements are allowed; they are printed when read.
Time and date of printing are printed with each
unconditional COMMMENTS statenment.

Conditional:

Position Contents
3 1 = T specifies a conditional COMMENTS statement.
2 - 80 = Comments - up to 5 conditional COMMENTs statements

per call are allowed; no continuation mark in
position 72 is required. Printing is conditioned

on the STATUS statement. Printing is deferred until
after the following call and optional compare are
executed, but prior to the printing of the following
call.

CALL Statement

The CALL statement identifies the type of INS/VS call to be made,
and supplies information to be used by the call.

Position contents

$ 1 = L identifies this as either a CALL or DATA statement.
3 = SSA level (optional).
4 = Format options--

U, if columns 16 onward are unformatted, with no
blanks separating fields.

Blank, for formatted calls with intervening blanks
in positions 24, 34, and 37.

Vv, for the first statement describing a variable
length segment, when inserting or replacing only

one variable length segment. It is also used for
the first statement describing the first segment of
multiple variable length segments.

M, for the second through last statements that begin

Application Programming Testing Aids 7.5

Position Contents

data for a variable length segment, when inserting

or replacing multiple variable length segments. -
P, when inserting or replacing via path calls. It (ﬁ
is used only in the first statement of fixed length ~

segment statements in path calls containing both
variable and fixed length segments.

5 - 8 = Number of times to repeat this call (optional) in
the range of 0001 through 9999.

$ 10 - 13 = DL/I, application program call function.
= DATA, indicates that this statement contains data
to be used in an ISRT, REPL, SNAP, CHPT, or LOG .
call. See the following section on DATA statements
for usage.
= CONT, if a continuation statement for field data *
that was too long for previous CALL statement.
$ 16 - 23 = SSA segment name.

24 = Not used.
$ 25 = {, if segment is qualified.

26 - 33 = SSA field name,

34 = Not used.
$ 35 - 36 = DL/I call operator or operators.

37 = Not used. f(‘\
$ 38 - XX = Field value (where the maximum value of XX=70). >
F XX + 1 =), end character.
£ 72 = Nonblank, if more SSAs. Blank, if this is the only

or last SSA.

Position 3, the SSA level, is usually blank. If blank, the first
CALL statement fills SSA 1, and each following CALL statement fills
the next lower SSA. 1If the SSA level, position 3, is nonblank, the
statement fills the SSA at that level, and the following CALL statement
fills the next lower SSA.

Position 4 contains a.U to indicate an alternative format for the
CALL statement. 1In this case, from position 16 on is the exact SSA -
vith no intervening blanks in positions 24, 34 and 37. If command
calls (for example, *D) are to be used, then the U must specified.

Positions 5 through 8 are usually blank, but if used, must be = . o e
right-justifiedv " The identical call is repeated as specified in
positions 5 through 8.

Positions 10 through 13 - the DL/I call function is required only
for the first SSA of the call.

Positions 16 through 23 - the segment name is not specified for
unqualified calls.

7.6 IMS/VS Application Programming Reference Manual

If there are multiple SSAs in the call, each SSA should be entered
in positions 16 through 23 of a separate statement. A non-blank in
position 72 of any statement indicates that another SSA follows.
Positions 1 and 10 through 13 are blank for the second through last
SSks.

If the field value extends past 71, there is a nonblank in position
72 and CONT in positions 10 through 13 of the next statement, with the
field value continued starting in position 16. Maximum field value is
256 bytes.

An alternate format for the CALL statement is available by putting
a U in position 4., If you use this option, you must start the exact
SSA in position 16, with no intervening blanks in positions 24, 34,
and 37. To continue an unformatted SSA, put a nonblank character in
position 72, a U in position 4, and CONT in positions 10-13 of the next
statement. Include the data of the SSA that is continuing in positions
16 through 71. Maximum size for an SSA is 290 bytes. For additional
information on SSAs, refer to the section "Segment Search Argument! in
the "Data Base Batch Programming" chapter of this manual.

The maximum number of levels for this program is the same as the
IMS/VS limit, which is 15.

DATA Statement

DATA statements provide IMS/VS with segment information required
for ISRT, REPL, SNAP, LOG, and CHKP calls.

For an TISRT, REPL, SNAP, LOG, or CHKP call, statements containing
segment data must follow immediately after the last (non-continued)
CALL statement. The DATA statements must have an L in column 1, and
DATA in positions 10 through 13. The segment data appears in positiomns
16 through 71. Data continuation is indicated with a non~-blank in
position 72. On the continuation statement, positions 1 through 15
are blank, and the data is resumed in position 16. The maximum length
of a segment is set at 1500 bytes, but the user can change this by
reassembling the program with the USERSEG field altered.

Note: On ISRT calls, the last SSA can have only the segment name, with
no qualification or continuation.

When inserting or replacing variable length segments, as defined in
a DBDGEN, or including variable length data for a CHKP or L0OG call,
position 4 of the CALL statement must contain either a V or M. V nmust
be used if only one segment of variable length is being processed.
Positions 5 through 8 must contain the length of the data,
right-justified, with leading zeroes. This value is converted to
binary, and becomes the first two bhytes of segment data.
Segment-data-statements can be continued, as described above, with the
subsequent statements blank in positions 1 through 15, and the data
starting in position 16.

Application Programming Testing Aids 1.7

If multiple variable-length segments are required (that is,
concatenated logical child/logical parent segments both of which are
variable-length) for the first segment, there must be a V in position
4 and the length of that segment in positions 5-8. TIf that segment is
longer than 56 bytes, then the data is continued as above except that
the last card to contain data for this segment must have a non-blank
in position 72, The next statement applies to the next variable-length
segment, and must contain an M in position 4 and the length of this
segment in positions 5-8. Any number of variable-length segments can
be concatenated in this manner, up to 1500 bytes of total length. The
M or V and the length must appear only in statements that begin data
for a variable-length segment.

When inserting or replacing via path calls, a P in position 4 causes
the length field to be used as the length the segment will occupy in
the user I/0 area, without the length (LL) field of variable-length
segments, as in the instructions for M, above. V, M, and P can be
mix=d in successive statements. The P appears in only the first
statement of fixed-length segment DATA statements, in path calls which
contain both variable- and fixed-length segments.

PARAMETER LENGT™H, SNAP CALLS: On SNAP calls, the length of the SNAP
parameters must be in positions 5-8. This number must be equal to the
length of the SNAP parameters starting in position 16 plus an additional
two bytes. The TEST program converts the length to binary and places

it in the first half-word of the user I/0 area passed to DL/I. The
parameters from position 16 are placed in the I/0 area immediately
following this half-word. If positions 5-8 are blank, a default of 22
is used as the parameter length. For additional information on SNAP
calls, see Sections 2 and 6 in Volumes 1 and 3, respectively, of the
INS/VS Program Logic Manual.

A1l parameters are passed without change, with the following
excaption: If the SNAP destination field specifies "DCB-addr" or ddname
of PRINTDD, and if a PRINTDD statement is supplied to the test progranm,
the test program replaces this parameter with the DCB address of the
test program PRINTDD data set. If a PRINTDD DD statement is not
supplied, the test program defaults to LOGPBYY.

PARAMETER LENGTH, LOG CALL: The LOG call is normally used with the
I/0 PCB. It can be used in batch mode only if the CMPAT option of the
PSBGEN statement (see the IMS/VS Utilities Reference Manual) is
specified.

The LOG call can be specified in two ways:

1. A LOG call statement followed by a DATA statement with an L in.
column 1, a V in column 4, and the record length (in decimal)
in columns 5-8, right-justified, and padded with zeroes. An

example:

CcoL COL COL CoL

1 u 10 16

L LOG
Lo ... V0016 - -DATA- - OOASEGMENT ONE -

When this method is used, the first halfword of the record is
eliminated. However, the specified length must include the 2
bytes that are eliminated.

7.8 IMS/VS Application Programming Reference Manual

N

C

~.

v

2. A LOG call statement followed by a DATA statement with an L in
column 1 and the record length (in binary) as the first halfword
of the record. The second halfword of the record is binary
zeros. An example:

CoL CoL COL CcoL

1) 10 16

L LOG

L DATA T000BSEGMENT TWO

When this method is used, columns 5-8 should be blank.

SEGMENT LENGTH AND CHECKING, ALL CALLS: Because this program does not
know segment lengths, the length of the segment displayed on REPL or
ISRT calls is the number of DATA statements that have been read, times
56. IMS/VS knows the segment length and uses the proper length.

This program does no checking for errors in the call; invalid

functions, segments, fields, operators, or field lengths are not
detected by this program.

COMPARE Statement Format for PCB Comparisons

This is the format of the COMPARE statement used for PCB comparisons.

Position Contents
1 = E identifies this as a COMPARE statement.
2 = H indicates hold COMPARE statement (see below for
details).

Blank indicates a reset of the hold condition or a
single COMPARE statement.

3 = Option requested if results of the compare are
unequal: Blank means "Use the default for the SNAP
option." The normal default is 5. For an explanation
of how to change the default, see the description
of the "OPTION Statement Format."

request SNAP of the complete I/0 buffer pool.

request SNAP of entire region.

request SNAP of DL/I blocks.

abort this step; go to end of job.

SNAP subpools 0-127.

NOEN

Note: Multiple functions of the first 4 options
can be obtained by summing their respective

~ hexadecimal values. For example, a value of 5 is
a request for a print of the I/O buffers and the
DL/I blocks; and a value of D snaps the I/0 pool,
snaps the DL/I blocks, and aborts the program run.

Application Programming Testing Aids 7.9

Position Contents

———————

10

11 -

19

20 -

23

24 -

72

= Extended SNAP options, if results of a compare are
unequal: .
Blank: this extended option is ignored; P the
complete buffer pool is snapped; S subpools 0-127
are snapped.

Note: 1In no case will an area be snapped twice;
that is, a combination of 1P in positions 3 and 4
results in just one snap of the buffer pool.
Similarly, a combination of SS results in just one
snap of subpools 0-127.

€ = Segment level,
= Not used.
9 = Status code, or one of the following:

XX - do not check status code.
OK - allow blank,.GA, or GK.

= Not used.
18 = Segment name.
= Not used.
22 = Length of feedback key.
= Not used.
XX = Concatenated key feedback.

= Nonblank to continue key feedback.

The COMPARE statement is optional. It can be used to do regression
testing of known data bases, or to call for a print of blocks or buffer
pool (s) . :)

Any fields left blank are not compared to the corresponding field
in the PCB. Since a blank is a valid status code, to not compare status
codes, put XX in positions 8 and 9. To accept any valid status code,
{that is, blank, GA, or GK), use OK in position 8 and 9.

To execute the same COMPARE after each call, put an H in position
2., This is useful when loading a data base to compare to a blank status
code only. Since the compare was done, the current control statement
type is F in position 1; the next control statement read must therefore
have its type in position 1 or it will default to E. The HOLD-COMPARE
statement stays in effect until another COMPARE statement is read. If
a new COMPARF statement is read, two compares will be done for the
precedlng call, since the HOLD-COMPARE and optlonal prlntlng are done
prlor to readlng the new COMPARE statement. _

The total number of unequal compares will be reflected in the
condition code returned for that step.

7.10

IMS/VS Application Programming Reference Manual

™

N

COMPARE Statement Format for User I/O Area Comparisons

This is the format of the COMPARE statement used for user I/0 area
comparisons.

Position Contents
$ 1 = E identifies this as a COMPARE statement.
3 = Blank, the LL field of the segment is not included

in the .comparison, only data is compared.

= L, the length in positions 5-8 is converted to binary
and compared against the LL field of the segment.

4 = V, if variable-length segment only, or if the first
variable-length segment of multiple variable-length
segments in a path call or concatenated logical
child/logical parent segment.

P, if fixed-length segment in a path call.

M, if the second or subsequent variable-length of
a path call, or concatenated logical child/logical
parent segment.

= Blank, not variable-length or non-path call data
compare.

5 -8 = nnnn, length of a variable-length segment,
right-justified with leading zeroes. If position
4 contains Vv, P, or M, then a value must appear in
positions 5-8. If position 3 contains an L then
this value is compared against the LL field of the
returned segment. If position 3 is blank and the
segment is not in a path call, then this value is
used as the length of the comparison. The rules
for continuations are the same as those described
for the variable-length segment DATA statement in
the description of the CALL statement.

If this is a path call comparison, and position 4
contains P, then the value in positions 5-8 must be
the exact length of the fixed segment used in the

path call.

10 - 13 = DATA, this has to be specified in the first COMPARE
DATR statement only.

16 - 71 = Data against which the segment is to be compared.

72 = Blank identifies the last COMPARE DATA statement
for the current call, and causes the comparison to
be made.

= Non-blank, if the comparison data exceeds 56
characters, data is continued in positions 16-71 of
the subsequent statements for a maximum total of
1500 bytes.

Application Programming Testing Aids 7.1

This COMPARF statement is optional. Its purpose is to COMPARE the
segment returned by IMS/VS to the data in this statement to verify that
the correct segment was retrieved.

The length in positions 5-8 is optional except as already noted; if
present, this length is used in the COMPARE and in the display. If no
length is specified, the shorter of either the length of data moved to
the I/0 area by IMS/VS, or the number of DATA statements read times 56
is used for the length of the comparison and display.

If both a COMPARE DATA and a COMPARE PCB statement are present, the
COMPRRE DATA statement must precede the COMPARE PCB statement.

The conditions for printing the COMPARE DATA statement are the same
as for printing a COMPARE PCB statement; position 7 of the STATUS
statement is used. The same unequal switch is set for either the
COMPARE DATA or COMPARE PCB. However, if control block displays are
requested for unequal comparisons, a COMPARE PCB statement is required
to request these options.

The total number of unequal comparisons will be reflected in the
condition code returned for that step.

OPTION Statement Format

The purpose of the OPTION statement is to set the default SNAP option
and/or the number of unequal comparisons before aborting the step. The
default value for the number of unequal comparisons before aborting is

e

The format of the statement is explained below.

Position Contents
1 = 0 identifies’ this as an OPTION statement.
2 - 80 = Free-form coding.

The first operand is SNAP=x, where "x" is the default
SNAP option to be used.

The second operand is ABORT=xxxX, where "xxxx" is
a 4-digit numeric value that 'sets the number of
upequal comparisons before aborting the step.

Use of the following example of the OPTION statement will cause the
DL/T test program to operate as it did prior to the release of IMNS/VS
Version 1, Modification Level 1:

Col. 1

OPSNAP=), ABORT=9999

7.12 IMS/VS Application Programming Reference Manual

™

—

SPFECIAL CONTROL STATEMENT FORMATS

PUNCH Statement

The PUNCH control statement provides the facility for this program
to produce an output data set consisting of the PCB COMPARE statements,
the user I/0 area COMPARE statements, all other control statements
read, or any combination of the above. An example of the use of this
facility is to code the call, but not the COMPARE statements for a new
test. Then, after verifying that the calls were executed as
anticipated, another run is made where the PUNCH statement is used to
cause the test program to merge the proper COMPARE statements, based
on the results of the call, with the CALL statements read, producing
a new output data set. This is then used as input for subsequent
regression tests. If segments in an existing data base are changed,
the use of this control statement causes a new test data set to be
produced with the proper COMPARE statements. This eliminates the need
to manually change the COMPARE statements because of a change in the
segments of the test data base.

The PCB COMPARE statements are produced based on the information in
the PCR after the call is completed. The COMPARE DATA statements are
produced based on the data in the I/O area after the call is completed.
A1l input control statements, other than COMPARE statements, can be
produced to provide a new composite test with the new COMPARE statements
properly merged. The data set produced can be sequenced.

Since the key feedback area of the PCB COMPARE statement can be
long, two options are provided for producing these COMPARE statements.
Either the complete key feedback can be provided, or the portion of
the key feedback that does not fit on one statement can be dropped.
Forty-eight bytes of key feedback fit on the first statement.

Getting the full data from the I/0 area into the data COMPARE
statement might also be excessive. An optiomn is to put it all on the
data COMPARE statements, or put only the first 56 bytes on the first
statement and drop the rest. The test program only compares the first
56 bytes if it only receives one COMPARE DATA statement.

PONCH STATEMENT FORMAT:

Position Contents
$ 1-3 = CTL identifies this statement type.
5 10 - 13 = PUNC further identifies this statement type as

controlling the punch output data set, and tells
the program to start punching.

NPUN stop punching.

5 16 = Starts keyword parameters controlling the various
options. These keywords are:

PCBL, produce the full PCB COMPARE statement.

PCBS, produce the PCB COMPARE, dropping the key
feedback if it exceeds one statement.

DATAL, produce the complete COMPARE DATA statements.

DATAS, produce only one statement of compare data.

Application Programming Testing Aids 7.13

Position Contents
OTHER, reproduce all control statements except
COMPARE control statements.

START, starting sequence number to be punched in 73
through 80. Eight numeric characters must follow
the START= parameter; leading and/or trailing zeroes
are required.

INCR, increment to be added to the sequence number
of each statement. Four numeric characters must
follow the INCR= parameter; leading and/or trailing
zeroes are required.

Some examples of the PUNCH control statement are:

1 10
CTL PUNC PCBL,DATAL,OTHER,START=00000010,INCR=0010
CTL NPUN

PUNCH DD Statement

The DD statement for the output data set is labelled PUNCH; the data
set. characteristics are fixed, unblocked, with a logical record length
of 87.

An example of the PUNCHDD statement is:

//PUNCHDD DD SYSOUT=B

SYSIN2.-DD Statement

The data set specified by the SYSIN DD statement is the normal input
data set for this program. It is sometimes desirable when processing
an input data set that is on direct access or tape, to override or
insert some control statements into this input stream. This is
especially useful to obtain a SNAP after a particular call.

To provide this capability, a second input data set (SYSIN2) will
be read if the DD statement is present in the JCL for the step. The
records from the SYSIN2 data set are merged with records from the SYSIN
data set, and the merged records become the input for this program.

The merging is done based on the sequence numbers in positions 73
through 80, and is a two-step process: first, positions 73 and 74 of
SYSIN2 must be equal to the corresponding positions of SYSIN; then the
merge is done based on positions 75 to 80.

This peculiarity of merging allows for multiple data sets (each with
a different high-order sequence number in 73-74) that have been
concatenated to form SYSIN, in other than positions 73-74 numeric
-sequence.—-The-two-step merge logic permits SYSIN2 input to be merged
appropriately into each of the concatenated data sets.

When the sequence numbers are equal, SYSIN2 overrides SYSIN.

Any statements or records in this data set must contain sequence
numbers in columns 73-80. They will replace the same sequence number
in the SYSIN data set, or be inserted in proper sequence if the number
in SYSIN2 does not exist in SYSIN, Replacement or merging is done only
for the run being made. The orginal SYSIN data is not changead.

T7.14 IMS/VS Application Programming Reference Manual

(’*\

Other Control Statement Formats

Position

Contents

DLCK - issues 0S/VS checkpoint, followed by a DL/X
checkpoint.

Contains a 1- to 8-character checkpoint ID
(left-justified).

WTOR - puts message in remainder of statement on
system console and waits for any reply, then
continues.

WTO same as WTOR, but does not wait for reply.

. or N; disregard this statement.

ABEND - issues user ABEND 252 with the DUMP option.

Special CALL Statement Format

Position
$ 1
5..

Contents

I. identifies this as a CALL statement.

Number of times to repeat a series of calls with a
range from 0001 thru 9999 (default is 1).

STAK - Start stacking control cards for later
execution.

END - Stop stacking control cards and begin
execution.

The STAK function enables the user to repeat a series
of calls which have been read from SYSIN and held

in storage. All control statements between the STAK
card and the END card are read and saved. When the
END card is encountered, the series of calls is
executed as many times as the number punched in
positions 5 through 8 of the STAK card. This can

be used to test exclusive control and scheduling by
having two different regions executing stacks of
calls concurrently.

STAT - Print the current buffer pool statistics.

Cols, 16-20 One of the following values is used to
obtain the type and form of statistics
required:

VBASF provides the full VSAM data base
subpool statistics in a formatted
form.

VBASU provides the full VSAM data base

subpool statistics in an
unformatted form.

Application Programming Testing Aaids 7.15

VBASS provides a summary of the VSAM
data base subpool statistics in
a formatted form.

DBASF provides the full ISAM/0OSAM data
base buffer pool statistics in
a formatted form.

DBASU provides the full ISAM/0SAM data

base buffer pool statistics in
an unformatted form.

DBASS provides a summary of the
ISAM/0SAM data base buffer pool
statistics in a formatted form.

For more information on the STAT call, see the
"System Service Calls" section in the "Data Base
Batch Programming" chapter of this manual.

SNAP - Issue the DL/Y Call. See sections 2 and 6,
Volumes 1 and 3, respectively, of the IMS/VS Program
Logic Manual.

DLCK - For any dependent region, DLCK gives an 0S/VS
checkpoint to a DD statement labelled CHKDD whose
DSORG=PO. This is followed by a DL/I checkpoint
call.

CHKP - Same as DLCK.

SKIP - Skip SYSIN statements until START statement
encountered.

START- Start making DL/I calls again.

FORMAT OF DISPLAY OF DL/I BLOCKS

The IMS/VS SNAP call is used to display the DL/I blocks. For
additional information on the SNAP call, see the "Process SNAP Call"
diagram and the "SNAP Call Facility" discussion in Sections 2 and 6,
Volumes 1 and 3, respectively, of the IMS/VS Program Logic Manual.

EXECUTION IN DIFFERENT TYPES OF REGIONS

This program is designed to operate in a DL/I or BMP region but can
also be executed in a MSG region. The input and output devices are
dynamically established based on the type of region in which the program
is executing. In a BMP or DL/I region, the EXEC statement allows the
program name to be different from the PSB name. There is no problem
executing calls against any data base in a BMP or DL/I region. In a
.MSG region, the program name must be the same as the PSB name. In
order to execute in a MSG region, the DFSDDLTO program must be given
the name or an alias of the PSB named in the IMS/VS d=2finition.

When in a DL/I region, input is read from SYSIN and output is written
to PRINTDD.

7.16 IMS/VS Application Programming Reference Manual

;
{

When in a BMP region, if a symbolic input terminal was specified as
the fourth parameter of the EXEC statement, input is obtained from that
SMB, and output is sent to the I/O PCB. The name of the I/0O PCB can
be specified as the fifth parameter of the EXEC statement. If SMB is
not specified on the EXEC statement, SYSIN is used for input and PRINTDD
is used for output, as in the DL/I region.

In the MSG region, the I/0 PCB is used for both input and output
unless position 2 of the STATUS statement is either a 1 or an A. In
either of these cases, PRINTDD is used for output if the DD card is
present in the JCL for that message regqion. 2 limit of 50 lines per
schedule is sent to the I/0 PCB and, after that, PRINTDD is used for
output if present. If PRINTDD is not present, the program terminates.

Because the input is in fixed form, it is difficult to key it from
a terminal. For ease of entry, however, Message Format Service (MFS)
facilities can be used from a terminal to create the fixed-format input.
One way to test DL/I in a message region, using this program, is to
first execute another message program which, based on a message from
the terminal, reads control statements stored as a member of a
partitioned data set. 1Insert these control statements into an SMB.
This program is then scheduled by IMS/VS to process those transactions.
This allows the same control statements to be used to execute in any
region type.

HINTS ON USAGE
1. To load a data base:
This program is applicable for loading small data bases, because
all calls and data must be provided to it rather than it
generating data. It can be used to load large volume data bases
if the control statements were generated as a sequential data
set.

2, To display a data base:

To display a data base, the following sequence of control
statements can be used.

s12221 DBDNAME Display comments and segment

L GN DO 1 Get Next

FH8 OK Hold compare, GA, GK, OK, terminate
on GB

L 9999 GN DO 9,999 Get Next calls

3. To do regression testing:

This program can be used for regression testing. By using a
known data base, calls can be issued and the results compared
to expected results using COMPARE statements. The program then
can determine if DL/I calls are being executed correctly. By
making the print options of the STATUS statement all twos, only
those calls not satisfied properly are displayed.

4. To-use as a debugging aid:

When doing debugging work, usually a print of the DL/I blocks

is required. By use of COMPARE statements, the blocks can be
displayed at appropriate times. Sometimes the blocks are needed
even though the call is executed correctly, such as the call
before the failing call. In those cases, a SNAP call can be
inserted. This causes the blocks to be displayed even though
the call was executed correctly.

Application Programming Testing Aids 7.17

5. To verify how a call is executed:

Because it is easy to execute a particular call, this program

can be used to verify how a particular call is handled. This 4
is of value when DL/I is suspected of not operating correctly .
in a specific situation. The calls that are suspected can be

issued using this program, and the results examined.

SAWMPLE JCL

//3CLSAMP" JOB ACCOUNTING,NAME, MSGLEVEL=(1, 1) ,MSGCLASS=3,PRTY=8
//GET EXEC PGM=DFSRRCO0,PARM='DLI,DFSDDLTO,PSBNAME!
//STEPLIB DD DSN=INMSVS.RESLIB,DISP=SHR

//INS DD DSN=IMSVS.PSBLIB,DISP= (SHR, PASS)

7/ DD DSN=IMSVS.DBDLIB,DISP=(SHR, PASS)

//DDCARD DD DSN=DATASET,DISP=(OLD,KEEP)

//IEFRDER DD DUMMY

//PRINTDD DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SISIN DD *

s 1111 DBDNAME

/*

SAMPLE CONTROL STATEMENT INPUT

//SYSIN DD *
U START TEST LOAD

T ISRT ROOT SEGMENT 4060000111 S
T ISRT A1111111 R
1 DATA A06000 11 1069999888 ROOT SEG1)
EH
T ISRT ROOT SEGMENT A06000511
L ISRT 2111111
L DATA A060000511 1069999488 ROOT SEG2
L ISRT A1111 11 (A1111111 = A060000511) X
AR222222

DATA XAAOU405112
/%

Data Base Retrieve and Update

e —— o ———

//SYSIN DD *

s1T1111 1

L GHU JHNXXX (J1INXXX = A10H102000) *
JM2PABCX {JM2PABCX = DIOHIO2A10)

S111 11 2 '

L ~ISRT _ JVINXXXX - - --(JVTINXXXX = A10HO02000) "C
JK2PADXX

L DATA A10HDO2000D10RDO2A1U

s 11111 1

L REPL

L DATA A10HDO200DB10HD02A10

/*

7.18 IMS/VS Application Programming Reference Manual

MESSAGE PROCESSING REGION SIMULATION

Message processing region simulation is not supplied as a part of
the IBM IMS/VS program,

The checkout of any message processing program in the online terminal
environment is often impractical. To enable a more practical and
efficient checkout environment, a message processing region simulation
can be used. The object of the simulator is to enable checkout of a
message processing program, in a batch processing region, with a set
of test data bases. Messages are read and written with unit record,
tape, or disk data sets as opposed to input and output message queues.
To be effective, the simulator should incur no, or minimal, change to
the message processing program when it is moved from the simulated to
the actual message processing region environment.

The user can accomplish simulation by appending the Simulator
Interface A and Simulator Interface B modules to the message processing
program in addition to the language interface. (See Fiugre 7-1.)

ENTRY: DLITCBL SIMULATOR
OR ———— 3 INTERFACE
DLITPLI A

MESSAGE
PROCESSING
PROGRAM

MESSAGE CALLS

DATA BASE CALLS

ENTRY: - CBLTDLI or PLITDLI

Ly LANGUAGE INTERFACE >

DATA
ENTRY: » - GEORGE! BASE

SIMULATOR
— INTERFACE
B

(MESSAGE INPUT) (MESSAGE OUTPUT)

Figure 7-1. Message Processing Region Simulation

Application Programming Testing Aids 7.19

When the PSB is generated for the associated message program, the
PCBs within the PSB are normally for Data Language/I data bases only.
No PCB for an input and output terminpal is provided. When the message
program is loaded into a batch processing region, the PCB addresses
are passed to the message program. No terminal PCB is provided.

When Simulator Interface A is link-edited with the message progranm
with entry point DLITCBL or DLITPLI, the Simulator Interface 1A is
entered. The interface prefixes the PCB address list with an .
input/output terminal PCB address. The PCB exists within Simulator
Interface A, and its address is added as the first PCB address in the
PCB address list passed to the message program. This PCB address is
used by the message program ‘as are the other PCB addresses in the list,
except that this PCB address is used -in calls from the message program
to Simulator Interface B.

When a call is made from the message program to Simulator Interface
B, the message program makes a Data Language/I call, with the terminal
PCB address provided by Simulator Interface A. Simulator Interface B
then utilizes 0S/VS SYSIN and SYSOUT data sets as if messages were
being read from and written to messageée queues. You may include
alternate terminal PSBs within your PSB generation. The addresses for
these PCBs are provided, upon entry to the user message program, in
the order specified by PCB statements in PSB generation. If a Data
Language/I call (CALL CBLTDLI) is issued with an alternate terminal
PCB address in an IMS/VS batch region, an AL status code is returned
in the PCB.

Data Language/I data base calls are executed with the appropriate
PCBs to the link-edited language interface.

The following changes must be made when the message processing
program is moved to a message processing region:

e Both Simulator Interface modules should be omitted.

e The entry point name of the message program must be renamed DLITCBL
(COBOL or Assembler) or DLITPLI (PL/I).

» The CALL statement operand must be renamed from GEORGEI to the
language interface entry point CBLTDLI or PLITDLI,

7.20 IMS/VS Rpplication Programming Reference Manual

EXAMPLES
The following example shows a typical COBOL program that might be

written to test a message program in a batch processing region. (Refer
to Figure 7-1 in conjunction with this example.)

Simulator Interface 2

IDENTIFICATION DIVISTION.
PROGRAM~ID. 'CAB!?,
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING~-STORAGE SECTION.
01 INOUT-PCB

02 TO-TERMINAL PICTURE X (8) .
02 TIO-RESERVE PICTURE XX.
02 TIO-STATUS PICTURE XX.
02 TO-PREFIX PICTURE X(12).

LINKAGE SECTION.
01 DB-PCB.
02 DATA-BAS-DESC PICTUORE X(71) .
PROCEDURE DIVISION.
ENTRY *'DLITCBL' USING DB-PCB.
CALL 'TEST' USING INOUT-PCB, DB-PCB.
STOP ROUN.

Message Processing Program

The following is an example of a section of the message processing
program being tested. It shows the entry point and call to the Message
Input and Output (Message Simulator Interface B). (Refer to Fiugre
7-1 in conjunction with this example.)

START-0UT.

ENTRY *TEST' USING TERMINAL INOUT-PCB,DB-PCB.
CALL 'GEORGEI' USING GET-UNIQUE,INOUT-PCB,LINE-INPUT,.

Application Programming Testing Aids 7.21

Simulator Interface B

The following example of message output should be reviewed in

conjunction with the previous example and with Figure 7-1.

IDENTIFICATION DIVISION.
PROGRAM-ID. ‘IMSTEST.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MESSAGE-FILE ASSIGN TO ‘TESTIN’ UTILITY.
SELECT TEST-OUTPUT-FILE ASSIGN TO ‘TESTOUT’ UTILITY.

DATA DIVISION.
FILE SECTION.
FD MESSAGE-FILE
RECORDING MODE IS V
DATA RECORD IS INPUT-MESSAGE.
01 INPUT-MESSAGE
FD TEST-OUTPUT-FILE
BLOCK CONTAINS 10 RECORDS
DATA RECORD IS PRINT-LINE.
01 PRINT-LINE
WORKING-STORAGE SECTION.
77 OPEN-SWITCH PICTURE X
77 END-SWITCH PICTURE X
77 MESSAGE-SIZE-WORK PICTURE S9(4)

USAGE COMPUTATIONS.
77 BAD-FUNCTION-CODE PICTURE XX
77 NO-DATA-CODE PICTURE XX

77 REC-SWT PICTURE X VALUE * .
77 MESS-OUT PICTURE X VALUE * .
77 C-329 PICTURE $S9(6) VALUE 329
USAGE COMPUTATIONAL.
01 MESSAGE-IN-WORK-AREA.
02 HEADER-DATA-IN.
03 MESSAGE-COUNT
03 MESSAGE-TYPE
03 TERMINAL-NAME
02 MESSAGE-TEXT.

PICTURE IS X(143).

PICTURE IS X(133).

VALUE °’ .
VALUE ° .
VALUE 0

VALUE ‘QA’.
VALUE ‘QC’.

PICTURE 9(4).
PICTURE X.
PICTURE X(8).

03 FILLER PICTURE X OCCURS 130 TIMES
DEPENDING ON MESSAGE-SIZE-WORK.

01 TEST-OUTPUT-HEADER. '
02 FILLER PICTURE X(18) VALUE
* MESSAGE TYPE = .
02 FILLER.
03 IN-OR-OUT-MESSAGE
03 HEAD-OR-BODY
02 FILLER PICTURE X(18)
’, MESSAGE COUNT =",
02 OUTPUT-COUNT
02 FILLER PICTURE X(13)
’, TERMINAL =,
02 OUTPUT-TERMINAL

PICTURE X.
PICTURE X.
VALUE

PICTURE 9999.
VALUE

PICTURE X(8).

7.22 IMS/VS Application Programming Reference Manual

/‘\

N

02 FILLER PICTURE XX VALUE SPACES,
02 OUT-RUN PICTURE XXXX,
01 TEST-OUTPUT-TEXT, v
02 TEST-OUTPUT-CHAR OCCURS 130 TIMES
PICTURE X,
LINKAGE SECTION, -
01 INOUT-PCB,

02 IO-TERMINAL PICTURE X(8).
02 IO-RESERVE PICTURE XX.
02 IO-STATUS PICTURE XX.

02 I-PREFIX PICTURE X(12).
01 FUNCTION PICTURE XXXX.
01 IO-AREAS-RECORD,
02 RCC PICTURE S9(4) USAGE COMPUTATIONAL,
02 RCC-ZEROS PICTURE XX.
02 TEXT.
03 FILLER PICTURE X OCCURS 130 TIMES.
PROCEDURE DIVISION,
ENTRY 'GEORGEI' USING FUNCTION, IMOUT-PCB, IO-AREAS-RECORD,
OPEN-FILES,
IF OPEN=-SWITCH = '1' GO TO PROCESS-X.
MOVE 0 TO TALLY,
OPEN INPUT MESSAGE-FILE
OUTPUT TEST-OUTPUT-FILE,
MOVE '1' TO OPEN-SWITCH.
PROCESS-X.
IF FUNCTION 'GU ' GO TO GET-HEADER,
IF FUNCTION 'GN ' GO TO GET-BODY,
IF FUNCTION 'ISRT' GO TO WRITE-REPLY,
MOVE BAD~FUNCTION-CODE TO IO-STATUS.
RETURN-TO-APPLICATION,
RETURN.
FORMAT-INPUT-MESSAGE,.
MOVE 'I' TO IN-OR-OUT-MESSAGE,
MOVE MESSAGE-TYPE TO HEAD-OR-BODY,
MOVE MESSAGE~-COUNT TO OUTPUT-COUNT.
MOVE TERMINAL-NAME TO OUTPUT-TERMINAL.
MOVE MESSAGE-TEXT TO TEST-OUTPUT-TEXT.
SET-UP-FOR-USER,
MOVE MESSAGE~COUNT TO RCC.
MOVE LOW-VALUES TO RCC-ZEROS.
MOVE TERMINAL-NAME TO IO~TERMINAL.,

MOVE MESSAGE-TEXT TO TEXT.

MOVE ' ' TO IO-STATUS.
READ-MESSAGE-FILE.

IF END-SWITCH = '1' GO TO FINISH-UP.

READ MESSAGE-FILE INTO MESSAGE-IN~WORK-AREA
AT END MOVE '1' TO END-SWITCH

Application Programming Testing Aids

7.23

GO TO READ-MESSAGE~FILE,
COMPUTE MESSAGE-SIZE-WORK = MESSAGE-COQUNT - -4,
PERFORM FORMAT-INPUT-MESSAGE,
PERFORM WRITE-TEST-OUTPUT-FILE.,

WRITE-TEST~OUTPUT-FILE,

MOVE FUNCTION TO OUT-RUN.
WRITE PRINT-LINE FROM TEST-OUTPUT-~-HEADER,
WRITE PRINT-LINE FROM TEST-OUTPUT-TEXT.

GET-HEADER,

IF REC-SWT NOT = 'H'
PERFORM READ-MESSAGE-FILE
GO TO REC-GOT,
COMPUTE MESSAGE-SIZE-WORK = MESSAGE-COUNT - 4,
PERFORM FORMAT-INPUT-MESSAGE.
PERFORM WRITE=-TEST-OUTPUT~FILE.

REC-GOT,

IF MESSAGE-TYPE NOT = TO 'H' GO TO GET-HEADER.
PERFORM SET-UP-FOR-USER, MOVE ' ' TO REC-SWT,
GO TO RETURN-TO-APPLICATION,

GET-BODY .

PERFORM READ-MESSAGE-FILE,
IF MESSAGE~-TYPE = 'B' NEXT SENTENCE ELSE
MOVE 'H' TO REC-SWT
MOVE ‘oD’ TO IO-STATUS
GO TO RETURN-TO-APPLICATION.
PERFORM SET-UP-FOR-USER.
GO TO RETURN-TO-APPLICATION,

WRITE-REPLY,

MOVE IO-TERMINAL TO OUTPUT-TERMINAL,
COMPUTE MESSAGE-SIZE-WORK = RCC - 4,

MOVE RCC TO OUTPUT-COUNT.

MOVE 'O' TO IN-OR-OUT-MESSAGE,

MOVE ' ' TO HEAD-OR-BODY.

MOVE TEXT TO TEST-OUTPUT-TEXT,.

MOVE MESS-OUT TO IO-STATUS.

PERFORM WRITE-TEST~-OUTPUT-FILE,

FINISH-UP.

IF FUNCTION 'GU ' MOVE '0OC' TO IO-STATUS.
IF FUNCTION 'GN ' MOVE '0OD' TO IO=-STATUS.
GO TO RETURN-TO-APPLICATION.

W

7.24 IMS/VS Application Programming Reference Manual

/

/

AN

APPENDIX A. DL/I STATUS CODES QUICK-REFERENCE TABLE

At the completion of a DL/I call, a status code that indicates the
results of the call is returned to the application program in the PCB
status'code field. The user should follow each call in his program
with statements which examine the returned status codes to determine
if the requested action was completed properly.

Status codes fall into four different categories:

1.

Exceptional but valid conditions encountered for the call (for
example, GE, GB)

2. Warning or indicative status codes on successful calls (for

example, GA, GK, II, 0C, and QD)

3. Improper user specifications (the principal category)

4. FError conditions encountered during the actual execution of I/0

requests

An IMS/VS installation should normally provide application progranms
with a standardized status code checking procedure to be applied after
each call.

Status codes from categories 1 and 2 can be handled by each
application program according to its specific needs.

Status codes from category 3 result from programming errors, and
should be handled in a generalized way which supplies the
application programmer with the information required to correct
the error.

Status codes from cateqgory 4 must be handled by procedures set up
by the data base administrator; they should not be handled by each
individual application programmer., Category 4 status codes often
require recovery procedures which could affect other application
programs and the integrity of the entire data base environment.

Figure A-1 provides a quick reference of DL/I status codes. These
status codes are described in detail in Appendix B.

DL/I Status Codes Quick References A.1

TTddY SA/SKI AR |

Id uotTied

Tenue}y 9dusIajay butuwueibo

;‘:1 | DATA BASE CALLS MSG CALLS SYSTEM SERVICE CALLS
Q status {Gu: Jon L one | oLer | iseT | isRT CALL ERROR | 1/00R CATE-
= cone | GHU | 6HN | aHne | repe | (toap) | aooy | Gu | o |1seT |onng | purc|cHkp|roLL] DEa | LoG | snap| compLeTep | incaLL | sysTERrOR | GORY | DpescripTioN
H AR X CHNG CALL FOR RESPONSE ALTERNATE PCB CAN ONLY
o X 3 SPECIFY LOGICAL TERMINAL DESTINATION; TRANSACTION
CODE DESTINATION SPECIFIED.
b a8 | x X X x X X x| x{x | x X x | x X 3 SEGMENT 1/0 AREA REQUIRED, NONE SPECIFIED
i IN CALL
- ac | x X X X X X 3 HIERARCHICAL ERROR IN SSAs
ALID FUNCTION PA
AD X 3 INVALID FUNCTION PARAMETER
’;; AR X X X 3 CALL REQUIRES SSAs, NONE PROVIDED
@ R ES RS X X X X X 4 DATA MANAGEMENT OPEN ERROR
4 FRE X X X X X 3 INVALID SSA QUALIFICATION FORMAT
+ Ak [x [x X X X X 3 INVALID FIELD NAME IN CALL
AL | x X X X x x x 3 CALL USING LT PCB IN BATCH PGM
- am | x X 3 X X X X N CALL FUNCTION NOT COMPATIBLE W/PROCESSING
. OPTION OR SGMT SENSITIVITY
o] A0 | X X X X X X X 4 }/O ERROR ISAM, OSAM, BSAM, DR VSAM
Hh AQ x | x X X A READ 1/0 ERROR, MESSAGE CHAIN CANNOT BE
FOLLOWED, MINIMUM OF ONE MESSAGE LOST
B AR x | x X X a READ 1/0 ERROR, MESSAGE SEGMENT HAS BEEN
LOST, MESSAGE CHAIN 1S STILL INTACT
L]
AT X X X X x X X X 3 USER 1/0 AREA TOO LONG
- Tau | ox x x X X x x 3 SSAs TOO LONG
) AY X X RESPONSE ALTERNATE PCB REFERENCED BY ISRT CALL
N 3 HAS MORE THAN ONE PHYSICAL TERMINAL ASSIGNED FOR
H INPUT PURPOSES. NOTIFY MASTER TERMINAL.
Az X X 3 CONVERSATIONAL PROGRAMS WILL ISSUE
I PURG CALLS TO WRONG PCB
A1 X X LLA D WITH §-CH A 1
g a3 CALL ATTEMPTED WITH §-CHAR LOGICAL TERMINAL
o NAME NOT KNOWN TO SYSTEM
A2 x X a CHANGE ATTEMPTED WITH
5 INVALID PCB
A3 X x x a INSERT/PURGE ATTEMPTED TO A MOD
a TP PCB WITH NO DESTINATION SET
o A4 x X 3 SECURITY VIOLATION
[AS x x X a FORMAT NAME SPECIFIED ON 2ND OR SUBSEQUENT
10} MSG ISRT OR PURG
n A6 X X 3 QUTPUT SEGMENT SIZE LIMIT EXCEEDED ON ISRT CALL.
o ar | - X X a NUMBER GF QUTPUT SEGMENTS INSERTED EXCEEDED THE
[] LIMIT BY ONE.
[A8 X X 3 ISRT TO RESPONSE ALTERNATE PCB FOLLOWED {SRT TO
Q . 1/0 PC8, OR VICE VERSA.
tal A9 x X RESPONSE ALTERNATE PCB REFERENCED 8Y ISRT CALL
3 REQUIRES THAT SOURCE PHYSICAL TERMINAL RECEIVE
o THE OUTPUT RESPONSE.
P‘Ph DA X X 3 SEGMENT KEY FIELD HAS BEEN CHANGED
® DJ X X 3 NO PRECEDING SUCCESSFUL GET HOLD CALL
(] Dx X X 3 VIOLATED DELETE RULE
[GA X x X CROSSED HIERARCHICAL BOUNDARY INTO
=] 2 HIGHER LEVEL (RETURNED ON UNQUALIFIED
a CALLS ONLY)
® G8 3 1 END OF DATA SET, LAST SEGMENT REACHED
GE | x | x X X 1 SEGMENT NOT FOUND
GK x X X DIFFERENT SEGMENT TYPE AT SAME LEVEL
2 RETURNED (RETURNED ON UNQUALIFIED
CALLS ONLY)
oL x x 3 INVALID USER LOG CODE.
e X X A GNP CALL AND NO PARENT ESTABLISHED
3 OR REQUESTED SEGMENT LEVEL NOT LOWER
THAN PARENT LEVEL
T X 1 SEGMENT TO INSERT ALREADY EXISTS IN
DATA BASE
N
/ \ /‘
{ {
{
\ N / \
. - .

seouaIdjay YOINY S8pod sniels I/1d

£V

*{z 30 z 33ed) L-V °21ubTd4

2ouUs 1930Y YOTIND Sopo) shiels I/Id

. J
. (\
< !
DATA BASE CALLS MSG CALLS SYSTEM SERVICE CALLS
STATUS |GU | GN | GNP | OLET | 1SRT ISRT CALL ERROR | 1/OOR CATE-
CODE GHU | GHN | GHNP | REPL | (LOAD) | (ADD) | GU { GN | 1SRT | CHNG |PURG |CHKP|ROLL| DEQ | LOG |SNAP| compLETED | INCALL | SYST ERROR GORY | DESCRIPTION
1x X X 3 VIOLATED INSERT RULE
LB X B SEGMENT TO INSERT ALREADY EXISTS IN
DATA BASE
L¢ X 3 KEY FIELD OF SEGMENTS OUT OF SEQUENCE
Lo X 3 NO PARENT FOR THIS SEGMENT HAS BEEN LOADED
LE SEQUENCE OF SIBLING SEGMENTS NOT THE SAME
3 AS DBO SEQUENCE
NE x x A DL/t CALL ISSUED BY INDEX MAINTENANCE CANNOT FIND
SEGMENT
Nt x X X x A INDEX MAINTENANCE UNABLE TO OPEN AN INDEX DB, OR
FOUND DUPLICATE SEGMENT IN INDEX
NO x X X x 4 1/0 ERROR ISAM, OSAM, BSAM, OR VSAM
Qc X X 1 NO MORE INPUT MESSAGES
an X 1 NO MORE SEGMENTS FOR THIS MESSAGE
QE X X 3 GET NEXT REQUEST BEFORE GET UNIQUE
QF X X X X SEGMENT LESS THAN FIVE CHARACTERS (SEG
: 3 LENGTH 1S MSG TEXT LENGTH PLUS FOUR
CONTROL CHARACTERS)
QH X X X TERMINAL SYMBOLIC ERROR — QUTPUT
3 DESIGNATION UNKNOWN TO IMS/VS
(LOGICAL TERMINALS OR TRAN CODE)
RX X X 3 VIOLATED REPLACE RULE
uc 1 CHECKPOINT® TAKEN .
UR 1 RESTART"
us 1 STOP®
Ux 1 CHECKPOINT AND STOP®
vi x X x x 3 INVALID LENGTH FOR VARIABLE LENGTH SEGMENT
X1 X X X 4 1/0 ERROR WRITING SPA
X2 X X 3 1ST INSERT TO TRAN CODE PCB THAT 1S CONVERSATIONAL,
IS NOT AN SPA
X3 X X X 3 INVALIO SPA
x4 x X X 3 INSERT TO A TRAN CODE PCB THAT IS NOT
CONVERSATIONAL AND THE SEGMENT IS AN SPA
X5 X X X 3 INSERT OF MULTIPLE SPAs TO TRAN CODE PCB
X6 x 3 INVALID TRAN CODE NAME INSERTED (NTO SPA
x7 X X X 3 LENGTH OF SPA IS INCORRECT (USER MODIFIED
FIRST SIX BYTES)
X8 X X X 4 ERROR ATTEMPTING TO QUEUE AN SPA ON A
TRAN CODE PCB
X9 X X X 3 INCOMPATIBLE CONVERSATIONAL PROGRAM
CALL PATH
XA X X X 3 ATTEMPT TO CONT. PROC. CONV. BY PASSING SPA VIA
PGM-TO-PGM SW. AF TER ANSWERING TERMINAL
XB X X X 3 PGM PASSED SPA TO OTHER PGM
BUT TRYING TO RESPOND
xC X X X a3 PGM INSERTED MSG WITH Z1 FLD BITS
SET RESERVED FOR SYSTEM USE
XD X 1 IMS IS TERMINATING. FURTHER DL/I CALLS MUST NOT BE
X ISSUED. NO MESSAGE RETURNED.
XE X X X 3 TRIED TO ISRT SPA TO EXPRESS PCB
XF X v X ALTERNATE PCB AEFERENCED IN ISRT CALL FOR SPA HAD
3 DESTINATION SET TO A LOGICAL TERMINAL, BUT WAS NOT
DEFINED AS ALTRESP=YES.
X6 x X CURRENT CONVERSATION REQUIRES FIXED-LENGTH SPAS.
3 ATTEMPT WAS MADE TO INSERT SPA TO TRANSACTION
WITH A DIFFERENT OR NON-FIXED LENGTH SPA.
we | x X X X X X x| x| x X X X x x X GOOD. NO STATUS CODE RETURNED, PROCEED.
b~ bb indicates blanks

“Utihity Cantiol Facibity Status Codes

(3]

APPENDIX B.

DATA LANGUAGE/Y STATUS CODES

The status codes that appear in tabular form in Appendix A are

described in full detail in this section.

-9}

AB

AC

AD

Error in call.

Explanation: The change call was ignored because the

response alternate PCB specified a tramnsaction code
destination. Response alternate PCBs can only reference a
logical terminal destination.

Action: Correct the application program.

Explanation: On a data base or message call, the segment

Action: Correct program.

Error in call.

Explanation: SSA(s) contains an error in hierarchical
sequence.

Possible causes:

1. No segment name equal to that specified in SSA was found
within the scope of this PCB.

2. The level at which this SSA appears is out of sequence
with that specified by the PCB.

3. Two seqgments of the same level are specified in the same
call.

4, The statistics function that was specified or a STAT
call was not a defined function.

Action: Correct the program.
Error in call.
Explanation: An invalid function parameter was supplied.

Possible causes:

1. A GU or GN was requested for a terminal PCB other than
the I/0 PCB.

2. An invalid function string exists.
3. An invalid request type was made for a TP PCB.

4., A call has been issued to the message queues with a DB
PCB.

Action: Correct progranm.

DL/I Status Codes B.1

AR

AT

B.2

Brror in call.

Explanation: No SSA(s) was specified in the call. The call
required at least one SSA (or RSA if GSAM being used), and
none was specified.

Action: Correct the program by specifying SSA (or RSA) in

I/0, system, Or user error

Explanation: Data management open error.
Possible causes:

1. An error exists in the DD statements.

2. The data set was opened for something other than load
mode, but it is not loaded.

3. The buffer is too small to hold a record that was read
at open time, See the INS/VS System Prodramming
Reference Manual for specification of the minimum buffer

pool size.

4., DD statements for logically related data bases not
supplied.

5. For an OSAM data set, the DSORG field of the OSAM DCB,
DSCB, or JFCB does not specify PS or DA.

6. TFor.an old OSAM data set, the BUFL or BLKSIZE field in
the DSCB is zero.

7. The data set is being opened for load, and the processing
option for one or more segments is other than L or LS.

8. The allocation of the OSAM data set is invalid; the
allocation is probably (1,,1) rather than (1,1) and this
causes the DSORG to be P0O.

9. The processing option is L, the OSAM data set is old,
and the DSCB LRECL and/or BLKSIZE does not match the
DBD LRECL and/or BLKSIZE.

19. Incorrect or missing information prevented computation
of block size or the determination of the logical record
length,

11. A catalog was not available for accessing a VSAM data
base that was requested.

12. 0S could not perform on OPEN, but the I/0O request is
valid. Information is either missing, or data definition
information is incorrect.

vgé;igg: Check the DD statements: ensure that the ddname
is the same‘as the name specified on the DATASET statement
of the DBD. The segment name area in the PCB has the ddname

of the data set which could not be opened.

IMS/VS Application Programming Reference Manual

(“\

AJ

AK

AL

Error in call.

Explanation: The SSA qualification format was invalid.
Possible causes:

1. Invalid command codes were used.

2. Invalid relational operators were used.

3. A right parenthesis or Boolean connector was missing.
4, More than eight Boolean members were specified.

5. The DLET call has multiple SSAs or qualified SSas.

6. The REPL call has qualified SSAs.

7. The ISRT call has the last SSA qualified.

8. A path insert call into an existing data base involves
a logical child segment.

9. The Record Search Argument (RSA) parameter is invalid.
Action: Correct the program.
BError in call.

Bxplanation: An invalid field name was supplied in the

Possible causes:

1. Unable to find the specified field nanme.

2. When accessing a logical child from the logical parent
path, the field specified has been defined for the
logical child segment and at least partially includes
the portion of the logical child that contains the
concatenated key of the logical parent.

Action: Correct progranm.

Error in call.

Explanation: The call is using a terminal PCB in a DL/I

—— i e e

DL/I Status Codes B.3

AM

RO

AQ

AR

AT

B.O#

Error in call.

Explanation: The call function was not compatible with the
processing option, segment sensitivity, or transaction-code
definition.

Action: Correct program, PSB, or system definitionm.

Possible causes:

1. The D command code was used for a path retrieval call
without path sensitivity.

2. The processing option of L and call function is not
insert.

3. A DLET, REPL, or ISRT call was made without corresponding
segment sensitivity.

4. A DLET, REPL, or ISRT call was issued by a program while
a transaction defined as inquiry was being processed.

A GET call was attempted for a segment with KEY
sensitivity. Correct the error by specifying DATA
sensitivity.

5. This status code occurs for a checkpoint (not restart)
call if a GSAM/VSAM data set is opened for output.

6. An invalid request was included in a GSAM call.
I/0 error

Explanation: There is a BSAM, GSAM, ISAM, VSAM, or an OSAMNM
physical I/0 error. When issued from GSAM, this status code
means that the error occurred when: (1) a data set was
accessed, or (2) the CLOSE SYNAD routine was entered. The
error occurred when the last block of records was written
prior to closing of the data set.

Action: Determine whether the error occurred during input

or output, and correct the problen.
Read T/0 error

Explanation: The message chain cannot be followed; a minimum

of one message is lost.

g

ctio If it is imperative to recover any messages that
re 1

n:
e lost, perform an emergency restart with the BLDQ option.
I/0 error

Explanation: There is a read I/O error. A .message segment

has been lost, but the message chain is still intact.

Error in call in a VS system.

Explanation: The length of the user's I/O area data is
greater than the area reserved for it in the control region.
The length of the area reserved was determined by the ACB

utility program, DFSUACBO, and printed as part of its output.

Action: Correct the PSB or the program in error.

'IMS/VS Application Programming Reference Manual

AU

AY

AZ

A1

A2

Error in call in a VS systen.

Explanation: The total length of the user's SSAs is greater
than the area reserved for them in the control region. The
length of the area reserved was determined by the ACB utility

program, DFSUACBN, and printed as part of its output.
Action: Correct the PSB or the program in error.
Frror in call.

Explanation: Insert call ignored because the logical
terminal referenced by the response alternate PCB currently
has more than one physical terminal assigned to it for input
purposes.

Action: Ask the master terminal operator to determine (use
/DISPLAY ASSIGNMENT LTERM X) which physical terminals (2 or
more) refer to this logical terminal. Use the /ASSIGN

command to correct the problenm.
Error in call.

Explanation: This status code is used to prevent

asynchronous conditions involving the MPP, SPA content, and
terminal. Possible causes for this status code are:

1. The conversational program inserted the SPA with a PURG
call.

2. The TP-PCB destination is a conversational SMB, and
there is no way to determine if the SPA was inserted to
this PCB.

3. The TP-PCB destination is a logical terminal, and the
TP-PCB is the I/0 PCB or a response alternate PCB.

4, PURG is the only parameter (no PCB was specified), and
' v status is returned; no action is taken if conditions
1, 2, or 3 (above) exist.

Action: Correct the application program and rerun,

Explanation: The CHNG call was attempted with an

eight -character logical terminal name which was unknown to
the systenm.
Action: Correct program.

Explanation: The CHNG call was attempted with an invalid

_——lamn o

PCB. It was either not an alternate PCB, was not defined
as modifiable, or had a message in process but incomplete.

Action: Correct progranm.

DL/I Status Codes B.5

A3

Al

AS

A6

A7

Ag

A9

B.6

Error in call.

Explanation: An INSERT or PURGE call was attempted to a
modifiable alternate PCB which had no destination set.

reissue the INSERT or PURGE call.
Security violation

Explanation: The terminal entering the current transaction

did not have the security to allow a message to the named
SMUB.

Action: User determined.

Error in call.

ggp;gnatigg: An invalid call list was supplied. 1A fourth
parameter (MOD name) was supplied, but the function was not
PURG or ISRT for the first segment of an output message.

Action: Correct the ISRT or PURG call and retry the

application program.
Brror in call.

Explanation: Insert call ignored because output segment

size exceeded specified 1limit.

Action: Correct the application progranm.

Frror in call.

Explanation: Insert call ignored because number of output

message segments inserted exceeded specified limit by one.

If another attempt is made to insert too many segments before

the program issues another GU, the program is abended.

Action: Correct the application progranm,

Error in call.

Explanation: Insert call ignored because an insert call to
a response alternate PCS must not follow an insert call to
the I/0 PCB, or vice versa.

Action: Correct the application program,

Error in call.

Explanation: Insert call ignored because it referenced a

response alternate PCB that requires (SAMETRM=YES) the source

physical terminal to receive the output response.

“'Thi§ status code can also occur if the input terminal is in

response mode and the response alternate PCB is not
associated with the input terminal.

Action: Determine whether the application program is in
error, the output logical terminal has been erroneously
reassigned (/ASSIGN command), or if SAMETRM=YES should not
have been specified.

IMS/VS Application Programming Reference Manual

7

DA

DJ

DX

GA

GB

GE

Explanation: Segment key field has been changed.

Action: Correct.

Error in call.

Explanation: No previous successful GET HOLD call.

Action: Check and correct.

—— o

Explanation: Violated delete rule. Review the delete rule

in the "Data Base Design Consideration" chapter of the IMNS/VS
System/Application Design Guide.

Action: Correct program.

System/Application Design Guide), or the final call in a
series of STAT calls was issued for VSAM buffer subpool
statistics., This status code is returned on unqualified
calls only.

Action: User determined.
Call is not completed.

Explanation: An attempt was made to satisfy a GN call and
the end of the data base was encountered. (If this situation
occurs on a GU or ISRT call, a GE status code is returned.)
This status code is also returned when a GSAM data set has

been closed.

Action: User determined.

Call is not conmpleted.

Explanation: This status code is returned when: (1) an
attempt is made to satisfy a GU or GN call but a segment
cannot be found that satisfies the qualification, (2) an
attempt is made to position for an ISRT call but one of the
parents of the segment to be inserted cannot be found, (3)
a STAT call is issued for ISAM/OSAM buffer pool statistics
when the buffer pool does not exist, (4) a STAT call is
issued for VSAM buffer subpool statistics when the subpools
do not exist, and (5) a statistics function is specified on

a STAT call for ISAM/0SAM buffer pool statistics.

Action: User determined.

DL/I Status Codes B.7

GK

GL

GP

II

Call is completed.

Explanation: Different segment type at same level returned.

This status code is returned on unqualified calls only.

Action: User determined.

oo

Explanation: Log code is not a valid user code. (Only

A A4

codes X'A0' through X'E(Q' are reserved for users.)

Action: Check and correct.

Error in call.

Fxplanation: No parent for this GNP call, or the requested
segment level is not lower than the parent level.

Action: User determined.

Call is not completed.

Explanation: The segment that the user tried to insert
already exists in the data base.

Possible Causes:

1. Segment with equal physical twin sequence field already
exists for parent

2. Segment with equal logical twin sequence already exists
for parent

3. Logical parent has logical child pointer, logical child
does not have logical twin pointer, and segment being
inserted is second logical child for logical parent

4. Segment type does not have physical twin forward pointer
and segment being inserted is second segment of this
type for parent or is second HDAM root for one anchor
point

5. The segment being inserted is in an inverted structure;
that is, the immediate parent of this segment in the
logical structure is actually its physical child in the
physical structure.

Action: User determined.

B.8 IMS/VS Application Programming Reference Manual

'

)

IX

LB

LC

LD

Error in call.

Explapation: Violated insert rule. Review the insert rule
in the IMS/VS System/Application Design Guide.

Possible Causes:

1. Insert of logical child and logical parent (insert rule
of logical parent is physical and the logical parent
does not exist)

2. Insert of logical child and logical parent (insert rule
is logical or virtual and the logical parent does not
exist) and, in the user I/O area, the key of the logical
parent does not match the corresponding key in the
concatenated key in the logical child.

3. Insert of logical child (insert rule of logical parent
is virtual and logical parent exists) and, in the user
I/0 area, the key in the logical parent does not match
the corresponding key in the concatenated key in the
logical chilad.

4. ISRT request after previous Open, Close or I/0O error
status code.

S. A GSAM ISRT call was issued after a previous AI or A0
status code was returned.

Action: Correct progranm.

Call is not completed.

Explanation: The segment that the user tried to load already

-y L 5

exists in the data base. Other possible causes are:

1. 1A segment with an equal physical-twin-sequence field
already exists for the parent.

2. A segment type does not have a physical-twin-forward
pointer, and the segment being inserted is either the
second segment of this segment type for the parent or
the second HDAM root for one anchor point.

w
.

An application program inserted a key of X'FF'..FF' into
a HISAM or HIDAM data base.

Action: User determined.

Call is not completed.

Explanation: Key field of segments is out of sequence.
Ag;;gg:‘ Check and correct.

Call is not completed.

Explanation: No parent has been loaded for this segment.

Action: Check and correct.

DL/I Status Codes B.9

LE

NE

NI

B.10

Call is not completed.

Explanation: Sequence of sibling segments is not the same
as the sequence in the DBD.

Action: Check and correct.

Call is not completed.

Explanation: Indexing maintenance issued a DL/I call, and
the segment has not been found.

Action: User determined.

Explanation: 1Index maintenance was unable to open an index

data base, or there was a duplicate segment in the index.

Possible causes for being unable to open the index data
base:

1. Error in DD cards

2. The data set was opened for something other than load
mode, but it is not loaded.

3. Buffer too small to hold record read at open time. See
the IMS/VS System Programming Reference Manual for
minimum buffers pool size.

4. DD cards for logically related data bases not supplied.

5. For an OSAM data set, the DSORG field of the OSAM DCB,
DSCB, or JFCB does not specify PS or DAL

6. For an old OSAM data set, the BUFL or BLKSIZE field in
the DSCB is zero.

7. The data set is being opened for load and the processing
option for one or more segments is other than L or LS.

8. The allocation of the OSAM data set is invalid;
allocation is probably (1,,1) rather than (1,1) and this
causes the DSORG to be PO.

9. Processing option is 1, the O0SAM data set is old, amnd
the DSCB LRECL and/or BLKSIZE does not match the DBD
LRECL and/or BLKSIZE.

Action: Check DD cards; ensure ddname same as name specified

on DATASET card of DBD. Segment name area in PCB has ddname
of data set which could not be opened.

_.Possible causes-for-a-duplicate-segment "in the index:

1. Index segment was incorrectly deleted earlier - Index
should be rebuilt.

2. Index DBD incbrrectly specifies unique key value -
secondary index only.

IMS/VS Application Programming Reference Manual

¥O

oc

ob

QE

QF

OH

RX

uc

I/0 error

Explanation: There was a BSAM, ISAM, VSAM, or OSAM physical
I/0 error during a DL/I call issued by indexing maintenance.

Action: Check and correct.

CHKP was successful; GU was not successful (no more
messages) .

Explanation: There are no more input messages.

Action: As appropriate.

Call is not completed.
Explanation: There are no more segments for this message.

Action: As appropriate,

Explanation: A GET NEXT call was issued before a GET UNIQUE.

Action: Check and correct.

Error in call.

Explanation: Length of segment is less than five characters.
{Allowable segment length is length of message text plus
four control characters.)

Action: Check and correct.

Explanation: This is a terminal symbolic error -- the output

designated is unknown to IMNS/VS (logical terminal or
transaction code).

Action: Check and correct.

Error in call.

Explanation: Violated replace rule. Review the replace
rule in the "Data Base Design Considerations"™ chapter of
the IMS/VS System/Application Design Guide

Action: Correct program.

Checkpoint record written to UCF Journal data set.

Explanation: During the processing of a HD Reorganization
Reload or a user's Initial Load program under the supervision
of the Otility Control Facility (UCF), a checkpoint record
was written to the UCF Journal Data set. This status code
is returned to indicate that the last ISRT call was correct
and the User Initial Load program may continue or perform

his checkpointing procedure before continuing.

DL/TI Status Codes B.11

OR

gs

Ux

V1

X1

X2

B.12

The user's Initial Load program is being restarted under
the UCF.

Explanation: During the processing of a user's Initial Load

program under the UCF, a termination had occurred. The job
was resubmitted with a Restart request. ‘

Action: The user's Initial Load Program must get itself

back in step with Data Base Loading. ' Examination of the
UOser I/0 area or PCB key-feedback area can be used.

The user's Initial Load program is preparing to stop
processing.

Explanation: During the processing of a HD Reorganization
Reload or a user's Initial Load program under the supervision
of the Utility Control Facility (UCF), the operator replied
to the WTOR from UCF and requested the current function to
terminate. The last ISRT call was processed.

!

Action: The user's Initial lLoad program should checkpoint

its data sets and return with a non-zero value in Register
15.

A checkpoint record was written and processing stopped.

Explanation: This is a combination of UC and US status

codes; see the descriptions of those codes for further
explamnation.

o

ction: Refer to UC and US status codes.
Error in call.

Explanation: An invalid length was supplied for a
variable-length segment. The LL field of the variable-length
segment is either too large or too small. The length of

the segment must be equal to or less than the maximum length
specified in the DBD. The length must be long enough to
include the entire reference field; if the segment is a
logical child, it must include the entire concatenated key
of the logical parent and all sequence fields for the paired
segment.

This status code is also returned when an invalid record
length is specified in a GSAM call.

Action: Correct the progranm.

System error.

Explanation: An I/0 error occurred while IMS/VS was reading
or writing the SPA.

. .-Action: -Terminate the comversation.” =

Error in call.

Explanation: The first insert to a transaction code PCB
that is conversational is not a SPA.

Action: InseTt the SPA; then reinsert the data segment.

IMS/VS Application Programming Reference Manual

N

X3

Xy

X5

X6

X7

X8

X9

XA

Error in call.

Explanation: Invalid SPA (user modified the first six
bytes).

Action: Correct the program, and restore the original bytes.
Error in call.

Explanation: An insert was made to a transaction code PCB
that is not conversational and the segment is a SPA.

Action: Do not pass the SPA to the transaction code. Send

only data segments.
Error in call.

Explanation: Multiple SPAs were inserted to a transaction
code PCB.

Action: Only one SPA is allowed per message, Correct the

program.
Error in call.

Explanation: An invalid transaction code name was inserted
into SPA.

Action: Correct the program to set the proper transaction

code name.
Error in call.

Explanation: The length of the SPA is incorrect
(user-modified first six bytes).

Action: Correct the progranm.

System error

Explanation: Error attempting to queue an SPA on a
transaction code PCB.

Action: Terminate the conversation.

Error in call.

Explanation: Incompatible conversational program call path.

Action: Design error. Report this to your systenm

programmer.
Error in call.

Explanation: An attempt has been made to continue processing
the conversation by passing the SPA to another program
through a program-to-program message switch after already

responding to the terminal.

Action: TIf a response has been generated, the SPA should
be passed back to the I/0O PCB. Review the rules for
conversational programs in this manual and correct the

program.

DL/I Status Codes B.13

¥B

Xc

XD

XE

XF

XG

bb

B.14

Error in call.

Explanation: The program has passed the SPA on to another
program for processing but is trying to respond to the
terminal.

Action: No response is allowed by a program which has passed
control of the program through a program-to-program message
switch., Review the rules for conversational programs in

this manual. ‘

Error in call.

Action: Correct the program to prevent it from setting

those bits.
IMS/VS is terminating by a CHECKPOINT FREEZE or DUMPQ.

g;glggggigg: This code is returned only from a CHKP call
issued by a batch-message application program. If the
application accesses the message queues, no message is

returned.

Action: BAny subsequent DL/I call will result in an abend.

—— e e

The application should terminate.
Error in call.

Explanation: An attempt has been made to insert a SPA to

an alternate PCB which was generated with the EXPRESS=YES
option.

Action: Regenerate the PSB and remove the EXPRESS=YES option

from the PCB or define another PCB (whose mode is not
express) to be used in the insert call.

BError in call.

i e i . et e

referenced alternate PCB had its destination set to a logical
terminal but was not defined as ALTRESP=YES during PSB
generation.

Action: Correct the application program or change the PSB

generation for that alternate PCB to specify ALTRESP=YES.
Brror in call,.

Explanation: Insert call ignored because the current

conversation requires fixed length SPAs and the insert was
to a transaction with a different or non-fixed length SPA.

Action: —~Correct the program or INS/VS System Definitionm.

Call completed.

INS/VS Application Programming Reference Manual

7N

()

abend, application program
ABEND macro statement 4.37
during output using PURG 4.14
TP call 4.9
accessing multiple data bases 2.46-2,47
description of 2.46-2.47
purpose of 2.46-2.47
alternate PCB, data communication 4.4-4.,5
defined with ALTRESP=YES 4.5,4.9
defined with EXPRESS=YES 4.4-4.9
defining 4.4-4.5
description 4.4
message formats, types of 4#.15
restriction with PURG call 4.14
ANS COBOL, conventions and uses of
batch program structure 2.38-2.40
building output messages
requirements 4.11%
using ISRT call 4.11-4.12
call format for data communication
calls 4.8
data base load example
listing 6.2-6.4
entry statement, data communication 4.7
message processing 6.19
input and output formats 6.19
listing 6.20-6.25
message processing program
structure 4.32-4,.34
PCB~mask, data communication
description 4.5-4.6
linkage section 4.6
retrieving seqgments of an input
message 4.9)
call formats using GU and GN 4.10
saving information in scratchpad
areas 5.3
input message format using ISRT
call 5.3
system service call formats
checkpoint (CHKP), basic 2.49
checkpoint (CHKP), symbolic 2.50
dequeue (DBEQ) 2.53
log (LOG) 2.54 ,
restart (XRST) 2.51-2.52
rollback (ROLL) 2,53
terminating application programs (data
base batch) 2.37
application program examples 6.1
batch processing (assembler language and
COBOL) 6.8
listing 6.8-6.18
conversational (PL/I)
description 6.26
entries and displays at 3270
terminals 6.26-6.27
message format service 6.34-6.35
PL/I optimizing compiler. 6.28-6.33

6.1-6.2

6.26-6.27

data base dump (assembler language) 6.5
listing 6.5-6.7

data base load (ANS COBOL) 6.1-6.2
listing 6.2-6.4

message processing (ANS COBOL) 6.19
input and output formats 6.19 -
listing 6.20-6.25

application program, INMS/VS
data base PCB masks, use of 2.16-2.17

entry points to 2.14-2,15
rules 2.14
examples 2.15-2.16

language and compilation 2.14-2.15
PCB mask used with 2,19
application programming, data
communication 4.1
abends issued by application
programs 4.37
ANS COBOL message processing progranm
structure 4.32-4,34
example 4.33-4.34 ‘
assembler language message processing
program structure 4.37
data base PCBs 4.2-4,3
device-dependent input messages 4.18
2260-1, 2260-2, 2265-1 4,19
2270 system components 4,19-4.20
2972/2980 components 4,20-4,21
2980 Model 1 4.20-4.21
2980 Model 4 4.22-4,.23
entry statements to TP application
programs 4.7
ANS COBOL example 4.7
PL/I optimizing compiler example 4.7
input message formats 4.16-4.17
first or only segment 4.17
non-first segment 4.17
preset mode segment edit 4.17-4.18
terminal types of 4.16
interface to INS/VS 4.2
logical terminal concept 4.2
message format service (MFS), use
of 4.15,4.1-4.2
output message format 4.23
online message formatting without
MPS 04.29-4.31
program-to-program message
switching 4,32
terminal destination -
output 4.23-4.24
terminal types 4.27-4.29
text 4.26)
video-paging 4.25-4.26
WRITE command, uses of 4.25
PL/I optimizing compiler message
processing program structure 4.35
example 4.,35-4,37

Index 1.1

teleproéessing calls 4.8
building output messages 4.9
CHNG call, use of 4.9,4.15

delimiting output messages being

inserted 4.9

grouping of message segments with

PURG call 4.14
input message segment calls
(GU, GN) 4.9-4.11

ISRT call, uses of 4.9,4.11-4.12

nessage destination 4.9
message relationships to
segments 4.8

output message segment calls using

ISRT 4.11-4,13
PURG call, uses of 4.9,4.13

setting an output message destination

to an alternate PCB 4.9

synchronization points, uses of 4.9

. teleprocessing PSBs 4.3
alternate PCB 4.3-4.5
I/0 PCB. 4.3-4.4

TP~-PCB mask 4.5
COBOL example 4.6
fields required for 4.5-4.6
layout 4.5-u4.6
PL/I example 4.7

application programming and data base

administration, relatlonships
between 1.2-1.3

application programming, environment

for 1,1
application programming for data
communications 1.5

application programming testing aids
Data language/I (DLIT) test program

(DFSDDLTO) 7.1
control statements 7.3
DATA statement 7.7
JCL requirements 7.2-7.3
message processing region
simulation 7.19
description of 7.19
examples (COBOL) 7.21-7.22

executing DL/I data base calls

for 7-20

» moving a message processing progranm

to a message processing
region 7.20
" PSB generation for 7.20

assembler lanquage, conventions and uses of

batch processing program 6.8
- example (listing) 6.8-6.18
batch program structure 2.43

‘“"‘“”“”“‘“Cﬁlls“tO”leI;“data“base”batbh’”2T21"”ﬂ““""”’”
data base dump, example of 6.5-6.7

entry point to data base batch
application program 2.15
GSAM call formats 2.69-2.70

system service call formats
checkpoint (CHKP), basic 2.49
checkpoint (CHKP), symbolic 2.50
degueune (DEQ) 2.53
get SCD (GSCD) 2.55
log (LOG) 2.54
rollback (ROLL) 2.53
statistics (STAT) 2.56
terminating application programs (data
base batch) 2.37

basic edit, IMS/VS U4,.17-4.18
basic functions of a user
installation 1.1
batch programming, data base 2.1
accessing a data base 2.10
accessing multiple data
bases 2.46-2,47
application and logical data
structures, designing and
defining 2.8-2.10 _
checking out online message programs
in batch regions
description of 2.66
examples (COBOL, PL/I) 2.67
data base organization 2.2
data elements, relationships
of 2.3-2.4
levels 2.4
path, definition of 2.5-2.7
record, definition of 2.6-2.7
root segment, definition of 2.5-2.7
segment types 2.5
size and extent of data
structures 2.7
traversal of a structure 2.4
data structures
application 2.2-2.3
logical 2.2-2.3
logical data bases 2.2-2.3
physical data bases 2.2-2.3
designing logical data
structures 2.1,2.7
DL/I calls
description of 2.20
examples of (assembler langquage,
COBOL, and PL/I) 2.20-2.22
functions 2.22-2.23
segment search arguments (SSAs) used
in 2.24,2.27 ,
DL/I processing functions 2.28
"delete and replace calls 2.33-2.35

get calls 2.29=2.31 o e e A

insert calls 2.32-2.33
DL/I status codes
description of 2,43
for get calls 2.u44 .
for exceptional conditions 2.u44
entry points to application
programs 2.14-2.15
examples of 2.15-2.16
PL/I transaction, initial invocation
of 2.15-2.16

I.2 IMS/VS Application Programming Reference Manual

N

|

N, S

N

examples, batch-program structure

ANS COBOL 2.38-2.140

assembler language 2.43

PL/I optimizing compiler 2.41-2.43
generalized sequential access method

(GSAN)
buffer management 2.73
calls 2.69

checkpoint/restart 2.73
data base accessing 2.68-2.69
functions of 2.68
JCL 2.74-2.75
record formats 2.70
restrictions 2.67
uses 2.67
interface to application progranms,
INS/VS 2.11-2.13
program communication blocks
(PCBs) 2.11-2.12
DL/I 2.11-2.12
interfacing with IMS/VS 2.1
languages used and compilation 2.14
loading a data base, initially 2.10
logical data bases, designing and
defining 2.8
PCB elements 2.18-2.19
data base name 2.18
DL/I processing options 2.18
DL/I reserved area 2.19
DL/I status codes 2.18
key-feedback area 2.19
length of key-feedback area 2.19
PCB name 2.18
segment~hierarchy-level
indicator 2.18
segment-name-feedback area 2.19
sensitive segments, number of 2.19
PCB masks 2.16,2.19
description of 2.16
examples (COBOL, PL/I) 2.17
physical data bases, designing and
defining 2.8
position in a data base 2.44-2.45
processing with DL/I I/0 functions
description of 2.60-2.61
data base creation 2.61
data base deletions 2.65
data base insertions 2.66
data base retrievals 2.64
data base updates 2.65
segments, format of 2.35
fixed-length 2,.35-2.36
variable-length 2.36
system service calls
CHKP 2.47-2.48
DEQ 2.47,2.52
GSCD 2,47-2.48,2.55
LOG 2.47,2.54-2,55
ROLL 2.47,2.53
STAT 2.47,2.56
XRST 2.47,2.51
terminating application programs 2.37

calls to DL/I 2.20
description of 2.20
examples of I/0 processing
calls 2.20-2.21 v
assembler language 2.21
COBOL 2.20
PL/T 2.21
examples of I/0 work area
COBOL 2.23
PL/I 2.24 .
segment search arquments (SSAs) 2.24
command codes for 2,27
concept and function of 2.24
gqualification of 2.26
structure 2.25
characteristics of 2,27
checking out online message programs in
a batch region 2.66
CMPAT option, uses of 2.66
examples (COBOL, PL/I) 2.67
checkpoint call (see CHKP call)
CHKP call (data base) 2.47-2.48
basic, examples of 2.49
symbolic, examples of 2.50
CHNG call (data communication) 4.9,4.15
COBOL, conventions and uses of ‘
batch processing program exaiiple 6.8
calls to DL/I, data base batch
programming
description of 2.20
checking out online message programs
in batch regions 2.67
1/0 processing call 2.20-2,22
entry point to data base batch
application programs 2.15
GSAM call formats 2.69-2.70
PCB mask, data base
application programming
requirements 2.16
linkage section 2.17-2.19
system service call format
statistics (STAT) 2.56
conversational processing
description 5.1
input message format 5.2
example of first message segment
entered at terminal 5.2
example of first CALL statement,
PL/I 5.2
output message format 5.3
response to originating
terminal 5.3
passing conversational control to
another conversational program 5.3
by program in control 5.3
for program-to-program switch 5.4
size of scratchpad area (SPA),
changing 5.4

Index I.3

rules for writing conversational programs
fixed-length SPAs, defining 5.5
message response 5.6
modifying first six bytes of SPA,
restriction against 5.5
program-to-program switches 5.5
returning the SPA to IMS/VS 5.5
SPA transaction code, changing 5.5

saving information in SPAs 5.3
ISRT call, use of 5.3
example of ISRT call, ANS COBOL 5.3
example of ISRT call, PL/I 5.3
returning the SPA to IMS/VS, using

ISRT call for 5.3

scheduling application programs for

conversational transactions 5.1
GU and GN calls used for 5.1

scratchpad area (SPA) format 5.1-5.2

terminating a conversation, methods

of 5.4
by conversational program
by IMS/VS 5.5
by master terminal operator 5.5
by terminal operator 5.4-5.5

converting existing programs for use by
IMs/vs 1.5
converting from 0S/VS file design and

5.4

access to IMS/VS 1.3-1.4
advantages 1.4
data base creation 2.61

HIDAM, HISAM, and HSAM 2.61

insert function, use of 2.61

segment search arguments for 2.62-2.64
data base deletions 2.65

examples (PL/I) 2.66
data base dump 6.5

example (assembler langquage) 6.5-6.7

data base insertions 2.66,2.61
data base load

description 6.1

example (ANS COBOL) 6.1-6.2

initial 2.10

data base organization, INS/VS batch
application data structure 2.2-2.3
logical data structure 2.2-2.3
physical and logical data base
structures 2.2-2.3

data base retrievals 2.64-2,.65

data base structure, INS/VS 2.35
fixed-length segments 2.35-2.36

format of 2.35-2.36

variable-length segments 2.36 =

S for‘at_of, - 2._ 36 R

segment retrieval 2,36
data base updates 2.65
examples (PL/I) 2.65

I."

data bases, INS/VS
accessing 2.10
application and logical data
structures 2.8
defining 2.9-2.10
designing 2.9
loading 2.10
logical 2.8
Data lLanguage/I (DL/I) test program:
DFSDDLTO 7.1.
DATA statement of DFSDDLTO 7.7
control statements 7.3
CALL 7.5-7.7
COMPARE for PCB comparisons 7.9-7.10
COMPARE for user I/0 area
comparisons 7.11-7.12
COMMENTS 7.5
DATA 7.7-7.8
parameter length, LOG
calls 7.8-7.9
parameter length, SNAP calls 7.8
OPTION 7.12
STATUS 7.3-7.4
sample input 7.18
execution in different types of
regions 7.16
format of display of DL/I
blocks 7.16
general description 7.1
hints on usage 7.17
interfaces 7.1
JCL requirements 7.2-7.3

example 7.18
other formats 7.15
CALL 7.15

PUNCH 7.13
SYSIN2 7.14
data set, definition of
DEQb call 2.52,2.47
examples of 2,53
dequeue call (see DEQDb call)
design and definition of IMS/VS data
bases 2.8
accessing a data base 2.10
application and logical data
structures 2.8
defining 2.9-2.10
designing 2.9
loading a data base, initially 2.10
logical data bases 2.8
physical data bases 2.8
DLET call (data base) 2.33-2.35
DL/I call functions 2.22-2.23

1.4

_DL/I processing functions--2.28--- -~

delete calls 2.33-2.34
issued against logical data

bases 2.35
rules for using 2.35
get calls 2,29-2.30

rules for using 2.31
get hold calls 2.31-2.32
insert calls 2.32

loading a data base with 2.33
rules for using 2.32
updating data bases with 2.33

IMS/VS Application Programming Reference Manual

N

replace calls 2.33-2.34 X4 B.13

rules for using 2.35 X5 B.13
status codes for 2.43-2.44 X6 B.13
(see also DL/I status codes) X7 B.13
DL/I status codes X8 B.13
description of 2.43-2.44,2.1 X9 B.13
detailed description of B.1 XA B.13
AA B.1 XB B.14
AB B.1 XC B.14
AC B.1 XD B.14
AD B.1 XE B.14
AH B.2 XF B.14
ATl B.2 XG B.14
AJ B.3 bb B.14
AK B.3 guick-reference table A.1-1.3
AL B.3
AM B.U4
A0 B.4 field, key)
AQ B.4 description of 2.5
AR B.4 uses of 2.5
AT B.U4
AU B.S
AY B.5 generalized sequential access method
AZ B.5 (see GSAM)
A1 B.5 get calls (data base) 2.29
A2 B.S5 GHN 2.29,2.31
A3 B.6 GHNP 2.30-2.31
A4 B.6 GHU 2.29,2.31
AS B.6 GN 2.29-2.30
A6 B.6 GNP 2,30
A7 B.6 GU 2.29-2.30
A8 B.6 get calls (data communication)
A9 B.6 GN 4.9
DA B.7 GU 4.9
DJ B.7 get SCD call (see GSCD call)
DX B.7 GSAM
GA B.7 accessing data bases 2.68
GB 'B.7 calls used for 2.68-2.69
GE B.7 buffer management with 2.73
GK B.S8 calls 2.69
GL B.8 examples (assembler, COBOL,
GP B.S8 PL/I) 2.69-2.70
II B.8 checkpoint/restart with 2.73-2.74
IX B.9 checkpoint restrictions 2.74
LB B.9 JCL guidelines 2.74-2.75
LC B.9 data base restrictions 2.67
LD B.9 description of 2.67
LE B.10 functions 2.68
NE B.10 record formats with 2.70
NI B.10 data set I/0 area 2.71
NO B. M fixed-length 2.70
QoC B.11 undefined-length 2.71
QoD B.11 user area 2.71
QE B.11 variable~length 2.70
QF B.11 record search arqgument (RSA), uses
QH B.11 of 2.71-2.72
RX B.11 status codes 2.70
uc B.11 GSCD call 2.55,2.48
UR B.12 examples of 2.55
Us B.12 guide to using IMS/VS systenm
UX B.12 publications iv-v
vl B.12
X1 B.12
X2 B.12
X3 B.13

Index

illustrations (see Preface)
implementing an IMS/VS
application 1.6-1.7
INS/VS interface to application
progranms
PL/T 2.11-2.12
program communication blocks
{PCBs) 2.11-2.12
program elements required
for 2.11-2.12
IMS/VS system publications, guide to

using iv-v
I/0 PCB 4.4 :
ISRT call (data base) 2.32-2,33,2.30
ISRT call (data communication) 4.9,
4.11-4.12

LOGbh call 2.54, 2.47
examples of 2.54
logical data bases
defining 2.8-2.10
description of 2.8
designing 2.8-2.10
message format service (MFS)
example with PL/I 6.34-6.35

message processing region simulation 7.19
description of 7.19 .
examples of (COBOL) 7.21-7.22

entry point and call statement 7.21
message output 7.22-7.24
testing a message program in a batch
processing region 7.21
executing DL/I data base calls for 7.20C
moving a message processing program
to a message processing region 7.20
PSB generation for 7.20
multiple application programs,
requirements of 1.2
multiple positioning 3.10-3.11
effects on DL/I call functions
DLET and REPL calls 3,12
‘GN and GNP calls 3.12
GU and ISRT calls 3.12
examples of call sequences
for 3.12-3.13
maintaining position in a data
base 3.10°
mixing calls with and without SSAs and

multiple positioning 3.14
exanple 3.15
restrictions_ 3.14-3.15. (U —

“parallel processing of dependent
segment types 2.14
single positioning versus multiple
positioning 3.10-3.12,3.15-3.16
examples 3.10-3.12
uses of 3.13-3.14

I.6

organization of data, IMS/VS 2.3
design of data structures,
limits on 2.7
rules 2.7
hierarchical data structures
relationships of data
elements 2.3-2.4
hierarchical interrelationships
data base record 2.6
path 2.5
root segments
levels 2.4
segment
fields 2.5
segment occurrence
segment type 2.5
traversal of hierarchical
structures 2.4

2.3

2.5

2.5

2.5

path calls 2.27,3.5
path, hierarchical
definition of 2.5
example 2.4
PCB for a logical data structure
DL/I areas 2.18-2.19
key-feedback area 2.18-2.19

2.18

concatenated keys 2.19-2.20
length of 2.19
name of data base 2.18

name of PCB 2.18
segment-name feedback area 2.19
sensitive segments, number of 2.19
PCB mask, data base ‘
description 2.16-2.17
COBOL example 2.17-2.19
PL/I optimizing compiler
example 2.17-2.19
PCB mask, TP
COBOL example 4.6
fields required for
layout 4.5-4.6
PL/I example 4.7
physical data bases
defining 2.8-2.10
description of 2.8
designing 2.8-2.10
PL/I, conventions and uses of
building output messages
requirements 4,11
using ISRT call 4.11
call format for data communlcatlon
calls 4.8 o R
‘calls to DL/I, “data base batch
description of 2.20
1/0 processing call 2.20-2.22
checking out online message programs
in batch regions 2.67
conversational application program
example 6.26-6,27
messagde format service (MFS)
statements used with 6.34-6.35

4.5-4.6

IMS/VS Application Programming Reference Manual

/\

RN

N

data base processing using DL/I
input/output function
data base deletions 2.66
data base updates 2.65
entry point to data base batch
application programs 2.15-2.16
GSAM call formats 2.69-2.70
input message format,
conversational 5.2
retrieving segments of an input
message 4.9
call formats using GU and GN
calls 4.10
saving information in scratchpad
areas 5.3
segment search arguments (data base
batch), specifying 2.27-2.28
system service call formats
change (CHNG) 4.15
checkpoint (CHKP), basic 2.49
checkpoint (CHKP), symbolic 2.50
dequeue (DEQ) 2.53
log (LOG) 2.54
purge (PURG) 4,13
restart (XRST) 2.51-2.52
rollback (ROLL) 2.53
statistics (STAT) 2.56
terminating application programs 2.37
PL/I optimizing compiler, conventions and
uses of
batch program structure 2.41-2.43
conversational application progran
using the 3270 as a calculator 6.26
examples 6.26-6.27
conversational processing,
example of 6.28-6.33
message processing progranm
structure 4.35-4,37
PCB-mask, data base
application programming
requirements 2.16
example 2.17-2.19
PCB-mask, data communication
application programming
requirements 4.5-4.6
example 4.7
position, data base 2.44
current 2.44-2.46
not-found 2.44-2.45
reestablishing known position 2.45
preface iii-vi

PURG call (DC) 4.9,4.12-4.14

record, data base
definition of 2.6
example 2.7

REPL call (data base)

ROLL call 2.53,2.47
examples of 2.53

rollback (see ROLL call)

2.34-2.35

secondary indexing .
considerations, special 3.22
creating a secondary data base

structure 3.19-3.20
definition of 3.19
defining 3.21
description of 3.16-3.17
examples 3.25-3.27
dependent AND, use of 3.26-3.27
independent AND, use of * 3.25-3.26
indexed segments and fields
index pointer segment 3.18
index source segment 3.18
index target segment 3.18
options and rules 3.21-3.22
processing a secondary index as a
data base 3.23
secondary indexes versus primary
indexes 3.17
segment search arqguments 3.34
independent and dependent AND
Boolean operators 3.24-3,25,3.27
XDFLD field names in 3.24
uses of 3.17,3.12

segment
definition of 2.5
example 2.4

segment search arguments (SSAs),

data base batch programming 2.27
characteristics 2.27
command codes for 2.27
concept and function of 2.24
example (PL/I) 2.27
qualification of 2.26
structure of 2.25-2.26

segment search arguments (SSAs),

advanced techniques for data base
processing 3.1)
Boolean qualification statements used
in 3.8
logical operators, use with 3.8-3.9
call function, modifying 3.4-3.5
characteristics of 3.3-3.4
command codes used with 3.4,3.2

c 3.6
D 3.5
F 3.4
L 3.4-3.5
N 3.5
P 3.7
Q 3.5
U 3.7
v 3.7

independent and dependent AND Boolean

operators, uses of 3.24
examples 3.25-3.27

logical-parent sequence fields,

effects of using 3.9-3.10

main elements of 3.1 _
Boolean qualification statements 3.1
conmand codes 3.1
segment name 3.1

Index I.7

qualification statement,
description of 3.1-3.2 .
comparative value 3.2-3.3
field name 3.2-3.3
relational operator 3.2-3.3
segment qualification 3.6
setting of parentage 3.7-3.8
structure 3.2
command codes 3.2
segment name 3.2
qualification character 3,2-3.3
gualification statement 3.2-3.3
use of field names for concatenated
segments 3,9-3.10
STAT call 2.56,2.48
examples of 2.56
statistics
ISAM/0SAM buffer pool 2.56
ISAM/0SAM data base buffer
pool 2.57-2.58
VSAM buffer subpool 2.58-2.60
statistics call (see STAT call)
symbolic call interface for CHKP/XRST
DL/I calls xv
checkpoint (CHKP) call, description
of 2.48

basic CHKP call, example of 2.49

symbolic CHKP call,
example of 2.50
restart (XRST) call, description
of 2.51
examples 2.51-2.52
system service ‘calls 2.47
checkpoint (CHKP) 2.47-2.48
examples of basic CHKP "2.49
examples of symbolic CHKP 2.50
dequeue (DEQbYy 2.52,2.47
examples of 2.53
get SCD {GSCD) 2.55,2.u48
examples of 2.55
log (LOGb) 2.54,2.47
examples of 2.54
restart (XRST) 2.51,2.47
examples of 2.51-2.52
rollback (ROLL) 2.53,2.47
examples of 2.53
statistics (STAT) 2.56,2.48
examples of 2.56
System/3 4.16,4.27
System/7 4.16,4.27
System/370 console
input message length 4,16
online message formatting without
MFS 4,29

terminating an application program 2.37
RETURN and GOBACK statements,
use of 2.37
with ANS COBOL 2,37
with assembler language 2.37
with PL/T 2,37 .
testing aids (see Data lLangquage/I test
program; message processing region
simulation)
TP PCBs U4.3-4.4

XRST call 2.51,2.47
examples of 2.51-2.52

33/35 Teletypewriter (ASR)
input message length 4.16
online message formatting without
MFS 4,29
output message length 4.27
1050 Data Communication System
input message length 4.16
online message formatting
without MFS 4.29
output message length 4,27
2260 Display Station Models 1 and 2
input message considerations 4.16-4.17
output messaqge
considerations 4.24,4,26,4.30
video paging 4.25-4.26
WRITE commands 4.25
2265 Display Station Model 1
input message considerations 4.16-4.17
output message
considerations 4.24,4.26,4.30
video paging 4.25-4.26
WRITE commands 4.25
2265 Display Station Model 2 (2770)
input message considerations 4.16-4,17
output message
considerations 4.24,4.26,4.31
video paging 4.25-4.26
WRITE commands 4,25
2740 Data Communications Terminal
Models 1 and 2
input message length 4.16-4.17
online message formatting
without MFS 4.29
output message length 4,26
2741 Data Communication Terminal
input message length 4.16-4,17
online message formatting
without MFS 4.29

__output _message length 4.27- . _output—message length 4.26 T

2770 Data Communications Systenm
input message considerations 4.16-4.17
output message considerations 4.27
video paging (2265-2) 4.25
WRITE commands (2265-2) 4.25

I.8 IMS/VS Application Programming Reference Manual

7

2780 Data Transmission Terminal
Models 1, 2, 3 and 4
input message length 4.16-4.17
online message formatting without
MFS 04.29-4.30
~ output message length 4.27
2980 General Banking Terminal Systenm
Models 1, 2, and 4
function keys 4.23-4.24,4.28-4.29
input message
considerations 4.16,4,21-4.23
message lights 4.28
online message formatting without
MFS 4.31
output message
considerations 4.24,4,26-4,28
2980-6 function key translate
table 4.23
2980~-1 special character set 4.21
2980-4 special character set 4,22
3270 Information Display Systenm
input message considerations 4.16
output message considerations 4.27
3600 Finance Communication Systenm
input message considerations 4.16
output message considerations 4.27
3741 Data Stations, Models 2 and 4
input message considerations 4.16
output message considerations 4.27
3767 Communication Terminal
input message considerations 4.16
message format service (MFS)
support 4.2
output message considerations 4,27
3770 Data Communication Systen
input message considerations 4.16
message format service (MFS)
support 4.2
output message considerations 4.27
3790 Insurance Communication System
input message considerations 4.16
output message considerations 4.27
7770 Audio Response Unit Model 3
input message length 4.16
output message considerations 4,27

Index

I.9

SH20-9026-4

JISIME

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(Internationat)

7°9206-0CHS "V'S'N Ul paluld [enuely sousiasay Bunwiweibouy uoneol|ddy | uotsisp SA/SII

9 -

IMS/VS Version 1 Reader’s
Application Programming Reference Manual Comment
SH20-9026-4 Form

7N

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

"Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local I1BM representative.

If you would like a reply, please provide your name, job title, and business
address (including ZIP code).

-

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

SH20-9026-4

Fold and Staple

First Class Permit
Number 6090
San Jose, California

Business Reply Mail

No postage necessary if mailed in the U.S.A.

Postage will be paid by:

IBM Corporation

P. 0. Box 50020
Programming Publishing
San Jose, California 95150

Fold and Staple

1013

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

oS

1BM World Trade Corporation
821 Un_ited Nations Plaza, New York, New York 10017
(International)

|enuey eduaiaay Bulwwelbolq uonestjddy | uoisiap SA/SWI

-9206-0CHS “V'S'N Ul pajulg

Q.

N

‘o ay

&

