Program Product

SH20-9025-6

IMS/VS Version 1
System/Application
Design Guide

Program Number 5740-XX2

Release 1.5

||
(o
3

This edition replaces the pravious =dition (numbered SH20-9025-5) and
its technical newsletter (numbered SN20-9266) and makes them obsolete.

This edition applies to Version 1 Release 1.5 of IMS/VS, program number
5740-XX2, and to any subsequent releases unless otherwise indicated in
nevw editions or technical newsletters.

Technical changes are summarized under "Summary of RAmendments" following
the list of figures. Each technical change is marked by a vertical line
to the left of the change.

Information in this publication is subject to significant change. Any
such changes will be published in new editions or technical newsletters.
Before using this publication, consult the latest IBM System/370
Bibliography, GC20-0001, and the technical newsletters that amend the
bibliography, to learn which editions and technical newsletters are
applicable and current.

Requests for copies of IBM publications should be made to the IBM branch
office that serves you.

Forms for readers' comments are provided at the back of this
publication. If the forms have been removed, comments may be addressed
to IBM Corporation, P.O. Box 50020, Programming Publishing, San Jose,
California 95150. 2All comments and suggestions become the property of
IBM.

Copyright International Business Machines Corporation 1974, 1975,
976, 1977, 1978

PREFACE

This publication presents the design considerations associated with
installing and operating Information Management System/Virtual Storage
{(IMS/VS). It presents IMS/VS concepts, and the facilities available for
designing IMS/VS Data Base (DB) and Data Base/Data Communication ([DB/DC)
systenms.

This publication provides data base administrators, system designers,
system programmers, and application programmers with the information
they require to design an IMS/VS system and to design the applicationms
which operate under IMS/VS.

Operating System/Virtual Storage (0S/VS) and 0S/VS access methods. The
chapters in this publication are:

1. "Design, Installation, and Maintenance of the IMNS/VS Data Base
System" that addresses the factors to be considered when
installing a DB systenm.

2. "“Design and Control of the Data Base/Data Communication Systen"
that addresses the factors to be considered when installing a
DB/DC system.

3. "Application Program Design" that includes considerations for
design of batch and telecommunication IMS/VS applications.

4. "Dpata Base Design Considerations" that describes data base
concepts, structures, and the options available for designing
IMS/VS data bases.

S. "Design Considerations for the Multiple Systems Coupling (MSC)
Feature" that describes MSC and contains d2sign considerations
for its use.

6. "Design Considerations for the Fast Path Feature" that describes
Fast Path and contains design considerations for its use.

This publication presents step-by-step details for the IMS/VS
installation process.

IMS/VS System Programming Reference Manual, SH20-9027
This manual provides system programming personnel with
installation considerations and details for generation

{definition) of an IMS/VS systen.

IMS/VS Application Progqramming Reference Manual, SH20-9026
This document is a reference manual for the application
programmer. It provides information about the coding
techniques necessary to implement a designed application
under the IMS/VS system.

Preface iii

IMS/VS Utilities Reference Manual, SH20-9029
This manual provides a description of the IMS/VS system
utility programs. It describes how to execute these
utilities under the operating system.

IMS/VS Operator's Reference Manual, SH20-9028
This manual provides the master terminal, remote terminal,
and system console operators with the information associated
with operating IMS/VS once the system has been established in
a user envircnment.

IMS/VS Message Format Service User's Guide, SH20-9053
This manual describes the use, definition, and implementation
of the Message Format Service ([MFS).

This manual explains the IMS/VS support for advanced function
communications systems. It addresses the areas that
programmers or analysts involved in communicating with IMS/VS
must be familiar with.

This manual lists, explains, and suggests appropriate
responses to the completion codes and messages produced by
all the IBM-supplied components of the IMS/VS system.

MS/VS Failure Analysis Structure Tables (FAST) for Dump

nalysis, LYZ20-8050
This manual contains a simple, structured approach to
defining IMS/VS programming failures. This manual is for
both IMS/VS users and IBM programming support representatives

who diagnose IMS/VS problems.

IMS/VS Diagnostics Aids, LY20-8063
This manual assists the IBM programming support
representative and customer system programmers in using
RETAIN/EWS for diagnosing IMS/VS programming failures. It
provides a systematic approach both for searching RETAIN/EWS
for IMS/VS failures and for constructing a set of keywords as
entries into RETAIN/EWS.

IMS/VS Program Logic Manual, LY20-8069
The IMS/VS Program Logic Manual provides high level logic
analysis information to programming systems representatives
responsible for the maintenance of the IBM Information
Management System/Virtual Storage (IMS/VS). The format of
this manual farallels the function/subfunction breakdown

employed in the IMS/VS Diagnostics Aids, LY20-8063.

e Introduction to the IBM 3850 Mass Storage System [MSS)., GR32-0028

iv

.
o
2]

N
(L]
It
I=
T
i
17}
[17]
et
I
L&l
i
o
172]
m
et
|0
(-]
=
w0
= ™~
o
[
[}
=
=}
[
3
[Ye]
Q
153
e
o
o
-

GC35-0011

SS) Principles of Operation,

IMS/VS System/Application Design Guide

CONT

]
1=
=]
It

PREFACE. e e e o e o o o e e o o e e e e o o o
FIGURES. e o o o e e o o e e o . o e e o o e e
SUMMARY OF AMENDMENTSe o o o « o o o o » o o o

CHAPTER 1. DESIGN, INSTALIATICN,
IMS/VS DATA BASE SYSTEM ¢ ¢ o o o ¢ ¢ ¢ o o o
Description of FacilitieSe « o ¢ o o o &
SYStEeMSe o ¢ o o o o o o o o o o o o o o
DB System Generation Design Decisions. .
0S/VS Option Considerationse « o« « « o
IMS/VS System Definition « « o o ¢ o &
Special Access Method -- OSAM. « « &
Generalized Sequential Access Method
Data Base and Application Design Decisions
Data Base Description (DBD) Generation . .
Program Specification Block (PSB) Gemeration

o o ® o o O

GS AM

Application Control Blocks (ACB) Creation and Mai

Application Program DesSigh « o o o o o o o o

‘Execution and Control of the Data Base System.

Essential Program Elements for Execution . .
Program Specification Block (PSB)e. «

An)

@ © o 8 o B o & 8 o ® 5 o 0 ° o o o b e & e & o 0 s e 0 0 o

Data Base Description Block (DBD)e o o« o o o
Application Control Block (ACB)e o o o = o
Application Progralle « o o o o o o o o o o o
IMS/VS System ModuleSe o« = o ¢ ¢ o o o o o o
Data Base System EXxecutiol « o o « o o o o o o
Data Base System JCL Considerations. « « « «
Data Base System Control Sequence Flow « « «
Data Base Bufferinge « o« o o ¢ ¢ ¢ o o o o o
System Integrity and Maintenance Considerations.
Data Base LOGgiNnge o o o o o o o o o o o o o o
Batch Checkpoint/Restart « « o o o« ¢ ¢ o o o o
Batch Backout Utility Programe o o o o o o o o
IHS/VS Use Of STAE/ESTAE L] L] L] L] . L] L] L] L] L] L]
IBM System/370 Power Warning Feature Support .
IHS/VS DB Monitor. L] L] L] L] L] - L] L] L] L] L] L] L] L]
CHAPTER 2. CESIGN AND CONTROL OF A DATA BASE/DATA
COMMUNICATION SYSTEMe ¢ o o o o o o o o o o o o o
Relationship of DB/DC tO DB SysSteél o« « o o o o o o
Organization of DB/DC ProCesSSiNg « « o o o ¢ o o @
Region Types L] L] L] L] L] L] L] L] L] L] L] L] - L] L] L] - L]
Configuring the System through Options .« « « « « &
OS/vs OptionS. L] L] L] L] L] L] L] [] [] L] L] L] L] L L] L] L]
Fixed or Variable Taskinge o« « o « o o o o o
IMS/VS Program Module Preload Function « « «
Performance Considerations for Modules Preload
in HPPS/IFPS. L] [] L] L] L] L] L] L] L] L] L] L] L] . L] L]
IMS/VS in an OS/VS SySt€Me o o o o o o o o o o &
Supported ConfigurationNsS « o e « o o o o o o o
0Ss/VS Options Required or Recommended for IMS/VS
Special ACCe SS Method - CSAH. e ®© o e e o e o w
Allocation of OSAM Data S@tS « o o o o o o o o
IHS/VS Facilities. L] L] L] L] L L] L] L] L] L L] L] L] L] L] L]
Control ProgramMe o o o o o o o o o o o o o o o o
Processing REgiONS « « o o o o o o o o o o o o
Active I/0 REeqUEStSe « o o ¢ o o o » o s o o o

AND MAINTENANCE OF

e o o & o 0 o 06 0 o 8 o 0 0 o 0 o 0o ° {30 & 0 2 0 0 s o o 0o o

e & 8 o 8 6 o 8 o 0o e B & o s 8 o

e & o 5 © 8 o & o o 0 0 o o 0 2 o 0o 0o (DO ® & 8 0o o 0 0o 0o 0 o

=]

8 © &6 8 © 8 o &6 8 o o 0 o B o o 8 6 o N e o o B o 8 2 o 0 0 o

e}
t=

8 ®© o o © 8 0 © 8 o o ° o 8 & o o o s N8 o o s 0 0 0 0 0 s o

« o 1iii
« o Xxiii
e o Xvii

- ek e d e R OV OOV EEEN -

-— d b
NEENa2=2a20O

- h b d ad ad wd cnd cnd cnd d d ed ek e ed ek e d R e -

1. 17
1.17
1. 18
1. 19
1.20
1. 21
1.21

. .
WWWW = -

[\SA SN SN SN SN SN SN SN SN N SN SN SN SN NJ SN U N
.

NNuNouvuovnoe s

Contents

v

Checkpoint Frequency . o
System Queue Space . . o
IMS/VS Enqueue/Dequeue .
Program Isolation. « o
Message Scheduling . . « .
Message Class and Region C1l

g- * . 0

e ®* e o o o

Load Balancing « « « o o
Selection Priorities . .
Processing LimitsSe « o o o o o
Application Program Output Limits.
Multiple and Single Segment Message
Multiple and Single Message Mode . «
Response MOd€e o o o o o o o o o o
Non-Update Transaction Erocessing.
Conversational Attribute « « « «
Data Base Processing Intent. . .
Processing Intent Specifications . .

e o & o 0 8 4 o

e % o o 8 In° o o & o & & o s o

Application Program Abnormal Ternlnation o
Control Block Buffer Pools -- PSB and DMB.

Data Bases ® @ ®© e e e o o o o o o o L]

Dynamic Allocation and Deallocation of DL/I and F

DEDB Data Sets (MVS Only) . « «
Starting and Stopping the IMS/VS Control
Batch Checkpoint/Restart « o« o o o o o @
Message QUEUES « o o o o o o o o o o o

Message Queues and Message Selection
Terminal ModeS « o« o o o o o o o o
Determining Message Selection. « . .
Queue Data sets. L] L] L] L] L] L] . L] L] L] L]
Operation Oof QUEUESe « ¢ o o o o o o
Emergency Restart Queue Repositioning.
Message Queue ReUSCe o o o o o o o o
Physical Terminals « « o o o o o o o
Devices Supportede o« « o o o o o o

BTAM Data Set Line GroupS. « o« o
Terminals Attached through VTAM.
Physical Terminal Network Design .
Logical TerminalSe « o« o o o o o o
Definition of the Logical Ternznal
The IMS/VS Logical Terminal. « « o
Logical Terminal Network Design. .
Logical Terminal/Physical Termina
Master Terminale « o o o o o o o o o
System Console SUPPOLt « o o o o o
Systems with Inoperable Master Termi
Message Format Service . « « o o o
Overview of IMS/VS 3270 Support. .
3270 Copy Function « « ¢« o o o
3284 Model 3 Printer Support . .
3270 Master Terminal Suppcrt . .
Intelligent Remote Station Support
Transmission BloCkSe « o o o o o
System/3 and System/7 Program Fun
IMS/VS System Messages . o
Iransmission Control . .
System Definition. . « o«
Postpone Type Station.
Ask Type Station . .«
Transmission Limit . .
Combining ModeSe « « o o o o o o
Considerations Unique to System/7. .

tSe o 8 o o 8 o

Q
o

o
e o g o
gl.ﬁo.loli...l.oloo

-
.

n

tion

e o ® o o g N8 o o 8 o

e o & o o
e o & 5 o
e o % o &
e o & o o
® o o % o & o (O o 8 8 o g 8 pS , pud o (e o s o o o

e o o & o 8 o

System/7 Start/Stop Transmission Code Modes
Supported System/7 Start/Stop Line Types .

Supported System/7 BSC Line Types. .

ela

L] L] L] L
e o e e
e e o o
L] L) L] L]
e e o o
e o o o
. ® e e
L] L] L] L]
. L] L] L]
e e o o
e e o o
e o o o
e e o @
L] L] L] L]
e o o o
e o o o
L] L]

L]

[

L] L] L] L)

Region.

L]
]
.
L]
L]
o
[
L]
L]
]
[
L]
L]
o
e

g'. e ® & & & o & 5 o ©® o o 8 9 o 8 o

<]

6 o o 6 0 0 o Hs 0 8 0 8 0 0 0 0 0 OO o 6 0 0 0 0 0 0 08 0 0 8 0 0o

e 3 8 o & o 8 3 3 o 8 B 9 o
o
® o & & o 5 o N o o B 0 0 o o s o
[

e o o

vi IMS/VS System/Application Design Guide

o.l...lll.ugnu.llull.-
B8

l......l.l.0.......‘..P'....l....ll...‘.l...m....l..‘.'l.........

® 8 8 & & & 0 8 ° 8 0ot o 8 @ o 0 8 0o 0 o0

e ® & o & & o 8 & o & o o o e o o o o rf. L] e o o & o o e @ & o & & o & & o o o

Je ©¢ & ¢ o 8 ¢ & & & & & & 5 o 8 06 0 0 o

e & & & & & o & = o o o ® ¢ & o & & &5 & & & & & o B & o » o » &5 5 b o o 0+ o e o o o o

® 8 & & & & & o 8 8 o o e & o 8 & & o & o & & 8 o & o e o o & o & o o 8 o e & o o o te & o o o o o e o & & & 5 o » B o o L]

o
-

® 8 8 © ¢ & & 3 & 3 o & 2 & B 6 O & 8 & g o O g & & o o 2 o 3 O 0o @ o 0 g o 20 0 0 o

e & o & o o o e o 8 & & o & & o o L]

® & & & o & & o & &6 8 & & 3 o 3 8 o 3 o

® & o o g © & 8 5 5 o & 3 © 3 & ° 3 s o o o o ® © & & & 3 & 5 o o » & & » ° o o o g o

® 8 8 ® ¢ & 5 o © g & & g & § & o 3 g % 3 o &6 3 & g % o g ° 3 8 o % 3 & o 3 o 0o g o

e © 8 & & g & g g & g & & g & & 8 o o o

[SYSH SE SN SN SN SN N
s 6 o 8 & o o
- A ODOOO®®

2 32
2.33
2,34
2.36
2.40
2.41
2.42
2,42
2.42
2.43
2.44
2.45
2,45
2.46
2.46
2. u7
2.48
2.50
2.53
2,54
2.54
2.54
2.56
2.57
2,58
2.59
2,59
2.59
2.60
2.61
2.61
2,62
2.62
2.62
2.63
2.63
2.68
2.68
2.68
2.68

Process Controlling SYStem/7 « ¢ o o o o o e ¢ o o« o s o o« o 2468

IMS/VS Processing cf a Block Transmitted Start/Stop from

a systen/?. L] L] L] L] [] [] - L] [] [] [] . [] [] L] L] [] L] L] L] L] . . [] 2 69
Considerations Unique to System/3. « « o« e o o o o o s o o 270

Design of the System/3 Application Using MLHP. o o o @ e o 2470

IMS/VS Processing of a Block Transmitted from a System/3

or a Bsc SYSte/? . L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] 2.71
control of the DB/DC systeml L] L] - L] L] L] L] [] L] L] L] L] L] L] L] L] L] L] 2 72
Security and Privacy « o« o o o e o o o o o o o o o o o o o o o 272
IHS/VS security Hith SHU L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] 2 72
Terminal SeCUTitYe « o 24713
Pass'ord SeCUrity L] L] . L] L] L] L] L] L] L] L] L] L] L] L] L] [] L] L] L] L] L] 2. 73
ReSOUILCe ACCEeSS SE@CULLitY « o« o o o o o ¢ o o o o o o o o o o o o 2474
Transaction Command SECUTitYy « o o o o o o o o o o o« o o o« o 2475
Signon Verification SeCUTity o o o o ¢ o o o o o o o« o o o« ¢« o« o 2415
other SQCuri ty Aspects L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] 2. 76
Display Bypass L] . L] L] L] L] L] L] L] L] L] L] L] . L] . [] L] (] L] L] L] [] 2. 76
Limiting Access tO Dat@e o o o o o o o o o o o o o o o o o o 2476
3270 Switched Terminal SeCuUritye « o o o o o s o ¢ o o ¢ o o 2477
Violation control. L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] 2. 77
Installation ResponsibilitieS. o o o o ¢ o ¢ o o o o o o o o 2477
Ins/vs Dc Honltorl L] - L] L] L] . L] L] - L] . L] L] L] L] L] L L] L] L] L] 2. 78
IMS/VS Sensitivity to Nongrathic nessage Datde o o o« o o o o o o 2479
Editing of Output Message SegmentsS o« o « o s o o o -0 o o o o 279
Editing of Input Message Segments by MPS < o« ¢« o o o o o o o o 2479
BEditing of Input Message Segments by Basic Edit Routine. . . « 2.80
Common Editing Performed by IMS/VS ¢ « o o o o o o o o o o o o 281
Using the 3850 Mass Storage System (MSS) for DB/DC Processing. . 2.81
Terminology. . - L] L] L] L] L] L] L] . L] [] L] L] L] L] L] L] L] L] L] L] L] L] L] 2. 82
IMS/VS Batch Environment « o« « o o« o o o o o o o o o o o o o o 2483
IMS/VS Online (CB/DC) EnNVvironmenNte o« o o o o o o o o o o o o o 2484
IMS/VS Online Using Bound Data and/or DASD without Batch . . 2.85
IMS/VS Online Using Bound Data and/or Real DASD with
IHS/VS Batch. L] L] L] L] L] L] L] [] L] L] L] L] L] L] 2' 86
IMS/VS Online and Batch Us;ng Sone Bound and Some
“onbound Da ta L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] 2. 87
sha:ing of Staging space L] L] [] L] L] L] [] L] L] L] L] [] L] L] L] L] L] L] L] 2. 90
Data Base Organization and Access Method « o« o o« ¢ o o« o ¢ o o 2490
How to Use the Additional Capacity of MSS with IMS/VS. « « « « 2492
CHAPTER 3. APPLICATION PRCGRAM DESIGN « o o o o o o o o o o o o 3a1
Batch Application Program DeSigh o « o o o o o o ¢ o o o o o o o 3o1
General ConsiderationsS « o« o o o o ¢ o o o o o o o o o o o o o 31
Programming Language tO be Us€de o« o o o o o o o o o o o o o 3.2
Future Conversion to Telecommunication « « « o ¢ « o« ¢ o o o« 3.2
Batch Checkpoint/Restart Considerationse. « « « o« o o o o« o o o« 34
Establishing Useful CONVENtionS. o o o o o o o o o o o o o o o 3oU4
Testing. L] L] L] L] L] L] L] L] L] L] [] L] L] L] L] L] L] L] (] L] L] L] L] L] L] L] 3. u
Naming ConventionS o« o o o o o o o o o o o @ o o o« o o o o o 34
Use of COPY Or INCLUDE L] L] L] L] L] [] L] L] L] L] - L] L] L] L] L] L] L] L] 3. 5
Uslng the nght DL/I call. L] L] L] L] L] L] L] L] (] L] L] L] L] L] L] 3. 7
Relationship between DL/I Calls and Phy51ca1 I/0 Operations. . 3.8
Performance ConsiderationNsS « « « o o o o o o ¢ o o o o o o o o 3.1
Using Accumulated DL/I StatistiCSe o o o o « o o o o ¢ o o« &« 3.10
Telecommunication Application Program DeSign « « o o o o o o o « 3a11
Telecommunication Input/Cutput Interface « « « o« « ¢« o « o « o« 3o11
Input calls. L] L] L] [] L] - L] L] L] L] L] L] - L] L] L] L] L] L] L] L] L] L] L] 3. 1“
output Calls L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] 3. 1“
Output to Alternate DestinationNs « o « o = o o o o o o @« o o« o 315
uodifiable Alternate PCBS. L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] 3. 16
Response Alternate PCBSe o o o o o e o o o ¢ o o o o o o o o 3.17
Converting from Batch to Telecommunication « « « o« o o« o o o« o« 3.17
Telecommunication Device Independent Programming « « « « « o« o« 3.18
Device Class Control ConsiderationsSe « « « « o o o = o =« « « o 3.18

Contents vii

Utilization of Sysout Devices. « - « o«
Program Testing Using SYSIN/SYSOUT
Conversational Processing. « « « o &
Paging Feature -- 2260 and 2265.
Batch Message Processing Programs.
Use Of BHP L] L] L] - . L] L] L] L] L] L]
Bufferinge « o« o o ¢ ¢ ¢ ¢ o o
Useful TechniquesS. « « « o o o« «
Intermediate Data Bases: . « .«
Message Editing. « « & e« o o
Outputting a Mask to the 2260, . .
Passing Information from One Program

S o o o & o 8 o o & 5

t

o

CHAPTER 4. DATA BASE DESIGN CONSIDERATIONS.
Concepts of Physical Data BaseS. . « «
Segments « « ¢« ¢ .
Segment Formats.
Segment Code .
Delete Byte. .
Fields « « « « &
Structure. . .
Defining a Phys
Calls. L] L] . . L]
Get Unique . .
Get Next « « o « o
Get Next within Parent
Hold Form of Get Calls
Insert L] L] L] [] . - . L]
Delete « o o o o o o @
Replace. L] L] L] L] L] L] L] L] L] L]
SSA {[Segment Search Argument).
Physical Data Base Organization in
Hierarchic Sequential and Direct
Data Base L] L] L] E] L] L] L] L] L] L] L]
Pointers L] L] e L] L] L] L] L] . L] L] L]
Hierarchic PointersSs « o« o o« o o o o o
Physical Child/Physical Twin Pointers.
Data set Groups. [] L] L] L] L] L] L] L] . L] L] []
Rules for Cividing a Data Base into Data
HSAM Storage Organization. « « « « « &
simple HSAH. [] - - L] L] - L] L] L] L] - L]
HISAM Storage Organization « « « « o &«
HISAM Data Base Stored as One Data S
HISAM Logical Record lengths « « .
HISAM Root Segment Insertion . « o+ o
HISAM Dependent Segment Insertion. .

cal Dat

o

e O o o % o 8 o o Moo s 4 0 o o

[+]

e 8 M e 8 4 o 5
o s ORM e o 8 o 5 8 o o & s o 5 0 0 o ¢

[}
[}
)
)
°
a
L]
[} [}
[}

S ¢ 8 (8 8 5 o
e % 4 8 8 o 06 s e 4 8,
e 8 o & 8 4 8 De 8 o o 4
[+
e ® o 8 8 o, s e s o 8 4 ,
(]
j=+]

o 8 o 0 o o ¢
a
S o 8 8 o 8 o o & ;e o o 0 o o
~

QO e & o 8 & 2 &6 ¢ o 8 o 8 0 o 0 s o &

rh

O
wn

e o IRUN® o o ® o ® 3 o 8 e 3 4 3 4 .
L]
=gla]
[sTe]
s O

HISAM Segment Deletion ¢ o o« o o« &
Secondary Data Set GroOUPSe « ¢ o o
simple HI SAH L] L] L] L] L] L] L] L] L] L] -
HDAM and HIDAM Storage Organizations
HDhH . Ll L] L] L] L] L] L] L] L] L] L] L] L] L] L]
Size of Root Addressable Area. .
Loading an HDAM Data Base. « « «
HIDAH. L] L] L] L] - L] L] - L] L] L] L]
Loading a HIDAH Data Base€e o o

® o ® o o ® o 8 o 8 8 cto o
[} [] [] L] L[] [] L]
. s o L[] L[] . 'ﬁ:')l L[]

HIDAM Data Base Root Segment Type P01nter Opti

+t ® o o & o 8 o o B o

o
=2

S 8 o & o o 8 o 8 o o 6 O 8 e NG e s e

o

...I.lll...."o...*llI..("’Il...l"ll...l..l..

=

M e o o 8 0 & o o & o o

Ll
.

Format of Data Sets Used for HDAM and HIDAM.

Free Space Anchor Pointe o« « o o

Free Space Element o« o e o o« ¢ o o o o o
Anchor Point AT€a. « o o ¢ o o o o o o o
Bit Hap Block. [] [] L] L] [] L] L] L] L] L] L] L] []
Bit Hap. L] - L] L] L] » - L] [] L] * []
Inserts and Deletes in HDAH and HIDAH Dat
Inserts. 2 [] [] [] L] - L] - - L] L] L] L] L] L] L]

viii IMS/VS System/Apglication Design Guide

L]
.
]
[
a
.

e e * s o

[+

o [N ® @ 8 o o & B B 0 B 0 0 5 o P o e s 8 o s e (Q)° o 0 o o e 8 s o s o s s 0 2 o 5 3 o 8 0 0 s o

o

[

[a}

o®

.m....l.blll....ll..ll...o.lI..blll.l.l.l..l.......

V=]

=

@ o o 8 o o 5 & 5 o o 3 5 o » o T o 8 o

[

]

3.20
3.20
3.20

Pl iV i S I I I i - ¥ —
[]
P2 D ORAETWWNON = .o

.
Py
N

u.12

4o

u.uz

4.42
4.43
4.43
4.43
4.43

Dele te Sl L] . L] L] L] L] L] . [] . L] L] L] L] L] L] [] L]
Distributed Free SPace « o o« o o ¢ o o o o o
HISAM and HIDAM Key SegmentsS o« o o o ¢ o o o o o o
Options Available in Defining Fhysical Data Bases.
HSAM L] L] L] L] L] L] L] L] L] L] L] L] L]
HI SAH. e L] L] L] L] L] [] . L] L] L] - L]
HDAH Or HIDAH L] L] L] L] L] L] L] L] L] L] L] L] L] L] L]
Logical Relationshipse. « « o & . .
Methods of Relating Segment Types through a Logic
Method ONe ¢ o ¢ o ¢ ¢ o ¢ o o @
Method Two « « e o o o s o o o
Logical Relatlonshlp Paths « « & .
Logical Child Segmente « « o o o o o o
Unidirectional Logical Relationship. .
Physically Paired Bidirectional Logical Relat1cnsh1p
Virtually Paired Bidirectional Logical Relationship.
Defining Fields in Logical Child Segment Types « «
Pointers and the Counter Used in Logical Relationships
Logical Parent POinNter « o o o o« o o o o o o o o o @
Logical Child/Logical Twin Pointers. . .
Physical Parent POINters « o« o o o o o o o o o o o @
Counter. L] L] L] L] L] L] L] L] L] L] L] L] L] -* [] L]
Defining Sequence Fields for Data Bases Involved in logic
RelationshipsS o« o« o ¢ o« o o o o o o o
Rules for Pefining Logical Relationship
Ba SeS L] L] L] L] L] L] L] L] L] L] L] L] L] [] L] L]
Logical childl L] [] [] L] L] L] L] L]
Logical Parent « « « o o o o
Physical Parent. .
Replace, Insert and Delete Rules
Introduction SummArY « o« o = o &
RULES €Coding « « o o &
The Replace RuleS. o« ¢ o o o o o
The Replace Call . . &
Physical Replace Rule Examgle.
Logical Replace Rule Example .
Virtual Replace Rule Example
Replace Rules Sumbarye « o
The Insert RUleS « o o o o o o
Logical Child Imserticn. . .
The Insert Calle « o o o o o
Status Codes « o o o o o o o
Physical Insert Rule Example
Logical Insert Rule Example.
Virtual Insert Rule Examfple.
Insert Rules SUmMAXY o« o o o
Delete Rules Introduction. .
Physical and Logical Deletion.
Deleting Concatenated Segments
The Third Access Path. « « « &
Delete Byte Definiticn « « & o« &
Segment Prefix -- Celete Byte.
The Delete Call.

e & o o e s s o s s o o

1 Chi

® o 8 © 5 o & 5 o o 0 o 2o & B o s o o
[=1]

in Physical Data

1 0 W ® ¢ ® o o % o & 4 8 8 , 8 4 4 % 3 0% s o 8" 48 4 40 4,0
§ o OF® o % o 8 % 3 3 3 8 8 3 b 4 g8 4 3% 3 430 g0 4 40 ,
umu.vo.-..'.l.ll.n.UU.il.'..l.l..l.nnm.
8 Q)% o © 8 4 &6 g © 8 o 8 & 5 8 3 8 5 5 8 5 8 % 4 B 8 o 8 g 8 4 o B o
@ e o & 8 o % o o 5 o 8 o & o 0 6 o 5 & o o B 3 & 3 8 0 4 b o 6 s o
.H..I'.'..'.........l....-......ll..
S 8 o 8 8 o o o 5 o & 5 © 5 5 & 5 5 5 o 06 5 B 8 B o 5 8 0 8 0 o 0 0 o
¢ [~ 8 & o 8 © 5 & & 5 & 5 6 0 8 O 3 O 5 5 0 5 0 6 0 0 0 s 0 8 o 0 s oo

§ 58 o il 3 8 4 o 8 3 B 3 B B g, 0 g, 8, 8,8, 8 g 4 4,

status Codes L] - L] L] L] L] L] L] L]
DASD Space RE€l€aSe o o o o o o o
Delete RULES o« o« « o ¢ o o o o o
Logical Parent « « o « o o o o
Physical Parent (Virtual Pairin nly
Logical Childe « o« o o o o o o
Examples « o« ¢« o o e o o @
Logical Ch1ld, V1rtua1 Pairing -- Physica elete Rul
Example « « o s o 2 o o s o o o

e 8 I8 ¢ & 8 o ¥ o 6 0o o 5 4 B o o % o % s o & 5 5 b o s * o 0 o o b g o
o ¢ D e o 5 8 o 5 ® o 8 © 5 ¢ 6 06 0 0 % 5 8 5 o 8 ° 5 0 o 2 0 s 0 0 8 o o0

To Delete the Logical Child. « « « « & . .
Logical Child, Virtual Pairing -- Loglcal Delete Rule
Example L] L] L] L] L] Ll L] L] L) L] L] L] L] L] L] L] L] L] L] L] - . L]

4,44
4.46
u. u6
447
4,47
4.47
4,47
4.48
3.49
“. 50
4.51
4.53
4.54
4.55
4.56
4.57
4.59
u. 59
4. 60
4.61
4.61
4.61

1
L] L] u.61

o s o o & © 4 & o 5 o 8 % o o 8 o 8 s 0 o v ,

4.62
4.62
4.62
4.63
4,63
4.64
4.65
a. 66
4.66
4.67
4.68
4.69
U.69
u.?‘
4.M
u.71
u. 72
4.72
4,73
4.74
4,75
4.75
“.76
u. 76
u'77
4.77
4.77
4.78
4.78
4.79
4.79
4.79
4.80
4.80
4.80

4. 81
L] L] L] u. 81

o o o “- ez

Contents ix

To Delete the Logical Childe « o« o o o @ e o & o @

Logical Child, Phy51cal Palrlng -- Physzcal/Logxcal Delete

Rule Examples. o« « o e o s s o a o & o @
To Delete the Paired Loglcal Chlldren. e o o o o o o & o
Logical Child, Virtuwal Pairing -- Virtual Delete Rule

Example - L] L] L] L] L] L] L] L] L] L] L] L] L] -° L] L] L] L] L] L] L] L] L]
To Delete the Logical Childe o« o o o o o ¢ o o o o @ o
Logical Child, Physical Pairing =~- Virtual Delete Rule

Example L] - [] [] [] L] [] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L]
To Delete the Paired logical chlldren. e ¢ o o o o o o @
Logical Parent, Virtual Pairing -- Physical Delete Rule

Exallple * L] L] [] L] L] * L] L] L] L] L] L] L] L] L] L] L] L] L] L[] L] L] []
To Delete the Logical Parent « « « o o« . e o o o .
Logical Parent, Physical Pairing -- Physxcal Delete Rule

Example L] L] L] L] L] L] L] L] . L] L] L] L] L] L] L] L] L] L] L] L] L] L] L]
To Delete Either of the Logical ParentSe « = o o o o o o
Logical Parent, Virtual Pairing -- Logical Delete Rule

Example L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] [] L] L] L] L]
To Delete the Logical ParenNt « o« =« o o o « o o « o o o o
Logical Parent, Physical Pairing -- Logical Delete Rule

Example............ . @ & ® o & o o o @
To Delete Either of the Logical Parents. e o ¢ o o o o @
Logical Parent, Virtual Pairing -- Virtual Delete Rule

Exaple L] L] » L] L] . L] L] L] L] L L] L] L L] L] L] L] L] L] L] L] L] L]
Deleting lLast Logical Child Deletes Logical Parent . . .
Physical Parent, Physical Pairing -- Virtual Delete Rule

Example L] L] L] L] L] L] L] L] L] L] L] L] L[] L] L] L] L] L] L] L] [] [] L] L]
Deleting last Logical Child Deletes Physical Parent. . .

Physical Parent, Virtual Pairing -- Bidirectional Virtual

Example [] L] L] L] L] L] L] E] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L]
Deleting Last Logical Child Deletes Physical Parent.
Accessibility of Deleted Segments.

Avoiding Abnormal TerminatioNe « o « o o o ¢ o o o o o
First Solution ¢ « « o o o « ¢ o o o o o o o o o o o
Second Solutione o« ¢ « o o e © o e o o o e o o o o

Detection of Physical Delete Rule Violatione « « « o o

Physical Delete Rule Treated as Logicale « ¢ o o o o o

Inserting Physically and/or Logically Deleted Segments

Delete Rules SUNMALY « o ¢ « © ¢ o o« o o o & . o o
The DLET Call. L] L] L] L] . L] L] L] L] L] L] L] L] L[] L] L] L]
Physical DeletiONe o« ¢ « 6 o o o« o o o o o . e o
Logical Deletion * L] L] L] L] . L] L] L] L] L] . L] L] - *
ACCeSS Paths L] L] * L] - L] L] - L] L] L] L] L] L] L] L] L] *
Propagation Of Leletes o o« o« o o o o s o o . o o

Delete Rules L] L] L] L] * L] L] L] L] L] L] L] L L] L] L] L] L] L]
Logical Parent L] L] L] . L] L] L] * - L] - L] L] L] L] L] L]
Physical Parent of a Virtually Paired Logical Child.
Logical Child. L] L] L] L] L] L] * L] * L] L] L] L] L] L] L]
space Release' L] L] L] . - - - L] . * L] [] L] L] L] L]

Defining a Logical Data BasS€ « o« o o« o ¢ o o« o
Definition of Crossing a Logical Relationship o o
Definition of First and additional Logical Re onship

Crossed o ¢ o o » o o @ o o o @ o o o o o
Rules for Defining Logical Data Bases.
Example ¢ o ¢« ¢ o o ¢ ¢ ¢ o o o

Secondary Indexing « o« « o o o o o o
Secondary Processing SeqUENCes « o« o o o
Secondary Data Structure « « o« o« ¢ ¢ o o

Options and Rules for Secondary Indexing
Organization of Secondary Indexes in Auxi
Index Pointer Segment Format .

iar

o.loom-..oollwpaooﬂi.loouull
[+1]
e 5 0 & 8 NG & & 0 0 0 ps o 0 s e o 0 s 0 8 s 0
(o2 .
e 8 8 © 8 MO s o 8 o 0 o Ha o 0 & 3 o 0 % 8 8 0 0 0 0 8 e 0 g o
® 8 o © g & 3 3 & 5 & » o N ® & 3 o 3 3 O 3 8 B 0 2 s 3 # 0 o g o s s

e o & 8 & M o 5 o 0 0 0 0 0 o 8 o

ollolp—no'...n
[ad

e & 5 8 0 O 8 0 0 0 2 o
]

e & 8 o 0 yo o o s 0 s
a

Constant « ¢« o o ¢ ¢ ¢ o ¢ o 2 ¢ o o o o
Search Field ¢« « o« « o o 2 o o o o o o =
Subsequence Fielde o ¢ o ¢ o ¢ o o « o o
Duplicate Data Field (DDATA) o &« o o o o

x IMS/VS System/Application Design Guide

]
- d md wh wd b b b
- e d ad D ek b d
SN E W

E— I - - R P

Additional Data in Index Pointer Segments.
System Related FieldSe o« o o ¢ ¢ ¢ o o o

Suppression of Index Entries « « ¢« ¢ ¢ o &
Index Maintenance Exit Routine « « o« o o
Index Maintenance Processing « « « o o o o
Shared Index Data BasS€Se o« ¢« o o o o o o o
Secondary Indexes and Segment Search Argum
Considerations e © e © ¢ © o © o o o o o o
variable Length Segments « o« o« o o ¢ ¢ ¢ o o o
ConsiderationsS « « « o o o o o © ¢ ¢ o o o
Conversion ConsiderationsSe « « o o« o o o o o
Segment Edit/Compression Exite ¢ ¢ ¢ ¢ o o o o
Processing Tim@e « o o o e o o o o o o o o o
Direct Access Storage Space Utilization. . &
Design Tradeoffs o« « « ¢ o o o o o o« o o o o
Viability of Data Base DesigNe « o o o o o o
Hierarchical Direct Design Considerations. .

Design Considerations for the Index of a HIDAH

® 8 & o 8 8 o & o 38 o 8 o s
(34
e ¢ 8 8 0 8 0 0 0 o o s s 0 0

Data B

Design Considerations for Data Portion of HIDAM Data
Design Considerations for an HDAM Data Base. . .
HDAM -- HIDAM Considerations for Dependent Segments.

IMNS/VS Use of BISAM/QISAM. .

Utilitiesl L] . L] L] L]] L] L] L] L] L] L] L] L] L] L] L] L]
Data Base RECOVEIY o o o o o o o o o o o o o
Data Base Reorganization « « o« o o o ¢ o o o

Reorganization Intervale « « o o o o o o »
Reorganization of HISAM Data Bases « « o o
Reorganization of HDAM and HIDAM Data Base

Partial Data Base Reorganization « « « « « o &
PDBR LimitationsS « o o ¢ o o o o ¢ ¢ ¢ @ o o
Step One: Pre-ReorganizatioNe « o« ¢ ¢ o o o
Step Two: Pointer ResolutioNe « o« o o © o
The Lata Base Surveyor Utility « o o o o o @
User Responsibilitiese o« « o o ¢ ¢ o« o o o &
Utility Control Facility « o o ¢ o s o o o &«

IMS/VS Data Base Space AllccatioONe o o o o o o«
Allocation ConsiderationsS. « « o o« o o o o »

CHAPTER 5. LESIGN CONSIDERATICNS FOR THE MULTIPLE

| COUPLING (MSC) FEATUREe o o o o o o o o o o o
Relationship of a DB/DC/MSC System to a Single
Overview of the MSC Featur€e o« o « o

Links. [] L] [] L]] L]
Physical Link. .

Logical Link .
Message Routing.
Routing Path . « .
Logical Link Path. .
Logical Destinations
Input and Destination Systems
Intermediate System. . .
Remote Transaction Priorities.
Stopped Transactions . « « «
Routing Exit Routines. « « « .
Remote Destination Verification.
Application Program Abnormal Terminati
Conversational Processings « « « &
| Routing Exit Routines. « « o« « &
Remote Destination Verification.
Normal Conversation Termination.
Abnormal Conversation Termination.
Multisystem Operations « « « o« o o o @
Mul tisystem Communication Initlallzatlo
Multisystem Communication Termination.
Logical Link Assignments « « « o « o o

Yy

t

(o]

L]
]
.
L)
[}
[}
]
[}
]
L)
]
[}
L]
1
[}
.
3

.
.
L)
L)
]
]
[
[}
[}
[}
.
.
.
a
[}
L)
[}
[}
[

S & o 8 g &8 0 4, 8 ¥ g B o 0 o ¢ ® g o s o s oo
® 8 o 8 o 8 0 5 0 0 06 % o % 0 0 8 0 0 & 0 o 0 o

8 8 58 o 8 8 5 8 (e O s o o 0 6 o b s g 0 o

7]

DB/DC

® & o & o 5 85 o 8 & 0o 5 o 8 0 0 6 o s B o 0 0o o ne

.

ystenm

S e 8 & 8 o & & o & 3 0 6 o o 0 o WY e e o o 0 & 8 6 0 0 8 0 0 s 0o 2

SYSTEMS

o n

4. 117
4,117
4.118
4,118
4,118
4,119
4.120
4,121
4.122
4124
4,125
4.125
4,129
4.134
4,140
5. 142
4.146
4. 147
4.147
4,147
4,148
4.148
4,149
4.149
4.150
4,151
4.151
4.152
4,152
4,153
4,153
4,153
4.154
4.154
4.155
4,155
4.156

N Do ® ¢ ¢ ¢ 2 0 06 0 ¢ o ¢ ¢ s 0 o

o
L]
@ © 8 © 3 8 &6 © 9 © 5 &6 o 8 & g o o 5 & 0o o o » o 2 0 o 9 6 o o 8 o

e 8 © » » o
SO OVWOINNONONEWN = -

(GRS EGURGNONG RN RO RGN RN N RS

5.13
5.14
5.14

e & o 3 & o & & 3 o & B o e & & 8 & o & & 5 o o 8 o

Contents xi

SeC urity [} e o o e e o e e o o o

Recovery . L] [] L] L] L] [] [] L] [] L] L] [] L] L] L] L]
Compatibility. L] L] L] L] L] L] L] L] L] L] L] L] L] L] L]
Performance Considerations for MSC « o« « «

Minimizing Resource ConsumptiChe « o o o «

Balancing Resource Demand. « « o o o o o o

MSC EXQMPleS o« o o o o o o o o o o o o o o

CHAPTER 6.
Fast Path Data Bases « o o« o

Main Storage Data Base [MSDB)e o o o o
Defining an MSDB & « o o o o o o o o
HSDB DL/I Calls. L] L] L] L] L] [] [] L] L] []
The FLD call L] L] L] L] L] L] L] L] L] L] L] L]
MSDB Buffer Allocation « o« « o o o o

Data Entry Data Base [DEDB)e o o o o o
Root Addressable Parte « o« o o o o
Independent Overflow Parte « « o o »
Sequential Dependent Parte « « o o o
Space Definition « « o o o o o o o o
Accessing Segments « « o o o o o o o
Root Segment Processinge. « « « o o o

DEDB DBD Space Considerations. . .

Fast Path Program TYPe€Se o o« o o o o
Message Handling « o« o o o o o o o
Input MeSSAg€e o o o ¢ o o o o o o
Output MeSSageSe o o o o o o o o o
Synchronization Point Processing . «
Fast Path and IMS/VS Interrelationships

DESIGN CONSIDERATIONS FOR THE FA

Sequential Dependent Segment Processi
Direct Dependent Segment Processinge.
DEDB Synchronization Processing. .
Defining DEDB Data PFases « « « o o
DEDB CASD Space Definition « « &

g

Example. L] L] L] L] . L] L] L] L] L] L] L] .
Performance Consideration in Loading
DEDB Lata Base Full Ccndition. . .

e © 8 o & o &8 Q)8 o 8 & o b e O o 0 8 o " o 0 8 o 0o,

6 & o o & o 8 5O & e & o % 0 o 8 o 5 0 5 s o s s . s

i
P

INDEX. ® ®© e @ o o ® e o ®© o © o © o o o o [}

xii

IMS/VS System/Application Design Guide

PATH FEATURE.

o
= d

e & 8 o 8 & o M8 e © o &6 8 & o & & 0 & o s o 0 0 o

(1]

. e o o e o L[] [+'] e o e 8 o 8 & o o o e & & & o & 8 o e o

FIGURES

IMS/VS Data Base System Environment .
DBD Generation Executione. « « o o« o« .
PSB Generation ExecutioD. « o « o @ o
ACB Creation and/or Maintenance . « « « o
Essential Program Elements for Execution. . .
Initializing the Batch Lata Base System, Step

P

OM® & o o o

Initializing the Batch Data Base System, Ste
Data Base System FloWw « « ¢ o ¢ o o o o o
Dynamic Allocation Parameter List o
General Message Queue Structure . .
Source of MessageSe « o o o ¢ o o .
Queue SelectiON ¢ « o o o « o o o .
Queue Data Set Relationships. . . .
Separating Device Class Sensitive Tetmlnal 1/0

shi

Possible Physical/Lcgical Terminal Relations
Message Formatting Using MFSe. o« o o o ¢ o o
Overview of Message Format Service. « « e
3270 Copy Function Examfle. ¢« « o o o « o o
MSS in an IMS/VS Batch Environment. « . o
MSS in an IMS/VS Online Environment with Bound Data
MSS in an IMS/VS Online and Batch Environment . . .
MSS with IMS/VS Online and Batch and Non-IMS/VS Data.
MSS in an IMS/VS Environment Using Shared Data Bases.
Batch Application Program Desighe o« « « o o o o o o o
Planning Future Conversion to Telecommunication . .
Application Program Using 0S/VS Data Files and DL/I
Data Base L] - L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L]
Application Program Using COBOL READ/HRITE Loglc and
Flle Descrlptlon‘ L] L] L] [] L] L] L] L] [] L] L] L] L] L] L]
Qualified Segment Search ArgumentsSe « o« « o o
Telecommunicaticn Aprlication Program Design.
Application Program's View of the Terminal.
DE and TP PCBS:. « o o« « o
Message Segment Format. « « « ¢ o o o o o
Input Call Format « « « o

Three'Segment Hessage e o e e e o e e o o
Output to Alternate Destinations. « « «
Converting from Batch to Telecommunication.
Six-Segment Message Separated into 1Twc Three-S
Messages by Use of the Furge Call
Conversational Program. . e«
Intermediate Data Base. .
Segment FOrmats « « o« o o

1PSe
.
. .

ooluvuoo.n.lop-]O‘.oou

ot

9

Delete Byte « o ¢ o o o .
Concatenated Keys « « « « .
Hierarchy of Segment Tyfes. .
Data Base in Storag€. « « o« o

e

=

o Hio & 0 4 0 o o

S

L2}

e Qe & o 4 o ,

Q

e

Q

e o o (Do o o o & o o

Segment Types Numbered in Hier
Physical TWinsSe o« o o o o o
Direct Address Pointers . . e o o o
Use of Backward Pointers for Delete .
Use of Physical Child Last Pointer. . o o o
One Data Base Record of HSAM Data Base on Tape.
HISAM Data Base Record in Storage (Single Data Set
Gro up) > [] » L] . L] L] [] L] L] L] L] L] - - L] L] L] L] L] L] L]
HISAM Data Base VSAM, ISAM and CSAM Logical Pecord
Formats L] L] L] L] - L] [] L] L] L] L] . L] L] - L] L] L] * L] L] L] L]
Root Segment Insertion into Key Sequenced Data Set
control Interval. L] L] L] L] [] L] L] L] L] L] . L] Ll L] L] L] L] L]

q

e e © & o &

. .
. .
[e
e o
e e
. .
uen
o .
e e
. [

e 8 o o 8 o o o ¢ o o ¢ o (Do o o & & 0 & o o
e 8 6 o o o o o & 0o & o & El s o o 8 0 8 s 0 8 o
o

.
.
[

.
e
.

.
.

.

e o o ® & 8 © 8 o & o o o 5 8 ° o o o 8 o o

Figures

- —d —d ok
e s o o §

-0 0w

xiii

“-15.

u-16.
u-'7-

“'18@

u-19-
u°20.

“'21-
“-22.

xiv

Root Segment Inserticn When ISAM/0SAM are HISAM Data
Base Access MethcdsS o o o ¢ o o o o o o o o o o o o o o
HISAM Root Segment Insertion SeqUENCE « o o o o o o o »
Dependent Segment Insertion into a HISAM Data Base with
One Data Set GFOUPe o ¢ o o o o o o o o e o o o
One Data Base Record in a HISAM Data Base (uultlple
Data set Group) L] L] L] L] L] L] L] L] L] L] L] L] [] L] [] [] L] L] L] L]
HDAM Data Base Record in Auxiliary Storagee « « o o o o«
Insert of a Root Segment into a HIDAM Data Base after
Inltial Load. [] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L]
Control Fields Used to Manage Entry Sequenced or OSAH
Data Sets Used fcr HDAM or HIDAM Data BasesS o« o« o o o
Hierarchic Direct Deletion of Dependent Segment . . .
Relating Occurrences of SKILL to Occurrences of NAME.
Relating Occurrences of NAME to Occurrences of SKILL.
Defining a Physical Earent to Logical Parent Path in a
Logical Data Base L] L] [] L] L] [] L] [] [] L] L] L] L] L] L] L] L] L] L]
Defining a Lecgical Parent to Physical Parent Path in a
Logical Data BaS@ « « o s o o o s o s o o o s = a o o »
Format of Concatenated Segment Returned to User I/0
Area. L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] [] L] L] L] L] L]
Unidirectional Loglcal Relationship « « « o o o
Physically Paired Bidirectional Logical Relatlonshlp.
Physically Paired Logical Child SegmentSe « o o o« o« o«
Virtually Paired Bidirectional Logical Relationship .
Pointers Used in Logical Relationshipse « o« o ¢« o o &
Replace RULES o« o o ¢ s o o o o o o o ¢ o o s o o o =
Definition of Crcssing a Logical Relationship « « «
The First Logical Relationship Crossed in a Hierarchic
Path of a Logical Data Base « « . e« o o o o o o
logical Data Base Hierarchy Enabled by Cr0551ng the
First Logical Relationshipe o o o ¢ o ¢ o o o o @ o o
Variations of a Concatenated Segment Type Enabled by
Specification of KEY and DATA Sensitivity « o ¢ o ¢ o
Segment Types Associated with a Secondary Index « « «
Indexing to NAME Segments Based on the Color Field of
a Dependent L] L] L] L] L] L] L] L] L] L] L L] L] L] L] L] L] L] L] L] L]
Secondary Data StrUCtUL@e « o o o o o o o o o o o o o
VSAM Logical Record and Index Pointer Segment Formats
Variable Length SegmentSe o« ¢ o o o o o o o o o o o o
Variable Length Segment FOIrMatsS o « o ¢ o o o o o o
Segment Edit/CODEreSSiONe o o o o o o o o o o o o o
HISAM Data Base Record in Auxiliary Storage . « «
HISAM Data Base Record -- lLarger Primary Data Set
Logical Record. L] L] L] L] L] L] L] L] L] L] ° L] L] L] L] L] L] L] L]
Storage Sequence of Segments in HISAM Data Base Record
HISAM -- Multiple Data Set Groups (ISAM/OSAM only). «
HISAM Segment Storage -- Multiple Data Set Groups . .
HISAM Secondary Data Set Group with a Larger Primary
LCata Set Logical Record Lengthe o« ¢ o o o &«
HISAM -- Small logical Record Length. . o«
HISAM -- Large lcgical Record Length. . .
HISAM -- Utilizing Slack Spacee o« o« o o« &
Data Base Record Segmentation Options . .
HISAM Single Data Set Group Segmentation.
HISAM Multiple Data Set Group Segmentation
Data Base Structure Rule€S ¢« ¢ o o o o o o
HISAM Physical Storage -- ISAM, OSAM, or VSAH
HISAM Physical Storage Blocked One or Hult1ple.
Data Structure Change -- New Segment Type Defined
End of HierarChye o« o« o ¢ ¢ ¢ o o o o« o o o
Data Structure Change -- New Segment Type Deflned
within Existing Hierarchy « « « o« o o« o .
Lata Structure Change -- New Segment Type Deflned
within a Leqg of the Existing HierarChye « « ¢ ¢ o o o o

Iad

s s e o © o o o o o

IMS/VS System/Application Design Guide

Data Base Structure -~ Hierarchic Leg Independence. .
Restructured Data Base. L] [] L] L] L] L] L] L] L] L] L] L] L] L] L]
Data Base Structure -- Absence of Segment Types « «
Application Program I/0 Work Area Size Considerations
Logical Record Length DistributionNe « « « o ¢ ¢ o o o«
Single DB/DC System Transaction Flow. .

Multiple DB/DC Systems Transaction FloW « « « ¢ o o o
A Sample Configuration of Three SYystemS « o« ¢ o o o o
Summary of Physical Link TYypeS. « o o e o o o &
Multiple Physical Links in One System/370 CPU e o o o

Multiple Physical Links in Multiple System/370 CPUs .

Relationship of Physical Link to Logical Link to

Logical Link Path ¢« « ¢« o @ o ¢ o 2 o o @ o s = o o o
Input Terminal and Input System on InPuUte o o o o o o
Destination Terminal and Destination System on Output

Input from and Cutput to Different TerminalSe « o« o« o
An Intermediate SySt€lMe « o o o« o o o © o o @ o o o o
Horizontal Partitioning « o« o o o o « o ¢ ¢ o o o o o
Vertical Partitioning « « o o o o o o o @ o o o o o o
DEDB Structure EXamFEl€s o o« o ¢ ¢ o o o o o o o o o o
DEDB Area Division. - L] L] L] L] L] L] L] L] L] L]] L] L] - L] L]
DEDB Units-of-uork. ® ® @ @ ® e ® @ ®© ® & e ®& & o 8 @
Storage of DEDB Dependent Segments in an Area . o« « o
Control Interval FOIMAt « o o o o o o ¢ = o o o o o =
Root Segment Format (with Sequential and Direct
Dependent SegmentsS) « o o o o o o ¢ o ¢ ¢ ¢ o ¢ o o
Sequential Dependent Segment FOIMAt « o o o o o o o
Direct Dependent Segment FOIMAt « o o o o o o o o o o

e o Ho14
L] L] “-1“
L] L] u. 1“
e o MHo14
L] L] ul 15
[] L] 5.1
L] L] 5.2
L] L] 5.3
L] L] 5.“
L] L] 5.“
L] L] 5.5
e o 5.6
L] L] SIB
L] L] 5.8
L] L] 5.8
L] L] 5.9
e o 5.17
-] 5-18
L] L] 6.5
L] L] 6.6
L] [] 6.6
L] L] 6.7
e « 6010
e o 6.11
e o 6211
e o 6,12
Figures

Xxv

VERSION 1, RELEASE 1.5

NEW PROGRAMMING FACILITIES

e Access to Fast Path and IMS/VS data bases is available from both
Fast Path and IMS/VS application programs within the same
transaction process.

e A utility can be used for partial reorganization of HIDAM and HDAM
data bases.

PROGRAMMING ENHANCEMENTS

e Extended security support can be used with RACF or a user-written
exit routine to provide sign-on processing for user verification to
determine whether or not a user is authorized to use a transaction
code. Data base change tracking by specific user is facilitated by
log records containing user identification obtained from user
verification,

e Additional screen sizes and PF keys of the IBM 3270 Information
Display System are supported by Message Format Service (MFS).

e More flexible use of I/0 resources is made in the allocation and

deallocation of IMS/VS data bases and DC Monitor log data set {(0S/VS

MVS only).

e The time required to restart an IMS/VS system is reduced.
Enhancements include restarting from the disk log, online log
termination, use of the dynamic log from shutdown for data base
backout at restart, and automatic restart.

NEF PROGRAMMING FEATURE
A Data Base Surveyor utility is available as a separate feature. This
utility scans the data base being analyzed and provides a repor+*

describing the physical organization and the location and size of free
space.

DBDGEN
e The minimum logical record length for primary/secondary data set
groups for HISAM data bases has been lowered.

Summary of Amendments xvii

DEDB Dasd Space Definition

e An example of DEDB dasd space definition is included.
e Sample minimum space calculations are provided.

e Performance considerations are discussed.

A clarification of the Delete rules for both logical parents and
physical parents has been included.

Nongraphic Message Data
A section describing the IMS/VS sensitivity to specific characters

when users attempt to send and receive nongraphic data in IMS/VS
messages has been added.

SERVICE CHANGES

STAE/ESTAE Rules

A clarification of the STAE/ESTAE rules is included.

NEW PROGRAMMING FEATURE

The Fast Path feature provides data bassz and data communication
facilities for applications requiring high transaction rates but needing
only simple data base structures. The Fast Path feature uses functions
of the Data Communication feature and operatas in existing
telecommunication networks.

Fast Path provides two new types of data bases that are accessed with
standard DL/I calls and, optionally, with Fast Path DL/I calls. The
featurs includes a message-handling facility to expedite the processing
of Fast Path messages.

VERSION 1, RELEASE 1.2

This publication has been revised to reflact technical and editorial
changes made for Release 1. 2.

TECHNICAL CHANGES

Multiple Systems Coupling Feature

The Multipls Systems Coupling feature allows a user to define a
configuration consisting of up to 255 interconnected IMS/VS systems
running on any combination of 0S/VS1‘and 0S/¥vS2. Information on
channel-to-channel communication with the Multiple Systems Coupling
feature is for planning purposes only until IMS/VS support for this
facility becomes available.

xviii IMS/VS System/Application Design Guide

3270 Information Display Station

With the addition of Synchronous Data Link Control, 3270s can now be

attached on SDLC lines as well as BSC lines.

3350 Direct Access Storade Device

The 3350 may now be specified for data base and message queue data

set residence.

3767 Communication Terminal
3770 pata Communication System

The 3767 and 3770 are supported on an SDLC link through VTAM. Full

INS/vS functional capabilities are included.

EDITORIAL CHANGES

The IMS/VS planning information about MSS (mass storage systenm),
previously contained in DB/DC MSS Planning Information: IMS/VS,

publication. The former MSS publication is now obsolete.

The information previously contained in Chapter 1 of this
publication has been moved to the IMS/VS General Information Manual.

The information previously contained in Chapters 6 and 7 and
Appendixes C and D of this publication has been moved to the IMS/VS
System Programming Referesncs Manual.

The information previously contained in Appandix A of this
publication has been moved to the IMS/VS Installation Guide.

The information previously contained in Appendix B of this
publication has been moved to the IMS/VS Application Progqramming
Reference Manual.

Summary of Amendments xix

This chapter addresses the factors to be considered by the user data
processing organization in planning, scheduling and controlling the
installation of the IMS/VS Data Base (DB) System. Three major time
phases should be considered:

e Pre-installation system design and configuration
e Installation
e System tuning and phased expansion

For each of these phases, this chapter suggests the steps to be
taken, referencing the tools provided by the data base management
services of IMS/VS to facilitate the effort, and identifying those
elements of the user installation which are involved or affected.

DESCRIPTION OF FACILITIES

The data base management services of IMS/VS are packaged as basic
material in an orderable component called the Data Base (DB) systenm.
The DB system supports the implementation of multiple user-written batch
processing applications in a common data base environment.

The DB system provides the user with full IMS/VS facilities to:
e Define, load, and reorganize data bases

e Access a data base from application programs via a high-level
language interface called DL/I

e Support systems integrity via data base logging, checkpoint/restart,
and data base recovery programs

e Use system-provided exits to incorporate user extensions to IMS/VS

e Migrate to a full IMS/VS DB/DC system in a shared terminal
environment

The major execution-time elements of the IMS/VS DB system are the
DL/I (Data Language/I) interface and the data base logging program.
DL/I interfaces between the problem program and the data bases the
program wishes to access. The use of DL/I and its functions are

Manual. The data base logging capability is one of the principal IMS/VS
recovery features. It provides a log of all activity against a data
base. The log enables a user to analyze and tune his system, and is the
basic support for recovery, restart, and backout activity. The log is

discussed later in this chapter.

In addition, several utility programs which assist in creation and
maintenance of the DB System are supplied. Included in this utility
program set are:

IMS/VS System Definition

IMS/VS Data Base Description Generation

Design and Installation of a DB System 1.1

IMS/VS Program Specification Block Generation

IMS/VS Application Control Blocks Creation and Maintenance
IMS/VS Data Base Reorganization and Load

IMS/VS Data Base Recovery

IMS/VS Utility Control Pacility

System definition is described in the IMS/VS Installation Guide; the

SISTEMS
The DB system operates on an IBM System/370, using the services of
0S/VS in its multiprogramming configurations 0S/VS1 and 0S/VS2.

In the IMS/VS DB system, applications are scheduled for execution
through the 0S/VS job stream in a process called batch scheduling. The
basic unit of work is assumed to be the operating system job step. The
application itself can be either transaction-oriented or batch-oriented.
A transaction-oriented program facilitates migration to a DB/DC
environment.

It is common system practice to implement the full DB/DC capabilities
in a phased manner by installing a batch DB system first. Once an
initial program/data base cluster has been designed and installed, users
can see the step-wise expansion leading to a comprehensive on-line
installation.

Figure 1-1 shovs the relationship of 0S/VS, the IMS/VS DB system, and
an application program at execution time. The program and the DB system
are contained in a single batch-processing problem program address space
{region, memory). A second application program can occupy a second
address space, with a replica of the DL/I and data base logging
functions, accessing a separate data base and writing a second log tape.
Two or more IMS/VS batch systems can run concurrently in separate
address spaces, if they do not access the same data bases. Most of the
IMS/VS DB system is composed of reenterable code.

The user's application program operates as an 0S/VS problem programe.
As illustrated in Figure 1-1, the application program has two basic
interfaces. These are:

1. Transaction Input and Response Output
2. Data Base Input/Output Operations

Although this is a batch processing environment, the concept of
transaction processing is advocated, because it can be carried over to
the IMS/VS message processing environment. Typically, transaction inpat
and response output are performed with 0S/VS data management. Within
the application program, file descriptions and read/write statements are
in COBOL, PL/I, or Assembler Language syntax. Alternatively, the user
of IMS/VS can build an interface for transaction input and response
output similar to the data base input/output interface described below.

1.2 IMS/VS System/Application Design Guide

0S/VS

]
TRANSACTION

APPLICATION PROGRAM

~| RESPONSE

CALL
r‘——""““—J ————————————————————————— 7
i DATA BASE SYSTEM |
I
! I
I I
i I
I
| DATA DATA R i
a LANGUAGE/I > BASE > LOG |
: LOGGING :
| |
| 1
I i
| :
| |
i V_L |
I !
| |
I DATA \
: BASE !
| |
I |
b]
Figure 1-1. IMS/VS Data Base System Environment

All data base operations are initiated by the application program
interface with DL/I. This interface consists of execution of a CALL
statement from the application program. Parameters in this CALL
statement provide the information necessary to perform a data base
operation on a specific data element or segment in a specific data base.
An application program can interface with one or more DL/I data bases.
In addition, standard 0S/VS data management can be used for any purpose
in the application program.

The arguments in the CALL statement issued by an application progran
allow DL/I to determine which data base is to be used and which data
segment in the data base is to be retrieved, inserted, replaced, or
deleted. From this information DL/I performs a VSAM, SAM, ISAM, or OSAM
input/output operation. If the desired data segment already exists
within the data base main storage buffers, no input/output operation is
required.

When the data base operation consists of data segment insert,
replace, or delete, a record of the data base modification is written on
an IMS/VS log for the batch processing address space. The content and
format of logged information are described in a subsequent section of
this chapter.

Design and Installation of a DB Systenm 1.3

One significant concept of the data base input/output interface is
that the format and content of all information used to establish the
interface are symbolic. None of this information is dependent upon a
specific data management access method or organization.

Before the DB system can be used for batch data base processing, it
must be tailored to the user's data processing environment. This
process of system tailoring is called system definition. The details of
INS/VS system definition are provided in the IMS/VS Installation Guide.

For IMS/VS, the system definition function is similar, in concept, to
05/VS system generation.

0S/VS OPTION CONSIDERATIONS

The DB system operates under 0S/VS1 or 0S/VS2. Very little
difference is experienced by the IMS/VS user, whether VS1 or VS2 is
used. The primary differences are attributable to the 0S/VS option
characteristics. Chapter 2 of this manual describes the considerations
for operation under VS1 or VS2. These are primarily concerned with main
storage management and reliability/serviceability. The effects of VS1
versus VS2 are considerably greater with the IMS/VS DB/DC system.

Only one 0S/VS option defined during 0S/VS system generation is a
requirement for the DB system. This is user SVC inclusion.

Other 0S/VS options or features which are desirable, but not
required, for IMS/VS are VSAM access method, ISAM access method, COBOL,
and PL/I Optimizing Compiler.

The ASSEMBLER, an IMS/VS requirement, is automatically incorporated
in 0S/VS. Alternatively, the Assembler H program product may be used.

IMS/VS SYSTEM DEFINITION

During and after system definition and before DB system execution,
several IMS/VS library data sets must be defined. These include control
block libraries, load module libraries, and a procedure library. The
details of data set definition and allocation are defined in the IMS/VS
Installation Guide. Libraries which are of importance to the discussion
in this chapter are:

IMSVS.RESLIB - the IMS/VS system load module library

IMSVS.PGMLIB

the user's application program library

IMSVS.DBDLIB the INMS/VS control block library containing data base
descriptions (DBD). ©Each member describes the
logical structure of data and its physical storage in

a data base.

IMNSVS.PSBLIB

the IMS/VS control library containing application
program specification blocks (PSB). Each member
contains a description of how its associated
application program uses one or more data bases.

IMSVS.ACBLIB the IMS/VS library which contains control blocks
required for a specific application program. This is
a combination of the DBDs and PSBs in an internal
format required by DL/I for data base system

execution.

1.4 IMS/VS System/Application Design Guide

IMSVS.PROCLIB - the IMS/VS procedure library containing IBM-supplied
procedures.

IMSVS.MACLIB - the IMS/VS macro instruction library containing at

least DBD generation and PSB generation macro
instructions.

Special Access Method -- 0OSAM

The Overflow Sequential Access Method (OSAM) is a special data
management access method supplied with IMS/VS. It is used with some of
the IMS/VS data base organizations. The functions which OSAM performs
vary and depend upon the data base organization specified for a
particular O0SAM data set. These functions are described in a subsequent
chapter of this manual. The other modules of IMS/VS interface with OSAM
through OPEN, CLOSE, READ, and WRITE macro instructions similar to those
provided for any 0S/VS access method. OSAM modules interface with the
0S/VS input/output supervisor through the EXCPVR macro instruction in
VS1 and SVS and through the I/O driver interface in MVS. As far as
0S/VS is concerned, an OSAM data set is described as data set
organization equals physical sequential (DSORG=PS). 1In fact, an OSAM
data set can be read using BSAM or QSAM. The advantages of OSAM to
IMS/VS relative to either BSAM or BDAM are:

1. An OSAM data set can occupy a maximam of 60 extents. If the data
set resides on a Rotational Position Sensing (RPS) device and the
number of records per track is greater than 7, the maximum number
of extents decreases. A data set requiring a maximum sector
table allows for a maximum of 52 extents.

The Data Extent Block (DEB) for an OSAM data set contains 16
bytes of 0SAM information for each extent. 1In addition, a sector
table is built for RPS devices. The length of the sector table
is 8 bytes plus one byte for each data set record, rounded to a
multiple of 8 bytes. A sector table exists for each unique
device type.

2. An 0SAM data set can be opened for update in place and extension
to the end through one data control block (DCB). The phrase,
extension to the end, means that records may be added to the end
of the data set and that new direct access extents may be
obtained.

3. An OSAM data set need not be formatted prior to use.

4. An OSAM data set can have fixed length blocked or unblocked
record format.

5. File mark definition is always used to define the current end of
the data set. The addition of a new block causes the file mark
to be placed after the new block. This concept is used as a
reliability aid while the OSAM data set is open.

It should be remembered that other 0S/VS access methods, VSAM, ISAMN,
and SAM are used for physical storage of data elements in addition to
OSAM.

OSAM data sets are restricted to a 31 bit addressing limit.

Generalized Sequential Access Method (GSaM)

The Generalized Sequential Access Method (GSAM) provides accessing
support for simple physical sequential data sets, such as tape files,

Design and Installation of a DB Systen 1.5

SYSIN, SYSO0OT, and others that are not hierarchical. These are data
sets which, before GSAM, could not be used as IMS/VS data sets.

Support provided includes sequential or direct retrieval by a record
identifier which defines the relative position of that recorad.

Support is provided for both 0S/VS Sequential Access Method (SAM) and
0S/VS Virtual Storage Access Method (VSAM) for entry sequenced data sets
(ESDS) « GSAM is fully described in IMS/VS Application Programming
Reference Manual. The concepts of hierarchy and segment described in
this manual do not apply to GSAM.

DATA BASE AND APPLICATION DESIGN DECISIONS

DATA BASE DESCRIPTION (DBD) GENERATION

Subsequent to IMS/VS system definition, DBD generations can be
performed. A DBD must be provided for each data base to be used by an
application program, prior to execution of the program. The IMS/VS

DBD generation is the execution of IMS/VS macro instructions to
create a description of a data base. This data base description
includes a definition of:

e The data base organization and access method

e Segment formats, whether f£ixed or variable

e Whether the segments are subject to data compression routines
e Inter-segment relationships

e Field formats within segments

e The existence of index relationships for any field

e The relationships, if they exist, between segments in two or more
data bases

Figure 1-2 illustrates the execution of a DBD generation. The IMS/VS
user creates control card statements that are presented to DBD
generation as a normal 0S/VS problem program job. The IMS/VS macro
instructions used for DBD generation exist in IMSVS.MACLIB. The result
of a DBD generation execution is the placement of the compiled DBD into
IMSVS.DBDLIB as a member of the partitioned data set. The members of
the IMSVS.DBDLIB library can be used during the Data Base System
execution.

A job control language procedure, named DBDGEN, is placed in the
IMSVS.PROCLIB data set by IMS/VS system definition for subsequent DBD
generation execution. This procedure is described in the IMS/VS Systen
Programming Reference Manual.

1.6 IMS/VS System/Application Design Guide

0s/Vs
4
DBD
DBD GENERATION
GENERATION > IMSVS.DBDLIB
STATEMENTS
4
IMSVS.MACLIB
Figure 1-2. DBD Generation Execution

PROGRAM SPECIFICATION BLOCK (PSB) GENERATION

The third necessary function prior to execution in the DB systen
batch processing environment is PSB generation. Associated with any
batch processing application program is a PSB control block. The PSB
control block defines the data bases used by the application program.

In addition, it defines the manner in which the data bases are used
(that is, retrieval only, retrieval and update, or data base create) and
the segments within each data base to which the application program is
sensitive. It also defines which, if any, additional secondary indexes
can be used to assist in segment selection.

PSB generation is the execution of IMS/VS macro instructions to
define an application program's use of one or more data bases. The
IMS/VS user creates control statements that are executed during PSB
generation as a normal 0S/VS job. The IMS/VS macro instructions used
for PSB generation are in IMSVS.MACLIB. The result of PSB generation
execution is the placement of the compiled PSB into IMSVS.PSBLIB as a
member of the partitioned data set (Figure 1-3). The members of the
IMSVS.PSBLIB data set are used during the Data Base's system execution.
The IMS/VS Utilities Reference Manual describes the details of PSB
generation,

A procedure, named PSBGEN, is placed in the IMSVS.PROCLIB data set by
IMS/VS system definition for subsequent PSB generation execution. This
procedure is dascribed in the IMS/VS System Programming Reference

Mangal.

Design and Installation of a DB Systenm 1.7

0s/vs

PSB
PSB GENERATION
GENERATION
CONTROL
STATEMENTS
4
IMSVS.MACLIB
Figure 1-3. PSB Generation Execution

APPLICATION CONTROL BLOCKS (ACB) CREATION AND MAINTENANCE

The fourth necessary function prior to execution of the data base
system, is ACB creation and/or maintenance. This function is optional
in a DB system. It is required in a DB/DC system. Associated with all
batch processing application programs are DL/I control blocks which
define the data bases, structures, and methods to be used with a
particular application.

The information in these blocks can be constructed in either of two
ways: (1) at initialization time, the logical block builder module
(DFSDLBLO) is called to construct the blocks from the PSBs and DBDs
associated with the application program to be scheduled; or (2) the
Application Control Blocks Creation and Maintenance utility program
(DFSUACB0) is used to prebuild the control blocks for the application
program. In this case, the necessary control blocks are loaded directly
from the IMSVS.ACBLIB data set, saving processing overhead.

Application Control Blocks Creation and Maintenance requires no
IMS/VS resources other than IMSVS.PSBLIB, IMSVS.DBDLIB, and
IMSVS.ACBLIB. The user supplies control statements which specify the
operations to be performed. (See Figure 1-4.) The IMS/VS Utilities
Reference Manual describes the details of ACB creation and maintenance.

L procedure, named ACBGEN, is placed in the IMSVS.PROCLIB data set by
IMS/VS system definition for subsequent ACB creation and/or maintenance.

1.8 IMS/VS System/Application Design Guide

0s/Vs
ACB
CONTROL
CARDS [~ ACB —
' T creation
e’ m\?NTENANCE msvs,
— / ACBLIB
DBD
LIBRARY
PSB
LIBRARY
FPigure 1-4, ACB Creation and/or Maintenance

APPLICATION PROGRAM DESIGN

The final function performed prior to DB system execution is the
creation of application programs. Application programs are required to
create and maintain all user-defined data bases. These programs are
written in Assembler Language, COBOL, or PL/I, and must be placed in the
IMSVS.PGMLIB data set after compilation and link edit. IMS/VS JCL
procedures are available to the user for program compilation and link
edit. These procedures are placed in the IMSVS.PROCLIB data set by
IMS/VS system definition. Each compiled application program must be
link-edited with modules that will be called by the application program
during execution. JCL procedures cause this link-edit to be performed.
For details see chapter "The IMS/VS Procedure Library®™ in the IMS/VS

System Programming Reference Mapual.

EXECUTION AND CONTROL OF THE DATA BASE SISTEM

This section of the chapter describes batch processing in the DB
system. Prior to execution, the functions of IMS/VS system definition,
DBD generation, PSB generation, and application program compilation, and
optionally, ACB creation, are assumed to have been performed.

ESSENTIAL PROGRAM ELEMENTS FOR EXECUTION

Figure 1-5 illustrates the program elements necessary for batch
execution. The IMS/VS control blocks are obtained from the IMSVS,ACBLIB
{if prebuilt blocks are to be used) or are constructed dynamically at
execution time from the PSBs and DBDs associated with the application
program. The application program is obtained from the IMSVS.PGMLIB data
set., The IMS/VS DB system modules are obtained from the IMSVS.RESLIB
data set.

Design and Installation of a DB System 1.9

0s/vs

APPLICATION PROGRAM

LANGUAGE INTERFACE IMSVS.PGMLIB
DBD »| DBD e PSB
@ h Pee LIBRARY
IMSVS.DBDLIB IMSVS.PSBLIB
| DATA
DATA | DASE
> LANGUAGE/T ! LOGGING
|
IMSVS.RESLIB y y DATA
BASES
Figure 1-5. Essential Program Elements for Execution

Program Specification Block (PSB)

As previously described, there is a PSB associated with the batch
processing application program. The PSB is composed of one or more
subordinate control blocks called data base program communication blocks
(PCB) . Each data base PCB specifies a data base or logical structure of
data segments used by the application program. The PCB specifies the
name of the DBD associated with the desired data base and the names of
segments within the data base to which the program is sensitive.
Secondary indexes can be specified to aid in segment selection.

Segments to which an application program is sensitive can be retrieved,
updated, inserted, and deleted. Segments to which an application is not
sensitive are never presented to the application program. The concept
of segment sensitivity provides some degree of data independence.
Additional constraints can be placed on the manner in which an
application program is sensitive to a segment., Levels of sensitivity
can be defined for each segment. The lowest level of sensitivity is
segment retrieval only. The next level of sensitivity allows segment
retrieval, update, insert, or delete.

Each data base PCB in the PSB associated with the application progranm
to be executed defines a DBD by name. This means that one or more DBDs
are required for any batch program execution. Each DBD defines the
organization and segment structure in its associated data base. The
concept of a logical data base and associated DBD is defined in a
subsequent chapter of this manual. If the DBD named in a data base PCB
is associated with a logical data base, one or more additional DBDs are
required to define the data base and identify the segments within the
data base to which the program is sensitive.

1.10 IMS/VS System/Application Design Guide

Application Control Block {ACB)

Together, the PSBs and DBDs are used to construct the IMS/VS
application control blocks. This may be done dynamically or by a
utility program which prebuilds the blocks. The IMS/VS Utilities
Reference Manual describes this process.

——

Application Progranm

An application program to be executed in the batch processing DB
system environment may be written in COBOL, PL/I, or Assembler Language.
A subsequent chapter of this manual describes design considerations for
an application program. The details of application program
implementation are provided in the IMS/VS Application Programming
Reference Manual.

INS/VS System Modules

The IMS/VS modules utilized in the DB system environment are obtained
from the IMSVS.RESLIB data set. These modules are placed in that data
set by the execution of IMS/VS system definition. The majority of the
modules are involved with handling data base requests from the
application program. These modules in turn utilize the data management
access method modules of VSAM, ISAM, OSAM, GSAM, and SAM.

The primary IMS/VS modules are:

Data Base Retrieval Module

Data Base Insert Module

Data Base Delete/Replace Module

Data Base VSAM Interface Module

Data Base ISAM Simulator Module

Data Base Hierarchical Direct Space Management Module
Data Base ISAM/0SAM Buffer Handler Module

Data Base Buffer Handler Router Module

Data Base Hierarchical Direct Index Maintenance Module
GSAM Access Method Modules

OSAM Access Method Modules

Data Base Logging Modules

A later chapter of this manual describes the IMS/VS data base access
methods. Each of these data base access methods uses either standard

0S/Vs data management access methods or OSAM for the physical storage of
segments. The following illustrates the relationships.

Design and Installation of a DB System 1.1

LOW LEVEL ACCESS METHOD

DATA_BASE_ACCESS_METHOD USED_FOR_PHYSICAL STORAGE
HSANM QSAM or BSAM
HISAM BISAM-OSAM, QISAM-OSAM, or VSAN
HDAM OSAM or VSAM
HIDAM BISAM-OSAM, QISAM-OSANM, or VSAM
GSAM BSAM or VSAM (ESDS only)

If sequential processing of an HSAM data base is defined, QSAM is

used in support of HSAM.

If nonsequential processing of an HSAM data

base is requested, BSAM is used in support of HSAM. When a HISAM data

base is created or reorganized,

QISAM load mode and OSAM are used. When

an existing HISAM data base is used for retrieval, insert, update,
and/or delete, QISAM scan mode and OSAM are employed. If a PSB
generation defines two or more data base PCBs which relate to the same
HISAM data base, BISAM read and write are use

update,

segment storage when

delete, and/or insert. OSAM or VSAM

d for HISAM retrieval,
is used for all data

the data base access method is HIDAM or HDAM. The

use of ISAM (BISAM or QISAM) in an HIDAM data base is for index segment

storage only.

The use of BISAM or QISAM in support of the HIDAM data

base access method is equivalent to that described for HISANM.

DATA BASE SYSTEM EXECUTION

Oonce the functions of IMS/VS system definition, DBD generation, PSB
generation, and application program creation have been accomplished,
execution of the Data Base system may be performed. The initial DB
system execution presumably loads data into one or more of the data
bases previously defined by DBD generation.

(The load process is

executions would perform retrieval, update, insert, and/or delete
operations against existing data bases and/or create additional data

bases.

When a batch processing execution of the DB system is initiated, the
control blocks associated with the application program must be obtained
and initialized. This control block initiali
the batch processing job step execution but precedes the loading of the
application program. The first step involves

blocks.

obtain the required PSBs and DBDs.

zation process is part of

obtaining the DL/I control

If PARM=DBB was specified, the required control blocks are
obtained from IMSVS.ACBLIB by the block loader module. If PARM=DLI was
specified, the block builder module is called to construct blocks
dynamically. In this case, IMSVS.PSBLIB and IMSVS.DBDLIB are used to

Once the blocks have been obtained,

the initialization routines load the required DL/I action modules,
initialize STAE, and format the necessary storage areas in preparation
for loading and giving the application program control. PFigure 1-6
illustrates this initialization process.

.12

IMS/VS System/Application Design Guide

C

0s/VS
PROGRAM | L":}ZQ’ESM
CONTROLLER LIBRARY
IMSVS.RESLIB
BLOCK
LOADER
CONTROL
BLOCKS
B I — 1
i TS - !
! i
! DBD BLOCK - PSB]
! LIBRARYF ———1—---—-{ BUILDER |g—- - -~ — - — -{LIBRARY I
! 1
! |
l 1
|
: IMSVS.DBDLIB IMSVS.PSBLIB
Lo e e e e e e e e A — — ——————, e e — e ——— -
Figure 1-6. Initializing the Batch Data Base System, Step One

The IMS/VS module which controls the DB system environment is called
the program controller. The primary functions of the program controller
are:

e Initiate the IMS/VS DB system block building process by passing
control to the IMS/VS control block building modules {Figure 1-6).

e Initiate the DB system DL/I and data base logging modules and pass
control to the user's application program {(Figure 1-6).

e Terminate the DB system execution by returning to 0S/VS.

The EXEC statement provided as part of the 0S/VS job control language
for the DB system batch processing execution includes, within the values
of its PARM= operand, the names of the PSB and the application progranm
to be executed. Control is passed from the region controller (not shown
in Figure 1-6) to the program controller, to the block loading and
building modules. The name of the PSB is supplied. Using the PSB name,
the required control blocks are obtained. If the first PARM= value is
DBB, the required control blocks are loaded from the IMSVS.ACBLIB data
set. If the first PARM= value is DLI, the named PSB is loaded from the
IMSVS.PSBLIB data set and referenced DBDs are loaded from the
IMSVS.DBDLIB data set. Prom the PSB and DBD control blocks, internal
IMS/VS control blocks are built for subsequent input/output operations
in the DB system environment.

After the control block construction is complete, control within the
0S/Vs address space is returned to the program controller. At this
point the remainder of the DB system functions are initialized {Fiqure
1-7). This includes loading of the required DL/I data base modules,
loading of the data base log modules, creation of a data base buffer
pool, and loading of the required data management access method modales.

Design and Installation of a DB System 1.13

Depending upon the data base organizations and the manner in which
each data base is used by the application program, only the necessary
DL/I and access method modules are loaded.

Finally, the application program to be executed is obtained from the
application program library, IMSVS.PGMLIB. Control is given to the
application progranm.

0S/VS
]

[
Yy

PROGRAM
CONTROLLER

|

1

| APPLI-
| APPLICATION < CATION
I PROGRAM PROGRAM
!

1

|

1

LIBRARY

IMSVS.PGMLIB

T
DATA
|y DATA ' ASE CONTROL

I B
LANGUAGE/L | | 0GGING BLOCKS
|

IMS/VS
SYSTEM
LIBRARY

IMSVS.RESLIB
DATA BASE
BUFFER POOL

Figure 1-7. Initializing the Batch Data Base System, Step Two

IMS/VS provides procedures for DB system batch processing execution.
They are DLIBATCH, DBBBATCH, IMSPLIGO, and IMSCOBGO. They are placed in
IMSVS.PROCLIB during IMS/VS system definition. These procedures are
described in detail in the IMS/VS System Progqramming Eeference Manual
and include the basic JCL for execution. The user must add DD
statements for all data bases to be used. The content and format of
these DD statements are described in the "DBD Generation Control
Statements" section of the IMS/VS UOtilities Reference Manual.

Data Base System Control Sequence Flow

Figure 1-8 illustrates the DB system control sequence flow once the
application program has been given control. Upon entry to the
application program, a parameter address list is provided. The
addresses in this list provide visibility to each data base PCB in the
PSB for the application program (see arrow 1). These data base PCR
addresses are subsequently used by the application program when issuing
data base input/output call requests.

1.14 IMS/VS System/Application Design Guide

os

4

PSB REGION
CONTROLLER
PCBs TRANSACTION
(:) LINK
T h @
! A
I I
| I APPLICATION @
| | PROGRAM N
||
I N e 7
DATA LANGUAGE/I
| | |! INTERFACE : ™ RESPONSE
| | (Lo 1
I \® ®
> v N —Y
n T
6
DATA [
BASE DBDs |
DATA <:> DATA
@H—: DATA I BASE BASE
ACCESS | _
METHOD|™ |
l
+(D
DATA BASE BUFFER POOL
Fiqure 1-8. Data Base System Flow

Arrows 2 and 3 in Pigure 1-8 indicate the transaction input and
response output interface with the application program.

All application programs operating under IMS/VS have a language
interface link-edited with the application program. The lanquage
interface accepts a data base call from the application program and
passes control to the DL/I data base modules {arrow 4).

The purpose of the language interface is to provide a consistent
format to DL/I for all data base call requests, independent of the
programming language used to write the application program. The
IMS/VS-supplied 0S/VS procedures for compiling and link editing
application programs are described in section "Procedure Library" in
chapter "The IMS/VS Procedure Library"™ in IMS/VS System Programming
Reference Manual. The link edit step for each of these procedures

Design and Installation of a DB Systenm 1.15

provides for the inclusion of the language interface with the correctly
compiled PL/I, COBOL, or Assembler Language application program.

The language interface function of IMS/VS is reenterable and is
upvardly compatible with that of IMS/360 Version 2. To take advantage
of the reenterable capability of the IMS/VS language interface,
application modules from IMS/360 installations must be re-link-edited,
replacing the IMS/360 language interface with the IMS/VS language
interface.

After control is passed to the DL/I modules for execution of the data
base call request, the following functions are performed.

1. The parameters in the call request are checked for valid content.
This checking involves the use of data base PCBs ([arrow 5) and
DBDs (arrow 6).

2. If the data base call involves segment retrieval, the information
contained in control blocks and data base buffers is used to
attempt to satisfy the request. If the request can be satisfied,
the desired data segment is placed in the input/output work area
of the application program provided in the data base call.

3. If the retrieval request cannot be satisfied with information
already contained in the data base buffer pool, the appropriate
data management access method modules are invoked (arrow 7), and
the data management access method modules perform the necessary
input requests to place necessary data in the data base buffer
pool (arrow 8).

4., If the data base call request involves data segment update or
deletion, the segment must first be retrieved (from either the
buffer pool or secondary storage). Subsequently, the segment is
deleted or updated (arrow 10).

5. If the data base call request involves data segment insertion,
the segment is placed in the data base buffer pool and
subsequently written to direct access storage (arrow 10).

6. When the data base call request involves segment insertion,
updating, or deleting, a record of the data base modification is
placed on an IMS/VS log for the batch address space (region)
execution., This logical information can subsequently be used for
data base recovery or reconstruction (arrow 9).

Data Base Buffering

IMS/VS maintains two data base buffering functions: one for VSAM data
bases, and one for ISAM/0OSAM data bases. A separate pool of buffers is
allocated for each type of data base (VSAM and ISAM/OSAM) and the data
management access methods {VSAM, ISAM, and OSAM) are directed to read
into and write from these buffers.

The concept of the buffer pool is to allow blocks of data to remain
in main storage as long as possible to avoid secondary storage reads and
writes. Data in the buffer pool can be accessed and updated without I/0
as long as there is no need to reuse the buffer space the data occupies.
A use chain determines the order in which the buffers are used. Empty
buffers are placed at the bottom of the use chain and are always
available for reuse. As buffers are accessed, they are placed at the
top of the use chain. When a retrieve request occurs, the buffer pool
is searched using the use chain (for ISAM/OSAM a hash table is used to
direct the search), to determine if the requested data is already in
main storage. If the data is not found, the least recently used buffer

1.16 IMS/VS System/Application Design Guide

{bottom of the use chain) is selected, the old data is written out if it
has been changed, and the requested data is read into the selected
buffer.

The size of the data base buffer pools can have a significant effect
on the performance of the IMS/VS system. The size of the buffer pool is
defined during DL/I initialization, based on control statements provided
by the user (see the section "Defining the IMS/VS Buffer Pool" in the
IMS/VS Installation Guide). The size of the ISAM/OSAM buffer pool, for
IMS batch jobs, can be defined by the BUF parameter on the EXEC
statement for the job step or by buffer control statements.

At the beginning of each of the data base buffer pools, there exists
a work area used by IMS/VS to record statistics on the activity in the
pool. These statistics are of value to the IMS/VS user in determining
the appropriate buffer pool size for a given application program. The
DL/I statistics call (STAT) can be used to obtain these statistics in an
application program (see the IMS/VS Application Programming Reference

DATA BASE LOGGING

All modifications to any data base used in the DB system environment
are recorded on the IMS/VS log tape for the address space. If multiple
data base system executions are performed concurrently under 0S/VS1 or
VS2 a separate IMS/VS log tape is associated with each address space.
Unless a data base is being used for retrieval purposes only in all
address spaces accessing the data base, no attempt should be made to
access the same data base from more than one 0S/VS address space at any
one time.

Data base logging provides the IMS/VS system user with a recording of
all modifications to all data bases used during a data base execution.
The log can be written with BSAM or OSAM. Sese "Chapter 2. Log Facili*y"
in the IMS/VS System Programming Reference Manual for performance
improvement considerations using OSAM. An IMS/VS option, log-tape
write-ahead, insures that log records are written before the data in the
data base is changed. See the section "DL/I Data Base Buffering
Facilities" in the IMS/VS System Programming Reference Manual for
additional information on log-tape write-ahead. The IMS/VS log tapes
can be used in conjunction with the IMS/VS Data Base recovery utility to
rebuild a data base. The IMS/VS Utilities Reference Manual provides
details on the use of data base log information for recovery.

If no data base changes will be made or if no data base recovery
utilities will be used, the logging function can be made inoperable by
specifying DD DUMMY on the primary log DD statement {DD name IEFRDER).
If dual system logs are used and the primary log is specified as DD
DUMMY the secondary log is ignored and no logging is done.

If a data base is destroyed because of input/output errors, it can he
restored with the following procedure.

e Restore the data base with a previously dumped copy. The Data Base
Recovery utilities can be used for this purpose. Refer to the
IMS/VS Utilities Reference Manual for detailed information.

Design and Installation of a DB System 1.17

e Apply all data base modifications made to the data base since the
dumped copy was created. The IMS/VS Data Base Recovery utility
programs provide this function.

e Repeat the current DB system processing from the beginning.

Note: The above discussion of data base logging and recovery does not
apply to the HSAM organization. Since the o0ld data is not destroyed
vhen updating HSAM, logging and backout are not required to maintain
data base integrity.

BATCH CHECKPOINT/RESTART
The batch checkpoint facility provides for synchronizing checkpoints.

The CHKP function call to DL/I allows the coordination of program
activity with data base activity. Lacking any means to identify
significant events in an application program, DL/I treats data base
calls as one continuous string of related actions. When a CHKP call is
issued, the program is indicating to DL/I that a sync point has been
reached and the data base buffers should be written to secondary
storage. For batch programs, a checkpoint record is also recorded on
the log data set to indicate the sync point and set the maximum point to
wvhich the data base backout occurs if it becomes necessary.

In the batch environment, the duration of the job may be long and the
number of data base changes may be large. If the job lasts for many
hours then the time for reloading direct access data sets and rerunning,
if necessary, may be excessive. Batch checkpoint/restart allows the
user to take one or more sync points during execution. The sync point
then determines the amount of time required to backout the data base if
restart occurs. Backout is effected only back to a specified checkpoint
record.

The action taken by the DB system for batch programs when a CHKP call
is issued is as follows:

1. Altered data base buffers are written.

2. The checkpoint ID supplied in the CHKP call is written to the log
tape.

3. If O0S checkpoint/restart is used, the checkpoint ID must be
unique for all checkpoints issued by this application program.
If IMS/VS expanded checkpoint/restart facility is used, the
checkpoint ID must be unique for all checkpoints in the IMS/VS
systen.

4. Message DFS681I, containing the checkpoint ID supplied, is sent
by a WTO to the system console, and to the programmer.

5. Optionally, an 0S/VS checkpoint of the user'!s reqion is taken.
If the IMS/VS log access method is 0OSAM, the 0S/VS checkpoint is
not taken.

It is the user's responsibility to checkpoint any non-IMS/VS
information or data sets (such as transaction/response data sets) with
issuance of the CHKP call. This can be done with the 0S/VS
checkpoint/restart option in the DL/I CHKP call.

1. 18 IMS/VS System/Application Design Guide

As an alternative to the 0S/VS checkpoint/restart option, the user
can specify the IMS/VS extended checkpoint/restart facility. This
consists of a restart call (function code XRST) and optional parameters
on the CHKP call. If used, the XRST call is the first call to IMS/VS
issued by the user program. If a restart is not in progress, the XRST
call is effectively a NOP.

The issuance of an XRST call causes the following action to be taken
for subsequent CHKP calls issued by the program:

1. Optionally, user specified areas, that is, application variables,
control tables, and position information for non-IMS/VS data
sets, are recorded on the IMS/VS log.

2. The fully qualified key of the last record processed by the
program on each IMS/VS data base is recorded on the log.

3. The functions of the standard CHKP call are performed, except
that the 0S/VS checkpoint of the user's region is not taken. The
user has the option of using 0S/VS Checkpoint/Restart, or the
IMS/VS restart (XRST call), or neither, but not both.

Batch Backout Utility Program

A checkpoint ID can be supplied to the IMS/VS Batch Backout utility
program through a control statement. The backout of data segments from
the data base is done from the end of the log tape until the matching
checkpoint record is encountered.

In the case of a batch program, the checkpoint/restart facility used
can then be invoked to restart the program from that point.

The batch checkpoint facility is implemented by the use of the CHKP
system service call from the application program. This call is used to
indicate a sync point at which any data base updates can be restarted.
The actual checkpointing of the batch program environment and the
routine used to restart it are at the option of the user. The DL/I
checkpoint program cannot issue the 0S CHKPT macro.

If the DL/I user chooses to write his own checkpoint/restart
routines, he must:

e Record application variables and control tables.

e Record position information for non-IMS/VS data sets.

e Provide a restart entry point and reinitialization procedure.
e Initialize IMS/VS control blocks, for example, PXPARMS.

Use of the XRST call and user area parameters on the CHKP call
simplifies the task for the user writing his own restart routines.

e A restart situation is indicated by specifying a checkpoint ID in
the PARM field (on the EXEC statement in the JCL) or in the XRST
call itself.

e Normal entry point and initialization procedures are used.

e User areas recorded at checkpoint time are restored.

Design and Installation of a DB Systenm 1.19

A GET UNIQUE is issued for each GSAM data base for the last used
record, if the data base was open at the time the checkpoint was
taken.

e No data is returned as the result of the GU, but key feedback and
status codes are saved in the user PCBs.

e If the data base was opened for output, then a PNT function code,
requesting POINT, is used.

¢ GSAM data bases are automatically repositioned at restart if the
XRST call is used.

e The checkpoint ID is returned to the user program to allow it to
link to its own restart subroutine.

Batch programs that do not utilize the batch checkpoint facility
should be reprogrammed to do so. The major advantage comes from
significantly shorter backout runs after failure, and the ability to
terminate a long running job and restart it at a current point with very
small backout preparation and minimal rerun time.

IMS/VS USE OF STAE/ESTAE

IMS/VS makes use of STAE/ESTAE routines in the control region, the
dependent message (MPP,BMP,IFP) regions, and the DL/I batch regions.
The control region STAE/ESTAE routines ensure that data base logging and
various resource cleanup functions are completed. In the dependent
message region, STAE/ESTAE is used to notify the control region of any
abnormal termination of the application program and/or the dependent
message region itself.

If an application program uses STAEZ/ESTAE, the following rules must
be observed:

e Establish the STAE/ESTAE only once, before the first DL/I call.

- It is not recommended that the application program use the RETRY
option when exiting from the STAE/ESTAE routine but return a
CONTINUE WITH TERMINATION indicator at the end of the STAE/ESTAE
processing. If the STAE/ESTAE routine does exit specifying the
RETRY option, the retry routine must ABEND with the original
abend code. The original error data in the System Diagnostic
Work Area (SDWA) may not be available for the IMS/VS exit
routines if the RETRY option is selected.

e The PL/I STAE exit options do not include the CONTINUE WITH
TERMINATION option. Applications written in PL/I must not use the
PL/I STAE option,

The user STAE/ESTAE exit routine must not issne DL/I calls since the
original abend may have been caused by a problem between the application
program and IMS. This would result in a recursive abend with a
potential loss of data base integrity or problems in taking a
checkpoint.

Note: Programs that are 0S/VS subtasks of an application program called

by IMS/VS must not issue DL/I calls. If they do, the results will be
unpredictable.

1.20 IMS/VS System/Application Design Guide

IBM SYSTEM/370 POWER WARNING FEATURE SUPPORT

The IMS/VS Power Warning Log Terminator program supports the power
warning feature on System/370 Models 158 and 168. This support enables
the user to close the IMS/VS log from a dump data set without having to
restore memory. The procedure used to accomplish this is described in
the IMS/VS Operator's Reference Manual.

IMS/VS DB MONITOR

The IMS/VS DB monitor is a tool for collecting performance data to
investigate specific application designs, data base designs, and
resource allocations. It consists of a monitor module, and a Monitor
Report Print program. When activated, it analyzes and records the
internal activities of the IMS/VS DB system. The monitor report print
program is processed offline to produce reports that summarize and
categorize, at various levels of detail, the information recorded by the
monitor module. The actions required to activate the monitor module are
described in the IMS/VS Operator's Reference Manual. The monitor report
print program is described in the IMS/VS Utilities Reference Manual.

The monitor module collects data from IMS/VS control blocks during
operation of the batch system (with minimum interference to the systenm)
and records the data either on an independent data set or on the IMS
log. The monitor remains resident and is activated and deactivated
through the system console.

The following are recommendations for use of the DB monitor:

e Collecting data -- The DB Monitor enables an IMS/VS user to collect
performance data to assist in analyzing an existing IMS/VS batch
system. The amount of data collected and the analysis time to
anderstand the report output suggest short traces during various
time periods. Reports produced from profiles of a batch execution
considered as normal can be used as a profile and compared with
reports produced during a batch execution with unusual performance
characteristics.

e Tuning system -- The DB Monitor can be used to quantify the effect
of actual changes to data base structures, program characteristics,
data set placement, and pool sizes.

e Testing application -- In the final testing of new or revised
applications, the DB Monitor can be useful in validating the
internal operation of the programs and data bases. For example, the
programmer thought a specific DL/I call could be satisfied with a
single I/0 retrieval, yet the DL/I call report indicated a large
data base scan as shown by many IWAITs. 1Investigation of such items
could assist in determining whether a new or revised application
meets the performance objectives. Data contained in the reports may
also assist in defining the resources required by an application
programe.

Design and Installation of a DB System 1.21

CHAPTER 2. DESIGN AND CONTROL OF A DATA BASE/DATA COMMUNICATION SYSTEM

This chapter concerns the decisions and planning that must precede
the installation and use of the IMS/VS Data Base/Data Communication
(DB/DC) system. PFamiliarity with Chapter 1 of this manual is assumed.

For the most part, the design and control considerations of a Data
Base system, as discussed in chapter 1, are applicable to the combined
DB/DC (Data Base/Data Communication) system discussed in this chapter.
The fundamental differences in the data base oriented considerationms,
when viewed from within the combined DB/DC environment, have to do with
multiplicity and interaction. 1In the Data Base system, for example,
only one program and its associated program specification block are used
at a time. In the DB/DC system, planning must consider that multiple
programs and their associated control blocks may be in use at the same
time. Furthermore, the interactive effects among those multiple
programs and control blocks must be considered. This kind of
relationship applies, as well, to other resources managed in the DB/DC
system; such as data base buffers, data base coantrol blocks, terminal
buffers, and message processing regions.

The contents of this chapter provide guidance in:
e Selecting an 0S/VS configuration
e Selecting an IMS/VS configuration
e Establishing a message scheduling algorithnm
e Selecting and configuring a physical terminal network

e Establishing a logical terminal network

QRGANIZATION OF DB/DC PROCESSING

Regions are distinguished by the kind of processing performed within
them. There are several kinds of regions: the IMS/VS control (CTL),
Message Processing Program (MPP), Batch Message Processing (BMP), IMS/VS
Fast Path Processing (IFP), and batch. Note the distinction between
batch processing using a local control program, and batch processing
through the online control program. The local use of the control
program is batch processing, provided by the DB system of IMS/VS. The
use of the online control program to support batch-oriented operations
is called batch-message processing.

REGION TYPES

For the online environment the region types that are utilized are the
Control, Message Processing, Batch Message Processing, and Fas%t Path
regions. The major types of processing programs are: control, messags,
batch-message, and Fast Path.

the IMS/VS control program is normally started by using the 0S/VS

START command. It can also be started as a system task or as a job step
using JCL.

Design and Control of a DB/DC Systenm 2.1

The dependent regions are initiated by using the 0S/VS START or the
IMS/VS START REGION command. This results in JCL being read from a
procedure library which initiates the dependent region. The dependent
regions can also be started as a job step using JCL.

The Message Processing Program (MPP) region is initiated by the 0S/VS
job management facilities. The MPP region can contain an application
program for processing against data bases in the online manner.

The Batch Message Processing (BMP) region can contain an application
program for processing against data bases in a batch processing
operation. The application program in the batch region is scheduled by
0S/VS job management, but may utilize DL/I for data base reference. An
application program executed in a BMP region can access only IMS/VS and
Past Path data bases that are defined in the IMS/VS control region.

A BMP region, in addition to being able to process data bases used
for message processing, has access to input message queues and can
provide output the the message queues. Access to the Input message
queues is provided by specifying, in the JCL for a BMP region, a
transaction code to which access is wanted. Access to the output
messade queues is provided by specifying output terminal PCBs in the PSB
for the application program that executes in the BMP region.

Wbhen the data bases normally used for message processing are not
being used for that purpose, they can be processing in a batch
processing region as described in the chapter "Design, Installa+ion, and
Maintenance of the IMS/VS Data Base System." This can be done when the
IMS/VS control program is not operating as an 0S/VS job or the data
bases are deallocated using the /DBR command (MVS only).

The IMS/VS Fast Path Processing (IFP) region executes as a dependent
region of the IMS/VS control region only. The IFP regions are handled
differently depending on the type of program that is running in this
region. There are three uses for the regions in which Fast Path
processing is done:

e Applications for processing Fast Path messages, termed
message-driven progranms.

e Applications for processing input external to FPast Path, termed
non-message-driven programs.

e Utilities processed against Fast Path data bases. Past Path
application programs can retrieve from as well as update DL/I data
bases.

The Data Language/I (DLI) region operates in a batch processing mode
without accessing the message queues. DL/I calls that are directed to a
specific PCB are passed to IMS/VS for processing. IMS/VS Batch
applications have no access to Fast Path data bases. For more
information on DL/I, see Chapter 1 in this publication.

There are other batch region types in addition to those mentioned
above, namely Data Base Batch (DBB) and IMS/VS Utility (ULU).

2.2 IMS/VS System/Application Design Guide

e dn i e S A -

0S/VS OPTIONS

Fixed or Variable Tasking

The selection of an 0S/VS configuration has some effect on the
potential performance and reliability and availability characteristics
of IMS/VS. Certain options are required by IMS/VS in all of the
applicable configurations. The functional characteristics of IMS/VS,
based on the use of these options, are identical regardless of the 0S/VS
configuration selected.

The IMS/VS DB/DC system runs under 0S/VS1 and 0S/VS2.

IMS/VS Program Module Preload Function

0S/vs, IMS/VS, and application programs that will rum in regions of
INS/V¥S can be made permanently resident in virtual storage. This can
significantly improve throughput and response time for frequently
referenced transactions, if sufficient virtual storage is available with
high performance paging DASD.

Programs can be made permanently resident in two ways:
1« In LINKPACK/RAM

a. These programs are shared among all regions, resulting in a
saving of virtual storage space. Initial access can be slow
because the region JOBPACK and STEPLIB/JOBLIB are searched
before LINKPACK is searched. Subsequent access can be at CPU
speeds, if the region JOBPACK has not been purged by 0S/VS
space management (this would be the case if sufficient
virtual storage were not available to satisfy a user request
for space). This can be altered by specifying SRCH=1 in the
IMS procedure. For more information on the IMS procedure,
see the chapter, "IMS/VS Procedure Library"™ in the IMS/VS
System Prograumming Reference Manual.

b. These programs are made resident by the same method used for
0S/VSs and IMS/VS modules.

c. Application modules with names identical to PSBs should not
be placed in 0S/VS LINKPACK, since this causes a conflict
during the ACB generation process.

2. In REGION/PARTITION

a. These program modules are used only for transactions serviced
by the region involved, and only for the duration of that
region.

b. Because these modules are in the region JOBPACK, they are
invoked without repeating the overhead of searching
STEPLIB/JOBLIB, LINKPACK, and SYS1.LINKLIB. The overhead of
fetching the module into virtual storage is encountered only
at region initialization time.

c. They are made resident by invoking the IMS/VS Program Module
Preload function via the step execution JCL parameter.

Design and Control of a DB/DC System 2.3

d. In addition to those modules automatically preloaded into the
IMS/VS control region, other 0S/VS and IMS/VS modules can be
made resident in the IMS/VS control region by using Module
Preload.

e. Module Preload can also be used for modules resident in
LINKPACK/RAM. Thus, although the modules are physically
residing in LINKPACK (and are being shared among multiple
regions), the overhead involved in searching program
libraries and LINKPACK are only experienced at region
initiation.

Serially reusable programs can be resident only in the
region/partition. They are made resident by invoking the Module Preload
function via the step execution JCL parameter.

The 0S/VS task under which modules are preloaded varies based on the
INS/VS region type:

IMS/VS Region Type 0S/VS Task

Control {CTL) Physical Log

Message (MSG) Region Control

Batch Message (BMP) Region/Program Control
Batch (DLI) Region/Program Control
FPast Path (IFP) Region Control

Performance Considerations for Modules Preloaded in MPPs/IFPs

2.4

If modules are preloaded into MPPs, the following performance
considerations apply:

1.

2.

Preloaded applications are invoked via the BRANCH instruction;
this avoids 0S overhead.

Applications that are not preloaded and that have not been
previously invoked are located by issuing the BLDL macro
instruction; this reduces operating system overhead by avoiding a
PDS directory search for the application modules in subsequent
scheduling. The maximum number of BLDL entries in the BLDL list
can be specified in the PARM field of the MSG region JCL. The
entries are kept in the list on the basis of:

a. most recently referenced
b. most often referenced

All non-reentrant preloaded modules are reloaded after each
abnormal termination.

If an abnormal termination with DUMP occurs, all preloaded
modales will be printed.

IMS/VS System/Application Design Guide

IMS/VS IN AN 0S/VS SYSTEM

Supported Configqurations

0S/Vs2 0S/VS2
IMS/VS_FEATURES 0s/¥s1 __S¥s_ __MVS_
MSC
BSC connection X X
CTC connection X
Main-storage-to-main-storage
connection X X
Fast Path X X
Data Base Surveyor X X X
0S/Vs1 0S/VS2 (SVS) 0S/VS2 (MVS)
IMS/VS _Region_ Type V=V v=v V=V SWAP
CONTROL X X X
MESSAGE X X X
BATCH-MESSAGE X X X
BATCH X X X
FAST PATH X X

* IMS/VS determines whether a batch region is swapped regardless of
whether the user specifies the region as being swappable. ToX
IMS/VS, a batch region is swappable if it has not log, and it is
not swappable if it has a log.

0S/VS OPTIONS REQUIRED OR RECOMMENDED FOR IMS/VS

Many of the 0S/VS system generation macro instructions must specify
certain options and values to support an IMS/VS DB/DC systenm.

Certain 0S/VS options are not required by IMS/VS, but are recommended
for various reasons. For a full discussion of the required or
recommended options consult the IMS/VS Installation Guide.

Nota that IMS/VS supplies a ussr type 2 SVC that is nucleus-resident.
If the IMS/VS SVC is available at 0S/VS system generation, it is
convenient to incorporate it by using the RESMODS macro instruction.

SPECIAL ACCESS METHOD -- OSAM

The functions and operations of OSAM described for the Data Base
system in chapter 1 of this publication also apply to the DB/DC systen.
The DB/DC system uses OSAM for message queue managament. Further
discussion of message gueue management appears later in this chapter.

Allocation of OSAM Data Sets

The normal mode of OSAM data set allocation is through the use of the
JCL at the time the data set is loaded. This can be for single or
multiple volumes, and is done using the SPACE parameter. This is the
reconnended method.

If the installation control of direct access storage space and
volumes is such that the 0SAM data sets must be preallocated, or if it
is decided that a message gqucsue data set will require more than one
volume, the OSAM data sets may be preallocated.

Design and Control of a DB/DC Systenm 2.5

Preallocation is done by any of the accepted methods, with the
following restrictions:

e DCB parameters should not be specified.

e If the data set is to be expanded beyond the preallocated space, a
secondary quantity must be specified during preallocation. Note
that queue data sets will not be extended beyond their initial or
pre-allocated space quantity.

allocation should allocate extents on all of the volumes to be used, and
guarantee that the end of the data set is correctly indicated in the
DSCB on the last volume.

The suggested method is to use the IEFBR14 utility once for each
volume on which space is desired. Do not simply use IEFBR14 and specify
a DD card for a multi-volume data set. This will put an extent on the
first volume only and will not indicate that the volume is the last

volume of the data set.
Example:

//0SANALLO JOB A,OSAMEXAMPLE

//S1 EXEC PGM=IEFBR14

//SYSPRINT DD SYSOUT=A

//EXTENT1 DD VOL=SER=AAAAAA,SPACE=(CYL, (20,5)),UNIT=3330,
// DSN=0SAM.SPACE,DISP={,KEEP)

//52 EXEC PGM=IEFBR14

//SYSPRINT DD SYSOUT=aA

//EXTENT2 DD VOL=SER=BBBBBB,SPACE=(CYL, (30,5)),UNIT=3330,
// DSN=0SAM,SPACE,DISP= [, KEEP)

//LAST EXEC PGM=IEFBR1Y4

//SYSPRINT DD SYSOUT=aA

//EXTENTL DD VOL=SER=LLLLLL,SPACE=(CYL, (30,5)),0NIT=3330,
/7 DSN=0SAM.SPACE,DISP={(,KEEP)

1. Secondary allocation must be specified for all volumes if the data
set is to be extended beyond the initial allocation.

2. Secondary allocation is not allowed for queue data sets; they can
have multi-volume allocation however.

3. If the 0SAM data set must be cataloged, use IEHPROGM or Access Method
Services to ensure that all volumes are included in the catalog
entry.

Cautions:

1. Do not preallocate more volumes for OSAM Jata set extents than will
be used during the initial load or reload process. Doing so may
cause performance problems during a later OPEN process since OSAM
will not have a valid end-fo-file (EOF) mark in the last volumes
DSCB. This will force OSAM to SCAN the entire data base in order to
find the true EOF mark. Since all extents of system data sets are
formatted at OPEN, the above caution does not apply to message queue
data sets.

2.6 IMS/VS System/Application Design Guide

If your (re)load process does not put the EOF mark on the last
volume, you can add and delete dummy records to the end of the data
set to force the EOF mark to the last volunme.

2. Do not reuse multi-volume OSAM data set extents without scratching
and reallocating the space first. If this is not done, an invalid
EOF mark may be left in the DSCB of the last volume of the data set,
for instance after an unload/reload (reorganization). This will
cause OSAM to improperly open the data set after IMS/VS utilities
have operated against the data set. This will result in an imbedded
EOF mark somewhere in the middle of the data base. For instance, a
data set may be allocated on three volumes, with the EOF mark on the
third volume, but after reorganization, the data set may regquire only
the first two volumes, and therefore the new EOF mark would be placed
on the second volume. Since OSAM always checks the last volume's
DSCB for an EOF mark during OPEN processing, normal processing would
use the old EOF mark in the DSCB on the third volume. Subsequent
segment inserts would go after the o0ld EOF mark on the third volume,
A later image copy will use the reorganization reload EOF mark on the
second volume as true EOF indication since it processes the data set
sequentially, thus, ignoring the new data on volume three.

IMS/VS EACILITIES

Contiguring the IMS/VS system for a particular user environment is
accomplished through IMS/VS system definition. IMS/VS system definition
consists of macro statements, the operands of which tailor the INS/VS
system for the user. The next several sections of this chapter discuss
the design considerations in selecting various system definition
options. You may wish to subsequently review this chapter with the
system definition details in the IMS/VS Installation Guide.

CONTROL PROGRAM

The specification of maximum processing regions places a limit upon
processing capabilities that can be changed through redefinition or
through specifying the PST parameter in the IMS procedure referenced
above. The value assigned to the MAXREGN keyword of the IMSCTRL macro
statement includes Fast Path, message, and batch message processing
regions. The maximum number of regions specified influences the
calculation of maximum I/0 requests. The largest value that can be
specified is 15.

The specification of active I/0 requests is one of the system-related
specifications that directly influences the performance potential of the
DB/DC system. It governs the maximum number of I/O requests outstanding
at any time. You must specify a value on the MAXIO keyword of the
IMSCTRL statement that exceeds, by at least two, the maximum number of
regions that can be executing corncurrently. It is recommended that the
value be one-half the sum of the number of communication lines, plus the
namber of concurrently operating processing regions. This number should
reflect a prediction of maximum to average number of active
communication lines. If the autopoll feature is used, it should be
possible to reduce the assigned value without significantly affecting
performance. The largest value that can be specified on the MAXIO
keyword is 255.

Design and Control of a DB/DC Systenm 2.7

Checkpoint Frequency

The selection of a checkpoint frequency should be influenced by
anticipated message and data base processing activity, and the need for
rapid restart. The frequency value chosen determines the number of log
records that are written between automatic environment checkpoints.
Whatever the value chosen, it is somewhat self-adjusting to systenm
processing rates. That is, as more messages and data base update
activities are processed, more log records are written. Hence,
automatic checkpoints occur more frequently.

System Queue Space

System queue space must be sufficient to support the requirements of
the 0S/VS control blocks necessary for the operation of an IMS/VS
system. See "IMS/VS Storage Estimates" in the IMS/VS System Programming
Reference Manual for the information necessary to estimate the required
system gqgueue space.

IMS/VS Engqueue/Dequeue

Main storage is obtained dynamically within the control region by the
INS/VS enqueue/dequeue routines. The maximum amount of main storage
that these routines obtain, and the maximum that these routines keep on
an internal free chain, are specified by the CORE keyword in the IMSCTF
macro statement.

Under the program isolation concept, all activity (data base
modifications and message creation) of an application program active in
the DB/DC system is isolated from any other application progranm (s)
active in the system until that application program commits, by reaching
a synchronization point, that the data it has modified or created is
valid.

This concept makes it possible to dynamically back out the activities
of an application program that terminates abnormally, without affecting
the integrity of the data bases controlled by IMS/VS. It dces not
affect the activity performed by the other application progranm(s)
processing concurrently in the systenm.

With program isolation and the dynamic backout facility, it is
possible to provide data base segment occurrence level control to
application programs. A means is provided for resolving possible
deadlock situations in a manner transparent to the application program.
The deadlock situation is detected by an IMS/VS routine called Exclusive
Control Enqueue/Dequeue. Upon detecting a deadlock situation, one of
the application programs involved in the deadlock is abnormally
terminated with a special abnormal termination code. The abnormal
termination causes the activity of the terminated program to be
dynamically backed out to a previous synchronization point. Its held
resources are freed. This allows the other program(s) to process to
completion. The special code causes the transaction that was being
processed to be saved. The application program is rescheduled. This
process is transparent to application programs.

Performance is enhanced by allowing control of data base updates to
be maintained dynamically, as opposed to establishing the control at
message scheduling time. This dynamic maintenance is controlled by the
DL/I action modules through the use of the IMS/VS Enqueus/Dequ=aue
routine. During the scheduling process, an analysis is made of the

2.8 INS/VS System/Application Design Guide

intent of an application program toward the data base it uses. If a
conflict exists with the data base usage of a currently scheduled
transaction, the scheduling process must select another transaction code
and try again.

MESSAGE SCHEDULING

Within IMS/VS each input message type is declared tbhrough system
definition. Message types are called "transaction codes" or
"transactions." At the time a transaction code is declared, many
optional attributes can be selected. These attributes, either directly
or indirectly, affect the schedulability of a transaction. They can
also affect the manner in which a physical terminal reacts to entry of a
transaction type.

Application programs are declared in separate but related macro
instructions., However, the application program designated to process a
particular transaction code is really just another tramsaction
attribute. The process through which a completely received input
transaction is united with its associated application program is called
"message scheduling." The variable attributes associated with the
transaction code, the number and relative importance of other
transaction codes, the number of received but not processed messages,
the intent of associated application programs toward the data to he
processed, the amount of currently available space in control block
storage pools and buffers -- these and other factors influence the
process of message scheduling. The influencing factors are called the
"message scheduling algorithm."

Through selection of options at system definition time, through the
design and use of data bases, specification of buffer sizes, and, most
directly, through the declaration and selection of transaction
code-related options, the IMS/VS system designer can influence the
scheduling algorithm. Depending upon the breadth of his understanding
of the algorithm, he can enhance the performance of the system by
manipulating the algorithm to meet his requirements,

The remainder of this section on message scheduling considers the
scheduling algorithm in these topics:

e Message class and region class

e Load balancing

e Selectiorn priorities

e Processing limits

e Application program output limits
e Multiple and single segment messages
e Multiple and single message mode
e Response mode

e Non-update transaction processing
e Conversational attribute

e Data base processing intent

e Processing intent propagation

Design and Control of a DB/DC System 2.9

e Application program abnormal termination
e Contention for resources

e Control block buffers -- PSB and DMB

Message Class and Region Class

Each message (transaction code) is assigned a class at systen
definition time. This class assignment determines into which message
region an application program is loaded. When the IMS/VS message
regions are started, they are assigned from one to four message classes.
When a message region is assigned more than one class, the scheduling
algorithm treats the first class specified as the highest priority
class, and each succeeding class as a lower priority class.

If more than one class is specified, the message selection process is
handled as follows. The first class specified is scanned, in
transaction priority sequence, for waiting messages. If there are no
messages wvwaiting for the first class, the second and following classes
are also scanned in priority sequence. If there are messages waiting in
the first class, the highest priority message is selected for
scheduling. If, for external reasons (for exanmple, program or
transaction stopped by master terminal operator), this message is not
schedulable, the next message of equal or lower priority in that class,
or the highest priority message in the next class, is selected for
schaduling. If the highest priority message in the first class is not
schedulable for internal reasons {data base intent or no more space in
PSB pool or DMB pool to bring in needed blocks), the scheduling option
of the transaction indicates the type of scheduling algorithm that is
used. The scheduling option is specified at system definition by the
TRANSACT macro. The options are:

1. Schedule only transactions of egqual or higher priority in the
selected class.

2. Schedule higher priority transactions in the selected class.
3. Schedule any transaction in the selected class.

4. Skip to the next class and attempt to schedule the highest
priority transaction in that class.

Note that these scheduling options are specified for each transaction;
therefore, each attempt to schedule a different transaction may change
the algorithm, if the algorithms are different for transactions within
the same class.

Message region class assignments and transaction class assignments
can be modified at execution time to control message throughput.

If multiple message regions process the same message class and a data
base processing intent conflict occurs, the highest priority
transactions scheduled against a data base will not necessarily be
processed before processing lower priority transactions scheduled
against the same data base. If you desire to process all higher
priority transactions scheduled against a data base before processing
any lowver priority transactions, no processing limit should be specified
for the higher priority transactions, or only one message region should
process that message class.

2,10 IMS/VS System/Application Design Guide

Load Balancing

Load balancing is the facility to schedule the same application
program and the same transaction in multiple message regions. The
application program and the transaction are designated for pearallel
scheduling at system definition time. The application must be
designated as a parallel scheduled application before any transaction
processed by that application will be scheduled in multiple regionms.

When an SMB is available to be scheduled but is already scheduled in
another region, it is checked to determine whether it can be parallel
scheduled. The PARMLIM value of the TRANSACT macro specifies the number
of messages that should be enqueued before another region is scheduled.
This value is multiplied by the number of regions already scheduled for
this transaction. If the result is less than the number of messages
enqueued, another region is scheduled for the transaction. If the
region is unschedulable for internal reasons {data base intent), the
next transaction within the class is scheduled. No cutoff priority will
be set as the transaction is already scheduled within INMS/VS.

Selection Priorities

When more than one transaction of a given type is waiting to bhe
scheduled, the specified transaction scheduling priority determines
which transaction code is selected next. It does not determine which is
actually scheduled. Only the tests of the transaction's readiness for
scheduling, which occur after selection, determine if the transaction
queue is allocated to an application program. The selection priorities
are useful for influencing the response time to input transactions and
for load balancing. Two priorities can be specified. One is called the
“"normal priority"; the other, "limit priority." Related to the normal
and limit priorities is a "limjt count."™ When the number of input
messages of a specific transaction type waiting to be scheduled is equal
to or greater than the limit count, the normal priority is reset to the
limit priority value.

The priority of a transaction code causes it to be selected either
before or after other transaction codes. If there are multiple
transaction codes at the same priority, they are selected on a
first-in/first-out basis. However, if there are multiple transaction
codes at the same priority and the same class, with many messages
already enqueu=d for each transaction code, the individual transaction
codes will be selected on a first-in/first-out basis, but the different
messages may not be selected in the same sequence in which they were
entered. For example, A, B, and C are transaction codes with processing
limit counts of 1., These codes are entered in the sequence ABCBACCAC.
The sequence in which they are selected is ABCABCACC. An example of the
typical use of selection priorities can be found under the topic
"Message Scheduling®" in the IMS/VS General Information Manual.

Another effective way to utilize the selection priorities is to
declare a normal priority value of zero. Zero priority is a null or
"not eligible for scheduling" level. Messages accumulate until the
processing limit count is reached; at this point the limit priority is
effected and scheduling occurs. This technique is called "batching
messages.™

The normal priority is not restorsd until all messages enqueued on
the transaction code have been processed. It is possible that more
messages will ba added to the queue while the transaction is waiting or
in process at the limit priority. ©Note that the priorities are
selection priorities, not execution priorities. Once a transaction has
been selacted for scheduling, the selection priorities have no influence
until it is again recognized to be waiting for scheduling.

Design and Control of a DB/DC System 2. 11

The effectiveness of the selection priority assignments is related to
how fregquently the selection process occurs. The following section
discusses a means of influencing this.

Processing Limits

Through the establishment of processing limits, the frequency with
which scheduling selection occurs can be influenced. In the time
between schedulings, processing is going on in the message regions.
Meanwhile, messages are accumulating in the message queaues. As they
accumulate, the interactive effects introduced by new message types, and
the changing of selection priorities, are rearranging the order of
waiting transaction codes. Conceivably, while a large gusue of messages
is being processed, important activity assigned to a high priority
transaction code is waiting.

When the program processes a large queue of messages and updates data
base segments, other application programs wishing to access an updated
segment are placed into a wait state. The length of time that the other
applicatioa programs have to wait depends on whether the updating
program is processing its queue in multiple or single message mode.

To allow controlled re-entry to the message scheduling selection
process, a processing limit count can be specified for each tramnsaction
code. Each time a scheduled (processing) program requests a new
message, the limit count is checked. When the number of requests
exceeds the limit count, the application program is told by the control
program that there are no more messages. In fact, there may be more.
When the application program is told there are no more messages, it
completes its processing and returns the transaction queu= to its proper
place among others waiting to be scheduled. 1If it is returned to a
priority level where other transaction codes are waiting, it assumes an
eligibility for selection balow them, even though all have the same
numeric priority.

By establishing program output limits during system definition, the
IMS/VS user can influence the number and the size of the output segments
from the application program to the message queues. When an application
program exceeds the previously-specified limits, a status code is
returned indicating an error. Any further attempt by the application
program to exceed the limits results in abnormal termination.

Abnormal terminations can be prevented by checking the number and the
size of application program segments. This process of checking
eliminates IMS/VS system abnormal terminations that occur when
application programs loop while inserting messages or segments into the
message queues, or when they inadvertently insert segments of invalid
lengths.

Multiple and Single Segment Messages

A message, in the most general sense, is a finite sequence of
transmittad symbols. In the context of IMS/VS, this is called a
transmission. A transmission is terminat=d by a logical condition
called end-of-data {EOD). The transmission is partitioned into
sequences of symbols, called messages, by an end-of-message (EOM)
symbol.

2.12 INS/VS System/Application Design Guide

-

A message is partitioned into smaller sequences of symbols, called
segments, by an end-of-segment (EOS) symbol. There are only three valid
combinations of the conditions represented by EOS, EOM, and EOD. They
are:

Condition Represents
EOS EOS

EOM EOS/EOM

EOD EOS/EOM/EQD

In the most complex case, a transmission containing several
multisegment and single segment messages would look like this:

SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT
MESSAGE MESSAGE MESSAGE
TRANSMISSION

Using the simple symbols, the same transmission would be represented
like this:

SEGMENT SEGMENT SEGMENT SEGHMENT SEGMENT
MESSAGE MESSAGE MESSAGE
TRANSMISSION

The assignment of values to the symbols that represent the conditions
end-of-transmission, message, and segment is not significant to this
discussion. However, it is significant that the conditions can be
represented by more than one transmitted data character. Most
key-driven terminals generate only one character per keystroke. Thus,
it may be necessary for the terminal operator to perform more than one
manual operation to signify EOS or EOM.

For input transmission, detection of the EOM condition by IMS/VS
indicates that a complete message has been received. A complete message
is eligible for scheduling, and ultimately processing, by tha
application program to which it is destined.

At the time the first EOS condition, or the first EOS following an
EOM, is detected, IMS/VS examines the text of the preceding segment.
Within the extent of the segment there must appear a valid transaction
code, predefined through use of the TRANSACT macro instruction. One of
the attributes that can be assigned to a transaction code specifies
whether a message is multiple or single segment. The effect of this
specification is null if multiple segment specification is selected. If

Design and Control of a DB/DC Systenm 2.13

single segment specification is selected, the system equates the EOS
condition to an EOM condition. Thus, each segment is treated as a
complete message.

The primary concerns when selecting the multiple or single segment
attribute are human factors, application regquirements, and physical
terminal characteristics. For example, let us assume the following:

e An application requires only single segment entry.
* Most users enter data from a key-driven terminal.

o The terminal has an automatic character generation feature (EOS
after pressing carriage return).

Then, the selection of multiple segment as an attribute of a
transaction code would require an additional keystroke to signify FOM or
EOD.

Another example: assume all of the preceding conditions are true
except that the line length of the data to be entered exceeds the
single-line capacity of the terminal. The appropriate and more natural
selection is multiple line. However, if the application were one with
very high usage, the overhead of processing multiple line messages might
be sufficient to justify ad justment of the short message buffer length.
The operational characteristics of transaction entry would be altered.
Using the same terminal with the special EOS generation feature
disabled, the operator enters the first line, presses the carriage
return, enters the remaining data on the second line, then presses the
EOS key. The result is a single segment message.

Hhen the Message Format Service (MPS) is used to format input, the
relationship between the segments described above and the actual message
segment created by MFS is user-defined.

When MFS is used to edit input, the end of input for a given message
is =ignalled by:

e EOM or EOD
e Completion of processing for all defined DFLDs

At the end of input for a message, MFS presents the compleated message
segments to the DC component of IMS/VS; this component looks for a
destination name. If the destination is a transaction defined as a
single s2gment and more than one segment has been created by MFS, an
error messagde is sent to the input terminal.

For more information on MFS, see the section in this chapter called
"Message Format Service,"

Consult the IMS/VS Operator's Reference Manual for more information
about the various terminals supported by INS/VS.

MUOLTIPLE AND SINGLE MESSAGE MODE

The message mode attribute of a transaction code is used to notify
the system of the manner in which an application program views the
transactions it processes. Single mode indicates that each message is
processed independently of all other messages that are read. Multiple
mode indicates that all the messages of this transaction code, read
during a given scheduling of the application program, are to be
considered as related to one another. For example, the application
program accumulates control totals that are written out only at program
termination. It does not affect the message selection criteria of the

2.14 IMS/VS System/Application Design Guide

scheduling algorithm. It does, however, affect the amount of main
storage required by program isolation, message processing throughput,
and, potentially, the integrity of the data bases used by user progranms.
If multiple mode is selected, there is potential for greater throughput.
Multiple mode results in fewer system-generated I/0 operations, and less
system time per message, when more than one message is processed per
application program scheduling. However, all data base resources
modified in any way by the user remain enqu=ued until user progranm
termination.

If more than one message is processed per scheduling of a user
program, large storage requirements for IMS/VS program isolation could
result. If program isolation enqueue chains become very long,
throughput is adversely affected. Also, if a program must be terminated
and rolled back by IMS/VS to break a data base deadlock situation, the
backout and reprocess time is increased in proportion to the number of
messages processed., In addition, very long backout chains in the
Dynamic Log may require extra I/O operations and increase the
possibility of exceeding the capacity of the data set. If this happens,
application activity is quiesced.

Internally, the difference in single and multiple mode transaction
processing is related to the frequency at which pending data base
buffers are written. 1In single mode, all pending data base buffers are
wvritten each time a new message is requested by the application progranm.
These operations are performed regardless of the value assigned as a
processing limit count. Multiple mode defers buffer write until the
application program terminates, unless a CHKP call was issued by the
application program. A CHKP call causes all buffers modified by the
user to be written at the time the call is issued.

An additional consideration is imposed for program isolation. When
the transaction code causes data base updates, the enqueue of the
updated segments is held until the point at which the program can be
restarted without having to reprocess those apdates. TIn singles mode,
this point is reached each time a new message is requested by the
application program. Multiple mode defers reaching this point until the
application program terminates., This causes more segments to be
enqueued, and the engueued segments to be held longer. Other prograns
needing access to the engueued segments are delayed, and the chance of
deadlock is increased. Since message response is also held, and not
sent to its destination until the same point is reached, the choice of
multiple mode processing can significantly increase terminal response
time. ¥For information on ths use of the checkpoint call (CHKP) in
conjunction with multiple mode processing, see the IMS/VS Application
Programpming Reference Manual.

Response Mode

Response mode describes a connection between IMS/VS and a
communication line or terminal that can occur only for certain terminal
types under condition specified during IMS/VS system definition. When
response mode is in effect, IMS/VS will not accept any inpat from the
comnunication line or terminal until it has sent the output response to
the previous input.

Response mode is in effect from the time the last segment of a
transaction has been received by IMS/VS until the application progranm
inserts a response to the response PCB, which is usually the I/0 PCB.
When more than one message is inserted using the respomse PCB, respomnse
mode is reset when the first message using the response PCB is
transmitted. Any remaining messages issued by the application progranm
are treated as non-response application program output. If the
application program does not produce a response, the terminal remains in

Design and Control of a DB/DC Systenm 2.15

response mode and master terminal intervention is required to restore
proper terminal operation.

The terminal types that can be defined [TERMINAL or TYPE macro) to
operate in response mode are the: 1050, 2740, 2741, CPT-TWX, 3270, 3600,
3767, 3770, and 3790. The 3790 is forced to operate in response mode.
The others may be defined as: "forced" -- always operating in response
mode, "negated" ~-- never operating in response mode or "tramnsaction
dependent™ -- operating in response mode only when a transaction defined
by the TRANSACT macro as a response mode transaction is entered.

Response mode for the 1050, 2740, 2741, and CPT-TWX terminals stops
all operations on the communication line and is referred to specifically
as "line response mode." Response mode for the 3270, 3600, 3767, and
3790 stops all operations on the terminal and is referred to
specifically as "terminal response mode."

The specification of terminal response mode and no automatic page
delete (NPGDEL) is not recommended for the following reasons:

e NPGDEL causes the current output message not to be dequeued at the
time of input.

e Terminal response mode causes input to be inhibited until the
current output message has been dequeued.

The combination of these specifications may regquire master terminal
intervention to reset the terminal response mode.

for terminals and transaction codes, consider the following:

® On a switched line, response mode enforces synchronization terminal
operation.

e In response mode, terminal operators can only enter one transaction
at a time and must wait for a reply before entering another
transaction.

e For a terminal defined as "transaction dependent," transaction that
are not defined as response mode transactions permit entry of
additional input without waiting for a reply from the previous
transaction.

® Master terminal intervention is required when an application program
fails to respond to a transaction from a terminal in reponse mode.

e In some environments, specifying "forced" response mode for some
terminal types may result in fewer line operations and improved
performance.

e For some terminal types (2740 without Station Control Feature, 2741,
and CPT-TWX), a specification of response mode prevents the operator
from having to enter a null message to receive the response to the
last input.

For BTAM or VTAM terminals don't use the following specificatioms:

o The combined specification of FORCRESP and NPGDEL.

e The combined specification of TRANRESP and NPGDFL if
MSGTYPE=RESPONSE is specified for the TRANSACT macro.

The first specification is not recommended because NPGDEL prevents the
current output message from being dequeued at the time of input; the

2.16 IMS/VS System/Application Design Guide

second specification prevents the terminal response from being reset
until the current output message is dequeued.

Further information on terminal operations using response mode is
contained in IMS/VS Operator's Reference Manual, and IMS/VS Installation
Guide.

For 3600 and 3790 support, see the section "Terminal Response Mode"
in the chapter "IMS/VS Support for AFC Systems" in the IMS/VS Advanced
Function for Communication manual. Por SLU type P support, see the
section "Terminal Response Mode" in the chapter "Type P Secondary
Logical Unit Programmer's Guide"™ in the same manual. TFor MFS support,
see the section "Type, Terminal, and Config Macros" in the chapter
"IMS/VS System Definition Considerations™ in the IMS/VS_Message_Format

Non-Update Transactionr Processing

A transaction code which does not cause an update to a data base can
be so defined to the system. This allows a program that handles
multiple transaction codes, and only updates the data base for a subset
of these transactions, to be scheduled concurrently with other update
programs when it is to process a transaction that does not cause an
update.

Transactions must be defined as non-update transactions when entered
from non-error-checked terminals supported by IMS/VS. They are also
non-update for entry by switched terminals that are signed on for
INQUIRY purposes.

When a transaction is defined as non-update, the associated
application program is prevented from updating the data base., This is
the case even though the processing option in the PSB specifies update
capability.

Conversational Attribute

Scratch pad areas {[SPAs) are work areas through which an application
program and a terminal establish a quasi-interactive relationship called
a conversation., That is, continuity is established with the terminal
operator, by the application, across multiple message entry and response
sequences. The conversation can be suspended, reinstated, or
terminated, by the terminal operator, through the command language. A
conversation is normally terminated by the application, not the terminal
operator.

The system maintains scratch pad areas on a direct access data set or
in main storage. Reasidency is specifiable by transaction code. The
choice of main storage or direct access residency influences the
response time for transactions that have the conversational attribate.

Although the system can operate with one maximum size main storage
SPA, or one direct access SPA, then only one conversation can be in
process at a time. If a high percentage of tramsaction processing is
conversational, a similar number of SPAs should be spacified in the
system definition SPAREA macro statement. If a conversational
transaction code is entered, and all SPAs are in use, that transaction
is rejected by the system. An insufficient number of available SPAs
could result in terminal user dissatisfaction.

If a transaction code has the conversational attribute, it can have

effects on overall system performance. The choice of main storage
versus direct access residency affects not only system performance, but

Design and Control of a DB/DC System 2.17

also the response characteristics of the conversational transaction.
The following discussion elaborates on the potential effects of buffer
fragmentation and the relative throughput and respornse characteristics
of conversational transactions.

Main storage resident SPAs, and read/write space for direct access
resident SPAs, are acquired from the Communication Work Area {CWAP)
buffer pool when a conversation is initiated by entry of a
conversational transaction code. Main storage is retained throughout
subsequent exchanges between the terminal and destination applications.
It is released upon termination of the conversation. Since the main
storage SPA buffer space is retained over a relatively long period of
time, its potential ability to fragment the buffer pool is relatively
high. Fragmentation of the CWAP buffer pool can cause processing delays
in terminal I/0 service and in the initiation of other conversations.
However, since the SPA is both main storage resident and dedicated for
the life of the conversation, response and throughput are significantly
improved. The size of the CWAP buffer pool is specified during system
definition with the GENERAL keyword of the BUFPOOLS macro. For more
information on the BUFPOOLS macro GENERAL keyword parameter, see the
section "Defining IMS/VS Buffer Pools"™ in the IMS/VS Installation Guide.

If the SPA is on direct access, space is initially acquired from the
buffer pool at the same time as for a main storage resident SPA,
However, it is retained only long enough to write to dir=ct access. SPA
buffer space is freed. Space is re-acquired when the application
program returns the SPA, and is freed as soon as the SPA is rewritten to
a direct access device, The use of direct access SPAs decreases the
possibility of extended delays introduced by buffer fragmentation.
However, because buffer requests are made during the time an application
is active in the message processing region, any delay due to lack of
buffer space directly affects throughput. In addition, since +he
application must wait for the SPA to be written out, overall processing
time for each transaction is increased and response time extended.

To ernhance performance for conversational processing, conversational
transactions can be defined with fixed-length SPAs. For such
transactions, the main storage SPA us2s only the fixed length that was
defined. For direct access resident SPAs, ths defined maximum length is
always used, however, performance is increased on program=-to-program
switches because the direct access SPA is not updated.

Fixed-length SPAs d2fined during conversation initialization must
remain in effect for the duration of that conversation. For
conversations whose first transaction codz d2fined fixed-length SPAs,
all successive transactions used as destination applications in the same
conversation must also be defined with fixed-length SPAs of the same
length. If not, a status code indicating an error is sent to the
calling appliication, If the Multiple Systems Coupling feature is used
and conversations will run in a system that is not the input terminal
system, fixed length SPAs must be used. For more information about the
Multiple Systems Coupling feature, see Chapter S5 of this publication.

An additional performance enhancement for conversational processing
is the automatic compaction of all SPAs for queuing and logging. All
blanks and X'C0's are eliminated for queuing and logging, and the
application program receives the unpacked SPA.

Data Base Processing Intent

A factor that can significantly increase the overhead of the
scheduling process is the intent of an application toward the data bases
it uses. Intent is determined by examining the intent list associated
with the PSB to be scheduled. At initial selection, this process

2. 18 IMS/VS System/Application Design Guide

involves bringing the intent list into the control region. The location

of the
of the

intent list is maintained in the PSB directory. If the analysis
intent list indicates a conflict in data base usage with a

currently scheduled transaction, the scheduling process must select
another transaction code and try again.

There are several intent levels that can be stated for a given
segment type. The list below shows the level of intent, how it may be

stated for the PSB Generation utility program, and the code that is used
in the decision tables that follow:

N = No sensitivity -- segment typa not referenced.

R = Express read-only ~-- segment type referenced -- PRCCOPT=GO.
Note: See "Processing Intent Specifications" in this chapter
for an explanation of the various processing options (PROCOPTs).

G = Retrieve segment type referenced -- PROCOPT=G or X.

U = Update -- segment type referenced -- PROCOPT=A, I, R, or D
or segment type has propagated intent.

E = Exclusive use -- segment type referenced -- PROCOPT=E.

If exclusive use is specified for a program, that program will
not be scheduled concurrently with any other program that is
sensitive to the same segment types.

The following decision table shows which programs can be scheduled

concurrently.

Intent of Currently !
Executing Progran !

T
| Intent of Program

|

|

|

!

| | | 1
| Be2ing Scheduled } & | O } 66 | R | N 1
| il bt | ====- f===--- | ====- | ====- |====- !
| E ! X | X | X | X 1 !
| | | 1 ! ! |
|=====<=-mceeccmmmc o f===-- | ==-=-- | ===-- | ====- {====- !
{ Y I X | | | | |
| | | | | ! !
[===<<os<ssss=scccoswe=-- |===== |===== fo==-- | ===== | ====-- |
| G I x | ! | | !
| | | { | | |
e ittt |====-- | ===-- | ===-- | Bt {====- !
| R 1 X | | | | |
1 | | | | ! !
il |====- | ====- |====- | ====-= |====- |
| N | | ! | ! !
| i ! | ! ! |
lececrr e e c e e e e cccc s e ccc s m e c e e ccncccecescseceas 4

X Indicates Conflicting Actions When Transaction
Scheduling Is Attempted

Since exclusive intent does not allow a program to be scheduled while
programs sensitive to those segments are operating, no dynanmic
serialization is done via th2 engueua/desqueuns facility.,

Design and Control of a DB/DC Systenm 2.19

Conflicting actions occur only if the same segment type ics declared
"Exclusive Use"™ by at least one of two programs intending to reference
the s2gment type.

A PSB that contains a PCB for a SHISAM sagment that has delete
sensitivity will be scheduled exclusively. This is because the method
used by IMS/VS to ensure program isolation cannot be used for SHISAM
deletes. Since there is no delete flag, a VSAM erase must be done to
delete the sagment, and since IMS/VS uses relative byte addresses as the
identification of a segment, there is no way to prevent another user
from inserting a segment with the same key prior to the time the program
which did the delete reaches a sync point.

A PSB that contains a PCB for an HSAM data base will always be
scheduled exclusively against thess data base segment types. Unless the
PSB for the program being scheduled is currently resident in the PSB
buffer pool, determining schedulability involves a direct access 1I/0
operation.

Exclusive intent may be required for long running BMP programs that
do not issue checkpoint call because of the excessively large siza of
the enqueue/dequeue table,

An exception to the use of the enqueue/dequeue facility to provide
program isolation is accomplished by the use of the PROCOPT=GO option;
this allows programs to access segments without an enqueue being done
for those segments. When this occurs, a program can retrieve segments
which have been altered or modified by programs which are still active
and while the changes are subject to being backed out. See the IMS/VS
Utilities Reference Manual for a detailed explanation of the PROCOPT=GO
option.

Processing Intent Specifications

With Program Isolation, the only processing intent that affects the
schedulability of IMS/V¥S programs is exclusive intent.

The processing option parameter [PROCOPT) of the PCB and SENSEG
statements of a PSB generation determines the processing intent an
application program kas on data. The scheduling options are:

G = Get function.

I = Insert function.

R = Replace function.

D = Delete function.

A = All, includes the precvious four functions.

E = Used in conjunction with the previous five functions, and
specifies that an application program has exclusive use of
the data base or segment specified.

K = Indicates key sensitivity only.

Scheduling Intent Types: There are three scheduling intents used to
determine the schadulability of an application program: read only,
update, and exclusive intent. If a segment has more than one intent
type as the result of multiple references or intent propagation, the
most restrictive use is set. Intent types are associated with the

aforementioned processing intent specifications in the following manner:

2.20 IMS/VS System/Application Design Guide

e Read Only Intent

For schedulability without Program Isolation (PI) operative, read
only intent allows the program to be scheduled with any other number
of read only users and one update intent program. This intent is
set for any segment that specifisd PROCOPT=G or PROCOPT=K on the
associated SENSEG statement. In addition, this intent is propagated
to all segments that are required to obtaim the information
necessary to satisfy a DL/I call. Fecr example, a logical child
segment is requested in a call, and the logical parent's key was
specified as WVIRTUAL." All segments that must be retrieved to
construct the logical pareat's concatenated key have read only
intent set. The extent of propagation is discussed below.

e Update Intent

When PI is operative, update intent is treated as read only intent
for scheduling purposes.

When PI is inoperative, update intent allows any number of programs
that reference the same segment types for read only to be scheduled
with the updating program. All programs that reference the sane
segment type for update intent must be scheduled serially.

This intent is set if the associated SENSEG statement spacified
PROCOPT=I, R, or D. 0Update intent is set for the associated segment
regardless of any key sensitivity specification, either esxplicitly
or implicitly specified. This intent can be propagated to other
segments in this data base or related data bases. The amount of
propagation is determined by the processing options specified, the
data base organization, the pointer combinations used, and the SEGNM
statement RULES options chosen at physical DBDGEN time. The
implications and extent of intent propagation are discussed below,

e Exclusive Intent

Exclusive intent prohibits the concurrent scheduling of any programs
that reference the same segment type as the program that has
specified exclusive use. Intent propagation must be considered when
exclusive intent is used. Intent propagation is discussed below.

This intent is set if the associated SENSEG statement specified
PROCOPT=E and the segment does not have key sensitivity. Key
sensitivity can be specified on the associated SENSEG statement,
using the KEY/DATA option of the SOURCE operand in a logical DBD, or
by omitting the specification of the complete concatenated segment
in a logical DBD. This occurs when you specify the logical child
segment and not the logical or physical parent in the concatenated
segment definition. There is no propagation of the E option. Note
that the specification of both PROCOPT=E and K on a SENSEG statement
causes the exclusive (E) option to be ignored.

Implications and Extent of Intent Propagation: As discussed earlier in
this section, the implications of intent propagation depend on many
factors. Some of thess factors are physical organization, pointer
combinations, processing options, segment rules, and logical
relationships. The following paragraphs explain their effect on
scheduling concurrency as they relate to typical data base structures.
Each processing option is discussed in a separate section. Keep in mind
the fact that if a segment has more than one processing intent type [as
the result of explicit or implicit processing options) the most
restrictive intent is used.

Design and Control of a DB/DC Systenm 2,21

e Get Processing Option

A segment using PROCOPT=G or K causes read only intent to be set for
that segment. 1In addition, read only intent is propagated to all
segments that are used to complete a GET type call. Sensitivity to
a logical child segment implies sensitivity to its associated
logical or physical parent. In either case, read only intent is
propagated to the associated parent segment, and all its parent
segments, in a direct line upward to the root segment.

e Replace Processing Option

A segment using PROCOPT=R causes update intent to be set for that
segment. If the segment is part of a concatenated segment
definition, and the logical parent/physical parent part of the
concatenation can be replaced, it has update intent propagated to
it. No other propagation of intent occurs.

e Insert Processing Option

Insert intent propagation is based on two basic rules. These rules
do not apply if Program Isolation is operative.

1. Programs that separately insert a physical parent segment and its
physical child are not scheduled concurrently. If the program
inserting the physical child terminates first, and if IMS/VS
abnormally terminates before the program inserting the physical
parent terminates, the physical parent segment is backed out of
the data base by /ERESTART processing, leaving a dangling
physical child segment.

2, Programs that insert child/logical parent concatenated segments
involving the same logical parent are not scheduled concurrently.
If the insert rule of the logical parent is either virtual or
logical. The physical insert rule prohibits inserting the logical
parent by means of a concatenated segment. Only the logical
child need be inserted.

Update intent is set for the segment type designated by PROCOPT=I in
the SENSEG statement of the PCB, or for all the segments designated by
SENSEG statements when the PROCOPT=TI is coded in the PCB statement (rule
1). Update intent is propagated to all the immediate children {down one
level) from the designated segment becauss of rule 2. If the designated
segment is a logical child, the update intent is propagated to the
logical parent segment as specified by rule 3, and to the immediate
children of the logical parent as specified by rule 2. TIf +the insert
rule of the logical parent is physical, then one program per logical
child segment type can be concurrently scheduled.

The first variable that affects insert intent is the data base
organization., Since segments in a HISAM data base are hierarchically
related by physical juxtaposition, a segment insert can cause other
sagments in the data base record to shift physical location. However,
since a data base record can raside in several separate data set groups,
only the data set group contairing the inserted segment type is
affected. The rule is: all segments residing in the same HISAM data set
group as the segment type to be inserted have update intent propagated
to then.

The second variable that affects insert intent is the pointer
combinations specified for segments residing in HD type data base
organizations. When physical child pointers are selected to address the
designated segment, the physical parent has a differert pointer for each
of its children that concurrent programs maintain separately. However,
if the choice is hierarchical pointers to address the designated

2.22 IMS/VS System/Application Design Guide

segment, the physical parent addresses all of its children by a single
hierarchical pointer chain. Concurrent update programs for the
different physical children, therefore, violate rule 1. When the
immediate physical parent segment has hierarchical pointers, the data
structure is scanned in an upward direction until a parent segment is
found that uses physical child pointers, or until a root segment is
encountered. The immediately previous physical child segment of the
parent segment so located, and all dependent segment types of that
immediate physical child segment, have update intent propagated to thenm.

e Delete Processing Option

The propagation of update intent from segments designated with
PROCOPT=D is based on the physical child's dependence on the
physical parent. If the physical parent is deleted, its physical
children must also be deleted. Therefore, beginning at the
designated segment type, update intent is propagated to all its
physical dependent segment types and to their physical dependents,
down to the lowest level of the data structure. When a segment that
is a logical child is encountered in the downward scan, its logical
parent's delete rule is determined. If the rule is virtual, update
intent is propagated to the logical parent and its physical
dependents. When a segment type that is a logical parent is
encountered in the downward scan, the delete rules of its logical
children and their physical parents are determined.,

If the delete rule is virtual and/or bi-directional virtual, then
update intent is propagated to the logical child and to its physical
dependents, and/or to the physical parent and its physical dependents.
Since the propagation is downward, all segments in the downward scan are
inspected for logical relationships. As they are encountered, the
logical child/logical parent/physical parent segment types are processed
in the same manner as the original segment type. Deletion of the parent
requires deletion of all physical dependents.

When the immediate physical parent of the designated segment has
hierarchical pointers, the data structure is scanned in an upward
direction until a parent segment is found that is a root segment, or a
parent segment is found that is pointed to by physical child pointers.
That segment type found, along with all its dependent segment types,
have update intent propagated to thenm.

Application Proqram Abnormal Termination

Upon abnormal termination of a message or batch-message processing
application program, internal commands are issued to prevent
rescheduling. These commands are the equivalent of /STOP. They prevent
continued use of the program and the transaction code in process at the
time of abnormal termination. The master terminal operator can restart
either or both stopped resources. At the time abnormal termination
occurs, a message is issued to the master terminal and to the input
terminal that identifies the application program, transaction code, and
input terminal. It also contains the system and user completion codes.
In addition, the first segment of the input transaction, in process by
the application at abnormal termination, is displayed on the master
terminal.

The stop action is performed automatically. Even though a message is
issued, its occurrence could go unnoticed by the master terminal
operator. Such a failure, involving a major application that serves
many transaction codes, could have adverse effacts on systenm
performance.

Design and Control of a DB/DC System 2.23

The potential effects of commands entered from any terminal, that
cause unavailability of scheduling resources, are severe. Operators
should be instructed to display system status frequently. If a program
that terminated abnormally inserted any message segments, they are
transmitted, although the message may not be logically complete.

Program isolation dynamically backs out data base updates, and
cancels message output made by application programs that terminate
abnormally. To avoid the adverse effect that this backout can have on
programs concurrently processing in the system, data base segments that
have been changed are engueued using the IMS/VS enqueue/dequeue routine.
This routine ensures that no other programs can access the changed data
base segments until either the application program that requesta=d the
change completes successfully, or terminates abnormally; and until all
changed segments are restored to their original states.

Program isolation ensures that a dynamic log (IMSVS.DBLLOG) is
maintained. The dynamic log is a sequential data set, on direct access
storage, written with OSAM to facilitate following chains through it.
All the log records created because of a given user program are
back-chained, with the chain anchor in the PST to which the progranm is
attached. The chain pointer is the block number and the offset within
the block. When a synchronization point is reached, or if the program
terminates successfully, the anchor in the PST is reset to zero. If the
program terminates with an abnormal termination, the data base changes
are backed out to the last synchronization point specified by the MODE
parameter of the scheduled transaction code. If it is a batch-message
processing program that does not reference a transaction code, or whose
transaction specified MODE=MULT, it is backed out to its schedule point,
or to the last checkpoint, whichever is most recent. The bhackout is
accomplished by passing the data base log records, that were dynamically
logged and chained, from the PST to the data base backout module.

A synchronization point is defined as the point at which an
application program can be restarted.

SYNC POINT IS LATEST ACTION

| | !
| Msg GU| CHKP ! SCHEDULING|
|]]

| |
| Tramsaction |
| MODE=Single | X
] |

— e e —— — .

| {
| Transaction |
! MODE=Multiple |
| |

]
»~

—

|
Transaction |
MODE=Single |

|

- - - e

!
Transaction |
MODE=Multiple |
or |

No Transaction|
|

. -

2.24 IMS/VS System/Application Design Guide

All output messages inserted by an application program, with the
exception of messages inserted to alternate PCBs that have been
designated to have the Express Message feature, are enqueued to a
temporary destination associated with the PST. The Express Message
feature is a PSB Generation option for an alternate PCB. It specifies
that messages sent to this PCB are not to be backed out if the
application program terminates abnormally. When the application program
successfully reaches a synchronization point, the program's output
messages are transferred from their temporary destinations to their
final destinations. If the application program abnormally terminates,
all messages enqueued to temporary destinations are deleted and
cancelled. Those messages inserted to the alternate PCBs that have the
Express Message feature were never enqueued to the temporary destination
and cannot be cancelled.

Program Isolation provides a call function (ROLL) through which an
application program can remove the effect of its processing. Issuance
of this call function abnormally terminates the application program task
with an indicative completion code. Voluntary abnormal termination
using this call function does not cause the program and transaction to
be stopped, nor does it produce a storage dump.

One other kind of application program abnormal termination is
possible. Since data base updates are isolatasd by the program isolation
enqueue/dequeue facility, the possibility of a deadlock can arise.
Deadlocks can be avoided by selecting one of the deadlocked programs for
abnormal termination, with a special code that causes the program's data
base updates and unsent message output to be backed out. The
transaction input that was being processed by the program is retained,
and the program is rescheduled.

The program to be abnormally terminated and rescheduled in a deadlock
situation is selected using the following algorithm:

Both the waiting program that completes the deadlock circuit and the
calling program whose request will cause a deadlock are evaluated
according to the table below. Their corresponding values are compared.
The program with the smallest value is select2d for termination. 1In
case of a tie, the time stamp taken at sync-point is the tie breaker.
Por wait-for-input programs (including Fast Path message-driven
programs) the time stamp taken at message GU time is used. This action
prevents time spent on the wait-for-input queue from biasing the
tie-breaker computation in favor of a wait-for-input program that is not
heavily utilized. A time stamp is also taken at program schedule time
to indicate the implied sync point at program start.

[A 1
| Decision Criteria ! Value |
R b DL R L LR e LD e DL R bRl LR D D |
I 1. BMP mode=mult or no SMB input | 6 !
| 2. Fast Path non-message-driven program | 6 1
| 3. Fast Path online utility program | 6 |
| 4. BMP mode=sngl | 1) !
{ 5. MPP mode=mult that did not deadlock in the | !
\ previous scheduling | 3 |
! 6. MPP mode=mult that was abnormally terminated | !
| for deadlocking in the previous scheduling | 2 |
| 7. MPP mode=sngl that did not deadlock in the |]
l previous scheduling | 1 !
| 8. MPP mode=sngl that was abnormally terminated ! !
| for deadlocking in the previous scheduling | 0 |
| 9. Fast Path message-driven program | 0 !
lecoccrcrccccccc s cccrcc e e cc e crc s s ce e rc e cecececceccececccanceee= ¥

Design and Control of a DB/DC System 2.25

Whenever the resource that the calling program is requesting has
multiple owners {for example, several owners in share mode), the calling
program is abended. No other factor enters into the decision process.

Whenever more than two programs deadlock, only the calling program
and the program completing the deadlock circuit are involved in the
selection process as to which is to be abended. The program completing
the deadlock is the program that the caller has to wait for to obtain
the requested resource.

In IMS/VS installations running under 0S/VS1, after any abnormal
termination in an MPP (for example, application program abnormal
termination, program isolation deadlock, or ROLL call), the MPP may not
be able to reclaim all the storage used by the application for future
scheduling. A system abend may eventually occur because of insufficient
storage and the MPP will be terminated by IMS/VS, after two consecutive
GETMAIN failures are detected, to release unusable storage in the
region.

Control Block Buffer Pools -- PSB and DMB

Control block pools are maintained in the IMS/VS control region for
program specification blocks (PSB) and data management blocks {D¥B).
Each buffer pool must be at least as large as the largest control block
it will contain, plus the next successively larger block, for each
additional processing region concurrently active.

The IMSVS.ACBLIB data sot must contain control blocks for all
application programs (PSBs) and all data bases (DMBs) referenced by the
application programs. When an application program is to be sch=2duled,
the PSB and DMB pools are examined to determine which control blocks
nust be brought into main storage. If all required blocks are resident,
the program is scheduled. If required control blocks are not resident,
the applicable pool is searched for space to hold the block. 1If space
is found, the block is loaded and the program is scheduled. If the pool
does not contain the required free space, the blocks currently resident
are examined to determine which unused blocks can be removed. When the
selection process is complete, any open data bases referenced by the
unused blocks are closed, and the space is released for use by the new
control blocks. The new control blocks are then loaded, and the
application program is scheduled.

Excessive loading of control blocks can have a severe impact on
performance. If possible, the DMB pool should contain enough space to
hold all DMBs used with online data bases. This reduces the number of
0S/VS opens and closes, and their impact on system performance.

_———- ==

System definition requires that data bases to be used in the DB/DC
system configuration be identified. The positive declaration of data
base names enables the system to limit the domain of the online control
program to only some specific subset of all installation data bases.

2.26 IMS/VS System/Application Design Guide

DINANIC ALLOCATION AND DEALLOCATION OF DL/L AND FAST PATH DEDB DATA SETS
{M¥s ONLY)

If data base data sets, Fast Path DEDB area data sets, or the DC
Monitor data set (if residing on a tape device) are specified with JCL
statements included in the control region procedure, these data sets are
initially allocated at control region startup. Using the dynamic
allocation macro ([DPSMDA), the user can specify data bases to be
dynamically allocated wvhen needed, and deallocated when no longer being
used. See the chapter, "Dynamic Allocation Interface Macro (DFSMDA),"
in the IMS/VS Utilities Reference Manual for detailed information on how
to code and use this macro.

Data base data sets and Past Path DEDB areas can be dynamically
allocated explicitly with the /START command, or implicitly through the
DL/I OPEN command and deallocated with the /DBR command. The DC Monitor
data set can be dynamically allocated at the time it is started with the
/TRACE ON command and deallocated when stopped by the /TRACE OFF
command.

All data base data sets considered for dynamic allocation must be
cataloged except DC Monitor data sets which must not bes cataloged. A
data set initially allocated with JCL can be dynamically deallocated and
reallocated during the execution of the control region.

Figure 2-1 illustrates the creation of a parameter list to be used to
dynamically allocate and deallocate IMS/VS data bases. The IMS/VS user
prepares DFSMDA macro statements which are assembled in a normal OS/VS
problem program jobk. The DFSMDA macro is placed in IMSVS,MACLIB during
IMS/VS system definition. The assembler output is link-edited into
IMSVS.RESLIB, and will be loaded from there when needed.

A job control language procedure, named IMSDALOC, is placed in the
IMSVS.PROCLIB data set by IMS/VS system definition for subsequent use in
generating the parameter list({s). This procedure is described in the
chapter "The IMS/VS Procedure Library" in the IMS/VS System Progqramming
Reference Manual.

0S/Vs
Parameter
DFSMDA > List > IMSVS.RESLIB
Macros Generation
)
Pigure 2-1. Dynamic Allocation Parameter List

Design and Contrel of a DB/DC Systenm 2.27

STARTING AND STOPPING THE IMS/VS CONTROL REGION

A normal shutdown of IMS/VS is initiated by the master terminal
operator entering a /CHECKPOINT command. The /CHECKPOINT command shuts
down IMS/VS in an orderly fashion. Following a checkpoint shutdown, the
master terminal operator can start IMS/VS and enter the /NRESTART
command for a normal restart of IMS/VS. If IMS/VS was not terminated
with an orderly shutdown, the /ERESTART command must be entered to
emergency restart IMS/VS.

The log tape, the restart data set, and the dynamic log are closed by
the STAE rouatine when IMS/VS fails. If the log tape cannot be closed,
the master terminal operator must use the 0S/VS DUMP command or execute
a stand-alone dump to create a dump data set containing main storage.
This dump data set will be used with the log tape to close the system
log when IMS/VS is emergency restarted. Because the log tape can be
closed during the emergency restart if it was not closed during an
IMS/VS failure, the INS/VS system log terminator utility (DFSPLOTO) is
optional.

IMS/VS restarts can be performed from either the restart data set or
the log tape. The restart data set is a direct access storage device
(DASD) data set that contains the control blocks necessary for a normal
restart or emergency restart of IMS/VS. With the restart data set, the
master terminal operator can choose between restarting from DASD or
restarting from the log tape. Even when the restart is from tape, the
restart data set is used because it contains the checkpoint and log tape
serial number information necessary for the restart. If the restart
data set is unavailable, the serial numbers and checkpoint must be
enterad with the emergency restart or normal restart command.

The log tape must always be mounted when IMS/VS is running because it
is used for restarting IMS/VS, collecting statistical information, and
recovering data bases. A normal restart of IMS/VS only requires that
the nev log tape be mounted when IMS/VS is restarted. With an emergency
restart of IMS/VS, the old log tape can be mounted in order to be closed
by IMS/VS. After the old log tape is closed, a request for a new log
tape will be issuesd; after the new log tape is mounted, IMS/VS will
continue with the restart until completion.

If 0s/Vs fails, a restart from tape will be required. Other
conditions requiring a restart from tape are when the message queues
need to be rebuilt or reformatted, or the log tape or IMS/VS system data
sets are not closed by IMS/VS. The master terminal operator can choose
to do a tape restart by entering the serial number of the last mounted
log tape with the normal or emergency restart command. The tapes
required for restarting are determined by IMS/VS.

Automatic restart is an option that can be used if it was defined
during system definition. With automatic restart, the master terminal
operator starts IMS/VS but does not initially specify the type of
restart. Automatic restart determines the format of the restart and
sends a message to the master terminal operator stating that the restart
is in progress. If the restart data set is not available, the master
terminal operator is asked to enter /NRESTART or /ERESTART depending on
the type of restart required.

IMS/VS supports dual logging of system log tapes. Dual logging is
the duplicating of information on two log tapes while IMS/VS is running.
The purpose of dual logging is to ensure that a readable log tape is
available for restart processing. During a restart from tape, IMS/VS
will automatically switch between the primary log tape and the secondary
log tape whenever an I/0 error on missing record is encountered., For
more information on closing and recovering the system log, see tha

2,28 IMS/VS System/Application Design Guide

section "Restoring Integrity of the IMS/VS System Log," in the IMS/VS
Operator's Reference Manual.

BATCH CHECKPOINT/RESTART

The batch checkpoint facility provides batch-message programs with
the means of synchronizing checkpoints taken of their environment with
the IMS/VS log tape. It also enhances the integrity of data bases
updated by batch-message programs, by allowing the rastart facility to
back out data base changes being made by such programs at the time of a
system failure. If a batch-message processing program abnormally
terminatess, program isolation ensures that backout procedures occur
automatically. The data to be backed out is the data base change
records logged since the last synchronization point created by a CHKP
call., The time lag is significantly less using program isolation with
batch checkpoint/restart, than if the data base had to be stopped and
taken offline for batch backout.

The batch checkpoint facility is implemented by the use of the INMS/VS
checkpoint (CHKP) system service call from the application program.
This call is used to indicate a synchronization pocint at which data base
updates can be restarted. The actual checkpointing of the batch progranm
environment, and the routine used to restart it, are at the option of
the user. If 0S/VS checkpoint is to be used, the user must request, as
part of the DL/I CHKP call, that the system take the checkpoint.

Note: The checkpoint ID table, as referenced below, is used to
coordinate the checkpoints on the IMS/VS system log with the activity of
any batch-message regions, for the purpose of emergency restart. This
table also contains the ID and serial number of the last startup or
shutdown checkpoint.

For batch-messags programs (not message-driven):

A non-message driven BMP program functions liks a batch program, but
receives data base service like an MPP. VNo identifiable {explicit)
synchronization point exists until the program issues the CHKP call.

1. oOptionally, an OS/VS checkpoint of the user's region is taken.
2. Altered data base buffers are written.

3. The checkpoint ID, supplied in the CHKP call, is written to the
log tape.

4, The checkpoint-ID table is updated, for use in subsequent
emergency restarts.

5. The dynamic log is updated by releasing all change records prior
to the current synchronization point.

For batch-message programs (message-driven):

BMP programs that access the message queue via the I/0O PCB, have a
defined (implicit) synchronization point established by the MODE=
parameter in the TRANSACT macro. To IMS/VS, the BMP program looks like
an MPP. If MODE=MULT is selected, end-of-job is the natural
synchronization point. BMP programs can issue the CHKP call to cause an
explicit synchronization point, and define a point from which restart
can be performed. Care must be taken to ensure that the dynamic log
buffers do not become full because the CHKP calls are too infrequent,
All output messages, that are not destined to express alternate PCBs,
are held until a synchronization point occurs. All input messages since

Design and Control of a DB/DC Systenm 2.29

the last CHKP are reprocessable. The following general events occur in
this type of BMP:

1. Optionally, an 0S/VS checkpoint of the user's region is taken.
2. Alter=sd data base buffers are written.

3. The checkpoint ID, supplied in the CHKP call, is written to the
log tape.

4. The checkpoint-ID table is updated, for use in subsequent
emergency restarts.

S. The dynamic log change records for the calling BMP are released.

6. Output messages to all TP PCBs are sent, and input messages are
dequeued.

7. A GU to the I/O0 PCB is internally generated for the application
progranm.

If MCDE=SNGL is specified on the TRANSACT macro instruction, a
natural synchronization point exists at each GU on the I/O PCB.
Functions similar to those abové are performed by IMS/VS; however, the
user does not have to execute a CHKP call because the GU causes the
necessary synchronization points.

Instead of the 0S/VS Checkpoint/Restart option, the user can specify
the IMS/VS Extended Checkpoint/Restart facility. This consists of a
restart call (function code XRST) and optional parameters on the CHKP
call. If used, the XRST call is the first call to IMS/VS issued by the
user program, If a restart is not in progress, the XBRST call is
effectively a NOP.

The issuance of an XRST call causes the following action to be taken
for subsequent CHKP calls issued by the program:

1. Optionally, user specified areas, that is, application variables,
control tables, and position information for non-IMS/VS data
sets, are recorded on the IMS/VS log.

2. The fully gqualified key of the last record processed by the
program on each IMS/VS data base is record=d on the log.

3. The functions of the standard CHKP call are performed, except
that the 0S/VS checkpoint of the user's region is not taken. The
user has the option of using 0S/VS Checkpoint/Restart, the IMS/VS
restart (XRST call), or neither, but not both.

Por message processing programs:

The CHKP call functions exactly as a message GU for a single mode
program, allowing a program operating in multiple mode to control the
spacing of its synchronization points.

In the case of a checkpoint FREEZE or DUMPQ shutdown, IMS/VS waits
for any batch-message programs that are processing to issue a CHKP call,
bafore proceeding with the shutdown. This action makes it possible to
identify the point at which the batch-message program should be
restarted.

In the case of a PURGE shutdown, IMS/VS waits for batch-message
programs to terminate before proceeding with the shutdown.

2.30 IMS/VS System/Application Design Guide

The log record containing the checkpoint ID is used by emergency

restart as follows:

Using the checkpoint-ID table, emergency restart determines, and

identifies to the operator, the point on the log where restart

processing is to begin in order to back out incomplete updates made
by the message and batch-message programs processing at the time of
the system failure. It initiates restart processing from that point.

If backout is successful, the CHKP ID from which each BMP can be

restarted is identified to the operator.

Transactions, partially processed by message processing programs at
the time of system failure, that caused data base modifications, have

their associated data base modifications backed out by emergency
restart.

The IMS/VS user must determine the means of checkpointing and

restarting his batch and batch-message processing programs. He may use

the 0S/VS checkpoint/restart facility, or create one of his own.

If the DL/I user chooses to write his own checkpoint/restart
routines, he must, as a minimum:

e Record application variables and control tables.
e Record position information for non-IMS/VS data sets.

e Provide a restart entry point and reinitialization procedure.

e Properly initialize IMS/VS control blocks; for example, PXPARMS.

Use of the XRST call and user area parameters on the CHKP call

simplifies the task for the user writing his own restart routines,

e A restart situation is indicated by specifying a checkpoint ID in
the parm field on the execute card in the JCL or in the XRST call

itself.
e Normal entry point and initijialization procedures are used.

e User areas recorded at checkpoint time are restored.

e A GET UNIQUE is issued for each GSAM data base for the last used
record if the data base was open at the time the checkpoint was

taken.

e No data is returned as the result of the GU, but status codes are

saved in the user PCBs.

e If the data base was opened for output, *hen a PNT function code,

requesting POINT, is used.

e GSAM data bases are automatically repositioned at restart if the

XRST call is used.

» The checkpoint ID is returned to the user program to allow it to

link to its own restart subroutine.

In the case of batch-message programs, an actual checkpoint/restart

routine may not be required., If the program is truly driven by the

message Jueues, IMS/VS repositions the queues to the point where a CHKP

call vwas issued. The user need only start the batch-message program

normally.

Design and Control of a DB/DC System

2.31

Even though most batch-message programs require some re-programming
to accommodate the CHKP function, the increased data base integrity and
availability should justify the effort.

Since the IMS/VS control region waits until all batch-message regions
issue CHKP calls before proceeding with a2 shutdown checkpoint, a
batch-message program with few or no CHKP calls can delay or prevent
system shutdown. The /STOP REGION command with ABDUMP can bhe used to
force the abnormal termination of such a region. However, it is
recommended that the user add CHKP calls to batch-message prograns,
particularly if a FPREEZE or DUMPQ checkpoint is to be requested. If a
PURGE shutdown is used, re-programming is suggested for batch-message
programs that run for a long time, because IMS/VS waits for these
programs to terminate before proceeding with the shutdown.

The IMS/VS control program provides the ability to queue messages
received on direct access storage and in main storage. Messages can be
received from communication terminals or application programs and can be
destined for communication terminals or application programs. A message
destined for an application program is called a transaction and begins
with a transaction code. All transactions of the same type [same code)
are queued in a serial chain based upon time of receipt by IMS/VS. 1A
serial queue exists for each defined transaction code. All messagas
destined for a particular communications logical terminal are gqueued
serially like transactions. A serial queue exists for each defined
logical terminal (Figure 2-2).

2.32 IMS/VS System/Application Design Guide

TRANSACTION
CODE

X

QUEUE
CONTROL
BLOCK

BEGINNING OF MESSAGE X QUEUE

MESSAGE
MESSAGE

END OF
MESSAGE X
QUEUE
Q01 Message
COMMUNICATION Q01 Dequeue Pointer
LOGICAL
TERMINAL Q01 Enqueue Pointer —
Q02 Dequeue Pointer
Q04 First Message
Q02 Enqueue Pointer
Q03 Dequeue Pointer]
Q03 Enqueue Pointer
Q04 Message n
Q04 Dequeue Pointer
Q04 Enqueue Pointer
Q05 Enqueue Pointer
Q04 Last Message
Figure 2-2, General Message Queue Structure

MESSAGE QUEUES AND MESSAGE SELECTION

The serial queue for each defined logical terminal consists of an

incore queue, four prioritized queues, and a nonprioritized queue.
descending priority sequence, the levels are as follows:

Q00
This is the incore queue. All messages in this queues are sent
immediately and are not written to the direct access message
queue data set. Messages on this gqueue are not considered
recoverable and will be discarded if an error occurs during
transmission.

Q01
Reply to response type messages. This queue is used for response
mode conditions when a terminal is in terminal or line response
mcde or conversational mode. This queue can contain only a
single nmessage.

Q02

Design and Control of a DB/DC System

Replies to a transaction from a terminal in exclusive mode.
Output to a terminal in exclusive mode will be queued to Q002. If
a response mode condition exists, the output will be placed in
Q01 instead of Q02.

Q03
System messages which are to be enqueued. This includes
broadcast text, output from the /DISPLAY command, and all DFS
messages with the exception of the DFS555 ahnarmal termination
messages. The DFS555 message will be placed on other +han Q03 to
notify the terminal of the abend (for example, a terminal in
response mode will receive the DFS555 abend message from Q01),

Qo4
A11 other traffic. This queue is used for application
programming output, message switches, alternate PCB output, etc.

Q05
Backup message. This queue is used:

e To resend messages from terminals with the resend feature.
e For conversational processing, the last response to the *erminal is

kept for purposes of the /HOLD and /RELEASE commands. This queue is
not prioritized and is transparent to the user.

Terminal Modes

The following are the possible modes of a terminal. The terminal is
not restricted to a single mode but may be in more than one mode at the
same time.

e CONVERSATION -- A terminal is in conversation mode from the time it
enters a conversational transaction until the time the conversation
is completed or abnormally terminated. A conversation is normally
terminated when the message has been sent and dequeued and the
application program has cleared the transaction code field in the
scratchpad area (SPA). A conversation can terminate abnormally in
several ways:

1. An application program ABENDed.

2. The IMS/VS operator issues an /EXIT command, a /START NODE
command, a /START LINE command with no PTERM keyword, or an /IAM
DONE command with an INQUIRY LTERM (switch line disconnect).

3. When there is an inconsistent definition between systeas.

e EXCLUSIVE -- A terminal is placed in exclusive mode when the
/EXCLUSIVE command is issued. Exclusive mode is terminated by an
/END command, a /START LINE command, a /START LINE PTERM command, a
/START NODE command, or a /IAM command.

e RESPONSE MODE -- System definition specifications determine when a
terminal will be placed in response mode. Terminal response mode is
terminated in several wvays:

1. When the message has been sent and dequeued.

2. The IMS/VS operator issues a /START LINE PTERM command, or a
/RSTART LINE PTERM command.

3. An IMS/VS restart.

2.34 IMS/VS System/Application Design Guide

Line response mode is terminated in several ways:

1. V¥When the initial attempt to send the message has been made.

2. The IMS/VS operator issues a /START LINE command, a /RSTART LINE
commande.

3. An IMS/VS restart. If the Fast Path feature is used, terminal
response mode will automatically be re-entered on an INS/VS
restart or after the issuance of an /RSTART LINE PTEKM command if
a message is in the output buffer.

LOCK =-- The locked mode prevents the sending and receiving of
messages to a terminal. A terminal, NODE, or a logical terminal
(LTERM) can be placed in locked mode when the operator issues a
/LOCK command. This mode is reset by the /UNLOCK command or the
/IAM command.

TEST -- Test mode ensures that any input message entered into a
terminal is transmitted back to the terminal with error analysis
procadures bypassed. A PTERM or NODE is placed in :test mode by the
/TEST command. Test mode is reset by an /END command, a /START
command, or /IAM command.

LOOPTEST -- The looptest mode provides for the establishment of an
output write loop whereby a user-entered message is continuously
transmitted to the terminal. A PTERM is placed in looptest mode by
the /LOOPTEST command. Looptest is reset by an /END command, a
/START command, a /RSTART LINE command, or an /IAM command.

QERROR -- A logical terminal will be placed in a stopped state if an
I/0 error is encountered while attempting to read a message from or
write a message to a message queue. This condition is reset when
the operator issues the /START command.

STOP -- The stopped state prevents the selection of any output
quened on a logical terminal associated with a physical terminal.

For terminal using VTAM, the /STOP NODE results in the termination
of the session between IMS and the node. This termination occurs
immediately for most devices but only at the end of the message for
3270 devices and SLU type 2 devices. The /STOP NODE command also
prevents logon until a /START command or /RSTART command has been
issued.

The /STOP command, the /PSTOP command, and the /MONITOR command also
cause a terminal to enter the stopped state. This state is reset by
issuance of the /START command or the /RSTART command.

SNA quiesce -- When IMS/VS is sending output messages to a VTAM
programmable node and the node wishes to suspend reception, the node
will signal IMS/VS to halt transmissions after an end-of-chain has
been sent. See the section "VTAM Signal Commands"™ in IMS/VS
Advanced Function for Compunications for further details on the
quiesce-at-end-of-chain function.

INOP -- The physical terminal is marked inoperable by IMS/VS device
support whenever a physical error is detected. All logical
terminals associated with this physical terminal are marked not
eligible for selection for message transmission. The /START command
or the /RSTART command will reset the inoperable condition,

Design and Control of a DB/DC System 2.35

e COMPINOP -- Component inoperative (not ready) can be set in two
vays:

1. An error is detected that can be isolated to a component of a
terminal.

2. By the issuance of the /COMPT command or the /RCOMPT command for
terminals defined to VTAM. All logical terminals associated with
this component are marked ineligible for selection for message
output. Component inoperative is reset when the operator issues
a /START LINE PTERM command, a /START NODE command, another
/COMPT command, or a /RCOMPT command. Special signals from the
device, such as device end from a 3270 device, or special
commands from a 2270 device can also cause the resetting of the
component incperative or not ready state. For unique device
considerations see the chapter "IMS/VS Telecommunication Device
Support" in the IMS/VS Operator's Reference Manual.

e PAGE, SCREEN, and COMPONENT PROTECTION -- This is a state supported
for video terminals and SLU type p devices. Logical terminals
associated with this physical terminal are ineligible for selection.
For a discussion on screen protection for the 3270 devices, see the
chapter "IMS/VS Telecommunication Device Support™ in the IMS/VS
Operator's Reference Manual, and the chapter "Message Formatting
Functions" in the IMS/VS Message Pormat Service User's Guide. For
programmable VTAM devices, see the section "Display Screen
Protection for Statiens Defined as 3601" in the chapter *"IMS/VS
Support for Advanced Function" and the section "Extended Output
Component Protection" in the chapter “Type P Secondary lLogical Unit
Programeer's Guide™ in the IMS/VS Advanced Function for
Communications.

DETERMINING MESSAGE SELECTION

The following figures allow you to determine which messages will be
selected for transmission to a terminal when IMS examines the message
queues for a message to send.

e STEP 1:

Find, in Fiqgure 2-3, the source of the message in question and note
the queue the message is in.

e STEP 2:

Referring to Figure 2-4, find the state of the logical/physical
terminal or node. Note the queue levels from which messages will be
selected when the terminal is eligible for selection. TIf the
message is in one of these levels, IMS will attempt to send the
message. Otherwise, the message will remain in the queue for later
transmission.

Example: To find what happens to a /FORMAT command entered from a
terminal in conversation mode:

1. Find the source of the message in Figqure 2-3, The /FORMAT is
entry I.A.11. Since the terminal is not in exclusive mode, the
/FORMAT respoase will be placed in Q03.

2. Find the terminal state in Figure 2-4, Conversation is state 12,
Queue levels selected are Q00 and Q01. Since the /FORMAT
response was in Q03, it will not be sent until the conversation
is terminated.

2.36 INS/VS Systam/Application Design Guide

Source of Message

Queue Level

I. Control Region

A.

IMS/VS Code

1.

10.

Error messages to a terminal created while
processing input from or output to a terminal

(for example, messages such as DFS064 NO SUCH
TRANSACTION CODE, DFS065 TRAN/LTERM STOPPED, etc.).

The same error messages as above but detected
in a remote MSC system:

- The input message that was discarded because
of the error put the terminal in response
mode.

- The terminal is in exclusive mode.
- None of the above.

Direct responses to terminal regquests
(for example, messages such as DFS290T NO MESSAGE
AVAILABLE FOR OUTPUT) .

Terminal connect, disconnected, or restarted
(for example, DFS2002 TERMINAL CONNECTED,
DFS053 TERMINAL RESTARTED-PLEASE REFORMAT SCREEYN).

Messages directed to the master terminal
(for example, DFS253I TCU INOPERABLE LINE x
PTERM y).

TEST or LOOPTEST messages.
DFS058 command completed.

Output from the /DISPLAY, /RDISPLAY OUTPUT
commands.

/START, /RSTART, /STOP, /PSTOP command status
messages. These messages wiil be discarded if

the MSGDEL=SYSINFO or the MSGDEL=NONIOPCB parameter
vas coded in the TERMINAL macro statement.

Broadcast text. These messages will be discarded
if the MSGDEL=NONIOPCB parameter was coded in the
TERMINAL macro statement.

Q00 *

00 1%%

Q02

Q03

Q00*

Q00

Q03

Q00

000=*

Q03*

003

Q03

* For the 2770, local reader, and 2780, these messages are puat in Q03
on a last-in first-out basis.

** Tf the terminal is removed from response mode before this message
is completely sent, the message will be moved to Q02 if the terminal is
in exclusive mode or to Q04 for all other conditions.

Figure 2-3 ¢(Part 1 of 3). Source of Messages

Design and Control of a DB/DC S

ystenm

2.37

Source of Message Queue Level

11. InS/vVS commands (for example, /FORMAT, /TRACE, etc.).

B.

- Terminal in exclusive mode. Q02
- Terminal not in exclusive mode. 003
User Exit Routines

1. Request to cancel message via return code -- Q00
an IMS/VS messadge is generatead.

2. Request to cancel message and send a message QO00*
from the user'!s message table.

3. Message 'echoed' back to terminal using the MFS Q01
segment exit.

Message Switch {terminal to terminal). This message Qou

will be discarded if the MSGDEL=NONIOPCB parameter
is coded in the TERMINAL macro statement.

II. Dependent Region

A.

I/0 PCB or Response Alternate PCR%*

1. Conversational mode. Q01

* For the 2770, local reader, and 2780, these messages are put in Q03
on a last-in first-out basis.

X %k

1.

4.

5.

Figure

Response Alternate PCB restrictions:

Conversational -- The destination must be the same physical
terminal. If not, an A9 status cod2 will result if processing in
a local system; or a conversational abend will result if
processing in a remote MSC system and if the error was detected
at the terminal-attached systen.

If the current input message put the terminal in response mode,
the destination must be the same physical terminal. If not, an
A9 status code will result if processing in a local system. This
is not checked if processing in a remote MSC systenm.

Output to both a response alternate PCB and the I/O PCB is not
allowed. If the terminal is not in conversational mode, output
to multiple response alternate PCBs is allowed.

Destination logical terminals must not have more than one
physical terminal assigned for input purposes. An AY status code
will result if processing in a local system. This is not checked
if processing in a remote MSC system.

An ISRT call prior to a GU DL/I call is not allowad to the I/0
PCB.

2-3 {Part 2 of 3). Source of Messages

IMS/VS System/Application Design Guide

Source of Message Queue Level

‘b« 2. The input message being processed put the Q0 1*
terminal in response mode.

3. Terminal in exclusive mode but not in response Q02
or conversational mode.

4. None of the above. Qou
B. Alternate PCB
1. If the /TRACE command was issued for the Q04
destination PTERM and the message ID was deleted,
a 6701 log record with an ID=ICLR is created. This
message is discarded if the MSGDEL=NONIOPCB parameter
parameter was coded on the TERMINAL macro statement.

C. IMS DFS555 Abend Message

1. The input message being processed put the QO 1x*
terminal in response mode.

2. The terminal was in exclusive mode. Q02

3. None of the above. Qou

* If the terminal is removed from response mode before this message
is completely sent, the message will be moved to Q02 if the terminal is
in exclusive mode or to Q04 for all other conditionms.

- Figure 2-3 (Part 3 of 3). Source of Messages

Design and Control of a DB/DC System 2,39

State Queue Level Selected

1. PTERM inoperative Q00
2. Component inoperative Qo0
3. PTERM in test mode Q00
4, SNA quiesce-at-end-of-chain received Q00
5. Qerror Q00
6. Line STOPPED, PSTOPPED, or MONITORED Q00,003=
7. Node stopped, before termination Q00

of session, node disconnected due to
/CLSDT or LOSTERM, or IMS shutdown

8. PTERM STOPPED, PSTOPPED, or MONITORED Q00,003=

9. LTERM STOPPED or PSTOPPED Q00,003*

10. PTERM locked 000,003x

11. LTERM locked Q00,003=%

12. Conversational mode 000,001

13. Response mode 000,001

14, Exclusive mode Q00,001,002

15, None of the above Q00,001,002,003,004

* Messages for Q03 are selected if:
- The line or terminal is not in response mode.
- An active conversation is not in process.

- The terminal is not in exclusive mode.

Figure 2-4. Queue Selection

The IMS/VS control program utilizes three OSAM data sets for direct
access queue storage. All gqueue data sets have the same block size,
which is specified by the IMS/VS user at system definition tinme.

Figure 2-5 illustrates the relationship between the three gqueue data
sets.

2.40 IMS/VS System/Application Design Guide

TRANSACTION
\woﬂ"‘“ OR LOGICAL
TERMINAL
QUEUE

< 2

QUEUE BLOCK
DATA SET

LAST NEXT
MSG TO READ

HORT MESSAGE
DATA SET

[23

MSG 1 (COMPLETE)

[
MSG 2
(1st PORTION) 4@ ONG MESSAGE
ot DATA SET
&
MSG 4 (COMPLETE) MSG 2
(2nd PORTION)
7] [
&l [Msc 2 (FINAL
% @ PORTION)
)
%*"4\ MSG 3
4% (1st PORTION)
Yy
MSG 3
(LAST PORTION)
Figure 2-5. Queue Data Set Relationships

OPERATION OF QUEUES

All messages received are assigned OSAM relative record numbers.
Hovever, they are not written immediately to the queue data sets. If no
space is available in the main storage buffers, the buffer which has
been referenced the least is written to its queue data set, and the
space in main storage is assigned to the nev message. If a message
still exists in main storage when it is dispatched to its destination
(input to a program or output to a terminal or another program), no
reference to the direct access data sets is required. All messages are
logged by the IMS/VS control program to provide message queue
recoverability in case of failure of either the IMS/VS or host operating
system control programs.

Messages received are represented by either single or multiple
segments. The amount of space required to contain a message determines
the size of the records to which it is allocated. When the transaction
or logical terminal gqueue is known, the average message size is also
used to determine the record to be allocated. The lines of text are
placed in a variable-blocked format within a record.

The IMS/VS message queue data sets must be preformatted before
initial usaga. The use of preformatted queues provides increased
reliability. Reliability is increased with the preformatted data sets
becaus the count field of the direct access device record X is not
relied upon to write record X+1. Preformatting is performed uporn
request during restart procedures. The need to reformat the message
queues arises only if an input/output error occurs within a queue data
set., A vrite error does not result in the inability to write subsequent
records in the data set as is the case with unformatted gueue data sets.

Design and Control of a DB/DC System 2. 41

Approximately 1.5 seconds is required to format each 2314 cylinder in an
INS/VS message queue data set and .8 seconds for each 3330 cylinder.

In order to provide for message queune recoverability if the queune
data sets are destroyed, the IMS/VS control program logs:

e all input and output message text

e the queue pointers to each message queue chain, whenever a message
is enqueued onto or dequeued from the chain

If a system failure occurs and the message queue data sets are
retained intact, the restart facilities of IMS/VS can reposition the
queues by use of the engueue/dequeue pointers which were logged. If the
queue data sets are destroyed, the restart facilities of IMS/VS can be
employed to rebuild the queues from the log entries of message text.

EMERGENCY RESTART QUEUE REPOSITIONING

In an emergency restart situation, the message queues are
repositioned as follows:

e SNGL mode processing

The message being processed at the time of the failure is the first
message processed after the restart.

e MULT mode processing

All messages read by the program are processed at the time of the
failure are returned to the queue. The first message processed
after the restart is the first message read after the program's most
recent CHKP call or scheduling.

MESSAGE QUEUE REUSE

Message queue records reside in fixed-length blocks with a block size
common to all three data sets. The first record in each data set is a
bit map which controls the assignment of the next n records (n = 8 *
LRECL-1). Records in each data set are assigned from low to high by
testing the bit map for the first bit which is on. When a bit is found
on, it is turned off to indicate that the corresponding has been
assigned. When a record contains a message that has been completely
processed at its destination (has been dequeued and will not be required
in restarting the system), the bit corresponding to the record is turned
on. This makes the record available for reuse.

For details on message queue data set space allocation, refer to the
IMS/VS Installation Guide.

PHYSICAL TERMINALS

A physical terminal is the actual hardwarq device attached to the
computer. The types of terminals supported include typewriters, CRTs
(cathode ray tubes), paper tape readers, card readers, high-speed
printers, and remote computers. The IMS/VS terminal configuration is
defined to IMS/VS during system definition.

2.42 IMS/VS System/Application Design Guide

-

DEVICES SUPPORTED

IMS/VS supports:

IBM

IBM

IBM

IBM

IBM

IBM

IBM

IBNM

IBM

he:). |

IBM

IBM

IBM

IBH

IBM

IBM

IBM

1050 Data Communication System

2260 Display Station, Models 1 and 2

2265 Display Station, Model 1

2740 Communication Terminal Models 1 and 2
2741 Communication Terminal

2770 Data Communication Systen

2780 pata Transmission Terminal

2980 General Banking Terminals, Models 1, 2, and 4
3270 Information Display Systenm

3600 Finance Communication System

3630 Plant Communication Systenm

3767 Communication Terminal

3770 Data Communication System

3740 Data Entry System, Models 2 and U4
3790 Communication Systenm

5110 Computer

7770 Audio Response Unit, Model 3 with a Touch-Tone* (or

equivalent) telephone or IBM 2721 Portable Audio Terminal

IBM
IBM
iBM
IBM

IBM

Series 1 Systen
System/3 Model 10
System/7

System 32 and 34

Communicating Magnetic Card/Selectric Typewriter (CMC/ST)

Card reader/printer devices

33/35 Teletypewriter (ASR)

IMS/VS supports various communication/attachment modes for the above
terminals. The major distinction is whether the attachment is local
(through a channel) or remote {(over telephone lines). Remote
attachments are further broken down into two categories: switched and
nonswitched (or leased). Switched communication lines permit the
attachment of only one remote station or terminal at a time to a line,
and require that the terminal operator use a data set, which is attached
to the remote terminal, to dial up the main computer to establish

* Registered Trademark of the American Telephone § Telegraph Co.

Design and Control of a DB/DC Systen 2.43

connection. Nonswitched coamunication lines are leased; that is, they
are dedicated to use by the terminals physically attached to them. 2
nonswitched line may be either a contention or polled line. Contention
or polled refers to the line discipline used to communicate with the
terminal. Only one contention-type terminal may exist on a line, while
one or more can share a polled line concurrently. A polled line with
more than one terminal is called a multipoint line.

See the IMS/VS General Informatiop Manual for a description of the
comrunications modes supported by IMS/VS for each physical terminal and
for lists of the required and optional features for each supported
terminal, control unit, and CPU.

BTAM DATA SET LINE GROUPS

The LINEGRP macro is used to describe each BTAM data set line group.

The terminal(s) defined for any one LINEGRP must be of the same type
(communication mode, polling techniques, transmission code). This means
that a separate line group must be used for each of the following
terminal configurations (when used):

1050 switched

1050 nonswitched with poll

1050 nonswitched with autopoll

226072265 remote and 2260 local mode, nonswitched
2740 switched with transmit control

2740 ponswitched contention

2740 nonswitched polled

2740 polled with autopoll

2741 switched*

2741 nonswitched EBCDIC and nonswitched correspondence
2770 nonswitched

2780 nonswitched polled

2780 nonswitched polled ASCII

2780 nonswitched polled 6-bit transcode
2780 nonswitched contention EBCDIC

2780 nonswitched contantion ASCII

2780 nonswitched contention 6-bit transcode
2980 nonswitched

3270 local

3270 local printer

3270 polled remote

3270 polled remote ASCII

3270 switched

3270 switched (ASCII)

3630 switched

3740 switched

7770 switch=4d

System/3

System/7 nonswitched contention

System/7 nonswitched polled

System/7 nonswitched polled with autopoll
Local card reader

Local output device (printer, punch, tape, DASD)
Spool SYSOUT

33/35 switched

® O 0 0 © 95 00 0 06 0 00 00 ¢ U 0O 5 5 6 O 00 0 0O W OO 00

*For 2741 svitched, transmission codes for any one line group do not
have to be of the same type.

For further definition of a BTAM data set line group, refer to 0S/VS
BTAM, GC27-6980. At least one communication line must exist within each
line group. At least one physical terminal must exist for each
communication line.

2.44 IMS/VS System/Application Design Guide

TERMINALS ATTACHEL THROUGH VTIAM

Terminals attached through VIAM are defined according to terminal
type by using the TYEE gacrc. Valid terminal types are: 3270 local,
3270 remote, 3601, 3614, 327€7, 377C, and 3790.

PHYSICAL TERMINAL NETRORK DESIGN

Selection of terminal types should be based on what function is
expected, the locaticn and personnel using the equipment, and the speed
or volume of data whick tke tersinals are expected to handle.

Inquiry and ccnversational capabilities are best suited to typewriter
or graphic type devices, the graphic devices being faster, while the
typewriter gives a hard ccpy cf the tramsaction.

Batches of input can best ke handled by cards or paper tape, with the
2770, 2780, or 3770 being used for high volume and the 1050 for low.

The printer-type terminals are best suited for applications where the
shop floor requires infcrmaticn frcm the ccmputer but has no need to
Supply any in return. Again, the 2770 or 2780 is best suited fcr high
volume, with the others handling less volume.

-~ oOnce the types of tergminals required for the job are determined, the
methcd of ccnnecting them to the computer must be considered.

If many terminal locations are required with minimal volume, a
switched network should be ccnsidered. This allows the use of standard
telephone lines. The terminal operator dials the computer when he
wishes to make an entry. One drawback to this approach is the
possibility cf busy lines, which may cause the operator to place a call
several times. Another disadvantage is that voice-grade lines are more
susceptible to malfunction than leased lines. This might require the
operator to request entry scre than one time to allow the computer to
read it error-free. Unchecked terminals (2741, 33,35, and 7770) can
cause input and output tc ke lcst due to line errors which are
transparent to the IMS/VS systen.

When high volume is required or the terminal must be connected to the
computer for long pericds cf time, a leased line may be more practical.
This type of line is generally more error-free, can handle higher vclume
of data, and requires no cperatcr action to connect to the computer. If
the leased line is chosen, the next step is to determine how many
terminals are to ke ccnnected tc this line. If several unbuffered
terminals are connected to the line, significant delay may occur in the
response to a terminal. It is therefore reccmmended that unbuffered
terminals be attached alone to a line. Another consideration may be the
need to cluster several terminals in ome location. The expense of
running several telephone lines to the same location may be prohibitive.
If so, buffered terminals shculd be considered. Their slightly higher
cost may be more than offset by the need to rum only one line, thus
reducing the contenticn fcr line time, as the data is transferred to a
buffer at operatcr speed and thern sent across the line at machine speed.

Most terminals suppcrted by IMS/VS are polled. For some terminals,
consideration should also ke given to the type of polling to ke used:
programmed or autcpocll. Fcr ssall networks, programmed polling may
prove more economical, since autopoll, except for binary synchronous
lines, is an extra cost feature. However, programmed polling requires
more CPU interruptions and, for a larger network, may use enough CPU
time to make the cost cf autcpcll worthwhile. For each terminal in the
system, programmed polling causes a hardware interrupt approximately
every second. Autopcll causes this interruption only when the cperator

Design and Control of a DB/DC System 2.45

has initiated some action on the terminal, which will generally be
several minutes.

Lines can ke collected by terminal tyre into line groups. Each new
line group requires main stcrage for ccntrol blocks used by IMS/VS and
the operating system. All lines for a particular type of terminal can
be collected into cne line groug, minimizing this storage requirement.
However, this means that all these lines must be allocated to the system
at all times. When cne is removed ([possibly for use by a different job
cr system), IMS/VS does not function properly. Therefore, if cne or
more lines are to be used by IMS/VS on a part-time basis, and it is
desired to allocate them to cther functions at times, they should be
organized into separate line groups. Lines may ke removed from the
system by line grcug.

When binary synchronous terminals (except 3270) are used in the
online IMS/VS system, timeout conditions can occur when the system is so
loaded that it cannct frccess an input line buffer and respond to the
ternminal. If the terminal operator re-enters the data before verifying
the applicaticn program resgcnse, to determine the proper restart point
in the data stream, this could lead to duplicate data.

LOGICAL TERMINALS

DEFINITION OF THE LOGICAL TERMINAL CCNCEFT

The characteristics of terminal devices vary widely. There are
differences in the ccntrcl mechanics, transmission code, display media,
entry keyloards, switches, timing, and ofpticnal features. Communication
line and network characteristics further complicate and multiply the
possiktle combinations of characteristics that must be managed in the
data communication environment. It is readily apparent that the
applicaticn prcgram shculd nct become directly involved with or
dependent upon the characteristics of the terminal network with which it
deals.

By isolating the application program from its terminal network,
economies in development cost, development time, and maintenance are
achieved. In additicn, a certain degree of , if not complete, device
independence is available. Applications written to a device-indefpendent
interface may ke expanded withcut modification for the use of new
terminal types or classes.

At the same time, use cf device class dependent functions may be
highly desiratle in certain apglication areas. Control of device class
dependent functions for an application system which serves only CRT-type
devices could enhance the usability cf that application.

Another requirement directly related to device independence is
application independence. 2n application-supported functior must be
available from different terminal types. It is not feasible or
practical to expect that a unique terminal be assigned to each function
to ke performed.

For reasons of security or resource management, it may be desirakle
to associate the use of a physical terminal with its user. Whereas
users may exist in greater numbers than physical terminals, they must be
represented by abstractions. The primary characteristic of the abstract
terminal is its identity. The identity is known within IMS/VS as the
"lcgical terminal name" or simply as "logical terminal."

2.46 IMS/VS System/Application Design Guide

THE IMS/VS LOGICAL TERMINAL

Each logical terminal within IMS/VS has a unique set of attributes.
A description of the attributes constitutes a partial description of the
features available thrcugh use cf the lcgical terminal concept.

e Current fphysical terminal assignment -- this characteristic may ke
dynamically altered for reasons of terminal resource management.
Once a signon has Leen acccmplished by ccnnecting a logical terminal
to a physical terminal, the functions and services available are the
same as those for a ncrnswitched terminal.

e Security authorization -- can be unique for each logical terminal in
the system or can represent a security level or group.

e Next logical terminal assignment -- multiple logical terminals can
be associated with a single physical terminal. This provides, in
conjunction with security, the ability to uniquely identify multiple
users of a single physical terminal.

Logical terminals can be assigned to physical terminals for output
and input purposes. When a logical terminal is assigned to a physical
terminal for outfput purposes, all messages sent to that logical terminal
are transmitted to its associated physical terminal. More than one
logical terminal can be assigned tc a given physical terminal for output
Furroses. Only one physical terminal can receive the output for a given
logical terminal. The diagram belcw shows the relationship between
physical and logical terminals for output purposes:

Logical

/ Terminal
I

Physical
@——— Terminal

Logical
Terminal

When a physical terminal is assigned to a logical terminal for input
purposes, any message entered frcm the physical terminal is considered
to have originated at the logical terminal. When more than one logical
terminal is assigned tc a physical terminal for input purposes, a chain
of input logical terminals is formed. Any input frcm the physical
terminal is considered tc have criginated at the first logical terminal
cn the chain. If, for scme reascn (such as security or a stopped
logical terminal), the first logical terminal is not allowed to enter a
messade, all logical terminals cn the input chain are interrogated in
chain sequence for their ability to enter the message. If the physical
terminal is a 377C or a 37€7, cnly the lcgical terminals associated with
the input compcnent are scanned. The first appropriate logical terminal
found is considered the originator of the message. If no appropriate
logical terminal is found, the message is rejected with an error
message. The diagram kelcw shcws the relationship between physical and
logical terminals for input purposes:

Design and Ccntrol of a DB/DC Systen 2.47

INPUT CHAIN

Physical

3 Logical » Logical
f————3p Terminal

Terminal Terminal

Use of a queue for input messages received or pending output messages
enables the application tc ke independent of time of arrival or
transmission of messages. Association of the queue with the logical
rather than the physical terminal permits it to be moved, independent of
the application, from device to device. Within restrictions, it permits
a queue of messages tc ke mcved even among device classes.

The logical terminal frcvides a stable platfcrm or reference for the
applicaticn program. Regardless of how the physical terminal network
changes, the applicaticn remains insensitive. To the application
program, a logical terminal can be viewed as just another sequential
data ingut source cr cutput destinaticn.

The application program interface to the logical terminal is through
the same call interface mechanics descrited fcr the DB systenm.

When 2980 terminals are defined, IMS/VS uses a logical terminal to
define the 2972z commcn tuffer. This is an exception to the physical
terminal/lcgical terminal relationship, in that the 2972 commcn buffer
is not a physical terwinal in the conventional sense.

LOGICAL TERMINAL NETWORK DESIGN

Design of a lcgical terminal network canm be as important as design of
a physical terminal network. It has potential impact upon systesnm
security, maintainakility, and usability. Careful consideration should
be applied from each viewpoint.

System security administration can be hampered by not prcviding an
aprropriate number cf lcgical terminals through which proper terminal
security authorization may ke applied. Too few logical terminals limits
the numkter of unique security authorizations. Too many may prove
cumbersome or ineffective in achieving security objectives. A judiciocus
comkination of passwcrd and logical terminal security can reduce the
number of logical terminals required to administer security gclicy.

Where a community of users deals with multiple applications through a
common set of physical terminals, output volumes, schedules, priorities,
human factors, and terminal availability are some of the more important
usability factcrs tc ccnsider. If pricrities require that management or
supervisicn have ready access to terminals ordinarily used fcr
operational purposes, then grcvision must be made for interrupting
operational work. A physical terminal might have two logical terminals
ordinarily assigned -- cre fcr cgerations, one for priority work.
Ruthorization of the /ICCK command to the priority logical terminal
would enatle it to stcp input and output from the operations terminal.
Further discussicn cf the security planning for this particular case may
be fcund under the topic "Security and Privacy" in this chapter. It is
mentioned here to illustrate several of the aspects of logical terminal
network planning. The same solution to the security or pricrity asrect,
that is, multiple lcgical terminals, can be applied if the control of
cutput volume is a problenm.

2. 48 IMS/VS Systen/Applicaticn Design Guide

A

Where particular applications make use of device class dependent
functions, such as curscr ccntrcl, it might be useful to specify a
separate set of logical terminals which have a relationship to that
group of applications. Calling the application group an application
class and the logical terminal group a logical terminal class, it is
possitle through lcgical terminal security to associate all input and
output relationships with a known set of logical terminals. At the sanme
time, non-device-class sensitive transactions may be used through
non-specific logical terminals from the same physical terminals.
Processing applications are insensitive tc the separation. The
following example (Figure 2-€) illustrates this use of logical
terminals:

PHYSICAL LOGICAL
TERMINAL TERMINALS APPLICATION
r———7/1

) AAA S
DEVICE

1.~ L—— N\ x | . CLASS
| | SENSITIVE
m
/L._ —_—=
/

// | - NOT DEVICE
- Y CLASS
SENSITIVE
DDD
Fiqure 2-6. Serarating LCevice Class Sensitive Terminal I/O

To establish such a relationship requires defining two logical
terminals for each physical terminal, then securing the transactions
destined for application X through logical terminals AAA and CCC. The
common entry security for AAA and CCC cculd be referred to as a device
class sensitive security group. All logical terminals defined for that
purpose would then ke secured in the same groug.

In certain applications it may be necessary to associate a different
physical device for output than the one ordinarily used for input.
Conversely, certain physical terminal types are input-only devices. If
output is required, a different device must be associated with this tyre
for output. IMS/VS system definition and ccmmands support assignment of
cutput devices different from the input device. The allowable
physical/logical relationships which can be expressed are shown in
Figure 2-7.

Design and Ccntrol of a DB/DC System 2.49

PHYSICAL LOGICAL APPLICATION
TERMINAL TERMINAL

NORMAL ASSIGNMENT OF ONE

SAME LOGICAL TERMINAL,
OUTPUT TO DIFFERENT PHYSICAL
TERMINAL - APPLICATION

INPUT/ OR MORE LOGICAL TERMINALS/
INPUT/ —¢——| OUTPUT PHYSICAL TERMINAL, OUTPUT
ouTPUT |_— GOESTO INPUT TERMINAL-
APPLICATION INSENSITIVE
INPUT/
INPUT —=1 OUTPUT ALTERNATIVE ASSIGNMENT,
' INPUT AND OUTPUT THROUGH

INSENSITIVE

B

————1

INPUT/ INPUT APPLICATION INSENSITIVE

- / TO INPUT, USES SPECIFIC
LOGICAL TERMINAL FOR
OUTPUT

OUTPUT
Figure 2-7. Possible Physical/Logical Terminal Relationships

Logical Terminal/Physical Termipal Relationship

relationship between a terminal user, a physical terminal, a
communication line, and a logical terminal is a diagram:

IMS/VS

r—————777

USER PHYSICAL | NON SWITCHED | LOGICAL |
*| TERMINAL COMMUNICATION LINE i TERMINAL |

|

IMS/VS system definition describes the characteristics and
relationship of physical terminals, communication lines, and logical
terminals. On a nonswitched communication line, the relationship
between a physical terminal at one end and a logical terminal within
IMS/VS at the other is a stable relationship defined at systenm
definition time. If there is only one usesr of a particular physical
terminal, typically there would be a one-to-one relationship between
physical terminal and logical terminal. However, if a physical terminal
is operated by multiple users, it can have many logical terminals
associated with it. IMS/VS system definition might include a separate
logical terminal for each user of a particular physical terminal.

The relationship established between a physical terminal and one or

more logical terminals at system definition can be changed through the
command language or by a new system definition. The /ASSIGN command

2.50 IMS/VS System/Application Design Guide

changes logical/physical relationships dynamically. It is normally
executable only from the master terminal.

Switched Communications Network: The logical/physical terminal
relationship on a switched communications network is considerably more
complex than in the nonswitched communication line environment. IMS/VS
system definition defines the characteristics of a physical terminal,
communication lines, and logical terminals. However, the relationship
between a particular physical terminal and a logical terminal is not
established until the remote terminal user dials the System/370 computer
to communicate with IMS/VS. The relationship between a terminal user, a
physical terminal, a communication network, and logical terminals at
system definition time is depicted in the following diagram:

LINES

PHYSICAL I LOGICAL

|

|

USER | TERMINAL [T — - "'| TERMINAL |
|

A

Once the remote terminal user dials in to the computer and issues the
/IAM command to sign himself on to IMS/VS, a stable relationship between
the physical terminal and one or more logical terminals is established.

LINE | |

SIGNED-ON PHYSICAL LOGICAL I
USER TERMINAL | TERMINAL |

L _———_]

In a switched communications network environment, one logical
terminal per line is created automatically as the inquiry logical
terminal. In addition to the physical line/terminal definition, and the
automatic creation of the inquiry logical terminal, a pool of logical
terminals can be defined at system definition time. When a remote
terminal user dials into IMS/VS, an /IAM command can.be issued which
associates logical terminals from a pool with the physical line and
physical terminal issuing the /IAM command.

Within any logical terminal pool for a switched communications
network, the IMS/VS user must define one or more logical terminal
subpools. A logical terminal subpool is composed of one or more logical
terminals within a given logical terminal pool. A particular logical
terminal can exist in only one pool and subpool. A remote terminal user
can dial the IMS/VS system and sign on for a single logical terminal or
all logical terminals withir a logical terminal subpool. At system
definition, the environment appears as indicated in the following
diagram:

Design and Control of a DB/DC System 2.51

FeT === A
| |
| __ L
I | :

	LOGICAL
TERMINAL	
	POOL
l ||

r==—=—==—= 1

@1_ LosicaL L1y womca || |
/ ~ .| TERMINAL1 | | ;ﬁgmg‘:'- [|
/ <\\ I I L _____ _! | I

/ -~y |
// INQUIRY | | —_—_— | |
(:)____ LOGICAL LOGICAL I

REMOTE = =] TERMINAL 2 | | |

PHYSICAL - —_ TERMINAL

CERNINAL TERMINAL [. - ——A | | sueroor || |
AN . ||b————J:|
\\ : //1 —— e — ——— - |
\ . /// | r—————- T l
\, o [1 || - |

— INQUIRY || 11
LOGICAL | woeicat | | |
TERMINAL N | | I ;g:ﬂ;gﬁl. | |
L

| | I
| ||
| I I
| r———- 1 1
| | | tosicaL | |

| | TERMINAL
| SUBPOOL |
L 4
I d

After a remote terminal user has dialed the System/370 computer
operating under IMS/VS, several situations can exist. If the /IAM
command is used to sign on and the LTERM parameter specifies +he inquiry
logical terminal, the following diagram applies:

IMS/VS
ity
2 [e
FOR LINE X I
| —

If the /IAM command is used to sign on and the LTERM parameter
specifies a logical terminal from the logical terminal subpool, the
following diagram applies:

2,52 IMS/VS System/Applicatior Design Guide

IMS/VS

——————
REMOTE LINE I LOGICAL :
B | PHysicAL TERMINAL
ng:‘mm‘ - TERMINAL 9@‘—l> FROM |
POOL

| |

e —— — —

7 7 71

LINE | |

REMOTE PHYSICAL (SJI::BPOOL |
IJE‘.:II:‘WAL — ™| TeErRmINAL - | LOGICAL

TERMINALS |

| —— |

If the /IAM command is used to sign on and the LTERM and PTERM
parameters are specified, all logical terminals within a subpool are
associated with the physical terminal.

The use of the logical terminal subpool concept allows for efficient
use of communication facilities. A1l output queued on each of the
logical terminals in the subpool for which the /IAM command was issued
is sent to the physical terminal.

A subpool can be defined to contain the logical terminals for all of
the users of a single physical terminal. While a user is signed on to a
logical terminal within the subpool, the subpool is unavailable to users
signing on from other physical terminals.,

All inquiry logical terminal names must begin with INQU. When
signing on for an inquiry logical terminal, only these first four
characters are considered significant by IMS/VS. This lets a user call
any autoanswver line and sign on for, and use, the inquiry logical
terminal (for inquiry transactions only), if he is aware of the INQU
prefix. The inquiry logical terminal can only be used for non-update
transactions, and queued output is preserved only while the user is
signed on. So that IMS/VS can distinguish inquiry logical terminal
names from subpool logical terminal names at the time a user signs on,
no subpcol logical terminal name can begin with INQU.

MASTER TERMINAL

The master terminal is the IMS/VS control center. It must be either
a 1050, a station-controlled 2740, a 3270, a 3767, or a 3770. If a 1050
or 2740 is used, it must be attached through a non-switched polled
communications line. A 3270 master terminal can be attached locally or
through a non-switched polled line. The IMS/VS provision for a 3770
master terminal is intended for the 3770 console component. The
non-console components will not operate correctly if they are used as
the master terminal.

The master terminal operator must know all the operating aspects of
the system. The physical location of the master terminal in relation to
the computer console is important. If, for security reasons, they are
not close, telephone communications should be provided.

The details of starting the system, checkpoint, restart, and all
commands available to the master terminal operator are in the IMS/VS
Operator's Reference Manual.

Design and Control of a DB/DC Systenm 2.53

SYSTEM CONSOLE SUPPORT

IMS/VS provides support for the 0S/VS system console using the 0S/VS
write-to-operator (WTO) and write-to-operator-with-reply (WTOR)
facilities. All functions available to the INS/VS master terminal are
available to the system console. The system console and master terminal
can be used concurrently, to control the system. Usually, however, the
system console's primary purpcse is as a backup to the master terminal.
The system console is arbitrarily defined as IMS/VS line number one.

SYSTEMS WITH INOPERABLE MASTER TERMINAL

IMS/VS requires a master terminal be defined for its use during
IMS/VS system definition. Under certain conditions, however, it may be
impractical to provide a master terminal facility; for example when the
270X line is inoperable. In these instances, the 0S/VS system console
can be utilized to replace the IMS/VS master terminal. If desired, the
master terminal DD statement can be omitted. If the master terminal is
inoperable, messages will continue to be routed to it until they are
routed to the system console or another terminal with the /ASSIGN
command. In addition, all of the functions ordinarily performed at
remote operational terminals can also be performed through the
System/370 console.

BESSAGE FORMAT SERVICE

Through the Message Format Service (MFS), a comprehensive facility is
provided for IMS/VS users of 2740, 2741, 3270, 3600, 3767, and 3770
devices. MFS allovws application programmers to deal with simple logical
messages instead of device dependent data; this simplifies application
development. The same application program may deal with different device
types using a single set of editing logic while device input and output
are varied to suit a specific device. The presentation of data on the
device or operator input may be changed without changing the application
program. Full paging capability is provided for display devices. Input
messages may be created from multiple screens of data.

A program using MFS need not be concerned with the physical
characteristics of the device used for input and output messages unless
it vants to use certain very specific device features. Even when these
features are utilized, the program can request functions in a logical
manner; no device control characters or orders may be sent directly from
the program or may be received by the program. The presentation of data
on the device may be changed without application program changes. Both
logical and physical paging facilities are provided for the 3270 and
3604 display stations; this allows the application program to write a
large amount of data that will be divided into multiple screens for
display on the terminal. The capability to page forward and backward to
different screens within the message is provided for the terminal
operator. The conceptual view of the formatting operations for messages
originating from or going to an MFS-supported device is shown in Figure
2-8.

2.54 IMS/VS System/Application Design Guide

MFS IMSIVS MFS
Supported —>- MFS »| Application > MFS 1 Supported
Device Program Device
Device Input Output Device
Input Message Message Output
Figure 2-8. Message Formatting Using MFS

MFPS has three major components:
e MFS language utility
e MFS pool manager

e Message editor

The MFS language utility is executed offline to generate control
blocks and place them in a format control block data set named
IMSVS.FORMAT. The control blocks describe the message formatting that
is to take place during message input or output operations. They are
generated according to a set of utility control statements specified by
the IMS/VS system designer. There are four types of format control
blocks:

® Message input descriptor (MID)
* Message output descriptor (MOD)
e Device input format (DIF)

e Device output format (DOF)

The MID and MOD blocks relate to application program input and output
message segment formats, and the DIF and DOF blocks relate to terminal
I/0 formats. The MID and DIF blocks control the formatting of input
messages, while the MOD and DOF blocks control output message
formatting.

The message editor and MFS pool manager operate online during the
normal production mode of operation. The message editor performs the
actual message formatting operations using the control block
specifications. The MFS pool manager controls residence in the main
storage MFS buffer pool of the format control blocks required by the
message editor. Efficient use of available pool space is provided by
look-ahead fetching of required control blocks from direct access
storage, and by maintenance of last-referenced format control block
chains for reuse of pool space.

Two other MFS components, a MFS service utility and a MFTEST pool
manager are available to support optional MFS operations.

The MFS service utility provides a method for additional control of
the for.at control block data sets. It exscutes offline and can be used
to creat2 and maintain an index of control blocks for online use by the
MFS pool manager.

The MFSTEST pool manager replaces the MFS pool manager to support the

optional MFSTEST mode of operation. The IMS/VS /TEST MFS command can be
used to place online MFS terminals into MFSTEST mode during which new

Design and Control of a DB/DC System 2.55

applications and modifications to existing applications can be exercised
without disrupting prodaction activity.

Figure 2-9 provides an overview of major MFS operations. The circled
numbers reference notes that indicate major distinctions in MFS
processing when the MPSTEST facility is used. The INMS/VS Message Format
Service User's Guide provides a complete description of MFSTEST
facility.

PROVIDED
BY MFS OFFLINE ONLINE MFS
APPLICATION EXECUTION EXECUTION TERMINAL
DESIGNER
Message and Message/ @
Format Control Format
Statements Language
Utility
l]
| |_ T MFS
Maintfnanoe Pool Manager
T 1
!
Service Utility Message/ | MFS e @
Control Format —
; Message g
Statements Service Edi
Utility ditor
)
| Y | Y
Queue
MFSTEST DISTINCTIONS
1. Can execute concurrently with the IMS/VS online control region only in MFSTEST mode.
2. Replaced by IMSVS.TFORMAT in MFSTEST mode; IMSVS. FORMAT is available as secondary source of
control blocks in MFSTEST mode.
3. The communication line buffer pool is used in MFSTEST mode.
4. Replaced by MFSTEST pool manager in MFSTEST mode.
5. Terminal operator must use /TEST MFS command to enter MFSTEST mode.

The IMS/VS Message Format Service (MPS), d=scribed in the previous
section, is used exclusively to format data transmitted between IMS/VS
and the devices of the 3270 Information Display System. MFS provides a
high level of device independence for the application programmers and a
means for the application system designer to make full use of the 3270

2.56 IMS/VS System/Application Design Guide

(\

device capabilities in terminal operations. The IMS/VS Message Format

Service User!s Guide contains a complete description of MFS.

3270 COPY FUNCTION

When an IMS/VS system is defined to include printer components of the
3270 Information Display System attached through a polled BSC or SDLC
line, it is possible to allow through IMS/VS an automatic or
operator-controlled hard copy of the video output (or input) to be sent
to a 3270 (3284, 3286, 3287, 3288, or 3289) printer. This hard copy can
be requested through the use of the SCA field in the application
program's output data, the definition of the message [see IMS/VS Message
Format Service User's Guide), or by operator action. The hard copy
listing is produced on an appropriate printer, which must be attached to
the same 3270 control uanit (3271/3274 or 3275/3276) as the display
station containing the information to be copied. 1If a request is sent
to a terminal that is not defined as allowing the copy function, or that
does not support the copy function (3270 local attachment), the request
for the copy function is ignored.

For a complete description of terminals supporting the copy function
see the IBM 3270 Information Display System Component Description
Manual.

The format of the printed output can vary from that on the display
station as a result of blank lines {or null lines), which are ignored by
some models of the 3284, 3286, 3287, 3288, or 3289 printers. In all
cases, the buffer size of the printer must be equal to or larger than
the buffer size of the display station to be copied (3275/3284 Model 3
has no printer buffer and this consideration does not apply).

When printers are attached to a 3271/3274/3276 the IMS/VS systenm
definition process determines which printers are eligible to receive the
hard-copy output of a copy operation. These printers are called
candidate printers. When a copy operation is requested by the operator
or an application program, the candidate printers are searched in a
predetermined order to find a printer that can be used. The firs+
printer tkat is not stopped, is not currently printing a message, is not
in exclusive status, and is ready, is used., If the operator made the
copy request and all printers are busy, the keyboard on the display
station is left inoperable until a printer is available and the message
is successfully copied to the printer. If the copy request is from an
application program and all printers are busy, the message is not
displayed until a printer becomes available. This prevents the operator
from altering the data to be printed before the message is successfully
copied to the printer. If no candidate printers are currently
available, an appropriate error message is sent to the display station
requesting the copy operation. If the copy operation was requested by
the application program or the format description (DEV statement, DSCA
operand), an attempt to send the message will be retried when the error
message is cleared from the screen through the Message Advance Function
(see section "3270 Information Display System"™ in the IMS/VS Operator's
Reference Manual). If the copy function was requested by operator, the
operator can ready the candidate printer(s) and retry the copy
operation.

Candidate printers for a particular display station result from the
way the physical terminals are defined during IMS/VS system definition.
Candidate printers for a display station must be defined after that
display station but before any other display station-printer groups.
Other display stations can intervene between a display station and its
candidate printers, but other display station-printer sequences cannot
intervene. For example, in Figure 2-10, PTERM 1 might be a 3275 with
its own dedicated printer. If PTERM 2 and 3 allow the copy function,

Design and Control of a DB/DC System 2,57

then PTERMs 4 and S will be the candidate printers for these PTERMs. If
PTERM 6 is allowed to use the copy function, then PTERM 7 will be the
candidate printer for PTERM 6. Note that the candidate printer PTERN 7
will not be used for copy functions from PTERMs 2 and 3, nor will
candidate printers PTERMs 4 and 5, be used for copy functions from PTERM
6. And, in non-VTAM environments, the copy function is not permitted
across line, linegroup, or 3270-control-unit boundaries.

3275 WITH 3284 MODEL 3 3277 MODEL 1 o
A A A e
T -
PO PTERM 1 —~——— PTERM 6
Y 3271, MAY BE ON SAME
3 3271 AS PTERMS 2,
3277 MODEL 1 3284/3286 MODEL 1 3,4AND 5
b~~~ e
A PTERM 2 D PTERM 7
ORISR)
3277 MODEL 2
~ N
P S PTERM 3
> 3271
3284/3286 MODEL 2
Il PTERM 4
3284/3286 MODEL 2
D PTERM 5

r,

Figure 2-10. 3270 Copy Function Example

3284 MODEL 3 PRINTER SUPPORT

The 3284-3 printer, when attached to a 3275, is supported by IMS/VS
as a component of the 3275 terminal. Messages are sent to the two
components on a rotating basis, as with any component-type terminal. If
no messages can be sent to the printer component, messages are sent
continuously to the display component, just as if no printer component
existed. If no messages can be sent to the display component, messages
are sent to the printer as though the display component did not exist.
As long as messages can be sent to the printer, no operator intervention
is required. When a message is sent to the display component while
messages are enqueued for the printer, the operator must intervene to
allow either further display output or printer output. Any situation
(such as a stopped LTERM or an inoperable printer) that prevents the
sending of messages for the LTERM(s) assigned to a particular component
causes message transmission to cease to that component.

2.58 IMS/VS System/Application Design Guide

3270 MASTER TERMINAL SUPPORT

IMS/VS supports a 3270 terminal as a master terminal., A 3270 master
terminal consists of two 3270 components: a 3270 display
(3275/3277/3276/3278) and a 3270 printer (3284/3286/3287/3288/3289).
The 3275 with an attached 3284-3 is not supported as a 3270 master
terminal.

When IMS/VS uses a 3270 master terminal, all messages are routed to
the display component. Selected system-gererated messages, critical to
IMS/VS operation, are also sent to the printer component.

A 3270 display selected as the master terminal must have a 24-line
80-column display screen to allow the use of the MFS master terminal
formatting option. For additional details, see "MFS Formatting for the
3270 or SLU Type 2 Master Terminal" in the IMS/VS Message Format Service
User's Guide.

INTELLIGENT REMOTE STATION SUPPORT

IMS/VS provides for attachment of a System/3 Model 10 and System/7
using the IRSS (intelligent remote station support) interface. The
interface provides a remote station with powerful tools to control the
flov of data between a System/370 and terminals attached to the
intelligent remote station. This interface provides the definition of
transmission block formats. A primary purpose for these formats is to
define message transmission associated with one or more terminals
attached to the intelligent remote station. These Intelligent Remote
Station formats are described in detail in the IMS/VS System Proqramming
Reference Manual.

Conversational processing as well as presetting of destinations are
available to terminals attached to the remote station. IMS/VS provides
the facility of routing transaction responses to the originating source
as well as to alternate destinations without application program
involvement. INS/VS provides a restart facility for the remote station
by logging and retransmission of appropriate block and message
identifiers.

TRANSMISSION BLOCKS

Two types of transmission blocks are defined in the IRSS interface.
The data block type is used to carry message segments. The
synchronization block type is used to carry all other required
information such as shutdown, restart, status change, ask for output,
and dequeue output.

Each data block contains a block identifier containing, in four
bytes, information that can be used by the remote station to restart its
transmission of data to IMS/VS, if it has a restart facility. The
content of this identifier is up to the remote station, but if the same
identifier appears in the first data block received by IMS/VS as wvas
contained in the restart message, after IMS/VS has transmitted a restart
message, IMS/VS consillers the block retransmitted .and will scan for a
restart point as described below.

Each data segment in a data block contains a message identifier.
This one byte messag= identifier contains information that enables the
remote station to identify a message or segment within a block. 1In
addition, IMS/VS appends the message identifier from a segment in error,
if an error message must be transmitted by IMS/VS to the remote station
due to an error discovered while processing a segment. The message
identifier is also contained in restart messages and can be used by the

Design and Control of a DB/DC Systenm 2.59

remote station to restart its transmission of data because it indicates
the last complete message processed by IMS/VS within the identified
block.

The message identifier is used by IMS/VS to scan for a restart point
if a block was retransmitted after restart. IMS/VS scans the received
block until a segment with the same message identifier as in the restart
message, and which is flagged as the last segment, is found. IMS/VS
then starts processing with the segments following the one found, if
any. The entire block is discarded if no segment that meets the above
specifications is found. Cold start messages do not contain block and
message identifiers since none are available, but they imply binary zero
identifiers. Therefore, the remote station should not use a block
identifier of binary zeros in the first block transmitted to IMS/VS
following a cold start message from IMS/VS, or the block will be
ignored.

A two-byte terminal identifier is used by the IRSS interface for
destination control. The terminal identifier used in communication with
IMS/VS must be defined when performing the IMS/VS system definition.

The TERMINAL macro is used for this purpose. IMS/VS treats each definad
terminal identifier as a physical terminal. Since IMS/VS has no
knowledge about the actual physical terminals attached to a remote
station, there is no requirement that the terminal identifier correspond
to a physical terminal address. The number of physical terminals
attached is also independent of the number of terminal identifiers
specified. The terminal ‘identifiers smployed by IMS/VS IRSS provide a
means of extending all IMS/VS facilities characteristics of a physical
terminal to any logical destination within a station supported by IRSS.
Since INS/VS has no knowledge of the terminal itself, this designator
can be used to accomplish a variety of application-dependent functions;
for example:

e Routing to specific terminals or devices in the remote station

e Scheduling of specific application programs within the remote
station

e Batch-type terminal support similar to 2770 or 2780 terminals by
proper definition of the remote station I/0 components

e Data collection from a variety of I/O devices into a single streanm
identified to IMS/VS as a unique terminal for specific IMS/VS
application program processing

Prior to the enqueue of a message received from a remote station,
IMS/VS logs the identifiers pertaining to the last block and segment of
the message. This information is also kept in the communications
restart block (CRB) and is restored by restart. The identifiers,
pertaining to the last message enqueued, are transmitted to the remote
station in all types of restart messages except the cold start message.

SYSTEM/3 AND SYSTEM/7 PROGRAM FUNCTION REQUIRENMENTS

The IMS/VS support for System/3 and System/7 does not include a
program residant in either computer. The IMS/VS user must supply this
program. The uaser's program residing in the System/3 or the System/7
must be able to handle at least the following parts of the IRSS
interface:

e Transaission control

e Data blocks

2.60 IMS/VS System/Application Design Guide

e Immediate shutdown request from IMNS/VS
e Send output complete message to IMS/VS

It is recommended that the program be capable of recognizing error
messages. All other information provided by IMS/VS can be used or
ignored at the discretion of the user.

INS/VS System Messages

IMS/VS system messages contain a message identification whose first
three characters are DFS., The IRSS support extracts the number from the
message, in case of an error message, and builds a synchronization
block. All user initiated messages should be set up so they cannot be
confused with an IMS/VS system message.

TRANSMISSION CONTROL

IMS/VS receives transmission blocks from a remote station in input
mode and transmits blocks to a remote station in output mode.

IMS/VS may request the line to do the following while in input mode:
e Transmit error messages pertaining to received data.
e Transmit command completed messages pertaining to received conmmands.

e Return a test message if a terminal has been placed in tes* mode
through the /TEST command.

e Transmit an immediate shutdown request message.

IMS/VS causes a reverse interrupt sequenc2 to be transmitted if any
of the preceding conditions occur when in input mode. IMS/VS then
accepts one additional input block after transmission of the reverse
interrupt. An attempt to transmit more than one block results in a
transmission error and the station is logically deactivated.

Error messages and shutdown request messages are transmitted using
the appropriate synchronization block. Command completed messages and
test messages are transmitted using data blocks.

A message transmitted by IMS/VS in output mode must be removed fronm
the quaue through a request from the remote station. This is done to
ensure that no message is removed from the IMS/VS gueue until it has
reached its final destination at the remote station. The request to
remove a message is made using the appropriate synchronization block.
This can be performed at any time after the last segment of the message
has been received by the remote station but before any message is
transmitted to IMS/VS using the same terminal identifier. IMS/VS
retains an output message in progress on the queue if an input message
is received for the same terminal identifier, even if the last segment
has been transmitted but the remove request is not received.

The remote station can transmit an error message to IMS/VS at any
time after the first segment of the message has been received, but
before it is removed from the queue or retained on the queue because of
an input message. An error message causes the logical terminal, on
which the message is qu2ued, to be stopped and a message sent to the
master terminal. The message is retained on to the quene. Error
messages are transmittted using a synchronization block. Messages
transmitted by IMS/VS while in input mode are not queued and, therefore,

Design and Control of a DB/DC System 2.61

cannot be removed from a queue. Consequently, the remove from queue
message should not be sent.

Any error detected in the interface between IMS/VS and the remote
station results in logical deactivation of the remote station by an EOT.

SYSTEM DEFINITION

The System/3 and System/7 are defined using the STATION macro.
Included in this macro are the station's polling address ({if applicable)
and the station's operating modes.

Three operating modes may be defined in any combination:

e Postpone type -- non-postpone type
e Ask type -- non-ask type
e Transmission limit -- no-transmission limit

A System/7 station on a start/stop line has the added definition of
output transmission code modes. The station can be defined to require
all data blocks to be transmitted in PTTC/EBCD code, pseudo-binary
PTTC/EBCD code, or to allow IMS/VS to determine the code.

Postpone Type Station

A station defined as postpone type is started with the postpone
output flag set in all defined terminals. The remote CPU must send the
resume output I/O0 synchronization block to IMS/VS to receive output.

A postpone type station has the advantage of specific terminal output
requests by the user program in the remote CPU. This function can
conserve resources within that system.

To allow the user's program to control when to receive blocks from
IMS/VS, the station can be defined as ask type. After the restart
message has been transmitted by IMS/VS, IMS/VS waits to receive an ASK
message before transmitting anything else. The ASK message is sent by a
remote station to inform IMS/VS that the station is ready to receive.
This message is required:

e After IMS/VS has transmitted the NO-OUT message {I/O0 synchronization
message flag value X'08') to the remote station.

e After IMS/VS has transmitted a user specified number of blocks to
the remote station. This count is reset each time an ASK message is
received. Messages sent following a LINE TURN AROUND requested by
IMS/VS are not counted.

IMS/VS transmits blocks according to normal rules after an ASK
message has been received. When all available output that can be sent
has been sent, IMS/VS transmits the NO-OUT I/O synchronization message.
IMS/VS then waits to receive an ASK message before transmitting any
further output. The transmission of the NO-OUT message can be preempted
by reaching transmission limit. The ASK message is an I/O
synchronization message with flag value X*'10'. The NO-OUT message is an
I/0 synchronization message with flag value X'08'. The format of these
messages is described in chapter "Communication with Intelligent Remote
Stations" in the IMS/VS System Programming Reference Manual.

2.62 IMS/VS System/Application Design Guide

e

Transmission Limit

IMS/VS syster definition allows for the specification of a
transmission limit for each remote station defined. The transmission
limit is the maximum number of transmission blocks, excluding the block
transmitted following a reverse interrupt sequence and the shutdown
synchronization block, that INMS/VS will send in output mode between
remote station initiated resets. The remote station uses the ASK
message to perform this function. The ASK message is sent by a remote
station to inform IMS/VS that the station is ready to receive. The
transmission limit defined to IMS/VS should be the number of buffers in
the remote station minus one, because IMS/VS may be required either to
transmit blocks to the remote station while in input mode (see the
description under "Transmission Control" in this chapter) or send a
shutdown synchronization block while in output mode. This message is
required:

o After IMS/VS has transmitted the NO-OUT message (I/0 synchronization
message flag value X'08') to the remote station.

e After IMS/VS has transmitted a user specified number of blocks to
the remote station. This count is reset each time an ASK message is
received. Messages sent following a LINE TURN AROUND requested by
IMNS/VS are not counted.

The transmission limit can range from 1 to 15, or be defined as zero,
indicating unlimited transmission.

The three remote CPU operating modes can be defined in any
combination. The presence (or absence) of postpone type does not impact
IMS/VS function. IMS/VS function does vary, however, when ask type
and/or transmission limit are specified or are not specified.

The flowcharts below show IMS/VS functior for the possible
combinations of operating modes:

Basic (non-ask type, no-transmission limit)
Ask-type, no-transmission limit

Non-ask type, transmission limit

Ask-type, transmission limit

Design and Control of a DB/DC System 2.63

Basic (non-ask type, no transmission limit)

-4 7]
= Q> xw
DF o <9 0w
auQ Oz uwdo
< - [ala)
2 D - Wl
Quiwy wndg WwaD

-2 ar aow
(LR 1Y) = LD
Zq4Z (&) wnes
— ZW w Z
L —d Egw
—az —o W
— =< Wret)
Tqw ——) Ly
v @ e QDO
< g <t
<L) Z> >Zwn
x < Qg Jwn
WX o ZOWw

4 = Uwx
=t 2
xXxJO wo wvigu
<q Wk =0
- DD —=Z
wIwv ZO T

- - VIS W
- = - 2w
- Zm— <JWE
o Sy o [s 4
xF D Lw o~ Z

ZQ X~ Z
wor NWZWW
>02 S>LTW>>I
NNO NN~
wv? v) [T}
ZnZ Tz W
(b g -4 < W= <O

3 3 3 3% ¥ R 3

* #* 00
#* #* * 3
¥* ¥* o)
* +* £ & B
® #* o] (1Y) o
#* =X 3* 3 =

#* -0 #* woam

O +#* ># Xag

* #* o Ora
—~ Zo #* —~E D

o < #* O Og s
o L * >
#* 3#* o € o
¥* #* * *
3 3 33 R *

A w |

1 w

| >

#* #*

WA [] Rk Aok ok kK

3
*

x
*

RESET THE LINE #

*
*

SMITS EOQOT TC TERMINATE

*
*

e ol ok e ol o ol ok o o o o koK ok ok

l

INS/VS System/Application Design Guide

2.64

*
*

¥RESET THE LINF =

I ISR T E T IR T 2"
T ITTI T T I P T
kD) | F ok ko K
R AR KRR AKX
TSR I TR LR

*
*
*
*

Rk
*
*

SMITS EGT TGO TERMINATE

TRAN
SSICN.

*
*

EEEEE R EER LS L 2]

*
*

2.65

Design and Control of a DB/DC Systen

Non-ask type, transmission limit

LR IR DR ERELE R L 2 2 2

-4 > v
(g V) (L qTTR 47,
b= o ZEC Quw
QLo O X dde
b= < -2 (a]a]
2 2 <gZ Wty
Quww wXx DaD
- qd~0 qLOW
[]e W wnwd
ZIZ O e NI
—) U ZWuU. w Z
=t Ll Lo B W 4TE
L O [t 2 1S w
-l <l W=
TqW —-uda, ZWu
v @ XN Q=D
47,] wd N =49
L Z>UX>ZN)
x g AqUWO LW
=X o VOUZOu!
P4 DD dO—~E
=t L) o @
[+ 18] voad L
g W= Zk=<0
= DIQ0=Z
wxTw ZO X -
- —t (V1% b V1)
- X —nNa.nZom
- L= D= T
bt <L Q EXk~D
xz D OW: e Z
Za. XL=-Z Z
N0 = nuwZadnww
>02 >IWae>>I
o il] i e d
v) (%) "
ENZ TNWULE WU
ot L L [enl-q: 2] [ol- (]
3* ¥
[N |
w [}
> !
¥ 3% 3% % % * #* #* |
#* o e)
#* LR * _
+* o Z o .
< * * O * * O "
* * e e Q . w o _
(4 * #* W Z * b~ z
-) * . TN . s w>Om \%
0 T et > 36 (&1 1 3% >3 ora<a *
Nd * . QEE . ¢ O
<0 * -t W 3 —NE D~
< * O XZJ e 0o oO«g
[4 * * g #* #* >
[od #* ¢« oL e » <
+#* #* 4% *
3% LY L)
3 3F 3% % 3t * %
A w
| u
4 >
* #

ke i |] e o 3 ok 3 o ok ok %k

*
*

MITS EOT TO TERMINATE

3
%

RESET THE LINE =

*x
*

*
*

SRk ok Rk Rk Rk X

IMS/VS System/Application Design Guide

2.66

Ask type, transmission limit

T
o > (7] <
- O4adWw xXwn I -
=Z ZFXan ODw o
QW w QT W Zz
L Lo - [a]a] ZOWw
=2 @© <Z Waow oawm
ow wx [C 1) —)
.17 =0 IO -
oad w o <Swa
Z4q94X D &=~ NI N
- Zul w Z —O -
= LU g T QU Zx g
0 (ad** 1] w OWwx
—> W WY 44
EgqWV -da ZU.ll L o
v v =) QD LW <l
Znw g UV =da ZITI
T ZOLXY»ZU) P]
o dqUOIWWN w <
Lt V) X VoZow O el
<O OO E <L o) et
=r—Q. 2 @ <
- T Vuod VJdu nowW>
< D W= Z=10 ~Zgqa
=wo 22200 mZ bt)
wXx ZOF =~ = o=) D=
= - VNEW naWwd
- Q =O.NZ ZOXE =
=17, 1T Z = Dt I WX <~ Z
g [Q E =D LUl
z 20 QW s= Z —ZD
X W L=Z Z —-Q.Ql
wnowu> VW ZINWIW V=2
> >LUWE>>T > IO
g W N) N Q0
w Q w o 0w w
TnZw EVWULE W ELOX
Ll -8 1. 4 OO0 —-nZJg
* %*
S_]
w |
>4
(A A X X X X] * ¥ 9% 3t 3 % % ¥
* * [°® * * |
»* * #* _ #® * # * #*]
»* +* o Z o ° . * *]
®* * ®* O 4% * O~ * * * |
* #* o O e Q . w s Q #* S W %]
* =X * #* WA~ #Z * —d #*Z * -0 W '
* =0 * o IV~ . * w>Om . #* EXEDODA # v
#* EO #* > % =t I ———D O] * * VOwn #
* UV * . <q4ITE ° * ObFd ° * Z |1 ®
- Zm * - W= * D #* - OW #*
m <« #* O XZd e o O«] W oZXE #
* o * # g # * > # #* =2 *
* * L ¢ < o #* *
* * % b= * # +#* *
* * () L) * %*
% 3 % % % % % * * 3 3% I % b 3 ¥
A w |
w
) 3

ARk] kkkkkkkEk

ITS EQT TO TERMINATE

*
*

*
*

*RESET THE LINE *

*
*
22 R SR L 22T S

*
*

|

Design and Control of a DB/DC Systenm

2.67

CONSIDERATIONS UNIQUE TO SYSTEM/7

System/7 Start/Stop Transmission Code Modes

IMS/VS requires synchronization blocks to be transmitted using the
pseudo-binary PTTC/EBCD transmission code. This code is described in
the System/7 Functional Characteristics Manual, GA34-0003.

Data blocks are transmitted using either the standard PTTC/EBCD
transmission code or the pseudo-binary PTTC/EBCD transmission code.
IMS/VS accepts either code on input and scans the output data to
determine if the block contains any characters that cannot be
transmitted using the standard PTTC/EBCD transmission code. TIf such
characters ar=s found, the block is converted to pseudo-binary PTTC/EBCD.
Otherwise, the message is translated as standard PTTC/EBCD transmission
code.

IMS/VS allows the user to specify at IMS/VS system definition, on a
per station basis, that all data blocks should be transmitted in one of
the above transmission codes. If all data blocks are to be transmitted
in the standard PTTC/EBCD code, all characters that cannot be
transmitted in that code are replaced by a colon.

The output buffer size specified by the user at IMS/VS system
definition is doubled to allow for conversion to pseudo-binary
PTTC/EBCD, unless the user specifies that all data blocks are to be
transmitted using the standard PTTC/EBCD transmission code.

Supported System/7 Start/Stop Line Types

IMS/VS allows a System/7 to be attached on a nonswitched contention
line or a nonswitched polled line. A polled line may be polled using
programmed polling or autopoll.

IMNS/VS can control a polled line and therefore initiate output, if
allowed to, at any time data transfer is not taking place without a
potential loss of data and without System/7 intervention. To try to
avoid errors caused by loss of data on a contention line, some of the
responsibility for keeping communication open is dependent upon the
System/7 program. IMS/¥S issues a read when output is not available *o
send and this read must be terminated by transmission from the System/7.
Since there is no indication of whether, after receiving a block, IMS/VS
intends to transmit or resturn to read, unless the System/7 is defined as
ask type, it is recommended that a System/7, attached on a contention
line, be defined as ask type. The receipt of the cutput no*t available
(NO-0OUT) message informs the System/7 program that IMS/VS, immediately
following the completion of this message, is issuing a read.

Supported System/7 BSC Line Types

INS/VS allows a System/7 to be attached on a nonswitched contention
or polled line., IMS/VS is defined as the controlling station. All
transmissions must be in BSC EBCDIC transparent mode.

Process Controlling System/7

Since there is no facility to prevent an IMS/VS shutdown checkpoint
vhile a process controlling System/7 is active, the System/7 should
transmit a message to the IMS/VS master terminal operator, when
communication is started, informing the operator that a process
controlling machin=2 is attached and that the operator should not issue a
shutdown checkpoint until informed that the process controlling machine
is either stopped or stoppable.

2.68 IMS/VS System/Application Design Guide

on block

issi

The flowchart below shows how IMS/VS processes a transm

received from a System/7.

CK_WAS TRANSMITTED
IT WiLL NOW

O

1S STARTED WHEN

EQUENCE

v

ABEBRC2XEX 2S4S

*
»

)
>
[y z
& =173 <
ax
- Pt 'S
x =
w [=3%] (L)
- « ZzQ
v L o -l
> ax D=
v wo O e
>z <=0
< LXW
W - % o
X LW wZa
o ww =2.1-1
o oL Zow
u = ——T
[4 L=
x i ZWO
(=3 wX (=]
=] Sk O -
- o0 (==}
@ 3 Q-Z
e -«
a wa W
—E <1«
g L= xR
w qaqawv <o
> s Aﬁ
i~ W ot “
— wae
< >0 P4=14]
qz o
W XOow
auwy k3
D=} wx
w >
~ [40
X220 v o
W ITZox
ana —aw
]
“
IR i - - »
x » | » - .e
m *] * bd * ®
* o] * - o °
= » »] * - * o~ »
-] * 3] * * o WQ .
» * | » - AW -
< - o v »* »* o O«dr L]
N e 0 - § ————>n NG
w * o » * o XX 4
> » ~ ~ - T -
= * o w * w XZ o
w * * L4 - * W #
< - v bl * e Vo
w * - * * . »
- 4 * oe * » LXJ
r$2 X} [» » *
A 1 o
) v | Zi
[} w]
I >\ '
[l 1
] [
[}]
] U
] v
Y L& 2 22 2 2 4
[} * *
t » o *
[* J »
I * Ox=~ #
) * AV~ &
1 * WE) *
i * xXwx »
* W #
* WO &
- X *
W Q=
*® IO #
- F 4 *
* Q *
* (%) *
(2222 2 24

RROR MESSAGE

»*
*

MRESET THE LINE *

*
*

*
»
*
*
*
*
»
»
»

‘ D
v
laddid PAL I LI TTY 1

»
SERBEN 2V BRAERB NN S

SENERG2RSBERRENRS
FEESFSBENRIRBRAND
LI T T P T T
E 3
»

M1TS EOT TO TERMINATE

*
.

BEENBB RSB REEES

2.69

Design and Control of a DB/DC Systenm

CONSIDERATIONS UNIQUE TO SYSTEM/3

IMS/VS support of the System/3 is designed to provide a high degree
of flexibility in function but is consistent with the main storage
constraint inherent in smaller computers.

While IMS/VS IRSS does not require it, it is anticipated that
System/3 programs designed to interface with IMS/VS will take advantage
of the ask-type station facility described under "System Definition.®
This facility allows the System/3 programmer to allocate his main
storage resource only when he is ready to accept data from INMNS/VS; thus
alleviating the requirement for a larger, permanently-dedicated buffer
area.

Transmission of data in the EBCDIC transparancy mode allows all types
of data to be transmitted from an IMS/VS application program. This
could save additional storage or programming in the System/3.

If the System/3 is used as a subhost for locally attached terminals,
using either the MLTA (for start-stop) or MLMP {for BSC) features of the
System/3 Disk System Control Program, the IRSS provides each of these
terminals direct access to an IMS/VS systenm with the additional
advantage of a common I/0 interface.

Though IMS/VS IRSS supplies a large amount of status type information
to the System/3, the System/3 programmer does not need to design his
application to process all types. Consequently he can realize a savings
in main storage or programming within the System/3.

To fully utilize the features provided by IRSS to the System/3, the
System/3 programmer should design his application to use the Disk Systenm
Control Program with the BSCA Multiline Multipoint feature., This
support allows the user to directly control the line discipline and to
recognize many types of responses from IMS/VS,

Design of the System/3 Application Using MLMP

To utilize MLMP support in the System/3 to communicate with IMS/VS
through the IRSS, the System/3 user should:

1. Define two BSCA files, one for transmit and one for receive,

2. The transmit file should bz single buffered to prevent more than
one block being transmitted after a reverse interrupt (RVI)
indicator has been sent by IMS/VS. The reverse interrupt
indicator must be defined and recognizzsd for this file.

3. It is recommended that the System/3 user utilize the get-block
and put-block modes of the GET and PUT macros. This is
recomm=ended because IMS/VS IRSS data structures do not normally
lend themselves to the record separator mode of deblocking
(unless of course the data to be transmitted can be guaranteed
not to contain a particular character).

4. If multiple System/3s are to be multidropped on a single
communication line, it is important for the System/3 application
program to take the necessary steps to assure a negative response
to polling when communication is inactive between the System/3
and IMS/VS. This usually requires the issuance of a GET type
operation in the System/3 and the use of the cancel function when
the next direction of transmission is to be a PUT type operation
for the System/3.

2.79 IMS/VS System/Application Design Guide

(8]
(7]
m|
L]
v
ol
g
[
@
gy
n
unl
]
[
[
40
(31}
o
o
+I
b
=]
0t
(=]
[
(¥
il
-
3]
4
[}
ol
“il
ol
4
ol
[2]]
4
[}
ol
ol
¥
alrs|
ﬁm
S8
[21]
=
=il

processes a transamission block

The flowchart below shows how INS/VS

received from a System/3.

*
*
-->%RECEIVE A BLOCK*

BERERD L RRR R R EER

*
E

STARTEC WHEN
CK FROM A SYSTEM/7.

*
*

°

v
¥

FERRRRRE R RN KRR KR K
c1

*
*

°* ot
*
*o RECEIVED?

*o

*o

*

NC

[T ————
}(----------1
v

% ¥
»
BRARRD R ERER R RS
SRR RERE RN RR
EERERF L AR SRS AR AR
AERERERRRERRRERRS
EARERERRBRERRERRR
BERRRHLEFRRED DR

»
L]
»
*

SMIT ERROR
MESSAGE

AN

*
*
*
*
*

EREXEK L XISRRIRRRR

*
*
--—%RESET THE LINE #

RERRERER R RSB EREE R

ITS EOT TC TERMINATE

*
*
LR LA RS R 2L T

*
*

2.7

Design and Control of a DB/DC System

CONTROL OF THE DB/DC SYSTEM

SECURITY AND PRIVACY

It is the objective of IMS/VS to provide safeqguards through which
access to data may be limited. The mechanics of the safeguard system
can be used to administer security and privacy policies. Administration
is accomplished by careful interpretation of policy in system and
application design, and into parameters and control statements used for:
system definition, the security maintenance utility, program
specification block generation, data base description generation, and
statistical analysis program.

IMS/VS SECURITY WITH SMU

The basic level of security is called default terminal security. It
exists even if the user does not choose to use the additional security
facilities provided by IMS/VS.

To establish additional system security measures, the IMS/VS Security
Maintenance Utility (SMU) can be run after the IMS/VS system definition
is completed. SMU optional security measures include the following
levels of security:

e Terminal Security

e Password Security

» Resource Access Security

e Transaction Command Security
e Signon Verification Security

MVS users can also specify use of the RACF program product, if desired.
For more information on security see the section, "Establish IMS/VS
System Security (Optional)" in the IMS/VS Installation Guide. Security
requirements may be redefined at normal restart, subject to limitationmns
imposed by system definition, by the master terminal operator. The
security modules specified by the master terminal operator or svstem
definition will be loaded when IMS/VS is started. Security enforcement
in IMS/VS involves the use of various tables or modules; these can be
chosen or not, but they cannot be selectively replaced without rerunning
SMU.

t is recommended that the security measures be designed to require
minimal master terminal operator action in normal situations., Although
all documentation emphasizes the identity and importance of the master
terminal, there are only a few characteristics that make it unique in
the DB/DC system. It is the only logical terminal to which messages
about the operational status of the systam are automatically routed. It
and the System 370 console are thz only terminals, by default, through
vhich the DB/DC systeam can be restarted. The control that the master
terminal exercises over the system is made possible through the IMS/VS
comnand language.

A thorough examination of the commands, the system to be protected,
the requirements of users, and the objectives of your security and
privacy policy will provide guidance in the distribution of authority to
use the command lanqguage. Refer to the IMS/VS Operator's Referenca

language.

2.72 IMS/VS System/Application Design Guide

Terminal Securjty

Terminal security restricts the entry of transactions and commands to
specified terminals. Link security (a subset of terminal security)
allows the addition or deletion of transaction code security
requirements for the MSC links in a multiple IMS/VS systenm
configuration.

Through the entry of transaction codes, the terminal operator
identifies the destination of the text or data that follows. When one
examines the syntax of input messages, as defined by IMS/VS, it can be
seen that all entries from terminals are classified by means of an
identity code. In general, there are two levels of recognition. The
first level establishes vwhether the entered data is a command by
reserving the initial character /. The first character of every input
segment is examined for a /. If one is present, the segment is treated
as a command segment. Input destined to a program or logical terminal
must not contain a / as the first character of any segment. The second,
or operational, level verifies that the identity code is known to
INS/VS. If it is known, then it and the text that follows are
classified based upon the attributes of the identity code. If the code
was defined during system definition as a transaction code, the message
is routed to the application program which is to process it. If the
code was defined as a logical terminal name, then the messaje is routed
to the physical terminal to which that logical terminal is attached. It
becomes a message switch operation.

The possible contents of a message destined for an application
processing program, the actual functions which are performed by that
program, and the content of any output subsequently generated by that
program are unknown to IMS/VS. Because applications may deal with
critical or private matters, safeguarding tools are provided by the
system to help prevent unauthorized entry of transaction codes, and
hence unauthorized use of appliction program functions.

The entry of each transaction code can be limited to any one or any
group of logical terminals in the system. Depending on the ratio of
secured to unsecured transaction codes, the authorization plan that is
developed can be inclusive or exclusive. To use the Security
Maintenance Utility effectively, the operational plan must be inclusive.
That is, you must specify the transaction codes which are to be secured.
There is no provision for specifying those which are not to be secured.
There are, however, alternative views of the plan that can be helpful.
You can look at the transaction codes as being authorized for entry from
a list of logical terminals. Or, think of each logical terminal as
being authorized to enter a list of transaction codes. Either viewpoint
may be translated easily into the operational input statements that
describe what you want to do with the Security Maintenance Utility.
However, the number of input statements can vary substantially between
the two viewpoints. If, for example, you have one transaction code you
want to authorize from five logical terminals, six input statements are
required. Conversely, if you specify five logical terminals and
authorize the same tramnsaction code from each, ten input statements are
required.

Password Security

Password security is used to restrict specified IMS/VS resources to
someone who supplies the correct password.

Design and Control of a DB/DC System 2.73

Passwords can be used instead of, or in addition to, logical
terminals to limit transaction entry. The security provided by
passwords can be specified and viewed in the same manner as that
provided through logical terminals. When a transaction is defined with
SMU as requiring a password, IMS/VS will not allow the user to execute
the transaction unless the password is specified with the transaction
code.

Command functions can be protected against unauthorized& use in four
ways: by permitting the command verb to be entered only from certain
logical terminals, by requiring that a password be entered with the
command verb, or by a combinatior of both, or with transaction command
security. Some objects of commands can be protected against
unauthorized action by requiring a password to be entered with the
parameter. The protection of the command object is controlled by
assigning a protected attribute to each member of the class of objects
to be protected.

For example, to require a password be entered to alter the status of
logical terminals (LTERM) 111, 222, and 333, one must specify to the
Security Maintenance Utility a password for each terminal. If PTERMs
111, 222, and 333 are the only LTERMs in the system and all are
protected by the same password, then the dbject keyword is secured
throughout the system. If, however, it is only necessary to protect
LTERM 222, then the LTERM keyword can be used without a password on
LTERMs 111 and 333.

Another way to look at using safequards to protect the command
language is by individual user profile. Equate passwords to user signon
or identification codes. An authorization plan can be developed that
authorizes each user to use, individuwally, a set of command functions.
That authorization could be localized geographically through restricting
entry of the command verb to a group of logical terminals.

A class profile system could be used. For examples, password x
validates the use of four command verbs, YYYY validates three different
command verbs. ZZZZ however is valid not only for the commands
protected by x and YYYY, but also authorizes the holder to enter an
imnmediate DB/DC system shutdown command from any terminal.

Resource access security limits the set of IMS/VS resources which nmay
be used by dependent regions that are authorized to access a specific
Application Group. This group represents a set of user defined IMS/VS
resources (PSBs, TRANs, and LTERMs).

The IMS/VS SECURITY macro allows the user to specify during systenm
definition whether or not resource access security will be included in
the system, and whether the RACF product or a user exit routine will be
used for the authorization validation. The specifications may be
overridden via an IMS/VS procedure parameter. RACF or a user exit
routine, depending on the usar specifications, will validate the
dependent region authorization to use the Application Group. The same
parameter (ISIS) can specify no resource access security checking be
done. Subsequently, IMS/VS will ensure each time a request is issued
that the TRAN, PSB, or LTERM is defined in the authorized Application
Group. SMU enables the user to define the Application Groups and to
indicate which resources are available for each group.

2,74 IMS/VS System/Application Design Guide

Transaction Command Security

SMU can be used to designate transactions to be passed to an
application program whiech is allowed to issue a subset of IMS/VS
operator commands. The online application programs that process these
transactions cause IMS/VS operator commands to be executed and can
receive status on the execution of the commands. In the absence of
specifications authorizing one or more of these commands, no transaction
processing programs are allowed to enter IMS/VS commands. For more
information on how to authorize transaction processing programs to issue
IMS/VS commands, see the section, "Establish IMS/VS System Security
{optional)," in the IMS/VS Installation Guide. 1In addition, see the
"Automated Operator Programming" chapter in the IMS/VS Systenm
Programming Reference Manual.

SIGNON VERIFICATION SECURITY

Signon verification security identifies a particular user to IMS/VS
as being present from the /SIGN ON command entry until a /SIGN OFF
copmand is entered to remove the association created by the first
command. When transaction authorization is in effect for a physical
terminal, as each transaction is entered from that terminal, a check is
made to determine whether or not the transaction is authorized to the
userid currently logged on.

The IMS/VS security macro allows the user to specify during systenm
definition, whether signon verification only, or together with
transaction authorization security will be included in the system. Both
the user verification and the transaction authorization can be done by
the RACF product, user exit routines, or by both. The specifications
may be overridden via IMS/VS procedure parameters or /NRESTART command
specifications. Since transaction codes are checked against the userid
of the terminal operator entering the request, transaction authorization
security requires user verification through the /SIGN ON command be
performed as well. PFor information on user exit routines see "DC User
Exit Routines" in the IMS/VS Systems Programming Reference Manual.

The /SIGN command provides a means of identifying a particular user
to IMS/VS as being present at the physical terminal. When a signon is
processed, IMS/VS will verify through the RACF product, a user exit
routine, or through both (depending on the system definition
specifications and the IMS/VS start-up parameters), the user
identification entered. Upon verification, IMS/VS creates a record on
the IMS/VS system log associating the user with the physical terminal
and records in a control block that the terminal is signed on to a
specific user identification.

If transaction authorization is included, as each transaction is
entered, the RACF product, a user exit routine, or both validate the
transaction authorization for the user identification logged on. With
program-to-program switching through the DL/I change call or by means of
changing the transaction code in the SPA, the RACF product, the user
exit routine, or both are also invoked for transaction level
authorization checking. The same applies when the transaction code is
changed by means of the /SET, /LOCK, or /UNLOCK commands. In addition,
as the application program associated with the transaction produces data
base changes, the user identification is logged with the change records
on the IMS/VS system log to identify the changes performed by a specific
user. When the /SIGN OFF command is issued, the session is terminated
and another record is written to the IMS/VS system log. For more
information on the /SIGN command see the IMS/VS Operator's Reference
Manual. The identification of the physical terminals that require signon
verification is done by the Security Maintenance Utility. For more
information on the SMU, see the IMS/VS Installation Guide.

Design and Control of a DB/DC Systen 2.75

Other Security Aspects

Consideration should be given to physical security measures that
support system security measures., These measures may include:

e Controlled access to and egress from the computer area.

» Authorization of DP operations and non-operations personnel in the
computer and certain terminal areas.

e Separately controlled areas for media such as tapes, disks, cards,
files, or other media.

e Control of computer forms.

These are some of the considerations for physical security of a
computer facility. Physical security needs are likely to be dynamic and
merit periodic review and adjustment.

Display Bypass

IMS/VS does not provide a software function to blank out or
obliterate passwords from the terminal device display media after they
are accepted. However, Message Format Service (MFS) facilities enable
users to define fields with a non-display attribute (for 3270 display
devices). IMS/VS removes passwords from messages prior to recording
them on the log.

Most hard copy key-driven terminals have a feature which permits
characters to be entered without displaying them. This feature is the
bypass feature. Ordinarily, a terminal with this feature is operated
continuously in display or bypass mode. If passwords are to b2 used to
support security requirements, this feature is a necessity.

The bypass feature can be used operationally, that is, by
establishing standards for protection not only of passwords, but also of
command verbs, commands, transaction codes, and text.

Limiting Access to Data

Through centralized control over the content of Data Base
Definitions, Program Specification Blocks and the libraries in which
they reside, an effective scheme of prote :ion attributes can be
assigned to data. This assignment is made relative to each application
program which has access to the data base. Tha smallest unit of data
which may be so protected is the segment. The basic actions that can be
authorized are:

e None -- no access to segment type.
e Read -- sagment type may only be retrieved.

One or more of the following additional actions combined with read
can be authorized:

e Add -- new occurrences of segment type can be inserted.
e Update -- an existing occurrence of a segment type can be replaced.

s Delete -- an existing occurrence of a segment type can be deleted.

2.76 IMS/VS System/Application Design Guide

Although access authorization is declared at the program level,
enforcement of the authorization can be made to appear at the
transaction code or individual hierarchical level of a data base. If
only one transaction code is associated with a particular program, then
the access authorization has been promoted to the transaction level.
Through use of passwords or through use of the transaction code and
terminal bypass feature, access authorization can be promoted to the
individual 1level.

For information about specifying segment access authorization, refer
to "PSB Generation" in the IMS/VS Utiljties Reference Manual. The

control statements through which segment data access is authorized are
PCB and SENSEG.

3270 Switched Terminal Security

3270s on a switched line can have their hardware IDs verified for
authorization to access IMS/VS by use of the IDLIST macro. For
additional terminal security information concerning 3270 switched

Installatiop Guide.

VIOLATION CONTROL

IMS/VS records security violation attempts on the IMS/VS system log
tape. The violations recorded are:

e Input messag2 from an unauthorized terminal

Password omitted when one is required

Password incorrect for authorization

Misspelled password

Rejected Signen
e Unauthorized DL/I CMD call from application program

IMS/VS rejects invalid input messages by sending a message to the
terminal entering the message, and logging the violation.

The log tape provides an audit trail to look into possible security
problems. If more immediate action is desired, the user can request
notification to the master terminal at the time of violation. Since the
number of violations for a large network may be high due to misspelled
passwords, transaction codes, commands, etc., the user can specify a
threshold for notification such that the master tarminal is not notified
until the specified number of violations occur without a valid input
from a given terminal. This eliminates or reduces the number of
notifications due simply to operator error, while still providing
evidence of real attempts to avoid security safeguards.

Installation Responsibilities

IMS/VS security functions only as well as the installation controls
over the environment. IMS/VS assumes nothing about the attributes of
the caller and relies on the optional security tables, user exit
routines, and RACF specifications to determine what resources the caller
can access.

Design and Control of a DB/DC System 2.77

By using the Security Maintenance Utility (SMU), the user can specify
several levels of security: terminal, password, transaction command,
resource access, and user verification. The output of the SMU is in the
form of security tables and matrixes that are stored in the IMSVS.MATRIX
data set.

The IMSVS.MATRIX data set and the IMSVS.JOBS data set, which contains
IMS/VS related jobs, may be secured by the user assignment of RACF
password protection (MVS only). For more information on security
implementation, see the IMS/VS Installatjon Guide,

IMS/VS DC MONITOR

The IMS/VS DC monitor is a tool for collecting performance data to
investigate specific application designs, data base designs, and
resource allocations., It consists of a monitor module, and a Monitor
Report Print program. When activated, it analyzes and records the
internal activities of the IMS/VS DB/DC system. The monitor report
print program is processed offline to produce reports that summarize and
categorize, at various levels of detail, the information recorded by the
monitor module. The actions required to activate the monitor module are
described in the IMS/VS Operator's Reference Manual. The monitor report

print program is described in the IMS/VS Utilities Reference Manual.

The monitor module collects data from IMS/VS DC control blocks during
operation of the online system, with minimum interference to the systen,
and records the data on an independent data set. The monitor remains
resident and is activated and deactivated through master terminal
control.

Following are recommendations for use of the IMS/VS DC monitor:

» Collecting data -- The IMS/VS DC monitor enables an IMS/VS DC user
to collect performance data to assist in analyzing an existing
IMS/VS online system. The amount of data collected and the analysis
time to understand the report output suggest short traces during
various time periods. Reports produced from profiles of a time
period considered as normal can be used as a profile and compared
with reports produced during a time period characterized by unusual
responses.

e Tuning system -- The IMS/VS DC monitor can be used to quantify the
effect of actual changes to data base structures, progranm
characteristics, data set placement, pool sizes, number of message
processing regions, transactions, and message reqgion class
scheduling.

e Testing application -- In the final testing of new or revised
applications, the IMS/VS DC monitor can be useful in validating the
internal operation of the programs and data bases. For example, the
programmer thought a specific DL/I call could be satisfied with a
single I/0 retrieval, yet the DL/I call report indicated a large
data base scan as shown by many IWAYITs. Investigation of such items
could assist in detarmining whether a new or revised application
meets the performance objectives. Data contained in the reports may
also assist in defining the resources required by an application
programe.

2.78 IMS/VS System/Application Design Guide

e Integrating applications -- The IMS/VS DC monitor can be used to
determine the effects on the IMS/VS production system as new
applications are merged from a test system to the production systen.
One of the basic problems in integration of new applications into an
existing system is the requirement of re-tuning options in the
production system, such as data set placement and buffer pool sizes,
as discussed above in the tuning of the systenm.

e Communicating criteria ~- If the above recommendations are
implemented, then data is collected to establish a performance base,
profiles are available for the problem periods, the system is tuned
for the production and test systems, and applications are tested and
merged into the IMS/VS production system with an understanding of
their effects and interactions. Thus, the IMS/VS DC monitor reports
can be used as a basis to communicate and define performance.

IMS/VS SENSITIVITY TO NONGRAPHIC MESSAGE DATA

This section describes IMS/VS sensitivity to specific characters when
users attempt to send and receive nongraphic data in IMS/VS messages.

EDITING OF OUTPUT MESSAGE SEGMENTS

For output message segments that are edited by the Message Format
Service (MFS), only graphic data (X'40' through X'FE') is allowed in the
output message presented to the device. Nongraphic characters, if
present in the output message, are changed by MFS before the data is
presented to the device. Device control characters HT, CR, LF, NL, and
BS are changed to X'00' for 3270 video. For all other devices, these
characters are changed to blanks. All other nongraphic characters are
changed to blanks.

If the Distributed Presentation Management ([DPM) option of MFS is
used for 3600 and 3790 controllers, the user may specify GRAPHIC=NO in
the SEG statement. Nongraphic characters, if present in the output
segment with GRAPHIC=NO specified, are presented unchanged to the remote
progranm.

For programmable terminals supported through VTAM, IMS/VS may insert
function management headers (FMHs) and may perform additional editing
for device control sequences when splitting a single IMS/VS segment into
multiple transmissions.

EDITING OF INPUT MESSAGE SEGMENTS BY MFS

If MFS is defined for a device, the user should be aware of the
following considerations:

e The user should specify GRAPHIC=NO in the SEG statement to prevent
uppercase translation on a segment if the destination requests it
with the EDIT=ULC specification on the system definition TRANSACT
macro.

e For the first input record from a 274x, 3600, SCS1 or SCS2 device,
or from DPM-An, the segment is discarded if the last characters of
the segment are two asterisks (**) or two asterisks followed by NL
{X*15') or IRS (X'1E").

Design and Control of a DB/DC Systenm 2.79

The presence of two slashes (//) at the baginning of a message
segment is considered an escape sequance, (See the section "Input
Message Formatting™ in the chapter "Message Formatting Functions” in
the IMS/VS Message Format Service User'!s Guide for additional

information.)

If the card feature is defined for an SCS!1 device (with the CARD=
operand in the DEV statement), the input from an SNA character
string 1 (SCS1) device is scanned for the secure string reader (SSR)
code and the code is removed.

Note: The definition of the MFS delete characters ([LDEL= operand in the

DEV

statement) and field tab character (FTAB= operand in the DEV

statement) for MFS-supported devices, except the 3270, can direct the
editing of input message segments. Refer to the IMS/VS Messagqe Format
Service User's Guide for information on using these specifications.

EDITING OF INPUT MESSAGE SEGMENTS BY THE BASIC EDIT ROUTINE

The following editing is performed if the IMS/VS basic edit routine

is used:

2.80

For the first segment of an input message when a terminal is not in
conversation mode, leading characters less than X'41' are removed.
For other than the first segment or when a terminal is in
conversation mode, leading characters less than X'40' are removed.

If a terminal is not in conversation or praset mode, a left
parenthesis within the first nine positions of the first segment
indicates a password. The left and right parentheses and the
password are removed, and the segment is compressed.

An X'26' character that appears as the last character in a segment
is removed.

Two asterisks (**) or two asterisks followed by NL (X'15') or IRS
[X'"1E') that appear as the last characters of a segment cause the
entire segment to be discarded.

For unbuffered keyboard devices (for example, 1050, 2740-1, 27u41),
backspace ([X'16') characters are treated as character-delete
indicators. Each backspace character and the preceding input
character are removed from the segment. This editing is optional
for the 3767 and 3770 consoles.

If the destination of the input message is a tramsaction, an NL
(X*15') character appearing at the end of a segment is removed.

If a device is in preset mode, the transaction code is added to the
first segment.

For input from 3270 devices, the attention identifier (AID) and
cursor address are removed, and all start buffer address (SBA)
sequences are changed to blanks.

If the first character of any segment is a slash (/), the entire
input message will be treated as a command.

IMS/VS System/Application Design Guide

COMMON EDITING PERFORMED BY IMS/VS

for

Certain common editing is done by both MFS and the basic edit routine

any device that enters an input message.

A slash (/) used as the first character of the first segment will be
treated as an attempt to enter a command.

When a terminal is pot in either preset or conversation mode, a
transaction code or logical terminal name must be present in the
beginning of the first s=gment. The transaction code must be 1 to 8
characters in length and followed by a blank.

Uppercase translation is performed if it is specified in the system
definition TRANSACT macro.

If a terminal was in conversation mode and the application
terminates the conversation by inserting the SPA with the
transaction code set to a nonconversational transaction code, this
code from the SPA will be added to the beginning of the first
segment of the next input message number. (See the section
“Terminating a Conversation" in the chapter "Data Communication:
Conversational Processing®” in the IMS/VS Application Programming
Reference Manual for further details.)

When a conversation is started, the transaction code is removed from
the first message segment and placed in the SPA.

Note: This does not apply to MFS option 3 segments (see the IMS/VS

Message Format Format Service User's Guide).

For devices supported through VTAM, IMS/VS removes the FMH (if any)
that appears at the beginning of the first transmission of a chain,

For a 3770 or type 1 SLU card reader, Transmit Data Set {TDS), or
User Data Set (UDS) input, deblocking into IMV/VS message segments
occurs at each inter-record separator (IRS) control character, and
the IRS control character is discarded.

Por 3767, 3770, or type 1 SLU consoles, deblocking into IMS/VS
message segments occurs at each new line (NL) or forms-feed (FF)
control character if the optional MFS editing is not selected. This
character may or may not be discarded, depending on other criteria
related above.

For 3614 work stations, message formats for transaction IDs and
class fields must conform to the specificatior prescribed by the
hardware. See IBM 3600 Finance Communication System 3614
Programmer's Guide and Reference Manual for information on hardware
specifications governing 3614 message formats.

USING THE 3850 MASS STORAGE SYSTEM [MSS) FOR DB/DC PROCESSING

IMS/VS supports the IBM 3850 Mass Storage System (MSS) through its

normal 05/VS1 and 05/VS2 interface. MSS extends the capacity of 3330
Disk Storage. The uses of MSS with IMS/VS are:

As a residence device for batch and online data Lases

For the development and testing of new applicatiomns

Design and Control of a DB/DC System 2.81

e As the storage media for historical or cutoff versions of data base

s As a centrally controlled location for data (DB/DC and other types)
in a data processing systen

Fach of the preceding uses requires an understanding of the
characteristics of IMS/VS and MSS that could affect an installation.
This section presents the information needed to understand and %ake
advantage of these characteristics. Design ¢onsiderations and
guidelines related to the following topics are described in detail.

e Using MSS in a batch IMS/VS environment.

e Using MSS in an online IMS/VS environment. Three different online
environments, ranging from simple to complex, are described.

* Sharing staging space.

e Data base organization and access methods.

e Using the additional capacity of the MSS with IMS/VS.

In this section, MSS is described only as it relates to IMS/VS, even
though the considerations and guidelines generally apply to any DB/DC
system. Since no attempt is made to explain the facilities of MSS and
its operating system support, you should be familiar with the following
publications:

* Introduction to the IBM 3850 Mass Storage System (MSS)

* 0S/VS Mass sStorage System [MSS) Planning Guide

TERMINOLOGY

The terms "stage,"™ "bind," and "cylinderfault" are used in this
section. Stage, bind, and cylinderfault specify how data that is stored
on an MSS volume is to be staged.

Stage: Stage specifies that the data is to be staged from mass storage
to a direct-access staging device when the cluster or component is
opened. If it can't be staged at the time the cluster or component is
opened, because of other staging activity, data is staged as a
processing program needs it through page fault.

Bind: Bind specifies that the data is not only to be staged but also to
be kept on the direct-access staging device until it is closed. If it
can't be staged at open time because of other staging activity and if
there is staging pack space available for the entire data set, data is
staged as a processing program needs it through page fault.

Cylinderfault: Cylinderfault specifies that the data is not to be
staged when the data set is opened. It will be staged as the processing
program needs it.

As a general rule, MSS can be used in a batch IMS/VS environment in
stage, bind, or cylinderfault mode. 1In an online environment, it is
reconmended that the data base reside on real DASD or that it be staged
with the bind option if transaction throughput and response time are
critical.

2.82 IMS/VS System/Application Design Guide

C

IMS/VS BATCH ENVIRONMENT

Figure 2-11 shovs the use of MSS in an IMS/VS batch environment for
data base residence. A batch environment that includes MSS allowvs:

e Operational control of an entire system of data bases and files
through MSS.

e An extra dimension of flexibility because processing of large data
bases can be done with fewer staging drives compared to the number
that would be required if real drives were used. In this
environment, it might be more efficient to do some types of
processing at a reduced throughput rate and save the investment in
additional disk drives.

e The testing of large data base applications can be done using fewer
staging drives than would normally be required in a production
environment; this can be tailored to meet the needs of an
installation.

IMS/VS
Batch

Staging
Drive

Mass Storage Facility

MSS

Pigure 2-11. MSS in an IMS/VS Batch Environment

The paragraphs that follow describe how MSS can be used to advantage
in an IMS/VS batch environment with certain disk drive saving
opportunities. You may know from experience that you will process only a
fraction of a very large data base. For example, only 10% of an
insurance data base might have policy updates, claims, or billing
activity in the course of a day. If the full data base occupied 10 disk
drives, then some number of staging drives equal to or less than 10
might be sufficient to handle the day's activity in cylinderfault mode.
The exact number of staging drives required would depend on data storage
patterns, reuse of staging drive space, the distribution of data across

Design and Control of a DB/DC System 2.83

cylinder pages, and MSS staging algorithms. The MSS publications
referenced earlier contain detailed information on these factors.

If you know the reference patterns that your applications require,
then possibly only a DL/I data set group has to be staged for
processing.

Month-end cutoff processing of a data base also lends itself to the
use of MSS with IMS/VS batch. In a non-MSS environment, a month-end
cutoff copy of a data base is normally gotten by copying the data base
to tape. The tape is later restored to disk so month-end reports, etc.,
can be written from the month-end copy of the data base. The MSS allows
you to destage a month-end cutoff to MSS cartridges; later stage the
data from the cartridges, possibly to a subset of data base staging
drives; and process the month-end cutoff data without having to go
through disk to tape and tape to disk dumps and restores.

IMS/VS ONLINE (DB/DC) ENVIRONMENT

Just as MSS offers an added dimension of flexibility in an IMS/VS
batch environment, there are added opportunities in an online
environment, but planning is far more critical. An online DB/DC
environment usually includes certain transactions that require fast
response and throughput as well as fast recovery. Thase transactions
will be referred to as critical transactions.

In the online environment the following assumptions are made:

e Response time and transaction throughput for critical transactions
should be the same whether or not MSS is part of the operational
environment.

e Recovery time in the event of an IMS/VS, 0S/VS, or hardware failure
should be the same in an MSS environment as in a non-MSS
environment. ‘

To maintain the response and recovery time criterion required by your
installation and still use MSS effectively in an online IMS/VS
environment requires that you consider the following factors during
planning:

e Logging and restart processing
e Sharing of staging drives

e Sharing of data bases

e Update activity

e Initialization and prestaging

The following contains considerations and guidelines for these
factors in each of three different online environments: (1) IMS/VS
online using bound data or real DASD and no batch applications, (2)
IMS/VS online bound data using bound data and/or real DASD with IMS/VS
batch, and (3) IHWS/VS online using some bound and some unbound data.

Additional factors, data base organization and access methods, apply

equally to all environments and will be described as a separate topic
later in this section.

2.84 IMS/VS System/Application Design Guide

INS/¥S Online Using Bound Data and/or DASD without Batch

This is the simplest online environment to plan for. IMS/VS logs the
system activity and runs recovery as necessary using the log tape much
the same as in a non-MSS environment. Because all data is either
mounted and bound on staging volumes or residing on real DASD, there is
minimal planning necessary for sharing staging DASD. The sharing of
data bases by multiple Message Processing Programs (MPPs) requires the
same planning as in a non-MSS environment. PFigure 2-12 shows this kind
of environment.

wovs ||
Control BMP BMP
Real
DASD
Staging
Drive

Mass Storage Facility

MSS

Figure 2-12. MSS in an IMS/VS Online Environment with Bound Data

Initialization and prestaging must be planned if real DASD is not
used. If the data is to be bound, it is important to ensure that the
data be staged and bound on the staging packs before starting IMS/VS
online operations. If the staging packs are used to hold only the bound
data, and never used to hold other data, then the data is staged and
bound once, and it does not have to be restaged and bound each time
IMS/VS is started. Howvever, if the staging packs are used for other
work (for example, during off-shift operations), the staging and binding
of IMS/VS online data must be scheduled before starting IMS/VS at the
beginning of each work day. The process of staging and binding data can
be a lengthy process requiring careful scheduling to ensure that it
completes prior to starting online IMS/VS operations. Also, there
should be sufficient staging pack space available to hold all the data
to be staged and bound.

Design and Control of a DR/DC System 2.85

Methods of staging bound data prior to data set OPEN processing are
contained in "How to Use the Additional Capacity of MSS with IMS/VS®
later in this section.

IMS/VS Online Using Bound Data and/or Real DASD with IMS/VS Batch

All planning considerations are the same as in the previous
environment if the IMS/VS batch is also using bound data and/or real
DASD, which is unlikely. If IMS/VS batch is cylinderfaulting to the
staging volumes, there could be a delay as IMS/VS batch and online
contend for staging pack space. As a general rule, if INMS/VS batch will
cause contention for staging pack space, stage and bind the critical
online data before thz batch operations begin.

Although this example uses IMS/VS online and batch, the same
considerations apply to any activity (0S/VS batch, TSO, etc.) running
with an online IMS/VS system. See "Sharing of Staging Space™ in this
section for additional information on this topic. Figure 2-13 shows
this kind of environment.

IMS/VS MPP MPP IMS/VS
) or or Bat h
Control BMP BMP cl
Real
DASD
Staging Stuging
Drive Drive

Mass Storage Facility

MSS

Figure 2-13. MSS in an IMS/VS Online and Batch Environment

2.86 IMS/VS System/Application Design Guide

Recovery should be the same in this environment as in a non-MSS
environment because IMS/VS online has its own separate logging facility
and data bases are not shared between online and batch operations.
Operational procedures may differ, however. For example, where batch
backout in a non-MSS environment involves quiescing activity to a data
base, closing the log tape, and moving the data base and log tape to a
different address space or CPU, the MSS environment involves quiescing
the activity to the data base, closing the log tape, demounting the
virtual volume, and remounting the virtual volume for batch backout.
Again, this procedure varies depending on where batch backout is to be
run: in the same host or in another host of a multihost system. Destage
and restage may or may not be necessary at batch backout time depending
on the configuration and the virtual unit address (VUA) specified in the
mount order for the mass storage volume at initial IMS/VS load.

Even though staging packs with their virtual volume data cannot be
physically moved from one staging disk drive to another, as is often
done for batch backout with real DASD, the data can be moved (destaged
and staged to another disk drive) to accomplish the same purpose.

IMS/VS Online and Batch Using Some Bound and Some Nonbound Data

This environment requires considerable planning. Again, the
objective is to vwork in this environment and for certain critical
transactions to maintain the same response time and throughput as well
as recovery time, in the event of failure as would be experienced in a
non-MSS environment. Figure 2-14 shows this kind of environment,

wovs || s | s
Control BMP BMP Batch SO
Staging Staging Staging Staging
Drive Drive Drive Drive
)
é Z
? \
Mass Storage Facility
MSS

Figure 2-14. MSS with IMS/VS Online and Batch and Non-IMS/VS Data

The data to be bound should be staged onto the staging packs before
IMS/VS transaction processing begins assuming there will be contention
for the staging packs. Next, data sets cor data set groups that will be
referenced should be staged onto staging packs. Also, selected portiomns

Design and Control of a DB/DC System 2.87

of a data base that will definitely be referenced, if that can be
determined, can be staged onto the staging packs. This might be
accomplished by starting a batch message processing (BMP) program that
issues DL/I calls causing selected data to be staged in cylinderfault
mode. This essentially is prestaging. Prestaging data to staging packs
is somewhat analogous to putting and keeping data in the data base
buffer pool for future reference.

Prestaging through an IMS/VS application program can be very
effective in a DL/I environment because it allows the user to stage
selected portions of the DL/I data base using the standard DL/X
facilities.

Frequently the data base reference patterns cannot be determined.
For example, it is almost impossible to determine which customer of an
insurance company will phone to report a theft. Prestaging, in this
case, could be accomplished by entering a simple transaction that does
no more than read the data from the data base using DL/I for the
customer phoning the report. This would cause cylinderfault staging of
policy information about that customer while information for a more
complex transaction is being gathered basesd on the conversation between
the insurance agent and his customer.

This environment assumes a mix of transactions in the system, some
critical transactions requiring fast response and throughput as well as
fast recovery in the event of failure, and transactions that are not so
critical.

Since both the critical and the noncritical transactions share the
same log tape used for emergency restart, and since critical
transactions require a fast restart, it is important that cylinderfaults
do not occur during emergency restart. This can only be guaranteed in
this environment if all data required at restart time is available on
real DASD or staging packs. This means that either there must be enough
staging pack space available so data is never destaged to make room for
other data, or that there is no update activity to data bases running in
cylinderfault mode. Data base updates could cause cylinderfaunlting
during emergancy restart if the changed data base records had b=zen
destaged to MSS cartridges to make room for other data on the staging
packs and some of the data that had been dastaged was required during
restart. Emergency restart of critical transaction activity would be
delayed by cylinderfaulting of noncritical transaction activity because
backout is done serially.

If only BMPs are using online data bases in cylinderfault mode then
specifying NOBMP at emergency restart would eliminate the backout of BMP
updates and the delay to emergency restart caused by cylinderfaulting.

In addition, batch backout and program isolation dynamic backout will
take longer if cylinderfaulting must occur during backout. Similar
guidelines apply to batch backout and program isolation dynamic backout
as apply to emergency restart with the exception of NOBMP, which applies
only to emergency restart.

The preceding point regarding no update activity for data bases
running in cylinderfault mode may appear restrictive. It is only a
recommended guideline to ensure fast smergency restart. It is also
tunable wher=2 the number of emergency restarts or batch backouts, the
nunber of updates, and the degree to which staging pack space is
overcommitted are the tunable considerations. For example, it may be
satisfactory to allow updates to data bases running in cylinderfault
mode depending on the number of updates per sync point or checkpoint, or
if emergency restarts are infrequent.

2.88 IMS/VS System/Application Design Guide

Data bases that are read to gather data to generate reports are
likely candidates for use of shared, overcommitted staging pack space.
An example here might be month-end accounting reports that are generated
from month-end cutoff versions of a data base.

In this environment, transactions requiring fast response and
throughput should not be scheduled to run in the same message processing
region as transactions that could require cylinderfault staging. The
critical transactions could end up being gueued until transactioms
requiring a call for data on MSS have completed.

Message class scheduling affects the gueuing of transactions in
IMS/VS. Tramnsactions requiring fast response and throughpuat should be
assigned to a separate class from transactions that could require
cylinderfaulting. The classes should then be assigned to separate
regions when IMS/VS is started.

The MSS staging drive group concept can be used for added tuning in
this environment. Not all data bases have to use the same level of
overcommitment. Staging drives can be divided into staging drive groups
so that there may be more contention for staging drive space for very
low priority work and less contention, or even no contention, €or higher
priority work. Activity from work outside the IMS/VS online systenm,
such as batch work, counld adversely affect the IMS/VS online system if
all work shared the same staging drive group and the scheduling of work
was not otherwise controlled.

The sharing of data bases has to be well planned in this environment.
Avoid having a transaction that rsquires fast response use data from
both a data base on a bound volume or real DASD and also from a data
base residing on overcommitted staging packs. Also avoid a logical
relationship between these same two data bases where processing,
especially insert or delete processing, could slow down processing of
the bound or real DASD data base.

Also to be avoided, but less obvious, is a situation with the
following or equivalent characteristics:

e Program A scheduled by transaction A requires fast response.
e Program B scheduled by transaction B does not require fast response.
e Program A uses data base A which is on bound staging packs.

e Program B uses data base B which is on overcommitted staging packs
and also uses data base A.

FPigure 2-15 shows this situation. It is possitle that a program B
could impact program A's processing and it would depend on the extent to
which program B was holding data from data base A while staging data
base B, and program A required the same data being held by program B.

This may be an unusual situation but it points out that application
scheduling and use of data bases in this environment should be well
planned to avoid less obvious throughput problems. Again, the same
caution regarding doing updates to a data base on overcommitted staging
packs, as described earlier, applies in the above example.

Design and Control of a DBR/DC System 2.89

IMS/VS MPP MPP
Control Program A Program B

/

Staging Staging

Drive Drive
(DB A) (DB B)

vy

Mass Storage Facility

MSS

Figure 2-15. MSS in an IMS/VS Environment Using Shared Data Bases

SHARING OF STAGING SPACE

Closely related to the sharing of a data base is the sharing of
staging space. Staging space sharing considerations were partially
described under the second and third environments earlier in this
section. Well planned use of the MSS staging drive groups is a valuable
way to control the amount of staging pack space allotted to various
applications or data bases.

When allocating staging space for IMS/VS, view the entire system as
known to MSS. This could include not only IMS/VS online and batch
systems, but non-IMS batch or TSO, for example. Staging pack space may
be known to MSS across multiple CPUs. It is necessary, then, to
consider possible interference to IMS/VS processing from outside of
IMS/VS itself. MSS staging drive groups can be used to help control
unvanted staging from shared staging space. This should be well
planned, because there could be interactions between the IMS/VS and
non-IMS/VS environments. The use of staging drive groups is further
described under the topic "How to Use the Additional Capacity of MSS
with IMS/VsS."

DATA BASE ORGANIZATION AND ACCESS METHOD

ISAM data sets can only be accessed in the cylinderfault mode. This
means that the ISAM portion of an ISAM/0SAM data base cannot be staged
or bound at OPEN time; the time of the first DL/I call. Staging of a
cylinder of data takes place only as the result of a DL/I call for data
in that cylinder. It then follows that if ISAM/OSAM is used, and
cylinderfaulting presents an unwanted delay, some form of prestaging or,
better yet, VSAiM should be used.

OSAM data sets can only be defined with the stage attribute. Because
OSAM uses EXCPVR, the operation of MSS with EXCPVR applies to OSAM. The

2.90 IMS/VS System/Application Design Guide

O0SAM portion of an ISAM/0SAM data base will be staged at OPEN time
because that is when the data sets using EXCPVR are staged.

The entire extent of an OSAM data set will be staged, ever at initial
load time. An exception to this occurs whern IMS/VS uses QSAM to write
an OSAM data set as in recovery when the DFSRRC0O0 PARM is UDR. Onder
such a condition there is no staging of the output data set at OPEN
tinme.

OSAM data sets cannot be bound. Therefore, there are some
implications that should be considered. Even though the data requested
in the first DL/I call will be returned to the application as soon as
the requested page is staged, the entire data set will be scheduled for
staging at the time of the first DL/I call. If you can determine ahead
of time that data from the ISAM/0SAM data set will be required, it might
be advisable to do one of the following: cause staging to bagin shortly
after IMS/VS is started by scheduling a simple application that issues a
DL/I call to the ISAM/0OSAM data base, or cause staging of the OSAM data
by running a short IMS/VS batch job ahead of the IMS/VYS job that
requires the OSAM data to be staged. The IMS/VS batch job would issue a
DL/I call, which would cause OPEN and staging. At the end of the batch
job the data would remain staged. This assumes there is enough staging
pack space available for the 0SAM data. It also assumes other activity
in the system does not cause destaging of the OSAN data before it is
needed. Refer to "Data Reuse" in the Introduction to the IBM 3850 Mass
Storage System {MSS) manual for details on the reuse of virtual volure
data.

VSAM data bases can have the stage, bind, or cylinderfault staging
attribute. Also, VSAM data can be destaged synchronously or
asynchronously, where ISAM/OSAM data bases can only be destaged
asynchronously.

The following points should be considered jin determining whether a
VSAM data base should be destaged at CLOSE time with the delayed
response request. Destaging at normal CLOSE time with the delayed
response request causes synchronous destaging and insures successful
destaging of the updated cylinders before CLOSE is complete. However,
there are conditions under which IMS/VS closes a data base during
on-line processing, for example, if the DMB pool runs out of space, or
if the /DBR command stops the data base. Under such a condition the
IMS/VS control region waits for CLOSE processing to complete before
allowing any other on-line processing to proceed. This temporarily
stops all on-line processing until the destage of updated cylinders
completes if the data base was closed with delayed response. Each
installation has to determine how it wants to close its data bases
depending on the frequency of situations that can close a data base
during on-line operations, the importance of never interrupting on-line
operations, and the importance of insuring a successful destage of
update cylinders at CLOSE time.

In general, data bases should be VSAM based to provide maximum
flexibility in both staging and destaging. For a very large noncritical
HISAM or HIDAM data base, it might be desirable to define the HIDAM
index cluster or the HISAM index component of the KSDS as bound and the
data portion as cylinderfault. This could be somewhat better than
accessing the entire data base in cylinderfault mode, and it would
require bound disk drive space for just the index portion of a large
data base.

The same guideline applies to secondary indexing. It might be
helpful to define the secondary index as a bound data set.

Design and Control of a DB/DC Systenm 2.91

HOW TO USE THE ADDITIONAL CAPACITY OF MSS WITH IMS/VS

Since MSS offers a vast amount of storage beyond what has, in the
past, been used in an IMS/VS system, it is meaningful to ask how that
additional storage should be used. What kind of work can be put on
IMS/VS given the added capacity of the MSS?

As a general rule, applications requiring a small number of large,
infrequently referenced, preferably read-only data bases, where response
time or batch turnaround time is not critical, can be added to an
existing IMS/VS system to take advantage of the additional capacity of
the MSS.

The applications could be new or they could be o0ld ones that
previously required data to be restored to disk from a save tape before
they could be run.

It is likely that the added applications would run in cylinderfault
node to avoid an investment in additional disk drive space. It then
follows that the new applications would use new data bases that are
separate from the existing critical IMS/VS online data bases.,

The added data bases should be infrequently referenced. 1Added work
in cylinderfault mode could eventually impact existing work in the MSS
system as the staging facilities of the MSS are absorbed. This cannot
be quantified because it depends on the existing load on the IMS/VS MSS
system, but it should be considered.

It is recommended that the new applications be read-only because
changes to a data base regquire a destage of updated cylinders.
Therefore the impact of additional applications can be minimized by
adding mostly read-only applications to the IMS/VS MSS systen.

An example of a new application is a report writing application using
a small amount of data from a large data base.

The staging and binding of data in an IMS/VS environment can be
handled in several ways depending on when the user wishes to experience
a possible delay for staging. BAs stated earlier, if staging packs are
not used for other work during off-shift operations, then there is no
staging required each day because the data still exists on the staging
packs. Staging at a data set level is determined at data set OPEN time
based on the DEFINE attributes for the data set. Since IMS/VS OPENs a
data set only when required at the first DL/I call, any necessary data
set staging could take place at the first DL/I call. Again, if the
staging disk drives were not used for other work, this would not cause
any delay in processing at the first DL/I call.

If your IMS/VS installation requires that bound data be available for
critical processing during a relatively short period of time, for
example 8 to 12 hours a day, it might be better or necessary to use the
staging disk drives for other off-shift work. After the off-shift work
has completed, and before IMS/VS critical processing is again started,
it might be advisable to run a short IMS/VS batch job that OPENs the
critical data sets and causes restaging and binding of the critical
data. Then when IMS/VS critical processing is started, there will not
be a delay for staging at the first DL/I call.

Because most installations require IMS/VS to be up for more than one
shift, it is not necessarily restrictive to dedicate bound staging space
for certain critical data bases. This can greatly reduce the staging
time that might othervise be required if staging space was used for
other work during off-shift operations.

2.92 IMS/VS System/Application Design Guide

If certain staging drives are to be dedicated to bound staging space
that will not be used by other work during off-shift, they should be put
in a separate staging drive group to ensure that the disk drives are not
inadvertently used when IMS/VS is stopped.

The staging drive groups are set up at MSS Table Create time. IMS/VS
data sets are allocated to the staging drive groups as part of normal
IMS/VS initialization via the UNIT assignment in the DD statements for
the data bases.

This section has described some of the points that should be
considered to effectively use MSS with IMS/VS. With proper planning,
the MSS can provide both added storage capacity and flexibility to the
INS/VS systen.

Pesign and Control of a DB/DC System 2.93

CHAPTER 3. APPLICATION PROGRAM DESIGN

This chapter includes considerations for design of both IMS/VS batch
and telecommunication applications. Information concerning the Jata
base interface applies to batch and online applications. The designer
of a telecommunication application should cover all material in this
chapter prior to designing his application. The designer of the batch
application need only cover the material relating to batch applicationms,
but is encouraged to cover the entire chapter prior to design of an
application.

BATCH APPLICATION RROGRAM DESIGN

GENERAL CONSIDERATIONS

Design of IMS/VS batch application programs deals with the
environment shown in Fiqure 3-1. This environment is established
through the IMS/VS system definition utility. Considerations for
establishing this environment can be found in Chapter 2 of this manual.

The application program, in conjunction with IMS/VS, runs as an
operating system job in VS1 or VS2. For the individual application
program design, DL/I can:.be looked at as an additional access method.
The logging facility is a system function and does not involve the
application program directly. Changes to the data base are
automatically logged. Instead of the standard 0S/VS terminology of
SYSIN {(input) and SYSOUT {output), TRANSACTION input and RESPONSE output
respectively are used. This choice of nomenclature is used to encourage
the design of a transaction-oriented systenm.

A transaction-oriented system can reduce recovery problems for
program abnormal terminations and system failures. A
transaction-oriented system is one in which there is a definite point at
which each transaction ([input) is considered complete. This point must
be prior to receiving the next transaction. This isolates recovery
problemas to a particular transaction.

Design of the application program must be done in concert with data
base design. Each influences the other. With good communications
between application design and data base design, a more viable system
will be developed. A viable system is one which accommodates change
with minimum modification.

Programs that are 0S/VS subtasks of an application program called by

IMS/VS must not issue DL/I calls. If they do, the results will be
unpredictable.

Application Program Design 3.1

0s/vs

r— - 1]
le—|——— TrRANsacTiON
|
|
|
|

APPLICATION
PROGRAM

RESPONSE

,///’—

DATA DATA
LANGUAGE/I LOGGING

DATA
BASE

Figure 3-1. Batch Application Program Design

Programming Langquage to be Used

The use of IMS/VS should have little influence on the choice of a
programming language for the application. The standard operating system
CALL interface is used for COBOL, PL/I, and Assembler. IMS/VS offers no
special advantage to these languages. However, the basic benefits
attained by using a high level language do apply.

The Program Module Preload function of IMS/VS does offer a potential

performance improvement, if application programs are written to be
serially reusable or reenterable.

Future Conversion to Telecommunication

When designing an application program it is important to determine if
there is a possibility of converting the program to a message processing
program to be used in a telecommunication system. Making this
determination prior to design of the application can save conversion
iime and cost.

3.2 IMS/VS System/Application Design Guide

Y

Figure 3-2 shows the essential difference between the batch and
teleconmunication applications with IMS/VS. 1In the batch environment,
the application program deals with DL/I for data base input/output and
with 0S/VS data management for external input/output such as SYSIN and
SYSOUT. The same application program is shown below after being
converted to a telecommunication application. The basic change is the
replacing of READ/WRITE or GET/PUT logic with calls to DL/I for external
input (TRANSACTION) and output {RESPONSE).

APPLICATION PROGRAM

PROCEDURE /

INPUT
BATCH

DL/I \ OUTPUT

DATA BASE

INPUT/OUTPUT _/—

DATA
BASE

—— — — — — — —— — — —— —— — . — —— — — — — — — — — — — — — — —

APPLICATION PROGRAM

PROCEDURE

e —— — —— — — — — — — — —

DL/I TELECOMMUNICATION —»{ TRANSACTION/
TELECOMMUNICATION INPUT/OUTPUT l¢——| RESPONSE

DL/I
DATA BASE
INPUT/OUTPUT

DATA
BASE

Figure 3-2. Planning Future Conversion to Telecommunication

Application Program Design 3.3

By centralizing the statements in the batch application program which
deal with external input/output, the future conversion to
telecommunication can be made with a great deal more ease.

BATCH CHECKPOINT/RESTART CONSIDERATIONS

A general facility for batch checkpoint/restart is provided. It
consists of a DL/I call function for checkpoint (CHKP) and the batch
backout utility program. Batch checkpoint/restart can be complemented
either by 0S/VS checkpoint/restart or by installation-supplied
checkpoint/restart routines. Installation-supplied routines can be
simplified by using the IMS/VS restart call (XRST) and user-area
parameters on the CHKP call. '

To use batch checkpoint/restart, the application first invokes its
complementary checkpoint routines., If the user wants to issue an 0S/VS
checkpoint within a batch only region, he must first close all open data
bases, generate a uniqu=s checkpoint ID, issue an 0S/VS checkpoint macro,
and issue the DL/I call with a matching checkpoint ID (this is required
because 0S/VS restart does not restore data management storage in
total). If the user wants IMS/VS to issue an 0S/VS checkpoint for him,
a fourth parameter, which points to an 0S/VS checkpoint DCB, must be
specified for the DL/I checkpoint call. Upon completion of those
routines, and before issuing any other DL/I call, a DL/I checkpoint call
is submitted., Along with the checkpoint call, the application passes
the identification of its previously completed complementary checkpoint,
DL/I ensures that all pending data base activity is physically recorded.
Then the supplied checkpoint identification is recorded on the log tape
and supplied to the operator in a WTO message. Control is returned to
the application program, which can then proceed to execute, submitting
other DL/I calls as necessary.

To restart at a selected checkpoint, the batch backout utility is
used to restore the data bases to their condition at the time of the
checkpoint. Then the batch job is restarted at the same checkpoint.

ESTABLISHING USEFUL CONVENTIONS

Designing applications for use with IMS/VS affords an opportunity for
establishing useful conventions and procedures. Adopting conventions
which prove useful in application design and implementation can reduce
costs and development cycle time.

Testing

Each program that is designed and implemented must be tested.
Testing the application requires a test data base. A test data base
requires a data base description generation, a program specification
block generation, and a data base load program. Since a number of
application programs will be dealing with the same data structure, a
central agency for generating and maintaining test data bases should
exist.

Naming Conventions

It is important to establish naming conventions for data bases, data
segments, fields, PSBs, and programs. A requirement in the IMS/VS DB/DC
system is that the name of the PSB and the application program must be
the same. Adopting this convention in the batch system canr reduace
conversion time.

3.4 IMS/VS System/Application Design Guide

As the system increases in scope through time there will be multiple
data bases, each with a number of different segment types. One naming
convention which can be helpful is to adopt a two-character code as the
first two characters for a data base name. This two-character code can
then be used as a prefix for all segment names within the data base.
This ensures that no two segments will have the same name, eliminating
comnunications problesms.

As the system becomes more complex with the relationship of progranms,
PSBs, data bases, segment types, and fields, a dictionary will be
necessary. Questions such as, "What data segments and fields does this
program update?"™ or "Which programs update this segment?" could be
included in a data dictionary. Maintenance and control of such a
dictionary should be the responsibility of the Systems Operation
personnel responsible for all system control.

Use of COPY or INCLUDE

Extensive use of COPY or INCLUDE can be made for segment I/0 area
definition, PCB masks, and Segment Search Arguments (SSAs) within an
application program. The use of COPY or INCLUDE in conjunction with a
data dictionary can reduce maintenance disruptions to a minimum.

Figure 3-3 shows an application program that is making use of
standard operating system data sets and DL/I data bases. DL/I makes ase
of standard 0S/VS data management facilities and provides a special
access method called OSAM {Overflow Sequential Access Method).

___— OS/VS >
DATA T T T T T T DATA
FILES DATA MANAGEMENT D aes

3 APPLICATION

PROGRAM

!

DATA
LANGUAGE/I)

Figure 3-3. Application Program Using 0S/VS Data Files and DL/I Data
Base

Application Program Design 3.5

A parallel can be drawn between operating system data management
input/output and DL/I input/output. PFigure 3-4 shows an application
program making use of the READ/WRITE logic of COBOL, which in turn makes
use of a file description block. The same program is also reading and
writing a data base through DL/I. The DL/I interface makes use of the
standard 0S/V5 CALL facility. The control block for DL/I that replaces
the file description of the operating system is called a program
communication block (PCB)., Just as a file description block is used for
each file that is accessed by a program, each logical data structure
that is accessed requires a program coammunication block. The IMS/VS

Applicatjon Progqramming Reference Mapual provides a discussion of

logical data structures and their relation to data bases.

A unigque characteristic of the application program interface with
DL/I is that all information passed across the interface is described
symbolically. There is nothing in the interface definition which
relates to a specific access method or physical storage organization.

READ CALL DL/I
> PROGRAM
FILE APPLICATION COMMUNI-
PROGRAM CATION
DESCR- | write ¢ CALL DL/ _| BLOCK
|
\ A
DATA DATA
FILE BASE
Figure 3-4, Application Program Using COBOL READ/WRITE Logic and File
Description

Details of CALLs to DL/I can be found in the IMS/VS Application
Programming Reference Manual.

Traditionally, application programs have been designed to obtain an
entire record from a file and then deal with only selected portions of
the record for reference or update. The application program was record
oriented. With DL/I, the application program is designed to obtain only
those portioas of the record necessary to perform the required
procedure, I/0 is on a segment basis., The segment can contain one or
more fields of information.

The fact that I/0 is on a segment basis should have somz2 influence on
the design of the application, as well as on the design of the data
base. Once a segment is retrieved with a Get Hold type call, the next
call using the same data base PCB can be a replace or delete call. If
an intervening call is made, it would be necessary to do another Get
Hold type call to update the segment. One way to avoid this is to use
multiple data base PCBs for the same data base. This allows multiple
positions, as well as multiple segments, to be in HOLD status at one
time.

3.6 IMS/VS System/Application Design Guide

Using the Right DL/I Call

Application programmers are sometimes faced with a decision
concerning the use of DL/I function codes and segment search arguments.
A function code is a four-character code which is supplied to DL/I by
the calling application program to specify the input/output function to
be performed. SSAs (segment search arguments) are used to give specific
information about the path to be followed in satisfying a call. SSAs
are qualified or unqualified. An unqualified SSA specifies only the
name of the desired segment. A qualified SSA specifies, in addition to
the segment name, a field name within the segment, a relation operator,
and a comparative value.

For segment insert, delete, and replace, there is only one code for
each specific function to be performed. For the segment retrieval
function, however, there is a family of function codes: GET UNIQUE (GU),
GET HOLD UONIQUE (GHU), GET NEXT (GN), GET HOLD NEXT {[GHN), GET NEXT
WITHIN PARENT (GNP), and GET HOLD NEXT WITHIN PARENT (GHNP). Each of
these call functions provides for a variation in the method of
retrieving a segment, depending on the existing position in the data
base and the segment qualification. There are times when more than one
of these calls will accomplish the same thing.

When faced with a choice of GU, GN, or GNP with or without the HOLD
option, there are a number of considerations. In addition to choosing a
function code, the question of whether or not segment search arguments
{SSAs) should be provided must be answered. If the SSAs are provided,
the question of qualified or unqualified must be answered.

Generally speaking, the GU call is used to retrieve a specific
segment or to obtain a specific position within a data base. The GN or
GNP only moves forward in the data base, except when the F command code
is used. Once a logical position is established within a data base, the
GU or the GN and GNP, used in conjunction with the F command code, are
the only calls which can establish a position at some earlier logical
point in the data base.

There is no measurable difference between a GU, GN, or GNP call, if
each has fully qualified SSAs and no logical position exists within the
data base. If a logical position exists and movement is forward, a GN
or GNP function call may be more efficient. An additional difficulty in
making a choice of GU function calls comes when there is insufficient
knowledge to provide complete gqualification.

Normally, a GU call requires more time to execute than a GN or GNP
call statement.

The implications of providing unqualified segment search arguments
can be seen in Fiqure 3-5, The call on the left has an unqualified
segment search argument at level two for B. As a result, DL/I searches
through all Segment Bs under Segment A with key of 6. All Segment Cs
are searched before finding that the call cannot be satisfied. The call
on the right is the same, except that the segment search arqument for B
is qualified at level two. When DL/I encount2rs the B with a key of 4,
the search ends. At this point, DL/I realizes that the call cannot ba
satisfied.

Application Program Design 3.7

http:specif.ic

GU A (KEYA=6) GU A (KEYA=6)

B B (KEYB=3)

C (KEYC=4) C (KEYC=4)

D
2
c 1
5
Figure 3-5, Qualified Segment Search Argquments

RELATIONSHIP BETWEEN DL/I CALLS AND PHYSICAL I/O OPERATIONS

Although DL/I calls issued by application programs are independent of
the physical storage techniques used to store and access data, it is
important for the reader to understand the the physical I/0 operations
performed by IMS/VS. The use of any DL/I call may or may not require
physical I/0 operations. If the DL/I call can be satisfied from
information in the data base buffer pool, no physical I/0 operations are
required. When this is not the case, the actual physical I/O operations
performed depend upon the following:

e The DL/I call issued
e The physical data base access method and organization

e The current position in the data base known by the DL/I control
blocks for this application's use of the data base

e Information in the data base buffer pool
The following tables should be of assistance in understanding the

physical I/0 operation which may be performed in satisfying GET UNIQUE
(GU) or GET NEXT (GN) calls.

3.8 IMS/VS System/Application Design Guide

IMS/VS DB/DC CONTROL PROGRAM

....................... ;

| !

DL/TI { DATA BASE ACCESS METHOD !

R LRI L |

CALL | HISAM | HDAM | HIDAM |

| ! [======o===omeeooeooacaooaas !

FUNCTION | | 1 INDEX | HIDAM !
| |

R R R R R R Y e T R P P

!
VSAM-Get |VSAN-Get Direct|

| Data Base | Data Base |

| |
| VSAM-Get VSAM-Get I
| Direct | Direct] Direct f !
GU)] or BISAM | or OSAM | or BISAM |or OSAM !
| or OSAM | Read | Read | Read |
| Read | | or OSAM | |
1 | | Read | :
] | | | |
| YSAM-Get | VSAM-Get | VSAM-Get |VSAM-Get Direct]
| Direct | Diract | Direct | |
GN | or BISAM | or OSAM | or BISAM |Jor OSAM |
| or OSAM | Read | Read | Read !
| Read | | or OSAM { |
| { | Read | |
....................................... comceeeccevceacceccceccecceeel

Application Program Design

3.9

IMS/VS DB BATCH PROCESSING

;" """"""" TEsSssss- ittt TESSSsSsssssssss,- |
1
| DL/I ! DATA BASE ACCESS METHOD !
I D et ~memmemeeemeae -------- -===-i
| CALL | HISAM | HDAM } HIDAM |
| 1 | | Rt ittty |
| FUNCTION | | | INDEX | HIDAM !
| | | | Data Base | Data Base !
Rttt bbb i i bbb it dei i it S semeee--- |
! | | ! I
| | VSAM-Get- | VSAM-Get | VSAM-Get | VSAM-Get |
1 | Skip Seq | Direct | Skip Seq | Direct !
| GU] or QISAM | or OSAM | or QISAM | or OSAM |
! | Get 1 Read | Setl & | Read {
| | ! | Get | !
! | = - - - | = == == l
] | VSAM-Get~ | | VSAM-Get~ | !
| | Direct | | Direct | !
I | or | | or ! !
| | BISAM | | BISAM] {
l | Read * 1 { Read * | |
| 1 | I | !
| Eteietdndedeiebaidede i taindeiedeideieideieb et £ S £ £ aiaiddeietideb e |
| { VSAM-Get- | VSAM-Get | VSAM-Get- | VSAM-GET |
i | Skip Seq | Direct ! Skip Seq | Direct !
| GN | or QISAM | or OSAM | or QISAM | or OSAM 1
|] Get, OSAM | Read 1 SetL & | Read |
| | Read | | Get | |
! - === <= I= = ===~ !
| | VSAM-GET | | VSAM-GET | |
1 | Direct | | Direct ! |
| | or | { or | 1
| | BISAM | | BISAM] '
| | Read * | | Read * | |
! | | | | |
Lecacee - P B P BT . .S @ - W T - D D W A D WD - .- - 4
* BISAM read or VSAM Get Direct is used if two or more data base PCBs

are defined in an application program's PSB for one physical data
base. Random or direct access operation is assumed. QISAM SetlL/Get
or VSAM Skip Sequential is used if one data base PCB per physical data
base is used.

It is suggested that, where possible, the GET NEXT call, with or
without SSAs, be used in preference to the GET UNIQUE call function for
segment retrieval. This results in more efficient operation. Remenmber,
however, that the GET NEXT call function can only be used to progress
forward in a data structure, and across data structures in a data base.

PERFORMANCE CONSIDERATIONS

Using Accumulated DL/I Statistics

During execution of the batch application program, statistics are
accumulated by DL/I concerning reading, writing, and buffering activity.
This information can be utilized to tune the application for higher
performance. Details for obtaining these statistics are in the INMS/VS
Application Programming Reference Manual.

3.10 IMS/VS System/Application Design Guide

TELECOMMUNICATION INPUT/OUTPUT INTERFACE

Design of a TP (telecommunication) application encompasses the batch
application program design as well. There is little difference between
the batch program and the telecommunication program when using IMS/VS.

Figure 3-6 shows the environment in which the TP application
functions. This shows DL/I as the interface between telecommunication
terminals as well as data bases. The application program in a TP
environment deals exclusively with DL/I for input and output for
terminals as well as data bases.

0s/VS
IMS/VS
1 conTRoL
I_ T =71
I
| APPLICATION | APPLICATION {
| PROGRAM PROGRAM
DATA | |
TRANSACTION —> gg“T"l“c"):':" | |
RESPONSE | |
' |
| |
| |
|

—

L __

MESSAGE A —A
queuves €T —> pL/I g~ — — — _ |
- A -
DATA /
BASE
—_
Figure 3-6. Telecommunication Application Program Design

The three areas shown under the operating system each represent
operating system jobs. Each is under a different storage protection
key. The job on the left consists of the IMS/VS control program, which
is responsible for all physical input/output for IMS/VS applications.
The control program is also responsible for maintaining logical

Application Program Design 3.1

information for restart and recovery purposes. The two application
programs shown are each contained in a message processing region. Each
message processing region is an operating system job. This IMS/VS
control region is responsible for causing the appropriate application
program to be loaded for processing.

¥ith IMS/VS, the interface to data bases is unchanged when going from
a batch application to a TP application. 1In addition, the same
interface used for data bases is used for input and output to terminals.

The application program deals with logical terminals. These are
control blocks that IMS/VS associates with physical terminals. Thus the
application programmer generally does not concern himself with the
physical attributes of the terminal with which he is dealing. Figure
3-7 shows an application program's view of the terminal.

The control block with which the application program deals is the TP
PCB [telecommunication program communication block). There are two
types of TP PCBs -- the I/0 PCB and alternate PCBs. An I/0O PCB is
always provided by IMS/VS to an application program that executes in a
TP environment., Alternate PCBs are optional, and are created as part of
the PSB (Program Specification Block). To obtain an input message and
reply to it, the application program must reference the I/0 PCB. To
send a reply to a terminal other than the terminal that orginated the
input message, the program references an alternate PCB. The section
named ™Output to Alternate Destinations"™ contains a further description
of alternate PCBs. Figqure 3-8 shows a DB PCB (data base progran
communication block) in addition to the TP PCB, The data base is viewed
as a logical structure and the terminal is viewed as a logical terminal.,

APPLICATION PROGRAM /
/
/
1T TP I LOGICAL
MASK | Pce | TERMINAL
-1 \
\
\
N
Figure 3-7, Application Program's View of the Terminal

3.12 IMS/VS System/Application Design Guide

APPLICATION PROGRAM

/
/
-+ /
wa| | | % e
\
\
N

/
/
/ NAME
T~ Toata /
MASK BASE ’ I___L_I
_1__Lres
\ ADDRESS | |PAYROLL
\ LOGICAL
DATA BASE
\ STRUCTURE
AN
AN
Figure 3-8. DB and TP PCBs

Information received from or sent to a terminal is called a message.
A message is comprised of one or more segments. Figure 3-9 shows the
format of a messadge segment. The L field specifies the length of the
segment. If line addressing is being used, field Z is used for screen
control when sending output to a 2260 or 2265 Display Station. The %
field is followed by the message text. This is the information input at
the terminal. Below the segment format are shown two examples of input
-- one with a password and the other without. ©Notice that the password
has been eliminated from the text prior to the application program
receiving it.

| =-> Message segment up to 130 characters

--> Reserved for DL/I (halfword binary)

-=> Segment length in bytes including L, Z, and TEXT
(halfword binary)

Terminal input segment TRANS (PASSWORD) THIS IS THE

with password: SEGMENT TEXT

Received by application: TRANS THIS IS THE SEGMENT TEXT

Terminal output sagment

without password: TRANS THIS IS THE SEGMENT TEXT

Received by application: TRANS THIS IS THE SEGMENT TEXT
Piqure 3-9. Message Segment Format

Application Program Design 3.13

Input Calls

Calls for input message segments are like calls for data base record
segrents, except that no segment search arguments are required. The get
unigue call is used to obtain the first segment of each message and the
get next call is used to obtain subsequent segments. Figure 3-10 shows
the format of the input call. The three parameters shown being passed
to DL/I are the function code, the I/0 PCB address, and the address of
an input area. Message A, as shovn, consists of three segments, while
Message B consists of two segments.

ENTER LINKAGE. COMMENT ONLY
CALL *'CBLTDLI' USING IFUN, LTPCB, IMSG-IO-AREA,
ENTER COBOL. COMMENT ONLY

MESSAGE A
[it h]
| FIRST SEGMENT I e GET UNIQUE
CTTT SECOND SEGMENT (PR GET NEXT
T THIRD SEGNENT l P GET NEXT
flrecccccvccvcvccccvmrccccvccecccccccccccacacca=

MESSAGE B
[g 1
1 FIRST SEGMENT 1 | Ke==vooe-- GET UNIQUE
IL """"" SECOND SEGWENT 2 : P GET NEXT

Figure 3-10. Input Call Format

Output Calls

Sending output to a logical terminal is like inserting new segments
to a data base. As with the input call, no segment search arguments are
required: Figure 3-11 shows a three-segment message being built. The
parameters passed in the call to DL/I represent the function code, TP
PCB, output area, and message format name. The message format name is
ignored on systems without the Message Format Service. PFormat of the
output message is the same as that of the input message. The
application programmer must supply the character count.

3.14 IMS/VS System/Application Design Guaide

Message X

[Zutetieindeiaheiiae b i |

| |

| FIRST SEGMENT | CALL 'CBLTDLI'" USING OFON, TPPCB,
| | OMSG-~IO-AREA, MSG-FMT.
| |

| SECOND SEGMENT | CALL 'CBLTDLI' USING OFON, TPPCB,
| i OMSG-IO-AREA.
|==========sssessescsee—eoooo-- |

| |

| THIRD SEGMENT] CALL *'CBLTDLI' USING OFUN, TPPCB,
| | OMSG-IO-AREA.
Lecccccccccccccsccasccccccccanc=a a

Figure 3-11, Three-Segment Message

OUTPUT TO ALTERNATE DESTINATIONS

In addition to sending output back to the terminal that generated the
input, the application program can sand output to additional
destinations. Output can be sent to other logical terminals or to other
programs. The mechanism for sending to these alternate destinations is
the alternate PCB, as shown in Figure 3-12. When sending output to
another program, the receiving program can be a message processing
program or a batch message processing program. The batch message
processing program, in addition to making use of online data bases and
message queues, can utilize operating system data management facilities.
Use of batch message processing programs is discussed later in this
chapter. For information on Fast Path use of alternate PCBs see the
"Fast Path and IMS/VS Interrelationships" section in the chapter "Design
Considerations for the Fast Path Feature."

Application Program Design 3.15

APPLICATION PROGRAM

//
r——=—7T"T
l H /o |/ LOGICAL
: Ak PCB | [_TenmaL
[N)

\

\

AN

r—-1T 71T
| | ALT.
| mask | TERPHCII:|BNAL ;gg,'vm';._
N
7/
/
_—— -
{ | ALT. /
MASK | ‘PROGRAM [PROGRAM X
| | PCB \
— e — c——] —— \
\
\

Figure 3-12. Output to Alternate Destinations

Modifiable Alternate PCBs

The modifiable PCB and change call have been provided for those users
who would otherwise require a prohibitively high number of alternate
PCBs to allow for all possible destinations. This would, for example,
be those 1050 or 2780 users with a requirement for an alternate PCB for
each component assigned to the terminal represented by the I/0 PCB.
Without this function these users would require as many as four
alternate PCBs per terminal defined in the system. By providing a
naming convention within the IMS/VS system to allow the application
programmer to identify a group of logical terminals by I/O PCB name,
this requirement could be reduced to four modifiable alternats PCBs or
less.

For axample: If NAME is found to be the I/0O PCB logical terminal
name, NAMECP is the logical terminal assigned to the card punch, NAMEPRT
is the printer, etc. With this convention the user could add the suffix
CP to the I/0O PCB name to cause output to go to the card punch
associated with the physical terminal that entered the message, PRT
would allow the output to go to the printer, etc. This requires that

3.16 IMS/VS System/Application Design Guide

the naming convention be established by system definition and maintained
by instructing the master terminal operator to reassign component LTERMs
by groups, so that all the components are always associated with the
same physical terminal.

This function could also be used by any application that, depending
on the processing involved, requires one of many possible output
destinations.

The user should define one modifiable PCB per possible destination
per transaction, as the destination can be set only once per message
without use of the purge call, which is not recommended. This means
simply that the destination cannot be changed once a message segment has
been inserted to the PCB until a get unique to the I/O0 PCB is issued.

Normal use of the function would therefore be:

GUO I/0 PCB

CHNG Modifiable alternate PCB
ISRT Modifiable alternate PCB
GU I/0 PCB

CHNG Modifiable alternate PCB
etc.

Response Alternate PCBs

An alternate PCB can be used to respond to terminals in response
mode, conversational mode, or exclusive mode, if the PCB is so defined
on the alternate PCB statement., Use of this response alternate PCB
allows the application program to send output to a logical terminal that
did not originate the input message, while still satisfying the
requirements of these operating modes. This response alternate PCB is
only valid for naming a logical terminal.

IMS/VS can also be directed to verify that the logical terminal named
in the response alternate PCB is assigned to the same physical terminal
as the logical terminal that originated the input message. This
verification is required for alternate response PCBs used by
conversational programs and response mode transactions. Verification is
not needed if alternate response PCBs are used to send messages to
output-only devices that are in exclusive mode. Additional information

Reference Manual.

CONVERTING FROM BATCH TO TELECOMMUNICATION

Conversion from batch to online with IMS/VS can be a simple process.
Figure 3-13 shows a batch application program which deals with DL/I data
bases. The procedural portion of the application program differs little
between batch and TP. The DL/I data base I/O calls need not be altered
at all. The area of conversion will be that portion which deals with
external input {SYSIN) and output (SYSOUT). The TRANSACTION and
RESPONSE in the application program shown represent the primary input
and output. The READ/WRITE or GET/PUT in the batch system are replaced
by DL/I calls for input and output for telecommunication. 1Inst=ad of
the input coming in from SYSIN, it comes from a logical terminal.
Output, instead of being written to SYSOUT, is written to a logical
terminal. It can be seen that use of DL/I for transactions and responses
as well as data base I/0, makes DL/I the single I/O interface with which
the application program deals.

Application Program Design 3.17

APPLICATION PROGRAM

r—r——""-—""="=""="="="="=-= | 7]
I PROCEDURE | TRANSACTION
| |
s JE— |
Ir os/Vs READ [
y EXTERNAL INPUT/OUTPUT \wpiTE
/ I J\ RESPONSE
/ I DATA BASE
/ | INPUT/OUTPUT |
converTing | I_____________.I —
TO TELE- |
COMMUNICATION DATA
| BASE
\
DL/
\ TELECOMMUNICATION CALL DL/l |t—an Tz‘;:ﬁgﬁ;éow
INPUT/OUTPUT

Figure 3-13. Converting from Batch to Telecommunication

TELECOMMUNICATION DEVICE INDEPENDENT PROGRAMMING

If a variety of devices are to be used on an IMS/VS telecommunication
system, some consideration should be given to designing application
programs in such a way that input is processed properly regardless of
the physical terminal type from which it is receéived. PFor example,
input might be received from either a 2740 or a 3270. The maximum
physical line length for a 2740 is 130 .characters, and one line of input
is handled as one message segment. For a 3270, on the other hand, the
user defines the structure and length of a message segment.

If I/0 formats are to be consistent between devices with different
length I/0 characteristics, design must be aimed toward the limiting
device. For example, a 3270 can only accommodate 80 characters on each
line, while the 2740 can handle 130. A design for a 130-character 1line
would not operate identically with the 2740 and the 3270. Another
approach is to have the application program written so that it can
determine the class of device with which it is dealing. This can be
accomplished through the use of naming conventions. For example, the
first character of each logical terminal associated with an 80 character
device could begin with the letter V.

The application program has access to this name at the time the
message is acquired.

DEVICE CLASS CONTROL CONSIDERATIONS

Control characters for control of output devices are the
responsibility of the application programmer. The 2260, 2265, and the
2265 component of the 2770 system makes use of the Z field in the
message format shown earlier, in conjunction with the line addressing
feature of the 2260/2265 and the paging feature of IMS/VS. On a 2980
General Banking Terminal Model 1 or Model 4, the Z field of the message
format is used to direct output message segments to a passbook; on a
2980 Model 2 terminal, this £field is used to require the presence of the

3.18 IMS/VS System/Application Design Guide

auditor's key, in order to receive an output message segment. Switched

devices (except 3270) also make use of the 2 field in the message format
shown earlier. This is used by the application program to request that

the line be disconnected after the present message is sent. This field

is ignored by communications control if the output is physically sent to
a device without this capability.

Carriage return characters, or new line symbols, are embedded in the
text portion of the message by the application programmer. If output is
going to a 2770 printer component, 2780, or local printer (SYSOUT)
device, the first two characters of the message can be carriage control
characters. These are also the responsibility of the application
programmer.

Vocabulary drum address characters may be tha2 text portion (or part
thereof) of the message going to a 7770-3 line. These are also the
responsibility of the application programmer.

Under special conditions, it may be desirable to terminate an output
message at a specific point. The DL/I purge call with TP PCB address
can be used to accomplish this function. Figure 3-14 shows two messages
to the destination being built.

The purge call releases the output message segments for processing
without waiting for the application program to signify normal completion
(by a get unique of the next transaction or normal termination) of the
caurrent transaction.

ENTER LINKAGE. COMMENT ONLY
CALL °*CBLTDLI' USING PURG, TPPCB.
ENTER COBOL. COMMENT ONLY

Message A(1)

| FIRST SEGMENT P <ommmmmee TNSERT
e
I e | <o
R R PURGE

| FIRST (FOURTH) SEGMENT P <mmmmmmees THSERE

| acon rieey swonmnr | <mneaees

| oatan (stemmy spowewr | <omeeeee THSERT

e e DI S L L e L R DL ! Commmmmmmm GET UNIQUE or program
termination

Figure 3-14, Six-Segment Maessage Separated into Two Three-Segment
Messages by Use of the Purge Call

Application Program Design 3.19

UTILIZATION OF SYSOUT DEVICES

The use of support provided for SYSOUT devices (printers, tape, or
DASD) allows a wide range of applications, including:

e Local terminal simulation using a card reader and printer.

e High volume output, such as reports using either a printer or tape
volume.

e Intermediate output to be used by a non-IMS/VS application program
using either tape or disk volumes.

Since record formats, logical record lengths, and block sizes are
user-defined, a SYSOUT data set can have a variety of different
attributes.

By using the spool SYSOUT option, a local printer can be simulated
without dedicating the device to the IMS/VS systen.

Program Iesting Using SYSIN/SYSQUT

SYSIN data streams can be assigned to a local card reader line,
providing a means by which nonconversational telecommunication
application programs can be tested. When such an assignment is made, a
program can be tested with data entered through SYSIN and output
produced ausing any of the optional types of SYSOUT support available.
Only one file of data can be entered per line. Any logical errors
detected in processing the data stream (for example, invalid transaction
codes) are ignored by IMS/VS. Care must be taken to avoid undesirable
results when this type of error occurs in the first segment of a
multisegment transaction, since all following segments are processed as
ned messages.

When SYSIN data streams are used by IMS/VS, no logging of position
occurs while messages are being processed. Consequently, only a cold
start of IMS/VS operation should be performed after using SYSIN input
streams, or duplicate message processing may occur.

CONVERSATIONAL PROCESSING

Conversational processing is an optional IMS/VS feature available to
uasers of the data communications facility. It allows a user's
application program to retain information acquired through multiple
interchanges with a terminal, even though the program leaves the message
region between interchanges.

If conversational processing is to be used, it must be considered
during system definition. Transactions that will invoke a
conversational program must be identified at this time. The user must
also describe the number and size of the SPAs (scratchpad areas) to be
allocated, either in main storage or on a direct access device. An SPA
is used to contain the information to be retained during conversational
interchanges.

Figure 3-15 shows a simple conversational process. When IMS/VS

receives a conversational transaction it assigns an SPA to the inpat
terminal and schedules the associated application program.

3.20 IMS/VS System/Application Design Guide

©
o
®
©
-
o

MESSAGE
PROCESSING
REGION
APPLICATION N areuicanon APPLICATION N arevicanion
|| PrOGRAM PROGRAM N PROGRAM PROGRAM
/A | |
1 ZN
[N eimtuintn
TRANSACTION } TRANSACTION
\) \ /
_____ SCRATCH SCRATCH ———— SCRATCH
_____ PAD _——— — PAD
- bl r .
| scRaven | AREA AREA | CONTENTSOF | AREA
PAD P scratchPaD |

Figure 3-15. Conversational Progranm

When the program executes and issues its first GO, it receives the
SPA. The first segment of the message input from the terminal is
obtained by a GN call. After processing the segment, the program must
issue an ISRT call to return the SPA to IMS/VS. IMS/VS retains the
scratchpad either in main storage or on disk until needed. The progranm
then must use ISRT to send an output messade to the terminal in
conversation.

A response to the terminal in conversation is required to allow the
conversation to continue. The conversational transaction need only be
entered to initiate the conversation; during subsequent interchanges
IMS/VS considers all input from that terminal to be a part of the
conversation,

IMS/VS allows more than one program to participate in a conversation.
One conversational program passes control to another, either by changing
the transaction code in the SPA to another conversational transaction,
or by inserting the SPA to an alternate PCB identifying the progranm to
take control of the conversation.

When a conversation is processed to its normal completion, it is
terminated by the application program. The program places blanks in the
transaction code in the SPA before returning it through the ISRT call.
The program can also put the code of a nonconversational transaction in
the SPA; the conversation then remains active until the next input is
received from the terminal. 1IMS/VS routes this input to the
nonconversational transaction, thus terminating the conversation.

INS/VS terminal commands are valid during a conversation., Commands
are provided, in fact, to allow the operator to temporarily susp2rd a
conversation in progress {/HOLD command) and to resume it at a later
time (/RELEASE command). The /EXIT command is available for the
operator to terminate the conversatione.

Some applications require that a conversational process not be
interrupted once it has started. This is because non-program initiated
termination could result in partially-updated data bases. This type of
termination can occur if the operator prematurely uses the /EXIT
command, or if a program involved in the conversation abnormally
terminates., When this condition occurs, a user exit routine can be
entered to analyze the termination and, if desired, to cause another
program to be scheduled to complete or backout any data base unpdates.
The user exit routine cannot cause the conversation to continue. The

Application Program Design 3. 21

conversation abnormal termination exit routine.

For information on the Rutomated Operator Application Program, see
the "Automated Operator Programming™ chapter, in the IMS/VS Systenm
Programming Reference Manual.

PAGING FEATORE -~ 2260 AND 2265

The paging feature allows an application program to insert a multiple
screen message to the 2260 or 2265 which can be viewed by the operator
in any sequence he wishes, If, after viewing the first screen, the
operator chooses to skip all remaining screens and go to the next
message, he can. Alternatively, as an example, he can look at the first
screen, page forward to the 17th screen, page back to the f£ifth screen,
view several screens in seguence, etc. He can go to the next message or
series of screens at any time, whether or not he has looked at all the
screens in this series. Once this option is taken however, he cannot
return to look at any image from a previous series. IMS/VS prevents the
operator from inadvertently paging past the end of one series into
another, thus losing the current series.

The operator is supplied with a page-request indicator (=) to specify
which page is to be viewed next. If Auto Delete was specified in systen
definition, any other input message, that is, one that does not begin
with a page-request indicator, causes the series of pages being viewed
to be considered complete and the series to be dequeued. Therefore,
when an operator has completed viewing a series of pages he has merely
to enter a new transaction code to signify this to the system. If a
multiple-page message is routed to a non-paged terminal, such as a 2740,
the paging is ignored, and the message is transmitted as any other
message. If Auto Delete was not specified, the operator can enter a
message while viewing a page. This causes the first page of the series
to b2 redisplayed, and the operator must specifically enter a
next-output indicator (?) to cause the series of pages to be dequeued.
While this mode of operation may have merit in specific applications, it
may prove cumbersome to the operator in a generalized system
application. It is recommended, therefore, that the user be aware of the
operational procedures required for non-Auto Delete operation before
specifying this mode of operation.

BATCH MESSAGE PROCESSING PROGRAMS

While the INS/VS telecommunication system is in operation, it may be
desirable to let a batch program have access to online data bases or
input/output message queues. This can be accomplished by a batch
message processing program (BMP). This program is loaded in the
conventional operating system manner. It has access to online data
bases and message queues, and can also make use of operating system data
management facilities.

When starting a BMP, several parameters may be specified on the EXEC
statement. These include the PSB and program name. For message
processing programs, the PSB and program name must be the same; however,
they can be different for BMPs. This allows a utility program to be run
using different PSBs.

BMP can implement a checkpoint to purge data base and message
buffers. It writes a checkpoint ID to the system log. This checkpoint
is independent of CTL (control region) and other BMP region checkpoints.
IMS/VS maintains a checkpoint table to correlate BMP checkpoints with
control region checkpoints for purposes of emergency restart. Design
considerations for using this checkpoint table are contained in

3.22 IMS/VS System/Application Design Guide

chapter 2 under the topic "Batch Checkpoint Restart." The IMS/VS

checkpoint (CHKP) call.

Emergency restart after a system failure backs out all resources for
each BMP region to the last checkpoint for that BMP region. The master
terminal operator has the option of specifying that BMP data base
changes NOT be backed out at emergency restart.

If there is no backout for a BMP, the operator also has the option of
releasing the resources that were reserved for the BMP (that is,
starting stopped data bases). If backout has been done, the resources
are not reserved since data base integrity has been maintained.

USE OF BMP

The BMP is useful for several types of processing. If data is being
collected for batch processing, the message processing program can
retrieve the collected data from the gqueune. Upon a single loading, a
BMP can deal with only one input queue (transaction code). The
transaction code is also specified on the EXEC statement when the BMP is
started. The BMP sends output to logical terminals or other prograsms
through the queues. The BMP is useful for doing summary reports while
the data bases are being utilized in a telecommunication environment.
Use of the BMP to update data bases, while the online system is in
operation, can prevent messadge regions from being scheduled when (1) the
MPP and BMP use the same data base and that data base was not specified
for parallel scheduling, or [2)° when PROCOPT=EXCLUSIVE is specified.
Note also that BMPs that do not issue a checkpoint call may cause
excessive waiting or deadlocks for MPPs accessing the same data base.

BUFFERING

Heavy utilization of data base buffers by a BMP can impact response
time at a terminal, if a relatively small data base buffer pool is
allocated. Since the pool is utilized for all data bases, and the oldest
buffer is always freed for current I/0 requests, additional I/O requests
may be required for those telecommunication programs performing data
base updates. It is possible that a message processing program may
obtain a segment for update, and prior to the REPLACE call have the
buffer containing the segment may be freed. DL/I must then reread the
segment for replacement.

USEFUL TECHNIQUES

INTERMEDIATE DATA BASES

If the user wants to save information between loads of an application
program, without making use of the conversational capability,
intermediate data bases can be utilized. Figure 3-16 shows an
intermediate data base being utilized for purchase order writing. Each
logical terminal is represented by a root key in the data base., Since
all logical terminal names are unique, there is no possibility of
conflicts between terminals. The application program has access to the
source of each input through the input/output logical terminal PCB,

Application Program Design 3.23

o] IS -
= 1
]]
oo | [|
] E— -
m
|
[[
o | [45 |

Figure 3-16. Intermediate Data Base

MESSAGE EDITING

If free form input is allowed from input terminals, a single message
editing routine is an alternative to redundant code in the COBOL or PL/I
program. The message editing routine can convert the message from a
free format into a fixed format.

The edit routine can be located in the IMS/VS control region or in
the message processing region with the application program. If an edit
routine is to be used a great deal, it should be included in the IMS/VS
control region. In some instances this helps reduce the region size
required for the message processing region.

If the edit routine is to be included in the message processing
region as a part of the application program, the possibility of placing
the module in link pack should be explored.

Use of a single message edit routine for all programs could have
value for some user environments. The message edit routine could be the
only user module making calls on DL/I for message input/output. This
could reduce the amount of error checking required in each application
program.

OUTPUTTING A MASK TO THE 2260

When a 2260 is being used in an interactive manner, terminal operator
time can be saved by having the application program send out a mask or
form to the 2260. The terminal operator then fills in the appropriate
information and transmits the entire screen as input.

PASSING INFORMATION FROM ONE PROGRAM TO ANOTHER

When a program is to be designed in a modular fashion, there are
several ways in which information can be passed from one program to
another. The first way is by sending output to an alternate destination
through the queues. Another is to store information in an intermediate
data base, as discussed earlier. A third way is to use a scratchpad
area for passing the information from one program to another. If the
scratchpad area is resident in storage, the input/output overhead is
less than by the other approaches.

3.24 IMS/VS System/Application Design Guide

CHAPTER 4. DATA BASE DESIGN CONSIDERATIONS

The data management portion of IMS/VS is designed to simplify the
task of assembling and maintaining large amounts of data while still
offering flexibility in how the data is organized and used. To
accomplish this, IMS/VS uses an organization for data called a data
base.

Under IMS/VS, different types of data bases can be created by the
user. Each requires two definitions before the data base can be used by
application programs. The user defines the data base structure and
content through Data Base Description Generation (DBDGEN). He also
defines what data within the data base2 each application program will
use, and what processing options each application program is allowed to
use on that data through Program Specification Block Generation
(PSBGEN). Each of the data base types is supported by and named after
its own access method. The access methods and the data base type each
is used for are:

Access Method Data Base Type
e Hierarchic Sequential Access Method [HSAWN) HSAM
e Hierarchic Indexed Sequential Access
Method (HISAM) HISAM
e Hierarchic Direct Access Method (HDAM) HDAM
e Hierarchic Indexed Direct Access
Method (HIDAM) HIDAM
e Logical Logical
e Generalized Sequential Access Method ([GSAM) GSAM
e Main Storage Data Base MSDB
e Direct Entry Data Base DEDB

For information on the Main Storage Data Base ([MSDB) and the Data
Entry Data Base (DEDB) see the "Fast Path Data Bases" section in the
chapter "Design Considerations for the Fast Path Feature."

A logical data base is comprised of data stored in one or more
physical data bases that is structured logically to satisfy the
requirements of an application program.

GSAM data bases are limited to a single, unstructured data set.

Prior to discussing the advantages and disadvantages of each type of

data base, the concepts and terms used for IMS/VS data bases must be
understood.

CONCEPTS OF PHYSICAL DATA BASES

In general, an IMS/VS data base is a hierarchic organization of the
different types of data required by one or more applications. We'll
examine first its content and structure, and we'll then describe the
DL/I calls that are used to process a data base. Included in content
are segments and fields. Structure includes the definition of the
hierarchy of a physical data base. Note that GSAM data bases are not
hierarchic and are based on physical records rather than segments.

Data Base Design Considerations 4.1

SEGMENTS

A data base is a storage organization that enables the user to manage
multiple sets of data, and multiple elements of each set., The content
of a data base is defined by segment type through the DBDGEN utility.
For each set of data the user wants to store in a data base, he defines
a segment type and the physical characteristics to use when storing
segments of that type. In turn, when multiple elements of data of a set
are stored in a data base, they are stored as segments of the type
defined and use the physical characteristics defined for that segment
type. A segment in a data base is also called an occurrence. Both
terms are used interchangeably to refer to a segment. A data base can
contain a maximum of 255 segment types, and the number of segments of
any type dafined is limited only by the space allocated for the data
base.

The input to DBDGEN that defines a segment type and the physical
characteristics of that segment type is the SEGM statement. Among the
physical characteristics defined for each segment type are the name,
length, and hierarchic position to be used when storing segments of that
type. The name specified is used to identify segments of that type in
storage, and in turn, the application program uses the name of a segment
type to address the type of segment to be processed. The length
specified for a segment type tells IMS/VS the number of bytes of
auxiliary storage to use for the data portion of esach segment of that
type. For the segments in storage that contain a prefix and data
portion, the prefix is used by IMS/VS in managing the segment, and the
data portion of the segment contains the user data. The length
specified for the data portion of a segment type must be fixed, except
when VSAM is used as the operating system access method. When VSAM is
used, the length specified for the data portion of a segment type can be
either fixed or variable., When variable length is specified, the amount
of auxiliary storage space used for the data portion of each segment of
that type can vary between a user specified minimum and maximum number
of bytes. In the case of fixed, the data portion of each segment of the
same type occupies the same amount of auxiliary storage space. The
length specified for a segment type cannot exceed the physical record
length of the storage device used. The hierarchic position defined for
a segment type determines how segments of that type are stored in a data
base in relation to segments of other types. For an explanation of the
hierarchic position of a segment type in a physical data base, refer to
"structure" in this chapter.

SEGMENT FORMATS

When defining a segment type, the segment length specified by the
user can be either fixed or variable. 1In either case, segments in
IMS/VS data bases contain a prefix and a data portion except for three
cases where only the data portion is present. For an HSAM, simple HSAM
or simple HISAM data base that contains only one segment type, no prefix
is stored with occurrences of the segment type in the data base.

The fixed and variable length format for segments in HSAM, HISAM,
HDAM and HIDAM data bases are shown in Figure 4-1.

4.2 IMS/VS System/Application Design Guide

Fixed length segment format

PREFIX DATA
SEGMENT DELETE POINTER AND COUNTER FIXED LENGTH
CODE BYTE AREA USER DATA

17

Variable length segment format

PREFIX DATA
—4 — 2
SEGMENT DELETE POINTER AND COUNTER VARIABLE LENGTH
CODE BYTE AREA USER DATA
-4 45
Pigqure 4-1. Segment Formats

Segments in all data base types contain a prefix and data portion
except in the 3 cases stated previously. The prefix of a segment
contains data used by IMS/VS that is transparent to application
programs. The data portion of a segment contains user data. As a
minimum, the prefix of a segment contains a segment code and a delete
byte. The content of the remaining portion of the prefix varies by data
base type. Segments are related through direct address pointers in HDANM
and HIDAM data bases, so all segments in those data bases will contain
one or more pointers in their prefix. Segments in HSAM and HISAM data
bases are related through physical adjacency so they will have no direct
address pointers in their prefix. The one exception to this is a
segment in a HISAM data base that is involved in a logical relationship
vith a segment in an HDAM or HIDAM data base. When the segment in the
HISAM data base points to the segment in the HDAM or HIDAM data base, it
can have a direct address pointer specified to point to the HDAM or
HIDAM segment directly. A counter is only present in the prefix of a
segment under certain conditions when it is involved in a logical
relationship., For the conditions under which the counter will be
present in a prefix and the use of the counter, see "Pointers and the
Counter Used in Logical Relationships"™ in this chapter.

Segment Code

To identify each segment stored in an IMS/VS data base, a one byte
segment code is placed in the first byte of the prefix of the segment.
The segment code is a number from 1 to 255 that identifies a segment
type to IMS/VS in place of its name. Segment code values are assigned
to the segment types in a data base in ascending sequence starting with
the root segment type and then continuing to all dependent segment types
following the hierarchic sequence defined for the segment types in a
data base by the user.

Delete Byte
The delete byte is used by IMS/VS to maintain the delete status of

segments within a data base. The meaning of each bit within the delete
byte is shown in Figure 4-2.

Data Base Design Considerations 4.3

DELETE BYTE

BIT MEANING

0 SEGMENT HAS BEEN DELETED (HISAM OR INDEX ONLY)

1 DATA BASE RECORD HAS BEEN DELETED (HISAM OR INDEX ONLY)
2 SEGMENT PROCESSED BY DELETE

3 RESERVED

4 DATA AND PREFIX ARE SEPARATED IN STORAGE

5 SEGMENT DELETED FROM PHYSICAL PATH

(PHYSICAL DELETE (PD) BIT)

6 SEGMENT DELETED FROM LOGICAL PATH
(LOGICAL DELETE (LD) BIT)

7 SEGMENT HAS BEEN REMOVED FROM ITS LT CHAIN
(BIT 7 IS ASSUMED SET IF BITS 5 AND 6 ARE SET)

Figure 4-2. Delete Byte

FIELDS

An application program addresses segments in a data base through the
name specified for their segment type, and through the names of fields
defined within a segment type. The segment name alone allows an
application program to address a specific segment type within a data
base. To address a specific occurrence of a segment type, fields must
be defined within that segment type.

Within the data portion of each segment type, the user can define
fields through the DBDGEN utility. Each is defined through a FIELD
statement which is input to DBDGEN. The maximum number of fields that
can be defined within a segment type is 255 and the maximum within a
data base is 1000. The two types of fields that can be defined are
sequence fields and data fields. Both fields can be used by an
application program to address specific segments in a data base. R
sequence field, often referred to as a key field, has two purposes in
addition to that of the data field. It is used to store occurrences of
a segment type in a sequential order. The order is determined by the
value placed in the sequence field of each occurrence. The value in the
sequence field of a segment is called the key of that segment.
Occurrences of a segment type are stored in ascending order in the data
base starting with the occurrence that contains the lowest segquenca
field key. The sequence field is also used as all or part of a symbolic
pointer to a segment in a data base. The symbolic pointer is actually
the concatenation of the keys in the ssquence fields of all segments
that must be retrieved to reach the desired segment including the
sequence field key of the desired segment as shown in Figure U4-3.

Only one sequence field can be defined in each segment type.
Sequence fields can be defined as unigue or non-unique by the user.
When defined as unigue, occurrences of a segment type must contain
sequence field values that uniquely identify them within a data base,
and segments are stored in the data base in the manner described
previously. When defined as non-unique, sequence field values do not
have to uniquely identify a segment within a data base. In this case,
segment occurrences are still sequenced according to their sequence

3.4 IMS/VS System/Application Design Guide

field value which controls all segments except those with the same
valoe. If placement of those with the same value is of concern, the user
must control their placement either through his data base load progranm,
or through the combination of his load program and by stating insert
rules for segment placement through DBDGEN.

CONCATENATED KEYS

SKILL
SEGMENT
> STCLERK
STCLERK
NAME
SEGMENT
L I —> SM1TH
’ STCLERKSMITH
SEQUENCE FIELD KEYS
N \
9
EXPR EDUC
SEGMENT SEGMENT
L [————> RWS ———>> PHAR
STCLERKSMITHRWS STCLERKSMITHPHAR
Figure 4-3. Concatenated Keys

Data Base Design Considerations 4.5

STRUCTURE

The hierarchy of a data base is created by defining an order of
dependence for the segment types it contains. To IMS/VS, the hierarchy
represents the order in which the user wants his application data
stored. To the application program, it represents the order in which
the segment types in a data base are available for processing. The
criteria normally used in determining the hierarchy is how the data in
one segment type relates to data in another segment type, and the
frequency in which a segment type will be accessed by an application
program.

To understand how a data base hierarchy is developed, we'll use as an
example a skills inventory application. We'll determine what segment
types a data base should contain for the application and the hierarchic
order of those segment types. In addition, we'll show the data base
that ceuld result in storage by defining the segment types and their
hierarchic order through the DBDGEN utility.

Let's assume in our example that an application program wants to
locate a given skill, and then f£ird out what employees possess that
skill. In addition, the application must have access to the experience
and education records of each employee.

In the assumptions, four sets of data were required by the skills
inventory application. Each will be defined as a segment type in our
skills inventory data base. Let's now create a hierarchic data
structure that reflects the order in which the four segment types are
required by the application. To do this, we must determine both the
order in which the application program must use each type of data, and
the order in which each type of data must be presented to the
application program so that the data retains its meaning. 1In the
assumptions, it was stated that the application wanted to find a given
skill and then find the names of the employees that possessed that
skill. From this statement we know that skill should be the first type
of data in our structure and that name should follow skill. For the
remaining types of data, experience and education, no indication was
given as to how they should fit in our structure, but we can determine
their position in the structure if we can establish how they should
relate to the skill and name types of data. For our application,
experience and education data have no meaning by themselves, to each
other or in relation to skill. When related to name data however, the
experience and education types of data do have meaning since they are
the experience and education records of specific employees. We can now
complete our data structure. At the top is skill, below skill is nanme,
and name in turn is followed by experience and education as shown in
Figure 4-4. Experience and education are below name since they are
dependent on name for the skills inventory application. An employees
name must be established before his experience and education records
have meaning. In turn, name is dependent on skill since the application
will locate a given skill and then associate employee names to that
skill. In summary, the data structure shown in Pigure 5.4 represents
the sets of data and the order of dependence for those sets required by
the skills inventory application. It contains four sets of data
arranged in three levels of dependence. An IMS/VS data base can contain
a maximum of 255 sets of data arranged in up to 15 levels of dependence.

4.6 IMNS/VsS System/Application Design Guide

SKILL

NAME

EXPERIENCE EDUCATION

Pigure 4-4. Hierarchy of Segment Types

The data structure just created is called a hierarchy of segment
types. It represents the segment types and the hierarchic arrangement of
those segment types that would be defined through DBDGEN to define our
skills inventory ‘data base. If we now assume data for each segment

type, Figure 4-5 shows the data base that would result in storage.

Figure 4-5 shows how segments of each type can be loaded in a data
base. Three occurrences of the skill segment type are shown. Related
to each are the specific occurrences of the Name segment type that
contain the names of the employees who possess that particular skill.
Related to each Name segment in turn, are the specific segments of the
Experience and Education segment types that contain the experience and
education records of each employee. Skill is the root segment type in
this data base, and each data base has only one. The root segment type
is always the first sagment type defined in a data base, and, as shown,
it is the only segment type that occupies the first level of a data base
hierarchy. Segments of all other types in a data base are stored in
relation to an occurrence of the root, and as such are termed dependents
of the root. 1In addition, occurrences of the Experience and Education
segment types, shown at the third level of the hierarchy, are dependents
of the Name segment type since they are stored in relation to
occarrences of the Name segment type. When a data base hierarchy is
read from top to bottom with the root at the top, each lower level in
the hierarchy contains the dependent segments of the segments at the
next higher level. Before any dependent segment is loaded in a data
base, the segments on which it is dependent must be loaded. In all
cases, a dependent segment in a data base is dependent on one segment at
each higher level in the hierarchy.

The major unit of organization for segments within a data base is the
data base record. A data base is comprised of one or more data bhase
records, and a data base record contains one occurrence of the root
segment type and all of its dependents arranged in hierarchic sequence.
Hierarchic sequence for the segments in a data base record is top to
bottom, then left to right passing through each segment only once. The
skills inventory data base shown in Figure 4-5 contains three data base
records, and the hierarchic sequence of each is shown.

Data Base Design Considerations 4.7

8°h

8pTn9 ubrseq uor3eorTddy/uwa3sis SA/SWI

‘G-t 2I0bH14

abeio3s uT °2seg e3eq

Hierarchy of segment types
defined through DBDGEN

SKILL

NAME

—

EXPR ’> EDUC

Resulting data base in storage

CLERK

lg— — — —

EDWARD|

¥
CRAFTS-
MAN
|
|
!
u
v HUN”;
DOBBS [T 71

s N N
!
‘ \ , h EDUC
N 1-34
EXPR EDUCQ \ N | EDUC
113 7 1-1-3 . , 133
XP) EDUC EXPR ! DUC
1-1-2 7 1-1-2 711_-2-2 i 132
EXPR .| EDUC .| EXPR 4 EDUC || EDUC
1°1-1 1-1-1 1.2:1 | 1-2-1 1-3-1

The hierarchy of a physical or logical data base can contain a
maximum of 15 levels. The order of dependence for segment types in the
hierarchy is from level one, or the top of the hierarchy, to level 15,
the bottom of the hierarchy. The top level of the hierarchy of any data
base can contain only one segment type. It is called the root segment
type for that data base. Subsaquent levels below the root can contain
any number of segment types such that the maximum of 255 total segment
types in the data base is not exceeded.

Defining a Physical Data Base Hierarchy

The input to the DBDGEN utility that defines the segment types a data
base contains, their physical characteristics and their hierarchic
position is the SEGM statement. [The SEGM statement is described in the
IMS/VS Utilities Reference Manual.) For our explanation here, it is only
necessary to know that a data base hierarchy is defined through the
order in which SEGM statements are arranged for input to DBDGEN, and
through use of the PARENT= operand of the SEGM statement.

The PARENT= operand of the SEGM statement is used to define the
physical relationships that exist between the segment types on each two
adjacent levels in a data base hierarchy. The two segment types
involved in the relationships are called a physical parent and a
physical child. A physical parent is a segment type that has a
dependent segment type defined at the next lower level in the data base
hierarchy. A physical child is a segment type that is dependent on a
segment type defined at the next higher level in the data base
hierarchy. These two terms are used to state the order of dependence
for the segment types in a data base. 1In a data base with multiple
segmnent types defined, the root segment type is the physical parent of
all segment types defined at the second level of the data base. 1In
turn, the segment types on the second level are physical children of the
toot. Each level of a data base contains the physical parent segment
types of any segment types defined at the next lower level, and the
physical child segment types of any segment types defined at the next
higher level. The PARENT= operand of the SEGM statement is used to
state specifically which segment type at the next higher level is the
physical parent of a physical child., All segment types in a data base,
except the root, are physical children since each is dependent on at
least the root. On the SEGM statement that defines each physical chilgd,
the PARENT= operand is used to specify the name of the physical parent
segment type.

The PARENT= operand of the SEGM statement defines the top to bottonm
order of segment types. The arrangement of SEGM statements for input to
the DBDGEN utility defines the left to right arrangement of ssgment
types. For input to DBDGEN, SEGM statements must be arranged in
hierarchic sequence. Hierarchic sequsnce is defined as top to bottom,
then left to right passing through each segment type only once. The
segment types in the hierarchic structure shown in Pigure 4-6 are
numbered to show the order in which SEGM statements to dafine that
structure must be arranged for DBDGEN input.

Data Base Design Considerations 4.9

Figure U4-6. Segment Types Numbered in Hierarchic Sequence

Previously, the terms physical parent and physical child were
defined. The remaining term used to describe physical relationships is
physical twin. Physical twins are occurrences of the same segment type
that are dependent on the same occurrence of the physical parent segment
type. 1In Figure 4-7, the three Name segments Adams, Jones and Smith are
physical twins since all three are dependent on the skill segment that
contains the data artist. Under Adams, the three Experience segments
are physical twins and the three Education segments are physical twins
since, in each case, the three are of the same segment type under the
same occurrence of the physical parent segment type.

The term sibling, used frequently in data base literature, refers to
the relationship between two or more segment types at the same level
that are dependents of the same parent type segment.

The hierarchies of all four physical data base types are defined as
just described, but in auxiliary storage, each of the four physical data
base types is organized differently. To understand the advantages of
one data base organization over another, a basic understanding of the
DL/I calls used to process segments in a data base is required, since
the primary trade off between the four types is auxiliary storage space
versus the performance of application programs processing a data base
through DL/I calls.

4,10 INS/VS System/Application Design Guide

*L-f 2InbTJ

I Teorsiyg

SUTA

ARTIST

Hierarchy of segment types
defined through DBDGEN

SKILL

NAME

.

’ EXPR ' EDUC

Resulting data base in storage

Physical twins

CLERK

CRAFTS-
MAN

4 N
/o - - _ S
S N ‘Ft/ HUNT
N AN
. EDWARD | \\\\\ !l DoBBS [T~
; \ . | P
B \ I Rnpuapny pgrg
: N\ N
; \ ‘ 4
1 \ N N—
N -+ y ~
//___'7. \\ '\\
- EDUC| |
T 134 || L \
- EDUC——) v N
7! P 133 . = a)
! - EDUC - ~1] exer} 1] Epuc| -
| e 1320 -~ r 312 312 |if
i Epuc | || EDUC .y EXPR DuC ||| EXPR _Jj| EDUC LI ExPR
120] 13 - N RSN S P S P 51
=" — " [——l p——

SuoT3ieIapIsuo) ubrsaq oseg wvieq

[

CALLS

The segments in an IMS/VS data base are processed through calls
issued by an application program. Calls are issued to get, insert,
delete or r2place a segment or a path of segments at a time. 1A call
references a parameter list which includes all data required by IMS/VS
to complete the call. Included in the list are a function code and an
SSA (segment search argument). The function code states the call to be
performed, and the SSA states the segment or path of segments to be
processed. A call is unqualified when no SSA is included with the call,
and a call is qualified when an SSA is provided for the call. A brief
description of the primary calls used in processing a data base and a
brief description of SSAs follows. For more detailed information, refer
to the IMS/VS Application Programming Reference Manual.

The direction of movement in a data base is called forward when the
search for a given segment is going away from the first occurrence of
the root stored in a data base towards the last segment stored in the
data base. Backward movement is movement in the opposite direction.
Position in a data base is the segment or segments in a data base from
which the search for another segment starts.

Get Unigque

The GU (get unique) call is used to retrieve a specific segment or
path of segments from a data base, and at the same time establishes a
position in a data base from which additional segments can be processed
in a forward direction.

Get Next

The GN (get next) call is used to retrieve the next desired segment
or path of segments from a data base. Tha get next call normally moves
forward in the hierarchy of a data base from current position. It can
be modified to start at an earlier position than current position in the
data base through a command code, but its normal function is to move
forward from a given segment to the next desired segment in a data base.

Get Next within Parent

The GNP ([get next within parent) call is used to retrieve dependent
segments of a given parent segment from a data base. A get unique or
get next call is used to establish parentage for the get next within
parent. After a get unique or get next retrieves a given parent
segment, successive get next within parent calls retrieve the dependent
segments of that parent in hierarchic sequence.

Hold Form of Get Calls

Another form of the three get calls is the hold form. A GHU ({get
hold unique), GHN (get hold next), or GHNP (get hold next within parent)
indicates the intent of the user to issue a subsequent delete or replace
call. A get hold call must be issued before issuing a delete or replace
call.

The ISRT (insert) call is used to insert a segment or a path of
segments into a data base. It is used to initially load segments in all
data base types, and to add segments to existing HISAM, HDAM and HIDAM

4.12 IMS/VS System/Application Design Guide

data bases. Segments can not be inserted or added into an HSAM data
base except at load time.

To control where occurrences of a segment type are inserted into a
data base, the user can define a unique sequence field in the segment
type, or specify insert rules that control placement of occurrences of a
segment type that has no sequence field or a non unique sequence field
defined. When a unique sequence field is defined in a root segment
type, the sequence field of each occurrence of the root segment type
must contain a unique value. When defined for a dependent segment type,
the sequence field of each occurrence under a given physical parent must
contain a unique value.

Following are the insert rules the user can specify to control the
placement of segments in a data base. They are used to control the
placement of occurrences of a segment type with non-unique sequence
field values and for placement of all occurrences of a segment type when
no sequence field has been defined.

FIRST - States that a new occurrence of a segment type is
inserted before the first existing occurrence of this
segment type. If this segment has a non-unique key, a
new occcurrence is inserted befors all existing
occurrances of the same type that contain the same
sequence fi=ld key.

LAST - States that a new occurrence is inserted after the last
existing occurrence of this segment type. If this
segment has a non-unique key, a new occurrence is
inserted after all existing occurrences of the same type
that contain the same sequence field key.

HERE - Assumes the user has established position on the
specified segment type by a previous Data Language/I call
and the new occurrence is inserted before the segment
which satisfied the last call. 1If current position is
not within occurrences of the segment type being
inserted, the new occurrence is inserted before all
existing occurrences of that segment type. If this
segment has a non-unique key and data base position'is
not within occurrences of the segment type with
equivalent key value, a new occurrence is inserted before
all existing occurrences that contain the same sequence
field key.

Delete

The DLET ([delete) call is used to delete a segment or path of
segments from a data base. It should be noted that, due to the
hierarchic arrangement of segments in a data base, the deletion of a
parent segment implies the deletion of that parent's dependents. When a
parent segment is deleted in an IMS/VS data base, all of its dependents
are deleted.

The REPL (replace) call is used to replace the data in the data
portion of a segment or path of segments in a data base.

Data Base Design Considerations u,13

An SSA identifies a segment or group of segments that are to be
processed by a call. An SSA can contain three parts. As a minimum, it
contains the name of the segment type to be processed. Optionally, an
SSA can contain command codes and/or qualification statements. Command
codes, when used, specify a functional variation of a call.
Qualification statements identify through fields which segment or
segnents of the specified segment type are to be processed by the call.
A qualification statement contains a field name, relational operator and
comparative value. When occurrences of the segment type are searched,
the specified field is compared to the comparative value in accordance
to the relational operator specified.

PHYSICAL DATA BASE ORGANIZATION IN STORAGE

HIERARCHIC SEQUENTIAL AND DIRECT METHODS OF STORING A DATA BASE

Two storage organization methods are used to create the hierarchic
arrangement of segments in storage for the four physical data base
types. The hierarchic sequential method is used for HSAM and HISAM data
bases, and the hierarchic direct method is used for HDAM and HIDAM data
bases. The hierarchic sequential method consists of using physically
adjacent storage locations to store all segments within a data base
record in hierarchic sequence. This creates a hierarchy for the
occurrence of the root and all of its dependents within each data base
record in which each segment is related to the segment that
hierarchically follows it through physical adjacency in storage. The
hierarchic direct method consists of placing four byte direct address
pointers in the prefix of each segment stored in the data base to
establish the hierarchy of segments in each data base record.

A description of the types of pointers used in HDAM and HIDAM data
bases follows.

Pointers

To relate each segment in an HDAM or HIDAM data base to its related
segments, direct address pointers are used. The pointers are four bytes
long, and they are placed in the prefix of each segment stored in the
data base. A direct address pointer consists of the relative byte
address of a segment from the beginning of a data set. Either omne of
two methods of direct address pointing can be specified for each segment
type in an HDAM or HIDAM data base. The two methods are hierarchic
pointing, or the combination of physical child/physical twin pointing.
Figure 4-8 should be referred to when reading the following descriptions
of the types of pointers.

4.14 IMS/VS System/Application Design Guide

- re r i nd re
I i ! - . !
| SKILL p SKILL, i SKILLy i SKILL) : SKILL
! | o I
! (ARTIsT)| 1 | L[(ARTIST) v
7= T A< e
/ ——— A B -
/ / —_—
[]
K t
1
| NAME [
1 1 !
- (ADAMS) hierarchical - Hierarchical
/ ! forward - forward and
/ ! painters P backward pointers
// i (JONES) P
/ [< s
/ / 4 ’
, / 3 / ;
/ / (SHITH) / 7
// / =~ / 7
Pid /’ /7, /
P Vi /, /
- , TN
b \ - -~y)
h N | 1 [X
|
: EXPERIENCE : EDUCAT ION , EDUCAT ION : EXPERIENCE : CDUCATION | | EXPERIENCE EDUCATION
) i
t 1 L 1 2 1 1 L 1 2 2
7T i | r :
Vi | ‘ MY
v b \\ 3
N - . 3 3 “
] [
‘\ | (R
\! A\
o N 4
r f'[—
| 1
| SKILL | SKILL
| ARTIST | ARTIST
T {) PRECEDING SKILL-—— - —(ARTIST))
\, \,
e NEXT SKILL N> NEXT SKILL
Physical twin
Physical twin forward
foward pointers and backward pointers
i [: T | - ! v
| 1
: EXPERIENCE | | Eoucarion | | ExPERIENCE | | EDUCATION : EXPERIENCE : EDUCATION : EXPERIENCE : EDUCATION
L 1 1 ! 2 : 2 i 1 1 ! 2 '
O I ' / 1 :
! - 4l i
U \ ‘\\\,' \\\'
P2 : Hh S~ 2
[\
|
\
t A\
\ N
\,
N _ 4 N_
r rT1-
e (3
RS SKILL leie SKILL
IF 1FlL
L TL
Mukiple f NAME that
/’— are phy sicat chikiren of each SKILL
- ~<
e \\\
/ NAME \ /
!]
\ !
\ / \
N s
~ e
>~ - ~—_ -

physical chitd first

phy sical chid first pustes
end last pointers

Figure 4-8. Direct Address Pointers

Data Base Design Considerations 4.15

Hierarchic Pointers

Two options for hierarchic pointing can be specified for each segment
type in an HDAM or HIDAM data base., They are hierarchic forward, or
hierarchic forward and backward pointing. When hierarchic forward
pointers are specified for all segment types in a data base, each
segment in a data base record points to the segment that hierarchically
follows it through a four byte hierarchic forward pointer. When forward
and backward pointers are specified, the backward pointer points from
each segment in a data base record to the segment that hierarchically
precedes it. The use of hierarchic pointers in an HDAM or HIDAM data
base results in the same arrangement of segments within each data base
record as the hierarchic sequential method provides in an HSAM or HISAM
data base, but rather than segments being related through physical
adjacency, they are related through pointers that require additional
auxiliary storage space. For most data bases with high update activity,
the additional auxiliary storage space used for pointers is more than
compensated for through the space reuse facilities gained in HDAM and
HIDAM data bases.

In a data base that contains hierarchic pointers, when a call is
issued to process a segment in the data base, the hierarchic forward
pointers are followed in searching for the segment to be processed.
Hierarchic backward pointers are used only when a segment is being
deleted. For delete, the backward pointers improve performance by
enabling the pointers in the segments that hierarchically precede and
follow the segment to be deleted to be updated without €first going to
the physical parent of the segment being deleted. With forward only
pointers, deletion of a dependent segment requires going to the physical
parent of the dependent, and then searching forward to update the
pointer in the segment that precedes the segment being deleted as shown
in Figure 4-9,

Physical Child/Physical Twin Pointers

Physical child/physical twin pointers benefit applications that
process the segment types in a data base randomly. They allow th2 most
direct paths to the dependent segment types in a data base. Two optiomns
for physical child and/or physical twin pointers can be specified for
each segment type in a data base. The physical child pointers that can
be specified are physical child first, or both physical child first and
last. The physical twin pointers that can be specified are physical
twin forward, or both physical twin forward and backward. When
specified for all physical child segment types, physical child pointers
are stored in the prefix of each physical parent segment, and they point
to each of the physical child segment types of that physical parent
segment. A physical child first pointer points from a physical parent
segment to the first occurrence of a physical child segment type in a
data base that is a dependent of that physical parent. A physical child
last pointer points from a physical parent segment to the last
occurrence of a physical child segment type in a data base that is a
dependent of that physical parent. If a physical parent segment has
multiple physical child segment types, its prefix contains physical
child first, or first and last pointers to each of those physical child
segment types. Physical twin pointers are used to relate all
occurrences of the same physical child segment type that are dependents
of the same physical parent segment. Physical twins are multiple
occurrences of the same segment type that are dependent on one
occurrence of a physical parent segment type. A physical twin forward
pointer points from a given twin to the twin following it in the data
base, and a physical twin backward pointer points from a given twin to
the twin before it in the data base.

4.16 IMS/VS System/Application Design Guide

Delete segment B4:

Al
B5
B4
B3
B2 Enter B4 to delete B4:
(1) Place pointer to BS5 that is in B4 in work area.
Bl (2) Goupto Al

(3) Follow pointers forward to B3.

(4) Replace pointer to B4 that is in B3 with pointer to BS from
work area.

(5) Delete B4.

Al
B5
B4
B3
B2 Enter B4 to delete B4:
(1) Place Forward & Backward pointers that are in B4 in work area.
Bl (2) Follow backward pointer to B3.

(3) Replace pointer to B4 that is in B3 with pointer to BS from work
area.

(4) Follow Forward pointer to BS.

(5) Replace pointer to B4 that is in B5 with pointer to B3 from work
area.

(6) Delete B4.

FPigure 4-9. Jse of Backward Pointers for Delete

In searching for a given segment in a physical data base using
physical child/physical twin pointers, the physical child first and
physical twin forward pointers state the hierarchic path to be followed
in search of the segment. The normal path followed in locating a
desired segment is from a given physical parent segment to the first
occurrence of one of its physical child segment types, and then forward
through all occurrences of that segment type to the last occurrence
following physical twin forward pointers.

A physical child last pointer enables a search to go directly from a
physical parent to the last occurrence of one of its physical child
segment types as shown in Piqure 4-10. In so doing, the physical chilad
last pointer eliminates the forward search of all occurrences of a
segment type under one physical parent when only the last occurrence of
the physical child is desired. A physical child last pointer is used
when inserting a new segment with no sequence field and the insert rule
specified is last, or for get or insert, when command code L is

Data Base Design Considerations 4,17

specified for the call and the SSA for the call has no qualification
statement. When a physical child last pointer is followed to the last
occurrence of a dependent segment, any further movement in the data base
is forward. A physical child last pointer does not enable searching
from the last to the first occurrence of a dependent segment under one
physical parent sagment.

Al

B9
B8

Physical child last pointer eliminates
the need for a forward search of all
occurrences stored before the last
occurrence

Figure 4-10. Use of Physical Child Last Pointer

Physical twin backward pointers in dependent segment types are used
to improve delete performance as described for hierarchic backward
pointers. In addition, when physical twin forward and backward pointers
are specified for the root segment type of a HIDAM data base, they
enable sequential processing across data base records without
intervening references to the HIDAM index. When only physical twin
forward pointers are specified for the root segment type of a HIDAM data
base, sequential processing across data base records requires
intervening references to the HIDAM index.

DATA SET GROUPS

To describe what data sets are used for storing the segment types in
a data base, and to describe the physical characteristics of those data
sets, data set groups are defined through the DBDGEN utility using
DATASET statements. For an HSAM data base, one data set group is
defined. For HISAM, HDAM and HIDAM data bases, from one to 10 data set
groups can be defined. The terms used to describe data set groups are
primary and sccondary. A primary data set group contains the root
segment type. All other data set groups. are called secondary data set
groups. A primary data set group must be defined for each data base
type. A secondary data set group is normally defined to enable using
data sets with different logical record and control interval or block
lengths to enhance auxiliary storage space utilization. In a HISAM data
base, a secondary data set group offers one additional advantage. It
enables direct access to a segment type at the second level of a HISAM
data base without first accessing a root.

4.18 IMS/VS System/Application Design Guide

Rules for Dividing a Data Base into Data Set Groups

HISAM, HDAM and HIDAM data bases can be divided into a maximum of 10
data set groups according to the rules that follow.

For HISAM data bases, secondary data set groups cannot be defined
when VSAM is used as the 0S/VS access method for the data base, or when
a HISAM data base is indexed by a secondary index. HISAM data bases
using ISAM/0SAM as the 0S/VS access methods and not indexed by a
secondary index can only be divided into multiple data set groups at the
second level of its hierarchy. The first segment type defined in a
secondary data set group must be a segment type defined at the second
level of the hierarchy of a HISAM data base. Included in a secondary
data set group, are all segment types dependent on the first segment
type defined in that secondary data set group.

For HDAM or HIDAM data bases, secondary data set groups can be
started with a segment type defined at any level of the hierarchy and
the secondary data set group can contain any combination of the segment
types in the data base. However, the following restriction must be met,
A physical parent and its physical children must be connected by PC/PT
pointers when they are in different data set groups; a PC/PT pointer
means that each parent must be a physical child ({PC) pointer to the
first occurrence of each child type, and that the children must be
connected to each other by physical twin (PT) pointers.

HSAM STORAGE ORGANIZATION

In an HSAM data base, all data base records within a data base, as
well as all segments within each data base record are related through
physical adjacency in storage as shown in FPigure 4-11. An HSAM data
base is stored on a tape, or a direct access storage device as a
sequential data set. The data set is loaded in chronological sequence
and it uses a fixed length unblocked format (RECFM=F). Since the data
set is loaded in chronological sequence, the order in which the user
presents each segment to be stored in the data set establishes the
hierarchic arrangement of segments in the data base. A sequence field
is not required in the root segment type of an HSAM data base.

Data Base Design Considerations 4,19

http:12i!i~i.ng

DATA BASE RECORD
STRUCTURE
SKILL
1
TP-BSAM
BATCH-
QSAM
OR BSAM
P [}
A]
EXPERIENCE i EDUCATION
(EXPR) |4 (EDUC)
BLOCK #1 BLOCK #2 BLOCK #3
[SKILL1] RAEL] EXPRI | EDUCT) [RAREZ | DXPRE | EXPRG | EXPRA | (O3 | EDOC2 | EDCS |

Figure 4-11. One Data Base Record of HSAM Data Base on Tape

When a sequence field is defined in the root segment type, each data
base record must be presented for loading in ascending key sequence.
Within each data base record, all segments must be presented for loading
in hierarchic sequence.

In the data set, one or more consecutive blocks are used %o store a
data base record. Each block is filled with segments of a data base
record until the remaining space is not sufficient for the next segment
to be stored. When not sufficient for the next segment to be stored,
the remaining space in the block is padded with zeros and the segment is
stored in the next consecutive block. When the last segment of a data
base record has been stored in a block, any unused space, if sufficient,
is filled with segments from the next data base record.

Initial entry to an HSAM data base is through get unique or get next
calls. When the first call is issued, the search for the desired
segment starts at the beginning of the data base in storage, and passes
sequentially through all segments stored in the data base until the
desired segment is reached. After the desired segment is reached, the
position it occupies is used as the starting position for any additional
calls that process the data base in a forward direction. Prom current
position in an HSAM data base that has a unique seguence field defined
in the root segment type, if a get unigque is issued to retrieve a
segment that is forward in the data base, the search starts from current
position and moves forward to the desired segment. If the desired
segment requires backward movement in the data base, the processing
option parameters 6 or GS, which are specified during PSBGEN, determine
how backward movement is accomplished. The G processing option
specifies the get function only, whereas the GS processing option

4.20 IMS/VS System/Application Design Guide

o

specifies get segments in ascending sequence only. If GS has been
specified and backward movement in a data base is required to satisfy a
get unique, the search for the desired segment will start at the
beginning of the data base and move forward. Under the same conditions
when the G processing option is specified, from current position the
search will move backwards in the data base. This is accomplished by
backspacing over the block just read on tape or disk, and the block
previous to the block just read, then reading the previous block forward
until the desired segment is found.

An HSAM data base can be randomly processed through get unique calls
within one volume. When no sequence field has been defined in the root
segment type of an HSAM data base, each get unique causes the search for
the desired segment to start at the beginning of the data base
regardless of current position.

Insert, delete and replace calls cannot be used vwhen processing an
existing HSAM data base. The only calls that are valid for processing
an existing HSAM data base are th=2 get calls which enable retrieval of
segments from the data base only. To update an HSAM data base, it must
be reloaded.

Simple HSAM

A simple HSAM data base is an HSAM data base that contains only one
segment type. When a simple HSAM data base is defined, occurrences of
the segment type are loaded into the data base without prefixes.

HISAM STORAGE ORGANIZATION

In a HISAM data base, segments within each data base record are
related through physical adjacency in storage as with an HSAM data base.
Unlike HSAM however, in a HISAM data base each data base record is
indexed. In d=2fining a HISAM data base, the user must define a unique
sequence field in the root segment type of the data base. When defined,
the sequence field values in occurrences of the root are used to index
to each data base record in the data base.

In defining a HISAM data base, the user can specify VSAM or the
combination of ISAM/OSAM as the access methods to be used for the data
base. When ISAM/OSAM are specified, he can also specify that the HISARN
data base be stored as one to 10 data set groups. If VSAM is specified,
a HISAM data base can have only one data set group. When VSAM is
specified as the access method, a data set group contains one key
sequenced data set and one entry sequenced data set. When ISAM/OSAM are
specified as the access methods each data set group contains one ISAM
data set and one OSAM data set. 1In both cases, one data set, key
sequenced or ISAM, is used for primary storage of segments and as an
index. The other data set, entry sequenced or OSAM, is used for
overflow storage of segments. The terms used to describe data set
groups are primary and secondary. A primary data set group contains the
root segment type. All other data set groups are called secondary data
set groups.

HISAM Data Base Stored as One Data Set Group

When only one data set group is defined for a HISAM data base, the
data base is stored as shown in Figure 4-12. Each key sequenced or ISAM
logical record will contain in hierarchic sequence an occurrence of the
root, plus all dependents of the root that there is sufficient space for
in the logical record. When no space remains for the remaining segments
in a data base record, the remaining segments are stored in hierarchic

Data Base Design Considerations 4.21

sequence in one or more logical records of the entry sequenced or OSAM
data set. To relate all logical records in both data sets that contain
segments in one data base record, a direct address pointer is stored in
each logical record to chain them in hierarchic sequence.

DATA BASE RECORD STRUCTURE

SKILL

1

KEY SEgUENCED ENTRY SEQUENCED
0 OR
ISAM DATA SET OSAM DATA SET

ILL1 EXPR1 | PTR

Mc}_/

Figure 4-12. HISAM Data Base Record in Storage (Single Data Set Group)

The structures of logical records for VSAM, and ISAM or OSAM data
sets are shown in Figure 4-13. The first 3 bytes of each logical record
for ISAM or OSAM, and the first 4 bytes of each logical record for VSAM
are used for a direct address pointer. The pointer is used to maintain
root segments in ascending key sequence and to maintain all segments
within a data base record in hierarchic sequence when new segments are
inserted into a data base after initial load. Following the pointer are
one or more segments of a data base record in hierarchic sequence. At
the end of the last segment in the logical record for VSAM, ISAM or
OSAM, a one byte segment code of zero is stored to indicate that the
last segment in the logical record has been reached. Following the zero
segment code for VSAM, remaining space in a logical record is residual.
Following the zero segment code for ISAM or OSAM, there are three bytes
of zeros, or a 3 byte direct address pointer.

4,22 INS/VS System/Application Design Guide

ISAM/OSAM Format

SEGMENT
CODE
* SEGMENT SEGMENT SEGMENT o 830 RESIDUAL
NOTE 1 (1BYTE) NOTE 2
VSAM Format
SEGMENT
* SEGMENT SEGMENT SEGMENT C8DE RESIDUAL
NOTE 3 (1 BYTE)
NOTES:

1. The pointer is comprised of the 3 byte relative record number
of the OSAM data set logical record that contains a root inserted
after initial load.

2. The pointer is comprised of the 3 byte relative record number
of the OSAM data set logical record that contains the next
dependents in hierarchic sequence.

3. The pointer is comprised of the 4 byte relative byte address of
the entry sequenced data set logical record that contains the
next dependents in hierarchic sequence.

Figure 4-13, HISAM Data Base VSAM, ISAM and OSAM Logical Record
Formats

Three bytes of zeros indicate that this logical record contains the
last segment in a data base record. If not zeros, a three byte pointer
points to the logical record that contains the next segments in the data
base record in hierarchic sequence.

In a VSAM data set, one or more logical records are contained in each
control interval. In an ISAM or OSAM data set, one or more logical
records are contained in each block. A control interval or block is the
unit of data transferred between an I/0 device and main storage. For
VSAM and ISAM data sets, the respective access method uses an index to
address a specific control interval or block in a data set. For an
entry sequenced data set or an OSAM data set, direct addresses are used
to address each control interval or block respectively in a data set.

To load a HISAM data base, occurrences of the root segment type must
be arranged in ascending key sequence, and all dependents of each root
must follow that root in hierarchic sequence. In the key sequenced or
ISAM data set, consecutive logical records within a control interval or
block are used to store root segment occurrences in ascending key
sequence. The first logical record contains the root segment with the
lovwest key, the next consecutive logical record contains the root
segment with the next higher key, and the last logical record con*ains
the root segment with the highest key in that control interval or block.
In addition, control intervals or blocks within a data set are loaded in
ascending root segment key sequence, this enables a given data base
record to be accessed directly through the key of its root.

Data Base Design Considerations 4,23

HISAM Logical Record Lengths

Logical record lengths are a major consideration in a HISAM data
base. They affect space and access time.

Extremely short or long logical records tend to increase wasted
space. Since only complete segments are stored in a logical record, a
gap of space is usually unused at the end of each logical record. The
number of gaps increases as the LRECL becomes small, and the size of
gaps increases as the logical record length becomes large (if data base
records are shorter than the logical record length, the remaining space
is lost).

All segments in a logical record are accessed with one read of an 1I/0
device. Accessing additional logical records may require additional
reads and seeks depending on physical positioning. The number of seeks
and reads to access an entire data base record is in proportion to the
number of logical records which comprise that data base record, and
therefore increases as the logical record length decreases.

To choose a value for LRECL, several choices should be tried with the
following restrictions:

1. Primary data set group:

The minimum length for a logical record in the primary data set
must be at least equal to the maximum root segment length,
including prefix, plus 5 bytes for VSAM or 7 bytes for ISAM. The
mininmum length for a logical record in the overflow data set must
be at least equal to the longest segment in the data set group,
including prefix, plus 5 bytes for VSAM or 7 bytes for OSAM. If
a HISAM data base using ISAM/0SAM has only one physical segment
type, the ISAM/0SAM overhead is 3 bytes, not 7 bytes.

2. Secondary data set group:

The minimum length for a logical record in the primary data set
must be at least equal to the longest second level segment type,
including prefix, plus the root key length plus 7 bytes. The
minimum length for a logical record in the overflow data set must
be at least equal to the longest segment in the data set group,
including prefix, plus 7 bytes.

3. The logical record length in the overflow data set must be
greater than or equal to the logical record length in the primary
data set.

4. For ISAM/0SAM the maximum length cannot exceed the physical block
size of the I/0 device used. Note that ISAM requires keyed
blocks while OSAM uses non-keyed blocks. For VSAM, the maximum
logical record length is 30720.

5. For ISAM/OSAM, LRECLs must be divisible into physical block size
(\/2, 1/3, 1/4, etc.)

6. VSAM LRECL values must be an even length.

For each LRECL value chosen, the average usable space within a record
can be calculated as follows:

u = (LRECL - A - B)
2

4.24 IMS/VS System/Application Design Guide

vhere:

u = usable data characters per logical record.

A = weighted average of segment lengths not including the
root segment.

B =7 for ISAM/OSAM, and 5 for VSAM,

The number of logical records required for a particular type data
base record is then calculated by dividing the usable logical record
length into the total length of the data base record. By breaking the
file into a number of typical record typss and calculating the space
required for each, the total space requirements can be approximated.

As stated before, the number of reads required to obtain an entire
data base record is proportional to the number of logical records it
requires., By using "typical" records the number of logical records
required for the entire file can be calculated. Due to record blocking
and the IMS/VS buffer pool management, the actual number of accesses
required will be less than the number of logical records. A file
requiring fewer (large logical record length) logical records can be
accessed faster than the same file with an LRECL value requiring more
logical records {small logical record length).

If the number of logical records (relative access time) and total

space are plotted against several trial LRECL values, the graph should
take the following general form:

High

)

No. of Log Records (----)

TOTAL SPACE (

Low

LRECL increase—>

As shown, as the value of LRECL gets larger, the number of logical
records decreases continually, until the LRECL specification equals *he
largest data base record length. At this point, the number of logical
records equals the number of data base records.

The total space requirements tend to rise if the value of LRECL is
either too long or too short. Once several trial LRECL values have been
plotted, it should be possible to pick a good one for the file.
Consideration should be given to the relative importance of space and
access time in the individual situation.

The ISAM and OSAM portions of the data base need not have the same

LRECLs. To determine the effect of different values for LRECL, each
portion of the data base must be figured separately as above.

Data Base Design Considerations 4.25

HISAM Root Segment Insertiop

To maintain root segment in ascending key sequence when new roots are
inserted after initial load of a HISAM data base, one method is used
vhen VSAM is specified as the access method for the data base and
another method is used when the combination of ISAM and OSAM are
specified as the access methods.

The method shown in Figure 4-14 is used when VSAM is specified. The
proper control interval in the key sequenced data set for the new root
is obtained, and if the control interval has a free logical record, the
new root is stored in ascending key sequence in the control interval by
pushing all logical records that contain roots with higher keys to the
right one position. If no free logical record exists in the control
interval, the control interval is split forming two control intervals
that are both equal in size to the original.

Insert root with key of 15

BEFORE
10 BYTES OF
! R?OOTI DEP 'DEP ! R%’TI DEPI DEP| FREELRECL | FREELRECL | FREELRECL |VSAMCONTROL
* * INFORMATION**
AFTER
10 BYTES OF
! R?(:)TI DEP |DEP HROOT| pEp |DEP ! ROOT DEPI DEP| FREELRECL | FREELRECL |VSAMCONTROL
£ * INFORMATION**
«— LRECL —3
< CONTROL INTERVAL >

* The pointer is comprised of the 4 byte relative byte address of the
entry sequenced data set logical record that contains the next
dependents in hierarchic sequence.

** For unblocked data sets, the VSAM control information is
only 7 bytes.

Figure 4-14. Root Segment Insertion into Key Sequenced Data Set
Control Interval

Each new control interval will contain approximately one half of the
logical records that were stored in the original control interval which
results in free logical records in the last half of each new control
interval. After the control interval has been split, the new root is
stored in the proper control interval in ascending key sequence by
pushing all logical records that contain roots with higher keys to the
right one logical record.

To maintain root segments in ascending key sequence when ISAM and
OSAM are specified as the access methods for a HISAM data base, the
method shown in Figure 4-15 is used. Each new root is stored in an OSAM
logical record. To maintain root key sequence, a direct address pointer
is placed at the beginning of the ISAM logical record that contains the

4.26 IMS/VS System/Application Design Guide

root segment with the next higher key to point to the OSAM logical
record that contains the inserted root as shown in Example 1. Example 2
shows a second root segment being inserted in the OSAM data set. The
logical record that contains the root with the next higher key in the
ISAM data set points to the OSAM logical record that contains the root
with the lowest key. That OSAM logical record in turn points to the
OSAM logical record that contains the next higher key.

EXAMPLE 3 - INSERT ROOT 13

[ooo T oot 10 [BTN oot 20 |

LOGICAL RECORD 29
(027 | RooT 13]

Figure 4-15. Root Segment Insertion When ISAM/OSAM are HISAM Data Base
Access Methods

In a HISAM data base, the order of chaining a series of root segments
can significantly impact updates. If the addition of root segments is a
part of the update, insertions should be made in descending sequence,
highest key first when ISAM/OSAM are the OS access methods. This
reduces the number of reads necessary to find a point at which to insert
a nev root. It can be seen in Figure 4-16 that, even with a short
chain, the insertion of higher root keys requires a larger number of
accesses than the insertion of lower keys. For example, to insert Root
46 it was necessary to read both Roots 34 and 36. The insertion of 32,
however, only required the reading of Root 34, Note that the building
of long chains of roots occurs only when a large number of updates
affects the same area of the data base. The need for descending
insertions is less if the inserts are distributed over the data base.

Data Base Design Considerations u,27

When VSAM is used for a HISAM data base, nev roots can be inserted in
either ascending or descending sequence. Ascending sequence should
provide slightly faster performance.

PHYSICAL RECORD

@1 0G]CAL RECORD —-—7———LOGICAL RECORD —-——LOGICAL RECORD—#
v Y v
ROOT DEP1 ROOT DEP1 A ROQT DEP2
2
27 3l 48
ROOT
A
1
36 34 2ND

je———L0G!CAL RECORD 1——»{«¢——L0GICAL RECORD 2—]
PHYSICAL BLOCK A

ROOT ROOT

47 32 Uth
j¢—— LOGICAL RECORD 1—
PHYSICAL BLOCK B

3rD

Figure 4-16. HISAM Root Segment Insertion Sequence

HISAM Dependent Segment Insertion

The method used to maintain the hierarchic sequence of segments
within a data base record when new dependent segments are inserted into
a HISAM data base is essentially the same for both VSAM, and the
combination of ISAM and OSAM access methods.

In a HISAM data base, one logical record in the primary storage data
set and, if necessary, one or more logical records in the overflow
storage data set, are used to store each data base record. Within each
logical record and across all logical records that contain segments in
one data base record, segments are hierarchically related through their
physical sequence in storage. Within each logical record, segments are
physically stored in hierarchic sequence, and across logical records, a
direct address pointer relates each logical record to the next in
hierarchic sequence.

4.28 IMS/VS System/Application Design Guide

Figure 4-17 shows how the physical sequence of segments within a data
base record in storage is maintained when inserting dependents into a
data base after initial load. Example 1 shows a dependent segment being
inserted into a logical record that contains sufficient space for the
new dependant. The new dependent is stored in its proper hierarchic
position within the logical record by shifting the segments that will
hierarchically follow it to the right within the logical record.

Example 2 shows segments displaced to a logical record at the end of the
overflow data set when the inserted segment did not leave sufficient
space for them at the end of the original logical record. 1In Example 3,
the length of the sagment being inserted is greater than the space
remaining in the original logical record even after displacing following
segments in that logical record, so all are placed in an overflow
storage logical record. Example 4 shows an inserted segment that will
not fit into the original logical record, and a displaced segment that
will not fit into the first overflow logical record with the inserted
segment. Two overflow logical records are used, and they are chained
together in hierarchic sequence. '

In the previous examples, the overflow logical records referred to
are at the end of the entry sequenced data set when VSAM is the access
method specified, and they are at the end of the 0SAM data set when
ISAM/0SAM are specified as the access methods. In both cases, logical
records at the end of the respective data sets are used for newly
inserted or displaced segments from both the primary storage data set
and the overflow storage data set.

Data Base Design Considerations 4.29

Example 1- Space available in logical record for dependent being inserted.

Key sequenced, \
ISAM or OSAM
data set /

BEFORE
snggn:mo DEP10 | DEP30

AFTER INSERT Depzo\‘
s“ggzmo DEP10 | DEP20 | DEP30

__

Example 2- Space available in logical record for dependent being inserted by displacing
existing segments in logical record to an OSAM or entry sequenced
data set logical record.

Key sequenced, or
ISAM data set

BEFORE
ROOT
sEgm1oo | DEP10 DEP20 | DEP30
INSERT DEP15
AFTER N\
ROOT .
sEGMm100 | DEP10 DEP15
/—f
Entry sequenced
or
OSAM data set
AFTER DEP20 | DEP30 | |

*The pointer is at the beginning of VSAM logical records.

Figure 4-17 (Part 1 of 3). Dependant Segment Insertion into a HISAM Data
Base with One Data Set Group

4.30 IMS/VS System/Application Design Guide

\e

Example 3- Space available in logical record after segments are displaced but
dependent being inserted is too large.

Key sequenced,
ISAM or OSAM
data set
BEFORE
ROOT
SEGM100 DEP10 DEP20 DEP30
AFTER
ROOT
SEGM100 DEP10 DEP20 *
Insert DEP27 (DEP27 greater in ——

length than DEP30) (

Entry sequenced or
OSAM data set

AFTER k DEP27] oepa0 | |
\

*The pointer is at the beginning of VSAM logical records

Figure 4-17 (Part 2 of 3). Dependent Segment Insertion into a HISAM Data
Base with One Data Set Group

Data Base Design Considerations

u4.31

Example 4 Space available in logical record after segments are desplaced to
overflow, however, segment being inserted is too large and segment
displaced will not fit in 1st overflow.

Key sequenced, or
ISAM data set

BEFORE

:gc(;)n;wo DEP 10 DEP20
apren 'NSERT DEPIS

SEGmioo | DEP1O | *

~_ /)

/
Entry sequenced or
OSAM data set /

AFTER| |D [+ 1

-/

AFTER wm\ | /]

*The pointer is at the beginning of VSAM logical records

Figure 4-17 (Part 3 of 3). Depéndent Segment Insertion into a HISAM Data
Base with One Data Set Group

HISAM Segment Deletion

ISAM/OSAM: When segments are deleted in a HISAM data base that uses
ISAM/0SAM, segments are simply marked as being deleted in the delete
byte contained in their prefix. They are not physically deleted from a
data base. To regain space occupied by deleted segments, a HISAM data
base must be unloaded and reorganized by the user through the HISANM
reorganization unload and reload utilities.

VSAM: Segment deletion in a HISAM data base using VSAM is the same as
stated for ISAM/0SAM except as follows. When a root segment is deleted
from a HISAM data base that uses VSAM, the logical record in the key
sequenced data set that contains the root is either erased or the delete
byte is marked as when using ISAM/0OSAM. An erase is only done when
processing the data base in batch mode, the root or any dependent of the
root is not involved in an active logical relationship, and there is
only one PCB per data base within the PSB.

4.32 IMS/VS System/Application Design Guide

Secondary data set groups should be considered for HISAM data bases
using ISAM/0SAM as the 0S/VS access methods in two cases. They should
be considered when storage space is wasted because an efficient logical
record length cannot be found for the primary data set group due to
segment types in the data base whose lengths vary considerably. And,
when access to a dependent segment type in the data base is too time
consuming through the primary data set group.

As in a primary data set group, each secondary data set group uses
two data sets. An ISAM data set is used as the first storage data set
and as the index to the first segment type defined in that data set
group. An OSAM data set is used as the overflow storage data set. The
benefit gained in defining multiple data set groups is that each data
set group defined can have different logical record and block lengths.
In addition, the occurrences of the first segment type defined in each
secondary data set group are indexed through the key of the root segment
they follow in a data base record. When defining a secondary data set
group, the minimum LRECL must be expanded by the amount necessary to
append sequence field keys of the root segment type onto occurrences of
the first segment type defined in the secondary data set group.

When only one data set group is defined for a HISAM data base, the
segments in each data base record are stored in hierarchic sequence
using one logical record in the first storage data set and, if
necessary, one or more logical records in the overflow data set, To
index each data base record, the key of the root that starts each data
base record is used. When nmultiple data set groups are defined, one
logical record in the first storage data set of each data se+ group and,
if necessary, one or more logical records in each overflow data set are
used to store the segments of one data base record as shown in Pigure
4-18, To index each data base record, the key of the root that starts
each data base record is duplicated and is used to index the segments in
each secondary data set group that are in the same data base record. 1In
the figure, the secondary data set group contains a duplicate of the key
of the root that starts that data base record. The duplicate key is
followed by the first occurrence of the description segment type in the
data base record, which in turn, is followed by all other segments in
that base record in hierarchic sequence.

The use of multiple data set groups to store a HISAM data base has an
affect on main storage requirements. Each data set group requires
additional space in the DMB pool.

Simple HISAM

A simple HISAM data base is a HISAM data base that contains only one
segment type. When defining a simple HISAM data base, VSAM must be the
access method specified. When defined, occurrences of the segment type
are loaded into the data base without prefixes, thus making the data
sets that contain the data base compatible for use by VSAM as well as
INS/VS.

Data Base Design Considerations 4,33

DATA DASE RECORD STRUCTURE

DESCRIPT]
(DESCR)

22
.]' [
1
EXPERIENCE |} 3] EDUCATION [,(3 CoDe

(EXPR) * (EDUC) ({2 12

e

S (V7]

e

PRIMARY DATA_SET GROUP

ISAM Data Set

[SKTCLI] NAPET | EXPRI | EDUCL [PIR

OSAM Data Set

RAME2 | EXPR2 [EXPR3 | EXPRY |PTRL
WAMES | EDUCZ] EDUCS | 1

SECONDARY DATA SET GRUUP

ISAM Data Set

T Joescri] cobel [DESCR2] CODEZ [PTR

Duplicate Of
SKILL1,
Key

OSAM Data Set

DESCR3] CODE3 |

Figure 4-18. One Data Base Record in a HISAM Data Base (Multiple Data
Set Group)

HDAM AND HIDAM STORAGE ORGANIZATIONS

Two of the primary advantages gained with HDAM and HIDAM data bases
are space reuse and the ability to access segments within the data base
through direct address pointers. Either data base type is stored in one
or more VSAM entry sequenced or OSAM data sets depending on the number
of data set groups defined. Space within each data set is managed
through free space elements and bit maps. When segments are inserted or
deleted from either data base type, the space used or freed by those
segments is recorded in a bit map to enable its reuse when inserting new
segments. To hierarchically relate segments in HDAM and HIDAM data
bases, direct address pointers are used. 1In either data base type,
hikrarchic, physical child/physical twin or any combination of the two
types of pointers can be specified.

The storage organization methods used for HDAM and HIDAM data bases
are essentially the same. The primary difference between HDAM and HIDAM
data bases is that access to occurences of the root segment type is
through a user randomizing module for an HDAM data base, and through an
index for a HIDAM data base. To access a given root in an HDAM data
base, the randomizing module examines the key of the root, and through
hashing or some other arithmetic technique, computes the address of the
root and passes it to IMS/VS. To access the same root in a HIDAM data
base, an index must be searched by IMS/VS to find the address of the
root. When found, the root is accessed. By using a randomizing module
to locate roots, the I/0 operations required to search the index are
eliminated.

4.34 IMS/¥S System/Application Design Guide

HDAM

To use an HDAM data base, the user must supply a randomizing module.
The randomizing module determines where each root should be stored in
the data base, and supplies the address of each root stored to IMS/VS
each time that root must be accessed: Addresses supplied by a
randomizing module consists of a relative block naumber and an anchor
point number. Anchor points are stored in the anchor point area of each
control interval or block, and each is a four byte direct address
pointer to a root. To access a given root, the relative block number
locates a specific control interval or block in relation to the start of
the data set, and the anchor point number locates a specific anchor
point in the anchor point area of that control interval or block.

Figure 4-19 shows the organization of an HDAM data base in storage.
The entry sequenced or OSAM data set in the primary data set group is
divided into two areas called the root addressable area and the overflow
area. The root addressable area is the first n control intervals or
blocks in the data set, and the overflow area is the remaining portion
of the data set.

The root addressable area is the area in which the user randomizing
module assigns roots. The length of the root addressable area is
spacified by the user through the DBDGEN utility. Also specified is the
number of anchor points to be placed in the anchor point area of each
control interval or block in the root addressable area. A third
parameter specified is the maximum number of bytes of a data base record
to be stored in the root addressable area. The root addressable area is
used as the primary storage area for segments in each data base record,
and the overflow area is used for overflow storage. Since data base
records vary in length, the bytes parameter is used to control the
amount of space used for each data base record in the root addressable
area. The bytes parameter limits the number of segments of a data base
record that can be consecutively inserted into the root addressable
area. When consecutively inserting a root and its dependents, each
segment is stored in the root addressable area until the next segment to
be stored will cause the total space used to exceed the bytes parameter.
The total space used for a segment is the combined lengths of the prefix
and data portions of the segment. When exceeded, that segment and all
remaining segments in the data base record are stored in the overflow
area. It should be noted that the bytes parameter only controls
segments consecutively inserted in one data base record. Consecutive
inserts are inserts to one data base record that are not intervened by
any call to process a segment in a different data base record.

The general criteria to determine the size of the root addressable
area is:

Number of bytes of

a data base record the expected number
to be stored in the x of data base records
root addressable area

= required size
(Number of bytes per block) of the root
addressable
area in blocks

Data Base Design Considerations 4,35

— DATA BASE RECORD STRUCTURE

SKILL
1

EDUCAT[ON
(EDUC) 4

EXPERIENCE !i

(EXPR) ;|2

ENTRY SEQUENCED OR
OSAM DATA SET

ANCHOR
POINT NEXT DB RECORD

||| SKILLL | HAMEL)\]

—
T - — -

a |
EXPRL | EDUCI? NAME2 | EXPR2 | EXPR3]]

AREA

ROOT
ADDRESSABLE

OVERFLOW
AREA

EXPR4 | NAME3 | EDUC2 | EDUC3 | J

Figure 4-19. HDAM Data Base Record in Auxiliary Storage

In addition, if distributed free space is specified, the space
estimate obtained must be multiplied by one factor for free blocks and
another for free space within each block as shown in the following
formula:

(Total Space) = (Minimum Space) X £bff X i
bff-

where:

2 £ fbff < 100 or fbff = 0 and 0 < fspf < 100

See "Distributed Free Space" ‘in this chapter for definitions of fbff
and fspf.

4.36 IMS)VS System/Application Design Guide

At least root segments should be stored in the root addressable area.
In addition, active dependent segments should be placed in the root
addressable area since this will provide fast access to them becaunse of
their physical proximity to the root segment. When all space in the
root addressable area is occupied, all segments inserted (roots
included) are placed in the overflow area.

The size of the root segment addressable area is fixed with DBD
generation. The overflow area however, can be dynamically extended if
the overflow storage data set allocation is specified as secondary
allocation.

To load each data base record into an HDAM data base, the user
randomizing module generates a relative block and anchor point number
for the root that starts that data base record and passes them to
IMS/VS. 1INS/VS in turn, attempts to store the root in the control
interval or block specified. If space is available in that control
interval or block, the root is stored and a four byte direct address
pointer to the root is storad in the specified anchor point position in
the anchor point area of that control interval or block. When space is
not available in the control interval or block specified, IMS/VS uses
the HD space search algorithm to find the available space nearest to the
control interval or block specified by the randomizing module. When
found, the root is stored and a pointer to that root is stored in the
original anchor point position and relative block number specified by
the randomizing module.

When a randomizing module produces the same relative block and anchor
point number for multiple roots, the specified anchor point points to
one, and the rest are chained through physical twin pointers. When a
unique sequence field has been defined in the root segment type, the
anchor point points to the root with the lowest key and the rest are
chained in ascending key sequence through physical twin pointers. When
a unique sequence field is not defined, the insert rules of FIRST, LAST
or HERE determine the sequence in which the roots are chained. 111
roots chained from a given anchor point are called synonyms since all
have the same relative block and anchor point number. To reduce the
length of root segment synonym chains if they affect performance, the
user should increase the number of root anchor points specified for each
control interval or block in the root addressable area. The user
randomizing routine can then distribute the roots across more anchor
points, thereby reducing the number of synonyms per anchor point.

After a root is loaded into the root addressable area, the next
segments in a data base record are stored following the root until the
bytes parameter causes the remaining segments in a data base record, if
any, to be stored in the overflow area.

HIDAM

A HIDAM data base in auxiliary storags is actually comprised of two
data bases that are normally referred to collectively as a HIDAM data
base. When defining each through the DBDGEN utility, one is defined as
the primary HIDAM index data base and the other is defined as the HIDAM
data base. In the following discussion the terms 'HIDAM data base' will
refer to the HIDAM data base defined through DBDGEN.

The primary HIDAM index data base is used to index to the data base
records stored in a HIDAM data base. When a HIDAM data base is defined
through DBDGEN, a unique sequence field must be defined in the root
segment type. The resulting key in the sequence field of each

Data Base Design Considerations 4,37

occurrence of the root is used by IMS/VS to create an index segment for
each root that is stored in the index data base. To identify which root
an index segment indexes, the key in the sequence field of a root is
stored in the data portion of an index segment. To index to that root,
the address of the root in the HIDAM data base is stored as a direct
address pointer in the prefix of its index segment.

Loading a HIDAM Data Base

When the user loads a HIDAM data base, the primary HIDAM index data
base is loaded automatically by IMS/VS. 1In loading a HIDAM data base,
all roots must be inserted in ascending key sequence, and all dependents
of a root must be inserted following that root in hierarchic sequence.
As each root is stored in the HIDAM data base, IMS/VS generates the
index segment for that root and stores it in the index data base.

The index data base consists of an ISAM and an OSAM data set when
ISAM/0SAM are specified as the access methods for the data base, or it
consists of a key sequenced data set when VSAM is specified as the
access method as shown in Figure 4-20. When ISAM/0OSAM are specified for
the index data base, the ISAM data set is used for storage of index
segments created during initial load of a HIDAM data base, and it is
called the primary data set. The OSAM data set is used for storage of
index segments created when new roots are added to a HIDAM data base
after initial load, and it is called the overflow data set. When VSAM
is specified for the index data base, the key sequenced data set is used
for both index segments created during initial load and after initial
load.

When ISAM/OSAM are used for an index data base, all index segments
for roots initially loaded are stored in ascending key sequence in the
ISAM data set. When roots are added after initial load, the index
segment for that root is stored in the first available logical record in
the OSAM data set. When this occurs, a pointer is stored at the
beginning of the logical record in the ISAM data set that contains the
next higher key. The pointer points to the logical record in the OSAM
data set that contains the added index segment. When multiple index
segments have to be chained from the same logical record in the ISAM
data set, the logical record in the ISAM data set points to the OSAM
logical record that contains the index segment with the lowest key. Any
additional 0SAM logical records to be chained are chained from the first
OSAM logical record in ascending key sequence. Since index segments
added after initial load are stored in the 0SAM data set, their access
requires additional I/O operations. To improve performance degraded by
root inserts, the index data base should be reorganized through the
HISAM Reorganization Unload and Reload utilities,

A HIDAM data base is stored in from one to ten entry sequenced or
0SAM data sets depending on the number of data set groups defined and
the access method specified. Each data set group uses one entry
sequenced data set when VSAM is specified as the access method, and one
OSAM data set when OSAM is the access method specified. When initially
loading segments into a HIDAM data base or when inserting segments into
a HIDAM data base after initial load, the HD space search algorithm is
used to find the most suitable space available.

4,38 IMS/VS System/Rpplication Design Guide

PeOT TeT3TUI

~0Z-t 2InbId

Entry Sequenced
Data Set

- - - -
SKILL1 EXPRL [EDUCI TNAMEZ | |

- - = -
EXPR2 | EXPR3 | EXPR4 | NAME3 | EDUC2
e

[skiLLe|

)

I_EDU‘C/HSKILUI
\/

ISAM/OSAM

ISAM
Data Set
}
f_\

| SKILL1:940 || SK1LL2{980]-[SK1LL6;1000

OSAM
Data Set

OSAM
ata Set

SKILL5:2000

1 2

SKILLl NAMEL | EXPR] | EUC

|EXPR2iEXPR3iEXPRQiM3iEDUC2|]
—

[skiLe] |

I"'Ewcflsxluzl
N

SUOT3}RISPTSUOD UBTSeq osed eizeq

6t °h

Is3je ased e3eQ WYAIH ® O3UT jusubas 3008 e 3O 3IaSUT

HIDAM Data Base Root Segment Type Pointer Options

If forvard only hierarchic or physical twin pointers are specified
for the root segment type of a HIDAM data base, sequential access to
each root segment is accomplished by using the index. When forward and
backward hierarchic or physical twin pointers are specified for the root
segment type, for sequential processing the index is only used to access
the first root segment. From the first root, additional roots can be
processed sequentially without further reference to the index.

Format of Data Sets Used for HDAM and HIDAM

In defining an HDAM or HIDAM data base, the user can specify VSAM or
OSAM as the access method to be used for the data base, and he can also
specify that the data base be stored as one to ten data set groups.
When VSAM is specified, each data set group consists of one entry
sequenced data set. When OSAM is specified, each data set group
consists of one OSAM data set. In either case, the resulting data set
will have an unblocked format. When not specified by the user, DBDGEN
generates logical record lengths for the data sets that are equivalent
to a quarter-track, third-track, half-track, or full-track block.

Direct address pointers within the prefix of a segment and the anchor
point (s) of a block are constructed by the following formula:

Pointer Value = (Block Size) X (Block Number) + (Offset within Block).

This formula is also used for pointers in the prefix of segments of
an INDEX data base when relating to segments in a HIDAM data base.

In order that all segments will be on half word alignment, within the
data set a slack byte is added to the end of any segment in HDAM data
bases or HIDAM whose total length is an odd number,

The control fields used in managing entry sequenced or OSAM data sets
for HDAM and HIDAM data bases are ([See Pigure 4-21):

Free space anchor point

Free space element

Anchor point area

Bit map control interval or blocks

4,40 IMS/VS System/Application Design Guide

suoT3eIepISuUo) ubrsaq oseg eieq

Ln°n

*1z-t @anbrg

sSeseq e3jeq WNVAIH I0 WVQH I0J pes) s3es eieq

NVSO Io0 peousnbes X13uzy sbeuey 03 pasp sSpreTd TOIFUOD

RELATIVE
BLOCK OR
CONTROL
INTERVAL #N

RELATIVE
BLOCK OR
CONTROL
INTERVAL #M

* VSAM only, 7 bytes of VSAM control information

ANCHOR POINT
FSEAP AREA ; .
BIT BITMAP Relative Blo: k or Control Interval # 1
MAP
FLAG
[01 000—-00 011111---- - 1011 2; 111001 - =< - eannnn 10111
s i
Relative Blo 'k or Control Interval # 2
FSE
ANCHOR 190 S
cP | aL | D |
190 00 1032 SKILLI NAMEI | 00 | 315 FREE S?CE
| 2 | 2 | 4 je—32—sle—1s0—>}e 315
480 FSE
———
[FSEA | | aL|m |
480 00 EXPRO EXPR1 EDUC1 NAME2 EXPR2 EXPR3 EXPR4 NAME3 | 00 | 25 UNUSED
| 2 | 2 |e—20—>je—20-—>le7—>le150—>le—20—>je—20—>le20—>le150—>je—— 25—
2
| FSEAP [cP | AL | D |
232 00 EDUCO EDUC2 ebuc | oo | 273 UNUSED
2 2 | 76 —>ta—76—>}a—75—>}e 273 —
S
FSE

ROOT ADDRESSABLE AREA

OVERFLOW AREA

Free Space Anchor Point

Each control interval or block in an entry sequenced or OSAM data set
respectively starts with a four byte free space anchor point (FSEAP)
field. The field contains, in the first two bytes, the offset in bytes
to the first free space element in that control interval or block. The
second two bytes contain a flag that identifies bit map blocks. For
blocks other than bit map blocks, the second two bytes of the field
contain zeros.

v

Free Space Element

A free space element identifies each area of free space in a control
interval or block that is eight bytes or more in length. To identify
each area of free space, a free space element occupies the first 8 bytes
of each area of free space. The fields in each free space element are:

e Free space chain pointer field (CP) -- This field contains, in
bytes, the offset to the next free space element in the control
interval or block from the beginning of the control interval or
block. The length of this field is 2 bytes.

e Available length field (AL) -- This field contains in bytes the
length of the vacant space that this free space element identifies,
The value in the available length field includes the length of the
free space element itself., The length of this field is 2 bytes.

e Task ID field (ID) -- This field contains the task ID of the program
that freed the space that is identified by this free space element.
The task ID enables a given program to free and reuse the same space
during a given scheduling without contending for that space with
other programs.

The task ID consists of a one-byte calendar date followed by a three
byte cumulative sync point count for the day.

Anchor Point Area

For an HDAM data base, the user specifies the number of four byte
direct address root anchor points desired in each control interval or
block in the root addressable area. For each anchor point specified,
four bytes of space is reserved in the anchor point area of each control
interval or block in the root addressable area. The space for anchor
points is not reserved in those control intervals outside the root
addressable area, including the bit map control intervals. This space
is initially made free space and is available just as other free space
in a control interval.

For a HIDAM data base, when forward-onrly hierarchical or physical
twin pointers are specified for the root segmen%t type, one 4-byte anchor
point is present in each control interval or block. The anchor point
addresses the last root inserted into the control interval and the roots
are chained in the reverse order from the sequence in which they were
inserted into the control interval. With a forward-only (not forward
and backward) pointer at the root level, it is impossible for IMS/VS to
keep the roots chained in key sequence when new roots are inserted into
an existing data base. Because the forward pointer chains roots in
reverse time sequence and not in key sequence, it is not used by IMS/VS
to obtain the next sequential root. The index is used to do sequential
processing. For a HIDAM data base we rscommend that you use no-twin,
twin forward and backward, or hierarchical forward and backward pointers
at the root level. When one of these options is used, no anchor point
is placed in the control interval. If your processing is primarily

4.42 IMS/VS System/Application Design Guide

random, no-twin is best because all accesses to the root segments are
via the index. If your processing is primarily sequential, use physical
or hierarchical forward and backward. With these pointers the roots are
chained in key segquence.

Bit Map Block

A bit map control interval or block starts with a two byte free space
chain pointer field. The field always contains zeros in a bit map
control interval or block in the root addressable area of an HDAM data
base since no space is available in those bit map control intervals or
blocks for segments. The next two bytes contain a bit map flag. A low
order one in the second two bytes of a control interval or block
indicates that the control interval or block contains a bit map. The
same two bytes in all other control intervals or blocks in a data set
will contain z2ros. The next 0 to n bytes of a bit map control interval
or block are for root anchor points. Following the anchor point area
vhen present, the remainder of the control interval or block is a bit
map.

The first control interval or block of the first extent of the data
set specified for each data set group in an HDAM or HIDAM data base is
used for a bit map. If, however, the organization is VSAM, the second
control interval is used for the bit map and the first control interval
is reserved. In the bit map, each bit is used to describe whether or
not space is available in a particular control interval or block. The
first bit corresponds to the control interval or block the bit map
itself is in, and each consecutive bit corresponds to the next
consecutive control interval or block in the data set. When the bit
value is one, it indicates that the associated control interval or block
has sufficient space remaining to store an occurrence of the longest
segment type defined in this data set group. When the bit value is
zero, sufficient space is not available for an occurrence of the longest
segment type defined in this data set group. The first bit map in a
data set contains n bits that describe space availability in the next n
consecutive control intervals or blocks in the data set. After the
first bit map, another bit map is stored at every nth control interval
or block to describe space availability in the remaining control
intervals or blocks in the data set.

The techniques used to insert or delete segments are the same for
both HDAM and HIDAM data bases. The techniques involve use of bit maps,
space available chains and available length fields. The three are used
to find space when inserting a segment, or to record free space when a
segment is deleted.

Inserts

_———Seasa

The following HD space search algorithm is used to find the most
suitable space for a segment being inserted into an HDAM or HIDAM data
base.

Data Base Design Considerations 4,43

HD Space Search Algorithm

SEARCH CRITERIA: When searching for space, if space the exact size of
the request is found, it is used; otherwise, three free areas are
selected in the following order of preference:

1. Smallest 2 REQUEST + min. segment in data set
2. Smallest x REQUEST *2
3. Smallest 2 REQUEST

From this set, the first area that does not alter bit map setting is
selected, if there is one. Otherwise, the first area found is selected.

1. SAME BLOCK

2. ANY BLOCK CURRENTLY IN BUFFER POOL ON SAME TRACK

3. ANY BLOCK CUERENTLY IN BUFFER POOL ON SAME CYLINDER

4. ANY BLOCK ON SAME TRACK WHERE SPACE FOR MAXIMUM SEGMENT LENGTH
EXISTS (Based on bit map) ,

5. ANY BLOCK ON SAME CYLINDER WHERE SPACE FOR MAXIMUOM SEGMENT LENGTH
EXISTS (Based on bit map)

6. ANY BLOCK CURRENTLY IN BUFFER POOL WITHIN ¢ N CYLINDERS

7. ANY BLOCK ON & N CYLINDERS WHERE SPACE FOR MAXIMUM SEGMENT LENGTH
EXISTS (Based on bit map)

8. ANY BLOCK IN BUFFER POOL AT END OF DATRA SET

9. ANY BLOCK AT END OF DATA SET (Based on bit map)

10. ANY BLOCK IN THE DATASET WHERE SPACE FOR MAXIMUM SEGMENT LENGTH
EXISTS (Based on bit map)

In the algorithm, the same block as that which contains the
immediately preceding segment in the hierarchy of a data base record is
chosen for the nevw segment insertion under search criteria one. If not
satisfied, search criteria two through ten are used in sequence in
attempting to obtain space for insertion.

Deletes

Deletion of a segment from an HDAM or HIDAM data base involves:

e Updating the pointers in any other segments that point to the
deleted segment.

e Accumulating the space occupied by the deleted segment on the space
available chain for the block and possible adjustment to the bit
map. If a deleted segment is adjacent to an already available area
of space, the two areas are combined into one.

Figure 4-22 illustrates the deletion of segment EXPR4 and the
incorporation of the space it occupied on the space available chain.

4.44 IMS/VS System/Application Design Guide

SUOT3IRISPTISUOD ubrssq eseg ejeq

St °h

*ZZ-h 310614

jusuwbes juepusde@ Jo uUOT3ISTEQ 3IDSITJ OTYOIRISTH

RELATIVE
BLOCK #2
OR CONTROL
INTERVAL #2

RELATIVE
BLOCK

OR CONTROL
INTERVAL #N

RELATIVE
BLOCK

OR CONTROL
INTERVAL # M|

Entry Sequenced or OSAM Data Set
ANCHOR 5 210
FSEAP POINT ¥ ce| AL | 1 |
210 | oo 1032 SKILL1 NAME1 ExPR1B | 00 | 205 - UNUSED
2] 2] 4 |e—a2—mja—150—fa—20—>fe 295 >
DELETED EXPR4
294 \ 484
| FsEAP | AT cP__AL 1D [cp | AL | 0|
') 9
< <
294 | 00 00 EXPR1 EDUC1 NAME2 EXPR2 EXPR3 | 484 | 20 ‘\Q‘-' NAME3 EXPR1IA | 00 | 21 é’
S S
| 2| 2] 4 |e—20—>te—76—2ja—150—>la—20—>|le—20—>le——20—>la—150-—>}a—20—2je—— 21— p|
160
ANCHOR
| FSEAP | oot ce | al ol
160 | o0 00 EDUC2 epucs | oo | 345 UNUSED

| 2]2] |e—76—>ja—76

* VSAM only; 7 bytes of VSAM control information

Distributed Free Space

A consideration affecting HDAM or HIDAM data base performance is a
result of certain types of dependent segment insert activity. After an
HDAM or HIDAM data base is initially loaded or reorganized, high segment
insert activity may degrade performance. This degradation occurs when
added segments are not placed physically adjacent to their related
segments. For HDAM or HIDAM, segments inserted after a data base is
initially loaded or reorganized are stored at the end of their data set
group, or in the position of previously loaded segments that have been
deleted from that data set group as follows:

Space for an inserted segment in an HDAM or HIDAM data base is
acquired by scanning a user specified number of disk cylinders to locate
the free space nearest to its related segments. If no space is found,
the segment is inserted at the end of that data set group. This method
attempts to place added segments in the position physically closest to
their related segments to keep direct access storage device access time
to a minimum. However, since this method does not always place added
segments in space physically adjacent to their related segments, data
bases must be reorganized periodically to eliminate the degradation to
performance.

The distributed free space option can be selected during DBDGEN for
HDAM and HIDAM data bases. It is intended to minimize degradation to
performance caused by insert activity, and in so doing, decrease the
frequency in which HDAM or HIDAM data bases must be reorganized. It
accomplishes this by allowing the user to specify, on +the DATASET
statement for each data set group, periodic blocks of free space and/or
a percentage of free space in each block to be left vacant during
initial load or reorganization of the data base. These free spaces are
then used after data base initial load or reorganization to store added
segments physically close to their reiated segments.

The FRSPC= operand on the DATASET statement is used to specify free
space in each data set group of an HDAM or HIDAM or data base. In the
operand, any combination of two parameters can be specified. One is the
fbff (free block fregquency factor). The fbff specifies that every nth
block in a data set group will be left as free space during data base
load or reorganization {where fbff=n). The range of fbff includes all
integer values from 0 to 100 excluding fbff=1. The second parameter
that can be specified is the fspf (free space percentage factor). The
fspf specifies the minimum percentage of each block in a data set group
that is to be left as free space during load or reorganization. The
range of fspf is from 0 to 99.

HISAM AND HIDAM KEY SEGMENTS

For HISAM or HIDAM index data bases using ISAM/OSAM, IMS/VS generates
an additional root segment and stores it as the last root segment in the
data base. This additional root segment has the sequence field filled
with X'FF's. It is generated and placed in the data base by IMS/VS
bacause add=2d root segments are chained from the root with the next
higher sequence field key.

HIDAM data bases using VSAM also contain an X'FF' key segment. It is
used for twin backward pointing at the root level.

For variable length or compressed segments, an X'FF' key segment is
aliocated the maximum length specified for the segment type, and the
size field of the segment has the high order bit turned on (X 'BXXX').
This segment is never compressed.

4.46 IMS/VS System/Application Design Guide

OPTIONS AVAILABLE IN DEFINING PHYSICAL DATA BASES

Following is a summary of the characteristics of the four physical
data base types.
HSAM

e 1All segments and data base records are related through physical
adjacency.

e Stored as a sequential data set.

e Can only ratrieve segments from existing data base. To update
reqeires reload.

e Can be stored on tape.

HISAM

e Segments within data base records are related through physical
ad jacency.

e Indexed access to data base records.
e User can specify multiple data set groups. (ISAM/OSAM only)

e Space occupied by deleted segments is not reusable, except when root
segments are deleted in a key sequenced data set.

e VSAM or the combination of ISAM/0OSAM can be specified as the
operating system access method.

e Logical relationships using symbolic pointers.

e Secondary Indexing using symbolic pointers for single data set
groups.

e Hhen VSAM is spacified as the operating system access method for a
HISAM data base, the additional options available are:

- Variable length Segments

- User Segment Compaction/Expansion Routines

HDAM OR HIDAM

e Segments within data base records are related through hierarchic
and /or physical child/physical twin direct address pointers.

e Access to the root in each data base record is through a user
randomizing module for HDAM and through an index for HIDAM.

e User can specify multiple data set groups.
e Space occupied by deleted segments is reusable.

e VSAM or OSAM (combination of ISAM/OSAM for HIDAM index) can be
specified as the operating system access method.

e Logical relationships using direct address or symbolic pointers.

e Distributed Free Space.

Data Base Design Considerationmns 4.47

e Secondary Indexing using direct address or symbolic pointers

e When VSAM is specified as the operating system access method for the
data base, the additional options available are:

- Variable Length Segments
- User Segment Compaction/Expansion Routines
For information on defining the Main Storage Data Base (MSDB) and the

Data Entry Data Base [DEDB) see the "Fast Path Data Bases"™ section in
the chapter "Design Considerations for the Past Path Feature."

LOGICAL RELATIONSHIPS

In multi-application data management systems, data duplication is
often a problem. Duplicates in storage waste storage space and cause
duplicate maintenance. Duplicates are caused when a given type of data
is common to several applications, but each application requires the
conmon data stored in relation to different types of data, or in
combination with different types of data. To eliminate storage
duplication, logical relationships are used. Logical relationships
enable the user to store a given segment type once and to define that
segment type as dependent on one segment type in a physical data base
and a different segment type in a logical data base., Logical
relationships are also used to create logical data bases that contain a
combination of segment types from different physical data bases without
duplicating them. This means the segment types in two different
physical data bases, for two different applications, can be combined
into a logical data base for a third application without creating a
third physical data base.

All logical relationships establish a relationship between two
segment types in one or more physical data bases. They are defined in
the physical data bases of the segment types they relate to, and they
ar2 used when the related segment types are processed through a logical
data base., W®Rhen d=fined between segment types in the same physical data
base, a logical relationship enables a different hierarchy of segment
types to be defined for the segment types in that physical data base.
When defined between segment types in different physical data bases, it
enables a hierarchy of segment types to be defined that combines the
segment types in both data bases into a single data base. In each case,
the new hierarchy of segment types is defined through the DBDGEN utility
to create a logical data base. The hierarchy of segment types for a
logical data base is comprised of a subset of the physical and logical
relationships defined between the segment types in their physical data
bases.

Logical relationships enable occurrences of two seqment tvpes to be
stored independently of each other, yet enable an application program to
process them through a logical data base as if stored in relation to
each other. Through the logical data base, the relationship between the
two segment types appears to be that of a physical parent segment type
and one of its physical child segment types in a physical data base. An
application processes occurrences of the related segment types through
their logical data base in the same manner as occurrences of a physical
parent segment type and a physical child segment type are processed in a
physical data base.

4.48 IMS/VS System/Application Design Guide

A logical relationship is defined in the physical data base or data
bases of the segment types being related. Through a logical
relationship, segment types in the same or different physical data bases
are related in a manner that is in most cases transparent to application
programs using the physical data bases. To enable use of a logical
relationship defined between two segment types in one or more physical
data bases, a logical data base must be defined.

The terms used to describe the segment types involved in logical
relationships are physical parent, logical parent, and logical chilad.
The terms physical parent and logical parent are used to describe the
tvo segment types being related through a logical relationship. The
term logical child is used to describe one or both of the additional
segment types that are required to re=late two segment types through a
logical relationship.

METHODS OF RELATING SEGMENT TYPES THROUGH A LOGICAL CHILD

Three types of logical relationships can be defined in IMS/VS data
bases. The three types are unidirectional, physically paired
bidirectional, and virtually paired bidirectional logical relationships.
For each of the three types of logical relationships, a logical child
segment type relates two segment types by one of two methods. The first
method described in the following text is used for unidirectional and
physically paired bidirectional logical relationships. The second
method described is used for virtually paired bidirectional logical
relationships. In both methods, a logical child is physically related
to one of the segment types being related through a logical
relationship. 1In addition for the first method, the logical child
points to the other segment type. In the second method the logical
child points to the other segment type, and is pointed to by the other
segment type. Figure 4-23 shows the first method of relating segment
types through a logical child segment type.

Data Base Design Considerations 4,49

NAME SKILL
ADAMS ARTIST
NAMESKILL
ARTIST
STENO
TYPIST
NAME SKILL
JONES STENO
NAMESKILL
STENO
NAME SKILL
SMITH TYPIST
NAMESKILL
ARTIST
STENO

Figqure 4-23, Relating Occurrences of SKILL to Occurrences of NAME

Method One

Figure 4-23 shows occurrences of the SKILL segment type being related
to occurrences of the NAME segment type through occurrences of an
additional segment type that is required to relate NAME and SKILL
segments. A logical child is an additional segment type that is
required to relate two segment types through a logical relationship. 1
logical child segment type relates two segment types by being physically
related to one segment type and by pointing to the other segment type.
The segment type that the logical child segment type is physically
related to is called the physical parent of the logical child. The
segment type that the logical child segment type points to is called the
logical parent of the logical child. The pointer in a logical child
that points to a logical parent is called a logical parent pointer. 1In

4.50 IMS/VS System/Application Design Guide

Figure 4-23, NAME is the physical parent, SKILL is the logical parent,
and NAMESKILL is the logical child segment type. To establish the
physical relationship between the NAME and NAMESKILL segment types shown
in Figure 4-23, NAMESKILL is defined as a physical child segment type of
NAME in the physical data base of the NAME segment type. Since NAME and
NAMESKILL are a physical parent and a physical child segment type in the
same physical data base, occurrences of sach are related when loaded
into their physical data base. To relate an occurrence of SKILL to an
occurrence of NAME in storage, the user loads an occurrence of
NAMESKILL, the logical child segment type, as a physical child of a
given NAME segment. This process is repeated for each occurrence of the
logical parent that is to be related to that NAME segment. When loading
a logical child segment into its physical data base, the user identifies
which logical parent segment the logical child points to, by placing the
concatenated key of the logical parent in the data portion of the
logical child segment. Since the concatenated key of a logical parent
segment is the symbolic pointer to that segment in its physical data
base, when the user loads logical child segments as physical children of
a given physical parent segment, the respective logical parent segment
pointed to by each logical child is related to the physical parent
segment. When processing the related segment types through a logical
data base, it is the physical relationship between occurrences of the
physical parent and logical child segment types in their common physical
data base, plus the logical parent pointer contained in each logical
child segment, that enables access to related occurrences of the logical
parent segment type from each occurrence of the physical parent segment
type.

Method ITuwo

In the second method of relating two segment types through a logical
child segment type, all of the conditions described for the first method
remain the same. The logical child segment type is physically related
to its physical parent segment type and points to its logical parent
segment type. One occurrence of the logical child segment type is
loaded as a physical child of a given physical parent segment for each
occurrence of the logical parent segment type that is to be related to
that physical parent. To identifiy which logical parent segment is being
related to a physical parent segment through a logical child segment,
the user places the concatenated key of the logical parent in the data
portion of each logical child segment loaded. Through the relationship
of physical parent and logical child segments in their physical data
base, and the logical parent pointer in each logical child segment,
related occurrences of the logical parent segment type can be accessed
from physical parent segments. In addition, logical child pointers are
used in the logical parent segment type, and logical twin and physical
parent pointers are used in the logical child segment type, as shown in
Pigure 4-24. The additional pointers are used to enable accessing
specific occurrences of the physical parent segment type that are
related to each occurrence of the logical parent. Logical twins are
multiple occurrences of the same logical child segment type that point
to the same occurrence of the logical parent segment type. When
specified in the logical child segment type, logical twin pointers point
from each logical twin to the next to chain together all logical twins
that point to a given logical parent. The physical parent pointer in
each occurrence of the logical child segment type is generated
automatically by IMS/VS to enable access to the physical parent segment
of each logical child from that logical child. A logical child pointer
is specified for the logical parent segment type to enable accessing a
logical child segment from a logical parent segment. A logical child
pointer points from a given logical parent segment to one of the logical
tvwins, which also points back to that logical parent segment. Since all
logical twins that point to the same logical parent are chained through
logical twin pointers, and each logical child contains a physical parent

Data Base Design Considerations 4,51

pointer, the specific physical parent segments that are related to a

given logical parent segment can be accessed from that logical parent
segment.

NAME SKILL
ADAMS ARTIST
PP
NAMESKILL
ARTIST
STENO LCF
TYPIST
LP
LTF
NAME SKILL
JONES STENO
T PP
NAMESKILL
STENO
LTF
NAME SKILL
SMITH TYPIST
} PP
NAMESKILL Key:
PP—Physical parent pointer
ARTIST LP—Logical parent pointer
LCF—Logical child first pointer
STENO LTF—Logical twin forward pointer

Figure 4-24. Relating Occurrences of NAME to Occurrences of SKILL

4.52 IMS/VS System/Application Design Guide

Logical Relationship Paths

The physical relationship between physical parent and logical child
segments in their physical data base, and the logical parent pointer in
each logical child segment creates a physical parent to logical parent
path between =ach physical parent segment and the logical parent
segments related to each physical parent segment. To define use of the
path in a logical data base, the logical child and logical parent
segment types are defined as one concatenated segment type that is a
physical child of the physical parent segment type as shown in Figure
4-25.

PHYSICAL DATA BASE(S) LOGICAL DATA BASE
PHYSICAL LOGICAL PHYSICAL
PARENT PARENT PARENT
LOGICAL LOGICAL | LOGICAL
I
CHILD CHILD | PARENT

Concatenated Segment Type

Figare 4-25. Defining a Physical Parent to Logical Parent Path in a
Logical Data Base

In addition, when logical child pointers are used in the logical
parent segment type, and logical twin and physical parent pointers are
used in the logical child segment type, a logical parent to physical
parent path is created between each logical parent segment and the
physical parent segments related to each logical parent segment. To
define use of the path in a logical data base, the logical child and
physical parent segment types ars defined as one concatenated segment
type that is a physical child of the logical parent segment type as
shown in Pigure 4-26.

Data Base Design Considerations 4.53

PHYSICAL DATA BASE(S) LOGICAL DATA BASE

PHYSICAL LOGICAL LOGICAL
PARENT PARENT PARENT
LOGICAL LOGICAL | PHYSICAL
CHILD * CHILD { PARENT

Concatenated Segment Type

Figure 4-26. Defining a Logical Parent to Physical Parent Path in a
Logical Data Base

When use of a physical parent to logical parent path between segment
types is defined in a logical data base, the physical parent segment
type involved in the logical relationship is the physical parent of the
concatenated segment type. When an applicatioan program retrieves an
occurrence of the concatenated segment type from a physical parent
segment, an occurrence of the logical child and the respactive logical
parent pointed to by the logical child are concatenated and presented to
the application program as one segment. When use of a logical parent to
physical parent path is defined in a logical data base, the logical
parent segmant type is the physical parent of the concatenated segment
type. When an application program retrieves an occurrence of the
concatenated segment type from a logical parent segment, an occurrence
of the logical child and the physical parent segment pointed to by the
logical child are concatenated and presented to the application progranm
as one segment.

In each case the physical parent or logical parent segment type
included in the concatenated segment type is called the destination
parent. For a physical parent to logical parent path, the logical
parent is the destination parent in the concatenated segment type. For
a logical parent to physical parent path, the physical parent is the
destination parent in the concatenated segment.

Logical Child Segment

By definition, a logical child segment contains the concatenated key
of the destination parent followed by intersection data, if any. A
logical child segment relates a specific physical parent segment *o0 a
specific logical parent segment. Since a logical child is the point of
intersection for a physical parent and logical parent segment, any data
contained in a logical child segment in addition to the concatenated key
of a destination parent is called intersection data. When defining a
logical child segment type in its physical data base, the length
specified for the segment type must be sufficient to contain the
concatenated kev of a logical parent. Any length greater than that
required for the concatenated key can be used for intersection data.

4.54 IMS/VS System/Application Design Guide

To identify which logical parent segment will be pointed to by a
logical child segment, the concatenated key of the logical parent
segment must be present, with each logical child segment, in the user's
I/0 area when the logical child segment is initially presented for
loading into a data base. However, if the logical parent segment is in
a HDAM or HIDAM data base, its concatenated key may not be written to
storage when the dogical child segment is loaded. If the logical parent
is in a HISAM data base, a logical child in storage must contain the
concatenated key of its logical parent,

When a concatenated segment is retrieved through a logical data base,
it contains the concatenated key of the destination parent, followed by
intersection data in the logical child segment, which in turn is
followed by the data in the destination parent segment. Figure 4-27
shows the format of a retrieved concatenated segment in the user I/0
area. The concatenated key of the destination parent is returned with
each concatenated segment to identify the destination parent retrieved.
IMS/VS obtains the concatenated key of the destination parent from the
logical child in the concatenated segment, or by constructing the
concatenated key. If the destination parent is the logical parent of
the logical child and the concatenated key of the logical parent has not
been stored with the logical child, IMS/VS constructs the concatenated
key of the logical parent segment and presents it to the user as a part
of the concatenated segment. If the destination parent is the physical
parent of the logical child, IMS/VS must always construct the
concatenated key of the physical parent.

Logical child segment Destination parent segment
B enated Desintion
E:y catenate data parent segment

Figure 4-27. Format of Concatenated Segment Returned to User I/0 Area

UNIDIRECTIONAL LOGICAL RELATIONSHIP

A unidirectional logical relationship is used to relate two segment
types in one direction. Figure 4-28 shows the schematic view of a
unidirectional logical relationship that is defined between two segment
types in the same or different physical data bases, and the resulting
view of the segment types involved that is defined in a logical data
base, In a physical data base, a logical child segment type is defined
as a physical child of one segment type, and a direct address or
symbolic pointer is specified in the logical child segment type to point
to the other segment type. This results in creating a physical parent
to logical parent path between occurrences of the two segment types when
they are loaded into storage.

Data Base Design Considerations 4.5%5

PHYSICAL DATA BASE(S) LOGICAL DATA BASE

Concatenated Segment Type

Figure 4-28. Onidirectional Logical Relationship

PHYSICALLY PAIRED BIDIRECTIONAL LOGICAL RELATIONSHIP

A physically paired bidirectional logical relationship is used to
relate two segment types in two directions, and to provide the same
intersection data in both directions. Figure 4-29 shows the schematic
view of a physically paired bidirectional logical relationship that is
defined in a physical data base or data bases, and the resulting views
of the segment types involved that are defired in a logical data base.
In a physical data base or data bases, a logical child segment type is
defined as a physical child of each of the two segment types being
related, and a direct address or symbolic logical parent pointer is
specified for each logical child segment type. One logical child
segment type creates a physical parent to logical parent path between
occurrences of the two segment types in storage in one direction, and
the other logical child segment type creates a physical parent to
logical parent path between occurrences of the two segment types in
storage in the other direction as shown in Figure 4-29. When defining
each logical child segment type in its physical data base, the user
specifies that each logical child segment typs is paired with the other
logical child segment type to enable IMS/VS to maintain the same
intersection data in paired logical child segments 1In storage, paired
logical child segments provide two different paths between the same two
segments, and both logical child segments contain the same intersection
data. PFor example, in Figure U4-30 under the NAME segment ADAMS, the
occurrence of NAMESKILL that points to ARTIST, and under the SKILL
segment ARTIST, the occurrence of SKILLNAME that points to ADAMS are
physically paired logical child sagments since they provide two
different paths between the same two segments and they contain the same
intersection data. In a physically paired logical relationship, if the
user updates intersection data in one logical child segment, IMS/VS
automatically updates the intersection data in the paired logical child
segment. When initially loading paired logical child segments, the user
must place the same intersection data in each of the paired logical
child segments.

During the initial load of a data base that contains physically
paired logical children, the application program must load (using an
ISRT call) both sides of the physical pair. The intersection data for
the paired segments must be identical. After the initial load, in any
update step, if an insert, delete, or replace is done for one of the
paired segments, IMS/VS performs the same function for the paired
segment.

4.56 IMS/VS System/Application Design Guide

PHYSICAL DATA BASE(S) LOGICAL DATA BASE (S)

\and/or/

w
o
w
a
o

Concatenated Segment Types

Figure 4-29. Physically Paired Bidirectional Logical Relationship

NAME SKILL
ADAMS ARTIST
NAMESKILL SKILLNAME
ARTIST ADAMS

Figure 4-30. Physically Paired Logical Child Segments

VIRTUALLY PATRED BIDIRECTIONAL LOGICAL RELATIONSHIP

In a virtually paired bidirectional logical relationship, one logical
child segment type in storage relates two segment types in two
directions, and provides the same intersection data in both directions.
Figure U4-31 shows the schematic view of a virtually paired bidirectional
logical relationship that is defined in a physical data base or bases,
and the resulting views of the segment types involved that are defined
in a logical data base.

Data Base Design Considerations 4,57

Physical Data Base(s) Logical Data Base(s)

A (o] A C
\and/or/
)ﬂ’ Lp J
LCF
r—===7/7
| | |
B : D : B : c D I a
|
L —— 4 1 !
Real logical child Virtual logical child Concatenated Segment Types

(Represents B when
accessed from C)

Key:
PP- Physical parent pointer
LP—Logical parent pointer
LCF-Logical child first pointer

Figure 4-31. Virtually Paired Bidirectional Logical Relationship

To define a virtually paired bidirectional logical relationship, two
logical child segment types are defined in the physical data bases
involved in the logical relationship, but only one is actually placed in
storage. The logical child segment type that is defined and results in
storage is called the real logical child. The logical child segment
type that is defined, but does not result in storage is called the
virtual logical child.

In a virtually paired bidirectional logical relationship, occurrences
of the real logical child create physical parent to logical parent, and
logical parent to physical parent paths between occurrences of the two
segment types being related. To accomplish this the real logical child
is defined as a physical child segment type of one of the segment types
being related, and a symbolic or direct address logical parent pointer
is specified for the real logical child segment type. This creates a
physical parent to logical parent path between occurrences of the two
segment types being related. In addition, logical child pointers are
specified for the logical parent segment type of the real logical chilgd,
and logical twin pointers are specified for the real logical child
segment type to create a logical parent to physical parent path in
storage between occurrences of the two segment types being related. The
physical parent pointers required in occurrences of the real logical
child for a logical parent to physical parent path are generated
automatically by IMS/VS.

For the physical parent to logical parent path, the user controls the
sequence in which occurrences of the real logical child are accessed
from their physical parent segment by defining a sequence field in the
real logical child segment type, or by specifying use of the insert rule
of first, last or here when defining the real logical child in its
physical data base. For the logical parent to physical parent path, the
user controls the sequence in which occurrences of the real logical
child are accessed from their logical parent by defining a virtual
logical child segment type as a physical child of the logical parent of
the real logical child, and in addition, by defining a sequence field in
the virtual logical child. Or, the user can specify a second insert
rule of first, last or here that controls the sequence of real logical
child segments as viewed from their logical parent segment. The insert
rtule that controls the sequence of real logical child segments as viewed
from their physical parent segment is specified on the SEGM statement
that defines the real logical child segment type in its physical data

4.58 IMS/VS System/Application Design Guide

base. The insert rule that controls the sequence of real logical child
segments as viewed from their logical parent is specified on an LCHILD
statement. As input to DBDGEN when defining a segment type in a
physical data base that is used as a logical parent in one or more
logical relationships, an LCHILD statement must follow a SEGM statement
that defines a logical parent segment type for each logical chilad
segment type of that logical parent. LCHILD statements identify the
logical child segment types of a logical parent by following a SEGM
statement that defines a logical parent. PFor a virtually paired
bidirectional logical relationship, when no sequence field or a
non-unique sequence field is defined for the real logical child segment
type as viewed from its logical parent segment type, the insert rule of
first, last or here specified on an LCHILD statement controls the
sequence in which occurrences of the real logical child are accessed
from their logical parent segment.

To enable using a sequence field for sequencing occurrences of the
real logical child from its logical parent segment type, a virtual
logical child segment type is defined. A virtual logical child segment
type is defined as a physical child of the logical parent segment type
of the real logical child. 1A virtual logical child segment type is
defined in the physical data base of the logical parent of the real
logical child to represent the view of the real logical child when
accessing the real logical child from its logical parent. In defining a
virtual logical child segment type, a name is specified for the virtual
segment type and the name of the real logical child segment type is
associated to the name specified. To enable saquencing occurrences of
the real logical child through sequence field values from the logical
parent, a sequence field is defined in the virtual segment type. Since
the virtual segment type represents the real logical child as viewed
from its logical parent, the sequence field defined represents fields in
the real logical child segment type as viewed from its logical parent
type.

Defining Pields in Logical Child Seqment Types

Since a logical child segment, by definition in a logical data base
contains the concatenated key of a destination parent, followed by
intersection data, if any, the concatenated key of the destination
pareat is included as a part of the logical child segment type when
defining fields within the logical child segment. For a physical parent
to logical parent path, fields can be defined within the logical child
segment type that are comprised of the concatenated key of the logical
parent., For a logical parent to physical parent path, fields can be
defined within the logical child segment type that are comprised of the
concatenated key of the physical parent. In addition for a logical
parent to physical parent path, fields defined within the logical child
segment type can be comprised of non-contiguous data in the logical
child.

POINTERS AND THE COUNTER USED IN LOGICAL RELATIONSHIPS

Logical relationships can be defined in HISAM, HDAM and HIDAM data
bases, or between any combination of the thr2e. 1In defining logical
relationships in each type or between types, the data organization
methods used for the data bases must be considered when specifying the
pointers used in logical relationships. Physical adjacency in storage
is used to relate segments in a HISAM data base which means that all
pointers to segments stored in a HISAM data base must be symbolic. 1In
HDAM and HIDAM data bases, segments in storage are related through
direct address pointers. Segments stored in HDAM and HIDAM data bases
can be pointed to by symbolic or direct address pointers.

Data Base Design Considerations 4,59

The following pointers are used in defining

(see Figure 4-32):

Logical Parent Pointer
Logical Child Pointer
Logical Twin Pointer
Physical Parent Pointer

Physical
Parent

Logical
Parent

LP

Logical
Child

Logical Physical
Parent Parent

Physical
Parent

Physical

Parent

\ LP PP

LP\ ~~—~—

PP

PP

\ Logical}__

Logical |L

Logical

Key:
PP—Physical parent pointer
LP—Logical parent pointer
LCF—Logical child first pointer
LCL—-Logical child last pointer
LTF—Logical twin forward pointer
LTB-Logical twin backward pointer

logical relationships

Figure 4-32. Pointers Used in lLogical Relationships

Logical Parent Pointer

A logical parent pointer

logical parent segment.

HISAM data base, a symbolic
child segment. To point to
HIDAM data base, a symbolic

points from a logical child segment to a

To point to a logical parent segment type in a

pointer must be stored with each logical
a logical parent segment type in an HDAM or
pointer can be stored with each logical

child segment and/or a direct address logical parent pointer can be

specified.

4,60 IMS/VS System/Application Design Guide

Logical Child/Logical Iwin Pointers

Logical child and logical twin pointers are only specified in
virtually paired bidirectional logical relationships. The logical child
pointers that can be specified are logical child first, or 1logical child
first and last pointers. A logical child first, or a combination of
logical child first and last pointers are stored in the prefix of a
logical parent segment to point to each of its logical child segment
types. A logical child first pointer points to the first occurrence of
a logical child segment type, and a logical child last pointer points to
the last occurrence of that segment type when viewed from the logical
parent.

The logical twin pointers that can be specified are logical twin
forward or the combination of logical twin forward and backward
pointers. Logical twins are multiple logical child segments of the same
type that point to the same occurrence of a logical parent. A logical
twin forward pointer points from a given logical twin to the logical
twin stored after it and a logical twin backward .pointer points from a
given logical twin to the logical twin stored before it. Use of the
logical twin backward pointer improves delete performance.

Physical Parent Pointers

In HDAM and HIDAM data bases involved in logical relationships,
physical parent pointers are generated automatically by IMS/VS. 1IMS/VS
places physical parent pointers in the prefix of all logical child and
logical parent segments, and in the prefix of all segments on which a
logical child :or logical parent segment is dependent in its physical
data base. This creates a path from a logical child or logical parent
segment to the root segment on which the logical child or logical parent
segment is dependent. Since all segments on which a logical child or
logical parent segment is dependent are chaired through physical parent
pointers from the logical child or logical parent segment to its root,
access to those segments in reverse order is enabled through a logical
data base.

Counter

A four-byte counter is required in all logical parent segments that
do not contain logical child pointers. It is stored in the prefix of a
logical parent segment to maintain a count of how many logical child
segments point to the logical parent. When required, it is placed in
logical parent segments automatically by IMS/VS.

DEFINING SEQUENCE FIELDS FOR DATA BASES INVOLVED IN LOGICAL
RELATIONSHIPS

To avoid potential problems in processing data bases involved in
logical relationships, unigque sequence fields should be defined in all
logical parent segment types, and in all segment types that a logical
parent is dependent on in its physical data base. When unigue sequence
fields are not defined in all segment types on the path to and including
a logical parent segment type, multiple logical parent segments in a
data base can have the same concatenated key. ®#hen multiple logical
parent segments have the same concatenated key, problems can arise
during initial data base load, and after initial data base load when
symbolic logical parent pointers in logical child segments, are used to
establish position on a logical parent segment to be processed.

Data Base Design Considerations 4.61

At initial data base load time, if logical parent segments with
nonunigue concatenated keys exist in a data base, the logical
relationship resolution utilities attach all logical child segments that
contain the same concatenated key to the first logical parent segment in
a data base that has that concatenated key.

When inserting or deleting a concatenated segment and position for
the logical parent portion of the concatenated segment is determined by
the logical parents concatenated key, positioning for the logical parent
stops on the first segment at each level of the logical parents data
base that satisfies the key equal condition for that level. For insert
when using this method of establishing position in the logical parents
data base, if a segment is missing on the path to the logical parent
segmnent to be inserted, a GE status code is returned to the application
program. Under the same conditions for deletion of a logical parent
segment a U803 abnormal termination occurs.

RULES FOR DEFINING LOGICAL RELATIONSHIPS IN PHYSICAL DATA BASES
Following are the rules that must he followed when defining logical

relationships in physical data bases.

Logical Child

1. 1A logical child segment type must have a physical parent segment
+ype and a logical parent segment type.

2. A logical child segment type can have only one physical parent
segment type and one logical parent segment type.

3. A logical child segment type is defined as a physical child
segment type in the physical data base of its physical parent.

4, A logical child segment type is always a dependent segment type
in a physical data base, and as such, it can be defined at any
level except the first level of a data base.

5. In its physical data base, a logical child segment type can not
have a physical child segment type defined at the next lower
level in the data base that is also a logical child.

6. 1A logical child segment type can have physical child segment
types. However, if a logical child segment type is physically
paired with another logical child segment type, only one of the
paired segment types can have physical child segment types.

Logical Parent

t. A logical parent segment type can be defined at any level of a
physical data base including the root level.

2. A logical parent segment type can have one or multiple logical
child segment typas. Each logical child segment type related +o
the same logical parent segment type defines a logical
relationship.

3. 1A segment type in a physical data base can not be defined as both
a logical parent and a logical child.

4. A logical parent segment type can be defined in the same physical

base as its logical child segment types, or in a different
physical data base.

4.62 IMS/VS System/Application Design Guide

Physical Parent

1. A physical parent segment type of a logical child cannot also be
a logical child.

REPLACE, INSERT AND DELETE RULES

XXXXXXXXXXXX XXXXXXXXXXXX
x CUSTOMER x x LOANS X
x PP x x LP x
XXXXXXXXXXXX * XXXXXXXXXXXX
x * * v
b 4 * * v
XXXXXXXXXXXXXXXXXXXXXXXXX * * v
b 4 b4 * * v
b 4 b 4 * % v
XXXXXXXXXXXX XXXXXXXXXXXX * VVYVVVVVVVVVY
x ACCOUNTS x X DBORROW x v CUST v
x X X ILC x v VIC v
XXXXXXXXXXXX XXXXXXXXXXXX VVVVVVVVVVVYV
b ¢
X
XXXXXXXXXXXX
X PAYMENTS x
b'¢ x
XXXXXXXXXXXX
PHYSICAL PATH PHYSICAL PATH
TO CUSTOMER and BORROW TO LCANS
XXXXXXXXXXXX XXXXXXXXXXXX
x CUSTOMER x x LOANS b 4
x x b'¢ x
XXXXXXXXXXXX XXXXXXXXXXXX
b 4 b ¢
b 4 X
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX
X BORROW/LOANS x x CUST/CUSTOMER x
x x b ¢ b4
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX
LOGICAL PATH LOGICAL PATH
TO LOANS TO CUSTOMER and BORROW

Insert, Delete, and Replace rules are needed when a segment is
involved in a logical relationship because that segment is updatable

from two paths; a physical path and a logical path.

Think a minute about the following guestions:

1. Should the CUSTOMER segment b2 insertable by both its physical

and logical paths?

2. Should the BORROW segment be replaceable via only the physical
path, or by both the physical and logical paths?

3. If the LOANS segment is deleted by its physical path, should it
be erased from the data base or should it be marked as physically
deleted but remain accessible by its logical path?

Data Base Design Considerations

4.63

4., If the logical child segment BORROW or the concatenated segment
BORROW/LOANS 1is deleted from the physical path, should the
logical path CUST/CUSTOMER also be automatically deleted or
should the logical path remain?

The answer to these questions depends on the application, but the
enforcement of the answer depends on choosing the correct
insert/delete/replace rules for the logical child, logical parent and
physical parent segments.

The application processing requirements must be determined first, and
the rules that support (enforce) those application processing
requirements must be determined second.

For instance, the answer to question one depends on whether or not
the application defines that a CUSTOMER segment must have been
previously inserted into the Data Base prior to accepting the loan. An
insert rule of physical (P) on the CUSTOMER segment would prohibit the
insertion of the CUSTOMER segment except by the physical path. While an
insert rule of wvirtual (V) would allow inserting the CUSTOMER segment by
either the physical or logical path.

It probably makes sense for a customer to be checked ([past credit,
time on current job, etc) and the CUSTOMER segment inserted prior to
approving the loan and inserting the BORROW segment. Thus, the insert
rule of the CUSTOMER segment should be physical (P) to prevent this
segment from being inserted logically (which incidentally provides
better control of the application).

Consider question three. We can reason two ways: (V) If it is
possible for this load institution to terminate a type of loan {(cancel
7% car loans -- create 9% car loans) before evaryone who has that type
of loan has fully paid the loan, then w2 are saying that it's possible
for the LOANS segment to be physically deleted and still be accessible
from the logical path. This condition is supportable by specifying the
delete rule for LOANS as either logical {L) or virtual (V) but not as
physical (P).

The physical (P) delete rule prohibits physically deleting a logical
parent segment prior to all its logical children having been physically
deleted (which means the logical path to the logical parent is deleted
first) °

INTRODUCTION SUMMARY

Data Base Administrators should examine all application needs and
decide who may insert, delete, and replace segments involved in logical
relationships and how those updates are to be made (physical path only
or physical and logical path). The insert/delete/replace rules in the
physical DBD and the PROCOPT parameter in the PCB are the means of
control. These rules are explained in detail in the following pages.

4.64 IMS/VS System/Application Design Guide

PPP FIRST
SEGM NAME= , , ¢+ ¢ ¢+ ¢ oRULES=(LLL,LAST)
VVV HERE
B
insert /77

delete ____//
replace ___/

P = PHYSICAL

L = LOGICAL

V = VIRTUAL

B = BIDIRECTIONAL VIRTUAL

The operands of the RULES parameter are positional. Position one
defines the INSERT rule, position two defines the DELETE rule and
position three the REPLACE rule.

For example, RULES=PLV says the insert rule is physical, the delete
rule is logical and the replace rule is virtual. Notice the "B" rule is
only applicable for delete.

The second positional operand (FIRST,LAST,HEREZ) does not apply in any
way to a discussion concerning LOGICAL UPDATE RULES and was only
included to maintain the correctness of the coding example.

In general the "P" rule (physical) is the most restrictive and the
"y" rule (virtual) the least restrictive with the "L" rule (logical)
somewhere in between.

RULES are applicable only to the segments involved in logical paths;
the Logical Child segment and its Logical Parent and Physical Parent
segments. Rules are not coded for the virtual logical chilad.

XXXXXXXXXXXX XXXXXXXXXXXX
x CUSTOMER x x LOANS x
X PP x } 4 LP x
XXXXXXXXXXXX *¥ XXXXXXXXXXXX
b'¢ * * v
x * * v
XXXXXXXXXXXXX XXXXXXXXXXXX * * v
x X * * v
b 4 b4 * % v
XXX XXXXXXXXX XXXXXXXXXXXX * VVVVVVVVVVVYV
X ACCOUNTS x x BORROW x v cusT v
b ¢ X b 4 LC x v VIC v
XXXXXXXXXXXX XXXXXXXXXXXX VVVYVVVVVVVVV
b 4
b 4
XXXXXXXXXXXX
x PAYMENTS x
b ¢ x
XXXXXXXXXXXX

Data Base Design Considerations 4.65

THE REPLACE RULES

Applicable to the Physical Parent, Logical Parent and Logical Child
segments of a Logical Path.

1. PHYSICAL: The segment can only be replaced when retrieved via a
physical path. If this rule is violated, no data is replaced and
an 'RX' status code is returned.

2., LOGICAL: The segment can only be replaced when retrieved via a
physical path. If this rule is violated, no data is replaced,
however, an 'RX' status code is not returned. A '"PP' status code

is returned.

3. VIRTUAL: The segment can be replaced when retrieved by either a
physical or logical path.

The Replace Call

A replace can be performed only on that portion of a concatenated
segment to which an application program is data sensitive.

If no data is changed in a segment, no data is replaced and no
replace rule is violated.

If data in a concatenated segment has been changed, data is replaced
only if neither portion of the concatenated segment violates its replace
rule,

The replace rule is not checked for a segment which is part of a
concatenated segment but was not retrieved.

The status code returned to an application program will indicate the
first violation that was detected. These status codes are:

"AM? - Replace attempted and PROCOPT#R
‘DAY - Key field of segment was changed
'RX? - Replace rule violated

4.66 IMS/VS System/Application Design Guide

Physical Replace Rule Example

RULES= (--P)

RULES= (~-P)

XXXXXXXXXXXX XXXXXXXXXXXX
x CUSTOMER x x LOANS x
b 4 PP x b 4 LP x
XXXXXXXXXXXX * XXXXXXXXXXXX
b'4 * * v
b 4 * * v
XXXXXXXXXXXXXXXXXXXXXXXXX * * 14
b ¢ X * * v
b 4 x * ok v
XXXXXXXXXXXX XXXXXXXXXXXX * VYVVVVVVVVVV
x ACCOUNTS x X BORROW x v cusT v
X b 4 x LC x v VLC v
XXXXXXXXXXXX XXXXXXXXXXXX VVVVVVVVVVVYV
X RULES=(--P)
b ¢
XXXXXXXXXXXX
X PAYMENTS x
X b ¢
XXXXXXXXXXXX
XXXXXXXXXXXX XXXXXXXXXXXX
x CUSTOMER x x LOANS b 4
X b ¢ x x
XXXXXXXXXXXX XXXXXXXXXXXX
X b4
b 4 b 4
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX
X BORROW/LOANS x x CUST/CUSTOMER x
x X b 4 X
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX
GHU *CUSTOMER! STATUS CODE='¥p'
REPL .STATUS CODE="'WK"*

GHN * BORROH/LOANS!

REPL

STATUS CODE="'¥¥'

STATUS CODE='RX"'

The physical replace rule prevents replacing the LOANS segment as

part of a concatenated segment.
physical path.

Replacement must be by the segment's

Data Base Design Considerations

4.67

Logical Replace Rule Example
XXXXXXXXXXXX XXXXXXXXXXXX
RULES=(--L) x CUSTOMER x RULES=[--L)x LOANS x
X LP x b 4 LP x
XXXXXXXXXXXX * XXXXXXXXXXXX
b'¢ * * b ¢
b 4 * * b4
XXXXXXXXXXXXXXXXXXXXXXXXX * * X
b4 b 4 * * x
X b4 * X
XXXXXXXXXXXX XXXXXXXXXXXX * * XXXXXXXXXXXX
x ACCOUNTS x x BORROW x * x CcusT x
X X b 4 IC x b 4 LC x
XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX
X RULES=any ROLES=any
X
KXXXXXXXXXXX
X PAYMENTS x
x x
XXXXXXXXXXXX
XXXXXXXXXXXX XXXXXXXXXXXX
x CUSTOMER x x LOANS b 4
x b 4 x x
XXXXXXXXXXXX XXXXXXXXXXXX
X x
X X
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX
X BORROW/LOANS x x CUST/CUSTOMER x
X x X x
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX
GHU *CUSTOMER!
* BORROW/LOANS?* STATUS CODE='p¥"
REPL STATUS CODE='KN¥’'

The logical replace rule prevents replacing the LOANS sagment as part
of a concatenated segment, since replacement must be by the segment's
physical path. However, the status code returned is '¥P¥'. The BORROW
segment, being accessed by its physical path, is replaced. Since the
access of the logical child is by its physical path, it does not matter
vhat replace rule is selected.

The LOGICAL replace rule provides for the special case of allowing
the replacement of only the logical child half of the concatenation, and
the return of a 'P¥' status code.

4.68 IMS/VS System/Application Design Guide

Virtual Replace Rule Example

RULES= (~~V)

RULES= (--V)

XXXXXXXXXXXX XXXXXXXXXXXX
x CUSTOMER x x LOANS X
X PP x b4 LP x
XXXXXXXXXXXX * XXXXXXXXXXXX
x * * v
. x * * v X
XX XXXXXXXXXXXXXXXXXXXXXXX * * v
b ¢ b4 * * v
b ¢ X *x % v
XXX XXXXXXXXX XXXXXXXXXXXX * VVYVVVVYVVVYVY
X ACCOUNTS x x BORROW x v CUsT v
X x x I1C x v VILC v
XXXXXXXXXXXX XXXXXXXXXXXX VVYVVVVVVVVVYVY
X ROLES=(--V)
X
XXXXXXXXXXXX
X PAYMENTS x
x b ¢
XXXXXXXXXXXX
XXXXXXXXXXXX XXXXXXXXXXXX
x CUSTOMER x x LOANS b ¢
X X X X
XXXXXXXXXXXX XXXXXXXXXXXX
b4 X
X X
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX
x BORROW/LOANS x x CUST/CUSTOMER x
X b 4 X b'¢
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX
GHU "LOANS!
*CUST/CUSTOMER? STATUS CODE='W¥!

REPL

STATUS CODE='¥}"'

The virtual replace rule allows replacing the CUSTOMER segment via
its logical path as part of a concatenated segment.

Replace Rules Summary

Specifying the replace rule as virtual, on any of the segments
involved in the logical relationship, allows replacing that segment by
either its physical path or logical path.

Specifying the replace rule as physical, on any of the segments
involved in the logical relationship,

segment except when retrieved via its physical path.

Data Base Design Considerations

prevents the replacement of that

4,69

The logical replace rule provides for a special case. Specifying the
replace rule for the logical parent as LOGICAL, allows IMS/VS to return
a 'Hp' status code but without replacing any data when the logical
parent is accessed concatenated with the logical child. Since the
logical child has been accessed by its physical path, its replace rule
may be any of the three. Thus using the LOGICAL replace rule allows the
selective replacement of the logical child half of the concatenation and
a 'B¥*' status code.

Figure 4-33 shows all possible combinations of the replace rules that
can be specified, and the resulting actions that take place for each
combination when a call is issued to replace a concatenated segment in a
logical data base.

SEGMENT REPLACE RULES

Replace B|P PP P(PP|P|L|L|L LIL|L|L{V|V|V|V|VIVIV|V|V
rule specified clp[plp[L{LiL|VIV|V[p[p[p|L]L|L]V|V]V[p[P[P|L|L|L|V|V]V
Logical Denotes segment | B|X| |X x|x|] (x|x| |x x|x| |x|x| |x X|X| X
View 1 you are attempting
B I C to replace Cl |IXIX| 1X|X] [X{X| IX{X] [XIX] XX [IX[X] {X{X] [X]|X
A Status code ‘ RX rRX|RX] RXIRX|
Data B|Y| [N|Y Y| [Y|YD [N]Y] YYD |Y]Y] [N]Y| {Y|Y] |Y
replaced?
Y=yes N=no C| IN|IN[IN|N| |Y|Y|] |N[N] [NIN| 1Y|Y| |N[N{ [NIN| |Y|Y
Replace B[P P PP P PP L{L L|L|L|L|V|V|V V{V(V|V
rule specified AP p|P[LIL|L|V|V|V[P|P|P L{V|V|V|p|p|P|L|L|L|V]V|]V
Logical Denotes segment | B |[X| [X X|X| |X|X| |X X|X| [X1X| |X X\ X[|X
View 2 your are attempting
I to replace Al (X[X IXIX] XX XX XX (XX OIXX XX XX
B | A
| Status code RXIRXIRX[RX| |RX|RX| [RX] |RX[RX] RX|RX|
Data B|N| |[N[{N| |{NIN] |N|N| |N|N N Y| [N{Y Y| (Y
replaced?
Y=yes N=no A| |N|N| [N|N| |Y|N| [N|N]| IN[N| 1Y|Y NIN| |N Y Y
Physical Physical
Data Base 1 Data Base 2
r———" b r———" 1 Logical Logical
| | [| View 1 View 2
: C ' ' A '
I Lp | PP : A C
| | | |
L ______ - ! |
|
B |
: Lc : B II C B l| A
Lo J

Figure 4-33. Replace PRules

4.70 IMS/VS System/Application Design Guide

THE INSERT RULES

Applicable to the Destination Parent (Logical Parent and Physical
Parent) segments, but not to the Logical Child segment. See "Logical
Child Insertion" below.

1. PHYSICAL: The destination parent may be inserted only via its
physical parent path.

This means that the destination parent must exist prior to
inserting a logical path. A concatenated segment is not needed;
the logical child is inserted by itself.

2. LOGICAL: The destination parent may be inserted either via its

physical path or concatenated with the logical child via the
logical path.

When a logical child/destination parent concatenated segment is
inserted, the destination parent is insertsd provided it does not
already exist and the I/0 area key check does not fail (see ‘DA
status code). If the destination parent does exist, it will
remain unchanged and the logical child will be connnected to it.

3. VIRTUAL: The destination parent may be inserted via its physical

path or concatenated with the logical child via the logical path.
When a logical child/destination parent concatenated segment is

inserted, the destination parent is replaced if it already
exists, and is inserted if it does not.

Logical Child Insertion

The RULES operand must be coded to supply replace and delete rules
for the logical child. However, the insert rule has no meaning except
to satisify the RULES macro's coding scheme, so any insert rule (P,L,V)
may be coded.

1. A logical child will be inserted provided that the insert rule of
the destination parent is not violated, and

2. The logical child to be inserted does not already exist (that is,
is not a duplicate).

The Insert Call

The I/0 aréa in an application program must contain either the
logical child or the logical child/destination parent concatenated
segment in accordance with the destination parent's insert rule.

The logical child/destination parent concatenated segment insert
operation is performed only if both components of the concatenated
segment can be inserted.

The insert operation is not affected by KEY or DATA sensitivity as
specified in a logical DBD or a PCB. This means that if a progranm is
other than DATA sensitive to both the logical child and the destination
parent of a concatenated segment, that program must nevertheless supply
both in the I/O area when inserting a logical path, and the insert rule
is logical or virtual. Thus maintenance programs that insert
concatenated segments should be DATA sensitive to both segments in the
concatenation,.

Data Base Design Considerations 4.71

Status Codes
AM? -
1GR! -
tIT -
B d -

An insert was attempted and PROCOPT#I.

Parent of the destination parent or logical child was
not found.

Attempt to insert duplicate segment.

Physical rule and destination parent not found.

I/0 area key check fails. Concatenated segments
contain the destination parent!s key twice -- once as

part of LCHILD's LPCK and second as a field in the
parent. The keys must be equal.

Physical Insert Rule Exanmple

RULES= (P~--) ROLES= (P-~)
XXXXXXXXXXXX XXXXXXXXXXXYX
x CUSTOMER x x LOANS X
b 4 PP x b 4 LP x
XXXXXXXXXXXX * XXXXXXXXXXXX
b 4 * * v
b'4 * * v
XXXXXXXXXXXXXXXXXXXXXXXXX * * v
X b4 * * v
b4 X * % v
XXXXXXXXXXXX AXXXXXXXXXXX * VVVVVVVVVVVV
X ACCOUNTS x X BORROW x v cgsT v
b4 b'd b ¢ LC x v VILC v
XXXXXXXXXXXX XXXXXXXXXXXX VVVVVVVVVVVVY
X RULES=([P~--)
b'¢
XXXXXXXXXXXX
X PAYMENTS x
b'd b 4
XXXXXXXXXXXX
XXXXXXXXXXXX XXXXXXXXXXXX
X CUSTOMER x x LOANS x
X b ¢ X b 4
XXXXXXXXXXXX XXXXXXXXXXXX
b ¢ x
b ¢ b ¢
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX
x BORROW/LOANS x x CUST/CUSTOMER x
b 4 X b 4 X
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX

If the LOANS

segment does exist then:

ISRT ‘'CUSTOMER' STATUS CODE='¥p*
ISRT ' BORROW' STATUS CODE='¥¥!

However, if LOANS does not exist, then:

ISRT *CUSTOMER' STATUS CODE=*'¥H!'
ISRT 'BORROW? STATUS CODE='IX!

4.72 IMS/VS System/Application Design Guide

Logical Insert Rule

RULES= (
XXXXXXXX
X CUSTOM
X
XXXXXXXX
X
X
XXXXXXXXXXXXXXX
X
X
XXXXXXXXXXXX
x ACCOUNTS x
X X
XXXXXXXXXXXX

XXXXXXXXXXXX
x CUSTOMER x
X X
XXXXXXXXXXXX

X

X
XXXXXXXXXXXXXXXX
X BORROW/LOANS x
X X
XXXXXXXXXXXXXXXX

ISRT ‘'LOANS?

ISRT *CUST!

Example
L--) ROLES= [L~-~-)
XXXX XXXXXXXXXXXX
ER x x LOANS x
PP x x LP x
XXXX * XXXXXXXXXXXX
* * v
* * v
XXXXXXXXXX * * v
X * * v
X * % v
XXXXXXXXXXXX * VVVVVVVVVVVV
X BORROW x v cusT v
x LC x v Vi.C v
XXXXXXXXXXXX VVYVVVVVVVVV
X RUOLES=[L--)
D¢
XXXXXXXXXXXX
X PAYMENTS x
x b ¢
XXXXXXXXXXXX
XXXXXXXXXXXX
X LOANS b ¢
X b ¢
XXXXXXXXXXXX
X
X
XXXXXXXXXXXXXXXXX
x CUST/CUSTOMER x
b4 X
XXXXXXXXXXXXXXXXX

STATUS CODE='pH¥"'

STATUS CODE='IX"

The 'IX' status code is the result of omitting the concatenated

segment CUST/CUSTOME

the CUSTOMER segment ([in the I/O0 area) and failed to find it.

R in the second call.

IMS/VS checked for the key of
With the

logical insert rule, the concatenated segment must be inserted to create

a logical path.

Data Base Design Considerations

4.73

Virtual Insert Rule Example

RULES= {V~--)

RULES= {V--)

IXXXXXXXXXXX XXXXXXXXXXXX
X CUSTOMER x x LOANS x
X PP x x LP x
XXXXXXXXXXXX * XXXXXXXXXXXX
x * * v
x * * v
XXXXXXXXXXXXXXXXXXXXXXXXX * * v
b 4 x * * v
b4 x * x v
XXXXXXXXXXXX XXXXXXXXXXXX * VVVVVVVVVVVY
x ACCOUNTS x X BORROW x v CUST v
x b 4 X LC x v VLC v
XXXXXXXXXXXX XXXXXXXXXXXX VVVVVVVVVVVYVY
X RULES={V--)
b 4
XXXXXXXXXXXX
x PAYMENTS x
x b 4
XXXXXXXXXXXX
XXXXXXXXXXXX XXXXXXXXXXXX
x CUSTOMER x x LOANS x
X x X b 4
XXXXXXXXXXXX XXXXXXXXXXXX
b 4 b 4
b 4 b 4
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX
x BORROW/LOANS x x CUST/CUSTOMER x
b ¢ b 4 x X
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX

ISRT 'CUSTOMER'

ISRT 'BORROW/LOANS®

Remember this action will replace the LOANS segment if present,

STATUS CODE='p¥*

STATUS CODE='¥p"

and

insert the LOANS segment if not, so the virtual insert rule is a very

powerful option.

4.74 IMS/VS System/Application Design Guide

Insert Rules Summary

The virtual insert rule is the most powerful of the three rules in
that it will insert the destination parent (inserted as a concatenated
segment via the logical path) if the parent didn't previously exist, and
replace the existing destination parent with the inserted destination
parent otherwise.

Specifying the insert rule as logical on the logical parent and the
physical parent, allows insertion via either its physical path or its
logical path as part of a concatenated segment. #When inserting a
concatenated segment, if the destination parent already exists, it will
remain unchanged and the logical child will be connected to it. If it
does not exist, it will be inserted. 1In either case, the logical child
will be inserted provided that the segment is not a duplicate and that
the destination parents insert rule is not violated.

Specifying the insert rule as physical prevents inserting the
destination parent as part of a concatenated segment. This means that a
destination parent may be inserted only by its physical path. If the
insert creates a logical path, only the logical child needs be inserted.

DELETE RULES INTRODUCTION

XXXXXXXXXXXX XXXXXXXXXXXX
x CUSTOMER x x LOANS x
X PP x b ¢ LP x
XXXXXXXXXXXX * XXXXXXXXXXXX
b 4 * * v
x * * v
XXXXXXXXXXKXXXXXXXXXXXXXXX * * v
b'¢ b4) * * v
b 4 b 4 * % v
XXXXXXXXXXXX XXXXXXXXXXXX * VVVVVVVVVVVVY
x ACCOUNTS x X BORROW x v CUST v
x X X LC x v ViC v
XXXXXXXXXXXX XXXXXXXXXXXX VVVVVVVVVVVY
b ¢
x
XXXXXXXXXXXX
X PAYMENTS x
x b ¢
XXXXXXXXXXXX
PHYSICAL PATH PHYSICAL PATH
TO CUSTOMER and BORROW TO LOANS
XXXXXXXXXXXX XXXXXXXXXXXX
X CUSTOMER x X LOANS X
b4 X X b 4
XXXXXXXXXXXX XXXXXXXXXXXX
X X
x b ¢
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX
X BORROW/LOANS x X CUST/CUSTOMER x
b 4 X X b 4
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX
LOGICAL PATH LOGICAL PATH
TO LOANS TO CUSTOMER and BORROW

Data Base Design Considerations 4.75

The DLET call is a request for access path deletion not DASD space
release of a segment. Delete rules are needed when a segment is
involved in a logical relationship because that segment belongs to two
paths; a physical path and a logical path.

The selection of the delete rules for the logical child and its
logical and physical parent (or two logical parents if physical
pairing), determines whether one or two DLET calls are necessary to
delete the two access paths.

Physical and Logical Deletion

1. PHYSICAL DELETION: Physically deleting a segment prevents
further access to that segment via its physical parents.
Physically deleting a segment also physically deletes its
physical dependents.

EXCEPTION: If one of the physical parents of the physically
deleted segment is a logical child segment which has been
accessed from its logical parent, then the physically deleted
segment is accessible from that logical child since the physical
dependents of a logical child are "Variable Intersection Data."

2. LOGICAL DELETION: Logically deleting a logical child prevents
further access via its logical parent. Unidirectional logical
child segments are assumed to be logically deleted.

A logical parent is considered logically deleted when all of its
logical children are physically deleted. For physically paired
logical relationships, the physical child paired to the logical
child must also be physically deleted, before the logical parent
is considered logically deleted.

Deleting Concatenated Segments

The picture below shows that an application program can be sensitive
to either the concatenated segment (SOURCE=(DATA/DATA), ([DATA/KEY),
(KEY/DATR) or only the logical child, since it is the logical child that
is either physically or logically deleted (depending on the path
accessed) in all cases.

4.76

XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX
x CUSTOMER x x CUSTOMER x x CUSTOMER x
X X X b ¢ X x
XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXKXX

x b ¢ X

b4 X X
XXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX
x BORROW/LOANS x X BORROW «x X LOANS «x
X X X X X x
XXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX
SOURCE= [DATA/DATA) (DATA/KEY) (KEY/DATA)

IMS/VS System/Application Design Guide

The Third Access Path

XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX
X X SEG! x xPDx SEG3 «x *xX x SEG7 x
X X PP x X X PP x * %y X LP x
XXXXXXXXXXXX XXXXXXXXXXXX * * XXXXXXXXXXXX
b ¢ b 4 * % v
b 4 b ¢ * v
XXXXXXXXXXXX XXXXXXXXXXXX* %X \AAAAAAAAAAA
X X SEG2 x XPDx SEGY x * v SEGS8 v
X X LC x* xLDx IC x v VLC v
XXXXXXXXXV XX * XXXXXXXXXIXX VYVYVVVVVVVVY
* X
* X
* XXXXXXXXXXXX
* xPDx SEGS x
* X x X
* XXXXXXXXXXXX
* X
* X

* XXXXXXXXXXXX
*XPDx SEG6 x
X X LP x
XXXXXXXXXXXX

There are three paths to the logical child segment SEG4. The
physical path from its physical parent SEG3, the logical path from its
logical parent SEG7, and a third path from its physical dependents (SEGS
and SEG6) because segment SEG6 is a logical parent accessible from its
logical child SEG2.

These paths are "full-duplex" paths, meaning that accessibility is
two way (up and down). There are two delete bits that control access
along the paths, but they are "half-duplex,™ meaning that they only
block half of each respective path. There is not a bit that blocks the
third path. If SEGY were both physically and logically deleted (PD and
LD bits set), it would still be accessible from the third path and so
would both of its parents.

Neither physical nor logical deletion prevents access to a segment
from its physical or logical children. Logically deleting SEGH4 prevents
access to SEGY4 from its logical parent SEG7, but does not prevent access
from SEG4 to SEG7. Likewise, physically deleting SEGU4 prevents access
to SEG4 from its physical parent SEG3, but does not prevent access fronm
SEGH to SEG3.

DELETE BYTE DEFINITION

Seqment Prefix -- Delete Byte

The delete byte is used by IMS/VS to maintain the delete status of
segments within a data base. The meaning of each bit within the delete
byte is shown in Figurs 4-2.

The logical delete bit is only meaningful for logical child segments
and their logical parents. The PD and LD bits are set or assumed set as
follows:

e If a segment is physically deleted (prevent further access from its
physical parent), then delete processing scans downward from that
segment through its dependents, turns upward and either releases

Data Base Design Considerations 4.77

each segment's DASD space or sets the PD bit. HISAM is an exception --
the delete bit is set in the segment specified by the DLET call and
processing terminates.

¢ If the PD bit is set in a logical parent, then the 1D bit is set in
all logical children that can be reached from that logical parent.

e In physical pairing when the PD bit is set in the physical child of
a pair of logical children, the LD bit is set in its pair.

e When a virtually paired logical child segment is logically deleted
{(prevent further access from its logical parent), the LD kit is set
in the logical child. 1If physical pairing, the LD bit is set in the
logical child and the PD bit is set in its pair (a physical child of
the logical parent).

e The LD bit is assumed to be set in all logical children of
unidirectional logical relationships.

e The LD bit is assumed set in a logical parent when the PD bit is set
in all of its logical children. If physical pairing, the PD bit
must be set in both paired logical children.

Ihe Delete Call

A DL/I delete call may be issued against a segment defined in either
a physical or logical DBD. The call can be issued against either a
physical segment or a concatenation.

A delete call issued against a concatenated segment is a request for
the deletion of the logical child along the accessed path.

If a concatenated segment or a logical child is accessed from its
logical parent, then the DLET call is a request for logical deletion.
In all other cases, a DLET call is a request for physical deletion.

Physical deletion of a segment propagates logical deletion request to
its logical children and propagates physical deletion request to its
physical children and to any index pointer segments for which it is the
source segment.

LCelete sensitivity must be specified in the PCB for each segment
against which a DLET call may be issued, but need not be specified for
the physical dependents of those segments.

Delete operations are not affected by KEY/DATA sensitivity as
specified in either the PCB or logical DBD.

Status Codes

' DX? - A delete rule is violated

‘DA’ - Key changed in the I/O area

4.78 IMS/VS System/Aprlication Design Guide

DASD SPACE RELEASE

The delete call is not a request for DASD space release. Depending

on the data base organizaticn, DASD space may or may not be reused when
it is released. DASD space for a segment is released when the following
conditions are met:

Space has been released fcr all physical dependents of the segment.
The segment is physically deleted (PD bit set or being set).

If the segment is a logical child or a logical parent, then it must
be physically and logically deleted (PD bit set/being set, and ID
bit set/assumed set).

If the segment is a derendent of a logical child (variable
intersection data) and the DLET call was issued against a physical
parent of the logical child, then the logical child must be both
physically and logically deleted.

If the segment is a primary index pointer segment, the space has
been released for its target segment.

DELETE RULES

Logical Parent

1 PHYSICAL: The logical parent must be previously logically

any of its physical parents. Otherwise the call results in a
*DX' status code and no segments are deleted.

However, if a delete request is made against the segment as a
result of propagation across a logical relationship, then the
PHYSICAL rule acts like the following LOGICAL rule.

2. LOGICAL: Either physical cr logical deletion can occur first.

When the logical parent is processed by a DLET call, all logical
children are logically deleted, but the logical parent continues
to be accessible from its logical children.

3, VIRTIUAL: A logical parent will be deleted along its physical

° Explicitly when deleted by a DLET call. 2all1l of its logical
children are logically deleted although the logical parent
remains accessible from these logical children,

. Implicitly when it is no longer involved in a logical
relationship. A logical parent is no longer involved in a
logical relaticnshif when:

- It has no logical children pointing to it (its
logical-child counter is zero, if it has any), and

- It points tc no logical children (all of its
logical-child pcinters are zero, if it has any), and

- It has no physical children that are also real logical
children.

Data Base Design Considerations 4,79

Physical Parent (VYirtual Pairing Only)

1.

2.

PHYSICAL/LOGICAL/VIRTUAL: Meaningless

BIDIRECTIONAL VIRTUAL: The physical parent will be automatically
deleted along its physical path when it is no longer involved in
a logical relationship. The physical parent is no longer
involved in a logical relationship when:

o It has no logical children pointing to it {its logical-child
counter is zero, if it has one), and

L] It points to no logical children (all of its logical-child
pointers are zero, if it has any), and

. It has no physical children that are also real logical
children.

PHYSICAL: The logical child segment must be logically deleted
first and physically deleted second. If physical deletion is
attempted first, the DLET call issued against the segment or any
of its physical parents results in a 'DX! status code and no
segmnents are deleted. If a delete request is made against the
segment as a result of propagation across a logical relationship,
or if the segment is one of a physically paired set, then the
rule acts like the following LOGICAL rule.

LOGICAL: Deletion of a logical child is effective for the path

for which the delete was requested. Physical and logical
deletion of the logical child can be performed in any order.

The logical child and any physical dependents remain accessible
from the non-deleted path.

VIRTUAL: A logical child is both logically and physically
deleted when it is deleted through either its logical or physical
path {setting either the PD or LD bits, sets both). TIf this rule
is coded on only one logical child segment of a physically paired
set, it acts like the LOGICAL rule.

For logical children involved in unidirectional logical
relationships, the meaning of all three rules are the same, so any of
the three rules can be specified.

EXAMPLES

The following examples illustrate the use of the delete rules
individually for each of the segmant types that the rule can be coded
for (logical children, and their logical and physical parents).

Only the rule pertinent to the examples are shown in each figure.
The explanation applies to the specific example,

4.80

IMS/VS System/Application Design Guide

http:f!!!~!Q~L~Qq!,�UL!!.RI

Logjcal child, Virtual Pairing -- Physical Delete Rule Example

XXXXXXXXXXXX XXXXXXXXXXXX
ROLES= (---)x CUSTOMER x ROLES= (---)x LOANS x
b 4 PP x b ¢ LP x
XXXXXXXXXXXX ¥ XXXXXXXXXXXX
x * * v
b 4 * * v
XXXXXXXXXXXXXXXXXXXXXXXXX * * v
b 4 x * * v
x b 4 * % v
XXXXXXXXXXXX XXXXXXXXXXXX * VYVVVVVVVVVV
x ACCOUNTS x X BORROW x v CUST v
X X b 4 LC x v ViC v
XXXXXIXXXXXX XXXXXXXXXXXX VYVVVVVVVVVVY
X RULES=(-P-)
x
XXXXXXXXXXXX
x PAYMENTS x
b X
XXXXXXXXXXXX

To Delete the Logical Child

XXXXXXXXXXXXXXX GHU 'LOANS!
x x LOANS b 4 'CUST/CUSTOMER! STATUS="! yK¥'
X X x
XXXXXXXXXXXXXXX DLET STATUS="'¥p"*
x
X

XXXXXXXXXXXXXXXXXXXX
X x CUST/CUSTOMER x
xLDx X
XXXXXXXXXXXXXXXXXXXX

The physical delete rule requires the
logical child be logically deleted
first. The LD bit is now set in

the BORROW segment.

XXXXXXXXXXXXXXX GHO 'CUSTOMER!
x Xx CUSTOMER x 'BORROW/LOANS!® STATUS="! ¥
X X X
XXXXXXXXXXXXXXX DLET STATUS='EkE"
X
b ¢

XXXXXXXXXXXXXXXXXXXX
xPDx BORROW/LOANS x

The logical child can be physically
deleted only after being logically

xLDx b ¢ deleted. After the second delete,
XXXXXXXXXXXXXXXXXXXX both the LD and PD bits are set.

b 4

b ¢
XXXXXXXXXXXXXXX The physical delete of the logical
xPDx PAYMENTS x child also physically deletes the
X X x physical dependents of the logical
XXX XXXXXXXXXXXX child. The PD bit is set.

Data Base Design Considerations

= eemEESe

XXXXXXXXXXXX XXXXXXXXXXXX
RUOLES={-~~-)x CUSTOMER x ROLES= (--~-)x LOANS b 4
b 4 PP x b 4 LP x
XXXXXXXXXXXX * XXXXXXXXXXXX
b'¢ * * v
x * * v
XXXXXXXXXXXXXXXXXXXXXXXXX * * v
X b ¢ * * v
X b ¢ * % v
XXXXXXXXXXXX XXXXXXXXXXXX * VVYVVVVVVVVVYV
x ACCOUNTS x X BORROW x v COST v
X b4 b4 LC x v VILC v
XXXXXXXXXXXX XXXXXXXXXXXX VVVVVVVVVVVV
x RULES=(~L-)
b4
XXXXXXXXXXXX
X PAYMENTS x
X b 4
XXXXXXXXXXXX

To Delete the Logical Child

4.82

XXXXXXXXXXXXXXX
X x CUSTOMER x
X X b ¢
XXXXXXXXXXXXXXX

b

x
XXXXXXXXXXXXXXXXXXXX
xPDx BORROW/LOANS x
X X X
XXXXXXXXXXXXXXXXXXXX

b'¢

b ¢
XXXXXXXXXXXXXXX
XPDx PAYMENTS x
X X b4
XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX
X x LOANS x
X x b 4
XXXXXXXXXXXXXXX

X

b 4
XXXXXXXXXXXXXXXXXXXX
xPDx CUST/CUSTOMER x
xLDx b 4
XXXXXXXXXXXXXXXXXXXX

GHU 'CUSTOMER!

'BORROW/LOANS'

DLET

The logical delete rule allows the

logical child to be deleted
physically or logically first.

Physical dependents of the logical
child are physically deleted, but
remain accessible from the logical

path not logically deleted.

GHU "*LOANS'

'CUST/CUSTOMER'

DLET

The delete of the virtual logical

child sets the LD bit on, in

the physical logical child BORROW

(BORROW is logically deleted)

IMS/VS System/Application Design Guide

STATUS="' K"

STATUS="'B)!'

STATUS="'p¥'

STATUS='¥}p!

Logical Chjld, Physical Pairing -- Physical/Logical Delete Rule Example

XXXXXXXXXXXX XXXXXXXXXXXX
RULES= (---)x CUSTOMER x RULES=(~--)x LOANS x
b 4 LP x X LP x
XXXXXXXXXXXX * XXXXXXXXXXXX
x * * x
x * * x
XXXXXXXXXXXXXXXXXXXXXXXXX * * x
X b 4 * * b 4
b 4 x * x
TXXXXXXXXXXX XXXXXXXXXXXX * * XXXXXXXXXXXX
x ACCOUNTS x X BORROWN x * x CUST b 4
b 4 b 4 b 4 IC x x LC x
XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX
x RULES=(~-P-) RULES=(-P-)
b4 -L- -L-
XXXXXXXXXXXX
x PAYMENTS x
x X
XXXXXXXXXXXX
To Delete the Paired Logical Children
XXXXXXXXXXXXXXX GHU 'CUSTOMER"
x x CUSTOMER x *BORROW/LOANS!
X X x
XXXXXXXXXXXXXXX DLET STATUS="' ¥¥*
X
b4

XXXXXXXXXXXXXXXXXXXX
XxPDx BORROW/LOANS x
X x x
XXXXXXXXXXXXXXXXXXXX
x
X
XXXXXXXXXXXXXXX
XPDx PAYMENTS x
X X x
XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX
X X LOANS X
X X X
XXXXXXXXXXXXXXX

X

x
XXXXXXXXXXXXXXXXXXXX
XxPDx CUST/CUSTOMER x
xLDx X
XXXXXXXXXXXXXXXXXXXX

With the physical or logical delete
rule, each logical child must be

deleted from its physical path.

Physical dependents of the logical
child are physically deleted, but
remain accessible from the paired

logical child not deleted.

GHU *LOANS’
'CUST/CUSTOMER'

DLET STATUS="'¥¥"'

Physically deleting BORROW set
the LD bit in CUST. Physically
deleting CUST will set the LD
bit in the BORROW segment.

Data Base Design Considerations

STATUS="' p¥'

STATUS=*y¥'

Logical child, !i!&!él Pajring -- Virtual Delete Rule Example
XXXXXXXXXXXX XXXXXXXXXXXX
RULES=(---)x CUSTOMER Xx RULES= (---}x LOANS x
X PP x b 4 LP x
XXXXXXXXXXXX * XXXXXXXXXXXX
b 4 * * v
x * * v
XXXXXXXXXXXXXXXXXXXXXXXXX * * v
b 4 b ¢ * * v
b 4 b 4 * % v
XXXXXXXXXXXX XXXXXXXXXXXX * VYVVVVVVVVVV
x ACCOUNTS x x BORROW x v CcUsT v
b 4 b 4 x LC x v VIC v
XXXXXXXXXXXX XXXXXXXXXXXX VYVVVVVVVVVYV
x ROULES=(-V-)
X
XXXXXXXXXXXX
X PAYMENTS x
x b 4
XXXXXXXXXXXX

4.84

XXXXXXXXXXXXXXX
x x CUSTOMER x
X X X
XXXXXXXXXXXXXXX

X

x
XXXXXXXXXXXXXXXXXXXX
xPDx BORROW/LOANS x
xLDx x
XXXXXXXXXXXXXXXXXXXX

x

X
XXXXXXXXXXXXXXX
xPDx PAYMENTS x
X X x
XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX
X x LOANS X
X X X
XXXXXXXXXXXXXXX

X

X
XXXXXXXXXXXXXXXXXXXX
xPDx CUST/CUSTOMER x
XLDx X
XXXXXXXXXXXXXXXXXXXX

IMS/VS System/App

GHU *CUSTOMER!
'BORROW/LOANS! . STATUS="}p¥"

DLET STATUS="'¥H"

The virtual delete rule allows the
logical child to be deleted
physically and logically. Deleting
either path, deletes both paths.

Physical dependents of the logical
child are physically deleted.

GHU 'LOANS!'
"CUST/CUSTOMER! STATUS='GE"

The previous physical delete,
deleted both paths, because the
delete rule is virtual. Deleting
either path, deletes both.

lication Design Guida

Logical Child, Physical Pairing -- Virtual Delete Rule Example

XXXXXXXXXXXX
RULES=(---)x CUSTOMER x
x LP x
XXXXXXXXXXXX
X
X
XXXXXXXXXXXXXXXXXXX
X
b
XXXXXXXXXXXX
X ACCOUNTS x
X b4
XXXXXXXXXXXX

XXXXXXXXXXXX
RULES=[---)x LOANS x
X LP x
* XXXXXXXXXXXX
%k * x
% * b4
XXXXXX * * b 4
X * * b ¢
X * X
XXXXXXXXXXXX * * XXXXXXXXXXXX
x DBORROW x LIS ¢ cusT b 4
X LC x X LC x
XXXXXXXXXXXX XXXXXXXXXXXX
X RULES=(-V-) RULES=[-V-)
X
XXXXXXXXXXXX
x PAYMENTS x
b4 X
XXXXXXXXXXXX

To Delete the Paired Logical Children

XXXXXXXXXXXXXXX GHU 'CUSTOMER!
x x CUSTOMER x 'BORROW/LOANS?® STATUS="' ¥K"
X X X
XXXXXXXXXXXXXXX DLET STATUS='¥p!
b'e
X

XXXXXXXXXXXXXXXXXXXX
xPDx BORROW/LOANS x

With the virtual delete rule,

deleting either logical child deletes

xLDx b 4 both paired logical children.
XXXXXXXXXXXXXXXXXXXX (notice the PD & LD in both)
X
b 4
XXXXXXXXXXXXXXX Physical dependents of the logical
XPDx PAYMENTS x child are physically deleted.
T X x
XXXXXXXXXXXXX XX
XXXXXXXXXXXXXXX GHU 'LOANS?
X X LOANS X *CUST/CUSTOMER® STATUS=*GE!
X X X
XXXXXXXXXXAXXXX
x
X

XXXXXXXXXXXXXXXXXXXX
xPDx CUST/CUSTOMER x
xLDx X
XXXXXXXXXXXXXXXXXXXX

Physically deleting BORROW also
physically deleted CCST, so the
CUST segment was not found,
that is, 'GE' status code.

Data Base Design Considerations

XXXXXXXXXXXX

RULES=[---)x CUSTOMER x

b ¢ PP x
XXXXXXXXXXXX
x
x
XXXXXXXXXXXXXXXXXXX
X
X

XXEXXXXXXXXX
X ACCOUNTS x

X
XX XX

X
XXXXXXXX

To Delete the Logical Parent

4.86

"BEFORE"™
XXXXXIXXXXXXXXXX
X x LOANS X
x X X
XXXXXXXXXXXXXXX

b 4

X
XXXXXXXXXXXXXXXXXXXX
xPDx CUST/CUSTOMER x
X X b4
XXXXXXXXXXXXXXXXXXXX

"AFTERY
XXXXXXXXXXXXXXX
xPDx LOANS X
X x b 4
XXXXXXXXXXXXXXX

X

X
XXXXXXXXXXXXXXXXXXXX
xPDx CUST/CUSTOMER x
xLDx p.¢
XXXXXXXXXXXXXXXXXXXX

IMS/VS System/App

XXXXXXXXXXXX
RULES= (-P-)x LOANS b ¢
x LP x
* XXXXXXXXXXXX
%* * v
* * v
XXXXXX * * v
b 4 * * v
x * X v
XXXXXXXXXXXX * VVYVVVVVVVVVY
X BORROW x v CUST v
x LC x v VIC v
XXXXXXXXXXXX VVVVVVVVVVVY
X RULES=(---)
x
XXIXXXXXXXXXX
X PAYMENTS x
x b ¢
XXXXXXXXXXXX
GHU '"LOANS?!
DLET

The physical delete rule requires

that all logical children be
previously physically deleted.

Physical dependents of the logical

parent are physically deleted.

Tne DLET status code will be
if all of its logical children
were not previously physically
deleted.

All logical children are logically

deleted. LD bit is set in the
physical logical child BORROW.

lication Design Guide

STATUS="')p¥'

STATUS="'K¥¥"'

L) 4

Logical Parent, Physical Pairing -- Bhysical Delete Rule Example

XXXXXXXXXXXX

ROLES=(-P-)x CUSTOMER x

X LP x
XXXXXXXXXXXX
X
X
XXXXXXXXXXXXXXXXXXX
X
X

XXXXXXXXXXXX
x ACCOUNTS x

b <

b 4

XXXXXXXXXXXX.

To Delete Either of the

"BEFORE"
XXXXXXXXXXXXXXX
X Xx CUSTOMER x
X X X
XIXXXXXXXXXXXXXX

x

b 4
XXXXXXXXXXXXXXXXXXXX
xPDx BORROW/LOANS x
xLDx x
XXXXXXXXXXXXXXXXXXXX

®AFTER®
XXXXXXXXXXXXXXX
xPDx CUSTOMER x
X X b'¢
XXXXXXXXXXXXXXX

b ¢

b4
XXXXXXXXXXXXXXXXXXXX
xPDx BORROW/LOANS x
xLDx x
XXXXXXXXXXXXXXXXXXXX

b ¢

b'¢
XXXXXXXXXXXXXXX
xPDx PAYMENTS x
X X X
XXXXXXXXXXXXXXX

XXXXXXXXXXXX
RULES=[-P-)x LOANS x
x LP x
* XXXXXXXXXXXX
L * X
* * X
XXXXXX * * x
b 4 * * x
x * x
XXXXXXXXXXXX * * XXXXXXXXXXXX
x BORROW x * x CUsT x
x LC x X LC x
XXXXXXXXXXXX XXXXXXXXXXXX
X ROULES= (---) ROLES=(-~--)
b4
XXXXXXXXXXXX
x PAYMENTS x
x b ¢
XXXXXXXXXXXX

Logical Parents

GHU *CUSTOMER!®

DLET

STATUS=' py*

STATUS='¥p!*

The physical delete rule requires:

(1) all logical children to be
previously physically deleted.

(2) physical children paired to its
logical child to be previously
physically deleted.

CUSTOMER, the logical parent
has been physically deleted.

Both the logical child and its pair
had previously been physically
deleted. (PD and LD set on in the
"BEFORE" figure of BORROW/LOANS)

All physical dependents of the
physical parent are physically
deleted; ACCOUNTS ({not shown)
is physically deleted.

Data Base Design Considerations

Logical Parent, Virtual Pairing -- Logical Delete Rule Example

XXXXXXXXXXXX XXXXXXXXXXXX
ROLES=(---)x CUSTOMER x RULES= (-L-)x LOANS b 4
b 4 PP x x LP x
XXXXXXXXXXXX * XXXXXXXXXXXX
x * v
x * v
XXXXXXXXXXXXXXXXXXXXXXXXX * v
b 4 X * * v
b'4 x * X v
XXXXXXXXXXXX XXXXXXXXXXXX * VVVVVVVVVVVV
x ACCOUNTS x X BORROW x v CcUsT v
b 4 b 4 x LC x v ViC v
XXXXXXXXXXXX XXXXXXXXXXXX VVVYVVVVVVVVV
X RULES={[---)
x
XXXXXXXXXXXX
x PAYMENTS x
b 4 b 4
XXXXXXXXXXXX

"BEFORE"™
XXXXXXXXXXXXXXX
X Xx LOANS b4
X x X
XXXXXXXXXXXXXXX

x

b ¢
XXXXXXXXXXXXXXXXXXXX
x x CUST/CUSTOMER Xx
X x b ¢
IXXXXXXXXXXXXXXXXXXX

WAFTER"
XXXXXXXXXXXXXXX
xPDx LOANS b 4
X X x
XXXXXXXXXXXXXXX

b 4

b ¢
XXXXXXXXXXXXXXXXXXXX
X x CUST/CUSTOMER x
xLDx b 4
XXXXXXXXXXXXXXXXXXXX

GHU *LOANS! STATUS="'p)¥"

DLET STATUS=" K"

The logical delete rule allows
either physical or logical deletion
first; neither causes the other.
Physical dependents of the logical
parent are physically deleted.

The logical parent LOANS remains
accessible from its logical
children.

All logical children are logically
deleted. LD bit is set in the
physical logical child BORROW.

The above processing and results would be the same if the logical

parent LOANS delete rule were virtual instead of logical.

An additional

example to explain the virtual delete rule follows.

4.88

INS/VS System/Application Design Guide

Logical Parent, Bhysical Pair

ipg -- Logical Delete Rule Example

XXXXXXXXXXXX XXXXXXXXXXXX
RULES={-L-)x CUSTOMER x RULES=(-L-)x LOANS x
x LP x x LP x
XXXXXXXXXXXX * XXXXXXXXXXXX
b 4 * * b 4
x * * X
CXXXXXXXXXXXXXXXXXXXXXXXX * * x
x x * * x
b 4 b ¢ * x
IXXXXXXXXXXX XXXXXXXXXXXX * * XXXXXXXXXXXX
x ACCOUNTS x x BORROWR <x * x COST x
x b4 b 4 LC x x LC x
XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX
x ROLES={(---) RULES= [---)
x
XXXXXXXXXXXX
x PAYMENTS x
X X
XX XXXXXXXXXX

To Delete Either of the logical Parents

“"BEFORE"
XXXXXXXXXXXXXXX
x x LOANS b 4
X x X
XXXXXXXXXXXXXXX

b'S

X
XXXXXXXXXXXXXXXXXXXX
X x CUST/CUSTOMER x
X x b 4
XXXXXXXXXXXXXXXXXXXX

“"AFTER"™
AXXXXXXXXXXXXXX
xPDx LOANS b ¢
X X X
XXXXXXXXXXXXXXX

b ¢

b'¢
XXXXXXXXXXXXXXXXXXXX
xPDx CUST/CUSTOMER x
X X b 4
XXXXXXXXXXXXXXXXXXXX

The above processing and results would be the same if the logical
parent LOANS delete rule were virtual instead of logical.

GHU 'LOANS? STATUS=" k'

DLET STATUS='py"*

The logical delste rule allovs
either physical or logical deletion
first; neither causes the other.
Physical dependents of the logical
parent are physically deleted.

The logical parent LOANS remains
accessible from its logical
children.

A1l physical children are physically
deleted. Paired logical children
are logically deleted.

example to explain the virtual delete rule follows.

Data Base Design Considerations

An additional

4,89

ROL

XXXX
x AC
X

Xxxx

Deletjing Last Logical Child

4.9C

XXXXXXXXXXXX XXXXXXXXXXXX
ES=(-=--)x CUSTOMER x RULES={-V-)x LOANS x
b ¢ PP x x LP x
XXXXXXXXXXXX * XXXXXXXXXXXX
b 4 * * v
x * * v
XXX XXX XXXXXXXXXXXXXXXXXX * * v
X x * * v
x X * % v
XXXXXXXX XXXXXXXXXXXX * VYVVVVVVVVVVY
COUNTS x BORROW x v CUST v
x x ILC x v VILC v
XXXXXXXX XXXXXXXXXXXX VVVVVVVYVVVYV
X ROULES={---)
x
XXXXXXXXXXXX
x PAYMENTS x
x
XXXXXXXXXXXX

"BEFORE"
XXXXXXXXXXXXXXX
x x COSTOMER x
X x x
XXXXXXXXXXXXXXX

x

X
XXXXXXXXXXXXXXXXXXXX
X x BORROW/LOANS x
X X x
XXXXXXXXXXXXXXXXXXXX

WAFTER"
XXXXXXXXXXXXXXX
xPDx LOANS X
X X b 4
XXXXXXXXXXXXXXX

x

b 4
XXXXXXXXXXXXXXXXXXXX
xPDx CUST/CUSTOMER x
XLDx x
XXXXXXXXXXXXXXXXXXXX

eletes Logical Parent

GHU 'CUSTOMER!

'BORROW/LOANS? STATUS="! py'

DLET STATUS="'¥y'

The virtual delete rule allows
explicit and implicit deletion.

Explicit is same as logical rule.

Implicit means the logical parent
is physically deleted when the last
logical child is physically deleted.

Physical dependents of the logical
child are physically deleted.

The logical parent is physically

deleted. Physical dependents of

the logical parent are physically
deleted.

All logical children are logically
deleted. LD bit is set in the
physical logical child BORROW.

IMS/VS System/Application Design Guide

Logical Parent, Physical Pairing -- Virtual Delete Rule Example

XXXXXXXXXXXX
ROLES=(-V-)x CUSTOMER x
X LP x
XXXXXXXXXXXX
x
x
XXXXXXXXXXXXXXXXXXX
x
X
XXXXXXXXXXXX
x ACCOUNTS x
X x
XXXXXXXXXXXX

“BEFORE"
XXXXXXXXXXXXXXX
X x CUSTOMER x
X X b ¢
XXXXXXXXXXXXXXX

x

x
XXXXXXXXXXXXXXXXXXXX
X X BORROW/LOANS x
XxLDx b 4
XXXXXXXXXXXXXXXXXXXX

"AFTER"
XXXXXXXXXXXXXXX
XPDX LOANS D 4
X x X
XXXXXXXXXXXXXXX

X

X
XXXXXXXXXXXXXXXXXXXX
XxPDx CUST/CUSTOMER x
xLDx - X
XXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXX
RULES=(-V-)x LOANS x
x LP x
* XXXXXXXXXXXX
* %*® b 4
* &* X
XXXXXX * x
X * * x
X * x
XXXXXXXXXXXX * * XXXXXXXXXXXX
x BORROW x * x cusT b ¢
X LC x x LC x
XXXXXXXXXXXX XXXXXXXXXXXX
X ROLES= (~--) RULES={~---)
b 4
XXXXXXXXXXXX
x PAYMENTS x
x X
XXXXXXXXXXXX

GHU YCUSTOMER®
*BORROW/LOANS!' STATUS="'pH'

DLET STATUS="'¥p"’

The virtual delete rule allows
explicit and implicit deletion.

Explicit is same as logical rule,

Implicit means the logical parent
is physically deleted when the last
logical child is physically and
logically deleted. Physical
dependents of the logical

child are physically deleted.

The logical parent is physically
deleted. Any physical dependents
of the logical parent are
physically deleted.

NOTICE: CUST segment must have
physically deleted prior to the
DLET call. (See above that the
LD is set in BORROW)

Data Base Design Considerations

Physical Parent, ¥Virtual

XXXXXXXXXXXX
RULES= (-B-)x CUSTOMER x
b 4 PP x
XXXXXXXXXXXX
x
x
AIXXXXXXXXXXXXXXXXXX
X
x
XXXXXXXXXXXX
x ACCOUNTS x
X X
XXXXXXXXXXXX

Pairing -- Bidirectional Virtual Example

XXXXXXXXXXXX
RULES= (---)Xx LOANS x
b 4 LP x
* XXXXXXXXXXXX
* * v
x* oA v
XXXXXX * * v
b ¢ * * v
X * % v
XXXXXXXXXXXX * YVVVVVVVVVVY
X BORROW x v CUST v
X ILC x v ViC v
XXXXXXXXXXXX VVVVVYVVVVVV
X RULES=(~---)
X
XXXXXXXXXXXX
X PAYMENTS x
b ¢ X
XXXXXXXXXXXX

"BERFOREY
XXXXXXXXXXXXXXX
X x LOANS X
X X X
XXXXXXXXXXXXXXX

b 4

X
XXXIXXXXXXXXXXXXXXXX
X x CUST/CUSTOMER x
X X X
XXXXXXXXXXXXXXXXXXXX

"AFTER"
XXXXXXXXXXXXXXX
xPDx CUSTOMER x
X X X
ZXXXXXXXXXXXXXX

X

b 4
XXXXXXXXXXXXXXXXXXXX

xPDx BORROW/LOANS x
xLDx X
XXXXXXXXXXXXXXXXXXXX
x
X
XXXXXXXXXXXXXXX
xPDx PAYMENTS x
X X p 4
XXXXXXXXXXXXXXX
4,92 IMS/VS System/App

GHU 'LOANS!

'CUST/CUSTOMER' STATUS="'pK"*

DLET STATHS="Bp"'

The bidirectional virtual rule for
the physical parent, is equal to
virtual for the logical parent.

When the last logical child is
logically deleted, the physical
parent is physically deleted.

The logical child [as a dependent of
the physical parent) is physically
deleted.

211 physical dependents of the
physical parent are physically
deleted; ACCOUNTS (not shown),
BORROW and PAYMENTS.

lication Design Guide

A physically deleted segment remains accessible under the following
circumstances:

1. A physical dependent of the deleted segment is a logical parent
which is accessible from its logical children.

2. A physical dependent of the deleted segment is a logical child
which is accessible from its logical parent.

3. A physical parent of the deleted segment is a logical child which
is accessible from its logical parent. The deleted segment is
this case is variable intersection data of a bidirectional
logical relationship.

A logically deleted logical child cannot be accessed from its logical
parent.

Neither physical nor logical deletion prevents access to a segment
from its physical or logical children. Since logical relationships
provides for inversion of the physical structure, a segment may be
either physically or logically deleted or both and still be accessible
from a dependent segment, because of an active logical relationship. &
physically deleted root segment can be accessed when it is, defined as a
dependent segment in a logical DBD. The logical DBD defines the
inversion of the physical DBD.

Data Base Design Considerations 4,93

1. EXAMPLE OF DELETED SEGMENTS ACCESSIBILITY: When the physical
dependent of a deleted segmert is a logical parent with logical
children not physically deleted, the logical parent and its
physical parents are accessible from those logical children.

XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX
X x SEG1 x xPDx SEG3 x *x x SEG7 x
X X PP x X X PP x * *x X LP x
XXXXXXXXXXXX XXXXXXXXXXXX * % YYXXXXXXXXXX
b 4 b 4 * & v
b'¢ x * v
XXXXXXXXXXXX XXXXXXXXXXXX* X VYVVYVVVVVVVY
X x SEG2 x XPDx SEGY x * v SEG8 v
X X LC x* X x IC x v VIC v
XXXXXXXXXXXX * XXXXXXXXXXXX VVVVVVVYVVYY
* x N
* b ¢
* | XXXXXXXXXXXX
* xPDx SEGS x
* X X b 4
* XXXXXXXXXXXX
* X
* X

* XXXXXXXXXXXX
*xPDx SEG6 Xx
X X P x
XXXXXXXXXXXX

The above physical structures shov that SEG3, SEG4, SEGS5, and SEG6
have been physically deleted. Probably by issuing a DLET call for SEG3.
This resulted in all of SEG3's dependents being physically deleted.
(SEG6's delete rule # PHYSICAL or a *'DX' status code would bhe the
result).

SEG3, SEG4, SEGS, and SEG6 remain accessible from SEG2, the logical
child of SEG6, because SEG2 is not physically deleted.

However, physical dependents of SEG6 cannot be accessible, and their

DASD space is released unless an active logical relationship prohibits
such release,

L.94 IMS/VS System/Application Design Guide

dependent of a deleted segment is a logical child whose logical
parent is not physically deleted, the logical child, its physical
parents and its physical dependents are accessible from the
logical parent.

XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX
X x SEG1 x xPDx SEG3 x *x x SEG7 x
X X PP x X X PP x * *x X LP x
XXXXXXXXXXXX XXXXXXXXXXXX * * YXXXXXXXXXXXX
X X * % v
X b4 * X v
XXXXXXXXXXXX XXXXXXXXXXXX* * VVVVVVVVVVVV
X X SEG2 x xPDx SEGU x * v SEG8 v
X X LC x* X X LC x v VILC v
XXXXXXXXXXXX * XXXXXXXXXXXX VVVVVVVVVVYYVY
* b 4
* b4
* XXXXXXXXXXXX
* xPDx SEGS «x
* X X b 4
* XXXXXXXXXXXX
* X
* X

* XXXXXXXXXXXX
*xPDx SEG6 x
X x LP x
XXXXXXXXXXXX

The above physical structures show that SEG3, SEGY, SEGS5, and SEG6
have been physically deleted.

The logical child segment SEGY remains accessible from its logical
parent SEG7 (note that SEG7 is not physically deleted). Also accessible
ar2 segments SEG5 and SEG6, which are variable intersection data. The
physical parent of the logical child (SEG3) is likewise accessible fronm
the logical child ([SEGH).

Data Base Design Considerations 4,95

3. EXAMPLE OF DELETED SEGMENTS ACCESSIBILITY: A physically and
logically delet logical child can be accessed from its physical
dependentse.

XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX
X x SEG!' x xPDx SEG3 x *x x SEG7 x
X x PP x X X