B 5,;"{5‘::.-“»_(, f
I B B
.

DATA BASE

LOGIC & FLOW

&

Course Materials

o | B N N TR
L\/lo-——fo*'”

,. | Vouw o o

C | | -

‘—"\'

IMS/VS DATA BASE LOGIC AKD FLOW

DATES OF COURSE:

INSTRUCTOR:

COURSE ABSTRACT:

COURSE OBJECTIVES:

8 Half-Days, August 22 Thru August 31,
1977

5ill Lockhart J15/F14 Santa Teresa Llab
Phone - x8240

This lecture/workshop course is intended
to be an in-depth view of the internal
workings of an IMS/VS Batch system. In
the class you will be provided with
several INS/VS dumps where we will track
the basic DL/I calls through the Ceontrol
Blocks and Modules of IMS/VS.

Upon comnpletion of this course, the
student should be able to:

* Load a given data base using any of the
INS/VS data organizations and access
methods.

* Utilize the DL/T Test Progran
(DFSDDLTO) and the DL/I calls necessary
to minipulate logical and physical data
bases.

* Analyze the various types of IMS/VS
storage dumps to determine both proper
and improper operation of a batch INMS/VS
systen.

* List the steps required by DL/I modules
to process the basic DL/I calls.

* Match the DL/I modules with their
functions.

* Locate a given root segment in the data
base buffer pool and all its dependents
for each of the DL/I data organizations.

* Incdicate the source and purpose of any
DL/I ccontrol block.

* Map out a batch INS/¥S storage dunmp
showing the lccation and contents of the
major DL/I control blocks.

PAGE 2

e

o

!

COURSE TOPICS:
DL/I General Call Flow
DL/I Control Blocks
Eetrieve Call Flow (GET type Calls)
Buffer Management
Load /Insert Call FPlow
Delete/Replace Call Flow
Data Base Traces

CLASS EXERCISES: Several Storage dumps taken on 'STLMVS1®

(MVS Batch) will be used for analysis
during class.

MATERIALS: Student Guide (includes copies of all foils
used) , Core Dumps, and Library copies of
IMS/VS Pubs.

Updated: 08/11/77

.
(_>rerequisite Quiz For Course: IMS/VS D.B. LOGIC & FLOW

Name:

Dept/Office:

Phone:

FEEL THE
THE ANSWERS LISTED.
2. WHEN YQU HAVE FINISHED THIS QUIZ MAIL IT TO:

INSTRUCTIONS :

1. READ EACH QUESTION OVER AND PICK THE BEST ANSWER. EVEN IF YOU
ANSWER IS NOT THERE, PICK THE

'BEST'

NOTES:

CLASS.

K K ¥ N N X K KK XK KKK XXX KR

***********f***********1****************1********i@******************

THIS QUIZ IS PRIMARILY A TOOL FOR YOU TO ASSURE YOURSELF THAT
YOUl ARE PREPARED FOR THE COURSE.

FROM ANY COURSES AND/OR EXPERIENCE YOU HAVE HAD ON THE SUBJECT.

ANY QUESTION YOU HAVE DIFFICULTY WITH SHOULD POINT OUT TO YOU
AN AREA OF THE SUBJECT THAT YOU SHOULD REVIEW BEFORE COMING TO

IF YOU HAVE DIFFICULTY WITH THE MAJORITY OF QUESTIONS ON THE

QUIZ YOU SHOULD CONSIDER ENROLLING IN PREREQUISITE CLASS (ES)
AND TAKING THIS COURSE AT A LATER DATE.
(;f***

THIS PREPARATION CAN COME

'"NEXT BEST' AMONG

*
*
*
*
*
*
*
*
*
%
*
%
*
*
*
%
*
*
*
*

Circle the correct answer(s) or fill in the blank area:

1. In IMS/VS terms, a Data Base is defined as a nonredundant

collection of interrelated data items processable by one or
more application program(s).

True/False

.Tlu&f

2. When loading a HISAM (ISAM/OSAM) Data Base, each physical
reccrd starts within an:

data base

(59 ISAM

B. OSAM
' C. QSAM
D. BSAM

Use FIGURE 1

3. The circled number

oOwpy

=

logical
logical
logical
logical

recoxrd
record
record
record

(attached) to answer questions 3-7.
1 indicates a physical:

. PARENT pointer

CHILD pointer

. CHILD pointer, first & last

TWIN pointer

TWIN pointer, forward & backward

4. The circled number 2 indicates a physical:

A. PARENT pointer
B. CHILD pointer
C. CHILD pointer, first €& last

. TWIN pointer
E TWIN pointer, forward €& backward

circled number 3 indicates a physical:

The
A. DPARENT pointer
CHILD pointer

. CHILD pointer, first & last
D.
E.

TWIN pointer
TWIN pointer, forward & backward

6. The circled number 4 indicates a physical:

4 @ PARENT pointer
. CHILD pointer
C. CHILD pointer, first & last

(:) D. TWIN pointer
E. TWIN pointer, forward & backward

7. The circled number 5 indicates a physical:

A. PARENT pointer
B. CHILD pointer
q;) CHILD pointer, first & last
. TWIN pointer :
E. TWIN pointer, forward £ backward

8. There must be at least fB@ﬂ DATASET statement(s) for each physical
DBD generation. :

B> ONE
c. Two
D. THREE
E. FOUR

9. The call interface between DL/I and an application program is
dependent on a particular storage organization and access method.

<:>True/False‘ False

10, GET calls may or may not have SSAs.

True/False TJaug

11. DELETE and REPLACE calls may have qualified SSA's

True/False EU&&/

12. Any logical data structure may be composed of one or more
physical data base records.

True/False —rhug

13. Symbolic pointers may NOT be used when the data base "poihted-to"
exists in HIDAM or HDAM.

True/False ;2125

14. When direct address pointers are used to establish a logical
(;/ relationship, the pointers exist as part of the user data.

True/False Folcg

15. When symbolic pointers are used to establish a logical relationship,
the pointers exist as part of user data.

True/False Traug

FIGURE 1

SKILL

3 . Next Skill
writer

L]

NAME
smith

EXPR. EDUC. EXPR
SX27 (\ MBA %997
> 1 EDUC. ga \\,% EXPR. 194
EDUC. AA SKILL
ez
NAME
Lmsqmm

DATA BASE
STRUCTURE

BATCH PROCESSING RECION

- os/vs
I
REGION PeagrAm
~ \ConTRouER ConTROLLER

PS8

"APPULCATION
ProgrRAM

— ———— S S -GN -GEERu— QIS S - -

LaNGuage InTERFACE

LT

PR Gt GenD GwES Gww Sww

—_— ~—- |
DBD fe——1 pam %’m
Language /T LoGaING
Access |
e
|_1 MeTHoDs ;

i

DAta Base Burrer Pood

w8t - 90 - oavd

O | O)
DLI REGION INITIALIZATION
' vl 9\'

. \CW L‘,vﬂ

%‘L P "da\t"” (S)’éf)
//STEP EXEC PGM=DFSRRC(¢,PARM='DLI,USRPGM,PSB,BUF "

DFSRRCQY REG 1 Points To EXEC Card Parm List

DFSRRAJ(PARN LOAD: DFspRp%ﬁ - Region Control Blocks |
ANAL$SIS SECONDARY SCD - éurrent SVC Numbers
DFSRRA%ﬁ . Breakout And Decode Parm's Frcm EXEC card
STRIN? v
ANALYSIS

- AT COMPLETION, XCTL To DFSPCC%ﬁ/,—BATCH PROGRAM CONTROLLER-

b

ﬂwm

@
DLI REGION INITIALIZATION (conT)

DFSPCC3

XCTL———=t

BATCH
PROGRAM

CONTROLLER

|

DFSDLBLY

BLOCK

BUILDER

LoaD BaTcH NucLEus

MOVE_SVC'NUMBERS iNTo SCD
OPEN DCBS For PSBLIB & DBDLIB
CALL DFSDLBLY

BurLp DL/I CoNnTRoL BLocks BASED ON PSB NAME TAKEN
FrRom EXEC cArD PARM FIELD.

- LoAD REGISTER 1 wiTH PST ADDRESS

- CLose DCBs rFor PSBLIB & DBDLIB Perd b

::vj‘z(uficxh.:
Ja Ll{

O O e
DLI REGION INITIALIZATION (conT)
DFSPCC3Y
BATCH
PROGRAM CONTROLLER
T
_DFSDLNGY '
BATCH INITIALIZATION
T 1
DFSTINIY DFSDBP1J DFSDVBIZ DFSXLG g
SELECTIVE DB BUFFER VSAM BUFFR L06
MODULE POOL POOL INITIALIZER
LOADER INITIALIZER INITIALIZER

- -LoAD Re@QuUIRED DL/I MODULES.
-LOAD SYSTEM REQUIRED & USER
SPECIFIED MODULES.

-GETMAIN For DB
'BUFFER POOL.
-FormaT PooL.

-GETMAIN FOR BH

POOL.

-CAaLL VSAM 1o BUILD
SUBPOOLS BASED ON

DFSVSAMP DaTta SET.

pufr

E&WAUA

-IF LOGGING,
LOG WORK AREA,
LOG BUFFERS; OPEN
I0Bs; FORMAT LOG;
Pace Fi1x LoG; OPEN
Loa.

@

DLT REGION INITIALIZATION (conT)

DFSPCCB;/

BATCH PROGRAM CONTROLLER

- Loap STAE Ex1T RouTine (DFSFLOS@)
- LoAaD REGISTER 1 WITH PCB LisT ADDRESS
LINK To USER APPLICATION PROGRAM

(END OF INITIALIZATION)

USER
APPLICATION
PROGRAM

O O @)

DBB REGION INITIALIZATION

//STEP EXEC PGM=DFSRRCOO,PARM= USRPGM,PSB, BUF'

DFSRRCOO REG ON REG 1 Points To EXEC Card Parm List
, I .
{ o
CONTROLLER
DFSRRAOO PA M LOAD: DFSPRPX0 - Region Control Blocks
ANAL$SIS ' SECONDARY SCD - Current SVC Numbers
DFSRRA20 : Breakout And Decode Parm's From EXEC card
STRING
ANALYSIS

AT COMPLETION, XCTL To DFSPCC30 -BATCH PROGRAM CONTROLLER-

O | O @,

DBB REGION INITIALIZATION (conT)

DFSPCC30
XCTL ——e-
: BATCH - Loap BaTcH NucLEus
PROGRAM ~ Move SVC Numpers FroM Secondary SCD To “ReAL” SCD
CONTROLLER - CaLL BLOCK LOADER (loces W““VWLD bt Lot Lee
T stored & b Acp LIL)
DFSBBLDC - OPEH DCB For ACBLIB
BLOCK - Loap DL/I ConTrROL Brocks (PREBUILT BY ACBGEN)
LOADER - LoaD RecisTER 1 wiTH PST ADDRESS
' - CLose DCB For ACBLIB
- Return To DFSPCC30
(DFSDBLx0)

(x=D,P,LLR,M)

PADC - 14 - IBM

O O ®
DBB REGION INITIALIZATION (conT)

DFSPCC30

BATCH

| PROGRAM CONTROLLER
A

DFSDLNOD
BATCH INITIALIZATION

. . l :
) Y

DFSTINHO DFSDBPIO DFSDVBIO DFSXLGIO
SELECTIVE | DB BUFFER VSAM BUFFR LOG
MODULE - POOL “POOL INITIALIZER
LOADER INITIALIZER INITIALIZER
~Loap REQUIRED DL/ MODULES. -GETMAIN For DB -GETMAIN FOR BH -IF LOGGING,
-LoAD SYSTEM REQUIRED % USER BUFFER POOL., POOL . LOG WORK AREA,
SPECIFIED MODULES, -FormAT PooL., -CaLL VSAM TO BUILD LOG BUFFERS; OPEN

SUBPOOLS BASED oN [0Bs; FORMAT LOG;
DFSVSAMP Data SET. Pace Fix Loc; OPEN
LoG.

O

DBB REGION INITIALIZATION (cowt)

DFSPCC30

BATC

H PROGRAM CONTROLLER

\

- LoaDp STAE ExiT RouTine (DFSFLOSG)
- LoAaD ReGIsTER 1 wiTH PCB LisT ADDRESS
LNk TO UsSer AppLICATION PROGRAM

USER
APPLICATION
PROGRAM

(END OF

INITIALIZATION)

APPLICATION PROGRAM ISSUES A DL/IT CALL

° User Passes A PARM List To DL/I :

FUNCTION,PCB,1/0 AREA, SSA,(SSA),...(ssA)
e DL/I CALL ANALYZER (DFSDLA@3) Goes To Work

) REGISTER 1 HAS THE ADDRESS OF THE PST
FIELD PSTIQPRM HAS THE ADDRESS OF THE CALL PARM LiST

® CaLL AnALYZER Does THE FOLLOWING:

- VaLtpaTE THe PCB ADDRESS & SToRe In PSTOBPCB > Cufet. loare

= STorRe Users 1/0 ARea Abbress IN PSTUSER
- VERIFY & ENcoDE FUNCTION & SToRE In JCBPRESF
= VaLipaTte FIELD Name (in- SSA)
- TesT For INVALID CALL (WITH OR WITHOUT SSA)
- TesT For PROCOPT VioLATION
- Data Bases OpEN? (cHEck JCBOPEN BIT)
No - CaLL DL/I OPEN/CLOSE (DE$EDLOCA)
YEs - CaLL DL/I Action MoDULE BASED ON FUNCTION
RETRIEVE - DFSDLR2%
LOAD/ISRT - DFSDDLE®
DLET/REPL - DFSDLD@2

W8l

@
DFSDLAOO
C CALL
ANALYZER
DELETE 7 LoAD / OPEN /
RETRIEVE REPLACE INSERT CLOSE

basa Base Open/Cloge
DESBLOEY

OPENS A SINGLE DCB/ACE, A DATA SET GROUP, ALL LID/ACEs

FOR A PCB, FOR A BB, FOR ALL DS pap_. Do

) Momng ovamat

Blocw

USE 11S EHO/DEQ TO SERIALIZE OPEHS FCR DCR/ACE - (i)
GET STORAGE FOR BISAIT ‘I3 STORSGE' INDENES
BUILD OPEN AMD CLOST L0G RECORDS

LOLD/Drl[T DA RARSOHIZIRG HODULES

AU Croa e DY T MO OQIAN rAnTY T
r)] /] ,L o:_n" 1 l 3,1)1] LU n';._’t'\)lU.'i Gl

=
o

Aasse
Mette

?A%&p (bsite whsths,

W lhays ACB or
Dw)

INITIALIZE AitPs, DSGs AED JCBs

IF HSAM USING BSAM, DO GETHAIN FOR BSAM BUFFER

SET JCBORGH TO.INDICATE OPEH/CLOSE STA N

C

RETRIEVE DFSDLRAG

FUNCTIONS -
X RECEIVES CONTROL FROM CALL ANALYZER
X CALLS BUFFER HANDLER FOR PHYSICAL 1/0
» DEBLOCKS SEGMENTS FOR HS ORGANIZATION
x | ESTABLISHES ‘POSITION’ IN THE DATA BASE
IF POSITION AVAILABLE FOR REQUESTED SEGMENT,
c {0 BUFFER HANDLER CALL
» UPDATES POSITION AND LENGTH IN DB CONTROL BLOCKS
w PERFORMS POSITIONING FOR INSERTS o 7p0 ““;M“;
% FOR 'PI1" CALL ENQ-DEQ FOR POSITION AND ENQ TESTS k4
». POSITION TO PHYSICAL ROOT FOR HISAM, HIDAM, HDAM
% FOR ‘PI" WILL IWAIT TASK IF NECESSARY

RETRIEVE POSITION

SDBPOSP SDBPOSC SDBPOSN
| PREVIOUS | CURRENT | NEXT |

- hSAN: NO POSITIONING USED

HISAM: |
PREV - Not Useb |
CURR - RELATIVE RECORD NUMBER (RRM) OF LRECL
NEXT - OFFSET INTO LRECL FOR SEGMENT
HDAﬂ/ﬁIDAN:
" PREV - RELATIVE BYTE NUMBER (ReN) OF PRIOR (Dipdt -
SEGMENT ON CHAIN Susate)

CURR - ReN OF CURRENTLY ESTABLISHED POSITION

NEXT - RN OF NEXT SEGMENT ON CHAIN

O

LOAPJINS ERT irsooieg

FUR

C 1

e
L Ui

—

FLOW -

- DOES LOADS AND IHSERTS FOR ALl ORGAHTZATION

RETRIEVE POSITIONS FOR ALL IHSERTS DXCEPT RGOTS
IN HISAR

SEPARATE LOGIC WITiL COMMON SUBRGUTIMES FOR

HSAM LOAD

HISAH LGAD

HISAM DEPEHDENT INSERT

HISAM ROOT JHSERT

-HDAM OR HIDAM LOAD OR INSERT

HISAM REPLACE FOR VARIABLE LENGTH SEGMENTS

HD REPLACE FOR VARIABLE LEHGTH SEGHENTS

~ PERTINEWT INFORMATION PASSED TO INSERT
o PARTITION SPECIFICATION TABLE (PST)
e PCB (FROM THE DL/I CALL)
o FIRST LEVEL TO BE INSERTED st
o LOGICAL SEGNEHT CONTROL BLOCK (SDB) Deserph
o PHYSICAL SEGHENT CONTROL BLOCK (PSDB)
o POINTERS TO ALL OTHER DB COWTROL BLOCKS

- |

J/

wgl - vi - 00vd

CURRENT POSITION

LEVEL TABLE

LEVLEV
LEVSDBa}
- \\\“-~_§QB
oo SDBSYH
- SDBKEYFD

SDBPOSP
SDBPOSC

1 SDBPOSH
] DBPCB

DBPCBDBD

_|- DBPCBKFD
/\

C De !efe/ R ep lace DFSDLDOO

lirze s

REPLACE FURCTIGHS
@ ENSURE TT:JT OF ;L{'Rfr

@ CHECKS FCR REPLACE RULE VIOLATION

@ INTERFACE VITH INDEX FAINTENANCE §F (NDEXED SEGMENT
@ INTERFACE WITH LCAD/INSERT IF VARIALLE LENGTH

® [NTERFACE WiTH ENQ/DEQ IF PROGRAM ISOLATION N EFFECT

DELETE FUNCTIONS
| @ ENSURE KEY FIELD NOT ALTERED
C\) @ CHECKS FOR DELETE RULE VIOLATION
Wy SCANS DATA BASE RECORD

-HISAM- ONLY iF LOGICAL RELATIONSHIP OR TMDEXED
SEGMENTS N HIERARCHY .

-HD- ALWAYS

INTERFACE WITH SPACE MANAGEMENT IF HD CRGANIZATION
INTERFACE WITH FNQ/DEQ [F PROGRAM I SOLATION iN EFFECT

(S AY

Ksy Fraed

) |

INTERFACE WHTH INDEX MAINTENANCE I INDEX SCURCE SEGHENT

C

G

O

N
N

G

e

Work Areas Used By

RIS,

Delete/Replace 4 b H’W

""!' i~
GET 5! P

('-\
,,,«
B
PR
-t
-
e
AN

MAITAINS CONCATINATED KEYS

.

MAINTAINS FOSITION OF SEGMENTS TR THE DATA BASE RECORD

USED DURING DELETE SCAN
USED DURING INDEX MATRNTENANCE FOR REFLACE

LIRS 1, VORI A

XJ
=1
—
-
==
PR |
[
o
—i
s
.
v
<
e
)
=i
7
~—4
-
o~
o

WORK AREAS CHAINED TGGETHER

VSAM Werk Area Manager

DESDLBBO

[y

RESOLVE ALL NEW RBA'S T RELEVE/TEPLACE WCORK ARDA WHEN /,

Cl GR CA SPLIT OCCURS

INDEY MAINTENANCE

DFSDXMTO

MAINTAINS PRIMARY INDICYES FOR HIDAM DATA BASES
MAINTAINS SECONDARY INDEXES

MAKES INTERNAL DL/I CALLS
ISRT/DLET/REPL INDEX SEGMENTS

ALL UPDATES ARE LOGGED

9

O

Ve
O

VSAM Sivap le HISAM
@@ﬂ@%@/&@@ﬂ@@@

li/'/'"(z/ F——

DFSDLDVO

REPLACE FUNCTIONS

® ENSURE KEY FIFLD MOT ALTERED
@ COMPARE GLD SEGMINT TC (EW
@ |- UNEQUAL:

- LOG OLD AND REW

- REPLACE OLD WITH REV

DELETE FUNCT&ONS

® rN‘“”z{ CEY FLELD NOT ALTIRED
® LOG OLD SEGMENT

@ |SSUE VSAM ERASE q—'
D N i

HD SPACE MANAGEMENT BIT MAP

Wal - vl - 00V’

ALLOCATED EVERY ‘N’ BLOCKS
N=8 (BLOCKSIZE-4-4(#RAP'S))

FILLS DATA STORAGE AREA OF FIRST BLOCK OF EACH SET
OF "N’ BLOCKS | |

OKE BIT REPRESENTS ONE BLOCK

BIT 'ON’ - AT LEAST ONE SPACE LARGE ENCUGH TO HOLD

LARGEST SEGHEHT OF DATA SET GROUP

HIERARCHICAL-DIRECT SPACE MANAGENENT

BLock = 104 ByTes (DECIMAL)

o EMPTY |
FSEAP| RAP | FSE 83 BYTES OF |
08{0 | 0 | 0|60|D - FrRee SpacE .

o FILLED - 2 SeeMENTS PLus 2 FREe AREAS (SMALL ONES)

FSEAP| RAP | SKILL FSE | Free

: NAME FSE FREE
<:/ 130{0 {2044 | - SeeMeNT |52|OE|ID | SPACE

SEGMENT 00{16|1D| spPACE |

o DELETE NAME SeGMENT

FSEAP| RAP | SKILL FSE 48 ByTES OF o
30|10 2044 | Seement {0G|38{1D FREE | SPACE

<

C

HIERARCHICAL-DIRECT SPACE MANAGEMENT

BLock = 104 ByTes (DECIMAL)
o EMPTY H
FSEAP| RAP | FSE 83 BYTES OF v
080 | O 0160 |1D FREe SPACE '
2 2 q 2 2 4 96

= Bytes ¢

o FILLED - 2 SecMeNTS PLus 2 FrRee AREaS (SMALL ONES)

FSEAP| RAP SKILL FSE FREE NAME FSE FREE
3010 {2044 | SeeMENT |52|0E|1D | spPACE SEGMENT 00{16{1D| sPACE
2 2 4 40 2 2 4 6 20 2 2 4 14
¢ DELETE NAME SEGMENT
FSEAP | RAP SKILL FSE 48 BYTES OF
30|0 {2044 SEGMENT 00[38}1D FREE SPACE
2 2 4 40 2 2 4

Bytes '

9.
20,

SAME. BLOCK WITH
CLOSEST AVAILABLE

R HA r*r T
no Ch F

D SEARCH CRITERTA

Mia Iy

COACIT
SPACE

N o i | Fae T

e Johil [P AV
e f\f_'(:i‘"" ! HE BN Y ke AT ALY AT oA H
)) Stuli | LUNG I NNt ol i/

o\
(15 RENTER

SARLT N A LN
5,"\2 i ulG\,i\ Wi

T A Ui s
bl I— AV I L O FAT I R

CLOSEST AVAILABLE SrACE.

(1) 2 TIMES ITS SEGREHT LENETH
GHEHT

i
(o A

(7 CopaTeT g
) N .(_x: [T AT I
ISRV Y P ' R : ¢ T, s
AT B L it : A‘f ! ! VAL AR
YT AR A R a Yot B G LN AT Jrt ALV T Rt
l/"‘\i‘. 1 i [‘! 3 ooty ! U'\.‘,! ('l"x NIV S R 'JL»\
AV AR} ~ I I\" ‘ ORI Ty L f"-' L::':'x‘,[* [1T o AR
[-1 NVAREES [R Shbop b L et
/1"‘\.‘.,,"43."-., AT ‘ il !:-:"a‘..-l\ IR TI PN flroeli obwiniis
LERGTi &
Lt Ty ~1 g - " N JEoy Ay " ‘.n- TRV IS el AR ORI
HIAR PATARE : 23 il F / PRty Y h S
."-.[‘Y e ‘.)\./I\ AR SR P Uie wCinins Libansiiln ruh.l\\- l'rl/\‘i:Ul] Sl
l rores |~+ Cv o
el | S INEIN

§Y BLOCK TN B
LLRGTH EXISTS
1

=
P
=
——
":
et
—

U)?S]Mrlf '

BRY)

T e 0

+ W CYLIRDERS

+ 1 CYLINDERS HHERE MAXTHUR SEGIEIT

POOL HITHIY
> ITHI

DATA SET
 DATA SET,

lcesp Squint a0 clast o

L(“"J" as Po&‘.{agls

DL/ I

CONTROL

BLOCKS

SOURCES

PSB | DBD

PCB DBD

SENSEG DATASET
SEGM
FIELD

LCHILD
XDFLD

DL/1 MAIN CONTROL BLOCKS

TMS

DA TABLE | sc?)
OF CONTENTS

1

- DATA BASE

DESCRIPTION

L -
- Dyp (45%@)

PHYSICAL

r

PSS
RESOURCES
‘ALLOCATED 70
THE PARTITION

Y :
‘ g

PsB

DATA BASE
LOGICAL
DESCRIPTION

gt ooy ey

]

BUFFER POOL -
CONTROL BLOCKS
TO MANAGE DATA

et e} 4 s e

: 1 .
IR A [
i

-SCD -

©SCODLIPS ~—0

SCDDLIPA

- PDIR-
- PDIRADDR

- PST -

© PSTDBPCB =—.

— SDBPSDB

|+ SDBXPANS |

-~ PSB-
(-PREFIX-)
" PSBDBOFF —

. DBPCBJCB

SDBDSGA——_

1=JCBSDBL 4

- JCB -
- JCBLEVTB ~

TDS6-
JCBANPA —

-SDBXP-

NC -,

™ LEVSDB

D W

LEVFLD —T

- _PS5B Gewneratep DBrocks

C

o -SCD-
SCDDLIDM

C

Q .

*'.

ROM

DBD Generatep Brecks

N

*°UDIRADDR

-DDIR-

ROM
DSG:

’

DMB-=
"~ DMBLENTB

. DMBAMPOF

— DMBPFPDR
1~ DMBPFODR

ZATPS]

|
= ~DCB/ACB-

-~quucsy

- eoveoee

—r)

\ -DCB/ACB-
DB il ~ -
' RO
DMBFDBA —~
SDB /w !_.,-o DMBFSDB
DMBLST
SEC- 4/—-

= S
@

o

~ *MOST RECENT ON RIGHT

 J¢B CALL TRACE TABLE (e

a——

——

| L
looooloooclot4oloa4cfoacs] |\

*FIVE TWO-BYTE ENTRIES

BYTE ONE - BYTE TWO
- 01-GU/GHU - RIGHT BYTE OF THE
03-GN/GHN ~ STATUS CODE
- 04-GNP/GHNP |
21-REPL
22-DLET
41-ISRT

DL/

BLOCKS

SCD

‘DDIR

DMB

PSDB

i N
I

- PDIR

PCB

WORK

| AEAS

SDB”

|- LEV
TABLE

FLD

o

1.1.3 DB Ctl BIlks

-PST-

PSTUSER -PDIR-
PSTPSB ~____
PSTDBPCB-

L. PSTSCDAD _-PDIRADDR

~SCDb- -PSB-

: 4 Y
SCDDLIPSlﬂ”//////’() ANORK
SCDDLIDM
SCDDBFPL

L PSBDBOFF
PSBLIST
— . ~DBPCB-
-SDB- ~— :
| S DBPCBDBD
— /-pBPCRJICB
SDBSYM 3
SDBHH B A
SDBPSDB—]| _JCB-
SDBDSGA~m_\\\\

-~ SDBFCSDB ‘
SDBSISDB i%%é%%{B“\\
SDBPOSP

-~ JCBSDBND
SDRPOSK ’///TfﬁwJCBHH
SDBPOSN ////, .
|_.SDBXPANS
{ ~DSG-
DSGAMPAfJ//
. V-
~SDBXP~ LT
(LEVFLD
LEVSDB\\\
* »
N .

-DDIR-

L -DDIRADDR

~-DMB-

- DMBAMPOT

DMBLENTB
DMBSECTB 1

-AMP-

DMBPFPDR
DMBPFODR

s

T

-PSDB-

DMBFDBA
. DMBFSDB
_DMBLST

-FDB-

~-FLD-

CPAC

(DMBCPAC)

"COMPRESSIONAL SEGMENT BLOCK”

A CSECT For EacH COMPRESSABLE SEGMENT
EacH Is E1eHT (8) WorDs Lone

PaRT OF THE DMB

~ Maps Out CoMPRESSION ROUTINE INFORMATION

ONE CPAC PErR PSDB - 1£: ONE PER PHYSICAL SEGM,

\
DACS 08
(DMBDACS)

) Usep In SupporT OF FAST PATH DE

DBs

XMPRM

(DMBXMPRIM)

“INDEX MAINTENANCE PARAMETER LIST"

Usep By INDEX MAINTENANCE NITH SECONDARY INDEXING

ANYTIME A SOURCE SEGMENT Is UPDATED.
CoNTAINS XDFLD AND OTHER INFORMATION ON THE

SOURCE SEGMENT,

e

HH
(HHSTRT)
"HIERARCHIC HOLDER”

§ BurLt By RETRIEVE MobuLe (DFSDLROO)

o Usep To HoLp PosiTion INFO, WITHfN A DaTa BAse
o FIrsT ONE PoInTED To IN JCB (JCBHH +48)

e ALL HHs ARe Four NORDS‘LONG & CHAINED TOGETHER
¢ EacH SDBVCONTAINS A RELATIVE NumBER OF THE HHSTRT

FOrR THAT SEGMENT (SDBHH + fE)
o HHSTRT OF CurreNT SEGMENT PosiTioN HELD IN THE

JCB (JCBACHH + 2D)

- SDB - PSTDB
-PCBI- -SDB-
SKILL
1 S
- -~SDB-
~LEV- |
L VA
~LEV-
2
-SDB-
~LEV- EXPR
3
C” -
| -PeB2- -SDB-
4 SKILL
a 1
-LE\"—_, _ fSDB-
1
NAME
~LEV-
| L2 -SDB-
-LEV- | EDUC

RELATIONSHIP

-DMB-

-PSDB-

SKILL |

-PSBD-

HANE

-PSNB-

EXPR

-PSDB-

EDUC

™~ A PN\ N 1IDAS

CALL:

140: |

KeyFDBK: |

1QRrA

~Aa N~ n-

C) . SDB - PSDB RELATIONSHIP
-PCB1- :\\ -DMB-
A \ ,
— 1 ' \ -PSDB-
| NAME | SKILL
-LEV-
2 .. -PSBD-
~-SDB- | o
—_ NAME
LEV- | EXPR :
C - ‘ -PSDB-
. |-PCB2- ' "--SD,?'. EXPR
- SKILL
-LEV- -SDB- - EDUC
l ’ .
Y
| -LEv- CALL: GU SKILL (SKCLASS= PROG)
o2 ~SDB- | e
..LEV__,V | EDUC E 1/0: IPROG STAFF PROGRAMMER '
C | 3 | B
> KevFDBK: | PROG |

<f; | SDB - PSDB RELATIONSHIP

—PCBl- -DMB-

AN
S

LEV-t" | 'Psqgf,y_-m

—

NAME“—_~‘§‘<:Z::: SKILL

ey .
o2 - -PSBD-
| -SDB- |

A PN\ n [Eel ¥

: —
o - | NAME
| -Lev- EXPR o
_ 3 :
(i; ~ ' ' -PSDR-
R SKILL |
i |] -PSDB-
-LEV- ~SDB- | EDUC
1 ,
NAME |
-LEV- ‘ CALL: oy name
2 ~SDB- | peet

CLEV- | | EDUC

.l!QF lo1uu3o JONES, JOHN pAULl

KEYFDBK:1 PROG JONES l

SDB

PSDB

RELATIONSHIP

-PCB1- ol ~DMB-
~ i \ |
— \\\\\\\\\\\\\ -PSDB-
P | b=
l L — . -] TP
SKILL
1 -LEV-
12T | ~PSBD-
-SDB- -
TN NAME
-LEV-_ EXPR AR
3 : : , _
‘\\\\\\\\\\\- ~PSDB-
-peB- = e
- SKILL
i -PSDB-
-LEV- -SDB- EDuc
1
NAME
-LEV- CALL: e~ ExPR
2 =SDB- PCB1
";LEV{ | EDUC 1/0; loScaoomzez AL5
5 - :

KEYFDBK:1 PROG JONES ALS

P ”~y 1MYRA

SDB - PSDB RELATIONSHIP
——]
-PCB1- ’/////,//f -SDB- \\\\ | _DMB-
SKILL| o
~SDB-

NV \\\\\\

-SDB-

-PSDB-
-

SKILL

Y

-PSBD-

—

NAME

~PSDB-

10

[/

JLEV-_] EXPR \\\\\;\

peg2-| 7| S EXPR

»] SKILL | _
|] | ~PSDB-

| -LEV- -sB-| EDUC

NAME

~ oA A ns 1Dv?

2 -SDB- pCB1

.

~LEV- | - | EDUC | | .I./O: ’Lo~uzuoo-367 CBY

KEYFDBK'l PROG JONES CBU

RELATIONSHIP

NAPNA AT 1DAS

SDL - PSDB
-PCBI- -SDB- _DMB-
SKILL __*__§:::::::
/ - e =
~SDB- MW Y
LEV— / ob ﬁ\ \\ PSDB, R,
1 e
NAME | \\\\\\\ | SKILL
-LEV- N ’
2 A | ~PSBD-
=SDB- NG -
— — NAME
~LEV- EXPR \\\\\\\ B
3 >
~\\\\\\\\\\\“ ~PSDB-
-PCB2- |.7SDB- EXPR
— SKILL
|] -PSDB-
- LEV- -SDB- EDUC
1 |
NAME
-LEV- CALL: on mxer
2. -SDB- pCB1
_:LEyj;l EDUC 140 l07b3oo-u7o PL3
3 -

KEYFDBK-I PROG SMITH PL3

C; - SDB - PSDB RELATIONSHIP

~PCBI- ~3DB- | _DIB-
CSKILL |
7 T | | ,;;:>
EC . \ '
~LEV- | A o
L NAVE
_LEV..
: -SDB-
LEV- EXPR |
. ,/// | -PSnB-

C
EXPR
-PSDB-
EDUC
NAME
-LEV- CALL: GU SKILL (SKCLAss = PROG)
, 2 o _;SDB'“ PCB2
-LEV-r. EDUC ; 140: iPROG STAFF PROGRAMMERj
C L3] o

KevFDBK: | PRoG |

e A P PN o - treh s

C SDB - PSDB RELATIONSHIP

'PICBl' -SDB-_ ‘DMBf
. L
SKILL |

=SDB- [N

LA
NAYE

-SDB-

EXPR

A~ AT O 1DRA

S 4/

i ”’,,////// | EXPR

B ::::> ~PSDB-

| EDUC

: -LEV-A CALL: &y nam

9 ‘ _SDB- PCB2 ,

. .:LEV“_V o EDUC 140: @uuo JONES, JOHN PAUL ,

KeYFDBK: | PROG JONES l

C\ . SDB - PSDB RELATIONSHIP

~SDB- | -
CSKILL |

-SDB-
EXPR | | |
C / -PSDB-I
-. =SB~ / | EXPR
L SKILL |
. -PSDB-

//’f’____J‘

EDUC

. & . e o~ - e PrYAR &

-LEV- ~-SDB- ///////,/"
) CALL: enx Epuc’

PCB2

I{Q;'lMICHIGAN -—— 0G6UMBA I

L@ - : : : | KEYFDBK:| PRCG JONES MICHIGAN!

RELATIONSHIP

SDB - PSIDB
-PCBI- / ~SDB- - DiB-
Pt | SKILL_ |
-SDB- - -
-LEV- - PSDB
1 .
NATIE | SKILL
-LEV-
2 -PSBD-
-SDB-
‘ NAME
-LEV- EXPR g
. 3
I "PSDB-
_PCR2- -SDB- EXPR
— SKILL
I -PSDB-
-LEV- -SDB- EDUC
1
NAME
-LEV- CALL: on skILL
2 -SDB-. PCB1 . |
T STATUS CODE = ' QE '
REEEE EDUC 140 |
3 | .
O

"ﬁEYFDBK:I

P = Pate] [Eel Vi

™

@

nal - vyt - 0avd

PR

EFIX POINTERS

e OSAMPLE =~ DATA BASE

ADDRESS

DEPT (LP)

HAME

] |
~" g - | PAYROLL

LOCATION

BLDG

O

SEGMENT PREFTIX-

SEGMENT IN HID

SDB "DEPT"

SR “NAME”

110
+20
+28
+34

+3C

SDEFCSDR l
SDRPARA 1

SDBTARG’\«L,JT’

SDBPOSP -

SDBPOSN «

|

DIP P
C{F il
F{DB

< O

I

\

L

SDB "LOCATION"

&

<o "ADDRESS”

N

- SDB “PAYROLL"

<

\ | '
PP
cic |

DATA /;r’
/

LOCATING DATA IN BUFFERS

(15AM/05AM)

GIVEN: ReLative BYTE Numser

(AND DL/ CoNnTROL BLoCKS.
| -JCB- '
* JCBSDB{ ~—_|
. 3 -3DB-
Z; ~DS6- _—+ SDBDSGA
w -
2 | -DSG- - |
: GAMPA » —
IC’ .DS AMP ~\1\ . AMP
| DMB# DCBH# { DHBPFPDR
i - | DMBPFODR
-DCB-
’ | BLOCK
) \ | | s1zE

RELATIVE BYTE NUMBER
= MBER MAINDER
BLOCK SIZE - NUMBER pLus REMAIND

////’ -

| DMB#, DCB#, ReLaTIVE BLOCK#, OFFSET INTO BLOCK

NRERRERNERNRNN
T

Tvro Pﬁﬂysmal Dam Bases

oo i ST o0 i i B AT 5 RS i bt R RS i s WA RAGAT: A Ko P 1 AR e P53 e il A Fv vt

PAYROLL DATA BASE

ADDRESS § PAYROLL

SKILLS INVENTORY DATA BASE

—~——_——~_ Ty

!.oglcal Data Base |

Y e T Tl

i ST TR AT e

¢
3
A
»

e e

MV RNSARS D

ADDRESS

L Rt B2t R IR 5 2, THE

i

PAYROLL

SCD EXERCISE

@,
1. What is the address of the SCD? (PST+168) ' B9)&o
2. What are the user specified IMSGEN parameters for:
Type 1 SVC Number: E4= 229
Type 2 SVC Number: = 234

Type 4 SVC Number: D3 = i
Channel End Appendage Suffix: E9F| (::“,_L')

3. What is the IMS/VS Release & Modification Level number
for this system? L\

4, wWwhat is the entry point address of the following modules:

DL/I Call Analyzer: @ DigYo
ISAM Simulator: e [T ()

VSAM Interface: 9240
DL/I -Retrieve: Felmamipe): DEFLS
Load / Insert:’ 5?5#3 P92
Dlet / Replace: ' Pgo2¥
IsaM/0saM Buffer Handler: cLEBO
Get/Free Space: ~EBSo
Index Maintenance: CIAOR

C

5. What is the address of the PSB Directory? (SCD+ES8)
@700’0

6. What is the address of PXPARMS? (SCD+148) BSpbo

7. What is the address of the ISAM/0SAM Buffer Pool?
(scp+28C) Eboeoo ~ :

O

0

ISAM-0OSAM DUMP PROJECT NUMBER ONE

1. What is +the current or last used DB PCB address?
' cs5qad

2. How many data base calls have been issued for this
schedule of the program? 5

3. What are the contents of the current DBPCB?
DBDNAME: LOg pamg
LEVEL: o
PROCOPT: AP
STATUS CODE: &P
NUMBER OF SENSEGS: 6
'KEY FEEDBACK: Appms. Tokd guiwey (42 sym)

4, What is the location of the JCB associated with this PCB?

|} C,St)'ﬂ!,]

. REn

5. What were the prior 5 calls and(ﬁﬁng return codes?
O, GU-%, GA-§ CN-K, ShapE® GN-B G-}

6. Where do the SDB's and Level Tables start for this PCB?
Llevel Tanle STALT =— C& Bec
138 svp ey = Bx{,gsc,

7. What is the lowest level segment which can he accessed by

this PCB? _ 3.

8. What %}//Lhe data base organization of the Root Segment?
__HDAM, VHIDAM, _ HSAM, _ HISAM, _ SHISAM

9. What sensitivity (ISRT, DLET, REPL, GET, etc.), does the
user have for the Root segment? GCGTLD?P ‘L:AW

10. What is the location of the DCB to be used for the Root
segment? ' $4$1o '
4

11. What is the RbN (if HD), or RRN & Offset (if HISAM), of
the location of the Root segment? 27A4 Which
is it, RbN or RRN ? !&bb‘ -

12. What is the location of the PSDB of the Root segment?
1 @"fﬁig [

13. What is the total segment length (Prefix and Data), of
the root segment? (Hex or Decimal) §g = ify

14, What pointers are present in the prefix of the Root
segment? , ,
J cTe

Ploys Tww Tt ¢ pl% R\
= ?‘“@fﬁw”‘ megtb)) [\ (L\ F

4 4 (U qy

5., What are <the ISRT, DLET & REPL Rules for the Root

segment? ISRT: logicd , % gt DLET: loytew, REPL: [ghef -

- 16. What is the name of the sequence field (key) of the Root

segment? Fob.n am

17. Is this field unique or non-unique? UN%Mﬂ

18. Why does the instructor want to know all these things?
Can't he find them himself?

ISAM/OSAM BUFFER POOL EXERCISE

-Use Dump Number 1-

Fill in the buffer pool map below for the buffers labeled
A,B,C,... from Low to High storage. For each buffer fill in

the Address, the "use chain" pointer addresses, the Buffer
"ID" (Block#, DMB#, DCB#), and the buffer size in Hex. Mark
the End of the Buffer Pool by drawing a line under the last
buffer. Also mark each buffer as to being either Full or
Empty.

STORAGE ADDRESS

sk sk sk ok 3k sk ok sk sk sk sk sk sk sk sk sk ok sl sk s ok sk ok ok sk sk sk sk ok ok sk sk sk ok sk sk sk sk skosk sk sk sk sk sk sk ok ok

£ b ooo * 'BFPL'
* Most: FA20% Least: £A &¢c¥%
*
‘ *
Al t:6070 * Next Lower: E A8cS Higher: ©§70¢
¥ Size: DPpe Block: 9~ DMB: 3 DCB: »—
* Full or Empty? =
.
g E?éi:ho *
* Next Lower: KEARBYY Higher: EA209
* Size: |ge& Block: @ [DMB: . DCB: |
* Full or Empty? £
* . -
e Eﬁﬁo& *
* Next Lower: Ebe7© Higher: E&¥DcS
* Size: |2¢4 Block: 32~ DMB: 3~ _ DCB: |
* - Full or Empty? E
, « e -
D! = 8;’])68 * '
* Next Lower: &E§708 Higher: e3¢ &8
* Size: pco Block: 3 DMB: 32~ DCB: |
* Full or Empty? =
\ *
: * Next Lower: &fDc® Higher: Eqgv¢¥
* Size: bco Block: i DMB: > DCB: |
* Full or Empty? =
o *
R bﬂqu *
* Next Lower: E9Y¢F Higher: £4 €20
* Size: bco Block: & DMB:_ 3~ DCB:_
* Full or Empty? E
*
el el * ~)
: * Next %Fwer: ebero Higher: 76
* Size: bC» Block:_ b DMB: - ' DCB:
* Full or Empty? =

K K K K R R XN R K K E KKK KRR KRR RN XK KEH KKK KR RN

GET (RETRIEVE) CALL YLOW

Formatted Dump (Dump Number 2)

Using the DL/I Test Program and a formatted SNAP after a GET
call we will trace the flow for this call. The call was a
GU to logical Data Base 1 for NAME under SKILL. with
unqualified SSAts.

NAHE is a LC/LP concat@nation of XANAME and RAME in the
physical data bases. We begin when Call Analyzer (DLAQ) get
control.

Y. The Users CALL LIST is moved to LIPARMS and converted to
the Implicit format.

Validate and store the PCB address ‘' CS5744 * in
PSTDBFCB (+160) at *__ DPLip¥% '. If the PCB address is
invalid, a U476 abend is issued.

Encode the function to X*Of ' &and store in JCBPRESF
(+7F) at *__C5FfA3 *. The address of JCB is in the
DBPCB at +10. 'AD®' status code 1is issued if this is an
invalid function. Move user's I/0 area address to the

PSTUSLR (+BC) at '_BlfocY4 _*.

I1. Find the SDB for the name 1in the SSAR. The first SDRB is
at JCBSDB1 (+8) at *__¢5€f2c v, Since this is for the
SKILL segment we found the correct SD8 at '_pBY $8c v,
an 'AC' status code is issued if there is no SDB for the
segment name in the SSA.

Find the Level Table entry for this segment. Segment
level i=s in the SDBLEV (+8), and the start and end of
the Level Table is in the JCB at JCBLEVTB (+0} and
JCBLEVND (+4). Level One entry is at *'__¢cSpAdc _*.
Store the address of the SDB at LEVNUSDB (+20) for level
one.

ITTI. If there is an SSA (in our case there 1is), is the
segrernt name followed by a blank, "(" or *. If it is a
"¢t store the address of this 1left paren at LEVSSA
(+1C) . LEVSSA is at '_CS AL L

In our case there is no "field 1level gualification®™ in
thke SSA, but if there was the FIELD name must be
validated.

SDEPSDB (+1C) points to the Physical Segment Description
in the DMB. Within the DHE there is a PSDB for eackh
physical segment. DMBFDBA (+10) points to the FDE's

F»i./AC‘{'W"
Pcod

Ilo e
CSsA')

Iv.

PAGE 2

within this seguent. The first FDB for the SKILL
segment is at *__ 643p¥ LI Turn to the Field
Description Block in the DSECTS and look at the FDBDCENF¥
(+3) flag. If a qualified SSA attempted to search on a
field and no FDB was found an 'AK' status code would be
returned at this time.

Looking at the DL/I call format, this is where we are:
FONCT SEG (FIELD OP VALUE)

The next thing to check is the OPERATOR. It must be
encoded and checked against the valid ones. An invalid
OFERATOR gives us an _fik status code.

The method used to check for the field value length is
to take the length from the PDBFLENG (FDB+*5°*), add that
tc the starting location of the value

and compare for either a right parend or boolean
orerator. The field SKCLASS in segm SKILL is how long?
The FDBFLENG is at '__6Y2c3 * and contains *__7__*, so
at plus '_9%_* into the value there would be either a
'}* or a boolean operatore.

If +there is another SSA we repeat step ITI. When all
SSA's are validated and deccded, CALL ARALYZER next
checks the Processing Options for any "violation®'. This
chkeck takes on greater importance on an ISKT, REPL or
DLET! The test for these calls is made against field
SDEF3 (SDB+"A') which is at '__R4%4L _* and is '_FY}_*.
Checking in your DSECTS this PROCOPT is:

AL
Call inalyzer is finished and depending on the function
goes to the proper action medule. (ie: Retrieve,

Load/Isrt, Dlet/Repl)

hnalyzer calls RETRIEVE (DFSDLROO) simnce our function
was 'GU'. Retrieve initializes base regs for DBPCH,
JCB, SDB (root), LEV T7AB and its Vork Areas. (R1 was set
to the PST address by DLAO) The first check is for a
Qualified or Unqgualified call (is there a Seg name?),
ours is Qualified.

Next check is whether or not existipg position can be
uced. Check the LEVF1 (LEV +'*1*) for "LEVEMPTY®"(Bit 1)
on each 1level in the call. At this point in the
processing the LEVF1s were: LEV 01 = *40*; LEV 02 =
*40%; LEV 03= *41*. Therefore the __2_ level(s) imn our
call do NOT have existing (Previous) position.

Since LEV 01 position was not "“usable", DLRO clears tiae
top half of all level tables below the root. This means

PAGE 3

the ones at '__CSATd v and *___C544C _* in our current
4 DEPCE.

~

The organization of this DB wmust be established.
SDEORGN (SDB+'9%) for the root is at °*___ $4989<” * and is
* O% *. This means it is in "Mism _*.

Follow the SDBFCSDB (SDB+'10°') pointer to the NAME SDEB
and since this 1is the Yend®"™ of the call, set on SDREOC
(5it *0* in SDBF6 @ SDB+'D'). This "Retrieve Switch"™ is
going to be set again, so at the end of the call SDBF6
for NAME at *_0O4s§c>» ' is *_fo_*. Prior to the value
you see in the dump 1t was *80* for the SDBEOC flag.

VI. Retrieve is going to the buffer handler mext so it puts
an *08* in Reg 1, an *0O4°f in the DSGINDA (DSG+*7') , and
calls the I/0 Interface (part of DLROG called SITL).
SLETL uses this info to call the Xuffer Handler with a
value of *FO* in PSTPNCTN (PST+t16C'), and the address
of the PST in BReq 1. A value of *PFO* 1is called
FST_STL8G- . This means "get the first LRECL by KEY in (%k?\ﬂ
HISAM®, ir our case, the first SKILL.

vViI. Buffer Handler Router (DFSDVBHO}, calls ISBM/0OSAH
- Buffer Handler (D¥SDBHOO), and decodes the PSTSTLEG to
(ﬂ) mean "locate the LRECL with the lovwest key in the data
base."™ DBHOO calls ISAM SIMULATOR (DFSISM00), which
uses SETL to locate the first ISAM LRECL in either BISAM
or QISAM. This is based on the DCBMACRF field in the
vprime®™ DCB for this DSG. The SDB (for SKILL)Y +*24¢
points to the DSG at '_C59p4 * and the DSG +°'0°*
points to the AHP at ’__&3@2¢5 *. The AMP +*18" points
to the ISAM DCB at ¢ bd%ji '.

If the ISAX LRECL has an overflow pointer (P1), get this
LRECL via OSARH. Wherever the lowest key is found (ISAM
or OSAHM), the Dblock is read into the Buffer Pool. The
fields filled in now are:

PSTRTCDE (+* 16D?')

PSTOFFST (+*16E*Y)

PSTDMBNN (+'178%)

FSTDCBNHM (+*17A%)

PSTEBYTNM (+'17C*)

PSTDATA (+*180%)

211l of this is traced by DFSDVBHO into the DSEC%
*BPFSPTRACY, and control returns to Retrieve.

VIII. Retrieve moves PSTBYTNM (+'17C*') intc SDBEOSC (+%38°*%)
(:; and PSTOFFST (+*16E') into SDBPOSHN (+*3C') for "current
: position™ and turns on Bit 1 in SDB¥6 (+'D') showing the

)

(D

PAGE &

SDB "posted™ for SKILL. Retrieve next sets Bit 4 on in
all dependent SDB's to show "not posted™. The level
table for this 1level (01, is pluogged into JCBLEV1C
(+*20°%) . LEVTTR (+'4°*) and LEVSEGOF (+'8") are plugged
with the SDBPOSC and SSBPOSN data to "save™ position
info.

The key of this segment (in this case PANALYST %), is
plugged into the PCB Key Feedback area (DBPCB+'24*) at

'...C.gq.QLl .

IX. %The next SSA in our call is for "any"™ NAHE under the
SKILL just located. This boils down to the "first®™ NAME
under the established SKILL of "“ANALYST ®. The SDB for
NAME is located by following the SDEFCSDB (SDB+*10') in
the SKILL segm. The NANE SDB is at *__Bigoy *.

Back in step V. retrieve reset (cleared} the top half of
the level tables of all dependents of SKILL. Therefore
level 02 cannot have "position" to use.

The subroutine that is used here is called "Forward this
Level®™ and its purpose is to get a segment at this level
by a "forward"™ search in the data bhase.

Oour SSA for level (02 (NAME segm), is unqualified and any
NAME segment at this level can be searched. This is
true because the LEVF2 flag (LEV+'2%), at *_CcSA70 .

is *_0% v, which is called LEVCoNT. e (Sady muauw*wwsqklﬁabb%)

Now if retrieve gets the next NAHE under the SKILL of
"ARALYST " we are in fat-city! Once this is done SDBF6
(#*D'} has SDBCHEOC set on (Bit 3) to show this segm is
the "child"™ end-of-chain. This segm 1is in HISAM and is
involved with logical relationships so we must check the
Delete Plag to see if this segm is available on this
"path". The DF is *00' so all is well.

The one we got was "™JONES, JOHR PAUL ® and it's not
deleted so retrieve now posts its position in the SDE at
SDBPOSC (+¥38°%) * (490cC * (RRN) and SDBPOSN (+°®3C*)
r_BY9lo * (Offset). The RRN is ¢_| _ ' and Offset is
* 3 * in the O0SAM (overflow) data set.

SDEF3 flag (+*At) for this 1Child has SDBSERK on (Bit
4y, so this segm will pot be returned to the user even
though this is the lowest level in the call.

%¥. Ckeck the SDBTFLG (+'28%) for NAME segm at ' DYEFc v,
This value (*01%), means the segment we have retrieved
points to a LParent and the LParent must bhe retrieved.
boes this segnrn (the LChild), have a Direct Pointer to

XX.

PAGE 5

the LP? Check the DMBPTR (PSDBR+'7%Y at *_Y4Y3$s '
which is *_QL}. This means there is no LP pointer in
the segrent prefix. In fact this means the entire
prefix is 2 bytes long so the Symbolic Pointer must be
used.

The SDB for our LChild segm is connected to its LParent
via the SDBTARG (+'28') which points to a Gemerated (or
“out-of-1ine"™) SDB at *_gpYL3C *. It is easy to check
this SDB against an “in-line"™ one since the first 8
bytes are <zeroes. Check the SDBTFLG (+'28*) for this
SpB at *__otbbd L (It tells 4 things about this
$DB.) This SDB points to the DSG (SDBDSGA +'24°)y at
' ¢4y * and the PSDE (SDBPSDE +%1C%) at

t___copef te

Checking DSGINDZ (+'7%'), for the LParent at "_cSAxH ¢
we learn that this DSG is for a HIDAM data base.

This out-of-line SDB points +to another SDB via the
SDBTARG (+'28°%) and this SDB at '__bYlLcC * has an
SDBORGN (+'9%) of *_¥{ * meaning it is for the Index
data base.

Retrieve now has the SDB, DSG and the KEY of the "NAHE®™
segm (LParent) we want, so it sets R1 = *16* and goes to
its I/0 Interface (SETL).

The call to Buffer Handler is prepared by plugging a
¥2' in PSTFNCTN (+'16C), putting the address of the
"Xey" in PSTBYITNM (+*17C*') , and going after the HIDAH
Index.

Buffer Handler searches the ISAM index dJata base to
locate our Key and returns with the RRN of the INDEX
segment in PSTBYTNM (+'*17C'}) which retrieve plugs imnto
SDBEPOSC (+%38°%) at *__BYloY *. This RRN is *__A_ ' and
SDBPOSN has the OFFSET fronm PSTOFFST which is
’ 3 .. In +the prefix portion of this index

segrent is the RbN of the LParent segrent we want.

This ROLN is next used by retrieve by moving it teo
PSTBYTNM (+*17C*) and making another call to Buffer
Handler with a PSTFNCTH of ‘E2' (Byte Locate). This time
we are going after the HIDAM DATA data base.

To locate a segment in the HIDAM data base we must "back
up" the SDB's from the INDEX one to the HIDAM one by
taking the SDBPARA (+'20) in the INDEY SDBe SDB's. at
‘_fyuec ' which contains '__(4b3c __ *. Both of these
are cout-of-line SDB's.

PAGE 6

¥IXI. buffer Handler must do a convert of the KbN +to Rel
BLOCK Number and Offset this time, but if all is well it
tinds the segment. Bufr. Handler returns to retrieve
with PSTDATA (+*180*) pointing to the segment in the
buffer pool. OSA¥ was used to read in the block that
contained this segment 1if +the block was not in the
buffer pool. N

X1II. Retrieve now has the LParent segment an does a post
of the position. The SDBPOSC and SDBPOSN values at
v Bub7d v and '_BYL2Y ¢ are '1 and *I1CEEY.
The LParent segment just retrieved starts at *BY9BC6'.
Check these values against +the PSTS3YTNM and PSTDATA
fields in the dump.

The key of this segment is found by taking the SDBPSDD
(+*1C*) pointer +to the PSDE at '__CS»ef ___'. At *10°
into the PSDB is the pointer to the first PDB which is
at *__Cse7€¢ v. cCcheck each FDB at FDBCENF (+%A*') for
Bit 1 on. The F¥DB named FoLn am is the sequence
field for the NAME segment and it is '__42{* bytes long
and starts in col. *_§7'. Check this length against
SDBKEYLN (+*20°) in the dump.

This key field nmust be extracted from the segment just
retrieved and plugged 3into the DBECBKFD, but where? At
this time Retrieve is working on the '"out-of*line™ SDE
for the LpParent at *__BUb2c _*. In this SDB SDBPARA
(+%20°%) at *__BYLS C ¥ has '__ByRDY ' which is the
address of the SDBE for the LChild. (NOTE: The "in-line"™
SDB*s gpoint to Yout-of-line®™ SDB's via thier SDBTARG
field, and the first "out-of-line"™ SDE points "back™ via
its SDBPARA field.) The SDBPARAR (+'20°*) for this
segment at *__ONPFY ' has *_6486c __* which points to
its parent. By following these +two SDBPARA's we end up
at the root segment. Taking the SDBKEYLN (+20') - at
_ __B48Ac__ for SKILL vwhich is *_7)__'* we have the
cffset within DBPCBKFD for this KEY we have retrieved.

Taking the SDBFCSDB (+*10') in the SKILL SDB we coune
back to the SDB for NAME at *_@4¢DY _$. 1In this SDB
at SDBRKEYFD (+#30%) at '__6fq04% __* 1is where retreive
pluge the address of the key offset. This address is
now used to move the Key of the segment just retrieved
intoc the DBPCBKFD.

XIV. This segment is the lowest level in the call and the
“call sensitivity®™ at SDBF3 (+'A®) is * FY_°*, so this
segment will be returned to the user. The length of the
prefix in DNBPRSZ (PSDB+'8') at '__Cqpve v dis Y1t
and the data length in DMBDL (PSDB+'A') at '__CUongV .
is v\, . This data length is plugged into PSTSEGL

Xv.

PRAGE 7

(+*B8*) and the prefix length 1is added to PSTDATA
(+*166*) and placed in PSTSEG (+BU4') all by retrieve.

The address of the Level Table for this segm. is
n"posted® in the JCBLEVIC (#%20') at *__CSf4d * and
ketrieve returng control to Call Analyzer.

inalyzer plugs the Xey Feedback length into DBPCBLKY
(+*1C*) and returus control to Program Request Handler.

Program Request Handler moves the segment based on the
address in PSTSEG (+'B4*') to the address in PBSTUSEE
(+*BC*) using the length in PSTSEGL (+°*B8') and returas
control to the application progran.

UEDATED: 12/20/76

(Y

II.

ITT.

INSERT CALL FLOW

Our task is to ISRT a new *SKILL' segment (in Logical
D.B. 2), which 1is a Logical Child *XSKILL®* in the NAME
data base (ISRT via the Physical Path) and a Logical
Parent 'SKILL? in the SKILL data base (ISRT via the
Lcocgical Path) .

The first call in the dump is a qualified *GU* to the
NAME segment of BRUIN, FRED J. This call establishes
®"rosition®™ in the data base so that the ISRT call that
follows places the SKILL of ARTIST under that particular
NAME. The GU call is snapped so that we can look at
some of the control blocks & buffers "before"™ the ISRT
call.

At this time turn forward to the ISRT call (about 10
pages in the dump), and you can see the exact call as
issued by DL/I Test.

Flow is the same as for a GE? Call up through the Call
Analyzer. The call is decoded to be an Insert, and the
PROCOPT is checked to be *I* by checking the SDB for the
segnent being inserted. In this instance we must check
the SENSITIVITY of the 9SKILL"™ SDB. Scanning the
interpreted side ofmthe dump on page 129 we find the
value "SKILL". This 1is the the SDB vwhich starts at
't e¥4b¥___*. The SDBF3 (+#'A') at '__BY96E * has
* 7¢ _'. No matter what other bits are on, 1if Bit 1
(*40*) is ON this segment is OK to insert witk this PCB.
Once we have passed this test, Analyzer gives control to
DESDLROO - DL/I RETRIEVE.

Retrieve establishes positiorn in the HIDAM data base
for the ISRT of the XSKILL segnent (the lLocical Child}.
Position in this case refers to the Hierarchical
location within this data base record where this
particular segment mnust go. In order to do this (and
follovw the Retrieve flow), locate the PST at '_ Dhoc¥ _°*,
go +'160* to '__o#AT\d* (the DBPCB address) which is
' (Cs424y___*, DBPCB + '10' +to the pointer to the JCH
vhich is at °*_c59A4__* and plus 8 in the JCB to
' _(¢k%Ac _'. This location contains *__DYSFEC _*v which
is the address of the Pirst SDB in this PCB. The first
8 bytes of that SDB are '_NAMe Bk * which is the
name of the Root segment. This segment has position
which was established by the first *GU* call and by
looking at SDBPOSC (+#38') at *_e4fed v it is
| 2 l?'ci—"

At SDBFCSDB (+'10%), at ®* B48Qc v there is '__‘“” .
(Half-Word) which is the "Offset™ to the f£irst Child SDB
for this segment. At that offset is segment name:

mmwsls . At SDBSISDE (+'12%) in this SDB

(N

Iv.

PAGE 2

' Bykst v is v 4F v _ hat points to the first
Sibling SDE for this sequmuent which is
named: (ayfott . The SDBSISDB in this segument at
. budrp ¢ takes us to the "SKILL"® SDB at

'bybby *-

Retrieve uses the ‘'current®™ position of the "NAME"
seqment and by reading the prefix pointer in that
segrent for the Physical Child '"SKILLY gets the first
segment to check for position. The key field of this
"SKILL" segment is read and compared to the Xey of the
segment in the wuser's I/0 area. In our example the
first "SKILL"™ in the data base record for BRUIN, FRED J.
is "BW173" (Photorurals). The Key fields are compared by
retrieve and ARTIST comes before BW173. The "position"
(kbN) of BAH173 1is placed in SDBPOSN of the "SKILL"™ SDB
at *___PyjA0__*. This RDN is *__ [38c__*. Since there
was no SKILL lower than the one being inserted Retrieve
plugs zeroes into SDBFOSP at *__@B4q4% __'. The SDBPOSC
is pot filled in at this +time. (The value you see there
is your dump was placed there latrer in this call flow.)
Remember that this in not the actual "Physical™ location
on DASD where the new 'XSKILL' segment will be inserted.
Once this ‘t*position®* is found control passes back to
Call Apalyzer which next passes control to Load/Iansert
(DFSDDLEQ)

ur segment to be inserted (SKILL), 1is a LC/LP
concatfnation. The SDBTFLG field (SDB +28) *_By4q8c *
has a value of * 9/ * which means that this segment
*Points To A Logical Parent'. Therefcore Load/Insert
must check for the Lparent. In our case the LP is in
the data base, (SKILL of "ARTIST *™). The Insert Rules
are found by starting at the SDB and following the
SDBESDB (+%*1C*') pointers +to the PSDB for each segment.
First is ¥SKILL and the fielé (DMBISRT) at PSD3 +!Ct is
* B4440 _* which is '23 *. To get the LParent PSDB go
back to the SDB (LChild) and take the SDBTARG (+%28°¢
actually +%*29'!} to the out-of-line SDE at *_04L3c .
The SDB points to its PSDB which is at Y_CS(Fy ‘'. DNow
go plus *C* (DMBISRT) to *_CSPoy * for the ISKRT rules
field which is '_X3% *. The Imnsert rule of lLogical means
thet if the LParent has been imserted in the data base
previocusly only the LChild portion of the concat€nated
segnent will be inserted. However if the LParent did
not exist both +the LChild and LParent will be inserted
into their physical data bases.

Next check the file organization of th LChild at
SDBORGN (#9 *__Oy96D '). Ours is ¢ (0_* and that

means __ ¥ . Ho)dm

Is this segment an Index SOURCE segment? (Secondary
Indexing) Check PSDB 420 (DMBFLAG) *_B¢44Y_ % which has:

()

PAGE 3

* 43 *. A value of '10' means this segment is an INDEX
SOURCE; '0O4* peans it is INDEX TARGET. This means there
is no call to Index Maintenance for this ISRT.

Check +this segment for Fixed or Variable Lemngth at
DHBVLDFG (+18 '__f444c *) in the PSDB. Ours is: *_00_ ¢
which means ___T«xeD Lengrlf -

Based on the 'position' given to Load/Insert by Retrieve
now locates space for the *new" segnent, "™AINAME®™ Dby
placing an '01* in PSTFNCTN (+*16C"), (this is called
"get space®™), and also puttirg the RDN of the parent
segrent YNAME®™ in FSTBYTNM (+*17C') and calling HD Space
Management. This RbN of the parent segment came from
Retrieve when it established position for Load/Insert.

This is the criteria for a ™get space"™ as used by HD

Space Mgnt:
Sprace in the same BLOCK; In a 5lock on the same DASD
TRACKs In a Block on the same CYLINDER; 1In a Block
within the SCA¥ limits (Delta Cylinders); and 1if all
else fails, the end of the Data Set. HD Space
Management makes calls to the Buffer Handler to find
the "Host Desirable Block™ in the data set for this
"new™ segment. In order to follow the activity of
HD Space Hgmt. a Trace Table is provided. In your
PIM Vol 3 of 3 on Page 6.109 is a diagram showing
the location of the HDTR. In the dump the PST+!168°
is at *_Pb)1Oo ' and the SCD is at '__%4l8% _ ¢
and the HDTIR (SCD+'160*) is ¢ Bc34Yo *.7 +t160! is
correct for Rel 1.1.3 even if your PLHU says '164°%.
That value was correct for Rel 1.1.21! (The DSECT
description of HDTRX is also in your PLM Vol 3 of 3
on Page 5.150) The HDYR+*L4*' points to the “current®™
entry in the HD Sp Hgmt trace at *__Bc3%o: * Turn
to Page 6.110 in the PLM (3 of 3y, for a "map" of
the dsects HDTRACE & HDTHX. The "current®™ entry has
a function code at *___R¢3S0 ¥ of '_0O|_ ' which is a
"Get Space"™ request. At HDTRI+*10* at ﬂ_Jég}go t
is Y_\eey * which is the RbY of the "parent" segment
vhich is 'the block where Load/Insert wants the "get
space" search to start. In this case the parent is
the KAME segment for Fred Bruin and the RbN was
supplied to Lcocad-Isrt by Retrieve. This RbN is
paessed to the Buffer Handler by HD Sp Mgmt in order
to see if space is available in that block for the
“new" segnmnent. If there is no space the criteria
mentioned above is used to find space in the data
set.

In the HDTRX at +*14* is the RDbN that HD Sp Ngmt
passed back to load-Isrt for the XSKILL segnment to
be inserted. This is the value that Space MNgat
placed in PSTBYTHM (+*17Ct) when it went back to

PAGE 4

Load-Isrt. At HDTRX+°'Ct +_BC3SC v 55 v eRYes v
which is the address (in the buffer pool), where
this RbN actually exists at this time. This address
is returned to Load-Insert by Speace Mgmt. in PSTDATA
(+*180*) . At HDTRX+'8* *__fBc3¢y * is ¢ 00 _* vhich
is the return code rpassed back to Load-Insert 1in
PSTRTCDE (+'16D") .

Remember that this dump was taken after the entire
call coupleted and the PST fields Jjust mentioned
have been changed several times!!

VIi. Space Management Returns to Load/Insert -
k. With the following info:
PSTEYINH (+17C *_BLI§% _*) - EbN location of where
to put the new segment being added. (Dual purpose
field coming-and—going!}

PSTDATA (+180 *__06(8¢_"') — ERddress where segment
data for the New LChild is located.
ESTRTCDE (+16D *_B{)1]S *) — Return code (if *03*

the bit map must be updated).

B. The next operation is to build the complete segment,
both Prefix and Data portion ané move it +to the buffer
pool. The Data portion of the segment comes from the
Users I/0 Area PSTUSER (+BC ‘_&bqﬁt '} , which at "“this"™
time is 'C2F10* and not the address you see in the dump.
That address has a pointer which has been updated to the
Ltarent which comes later in the call flow. The Prefix
is "carved"™ out with a segment code takern from the PSDB
for the SKILL segment. That PSDB is at '__§yyf * and
the code is ¢ 24;'. The delete flag is pluggeﬁ with a
00 byte and then the number of blank prefix-pointers is
ectabllched by reading, the DMBPTR (PSDB+* 7%} at
' BYy%s v which is '_&0, * and the DMBPRSZ (PSD5+'8%)
at '_muvge ' which is '__A__'. The DMBPRSZ tells the
size of the prefix, and the DMBPTR tells what pointers

re present. The values there mean that we have
gystet i) #hﬂlgkﬁmyj’pointers and the prefix is _jo_(=
bytes long. The values moved into these prefix pointers
come from two 1locations. The Physical Twin Forward
pointer comes from the SDBPOSH field at *__BY4A0 ¢
which is Y__[2%c _*'. The Physical Parent pointer comes
from the parent and wve follow +the SDEPARA (+%20*) at
' ggiﬁi * to the "HAHE"™ SDB and go to SDBPOSC at
'__&yg§e. Y and get Y__|2¢4 __* and plug that into the
PP pointer. This completes the building of the segment.
Load-Insert updates +the SDB current position holgder
located at '__%4949¢__* which has *__2Alc _*. SDBPOSP
and SDBPOSN were filled in by Retrieve. Load-Insert now
noves the new segrment to the address in the buffer pool.

Map out the segment here:

L4 1% eI Liet | aers TEd |

Se) IF ?Tm Pe @#o)
4 1 o g

PAGE 5

If logging is being used (in this case I used a DD DUHHMY
for the log), the HEW segment inserted in the data base
will be logged out now.

If the return ccde from Space Management, PSTRTCDE (+16D
_0br]5 _) was an '03', a second call to DFSDHDSO
{Space Hanagenent) is made to update the Bitmap. The
value in the dump at HDTRX+°*8* at *__6¢c?5B * is * 00
s0 ro call to HD Space Mgmt. with a Function Code of
03 is made in this dump, but if an update was to be
nade this is the time!

Since the Bitmap is itself a block in the data base,
this change must be logged out.

The Hier-Hblﬂer (HH) is updated next. This shows any
subsequent user that this new segment is really there!

ViIX. Ovr XSKILL segment is physically paired so DL/I must
ISRT the paired segment (XNAME) over in the SKILL data
base. We discovered this Physical Pairing when we looked
at the PSDB+'20*' (DMBFLAG) for the LChild segnme.

Re-positioning curselves at the “SKILL®™ SDB at
* w444 _* we f£find SDBTFLG (#28%) is t_0{ v and
SDBTAEG is ¢ B e3c_*. The Gen*'d SDB pointed +to at
this address has at SDBORGN (+'9') at ' ByL4¥S % an
* o4 * meaning it is in Hils4ém . SDBTPLG (+°"28*) at
' _pybly % is *_34 * which means this SDB is Generated
and points to a LChild (ie: ¥SKILL). SDBTARG is
t_ _®Mbee_ _* which points to another Gen'd SDB. 1In this
SDB at SDETFLG *__%Y6EY4 * is *_1O_' which means this
SR for Physical Pairing. The SDBERPSDB (+*1C*) at
* ByLPS * has *_¢sDiCc __* which is the PSDB for the
YFaired™ LChild. HNow that we have located the SDB ané
PSDE for the "pPaired"™ LChild we can continue with the
ISRT!

Segment XNAME, the paired segment, 1is a HISAM Dependent
so a different insert path is taken:

A. DFSDDLEO first locates the peint in the HISAM LEECL
containing the '"previous™ and "next™ segments in
sequence so that we may insert the new segment. Next
it scans the LRECL to see if the new seguent will fit.
If not it must get a new LRECL +to hold the new
segment. The change to the old LRECL is to place a
(P2) Pointer to the nevw LRECL and move the *old' seqa.
in the added LRECL after the *new® segment. If there
is room in the existing LRECL all that is needed is to

PAGE 6

shift the old segrents and write the new one in.
(R11l this is being done in the Buffer!) If there is
no room in the ¥new' LRECL for the cegment({s) pushed
oif another new LRECL is allocated and the
pushed-off segments are moved there (from the
original LRECL) .

In order to accomplish all this "location"™, Load-Isrt
must read the LParent segment (in ISAM), and follow
the data-base-record 1loooking for: the £irst "“XNANE"™
{and do a Key coaparison}, or the end of
Data-Base—Record. The segments are identified by
segrnent codes and we find the SC for ¥NAME by starting
back at the Gen*d SDB for +this Physical Pairing at
v gdcC *_ fThe SDBPSDB (+'1iC*') at ' B4LEE ¢ mas
* Cl9Plc__* and that PSDB has a SC of *_ 02 %, So,
the "scan®"™ will start at the root and look for a SC of
02, >*02¢%, or end with a PU pointer (4 bytes of
zZerces) .

In this example there are no dependents of the SKILL
"ARTIST" so the FU pointer is reached first. There is
no room in the LRECL in ISAM for any dependents so the
"position" for our new "Paired"™ LChild is in a new
LRECL in OSAM.

B. This is a good time to map out the SKILL segment in
the Buffer Pool, so here we go! To locate a HISAR
root in the buffer pool we must know the DMB#, DCB%,
and BLOCK#. The first two are found in the DSG, so
it's back to the SDB for the ILParent at *__R_YyL3e ¢
againt! The SDBDSG (+*24*) at * 84Gbeo__* has
' (5844 ' The DSGDMBNO (+*4°* Half Word) is *_3 ¢
and the DSGDCBRO (+'6' One Byte) is *_p| *, and while
wetre here the DSGANPA (+*0°* Full Word) is
' S¢fho_ v, When a HISAHM root is retrieved the
T"KEY*® is given to ISAM and the BLOCXK is returned to us
in the buffer pool. I will play ISAM and tell you the
BLOCK is #1. Also 1in the ©LUSG at DSGBOFFP (#'C*)
*___19 * is the offset within the Block for the
segment. Now you have the BLOCK#, DBM# and DCB# and
we are ready to jump into the Buffer Pool. (Ouch!}

C. Locate the ScD at *__b4\B0 v and look at SCDDBFPL
(+#%2BCY) at '__6q43¢c _* whichk is '__Eloeo * and go
to that address. Now we are at the *BF¥PL*, or the
Buffer Pool Prefix as 1is says in the DSECTs.
Searching the pool for a segment is done via the "Mcst
recently used buffer® at BFPLFWDT (+T8°%) at
v__Eloo¥ v which is '_E§90% . wNow look at the
dsect "BFFRDS"™ for an individual buffer and compare:
The BLOCK at +'C* *__ C¥tpdrt with vwhat we are
looking for (*00000001*); The DNB at +v10°
' Vv ___ % with our DHMB#; The DCB at +%*12* with our

pugtt _ 3
Yt =)
Bloc® 4 |
OPFIT =79

Slocuctt 5

PAGE 7

DCB. This is KOT the buffer we want, so take the
BEFFRFWD (+'18') at '__E%Q20 ' which is '__=fpc8 _°*
and get the next buffer. Do the same comparison again
for BLOCK# (+'C') at *_€€pdp4 __*, DHMBE (+*10*) at
*_ c%90% ', and DCB# (+'12') at '_ _cfpda *. This
time we have an equal compare on all items an his is

the buifer we want. According to the { he-

Buffer Prefix is '_20__"' bytes long, so if we add the
offset (from the DSG) to the start of data we arrive
at the ISAK LRECL at *__Efc(l| *. The first thing
here is a P1 Pointer of '000000* showing there are no
roots chained off this one. VNext at *__ESE(f ¢ is
the SC of %01, delete flag of *00*, a pointer of some
kind at *__ €5l * with a value of *00000001* and
the start of data at '_E$E6A *. To determine what
kind of pointer that is we =must go back to the PSDB
for the SKILL segment at *_ C5c¢r§ __*. DHBPTR (+'7')
at '_c¢cHeep. ' has *_f1 ' which means this segment
has a Counter. That counter in the prefix has a value
of *_1 v meaning it has that nmany Logical Children
without direct pointers to them. Before leaving the
PSDE go to DMBDL (+'A') at ' _CSDo% ¢ which is
* _4f_* and get the data length.

D. How ao to the buffer pool and add the data length
to the start of the data and there should be the
sequent code of the next sequential segm. in this
data base record. This is at '_kEgEed ' and it is one
byte of Y 0o _'. 1A zero segment code means this is the
start of a P2 pointer and the next three bytes contain
the RRN of the LEECL in OSAM where the next segment is
located. (If these three bytes were zeroes this would
be a Pl pointer and the data base record is ended. In
this example there WAS a PL pointer there before the
ISET «ceall, but now there is a three-bhyte P2 with
* 3% _* meaning the next sequential segment in this
data—base-record is in OSAM at the *33 *-rd LRECL
from the start of the data set.

This segment is the "Paired"™ one Load-Insert had to
put in the data base since the User put in the XSKILL.
Let's go back to the Gen*d SDB for this “paired™
segment at Y__BYbcec * and pick up the SDBPSDB
(+*1C*) at '__aUGe% * and the SDBDSGA (+#*24%) at
. $NeFe _*. The DSG is the same one as for the Root
(SKILL) but the DCB will be for "overflow®™ instead of
“prime". The PSDB at *_CSdic __* is level *02°¢

and has a prefix size DMBPRSZ (+'8'y of *_>» * and a
data length DHMBDL (+*A*) of *__z24 ‘. The DSG at
t C%éaM _* has the DMB# at +'4' which is *3__ * and
the DCB since this is OSAHM is *02* this time. We know
the RRN is %33* but in order to know which Block itts
in we go to the AMP via the DSGAHPA (+0) at
__CS5GAUY _. DHMBPFODR (+'1C%) at *__ CSchC * points

—— e

IZE
mpi =3
')&6"} 2|

e

P - o
=5
b=

&

PAGE 8

to the OSAM DCB at '__CSF4d v, The OSAM Block Size
is at +%*18* in the DCB at *__(CgFSC * which is
* D84 _* and the LBECL size is +'52% at ! C;Fﬁgjg s

. e

which is ¥_\fi *.

E. Doing some fancy math we find the RRN we want is in

the second Bleck for the DHMB and DCB numbers already
established. Going back to the Buffer Pool, follow the

"use chain"™ looking for our Block, DMB & DC3B match.

We left off at the buffer at '_c¥DC¢ * so take the
BFFRFWD (+'18%) at ¢ €€%°@ v and check the pext
bufter at *_Ebojo _v. Ttts Block (+'€;} ' .

\ DMB (+'10°%) '_ 3 _* and DCB (+#'12%) *__ *. Right
\gag* you are, and now add the prefx size to the start of
\the buffer. That is the start of Data 1in this Block.

21 g

The "XNAME®"™ vwe are looking for 1is in the LRECL at
*B6769', where there is a P3 pointer with all zeroes.
Three bytes into the LRECL 1is the segment code of
' 0¥ t, delete byte next is '_09 ¢, and if you wrote
it down the prefix length (in the PSDB), was t02*' so
thatt*s all! ‘the data is next for *2A' bytes and the
next pyte is supposed to be a segment ccde. The SC
there at 'B6788' is *_00 * npeaning this is a Pointer.
The next three bytes are all zeroes so this is a Ph4
peinter and the end of the data base record has been
reached.

F. This is the segment inserted by DL/I when the user
inserted the cther "half"™ of the physical pair. 111
changes nmust be logged and this is done now.

The SDE Position Holders and the HH's are updated to
show any changes.

Is this Seqgment a Secondary Index SOURCE segment? I
so call Index Maintenance (DFSDXHUTO) now to keep the
secondary index in synch.

VIII. The lLcgical Parent segment (SKILL) will have to be
updated since we added a new XSKILL segment which is
its Logical Child. If this SKILL has a counter we
must add one to it and if it has a LCF pointer we must
£fill it in with the RDbN of this *'new®' XSKILL, but only
if the new segment is the FIRST logical child. If the
SKILL segment has a LCL pointer and the new XSKILL is
last on the Logical Twin Chain (Virtural Pairing)} , we
must £ill in the LCL pointer with the RbHN of the new
sequent. _

Go back to the Buffer Pool and see where the Counter
for the SKILL segment of "ARTIST™ has a value of
. { s, This is the first and only XSKILL

B

pointing to +this LParent and since it was Jjust

IX.

PAGE S

inserted that value was plugged in by Load-Insert at
this time in the call flow.

The Physical Parent Segment *NAME* needs updating.
Since its Lchild *XNAME'Y is in HISAM all we can do is

add T to its Counter. (o LC Pointer Possible into
HISAM) 1In the Buffer Pool the NAME of "BRUIN, FKED
J." is at t Egcﬁg;a_' and the counter is at
* _ES¢H '. The counter value is Y____ 3 ¢ inp
the dump which means is was * y o * bhefore this
ISRT call.

Log any of the segrents changed as a result of this
prefix updating and we <can go back to the Call
Analyzer (DFSDLAOOC).

Lets look in the buffer pool and map out some of the
segments involved in this little 3ISRT. In case you
forgot, the DL/I Buffer Pool starts at * £loo0 LI
The *NARME' segment is located 1in the pool at
t__£8¢p¥ *. The 'SKILL' segment is at '_ESECY .
The 'XSKILL' segment is at *__EA4c% *. The SXNAME®
segment is at *_=Ll8¢ _*t.

Map out NAME for FRED BRUIN here:

lol i 00 \oocowoa\ {oRC \ \ 23k \ \3$- \ 2M\C \\ (Sro8hpLud, VRO T -

g. P¢ Cri e PeF Pce e D AT
(Leledd) Motss fAfiRL XSewL

Map out SKILL for ARTIST here:

u__oif'iiﬂ\,ﬁ%“yrgé ‘%ﬂr‘P’r» AausT L. .

S¢ ¥ ot D AhTA

Hap out the XSKILL for ARTIST here:

|_oy l°°t (3%¢ | |Lc4" ARTISTYA \\
A N 7T DT

~

(O

Map out the XNAMIL for FRED BRUIN here:

L"_?'_]__O_Lﬂ Bluy Fre T

Sc e N Hm

Updated: 02/07/77

PAGE

16

DLLETE CALL FLOW

This call exercise consists of two steps. The first 1is a
dlet of a root segment in +the HISAM "“Skill -Name®" data base.
In your handouts this is known as Logical Data Base 1. Step
two is a dlet of a LC/LP concat€nated segment "“SKILL"™ via
Legical Daeta Base 2. That is in terms of Physical data
bases, a dlet of the segment ®IXSKILL" in the HIDAM data
base. Snaps were taken after each call, so there is a
formatted dump oxf the DL/I control blocks & Buffers after
the GHU calls and a €ull region dump after each DLET call.

STEP ONE

I. Step omne is to DbDelete the *SKILL®' segment with a key
value of PROG via the Logical Data Base *SKILL-NAME®.
This is a Delete via the physical path. The Delete RULE
for this segment is Logical and SKILL is both a Physical
and a Logical Parent, with its Lchild Physically Paired.

These facts (given to us by our <friendly D.B.A.), mean
that:
1. Either Physical Or Logical Deletion can occur
first on the 1LP.
2. All Logical <Children must be marked as Logically
deleted.
3. A1l Physical Children must be marked as Physically
deleted.
it the completion of the Delete call:
1. SKILL, XNAME, EXPR and EDUC #ill not be accessable
on the Fhysical path.
2. ¥XSKILL w¥ill not be accessable con the Logical Path.

IX. 7The actual CALL flow starts with the mandatory *HOLD®
call. In this case it is a GHU to SKILL qualified on
SKCLASS of PROG. At the completion of this call the
Level Table for SKILL (Level 1), has bit t¥o on in the
field LEVF1 (LEV +1)*_CS5AHD * indicating that this
segment was returned to the user with a HOLD
call:*_2¢ *_ If this was not done we would get a *DJ*
status code on the DLET call.

IXIXTX. Turn forward in the dump to the DLET call. First of
a1l Dlete/Replace (DFSDLD0OO), checks the key fielé in
the users 1I/0 area against the key stored away in the
PCB. If these don't equal the call is not completed and
a status code of 'DA' is issued.

To accomplish this vwe nmust locate the PST at DFSENUCO

(‘\

Iv.

PAGE 2

+*8' on page 120 in the dump at '__&&ggg *. The
PSTDBICB (+'160% at *__BbiL§ _* has °_CO7Af *. How
go plus *24* to the DBPCBKFD field at '__c¢y9¢g _ ' which
has in it: fRoc kLLt - This i= the key value

as DL/I sees it from the GHU call. The field P%$§§33~$
and 519

(+*BC*) points to the Users I,/0 area at '_(Bb0oey)=

it contains the KEY in the first 8 bytes which
—_Plechkb il . The two are equal so we don't
get a 'DA* status code.

S

The next quextion that Dlet/Replace must /answer is do
we have Logical felationships, Secondary Igdexing, or is
this data base 1ID? To answer these gu ions we nust
start back at the "SKILL" SDE. To get there we take the
“current"™ DBPCB +%10' at '_(£57P4 ' to the JCB at
v _Cs5¢24 v, In the JCB at JCBSDET (+%8%') at
* _¢cg2c * is the pointer to the root SDB. This is
the "SKILL"™ SDB we want, so look there at SDEDDIR
(+*14% at *__BYSAD _* which is *__ &Y *. This
address is the DDIRK entry for this SDB. Each DMB
Directory entry (DDIR) is *28*' hytes long and the first
DDIR is pointed to by the SCDDLIN (+'F4*) at '§927u-
which has ¥PUAUC®* in +the dump on page 123. The DDIk
pointed to by the "SKILL" SDB is the 2nd entry, right?
Looking at the DSECT <for the DDIR's vyou see that the
DEDNAME is at +'8°' and the pointer to the DHB (DDIRADDR)
iz at +'10'. In the DDIR we just found at +*10" is
* _B842A% _* or the DME associated with "SKILL". Check
the DMB for Logicals and/or Secondary Indexing and/or HD
crganization:

DMBORG (+2) at *_®Y2%2 _* checks for HD. It is
NG * O] * DHMEFLAG (PSDB +20) at *__BYZ¢g *+ for
~~ Logicals & S.I.It is '_2© _*. Anything BUT %00t
in the DHBFLAG gives us a "YES"™ answer to the
question.

The ansver to HD and S.I. is no, but the answer teo
Logiceals is YES.

Based on that YES answer, DPFSDLDSO builds a Dlete Uork
Area and enques the Root. The address of the work area
is in the PST at offset *1FC'. DILDSO locates the first
segment for XNAME EXPR & EDUC under this SKILL and saves
the Key of each segment. Unfortunately this field in
the PST (BSTDLTIWA) 1is reset before the end of the call
so in the demp the field is all zeroes!

DFSDLD00 does a 'down' scan next. Since this is a DLET
of an entire data base record in HISAH, this scan is
done Dbecause of the Logical relationships involved.
Daring this ‘*scan' DLDO0 uses the work area to build

PAGE 3

inforration needed to do any actual deleting in the next
step.

VITI. Now map out the D.B. Record for this deletion as this
*scant' would do. TFfor a start, the SKILL segm. is in
Block 1, DMB #2, DCB #1 in the buffer pool. That info
cane from the DSG for the SKILL data base. Also in the
DSG at offset *0* is a pointer to the AMNP. The DSG
starts at n_;gqg% *. This AWP in turn contains
pointers to both DCEB's for the ISAM/0SAM pair in use.
The AMP is at *__D\wpo_ ' Since you know what SKILL
segm. we are deleting you can scan the dump to find it.
The "EFPL"™ starts on Pg134 (That's not really cheating
I'd say.) The root segm starts at *_EZ63F * with a
segmnent code of '01*, a delete byte of * 24 * and a
counter of 3 *. Following this is the segment
data. The length of data is found in the PSDB, offset
A (DMBDL), which is at *__BH4X2%Y * and is *_Sp _'.
If data starts at '__EqBYY ' (following the counter},
adding the length should put us at the next segment in
sequence. However the segment code at this address is
00 which is the *flag-byte®' portion of a HISAM P2
pointer. The next three bytes of the P2 pointer contein
the RRN in the OSAM (Overflow) data set where our data
base record is continued.

If our ISAM (Prime) data set was DMB #2, DCB #1 and we
are in the OSAK portion now, it will be DMB #2 and DCE
#Z. The RRN value in the P2 pointer was *002E*. This
means our next cegment is in Block 2, DMB #2, DCB #2 at
the start of the 13th LRECL right after the P3 pointer.
(The B3 should have the kigh-order bit on to signify
dependents only in this LRECL.)

That's great but how long are the LRECLs? Go back to
the AMP and look in offset *1C* for the pointer to the
Overflow DCB. This OSAM DCB starts at ¥_ 8\S __'. At
18 into the DCB 1is the BLOCK size and at '52% is the
LRECL size. The LRECL size is '_oobj_°'.

The Buffer Pool starts at ‘E6800' on page 134 in the
dump, and the first buffer on the "forward"™ use chain is
at +v6* at Y__EbSof _* and is *__EQbro _‘*. This “most
recently used"™ buffer is on page 136 and is for Block 1,
D#BE 2, DCB 1. The next buffer on the “forward®™ chain is
at '__bige *. It is for Block *__)» * ,DMB ' Vv ¢
and DCB *___ %, ané since it is not a 'new' buffer and
has no channel program, the data starts +%20°* at
'___56%90 _'. This is the correct one and will help
you locate the 13th (decimal) LRECL at *B6D7C'. Look
there and see if this 1is a P3 pointer with the
high-order bit on. Right after the P3 is the segment
code for our next segment in the D.B. Record. It should

PAGE &

be an XNAME for ADAMS, JOHN QUINCY (just to check your
work up to this point!l). The segment code is *02° and
the delete byte is '_24Y ‘. That is the conplete prefix
of XNAME so the data is next.

The length of data for XNAME (called NAME in this
lcgical data Dbase), is in the PSDB for level 2 under
SKILL. This PSDB starts at '__0M24¢/ _* and at + 'at
into this PSDB is the length of ' Jp _'. While we are
here, write down the lengths of the other segnents:
ExPR *__ |4 _vs EDUC '__M4b _*.

Back to the buffer pool to add the length of data to
Y HAME and we find a segment code of '_03 * for the next
segm. (Which is EXFR. with a value of CB3.) After the
S .C. dis the D.F. *_ul ' and the data. At the end of the
data this time we have a ®00*' S.C. which indicates this
is a P2 pointer to the next LRECL. This P2 pointer at
v £bPc)_* contains » _3F __r, and since we got to this
LRECL via a P2 with a value one iess than this, the P2
here is pointing to the next LRECL in this buffer. This
wpext™ LRECL is at 'B6DE5'.

At the start of the next LRECL is another P3 pointer and
then a S.C of ' 0v_* for the next XNAME segmnent. The
name this time is:__JowNe$S. Jouw T a0 .
This process continues on with pointers to LRECLS until
the end of the D.B. Record is reached and a P4 pointer
is found at %g6F70°'. The segments are as follows:
XNAME - YADAMS®
EXPR — *CB3®
XNAME - *JONES®
EXPR — *ALS*
EXPR - tCea4*
EDUC — 'MICHIGAN......MBA?
XNAME - *SHITH®
EXPR — *PL3*
EDUC - 'HOLY CROSSBBA"

This is a good time to look at the delete-bytes of all
the segments in this D.B. Record and see that they are
all '_;2& *, including the root. The value you see in
the dump is after the entire DLET operation was
conpleted. (On the tdouwn' scan made by Dlet/Repl they

were all t00'.)

VITI. That conmpletes the *down' scan as DLDOO did it. Next

DiDDO does the fup® scan and sets bits 2 and 5 on in the
delete bytes of each segnent. That precess marks each
Phyvsical Child (as vwell as the Root), as Physically
Deleted, and these changes are logged out. That
explains the values you see in the dunp!

(—\

IX.

PAGE 5

We return to DLDDO since XNAME is physically paired
with XSKILL. The "rule™ is that when we PD the XNAME wve
must LD its pair, XSKILL. This 'blccks?® the logical
path from NAME. «z_

In order to locate the correct XSKILL segm. ocur path is
to take the symbolic pointer in the first ANAME under
this SKILL and retrieve HAME. In the buffer you can see
that this is 'ADAMS, JOHN QUINCY ¢, and this AME
segment is in Elock 2, DMBE 3, DCB 1 at °* . E9c¢fFo
This is on page 137 in the dump. We now nedd to skip
over the SC and DF and get to the Thysical Child Pointer
for XSKILL. That is the 5th word past the Delete Flag
and is at *__&9Po» __* with an RbN of '_¥O27 *. (This is
HIDAM so the DMB & DCB are +the same.) The RbN
conversion gives us Block ¥, Offset '18F[Locate Block

5 &
4pte—that buffer (starting—past—the header), to
v Sl * for the XSKILL segm. The SC is * @4 ',
the PTF ptr. iz Y___ O ', the FP ptr. is
4 D3 C * and the data is ‘'PROG ‘.

DLDDO turns on bits 2 and 6 in the DF to show
tprecessing by Dlet.* and Leogical Deletion. This change
is logged, _out and we continue. Refer to the value of

'22¢ at -Eéﬁgql.

The next step in the delete process is to check for
additional XNAME segments in the 'deleted' D.B. Record.
Fesides ADAMS we found JONES and SMITH in the *down?
scan. The process is essentially the same for these two
as it was for ADANS. When the L.D. bit is turned on in
the Delete Flag for XSKILL pointing to SKILL of PROG
under NAME of SHITH this step of the process is
conplete.

This change is lcgged and mwo more segments are to be
deleted. DLDOO now returns control to Call Amalyzer and
this call is dorne.

STEP THO

Step two is to delete the same 'SKILL' segment via the
Logicel Data Base *NARE-SKILL®. SKI1L is &
concatination of the LC *XSKILL' and the LP *SKILL'.
This deletion is made via the Logical Path and results
ip deleting the LC *XSKILL' wunder *NAME® of ADANS. The

(“\

PAGE 6

delete rules are Logical for both the LC and 1P.

In step one this YXSKILL seguent was marked as Logically
Deleted (LD bit on). It is physically paired with XNAME
and has no physical children. At the completion of this
DLET call:
¥SKILL will not be accessable on the Physical
Path.

IXI. Again the mandatory BOLD call 1is issued, this time
against the *NAME-SKILL®' logical data base. The level
table entry to check is Level 2 this time and LEVF1 at
’ e ___% has *_____*. All 3is well! Check page 4 in
this, the 3rd dump in this call flow example!}

ITI. Page forward to the DLET «¢all where DLDOO checks the

Iv.

v.

DEPCBKFD (+24) S ’ vhich has
4 * against the User's 1I/0 Area
(rointed to by PSTUSER, PST+EC). The User'®s 1I/0 area
(in DFSDDLTO), starts at ¢ L Where in the

DBFCBKFD is the "key" of the segment to check this time?
Go back to the SDB for YSKILL™ at *84964* and look at
SDBKEYFD (+*30°') at ! ‘. The address there is
the position within the key feedback for Dlet/Repl to
compare. The length of the comparison is in the SDB at
SDBKEYLN (+*20°* One Byte) at '84984* and is *____*. If
we conpare these two values we f£ind that we didntt
change any KEYS so all is well this time.

Logical relationships, secondary indexing or HD is the
guestion again. This time the DMB fields at DMBORG (+RA)
' * has * * and DMBFLAG (PSDB +20 ifor
XSKILL) at ® * has *__ '. The answer is YES

tc both lLogicals and HD this time, so DLDOO needs a work
area.

The scan *downt® is rather short this time because there
are only two segments involved: NAME and XSKILL. HNAHE
is in Block 2, DMB 2, DCB 1, at Offset 'g%:
L ___t. Map out the segment using the prefix
length from the PSDB +E& ¢ * which 1is ¢ s
and the Prefix pointer options at PSDB +7 which is
' *. That means there is a SC, DF¥, CTR, FTF, PC

(Address), PC (Payroll), and a PC (XSKILL).

NOTE:
(In order to see the segments Just as the "down'®
scan sees them we must turnm back to the duxp taken
after the GHU call. That is the GHU call made with
the PCB for Logical Data Base 2 with segments NAHE

N

Vi.

PAGE 7

and SKILL with values of "“ADANS" and "PROG ". 1In
that snap-dump on page 9 in the buffer pool we can
find the "old"™ segment values <just as Dlet/Repl saw
then.)

The Counter value is '00000001*'and the PC Ptr to XSKILL
is '0K86'. Invoking the RbN conversion routine gives
us: XSKILL at Block 2, DMB 2, DCB 1, offset *1CE* into
the buffer. The buffer starts at 'B7EBO* so at +'20°¢
from there at 'B7BD0* is the start of "data". We nust
add our offset, which was *1CE' to the start of ®data"™
which puts us at * * in the "old™ dump on page
9. The SC 1is *0O4Ff, DF is %22* (LD bit on), PT Ptr is
t30000000* anéd the PP Ptr is %00000CCO®. Hith no
Phiysical Children nor Twins the 'down' scan is complete.

DLDDO does another 'up® scan and since this is HIDAHM
the action is a little more involved. By setting Bit 5
on in the DF of XSKILL this segm. now becomes both
Logically and Physically deleted and the space can be
freed—up.

VIX. DLDAO calls DHDSO (HD Space Management), to free up the

IX.

space, re-adjust the FSE's and if necessary, update the
Bit Hape. In order to see the results of this action
better I suggest that you compare the P'XSKILL® segnent

‘in the SNAP (after the GHU call), with the same segument

in the SHAP after the delete is completed. In the first
dump the segnm. is at *_ENEL * and the <first FSE
(FSEAP) for this block points to an FSE at offset
. 20t . Turn forward to the 'after' situation and the
same FSE (PSEAP) points to '_)CE€ '. By adding this
offset to the FSEAP you get *__TSSF(L * which is the
Seg Code location of our deleted segment. However, this
location is nov the start of a “freed-up"™ area andé
contains a new FSE. Check this out by comparing the
pointer to the next PSE and the length of free space.
The offset to the next PSE is '__48 0 _*' (vhat the olé
value was in the FSEAP), and the length is *_|)» * (the
free space including the FSE itself)y. ¥SE offset
pointers ere always relative to the first FSE, known as
the FSEAP which is the start of the Block.

If this free-space was large enough to change the
"status™ of +the blcck from “not enough space for the
largest segment in the Data Set Group", to ™emnough space
.--", the Bit Map would be updated and the bit
corresponding to +this block would be turned on. This
time the space is too small to make @ difference so no
call is made.

PAGE 8

X. Delete is almost £finished, but the "down"™ scan showed
that XSKILL is physically paired with XNAKE and whenever
wve physically delete one member of a pair we must
logically delete the other. That means we must locate
the XNAHE pointing to "™ADAMS, JOHN QUINCY™ and
Logically delete it. Just to show you mry heart is in
the right place I'11 tell you where the start of this
segrent 1is in the buffer pool! (Eice?2? It is/,g;,,,wk&h.&ﬁg
YE657F'. The very next byte is the segyment—cede and
sure enough the Logical delete bit is on AND the HISAH
Segment delete bit is also on! In fact the value there
is * @41 * and this segment will be physically removed
from the data base at reorganization time.

XI. If you rerember there was more than just this one XNAME
under the SKILL of "PROG"™. In fact the names were JONES
& SHMIYH, and these segments have NOT been deleted in the
other data base. This points ount the situation
Dlet/Replace must check for before marking the SKILL
segment as deleted (Bit 1 on in the D.F.). Dlet/Replace
checks for more XHAMNE segnents under the SKILL of "PROG™
and finds two. The D.F. for each of these has a value
of *24% ghich means they have only been marked as "not
available" on the Physical Path. Therefore no action is
taken on the D.F. for SKILL of "PROG".

That does NOT nean there is nothing to do on the SKILL
segment because we have physically deleted one of its
Logical Children. That means vwe nust decrement the
Counter by 1, and the segment is in the buffer pool at

£42¢7 *p8F4P'. The counter at '_EY2E9 t is Y__)» ¢ now
that the DLET is finished.

This same operation must be done for the Root segment §30
HAME for "ADAHMS, JOHN QUIRCY" which starts at 'B78P8B* in

the buffer pool. The counter value at ‘_&§732> _* is

t © * which means that there are no more logical
Children in the data base for this NAME segment.

Xit. After the changes have been logged out delete has
“done dits thing"® and control returns to DLAOG. Call
Analyzer again returns control to Program Request
Handler whic returns control to the application program.
In this case the Return Code was 'bb' and the DLET went
OK!

Updated: 02/09/77

PAGE

9

