
SH20-9025-6

IMS/VS Version 1
SystemI Application

Program Product Design Guide

Program Number 5740-XX2

Release 1.5

This edition replaces the previous edition (numbered SH20-9025-5) and
its technical newsletter (numbered SN20-92661 and makes them obsolete.

This edition applies to Version 1 Rel~ase 1.5 of IMS/VS, program number
5740-XX2, and to any subsequent releases unless otherwise indicated in
new editions or technical newsletters.

Technical changes are summarized under "Summ~ry of Amendments" following
the list of figures. Each technical change is marked by a vertical line
to the left of the change.

Information in this publication is subject to significant change. Any
such changes will be published in new editions or technical newsletters.
Before using this publication, consult the l~test I~tt ~I~i~~11Q
~iRli2g£!ehY, GC20-0001, and the technical newsletters that amend the
bibliography, to learn which editions and technical newsletters are
applicable and current.

Requests for copies of IBM publications should be made to the IBM branch
office that serves you.

Forms for readers' comments are provided at the back of this
publication. If the forms have been removed, comments may be addressed
to IBM Corporation, P.O. Box 50020, Programming Publishing, San Jose,
California 95150. All comments and suggestions become the property of
IBM.

liP Copyright International Business Machines Corporation 1974, 1975,
.976, 1977, 1978

This publication presents the design considerations associated with
installing and operating Information Management System/Virtual Storage
(IMS/VS). It presents I8S/VS concepts, and the facilities available for
designing IHS/VS Data Base (DB) and Data Base/Da ta Communication (DB/DC)
systems.

This publication provides data base administrators, system designers,
system programmers, and application programmers with the information
they require to design an IMS/VS system and to design the applications
which operate under IMS/VS.

Prerequisite to this publication is the t~~L!~ ~~n~~~i l~{~~~~~i~~
~~~~~!, GH20-1260. In addition to information in the !~~!~ ~~n~~l 
in!2••~!i2~ ManY~l, the reader is expected to have a knowledge of 
Operating system/Virtual Storage (OS/VS) and OS/VS access methods. The 
chapters in this publication are: 

1. 	 "Design, Installation, and Maintenance of the IMS/VS Data Base 
System" that addresses the factors to be considered when 
installing a DB system. 

2. 	 "Design and Control of the Data Base/Data Communication Syste~ 
that addresses the factors to be considered when installing a 
DB/DC system. 

3. 	 "Application Program Design" that includes considerations for 
design of batch and telecommunication IHS/VS applications. 

4. 	 "Data Base Design Considerations" that describes data base 
concepts, structures, and the options available for designing 
IHS/VS data bases. 

5. 	 "Design Considerations for the Hultiple Systems Coupling (MSC) 
Feature" that describes rlSC and contains design considerations 
for its use. 

6. 	 "Design Considerations for the Fast Path Feature" that describes 
Fast Path and contains design considerations for its use. 

jjt}Ij~ fY~!~}11QR§ 

l~~L!§ In§~AllA~iQn ~Yide, SH20-9081 
This publication presents step-hy-step details for the IrlS/VS 
installation process. 

!~~L!~ ~I§!!! ff29fg!!~ng Eef!f~n£! ~gnyg!, 5820-9027 
This manual provides system programming personnel with 
installation considerations and details for generation
(definition) of an IHS/VS system. 

1~~L!~ !eel!£gi!Qn g~2gf~!!!ng ~~!!~!B£~ ~gnygl, SH20-9026 
This document is a reference manual for the application 
programmer. It provides information about the coding 
techniques necessary to implement a designed application 
under the I8S/VS system. 

Preface iii 



I~aL!§ y~!!iti~§ l~!ere~£~ ~~~y~!, SH20-9029 
This manual provides a description of the IMS/V5 system 
utility programs. It describes how to execute these 
utilities under the operating system. 

I~aL!§ QE~IatQI~§ RefeI~~£~ ~!DY!1, 5H20-9028 
This manual ~rovides the master terminal, remote terminal, 
and system console operators with the information associated 
with operating IMS/VS once the system has been established in 
a user envircnment. 

I~§L!§ ~~§§~g~ fQI~~! §~I~i£~ Q§~I~~ ~~1q~, SH20-9053 
This manual describes the use, def inition, and implement ation 
of the Message Format Service (MFS). 

I~§L!§ !gY!n~g fg~ti2~ !2I f2!!Y~i£~!12n§, SH20-9054 
This manual explains the IMS/VS support for advanced function 
communications systems. It addresses the areas that 
programmers or analysts involved in communicating with IMS/VS 
must be familiar with. 

I~§L!§ ~~§§~g~§ !~g ~Qg~§ g~!~£~n£~ ~~n~~i, SH20-9030 
This manual lists, explains, and suggests appropriate 
responses to the completion codes and messages produced by 
all the IBM-supplied components of the IKS/VS system. 

I~§L!§ f!11~~ !~!11§1§ StIg£!gI~ ~~l~§ If!§Il tQI QY~~ 
An!lI§i§, LY20-8050 

This manual contains a simple, structured approach to 
defining IMS/VS programming failures. This manual is for 
both 1M S/VS users and IBM progra mming support representatives 
who diagnose IHS/VS problems. 

I~aL!§ Qi!gn2§!i£§ Ai£§, LY20-8063 
This manual assists the IBM programming support 
representative and customer system programmers in using 
RETAIN/EiS for diagnosing IM5/VS programming failures. It 
provides a systematic approach both for searching RETAIN/EWS 
for IMS/VS failures and for constructing a set of keywords as 
entries into RETAIN/EW5. 

I~§L!§ ~.QgI!~ kQgi£ H!ng!l, LY20-8069 
The IKS/VS Program Logic Manual provides high level logic 
analysis information to programming systems representatives 
responsible for the maintenance of the IBM Information 
Management System/Virtual Storage (IMS/VS). The format of 
this manual farallels the function/subfunction breakdown 
employed in the I~U'!.§ Qi!gnQ§!i£§ !1!!§, LY20- 8063. 

~]l~g~!~] fQ~~1~AI1QR§ 

• 	 ln~IQgY~!i2~ 12 ~b~ I~~ J§~~ ~!§§ §!2I~g~ §1§!~~ l~§§l, GA32-0028 

• 	 Q§L!§ ~~§2 §1Q.I~g~ §I§t~! J~§§l .fl!!H!ing §Yi!!~, GC35- 0011 

• 	 I~H ~~~Q ~~§§ §~Q.I~g~ ~12!~! l~~§l gI!n~!El~§ Q! QE~I!!iQn,

GA32-0029 


iv IMS/VS System/Application Design Guide 



• • • • 

• • 

• • 

• 

• • • 

• • 

• 

• 

• 

~Q!iIll!iI~ 

~~ 
PREFACE. . . • iii· • 
FIGURES. xiii 

SUMMARY OF AMENDMENTS. . . • xvii 

CHAPTER 1. DESIGN, IHSTALIATICN, AND MAINTENANCE OF THE 
IMS/VS DATA BASE SYSTEM • • • 1. 1 

Description of Facili ties. • • · . • • • • • • • 1. 1 
Systems. • •• • • • . . • • · . 1.2 
DB Syste m Ge ne ra tion Design Decisions. • · . • 1.4 

OS/VS Option considerations. • • • 1.4• · . · .
IMs/VS System Definition • • 1.4• · .

Special Access Method -- OsAM. • • • • • 1.5 
Generalized sequential Access Method (GsAM). 1.5 

Data Base and Application Design Decisions ••• 1.6 
Data Base Description (DBD) Generation. • 1.6 
Program Specification Block IPSB) Generation. • l.8 
Application Control Blocks (ACB) Creation and Maintenance. 1.8• 
Application Program Design • •• 1.9 

Execution and Control of the Data Base system•• 1.9 
Essential Program Elements for Execution 1.9 

Program Specification Block (FSB). • • • • • • 1.10 
Da ta Base De scription Block (DBD). 1. 10· . • 
Application Control Block (ACB). 1 • , 1 · . • • • 
Application Program. • •• 1 • 11 
I8S/VS System Modules. • 1. 11· . • • 

Data Base System Execution. 1.12 
Data Base System JCL Considerations. • • • ,. '4 
Data Base System Control Sequence Flow • 1.14• • • • · .Data Base Buffering. • 1. 16 

System Integrity and Maintenance Considerations. 1. 17 
Data Base Logging. 1.17 
Ba tch Checkpoint/Restart • 1. 18• 
Batch Backout Utility Program. 1. 19•
IMS/Vs Use of STAE/ESTAE • 1.20 
IBM System/370 Power Warning Feature Support • 1.21 
IMS/VS DB Monitor. 1.21 

CHAPTER 2. tESIGN AND CONTROL OF A DATA BASE/DATA 
COMM UNIC ATI ON 5YSTEM. • •• •• 2. 1• 

Relationship of DB/DC to DB system • 2. 1 
Organization of DB/DC Processing •• 2. 1· .Region Types • •• • 2.1· . • 
Configuring the system through Opt ions 2.3 

OS/V S 0 pti ons. •• 2.3•
Fixed or Variable Tasking. 2.3 
IMS/VS Program Module Preload Function • 2.3 
Performance Considerations for Modules Preloaded 
in MPPS/IFPs. • ••• • •• 2.4 

I8S/VS in an OS/VS System. • 2.5 
Supported Configurations • • • • • 2.5 

Os/VS Options Required or Recommended for IMS/Vs • 2.5 
Special Access Method -- eSA!!. • • 2.5 

Allocation of OSA8 Data Sets. ••• • 2.5 
I8S/VS Facilities. • • • • • 2.7 

Control Program. • • • • ••• 2.7 
Processing Regions • • • 2.7 
Active I/O Requests. 2.7 

Contents v 



Checkpoint Frequency • • • • • • • • • • 
System Queue Space • • • • • • 
IMS/VS Enqueue/Dequeue. • • 
Program Isolation. • • •••• 

Message Scheduling •• ••••• 

· .. 
• • • 

•
Message Class and Region Class • • • • 
Load Bala ncing • • • • • •• ••• '. • • 
Selection Priorities • • • • • • • • • 
Proce ssing Limi ts. ••• • • • • 
Application Program Output Limits•••• 
Multiple and Single Segment Messages. 

Multiple and Single Message Mode • 
Response Mode. • • • • 
Non-Update Transaction Frocessing. 
Conversational Attribute • •• •• 

• 

Data Base Processing Intent.. •••• 

• 

Processing Intent specifications •••• 
Application Progra. Abnor.al Termination • 

• • • 
• • • 

•· . 
• • 

• • • 
• • 

• • • 
• • 

• 
• • • 
• • 
• • 
• · . 
• • • 

• • • 
• • 

Control Block Buffer Pools -­ PSB and DMB ••••• 

• 
• 

• 
• 

• 
• 
• 
• 

• 
• 
• 
• 

• 

• 

• 

• 
• 
• 

• 
• 
• 
• 

• 

• 
• 

• 
• 

• 

• 

• 
• 

• 
• 
• 
• 

• 
• 
• 
• 

2.8 
2.8 
2.8 
2.8 
2.9 
2.10 
2.11 
2.11 
2.12 
2.12 
2.12 
2.14 
2.15 
2.17 
2.17 
2.18 
2.20 
2.23 
2.26 

Da ta Base s • •• • • 
Dynamic Allocation and Deallocation of DL/I 

• • 
and Fast Path 

• • 2.26 

DED'S Dat.a Sets (M VS Only) • • • • • • • • •• 
Starting and Stopping the 185/VS Control Region. 
Batch Checkpoint/R estart • • • •• ••••• 
Message Que ue s • • •• ••• • • • • 

Message Queues and Message Selection • • • • • 
Terminal Modes • • • • 

••• 
••• 

• 
• • 

• • • 

• 
• 

• 

• 
• 

• • 

• 

• 
• 

2.27 
2.28 
2.28 
2.32 
2.33 
2.34 

Determining Message Selection. • • • 
Queue Data Sets. •• ••• • 

Opera tion of Queues. ••• • •••• 
Emergency Restart Queue Repositioning. • 
Bessage Queue Reuse. • •• •• • ••• 

Physical Terminals • • • • • '. 
Devices Supported. • • •• 
BTAM Da ta Set Line Groups. 

• 

• 
• 

• 

• 
• 
• 
• 

• 
• 

• 
• 
• .. 

• • 
• 
• 
• 
• 

2.36 
2.40 
2.41 
2.42 
2.42 
2.42 
2.43 
2.44 

Terminals Attached through VT AM. 
Physical Terminal Network Design • 

Logical Terminals. •• • • • • •
Definition of the Logical Terminal concept. 
The IMS/VS Logical Terminal•••• • • • •
Logical Terminal Network Design. • 

• 

• 
• 

• 
• 

Logical Terminal/Physical Termina 1 Rela tionship. 
Master 'terminal. ••• •• · .system Console Support • • •

Systems with Inoperable Master Terminal. 
Message Format Service • • • • •• • ••• 
Overview of IMS/VS 3270 Support.. • • •

3270 Copy Function • • • • • • ••• • 
328~ Model 3 Printer Support. • •••••• 
3270 Master Terminal Suppcrt ••• 

Intelligent Remote Station support • 
'transmission Blocks. 

• 

• • 

'.
• 

• 
• 
• 

• 
• 
• 

• 

• 

• 
• 

• 

• 
• 
• 

• 

• 

• 

• 
• 

• 
• 

• 

• 

• 

• 

2.45 
2.~5 
2.46 
2.46 
2.47 
2.48 
2.50 
2.53 
2.54 
2.54 
2.54 
2.56 
2.57 
2.58 
2.59 
2.59 
2.59 

System/3 and System/7 Program Function Requirements. 
IMS/VS System Messages • • • • • • • • ••• 

'transmission Control • • • • • • • • • •• 
system Definition. • • • • • •• • •••• 

Postpone Type Station. • • • ••• 
Ask Type Station • • • • 
transmission Limit • 
Combining Modes.. • • · .

Considerations Unique to System/7••••• 
System/7 Start/Stop Transmission Code Modes •• 
Supported System/7 Start/Stop Line Types. 
Supported System/7 BSC Line Types ••••• 

• 

· . • 

• • 
• • 

• 

• 

• 

• 
• 

• 
• 
• 
• 

• 

• 

2.60 
2.61 
2.61 
2.62 
2.62 
2.62 
2.63 
2.63 
2.68 
2.68 
2.68 
2.68 

vi 18S/VS System/Application Design Guide 



• • • • • • 

• • • 

Process controlling System/7 •• •• ••••••••• •• 2.68 
IlIS/VS Processing cf a Block Transmitted Sta rt/Stop from 
a System/7. • • • • • • • • • •••••••••• 2.69 

Considerations Unique to System/3. •• ••• ••• • 2.70 
Design of the System/3 Application Using MLHP. •• •• 2.70 
IMS/iS Processing of a Block Transmitted from a System/3 
or a BSC System/7 • • • • • •• •••••• ••• 2.71 

Control of the DB/DC system. • • • • • • • • • • • • • • • 2.72 
Security and Privacy • • • • • •• ••• • • • • • 2.72 
Il1S/VS Sec uri ty with SitU • • • • • • • • • • • 2.72 

Te rminal Sec uri ty. • • • • • • • • • • • • • • • 2.73 
Password Security. • • • • • • •• 2.73 

Resource Access Security.. • •• ••• • •• 2.74 
Transaction Command Security • • • • • • • ••••• 2.75 

Signon Verification Security. •••• • •••••• 2.75 
Other Security Aspects • • • •• •••••• • 2.76 
Display Bypass • • • • • • • • • • • • • • • • • • • • • • • 2.76 
Limiting Access to Data. • • • • • • • • • • • • •• • •• 2.76 
3270 Switched Terminal Security. • • • • • • • 2.77 

Violation Control. • • • • • • • •••••••• 2.77 
Installation Responsibilities. •• •••• • ••• 2.77 

Il1S/VS DC lIonitor. • • • • • • • • • • • • • • • • •• • •• 2.78 
I"S/VS Sensitivity to Nongraphic Message Da ta. • • • • • • 2.79 

Edi ting of Output Message Segments • • • • • 2.79 
Editing of Input Message Segments by MFS • • • • • • • • • • • 2.79 
Editing of Input Message Segments by Basic Edit Routine. • • 2.80 
Common Editing Perf oImed by IlIS/VS. •• • • • 2.81 

Using the 3850 lIass storage System (MS5) for DB/DC Processing. 2.81 
Terminology. • • • • • • • • • • • • • • • • 2.82 
IMS/VS Batch Environment • • • • • • • • • • • • 2.83 
I"S/VS Online (DB/DC) Environment. • • • • • • 2.8/J 

IMS/VS Online Using Bound Data and/or DASD without Batch •• 2.85 
1MS/VS Online Using Bound Data and/or Real DASD wi th 

IMS/VS Batch. • • • • • • • • •••••••••• 2.86 
IlIS/VS Online and Batch Using Some Bound a nd Some 

Nonbound Data • • • • • • • • •• • •••• 2.87 
Sharing of Staging Space. • • • • • ••••••• 2.90 
Data Base Organization and Access lIethod ••• · . . 2.90 
How to Use the Additional Capacity of HSS with 1HS/VS••••• 2.92 

CHAPTER 3. APPLICATION PBCGRA~ DESIGN. · . · . . • • • 3.1 
Batch Application Program Design • • . . . . 3. 1 

General Considerations • • • • • • • ••• ·• . • . 3. 1 
Programming Language to be Used. · . . 3.2 
Future Conversion to Telecommunication •• 3.2 

Batch Checkpoint/Restart Considerations•• • • · . . · . . 3.4 
Establishing Useful Conventions•• . . • • • . . · . . 3.4 

Testing_ • • • • • • • •• •••••••••• 3.4· .Nailing Conventions •••• • . . . . . . • • • 3.4 
Use of COpy or INCLUDE • • • 3.5 
Using the Right DL/I Call. • • • • •• 3.7 

Relationship between DL/I Calls and Physical I/O Operations•• 3.8 
Performance considerations • • • • • • • • • • • •• 3. 10 

Using Accumulated DL/I Statistics. • • • • • • • 3. 10 
Telecom.unication Application Program Design • • 3.11 

Telecommunication Input/Cutput Interface ••••••• 3. 11 
Input Calls. • • • • • • • • • • • • • • • • • 3.14•
Output Calls • • • • • • • • • • • • 3. 1/J

Output to Alternate Destinations. • • 3.15 
Modifiable Alternate PCBs. • • 3.16· .Re sponse Alte rna te PCBs. • • • • • • • • • 3. 17· .Converting from Batch to Telecommunication . . 3.17 

Telecomllunication Device Independent Programming 3. 18 
Device Class Control Considerations.. • •• ·• . • 

• 3.18 

Con ten ts vii 



• • 
• • • • 

• 

• • 

• 

• 

• • 
• • • 

• 

• 

• 

• 

• 

• 

• 

• • • • 
• • 

• 

• 

• • • 

• 

• • 

Utilization of Sysout Devices. 
Program Testing Using SYSIN/SYSOUT 

Conversational Processing. • 
paging Feature -- 2260 and 2265. 

Ba tch Message Processing Programs. 
Use of EMP • • 
Buffering. 

Useful ~ech nigues. •
Intermediate Data Eases••• 

Message Editing. 

Outputting a Mask to the 2260. 
 • 
Passing Information from One Program 

CHAPTER 4. DATA BASE DESIGN CONSIDERATIONS. 
Concepts of Physical Data Bases. 

Segments •• • 
Segment Formats. •

Segment Code • 

Delete Byte. 
 •

Fields • • 
Structure. 

Defining a Physical Data Base Hierarchy. 
Calls. 


Get Unique • 

Get Next. 
 •
Get Next within Parent. 

Hold Form of Get Calls • 
 •
Insert. 

Delet e • 
 •
Replace. • •• 

SSA (Segment Search Argument). 
 • 

Physical Data Base Organization in Storage 

• 
• 

to Another. • 

• 

• 

• 

• 
• 

• 

• 
Hierarchic Sequential and Direct Methods of Storing a 

Data Base • • • 
Pointers. • 
Hierarchic Pointers. • 
Physical Child/Physical Twin Pointers. 

Data Set Groups. 
Rules for Dividing a Data Base 

HSAM Storage Organization. 
Simple HSAM. 

HISAM Storage Organization • • 
HISAM Data Base Stored as One 
HISAM Logical Record Lengths. 
HISAM Root Segment Insertion • 

into Data Set Groups. • 

Data Set Group •• 

HISAM Dependent Segment Insertion. • 
HISAM Segment Deletion • 
Secondary Data Set Groups. 
Simple HISA! ••• • 

HDAM and HIDAI! Storage organizations •• 
HDAM. • • • 

Size of Root Addressable Area. •• 
Loading an HDAM Data Base. 

HIDAM. • 
Loading a HIDAM Data Base. • 
HIDAM Data Base Root Segment 
Format of Data Sets Used for 
Free Space Anchor Point. 
Free Space Element • 
Anchor Point Area. 
Bi t Map Block. • 
Bit Map. • 
Inserts and Deletes in HDAM 
Inserts. 

Type Pointer Options. 
HDAM and HIDAM. 

• 
• 

• 

and HIDA" Data Bases. 

3.20 
3.20 
3.20 
3.22 
3.22 
3.23 
3.23 
3.23 
3.23 
3.24 
3.24 
3.24 

4. 1 
4.1 
4.2 
4.2 
4.3 
4.3 
4.4 
4.6 
4.9 
4.12 
4.12 
4. 12 
4.12 
4. 12 
4.12 
4.13 
4.13 
4.14 
4.14 

4.14 
4.14 
4.16 
4. 16 
4.18 
4.19 
4. 19 
4.21 
4.21 
4.21 
4.24 
4.26 
4.28 
4.32 
4.33 
4.33 
4.34 
4.35 
4.35 
4.37 
4.37 
4.38 
4.40 
4.40 
4.42 
4.42 
4.42 
4.43 
4.43 
4.43 
4.43 

viii IMS/VS System/Ap~lication Design Guide 



• 

• • 

• 

• 

• 

• • 

• • 

Deletes. .• • • • • • • • 4.44 
Distributed Free Space • • • · . • • 4.46 

HISAH and HIDAM Key Segments •• • • • 4.46 
Options Available in Defining Fhysical Data Bases. • 4.47 

HSAM • • • 4.47 
HI SAM. • • • • • 4.47• 
BDAM or HIDAM. • •• 4.47 

Logica I Rela tionships... • • • • • • • 4.48 
Methods of Relating Segment Types through a Logical Child•• 3.49 

Method One • • •••••• • • • 4.50 
Method Two • • • 4.51 
Logical Relationship Paths. • • 4.53 
Logical Child Segment. • •• 4.54 

Unidirectional Logical Relationship. • •• •••••• 4.55• 
Physically Paired Bidirectional Logica I Rela ti onship • 4.56 
Virtually Paired Bidirectional Logical Relationship. 4.57 

Defining Fields in Logical Child Segment Types •• • • 4.59 
Pointers and the Counter Used in Logical Relationships. 4.59 

Logical Parent Pointer • • 4.60 
Logical Child/Logical Twin Pointers. · . 4.61 
Physical Parent Pointers • 4.61 
Counter. • • • • • 4.61• 

Defining Sequence Fields for Data Bases Involved in Logical 
Relationships. • • • • • • • • • • 4.61 

Rules for Defining Logical Relationships in Physical Data 
Bases • • • 4.62 
Logical Child. 4.62 
Logical Parent • 4.62 

· · . . 
• 

Physical Parent.• 4.63 
Replace. Insert and Delete Rules • 4.63· . • • 
Introd uc tion Summary • 4.64 

RULES Coding • • 4.65 
The Replace Rules. • • 4.66 

• · . • • 
The Replace Call • • 4.66• 
Physical Replace Rule Exam~le. 4.67 
Logical Replace Rule Example 4.68 
Virtual Replace Rule Example • ·• . • • • • • · . 4.69 
Replace Rules Summary. • • · . • • • 4.69 

The Insert Rules • 4.71 
Logical Child Inserticn. • • . . · . 4.71 
The Insert Call. 4.71•
Status Code s • • . . 4.72 
Physical Insert Rule Example. 4.72 
Logical Insert Rule Example. 4.73 
Virtual Insert Rule Example. 4.74 
Insert Rules Summary •• 4.75 

Delete Rules Introd uction. 4.75• · .Physical and Logical Deletion •• 4.76• • • · .
Deleting Concatenated Segments 4.76•
!he Third Access Path. 4.77•

Delete Byte Definition • 4.77• 
Segment Prefix -- [elete Byte. 4.77• 
The Delete Call. 4.78 
Sta tus Codes • 4.18 

DASD Space Release 4.79· . · .Delete Rules • 4.79 
Logical Parent • 4.79 
Physical Parent (Virtual Pairing Only) 4.80 
Logical Child. 4.80 

Examples • 4.80 
Logical Child. Virtual Pairing -- Physical Delete Rule 

Exa mple • • •• • • 4.81· .To Delet e the Logical Child. • 4.81 
Logical Child, Virtual pairing -- Logical telete Rule 

Example • 4.82 

Contents ix 



To Delete the Logical Child.. •••••••••• ••• 4.82 
Logical Child, Physical Pairing --.Physical/Logical Delete 

Rule Example. • • • • • • • • • • • • • • • • • • • • • • • 4.83 
To Delete the Paired Logical Children. • • • • • • • • • •• 4.83 
Logical Child, Virtual pairing -- Virtual Delete Rule 

Example • • • • • • • • • • • • • • • • • • • • • • • • • • 4.84 
To Delete the Logical Child. • • • • • • • • •••••••• 4.84 
Logical Child, Physical Pairing -- Virtual Delete Rule 

Example • • • • • • • • • • • • • • • • • • • • • • • • • • 4.85 
To Delete the Paired Logical Children. • • • • • • • • • 4.85 
Logical Parent, Virtual Pairing -- Physical Delete Rule 

Example • • • • • • • • • • • • • • • • • • • • • • • • 4.86 
To Delete the Logical Parent • • • • • • • • • • •• • 4.86 
Logical Parent, Physical Pairing -- Physical Delete Rule 

Example • • • • • • • •• •••••••••••••• 4.87 
To Delete Either of the Logical Parents••••••••••• 4.87 
Logical Parent, Virtual Pairing -- Logical Delete Rule 

Example • • • • • • • • • • • • • • • • • • • • • • • • • • 4.88 
To Delete the Logical Parent • • • • • • • • • • • • • • • • 4.88 
Logical Parent, Physical Pairing -- Logical Delete Rule 

Example • • • • • • • • • • • • • • • • • • • • • • • • • • 4.89 
To Delete Either of the Logical Parents••••••••••• 4.89 
Logical Parent, Virtual Pairing -- Virtual Delete Rule 

Example • • • • • • • • • • • • • • • • • • • • 4.90 
Deleting Last Logical Child Deletes Logical Parent ••••• 4.90 
Physical Parent, Physical Pairing -- Vi rtual Delete Rule 

Example • • • • • • • • •• ••• • ••• 4.91 
Deleting Last Logical Child Deletes Physical Parent. • • 4.91 
Physical Parent, Virtual Pairing -- Bidirectional Virtual 

Example • • • • • • • • • • • • • • • • • • • • • • • • 4.92 
Deleting Last Logical Child Deletes Physical Parent. • • 4.92 
Accessibili ty of Deleted Segments. • • • • • • • • 4.93 

Avoiding Abnormal Termination. • • • • • • • • • • • • • • 4.99 
First Solution • • •• ••••••••••• • • 4.99 
Second Solution. • • • ••• • • • • • • • • • • 4.99 

Detection of Physical Delete Bule Violation. • • • •• • •• 4.• 100 
Physical Delete Rule Treated as Logical. • • • • • • • • • 4.101 
Inserting Physically and/or Logically Deleted Segments •••• 4. 101 
Delete Rules Summary • • • • • • • • • • • ••• 4.102 

The DLET Call. • • •• •••• •• • •• ••• 4.102 
Physical Daletion. • • • • • • • • • • • • • • • • • • • 4.102 
Logical Deletion • • • • • • • 4.102 
Access Paths. • • • • • • • • ••• •• • ••• 4.102 
Propagation of Delete. • • • • • • • • • • • • 4.102 

Delete Rules • • • • • • • • • • • • •• ••••••• 4.103 
Logical Parent • • • • • • • • • • • • •• •••••••• 4.103 
Physical Parent of a Virtually Paired Logical Child. • 4.103 
Logical Child. • • • • • • • • • • • • • • •• • •• 4.103 
Space Release. • • • • • • • • • • • • • • • • • • 4.103 

Defining a Logical Data Base • • • • • • • • • • • • • 4.104 
Definition of Crossing a Logical Relationship•••••••• 4.104 
Definition of First and Additional Logica 1 Rela tionships 
Crossed • • • • • • •••••• 4.105 

Rules for Defining Logical Data Bases. • • • •••••• 4.107 
Example 1. • • • • • • • • • • • • • • • • • 4.108 

secondary Index ing • • • • • • • • • • • • • • 4.109 
Secondary Processing Sequence. • • • • • • • • • •• •• 4.11.1 
Secondary Data Structure. • • • • • • • • • • • ••• 4.111 

Options and BuIes for Secondary Indexing ••• 4.113 
Organization of Secondary Indexes in Auxiliary Storage ••• 4.114 
Index Pointer Segment Format • • • •• • • • • · . . 4.115 
Constant • • • • • • • • • • • • • • • • • • · . . 4.116 
Sea rch Field • • • • • • • • • . . 4.116 
Subsequence Field. • • • • • • . . . . . . 4.116 
Duplica te Data Iield (DDA TA) . . . . • • • • 4.117 

IMS/VS System/Application Design Guide x 



• • 

• • • • • • 

Additional Data in Index Pointer Segments•••••••••• 4.117 
System Related Fields. • •• • •••••••••••••• 4.117 
Suppression of Index Entries • •• • ••••••••••• 4. 118 
Index Maintenance Exi t Boutine • • • • • • • • • • • • • 4.118 
Index Maintenance Processing • • • • • • • • • • • 4. 118· .
Shared Index Data Eases. • • • • • • • •• 4. 119 
Secondary Indexes and segment Search Arguments • 4.120 
Considerations • • • • • • • • • • • • •••• 4. 121 

variable Length Segments • • • • • • • • • • 4.122 
Considerations • • • • • • • • • • 4.124 
Conversion Considerations. • • • • 4.125 

Segment Edit/Compression Exit. • • • •• • •••••••••• 4.125 
Processing Time. • • • • • • • • • • • • •• • ••••••• 4. 129 
Direct Access Storage Space Utilization•••••••••••• 4.134 
Design Tradeoffs • • • • • • • • • • • • • • • • • • • 4.140 
Viability of Data Base Design. • • • • • ••••• 5. 142 
Hierarchical Direct Design Considerations. • •••••• 4.146 

Design Considerations for the Index of a HIDA! Data Base • 4. 147 
Design Considerations for Data Portion of HIDA! Data Base. 4.147 
Design Considerations for an HDA! Data Base••••••••• 4. 147 

HDA! -- HIDA! Considerations for Dependent Segments. • • • • 4.148 
I!S/YS Use of BISA!/QISA!. • • • • • 4.148 

Utili ties. •• • • • • • • • • • • 4. 149 
Data Base Becovery • • •• •••••••••••• -. · . . 4.149 
Oat a Bas e Reorganiz ation •• •••• ••• 4.150 

Feorgani za tion Interval. • • 4. 151 
Reorganization of HISA! Data Bases.. •• 4.151 
Reorganization of HDA! and HIDA! Data Bases. 4. 152· . 

Partial Data Base Reorganization • • • • • • • • • • • 4.152•
PDBR Limitations • • • • • • • • • • • • • • ••• 4.153 
Step One: Pre-Reorganization. •• •••••• •••••• 4. 153 
Step Tvo: Pointer Resolution. • •• • • • • • • • • • •• 4.153 
The Data Base Surveyor Utility • • ••• • • · . 4.154 
User Responsibilities•••••••• 4.1541(. · . . • • • •
Utility Control Facility • • • • • · . • • • 4.155 

I!S/VS Data Base Space Allccation•• · . . · . • • · . 4. 155 
Allocation Considerations•••• · . . · . • • • · . 4.156 

CHAPTER 5. tESIGN CONSIDERATICNS FOR THE !ULTIPLE SYSTEMS 
COUPLING (!SC) FEATUR E. • • • •• 5. 1 

Relationship of a DB/DC/MSC System to a Single DB/DC System•• 5.1 
OVerview of the MSC Feature. • •••••• 5.2 

Links. • • • • 5.3 
Physical Link.. . . · . . · 5.4. · . •
Logical Link • • · . . . . • 5.5 

Message Routing.. • • • • 5.6 
Routing Path • • • • • • • • 

• · . . • • · . . 5.6 
Logical Link Path ••••• · . . · . . · • 5.6. •
Logical Destinations ••••••• · . . . 5.1 
Input and Destination Systems. . . . • • 5.7· .Intermediate System••••••••• · . . 5.8· .Remote Transaction Priorities. · . . · . · . 5.9 
Stopped Transactions • • • • • • 5.9 
Routing Exit Routines•• · . . . 5.10 
Remote Destination Verification. · . . · . · . . 5.10 
Application Program Abnormal Termination · . · . . 5. 11 

Conversational Processing. • • • • · . · . · . . 5.11 
Routing Exit Routines•••• . . 5. 12 
Remote Destination Verification••• · . . · . 5.12 
Normal Conversation Termination. • • · . . · . • • 5.12 
Abnormal Conversation Termination. 5. 13· . . · . . · . .

Multisystem Operations • • • • • • • • • 5.13• • · . . 
Multisystem Communication Initialization. · . . . 5. 13· . • •
Multisystem Communication Termination••••• · . . 5.14 
Logical Link Assignments • • • · . . 5.14• 

Contents xi 



• • • • • • • • 
• • • • • • • • 
• • 

• • 
• • • 

• • • • • • • • • • • 

• • • • • • 
• • • • 

• • • • • 

• • • • • 

• • • • • • • • 

• • 
• • • 

• • • • 
• • • • • 

• • • • 
• • • • 

• • 
• • 

• • • 

• • • 
• • • 

• • 

• • • • • 

Security • 5.14 
Recovery . 5.15 

Compatibility. 5.15 
Performance Considerations for MSC • 5.15 

Minimizing Resource Consumption. 5.16 
Balancing Resource Demand. 5.16• 
8SC Examples 5.17 

CHAPTER 6. DESIGN CONSIDERATIONS FOR THE FAST PATH FEATURE. 6.1 
Fast Path Data Bases 6.1 

Main Storage Data Base (MSDB) • 6.1 
Defining an MSDB . 6.2•
MSDB DL/I Calls. 6.2 
The FLD Call 6.3•· • · · 8SDB Buffer Allocation 6.3 

Data Entry Data Base IDEDB) • • • • • • • • 6.4 

Root Addressable Part. 6.6 

Independent Overflow Part. • • • • • • • • • • • • • 6.6 

Sequential Dependent Part. 6.7 

space Definition • 6.7 

Accessing Segments. 6.7 

Root Segment Processing. 6.8 

Sequential Dependent Segment Processing. 6.8 

Direct Dependent Segment Processing. 6.8 

DEDB Synchronization Processing. 6.8 

Defining DEDB Data Eases 6.9 

DEDS USD Space Definition · 6.9 


DEDB DBD Space Considerations. · 6. 10• 
Example. 6.12 
Performance Consideration in Loading a DEDS Area. 6.13 
DEDB tata Base Full Condition. 6.14 

Fast Path Program Types. 6.14 
Message Handling • • • • • 6.15 

Input Message. 6.15 
output Messages. 6. 15 J 

Synchronization Point Processing • • 6.16 
Fast Path and I8S/VS Interrelationships. 6.16 

INDEX. 1.1 

xii IMS/VS system/Application Design Guide 



Il 

1-1. IMS/VS Data Base System Environment. 
1-2. DBD Generation Execution. • • • • • • • • • • • • • • • • 
1-3. PSB Gene ra tion Exec ution. • • • • • • • • • • • · .
1-4. ACB Creation and/or Maintenance • • • • • • • • 
1-5. Essential Program Elements for Execution. • • • • • • • • 
1-6. Initializing the Batch tata Base System, Step One •••• 
1-7. Initializing the Batch Data Base System, Step Two •• 
1-8. Data Base System Flow • • • • • • • • •••• 
2-1. Dynamic Allocation Parameter List • • • • • • 
2-2. General Message Queue Structure •••••••••• 
2-3. Source of Messages. • • • • • • • • • • • • • • 
2-4. Queue Selection • • • • • • • • 
2-5. Que ue Data Set Relationships. • • • • • • • • • 
2-6. Separating Device Class Sensitive Terminal I/O. • • ••• 
2-7. Possible Physical/Logical Termina 1 Rela tionships••••• 
2-8. Message Formatting Using MFS •••• 
2-9. Overview of Message Format Service. • • • • •• 
2-10. 3270 Copy Function ExamJ,:le. • • • • • ••••• 
2-11. KSS in an IKS/VS Batch Environment ••••••• · . . 
2-12. KSS in an IMS/VS Online Environment with Bound Data ••• 
2-13. MSS in an IMS/VS Online and Batch Environment ••• 
2-14. MSS with IMS/VS Online and Batch and Non-IMS/VS Data. 
2-15. MSS in an IKS/VS Environment Using Shared Data Bases. 
3-1. Ba tch Application Progr am Design. • • • • • • • • • • • • 
3-2. Planning Future Conversion to Telecommunication •• 
3-3. Application Program Using OS/VS Data Files and DL/I 

Il Da ta Ba se • • • • • • • • • • • • • • • 
3-4. Application Program Using COBOL READ/WRITE Logic and 

File Description. • • • • • • • • • • • • • • • • • 
3 -5. Qualified Segment Search Arguments••••••• 
3-6. Telecommunication Ap~lication Program Design. · . . 
3-7. Application Program's View of the Terminal•• 
3-8. DB and TP PCBs •••••• 
3-9. Message Segment Format••••••• 
3-10. Input Call Format • • • • . . . 
3-11. 	Three-Segment Message • • . . . . . 
3-12. Output to Alternate Destinations •• 
3-13. Converting from Batch to Telecommunication•• · . . 
3-14. Six-Segment Message Separated into ~wo Three-Segment 

Messages by Use of the Furge Call • • • • 
3-15. Conversational Program. • • • • • •••••• 
3-16. Intermediate Data Base. • • • • • • • ••••••• 
4-1. Segment Formats. • • • • • • • • • •• 
4 -2. Delete Byte • • • • • • • • • • • • • 
4-3. Concatenated Keys. • • • • •• 
4-4. Hierarchy of Segment TYJ,:es•••• 
4-5. Data Ease in Storage•••••••• 
4-6. Segment Types Numbered in Hierarchic Sequence. 
4-7. Physical Twins. • • •• ••••• 
4-8. Direct Address Pointers • • • • • • 
4-9. Use of Backward Pointers for Delete • 
4-10. Use of Physical Child Last Pointer. . . . . 
4-11. One Data Base Record of HSAM Data Ease on Tape•• 
4-12. HISA!! Data Base Record in Storage (Single Data Set 

Gro up). • '. • • • • • • • • • • • • • • • • 
4-13. HISAM Data Base VSAM, ISAM and eSAM Logical Record 

Formats • • • • • • • • •• •• • • • • •••• 
4-14. 	Root Segment Insertion into Key Sequenced Data Set 

Control Interval. • • • • • •• • • • • • • • • 

Figures 

1.3 
1. 7 
1.8 
1.9 
1. 10 
1.13 
1.14 
1. 15 
2.27 
2.33 
2.37 
2.40 
2.41 
2.49 
2.50 
2.55 
2.56 
2.58 
2.83 
2.84 
2.85 
2.87 
2.90 
3.2 
3.3 

3.5 

3.6 
3.8 
3. 11 
3. 12 
3.13 
3. 13 
3.14 
3.15 
3. 16 
3.18 

3.19 
3.21 
3.24 
4.3 
4.4 
4.5 
4.7 
4.8 
4.10 
4.11 
4. 15 
4.17 
4. 18 
4.20 

4.22 

4.23 

4.26 

xiii 



4-15. Root Segment Inserticn When ISAM/OSA! are HISAM Data 
Base Access Metbcds • • • • • • • • • • • • • • • • • •• 4.27 

4-16. HISAM Root Segment Insertion Sequence. • • • • • • • •• 4.28 
4-17. Dependent Segment Insertion into a HISAM Data Base with 

One Data Set Group. • • • • • • • • • • • • • • • • • •• 4.30 
4-18. One Data BaSE Record in a HISAM Data Base (!ultiple 

Data Set Group) • • • • • • • • • • • • • • • • • • • •• 4.34 
4-19. HDAM Data Base Record in Auxiliary Storage. • • • • • •• 4.36 
4-20. Insert of a Root Segment into a HIDAM Data Base after 

Initial Load ••••••••••••••••••••••• 4.39 
4-21. Control Fields Used to Manage Entry Sequenced or OSAM 

Data Sets Used fer HDAM or HIDAM Data Bases ••••• 4.41 
4-22. Hierarchic Direct Deletion of Dependent Segment • • • • • 4.45 
4-23. Relating Occurrences of SKILL to Occurrences of NAME••• 4.50 
4-24. Relating Occurrences of NAME to Occurrences of SKILL••• 4.52 
4-25. Defining a Physical Farent to Logical Parent Path in a 

Logical Data BaSE • • • • • • • • • • • • • • • • • • • • 4.53 
4-26. Defining a Logical Parent to Physical Parent Path in a 

Logical Data Base • • • • • • • • • • • • • • • 4.54 
4-27. Format of Concatenated Segment Returned to User I/O 

Area •••••••••••••••••• . . . . . . . . . 4.55 
4-28. Unidirectional Logical Relationship • • • • • • • • • • • 4.56 
4-29. Physically Paired Bidirectional Logical Relationship••• 4.57 
4-30. Physically Paired logical Child Segments••••••••• 4.57 
4-31. Virtually Paired Bidirectional Logical Relationship. 4.58 
4-32. Pointers Used in Logical Relationships •••••••••• 4.60 
4-33. Replace Rules • • • • • • • • • • • • • • • • • • • • 4.70 
4-34. Definition of Crossing a Logical Relationship. • • • •• 4.105 
4-35. 1he First Logical Relationship Crossed in a Hierarchic 

Path of a Logical Data Base • • • • • • • • • • • • • 4.106 
4-36. Logical Data Base Hierarchy Enabled by Crossing the 

First Logical Relationship•••••••••••••••• 4.107 
4-37. Variations of a Concatenated Segment Type Enabled by 

Specification of KEY and DATA Sensitivity •••••• 4.108 
4-38. Segment Types Associated with a Secondary Index • • • 4.110 
4-39. Indexing to NA!E Segments Based on the Color Field of 

a Dependent • • • • • • • • • • • • • • • • • • • • • 4.111 
4-40. Secondary Data Structure••••••••••••••••• 4.112 
4-41. VSAM Logical Record and Index Pointer Segment Formats • • 4.115 
4-42. Variable Length Segments. • • • • •• 4.123 
4-43. Variable Length Segment Formats • • • • • • • • • • • • • 4.124 
4-44. Segment Edit/Com~ression. • • • • • • •••• . . . 4.126 
4-45. HI SAM Data Base Record in Auxiliary Storage • . . . . 4. 129 
4-46. HISAI! Data Ease Record -- Larger Primary Data Set 

Logical Record. • • • • • • • • • • • • • • • • • • • •• 4.130 
4-47. Storage Sequence of Segments in HISAM Data Base Record. • 4. 131 
4-48. HISAM -- Multiple Data Set Groups (ISAM/OSAM only) •• 4.132 
4-49. HISAI! Segment Storage -- Multiple Data Set Groups •••• 4.133 
4-50. HISAI! Secondary Data Set Group with a Larger Primary 

Data Set Logical Record Length••••••• 4.134 
4-51. HISAM -- Small logical Record Length. • • ••• 4.135 
4-52. HISAI! -- Large legical Record Length•••••••• 4.136 
4-53. HISAM -- Utilizing Slack space. • • • • • • ••••• 4. 136 
4-54. Data Base Record Segmentation Options •••••••••• 4.137 
4-55. HISAM Single Data Set Group Segmentation. • • • ••• 4.138 
4-56. HI SAM Multiple Data Set Group segmentation. • ••• 4.139 
4-57. Data Base Structure Rules. • • • • • • • • • • ••• 4.140 
4-58. HISAI! Physical Storage -- ISAM. OSAM. or VSAM •• 4.141 
4-59 .• HISAM Physical Storage Blocked One or Multiple•••••• 4.142 
4-60. Data ,Structure Change -- New Segment Type Defined at 

End of Hierarchy. • • • • • • • • • • .. • • • •• . . 4.143 
4-61. Data Structure Change -- New Segment Type Defined 

wi thin Existing Hierarchy • • • • • • • • • • • • • 4.143 
4-62. Data Structure Change -- New Segment Type Defined 

within a Leg of the Existing Hierarchy•••••••••• 4.144 

xiv IMS/VS System/Application Design Guide 



• • • • • • 

• • 
• • • • • • • • • • 

• • • • • • • 
• • • • • • • • 

• • • • • • 

• • • 
• • 

• • • • 
• • 

• • • 
• • • • • 

• • 

4-63. Data Base Structure -- Hierarchic Leg Independence. • • • 4.145 
4-64. 	Restructured Data Base. 4.145· • 	 · • · • · · · 	• · 4-65. 	Data Base Structure -- Absence of Segment Types • 4.146· · IL 	 4-66. Application Program I/O Work Area Size Considerations · · 4.146 
4-67. Logical Record Length Distribution. 4.156 
5-1. Single DB/DC System Transaction Flow. · · · · · 5.1 
5-2. Multiple DB/DC Systems Transaction Flow • • • 5.2· • 	 · • · • 
5-3. 	 A Sample configuration of Three Systems 5.3· • 5-4. 	 Summary of Physical Link Types. 5.4· • · • 
5-5. 	 Multiple Physical Links in One Systelll/370 CPU · 5.4 
5-6. 	 Multiple Physical Links in Multiple System/370 CPUs 5.5 
5-7. 	 Relationship of Physical Link to Logical Link to · · · 

Logical Link Path . 	· • 5.6· · · 	· · · · • ,. · · · · • 
5-8. 	 Input Terminal and Input System on Input. 5.8· • 	 · •5-9. Destination Terminal and Destina tion system on Output · 5.8 
5-10. Input from and Output to Different Terminals. • • • 5.8· · • 
5-11. 	An Intermediate System. 5.9 
5-12. 	Horizontal partitioning '. · · · • · • · · · • • 

5.17 
5-13. 	Vertical Parti tioning .. · • · • · • · · · • 5.18 
6-1. 	 DEDB Structure Example.· · · · · • 

6.5• · · • · · • · · · · 	• · · • · · 6-2. 	 DEDB Area Division. 6.6· · · · · · · · 6-3. 	 DEDI! Units-of- Work. 6.6· · · · • 	 · • · •6-4. 	 Storage of DEDB Dependent Segments in an Area 6.7· · · 	•6-5. 	 Control Interval Format 6.10· · · · · · · · · · • · 6-6. 	 Root Segment Format {with Sequential and Direct 
Dependent Segments) 6. 11· . •· · · · . • · · • · · • · 6-7. Sequential Dependent segment Format 6.11 

6 -8. Direct Dependent segment Format · • · 6. 12• · · · · · · · • · 

Figures xv 





NEW PROGRAMMING FACILITIES 

• 	 Access to Fast Path and IMS/VS data bases is available from both 
Fast Path and IMS/VS application programs within the same 
transaction process. 

• 	 A utility can be used for partial reorganization of HIDAM and HDAM 
data bases. 

PROGRAMMING ENHANCEMENTS 

• 	 Extended security support can be used with RACF or a user-written 
exit routine to provide sign-on processing for user verification to 
determine whether or not a user is authorized to use a transaction 
code. Data base change tracking by specifi= user is facilitated by 
log records containing user identification obtained from user 
verification. 

• 	 Additional screen sizes and PF keys of the IBM 3270 Information 

Display System are supported by Message Format Service (MFS). 


• 	 More flexible use of I/O resources is made in the allocation and 
dea1location of IMS/VS data bases and DC Monitor log data set (OS/VS 
MVS only). 

• 	 The time required to restart an IMS/VS system is reduced. 

Enhancements include restarting from the disk log, online log 

termination, use of the dynamic log from shutdown for data base 

backout at restart, and automatic restart. 


NE~ PROGRAMMING FEATURE 

A Data Base surveyor utility is available as a separate feature. This 
utility scans the data base being analyzed and provides a report 
describing the physical organization and the location and size of free 
space. 

SPECIFICATION CHANGES 


• The m~n~mum logical record length for primary/secondary data set 
groups for HISAM data bases bas been lowered. 

Summary of Amendments xvii 

L 



• An example of DEDS dasd space definition is included. 

• Sample minimum space calculations are provided. 

• Performance considerations are discussed. 

A clarification of the Delete rules for both logical parents and 
physical parents has been included. 

A section describing the IMS/VS sensitivity to specific characters 
when users attempt to send and receive nongraphic data in IMS/VS 
messages has been added. 

SERVICE CHANGES 

A clarification of the STAE/ESTAE rules is included. 

NEW PROGRAMMING FEATURE 

The Fast Path feature provides data base and data communication 
facilities for applications requiring high transaction rates but needing 
only simple data base structures. The Fast Path feature uses functions 
of the Data Communication feature and operates in existing 
telecommunication networks. 

Fast Path provides two new types of data bases that are accessed with 
standard DL/I calls and, optionally, with Fast Path DL/I calls. The 
feature includes a message-handling facility to expedite the processing 
of Fast Path messages. 

This publication has been revised to reflect technical and editorial 
changes made for Release '.2. 

TECHNICAL CHANGES 

The Multiple Systems Coupling feature allows a user to define a 
configuration consisting of up to 255 interconnected IMS/VS systems 
running on any combination of as/vs l' and OS/VS2. Information on 
channel-to-channel communication with the Multiple Systems Coupling 
feature is for planning purposes only until IMS/VS support for this 
facility become s available. 

xviii IMS/VS System/Application Design Guide 



lith the addition of Synchronous Data Link Control, 3270s can now be 
attached on SDLC lines as well as BSC lines. 

The 3350 may now be specified for data base and message queue data 
set reside nee. 

3767 Communication Terminal 
371Q ~!t~-~2!!~n!~~tr2n-~i§!!! 

The 3767 and 3770 are supported on an 5DLC link through VTAM. Full 
I"S;VS functional capabilities are included. 

EDITORIAL CHANGES 

• 	 The IM5/VS planning information about M5S (mass storage system), 
previously contained in ~g~£ ~~~ El~nn1n~ intQ~m~1hQn: I]~l!~, 
£I£~l!~, ~n~ ~I~L!~, is now contained in Chapter 2 of this 
publication. The former MSS publication .is now obsolete. 

• 	 The information previously contained in Chapter 1 of this 
publication has been moved to the I~~l!~ ~~D~!~l Int£rm~li~Q ~~n~~l. 

• 	 The information previously contained in Chapters 6 and 7 and 
Appendixes C and D of this publication has been moved to the I~~l!~ 
~I§!~! fr2~I~mm~n~ E~f~~~n£~ ~!n~~l· 

• 	 The information previously contained in Appendix A of this 

publication has been moved to the l~~l!~ In§1~~~~li2n ~yi£!. 


• 	 The information previously contained in Appendix B of this 
publication has been moved to the I~~L!~ !~~li£~liQQ ~r~~~~~mhng 
~~feI~D£~ ~~n~~l. 

Summary of Amendments xix 





This chapter addresses the factors to be considered by the user data 
processing organization in planning, scheduling and controlling the 
installation of the IMS/VS Data Base (DB) Syste~. Three major time 
phases should be considered: 

• 	 Pre-installation system design and configuration 

• 	 Installation 

• 	 System tuning and phased expansion 

For each of these phases, this chapter suggests the steps to be 
taken, referencing the tools provided by the data base management 
services of IMS/VS to facilitate the effort, and identifying those 
elements of the user installation which are involved or affected. 

The data base management services of IMS/VS are packaged as basic 
material in an orderable component called the Data Base (DB) system. 
The DB system supports the implementation of multiple user-written batch 
processing applications in a common data base environment. 

The DB system provides the user with full IMS/VS facilities to: 

• 	 Define, load, and reorganize data bases 

• 	 Access a data base from application programs via a high-level 

language interface called DL/I 


• 	 Support systems integrity via data base logging, checkpoint/restart, 
and data base recovery programs 

• 	 Use system-provided exits to incorporate user extensions to IMS/VS 

• 	 Migrate to a full IMS/VS DB/DC syste~ in a shared terminal 

environment 


The major execution-time elements of the IMS/VS DB system are the 
DL/I (Data Language/I) interface and the data base logging program. 
DL/I interfaces between the problem program and the data bases the 
program wishes to access. The use of DL/I and its functions are 
described in detail in the I~~l!~ !EE!!£~!!Qn ~£Q~£~!!!n~ E~I~£~n£~ 
~~ng~!. The data base logging capability is one of the principal IMS/VS 
recovery features. It provides a log of all activity against a data 
base. The log enables a user to analyze and tune his system, and is the 
basic support for recovery, restart, and backout activity. The log is 
discussed later in this chapter. 

In addition, several utility programs which assist in creation and 

maintenance of the DB System are supplied. Included in this utility 

program set are: 


IMS/VS System Definition 

IMS/VS Data Base Description Generation 

Design and Installation of a DB System 1.1 



185/V5 Program Specification Block Generation 

185/V5 Application Control Blocks Creation and 8aintenance 

1M5/VS Data Base Reorganization and Load 

185/V5 Data Base Recovery 

1MS/YS Utility Control Facility 

System definition is described in the I~~L!~ !n§i~!!~i!en 2~!~!: the 
other programs are described in the l~~LVS Yi!l!i!!§ R!t!~n~! ~~ng~!. 

The DB system operates on an IB8 5ystem/370, using the services of 
OS/VS in its multiprogramming configurations OS/VS1 and OS/VS2. 

In the IMS/VS DB system, applications are scheduled for execution 
through the OS/VS job stream in a process called batch scheduling. The 
basic unit of work is assumed to be the operating syst~m job step. The 
application itself can be either transaction-oriented or batch-oriented. 
A transaction-oriented program facilitates migration to a DB/DC 
environme"nt. 

It is common system practice to implement the full DB/DC capabilities 
in a phased manner by installing a batch DB system first. Once an 
initial program/data base cluster has been designed and installed, users 
can see the step-wise expansion leading to a comprehensive on-line 
installation. 

Figure 1-1 shows the relationship of OS/VS, the 18S/VS DB system, and 
an application program at execution time. The program and the DB system 
are contained in a single batch-processing problem program address space 
(region, memory). A second application program can occupy a second 
address space, with a replica of the DL/1 and data base logging 
functions, accessing a separate data base and writing a second log tape. 
Two or more 1MS/VS batch systems can run concurrently in separate 
address spaces, if they do not access the same data bases. Most of the 
1MS/VS DB system is composed of reenterable code. 

The user's application program operates as an OS/VS problem program. 
As illustrated in Figure 1-1, the application program has two basic 
interfaces. These are: 

1. Transaction Input and Response Output 

2. Data Base Input/Output Operations 

Although this is a batch processing environment, the concept of 
transaction processing is advocated, because it can be carried over to 
the 1MS/VS message processing environment. Typically, transaction input 
and response output are performed with OS/VS data management. Within 
the application program, file descriptions and read/write statements are 
in COBOL, PL/I, or Assembler Language syntax. Alternatively, the user 
of IMS/VS can build an interface for transaction input and response 
output similar to the data base input/output interface described below. 

J 

1.2 IMS/VS system/Application Design Guide 



OS!VS 

1+--+----i~RANSACTIONI 
APPLICATION PROGRAM 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
! 
I 
I 
I 
I 
I 
I 
I 

DATA 
LANGUAGE/I 

DATA 
BASE 
LOGGING 

I 
I 
I 
I 
I 

L-bLL 

r-----------+-------------­ - --------, 
i ~ATABASESYSTEM I 

I 

I I
I I,- -- i-----.I I 

IL _______________________________ _ 

Figure 1-1. IM5/V5 Data Base System Environment 

All data base operations are initiated by the application program 
interface with DL/I. This interface consists of execution of a CALL 
statement from the application program. Parameters in this CALL 
statement provide the information necessary to perform a data base 
operation on a specific data element or segment in a specific data base. 
An application program can interface with one or more Dt/1 data bases. 
In addition, standard OS/VS data management can be used for any purpose 
in the application program. 

The arguments in the CALL statement issued by an application program 
allow DL/1 to determine which data base is to be used and which data 
segment in the data base is to be retrieved, inserted, replaced, or 
deleted. From this information Dt/I performs a VSAM, 5AM, 15AM, or 05A~ 
input/output operation. If the desired data segment already exists 
within the data base main storage buffers, no input/output operation is 
required. 

When the data base operation consists of data segment insert, 
replace, or delete, a record of the data base modification is written on 
an I"5/V5 log for the batch processing address space. The content and 

tL format of logged information are described in a subsequent section of 
this chapter. 

Design and Installation of a DB System 1.3 



One significant concept of the data base inpat/output interface is 
that the format and content of all information used to establish the 
interface are symbolic. None of this information is dependent upon a 
specific data management access method or organization. 

Before the DB system can be used for batch data base processing, it 
must be tailored to the user's data processing environment. This 
process of system tailoring is called system definition. The details of 
IMS/VS system definition are provided in the Ia~l!~ In§1~l~~ii2n 2gi~~. 
For IMS/VS, the system definition function is similar, in concept, to 
as/vs system generation. 

as/vs OPTION CONSIDERATIONS 

The DB system operates under OS/VS1 or OS/VS2. Very little 
difference is experienced by the 18S/VS user, whether VS1 or VS2 is 
used. The primary differences are attributable to the OS/VS option 
characteristics. Chapter 2 of this manual describes the considerations 
for operation under VS1 or V52. These are primarily concerned with main 
storage management and reliability/serviceability. The effects of VS1 
versus VS2 are considerably greater with the I8S/VS DB/DC system. 

Only one as/vs option defined during OS/VS system generation is a 
requirement for the DB system. This is user SVC inclusion. 

Other OS/VS options or features which are desirable, but not 
required, for IM5/VS are VSAM access method, ISAM access method, COBOL, 
and PL/I Optimizing Compiler. 

The ASSEMBLER, an 1MS/VS requirement, is automatically incorporated 
in OS/VS. Alternatively, the Assembler H program product may be used. 

18S/VS SYSTEM DEFINITION 

During and after system definition and before DB system execution, 
several 1MS/VS library data sets mast be defined. These include control 
block libraries, load module libraries, and a procedure library. The 
details of data set definition and allocation are defined in the I~~l!~ 
!n§i~ll~1~~n ~g~~~. Libraries which are of importance to the discussion 
in this chapter are: 

IMSVS.RESLIB - the IMS/VS system load module library 

IMSVS.PGMLIB - the user's application program library 

1MSVS.DBDLIB - the 18S/VS control block library containing data base 
descriptions (DBD). Each member describes the 
logical structure of data and its physical storage in 
a data base. 

IMSVS.PSBL1B - the 18S/VS control library containing application 
program specification blocks (P5~_ Each member 
contains a description of how its associated 
application program uses one or more data bases. 

1MSVS.ACBL1B - the 185/VS library which contains control blocks 
required for a specific application program. This is 
a combination of the DBDs and PSBs in an internal 
format required by DL/I for data base system 
execution. 

1.4 ISS/VS System/Application Design Guide 



L 
IMSVS.PROCLIB - the IMS/VS procedure library containing IBM-supplied 

procedures. 

IMSVS.MACLIB - the IMS/VS macro instruction library containing at 
least DBD generation and PSB generation macro 
instructions. 

~e!£i~! !££~§§ ~~~~~~ --	 Q§!~ 

The Overflow Sequential Access Method (OSAK) is a special data 
management access method supplied with IMS/VS. It is used with some of 
the IMS/VS data base organizations. The functions which OSAM performs 
vary and depend upon the data base organization specified for a 
particular OSAM data set. These functions are described in a subsequent 
chapter of this manual. The other modules of IKS/VS interface with OSAK 
through OPEN, CLOSE, READ, and WRITE macro instructions similar to those 
provided for any OS/VS access method. OsAM modules interface with the 
os/vs input/output supervisor through the EXCPVR macro instruction in 
VS1 and SVS and through the I/O driver interface in MVS. As far as 
OS/VS is concerned, an OSAM data set is described as data set 
organization equals physical sequential (DSORG=PS). In fact, an OSAK 
data set can be read using BSAM or QSAM. The advantages of OSAM to 
IMS/VS relative to either BSAM or BDAM are: 

1. 	 An aSAM data set can occupy a maximum of 60 extents. If the data 
set resides on a Rotational Position Sensing (RPS) device and the 
number of records per track is greater than 1, the maximum number 
of extents decreases. A data set requiring a maximum sector 
table allows for a maximum of 52 extents. 

The Data Extent Block (DEB) for an OSAM data set contains '6 
bytes of OSAM information for each extent. In addition, a sector

L table is built for RPS devices. The length of the sector table 
is 8 bytes plus one byte 	for each data set record, rounded to a 
multiple of 8 bytes. A sector table exists for each unique 
device type. 

2. 	 An OSA8 data set can be opened for update in place and extension 
to the end through one data control block (DCB). The phrase, 
extension to the end, means that records may be added to the end 
of the data set and that new direct access extents may be 
obtained. 

3. 	 An OSAM data set need not be formatted prior to use. 

4. 	 An OSAM data set can have fixed length blocked or unblocked 
record format. 

5. 	 Pile mark definition is always used to define the current end of 
the data set. The addition of a new block causes the file mark 
to be placed after the new block. This concept is used as a 
reliability aid while the OSAM data set is open. 

It should be remembered that other OS/VS access methods, VSAM, ISAM, 
and SAM are used for physical storage of data elements in addition to 
OSAM. 

OSAM data sets are restricted to a 31 bit addressing limit. 

i~n~~li~~~ §~gg~q~!~l !££~§§ ~2~h~~ (i§!~) 

The Generalized sequential Access Method (GSAM) provides accessing 
support for simple physical sequential data sets, such as tape files, 

Design and Installation of a DB System 1.5 



SISIN, SYSOOT, and others that are not hierarchical. These are data 
sets which, before GSA", could not be used as 18S/VS data sets. 

Support provided includes sequential or direct retrieval by a record 
identifier which defines the relative position of that record. 

Support is provided for both OS/VS Sequential Access Method (SAM) and 
OS/VS Virtual Storage Access Method {VSAM) for entry sequenced data sets 
(ESDS). GSAM is fully described in !~§L!§ A~~lic~~!2n ~2g'!na!ng 
tef~'~n~ ~~ng~l. The concepts of hierarchy and segment described in 
this manual do not apply to GSAM. 

DATA BASE DESCRIPTION (DBD) GENERATION 

Subsequent to IMS/VS system definition, DBD generations can be 
performed. A DBD must be provided for each data base to be used by an 
application program, prior to execution of the program. The !~~!~ 
Yt!1!1!~2 li~!~£~n£~ ~~ng~l describes the details of DBD generation. 

DBD generation is the execution of IMS/VS macro instructions to 
create a description of a data base. This data base description 
includes a definition of: 

• 	 The data base organization and access method 

• 	 Segment formats, whether fixed or variable 

• 	 Whether the segments are subject to data compression routines 

• 	 Inter-segment relationships 

• 	 Field formats within segments 

• 	 The existence of index relationships for any field 

• 	 The relationships, if they exist, between segments in two or more 
data bases 

Figure 1-2 illustrates the execution of a DBD generation. The IMS/V5 
user creates control card statements that are presented to DBD 
generation as a normal OS/VS problem program job. The I"S/V5 macro 
instructions used for DBD generation exist in IM5VS.MACLIB. The result 
of a DBD generation execution is the placement of the compiled DBD into 
IMSVS.DBDLIB as a member of the partitioned data set. The members of 
the IMSVS.DBDLIB library can be used during the Data Base System 
execution. 

A job control language procedure, named DBDGEN, is placed in the 
IMSYS.PROCLIB data set by IMS/VS system definition for subsequent DBD 
generation execution. This procedure is described in the !~~L!~ ~I21~! 
frQ~~!!~ng R~~~n~ ~~ng~!· 

1.6 IKS/VS System/Application Design Guide 



OSIVS 

DBD 
GENERATION 

Figure 1-2. DBD Generation Execution 

PROGRAM SPECIFICATION BLOCK (PSB) GENERATION 

The third necessary function prior to execution in the DB system 
batch processing environment is PSB generation. Associated with any 
batch processing application program is a PSB control block. The PSB 
control block defines the data bases used by the application program. 
In addition, it defines the manner in which the data bases are used 
(that is, retrieval only, retrieval and update, or data base create) and 
the segments within each data base to which the application program is 
sensitive. It also defines which, if any, additional secondary indexes 
can be used to assist in segment selection. 

PSB generation is the execution of IMS/VS macro instructions to 
define an application program's use of one or more data bases. The 
IMS/VS user creates control statements that are executed during PSB 
generation as a normal OS/VS job. The I~S/VS macro instructions used 
for PSB generation are in IMSVS.MACLIB. The result of PSB generation 
execution is the placement of the compiled PSB into IMSVS.PSBLIB as a 
member of the partitioned data set (Figure 1-3). The members of the 
IMSVS.PSBLIB data set are used during the Data Base's system execution. 
The !~§L!§ Ut!l!!!~§ R~I~£~n~~ ~angal describes the details of PSB 
generation. 

A procedure, named PSBGEN, is placed in the IMSVS.PROCLIB data set by 
IMS/VS system definition for subsequent PSB generation execution. This 
procedure is described in the !tt§L!§ §I§~~m ~£2g£amm~ng R~f~~~n~~ 
~SlngSll· 

Design and Installation of a DB System 1.7 



OS!VS 

PSB 
GENERATION 

IMSVS.MACLIB 

Figure 1-3. PSB Generation Execution 

APPLICATION CONTROL BLOCKS (ACB) CREATION AND MAINTENANCE 

The fourth necessary function prior to execution of the data base 
system, is ACB creation and/or maintenance. This function is optional 
in a DB system. It is required in a DB/DC system. Associated with all 
batch processing application programs are DL/I control blocks which 
define the data bases, structures, and methods to be used with a 
particular application. 

The information in these blocks can be constructed in either of two 
ways: (1) at initialization time, the logical block builder module 
(DFSDLBLO) is called to construct the blocks from the PSBs and DBDs 
associated with the application program to be scheduled; or (2) the 
Application Control Blocks Creation and Maintenance utility program 
(DFSUACBO) is used to prebuild the control blocks for the application 
program. In this case, the necessary control blocks are loaded directly 
from the IMSVS.ACBLIB data set, saving processing overhead. 

Application Control Blocks Creation and Maintenance requires no 
IMS/VS resources other than IMSVS.PSBLIB, IMSVS.DBDLIB, and 
1MSV5.ACBLIB. The user supplies control statements which specify the 
operations to be performed. (See Figure 1-4., The ~~~L!~ ~!ili!i§§ 
li~!~£~ll~~~~ll!!.~! describes the details of ACB creation and maintenance. 

A procedure, named ACBGEN, is placed in the 1MSVS.PROCLIB data set by 
IMS/VS system definition for subsequent ACB creation and/or maintenance. 
This procedure is described in the I~~L!~ aY§!§! f£Qg£~!mi~g li§I§~§n~~ 
~!nl!!!l· 

1.8 1MS/VS System/Application Design Guide 



OS/VS 

ACB 

CONTROL 

CARDS 
 ACB 


CREATION 

AND 
 IMSVS. 
MAINTENANCE ACBLlB 

DBD 

LIBRARY 


PSB 

LIBRARY 


Fig ure 1-". ACB Creation andlor Maintenance 

APPLICATION PROGRAM DESIGN 

The final function performed prior to DB system execution is the 
creation of application programs. Application programs are required to 
create and maintain all user-defined data bases. These programs are 
written in Assembler Language, COBOL, or PL/I, and must be placed in the 
IMSVS.PGMLIB data set after compilation and link edit. 1MS/VS JCL 
procedures are available to the user for program compilation and link 
edit. These procedures are placed in the IMSVS.PROCLIB data set by 
1KS/VS system definition. Each compiled application program must be 
link-edited vith modules that viII be called by the application program 
during execution. JCL procedures cause this link-edit to be performed. 
For details see chapter "The 1KS/VS Procedure Library" in the !~~L!~ 
~I§1!1 f[2g'!mml~g i!t!£!a~! ~!ng!l· 

This section of the chapter describes batch processing in the DB 
system. Prior to execution, the functions of 1KS/VS system definition, 
DBD generation, PSB generation, and application program compilation, and 
optionally, ACB creation, are assumed to have been performed. 

ESSENTIAL PROGRAM ELEMENTS FOR EXECUTION 

Figure 1-5 illustrates the program elements necessary for batch 
execution. The IKS/VS control blocks are obtained from the IMSVS.ACBLIB 
(if prebuilt blocks are to be used) or are constructed dynamically at 
execution time from the PSBs and DBDs associated with the application 
program. The application program is obtained from the IMSVS.PGMLIB data 
set. The IMS/VS DB system modules are obtained from the IMSVS.RESLIB 
data set. 

Design and Installation of a DB System 1.9 



OSIVS 

IMSVS.DBDLIB 

APPLICATION PROGRAM 

LANGUAGE INTERFACE IMSVS.PGMLlB 

IMSVS.PSBLIB 

IMSIVS 
SYSTEM t--+--I 

lICr.ARY 

DATA 
LANGUAGElI 

DATA 
BASE 

LOGGING 

IMSVS.RESLIB 

Figure 1-5. Essential Program Elements for Execution 

As previously described, there is a PSB associated with the batch 
processing application program. The PSB is composed of one or more 
subordinate control blocks called data base program communication blocks 
(PCB). Each data base PCB specifies a data base or logical structure of 
data segments used by the application program. The PCB specifies the 
name of the DBD associated with the desired data base and the names of 
segments within the data base to which the program is sensitive. 
Secondary indexes can be specified to aid in segment selection. 
Segments to which an application program is sensitive can be retrieved, 
updated, inserted, and deleted. Segments to which an application is not 
sensitive are never presented to the application program. The concept 
of segment sensitivity provides some degree of data independence. 
Additional constraints can be placed on the manner in which an 
application program is sensitive to a segment. Levels of sensitivity 
can be defined for each segment. The lowest level of sensitivity is 
segment retrieval only. The next level of sensitivity allows segment 
retrieval, update, insert, or delete. 

J 


Each data base PCB in the PSB associated with the application program 
to be executed defines a DBD by name. This means that one or more DBDs 
are required for any batch program execution. Each DBD defines the 
organization and segment structure in its associated data base. The 
concept of a logical data base and associated DBD is defined in a 
subsequent chapter of this manual. If the DBD named in a data base PCB 
is associated with a logical data base, one or more additional DBDs are 
required to define the data base and identify the segments within the 
data base to which the program is sensitive. 

J 

1.10 IMS/VS System/Application Design Guide 



Together, the P5Bs and DBDs are used to construct the I~5/V5 
application control blocks. This aay be done dynamically or by a 
utility program which prebuilds the blocks. The I~2L!~ Y1ili1!~§ 
~~t~~£~ ~!~~!i describes this process. 

An application program to be executed in the batch processing DB 
system environment may be written in COBOL, PL/I, or Assembler Language. 
1 subsequent chapter of this manual describes design considerations for 
an application program. The details of application program 
implementation are provided in the I~~L!~ !22ii£~1iQ~ R£Qg£!mming 
g~~~£~£~ ~n!!l· 

The IM5/VS modules utilized in the DB system environment are obtained 
from the IMSV5.RESLIB data set. These modules are placed in that data 
set by the execution of IM5/VS system definition. The majority of the 
modules are involved with handling data base requests from the 
application program. These modules in turn utilize the data management 
access method modules of VSAM, I51M, OSIM, GS1M, and SAM. 

The primary IM5/VS modules are: 

Data Base Retrieval ~odule 

Data Base Insert Module 

Data Base Delete/Replace Module 

Data Base VSAM Interface Module 

Data Base IS1M Simulator Module 

Data Base Hierarchical Direct space Management Module 

Data Base 15AM/OSAM Buffer Handler Module 

Data Base Buffer Handler Router ~odule 

Data Base Hierarchical Direct Index Maintenance Module 

GSAM Access Method Modules 

OSAM Access Method Modules 

Data Base Logging Modules 

A later chapter of this manual describes the IMS/VS data base access 
methods. Each of these data base access methods uses either standard 
OS/VS data management access methods or 05AM for the physical storage of 
segments. The following illustrates the relationships. 

Design and Installation of a DB System 1.11 



LOW LEVEL ACCESS METHOD 

DAI!_~!~E_l~~I~~_~EIHQQ !!~ILlQILH!~!~!L_~!QB!2E 

HSAM OSA!! or BS1!! 

HISAM BISA8·0SA8, OISAK-OSA!!, or VS1!! 

HDAM OSA!! or VS1M 

HIDAM BISAM-OSAM, OISAK-OSAM, or VSAM 

GSAM BSA!! or VSA!! (ESDS only) 

If sequential processing of an HSAM data base is defined, OSAM is 
used in support of HS1M. If nonsequential processing of an HS1M data 
base is requested, BSAM is used in support of HS1M. When a HISA" data 
base is created or reorganized, OISAK load mode and OSAM are used. When 
an existing HISA!! data base is used for retrieval, insert, update, 
and/or delete, OIS1! scan mode and OSAM are employed. If a PSB 
generation defines two or more data base PCBs which relate to the saae 
HISA! data base, BISAM read and write are used for HISA!! retrieval, 
update, delete, and/or insert. OSIM or VSAM is used for all data 
segment storage when the data base access met~od is HIDAM or HDAM. The 
use of ISAM (BISAM or QISAK) in an HIDAK data base is for index segment 
storage only. The use of BISA! or OISAK in support of the HIDA!! data 
base access method is equivalent to that described for RISA!!. 

DATA BASE SYSTEK EXECUTION 

Once the functions of IMS/VS system definition, DBD generation, PSB 
generation, and application program creation have been accomplished, 
execution of the Data Base system may be performed. The initial DB 
system execution presumably loads data into one or more of the data 
bases previously defined by DBD generation. (The load process is 
described in the !~~L!~ ~i~l~i~~2 ~~fe~~n~~ ~!n~!l.) Subsequent
executions would perform retrieval, update, insert, and/or delete 
operations against existing data bases and/or create additional data 
bases. 

When a batch processing execution of the DB system is initiated, the 
control blocks associated with the application program must be obtained 
and initialized. This control block initialization process is part of 
the batch processing job step execution but precedes the loading of the 
application program. The first step inVOlves obtaining the DL/I control 
blocks. If PARK=DBB was specified, the required control blocks are 
obtained from IKSVS.ACBLIB by the block loader module. If PARH=DLI was 
specified, the block builder module is called to construct blocks 
dynamically. In this case, IKSVS.PSBLIB and I!!SVS.DBDLIB are used to 
obtain the required PSBs and DBDs. Once the blocks have been obtained, 
the initialization routines load the required DL/I action modules, 
initialize STAE, and format the necessary storage areas in preparation 
for loading and giving the application program control. Figure 1-6 
illustrates this initialization process. 

1.12 IMS/VS System/Application Design Guide 



OS/VS 

IMS/VS
PROGRAM .... 	 SYSTEM 

~CONTROLLER 
LIBRARY 

• 	 -
IMSVS.RESLI BAPPLICATION 


BLOCK
CONTROL -----. LOADER 

BLOCKS 


~ IMSVS.ACBLlB 

CONTROL 
BLOCKS 

r----------	 - - -------- - -,-------1---­
I -" 

BLOCKDBD 	 ~ PSB 

LIBRARY - - _. - ... BUILDER f4- - - -- - -- LIBRARY 

: IMSVS.DBDLIB 	 IMSVS.PSBLIB
L _____________________________________ ~ 

Figure 1-6. Initializing the Batch Data Base System, Step One 

The IKS/VS module which controls the DB system environment is called 
the program controller. The primary functions of the program controller 
are: 

• 	 Initiate the IKS/VS DB system block building process by passing 
control to the IMS/VS control block building modules (Figure 1-6). 

• 	 Initiate the DB system DL/I and data base logging modules and pass 
control to the user's application program (Figure 1-6). 

• 	 Terminate the DB system execution by returning to OS/VS. 

The EXEC statement provided as part of the OS/VS job control language 
for the DB system batch processing execution includes, within the values 
of its PARK= operand, the names of the PSB and the application program 
to be executed. Control is passed from the region controller (not shown 
in Figure 1-6) to the program controller, to the block loading and 
building modules. The nalle of the PSB is supplied. Using the PSB name, 
the required control blocks are obtained. If the first PARM= value is 
DBB, the required control blocks are loaded from the IMSVS.ACBLIB data 
set. If the first PARM: value is DLI, the named PSB is loaded from the 
IKSYS.PSBLIB data set and referenced DBDs are loaded from the 
IMSYS.DBDLIB data set. From the PSB and DBD control blocks, internal 
IMS/VS control blocks are built for subsequent input/output operations
in the DB system environment. 

After the control block construction is complete, control within the 
CS/YS address space is returned to the program controller. At this 
point the remainder of the DB system functions are initialized (Figure 
1-7). This includes loading of the required DL/I data base modules, 
loading of the data base log modules, creation of a data base buffer 
pool, and loading of the required data management access method modules. 

Design and Installation of a DB System 1.13 



Depending upon the data base organizations and the manner in which 
each data base is used by the application program, only the necessary 
DL/I and access method modules are loaded. 

Finally, the application program to be executed is obtained from the 
application program library, IMSVS.PGMLIB. Control is given to the 
application program. 

OS/VS 
I 

Y 
PROGRAM 
CONTROLLER 

I 
I 

r-------l 
I I 

f-.. _:::0 

II • APPLI­

I 
I, 

APPLICATION 
PROGRAM 

"'"­... CATION 
PROGRAM 
LIBRARY 

I 
I 

<: ::> 
I MSIVS 
SYSTEM 

LlBRARj 

--. 

I• : 
DATA I 
LANGUAGE/I. I 

DATA 
BASE 
LOGGING 

-­
CONTROL 
BLOCKS 

IMSVS.PGMLI B 

I -­

MSVS.RESLIB 

DATA BASE 
BUFFER POOL 

Figure 1-1. Initializing the Batch Data Base System, Step Two 

I8S/VS provides procedures for DB system batch processing execution. 
They are DLIBATCH, DBBBATCH, IMSPLIGO, and IMSCOBGO. They are placed in 
IMSV5.PROCL1B during IMS/VS system definition. These procedures are 
described in detail in the I~§L!§ §I§!§m f~Qg~smm!ng E§f§~~n£§ ~~n~~l 
and include the basic JCL for execution. The user must add DD 
statements for all data bases to be used. The content and format of 
these DD statements are described in the "DBD Generation Control 
Statements" section of the I~l!§' !!!!li.t.!~§ !i~f§r§n.£2 ~sn~sl. 

~!ta ~s§~ §I§!~~ ~Qli!£~l §.2g~~£2 rl~~ 

Figure 1-8 illustrates the DB system control sequence flow once the 
application program has been given control. Upon entry to the 
application program, a parameter address list is provided. The 
addresses in this list provide visibility to each data base PCB in the 
PSB for the application program (see arrow 1). These data base PCB 
addresses are subsequently used by the application program when issuing 
data base input/output call requests. 

1.14 1M5/VS system/Application Design Guide 



OS 

I 

REGION 
CONTROLLER 

PSB 

LINK 

I i ..---"_,__.........:.__----. CD 

I I
I I APPLICATION (.;'\

: I I--___PR_O_G_R_A_M___-t~ 
: I r--~A-:;;~~~U~~E~--l ~ 

RESPONSEI I I INTERFACE I ~ I I L______________J 

......... ­
~ \~ 10 

IS ®-r----'----r---­
O\It}8t~DB§D§S§!J ~:~: I-CD_9-+--I'~B~:DATA II 

'" (j) LANGUAGE/I I LOGGING CHANGES 

ACCESS 
METHOD 1+--1 I 

® 
1 

DATA BASE BUFFER POOL 

Figure 1-8. Data Base System Flow 

Arrows 2 and 3 in Figure 1-8 indicate the transaction input and 
response output interface with the application program. 

All application programs operating under IKS/VS have a language 
interface link-edited with the application program. The language 
interface accepts a data base call from the application program and 
passes control to the DL/I data base modules (arrow 4). 

The purpose of the language interface is to provide a consistqnt 
format to DL/I for all data base call requests, independent of the 
programming language used to write the application program. The 
IKS/VS-supplied OS/VS procedures for compiling and link editing 
application programs are described in section "Procedure Library" in 
chapter "The IMS/VS Procedure Library" in !J1§l!§ §Iii~! f£2g,£~n!.!lg 
[~!~£~!l£~ ~!!l~!.. The link edit step for each of these procedures 

Design and Installation of a DB System 1.15 



provides for the inclusion of the language interface with the correctly 
compiled PL/I, COBOL, or Assembler Language application program. 

The language interface function of IMS/VS is reenterable and is 
upwardly compatible with that of IKS/360 Version 2. To take advantage 
of the reenterable capability of the IMS/VS language interface, 
application modules from IKS/360 installations must be re-link-edited, 
replacing the IMS/360 language interface with the IMS/VS language 
interface. 

After control is passed to the DL/1 modules for execution of the data 
base call request, the following functions are performed. 

1. 	 The parameters in the call request are checked for valid content. 
This checking involves the use of data base PCBs (arrow 5) and 
DBDs (arrow 6). 

2. 	 If the data base call involves segment retrieval, the information 
contained in control blocks and data base buffers is used to 
attempt to satisfy the request. If the request can be satisfied, 
the desired data segment is placed in the input/output work area 
of the application program provided in the data base call. 

3. 	 If the retrieval request cannot be satisfied with information 
already contained in the data base buffer pool, the appropriate 
data management access method modules are invoked (arrow 7), and 
the data management access method modules perform the necessary 
input requests to place necessary data in the data base buffer 
pool (arrow 8). 

4. 	 If the data base call request involves data segment update or 
deletion, the segment must first be retrieved (from either the 
buffer pool or secondary storage). Subsequently, the segment is 
deleted or updated (arrow 10). 

5. 	 If the data base call request involves data segment insertion, 
the segment is placed in the data base buffer pool and 
subsequently written to direct access storage (arrow 10). 

6. 	 When the data base call request involves segment insertion, 
updating, or deleting, a record of the data base modification is 
placed on an IMS/VS log for the batch address space (region) 
execution. This logical information can subsequently be used for 
data base recovery or reconstruction (arrow 9). 

~!~! ~!~~ ~~tt~£!~~ 

IMS/VS maintains two data base buffering functions: one for VSAM data 
bases, and one for ISAM/OSAM data bases. 1 separate pool of buffers is 
allocated for each type of data base (VSAM and ISAM/OSAM) and the data 
management access methods (VSAM, ISAM, and OSAM) are directed to read 
into and write from these buffers. 

The concept of the buffer pool is to allow blocks of data to remain 
in main storage as long as possible to avoid secondary storage reads and 
writes. Data in the buffer pool can be accessed and updated without I/O 
as long as there is no need to reuse the buffer space the data occupies. 
A use chain determines the order in which the buffers are used. Empty 
buffers are placed at the bottom of the use chain and are always 
available for reuse. As buffers are accessed, they are placed at the 
top of the use chain. When a retrieve request occurs, the buffer pool 
is searched using the use chain (for IS1M/OSAK a hash table is used to 
direct the search), to determine if the requested data is already in 
main storage. If the data is not found, the least recently used buffer 

1.16 IMS/VS System/Application Design Guide 



(bottom of the use chain) is selected, the old data is written out if it 
has been changed, and the requested data is read into the select~d 
buffer. 

The size of the data base buffer pools can have a significant effect 
on the performance of the IMS/VS system. The size of the buffer pool is 
defined during DL/I initialization, based on control statements provided 
by the user (see the section "Defining the IKS/VS Buffer Pool" in the 
~~~L!§ ~n§ial1~ii2n ~uid~). The size of the ISAK/OSAM buffer pool, for 
IKS batch jobs, can be defined by the BUF parameter on the EXEC
statement for the job step or by buffer control statements.

At the beginning of each of the data base buffer pools, there exists
a work area used by IKS/VS to record statistics on the activity in the
pool. These statistics are of value to the IKS/VS user in determining
the appropriate buffer pool size for a given application program. The
DL/I statistics call (STAT) can be used to obtain these statistics in an
application program (see the ~~~!~ !~~!i£~1i2n R£2~~~!!in~ ~~~~~~n£~
~~nY~! for a description of the STAT call).

For additional information on buffering see the section "DL/I Data
Base Buffering Facilities" in the ~~§L!§ ~I§I~m RI2~I~m!in~ B~~~I~n£~
~~nyal.

DATA BASE LOGGING

All modifications to any data base used in the DB system environment
are recorded on the IMS/VS log tape for the address space. If multiple
data base system executions are performed concurrently under OS/VS1 or
VS2 a separate IMS/VS log tape is associated with each address space.
Unless a data base is being used for retrieval purposes only in all
address spaces accessing the data base, no attempt should be made to
access the same data base from more than one OS/VS address space at any
one time.

Data base logging provides the IMS/VS system user with a recording of
all modifications to all data bases used during a data base execution.
The log can be written with BSAM or OSAM. See "Chapter 2. Log Facili~y"

in the ~~~L!§ §I§I~! f~2~~mming ~~~~£~n£2 Kang~! for performance
improvement considerations using OSAK. An IKS/VS option, log-tape
write-ahead, insures that log records are written before the data in the
data base is changed. See the section "DL/I Data Base Buffering
Facilities" in the !H§L!2 2I§i~! f£2g£~!ming ~~~~£~n£~ ~~ng~! for
additional information on log-tape write-ahead. The IKS/VS log tapes
can be used in conjunction with the IKS/VS Data Base recovery utility to
rebuild a data base. The !~2L!2 ~1ilili~§ ~~~~~~n£~ H~ng~! provides
details on the use of data base log information for recovery.

If no data base changes will be made or if no data base recovery
utilities will be used, the logging function can be made inoperable by
specifying DD DUMMY on the primary log DD statement {DD name IEFRDER).
If dual system logs are used and the primary log is specified as DD
DUMMY the secondary log is ignored and no logging is done.

If a data base is destroyed because of input/output errors, it can he
restored with the following procedure •

• 	 Restore the data base with a previously dumped copy. The Data Base
Recovery utilities can be used for this purpose. Refer to the
!H§L!§ n!i!i1i~2 R~f~£~~£~ ~~~~~! for detailed information.

Design and Installation of a DB System 1.17

• 	 Apply all data base modifications made to the data base since the
dumped copy was created. The IKS/VS Data Base Recovery utility
programs provide this function.

• 	 Repeat the current DB system processing from the beginning.

Not~: The above discussion of data base logging and recovery does not
apply to the 8SA! organization. Since the old data is not destroyed
when updating HS1M, logging and backout are not required to maintain
data base integrity.

BATCH CHECKPOINT/RESTART

The 	 batch checkpoint facility provides for synchronizing checkpoints.

The CHKP function call to DL/I allows the coordination of program
activity with data base activity. Lacking any means to identify
significant events in an application program, DL/I treats data base
calls as one continuous string of related actions. When a CHKP call is
issued, the program is indicating to DL/I that a sync point has been
reached and the data base buffers should be written to secondary
storage. For batch programs, a checkpoint record is also recorded on
the log data set to indicate the sync point and set the maximum point to
which the data base backout occurs if it becomes necessary.

In the batch environment, the duration of the job may be long and the
number of data base changes may be large. If the job lasts for many
hours then the time for reloading direct access data sets and rerunning,
if necessary, may be excessive. Batch checkpoint/restart allows the
user to take one or more sync points during execution. The sync point
then determines the amount of time required to backout the data base if
restart occurs. Backout is effected only back to a specified checkpoint
record.

The action taken by the DB system for batch programs when a CHKP call
is issued is as follows:

1. 	 Altered data base buffers are written.

2. 	 The checkpoint ID supplied in the CHKP call is written to the log
tape.

3. 	 If as checkpoint/restart is used, the checkpoint ID must be
unique for all checkpoints issued by this application program.
If IMS/VS expanded checkpoint/restart facility is used, the
checkpoint ID must be unique for all checkpoints in the IMS/VS
system.

4. 	 Message DFS681I, containing the checkpoint ID supplied, is sent
by a WTO to the system console, and to the programmer.

5. 	 Optionally, an OS/VS checkpoint of the user's region is taken.
If the IMS/VS log access method is OSAK, the OS/VS checkpoint is
not taken.

It is the user's responsibility to checkpoint any non-IKS/VS
information or data sets (such as transaction/response data sets) with
issuance of the CHKP call. This can be done with the OS/VS
checkpoint/restart option in the DL/I CHKP call.

1.18 IMS/VS System/Application Design Guide

As an alternative to the OS/VS checkpoint/restart option, the user

Il
can specify the I~S/VS extended checkpoint/restart facility. This
consists of a restart call (function code XRST) and optional parameters
on the CHKP call. If used, the xaST call is the first call to IMS/VS
issued by the user program. If a restart is not in progress, the xaST
call is effectively a Nap.

The issuance of an XRST call causes the following action to be taken
for subsequent CHKP calls issued by the program:

1. 	 Optionally, user specified areas, that is, application variables,
control tables, and position information for non-IMS/VS data
sets, are recorded on the IMS/VS log.

2. 	 The fully qualified key of the last record processed by the
program on each IMS/VS data base is recorded on the log.

3. 	 The functions of the standard CHKP call are performed, except
that the OS/VS checkpoint of the user's region is not taken. The
user has the option of using OS/VS Checkpoint/Restart, or the
IMS/VS restart (XRST call), or neither, but not both.

~~t£h ~~£~2Y1 Y1!l!11 f~2g.~m

A checkpoint ID can be supplied to the IMS/VS Batch Backout utility
program through a control statement. The backout of data segments from
the data base is done from the end of the log tape until the matching
checkpoint record is encountered.

In the case of a batch program, the checkpoint/restart facility used
can then be invoked to restart the program from that point.

The batch checkpoint facility is implemented by the use of the CHKP
system service call from the application program. This call is used to
indicate a sync point at which any data base updates can be restarted.
The actual checkpointing of the batch program environment and the
routine used to restart it are at the option of the user. The DL/I
checkpoint program cannot issue the as CHKPT macro.

If the DL/I user chooses to write his own checkpoint/restart
routines, he must:

• 	 Record application variables and control tables.

• 	 Record position information for non-IMS/VS data sets.

• 	 Provide a restart entry point and reinitialization procedure.

• 	 Initialize IMS/VS control blocks, for example, PXPARMS.

Use of the xaST call and user area parameters on the CHKP call
simplifies the task for the user writing his own restart routines.

• 	 A restart situation is indicated by specifying a checkpoint ID in
the PARM field (on the EXEC statement in the JCL) or in the XRST
call itself.

• 	 Normal entry point and initialization procedures are used.

• 	 User areas recorded at checkpoint time are restored.

Design and Installation of a DB System 1.19

• 	 A GET UNIQUE is issued for each GSA! data base for the last used
record, if the data base was open at the time the checkpoint vas
taken.

• 	 No data is returned as the result of the GU, but key feedback and
status codes are saved in the user PCBs.

• 	 If the data base was opened for output, then a PNT function code,
requesting POINT, is used.

• 	 GSAM data bases are automatically repositioned at restart if the
XRST call is used.

• 	 The checkpoint ID is returned to the user program to allow it to
link to its own restart subroutine.

Batch programs that do not utilize the batch checkpoint facility
should be reprogrammed to do so. Th~ major advantage comes from
significantly shorter backout runs after failure, and the ability to
terminate a long running job and restart it at a current point with very
small backout preparation and minimal rerun time.

IMS/VS USE OF STAE/ESTAE

IMS/VS makes use of STAE/ESTAE routines in the control region, the
dependent message (MPP,BMP,IFP) regions, and the DL/I batch regions.
The control region STAE/ESTAE routines ensure that data base logging and
various resource cleanup functions are completed. In the dependent
message region, STAE/ESTAE is used to notify the control region of any
abnormal termination of the application program and/or the dependent
message region itself.

If an application program uses STAE/ESTAE, the following rules must
be observed:

• 	 Establish the STAE/ESTAE only once, before the first DL/I call.

It is not recommended that the application program use the RETRY
option when exiting from the STAE/ESTAE routine but return a
CONTINUE WITH TERMINATION indicator at the end of the STAE/ESTAE
processing. If the STAE/ESTAE routine does exit specifying the
RETRY option, the retry routine must ABEND with the original
abend code. The original error data in the System Diagnostic
Work Area (SDWA) may not be available for the IMS/YS exit
routines if the RETRY option is selected.

• 	 The PL/I STAE exit options do not include the CONTINUE WITH
TERMINATION option. Applications written in PL/I must not use the
PL/I STAE option.

The user STAE/ESTAE exit routine must not issne DL/! calls since the
original abend may have been caused by a problem between the application
program and IKS. This would result in a recursive abend with a
potential loss of data base integrity or problems in taking a
checkpoint.

Note: Programs that are CS/VS subtasks of an application program called
by-IMS/VS must not issue DL/I calls. If they do, the results will be
unpredictable.

'.20 IMS/VS System/Application Design Guide

IBM SYSTEM/310 POWER WARNING FEATURE SUPPORT

The IHS/VS Power Warning Log Terminator program supports the power
warning feature on System/370 Models 158 and 168. This support enables
the user to close the IMS/VS log from a dump data set without having to
restore memory. The procedure used to accomplish this is described in
the !~~L!~ QR~~!iQ~!§ R~I~£gn£~ ~2nY!1·

I"S/VS DB MONITOR

The IMS/VS DB monitor is a tool for collecting performance data to
investigate specific application designs, data base designs, and
resource allocations. It consists of a monitor module, and a Monitor
Report Print program. When activated, it analyzes and records the
internal activities of the IMS/YS DB system. The monitor report print
program is processed offline to produce reports that summarize and
categorize, at various levels of detail, the information recorded by the
monitor module. The actions required to activate the monitor module are
described in the I~~L!~ Q~~I!tQ~!§ R~I~~~n£~ ~2n~!1. The monitor report
print program is described in the !~~L!~ Qtiliii~§ R~I~~~n£~ ~!n~!l.

The monitor module collects data from IMS/VS control blocks during
operation of the batch system (with minimum interference to the system)
and records the data either on an independent data set or on the IMS
log. The monitor remains resident and is activated and deactivated
through the system console.

The following are recommendations for use of the DB monitor:

• 	 Collecting data -- The DB Monitor enables an IMS/VS user to collect
performance data to assist in analyzing an existing IMS/YS batch
system. The amount of data collected and the analysis time to
understand the report output suggest short traces during various
time periods. Reports produced from profiles of a batch execution
considered as normal can be used as a profile and compared with
reports produced during a batch execution with unusual performance
characteristics.

• 	 Tuning system -- The DB Monitor can be used to quantify the effect
of actual changes to data base structures, program characteristics,
data set placement, and pool sizes.

• 	 Testing application -- In the final testing of new or revised
applications, the DB Monitor can be useful in validating the
internal operation of the programs and data bases. For example, the
programmer thought a specific DL/I call could be satisfied with a
single 110 retrieval. yet the DL/I call report indicated a large
data base scan as shown by many IWAITs. Investigation of such items
could assist in determining whether a new or revised application
meets the performance objectives. Data contained in the reports may
also assist in defining the resources required by an application
program.

Design and Installation of a DB System 1.21

L

This chapter concerns the decisions and planning that must precede
the installation and use of the IMS/YS Data Base/Data Communication
(DB/DC) system. Familiarity with Chapter 1 of this manual is assumed.

For the most part, the design and control considerations of a Data
Base system, as discussed in chapter 1, are applicable to the combined
DB/DC (Data Base/Data Communication) system discussed in this chapter.
The fundamental differences in the data base oriented considerations,
when viewed from within the combined DB/DC environment, have to do with
multiplicity and interaction. In the Data Base system, for example,
only one program and its associated program specification block are used
at a time. In the DB/DC system, planning must consider that multiple
programs and their associated control blocks may be in use at the same
time. Fur"thermore, the interactive effects among those multiple
programs and control blocks must be considered. This kind of
r@lationship applies, as well, to other resources managed in the DB/DC
system; such as data base buffers, data base control blocks, terminal
buffers, and message processing regions.

The contents of this chapter provide guidance in:

• Selecting an OS/VS configuration

• Selecting an IMS/VS configuration

• Establishing a message scheduling algorithm

• Selecting and configuring a physical terminal network

• Establishing a logical terminal network

Regions are distinguished by the kind of processing performed within
them. There are several kinds of regions: the I~S/VS control (CTL),
Message Processing Program (~PP), Batch Message Processing (BMP), IMS/VS
Fast Path Processing (IFP), and batch. Note the distinction between
batch processing using a local control program, and batch processing
through the online control program. The local use of the control
program is batch processing, provided by the DB system of IMS/VS. The
use of the online control program to support batch-oriented operations
is called batch-message processing.

REGION TYPES

For the online environment the region types that are utilized are the
Control, Messaga Processing, Batch Message Processing, and Fast Path
regions. The major types of processing programs are: control, message,
batch-message, and Fast Path.

the IMS/VS control program is normally started by using the OS/VS
START command. It can also be started as a system task or as a job step
using JCL.

Design and Control of a DB/DC System 2.1

The dependent regions are initiated by using the OS/VS START or the
IMS/VS START REGION command. This results in JCL being read from a
procedure library which initiates the dependent r~gion. The dependent
regions can also be started as a job step using JCL.

The Message Processing Program (MPP) region is initiated by the OS/VS
job management facilities. The MPP region can contain an application
program for processing against data bases in the online manner.

The Batch Message Processing (BMP) region can contain an application
program for processing against data bases in a batch processing
0p8ration. The application program in the batch region is scheduled by
OS/VS job management, but may utilize DL/I for data base reference. An
application program executed in a BMP region can access only IMS/VS and
Fast Path data bases that are defined in the IMS/VS control region.

A BMP region, in addition to being able to process data bases used
for message processing, has access to input message queues and can
provide output the the message queues. Access to the input message
queues is provided by specifying, in the JCL for a BMP region, a
transaction code ~o which access is wanted. Access to the output
message queues is provided by specifying output terminal PCBs in the PSB
for the application program that executes in the BMP region.

When the data bases normally used for message processing are not
being used for that purpose, they can be processing in a batch
processing region as described in the chapter "Design, Installation, and
Maintenance of the IMS/VS Data Base System." This can be done when the
IMS/VS control program is not operating as an OS/VS job or the data
bases are deallocated using the /DBR command (KVS only).

The IMS/VS Fast Path Processing (IFP) region executes as a dependent
region of the IMS/VS control region only. The IFP regions are handled
differently depending on the type of program that is running in this
region. There are three uses for the regions in which Fast Path
processing is done:

• 	 Applications for processing Fast Path messages, termed

message-driven programs.

• 	 Applications for processing input external to Fast Pa~h, termed

non-message-driven programs.

• 	 Utilities processed against Fast Path data bases. Past Path
application programs can retrieve from as veIl as update DL/I data
bases.

The Data Language/I (DLI) region operates in a batch processing mode
without accessing the message queues. DL/I calls that are directed to a
specific PCB are passed to IMS/VS for processing. IMS/VS Batch
applications have no access to Fast Path data bases. For more
information on DL/I, see Chapter 1 in this publication.

There are other batch region types in addition to those mentioned
above, namely Data Base Batch (DBB) and IKS/VS Utility (ULU).

2.2 IKS/VS System/Application Design Guide

OS/VS OPTIONS

The selection of an OS/VS configuration has some effect on the
potential performance and reliability and availability characteristics
of IMS/VS. Certain options are required by IMS/VS in all of the
applicable configurations. The functional characteristics of IM5/V5,
based on the use of these options, are identical regardless of the OS/VS
configuration selected.

The 	 IMS/VS DB/DC system runs under OS/VS1 and 05/V52.

I~~L!~ ~~2~~~~ ~2~Y~~ ~~~~2~~ r~~£tio~

as/Vs, IMS/VS, and application programs that will run in regions of
IMS/YS can be made permanently resident in virtual storage. This can
significantly improve throughput and response time for frequently
referenced transactions, if sufficient virtual storage is available with
high performance paging DASD.

Programs can be made permanently resident in two ways:

1. 	 In LINKPACK/RAM

a. 	 These programs are shared among all regions, resulting in a
saving of virtual storage space. Initial access can be slow
because the region JOBPACK and STEPLIB/JOBLIB are searched
before LINKPACK is searched. Subsequent access can be at cpcr
speeds, if the region JOBPACK has not been purged by as/vs
space management (this would be the case if sufficient
virtual storage were not available to satisfy a user request
for space). This can be altered by specifying SRCH=1 in the
1MS procedure. For more information on the 1MS procedure,
see the chapter, flIMS/VS Procedure Library" in the I~~L!.~
~!§1~m f~Qg~~mm!~g Ri~i~iU£~ ~~ny~!·

b. 	 These programs are made resident by the same method used for
as/vs and IMS/VS modules.

c. 	 Application modules with names identical to PSBs ShOl1ld not
be placed in OS/VS LINKPACK, since this causes a conflict
during the ACB generation process.

2. 	 In REGION/PARTITION

a. 	 These program modules are used only for transactions serviced
by the region involved, and only for the duration of that
region.

b. 	 Because these modules are in the region JOBPACK, they are
invoked without repeating the overhead of searching
STEPLIB/JOBL1B, L1NKPACK, and SY51.L1NKLIB. The overhead of
fetching the module into virtual storage is encountered only
at region initialization time.

c. 	 They are made resident by invoking the I"5/V5 Program "odule
Preload function via the step execution JCL parameter.

Design and Control of a DB/DC system 2.3

d. 	 In addition to those modules automatically preload9d into the
IMS/VS control region, other OS/VS and IlIS/VS modules can be
made resident in the IMS/VS control region by using Module
Preload.

e. 	 Module Preload can also be used for modules resident in
LINKPACK/RAM. Thus, although the modules are physically
residing in LINKPACK (and are being shared among multiple
regions), the overhead involved in searching program
libraries and LINKPACK are only experienced at region
initiation.

Serially reusable programs can be resident only in the
region/partition. They are made resident by invoking the Module Preload
function via the step execution JeL parameter.

The CS/VS task under which modules are preloaded varies based on the
IMS/VS region type:

!~~L~ ~~g!~~ IIE2 Q~L!~ I!!.§.t

control (CTL) Physical Log

Message (MSG) Region Control

Batch Message (BMP) Region/Program Control

Batch (DLI) Region/Program Control

Fast Path (IFP) Region Control

If modules are preloaded into MPPs, the following performance
considerations apply:

1. 	 Preloaded applications are invoked via the BRANCH instruction;
this avoids os overhead.

2. 	 Applications that are not preloaded and that have not been
previously invoked are located by issuing the BLDL macro
instruction; this reduces operating system overhead by avoiding a
PDS directory search for the application modules in subsequent
scheduling. The maximum number of BLDL entries in the BLDL list
can be specified in the PARM field of the MSG region JCL. The
entries are kept in the list on the basis of:

a. 	 most recently referenced

b. 	 most often referenced

3. 	 All non-reentrant pre loaded modules are reloaded after each

abnormal termination.

4. 	 If an abnormal termination with DUMP occurs, all preloaded

modules will be printed.

2.4 IMS/VS System/Application Design Guide

IKS/VS IN AN OS/VS SYSTEK

!!1§L!~_l~!m~§

rlSC
BSC connection
CTC connection
Main-storage-to-main-storage
connection

Fast Path
Data Base Surveyor

x

x
X
X x

x
X

X
X
X

OS/VS1 OS/VS2 (SVS) OS/VS2 (MVS)
!!1§L!§'_R~g~Q~_!Y£~ _!::!_- ---_!::!_---- __!::!_§.!!f__

CONTROL X X X
MESSAGE X X X
BATCH-MESSAGE X X X
BATCH X X X
FAST PATH X X

* IMS/VS determines whether a batch region is swapped regardless of
whether the user specifies the region as being swappable. ToX
IMS/VS, a batch region is swappabl~ if it has not log, and it is
not swappable if it has a log.

OS/VS OPTIONS REQUIRED OR RECOMMENDED FOR IMS/VS

Many of the OS/VS system generation macro instructions must specify
certain options and values to support an IMS/VS DB/DC system.

Certain OS/VS options are not required by IMS/VS, but are recommended
for various reasons. For a full discussion of the required or
recommended options consult the !~2L!§' !n2t~!l~!~Q~ Q~i~~.

Nota that IMS/VS supplies a user type 2 SVC that is nucleus-resident.
If the IMS/VS SVC is available at OS/VS system generation, it is
convenient to incorporate it by using the RESMODS macro instruction.

SPECIAL ACCESS METHOD -- OSAM

The functions and operations of OSAM described for the Data Base
system in chapter 1 of this publication also apply to the DB/DC system.
The DB/DC system uses OSAM for message queue management. Further
discussion of message queue management appears later in this chapter.

!!!Q£~~iQll Qt Q2!~ ~~1~ 2~12

The normal mode of OSAM data set allocation is through the use of the
JCL at the time the data set is loaded. This can be for single or
multiple volumes, and is done using the SPACE parameter. This is the
recommended method.

If the installation control of direct access storage space and
volumes is such that the OSAM data sets must be preallocated, or if it
is decided that a message queue data set will require more than one
volUme, the OSAM data sets may be preallocated.

Design and Control of a DB/DC System 2.5

Preallocation is done by any of the accepted methods, with the
following restrictions:

• 	 DCB parameters should not be specified•

• 	 If the data set is to be expanded beyond the preallocated space, a
secondary quantity must be specified during preallocation. Note
that queue data sets will not be extended beyond their initial or
pre-allocated space quantity.

When a !Yl!!El~=Y2!Ym~ data set is preallocated, the method of
allocation should allocate extants on all of the volumes to be used, and
guarantee that the end of the data set is correctly indicated in the
DSCB on the last volume.

The suggested method is to use the IEFBR14 utility once for each
volume on which space is desired. ~2 n2! simply use IEFBR1q and specify
a DD card for a multi-volume data set. !his will put an extent on the
first volume only and will not indicate that the volume is the last
volume of the data set.

II0SAl'1ALLO JOB A,OSAMEXAMPLE
liS 1 EXEC PGM=IEFBR14
IISYSPRINT DD SYSOUT=A
IIEXTENT1 DD VOL=SER=AAAAAA,SPACE=tCYL, (20,5» ,UNIT=3330,
II DSN=OSAM.SPACE,DISP={,KEEP)
IIS2 EXEC PGM=IEFBR14
IISYSPRINT DD SYSOOT=A
IIEXTENT2 DD YOL=SER=BBBBBB, SPACE= (CYL, (30,5» ,UNIT=3J30,
II DSN=OSAM,SPACE,DISP=(,KEEP)

J
IILAST EXEC PG8=IEFBR1Q

IISYSPRINT DD SYSOUT=A

IIEXTENTL DD YOL=SER=LLLLLL,SPACE=(CYL, (30,5»,UNIT=3330,

II DSN=OSA8.SPACE,DISP=(,KEEP)

1. 	 Secondary allocation must be specified for all volumes if the data
set is to be extended beyond the initial allocation.

2. 	Secondary allocation is not allowed for queue data sets; they can
have multi-volume allocation however.

3. 	If the OSAM data set must be cataloged, use IEHPROGM or Access Method
services to ensure that all volumes are included in the catalog
entry.

1. 	 Do not preallocate more volumes for OSA8 data set extents than will
be used during the initial load or reload process. Doing so may
cause performance problems during a later OPEN process since OSAM
will not have a valid end-fo-file (EOF) mark in the last volumes
DSCB. This will force OSAM to SCAN the entire data base in order to
find the true Eor mark. Since all extents of system data sets are
formatted at OPEN, the above caution does not apply to message queue
data sets.

J

2.6 I8S/VS System/Application Design Guide

If 	your (re)load process does not put the EOP mark on the last
volume, you can add and delete dummy records to the end of the data
set to force the EOF mark to the last volume.

2. 	 Do not reuse molti-voluae OSA! data set extents without scratching
and reallocating the space first. If this is not done, an invalid
EOF mark may be left in the DSCB of the last volume of the data set,
for instance after an unload/reload (reorganization). This will
cause OSA8 to improperly open the data set after IKS/VS utilities
have operated against the data set. fhis will result in an imbedded
EOF mark somewhere in the middle of the data base. For instance, a
data set may be allocated on three volumes, with the EOF mark on the
third volume, but after reorganization, the data set may require only
the first two volumes, and therefore the new EOF mark would be placed
on the second volume. Since OSAK always checks the last volume's
DSCB for an EOF mark during OPEN processing, normal processing would
use the old EOP mark in the DSCB on the third volume. Subsequent
segment inserts would go after the old EOF mark on the third volume.
A later image copy will use the reorganization reload EOF mark on the
second volu~e as true EOF indication since it processes the data set
sequentially, thus, ignoring the new data on volume three.

Configuring the IMS/VS system for a particular user environment is
accomplished through IKS/YS system definition. IKS/YS system definition
consists of macro statements, the operands of which tailor the IKS/VS
system for the user. The next several sections of this chapter discuss
the design considerations in selecting various system definition
options. You may wish to subsequently review this chapter with the
system definition details in the !A§l!§ !n!i~!!~ti2n 2gi[~.

CONTROL PROGRAM

f[2~~!!ing R~gi2n!

The specification of maximum processing regions places a limit upon
processing capabilities that can be changed through redefinition or
through specifying the PST parameter in the IKS procedure referenced
above. The value assigned to the MAXREGN keyword of the IKSCTRL macro
statement includes Fast Path, message, and batch message processing
regions. The maximum number of regions specified influences the
calculation of maximum I/O requests. The largest value that can be
specified is 15.

The specification of active 1/0 requests is one of the system-related
specifications that directly influences the performance potential of the
DB/DC system. It governs the maximum number of I/O requests outstanding
at any time. You must specify a value on the MAXIO keyword of the
IMSCTRL statement that exceeds, by at least two, the maximum number of
regions that can be executing concurrently. It is recommended that the
value be one-half the sum of the number of communication lines, plus the
number of concurrently operating processing regions. This number should
reflect a prediction of maximum to average number of active
communication lines. If the autopoll feature is used, it should be
possible to reduce the assigned value without significantly affecting
performance. The largest value that can be specified on the KAXIO
keyword is 255.

Design and Control of a DB/DC System 2.1

£h~£~EQ!~i E£~~~~~

rhe selection of a checkpoint frequency should be influenced by
anticipated message and data base processing activity, and the need for
rapid restart. The frequency value chosen determines the number of log
records that are written between automatic environment checkpoints.
Whatever the value chosen, it is somewhat self-adjusting to system
processing rates. That is, as more messages and data base update
activities are processed, more log records are written. Hence,
automatic checkpoints occur more frequently.

System queue space must be sufficient to support the requirements of
the OS/VS control blocks necessary for the operation of an IMS/VS
system. See "IrIS/VS Storage Estimates" in the !.!1aL!~ ~!.§.t~m fl:Qg!:!!!l!!l!n~
Refi~~~£~ .!1~~~~i for the information necessary to estimate the required
syst~m queue space.

Main storage is obtained dynamically within the control region by the
IMS/VS enqueue/dequeue routines. The maximum amount of main storage
that these routines obtain, and the maximum that these routines keep on
an internal free chain, are specified by the CORE keyword in the IMSCTF
macro statement.

R£2~£!m !§'Qi!i!Q~

Under the program isolation concept, all activity (data base
modifications and message creation) of an application program active in
the DB/DC system is isolated from any other application program(s)
active in the system until that application program commits, by reaching
a synchronization point, that the data it has modified or created is
valid.

This concept makes it possible to dynamically back out the activities
of an application program that terminates abnormally, without affecting
the integrity of the data bases controlled by IMS/VS. It does not
affect the activity performed by the other application program(s)
processing concurrently in the system.

with program isolation and the dynamic backout facility, it is
possible to provide data base segment occurrence level control to
application programs. A means is provided for resolving possible
deadlock situations in a manner transparent to the application program.
The deadlock situation is detected by an IMS/VS routine called Exclusive
Control Enqueue/Dequeue. Upon detecting a deadlock situation, one of
the application programs involved in the deadlock is abnormally
terminated with a special abnormal termination code. The abnormal
termination causes the activity of the terminated program to be
dynamically backed out to a previous synchronization point. Its held
resources are freed. This allows the other program(s) to process to
completion. The special code causes the t~ansaction that was being
processed to be saved. The application program is rescheduled. This
process is transparent to application programs.

Performance is enhanced by allowing control of data base updates to
be maintained dynamically, as opposed to establishing the control at
message scheduling time. This dynamic maintenance is controlled by the
DL/I action modules through the use of the IMS/VS Enqueue/Dequeue
routine. During the scheduling process, an analysis is made of the

2.8 IMS/VS System/Application Design Guide

intent of an application program toward the data base it uses. If a
conflict exists with the data base usage of a currently scheduled
transaction, the scheduling process must select another transaction code
and try again.

MESSAGE SCHEDULiNG

Within 165/V5 each input message type is declared through system
definition. Message types are called "transaction codes" o~
"transactions." At the time a transaction code is declared, many
optional attributes can be selected. These attributes, either directly
or indirectly, affect the schedulability of a transaction. They can
also affect the manner in which a physical terminal reacts to entry of a
transaction type.

Application programs are declared in separate but related macro
instructions. Hovever, the application program designated to process a
particular transaction code is really just another transaction
attribute. The process through which a completely received input
transaction is united with its associated application program is called
"message scheduling." The variable attributes associated with the
transaction code, the number and relative importance of other
transaction codes, the number of received but not processed messages,
the intent of associated application programs toward the data to be
processed, the amount of currently available space in control block
storage pools and buffers -- these and other factors influence the
process of message scheduling. The influencing factors are called the
"message scheduling algorithm."

Through selection of options at system definition time, through the
design and use of data bases, specification of buffer sizes, and, most
directly, through the declaration and selection of transaction
code-related options, the IMS/V5 system designer can influence the
scheduling algorithm. Depending upon the breadth of his understanding
of the algorithm, he can enhance the performance of the system by
aanipulating the algorithm to meet his requirements •

•
The remainder of this section on message scheduling considers the

scheduling algorithm in these topics:

• Message class and region class

• Load balancing

• Selection priorities

• Processing limits

• Application program output limits

• Multiple and single segment messages

• Multiple and single message mode

• Response mode

• Non-update transaction processing

• Conversational attribute

• Data base processing intent

• Processing intent propagation

Design and Control of a DB/DC System 2.9

• Application program abnormal termination

• Contention for resources

• Control block baffers -- PSB and DKB

Each message (transaction code) is assigned a class at system
definition time. This class assignment determines into which message
region an application program is loaded. When the IKS/VS message
regions are started, they are assigned from one to four message classes.
When a message region is assigned more than one class, the scheduling
algorithm treats the first class specified as the highest priority
class, and each succeeding class as a lower priority class.

If more than one class is specified, the message selection process is
handled as follows. The first class specified is scanned, in
transaction priority sequence, for waiting messages. If there are no
messages vaiting for the first class, the second and following classes
are also scanned in priority sequence. If there are messages waiting in
the first class, the highest priority message is selected for
scheduling. If, for external reasons (for example, program or
transaction stopped by master terminal operator), this message is not
schedulable, the next message of equal or lower priority in that class,
or the highest priority message in the next class, is selected for
scheduling. If the highest priority message in the first class is not
schedulable for internal reasons (data base intent or no more space in
PSB pool or DMB pool to bring in needed blocks), the scheduling option
of the transaction indicates the type of scheduling algorithm that is
used. The scheduling option is specified at system definition by the
TRANSACT macro. The options are:

1. 	 Schedule only transaction. of equal or higher priority in the
selected class.

2. 	 Schedule higher priority transactions in the selected class.

3. 	 Schedule any transaction in the selected class.

4. 	 Skip to the next class and attempt to schedule the highest

priority transaction in that class.

Note that these scheduling options are specified for each transaction;
therefore, each attempt to schedule a different transaction may change
the algorithm, if the algorithms are different for transactions within
the same class.

Message region class assignments and transaction class assignments
can be modified at execution time to control message throughput.

If multiple message regions process the same message class and a data
base processing intent conflict occurs, the highest priOrity
transactions scheduled against a data base viII not necessarily be
processed before processing lover priority transactions scheduled
against the same data base. If you desire to process all higher
priority transactions scheduled against a data base before processing
any lower priority transactions, no processing limit should be specified
for the higher priority transactions, or only one message region should
process that message class.

2.10 IMS/VS System/Application Design Guide

&2!!.~ 1!!!.l!!.!!£i!lSl

Load balancing is the facility to schedule the same application
program and the same transaction in multiple message regions. The
application program and the transaction are designated for parallel
scheduling at system definition time. The application must be
designated as a parallel scheduled application before any transaction
processed by that application will be scheduled in multiple regions.

When an 5MB is available to be scheduled but is already scheduled in
another region, it is checked to determine whether it can be parallel
scheduled. The PARMLIM value of the TRANSACT macro specifies the number
of messages that should be enqueued before another region is scheduled.
This value is multiplied by the number of regions already scheduled for
this transaction. If the result is less than the number of messages
enqueued, another region is scheduled for the transaction. If the
region is unschedulable for internal reasons (data base intent), the
next transaction within the class is scheduled. No cutoff priority will
be set as the transaction is already scheduled within IMS/VS.

When more than one transaction of a given type is waiting to be
scheduled, the specified transaction scheduling priority determines
which transaction code is selected next. It does not determine which is
actually scheduled. Only the tests of the transaction's readiness for
scheduling, which occur after selection, determine if the transaction
queue is allocated to an application program. The selection priorities
are useful for influencing the response time to input transactions and
for load balancing. Two priorities can be specified. One is called the
"normal priority"; the other, "limit priority." Related to the normal
and limit priorities is a "lim~t count." When the number of input
messages of a specific transac~ion type waiting to be scheduled is equal
to or greater than the limit count, the normal priority is reset to the
limit priority value.

The priority of a transaction code causes it to b9 selected either
before or after other transaction codes. If there are multiple
transaction codes at the same priority, they are selected on a
first-in/first-out basis. However, if there are multiple transaction
codes at the same priority and the same class, with many messages
already enqueued for each transaction code, the individual transaction
codes will be selected on a first-in/first-out basis, but the different
messages may not be selected in the same sequence in which they were
entered. For example, A, B, and C are transaction codes with processing
limit counts of 1. These codes are entered in the sequence ABCBACCAC.
The sequence in which they are selected is ABCABCACC. An example of the
typical use of selection priorities can be found under the topic
"Message Scheduling" in the I~§L!§ ~Sl!!~t~! IIl~Qt!!!~!iQ!l ~~n!!~!.

Another effective way to utilize the selection priorities is to
declare a normal priority value of zero. Zero priority is a null or
"not eligible for scheduling" level. Messages accumulate until the
processing limit cOllnt is reached; at this point the limit priority is
effected and scheduling occurs. This technique is called "hatching
messages. "

The normal priority is not restored until all messages enqueued on
the transaction code have been processed. It is possible that more
messages will be added to the queue while the transaction is waiting or
in process at the limit priority. Note that the priorities are
selection priorities, not execution priorities. Once a transaction has
been selected for scheduling, the selection priorities have no influence
until it is again recognized to be waiting for scheduling.

Design and Control of a DB/DC System 2.11

The effectiveness of the selection priority assignments is related to
how frequently the selection process occurs. The following section
discusses a means of influencing this.

Through the establishment of processing limits, the frequency with
which scheduling selection occurs can be influenced. In the time
between schedulings, processing is going on in the message regions.
Meanwhile, messages are accumulating in the message queues. As they
accumulate, the interactive effects introduced by new message types, and
the changing of selection priorities, are rearranging the ord~r of
waiting transaction codes. Conceivably, while a large queue of messages
is being processed, i.portant activity assigned to a high priority
transaction code is waiting.

When the program processes a large queue of messages and updates data
base segments, other application programs wish~ng to access an updated
segment are placed into a wait state. The length of time that the other
applicatioa programs have to wait depends on whether the updating
program is processing its queue in multiple or single message mode.

To allow controlled re-entry to the message scheduling selection
process, a processing limit count can be specified for each transaction
code. Each time a scheduled (processing) program requests a new
message, the limit count is checked. When the number of requests
exceeds the limit count, the applic~tion program is told by the control
program that there are no more messages. In fact, there may be more.
When the application program is told there are no more messages, it
completes its processing and returns the transaction queue to its proper
place among others waiting to be scheduled. If it is returned to a
priority level where other transaction codes are waiting, it assumes an
eligibility for selection below tftem, even though all have the same
numeric priority.

By establishing program output limits during system definition, the
IMS/V5 user can influence the number and the size of the output segments
from the application program to the message queues. When an application
program exceeds the previously-specified limits, a status code is
returned indicating an error. Any further attempt by the application
program to e~ceed the limits results in abnormal termination.

Abnormal terminations can be prevented by checking the number and the
size of application program segments. This process of checking
eliminates IKS/VS system abnormal terminations that occur when
application programs loop while inserting messages or segments into the
message queues, or when they inadvertently insert segments of invalid
lengths.

A message, in the most general sense, is a finite sequence of
transmitted symbols. In the context of IKS/V5, this is called a
transmission. A transmission is terminated by a logical condition
called end-of-data {EOD). The transmission is partitioned into
sequences of symbols, called messages, by an end-of-message (EOK)
symbol.

J

2.12 IMS/VS System/Application Design Guide

A message is partitioned into smaller sequences of symbols, called
segments, by an end-of-segment (EOS) symbol. There are only three valid
combinations of the conditions represented by EOS, EO~, and EOD. They
are:

EOS EOS
EOM
EOD

EOS/EO!!
EOS/EOM/EO])

In the most complex case, a transmission containing several
multisegment and single segment messages would look like this:

------------------------­ -----­SEG!>1ENT SEGlYIEt~T SEGMENT SEG~1ENT

MESSAGE MESSAGE MESSAGE

TRANSMISSION

Using the simple symbols, the same transmission would be represented
like this:

SEGMENT SEGMENT SEG~1ENT SEGHENT SEGMENT

MESSAGE MESSAGE

TRANSMISSION

The assignment of values to the symbols that represent the conditions
end-of-transmission, message, and segment is not significant to this
discussion. However, it is significant that the conditions can be
represented by more than one transmitted data character. Most
key-driven terminals generate only one character per keystroke. Thus,
it may be necessary for the terminal operator to perform more than one
manual operation to signify EOS or EOM.

For input transmission, detection of the EOM condition by !MS/VS
indicates that a complete message has been received. A complete message
is eligible for scheduling, and ultimately processing, by the
application program to which it is destined.

At the time the first EOS condition, or the first EOS following an
EOM, is detected, IKS/VS examines the text of the preceding segment.
Within the extent of the segment there must appear a valid transaction
code, predefined through use of the TRANSACT macro instruction. One of
the attributes that can be assigned to a transaction code specifies
whether a message is multiple or single segment. The effect of this
specification is null if multiple segment specification is selected. If

Design and Control of a DB/DC System 2.13

L

single segment specification is selected, the system equates the EOS
condition to an EOM condition. Thus, each segment is treated as a
complete message.

The primary concerns when selecting the multiple or single segment
attribute are human factors, application requirements, and physical
terminal characteriatics. For example, let us assume the following:

• 	 An application requires only single segment entry.

• 	 Most users enter data from a key-driven terminal.

• 	 The terminal has an automatic character generation feature (EOS

after pressing carriage return).

Then, the selection of multiple segment as an attribute of a
transaction code would require an additional keystroke to signify EOM or
EOD.

Another example: assume all of the preceding conditions are true
except that the line length of the data to be entered exceeds the
single-line capacity of the terminal. The appropriate and more natural
selection is multiple line. However, if the application were one with
very high usage, the overhead of processing multiple line messages might
be sufficient to justify adjustment of the short message buffer length.
The operational characteristics of transaction entry would be altered.
Using the same terminal with the special EOS generation feature
disabled, the operator enters the first line, presses the carriage
return, enters the remaining data on the second line, then presses the
BOS key. The result is a single segment message.

When the Message Format Service (MFS) is used to forllat input, the
relationship between the segments described above and the actual message
segment created by !'IPS is user-defined.

When MFS is used to edit input, the end of input for a given message
is signalled by:

• 	 EOM or EOD
• 	 Completion of processing for all defined DFLDs

At the end of input for a message, !'IFS presents the completed message
segments to the DC component of IMS/VS; this component looks for a
destination name. If the destination is a transaction defined as a
single segment and more than one segment has been created by MFS, an
error message is sent to the input terminal.

For more information on MFS, see the section in this chapter called
"Message Format Service."

Consult the ~~~L!~ QE~£~tQt~§ R~1~t~U£~ ~~n!~! for more information
about the various terminals supported by IMS/VS.

MULTIPLE AND SINGLE MESSAGE MODE

The message mode attribute of a transaction code is used to notify
the system of the manner in which an application program views the
transactions it processes. Single mode indicates that each message is
processed independently of all other messages that are read. Multiple
mode indicates that all the messages of this transaction code, read
during a given scheduling of the application program, are to be
considered as related to one another. For example, the application
program accumulates control totals that are written out only at program
termination. It does not affect the message selection criteria of the

2. 14 I~S/VS System/Application Design Guide

scheduling algorithm. It does, however, affect the amount of main
storage required by program isolation, message processing throughput,
and, potentially, the integrity of the data bases used by user programs.
If multiple mode is selected, there is potential for greater throughput.
Kultiple mode results in fewer system-generated I/O operations, and less
system time per message, when more than one message is processed per
application program scheduling. However, all data base resources
modified in any way by the user remain enqueued until user program
termination.

If more than one message is processed per scheduling of a user
program, large storage requirements for IMS/VS program isolation could
result. If program isolation enqueue chains become very long,
throughput is adversely affected. Also, if a program must be terminated
and rolled back by IMS/VS to break a data base deadlock situation, the
bacxout and reprocess time is increased in proportion to the number of
messages processed. In addition, very long backout chains in the
Dynamic Log may require extra I/O operations and increase the
possibility of exceeding the capacity of the data set. If this happens,
application activity is quiesced.

Internally, the difference in single and multiple mode transaction
processing is related to the frequency at which pending data base
buffers are written. In single mode, all pending data base buffers are
written each time a new message is requested by the application program.
These operations are performed regardless of the value assigned as a
p=ocessing limit count. Multiple mode defers buffer write until the
application program terminates, unless a CHKP call was issued by the
application program. A CHKP call causes all buffers mo~ified by the
user to be written at the time the call is issued.

An additional consideration is imposed for program isolation. When
the transaction code causes data base updates. the enqueu@. of the
updated segments is held until the point at which the program can be
restarted without having to reprocess those updates. In single mode,
this point is reached each time a new message is requested by the
application program. Multiple mode defers reaching this point until the
application program terminates. This causes more segments to be
enqueued, and the enqueued segments to be held longer. Other programs
needing access to the enqueued segments are delayed, and the chance of
deadlock is increased. Since message response is also held, and not
sent to its destination until the same point is r~ached, the choice of
multiple mode processing can significantly increase terminal response
time. For information on the use of the checkpoint call (CHKP) in
conjunction with multiple mode processing, see the I~~L!~ !2E!i£~tiQn
~~Q~~mmin~ B~t~~~n£~ H~nY~!·

Response mode describes a connection between IMS/VS and a
communication line or terminal that can occur only for certain terminal
types under condition specified during IMS/VS system definition. When
response mode is in effect, IMS/VS will not accept any input from the
communication line or terminal until it has sent the output response to
the previous input.

Response mode is in effect from the time the last segment of a
transaction has been received by IMS/VS until the application program
inserts a response to the response PCB, which is usually the I/O PCB.
When more than one message is inserted using the response PCB, response
mode is reset when the first message using the response PCB is
transmitted. Any remaining messages issued by the application program
are treated as non-response application program output. If the
application program does not produce a response, the terminal remains in

Design and Control of a DB/DC System 2.15

response mode and master terminal intervention is required to restore
proper terminal operation.

The terminal types that can be defined (TERMINAL or TYPE macro) to
operate in response mode are the: 1050, 2740, 2741, CPT-TWX, 3270, 3600,
3767, 3770, and 37"90. The 3790 is forced to operate in response mode.
The others may be defined as: "forced" -- always operating in response
mode, "negated" -- never operating in response mode or "transaction
dependent" -- operating in response mode only when a transaction defined
by the TRANSACT macro as a response mode transaction is entered.

Response mode for the 1050, 2740, 2141, and CPT-TWX terminals stops
all operations on the communication line and is referred to specifically
as "line response mode." Response mode for the 3270, 3600, 3767, and
3790 stops all operations on the terminal and is referred to
specifically as "terminal response mode."

The specification of terminal response mode and no automatic page
delete (NPGDEL) is not recommended for the following reasons:

• 	 NPGDEL causes the current output message not to be dequeued at the
time of input.

• 	 Terminal response mode causes input to be inhibited until the

current output message has been dequeued.

The combination of these specifications may reqaire master terminal
intervention to reset the terminal response mode.

Q~§~~n £Qn§~~~£a1iQn§: Before response mode definitions are specified
for terminals and transaction codes, consider the following:

• 	 On a switched line, response mode enforces synchronization terminal
operation.•

• 	 In response mode, terminal operators can only enter one transaction
at a time and must wait for a reply before entering another
transaction.

• 	 For a terminal defined as "transaction dependent," transaction that
are n21 defined as response mode transactions permit entry of
additional input without waiting for a reply from the previous
transaction.

• 	 Master terminal intervention is required when an application program
fails to respond to a transaction from a terminal in reponse mode.

• 	 In some environments, specifying "forced" response mode for some
terminal types may result in fewer line operations and improved
performance.

• 	 For some terminal types (2140 without Station Control Feature, 2141,
and CPT-TWX), a specification of response mode prevents the operator
from having to enter a null message to receive the response to the
last input.

For BTAM or VTAM terminals don't use the following sp~cifications:

• 	 The combined specification of FORCRESP and NPGDEL.

• 	 The combined specification of TRANRESP and NPGDEL if

MSGTYPE=RESPONSE is specified for the TRANSACT macro.

The first specification is not recommended because NPGDEL prevents the
current output message from being dequeued at the time of input; the

2.16 IMS/VS System/Application Design Guide

second specification prevents the terminal response from b~ing r~set
until the current output message is dequeued.

Further information on terminal operations using response mode is
contained in !~~l!~ Q£~~!~2£~§ Ei'~~!n£~ ~!UY!l, and !~~l!~ !u§1!11at12U
2Ylde.

For 3600 and 3790 support, see the section "Terminal Response Kode"
in the chapter "IMS/VS Support for AFC Systems" in the !~~l!~ !g!!n£~g
[~n£112U '2£ ~ommunic!il2U manual. For SLU typ~ P support, se~ the
section "Terminal Response Mode" in the chapter "Type P Secondary
Logical Unit Programmer's Guide" in the same manual. For KFS support,
see the section "Type, Terminal, and Config Macros" in the chapter
"IKS/VS System Definition Considerations" in the !~L!~_~§§!g~_I2£m!1
~itvi£i_~~~~§_2Yl~i·

A transaction code which does not cause an update to a data base can
be so defined to the system. This allows a program that handles
multiple transaction codes, and only updates the data base for a subset
of these transactions, to be scheduled concurrently with other update
programs when it is to process a transaction that does not cause an
update.

Transactions must be defined as non-update transactions when ent~red
from non-error-check~d terminals supported by IMS/VS. They are also
non-update for entry by switched terminals that are signed on for
INQUIRY purposes.

When a transaction is defined as non-update, the associat~d
application program is prevented from updating the data base. This is
the case even though the processing option in the PSB specifi~s update
capability.

Scratch pad areas {SPAs) are work areas through which an application
program and a terminal establish a quasi-interactive relationship called
a conversation. That is, continuity is established with the terminal
operator, by the application, across multiple message entry and response
sequences. The conversation can be suspended, reinstated, or
terminated, by the terminal operator, through the command language. A
conversation is normally terminated by the application, not the terminal
operator.

The system maintains scratch pad areas on a direct access data set or
in main storage. Rasidency is specifiable by transaction code. The
choice of main storage or direct access residency influences the
response time for transactions that have the conversational attribute.

Although the system can operate with one maximum size main storage
SPA, or one direct access SPA, then only one conversation can be in
process at a time. If a high percentage of transaction processing is
conversational, a similar number of SPAs should be specified in the
system definition SPAREA macro statement. If a conversational
transaction code is entered, and all SPAs are in use, that transaction
is rejected by the system. An insufficient number of available SPAs
could result in terminal user dissatisfaction.

If a transaction code has the conversational attribute, it can have
effects on overall system performance. The choice of main storage
versus direct access residency affects not only system performance, but

Design and Control of a DB/DC System 2.11

L

also the response characteristics of the conversational transaction.
The following discussion elaborates on the potential effects of buffer
fragmentation and the relative throughput and response characteristics
of conversational transactions.

Main storage resident SPAs, and read/write ~pace for direct access
resident SPAs, are acquired from the Communication Work Area (CWAP)
buffer pool when a conversation is initiated by entry of a
conversational transaction code. Main storage is retained throughout
subsequent exchanges between the terminal and destination applications.
It is released upon termination of the conversation. Since the main
storage SPA buffer space is retained over a relatively long period of
time, its potential ability to fragment the buffer pool is relatively
high. Fragmentation of the CWAP buffer pool can cause processing delays
in terminal I/O service and in tha initiation of other conversations.
However, since the SPA is both main storage resident and dedicated for
the life of the conversation, response and throughput are significantly
improved. The size of the CWAP buffer pool is specified during system
definition with the GENERAL keyword of the BUFPOOLS macro. For more
information on the BUFPOOLS macro GENERAL keyword parameter, see the
section IIDefining IMS/VS Buffer Pools" in the J.l!~L!~ I!!§1~1!a!iQ!l 2y.igg.

If the SPA is on direct access, space is initially acquired from the
buffer pool at the same time as for a main storage resident SPA.
However, it is retained only long enough to write to direct access. SPA
buffer space is freed. Space is re-acquired when the application
program returns the SPA, and is freed as soon as the SPA is rewritten to
a direct access device. The use of direct access SPAs decreases the
possibility of extended delays introduced by buffer fragmentation.
However, because buffer requests are made during the time an application
is active in the message processing region, any delay due to lack of
buffer space directly affects throughput. In addition, since the
application must wait for the SPA to be written out, overall processing
time. for each transaction is increased and response time extended.

To enhance performance for conversational processing, conversational
transactions can be defined with fixed-length SPAs. For such
transactions, the main storage SPA uses only the fixed length that was
defined. For direct access resident SPAs, the defined maximum length is
always used, however, performance is increased on program-to-program
switches because the direct access SPA is not updated.

Fixed-length SPAs (l.efilled during conversation initialization must
remain in effect for the duration of that conversation. For
conversations whose first transaction code defined fixed-length SPAs,
all successive transactions used as destination applications in the same
conversation must also be defined with fixed-length SPAs of the same
length. If not, a status code indicating an error is sent to the
calling application. If the Multiple Systems Coupling feature is used
and conversations will run in a system that is not the input terminal
system, fixed length SPAs must be used. For more information about the
Multiple Systems Coupling feature, see Chapter 5 of this publication.

An additional performance enhancement for conversational processing
is the automatic compaction of all SPAs for queuing and logging. All
blanks and X'OO's are eliminated for queuing and logging, and the
application program receives the unpacked SPA.

A factor that can significantly increase the overhead of the
~aheduling process is the intent of an application toward the data bases
it uses. Intent is determined by examining the intent list associated
with the PSB to be scheduled. At initial selection, this process

2. f8 IMS/VS System/Application Design Guide

involves bringing the intent list into the control region. Th~ location
of the intent list is maintained in the PSB directory. If the analysis
of the intent list indicat~s a conflict in data base usage with a
currently scheduled transaction, the scheduling process must select
another transaction code and try again.

There are several intent levels that can be stated for a given
segment type. The list below shows the level of intent, how it may be
stated for the PSB Generation utility prograll, and the a.ode that is used
in the decision tables that follow:

N = No sensitivity -- segment type not referenced.

R = Express read-only -- segment type referenced -- PROCOPT=GO.

Note: See "Processing Intent Specifications" in this chapter
for an explanation of the various processing o~tions (PROCOPTs,.

G = Retrieve segment type referenced -- PROCOPT=G or ~.

U = Update -- segment type referenced -- PROCOPT=A, I, R, or D

or segment type has propagated intent.

E = Exclusive use -- segment type referenced -- PROCOPT=E.

If exclusive use is specified for a program, that program will
not be scheduled concurrently with any other program that is
sensitive to the same segment types.

The following decision table shows which programs can be scheduled
concurrently.

r-----------------------------,
Intent of Currently I
Executing Program !,

r----------------------- -----------------------------1
Intent of Program 1 1 I I I

I Being Scheduled E 1 U I G 1 R 1 N !
1----------------------- -----1-----1-----1-----1-----1
I E xI X I XI Xl ,
1 1 , 1 I 1
1----------------------- -----1-----'-----1-----1-----'
'OX I , , 1 ,
1 1 1 I I ,
1----------------------- -----1-----'-----1-----1-----'
1 G X, 1 I ,
1 I ! , 1 1
1----------------------- -----1-----1-----1-----'-----11 R X 1 I 1 , 1
1 , 1 1 1 , !
1-----------------------1-----1-----1-----1-----1-----I
I NIl I' I
I , , I' 1
~---------------------------- .. --.~------.------------~

X Indicates conflicting Actions When Transaction
Scheduling Is Attempted

Since exclusive intent does not allow a program to be scheduled while
programs sensitive to those segments are operating, no dynamic
serialization is done vi~ the enqueue/dequeue facility.

Design and Control of a DB/DC System 2.19

Conflicting actions occur only if the same segment type i~ declared
"Exclusive Use" by at least one of two programs intending to reference
the segment type.

A PSB that contains a PCB for a SHISAM segment that has delete
sensitivity will be scheduled exclusively. This is because the method
used by IMS/VS to ensure program isolation cannot be used for SHISAM
deletes. Since there is no delete flag, a VSA~ erase must be done to
delete the segment, and since IMS/VS uses relative byte addresses as the
identification of a segment, there is no way to prevent another user
from inserting a segment with the same key prior to the time the program
which did the delete reaches a sync point.

A PSB that contains a PCB for an HSAM data base will always be
scheduled exclusively against these data hase segment types. Unless the
PSB for the program being scheduled is currently resident in the PSB
buffer pool, determining schedulability involves a direct access I/O
operation.

Exclusive intent may be required for long running BMP programs that
do not issue checkpoint call because of the excessively large size of
the enqueue/dequeue table.

An exception to the use of the enqueue/dequeue facility to provide
program isolation is accomplished by the use of the PROCOPT=GO option;
this allows programs to access segments without an enqueue being done
for those segments. When this occurs, a program can retrieve segments
which have been altered or modified by programs which are still active
and while the changes are subject to being backed out. See the ~~L!~
~!ili!i~~ R~t~£~a£~ A~nY~l for a detailed explanation of the PROCO~T=GO
option.

f£Q£~~ing In!gn! ~2g£it!£~!iQn~
With Program Isolation, the only processing intent that affects the

schedulability of IMS/YS programs is exclusive intent.

The processing option parameter (PROCOPT) of the PCB and SENSEG
statements of a PSB generation determines the processing intent an
application program has on data. The scheduling options are:

G = 	Get function.

I = 	Insert function.

R = 	Replace function.

D = 	Delete function.

A = All, includes the previous four functions.

E = 	Used in conjunction with the previous five functions, and
specifies that an application program has exclusive use of
the data base or segment specified.

K = 	Indicates key sensitivity only.

~£h~d~ling In!2n! IIe~2: There are three scheduling intents used to
determine the schedulability of an application program: read only,
update, and exclusive intent. If a segment has more than one intent
type as the result of multiple references or intent propagation, the
most restrictive use is set. Intent types are associated with the
aforementioned processing intent specifications in the following manner:

2.20 IMS/VS System/Application Design Guide

• Read Only Intent

For schedulability without Program Isolation (PI) operative, read
only intent allows the program to be scheduled with any other number
of read only users and one update intent program. This intent is
set for any segment that sp~cifiad PROCOPT=G or P~OCOPT=K on the
associated SENSEG statement. In addition, this intent is propagated
to all segments that are required to obtain the information
necessary to satisfy a DL/I call. Fer example, a logical child
seg~ent is requested in a call, and the logical parent's key was
specified as "VIRTUAL." All segments that must be retrieved to
construct the logical parent's concatenated key have read only
intent set. The extent of propagation is discussed below.

• Update Intent

When PI is operative, update intent is treated as read only intent
for scheduling purposes.

When PI is inoperative, update intent allows any number of programs
that reference the same segment types for read only to be scheduled
with the updating program. All programs that reference the same
segment type for update intent must be scheduled serially.

This intent is set if the associated SENSEG statement specified
PROCOPT=I, R, or D. Update intent is set for the associated segment
regardless of any key sensitivity specification, either explicitly
or implicitly specified. This intent can be propagated to other
segments in this data base or related data bases. The amount of
propagatior. is determined by the processing options specified, the
data base organization, the pointer combinations USGd, and the SEGM
statement RULES options chosen at physical DBDGEN time. The
implications and extent of intent propagation are discussed below.

• Exclusive Intent

Exclusive intent prohibits the concurrent scheduling of any programs
that reference the same segment type as the program that has
specified exclusive use. Intent propagation must be considered when
exclusive intent is used. Intent propagation is discussed below.

This intent is set if the associated SENSEG statement specified
PROCOPT=E and the segment does not have key sensitivity. Key
sensitivity can be specified on the associated SENSEG statement,
using the KEY/DATA option of the SOURCE operand in a logical DBD, or
by omitting the specification of the complete concatenated segment
in a logical DBD. This occurs when you specify the logical child
segment and not the logical or physical parent in the concatenated
segment definition. There is no propagation of the E option. Note
that the specification of both PROCOPT=E and K on a SENSEG statement
causes the exclusive (E) option to be ignored.

!mE!i£!ii2B§ !U~ ~!i2Ui 2t !U12Ui R£2£~g!ii2U: As discussed earlier in
this section, the implications of intent propagation depend on many
factors. Some of these factors are physical organization, pointer
combinations, processing options, segment rules, and logical
relationships. The following paragraphs explain their effect on
scheduling concurrency as they relate to typical data base structures.
Each processing option is discussed in a separate section. Keep in mind
the fact that if a segment has more than one processing intent type (as
the result of explicit or implicit processing options) the most
restrictive intent is used.

Design and Control of a DB/DC System 2.21

• Get Processing Option

A segment using PROCOPT=G or K causes read only intent to be set for
that segment. In addition, read only intent is propagated to all
segments that are used to complete a GET type call. Sensitivity to
a logical child segment implies sensitivity to its associated
logical or physical parent. In either case, read only intent is
propagated to the associated parent segment, and all its parent
segments, in a direct line upward to the root segment.

• Replace Processing Option

A seg.ent using PROCOPT=R causes update intent to be set for that
segment. If the segment is part of a concatenated segment
definition, and the logical parent/physical parent part of the
concatenation can be replaced, it has update intent propagated to
it. No other propagation of intent occurs.

• Insert Processing Option

Insert intent propagation is based on two basic rules. These rules
do not apply if Program Isolation is operative.

1. 	Programs that separately insert a physical parent segment and its
physical child are not scheduled concurrently. If the program
inserting the physical child terminates first, and if IMS/VS
abnormally terminates before the program inserting the physical
parent terminates, the physical parent segment is backed out of
the data base by /ERESTART processing, leaving a dangling
physical child segment.

2. 	 Programs that insert child/logical parent concatenated segments
involving the same logical parent are not scheduled concurrently.
If the insert rule of the logical parent is either virtual or
logical. The physical insert rule prohibits inserting the logical
parent by means of a concatenated segment. Only the logical
child need be inserted.

Update intent is set for the segment type designated by PROCOPT=I in
the SENSEG statement of the PCB, or for all the segments designated by
SENSEG statements when the PROCOPT=! is coded in the PCB statement (rule
1). Update intent is propagated to all the immediate children (down one
level) from the designated segment because of rule 2. If the designated
segment is a logical child, the update intent is propagated to the
logical parent segment as specified by rule 3, and to the immediate
children of the logical parent as specified by rule 2. If ~he ~nsert
rule of the logical parent is physical, then one program per logical
child segment type can be concurrently scheduled.

The first variable that affects insert intent is the data base
organization. Since segments in a HISAK data base are hierarchically
related by physical juxtaposition, a segment insert can cause o~her
segments in the data base record to shift physical location. However,
since a data base record can reside in several separate data set groups,
only the data set group containing the inserted segment type is
affected. The rule is: all segments residing in the same HISAK data set
group as the segment type to be inserted have update intent propagated
to them.

The second variable that affects insert intent is the pointer
combinations specified for segments residing in HD type data base
organizations. When physical child pointers are selected to address the
designated segment, the physical parent has a different pointer for each
of its children that concurrent programs maintain separately. However,
if the choice is hierarchical pointers to address the designated

2.22 IMS/VS System/Application Design Guide

segment, the physical parent addresses all of its children by a single
hierarchical pointer chain. Concurrent update programs for the
different physical children, therefore, violate rule 1. When the
immediate physical parent segment has hierarchical pointers, the data
structure is scanned in an upward direction until a parent segment is
found that uses physical child pointers, or until a root segment is
encountered. The immediately previous physical child segment of the
parent segment so located, and all dependent segment types of that
immediate physical child segment, have update intent propagated to them.

• Delete Processing Option

The propagation of update intent from segments designated with
PROCOPT=D is based on the physical child's dependence on the
physical parent. If the physical parent is deleted, its physical
children must also be deleted. Therefore, beginning at the
designated segment type, update intent is propagated to all its
physical dependent segment types and to their physical dependents,
down to the lowest level of the data structure. When a segment that
is a logical child is encountered in the downward scan, its logical
parent's d~lete rule is determined. If the rule is virtual, update
intent is propagated to the logical parent and its physical
dependents. When a segment type that is a logical parent is
encountered in the downward scan, the delete rules of its logical
children and their physical parents are determined.

If the delete rule is virtual and/or hi-directional virtual, then
update intent is propagated to the logical child and to its physical
dependents, and/or to the physical parent and its physical dependents.
Since the propagation is downward, all segments in the downward scan are
inspected for logical relationships. As they are encountered, the
logical child/logical parent/physical parent segment types are processed
in the same manner as the original segment type. Deletion of the parent
requires deletion of all physical dependents.

When the immediate physical parent of the designated segment has
hierarchical pointers, the data structure is scanned in an upward
direction until a parent segment is found that is a root segment, or a
parent segment is found that is pointed to by physical child pointers.
That segment type found, along with all its dependent segment ~ypes,
have update intent propagated to them.

!EEli~ii2n ~£2~£!! !~n2£!!l I~£!in!iiQn

Upon abnormal termination of a message or batch-messaqe processing
application program, internal commands are issued to prevent
rescheduling. These commands are the equivalent of /STOP. They prevent
continued use of the program and the transaction code in process at the
time of abnormal termination. The master terminal operator can restart
either or both stopped resources. At the time abnormal termination
occurs, a message is issued to the master terminal and to the input
terminal that identifies the application program, transaction code, and
input terminal. It also contains the system and user completion codes.
In addition, the first segment of the input transaction, in process by
the application at abnormal termination, is displayed on the master
terminal.

The stop action is performed automatically. Even though a message is
issued, its occurrence could go unnoticed by the master terminal
operator. Such a failure, involving a major application that serves
many transaction codes, could have adverse effects on system
performance.

Design and Control of a DB/DC System 2.23

The potential effects of commands entered from any terminal, that
cause unavailability of scheduling resources. are severe. Operators
should be instructed to display system status frequently. If a program
that terminated abnormally inserted any message segments, they are
transmitted, although the message may not be logically complete.

Program isolation dynamically backs out data base updates, and
cancels message output made by application programs that terminate
abnormally. To avoid the adverse effect that this backout can have on
programs concurrently processing in the system, data base segments that
have been changed are enqueued using the I~S/VS enqueue/dequeue routine.
This routine ensures that no other programs can access the changed data
base segments until either the application program that requested the
change completes successfully, or terminates abnormally; and until all
changed segments are restored to their original states.

Program isolation ensures that a dynamic log (IKSVS.DBLLOG) is
maintained. The dynamic log is a sequential data set, on direct access
storage. written with OSA~ to facilitate following chains through it.
All the log records created because of a given user program are
back-chained, with the chain anchor in the PST to which the program is
attached. The chain pointer is the block number and the offset within
the block. When a synchronization point is reached. or if the program
terminates successfully, the anchor in the PST is reset to zero. If the
program terminates with an abnormal termination, the data base changes
are backed out to the last synchronization point specified by the KODE
parameter of the scheduled transaction code. If it is a batch-message
processing program that does not reference a transaction code, or whose
transaction specified MODE=KULT, it is backed out to its schedule point,
or to the last checkpoint, whichever is most recent. The hackout is
accomplished by passing the data base log records. that were dynamically
logged and chained, from the PST to the data base backout module.

A synchronization point is defined as the point at which an
application program can be restarted.

SYNC POINT IS LATEST ACTION
r---------------------------,
I I I 1
I Msg GUI CHKP I SCHEDULING,
, I' ,

r---­
I I I I 1
, If MPP I Transaction, , I
I I MODE=Single I X I X I X
I I 1 I I
, 1--­
I , 'I 1
I ,Transaction I I I
, ! MODE=Knltiple 1 I X 1 X
, 1 I' I I
1--I
I 1 1 I' !
I If BMP 'Transaction I I ,
I I MODE=Single I X , X I X , I 'I' ! , 1---1
I I 'I' ,
I ,Transaction I " ,
1 , MODE=Kultiple , I I ,
I I or , 'I ,
I I No Transaction I I X 1 X !
, I "I ,L ___ -~

2.24 I~S/VS System/Application Design Guide

All output messages inserted by an application program, with the
exception of messages inserted to alternate PCBs that have been
designated to have the Express Message feature, are enqueued to a
temporary destination associated with the PST. The Express ~essage
feature is a PSB Generation option for an alternate PCB. It specifies
that messages sent to this PCB are not to be backed out if the
application program terminates abnormally. ihen the application program
successfully reaches a synchronization point, the program's output
messages are transferred from their temporary destinations to their
final destinations. If the application program abnormally terminates,
all messages enqueued to temporary destinations are deleted and
cancelled. Those messages inserted to the alternate PCBs that have the
Express Message feature were never enqueued to the temporary destination
and cannot be cancelled.

Program Isolation provides a call function (~OLL) through which an
application program can remove the effect of its processing. Issuance
of this call function abnormally terminates the application program task
with an indicative completion code. Voluntary abnormal termination
using this call function does not cause the program and transaction to
be stopped, nor does it produce a storage dump.

One other kind of application program abnormal termination is
possible. Since data base updates are isolated by the program isolation
enqueue/dequeue facility, the possibility of a deadlock can arise.
Deadlocks can be avoided by selecting one of the deadlocked programs for
abnormal termination, with a special code that causes the program's data
base updates and unsent message output to be backed out. The
transaction input that was being processed by the program is retained,
and the program is rescheduled.

The program to be abnormally terminated and rescheduled in a deadlock
situation is selected using the following algorithm:

Both the waiting program that completes the deadlock circuit and the
calling program whose request will cause a deadlock are evaluated
according to the table below. Their corresponding values are compared.
The program with the smallest value is selected for termination. In
case of a tie, the time stamp taken at sync-point is the tie breaker.
Por wait-for-input programs (including Past Path message-driven
programs) the time stamp taken at message GU time is used. This action
prevents time spent on the wait-for-input queue from biasing the
tie-breaker computation in favor of a wait-for-input program that is not
heavily utilized. A time stamp is also taken at program schedule time
to indicate the implied sync point at program start.

r--,
, Decision Criteria , Value ,
1--1
! 1. BMP mode=mult or no 5MB input I 6
I 2. Fast Path non-message-driven program I 6
I 3. Past Path online utility program I 6
I 4. BMP mode=sngl I 4
I 5. MPP mode=mult that did not deadlock in the I
I previous scheduling I 3
I 6. MPP mode=mult that was abnormally terminated I
, for deadlocking in the previous scheduling I 2
, 7. MPP mode=sngl that did not deadlock in the I
1 previous scheduling ,
I 8. MPP mode=sngl that was abnormally terminated ,
, for deadlocking in the previous scheduling I 0,9. Past Path message-driven program I 0 !L ___ -----~

Design and Control of a DB/DC System 2.25

Whenever the resource that the calling program is requesting has
multiple owners (for example, several own~rs in share mode), the calling

J

program is abended. No other factor enters into the decision process.

Whenever more than two programs deadlock, only the calling program
and the program completing the deadlock circuit are involved in the
selection process as to which is to be abended. The program completing
the deadlock is the program that the caller has to wait for to obtain
the requested resource.

In IMS/VS installations running under OS/VS1, after any abnormal
termination in an MPP (for example, application program abnormal
termination, program isolation deadlock, or ROLL call), the MPP may not
be able to reclaim all the storage used by the application for future
scheduling. A system abend may eventually occur because of insufficient
storage and the MPP will be terminated by 18S/VS, after two consecutive
GETMAIN failures are detected, to release unusable storage in the
region.

£QlltrQl ~lQ£~ g~ff~ ~Qol~ -- ~~g !ll~ ~~~

Control block pools are maintained in the IMS/VS control region for
program specification blocks (PSB) and data management blocks (DMB).
Each buffer pool must be at least as large as the largest control block
it will contain, plus the next successively larger block, for each
additional processing region concurrently active.

The IMSVS.ACBLIB data set must contain control blocks for all
application programs (PSBs) and all data bases (DMBs) referenced by the
application programs. When an application program is to be sch~duled,
the PSB and DMS pools are examined to determine which control blocks
must be brought into main storage. If all required blocks are resident,
the program is scheduled. If required control blocks are not resident,
the applicable pool is searched for space to hold the block. If space
is found, the block is loaded and the program is scheduled. If the pool
does not contain the required free space, the blocks currently resident
are examined to determine which unused blocks can be removed. When the
selection process is complete, any open data bases referenced by the
unused blocks are closed, and the space is released for use by the new
control blocks. The new control blocks are then loaded, and the
application program is scheduled.

Excessive loading of control blocks can have a severe impact on
performance. If possible, the DMB pool should contain enough space to
hold all DKBs used with online data bases. This reduces the number of
OS/VS opens and closes, and their impact on system performance.

System definition requires that data bases to be used in the DB/DC
system configaration be identified. The positive declaration of data
base names enables the system to limit the domain of the online control
program to only some specific subset of all installation data bases.

2.26 IKS/VS System/Application Design Guide

If data base data sets, Fast Path DEDB area data sets, or the DC
Monitor data set (if residing on a tape device) are specified with JCL
statements included in the control region procAdure, these data sets are
initially allocated at control region startup. Using the dynamic
allocation macro (DFSMDA), the user can specify data bases to be
dynamically allocated when needed, and deallocated when no longer being
used. See the chapter, "Dynamic Allocation Interface Macro (DFSKDA),"
in the !~~L!2 Y~iliti!~ R!t!~!~~ A~gs! for detailed information on how
to code and use this macro.

Data base data sets and Fast Path DEDB areas can be dynamically
allocated explicitly with the /START command, or implicitly through the
Dt/I OPEN command and deallocated with the /DBR command. The DC Monitor
data set can be dynamically allocated at the time it is started with the
/TRACE ON command and deallocated when stopped by the /TRACE OFF
command.

All data b~se data sets considered for dynamic allocation must be
cataloged except DC Monitor data sets which must not be catalogad. A
data set initially allocated with JCt can be dynamically deallocated and
reallocated during the execution of the control region.

Figure 2-1 illustrates the creation of a parameter list to be used to
dynamically allocate and deallocate 1MS/VS data bases. The 1HS/VS user
prepares DFSKDA macro statements which are assembled in a normal OS/VS
problem program job. The DFSKDA macro is placed in 1MSVS.MACLIB during
1KS/VS system definition. The assembler output is link-edited into
I!SVS.REStIB, and will be loaded from there when needed.

A job control language procedure, named IMSDAtOC, is placed in the
1MSVS.PROCLIB data set by IMS/VS system definition for subsequent use in
generating the parameter list(s). This procedure is described in the
chapter "The 1MS/VS Procedure Library" in the !~~L!~ ~I§~!!t frQ!lrs!!lming
R!t~!n£! ~~gs!·

OSIVS

~ --..
r--­ -'" Parameter

ListDFSMDA IMS VS . RESLIB
GenerationMacros

-'

....- --.....
.-'"'­

IMS VS . MACLIB

--.
Figure 2-1. Dynamic Allocation Parameter List

Design and Contr~l of a DB/DC System 2.27

A normal shutdown of I8S/VS is initiated by the master terminal
operator entering a /CHECKP01NT command. The /CHECKPOINT command shuts
down 1M5/VS in an orderly fashion. Following a checkpoint shutdown, the
master terminal operator can start 185/VS and enter the /NRESTART
command for a normal restart of IM5/VS. If 18S/VS was not terminated
with an orderly shutdown, the /ERE5TART command must be entered to
emergency restart IHS/VS.

The log tape, the restart data set, and the dynamic log are closed by
the STAE routine when 1MS/VS fails. If the log tape cannot be closed,
the master terminal operator must use the OS/VS DUMP command or execute
a stand-alone dump to create a dump data set containing main storage.
This dump data set will be used with the log tape to close the system
log when 18S/VS is emergency restarted. Because the log tape can be
closed during the emergency restart if it was not closed during an
18S/VS failure, the 18S/V5 system log terminator utility (DFSFLOTO) is
optional.

18S/VS restarts can be performed from either the restart data set or
the log tape. The restart data set is a direct access storage device
(DASD) data set that contains the control blocks necessary for a normal
restart or emergency restart of 18S/VS. With the restart data set, the
master terminal operator can choose between restarting from DASD or
restarting from the log tape. Even when the restart is from tape, the
restart data set is used because it contains the checkpoint and log tape
serial number information necessary for the restart. If the restart
data set is unavailable, the serial numbers and checkpoint must he
entered with the emergency restart or normal restart command.

The log tape must always be mounted when 18S/VS is running because it
is used for restarting 185/VS, collecting statistical information, and
recovering data bases. A normal restart of 1M5/VS only requires that
the new log tape be mounted when 1M5/VS is restarted. With an emergency
restart of 1M5/VS, the old log tape can be mounted in order to he closed
by 185/VS. After the old log tape is closed, a request for a new log
tape will be issued; after the new log tape is mounted, IM5/VS will
continue with the restart until completion.

If OS/VS fails, a restart from tape will be required. Other
conditions requiring a restart from tape are when the message queues
need to be rebuilt or reformatted, or the log tape or 1MS/VS system data
sets are not closed by IM5/VS. The master terminal operator can choose
to do a tape restart by entering the serial number of the last mounted
log tape with the normal or emergency restart command. The tapes
required for restarting are determined by IHS/V5.

Automatic restart is an option that can be used if it was defined
during system definition. With automatic restart, the master terminal
operator starts 1KS/VS but does not initially specify the tyP€ of
restart. Automatic restart determines the format of the restart and
sends a message to the master terminal operator stating that the restart
is in progress. If the restart data set is not available, the master
terminal operator is asked to enter /NRESTART or /ERESTART depending on
the type of restart required.

IMS/VS supports dual logging of system log tapes. Dual logging is
the duplicating of information on two log tapes while IMS/VS is running.
The purpose of dual logging is to ensure that a readable log tape is
available for restart processing. During a restart from tape, IM5/VS
will automatically switch between the primary log tape and the secondary
log tape whenever an I/O error on missing record is encountered. For
more information on closing and recovering the system log, see the

2.28 I~S/VS System/Application Design Guide

L
section "Restoring Integrity of the IMS/VS System Log," in the I!!§l!§
QE~I~i2~ R~I~~~n£~ ~~ng~l·

The batch checkpoint facility provides batch-message programs with
the means of synchronizing checkpoints taken of their environment with
the IM3/VS log tape~ It also enhances the integrity of data bases
updated by batch-message programs, by allowing the restart facility to
back out data base changes being made by such programs at the time of a
system failure. If a batch-message processing program abnormally
terminatess, program isolation ensures that backout procedures occur
automatically. The data to be backed out is the data base change
records logged since the last synchronization point created by a CHKP
call. The time lag is significantly less using program isolation with
batch checkpoint/restart, than if the data base had to be stopped and
taken offline for batch backout.

The batch checkpoint facility is implemented by the use of the IMS/VS
checkpoint (CHKP) system service call from the application program.
This call is used to indicate a synchronization point at which data base
updates can be restarted. The actual checkpointing of the batch program
environment, and the routine used to restart it, are at the option of
the user. If OS/VS checkpoint is to be used, the user must request, as
part of the DL/I CHKP call, that the system take the checkpoint.

liQl~: The checkpoint ID table, as referenced below, is used to
coordinate the checkpoints on the IMS/VS system log with the activity of
any batch-message regions, for the purpose of emergency restart. This
table also contains the ID and serial number of the last startup or
shut40vn checkpoint.

For 	batch-message programs (not message-driven):

A non-message driven BMP program functions like a batch program, but
receives data base service like an MPP. No identifiable (explicit)
synchronization point exists antil the program issues the CHKP call.

1. 	 Optionally, an OS/VS checkpoint of the user's region is taken.

2. 	 Altered data base buffers are written.

3. 	 The checkpoint ID, supplied in the CHKP call, is written to the
log tape.

4. 	 The checkpoint-ID table is updated, for use in subseq~ent

emergency restarts.

5. 	 The dynamic log is updated by releasing all change records prior
to the current synchronization point.

For 	batch-message programs (message-driven):

BMP programs that access the message queue via the IIO PCB, have a
defined (implicit) synchronization point established by the KODE=
parameter in the TRANSACT macro. To IMS/VS, the EMP program looks like
an KPP. If KODE=KULT is selected, end-of-job is the natural
synchronization point. BMP programs can issue the CHKP call to cause an
explicit synchronization point, and define a pOint from which restart
can be performed. Care must be taken to ensure that the dynamic log
buffers do not become full because the CHKP calls are too infrequent.
All output messages, that are not destined to express alternate PCBs,
are held until a synchronization point occurs. All input messages since

Design and Control of a DBIDC System 2.29

the last CHKP are reprocessable. The following general events occur in
this type of BMP:

1. 	 Optionally, an OS/VS checkpoint of the user's region is taken.

2. 	 Altered data base buffers are written.

3. 	 The checkpoint ID, supplied in the CHKP call, is written to the
log tape.

4. 	 The checkpoint-ID table is updated, for use in subsequent

emergency restarts.

5. 	 The dynamic log change records for the calling B~P are released.

6. 	 Output messages to all TP PCBs are sent, and input messages are
dequeued.

7. 	 A GU to th~ I/O PCB is internally generated for the application
program.

If MCD!=SNGL is specified on the TRANSACT macro instruction, a
natural synchronization point exists at each GU on the I/O PCB.
Functions similar to those above are performed by 1MS/VS; however, the
user does not have to execute a CHKP call because the GU causes the
necessary synchronization points.

Instead of the as/vs Checkpoint/Restart option, the user can specify
the IMS/VS Extended Checkpoint/Restart facility. This consists of a
restart call (function code XRST) and optional parameters on the CHKP
call. If used, the XRST call is the first call to 185/VS issued by the
user program. If a restart is not in progress, th~ IRST call is
effectively a NOP.

The issuance of an XRST call causes the following action to be taken
for subsequent CHKP calls issued by the program:

1. 	 optionally, user specified areas, that is, application variables,
control tables, and position information for non-I8S/VS data
sets, are recorded on the IMS/VS log.

2. 	 The fully qualified key of the last record processed by the
program on each 185/vS data base is recorded on the log.

3. 	 The functions of the standard CHKP call are performed, except
that the OS/VS checkpoint of the user's region is not taken. The
user has the option of using OS/VS Checkpoint/Restart, the IMS/VS
restart (IRST call), or neither, but not both.

For 	message processing programs:

The CHKP call functions exactly as a message GU £or a single mode
program, allowing a program operating in multiple mode to control the
spacing of its synchronization points.

In the case of a checkpoint FREEZE or DUMPQ shutdown, I~S/VS waits
for any batch-message programs that are processing to issue a CHKP call,
before proceeding with the shutdown. This action makes it possible to
identify the point at which the batch-message program should be
restarted.

In the case of a PURGE shutdown, IMS/VS waits for batch-message
programs to terminate before proceeding with the shutdown.

2.30 IMS/VS System/Application Design Guide

L

The log record containing the checkpoint ID is used by emergency
restart as follows:

Using the checkpoint-In table, emergency restart determines, and
identifies to the operator, the point on the log where restart
processing is to begin in order to back out incomplete updates made
by the message and batch-message programs processing at the time of
the system failure. It initiates restart processing from that point.
If backout is successful, the CHKP ID from which each B~P can be
restarted is identified to the operator.

Transactions, partially processed by message processing programs at
the time of system failure, that caused data base modifications, have
their associated data base modifications backed out by emergency
restart.

The IMS/VS user must determine th~ means of checkpointing and
restarting his batch and batch-message processing programs. He may use
the OS/VS checkpoint/restart facility, or create one of his own.

If the DL/I user chooses to write his own checkpoint/restart
routines, he must, as a minimum:

• 	 Record application variables and control tables.

• 	 Record position information for non-IMS/VS data sets.

• 	 Provide a restart entry point and reinitialization procedure.

• 	 Properly initialize I8S/VS control blocksi for example, PXPARMS.

Use of the XRST call and user area parameters on the CHKP call
simplifies the task for the user writing his own restart routines.

• 	 A restart situation is indicated by specifying a checkpoint ID in
the parm field on the execute card in the JCt or in the XRST call
itself.

• 	 Normal entry point and initialization procedures are used.

• 	 User areas recorded at checkpoint time are restored.

• 	 A GET UNIQUE is issued for each GSAM data hase for the last used
record if the data base was open at the time the checkpoint was
taken.

• 	 No data is returned as the result of the GU, but status codes are
saved in the user PCBs.

• 	 If the data base was opened for output, ~hen a PNT function code,
requesting POINT, is used.

• 	 GSAM data bases are automatically repositioned at restart if the
XRST call is used.

• 	 The checkpoint ID is returned to the user program to allow it to
link to its own restart subroutine.

In the case of batch-message programs, an actual checkpoint/restart
routine may not be required. If the program is truly driven by the
m€ssage queues, IMS/VS repositions the queues to the point where a CHKP
call was issued. The user need only start the batch-message program
normally.

Design and Control of a DB/DC System 2.3'

Even though most batch-message programs require some re-programming
to accommodate the CHKP function, the increased data base integrity and
availability should justify the effort.

Since the I8S/VS control region waits until all batch-message regions
issue CHKP calls before proceeding with a shutdown checkpoint, a
batch-message program with few or no CHKP calls can delay or prevent
system shutdown. The /STOP REGION command with ABDU~P can be used to
force the abnormal termination of such a region. However, it is
recommended that the user add CHKP calls to batch-message programs,
particularly if a FREEZE or DUMPQ checkpoint is to be requested. If a
PURGE shutdown is used, re-programming is suggested for batch-message
programs that run for a long time, because 1M5/VS waits for these
programs to terminate before proceeding with the shutdown.

The 1~S/VS control program provides the ability to queue messages
received on direct access storage and in main storage. Messages can be
received from communication terminals or application programs and can be
destined for communication terminals or application programs. A message
destined for an application program is called a transaction and begins
with a transaction code. All transactions of the same type (same code)
are queued in a serial chain based upon time of receipt by IM5/VS. A
serial queue exists for each defined transaction code. All messages
destined for a particular communications logical terminal are queued
serially like transactions. A serial queue exists for each defined
logical terminal (Figure 2-2).

2.32 I85/VS system/Application Design Guide

X

TRANSACTION
CODE

QUEUE
CONTROL
BLOCK

END OF
MESSAGE X

~UEUE

X QUEUE

Q01 Message
COMMUNICATION - Q01 Dequeue Pointer

LOGICAL

TERMINAL Q01 Enqueue Pointer ~ I

Q02 Dequeue Pointer
Q04 First Message

Q02 Enqueue Pointer

Q03 Dequeue Pointer ~ I
Q03 Enqueue Pointer

Q04 Message n
Q04 Dequeue Pointer ­
Q04 Enqueue Pointer - l J
Q05 Enqueue Pointer

Q04 Last Message

y ~
Figure 2-2. General Message Queue Structure

MESSAGE QUEUES AND MESSAGE SELECTION

The serial queue for each defined logical terminal consists of an
incore queue, four prioritized queues, and a nonprioritized queue. In
descending priority sequence, the levels are as follows:

QOO
This is the incore queue. All messages in this queue are sent
immediately and are not written to the direct access message
queue data set. Messages on this queue are not considered
recoverable and will be discarded if an error occurs during
transmission.

QO 1
Reply to response type messages. This queue is used for response
mode conditions when a terminal is in terminal or line response
mode or conversational mode. This queue can contain only a
single message.

Q02

Design and Control of a DB/DC System 2.33

Replies to a transaction from a terminal in exclusive mode.
Output to a terminal in exclusive mode viII be queued to 002. If
a 	 response mode condition exists, the output will be placed in
001 instead of Q02.

Q03
system messages which are to be enqueued. This includes
broadcast text, output from the IDISPLAY command, and all DFS
messages with the exception of the DFS555 ahnormal termination
messages. The DFS555 message will be placed on other ~han Q03 to
notify the terminal of the abend (for example, a terminal in
response mode vill receive the DFS555 abend message from 001).

All other traffic. This queue is used for application
programming output, message switches, alternate PCB output, etc.

Q05
Backup message. This queue is used:

• 	 To resend messages from terminals with the resend feature.

• 	 For conversational processing, the last response to the terminal is
kept for purposes of the IHOLD and IRELEASE commands. This queue is
not prioritized and is transparent to the user.

The ~olloving are the possible modes of a terminal. The terminal is
not restricted to a single mode but may be in more than one mode at the
same time.

• 	 CONVERSATION -- A terminal is in conversation mode from the time it
enters a conversational transaction until th& time the conversation
is completed or abnormally terminated. A conversation is normally
terminated when the message has been sent and dequeued and the
application program has cleared the transaction code field in the
scratchpad area (SPA). A conversation can terminat~ abnormally in
several ways:

1. 	 An application program ASENDed.

2. 	The I~S/VS operator issues an IEXIT command, a ISTART NODE
command, a ISTART LINE command with no PTERM keyword, or an IIA"
DONE command with an INQUIRY LTER! (switch line disconnect).

3. 	 When there is an inconsistent definition betveen systems.

• 	 EXCLUSIVE -- A terminal is placed in exclusive mode when the
/EXCLUSIVE command is issued. Exclusive mode is terminated by an
lEND command, a ISTART LINE command, a ISTART LINE PTERM command, a
ISTART NODE command, or a IIAM command.

• 	 RESPONSE MODE -- System definition specifications determine when a
terminal will be placed in response mode. Terminal response mode is
terminated in several ways:

1. 	 When the message has been sent and dequeued.

2. 	 The IMS/VS operator issues a 1ST ART LINE PTERM command, or a
/RSTART LINB PTBPM command.

3. 	 An IMS/VS restart. J
2.3q IMS/VS System/Application Design Guide

Line response mode is terminated in several ways:

1. 	 When the initial attempt to send the message has been made.

2. 	 The IMS/VS operator issues a /START LINE command, a /RSTART LINE
command.

3. 	 An IM5/VS restart. If the Fast Path feature is used, terminal
response mode will automatically be re-entered on an IK5/VS
restart or after the issuance of an /RSTART LINE PTERK command if
a message is in the output buffer.

• 	 LOCK -~ The locked mode prevents the sending and rece~v~ng of
messages to a terminal. A terminal, NODE, or a logical terminal
(LTERK) can be placed in locked mode when the operator issues a

/LOCK command. This mode is reset by the /UNLOCK command or the

/IAM command.

• 	 TEST -- Test mode ensures that any input message entered into a
terminal is transmitted back to the terminal with error analysis
procadure~ bypassed. A PTERM or NODE is placed in ~est mode by the
/TSST command. Test mode is reset by an /END command, a/START
command, or /IAM command.

• 	 LOOPTEST -- The looptest mode provides for the establishment of an
output write loop whereby a user-entered message is continuously
transmitted to the terminal. A PTERK is placed in looptest mode by
the /LOOPTEST command. Looptest is reset by an /END command, a
/START command, a /RSTART LINE command, or an /IAM command.

• 	 QERROR -- A logical terminal will be placed in a stopped state if an
I/O error is encountered while attempting to read a message from or
write a message to a message queue. This condition is reset when
the operator issues the /START command.

• 	 STOP -- The stopped state prevents the selection of any output
queued on a logical terminal associated with a physical terminal.

For terminal using VTAM, the /STOP NODE results in the termination
of the session between IMS and the node. This termination occurs
immediately for most devices but only at the end of the message for
3270 devices and SLU type 2 devices. The /STOP NODE command also
prevents logon until a /START command or /RSTART command has been
issued.

The /STOP command, the /PSTOP command, and the /MONITOR command also
cause a terminal to enter the stopped state. This state is reset by
issuance of the /START command or the /RSTART command,

• 	 SNA quiesce -- When IMS/VS is sending output messages to a VTAM
programmable node and the node wishes to suspend reception, the node
will signal IMS/VS to halt transmissions after an end-of-chain has
been sent. See the section "VTAM Signal Commands" in 111§.LY§.
!~!~~£ed fg~£!~Q~ tQ~ £Q!!gn~£~tiQn2 for further details on the
guiesce-at-end-of-chain function.

• 	 INOP -- The physical terminal is marked inoperable by IMS/VS device
support whenever a physical error is detected. All logical
terminals associated with this physical terminal are marked not
eligible for selection for message transmission. The /START command
or the /RSTART command will reset the inoperable condition.

Design and Control of a DB/DC System 2.35

• 	COMPINOP Component inoperative (not ready) can be set in two

ways:

1. 	An error is detected that can be isolated to a component of a

tarllinal.

2. 	By the issuance of the ICOMPT command or the IRCOKPT command for

terminals defined to VTAK. All logical terminals associated with

this component are marked ineligibl~ for selection for message

output. Component inoperative is reset when the operator issues

a ISTART LINE PTERK command, a ISTART NODE command, another

ICOMPT command, or a /RCOKPT command. Special signals from the

device. such as device end from a 3270 device, or special

commands from a 2270 device can also cause the resetting of the

component inoperative or not ready state. For unique device

considerations see the chapter "IMS/VS Telecommunication Device

Support" in the 1~§L!§ Q.2~':~12I~§ R~.{~~~n~~ ~n!t~l.

• 	 PAGE. SCREEN, and COMPONENT PROTECTION -- This is a state supported

for video terminals and SLU type p devices. Logical terminals

associated with this physical terminal are ineligible for selection.

For a discussion on screen protection for the 3270 devices, see the

chapter "IMS/VS Telecommunication Device Support" in the Ir!~L!~

Q.2~.:~t2~~§ R~~~~~!l~~ !1~!l!!!!1, and the chapter "Message Formatting

FURctions" in the 1~§L!~ ~~§§~g~ ~2.:~i §~~X!~~ g§f~~§ 2!!!g~. For

programmable VTAM devices, see the section "Display Screen

Protection for Statians Defined as 3601" in the chapter "IMS/VS

Support for Advanced Function" and the section "Extended Output

Component Protection" in the chapter "Type P Secondary Logical Unit

Programmer's Guide" in the !MSL!~ Ag~!l£~g f!!n£i~2!l ~2~

£2!1Uni£U!2!l§ •

DETERMINING MESSAGE SELECTION J
The following figures allow you to determine which messages will be

selected for transmission to a terminal when IMS examines the mess~ge
queues for a message to send.

• 	 STEP 1:

Find, in Figure 2-3, the source of the message in question and note

the queue the message is in.

• 	 STEP 2:

Referring to Figure 2-4, find the state of the logical/physical

terminal or node. Note the queue levels from which messages will be

selected when the terminal is eligible for selec~ion. If the

message is in one of these levels, IMS will attempt to send the

message. Otherwise, the message will remain in the queue for later

transmission.

Example: To find what happens to a /FORKAT command entered from a
terminal in conversation mode:

1. 	 Find the source of the message in Figure 2-3. The /~ORMAT is

entry I.A.1'. Since the terminal is not in exclusive moae, the

/FORMAT response will be placed in Q03.

2. 	 Find the terminal state in Figure 2-4. Conversation is state 12.

Queue levels selected are QOO and Q01. Since the /FORMAT

response was in Q03, it will not be sent until th~ conversation
is terminated. J

2.36 IMS/VS Syst~m/Application Design Guide

Source of Message 	 Queue Level

I. 	Control Region

A. 	 IMS/VS Code

1. 	Error messages to a terminal created while QOO*
processing input from or output to a terminal
(for example, messages such as DFS064 NO SUCH
TRANSACTION CODE, DFS06S TRAN/LTERM STOPPED, etc.).

2. 	The same error messages as above but detected

in a remote KSC system:

- The input message that was discarded because Q01**
of the error put the terminal in response
mode.

- The terminal is in exclusive mode. 	 Q02

- None of the above. 	 Q03

3. 	Direct responses to terminal requests QOO*
(for example, messages such as DFS290I NO MESSAGE
AVAILABLE FOR OUTPUT).

4. 	 Terminal connect, disconnected, or restarted QOO
(for example, DFS2002 TERMINAL CONNECTED,
DFSOS3 TERMINAL RESTARTED-PLEASE REFORMAT SCREEN).

5. 	Messages directed to the master terminal Q03
(for example, DFS253I TCU INOPERABLE LINE x
PTERM y).

6. 	TEST or LOOPTEST messages. QOO

1. 	DFS058 command completed. QOO*

8. 	Output from the /DISPLAY, /RDISPLAY OUTPUT Q03*
commands.

9 .• 	 /START, /RSTART, /STOP, /PSTOP command status Q03
messages. These messages will be discarded if
the MSGDEL=SYSINFO or the MSGDEL=NONIOPCB parameter
vas coded in the TERMINAL macro statement.

10. 	 Broadcast text. These messages will be discarded Q03
if the MSGDEL=NONIOPCB parameter was coded in the
TERMINAL mac~o statement.

---;-ior-the-2170;-Iocal reader, and 2780, these messages are put in Q03
on a last-in first-out basis.

** If the terminal is removed from response mode before this message
is completely sent, the message will be moved to Q02 if the terminal is
in exclusive mode or to Q04 for all other conditions.

Figure 2-3 (Part 1 of 3). Source of Messages

Design and Control of a DB/DC System 2.31

Source of ~essage 	 Queue Level

11. 	I~S/VS commands (for example, /FOR~AT, /TRACE, etc.). ~
- Terminal in exclusive mode. 	 Q02

- Terminal not in exclusive mode. 	 Q03

B. 	 User Exit Routines

1. 	 Request to cancel message via return code - ­ QOO*

an IMS/VS message is generated.

2. 	 Request to cancel message and send a message QOO*

from the user's message table.

3. 	~essage 'echoed' back to terminal using the MFS Q01

segment exit.

C. 	 Message Switch (terminal to terminal). This message

viII be discarded if the KSGDEL=NONIOPCB parameter

is coded in the TERMINAL macro statem~nt.

II. 	Dependent R~gion

A. 	 I/O PCB or Response Alternate PCB**

1. 	Conversational mode. Q01

---.-por-the-211o;-rocal reader, and 2780, these messages are put in Q03
on a last-in first-out sasis.

** 	Response Alternate PCB restrictions:

1. 	 Conversational -- The destination must be the same physical

terminal. If not, an A9 status code will result if processing in

a local system; or a conversational abend will result if

processing in a remote MSC system and if the error was detected

at the terminal-attached system.

2. 	 If the current input message put the terminal in response mode,

the destination must be the same physical terminal. If not, an

A9 status code will result if processing in a local system. This

is not checked if processing in a remote MSC system.

3. 	 Output to both a response alternate PCB and the I/O PCB is not

allowed. If the terminal is not in conversational mode, output

to multiple response alternate PCBs is allowed.

4. 	 Destination logical terminals must not have more than one

physical terminal assigned for input purposes. An AY status code

will result if processing in a local system. This is not checked

if processing in a remote MSC system.

S. 	 An ISRT call prior to a GO DL/I call is not allowed to the I/O

PCB.

Figure 2-3 (Part 2 of 3). Source of Messages

2.38 IKS/VS System/Application Design Guide

Source of Message 	 Queue Level

L
f

2. 	The input message being processed put the Q01*
terminal in response mode.

3. 	Terminal in exclusive mode but not in response Q02
or conversational mode.

4. 	None of the above. Q04

B. 	 Alternate PCB

1. 	If the /TRACE command vas issued for the Q04
destination PTERM and the message ID was deleted,
a 6701 log record with an ID=ICLR is created. This
message is discard~d if the MSGDEL=NONIOPCB parameter
parameter was coded on the TERMINAL macro statement.

C. 	 IMS DFS555 Abend Message

1. 	The input message being processed put the Q01*
terminal in response mode.

2. 	 The terminal was in exclusive mode. Q02

3. 	None of the above. Q04

---;-If-the-t;riinal is removed from response mode before this message
is completely sent, the message will be moved to Q02 if the terminal is
in exclusive mode or to Q04 for all other conditions.

Figure 2-3 (Part 3 of 3). Source of Messages

Design and Control of a DB/DC System 2.39

State 	 Queue Level Selected

1. 	 PTERM inoperative QOO
2. 	 Component inoperative QOO
3. 	 PTERM in test mode QOO
4. 	 SNA quiesce-at-end-of-chain received QOO
5. 	 Qerror QOO
6. 	 Line STOPPED, PSTOPPED, or MONITORED QOO,Q03*
7. 	 Node stopped, before termination QOO

of session, node disconnected due to

/CLSDT or LOSTER!'!, or IMS shutdown

8. 	 PTERM STOPPED, PSTOPPED, or MONITORED QOO,Q03*
9. 	 LTERM STOPPED or PSTOPPED QOO,Q03*

10. PTERM locked QOO,Q03*

". LTER~ locked QOO,Q03*

12. Conversational mode 	 QOO,Q01
13. Response mode 	 QOO,Q01
14. Exclusive mode QOO,Q01,Q02
1S. Nona of the above QOO,Q01,Q02,Q03,Q04

The 	 line or terminal is not in response mode.

An active conversation is not in process.

The 	 terminal is not in exclusive mode.

Figure 2-4. Queue Selection

QQ~!!li Q!ll ~~I~

The IMS/VS control program utilizes three OSAI'I data sets for direct
access queue storage. All queue data sets have the same block size,
which is specified by the IMS/VS user at system definition time.

Figure 2-5 illustrates the relationship between the three queue data
sets.

2.40 II'IS/VS System/Application Design Guide

TRANSACTIOII

"iotll'ti." OR LOGICAL

"v:£:.'*" TERMINAL
QUEUE

Figure 2-5. Queue Data Set Relationships

OPERATION OF QU~UES

All messages received are assigned OSA8 relative record numbers.
However, they are not written immediately to the queue data sets. If no
space is available in the main storage buffers, the buffer which has
been referenced the least is written to its queue data set, and the
space in main storage is assigned to the new message. If a message
still exists in main storage when it is dispatched to its destination
(input to a program or output to a terminal or another program), no
reference to the direct access data sets is required. All messages are
logged by the IMS/VS control program to provide message queue
recoverability in case of failure of either the I~S/VS or host operating
system control programs.

Messages received are represented by either single or ~ultiple
segments. The amount of space required to contain a message determines
the size of the records to which it is allocated. When the transaction
or logical terminal queue is known, the average message size is also
used to determine the record to be allocated. The lines of text are
placed in a variable-blocked format within a record.

The IMS/VS message queue data sets must be preformatted before
initial usage. The use of prefoimatted queues provides increased
reliability. Reliability is increased with the preformatted data sets
becaus the count field of the direct access device record X is not
relied upon to write record X+1. preformatting is performed upon
request during restart procedures. The need to reformat the message
queues arises only if an input/output error occurs within a queue data
set. A write error does not result in the inability to write subsequent
records in the data set as is the case with unformatted gueu~ data sets.

Design and Control of a DB/DC System 2.41

Approximately 1.5 seconds is required to format each 2314 cylinder in an
IKS/VS message queue data set and .8 seconds for each 3330 cylinder.

In order to provide for message queue recoverability if the queue
data sets are destroyed, the IKS/VS control program logs:

• 	 all input and output message text

• 	 the queue pointers to each message queue chain, whenever a message
is enqueued onto or dequeued from the chain

If a system failure occurs and the message queue data sets are
retained intact, the restart facilities of IKS/VS can reposition the
queues by use of the enqueue/dequeue pointers which were logged. If the
queue data sets are destroyed, the restart facilities of IKS/VS can be
employed to rebuild the queues from the log entries of message text.

EMERGENCY RESTART QUEUE REPOSITIONING

In an emergency restart situation, the message queues are
repositioned as follows:

• 	 SNGL mode processing

The message being processed at the time of the failure is the first
message processed after the restart.

• 	 MULT mode processing

All messages read by the program are processed at the time of the
failure are returned to the queue. The first message processed
after the restart is the first message read after the program's most
recent CHKP call or scheduling.

MESSAGE QUEUE REUSE

Message queue records reside in fixed-length blocks with a block size
common to all three data sets. The first record in each data set is a
bit map which controls the assignment of the next n records (n = 8 *
LRECL-1). Records in each data set are assigned from low to high by
testing the bit map for the first bit which is on. When a bit is found
on, it is turned off to indicate that the corresponding has been
assigned. When a record contains a message that has been completely
processed at its destination (has been degueued and will not be required
in restarting the system), the bit corresponding to the record is turned
on. This makes the record available for reuse.

For details on message queue data set space allocation, refer to the
I~~L!~ In§1A!!!!i2n igig~·

A physical terminal is the actual hardware device attached to the
computer. The types of terminals supported include typewriters, eRTs
(cathode ray tubes), paper tape readers, card readers, high-speed
printers, and reaote computers. The I8S/VS terminal configuration is
defined to IKS/VS during system definition.

2.42 IMS/VS System/Application Design Guide

DEVICES SUPPORTED

IPiS/VS supports:

• IBM 	 1050 Data Communication System

• 	IBM 2260 Display Station, Models 1 and 2

2265 Display Station, Model 1
• 	 IBM

2140 Communication Terminal !IIodels 1 and 2
• 	 IBM

• IBM 	 2141 Communication Terminal

• IBM 	 2710 Data Communication System

• IBM 	 2780 Data Transmission Terminal

• IBM 	 2980 General Banking Terminals, Models 1, 2, and 4

• 	IBM 3270 Information Display System

3600 Finance Communication System
• 	 IBM

• IBM 	 3630 Plant Communication System

• IBM 	 3767 Communication Terminal

• IBM 	 3110 Data Communication System

• IBM 	 3740 Data Entry System, Models 2 and U

• IBPI 	 3790 Communication System

• IBM 	 5110 Computer

• 	 IBPI 7770 Audio Response Unit, Model 3 with a Touch-Tone* (or

equivalent) telephone or IBH 2721 Portable Audio Terminal

• IBM 	 Series 1 system

• IBM 	 System/3 !IIodel 10

• IBM 	 System/1

• IBM 	 System 32 and 34

• IBM 	 Communicating Magnetic Card/Selectric Typewriter (CMC/ST)

• Card 	reader/printer devices

• 	 33/35 Teletypewriter (ASR)

IMS/VS supports various communication/attachment modes for the above
terminals. The major distinction is whether the attachment is local
(through a channel) or remote (over telephone lines). Remote
attachments are further broken down into two categories: switched and
nonswitch~d (or leased). Switched communication lines permit the
attachment of only one remote station or terminal at a time to a line,
and require that the terminal operator use a data set, which is attached
to the remote terminal, to dial up the main computer to establish

* 	Registered Trademark of the American Telephone & Telegraph Co.

Design and Control of a DB/DC System 2.43

connection. Nonswitched communication lines are leased; that is, they
are dedicated to use by the terminals physically attached to them. A
nonswitched line may be either a contention or polled line. Contention
or polled refers to the line discipline used to communicate with the
terminal. Only one contention-type terminal may exist on a line, while
one or more can share a polled line concurrently. A pollAd line with
more than one terminal is called a multipoint line.

See the I~L!~ ~~~~~! InfQ~~!!lQn ~~ng~! for a description of ~he
communications modes supported by I~S/VS for each physical terminal and
for lists of the required and optional features for each supported
terminal, control unit, and cpu.

BTAM DATA SET LINE GROUPS

The LINEGRP macro is used to describe each BTAM data set line group.
The terminal(s) defined for anyone LINEGRP must be of the same type
(communication mode, polling techniques, transmission code). This means
that a separate line group must be used for each of the following
terminal configurations (when used) :

• 1050 switched
• 1050 nonswitched with poll
• 1050 nonswitched with autopoll
• 2260/2265 remote and 2260 local mode, nonswitched
• 2740 switched with transmit control
• 2740 nonswitched contention
• 2740 nonswitched polled
• 2740 polled with autopoll
• 2741 switched*
• 2741 nonswitched EBCDIC and nonswitched correspondence
• 2770 nonswitched
• 2780 nonswitched polled
• 2780 nonswitched polled ASCII
• 2780 nonswitched polled 6-bit transcode
• 2780 nonswitched contention EBCDIC
• 2780 nonswitched contention ASCII
• 2180 nonswitched contention 6-bit transcode
• 2980 nonswitched
• 3270 local
• 3270 local printer
• 3270 polled remote
• 3270 polled remote ASCII
• 3270 switched
• 3270 switched (ASCII)
• 3630 switched
• 3740 switched
• 7170 switched
• System/3
• System/7 nonswitched contention
• System/7 nonswitched pollee
• System/1 nonsvitched polled with autopoll
• Local card reader
• Local output device (printer, punch, tape, DASD)
• Spool SISOUT
• 33/35 switched

*For 27q1 switched, transmission codes for anyone line group do not
have to be of the same type.

For further definition of a BTAK data set line group, refer to Q§L!~
BTAM, GC21-6980. At least one communication line must exist within each
line group. At least one physical terminal must e~ist for each
communication line.

2.44 IMS/VS System/Application Design Guide

TERMINALS ATTACHEt 'lHROOGH nAM

'lerminals attached through V'lAM are defined according to terminal
type hy using the TYEE lacre. Valid terminal types are: 3270 local,
3270 remote, 3601, 361~, 3iE7, 377C, and 3790.

PHYSICAL TERMINAL NETWORK DESIGN

Selection of terminal types should be based on what function is
expected, the location and p=rsonnel using the equipment, and the speed
or volume of data whick the teIKinals ale expected to handle.

Inquiry and ccnversational capabilities are best suited to typewriter
or graphic type devices, the graphic devices being faster, whilE the
typewriter gives a hard cCFY cf the transaction.

Batches of input can best he handled by cards or paper tape, with the
2770, 2780, or 3770 being used for high volume and the 1050 for low.

The printer-type terminals are best suited for applications where the
shop floor requires infclaatien fIem the ccmputer but has no need to
su~ply any in return. Again, the 2770 or 2780 is best suited fer high
volume, with the others handling less volume.

Once the tYPES of terminals rEguired for the job are determined, the
methed of cennecting them to the computer must be considered.

If many terminal locations are required with minimal volume, a
switched network should be ccnsidered. 'Ihis allows the use of standard
telephone lines. The terminal operator dials the computer when he
wishes to make an entry. OnE drawback to this ap~roach is the
possibility of busy lines, which may cause the operator to placE a call
several times. AnotheI disadvantage is that voice-grade lines are more
susceptible to malfunction than leased lines. This might require the
operator to requEst entry acre than one time to allow the computer to
read it error-free. Unchecked terminals (2741, 33/35, and 7770) can
cause input and output tc be lest due to line errors which are
trans~arent to the IMS/VS system.

When high volume is required or the terminal must be connected to the
computer for long perieds ef time, a leased line may be more practical.
This type of line is generally more error-free, can handle higher volume
of data, and requires no eFeratcr action to connect to the computer. If
the leased line is chosen, the next step is to determine how many
terminals are to te ccnnEctEd tc this line. If several unbuffered
terminals are connected to the line, significant delay may occur in the
response to a terminal. It is therefore recemmended that unbuffered
terminals be attached alone to a line. Another consideration may be the
need to cluster several terainals in one location. The expense of
running several telephone lines to the same location may be prohibitive.
If so, buffered terminals sheuld be considered. Their slightly higher
cost may be more than offset by the need to run only one line, thus
reducing the contenticn fer line time, as the data is transferred to a
buffer at operatoL speed and theD sent across the line at machine speed.

Most terminals suppcrted by ISS/iS are polled. For some terminals,
consideration should also be given to the type of polling to be used:
programmed or autepoll. FOI slallnetworks, programmed polling may
prove more economical, since autopoll, except for binary synchronous
lines, is an extra cost feature. However, Frogrammed polling requires
more CPU interruptions and, for a larger network, may use enough CPU
time to make the cost cf autcFcll worthwhile. For each terminal in the
system, programmed polling causes a hardware interrupt approximately
every second. Autopcll causes this interruption only when the cperator

Design and Control of a DB/DC System 2.45

has initiated some action on the terminal. which will generally be
several minutes.

Lines can te collected by terminal type into line groups. Each new
line group requires main stcrage for ccntrol blocks used by IMS/VS and
the operating system. All lines for a particular type of terminal can
be collected into one line grouF, minimizing this storage requirement.
HOMever. this means that all these lines must be allocated to the system
at all times. When cne is removed (possibly for use by a different job
er system), IMS/VS does not function properly. Therefore, if ene or
more lines are to be used by IMS/VS on a part-time basis, and it is
desired to allocatE them to ether functions at times. they should be
organized into separate line groups. Lines may be removed from the
system by line group.

When binary synchronous terminals (except 3210) are used in the
online IMS/VS system, timeout conditions can occur when the system is so
loaded that it eannct prccess an input line buffer and respond to the
terminal. If the terminal operator re-enters the data before verifying
the applicatien program respcnse, to determine the proper restart point
in the data stream, this could lead to duplicate data.

DEFlNITlON OF !HE LOGICAL !ERMINAL CeNCEr!

1he ~haracteristics of terminal devices vary widely. There are
differences in the centrel mechanics. transmission code, display media.
entry keyboards, switches, timing. and optienal features. Communication
line and network characteristics further complicate and multiply the
possible combinations of characteristics that must be managed in the
data communication environment. It is readily apparent that the
applicaticn prcgram shculd Dct become directly involved with or
dependent upon the characteristics of the terminal network with which it
deals.

By isolating the application program from its terminal network,
economies in development cost. development time, and maintenance are
achieved. In additicn, a certain degree of, if not complete, device
independence is available. Applications written to a device-independent
interface may be expanded witheut modification for the use of new
terminal types or classes.

At the same time, USE cf device class dependent functions may be
highly desirable in certain application areas. Control of device class
dependent functions for an application system which serves only CRT-type
devices could enhance the usability of that application.

Another requirement directly related to device independence is
application independence. An application-supported function must be
available from different terminal types. It is not feasible or
practical to expect that a unique terminal be assigned to each function
to be performed.

For reasons of security or resource management, it may be desirable
to associate the use of a physical terminal with its user. Whereas
users may exist in greater numbers than Fhysical terminals, they must be
represented by abstractions. The primary characteristic of the abstract
terminal is its identity. !he identity is known within I!S/YS as the
"lcgical terminal name" or simply as "logical terminal."

2.46 IMS/VS System/Application Design Guide

THE IMS/VS LOGICAL TERMINAL

Each logical terminal within IM5/VS has a unique set of attributes.
A description of the attribute~ constitutes a partial description of the
features available thrcugh use cf the lcgical terminal concept.

• 	 Current Fhysical terminal assignment -- this characteristic may be
dynamically altered for reasons of terminal resource managEDIent.
Once a signon has teen acce8Flished by cennecting a logical terminal
to a physical terminal, the functions and services available are the
same as those for a nenswitched terminal.

• 	 Security authorization -- can be unique for each logical terminal in
the system or can represent a security level or group.

• 	 Next logical terminal assignment -- multiple logical terminals can
be associated with a single physical terminal. This provides, in
conjunction with security, the ability to uniquely identify multiple
users of a single Fhysical terminal.

Logical terminals can be assigned to physical terminals for output
and input purFoses. When a logical terminal is assigned to a Fhysical
terminal for outFut purFoses, all messages sent to that logical terminal
are transmitted- to its associated physical terminal.. More than one
logical terminal can be assigned tc a given Fhysical terminal for output
FurFoses.. Only one physical terminal can receive the output for a given
logical terminal. the diagram belcv shows the relationship between
physical and logical terminals for output purposes:

Logical
Terminal

Physical
Terminal

Logical
Terminal

When a physical terminal is assigned to a logical terminal for input
purposes, any message entered frcm the Fhysical terminal is considered
to have originated at the logical terminal.. When more than one logical
terminal is assigned tc a Fhysical terminal for inFut purposes, a chain
of input logical terminals is formed. Any input from the physical
terminal is considered tc have criginated at the first logical terminal
on the chain. If, for some reason (such as security or a stopped
logical terminal), the first logical terminal is not allowed to enter a
message, all logical terminals en the input chain are interrogated in
chain sequence for their ability to enter the message.. If the physical
terminal is a 31iC or a 3iEl, cnly the logical terminals associated with
the input component are scanned.. The first appropriate logical terminal
found is considered the originator of the message. If no appropriate
logical terminal is found, the message is rejected with an error
message. The diagram belcw shcws the relationshiF between physical and
logical terminals for input purposes:

I~

Design and Centrol of a DB/DC system 2.47

INPUT CHAIN

Physical .. logical logical.. --'"

Terminal Terminal - Terminal
C

Use of a queue for input messages received or pending output messages
enables the application tc be independent of time of arrival or
transmission of messages. Association of the queue with the logical
rather than the physical terminal permits it to be moved, independent of
the application, from device to device. Within restrictions, it permits
a queue of messages to be mcved even among device classes.

The logical terminal prevides a stable platferm or reference for the
application program. Regardless of how the physical terminal network
changes, the application remains insensitive. !o the application
program, a logical terminal can be viewed as just another sequential
data input sourCE er eutput destinatien.

The application program interface to the logical terminal is through
the same call interface mechanics descrited for the DB system.

When 2980 terminals are defined, IMS/VS uses a logical terminal to
define the 297~ eommen tuffer. !his is an exception to the physical
terminal/legical terminal relationship, in that the 2972 commen buffer
is not a physical terminal in the conventional sense.

LOGICAL TERMINAL NE!~ORK DESIGN

Design of a logical terminal network can be as important as design of
a physical terminal network. It has potential impact upon systel
security, maintainability, and usability. Careful consideration should
be applied from each viewpoint.

System SEcurity administration can be hampered by not providing an
appropriate number cf logical terminals through which proper terminal
security authorization ~ay be applied. Too few logical terminals limits
the number of unique security authorization~. Too many may prove
cumbersome or ineffective in achieving security objectives. A judicious
comtination of passwcrd and logical terminal security can reduce the
number of logical terminals required to administer security policy.

Where a community of users deals with multiple applications through a
common set of physical terminals, output volumes, schedules, priorities,
human factors, and terminal availability are some of the more imFortant
usability factors to consider. If priorities require that management or
supervision have ready access to terminals ordinarily used fer
operational purposes, then ~rovisioD must be made for interrupting
operational work. A physical terminal might have two logical terminals
ordinarily assigned -- CDe fer c~erations, one for priority work.
Authorization of the /lCCK command to the priority logical terminal
would enable it to stcp inFut and output from the operations terminal.
Further discussion of the security p1an~in9 for this particular case may
be found under the topic "Security and Privacy" in this chapter. It is
mentioned here to illustrate several of the aspects of logical terminal
network planning. ~he same solution to the security or pricrity aSFect,
that is, multiple lcgical terminals, can be applied if the control of
output volume is a problem.

2.48 IKS/VS Syster/Applicaticn Design Guide

Where particular applications make use of device class dependent
functions, such 8S curser ccntrol, it might be useful to specify a
separate set of logical terminals which have a relationship to that
group of applications. Calling the application group an application
class and the logical terminal group a logical terminal class, it is
possible through lcgical terminal security to associate all input and
output relationships with a known set of logical terminals. At the same
time, non·device-class sensitive transactions may be used through
non-specific logical terminals fro~ the same physical terminals.
Processing applications are insensitive to ihe separation. The
following example (figure 2-E) illustrates this use of logical
terminals:

PHYSICAL LOGICAL

TERMINAL TERMINALS APPLICATION

r----'
), AAA r-....... ,-- - --I

/1 __ ..J '~I 1 DEVICE
CLASS,/ L--- 'I x

SENSITIVEI I!L____ J

/
/

NOT DEVICE
D CLASS

SENSITIVE

Figure 2-6.. Separating Device Class Sensitive Terminal I/O

70 establish such a relationship requires defining two logical
terminals for each physical terminal, then securing the transactions
destined for application X through logical terminals AAA and CCC. The
common entry security for AAA and CCC cculd be referred to as a device
class sensitive security group. All logical terminals defined for that
purpose would then te secured in the same group.

In certain applications it may be necessary to associate a different
physical device for output than the one ordinarily used for input.
Conversely, certain physical terminal types are input-only devices. If
output is required, a different device must be associated with this type
for output. IMS/VS system definition and ccmmands support assignment of
cutput devices different from the input device. The allowable
physical/logical relationships which can be expressed are shown in
figure 2-7.

Design and Centrol of a DB/DC System 2.49

PHYSICAL LOGICAL APPLICATION
TERMINAL TERMINAL

NORMAL ASSIGNMENT OF ONE
OR MORE LOGICAL TERMINALS!
PHYSICAL TERMINAL, OUTPUT

L-________~I--.~--..~~ GOES TO INPUT TERMINAL·
APPLICATION INSENSITIVE

ALTERNATIVE ASSIGNMENT,
INPUT AND OUTPUT THROUGH
SAME LOGICAL TERMINAL,
OUTPUT TO DIFFERENT PHYSICAL
TERMINAL· APPLICATION
INSENSITIVE

APPLICATION INSENSITIVE
TO INPUT, USES SPECIFIC
LOGICAL TERMINAL FOR
OUTPUT

Figure 2-1. Possible Physical/Logical Terminal Relationships

!2n2Wi1£~!d ~2milni£!ii2n2 !!t~2~: The best way to describe the
relationship between a terminal user, a physical terminal, a
commanication line, and a logical terminal is a diagram:

IMSNS

r--------,
I

PHYSICAL .. I NON SWITCHED I • LOGICAL I.. .. I ..USER
I JTERMINAL COMMUNICATION LINE TERMINAL

III I ·
I

~

I"- _____ --J

IMS/VS system definition describes the characteristics and
relationship of physical terminals, communication lines, and logical
terminals. On a nonswitched communication line, the relationship
between a physical terminal at one end and a logical terminal within
185/VS at the other is a stable relationship defined at system
definition time. If there is only one user of a particular physical
terminal, typically there would be a one-to-one relationship betwe~n
physical terminal and logical terminal. However, if a physical terminal
is operated by multiple users, it can have many logical terminals
associated with it. 1M5/VS system definition might include a separate
logical terminal for each user of a particular physical terminal.

The relationship established between a physical terminal and one or
more logical ter.inals at system definition ~an be changed through the
command language or by a new system definition. The /AS5IGN command

2.50 IMS/VS System/Application Design Guide

changes logical/physical relationships dynamically. It is normally
executable only from the master terminal.

2!ii£h~~ ~~ic!i!2~ H~i~~£!: The logical/physical terminal
relationship on a switched communications network is considerably more
complex than in the nonswitched communication line environment. IMS/VS
system definition defines the characteristics of a physical terminal,
communication lines, and logical terminals. However, the relationship
between a particular physical terminal and a logical terminal is not
established until the remote terminal user dials the System/370 computer
to communicate with IMS/VS. The relationship between a terminal user, a
physical terminal, a communication network, and logical terminals at
system definition time is depicted in the following diagram:

LINES

~ I MSNS
/~, r-------,

/' " II ILOGICAL
_ USE~ ~ .. TERMINAL - 2 TERMINAL I~________~I~"'~--~·I... PH_Y_S_I_C_A_L__~ - O- - ---I

: --t I
, • ~IL _____ J'''0/ _

Once the remote terminal user dials in to the ~omputer and issues the
/IAK command to sign himself on to IMS/VS, a stablp. relationship between

(the physical terminal and one or more logical terminals is established.',-,
I MSNS

r--- ----,
LINE I I

SIGNED-ON PHYSICAL ~----1I--1 LOGICAL I
,.. TERMINALUSER TERMINAL • 0-t-
I I
L ________J

In a switched communications network enVironment, one logical
terminal per line is created automatically as the inquiry logical
terminal. In addition to the physical line/terminal definition, and the
automatic creation of the inquiry logical terminal, a pool of logical
terminals can be defined at system definition time. When a remote
terminal user dials into IMS/VS, an IIAM command can be issued which
associates logical terminals from a pool with the physical line and
physical terminal issuing the /IAM command.

Within any logical terminal pool for a switched communications
network, the IMS/VS user must define one or more logical terminal
sub pools. A logical terminal subpool is composed of one or more logical
terminals within a given logical terminal pool. A particular logical
terminal can exist in only one pool and subpool. A remote terminal user
can dial the IMS/VS system and sign on for a single logical terminal or
all logical terminals within a logical terminal subpool. At system
definition, the environment appears as indicated in the following
diagram:

Design and Control of a DB/DC System 2.51

--

, -­
/

I

1/./
REMOTE

PHYSICALTERMINAL • • f- ­TERMINAL •
\ •

USER •
•••

r--------.,
I
I r- - -- ---,
I
I LOGICAL

TERMINALI POOL

I r-----'INQUIRY I I LOGICAL ILOGICAL
TERMINAL 1 I TERMINAL II I SUBPOOL I

--_____01

,......___-~- I
INQUIRY --~ r----'LOGICAL I I LOGICAL I
TERMINAL 2 TERMINAL II--~ SUBPOOL

I I ---_I
_-1 ----- ­

-- I r------,~-.....::;~..,

I I r-----'INQUIRY
LOGICAL I I LOGICAL I
TERMINALN I I TERMINAL I

I I ISUBPOOLI I L ____

I I

I I r-----'

I I I ILOGICAL

TERMINAL II II SUBPOOLI I L____ J
I L ______

"--------­

After a remote terminal user has dialed the System/310 computer
operating under IMS/VS, several situations can exist. If the IIAM
command is used to sign on and the LTERM parameter specifies ~he inquiry
logical terminal, the following diagram applies:

IMSNS

r------,
LINE II..- INQUIRY :

REMOTE PHYSICAL f'::\ LOGICAL
INQUIRYTERMINAL TERMINAL
USER

\J--IIIII----I...• I
I FOR LINE X I
L. _____J

If the IIAM command is used to sign on and the LTERM parameter
specifies a logical terminal from the logical terminal subpool, the
following diagram applies:

2.52 IMS/VS System/Appiicatior Design Guide

IMSNS
r - -------,

LINE LOGICAL
REMOTE

PHYSICALTERMINAL .., TERMINAL I
USER 8 --.-...--L

I
I
I

TERMINAL FROMI
POOL

I IL... ____ --J

r-----l
LINE I I

REMOTE
TERMINAL
USER

PHYSICAL
TERMINAL

~--"""Il_1 ~~BPOOLo · I ~~~~iLS I
I

I'----_ I

If the /IAM command is used to sign on and the LTER! and PTER~
parameters are specified, all logical terminals within a subpool are
associated with the physical terminal.

The use of the logical terminal subpool concept allows for efficient
use of communication facilities. All output queued on each of the
logical terminals in the subpool for which the /IAM command was issued
is sent to the physical terminal.

A subpool can be defined to contain the logical terminals for all of
the users of a single physical t~rminal. While a user is signed on to a
logical terminal within the subpool, the subpool is una.vailable to users
signing on from other physical terminals.

All inguiry logical terminal names must begin with INQU. When
signing on for an inquiry logical terminal, only these first four
characters are considered significant by IMS/VS. This lets a user call
any autoanswer line and sign on for, and use, the inquiry logical
terminal (for inquiry transactions only), if he is aware of the INQU
prefix. The inquiry logical terminal can only be used for non-update
transactions, and queued output is preserved only while the user is
signed on. So that IKS/VS can distinguish inquiry logical terminal
names from subpool logical terminal names at the time a user signs on,
no subpool logical terminal name can begin with INQU.

The master terminal is the IMS/VS control center. It must be either
a 1050, a station-controlled 2740, a 3270, a 3767, or a 3110. If a 1050
or 2140 is used, it must be attached through a non-switched polled
communications line. A 3210 master terminal can be attached locally or
through a non-switched polled line. The IMS/VS provision for a 3110
master terminal is intended for the 3110 console component. The
non-console components will not operate correctly if they are used as
the master terminal.

The master terminal operator must know all the operating aspects of
the system. The physical location of the master terminal in relation to
the computer console is important. If, for security reasons, they are
not close, telephone communications should be provided.

The details of starting the system, checkpoint, restart, and all
commands available to the master terminal operator are in the !n~L!~
QE~rai2~~§ lief~~!~~ ~~~g~!.

Design and Control of a DB/DC System 2.53

SYSTE~ CONSOLE SUPPORT

IMS/VS provides support for the OS/VS system console using the OS/VS
write-to-operator (WTO) and write-to-operator-with-reply (WTOR)
facilities. All functions available to the IKS/VS master terminal are
available to the system console. The system console and master terminal
can be used concurrently, to control the system. Usually, however, the
system console's primary purpose is as a backup to the master terminal.
The system console is arbitrarily defined as 1MS/VS line number one.

SYSTEMS WITH INOPERABLE MASTER TERMINAL

IMS/VS requires a master terminal be defined for its use during
18S/VS system definition. Under certain conditions, however, it may be
impractical to provide a master terminal facility; for example when the
210X line is inoperable. In these instances, the OS/VS system console
can be utilized to replace the IMS/VS master terminal. If desired, the
master terminal DD statement can be omitted. If the master tArminal is
inoperable, messages will continue to be routed to it until they are
routed to the system console or another terminal with the /ASS1GN
command. In addition, all of the functions ordinarily performed at
remote operational terminals can also be performed through the
System/310 console.

Through the Message Format Service (MPS), a comprehensive facility is
provided for 18S/VS users of 2140, 2141, 3210, 3600, 3161, and 3170
devices. MFS allows application programmers to deal with simple logical
messages instead of device dependent data; this simplifies application
development. The same application program may deal with different device
types using a single set of editing logic while devicA input and output
are varied to suit a specific device. The presentation of data on the
device or operator input may be changed without changing the application
program. Full paging capability is provided for display devices. Input
messages may be created from multiple screens of data.

A program using MFS need not be concerned with the physical
characteristics of the device used for input and output messages unless
it wants to use certain very specific device featnres. Eyen when these
features are utilized, the program can request functions in a logical
manner; no device control characters or orders may be sent directly from
the program or may be received by the program. The presentation of data
on the device may be changed without application program changes. Both
logical and physical paging facilities are provided for the 3210 and
3604 display stations; this allows the application program to write a
large amount of data that will be divided into multiple screens for
display on the terminal. The capability to page forward and backward to
different screens within the message is provided for the terminal
operator. The conceptual view of the formatting operations for messages
originating from or going to an MFS-supported device is shown in Figure
~L

2.54 IMS/VS System/Application Design Guide

MFS IMSIVS MFS
Supported Application MFSMFS Supported
Device Program Device

Device Input Output Device
Input Message Message Output

Figure 2-8. Message Formatting Using MFS

M?S has three major compo~ents:

• MFS language utility

• MFS pool aanager

• Message editor

The MFS language utility is executed offline to generate control
blocks and place them in a format control block data set named
IHSYS.FORKAT. The control blocks describe the message formatting that
is to take place during message input or output operations. They are
generated according toa set of utility control statements specified by
the IMS/YS system designer. There are four types of format control
blocks:

• Message input descriptor (MID)

• Message output descriptor (KOD)

• Device input format (DIF)

• Device output format (DOF)

The KID and MOD blocks relate to application program input and output
message segment formats, and the DIP and DOF blocks relate to terminal
I/O formats. The MID and DIF blocks control the formatting of input
messages, while the MOD and DOF blocks control output message
formatting.

The message editor and MFS pool manager operate online during the
normal production mode of operation. The message editor performs the
actual message formatting operations using the control block
specifications. The MFS pool manager controls residence in the main
storage MFS buffer pool of the format control blocks required by the
message editor. Efficient use of available pool space is provided by
look-ahead fetching of required control blocks from direct access
storage, and by maintenance of last-referenced format control block
chains for reuse of pool space.

Tvo other MFS components, a MFS service utility and a MFTEST pool
manager are available to support optional MFS operations.

The MFS service utility provides a method for additional control of
the for, at control block data sets. It executes offline and can be used
to creata and maintain an index of control blocks for online use by the
MpS pool manager.

The MFSTEST pool manager replaces the MFS pool manager to support the
optional MFSTEST mode of operation. The IMS/VS /TEST MFS command can be
used to place online MFS terminals into MFSTEST mode during which new

Design and Control of a DB/DC System 2.55

applications and modifications to existing applications can be exercised
without disrupting production activity.

Figure 2-9 provides an overview of major ~FS operations. The circled
numbers reference notes that indicate major distinctions in MFS
processing when the MFSTEST facility is used. The i~~L!~ ~!~~~g! r~~~t
~ty!£! ~~~t~~ ~~i~! provides a complete description of MFSTEST
facility.

PROVIDED
BY MFS OFFLINE ONLINE MFS
APPLICATION EXECUTION EXECUTION TERMINAL
DESIGNER

MFSMessage and Message/ G) 0FormatFormat Control 1--......, Buffer

Statements language
 Pool

Utility

MFS 0
Pool Manager

Service Utility MFS

Control
 Message

Statements
 Editor

Message
Queue

MFSTEST DISTI NCTIONS

1. Can execute concurrently with the I MS/VS online control region only in MFSTEST mode.

2. Replaced by I MSVS. TFORMAT in MFSTEST mode; I MSVS. FORMAT is available as secondary source of
control blocks in MFSTEST mode.

3. The communication line buffer pool is used in MFSTEST mode.

4. Replaced by MFSTEST pool manager in MFSTEST mode.

5. Terminal operator must use /TEST MFS command to enter MFSTEST mode.

Figure 2-9. Overview of ~essage Format Service

The I~S/VS Message Format Service (MPS), d~scribed in the previous
section, is used exclusively to format data transmitted between IMS/VS
and the devices of the 3270 Information Display System. MPS provides a
high level of device independence for the application programmers and a
means for the application system designer to make full use of the 3270

2.56 IMS/VS System/Application Design Guide

I~

f

I~

device capabilities in terminal operations. The I~~L!~ ~!§§ag! E2~m~t
~!~!i£! U~~!§ gYi~! contains a complete description of MFS.

3270 COpy FUNCTION

When an IRS/iS system is defined to include printer components of the
3270 Information Display System attached through a polled asc or SDLC
line, it is possible to allow through IMS/VS an automatic or
operator-controlled hard copy of the vid~o output (or input) to be sent
to a 3210 (3284, 3286, 3281, 3288, or 3289) printer. This hard copy can
be requested through the use of the SCA field in the application
program's output data, the definition of the message (see I~~l!2 n2§2~g!
!::2~nt ~!~!.i£! !l2!!:.!2 g!!i~!), or by operator action. The hard copy
listing is produced on an appropriate printer, which must be attached to
the same 3210 control unit (3271/3214 or 3275/3276) as the display
station containing the information to be copied. If a request is sent
to a terminal that is not defined as allowing the copy function, or that
does not support the copy function (3270 local attachment), the request
for the copy function is ignored.

For a complete description of terminals supporting the copy function
see the I~ 1~lQ Iuf2~m~!i2U ~i2E!~Y ~Y§t!m ~2mE2U!U! Q~2£~iEt12n
1!~nY~!·

The format of the printed output can vary from that on the display
station as a result of blank lines (or null lines), which are ignored by
some models of the 3284, 3286, 3287, 3288, or 3289 printers. In all
cases, the buffer size of the printer must be equal to or larger than
the buffer size of the display station to be copied (3215/328~ Model 3
has no printer buffer and this consideration does not apply).

When printers are attached to a 3271/3274/3276 the IMS/VS system
definition process determines which printers are eligible to receive the
hard-copy output of a copy operation. These printers are called
candidate printers. When a copy operation is requested by the operator
or an application program, the candidate printers are searched in a
predetermined order to find a printer that can be used. The firs~
printer that is not stopped, is not currently printing a message, is not
in exclusive status, and is ready, is used. If the operator made th9
copy request and all printers are busy, the keyboard on the display
station is left inoperable until a printer is available and the message
is successfully copied to the printer. If the copy request is from an
application program and all printers are busy, the message is not
displayed until a printer becomes available. This prevents the operator
from altering the data to be printed before the message is successfully
copied to the printer. If no candidate printers are currently
available, an appropriate error message is sent to the display station
requesting the copy operation. If the copy operation was requested by
the application program or the format description (DE V statement, DSCA
operand), an attempt to send the message will be retried when the error
message is cleared from the screen through the ~essage Advance Function
(see section "3270 Information Display System" in the I~~L!~ QE!~~12~~§
R~I~£~~£~ ~~~~!). If the copy function was requested by operator, the
operator can ready the candidate printer(s) and retry the copy
operation.

Candidate printers for a particular display station result from the
way the physical terminals are defined during IMS/VS system definition.
Candidate printers for a display station must be defined after that
display station but before any other display station-printer groups.
Other display stations can intervene between a display station and its
candidate printers, but other display station-printer sequences cannot
intervene. For example, in Figure 2-10, PTERM 1 might be a 3275 with
its own dedicated printer. If PTERM 2 and 3 allow the copy function,

Design and Control of a DB/DC System 2.57

then PTERMs ~ and 5 will be the candidate printers for these PTERMs. If
PTERM 6 is allowed to use the copy function. then PTERM 1 viII be the
candidate printer for PTERK 6. Note that the candidate printer PTERM 1
will not be used fer copy functions from PTERKs 2 and 3. nor will
candidate printers PTERKs 4 and 5. be used for copy functions from PTERK
6. And. in non-VTAK environments. the copy function is not permitted
across line, linegroup. or 3210-control-unit boundaries.

3275 WITH 3284 MODEL 3 3277 MODEL 1

PTERM 1 PTERM6

...••••............
3271, MAY BE ON SAME
3271 AS PTERMS 2.

3277 MODEL 1 3284/3286 MODE L 1 - 3, 4AND 5

PTERM2 PTERM7D
..

3277 MODEL 2

~

--------------- PTERM 3

.....................

3271

3284/3286 MODEL 2

D PTERM4

3284/3286 MODEL 2

D PTERM 5

Figure 2-10. 3210 copy Function Exa~ple

3284 MODEL 3 PRINTER SUPPORT

The 3284-3 printer. when attached to a 3275. is supported by !MS/V5
as a component of the 3215 terminal. Messages are sent to the two
components on a rotating basis. as with any component-type terminal. If
no messages can be sent to the printer component. messages are sent
continuously to the display component. just as if no printer component
existed. If no messages can be sent to the display component, messages
are sent to the printer as though the display component did not exist.
As long as messages can be sent to the printer. no operator intervention
is required. When a message is sent to the display component while
messages are enqueued for the printer. the operator must intervene to
allow either further display output or printer output. Any situation
(such as a stopped LTERM or an inoperable printer) that prevents the
sending of messages for the LTERK(s) assigned to a particular component
causes message transmission to cease to that component.

2.58 IMS/VS System/Application Design Guide

3210 KASTER TERMINAL SUPPORT

IMS/VS supports a 3210 terminal as a master terminal. A 32~Q master
terminal consists of two 3210 components: a 3210 display
(3275/3211/3216/3278) and a 3270 printer (3284/3286/3287/3288/3289).
The 3215 with an attached 3284-3 is not supported as a 3210 master
terminal.

When IMS/VS uses a 3270 master terminal, all messages are routed to
the display component. Selected system-generated messages, critical to
INS/VS operation, are also sent to the printer component.

A 3270 display selected as the master terminal must have a 24-line
80-column display screen to allow the use of the MFS master terminal
formatting option. For additional details, see "MFS Formatting for the
3270 or SLU Type 2 Master Terminal" in the I~§L!§ ~§§!g~ !:2t!lll §!rvi£~
!!~!:!.§ ~l:!!g~.

IMS/VS provides for attachment of a System/3 Kodel 10 and System/1
using the IRSS (intelligent remote station support) interface. The
interface provides a remote station with powerful tools to control the
flow of data between a System/310 and terminals attached to the
intelligent remote station. This interface provides the definition of
transmission block formats. A primary purpose for these formats is to
define message transmission associated with one or more terminals
attached to the intelligent remote station. These Intelligent Remote
Station formats are described in detail in the I~§L!§ §Y§i!!l ~t2gt!m!l!ng
R~'itin~ ~!nl:!!l·

Conversational processing as well as presetting of destinations are
available to terminals attached to the remote station. IKS/VS provides
the facility of routing transaction responses to the originating source
as veIl as to alternate destinations without application program
involvement. IMS/VS provides a restart facility for the remote station
by logging and retransmission of appropriate block and message
identifiers.

TRANSMISSION BLOCKS

Two types of transmission blocks are defined in the IRSS interface.
The data block type is used to carry message segments. The
synchronization block type is used to carryall other required
information such as shutdovn, restart, status change, ask for output,
and dequeue output.

Each data block contains a block identifier containing, in four
bytes, information that can be used by the remote station to restart its
transmission of data to INS/VS, if it has a restart facility. The
content of this identifier is up to the remote station, but if the same
identifier appears in the first data block received by IKS/VS as was
contained in the restart message, after INS/VS has transmitted a restart
message, IKS/VS consiaers the block retransmitted and vill scan for a
restart point as described below.

Each data segment in a data block contains a message identifier.
This one byte messag~ identifier contains information that enables the
remote station to identify a message or segment within a block. In
addition, IMS/VS appends the message identifier from a segment in error,
if an error message must be transmitted by INS/VS to the remote station
due to an error discovered while processing a segaent. The message
identifier is also contained in restart messages and can be used by the

Design and Control of a DB/DC System 2.59

remote station to restart its transmission of data because it indicates
the last complete message processed by IMS/VS within the identified
block.

The message identifier is used by IMS/VS to scan for a restart point
if a block was retransmitted after restart. IMS/VS scans the received
block until a segment with the same message identifier as in the restart
message, and which is flagged as the last segment, is found. IMS/VS
then starts processing with the segments following the one found, if
any. The entire block is discarded if no segment that meets the above
specifications is found. Cold start messages do not contain block and
message identifiers since none are available, but they imply binary zero
identifiers. Therefore, the remote station should not use a block
identifier of binary zeros in the first block transmitted to 1KS/VS
following a cold start message from IMS/VS, or the block will be
ignored.

A two-byte terminal identifier is used by the IRSS interface for
destination control. The terminal identifier used in communication with
IMS/V5 must be defined when performing the 1MS/VS system definition.
The TERMINAL macro is used for this purpose. IKS/VS treats each defined
terminal identifier as a physical terminal. Since IMS/VS has no
knowledge about the actual physical terminals attached to a remote
station, there is no requirement that the terminal identifier correspond
to a physical terminal address. The number of physical terminals
attached is also independent of the number of terminal identifiers
specified. The terminal'identifiers employed by 1KS/VS IRSS provide a
means of extending all IMS/VS facilities characteristics of a physical
terminal to any logical destination within a station supported by IRSS.
Since IKS/VS has no knowledge of the terminal itself, this designator
can be used to accomplish a variety of application-dependent functions;
for example:

• 	 Routing to specific terminals or devices in the remote station

• 	 Scheduling of specific application programs within the remote

station

• 	 Batch-type terminal support similar to 2110 or 2180 terminals by
proper definition of the remote station I/O components

• 	 Data collection from a variety of I/O devices into a single stream
identified to IK5/VS as a unique terminal for specific IKS/V5
application program processing

Prior to the enqueue of a message received f=om a remote station,
IMS/VS logs the identifiers pertaining to the last block and segment of
the message. This information is also kept in the communications
restart block (CRB) and is restored by restart. The identifiers,
pertaining to the last message enqueued, are transmitted to the remote
station in all types of restart messages except the cold start message.

SYSTEM/3 AND SYSTEM/1 PROGRAM FUNCTION REQUIREMENTS

The IKS/VS support for System/3 and System/7 does not include a
program residant in either computer. The IKS/YS user must supply this
program. The user's program residing in the. System/3 or the System/7
must be able to handle at least the following parts of the IRSS
interface:

• 	 Transmission control

• 	 Data blocks

2.60 IMS/VS System/Application Design Guide

• 	 Immediate shutdown request from I85/VS

• 	 5end output complete message to I85/VS

It is recommended that the program be capable of recogn1z1ng error
messages. All other information provided by IMS/VS can be used or
ignored at the discretion of the user.

!~§L!~ ~Y£i~ ~!~~g!!

IMS/VS system messages contain a message identification whose first
three characters are DrS. The IRSS support extracts the number from the
message, in case of an error message, and builds a synchronization
block. All user initiated messages should be set up so they cannot be
confused with an I8S/VS system message.

TRANSMISSION CONTROL

IMS/V5 receives transmission blocks from a remote station in input
mode and transmits blocks to a remote station in output mode.

IMS/VS may request the line to do the following while in input mode:

• 	 Transmit error messages pertaining to received data.

• 	 Transmit command completed messages pertaining to received commands.

• 	 Return a test message it a terminal has been placed in test mode
through the ITEST command.

• 	 Transmit an immediate shutdown request message.

IM5/VS causes a reverse interrupt sequence to be transmitted if any
of the preceding conditions occur when in input mode. 1M5/VS then
accepts one additional input block after transmission of the reverse
interrupt. An attempt to transmit more than one block results in a
transmission error and the station is logically deactivated.

Error messages and shutdown request messages are transmitted using
the appropriate synchronization block. Command completed messages and
test messages are transmitted using data blocks.

A message transmitted by 18S/VS in output mode must be removed from
the queue through a request from the remote station. This is done to
ensure that no message is removed from the 18S/VS queue until it has
reached its final destination at the remote station. The request to
remove a message is made using the appropriate synchronization block.
This can be performed at any time after the last segment of the message
has been received by the remote station but before any message is
transmitted to 1MS/VS using the same terminal identifier. IMS/vS
retains an output message in progress on the queue if an input message
is received for the same terminal identifier, even if the last segment
has been transmitted but the remove request is not received.

The remote station can transmit an error message to IMS/VS at any
time after the first segment of the message has been received, but
before it is removed from the queue or retained on the queue because of
an input message. An error message causes the logical terminal, on
which the message is queued, to be stopped and a message sent to the
master terminal. The message is retained on to the queue. Error
messages are transmittted using a synchronization block. Messages
transmitted by IM5/VS while in input mode are not queued and, therefore,

Design and Control of a DBIDC system 2.61

L

cannot be removed from a queue. Conseqnently, the remove from queue
message should not be sent.

Any error detected in the interface between IMS/VS and the remote
station results in logical deactivation of the remote station by an EOT.

SYSTEM DEFINITION

The System/3 and System/7 are defined using the STATION macro.
Included in this macro are the station's polling address (if applicable)
and the station's operating modes.

Three operating modes may be defined in any c~mbination:

• 	 Postpone type -- non-postpone type
• 	 Ask type -- non-ask type
• 	 Transmission limit -- no-transmission limit

A System/7 station on a start/stop line has the added definition of
output transmission code modes. The station can be defined to require
all data blocks to be transmitted in PTTC/EBCD code, pseudo-binary
PTTC/EBCD code, or to allow I8S/VS to determine the code.

A station defined as postpone type is started with the postpone
output flag set in all defined terminals. The remote CPU must send the
resume output I/O synchronization block to IMS/VS to receive output.

A postpone type station has the advantage of specific terminal output
requests by the user program in the remote CPU. This function can
conserve resources within that system.

To allow the user's program to control when to receive blocks from
IHS/VS, the station can be define~ as ask type. After the restart
message has been transmitted by IdS/VS, IKS/VS waits to receive an ASK
message before transmitting anything else. The ASK message is sent by a
remote station to inform IKS/VS that the station is ready to receive.
This message is required:

• 	 After IMS/VS has transmitted the NO-OUT message (I/O synchronization
message flag value X'OS') to the remote station.

• 	 Aft~r IMS/VS has transmitted a user specified number of blocks to
the remote station. This count is reset each time an ASK message is
received. Messages sent following a LINE TURN AROUND requested by
IMS/VS are not counted.

IMS/VS transmits blocks according to normal rules after an ASK
message. has been received. When all available output that can be sent
has been sent, IMS/VS transmits the NO-OUT I/O synchronization message.
IMS/VS then waits to receive an ASK message before transmitting any
further output. The transmission of the NO-OUT message can be preempted
by reaching transmission limit. The ASK message is an I/O
synchronization message with flag value X'10'. The NO-OUT message is an
I/O synchronization message with flag value X'08'. The format of these
messages is described in chapter "Communication with Intelligent Remote
Stations" in the IMSLll §.Y2i~ R!:2g~~!l!!ing ~~t~t:~n~~ ~~DJ!~!.

2.62 IMS/VS System/Application Design Guide

L

IMS/VS system definition allows for the specification ~f a
transmission limit for each remote station defined. The transmission
limit is the maximum number of transmission blocks, excluding the block
transmitted following a reverse interrupt sequence and the shutdown
synchronization block, that IKS/V5 will send in output mode between
remote station initiated resets. The remote station uses the ASK
message to perform this function. The ASK message is sent by a remote
station to inform IMS/VS that the station is ready to receive. The
transmission limit defined to IKS/VS should be the number of buffers in
the remote station minus one, because IMS/VS may be required either to
transmit blocks to the remote station while in input mode (see the
description under "Transmission Control" in this chapter) or send a
shutdown synchronization block while in output mode. This message is
required:

• 	 After IMS/VS has transmitted the NO-OUT message (I/O synchronization
message flag value X'08') to the remote station.

• 	 After 1M5/V5 has transmitted a user specified number of blocks to
the remote station. This count is reset each time an ASK message is
received. Messages sent following a LINE TURN AROUND requested by
IMS/VS are not counted.

The transmission limit can range from 1 to 15, or be defined as zero,
indicating unlimited transmission.

The three re~ote CPU operating modes can be defined in any
combination. The presence (or absence) of postpone type does not impact
IMS/VS function. IMS/VS function does vary, however, when ask type
and/or transmission limit are specified or are not specified.

The flowcharts below show IMS/VS function for the possible
combinations of operating modes:

• 	 Basic (non-ask type, no-transmission limit)
• 	 Ask-type, no-transmission limit
• 	 Non-ask type, transmission limit
• 	 Ask-type, transmission limit

Design and Control of a DB/DC System 2.63

Basic (non-ask type, no transmission limit)

*****B1**********
* *
'" TRANSMIT A * IMS/VS wILL START TRANSMITTING OUTPUT

--) BLOCK * AS SOON AS THE LINE IS AVAILABLE AFTER
AN OUTPUT MESSAGE H~S BEEN EN'UEUEC o* * * ******************

v
0*0C1 *0 IMS/VS CONTINUES TR~NSMITTING AS LONG

0* MORE *0 AS THERE IS OUTPUT AVAILABLE THAT ~AY
YES 0* OUTPUT *0 eE SENTo

*---*0 AVAILABLE? 0* I~S/VS TRANSMITS CNLY O~E MESSAGE FeR
*0 0 * A GIVEN TERMINAL IDENTIFIER REGARDLESS

OF THE NUHfER OF MESSAGES ENQUEUED o*" *0 o·
0

NC

V
*****D1**********
* '" I~S/VS TRAN5MITS EDT Te TERMINATE**RESET THE LINE ** TR~NSMI SSICNc

'" '" * ******************

J

2.6~ I"S/VS system/Application Design Guide

*****81**********
* * * TRANSMIT A *

--) BLOCK *
* * * * *****************

.*." C1 *.
.* MORE *.

YES.* OUTPUT *.
---. AVAILABLE? .*

*. . * *. .**. *.*NG

V
*****01********** ,. * * TRANSMIT *
* "NO-GUT" ** MESSAGE *
* * *****************

V
*****E1**********
* *
RESET THE LINF. **
* * * * *****************

IMS/VS ~ILL START TRANSMITTING GUTPUT
AS SOON AS THE LINE IS AVAILABLE AFTER
AN "ASK" FOR OUTPUT MESSAGE HAS BEEN
RECEIVED.

I~S/VS CONTINUES TRANSMITTING AS LONG
AS THERE IS OUTPUT AVAILABLE THAT MAY
BE SENT.
IMS/VS TRANSMITS ONLY ONE MESSAGE FGR
A GIVEN TERMINAL IDENTIFIER REGARDLESS
OF THE NUMBER OF MESSAGES ENQuEUED.

IMS/VS TRANSMITS A SYNCHRONIZATION
BLOCK INDICATING TO THE REMOTE CPU THAT
NO OUTPUT MESSAGES. THAT MAY BE SENT.
ARE CURRENTLY AVAILABLE.

IMS/VS TRA~SMITS EGT TG TERMINATE
TRANSMISSICN.

Design and Control of a DB/DC System 2.65

Non-ask type, transmission limit

*****81**********

** TRANSMIT A ** IMS/vS WILL START TRANSMITTING CUTPUT

~-> BLOCK * AS SOON AS THE LINE IS AVAILABLE AFTER
AN OUTPUT MESSAGE HAS BEEN ENQUEUED.* 	 * * 	 * *****************

v
.*.

C1 *. IMS/VS CONTINUES TRANSMITTING AS LONG
.* *. AS THER~ IS OUTPUT AVAILABLE, THAT MAY

.* REACHED *. YES BE SENT! UP TO A USER SPECIFIED NUMBER
.TRANSMISSION .---* CF TRAN~MISSION SLeCKS.*. 	LIMIT? .* IMS/VS TRANSMITS ONLY ONE ~ESSAGE FOR

. . A GIVEN TERMINAL ICENTIFIER REGARDLESS
*. *.*

NO
OF THE NUMBER OF MfSSAGFS EN'UEUfD.

. *.
v

01 * • • * 	~ORE *.
Y~S .* OUTPUT *.

---. AVAILABLE? .*
*. . * *. . * *. *	. * NC

(------ ­

V J
*****E1**********

* * IMS/VS TRANSMITS EOT TO TERMINATE
**RESET THE LINE ** TRAt-.SHISSION.

* *

* 	 * *****************

I

2.66 IKS/VS System/Application Design Guide

Ask type, transmission limit

*****81**********
** TRANSMIT A **

--> BLOCK *
* * * *•••*.*••*.****•••

v
C1 *... •••

"'.
•• REACHED "'. YES

.TRANSMISSION .---**. LIMIT? .'"*. .*•• .*
i"C
V.*.

01 *••* MORE *.
YES.* OUTPUT "'.
--•• AVAILABLE? .*

*. .**. .•
*. *.*NO

IJ
..*El********·*
* * '" TRANSMIT '"
• "NO-OUT" •
'" MESSAGE '"
* '" ••"'••*****••*****

(----------*
V

*****F1**···**···

•• •* *RESET THE LINE * * •* •••••••••••**•••••

I

IMS/VS ~ILL START TRA~SMITTING OUTPUT
AS SCaN AS THE LINE IS AVAILABLE AFTER
AN nASK" FOR OUTPUT MESSAGE HAS BEEN
RECEIVED.

IMS/VS CONTINUES TRANSMITTING AS LONG
AS THERE IS OUTPUT AVAILABLE} THAT MAY
BE SENT, UP TO A USER SPECIF ED NUMBER
OF TRANSMISSION BLOCKS.
IMS/VS TRANSMITS ONLY ONE MESSAGE FOR
A GIVEN TERMINAL IDENTIFIER REGARDLESS
OF THE NUMBER OF MESSAGES ENQUEUED •

IMS/VS TRANSMITS A SYNCHRONIZATICN
BLCCK INDICATING TO THE REMOTE CPU THAT
NO OUTPUT MESSAGES, THAT MAY BE SENT,
ARE CURRENTLY AVAILABLE.

IMS/VS TRANSMITS EOT TO TERMINATE
TRANSMISSION.

Design and Control of a DB/DC System 2.67

CONSIDERATIONS UNIQUE TO SYSTEM/7

IKS/VS requires synchronization blocks to be transmitted using the
pseudo-binary PTTC/EBCD transmission code. This code is described in
the ~I~1~~Ll 19n£1ion~1 ~h~£~£1~ri2!ic2 ~ng!!, GA34-0003.

Data blocks are transmitted using either the standard PTTC/EBCD
transmission code or the pseudo-binary PTTC/EBCD transmission code.
IKS/VS accepts either code on input and scans the output data to
determine if the block contains any characters that cannot be
transmitted using the standard PTTC/EBCD transmission code. If such
characters are found, the block is converted to pseudo-binary PTTC/EBCD.
Otherwise, the message is translated as standard PTTC/EBCD transmission
code.

IMS/VS allows the user to specify at IMS/VS system definition, on a
per station basis, that all data blocks should be transmitted in one of
the above transmission codes. If all data blocks are to be transmitted
in the standard PTTC/EBCD code, all characters that cannot be
transmitted in that code are replaced by a colon.

The output buffer size specified by the user at IMS/VS system
definition is doubled to allow for conversion to pseudo-binary
PTTC/EBCD, unless the user specifies that all data blocks are to be
transmitted using the sta'ndard PTTC/EB'CD transmission code.

IMS/VS allows a System/7 to be attached on a nonswitched contention
line or a nonswitch~d polled lin~. A polled line may be polled using
programmed polling or autopoll.

IMS/VS can control a polled line and therefore initiate output, if
allowed to, at any time data transfer is not taking Rlace without a
potential loss of data and without System/7 intervention. To try to
avoid errors caused by loss of data on a contention line, some of the
responsibility for keeping communication open is dependent upon the
System/7 program. IMS/VS issues a read when output is not available to
send and this read must be terminated by transmission from the System/1.
Since there is no indication of whether, after receiving a block, IKS/VS
intends to transmit or return to read, unless the System/7 is defined as
ask type, it is recommended that a System/7, attached on a contention
line, be defined as ask type. The receipt of the cutput not available
(NO-OUT) message informs the System/7 program that I~S/VS, immediately
following the completion of this message, is issuing a read.

~YEE££1ed ~I~t~~Ll ~~£ ti~~ !IE~2

IMS/VS allows a System/7 to be attached on a nonswitched contention
or polled line. IMS/VS is defined as the controlling station. All
transmissions must be in BSC EBCDIC transparent mode.

:fI.~!!22 £2!lll21!i!lCl ~I~illLl

Since there is no facility to prevent an IMS/VS shutdown checkpoint
while a process controlling System/1 is active, the System/1 should
transmit a message to the IMS/VS master terminal operator, when
communication is started, informing the operator that a process
controlling machine is attached and that the operator should not issue a
shutdown checkpoint until informed that the process controlling machine
is either stopped or stoppable.

2.68 IMS/VS System/Application Design Guide

• • • •
• • • •

• • • •

• •

• •

• •
• • • •

• •
• • • • •••••••••••••••••

The flowchart below shows how IMS/VS processes a transmission block
received from a System/7 •

B2••• .0.• ·0
.0 PREVIOUS .0 YES

__---------------------------).. BLOCK TO o..*---.•• PROCESS?
-. .*•. o· r

·..··C2······.···
.-------··--------).RECEIIiE A BLOCK.j........

...~ .002c. .0
YE S 00 EOT ••
----.. RECEIVED? ••

*. o·*0 .*
*. o·

i<~~--------
•·····E2.·····.··.
o PROCESS THE •
• BLOCK •j

V

........
•

•••••Fl. •••••••• F2.·0 .0
• • •• ERROR .0
• MAKE READ. NC.. MESSAGE ••
• CONTINUECACK-O .<--------*. GENERATED? ••
• OR ACK-ll. .0 .•·•••••••••••••••.•. ·0.··0 .*iYES

.····G2•••V ··
• MAKE READ •
• INTERRUPT (RVI •
• SEQUENCE I •

........j::::::::_-_.

II
····.HZ··••••••••
• TRANSMIT ERROR.
• MESSAGE •j........

0·0
J2 ••

•• MORE ••
•• ERROR •• YES

•• MESSAGES ••--­
•• NEEDED? o.·0 .­*0 o.

i"
.....KZ······.· ..

----------------------------.RESET• THE LINE.•

IF AN ADDITIONAL BLOCK WAS TRANSMITTED
WHEN IMS/VS SENT RVI IT WILL
BE PROCESSEDo

THE INPUT SEQUENCE IS STARTED
IMS/VS RECEIVES A BLOCK FROM

NOW

WHEN
A SYSTEM/30

THE INFORMATION CONTAINt8 IN THE RECEIVED
BLOCK IS PROCESSED. ONE II. MORE ERROR
MESSAGES MAY eE GENERATED AS A RESULT
CF THE BLCCKS CONTENTS.

IMS/VS MAKES A READ CONTINUE CAUSING
AN ACK-D OR ACK-l TO BE TRANSMITTEO IF AN
ERROR ME SSAGE WA S NOT GENERATEO.

l:~~Y~GM~~E~vt ~~a3E~~IE~~U&I
TRANSMITTED IF AN ERROR MESSAGE WAS
GENERATED. AN ADDITIONAL INPUT BLOCK
MAY BE RECEIVED AT THIS TIME•

1M SIllS TRANSMITS THE ERROR MESSAGE
USING A SYNCHRONIZATION BLOCK.

Design and Control of a DB/DC System 2.69

L

CONSIDERATIONS UNIQUE TO SYSTEK/3

IMS/VS snpport of the System/3 is designed to provide a high degree
of flexibility in function but 1S consistent with the main storage
constraint inherent in smaller computers.

While IMS/VS IRSS does not require it, it is anticipated that
System/3 programs designed to interface with IMS/VS will take advantage
of the ask-type station facility described under "System Definition."
This facility allows the system/3 programmer to allocate his main
storage resource only when he is ready to accept data from IMS/VS: thus
alleviating the requirement for a larger, permanently-dedicated buffer
area.

Transmis~ion of data in the EBCDIC transparency mride allows all types
of data to be transmitted from an IMS/VS application program. This
could save additional storage or programming in the System/3.

If the System/3 is used as a subhost for locally attached terminals,
using either the MLTA (for start-stop) or KLKP [for BSC) features of the
System/3 Disk System Control Program, the IRSS provides each of th~se
terminals direct access to an IMS/VS system with the additional
advantage of a common I/O interface.

Though IMS/VS IRSS supplies a large amount of status type information
to the System/3, the System/3 programmer does not need to design his
application to process all types. Consequently he can realize a savings
in main storage or programming within the System/3.

To fully utilize the features provided by IRSS to the System/3, the
System/3 programmer should design his application to use the Disk System
Control Program with the BSCA Multiline Multipoint feature. This
support allows the user to directly control the line discipline and to
recognize many types of responses from I"S/VS.

To utilize ~L~P support in the System/3 to communicate with IMS/VS
through the IRSS, the System/3 user should:

1. 	 Define two BSCA files, one for transmit and one for receive.

2. 	 The transmit file should be single buffered to prevent more than
one block being transmitted after a reverse interropt (RVI)
indicator has bee~sent by IMS/VS. The reverse interrupt
indicator must be defined and recognized for this file.

3. 	 It is recommended that the System/3 user utilize the get-block
and put-block modes of the GE~ and PUT macros. This is
recommended because IKS/VS IRSS data structures do not normally
lend themselves to the record separator mode of deblocking
(unless of course the data to be transmitted can be guaranteed
not to contain a particular character).

4. 	 If multiple System/3s are to be multidropped on a single
communication line, it is important for the System/3 application
program to take the necessary steps to assure a negative response
to polling when communication is inactive between the System/3
and IMS/VS. This usually requires the issuance of a GET type
operation in the System/3 and the use of the cancel function when
the next direction of transmission is to be a PUT type operation
for the System/3.

2.70 IMS/VS System/Application Design Guide

• •

•••••••••••••••••

• •

• •••••••••••••••••

L

The flowchart below shows how I"S/VS processes a transmission block
received fro. a SJste./3.

*****81**********
* * * **-->*RECEIVE A BLOCK*
* ** •........j........

0·0
Cl .0

0* .0
•• EOT YES.0

•• RECEIVED? 0.---­
*0 o.

*0 o •
• 0 c*

j"
·*•••01·****·****
** PROCESS T"E **
• BLOCK ** •
• *......•.\........

El
C .0 *•• * ERRCR .0

Io. MESSAGE *. YES
. GENERATED? .---*

.0*••*••
0 0

j"
.....Fl··········
* MAKE READ •<--. CONTINUE *
.'CIRCLE Y ACKI •
***.*.**•••••••••• *

.----------­
~

•••·G1.·····**·
• MAKE ~RITE •
* POSITIVE *
* ACKNOWLEOGE *
• 'CIRCLE D ACKI •
* *

<----------*
V

.H1···**····.
• TRANSMIT ERROR *
• MESSAGE * * •
* *........j........

Jl
0·0 *.

0* MORE *.o. ERROR *. YES
. MESSAGES 0.--­. NEECEC? o.

0 0.0 0* r
*.***K1*··•• ·****
*• **

---*RESET THE LINE.
* **

THE INPUT SEQU~~CE IS STARTEC WHEN
IMS/VS RECEIVES A BLOCK FROM A SYSTEMI1.

ASK TYPE: IF ASK REQUEST RECEIVED, OUTPUT IS
~~~lE!~I~~~A~~3~~~0 OTHER~ISE, ~C~~_L IMS/VS 

NON-ASK TYPE: IF TRANSMISSICN LIMIT NOT REACHED
OR NOT SPECIFIED, OUTPUT IS SENT IF AVAILABLE.
CTHERWISE NORMAL IMS/VS PROCESSING RESUMES, 

IMS/VS MAKES A REAC CONTINUE CAUSING
A CIROLE Y TO BE TRANSMITTED IF AN ERROR
MESSAGE WAS NOT GENER_TEO. 

IMS/vS MAKES A WRITE POSITIVE
ACKNOWLEDGE CAUSING A CIRCLE D TO BE
TR'NSMITTED If 'N ERkOR MESSAGE WAS
GENERATED• 

IMS/VS TR_NSMITS THE ERROR MESSAGE 
USING A SYNCHRONIZ_TION BLOCK. 

IMS/VS TRA~S~ITS EDT TC TERMIN_TE
TRANSMISSICN, 

DeSign and Control of a DB/DC System 2.71 



SECURITY AND PRIVACY 

It is the objective of IKS/VS to provide safeguards through which 
access to data may be limited. The ,mechanics of the safeguard system 
can be used to admini~er security and privacy policies. Administration 
is accomplished by careful interpretation of policy in system and 
application design, and into parameters and control statem@nts used for: 
system definition, the security maintenance utility, program 
specification block generation, data base description generation, and 
statistical analysis program. 

IMS/VS SECURITY WITH SMU 

The basic level of security is called default terminal security. It 
exists even if the us~r does not choose to use the additional Recurity 
facilities provided by IMS/VS. 

To establish additional system security measures, the IMS/VS Security 
Maintenance Utility (SKU) can be run after the IMS/VS system definition 
is completed. SMU optional security measures include the following 
levels of security: 

• Terminal Security 

• Password Security 

• Resource Access Security 

• Transaction Command Security 

• Signon Verification Security 

MVS users can also specify use of the RACF program product, if desired. 
For more information on security see the section, "Establish IMS/VS 
System Security (Optional)" in the !~~L~ In~tslla!i2U Qg~~2. Security
requirements may be redefined at normal restart, subject to limitations 
imposed by system definition, by the master terminal op~rator. The 
security modules specified by the master terminal operator or system 
definition will be loaded when IMS/VS is sta~ted. Security enforcement 
in IMS/VS involves the use of various tables or modules; these can be 
chosen or not, but they cannot be selectively replaced without rerunning 
SMU. 

It is recommended that the security measures be designed to require 
minimal master terminal operator action in normal situations. Although 
all documentation emphasizes the identity and importance of the master 
terminal, there are only a few characteristics that make it unique in 
the DB/DC system. It is the only logical terminal to which messages
about the operational status· of the systam are automatically routed. It 
and the System 370 console are the only terminals, by default, through 
which the DB/DC syste~ can be restarted. The control that the master 
terminal exercises over the system is made possible through the IMS/VS 
command language. 

A thorough examination of the commands. the system to be protected, 
the requirements of users, and the objectives of your security and 
privacy policy will provide guidance in the distribution of authority to 
use the command language. Refer to the !~2L!~ QE2£at2~~~ R2!2~2n£2 
~ang~l for a complete description of the commands and the command 
language. 

2.72 IMS/VS Sytitem/Application Design Guide 



Terminal security restricts the entry of transactions and commands to 
specified terminals. Link security (a subset of terminal security) 
allows the addition or deletion of transaction code security 
requirements for the Mse links in a multiple IMS/VS system 
configuration. 

Through the entry of transaction codes, the terminal operator 
identifies the destination of the text or data that follows. When one 
examines the syntax of input messages, as defined by ISS/VS, it can be 
seen that all entries from terminals are classified by means of an 
identity code. In general, there are two levels of recognition. The 
first level establishes whether the entered data is a command by 
reserving the initial character /. The first character of every input
segEent is examined for a /. If one is present, the segment is treated 
as a command seqment. Input destined to a program or logical terminal 
must not contain a / as the first character of any segment. The second, 
or operational, level verifies that the identity code is known to 
ISS/VS. If it is known, then it and the text that follows are 
classified based upon the attributes of the identity code. If the code 
was defined during system definition as a transaction code, the message
is routed to the application program which is to process it. If the 
code was defined as a logical terllinal name, then the messa1e is routed 
to the physical terminal to which that logical terminal is attached. It 
becomes a message switch operation. 

The possible contents of a message destined for an application 
processing program, the actual functions which ara performed by that 
program, and the content of any output subsequently generated by that 
program are unknown to IMS/VS. Because applications may deal with 
critical or private matters, safeguarding tools are provided by the 
system to help prevent unauthorized entry of transaction codes, and 
hence unauthorized use of appliction program functions. 

The entry of each transaction code can be limited to anyone or any 
group of logical terminals in the system. Depending on the ratio of 
secured to unsecured transaction codes, the authori~ation plan that is 
developed can be inclusive or exclusive. To use the Security 
Maintenance Utility effectively, the operational plan must be inclusive. 
That is, you must specify the transaction codes which are to be secured. 
There is no provision for specifying those which are not to be secured. 
There are, however, alternative views of the plan that can be helpful. 
You can look at the transaction codes as being authorized for entry from 
a list of logical terminals. Or, think of each logical terminal as 
being authorized to enter a list of transaction codes. Either viewpoint 
may be translated easily into the operational input statements that 
describe what you want to do with the Security ~aintenance Utility.
However, the number of input statements can vary substantially between 
the two viewpoints. If, for example, you have one transaction code you 
want to authorize from five logical terminals, six input statements are 
required. Conversely, if you specify five logical terminals and 
authorize the same transaction code from each, ten input statements are 
required. 

Password security is used to restrict specified IMS/VS resources to 
someone who supplies the correct password. 

Design and Control of a DB/DC System 2.73 



passwords can be used instead of, or in addition to, logical 
terminals to limit transaction entry. The security provided by 
passwords can be specified and viewed in the same manner as that 
provided through logical terminals. When a transaction is defined with 
SKU as requiring a password, IKS/VS will not allow the user to execute 
the transaction unless the password is specified with the transaction 
code. 

Command functions can be protected against unauthorized us~ in four 
ways: by permitting the command verb to be entered only from certain 
logical terminals, by requiring that a password be entered with the 
command verb, or by a combination of both, or with transaction command 
security. Some objects of commands can be protected against 
unauthorized action by requiring a password to be entered with the 
parameter. Th~ protection of the command object is controlled by 
assigning a protected attribute to each member of the class of objects 
to be protected. . 

For example, to require a password be entered to alter the status of 
logical terminals (LTERK) 111, 222, and 333. one must specify to the 
Security Maintenance Utility a password for each terminal. If PTERMs 
11', 222, and 333 are the only LTERMs in the system and all are 
protected by the salle password, then the object keyword is secuI;ed 
throughout the system. If, however, it is only necessary to protect 
LTERM 222, then the LTERK keyword can be used without a password on 
LTERKs 111 and 333. 

Another way to look at using safeguards to protect the command 
language is by individual user profile. Equate passwords to user signon 
or identification codes. An authorization plan can be developed that 
authorizes each user to use, individually, a set of command functions. 
That authorization could be localized geographically through restricting 
entry of the cOllmand verb to a group of logical terminals. 

A class profile system could be used. For example, password x 
validates the use of four command verbs, YIYY validates three different 
command verbs. ZZZZ however is valid not only for the com.~nds 
protected by x and IIYY, but also authorizes the holder to enter an 
immediate DB/DC system shutdown command from any terminal. 

Resource access security limits the set of IRS/VS resources which may 
be used by dependent regions that are authorized to access a specific 
Application Group. This group represents a set of user defined IMS/VS 
resources (PSBs, TRANs, and LTERMS). 

The IMS/VS SECURITI macro allows the user to specify during system 
definition whether or not resource access security will be included in 
the system, and whether the RACF product or a user exit routine will be 
used for the authorization validation. The specifications may be 
overridden via an I~S/VS procedure parameter. RACl or a user exit 
routine, depending on the usar specifications, will validate the 
dependent region authorization to use the Application Group. The same 
parameter (ISIS) can specify no resource access security checking be 
done. Subsequently, IKS/VS will ensure each time a request is issued 
that the TRAN, PSB, or LTERM is defined in the authorized Application 
Group. SMU enables the user to define the Application Groups and to 
indicate which resources are available for each group. 

2.74 IMS/VS System/Application Design Guide 



SHU can be used to designate transactions to be passed to an 
application program which is allowed to issue a subset of !MS/VS 
operator commands. The online application programs that process these 
transactions cause IMS/VS operator commands to be executed and can 
receive status on the execution of the commands. In the absence of 
specifications authorizing one or more of these commands, no transaction 
processing programs are allowed to enter IMS/VS commands. For more 
information on how to authorize transaction processing programs to issue 
IMS/VS commands, see the section, "Establish IKS/VS System security 
(Optional)," in the !!1.2L!~ I!l§.t!!.!!!ti2!l ~l:!i!l~. In addition, see the 
"Automated Operator Programming" chapter in the I~~L!~ ~y§.!~~ 
g~2g~!!~i~g R~t~~!l2! !1!!!ll:!~!. 

Signon verification security identifies a particular user to IMS/VS 
as being Fresent from the /SIGN ON command entry until a /SIGN OFF 
command is enteren to remove the association created by the first 
command. When transaction authorization is in effect for a physical 
terminal, as each transaction is entered from that terminal, a check is 
made to determine whether or not the transaction is authorized to the 
userid curreatly logged on. 

The IMS/VS security macro allows the user to specify during system 
definition, whether signon verification only. or together with 
transaction authorization security will be included in the system. Both 
the user verification and the transaction authorization can be done by 
the RACF product, user exit routines, or by both. The specifications 
may be overridden via IMS/VS procedure parameters or /NRESTART command 
specifications. Since transaction codes are checked against the userid 
of the terminal operator ent~ring the request" transaction authorization 
security requires user verification through the ISIGN ON command be 
performed as well. For information on user exit routines see "DC User 
Exi t Routines" in the !!1~L!~ ~y§.t~!!l2 ~I2g~!!!!l~j.Jlg B~f~£~!l£E ~!!!!l:!~!. 

The /SIGN command provides a means of identifying a particular user 
to IMS/VS as being present at the physical terminal. When a signon is 
processed, IMS/VS will verify through the RACF product, a user exit 
routine, or through both (depending on the system definition 
specifications and the IMS/VS start-up parameters). the user 
identification entered. Upon verification, IMS/VS creates a record on 
the IMS/VS system log associating the user with the physical terminal 
and records in a control block that the terminal is signed on to a 
specific user identification. 

If transaction authorization is included, as each transaction is 
entered, the RACF product, a user exit routine, or both validate the 
transaction authorization for the user identification logged on. With 
program-to-program switching through the DL/I change call or by means of 
changing the transaction code in the SPA, the RACF product, the user 
exit routine, or both are also invoked for transaction level 
authorization checking. The same applies when the transaction code is 
changed by means of the /SET, /LOCK, or /UNLOCK commands. In addition, 
as the application program associated with the transaction produces data 
base changes. the User identification is logged with the change records 
on the IMS/VS system log to identify the changes performed by a specific 
user. When the /SIGN OFF command is issued, the session is terminated 
and another record is written to the IMS/VS system log. For more 
information on the /SIGN command see the I~§L!§ Q~~!!t2~~§' R~I~£~n£E 
~!!~!!l. The identification of the physical terminals that require signon 
verification is done by the Security Kaintenance crtility. For more 
information on the SHU, see the I~.2L!~ !!l§.tal!!!!i2!! ~l:!1~~. 

Design and Control of a DB/DC System 2.75 



Consideration should be given to physical security measures that 
support system security measures. These measures may include: 

• 	 Controlled access to and egress from the computer area. 

• 	 Authorization of l)P operat.ions and non-operations personnel in the 
computer and certain terminal areas. 

• 	 Separately controlled areas for media such as tapes, disks, cards, 
files, or other media. 

• 	 Control of computer forms. 

These are some of the considerations for physical security of a 
computer facility. Physical security needs are likely to be dynamic and 
merit periodic review and adjustment. 

Q!~H~l~I ~IE.~§§ 

Il'IS/VS does not provide a software function to blank out or 
obliterate passwords from the terminal device display media after they 
are accepted. However, Message Format Service (MFS) facilities enable 
users to define fields with a non-display attribute (for 3270 display 
devices). IMS/VS removes passwords from messages prior to recording 
them on the log. 

Most hard copy key-driven terminals have a feature which permits 
characters to be entered without displaying them. This feature is the 
bypass feature. Ordinarily, a terminal with this feature is operated 
continuously in display or bypass mode. If passwords are to be used to 
support security requirements, this feature is a necessity. 

The bypass feature can be used operationally, that is, by 
establishing standards for protection not only of passwords, but also of 
command verbs, commands, transaction codes, and text. 

Through centralized control over the content of Data Base 
Definitions, Program Specification Blocks and the libraries in which 
they reside, an effective scheme of protE ~ion attributes can be 
assigned to data. This assignment is made relative to each application 
program which has access to the data base. The smallest unit of data 
which may be so protected is the segment. The basic actions that can be 
authorized are: 

• 	 None no access to segment type. 

• 	 Read sagment type may only be retrieved. 

One or more of the following additional actions combined with read 
can be authorized: 

• 	 Add -- new occurrences of segment type can be inserted. 

• 	 Update an existing occurrence of a segment type can be replaced. 

• 	 Delete an eXisting occurrence of a segment type can be deleted. 

2.76 IMS/VS System/Application Design Guide 



Although access authorization is declared at the program level, 
enforcement of the authorization can be made to appear at the 
transaction code or individual hierarchical level of a data base. If 
only one transaction code is associated with a particular program, then 
the access authorization has been promoted to the transaction level. 
Through use of passwords or through use of the transaction code and 
terminal bypass feature, access authorization can be promoted to the 
individual level... 

For information about specifying segment access authorization, refer 
to npSB Generation" in the Itt§L!~ Qtili~i~2 E~~~~~g~~ ~sn~!l. The 
control statements through which segment data access is authorized are 
PCB and SENSEG. 

3270s on a switched line can have their hardware IDs verified for 
authorization to access I"~/VS by use of the IDLIST macro. For 
additional terminal security information concerning 3270 switched 
terminals, refer to the IDLIST Macro Description in the I~§LY~ 
In~1ail!1i2n ~yid~. 

VIOLATION CONTROL 

IMS/VS records security violation attempts on the IMS/VS system log 
tape. The violations recorded are: 

• Input message from an unauthorized terminal 

• Password omitted when one is required 

• Password incorrect for authorization 

• Misspelled password 

• Rejected Signon 

• Unauthorized DL/I CMD call from application program 

IMS/VS rejects invalid input messages by sending a message to the 
terminal entering the message, and logging the violation. 

The log tape provides an audit trail to look into possible security 
problems. If more immediate action is desired, the user can request 
notification to the master terminal at the time of violation. Since the 
number of violations for a large network may be high due to misspelled 
passwords, transaction codes, commands, etc., the user can specify a 
threshold for notification such that the master terminal is not notified 
until the specified number of violations occur without a valid input 
from a given terminal. This eliminates or reduces the number of 
notifications due simply to operator error, while still providing 
evidence of real attempts to avoid security safeguards. 

In§1!11!tiQg R~§£Qu§!~!li1i~~ 
IMS/VS security functions only as well as the installation controls 

over the environment. IMS/VS assumes nothing about the attributes of 
the caller and relies on the optional security tables, user exit 
routines, and RACF specifications to determine what resources the caller 
can access. 

Design and Control of a DB/DC System 2.11 



By using the Security Maintenance Utility (SKU), the user can specify 
several levels of security: terminal, password, transaction command, 
resource access, and user verification. The output of the SKU is in the 
form of security tables and matrixes that are stored in the IKSVS.MATRIX 
data set. 

The IMSVS.MATRIX data set and the I"SVS.JOBS data set, which contains 
IMS/V5 related jobs, may be secured by the user assignment of PACF 
password protection (MVS only). For more information on security 
implementation, see the !H~l!~ In2t~11~tlQn ~g!de~ 

1"S/VS DC MONITOR 

The I"5/VS DC monitor is a tool for collecting performance data ~o 
investigate specific application designs, data base designs, and 
resource allocations. It consists of a monitor module, and a Konitor 
Report Print program. When activated, it analyzes and records the 
internal activities of the IMS/VS DB/DC system. The monitor report 
print program is processed offline to produce reports that summarize and 
categorize, at various levels of detail, the information recorded by the 
monitor module. The actions required to activate the monitor module are 
described in the !~~l!~ QE~£~tQ£!2 R~I~~~n£! ~~nY~l. The monitor report 
print program is described in the I~~l!~ Yt!1!ti~2 R~I~~~n£! ~~nY~l. 

The monitor module collects data from IMS/VS DC control blocks during 
operation of the online sys~em, with minimum interference to the system, 
and records the data on an independent data set. The monitor remains 
resident and is activated and deactivated through master terminal 
control. 

Following are recommendations for use of the IMS/VS DC monitor: 

• 	 Collecting data -- The I"S/VS DC monitor enables an 1"5/VS DC user 
to collect performance data to assist in analyzing an existing 
IMS/VS online system. The amount of data collected and the analysis 
time to understand the report output suggest short traces during 
various time periods. Reports produced from profiles of a time 
period considered as normal can be used as a profile and compared 
with reports produced during a time period characterized by unusual 
responses. 

• 	 Tuning system The IMS/V5 DC monitor can be used to quantify the 
effect of actual changes to data base structures, program 
characteristics, data set placement, pool sizes, number of message 
processing regions, transactions, and message region class 
scheduling. 

• 	 Testing application -- In the final testing of new or revised 
applications, the IM5/VS DC monitor can be useful in validating the 
internal operation of the programs and data bases. For example, the 
programmer thought a specific DL/I call could be satisfied with a 
single I/O retrieval, yet the DL/I call report indicated a large 
data base scan as shown by many IWA!Ts. Investigation of such items 
could assist in det~rmining whether a new or revised application 
meets the performance objectives. Data contained in the reports may 
also assist in defining the resources required by an application 
program. 

2.78 IMS/VS System/Application Design Guide 



L 
• Integrating applications -- The IMS/VS DC monitor can be used to 

determine the effects on the IMS/vS production system as new 
applications are merged from a test system to the production system. 
One of the basic problems in integration of new applications into an 
existing system is the requirement of re-tuning options in the 
production system, such as data set placement and buffer pool sizes, 
as discussed above in the tuning of the system. 

• 	 Communicating criteria If the above recommendations are 
implemented, then data is collected to establish a performance base, 
profiles are available for the problem periods, the system is tuned 
for the production and test systems, and applications are tested and 
merged into the IMS/VS production system with an understanding of 
their effects and interactions. Thus, the IMS/VS DC monitor reports 
can be used as a basis to communicate and define performance. 

This section describes IMS/VS sensitivity to specific characters when 
users attempt to send and receive nongraphic data in IMS/Vs messages. 

EDITING OF OUTPUT MESSAGE SEGMENTS 

For output message segments that are edited by the Message Format 
Service (MFS), only graphic data (X'qO' through X'FE') is allowed in the 
output message presented to the device. Nongraphic characters, if 
present in the output message, are changed by MFs before the data is 
presented to the device. Device control characters HT, CR, LF, NL, and 
BS are changed to X'OO' for 3270 video. For all other devices, these 
characters are changed to blanks. All other nongraphic characters are 
changed to blanks. 

If the Distributed Presentation Management (DPM) option of MFs is 
used for 3600 and 3790 controllers, the user may specify GRAPHIC=NO in 
the SEG statement. Nongraphic characters, if present in the output 
segment with GRAPHIC=NO specified, are presented unchanged to the remote 
program. 

For programmable terminals supported through VTAM, IM5/VS may insert 
function management headers (FMHs) and may perform additional editing 
fo~ device control sequences when splitting a single IMS/VS segment into 
multiple transmissions. 

EDITING OF INPUT MESSAGE SEGMENTS BY MFS 

If MFS is defined for a device, the user should be aware of the 
following considerations: 

• 	 Tha user should specify GRAPHIC=NO in the sEG statement to prevent 
uppercase translation on a segment if the destination requests it 
with the EDIT=ULC specification on the system definition TRANSACT 
macro. 

• 	 For the first input record from a 274x, 3600, sCS1 or SCS2 device, 
or from DPM-An, the segment is discarded if the last characters of 
the segment are two asterisks (**) or two asterisks followed by NL 
(X' 15') or IR S (X' 1E') • 

Design and Control of a DBIDC System 2.79 



• 	 The presence of two slashes (II) at the beginning of a message 
segment is considered an escape sequence. (See the section "Input 
Message Formatting" in the chapter "Message Formatting Functions" in 
the Itt~L!~ tt~22ag~ l2t!!! ~~txi£~ Q2~~~~ 2~i~~ for additional 
information. ) 

• 	 If the card feature is defined for an SCSl device (with the CARD= 
operand in the DEV statement), the input from an SNA character 
string 1 (SCS1) device is scanned for the secure string reader (SSR) 
code and the code is removed. 

No!~: The definition of the MFS delete characters (LDEL= operand in the 
DEV stat'ement) and field tab character (FTAB= operand in the DEV 
statement) for ~FS-supported devices, except the 3270, can direct the 
editing of input message segments. Refer to the Itt~L!~ ~~~!g~ lQ£!!! 
~~£~i£~ Q~£!§ 2~ig~ for information on using these specifications. 

EDITING OF INPUT MESSAGE SEGMENTS BY THE BASIC EDIT ROUTINE 

The following editing is performed if the IMS/VS basic edit routine 
is used: 

• 	 For the first segment of an input message when a terminal is U2! in 
conversation mode, leading characters less than X'41' are removed. 
For other than the first segment or when a terminal is in 
conversation mode, l~ading charac~ers less than X'40' are removed. 

• 	 If a terminal is not in conversation or preset mode, a left 
parenthesis within the first nine positions of the first segment 
indicates a password. The left and right parentheses and the 
passw~rd are removed, and the segment is compressed. 

• 	 An X'26' character that appears as the last character in a segment 
is removed. 

• 	 Two asterisks (**) or two asterisks followed by NL (X'lS') or IRS 
(X'1E') that appear as the last characters of a segment cause the 
entire segment to be discarded. 

• 	 For unbuffered keyboard devices (for example, 1050, 2740-1, 2741), 
backspace (X'16') characters are treated as character-delete 
indicators. Each backspace character and the preceding input 
character a~e removed from the segment. This editing is optional 
for the 3767 and 3770 consoles. 

• 	 If the destination of the input message is a transaction, an NL 
(X'tS') character appearing at the end of a segment is removed. 

• 	 If a device is in preset mode, the transaction code is added to the 
first segment. 

• 	 For input from 3270 devices, the attention identifier (AID, and 
cursor address are removed, and all start buffer address (SBA) 
sequences are changed to blanks. 

• If the first character of any segment is a slash (I), the entire 
input message will be treated as a command. 

2.80 IMS/VS System/Application Design Guide 



COMMON EDITING PERFORKED BY IMS/VS 


L 
Certain common editing is done by both MFS and the basic edit routine 

for any device that enters an input message. 

• 	 A slash (/) used as the first character of the first segment will be 
treated as an attempt to enter a command. 

• 	 When a terminal is ngt in either preset or conversation mode, a 
transaction code or logical terminal name must be present in the 
beginning of the first segment. The transaction code must be 1 to 8 
characters in length and followed by a blank. 

• 	 Uppercase translation is performed if it is specified in the system 
definition TRANSACT macro. 

• 	 If a terminal was in conversation mode and the application 
terminates the conversation by inserting the SPA with the 
transaction code set to a nonconversational transaction code, this 
code from the SPA will be added to the beginning of the first 
segment of the next input message number. (See the section 
"Terminating a Conversation" in the chapter "Data Communication: 
Conversational Processing" in the IMSL!~ !££!i£!ti2n f£2g£!!!ing 
~'2~2n£2 ~!U~~! for further details.) 

• 	 When a conversation is started, the transaction code is removed from 
the first message segment and placed in the SPA. 

!2t~: This does not apply to MFS option 3 segments (see the I~~L!~ 
~§§!g~ [Q~m!! l2~!~! Se£!i£~ y§2~~§ ~Yi4~) • 

• 	 For devices suppo~ted through VTAM, IMS/VS removes the FMH (if any) 
that appears at the beginning of the first transmission of a chain. 

• 	 For a 3170 or type 1 SLU card reader, Transmit Data Set (TDS), or 
User Data Set (UDS) input, deblocking into IMV/VS message segments 
occurs at each inter-record separator (IRS) control character, and 
the IRS control character is discarded. 

• 	 For 3161, 3710, or type 1 SLU consoles, deblocking into IHS/VS 
message segments occurs at each new line (NL) or forms-feed (FF) 
control character if the optional MFS editing is not selected. This 
character mayor may not be discarded, depending on other criteria 
related above. 

• 	 For 3614 work stations, message formats for transaction IDs and 
class fields must conform to the specification prescribed by the 
hardware. See ~~ ~60~ Ei~n£~ £~m!Yni~li~n ~I§t~m 1~1! 
f£~g~~mm~~~§ ~ui~~ !n~ R~fe~n£~ ~!ny!! for information on hardware 
specifications governing 3614 message formats. 

IMS/VS supports the IBM 3650 Hass Storage System (MS5) through its 
normal 05/VS1 and OS/VS2 interface. MS5 extends the capacity of 3330 
Disk Storage. The uses of ~S5 with 18S/VS are: 

• 	 As a residence device for batch and online data bases 

• 	 For the development and testing of new applications 

Design and Control of a DB/DC System 2.81 



• 	 As the storage media for historical or cutoff versions of data base 

• 	 As a centrally controlled location for data (DB/DC and other types) 
in a data processing system 

Each of the preceding uses requires an understanding of the 
characteristics of IHS/VS and MSS that could affect an installation. 
This section presents the information needed to understand and take 
advantage of these characteristics. Design considerations and 
guidelines related to the following topics are described in detail. 

• 	 Using HSS in a batch IMS/VS environment. 

• 	 Using MSS in an online IMS/VS environment. Three different online 
environments, ranging from simple to complex~ are described. 

• 	 Sharing staging space. 

• 	 Data base organization and access methods. 

• 	 Using the additional capacity of the MSS with IMS/VS. 

In this section, MSS is described only as it relates to !~S/VS, even 
though the considerations and guidelines generally apply to any DB/DC 
system. Since no attempt is made to explain the facilities of MSS and 
its operating system support, you should be familiar with the following 
publications: 

• 	Q~L!~ ~s§§ §t2~ag~ ~Y2tim lnsSt f!anning ~Yigi 

• 	I~~ 1~~Q ~a§2 §t~ag~ §Y2t~m l~§§l f~in~!E!i§ 2! QEi~~li2n 

TERMINOLOGY 

The terms "stage," "bind," and "cylinderfault" are used in this 
section. stage. bind, and cylinderfault specify how data that is stored 
on an MSS volume is to be staged. 

~!~gi: Stage specifies that the data is to be staged from mass storage 
to a direct-access staging device when the cluster or component is 
opened. If it can't be staged at the time the cluster or component is 
opened, because of other staging activity, data is staged as a 
processing program needs it through page fault. 

~!ng: Bind specifies that the data is not only to be staged but also to 
be kept on the direct-access staging device until it is closed. If it 
can't be staged at open time because of other staging activity and if 
there is staging pack space available for the entire data set, data is 
staged as a processing program needs it through page fault. 

£Y!!ngir£~~!t: Cylinderfault specifies that the data is not to be 
staged when the data set is opened. It will be staged as the processing 
program needs it. 

As a general rule, MSS can be used in a batch IKS/VS environment in 
stage, bind, or cylinderfault mode. In an online environment, it is 
recommended that the data base reside on real DASD or that it be staged 
with the bind option if transaction throughput and response time are 
critical. 

2.82 IMS/VS System/Application Design Guide 



L 

I8S/VS BATCH ENVIRONMENT 

Figure 2-11 shows the use of !S5 in an 1M5/VS batch environment for 
data base residence. A batch environment that includes MS5 allows: 

• 	 Operational control of an entire system of data bases and files 
through !ISS. 

• 	 An extra dimension of flexibility because processing of large data 
bases can be done with fewer staging drives compared to the number 
that would be required if real drives were used. In this 
environment, it might be more efficient to do some types of 
processing at a reduced throughput rate and save the investment in 
additional disk drives. 

• 	 The testing of large data bas~ applications can be done using fewer 
staging drives than would normally be required in a production 
environmenti this can be tailored to meet t~e needs of an 
installation. 

lMS/VS 

Batch 


Mass Storage Facility 

MSS 

Figure 2- 11. MSS in an IMS/VS Batch Environment 

The paragraphs that follow describe how MSS can be used to advantage 
in an IMS/VS batch environment with certain disk drive saving 
opportunities. You may know from experience that you will process only a 
fraction of a very large data base. For example, only 10~ of an 
insurance data base might have policy updates, claims, or billing 
activity in the course of a day. If the full data base occupied 10 disk 
drives, then some number of staging drives equal to or less than 10 
might be sufficient to handle the day's activity in cylindArfault mode. 
The exact number of staging drives required would depend on data storage 
patterns, reuse of staging drive space, the distribution of data across 

Design and Control of a DB/DC System 2.83 



cylinder pages, and MSS staging algorithms. The KSS publications 
referenced earlier contain detailed information on these factors. 

If you know the reference patterns that your applications require, 
then possibly only a DL/1 data set group has to be staged for 
processing. 

Month-end cutoff processing of a data base also lends itself to the 
use of MSS with IMS/VS batch. In a non-KSS environment, a month-end 
cutoff copy of a data base is normally gotten by copying the data base 
to tape. The tape is later restored to disk so month-end reports, etc., 
can be written from the month-end copy of the data base. The KS5 allows 
you to destage a month-end cutoff to MSS cartridges; later stage the 
data from the cartridges, possibly to a subset of data base staging 
drives; and process the month-end cutoff data without having to go 
through disk to tape and tape to disk dumps and restores. 

IMS/VS ONLINE (DB/DC) ENVIRONMENT 

Just as MSS offers an added dimension of flexibility in an 1MS/VS 
batch environment, there are added opportunities in an online 
environment, but planning is far more critical. An online DB/nC 
environment usually includes certain transactions that require fast 
response and throughput as well as fast recovery. Th~se transactions 
will be referred to as critical transactions. 

In the online environment the following assumptions are made: 

• 	 Response time and transaction throughput for critical transactions 
should be the same whether or not KS5 is part of the operational 
environment. 

• 	 Recovery time in the event of an IMS/VS, OS/VS, or hardware failure 
should be the same in an MSS environment as in a non-KSS 
environment. 

To maintain the response and recovery time criterion required by your 
installation and still use MSS effectively in an online IMS/VS 
environment requires that you consider the following factors during 
planning: 

• 	 Logging and restart processing 

• 	 Sharing of staging drives 

• 	 Sharing of data bases 

• 	 Update activity 

• 	 Initialization and prestaging 

The following contains considerations and guidelines for these 
factors in each of three different online environments: (') IMS/VS
online using bound data or real DASD and no batch applications, (2) 
IMS/VS online bound data using bound data and/or real DASD with IMS/VS 
batch, and (3) I8S/VS online using some bound and some unbound data. 

Additional factors, data base organization and access methods, apply 
egually to all environments and will be described as a separate topic 
later in this section. 

2.84 IMS/VS system/Application Design Guide 



This is the simplest online environment to plan for. IMS/VS logs the 
system activity and runs recovery as necessary using the log tape much 
the same as in a non-MSS environment. Because all data is either 
mounted and bound on staging volumes or residing on real DASD, there is 
minimal planning necessary for sharing staging DASD. The sharing of 
data bases by multiple Message Processing Programs (MPPs) requires the 
same planning as in a non-MSS environment. Figure 2-'2 shows this kind 
of environment. 

MPP MPPIMS/VS 
or or

Control BMP BMP 

Real 
DASD 

Staging 
Drive 

Mass Storage Facility 

MSS 

Figure 2-12. M5S in an I8S/VS Online Environment vith Bound Data 

Initialization and prestaging must be planned if real DASD is not 
used. If the data is to be bound, it is important to ensure that the 
data be staged and bound on the staging packs before startingIMS/VS 
online operations. If the staging packs are used to hold only the bound 
data, and never used to hold other data, then the data is staged and 
bound once, and it does not have to be restaged and bound each tim~ 
IMS/VS is started. However, if the staging packs are used for other 
work (for example, during off-shift operations), the staging and binding 
of I8S/VS online data must be scheduled before starting IMS/VS at the 
beginning of each work day. The process of staging and binding data can 
be a lengthy process requi~ing careful scheduling to ensure that it 
completes prior to starting online 18S/VS operations. Also, there 
should be sufficient staging pack space available to hold all the data 
to be staged and bound. 

Design and Control of a DB/DC System 2.85 

L 



Methods of staging bound data prior to data set OPEN processing are 
contained in "How to Use the Additional capacity of KSS with 1"5/'5" 
later in this section. 

All planning considerations are the same as in the previous 
environment if the 185/'5 batch is also using bound data and/or real 
DASD, which is unlikely. If IKS/VS batch is cylinderfaulting to the 
staging volumes, there could be a delay as 1KS/VS batch and online 
contend for staging pack space. As a general rule, if IMS/VS batch will 
cause contention for staging pack space, stage and bind the critical 
online data before tha batch operations begin. 

Although this example uses IKS/'S online and batch, the same 
considerations apply to any activity (OS/iS batch, TSO, etc.) running 
with an online lKS/VS system. See "Sharing of Staging space" in this 
section for additional information on this topic. Figure 2-13 shows 
this kind of environment. 

MPP MPPIMS/VS IMS/VS 
or orControl Batch 

BMP BMP 

Real 
DASD 

Mass Storage Facility 

MSS 

Figure 2-13. MSS in an IMS/VS Online and Batch Environment 

2.86 I~S/VS system/Application Design Guide 



L 

Recovery should be the same in this environment as in a non·MSS 
environment because IKS/VS online has its own separate logging facility 
and data bases are not shared between online and batch operations. 
Operational procedures may differ, however. For example, where batch 
backout in a non-SSS environment involvesquiescing activity to a data 
base, closing the log tape, and moving the data base and log tape to a 
different address space or CPU, the MS5 environment involves quiescing 
the activity to the data base, closing the log tape, demounting the 
virtual volume, and remounting the virtual volume for batch backout. 
Again, this procedure varies depending on where batch backout is to be 
run: in the same host or in another host of a multihost system. Destage 
and restage mayor may not be necessary at batch backout time depending 
on the configuration and the virtual unit address (VUA) specified in the 
mount order for the mass storage volume at initial IKS/VS load. 

Even though staging packs vith their virtual volume data cannot be 
physically moved from one staging disk drive to another, as is often 
dOne for batch backout with real DASD, the data can be moved (destaged 
and staged to another disk drive) to accomplish the same purpose. 

This environment requires considerable planning. Again, the 
objective is to work in this environment and for certain critical 
transactions to maintain the same response time and throughput as well 
as recovery time, in the event of failure as would be experienced in a 
non-MSS environment. Figure 2-14 shows this kind of environment. 

MPP MPP Non-IMSIMS/VS IMS/VSor Batch or Control 
or 

Bat<:hBMP BMP TSO 

Staging 
Drive 

Mass Storage Facility 

MSS 

Figure 2-14. H5S with IMS/VS Online and Batch and Non-IMS/VS Data 

The data to be bound should be staged onto the staging packs before 
IMS/VS transaction processing begins assuming there viII be contention 
for the staging packs. Next, data sets or data set groups that will be 
referenced should be staged onto staging packs. Also, selected portions 

Design and Control of a DB/DC System 2.87 



of a data base that will definitely be referenced, if that can be 
determined, can be staged onto the staging packs. This might be 
accomplished by starting a batch message processing (B"P) program that 
issues DL/I calls causing selected data to be staged in cylinderfault 
mode. This essentially is prestaging. Prestaging data to staging packs 
is somewhat analogous to putting and keeping data in the data base 
buffer pool for future reference. 

Prestaging through an IMS/VS application program can be very 
effective in a DL/I environment because it allows the user to stage 
selected portions of the DL/I data base using the standard DL/! 
facilities. 

Frequently the data base reference patterns cannot be determined. 
For example, it is almost impossible to determine which customer of an 
insurance company will phone to report a theft. Prestaging, in this 
case, could be accomplished by entering a simple transaction that does 
no more than read the data from the data base using DL/I for the 
customer phoning the report. This would cause cylinderfault staging of 
policy information about that customer while information for a more 
complex transaction is being gathered based on the conversation between 
the insurance agent and his customer. 

This environment assumes a mix of transactions in the system, some 
critical transactions requiring fast response and throughput as well as 
fast recovery in the event of failure, and transactions that are not so 
critical. 

Since both the critical and the noncritical transactions share the 
same log tape used for emergency restart, and since critical 
transactions require a fast restart, it is important that cylinderfaults 
do not occur during emergency restart. This can only be guaranteed in 
this environment if all data required at restart time is available on 
real DASD or staging packs. This means that either there must be enough 
staging pack space available so data is never destaged to make room for 
other data, or that there is no update activity to data bases running in 
cylinderfault mode. Data base updates could cause cylinderfaulting 
during emergency restart if the changed data base records had been 
destaged to MSS cartridges to make room for other data on the staging 
packs and some of the data that had been destaged was required during 
restart. Emergency restart of critical transaction activity would be 
delayed by cylinderfaulting of noncritical transaction activity because 
backout is done serially. 

If only BMPs are using online data bases in cylinderfault mode then 
specifying NOBMP at emergency restart would eliminate the backout of BKP 
updates and the delay to emergency restart caused by cylinderfaulting. 

In addition, batch backout and program isolation dynamic backout will 
take longer if cylinderfaulting must occur during backout. Similar 
guidelines apply to batch backout and program isolation dynamic backout 
as apply to emergency restart with the exception of NOBMP, which applies 
only to emergency restart. 

The preceding point regarding no update activity for data bases 
running in cylinderfault mode may appear restrictive. It is only a 
recommended guideline to ensure fast emergency restart. It is also 
tunable where the number of emergency restarts or batch backouts, the 
number of updates, and the degree to which staging pack space is 
overcommitted are the tunable considerations. For example, it may be 
satisfactory to allow updates to data bases running in cylinderfault 
mode depending on the number of updates per sync point or checkpoint, or 
if emergency restarts are infrequent. 

2.88 IMS/VS System/Application Design Guide 



Data bases that are read to gather data to generate reports are 
likely candidates for use of shared, overcommitted staging pack space. 
An example here might be month-end accounting reports that are generated 
from month-end cutoff versions of a data base. 

In this environment, transactions requiring fast response and 
throughput should not be scheduled to run in the same message processing 
region as transactions that could require cylinderfault staging. The 
critical transactions could end up being queued until transactions 
requiring a call for data on MSS have completed. 

Message class scheduling affects the queuing of transactions in 
IMS/VS. Transactions requiring fast response and throughput should be 
assigned to a separate class from transactions that could require 
cylinderfaulting. The classes should then be assigned to separate 
regions when IMS/YS is started. 

The HSS staging drive group concept can be used for added tuning in 
this environment. Not all data bases have to use the same level of 
overcommitment. Staging drives can be divided into staging drive groups 
so that there may be more contention for staging drive space for very 
low priority work and less contention, or even no contention, for higher 
priority work. Activity from work outside the I8S/VS online system, 
such as batch work, could adversely affect the I85/VS online system if 
all work shared the same staging drive group and the scheduling of work 
was not otherwise controlled. 

The sharing of data bases has to be well planned in this environment. 
Avoid having a transaction that requires fast response use data from 
both a data base on a bound volume or real DASD and also from a data 
base residing on overcommitted staging packs. Also avoid a logical 
relationship between these same two data bases where processing, 
especially insert or delete processing, could slow down processing of 
~he bound or real DASD data base. 

Also to be avoided, but less obvious, is a situation with the 
following or equivalent characteristics: 

• 	Program A scheduled by transaction A requires fast response. 

• 	Program B scheduled by transaction B does not require fast response. 

• 	Program A uses data base A which is on bound staging packs. 

• 	Program B uses data base B which is on overcommitted staging packs 
and also uses data base A. 

Figure 2-15 shows this situation. It is possible that a program B 
could impact program A's processing and it would depend on the extent to 
which program E was holding data fro. data base A while staging data 
base B, and program A required the same data being held by program B. 

This may be an unusual situation but it points out that application 
schedulinq and use of data bases in this environment should be well 
planned to avoid less obvious throughput problems. Again, the same 
caution regarding doing updates to a data base on overcommitted staginq 
packs, as described earlier, applies in the above example. 

Design and Control of a DB/DC System 2.89 



IMS/VS MPP MPP 
Control Program A Program B 

Staging Staging 
Drive Drive 
(DB A) (DB B) 

Mass Storage Facility 

MSS 

Figure 2-15. ~SS in an INS/VS Environment Using Shared Data Bases 

SHARING OF STAGING SPACE 

Closely related to the sharing of a data base is the sharing of 
staging space. staging space sharing considerations were partially 
described under the second and third environments earlier in this 
section. Well planned use of the MSS staging drive groups is a valuable 
way to control the amount of staging pack space allotted to various 
applications or data bases. 

When allocating staging space for IMS/VS, view the entire system as 
known to MSS. This could include not only INS/iS online and batch 
systems, but non-IMS batch or TSO, for example. Staging pack space may 
be known to MSS across multiple CPUs. It is necessary, then, to 
consider possible interference to INS/VS processing from outside of 
IMS/VS itself. MSS staging drive groups can be used to help control 
unwanted staging from shared staging space. This should be well 
planned, because there could be interactions between the INS/iS and 
non-IMS/iS environments. The use of staging drive groups is further 
described under the topic "How to Use the Additional capacity of MSS 
with I!!S/VS." 

DATA BASE ORGANIZATION AN~ ACCESS METHOD 

I5AM data sets can only be accessed in the cylinderfault mode. This 
means that the IS AM portion of an I5AM/OSAN data base cannot be staged 
or bound at OPEN time; the time of the first DL/I call. Staging of a 
cylinder of data takes place only as the result of a DL/I call for data 
in that cylinder. It then follows that if ISAM/OSAK is used, and 
cylinderfaulting presents an unwanted delay, some form of prestaging or, 
better yet, VSAM should be used. 

OSAM data sets can only be defined with the stage attribute. Because 
05AM uses EXCPVR, the operation of K5S with EXCPVR applies to OSAM. The 

2.90 IMS/VS System/Application Design Guide 



..~ 

OSAM portion of an I5AM/OSAM data base will be staged at OPEN time 
because that is when the data sets using EXCPVR are staged. 

The entire extent of an OSAH data set will be staged, even at initial 
load time. An exception to this occurs when IMS/V5 uses QSAM to write 
an OSA~ data set as in recovery when the DFSRRCOO PAR! is UDR. Under 
such a condition there is no staging of the output data set at OPEN 
time. 

05AR data sets cannot be bound. Therefore, there are so~e 
implications that should be considered. Even though the data requested 
in the first DL/I call will be returned to the application as soon as 
the requested page is staged, the entire data set will be scheduled for 
staging at the time of the first DL/I call. If you can determine ahead 
of time that data from the I5AM/05A" data set will be required, it might 
be advisable to do one of the following: cause staging to begin shortly 
after IHS/VS ~s started by scheduling a simple application that issues a 
DL/I call to the !SAM/OSAH data base, or cause staging of the OSA" data 
by running a short IMS/VS batch job ahead of the IMS/VS job that 
requires the OSAH data to be staged. The IKS/VS batch job would issue a 
DL/I call, which would cause OPEN and staging. At the end of the batch 
job the data would remain staged. This assumes there is enough staging 
pack space available for the OSAM data. It also assumes other activity 
in the system does not cause destaging of the OSAH data before it is 
needed. Refer to "Data Reuse" in the !!l1£2SY£li2!l 12 ih.~ I~~ 1~Q. 1!!!§.§. 
~i2£!g~ ~I§.1~ l~~~l manual for details on the reuse of virtual volume 
data. 

VSAM data bases can have the stage, bind, or cylinderfault staging 
attribute. Also, VSAM data can be destaged synchronously or 
asynchronously, vhere I5AM/OSAR data bases can only be d~staged 
asynchronously • 

The following points should be considered ~n determining whether a 
VSAM data base should be destaged at CLOSE time with the delayed 
response request. Destaging at normal CLOSE time with the delayed 
response request causes synchronous destaging and insures successful 
de staging of the updated cylinders before CLOSE is complete. However, 
there are conditions under which IMS/VS closes a data base during 
on-line processing, for example, if the DMB pool runs out of space, or 
if the /DBR command stops the data base. Under such a condition the 
IMS/VS control region waits for CLOSE processing to complete before 
allowing any other on-line processing to proceed. This temporarfly 
stops all on-line processing until the destage of updated cylinders 
completes if the data base was closed with delayed response. Each 
installation has to determine how it wants to close its data bases 
depending on the frequency of situations that can close a data base 
during on-line operations, the importance of never interrupting on-line 
operations, and the importance of insuring a successful destage of 
upda~e cylinders at CLOSE time. 

In general, data bases should be VSAM based to provide maximum 
flexibility in both staging and destaging. For a very large noncritical 
HISAM or HIDAM data base, it might be desirable to define the HIDAM 
index cluster or the HIS!M index component. of the KSDS as bound and the 
data portion as cylinderfault. This could be somewhat better than 
accessing the entire data base in cylinderfault mode, and it would 
require bound disk drive space for just the index portion of a large 
data base. 

The same guideline applies to secondary indexing. It might be 
helpful to define the secondary index as a hound data set. 

Design and Control of a DB/DC System 2.91 



HOW TO USE THE ADDITIONAL CAPACITY OF KSS WITH IKS/VS 

Since PISS offers a vast amount of storage beyond what has, in the 
past, been used in an IPIS/V5 system, it is meaningful to ask how that 
additional storage should be used·. What kind of work can be put on 
IMS/YS given the added capacity of the PISS? 

As a general rule, applications requiring a small number of large, 
infrequently referenced, preferably read-only data bases, where response 
time or batch turnaround time is not critical, can be added to an 
existing I85/YS system to take advantage of the additional capacity of 
the PISS. 

The applications could be new or they could be old ones that 
previously required data to be restored to disk from a save tape before 
they could be run. 

It is likely that the added applications wo~ld run in cylinderfault 
mode to avoid an investment in additional disk drive space. It then 
follows that the new applications would use new data bases that are 
separate from the existing critical IKS/VS online data bases. 

The added data bases should be infrequently referenced. Added v9rk 
in cylinderfault mode could eventually impact existing work in the MSS 
system as the staging facilities of the MSS are absorbed. This cannot 
be quantified because it depends on th~ existing load on the 1MS/VS PISS 
system, but it should be considered. 

It is recommended that the new applications be read-only because 
changes to a data base require a destage of updated cylinders. 
Therefore the impact of additional applications can be minimized by 
adding mostly read-only applications to the IKS/VS MSS system. 

An example of a new application is a report writing application using 
a small amount of data from a large data base. 

The staging and binding of data in an IPIS/VS environment can be 
handled in several ways depending on when the user wishes to experience 
a possible delay for staging. As stated earlier, if staging packs are 
not used for other work during off-shift operations, then there is no 
staging required each day because the data still exists on the staging 
packs. Staging at a data set level is determined at data set OPEN time 
based on the DE?INE attributes for the data set. Since 18S/VS OPENs a 
data set only when required at the first DL/I call, any necessary data 
set staging could take place at the first DL/I call. Again, if the 
staging disk drives were not used for other work, this would not cause 
any delay in processing at the first DL/I call. 

If your ISS/VS installation requires that bound data be available for 
critical processing during a relatively short period of time, for 
example 8 to 12 hours a day, it might be better or necessary to use the 
staging disk drives for other off-shift work. After the off-shift work 
has completed, and before IMS/VS critical processing is again started, 
it might be advisable to run a short IMS/VS batch job that OPENs the 
critical data sets and causes restaging and binding of the critical 
data. Then when IMS/VS critical processing is started, there will not 
be a delay for staging at the first DL/1 call. 

Because most installations require IMS/VS to be up for more than one 
shift, it is not necessarily restrictive to dedicate bound staging space 
for certain critical data bases. This can greatly reduce the staging 
time that might otherwise be required if staging space was used for 
other work during off-shift operations. 

2.92 IPIS/VS system/Application Design Guide 



If certain staging drives are to be dedicated to bound staging space 
that will not be used by other work during off-shift, they should he put 
in a separate staging drive group to ensure that the disk drives are not 
inadvertently used when l~S/V5 is stopped. 

The staging drive groups are set up at M55 Table Create time. lM5/VS 
data sets are allocated to the staging drive groups as par~ of normal 
IMS/YS initialization via the UNIT assignment in the DD statements for 
the data bases. 

This section has described some of the points that should be 
considered to effectively use MS5 with laS/VS. With proper planning, 
the M55 can provide both added storage capacity and flexibility to the 
lKS/VS system. 

Design and Control of a DB/DC System 2.93 





I 

L 

' ......... 


This chapter includes considerations for design of both 1"S/V5 batch 
and telecommunication applications. Information concerning the data 
base interface applies to batch and online applications. The designer 
of a telecommunication application should cover all material in this 
chapter prior to designing his application. The designer of the batch 
application need only cover the material relating to batch applications, 
but is encouraged to cover the entire chapter prior to design of an 
application. 

GENERAL CONSIDERATIONS 

Design of IMS/VS batch application programs deals with the 
environment shown in Figure 3-1. This environment is established 
through the IMS/VS system definition utility. Considerations for 
establishing this environment can be found in Chapter 2 of this manual. 

The application program, in conjunction with IMS/V5, runs as an 
operating system job in VS1 or V52. For the individual application 
program design, DL/I can· be looked at as an additional access method. 
The logging facility is a system function and does not involve the 
application program directly. Changes to the data base are 
automatically logged. Instead of the standard OS/VS terminology of 
SYSIN (input) and SYSOUT (output), TRANSACTION input and RESPONSE output 
respectively are used. This choice of nomenclature is used to encourage 
the design of a transaction-oriented system. 

A transaction-oriented system can reduce recovery problems for 
program abnormal terminations and system failures. A 
transaction-oriented system is one in which there is a definite po!nt at 
which each transaction (input) is considered complete. This point must 
be prior to receiving the next transaction. This isolates recovery 
problems to a particular transaction. 

Design of the application program must be done in concert with data 
base design. Each influences the other. With good communications 
between application design and data base design, a more viable system 
will be developed. A viable system is one which accommodates change 
with minimum modification. 

Programs that are OS/VS subtasks of an application program called by 
IMS/VS must not issue DL/I calls. If they do, the results will be 
unpredictable. 

Application Program Design 3.1 



OS!VS 

r--------, 
TRANSACTIONI Lc--­

I APPLICATION I 
I PROGRAM I 
I I 
I I RESPONSEIL_--,_______ r ­

~ 

I 

DATA DATA 
LANGUAGE/I LOGGING 

DATA 

BASE 


Figure 3-1. Batch ~pplication Program Design 

f~~£!m!in~ ~n~g!~! i~ ~! ~2!~ 

The use of IMS/VS should have little influence on the choic9 of a 
programming language for the application. The standard operating system 
CALL interface is used for COBOL, PL/I, and Assembler. IMS/VS offers no 
special advantage to these languages. However, the basic benefits 
attained by using a high level language do apply. 

The Program Module Preload function of IMS/VS does offer a potential 
performance improvement, if application programs are written to be 
serially reusable or reenterable. 

ihen designing an application program it is important to determine if 
there is a possibility of converting the program to a message processing 
program to be used in a telecommunication system. Kaking this 
determination prior to design of the application can save conversion 
'lillie and cost. 

3.2 IMS/VS System/Application Design Guide 



--t .... -t....:.:.:::~:::._.....J 

Figure 3-2 shows the essential difference between the batch and 
telecommunication applications with IMS/VS. In the batch environment, 
the application program deals with DL/I for data base input/output and 
with OS/VS data management for external input/output such as SYSIN and 
SYSOUT. The same application program is shown below after being 
converted to a telecommunication application. The basic change is the 
replacing of READ/WRITE or GET/PUT logic with calls to DtlI for external 
input (TRANSACTION) and output (RESPONSE). 

APPLICATION PROGRAM 

PROCEDURE 
INPUT 

BATCH 

OS/VS EXTERNAL INPUT/OUTPUT 

OUTPUT 
DATA BASE 
DL/I 

INPUT/OUTPUT 

DATA 

BASE 


APPLICATION PROGRAM 


PROCEDURE 


- DL/ITELECOMMUNlc'ATiON- ...---... ­

TE LECOMMUNICATION _INPUT/OUT~!..... ____ 

DL/I 
DATA BASE 
INPUT/OUTPUT 

DATA 

BASE 


Figure 3-2. Planning Future Conversion to Telecommunication 

Application Program Design 3.3 

L 



By centralizing the statements in the batch application program which 
deal with external input/output, the future conversion to 
telecommunication can be made with a great deal more ease. 

BATCH CHECKPOINT/RESTART CONSIDERATIONS 

A general facility for batch checkpoint/restart is provided. It 
consists of a DL/I call function for checkpoint (CHKP) and the batch 
backout utility program. Batch checkpoint/restart can be complemented 
either by OS/VS checkpoint/restart or by installation-supplied 
checkpoint/restart routines. Installation-supplied routines can be 
simplified by using the IMS/VS restart call (IRST) and user-area 
parameters on the CHKP call. . 

To use batch checkpoint/restart, the application first invokes its 
complementary checkpoint routines. If the user wants to issue an OS/VS 
checkpoint within a batch only region, he must first close all open data 
bases, generate a unique checkpoint ID, issue an OS/VS checkpoint macro, 
and issue the DL/I call with a matching checkpoint ID (this is required 
because OS/VS restart does not restore data management storage in 
total). If the user wants IMS/VS to issue an OS/VS checkpoint for him, 
a fourth parameter, which points to an OS/VS checkpoint DCB, must be 
specified for the DL/I checkpoint call. Opon completion of those 
routines, and before issuing any other DL/I call, a DL/I checkpoint call 
is submitted. Along with the checkpoint call, the application passes 
the identification of its previously completed complementary checkpOint. 
DL/I ensures that all pending data base activity is physically recorded. 
Then the supplied checkpoint identification is recorded on the log tape 
and supplied to the operator in a WTO message. Control is returned to 
the application program, which can then proceed to execute, submitting 
other DL/I calls as necessary. 

To restart at a selected checkpoint, the batch backout utility is 
used to restore th~ data bases to their condition at the time of the 
checkpoint. Then the batch job is restarted at the same checkpoint. 

ESTABLISHING USEFUL CONVENTIONS 

Designing applications for ase with IMS/VS affords an opportunity for 
establishing useful conventions and procedures. Adopting conventions 
which prove useful in application design and implementation can reduce 
costs and development cycle time. 

Each program that is designed and implemented must be tested. 
Testing the application requires a test data base. A test data base 
requires a data base description generation, a program specification 
block generation, and a data base load program. Since a number of 
application programs will be dealing with the same data structure, a 
central agency for generating and maintaining test data bases should 
exist. 

It is important to establish naming conventions for data bases, data 
segments, fields, PSBs, and programs. A requirement in the IMS/VS DB/DC 
system is that the name of the PSB and the application program must be 
the same. Adopting this convention in the batch system can reduce 
conversion time. 

3.4 IMS/VS System/Application Design Guide 



As the system increases in scope through time there will be multiple 
data bases, each with a number of different segment types. One naming 
convention which can be helpful is to adopt a two-character code as the 
first two characters for a data base name. This two-character code can 
then be used as a prefix for all segment names within the data base. 
This ensures that no two segments will have the same name, eliminating 
communications proble.s. 

As the system becomes more complex with the relationship of programs, 
PSBs, data bases, segment types, and fields, a dictionary will be 
necessary. Questions such as, "What data segments and fields does this 
program update?" or "Which programs update this segment?" could be 
included in a data dictionary. Maintenance and control of such a 
dictionary should be the responsibility of the systems Operation 
personnel responsible for all system control. 

q~~ Q{ £Qf! Q~ 	I!£~yal 

Extensive use of COPY or INCLUDE can be made for segment I/O area 
definition, PCB masks, and segment Search Arguments (SSAs) within an 
application program. The use of COpy or INCLUDE in conjunction with a 
data dictionary can reduce maintenance disruptions to a minimum. 

Figure 3-3 shows an application program that is making use of 
standard operating system data sets and DL/I data bases. DL/I makes use 
of standard OS/VS data management facilities and provides a special 
access method called OSAM (Overflow Sequential Access Method). 

I<: ;:::;;, 	 ::::OSNS 	 < 
L 	 r-.------------ ­

DATA 	 DATADATA MANAGEMENT
FILES 	 BASES 

........ ....... 	 ...... ..... 


APPLICATION
'" PROGRAM 

~ 

DATA 
LANGUAGE!I -

Figure 3-3. 	 Application Program Using OS/VS Data Files and DL/I Data 
Base 

Application Program Design 3.5 



--

A parallel can be drawn between operating system data management 
input/output and DL/l input/output. Figure 3-4 shows an application 
program making use of the READ/WRITE logic of COBOL, which in turn makes 
use of a file description block. The same program is also reading and 
writing a data base through DL/I. The DL/I interface makes use of the 
standard OS/VS CALL facility. The control block for DL/I that replaces 
the file description of the operating system is called a program 
communication block (PCB). Just as a file description block is used for 
each file that is accessed by a program, each logical. data structure 
that is accessed requires a program co.munication block. The I~l!~ 
!~21~£aiLQn ~£Qg£a~!ing R~[~[~n£i ~~ngal provides a discussion of 
logical data structures and their relation to data bases. 

A unique characteristic of the application program interface with 
DL/I is that all information passed across the interface is described 
symbolically. There is nothing in the interface definition which 
relates to a specific access method or physical storage organization. 

READ CALL DL/I 
PROGRAM 

FILE APPLICATION COMMUNI· 
DESCR. 

WRITE 
PROGRAM 

CALL DL/I 
CATION 
BLOCK 

< :>< .::> 

DATADATA 
BASEFILE 

............. 
 ....... 


Figure 3-4. 	 Application Program Using COBOL READ/WRITE Logic and File 
Description 

Details of CALLs to DL/1 can be found in the !~~l!~ !2~1~£!!i2n 
f£2~£a!!ing Ri[i£in£i ~a~a!· 

Traditionally, application programs have been designed to obtain an 
entire record from a file and then deal with only selected portions of 
the record for reference or update. The application program was record 
oriented. With DL/I, the application program is designed to obtain only 
those portio~s of the record necessary to perform the required 
procedure. I/O is on a segment basis. The segment can contain one or 
more fields of information. 

The fact that I/O is on a segment basis should have some influence on 
the design of the application, as well as on the design of the data 
base. Once a segment is retrieved with a Get Hold type call, the next 
call using the same data base PCB can be a replace or delete call. If 
an intervening call is made, it would be necessary to do another Get 
Hold type call to update the segment. One way to avoid this is to use 
multiple data base PCBs for the same data base. This allows multiple 
positions, as well as multiple segments, to be in HOLD status at one 
time. 

3.6 IMS/VS System/Application Design Guide 



Application programmers are sometimes faced with a decision r(......., 	 concerning the use of DL/1 fUnction codes and segment search arguments. 
A function code is a four-character code which is supplied to DL/I by 
the calling application program to specify the input/output function to 
be performed. S5As (segment search arguments) are used to give specific 
information about the path to be followed in satisfying a call. SSAs 
are qualified or unqualified. An unqualified 5SA specifies only the 
name of the desired segment. A qualified SSA specifies, in addition to 
the segment name, a field name within the segment, a relation operator, 
and a comparative value. 

For segment insert, delete, and replace, there is only one code for 
each specif.ic function to be performed. For the segment retrieval 
function, however, there is a family of function codes: GET UNIQUE (GU), 
GET HOLD UNIQUE (GHU), GET NEXT (GN), GET HOLD NEXT (GHN), GET NEXT 
WITHIN PARENT (GNP), and GET HOLD NRXT WITHIN PARENT (GHNP). Each of 
these call functions provides for a variation in the method of 
retrieving a segment, depending on the existing position in the data 
base and the segment qualification. There are times when more than one 
of these calls will accomplish the same thing. 

When faced with a choice of GU, GN, or GNP with or without the HOLD 
option, there are 	a number of considerations. In addition to choosing a 
function code, the question of whether or not segment search arguments 
(SSAs) should be provided must be answered. If the SSAs are provided, 
the question of qualified o~ unqualified must be answered. 

Generally speaking, the GU call is used to retrieve a specific 
segment o£ to obtain a specific position within a data base. The GN or 
GNP only moves forward in the data base, except when the F command code 
is used. Once a logical position is established within a data base, the 
GU or the GN and GNP, used in conjunction with the F command code, are 
the only calls which can establish a position at some earlier logical 
point in the data base. 

There is no measurable difference between a GU, GN, or GNP call, if 
each has fully qualified SSAs and no logical position exists within the 
data base. If a logical position exists and movement is forward, a GN 
or GNP function call may be more efficient. An additional difficulty in 
making a choice of GU function calls comes when there is insufficient 
knowledge to provide complete qualification. 

Normally, a GU call r~quires more time to execute than a GN or GNP 
call statement. 

The implications of providing unqualified segment search arguments 
can be seen in Figure 3-5. The calIon the left has an unqualified 
segment search argument at level two for B. As a result, DL/I searches 
through all Segment Bs under Segment A with key of 6. All Segment Cs 
are searched before finding that the call cannot be satisfied. The call 
on the right is the same, except that the segment search argument for B 
is qualified at level two. When DL/I encounters the B with a key of q, 
the search ends. At this point, DL/I realizes that the call cannot be 
satisfied. 

Application Program Design 3.7 

http:specif.ic


A 

6 

I 
GU A (KEYA=6) GU A (KEYA=6) I 

B B (KEYB=3) 
C (KEYC=4) C (KEYC=4) 

8 
I--l 	 0B 

217./ 11 

'l 
~ 

/~
,1/ 

'/1 
I 

6 
C 1~ 

r ­
5 

Figure 3-5. Qualified Segment Search Arguments 

RELATIONSHIP BETWEEN DL/I CALLS AND PHYSICAL I/O OPERATIONS 

Although DL/I calls issued by application programs are independent of 
the physical storage techniques used to store and access data, it is 
important for the reader to understand the the physical I/O operations 
performed by IMS/VS. The use of any DL/I call mayor may not require 
physical I/O operations. If the DL/I call can be satisfied from 
information in the data base buffer pool, no physical I/O operations are 
required. When this is not the case, the actual physical I/O operations 
performed depend upon the following: 

• 	 The DL/I call issued 

• 	 The physical data base access method and organization 

• 	 The current position in the data base known by the DL/I control 

blocks for this application's use of the data base 


• 	 Information in the data base buffer pool 

The following tables should be of assistance in understanding the 
physical I/O operation which may be performed in satisfying GET UNIQUE 
(GU) or GET NEXT (GN) callG. 

3.8 IMS/VS System/Application Design Guide 



I~S/VS DB/DC CONTROL PROGRAM 

r--------------------------------------------------------------,1 

DL/I ! DATA BASE ACCESS METHOD 

1---------------------------------------------------1
CALL 1 HISAM , HDAM I HIDAM 1 
1 1 1--------------------------- 1 

FUNCTION I 1 ,INDEX, HIDAM I 

I 1 I ! Data Base 1 Data Base 1 

1--------------------------------------------------------------1 
, , , I , , 

1 I VSAM-Get J VSAM-Get ! VSAM-Get !VSAM-Get Direct, 


I Direct 1 Direct ,Direct I 
GU , or BISAM I or OSA" ,or BISAM lor OSAM , 


1 


I or OSAM I Read , Read ,~ead 1 

, Read, , or OSAM I 1 

I , 1 Read 1 I 


--------------------------------------------------------------1,
1 

VSAM-Get VSAM-Get VSAM-Get I VSAM-Get Direct 1 

Direct Diract Direct I I 


GN or BISAS or 05AM or BISAI! lor 051M , 

or OSAK Read Read IRead , 

Read or OSA!! ! , 


Read ! 1 

L--------------------------------------------------------------~ 

Application Program Design 3.9 



___________________________________________________ 

IKS/VS DB BATCH PROCESSING 

r--------------------------------------------------------------,1 , , 
1 DL/I I DATA BASE ACCESS KETHOD , 
1 ,---------------------------------------------------!
I CALL I HISAM I HDAM I HIDAI1 
I I I 1---------------------------,
I FUNCTION 1 1 I INDEX HIDAK ! 
I 1 , , Data Base Oa ta Base , 

1---------------------------------------------- ---------------1 
, I 'I , 
I I VSAI1-Get- 1 VSAI1-Get 1 VSAK-Get VSAM-Get I 
I 1 Skip Seq 1 Direct 1 Skip Seq Direct ! 
1 GU 1 or QISAK 1 or OSAS ,or QISAS or OSAK I 
! I Get i Read , Set!. & Read , 
I I I , Get I 
I I 1 1----- I 
I , VSAI'l-Get- , I VSAM-Get- , 
I ,Direct, I Direct , 
, I or I , or I 
! , BISAM, I BISAH , 
I I Rea d '" I I Rea d * I 
, I I , 1 
,-----------------------------------------------------~--------,
I I VSA~-Get- ,YSAM-Get ,YSAM-Get- I VSAM-GET , 
I I Skip Seq I Direct ,Skip Seq 1 Direct I 
I GN 1 or QISAK I or OSAI1 ,or QrSAI1 I or OSAI1 , 
I I Get I OSAM , Read , Set!. & I Read I 
1 I Read I 1 Get I I 
I 1------, ,------, ,
I I YSAM-GET I I VSAM-GET I , 
I I Direct I I Direct , , 
1 1 or , I or 1 , 
I I BISAM I I BISAI1 i ! 
I I Bead *' I Read * , 1 
I I I I ---------J,L-- I 

* BISAH read or VSAM Get Direct is used if two or more data base PCBs 
are defined in an application program's PSB for one physical data 
base. Random or direct access operation is assumed. QISAM SetL/Get 
or VSAM Skip Sequential is used if one data base PCB per physical data 
base is used. 

It is suggested that, where possible, the GET NEXT call, with or 
without SSAs, be used in preference to the GET UNIQUE call function for 
segment retrieval. This results in more efficient operation. Remember, 
however, that the GET NEXT call function can only be used to progress 
forward in a data structure, and across data structures in a data base. 

PERFORMANCE CONSIDERATIONS 

During execution of the batch application program, statistics are 
accumulated by DL/I concerning reading, writing, and buffering activity. 
This information can be utilized to tune the application for higher 
performance. Details for obtaining these statistics are in the I~§L!~ 
!e£~!£~!!~ ~£Qg£~miug a~t~£~u£~ ~~ng~!· 

3.10 II1S/VS System/Application Design Guide 



L 	 TELECOMMUNICATION INPUT/OUTPUT INTERFACE 

Design of a TP (telecommunication) application encompasses the batch 
application program design as well. There is little difference between 
the batch program and th~ telecommunication program when using IKS/VS. 

Figure 3-6 shows the environment in which the TP application 
functions. This shows 01/1 as the interface between telecommunication 
terminals as well as data bases. The application program in a TP 
environment deals exclusively with DL/I for input and output for 
terminals as well as data bases. 

OS/VS 

I MS/VS 
'"- CONTROL 

~ I' 	 r----l r----l 
Ir 	 I APPLICATION 'I I

I 
APPLICATION 

II 
I PROGRAM I PROGRAM I 

DATA 	 I I 
COMMUNI­~~---~~~-	 I II ~~::~:~:ION CATIONS 	

I I 
I I I I 
I I I I 
I I I I 
l I l IL_.__ .J L_-.__...J 

MESSAGE 
QUEUES ~---+---+-I DL/I 0lIl(----...1 	 I 

0lIl(- '-------- ~---J 
'---~--........ 


:---: / 
DATA 
/~----~--~----~ 

BASE 

Figure 3-6. 	 Telecommunication Application Program Design 

The three areas shown under the operating system each represent 
operating system jobs. Each is under a different storage protection 
key. The job on the left consists of the IMS/VS control program, which 
is responsible for all physical input/output for IKS/VS applications. 
The control program is also responsible for maintaining logical 

Application Program Design 3~" 



information for restart and recovery purposes. The two application 
programs shown are each contained in a message processing region. Each 
message processing region is an operating system job. This IMS/VS
control region is responsible for causing the appropriate application 
program to be loaded for processing. 

With I~S/VS, the interface to data bases is unchanged when gOing from 
a batch application to a TP application. In addition, the same 
interface used for data bases is used for input and output to terminals. 

The application program deals with logical terminals. These are 
control blocks that IMS/VS associates with physical terminals. Thus the 
application programmer generally does not concern himself with the. 
physical attributes of the terminal with which he is dl'!!aling·. Figure 
3-7 shows an application program's view of the terminal. 

The control block with which the application program deals is the TP 
PCB {telecommunication program communication block). There are two 
types of TP PCBs -- the I/O PCB and alternate PCBs. An I/O PCB is 
always provided by I~S/VS to an application program that executes in a 
TP environment. Alternate PCBs are optional, and are created as part of 
the PSB (Program Specification Block). To obtain an input message and 
reply to it, the application program must reference the I/O PCB. To 
send a reply to a terminal other than the terminal that orginated the 
input message, the program references an alternate PCB. The section 
named "Output to Alternate Destinations" contains a further description 
of alternate PCBs. Figure 3-8 shows a DB PCB (data base program 
cOllmunication block) in addition to the TP PCB. The data base is viewed 
as a logical structure and the terminal is viewed as a logical terminal. 

APPLICATION PROGRAM /
I 

J8--1--~ I 
I 

MASK ~~ 
---- I 

\ 
\ 
'\, 

Figure 3-7. Application Program's View of the Terminal 

3.12 IKS/VS System/Application Design Guide 



APPLICATION PROGRAM 

/ 

B
I 
I 

ASK -- --~ I 
----~ \ 

\ , 
" 
/ 

I 
I 

,I 
\ 
\ 
\ 
\ 

"­
" 

Figure 3-8. DB and TP PCBs 

Information received from or sent to a terminal is called a message. 
A message is comprised of one or more segments. Figure 3-9 shows the 
format of a message segment. The L field specifies the length of the 
segment. If line addressing is being used, field Z is used for screen 
control when sending output to a 2260 or 2265 Display Station. The Z 
field is followed by the message text. This is the information input at 
the terminal. Below the segment format are shown two examples of input 
-- one with a password and the other without. Notice that the password 
has been eliminated from the text prior to the application program 
receiving it. 

r--------------·-----------------------,
1. z TEXT 

L--------------------------------------~ 
! 1 1, I 1--> Message segment up to '30 characters, 1 
I 1--> Reserved for DL/I (halfword binary) 

I 

1--> Segment length in bytes including L, Z, and TEXT 


(halfword binary) 


Terminal input segment TRANS (PASSWORD) THIS IS THE 

with password: SEGMENT TEXT 


Received by application: TRANS THIS IS THE SEGKENT TEXT 

Terminal output segment 

without password: TRANS THIS IS THE SEGMENT TEXT 


Received by application: TRANS THIS IS THE SEGMENT TEXT 

Figure 3-9. Message Segment Format 

Application Program Design 3.13 

LOGICAL 
DATABASE 
STRUCTURE 



Calls for input message seg.ents are like calls for data base record 
segments, except that no segment search arguments are required. The get 
unique call is used to obtain the first segment of each message and the 
get next call is used to obtain subsequent segaents. Figure 3-10 shows 
the format of the input call. The three parameters s~own being passed 
to DL/I are the function code, the I/O PCB address, and the address of 
an input area. Message A, as shown, consists of three segments, while 
Message B consists of two segments. 

ENTER LINKAGE. COKMENT ONLY 

CALL 'CBLTDLI' USING IFUN, LTPCB, IMSG-IO-AREA. 

ENTER COBOL. COMMENT ONLY 


MESSAGE A 

r--------------------------------------,
I FIRST SEGMENT I <---------GET UNIQUE
1--------------------------------------11 SECOND SEGMENT 1 <---------GET NEXT 
1--------------------------------------1 
1 THIRD SEGMENT I <---------GET NEXT 
L--------------------------------------~ 

MESSAGE B 

Ir--------------------------------------,FIRST SEGMENT 1 , <---------GET UNIQUE 
1--------------------------------------11 SECOND SEGMENT 2 1<---------GET NEXT 
L--------------------------------------~ 

Figure 3-10. Input Call Format 

QYi£~1 £sl!§ 

Sending output to a logical terminal is like inserting new segments 
to a data base. As with the input call, no segment search arguments are 
required. Figure 3-11 shows a three-segment message being built. The 
parameters passed in the call to DL/I represent the function code, TP 
PCB, output area, and message format name. The message format name is 
ignored on systems without the Message Format Service. Format of the 
output message is the same as that of the input message. The 
application programmer must supply the character count. 

3.14 IMS/VS System/Application Design Guide 



Message X 

r------------------------------,
1 I 
I FIRST SEGMENT I CALL 'CBLTDLI' USING OFCN, TPPCB, 
I I OftSG-IO-AREA, KSG-FMT. 
1------------------------------1
I I 
I SECOND SEGMENT I CALL 'CBLTDLI' USING OFUN, TPPCB,
1 I Ol'lSG-IO-AREA. 
1------------------------------1
I I 
1 THIRD SEGMENT 1 CALL 'CBLTDLI' USING OFUN, TPPCB, 
I 1 OMSG-IO -ARE A. 
L------------------------------~ 

Figure 3-11. Three-Segment Message 

OUTPUT TO ALTERNATE DESTINATIONS 

In addition to sending output back to the terminal that generated the 
input, the application program can sand output to additional 
destinations. Output can be sent to other logical terminals or to other 
programs. The mechanism for sending to these alternate destinations is 
the alternate PCB, as shown in Figure 3-12. When sending output to 
another program, the receiving. program can ~e a message processing 
program or a batch message processing program. The batch message 
processing program, in addition to making use of online data bases and 
message queues, can utilize operating system data management facilities. 
Use of batch message processing programs is discussed later in this 
chapter. For information on Past Path use of alternate PCBs see the 
"Fast Path and I~S/VS Interrelationships" section in the chapter "Design 
Considerations for the Fast Path Feature." 

Application Program Design 3.15 

L 



--I 

I 
I 
\ 

/ 

\ 

.... 

/
I 
f 
\ 
\ 

APPLICATION PROGRAM 

/ 

r---T-i""""''''''''---'''' 

I I 


I/OI MASK I 

I I 

PCB 

L ___ .L __-'-__ 

\ , 
/ 

r---r---r-----, 
I I ALT.

I MASK I TERMINAL 


I I PCB

L ___ -L __-'-___ 

\ 

/ 

--' 

/r---"'- ­
I ALT. 

'PROGRAM: MASK ( I PROGRAM X I
PCB

L __ --'I___L.-__ 

\ 
\ 

" 
Figure 3-12. Output to Alternate Destinations 

The modifiable PCB and change call have been provided for those users 
who would otherwise require a prohibitively high number of alternate 
PCBs to allow for all possible destinations. This would, for example. 
be those 1050 or 2780 users with a requirement for an alternate PCB for 
each component assigned to the terminal represented by the I/O PCB. 
Without this function these users would require as many as four 
alternate PCBs per terminal defined in the system. By providing a 
naming convention within the IMS/VS system to allow the application 
programmer to identify a group of logical terminals by I/O PCB name. 
this requirement could be reduced to four modifiable alternate PCBs or 
less. 

For example: If NAME is found to be the I/O PCB logical terminal 
name, NAMECP is the logical terminal assigned to the card punch, NAMEPFT 
is the printer. etc. With this convention the user could add the suffix 
CP to the I/O PCB name to cause output to go to the card punch 
associated with the physical terminal that entered the message. PRT 
would allow the Qutput to go to the printer, etc. This requires that 

3.16 IMS/VS System/Application Design Guide 



L 

the naming convention be established by system definition and maintained 
by instructing the master terminal operator to reassign component tTERKs 
by groups, so that all the components are always associated with the 
same physical terminal. 

This function could also be used by any application that, depending 
on the processing involved, requires one of many possible output 
destinations. 

The user should define one modifiable PCB per possible destination 
per transaction, as the destination can be set only once per message 
without as~ of the purge call, which is not recommended. This means 
simply that the destination cannot be changed once a message segment has 
been inserted to the PCB until a get unique to the I/O PCB is issued. 

Normal use of the function would therefore be: 

GU I/O PCB 
CHNG Modifiable alternate PCB 
ISRT Modifiable alternate PCB 
GU I/O PCB 
CHNG Modifiable alternate PCB 
etc. 

An alternate PCB can be used to respond to terminals in response 
mode, conversational mode, or exclusive mode, if the PCB is so defined 
on the alterna~e PCB statement. Use of this response alternate PCB 
allows the application program to send output to a logical terminal that 
did not originate the input message, while still satisfying the 
requirements of these operating modes. This response alternate PCB is 
only valid for naming a logical terminal. 

IMS/VS can also be directed to verify that the logical terminal named 
in the response alternate PCB is assigned to the same physical terminal 
as the logical terminal that originated the input message. This 
verification is required for alternate response PCBs used by 
conversational programs and response mode transactions. Verification is 
not needed if alternate response PCBs are used to send messages to 
output-only devices that are in exclusive mode. Additional information 
on response alternate PCBs is found in !tt2L!2 !E~li£~liQn f~Qgt~mming 
g~!~t~n£~ a~nY~l· 

CONVERTING FROM BATCH TO TELECOMMUNICATION 

Conversion from batch to online with IMS/VS can be a simple process. 
Figure 3-13 shows a batch application program which deals with DL/1 data 
bases. The procedural portion of the application program differs little 
between batch and TP. The DL/I data base I/O calls need not be altered 
at all. The area of conversion will be that portion which deals with 
external input (SYS1N) ana output (SYSOUT). The TRANSACTION and 
RESPONSE in the application program shown represent the primary input 
and output. The READ/WRITE or GET/PUT in the batch system are replaced 
by DL/I calls for input and output for telecommunication. Instead of 
the input coming in from SYSIN. it comes from a logical terminal. 
Output, instead of be5,ng written to SYSOUT, is written to a logical 
terminal. It can be seen that use of DL/I for transactions and respons~s 
as well as data base I/O, makes DL/I the single I/O interface with which 
the application program deals. 

Application Program Design 3.17 

L 



APPLICATION PROGRAM r-----------, 
TRANSACTION: PROCEDURE : 

I OSNS READ I 
I EXTERNAL INPUT/OUTPUT WRITE 

RESPONSE 

/ I Dln I 
/ I DATA BASE I

I INPUT/OUTPUT II 
L ___________ J---t"----'"CONVERTING I 

TO TElE- , 
COMMUNICATION I 

DATA 
I BASE 

\ 
\ 

DLII 
TELECOMMUNICATION CAll Dl/I .....E--~'''-{ INPUT/OUTPUT 

Figure 3-13. Converting from Batch to Telecommunication 

T!LECOKMUNICATION DEVICE INDEPENDENT PROGRAMMING 

If a variety of devices are to be used on an IKS/VS telecommunication 
system, some consideration should be given to designing application 
programs in such a way that input is processed properly regardless of 
the physical terminal type from which it is received. For example, 
input might be received from either a 2740 Qr a 3270. The maximum 
physical line length for a 2740 is 130 'characters, and one line of input 
is handled as one message segment. For a 3270, on the other hand, the 
user defines the structure and length of a message segment.• 

If I/O formats are to be consistent between devices with different 
length I/O characteristics, design must be aimed toward the limiting 
device. For example, a 3270 can only accommodate 80 characters on each 
line, while the 2740 can handle 130. A design for a 130-character line 
would not operate identically with the 2740 and the 3270. Another 
approach is to have the application program written so that it can 
determine the class of device with which it is dealing. This can be 
accomplished through the use of naming conventions. For example, the 
first character of each logical terminal associated with an 80 character 
device could begin with the letter V. 

The application program has access to this name at the time the 
message is acquired. 

DEVICE CLASS CONTROL CONSIDERATIONS 

Control ~haracters for control of output devices are the 
responsibility of the application programmer. The 2260, 2265, and the 
2265 component of the 2710 system makes use of the Z field in the 
message format shown earlier, in conjunction with the line addressing 
feature of the 2260/2265 and the paging feature of IMS/VS. On a 2980 
General Banking Terminal Model 1 or Model 4, the Z field of the message 
format is used to direct output message segments to a passbook; on a 
2980 Model 2 terminal, this field is used to require the presence of the 

3.1S IMS/VS System/Application Design Guide 



auditor's key, in order to receive an output message segment. Switched 
deyices (except 3270) also make use of the Z field in the message format 
shown earlier. This is used by the application program to request that 
the line be disconnected after the present message is sent. This field 
is ignored by communications control if the output is physically sent to 
a device without this capability. 

Carriage return characters, or new line symbols, are embedded in the 
text portion of the message by the application programmer. If output is 
going to a 2770 printer component, 2780, or local printer (SYSOOT) 
device, the first two characters of the message can be carriage control 
characters. These are also the responsibility of the application 
programmer. 

Vocabulary drum address characters may be the text portion (or part 
thereof) of the message going to a 7170-3 line. These are also the 
responsibility of the application programmer. 

Under special conditions, it may be desirable to terminate an output 
message at a specific point. The DL/I purge call with TP PCB address 
can be used to accomplish this function. Figure 3-1q shows two messages 
to the destination being built. 

The purge call releases the output message segments for processing 
without waiting for the application program to signify normal completion 
(by a get unique of the next transaction or normal termination) of the 
current transaction. 

ENTER LINKAGE. COMMENT ONLY 

CALL 'CBLTDLI' aSING PURG, TPPCB. 

ENTER COBOL. COMMENT ONLY 


Message A(1) 

r--------------------------------------,, FIRST SEGMENT 	 I <---------INSERT 
1--------------------------------------11 SECOND SEGMENT 	 I <---------INSERT 
1--------------------------------------1 
, THIRD SEGMENT 	 I <---------INSERT 
L--------------------------------------~ <---------PURGE 

Message A(2) 

r--------------------------------------,I FIRST (FOURTH) SEGMENT 1 <---------INSERT 
1--------------------------------------1 , SECOND (FIFTH) SEGMENT 1 <---------INSERT 
1--------------------------------------11 THIRD (SIXTH) SEGKENT I <---------INSERT
L-------------------------------_______~ 

<---------GET UNIQUE or program
termination 

Figure 3-14. 	 SiX-Segment Message Separated into Tvo Three-Segment 
Messages by Use of the Purge Call 

Application Program nesign 3.19 



UTILIZATION OF SYSOUT DEVICES 

The use of support provided for SYSOUT devices (printers, tape, or 
DASD) allows a wide range of applications, including: 

• 	 Local terminal simulation using a card reader and printer. 

• 	 High volume output, such as reports using either a printer or tape
volume. 

• 	 Intermediate output to be used by a non-IMS/VS application program 
using either tape or disk volumes. 

Since record formats, logical record lengths, and block sizp.s are 
user-defined, a SYSOUT data set can have a variety of different 
attributes. 

By using the spool SYSOUT option, a local printer can be simulated 
without dedicating the device to the IMS/VS system. 

SYSIN data streams can be assigned to a local card reader line, 
providing a means by which nonconversational telecommunication 
application programs can be tested. When such an assignment is made, a 
program can be tested with data entered through SYSIN and output
produced using any of the optional types of SYSOUT support available. 
Only one file of data can be entered per line. Any logical errors 
detected in processing the data stream (for example, invalid transaction 
codes) are ignored by IMS/VS. Care must be taken to avoid undesirable 
results when this type of error occurs in the first segment of a 
multisegment transaction, since all following segments are processed as 
new messages. 

When SYSIN data streams are used by IMS/VS, no logging of position 
occurs while messages are being processed. Consequently, only a cold 
start of IMS/VS operation should be performed after using SYSIN input 
streams, or duplicate message processing may occur. 

CONVERSATIONAL PROCESSING 

Conversational processing is an optional IMS/VS feature available to 
users of the data communications facility. It allows a user's 
application program to retain information acquired through multiple 
interchanges with a terminal, even though the program leaves the message 
region b~tveen interchanges. 

If conversational processing is to be used, it must be considered 
during system definition. Transactions that will invoke a 
conversational program must be identified at this time. The user must 
also describe the number and size of the SPAs (scratchpad areas) to be 
allocated, either in main storage or on a direct access device. An SPA 
is used to contain the information to be retained during conversational 
interchanges. 

Figure 3-15 shows a simple conversational process. When IMS/VS 
receives a conversational transaction it assigns an SPA to the input 
terminal and schedules the associated application program. 

3.20 IMS/VS system/Application Design Guide 



r------, 
[ SCRATCH , 

PAO IL _____ ...l 

Figure 3-15. Conversational Program 

When the program executes and issues its first GU, it receives the 
SPA. The first segment of the message input from the terminal is 
obtained by a GN call. After processing the segment, the program must 
issue an ISRT call to return the SPA to IMS/VS. IKS/VS retains the 
scratchpad either in main storage or on disk until needed. Th@ program 
then must use ISRT to send an output message to the terminal in 
conversation. 

A response to the terminal in conversation is required to allow the 
conversation to continue. The conversational transaction need only be 
entered to initiate the conversation; during subsequent interchanges 
IHS/VS considers all input from that terminal to be a part of th@ 
conversation. 

IMS/VS allows more than one program to participate in a conversation. 
One conversational program passes control to another, either by changing 
the transaction code in the SPA to another conversational transaction, 
or by inserting the SPA to an alternate PCB identifying the program to 
take control of the conversation. 

When a conversation is processed to its normal completion, it is 
terminated by the application program. The program places blanks in the 
transaction code in the SPA before returning it through the ISRT call. 
The prograa can also put the code of a nonconversational transaction in 
the SPA; the conversation then remains active until the next input is 
received from the terminal. IKS/VS routes this input to th~ 
nonconversational transaction, thus terminating the conversation. 

IMS/VS terminal commands are valid during a conversation. Commands 
are provided, in fact, to allow the operator to temporarily susp~nd a 
conversation in progress {/HOLD command) and to resume it at a later 
time (/RELEASE command). The /EXIT command is available for the 
operator to terminate the conversation. 

Some applications require that a conversational process not be 
interrupted once it has started. This is because non-program initiated 
termination could result in partially-updated data bases. This type of 
termination can occur if the operator prematurely uses the /EXIT 
command, or if a program involved in the conversation abnormally 
terminates. When this condition occurs, a user exit routine can be 
entered to analyze the termination and, if desired, to cause another 
program to be scheduled to complete or backout any data base updates. 
The user exit routine cannot cause the conversation to continue. The 

Application Program Design 3.21 



Ia~~ 2Y2i~~ ~~Q~~~~~ ~ef~~n£~ ~!n~al contains specifications for a 
conversation abnormal termination exit routine. 

For information on the Automated Operator Application Program, see 
the "Automated Operator Programming" chapter, in the U~L!~ ~Itl~!! 
f~2g£!!!!ng B~!~£~n£~ ~!n~!!· 

PAGING FEATURE -- 2260 AND 2265 

The paging feature allows an application program to insert a multiple 
screen message to the 2260 or 2265 which can be viewed by the operator 
in any sequence he wishes. If, after viewing the first screen, the 
operator chooses to skip all remaining screens and go to the next 
message, he can. Alternatively, as an example, he can look at the first 
screen, page forward to the 17th screen, page back to the fifth screen, 
view several screens in sequence, etc. He can go to the next message or 
series of screens at any time, whether or not he has looked at all the 
screens in this series. Once this option is taken however, he cannot 
return to look at any image from a previous series. IMS/VS prevents the 
operator from inadvertently paging past the end of one series into 
another, thus losing the current series. 

The opera'tor is supplied with a page-request indicator (=) to specify 
which page is to be viewed next. If Auto Delete was specified in system 
definition, any other input message, that is, one that does not begin 
with a page-request indicator, causes the series of pages being viewed 
to be considered complete and the series to be dequeued. Therefore, 
when an operator has completed viewing a series of pages he has merely 
to enter a new transaction code to signify this to the system. If a 
multiple-page message is routed to a non-paged terminal, such as a 2740, 
the paging is ignored, and the message is transmitted as any other 
message. If Auto Delete was not specified, the operator can enter a 
message while viewing a page. This causes the first page of the series 
to b~ redisplayed, and the operator must specifi'cally enter a 
next-output indicator (1) to cause the series of pages to be dequeued. 
While this mode of operation may have merit in specific applications, it 
may prove cumbersome to the operator in a generalized system 
application. It is recommended, therefore, that the user be aware of the 
operational procedures required for non-Auto Delete operation before 
specifying this mode of operation. 

While the IMS/VS telecommunication system is in operation, it may be 
desirable to let a batch program have access to online data bases or 
input/output message queues. This can be accomplished by a batch 
message processing program (BMP). This program is loaded in the 
conventional operating system manner. It has access to online data 
bases and message queues, and can also make usa of operating system data 
management facilities. 

When starting a BMP, several parameters may be specified on the EXEC 
statement. These include the PSB and program name. For message 
processing programs, the PSB and program name must be the same; however, 
they can be different for BMPs. This allows a utility program to be run 
using different PSBs. 

BMP can implement a checkpoint to purge data base and message 
buffers. It writes a checkpoint ID to the system log. This checkpoint 
is independent of CTL (control region) and other BMP region checkpoints. 
IMS/VS maintains a checkpoint table to correlate BMP checkpoints with 
control region checkpoints for purposes of emergency restart. Design 
considerations for using this checkpoint table are contained in 

3.22 IKS/VS System/Application Design Guide 



chapter 2 under the topic "Batch Checkpoint Restart." The !~~l!~ 
!~1~c~~i2n f~2g~~mm!ng ~~t~~~n~ ~sng~! contains a description of the 
checkpoint (CHKP) call. 

Emergency restart after a system failure backs out all resources for 
each BMP region to the last checkpoint for that B~P region. The master 
terminal operator has the option of specifying that BMP data base 
changes NOT be backed out at emergency restart. 

If there is no bacKout for a BMP, the operator also has the option of 
releasing the resources that were reserved for the B~P (that is, 
starting stopped data bases). If backout has been done, the resources 
are not reserved since data base integrity has been maintained. 

USE OF BMP 

The BMP is useful for several types of processing. If data is being 
collected for batch processing, the message processing program can 
retrieve the collected data from the queue. Upon a single loading, a 
BMP can deal with only one input queue (transaction code). The 
transaction code is also specified on the EXEC statement when the B~P is 
started. The BMP sends output to logical terminals or other programs 
through the queues. The BMP is useful for doing summary reports while 
the data bases are being utilized in a telecommunication environment. 
Use of the BMP to update data bases, while the online system is in 
operation, can prevent message regions from being scheduled when (1) the 
MPP and BMP use the same data base and that data base was not specified 
for parallel scheduling, or (2)' when PROCOPT=EXCLUSIVE is specified. 
Note also that BMPs that do not issue a checkpoint call m&y cause 
excessive waiting or deadlocks for MPPs accessing the same data base. 

BUFFERING 

Heavy utilization of data base buffers by a BMP can impact response 
time at a terminal, if a relatively small data base buffer pool is 
allocated. Since the pool is utilized for all data bases, and the oldest 
buffer is always freed for current I/O requests, additional I/O requests 
may be required for those telecommunication programs performing data 
base updates. It is possible that a message processing program may 
obtain a segment for update, and prior to the REPLACE call have the 
buffer containing the segment may be freed. DL/I must then reread the 
segment for replacement. 

INTERMEDIATE DATA BASES 

If the user wants to save information between loads of an application 
program, without making use of the conversational capability, 
intermediate data bases can be utilized. Figure 3-16 shows an 
intermediate data base being utilized for purchase order writing. Each 
logical terminal is represented by a root key in the data base. Since 
all logical terminal names are unique, there is no possibility of 
conflicts between terminals. The application program has access to the 
source of each input through the input/output logical terminal PCB. 

Application Program Design 3.23 



I~~~~-- -----------­
~--~~------, 

~ 
~-- ----------­

Figure 3-16. Intermediate Data Base 

MESSAGE EDITING 

If free form input is allowed from input terminals r a single message 
editing routine is an alternative to redundant code in the COBOL or PL/I 
program. The message editing routine can convert the message from a 
free format into a fixed format. 

The edit routine can be located in the IMS/VS control region or in 
the message processing region with the application program. If an edit 
routine is to be used a great deal r it should be included in the !MS/VS 
control region. In some instances this helps reduce the region size 
required for the message processing region. 

If the edit routine is to be included in the message processing 
region as a part of the application program, the possibility of placing 
the module in link pack should be explored. 

Use of a single message edit routine for all programs could have 
value for some user environments. The message edit routine could be the 
only user module making calls on DL/I for message input/output. This 
could reduce the amount of error checking required in each application 
program. 

OUTPUTTING A MASK TO THE 2260 

When a 2260 is being used in an interactive manner, terminal operator 
time can be saved by having the application program send out a mask or 
form to the 2260. The terminal operator then fills in the appropriate 
information and transmits the entire screen as input. 

PASSING INFORMATION FROM ONE PROGRAM TO ANOTHER 

When a program is to be designed in a modular fashionr there are 
several ways in which information can be passed from one program to 
another. The first way is by sending output to an alternate destination 
through the queues. Another is to store information in an intermediate 
data base, as discussed earlier. A third way is to use a scratchpad 
area for passing the information from one program to another. If the 
scratchpad area is resident in storage r the input/output overhead is 
less than by the other approaches. 

3.24 I8S/VS System/Application Design Guide 



L 

The data management portion of IMS/VS is designed to simplify the 
task of assembling and maintaining large amounts of data while still 
offering flexibility in how the data is organized and used. To 
accomplish this, IMS/VS uses an organization for data called a data 
base. 

Under I~S/VS, different types of data bases can be created by the 
user. Each requires two definitions before the data base can be used by 
application programs. The user defines the data base structure and 
content through Data Base Description Generation (DBDGEN). He also 
defines what data within the data base each application program will 
user and what processing options each application program is allowed to 
use on that data through Program Specification Block Generation 
(PSBGEN). Each of the data base types is supported by and named after 
its own access method. The access methods and the data base type each 
is used for are: 

• 	 Hierarchic Sequential Access Method (HSAM) HSAM 
• 	 Hierarchic Indexed Sequential Access 

Method (HISAM) HISAM 
• 	 Hierarchic Direct Access Method (HDAM) HDAM 
• 	 Hierarchic Indexed Direct Access 

Method (HIDAM) HIDAM 
• 	 Logical Logical 
• 	 Generalized Sequential Access Method tGSAM) GSAM 
• 	 Main Storage Data Base MSDB 
• 	 Direct Entry Data Base DEDB 

For information on the Main Storage Data Base (MSDB) and the Data 
Entry Data Base (DEDB) see the "Fast Path Data Bases" section in the 
chapter "Design Considerations for the Fast Path Feature." 

A logical data base is comprised of data stored in one or more 
physical data bases that is structured logically to satisfy the 
requirements of an application program. 

GSAM data bases are limited to a single, unstructured data set. 

Prior to discussing the advantages and disadvantages of each type of 
data base, the concepts and terms used for IMS/VS data bases must be 
understood. 

In general, an IMS/VS data base is a hierarchic organization of the 
different types of data required by one or more applications. We'll 
examine first its content and structure, and we'll then describe the 
DL/I calls that are used to process a data base. Included in content 
are segments and fields. Structure includes the definition of the 
hierarchy of a physical data base. Note that GSAM data bases are not 
hierarchic and are based on physical records rather than segments. 

Data Base Design considerations 4.1 



SEGMENTS 

A data base is a storage organization that enables the user to manage 
multiple sets of data, and multiple elements of each set. The content 
of a data base is defined by segment type through the DBDGEN utility. 
For each set of data the user wants to store in a data base, he defines 
a segment type and the physical characteristics to use when storing 
segments of that type. In turn, when multiple elements of data of a set 
are stored in a data base, they are stored as segments of the type 
defined and use the physical characteristics defined for that segment 
type. A segment in a data base is also called an occurrence. Both 
terms are used interchangeably to refer to a segment. A data base can 
contain a maximum of 255 segment types, and the number of segments of 
any type defined is limited only by the space allocated for the data 
base. 

The input to DBDGEN that defines a segment type and the physical 
characteristics of that segment type is the SEGM statement. Among the 
physical characteristics defined for each segment type are the name, 
length, and hierarchic position to be used when storing segments of that 
type. The name specified is used to identify segments of that type in 
storage, and in turn, the application program uses the name of a segment 
type to address the type of segment to be processed. The length 
specified f'or a segment type tells 18S/VS the number of bytes of 
auxiliary storage to use for the data portion of each ~egment of that 
type. For the segments in storage that contain a prefix and data 
portion, the prefix is used by IMS/VS in managing the segment, and the 
data portion of the segment contains the user data. The length 
specified for the data portion of a segment type must be fixed, except 
when VSAM is used as the operating system access method. When VSAM is 
used, the length specified for the data portion of a segment type can be 
either fixed or variable. When variable length is specified, the amount 
of auxiliary storage space used for the data portion of each segment of 
that type can vary between a user specified minimum and maximum number 
of bytes. In the case of fixed, the data portfon of each segment of the 
same type occupies the same amount of auxiliary storage space. The 
length specified for a segment type cannot exceed the physical record 
length of the storage device used. The hierarchic position defined for 
a segment type determines how segments of that type are stored in a data 
base in relation to segments of other types. For an explanation of the 
hierarchic position of a segment type in a physical data base, refer to 
"structure" in this chapter. 

SEGMENT FORMATS 

When defining a segment type, the segment length specified by the 
user can be either fixed or variable. In either case, segments in 
I8S/VS data bases contain a prefix and a data portion except for three 
cases where only the data portion is present. For an H5AM, simple HSAft 
or simple HISAM data base that contains only one segment type, no prefix 
is stored with occurrences of the segment type in the data base. 

The fixed and variable length format for segments in H5AM, H~SAM, 
HDAM and HIDAM data bases are shown in Figure 4-1. 

4.2 IMS/VS system/Application Design Guide 



L 
Fixed length segment format 

PREFIX DATA 

SEGMENT DELETE POINTER AND COUNTER FIXED LENGTH 
CODE BYTE AREA USER DATA 

Variable length segment format 

PREFIX DATA I 
POINTER ANt-D-C-O-UN-T-E-R--r---V-A-R-I-A-B~LEE:=JENGTHSEGMENT DELETE 

CODE BYTE AREA USER DATA 

~-----~------~----~ 

Figure 4-1. Segment Formats 

Segments in all data base types contain a prefix and data portion 
except in the 3 cases stated previously. The prefix of a segment 
contains data used by IMS/VS that is transparent to application 
programs. The data portion of a segment contains user data. As a 
minimum, the prefix of a segment contains a segment code and a delete 
byte. The content of the remaining portion of the prefix varies by data 
base type. Segments are related through direct address pointers in HDAK 
and HIDAM data bases, so all segments in those data bases will contain 
one or more pOinters in their prefix. Segments in HS1M and HISAM data 
bases are related through physical adjacency so they will have no direct 
address pOinters in their prefix. The one exception to this is a 
segment in a HISAM data base that is involved in a logical relationship 
with a segment in an HDAM or HIDAM data base. When the segment in the 
HISAM data base points to the segment in the 'HDAM or HIDAK data base, it 
can have a direct address pOinter specified to point to the HDAM or 
HIDA!! segment directly. A counter is only present in the prefix of a 
segment under certain conditions when it is involved in a logical 
relationship. For the conditions under which the counter will be 
present in a prefix and the use of the counter, see "Pointers and the 
counter Used in Logical Relationships" in this chapter. 

~!u~ni £2!l~ 

To identify each segment stored in an IMS/VS data base, a one byte 
segment code is placed in the first byte of the prefix of the segment. 
The segment code is a number from 1 to 255 that identifies a segment 
type to IMS/VS in place of its name. Segment code values are assigned 
to the segment types in a data base in asc~nding sequence starting with 
the root segment type and then continuing to all dependent segment types 
following the hierarchic sequence defined for the segment types in a 
data base by the user. 

The delete byte is used by IMS/VS to maintain the delete status of 
segments within a data base. The meaning of each bit within the delete 
byte is shown in Figure 4-2. 

Data Base Design considera~ons q.3 



DELETE BYTE 

BIT 	 MEANING 

o 	 SEGMENT HAS BEEN DELETED (HISAM OR INDEX ONLY) 

DATA BASE RECORD HAS BEEN DELETED (HISAM OR INDEX ONLY) 

2 	 SEGMENT PROCESSED BY DELETE 

3 	 RESERVED 

4 	 DATA AND PREFIX ARE SEPARATED IN STORAGE 

S 	 SEGMENT DELETED FROM PHYSICAL PATH 
(PHYSICAL DELETE (PD) BIT) 

6 	 SEGMENT DELETED FROM WGICALPATH 
(WGICAL DELETE (LD) BIT) 

7 	 SEGMENT HAS BEEN REMOVED FROM ITS LT CHAIN 
(BIT 7 IS ASSUMED SET IF BITS SAND 6 ARE SET) 

Figure 4-2. Delete Byte 

FIELDS 

An application program addresses segments in a data base through the 
name specified for their segment type, and through the names of fields 
defined within a segment type. The segment name alone allows an 
application program to address a specific segment type within a data 
base. To address a specific occurrence of a segment type, fields must 
be defined within that segment type. 

Within the data portion of each segment type, the user can define 
fields through the DBDGEN utility. Each is defined through a FIELD 
statement which is input to DBDGEN. The maximum number of fields that 
can be defined within a segment type is 255 and the maximum within a 
data base is 1000. The two types of fields that can be defined are 
sequence fields and data fields. Both fields can be used by an 
application program to address specific segments in a data base. A 
sequence field, often referred to as a key field, has two purposes in 
addition to that of the data field. It is used to store occurrences of 
a segment type in a sequential order. The order is determined by the 
value placed in the sequence field of each occurrence. The value in the 
sequence field of a segment is called the key of that segment. 
Occurrences of a segment type are stored in ascending order in the data 
base starting with the occurrence that contains the lowest sequence 
field key. The sequence field is also used as all or part of a symbolic 
pointer to a segment in a data base. The symbolic pointer is actually 
the concatenation of the keys in the sequence fields of all segments 
that must be retrieved to reach the desired segment including the 
sequence field key of the desired segment as shown in Figure 4-3. 

Only one sequence field can be defined in each segment type. 
Sequence fields can be defined as unique or non-unique by the user. 
When defined as unique, occurrences of a segment type must contain 
sequence field values that uniquely identify them within a data base, 
and segments are stored in the data base in the manner described 
previously. When defined as non-unique, sequence field values do not 
have to uniquely identify a segment within a data base. In this case, 
segment occurrences are still sequenced according to their sequence 

4.4 IKS/VS System/Application Design Guide 



L 

L 

field value which controls all segments except those with the same 
value. If placement of those with the same value is of concern, the user 
must control their placement either through his data base load program, 
or through the combination of his load program and by stating insert 
rules for segment placement through DBDGEN. 

CONCATENATED KEYS 

SKILL 
SEGMENT 

STCLERK 
STCLERK 

NAME 

SEGMENT 

SM!TH 
STCLERKSMITH 

SEQUENCE FIELD KEYS 

EXPR 

RW8 

EDUC 
SEGMENT SEGMENT 

PHAR 

STCLERKSMITHRW8 STCLERKSMITHPHAR 

Figure 4-3. Concatenated Keys 

Data Base Design Considerations 4.5 

L 



STRUCTURE 

The hierarchy of a data base is created by defining an order of 
dependence for the segment types it contains. To 18S/VS, the hierarchy 
represents the order in which the user wants his application data 
stored. To the application program, it represents the order in which 
the segment types in a data base are available for processing. The 
criteria normally used in determining the hierarchy is how th@ data in 
one segment type relates to data in another segment type, and the 
frequency in which a segment type will be accessed by an application 
program. 

To understand how a data base hierarchy is developed, we'll us~ as an 
example a skills inventory application. We'll determine what segment 
types a data base should contain for the application and the hierarchic 
order of those segment types. In addition, we'll show the data base 
that CQuld result in storage by defining the segment types and th~ir 
hierarchic order through the DBDGEN utility. 

Let's assume in our example that an application program wants to 
locate a given skill, and then find out what employees possess that 
skill. In addition, the application must have access to the experience 
and education records of each employee. 

In the assumptions, four sets of data were required by the skills 
inventory application. Each will be defined as a segment type in our 
skills inventory data base. Let's now create a hierarchic data 
structure that reflects the order in which the four s~gment types are 
required by the application. To do this, we must determine both the 
order in which the application program must use each type of data, and 
the order in which each type of data must be presented to the 
application program so that the data retains its meaning. In the 
assumptions, it was stated that the application wanted to find a given 
skill and then find the names of the employees that possessed that 
skill. From this statement we know that skill should be the first type 
gf data in our structure and that name should follow skill. For the 
remaining types of data, experience and education, no indication was 
given as to how they should fit in our structure, but we can determine 
their position in the structure if we can establish how they should 
relate to the skill and name typ~s of data. For our application, 
experience and education data have no meaning by themselves, to each 
other or in relation to skill. When related to name data however, the 
experience and education types of data do have meaning since they are 
the experience and education records of specific employees. We can now 
complete our data structure. At the top is skill, below skill is name, 
and name in turn is followed by experience and education as shown in 
Figure 4-4. Experience and education are below name since they are 
dependent on name for the skills inventory application. An employees 
name must be established before his experience and education records 
have meaning. In turn, name is dependent on skill since the application 
will locate a given skill and then associate employee names to that 
skill. In summary, the data structure sh6wn in Figure S.q represents 
the sets of data and the order of dependence for those sets required by 
the skills inventory application. It contains four sets of data 
arranged in three levels of dependence. An IMS/VS data base can contain 
a maximum of 255 sets of data arranged in up to 15 levels of dependence. 

4.6 IMS/VS System/Application Design Guide 



SKILL 

NAME 

I I 

EXPERIENCE EDUCATION 

Figure 4-4. Hierarchy of Segment Types 

The data structure just created is called a hierarchy of segment 
types. It represents the segment types and the hierarchic arrangement of 
those segment types that would be defined through DBDGEN to define our 
skills inventory data base. If we now assume data for each segment 
type, Figure 4-5 shows the data base that would result in storage. 

Figure 4-5 shows how segments of each type can be loaded in a data 
base. Three occurrences of the skill segment type are shown. Related 
to each are the specific occurrences of the Name segment type that 
contain the names of the employees who possess that particular skill. 
Related to each Name segment in turn, are the specific segments of the 
Experience and Education segment types that contain the experience and 
education records of each employee. Skill is the root segment type in 
this data base, and each data base has only one. The root segment type 
is always the first segment type defined in a data base, and, as shown, 
it is the only segment type that occupies the first level of a data base 
hierarchy. Segments of all other types in a data base are stored in 
relation to an occurrence of the root, and as such are termed dependents 
of the root. In addition, occurrences ~f the Experience and Education 
segment types, shown at the third level of the hierarchy, are dependents 
of the Name segment type since they are stored in relation to 
occurrences of the Name segment type. When a data base hierarchy is 
read from top to bottom with the root at the top, each lower level in 
the hierarchy contains the dependent segments of the segments at the 
next higher level. Before any dependent segment is loaded in a aata 
base, the segments on which it is dependent must be loaded. In all 
cases, a dependent segment in a data base is dependent on one segment at 
each higher level in the hierarchy. 

The major unit of organization for segments within a data base is the 
data base record. A data base is comprised of one or more data hase 
records, and a data base record contains one occurrence of the root 
segment type and all of its dependents arranged in hierarchic sequence. 
Hierarchic sequence for the segments in a data base record is top to 
bottom, then left to right passing through each segment only once. The 
skills inventory data base shown in Figure 4-5 contains three data base 
records, and the hierarchic sequence of each is shown. 

Data Base Design Considerations 4.1 



--

~ "­
"­

') 

/, 

~ 
I 
I 
I 

-"=• 
"Q .... 

CD 1.0 
/:l 
t1 
If) 

H 
i:i: ~ 

til I 

" UI 
<: 
til 

til 
'cI 
III ~ ..... I» 
CD ..... 
19 I» 

" iJ>f Il' 
'Q I» 
'Q III 
~ .... (1) 

0 .... 
I» t:! 
..... .... til 
0 ..... 
t:! 0 

t1 
t=' I» 
(1) t.Q 
III .... If) 

t.Q 
::J 

«1 
/:l..... 
0­
CD 

1--------­
I ' 
I 

Hierarchy of se 
defined Ihrou:;;~~;:~s 

I SKJL~ 

Resul ling da la base In. storage 

:~~ 
" 

'. 
+ 

~ l, ~ 



The hierarchy of a physical or logical data base can contain a 
maximum of 15 levels. The order of dependence for segment types in the 
hierarchy is from level one, or the top of the hierarchy, to level 15, 
the bottom of the hierarchy. The top level of the hierarchy of any data 
base can contain only one segment type. It is called the root segment 
type for that data base. Subsaquent levels below the root can contain 
any number of segment types such that the maximum of 255 total segment 
types in the data base is not exceeded. 

u~tin~n~ ~ ghY§i£~l ~~i~ ~~§~ B~~£~I£hY 

The input to the DBDGEN utility that defines the segment types a data 
base contains, their physical characteristics and their hierarchic 
position is the SEG~ statement. (The SEGM statement is described in the 
1~§LY§ Yiil~!~~§ R~t~£~~~~ ~~~g~l.) For our explanation here, it is only 
necessary to know that a data base hierarchy is defined through the 
order in which SEGM statements are arranged for input to DBDGEN, and 
through use of the PARENT= operand of the SEGM statement. 

The PARENT= operand of the SEGM statement is used to define the 
physical relationships that exist between the segment types on each two 
adjacent levels in a data base hierarchy. The two segment types 
involved in the relationships are called a physical parent and a 
physical child. A physical parent is a segment type that has a 
dependent segment type defined at the next lower level in the data base 
hierarchy. A physical child is a segment type that is dependent on a 
segment type defined at the next higher level in the data base 
hierarchy. These two terms are used to state the order of dependence 
for the segment types in a data base. In a data base with multiple 
segment types defined, the root segment type is the physical parent of 
all segment types defined at the second level of the data base. In 
turn, the segment types on the second level are physical children of the 
root. Each level of a data base contains the physical parent segment 
types of any segment types defined at the next lower level, and the 
physical child segment types of any segment types defined at the next 
higher level. The PARENT= operand of the SEGM statement is used to 
state specifically which segment type at the next higher level is the 
physical parent of a physical child. All segment types in a data base, 
except the root, are physical children since each is dependent on at 
least the root. On the SEGM statement that defines each physical child, 
the PARENT= operand is used to specify the name of the physical parent 
segment type. 

The PARENT= operand of the SEGM statement defines the top to bottom 
order of segment types. The arrangement of SEGM statements for input to 
the DBDGEN utility defines the left to right arrangement of segment 
types. For input to DBDGEN, SEGM statements must be arranged in 
hierarchic sequence. Hierarchic sequence is defined as top to bottom, 
then left to right passing through each segment type only once. The 
seqment types in the hierarchic structure shown in Figure 4-6 are 
numbered to show the order in which SEG" statements to d~fine that 
structure must be arranged for DBDGEN input. 

Data Base Design Considerations 4.9 



1 

I I 

2 5 9 

I I 
J I J I I I 
3 4 6 7 10 11 

I 

8 

Figure 4-6. Segment Types Numbered in Hierarchic Sequence 

Previously, the terms physical parent and physical child were 
defined. The remaining term used to describe physical relationships is 
physical twin. Physical twins are occurrences of the same segment type 
that are dependent on the same occurrence of the physical parent segment 
type. In Figure 4-7, the three Name segments Adams, Jones and Smith are 
physical t~ins since all three are dependent on the skill segment that 
contains the data artist. Under Adams, the three Experience segments 
are physical twins and the three Education segments are physical twins 
since, in each case, the three are of the same segment type under the 
same occurrence of the physical parent segment type. 

The term sibling, used frequently in data base literature, refers to 
the relationship between two or more segment types at the same level 
that are dependents of the same parent type segment. 

The hierarchies of all four physical data base types are defined as 
just described, but in auxiliary storage, each of the four physical data 
base types is organized differently. To understand the advantages of 
one data base organization over another, a basic understanding of the 
DL/I calls used to process segments in a data base is r.equired, since 
the primary trade off between the four types is auxiliary storage space 
versus the performance of application programs processing a data base 
through DL/I calls. 

4.10 IMS/VS System/Application Design Guide 



IExPR 

'. ~'-- ,. 

\ " " 

\ '" 
\ ' " 
\ 

r {' r 

... 
1-'­
\Q 
I:: 
t1 
t1) 

-'=' 
•..,J 

'1:1 
::r 
~ 
III 
1-" 
o 
I» 
I-' 

t-3 
C 
1-'­
1:1 
III 

t:I 
PI 
r+ 
PI 

IJj 
PI 
fII 
t1) 

t:I 
t1) 

fII 
1-'­
\Q 
1:1 

o o 
1:1 
fII 
1-'­
PI 
CD 
t1 
PI 
r+ .... 
o 
1:1 
fII 

.." 

Hierarchy of segment types 
defmed through DBDGEN 

Resulting data base in storage 

Physical twins 

/ 
/ 

/ 

/ ~'/ \'" 

"-
/~ ""-

" 

u:.'·' 



CALLS 

The segments in an IMS/VS data base are processed through calls 
issued by an application program. Calls are issued to get, insert, 
delete or replace a segment or a path of segments at a time. A call 
references a parameter list which includes all data required by IMS/VS 
to complete the call. Included in the list are a function code and an 
SSA (segment search argument). The function code states the call to be 
performed, and the SSA states the segment or path of segments to be 
processed. A call is unqualified when no SSA is included with the call, 
and a call is qualified when an 5SA is provided for the call. A brief 
description of the primary calls used in processing a data base and a 
brief description of SSAs follows. For more detailed information, refer 
to the I~§L!~ !££ii£!1iQa f~2[~~!mins ~212~!B£~ tt~n~~!. 

The direction of movement in a data base is called forward when the 
search for a given segment is going away from the first occurrenc~ of 
the root stored in a data base towards the last segment stor@d in the 
data base. Backward movement is movement in the opposite direction. 
Position in a data base is the segment or segments in a data base from 
which the search for another segment starts. 

The GU (get unique) call is used to retrieve a specific segment or 
path of segments from a data base, and at the same time establishes a 
position in a data base from which additional segments can be processed 
in a forward direction. 

~21 !2~1 

The GN (get next) call is used to retrieve the next desired segment 
or path of segments from a data base. The get next call normally moves 
forward in the hierarchy of a data base from current position. It can 
be modified to start at an earlier position than current position in the 
data base through a command code, but its normal function is to move 
forward from a given segment to the next desired segment in a data base. 

The GNP (get next within parent) call is used to retrieve dependent 
segments of a given parent segment from a data base. A get unique or 
get next call is used to establish parentage for the get next within 
parent. After a get unique or get next retrieves a given parent 
segment, successive get next within parent calls retrieve the dependent 
segments of that parent in hierarchic sequence. 

tlQ!g rQ~m 2! ~~i £s!!§ 
Another form of the three get calls is the hold form. A GHU (get 

hold unique), GHN (get hold next), or GHNP (get hold next within parent) 
indicates the intent of the user to issue a subsequent delete or replace 
call. A get hold call must be issued before issuing a delete or replace 
call. 

In2~~~ 

The ISRT (insert) call is used to insert a segment or a path of 
segments into a data base. It is used to initially load segments in all 
data base types, and to add segments to existing HI5AM, ROAM and HIDAM 

4.12 IMS/VS system/Application Design Guide 



L 

data bases. segments can not be inserted or added into an HSAM data 
base except at load time. 

To control where occurrences of a segment type are inserted into a 
data base, the user can define a unique sequence field in the segment 
type, or specify insert rules that control placement of occurrences of a 
segment type that has no sequence field or a non unique sequence field 
defined. When a unique sequence field is defined in a root segment 
type, the sequence field of each occurrence of the root segment type 
must contain a unique value. When defined for a dependent segment type, 
the sequence field of each occurrence under a given physical parent must 
contain a unique value. 

Following are the insert rules the user can specify to control the 
placement of segments in a data base. They are used to control the 
placement of occurrences of a segment type with non-unique sequence 
field values and for placement of all occurrences of a segment type when 
no sequence field has been defined. 

FIRST - States that a new occurrence of a segment type is 
inserted before the first existing occurrence of this 
segment type. If this segment has a non-unique key, a 
new occcurrence is inserted before all existing 
occurrences of the same type that contain the same 
sequence field key. 

LAST - States that a new occurrence is inserted after the last 
existing occurrence of this segment type. If this 
segment has a non-unique key, a new occurrence is 
inserted after all existing occurrences of the same type 
that contain the same sequence field key. 

HERE - Assumes the user has established position on the 
specified segment type by a previous Data Language/I call 
and the new occurrence is inserted before the segment 
which satisfied the last call. If current position is 
not within occurrences of the segment typ~ being 
inserted, the new occurrence is inserted before all 
e~isting occurrences of that segment type. If this 
segment has a non-unique key and data base position is 
not within occurrences of the segment type with 
equivalent key value, a new occurrence is inserted before 
all existing occurrences that contain the same sequence 
field key. 

~~!~~ 

'he DLET (delete) call is used to delete a segment or path of 
segments from a data base. It should be noted that, due to the 
hierarchic arrangement of segments in a data base, the deletion of a 
parent segment implies the deletion of that parent's dependents. When a 
parent segment is deleted in an IMS/VS data base, all of its dependents 
are deleted. 

R~E!!£~ 

The REPL (replace) call is used to replace the data in the data 
portion of a segment or path of segments in a data base. 

Data Base Design Considerations ~.'3 



An 55A identifies a segment or group of segments that are to be 
processed by a call. An 55A can contain three parts. 1s a minimum, it 
contains the name of the segment type to be processed. Optionally, an 
5SA can contain command codes and/or qualification statements. Command 
codes, when used, specify a functional variation of a call. 
Qualification statements identify through fields which segment or 
segments of the specified segment type are to be processed by the call. 
A qualification statement contains a field name, relational operator and 
comparative value. When occurrences of the segment type are searched, 
the specified field is compared to the comparative value in accordance 
to the relational operator specified. 

HIERARCHIC SEQUENTIAL AND DIRECT METHODS OF STORING A DATA BASE 

Two storage organization methods are used to create the hierarchic 
arrangement of segments in storage for the four physical data base 
types. The hierarchic sequential method is used for HS1M and HISA" data 
bases, and the hierarchic direct method is used for HDA" and HID!K data 
bases. The hierarchic sequential method consists of using physically 
adjacent storage locations to store all segment. within a data base 
record in hierarchic sequence. This creates a hierarchy for the 
occurrence of the root and all of its dependents within each data base 
record in which each segment is related to the segment that 
hierarchically follows it through physical adjacency in storage. The 
hierarchic direct method consists of placing four byte direct address 
pointers in the prefix of .each segment stored in the data base to 
establish the hierarchy of segments in each data base record. 

A description of the types of pointers used in HDA" and HIDA" data 
bases follows. 

To relate each segment in an HDAM or HIDA" data base to its related 
segments, direct address pointers are used. The pointers are four bytes 
long, and they are placed in the prefix of each segment stored in the 
data base. A direct address pointer consists of the relative byte 
address of a segment from the beginning of a data set. Either one of 
two methods of direct address pointing can be specified for each segment 
type in an HDAM or HIDA" data base. The two methods are hierarchic 
pointing, or the combination of physical child/physical twin pointing. 
Figure 4-8 should be referred to when reading the following descriptions 
of the types of pointers. 

4.14 IMS/VS system/Application Design Guide 



/ 

I 
/ 

I 
I 

I 

, 
r 

rr 
, I 
I, 

Hierarchical 
fon.'ard 
pointers 

-'"1-+----, 

I 
I 

I 
I 

I 

/ 
/ 

, 
/ 

./ 

/ 
/ 

I 

I 
I 

I 

Hierarchical 
forward and 
backward pointer. 

/ 

, 

LL-__-'-' 

~::::.~~/ 
I 
I 

r.------~r.------~ 

I 

I 


'r~---"=='-" PRECEDING S",LL.--'r~---"=='-" 

\ 
 \ 
,_ NEXT SKILL .... - NEXT SKILL 

r~---~ r----~ ,
I 
I 

Physical twin Phy.ical twin forward 
"toward pointers and backward pointer. 

,- ,­I ­
I 

I I 
L L 

I I 

l_ 

rl-.-----, 
IPI 
Ifl( 
I F I l 

-----­
ph~lial child f ... <1 " ....,,"' phy-':'lchild r .... 

_00 lalt PONUtn 

Figure 4-8. Direct Address Pointers 

Data Base Design Considerations ~. 15 



Two options for hierarchic pointing can be specified for each segment 
type in an HDAM or HIDAM data base. They are hierarchic forward, or 
hierarchic forward and backward pointing. When hierarchic forward 
pointers are specified for all segment types in a data base, each 
segment in a data base record pOints to the segment that hierarchically 
follows it through a four byte hierarchic forward pointer. When forward 
and backward pointers are specified, the backward pointer points from 
each segment in a data base record to the segment that hierarchically 
precedes it. The use of hierarchic pointers in an HDA~ or HIDAM data 
base results in the same arrangement of segments within each data base 
record as the hierarchic sequential method provides in an HSAM or HISAK 
data base, but rather than segments being related through physical 
adjacency, they are related through pointers that require additional 
auxiliary storage space. For most data bases with high update activity, 
the additional auxiliary storage space used for poi~ers is more than 
compensated for through the space reuse facilities gained in HDAM and 
HIDAM data bases. 

In a data base that contains hierarchic pointers, when a call is 
issued to process a segment in the data base, the hierarchic forward 
pointers are followed in searching for the segment to be processed. 
Hierarchic backward pointers are used only when a segment is being 
deleted. For delete, the backward pointers improve performance by 
enabling the pointers in the segments that hierarchically precede and 
follow the segment to be deleted to be updated without first going to 
the physical parent of the segment being deleted. With forward only 
pointers, deletion of a dependent segment requires going to the physical 
parent of the dependent, and then searching forward to update the 
pointer in the segment that precedes the segment being deleted as shown 
in Figure 4-9. 

Physical child/physical twin pointers benefit applications that 
process the segment types in a data base randomly. They allow the most 
direct paths to the dependent segment types in a data base. Two options 
for physical child and/or physical twin pointers can be specified for 
each segment type in a data base. The physical child pointers that can 
be specified are physical child first, or both physical child first and 
last. The physical twin pointers that can be specified are physical 
twin forward, or both physical twin forward and backward. When 
specified for all physical child segment types, physical child pointers 
are stored in the prefix of each physical parent segment, and they point 
to each of the physical child segment types of that physical parent 
segment. A physical child first pOinter points from a physical parent 
segment to the first occurrence of a physical child segment type in a 
data base that is a dependent of that physical parent. A physical child 
last pointer points from a physical parent segment to the last 
occurrence of a physical child segment type in a data base that is a 
dependent of that physical parent. If a physical parent segment has 
multiple physical child segment types, its prefix contains physical 
child first, or first and last pointers to each of those physical child 
segment types. Physical twin pointers are used to relate all 
occurrences of the same physical child segment type that are dependents 
of the same physical parent segment. Physical twins are multiple 
occurrences of the same segment type that are dependent on one 
occurrence of a physical parent segment type. A physical twin forward 
pointer pOints from a given twin to the twin following it in the data 
base, and a physical ~win backward pointer points from a given twin to 
the twin before it in the data base. 

4.16 IMS/VS System/Application Design Guide 



L 

Delete segment B4: 

Al 

B5 

B4 

Enter B4 to delete B4: 
( II Place pointer to B5 that is in B4 in work area. 

Bl 
(21 
(31 

Go up to A I. 
Follow pointers forward to B3. 

(41 Replace pointer to B4 that is in B3 with pointer to B5 from 
work area. 

(51 DeleteB4. 

Bl 

Al 

B5 

B4 

Enter B4 to delete B4: 
(II Place Forward & Backward pointers that are in B4 in work area. 
(21 Follow backward pointer to B3. 
(31 Replace pointer to B4 that is in B3 with pointer to B5 from work 

area. 
(41 Follow Forward pointer to B5. 
(5 I Replace pointer to B4 that is in B5 with pointer to B3 from work 

area. 
(61 Delete B4. 

Figure 4-9. Use of Backward Pointers for Delete 

In searching for a given segment in a physical data base using 
physical child/physical twin pointers, the physical child first and 
physical twin forward pointers state the hierarchic path to be followed 
in search of the segment. The normal path followed in locating a 
desired segment is from a given physical parent segment to the first 
occurrence of one of its physical child segment types, and then forward 
through all occurrences of that segment type to the last occurrence 
following physical twin forward pointers. 

A physical child last pointer enables a search to go directly from a 
physical parent to the last occurrence of one of its physical child 
segment types as shown in Pigure ~-10. In so doing, the physical child 
last pOinter eliminates the forward search of all occurrences of a 
segment type under one physical parent when only the last occurrence of 
the physical child is desired. A physical child last pointer is used 
when inserting a new segment with no sequence field and the insert rule 
specified is last, or for get or insert, when command code L is 

Data Base Design Considerations 



specified for the call and the 55A for the call has no qualification 
statement. When a physical child last pointer is followed to the last 
occurrence of a dependent segment, any further movement in the data base 
is forward. A physical child last pointer does not enable searching 
from the last to the first occurrence of a dependent segment under one 
physical parent segment. 

A1 

B1 

B8 

B7 

B9 

Physical child last pointer eliminates 
the need for a forward search of all 
occurrences stored before the last 
occurrence 

Figure IJ-10. Use of Physical Child Last Pointer 

Physical twin backward pointers in dependent segment typos are used 
to improve delete performance as described for hierarchic backward 
pointers. In addition, when physical twin forward and backward pOinters 
are specified for the root segment type of a HIDAM data base, they 
enable sequential processing across data base records withou~ 
intervening references to the HIDA! index. Whgn only physical twin 
forward pointers are specified for the root segment type of a HIDAK data 
base, sequential proc~ssing across data base records requires 
intervening references to the RIDAK index. 

DATA SET GROUPS 

To describe what data sets are used for storing the segment types in 
a data base, and to describe the physical characteristics of those data 
sets, data set groups are defined through the DBDGEN utility using 
DATASET statements. For an HSAM data base, one data set group is 
defined. For HISAM. HDAM and HIDAM data bases, from one to 10 data set 
groups can be defined. The terms used to describe data set groups are 
primary and secondary. A primary data set group contains the root 
segment type. All other data set groups· are called secondary data set 
groups. A primary data set group must be defined for each data base 
type. A secondary data set group is normally defined to enable using 
data sets with different logical record and control interval or block 
lengths to enhance auxiliary storage space utilization. In a HISAM data 
base, a secondary data set group offers one additional advantage. It 
enables direct access to a segment type at the second level of a HISAM 
data base without first accessing a root. 

4. 18 IMS/VS System/Application Design Guide 



!!ll~ t2': 12i!i~i.ng, ! ~i! ~!U iIl12 Q!U §.il ~~!la§. 

HISAK, HDAK and BIDA" data bases can be divided into a maximum of 10 
data set groups according to the rules that follow. 

For HISA! data bases, secondary data set groups cannot be defined 
when VSAM is used as the OS/iS access method for the data base, or when 
a HISAM data base is indexed by a secondary index. HISA" data bases 
using ISAM/OSA! as the OS/VS access methods and not indexed by a 
secondary index can only be divided into multiple data set groups at the 
second level of its hierarchy. The first segment type defined in a 
secondary data set group must be a segment type defined at the second 
level of the hierarchy of a HISAM data base. Included in a secondary 
data set group, are all segment types dependent on the first segment 
type defined in that secondary data set group. 

For HDA! or HIDA! data bases, secondary data set groups can be 
started with a seg.ent type defined at any level of the hierarchy and 
the secondary data set group can contain any combination of the segment 
types in the data base. However, the following restriction must be met. 
A physical parent and its physical children must be connected by PC/PT 
pointers when they are in different data set groups; a PC/PT pointer 
means that each parent must be a physical child (PC) pOinter to the 
first occurrence of each child type, and that the children must be 
connected to each other by physical twin (PT) pointers. 

HSAM STORAGE ORGANIZATION 

In an HSAM data base, all data base records within a data base, as 
well as all segments within each data base record are related through 
physical adjacency in storage as shown-in Figure 4-11. An HS1M data 
base is stored on a tape, or a direct access storage device as a 
sequential data set. The data set is loaded in chronological sequence
and it uses a fixed length unblocked format (REcr~=F). Since the data 
set is loaded in chronological sequence, the order in which the user 
presents each segment to be stored in the data set establishes the 
hierarchic arrangement of segments in the data base. 1 sequence field 
is not required in the root segment type of an HS1M data base. 

Data Sase Design Considerations 4.19 

http:12i!i~i.ng


MTAMSE~
ST.:n. 


SKIll 

1 

I 11ft 
I lINE 

IW£ lilT
3 

I ~~~."/'I, 
.tf/ '/
" IiI 

EXPERIE.'CE EDlICATI(II~~~(EXPR) 1 " (EIIUC) 1~} 

BlOCK .1 BlOCK 12 BLOCK 13 
ISKIW I fWlll EXPRi I EDlQII fWt2 I EXPflI EXPR3 I EXPM 1'I1""'::1INE3=rT'"11EIiiC2===:==-ll""'IijW=--,r----, 

Figure 4-11. One Data Base Record of HSAM Data Base on Tape 

When a sequence field is defined in the root segment type, each data 
base record must be presented for loading in a~cending key sequence. 
Within each data base record, all segments must be presented for loading 
in hierarchic sequence. 

In the data set, one or more consecutive blocks are used to store a 
data base record. Each block is filled with segments of a data base 
record until the remaining space is not sufficient for the next segment 
to be stored. When not sufficient for the next segment to be stored, 
the remaining space in the block is padded with zeros and the segment is 
stored in the next consecutive block. When the last segment of a data 
base record has been stored in a block, any unused space, if sufficient, 
is filled with segments from the next data base record. 

Initial entry to an H5AM data base is through get unique or get next 
calls. When the first call is issued, the search for the desired 
segment starts at the beginning of the data base in storage, and passes 
sequentially through all segments stored in the data base until the 
desired segment is reached. After the desired segment is reached, the 
position it occupies is used as the starting position for any additional 
calls that process the data base in a forward direction. From current 
position in an HSAM data base that has a unique sequence field defined 
in the root segment type, if a get unique is issued to retrieve a 
segment that is forward in the data base, the search starts from current 
position and moves forward to the desired segment. If the desired 
segment requires backward movement in the data base, the proc~ssing 
option parameters G or GS, which are specified during PSBGEN,determine 
how backward movement is accomplished. The G processing option 
specifies the get function only, whereas the GS processing option 

4.20 IKS/V5 System/Application Design Guide 



specifies get segments in ascending sequence only. If GS has been 
specified and backward movement in a data base is required to satisfy a 
get unique, the search for the desired segment will start at the 
beginning of the data base and move forward. Under the same conditions 
when the G processing option is specified, from current position the 
search will move backwards in the data base. This is accomplished by 
backspacing over the block just read on tape or disk, and the block 
preyious to the block just read, then reading the previous block forward 
until the desired segment is found. 

An HSAM data base can be randomly processed through get unique calls 
within one volume. When no sequence field has been defined in the root 
segment type of an 8SA~ data base, each get unique causes the search for 
the desired segment to start at the beginning of the data base 
regardless of current position. 

Insert, delete and replace calls cannot be used when processing an 
existing 8SAM data base. The only calls that are valid for processing 
an existing 8SAM data base are th~ get calls which enable retrieval of 
segments from the data base only. To update an 8SAM data base, it must 
be reloaded. 

A simple 8SAM data base is an HSAM data base that contains only one 
segment type. When a simple 8SAM data base is defined, occurrences of 
the segment type are loaded into the data base without prefixes. 

8ISAM STORAGE ORGANIZATION 

In a HISAM data base, segments within each data base record are 
related through physical adjacency in storage as with an HSAM data base. 
Onlike 8SAM however, in a 8ISAM data base each data base record is 
indexed. In d9fining a H1SAM data base, the user must define a unique 
sequence field in the root segment type of the data base. When defined, 
the sequence field values in occurrences of the root are used to index 
to each data base record in the data base. 

In defining a H1SAM data base, the user can specify VSAM or the 
combination of ISAM/OSAM as the access methods to be used for the data 
base. When ISAM/OSAK are specified, he can also specify that the H1SAM 
data base be stored as one to 10 data set groups. If VSAM is specified, 
a HISAM data base can have only one data set group. When VSAM is 
specified as the access method, a data set group contains one key 
sequenced data set and one entry sequenced data set. When ISAM/OSAM are 
specified as the access methods each data set group contains one ISAM 
data set and one OSAM data set. In both cases, one data set, key 
sequenced or ISAM, is used for primary storage of segments and as an 
index. The other data set, entry sequenced or OSAM, is used for 
overflow storage of segments. The terms used to describe data set 
groups are primary and secondary. A primary data set group contains the 
root segment type. All other data set groups are called secondary data 
set groups. 

tlI2An Q~!~ ~~2~ 2!Q£~~ ~2 Q~~ Q~!~ 2~! §£QYE 

When only one data set group is defined for a HISAM data base, the 
data base is stored as shown in Figure 4-12. Each key sequenced or ISA~ 
logical record will contain in hierarchic sequence an occurrence of the 
root, plus all dependents of the root that there is sufficient space for 
in the logical record. When no space remains for the remaining segments 
in a data base record, the remaining segments are stored in hierarchic 

Data Base Design Considerations 4.21 



sequence in one or more logical records of the entry sequenced or OSAM 
data set. To relate all logical records in both data sets that contain 
segments in one data base record, a direct address pointer is stored in 
each logical record to chain them in hierarchic sequence. 

MTA lASE IlECOIID STBT1IIIE 

ENTRY SEQUENCED 
OR 

EXPERIENCE 
(EXPR) 

KEY SEQUENCED 

ISAM OSAM DATA SET 
OR 
DATA SET 

PTR 

Figure 4-12. HISAM Data Base Record in Storage (Single Data Set Group) 

The structures of logical records for VSAM, and ISAM or OSAM data 
sets are shown in Figure 4-13. The first 3 bytes of each logical record 
for ISAM or OSAK, and the first 4 bytes of each logical record for VSAM 
are used for a direct address pointer. The pointer is used to maintain 
root segments in ascenaing key sequence and to maintain all segments 
within a data base record in hierarchic sequence when new segments are 
inserted into a data base after initial load. Following the pointer are 
one or more segments of a data base record in hierarchic sequence. At 
the end of the last segment in the logical record for VSAM, ISAM or 
OSAK, a one byte segment code of zero is stored to indicate that the 
last segment in the logical record has been reached. Following the zero 
segment code for VSAM, remaining space in a logical record is residual. 
Following the zero segment code for IS1M or OSAM, there are three bytes 
of zeros, or a 3 byte direct address pointer. 

4.22 IKS/VS System/Application Design Guide 



ISAM/OSAM Format 

SEGMENT 

t 	 CODE 000SEGMENT SEGMENT SEGMENT 	 RESIDUALa OR 
NOTE 1 	 (1 BYTE) NOTE 2 

VSAM Format 

SEGMENT 

t CODESEGMENT SEGMENT SEGMENT 	 RESIDUALa 
NOTE 3 (1 BYTE) 

NOTES: 

1. The pointer is comprised of the 3 byte relative record number 
of the OSAM data set logical record that contains a root inserted 
after initial load. 

2. The pointer is comprised of the 3 byte relative record number 
of the OSAM data set logical record that contains the next 
dependents in hierarchic sequence. 

3. The pointer is comprised of the 4 byte relative byte address of 
the entry sequenced data set logical record that contains the 
next dependents in hierarchic sequence. 

Figure ~-13. 	 HISA~ Data Base VSA~, ISAM and OSAM Logical Record 
Formats 

Three bytes of zeros indicate that this logical record contains the 
last segment in a data base record. If not zeros, a three byte pointer 
points to the logical record that contains the next segments in the data 
base record in hierarchic seq~ance. 

In a VSAM data set, one or more logical records are contained in each 
control interval. In an ISAM or OSAM data set, one or more logical 
records are contained in each block. A control interval or block is the 
unit of data transferred between an I/O device and main storage. For 
VSAM and I5AM data sets, the respective access method uses an index to 
address a specific control interval or block in a data set. For an 
entry sequenced data set or an OSAM data set, direct addresses are used 
to address each control interval or block respectively in a data set. 

To load a HI5AK data base, occurrences Of the root segment type must 
be arranged in ascending key sequence, and all dependents of each root 
must follow that root in hierarchic sequence. In the key sequenced or 
I5AM data set, consecutive logical records within a control interval or 
block are used to store root segment occurrences in ascending key 
sequence. The first logical record contains the root segment with the 
lowest key, the next consecutive logical record contains the root 
segment with the next higher key, and the last logical record contains 
the root segment with the highest key in that control interval or block. 
In addition, control intervals or blocks within a data set are loaded in 
ascending root segment key sequence, this enables a given data base 
record to be accessed directly through the key of its root. 

Data Base Design Considerations 4.23 

L 



Logical record lengths are a major consideration in a HISAM data 
base. They affect space and access time. 

Extremely short or long logical records tend to increase wasted 
space. Since only complete segments are stored in a logical record, a 
gap of space is usually unused at the end of each logical record. The 
number of gaps increases as the LRECL becomes small, and the size of 
gaps increases as the logical record length becomes large (if data base 
records are shorter than the logical record length, the remaining space 
is lost) • 

All segments in a logical record are accessed with one read of an 1/0 
device. Accessing additional logical records may require additional 
reads and seeks depending on physical positioning. The number of seeks 
and reads to access an entire data base record is in proportion to the 
number of logical records which comprise that data base record, and 
therefore increases as the logical record length decreases. 

To choose a value for LRECL, several choices should be tried with the 
following restrictions: 

1. 	 Primary data set group: 

The minimum length for a logical record in the primary data set 
must be at least equal to the maximum root segment length, 
including prefix, plus 5 bytes for VSAM or 7 bytes for IS1M. The 
minimum length for a logical record in the overflow data set must 
be at least equal to the longest segment in the data set qroup, 
including prefix, plus 5 bytes for VSAM or 7 bytes for 05AM. If 
a HI5AM data base using 15A8/05A8 has only one physical segment 
type, the IS18/0SAM overhead is 3 bytes, not 7 bytes. 

2. 	 Secondary data set group: 

The minimum length for a logical record in the primary data set 
must be at least equal to the longest second level segment type, 
including prefix, plus the root key length plus 7 bytes. The 
minimum length for a logical record in the overflow data set must 
be at least equal to the longest segment in the data set group, 
including prefix, plus 7 bytes. 

3. 	 The logical record length in the overflow data set must be 
greater than or equal to the logical record length in the primary 
data set. 

4. 	 For I5AM/OSAM the maximum length cannot exceed the physical block 
size of the I/O device used. Note that 15AM requires keyed 
blocks while OSAM uses non-keyed blocks. For VSAM, the maximom 
logical record length is 30720. 

5. 	 For 15A8/0SAM, LRECLs must be divisible into physical block size 
(1/2, 1/3, 1/4, etc.) 

6. 	 VSAM LRECL values must be an even length. 

For each LRECL value chosen, the average usable space within a record 
can be calculated as follows: 

u = (LRECL - A - B) 

2 


4.24 IM5/VS System/Application Design Guide 



where: 

u = usable data characters per logical record. 

A = 	weighted average of segment lengths not including the 
root segment. 

B = 7 for ISAM/OSAM, and 5 for VSAM. 

The number of logical records required for a particular type data 
base record is then calculated by dividing the usable logical record 
length into the total length of the data base record. By breaking the 
file into a number of typical record types and calculating the space 
required for each, the total space requirements can be approximated. 

As stated before, the number of reads required to obtain an entire 
data base record is proportional to the number of logical records it 
requires. By using "typical" records the number of logical records 
required for the entire file can be calculated. Due to record blocking 
and the IMS/VS buffer pool management, the actual number of accesses 
required will be less than the number of logical records. A file 
requiring fewer (large logical record length) logical records can be 
accessed faster than the same file with an LRECL value requiring more 
logical records (small logical record length). 

If the number of logical records (relative access time) and total 
space are plotted against several trial LRECL values, the graph should 
take the following general form: 

High 

---.... Ul 
'U 

I 
~ 
0 
U 
QJ
p::; 

W 
U 
~ 

--.... -........ - t1' 
0 

p.. 
trl ........ ­ ~ 

~ ....... ­ --­ 4-1 
0 

~ 
E-t . 
0 
E-t Low 

0 
Z 

LRECL increase~ 

As shown, as the value of LRECL gets larger, the number of logical 
records decreases continually, until the LRECL specification equals the 
largest data base record length. At this point, the number of logical
records equals the number of data base records. 

The total space requirements tend to rise if the value of LRECL is 
either too long or too short. Once several trial LRECL values have been 
plotted, it should be possible to pick a good one for the file. 
Consideration should be given to the relative importance of space and 
access time in the individual situation. 

The 15AM and OS!K portions of the data base need not have the same 
LRECLs. To determine the effect of different values for LRECL, each 
portion of the data base must be figured separately as above. 

Data Base Design Considerations ~.25 

L 



To maintain root segment in ascending key sequence when new roots are 
inserted after initial load of a HISAM data base, one method is used 
when VSAM is specified as the access method for the data base and 
another method is used when the combination of ISAM and OSA" are 
specified as the access methods. 

The method shown in Figure 4-14 is used when VSAM is specified. The 
proper control interval in the key sequenced data set for the new root 
is obtained, and if the control interval has a free logical record, the 
new root is stored in ascending key sequence in the control interval by 
pushing all logical records that contain roots with higher keys to the 
right one position. If no free logical record exists in the control 
interval, the control interval is split forming two control intervals 
that are both equal in size to the original. 

Insert root with key of 15 

BEFORE 

10 BYTES OF 
t ROOTIOEPIOEP !R~TI OEPIOEP FREE LRECL FREE LRECL FREE LRECL VSAM CONTROL* lO INFORMATION" 

AFTER 

10 BYTES OF 
t ROOTIOEP IOEP t R~~TIOEP IOEP t ROOTI OEPI OEP FREE LRECL FREE LRECL VSAM CONTROL* 10 	 * 20 INFORMATION"'''' 

~~ 	 It
~----__----------------------------CONTROLINTERVAL----------------------------.~~ 

* 	The pointer is comprised of the 4 byte relative byte address of the 

entry sequenced data set logical record that contains the next 

dependents in hierarchic sequence. 


For unblocked data sets, the VSAM control information is "'* 
only 7 bytes. 

Figure q-14. 	 Root Segment Insertion into Key Sequenced Data Set 
Control Interval 

Each new control interval will contain approximately one half of the 
logical records that were stored in the original control interval which 
results in free logical records in the last half of each new control 
interval. After the control interval has been split, the new root is 
stored in the proper control interval in ascending key sequence by 
pushing all logical records that contain roots with higher keys to the 
right one logical record. 

To maintain root segments in ascending key sequence when 151M and 
OS1M are specified as the access methods for a HISAM data base, the 
method shown in Figure 4-15 is used. Each new root is stored in an OS1M 
logical record. To maintain root key sequence, a direct address pointer 
is placed at the beginning of the ISAM logical record that contains the 

4.26 IMS/VS System/Application Design Guide 



root segment with the next higher key to point to the OSAM logical 
record that contains the inserted root as shown in Example 1. Example 2 
shows a second root segment being inserted in the OSAM data set. The 
logical record that contains the root with the next higher key in the 
IS!M data set points to the OSAK logical record that contains the root 
with the lowest key. That OSAM logical record in turn points to the 
OSA! logical record that contains the next higher key. 

E.XN!lI 1 - IISERT IIIIJI' 15 

EMLE 2 - I!!SERT R!!OT 11 

EXAII'lE :5 - INSERT ROOT 13 

Figure 4-15,. 	 Root Segment Insertion When ISAM/OSAM are HISAM Data Base 
Access Methods 

In a HISAI1 data base, the order of chaining a series of root segments 
can significantly impact updates. If the addition of root segments is a 
part of the update, insertions should be made in descending sequence, 
highest key first when ISAM/OSAK are the as access methods. This 
reduces the number of reads necessary to find a point at which to insert 
a new root. It can be seen in Figure 4-16 that, even with a short 
chain, the insertion of higher root keys requires a larger number of 
accesses than the insertion of lower keys. For example, to insert Root 
46 it was necessary to read both Roots 34 and 36. The insertion of 32, 
however, only required the reading of Root 34. Note that the building 
of long chains of roots occurs only when a large number of updates 
affects the same area of the data base. The need for descending 
insertions is less if the inserts are distributed over the data base. 

Data Base Design Considerations u.27 



When VSAM is used for a HISAM data base, new roots can be inserted in 
either ascending or descending sequence. Ascending sequence should 
provide slightly faster performance. 

PHYS JCAL RECORD ­

!4-l0GICAL R[CORD LOGICAL RECORD~-lOGICAL RECORD-. 
, 

ROOT DEP1 ROOT DEP1 
A 

ROOT DEPI 

2 

27 31 48 

./ 

ROOT ROOT 

B A 

f 1 1 

36 34 2ND( 1ST t+­
LOGICAL RECORD 1 .\+--lOGICAL RECORD 2~ 

PHYSICAL BLOCK A 

-

ROOT ROOT 

3RD 47 32 4TH 
I+-- LOGICAL RECORD 1----.. 

PHYSICAL BLOCK B 

Figure 4-16. HISAM Root Segment Insertion Sequence 

The method used to maintain the hierarchic sequence of segments 
within a data base record when new dependent segments are inserted into 
a HISAM data base is essentially the same for both VSAM, and the 
combination of ISAM and OSAM access methods. 

In a HISA~ data base, one logical record in the primary storage data 
set and, if necessary, one or more logical records in the overflow 
storage data set, are used to store each data base record. Within each 
logical record and across all logical records that contain segments in 
one data base record, segments are hierarchically related through their 
physical sequence in storage. Within each logical record, segments are 
physically stored in hierarchic sequence, and across logical records, a 
direct address pointer relates each logical record to the next in 
hierarchic sequence. 

4.28 IMS/VS System/Application Design Guide 



Figure ~-11 shows how the physical sequence of segments within a data 
base record in storage is maintained when inserting dependents into a 
data base after initial load. Example 1 shows a dependent segment being 
inserted into a logical record that contains sufficient space for the 
new depend~nt_ The new dependent is stored in its proper hierarchic 
position within the logical record by shifting the segments that will 
hierarchically follow it to the right within the logical record. 
Example 2 shows segments displaced to a logical record at the end of the 
overflow data set when the inserted segment did not leave sufficient 
space for them at the end of the original logical record. In Example 3, 
the length of the segment being inserted is greater than the space 
remaining in the original logical record even after displacing following 
segments in that logical record, so all are placed in an overflow 
storage logical record. Example q shows an inserted segment that will 
not fit into the original logical record, and a displaced segment that 
viII not fit into the first overflow logical record with the inserted 
segment. Two overflow logical records are used, and they are chained 
together in hierarchic sequence. . 

In the previous examples, the overflow logical records referred to 
are at the end of the entry sequenced data set vhen VSAM is the access 
method specified, and they are at the end of the OSAK data set when 
ISAM/OSAM are specified as the access methods. In both cases, logical 
records at the end of the respective data sets are used for newly 
inserted or displaced segments from both the primary storage data set 
and the overflow storage data set. 

Data Base Design Considerations 4.29 



Example 1· Space available in logical record for dependent being inserted. 

Key sequenced, 
ISAM or OSAM 
data set 

BEFOREIROOT DEP10 DEP30
SEGM100 

Example 2· Space available in logicel record for dependent being inserted by displacing 
existing segments in logical record to an OSAM or entry sequenced 
data set logical record. 

Key sequenced, or 
ISAM data set 

BEFORE 

DEP20 DEP301:~g~100 I DEP10 

Entry sequenced 
or 

OSAM data set 

*The pointer is at the beginning of VSAM logical records. 

Figure 4-17 (Part 1 of 3). 	Depend~nt Segment Insertion into a HISA" Data 
Base with One Data Set Group 

4.30 IMS/VS System/Application Design Guide 



Example 3- Space available in logical record after segments are displaced but 
dependent being inserted is too large. 

Key sequencad. 
ISAMor OSAM 
data set 

BEFORE 

DEP20I:~GO~100 I 	 I I 
DEP10 DEP30 

DEP27 

Entry sequenced or 
OSAM data set 

*The pointer is at the beginning of VSAM logical records 

Figure 4-17 (Part 2 of 3). 	Dependent Segment Insertion into a RISAM Data 
Base with One Data set Group 

Data Base Design Considerations 4.31 



Example 4- Space available in logical record after segments are desplaced to 
overflow, however, segment being inserted is too large and segment 
displaced will not fit in 1st overflow. 

Key sequenced, or 
ISAM data set 

BEFORE 

AFTER 

DEP20 

INSERT DEP15 

Entry sequenced or 
OSAM data set 

*The pointer is at the beginning of VSAM logical records 

Figure q-17 (Part 3 of 3). 	Dependent segment Insertion into a H15AM Data 
Base with One Data Set Group 

IS!KLQ~ll: When segments are deleted in a IllS!!! data base that uses 
ISAM/OSAK, segments are simply marked as being deleted in the delete 
byte contained in their prefix. They are not physically deleted from a 
data base. To regain space occupied by deleted segments, a H1SAM data 
base must be unloaded and reorganized by the user through the HISA~ 
reorganization unload and reload utilities. 

!~!~: Segment deletion in a H15AM data base using V5AM is the same as 
stated for 15AM/OSAM except as follows. When a root segment is deleted 
from a HISA!! data base that uses VSAM, the logical record in the key 
sequenced data set that contains the root is either erased or the delete 
byte is marked as when using ISAM/OSAK. An erase is only done when 
processing the data base in batch mode, the root or any dependent of the 
root is not involved in an active logical ralationship, and there is 
only one PCB per data base within the PSB. 

Q.32 1MS/VS System/Application Design Guide 



~~£ond~~I Q~i! ~~ 2t2y~! 

Secondary data set groups should be considered for HISA" data bases 
using ISAM/OSAK as the OS/VS access methods in two cases. They should 
be considered when storage space is wasted because an efficient logical 
record length cannot be found for the primary data set group due to 
segment types in the data base whose lengths vary considerably. And, 
when access to a dependent segment type in the data base is too time 
consuming through the primary data set group. 

As in a primary data set group, each secondary data set group uses 
two data sets. An ISAM data set is used as the first storage dat.a set 
and as the index to the first segment type defined in that data set 
group. An OSAK data set is used as the overflow storage data set. The 
benefit gained in defining multiple data set groups is that each data 
set gro~p defined can have different logical record and block lengths. 
In addition, the occurrences of the first segment type defined in each 
secondary data set group are indexed through the key of the root segment 
they follow in a data base record. When defining a secondary data set 
group, the minimum LRECL must be expanded by the amount necessary to 
append sequence field keys of the root segment type onto occurrences of 
the first segment type defined in the secondary data set group. 

When only one data set group is defined for a HISAM data base, the 
segments in each data base record are stored in hierarchic sequence 
using one logical record in the first storage data set and, if 
necessary, one or more logical records in the overflow data set. To 
index each data base record, the key of the root that starts each data 
base record is used. When multiple data set groups are defined, one 
logical record in the first storage data set of each data se~ group and, 
if necessary, one or more logical records in each overflow data set are 
used to store the segm~nts of one data base record as shown in Figure 
4-18. To index each data base record, the key of the root that starts 
each data base record is duplicated and is used to index the segments in 
each secondary data set group that are in the same data base record. In 
the figure, the secondary data set group contains a duplicate of the key 
of the root that starts that data base record. The duplicate key is 
followed by the first occurrence of the description segment type in the 
data base record, which in turn, is followed by all other segments in 
that base record in hierarchic sequence. 

The use of multiple data set groups to store a HISAK data base has an 
affect on main storage requirements. Each data set group requires 
addit.ional space in the DMB pool. 

A simple HISAM data base is a HlSAK data base that contains only one 
segment type. When defining a simple HISAM data base, VSAM must be the 
access method specified. When defined, occurrences of the segment typ9 
are loaded into the data base without prefixes, thus making the data 
sets that contain the data base compatible for use by VSAM as well as 
IMS/VS. 

Data Base Design Considerations U.33 



MTA lASE ECOID STUTUIE 

PllfIARY DATA SET GROUP 

SECONDARY DATA SET GRuUP 

Duplicate Of 
SKILL1. 
Key 

Figure 4-18. 	 One Data Base Record in a HISAM Data Base (Multiple Data 
Set Group) 

HDAM AND HIDAK 	 STORAGE ORGANIZATIONS 

Two of the primary advantages gained with HDAM and HIDA" data bases 
are space reuse and the ability to access segments within the data base 
through direct address pointers. Either data base type is stored in one 
or more VSAK entry sequenced or OSAK data sets depending on the number 
of data set groups defined. Space within each data set is managed 
through free space elements and bit maps. When segments are inserted or 
deleted from either data base type, the space used or freed by those 
segments is recorded in a bit map to enable its reuse when inserting new 
segments. To hierarchically relate segments in HDAM and HIDAM data 
bases, direct address pointers are used. In either data base type, 
hi~rarchic, physical child/physical twin or any combination of the two 
types of pOinters can be specified. 

The storage organization methods used for HDAM and HIDA" data bases 
are essentially the same. The primary difference between HDAM and HIDAM 
data bases is that access to occurences of the root segment type is 
through a user randomizing module for an HDAM data base, and through an 
index for a HIDAM data base. To access a given root in an HDAM data 
base, the randomizing module examines the key of the root, and through 
hashing or some other arithmetic technique, computes the address of the 
root and passes it to IMS/VS. To access the same root in a HIDA" data 
base, an index must be searched by IMS/VS to find the address of the 
root. When found, the root is accessed. By using a randomizing module 
to locate roots, the I/O operations required to search the index are 
eliminated. 

4.34 IKS/VS System/Application Design Guide 



HDAM 

To use an HDAM data base, the user must supply a randomizing module. 
The randomizing module determines where each root should be stored in 
the data base, and supplies the address of each root stored to IMS/VS 
each time that root must be accessed. Addresses supplied by a 
randomizing module consists of a relative block number and an anchor 
point number. Anchor points are stored in the anchor point area of each 
control interval or block, and each is a four byte direct address 
pointer to a root. To access a given root, the relative block number 
locates a specific control interval or block in relation to the start of 
the data set, and the anchor point number locates a specific anchor 
point in the anchor point area of that control interval or block. 

Figure 4-19 shows the organization of an HDAM data base in storage. 
The entry sequenced or OSAM data set in the primary data set group is 
divided into tvo areas called the root addressable area and the overflow 
area. The root addressable area is the first n control intervals or 
blocks in the data set, and the overflow area is the remaining portion 
of the data set. 

The root addressable area is the area in which the user randomizing 
module assigns roots. The length of the root addressable area is 
spacified by the user through the DBDGEN utility. Also specified is the 
number of anchor points to be placed in the anchor point area of each 
control interval or block in the root addressable area. A third 
parameter specified is the maximum number of bytes of a data base record 
to be stored in the root addressable area. The root addressable area is 
used as the primary storage area for segments in each data base record, 
and the overflow area is used for overflow storage. Since data base 
records vary in length, the bytes parameter is used to control the 
amount of space used for each data base record in the root addressable 
area. The bytes parameter limits the number of segments of a data base 
record that can be consecutively inserted into the root addressable 
area. When consecutively inserting a root and its dependents, each 
segment is stored in the root addressable area until the next segment to 
be stored will cause the total space used to exceed the bytes parameter. 
The total space used for a segment is the combined lengths of the prefix 
and data portions of the segment. When exceeded, that segment and all 
remaining segments in the data base record are stored in the overflow 
area. It should be noted that the bytes parameter only controls 
segments consecutively inserted in one data base record. Consecutive 
inserts are inserts to one data base record that are not intervened by 
any call to process a segment in a different data base record. 

The general criteria to determine the size of the root addressable 
area is: 

Number of bytes of 
a data base record the expected number 
to be stored in the x of data base records 
root addressable area 

= required size 
of the root 
addressable 
area in blocks 

Data Base Design Considerations ~.35 



HDAM 
DATA BASE RECORD STRUCTURE 

SKIll 
1 

I NAME 
NAME 

3
NAME 2~,IJj ,~, 
I ~/I '~, 

'':-',...,I ~~" ... 

4EXPERIENCE EDUCATION 
1 2~""; 21(EXPR) r= (EDUC) 1:-= 

Figure 4-19. HDAM Data Base Record in Auxiliary Storage 

In addition, if distributed free space is specified, the space 
estimate obtained must be multiplied by one factor for free blocks and 
another for free space within each block as shown in the following 
formula: 

(Total Space) = (Minimum Space) X _tett_ 
fbff-1 

X 

where: 

2 ~ fbff S 100 or fbff = 0 and 0 ~ fspf < 100 

See "Distributed Free Space" in this chapter for definitions of !.ett 
and I~H~t. 

4.36 IMS/VS System/Application Design Guide 



At least root segments should be stored in the root addressable area. 
In addition, active dependent segments should be placed in the root 
addressable area since this will provide fast access to them because of 
their physical proximity to the root segment. When all space in the 
root addressable area is occupied, all segments inserted (roots 
included) are placed in the overflow area. 

The size of the root segment addressable area is fixed with DBD 
generation. The overflow area however, can be dynamically extended if 
the overflow storage data set allocation is specified as secondary 
allocation. 

To load each data base record into an HDAM data base, the user 
randomizing module generates a relative block and anchor point number 
for the root that starts that data base record and passes ~hem to 
IMS/VS. IKS/VS in turn, attempts to store the root in the control 
interval or block specified. If space is available in that control 
interval or block, the root is stored and a four byte direct address 
pOinter to the root is stored in the specified anchor point position in 
the anchor point area of that control interval or block. When space is 
not available in the control interval or block specified, IMS/VS ases 
the HD space search algorithm to find the available space nearest to the 
control interval or block specified by the randomizing module. When 
found, the root is stored and a pointer to that root is stored in the 
original anchor point position and relative block number specified by 
the randomizing module. 

When a randomizing module produces the same relative block and anchor 
point number for multiple roots, the specified anchor point points to 
one, and the rest are chained through physical twin pointers. When a 
unique sequence field has been defined in the root segment type, the 
anchor point points to the root with the lowest key and the rest are 
chained in ascending key sequence through physical twin pointers. When 
a unique sequence field is not defined, the insert rules of FIRST, LAST 
or HERE determine the sequence in which the roots are chained. All 
roots chained from a given anchor point are called synonyms since all 
have the same relative block and anchor point number. To reduce the 
length of root segment synonym chains if they affect performance, the 
user should increase the number of root anchor points specified for each 
control interval or block in the root addressable area. The user 
randomizing routine can then distribute the roots across more anchor 
points, thereby reducing the number of synonyms per anchor point. 

After a root is loaded into the root addressable area, the next 
segments in a data base record are stored following the root until the 
bytes parameter causes the remaining segments in a data base record, if 
any, to be stored in the overflow area. 

HIDAM 

A HIDAM data base in auxiliary storage is actually comprised of two 
data bases that are normally referred to collectively as a HIDAM data 
base. When defining each through the DBDGEN utility, one is defined as 
the primary HIDAM index data base and the other is defined as the HIDAM 
data base. In the following discussion the terms 'HIDAM data base' will 
refer to the HIDA~ data base defined through DBDGEN. 

The primary HIDAM index data base is used to index to the data base 
records stored in a HID AM data base. When a HIDAM data base is d~fined 
throu9h DBDGEN, a unique sequence field must be defined in the root 
segment type. The resulting key in the sequence field of each 

Data Base Design Considerations 4.37 



occurrence of the root is used by IM5/VS to create an ind~x segment for 
each root that is stored in the index data base. To identify which root 
an index segment indexes, the key in the sequence field of a root is 
stored in the data portion of an index segment. To index to that root, 
the address of the root in the HIDAM data base is stored as a direct 
address pOinter in the prefix of its index segment. 

~Q~~1ng ~ fil~!~ ~~!~ ~~§~ 

When the user loads a HIDAM data base, the primary HIDA" index data 
base is loaded automatically by IMS/VS. In loading a HIDAM data base, 
all roots must be inserted in ascending key sequence, and all dependents 
of a root must be inserted following that root in hierarchic sequence. 
As each root is sto~ed in the HIDAM data base, IMS/VS generates the 
index segment for that root and stores it in the index data base. 

The index data base consists of an ISAM and an OSAM data set when 
15AM/OSAM are specified as the access methods for the data base, or it 
consists of a key sequenced data set when VSAM is specified as the 
access method as shown in Figure 4-20. When I5AM/OSAM are specified for 
the index data base, the ISAM data set is used for storage of index 
segments created during initial load of a HIDAM data base, and it is 
called the primary data set. The OSAM data set is used for storage of 
index segments created when new roots are added to a HID AM data base 
after initial load, and it is called the overflow data set. When VSAM 
is specified for the index data base, the key sequenced data set is used 
for both index segments created during initial load and after initial 
load. 

When 1SAM/OSAM are used for an index data base, all index segments 
for roots initially loaded are stored in ascending key sequence in the 
ISAM data set. ihen roots are added after initial load, the index 
segment for that root is stored in the first available logical record in 
the 05AM data set. When this occurs, a pointer is stored at the 
beginning of the logical record in the ISAM data set that contains the 
next higher key. The pointer points to the logical record in the OSAM 
data set that contains the added index segment. When multiple index 
segments have to be chained from the same logical record in the ISAM 
data set, the logical record in the ISAM data set points to the OSAM 
logical record that contains the index segment with the lowest key. Any 
additional OSAM logical records to be chained are chained from the first 
05AM logical record in ascending key sequence. Since index segments 
added after initial load are stored in the OSAM data set, their access 
requires additional I/O operations. To improve performance degraded by 
root inserts, the index data base should be reorganized through the 
HISAM Reorganization Unload and Reload utilities. 

A HIDAM data base is stored in from one to ten entry sequenced or 
OSAM data sets depending on the number of data set groups defined and 
the access method specified. Each data set group uses one entry 
seguenced data set when VSAM is specified as the access method, and one 
OSAM data set when OSAM is the access method specified. When initially 
loading segments into a HIDAM data base or when inserting segments into 
a HIDAM data base after initial load, the HD space search algorithm is 
used to find the most suitable space available. 

4.38 IMS/VS System/Application Design Guide 



r r' r 


"If VSAM.... 
\Q -'N[)'i:X---------------- ­C 
11 

CD 


-'== 
I 


IV 


•
0 

HH 
::J::J 
.... !II 
.... (1) 
...·11 

Key Sequenced Data Set 

..1» .... 

0 
t-'HI 
0 
1»1» 
P­

ta 
0 

Entry Sequenced 
Data Set 

0 .... 
til 
(1) 

0 \Q 
I» IS .... (D 
I» ::J .... 
III 
I» .... 
!II ::J 
(1) .... 

0 
0 
(1) I» 
!II.... = \Q H 
::J 0 

It" 
0 ::& 
0 
::J \::I 
!II I».... r1' 
P. I» 
(1) 

11 III
I» I» .... !II.... (1) 
0 
::J I» 
!II HI .... 

(1) 
11 

-'==• 
""" \D 

---------------, 

ISAM/OSAM

1------------------------------------, 
: INDEX, 
I 
I ~ ISAM 
~ DataSet 

-----­



[!~~ ~!! ~!~~ !2£t ~~!~~! II~~ ~2int~ 22ti£n2 

If forward only hierarchic or physical twin pointers are specified 
for the root segment type of a HIDAK data base, sequential access to 
each root segment is accomplished by using the index. When forward and 
backward hierarchic or physical twin pointers are specified for the root 
segment type, for sequential processing the index is only used to access 
the first root segment. From the first root, additional roots can be 
processed sequentially without further reference to the index. 

I££!!I of ~!!! ~~!~ y~~~ t£[ ~~!! !nd ~!R!~ 

In defining an HDAft or HID!ft data base, the user can specify VSAM or 
OSAK as the access method to be used for the data base, and he can also 
specify that the data base be stored as one to ten data set groups. 
When VSAM is specified, each data set group consists of one entry 
sequenced data set. When OSAM is specified, each data set group 
consists of one OSAK data set. In either case, the resulting data set 
will have an unblocked format. When not specified by the user, DBDGEN 
generates logical record lengths for the data sets that are equivalent 
to a quarter-track, third-track, half-track, or full-track block. 

Direct address pointers within the prefix of a segment and the anchor 
point(s) of a block are constructed by the following formula: 

Pointer Value = (Block Size) X (Block Number) + (Offset within Block). 

This formula is also used for pointers in the prefix of segments of 
an INDEX data base when relating to segments in a HIDAS data base. 

In order that all segments will be on half word alignment, within the 
data set a slack byte is added to the end of any segment in HDAK data 
bases or HIDAK whose total length is an odd number. 

The control fields used in managing entry sequenced or OSAK data sets 
for HDAK and HIDAS data bases are (See Figure 4-21): 

• Free space anchor point 

• Free space element 

• Anchor point area 

• Bit map control interval or blocks 

4.40 I85/VS System/Application Design Guide 



~ 
,r 	 r' ( 


>cj,.... 
\Q 
d 
11 
/I) 

-
~ 

Entry sequencBC! or OSAM data set 

IV 

I 

• 

t::In 
1»0 ANCHOR POINT 

r+::I FSEAP AREA 
 Relative Blo•. k or Control Interval # II»r+ BITMAP 

11 

til 0 

(1)1-' 


011111···· ·1011 	 111001· .......... ·10111
->-	 Ur+ 00(m>cj,.... 0:: '" 
00(

Q/I) 
Relative Blo :k or Control Interval IF 2 	 ..Iml-' 	 '" 

/l)P­ '" p-m 	 190 FSEANCHOR 	 ~ 
FSEAP 

PTS '" HlQ CP <\L 	 :!i om 	 Q 

11(1) ...NAMEI I 00Po o ot::I 	 ::a 
0:: 


r+ IJ"O 

I» 	 t::Ir+ • 1--" ~'"~ _I_ ''(c''r- . Il

315 	 ~,1~-:~~-1--~-k~~JI~~~~~r:~::::::::::::~~_____-=======d . 
00( 

I» :3 
:3 480 FSE01 	 01» 

I» 	 11 ::I FSEAP m I» 	 CP I AL 
/I) 	 ::a\Q 

H/I) RELATIVEt::I 	 t::I NAME3 00 I 25 I UNUSED 
00(/I) 	 BLOCK ORIJ"ViI 

en 3::1 CONTROL 0:: '" 
00(.... r+ INTERVAL #N 2 2 	 ~.. ~ ~ 

\Q t::Il1 
232 9::I 	 I»~ 

FSEAP 	 CPr+ 0:: "" (") 	 I» til 
RELATIVE '" 0 /I) ~ 

::I OIIQ BLOCK OR EDue3 I 00 I.. UNUSED -, 
en I» g CONTROL,.... en /I) INTERVAL#Mp- 2 	 ..,/I) ::J 	 2 ..,.. _ 	 273--------====::::;~
/I) m () 
11 CO FSE 
I» p­
,... ,.... 0 
0 11 
::I 
rn 0 

til 
:.­
3 

• 
~ 

~ • VSAM only. 7 bytes of VSAM control information 



l~~ ~E!~ In£~~ f2!~i 

Each control interval or block in an entry sequenced or OSAM data set 
respectively starts with a four byte free space anchor point (FSEAP) 
field. The field contains, in the first two bytes, the offset in bytes 
to the first free space element in that control interval or block. The 
second two bytes contain a flag that identifies bit map blocks. For 
blocks other than bit map blocks, the second two bytes of the field 
contain zeros. 

A free space element identifies each area of free space in a control 
interval or block that is eight bytes or more in length. To identify 
each area of free space, a free space element occupies the first 8 bytes 
of each area of free space. The fields in each free space element are: 

• 	 Free space chain pOinter field (CP) This field contains, in 

bytes, the offset to the next free space element in the control 

interval or block from the beginning of the control interval or 

block. The length of this field is 2 bytes. 


• 	 Available length field (AL) -- This field contains in bytes the 
length of the vacant space that this free space element identifies. 
The value in the available length field includes the leng~h of the 
free space element itself. The length of this field is 2 bytes. 

• 	 Task ID field (ID) -- This field contains the task ID of the program
that freed the space that is identified by this free space element. 
The task ID enables a given program to free and reuse the same space 
during a given scheduling without contending for that space with 
other programs. 

The task ID consists of a one-byte calendar date followed by a three 
byte cumulative sync point count for the day_ 

For an HDAM data base, the user specifies the number of four byte 
direct address root anchor points desired in each control interval or 
block in the root addressable area. For each anchor pOint specified, 
four bytes of space is reserved in the anchor point area of each control 
interval or block in the root addressable area. The space for anchor 
points is not reserved in those control intervals outside the root 
addressable area, including the bit map control intervals. This space 
is initially made free space and is available just as other free space 
in a control interval. 

For a HIDAM data base, when forward-only hierarchical or physical 
twin pointers are specified for the root segment type, one 4-byte anchor 
point is present in each control interval or block. The anchor point 
addresses the last root inserted into the control interval and the roots 
are chained in the reverse order from the sequence in which they were 
inserted into the control interval. With a forward-only (not forward 
and backward) pointer at the root level, it is impossible for IMS/VS to 
keep the roots chained in key sequence when new roots are inserted in~o 
an existing data base. Because the forward pointer chains roots in 
reverse time sequence and not in key sequence, it is not used by IMS/VS 
to obtain the next sequential root. The index is ased to do sequential 
processing. For a HIDAM data base we recommend that you use no-twin, 
twin forward and backward, or hierarchical forward and backward pointers 
at the root level. When one of these options is used, no anchor point 
is placed in the control interval. If your processing is primarily 

4.42 IMS/VS System/Application Design Guide 



random, no-twin is best because all accesses to the root segments are 
via the index. If your processing is primarily sequential~ use physical 
or hierarchical forward and backward. With these pointers tHe roots are 
chained in key sequence. 

~ii ~~~ ~!2~~ 

A bit map control interval or block starts with a two byte free space 
chain pointer field. The field always contains zeros in a bit map 
control interval or block in the root addressable area of an RDAM data 
base since no space is available in those bit map control intervals or 
blocks for segments. The next two bytes contain a bit map flag. A lov 
order one in the second two bytes of a control interval or block 
indicates that the control interval or block contains a bit map. The 
same two bytes in all other control intervals or blocks in a data set 
will contain z~ros. The next 0 to n bytes of a bit map control interval 
or block are for root anchor points. Following the anchor point area 
when present, the remainder of the control interval or block is a bit 
map. 

The first control interval or block of the first extent of the data 
set specified for each data set group in an RDAM or HIDAM data base is 
used for a bit map. If, however, the organization is VSAM, ~he second 
control interval is used for the bit map and the first control interval 
is reserved. In the bit map, each bit is used to describe whether or 
not space is available in a particular control interval or block. The 
first bit corresponds to the control interval or block the bit map 
itself is in, and each consecutive bit corresponds to the next 
consecutive control interval or block in the data set. When the bit 
value is one, it indicates that the associated control interval or block 
has sufficient space remaining to store an occurrence of the longest 
segment type defined in this data set group. When the bit value is 
zero, sufficient space is not available for an occurrence of the longest 
segment type defined in this data set group. The first bit map in a 
data set contains n bits that describe space availability in the next n 
consecutive control intervals or blocks in the data set. After the 
first bit map, another bit map is stored at every nth control interval 
or block to describe space availability in the remaining control 
intervals or blocks in the data set. 

!n2~£i2 aug ~gl~1g2 in liQ!tt ~ng tll~Att ~a1~ ~~2~2 

The techniques used to insert or delete segments are the same for 
both HDAM and HIDAM data bases. The techniques involve use of bit maps, 
space available chains and available length fields. The three are used 
to find space when inserting a segment, or to record free space when a 
segment is deleted. 

The following HD space search algorithm is used to find the most 
suitable space for a segment being inserted into an RDAM or HIDAM data 
base. 

Data Base Design Considerations 4.43 



HD Space Search Algorithm 

SEARCH CRITERIA: When searching for space, if space the exact size of 
the request is found, it is used; otherwise, three free areas are 
selected in the following order of preference: 

1. 	 Smallest ~ REQUEST + min. segment in data set 
2. 	 Smallest ~ REQUEST *2 
3. 	 Smallest ~ REQUEST 

From this set, the first area that does not alter bit map setting is 
selected, if there is one. Otherwise, the first area found is selected. 

1. 	 SAME BLOCK 
2. 	 ANY BLOCK CURRENTLY IN BUFFER POOL ON SAME TRACK 
3. 	 ANY BLOCK CURRENTLY IN BUFFER POOL ON SAME CYLINDER 
4. 	 ANY BLOCK ON SAME TRACK WHERE SPACE FOR MAXIMUM SEGMENT LENGTH 

EXISTS (Based on bit map) . 
5. 	 ANY BLOCK ON SAME CYLINDER WHERE SPACE FOR MAXIMUM SEGMENT LENGTH 

EXISTS (Based on bit map) 
6. 	 ANY BLOCK CURRENTLY IN BUFFER POOL WITHIN ~ N CYLINDERS 
7. 	 ANY BLOCK ON ~ N CYLINDERS WHERE SPACE FOR MAXIMUM SEGMENT LENGTH 

EXISTS (Based on bit map) 
8. 	 ANY BLOCK IN BUFFER POOL AT END OF DATA SET 
9. 	 ANY BLOCK AT END OF DATA SET (Based on bit map) 

10. 	 ANY BLOCK IN THE DATASET WHERE SPACE POR MAXIMUM SEGMENT LENGTH 
EXISTS (Based on bit map) 

In the algorithm, the same block as that which contains the 
immediately preceding segment in the hierarchy of a data base record is 
chosen for the new segment insertion under search criteria one. If not 
satisfied, search criteria two through ten are used in sequence in 
attempting to obtain space for insertion. 

~~!~.!:~§ 

Deletion of a segment from an HDAM or HIDAM data base involves: 

• 	 Updating the pointers in any other segments that point to the 

deleted segment. 


• 	 Accumulating the space occupied by the deleted segment on the space 
available chain for the block and possible adjustment to the bit 
map. If a deleted segment is adjacent to an already available area 
of space, the two areas are combined into one. 

Figure 4-22 illustrates the deletion of segment EXPRq and the 
incorporation of the space it occupied on the space available chain. 

4.44 IMS/VS System/Application Design Guide 



r' r' (' 


"l!I 
~. 

IQ 
C 
t1 
/I) 

+: 

I 
 Entry Sequenced or OSAM Data Set 


IV 


•
IV 

IJ:: ..... 
CD 

11 
 ANCHOR 8
PJ 

IFSEAP POINT
11 
0 RELATIVE 1 

tr- BLOCK #2 210 00 1032 


2 

00 I 295 I JooII UNUSEO ..... OR CONTROL 

0 INTERVAL #2 


4 


SKILLI I NAMEI I EXPRIB I 

1----32~150~2O .1_ 295--- I_ 
tI ..... 
11 

CD 
 4B4 
0 FSEAP A~I~~R ~ C:P AL ' ID • CP 
tt- RELATIVE 

tI ~~O~NTROL 1 00tI CD 
PJ ... INTERVAL#N 
tt- CD 2 4 20 ----.l*,,1-­
PJ tt ­..... 
b' 0 
PJ 160l:I 

FSEAP ANCHOR I!II 
POINT • CPCD 0 RELATIVE

HI BLOCKd 
(0 tI ~NRT~~!~~LMI 160 00 00 EDUC2 1 EDUC3 1 00 1 345 1 UNUSEDI­
!II CD ..... ~ 2 4 '--76~76 ... 1_ 345 
IQ CD 
l:I l:I 

P-
n CD 
O l:I 
l:I c+ 
!II ..... UI 
P- CD 
(1) IQ 
11 51 • VSAM only; 7 bytes of VSAM control information 
PJ CD 
tt- l:I ..... tt­
0 
l:! 
UI 

.-'=' 
+: 
U1 

I AL 

-- ­ - --------r 



Ri§t[i£gt~~ l[~~ ~£~£~ 

A consideration affecting HDAM or HIDAM data base performance is a 
result of certain types of dependent segment insert activity. After an 
HDAM or HIDAM data base is initially loaded or reorganized, high segment 
insert activity may degrade performance. This degradation occurs when 
added segments are not placed physically adjacent to their related 
segments. For HDAM or HIDAM, segments inserted after a data base is 
initially loaded or reorganized are stored at the end of their data set 
group, or in the position of previously loaded segments that have been 
deleted from that data set group as follows: 

Space for an inserted segment in an HDAM or HIDAM data base is 
acquired by scanning a user specified number of disk cylinders to locate 
the free space nearest to its related segments. If no space is found, 
the segment is inserted at the end of that data set group. This method 
attempts to place added segments in the position physically closest to 
their related segments to keep direct access storage device access time 
to a minimum. However, since this method does not always place added 
segments in space physically adjacent to their related segments, data 
bases must be reorganized periodically to eliminate the degradation to 
~rl~e~. 

The distributed free space option can be selected during DBDGEN for 
HDAM and HIDAM data bases. It is intended to minimize degradation to 
performance caused by insert activity, and in so doing, decrease the 
frequency in which HDAM or HIDAM data bases must be reorganized. It 
accomplishes this by allowing the user to specify, on the DATASET 
statement for each data set group, periodic blocks of free space and/or 
a percentage of free space in each block to be left vacant during 
initial load or reorganization of the data base. These free spaces are 
then used after data base initial load or reorganization to store added 
segments physically close to their related segments. 

The FRSPC= operand on the DATASET statement is used to specify free 
space in each data set group of an HDAM or HIDAM or data base. In the 
operand, any combination of two parameters can be specified. One is the 
fbff (free block frequency factor). The fbff specifies that every nth 
block in a data set group will be left as free space during data base 
load or reorganization {where fbff=n). The range of fbff includes all 
integer values from 0 to 100 excluding fbff=l. The second parameter 
that can be specified is the fspf (free space percentage factor). The 
fspi specifies the minimum percentage of each block in a data set group 
that is to be left as free space during load or reorganization. The 
range of fspf is from O"to 99. 

For HISAM or HIDAM index data bases using ISAM/OSAM, IMS/VS generates 
an additional root segment and stores it as the last root segment in the 
data base. This additional root segment has the sequence field filled 
with X'PP's. It is generated and placed in the data base by IMS/VS 
because add~d root segments are chained from the root with the next 
higher sequence field key. 

HIDAM data bases using VSAM also contain an X'FF' key segment. It is 
used for twin backward pointing at the root level. 

For variable length or compressed segments, an X'FF' key segment is 
allocated the maximum length specified for the segment type, and the 
size field of the segment has the high order bit turned on (X 'SXXX'). 
This segment is never compressed. 

4.46 IMS/VS system/Application Design Guide 



L 
Following is a summary of the characteristics of the four physical 

data base types. 

HSAft 

• 	 All segments and data base records are related through physical 

adjacency. 


• 	 Stored as a sequential data set. 

• 	 Can only retrieve segments from existing data base. To update 

req~ires reload. 


• 	 Can be stored on tape. 

HISAM 

• 	 Segments within data base records are related through physical 

adjacency. 


• 	 Indexed access to data base records. 

• 	 User can specify multiple data set groups. (ISAM/OSAM only) 

• 	 Space occupied by deleted segments is not reusable, except when root 
segments are deleted in a key sequenced data set. 

• 	 VSAH or the combination of ISAM/OSAM can be specified as the 

operating system access method. 


• 	 Logical relationships using symbolic pointers. 

• 	 Secondary Indexing using symbolic pointers for single data set 

groups. 


• 	 When VSAH is specified as the operating system access method for a 
HISAM data base, the additional options available are: 

Variable Length Segments 


User Segment compaction/Expansion Routines 


HDAK OE HIDAM 

• 	 Segments within data base records are related through hierarchic 
and/or physical child/physical twin direct address pointers. 

• 	 Access to the root in each data base record is through a user 

randomizing module for HDAM and through an index for HIDAH. 


• 	 User can specify multiple data set groups. 

• 	 Space occupied by deleted segments is reusable. 

• 	 VSAM or OSAM (combination of ISAM/OSAM for HIDAM index) can be 

specified as the operating system access method. 


• 	 Logical relationships using direct address or symbolic pointers. 

• 	 Distributed Free Space. 

Data Base Design Considerations Q.u1 



• 	 Secondary Indexing using direct address or symbolic pointers 

• 	 When VSAK is specified as the operating system access method for the 
data base, the additional options available are: 

Variable Length Segments 

User Segment compaction/Expansion Routines 

For information on defining the Main Storage Data Base (KSDB) and the 
Data Entry Data Base (DEDB) see the "Past Path Data Bases" section in 
the chapter "Design Considerations for the Past Path Feature." 

In multi-application data management systems, data duplication is 
often a problem. Duplicates in storage waste storage space and cause 
duplicate maintenance. Duplicates are caused when a given type of data 
is common to several applications, but each application requires the 
common data stored in relation to different types of data, or in 
combination with different types of data. To eliminate storage 
duplication, logical relationships are used. Logical relationships 
enable the user to store a given segment type once and to define that 
segment type as dependent on one segment type in a physical data base 
and a different segment type in a logical data base. Logical 
relationships are also used to create logical data bases that contain a 
combination of segment types from different physical data bases without 
duplicating them. This means the segment types in two different 
physical data bases, for two different applications, can be combined 
into a logical data base for a third application without creating a 
third physical data base. 

All logical relationships establish a relationship between two 
segment types in one or more physical data bases. They are defined in 
the physical data bases of the segment types they relate to, and they 
are used when the related segment types are processed through a logical 
data base. When defined between segment types in the same physical data 
base, a logical relationship enables a different hierarchy of segment 
types to be defined for the segment types in that physical data base. 
When defined between segment types in different physical data bases, it 
enables a hierarchy of segment types to be defined that combines the 
segment types in both data bases into a single data bas9. In each case, 
the new hierarchy of segment types is defined through th9 OBDGEN utility 
to create a logical data base. The hierarchy of segment types for a 
logical data base is comprised of a subset of the physical and logical 
relationships defined between the segment types in their physical data 
bases. 

Logical relationships enable occurrences of two segment types to be 
stored independently of each other, yet enable an application program to 
process them through a logical data base as if stored in relation to 
each other. Through the logical data base, the relationship between the 
two segment types appears to be that of a physical parent segment type 
and One of its physical child segment types in a physical data base. An 
application processes occurrences of the related segment types through 
their logical data base in the same manner as occurrences of a physical 
parent segment type and a physical child segment type are processed in a 
physical data base. 

4.48 IMS/VS System/Application Design Guide 



A logical relationship is defined in the physical data base or data 
bases of the segment types being related. Through a logical 
relationship~ segment types in the same or different physical data bases 
are related in a manner that is in most cases transparent to application 
programs using the physical data bases. To enable use of a logical 
relationship defined between two segment types in one or more physical 
data bases, a logical data base must be defined. 

The terms used to describe the segment types involved in logical 
relationships are physical parent, Ingical parent, and logical child. 
The terms physical parent and logical parent are used to describe the 
two segment types being related through a logical relationship. The 
term logical child is used to describe one or both of the additional 
segment types that are required to relate two segment types through a 
logical relationship. 

"ETHOD5 OF RELATING SEGMENT TYPES THROUGH A LOGICAL CHILD 

Three types of logical relationships can be defined in 1"5/'5 data 
bases. The three types are unidirectional, physically paired 
bidirectional, and virtually paired bidirectional logical relationships. 
For each of the three types of logical relationships, a logical child 
segment type relates two segment types by one of two methods. The first 
method described in the following text is used for unidirectional and 
physically paired bidirectional logical relationships. The second 
method described is used for virtually paired bidirectional logical 
relationships. In both methods, a logical child is physically related 
to one of the segment types being related through a logical 
relationship. In addition for the first method, the logical child 
points to the othe~ segment type. In the second method the logical 
child points to the other segment type, and is pointed to by the other 
segment type. Figure Q-23 shows the first method of relating segment 
types through a logical child segment type. 

Data Base Design Conaiderations Q.Q9 



NAMESKILL 

ARTIST 

STENO 

NAME 

JONES 

NAMESKILL 

STENO 

NAME 

NAMESKILL 

SKILL 

STENO 

NAME SKILL 

ARTIST 

SKILL 

TYPIST 

ARTIST 

STENO 

Figure ij-23. Relating Occurrences of SKILL to Occurrences of NAME 

Figure 4-23 shows occurrences of the SKILL segment type being related 
to occurrences of the NAKE segment type through occurrences of an 
additional segment type that is required to relate NAKE and SKILL 
segments. A logical child is an additional segment type that is 
required to relate two segment types through a logical relationship. A 
logical child segment type relates tvo segment types by being physically 
related to one segment type and by pointing to the other segment type. 
The segment type that the logical child segment type is physically 
related to is called the physical parent of the logical child. The 
segment type that the logical child segment type points to is called the 
logical parent of the logical child. The pointer in a logical child 
that points to a logical parent is called a logical parent pointer. In 

4.50 IHS/VS System/Application Design Guide 



Figure 4-23, NAftE is the physical parent, SKILL is the logical parent, 
and NAMESKILL is the logical child segment type. To establish the 
physical relationship between the NAftE and NAKESKILL segment types shown 
in Figure 4-23, NAMESKILL is defined as a physical child segment type of 
NAME in the physical data base of the NAftE segment type. Since NAME and 
NAMESKILL are a physical parent and a physical child segment type in the 
same physical data base, occurrences of each are related when loaded 
into their physical data base. To relate an occurrence of SKILL to an 
occurrence of NAME in storage, the user loads an occurrence of 
NAMESKILL, the logical child segment type, as a physical child of a 
given NAME segment. This process is rep~ated for each occurrence of the 
logical parent that is to be related to that NAME segment. When loading 
a logical child segment into its physical data nase, the user identifies 
which logical parent segment the logical child points to, by placing the 
concatenated key of the logical parent in the data portion of the 
logical child segment. Since the concatenated key of a logical parent 
segment is the symbolic pointer to that segment in its physical data 
base, when the user loads logical child segments as physical children of 
a given physical parent segment, the respective logical parent segment 
pointed to by each logical child is related to the physical parent 
segment. When processing the related segment types through a logical 
data base, it is the physical relationship between occurrences of the 
physical parent and logical child segmen+. types in their common physical 
data base, plus the logical parent pointer contained in each logical 
child segment, ·that enables access to related occurrences of the logical 
parent segment type from each occurrence of the physical parent segment 
type. 

In the second method of relating two segment types through a logical 
child segment type, all of the conditions described for the first method 
remain the same. The logical child segment type is physically related 
to its physical parent segment type and points to its logical parent 
segment type. One occurrence of the logical child segment type is 
loaded as a physical child of a given physical paLent segment for each 
occurrence of the logical parent segment type that is to be related to 
that physical parent. To identify which logical parent segment is being 
related to a physical parent segment through a logical child segment, 
the user places the concatenated key of the logical parent in the data 
portion of each logical child segment loaded. Through the relationship 
of physical parent and logical child segments in their physical data 
base, and the logical parent pointer in each logical child segment, 
related occurrences of the logical parent segment type can be accessed 
from physical parent segments. In addition, logical child pointers are 
used in the logical parent segment type, and logical twin and physical 
parent pointers are used in the logical child segment type, as shown in 
Figure 4-24. The additional pointers are used to enable accessing 
specific occurrences of the physical parent segment type that are 
related to each occurrence of the logical parent. Logical twins are 
multiple occurrences of the same logic~l child segment type that point 
to the same occurrence of the logical parent segment type. When 
specified in the logical child segment type, logical twin pOinters pOint 
from each logical twin to tha next to chain together all logical twins 
that point to a given logical parent. The physical parent pointer in 
each occurrence of the logical child segment type is generated 
automatically by IMS/VS to endble access to the physical parent segment
of each logical cbild from that logical child. A logical child pointer 
is specified for the logical parent segment type to enable accessing a 
logical child segment from a logical parent segment. A logical child 
pointer points from a given logical parent segment to one of the logical
twins, which also points back to that logical parent segment. Since all 
logical twins that point to the sa.e logical parent are chained t~rough 
logical twin pointers, and ~ach logical child contains a physical p~rent 

Data Base Design Considerations 4.51 



pointer, the specific physical parent segaents that are related to a 
given logical parent segment can be accessed from that logical parent 
segment. ' 

NAME SKILL 

ARTISTADAMS 

NM1ESKILL 

ARTIST 

STENO 

TYPIST 

SKILL 

STENO 

SKILL 

TYPIST 

LCF-Logical child first pointer 
LTF-Logical twin forward pointer 

Relating Occurrences of NAKE to OccurrenceR of SKIL~ 

STENO 

NAME 

NAMESKILL 

ARTIST 

STENO 

Key: 
PP-Physical parent pointer 
LP-Logical parent pointer 

4.52 IKS/VS System/Application Design Guide 



L2gi£~! R~!~l~2n§~~E ~~!~§ 

The physical relationship bp.tween physical parent and logical child 
segments in their physical data base, and the logical parent pointer in 
each logical child segment creates a physical parent to logical parent 
path between each physical parent segment and the logical parent 
segments related to each physical parent segment. To define use of the 
path in a logical data base, the logical child and logical parent 
segment types are defined as one concatenated segment type that is a 
physical child of the physical parent segment type as shown in Figure 
4-25. 

PHYSICAL DATA BASE(S) 	 LOGICAL DATA BASE 

PHYSICAL LOGICAL 	 PHYSICAL 

PARENT PARENT 	 PARENT 

LOGICAL LOGICAL I LOGICAL 

CHILD CHILD 
I 
I PARENT 

, 

Concatenated Segment Type 

Fi~are 4-25. 	 Defining a Physical Parent to Logical Parent Path in a 
Logical Data Base 

In addition, when logical child pointers are used in the logical 
parent segment type, and logical twin and physical parent poin~ers are 
used in the logical child segment type, a logical parent to physical 
parent path is created between each logical parent segment and the 
physical parent segments related to each logical parent segment. To 
define use of the path in a logical data base, the logical child and 
physical parent segment types are defined as one concatenated segment 
type that is a physical child of the logical parent segment type as 
shown in Figure 4-26. 

Data Base Design Considerations 4.53 



PHYSICAL DATA BASE(S) 	 LOGICAL DATA BASE 

LOGICAL LOGICAL 


PARENT PARENT 


PHYSICAL 

PARENT 

LOGICAL 	 LOGICAL PHYSICALI 
. ICHILD 	 CHILD PARENTI 

Concatenated Segment Type 

Figure 4-26. 	 Defining a Logical Parent to Physical Parent Path in a 
Logical Data Base 

When use of a physical parent to logical parent path between segment 
types is defined in a logical data base, the physical parent segment 
type involved in the logical relationship is the physical par9nt of the 
concatenated segment type. When an application program retrieves an 
occurrence of the concatenated segment type from a physical parent 
segment, an occurrence of the logical child and the respective logical 
parent pointed to by the logical child are concatenated and pr9sented to 
the dpplication program as one segment. When use of a logical parent to 
physical parent path is defined in a logical data base, the logical 
parent segment type is the physical parent of the concatenated segment 
type. When an application program retrieves an occurrence of the 
concatenated segment type from a logical parent segment, an occurrence 
of the logical child and the physical parent segment pointed to by the 
logical child are concatenated and presented to the application program 
as one segment. 

In each case the physical parent or logical parent segment type 
included in the concatenated segment type is called the destination 
parent. For a physical parent to logical parent path, the logical 
parent is the destination parent in the concatenated segment type. For 
a logical parent to physical parent path, the physical parent is the 
destination parent in the concatenated segment. 

By definition, a logical child segment contains the concatenated key 
of the destination parent followed by intersection data, if any. A 
logical child segment relates a specific physical parent segment to a 
specific logical parent segment. Since a logical child is the pOint of 
intersection for a physical parent and logicalpar9nt segment, any data 
contained in a logical child segment in addition to the concatenated key 
of a destination parent is called intersection data. When defining a 
logical child segment type in its physical data base, the length 
specified for the segment type must be sufficient to contain the 
concatenated key of a logical parent. Any length greater than that 
required for the concatenated key can be used for intersection data. 

4.54 IMS/VS System/Application Design Guide 



To identify which logical parent segment will be pointed to by a 
logical child segment, the concatenated key of the logical parent 
segment must be present, with each logical child segment, in the user's 
I/O area when the logical child segment is initially presented for 
loading into a data base. However, if the logical parent segment is in 
a HDAM or HIDA~ data base, its concatenated key may not be written to 
storage when the ~ogical child segment is loaded. If the logical parent 
is in a HISAM data base, a logical child in storage must contain the 
concatenated key of its logical parent. 

When a concatenated segment is retrieved through a logical data base, 
it contains the concatenated key of the destination parent, followed by 
intersection data in the logical child segment, which in turn is 
followed by the data in the destination parent segment. Figure 4-27 
shovs the format of a retrieved concatenated segment in the user I/O 
area. The concatenated key of the destination p~rent is returned with 
each concatenated segment to identify the destination parent retrieved. 
I~S/VS obtains the concatenated key of the destination parent from the 
logical child in the concatenated segment, or by constructing the 
concatenated key. If the destination parent is the logical parent of 
the logical child and the concatenated key of the logical parent has not 
been stored with the logical child, I~S/VS constructs the concatenated 
key of the logical parent segment and presents it to the user as a part 
of the concatenated segment. If the destination parent is the physical 
parent of the logical child, IMS/VS must always construct the 
concatenated key of the physical parent. 

Logical child segment Destination parent segment 

Destination 
Intersection Destination

parent concatenated 
data parent segment 

key 

Figure 4-21. Format of Concatenated Segment Returned to User I/O Area 

UNIDIRECTIONAL LOGICAL RELATIONSHIP 

A unidirectional logical relat'ionship is used to relate two segment 
types in one direction. Figure 4-28 shows the schematic view of a 
unidirectional logical relationship that is defined between tvo segment 
types in the same or different physical data bases, and the resulting 
view of the segment types involved that is defined in a logical data 
base. In a physical data base, a logical child segment type is defined 
as a physical child of one segment type, and a direct address or 
symbolic pointer is specified in the logical child segment type to point 
to the other segment type. This results in creating a physical parent 
to logical parent path between occurrences of the tvo segment types when 
they are loaded into storage. 

Data Base Design Considerations 4.55 



PHYSICAL DATA BASE(S) LOGICAL DATA BASE 

A C A 

I
B B CI 

I 

Concatenated Segment Type 

Figure 4-28. Unidirectional Logical Relationship 

PHYSICALLY PAIRED BIDIRECTIONAL LOGICAL RELATIONSHIP 

A physically paired bidirectional logical relationship is used to 
relate two segment types in two directions, and to provide the same 
intersection data in both directions. Figure 4-29 shows the schematic 
view of a physically paired bidirectional logical relationship that is 
defined in a physical data base or data bases, and the resnlting views 
of the segment types involved that are defined in a logical data base. 
In a physical data base or data bases, a logical child segment type is 
defined as a physical child of each of the two segment types being 
related, and a direct address or symbolic logical parent pointer is 
specified for each logical child segment type. One logical child 
segment type creates a physical parent to logical parent path between 
occurrences of the two segment types in storage in one direction, and 
the other logical child segment type creates a physical parent to 
logical parent path between occurrences of the two segment types in 
storage in the other direction as shown in Figure 4-29. When defining 
each logical child segment type in its physical data base, ~he user 
specifies that each logical child segment type is paired with the other 
logical child segment type to enable IMS/VS to maintain the same 
intersection data in paired logical child segments. In storage, paired 
logical child segments provide two different paths between the same tvo 
segments, and both logical child segments contain the same intersection 
data. For example, in Figure 4-30 under the NAME segment ADAMS, the 
occurrence of NAKESKILL that points to ARTIST, and under the SKILL 
segment ARTIST, the occurrence of SKILLNAME that points to ADAMS are 
physically paired logical child sagments since they provide two 
different paths between the same two segments and they contain the same 
intersection data. In a physically paired logical relationship, if the 
user updates intersection data in one logical child segment, IKS/VS 
automatically updates the intersection data in the paired logical child 
segment. When initially loading paired logical child segments, the user 
must place the same intersection data in each of the paired logical 
child segments. 

During the initial load of a data base that contains physically 
paired logical children, the application program must load (using an 
ISRT call) both sides of the physical pair. The intersection data for 
the paired segments must be identical. After the initial load, in any 
update step, if an insert, delete, or replace is done for one of the 
paired segments, I~S/VS performs the same function for the paired 
segment. 

4.56 IMS/VS System/Application Design Guide 



L 
PHYSICAL DATA DASE(S) LOGICAL DATA BASE(S) 

A C A C 

~and/or~ 

,I 
B D B I C D I A,I L 

Concatenated Segment Types 

Figure 4-29. Physically Paired Bidirectional Logical ~elationship 

NA..1Io1E SKILL 

ARTIST ADAMS 

Figure 4-30. Physically Paired Logical Child Segments 

VIRTUALLY PAIRED BIDIRECTIONAL LOGICAL RELATIONSHIP 

In a virtually paired bidirectional logical relationship, one logical 
child segment type in storage relates two segment types in two 
directions, and provides the same intersection data in both directions. 
Figure 4-31 shows the schematic view of a virtually paired bidirectional 
logical relationship that is defined in a physical data base or bases, 
and the resulting views of the segment types involved that are defined 
in a logical data base. 

NAMESKILL 

ARTIST 

SKILLNAME 

Data Base Design Considerations 4.51 



Physical Data Base(s) Logical Data Base (s) 

A C A C 

~and/or~ 

r-- --, 
I I I I 

B I D I B I C D AII I lL 7 ----.J 
I 

~ Concatenated Segment Types Real logical child Virtual logical child 
(Represents B when 
accessed from C) 

Key: 
pp- Physical parent pointer 
lP-Logical parent p'.inter 
lCF-Log"",1 child first pointer 

Figure 4- 31. Virtually Paired Bidirectional Logical Relationship 

To define a virtually paired bidirectional logical relationship, two 
logical child segment types are defined in the physical data bases 
involved in the logical relationship, but only one is actually placed in 
storage. The logical child segment type that is defined and results in 
storage is called the real logical child. The logical child segment 
type that is defined, but does not result in storage is called the 
virtual logical child. 

In a virtually paired bidirectional logical relationship, occurrences 
of the real logical child create physical parent to logical parent, and 
logical parent to physical parent paths betwe~n occurrences of the two 
segment types being related. To accomplish this the real logical child 
is defined as a physical child segment type of one of the segment types 
being related, and a symbolic or direct address logical parent pointer 
is specified for the real logical child segment type. This creates a 
physical parent to logical parent path between occurrences of the two 
segment types being related. In addition, logical child pointers are 
specified for the logical parent segment type of the real logical child, 
and logical twin pointers are specified for the real logical child 
segment type to create a logical parent to physical parent path in 
storage between occurrences of the two segment types being related. The 
physical parent pointers required in occurrences of the real logical 
child for a logical parent to physical parent path are generated 
automatically by IMS/VS. 

For the physical parent to logical parent path, the user controls the 
sequence in which occurrences of the real logical child are accessed 
from their physical parent segment by defining a sequence field in the 
real logical child segment type, or by specifying use of the insert rule 
of first, last or here when defining the real logical child in its 
physical data base. For the logical parent to physical parent path, the 
user controls the sequence in which occurrences of the real logical 
child are accessed from their logical parent by defining a virtual 
logical cbild segment type as a physical child of the logical parent of 
the real logical child, and in addition, by defining a sequence field in 
the virtual logical child. Or, the user can specify a second insert 
rule of first, last or here that controls the sequence of real logical 
child segments as viewed from their logical parent segment. The insert 
rule that controls the sequence of real logical child segments as viewed 
from their physical parent segment is specified on the SEGM statement 
that defines the real logical child segment type in its physical data 

Q.S8 IMS/VS System/Application Design Guide 



L 

base. The insert rule that controls the sequence of real logical child 
segments as viewed from their logical parent is specified on an LCHILD 
statement. As input to DBDGEN when defining a segment type in a 
physical data base that is used as a logical parent in one or more 
logical relationships, an LCHILD statement must follow a SEG~ statement 
that defines a logical parent segment type for each logical child 
segment type of that logical parent. LCHILD statements identify the 
logical child segment types of a logical parent by following a SEG~ 
statement that defines a logical parent. For a virtually paired 
bidirectional logical relationship, when no sequence field or a 
non-unique sequence field is defined for the real logical child segment 
type as viewed from its logical parent segment type, the insert rule of 
first. last or here specified on an LCHILD statement controls the 
sequence in which occurrences of the real logical child are accessed 
from their logical parent segment. 

To enable using a sequence field for sequencing occurrences of the 
real logical child from its logical parent segment type, a virtual 
logical child segment type is defined. A virtual logical child segment 
type is defined as a physical child of the logical parent segment type 
of the real logical child. A virtual logical child segment type is 
defined in the physical data base of the logical parent of the real 
logical child to represent the view of the real logical child when 
accessing the real logical child from its logical parent. In defining a 
virtual logical child segment type, a name is specified for the virtual 
segment type and the name of the real logical child segment type is 
associated to the name specified. To enable sequencing occurrences of 
the real logical child through sequence field values from the logical 
parent, a sequence field is defined in the virtual segment type. Since 
the virtual segment type represents the real logical child as viewed 
from its logical parent, the sequence field defined represents fields in 
the real logical child segment type as viewed from its logical parent 
type. 

Since a logical child segment, by definition in a logical data base 
contains the concatenated key of a destination parent, followed by 
intersection data, if any, the concatenated key of the destination 
parent is included as a part of the logical child segment type when 
defining fields within the logical child segment. For a physical parent 
to logical parent path, fields can be defined within the logical child 
segment type that are comprised of the concatenated key of the logical 
parent. For a logical parent to physical parent path, fields can be 
defined within the logical child segment type that are comprised of the 
concatenated key of the physical parent. In addition for a logical 
parent to physical parent path. fields defined within the logical child 
segment type can be comprised of non-contiguous data in the logical 
child. 

POINTERS AND THE COUNTER USED IN LOGICAL RELATIONSHIPS 

Logical relationships can be defined in HISAK, RDAM and HIDAM data 
bases. or between any combination of the three. In defining logical 
relationships in each type or between types, the data organization 
methods used for the data bases must be considered when specifying the 
pointers used in logical relationships. Physical adjacency in storage 
is used to relate segments in a HISAM data base which means that all 
pointers to segments stored in a HISAM data base must be symbolic. In 
HDAM and HIDAM data bases, segments in storage are related through 
direct address pointers. Segments stored in HDAM and HIDA" data bases 
can be pointed to by symbolic or direct address pointers. 

Data Base Design Considerations 4.59 



The following pointers are used in defining logical relationships 
(see Figure 4-32): 

• Logical Parent Pointer 
• Logical Child Pointer 
• Logical Twin Pointer 
• Physical Parent Pointer 

Physical 
Parent 

Physical 
Parent 

PP PP 

Physical 
Parent 

PP 

Key: 
PP-Physical parent pointer 
LP-Logical parent pointer 
LCF-Logical child first pointer 
LCL-Logical child last pointer 
LTF -Logical twin forward pointer 
LTB-Logical twin backward pointer 

Figure 4-32. Pointers Used in Logical Relationships 

~2g1~!! Pa~~nt ~oint~£ 

A logical parent pOinter points from a logical child segment to a 
logical parent segment. To point to a logical parent segment type in a 
HISAM data base, a symbolic pointer must be stored with each logical 
child segment. XO pOint to a logical parent segment type in an HDAM or 
HIDAM data base, a symbolic pointer can be stored with each logical 
child segment and/or a direct address logical parent pointer can be 
specified. 

4.60 IMS/VS system/Application Design Guide 



&2~i£!! £hi!!l12~~£!! ~~~~ ~2ini~~2 

Logical child and logical twin pointers are only specified in 
virtually paired bidirectional logical relationships. The logical child 
pointers that can be specified are logical child first, or logical child 
first and last pointers. A logical child first, or a combination of 
logical child first and last pointers are stored in the prefix of a 
logical parent segment to point to each of its logical child segment 
types. A logical child first pointer points to the first occurrence of 
a logical child segment type, and a logical child last pointer points to 
the last occurrence of that segment type when viewed from the logical 
parent. 

The logical twin pointers that can be specified are logical twin 
forward or the combination of logical twin forward and backward 
pointers. Logical twins are multiple logical child segments of the same 
type that pOint to the same occurrence of a logical parent. A logical 
twin forward pointer points from a given logical twin to the logical 
twin stored after it and a logical twin backward .pointer pOints from a 
given logical twin to the logical twin stored before it. Use of the 
logical twin backward pointer improves delete performance. 

ghysi£!! ~s~~n1 ~Q~ni~~2 

In HDAH and HIDAK data bases involved in logical relationships,
physical parent pOinters are generated automatically by IMS/VS. IHS/VS 
places physical parent pointers in the prefix of all logical child and 
logical parent segments, and in the prefix o~ all segments on which a 
logical child ,or logical parent segment is dependent in its physical 
data base. This creates a path from a logical child or logical parent 
segment to the root segment on which the logical child or logical parent 
segment is dependent. Since all segments on which a logical child or 
logical parent segment is dependent are chair-ed through physical parent 
pointers from the logical child or logical parent segment to its root, 
access to those segments in reverse order is enabled through a logical 
data base. 

A four-byte counter is required in all logical parent segments that 
do not contain logical child pointers. It is stored in the prefix of a 
logical parent segment to maintain a count of how many logical child 
segments point to the logical parent. When required, it is placed in 
logical parent segments automatically by IMS/VS. 

DEFINING SEQUENCE FIELDS FOR DATA BASES INVOLVED IN LOGICAL 
RELATIONSHIPS 

To avoid potential problems in processing data bases involved in 
logical relationships, unique sequence fields should be defined in all 
logical parent segment types, and in all segment types that a logical 
parent is dependent on in its physical data base. When unique sequence 
fields are not defined in all segment types on the path to and including 
a logical parent segment type, multiple logical parent segments in a 
data base can have the same concatenated key. When multiple logical 
parent segments have the same concatenated key, problems can arise 
during initial data base load, and after initial data base load when 
symbolic logical parent pointers in logical child segments, are used to 
establish position on a logical parent segment to be processed. 

Data Base Design Considerations 4.61 



At initial data base load time, if logical parent segments with 
nonunique concatenated keys exist in a data base, the logical 
relationship resolution utilities attach all logical child segments that 
contain the same concatenated key to the first logical parent segment in 
a data base that has that concatenated key. 

When inserting or deleting a concatenated segment and position for 
the logical parent portion of the concatenated segment is determined by 
the logical parents concatenated key, positioning for the logical parent 
stops on the first segment at each level of the logical parents data 
base that satisfies the key equal condition for that level. For insert 
when using this method of establishing position in the logical parents 
data base, if a segment is missing on the path to the logical parent 
segment to be inserted, a GE status code is returned to the application 
program. Under the same conditions for deletion of a logical parent 
segment a 0803 abnormal termination occurs. 

RULES FOR D£FINING LOGICAL RELATIONSHIPS IN PHYSICAL DATA BASES 

Pollowing are the rules that must be followed when defining logical 
relationships in physical data bases. 

1. 	 A logical child segment type must have a physical parent s~gment 
type and a logical parent segment type. 

2. 	 A logical child segment type can have only one physical parent 
segment type and one logical parent segment type. 

3. 	 A logical child segment type is defined as a physical child 
segment type in the physical data base of its physical parent. 

4. 	 A logical child segment type is always a dependent segment type 
in a physical data base, and as such, it can be defined at any 
level except the first level of a data base. 

5. 	 In its physical data base, a logical child segment type can not 
have a physical child segment type defined at the next lower 
level in the data base that is also a logical child. 

6. 	 A logical child segment type can have physical child segment 
types. However, if a logical child segment type is physically 
paired with another logical child segment type, only one of the 
paired segment types can have physical child segment types. 

~2Si£~l R~~~~1 

1. 	 A logical parent segment type can be defined at any level of a 
physical data base including the root level. 

2. 	 A logical parent segment type can have one or multiple logical 
child segment types. Each logical child segment type rela~ed to 
the same logical parent segment type defines a logical 
relationship. 

3. 	 A segment type in a physical data base can not be defined as both 
a logical parent and a logical child. 

4. 	 A logical parent segment type can be defined in the same physical 
base as its logical child segment types, or in a different 
physical data base. 

4.62 IMS/VS system/Application Design Guide 



fllIsi£!! fY!!l~ 

1. 	 A physical parent segment type of a logical child cannot also be 
a logical child. 

REPLACE, INSERT AND DELETE RULES 


xxxxxxxxxxxx xxxxxxxxxxxx 
x CUSTOMER x x LOANS x 
x PP x x LP x 
xxxxxxxxxxxx * xxxxxxxxxxxx 

x * * v 
x * * v 

xxxxxxxxxxxxxxxxxxxxxxxxx 	 v* * x 	 x v* * x 	 vx * * 
xxxxxxxxxxxx xxxxxxxxxxxx * vvvvvvvvvvvv 

x ACCOUNTS x x BORROW x v CUST v 

x x x LCx v VLC v 

xxxxxxxxxxxx xxxxxxxxxxxx vvvvvvvvvvvv 


x 

x 


xxxxxxxxxxxx 

x PAYMENTS x 

x x 

xxxxxxxxxxxx 


PHYSICAL PATH 
TO COSTOMER and BORROW 
xxxxxxxxxxxx 
x COSTOMER x 
x x 
xxxxxxxxxxxx 

x 
x 

xxxxxxxxxxxxxxxx 
x BORROW/LOANS x 
x x 
xxxxxxxxxxxxxxxx 
LOGICAL PATB 
TO LOANS 

PHYSICAL PATH 
TO LOANS 
xxxxxxxxxxxx 
x LOANS x 
x x 
xxxxxxxxxxxx 

x 
x 

XXXXXX1:XXXXXXxxxx 
X CUST/CUSTOMER x 
x 	 x 
xxxxxxxxxxxxxxxxx 
LOGICAL PATH 
TO CUSTOMER and BORROW 

Insert, Delete, and Replace rules are needed when a segment is 
involved in a logical relationship because that segment is updatable 
from two paths; a physical path and a logical path. 

Think a minute about the following questions: 

1. 	 Should the CUSTOMER segment be insertable by both its physical
and logical paths? 

2. 	 Should the BORROW segment be replaceable via only the physical 
path, or by both the physical and logical paths? 

3. 	 If the LOANS segment is deleted by its physical path, should it 
be erased from the data base or should it be marked as physically 
deleted but remain accessible by its logical path? 

Data Base Design Considerations 4.63 



4. 	 If the logical child segment BORROW or the concatenated segment 
BORROW/LOANS is deleted from the physical path, should the 
logical path CUST/CUSTOMER also be automatically deleted or 
should the logical path remain? 

The answer to these questions depends on the application, but the 
enforcement of the answer depends on choosing the correct 
insert/delete/replace rules for the logical child, logical parent and 
physical parent segments. 

The application processing requirements must be determined first, and 
the rules that support (enforce) those application processing 
requirements must be determined second. 

For instance, the answer to question one depends on whether or not 
the application defines that a CUSTOMER segment must have been 
previously inserted into the Data Base prior to accepting the loan. An 
insert rule of physical (P) on the CUSTOMER segment would prohibit the 
insertion of the CUSTOMER segment expept by the physical path. While an 
insert rule of virtual (V) would allow inserting the CUSTOMER segment by 
either the physical or logical path. 

It probably makes sense for a customer to be checked (past credit, 
time on current job, etc) and the COSTOMER segment inserted prior to 
approving the loan and inserting the BORROW segment. Thus, the insert 
rule of the CUSTOMER segment should be physical (P) to prevent this 
segment from being inserted logically (which incidentally provides 
better control of the application). 

Consider question three. We can reason two ways: (1) If it is 
possible for this load institution to terminate a type of loan (cancel 
7~ car loans -- create 9% car loans) before everyone who has that type 
of loan has fully paid the loan, then ve are saying that it's possible 
for the LOANS segment to be physically deleted and still be accessible 
from the logical path. This condition is supportable by specifying the 
delete rule for LOA~S as either logical (L) or virtual (V) but not as 
physical (P). 

The physical (P) delete rule prohibits physically deleting a logical 
parent segment prior to all its logical children having been physically 
deleted (which means the logical path to the logical parent is deleted 
first) • 

INTRODUCTION SUMMARY 

Data Base Administrators should examine all application needs and • 
decide who may insert, delete, and replace segments involved in logical 
relationships and how those updates are to be made (physical path only 
or physical and logical path). The insert/delete/replace rules in the 
physical DBD and the PROCOPT parameter in the PCB are the means of 
control. These rules are explained in detail in the following pages. 

4.64 IMS/VS System/Application Design Guide 



PPP FIRST 
SEG! NAME= , , , , , , ,RULES=(LLL,LAST ) 

VVV HERE 
B 

i!l!~~I_____II/ 
~~J.~I~_____II 
~~2J.!~~___J 

P = PHYSICAL 

L = LOGICAL 

V = VIRTUAL 

B = BIDIRECTIONAL VIRTUAL 


The operands of the RULES parameter are positional. Position one 
defines the INSERT rule, position two defines the DELETE rule and 
position three the REPLACE rule. 

For example, RULES=PLV says the insert rule is physical, the delete 
rule is logical and the replace rule is virtual. Notice the "B" rule is 
only applicable for delete. 

The second positional operand (FIRST,LAST,HERE) does not apply in any 
way to a discussion concerning LOGICAL UPDATE RULES and was only 
included to maintain the correctness of the coding example. 

In general the UP" rule (physical) is the most restrictive and the 
"V" rule (virtual) the least restrictive with the "L" rule (logical) 
somewhere in between. 

RULES are applicable only to the segments involved in logical paths; 
the Logical child segment and its Logical Parent and Physical Parent 
segments. Rules are not coded for the virtual logical child. 

xxxxxxxxxxxx xxxxxxxxxxxx 
x CUSTOMER x x LOANS x 
x PP x x LP x 
xxxxxxxxxxxx * xxxxxxxxxxxx 

x * * v 
x v* * xxxxxxxxxxxxxxxxxxxxxxxxx v* * x x v* * x x v 

xxxxxxxxxxxx xxxxxxxxxxxx ** * vvvvvvvvvvvv 
x ACCOUNTS x x BORROW x v CUST v 
x x x LC x v VLC v 
xxxxxxxxxxxx xxxxxxxxxxxx VVVVVVVVVVVY 

x 
x 

xxxxxxxxxxxx 
x PAYMENTS x 
x x 
xxxxxxxxxxxx 

Data Base Design Considerations 4.65 



THE 	 REPLACE RULES 

Applicable to the Physical Parent, Logical Parent and Logical Child 
segments of a Logical Path. 

1. 	 PHYSICAL: The segment can only be replaced when retrieved via a 
physical path. If this rule is violated, no data is replaced and 
an 'RX' status code is returned. 

2. 	 LQ~!£!~: The segment can only be replaced when retrieved via a 
physical path. If this rule is violated, no data is replaced, 
however, an 'HX' status code is not returned. A ,~~, status code 
is returned. 

3. 	 !IRI~!~: The segment can be replaced when retrieved by either a 
physical or logical path. 

A replace can be performed only on that portion of a concatenated 
segment to which an application program is data sensitive. 

If no data is changed in a segment, no data is replaced and no 
replace rule is violated. 

If data in a concatenated segment has been changed, data is replaced 
only if neither portion of the concatenated segment violates its replace 
rule. 

The replace rule is not checked for a segment which is part of a 
concatenated segment but was not retrieved. 

The status code returned to an application program will indicate the 
first violation that was detected. These status codes are: 

'AM' Replace attempted and PROCOPT¢R 

'DA' Key field of segment was changed 

'HX' Replace rule violated 

U.66 IKS/VS System/Application Design Guide 



RULES= (--P) RULES= (--P) 
XXXXXXXXXXXX XX'lXXXXXXXX'l 
x CUSTOl'tER x X LOANS x 
x PP x 'I LP x 
XXXXXXXXXXXX xxxxxxxxxxxx* x 'I* * x V* * XXXXXXXXXXXXXXXXXXXXXXXXX V* * x x 'I* * 

X x V 
XXX'lXXXXXXxx XXXXXXXXXXXX 

** * VVVVV'IVVVVVV 
X ACCOUNTS X X BORROW x 'I CUST 'I 

X X x LC X v VLC V 

xxxxxxxxxxxx xxxxxxxxxxxx vvvvvvvvvvvv 
X RULES= (--P) 
x 

XXXXXXXXXXXX 
x PAYKENTS x 
X X 

xxxxxxxxxxxx 

XXXXXXXXXXXX XXXXXXXXXXXX 

X CUSTO!!lER X X LOANS X 


x x X X 

XXXXXXXXXXXX XXXXXXXXXXXX 


X X 

X X 


XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX 

X BORROW/LOANS X X CUST/CUSTOftER X 

X x X x 

XXXXXXXXXXX'lXXXX xxxxxxxxxxxxxxxxx 


GHU 'CUSTOMER' STATUS CODE=' trJi' 

REPL ,STATUS CODE='~~' 

GHN 'BORROW/LOANS' STATUS CODE= '101' 

REPL STATUS CODE='RX' 

The physical replace rule prevents replacing the LOANS segment as 
part of a concatenated segment. Replacement must be ~y the segment's 
physical path. 

Data Base Design Considerations 4.67 



XXXXXXXXXXXX 	 XXXXXXXXXXXX 
RULES=(--L)x CUSTOMER X RULES=(--L)x LOANS X 


X LP X X LP X 

XXXXXXXXXXXX * XXXXXXXXXXXX 


X * 	 * X 
XX 	 * 

XXXXXXXXXXXXXXXXXXXXXXXXX * * 
X* 

X X 	 X* * 
X X 	 X* XXXXXXXXXXXX XXXXXXXXXXXX * * XXXXXXXXXXXX 

X ACCOUNTS X X BORROW X * X CUST x 
x X X LC x X I.C x 
XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX 

X RULES=any RUI.ES=any 
x 

XXXXXXXXXXXX 
X PAYMENTS X 
X x 
XXXXXXXXXXXX 

XXXXXXXXXXXX XXXXXXXXXXXX 

x CUSTOMER X X LOANS X 

X X X X 

XXXXXXXXXXXX XXXXXXXXXXXX 


X X 


X X 

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX 

X BORROW/LOANS X X CUST/CUSTOMER X 

x X X X 

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX 


GHU 	 'CUSTOMER' 

'BORROW/LOANS' STATUS CODE='~~' 


REPL 	 STATUS CODE='~~I 

The logical replace rule prevents replacing the LOANS segment as part 
of a concatenated segment, since replacement must be ,by the segment1s 
physical path. However, the status code returned is I~WI. The BORROW 
segment, being accessed by its physical path, is replaced. Since the 
access of the logical child is by its physical path, it does not matter 
what replace rule is selected. 

The LOGICAL replace rule provides for the special case of allowing 
the replacement of only the logical child half of the concatenation, and 
the return of a I~I status code. 

4.68 IMS/VS System/Application Design Guide 



RULES= (--V) RULES= (--V) 
XXXXXXXXXXXX xxxxxxxxxxxx 
x CUSTOKER x x LOANS X 

x PP x X LP X 

xxxxxxxxxxxx * xxxxxxxxxxxx 
x v* * x 	 v* * 

XXXXXXXXXXXXXXXXXXXXXXXXX 	 V* * 
X 	 x v* * 
X X 	 V* * 

XXXXXXXXXXXX xxxxxxxxxxxx '" vvvvvvvvvvvv 
X ACCOUNTS X X BORROW X v COST v 
x x X LC X V VLC V 
XXXXXXXXXXXX xxxxxxxxxxxx vvvvvvvvvvvv 

X RULES= (--V) 
X 

XXXXXXXXXXXX 
X PAYMENTS X 
x x 
xxxxxxxxxxxx 

XXXXXXXXXXXX XXXXXXXXXXXX 

X CUSTOMER X X LOANS X 


X X X X 

XXXXXXXXXXXX XXXXXXXXXXXX 


X X 


X X 

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX 

X BORROW/LOANS X X CUST/CUSTOMER X 

X X X X 

xxxxxxxxxxxxxxxx 	 xxxxxxxxxxxxxxxxx 

GHU 	 'LOANS' 

'CUST/CUSTOMER' STATUS CODE='~~' 


REPL 	 STATUS CODE='~li' 

~he virtual replace rule allows replacing the CUSTOMER s9gment via 
its logical path as part of a concatenated segment. 

Specifying the replace rule as virtual, on any of the segments 
involved in the logical relationship, allows replacing that segment by 
either its physical path or logical path. 

Specifying the replace rule as physical, on any of the segments 
involved in the logical relationship, prevents the replacement of that 
segment except when retrieved via its physical path. 

Data Base Design Considerations 4.69 



I 

The logical replace rule provides for a special case. Specifying the 
replace rule for the logical parent as LOGICAL, allows !KS/VS to return 
a .~. status code but without replacing any data when the logical 
parent is accessed concatenated with the logical child. Since the 
logical child has been accessed by its physical path, its replace rule 
may be any of the three. Thus using the LOGICAL replace rule allows the 
selective replacement of the logical child half of the concatenation and 
a 'HW' status code. 

Figure 4-33 shows all possible combinations of the replace rules that 
can be specified, and the resulting actions that take place for each 
combination when a call is issued to replace a concatenated segment in a 
logical data base. 

SEGMENT REPLACE RULES 

B P P P P P P P P P L L LL L L L L LV VV VV VV VVReplace 
rule specified CP P P L L LV VV P P P L L L VV VP P P L L LV vy 

Logical 
View I 

Denotes segment 
you are attempting 

BX XX XX XX XX XX XX XX XX X 

B C 
to replace C XX XX XX XX XX XX XX XX XX 
Status code IRJ< RX RXRX RXRX 

Data 
replaced? 

BY NY YY YY NY YY YY NY YY Y 

Y =yes N =no C NN NN YY NN NN YY NN NN YY 

B P P P P P P P P P L L L L L L L L LV VV VV VV VVReplace 
rule specified AP P P L L LV VV P P P L L L VV VP P P L L LV VV 

Logical Denotes segment BX XX XX XX XX XX XX XX XX X 
View 2 your are attempting 

to replace A XX XX XX XX XX XX XX XX XX 
B A 

Status code RXRJ< RJ< RX RXRX RX RXRX RXRX 

Data B N NN NN NN NN NN NY NY YY Y 
replaced? 

Y =yes N =no A NN NN YN NN NN YY NN NN YY 

Physical Physical 
Data Base I Data Base 2 

r------l r------, Logical Logical 
I I View I View 2 I I 
I I I II I II 

i I 
I 
I I 

I 
'-- ______ ..J I 

Figure 4-33. .Replace Fules 

4.70 IKS/VS System/Application Design Guide 



THE 	 INSERT RULES 

Applicable to the Destination Parent (Logical Parent and Physical 
Parent) segments, but not to the Logical Child segment. See "Logical 
Child Insertion" below. 

1. 	 RHI§I£!L: The destination parent may be inserted QUll via its 
physical parent path. 

This means that the destination parent must exist prior to 
inserting a logical path. A concatenated segment is not needed: 
the logical child is inserted by itself. 

2. 	 &Q~I£!~: The destination parent may be inserted either via its 
physical path or concatenated with the logical child via the 
logical path. 

When a logical child/destination parent concatenated segment is 
inserted, the destination parent is inserted provided it does not 
already exist and the I/O area key check does not fail (see 'DA' 
status code). If the destination parent does exist, it will 
remain unchanged and the logical child will be connnected to it. 

3. 	 !IRI2!L: The destination parent may be inserted via its physical
path or concatenated with the logical child via the logical path. 

When a logical child/destination parent concatenated segment is 
inserted, the destination parent is replaced if it already 
exists. and is inserted if it does not. 

LQ~i£g! £hi!g IU2~£!iQn 
The RULES operand must be coded to supply replace and delete rules 

for the logical child. However, the insert rule has no meaning except 
to satisify the RULES macro's coding scheme, so any insert rule (P,L,V) 
may be coded. 

1. 	 A logical child will be inserted provided that the insert rule of 
the destination parent is not violated, and 

2. 	 The logical child to be inserted does not already exist (that is, 
is not a duplicate). 

The I/O area in an application program must contain either the 
logical child or the logical child/destination parent concatenated 
segment in accordance with the destination parent's insert xule. 

The logical child/destination parent concatenated segment insert 
operation is performed only if both components of the concatenated 
segment can be inserted4 

The insert operation is not affected by KEY or DATA sensitivity as 
specified in a logical DBD or a PCB. This means that if a program is 
other than DATA sensitive to both the logical child and the destination 
parent of a concatenated segment, that program must nevertheless supply 
both in the I/O area when inserting a logical path, and the insert rule 
is logical or virtual. Thus maintenance programs that insert 
concatenated segments should be DATA sensitiYe to both segments in the 
concatenation. 

Data Base Design Considerations 4.71 



'AM' 	 An insert was attempted and PROCOPTII. 

'GE' 	 Parent of the destination parent or logical child was 
not found. 

'II' 	 Attempt to insert duplicate segment. 

'IX' 	 Physical rule and destination parent not found. 

I/O area key check fails. Concatenated segments 
contain the 	destination parent's key twice -- once as 
part of LCHILD's LPCK and second as a field in the 
parent. The keys must be equal. 

ROLES= (P--) RULES= (P--) 
xxxxxxxxxxxx xxxxxxxxxxxx 
x CUSTOMER x x LOANS x 
x PP x x LP x 
xxxxxxxxxxxx ... xxxxxxxxxxxx 

x 
x 	 *... vv... ... 

xxxxxxxxxxxxxxxxxxxxxxxxx ... v* vx 	 x * * 
x 	 x ... * v 

xxxxxxxxxxxx 	 xxxxxxxxxxxx ... yvvvvvvvvvvv 
x ACCOUNTS x 	 x BORROW x v CUST v 
x x 	 x LC x y VLC v 
xxxxxxxxxxxx xxxxxxxxxxxx VVVVVVYVVVVV 

x RULES= (P--) 
x 

xxxxxxxxxxxx 
x PAYMENTS x 
x x 
xxxxxxxxxxxx 

xxxxxxxxxxxx xxxxxxxxxxxx 

x CUSTOMER x x LOANS x 

x x x x 

xxxxxxxxxxxx xxxxxxxxxxxx 


x 	 x 
x x 


xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx 

x BORROW/LOANS x x CUST/CUSTOMER x 

x x x x 

xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx 


If the LOANS segment does exist then: 

ISRT 'CUSTOMER' STATUS CODE='Vlt' 

ISRT ' BORROW' STATUS CODE=' tJl!f' 


However r if 	LOANS does not eXist r then: 

ISRT 'CUSTOMER' STATUS CODE='litJ' 

ISRT ' BORROW' STATUS CODE='IX' 


4.72 IMS/VS System/Application Design Guide 



RULES::: (L--) RULES= (L--) 

XXXXXXXXXXXX XXXXXXXXXXXX 

X CUSTOl!ER X X LOANS X 


X PP X X LP X 


XXXXXXXXXXXX '" XXXXXXXXXXXX 

X v* '" 
X v* '" 

XXXXXXXXXXXXXXXXXXXXXXXXX v* * yX X * * x x v* '" XXXXXXXXXXXX XXXXXXXXXXXX '" VVVVVVVVVVVV 
X ACCOUNTS X X BORROW X v CUST v 
x X X LC X V VLC V 

XXXXXXXXXXXX XXXXXXXXXXXX VVVVVVVVVVVV 
x RULES= (L--) 
X 

XXXXXXXXXXXX 
X PAYMENTS X 
X X 

XXXXXXXXXXXX 

XXXXXXXXXXXX XXXXXXXXXXXX 

X CUSTOf!ER X X LOANS X 

X X X X 


XXXXXXXXXXXX XXXXXXXXXXXX 

X X 


X X 
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX 

X BORROW/LOANS X X CUST/CUSTOMER X 

X X X X 

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX 

ISRT • LOANS' STATUS CODE='~~' 

ISRT 'CUST' STATUS CODE='IX' 

The 'IX' status code is the result of omitting the concatenated 
segment CUST/CUSTOMER in the second call. IMS/VS checked for the key of 
the CUSTOMER segment (in the I/O area) and failed to find it. With the 
logical insert rule, the concatenated segment must be inserted to create 
a logical path. 

Data Base Design Considerations 4.13 



RULES= (V--) RULES= (V--) 
XXXXXXXXXXXX XXXXXXXXXXXX 
x CUSTO!ER x x LOANS x 
x PP x X LP X 
xxxxxxxxxxxx .- XXXXXXXXXXXX 

x * * v 
x v* * XXXXXXXXXXXXXXXXXXXXXXXXX v* * x x V* * 

X x V 

XXXXXXXXXXXX XXXXXXXXXXXX ** * VVVVVVVVVVVV 
x ACCOUNTS X X BORROW X V CUST V 
x x x LC X V VLC V 
XXXXXXXXXXXX XXXXXXXXXXXX vvvvvvvvvvvv 

x RULES= (V --) 
X 

XXXXXXXXXXXX 
x PAYMENTS X 
X X 
XXXXXXXXXXXX 

XXXXXXXXXXXX XXXXXXXXXXXX 

X CUSTOMER x X LOANS x 

X x X X 

XXXXXXXXXXXX XXXXXXXXXXXX 


X X 

X X 


XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX 

X BORROW/LOANS X X CUST/CUSTOMER X 

X X X X 
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX 

ISRT 'CUSTOMER' STATUS CODE=' )'1" 

ISRT 'BORROW/LOANS' STATUS CODE='W~' 

Remember this action will replace the LOANS segment if present, and 
insert the LOANS segment if not, so the virtual insert rule is a very 
powerful option. 

4.74 IM5/VS System/Application Design Guide 



In2~ RY1~ ~Ynm~~I 

The virtual insert rule is the most powerful of the three rules in 
that it will insert the destination parent (inserted as a concatenated 
segment via the logical path) if the pa~ent didn't previously exist, and 
replace the existing destination parent with the inserted destination 
parent otherwise. 

Specifying the insert rule as logical on the logical parent and the 
physical parent, allows insertion via either its physical path or its 
logical path as part of a concatenated segment. When inserting a 
concatenated segment, if the destination parent already exists, it will 
remain unchanged and the logical child will be connected to it. If i~ 
does not exist, it will be inserted. In either case, the logical child 
will be inserted provided that the segment is not a duplicate and that 
the destination parents insert rule is not violated. 

Specifying the insert rule as physical prevents inserting the 
destination parent as part of a concatenated segment. This means that a 
destination parent may be inserted only by its physical path. If the 
insert creates a logical path, only the logical child needs be inser~ed. 

DELETE RULES INTRODUCTION 

xxxxxxxxxxxx xxxxxxxxxxxx 
x CUSTOMER x x LOANS x 
x PP x x LP x 
xxxxxxxxxxxx * xxxxxxxxxxxx 

x * v 
x * • v* xxxxxxxxxxxxxxxxxxxxxxxxx v* * x x v* * x x v 

xxxxxxxxxxxx xxxxxxxxxxxx ** * '1'1'1'1'1'1'1"'1'1'1'1 
x ACCOUNTS x x BORROW x v CUST v 
x x x LC x v VLC v 
xxxxxxxxxxxx xxxxxxxxxxxx vvvvvvvvvvvv 

x 
x 

xxxxxxxxxxxx 
x PAYMENTS x 
x x 
xxxxxxxxxxxx 

PHYSICAL PATH PHYSICAL PATH 

TO CUSTOMER and BORROW TO LOANS 

xxxxxxxxxxxx xxxxxxxxxxxx 

x CUSTOMER x x LOANS x 

x x x x 

xxxxxxxxxxxx xxxxxxxxxxxx 


x x 

x x 


xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx 

x BORROW/LOANS x x CUST/CUSTOMER x 

x x x x 

xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx 

LOGICAL PATH LOGICAL PATH 

TO LOANS TO CUSTOMER and BORROW 


Data Base Design Considerations 4.75 

L 



The DLET call is a request for access path deletion not DASD space 
release of a segment. Delete rules are needed when a segment is 
involved in a logical relationship because that segment belongs to two 
paths; a physical path and a logical path. 

The selection of the delete rules for the logical child and its 
logical and physical parent (or two logical parents if physical 
pairing), determines whether one or two DLET calls are necessary to 
delete the two access paths. 

1. 	 ffiI~I£A1 Ql~IIIQ!: Physically deleting a segment prevents
further access to that segment via its physical parents. 
Physically deleting a segment also physically deletes its 
physical dependents. 

EXCEPTION: If one of the physical parents of the physically 
deleted segment is a logical child segment which has been 
accessed from its logical parent. then the physically deleted 
segment is accessible from that logical child since the physical 
dependents of a logical child are "Variable Intersection Data." 

2. 	 LOGICAL DELETION: Logically deleting a logical child preventsfurther access-via its logical parent. Unidirectional logical 
child segments are assumed to be logically deleted. 

A logical parent is considered logically deleted when all of its 
logical children are physically deleted. For physically paired 
logical relationships, the physical child paired to the logical 
child must also be physically deleted. before the logical parent 
is considered logically deleted. 

The picture below shows that an application program can be sensitive 
to either the concatenated segment (SOURCE=(DATA/DATA). (DATA/KEY).
(KEY/DATA) or only the logical child, since it is the logical child that 
is either physically or logically deleted (depending on the path 
accessed) in all cases. 

xxxxxxxxxxxx xxxxxxxxxxxx xxxxxxxxxxxx 
x CUSTOMER x x CUSTOMER x x CUSTOMER x 
x x x x x x 
xxxxxxxxxxxx xxxxxxxxxxxx xxxxxxxxxxxx 

x x x 
x x x 

xxxxxxxxxxxxxxxx xxxxxxxxxxxx xxxxxxxxxxxx 
x BORROW/LOANS x x BORROW x x LOANS x 
x x x x x x 
xxxxxxxxxxxxxxxx xxxxxxxxxxxx xxxxxxxxxxxx 
SOURCE=(DATA/DATA) (DATA/KEY) (KEY/DATA) 

4.16 IMS/VS system/Application Design Guide 



xxxxxxxxxxxx xxxxxxxxxxxx xxxxxxxxxxxx 
x x SEG1 x xPDx SEG3 x *x x SEG7 x 
x x pp x x x pp x * *x x LP x 
xxxxxxxxxxxx xxxxxxxxxxxx * * xxxxxxxxxxxx 

x 	 vx * * 
x 	 vx * * 

xxxxxxxxxxxx xxxxxxxxxxxx* * vvvvvvvvvvvv 
x x SEG2 x xPDx SEG4 x * v SEG8 v 
x x LC x* xLDx I.e x v VLC v 
XXXXXXXXX1.~XX * xxxxxxxxxxxx vvvvvvvvvvvv 

x* * 	 x
* xxxxxxxxxxxx
* 	 xPDx SEGS x 


x x x
* xxxxxxxxxxxx* x* * x 
* xxxxxxxxxxxx 

*xPDx 	 SEG6 x 
x x I.P x 
xxxxxxxxxxxx 

There are three paths to the logical child segment SEG4. The 
physical path from its physical parent SEG3, the logical path from its 
logical parent SEG7, and a third path from its physical dependents (SEG5 
and SEG6) because segment SEG6 is a logical parent accessible from its 
logical child SEG2'. 

These paths are "full-duplex" paths, meaning that accessibility is 
two way (up and down). There are two delete bits that control access 
along the paths, but they are "half-duplex," meaning that they only 
block half of each respective path. There is not a bit that blocks the 
third path. If SEG4 were both physically and logically deleted (PD and 
LD bits set), it would still be accessible from the third path and so 
would both of its parents. 

Neither physical nor logical deletion prevents access to a segment 
from its physical or logical children. Logically deleting SEG4 prevents 
access to SEG4 from its logical parent SEG7, but does not prevent access 
from SEG4 to SEG7. Likewise, physically deleting SEG4 prevents access 
to SEG4 from its physical parent SEG3, but does not prevent access from 
SEG4 to SEG3. 

DELETE 	 BYTE DEFINITION 

~~g~~~ g~~ti! == ~~!~1~ ~Yl~ 
The delete byte is used by I8S/VS to maintain the delete status of 

segments within a data base. The meaning of each bit within the delete 
byte is shown in Figure 4-2. 

The logical delete bit is only meaningful for logical child segments 
and their logical parents. The PD and LD bits are set or assumed set as 
follows: 

• If a segment is physically deleted (prevent further access from its 
physical parent), then delete processing scans downward from that 
segment through its dependents, turns upward and either releases 

Data Base Design Considerations 4.77 



each segment's DASD space or sets the PD bit. HISA" is an exception 
the delete bit is set in the segment specified by the DLET call and 
processing terminates. 

• 	If the PD bit is set in a logical parent, then the 1D bit is set in 
all logical children that can be reached from that logical parent. 

• 	 In physical pairing when the PD bit is set in the physical child of 
a pair of logical children, the LD bit is set in its pair. 

• 	When a virtually paired logical child segment is logically deleted 
(prevent further access from its logical parent), the LD bit is set 
in the logical child. If physical pairing, the LD bit is set in the 
logical child and the PD bit is set in its pair (a physical child of 
the logical parent). . 

• The 	LD bit is assumed to be set in all logical children of 

unidirectional logical relationships. 


• 	 ~he LD bit is assumed set in a logical parent when the PD bit is set 
in all of its logical children. If physical pairing, the PD bit 
must be set in both paired logical children. 

Ihi Qi!i!~ ~~!! 

A Dt/I delete call may be issued against a segment defined in either 
a physical or logical DBD. The call can be issued against either a 
physical segment or a concatenation. 

A delete call issued against a concatenated segment is a request for 
the deletion of the logical child along the accessed path. 

If a concatenated segment or a logical child is accessed from its 
logical parent, then the DLET call is a request for logical deletion. 
In all other cases, a DLET call is a request for ph ysical deletion. 

Physical deletion of a segment propagates logical deletion request to 
its logical children and propagates physical deletion request to its 
physical children and to any index pointer segments for which it is the 
source segment. 

telete sensitivity must be specified in the PCB for each segment 
against which a DLE~ call may be issued, but need not be specified for 
the physical dependents of those segments. 

Delete operations are not affected by KEY/DATA sensitivity as 
specified in either the PCB or logical DBD. 

A 	delete rule is violated• DX' 


'DA' Key changed in the I/O area 


4.78 IKS/VS System/Application Design Guide 



DASD SPACE RELEASE 

The delete call is not a request for DASD space release. Depending 
on the data base organizaticn, DASD space mayor may not be reused when 
it is released. DASD space for a segment is released when the following 
conditions are met: 

• 	 Space has been released fer all physical dependents of the segment. 

• 	 The segment is physically deleted (PD bit set or being set). 

• 	 If the segment is a logical child or a logical parent, then it must 
be physically and logically deleted (PD bit set/being set, and ID 
bit set/assumed set). 

• 	 If the segment is a dependent of a logical child {variable 
intersection data) and the DLET call was issued against a physical 
parent of the logical child, then the logical child must be both 
physically and logically deleted. 

• 	 If the segment is a primary index pointer segment, the space has 
been released for its target segment. 

DELETE RULES 

1. 	 g~I~l~~: The logical parent must be previously !Q~~£sl!I 
~~l~!~~ before a DLET call is effective against the segment or 
any of its physical parents. Otherwise the call results in a 
'DX' status code and no segments are deleted. 

However, if a delete reguest is made against the segment as a 
result of propagation across a logical relationship, then the 
PHYSICAL rule acts like the following LOGICAL rule. 

2. 	 'Q§l~A': Either physical cr logical deletion can occur first. 

When the logical parent is processed by a DLET call, all logical 
children are logically deleted, but the logical parent continues 
to be accessible from its logical children. 

3. 	 YIR1Y~': A logical parent will be deleted along its physical 
path: 

• 	 Explicitly when deleted by a DLET call. All of its logical 
children are logically deleted although the logical parent 
remains accessible from these logical children. 

• 	 Implicitly when it is no longer involved in a logical 
relationship. A logical parent is no longer involved in a 
logical relaticDshif when: 

It has DO logical children pointing to it (its 
logical-child counter is zero, if it has any), and 

It points tc no logical children (all of its 
logical-child pcinters are zero, if it has any), and 

It has no physical children that are also real logical 
childre~ 

Data Base Design Considerations 4.79 



fhI§l£~! f~~~~t (!l~~!! f!l~lng Qn!I) 

1. 	 f!!!~!Q~L~Qq!,£UL!!.RI!!!!!: Meaningless 

2. 	 ~!.R~~I!'Q!!~ !!'RIQ!~: The physical parent will be automatically
deleted along its physical path when it is no longer involved in 
a logical relationship. The physical parent is no longer 
involved in a logical relationship when: 

• 	 It has no logical children pointing to it (its logical-child 
counter is zero, if it has one), and 

• 	 It points to no logical children (all of its logical-child 
pOinters are zero, if it has any), and 

• 	 It has no physical children that are also real logical 
children. 

1. 	 f!!!§I£!!:: The logical child segment must be logically deleted 
first and physically deleted second. If physical deletion is 
attempted first, the DLET call issued against the segment or any 
of its physical parents results in a lOX' status code and no 
segments are deleted. If a delete request is made against the 
segment as a result of propagation across a logical relationship, 
or if the segment is one of a physically paired set, then the 
rule acts like the following LOGICAL rule. 

2. 	 !:Q~I£!!:: Deletion of a logical child is effective for the path 
for which the delete vas requested. Physical and logical 
deletion of the logical child can be performed in any order. 

The logical child and any physical dependents remain accessible 
from the non-deleted path. 

3. 	 !i~I!!!!:: A logical child is both logically and physically
deleted when it is deleted through either its logical or physical 
path (setting either the PD or tD bits, sets both). If this rule 
is coded on only one logical child segment of a physically paired 
set, it acts like the LOGICAL rule. 

For logical children involved in unidirectional logical 
relationships, the meaning of all three rules are the same, so any of 
the three rules can be specified. 

EXAMPLES 

The following examples illustrate the use of the delete rules 
individually for each of the segment types that the rule can be coded 
for (logical children, and their logical and physical parents). 

Only the rule pertinent to the examples are shown in each figure. 
The explanation applies to the specific example. 

4.80 IMS/VS system/Application Design Guide 

http:f!!!~!Q~L~Qq!,�UL!!.RI


XXXXXXXXXXXX XXXXXXXXXXXX 
RUL~S=(---)X CUSTOMER X RULES=(---)x LOANS X 

X PP X X LP x 
XXXXXXXXXXXX * XXXXXXXXXXXX 

X v* * 
X v* * 

XXXXXXXXXXXXXXXXXXXXXXXXX v* * 
X X v* * 
X vX * * 

XXXXXXXXXXXX XXXXXXXXXXXX * vvvvvvvvvvvv 
X ACCOUNTS X X BORROW X V CUST v 
X x X LC X " VLC v 
XXXXXXXXXXXX XXXXXXXXXXXX '1'1'1'1'1'1'1'1'1'1'1'1 

X RULES= (-P-) 
X 

XXXXXXXXXXXX 

X PAYMENTS X 

x x 
XXXXXXXXXXXX 

XXXXXXXXXXXXXXX GHU 'LOANS' 

X X LOANS X 'CUST/CUSTOMER' STATUS='~If' 

X X X 

XXXXXXXXXXXXXXX OLET STATUS='If~' 


X 

X 


XXXXXXXXXXXXXXXXXXXX The physical delete rule requires the 
X X CUST/CUSTOMER X logical child be logically deleted 
xLOx X first. The LO bit is no~ set in 
XXXXXXXXXXXXXXXXXXXX the BORROW segment. 

XXXXXXXXXXXXXXX GHU 'CUSTOMER' 

X X CUSTOltER X 'BORROi/LOANS' STATUS=')fif' 

X X X 
XXXXXXXXXXXXXXX OLET STATUS=' If~' 

X 


X 

XXXXXXXXXXXXXXXXXXXX The logical child can be physically 
xPOx BORROi/LOANS X deleted only after being logically 
xLOx X deleted. After the second delete, 
XXXXXXXXXXXXXXXXXXXX both the LO and PO bits are set. 

X 

X 


XXXXXXXXXXXXXXX The physical delete of the logical 
xPDx PAYMENTS x child also physically deletes the 
X X x physical dependents of the logical 
XXXXXXXXXXXXXXX child. The PO bit is set. 

Data Base oesign Considerations 4.81 



XXXXXXXXXXXX XXX XXX XXX XXX 
RULES=(---)x CUSTOMER X RULES=(---)x LOANS X 

X PP X X LP X 
XXXXXXXXXXXX * XXXXXXXXXXXX 

x * * V 
X V* * 

XXXXXXXXXXXXXXXXXXXXXXXXX V* * X X V* * 
X X V 

XXXXXXXXXXXX XXXXXXXXXXXX 
** * VVVVVVVVVVVV 

X ACCOUNTS X X BORROW X V COST V 
x x X LC X V VLC V 

XXXXXXXXXXXX XXXXXXXXXXXX vvvvvvvvvvvv 
X RULES= (-L-) 
x 

XXXXXXXXXXXX 
X PAYIiENTS X 
X x 
XXXXXXXXXXXX 

XXXXXXXXXXXXXXX GHU 'CUSTOI!ER' 

X X CUSTOMER X , BORROIl/LOANS' STATOS=' )1)1' 

X X X 


XXXXXXXXXXXXXXX DLET STATUS=')I)I' 

X 


X 

XXXXXXXXXXXXXXXXXXXX The logical delete rule allows the 
xPDx BORROW/LOANS X logical child to be deleted 
X X X physically or logically first. 
XXXXXXXXXXXXXXXXXXXX 

X 

X 


XXXXXXXXXXXXXXX Physical dependents of the logical 
xPDx PAYMENTS X child are physically deleted, but 
X X X remain accessible from the logical 
XXXXXXXXXXXXXXX path not logically deleted. 

XXXXXXXXXXXXXXX GHU '.LOANS' 

X X LOANS X 'CUST/COSTOI!ER' ST ATU S=' )Jl!f' 

X X X 
XXXXXXXXXXXXXXX DLET STATOS='lJ)I' 

X 

X 


XXXXXXXXXXXXXXXXXXXX The delete of the virtual logical 
xPDx CUST/CUSTOKER X child sets the LD bit on, in 
XLDx x the physical logical child BORROW 
XXXXXXXXXXXXXXXXXXXX (BORROW is logically deleted) 

4.82 II!S/VS System/Application Design Guide 



xxxxxxxxxxxx XX1:XXXXXXXXX 
RULES=(---)x CUSTOMER x RULES=(---)X LOANS X 

x LP x x LP X 

XXXXXXXXXXXX • XXXXXXXXXXXX 
x * • X 
X • X* XXXXXXXXXXXXXXXXXXXXXXXXX • 

• • 
• X 

x x X* 
X X X 

XXXX1:1:1:XX1:XX XXXXXXXXXXXX * * XXXXXXXXXXXX 
X ACCOUNTS 1: X BORROW X * X CUST X 
X X X LC x X LC X 
XXXXXXXXXXXX XXXXXXXXXXXX xxxxxxxxxxxx 

X RULES= (-P-) RULES= (-P-) 
X -L- -L­

xxxxxxxxxxxx 
X PAYMENTS X 
X X 
XXXXXXXXXXXX 

XXXXXXX1:XXXXXXX GHU 'CUSTOMER' 

X X CUSTOPlE'R X 'BORROW/LOANS' STATUS=' lflf' 

X X X 
XXXXXXXXXXXXXXX DLET STATUS='lfJf' 

X 

X 


xxxxxxxxxxxxxxxxxxxx With the physical or logical delete 
XPDx BORRO~/LOANS X rule, each logical child must be 
X X X deleted from its physical path. 
XXXXXXXXXXXXXXXXXXXX 

X 

X 


XXXXXXXXXXXXXXX Physical dependents of the logical 

xPDx PAYMENTS x child are physically deleted, but 

X X x remain accessible from the paired 

XXXXXXXXXXXXXXX logical child not deleted. 


XXXXXXXXXXXXXXX GHU 'LOANS' 

X X LOANS X 'CUST/CUSTOPlE'R' STATUS=' mr' 

X X X 
XXXXXXXXX1(XXXXX DLET STATUS='lflf' 

X 


X 

XXXXXXXXXXXXXXXXXXXX Physically deleting BORROW set 
xPDx CUST/CUSTOMER X the LD bit in CUST. Physically
xLDx X deleting CUST viII set the LD 
XXXXXXXXXXXXXXXXXXXX bit in the BO'RROW segment. 

Data Base Design Considerations 4.83 



XXXXXXXXXXXX XXXXXXXXXXXX 
RULES=(---)X CcrSTOMER x RULES={---)x LOANS x 

x PP x X LP X 
XXXXXXXXXXXX '" XXXXXXXXXXXX 

x * '" V 
x V'" XXXXXXXXXXXXXXXXXXXXXXXXX V'" '" x x V'" '" x X V 

XXXXXXXXXXXX XXXXXXXXXXXX '" VVVVVVVVVVVV '" '" 
x ACCOUNTS X X BORROW X V CUST V 
x X X LC X v VLC v 
XXXXXXXXXXXX xxxxxxxxxxxx VVVVVVVVVYVV 

X RULES= (-V-) 
x 

XXXXXXXXXXXX 

X PAYMENTS X 

X X 
XXXXXXXXXXXX 

XXXXXXXXXXXXXXX GHU 'CUSTOMER' 
X X CUSTOMER X 'BOR ROW /LOUS' . STATUS=' "W' 
X X X 

XXXXXXXXXXXXXXX DLET STATUS=' W)f' 
X 

X 


XXXXXXXXXXXXXXXXXXXX The virtual delete rule allows the 
xPDx BORROW/LOANS X logical child to be deleted 
xLDx X physically and logically. Deleting 
XXXXXXXXXXXXXXXXXXXX either path, deletes both paths. 

X 

X 


XXXXXXXXXXXXXXX Physical dependents of the logical 

xPDx PAYKENTS X child are physically deleted. 

X X X 

XXXXXXXXXXXXXXX 


XXXXXXXXXXXXXXX GHU , LOANS' 

X X LOANS X 'CUST/CUSTOMER' STATUS='GE' 

X X X 

XXXXXXXXXXXXXXX 

X 

X 

XXXXXXXXXXXXXXXXXXXX The previous physical delete, 
xPDx CUST/CUSTOMER X deleted both paths, because the 
xLDx X delete rule is virtual. Deleting 
XXXXXXXXXXXXXXXXXXXX either path, deletes both. 

4.84 IMS/VS system/Application Design Guide 



XXXXXXXXXXXX xxxxxxxxxxxx 
RULES=(---)X CUSTOMER X RULES={---)X LOANS X 

X LP X X LP X 
XXXXXXXXXXXX '" XXXXXXXXXXXX 

X * * X 
X X* * XXXXXXXXXXXXXXXXXXXXXXXXX X'" '" X X X'" * 

X X X'" XXXXXX~XXXXX XXXXXXXXXXXX '" '" rxxxxxxXXXXX 
X ACCOUNTS X X BORROW X '" X CUST X 
X X X LC X X LC X 

XXXXXXXXXXXX xxxxxxxxxxxx xxxxxxxxxxxx 
X RULES= (-V-) RULES= (-V-) 
X 

XXXXXXXXXXXX 

X PAYMENTS x 

X X 
XXXXXXXXXXXX 

XXXXXXXXXXXXXXX GHU 'CUSTOMER' 
X X CUSTOMER X 'BORROW/LOANS' STATUS=' )fW' 
X X X 

XXXXXXXXXXXXXXX DLET STATUS=IW~' 

X 
X 

XXXXXXXXXXXXXXXXXXXX With the virtual delete rule, 
xPDx BORROW/LOANS X deleting either logical child deletes 
xLDx X 
XXXXXXXXXXXXXXXXXXXX 

both paired logical children. 
(notice the PD & LD in both) 

X 

X 
XXXXXXXXXXXXXXX Physical dependents of the logical 
xPDx PAYMENTS X child are physically deleted. 
X X X 
XXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXX GHU 'LOANS' 
X X LOANS X 'CUST/CUSTOMER' STATUS='GE' 
X X X 
XXXXXXXXXXXXXXX 

X 

X 

XXXXXXXXXXXXXXXXXXXX Physically deleting BORROW also 
xPDx CUST/CUSTOMER X physically deleted CUST, so the 
xLDx X CUST segment was not found, 
xxxxxxxxxxxxxxxxxxxx that is, 'GE' status code. 

Data Base Design Considerations U.85 



xxxxxxxxxxxx XXXXXXXXXXXX 
RULES=(---)x CUSTOKER x RULES=(-P-)x LOANS X 

x PP x X LP X 
XXXXXXXXXXXX '" XXXXXXXXXXXX 

x 
'" '" V x V'" '" 

XXXXXXXXXXXXXXXXXXXXXXXXX V'" '" x X V* '" 
x X V'" '" XXXXXXXXXXXX XXXXXXXXXXXX * VVVVVVVVVVVV 

x ACCOUNTS X X BORROW X V CUST V 
x x X LC X V VLC V 
XXXXXXXXXXXX XXXXXXXXXXXX vvvvvvvvvvvv 

X RULES= (- --) 
X 

XXXXXXXXXXXX 

X PAYMENTS X 

X X 
XXXXXXXXXXXX 

"BEFORE" 

XXXXXXXXXXXXXXX GHU 'LOANS' ST ATUS=' 101' 

X x LOANS X 

x x x DLET STATUS=' }If)f' 

XXXXXXXXXXXXXXX 


x 

x 


XXXXXXXXXXXXXXXXXXXX The physical delete rule requires 
xPDx CUST/CUSTOMEB x that all logical children be 
x x X previously physically deleted. 
XXXXXXXXXXXXXXXXXXXX 

Physical dependents of the logical 
parent are physically deleted. 

"AFTER" 

XXXXXXXXXXXXXXX The DLET status code will be 'DX' 

xPDx lOANS X if all of its logical children 

X X X were not previously physically 

XXXXXXXXXXXXXXX deleted. 


X 

X 


XXXXXXXXXXXY.XXXXXXXX All logical children are logically 
XPDX CUST/CUSTOKER X deleted. LD bit is set in the 
xLDx X physical logical child BORROW. 
XXXXXXXXXXXXXXXXXXXX 

4.86 IMS/VS Sy~tem/Application Design Guide 



XXXXXXXXXXXX 	 xxxxxxxxxxxx 
BULES=(-P-)x CUSTOMER X BULES=(-P-)x LOANS X 

X LP X X LP X 

xxxxxxxxxxxx '" XXXXXXXXXXXX 

X * 	 '" x 
X 	 x'" 	 '" xxxxxxxxxxxxxxxxxxxxxxxxx 	 x'" '" x 	 x '" X'" x X 	 X'" xxxxxxxxxxxx XXXXXXXXXXXX '" '" xxxxxxxxxxxx 

x ACCOUNTS x X BORROW x * X CUST X 
x x X LC x X LC X 
xxxxxxxxxxxx. xxxxxxxxxxxx XXXXXXXXXXXX 

x RUU!S= (---) RULES= (_._) 
x 

xxxxxxxxxxxx 
x PAYMENTS x 
X x 
xxxxxxxxxxxx 

"BEFORE" 
XXXXXXXXXXXXXXX 
X X C()STOrtER x 
x X X 
XXXXXXXXXXXXXXX 

X 

X 
XXXXXXXXXXXXXXXXXXxx 
xPDx BORROW/LOANS X 
xLDx X 
xxxxxxxxxxxxxxxxxxxx 

"AFTER" 
XXXXXXXXXXXXXXX 
xPDx CUSTOMER X 
X X x 
xxxxxxxxxxxxxxx 

X 


X 


xxxxxxxxxxxxxxxxxxxx 
xPDx BORROW/LOANS X 
xLDx X 
xxxxxxxxxxxxxxxxxxxx 

X 

X 


XXXXXXXXXXXXXXX 
xPDx PAYMENTS X 
X X x 
xxxxxxxxxxxxxxx 

GHU 'CUSTOMER' STATUS=' )"r' 

DLET 	 STATUS='l!!')j' 

The 	physical delete rule requires: 
(1) 	 all logical children to be 

previously physically deleted. 
(2) 	 physical children pair~d to its 

logical child to be previously 
physically deleted. 

CUSTOMER, the logical parent 
has been physically deleted. 

Both the logical child and its pair 
had previously been physically 
deleted. (PD and LD set on in the 
"BEFORE" figure of BORROW/LOANS) 

All physical dependents of the 
physical parent are physically
deleted; ACCOUNTS (not shown) 
is physically deleted. 

Data Base Design Considerations 4.81 



xxxxxxxxxxxx XXXXXXXXXXXX 
RULES=(---)x CUSTOMER x BULES=(-L-)x LOANS X 

x PP x X LP X 
xxxxxxxxxxxx * xxxxxxxxxxxx 

x * * V 
x v* * XXXXXXXXXXXXXXXXXXXXXXXXX V* * 

x x * V* x X * * V 
XXXXXXXXXXXX XXXXXXXXXXXX '" VVVVVVVVVVVV 
x ACCOUNTS X X BORROW X V CUST V 
x x X LC X V VLC V 
XXXXXXXXXXXX xxxxxxxxxxxx VVVVV'YVV'YVVV 

X RULES= (---) 
x 

XXXXXXXXXXXX 

X PAYMENTS X 

X X 
xxxxxxxxxxxx 

"BEFORE" 

XXXXXXXXXXXXXXX GHU 'LOANS' STATUS='l'!'Jd" 

x x LOANS X 

X X X DLET STATUS= 'JIll' 

XXXXXXXXXXXXXXX 


X 

X 


xxxxxxxxxxxxxxxxxxxx The logical delete rule allows 

X X CUST/CUSTOMER X either physical or logical deletion 

x X X first; neither causes the other. 

XXXXXXXXXXXXXXXXXXXX Physical dependents of the logical 


parent are physically deleted. 

"AFTER" 

xxxxxxxxxxxxxxx The logical parent LOANS remains 

xPDx L01NS X accessible from its logical 

x X x children. 

XXXXXXXXXXXXXXX 


X 

X 


XXXXXXXXXXXXXXXXXXXX All logical children are logically 

X X CUST/CUSTOMER X deleted. LD bit is set in the 

xLDx X physical logical child BORROW. 

XXXXXXXXXXXXXXXXXXXX 


The above processing and results would be the same if the logical 
parent LOANS delete rule were virtual instead of logical. An additional 
example to explain the virtual delete rule follows. 

U.BB IMS/VS system/Application Design Guide 



XXXXXXXXXXXX XXXXXXXXXXXX 
RULES=(-L-)x CUSTOMER X RULES=(-L-)x LOANS X 

X LP X X LP X 

XXXXXXXXXXXX * XXXXXXXXXXXX 

X * * X 

X * * X 
XXXXXXXXXXXXXXXXXXXXXXXXX X* * 
X X X* * 
X X X* 

XXXXXXXXXXXX XXXXXXXXXXXX * * XXXXXXXXXXXX 
X ACCOUNTS X X BORROW X * X CUST X 
X x x LC X X LC X 

XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX 
X RULES= (---) RULES= (---) 
X 

XXXXXXXXXXXX 
X PAYMENTS X 
x X 

XX XXXX XXXXXX 

"BEFORE" 

XXXXXXXXXXXXXXX GHU 'LOANS' STATUS=' )StI' 

X X LOANS X 

X X X DLET STATUS=' tI)f' 

XXXXXXXXXXXXXXX 


X 

x 
XXXXXXXXXXXXXXXXXXXX The logical de19te rule allows 
X X CUST/CUSTOMER X either physical or logical deletion 
x X X first; neither causes the other. 
xxxxxxxxxxxXXXXXXXXX Physical dependents of the logical 

parent are physically deleted. 

"AFTER" 

XXXXXXXXXXXXXXX The logical parent LOANS remains 

xPDx LOANS X accessible from its logical 

X X X children. 

XXXXXXXXXXXXXXX 


X 


X 


XXXXXXXXXXXXXXXXXXXX All physical children ar~ physically 
xPDx CUST/CUSTOMER X deleted. Paired logical children 
X X X are logically deleted. 
XXXXXXXXXXXXXXXXXXXX 

The above processing and results would be the same if the logical 
parent LOANS delete rule were virtual instead of logical. An additional 
example to explain the virtual delete rule follows. 

Data Base Design Considerations u.89 



xxxxxxxxxxxx XXXXXXXXXXXX 
RULES=(---)x CUSTO"ER x RULES={-V-)x LOANS ~ 

x PP x x LP X 
xxxxxxxxxxxx '" XXXXXXXXXXXX 

x • • v 
x V'" '" XXXXXXXXXXXXXXXXXXXXXXXXX V'" '" x x V'" '" x X V'" '" XXXXXXXXXXXX XXXXXXXXXXXX '" VVVVVVVVVVVv 

x ACCOUNTS X X BORROW X V CUST v 
X X X LC X V VLC V 
XXXXXXXXXXXX XXXXXXXXXXXX VVVVVVVVVVVV 

X RULES= (---) 
x 

XXXXXXXXXXXX 

X PAY"ENTS X 

X X 
XXXXXXXXXXXX 

"BEFORE" 

XXXXXXXXXXXXXXX GHU 'COSTO!'lER' 

X X CUSTOMER X , BORROW/LOANS' STATUS=' JltJ' 

x X X 

XXXXXXXXXXXXXXX DLET STATUS=' tJ"., 


X 

X 


XXXXXXXXXXXXXXXXXXXX The virtual delete rule allows 

X X BORROW/LOANS X explicit and implicit deletion. 

x X x 

XXXXXXXXXXXXXXXXXXXX Explicit is same as logical rule. 


Implicit means the logical parent 
is physically deleted when the last 
logical child is physically deleted. 

Physical dependents of the logical 
child are physically deleted. 

"AFTER" 
XXXXXXXXXXXXXXX The logical parent is physically
xPDx LOANS X deleted. Physical dependents of 
X X X the logical parent are physically 
XXXXXXXXXXXXXXX deleted. 

X 
x 

XXXXXXXXXXXXXXXXXXXX All logical children are logically 
xPDx CUST/CUSTOMER X deleted. LD bit is set in the 
xLDx X physical logical child BORROW. 
XXXXXXXXXXXXXXXXXXXX 

4.90 IMS/VS system/Application Design Guide 



XXXXXXXXXXXX xxxxxxxxxxxx 
RULES=(-V-)x COSTOMER x RULES=(-V-)x LOANS X 

x LP x X LP X 
XXXXXXXXXXXX ... XXXXXXXXXXXX 

x ... ... X 
x ... ... X 

...XXXXXXXXXXXXXXXXXXXXXXXXX '" X 

x X X... ... 
!Iex X X 

XXXXXXXXXXXX XXXXXXXXXXXX !Ie !Ie XXXXXXXXXXXX 
x ACCOUNTS X X BORROW X '" X CUST X 
x x X LC X x LC x 
xxxxxxxxxxxx XXXXXXXXXXXX xxxxxxxxxxxx 

X RULES= (---) RULES= (---) 
X 

XXXXXXXXXXXX 

X PAYKENTS X 

x 1 
XXXXXXXXXXXX 

"BEFORE" 

xxxxxxxxxxxxxxx GHU 'CUSTOMER' 

X X CUSTOMER X 'BORROW/LOANS' ST ATUS=' lttW' 

x x x 

XXXXXXXXXXXXXXX DLET STATUS=' )f)J' 


X 

X 


XXXXXXXXXXXXXXXXXXXX The virtaal delete rule allows 

X X BORROW/LOANS X explicit and implicit deletion. 

xLDx X 

xxxxxxxxxxxxxxxxxxxx Explicit is same as logical rule. 


Implicit means the logical parent 
is physically deleted when the last 
logical child is physically and 
logically deleted. Physical 
dependents of the logical 
child are physically deleted. 

"AFTER" 
xxxxxxxxxxxxxxx The logical parent is physically 
xPDx LOANS X deleted. Any physical dependents 
x x x of the logical parent are 
xxxxxxxxxxxxxxx physically deleted. 

x 
X 

XXXXXXXXXXXXXXXXXXXX HQI!~~: CUST segment must have 
xPDx CUST/CUSTOMER X physically deleted prior to the 
xLDx . X DLET call. (See above that the 
XXXXXXXXXXXXXXXXXXXX LD is set in BORROW) 

Data Base Design Considerations 4.91 



XXXXXXXXXXXX XXXXXXXXXXXX 
RULES=(-B-)X CUSTOMER X RULES=(---)X LOANS X 

X PP X X LP X 
XXXXXXXXXXXX * XXXXXXXXXXXX 

X * * V 
x V* * xxxxxxxxxxxxxxxxxxxxxxxxx V* * X x V* * x X V 

XXXXXXXXXXXX XXXXXXXXXXXX 
** * YVVVVVVVVVVV 

X ACCOUNTS X X BOP-ROW X V CUST V 
x X X LC X V VLC V 
XXXXXXXXXXXX xxxxxxxxxxxx vvvvvvvvvvvv 

X RULES= (---) 
x 

xxxxxxxiJ:xxxx 
X PAYMENTS X 
X X 

xxxxxxxxxxxx 

"BRFORE" 

XXXXXXXXXXXXXXX GHU 'LOANS' 

x X LOANS X 'CUST/CUSTOMER' STATOS=')!,I1!' 

X X X 

xxxxxxxxxxxxxxx DLET STATUS=''')!'' 
x 
X 

xxxxxxxxxxxxxxxxxxxx The bidirectional virtual rul~ for 
X X CUST/CUSTOMER X the physical parent, is equal to 
X X X virtual for the logical parent. 
xxxxxxxxxxxxxxxxxxxx 

"AFTER" 
xxxxxxxxxxxxxxx When the last logical child is 
xPDx CUSTOMER x logically deleted, the physical 
x X x parent is physically deleted. 
xxxxxxxxxxxxxxx 

X 

X 
xxxxxxxxxxxxxxxxxxxx The logical child (as a dependent of 
xPDx BORROW/LOANS X the physical parent) is physically 
xLDx X deleted. 
xxxxxxxxxxxxxxxxxxxx 

X 
X 

xxxxxxxxxxxxxxx All physical dependents of the 
xPDx PAYMENTS X physical parent are physically 
X X x deleted; ACCOUNTS (not shown), 
XXXXXXXXXXXXXXX BORROW and PAYMENTS. 

4.92 IMS/VS System/Application Design Guide 



!££!§§!bi!!iI ~{ ~!i!l!~ [~!!ni§ 

A physically deleted segment remains accessible under the following 
circumstances: 

1. 	 A physical dependent of the deleted segment is a logical parent 
which is accessible from its logical children. 

2. 	 A physical dependent of the deleted segment is a logical child 
which is accessible from its logical parent. 

3. 	 A physical parent of the deleted segment is a logical child which 
is accessible from its logical parent. The deleted segment is 
this case is variable intersection data of a bidirectional 
logical relationship_ 

A logically deleted logical child cannot be accessed from its logical 
parent. 

Neither physical nor logical deletion prevents access to a segmen~ 
from its physical or logical children. Since logical relationships 
provides for inversion of the physical structure, a segment may be 
either physically or logically deleted or both and still be accessible 
from a dependent segment, because of an active logical relationship. A 
physically deleted root segment can be accessed when it is, defined as a 
dependent segment in a logical DBD. The logical DBD defines the 
inversion of the physical DBD. 

Data Base Design Considerations U.93 



1. !!A~~~! Q! Q~~!~ ~~2~~!~ !~~~~§!~I~~!!: When the physical
dependent of a deleted segaent is a logical parent with logical 
children not physically deleted, the logical parent and its 
physical parents are accessible froa those logical chi.ldren. 

xxxxxxxxxxxx xxxxxxxxxxxx xxxxxxxxxxxx 
x x SEG 1 x xPDx SEG3 x *x x SEG7 x 
x x PP x x x pp x * *x x LP x 
xxxxxxxxxxxx xxxxxxxxxxxx * * xxxxxxxxxxxx 

x x * * v 
x vx * * 

xxxxxxxxxxxx xxxxxxxxxxxx* * vvvvvvvvvvvv 
x x SEG2 x xPDx SEG" x * v SEG8 v 
x x LC x* x x LC x v VLC v 
xxxxxxxxxxxx * xxxxxxxxxxxx vvvvvvvvvvvv 

x)* x* * xxxxxxxxxxxx
* xPDx SEGS x 

x x* * xxxxxxxxxxxx 
* x
* x 

* xxxxxxxxxxxx 
*xPDx SEG6 x 

x x LP x 
xxxxxxxxxxxx 

The above physical structures show that SEG3, SEG", SEG5, and SEG6 
have been physically deleted. probably by issuing a DLET call for SEG3. 
This resulted in all of SEG3's dependents being physically deleted. 
(SEG6's delete rule # PHYSICAL or a 'DX' status code would be the 
result). . 

SEG3, SEG4, SEG5, and SEG6 reaain accessible from SEG2, the logical 
child of SEG6, because SEG2 is not physically deleted. 

However, physical dependents of SEG6 cannot be accessible, and their 
DASD sp~ce is released unless an active logical relationship prohibits 
such release. 

4.94 IKS/VS System/Application Design Guide 



2. 	 ~!~f&~ Qr ~~~!~~ ~~2~~!!~ l~~~~§!~!&I!!: When the physical
dependent of a deleted segment is a logical child whose logical 
parent is not physically deleted, the logical child, its physical 
parents and its physical dependents are accessible from the 
logical parent. 

xxxxxxxxxxxx xxxxxxxxxxxx xxxxxxxxxxxx 
x x S;G1 x xPDx SEG3 x *x x SEG? x 
x x PP x x x PP x *.x x LP x 
xxxxxxxxxxxx xxxxxxxxxxxx * ... xxxxxxxxxxxx 

x 	 vx * * 
x 	 vx * * xxxxxxxxxxxx xxxxxxxxxxxx· '" vvvvvvvvvvvv 

x x SEG2 x xPDx SEGU x * v SEGS v 
x x LC x* x x LC x v VLC v 
xxxxxxxxxxxx * xxxxxxxxxxxx vvvvvvvvvvvv 

x* ... x 
... xxxxxxxxxxxx 
* xPDx SEGS x 

x x x* ... xxxxxxxxxxxx. 
... x 

... x 
• xxxxxxxxxxxx 
*xPDx 	 SEG6 x 

x x LP x 
xxxxxxxxxxxx 

The above physical structures show that SEG3, SEG4, SEGS, and SEG6 
have been physically deleted. 

The logical child segment SEG4 remains accessible from its logical 
parent SEG? (note that SEG? is not physically deleted). Also acc~ssible 
are segments SEGS and SEG6, which are variable intersection data. The 
physical parent of the logical child (SEG3) is likewise accessible from 
the logical child ISEG4). 

Data Base Design Considerations 4.95 



3~ t!!~~ QI ~&tI~ ~t2~!~ !££t~~~!&II!: A physically and 
logically deleted logical child can be accessed from its physical 
dependents. 

xxxxxxxxxxxx xxxxxxxxxxxx xxxxxxxxxxxx 
x x SEG1 x xPDx SEG3 x *x x SEG7 x 
x x PP x x x PP x * *x x LP x 
xxxxxxxxxxxx xxxxxxxxxxxx * • xxxxxxxxxxxx 

x x • • v 
x x v 

xxxxxxxxxxxx xxxxxxxxxxxx· ** * vvvvvvvvvvvv 
x x SEG2 x xPDx SEGU x. v SEG8 v 
x x LC x* xLDx LC x v VLC v 
xxxxxxxxxxxx * xxxxxxxxxxxx vvvvvvvvvvvv 

x* x* xxxxxxxxxxxx* xPDx SEGS x*• x x x 
xxxxxxxxxxxx'" 

'" x
* x 

'" xxxxxxxxxxxx 
*xPDx SEG6 x 

x x LP x 
xxxxxxxxxxxx 

The above physical structures show that the logical child SEG4 is 
both physically and logically deleted~ 

From a previous example (number 1) we know that SEG6 (a logical 
parent) is accessible from SEG2, if that segment (its logical child) is 
not physically deleted. Likewise ve know that once we have accessed 
SEG6, its physical parents (SEG5, SEG4, SEG3) are accessable. It does 
not matter that the logical child is logically deleted (which is the 
only difference in this example from example 1,. 

The third path cannot be blocked because a delete bit for this path 
does not exist. Thus the logical child SEG4 is accessible from its 
dependents regardless of its being physically and logically d~leted~ 

4.96 IMS/VS system/Application Design Guide 



4. 	 EX1!PLE OF DELETED SEGMENTS ACCESSIBILITY: When a segment
accessed-by-its-THIiD-path-iS-deleted,-it is physically deleted 
in its physical data base, but remains accessible from its THIRD 
path. 

------~£~---------
xxxxxxxxxxxxx GHU 'SEG5' STATUS='tJtJ' 

x SEG1 x DLET STATOS='tJ)1' 

xxxxxxxxxxxxx 


x 
xxxxxxxxxxxxx ACTION: SEG5 is physically deleted 

x SEG2/SEG6 x by the action of the DLET call and 

xxxxxxxxxxxxx SEG6 is physically deleted by prop­


x agation. SEG2/SEG6 has unidirec­

xxxxxxxxxxxxx tional pointers, so SEG2 was 

x SEG5 x considered logically deleted prior 

xxxxxxxxxxxxx to the DLET call ('LDI bit only 


assumed set). 

xxxxxxxxxxxx xxxxxxxxxxxx xxxxxxxxxxxx 
x x SEG 1 x x x SEG3 x *x x SEG7 x 
x x PP x x x PP x * *x x LP x 
xxxxxxxxxxxx xxxxxxxxxxxx * • xxxxxxxxxxxx 

x x 	 v'" x 	 x • * v* 
xxxxxxxxxxxx 	 xxxxxxxxxxxx· VVVVVVVVYVVV* x x SEG2 x x x SEG4 x * v SEG8 v 
xLDx LC x* x x LC x v VLC v 
xxxxxxxxxxxx * xxxxxxxxxxxx vvvvvvvvvvvv 

x* x 
xxxxxxxxxxxx* xPDx SEG5 x* x x x** xxxxxxxxxxxx 

• x 
* x 

* xxxxxxxxxxxx 
*xPDx 	 SEG6 x 

x x LP x 
xxxxxxxxxxxx 

The results are interesting. SEG5 is unaccessible when accessed by 
its physical parent path (from SEG4) unless SEG4 were accessed by its 
logical parent SEG7 (SEG5 & SEG6 are accessible as variable intersection 
data). SEG5 is still accessible from its third path (from SEG6) because 
SEG6 is still accessible from its logical child. Thus a segment can be 
physically deleted by an application program and still be accessible to 
that application program, using the same PCB used to delete the segment. 

Data Base Design Considerations 4.97 



5. 	 !~~E~!~-I~~~I!!IIQR_fQ~§~I~II!: If a logical parent is 
physically and logically deleted, it's DASD space will be 
released. For this to occur, all of its logical children must be 
physically and logically deleted. However, these logical 
children may not be DASD space released because of physical 
dependents with active logical relationships. Accessing such a 
logical child from its physical dependents may result in an 850 
through 859 abnormal termination if the LPCK is not stored in the 
logical child or if the concatenation definition is data 
sensitive to the logical parent. 

xxxxxxxxxxxx 	 xxxxxxxxxxxx 
x x SEG 1 x xPDx SEG3 x *xPDX SEG1 x 
x x PP x x x pp X * *xLDx LP x 
xxxxxxxxxxxx 	 xxxxxxxxxxxx * * x x * * 

x x * * 
xxxxxxxxxxxx xxxxxxxxxxxx* * 
x x SEG2 x xPDx SEG4 x * 
x x LC x* xLDx LC x 
xxxxxxxxxxxx * xxxxxxxxxxxx 

x* x* xxxxxxxxxxxx* xPDx SEG5 x* x x x* xxxxxxxxxxxx* * x
* x* xxxxxxxxxxxx 

*xPDx 	SEG6 x 
x x LP X 
xxxxxxxxxXJ:X 

The logical parent SEG7 has been physically and logically deleted 
(the LD bit is never really set, but only assumed set. It is shown for 
the purpose of illustration). All of the logical childr~n of the 
logical parent have also been physically and logically deleted. 
However, the logical parent has had its segment space released, whereas 
the logical child (SEG4) still exist due to an active logical 
relationship that precludes releasing its space. 

If an application program accesses SEG4 from its dependents (SEG1 to 
SEG2/SEG6 to SEG5) IM3 must build the logical parents concatenated key 
if that key is not stored in the logical child. When IMS/VS attempts to 
access the logical parent SEG7, the results will be an abnormal 
termination. The 850 through 859 abnormal termination codes indicate 
that IKS/VS followed a pointer that did not lead to the segment 
expected. 

4.98 IMS/VS System/Application Design Guide 



AVOIDING ABNOB~AL TERMINATION 

We must avoid creating a physically deleted logical child which can 
be accessed fro. below in the physical structure (its third path). A 
logical child can be accessed from below if any of its physical 
dependents are accessible through logical paths. 

One solution is to require the logical paths to dependents to be 
broken before physically deleting the logical child. This can be done 
by using a PHYSICAL rule for the dependents as long as no physical 
deletes are allow to propagate into the data base. Therefore no VIRTUAL 
rules on logical children can be allowed at or above THE LOGICAL CHILD. 
since with the V rule a propagated logical delete causes a physical 
delete without a P rule violation check (see DETECTION OF PHYSICAL 
DELETE RULE VIOLATION). The LOGICAL rule will also cause propagation if 
the PD bit is already, but ~he depAndents PHYSICAL rule will prevent 
that case. Similarly. no VIRTUAL rule can be allowed on any logical 
parent above the logical child, since the logical delete condition would 
cause the physical delete. 

A second solution is to break the logical path whenever the logical 
child is physically deleted. This can be accomplished for subordinate 
logical child segments with the VIRTUAL delete rule. Subordinate 
logical parent segments need to have bidirectional logical children with 
the VIRTUAL rule (must be able to reach the logical children) or 
physcially paired logical children with the VIRTUAL rule. This solu~ion 
will not work with subordinate logical parent's pointed to by 
unidirectional logical child~en. 

Data Base Design Considerations 4.99 



DETECTION OF PHYSICAL DELETE RULE VIOLATION 

The delete routine scans the physical structure containing the 
requested segment to be deleted to determine if any segment in the 
physical structure has the physical delete rule and whether that rule is 
violated. 

xxxxxxxxxxxx xxxxxxxxxxxx xxxxxxxxxxxx 
x x SEG1 x x x SEG4 x x x SEG8 x 
x x x x x LP x* *x x LP x 
xxxxxxxxxxxx xxxxxxxxxxxx * * xxxxxxxxxxxx 

x x RULE~L * * RULE=L.x 
x RULE=L x * x 

xxxxxxxxxxxx xxxxxxxxxxxx * • xxxxxxxxxxxx 
x x SEG2 x x x SEG5 x • * x x SEG9 x 
x x LP x. x x LC x* *x x LC x 
XXXXXXXXXXll'X * xxxxxxxxxxxx xxxxxxxxxxxx 

V •• x RULE=V RULE=V 
v x 

VVVyvvvvvvvv ** ••• 
xxxxxxxxxxxx 

v SEG3 v • x x SEG6 x 
v VLC v • • x x PP x RULE=any 
vvvvvvvvvvvv • • xxxxxxxxxxxx 

x*•• * • x 
'" xxxxxxxxxxxx'" * *x x SEG1 x 

x x LC x RULE=P 
xxxxxxxxxxxx 

________f£~________ _ 

xxxxxxxxxxxx 

x x SEG4 x GHU 'SEG4' STATUS='W' 

x x x DLET ST ATUS=' DX' 

xxxxxxxxxxxx 


SEG1 (logical child of SEG3) has the physical delete rulp. and it has 
not been logically deleted (the LD bit has not been set) so the physical 
rule is violated; a 'DX' status code is returned to the application 
program and no segments are deleted. 

4.100 IMS/VS System/Application Design Guide 



PHYSICAL DELETE RULE TREATED AS LOGICAL 

After the delete routine determines that neither the segment 
specified in the DLET call nor any physical dependent of that segment in 
the physical structure has the physical delete rule, any physical rule 
encountered later (logical deletion propagated to logical child or 
logical parent causing physical deletion (V rule) in another data base) 
is treated as LOGICAL. 

xxxxxxxxxxxx xxxxxxxxxxxx xxxxxxxxxxxx 
x x SEG1 x x x SEGq x xPDx SEG8 x 
x x x x x LP x· *x x LP x 
xxxxxxxxxxxx xxxxxxxxxxxx lie xxxxxxxxxxxxlie 

liex 	 x RULE=L '" RULE=L x 
x RULE=L x lie x 

xxxxxxxxxxxx xxxxxxxxxxxx '" '" xxxxxxxxxxxx 
x x SEG2 x xPDx SEGS x '" '" xPDx SEG9 x 
x x LP x* xLDx LC x· "'xLDx LC x 
xxxxxxxxxxxx lie xxxxxxxxxxxx xxxxxxxxxxxx 

V • lie x RULE=V RULE=V 
V • '" x 

vvvvvvvvvvvv '" xxxxxxxxxxxx 
v SEG3 v '" * xPDx SEG6 x* v VLC v 	 x x PP x RULE=any'" '" vvvvvvvvvvvv 	 xxxxxxxxxxxx'" '" lie lie x 

x'"'" lie lie xxxxxxxxxxxx 
'" 	 *xPDx SEG7 x 

x x LC x RULE=P 
xxxxxxxxxxxx 

________f£~________ _ 

xxxxxxxxxxxx 

x x SEG8 x GHU 'SEGS' STATUS=')J}I' 

x x x DLET STATUS='l!f)J' 

xxxxxxxxxxxx 


SEG8 and SEG9 are both physically deleted, and SE~9 is logically 
deleted (V rule). SEG5 is physically and logically deleted because it 
is the physical pair to SEG9 (with physical pairing setting the LD bit 
in one set the PD bit in the other and vice verse). Physically deleting 
SEGS causes propagation of the physical delete to SEGS's physical 
dependents, thus S~G6 and SEG7 are physically deleted. Notice that the 
physical delete of SEG7 is prevented if the physical deletion had 
started by issuing a DLET call for SEG4. But the physical rule of SEG7 
is treated as logical in this case. 

INSERTING PHYSICALLY AND/OR LOG!CALLY DELETED SEGMENTS 

When a segment is inserted, a replace operation will be performed 
(that is, space will be reused) and existing dependents of that ~egment 
remain, provided: 

• 	 The segment to be inserted already exists (same segment type and 
same key field value for both the physical and logical sequencing), 
and 

• 	 The delete bit is set on for that segment along the path of 

insertion. 


Data Base Design Considerations q. 10' 



If the DB organization is HD, the logical twin chain will be 
established as required, and eXisting dependents of that segment will 
remain. 

If the DB organization is HISAM, and the root segment is physically 
and logically deleted before the insert is attempted, then the first 
LRECL for that root in primary and secondary DSGs is reused and 
remaining LRECLs on any OSA" chain are dropped. 

DELETE RULES SU~MARY 

A DLET call issued against a concatenated segment (SQURCE=DATA/DATA, 
DATA/KEY, KEY/DATA) is a DLET call against the logical child only. 

A DLET call against a logical child which has been accessed from its 
logical parent is a request that the logical child be logically deleted. 

In all other cases a DLET call issued against a segment is a request 
for that segment to be physically deleted. 

A physically deleted segment cannot be accessed from its physical 
path with one exception -- if one of the physical parents of the 
physically deleted segment is a logical child segment which can be 
accessed from its logical parent, then the physically deleted segment is 
accessible from that logical child since the physical dependents of a 
logical child are "variable intersection data." 

By definition, a logically deleted logical child cannot be accessed 
from its logical parent. Unidirectional logical child segments are 
assumed to be logically deleted. 

By definition, a logical parent is considered logically deleted when 
physical deletion has occured for all of its logical children and for 
all of its physical children which are part of a physically paired set. 

Neither physical nor logical deletion of a segment prevents access to 
the segment from its physical or logical children, or from the segm~nt 
to its physical or logical parents. A physically deleted root segment 
can be accessed only from its physical or logical children. 

Pr~U~~9:~!i2!l 21 !l!!l!!!!! 

In bidirectional physical pa~r~ng, physical deletion of one of the 
pair of logical children causes logical deletion of its pair. Likewise, 
logical deletion of one causes physical deletion of the other. 

Physical deletion of a segment propagates logical deletion requests 
to its bidirectional logical children and propagates physical deletion 
requests to its physical children and to any index pointer segments for 
yhich it is the source segment. 

4.102 IMS/VS System/Application Design Guide 



DELETE RULES 

Further delete operations are governed by the following delete rules: 

~Q~i£~! R~~n! 

1. 	 [gI2I£!~: If the segment is not already logically deleted, then 
a DLET call against the segment or any of its physical parents 
results in a 'DX' status code and no segments are deleted. If a 
request is made against the segment as a result of propagation 
across a logical relationship, then the rule acts like the 
LOGICAL rule. 

2. 	 ~QGI~!~: Either physical or logical deletion can occur first and 
neither causes the other. 

3. 	 !!~IQ!~: Either physical or logical deletion can occur first. 
If the segment becomes logically deleted as the result of a DLET 
call, then it will be physically deleted also. 

1. 	 PHI~I£!~L~Q~I£!~!IRIll!~: Meaningless. 

2~ 	 ~IgIB!£IIQ!!~ !I~ll!~: Whenever all physical children which are 
virtually paired logical children are logically deleted, the 
physical parent segment is physically deleted. 

1. 	 ffi!~£!1: If the segment is not already logically deleted, then 
a DLET call requesting physical deletion of the segment or any of 
its physical parents results in a 'DX' status code and no 
segments are deleted. If a delete request is made against the 
segment as a result of propagation across a logical relationship, 
or if the segment is one of a physically paired set, then the 
rule acts like the LOGICAL rule. 

2. 	 1Q~!£!~: Either physical or logical deletion can occur first and 
neither causes the other. 

3. 	 !I~*[!1: Either physical or logical deletion can occur first and 
either causes the other. If this rule is used on only one 
segment of a physically paired set, it acts like the LOGICAL 
rule. 

Depending on the data base organization, DASD space mayor may not be 
reused when it is released. DASD spac~ for a segment is released when 
the following conditions are met: 

• 	 Space has been released for all physical dependents of the segment. 

• 	 The segment is physically deleted • 

• 	 If the segment is a logical child or a logical parent, then it must 
be physically and logically deleted. 

Data Base Design Considerations ~.103 



• 	 If the segment is a dependent of a logical child (variable 
intersection data) and the DLET call was issued against a physical 
parent of the logical child, then the logical child must be both 
physically and logically deleted. 

• 	 If the segment is a primary index pointer segment, the space must 
have been released for its target segment. 

DEFINING A LOGICAL DATA BASE 

To identify which segment types in one or more physical data bases 
are used in a logical data base, the segment types in the physical data 
bases are redefined in a logical data base through DBDGEN using SEGK 
statements. The NAME= operand of the SEGM statement is used to specify 
the name used for the segment type in the logical data base, and the 
SOURCE= operand is used to identify which segment type or types in 
physical data bases are represented by the name specified in the logical 
data base. On the SOURCE= operand, the user specifies the name of the 
segment type in a physical data base that is represented in the logical 
data base through the name specified on the NAKE= operand. Also 
specified on the SOURCE= operand is the name of the physical data base 
that contains the segment type being defined in a logical data base. 
When defining a concatenated segment type in a logical data base, the 
names of both segment types that comprise th~ concatena+ed segment type, 
and the name of the physical data base that contains each segment type 
to be concatenated are specified on the SOURCE= operand. 

As in the definition of a physical data base, the hierarchy of 
segment types in a logical data base is defined through use of the 
PARENT= operand of the SEGM statement, and through the order in which 
SEGM statements are presented as input to DBDGEN. The PARENT= operand 
is used to specify the physical parent segment type of each dependent 
segment type defined in the logical data base, and the order in which 
SEGK statements are arranged determines the left to right order of 
physical child segment types of each physical parent segment type. 

1 concatenated segment type is defined in a logical data base to 
enable use of a logical relationship. When a concatenated segment type 
is defined in a logical data base, the concatenated segment type enables 
access to the destination parent in the logical relationship. In 
addition. subject to rules for defining logical data bases, the 
concatenated segment type enables crossing a logical relationship to 
access segments that are in the hierarchic path of the destination 
parent in the physical data base of the destination parent. 

Before the rules for defining logical data bases can be unders~ood, 
crossing a logical relationship, and the first and additional logical 
relationships crossed in a hierarchic path of a logical data base must 
be understood. 

A logical relationship is considered crossed when it is used in a 
logical data base to access a segment that is a physical parent or a 
physical dependent of a destination parent in the destination parents 
physical data base. If a logical relationship is used in a logical data 
base to access a destination parent only, the logical relationship is 
considered not to be crossed. In Figure 4-34, DBD1 and DBD2 are two 
physical data bases with a logical relationship defined between them. 
DBD3 through DBD6 are the four logical data bases that can be defined as 
a result of the logical relationship between DBD1 and DBD2. If the 
structure shown for DBD3 is defined as a logical data base, no logical 
relationships are crossed since no physical parent or physical dependent 

4.104 IMS/VS system/Application Design Guide 



of a destination parent is included in the logical data base. If DBD4 
through DBD6 were defined as logical data bases, a logical relationship 
is crossed in each case since each logical data base contains a physical 
parent or a physical aependent of the destination parent. 

Physical Data Bases 

DBDl DBD2 

Logical Data Bases 


DBD3 DBD4 DBDS DBD6 


No crossing 

A logical relationship is crossed 

Figure 4- 34. Definition of Crossing a Logical Relationship 

Multiple logical relationships can be crossed in a hierarchic path of 
a logical data base. Figure 4-35 shows three physical data bases (DED1, 
DBD2 and DBD3) in which logical relationships have been defined. Also 
in the figure are two logical data bases (DBD4 and DBDS) that can be 
defined as a result of the logical relationships defined in the physical 
data bases. In DBD4, the two concatenated segment types {BF and DI) 
that have been defined enable access to all segment types in the 
hierarchic paths of their respective destination parents. If either 
logical relationship or both are crossed, each is considered to be the 
first logical relationship crossed in the hierarchic path of logical 
data base DBD4 since each concatenated segment type is reached by 
following the physical hierarchy of segment types in DBD'. In logical 
data base DBDS, an additional concatenated segment type (GI) has been 
defined that was not included in DBD4. The additional concatenated 
segment type GI in DBDS enables access to segments in the hierarchic 
path of the destination parent if crossed. When the logical 
relationship enabled by the concatenated segment GI is crossed, this 
constitutes an additional logical relationship crossed in the hierarchic 
path of the logical data base since, from the root of the logical data 
base, the logical relationship enabled by the concatenated segment type 
BF must be crossed to enable access to the concat~nated segment type Gr. 

Data Base Design Considerations 4.'05 



Physical Data Bases 


DBDI DBD2 DBD3 


Logical Data Bases 

DBD4 DBDS 

H 

Figure 4-35. 	 The First Logical Relationship Crossed in a Hierarchic 
Path of a Logical Data Base 

When the first logical relationship is crossed in a hierarchic path 
of a logical data base, access to all segment types in the hierarchic 
path of the destination parent is enabled as follows: 

• 	 Parent segment types of the destination parent are included in the 
logical data base as dependents of the destination parent in reverse 
order as shown in Figure 4-36 • 

• 	 Dependent segment types of the destination parent are included in 
the logical data base as dependents of the destination parent 
without change in their order as shewn in Figure 4-36. 

4.106 IMS/VS System/Application Design Guide 



Hierarchic path Resulting"order in 
of physical data the hierarchic 
base 	 path of a logical data base 

Figure 4-36. 	 Logical Data Base Hierarchy Enabled by Crossing the First 
Logical Relationship 

When an additional logical relationship is crossed in a hierarchic 
path of a logical data base, access to all segments in the hierarchic 
path of the destination parent is enabled as in the first crossing. 

1. 	 The root segment type of a logical data base must be the root 
segment type of a physical data base. 

2. 	 A logical data base must be supported by one or more physical 
data bases. A logical data base must use only those segment 
types, and physical and/or logical relationship paths that are 
defined in the physical DBD generation(s) referenced by the 
logical DBD generation. 

3. 	 The path used to connect two segments in a logical data base 
(that is, a parent and a child) must have been defined as a 
physical relationship path or a logical relationship path in the 
physical DBD generation(s) referenced by the logical DBD 
generation. 

4. 	 Physical relationship paths and logical relationship paths may be 
intermixed in a hierarchical segment path of a logical data base. 

5. 	 After a logical relationship has been crossed in a hierarchic 
path of a logical data base, additional physical relationship 
paths and/or logical relationship paths may be included by 
proceeding in an upward and/or downward direction from the 
destination parent. When proceeding downwards along a physical 
relationship path from the destination parent, direction may not 
be changed except by crossing a logical relationship. Whe~ 
proceeding upwards along a physical relationship path from the 
destination parent, direction may be changed. 

6. 	 Dependents in a logical data base must appear in the same 
relative order as they appear under their parent in their 
physical data base. If a segment in a logical data base is a 

Data Base Design Considerations 4.107 



concatenated segment (that is, a logical child concatenated with 
either its physical or logical parent), the physical children of 
each of the concatenated segments may not be intermixed. The 
relative order 	of the children of each of the concatenated 
segments must remain unchanged. 

7. 	 Different variations of a concatenated segment type can be 
defined as physical child segment types of a physical parent 
segment type, but only one variation can have dependent segment 
types. Figure 4-37 shows the four variations of a concatenated 
segment type that can be defined in a logical data base. When 
multiple variations are defined under a single physical parent 
segment type. the variation of the concatenated segment type 
under the physical parent that has dependents must be the left 
most variation of the concatenated segment type. A PCB for the 
logical data base can be sensitive to only one variation of the 
concatenated segment type. 

Key: 
LC- Logical child segment type 
DP-Destination parent segment type 

K-KEY sensitivity specified for the segment type 

D-DATA sensitivity specified for the segment type 


Figure 4-37. 	 Variations of a Concatenated Segment Type Enabled by 
Specification of KEY and DATA Sensitivity 

When only one logical relationship is crossed in a hierarchic segment 
path of a logical data base to reach a destination parent: 

a. 	 All segment types on which the destination parent is dependent in 
its physical data base can be included in the logical data base 
as dependents of the destination parent in inverted order. 

b. 	 All segment types that are dependent on the destination parent in 
its physical data base can be included in the logical data base 
as dependents of the destination parent without change in their 
order. 

c. 	 All segment types that are dependent on any of th~ inverted order 
segment types defined in (a) can be included without change in 
their order. 

4.108 IKS/VS System/Application Design Guide 



Physical Data Base Logical Data Base can include 

LOGICAL 
CHILD B 

I 
A I I J 

A C 0 

I 
I I 

(DESTINATION 
LOGICAL 1----+1 PARENT) ECHILD z E 

B 

I 

I I 


G F CC o 

Example 1. 

Secondary indexes are used to establish alternate entries to physical 
or logical data bases for application programs. Following are 
definitions of the terms used for secondary indexing: 

• Secondary Index 

A secondary index is comprised of an ind~x pointer segment type 
defined in a secondary index data base that provides an alternate 
entry into a physical or logical data base. 

• Index Pointer Segment Type 

A segment type defin~d in a secondary index data base that contains 
the data and pointers used to index an "index target segment type" 
in a physical or logical data base (see Figure ~-38). 

• Index Target Segment Type 

A segment type defined in a physical or logical data base that is 
pointed to by an index pointer segment type (see Figure 4-38). 

• Index Source Segment Type 

A segment type that is the source from which a secondary index is 
created (see Figure 4-38). 

• Secondary Processing Sequence 

The sequential order in which occurrences of an index target segment 
type are accessed through a secondary index. 

Data Base Design Considerations 4.109 



• Secondary Data Structure 

The hierarchic order of segm-ent types in a physical or logical data 
base that results automatically when a data base is accessed through 
a secondary index. 

SO:CONDARY 
PHYSICAL OR LOGICAL DATA BASE INDEX DATA BASE 

Can be root 
or dependent INDEX INDEX 
segment type. TARGET POINTER 

SEGMENT TYPE SEGMENT TYPE 

Can be the 
same segment ---1----1 INDEX SOURCE 
type as index SEGMENT TYPE 
target segment 
type. or as 
shown. a dep­
endent of the from each index source segment. 
index target 

The content of a specified 
field or fields in each index 
source segment is duplic­
ated in the respective index 
pointer segment generated 

segment type. 

Figure 4-38. Segment Types Associated with a Secondary Index 

An index target segment type can be the root or a dependent of a 
physical or logical data base, and an index source segment type can be 
either the index target segment type itself or any physical dependent of 
the index target segment type. A secondary index contains one index 
pointer segment for each occurrence of the index source segment type in 
a physical or logical data base.. If the same segment type in a data 
base is used as both the index target and index source segment types, 
the secondary index contains one index pointer segment that points to 
each index target segment. If a dependent of an index target segment 
type is used as the source segment type for a secondary index, the 
secondary index contains one index pointer segment that points to an 
index target segment for each source segment that is a dependent of that 
index target segment as shown in Figure 4-39. 

The user specifies through DBDGEN what data within the index source 
segment type is to be used to index occurrences of the index target 
segment type. From one to five fields, that can be non-contiguous, 
within the index source segment type can be specified for use as search 
da~a in a secondary index. When sp~cified, the content of each field 
specified is copied in the search field of the respective index pointer 
segment generated from each source segment. 

4.110 IMS/VS System/Application Design Guide 



SECONDARY PROCESSING SEQUENCE 

Entry to a data base through a secondary index enables access to the 
index target segment type and all segment types in the hierarchic path 
of the index target segment type. Through the secondary index, the 
order in which index target segments are accessed is called their 
secondary processing sequence. The secondary processing sequence of 
index target segments is determined by the search field values placed in 
index pointer segments. 

INDEXED DATA BASE 	 INDEX DATA BASE 

CITY 

NAM E is index target 
segment type 

NAME 
ADAMS 

source for secondary index " " 

NAME 
BLACK BLUE RtD RED YELLOWI JONES 


I 

I 
 NAME 

SMITHI 

Index Source ~I 
I 

:gsegments 

BLUE 


RED YELLOW I 
.----'-.....&, 

BLACK 


/ 
/ 
 IREDI~ Unless suppressed, one index pointer 

segment is generated from each index 
source segment. 

/ Automobile Segment Type used as /' 

used as 

search field 


for secondary 
index 

Figure 4-39. 	 Indexing to NAME Segments Based on the Color Field of a 
Dependent 

SECONDARY DATA 	 STRUCTURE 

The order in which segment types in the hierarchic path of an index 
target segment type are accessed is called their secondary data 
structure. The hierarchic arrangement of segment types for the 
secondary data structure is created automatically by I~S/VS. To enable 
use of the secondary data structure, the user must define sensitivity to 
the segment types in the secondary data structure through PSBGEN. 

Figure 4-40 shows a physical data base hierarchy in which a dependent 
segment type is indexed through a secondary index. Also shown is the 
secondary data structure for the segment types in the hierarchic path of 
the index target segment type. 

Data Base Design Considerations 4. 1'1 



PHYSICAL DATA BASE HIERARCHY 

SECDNDARY DATA 
STRUCTURE HIERARCHY 

-INDEX ON SEGMENT TVPE G 

Figure 4-40. Secondary Data Structure 

The secondary data structure for segment types in a data hasp. is 
determined as follows: 

1. 	 The index target segment type is the root. 

2. 	 Parent segment types of the index target segment tYPB in a data 
base become the left most dependents of the index target segment 
type in reverse order. 

3. 	 All dependents of the index target segment type are included in 
the secondary data structure without change in their order except 
when a parent of the index target segment type is included in the 
secondary data structure as stated in item 2. In this case, 
dependents of the index target segment type are displaced one 
position to the right in the secondary data structure. 

4. 	 Only those segment types in the hierarchic path of the index 
target segment type are included in the secondary data structure. 

4.112 IHS/VS System/Applicatjon Design Guide 



L 

5. When the root segment type of a data base is indexed through a 
secondary index, the hierarchy of the data base is unchanged for 
the 	secondary data structure. 

QE~~2S§ ~S~ Bn!§§ t2£ 2§£2Sg!~I !ng~ing 

• 	 A secondary index can be defined for any HDAM or HIDA" data base. 

• 	 A secondary index can be defined for any single data set group HISA" 
data base. 

• 	 A secondary index cannot be defined for a multiple da~a set group 
HISAM data base. 

• 	 A secondary index cannot be defined for a HSAM data base. 

A secondary index can be defined using: 

• 	 Fields in the index source segment type that contain unique or 
non-unique data for the search field of the secondary index. 

• 	 Up to 5 non-contiguous fields in the index source segment type as 
the search field of a secondary index. 

To enable processing a secondary index as a data base itself: 

• 	 The user can specify that data in fields of index source segments is 
to be duplicated in the index pointer segment generated from each 
index source segment. 

• 	 Index pointer segments can contain any additional user data desired. 

A secondary index can be used: 

• 	 To index selectively or sparsely by using an option and/or exit 
provided to enable suppressing the creation of index entries for 
desired index source segments. 

• 	 To access segment types in a single hierarchic path of a data base 
using the index target segment type as the root for all segment 
types in that path. 

• 	 To selectively access a given segment, through data contained in 
that segment or a dependent of that segment. 

• 	 To access a given dependent in an HDAM or RIDAM data base in less 
time than is normally required through the primary addressing 
method. 

Following are the rules that must be observed in secondary indexing: 

1. 	 In a physical data base, a logical child, or a dependent of a 

logical child cannot be an index target segment type. 


2. 	 You cannot declare a secondary processing sequence on an index if 
the target is a concatenated segment type or a dependent of a 
concatenated segment type in a logical data base. 

3. 	 When using a secondary processing sequence, you cannot insert or 
delete an index target segment, or any segment on which an index 
target segment is dependent in a physical data base. 

4. 	 Data in any fields of segments can be changed except for data in 
sequence fields. If data in fields of an index source segment is 

Data Base Design Considerations 



changed and those fields are used in the search or subsequence 
fields of an index pointer segment, the index pointer segment is 
deleted from the position determined by its old key, and 
reinserted into the position determined by its new key. 

5. 	 If a variable length segment type is used as an ind~x source 
segment and an attempt is made to insert an occurrence of the 
segment type whose length does not include any fields or portions 
of any fields specified for use in the search, subsequence or 
duplicate data fields of an index pointer segment, one of the 
following actions occur: 

a. 	 If the missing index source segment data is used in the 
search field of an index pointer segment, generation of the 
index pointer segment for that source segment is suppressed. 

b. 	 If the missing index source segment data is used in the 
subsequence or duplicate data fields of an index pointer 
segment, the index pointer segment field will contain one of 
the three following representations of zero for the missing 
data (P='OOOF', X=X'OO', or C='O'). The representation used 
will be the type specified on the FIELD statement that 
defined th~t index source segment field. 

6. 	 When symbolic pointing only is used to point to index target 
segments from index pointer segments, unique sequence fields must 
be defined in the index target segment type and all segment types 
on which the index target segment type is dependent in it's 
physical data base. 

7. 	 DL/I does not assume responsibility for the order of index 

pointer segments that contain non-unique keys after a 

reorganization of the secondary index. 


8. 	 A logical child segment type cannot be used as an index source 
segment type. However, a dependent of a logical child can be 
used as an index source segment type. 

9. 	 In a logical data base, no qualification on indexed fields is 
allowed in the SSA for a concatenated s9gment. However, an SSA 
for any dependent of a concatenated segment can be qualified on 
an indexed field. 

10. 	 The insert rule of FIRST is always followed when entries are 
adJed to secondary indexes for data base maintenance. 

~~sn~~si!Qn 2£ ~~£Qn~s~~ rngg~~ in A~~i!~sII ~iQIsg~ 

A secondary index is stored using a VSA~ key sequenced data set only 
if index pointer segment keys are all unique. If not unique, the index 
is stored in a key sequenced and an entry sequen~ed data set pair. The 
key sequenced data set is used to store the first occurrence of an index 
pointer segment with a given key, and the entry sequenced data set is 
used to store additional index pointer segments that contain the same 
key. Within both data sets, one logical record is used to store each 
index pointer segment. When multiple index pOinter segments with the 
same key are stored in the secondary index data base, a pointer is 
placed at the beginning of the logical record that contains each to 
chain them together. In the chain, the key sequenced data set logical 
record always contains the first index segment with a given key, and it 
~oints to one of the duplicates in the entry sequenced data set. The 
sequence in which logical records that contain duplicates are chained in 
the entry sequenced data set is determined by the insert rule of FIRST. 

4.114 IMS/VS System/Application Design Guide 



In~~~ fQin~~ ~~gm~nt f2~m!t 

Figure 4-41 shows the structure of an index pointer segment within a 
VSAM logical record. In a logical record, the optional non-unique 
pointer is used to chain logical records that contain index pointer 
segments with duplicate keys. The remaining portion of each logical 
record contains an index pointer seg.ent. 

r......---------------- VSAM logical record ----------------:1 
""I.......--PREFIX-----I.......I ........---------- DATA -----------I-~. 


Pointer to an Direct
Index address ConcatenatedSubsequence DuplicatePointer Delete index Constant Search key of indexfield data field Segment flag target (Optional) field target segment (Optional) (Optiona\)with a segment •••non.unique pointer·· 

key • 


• Not present if a unique sequence field is defined in the index pointer segment type . 

.... Not present when symbolic pointing to the index target segment type is specified 

.... Present when symbolic pointing to the index target segment type is specified, and the 
concatenated key is not present in the subsequence or duplicate data fields. 

Figure 4-41. VSAM Logical Record and Index Pointer Segment Formats 

An index pointer segment is a fixed length segment that contains a 
prefix and a data portion. The prefix contains a one byte delete flag 
and a four byte pointer field when the index uses direct address 
pointers to point to an index target segment. If symbolic pointing is 
designated in the index data base, the pointer field is omitted from the 
prefix. The delete flag is used to mark an index pointer segment as 
being deleted when the respective index source segment from which an 
index pointer segment was created is deleted. For HDAM and HIDAM data 
bases, the pointer field contains a direct address pointer that is used 
in secondary indexes to point to the occurrence of the index target 
segment type that is indexed by an index pointer segment. Symbolic 
pOinters may also be specified for HDAM and HID!M data bases if th~ user 
desires. In a secondary index for a HISAM data base, the concatenated 
key of the index target segment must be stored in the data portion of 
the index pointer segment to pOint to the index target segment. The 
user can specify its position within the data portion by defining the 
concatenated key as a system related field. ~hen not defined as a 
system related field, 1M5/VS automatically places the concatenated key 
in a predetermined position in the index pointer segment as shown in 
Figure 4-~'. 

The data portion of an index pointer segment contains up to four 
classes of system maintained data: constant, search, subsequence, and 
duplicate data. Of the four, only search data is required for index 
pointer segments. Constant, subsequence, and duplicate data are 
optional. 

Three fields and a constant can be defined in an index pointer 
segment type through an XDFLD statement. The fields defined through an 
XDFLD statement are called search, subsequence and duplicate data 
(DDATA) fields. A search, subsequence or duplicate data field in an 
index pointer segment type is comprised of one to five fields that are 
defined in the index source segment type through FIELD statements. For 
each respective field in the index pointer segment type, a list of names 

Data Base Design Considerations 4. 115 



of one to five fields defined in the index source segment type can be 
specified for use as that index pOinter segment field. The content of 
the index source segment fields specified are duplicated in the 
respective index pointer segment field when each index pointer segment 
is created. The sequence of field names in a list determines the order 
in which the fields are stored in the index painter segment field. 
Names of source segment fields can be specified in any desired order. 

In auxiliary storage, the key of an index pointer segment consists of 
the values in the constant, search field, and subsequence field when all 
three are specified on an XDFLD statement. Of the three, only the 
search field is required in each index pointer segment. The constant 
and subsequence field are optional. When only the ~earch field is 
specified for an index pointer segment type, the search field contains 
the entire key of each index pointer segment. When a constant is 
specified, the key of a~ index pointer segment consists of the constant 
followed by the search field value. When a subsequence field is 
specified, the subseque~ce field value is appended to the search field 
value and it becomes a part of the key of the index pointer segment. 
The combined length of the constant, search and subsequence fields that 
make up a key must not exceed 240 bytes. 

The use of each field in an index pointer segment is as follows. 

When specified, a one byte constant occupies the first byte of the 
data portion of each occurrence of the index pointer segment type. The 
constant is used to identify all index pointer segments associated with 
each secondary index when multiple secondary indexes are defined in the 
same index data base. The use of the shared index option is described 
under the heading of "Shared Index Data Bases." 

The data in the search field of an index pointer segm~nt is a 
collection of the data in from one to five index source segment fields. 
In an index pointer segment, the search field is used as all or a part 
of the key of that index segment. The search field contains the 
value(s) in a field or fields of an index source segment on which an 
index target segment is indexed. This means to the user, the presence 
of the constant and/or subsequence fields in the keys of index pointer 
segments are transparent to calls. To process a specific index target 
segment through a secondary index, the S5A of a call is qualified on the 
search field value only. 

The data in the subsequence field of an index pointer segment is a 
collection of the data in from one to five index source segment fields. 
The purpose of the subsequence field is to extend the key of index 
segments to prevent storing index segments in an overflow data set in 
cases where search field values are non-unique. Index segments in an 
overflow data set can degrade performance. One example could be that of 
indexing a personnel data base segment type by birth data. If the last 
name of the individual were specified as subsequence data then all 
segments with identical birth date fields would be stored in 
alphabetical order by last name in the primary storage data set. This 
would not necessarily eliminate all synonyms, but most keys would now be 
unigue. The extension of the index pointer segment key by adding the 
subsequence field is transparent to the caller since calls are qualified 
on search field values only. 

4. 116 IM5/VS System/Application Design Guide 



When the key of an index pointer segment type is comprised of search 
field values only, index pointer segments with the same search field 
value are stored in one key sequenced data set logical record, plus the 
required number of entry sequenced data set logical records. By 
specifying a subsequence field, the key of index pointer segments is 
extended. When subsequence field values are unique, multiple 
occurrences of the index pointer segment type with the same search field 
value are stored in consecutive logical records in the key sequenced 
data set. Increased performance results since no searches among the 
duplicates in the entry sequenced data set are required. 

Data in the DDATA field of an index pointer segment is a collection 
of the data in one to five index source segment fields. When specified, 
space for its contents is alloted adjacent to the subsequence or search 
field value in an index pointer segment. The DDATA field is defined to 
prompt the system to duplicate data contained in index source segments 
in index pointer segments to enable using that data when a secondary 
index is processed as a data base itself. 

The user can include any additional data desired in index pointer 
segments by specifying a length for the index pointer segment type that 
is sufficient to include the additional data. When included, the 
additional data is available to the user when processing the secondary 
index as a data base itself. The user should note however, that initial 
loading of additional data, and maintenance of the additional data when 
reorganizing an indexed data base maintenance is his responsibility. 
During reorganization of an indexed data base, the secondary index(s) 
for that data base are recreated. When each secondary index is 
recreated, any additional user data that existed in the original 
secondary index is lost. 

System related fields are defined in index source segment types for 
use in secondary indexing. They are defined using FIELD'statements, and 
can only be defined for index source segment types. Two types of system 
related fields can be defined for use in secondary indexing. 

The first type of system related field consists of defining a portion 
or all of the concatenated key of an index source segment as a field 
within the index source segment. The name of this field can be up to 
eight characters long, and its name must begin with the three characters 
l£K. It may appear in the field list for either subsequence or DDATA 
fields defined by the XDFLD statement. 

The name of the second type of system related field begins with the 
three characters l2!. A l2! field is a four byte field that contains an 
IMS/VS generated value that uniquely identifies a source segment. It 
may appear only in the subsequence field of an index pointer segment, 
and may only appear if the index source segment is in an HDAK or HIDA~ 
data base. 

System related fields are defined in the index source segment type, 
but do not physically exist as fields within that segment type. system 
related fields are defined in the source segment type for use in the 
subsequence or DDATA fields of index pointer segments. The subsequence 
and DDATA fields of the index pOinter segment type are defined through 
an XDFLD statement. In defining each, the names of up to five fields 

Data Base Design Considerations 4.111 



defined in the index source segment type can be specified for each on 
the XDFLD statement. 

The ~K or L~! fields are used in the subsequence field of index 
pointer segments to make their keys more unique. In addition, a L~K 
field can be used to store portions of the concatenated keys of 
occurrences of the index source segment type in their respective index 
pointer segments. This may reduce space requirements where pointing is 
symbolic and part of the concatenated key is to be used as subsequence 
data. In a secondary index for a HISAM data base, the concatenated key 
of each index target segment must be included in its' respective index 
pOinter segment for use as a symbolic pointer. When not included in the 
subsequence or DDITA fields of the index pointer segment type used for a 
H1SIM data base, 18S/VS automatically appends the concatenated key of 
each index target segment to any data in the subsequence or DOlTA fields 
of the respective index pointer segment. 

Two operands, that can be specified during DBDGEN, can be used to 
suppress the creation of index pointer segments. The two are the 
NULLVAL=, and the EXTRTN= operands on the XDFLD statement. 

In the NULLVAL= operand, a one byte self-defining term, or the words 
BLANK or ZERO can be specified. If the NULLVAL operand is specified, 
all fields in an index source segment that comprise the search field in 
the index pointer segment are checked to see if each byte within the 
field(s) contains the specified value. When the field or fields in the 
index source seg_ent are filled with the specified character, an index 
pointer segment is not created. 

The EXTRTN= operand is used to specify the name of an index 
maintenance exit routine that is supplied by the user to suppress the 
creation of selected index entries. 

secondary indexing allows specification of a user supplied index 
maintenance exit routine which can selectively suppress the creation of 
index segments. The routine enables the user to control the density of 
a secondary index. One exit routine is allowed for every secondary 
index or a generalized routine may be written to serve several indexes. 
For detailed information on index exit maintenance routines, see the 
!~~L!~ ~Y2!~~ f£Q~£~~mi~~ R~fe£~~~ ~~~gal. 

The name given to the load module used for controlling index 
maintenance must be the value of the EXTRTN= operand on the XDFLD 
statement in the DBD generation for the indexed data base. 

When an index source segment is inserted, deleted, or replaced in a 
data hase, DL/I index maintenance keeps the index synchroni~ed with ~he 
contents of the data base. The action taken depends on the operation 
being performed: insert, delete, or replace. 

When a source segment is inserted, a copy of the proposed indexing 
segment is constructed during index maintenance. The NULLVAL test and 
exit routine test are performed on the copy to determine the suppression 
status of the indexing segment. If no suppression status is indicated, 
the indexing segment is inserted into the index. 

4.118 IMS/VS System/Application Design Guide 



When a source segment is deleted, a copy of the alleged existing 
indexing segment is constructed during index maintenance. The NULLVAL 
and exit routine tests are performed to determine the suppression status 
of the indexing segment. If no suppression status is indicated, the 
matching segment is found in the inde~ and deleted. 

If suppression status is indicated for an insert or delete, no 
further processing is required for that entry. 

When a source segment is replaced, an index entry mayor may not be 
affected. The indexing segment may be replaced or it may be deleted and 
a new indexing segment inserted. It is also possible that no action is 
required. The action taken is determined by comparing the constructed 
copies of the old and new indexing segments. The following describes 
the action to be taken: 

• If no suppression is indicated for either segment and: 

there is no change to indexing, segment, no action is taken. 

only tha data in the indexing segment is changed, the indexing 
segment is replaced • 

•the key in the indexing segment is changed, the old segment is 
deleted and a new segment is inserted• 

• If suppression is indicated : 

for the old indexing segment but not the new, the new indexing 
segment is inserted. 

for the new indexing segment but not the old, the old indexing 
segment is deleted. 

for both the old and new indexing segment, no action is taken. 

The question asked by the DL/I index maintenance routine when it 
invokes the user index exit routine is, "Will this index pointer segment 
appear in the index?" The exit routine answers the question through a 
return code. 

Suppression of indexing by the exit routine must be consistent. The 
same inde~ pointer segment cannot be examined at two different times and 
have suppression indicated only once. Also, user data cannot be used to 
evaluate suppression, since the actual index pointer segment is only 
seen by the exit routine just before insertion of the new one. In the 
cases of replace and delete, only a prototype is passed which contains 
the constant, search data, subsequence data, and source data, plus any 
symbolic pointer which may have been added. 

Multiple secondary indexes can be placed in a single shared index 
data base. A shared index data base is created, accessed, and 
maintained in the same manner as a data base containing only one 
secondary index. To be eligible for combining, all indexes must be 
comprised of segments of equal length, with key fields of equal length, 
and with equal key offset positions. A maximum of 16 indexes can share 
a single shared index data base. Each secondary index in a shared index 
data base must have a constant specified which uniquely identifies that 
index. The advantage of a shared index data base is a reduction in the 
number of control blocks for VSAM and DL/I. 

Data Base Design Considerations 4. 119 



A secondary index can be processed as a data base by providing a PCB 
which references the DBD of the secondary index. The purpose of 
processing a secondary index as a data base could be to scan -the 
subsequence or duplicate data fields, to perform logical comparisons or 
data reduction between two or more indexes, or to add to or change the 
user maintained data area. Whatever the purpose of processing a 
secondary index separately, the following guidelines and restrictions 
apply: 

• 	 No changes to system-maintained data fields in the index pointer 
segment will be allowed unless ACCESS=("NOPROT) is specified in the 
index DBD. Attempts to change system maintained data without the 
NOPROT option specified will result in an AK status code. 

• 	 Inserts will not be permitted to any data base in which ACCESS=INDEX 
is specified 

• 	 Any changes to system-maintained data in an index may render the 

index as unuseable and unmaintainable. 


• 	 Deletion of index entries by the user when the associated index 
source segments exist will result in NE status codes if the user 
makes updates to the index source segment which will result in index 
maintenance. • 

• 	 Qualification on the key of index pointer segments in SSA's must 
supply a value which includes not only the search portion of the 
key, but also the constant and subsequence data if supplied. This 
is the only case in secondary indexing that the user is aware of the 
constant and subsequence data in the key. 

• 	 In processing a secondary index which is a member of a shared index 
data base, the secondary index is regarded as a separate index data 
base. A series of GN calls will not violate the boundaries of the 
secondary index for which they are intended. Each secondary index 
in the shared index data base has its unique DBD name and root 
segment name. 

SSAs of calls for index target segments can be qualified on the 
search field of one or more secondary indexes when accessing index 
target segments through their primary or secondary processing sequence. 
This is accomplished by using indexed fields defined within the index 
target segment type to qualify SSAs. An indexed field is defined in 
name only for an index target segment type. During DBDGEN, one indexed 
field is defined in the index target segment type for each secondary 
index that points to that segment type. The name specified for the 
indexed field actually represents the search field of the associated 
secondary index. Since the name specified for the indexed field of an 
index target segment type represents the search field of a secondary 
index, when an 55A is qualified on the indexed field of an index target 
segmen~, the search field of the associated secondary index is searched 
to satisfy the call. Qualifying calls on the search field of a 
secondary index is allowed when processing the data base through the 
secondary index. It is also allowed when the secondary index is 
specified in the INDICES operand of the SENSEG statement during PSBGEN. 
Otherwise, qualifying calls on the search field of a secondary index is 
not permitted. 

When a secondary index is searched to see if an index poin~er segment 
satisfies a call, the call is satisfied when an index pointer segment 
contains th~ specified search field value and points to the index target 
segment under consideration. 

4.120 IMS/VS System/Application Design Guide 



L 

In cases where index source segments are several levels below index 
target segments, qualifying calls on the search field of a secondary 
index can prove to be an efficient means of selecting index target 
segments based on data in index source segments. In no case should this 
use be made of a secondary index when the index target segments and 
index source segments are the same segment type, and the indexed data 
base is being processed through its primary processing sequence. Even 
where the index target and irtdex source segment types are differeRt, the 
following guideline should be used. The method should be chosen which 
causes the fewest accesses to the data base or index. 

In using secondary indexing, consideration should be given to the 
following: 

• 	 When an index source segment is inserted into or deleted from a data 
base, a respective index pointer segment is inserted into or deleted 
from the respective secondary index. This maintenance occurs in all 
cases, regardless of whether or not the application program doing 
the updating actually uses the secondary index. 

• 	 When replacing data in a source segment that is used in the search, 
subsequence or ddata fields of an index, the index is updated by 
IMS/VS to reflect the change. When data used in the ddata field of 
an index pointer segment is replaced in a source segment, the index 
pointer segment is updated with the new data. When data used in the 
search or subsequence fields of an index pointer segment is replaced 
in a source segment, the index pointer segment is updated with the 
new data, and in addition, the position of the index pointer segment 
within the secondary index is changed. The position is changed 
since a changp. to the content of the search or subsequence field of 
an index pointer segment changes the key of that segment. The 
secondary index is updated by deleting the segment from the position 
determined by the old key and re-inserting the index pointer segment 
in the position determined by the new key. 

• 	 The use of secondary indexes viII increase storage requirements of 
all steps which include within the PSB: 1) a PCB for the indexed 
data base, and 2) the processing option which allows the index 
source segment to be updated. The additional storage requirements 
for each index data base will range from 6K to 10K. A percentage of 
this additional storage will be fixed in real memory by VSAM. For 
add~tional information on storage requirements, refer to the topiC 
"IMS/VS Data Base Buffer Pools" the storage estimates chapter of the 
IMS/VS system Programming Reference Manual. 

• 	 The use of a secondary index must be considered relative to 
alternate means of achieving the same function. As an example, it 
may be desired to produce a report from an HDAM data base in root 
key sequence. A secondary index vill conveniently provide this 
capability. However, the access of each sequential root will, in 
most cases, be a random operation. It would be a very time 
consuming operation to fully scan a large data base where Poach root 
access is random. It may be more efficient to scan the data base in 
physical sequence (GET NEXT not using a secondary index), and then 
sort the results by root key so that the final report can be 
produced in root key sequence. 

• 	 A secondary index uses a key sequenced data set only if all index 
pOinter segment keys are unique, and a key sequenced and entry 
sequenced data set when index pointer segment keys are non-unique. 
Whenever possible, the data used for keys should be unique to 
eliminate the need for the entry sequenced data set, which in turn, 

Data Base Design Considerations 



eliminates the additional I/O operations required to search tbe 

entry sequenced data set. 


• 	 When calls for an index target segment type are qualified on tbe 
search field of a secondary index, and the indexed data base is not 
being processed through the secondary index, additional I/O 
operations are required since the ind~x must be accessed each time 
an occurrence of the index target segment type is inspected to see 
if that occurrence satisfies the call. Since the data contained in 
the search field of a secondary index is a duplication of data in a 
source segment, the user should determine whether or not an 
inspection of source segments in their da~a base might yield the 
same result faster. 

Variable length segments enable the user to vary the amount of 
storage space used to store different occurrences of the same segment 
type. They are intended for use by application programs that process 
variable length text or descriptive data. In addition in some cases, 
they can be used to enhance utilization of secondary storage. Variable 
length segments enable the user to vary the space used for each 
occurrence of a segment type between a minimum and maximum number of 
bytes through a two byte size field loaded with each occurrence. 

Variable length segments can be used in HISAM, HDAM and HIDAM data 
bases when VSAM is specified as the access method for the data base. To 
use variable length segments, a segment type must be defined as variable 
in length when defining the segment type through the D~DGEN utility. 
The variable length of a segment type is specified using the BYTES= 
keyword of a SEGM statement as shown in Figure 4-42. ~AXBYTES specifies 
the maximum length used for the data portion of occurrences of a segment 
type and MINBYTES specifies the minimum length used. In addition, the 
user must include a two byte size field in the first two bytes of the 
data portion of each occurrence of that segment type when loading it 
into the data base. The size field is loaded with each segment to tell 
1MS/1S the length of datu in that segment. Since the size field is in 
the data portion of a segment, the data length placed in the size field 
must include the length of the size field itself. In addition, if a 
sequence field is defined in the segment type, the minimum length 
specified in the size field must include at least the size field and all 
data to the end cf the sequence field. 

When initially loading occurrences of a variable length segment type, 
the space used to store the data portion of an occurrence is the length 
specified in MINBYTES or the length specified in the size field, 
whichever, is greater. When MINBYTES is greater than the length 
specified in the size field of an occurrence. more space is allocated 
for the segment than is required for the segment. The additional space 
allocated is free space that can be used when existing data in the 
segment is replaced with data that is greater in length. 

4.122 IMS/VS System/Application Design Guide 



SEGM NAME=SEGNAME, BYTES=(MAXBYTES, MINBYTES) 
SPACE ALLOCATED FOR SEGMENT CAN 

VARY FROM MINBYTES TO MAXBYTES 


MAXBYTES "'" MINBYTES* ~I 

DATA LENGTH INCLUDES SIZE SEQUENCE
LENGTH OF SIZE FIELD FIELD FIELD 

'--_*_----I______-L...___~_____ ..J 

CONCATENATED SEGMENT 

LOGICAL CI'IILD SEGMENT 
LOGICAL PARENT _ 

SEGMENT 

J 	 l 
lII LOGICAL ILOGICAL IpHYSICAL:

SIZE PARENT 	 ITWIN I SIZE ISEQ.TWIN SEQ. 
FIELD CONCATENATiD IFIELD ISEQUHJCE FIELD IFIELD I .. KEY 	 I FIELD I 

MINBYTES 	 I---MINBYTES--1~I 

LOGICAL CHILD SEGMENT IN PHYSICAL DATA BASE 

*MINBYTES MUST BE;;;' 4 BYTES AND MUST INCLUDE: 
1. 	 PHYSICAL TWIN SEQUENCE FIELD, IF PRESENT, 


AND KEY COMPRESSION IS NOT ENABLED BY A 

SEGMENT EDIT/COMPRESSION ROUTINE. 


2. LOGICAL PARENT CONCATENATED KEY. 
3. LOGICAL TWIN SEQUENCE FIELD, IF PRESENT. 

Figure 4-42. Variable Length Segments 

Variable length segment formats are shown in Figure 4-43. Fixea 
length and variable length segment formats are the same except for a 
size field placed in the data portion of a variable length segment. In 
addition for HDAM and HIDAH data bases, when the prefix and data 
portions of a segment are separated in storage du~ to update activitiy, 
the first four bytes of space following the prefix are used for a direct 
address pointer to the separated data portion of the segment. 

The user can load segments initially with a given number of bytes of 
data, and then either increase or decrease the length of data in each by 
replacing the data. When the length of data in an existing segment in a 
HISAM data base is increased, the logical record containing the segment 
is rewritten to acquire the additional space required. Any segments 
displaced through the increased data length are placed in overflow 
storage. When the length of data in an existing segment in a HISAM data 
base is decreased, the logical record is rewritten to make all segments 
contiguous within the logical record. When the data in an existing 
segment in an HDAM or HIDAM data base is replaced with data that is 
greater in length and the space allocated for the existing segment is 
not sufficient for the new data, the prefix and data por~ions of the 
segment are separated in storage to obtain sufficient space for the new 

Data Base Design Considerations 4.123 



data. When separated, a pointer is placed in the first four bytes of 
space following the prefix, which remains in its original position, to 
point to the new data portion of the segment. When separated and 
existing data is replaced with data that fits into the original space 
allocated for the data portion of the segment, the new data portion is 
placed in the original space allocated overlaying the data pOinter. 
When the prefix and data portions of a segment are not separated, and 
data in an existing segment in an BDAK or HIDAK data base is replaced 
with data that is shorter in length, the new data followed by free space 
occupies the position of the original data. 

HISAM, OR HDAM AND HIDAM WHEN PREFIX AND DATA ARE NOT SEPARATED 

PREFIX 
I M~ I 

"""'SE-G-M-E-N-T--r-D-E-L-E-T-E"""'T--PO-IN-T-E-R-<~f-N-D-C-O-U-N-T-E-R-r-SI-Z-E--r--V-A-R-IA-B: LENGTH I 
CODE BYTE AREA FIELD DATA 

J
~---~---~----i'l~-----L--~----< 

HDAM AND HIDAM WHEN PREFIX AND DATA ARE SEPARATED 

PREFIX 

SEGMENT DELETE POINTER AND COUNTER DATA 
FREE SPACECODE BYTE AREA POINTER 

PREFIX DATA 

DELETE SIZE VARIABLE LENGTH 

CODE BYTE FIELD DATA 

Figure 4-43. Variable Length Segment Formats 

CONSIDERATIONS 

For BISAK data bases, replacing existing data in segments with data 
that is greater in length can affect performance since this may require 
displacing segments to overflow logical records. Replacing data in an 
existing segment in a HISAM data base with data that is shorter in 
length has no affect on performance. The additional overhead required 
to use variable length segments in a HISAM data base consists only of 
the two byte size field loaded with each occurrence. 

Additional storage requirements in HDAM and HlDAM data bases when 
variable length segments are initially loaded consists of the two byte 
size field in the data portion. In addition when the prefix and data 
portions of a segment are separated in storage, a one byte segment code 
and one byte delete byte are stored with the data portion of the 
segment. Performance can be affected when the prefix and data portions
of segments are separated and stored in different blocks in a data set. 

4.124 IKS/VS System/Application Design Guide 



CONVERSION CONSIDERATIONS 


When a segment type has been defined as variable in length, before 
initially loading or inserting any occurrence of that segment type into 
its data base, a size field must be present. To convert an existing 
data base from fixed length to variable length segments, a size field 
must be added to each segment before it can be loaded or inserted into a 
data base as a variable length segment. 

The user must supply his own routine to convert an existing data base 
from fixed length to variable length segments. For the new data base, a 
new DBD must be created that identifies the variable length segment 
types. The routine could then sequentially retrieve segments from the 
existing data base, add the size field to variable length segments, and 
then insert the segments into the new data base. 

A second method of converting from fixed length to variable length 
segments enables use of the IMS/VS Unload/Reload utilities; however, 
this method requires that an interim DBD be created. The interim DBD is 
required to enable a user routine to place a size field in fixea length 
segments before they can be loaded into a data base as variable length 
segments. 

For the interim DBD, the user specifies a fixed length for the 
segment type that is being converted to variable length. In addition, 
the user specifies use of the segment edit/compression exit for that 
segment type. Using the reload utility, each time an occurrence of the 
segment type is presented to an IMS/VS action module for loading, the 
segment edit/compression exit enables a user routine to gain control to 
add a size field to the segment. After the size field is added, the 
user routine passes control back to the action module which then loads 
the segment into the data base. After the data base is reloaded by the 
reload utility, the user then creates a new DBD to define the variable 
length of the segment types converted. 

The segment edit/compression exit facility of IMS/VS enables the user 
to supply a routine to edit a segment during its movement between the 
application program input/output area and the data base buffer pool. 
The facility offers the user the ability to encode data for security 
purposes, to format data to be used by application programs, and to 
compress a segment to eliminate redundant characters. The 
edit/compression routine should be transparent to the application 
programs. 

The routine to be used for edit/compression is named by the operand 
COMPRTN= routine-name on the SEGM statement in the DBDGEN operation for 
the data base. A segment work area is constructed by IMS/VS at 
initialization time, and the edit routine is loaded when the data base 
is opened. As a segment from that data base is requested by the user, 
its location in the buffer pool is obtained. If an edit routine has 
been specified, the address of the data portion of the segment, and the 
start of the segment work area is supplied and the routine is given 
control. On a retrieve operation, the edit routine is responsible for 
moving the data from the buffer pool to the segment work area. IMS/VS 
will move it from the segment work area to the application program I/O 
area. For load, insert, or replace operations, data is moved from the 
application program I/O area to the segment work area by the edit 
routine, then to the buffer pool by IMS/VS. See Figure 4-44 for a 
visual explanation of segment edit/compression. 

Data Base Design Considerations 4.125 



-------------

RETRIEVE g LOAD/INSERT/REPLACE 
cr: 

Z 
o 

OUTPU~iYE-1INPUT-----.J"SiZEf= 	
0.. 

~ 
AREA LflHQ USER DATA ~ AREA I FIELD. USER DATA 

(SOURCE) -- '--...,....----....
Il: 
c{ 

IMS C!l o 
cr: 	 EDIT 
0.. 
..J ROUTINE 


SEGMENT WORK o 

cr:

AREA 	 f ­

Z
~rsiZE -rI--U-S-ER-DA-T-A--' o 
(.) 

~~~D~____~ AREA 

USER

ROUTINE

EDIT

ROUTINE

BUFFER POOL

BUF~rO_L_____t-______--,

lSIZE I EDITED I
FIELD I USER DATA

SOURCE

Figure 4-44. Segment Edit/Compression

To assist the user in providing parameters to his edit/compression
routine, the DBD control block has a table appended to it in the form of
assembly language control sections. One control section is developed
for each segment type to be edited or compressed. These control
sections contain information such as the edit/compression routine name,
the name of the segment, and the total length of that control section.
Each control section may be extended by the user to contain any desired
data or algorithm information.

Although the segments may be defined as fixed or variable length to
the application program, the segments to be processed by the
edit/compression routine must be variable length in the data base. The
data length is contained in a size field in the first two bytes of the
segment. If the segment is defined as fixed length to the application
program, the size field must be stripped off by the edit/compression
routine before the segment is pres.nted to the application program. In
addition, if the segment vas compressed, it must be expanded by the edit
routine to the fixed length expected by the application program. In
reverse, if the application program presents a fixed length segment, the
edit/compression routine must append the si~e field prior to the segment
being written to the data base. If the edit/compression routine
compresses the segment, the size field must be updated to reflect the
correct length.

USER--~

ROUTINE

SEGMENT WORK

IMS

4. 126 IMS/VS System/Application Design Guide

To convert existing data bases to use this facility, the following
steps must be performed:

1. 	 Unload the current data base using the reorganization/unload
utility and using the current DBD.

2. 	 Define a new OED which specifies VSAM as the access method and
specifies a COMPRTN for those segments which are to pe converted.
Reload the data with the reorganization/reload utility.

3. 	 The named COMPRTN provided during reload should encode, compress
or edit the segment (as determined by the installation's
requirements) and add the two byte size field.

There are two types of segment manipulation possible through the DL/!
edit/compression facility:

~~i~ ~Q~E~~§§~Qn -- movement or compression of data within a
segment in a manner that does not alter the content or position
of the key field. Typically, this type involves compression or
encoding of data from the end of the key field to the end of the
segment. This is the only time that the location of the fields
may be altered. The segment size field of a variable length
segment cannot be compressed.

~2Y ~QmE[222!Qn -- movement o~ compression of any data within a
segment in a manner that can change the relative position, value,
or length of the sequence field as well as any other fields.

Any segment type in a physical data base can be specified during
DBDGEN as being compressible with either the KEY or DATA option, with
the following exceptions:

• 	 Any segment type which is defined as a logical child may not be

specified

• 	 Segments residing in an INDEX data base may not be specified

• 	 segments defined as root segments of a HISAM data base may be

specified for DATA compression only

Although the contents of the sequence field or the data may be
modified by the edit/compression routine, the segment's position in the
data base is determined by the original sequence field value. An
example may help tv explain this. If the defined sequence of a
particular segment type is based on last names, and the data base
contains segments for people named SMITH, JONES, and BROWN, the segments
are maintained in alphabetical sequence -- BROWN, JONES, SMITH. Assume
that an edit routine encodes these names as follows:

BROWN-------->29665

JONES-------->16552

SMITH-------->24938

The encoded value is placed in the sequence field. The segments will
be maintained in the original sequence (BROWN, JONES, SMITH) rather than
in the numerical sequence impli~d by the encoded values (16552, 24938,
29665). The records are maintained in the originally defined sequence
so that if the application program issues a GET NEXT request, the
correct segment is retrieved. This also applies to secondary index
fields contained in index source segments involved in secondary
indexing.

Data Base Design Considerations 4.121

COISIDBRAUOIS

General conside~ations which apply to using the segaeat
edit/coapression exit facility are:

• 	 Any segllent specified to be edited aust reside ia a lSI! data set

• 	 All segaeat editing takes place OD segaents described io a physical
data base oaly

• 	 If the user routine is designed to edit aore than one segllent type.
in one or more phfsical data bases,. the routine lIust be link-edited
as reentrant

• 	 Adequate storage for the edit routine(s) lIust be proyided for both
batch and online systems

• 	 Since this lIodule beco.es a part of the I!!S/YS region,. .any abnor.al
terllinatioD on its part terainates the entire I8S/IS region

• 	 The user routine cannot eaploy such operating Systell aacros as SPtB
and STAB

The segllent edit/co.pression exit prowides the user with a yaluable
tool. Howeyer. seTeral additional considerations are worth noting.
Edit/compression processing of each segaent OD its way to or froll an
application prograa inyolyes added CPU tiae. In addition, the search
time required to locate the requested segaent aay be increased,
depending upon the options selected. In the case of full segaent
compressioD, using the KEY compression option. eyery segment type that
is a candidate to satisf, either a fully qualified key or data field
request must be expanded or decoded to allow exallin&tion of the
appropriate field by the I~S/YS retrieve aodule. For key field
qualification, only those fields froa the start of the segaent through
the sequence field are expanded during the search. For data field
qualification. the total segllent is expanded. In the case of data
compression and a key field request, little more processing is required
to locate the segment than that of non-compressed segments, since only
tae segment. sequence field is used to deteraine if this segaent
occurrence satisfies the qualification.

Other considerations can iapact. total syst.em performance, especially
in an online teleprocessing enyironaent. For example, being able to
LOID an algorithm table into mellorr viII giYe the compression routine a
large amount of flexibility. However, this action can place the entire
I!S control region into a wait state until the requested member is
present in main storage. It is suggested that all alternatives be
explored to lessen the impact of situations such as this.

Q!I! i~ ~~! CONSIDEB1TIORS

HIERARCHICAL SEQUENTIAL DESIGN CONSIDERATIONS

This section discusses the various data base design considerations
with which programaing personnel shoyld be familiar to get the best use
from the capabilities of the I!S/VS Hierarchic Sequential data base
organization and in particular the HISAH data base access aethod.

4.128 IMS/VS System/Application Design Guide

http:abnor.al

PROCESSING TIME

Before performing I/O operations, I!S/VS uses information within its
internal data base tables. and data base buffers in an attempt at
satisfying segment requests. If no information is found in main
storage, the index and the necessary primary data set record are read
from auxiliary storage. In accessing a segment of information, a VSAM
or ISA! index is used to obtain the root segment of the specified
record. Dependent segments of that root are reached in a sequential
manner. If the information is not found in a primary data set record, a
pointer in the primary data set logical record causes a read to be
performed on an overflow record.

I

I

171

VSAM or ISAM INDEX

A B c I B Primary Data SetPOINTERI
Logical Record17 104 32 : 108 '" LRECL

B o E Overflow Data SetPOUlTER Logical Records121 61 42 *

F E G 10 1 Overflow Data Set
181 193 51 26 I

I
I

I
I
;

Logical Records

lRECl.

* The pointer is at the beginning of VSAM logical records

Figure 4-45. HISAM Data Base Record in Auxiliary Storage

The first solution to reduce the number of direct access refer~nces
(and hence processing time) is to increase the size of the primary data
set logical record length, thus eliminating the need for overflow
records.

Data Base Design Considerations 4.129

(B C
32 108 ql

ISAM INDEX

B 1I E
121 61 42

F E G 0 Primary Data Set

193 51 26 Logical Record

(NO OVERFLOW RECORD REQUIRED)

Figure 4-46,. 	 HISAM Data Base Becord -- Larger Primary Data Set Logical
Record

The segment which is logically farthest from the root in the top to
bottom, left to right, hierarchy, is also physically farther from the
root when the segment is stored. This indicates that the logical
structure may be manipulated to reduce the number of direct access
references required to obtain a particular segment.

4.130 IMS/VS System/Application Design Guide

L
A

I 17j
I

I I
IL 121

61 B 10Sf=
104 Ff""

~ 	 -.Jl

E 	 I

I

51 ,
L;?' i

I 	 I
1 1 cI I
! 	

~
G 	 32

F
13 	 26

,.....­181

A D E
I
I F 	 Primary Data SetI ?OIN1ER
I 	 Logical Record17 61 !iZ 181I *

ISAl'1 LrtE.CL

F E G B FCINTER 	 OVerflow Data Set
Logical Records193 51 26 104

OSAH LRECLL 	
*

"
r 	

0
C B B 	 Overflow Data Set

Logical Records
32 108 41 121

OS"" LRE.CL

* The pointer is at the beginning of VSAM logical records

Figure 4-47. Storage Sequence of Segments in HISA~ Data ~ase Record

Another solution is the use of multiple data set groups. This allows
second-level segments and their dependent segments to be accessed
through an index with no need to access the root or intervening
segments. The maximum number of data set groups for a data base is ten.
The use of multiple data set groups is allowed for a HISAM data base
only if ISAM/OSAM is the access method. See Figure 4-48.

Data Base Design Considerations 4. 131

TWO DAIA SET GROUPS:
1. PRIMARY DATA SET GROUP

A. B. CSEGMENTS
2. SECONDARY DATA SET GROUP

D. E. F. GSEGMENTS

Primary Data Set

Primary Data Set
rJ Secondary

~ " Set Group

/ ' ,~ ,

/
~

"

/ '

~ "

E G

Figure 4-48. HISAM -- Multiple Data Set Groups (ISAK/OSAM only)

AS can be seen, segments in the secondary data set group can be
retrieved without reference to the primary data set group.

Figure 4-48 shows that segments D, E, F, and G are placed into a
secondary data set group. Figure 4-49 shows that, because no references
to the primary data set group are necessary, the number of references
needed to obtain Segment F with key 1B1 has been reduced. Note that the
index in both data set groups contains the key value of the root
seglllent.

Overflow Data Set

Data

,

I,

/
I

4.132 IMS/VS system/Application Design Guide

L
PRIMARY DATA SET GROUP

117 r
ISAM Index

A B C B
POINTER

17 104 32 108
Primary LRECL

C I
I B

41 I 121
I I 0 II

Overflow LRECL

SECONDARY DATA SET GROUP

ISAM INDEX

D E F F
17 61 42 181 193 POINTER

Primary LRECL

E

51

G

26

I
I
I
I
I
I

0

Overflow LRECL

Figure 4-49. HISAIi Segment Storage -- Multiple Data Set Groups

With multiple data set groups, we may also elect to expand the size
of the logical record of the secondary data set group as shown in
Figure 4-50. In this case, no overflow logical record would be
required. Logical record sizes of data set groups representing a single
data base may vary. In addition, the logical record length of each
primary data set and of its associated overflow data set in ~he same
data set group may be equal, or the overflow logical record length may
be greater than the primary logical record length.

Data Base Design Considerations 4.133

SECl»lDARY DATA SET &ROUP

Figure 4-50. 	 HISAM Secondary Data Set Group with a Larger Primary Data
Set Logical Record Length

In summary:

• 	 Logical record size can be expanded to accommodate more segments,
thus eliminating or minimizing the need for overflow records.

• 	 The logical structure can be manipulated to bring the most active
segment types hierarchically closer to the root.

• 	 Multiple data set groups can be used to avoid accessing a root

segment and intervening dependent segments when accessing a

particular segment type.

• 	 The logical record length of primary and overflow data sets across
data set groups may vary. The logical record length of an overflow
data set must be equal to or greater than the primary logical record
length in the same data set group.

DIRECT ACCESS STORAGE SPACE UTILIZATION

The percentage of utilization of direct access storage d~vice space
by an 185/VS data base at load time is a function of the relationship
between the logical record lengths and the size of the actual data base
records being loaded. Data base records within a data base usually vary
in size, but, since IMS/VS uses fixed-length logical records, the choice
of a logical record length to contain the largest data base record
results in unused space for the smaller data base records. Choice of a
logical record length to hold the smaller data base records results in
better space utilization in the primary data set, but parts of larger
data base records are forced to the overflow data set on initial
loading.

The choice of a logical record length must be made with appropriate
consideration for the type of processing to be accomplished against the
data base. For example, if Dew dependent segments are being created
with great frequency. it may be a good idea to assign an oversized
logical record length. This logical record length allows many dependent
segments to be placed in the primary data set. Figure 4-51 shows what
happens if a small logical record length is chosen for two records - ­
Record 1 and Record 2. Two overflow records are required, and there is
very little slack space.

4.134 I8S/VS System/Application Design Guide

L
DATA BASE RECORDS

IlCORD 1 ROOT osl DEPI DEP2 DEP3

IlCORD 2

I+-- BlKSIZE-------+1:1I+-- lRECl--'.I4I~--lRECl--"

Overflow

Overflow

primary

Figure 4-51. HISAK -- Small Logical Record Length

Figure 4-52 shows the same records with a large primary data set
logical record length. There is no requirement for overflow records,
but there may be a large amount of slack space in primary data set
logical records. All unused space in the primary data set is tied to
specific roots.

Data Base Design Considerations

DATA BASE RECORDS

RECORD 1 ROOT osl DEPl DEP2 DEP5 DEpq J
RECORD 2 ROOT ll\ DEPl

14 LRECL ·1
RECORD 3. I ROOT OS\ DEPl DEP2 DEP3 DEPq I

14 LRECL ·1
RECORD 2 [ROOT 111 DEPl 14 SLACk -I

NO OVERFLOW REQUIRED FOR THESE TWO RECORDS

Figure 4-52. HISA!! -- Large Logical Record Length

The slack space in Figure 4-53 can only be used by dependent segments
of Root 24. New dependent segments of Root 18 would have to be put into
overflow, even though the slack space related to Root 24 is not being
used and is in the same physical block•

...----lAECl---••~..I----LAECL---".

I

ROOT DE?l DEP2 DEP3 : ROOT _SLACK

18 :I 211

Primary Data Set Block

Figure 4-53. HISAM -- Utilizing Slack Space

Segmentation also influences utilization of direct access storage
device space. See Figure 4-54. The minimum logical record length which
can be assigned for the primary data set of the data base must be large
enough to hold the root segment defined for the data base; the minimum
logical record length which can be assigned for the overflow data set of
the data base must be large enough to hold the largest segment defined
for the data base. The following describes two different methods of
segmenting for a 2000-byte record: Case A, where the ROOT and DEP'
segments are combined into one 1500-byte segment, yields a minimum
logical record of 1500 bytes and produces 1000 bytes of slack in a OSAM
record. This slack is only available for dependent segments which
relate to a particular root. The logical record sizes for overflow must
be at least as large as the primary logical records. The different
method of segmenting the same record in Case B, where the ROOT and DEP'
segments are separate segments, yields a minimum logical record size of
'000 bytes, with no excess in the overflow record.

4.136 IMS/VS System/Application Design Guide

L
ASSU:~E: DATA BASE RECORDS OF 2000 BYTES

SEGMENTATION:
1 11:;""! 2080JVV

!
iCASE A I ROOTDEP1 DEP2

1 lOI)Q 1500 2(,80

CASE B ! ROOT I DEFI I DEP2

FOR CASE A THE MINHiUt-l LRECL is 1500 BYTES

1 l~O

I~_R_OO_T_DE_P_I______________________-JI PRIMARY

1 SOO 1500

I DEP2 !...------SlP.CK -------~3 OVERFLOW

FOR CASE B THE MlimillJ1 lRF.Cl IS lOCO BYTES

1

IROOT

1000

I PRH1ARY

1 500 lono

I DE?l I DEP2 I OVERFLOW

Figure 4-54. Data Base Record Se glD'!'!ntation Options

Since the sizes of logical records in data set groups will probably
be different, multiple data set groups can also be used for hetter
utilization of DASD space provided that ISAM/OSA~ is the access method.
Figure 4-55 shows a data base record for a single data set group with
segments of considerably different sizes. The primary logical record
size is 225 bytes; the overflow logical record size is 1500 bytes.
Initially, no slack remains in the primary or overflow records.
However, this choice of logical record size may leave 1450 by~es of
slack in the overflow record when a new root is inserted after the
initial load. This slack space will remain until other inserts cause
the space to be used.

Data Base Design Considerations 4.137

fO)T SO BYTES

J

I 1

100 BYTES DEP1 DEP3 1500 BYTES

J
75 BYTES 	 DEP2

SINGLE DATA 	 SET GROUP

14 LRECL 225 BYTES 	 ..I
PRIMARY 	 I ROOT DEPl I DEP2 I

j.-so-+l.. 100 .. j..-75 --I
I

I.. LRECL 1500 BYTES ~
OVERFLOW I DEP3 I

I.. 1500 	 --I

Figure 4-55. HISA~ Single Data Set Group Segmentation

Figure 4-56 shows the same record as Figure 4-55, except that
multiple data set groups are used. The primary data set group has a
primary and overflow logical record size of 225 bytes. The secondary
data set group has a primary and overflow logical record size of 1500
bytes. There is no slack space, and no overflow records in the overflow
data set are used during initial load. After initial load, new segments
can make optimal use of space in each of the different size overflow
records of the two data set groups.

4.138 IMS/VS System/Application Design Guide

ROOT SO BYTES

I
I

I
100 BYTES DEP1 DEP3 1500 BYTES

I
75 BYTES DEP2

MULTIPLE DATA SET GROUP

PRlrlARY DSG

14 LRECL 1500 ~I

PRH1ARY I ROOT DEP1 DEP2

1+-50 .14 100-+1+-75---+1

SECONDARY DSG

14 LRECL SOO ~I

PRIi1ARY DEP3I

Figure 4-56. HISAM Multiple Data Set Group segmentation

The reader should remember that the logical record length of the
overflow data set within a data set group must be equal to or greater
than the logical record length of the primary data set. Also, the
primary logical record length must accommodate the root segment, and the
overflow logical record length must accommodate the largest segment in
the data base. For secondary data set groups, the minimum logical
record length must be expanded by the amount necessary to append
sequence field keys of the root segment type upon occurrences of the
first segment type defined in the secondary data set group.

Both primary and overflow logical records can be blocked one or
multiple logical records to a physical block.

Data Base Design Considerations 4.139

DESIGN TRADEOFFS

A review of the logical and physical structures supported by IMS/VS
is recommended.

The IMS/VS Hierarchical sequential organization supports the
Hierarchical Sequential and the Hierarchical Indexed Sequential Access
Methods (HSAM and HISAK). H5AM is based on BSAM and QSAKi HISAK, on
VSAM or 15AM with an EXCP extension named OSA! (Overflow Sequential
Access Method). The following discussion is based on HISAM.

In Figure 4-57. each block represents a segment type. with the bloCK
at the top referred to as the root segment (A). The other segments, B,
C. and D, are dependent segments. Root segment A is also level one,
segments Band C are level two. and segment D is level three.

1-255 SEGMENT TYPES

1-15 LEVELS

1 ROOT SEGMENT PER DATA BASE RECORD

o TO N DEPENDENT SEGMENTS PER PARENT

1 TO N SEGMENTS PER DATA BASE RECORD

1 TO N DATA BASE RECORDS PER DATA BASE

Figure 4-57. Data Base structure Rules

The principal reason for the existence of dependent segments is that
they give the user the ability (by variable-le~gth records and dependent
segments) to take care of information which it would otherwise be
necessary to repeat from 0 to n times.

Figure 4-58 shows the physical order of storage -- top to bottom a~d
left to right. As shown, this data base record begins in the primary
data set and requires two additional logical records in the overflow
data set. The two overflow records can be blocked within one overflow
physical block. The technique of pointing from one record to another
allows data base records within a data base to vary considerably in
length. but for all practical purposes their size is unlimited.

4.140 IMS/YS system/Application Design Guide

L
A

17

I

I D
I 61

..ill
fl lr
104~ I

I E
I
I

42 ~ II I I
I

I I
c

G322~ I

26F ~ 18]

Fr~·,".-~rr-.--~* I \,
I

I \
\

~~~~=-~~--41' \ 

I \ 

OVERFLOW 

I 

I 
I 

I I 
I I 

I I 
I I 

I I 
I. / 

\ 
\ 
\ 

\ 
\ 
\ 
\ 
\ 

o 1 

*The pointer is at the beginning of VSAM logical records 

Pigure 4-58. HISAM Physical Storage -- ISA~. OSAM, or VSAM 

Primary and overflow data set logical records are always blocked one 
or more for each physical block (see Pigure 4-59). A data base record 
may be contained in one primary data set logical record, or it may 
consist of one primary data set logical record and one or more overflow 
logical records. The overflow logical records must he at least as large 
as the primary logical record. Overflow logical records may be 
unblocked or blocked. The number of overflow logical records within a 
physical block may be equal or not equal to the number of primary 
logical records within a physical block. 

Data Base Design Considerations ~. 141 



Primary or Overflow 
(BLOCKED) 

LRECL lRECl LRECI. lRECL LRECL 

I.....----BLKSIZE----••,.....----BLKSIZE ~I 
TRACK OF DASD 

Primary or Overflow 

CUrmLOCKED) 

LRECL IllRECl II LRECL II LP.ECl. II LRECl /I LRECL 

!+sLKSIZE..j..IILKSIZE-+!+BlKSIZE-+RLKSIZE¥BLKSIZF....I...-BLKSIZE-1 

TRflCK OF DASD 

Figure 4-59. HISAM Physical Storage Blocked One or ~ultiple 

VIABILITY OF DATA BASE DESIGN 

In the design of a data base, the designer must consider the 
viability of that design. How can he anticipate, at least in some 
measure, changes such as the additions of new data, new applications for 
new data, new applications for existing data, discontinuance of existing 
data, in short, the change in the level of activity against the data? 

In adding new data segment types, the simplest approach is to extend 
the data base to the right (see Figure 4-60). By the addition of new 
segment types in this manner, segments to the left and applications 
dealing with those segments need not be modified. An additional benefit 
for HISAM data bases, or HDAK and HIDAM data bases that use hierarchic 
pOinters is that only the data base descriptions need to be regenerated. 
It is not necessary to unload and reload the data base. For HDAM and 
BIDAM data bases where the segment type being added will be pointed to 
by physical child pointers, it is necessary to unload and reload the 
data base to add physical child pointers to the prefix of the physical 
parent of the segment type being added. 

4.142 IMS/VS System/Application Design Guide 



,.--_........_-,----------------j 

I 

Figure 4-60. 	 Data Structure Change -- New Segment Type Defined at End 
of Hierarchy 

In Figure 4-61, the bew data, "Production Control" and "Work 
Station," could be added to the data base at a different position. A 
disadvantage of adding new segment types in this way is that the 
physical code of each segment type changes. The order of segment 
insertion being top to bottom, left to right, such a change would 
require a reload of the file. Again, there would be no reprogramming 
required for existing application programs. One reason for this 
arrangement could be that the majority of the processing activity is to 
be against the Production Control information. 

Figure 4-61. 	 Data Structure Change -- New Segment Type Defined within 
Existing Hierarchy 

Figure 4-62 shows an arrangement that will almost certainly impact 
existing application programs, by making it necessary to regenerate the 
PSB for any program which is sensitive to "Standard Information." The 
degree of modification to the application program will, of course, be a 
function of the type of calls made against the data base and the use 
made of the concatenated key feedback information. Assuming that no use 
is made of the concatenated key, the series of calls at the left would 
function properly without modification, after the PSB is made sensitive 
to "Production Control" and "Work Station~" 

Data Base Design Considerations 4. 143 



PART 
NUf'IBER 

I 
I 
I I 

PRODUCTiON INVENTORY 
CONTROl STATUS ,, I 

I I I 
WORK PHYSICAL BACK 
STAnON COUNT ORDER 

I, 
I-,­

STANDARD 
INFO Rf/.,4TION 

GU PART NUI1BER GU PART NUMBER 
GN STANDARD INFORMATION GN 

Figure 4-62. 	 Data Structure Change -- Nev Segment Type Defined within 
a Leg of the Existing Hierarchy 

It is evident that the series of calls on the right side of Figure 
4-62 would not function properly. The unqualified GET NEXT call would 
obtain the "Production Control" segment instead of the "Standard 
Information" segment. 

In user applications with existing data, if the activity becomes 
weighted to the right it may be desirable to move certain segment types, 
logically and physically, nearer the root. This would ensure that they 
were located in the record containing the root segment. In the data 
base of Figure 4-63, an increase in activity against the Production 
Control segment could make a new data base design more desirable• 

•4.144 I~S/VS System/Application Design Guide 



L 

Figure 4-63. Data Base Structure -- Hierarchic L~g Independence 

One solution, moving the segments logically and physically to the 
left, is shown in Figure 4-64. It is possible to plan for the freedom 
to move the legs of the data base around in this manner withont 
affecting the functioning of application programs. If the data base and 
applications are dgsigned in such a manner that each application program 
relates to the root and to only one leg of the data base, it is possible 
to manipulate the legs without impacting applications. 

Figure 4-64. Restructured Data Base 

Another solution to an increase in activity against certain segment 
types is to move those segment types to a secondary data set group_ In 
this instance, however, the tradeoff against increased core buffer 
requirements would have to be considered. 

When segments representing a particular segment type cease to exist, 
there is no mandatory adjustment necessary to the data base design nor 
is there any measurable penalty for not doing so. Eliminating segment 
types, however, requires a new data base description generation. If 
there are no oc~urrences of the segment type in the data base and the 
segment types are farthest away from the root in the top to bottom, left 
to right fashion, there is no need to unload and reload the data base. 
In Figure 4-65, "Production Control" and "Work Station" could be 
dropped. 

Data Base Design Considerations 4.145 



I ,I 
lI _________ .J 

Figure 4-65. Data Base Structure -- Absence of segment Types 

Eliminating segment types which are not logically last requires that 
the data base be reloaded. Program specification blocks which were 
sensitive to the segment types being deleted would be regenerated. 
Since the segment types are deleted because the applications and data no 
longer exist. there is no need to modify the majority of remaining 
application programs. The extent of the modification would in all 
probability be only a change in some call parameters to Data Language/I. 

Expanding the size of a segment can cause a change in the program 
{see Figure 4-66). On an indi¥idual application basis, this change can 
be a¥oided by using oversized vork areas in the application program. As 
an example. a Data Language/I I/O area of 150 bytes could be defined 
when in reality the size of the segment to be operated on need only be 
100 bytes. With this technique, the size of the segment could be 
expanded without affecting the application program. It should be noted 
that the size of the application program viII be increased, but this 
added overhead is usually more desirable than the possible reprogramming 
effort. 

SE6IOT Ii 


APPLICATION PROGRAII 


DLlI 110 AllA 

EXTlNIID SEGI£NT Ii 

1+---150 BYTES---+t 1+--150 BYTES--+oI.1 

Figure 4-66. Application Program I/O Work Area Size Considerations 

HIERARCHICAL DIRECT DESIGN CONSIDERATIONS 

The Hierarchical Direct organization is composed of two data base 
access methods: HDA~ and HIDA!. The HIDA" access method uses two 

4.146 IMS/VS System/Application Design Guide 



physically distinct data bases for access and storage of the data. The 
INDEX data base is used to determine the sequence in which data is 
presented to an application program, but does not actually contain any 
of the data in the HIDAM data base. The HIDAM data base contains all 
the actual data and is physically distinct from th9 index. The HDAM 
access method uses one data base and a randoaizing algorithm for 
accessing data. 

~~i~n £Qq§~q~£!liQn§ t~£_1he !n~~! at ! li!Q!~ ~!t! ~!§~ 

The INDEX data base contains index segments which perform indexing.
The content of the index segment is equivalent to the sequence fiela key 
in the root segment of a HIDAM data base. The INDEX data base used for 
HIDAM is composed of a single data set group which is similar to the 
HISAM organization. 

Since the INDEX data base is basically a HISAM data base containing 
only index segments, the majority of the design considerations from the 
HISAM section apply equally well to the index. Of course, both the 
primary or primarY and overflow data sets should have relatively high 
blocking factors. For example, a quarter track of a 2314 for block size 
would be appropriate. The HISA! unload and reload reorganization 
pr~gram should be run fairly frequently against an INDEX data base to 
reduce long OSA! chains when ISAM/OSAM are the access methods. This 
procedure should not require an excessive amount of time, since the 
INDEX data base is much smaller than the HIDA~data base it references. 

~~2ign £Qn~g2~!liQn§ tQ~ Q!l! fQ~li~n 21 liIQ!~ ~!1! ~!§~ 

Considerations for the design of the data portion of the HIDAM data 
base involve the tradeoff between direct access space and access time. 
The most efficient organization for access time, when application 
programs do not access every segment in any data base record, is to 
choose the physical tYin/physical child manner of relating segments of a 
data base record. If this option is chosen, any path through the data 
base may be followed without looking at segments not on the path. ~he 
negative aspect of this choice is that more storage is needed than if 
the user elects the hierarchical pointer approach to relate segments. 

The hierarchical pOinter option reduces prefix size by stringing 
together all segments of a data base record, but IMS/VS must process it 
in much the same manner that it processes HISAM. That is, the segment 
on the right of the structure is at the end of the hierarchical pointer 
chain. All segments to the left of a desired segment have to be scanned 
to get to the desired segment. Therefore, this option should be used 
for those portions of a data base record that are normally accessed 
sequentially. 

If root segwents are often accessed sequentially, the user should 
probably select the bidirectional physical twin pointer option for root 
segments. If this option is chosen, and the user issues a data base 
call which references either implicitly or explicitly the next data base 
record, the index data base is not used to satisfy the request. 

Q~2i~n ~Qn§ig~~s!iQn§ !Q~ !n liQ!~ Q!ts ~s§~ 

The two major considerations in designing an HDAM addressing or 
randomizing algorithm are access time versus storage and reorganization 
considerations. Ideally, an addressing or randomizing algorithm spaces 
root segments across the root segment addressable area of a data base in 
such a manner that little storage is wasted and yet synonym chains are 
very short. Long synonym chains negate the savings made by not having 

Data Base Design Considerations 4.147 



to access an index. On the other hand, a sparse storage of root 
segments may waste direct access space that could be used if the 
organization were HIDAK. 

If a data base is increasing in size, some thought should be given to 
reducing the problems when it must be reorganized. Some randomizing 
routines yield radically different results for the same set of keys when 
the size of the root segment addressable area is increased or decreased. 
If this is the case, the user is faced vith the choice of loading 
randomly, which may be very slow, or doing an offline sort prior to 
reloading. Randomizing routines can be constructed that viII not 
seriously alter the sequence of data when the size of the root segment 
addressable area is changed. An example of this is the binary halving 
routine illustrated in the ~~!~ ~Ist~m ~£Q~~mm!ng R~fe£~n£~ a~~~l. 

The user may wish to take advantage of the bytes parameter of the 
RMNAKE= operand on the DBD statements for a DBD generation. The use of 
this parameter reduces the inefficiency caused by dependent segments of 
a very large data base record taking excessive space in the root segment 
addressable area. If excessive space is used for dependent segments, 
other root segments are forced out of their prime blocks in the root 
segment addressable area and into overflow. 

The use of bidirectional root segment physical twin chains is not 
recommended in HDAM, since roots are chained only off a root anchor 
point and thus do not tie the whole data base together as in HIDAK. 
Bidirectional pointers may cause additional processing time at insert 
time, since the NEXT root on the synonym chain must be updated to point 
back to the root being inserted. Hovever, use of the physical twin 
baCKward pointers provides improved delete performance. 

HDAM -- HIDAM CONSIDERATIONS FOR DEPENDENT SEGMENTS 

The user may wish to give some thought to the use of additional data 
set groups in a HDAM or HIDA! data base to save access time and make 
better use of disk space. For example, a data base may contain a 
segment-type which is quite bulky and infrequently accessed. This 
segment-type can be placed in a separate data set group, thus reducing 
access time among the more frequently used segment-types. 

Another form of separating segments into data set groups the user may 
wish to investigate is separation by segment size. The Hierarchical 
Direct organization bit maps, which describe free space existing on 
blocks within the data base, contain information based on the maximum 
segment size within the data set group. If segments of about the same 
size are contained within each data set group, better space utilization 
may result. 

Proper direct access data set block siz9 is another factor to be 
considered in system performance. The larger the block size, the more 
data that is obtained with a single input/output operation. If the 
majority of the data is used, then larger block sizes have a good 
payoff. However, if the data is accessed randomly within a data base 
record and only small portions of any particular block are used, then 
the user has paid a penalty in terms of system channel time and core 
storage buffer space to access large blocks. 

The IMS modules concerned with management of DL/I data bases make use 
of the OS BISAM and QISAK access methods. These access methods are used 
to access d~ta stored in os ISAM data sets. OS ISAM data sets are used 
by IMS/VS to store data for HISAM data bases and for the index data base 

4.148 IMS/VS System/Application Design Guide 



to a HIDAM data base. BISAM and QI5AM are used by IM5 under the 
following conditions: 

1. 	 BISAM is always used to manage an I5AM data set t.hat is accessed 
from an IM5/VS CTL region (that is, in a message processing 
environment) • 

2. 	 The following rules apply to a batch processing environment only: 

a. 	 QI5AM is used to manage an 15AM data set of a HIDAM data base 
when the root segment of the HIDAM data base is referenced by 
one PCB only, and when the processing option for the root 
segment is retrieve or load only. In all other cases, BI5AM 
is used to manage the ISAM data set of an index data base. 

b. 	 BISAM is used to manage the ISAM data set of a HISAM data set 
group when (1) a PCB is sensitive to a logical parent that 
exists in the data set group, or (2) multiple PCBs are 
sensitive to segments within the data set group. Other data 
set groups will use QISAM. Note, therefore, that for- a HISAM 
data base, BISAM may be used for some data set groups, while 
QISAM may be used for other data set groups. 

c. 	 If use of both BISAM and QISAM is indicated for an ISAM data 
set by the rules presented above, use of BI5AM takes 
precedence. 

d. 	 If a user desires, for performance reasons, to cause IM5/VS 
to use BI5AM to manage a particular 15AM data set, he can do 
so by ensuring the presence of one of the conditions outlined 
above that will cause use of BISAM. A user can cause IMS/VS 
to use Q1SAM for an ISAM data set only by ensuring the 
absence of any of the conditions that would cause IMS/VS to 
use BISAM. 

e. 	 Note that, because of the rules described above, both BISAM 
and QISAM may be used during execution of a particular 
application program. 

I/O buffers for data sets using BISAM are always obtained from the 
IMS/VS data base buffer pool. 1/0 buffers for data sets using QISAM are 
always obtained by QISAM. If QISAM, use QISAM for read and writes; if 
BI5AM, use ISAK or OSAM for read, 05AM for write. 

DATA BASE RECOVERY 

!Msivs supplies a number of utility programs designed to provide a 
rapid recovery of a data base data set rendered unusable because of 
read/write errors. Although these programs will be used infrequently, 
judicious preplanning will enhance data base availability in the event 
of failure. 

The 	 data base recovery utility program set includes: 

1. 	 A program to create an image copy or dump of a data base in a 
batch system. In addition, the online image copy utility allows 
increased IMS/VS availability by taking image copies of data 
bases in an online system. (For information on how to use and 
execute this utility, see "Online Data Base Image Copy Utility" 
in the "Data Base Image Copy Utility" section in the "Data Base 
Recovery Utilities" chapter of the !~2!!2 ~!!!!!!~~ ~2f~~2U£~ 

Data Base Design Considerations 4.149 



~~g~!.) Potential users of this utility must assure availability 
of an adequate data base buffer pool, CPU, and real storage 
resources to keep interference to the online workload at an 
acceptable level. Online image copy dynamically acquires storage 
and operates in a batch message processing region. This storage 
is used primarily for buffers for the SYSIN, SYSPRINT and the 
image copy data set(s). VS1 and SVS use two buffers per QSAM 
data set and MVS uses 5 buffersi these numbers can be increased 
with JCL statements. 

2. 	 A program to restore an image copy or dump of the data base. 

3. 	 Logging routines in the IMS/VS batch and control regions to 
record on system log tapes any changes made to a data base. 

4. 	 A program to accumulate information from system log tapes about 
the latest changes to a specific data base. 

5. 	 A program to rebuild the data base using, a) a previously created 
da"ta base image copy, b) accumulated data base changes obtained 
from log tapes, and c) input from log tapes which have not been 
processed by the accumulation change programA 

The initial consideration in the use of these programs should be the 
frequency of data base image creations. The amount of data bas~ 
activity and size of data base will determine the intervals between data 
set image copy creations. Since image copy input to the Data Base 
Recovery Utility provides the most rapid means of recovery, the shortest 
interval possible between image copy time and data base recovery is 
desirable. 

The second consideration should be the frequency of accumulation 
change creations. The accumulation change input provides a sorted, 
combined record of data base changes to be merged with the image copy. 
Since the sorted input is by physical block number within the data base, 
the application of the accumulation change input can be accomplished 
almost as rapidly as an image copy only. In addition, the accumulation 
change utility operates independently of IKS/VS, allowing the log 
changes to be accumulated without impacting data base availability. 

Since log change input is processed chronologically, random access to 
the data base being reconstructed is quite probable. The same physical 
record may be accessed multiple times in a single recovery. It becomes 
readily apparent that the accumulation of data base changes from log 
tapes with the accumulation program will greatly enhance performance of 
the data base recovery. 

See the chapter "Data Base Recovery Utilities" in the !~§l!§ 
~!i!i!i2~ R~~2~~R£~ ~!R~a! for additional information regarding the Data 
Base Recovery program set. 

DATA BASE REORGANIZATION 

Data base reorganization utility programs provide a convenient means 
for achieving physical and logical reorganization of IMS/VS data bases. 
Use of these facilities allows: 

• 	 Recovery of direct access space occupied by deleted segments in a 
HISAM data base 

• 	 Reorganization of a data base when the physical sequence of its 
segments has become different from its logical sequence because of 
insertion and/or deletion of segments. 

4.150 IKS/VS System/Application Design Guide 



• 	 Physical and logical restructuring of a data base to better meet the 
requirements of IMS/VS application programs. Examples of 
restructuring of a data base include changing a data base access 
method and organization from HISAM to HIDAM, changing the physical 
placement of a segment type from one data set group to another, 
addition of segment-types, and addition or deletion of physical 
and/or logical intersegment relationships. 

The details of all the data base reorganization utilities are 
provided in the chapter "Data Base Reorganization/Load Processing" in 
the !~~L~ Q1i!iti~2 !~f~t~u~s ~~al. 

Data bases may be reorganized separately, or several may be 
reorganized concurrently. If nonreorganizad data bases are logically 
related with direct addresses to those being reorganized, then these 
must be scanned for all logical children whose logical parents are in 
one of the reorganized data bases. Programs are supplied to scan the 
nonreorganized data bases, and where necessary update their direct 
addr~ss relationships to a reorganized data base. 

The IMS/VS statistics programs provide data that can help systems 
operation personnel determine whether a data base should be reorganized. 
Determination of an appropriate interval at which a data base is to be 
scheduled for reorganization depends, to a large extent, on systems 
operation personnel's knowledge of the overall activity on the data base 
(that is, the number of segment additions and deletions), of the 
physical organization of the data base, of the relationship of the data 
base to other data bases, and of the installation's planned use of the 
data base in the future. 

~ost data base reorganizations are done to recover space occupied by 
deleted segments and/or to physically resequence segments in their 
logical order. The number of segment insertions and deletions can be 
determined from data provided by the application accounting report, and 
the distribution of transaction response times as shown in the 
transaction response report. When segment chains become long, and when 
they involve segments that are in different areas of a storage device, 
response times tend to increase. Growing response times can indicate a 
need for data base reorganization. 

Frequency of reorganization should be considerably less for HDA~ and 
HIDAM than for HISAM data bases. HDAM and HIDAK both reuse space freed 
by deleted segments and both attempt to place inserted segments 
physically near their logically related segments (that is, near segments 
to which they are chained by physical child, physical twin forward, or 
hierarchical forward pointers). 

Three aethods can be used to reorganize HISAM data bases. A 
specially written user program can be provided, the 18S/VS-provided 
HISAM reorganization utilities can be used. or the IMS/VS-provided HD 
reorganization utilities can be used. 

The first method must be used when you want to accomplish data base 
structural changes that cannot be accomplished through the use of the HD 
reorganization utilities. The special program involves use of GET NEXT 
calls to retrieve segments from a data base, use of special user 
routines to accomplish the desired changes to the data base, and use of 
INSERT calls to reload the data base. Care must be taken in writing a 

Data Base Design Considerations 4.151 



special reorganization -program so that concatenated key pointers, used 
for logical relationships, are properly maintained. 

The second method uses the HISA~ reorganization utilities and should 
be used whenever a HISAM data base is to be reorganized with no changes. 
The HISAM reorganization is accomplished by a rapid unload/reload 
program that references data on a physical data base block level. The 
utilities drop deleted segments and then restore segments to the data 
base so that their physical sequence is the same as their logical 
sequence. External pointers that reference segments within the HISA" 
data base are unaffected, since they must be concatenated key pointers. 
Pointers within the HISAM data base that reference segments in other 
data bases are affected only if the other data bases are reorganized and 
if the pointers are direct pointers. Pointers contained in segments 
stored in the HISAM data base can be updated as described in the !tt~L!~ 
Y1i1!1i~ Ref~~~n~~ ~!nuai. 

If structural changes are required, the third method should be used. 
This is described under Reorganization of HDA~ and HIDAM Data Bases, 
following. 

Several methods can be used to reorganize HDAM and HIDAM data bases. 
One method involves use of GET NEXT and INSERT calls with a user-written 
application program as described above. 

Another method is to use the I~S/VS-provided HD reorganization unload 
and reload utilities. These utilities use unqualified GET NEXT calls to 
sequentially unload segments from the data base to be reorganized. Data 
is appended to each segment to resolve logical relationships after doing 
the reload. After unload is completed, the segments are reloaded using 
INSERT calls. At reload time, a check is made to determine if a segment 
is involved in logical relationships. If so, data describing the 
logical relationships is written to work tapes for later use in updating 
the logical relationship pointers. Note that the BD unload and reload 
utilities can be used to reorganize HISA" data bases, but that 
performance does not equal that of the rapid unload/reload utility. 
However, if structural changes are required, the HD reorganization 
utilities must be used. 

If the data base has logical relationships, the HD reorganization 
utility must be used to reorganize the data base. 

The reload utility also provides statistical data that can be used as 
described in the I~2LY2 g1i!ili~~ E~f~£~n£~ ~~Ug!!· 

The Partial Data Base Reorganization (PDBR) utility reorganizes 
user-specified ranges of a HDAM or a HIDA!! data base. (A "range" is 
either a group of HIDAM records with contiguons key values or a group of 
HDAM records with contiguous r.elative block numbers, and is specified by 
using a low and high pair of key or block number values.) The Data Base 
surveyor utility can be used to aid in the selection of the ranges to be 
reorganized. Full data base reorganizations are required less often 
because you are able to reorganize portions of a data base. PDBR is a 
process consisting of: 

• 	 step one which uses DBD and control information to build sets of, 
control tables, and optionally produces PSB source statements 
required for step two. 

4.152 I"5/V5 System/Application Design Guide 



L 
• Step two which reorganizes the key range{s) or area{s) of the data 

base specified by the aser in step one including all logically 
related segments and their pointers. Statistical reports are 
produced by both steps. 

PDBR LIMITATIONS 

PDBR does not: 

1. 	 Permit data base structure changes, 

2. 	 Reorganize HD or HIDAM data bases which are logically related to 
HISAM data bases which use a direct pointer in a logical child or 
logical parent segment. 

PDBH reorganization consists of: 

• 	 Reading control statements that specify the range of records 

• 	 Creating control tablfts for ase by step two (above) 

• 	 Determining logically related data bases that may require pointer 
resolution 

• 	 Preparing a report 

STEP ONE: PRE-REORGANIZATION 

This step requires as input, the data base name to be reorganized, 
its DBD, and utility control statements defining the reorganization 
ranges and sort options. The primary output is the set of control 
tables to be used in the next step to perform the reorganization. 
Optionally, PSB source statements can be produced by creating a PSB in 
the next step. Additional outputs include reports, error messages, and 
a return code. 

STEP TWO: POINTER RESOLUTION 

This step reads the control tables produced in step one and the 
user-supplied control statements. According to the specified record 
ranges, alL segments (roots and their dependents) are unloaded in 
hierarchical order to an intermediate data set. The space within the 
data base that these records occupied is freed. The records are 
reloaded into ranges of free space within the data base apd the new 
record locations are saved in work records. Then all logically related 
data bases are scanned for pointers to the records that have been moved. 
Work records are created to designate where pointer resolution is 
required. All work records are then sorted (by OS/VS SORT) according to 
data base name and segment name. Finally, all pointers to the records 
having new locations are changed to point to those locations. 

Output from this step includes the partially reotganized data base, 
as well as a report of what was done and a return code. In the case of 
an unsuccessful execution, an error message is issued. For more 
information on reorganization and control statement examples, see the 
I~~LY~ Y!!!i!!~§ R~t~~n£~ ~~aga!· 

Data Base Design Considerations 4.153 



THE DATA BASE SURVEYOR UTILITY 

The user must determine the range of records in a data base to be 
reorganized and identify where to move the reorganized records. The 
Data Base Surveyor utility scans the data base to be reorganized and 
provides a report describing the physical organization and the use of 
free space. Using this report, an installation can determine the range 
of records ~o be reorganized and identify free space in the data base 
where the reorganized records can be moved. Surveyor analyzes the data 
base and produces a report which statistically summarizes chain length 
and free space information for user specified areas of the data base. 

USER RESPONSIBILITIES 

The purpose of using PDBR is to improve availability of the data 
base. The user should consider the trade-offs between reorganizing the 
entire data base or doing a partial reorganization. If the user decides 
to perform a partial reorganization, an area for reorganization must be 
selected and designated as a target area. If the user fails to select 
an area large enough, the execution of PDBR could defeat its purpose and 
in some cases, degrade performance. 

To have an effective reorganization of part of the data base, the 
user must at minimum know the information about the data base described 
in the following paragraphs. The Surveyor utility can be used to 
collect this information. 

The user must locate the data base segments that require 
reorganization. If the Surveyor utility is not used, an alternative is 
to analyze the insertion and deletion activities (or transaction 
patterns) that were applied to the data base. The application 
accounting information recorded on the system log can be used for this 
analysis. 

Once a range is identified, the user must calculate the average byte
length of the data base records within the range to be reorganized. The 
purpose of this calculation is to estimate how much free space is 
required to hold those segments to be reloaded. A sampling technique 
could be employed here for efficiency. For a given range of data base 
records, the number of segments to be unloaded is usually unknown, since 
the number of occurrences of each segment type of a data base record is 
a variable. For HDAM, the number of root segments chained off of any 
root anchor point is also a variable. If the target area is different 
from the specified unloading range, the root will be chained off of the 
original root anchor point. 

The user must tabulate all the free space existing in the data base 
and look for a target area that is large enough. The user must also 
take into account all the space that will become available (the UNLOAD 
command frees the space occupied by a given segment) and select a 
sufficiently large target area. The target area may be the same area in 
which the data originally resided prior to Partial Reorganization. If 
such a target area does not exist in the data base, then the user must 
decide whether to extend the data base or to use the existing free space 
scattered in the data base. (Arbitrarily extending an existing data 
base is not a good practice as it increases the number of volumes of an 
already large data base.) If the choice is to use the existing free 
space scattered in tha data base, the user must consider whether the 
amount of existing free space is large enough to justify a partial 
reorganization. 

If the existing contiguous free space can hold only a small 
percentage of the total segments to be reloaded, the remainder will be 
scattered in different blocks throughout the data base by the insertion 

4.154 IMS/VS System/Application Design Guide 



process. If, however, the existing contiguous free space can hold a 
high percentage of the total segments, the reorganization might be 
effective and the operation should be performed. 

The user must estimate the time required to reorganize a range of the 
data base. In general, it takes a great deal more than 'O~ of the 
normal reorganization time to reorganize 10~ of the entire data base. 
This is especially true when the data base to be reorganized has a 
substantial amount of logical relationships. If any scan actions are 
required to be done or if the decision is made to scan segments (based 
on the step one option report), SCAN is performed. The SCAN process 
accesses and examines every occurrence of a given logically related 
segment type regardless of the number of the data base records being 
unloaded or reloaded. If logical relationships exist within the larg~ 
data base being partially reorganized, SCAN will access all the segments 
in the data base, even though only a fraction of the data base is 
actually being reorganized. As with any reorganization, it is 
recommended that the data base be protected by a backup copy before and 
after a partial reorganization. 

UTILITY CONTROL FACILITY 

IMS/VS also supplies the Utility Control Facility (UCF). The UCF 
directs the data base initial load, reorganization, recovery, and change 
accumulation utilities, and provides for restart processing after a 
utility failure or a user request to end processing. 

The UCF provides a method of performing most data base utility 
operations and maintenance in preparation for recovery and 
reorganization under the control of one job, one step, and in one 
scheduling. It handles the data base recovery and data base data 
manipulations in reorganization, the combining of data base data ·changes 
into composite change records in change accumulation, and backup copy 
proeessing. Restart processing is invoked by an EXEC parameter or a 
control statement, and normal processing is directed by control 
statements. 

See tha ~~L!~ Y1~!~~i~§ Ref~~n£~ ~~nY~! for a full description of 
the UCF. 

When direct access storage is required for a data base, the amount of 
space needed and the device type must be specified. IMS/VS follows the 
same approach as OS/VS. 

The amount of space required can be specified in terms of blocks, 
tracks, or cylinders. If it is desired to maintain device-independence 
across direct access types, space requirements should be specified in 
terms of blocks. Otherwise, if the request is in terms of tracks or 
cylinders, such items as their capacity must be considered. IS!" data 
sets must be allocated by cylinder. The amount of space is supplied in 
the DD statement for the data set. 

Allocating the space for an IMS/VS data base that uses IS!M and OSAK 
CHISAM and INDEX) is similar to allocating space for an operating system 
indexed sequential data set; similar because an operating system data 
set can be divided into three areas, prime, index, and overflow. The 
three areas of an I~S/VS data base are index, prime, and overflow. Each 
data set group of a HISA! data base requires a primary and overflow data 
set to be allocated. 

Data Base Design Considerations 4.155 



Allocating the space for an IMS/VS data set that uses only OSAM (HDAM 
and HIDAM) is similar to allocating space for an operating system direct 
(BDAM) data set. Each data set group of an HDAM or HIDA" data base 
requires one OSAM data set to be allocated. 

DBD generation computes, from the user's definition of segment 
frequency, the logical record length and/or block size of a data base. 
It considers the device and rounds to the next higher one-fourth track, 
one-third track, one-half track, or full track. 

DBD generation also computes from the user's definition of segment 
frequency the space allocation requirements for a P-ISAM or INDEX data 
base. 

For use by Systems Operation personnel, IMS/VS has two parameters 
that can be inserted when a DBD generation is performed. These provide 
an additional means of specifying the logical record size (RECORD) and 
blocking factor (BLOCK) for a data set group within the data base. 
Instead of DBD generation specifying the logical record size and block 
size, it can be overridden by specifying the RECORD and the BLOCK 
parameters in the DATASET control card. Refer to the Itt§LY§ ~tiliti2§ 
~~t~£~n~~ ~snYs! for details. 

ALLOCATION CONSIDERATIONS 

Space allocation should be considered with regard to the data base 
structure, the application programs that will access that structure, and 
the tools of IMS/VS DBD generation. The following discussion deals with 
a direct access device. 

When an 1MS/VS data base is loaded on a direct access device, it is 
necessary to allocate space for that data base with JCL data definition 
statements. The creation of a HISAM or INDEX data base may require up 
to three DD statements, one each for the index, prime, and OSAM overflow 
areas. This discussion should provide assistance in initially 
determining the amount of space to allocate to these areas for any 
specific application. 

600 -

SOo ­

"00 ­

300 ­

200 ­

100 -

SOl 101 901 1001 

Figure 4-67. Logical Record Length Distribution 

The graph in Figure 4-67 indicates that 50~ of the logical records 
are 150 bytes or less in length, 70% of the logical records are 200, 
bytes or less in length, and 100% of the logical records are 600 bytes 
or less in length. 

4. 156 IMS/VS System/Application Design Guide 



With fixed-length ISA~, it is necessary to establish a fixed value 
for LRECL in the prime area. If a value of 600 bytes is selected for 
LRECL, all logical records can fit in the prime area. However, 90~ of 
the records then have at least 100 bytes of slack or wasted space; 701 
of the logical records have at least 400 bytes of unused space. 

In this example, if a value less than 600 bytes is selected for the 
LRECL value, the ISAM prime area is not capable of holding all the 
logical data base records. Those dependent segment occurrences that do 
not fit in an ISA~ prime logical record are housed in OSAM overflow 
records. Therefore, the determination of an ISAM prime logical record 
length must consider the tradeoff between storage in the ISAM prime area 
and in the OSAM overflow area. 

To determine a best balance between ISAM prime and OSAM overflow, the 
following points must be considered: 

1. 	 Access to data that is wholly contained in the prime area is more 
rapid than access to data contained in the two areas. Access is 
even slower to those logical data base records that require more 
than one overflow record. 

2. 	 Disk space allocated to OSAK overflow can be used to hold segment 
occurrences that overflow from any logical data base record. 
Unused space in the prime area is tied to specific roots. 

3. 	 Records may be blocked in the prime area and in the OSAM overflow 
area. The logical record length in the OSAM block must be equal 
to or greater than the ISAM logical record length in the same 
data set group. 

4. 	 The nature of the accesses to the large logical data base records 
also has an important effect. If the large logical data base 
records are highly used, the value of the prime LRECL should be 
increased to completely house more logical records, and the total 
size of overflow should be reduced. If the large logical data 
base records are infrequently accessed, an opposite shift should 
be made to increase the use of OSAM overflow. 

Considering these relevant factors for a specific data base, a 
percentage balance must be established between the ISAM prime and the 
OSAM overflow. For example, it may be best, in the context of 
optimizing space and time utilization, that 90~ of the logical data base 
records completely fit in the prime area and 10% require some OSAM 
overflow storage. After this percentage is selected, the frequency of 
dependent segment occurrences is developed for the 90% percentile of the 
parent segments. The 90~ is an estimated value for this specific data 
base. 

When space is allocated for a data base which uses only OSAM (HDAM or 
HID AM) for data segment storage, DBD generation selects the appropriate 
physical block size for storage. Since space within physical blocks can 
be shared by segments from different data base records, logical record 
definition is not utilized. 

The number of physical blocks, tracks, and/or cylinders which should 
be defined in the JCL statements for any IMS/VS data base allocation can 
be estimated in the following manner: 

• 	 Calculate the average data base record length (sum of segment 

lengths times frequency) • 


• 	 Calculate the number of logical records and physical blocks CHISAM 
or INDEX) or physical blocks (HDAM or HIDAK) required to store a 
data base record. 

Data Base Design Considerations 4.157 



• 	 Multiply the number of physical blocks p~r data base record times 
the number of data base records. 

• 	 The result should provide an estimate for m1n1mum space allocation. 
In addition to this value, space must be provided for additions to 
the data base after initial load. 

• 	 If distributed free space vas specified in the DBD, then multiply 
the minimum space allocation by: 

fbff 
fbf!=; 

where: 

2 	~ fbff ~ 100 or fbff = 0 and 0 ~ fspf < 100 

See "Dataset Statement" in the chapter "Data Base Description," in 
the 1~~L!~ Y!ili!~2 ~~t~~n~ n!n~!l for more information on fbff 
and fspf. 

4.158 IMS/VS System/Application Design Guide 



t 

t 

This chapter describes the Multiple Systems Coupling (MSC) feature 
and contains design considerations for its use. Familiarity with the 
preceding chapters of this manual is assumed. 

The MSC feature provides the ability to connect geographically 
dispersed IMS/VS systgms in such a way as to allow programs and 
operators of one system access to programs and operators of the 
connected systems. Communication between two or more (up to 255) IMS/VS 
systems running on any combination of OS/VS1 and 05/VS2 MVS systems in 
one or more 5ystem/370 CPUs is permitted. 

The MSC feature also provides a way to extend the throughput of an 
IM5/VS system beyond t~e capacity of a single 5ystem/370 Model 168MP. 
This is possible if the IMS/V5 applications can be partitioned among 
systems such that either: 

• 	 Applications execute in more than one system with data base contents 
split between systems (horizontal partitioning) • 

• 	 Applications execute in one system with t~e complete data base, that 
they reference, attached to that system (vertical partitioning) i the 
transactions can originate in any system. For information on the 
ase of the MSC feature in conjunction with the Fast Path feature, 
see the "Fast Path and 1MS/V5 Interrelationships" section of the 
chapter, • 'Design Considerations for the Fast Path Feature." 

In addition to the considerations for a single DB/DC system described 
in the previous chapter, major design considerations for MSC are: 
determining how to distribute functions among systems and obtain 
acceptable pC!rformance, d-afining valid connections between the systems, 
and implementing operating procedures for maintaining consistent 
connections. 

The flow of a transaction through processing in a multisystem 
environment requires a few steps in addition to those required in a 
single system environment. The additional steps can be identified by 
comparing Figures 5-1 and 5-2. 

MFS 
t 
IMSIVS Device Support 
t 
Access Method 

I MSIVS Scheduling 

Application Programming 

DL!l 

Terminal 

Figure 5- 1. Single DB/DC System Transaction Flow 

Design Considerations for the ~sc Feature 5.1 

I MSIVS Device Support 
t 
MFS 
t 



Processing 
System 

I MSIVS Scheduling 

Message 
Queue 

.j, 

Application Program 
.j, 

Message 
Queue 

DL/l 

MSC Support MSC Support 
t .j, 

Access Method Access Method 

Terminal 
System 

Access Method Access Method 
.j, 

MSC Support MSC Support 
t 

MFS IMSIVS Device Support 
t .j, 

Message MessageIMSIVS Device Support t----i !--_..IMFS 
Queue Queuet .j, 

Access Method Access Method 

Terminal 

Figure 5-2. Multiple DB/DC Syst9ms Transaction Flow 

This section presents a general description of the "S~ feature and 
introduces MSC t~rminology. To do this, an example is used of a 
multisystem environment consisting of three systems -- System A, System 
B, and System C. Figure 5-3 shows the sample environ~ent. 

5.2 I~S/VS System/Application Design Guide 



A 

IMSA 

B 	 C 

IMS B 	 I" IMSC 

Figure 5-3. A Sample Configuration of Thr~e Systems 

In a multisystem environment, the term !2£!! ~~~~~is used to 
identify a specific system within tha multiple configuration. All other 
systems are consid~red ~~2~g ~I2~gm§. For example r if we vere 
considering the activities required by System B when it receives a 
message, System B is the local system and Systems A and C are remote 
systems. 

When the mUltisystem environment is defined, the items defined for 
each local system include: 

• All transactions received by and/or processed by that system 

• 	 All logical terminals attached to this system and all logical 

terminals in remote systems that are referenced by transactions 

processed in this system or by terminal operators 


• 	 The physical and logical connections between this system and the 
remote systems that share in the processing of the specified 
transactions 

LINKS 

The connection between two systems is called a !iU!. All links must 
be defined during the IMS/VS system definitions for each I~S/VS system. 
There are tvo types of links, £hI2i~!1 lint and !2gi~!1 lint. A 
physical link is the actual hardware connection. A logical link is the 
mechanism through which a physical link is related to the transactions 
and terminals that make use of that physical link. The assignment of a 
logical link to a physical link can be specified during system 
definition, or made dynamically during system execution. 

Design Considerations for the MSC Feature 5.3 



A physical link is defined by the RSPLIMK macro instruction. Three 
types of physical links are allowed by the RSC feature: 

• Binary synchronous communication (BSC) line 
• Channel-to-channel (CTC) adapter (OS/V52 MVS only) 
• Main storage-to-main storage (MT!) 

Only the BSC line and CTC adapter represent actual hardware links. The 
KTM link is a software link between IRS/VS systems running in the same 
System/370, and is intended primarily for backup and testing purposes. 
Physical link buffer sizes must be equal and if BSC is chosen for the 
physical link, CONTROL=YES must be specified for one end of the' physical 
link and CONTROL=NO must be specified for the other end of the physical 
link. Figure 5-4 summarizes very simply the three types of physical 
links. 

A 

IMSA 

B 

IMS B IMSC 

IIMS I ~T~IIMS I 
C1 C2 

Figure 5-4. Summary of Physical Link Types 

One System/370 CPU may be linked to another CPU by one or more of 
each physical link type, as shown in Figure 5-5. The KTM link is 
recommended when two or more 1MS/VS systems reside in one System/370. 

A 

BSC Line 

Figure 5-5. Multiple Physical Links in One System/370 CPU 

5.4 IMS/VS System/Application Design Guide 



Orr multiple links may exist between CPUs. See Figure 5-6. 

A 

Figure 5-6. Multiple Physical Links in Multiple system/370 CPUs 

A logical link is defined by the MSLINK macro-instruction. A logical 
link relates a physical link to the transactions and terminals that can 
use that physical link. Each system in a multisystem configuration has 
one or more defined logical links. Two IMS/VS systems defined to 
communicate with each other, each through a specific logical link, are 
called £S~i~~~2. To establish connection between two IMS/VS sys~ems, 
each partner must have a logical link definition. The two logical link 
definitions must specify the same partner identifications and be 
assigned to the same physical link. IKS/VS system definition assigns a 
number to each defined logical link. Logical link numbers are assigned 
sequentially, beginning with 1, in the order in which the links are 
defined. A logical link can be reassigned to a different physical link 
but the two systems must always communicate through a logical link 
partnership. 

IMS/VS system definition does not require that a physical link be 
specified for each logical link. The assignment of the physical link to 
the logical link can alternatively be made online using the IMS/VS 
/MSASSIGN command. There can be no communication between partners until 
the assignment is made. 

A logical link definition must include one or more logical link 
paths. Logical link paths are described in this chapter under the 
heading "Logical Link Path." 

If any logical terminals in a remote system are referenced by 
messages originating in the local system, the logical link definition 
must also include NAME macros to identify those~~!2i~ !2~!£s! 
i~!ina!2· 

Figure 5-7 summarizes the relationships of one physical link to one 
logical link to multiple logical link paths. Although more than one 
logical link can be defined with each physical link, only one logical 
link to physical link relationship can be assigned at anyone time. 

Design Considerations for the MSC Feature 5.5 



Logical Logical 
Link Link 
Path Path 

Hardware 
r------,or 

SoftwareLogical Logical
Link Logical Physical Connection Physical Logical 

LinkLink Link 	 Link LinkPath Path 

Logical Logical 
Link Link 
Path Path 

II (relationship can be assigned dynamically) 

Figure 5-1. 	 Relationship of Physical Link to Logical Link to Logical 
Link Path 

MESSAGE ROUTING 

The message routing function of the MSC feature supports transaction 
processing by more than one system, transaction processing by more than 
one application program in the same or different systems (by 
program-to-program switches), and message switches between terminals in 
the same or different systems. Conversational processing is available 
to any system in a multisystem configuration to the same extent as in a 
single system. 

The route through which IMS/VS passes a message from its origination 
through processing is called a ~~i!ng ~!1h. One or more systems may be 
included in a routing path. The routing path defined depends on the 
multisystem configuration and the functions assigned to each system. 

The path between any two systems is called a lQSi£~i lin! e~ih. One 
or more logical link paths must be defined for each logical link. A 
logical link path is defined in the MSNAME macro and specifies a ~Y~i~m 
i~~~iifi~iiQ~ for the system where messages using this path are to be 
processed and specifies a system identification for the system being 
defined. 

Each system in a multisystem configuration has one or more unique 
system identifications (SYSID) ranging from 1 to 255. SYSIO assignments 
are implicit based on the logical link paths defined by MSNAME macros. 
For example, here are two KSNAME definitions: 

• MSNAME SYSID=(2,1) 

• MSNAME SYSID=(3,1) 

The first definition above says that messages using this logical link 
path are processed in the remote system whose local SYSID is 2. The 
second definition above says that messages using this logical link path 
are processed in the remote system whose local SYSID is 3. By way of 
these definitions, IMS/VS system definition assigns SYSIO 1 to the 
system being defined and recognizes two remote systems with SYSIOs of 2 

5.6 I"S/VS System/Application Design Guide 



and 3. If a third path were defined with SYSID={5,4), IKS/VS would also 
assign SYSID 4 to the local system. 

Each system maintains a SYSID table containing all logical link paths 
defined in that system. The size of this table is determined by the 
highest SISID defined and it will contain gaps for SYSIDS that are not 
defined. 

Transactions are assigned to logical link paths in the APPLCTN macro 
definition. Consider the following application definitions, each with 
one transaction code defined: 

APPLCTN PSB=A 

TRANSACT CODE=A 


APPLCTN PSB=B,SYSID:(2,1) 

TRANSACT CODE=B 


APPLCTN PSB=C,SYSID=(3,1) 

TRANSACT CODE=C 


The SYSID keyword identifies the logical link path to be used for the 
transactions associated with the application. Transaction A is 
considered a lQ£a! i£aU§a£ii2U since the absence of the SYSID keyword
indicates transaction A is totally processed by the system being 
defined. Transactions Band C are ~~2!2 i£~U§~£iiQn~. Felating the 
application definitions to the previous KSNAME definitions, IMS/VS would 
return via SISID 1, responses from transactions Band C to the system 
being defined unless the application program specified an alternate 
destination for the response. 

Since inconsistencies among SYSID definitions may exist between 
various system definitions, IMS/VS provides offline and online methods 
of verifying SYSID assignments. The Multiple Systems Verification 
utility is provided for offline execution to verify the consistency of 
definitions prior to attempting online system execution. Using this 
offline utility, consistencies among all systems in the multisyst~m 
configuration can be verified in one execution. You should use t~is 
utility to verify the MSC configuration each time an individual system 
is redefined. The /MSVERIFY command is available for online use to 
identify and display inconsistencies between two systams. 

Message routing is accomplished by !Qg!£!! ~~2~iU!~iQU2' as it is in 
a single system environment. A destination is either a logical terminal 
or a transaction code. It is considered a local destination if it 
resides in the local system and a £~Q1i ~~~~In!ir2n-if-it-resides in a 
remote system. In a multisystem environment, each system knows (by way 
of system definition) all local destinations and all remote destinations 
that may be referenced in this system. IMS/VS system definition 
requires that all local and referenced remote destinati~ns be defined 
with unique names. 

Message routing is automatic according to the defined scheme unless 
£2Yii~ ~~i~ £Qutini~ are employed for dynamic routing control. Routing
exit routines are described later in this section. 

Iu£yt ~n~ Qi§iiU!~!QU ~Y21im2 
To introduce the terms used to describe message routing, let's look 

again at tae sample configuration. Assume a message with a transaction 
destination is entered into Terminal X attached to System A. The 
transaction is defined to be processed by System B with its reply to be 
returned to the originating terminal. 

Design Considerations for the MSC Feature 5.7 



Refer to Figure 5-8. On inpat, system A is considered the in~~! 
sIsi~m because the in~~! !~~!!n~! (Terminal X) is attached. System B is 
considered the ~~§!in~i~n §~!~m. The message is considered a ~im~~I 
£!g~~§! until processed. If the application program inserts a message 
with a transaction code destination during processing, this message is 
considered a §~~~~~I ~~~~~§i. A message sent to the input terminal by 
an application program is called a ~~E2n!2. 

B~L------IAI ·IL------I
Terminal 	 Input Destination 

System System 

Figure 5-8. Input Terminal and Input System on Input 

Refer to Figure 5-9. On output, System A is considered the 
destination §I§i~! and Terminal X is considered the ~~§!in~i12n 
!.2~~ in~!'=--

Terminal 	 Destination 
System 

Figure 5-9. Destination Terminal and Destination System on Output 

Refer to Figure 5-10. Assume the transaction were defined to 
originate in system A but be processed by System B with its output being 
sent to Terminal Y attached to System B. In terms of message routing, 
this example is the same as the previous one for input. For output, 
however, System B is considered the destination syst~m and Terminal Y is 
considered the destination terminal. 

I~,---A-----II ·IL--..'------'~" 
Terminal 	 Input Destination Terminal 

System System 

Figure 5-10. Input from and Output to Different Terminals 

Another term related to message routing is In!~~!~gi~!~ §I§i.2!. Four 
systems linked as shown in Figure 5-11 illustrate an intermediate 
system. 

5.8 IMS/VS System/Application Design Guide 



Input Intermediate 
System System 

A B 

Input 
Terminal 

D 	 c 

I n termedi ate Destination 
System System 

Figure 5- 11. An Intermediate System 

Assume that a message originating in system 1 is defined to be 
processed and replied to in System C. To reach System C (destination 
system) from System A (input system), the message must be routed through 
either System B or System D as defined by system definition. In this 
instance, either System B or System D is considered the intermediate 
system. By referencing the SYSID table, the intermediate system routes 
the message to the next link toward the destination system. Whenever 
there is no direct link between the input and destination systems, there 
is always at least one intermediate system. If the configuration had 
just three systems but the link between Systems A and C was unavailable, 
a message could be routed through System B as the intermediate system by 
reassigning the appropriate links. 

B~mQ1~ %~s~£!iQa f~iQ~i!i~§ 

The definition of each transaction code identifies the priority used 
to send the transaction to the processing system and the response back 
to the input system. Based on the specified priorities, three priority 
groups are considered during processing: 

• 	 High priority is assigned to primary requests in the input system 
whose specified priority is 8 through 14. 

• 	 Medium priority is assigned to secondary requests, responses and 
primary requests in an intermediate system, and primary requests in 
the input system, whose specified priority is 7. 

• 	 Low priority is assigned to any requests in the input system whose 
specified priority is 0 through 6. 

In each priority group, message priority is based on the current 
transaction priority specified in the input system for primary requests 
and in the most recent processing system for secondary requests and 
responses. 

a!Q££~~ %~sn§s£ti~n§ 

If a destination transaction code is stopped fO,r queueing, the action 
taken by the destination system varies based on the type of request: 

• 	 For a primary request that is not conversational or that starts a 
conversation, IMS/VS sends an error message to the input terminal and 
cancels the message. 

Design Considerations for the MSC Feature 5.9 



• 	 For a primary request that continues a conversation or a secondary 
request, IMS/VS queues the message. If the request is the first one 
received for that stopped transaction, IMS/VS also sends a message to 
the master terminal at that transaction~s local system. 

Message routing is automatic according to the defined scheme unless a 
routing exit routine is provided by the user. The routing exit routine 
is called before the message destination is verified. There are three 
types of routing exit routines: terminal routing, link routing, and 
program routing_ 

The t~~mina! ~Qgting ~~~i £Qgi1n~ executes in the input system and is 
called on terminal inpat. This routine can inspect the destination 
specified and, if desired, change it to any local or remote destination_ 
This routine may examine the first segment of the message to determine 
what the destination of the message should be. If this routine do~s not 
change the destination, the originally specified destination is used for 
routing. IMS/VS will not call a terminal routing exit routine for 
commands, for any message received from a terminal in preset destination 
mode, or from a terminal that is continuing a conversation_ 

In a configuration with horizontally-partitioned applications, the 
terminal routing exit routine could be used to screen all input messages 
and route them to the appropriate processing system based on information 
in the first segment of the input message. If transactions and links 
are appropriately defined, this routine might also be used to compare 
the load on the link associated with the specified transaction with 
other links. The message could be routed to a less-busy link. 

The !1nt £QY1i~g ~!i1 ~Qgt1n~ can be used to determine the 
destination (system message block) when the transaction arrives at the 
processing IMS/VS system, thereby minimizing the number of remote 
transaction definitions per system. This exit routine is called when 
the transaction reaches the remote processing system_ It can inspect 
the transaction code and if desired, change it to another transaction 
code with the same attributes. This routine can examine the first 
segment of the message to determine what the new transaction coda should 
be_ If the routine does not change the transaction code, the 
destination remains the originally specified transaction code. 

The 2~g£a! £Qg1ing ~!1t £Qg1in~ is called when an application 
program issues a change call while processing a transaction that 
originated in a remote system. This routine can request that an output 
message be returned to the input system for destination verification. 
This allows the applicati6n program to reply to a remote logical 
terminal without requiring the processing system to know the logical 
terminal name, thereby minimizing the number of remote logical terminal 
definitions per system. If two systems use the same logical terminal 
names for the master terminal, the program routing exit routine can also 
be used to send a message to the master terminal of either the local 
system or the input system. It should not be used for 
program-to-program switches since the routing for transac~ion processing 
is specified during IMS/VS system definition_ If the program routing 
exit routine is not used, the destination specified in the change call 
must be defined in the processing system. Conversational programs 
cannot use the program routing exit routine. 

To maintain system integrity and prevent erroneous operation, an 
IMS/VS system in a multisystem configuration v~rifies all specified 

5.10 IKS/VS System/Application Design Guide 



destinations. Remote destination verification occurs on input from a 
ter.inal or upon receipt of an application program reply if a remote 
destination is specified for the message. The routing exit routine, if 
available, has completed. 

Destination verification occurs as follows: 

Ve~!'!~~ fQ~ 

Logical terminal • 	 Destination type: The original 
destination must have been a logical 
terminal. 

Transaction • 	 Destination type: The original
destination must have been a 
transaction. 

• 	 Transaction attributes: The following 
attributes must be consistent in the 
transaction definitions in the ~nput 
and destination systems: 

inquiry/noninquiry
single segment/multiple segment 
recoverable/nonrecoverable 
conversational/nonconversational 

Conversational transactions must have 
fixed-length SPAs; SPA size must be 
the same for all transactions that 
participate in a conversation. 

When an invalid destination is recognized, IMS/VS cancels the 
message, sends an error message to the input terminal and to the master 
terminal of the local system, and logs an invalid request. If the 
message is conversational, the conversation abnornal termination exit 
routine is called in the input system and the conversation is 
terminated. 

A££li£l~!2n f~Q~~!! !2n2t!!! l~~!!n!iion 

When an application program abnormally termiantes, and the abnormal 
termination is not the result of a deadlock situation, a DFS554 message 
is sent to the master terminal of the system where the abnormal 
termination occurred. If the input message is still available, an error 
message that includes the first portion of the input message is sent to 
the input terminal. When the error message to the input terminal is 
sent, the DPS554 message includes the logical terminal name of the input 
terminal. 

CONVERSATIONAL PROCESSING 

Conversational processing is available to terminals attached to any 
system in a multisystem configuration to the same extent as in a single 
system. All transactions used in a conversation must be defined as 
conversational in each system of the mUltisystem environment. The input 
system controls the conversational resources for the duration of the 
conversation. When the input system receives a conversational 
transaction, it inserts the scratchpad area (SPA) as the first m~ssage 
segment and routes the message to the destination application program. 

Each conversation step can be processed by any system of the 
multisystem configuration. Program-to-program switches can be routed 

Design Considerations for the KSC Feature 5.11 



from system to system. SPAs used in multisystem conversations must be 
defined as fixed-length to allow 1"S/VS to avoid SPA data set updates 
trom a remote system for program-to-program switches. The SPA size 
specification must be the same for all transactions that participate in 
the conversation. 

For the most part, multisystem conversations are transparent to 
terminal operators and application programs. One exception is if a 
conversational program inserts a message to a response alternate PCB in 
a remote system. By implication, this destination is in the input 
system and viII, therefore, be verified by the input system. 
Destination verification in this instance includes assuring that the 
specified logical terminal is still assigned to the inputting.physical 
terminal. If the logical terminal has been reassigned, the input system 
invokes the conversation abnormal termination exit routine and 
terminates the conversation. !Q §1s1g§ £2~! i§ '!1~n!~ 1~ !h! 
!m!li£!tiQf! .e~2gnl!· 

The other exception is if an application program that does not 
execute in the input system uses the SPA to specify a transaction code 
and thereby pass conversation control to anothgr program. If the 
specified transaction code is invalid, the input system invokes the 
conversation abnormal termination exit routine and terminates the 
conversation. !2 §ta1~§ £Qg! i§ '!1~'ned 12 1h! !221i£!1i2n 2'Qg,!!. 

A terminal routing exit routine may be used for the input message 
that starts a conversation. It is not applicable at any other 
conversational step since the application program, not the input
terminal, provides the destination for continuation of the conversation. 

A program routing exit routine cannot be used during conversations. 

B!!Qt~ ~~§tinstiQ~ !!rifi£!1io~ 

Destination verification for program-to-program switches occurs in 
the system vhere the program requesting the svitch executes. If valid, 
that system sends the SPA and the message directly to the destination 
transaction. If invalid, that system returns a status code to the 
application program. 

Destination verification for a message to the input terminal is 
performed by the input system. The logical terminal specified must 
still be assigned to the inputting physical terminal. The input system 
also verifies the next transaction specified in the SPA. If the 
destination is invalid, the input system invokes the conversation 
abnormal termination exit routine and terminates the conversation. !Q 
§tat~§ £~de i2 '~i~~n~~ !Q ia~ !221icaii~ 2~~g'~m. 

!Qr~!l ~~Y~r§s1i~~ !~~!i~!1iQ~ 

A conversation can be terminated by either the application proqram or 
by the terminal operator. An application program normally terminates a 
conversation by inserting a message to the input terminal with a SPA 
that contains either no transaction code or the transaction code of a 
non-conversational transaction. The terminal operator terminates a 
conversation by entering either the /EXIT or /START LINE command. 

5.12 IMS/VS System/Application Design Guide 



The /EXIT command can be used any time during the conversation but 
the conversation is not terminated until the current conversational step 
has replied to the input terminal. This means that all data base 
processing for the current step is accomplished before a conversation 
ends. 

If the input system is shut down and subsequently cold started, all 
the conversations that it controls are lost. It cancels any 
conversational messages it receives for input terminals previously 
involved in active or held conversations. 

As in a single system environment, if the input system is shut down 
and subsequently warm started, all the conversations that it controls 
are lost if /START LINE is used to start the communication lines. The 
/RSTABT LINE must be used to retain the previously active or held 
conversations. 

If a remote system is shut down when a conversational step is 
processing or is queued in it, and is subsequently cold started, all 
references to the conversation are lost. A conversation lost in this 
vay must be specifically cancelled in the input system by the /EXIT 
command. 

A conversation is abnormally terminated if anyone of the following 
occurs: 

• 	 The conversational program abnormally terminates. 

• 	 An invalid destination in the SPA, or for a conversational response,
is recognized in the input system. 

• 	 A conversational message is inserted to a terminal whose conversation 
was terminated. 

• 	 Destination verification fails for a conversational message. 

• 	 No output was generated in the application program. 

The conversation's SPA is passed to the conversation abnormal 
termination exit routine in the input system along with an indication of 
the cause of the termination. 

Each system in a multisystem configuration is operationally an 
independent unit. It exclusively owns its own communication resources, 
which are controlled by its own master terminal. 

~ULTISYSTE~ CO~KUNICATION INITIALIZATION 

Communication between two IMS/VS systems does not begin until the 
/RSTART LINK command is issued in each system. The normal procedure 
would be for the master terminal operator to issue this command when a 
system is started up. This procedure does not require coordination 
between master terminal operators. Communication is allowed only if the 
characteristics of the specified links are compatible. If a required 
link is not successfully started, messages will wait until the links 
have been reassigned. 

Design Considerations for the MSC Feature 5.13 



If a system that has messages queued in it is cold started, these 
messages are lost. Since the messages that were lost can be from or to 
terminals and programs in other systems, the impact of a cold start is 
not limited to the cold started system. 

MULTISYSTEM COMMUNICATION TERMINA TION 

A /PSTOP LINK command from either of two linked systems terminates 
transmission on the specified link. When transmission is terminated on 
one side, its partner in the other system terminates its own 
transmission and notifies the master terminal operator. 

LOGICAL LINK ASSIGNMENTS 

Initial logical link assignments (logical link to physical link) are 
normally made during IMS/VS system definition. The /MSASSIGN command 
can be used to dynamically make or change a logical link assignment. 
This approach is used primarily for unscheduled reassignments resulting 
from failing physical connections or systems. 

Since a logical link must !!!!y§ communicate with its partner, the 
master terminal operators of the two systems must coordinate their 
assignments to a corresponding physical link. Any type of physical link 
may be replaced by any other type of physical link. 

If a restart is pending on a ~ogical link due to physical link 
failure, both systems should use the following procedure to reestablish 
communication through an alternate p~ysical link: 

• Reassign the logical link to the alternate physical link• 

• Use /RSTART LINK to start the logical link. 

SECURITY 

Security maintenance in a multisystem environment is performed 
independently for each system. Password security is verified on 
terminal input after execution of the terminal routing exit routine. 
Terminal security is verified on terminal input, and after an 
application program change call if the call is issued in the input 
system. 

When a destination system receives a message to process, it verifies 
security based on the input terminal's association with the logical link 
path. This prevents transactions sent by unautho~zed systems from 
being processed. 

In MSC configurations, if any system uses the Resource Access control 
Facility (RACF) then all systems must use RACF. User verification and 
transaction authorization are checked on terminal input. Transactions 
received from across a link call will be passed to the transaction 
authorization module for authorization checking, but since the password 
isn't passed across the link, transaction authorization checking fails 
if a password is required. Transactions not requiring a password can be 
accepted. Enhanced security allows the use of RAeF (MVS only) or a 
user-written security exit routine for validation of the dependent 
region's authorization to use resources specified in the Application 
Group Name (AGN) table. For more information on Security provisions, 
see the chapter, "Design and Control of a Data Base/Data Communication 
System" in this manual, or the section "Establish IMS/VS System 
Security (Optional)" in the !~~L!~ !n~l~!!~liQn ~gi~~. 

5.14 IMS/VS System/Application Design Guide 



RECOVERY 


Each system in the multisystem configuration uses the full recovery 
capabilities of I~S/VS. These capabilities assure that messages are 
never lost or duplicated within the single system as long as no cold 
start or emergency restart BUILDQ from an earlier checkpoint is 
performed, or no log records are lost. 

In addition, the ~SC feature assures that messages are never lost or 
duplicated across a multisystem link as long as no system in the 
configuration is cold started or no log records are lost. This is 
accomplished by logging information about a transmission in both the 
sending and receiving systems. This information is restored during 
restart and exchanged between the systems once the link is started. The 
sending system can then dequeue a message that was received by the 
receiving system but for which the acknowledgment was lost due to a link 
or system failUre. The sending system can also resend a message that 
was sent but never enqueued by the receiving system due to a failure in 
the receiving system. If a system in the multisystem configuration 
fails to recover, the messages for which it has recovery respons~bility 
are lost. 

Since IMS/VS provides commands to dynamically change link 
assignments, an inoperable System/310 can be backed up by an alternate 
System/370. The IMS/VS system that resides in the inoperable CPU can be 
executed in the alternate CPU once all involved links are properly 
reassigned by the master terminal operators. 

IMS/VS system definition has been expanded to include new macros for 
mUltisystem facilities. Current terminal and transaction definitions 
can be used for remote destination definitions since macro operands that 
do not apply to remote destinations are ignored in remote definitions. 
The use of Message Format Service (MFS) is the same in a multisystem 
environment as in a single system environment. If a message is created 
in one system for a terminal attached to another system, the required 
message and format descriptions must be available to the system to which 
the terminal is attached, and definitions with the same name must be 
defined identically in each system. 

The design and tuning recommendations that apply to a single IMS/VS 
system are applicable to each IMS/VS system in a MSC environment. There 
are, however, additional considerations, related to resource consumption 
and demand, that must be take~ into account when defining systems that 
are part of a MSC configuration. 

For IMS/VS transactions that are processad in a local syst~m, the 
transaction uses ess~ntially the same hardward and software resources 
that it would in a non-~SC environment. For transactions that are 
processed in a remote system, additional resources are required. These 
resources are used to transmit the transaction over physical links to 
the remote CPU and to receive the response back from the remote cpu. 
Performance considerations are directly related to minimizing the 
resources consumed by remota processing and balancing the resource 
demand between several CPITs in a MSC configuration. 

Dasign Considerations for the MSC Feature 5. 1S 



MINIMIZING RESOURCE CONSUMPTION 

To minimize resource consumption, you should: 

• 	 Design the environment so that as many transactions as possible are 
processed locally. 

• 	 Provide physical links that go directly from local to remote 

systems; no interm~diate systems should be involved in the 

transaction routing process. Transactions that must be routed 

through intermediate systems require additional CPU activity, 

message queue activity, and logging activity. 


• 	 Design the Message Queue Buffer Pool in each CPU to eliminate 

unnecessary Message Queue I/O activity. 


• 	 Use CTC links, if possible, rather than Bse links; the CPU 
requirements to support a CTC link are lower per message than those 
for Bse links. 

• 	 Define the physical link buffer sizes large enough to hold the 

message prefix plus all the segments of most messages. 


BALANCING RESOURCE DEMAND 

In a MSC environment with two or more cPUs, you should distribute the 
workload in a way that avoids excessively high utilization of anyone 
cpu. You do this by distributing IMS/VS applications and their 
associated transactions and terminals between the available CPUs in a 
way that, dependent, on the comple~ity of the application and the 
capability of the CPU, avoids overloading each CPU. 

If the current design of the data basgs is such that the data bases 
and their associated applications cannot be distributed across the 
available CPUs (vertical partitioning), you can: 

• 	 Duplicate or share inquiry-only data bases; this allows the data to 
be referenced by more than one system. 

• 	 Split the data bases into several component data bases (horizontal 
partitioning). The component data bases must be completely 
independent for distribution among the availableCPUs. For example, 
it may be possible to divide a data base by key range intervals. 
The new data bases and their associated applications could then be 
distributed among the existing IMS/VS systems and the Terminal 
Routing Exit could be used to route incoming transactions to the 
correct ISS/VS system. Another possibility is to divide the data 
base by geographic area. Each IMS/VS system could process the 
transactions that refer to the data bases for its own geographic 
area and route transactions that refer to a remote geographic area. 

In addition to balancing the workload ~cross CPUs, you may also have 
to balance the workload on physical links. This occurs when a physical 
link between two systems is of the BSC type and multiple physical links 
have been installed. You can balance the workload on physical links by: 

• 	 Specifying. during IMS/VS system definition, proper logical link 
paths and logical links for each remote application. 

• 	 Using a user-written Terminal Routing Exit to examine the load on 
each of the alternative physical links and choose the least busy 
link for routing. 

5.16 IMS/VS System/!pplication Design Guide 



L 

\ 


KSC EXAKPLES 

Figures 5-12 and 5-13 illustrate, respectively, horizontal and 
vertical partitioning. 

X 
IMSIVS System 
(San Francisco) 

Customer 
Data Base 
(SFO Region 
Customers) 

BSC 
Link 

y 

IMSIVS System 
(Los Angeles) 

Figure 5-12. Horizontial Partitioning 

Design Considerations for the MSC Feature 5.17 



X y 
IMSNS System CTC Link IMSNS System 

Vertical Partitioning 

5.18 Ins/vs Syst~m/l~plication Design Guid~ 



This chapter describes the Fast Path feature and contains design 
considerations for its use. 

The Fast Path feature provides improved performance for applications 
that require large transaction rates and use only simple data 
structures. 

The Fast Path feature shares the IMS/VS Data Communication network. 
The functions of the Data Base system and the Data Communication feature 
are not reduced when the Fast Path feature is installed. The Fast Path 
feature complements the eXisting system and does not replace it. A 
system with the Multiple Systems Coupling (MSC) feature installed can 
also have the Fast Path feature installed; however, the Fast Path 
feature cannot receive input from the MSC intersystem links. 

The Fast Path feature provides two data base types: Main Storage 
Data Base (MSDB) and Data Entry Data Base (DEDB). 

The Fast Path data bases are simple in structure and provide for 
improved performance. In addition, Fast Path data bases can be accessed 
by either Fast Path or IMS/VS transactions. 

MAIN STORAGE DATA BASE (MSDB) 

An MSDB is designed for efficient processing of the most frequently 
used data in an installation. The MSDB resides in main storage, which 
reduces I/O activity. 

The amount of data that the MSDBs can hold is limited by the amount 
of available storage. 

An MSDB is a root-only data base; it has no dependent segments. Only 
fixed-length segments are allowed in an MSDB. 

There are two types of MSDBs: Terminal-related and 
Nonterminal-related. 

Terminal-related MSDBs are either fixed or dynamic. Inserts and 
deletions are not allowed in a fixed terminal-related MSDB but are 
allowed in a dynamic terminal-related MSDB. Both dynamic and fixed 
terminal-related MSDBs have the following characteristics: 

• 	 The record can be updated only by messages issued from the LTEFM 
that owns the record. However, the record can be read as a result 
of messages from any LTERM. 

• 	 The name of the LTERM that owns a segment is the key of the segment. 
An LTERM cannot own more than one segment in anyone MSDB. 

• 	 The key does not reside in the segment. 

• 	 Each segment in a fixed terminal-related MSDB is assigned to and 
owned by a different LTERM. 

Design Considerations for the Past Path Feature 6.1 



• 	 A dynamic MSDB may have a pool of unassigned segments. A segment is 
assigned to an LTER~ by an ISRT call and =eturned to the unassigned 
pool by a DLET call. 

One use for a fixed terminal-related MSDB would be in an application 
where each segment contains data that is associated with a logical 
terminal. In this type of application it would be possible for a batch 
application program to read the segment (possibly for general reporting 
purposes), but update would be impossible. 

A dynamic terminal-related MSDB can be used as a 'scratch pad' area 
to simulate conversational processing not available for Fast Path 
transactions. 

Nonterminal-related MSDBs have the following characteristics: 

• 	 There is no ownership of segments in a nonterminal-related MSDB. 

• 	 No insert or delete calls are allow~d against a nonterminal-related 
KSDB. 

• 	 The key of nonterminal-related MSDB segments can be an LTERM name or 
a field in the segment. As with a terminal-related MSDB, if the key 
is an LTERM name; it doesn't reside in the segment. If the key 
isn't an LTERM name, it does reside in the sequence field of the 
segment. If the key resides in the segment, the segments must be 
loaded in key sequence because, when a qualified 5SA is issued on 
the key field, a binary search is initiated. 

The nonterminal-related MSDB without terminal-related keys would be 
used in any application where a large number of people need access to 
and update capability for data in a high transaction rate situation, for 
example, a real time inventory control application, where reduction of 
inventory could be noted from many cash registers. 

An MSDB is defined with DBDGEN in the same way as any other IM5/VS 
data base. The data base is specified as an MSDB by coding ACCESS=MSDB 
in the DBD statement. The REL keyword in the DATA SET statement is used 
to select one of four MSDG types: 

• 	 Terminal-related dynamic 

• 	 Terminal-related fixed 

• 	 Nonterminal-related with LTERM keys 

• 	 Nonterminal-related without LTERM keys 

The definition of an MSDB data base is covered fully in the I~2L!2 
gti!itig§ Rg12~~n£2 ~~n~~!· 

All DL/I data base calls, except those that specify "within parent," 
are valid with one or more types of MSDBs. Because an MSDB is a 
root-only data base, a "within parent" call is meaningless. 
Additionally, there is a DL/I call, FLD, applicable to all MSDBs. The 
FLD call allows an application program to check and modify a single 
field within an MSDB segment. 

6.2 IMS/VS system/Application Design Guide 



1:h~ KbQ £~!! 

The FLD DL/I call is unique to Fast Path. It allows for the 
operation on a field rather than on an entire segment. Additionally, it 
allows conditional operation on a field. 

Modification is done with the CHANGE form of the FLD call. The value 
of a field can be tested with the VERIFY form of the FLD call. These 
forms of the call allow the application program to test a field value 
before applying the change. If a VERIFY fails, all CHANGE requests in 
the same FLD call are denied. This call is described fully in the 
!~2L!2 !22!i£~ti2n R~2~~~!!~n~ R~t~~n£~ ~~ng~!· 

Allowable processing options for KSDB types are shown below: 

Non-related---------------G,R 
Related flxed-------------G,R 
Related dynamic-----------G,I,R,D,A 

The following chart shows relationships between ~SDB calls, MSDB 
types and call qualifications. Numbers refer to notes below. X 
indicates an allowable combination. 

r-----------------------------------,
1 DB TYPE I CALL QUALIFICATION 1 

r-------------- -----------------------------------1I DL/1 1 Min NonlRellRell I I I 
1 Call IPROCOPT rellfixldynlNo SSAIUnq.SSAIQual.SSAI
I------!------- ---1---1---1------1-------1--------1 
1 GU 1 G X I X I X, X 1 X ! X , 
1------1------- ---I---I---I------I-------I--------! 
1 GHN 1 G x: 1 X 1 X I X I X 1 X 1 
1------1------- ---1---1---1------1-------1--------1 
I GN 1 G X I ~ 1 X 1 X 1 X 1 X 1 
1------1------- ---1---1---1------1-------1--------1 
,GHU 1 G X 1 X 1 X I X 1 X I X 1 
1------1------- ---1---1---1------1-------1--------1 
1 REPL 1 R I 1 I I X I X I X 2, X 2 I 
1------1------- ---1---1---1------1-------1--------1 
I FLO 1 G/R 1 I X , X 1 X 1 X , X 1 X , 
1------1-------1---1---1---1------1-------1--------1 
1 ISRT 1.[ I 1 I XI! X I X 3 , 
1------1-------1---1---1---1------1-------1--------1 
I DLET 1 D , ! 'X 1 X , X 2 1 X 2 ! 
L--------------------------------------------------J 

1. R requir~d for ch~nge. 

2. Combination allowed, SSA ignored. 

3. Qualification ignored but segment name is used. 

Fast Path data base buffers are allocated when a call to update an 
KSDB record is issued by an application program, a verify call, or if 
hexadecimal translation is required. The buffers hold the update
information until a synchronization point is reached. The maximum 
number of buffers that the application program can use is dependent on 

Design Considerations for the Fast Path Feature 6.3 



the number of normal page-fixed buffers (NBA) and the number of 
additional page-fixed buffers (OBA) specified in the EXEC PARM field. 

DATA ENTRY DATA BASE (DEDB) 

A Data Entry Data Base (DEDB) is a hierarchical data base containing 
a maximum of eight segment types (a root segment, an optional sequential 
dependent segment, and zero to seven direct dependent segments). If the 
optional seguential dependent segment type is defined, a maximum of six 
direct dependent segment types can be defined. Sequential dependent 
segments are stored in chronological order, regardless of the root on 
which they are dependent. Direct dependent segments are stored in 
hierarchical fashion, allowing for rapid retrieval. 

The DEDB is designed to: 

• Collect or gather detailed information • 

• Enhance data base availability • 

• Retrieve and update summary information. 

The physical format of the data base enhances the availability of the 
data. In a traditional IMS/VS data ~ase, the logical data structure is 
spread across the entire data base, or if multiple data sets are used, 
the data structure is broken up on a segment basis. A DEDB may use 
multiple data sets, called areas, with each area containing the entire 
data structure, as illustrated in Figure 6-1. A DEDB record (a root and 
its dependent segments) does not span areas. A DEDB can be divided into 
as many as ~!Q such areas. This organization is transparent to the 
application program. The randomizing module is used to determine what 
records go to what area. 

Initialization, reorganization, and recovery is done on an area 
basis. Resource allocation is done at the Control Interval (CI) level 
so that multiple programs or online utilities can concurrently access an 
area within a data base, providing they are using different CIs. 

Each area in a DEDB is a VSAM data set. An area is op~ned by th~ 
first call to it from a program that is eligible to access it. A single 
area in a DEDB can be stopped by the operator with the /STOP AREA 
command. A DEDB can be stopped with the /STOP DATABASE command. These 
commands do not affect programs that are currently scheduled against the 
DEDB. The /STOP DATABASE command does prevent the scheduling of any new 
programs needing access to the stopped data base. When a write error is 
detected in an area, that specific area is stopped and the application 
program receives an FH status code. ~ven though a part of a data base 
may not be available (one or more areas are stopped), the data base is 
still logically available and tr~nsactions using that data base are 
still scheduled. 

6.4 IMS/VS System/Application Design Guide 



Root 
Segment 

AREA 
1 I I 

Sequential Direct Direct 
Dependent Dependent Dependent 
Segment Segment Segment 

Root 
Segment 

AREA 
2 

I l 
Sequential Direct Direct 
Dependent Dependent Dependent 
Segment Segment Segment 

Root 
Segment 

AREA 

3 
 I I 

Sequential Direct Direct 
Dependent Dependent Dependent 
Segment Segment Segment 

Figure 6-1. DEDS Structure Example 

A DEDB area is divided into three parts: 

• Root addressable, 

• Independent overflow, and 

• Sequential dApendent part 

Design Considerations for the Fast Path Feature 6.5 



Root Independent Sequential 
Addressable Overflow Dependent 
Part Part Part 

DEDB Area 

Figure 6-2. DEDB Area Division 

Figure 6-3 shows how the DEDB is further divided into units-of-work 
{UOW) in the root addressable part of the area. 

DEDB 

r~------------------------------~A~----------------------________~, 

Area 1 Area 2 Area 3 

A DEDB may contain a maximum of 10 Areas 

Figure 6-3. DEDB Units-of-Work 

The root addressable part of an area is the only part that is 
actually divided into units-of-work (UOW), as shown in Figure 6-3. A 
uow consists of a user-specified number of contiguous control intervals. 
Each UOW is further divided into a base section and an overflow section. 
The base section contains CIs that are addressed by the randomizing 
routine. The overflow section contains logical extensions of any CI in 
the UOW. 

The independent overflow part contains empty control intervals that 
can be used by any UOW in the area. Once a UOW obtains a control 
interval from the independent overflow part, the control interval can 
only be used by that UOW. A control interval in the independent 
overflow part can be considered an extension of the overflow section in 
the root addressable part as soon as it is allocated to a OOW. The 
independent overflow CI remains allocated to a specific crow unless, 
after a reorganization, it is no longer required at which time it is 
freed. 

6.6 IMS/VS System/Application Design Guide 



~~~Y~n1isl ~~~!ng!n1 ~s~1 

The sequential dependent part holds sequential dependent segments
from roots in all units-of-work in the area (see Figure 6-4). The
sequential dependent segments are stored in chronological order without
regard to the root or unit-of-work that contains the root. When the
sequential dependent part is full, it is reused from the beginning.
However, before the sequential dependent part can be reused, the user
must use the DEDS utility DBFUKDLO to delete a contiguous portion, or
all, of the sequential dependent segments in the sequential dependent
part.

Units of Work

Independent Sequential
Overflow Dependent

Base Part Part
Section

Qv"flow I

L-\~::::::::::::::::~________~_______________~_~______~_;~____________-L______~

- v-
Root Addressable Part

~""----------------------------~v,...-----------------------------JI
DEDB Area

Figure 6-4. Storage of DEDS Dependent Segments in an Area

You can specify the size of the UOW, the base section, the overflow
section, and the number of UOWs in the root addressable part and in the
independent overflow part. This gives flexibility in controlling
resource and space management. Each area in a DEDB has its own space
management parameters. These parameters may be chosen according to the
message volume that can vary from area to area.

Root segments in a DEDS have, and direct dependents may have, a
single key field. They can be accessed direcly by this key. The
sequential dependent segments can have scan fields by which they can be
identified in a sequential scan. Scan fields do not have to be unique.
Because the sequential dependent segments are stored in a time-of-entry
sequence, there is no guarantee that they will be maintained in scan
field sequence. All segments in a DEDB are variable in length and the
length may be changed with a REPL call.

Access to a DEDB is by a subset of DL/I calls that are compatible
with the standard IMS/VS DL/I calls. Get, replace, delete, and insert

D9sign Considerations for the Fast Path Feature 6.7

calls are provided for root and direct dependent segments. Get and
insert are the only calls allowed against a sequential dependent
segment.

!22i ~~~~a! f£2£~22~~~

DEDB root segments are stored as prescribed by the randomizing
routine, chained in order of ascending key from each anchor point. Each
control interval in the base section of a UOW within an area has a
single anchor point. Sequential processing using Get Next calls will
process the roots in order of:

1. Ascending area number

2. Ascending UOW

3. Ascending key within each anchor point chain

DEDB sequential dependents are stored in the sequential dependent
part of an area in the order of entry. Sequential dependents chained
from different roots within an area are intermixed in the sequential
part of an area without regard to which roots are their parents.
Sequential dependents have been specifically designed with a fast insert
capability. However, online retrieval will not be as efficient because
increased input operations might result. If all the sequential
dependents were chained from a single root segment, processing with Get
Next Within Parent calls would result in a backward sequential order.
(Some applications may be able to use this method., Normally, sequential
dependent segments are retrieved sequentially only by using the
sequential dependent scan utility which is described in the I~2L!2
Y1i~i!i~§ R~~~£~~£~ ~!n~a~. They are then processed by offline jobs.

Di£~£! ~2E~~~~1 ~~g!~a! f£2~2§ing

The DEDB maintains processing efficiency while supporting a
hierarchic physical structure with direct dependent segment types. A
maximum of seven direct dependent segment types are supported (only six
if a sequential dependent segment is present) •

Direct dependent segment types can be efficiently retrieved
hierarchically and the user has complete online processing control over
the segments. Supported processing options are insert, get, delete, and
replace. The length of the segment can be altered by the user using the
replace function. The DEDB space management logic attempts to store an
inserted direct dependent in the same control interval that contains its
root segment. If sufficient space is not available in that CI, the Root
Addressable Overflow and then the Independent Overflow portion of the
Area are searched.

Physical chaining of direct dependent segments consists of a Physical
Child First Pointer in the root for each defined dependent segment type
and a Physical Twin Forward pointer in each dependent segment.

~ED~ ~In£££Qni~~!i2a prQ£~22i~g

The physical update of a DEDB root and direct dependents is held in
abeyance until a synchronization point has been reached and
synchronization processing is completed successfully. This sequence
eliminates the need for backout processing in case of a user program

6.8 IMS/VS System/Application Design Guide

failure. DEDBs are physically updated after the associated log records
are written.

DEDB sequential dependent segments are gathered at synchronization
processing time but are not written to the physical data base until a
control interval is filled. Logging takes place during synchronization
processing, and changes are discarded if a failure occurs.

~~tin~n~ ~g~~ ~!i! ~!~~~

A DEDB is defined through the DBDGEN process as are all other IMS
data bases. To specify that a data base is to be a DEDB, !CCESS=DEDB is
specified in the DBD statement. Further information on generating a
DEDB is contained in the I~L!§ Yiili1i~2 R~t~r~n£~ ~!nY!l.

Prior to the initialization of DEDB areas, the areas (data sets) must
be defined via VS!M Access Method Services. Following is an example of
Access Method Services input that defines a VSAM cluster which will
later be defined in a DBDGEN as an area with the name of AREA':

DEFINE ­
CLUSTER­

(NAME (AREA') ­
VOLUMES (SER123) ­
NON INDEXED ­
CYLINDE RS (1) ­
CONTROLINTERVALSIZE(1024) ­
RECORDSIZE(1017) ­
SPEED) ­

DATA ­
(NAME (DATA 1» ­

CATALOG (USERCATLG)

The following keywords have special significance when defining a DEDB
area:

• 	 NAME: The name supplied for the cluster is the name subsequently
referred to as the areaname. The name for data component is
optional.

• 	 NONINDEXED: DEDB areas are not indexed clusters.

• 	 CONTROLINTERVALSIZE: The value supplied must be 512, 1024, 2048, or
4096 bytes due to a VSAM ICIP requirement.

• 	 RECORDSIZE: The record size is always seven less than the control
interval size. These seven bytes are used for VSAM control
information at the end of each control interval (see "OEOB OBD Space
Considerations").

• 	 SPEED: This keyword is recommended for performance reasons.

• 	 CATALOG: This parameter may be optionally used to specify a user
catalog.

Design Considerations for the Fast Path Feature 6.9

DEDB DBD SPACE CONSIDERATIONS

When designing a DEDB, attention must be paid to ensure that
sufficient space is allocated in all parts of the area. To do this, the
designer must know how much space is available in each control interval
for data and how much space is used for Fast Path and VSA" control
fields. Fast Path control fields consist of both control-interval
control fields and SEGH control fields (segment prefixes).

The folloving figures illustrate control interval and segment
formats.

r---,
I FSE I CI I RAP I SEGMENTs and FSEs RBA RDF CIDF I
I AP I TIP I I
L---J

FSEAP 2 bytes Offset to the first Free Space Element. These two
bytes are unused if the CI
Dependent Part.

is in the Sequential

CITYP 2 bytes Describe the use
four next bytes.

of this CI and the meaning of the

RAP q byt~s Root Anchor Point if this CI belongs to the Base
Section of the Root Addressable Area. All Root
segments randomizing to this CI vill be chained off
this RAP in ascending key
one RAP per CI.

sequence. There is only

Note: In the Dependent and Independent Overflow
Parts, these q bytes are used by FP for control
information. There is
Dependent CIs.

no RAP in sequential

RBA q bytes RBA of this CI

RDF 3 bytes Record Definition Field (VSAK Control Information)

CIDF 4 bytes CI Definition Field (VSAM Control Information)

Note: CI control field length in Root and Overflow parts:
control field length in Sequential Dependent part:

19 bytes CI
15 bytes

Figure 6-5. Control Interval Format

6.10 I8S/VS System/Application Design Guide

r-----------------------------------//----------------------//--------,
, SIP I PTF 1 SPCF , PCF, ,PCFI LL 1 DATA I
I C I D I PTR 1 PTR 1 PTR, 1 PTRI 1 IL-------------_____________________//_________________ ------//--------J

,'1 4 8 4 41
1 1
, 	 SEGMENT
1<-->1

PREFIX

SC byte 	 Segment Code: 01

PD byte 	 Prefix Descriptor

PTF 4 bytes 	 Physical Twin Forward Pointer. Contains RBA of the
next root in key s6quence.

SPCF 8 bytes 	 sequential Physical Child First Pointer. Contains
RB! of the last inserted sequential dependent under
this root. This pointer will not exist if the
sequential dependent segment is not defined.

PCF 4 bytes 	 Physical Child First Pointer. Points to the first
occurrence of a direct dependent segment type.
There can be up to 6 PCF pointers or 1 if there is
no sequential dependent segment. This pointer will
not exist if direct dependent segments are not
defined.

LL 2 bytes 	 Variable Length of this segment.

Figure 6-6. 	 Root segment Format twith sequential and direct dependent
segments)

r---//--------------------------,
, S I U I SPTF I LL I DATA 1
1 C I N I PTF I 1 1L-------------------------------__________//__________________________ J

I I 1 8 	 I
1

! SEGMENT
1<------------>1

PREFIX

SC byte 	 Segment Code: 02

UN byte 	 Unused

SPTF 8 bytes 	 sequential Physical Twin Forward Pointer. Contains
RBA of the immediately preceding sequential
dependent segment under the same root.

LL 2 hytes 	 Variable length of this s~gment.

Figure 6-7. 	 Sequential Dependent Segment Format

Design Considerations for the Fast Path Feature 6.11

r---II---------- __ 4 _____________,

I S I U I PTF I LL I D1 T1
I C I II I PTR I I IL--------------------_____________________//__________ ----------------J

! 1 1 4 	 I

I
I SEGMENT
I [------------] I

PREFIX

SC 1 byte Segment Code

UN 1 byte Unused

SPTF 4 bytes Physical Twin Forward Pointer.
next occurrence of this direct d
type.

Contains RBA of the
ependent segment

LL 2 bytes Variable length of this segment.

Figure 6-8. Direct Dependent Segment Format

Assume that all root segments in an area will be 200 bytes in length
(198 bytes of segment data plus 2 bytes for the length field) and that
there will be 850 root segments in the area. There are sequential
dependents defined. The control interval length is 1024. There will be
200 sequential dependent segments inserted. Each sequential dependent
segment is 150 bytes long (148 bytes of data and a 2-byte length field).
There is one direct dependent segment type define! with an average
length of 20 bytes (f8 data and 2 bytes length fi~ld). The expected
frequency of 6ccurrence is one direct dependent per root segment.

Calculate the minimum space required to hold root segments:

1024 control interval length
19 Minus control-interval control fields

1005 Equals the amount of space for
segments and their prefixes.

root

The space required by the root segment
and its prefix is 218 bytes and for the
direct dependent and its prefix is
26 bytes. Total space with single
occurrence
244 bytes.

of the direct dependent is

1005 I 244 = 4.1 The amount of root, direct dependent,
and prefix space divided by the total
length required by a root and its
direct dependent equals the number of
roots that are likely to fit in one
control interval. Because DEDB segments
do not span control intervals, the DEDB
area will hold four roots per control
interval.

6.12 IMS/VS System/Application Design Guide

850 I 4 = 212.5 	 The m1n1mum amount of space to hold the
defined number of roots with their
expected direct dependent segments to
be inserted into this area (850) would
then be 213 control intervals.

Calculate the minimum space required to hold the sequential dependent
segments:

1024 Control interval length
15 Minus control-interval control fields

1009 	 Equals the amount of space for sequential
dependent segments and their prefixes.

1009 I 160 = 6.3 	 The amount of sequential dependent and
prefix space divided by length of one
sequential dependent segment and its prefix
equals the number of segments that viII
fit in one control interval. Because
DEDB segments do not span control
intervals, this DEDB area viII hold
six (6) sequential dependent segments
per control interval.

200 I 6 = 33.3 	 The minimum amount of space required to
hold the defined number of sequential
dependents to be insert~d into this
area (200) would then be 34 control
intervals.

The m1n1mum amount of space that must be allocated for this area is
2~7 control intervals (213 for roots and 34 for sequential dependent
segments) •

£2~tQ~m~n£~ £Qn§~~~~~t~QU2 ~n ~Q~~~n~ ~ ~~~~ !£~s

Performance can be significantly improved if the segments to be
inserted are first processed through the randomizing module -- vithont
actually loading the DEDB area -- and the address of the selected area
and anchor point for each segment noted. (See the ~!§1~n f£Q~£~nm!ng
li~t~~2n~ ~~ngs! for a complete discussion on the output from the Fast
Path data base randomizing module.) The input segments should then be
sorted into ascending sequence based upon the area and anchor point
obtained from the randomizing module.

For example, if segments S1, 52, 53, and 54 will be randomized by
area and anchor point to the sequence 52, 54, 51, and 53, it would be
advantageous to place the input segments into this order prior to
actually loading the DEDB area. If direct dependent segments are also
to be loaded, they s~ould be sorted to follow the root segment in
appropriate order. By presorting the input segments, the insertions
will be processed in a physical sequential manner and will result in
acceSSing and filling each control interval only once during the loading
process. When a program that has specified PROCOPT=P, attempts to cross
a unit-of-work boundary, the GC status code is obtained. It is
recommended that a SYNC call is made to commit the inserts to the DEDB.
Use of the PCB option PROCOP=P will hold positioning for subsequent
insertions across synchronization point processing. If the segments are
not sorted to correspond to the output of the randomizing module, the
control interval viII have to be accessed for each insertion of a
segment into the control interval. This will result in significant
overhead during the DEDB loading process.

Design Considerations for the Fast Path ?eature 6.'3

The 'data base full' condition in a DEDB area indicates that either
the sequential dependent portion or one unit of work in the root
addressable portion of that area can no longer accept ISRT calls.
system and user responses to the condition vary according to which
portion is filled and what type of region issued the ISRT call.

The out of space condition for sequential dependents is originally
detected at synchronization point processing. If there is not
sufficient space for the insert, all updates that occurred during that
sync interval are discarded. If the ISRT call was issued from a Fast
Path non-message driven or a BMP region, an 'FS' status code is returned
to the caller. If the call was from either a Fast Path message driven
or an MPP region, the input message is rescheduled for execution. All
subsequent calls to insert a sequential dependent to that area
(including the rescheduled transaction that originally detected the out
of .pace condition) will receive an 'FS' status code at call time.

Oat o~ space in the root addressable portion of the area is indicated
to the user in one of two ways. If the ISRT was issued from a Fast Path
non-message driven or a BMP region, an 'FS' status code is returned at
call time. If the ISRT was issued from a Fast Path message driven or
from an MPP region, the region will be abnormally terminated with a user
844 abend code.

There are two techniques Fast Path allows the user to monitor space
utilization within a DEDB Area. The 'post call can be used to track the
sequential dependent portion of the area while the /DISPLAY DATABASE
operator command ~ill show the total allocated and the total used
control intervals in both the root addressable and the sequential
dependent portions of the area.

If the DEDB Area does reach the data base full condition, Fast Path
provides two online utilities which may negate the need for doing a data
base unload/reload offline to resolve the problem. One of the online
utilities, the Sequential Dependent Delete utility, will delete the
sequential depe~deut segments in all or part of the sequential dependent
portion of the area and thus make this space available for sequential
dependent inserts. The other online utility, the Direct Reorganization
utility is run against one DEDS Area at a time and is used to remove
space fragmentation within that area. Although the reorganization can
be limited to the one unit of work which did not allow inserts, it may
be advisable to reorganize more or all of the area as any independent
overflow space that is freed from one unit of work becomes available for
use by any other unit of work within that area.

A Past Path application program execnte~ in a Fast Path IFP region.
The IFPs are handled differently depending on the type of program that
is running in the region. There are three uses for the regions in which
Fast Path processing is done:

• Applications for processing Fast Path messages

• Applications for processing input external to Fast Path

• Utilities initiated against the data bases

Regions executing message-initiated applications operate in a
wait-for-input mode. Both, message-driven and nonmessage-driven
application programs executing in an IFP region. can access and update
MSDBs, DEDBs, and IMS/VS online data bases. Nonmessage-driven

6.14 IMS/VS System/Application Design Guide

application programs can also access as/vs data sets through as/vs data
management.

Regions executing online data base utilities execute concurrently
with Fast Path processing. This region type is similar to a
nonmessage-driven application program but no user-written application
program is needed.

Message-driven application programs cannot terminate normally unless
a QC status code is posted in the I/O PCB. Nonmessage-driven
application programs cannot terminate normally without releasing the
buffers. A SYNC or ROLB call must be issued to release the buffers.

With the Fast Path feature installed, all Fast Path exclusive or Fast
Path potential transactions are directed to a Fast Path routine, with a
user exit routine, that determines if the transaction is for ?ast Path
or IMS/VS.

Messages from a non-Fast Path eligible terminal are routed directly
to IMS processing without resorting to the user exit routine. Messages
from Fast Path terminals that meet the Fast Path criteria defined by the
user exit routine are routed to the Fast Path message handling routines.

Fast Path input and output messages can only be a single segment and
must not exceed a fixed maximum length.

The Fast Path online application programs operate in a wait-for-input
mode, and must be prescheduled before a transaction can be entered
through Fast Path terminals. Parallel scheduling is supported through
IMS/VS system definition.

INPUT MESSAGES

Fast Path input messages are limited to a single segment. Every Fast
Path transaction is defined to the system as a Fast Path potential or
Fast Path exclusive transaction. Potential transactions can be executed
under IMS/VS processing or Fast Path processing. A user-written exit is
required to analyze the input message to determine if it should be
routed to IMS/VS or Fast Path.

A Fast Path exclusive transaction can only be processed by a Fast
Path application program.

All input messages that are to be processed under Fast Path must be
issued from a Fast Path eligible terminal. A Fast Path potential
transaction that is to be processed by IMS/VS can be issued from a
terminal that is not Fast Path eligible.

OUTPUT MESSAGES

Fast Path output messages are limited to a single segment. Only one •
insert call can be issued against the PCB. The output segment cannot
exceed a prespecified maximum segment length defined at system
generation.

The output message and the input message are not logged until a Get
Unique is issued to the PCB to obtain the next input message. If a
failure occurs before this synchronization point is reached, both the
input and output messages are lost.

Design Considetations for the Past Path Peature 6.15

The sync process is structured into phases. During phase 1, required
resources are obtained and log records are created. Obtaining only the
resources required by this sync process allows this sync process to
execute in parallel with other sync processes. After phase 1 there is a
transition portion during which the log records are passed to the
logical logger. After transition, phase 2 continues the necessary
updating, and then a cleanup portion of phase 2 releases resources and
cleans up control blocks.

Synchronization point processing is performed after a message Get
Unique call, a SYNC call, or CHKP call from an application program. The
philosophy of Fast Path processing is to hold all application program
updates in main storage until a synchronization point is reached. All
logging on the IMS/VS log tape is performed during synchronization pOint
processing but before the application of data base updates.

If the application program uses the verify function in MSDB calls,
the verify will be re-executed during synchronization point processing.

If the conditions are met, the synchronization point processing
completes as expected. If the conditions are not met, the
synchronization point processing purges all update information and gives
the same input message to the application for reprocessing.

Fast Path application programs can retrieve from, as well as update
all Dt/I data bases available to IMS/VS online application programs.
Fast Path applications can use all facilities associated with alternate
PCBs to route messages to any terminal, as well as to IMS/VS
transactions. The routing of messages to terminals and transactions can
be either local or remote if the MSC feature is co-resident. All calls
directed to the I/O PCB or response alternate PCB by Fast Path
applications are processed by Fast ~ath. All Dt/! calls that are not
directed to a specific PCB are passed to IMS/VS for analysis and
processing.

All IMS/VS online applications can retrieve from, as well as update
all Fast Path data bases. Only DL/I calls directed to a DEDB or MSDB
PCB are processed by !MS/VS/FP; all other calls are processed by IMS/VS.
The use of the alternate PCB to send a message to a Fast Path
transaction from an IMS/VS transaction is prohibited. Any attempt to
use a CHNG call to set the destination of a modifiable alternate PCB for
a Fast Path exclusive transaction results in an A1 status code. An ISRT
calIon a non-modifiable alternate PCB with a Fast Path exclusive
transaction as destination results in a QH status code. Any attempt to
message-switch to a Fast Path potential transaction results in the
routing of the message to the IMS/VS application program without going
through the IMS/VS/FP input Editing/Routing exit routine.

6.16 IMS/VS System/Application Design Guide

abnormal termination
avoiding 4.99

example of 4.98
solutions 4.98

abnormal termination, application
program 2.23

absence of segment types 4.146
ACB (~~~ application control blocks)
ACBGEN procedure 1.9
access authorization, data 2.74
access method (GSAM)

generalized sequential 1.5
overflow 1.5

access to data, limiting 2.76
alogrithm, message scheduling 2.9
alternate PCB 3.15

modifiable 3. 16
response 3.17

anchor point area, HDAK data base 4.42
application class 2.49
application control blocks (ACB)

creation and maintenance

methods of 1.8

required, when 1.8

utility, use of 1.8

use of 1.11
application program abnormal termination

effects on message scheduling of 2.24
effects on system performance 2.24
program isolation, operation of 2.24

deadlock situation, decision
table for 2.25

application program, batch
design considerations 3.2

checkpoint/restart 3.4
conventions, establishing 3.4
conventions, naming 3.4
conversion to

telecommunication 3.3
COpy or INCLUDE, use of 3.5
DL/I call function, DB batch

processing 3. 10
DL/I call function, DE/DC control

program 3.9
DL/I call, using the correct 3.7
DL/I calls and I/O operations,
relationship between 3.8

DL/I statistics 3.10
performance consideraticns 3.10
program language 3.2
storage allocation 3.11
testing 3.4
written in DL/1 3.11

DL/1 int erface
symbolic data description 3.5

application program design,
telecommunication 3. 11

application program I/O work area size
considerations 4.146

application program, telecommunication
design considerations 3.11

batch message processing program
~MP), use of 3.23

buffering 3.23
conversational processing 3.20
conversion, batch to

telecommunication 3.18
device class control 3.19
device independence, programming

for 3.19
input calls 3. 14
input/output interface 3.11
output calls 3.14
output to alternate

destinations 3.16
paging, 2260 and 2265 3.24
PCBS 3.13
program design 3.11
SYSOUT devices, use of 3.20
terminal, program's view of 3.12

environment 3.11
message segment

description 3.13, 3.14

format 3.13,3.14

telecommunication program communication
block (TPPCB) 3.12

application programs, useful techniques
for 3.23

information passing, program to program
methods 3.24

intermediate data bases

example 3. 23

u.se of 3.23

message editing

purpose 3.27

output masks 3.24

application program, user's

interfaces, DB system 1.2
language interfaces

compatibility 1.15
how to make 2.3
improve throughput, to 2.3
LINKPACK/RAM, in 2.3
purpose 1. 15
REGION/PARTITION, in 2.3

permanently resident in virtual

storage 2.3

areas, DEDB 6.6
independent overflow part 6.4
loading considerations 6.13
root addressable part 6.U
sequential dependent part 6.7
space definition 6.7

example 6.9
ask type station, System/3,

System/7 2.62

Index I.l

http:3.13,3.14

auto delete, paging feature 3.22
automatic rest art of IMS/VS 2.28
available length field (AL) 4.44

backward pointers, use of 4.17
batch and telecommunication applications,

differences between 3.3
illustration 3.3

batch checkpoint facility 2.29
batch checkpoint/restart facility

batch backout utility program
use of 3.4

CHKP call, use of
procedures for 3.4

functions provided
iTO message 3.4

batch checkpoint/restart, DB/DC
system 2.29

batch-message programs, for

message-driven 2.29

not message-driven 2.29

message processing programs, for
user written, reguirements for 2.30

batch checkpoint/restart, DB system 1.18
batch backout utility program

implemented, how 1.19

use of 1. 19

CHKP call to DL/I
DB system action, resulting 1.18
use of 1. 18

user responsibilities 1.18
XRST call to DL/I 1.18

DB system action, resulting 1. 18
batch data base system initializing

step one 1.13
step two 1.14

batch-message processing (BMP)
definition 2.2
description 2.2

batch message processing program (BMP)
checkpoint table 3.23
telecommunication system, in a

buffering 3.23

emergency restart 3.23

starting 3.23

uses of 3.23

batch processing
definition 2.1,2.2

hatch scheduling, definition 1.2
EI5AM/QISAM, IMS/VS use of 4.148
bit map, aDAM or HIDAM data base 4.43
block identifier 2.59
BMP (batch-message processing) region 2.2
BMP (2~~ batch message processing

program)
BSClink 5.4
buffer allocation, MSDB 6.3
buffer pool

concept, explanation of 1.16

statistics, location of 1.16

statistics, retrieval of 1.16

system performa nce, effects of size

on 1. 17

1.2 IMS/VS system/Application Design Guide

calls, DL/I
backward movement 4.12
data base 4.12
delete, use of 4.13
forward movement 4.12
function code 4.12
get calls, hold form 4.12
get next, use of 4.12
get next within parent, use of 4.12
get unique, use of 4.12
insert, use of 4.12

FIRST 4.13

HERE 4.13

LAST 4.13

purpose 4.12
qualified 4.12
replace, use of 4. 13
segment search argument (55A) 4. 14
unqualified 4.12

checkpoint, EMP 3.22
checkpoint frequency, selection of 2.8
checkpOint ID table 2.29
checkpoint/restart routines, user written

requirements 1.19
rules for 1.19

checkpoint/restart routines, writing 2.31
checkpointing batch-message processing

programs 2.30
COBOL READ/WRITE logic 3.7
cold sta rt 5. 14
command functions. protection against
unauthorized use of 2.74, 2.75

communica tions network, switched 2.51
computer area security 2.76
concatenated keys 4.5
concatenated segments, deletion of 4.76
contention for resources, message

scheduling effects of ·2.25
control block buffer pools, message

scheduling effects of
excessive loading of, effects on
system performance of 2.26

size requirements 2.26
control block pools 2.26
control interval, DEDB 6. 10
control sequence flow, DB system 1.15
conventions and procedures, p.stablishing

useful 3.4
conventions, naming 3.4
cpnversational attrib~te

effects on system performance 2. 17
performance, enhancing 2.17
scratch pad areas, residency of 2.17

conversational processing·
advantages 3.20, 3.21
defini tion 3.20, 3.21
description of 3.20, 3.21
example 3.21

SPAS, effect on 3.20

scratch pad areas (SPAS)

use of 3.20

system defini tion of 3.20

temporarily suspending ccmmands

used 3.21, 3.22

terminated, how 3.21, 3.22

converting from batch to telecommunication

illustration 3.18
Froced ure 3. 17

COPY, use of 3.5
copy function, printer selection for

3270 2.57
crossing 4.105
crossing a logical relationship 4.104
eTC link 5.4
CTRLPROG, OS/VS macro 2.5

DASD space release, conditions for 4.79
data access limitations 2.76
data base

allocation, deallocation 2.27
cont ent

fields 4.1

segments 4.2

defining 4.2

design considerations

processing time 4.129

design, viability of 4. 142

HDAM, using 4.35

HDAM and HIDAM 4.34

logical (§~~ logical data base)

physical (§~~ physical data base)

segments 4.2

simple HISAM 4.33

space alloca tion, IMS/VS 4. 155

structure rules 4.140

absence of segment types 4.146
hierarchic leg independence 4. 145
new segment type defined at end of
hierarchy 4.143

new segment type in leg of existing
hierarchy- 4.144

new segment type within existing
hierarchy 4.143

restructured data base 4.145
types of 4.1

data base access methods
relationships 1.12
when used 1.12

data base buffering 1.16
data base/data communications (DB/DC)
syste m 2.1

configuring 2.3
OS/VS options, selection of 2.3
recommended 2.3
required 2.3

design and control of 2.1
fast path feature 6.1

IMS/VS features
batch checkpoint/restart 2.29
checkpoint frequency, selection

of 2.8
console support, system 2.54
control of the DB/DC system 2.72
control region, virtual 2.7
dat a bases 2.26

I/O reqllests, active, specification
of 2.7

immediate checkpoint 2.8
intelligent remote station
support 2.59

master terminal 2.53
message scheduling 2.9
physical terminal network

design 2.45
physical terminals 2.42
processing regions 2.7
program isolation 2.8
security and privacy 2.72
system queue space 2.8
violation control 2.77
3270 support, IMS/VS 2.56

processing, organization of 2.1

relationship to DB system

differences 2.1

data base description (DBB) generation

definition of 1.6
execution of 1.7
re sults of 1.6

data base description block (DBD)
pu.rpose of 1.10
requirements, definition of 1.10

'data bas€: full' condition 6.14
data base input/output interface 1.2

data language I (DL/I), using 1.3
format, symbolic 1.3

data base integrity, restoring
procedure 1.17

data base logging capability 1. 1
data logged, type of 1.17
modifications, data base 1.3
pover failure protection 1.21
power failure, closing after a 1.21
purpose 1.1
recovery, use in 1.17

data base organization
auxiliary storage, in 4.10
main storage, in 4.8

data base processing intent, message
scheduling

conflicting action, defined control
of 2. 18

intent levels 2.19
intent list 2.19
in tent specifications 2.20
scheduling algorithm, impact upon 2.20

data base record
contents 4.9
data base record, HSAM 4.21

data base record segmentation
options 4.137

data base structure rules 4.140
data base system 1. 1

access methods 1.12
application program design 1.9
application program interfaces 1.2
ba tch checkpoint/restart 1.18

advantages of 1. 19

batch processing execution 1.12

control sequence flow 1.14

Index I.3

essential program elements 1.10
ACB 1.11
application program 1.11
DBD 1.10
IMS/VS system modules, list of 1.11
PSB 1.10

execution 1.12
execution and control 1.9
facilities frovided 1.1
GS AM 1. 5, 1. 6
IflS/VS library data sets, used vi th

definitions, list of 1.4

initialization process 1.13

job control language (JC~

considerations 1.14

logging 1. 17

logging capability 1.1

monitor, IMS/YS 1.21

operating environment, batch

scheduling 1.2
as/vs options, differences 1.4
aSH 1.5
phased installation 1.2
pover varning feature, System/370 1.21
STAE/ESTAE, use of

application program, rules for use
of 1.20

purpose 1.20

system definition, IMS/VS 1.4

utility programs 1.1

data base system execution 1.12
data base buffering 1.16
execution sequence 1.13
initialization 1.13

data base system flow 1.15
data bases, DB/DC 2.26

allocation, deallocation 2.27
data dictionary 3.5

data entry data base 6.4
access 6.7
areas 6.4
control interval formats 6.10
'data base full' condition 6.14
description of 6.4
defining 6.9
independent overflow part 6.6
insertion of inFut segments 6.13
loading considerations 6.13
root addressable part 6.6
segments 6.4

processing 6.8
sequential dependent part 6.7
sequential processing 6.8
space considerations 6.10
space definition 6.7
STOP commands 6.5
structure 6.4, 6.5
synchronization processing 6.8,6.16

Data Language/I (DL/1) 1.3
call reguest, functions performed 1. 16
calls, physical 1/0 operations

generated by 3.8

data base systeR, with 1.3

DL/I calls, programs that cannot

issue 1.21

input calls 3. 16

language interface

purpose 1. 16

output calls 3.17

d,a ta protec tion 2.76
data sets

allocation, deailocation 2.27
da ta set '1 roups

creating, rules for 4.18
defining 4.18

data structure change 4. 155
data structure, secondary indexes 4.123
data transmission block 2.59
data, limiting access to 2.72, 2.76
DB monitor 1.21

(§gg ~!§Q monitor, DB)
DBD (§gg data base description block)
DC monitor 2.78

(.2g~ ~!.2Q mon itor, DC)
deactiva tioD, conversational
processing 3.20

deadlock situation (IMS/YS) 2.8
DE DB (2~S data entry data base)

area definition 6.6
independ~nt overflow part 6.6
root adressable part 6.6
sequential dependent part 6.7
space definition 6.7
synchronization processing 6.7

defining data base sequence fields 4.61
defining physical data bases, options
available

HDAM or H1DAM, for 4.47

H1SAM, for 4.47

HS AM, for 4.47

delete byte
definition 4.3, 4.77
delete call 4.77

DASD space release 4.79
status codes 4.79

forma t of 4.3

logical delete bit 4.3

physical delete bit 4.3

delete call 4.77
delete rules 4.78

additional operations
logical child 4.103
logical pa rant 4.103
physical parent of a virtually
paired logical child 4.103

space release 4.103
deleted segments, accessibility

of 4.93
example " logical parent 4.94
example 2, logical child 4.95
exa IIple 3, ph ysical

dependents 4.96
example 4, third path 4.97
example 5, abnormal termination
possibility 4.98

examples 4.80
logical child logical delete,
of 4.82

logical child physical delete,
of 4.83

1.4 1MS/VS System/Application Design Guide

http:6.8,6.16

logical child -- physical/logical
delete, of 4.83

logical child -- virtual delete,
of 4.84, 4.85

logical parent -- logical delete,
of 4. 86, 4.87

logical parent -- physical delete,
of 4.50,4.91

logical parent -- virtual delete,
of 4.90, 4.91

physical parent -- bidirectional
virtual delete, of 4.92

introduction

requirements 4.75

selection 4.75

logical child

logical 4.80

physical 4.80

virtual 4.80

logical parent

logical 4.79

physical 4.79

virtual 4.79

physical parent
bidirectional virtual 4.80
physical/logical/virtual 4.80

summary

access paths 4.102

OLE~ call 4.102

logical 4.102

physical 4.103

propagation of 4.103

delete 10LET) 4.13
byte, defined 4.3
call 4.78
OLET call 4.75, 4.102
examples of 4.80
logical child, for 4.80
logical parent, for 4.79
physical parent, for 4.EO
rules 4.79
status codes 4.78
use of 4.13

deleted segments 4.93, 4.102
accessibility of 4.93
examples of 4.92

logical child 4.96
logical parent 4.95
physical dependents 4.96
third· path 4.97

inserting physically and/or
logically 4.101

deleted segments, accessibility of 4.93
examples of 4.95, 4.97

deletes, HOAM or HIDAM data base 4.44
deletion 4.76

access paths
accessibility 4.77
full-duplex 4.77
illustration 4.77
logical parent, from 4.77
physical dependencies, from 4.77
physical parent, from 4.77
prevention 4.77

concatenated segments

illustration 4.76

logical

child 4.76

parent 4.76

physical
exception 4.76

dependent segment insertion, HISAM data
base 4.28

illustration 4.30
dependent segments, considerations for

HDAM, HIDAK 4.148
design considerations, batch application

program 3.1
design considerations, data base 4.128
design considerations, MSC 5.15-5.17
design decisions, DB system
generation 1.4

design tradeoffs 4. 140
destination type 5.11
device class control considerations 3.18
device class sensitive terminal I/O,

separating 2.49
device independence logical terminal

provided 2. 46
device independence, programming for 3.20
device input format (DIF) 2.55
device output format (OOF) 2.55
devices supported, list of 2.43
OFSOLELO 1.8
OFS UACBO 1.9
direct access storage space

utilization 4.134
direct address pointers 4. 16
direct reorganization utility, DEDB 6.14
display bypass feature 2.76
distributed free space, HDAM or HIOAM
data base 4.46

OL/I call
(§~~ ~!.§Q. calls, OL/1)
function

DB batch processing 3. 10

DE/DC control program 3.9

I/O oferations, relationship to 3.8
using the correct 3.7

DL/1 data base, use of 3.5
OL/I function codes

definition of 3.6
segment retrieval

function codes, list of 3.7, 3.8
function codes, use of 3.7, 3.8

OL/1 interface 3.5
OL/I sta tistics 3.10
DLET call (§ss delete (tLET))

edi ting routine 3.24
emergency restart, queue repositioning
during 2.35, 3.22

end-of-data (EeD) 2.13
end-of-message (EOM)

detection, I"5/YS

meaning 2.13

Index 1.5

http:5.15-5.17
http:4.50,4.91

end-of-segment (EOS) 2.13
detection, I'MS/VS

IMS/VS action resulting from 2.14
EOD (end-of-data) 2.13
EOM (end-of-message) 2.13
EOS (end-of-'"segment) 2.13
exclusive control enqueue/dequeue 2.8
ESTAE/STAE, use of 1.20
/EXIT command 3.21, 5.13

facilities provided, IMS/VS data base
system 1. 1

Fast Path feature 6.1
access to data bases 6.1
data entry data base {DEDB) 6.4
FLD DL/I call 6.3
IMS/VS, relationshiF with 6.16
main storage data bas~ {MSDB) 6.1
messages 6. 15
multiple systems ceupling (MSC) feature,
use with 6.1

processing regiens 6.14

program types 6.14

field call 6. 3
fields, data base segment

contents of 4.4
defining 4.4
key field

purpose of 4.4

maximum number of 4.4

sequence field

limitation 4.5

non-unique 4.5

unique 4.5

symbolic pointer

definition of 4.4

illustration 4.5

types of 4.4
file description entry 3.6
first logica 1 rela ticnship crossed,
logical data base 4.105

FLD call 6.3
format control blocks, types of 2.55
formatting 3270 messages 2.54
free space anchor pOint, OSAM

data set 4.42
free space chain pOinter field (CP) 4.42

generalized sequential access method
IGSAM), restrictions with IMS/VS 1.5

GET NEXT (GN) 3.7
function of 3.7
use of 4.13

get next within parent (GNP)
use of 4.13

GET UNIQUE (GU) 3.7
execution time of 3.7
function of 3.7
recommended use 3.10
use of 4.13

GSAM (2g~ generalized sequential access
method)

1.6 IMS/VS System/Application Design Guide

HDAM and HIDA!! data set format 4.40
HDAM data base 4.35

anchor point area 4.42
inserts 4.43

bit map 4.43
bit map block 4.43
dependent segments, considerations
for 4.148

design considerations for 4. 148

forma t of data sets used 4.40

in auxiliary storage 4.35

inserts and deletes 4.43

loading 4.37

options available 4.47

root addressable area, size of

formula 4.37

using 4.35
HIDA! data base 4.37

anchor point area 4.42
inserts 4.43

bit map 4.43
da ta portion, desig n consi der at ions
for 4.147

dependent segments, considerations
for 4.148

format of data sets used 4.40

free space anchor point 4.42

free space element

available length field (AL) 4.42
free space chain pointer field

(CP) 4.42
task ID field {l~ 4.42

index data ba se 4.38
index, design considerations for 4.147
inserts and deletes 4.43
loading 4.37

after initial load 4.37

I SA M/OSAM, using 4.38

V S AM, us in g 4 • 38

options available 4.47
root segment type pointer options 4.40

hierarchic forwa rd and backward
pointing 4.16

hierarchic forward pointing 4.16
hierarchic leg independence 4.145
hierarchic structure, physical data base

exa mple 4.10
HISA! and HIDAM key segments 4.46
HISA! da ta base

as one data set group 4.21
illustration 4.22

definition 4.21
dependent segment insertion 4.28

into a HISAM data base with one
data set group 4.30, 4.31

description 4.21
HISAl! data base 4.21
loading of 4.23
logical record lengths 4.24
logical records, structures of 4.24

illustration 4.23

options available 4.47

root segment insertion 4.26
insertion sequence 4.28
into key sequenced data set control

i nte rval 4. 26
sequence of 4.28
when ISAM/OSAM are HIS1M access

methods 4.26

secondary data set groups 4.33

multiple data set group 4.34

segment deletion 4.32

simple HISAM 4.33

storage orga ni 'Za ti on 4. 21

HISAM physical storage -- 151M, OSA! or
VSAM 4.141

HISAM single data set group 4.21, 4.22
horizontal partitioning 5.1,5.10
HSUJ data base 4.19

data base record, stcring 4.19

data base record on tape 4.19

definition 4.19

DL/I calls, -restriction 4.21

options available 4.47

processing 4.21

search sequence 4.~1

simple HSAM 4.21

storage organization 4.19

I/O requests, specification of active
recommendations 2.7

I/O work area size considerations 4.146
IAK command (IMS/VS) 2.53
identifier, block 2.59
identifier, terminal 2.59, 2.60
identity code (terminal security) 2.73
immediate checkpoint 2.8
IMS/VS and last Path 6.16
IMS/VS in an CS/VS system

supported configurations 2.5
IMS/VS program module preload function,

DB systell 2.3
IMSVS. ACBLIB

defini tion 1.4
I!!JSVS. DBDL IB

def ini tion 1.4
I!SVS.!ACLIB

definition 1.5
IMSVS.PGIUIB

definition 1.4
IMSVS.PROCLIB

definition 1.5
I!S V S • P SB LI B

definition 1.4
II'lSVS.BESLIE

definition 1.4
INCLUDE

use of 3.5

index pointer segment, secondary
index 4.115

additional data in 4.117
fields

constant, use of 4.116
duplicate data 4.117
search, use of 4.116
subsequence, use of 4.117

format 4.115
indexes, secondary 4.109

addi tional l/C operations 4.121
alternatives to 4.121
da ta structure 4.111

determining 4.113
definition 4.109
fields, index pointer segment

constant 4.115, 4. 116
duplicate data 4.117
search 4. 1.16
subsequence 4.116
system related 4.117

index pointer segment 4.115
additional data in 4.117
fields, use of 4.116
format 4.115
insertion of 4.118, 4.119

key sequenced data set, usp, of 4.121
maintenance processing 4.118

maintenance exit routine 4.118
options and rules for 4.113
organizatio n 0 f in aux ilia ry
storage 4.114

processing sequence 4.111
segment search arguments 4.120
segment types 4. 109
shared index data bases 4.119
storage requirement, increase of 4.121
suppression of entries 4.118
terlls used for

index pointer segment type 4.109
index source segment type 4.109
index target segment type 4.109
secondary data structure 4.109
secondary processing sequence 4.109

updated, when 4.121
use of 4.109

i ndi vid ual user protil e 2. 75
information passing, program to

program 3.24
input call, DL/I

examples 3.14, 3.15
format 3. 14, 3. 15

input messages, Past Path 6.15
input/output interface, telecommunicaticn

application program 3.11
inquiry logical terminal 2.50

Index 1.7

http:5.1,5.10

insert (I sa T)
FIRST 4.13

4. 1 2

HERE 4. 13
insert call 4.71

status code 4.72
LAST 4.13
logical child insertion 4.71
rules

logical insert 4.71
physical insert 4.71
virtua 1 inse rt 4.71

use of 4.12
insert call, the 4.71
inserts and deletes, HDAM and HIDAM data

bases 4.43
inserts, HDAM orHIDAM data base 4.43
intelligent remote station support 2.59

considerations System/3
ask-tYFe station 2.62, 2.70
EBCDIC transparency 2.70
line discipline, control of 2.70
locally attached terminals,

with 2.70
mult iline lIultiFcint (!!L!!P)
feature 2.70

transmission block, IMS/VS
processing of 2.71

using MLMP, design recommendations
for 2.70

considerations System/7
line types 2.68
output buffer size, effects on 2.68
polled line, choices 2.68
process control 2.68
transmission block, IKS/VS

processing of 2.69
transmission code modes 2.68

conversational Frocessing 2.59
destinations, presetting of 2.59
interface, purpose 2.59
operating modes, System/3,
System/7 2.63

ask-tYFe operating mode 2.63, 2.67
basic operating mode 2.63
combining modes 2.63
non-ask-type operating mode 2.66

system definition 2.62
ASK message 2.63
ask-tYFe sta tion, defining 2.62
operating modes, definition of 2.63
output transmission code modes,
System/7 2.63

postpone output flag 2.63
postpone type station,
defining 2.63

transmission limit, defining 2.63
unlimited transmission,
indicating 2.63

system messages, IMS/VS
message number, use of 2.61

System/3, Syste m/7
requirements 2.60, 2.61

transmission blocks
block identifier 2.59
data type, description of 2.59

1.8 IMS/VS System/Application Design Guide

message identifier 2.59
synchronization type, description
of 2.59

terminal identifier 2.59
transmission control

error messages. remote station 2.61
input mode 2.61
logical deactivation, cause of 2.62
output message, remote station

response to 2.61
output mode 2.61
synchronization block, use of 2.61

intent propaga ti on 2. 20
delete option 2.23
get option 2.22
implications of 2.21
insert option 2.22
replace option 2.22

intermediate data bases, using
exa aple 3.24

JCL considerations, data base system 1.14

key segments, HISA! and HIDAM 4.46

leased line, design considerations 2.45
limiting access to data 2.76
line groups, terminal 2.45 ..~
line types, System/7 2.68 ~
LINEGRP macro

use of 2.44
load balancing, message scheduling 2.11
loading a DEDB area 6.13
loading a HDAM data base 4.37
local system 5.3
local transaction, Mse 5.7
log tape. restarting lMS/VS 2.28
logging, dual 2.28
logical child -- logical delete, example
of 4.82, 4.83

logical child -- physical delete, of 4.81
logica 1 child -- physical/logical delete,

example of 4.83
logical child -- virtual delete. example

of 4.85
logical child insertion 4.71
logical child/logical twin pointers 4.61
logical child segment 4.54
logical child segment, access paths 4.77
logical child, delete rules for 4.80
logical child, rules for defining 4.62
logical data base 4.104

defining 4.104

illustration 4.107

rules for 4.107

definition 4.104
logical relationships, crossing 4.104

example 4.108
first and additional crossed 4.104
illustration 4.106. 4.107\~

logical destinations, Mse 5.7 ~

logical insert rule 4.71
example of 4.73

logical link numbers 5.5
logical link, MSC 5.5, 5.6
logical link path 5.5
logical parent -- logical delete, example
of 4.89. 4.90

logical parent -- physical delete,
example of 4.87

logical parent virtual delete, example
of 4.90

logical parent pOinter 4.61
logical parent segment counter 4.61
logical parent, delete rules for 4.79
logical parent, rules for defining 4.62
logical/physical relationships,
changing 2.50

logical record formats, HISAM data
base 4.24

logical record length distribution 4.156
logical record lengths, HIS AM data

base 4.24
logical records, HISAM structure
of 4.23, 4.24

logical relationship paths 4.53
logical relationships 4.48

defined in, possible data sets 4.59
defining data base sequence
fields 4.61

description of 4.48
logical child segment 4.54
pointers and the counter used in 4.59

counter 4.61
logical child/logical twin
pointers 4.59

logical parent pointer 4.60
physical parent pointers 4.59

relationship paths 4.53
segment types, relating through a
logical child 4.48

method one 4.50
method two 4.51

terms used to describe 4.48
types of

physically paired
bidirectional 4.49

unidirectional 4.49
virtually paired bidirectional 4.49

use, reason for 4.48
logical replace rule 4.66

example 4.68
logical terminal class 2.46
logical terminal/physical terminal

rela tionship
diagram 2.50
multiple users 2.49
nonswitched network 2.49
one user 2.49
switched ne~work

diagram 2.51
lAM command (IMS/VS) 2.52
inquiry logical terminal, the 2.52
logical terminal subpools 2.52
sign on 2.52

system definition, IIlS/VS 2.50

logical terminal pool 2.52
logical terminal subpool 2.52

use of 2.53
logical terminals

concept, definition of 2.46
1M S/VS logical termina 1

attributes of 2.47
device class sensitive terminal

I/O, separating 2.49
input/output 2.47
physical terminals, input
relationship to 2.47

physical terminals, output
relationship to 2.47

network design 2.48
application class 2.49
logical terminal class 2.49
security considerations 2.47, 2.48

main storage data base 6.1
buffers 6.3
defining 6.2
description 6.1
DL/I calls 6.2
dy namic 6.2
nonterminal 6.2
processi ng options 6.3
types 6.1

maintenance exit routine, secondary
index 4.118

maintenance processing, secondary
indexes 4.118

masks, output 3.24
mass storage system (MSS) 2.81
master terminal

devices allowed as 2.54
inoperable, backup when 2.54
operator, defining security for 2.73
ph ysical location 2.SQ·
3270 2.57

message 3. 13- 3.19
definition of 2.12,2.13

message class 2.10
me ssage -dri ven BMP 2.29
message edi ti nq

edit routine, locaticn of 3.24
control region 3.24
control region, IMS/VS 3.24
link pack 3.24
message processing region 3.24

purpose 3.23, 3.24
message editor 2.55
message format service 2.54
message identifier 2.59
message input descriptor (MID) 2.55
message output descriptor (MOD) 2.55
message processing region

initiating 2.2
performance for modules preloaded 2.4

message queues
emergency restart repositioning

MUlT mode processing, when in 2.42
SNGL mode processing, when in 2.42

index 2.35, 2.41

Index I.9

http:2.12,2.13

logical terminal, for 2.32

operation of 2.41

system failure, tii th 2.42

queue data sets

block size 2.33

destroyed, if 2.34

preformatted 2.34

relationship bettieen 2.33

queue recoverability 2.34

queue storage 2.34

reuse of 2.34

structure of 2.33

transaction code, for 2.32

message routing, ~SC 5.6
message scheduling

algorithm 2.10
application program abnormal
termination 2.23

deadlock situations 2.25

effects on system

performance 2.24, 2.25
program isolation, operation

of 2.24, 2.25
synchronization FOint, program
isolation 2.24, 2.25

contention for resources 2.25, 2.26

control block buffer pools

excessive loading, system
performance effects of 2.25, 2.26

size requirements 2.25, 2.26
conversational attribute

effects on system performance 2.17
performance, enhancing 2.17

data base processing intent 2.18, ~.19
intent levels 2~19
intent list 2. 19

load balancing

definition of 2.11

message class a nd region class,

by 2.10

conflict resolution 2.11

message selection process 2.10

scheduling options 2.10

multiF1e/single segment messages

end-of-data IEOD) 2.12

end-of-message (EO~) 2.13

end-of-segment IEOS) 2.13

exa IIple 2. 13

primary concerns when

selecting 2. 14

non-update transaction processing

definition of 2.17

output limits, application program

results of 2.12

use of 2. 12

processing intent specifications 2.20
exclusive 2.21
intent types 2.20, 2.21
options 2.22
read only 2.21
update 2.21

processing limits

limit count, use of 2.12

response and non-response messages

recommendation 2.17

I.l0 IMS/VS system/Application Design Guide

scheduling concurrency, factors
effecting 2.21

delete option 2.23

get option 2.22

insert option 2.22

replace option 2.22

selection priorities
explana tion of 2. 11
limit pr iority 2.11
normal priority 2.11
zero priority, assigning 2.11

terminal response mode
defini ti on 2. 15
line performance, effects on 2. 15
options 2.16

message scheduling algorithm
definition of 2.9
influences on, design 2.9

message scheduling, definition 2.9
message segment format 3.15
message segments

definition of 2.13
message Fast Path 6.15
modes of response 3.17
modifications, data base

logging of 1.3
module preload function 2.3
monitor, IMS/VS DB

activation/deactivation of 1.21

description of 1.21

function of 1.21

recommendations for use

collecting data, for 1.21
testing application, for 1.21
tuning system, for 1.21

monitor, I~S/VS DC
description of 2.78
function of 2.78
recommendations for use

collecting data 2.78
integrating applications, effects
of 2.78,2.79

testing applications 2.78
tuning system 2.78

/MSASSIGN command 5.5, 5.14
MSC fea ture l.~~~ mu1 ti pIe syst ems coup ling

(M5C) fea ture)
MSU NK macro 5.5
MSNAME macro 5.6
MSDB 6.1

(2~~ ~l2Q main storage data base)
M5S 2.81
!T~ link 5.4
multiline multipoint (MLMP) feature,

system/3 2.70
multiple data set group segmentation,
HISA~ 4.139

multiple data set group, HISAM data
base ij.34

multiple data set groups, HISA~ 4.132
multiple data sets, DEDB 6.4
multiple systems coupling 1M SC)
feature 5.1

comaunication initialization,

multisystem 5.13

http:2.78,2.79

communication termination,
multisystem 5.14

compatibility 5.15

conversation termination 5. 12

abnormal 5.13

normal 5.12

conversational processing 5.11

description of 5.11, 5.12

scratchpad areas ISPAs) 5.11

description cf 5.1, 5.3
design considerations 5.15, 5.16

overhead, minimizing 5.16

wcrkload, balancing 5.16

destination system 5.8, 5.9

destination terminal 5.8, 5.9

stopped transactions 5.9

destination verification 5.10-5.12
examples 5.17, 5.18
Fast Path feature 6.1
horizontal partitioning 5.1, 5.10, 5.17
input system 5.7, 5.8

input terminal 5.8

intermediate system 5.9

link security 2.73

(§§§ ~l§g terminal security)

links 5.7

logical link 5.5-5.7
assignments 5.14
partners 5.5
remote logical terminals 5.5

ph Y si cal lin k 5.4
types of 5.4

local destination 5.7

local system 5.3

local transaction 5.7

logical destinations 5.1

local 5.7
remote 5.7

logical length path 5.7

message routing 5.6

multiple systems verification

utility 5.1

overhead, minimizing 5. 16

physical link 5.4

recovery capabilities 5.15

remote destination 5.7

remote logical terminals 5.5

remote systems 5.3

remote transactions 5.7

priorities 5.9
routing exit routines 5.10,5.11

program routing 5.10

terminal routing 5. 10

routing path 5.6

security maintenance 5.14

system identification 5.6

examples of 5.6, 5.7
vertical parti Honing 5.1, 5. 16, 5. 18
workload, balancing 5.16

multiple systems verification utility 5.7
multipoint line, definition 2.44
multisegment and single segment messages

message scheduling 3.15
multisystem envircnment 5.1, 5.3, 5.7

NAaE macros 5.5
nalles, logical terminal 2.53
naming conventions

advantages of 3.4
dictionary, responsibility for 3.5
requirements, IMS/VS 3.5

network design 2.48
network design, physical terminal 2.45

line groups 2.44
polled terminals

types of polling 2.44
switched network 2.44

non-message driven EaF 2.29
non-update transaction processing,

message scheduling for 2.17
nonswitched communication lines,
definition of 2.44

nonswitched network 2.50
nonterminal-related aSDB 6.1

operating modes, System/3, System/7 2.63
operating relationshiFs, program

description 1.2
illustration 1.3

options and rules for secondary
indexes 4.113, 4.114

options, recommended OS/VS 2.5
options, required CS/VS 2.5
organizations, physical data base 4.14
OS/VS data files, use of 3.5
OS/VS options 2.5

required 2.5
special access method (OSAM) 2.5

allocation of data sets 2.5
pre-allocation restrictions 2.6

IEFBR14 utility 2.6
use of 2.5

OSA" (~~~ overflow sequential access
method)

OSAM data sets, allocation of 2.5
OS!", DB system use of 2.5
output call, DL/I

example 3.14

format 3. 14

output device, control characters
carriage retuJ:n characters 3.19
drum address characters 3. 19
new line symbols 3.19
purge call, tL/l 3. 19

output limi~s, message scheduling 2.12
ou~put masks 3.24
output message, remote station response

to 2.61
output messages, Fast Path 6. 15
output to alternate destinations

al ternate peE 3. 16

illustration 3.6

modifiable alternate PCB

advantages of 3. 16
definition 3.16
modifying, example of 3.16
use of 3.17
use, limitation of 3.17

Index I.l1

http:5.10,5.11
http:5.10-5.12

response alternate PCB

purpose of 3.17

use of 3. 17

sending 3. 15
output transmission code modes,

System/7 2.62
overflow data set 4.33
overflow sequential access method 10 SAM)

advantages to I~S/VS DB system 1. 5

functions with 1MS/VS DB system 1.5

requireme nts, DE system 1.5

page-reguest indicator 3.22
paging faature, 2260 and 2265 3.22

auto delete, operation with 3.~2
function of 3.22
page-reguest indicator 3.22
using 3.22

partners 5.5, 5.14
password and/or terminal security

defining 2.73
display 2.76

passwords, design of 2.74
PCB 3.12,3.13,3.14-3.17
performance considerations, batch
application program 3.10

buffering 3.23, 1. 16

conversational Frocessing 3.20

conversion, batch to

telecommunication 3.17

device class control 3.18

device independence, programming

for 3.18
input calls 3.14
input/output interface 3.11
output calls 3.14, 3.15
output to alternate destinations 3.15
paging, 2260 and 2265 3.22
storage allocation 3.11
tuning, using statistics for 3.10

performance considerations, modules
preloaded in MPPs 2.4

physical child
definition 4.9

physical child last pointer 4.17, 4.18
physical child/physical twin pointers

benefits of 4. 16

rules 4.16

use of 4.17

physical data base
concepts of 4.1

calls 4.12, 4. 13

fields 4.4, 4.5

segments 4.2, 4.3

structure 4.6

defining options

HDAM or HIDAM, for 4.47, 4.48

H1SAM, for 4.47

HS AM, for 4.47

definition 4.1

HDAM and HII:AM

advantages 4.34

organization in storage 4.14

data set groups 4.18

1.12 IMS/VS system/Application Design Guide

HDAM 4.35

HIDAM 4.37

HI SAM 4.21

HSA~ 4.19

methods of 4. 14

pointers 4.14

organization of 4.14

rules for defining logical

relationships in

logical child 4.62

logical parent 4.62

physical parent 4.63

physical data base hierarchy,
defining 4.9

physical delete rule 4.102
logical, treated as 4.101
violation, detection of 4.100

physical insert rule 4.11
example of 4.72

physical insert rule, example of 4.72
physical link, MSC 5.4
physical/logical terminal
relationships 2.50

physical parent
def ini tion 4. 9

physical parent -- bidirectional virtual
delete, example of 4.92

physical parent pointers, data base 4.61
physical parent, delete rules for 4.80
physical parent, rules for defining 4.63
physical replace rule 4.66

example 4.67
physical terminal network deaign 2.45
physical terminals 2.42

definition 2.42

input/output assignments 2.50

LINEGRP macro 2.44

logical terminals, relationship

to 2.50

types of, supported 2.43
physical terminals, input relationship
to 2.50

physical terminals, output relationship
to 2.50

physical twin
definition 4.10
illustration 4.11

physically paired bidirectional logical
relationship

use of 4.56
pointers, data base

dir9ct address 4.14

illustration 4.15

types of 4.14

hierarchic 4.16

illustration 4. 17

options 4. 16

physical child/physical twin 4.16
backward pOinters 4.17
benefits of 4.16
illustration 4. 18
rules 4.16
use of 4.17

pointing, hierarchic forward 4. 16

http:3.12,3.13,3.14-3.17

peinting, hierarchic forward and
backward 4.16

polled terminals 2.44
pool, lcgical terminal 2.52
pool manager, MFS 2.55
pools, control block 2.26
Fostpone type station, System/3,
System/7 2.62

power warning feature 5/370 1.21
pre-allocation, OSAK data set 2.5

multiple volume data set 2.6

restrictions 2.6

primary requests 5.8

primary groups 5.9

priorities, message scheduling 2. 10
process control System;7 2.6C
processing intent specifications,

message scheduling 2.20
intent types

EXCLUSIVE 2•.21

BEAD ONLY 2. 21

UPDAU 2.21

scheduling options 2.20
processing limits, message
scheduling 2.12

processing regions
defining maximum 2.7
initialization 2.2
types 2.1

processing secondary index as a data base
guidelines and restrictions 4.120

processing sequence, secondary
indexes 4.111

processing, batch (§!~ batch processing)
program communication block (PCB) ~6

. definition 3.6
program controller, DB system environment

functions 1.13
program isolation 2.8

application program abnormal
termination 2.23

synchronization point, definition
of 2.24

call function (BOLL) 2.25
definition 2.8
dynamic log, maintenance of 2.23, 2.24
cperation of 2.23, 2.24
selection for termination 2.25
uses for 2.8

program specification block (PSB) 1.7
description of 1.10
generation of 1.7
purpose of 1.7
segment se nsi ti vi ty

data independence, for 1.10
levels of 1.10

program specification block (PSB)
. generaticn

illustration 1.7

PSEGEN procedure 1.7

results of 1.7

use of 1.10

program-to-Frogram switch 5.6, 5.10
program types, Fast Path 6.14
programming language, choice of 3.2

programs, testing 3.20
protection of command functions 2.74
P5B (§~~ program specification block)
/PSTOP link 5. 14
purge call, DL/I 3.19

illustration 3. 19
output termination, to cause 3.19

queue data sets
block size 2.33, 2.34
relationships 2.33, 2.34

queues
message 2.32
operation of 2.33, 2.34
preformatted 2.33, 2.34
recoverability of 2.33, 2.34

recovery capabilities, MSC 5.15
region class 2.10
regions, types of 2.1
remote logical terminals 5.5
remote station, intelligent 2.59
remote system 5.3
remote transactions, M5C 5.7
reorganization, data base 4.150

HDAM and HIDAM data tases 4. 152

HISAM data bases 4.151

reorganization interval 4.151

replace (FEPL) 4. 13
introduction 4.64
rules 4.66

coding 4.65

illustration 4.70

logical 4.66

physical 4.66

virtual 4.66

status code 4.66
use of 4.13

replace call, the 4.66
/RSTART LINE command 5.13
restarting the IMS/VS control region 2.28
restructured data base 4.145
root segment

definition 4.7
insertion, HISAM data base 4.26

insertion sequence 4.27
root segment type pointer options, HIDAM

data base 4.40
routing exit routines, MSC 5.10, 5.11

link input 5. 10

scheduling priority for specified
transactions 2. 11

scratch pad areas (SPAs)
definition of 2. 17

secondary data set groups, HISAM data
bases

description and use 4.33

overflow data set 4.33

when used 4.33

secondary indexing (§~~ indexes,
secondary)

Index I. 13

secondary request 5.8
security and privacy, DB/DC system 2.12

command functions, protection against
authorized use of 2.74

class Frofile system 2.14
individual user profile 2.74
Fasswords 2.74

display bypass feature 2.76
identity code 2.73
installation responsibilities 2.11
levels of security 2.18
limiting access to data 2.76
log tape, using 2.77
password security 2.73
RACF 2.72
recommendations for design 2.72
resource access security 2.74

application group 2.74
security maintenance utility,

(SMU), IMS/V5 2.72, 2.74, 2.75
security violation attempts,

recording of 2.71
signon verification security 2.75

system log 2.75
switched terminal security, 3270 2.77
terminal security 2.13

link security 2.73
transaction codes, restricing antry
of 2.73

transaction command security 2.75
violation control 2.77
3270 switched terminal security 2.77

security maintenance, MSC 5.7
security maint~nance utility, IM5/V5 2.72
security violaticn atte~pts, recording
of 2.74

security, design considerations for
system 2.72

5EGM statement, use of
PAREN'I= operand 4.9

segment deletion, HISA8 data base
ISAM/CSAM 4.32
VSAM 4.32

segment edit/compression 4.126
considerations for ~se 4.128
conversion to use

steps for 4.127

data compression

definition and use 4.127

descripticn of 4.125-4.121

exit 4. 125

illustration 4.126

key compression

definition and use 4.127
segment types, compressible 4.127
use of 4.125

segment formats, data base
data portion 4.3
delete byte 4.3

delete byte, illustration 4.4
I/O 3.8
use of 4.3

illustration 4.3

prefix 4.2

related, how 4.3

segment code

use of 4.3

types 4.3

fixed length 4.2

variable length 4.2

segment oriented program 3.1
segment search arguments (5SAs) 3.7, 3.9

definition of 4.14
illustration 3.8

definition of 3.1

parts of 4.14

qualified 3.7

unqualified

definition of 3.7
segment search arguments, secondary
indexes 4.120

SEgment types, relating through a logical
child 4.49

segments, data base 4.2
data portion 4.2
defining 4.2
definition 4.:2
fields 4.4
formats 4.2

delete byte 4.3
d~lete byte, illustration 4.4
illustration 4.3
segment code 4.3

length 4.2

limitation of 4.2

prefix 4.2

SEGM statement 4.2

types 4.2

segments, data entry data base 6.4
access 6.1
formats 6.10-6.12
length 6.7
processing 6.8

segments, variable length
advantages of 4.122
conversion to 4.125
forllats 4. 123
ill ustra tion 4. 124
loading 4.122
performance, effects on 4.124
storage requirements for,

additional 4.124
uses 4.122

sequential dependent delete utility.
DEDB 6.14

shared index data bases, secondary
indexes 4.119

sign on, switched network
lAM command (IHS/VS) 2.51, 2.53
names, logical terminal 2.53
verification security 2.75

simple HISAM data base 4.33
single data set group segmentation,

HISAM 4.138
size of root addressable area, formula

for 4.35
SPA 3.20, 5.11
space allocation, IMS/VS 4.155
space search algorithm, HD 4.44

I.14 IMS/VS System/Application Design Guide

http:6.10-6.12

space utilization, direct access
storage 4. 134

5SA 4. n
5TH/ESTlE, use of 1.~1
/STABT LINE command 5.12
status code, insert call 4.72
status code, replace code 4.66
storage sequence of segments, HISAM data

base record 4.131
structure, physical data base 4.6

data base record
contents 4.9

data base structure in storage 4.1
defining 4.6
developing, example 4.1
hierarchy of segment types 4.1

crea ting 4.1
hierarchy, defining 4.9

hierarchic structure 4.10

physical child 4.9

physical parent 4.9

physical relationships 4.9

root segment 4.9

SIGH statement, use of 4.10

level
order of dependence 4.9

sub pool, logical terminal 2.53
suppression of entries, secondary

indexes 4.118
switched communication lines, definition
of 2.43

switched network 2.51
design considerations 2.45

switched terminal security, 3210 2.71
synchronization block, use of 2.61
synchronization process, Fast

Path 6.8, 6.16
synchronizaticn transmission block 2.59
SYSID system identification 5.6
SiSOOT devices, use of

program testing 3.20

spocloption 3.20

system console, CS/VS
functions available 2.54
primary purpose 2.54

system definition, IKS/VS 2.50, 2.1
system definition, System/3,

SystelD/1 2.62
system execution, data base 1.12
systelD generation design decisions,

tB 1.4
system queue space, requirements for 2.8
system related fields, secondary indexes

defining 4.117

types of 4.115

/CK 4.118

/5X 4.118

system identification, !lSC 5.6
System/3, design considerations unique
to 2.70

System/3, System/1 requirements 2.62
system/1, design considerations unique

to 2.68

task ID field (ID) 4.42
telecommunication application program

design 3.11
(§~~ ~!~~ application program,
telecommunication)

terminal commands, authorizing use
of 2.73

terminal configurations
supported 2.42-2.44

te=minal identifier 2.60
terminal-related MSDB 6.1

fi xed 6.1

dynamic 6.1

terminal response mode
definition 2.16
line performance, effects on 2.16
options 2.16

terminal security, design
considerations 2.13

terminal types, selection of 2.42-2.44
terminal, master 2.53
terminals, polled 2.44
testing, application

requirements for 3.4
tradeoffs 4. 140
transaction attributes 5.11
transaction command security 2.75
transaction oriented system 3.1, 3.3
transaction codes 2.9

restricting entry of 2.73, 2.15
transactions

application programs, relation to 2.9
attributes, defining 2.9

transmission block System/3, IMS/VS
processing of 2.10, 2.71

transmission block System/1, IMS/VS
processing of 2.69

transmission blocks 2.59
transm~ssion control 2.61
transmission limit, system/3, System/1
defining 2.63

una uthorized processing, pr evention of
(see transacticn command
seciirl ty) 2.15

unbuffered/buffered terminals,
considerations 2.46

unidirectional logical relationship
use of 4.55

unit-of-work, DEDB 6.6
utili ties

data base recovery 4.149
data base reorqanizatiQn 4.150

HDAM and HIDA~ data bases 4.152
HIS1M d at a bases 4.151
reorganization interval 4.151

utility control facility 4.155
utility, MFS 2.54
utilizing slack space, HISAM 4.135

Index 1.15

http:2.42-2.44
http:2.42-2.44

violation control 2.77
virtual partitioning 5. 1
virtual control region

design considerations 2.7
virtual control region, IMS/VS 2.7
virtual insert rule 4.71

example of 4.74
virtual replace rule 4.66

example 4.69
virtually paired bidirectional logical
relationshi~ 4.57

defining fields in logical child
segment tYFes 4.59

discussion of 4.58

use of 4.57

VSAH Access Method Services and
DEDB 6.9

zero priority transaction code 2.11

3270 information display system 2.56
copy function 2.57

candidate printers 2.57
example 2.58
output, format of 2.57
printer, selection of 2.57
purpose 2.57
requested by 2.57

master terminal support
comprised of 2.59

message format service (MFS) 2.54
format control blocks, types
of 2.55

major components 2.55
major operations, overview 2.56
message editor 2.56
pool manager, MFS 2.56
pool manager, MFTEST 2.56
utility, MFS 2.56

overview of 2.56

3284 model 3 printer

message transmission to,

output 2.58

3284-3 printer 2.58
3850 MSS 2.81

I.16 IMS/VS System/Application Design Guide

•

- -- - ---- - - --------------

,

SH20-9025-6

~
(f)

<:
(f)

<
(1)...,... o·
::J

-- ..=-®
=- -------­

----- -- . ­
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.V. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.V., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

Reader's
IMS/VS Version 1

Comment
System! Application Design Guide

Form
SH20-902S-6

11> o z

t

t

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information, in any
form, for any and all purposes, without obligation of any kind to the submitter. Your interest is appreciated.
Note: Copies ofIBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL ________

Previous TNL ________

Previous TNL ________

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

- --- - ---- - - -------------

SH20-9025·6

Reader's Comment Form

Fold and Tape
...•..... eo··· ,.............•...•.........•..................•..•...•..•...•..... ,. ...•...•.....••.......•...••.•.••••...••••.••••.•

First Class Permit
Number 6090
San Jose, California

Business Reply Mail
No postage necessary if mailed in the U.S.A.

Postage will be paid by:

IBM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150 ."

:::!.

[
:J

3'
c

•••••••••••••••••••••••••••••••••••• t
 en
Fold and Tape l>

- ~g® 'j

--- _.­
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Tradp Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

