

--- ------ - ---- ---- -. ---- - - ---___ .. _
---·-

Introduction to Virtual Storage
in System/370

Student Text

Preface

This student text contains two sections, PART I and PART
II. PART I presents virtual storage concepts and relates
them to a conceptual virtual storage operating system. At
the end of PART I we describe the new hardware on the
System/370 models that support virtual storage.

PART II describes the operating systems that support
virtual storage in System/370.

We have tried to make this text usable for managers as
well as for systems programmers, programmers, operators,
and so forth. The reader needs a minimum of prerequisite
knowledge about computer concepts. You should know
what a computer is, the basics of how one works and the
basics of multiprogramming as supported by operating
systems like OS and DOS on System/360.

This edition of the text contains a description of
OS/VS2 Rel 1 as well as the recently announced OS/VS2
Rel 2 in PART II.

Major Revision (February 1973)

This publication GR20-4260-1 is a major revision and obsoletes all previous editions.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality. Address comments concerning the
contents of this publication to IBM Corporation, DPD Education Development -
Publications Services, Education Center, South Road, Poughkeepsie, New York 12602.

©Copyright International Business Machines Corporation 1972

All rights reserved. No portion of this text may be reproduced without express
permission of the author.

PART I

Lesson 1. Introduction to PART I

Lesson 2. Relocation

The Address Space
Real Storage . .
Types of Relocation .
Lesson 2 Test Questions

Lesson 3. Segmentation and Paging

Segmentation

Dynamic Address Translation Using Segmentation .
Paging
Dynamic Address Translation Using Segmentation

and Paging
Lesson 3 Test Questions

Lesson 4. More About Segmentation and Paging

Page Frame Table

Segment Protection . . .
Associative Array Registers
Levels of Storage . . .

Lesson 4 Test Questions

Lesson 5. Virtual Storage .

Virtual Storage Size . .
Virtual Storage Structure
The Relationship of Virtual Storage to Real

and Auxiliary Storage
Single Virtual Storage and Multiple Virtual

Storages.
Lesson 5 Test Questions

Lesson 6. Program Loading and Execution in a

Virtual Storage System

External Page Tables
Program Execution - Demand Paging
Page Replacement

Reference and Change Bits
Locality of Reference . .
A Single Virtual Storage Operating System

Program Loading in a Single Virtual Storage
System
Thrashing Monitors

Multiple Virtual Storage Systems
Virtual Machines

Contents

System/370 Virtual Storage Support
Lesson 6 Test Questions

Lesson 7. Virtual Storage: A Summary Analysis

3 Hardware and Software Requirements
3 for Virtual Storage . .
3 Benefits of Virtual Storage

4
7 Lesson 8. Programming Style in a Virtual Storage

System

8
8
9

12

Examination Answer Keys.

15 PART II
18

. 46

. 47

. 49

. 49

. 49

. 50

. 53

Lesson 9. Introduction to PART II 55
. 20
. 20 Lesson 10. Introduction to Operating System/

. 22 Virtual Storage . 56

. 22 Virtual Storage in OSiVS . 56

. 24 Virtual Storage Structure . . 56

. 24 Virtual Address Translation . 57
Levels of Storage in OS/VS 57

. 26 The Paging Supervisor . 57

. 26 Page Fixing . 58

. 26 Virtual Equals Real Option . 58
Virtual Storage Allocation . . 58

. 27
Lesson 11. Channel Program Translation . . 59

. 29 System/370 Channels . 59

. 29 The Channel Program Translation Function . . 59

Lesson 12. OS/VS1 . . 62
. 31 VS 1 's Structure in Virtual Storage . 62
. 31 Real Storage in OS/VSl . 65
. 32 External Page Storage in OS/VS 1 . 66
. 34 Program Loading in OS/VS 1 . 67
. 34

. 36 Lesson 13. OS/VS2 Release 1 . . 69

. 37 OS/VS2 Structure in Virtual Storage . 69
OS/VS2 Components . 70

. 39 Segment Protection . . 72

. 40 Real Storage in OS/VS2 . 74

. 40 External Page Tables . 76

. 44 Program Loading in OS/VS2 . 72

Contents

Lesson 14. OS/VS2 Release 2 . 80 DOS/VS Supervisor . . 90
VS2/2 Structure . . 80 The Virtual Equals Real Area . . 90

VS2/2 Operation . . 82 DOS/VS Partitions . 91

Levels of Control in VS2/2 . 86 Virtual Storage - Real Storage Relationship in

DOS/VS. . 91

Lesson 15. DOS/VS . . 88 Virtual Storage - External Page Storage Relation-
Five User Partitions . . 88 ship in DOS/VS . 92

Variable Partition Priority . . 88 DOS/VS System Definition and Operation . 93
Relocating Loader . 88 Executing V=R Job Steps . . 95

Virtual Storage in DOS/VS . 89 V=R Space Allocation . 95
The DOS/VS Structure in Virtual Storage. . 90

ii

~~ ~··········

Before you begin to study virtual storage concepts and their
implementation in the IBM System/370, let's take a brief
look at the history of computers and their operating
systems. The past fifteen years have seen spectacular changes

in computing equipment and programs.
Fifteen years ago, central processing units (CPU's) per

formed instructions in thousandths of a second. Today,
System/370 executes instructions in billionths of a second.
In a system like the IBM 1401, main storage sizes ranged
from 1400 to 16,000 locations. In System/370, main
storage sizes range from 96K ·to over four million bytes in

the range of its models. Data transfer rates for some new
tape drive models are up to twenty times faster than early
tape drives. Storage capacity on the new 3330 disk drive is
twenty five times larger than the early models of the 1311
disk drive. Its transfer rate is eight times faster. Improve
ments just as dramatic have been made for printers, card
readers and card punches. This overview does not even con
sider new devices for applications like teleprocessing that
did not exist fifteen years ago.

A large amount of software development has accompa
nied this hardware evolution. With early computers, pro
grammers used machine language. They had to know
machine code to use these systems. Then came as
semblers, compilers and input/ output control systems.
These had the effect of moving the programmer farther
from machine code, letting him spend more time solving
application problems. Computers still executed programs
one at a time. Each program was set up and run inde
pendently by the system's operator.

The first operating systems enabled users to batch jobs
and run them in a single stream. Jobs executed one at a
time and there was a smoother transition from job to job
with some assistance from the operating system. This made
the operator's job, and system operation, easier. As CPU
speeds became faster and main storage more abundant -
for example, with the IBM System/360 - operating systems
expanded in scope. These new operating systems let users
run multiple jobs concurrently - multiprogramming - by
sharing the CPU, real storage and other system resources
among active jobs. They also made possible teleprocessing
applications that control remote computing and data entry
operations from one' central location. OS on System/360 is
an example of such a system.

These technical developments have meant significant
benefits for computer users and their people - system ana
lysts, programmers, computer operators, and so forth.
System/370 users can now develop complete systems for

Lesson 1. Introduction to Part I

operational control and management information in con
trast to the typical payroll and billing applications of ten to
fifteen years ago. System resources are shared among
several jobs in multiprogramming systems, and among
multiple users in time sharing systems. Programmers use
application-oriented languages like PL/I, COBOL, and
FORTRAN. As a result, programmers can devote more time
to problem solutions. Operating systems like OS handle
much of the job preparation and job-to-job transition that
formerly occupied so much of a computer operator's time.
Operators now spend less time handling punched cards and
tapes and more time directing system activity, keeping the
system productive. Thus, the programmers and operators
who work with computers, the scope of applications de
veloped and, in general, computer users have benefited a
great amount from the past developments in hardware and
software.

With System/360, the primary operating systems were
OS and DOS. With System/370, you may still use the OS
and DOS systems. We have examined how we arrived at the
current mode of computer operation. Where can we go
from here?

What would your objectives be if you were designing
new features and functions for System/370 or OS/360?
Take a moment and think about it. We will list a set of
objectives; they might be somewhat different than yours,
but we will have a common reference point. Our list of
objectives follows:

1. Programmers should have the amount of main storage
that they need for designing programs without having
to use planned overlay or dynamic management tech
niques. Even though the size of available computer
main storage has increased tremendously, users cut
their storage into partitions or regions for multipro
gramming efficiency. Programmers, then, are re
stricted to the size of the largest partition or region
used in their installation. This often requires breaking
a program up into separate steps or using special over
lay techniques to make programs "fit" into a region
or partition. '"All of these design requirements add
overhead to solving a problem.

2. If a program is too large for main storage size, the
operating system, not the programmer, should make
the program "fit" into main storage.

3. Programs should use system resources - especially
main storage - only as required during execution.
For example, a program that needs 82,000 bytes of
main storage when fully loaded may reference only

Lesson 1. Introduction to Part I

22,000 bytes during one part of processing. During
this time, there is no need for the operating system to
commit main storage to 60,000 unreferenced bytes.
An example of such a situation is a teleprocessing
application running at less than its maximum load.

4. The operating system should not allow main storage
to become fragmented. Assume that several programs
are executing, each in its own contiguous area of
main storage. Three I SK-byte areas in main storage
are idle (none of the executing programs occupy
these areas). If the smallest program waiting to begin
execution needs 30K bytes of main storage, it must
wait until 30K bytes of contiguous main storage be
comes available. Until then, a total of 45K bytes of
main storage are idle because of storage fragmenta
tion. They are wasted.

5. An operating system should control system resources
like main storage in such a way that you automati
cally get a performance improvement by adding more
main storage. For example, if you have a program
that must use overlays because it won't fit into main
storage, adding more main storage won't help at all
unless you redesign and recode the program. It would
be nice if the operating system could somehow "auto
matically" overlay programs and "automatically" use
added main storage.

6. A computer user should be independent of the size of
the main storage in which programs execute and in
which the operating system is structured. He should
be able to structure a system more according to his
needs than to the size of main storage.

7. Main storage should be shared dynamically among the
active jobs in the system. Programs should get the
main storage that they need when they need it. In
other words, the system should be adaptive to the
demands of the system's activities.

8. Scheduling and operating a system should be easier.
Systems like OS require a large amount of user par
ticipation to schedule jobs and control system re
sources. A new system should require less user
participation to achieve good scheduling and oper
ation results.

Most items in this list of objectives relate in some way to
how an operating system manages a computer's main
storage. These objectives can be fulfilled by an operating
system that supports a virtual storage. We will present
virtual storage and how it fulfills our objectives in PART I
of this student text.

PART I begins with a presentation of different con
ceptual techniques for managing a computer's main storage.
For each strategy we ask two important questions:

1. How well does the technique manage main storage?

2

2. How much does the technique help the computer
user?

We conclude that a form of segmentation and paging is
the best strategy for managing main storage, and then we
describe how this technique can be used in a conceptual
virtual storage system. PART I ends with a description of
the new hardware features on System/370 that are used to
implement virtual storage in the System/370 operating
systems. PART I contains the first eight lessons of the
student text.

PART II of the student text presents how System/370

supports virtual storage using the OS/VS and DOS/VS oper
ating systems. PART II contains the last seven lessons. You
should read PART II after completion of PART I.

After studying this text you should be able to answer
many questions about virtual storage:

1. What is virtual storage?
2. What are the advantages of virtual storage?
3. What are some hardware features and software tech

niques necessary to use virtual storage?
4. How is a computer's main storage managed in a

virtual storage system?
5. What is dynamic relocation?
6. What is dynamic address translation?
7. What hardware is needed on System/370 to have

virtual storage?
8. How is virtual storage implemented in the

System/370 operating systems?
Many lessons in PART I of this text have short exams at

the end. You should take them. They are included, with
scoring keys, for your personal feedback. The scoring keys
for the exams can be found at the end of PART I.

The Address Space

Computer programs, whether written in COBOL, PL/I, As
sembler, or another language, contain instructions, data
descriptions, and input/output operations. For a moment,
think of programs apart from the computer. As an example,
think of a source program coded in COBOL or PL/I. Its
instructions might be additions, 'move data' operations or
branch operations. Data descriptions will have names; they
might be names like TAX, EXEMPTIONS, or CREDITS.
Any input or output operation needs file names and record
names. Some instructions, or groups of instructions, have
names that are referenced in a branch operation.

The source program, as a combination of symbolic in
structions, data descriptions and I/O operations, exists in a
space built by the programmer. We will call this space a
symbolic name space, the combination of symbolic in
structions and symbolic names built by the programmer to
implement a computer application. In this symbolic name
space a programmer creates, manipulates, and references
the names of instructions, data elements, input/output files
and input/output records as required by the logic of an
application.

01

I

ADDRESS SPACE

-------} 110 I
DESCRIPTIONS

------ ~ g~~~RIPTIONS I
J

INSTRUCTIONS

Figure 1

Lesson 2. Relocation

for symbolic names. This process is called translation. After
translation, the range of addresses bounded by the program
is called its address space. This is indicated by the X in
Figure 1.

The compiler generally assigns addresses beginning at lo
cation zero, and all other addresses are contiguous from
that beginning location. These addresses appear in the out
put of the compiler, the object module, in instructions or
other constants. Thus; the program's address space is
created during compilation (or assembly). The address
space can be further resolved or combined with the address
space of another program to form an even larger address
space. This is usually done by a program called a linkage
editor. The program's address space can be stored in
punched cards or within the system in a direct access file.
Once stored, the program is ready to be loaded into the
computer for execution.

Real Storage

Computer storage has been called memory, processor
storage, main storage and real storage. In this text we will
use only the term real storage. Figure 2 shows a real storage
that contains 256K positions. (Note: The symbol "K'',
when used in this text assumes a hexadecimal machine. The
symbol "K" then represents 1024 storage positions with a
fe\11 exceptions. These exceptions appear later in the text
where "K" is used to represent 1000 storage positions only
for ease of illustration and calculation. Each exception will
be noted in the text where it appears.)

ADDRESS

REAL STORAGE
0

In preparing a source program - the symbolic name 256K ______ _.

space - for execution, the programmer submits it to a
language compiler. The compiler converts the symbolic ele- Figure 2

ments of the language to computer instructions, data strings
and control blocks. The compiler substitutes real addresses

Lesson 2. Relocation 3

---'-'_,_,_, ___ I- ----4096 POSITIONS
12 bits

....... __._ ... 1_1.__..1 1.__....._.___.._ i....&..~'- ----16,777,216 POSITIONS
24 bits

Figu,re 3

Each unit of real storage can be located or addressed by
the addressing structure of the computer's Central Process
ing Unit (CPU). A computer's unit of storage contains the
smallest addressable entity in real storage. In the
System/370 the unit of storage is a byte. The example in
Figure 2 would have 256K bytes, each byte addressable by
the CPU. A computer's addressing structure sets the theo
retical upper limit on its real storage size. This is shown in
Figure 3.

A 12-bit address can locate only 4096 real storage po
sitions. A 24-bit address can locate 16,777 ,216 real storage
positions; this, in fact, is the size of the address in
System/370.

A computer's real storage size is fixed with a variety of
sizes to select from. Figure 2 shows a real storage of 256K
positions. We could have used 128K, 512K or even 1024K.
No matter what size you select, real storage is a very
valuable system resource. You probably select the storage
size as carefully as you select the model of your computer.

To execute a program in a computer, instructions and
data in the program's address space must eventually be
loaded into specified real storage locations in the computer.
This process is equivalent to allocating specific machine re
sources to the program. In particular, part of a computer's
real storage must be allocated to hold a program's in
structions, data elements, control blocks, and Input/Output
areas. Real storage plays a central role in a computer instal
lation because a program cannot execute until it resides in
real storage. Real storage is also expensive compared with
other storage media like disk and tape. Managing this
valuable resource deserves special attention. Real storage
management techniques affect the programmer's job. If an
operating system uses storage well, the programmer's job is
easier. Otherwise, a programmer spends part of his time

designing the management of real storage, compensating for
the operating system.

Types of Relocation

How is the compiled program's address space translated
into locations in real storage for execution? When does this
translation occur? Answers to these questions relate to pro
gram relocation; and relocation techniques relate directly to
real storage management.

We define relocation as the translation of addresses in a
program's address space to specific locations in real storage.
The type of relocation depends on the time at which trans
lation occurs. Translation may occur at two different times:

1. When a program is loaded for execution. This is called
static relocation. The result is a program that uses
fixed real storage locations when it is run. In other
words, the program is bound to real storage locations
at load time.

2. During program execution. This is called dynamic re

location. If a computer has a dynamic relocation
capability, a program is not bound to specific real
storage locations during its execution.

Static Relocation

Simple program loading may occur as shown in Figure 4.
This technique was used for systems like the IBM 1401 .

Translation was done once at compilation or assembly
time in the manner that we described before. What resulted
was an address space with a zero origin as shown in Figure
4. The program's address space always used corresponding

REAL STORAGE ADDRESS SPACE

Figure 4

4

0 ------- -------
LOADING PROGRAM ASSEMBLY

A COMP! LATI ON

64K ___ ----- _ -- - - - -------

112K _____ _

PROGRAM
A

locations in real storage beginning at location zero. Thus, it
was called an absolute program. There was no relocation of
addresses in the program's address space. The program was
simply loaded into real storage beginning at location zero.
All programs that ran on the 1401 were loaded beginning at
location zero; there was no possibility for multipro
gramming. When a program's address space exceeded real
storage size (Figure S), the programmer had to solve the
problem - usually by creating overlays or using multipass
techniques.

REAL STORAGE ADDRESS SPACE

or--1~----, PRO~RAM. I°
48KL__J_____ 48K

fJ// I I/! l;~<'.JI s4K

Figu,re 5

The Disk Operating System (DOS) on System/ 360 uses a

variation of this process. Compilers translate symbolic
names into an address space with a zero origin and in a
relocatable form. The address space can then be further
translated by the linkage editor into real storage locations
with a different origin (Figure 6, Step 1).

REAL STORAGE ADDRESS SPACE
0 0

SUPERVISOR PROGRAM

------ A
20K

62K

PROGRAM
A

82K
82K

256K _______ _.

Figu,re 6

Figure 6 (Step 2) indicates that after the linkage edit
translation Program A executes in the same contiguous real
storage locations every time it is run. This is always the case
unless you retranslate (or re-linkage edit) Program A. Multi
programming is possible with this scheme; however, it re
quires a lot of preplanning. Consider the case in Figure 7.

Program A is running. Program B and Program C have
been translated for loading into the same contiguous real
storage locations used for Program A. B and C are waiting
to run but they must wait until Program A completes -
even though real storage locations from 90K to l 20K are
idle.

REAL STORAGE
0

SUPERVISOR PROGRAMS WAITING
60K

M

90K

Figu,re 7

Techniques of static reiocation eliminate this problem.
With static relocation, translation of a program's address
space into real storage locations does not occur until just
before execution begins, when the program is loaded. It is
called static because it only happens once, before program
execution. Examine Figure 8.

RUN 1

REAL STORAGE

o SUPERVISOR

ADDRESS SPACE
/ 0

_.......-~0 PROGRAM
_...,,,, t>-~' A ,, o" ~~ ,,.. _____ __,,

92K1-------"""" q.~~pl>-~-""""

..._ _____ ..,.
174K

RUN 2
REAL STORAGE

0
SUPERVISOR

174K

256KL-------•

Figure 8

.....
/

ADDRESS SPACE
0

PROGRAM
A

,,_ ______ ... 82K

In Figure 8, RUN 1 shows Program A loaded into a
contiguous area of real storage beginning at location 92K.
This static relocation of Program A occurs just before RUN
1 begins. RUN 2 in Figure 8 shows the same Program A.
For RUN 2, however, the same Program A is relocated and
loaded into a different contiguous area of real storage that
begins at location l 74K. A system that waits to relocate

Lesson 2. Relocation 5

until program load time has the best chance to effectively
allocate contiguous real storage areas in a multiprogram
ming system. OS on System/360 uses the static relocation
technique for real storage management very effectively. In a
static relocation system a program is bound to its real
storage locations until execution ends. Thus, there is no
opportunity to move a program and reallocate real storage
during program execution.

Dynamic Relocation

Consider a multi:wogramming system. Program A, Program
B and Program C in Figure 9 represent three programs
whose address spaces have been statically relocated into
contiguous areas of real storage.

Figure 9 also shows Program D waiting to run. Because
this is a static relocation system, Program D cannot run
until SOK of contiguous real storage becomes available.
Even though a total of SOK of real storage is available, it is
not contiguous. Therefore, it is wasted. This condition is
called fragmentation of real storage. It happens in static
relocation systems like OS on System/360.

REAL STORAGE ADDRESS SPACE
0

~o SUPERVISOR

SOK

75K

~/II!~ ~2~~~
95K

PROGRAM
A

PROGRAM
B

205

-~Rt ~~~~
PROGRAM

c

256K

Figure 9

6

How can this wasted real storage be recovered? Figure
10 shows Program D of the previous example with a differ
ent structure.

ADDRESS SPACE
PROGRAM D

0

SEGMENT 1

20K

SEGMENT2
0

10K
0

SEGMENT3

20K

Figure 10

Assume Program D's address space has been subdivided
into three parts called segments: Segment 1 is 20K;
Segment 2 is 1 OK; and Segment 3 is 20K. We will assume
that Program D is formatted into its segment structure by a
program like the linkage editor. The real storage lost
because of fragmentation in Figure 9 can now be used since
the three segments of Program D will fit into the three
fragments of real storage (Figure 11).

ADDRESS SPACE
REAL STORAGE PROGRAM D

0 0
/ SEGMENT1 /

SUPERVISOR / 20K
/ 0

/ SEGMENT2 10K /
0

75K
SEGMENT 3 SEGMENT 1

20K 20K

95K
PROGRAM

A

125K SEGMF;NT2
10K

135K

PROGRAM
B

2osi<
$EGftllf;NT 3

20K

225K

PROGRAM
c

256K

Figure 11

Assume further that Program D's segments were loaded
into real storage without relocation. Thus, the addresses in
each segment are related to a starting address of zero and
they do not correspond to the real storage addresses in
which they are actually loaded. They are related only to the
origin of the segment itself and are called relative addresses.
Another way to think of Program D's addresses is this: they
are related to its address space and they are still untrans
lated. When are these relative addresses translated? During
program execution. Only when an instruction or data ele
ment is referenced is its relative address translated into the
address of its real storage location. This happens continu
ously during program execution for each instruction and
data element referenced.

Tltis type of translation is called dynamic relocation and
it is performed by a special hardware feature called the
Dynamic Address Translation (DAT) Feature.

Our example with Program D shows a type of dynamic
relocation that uses a segmented program structure. With
dynamic relocation, a program's address space is never
bound to its real storage locations, even during execution,
because the program's addresses are translated automati
cally by the DAT Feature during its execution. Thus, there
is an opportunity to manage or reallocate real storage
during program execution in contrast to static relocation.
We will return to this topic later after we explain how
translation works in a dynamic relocation system in the
next lesson.

In summary, you should know that there are two types
of relocation:

1. Static relocation which, occurs at program load time.
2. Dynamic reiocation, which occurs continually during

program execution.
Each type of relocation has its effect on the use of real

storage in a computer system.

Lesson 2 Test Questions

1. The theoretical maximum size of a computer's real
storage depends on

A. a computer's addressing structure
B. a computer's CPU speed
C. a computer's real storage size
D. a computer's auxiliary storage size

2. The process of translating addresses in a compiled pro
gram's address space to their locations in real storage is
called
A. compilation
B. assembly
C. relocation
D. segmentation

3. The two different types of relocation described in this
lesson are distinguished by the that
translation occurs.

4. Name the two general types of relocation presented in
this lesson.

5. Segmentation is one type of
A. simple program loading
B. static relocation
C. dynamic relocation

6. When a program's address space is relocated just before
execution begins, each time the program is executed,
this is called
A. simple program loading
B. static relocation
C. dynamic relocation

7. When a program's addresses are translated throughout
program execution this is called
A. simple program loading
B. static relocation
C. dynamic relocation

80 The DOS li_n_kage editor on System/360 is a variation of

the process used for
A. simple program loading
B. static relocation
C. dynamic relocation

9. The relocating loader in
example of
.1.A;,.. si...~ple progra..111 loading
B. static relocation
C. dynamic relocation

on System/360 is an

10. Dynamic relocation is a type of software relocation.
(True/False)

11. Static relocation is a type of software relocation.
(True/False)

Lesson 2. Relocation 7

Lesson 3. Segmentation and Paging

Organizing programs into parts called segments is a portion
of one technique used for dynamic relocation. This was
introduced in the previous lesson. It appears that segmen
tation is better than static relocation for managing a com
puter's real storage. But we never explained in detail what
segments are and how translation occurs during execution.
In this lesson you will find answers to these questions and
others like: what is paging, how is paging different than
segmentation, and how are segmentation and paging used
together?

Segmentation

In our conceptual segmentation system, the programmer
will code programs in a single symbolic name space and the
operating system will automatically segment them. The re
sult will be a program whose address space has one or more
variable-size segments. What rule the operating system uses
to form segment boundaries is not important to our presen
tation. As an example, it might be based on program
modules or on the separation of instructions and data into
separate segments.

For purposes of our discussion, all you need to know is
that a program's address space is subdivided by an operating
system into one or m~re segments. The programmer will
concentrate on problem solutions and the operating system
will segment them to better manage real storage.

Figu.re 12

8

PROGRAM A's
ADDRESS SPACE

------- 0
SEGMENT

1

50K -------
SEGMENT 0

20,000
2 c::::::J 25K ---- --- 0 SEGMENT
3

32K -------
SEGMENT

(}"

4

~s~~~~~]
,~QK

23K

When a program's address space is segmented, how does
the computer reference the instructions and data de
scriptions within a segment? What does an address look like
in a segmented address space? A programmer wouldn't need
to know answers to these questions to program for a
segmentation system. However, for you to understand the
nature of segmentation as a type of dynamic relocation,
you will need to know these answers. Look at Program A in
Figure 12.

Our conceptual operating system has divided Program A
into five segments. Each segment has an origin address of
zero - this is always the case; each segment is a contiguous
space; and, in this example, each segment is different in
size. How can you reference location 20,000 in SEGMENT
2 as shown in Figure 12? To say that its address is location
20,000 is ambiguous. All five segments in Program A have a
location of 20,000. The address of this location, then, must
also indicate the name of the segment. This is shown in
Figure 13.

SEGMENT
NAM-E DISPLACEMENT

1 2 1 20,000 I

ADDRESS STRUCTURE

Figu.re 13

In any segmentation system, segments within a program
must have different names. The form of a segment name is
not critical. In our conceptual system, we use numbers to
name segments. This is the actual form used in many
segmentation systems.

In a segmented program then, the address of an in
struction Gr a data location will have a two part structure
(s,i) where

s represents the segment name, and
i represents the address of a location within a segment.
This forms a relative address. The address is related to

the segmented structure of the address space.
If a computer system has a 24-bit address structure like

the System/370, segment location addresses will be 24 bits
long and split into two parts. Figure 14 shows one way to
structure the address.

With this scheme a program's address space could have
from 1 to 256 segments - the 8 bits used for Segment
Number. Each segment could have from Q to 65,535 (64K)

SEGMENT
NO. DISPLACEMENT

I 8 bits I 16 bits

0 7 8 23

ADDRESS STRUCTURE

Figure 14

locations - the 16 bits used for Displacement. The
structure of segment addresses sets two important limits:

1. The maximum number of segments that may exist in
a program's address space.

2. The maximum displacement of any segment in the
address space.

Figure 15 shows another way to structure a 24-bit
address.

Figidre 15

SEGMENT
NO.

1 bits I
IQ 617

1 to 128 l
Segments I

DISPLACEMENT

11 bits I
231

I

0 to 131071 Positions :
in each Segment :

ADDRESS STRUCTURE

When compared to the address structure in Figure 14,
there is a small change. One bit from the SEGMENT
NUMBER part was transferred to the DISPLACEMENT
part of the address. This makes a significant change in the
structure of the segmented address space. The maxi-rnum
size of segment displacement is doubled, and the maximum
number of segments in an address space is cut in half.

At this time you should know what segments are and
how addresses are structured in a segmented address space.
These topics relate to the format of a segmented program's
address space.

Dynamic Address Translation Using Segmentation

To execute a segmented program, address translation must
occur each time an instruction or data element is referenced
during program execution. To perform translation the com
puter must have a special CPU hardware facility or feature
called the Dynamic Address Translation feature (DAT
feature).

We will now describe why translation occurs and what
translation involves in a segmentation system.

In the preceding lesson you examined a static relocation
system. executing three programs - Program A, Program B

and Program C - while Program D was waiting to run.
Figure 16 shows this situation.

In Figure 16 Program D contains three segments. Pro
gram D's- address structure uses the two part relative address
that we just described. We will assume that Program D is
presently stored in a system library.

REAL STORAGE
0

SUPERVISOR

~;1,~ll
DJ)~ I

75K

95K

PROGRAM A

•10~'-v //(/Iii'/, 0
125K

135K

PROGRAM B

W,h $///,ij, 'l/71 il;.

aJJM
205K

225K

PROGRAM C

Figure 16

ADDRESS SPACE
PROGRAM D

SEGMENT 1
0

20K
i--~~~~~~20K

SEGMENT 2 O
~-......;.;1 O;.:K.:.... _ _.10K

0
SEGMENT 3

20K I
._~~~~~_.20K

SEG.
NO. DISPLACEMENT

I I
ADDRESS STRUCTURE

Figure 17 shows Program D's segments loaded. What
happens at load time? The operating system moves each
segment of Program D into real storage: however, no trans
lation occurs. The segments of Program D still contain their
relative addresses. The computer's CPU references real
storage locations only by using an absolute address. (The
address size is 24 bits for the System/370.) If the CPU uses
D's relative addresses to reference real storage, it will re
ference incorrect real storage locations.

Figure 18 shows SEGMENT 1 of Program D in real
storage. (All numbers are decimal.) To perform a certain
instruction, the CPU needs data from location 15 ,000 in
SEGMENT 1. This data is actually at real storage location
90,000. Because Program D's addresses were not translated
before execution began, the CPU cannot use the relative

REAL STORAGE
0

SUPERVISOR

75K PROGRAM D
SEGMENT 1

90 I 000 c:::::::J
95K

PROGRAM A

125K PROGRAM D
SEGMENT 2

135K

PROGRAM B

205K
PROGRAM D
SEGMENT 3

225K

PROGRAM C

256K.__ _____ _

0 23
ABSOLUTE ADDRESS

Figure 17

REAL STORAGE
0

SUPERVISOR

75K PROGRAM D
SEGMENT 1

15;000 c:::J
95K

PROGRAM A

Figure 18

10

ADDRESS SPACE
PROGRAM D

SEGMENT 1

0

..t------~20K
0

SEGMENT 2
-------~10K -0

SEGMENT 3

SEG.
NO. DISPLACEMENT

I I
0 7 8 23

RELATIVE ADDRESS

RELATIVE ADDRESS

I 1s,ooo

ABSOLUTE ADDRESS

1 90,000

address to fetch the data. Clearly, then, Program D's rela
tive address requires translation before the CPU executes
this instruction. In fact, Program D's relative addresses re
quire translation continuously during program execution .
This technique - waiting to translate a program's addresses
until just before executing instructions continuously during
program execution - is called dynamic address translation.

How does translation occur during execution? Special
hardware is required. Also, the operating system must build
a table that is referenced during translation. This table es
tablishes the correspondence between a program's
segmented address space and the actual locations of
segments in real storage. Consider the case of Program D
again in Figure 19. Programs A, B, and C are not shown.
For this example, numbers are decimal.

As segments of Program D are loaded into real storage,

the operating system builds a segment table for the pro
gram. The segment table is built in real storage. Each entry

in the segment table identifies the origin of a segment in
real storage; thus, the second entry of the segment table in
Figure 19 shows SEGMENT 2 of Program D beginning at

real storage location 125 ,000. There is a table entry for
each segment in a program's address space. Program D has
three segments, thus, its segment table has three entries. In

our conceptual segmentation system, each program that is
executing has a segment table in real storage. This proce
dure - building a segment table for each executing program
- is called mapping. In effect, the segment table maps
segment origins in real storage. In addition to the segment
table, a special-purpose control register, called the Segment
Table Origin Register (STOR Register), is also used for
dynamic address translation. The register's name describes
its function. It points to a segment table's real storage
origin address. The segment table that it locates maps, or
represents, the program that is currently executing. Let's
say Program A is executing. Program A's segment table be

gins at real storage location 18,000. Then the Segment
Table Origin Register contains the address 18,000. If Pro
gram B interrupts Program A and begins to execute, the real
storage location of B's segment table is placed into the
Segment Table Origin Register.

We have described the translation tools. Let's see how
they translate. We'll return to Program D and continue to
use decimal numbers during this example. Program D's seg
ment table has three entries. The segment table's origin
begins at real storage location 68,000. See Figure 20.

ADDRESS SPACE SEGMENT TABLE
PROGRAM D (FOR PROGRAM D) REAL STORAGE

0
REAL STORAGE 0--~ SEG. NO. SEGMENT 1

20K 1
SEGMENT 2

2 10K
0

SEGMENT 3 - 3

20K

SEG.
NO. DISPLACEMENT

I I

Figure 19

The relative address of location 15 ,000 in SEGMENT 1
will be translate.d. The following steps take place during
translation:

1. The Segment Table Origin Register points to the
origin of Program D's segment table. In our example,
this is the real storage location 68,000.

2. The segment number in the relative address is used as
an index into the segment table. In the example, it

points to the first entry.

68,000-

SEGMENT TABLE
ORIGIN REGISTER

68,000

PROGRAM D's
SEGMENT TABLE

SEG. LOCATION NO.

1 75,000

2 125,000

3 205,000

LOCATION

75,000 1 SUPERVISOR.,

~ .. 125,000

205,000 75K PROGRAM D o
SEGMENT 1

20K

3. The location specified in the segment table entry indi
cates the origin of the segment in real storage. The
displacement in the relative address is added to the
origin and this results in a real storage address. In the
example, the displacement of 1_5,000 is added to
SEGMENT l's origin - 75 ,000 - and this results in
the real storage address of 90.000.

Figure 21 shows these three steps.

RELATIVE ADDRESS

15,000

Lesson 3. Segmentation and Paging 11

Figure 21

SEGMENT TABLE
ORIGIN REGISTER

68,000

PROGRAM D's
SEGMENT TABLE

SEG. LOCATION
NO.·

1 75,000

2 125,000

3 205,000

Using the process and segment table shown in Figure 21,
take a moment to translate the relative address shown in
Figure 22, using decimal arithmetic.

SEG.
NO. DISPLACEMENT

3 13,000

Figure 22

REAL STORAGE

SUPERVISOR

PROGRAM C
SEGMENT 2

Figure 23

12

ADDRESS SPACE
PROGRAM D

SEGMENT 1

0

1o------~27K
0

SEGMENT 2.

t------~8K
0

SEGMENT 3
...._ _______ 8K

2

RELATIVE ADDRESS

1 1 1 s,000

ABSOLUTE ADDRESS

1 90,000

Your result should be an absolute address of 218,000.
Because a segmented program has all relative addresses,

this address translation process happens continually during
a program's execution. Translation is done automatically by

the Dynamic Address Translation Feature (DAT feature)
which uses the Segment Table Origin Register and the pro

gram's segment table. If the operating system needs to
move a segment to another area of real storage during pro

gram execution, this presents no problem. First the
segment's instructions and data would be moved. Then the
segment table entry of the affected segment would be

changed to indicate the new origin location, and execution
would resume. This presents the possibility of dynamically

managing real storage during program execution. The
example shows how segmentation can be used as a type of

dynamic relocation.
Until now, we have presented segmentation as a better

way to manage real storage. With segmentation, we can
achieve less real storage fragmentation than in static reloca
tion systems like OS on System/360. Segments are smaller
than programs and, therefore~ with segmentation, fragments
are smaller. However, fragmentation does still exist. In the
following topic we will add a variation to our segmentation
system that will greatly reduce real storage fragmentation.

Paging

Let's look at our segmentation system while it is multipro

gramming. The system has been running for a while. At
present it is multiprogramming three segmented programs.
Figure 23 depicts such a system. The shaded areas in Figure
2 3 represent unused pieces of real storage between
segments. These unused pieces are the fragments that we
mentioned a moment ago. Fragments between segments re
sult during system operation simply because there isn't

enough contiguous real storage to load the segments in the

ADDRESS SPACE
PROGRAM D

ADDRESS SPACE
PROGRAM D o--------·- --- - --- 0

PAGE 1 4K
PAGE 2

0

4K

PAGE 3
0

4K
SEGMENT 1 PAGE4

0
SEGMENT 1

4K
PAGE 5

0

4K

PAGE 6
0
4K
0 PAGE 7

-'1.-·:1 l!,, .. z·· 3K
4K

27K oi-----------t --------

SEGMENT 2
8K..,__ ______ ---t

0

I SEGMENT 3
8K ___ _

Figu,re 24

next program that is waiting to run. Figure 23 represents

this situation.
In Figure 23 Program D is waiting to run. For the

moment we will assume that all of the segments in a pro

gram must be loaded before it can run. Program D needs

43K of real storage in three contiguous areas. These three

real storage areas must be at least 27K, 8K and 8K in size to

load the three segments in Program D. In this situation,
depicted in Figure 21, these real storage areas are not

available and Program D must wait. 44K bytes of real

storage are wasted during this condition. We face the same

kind of problem that existed with static relocation. How do
we solve the problem? There are several ways to approach

it:
1. Stop all execution and reorganize the real storage lay

out by dynamically relocating the executing pro

grams. This requires moving the segments in real
storage, changing their segment table entries, loading

Program D's segments and restarting execution. This
approach can create a large amount of system

overhead.
2. Let the programmer arbitrarily create small segments.

This would destroy our conceptual idea of segmenta
tion - a logical substructure of a program's address

space created by an operating system - and place the

burden on the programmer.

3. Let the operating system cut each segment into

smaller pieces. This, in fact, is done with a

segmentation and paging system.

In a segmentation and paging system, segments are sub

divided into one or more units called pages. Pages are fixed

in size. Page size selection is not an arbitrary decision. One

PAGE 1

PAGE 2

-t'AGE 1

PAGE 2

0
4K
0
4K
0

SEGMENT 2

SEGMENT 3 1 4~KK ----------------
factor - the one we're now considering - is the reduction

of fragments in real storage. If page size is small enough

compared to the typical size of segments, fragments

between segments are reduced considerably. In our dis

cussion of concepts, we will assume a page size of 4K.
Paging looks like a good approach to reduce real storage

fragments. Let's try a paging technique to solve the
fragmentation problem that exists in a pure segmentation

system. Figure 24 shows Program D's address space using

two formats - segments only and a combination of

segments and pages.
When paging is used; each segment is divided into fixed

size pages. In our case each page is 4K in size. In Program

D, SEGMENT 1 has seven pages, SEGMENT 2 has two

pages and SEGMENT 3 has two pages. Some pages may

have wasted space because the instructions and data in a

segment may not completely fill the last page of the

segment. Note the shaded area in Figure 24. SEGMENT 1

has 27K storage locations. The first six pages contain 24K

locations and 3K are contained in PAGE 7. Because page

size is fixed, this results in 1 K of unused locations in PAGE

7. This condition can exist only in the last page of a

segment if segment size is not an exact multiple of page

size. When such a page is loaded into real storage, its unused

portion will result in the same amount of unused real

storage. This is called intra-page fragmentation. Although

this results in some waste, the waste is insignificant when

compared to the increased utilization of real f,torage that is

possible when we eliminate the unused fragments between

segments.
Paging adds another level of structure to a program's

address space. Instead of segments and locations within

Lesson 3. Sef!mentation and Pa2in2 13

SEGMENT 1

SEGMENT 2·

SEGMENT 3

Figure 25

PROGRAM D's
ADDRESS SPACE

PAGE 1

PAGE 2 .- ""'

PAGE 3

PAGE 4

PAGE 5

PAGE 6

PAGE 7

PAGE 1

PAGE 2

PAGE 1

PAGE 2

1500

segments, the address space is structured into segments,
pages within segments and locations within pages. This new
level also requires a new address structure to reference in
structions and data locations within the address space. Con
sider Program D in its segment-page address space as shown
in Figure 25.

We would like to address an instruction that begins at
location 1500 in PAGE 2 of SEGMENT 1. An absolute
address of 1500 is completely ambiguous. All pages contain
locations from 0 to 4K, therefore, every page in Program D
has a location 1500. Even a two-part address structure is
ambiguous.

Figu.re 26

Figure 27

SEG.
NO. DISPLACEMENT

1 I 1500 I

PAGE
NO.

2

DISPLACEMENT

I 1500

If the first part of the address structure identifies
SEGMENT NUMBER (Figure 26) the displacement of 1500
would really point to location 1500 in PAGE 1. In reality,
it is in PAGE 2 of SEGMENT 1. If the first part of the
address structure identifies PAGE NUMBER (Figure 27),

structure. SEGMENT NUMBER, PAGE NUMBER (within
segment) and DISPLACEMENT (within page) must all be
indicated. Figure 28 shows this kind of structure.

ADDRESS STRUCTURE

SEG. PAGE DISPLACEMENT
l\l_Q. NO.

I 2 1 1 soo I
0 7 8 1112 23
~8 bit!_~4 bit~,IOllll,~t------12 bits •I

1 to 256 1 to 16 4096 LOCATIONS
SEGMENTS PAGES (IN A PAGE)

(IN AS-EGMENT)

Figure 28

The address still contains a total of 24 bits. The first 8
bits contain the segment number. This allows up to 256
segments· in a program's address space. Since four bits are
used for PAGE NUMBER, each segment may contain up to
16 pages. The DISPLACEMENT portion of the address
indicates, within the page, the location of the instruction or
data being addressed relative to the first location in the
page.

4K

SK

4K

16K

REAL STORAGE

SUPERVISOR

PROGRAMC
SEGMENT 2

this also is ambiguous. There are three PAGE 2's in Program 12K

D, one in each segment. To clearly identify the location
indicated in Figure 25 requires a three-part address

14

Figure 29

ADDRESS SPACE
PROGRAM D TABLES

PAGE 1 r--------1- ---- ---
PAGE 2

PAGE3
SEGMENT 1 PAGE4

PAGES

PAGE 6

PAGE 7

SEGMENT2
PAGE 1

PAGE 2

PAGE 1
SEGMENT3

PAGE 2

' '

128K

184K

' ' ' ' '

212K

216K

220K

224K ADDRESS STRUCTURE ' ', '

SEG. PAGE DISPLACEMENT
NO. NO.

I I
RELATIVE ADDRESS

Figure 30

Thus, a three-part address is used to locate, or reference,
instructions and data in a segment-page address space. The
address has the structure (s,p,i) where:

s identifies the segment name of the location within a
program's address space,

p identifies the page name (within the segment) of the
location, and
points to the exact location being addressed within
the page.

Formatting a program's address space into a segment
page structure is done automatically by our conceptual
operating system. The programmer n!erely codes a program
related to the needs of the problem being solved.

' ',
' ' ',

' ' '

ADDRESS STRUCTURE

I
ABSOLUTE ADDRESS

Dynamic Address Translation Using Segmentation
and Paging

We will now demonstrate the advantage of a system that
uses segmentation and paging. To do this we'll return to our
multiprogramming system that used segmentation only.

Real storage is pictured in Figure 29. Three segmented
programs are executing and a total of 44K real storage lo
cations are unused. This unused real storage has been sub
divided into page frames. Every real storage page· frame is
4K in size, the same size as a page. When pages are loaded
into real storage from a program's address space, they are
placed into page frames of real storage. Both are identical in
size. Let's load Program D into page frames.

The loading process is shown in Figure 30. Segments are
loaded, one page at a time, into page frames. As loading
proceeds, tables are built to identify, or map, the segment
and page locations in real storage. These tables will be used

Lesson 3. Segmentation and Paging 15

for dynamic address translation during program execution.
Figure 30 shows how pages in Program D might be loaded.
these pages can be placed in any page frames except those
that are shaded (they are already occupied). Only one rule
applies. Pages may be placed in any free page frame.

What types of tables do you need for dynamic address
translation? Pure segmentation required a segment table to
map a program's address space. Segmentation and paging
systems use one segment table and multiple page tables -

one page table for each segment in a program's address
space. Let's first take a look at this new table, the page
table. We will use decimal numbers during this example.
Because pages are placed in page frames of real storage, the
page table indicates what page frame contains each page. In
Figure 30 the seven pages in SEGMENT 1 were loaded into
page frames. Figure 31 shows the page table that was built
to identify their real storage locations.

PAGE REAL STORAGE
NO. LOCATION

1 64,000
2 124,000
3 128,000
4 184,000
5 212,000
6 216,000
7 220,000

PAGE TABLE
(for SEGMENT 1 of PROGRAM D)

Figure 31

The page table, then, tells the computer where a page is
located in real storage during dynamic address translation.
The page table itself is in real storage, and each segment in a
program has a page table.

What tells the computer where to find the page table?
This is done with an entry in the program's segment table -
because each segment has its own page table. Program D, in
Figure 30, has three segments and, therefore, three entries
in its segment table. It will have three page tables - one to
describe each segment. Let's assume that Program D's page
tables are at the following locations:

I. The page table that identifies SEGMENT 1 's page lo
cations begins at real storage location 30,000.

2. The page table that identifies SEGMENT 2's page lo
cations begins at real storage location 30,200.

3. The page table that identifies SEGMENT 3's page lo
cations begins at real storage location 30,300.

Program D's segment table will have the structure and
entries shown in Figure 32.

16

Figure 32

PROGRAM D's
SEGMENT TABLE

SEG. PAGE TABLE
NO. LOCATION

1 30,000
2 30,200
3 30,300

Thus, in a segmentation and paging system, segment
table entries point to (map) the real storage locations of
their corresponding page tables.

Figure 33 contains all the tables needed to map Program
Das it was loaded in Figure 30. This mapping assumes that
the segment table begins in real storage location 28,000.

In Figure 33, the real storage location for each table is
indicated in the table's upper left hand corner. We'll assume
Program D is executing. The segment table origin register
points to the real storage origin of Program D's segment
table. The segment table origin register and the segment
table and page tables are the tools used by the computer's
Dynamic Address Translation feature (DAT feature). Let's
see how the computer translates relative addresses during
program execution. We will continue to use decimal
numbers.

Figure 34 contains Program D's translation tables and a
relative address that references a location in its address
space. (We'll assume that this is the location of an in
struction.)

This relative address references an instruction in
SEGMENT 1, PAGE 3, at location 1564. To translate the
address, the following sequence occurs as noted in Figure
34:

1. The segment table origin register points to the origin
of Program D's segment table, real storage location
28,000.

2. The segment number in the relative address is used as
an index to its segment table entry. This entry identi
fies the origin of the segment's page table, real storage
location 30,000.

3. The page number in the relative address is used as an
index to its page table entry. This entry identifies the
origin of the page frame that contains this page, in
our example, location 128,000.

4, The displacement in the relative address and the page
frame location are combined to form the absolute
address 129564. Although we use addition in our ex
ample, in actual systems the page frame address and
the displacement are linked - simply joined together
- to form an absolute address. In other words, they
are concatenated. Our example uses decimal numbers

Figure 33

Figure 34

~ -a
Vo

'>I

SEGMENT TABLE
ORIGIN REGISTER

28,000 J
PROGRAM D's

SEGMENT TABLE
SEG. PAGE TABLE
NO. LOCATION

1 30,000
2 30,200
3 30,300

SEGMENT TABLE
ORIGIN REGISTER

~ +
SEGMENT TABLE

SEG. I PAGE TABLE
NO. LOCATION

1 30,000
2 30,200
3 30,300

PAGE TABLE (for SEG MENT 1)

30,000...,..
PAGE REAL STORAGE
NO. LOCATION

i-- ~ 1 64,000

~
2 124,000
3 128,000
4 184,000
5 212,000
6 216,000
7 220,000

~ PAGE TABLE (for SEG

PAGE REAL STORAGE
NO. LOCATION ...,..
1 224,000

MENT2)

2 244,000

PAGE TABLE (for SEG MENT 3)

.Jo PAGE REAL STORAGE -.fa v.,,. NO. LOCATION

1 248,000
2 252,000

RELATIVE ADDRESS

SEG. PAGE DISPLACEMENT
NO. NO.

64,000
124,000

3 128,000
4 184,000

5 212,000

6 216,000

7 220,000

PAGE TABLE 129,564

PAGE REALSTORAGE ABSOLUTE ADDRESS
NO. LOCATION

30,200-+ 1 224,000
2 244,000

PAGE TABLE
PAGE REAL STORAGE

NO. LOCATION

1 248,000
30,300-+

2 252,000

Lesson 3. Segmentation and Paging 17

and addition for our convenience in demonstrating
this process to you.

This entire sequence in dynamic address translation is
done automatically by computer hardware (called the DAT
feature). In segmentation and paging systems, translation
occurs during the entire program execution. To be sure you
understand the process, translate the two relative addresses
that appear in Figure 35 using the tables in Figure 34.

Assume decimal numbers.

SEG. PAGE DISPLACEMENT
NO. NO.

,, I 3 I 2 I soo I
2. 1 5 300

Figu,re 35

Tbe first relative address results in a real storage location
of 252,800, the second results in location 212,300.

It might occur to you that a 'paging only' system -

instead of segmentation and paging - would be just as ef
fective for address space management as well as real storage
managemenL As we proceed, it will become more evident
that segmentation is a better way to manage a program's, or
a system's address space. Paging is a good way to manage a

system's real storage; it results in a minimum loss due to
fragmentation. Segmentation permits several additional

benefits, such as segment protection and less page table
space requirements, that we will consider in later lessons.

The combination of segmentation and paging results in
more benefits for a system's users than either a pure
segmentation or a pure paging system.

The implementation of segmentation and paging in a

multiprogramming sysrem could be done in two ways:
1. The entire system would use one segment table; it

would be one large address space, the system's ad

dress space. The supervisor and each executing
problem program would have entries in the segment
table to describe their structure and locations in the
system's address space. Each segment table entry
would be mapped (described) by a page table.

2. Each program running in the system would have its

own segment table; thus, each program would have a
separate address space. For every program, each
segment table entry would be mapped by a page
table.

We shall present more information on these two ap
proaches later in the text.

All the dynamic relocation benefits using segmentation
and paging are achieved by system hardware and software,
not by the people who use the system. The software organ
izes a program's address space into segments and pages,

18

builds its relative addresses, and builds segment and page
tables at load time. The DAT feature translates addresses
automatically during program execution. In the following

lesson we'll discuss some fine points about segmentation
and paging concepts, and introduce some additional

hardware used to assist the translation process.

Lesson 3 Test Questions

1. Segmentation is one type of
A. simple program loading
B. static relocation
C. dynamic relocation

2. A segmented address space contains
A. relative addresses
B. absolute addresses
C. real addresses
D. normalized addresses

3. Parts of real storage lost for some period of time

because they are too small to be used by programs wait

ing to begin execution are called
A. partitions

B. regions
C. fragments

D. sectors

4. The hardware translation of relative addresses in a

segmented or a segment-page format address space to
their real storage locations during program execution is
called,_ ____ _

5. In a segmentation and a paging system, page size is large
compared to the size of a segment. (True/False)

6. In a segmentation and paging system page size is
A. variable
B. fixed
C. unlimited

7. During dynamic address translation, the control register
that contains the real storage location of the segment
table is called the _____ _

8. To perform dynamic address translation a segmentation

and paging system requires
A. one segmented table and one page table for each

segment
B. two segment tables and one page table for each

segment

C. one segment table and two page tables for each
segment

D. two segment tables and two page tables for each
segment

9. In a segmentation and paging system, each segment
table entry points to the real storage location of its
A. page displacement
B. page boundary
C. page frame
D. page table

10. Page table entries point to the real storage location of
A. page pools
B. page frames
C. page displacements
D. segment boundaries

11. Using the segment and page tables in Figure 34 translate
the following relative addresses using decimal arithme
tic.

SEG. PAGE DISPLACEMENT
NO. NO.

A.I 2 I 2 I 3230 I
a. I 1 I 3 I 0032 I

12. In a segment-page formatted addiess space, segment size
and page size are determined by the
A. relative address size
B. real storage size
C. auxiliary storage size
D. relative address structure

Lesson 3_ Se!ImP.nt::ition ::incl P::iiYim:• 1 Q

Lesson 4. More about Segmentation and Paging

Compared to a static relocation system like OS, a segmen
tation and paging system appears quite complex. OS
manages real storage using regions or partitions that contain
an entire relocated program in one contiguous space. A
segmentation and paging system manages real storage using
page frames that contain pages with relative addresses.
These relative addresses require translation throughout exe
cution. As we proceed, however, it will become more evi
dent that a more sophisticated system that effectively
manages real storage is more desirable than requiring so
p his tic ate d programming techniques (from the pro
grammer) to manage real storage.

Page Frame Table

When we introduced paging in the last lesson, we showed
how pages are placed in page frames of real storage. In a
segmentation and paging system all of real storage is sub
divided into page frames. They are fixed in size and they
are allocated to users by the system's software. Figure 36 is
a schematic presentation of real storage. Its size is 128K.
Page frames are 4K in size.

In this example there would be 32 page frames available
for allocation. The status of each page frame, whether it is
in use - contains an active page - or whether it is available
for use, can be indicated in a table. The size of the table
will depend on the number of page frames in the system. In
our example with 32 page frames the Page Frame Table
would have 32 entries. See Figure 37.

0
REAL STORAGE

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

128K

Figure 36

In the Page Frame Table each entry has four parts:
1. The Page Frame Number identifies the page frame

described in the entry. It is an index to the table.
2. The Program ID contains the name of the program

whose page resides in the page frame. It simply identi
fies the program currently using the page frame.

3. The Segment and Page Number specifically identifies
the page contained in the page frame. This part and
the Program ID clearly identify the page.

4. The Status indicates whether the page frame is availa
ble. A zero indicates a free page frame; a one indi
cates a page frame in use. In Figure 37, all status
entries are zero; all page frames are free.

PAGE FRAME TABLE
PROGRAM

REAL STORAGE
PAGE FRAME

NUMBER
~

ID SEG & PAGE
~STATUS 1 L__NO.

0
1 2 3 4 1 ! 0 r-;-; [:::C--0

2 0 18 0
5 6 7 8 3 ! 0 19 0

4 0 20 i 0
9 10 11 12 5 0 21 0

6 0 22 0
13 14 15 16 7 ! 0 23 ~ 0

8 0 24 ! 0
17 18 19 20 9 0 25 T 0

10 j_ 0 26 0
21 22 23 24 11 l 0 27 ! 0

12 l 0 28 0
25 26 27 28 13 I 0 I 29 0

14 l 0 30 j_ 0
29 30 31 32 15 l 0 31 l. 0

128K ~
32 0

Figure 37

20

PAGE FRAME TABLE

SEG. & PAGE
PROGRAM NO.

PAGE FRAME 1f
NUMBER ' l

REAL STORAGE

0

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

23 30 31 32

128K

• SUPERVISOR

Figure 38

The Page Frame Table, then, is used to record the
allocation of page frames of real storage to user programs in
a segmentation and paging system. While segment and page
tables are used by the DAT feature for dynamic address
translation, the Page Frame Table is used by the operating
system for real storage management.

Let's put a supervisor in real storage. Assume that it
needs 32K. We'll use the first eight page frames. Figure 38
shows real storage and its related Page Frame Table.

The shaded area of real storage indicates the page frames
used by the supervisor; the first eight entries in the Page

REAL STORAGE
0

~---17 0
18 j_ 0
19 0
20 _;_ 0
21 0
22 0
23 0
24 0
25 ! 0

10 0 26 0
11 0 27 0
12 0 28 0
13 0 29 0

30 0 14 I 0

ill1J3lJ 16 I o I~ I

Frame Table are also shaded. Their status entry contains a
one, indicating in-use.

Now we'll load two programs into the system, Program
A and Program B. Program A requires 11 page frames - it
has a total of 11 pages; Program B needs 9 page frames - it
has 9 pages. Figure 39 shows ho'Y these pages might be
loaded into real storage and their effect on the Page Frame
Table. Notice that the pages in a program need not be
contiguous in real storage since their locations are mapped
in page tables.

When examining the Page Frame Table in Figure 39, it is

PAGE FRAME TABLE

• SUPERVISOR D PROGRAMA • PROGRAMS

Figure 39

Lesson 4. More about Se!>"rnent::ltion llnti Pll11imr 21

immediately evident what page frames are free and how
those in use are allocated. When Program A ends, its status
entries in the Page Frame Table are simply set to zero; the
same is true for Program B. As new programs are loaded
into real storage, page frames are allocated using the Page
Frame Table status entries. Thus, the Page Frame Table is
used by our conceptual operating system to indicate the
use of real storage at all times.

Segment Protection

Multiprogramming systems require some sort of storage
protection to prevent a program from referencing beyond
its address space and perhaps altering or destroying another
user's program. In System/360 and System/370 storage pro
tect keys provide this type of protection. In a segmentation
and paging system another higher level of storage pro
tection can be implemented in the form of segment pro
tection.

Because all storage references by a problem program go
through the segment and page tables for translation, a pro
tection mechanism can be built into the segment table
entries. Thus, if a program refers to a segment that is pro
tected, during address translation the system can generate a
program interrupt and prevent the illegal reference. By
using both segment protection and the storage protect keys

SEG. PAGE
NO NO.

a segmentation and paging system can provide a hierarchy
of storage protection.

Associative Array Registers

It may have occurred to you by now that programs will
execute more slowly if they use a segmentation and paging
form of dynamic address translation. After all, relative ad
dresses must be translated throughout program execution.
During translation, the CPU's DAT feature must reference
the segment and page tables and they reside in real storage.
Real storage speed is slow compared to the speed of the
CPU. It appears that the storage management improvements
gained in a segmentation and paging system will be counter
balanced by this reduction in execution speed. This would
be the case if it were not for some special hardware - called
associative a"ay registers - in these systems.

Associative array registers are special purpose devices,
much faster than real storage, that are used to compensate
for the relatively slow speed of table translation. In our
conceptual system we will use eight associative array regis
ters. System/370 models (with the DAT feature) have no
less than eight' special purpose devices to assist translation.
The larger models have a special device called the trans
lation look-aside buffer for fast translation. Figure 40
shows the structure of our conceptual system's eight associ
ative array registers.

DISPLACEMENT

SEGMENT AND REF. PAGE FRAME

I
I
I

SEG. NO. PAGE. NO. I

I I H
I

Figure 40

22

I
I
I

PAGE NUMBER BIT LOCATION
I

I _...

1
i

..a.
I
I

1
T
l
I

.1
1
J_

ASSOCIATIVE ARRAY REGISTERS

I
I
I
I DISPLACEMENT

: I ,---------'
I
I
I

RELATIVE ADDRESS
SEG. PAGE

DISPLACEMENT NO. .NO.

1.I 3 6 1024

2.1 1 4 324

Figure 41

The segment and page number portion of a relative ad
dress, when referenced in a program, is compared to the
first part of the registers. The registers contain the eight
most recently referenced pages from the executing program
identified by their segment and page numbers. If there is a
match with an entry in arty one of the registers, the corre
sponding page frame location is LINKED (or concatenated)
to the relative address displacement to result in the required
real storage address. Also, the reference bit of the register is
turned on. These eight comparisons occur at the same time,
in parallel. Because the associative array registers are very
fast devices, translation time is negligible.

\Vhat happens if them is no match between the rnlative
address and the associative array registers? Translation will
occur through the segment and page tables. In fact, trans
lation begins in the\ tables at the same time it begins in the

\

associative array registers. If there is no match in one of the
registers, translation is completed with the tables. The re
sulting page frame location and its related segment and page
number wouid then be placed in one of the associative
array registers. The register selected is determined by using
the reference hits.

Let's look at an example. Figure 41 shows the associ
ative array registers. Program A has been executing and its
eight most recently referenced pages are contained in the
registers. We use decimal notation in this example.

When the first relative address in Figure 41 is referenced,
translation will occur through the associative registers. Even
though translation also began through the tables, it is auto
matically stopped. Page 6 in Segment 3 is located in the
third register. I ts page frame location, which begins at
92,000, will be combined with the relative address displace
ment 1024 to form a real address of 93 1024. This trans-

SEGMENT AND REF. PAGE FRAME
PAGE NUMBER BIT LOCATION

2 I 3 0 32,000 J_
I

1 1 3 1 44,000

3 ; 6 1 92,000

3 I 7 1 64,000 l

3 I 5 1 84,000 J_
-.r

2 I 4 1 80,000 _._

1 T
2 1 56,000 I

~ ! 1 Annnn I I 8 I • "Tv,vvv

ASSOCIATIVE ARRAY REGISTERS

lation is extremely fast.
When the second relative address in Figure 41 is refer

enced, translation again begins through the registers and the
segment and page tables. Very quickly, the system finds no
match in the registers and translation continues uninter
rupted through the tables. Let's assume that Page 4 of
Segment 1 has an origin at real storage location 68,000.
This results in a real address of 68,324. Because this is the
most recently referenced page in the program, we should
place its page frame location into one of the associative
array registers. Examine the reference bits in Figure 41.
Page 3 in Segment 2 - in the first associative register - has
not been referenced lately. Its reference bit is off (ze~o).
Therefore, the system will select this register to hold the
page fran1e location of Page 4 iri Segment 1 - that cont~:ri11s
the relative address just translated. Figure 42 shows the new
state of the associative array registers.

SEGMENT AND REF. PAGE FRAME
PAGE NUMBER. BIT LOCATION

3 7 64,000

3 5 84,000

2 4 80,000

1 2 56,000

3 8 40,000

ASSOCIATIVE ARRAY REGISTERS

Figure 42

Lesson 4. More about Segmentation and Paging 23

Note that the hardware has also turned off '!ll the re
maining reference bits. The system does this whenever all
the reference bits become one. Otherwise, the reference bits
would eventually all become one, and the system would
have no way to identify the most recently referenced pages
in the executing program. This technique - keeping the
most recently referenced pages in the associative array regis
ters - is called the Least Recently Used (LRU) algorithm or
rule. With the associative array registers the LRU algorithm
is implemented by system hardware. We will discuss the
LRU algorithm again in a later topic on page frame manage
ment.

Because the associative array registers identify the eight
most recently referenced pages in an executing program,
they map the most recently referenced 32K in the program
assuming 4K pages. Most address translation then occurs
through the associative array registers. There is very little
increase in instruction execution time caused by translation
through segment and page tables.

Until now our discussion of dynamic relocation has been
directed at two topics:

1. The structure of a program's address space.
2. Dynamic address translation during program

execution.
We have found that a segment-page structured address

space results in a significant reduction of real storage
fragmentation. You have seen how dynamic address trans
lation, using segment and page tables and associative array
registers, functions in this type of system. Throughout this
discussion we have assumed that no program can begin exe
cution unless there is enough real storage to hold its entire
address space. We have not considered a program with an
address space larger than available real storage (handled by
program overlays or multipass techniques in a static relo
cation system). A segmentation and paging system has the
ability, in effect, to "automatically overlay programs". (In
fact, this concept can be extended well beyond the
function of "automatic overlays".) We will begin to present
this more powerful use of dynamic relocation in a segmen
tation and paging system in the following lessons. For now,
we'll present one more topic pertinent to this expanded use
of segmentation and paging.

Levels of Storage

Purely for economic reasons, computer systems have more
than one level, or type, of storage. Real storage is more
expensive than direct access devices, magnetic tape devices
and unit record equipment. In systems that use dynamic
address translation at least two storage levels are significant,
real storage and auxiliary storage. These two levels form a

24

hierarchy used in the dynamic relocation process.
.Real storage may contain programs and data. All lo

cations in real storage are directly addressable by the com
puter's central processing unit. The CPU may fetch
instructions and data from real. storage and return results.
For this reason, programs can execute only when they re
side in real storage. Auxiliary storage, for purposes of our
presentation, will consist only of direct access devices, typi
cally disk devices. Their capacity is much larger than real
storage. But the CPU cannot directly access instructions or
data that reside in auxiliary storage. For this reason, pro
grams cannot execute directly from auxiliary storage. They
must first be loaded into real storage. How a program's

address space is structured and when its addresses are trans
lated has been the major concern of this text. Until now, we
have been interested in the real storage management effect
of this process. We will begin to include the role of auxiliary
storage as we expand the possibilities of segmentation and

paging systems.

Lesson 4 Test Questions

1. When loaded into real storage, pages are placed in
A. page frames
B. storage blocks
C. page slots
D. storage slots

2. In a system that uses segmentation and paging, the table
that indicates real storage availability is called the
A. page table
B. page frame table
C. real storage table
D. segment table

3. Dynamic address translation through associative array
registers is slower than translation through segment and
page tables. (True/False)

4. Translation through associative array registers occurs in
parallel with translation through segment and page
tables. (True/False)

5. If translation fails using the associative array registers,
translation will continue to completion using the
segment and page tables. (True/False)

6. To decide what associative array register to select for
storing the segment and page number and the associated

page frame location of a newly translated address, the
system checks the
A. change bits
B. reference bits
C. protect bits
D. storage bits

7. When deciding what associative array register to replace,
the system tries to replace the most recently referenced
page. (True/False)

8. Using the contents of the associative array registers in
Figure 41 of this text, translate the following relative
addresses using decimal arithmetic.

SEG. PAGE DISPLACEMENT
NO. NO.

A.) 1
B.f 3

3

3

1024

0240

9. Name the two levels of storage described in this lesson.

10. In a computer system the CPU may fetch and store
only data or instructions that reside in real storage
(True/False)

Lesson 4_ MorP. ::ihont ~P.O"mP.nt~tinn ~ni1 P<>crina ""

Lesson 5. Virtual Storage

In the beginning of this text we introduced the idea that a
program is associated with its address space, while a com
puter system is associated with its real storage space. The
program's address space is contiguous, or linear, and it con
tains the set of addresses generated for its program. The real
storage space is also linear. It can be regarded as the set of
physical locations addressable by the CPU. Until now, our
entire presentation has related to two questions:

1. How does translation occur from a program's address
space into real storage locations?

2. When does this translation occur?

We concluded that we can best manage the real storage
resource by structuring a program's address space into
segments and pages, by structuring real storage into page
frames the same size as pages, and by allocating free page
frames to a program's pages. Using this technique, we saw
that translation occurs, througl;i. segment and page tables or
associative array registers, at execution time. Translation
continues throughout program execution. During this entire
discussion, we have arbitrarily restricted the size of a pro
gram's address space to an equal amount of available real
storage for execution to begin. This implies that a pro
gram's address space can never be larger than real storage
size, but this is not true. Early in this text we demonstrated
that the maximum size of an address space is established by
a computer system's address structure. A computer system
with a 24-bit address structure may have an address space
up to 16,777,216 addressable positions (16 megabytes).
This concept of an address space that may be much larger
than real storage is called virtual storage.

Virtual Storage Size

A virtual storage system can be used to simulate a large real
storage. Figure 43 illustrates this concept of virtual storage
and places it next to a 512K real storage.

The address structure in Figure 43 is 24 bits long. The
range of addresses that can be referenced with 24 bits spans
from 0 to 16,384K (224 equals 16,384K). Thus, with a
24-bit address, virtual storage size can be 16, 777 ,216 lo
cations (16 megabytes), 32 times larger than the 512K real
storage shown in Figure 43. System/370 has .a 24-bit ad
dress. Its virtual storage can be 16 megabytes (16 megs).
Notice that we say can be 16 megs. This is maximum virtual
storage size. You can use a smaller virtual storage. We will
discuss why you might use a smaller virtual storage in later
topics. Virtual storage gets its name from the fact that it

26

VI RT UAL STORAGE
16 MEGABYTES

(16,384K)

"--------' 0

ADDRESS SIZE

REAL STORAGE

1512K

...___~lo

1.-_24 BITS=-Ff

2 24 = 16,384K

Figure 43

extends well beyond the size of a computer's real storage.
You can see real storage, but you can't see virtual storage.
Virtual storage is a large address space. Where does virtual
storage physically exist, if anywhere? We will answer this
question in a moment. First, let's take a look at a way to
structure virtual storage, the large address space.

Virtual Storage Structure

We found that a segment-page structure is good for a single
program's address space. When multiprogramming, fragmen
tation of real storage is reduced, and segments can be pro
tected. A segment-page structure is also very suitable for
virtual storage. Virtual storage can be allocated, or
managed, in segment size increments. Real storage can be
allocated, or managed, using page size increments. We will
divide virtual storage, the large address space, into fixed size
segments, and its segments into fixed size pages. The result
ing structure of virtual storage will then determine how a
system's DAT feature must interpret the addresses that
reference virtual storage - virtual addresses. Look at Figure
44.

Each segment is 64K. Because there are eight bits in the
.. segment number portion of our virtual address, there may
be from 1 to 256 segments. There are 256 segments in 16
megs of virtual storage that we have numbered 1 to 256. In

16 MEGABYTES
(16,384K) ... -----

6
-

4
-K-.

SEGMENT 256

0

/

1--------1/
64K

SEGMENT4

(

O
64
K,

0

SEGMENT 3 '

0

0

64K

SEGMENT 2

64K

SEGMENT 1

/
/

/
/

0

0

SEGMENT
STRUCTUR-E

PAGE 16 4K

PAGE 4 4K

0
PAGE 3 4K

0
PAGE 2 4K

PAGE 1 4K

t= 8 bits~4bits~12 bits-----+j

SEG. PAGE DISPLACEMENT
NO. NO.

VIRTUAL ADDRESS

Figu,re 44

Figure 44 SEGMENT 4 is enlarged to show you the page

structure within segments. Segments are 64K. Pages are 4K.
Thus, there are sixteen pages in each segment, that we have

numbered 1 through 16. The page number portion of our
virtual address needs four bits to reference pages 1 through

16 in each segment. The remaining twelve bits in our virtual

address indicate the displacement of an instruction or data
within a page. Each page has 4K locations from 0 to 4095.

Although we have assumed that page size is 4K and

segments 64K, we could describe a virtual storage with
1024K segments and 4K pages or 64K segments and 2K
pages. Segment size and page sfae- determine the way the

DAT feature interprets a virtual address - number of bits
for segment number, page number and displacement. In this
topic we have described the structure of virtual storage in a
segmentation and paging system. As we continue its de
scription and discuss its functions and attributes you might
think that we are describing a computer's real storage. In a
virtual storage system, virtual storage replaces our concept
of real storage in a conventional computer, and the com-

puter's real storage becomes a resource managed by the
operating system. We will return to this concept as we un
fold our description of virtual storage. Now let's return to

our unanswered question. Where does virtual storage exist,
if anywhere?

The Relationship of Virtual Storage to Real and
Auxiliary Storage

Because virtual storage might be 32 times larger than real

storage it can't all be represented in real storage at one
time. It must exist in one of the system's two levels of

storage - either real or auxiliary storage. However any

virtual storage not in use need not exist anywhere. It is

potential address space. What do we mean by potential ad
dress space?

Suppose that you have a program, Program A. It needs
SOK of storage. Because we will allocate virtual storage to

programs in whole segments we give Program A two
segments (12SK). Figure 45 shows Program A loaded in
virtual storage. This is the shaded area in segments one and
two. Notice that all of Program A's pages (the SOK that
Program A uses) are also contained in slots of external page
storage. External page storage is the part of auxiliary storage

that is used to store pages in a virtual storage system. A slot
is a record area in external page storage. It is the sa..rne size
as a page. Therefore pages in use are shaded in siots of
external page storage. Because Program A has been loaded
into virtual storage it must exist somewhere in the system.

All of its pages are in slots of external page storage.
At this point in time, we assume that Program A is exe

cuting. Some of its pages are also in page frames of real

storage. See the shaded portion of real storage in Figure 45.

reside in real storage. If, during the translation of a virtual

address in Program A, the system detects that the page
being referenced is not in real storage, the system must

transfer a copy of that page from external page storage into
real storage. The page is literally brought into real storage

on demand. This technique is called demand paging. How

the system detects this condition, and how the page is

moved will be covered in the next lesson. Also covered will
be questions like "how is Program A loaded into virtual

storage?" But now, let's return to Figure 45. We still

haven't said what we mean by potential address space. Pro
gram A has the first two segments of virtual storage.

However, only four pages are in use in SEGMENT 2. The

remaining twelve pages in SEGMENT 2 are not used. The
remaining segments in virtual storage are not allocated.

These pages and these segments are potential virtual
storage, or potential address space. In a virtual storage
system in which all active programs share one virtual

T P««nn <; Virt11i:il ,o;;:torl'lll"P. ?7

EXTERNAL PAGE
STORAGE SLOTS

VIRTUAL STORAGE
PAGES

REAL STORAGE
PAGE FRAMES

Figure 45

s
E
G
M
E
N
T

1

s
E
G
M
E
N
T

2

s
E
G

storage, unallocated segments are available for new pro
grams. The remaining pages in SEGMENT 2 could be used
by Program A, if required, but they are not available to
other programs since the whole segment has been allocated
to Program A. In a virtual storage system in which each
active program has its own virtual storage, Program A could
use the remainder of virtual storage - all pages and
segments - if required. We will return to the idea of one or
multiple virtual storages in a moment.

28

p
R
0
G
R
A
M

A

Legend for
Virtual Storage

-- ALLOCATED, IN-USE

...__ _ __.I ALLOCATED, NOT USED

~::::::::::::·:·:1 . NOT ALLOCATED ~·, ~

Because virtual storage is typically larger than real
storage, a programmer has much more space to design and
code a problem solution. The need to use overlay structures
or multistep jobs - the programmer's problem because of a
lack of real storage - is greatly reduced, if not eliminated
completely. By use of dynamic address translation and de
mand paging the system can be thought to "automatically
overlay" programs in page size increments. Demand paging

requires that only part of a program reside in real storage at

any time during execution. This is true even if the entire

program could easily fit into real storage. This allows a
virtual storage system to 'allocate the real storage resource

among more programs according to their actual needs, and

to start more programs running when required.

Single Virtual Storage and Multiple Virtual
Storages

Virtual storage systems can be implemented with a single
virtual storage or with multiple virtual storages. The single
virtual storage system has the following characteristics:

1. The maxLrnum size of virtual storage is set by the
computer's address structure. As we said, a 24-bit ad
dress results in a maximum virtual storage of 16
megabytes. In some implementations you can use a
virtual storage smaller than the maximum and in
many situations this may be desirable. We will discuss
this topic again in PART II.

2. The single virtual storage is mapped by one segment

table with a page table for each allocated segment.
3. In a single virtual storage system, virtual storage is

considered as .the system's address space (contrasted
to the idea of a program's address space that \Ve have

presented this far). All active programs in the system,
including the system control program, are mapped

into the single virtual storage, the system's address
space. Virtual storage, or the system's address space,

is allocated to user programs in segment size incre

ments.
4. In a single virtual storage system the supervisor and

all active programs are structured in· virtual storage

just as they are structured in real storage in a static
relocation system like OS/MFT or OS/MVT.

In a multiple virtual storage system there is one essential

difference. Each user, whether a batch job or a timesharing

user, may have his own virtual storage. Some characteristics
of a multiple virtual storage system are as follows:

1. The maximum size of virtual storage is set by the

computer's address structure. No user's virtual storage
may exceed the maximum. However, some users may

have a virtual storage size that is smaller than the
maximum.

2. In a segmentation and paging system, each virtual

storage is mapped by a segment table with page tables
for all allocated segments.

3. In a multiple virtual storage system, virtual storage is
considered as the user's address space (similar to the
idea of a program's address space that was presented
earlier). Some of each user's virtual storage or address

space may be used by system control programs, but
only the assigned user will control the remainder of
the address space. We will discuss this consideration
again later.

4. Because each user has his own address space, a special
purpose control register (that we described in Lesson
3 as the Segment Table Origin Register, STOR regis

ter) must direct the DAT feature to the segment table

of the user that is executing for proper address

translation.
5. Also, because each user has his own address space,

system protection is improved. A user may only

reference within his own address space. There is no
way that one user may "damage" another user's ad

dress space.

We have expressed several times the theoretical limits of
virtual storage systems. Virtual storage size is limited only
by the computer's address structure. In a multiple virtual
storage system the number of virtual storages is theoreti
cally unlimited. However, there are practical limits. The size
of real storage, the size and speed of the auxiliary storage
used for storage management, the speed of the dynamic
address translation process and even programming style are
all parameters that have an effect on a successful virtual
storage system implementation. We will expand the dis

cussion of these parameters as we continue our presentation
of virtual storage concepts.

The combination of segmentation and paging for virtual
storage implementation is a very successful one. Segmen

tation provides a good technique to manage and allocate
virtual storage. Segments may be protected and in some

cases shared. Paging is an excellent way to manage and

allocate both real and external page storage. It results in
minimum waste and dynamic sharing of one of the system's

key resources, real storage.
In the following lesson we will describe how a virtual

storage operating system works, for both a single and multi

ple virtual storage system, and how a program actually exe
cutes in a virtual storage system.

Lesson 5 Test Questions

1. If a computer's address register is 24 binary bits long its
maximum virtual storage size, or address space size, is
A. 4,194,054
B. 8,388,108
c. 16,777,216
D. 33,554,432

T pc;:c;:on <; Virt1rnl Storn!!e)C}

2. Maximum virtual storage size is directly dependent on
the size of a computer's
A. real storage
B. address register
C. external page storage
D. control registers

3. Virtual storage structure is directly dependent on the

4. In a virtual storage system in which virtual storage has a
segment-page structure, the virtual address has a three
part structure in this order
A. page number, segment number, displacement
B. program number, segment number, displacement
C. segment number, page number, displacement
D. page number, displacement, page number

5. In our conceptual virtual storage system both segments
and pages are fixed in size. (True/False)

6. In our conceptual virtual storage system segments and
pages are the same size. (True/False)

7. In a virtual storage system that uses segmentation and
paging, segmentation is a good technique for managing
and allocating
A. real storage
B. auxiliary storage
C. external page storage
D. virtual storage

8. Paging is a good technique for managing and allocating
A. real storage
B. auxiliary storage
C. external page storage
D. virtual storage

9. In a single virtual storage system, all active jobs share
the same virtual storage. (True/False)

10. In a multiple virtual storage system, each user has his
own virtual storage. (True/False)

11. Unused virtual storage, or "potential" address space re
quires the use of external page storage. (True/False)

30

Lesson 6. Program Loading and Execution in a Virtual Storage System

In our discussion of virtual storage, we said that pages being
used must reside in either real or external page storage,
external page storage being represented on direct access
storage. In addition to storing pages, auxiliary storage has
many traditional uses as a second level of storage in a com
puter system:

1. It contains a copy of the operating system's nucleus

or supervisor.
2. It holds the operating system's program libraries.
3. It contains use_r program libraries and data sets.

As we said before, the part of auxillarf storage that is
used to store pages is called external page storage. External

. page storage is organized into paging data sets where copies
of all pages in use are stored. Record areas in paging data
sets are called slots. Thus, a slot is the same size as a page,
4K in our examples. All loaded pages of virtual storage
reside in slots of external page storage. Some active pages,
that is those that have been recently referenced during exe

cution, will also reside in real storage.

External Page Tables

When we described dynamic address translation using
segment and page tables, we considered only programs that
would fit into real storage. With a virtual storage system in
which pages may be in real storage or external page storage,
we must expand our mapping concept. This requires an
additional item in the page table entry and a new type of
table which we will call the External Page Table.

Consider Program A. Assume that it has been ioaded
into virtual storage and it is executing. Three segments have
been allocated to Program A. Figure 46 shows Program A's
segment table and one of its page tables.

SEGMENT TABLE

SEG. PAGE TABLE
NO. LOCATION

1

3 66,026

Figure 46

Each page table entry has a new item, the invalid bit. Its
function is to tell the DAT feature whether or not its page
resides in a real storage page frame; if the invalid bit is off
(zero), the page is in real storage; if the invalid bit is on
(one), the page is in a slot of external page storage. In
Figure 46, PAGE 3 and PAGE 5 are in page frames; the
remaining pages are in slots of external page storage.

Figure 4 7 contains two virtual addresses.
What will result if we translate the addresses in Figure 47

using the tables in Figure 46? The first virtual address can
be translated successfully. DurJ..l,g translation of the second
address the DAT feature generates a program interrupt. The
invalid bit is on. This page resides in a slot of external page
storage; but what slot? Its slot location is contained in
another table called the external page table.

SEG.
NO.

PAGE.
NO. DISPLACEMENT

1. 2 a t 1024 1

2 4 2nAO
U"TU

VIRTUAL ADDRESSES

Figure 47

In a virtual storage system, each page table has a corre
sponding external page table. See Figure 48. The external
page table maps the slot locations for all pages that reside in
the system's external page storage. In our preceding ex
ample, translation was unsuccessful. The page identified by
the second virtual address did not reside in a page frame of
real storage.

PAGE TABLE

PAGE PAGE FRAME INVALID
NO. LOCATION BIT

'I ti
1 84K ·":.1: , '
2 1

3 BOK 0

4 112K 1

5 120K 0

6 1

Lesson 6. Program Loadin!!: and Execution in a Virtual ~tnra11P. ~vl:tP.m i 1

SEGMENT TABLE PAGE TABLE

SEG. PAGE TABLE PAGE PAGE FRAME INVALID
NO. LOCATION NO. LOCATION BIT

1 64,000

~
1 84K 1

2 65,024 2 --- 1

3 66,026

Figure 48

In this situation, with the addition of the external page
table, the system can now:

1. Locate the page in external page storage.
2. Select a page frame of real storage to hold the page.
3. Move a copy of the page from its slot in external page

storage to the page frame in real storage.
4. Update the page table entry to show that the page is

resident in real storage.
5. Complete the virtual address translation.
6. Resume program execution.
With the external page table, we have introduced the

final tool required in a two-level virtual storage system that
uses segmentation and paging. We're ready to see how all
these tools - dynamic address translation hardware,
segment tables, page tables, external page tables, associative
array registers and the page frame table - are used in the
implementation of a virtual storage operating system. We
will approach this by examining how to load and execute
programs in a virtual storage system.

Program Execution - Demand Paging

First we will examine program execution in a virtual storage
system. We will then describe a virtual storage operating

32

3 SOK 0

4 112K 1

5 120K 0

6 --- 1
--.-/~ --- -

EXTERNAL PAGE TABLE
PAGE SLOT

NO. LOCATION

1

2

3

4

5

6
~

system that uses a single virtual storage, the system's ad
dress space, to show how programs are loaded in such a
system. The final part of this lesson will describe a multiple
virtual storage system and how the virtual storage con~ept
may be expanded into the concept of a virtual machine.

To begin our discussion of program execution, we will
assume that the program is already loaded in virtual storage
and return to the demand paging technique. To begin exe
cution, one or more of a program's pages are loaded into
available page frames, the page frame table is updated, the
appropriate page table entries and their invalid bits are up
dated and execution begins. The program's virtual addresses
are translated using the DAT feature and the associative
array registers. So long as these virtual addresses refer to
pages that reside in real storage, execution continues. What
occurs when the program references an instruction or data
in a page that does not reside in real storage? This condition
is called a page fault. The referenced page must now be
loaded into a page frame of real storage. This is called a
page-in operation. We have already seen how a page fault is
detected. The hardware detects this situation during trans
lation by automatically checking the invalid bit of the page
table entry. In the corresponding external page table the
system can find the address of the slot in which the page
resides in external page storage. The system must now

SEGMENT TABLE
ORIGIN REGISTER

PAGE TABLE
LOCATION

40,000

2

3

4

0804

@THE SYSTEM AUTOMATICALLY
GOES TO THE CORRESPONDING
ENTRY IN THE EXTERNAL PAGE
TABLE

PAGE FRAME TABLE

PROG. PAGE & SEG. STA
ID NO. TUS

1

1

PAGE TABLE

PAGE FRAME INVALID
LOCATION BIT

1 1

2 0

1

~'1~ (j)THE INVALID BIT
'• -,. INDICATES PAGE

1 NOT IN REAL
STORAGE

6 0

EXTERNAL PAGE TABLE
PAGE SLOT

NO. LOCATION

1

2

6

@THE SYSTEM FINDS A
FREE FRAME IN REAL
STORAGE

@:THIS ENTRY LOCATES
THE PAGE IN EXTERNAL
PAGE STORAGE

I
0

1

0
EXTERNAL

0 PAGE FRAME

@'THE PAGE IS PAGED-IN
TO REAL STORAGE. ALL
TABLES ARE UPDATED

Figure 49

select a page frame of real storage to hold the required

page. To do so it must reference the page frame table and

find a free page frame. For now, let's assume that free page
frames will exist, and that we'll use the first available page

frame found in the table. The page is transferred or paged
in from its slot in external page storage to the page frame in
real storage; the page frame table is updated; the page table

entry is updated; the page's real storage page frame location
is placed into an associative array register. The page-in
operation is complete, and program execution may resume.

Figure 49 outlines this process. In a multiprogramming
system other programs will be executing during page-in
operations to avoid lost system time. This is because a
page-in operation is an input/ output operation. The com
puter's CPU is free to process other programs during the
time needed to transfer the page. During the execution of a
program the demand paging technique continues to load

·new pages as they are required. If a page is never referenced

during execution, it will never be paged in.

Lesson 6. Program Loading and Execution in a Virtual Stora!!e SvstP.m ~~

Page Replacement

Servicing page faults, even though it requires several steps,
is straightforward so long as free page frames are available.
In a multiprogramming system, where virtual storage is
larger than real storage, all of the free page frames of real
storage will eventually be filled. A page fault in this situ
ation requires a page replacement operation. The replaced
page may first have to be paged out. In this page fault

condition, with no available real storage, the page to be
brought into real storage may replace any page residing in a
frame allocated to users (some frames may be reserved for
supervisor residence and other special purposes). This is
true even if th~_page being replaced belongs to a different
user. The page replacement strategy is an important issue
because it affects system performance in two ways:

1. If you replace a highly referenced page you may need
to bring it back into real storage in a short time,
causing perhaps unnecessary system work.

2. If you replace a page whose contents have been
changed in any way since it was paged in, you must
first perform a page-out operation; you must save the
altered page in external page storage.

Let's consider the first item. There are a variety of rules
that could be used to select a page for replacement. You
could use a FIFO replacement rule, that is, the first pages in
real storage are the first out. This method would replace
those pages longest resident in real storage. A second rule
would give ideal results. If you know the pattern of future
page references, you can replace a page that will not be
referenced again at all, or for a long time. Although this
ideal replacement rule would be most effective, it is un
usable because the system can't predict future events. It is
useful in simulation, however, for comparison to replace
ment rules that are usable. One that compares well with the
ideal is called the Least Recently Used (LRU) rule. It will
replace first those pages that haven't been referenced in a
long time; that is, the least recently used pages. In other
words, the LRU rule attempts to keep the most recently
referenced pages in real storage, assuming that they are
more likely to be referenced again in the near future. The
LRU rule is used with associative array registers as we
mentioned earlier. Several System/370 virtual storage
systems use the LRU replacement rule to manage real
storage. We will not say how in detail; only that they re
place a single page frame table with a set of page frame
queues, the lowest priority queue containing the least re
cently used pages and so forth. In our discussion, we will
continue to use a single page frame table.

34

Reference and Change Bits

We haven't discussed yet how the system knows that a page
is referenced or how the system knows that a page is
changed. This is done by hardware control bits contained in
each page frame's storage protect key. One bit in the
storage protect key is ca11ed the reference bit, one bit is
called the change bit and the others are used for storage
protection. The reference bit is turned on (automatically by
the hardware) whenever data is referenced (fetched) from
or stored in the contents of its page frame, that is, from the
page stored in its page frame. The reference bits are used to
implement the LRU replacement rule in a manner similar to
the reference bits in associative array registers. The change
bit is turned on whenever data is stored into the page re
siding in its real storage page frame. Change bits are used to
decide if a page-out operation is necessary. The reference
and change bits are represented as new entries to our frame
table as shown in Figure 50.

With this foundation we can return to our problem. How
do you handle a page fault condition that requires page
replacement?

PAGE FRAME TABLE
PAGE

FRAME PROG. PAGE & SEG. REF. CHG.
NO. ID NO. STATUS BIT BIT

Figure 50

The page-in operation remains the same, but first the
system must select a page for replacement. We'll assume
that the system is using the LRU replacement rule and
examine two examples:

1. In the first example the page to be replaced is un
changed since being paged in.

2. In the second example the page to be replaced has
been changed since it was paged in.

Our first example doesn't add many new steps for
handling page faults. The sequence of events occurs in the
following way. During translation of a virtual address a page
fault occurs; the invalid bit for the required page is on
because the page is not in real storage. The system must inter
rupt program execution to service this page fault. The system
must first find a page frame of real storage. To do this, it
examines the page frame table. If there is a free page frame,
the system will use it. In our case, all page frames are occu
pied. The system, using the LRU rule, selects a page for

Figu,re 51

SEGMENT TABLE
ORIGIN REGISTER

PAGE TABLE
LOCATION

1 40,000

2

3

4

PAGE FRAME TABLE

FRAME PROG. PAGE & SEG. REF. CHG.
NO. ID NO. STATUS BIT BIT

1]

1 1 I 0

1 1 0

1 1 1

1 ,·o·~ _,,_:; ,, ~o~
2:.~

1 ,- 1 1

11 1 1

, I 0 0

~joj

replacement. As we have stated in this example, the con
tents of the page are unchanged since page-in time. This is
indicated by the change bit; it is turned off (a zero). In this
situation, there is a duplicate copy of the page to be re
placed on external page storage and no requirement for a
page-out operation. The system only needs to turn on the
invalid bit in the replaced page's page table entry. It may
then page in the page that caused the page fault, update the
appropriate tables and resume program execution. Figure
51 indicates the highlights of this operation.

In our second example of a page replacement condition,

PAGE TABLE

PAGE PAGE FRAME INVALID
NO. LOCATION BIT

1

2

3

4

5

6

:;t~ PAGE

----------""_t'-1 FAULT

EXTERNAL PAGE TABLE
PAGE SLOT
NO. LOCATION

1

2

3

4

5

6

the page to be replaced has been changed since it was paged
in. The system must save a copy of the page by means of a
page-out operation. Otherwise, if the replaced page is again
referenced the old copy will be paged in and it will not
reflect the latest state of the program. The page-out oper
ation will transfer the page from its page frame in real
storage to a slot in external page storage. The slot selected
need not be the one that contains the old copy of the page.
The system only needs to update the external page table
entry to designate the new slot location. After the page-out
operation, the page that caused.the page fault will be paged

Lesson 6. Program Loading and Execution in a Virtual Storage System 35

SEGMENT TABLE
ORIGIN REGISTER

PAGE TABLE
LOCATION

1 40,000

2

3

4

PAGE FRAME TABLE

FRAME PROG. PAGE & SEG. REF. CHG.
NO. ID NO. STATUS BIT BIT

1 1 1

1 1 0

1 1 0

1 1 1

1 -~a~
LLfl_,'t

{i~
1-._'"

1 J
r 1 1

1 I 1 1

1 0 0

1~ 1 0

THIS PAGE

PAGE TABLE
PAGE PAGE FRAME INVALID
NO. LOCATION BIT

1

2

3

4 €i~ PAGE
'"' FAULT

5

6

EXTERNAL PAGE TABLE
PAGE SLOT
NO. LOCATION

1

2

3

4

5

6

HAS NOT BEEN RECENTLY
REFERENC ED, BUT IT HAS BEEN CHAN~ED
SINCE PAGE-IN. BEFORE REPLACEMENT
OCCURS, IT MUST BE PAGED-OUT.

Figure 52

in, appropriate tables will be updated and program exe
cution will resume. This procedure is generally outlined in
Figure 52. This "page in - page out" activity is commonly
referred to as paging. Because pages are loaded only when
required, the activity is called demand paging. Through this
technique a virtual storage system is able to dynamically
share real storage among many users.

36

Locality of Reference

When programs are written they must include all functions
(whether common routines, one-time routines or exception
routines) required to solve an application. When programs
execute, they perform only one operation at a time. In
static relocation systems, in principle, entire programs must
be loaded into real storage before execution begins. During
execution, some parts of the program may never be exe
cuted, for example, an exception routine not encountered
during a particular execution. Some code may be executed
only once or twice such as an initialization routine. What

HIGH

p
A
G
I
N
G

R
A
T
E

SOME PERCENTAGE OF TOTAL
REAL STORAGE REQUIRED FOR
A COMPLETE PROGRAM LOAD NUMBER OF PAGES FOR A

COMPLETE PROGRAM LOAD a/ A/
LOW

LOW HIGH

REAL STORAGE (IN PAGE SIZE INCREMENTS)

Figure 53

code is executed depends entirely on the reference pattern
of a program, which may actually be different every time a
program is run. Some studies of program reference patterns
have been made to determine how much real storage is
required - in page size increments - to give the optimum
combination of program execution time and program
storage requirements. Both commercial and scientific appli
cations have been used. The results generally produce a
performance curve such as the one in Figure 53.

Location A on the graph indicates the condition in
which pages are never paged out after they are loaded
during program execution. As you might expect, this gives·
the minimum program execution time, or run time, since
there are no delays due to paging, except for page-in ac
tivity. Location B on the graph indicates a demand paging
execution with "page in - page out" activity. Less real
storage was available but with only a small increase in the
paging rate and therefore program run time. As real storage
size is made even smaller than at Location B the paging rate
increases rapidly resulting in high paging rates and large
increases in program run time. This is indicated as location
C in Figure 53. These characteristics of program per
formance are due to a phenomenon called locality of refer
ence. That is, during a program's execution, its reference
pattern will dwell within a relatively small number of pages
(compared to the total in a program) for relatively long
time periods. The number and combination of pages needed
for satisfactory performance (low paging rate) during a
given time period is called a program's working set. The
working set size and its contents may change during execu
tion, but it is usually smaller than a program's total size.
This is one big reason why virtual storage systems work to a
user's advantage. Programs use only the real storage that
they require during execution. More programs might be in
virtual storage than could possibly fit into real storage with
little system degradation. In fact, as a special precaution,

some virtual storage systems have the ability to monitor
and control the paging rate. We will return to the monitor
ing techniques in the following topic.

A Single Virtual Storage Operating System

We have examined translation hardware, tables, registers
and techniques used in a virtual storage system. Let's look
at a conceptual virtual storage operating system. We will
present, briefly, the structure of a virtual storage operating
system with a single virtual storage, the system's address
space.

Figure 54 shows a schematic view of a single virtual
storage operating system. Although external page storage is
not shown in Figure 54, enough would be required to back
the virtual storage size being used. We show the system in a
state where several jobs are active. Take a moment, examine
Figure 54, and we will discuss the structure of the system in
its virtual storage.

A single virtual storage operating system is structured in
virtual storage (the system's address space) just as a static
relocation system like OS/MFT or OS/MVT is structured in
real storage. In MFT and MVT, the nucleus and the
problem program regions or partitions are structured or
layed out in real storage during operation. In a virtual
storage system, the nucleus, problem program areas -
whether they are called regions, partitions or whatever -
and all other resident functions are structured in virtual
storage. Real storage is dynamically shared and managed by
the virtual storage operating system. As you will see, some
resident portions of virtual storage may also be fixed in real
storage. However, in a single virtual storage system, the
logical representation of the entire structured system exists
only in its virtual storage, and it is exactly analogus to the
representation of a conventional system like MFT or MVT
in real storage.

Lesson 6. Program Loadine: and FxP.r.11tion in ::i Virtn::il _i;:tnr::iop i;:vdPm ~7

JOB
NO.

n

JOB
NO.
3

JOB
NO.
2

JOB
NO.
1

n

\
\
\
\

\
\
\

\
\
\

\
\
\
\
\
\
\
\

SEGMENT
SIZE

\
\
\
\

\
\

\
\
\
\

\
\

D
UNUSED VIRTUAL
STORAGE (POTENTIAL
ADDRESS SPACE)

-·

•

RESIDES ON EXTERNAL PAGE
STORAGE. SOME PAGES ALSO
IN REAL STORAGE FRAMES.

\

REAL STORAGE
PAGE FRAMES

SHARED
BY JOBS

------... ---- --
PAGING PAGING

SUPERVISOR SUPERVISOR --------- -------
NUCLEUS FIXED IN NUCLEUS

OR OR
SUPERVISOR REAL STORAGE SUPERVISOR

0 -------- ---
VIRTUAL STORAGE

Figu,re 54

In Figure 54, our conceptual virtual storage system con
tains a nucleus, sometimes called a control program, that
controls the use and allocation of all system resources. The
nucleus is mapped into virtual storage beginning at the ori
g~n (location zero) of virtual storage - in its first segment.
Pages of the nucleus are loaded into the corresponding real
storage page frames and they remain there while the system
is running. These pages, are fixed in real storage; they can't
be paged. This is an example of a resident part of virtual
storage that is also fixed in real storage. Page fixing isn't
necessary for the entire supervisor. It is usually done for
those parts required for basic control of the system and
quick response to service jobs in the system. In many
systems, the remaining control program functions that are

38

REAL STORAGE

resident in virtual storage are paged.
In virtual storage systems both hardware and software

play an important role. Virtual addresses are automatically
translated by dynamic address translation hardware.
Software maintains the tables used, controls the allocation
of real, virtual and external page storage and controls
paging between these two levels of storage. These software
functions are contained in what is usually called the paging
supervisor. The paging supervisor is a component of our
conceptual system's nucleus. It is used to control the
system's virtual and real storage. Because it is part of the
nucleus our paging supervisor is also fixed in real storage.

Our system's control program might contain several
other subsystems - such as an input/output control system,

a job scheduling system and so forth - that are not indi
cated in Figure 54. These subsystems would be paged when

ever possible.
Real storage, then, may be split into fixed and shared

page frames. The shared page frames are shared by active
jobs in the system using demand paging. As indicated in
Figure 54, jobs are allocated virtual storage in segment size
increments. Thus, our system may control virtual storage
allocation through its segment table. Figure 54 shows
several active jobs and some segments may be only partly
loaded. The pages not used in these segments are potential
virtual storage or address space for the job that owns the

segment. If never used, these unused pages never use any
external page storage. All unallocated segments are po
tential virtual storage or address space controlled by the
system. If the system schedules a new job it will allocate
segments from this potential address space. If all segments
are allocated we are out of virtual storage. In this situation,
no new jobs can be scheduled until segments become free
when one or more jobs terminate. Segments allocated to a
job must be contiguous. If a job needs three segments the
system can't assign SEGMENT 12, SEGMENT 14 and
SEGMENT 15. In this example, the system would have to
assign SEGMENT 12, SEGMENT 13 and SEGMENT 14.

Program Loading in a Single Virtual Storage
System

How is a job loaded into virtual storage? We will describe
one technique. In our conceptual system, user programs are

stored in a library in auxiliary storage. The address space of

-ACTIVITY.

---RESULT.

each program relates to a zero origin. The address space
format need not be in a segment-page structure. In our
example we assume that programs stored in program librar
ies use a different format. Perhaps they are stored in parti
tioned data sets.

The most important objective during program loading is
to relocate the program's addresses to relate to their origin
in a system's storage. In a system like OS, during loading
the system relocates a program's addresses to a starting
point in real storage. In our single virtual storage system,
the loader program relocates a program's addresses to an
origin in virtual storage. In both cases, a static relocation
operation occurs. In our example, program loading will
occur before execution begins. Prior to execution, we will
statically relocate the program to a virtual storage origin.
address, and this origin address will be the beginning of a
segment. Remember that during execution the DAT feature
will dynamically translate virtual storage addresses that are
in real storage locations, and the operating system will share
real storage among all active programs using demand paging.

What happens during program loading? A system pro
gram, that we will call the loader program, is executing. See
Figure 55. The program to be loaded is in our program
library in auxiliary storage. We will call it Program B. The
loader program will read Program B from its library as input
data. The loader program will relocate Program B's ad-
dresses to their origin in virtual storage. During loading,

Program B will be formatted into pages. Most likely, during
loading most of Program B's pages will be paged out to

external page storage as shown in Figure 55. Program B's
page tables and external page tables will be built during the

THE PROGRAM'S ADDRESS SPACE HAS BEEN RELOCATED
TO ITS ORIGIN IN VIRTUAL STORAGE.

Figure 55

EXTERNAL
PAGE STORAGE

PROGRAM
LIBRARIES ---

LOADER
PROGRAM

IS EXE CUTI NG

/
/

/
/

I
/

/

SUPERVISOR SUPERVISOR

REAL STORAGE VIRTUAL STORAGE

Lesson fl_ Prm•r:im T.o:iclinu :incl FYPrntion in :i Virt1rnl Stor:iue Svstem 39

loading process. At the end of program loading, the loader
program will transfer control to Program B and it will begin
to execute. Through demand paging Program B's working
set will eventually become resident in real storage. Thus,
when a job is scheduled in our virtual storage system, and
its programs loaded, a loading procedure like the one just
described will occur in the system.

Through demand paging, the system shares real storage
among several jobs. Because programs require only a work
ing set of pages in real storage for satisfactory execution,

. allocated virtual storage may be larger than the system's

real storage. It may be possible to multiprogram more jobs in

the system and the system's effective throughput might
improve.

Thrashing Monitors

We have just described the ideal situation. Active programs
in virtual storage are larger than real storage; but there are
enough frames of real storage to satisfy the working set
requirements of the active programs. There are, however,
two key questions:

I . How much paging activity can you have in the
system?

2. Can you control paging activity in the system?
We have already answered the first question. Paging ac

tivity can increase so long as there are enough real storage
page frames to satisfy the total working set requirements of
all active programs. As soon as the system passes this point,
the paging rate begins to increase and performance becomes
degraded. If the paging rate becomes too high, the system
won't accomplish any useful work. It will spend all of its
time paging. This condition is called thrashing. Even though
we have been discussing single virtual storage systems,
thrashing can also occur in multiple virtual storage systems.
The operating system can't predict the degree of paging
activity that will occur, but it can control paging activity
and prevent thrashing. This answers our second key
question. Because the paging supervisor transfers pages
between real and external page storage, it can monitor the
paging rate. If the paging rate becomes too high, the system
can:

1. interrupt and temporarily halt an active job.
2. free the real storage frames being used by the job.
The active jobs will then, through demand paging, begin

to use these frames and the paging rate will decline. If the
paging rate is still too high, another job could be inter
rupted and temporarily halted. As system activity declines
an interrupted job is reactivated and its execution resumes.
In this way the system can dynamically adjust jts allocation
of resources among users and assure satisfactory per
formance.

40

Even though virtual storage is not unlimited, a virtual
storage system gives better service to its users. Through
dynamic allocation, dynamic address translation and dy
namic adjustments it produces better system resource
management.

Multiple Virtual Storage Systems

System Structure

To go from a single virtual storage system to a system that
supports multiple virtual storages requires only a small in
crease in software technology beyond what has already
been presented. A single virtual storage requires one
segment table with page tables to map its allocated
segments. These tables reside in real storage. To create
another address space, or virtual storage, simply requires
another segment table in real storage along with page tables
to map any of its allocated segments. In this manner, multi
ple address spaces, or virtual storages, can be created within
a system, each virtual storage being mapped by a segment
table. Rather than have all users in a system - batch jobs,
TP applications, timesharing users and so forth - share one
address space using a region or partition strategy, a multiple
virtual storage system gives each user his own address space.

With this approach, a user may execute only after the
system's supervisor or nucleus directs the Dynamic Address
Translation {DAT) facility to the user's address space. This
is accomplished with the Segment Table Origin Register
(STOR register described in Lesson 3). Before a user exe
cutes, the supervisor loads the STOR register with the real
storage origin of the user's segment table. During execution,
the DAT facility will translate the virtual addresses in the
user's address space using the segment and page tables that
map it.

Mapping multiple address spaces and directing the DAT
feature to the appropriate address space (through the STOR
register) is the essential difference in the operation of a
multiple virtual storage system. Demand paging remains the
same. Page faults are signaled through the invalid bit in page
table entries. The operating system must then select the
"best" page frame for a page-in operation. External page
storage is used in the same manner. Allocated pages must be
backed by slots of external page storage. Page locations in
external page storage are identified in external page tables,
one for each page table.

Considering the small change in operation required to
implement a multiple virtual storage system, the major dif
ference between single and multiple virtual storage systems
is the resources used by the system. Most likely, with multi
ple virtual storages more real storage will be used for

segment and page tables and more external page storage will
be required to back each virtual storage. Before a system
can create a new address space, it must be able to back the
requirements of the address space with external page
storage. It will be shown later that the additional system
requirements in a multiple virtual storage system are more
than compensated for by the functions that result, es

pecially in a timesharing, teleprocessing environment.
Our discussion of multiple virtual storage systems thus

far has extended the technique of segmentation and paging.
The advantages that result from this combination also ex
tend into a multiple virtual storage environment:

• Paging remains an efficient way to manage real

storage.

VIRTUAL
STORAGE 1

SEG 256
16 megs

4K PAGES SEG 255

SEG 254

~~
SEG 4

64K SEG 3
SEGMENTS SEG 2

0 0
SEG 1 64K

0

• Segmentation allows convenient control and alloca
tion of virtual storage (now, within each user's ad
dress space).

When a system supports multiple address spaces a new im
portant benefit also results from segmentation: segments
can be shared among two or more virtual storages. We will
describe a technique for segment sharing later. Figure 56 is
a schematic view of a multiple virtual storage system as we
have described it until now showing three virtual storages.
24-bit addressing is assumed. As a result, each address space
is shown to be the maximum size, 16 megabytes. Depend
ing on a system's virtual storage implementation, users may
have different size address spaces. Each address space
would, however, usually be a multiple of segments. As
shown in Figure 56 we continue to assume that segments

VIRTUAL
STORAGE 2

SEG 256

SEG 255

SEG 254

SEG 4

SEG 3

SEG 2

SEG 1

~~

I 16 megs

I
I
I
I
I
I

;-

VIRTUAL
STORAGE 3

SEG 256

SEG 255

SEG 254

SEG 4

SEG 3

SEG 2

~~

I I SEG 1 o __ _

I
STOR REGISTER

SEGMENT SEGMENT SEGMENT
TABLE TABLE TABLE

I I

~ ~ l 1
~

~ ~ ~
PAGE ~ PAGE ~ PAGE ~ TABLES TABLES TABLES

. . •

~ ~ ~
Figure 56

Lesson 6. Program Loading and Execution in a Virtual Storage System 41

• --- -- -16 megs
I VIRTUAL I
I STORAGE n I
I
I

VIRTUAL
STORAGE 3

16 megs

f
I
I
I

r---V-l_R_T._U_A_L-- 16 megs

STORA,...G_E_2_~_-16 megs --VIRTUAL
STORAGE 1 ----- REAL STORAGE

' I
I

- - 2 megs

~
PAGING 0'---

0-----1

o ... __ __,,.

~
AVAILABLE

FOR
DEMAND
PAGING

O"------- - - - - - - - - ..._S_U_P_E R-V-IS_O_R__. 256K l
(FIXED IN REAL) O f DAT

OFF

Figu,re 57

are 64K and pages 4K in size. This results in 256 segments in
16 megabytes of virtual storage, with 16 pages in a segment.
The segment and page tables that map each address space
are also represented in Figure 56. During system operation,
these tables reside in real storage. The STOR register points
to the segment table of the user that is currently executing.

There are various techniques to implement multiple
virtual storages in an operating system. We will discuss two
variations:

• In the first, the system's supervisor (or nucleus) is
fixed in real storage during operation, but is not
mapped in each user's address space.

• In the second variation, the system's supervisor is
fixed in real storage during operation and is also
mapped in each user's address space.

The first approach is shown in Figure 57. The supervisor
is fixed in real storage and the remaining real storage is
controlled and allocated through demand paging. External
page storage, though not shown in Figure 57, must be
available to back the allocated pages from each virtual
storage. Notice in Figure 57 that the DAT feature is
"turned off' during supervisor execution. This is because
the supervisor is not mapped in any user's address space. No
page tables map it. When references are made within the
supervisor, the effective address generated is used by the
CPU to reference real storage. Thus, there is no dynamic
address translation during supervisor execution.

When control is transferred to a user and his address
space, the DAT feature must be "turned on". Addresses
referenced within a user's address space are virtual ad
dresses. They must be translated (by the DAT feature)
through the segment and page tables that map the address
space. A system that uses this implementation technique

42

must have some mechanism then to turn the DAT feature
"on and off'. When supervisor services are requested by a
user, DAT is "turned off'. When the supervisor passes con
trol to a user, DAT is "turned on".

With this type of scheme, each user is allocated space
within his address space starting with the first segment (lo
cation zero). Each user, therefore, whether a batch job, TP
job or timesharing user, has a few more segments available
than he would have in a system that maps the supervisor in
each virtual storage. However, the system must have a tech
nique to turn the DAT feature on and off as required.

In our second variation of a multiple virtual storage
system the DAT feature is always turned on. This results
when the system's supervisor is mapped in all virtual
storages as illustrated in Figure 58. To understand how this
works, consider for a moment the following example.

A program within a user's address space is executing. All
addresses referenced, therefore, are translated by the DAT
feature. A page fault occurs. Control will now be passed to
the supervisor so that a page-in operation may be initiated.
Because the supervisor is mapped in each address space, the
DAT feature will translate all supervisor program references
using the segment and page tables that map the current
address space, that is, the segment table currently identified
by the STOR register. During supervisor execution, no page
faults will occur since the supervisor is fixed in real storage.
After a page-in operation is started the supervisor may pass
control to another user. When it does, the supervisor will
first load the segment table origin of the new user's address
space (which also maps the supervisor) into the STOR
register. Thus, anytime control is passed to the supervisor,
it will be mapped by the segment table of the current
address space. The DAT feature will always be "turned on".

r-vlRTUAL116 megs

; STORAGE n ~
VIRTUAL

! STOR_A_G_E_3__.. ____ _
""'" 16 megs
i' VIRTUAL

16 megs

I STOR~A_G_E_2_._ _____ 16m~s

I J --1 VIRTUAL ~--- .. REALSTORAGE
I STORAGE 1 ~ - 2 megs

1
1!5!K_ -----

DEM~
I SUPEF 256K - PAGING

(J!_ __ _
AVAILABLE

FOR
DEMAND
PAGING SUPE

256K oL--..,J----,
SUPE 256K

o' 01!!--su_P_E_R_V_IS_O_R--!![=I~;;~] SUPERVISOR 1:SGK } DAT
ON

Figure 58

Even though the supervisor is mapped in each user's
virtual storage, there is only one copy of the supervisor that
is fixed in real storage. This is made possible through
segment sharing. Remember, for every allocated segment, the

segment table entry points to the real storage origin of the
segment's page table. This page table identifies all of the
pages within the segment, indicating whether the page is in
real storage. Assume for a moment that a muitiple virtual
storage system has been initialized; the supervisor has been
fixed in real storage; and one virtual storage (that maps the
supervisor) has been created to process user jobs. If the
supervisor is 256K, the first four segments of the initialized
address space are used to map the supervisor. The segment
table entries of these segments identify the page tables that
map the page frame locations of each page in the super-
visor. If a second virtual storage is created, it also must map
the supervisor. However, to do so its first four segment
table entries need only point to the existing page tables that
already map the supervisor. The first four segment table
entires of any subsequent virtual storage created also need
only point to these same page tables to map the supervisor.
Thus, the supervisor is shared among all virtual storages in
the system with one copy of the supervisor and one set of
common page tables that map the supervisor. Each virtual
storage identifies these common page tables in its initial
segment table entries.

If the supervisor can be shared in this manner, then so
can other system programs, as long as they are reentrant.
For example, a system's data management access methods
can be loaded into specific segments of the initial virtual
storage and then shared by all subsequent users simply by
having the appropriate segment table entries identify the
common page tables that map the access methods. The

access methods can then be demand paged and shared by all
users in the system. The only qualification is that any
shared system programs be reentrant. In a similar manner,
user-written programs might be shared among all users in
the system and, if allowed by the system, among two or
more users in a system.

Segment sharing is a pc\verful tool in a multiple viitual
storage system. It must be remembered, however, that all
programs shared on a system-wide basis reduce the amount
of address space available to each user in his own virtual
storage. For this reason, only programs applicable or useful
to all or most users in a system should be shared using
segment sharing.

System Operation

The implementation of a multiple virtual storage system
through multiple sets of segment and page tables and de
mand paging is not too difficult to see. How such a system
operates or function, however, is sometimes more difficult
to envision. Several alternatives exist. We will describe one
possibility using a conceptual system and demonstrate its
operation. We assume that the supervisor is mapped in each
virtual storage that is created.

To begin operation, an operator must initialize the
system. An initial program loader function (started by the
operator) must exist that creates the first virtual storage in
the system, loads and fixes the supervisor in real storage,
and maps the supervisor in the initial virtual storage. When
loading is complete, the operator must then have some
means of further communicating with the system to start
batch job operations, time sharing operations and so forth.

Lesson 6. Program Loading and Execution in a Virtual Storage Svstem 43

A communications program could be within the supervisor
but this would be fixed in real storage. If the remainder of
the initial virtual storage is used for a communications pro
gram, then the communications function will be demand
paged.

Once the communications function is active, the
operator may begin batch job processing by starting a job
scheduler. The result would be the creation of another
address space that would map the supervisor in its lower
segments. The supervisor can then load a scheduler in the
new address space to select jobs for processing based on the
system's job scheduling algorithm. When a job is scheduled,
it will overlay the scheduler within the address space and
the job will control the address space during job processing.
At job termination, a fresh copy of the scheduler would be
loaded into the address space to schedule the next job. With
one scheduler active, only one job stream is processed.
However, with each new scheduler started by the operator a
new virtual storage is created and the degree of multipro
gramming is increased. Protection is inherent in the design
of this type of system. Each job scheduled executes in its
own address space. There is no way that a job can alter the
address space of another user.

If timesharing is implemented in our multiple virtual
storage system, each user to log on will also receive his own
address space. The timesharing user's address space will also
map the supervisor, leaving the remainder of virtual storage
under control of the user. Likewise, a teleprocessing appli
cation would also control its own address space. In all cases,
the supervisor will be mapped into the lower segments of
each virtual storage. If any system programs are shared
system-wide through a segment sharing technique, they also

will be mapped into common segments of each virtual
storage.

In a theoretical sense, the degree of multiprogramming
or the number of timesharing users is almost unlimited in a
multiple virtual storage system. However, there are practical
limits. There must be enough real storage to support the
paging activity in the system. External page storage is re
quired to back the active pages of all the virtual storages
that have been created in the system. The ideal situation
exists when the system paging rate does not overcome the
system's ability to perform useful work. If this occurs then
the system is thrashing as described for a single virtual
storage system. Thrashing may be prevented in a multiple
virtual storage system by deactivating a user (or users) until
a satisfactory paging rate is attained. When a user is deacti
vated, the pages in the user's virtual storage that are resi
dent in real storage (and that have been changed since page
in) are transferred to external page storage. When the user is
later reactivated, these same pages will be transferred to real
storage and the user can resume execution. This transfer of

44

multiple pages is called block paging (as compared to
demand paging which results in the transfer of one page at a
time).

Block paging can be used to prevent thrashing and it can
also be used effectively as a timesharing technique in a
multiple virtual storage system. Rather than allow a
system's paging capacity to become saturated as more and
more timesharing users log on (and then become forced to
deactivate users), a multiple virtual storage system can
schedule the deactivation and reactivation of timesharing
users using the block paging technique. When activated, a
user can contend for the CPU with all other active users for
a certain time period. During that period, when a user gets
the CPU his program(s) will execute under the control of
demand paging. At the end of his time period the user
would be block paged out. When again scheduled (or re
activated) the same set of pages would be block paged in.
After a period of execution, the set of pages being block
paged in and out would tend to become the user's working
set. Both timesharing and batch job users can be controlled
in this manner. This block paging technique may also be
thought of as swapping users between real and external
page storage on a scheduled basis.

A multiple virtual storage system makes even more
distinct the two levels of control - the system level and the
user level - within an operating system. On the system
level, the supervisor must control real storage, auxiliary
storage (including external page storage), the system's CPU,
address space creation, and so forth. The system level of
control may be thought of as global control. The supervisor
is responsible for all resources that affect the overall
performance of the system. The user level of control in a
multiple virtual storage system relates to the user's local

control of the address space. The user may allocate space to
programs and the user may not reference outside of his
address space. These two distinct levels of control improve
the reliability of a multiple virtual storage system.

Virtual Machines

With multiple virtual storages, each user is given a large
address space that has the characteristics of real storage.
This is possible because of the DAT function, a mapping
scheme to describe each user's address space, and a tech
nique to control the allocation of the real storage resources
such as demand paging.

A user can control his address space in a manner some
what analogous to the way an operating system controls
address space allocation in a single virtual storage system. A
user may start multiple independent tasks, allocating the
virtual storage space required for each task. Dispatching or

execution priority can be assigned by the user to each task

as it is started. During execution, a user can continue to

control his tasks and change dispatching priority if neces

sary. This, however, is where the analogy to an operating

system ends.
Besides allocating the system's address space, an operat

ing system controls the use of a system's CPU, real storage,

and channels and the allocation of its 1/0 devices. An

operating system performs user services, such as 1/0 oper

ations, usually through some type of interrupt scheme and

it uses the system's console for operator communication.

An operating system, then, controls all of a machine's re

sources, not just the system's address space.

A common technique used to implement operating

system control of a system's resources is through a privi

leged instruction set. A set of machine instructions - such

as START 1/0 - is reserved for use of the operating

system's supervisor only. For a user to perform J/O, for

example, a service request is made to the supervisor to start

the 1/0 operation. This gives the supervisor complete con

trol of channel operations. Through privileged instructions,

the supervisor can also control the CPU and other key

system hardware resources. If a user (or non-privileged pro

gram) tries to execute a privileged instruction, the program

will be interrupted and normally the supervisor will termi

nate its execution.

If it is possible for a control program or supervisor to

give each user his own address space (virtual storage) while
still controlling the real storage resource, it seems possible to

give each user a virtual CPU, virtual channels, virtual 1/0
devices, in effect a virtual machine, while the control pro

gram still controls all real system resources. This in fact is

what is done in the Virtual Machine Facility/370 (VM/370)

system. With VM/370, each user is assigned his own virtual

machine, while VM/370 controls all of the System/370's

real resources, its CPU, real storage, channels, 1/0 devices

and so forth. At this point we will briefly depart from our

presentation of concepts only and discuss the VM/370

system.

VM/370

VM/370 is basically a timesharing system. However, unlike

other timesharing systems, when a VM/370 user logs on,

the user has a virtual machine at his disposal. The configura

tion of the virtual machine is usually determined when a

user signs up for VM/370 service. A basic virtual machine

configuration would consist of a CPU (the same model as

the real System/370 that is used for VM/370), a virtual
storage, where virtual storage size is usually some multiple

of 64K, a virtual card reader, card punch and printer, a

virtual console and several virtual disk storage units.

These various components in the virtual machine con

figuration are "virtual" in different aspects:

1. The user's terminal becomes his virtual machine con

sole. The console may be used to IPL, to display

and/ or alter the contents of virtual storage and as a

means of operator communication if an operating

system is executing in the virtual machine.

2. Because card readers, card punches and printers are

sequential in nature, direct access storage is used to

represent these devices.

3. A user's disk storage drives are "logical" disk drives

whose physical addresses can be different than those

assigned to the virtual machine. Therefore, several

users may have disk drives assigned as 190. The con

trol program identifies the user's logical address with

its physical location. Also, disk drives need not be full

capacity. In VM/370, it is possible to allocate mini
disks to virtual machines. For example, a minidisk

may be 10 cylinders in capacity with all the remain

ing characteristics of a 2314.

4. Each user's virtual storage is an address space that is

usually some multiple of 64K in size. The VM/370 con

trol program maps each address space with a segment

table, page tables and external page tables. During

system operation, real storage is shared through.
demand paging.

5. Each virtual CPU is the same model System/370 that

is under the control of VM/370. VM/370 shares the

real CPU among all the active virtual machines to give

each the appearance of having its own CPU.

After a VM/370 user logs on, he then IPL 's the system

to be used in his virtual machine. The Initial Program Load

(IPL) Function is a special hardware function on a real

System/370. VM/370 simulates this function (after the IPL

command is issued from the user's terminal) to load the

system requested by the user into his virtual machine. If a

user requires interactive computing and program develop

ment, he can load 'ltv1/370's Conversationai Monitor
System (CMS) into his virtual machine. CMS provides

services such as programming languages like FORTRAN and

COBOL. However, because each user has a virtual machine,

any program or operating system that executes on a real

System/370 may also be executed in the user's virtual

System/370 (provided the virtual machine has the required

configuration). Thus, a VM/370 user can IPL the DOS or

OS system and control its o_I?eration from the terminal. In

this case the user's terminal becomes the operating system's

console for operator communication. This is possible even

though the operating system will require the System/370

privileged instructions.

Lesson 6. Program Loading and Execution in a Virtual Storage System 45

VM/370 Control Program

All of the virtual machine functions described so far are
possible because of the VM/370 control program. The
VM/370 control program manages System/370 real system
resources - the CPU, real storage, channels, 1/0 devices and
so forth - in such a way that each virtual machine
functions as a real System/370. The control program shares
the real CPU among all virtual CPU's using a time-slicing
technique. When a virtual machine has the real CPU it may
schedule it using its own dispatching (or scheduling) algo
rithm. Each virtual machine has its own address space. The
VM/370 controi program maps each address space and
shares real storage among all virtual machines using demand
paging. In an analogous manner, VM/370maps1/0 devices
to virtual machines. All 1/0 operations are controlled by
VM/370, even though an operating system executing in a
virtual machine may "think" that it is controlling its own
1/0. This is accomplished because only VM/370's control
program may execute the System/370 privileged in
structions. Only VM/370's control program processes real
interrupts. When an interrupt occurs in a virtual machine, it
is a virtual interrupt. VM/370 has a mechanism to direct the
system so that virtual interrupts will be processed by the
proper interrupt handlers within the virtual machine.

When a virtual machine attempts to execute a privileged
instruction, VM/370 traps the instruction, performs the re
quired function, and then returns control to the virtual
machine. Thus, operating systems executing in a virtual
machine are in a pseudo-privileged state. The VM/370 con
trol program has the proper mechanisms to allow virtual
machines to operate as though they are in the privileged
state. Only the VM/370 control program executes in the
privileged mode. Using this approach, then, only the
VM/370 control program manages the real system re
sources.

This introduction to virtual machines was included to
show you how a virtual machine system extends the
functions of a multiple virtual storage system. We intro
dl1ced VM/370 to show you an example of a virtual
machine system, but not to describe in detail any of the
functions in VM/370. For more information on VM/370,
you may refer to IBM Virtual Machine Facility/370
(VM/370): Introduction, Form GC20-1800.

System/370 Virtual Storage Support

Until now our presentation has been primarily on the con
cepts of virtual storage using examples of conceptual soft
ware systems. We have described hardware such as the
24-bit address structure, the DAT function, the segment

46

table origin register, associative array registers, change bits
and reference bits and we have used all of this hardware in
our conceptual virtual storage operating system. We have
mentioned the IBM System/370 only in examples. Most
models of System/370 have a DAT function and the other
hardware necessary to support a virtual storage operating
system. The DAT function supports virtual storage using a
combination of segmentation and paging. Thus, virtual
storage can be managed and protected through segmenta
tion ; and re al storage is managed through paging.
System/370 has a segment table origin register (STOR regis
ter). It points to the real storage origin of the segment
table. Smaller models of System/370 with the DAT
function use eight associative array registers for fast virtual
address translation. Larger System/370 models have a dif
ferent device called the translation look aside buffer that
performs a function similar to associative array registers for
fast translation. Reference and change bits are in the
storage protect key associated with each 2K real storage
block in System/370. The hardware automatically turns on
the reference and change bits when the contents of a page
frame are referenced or altered. System/370 has a 24-bit
address structure. Thus, maximum virtual storage size is
16,777 ,216 (16,384K) bytes (16 megabytes).

In System/370, the DAT function can be turned on or
off. When the DAT functionis off, no address translation
occurs during program execution. Systems like OS/MVT or
OS/MFT will run just as though no DAT function were in the

System/370. With the DAT function off, during execution
System/370 will generate effective addresses (from base dis
placement addresses) that reference real storage locations.

What happens that is different in System/370 when the
DAT function is on? During program execution the system's
CPU takes a base displacement address and generates an
effective address. This effective address (24 bits long) is the
virtual address that is translated by the DAT function. The
DAT function uses the first 8 bits as the segment number,
the next 4 bits as page number and the last 12 bits for
displacement when the system uses 4K pages. This results in
64K segments and 4K pages with 16 pages in each segment.
If 2K pages are used, the first 8 bits of the virtual address -
effective address - identify segment number, the next 5
bits page number and the last 11 bits displacement. This
results in segments of 64K and pages of 2K, with 32 pages
in each segment. Thus, it is the way that the DAT function

"looks at" virtual addresses that determines the structure of
virtual storage. A special purpose control register is used to
specify whether the system is using 2K or 4K pages. This
register also controls segment size. In System/370 segments
may be 64K or 1024K. During address translation the DAT
function references segment and page tables. The tables must

be in real storage. Fast translation is performed by associ-

ative array registers or the translation look aside buffer.

Because System/370 starts with a base displacement ad
dress, generates an effective address (virtual address) and

then translates the virtual address, there is no change in
how a programmer will code programs. When coding in
assembler language a programmer doesn't need to do any

thing different than for a conventional System/370. Like
wise, compilers for high-level languages can generate object

code just as they do for conventional System/370s. Pro
grams may execute in an area of virtual storage well beyond
the end of real storage, but System/370 will translate the
effective addresses (virtual addresses) that reference these
locations. For these reasons we say that dynamic address
translation is "transparent" to the user.

In this section we have described the hardware in
System/370 used to implement virtual storage. In PART II
of this text we will describe the software - operating
systems - that support virtual storage in System/370.

Lesson 6 Test Questions

1. A virtual storage system senses a page fault during ad
dress translation through a page table entry's
A. fault bit
B. invalid bit
C. reference bit

D. change bit

2. After a page fault occurs a virtual storage system must

perform a (an)
A. page. in
B. page out

c. external page
D. page name

3. Before a page-in operation, a virtual storage system lo

cates the page that will be paged in through its
A. page table

B. external page table

C. segment table
D. look aside buffer

4. In a virtual storage system, each page table has a corre
sponding
A. segment table
B. associative array register
C. external page table
D. translation look aside buffer

S. The external page table identifies the location of a page
in

A. auxiliary page storage
B. real storage
C. buffer page storage

D. external page storage

6. The technique of loading a page into real storage only
when referenced is called
A. demand paging

B. reference loading

C. reference paging
D. transfer paging

7. The page replacement rule considered as the best that

can be used in virtual storage systems is
A. LRU

B. FIFO
C. LIFO
D. FM

8. During a page replacement operation a page out is first
required only if the
A. invalid bit is on
B. reference bit is on
C. change bit is on
D. protection bit is on

9. In the conceptual virtual storage system described in
this lesson programs are loaded into virtual storage

using

A. simple program loading

B. static relocation
C. dynamic relocation

10. System/370 with a 24-bit address structure supports a

maximum virtual storage size of

A. 8 million bytes
B. 12 million bytes
C. 16 million bytes
D. 32 million bytes

11. The System/370 DAT function supports a virtual storage

with
A. paging only

B. segmentation only
C. segmentation and paging

Lesson 6. Program Loading and Execution in a Virtual Storage System 47

12. In System/370 the DAT function may be turned on or
off. (True/False)

13. System/370 supports a virtual storage with a page size
of
A. 1Kor3K
B. 2Kor4K
C. 2Kor 6K
D. 4Kor 8K

14. System/370 has special devices for fast address trans
lation. On small System/370 models they are called as
sociative array registers; on iarge Systemi370 models
they are called the translation look aside buffer.
(True/False)

48

1

Lesson 7. Virtual Storage: A Summary Analysis

We have presented the basic concepts and techniques used
to implement virtual storage systems. We have described the
concepts, one piece at a time, until the presentation of a
virtual storage operating system in the preceding lesson. In
this lesson we will summarize the requirements, in hardware
and software, needed to implement a virtual storage system.
We will then compare these requirements to the results that
are derived from implementing the virtual storage concept.

Hardware and Software Requirements for Virtual
Storage

A variety of new hardware devices have been introduced for
virtual storage systems. The dynamic address translation
feature (the DAT feature) automatically translates virtual
addresses. Translation begins with the Segment Table Origin
Register. To reduce translation time through segment and
page tables, associative array registers make the difference
in instruction execution 'timings' negligible when compared
to translation through the tables.

In addition to these new devices, some conventional
system resources are used in a virtual storage system. The
segment and page tables reside in real storage. This, in ef
fect, expands the size of the supervisor. In a single virtual
storage system the system has only one segment table and
each allocated segment one page table. This results in a
small additional requirement of real storage. In a multiple

virtuai storage sysiem ihis requirement increases somewhat.
In either case, it's a variable quantity that depends on the
an1ount of virtual storage in use. Some of the system's
auxiliary storage is used for external page storage. The
amount of external page storage also depends on the
amount of virtual storage in the system. A channel's or at
least part of a channel's time will be used for page transfers
between external page storage and real storage (paging).

Some new software is required in a virtual storage
system. This primarily takes the form of the paging super
visor~ Paging, table maintenance and functions such as the
page replacement strategy are built into the paging
supervisor.

Benefits of Virtual Storage

The benefits and potential that result from these hardware
and software requirements are numerous. In fact, they
make the virtual storage concept a profitable investment in
almost any application environment.

A virtual storage system's real storage is used only on
demand, when referenced. This results in many benefits:

1. Programs only require their working set for effective
execution. This may enable the system to initiate and
execute more jobs.

2. Real storage fragmentation is almost eliminated.
3. It's possible to design and implement an application

the size of which greatly exceeds real storage size.
This would be impossible in a conventional system
without the use of overlays, or a multi-step job.

4. Long running applications will use only the amount
of real storage required at any point in time. Thus, a
dedicated teleprocessing network will use very little
real storage when idle.

5. Virtual storage systems might be usable as back-up
for systems that have a larger real storage size.

6. In a system with multiple virtual storage support,
each user has his own address space.

From the programmer's point of view, virtual storage
systems eliminate limitations that exist in static relocation
systems. Because virtual storage is much larger than real
storage the programmer has much more space to design
probiem soiutions. This greatiy reduces, if not completely
eliminates, the need to overlay programs. In overlayed pro
grams, the programmer must plan for storage requirements,
storage content and branching conventions. Revising a pro
gram 9r application that uses overlays can be a complicated
job. In virtual storage systems the system, through demand
paging, manages real storage. In effect, it "automatically
overlays" programs too large for available real storage. The
programmer develops his program for execution in a large
contiguous space in virtual storage. This saves time and
eliminates complicated procedures. It lets the programmer
concentrate on the solution to his application.

Because the operating system itself (its supervisor and
subsystems) is structured in virtual storage and because
large portions are paged, the number of resident functions
may be expanded to suit an installation's needs. They will
only need real storage when used, but they are always
available to be shared by the system and its users. In static
relocation systems the number of resident functions used is
limited because they require full-time residence in a
system's real storage. In general the benefits of a virtual

storage system relate to two factors:
1. There is less dependence on the system's configu

ration and resources, especially real storage size.
2. There are less restrictions on the size and functions of

the operating system that controls the system's re
sources, and on the people - programmers, operators
and so forth - who use the system's resources.

Lesson 7. Virtual Storage: A Summary Analvsis 49

Lesson 8. Programming Style in a Virtual Storage System

Methods and techniques for programming in static re
location systems are normally used for any of three
reasons:

1. To conserve real storage.
2. To improve execution speed.
3. For programming convenience.
Virtual storage systems operate very differently than

static relocation systems. Real storage use is dynamic, and a
program's working set requirements are largely unpre
dictable during execution. Although a program's reference
pattern is not always predictable, some programming tech
niques can be used to improve locality of reference during
execution, to reduce paging and to reduce real storage re
quirements. These techniques are not complicated. They
don't require a lot of time. They are new, however, and
somewhat different.

Before discussing any specific techniques let's briefly
consider one item. How much thought and time should you
give to programming style before you begin coding a pro
gram? The answer depends on the expected usage of the
program. Will it be used once a day or once a year? When
used, will it run for five minutes or five hours? The fre
quency and length of use are the two important factors in
deciding how much time to devote to programming tech
niques. Programs used in a daily application deserve more
attention than a program run once a year. What follows is
an introduction to some of the considerations that you
should make if programming for a virtual storage system.

The key objective of programming techniques in a
virtual storage system is the reduction of page faults. The
techniques involve two approaches:

1. Considerations that should be made while coding a
program or group of modules that will form a pro
gram.

2. Considerations that should be made when you load a
program; specifically, where you place modules in
virtual storage.

Three general rules will help to keep page faults to a
minimum. The first relates to locality of reference - keep
things used with each other near each other. The second
rule relates to minimum real storage - keep as small as
possible the amount of real storage required for a program
to execute without a large amount of degradation caused
by paging. The third relates to validity of reference. Don't
retrieve useless data when you reference storage. Some ex
amples of these rules follow.

To achieve good locality of reference, processing should
be sequential for both code and data. Computer programs

so

normally execute sequentially but in certain situations this
is not the case:

1. Error handling or unusual-situation routines should
be separated from the main section of a program.
Preferably they should be separate subprograms.

2. If a short subprogram is used (or called) only once or
twice (and it is not an unusual-situation routine),
then its code should be included in the calling pro
gram. An example of this would be a routine to calcu
late square roots. Include its code wherever you
would normally call it. You would use more virtual
storage, which is very large, but get less page faults
and use less real storage.

3. Subprograms should be loaded near the programs that
use them. An understanding of program flow between
routines can help the user package them to reduce
page faults.

Whenever possible, program data should be arranged so
that it is accessed sequentially in memory:

1. Initialize data as close as possible to its first use. This
will improve the probability that the page containing
the data will still be in real storage when again refer
enced.

2. When a new data item is defined place it as close as
possible to the items that will use it.

3. Reference arrays (or other data structures) in the
order in which they are stored in storage, for ex
ample, columnwise versus rowwise when using
FORTRAN; or define arrays in the order that they
will be referenced.

To achieve minimum real storage keep as low as possible
the amount of storage that a program references in a short
time period. In other words, use some techniques to at
tempt to get small working sets. Use separate subroutines
whenever the flow of control in your program suggests that
execution will not always be sequential. Load modules in
some optimum order. This -will greatly reduce the number
of page faults. For example, load all frequently used sub
routines near each other in virtual storage. By the nature of
their frequent usage, these routines will tend to stay in real
storage. As we mentioned earlier, load unusual-situation
routines far away from the main stream of code. Write
highly modular code. Then package the code according to
the frequency of reference.

Have few storage references that retrieve useless data;
consider the validity of reference. One should try to avoid
long searches for data. Expend virtual address space, which
is very large, to reduce the need for real storage. Use data

t'

structures that can be directly addressed, like arrays, rather
than structures that must be searched, such as chains. In
direct addressing is bad, and so is any method that simu
lates indirect addressing.

In a virtual storage system you can begin to consider
approaches to problem solutions that are not very feasible
in other systems. This is due to the size of virtual storage.
For example, use virtual storage for what, in a non-virtual
storage system, would have been scratch files or spilled

tables. Don't use overlays; they don't reduce paging.
System 1/0 (paging) will work faster than user-initiated 1/0,
and paging will be done anyway.

Even though this lesson introduced several new tech
niques, they shouldn't add time to coding programs. Keep
these factors in mind and code problem solutions in a
natural way. This will most likely result in the best use of a
virtual storage system.

Lesson 8. Programming Style in a Virtual Storage System 51

•,

Lesson 2 Answer Key

1.A

2.C

3. time

4. static relocation, dynamic relocation

5. c

6.B

7.C

8.A

9.B

10. Faise

11. True

Lesson 3 Answer Key

1.C

2.A

3.C

4. Dynamic Address Translation

5. False

6.B

7. Segment Table Origin Register

8.A

9.D

10. B

Examination Answer Keys

11. A. 24 7230
B. 128032

12.D

Lesson 4 Answer Key

1.A

2.B

3. False

4. True

5. True

6.B

7. False

8A.45024

8B. This address can't be translated through the associative
array registers. None of the registers contain its segment
and page number. Therefore, translation would occur
through the segment and page tables.

9. Real storage and auxiliary storage

IO.True

Lesson 5 Answer Key

1.C

2.B

3. virtual address stn,1cture

4.C

5. True

6. False

Examination Answer Keys 53

7. D

8. A

9. True

10. True

11. False

Lesson 6 Answer Key

1. B

2.A

3.B

4.C

5. D

6.A

7.A

8.C

9.B

10. c

11. c

12. True

13.B

14. True

54

•,

jZ)~ ~··········

We have presented a conceptual virtual storage operating
system in PART I, discussing the hardware and software
needed for its implementation. Also in PART I, we de
scribed the System/370 DAT feature and other hardware
used to support virtual storage in several models of
System/370. However, we only presented a conceptual
virtual storage operating system. Several operating systems
support virtual storage in System/370. In PART II we will
describe these systems and how they use the new hardware
features in System/370. We will begin with a discussion of
the Operating System/Virtual Storage (OS/VS). There are
two versions of OS/VS:

1. OS/VS 1, which is an extension of OS/MFT.
2. OS/VS2, which is an extension of OS/MVT.

Lesson 9. Introduction to Part 11

In addition, OS/VS2 has two releases that are significantly
different. Release 1 (Rel 1) of OS/VS2 supports a single
virtual storage. Release 2 (Rel 2) of OS/VS2 implements
multiple virtual storage support. In PART II we will first
present features common to both options of the OS/VS
system; we will then present the features of OS/VSl, and
then the features of OS/VS2 both Rel 1 and Rel 2. The last
topic in PART II will be a description of virtual storage
support in the Disk Operating System (DOS/VS) when used
with System/370 models that have the DAT feature.

There will be no additional description of VM/370 in
PART II. If you have further interest in VM/370 you can
reference "Introduction to VM/370," Form Number
GC20-1800.

You should not begin to study PART II until you study
PART I of this text. Our presentation in PART II assumes
that you have read and understand PART I.

Lesson 9. Introduction to Part II 55

Lesson 10. Introduction to Operating System/Virtual Storage

Operating System/Virtual Storage (OS/VS) is an extension
of OS on System/360. It brings virtual storage to the OS
user who has a System/370 model with the DAT feature.
Our presentation in PART II will focus on how OS/VS
implements virtual storage.

Dynamic address translation, segmentation, paging and
virtual storage are all supported in the OS/VS system.
The result for the user is a virtual storage, 16,777,216
bytes (16 megabytes) in size. This results in several
benefits:

56

1. Programmers have more space for problem solutions.
With OS/VS, programmers will have less need for
overlay or multi-step design. OS/VS will "auto
matically overlay" with demand paging.

2. OS/VS gives you dynamic system management. All
active jobs share real storage through demand paging.
If a job has little activity - for example, a tele
processing application getting few transactions - the
job will use little real storage.

3. The system has more space for resident system
functions that can be shared by all users. OS/VS is
structured in virtual storage, not in real storage like
OS on System/360. You can make more system
functions like SVC's or access methods resident in
virtual storage. They won't use real storage unless
referenced. When used, they might be shared by more
than one active job.

4. Real storage fragmentation is reduced. OS/VS uses
paging to manage real storage. This eliminates a
problem of OS on System/360 - real storage
fragments between regions and real storage fragments
within regions or partitions. In OS/VS fragments may
exist, but they will exist only in virtual storage. This
has little or no impact on the real storage resource in
your System/370.

5. With OS/VS, you can experiment with applications
whose storage requirements are larger than your
System/370's real storage resource. In OS/VS, pro
grams are loaded in virtual storage and demand paged
in real storage.

6. Your System/370's real storage size will no longer be
such a critical factor when configuring the structure
of your OS/VS operating system - nucleus size, se
lection of resident functions, number and size of
regions or partitions, and so forth. Your OS/VS
system is structured in virtual storage. In an
emergency, you could run on a back up System/370
with a smaller real storage than your normal system.

If you add more real storage to your system, OS/VS
will automatically take advantage of the additional
real storage because of the paging concept.

We will now describe how the OS/VS system implements
virtual storage to give you these advantages and others that
can be derived from the use of a virtual storage system. In
this topic we will describe features common to both
options of the OS/VS system.

Virtual Storage in OS/VS

The OS/VS system has single and multiple virtual storage
implementations. OS/VSI and OS/VS2 Rel I implements a
single virtual storage, the system's address space. OS/VS2
Rel 2 implements multiple virtual storages; in OS/VS2 Rel
2 each user has his own address space. Virtual storage size is
16 megabytes. OS/VSI has a user option to make virtual
storage smaller. We will discuss this in the section on
OS/VS 1. An important concept that you must remember is
that the OS/VS system is structured in its virtual storage
(the system's address space) - just as OS/360 is structured
in real storage. Parts of OS/VS that are resident in virtual
storage include its nucleus, any user-selected optional
system functions such as access methods and SVC's, and
active user problem programs. In the single virtual storage
implementation, active users execute in regions or parti
tions that are structured in virtual storage. With the multi
ple virtual storage implementation, each user executes in his
own address space. OS/VS manages real storage with de
mand paging. Libraries in auxiliary storage contain system
functions and user programs just like OS on System/360.
However, because OS/VS is structured in virtual storage
more system functions like SVC's and access methods can
be made resident in virtual storage. This is simply because
virtual storage can be larger than real storage. Also, even
though an SVC or access method is resident in OS/VS's
virtual storage, it won't use real storage unless referenced.
We will describe the structure of virtual storage in a
moment and we will describe how each OS/VS system
looks in virtual storage later. For now, remember that
OS/VS is structured in its virtual storage, the OS/VS
system's address space; real storage is a system resource
controlled through demand paging.

Virtual Storage Structure

In the OS/VS System, virtual storage has a segment-page

structure. Segments are fixed in size (64K). There are 256
segments in 16 megabytes of virtual storage. Page size is
different for each option of OS/VS. OS/VSl has 2K pages;
therefore, there are 32 pages in each segment. OS/VS2 has
4K pages. In OS/VS2, there are 16 pages in each segment.

Because virtual storage in OS/VS has a segment-page
structure, it needs a segment table to map virtual storage.
The System/370 DAT feature uses the segment table for
dynamic address translation. OS/VS uses the segment table
for virtual storage allocation. It allocates virtual storage to
system programs and user problem programs in segment
size increments. Thus, OS/VS takes advantage of segmenta
tion as a good technique for managing virtual storage. Each
segment of virtual storage has a page table. The page tables
are also used by the System/370 DAT feature ~uring dy
namic address translation.

Virtual Address Translation

Virtual addresses in OS/VS are translated using the tech
nique that we described in PART I. The System/370
Segment Table Origin register (STOR register) points to the
real storage location of the segment table. The segment
number in the virtual address is used as an index into the
segment table. The segment table entry poin~s to its page
table. The page number in the virtual address is used as an
index into the page table. The page table entry supplies the
required page frame location, or, if the page is not in real
storage, a page fault occurs. If the page is in real storage,
the page frame number is linked or concatenated to the
virtual address dispiacement and translation is complete.
Translation is performed by the System/370 DAT feature.
Also remember that fast translation occurs iri parallel usir1g
associative array registers or the translation lookaside buffer
(TLB). OS/VS builds and maintains the segment and page
tables. The System/370 DAT feature performs virtual ad
dress translation. The segment and page tables must reside
in real storage. However, OS/VS doesn't build page tables
for unallocated segments. When a segment is allocated its
page table is built. This saves some real storage because page
tables and the segment table must be in real storage during

address translation.

Levels of Storage in OS/VS

Externa I Page Storage

There are two storage levels used for paging in OS/VS.
Pages are transferred between page frames of real storage

and slots of external page storage. External page storage is

part of auxiliary storage in OS/VS. It uses direct access
devices. These may be disk devices like the 3330, 2319 and
2314, or a fixed-head file like the 2305. The amount of
external page storage needed for an OS/VS system relates
to the size and use of virtual storage. Another term that
you will read or hear in discussions of external page storage
is paging data sets. They are simply data sets that store
pages in external page storage.

Real Storage

In the OS/VS system, real storage is divided into page
frames. Page frames in OS/VS 1 are 2K. Page frames in
OS/VS2 are 4K. OS/VS has a page frame table that indi
cates the status (available or in-use) of each page frame.
With demand paging, OS/VS loads pages into real storage
from external page storage as they are referenced during
program execution. If all page frames are used, page re
placement is required. OS/VS tries to replace the least re
cently used (LRU) page in real storage - no matter to
whom the page belongs. OS/VS does this by using the refer
ence bits associated with page frames and by manipulating
the page frame table. During page replacement, if the page
being replaced has changed - as indicated by its page
frame's change bit - a page-out operation is also required.
By using the LRU rule; OS/VS tries to keep the most active
pages in real storage. In effect, OS/VS tries to keep each
program's working set in real storage.

The Paging Supervisor

The OS/VS system's nucleus, its major control program, is
an extension of the nucleus in OS on System/360 (in
OS/VS, another name for the nucleus is the resident super
visor). In addition to controlling and allocating system re
sources, the OS/VS nucleus has a paging supervisor. The
paging supervisor controls all of the paging activity in
OS/VS. Some of the paging supervisor's functions are to:

1. Maintain the system's segment table, page tables and
the page frame table.

2. Initiate page-in and page-out operations.
3. Control page replacement using a page replacement

algorithm like LRU.
4. Service all page faults.
5. Monitor the system's paging rate to prevent thrashing.

In effect, the paging supervisor manages real and external
page storage to implement virtual storage in OS/VS. The
paging supervisor is the software support in OS/VS for de
mand paging. The System/370 DAT feature is OS/VS's
hardware support.

Lesson 10. Introduction to Operating System/Virtual Storage 57

Page Fixing

As we said earlier, the OS/VS system is structured in virtual
storage. Real storage is a system resource controlled by the
paging supervisor. However, pages from certain areas of
virtual storage are fixed in real storage for long or short
time periods. What pages of the virtual storage are fixed is
determined by the nature of their function.

Some pages are always fixed during OS/VS operation.
For example, the nucleus is crucial for system operation. In
OS/VS, the nucleus is resident in virtual storage and all of
its pages are fixed in real storage during system operation.
Pages used for the system queue area are also permanently
fixed in real storage as they are allocated.

Some pages are fixed for the duration of a job or job
step. For example, pages that hold certain control blocks
related to a job are fixed for the duration of the job. These
examples so far all relate to pages that have a long term fvc.

Pages may be given a short term fix. For example, pages
used as I/0 areas for input/output operations are fixed only
for the duration of the I/O operation. They get a short term
fix in their real storage page frames (the next lesson will
present how I/O functions in the OS/VS system).

Page fixing is controlled by the OS/VS paging supervisor.
Fixed pages are identified in the OS/VS page frame table.
Who can fix pages? Only the OS/VS nucleus and supervisor
subsystems and functions are authorized to selectively fix
some or all of their pages. User programs cannot selectively
fix pages of a program in real storage. However, the OS/VS
system :might selectively fix pages for you. During I/O
operations OS/VS will fix pages used for I/O areas. When
your programs perform I/O, OS/VS will give your I/O area
page(s) a short term fix. At the end of each I/O operation,
OS/VS frees these pages. They are again available for re
placement. We will describe why OS/VS fixes pages during
I/O operations in the next lesson.

Why are pages fixed in a demand paging system? OS/VS
uses page fixing for one of three reasons:

58

1. Some functions are used by everyone in the system,
and some functions must be fixed in real storage for
the system to function at all. The nucleus serves
everyone in the system. If it were paged everyone in
the system would wait. The paging supervisor - con
tained in the OS/VS nucleus - controls paging. If it
isn't fixed in real storage, OS/VS can't page other
system and user programs.

2. Some pages are fixed so that their real storage page
frame locations won't change during an operation.
I/O areas are fixed for this reason during I/O oper
ations.

3. Some devices are highly time dependent. For ex
ample, a bank reader/sorter device requires rapid re•

sponse because of its high time dependence. All
MICR devices have a high timing dependence. Pro
grams that service these devices shouldn't be paged. If
they are, transactions might occur during a paging
operation and be lost. Pages of highly time dependent
programs should be fixed during execution. However,
this represents a very small class of devices and
programs.

Even though OS/VS may fix pages for the conditions we
have just described, the system, in general, is very conserva
tive about page fixing. When a page is fixed its page frame
isn't available for paging.

Virtual Equals Real Option

We have just seen that the OS/VS system can fix pages and
why it fixes pages. An OS/VS user can fix pages, but not
selectively. You can fix pages by labeling a job step virtual
equals real (V=R). We will describe how each OS/VS system
implements the V=R option later. Its effect is to give a long
term fix to all pages in programs used by a V=R job step
during program execution. Therefore, a V=Rjob step is not
paged. V=R job step allocation reduces the number of page
frames that can be shared by other active jobs in the
system. For this reason, you should be careful about using
the V=R option. In general, there are only two reasons why
you would execute a job step as V=R.

1. It services a MICR device.

2. The job step dynamically modifies channel programs
during I/O operations.

We will explain the second reason in the next lesson on
channel program translation.

Virtual Storage Allocation

In OS/VS, virtual storage is allocated to system components
and active user jobs in segment size increments. Segments
are fixed in size. They are 64K. With a single virtual storage,
if your job needs 96K, it will get two segments of virtual
storage (l 28K), even though it will only use 96K. With
multiple virtual storages, your job would have access to all
segments in the private area of your address space (this will
be explained later). Unused virtual storage doesn't waste
any real storage. It represents unused or potential address
space. The system allocates virtual storage in segments be
cause it is convenient and easy to control. OS/VS only
needs to examine the segment table. This tells the system
what segments are in use and how much virtual storage is
available.

Lesson 11. Channel Program Translation

When we described page fixing we said that pages used for
1/0 areas must be fixed in real storage during 1/0 oper
ations. In the OS/VS system these pages get. a short term
fix. Before an 1/0 operation begins, any page(s) used as an
1/0 area is fixed in its page frame. At the end of the 1/0
operation, OS/VS frees the page(s). It is again available for
replacement through demand paging.

Short term page fixing during 1/0 is controlled by the
OS/VS Input/Output Supervisor (IOS). Short term page
fixing, plus some other special operations provide an OS/VS
function caHed Channel Program Translation. it is a
function of the OS/VS Input/Output Supervisor (IOS) that
is needed in a virtual storage system. Why does OS/VS use
Channel Program Translation? How does Channel Program
Translation work? We will begin with a brief discussion of
channels in System/370 and proceed to answer these
questions.

System/370 Channels

System/370 uses channeis to process IiO operations. Thus,
channels control the transfer of data between real storage
and 1/0 devices. A channel is actually like a small, special
purpose computer. Special commands or instructions con
trol its operation. These commands are called Channel
Command Words (CCW's). When combined to control an
input or output operation, a string or group of CCW's is
called a channel program. A channel program, because it is
executed by the channel, may execute concurrently with
the System/370 CPU. This is called 1/0 overlap.

Let's assume that you write a program. Your program
gets input records from tape, gathers some statistics and
prints these statistics as output. You use a language like
COBOL or PL/I. When your compiler builds machine exe
cutable code, the code will contain two channel programs.
One channel program will control the operation that reads
tape records. The other channel program will control print
ing the output. As a programmer, you don't need to worry
about how these channel programs are built, when they
execute, or how they execute. The system's software sup
plies these functions. To see why channel programs get
special consideration in a virtual storage system, let's
further investigate what happens in our example.

The commands or instructions in a channel program are
called Channel Command Words (CCW's). In our example,
one group or string of CCW's - the first channel program -
would control the tape input; the other group of CCW's -

the second channel program - would control printing the
output. In the case of tape input, the channel program
would control reading tape records and placing them into
an input area in real storage. Thus, the channel program's
CCW's contain instructions to read the tape records and
they contain the real storage location or address of the
input area. Therefore, CCW's reference real storage. To con
trol printing output, the second channel program must
reference the output area in real storage. One or more of its
CCW's must have the real storage location or address of the
output area. In Systemi370 then, channels reference real
storage locations just as the CPU does. In a virtual storage
system like OS/VS, the System/370 CPU uses the DAT
feature to translate virtual addresses into real storage ad
dresses. However, System/370 channels do not have an ad
dress translation feature. Channel programs in OS/VS have
virtual addresses. The virtual addresses in CCW's rriust be
translated into real storage addresses by software in the
OS/VS system. This software function of OS/VS is called
Channel Program Translation. In the OS/VS system, the
System/370 CPU performs address translation using special
hardware, its channeis use software translation.

The Channel Program Translation Function

Let's name our tape-to-printer program. We'll call it Pro
gram A. Figure 59 shows Program A residing in a single
virtual storage system such as OS/VS. We have indicated the
tape input area and the printer output area. For con
venience we made each area 4K. We also assume that page
size is 4K. Both channel programs reside within Program A.
The channel program for tape input contains the location
of the tape input area in one of its CCW's. In Figure 59 this
is virtual address 336K. The channel program for printer
output contains the location of the printer output area in
one of its CCW's. In Figure 59 this is virtual 2ddress 324K.
Program A resides in virtual storage. It is executed using the
demand paging technique.

What happens when 1/0 occurs? Figure 60 shows Pro
gram A executing. Several pages of Program A are in real
storage. Noted in particular in Figure 60 are the page
frames that contain the tape input area and the printer
output area. They are located at real storage locations 84K
and 96K, respectively. If the channel program for tape in
put executes, it will try to place a record into virtual
storage location 336K. The channel program for printing
output would try to get data beginning at virtual storage

Lesson 11. Channel Program Translation 59

TAPE INPUT
AREA
(4K IN SIZE)

PROGRAM A 336K PRINTER
OUTPUT
AREA

CJ
(4K IN SIZE)

SOK~-------1

SUPERVISOR o _______ __,

VIRTUAL STORAGE

Figure59

location 324K. This is because channels have no hardware
DAT feature to translate the virtual addresses in channel
program CCW's. To compensate, the Input/Output Super
visor (IOS) must translate these CCW virtual addresses into
their current real storage locations before each 1/0 oper
ation begins.

In our example in Figure 60, before a tape input oper
ation can begin IOS will translate the CCW address of 336K

PROGRAM A

52K1-----~~---'

SUPERVISOR

0-----~---'
VIRTUAL STORAGE

Figure 60

60

to 84K. The input operation could then proceed. If printer
output is also required at this time, what is the result of
IOS channel program translation? The CCW in the printer
output channel program that has virtual address 324K will
be translated into real storage location 96K. The output
operation could then proceed. When IOS translates the
virtual addresses in channel program CCW's it does not re
place them with the resulting real storage addresses. If it did
the next channel program translation would be invalid.
During translation, IOS takes a CCW virtual address, uses
the segment and page tables to translate it and places the
real storage location into a duplicate CCW string. In effect,
IOS builds its own "real" channel program before 1/0 be
gins. The channel executes 1/0 using this "real" channel
program. IOS translates the channel program virtual ad
dresses each time an 1/0 operation is started. Translation
occurs for every 1/0 operation - unless a program executes
as Virtual = Real - so that the system may demand page
I/O areas.

1/0 areas may be paged between 1/0 operations. How
ever, an 1/0 area may not be replaced during an 1/0 oper
ation. Channel program translation occurs before 1/0
begins. If all or part of an 1/0 area were replaced during an
1/0 operation, the channel would not be given any indi
cation. The channel would continue to execute the 1/0
operation. The page that replaced all or part of the I/O area
would either be changed with input and become invalid, or
written out as data that is invalid. To prevent this, the
system issues a short term fix for all pages that contain 1/0
areas related to an I/O operation before it begins. IOS actu
ally issues the fix. At the end of an I/O operation, IOS frees
its I/O area page(s).

PRINTER
OUTPUT
AREA

256K

SUPERVISOR

-------~o
REAL STORAGE

Channel Program Translation allows OS/VS to demand
page most programs that you will execute in OS/VS. How
ever, one class of programs will not run under paging. Their
channel programs are dynamically modified during I/O
operations. A dynamically modified channel program is one
in which the CCW address of an input or output area is
changed during an 1/0 operation. Because CCW address
translation occurs before I/O begins, OS/VS won't be noti
fied during an I/O operation of any change in the CCW
addresses. In the event of a change, input or output data
would be transferred to or from the wrong real storage lo
cation. Programs that use dynamically modified channel
programs must be executed in the virtual equals real area of
virtual storage. When a program is run as virtual equals real
in OS/VS, channel program translation is not required be
cause the virtual addresses in channel programs equal their
real storage locations. Not many programs use dynamically
modified channel programs. As a result, there is no large
impact on OS/VS.

The Channel Program Translation feature in OS/VS in
volves four steps:

1. Virtual addresses contained in a channel program's
CCW's are translated to indicate the real storage lo
cations of their related I/O areas.

2. Page(s) that contain the I/O areas are given a short
term fix in their page ftame(s).

3. The I/O operation is executed.
4. At the end of I/O, the page(s) used for I/O areas are

freed; they are again pageable.
The Channel Program Translation feature is a part of the
Input/Output Supervisor (IOS) in OS/VS. It is a type of
software translation and an automatic function in the
system. Channel Program Translation requires no pro
grammer action. It is internal to OS/VS. Channel Program
Translation allows OS/VS to better share its reai storage
among all system users.

Lesson 11. Channel Program Translation 61

Lesson 12. OS/VS1

OS/VS 1 (or VS 1) is an option of the OS/VS system.
OS/VS 1 is a functional extension of OS/MFT. In OS/VS 1,
problem programs execute in fixed-size partitions in a single
virtual storage. Maximum virtual storage size is 16 mega
bytes. A user may specify a smaller virtual storage at system
generation and/or IPL time. The number of user partitions
is specified during OS/VSl system generation. You may
redefine the number of partitions, their class, and their size
during system operation. However, you may not exceed
the number of partitions specified during system gener
ation. A user may specify up to 15 problem program par
titions.

OS/VSl uses the System/370 24 bit-address. Its virtual
address structure is shown in Figure 61. In VSl, segments
are 64K and pages are 2K. There are, therefore, 32 pages in
each segment.

SEGMENT PAGE
DISPLACEMENT NUMBER NUMBER

J-----s BITS~~B~Ts~I -- 11 BITS ~1

I I I
I°. T 12r3 231 1 - 256 1 - 32 1 - 2048

SEGMENTS PAGES BYTES

OS/VS1 VIRTUAL ADDRESS STRUCTURE

Figu.re 61

VS 1 is structured in virtual storage just as MFT is
structured in real storage. Thus the nucleus, all resident
supervisor functions and all defined user partitions are in
virtual storage. When VSl schedules a job, it loads a pro
gram into a partition in virtual storage. When execution
begins, the system loads pages into real storage as they are
referenced through demand paging. We will make a more
detailed presentation on program loading in VS 1 in a later
topic.

VS1's Structure in Virtual Storage

How is VS 1 structured in its virtual storage, VS 1 's address
space? Not much differently than MFT is structured in real

storage. Examine Figure 62. In Figure 62, we cut virtual
storage into two areas, the non-pageable area and the
pageable area. The major difference between each area is
how VS 1 allocates virtual storage within the area. In the

62

non-pageable area, VS 1 allocates virtual storage in page size
increments (2K). This is done because all pages in the non
pageable area, when allocated, get a long term fix in real
storage:

1. All pages in the nucleus are fixed during system
operation.

2. Any pages allocated for System Queue Area (SQA)
expansion get a long term fix as they are allocated.

3. Pages allocated to a virtual equals real job step are
fixed for job-step duration.

PAGEABLE
AREA

VIRTUAL STORAGE

PA GABLE
SUPERVISOR

PO

Pn-1

Pn --i-,- .,.._--------.ii---v = R LI NE

VIRTUAL EQUALS
REALAREA

NON- (V=R)

PAGEABLE
AREA 1--------------1

I
NUCLEUS

(INCLUDING
PAGING SUPV.)

___._ o._______.
OS/VS1

Figu.re 62

In the pageable area, VS 1 allocates virtual storage in
segment size increments (64K). Partitions may be one or
more segments in size. The pageable supervisor will use one
or more segments. Since VS 1 manages the pageable area of
virtual storage using segmentation, the number of segments
in your virtual storage becomes an important consideration.

The size of the non-pageable area in virtual storage is
defined by where the Virtual Equals Real (V=R) area ends.

In VSI, the V=R area in virtual storage ends at the V=R
line. This is indicated in Figure 62. In VSI, the V=R line in
virtual storage corresponds to the end of real storage in
your System/370 - up to 768K. If your System/370 has
more than 768K real storage, the V=R line in virtual storage
is defined at 768K. Thus, if your System/370 has 512K, the
non-pageable area of virtual storage ends at 512K. If your
System/370 has one megabyte of real storage, the non
pageable area ends at 768K in virtual storage.

The size of the pageable area depends on the size of your
virtual storage. Simply take virtual storage size and subtract
the size of the non-pageable area; the result is the size of
the pageable area. Because the pageable area is allocated in
multiples of segments, if you divide its size by 64K this tells
you how many segments may be allocated to partitions and
the pageable supervisor.

We will now describe the characteristics of each part of
the VSI system structure in virtual storage: the nucleus, the
V=R area, the pageable supervisor and partitions. Continue
to reference Figure 62.

The Nucleus

VSI 's nucleus begins at the origin of virtual storage, lo
cation zero. It contains the essential control functions of
VSI including the paging supervisor and the segment table.
Minimum nucleus size is about 60K. As you add options at
system generation; nucleus size will increase. Another name
for the nucleus in VS 1 is the resident supervisor. During
system operation, all pages of the nucleus are fixed in corre
sponding page frames of real storage.

One special part of the nucleus is called t11e System
Queue Area (SQA). SQA is used as a system workspace or
scratch pad to hold control blocks and queue entries. SQA
is a dynamic area of OS/VSI that expands and contracts in
size based on system activity. I ts initial size (within the
nucleus) is specified during system generation. If this initial
SQA becomes filled during system operation, VS 1 will allo
cate pages from the V=R area to SQA, one page at a time.
All SQA pages get a long-term fix in real storage until
deallocated.

V=R Area

The virtual equals real (V=R) area in VSI 's virtual storage
begins above the Nucleus and ends at the V=R line. It is
used to execute job steps whose virtual addresses must be
the same as real storage addresses. When a V= R job step is
executed, VS 1 must load it into a contiguous section of the
V=R area. V=R space is allocated in page size increments.
These V= R pages are then loaded into corresponding page
frames in real storage. In effect, there is a one-to-one corre-

spondence between V= R pages and their real storage page
frames. These pages are then given a long term fix in real
storage until the end of the V=R job step. Even though a
V=R job step is executed in the V=R area, it is initiated
from a partition in upper virtual storage. The partition used
will service any scheduling needs of the V=Rjob during its
execution. Thus, in addition to using part of your V=R area
and fixing a significant portion of your real storage re
source, a V=R job step will also tie up the partition that
schedules it.

As we said before, the V=R feature is in VSI to service a
small class of jobs that can't run in a paging environment.
For example:

1. Jobs that use dynamically modified channel pro
grams.

2. Jobs that service time dependent devices, like MICR
devices.

A V=R job step executes using the DAT feature; its
addresses are translated even though its virtual addresses
equal their real storage locations. However, no paging oc
curs and channel program translation isn't used. Therefore,
the above types of jobs will execute properly in the V=R
area. Don't execute your other job steps as V=R. Let VSI
manage its real storage resource through demand paging.

One important characteristic to remember about the
V=R area is that it is a part of VSI 's virtual storage; its
pages in no way reserve or occupy real storage until used by
SQA or a V=R job step. With no V=R job steps executing,
real storage is shared by the pageable area of virtual storage
under the control of demand paging. We will show the re
lationship of virtual storage to real storage more explicitly
in a later section.

Pageable Supervisor

The pageable supervisor is composed of VS 1 system control
functions that are paged. The pageable supervisor is resident
in virtual storage beginning at the top of the pageable area.
It has several parts, some standard, some optional. As
standard, it contains:

1. Several supervisor functions formerly in the OS/MFT
nucleus such as the Communications Tas~ and the
SVC transient area.

2. The new VSI Job Entry Subsystem (JES).
JES is an integrated subsystem of VS 1 that controls job

input and writes job output using a SPOOLING technique.
Because JES is a part of the pageable supervisor it is paged
during execution.

As an option, the VSI user may load Supervisor Calls
(SVC's) and/or access methods into the pageable supervisor
during IPL. Thus, in VSI resident access methods (RAM)
and resident SVC's are resident in virtual storage in the

Lesson 12. OS/VSl 63

pageable supervisor:
I. Access methods, like BSAM, BDAM and so forth,

may be made resident in virtual storage. They are
reentrant, they are paged, and they may be shared by
all user partitions. The user selects which Resident
Access Methods (RAM), if any, will be in his system
at IPL time.

2. Supervisor Calls (SVC's) may be made resident in
virtual storage. They are reentrant, paged, and may be
shared by all. user partitions. Resident SVC's are not
loaded from a system library into the pageable super
visor's transient area. They are resident in virtual
storage and demand paged when referenced.

Because all of these functions are pageable, they use real
storage only when referenced. With VSI, you will have the
opportunity to structure a system in which all of the
functions that you require are resident in virtual storage.
Yet you won't need to worry about committing real storage
to SVC's or access methods that are seldom used or used
only periodically. These functions reside in virtual storage.
They use real· storage only when referenced through the
demand paging technique.

Partitions

After allocating VSI 's virtual storage to the nucleus, and
the V=R area in page size increments, and after allocating
virtual storage segments to VS 1 's pageable supervisor, the
virtual storage that remains can be divided into partitions.
For example, let's assume that we have a VSI system with
one megabyte (1024K) of virtual storage. Further assume
that the non-pageable area of virtual storage is 256K and
that the pageable supervisor is allocated 128K, or two
segments. 640K, or 10 segments of virtual storage, remain
for partition allocation. Figure 63 shows this example.
In OS/VSI, the smallest partition size is 64K, or one
segment. The largest partition size depends on how much
virtual storage is available for partition allocation. In our
example (Figure 63) we could have one 640K partition. We
could also have four partitions as shown in Figure 64.

Notice that partitions must be allocated in multiples of
segments. In VSI, therefore, partitions are multiples of
64K. Also, in VSI, job initiation requires 64K. Because the
smallest partition size is 64 K, every partition can initiate
jobs. There is no longer a small partition scheduling
problem as there is in OS/MFT.

It isn't necessary to use all of the partitions that you
specify during system generation or to use all of virtual
storage during system operation. Any unused virtual storage
remains potential address space. You might reserve a par
tition and its virtual storage for "hot job" scheduling. You
might use a large area of virtual storage to develop and test

64

'
1024K

896K

PAGEABLE
AREA

'
t 256K

NON-
PAGEABLE
AREA

~ 0

Figure 63

1024K

0

Figure 64

VIRTUAL STORAGE

PAGEABLE
SUPERVISOR

V=R AREA

NUCLEUS

OSNS1

VIRTUAL STORAGE

PAGEABLE
SUPERVISOR

PO
256K

P1
192K

P2
128K

P3
64K

V=R AREA

NUCLEUS

OSNS1

640K of Virtual
Storage available
for partition
allocation

4 SEGMENTS

3SEGMENTS

2 SEGMENTS

1 SEGMENT

a large teleprocessing application and add more real storage
to your system when you install the application. You might
also define all partitions used for production jobs as the
same size, selecting a size large enough to hold your largest
job. Job scheduling would then become much easier. You
could concentrate on assigning 1/0-bound jobs to high
priority partitions and CPU-bound jobs to low priority par
titions to balance the CPU load. Fragmentation would oc
cur, but within virtual storage not within real storage.

In our example in Figure 64 we assumed a virtual storage
of one megabyte and then determined how much space was
available for partitions. When you select a virtual storage
size, it will depend on the number of partitions you need
and their size, the size of the pageable supervisor, the size
of the non-pageable area and any extra virtual storage or
potential address space that you may reserve for special
situations like scheduling hot jobs or application develop
ment. Remember that you need adequate real storage and
external page storage to support your VS 1 virtual storage.
Enough real storage should be in the system to support its
activity at any point in time. In the next topic we will
describe the relationship between virtual storage and real
storage in the VSl system.

Real Storage in OS/VS1

Let's assume that your System/370 has 256K of real storage
and you are operating with a virtual storage size of 768K.

168KI I'
I

PAGEABLE I\,\\ SUPERVISOR

ts-~~~~~~--. '
640K \

PO
128K

\
\
\
\

256K

SOK

P1
128K

P2
128K

V=R AREA

\
\
\
\

Your VSl system might look like the one in Figure 65. We
further assume a nucleus size of 80K shown in the non
pageable area of virtual storage. Figure 65 also includes a
picture of real storage. Notice that the entire nucleus is
fixed in real storage during system operation. The remain
ing real storage - 176K or 88 page frames - is available for
paging. It is shared among the active user partitions and the
pageable supervisor in the pageable area of virtual storage.
If SQA expands, its newly allocated page is selected from
the V=R area and given a long term fix in a corresponding
page frame of real storage.

Notice also in Figure 65 that the V=R area in virtual
storage ends at 256K, the location of the V=R line. Re
member that the V=R line corresponds to the end of real
storage up to a real storage size of 768K. No real storage is
reserved for the V=R area under normal system operation.
Real Storage is shared dynamically among all active jobs
and the pageable supervisor in the pageable area of virtual
storage, as indicated by the arrow in Figure 65. The V=R
area simply reserves address space for V=R job steps in the
event that they occur.

What happens if a V=R job step is scheduled? Let's as
sume that a V=R job step called VRSTEP is scheduled in
Pl. The scheduling activity is indicated by the shading in Pl
in Figure 66. A job step is specified as V=R in the step's
JCL card. Also specified is the size of the job step. Let's
assume VRSTEP needs 62K. Before VRSTEP's execution,
VSl must allocate 62K of contiguous space from the V=R
area. VS 1 must also reserve the page frames in real storage

\
\
\
\
\
\
\

FIXED IN
NUCLEUS

or--~~~~~~--

REAL
STORAGE

.. NUCLEUS

v1 RTUAL STORAGE REAL STORAGE

Figure 65

Lesson 12. OS/VS 1 65

768K

640K

PAGE ABLE
SUPERVISOR

PO
12SK

P2
12SK

VRSTEPACTIVITY

256K

FIXED IN 190K

REAL
STORAGE

AVAi LAB LE FOR 12SK
PAGING

SOK SOK
NUCLEUS NUCLEUS

0------~~~----
.._ ____________ ~a

V I RTUAL STORAGE REAL STORAGE

V = R JOB STEP EXECUTING
Figu.re 66

that correspond to this 62K of virtual storage. VRSTEP can
then be loaded and executed as shown in Figure 63. Notice
that the remaining page frames in real storage are still
available to the pageable area of virtual storage through
demand paging.

We have just described how a V=R job step is loaded and
executed in virtual storage. In a later topic we will describe
how jobs are loaded into the pageable area of virtual
storage.

External Page Storage in OS/VS 1

You have just seen how VSl uses real storage. Now let's
examine external page storage in VS 1. Disk devices like the
2314, 2319 and 3330 or a fixed-head file like the 2305-2
may be used for external page storage. Because OS/VS 1 has
a single virtual storage, the system uses a simple but ef
fective approach to control external page storage. All of the
VSl system's virtual storage above the V=R area resides on
external page storage. Thus, for each page of virtual storage
in the pageable area there is a corresponding slot of external
page storage. There is a one-to-one correspondence between

the pageable area of virtual storage and external page
storage. The non-pageable area of virtual storage - the
nucleus, and the V=R area - requires no external page

66

storage. When used, pages from the non-pageable area are
fixed in real storage. They aren't paged; therefore, they
require no external page storage. Figure 67 shows the rela
tionship between virtual storage and external page storage.
For each page in the pageable area of virtual storage there is
a corresponding slot in external page storage. In Figure 68
we show the relationship between virtual storage, real
storage and external page storage. The nucleus is fixed in
real storage. Any of the V=R area, when allocated to a V=R
job step, is fixed in real storage until the job step ends. The
non-pageable area of virtual storage is never paged. No ex
ternal page storage is needed. Paging occurs between ex
ternal page storage - where partitions and the pageable
supervisor reside - and real storage. When a page fault
occurs VS 1 must page in the referenced page from its slot
in external page storage. It may be placed in any available
page frame. If this page is paged out at some later time it
must return to the same slot in external page storage. This
preserves the one-to-one correspondence between VSl 's
pageable area in virtual storage and its external page
storage. Because pages always return to the same slot in
external page storage there is no need for external page
tables in OS/VSl. In VSl, the pageable area of virtual
storage physically exists in the form of external page
storage. Using this design the pageable supervisor and active
user partitions share real storage in OS/VSl. Fragmentation

Figu,re 67

Figu,re 68

EXTERNAL
PAGE STORAGE

EXTERNAL
PAGE STORAGE

\
\
\

\

\\

A ONE-TO-ONE MAPPING
WITH THE PAGEABLE AREA
OF VIRTUAL STORAGE

\

\\\\
PAGING \

VIRTUAL STORAGE

PAGE ABLE
SUPERVISOR

PO T
PAGEABLE
AREA

P1

P2

V=R AREA t
NON-
PAGEABLE

NUCLEUS I

VIRTUAL STORAGE

PAGEABLE
SUPERVISOR

PO

P1

P2
ACTIVITY '\\ REAL STORAGE

'~ \
- -~ -- ...,.... ______,.

'
V=R AREA

' ' ' '
- - __ ...,.... ______

NUCLEUS NUCLEUS

Program Loading in OS/VS1
is removed from real storage. VS 1 's virtual storage may be
fragmented but this only results in some waste of external
page storage, not the system's real storage.

As we said earlier, in VS 1 virtual storage size is a user
option. It cannot exceed 16 megabytes, but it might be less.
You might specify 1024K, 2048K and so forth at IPL time.

Lesson 12. OS/VSl 67

When you IPL VS 1, the system will ask you several
questions. For example, it will ask you what size virtual
storage you want for this run. Let's say that you generated
a VS 1 system with a 2048K virtual storage. You could
reply 2048K, 1024K, or even 4096K. This lets you experi
ment, and determine a virtual storage size most suitable for
your installation. Another question that VS 1 asks during
IPL is the number of partitions that you will use and their
size. You may redefine your standard partition sizes and
their classes at this time. Partition size is specified in
multiples of segments (64K). The number of partitions
cannot exceed the maximum that you specify during
SYSGEN.

After IPL, VSl begins to process jobs. All jobs waiting
for service are kept in a system job queue. Each active
partition may schedule jobs. As one job ends in a partition,
~nother may be scheduled from the system job queue. What
happens after a job has been scheduled into a partition?
How is the program for each job step loaded into virtual
storage? Loading a program into a virtual storage partition
in VS 1 has the same requirements as loading a program into
a real storage partition in OS/MFT. It is done in the same
way, except that virtual storage, nofreal storage, is loaded.

In VSl, after compilation or assembly, user programs are

68

stored in a system library. Their addresses are relative to a
zero origin. They don't need to be in a segment-page
format. In fact, they're not. In VS 1, programs are stored in
partitioned data sets. The essence of program loading is to
relocate a program's relative addresses to the origin of the
partition in virtual storage in which it will execute. Each
partition begins on a segment boundary. At load time the
program's relative addresses are relocated to a range of ad
dresses in virtual storage. This is a form of static relocation.
It is performed by the loader program in VS 1 called pro
gram fetch. During the loading process the loader program
is executing. It reads the program to be loaded from the
system library into real storage as data, relocates its ad
dresses to a partition's segment boundary, and arranges the
program in a page format. As loading proceeds, the program
being loaded is paged out to external page storage. When
the program is completely loaded the system transfers con
trol to it; it begins to execute; its pages are loaded into real
storage as referenced through demand paging.

Now that you have studied this lesson, you should be
able to describe how virtual storage is implemented in
OS/VS 1. The VS 1 system effectively implements a single
virtual storage, the system's address space, using the IBM
System/370 DAT feature.

OS/VS2 (or VS2) is a functional extension of OS/MVT.
VS2 brings virtual storage to the MVT user. It also supports
TSO in its virtual storage environment. VS2 has had two
major releases, Release 1 (Rel 1) which implements a single
virtual storage, and the recently announced OS/VS2 Re
lease 2 (VS2/2) system. VS2/2 is a multiprocessing system
that implements multiple virtual storages. In this lesson we
will describe how Release 1 of OS/VS2 implements its
single virtual storage. Throughout this lesson all references
to OS/VS2 and VS2 refer to Release 1 unless noted other
wise. Lesson 14 will then describe the Release 2 version of

OS/VS2.
OS/VS2 has a single virtual storage. You can run multi

ple jobs in a variable number of regions in your virtual
storage. Virtual storage size is 16 megabytes. During system
generation the system will automatically specify a virtual
storage size of 16 megabytes. Although you might not use
all of virtual storage during operation, it is always there as
potential address space.

VS2 uses the System/370 24-bit address. Therefore, its
virtual address is 24 bits long. This determines the size of
VS2's virtual storage; 16 megabytes. The structure of VS2's
virtual address is slightly different than OS/VSl 's. Examine
Figure 69. Pages are 4K as they were in our examples in
PART I. Sixteen pages are in a segment and segments are
64K. Eight bits identify SEGMENT NUMBER. This makes
256 the number of segments that VS2 may allocate in its
virtuai storage. VS2 allocates virtuai storage to jobs in
segment size increments. The number of segments in its
virtual storage is an i..."'tlportant consideration, perl1aps even
more important than virtual storage size itself. We will ex
pand this consideration during our presentation of OS/VS2.

SEGMENT
NUMBER

1-----s BITS

l
o 1 - 256

SEGMENTS

PAGE
NUMBER

DISPLACEMENT

.. , B;\S~~12 BITS

718 11112
1 -16
PAGES

1 -4096
BYTES

OS/VS2 VIRTUAL ADDRESS STRUCTURE

Figure 69

During operation, VS2 is structured in virtual storage,
just as OS/MVT is structured in real storage. With VS2, real
storage is a system i:esource allocated to active jobs through

Lesson 13. OS/VS2 Release 1

demand paging. System libraries and system data sets are
stored in auxiliary storage just as in OS/MVT. Only active
jobs reside in regions of virtual storage during their exe
cution. And only the most recently referenced pages of an
active job are in real storage. When each new job is
scheduled, VS2 loads the program for the fust job step into
a virtual storage region from a system library. Once the
program for the first job step is loaded, execution begins
using demand paging. We will return to the subject of pro
gram loading and execution later. Right now we'll present
how VS2 is structured in its virtual storage.

OS/VS2 Structure in Virtual Storage

We divided virtual storage into two areas - the pageable
area and the non-pageable area - just as with VS 1. Look at
Figure 70. There are two attributes that distinguish the
non-pageable area from the pageable area. Is it paged? How

is it allocated?

---- VIRTUAL STORAGE

SYSTEM QUEUE
AREA (SQA)

PAGEABLE
LINK PACK

AREA

I F4
I

PAGEABLE
AREA MASTER

SCHEDULER

DYNAMIC
REGiON
AREA

VI RTUAL=REAL
NON-PAGE ABLE AREA
AREA

t NUCLEUS
--o.___ __

OS/VS2

Figure 70

Lesson 13. OS/VS2 69

The non-pageable area, when allocated, is fixed in real
storage. It is not paged. The non-pageable area of virtual
storage is allocated in 4K increments, the size of a page in
VS2. It is allocated in page size increments because its pages
are fixed in real storage page frames when allocated. In this
way VS2 tries not to fix any more page frames than neces
sary.

OS/VS2 allocates the pageable area of virtual storage in
segments (64K) that are paged with one exception. The
System Queue Area is allocated one or more segments of
virtual storage. SQA pages are allocated dynamically one
page at a time. However, when allocated SQA pages aren't
paged. They are fixed in real storage. All unused SQA pages
represent potential SQA address space, available for SQA
expansion during system operation. Jobs in the pageable
area, whether the system's or a user's, get their virtual
storage in multiples of segments. During execution, they
use real storage in page size increments through demand
paging. Thus, OS/VS2 uses segmentation to manage virtual
storage and paging to manage real storage.

OS/VS2 Components

Nucleus

We will now describe the structure and function of VS2's
system components as they appear in virtual storage. Figure
70 shows their location in virtual storage. The nucleus
begins at the bottom of virtual storage. It controls the use
of all key resources like the CPU and real storage. Minimum
nucleus size is l 28K. The paging supervisor is a part of
VS2's nucleus.

Virtual Equals Real Area

The Virtual Equals Real (V=R) area serves the same
function as in VSl. It lets you execute a job step with
virtual addresses equal to a contiguous range of real storage
addresses. When a job step executes as V=R, all of its pages
are fixed in real storage. During execution, addresses are
still translated. There is no paging. There is no channel
program translation. The V=R area is in the system for jobs
with dynamically modified channel programs and for jobs
that use time dependent devices like MICR devices. Don't
use V=R except in these situations. The V=R area can be
allocated to a variable number of job steps. You specify its
size at SYSGEN and you can alter its size at IPL time. The
upper boundary of the V=R area can never exceed real
storage size.

70

System Queue Area

Let's examine the top of virtual storage. See Figure 70. The
System Queue Area (SQA) resides there. You must allocate
a minimum of one segment (64K) to SQA. You may allo
cate additional segments depending on your system's needs.
During system definition, you allocate virtual storage to
SQA in segment size increments. During operation, VS2
gives real storage to SQA in page frame increments. Pages of
SQA are allocated and released dynamically during VS2
operation. Active pages of SQA have a longterm fix in real
storage. VS2 uses SQA to hold queues and control blocks
that it references during operation. The system's segment
table is in SQA.

Pageable Link Pack Area

OS/VS2 has no transient areas for SVC's or Error Recovery
Programs. Any system or user routines needed to service
your VS2 operation will reside in the Pageable Link Pack
Area in virtual storage. These functions are sharable and
they are paged. OS/MVT has a resident link pack area, but
you must commit real storage to each resident function.
When not used, this real storage is wasted. As a result MVT
users usually have small link pack areas. Other service rou
tines are executed through transient areas. OS/VS2 has its
pageable link pack area. You commit virtual storage to each
resident function. When not used, its functions use no real
storage. When used they are made available with demand
paging. As a result, with VS2 you will have a complete link
pack area, in virtual storage, tailored to your needs. There
are no transient areas. There is no need for them. The
pageable link pack area needs a minimum of 1 S segments
(960K) of virtual storage. This includes space for directories
and code. It will become larger if you include optional
functions such as the access methods used in your instal
lation.

Master Scheduler

The Master Scheduler, sometimes called the Master Region,
is the communications link between OS/VS2 and the
system's operator. It is located below the Link Pack Area in
virtual storage. See Figure 70 . VS2 needs a minimum of
two segments (l 28K) of virtual storage for the master
scheduler. During operation it is paged just like all other
system components in the pageable area of virtual storage.

Dynamic Region Area

After the system allocates virtual storage for the VS2 com
ponents, what remains belongs to the Dynamic Region

Area, also shown in Figure 70. User jobs execute in this
area. VS2 will execute a variable number of jobs in regions
in the dynamic region area. Virtual storage is allocated to
regions in multiples of segments. If you need 1 OOK for a
job, VS2 will give you a region of three segments. Two
segments {128K) will be used for your programs. One
segment will be used for the Local System Queue Area
(LSQA). Imagine that you have a job - JOB ONE. It needs
180K of virtual storage to execute its programs. VS2 will
give you a region with four segments, three segments
(192K) for JOB ONE's programs and one segment for
LSQA. This is shown as the shaded area in Figure 71.
Notice that LSQA segments are allocated from the top of
the Dynamic Region Area. Segments allocated to your job's
programs are taken from the bottom of the Dynamic
Region Area.

I
I

DYNAMIC
REGION
AREA

Figure 71

I
I

I

VIRTUAL STORAGE

MASTER
SCHEDULER

JOB ONE LSOA

OSNS2

We have used the term Local System Queue Area
(LSQA) but we haven't described its function. A job uses
LSQA just like VS2 uses SQA, to hold control blocks and
queues related to the job. They are referenced and updated
by VS2 during job execution. A region's page tables are
located in its LSQA. One or more virtual storage segments
are allocated to each region's LSQA. Giving each active
region its own LSQA makes it somewhat independent in
the system during scheduling and execution.

Let's start another job - JOB TWO. It needs 60K of
storage to execute its programs. Figure 72 shows JOB TWO
loaded in the Dynamic Region Area. JOB TWO's region has
two segments. One segment has been allocated for JOB
TWO's programs and one segment for LSQA.

You can see from Figure 72 that minimum region size in
VS2 is two segments of virtual storage - one for the job
and one for LSQA.

Figure 72

I
DYNAMIC

VIRTUAL STORAGE

SOA

REGION ·~--...~----

AREA

I
JOB ONE

JOB ONE

JOB ONE

VIRTUAL= REAL
AREA

I NUCLEUS o _____

OSNS2

VS2 allocates segments to regions dynamically. The
system can schedule jobs until it runs out of virtual storage
or until it runs out of regions. The VS2 user controls the
number of active regions in the system. You do this simply
by controlling the number of initiators that are active in
your system. An initiator schedules, initiates and terminates
jobs in a VS2 region. If you are executing one initiator you
have one active region, two initiators, two regions and so
forth. The number of active regions coupled with your jobs'
storage requirements determines the amount of virtual
storage being used in the Dynamic Region Area at any
point in time. If you have three active regions, the first

Lesson 13. OS/VS2 71

region with a job that uses S segments, the second region
with a job that uses 3 segments and the third region with a
job that uses 4 segments, 12 segments (768K) of the Dy
namic Region Area are allocated. No new jobs can be
scheduled - even though virtual storage is available - until
one of your active jobs terminates or unless you start
another initiator. Let's say that the job in the second region
terminates. The system selects a new job from the system
job queue and initiates it in the second region. We assume
that this new job needs 3 segments. The Dynamic Region
Area again has 12 segments (768K) of its virtual storage
allocated. Thus, by controlling the number of active
regions, you can indirectly control the amount of virtual
storage being used in your system. How much virtual
storage is actually beiilg used depends on the size of the
jobs running in your regions at any point in time.

You can use all of virtual storage if you are using a large
number of regions or if you execute jobs with extremely
large virtual storage requirements. However, you shouldn't
use virtual storage unwisely. You need enough real storage
and external page storage in your system to support your
a~tive virtual storage. If the working sets of active programs
in your VS2 system largely exceed the real storage available
for paging, the system will begin to thrash. Excessive paging
activity will occur. VS2 monitors its paging rate and will
prevent thrashing. But you also can indirectly control·
system paging activity simply through the ·number of
regions that you use. In fact, through experience you can
determine how many regions you can use and still achieve
good system performance. This is one advantage of a
system like VS2.

OS/VS2 has another advantage for its users. Virtual
storage that is not allocated, or allocated but not used,
doesn't waste any system resources - real storage or ex
ternal page storage. Unallocated segments of virtual storage
are simply potential address space. Unless allocated for a
region segments don't use any system resource, not even
external page storage. This is also true for segments that are
only partially used. This can happen for several reasons:

1. In a segment allocated to LSQA, the system is only
using the first four pages (16K).

2. In a segment allocated to a job, only the first five
pages (20K) are actually used. Let's assume that your
job has a program that needs 84K. VS2 would allo
cate two segments (l 28K) to a region for this job.
Only five pages (20K) in the second segment would
be used.

These examples show how fragmentation of virtual storage
can occur within a VS2 region. No real storage is wasted.
No external page storage is wasted. We shall present how
VS2 controls external page storage later. At that time we
shall show you why fr~gments, or unused parts of segmel).ts,

72

within a virtual storage region cause no waste of external
page storage.

Let's take another look at our VS2 example. Figure 72
shows the previous state of the system. We assume that JOB
ONE ends, and the system schedules JOB THREE in the
available regjon. It needs lOOK to execute programs (two
segments) and one segment for LSQA. Figure 73 shows
these two changes in our system. Part A of Figure 73 shows
the system after JOB ONE ends; PART B of Figure 73
shows the system when JOB THREE begins. We present
this example to give you a "slow motion" view of virtual
storage allocation to regions in VS2. It should also help you
see the advantage of segmentation for managing virtual
storage.

The number of segments in your VS2 virtual storage is
an important consideration. We have indicated the virtual
storage requirements for each major part of VS2. Figure 74
shows virtual storage and it indicates the number of
segments allocated to each system component. In Figure
74 we let the nucleus equal l 28K and we gave the
V= R area l 28K. This makes the non-pageable area four
segments in size. In the pageable area we have indicated the
minimum segment requirements for each component. If
you total each system component's segments in the
pageable area this results in a total of 19 segments. Add this
to the non-pageable area and you have 23 segments or
1472K of virtual storage. There are 256 segments in VS2's
virtual storage. In this example, the .Dynamic Region Area
has 233 segments, about 14 megabytes. Let's assume that
you expand the Link Pack Area. You include some access
methods and LP A now requires 20 segments. There are still
228 segments in the Dynamic Region Area. You can exe
cute batch jobs in your regions. You can also define TSO
regions in virtual storage. TSO users will now share real
storage through the paging technique. A larger number of
users will be able to sharp real storage in VS2 than in
OS/MVT. They will also be sharing more system programs
with the Link Pack area resident in virtual storage. Re
member, however, that you must have enough real storage
and external page storage to support the amount of virtual
storage that you use in your system. We will present how
VS2 uses real storage and external page storage in a later
topic. Right now, we will present segment protection in the
VS2 system.

Segment Protection

Segmentation is used very effectively in OS/VS2 to manage
virtual storage. Because VS2 allocates virtual storage in
segments, it can also provide storage protection on a
segment basis. In VS2, when a program is executing it may

Fig-are 73

T
I

PAGEABLE
AREA

NON
PAGEABLE
AREA

J

Figu.re 74

VIRTUAL STORAGE

DYNAMIC
REGION
AREA

I
JOB TWO

PART A

JOB ONE ENDS

rl RTUA~::ORAGEI SEG~ENTS
L

LINK PACK AREA I
(LPA)

~

MASTER
SCHEDULER

MASTER
SCHEDULER LSQA

DYNAMIC
REGION
AREA

VIRTUAL= REAL
AREA

NUCLEUS

OS/VS2

15

2

1

?

4

!
SEGMENTS
RELEASED
WHEN JOB
ONE ENDS

VIRTUAL STORAGE

MASTER
SCHEDULER

JOB THREE LSQA

JOB TWO LSQA

JOB TWO

JOB THREE BEGINS

only reference virtual addresses within its segments and the
sharable system segments. All other user segments and
system segments are protected. Segment protection adds a
new level of reliability and security to your system. One
user can't inadvertently or knowingly access or alter
another user's job or a system component unless authorized
by VS2.

VS2 uses its segment table to implement segment pro
tection. Each segment table entry contains a protection in
dicator called the invalid bit. The invalid bit specifies
whether reference to that segment is valid. Virtual address
translation occurs through VS2's segment table and page
tables. If a virtual address references a segment whose in
valid bit is off, translation will proceed. If the invalid bit is
on, translation is interrupted and the system reports a pro
tection violation. Let's consider an example. You are going
to execute a program called PROGRAM ONE. PROGRAM
ONE is loaded starting at virtual storage location 448K -
the beginning of SEGMENT 7. I ts code needs l 60K of
storage so VS2 will allocate three segments to PROGRAM
ONE - SEGMENT 7, SEGMENT 8 and SEGMENT 9. It
would also get a segment for LSQA. When PROGRAM
ONE begins to execute, VS2 will turn off the invalid bits in
the segment table entries for SEGMENT 7, SEGMENT 8,
SEGMENT 9, and the LSQA segment. The invalid bits for

J.p-:-:nn 11 OS/VS? 73

all other segments will be turned on. If PROGRAM ONE
references the virtual addresses shown in Figure 75 trans
lation will proceed.

SEGMENT
NUMBER

8

9

Figure 75

PAGE
NUMBER

3

2

DISPLACEMENT

1024

2048

Segment 8 and Segment 9 have been allocated to PRO
GRAM ONE. If PROGRAM ONE tries to reference the
virtual address in Figure 76 address translation will stop and
an interrupt will result. ·

SEGMENT
NUMBER

11

Figure 76

PAGE
NUMBER

6

DISPLACEMENT

1024

The invalid bit for SEGMENT 11 is turned on. PROGRAM
ONE cannot reference it. What happens if PROGRAM ONE
itself is interrupted and another program begins to execute?
VS2 will turn on the invalid bits for PROGRAM ONE turn

'
off the invalid bits for the new program and allow the new
program to begin execution. To fully control segment pro
tection VS2 uses two segment tables. When the system is in

VIRTUAL STORAGE

the supervisor state it uses the first segment table for virtual

address translation. All of the invalid bits are turned off in
this segment table. This lets supervisor code - the nucleus
and so forth - reference all of virtual storage in VS2. When
the system is in the problem program state it uses the
second segment table for virtual address translation. Only

the invalid bits related to the executing problem program
and any sharable system programs are turned off in the

second segment. table. This implements the method that we
just described using our example of PROGRAM ONE.
Thus, an executing problem program may only reference its

own segments or sharable system programs in the Link Pack
Area. Segment Protection gives VS2 an excellent hierarchy
of protection to the system and its users.

Until now, we have presented the VS2 system as it is
structured in its virtual storage, VS2's address space. We

will now present how VS2 uses two of its key resources -
real storage and external page storage. We will begin with
real storage.

Real Storage in OS/VS2

In Figure 77, VS2 is structured in its virtual storage and
mapped onto System/370 real storage. With demand
paging, page frames of real storage are shared by pages of

active system and user jobs in the pageable area of storage.
Notice that the VS2 nucleus is fixed in real storage. The

nucleus is fixed all during system operation. This assures
rapid system response to service system and user jobs. If a
job step is run as "virtual equals real" all of its pages, allo-

SOA
\

Figure 77

74

PAGEABLE
AREA

NON~
PAGABLE
AREA+

LPA

MASTER
SCHEDULER

DYNAMIC
REGION

AREA

\
\

\
\

\

VIRTUAL= REAL ---........,_

\
\

\
\

\
\ REAL STORAGE

PAGE FRAMES
AVAILABLE
FOR PAGING

AREA__.
1-------.....I - - - - - ~---------.......

FIXED IN REAL
0 NUCLEUS STORAGE. ... -------.....J - - - - - - - _______ __, 0

NUCLEUS

OS/VS2

VIRTUAL STORAGE

MASTER
SCHEDULER

t
REAL STORAGE

DYNAMIC
~ ~ REGION

AREA
~

AVAILABLE
FOR PAGING +- FIXED IN REAL

VIRTUAL= STORAGE
REALAREA -------

.L AVAILABLE

' FOR PAGING

NUCLEUS NUCLEUS

OS/VS2

Figure 78

cated in 4K increments, are fixed in corresponding page
frames of real storage during execution. They also must be
contiguous. The effect of a virtual=real job step is shown in

Figure 78.
The V=R job step's pages are fixed in corresponding real

storage page frames and the job step's virtual addresses
equal its real addresses. This is shown as the shaded area in
real storage and virtual storage called VRSTEP program.
Even though a job step is V=R, it has a segment of virtual
storage for LSQA. Active pages from LSQA are indicated as
the small shaded blocks in real storage page fran1es in
Figure 78. A V=R job step must be scheduled, initiated
and, after execution, terminated from the Dynamic Region
Area. Even though a V= R job step fixes a set of page frames
during its execution, the remaining page frames of real
storage are available for demand paging among other active
jobs in the pageable area of virtual storage.

External Page Storage

If an active page is not in real storage, where is it? In VS2,
it's in a slot of external page storage. Where in external page
storage? VS2 knows where by referencing an external page
table that is located in real storage. What about unallocated
segments from your Dynamic Region Area of virtual
storage? Where are they? They don't use any external page
storage in your VS2 system. Unallocated segments are po
tential address space. They don't use any physical system
resource. Unlike VSI, VS2 uses virtual storage and external
page storage as we described it in PART I. Virtual storage is
not mapped one-to-one with external page storage. Instead,

external page tables are used to map the slot locations of
pages in external page storage. In this section we will
discuss external page st<?rage in VS2.

I
DYNAMIC
REGION
AREA

Figure 79

LPA

JOB TWO CODE

JOB TWO CODE

JOB ONE CODE

VIRTUAL= REAL
AREA

NUCLEUS

OSIVS2

Legend

~
NOT--PAGED

Lesson 13. OS/VS2 75

We defined paging as the transfer of pages between real
storage and external page storage. During a page-in oper
ation, a page is moved from external page storage into real
storage. During a page-out operation, a page is moved from
real storage to external page storage. If part of virtual
storage is not paged, no external page storage is needed to
back it. In VS2, several parts of virtual storage are not
paged. Examine Figure 79. The shaded areas of virtual
storage indicate parts of OS/VS2 that are not paged. The
nucleus is always fixed in real storage during operation. If a
job step is run as V=R, its pages are fixed in real storage
during execution. Pages allocated in SQA segments and
some pages allocated in LSQA segments get a long-term fix.
Because these parts of VS2 are not paged, no external page
storage is needed to back them.

DYNAMIC
REGION
AREA

Legend

VIRTUAL STORAGE

SQA

LPA

MASTER
SCHEDULER

JOB ONE LSOA

JOB TWO LSOA

JOB TWO CODE

JOB TWO CODE

JOB ONE CODE

OS/VS2

T
222
IMENTS

_4PAGES

- UNALLOCATED SEGMENTS

~UNUSED PAGES OF A SEGMENT

Figu,re 80

What about those components of VS2 that are paged?
This represents the greater part of the system that is
structured in the pageable area of virtual storage. System
components - the Link Pack Area, and the Master

76

Scheduler - are paged. They are initialized during IPL.
During operation they will use external page storage. The
Dynamic Region Area is paged. All active regions will use
external page storage for paging. However, unallocated
segments of the Dynamic Region Area will not use external
page storage. Also, any unused pages in a segment will not
use external page storage. Unallocated segments and unused
pages within segments represent "potential" address space
to VS2. Figure 80 is a picture of the pageable area of virtual
storage. JOB ONE and JOB TWO are executing in regions in
the Dynamic Region Area. The 222 unallocated segments
don't use any external page storage. They represent unused
virtual storage, or potential address space. If a new job is
scheduled in a newly allocated region - let's say three
segments for the job's code, and one segment for LSQA -
potential virtual storage is reduced to 218 segments. The
three segments used for the job's programs will begin to use
external page storage as paging occurs. Also notice, in
Figure 80, the shaded area within the last segment allocated
to JOB TWO's code. We assume that JOB TWO's code
needs 112K. Therefore, 16K (or 4 pages) of the second
segment allocated to JOB TWO won't be used during exe
cution. If these 4 pages are not used, they will not use any
external page storage during JOB TWO's execution. VS2
uses external page storage dynamically during system oper
ation. You must allocate enough space to external page
storage to support the amount of virtual storage that you
expect to use. However, at any point in time during system
operation, external page storage may be using much less
space than what it has available.

External Page Tables

In PART I of this text we introduced the concept of an
external page table. An external page table maps the lo
cations of pages in slots of external page storage, while a
page table maps the location of pages in page frames of real
storage. Each page table has an associated external page
table. If a page fault occurs during virtual address trans
lation, the system uses this corresponding external page
table to locate the referenced page in external page storage.
It may then be paged in. If a page replacement operation
occurs and the replaced page has changed, it must be paged
out. VS2 can page out to any available slot in external page
storage. It wilJ try to select a slot that requires the shortest
time to transfer the page from real storage to external page
storage. When the page out occurs, VS2 will mark the ap
propriate page table entry invalid and place the slot lo
cation in the corresponding external page table entry. Thus,
VS2 uses external page tables to control its external page
storage.

SEGMENT-~

EXTERNAL
PAGE TABLES

PAGE
TABLES

SEGMENT
TABLE

PAGE
FRAME.
TABLE

EXTERNAL PAGE
STORAGE

VIRTUAL STORAGE REAL STORAGE

Figure 81

VS2 uses the DAT feature and various tables to in).ple
ment virtual storage. Figure 81 shows how these tables
relate to each type of storage in the system. The segment
table and page tables are used for dynamic address trans
lation. In addition to address translation, the segment tabl~
is used to manage virtual storage allocation. Page tables and
their corresponding external page tables are used to control
the transfer of pages between real storage and external page
storage - paging. The page frame table is used to manage
real storage allocation. Through its tables and the
System/370 DAT feature, OS/VS2 implements virtual
storage.

Program Loading in OS/VS2

What happens after a job is scheduled into a region of
OS/VS2? How is the program for the first job step, as well
as programs for subsequent job steps and jobs, loaded into
its virtual storage region? Program loading in VS2 is very
similar to program loading in OS/MVT. The big difference
is this: in VS2, programs are loaded into virtual storage.

OS/VS2

In OS/VS2, programs are stored in libraries in the same
way as in OS/MVT. Let's assume that we are going to load a
program called Program One into Region 1. Program One is
stored in a VS2 system library. It was put there, after com
pilation or assembly and a link edit operation with relative
addresses. Its addresses are related to a zero origin. During
loading, the VS2 program loader will relocate Program
One's addresses from their zero origin - as stored in the
system library - to the starting location of Region 1 in
virtual storage. This is a form of static relocation. Figure 82
shows this process conceptually. During program loading,
Program One acquires a segment - page format. It is loaded
beginning at a segment boundary. During loading, most of
Program One will be paged out to external page storage.
Even though Program One's addresses have· been relocated
at load time, they are still relative. Now they are virtual
addresses related to virtual storage's segment-page structure.
When program loading is complete, PROGRAM ONE will
begin to execute. The System/370 DAT feature translates
PROGRAM ONE's virtual addresses dynamically and auto
matically during execution. VS2 loads PROGRAM ONE's
pages into real storage, as referenced during execution, with

Lesson 13. OS/VS2 77

VIRTUAL STORAGE

SOA

LPA

PROGRAM LIBRARY

DYNAMIC -t REGION
AREA

PROGRAM
ONE

140K

LOADING~
(STATIC
RELOCATION)

IN
1024K

Figu.re 82

demand paging. Thus, VS2 uses two types of relocation and
demand paging. Programs are loaded into virtual storage
using a type of static relocation. During execution,
System/370 dynamically translates a program's virtual ad
dresses with its DAT feature. VS2 shares real storage among
all active problem programs with the demand paging
technique.

In Figure 82 ·, we presented the conceptual process of
program loading in VS2. We will now describe briefly some
of the events that happen during program loading. We will
continue to use PROGRAM ONE as an example.

At load time PROGRAM ONE is in a system library.
VS2 has a system program, called PROGRAM FETCH, that
will load PROGRAM ONE into its virtual storage region.
During the load process, PROGRAM FETCH is executing,
PROGRAM ONE is its data. PROGRAM FETCH reads
PROGRAM ONE as input data (from the system library)
and relocates PROGRAM ONE's address to their starting

78

V=R
AREA

NUCLEUS ________ o

point in virtual storage. PROGRAM FETCH operates just as
it does in OS/MVT. However, in VS2, PROGRAM FETCH
relocates a program's addresses to virtual storage locations;
in OS/MVT, PROGRAM FETCH relocates a program's ad
dresses to r~al storage locations. PROGRAM ONE gets its
segment-page format during the loading process. Because it
is loaded into a virtual storage area that has a starting lo
cation on a segment boundary (all VS2 regions begin at a
segment boundary) it will begin at a segment origin and use
one or more segments of virtual storage. As PROGRAM
ONE is loaded, PROGRAM FETCH reads it into page
frames of real storage. Through demand paging, PROGRAM
ONE will be paged out to external page storage. Thus, PRO
GRAM ONE receives its segment-page format. It is during
the loading process that PROGRAM ONE's page tables and
external page tables are built ..

Figure 83 depicts the loading process for PROGRAM
ONE using a static relocation technique. All programs in

... ACTIVITY

~---RESULT

EXTERNAL
PAGE STORAGE

I
PROGRAM

ONE

Figure 83

REAL STORAGE

PROGRAM FETCH
IS

EXECUTING

NUCLEUS ________ o

VS2 are loaded in this way. When the loading process is
finished, PROGRAM ONE will begin to execute using dy
namic address translation and demand paging.

In Lesson 10 we introduced the OS/VS system. We
stated several new benefits for users of OS/VS. In this
lesson we have described Release 1 of OS/VS2, its
structure, and how it implements a single virtual storage to
achieve these benefits. The key to the VS2 system is its
dynamic response to user needs. Release 2 of OS/VS2 sur
passes Release 1 by incorporating multiprocessing and
multiple virtual storage support into the VS2 system.
Lesson 14 presents how multiple virtual storages or multi
ple address spaces are implemented in Release 2 of OS/VS2.

VIRTUAL STORAGE

SOA

LPA

V=R
AREA

NUCLEUS

1216K

1024K

768K

--------0

Lesson 13. OS/VS2 79

Lesson 14. OS/VS2 Release 2

Release 2 of OS/VS2 (VS2/2) is a multiprocessing system
that supports multiple virtual storages. As such, VS2/2 ex
tends the virtual storage capability of Rel 1 to give each
user his own address space. This is implemented in a
manner similar to the technique described in.PART I of this
text.

VS2/2 completely integrates TSO into its architecture,
and multiprocessing support is standard in the system.
Multiprocessing support is symmetrical, that is two or more
CPU's of the same model share the same real storage re
source. Another way to describe this type of multiprocess
ing support is to say that the CPU's are tightly coupled.
Although VS2/2 supports multiprocessing as standard, it
can operate with one CPU as a uniprocessor. In the re
mainder of this lesson, we will assume a uniprocessor
system and describe how VS2/2 implements multiple
virtual storages.

VS2/2 Structure

In VS2/2, each user has his own address space or virtual
storage. By user, we mean a batch or TP job that has been
scheduled by an initiator, a logged on TSO user, and certain
system components that have their own address space. For
example, VS2/2's Master Scheduler resides in its own ad
dress space. For each job initiator that is started, the system
creates an address space. The initiator can then schedule
jobs in the address space. When each new TSO user logs on,
VS2/2 creates a new address space for that user. The VS2/2
nucleus controls all system resources - the CPU(s), real
storage, channels, 1/0 devices and so forth - and provides
user services such as address space creation and CPU
dispatching.

The structure of each address space in VS2/2 is the same
as the single address space in VS2 Rel 1. Each virtual
storage is 16 megabytes in size and divided into 256 64K
segments. Page size is 4K. Each virtual storage in the system
is mapped by a segment table, with page tables for all allo
cated segments. These segment and page tables reside in real
storage. To pass control to a particular user, the nucleus
must first load the System/370 STOR register with the real
storage origin of the segment table that maps the user's
address space.

Although each VS2/2 user has his own address space, he
doesn't control the entire address space. Each virtual
storage is divided among a private area, a common area and
the nucleus. This is shown in Figure 84.

80

16 megs

SEGMENT
BOUNDARY--

EACH USER'S
ADDRESS SPACE

SOA I
~~

PAGEABLE :~~
LINK """

PRIVATE
AREA PACK

AREA

SEGMENT
BOUNDARY--

COMMON SER-

SEGMENT
BOUNDARY--

~

0

Figu,re 84

-Vl<~E AREA -

AVAILABLE
TO

USER

NUCLEUS

!
I

COMMON

~~ Ar

The nucleus is fixed in real storage and then mapped in
each virtual storage on a one-to-one basis. Nucleus size is a
multiple of segments. Thus, the lower segments of each
address space map the nucleus. This is done by using the
segment sharing technique described in PART I of this text.
The segment table entries that map the nucleus in each
virtual storage point to a set of common page tables. These
page tables map the nucleus page locations in real storage.
Thus, there is only one copy of the nucleus in the system
and it is fixed in real storage for performance purposes.

The common area contains the System Queue Area
(SQA), the Pageable Link Pack Area (PLPA), and some
thing new in VS2/2 called the Common Service Area
(CSA). As in VS2 Rel 1, SQA contains tables and queues
related to the entire system. It is used by routines resident
in the nucleus and other system components as a working
storage area. For example, SQA contains a table which
identifies each address space that has been created in the
system. SQA also contains the page tables that map the
nucleus and the common area itself. Minimum SQA size is
two segments, 128K. An installation specifies SQA size (if
more than two segments are required) as a multiple of
segments. SQA space is used dynamically during system

operation, one page at a time. As each new page of SQA is
used, it is fixed in real storage automatically by the system.
The SQA segments specified by an installation are mapped

in each address space in the same manner as the nucleus.
The Pageable Link Pack Area (PLPA) in VS2/2 performs

the same function as in VS2 Rel 1. In VS2/2, the PLPA is

mapped in each address space through segment sharing.

Thus SVC's, access methods, and other READ-ONLY
system programs, and any READ-ONLY user programs,

which may be selected by an installation, are placed in the
PLP A. These programs can be shared among all users in the

system, but, because they are demand paged, they only use

real storage as referenced. To enhance VS2/2 reliability
PLPA is duplexed in external page storage. Thus, there are

two copies; the primary copy is normally used for demand
paging PLP A. The secondary copy is a backup, only used if

a read error occurs during page-in from the primary PLP A.
Because programs in PLP A must be READ-ONLY, there
will be no page-out operations to PLP A and this duplexing
approach is an effective reliability technique. Although
mapped in each address space, only the two duplexed
copies of PLP A programs are in the system because of the
segment sharing technique used. As a result, external page
storage is only required to back two copies of these pro
grams. If a copy of PLPA were in every user's address space

the external page storage required would be a multiple of
the number of address spaces active in the system. More
real storage would also be used. For example, if two or
more users were using the same access method, multiple
copies of the same page(s) could reside in real storage.

Segment sharing then results in many system efficiencies in

VS2/2.
Minimum PLP A size (which is specified as a multiple of

pages) is about two megabytes. Its size will vary from instal
lation to installation depending on system program options

or user-written programs selected to reside in PLP A. Re

member that programs placed in PLP A must be READ

ONLY and should be applicable to multiple users, since
each program placed in PLP A will expand the common area

size and reduce the size of the private area in each user's
address space.

The Common Service Area (CSA), also shown in Figure
84 is new in VS2/2. Because users may only reference

within their own address space, VS2/2 must provide some
way for one user to communicate with one or more other

users. CSA is common to all address spaces. It can hold
information for inter-user communication in VS2/2. This

function of CSA replaces the inter-region communication
function in VS2 Rel 1. Allocated CSA pages are demand

paged by VS2/2 during system operation. CSA space may
also be used by the VS2/2 nucleus for control blocks that
don't require a long term fix in real storage.

The private area in each VS2/2 address space replaces
the concept of the region in VS2 Rel 1. Each user's private
area contains all of the segments that remain after the
common area and the nucleus are mapped. Thus, all execut
ing users, whether batch, TP, or timesharing, have the same
amount of address space. The JCL REGION parameter, al
though still used, no longer has the same interpretation
(unless a job step is executed V=R). Rather than bind the
address space assigned to a user, the REGION parameter in
VS2/2 only controls the amount of address space that a
user may obtain in his private area using a variable
GETMAIN.

Figure 85 shows the structure of the private area in each
address space. Space is assigned to user programs from the
bottom up. Space is dynamically assigned to the Local
System Queue Area (LSQA) and something new in VS2/2
called the Scheduler Work Area (SWA) from the top down.

Space is assigned to LSQA and SWA in page size increments

(4K blocks).

SEGMENT
BOUNDARY-

T

EACH USER'S
ADDRESS SPACE

CSA T
• LOCAL SYSTEM)

QUEUE AREA \ 4K
•SCHEDULER { BLOCKS

WORKA1EA) I

PRIVATE
AREA

- ------~

)~ i

SEGMENT
BOUNDARY---

Figure 85

--r--
USER

PROGRAMS

NUCLEUS

As in VS2 Rel 1, LSQA in VS2/2 is used for tables and
queues associated with a user's job and address space. For

example, the segment table for an address space and page
tables for all allocated segments within the private area are
stored in LSQA. As LSQA pages are allocated they are

Lesson 14. OS/VS2 Release 2 81

fixed in real storage. They remain fixed unless a user is
"swapped out" or they are released by the system. We will
describe "swapping" in VS2/2 later. In addition to LSQA, a
VS2/2 user can allocate space in page size increments from
special storage subpools at the top end of the private area.
This space may be used for control blocks that can be
demand paged during operation.

In MVT and VS2 Rel 1, the control blocks and tables
used by the initiator during job step scheduling are con
tained on the system job queue device. I ff our initiators are
scheduling jobs, contention can result when two or more
initiators require scheduling information from this single
device. In VS2/2, the Scheduler Work Area (SWA) reduces
this contention for the system job queue by storing the
control blocks and tables used by the initiator during job
step scheduling within virtual storage. Each address space
dynamically allocates SWA space (in page size increments)
as required. The allocated SWA space is used to store the
tables and control blocks created during JCL interpretation
(which occurs in VS2/2 after a job is selected, not when it
is read into the system). Each initiator then has its own
scheduling work area within the private area of its address
space. During job step initiation or termination, the initi
ator obtains job control information from SWA. Pages allo
cated to SWA are demand paged and only come into real
storage when they contain scheduling data referenced by
the initiator.

As we said earlier, space is dynamically allocated to
LSQA and SWA in page size increments starting at the top
of each user's private area. The remainder of each private
area is available to its user, with space being allocated from
the bottom up. All user jobs are demand paged unless a job
step is executing as V=R (which will be described later).
Until now we have described the characteristics of virtual
storage in VS2/2. For you to better appreciate how VS2/2
implements multiple virtual storages we will now describe
the operation of the system.

VS2/2 Operation

System Initialization

When the operator IPL's VS2/2 several events occur:

82

• The nucleus is fixed in real storage.
• Three address spaces are created and the nucleus is

mapped in each.

• SQA is allocated in the first address space and
mapped in the second, third and all subsequent ad
dress spaces.

• PLPA is loaded (if this is a cold start) in the first

address space and mapped in the second, third and all
subsequent address spaces.

• The Master Scheduler is loaded in the private area of
the first address space.

• The Auxiliary Storage Manager (ASM) is loaded in
the private area of the second address space. ASM in
VS2/2 controls all paging I/O and manages the alloca
tion and use of external page storage.

• The VS2/2 Job Entry System (JES) is started in the
private area of the third address space. JES will be
further discussed later.

During IPL, the system communicates with the operator to
establish various operation parameters. When IPL is com
plete, VS2/2 appears as shown in Figure 86.

Referring to Figure 86, several observations may be
made about the system. SQA pages are fixed in real storage
as they are allocated. SQA contains the common page
tables that map the nucleus, PLP A, CSA and SQA itself.
Since SQA pages receive a long term fix in real storage, they
don't need to be backed by external page storage.

PLP A, however, is backed by external page storage and
is demand paged. Remember, for reliability there are two
copies of PLP A in external page storage. They are mapped
by the common page tables in SQA. The appropriate
segment table entries of each address space created point to
these common page tables in SQA. This is also true of SQA,
CSA and the nucleus. The nucleus, like allocated SQA
pages, is fixed in real storage, and therefore needn't be
backed by external page storage.

The Master Scheduler, also shown in Figure 86, contains
the VS2/2 communications task. Once initialized, the com
munications task allows the operator to start one or more
initiators and thus create additional address spaces for
batch job processing. With the Master Scheduler loaded, the
operator may also start TSO operations. The Master
Scheduler then forms the main communication link
between VS2/2 and the system operator.

The third address space in Figure 86 shows the VS2/2
Job Entry System (JES) loaded in the private area. One
prime function of the Job Entry System (JES2) is the inte
gration of the VS2 Rel 1 HASP option into VS2/2. With
this function JES2 spools batch jobs from local and remote
work stations. Once JES2 is active, jobs may be submitted
for processing from these work stations. The VS2/2 system
is ready to begin batch operations. JES3, not shown in
Figure 86, incorporates the features of ASP into VS2/2.

VS2/2 - Batch Job Processing

For VS2/2 to process batch jobs, the oprerator can start
one or more initiators. Each initiator will then schedule
jobs from the system job queue based on job class and

3rd ADDRESS 2nd ADDRESS 1st ADDRESS
SPACE SPACE SPACE

16 megs 16 megs 16megs
SQA SQA SOA

PLPA PLPA PLPA
~

CSA CSA CSA

MASTER REAL STORAGE
JOB AUXILIARY SCHEDULER 2 megs

1
ENTRY

1 1
STORAGE

I
l COMMUN I CA·

SYSTEM MANAGER TION TASK 1 AVAILABLE
FOR

T DEMAND T PAGING

I 10 I 10 I 10

NUCLEUS NUCLEUS NUCLEUS NUCLEUS
0

Figure 86

priority assignment. When the START command is issued
by the operator to start an initiator, VS2/2 creates a new
address space. The nucleus and the common area are
mapped through the segment table of this address space and
the START command is then processed within it. The
START command loads a copy of the initiator into the new
address space and it is then ready to schedule jobs. When
the first job is selected, its first job step is scheduled and its

programs are loaded into the private area of new address
space. During execution, the job step controls the private
area of the address space and it is demand paged, sharing

3rd ADDRESS
SPACE

SOA .,~
oll;.llU

SQA l 1st

PU SOA

PU

cs PLPA

LSC
cs

to----i
CSA LSq .,_ ___

* LSQA
1----- -- -----

~ 1---_,

real storage with other jobs and system components. When
each job step ends, the initiator is reloaded to schedule the
next job or job step for its address space. While the initiator
is executing it also is demand paged.

\ I
\ I
\ I

\

\ I

' I \ I

\ '/ \ I

"'\ \ R~AL ST:AGE / y

4th

6th ADDRESS
SPACE

c ... i.. C:U'\A
..,Lii _J_

l SOA

SQA 1-PA

1-PA

PLPA SA

SA
SWA

CSA
---~ SWA

LSOA&SWA
1---~

~~
t-----i

t------- ~ r----ASM
JOB ~~ ~ ' USED /

""' FOR ~ /
~ ~~

JOB46

ENTRY I- --- -- _,

SYSTEI\ MASTER
NUCL SCHEDULER

NUCL -- --~----------

to-------o1 INITIA·
TOR

JOB 32 LEUS

LEUS

""-· DEMAND _I!'./"'
'""- mPAGING F
~ f(lt4 ~ ~

NUCLEUS NUCLEUS NUCLEUS
Figure 87

Lesson 14. OS/VS2 Release 2 83

The number of initiators active in VS2/2 determines the
degree of multiprogramming within the system and the
number of address spaces available for batch job processing.
With one initiator started, only one job stream may be
processed. To increase the degree of multiprogramming
another initiator (and, thus, address space) must be started.
Figure 87 shows an example in which three initiators have
been started. Job steps are executing in two of the address
spaces. The initiator in the third address space is scheduling
a new job.

Demand paging controls the real storage allocation for
active programs in the private area of each address space.
External page storage (not shown in Figure 87) must be
large enough to back the requirements of each user's ad
dress space and the common area that is mapped in each
address space. As in VS2 Rel l, there is an external page
table associated with each page table in VS2/2. These ex
ternal page tables map active pages, identifying their slot
locations in external page storage.

V= R Job Steps

Demand paging is the normal mode of operation for user
programs and most system programs that execute in VS2/2.
However, as in Rel 1 there are certain types of programs
that, due to time dependencies or dyna.mic channel pro
gram modification, must be executed as Virtual = Real
(V=R). As a result, VS2/2 has an option for V=Rjob steps.
At IPL time, the system operator may define a V=R area
for the execution of V=R job steps. If selected, the size of
the V=R are~ is specified as a multiple of 4K. Control and
allocation of the V=R area is maintained by VS2/2's
nucleus. When the V=R option is selected, the V=R area is
available in real storage beginning 4~ above the nucleus.
This is indicated in Figure 88 which shows a one megabyte
real storage with a 256K nucleus and a 256K V=R area
specified beginning at 260K.

REAL STORAGE
1 meg-------

V= RAREA
260K·---
256Kt--~~~~--.

NUCLEUS
0 ---------

Figure 88

84

AVAILABLE
FOR
DEMAND
PAGING

Notice that all of real storage above the nucleus is available
for demand paging. The V=R area, although specified, does
not reserve real storage. It simply indicates the area of real
storage that may be used for V=Rjob steps. If no V=Rjob
steps are being executed, VS2/2 uses the real storage for
demand paging. However, VS2/2 does try to avoid long
term page fixes within the V=R area to prevent fragmenting
it.

When a job step is specified V=R, this is detected by the
initiator during job step scheduling within an address space.
The job step's execute statement contains the V=R parame
ter and the region size required. The initiator then passes
control to the nucleus so that it may attempt to satisfy the
V=R space request. The nucleus tries to find a contiguous
space within the V=R area large enough to satisfy the
region request. If the V=R area is fragmented by pages with
a long term fix or by another V=R job step so that the
required space is not available, the operator is notified and
the requesting job step must wait. If the space is available,
the V=R job step may be scheduled. Figure 89 shows an
example of V=R job step scheduling and execution with
active initiators in two address spaces.

In Figure 89 ADDRESS SPACE ONE has scheduled the
V=R job step. ADDRESS SPACE TWO is executing a batch
job that is being demand paged. Other system components
are not shown for clarity. Notice that after the V=R job
step begins execution, the initiator in ADDRESS SPACE
ONE cannot schedule another job or job step until V=R job
step completion. The V=R job step is fixed in real storage
during execution. There is no demand paging for the job
step. Its addresses are still translated by the DAT feature
but channel programs are not translated. Also, observe that
any unused V=R space is available for demand paging.
JOB56 is executing in ADDRESS SPACE TWO. It is loaded
at the beginning of the private area because it is mapped by
a different set of segment and page tables, and JOB56 is
demand paged.

Timesharing in VS2/2

Until now, we have described the batch, multiprogramming
functions as they are implemented in VS2 Rel 2. In the
introduction to this lesson we said that the Time Sharing
Option (TSO) is fully integrated into VS2/2's design. As
with batch job initiators, when a TSO user logs on, the
system creates a new address space for the TSO job's use.
When the system operator starts TSO, an address space is
created for the teleprocessing method (TCAM is used)

that services all TSO user lines. As each new TSO user logs
on, a new address space is created for his use. All address
spaces created for TSO operation appear the same as those

PRIVATE
AREA

\

ADDRESS
SPACE TWO

1 COMMON 1
AREA

LSOA& SWA

- ----
JOB56

512K

ADDRESS

AVAILABLE l SPACE ONE

FOR 1
DEMAND COMMON
PAGING AREA

lV= R AREA

~/A'm'A'?JJ'~~

INITIATOR
FOR
V=R

J_OB ST~?.

PRIVATE
AREA

I
NUCLEUS NUCLEUS NUCLEUS

Figure 89

for batch jobs. They map the nucleus and the common area·
through segment sharing. Each TSO user then has the entire
private area for his own use. Figure 90 shows an example of
a TSO operation with three logged-on users and no batch
operations.

Because VS2/2 creates an address space or virtual storage
for each user in the system, an important question arises: is
there any limit to the number of address spaces that VS2/2
can create? Theoretically, there is no limit. However, practi
cal limits are imposed by the size of a system's real and
external page storage. VS2/2 has a thrashing monitor to
prevent excessive paging and it also implements a

~-----.... 116 megs l COM __ ___....._ __ 16megs

AR ------16 megs

"swapping" algorithm. Remember, TSO is fully integrated
into the design of VS2/2. As discussed in PART I of this
text, in a timesharing environm~nt it is more effective to
allocate real storage to multiple users through a combina
tion of demand paging and block paging (or swapping). This
will assure that all users, both batch and timesharing, have
an opportunity to execute over a reasonabie time period. in
a system with a thrashing monitor only, some users might
be deactivated for a rather long time period. This would be
intolerable if such a user were at a terminal waiting for a
response.

16 megsl I
16 megs,..I -----iMON ""

lEA 16 megs ------MON
EA

\ I

Figure 90

LS

COMMON
AREA

LSOA

MASTER
SCHEDULER

' I \ I
' I

\\ '/ ~ \\REALSTORAGE/~/
. " USED FOR
'-...._ ~ DEMAND

' PAGING

COMMON
AREA

....--...._..SWA
____,.SWA

SWA
t----------1

LSQA & SWA

USER1,__.......--
TCAM .,___.....,.-ELIS ----....

NUCLt--------1- - - -- t--------1 - - - - to--____,.-EUS

NUCLEUS NUCLEUS NUCLEUS

------o o------ o------

Lesson 14. OS/VS2 Release 2 85

Levels of Control VS2/2

To prevent this problem, VS2/2 has three levels of control.
The first level involves how many address spaces or virtual
storages may exist in the system. Will the system allow the
operator to start another initiator for batch or TP jobs? Will
VS2/2 allow another TSO user to log on? This first level of
control is implemented so that VS2/2 can prevent external
page storage and real storage from being overrun.

The second level of control involves all the address
spaces that currently exist in the system (for both TSO
users and batch or TP jobs). If enough users exist to cause
trashing, VS2/2 will schedule these users to decide which
ones may contend for real storage through demand paging
(and thus have an opportunity to execute). Of all the users
in the system then, some are active and some are quiesced.
The VS2/2 scheduling rule attempts to give all users an
opportunity to execute. When VS2/2 quiesces a user (to
activate another user) it block-pages all of the changed
pages in the user's private area to external page storage.
This will include the user's segment and page tables and any
other control blocks required for reactivation. Only
changed pages need be block-paged out because copies of
any active unchanged pages already exist on external page
storage. When a user is reactivated, the same set of changed
pages is block-paged in to real storage. When execution re
sumes, the user is again under the control of demand pag
ing.

With this second level of control then, the VS2/2
scheduling rule "swaps" virtual storages to assure that all
users have an opportunity to execute. An installation may
assign higher preference to TP jobs or time sharing users so
that the scheduling rule will give such users a higher level of
service.

The third level of control in VS2/2 involves dispatching
(or scheduling) the system's CPU(s) among the active users.
Dispatching in VS2/2 has been enhanced over Rel 1 to
service a system with multiple virtual storages (this will be
discussed in more detail later).

The VS2/2 Systems Resources Manager

The three levels of control in VS2/2 all involve system re
sources, whether external page storage, real storage, the
number of address spaces or the CPU(s). Each level of con
trol is affected by a new component of the VS2 nucleus
called the systems resources manager. The resources manager

is an extension of and a replacement for the TSO driver in
VS2 Rel 1. The resources manager affects the use of all
system resources - the CPU(s), real storage, virtual storage
creation, virtual storage swapping, external page storage and
so forth. The resources manager is a collection of alga-

rithms that are supplied with VS2/2. An installation may
specify parameters to tailor these algorithms to its partic
ular needs or use default parameters provided with the
VS2/2 system. In fact, an installation may replace an algo
rithm with one more suitable to its needs. The overall
objective of the resources manager is to control system re
sources in such a way that VS2/2 achieves good perform
ance objectives, whether the objectives be throughput, good
response to timesharing users, some combination of these
two, or some other set of objectives desired by an installa
tion.

One area with which the resources manager interacts is
CPU dispatching. Unlike VS2 Rel l which supports multi
tasking in a single address space, VS2/2 supports multi
tasking in multiple address spaces. Before dispatching tasks,
the dispatcher must first select an address space (or user)
for execution. The highest priority address space in the
ready state is always selected. When an address space is
selected for execution it may contain multiple tasks. The
highest priority task in the ready state is then selected for
execution. Once a task begins to execute, it will continue
until one of the following events occurs:

• The task is interrupted by a higher priority task
within the address space.

• The task is interrupted and another address space is
dispatched.

• The task goes into a wait state. The next highest
priority task would then receive CPU control. If no
other tasks are in the ready state another address
space will be dispatched.

The VS2/2 resources manager assigns address space priority
and tries to assure that each address space (or user) receives
a certain degree of service (CPU time and time in the active
state between swapping). A VS2/2 installation can favor
certain users by requesting a high degree of service for that
user. For example, a TP application can be assigned a high
degree of service to assure good response. Thus there are
two levels of dispatching in VS2/2, the global level where
the system decides which address space (or user) to dis
patch, and the local level where the dispatcher selects a task
for execution from within an address space.

This idea of global and local services extends beyond
dispatching in VS2/2. On the global level VS2/2 controls
the CPU, real storage, external page storage, 1/0 device as
signment, address space creation and so forth. SQA is used
for control blocks and queues that pertain to global control
of the system. The Pageable Link Pack Area contains
system and user programs that are available to all users in
the system.

On the local level, resources are used to service a parti
cular address space. LSQA contains control blocks and

tables that pertain to the address space, for example, the
segment and page tables that map the address space. SWA is

used for control blocks for job scheduling within the
address space. While a user is executing within an address
space, the user may attach tasks and allocate space to them
from within the address space. The user may also create a
Job Pack Area (JPA), analogous to the Pageable Link Pack
Area, but only for use within the address space. If at any
time a user inadvertently destroys data within the address
space the remainder of the system and its users will not be

affected because of the inherent protection in a multiple
virtual storage system.

VS2/2 is not just a system that supports multiple virtual
storages. It is an operating system that services batch jobs
from both local and remote work stations. It is an operating
system that fully integrates the TSO timesharing service
into its structure. It is an operating system that supports
uniprocessing for a single System/370 CPU or multiprocess
ing on two or more tightly coupled System/370 CPU's.
VS2/2 makes a major stride in the evolution of the OS/VS
operating system.

Lesson 14. OS/VS2 Release 2 87

Lesson 15. DOS/VS

The Disk Operating System/Virtual Storage (DOS/VS) adds
major functional enhancements to DOS. Five user par
titions, an enhanced POWER facility, variable partition
priority, a relocating loader, cataloged procedures and
virtual storage implementation are the new functions in
DOS/VS. In this lesson we shall describe briefly the five
user partitions, variable partition priority and the relo
catable loader. We shall then present the virtual storage
implementation in DOS/VS. DOS/VS implements a single
virtual storage as a standard feature of the system. DOS/VS
executes only on a System/370 with the DAT feature.

Five User Partitions

With DOS/VS, you may execute job streams in one to five
batch user partitions. Single Program Initiation (SPI) is not
required and thus not supported in DOS/VS. Standard par
tition sizes are specified during system generation. At IPL
time you may change the standard size of any partition.
Minimum partition size is 64K. This allows Job Control to
execute in all partitions and eliminates the need for SPI
support. Figure 91 contrasts the former DOS system struc
ture with DOS/VS showing the maximum number of user
partitions in each system.

You can run batch jobs in the two new DOS/VS par
titions F3 (Foreground 3) and F4 (Foreground 4). Standard
partition dispatching priority, which determines what par
tition gets the system's CPU next, is Fl, F2, F3, F4 and BG

DOS

F1

in that order. A job executing in the F 1 partition has the
highest priority; jobs that execute in BG have the lowest
priority. To properly balance the use of the CPU and
channels among the jobs executing in your system, you
must consider the priority of the partition where a job will
execute. Assign jobs to partitions in a way that will balance
the use · of your CPU and channels using the DOS/VS
standard dispatching priorities. For example, an I/O bound
job should have a higher priority than a CPU bound job.
This will tend to produce overlap between channel and CPU
operation.

Variable Partition Priority

DOS/VS also has a new feature that will let you change
standard partition dispatching priorities during system oper
ation. It is called variable partition priority. In a situation
where, for example, a job executing in the BG partition
(normally the lowest priority partition) needs to be rushed,
your operator could give the BG partition a higher priority.
Under norm!! circumstances you should plan for system
operation with standard dispatching priorities. Use the
variable partition priority feature for exception situations.

Relocating Loader

Early in the text we described static relocation and dy
namic relocation. System/360 versions of DOS, with their

DOS/VS

F1

F2

F2 3 USER
PARTITIONS F3

5 USER
PARTITIONS

F4

BG

..,_______.....) BG

SUPERVISOR SUPERVISOR

Figure 91

88

link edit process, don't implement either type of relocation.
With DOS on System/360, programs, in general, are bound
to their real storage locations at link edit time. In effect,
programs will execute in the same real storage locations
every time, unless you relink edit to another area of real
storage. In other words, a program is bound to a partition,
Fl, F2, or BG, at link edit time. This resulted in several
considerations for the System/360 DOS user:

1. A partition's size and location in real storage had to
be planned in advance.

2. Programs were usually bound to one partition. If
there was a need to execute a program in multiple
partitions, this usually required multiple copies of the
program, each copy link edited to its partition's

location.
3. It was difficult to change the real storage boundaries

of a partition. This last item is very significant for
users. Consider the situation shown in Figure 92.

Users periodically generate a new system to add new
functions. In the process, the new supervisor usually be
comes larger as indicated in Figure 92. The larger supervisor
offsets the boundary of the BG partition. You might also
have to change the real storage locations of the F 1 and F2
partitions. Since programs are bound to partitions and their
real storage locations, a System/360 DOS installation in this
situation would have to relink edit all programs that exe
cute in BG to BG's new real storage locations. If you
change the boundaries of the F 1 and F2 partitions, you
must also relink edit their programs.

DOS/VS users won't have this kind of problem if they
use the DOS/VS relocating loader option. The relocating
loader is a software feature that translates or relocates a
program's addresses to a partition's boundary. The re-

Figure 92

64K

40K

30K

'\llt.1
-;10K
'!\\\'

0

REAL STORAGE

F1

F2

BG

SUPERVISOR
(OLD VERSION)

DOS

location occurs at program load time. Relocation occurs
every time that you load a program, not just once at link
edit time as in DOS. Since relocation occurs at program
load time, programs don't become, in effect, bound to par
titions. You may load a program into any partition. Thus,
partition locations aren't as rigid. The situation that we
described for DOS with a linkage editor only, as shown in
Figure 92, is no longer a problem.

The DOS/VS relocating loader is a type of static re
location. It gives the DOS/VS user an assist for effective
multiprogramming in five partitions and for effective use of
virtual storage in DOS/VS. We shall describe the relocating
loader - virtual storage relationship in a later topic.

Virtual Storage in DOS/VS

The DOS/VS system has a single virtual storage. In many
ways the DOS/VS virtual storage implementation is similar
to OS/VSl. DOS/VS is structured in its virtual storage,
while real storage is a system resource shared by all user
partitions through the demand paging technique.

In DOS/VS, virtual storage size may not exceed 16
megabytes (16 megs). It may be smaller. Virtual storage size
is specified by a user at system generation time. Figure 93
shows a virtual storage of 16 megs.

Notice in Figure 93 that virtual storage is ·divided into
segments. Each segment is 64K in size. In 16 megs, there
are 256 segments numbered from 0 through 255. In
DOS/VS, segments are useful when considering virtual
storage size. A 5 l 2K virtual storage would be 8 segments in
size.

Also notice in Figure 93 the structure of each segment.

REAL STORAGE
64K

F1

.... 42K
F2

BG

\\!/l~-------
12K s

~/ft\ SUPERVISOR
(NEW VERSION)

DOS

VIRTUAL STORAGE
STRUCTURE

16 MEGABYTES 64K
SEGMENT

STRUCTURE
SEGMENT 255 2K

I
64K I

PAGE 31

SEGMENT 254 I 2K

I PAGE 30

I
I 2K

I
I

I
64K

SEGMENT 2 2K

64K '
PAGE 1

' SEGMENT 1 ' ' 2K

' 64K ' '
PAGE 0

SEGMENT 0

0
DOS NS

Figu,re 93

Each segment has 32 pages, numbered from 0 through 31.
Each page is 2K in size; In DOS/VS, the page is the primary
building block. Virtual storage is allocated to the super
visor and partitions in page size increments.

The DOS/VS Structure in Virtual Storage

The DOS/VS system is structured in its virtual storage.
Figure 94 shows an example of a DOS/VS system struc
tured in virtual storage. Virtual -storage is divided into two
major areas, the virtual address area and the real address
area. The DOS/VS virtual address area of virtual storage is
analogous to the pageable area of virtual storage in VSI and
VS2. The DOS/VS real address area of virtual storage is
analogous to the non-pageable area of virtual storage in VS 1
and VS2. In DOS/VS, during operation active partitions in
the virtual address area of virtual storage dynamically share
real storage through demand paging. The DOS/VS super
visor and the V= R area are defined in the real address area
of virtual storage. The real address area is not controlled by
demand paging. Its pages, when allocated, are fixed in cor
responding page frames of real storage. We will return to
the relationship of virtual storage to real storage later. Next
we will present a short description of the DOS/VS super
visor, the V=R area and user partitions.

90

DOS/VS Supervisor

The supervisor is the primary control program of the
system. It controls the allocation of all system resources -
the CPU, 1/0 devices, and so forth. Minimum supervisor
size for DOS/VS is 26K. Supervisor size expands in incre
ments of 2K, the size of a page, depending on the options
selected for your installation. In addition to normal DOS
control functions, the DOS/VS supervisor contains a paging
supervisor. The paging supervisor controls real storage using
the demand paging technique. The DOS/VS supervisor also
contains the segment table and page tables used during
dynamic address translation. The DOS/VS supervisor is
loaded at the origin of virtual storage (the DOS/VS system's
address space) as shown in Figure 94. If the supervisor were
32K, it would use the first 32K of virtual storage.

The Virtual Equals Real Area

The Virtual Equals Real (V=R) area is the part of virtual
storage (see Figure 94) used for V=Rjob steps. When ajob
step is executed as V=R, it is not paged and its channel
programs are not translated. A job step is executed as V=R
for two primary reasons:

1. The job cannot tolerate time delays caused by paging.
This would be the case for a MICR job.

2. The_ job dynamically modifies channel program ad
dresses during I/O operations (see Lesson 11, Channel

I
IRTUAL v

A DD RESS

R
A

'~

EAL
DD RESS

~
Figu.re 94

VIRTUAL STORAGE

F1

F2

F3

F4

BG

V=R
AREA

SUPERVISOR

DOS/VS

DOS/VS Partitions

Earlier in this lesson we described the five partition feature
in DOS/VS. Figure 94 shows all five partitions in virtual
storage. However, the number of partitions in your
DOS/VS system is a system generation or user option. If
you were to select three partitions at system generation
time you would have F 1, F2 and BG in your DOS/VS
system. Partitions are defined in the virtual address area of
virtual storage. A size for each partition is specified during
system generation as the system standard. You can change
the size of any partition during system operation. Partition
size is always specified as a multiple of 2K, the size of a
page. Minimum partition size is 64K, the size of Job Con
troi. Thus, in DOS/VS, ail partitons are batch partitions.

Virtual Storage - Real Storage Relationship in
DOS/VS

Program Translation for additional explanation).

We have thus far described the major parts of DOS/VS in
virtual storage. Figure 95 shows the relationship of virtual
storage to real storage in the DOS/VS system. Real storage
is divided into fixed size page frames. Page frames are 2K in
size, the same size as a page. Whenever the real address area
of virtual storage is used, its pages are fixed in corre
sponding real storage page frames. Thus, all supervisor. pages
are fixed in real storage, as shown in Figure 95, during

Job Control language is used to specify a job step as V=R.
How V=R space is allocated and how V=R job steps are
loaded will be presented later in this lesson.

VIRTUAL STORAGE
\

fl...,____ -----I

F1 I\
I

VIRTUAL
ADDRESS

I
I

REAL
ADDRESS

F2

F3

F4

BG

V=R
AREA

\
\

' ' '

\
\
\

' '

\

'
SUPERVISOR

FIXED IN

\
\

\

' _,
"' ~ i REAL STORAGE --------

DOS/VS

Figu.re 95

REAL STORAGE

SUPERVISOR

..... ~

PAGE
FRAME (2K)

VIRTUAL STORAGE

f 1

f 2

f 3

I
I

/1
VIRTUAL
ADDRESS

ONE-TO-ONE I
f 4 CORRESPONDENCE /I;
BG /·PAGING

REAL STORAGE 1/ I

REAL
ADDRESS

V=R
AREA

///
h/
/

/ J_ SUPERVISOR SUPERVISOR

DOS NS

Figure 96

system operation. Pages allocated for a V=R job step (from
the V=R area) would also be fixed in corresponding page
frames of real storage.

Pages in the virtual address area of virtual storage share
real storage page frames dynamically through demand
paging. This is indicated by the arrow in Figure 95. Thus, it
is possible for you to define partitions whose total size
exceeds real storage size. Your active partitions will share
real storage under the control of the DOS/VS paging
supervisor. The System/370 DAT feature will translate all
virtual addresses using the segment table and the page tables
in the DOS/VS supervisor. With DOS/VS, you will be able
to define a system that is less dependent on real storage size
than past versions of DOS. The DOS/VS system is struc
tured in virtual storage. Real storage is a system resource
controlled by the paging supervisor.

Virtual Storage - External Page Storage Relation
ship in DOS/VS

Since virtual storage in DOS/VS is the system's address
space, the virtual address area of virtual storage must have
some physical resource within the system to back it.
DOS/VS must have some type of External Page Storage as

92

described in PART I of this text. Figure 96 shows external
page storage in DOS/VS. External Page Storage may reside
on a 2314, 2319 or 3330 device. Its record size is 2K, the
same size as a page and page frame. External page storage
records are called slots. As shown in Figure 96, there is a
one-to-one correspondence between pages in the virtual ad
dress area of virtual storage and slots of external page
storage. That is, for every page in the virtual address area
there is an assigned slot in external page storage. Paging
then physically occurs between external page storage and
real storage. Pages are moved between slots of external page
storage and page frames of real storage. This is indicated in
Figure 96. During a page-in operation, a page is moved from
its slot in external page storage to any available page frame
in real storage. During a page-out operation a page is moved
from the frame it occupies in real storage to its assigned slot
in external page storage. That is, in DOS/VS a page can
occupy any page frame but it always returns to the same
slot.

Figure 96 shows the complete relationship of virtual
storage to real storage and external page storage. The real
address area, whenever used, uses corresponding page
frames of real storage. The supervisor is always fixed in real
storage during system operation. Pages in the V=R area,
when used, are always fixed in corresponding page frames

VIRTUAL STORAGE

T: ...,_ ___ F_1--:-: \ \ \
VIRTUAL F2 \
ADDRESS \ i 208K BG 64K \ \\\

'
REAL STORAGE

t 144K

REAL
ADDRESS

.-~~~~~~

V=R
AREA

' '
144K

' ' ' ' '
I 36Ko ___ _

------- '!!. 36K

L SUPERVISOR
FIXED IN

- SUPERVISOR
REAL STORAGE

0 -------·
DOS/VS

Figu.re 97

of real storage. The virtual address area of virtual storage
has a one-to-one correspondence with external page storage.
Paging physically takes place between external page storage
and real storage.

DOS/VS System Definition and Operation

In this next topic we will describe the DOS/VS system
using a specific example. This section will include items
such as system generation considerations; loading a program
ini:o a partition in virtual storage using the relocating
loader; and loading and executing V=R job steps. Our
sample system configuration assumes that we have a
System/370 Model 135 with the DAT feature and l 44K of
real storage. We will define a system with 3 partitions, Fl,
F2 and BG, the relocating loader function, and a virtual
storage (or address space) size of 336K. Figure 97 shows
this DOS/VS system structured in virtual storage next to its
real storage resource.

At system generation time, three major decisions were
necessary to build the sample system shown in Figure 97:

1. Virtual storage size
2. The number of partitions (from one to five)
3. Whether or not to use the DOS/VS relocating loader

There are many other system generatiol! considerations. We
only mention those most pertinent to some of the new
DOS/VS features. With these options we assume a super
visor size of 36K. Remember, supervisor size is always a
multiple of 2K, the size of a page.

Standard partition sizes are also selected at system gener
ation time. Remember, partition sizes may be changed

during system operation, usually at IPL time. In our
example, Figure 97 , all partitions are the same size. This has
a nice scheduling advantage. All jobs 64K and under can be
executed in any of the partitions. You can assign jobs to
partitions, concentrating on effective use of the CPU. For
example, you can execute 1/0-bound jobs in high priority
partitions and CPU-bound jobs in lower priority partitions.
If, for example, you execute a IOK I/0-bound job in Fl,
54K of virtual storage (not real storage) is wasted. This is a
result of the demand paging technique implemented by the
DOS/VS paging supervisor. With DOS/VS, fragmentation
may occur, but it occurs in virtual storage not in real
storage as in former DOS systems. This is an example of
how you can make good use of the size of virtual storage.
With virtual storage you might also try full-function
processors like the PL/I Optimizer or full ANS COBOL. Or
you might try large applications, too large to attempt with
former versions of DOS because of real storage limitations.
Be careful, however, not to assume that virtual storage is a
substitute for real storage. If you recall the working set
concept from PART I, some programs may require much
less real storage than their actual size; some programs may
need the same real storage as their size. Some of the ad
vantages in DOS/VS are:

1. Virtual storage enables flexible operations, such as
our example of equal size partitions.

2. Virtual storage allows experimentation with programs
too large for your real storage resource. This enables
easier growth into new applications. You can try an
application before you install additional real storage.

3. In some cases, virtual storage will allow you to exe-

Lesson 15_ DOS/VS 93

336K

272K

208K

144K

VIRTUAL STORAGE

F1

BG

V=R
AREA

64K

\
\
\
\
\

' ' '

\
\
\

' '

\

'

\
\

\

' '

(
SOME OF)
JOB CONTROL'S
PAGES

DOS/VS LI BRA RY

PROGA
42K

36K SUPERVISOR SUPERVISOR 36K

RELOCATING
LOADER DOS/VS

Figu,re 98

cute a set of jobs too large for your real storage
because of the working set concept.

4. Virtual storage should make programming easier. You
can use large partitions instead of an overlay or
multi-step approach when designing an application.

5. The relocating loader option will make operations
and the installation of new system releases easier.

6. Design and development of teleprocessing and data
base applications should be easier with a large virtual
storage.

Although we have suggested how to schedule jobs in
DOS/VS, we haven't described how programs are loaded.
We said before that we included the relocating loader
option in our DOS/VS sample system. We will now describe
how programs are loaded into DOS/VS partitions.

Let's assume that we have a job that we want to execute
in F2. To schedule the job, Job Control is loaded into F2.
It uses 64K. Job Control is paged, just like all other pro
grams that execute in the virtual address area of virtual
storage. Our sample job will execute a program called PRO
GRAMA. PROGRAMA is in a DOS/VS library (the Core
Image library) in the format required by the relocating
loader. The Relocating Loader, which is part of the
DOS/VS supervisor, can load PROGRAMA into any con-

94

tiguous range of virtual addresses, therefore, into any parti
tion. In our example, the range of virtual addresses is F2,
from 208K to 272K. Let's assume that PROGRAMA is 42K
in size. Figure 98 shows the situation that we have just
described. Notice that we show some of Job Control's pages
in real storage. This is the case because we assume that Job
Control is executing at this time.

When Job Control is told to load PROGRAMA (through
the JCL execute statement) it passes control to the Relocat
ing Loader. The Relocating Loader reads PROGRAMA as
data .and translates PROGRAMA's address constants related
to F2's origin in virtual storage (208K). After loading, PRO
GRAMA's addresses start at 208K and end at 272K. This
translation of addresses at load time is the static relocation
technique that was described in PART I. Thus far we have
described the logical process performed by the relocating
loader in DOS/VS. Physically, the Relocating Loader reads
PROG RAMA into page frames and translates PRO
GRAMA's addresses. This process continues until all of
PROGRAMA is translated (or loaded). In most cases, many
of PROGRAMA's pages will be paged out during the load
operation. Therefore, at the end of loading most of PRO
GRAMA will be in external page storage. When loading is
complete, control passes to PROGRAMA and it begins to

EXTERNAL
PAGE STORAGE

VIRTUAL STORAGE

64K---PHYSICAL ACTIVITY

f 1
~--FINAL RESULT

144K

BG

V=R
AREA

64K / BG

l_____)

36K SUPERVISOR SUPERVISOR 36K

RE LOCA Tl NG --
LOADER

DOS/VS

Figu,re 99

execute under the control of demand paging. Figure 99
shows both the physical and logical results of program load
ing using the DOS/VS Relocating Loader.

Because the Relocating Loader loads programs just be
fore execution, we could have executed PROGRAMA in Fl
or BG by scheduling the job through an F 1 or BG system
reader. There would be no requirement to relink-edit or to
have multiple copies pf PROG RAMA (one for each
partition).

Executing V=R Job Steps

Normally, jobs will run in the virtual address area of virtual
storage in DOS/VS. Job initiation is performed by Job Con
trol. Program loading is controlled by the Relocating
Loader (if you select that option). But what about V=Rjob
steps? We have described the need for them - time
dependent jobs or programs that dynamically modify their
channel programs. You have seen the V=R area of virtual
storage in DOS/VS. However, we have yet to describe how
V=R space is allocated and how V=R job steps are
scheduled and executed.

V=R Space Allocation

We said before that pages from the real address area of
virtual storage are fixed in real storage when they are used.
The DOS/VS supervisor is fixed in real storage during
system operation. The V=R area allows the DOS/VS user to
fix programs (or V=R job steps) in real storage in a similar
manner. This type of page fixing is called a long term fix.
That is, a V=R job step's pages are fixed in real storage

during the entire execution of the job step.
V=R space (or pages) can be allocated to any or all

partitions during system operation. You can make a
standard assignment of V=R space to a partition at system
generation time and then change the allocation during
system operation. Using our sample DOS/VS system, we
have assigned V=R space to Fl and BG, 16K(or 8 pages) to
Fl and 30K (or 15 pages) to BG. This is shown in Figure
100.

Notice that a user assigns V=R space starting at the bottom

of the V=R area. We identify the allocated pages as BGR
and FIR. BGR identifies the Background partition's V=R
pages. FIR identifies the Foreground One partition's V=R
pages. These pages are reserved for any V=R job steps that

VIRTUAL STORAGE

64K

F1

64K

F2

64K

BG

~----- --_-i
F1 R (PAGES) lGK

1----------30K

BGR (PAGES)

V = R 82K
AREA

1-:
36K

SUPERVISOR
0

DOS/VS

Figure JOO

will execute in BG or F 1. Because we have not assigned
V=R space to F2, no V=R job steps can run in F2 (unless
V=R space is assigned to F2 during system operation).

V=R space allocation does not affect real storage unless

VIRTUAL STORAGE

336K I F1 64K \

r----- '
I JOB EXECUTING \

\
\
\ F2

64K

\
JOB EXECUTING

64K
BG

JOB CONTROL

f 144K

I I I .
V = R ~ - - - - -,Gi(
AREA l- F1 R i 66KI - - - - -30i<

i 1 BGR t i

36K
SUPERVISOR

\
\

you use it for a V=R job step. Thus, in normal system
operation, all real storage page frames (above the Super
visor) are available for demand paging. Let's assume a situ
ation for our sample DOS/VS system in which jobs are
executing in Fl and F2; V=R space is allocated as shown in

Figure I 00, and we are about to schedule a V=R job step in
BG. Figure 101 shows this situation.

Notice how real storage page frames are shared among the

three partitions. This includes some of Job Control's pages
in BG. We will call the V=R job step VRSTEP. VRSTEP is

specified as Virtual Equals Real (V=R) in its JCL execute
statement. When Job Control reads this statement, it directs
the Relocating Loader (assuming that you have installed the

option in your DOS/VS supervisor) to load VRSTEP into
BGR in the V=R Area of virtual storage. Let's assume that
VRSTEP is 20K in size. It could not exceed 30K, the size

of BGR, unless we reassigned space in the V=R Area to
make BGR larger than 30K.

Before the Relocating Loader can load VRSTEP, the

DOS/VS paging supervisor must move any active pages
(from the virtual address area of virtual storage) that cur
rently reside in page frames of real storage corresponding to
BGR's pages in the V=R Area. These pages (from the

pageable area of virtual storage) will be moved to available
page frames or external page storage. When the area in real
storage that corresponds to BGR is clear VRSTEP can be

\
\
\
\

PAGES FROM JOBS
----a.;;;;:::IN F1 AND F2 AND

SUPERVISOR

FROM JOB CONTROL
IN BG

36K

DOS/VS

Figure 101

96

VIRTUAL STORAGE

336K Fl 64K \ - - --- \
\
\

JOB EXE CUTI NG

\
\
\

F2
64K

\
JOB EXECUTING

t 144K

F1R 16K

66K

36K

SUPERVISOR

\
\
\
\
\

\

~-t---10K OF WASTED
REAL STORAGE

SUPERVISOR

--------0
DOS/VS

Figu,re 102

loaded. The Relocating Loader loads VRSTEP, relocating
its addresses to an origin of 36K. All of VRSTEP's pages get
a long term fix in real storage. VRSTEP then begins to
execute, its pages fixed for the entire execution. VRSTEP's
virtual addresses equal its real addresses. Therefore, no

Also, no channel translation occurs. VRSTEP could be a
program that dynamically modifies CCW's during 1/0
operations. Figure 102 shows the status of our sample
DOS/VS system during VRSTEP's execution. No new jobs
or job steps can be initiated in the BG partition until the
VRSTEP program terminates. There is only one BG parti
tion. When used for a V=R job step the program is loaded
into BG's V=R space (BGR); BG's space in the virtual ad
dress area is unused until the V=R job step terminates. At
that time, Job Control would be loaded into BG in the
virtual address area and initiate the next job or job step for
the BG partition. Figure 102 also shows the effect of a V=R
job step on real storage. A part of real storage is dedicated
to VRSTEP. This real storage can no longer be shared dy-,

namically among all active jobs in the system until VRSTEP
terminates. Also notice in Figure 102 that the unused 1 OK in
BGR results in 1 OK of wasted real storage. This can be
prevented if you specify the size of VRSTEP in its JCL
execute statement. For example, if we had specified
\TD~'T'PD "" ")()V ,-,...,h, +1-.a f; .. "+ ')('IV ,-,.f nf":D'" ·rv1crA<' <>nrl thA

Y .J.'\.U .1. .LJ..l. a.:> ""'V..l""-, V11J.J l..lL\.I J....lJ.1.:H .. ~V.1.'\rr.. VJ. .Ll'-J .. 1.:'- \JI .t'U.OVLJ u...1..1.u. 1(...1..u.1

corresponding 20K in real storage would have been used.
The lOK of wasted space shown in Figure 102 would be
available to F 1 and F2 under the control of the paging
supervisor.

Plan to use the V=R area only when required. Let the
DOS/VS paging supervisor control the allocation of real
storage through demand paging.

The many new functions in DOS/VS add significant im

provements to its multiprogramming, teleprocessing, data
base and interactive computing capabilities. With the
DOS/VS system structured in virtual storage, system oper
ation and application development should be much im
proved. These improvements in DOS/VS truly make it a
system of the '70's.

Lesson 15. DOS/VS 97

READER·s COMMENT FORM

Introduction to Virtual Storage in System/370 GR 20-4260-1

Please comment on the usefulness and readability of this publication, suggest
additions and deletions, and list specific errors and omissions (give page numbers).
All comments and suggestions become the property of I BM.

Reply Requested

Yes D
No D

COMMENTS

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

FOLD

FOLD

YOUR COMMENTS PLEASE

Your comments on the other side of this form will help us improve future editions of this
publication. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material.

Please note that requests for copies of publications and for assistance in utilizing your
IBM system should be directed to your IBM representative or the IBM branch office
serving your locality.

FOLD

FIRST CLASS
PERMIT NO. 40

ARMONK, NEW YORK

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY:

I BM Education Center, Building 005
Department 78L, Publications Services
South Road
Poughkeepsie, New York 12602

FOLD

-------------- --- --- ~ ---- - - --------_ _...._._
!

International Business Machines Corporation

Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

GR 20-4260-1

