SY33-8561-0
File No. S370-30

DOS/VS LIOCS Volume 3
Systems DAM and ISAM Logic

Release 28

JBIML

First Edition (June, 1973)

This edition applies to Version 5 of the IBM Disk Operating System/Virtual Storage, DOS/VS,
and to all subsequent versions and editions until otherwise indicated in new editions or Tech-
nical Newsletters. Changes are continually made to the information herein. Before using this
publication in connection with the operation of IBM systems, consult the IBM System/360
and System/370 Bibliography, GA22-6822, and the IBM System/370 Advanced Function
Bibliography, GC20-1763, for the editions that are applicable and current.

Note: VSAM information presented in this manual is for
planning purposes only, For the availability dates
of features and programming support of VSAM, please
contact your IBM representative or the IBM branch
office serving your locality.

Requests for copies of IBM publications should be made to your IBM representative or to the
IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Laboratory, Publications Department, P.O. Box 24,
Uithoomn, The Netherlands. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1973

THIS MANUAL....

ee+.is the third in a series of four
volumes providing detailed information
about the IBM Disk Operating System /
Virtual Storage (DOS/VS) Lcgical IOCS

programs. The four volumes are:

Volum= 1: General Infcrmaticn_and
Irperative Macrcs, SY33-8559.

Volume 2: SAM, SY33-8560.

Volume 3: DAM and ISAM, S¥33-8561.

Volume 4: VSAM, SY33-8562.

This third vclume is intended rainly for
persons involved in program maintenance and
for systems prcgrammers whc are altering
the program design. Logic information is
not necessary fcr the cperaticn cf the
programs described.

General rcutines that arply tc more than
one access method or more than one file
type are described in Volume 1. These
routines include open/close,
checkpoint/restart, and a numper of
transient routines. References tc Volume 1
are made whenever reguired for a good
understanding of the tcpics discussed.

This volure cf the LOS/VS IOCS Logic
Manuals consists of three parts:

1. LIOCs support for DAM files
2. LIOCS support for [sSaM files
3. Charts.

Parts 1 and 2 sugply descrirticns cf the
declarative and imperative macros, DTF
tables, and initialization and termination
procedures for each of the file types
described. Part 3 supplies the detailed
flowcharts associated with the descriptions
in the first twc parts.

The appendixes in the back cf the manual
provide maintenance personnel with the
service aids:

1. Lakel list

2. Message cross-reference list.

Effective use of this puklication requires
an understanding of IBM System/370
operation and the Disk Operating System /
Virtual Stcrage (DCS/VS) Assembler Language
and its associated macro definiticn
language. Reference publications for this
information are listed below.

FREPRECUISITE PUBLICATIOwS

e DCS/VS LCata Management Guide, GC33-5372.

e DCS/VS Supervisor and I/D Macros,
GC33-5373.

¢ 0S/VS and DOS/VS aAsserkbler Language,
GC33-4010.

e DOS/VS LIOCS Volume 1, General
Infcrration and Imperative Macros,
SY33-8559.

RELATEL PUELICATIONS

e TLOS/VS LIOCS Vclume 2, SAN, SY33-8560.
e T[0OS/VS LIOCS Vclume 4, VSAM, SY33-8562.
¢ DOS/VS Supervisor Logic, $5Y¥33-8551.

e DOS/VS Messages, GC33-5379.

Fcr the titles and akstracts of other
related puklications, refer tc tne IBM

Systen/360 and System/370 Bikliography,
GA22-6822.

CIRECT ACCEES FIILES e o o
Direct Access Method . . .
DTFDA Macro e e o o o
DTFPH Macxc e e s e o

Reference Methods and Addressing

SYyStemsS .+ « ¢« o o o o o
Track Reference
Record ID ¢ « « o o« o &
Record Key

Ccnversicn of Relatlve Addres

Murltiple Track Search .

€€

Overflcw Areas . « « « «
Indexes . . . « e e

ICLOC . . « « =« « o o e .« .
Ccntrol Field - Spanred Reccrds .
Errors/Status Indicator . . . o« .

Caracity Reccrd (RZERC cx RO) . .
WRITE RZERC Macro . o« « « « @ .
Fcrmatting Macro . . .
DAM Iogic Mcdule Macrcs
Direct Access Modules
DAMCLC: Input/Output Macrcs Chart
AR ¢ ¢ ¢ ¢« o ¢ o o e e o s e o
CANMCC: WRAITF Macro Charts AE-2E
DAMOD: CNTRL Macro Chart AF . .
DAMOD: FREE Macro Chart AF . .
DAMODV: Input/Output
MNacrcs Clarts ARK-AN
DAMODV: CNIRL Macro Chart AF .
DAMODV: FREE Macro Chart AF . .
DAMODV: WAITF Macro Charts BA-RC
DAMOD and DAMODV: Channel Frcgram
Ruilder Subrcutine Chart AJ . .

Initializaticn and Terminaticon . . .

DANM CPEN Chart 01 « « . .
Relative Addressing
$$BODAIN: DA Open Input/Cutth

Charts BG-BJ

$$BODAIl: DA Open Input Charts
BK-BM < <
$$BODAO1: DA Open Cutput, Phaee 1
Charts BN-BC B
$$BODAO2: DA Open Cutth, Phase 2
Charts CA-CC

$$BODAO3: DA Open Cutth, Phase 3
Charts CE-CF . . « « . .
$$BODAOL4: DA Open Cutput, Phase 4
Charts CG-CJ « « @« « & o =« .
$$BODAUl: DA Open Input, Cutput
Charts CK-CL . . . e ¢ e o o
$$BODACL: DA Close, Iant/CLtth
Charts CM-CP .« « ¢ « ¢ o o o«

INDEXED SEQUENTIAL ACCESS METHCD . .
Reccrd Types « o« « ¢ « o o o o o« o &
Storage Areas ¢ o . 4 . . .

I/0 AYEAS &« & o o o o o o o o
WOXrk Ar€as . « o « o o o o« o o @

Track Index (TI) . .
Cylinder Index (CI) .
Master Index (MI) . .

e o o .
.
.
.
.

.
.
.
.
.

Functicns Performed ky ISAMN

.

.

CIFIS MAaCXIC o « o o o o o o o =
ISMCLE MACXC o ¢ o o o o o o o o o =«

CCNTENTS

Lcad cr Extend a CASLC File
ACC Reccrds to a File
rRardcnr Reccrd Retrieval . . .
Sequential Record Retrieval .

e o o o
.

ISAM Macrc Instricticns tc Lcacé cr
Extend a CASLC File
ISAM Macro Instructicns fer Addlrg
Reccrds tc a File
ISAM Macro Instructicns fcr Rardcn
Retrieval . .« « « « o « « e e e
ISAM Macrc Instructicns fcr

. .105

Sequential Retrieval

ISAM LCALC: ENLCFL Maczrc, Phase 1 -
$$BENDFL Charts DA-DE
ISEM ICALC: ENLCFL Macrc, Phase 2 -
$$BENDFF Charts DC-DC
ISEM ICALC: SETFL Macrxc, Phase 1 -
$$BSETFL Charts DE-DF « s s s e @
ISAM ICALC: SETFL Macrc, Phase 2 -
$$BSETFF Chart DG . « « « o« « + .«
ISAM ILCALC: SETFL Macrc, Phase 3 -
$4ESETFC Chart TE « v « o o o o &
ISAM ICALC: SETFL Macrc, Phase 4 -
$SBSETFH Chart DJ « « « o o o « @
ISBEM ICAL: Write Macrc, NEWKEY
Charts CK-LM . . . « o o s s e o
ISAEM AILC: WAITEF Macrc Charts EA-ED
ISRAM AILTC: WRITE Macrc, NEWKEY
Charts EE-EF
$$EINLCEX Read Cyllnder Index Into
Stcrace Charts FA-FB « « « « o o
ISAM RETRVE, RANLCCN: READ Macro,
KEY Chart FC v ¢ & ¢ ¢ o o o o o =
ISAM RETRVE, RANLCOM: WAITF Macro
Charts FL=FG . « « o o o« o o o o =
ISAM RETRVE, RANILOM: WRITE Macro,
KEY Chart FH ¢« ¢ ¢ ¢ « « o o o o
ISEAM RETRVE, RANLOM: FREE Macro
Chart FK o « o 2 o o o o« « o o o @
ISAM RETRVE, SECNTI: ESETI NMacrc
Chart CR . ¢ o ¢ o o o o o o o « o«
ISAM RETRVE, SEQNTIL: GCGET Macro
Charts GB=GE + ¢ o « « o o o o o o«
ISAM RETRVE, SEQNTL: PUT Macro
Chart CF ¢ ¢ ¢ ¢ o o o o o o o o «
ISAM RETRVE, SECNKNTI: SETIL Naczxc,
$$ESETL Charts GGC-GL .« « . « « .
ISAM RETRVE, SEQNTIL: SETL Macro,
$SESETI1 Charts GM-GR . . « . . .
ISAM AILLCRTR: ESETL Macrc
ISAM AILCRTR: GET Macrc
Charts JB=JE 4 ¢ o « o o o o o o =
ISAM 2LLCRTR: PUT Macxc Clkart JF
ISAM AICRTR: REAL Macro, KEY
Chart JC « 4 ¢ ¢ o o e o o o o o o
ISAM ACDRIR: SETL Nacrc, $$ESETL
Charts JH-JK ¢« ¢ o o o o o o o o «
ISAM ALCRTR: SETL Macrc, $$BSETL1
Charts JL=JQ « &« « ¢ e o o o o o =

.108
.109
.109
.111
.112
.112

112
.114

.115
.128
.131
.131
.132
.132
.136
.136
.138
.13¢

.139

Clkart JA 146

.147
.148

148
.149

.15¢C

ISAM ADDRTR:

KA-KE . .

ISAM ADDRTR:

Chart KF .

ISAM ADDRTR:

WRITE Macro, KEY

Macro,

. e .

WRITE

Charts EE-EF . « « ¢ ¢ « « « &

ISAM Initialization and Terminaticn

Procedures . .

ISAM OPEN/CLOSE LOGI

« o o e o e o e o

CHART 02 .

$$B0OIS01: ISAM Open, Phase 1

Charts IA-1IB . 2 « o « o

$$BOIS02:

Charts IC-1D

$$BOIS03:

IsAM Open, Phase 2

IsAM Open, Fhase 3

Charts IE-LF

$$BOISOUL:
Chart LG .
$SBCIS05:

Charts LH-1LK . « « « .

$$BOIS06:

ISAM Open, Fhase 4

ISAM Oren, Phase £

ISAM Open, Phase 6

Charts LI-LP . . . « .

$$BOIS07:

ISAM Open, FPhase 7

Charts MA-MC . ¢« <« ¢ « ¢ o o« &

WAITF Macro Charts

NEWKE

.

.151
.154
.154

.176
.178

.178
.178
.178
.179
179
179

.180

$$BCIS08: ISAM Cpen, Fhase 8
Charts ME-ME . ¢ « ¢ ¢ « « s o o &«
$$E0IS09: ISAM Open, Integrit
Fhase 1 Charts MF-MH . . « « « « &
$48BCIS10: ISAM Open, Integrit
Phase 2 Charts MI-MK ¢ « « « o o+ =«
$SECISCA: ISAM Clcse Charts NA-NB
$SEORTV1: ISAM REIRVE Open, Phase
1 Charts NC-NE . ¢« &« ¢ « o o o o o«
$SEORTV2: ISAM REIRVE Oren, Phase
2 Charts NF-NG ¢ « ¢ o ¢ o o s o »

EXFLANATICN OF FLOWCBART SYMBOLS . . .
CBAM CHRARTS « o« o o ¢ o o o o o o o o o
RFFENCIX 2: LAEBEL CROSS-REFERENCE LIST

REFENCIX E: MESSAGE CROSS~-REFERENCE
LIIST ¢ ¢« ¢ ¢ o o o o o o o o o o o o

INCEX & o o o o o o o o o o o o o o »

.180
.181

.181
.182

.182
.182
.184
.185
.331

.341
. 345

Figure 1, DTFDA table (1 of 6). . . .
Figure 2. DIFPH takle for DAM files.
Figure 3. Record ID returned@ to IDICC.
Figure 4. Sranned record control

fielde o« ¢« o ¢« o o o o o o o e e o e @

Figure 5. Errcr/status indicatcr (1
Of U)o v ¢ v ¢ ¢ ¢ o o o o o o o o o @
Figure 6. Multisegment spanned record.
Figure 7. DAM descriptor Lyte. . .
Figure 8. DAM channel program bu1lder

StXingSe « o « o o ¢ o o o o o o o o
Figure 9. Easic CCWs for LAM channel
program builder. e e s s e s e o o o
Figure 10. DAM channel program
descriptor bytes. . . « o e e e
Figure 11. Exangle of DAM channel
program for a WRITE ID macro. . . .

Figure 12. TCAM channel prcgrans (1 of
1. « . . .
Figure 13. DSKXINT table for relative

addressing © o ¢ e e e o o o e o o @
Figure 14. Alteration factcrs fcr
relative addressing . . .« « . ¢ ¢ . .
Figure 15. Format of extent
information to user. « « o s o s o o
Figure 16. ISAM I/0 area requirements
(in bytes). .« ¢ ¢« ¢ ¢ o ¢ o o ¢ o o @

Figure 17. Fcrmat of sequence-1link
fieldsindex level pointer. .« e e e .
Figure 18. ISAM work area
requirements (in bytes). c e e e e
Figure 19. Schematic example of a
track index. © e o o o o a o o o o
Figure 20. Cylinder overflcw ccntrcl

recCrd (COCR) e o o« « o o o o o o o o &«

Figure 21. Schenatic exanple cf a

cylinder index. .« « ¢« ¢« ¢ ¢ o o o o &
Figure 22. Schematic example of a

raster index. . . . - e .
Figure 23. [TFIS LOAD table (1 cf 5).
Figure 24, DTFIS ADD takle, part 1 (1
of). e 4 s e & o o & o e« s e o a o
Figure 25. Cverflow area urger limits

(MBBCCHHR) . ¢« o & « o o s s o o o o «
Figure 26. End cf volume limits fcx
prine data area (MBBCCHHR).
Figure 27. DTFIE RETRVE, RANDCN
table, part 1 (1 of 3).
Figure 28. LTFIS RETRVE, SECNTL
table, lrart 1 (1 of 3.
Fiqure 29. LTFIS ALCLCRTR takle, fart 1
(1 of). ¢« v ¢ o ¢ o o o o o o o o @
Figure 30. ERREXT parameter list. .
Figure 31. Pointer to first record to
be processed by sequential retrieval.
Figure 32. CCW chain kuilt Ly
$$BSETFL tc write prime data records.
Figure 33. Channel prcgram kuilder
for ADD -- CCW chain kuilt to search
raster cylinder index. « o e o a e @

. 25

. 38
. 39
. 4o
. 41
. 55
. 55
. 61
. 63
. 65
. 66
. 67
. 69
. 69

. 70
732

. 78
. 84
. 84
. 85
. 90

. 95
.102

.107

.111

.11¢€

EIGURES

Figure 34. Channel prcgram kuilder
fcr ACC -- CCW chain kuilt tc search
naster cylinder index. « « . o o
Figure 35. Channel grcgram hu1lder
fcr ACC -- CCW chain kuilt tc write
new EOF record. . . . o« o .« .
Figure 36. Channel prcgram tu1lder
fcxr ACLC -- CCW chain kuilt tc find
Frime data reccrd. e e e e e . o .
Figure 37. Channel prcgram hu1lder
fcx ACLC -- CCW chain kuilt tc rewrite
track index entry. « o o
Figure 38. Channel grcgram bu1lder
fcr ALT -- CCW chain kuilt tc write
track index entry. « ¢« ¢« « ¢ ¢ ¢ o o .
Figure 39. Channel rrcgram kuilder
fcx ALT -- CCW chain kuilt tc write
COCRe =« ¢ o e o o o o s o« o o s« o s @
Figure 40. Channel rrcgram kuilder
fcxr RLT -- CCW chain kuilt tc read
rrevicus cverflow reccrd. . . o o
Figure 41. Channel prcgran bulldez
fcr ACLC -- CCW chain kuilt tc write
Freviovs overflow reccrd. . . . « . .
Figure 42. Channel prcgram kuilder
fcr BLT -- CCW chain kuilt tc write
rew cverflcw reccrd. e o
Figure 42 Channel rrcgranm hullder
fcr ALT -- CCW chain kuilt tc write
cver ECF record (blocked reccrds). . .
Figure 44. Channel prcgram kuilder
fcr BALCC -- CCW chain kuilt tc write
cver ECF reccrd (unklccked reccrdés).
Figure U4t Channel prcgranm kuilder
fcxr ALL -- CCW chain kuilt tc write
ECF in independent overflcw area. . .
Figure 46. Channel prcgram kuilder
fcr ALT -- CCW chain kuilt tc read
last track index entry. .« « « ¢« ¢« . .
Figure 47. Channel prcgran kuilder
fcr ALL -- CCW chain kuilt tc read
cverflcw reccrd. « o« « « o o o« .
Figure 4€. Channel prcgrarn bu11der
fcr ALT -- CCW chain kuilt tc read
last prire data record. « . .
Figure 49. Channel prcgram kuilder
fcr BLTC -- CCW chain kuilt tc write

.

.117

.117

.118

.119

.12¢C

.120

.121

.121

.122

.122

.123

.123

.124

.124

.125

blcck cf prime data reccrds and verify. 125

Figqure 5C. Channel prcgranm kuilder
fcxr BALTC -- CCW chain kuilt tc write
track index entry. « « . ¢« ¢ ¢ ¢ o o .
Figure 51. Channel prcgram kuilder
fcr ALCLC -- CCW chain kuilt tc read
index entrye ¢ « « ¢ ¢ o ¢ o o o e o
Figure 52. Channel prcgrar kuilder
fcr ACL -- CCW chain kuilt tc write
index entXye o ¢« o o o ¢ o o o o o o o
Figure 52. Channel prcgrar kuilder
fcxr ALT -- CCW chain kuilt tc write
track index overflcw entry.
Figure 54. Channel prcgram kuilder
fcr ALT -- nctes. . o« ¢ o ¢ o o o o &

.126

.126

.127

127

.128

Figure 55. CCW chain built by
$$BINDEX to skip cylinder index
entries preceding the cne tc rprccess a
givVen KeYy. o« ¢« o ¢ o ¢ o o o « o o o @
Figure 56. CCW chain kuilt Ly
$$BINDEX to read the cylinder index
into storage. . . .
Figure 57. Channel program bu1lder
for random retrieval -- CCW chain
built to search master cylinder index.
Figure 58. Channel rrcgram kuilder
for random retrieval -- CCW chain
built to search track index.
Fiqure 59. Channel prcgranm kuilder
for random retrieval -- CCW chain
built to find record in prime data
area (unshared track). s e e e e e
Figure 60. Channel program builder
for random retrieval -- CCW chain
kuilt to f£ind record in prime data
area (shared track). « v e e e s e
Figure 61. Channel program kuilder
for randcom retrieval -- CCW chain
kuilt to find recoxrd in cverflcw chain.
Figure 62. Channel program kuilder
for random retrieval -- CCW chain
kuilt to write record. e s s s e s
Figure 63. Channel program builder
for random retrieval -- notes.
Figure 64. Channel prcgram kuildex
for sequential retrieval -- CCW chain
built to search master cylinder index.
Figure 65. Channel prcgram kuilder
for sequential retrieval -- CCW chain
built to search track index. o« o e .
Figure 66. Channel prcgram kuilder
for sequential retrieval -- CCW chain
kuilt to find starting reccrd in grime
data area. « e e e e s o s 8 s e e e
Figure 67. Channel prcgram kuilder
for sequential retrieval -- CCW chain
kuilt to find starting reccrd in
overflow chain. . « « « ¢« ¢« ¢« ¢ « & &
Figure 68. Clannel prcgram kuilder
for sequential retrieval -- CCW chain
built to write records.« o .
Figure 69. Channel prcgram hulldex
for sequential retrieval -- CCW chain
kuilt to search track index. « s o o
Figure 70. Channel program kuilder
for sequential retrieval -- CCW chain
kuilt to read records. .« . o« o o
Figure 71. Channel program bu1lder
for sequential retrieval -- notes. .
Figure 72. Channel prcgram kuilder
for ADDRTIR -- CCW chain built to search
master-cylinder index fcr rarndcr
retrieve function. .« . . . o .
Figure 73. Channel prcgran hullder
for ADDRIR -- CCWw chain built to
search track index for randcm retrieve
functicn. .« ¢ ¢« ¢ ¢ ¢ e 0 @ e e . e .
Figure 74. Channel prcgram kuilder
for ADDRTR -- CCW chain built to find
reccrd in prime data area (unshared
track) for randcm retrieve functicn. .

.130

.13¢

.133

.133

.134

132

141

.142

.143

.lu4

.44

. 148

<145

146

.155

.155

.15¢€

.136

Figure 75. Channel prcgrar kuilder
fcr ACLRTR -- CCW chain kuilt to find
record in prime data area (shared
track) fcr random retrieve function. .
Figure 7€. cChannel prcgram kuilder
fcr RCLRTR -~ CCW chain kuilt to find
record in cverflow chain fcr rardcn
retrieve function. . . . o .

Figure 77. Channel prcgran hu1lder
fcr ACLCRTR -~ CCW chain kuilt to write
record for random retrieve functicn.
Figure 78. Channel prcgram kuilder
fcxr ALCLRTR -- CCW chain ruilt tc
search master . . . « ¢ « .+ o . .« .
Figure 79. Channel prcgram hullder
fcr ACLRTR -- CCW chain kuilt to

search track index fcr add functicr.
Figure 80. Channel prcgramr kuilder
fcr ALLRTR -~ CCW chain kuilt tc write
new EOF record for add functicn. o .

Figure 81. Channel prcgrar kuilder
fcr ALCLRTR -- CCW chain kuilt to find
prime data reccrd fcr adé functicn. .
Figure €2. Channel prcgrarm kuilder
fcx ACLRTR -~ CCW chain kuilt toc
rewrite track index entry for add
function. . . . ¢ ¢ ¢ o 0 0 e o e . .
Figure 83. Channel prcgram kuilder
fcxr ACCRTR -- CCW chain kuilt tc write

track index entry for add furcticn. .
Figure 84. cChannel prcgram kuilder
fcr ACLRTR -- CCW chain kuilt tc write
COCR for add function. e o s e e o
Figure 85. Channel prcgram kuilder
fcr ACLRTR -- CCW chain kuilt tc read
previouvs overflow recoxrd fcr add
functicn.e .« ¢ ¢« ¢ ¢ ¢ e 6 4 o e e o
Figure 8€6. Channel prcgram kuilder
fcr ACLRTR =-- CCW chain kuilt toc write
previouvs overflow reccrd fcr add
functicn. .« ¢ ¢ ¢ ¢ ¢ e e e e e e e o
Figure €7. Channel prcgram kuilder
fcr ACCRTR -- CCW chain kuilt tc write
new cverflcw record fcr add furcticn.
Figure 88. Channel prcgram kuilder
fcr ALCLRTR -- CCW chain kuilt to write
cver ECF record (klocked reccrds) fcr
add functicn. ¢« ¢ ¢ ¢ ¢ ¢ ¢ e e e e
Figure 8¢9. Channel prcgram kuilder
fcr ACLCRTR -- CCW chain kuilt to write
cver ECF reccrd (unklccked recorcs)
fcr add fynction. 0 0 . . .
Figure 90. Channel grcgram kuilder
fcxr ALLRTR =-- CCW chain kuilt tc write
EOF record in independent cverflcw
area fcr add function. . . . ¢
Figure 91. Channel prcgram kuilder
fcxr ACLRTR -- CCW chain kuilt to read
last track index entry fcr add
functicn. .« ¢ ¢ ¢ ¢ ¢ e ¢ 4 e e e e .
Fiqure 92. Channel prcgram kuilder
fcr ACLRTR -~ CCW chain kuilt tc read
cverflow record for add fuvncticn. . .
Figure 93. cChannel prcgram kuilder
fcr ACLRTR -- CCW chain tuilt to read
last prime data record fcr add
functicn. « o ¢ o ¢« o ¢ o ¢ o o @ o

.156

157

.157

.158

.159

.159

.160

.161

.162

.162

.163

.163

.164

.164

.165

.165

.166

.166

.167

Figure 94. cChannel program builder
for ADDRTR =-- CCW chain built to write
klock of prime data reccrds and verify
for add function. o o 4 e
Figure 95. Channel prcgran bullder
for ADDRTR -- CCW chain built to write
track index entry for add furcticn. .
Figure 96. Channel program builder
for ADDRIR -- CCW chain built to read
index entry for add functicn.
Figqure 97. Channel program builder
for ADDRTR -- CCW chain built to write
index entry for add function.
Fiqure 98. Clrannel prcgram kuilder
for ADDRIR =-- CCW chain built to write
track index cverflow entry fcr add
function. ¢ . ¢ ¢ ¢ 0 e 0 e e e e .o
Figure 99. Channel program kuilder
for ADDRTIR =-- CCW chain built to write
records for sequential retrieve
function., .« ¢« ¢ ¢ ¢ ¢ ¢ 0 e 4 e e e .
Figure 100. Channel prcgranm kuilder
for ADDRTR =-- CCW chain built to
search track index for sequential
retrieve function. e @ o o o 8 o & @

.167

.168

.168

.169

.169

170

.170

Figure 101. Channel prcgram kuilder
fcr ALLRTR -- CCW chain kuilt tc read
record fcr sequential retrieve
functicn., .« ¢ ¢ ¢ ¢ ¢ e e e e . e e
Figure 1Cz. Channel prcgrar builder
fcr ACLCRTR -- CCW chain kuilt Ly
$SBSETL (1) 0 « v v o o o o o o o o
Figure 103. Channel prcgram kuilder
fcr ALCLRTR =-- CCW chain kuilt Ly
$$BEETL (1) to search TI fcr
sequent1a1 retrieve function. . . .
Figure 104. Channel prcgram hu1lder
fcxr ACCRTR -- CCW chain kuilt Ly
$4BSETL (1) to find first reccrd in
EFrirme data area fcr sequential

Figure 105. Channel prcgram kuilder
fcr ACLCRTR -- CCW chain kuilt Ly
$SESETL (1) tc find first record in
cverflow chain for sequential retrieve
Figqure 1C€. Channel prcgrar builder
fcr ACTRTR -- notes 1-6. .«
Figure 1C7. Channel prcgrar bLllder
fcr ACCRTR -- note 7. .« « ¢« ¢ ¢ o o &
Fiqure 1C€. Message crcss-refererce
list (1 cf 3). & & ¢ ¢ ¢ ¢« ¢ ¢ o o o «

.171

.171

.172

.173

.174
.175
.176

.341

CHARTS

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

01.
02.
AAQ
AB.
AC.
AD.
AE.
AF.

DAM Open . « « « « o « o o
ISAM Open . . . e
DAMOD: Input/Output Nacros .
DAMCL: WAITF Macrc (1 cf 4)
DAMOD: WAITF Macro (2 of 4)
DAMOL: WAITF Macrc (3 cf 4)
DAMOD: WAITF Macro (4 of 4)
C2AMOL and CAMODV: CNTRL and

FREE Macros . . e e e e e

Chart

AG. DAMOD: Seek 0verlap

Sukroutine (1 of 2) ¢ & & o« ¢ ¢ & o &

Chart

AH. DAMOD: Seek Cverlag

Sukroutine (2 of 2) . ¢ ¢ ¢ 4 4 4 o W

Chart

AJ. DAMOD and DAMODV: Channel

Frogram Builder Subroutine

Chart
(1 of
Chart
(2 cf
Chart
(3 of
Chart
(4 cf
Chart
Chart
Chart
Chart
Chart

AK. DAMODV: Input/Qutput Nacros
L‘) - - . L] . L] . - - . - Ll -
AL. DAMODV: Input/Output Macros
u) - - - . . . - - - . L
AM. DAMODV: Input/Output Macros
4) v o o . . e e s e o & s .
AN. DAMOLV: Input/Output Macros
4y . . e e e e e
RA. DAMODV WAITF Macrc (1 cf
BB. DAMODV WAITF Macro (2 of 3)
BC. DAMOLV WAITF Macrc (3 cf 3)
BD. DAMODV: Get Subroutine . . .
BE. DAMOLV: Seek Overlag

3)

Sukroutine (1 of 2) . . . ¢ ¢« ¢ ¢ o &

Chart

BF. DAMOLV: Seek Overlag

Sukroutine (2 of 2)+ ¢« « ¢ o

Chart

BG. $$BODAIN: DA Open

Input/Cutput (1 0of 3)

Chart

BH. $$BODAIN: DA Ogen

Input/Cutput (2 o£ 3)

Chart

BJ. $$BODAIN: DA Open

Input/Cutput (3 c£ 3)« .

Chart
Chart
Fhase
Chart
Fhase
Chart
Fhase
Chart
Fhase
Chart
Fhase
Chart
Phase
Chart
Phase
Chart
Phase
Chart
Phase
Chart
Phase
Chart
Fhase
Chart
Fhase

CG.

BK. $$BODAIl: DA Open Input . .
BN. $$BODAO1: DA Oper Cutrgut,
1(1o0f 3) . . e e e e e e e .
BP. $$BODAO1: DA Open Cutfgut,
1 (2 0f3) v ¢ v 4 v o o o 4 o W
BQ. $$BODACl: DA Open Cutgput,
1 (3 cf 3) ¢ v v v ¢ ¢ o o o o
CA. $$BODA02: DA Open Cutput,
2 M cE W) o 0 v v v v e e e
CB. $$BODA(02: DA Open Cutput,
2 (2 cE) v v v v e e e e e s
CC. $$BODA0O2: DA Open Cutput,
2 3 cEl) o vvh e e e
CD. $$EOCR02: LA Open Output,
2 (4 cf W) . . « s e e e e s
CE. SSEOLCRO03: EP Open outgut,
3 (1Lof 2) ... s e s e s
CF. $$EOLRA03: LA Open Outrgut,
3 (20f 2) .. e o ¢ s e s o«
$SEOLAQL: EA 0pen Cutrput,
3 (1o0f3) ... e e e e e e e
CH. $SPOCRO4: LA Open Cutgut,
3(20f 3) & ¢ v ¢ v i e e .
CJ. $$BODAQU4: DA Open Cutrut,
3 (3 0f 3) ¢ ¢ v ¢ o o s o o o

. 57
177
.185
.18¢€
.187
.188
.189
.190
.191
.192
.192
.194
198
.196
.197
.19¢
.199
.200
.201
.202
202
. 204
. 205

20€
<207

.208
. 209
.21C
.211
.212
.213
.214
.215
.216
.217
. 21¢€
.219

Chart CK.
Cutput (1
Chart CL.

$SBOCAU1: LA Open Input,
cE 2)
$$BOCAU1l: LA Open Input,
Cutput (2 cf 2) « . ¢« . .
Chart CM. $$BOLCACL: LA Clcse
Input/Cutput (1 of 3)
chart CN. $$BCDACL: DA Clcse
Input/Output (2 of 3) &«
Chart CP. $$BCDACI: DA Clcse
Input/Cutput (3 of£ 3)
Chart DA. ISAM LOAD: ENDF1 Macrc,
Fhase 1, $$BENCFL (1 ©cf 2)«
Chart DB. ISAM LOAD: ENDFI Macrc,
Fhase 1, $$BENDFL (2 cf 2)
Chart DC. ISAM LCAD: ENDFL Macrc,
Fhase 2, $$BENCFF (1 cf 2)
Chart DD. ISAM LOAL: ENDFL Macrc,
Phase 2, $$BENDFF (2 cf 2)
Chart CE. ISAM LOAL: SETFL Macrc,
Phase 1, $$BSETFL (1 of 2)
Chart LF. ISAM LOAL: SETFL Macrc,
Phase 1, $$BSETFL (2 cf 2)
Chart LG. ISAM LOAL: SETFL Macro,
Phase 2, $SBSETFF . ¢« ¢ « o« o o o«
Chart LH. ISAM LOAL: SETFL Macro,
Phase 3, $$BSETFG . ¢ « « o o + =
Chart LJ. ISAM LCAL: SETFI Macro,
Fhase 4, $$BSETFH .« « o ¢ o o o o
Chart DK. ISAM LCAD: WRCTE Macrc,
NEWKEY (1 cf 3) . . ¢ ¢ o o o o &
Chart DL. ISAM LCAD: WRCTE NMacro,
NEWKEY (2 cf 3) e o o o o & o 4
Chart DM. ISAM LCAD: WRCTIE Macrc,
NEWKEY (3 Cf 3) . . ¢ o ¢ o o o »
Chart EA. ISANM ADD: WAITF NMacrc (1
L
Chart EB. ISAM ALLC: WAITF Macrc (2
4y e e o s e o s o s
Chart EC. ISAM ADD: WAITF Macrc (3
... . © s s s & s & s+
Chart EC. ISAM ADD: WAITF Macro (4
L . e e e s e

Chart EE. ISAM
Macro, NEWKEY (1 cf 2)
Chart EF.
Macro, NEWKEY (2 of
Chart EG. ISAM ATLL,
ALCCRTR: Svkroutines
Chart EH. ISAM ADD,
ARLCLCRTR: Svkroutines
Chart EJ. ISAM ADD,
ALLRTR: Sukrcutines
Chart EK. ISAM ADD,
ACLCRTR: Sukrcutines
Chart EL. ISAM ADD,
ALLCRIR: Sukrcutines
Chart EM. ISAM ADD,
ADDRIR: Sukrcutines
Chart EN. ISAM ALL,
ADDR1IR: Sukrcutines (7 cf 7) . . .
Chart FR. $$BINDEX: Read Cylinder
Index intc Storage (1 cf 2) ., . .

2) . . L] L] . .
RETRVE, and
@QctE?D ...
RETRVE, and
(2 cfE? . ..
RETRVE, and
(B3cEMND . . .
RETRVE, arnd
(bcE 7 . ..
RETRVE, and
(5¢c£7) . . .
RETIRVE, and
(6 c£7) . ..
RETRVE, ard

ADD and ACCRTR: WRITE

ISAM ALLC and ALLRTR: WRITE

.220
. 221
.222
. 223
. 224
.225
.226
. 227
.228
.229
.230
.231
. 232
. 233
. 234
. 235
.236
.237
.238
.239
. 240
. 2041
242
. 243
. 244
.245
.246
.247
.248
.249
. 250

Chart FB. $$BINDEX: Read Cylinder
Index into Storage (2 cf 2)

Chart FC. ISAM RETRVE,
Macro, KEY « ¢« « « o &
Chart FD. ISAM RETRVE,
Macro (1 of 4)
Chart FE. ISAM
Macro (2 o0f W)
Chart FF. ISAM RETRVE,
Macro (3 of 4)
Chart FG. ISAM RETRVE,
Macro (4 of 4)
Chart FH. ISaM
MACRC KEY . .
Chart FJ. ISAM
Sukroutines .
Chart FK. ISAM
Macxo . .
Chart GA.

Macro
Chart
Macro
Chart
Macro
chart
Macro
Chart
Macro
Chart
Macro . .« .
Chart GG. ISaM
Macro, $$BSEIL
Chart GH. ISaM
Macro, $$BSETL
Chart GJ. ISEM
Macro, $$BSETL
Chart GK. ISAM
Macro, $$BSETL
Chart GL. ISAM
Macro, $$BSETL
Chart GM. ISAM

RETRVE,

RETRVE,
RETRVE,
RETRVE,

. 0 .

ISAM RETRVE,

GB. ISAM RETRVE,
(Lof 4)
GC. ISAM RETRVE,
(2 0f 4)
GD. ISAM RETRVE,
(3 of W)
GE. ISAM
(4 of u)
GF. ISAM

RETRVE,
RETRVE,

RETRVE,
RETRVE,
RETRVE,
RETRVE,
RETRVE,

RETRVE,

Macro, $$BSETL1 (1 of 5) . . .

Chart GN. ISAM RETRVE,

(1 of 5)
(2 of 5)
(3 of 5)
(4 of 5)
(5 of 5)

RANCOM: READ

WAITF
WAITF
ﬁA&EaM; aAiT%)
RANDOM: WAITF
RANDCN: WRITE
RANDCM:
RANDCN: FREE
SEQNTL: ESETL
SEQNTI: GET
SEQNTL: GET

e e o e o o e o

SEQNTL: GET

RANLCOM:

RANLOM:

e o o

SEQNTL:

GET
SEQNTL: PUT
SEQNTL: SETL
SEéN&L; éEi o
SEQNTI: SETI
SEéNéI; éE& o
SEQNTI: SETI

SEQNTIL: SETL
SECNTI: SETL

Macro, S$$BSETL1 (2 of 5)

Chart GP. ISAM RETRVE,

SEQNTL: SEIL

Macro, SBSETL1 (3 of 5)« .

Chart GC. ISAM RETRVE,

SEQNTL: SET

Macro, $$BSETL1 (4 of 5) . . « « .« «

Chart GR.
Macro,
Chart HA. ISAM RETRVE,
ADDRIR: Sukroutines (1
Chart HRB. ISAM RETRVE,
ADDRIR: Sukroutines (2
Chart JA. ISAM ALDRTR:
Chart JB. ISAM ADDRTR:
4y
Chart JC.
4)
Chart JD.
4
Chart JE.
4y
Chart JF.
Chart JG. ISAM ADDRTR:
Chart JH. ISAM ALDRTR:
$SSBSETL (1 of 3) . . .

ISAM RETRVE,

ISAM ALDRTR:

ISAM ALLCRTR:

ISAM ALLCRTR:

ISAM ALDRTR:

SEQNTL: SET

$$BSETL1 (50f 5)

SEQNTL and
of 2)
SEQNTL and
of 2)
ESETI Macrc . .
GET Macro (1 of

e o e o

GET Macroc

(z of

GET Macro

(2 of

GET Maczxc

cf

(4
PUT Macrc . . .
READ Macro, KEY
SETI Macrc,

¢ e o e e o e o

. 251
.252
.253
.254
.255
256
. 257
. 258
.259
.26C
.261
.262
.263
.264
.265
.266
267
. 268

Chart

Jd.

ISAM ADDRTR:

SETI Macrc,

SSESETL (2 0f 3) . &« o &« « o« & o « o « 286
Chart JK. ISAM ADDRTR: SETL MNacro,

SSESETL (3 0f 3) & & o« &« o o« « o« o « « o287
Chart JL. ISAM ADDRTR: SETI MNacrc,

$$ESETL1 (1 cf£ 5) . . ¢ « ¢ o » o « o« 288
Chart JM. ISAM ADDRTR: SETL MNacrc,

$SESETL1 (2 cf 5) . ¢ & ¢ ¢ o ¢ ¢ o o« 288
Chart JN. ISAM ADDRTR: SEIL Macrc,

SSESETL1 (3 cf 5) . ¢ ¢ ¢« ¢« ¢ ¢« o « « 2290
Chart JP. ISAM ALLCRTR: SEIL Macrc,

$$BSETL1 (4 ©f 5) . . .« ¢ ¢ o ¢« & o « o291
Chart JC. ISAM ALCCRTR: SETL Macrc,

$$BSE'IL1 (5 Of 5) e e & e e e ¢ o o o .292
Chart KA. ISAM ALLCRTR: WAITF Macro (1

cf 5) L] . . . L . . . L . . .293
Chart KB. ISAM ALLCRTR: WAITF Macro (2

CE S) & i i 4 e e e e e e e e s e s « 2294
Chart KC. ISAM ALLCRTR: WAITF Macro (3

CE 5) & ¢ 4 ¢« o 2 « o s o s o o« s &« o 2295
Chart KC. ISAM ALLCRTR: WAITF Macro (4

CE S) & i i e e e e e e e e e e e s o 4296
Chart KE. ISAM ADDRTR: WAITF Macro (5

CES5) & i i i e e e e e e e e e e e e «297
Chart KF. ISAM ADDRTR: WRITE Macxrc, KEY 298
Chart LR. $$BOIS01: ISAM Open, Phase 1

(1 0Ff 2) v v 4o ¢ ¢ o o o o« o o o o« o o« 299
Chart LE. $$BPOIS01: ISAM Orpen, Phase 1

(2 0f 2) ¢ . ¢ o ¢ o o o o« o « « « » « <300
Chart LC. ¢$POIS02: ISAM Oren, Plase 2

(1 0f 2) & v o ¢ o ¢« o o o o o o o« o« & 301
Chart LL. $$BCIS02: ISAM Crpen, Ehase 2

(2 0f 2) ¢ v @ o ¢ ¢ o o o o o o o « « 2302
Chart LE. $$BCIS03: ISAM Cpen, Ehase 3

(L1 0f 2) v & ¢ o o« o o o o o« o =« o« « « 303
Chart LF. $$BCIS03: ISAM Cper, Fhase 3

(2 0f 2) & 4 o o « o o « o o« « o o o« « <304
Chart IG. $$BCISO4: ISAM Cpen, Fhase 4 .305
Chart LH. $3BOIS05: ISAM Oren, Phase 5

(1 0f 3) v & & & o« « a o o s s o o « « 2306
Chart LJ. $$BOIS05: ISAM Oren, Plase 5

(2 0f 3) ¢ & ¢ & o o o o o o o o o« o « 307
Chart LK. $$BCIS0S5: ISAM Cren, Ehase 5
(30f 3) v & &« v ¢ e o o« o o« o s o« « « 2308
Chart Il. 4BCIS06: ISAM Cren, Fhase 6

(L of U) o . v v ¢ o o ¢ o o o « o« « « 2309
Chart LM. $$BCIS(06: ISAM Crer, Ehase 6

(2 0f U) o v 4 v & o o o o o o « « o « 31C
Chart LN. $$BCIS06: ISAM Cper, Fhase 6

(B3 CEU) & v ¢ o o o« o o o o o o s o » 2311
Chart IP. $$BCIS06: ISAM Crer, Fhase 6

(G CE U) . v & & ¢ o o o o o o o » o o« «312
Chart MA. $$BOIS07: ISAM Orer, Phase 7

(L1 CE 3) v ¢ ¢« ¢ o o o « o o o o o o « 2313
Chart MBE. $$BOIS07: ISAM Orern, Phase 7

(2 Cf 3) & v o o o o « o o o o s o s o« 314
Chart MC. $$BOIS07: ISAM Orern, Phase 7

(2 Ccf 3) & 4 & 4 4 o « o o o o« o & o« o« 4315
Chart MC. $$BROIS08: ISAM Oren, Phase 8

(1 0f 2) v 4 ¢« & o o o o o« o o o« o « « 2316
Chart ME. $35ROIS08: 1ISAM Oren, PhLase 8

(2 0f 2) v v o o o o o o o o o o o o o 317
Chart MF. $$ROIS09: ISAM Cgen,

Integrity Fhase 1 (1 of 3)318
Chart MG. $$BCIS09: ISAM Cgen,

Integrity Phase 1 (2 cof 3)319
Chart MH. $$BCIS(09: ISAM Cgen,

Integrity Phase 1 (3 cf 3)32C

Chart MJ. $$BOIS10: ISAM Open,

Integrity Phase 2 (1 of 2)321
Chart MK. 3BOIS10: ISAM Open,
Integrity Phase 2 (2 cf 2) . . e o . o322

Chart NA. $$ECISCA: ISAM Close (1 cf 2) 323
Chart NB. $$BCISOA: ISAM Close (2 cf 2) 324
Chart NC. SBORTV1: ISAM RETRVE Ogen,

Phase 1 (1 0of 3) . « ¢« « . « ¢« ¢« « « o« 4325

Chart ND. $$BCRTV1: ISAM RETRVE Cpen, .
Fhase 1 (2 0f 3) &« ¢ ¢ ¢« ¢ ¢ « - o o« « <326
Chart NE. ¢$BCRTV1: ISAM RETKRVE Cgen,

Fhase 1 (3 0f 3) & & ¢ ¢ ¢ ¢ ¢ o o o« o 327
Chart NF. $$BCRTV2: ISAM RETRVE Cgen,

Fhase 2 (1 cf 2) . &« o ¢ ¢ ¢ ¢ o o « « o328
Chart NG. $$BCRTV2: ISAM RETRVE Cgen,

Fhase 2 (2 cf 2) . ¢ ¢« ¢ ¢« ¢ o ¢« o o o« 4329

Direct Access (DA) files refer tc files
contained on DASD devices and processed by
the Direct Access Methocd. Ncte that the
term Direct Access applies to a method of
processing DASD records and not toc a type
of file organization.

DIRECT ACCESS METHOD

The Direct Access Methcd prcvides a
flexible set of macro instructions for
creating and maintaining a data file on a
DASD device. This technigjue applies
specifically to records organized in a
random order, but it can also be used to
process records sequentially. The macro
language offered by this data management
method permits the user to lcad, read,
write, update, add, or replace records on a
DASD file.

The Direct Access Method is an IOCS
processing method specifically designed to
utilize the capabilities of direct access
storage devices. This methcd provides the
following facilities:

e Processing of records organized in a
random order.

e Processing, in physical sequence, of a
file of records stored by record key.

e Utilizing track capacities.
e Two referencing methods:

1. Record ID (physical track and record
address),

2. Record KEY (control field of the
logical record).

e Multiple track searching keycnd the
specified track for resolving the key
argument.

DIRECT ACCESS_ FILES

¢ Providing a means of suprplying the user
with the Record Identifier (ID) of
either the current reccrd cr the next
reccrd after a READ or a WRITE operation
has keen executed.

The Direct Access Method is sukject to the
following restrictions:

e Only unklocked records are processed.

e Nc work area and only one I/C area can
ke specified for the file.

e The user must supply either a track
reference or a record identifier for
every record read or written by lcgical
IOCs.

DASD files processed by the Direct Access
Method must be defined for lcgical IOCS by
a DTFDA macro. If a DASD file is processed
Ly physical IOCS in a manner sirilar tc the
Direct Access Method, the file must be
defined ky a DTFPH macro.

CTFDA MACRO

Whenever a file of DASD records is
rrocessed by the Direct Access Method, the
logical file must be defined Ly a DTFDA
macro. This macro generates a partial DTF
table tc describe the characteristics of
the file for logical ICCS as shcwn in
Figure 1. The DTF takle is completed by
the channel program builder subrcutine in
the LA logic module. This sukroutine
tuilds, and inserts into the DTF table, the
channel prcgram CCWs needed to process the
file. The number and specific nature cf
the CCWs varies with the imperative macrcs
used with the file. Figure 12 summarizes
the CCW chains needed to acccrmplish the
function cf a particular imperative macro.

Direct Access Files 13

r T T T T 1
|DTF Assembly| Module] | | |
| Label |DSECT Label |Bytes |Bits}| Function |
----- + T TP -- e
| §Filename [IJICCB | 0-15 | |Command Control Block (CCB). |
| | (0-F) | i I
	ITIMOD	16 } 0	1 = Trailer lakels	
		(10	1	[Used by FREE macrc
	I	2	1 = COBCL Open/Ignore option	
			3	1 = Track hcld ortion specified {
			4	1 = DTF relocated by OPENR
			5	Not used
			6	1 = SPNUNR
			7	Used by CNTRL macro

| | j17-19 | |address cf logic module. t
	[(11-13)			
		20		DTF type for OPEN/CLOSE (X'22' = direct access
	I (1w		files).	
	ITISWI	21	0 }1 = Output; 0 = Input.	
i i	A5y	1	1 = Verify cpticn specified.	
I			2	1 = Search multiple track (SRCHM) sgecified.
			3	1 = WRITE AFTER or WRITE RZERC macro used.
			4	1 = IDLCC specified. i
]		5	1 = Undefined; 0 = FIXUNB, VARUNB, or SENUNB	
			6	1 = RELTYPE = DEC 1
]		7	1 = End of file.	
	ITIFNM	22-28		Filename (DTIF Name).
		(16-1C)		
	IJIDVTP	29		Device Tyge.
		apy	[X'00' = 2311, X'01' = 2314, 2319, X'02' = 2321,	
	I		X*ou* = 333(.	
]			
	ITIUNT }30-31		starting logical unit address of the first vclurme	
	(LE-1F)		containing the data file. This value is supplied	
				by the OPEN from EXTENT cards (can be initially
				zero).
	IJIULB 132-35		Address cof user's labkel routine.	
		(20-23)		
	TITUXT 136-39		Address of user's routine for processing EXTENT	
		(24-27)		information.
	ITIRELPT	o		Pointer to relative address area:
		(28)		E&Filename.P - &Filename
				2
	IOIERC	41-43	[Address of a 2-kyte field in which IOCS can store
		(29-2B)		the errcr ccnditicn or status ccdes.
	IJITST	uu-45		Macro code switch for internal tuse:
		(2C-2D)		X*0000' = REAL IC
				X'0001* = READ KEY
		I	X'0002' = WRITE IC	
				X*'0003' = WRITE KEY
			lX"OOO‘-&' = WRITE RZERO	
				X'0005' = WRITE AFTER
				I
	ITIBPT	u6-47		Pointer to channel program build area
		(2E-2F)		(¢6Filenare.B) minus 32.
	IJICB2	48-63		Control seek CCR
	(30 3F)			
L ——l - -1 _— ——— ———— ———d
Figure 1. DTFDA table (1 of 6).

14 DOS/VS LIOCS Volume 3 DANM and ISAM

r- —== —-—==7T ST T T T T T T T T T T T T S T T T T e e e e e e e — e 1
| DTF Assembly| Module | | |
| Label | DSECT Lakel|Bytes |Bits]| Function |
t -—= -———= R St B st —— e 1
| éFilename.Z | IJICCW |64-71 | |Control Seek CCW for overlap seek routine. |
| | | (40-47) | | |
] | IJIXMD | 72-75 | |Channel program kuilder instruction: |
		(48-4B)		XI 36(2),Cc'0Q"
	IJIMSZ	76-77		Maximum data length for FIXUNB or UNDEF records;
		(4C-4D)		BLKSIZE for VARUNB or SPNUNB records.
	IJISPT	78]	Pointer tc READ ID string (Filename.0); X'00' if	
1		C(4E)		no READ IC issued.
		I		
		79		Pointer to READ KEY string (Filenare.1l); X'00' if
		(4F)		no READ KEY issued.
		80		Pointer tc WRITE ID string (Filename.2); X'00' if
		(50)		no WRITE ID issued.
	I			
		81		Pointer tc WRITE KEY string (Filename.3); X'00'
		(51)]if no WRITE KEY issued.
		82		Pointer to WRITE RZERO string (Filename.4); X'00'
		(52)		if no WRITE RZERO issued.
		83		Pointer tc WRITE AFTER string (Filename.5); X'00'
		(53)		if no WRITE AFTER issued.
	ITITRK	8u4-85		Track constant:
] 12311: H'o!' if key length = 0,		
]	H'20*' if key length # 0.	
]		12314/2319: H'0' if key length = 0,		
				H'45* if key length # 0.
			13330: H'135"' if key length = 0,	
				H'191' if key length # 0.
			12321: H'0' if key length = 0,	
				H'16' if key length # 0.
	IJIRIC	86-87]2311: H'61"	
		(56-57)	12314/2319: H'101'	
			13330: H'135"	
				2321: H'84",
	17			
	IJILAT /	88	0	Not used
	{	(58)	1	1 = Wrong-length record
	\] 2	1 = Non data transfer error.]	
	5;}		3	Not used.
- 7€ €>	Z&D		4	1 = No room found
/_/90		5-6	Not used	
2% ‘% ”’37		7	1 = Record out of extent area.	
¢<				
5}’4g¢2	/	89	0	1 = Data check in count area.
		(39)	1	1 = Track overrun.
	(2	1 = End of cylinder.
			3	1 = Data check when reading key or data.
			4	1 = No record found.
] 5	1 = End of file.	
			6	1 = End of volume.
			7	Not used.
[1	
	IJILBTK 190-95		Label track address, XBCCHH, where X is the	
		(5A-5F)		volume sequence number of the device cn which the
				label track is 1lccated.
L P - 1_ 1o 1 ——————— _— |
This is the end of the ccrmcn DIFDA table.
Figure 1. DTFDA table (2 of 6).

Direct Access Files 15

The following section is included if UNDEF, AFTER, or RZERO is specified.

r- T T T - ——m— o 1
| DTF Assembly|Module | | | |
| Label |DSECT Lakel|Bytes |Bits| Function |
F e e P i S T ——1
¢Filename.L	IJILST]96-143		Basic CCWs to kuild channel prograr	
		(60-8F)		(see Figure 9).

		144-183		Basic CCWs for undefined length or formatting
		(90-B7)		macros (see Figure 9).
I				
	IJIVIT 1184-185		Instruction to give record length tc user if	
		(B8-B9)		record length is undefined. (NOPR 0 if no
				RECSIZE specified.)
	ITIFRU]186-187		Instruction to get record length frcr user if
	(BA-BB)	jrecord length is undefined. (NOPR 0 if no		
				RECSIZE specified.)
			I	
¢Filename.F	IJIFLD 1188-192]	Work area (used for RO address - CCHHO).		
		(BC-CO)		
	: I . l			
éFilename.K	IJICNT 1193-200]		Work area (used fcr RO data field).	
	{ (C1-C8)			
	I			
¢Filename.C	IJICTS	201-208		Work area (included only for spanned cr variable
		(C9-DO)		records fcr record count field).
b N, L Lol —— _— _— -

The channel prcgram builder strings are generated following the DTFDA table, and
preceding the channel program building area. (See Figure 8 for the channel program
. builder string to be used fcr each macro.)

=TT

T - e
|

|Channel program kuilder string fcr READ ID macrc.
|If READ ID is nct specified, the string is not

| generated.

EFilename.0 Variakle

¢Filename.1l Variakle

— e, S e S]

|Channel program kuilder string for READ KEY
|macro. If READ KEY is not specified, the string |
|is not generated. |

T
|
|
|
|
|
|
|
|
§Filename.?2 Variakle| |Channel program kuilder string fcr WRITE ID |
	macro. If WRITE ID is not specified, the string
	is not generated.
§Filename.3 Variakle	
Jmacro. If WRITE KEY is not specified, the string]	
	is not generated.]
&¢Filename. U4 Variakle	
	macro. If WRITE RZERO or WRITE AFTER is not
	specified, the string is not generated.
	Channel program kuilder strings for WRITE AFTER
	macro. If WRITE RZERO or WRITE AFTER is not
	specified, the string is not generated.
O J

&§Filename.5 Variakle

r T
| I
| |
| |
| |
| |
| |
| I
| |
I I
| |
| |
| I
| |
| |
| |
| |
| I
| |
| |
| |
| |
| |
| |
| I
L 1

b e e e e e e e e

Figure 1. DTFDA table (3 of 6).

16 DOS/VS LIOCS Volume 3 DAM and ISAM

The following section contains the channel program kuild areas and varies in size.

|
|
-

The following section is added fcr spanned records only.

r T T T T - -
|DTF Assembly|Mcdule | | |

| Label | DSECT Label |Bytes |Bits]| Function
—— -—1 -——1 e —memm -

| | I |

| | | 8 bytes| |Count save area.

| | | | |

| | | 8 pytes]| | SEEKADR save area.

| | | | |

| | | 1 byte | 0 |1 = Relative addressing.

| | | | |

| | | |] 1 |1 = IJIGET switch on.

| | | | |

| | | | 2 |1 = Igncre hcld switch on.

| I | | I

| | | | 3 |reserved fcr use by DAMODV.

| | | | I

| | | | 4 |1 = New volure SEEKADR.

| | | | |

| | | |5-7 |Not used.

| | | | |

| | | 1 oyte | | reserved.

| | | | |

| | | 2 bytes]| | Record size.

| | | | |

| | |12 bytes| |Work area.

| | | | I

| | | 8 bytes| |Contrcl word save area.

L — L 1_ 1 - _———

Figure 1. DIFDA table (4 cf 6).

Direct Access

Files

S — T — T q— T — g, " . " e, T e, S e, . s, T s, . WD, e,

r T T T

| DTF Assembly| Module | |

| Label | DSECT Label|Bytes |Bits| Function

t + + + + - -

| | [I _ ,

|6Filename.B | Heﬁiﬁwl 0-7 | | Seek CCW that is generated at prograr assenbly
= S t5#>\b‘) % : |time and used by all channel programs.

| | | variable | |Area tc build:

| | | | |

| | | | | 1. Eight CCWs if AFTER is not specified.

| | | | |

| | | | | 2. Eight CCWs if spanned or variakle length
| | | | | records and AFTER=YES is specified.

| | | | |

| | | | | 3. Seven CCWs if undefined or fixed records
| | | | | and AFTER=YES is specified.

| | | | |

| | | variable| |Area tc build:

| | | | |

| | | | | 1. Eight CCWs if AFTER is not specified and
| | | | | VERIFY=YES is specified.

| | | | I

| | | | | 2. Eight CCws if spanned or variable length
| | | | | reccrds and AFTER=YES and VERIFY=YES are
| | | | | specified.

| | | | |

| | | | | 3. Five CCWs if undefined or fixed reccrds and|
| | | | | AFTER=YES and VERIFY=YES are specified.

L _—1L —_— L 1 1 - —— —

|
|
-

— — s " e " . T e, " e, . S . " . st = e

b ™ s e, —

17

The following section is added to the DTFDA table if DSKXTNT (relative addressing) is

specified.

r - T T bty bbb
| DTF Assembly|Module | | |

| Label | DSECT Label|Bytes |Bits] Function

t-- -—- + + +--- - ——— e
| | | |

:GFilename.P : :3 bytes{ }3X'00' for padding.

|éFilename.I | |5 kytes| | IDLOC record area (bucket used by mcdule).

I | | | |

|6Filename.S | |8 Lytes]| | SEEKADR in form:

I | | | I

: : : l :M,Bl,BZ,Cl,C2,H1,H2,R

| | |4 Lkytes| |DC A (§SEEKADR)

| | | | |

| | |4 kytes| |DC A (&IDLOC)

| | | | |

| | |8 kytes]| |Work area for RELTYPE=DEC.

| | | | |

|6Filename.X | |4 Lkytes| |save area for CCHH portion of actuval DASD

| | | | |address.

| | | | I

| | |4 bytes]| |Alteraticn factcr for Cl in SEEKADR (see kytes
| | | | 1112-119):

| | | | |

| | | |]2311: Xx*cococcelr’

| | | | 12314, 2319: X'00000001'

| | | | 13330: X'000013C0"

| | | | |2321: X'000003ES8"

| | I I |

| | |4 bytes]| |Alteraticn factcr for C2 in SEEKADR (see Lytes
| | | | 1112-119):

| | | | |

| | | | | 2311: Xxr'cococcca’

| | | | 12314, 2319: XxX'00000014°

| | | |]3330: X*'CoCCCO13"

l [-

Figurs 1. DTFDA table (5 cf 6).

18 DOS/VS LIOCS Volume 3 DANM and ISAM

e e e e e e e T e S e, S e, T e, S e, T e, T e, S | O e, S e, T, T e, O, W GG e, S

DTF Assembly|Module
Label | DSECT Label|Bytes
4 4

- o o o o 2 o T o

i

Bits| Function
I
|

4 bytes |Alteraticn factcr for H1 in SEEKADR (see bytes

[112-119):

[2311: Xx'ccecoccert
12314, 2319: X'00000001°
}3330: Xx‘'ococcoc1’
|2321: X'00000014"

—— e s = e e e]

T
|
|
+
|
|
|
|
|
|
|
|
|
|
| variable|
jtc end | | DSKXTNT takle composed of a variable number cf
|of DTF | |8-byte entries ccntaining extent information
| takle | [in the following format:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
|
L

Bytes (-2 TTT2 -cumulative number cf tracks in
the DSKXTNT takle entries up to
and including the current
entry.

—— e " e " s " e T e, S e, T e = e}

3 M -volume sequence numker.
4 B -kin numker (0 for disk devices).

|
|
|
|
|
|
|
;
|Bytes 5-7 TTT1 -relative track numker of lower
| limit of this entry.

|

|A 2-kyte end-of-table indicator containing

| X' FFFF' follcws the last entry in the DSKXTNT
jtakle.
L

[T s S e, T e S s, i, S s, " . T e, T s T e, S s, . e, S gt T . S Y o, S by
— T s, T . T . T o, T e, T ey, T e, T s, " e, S ey, S e, T . T e ST e T . e, ™ e

Ly —

o e = e S e e e e —

- ———— - ———

Numkers in parentheses are displacements in hexadecimal notation.

Figure 1. DTFDA table (6 cf 6).

Direct Access Files 19

r T 1

| Bytes | Bits| Function |

F -1 -- 1

| | | |

| 0-15 | | CCB. |

| (0-F) | | |

| | | |

| 16 | | X*'08' indicates DTF relocated by OPENR. |

| (o) | | |

| I | |

| 17-19 | | 3%'00" |

| (11-13) | | |

| | | |

| 20 | | DTF type (X'23'). |

| @auw) | | |

] | | |

| 21 | | Option ccdes. |

| (15) | | |

| | | |

| | 0 | 1 = Output, 0 = Input. |

| | 1 | Not used. |

| | 2 | Not used. |

| | 3 | Not used. |

| | 4 | Not used. |

| | 5 | Not used. |

| | 6 | 1 = 2321 (Version 1/2 only). |

| | 7 | Not used. |

| | I I

| 22-28 | | Filenane. |

| (16-1C) | | |

| | I |

| 29 | | Device type code: |

| (@aD) | | X*'00' = 2311 |

| | | X'01*' = 2314, 2319 |

| | | X'02* = 2321 |

| | | X'0o4*' = 3330. |

| | |

| 30-31 f | Logical unit address of first vclumre containing

| (1E-1F) | | the file. [

| | |

| 32-35 ‘ | Address cf user label routine.

| (20-23) | | |

| | | |

| 36-39 | | Address of user routine to prccess EXTENT

| (24-27) | | infcrmaticn. |

Lem . 1 —_— _— —_— —
Numkers in parentheses are displacements in hexadecimal nctation.

Figure 2. DTFPH table for DAM files.

DTFFH MACRO REFERENCE METHODS AND ADLCRESSING SYSTEMS
Figure 2 illustrates the DTF table Each reccrd read or written must ke
generated by the DTFPH macrc when the identified by providing the logical IOCS
parameters DEVICE=2311/2314/3330/2321 and routines cf the Direct Access Method with
MOUNTED=ALL are specified in the macro two references:

operand. The table contains the

information to define a DASC file for

processing by physical IOCS, in a manner 1. 1Track reference - location of the track
similar to the Direct Access Methcd. within the pack or cell.

2. Record number (ID), cr Reccrd Key
(centrxcl information) - position of the
record on the track.

20 DOS/VS LIOCS Volume 3 DAM and ISAM

The user can specify the track reference or
record ID as either an actual physical DASD
address or as an address relative to the
start of the file. If relative addressing
is used, the address provided by the user
has been converted to either a U4-Lyte
hexadecimal or a 10-byte decimal address.
Actual physical addresses are supplied as
8-byte DASD addresses. Further details of
the addressing systems are presented in the
following discussion of reference methcds.

TRACK REFERENCE

Before issuingy a read or write instruction,
the user must supply the prcger track
ijentification in the track reference field
in main storage. (This field is identified
ky the SEEKADR= parameter specified in the
DTFDA macro.) The track identification can
ke expressed in one of three formats
depending on the addressing system used.

1. Actual physical addressing - the track
identification is contained in the
first seven bytes cf the 8-kyte track
reference field (MBBCCEHR).

2. Relative addressing (RELTYPE=HEX) - the
track identification is contained in
the first three bytes cf the u-byte
track reference field (TTTR).

3. Relative addressing (RELTYPE=DEC) - the
track identificaticn is ccntained in
the first eight zoned decimal bytes of
the 10-byte track reference field
(TTTTTTTTRR) .

The track reference selects the channel and
unit on which the referenced track is
found.

RECORD ID

Reference to a particular reccrd can be
made by supplying a specific nunker in the
track reference field. This number (ID)
refers to the consecutive pcsition of the
record on the given track; that is, the
first data record on a track is number 1,
the second is number 2, etc.

The form in which the record ID is
suprlied in the track reference field also
depends on the addressing system used.

1. Actual physical addressing - the record
ID is the last byte (R-kyte) in the
8-byte track reference field
(MBBCCHHR) .

2. Relative addressing (RELTIYPE=HEX) - the
record ID is the last byte (R-byte) in
the 4-kyte track reference field
(TTTR) .

3. Relative addressing (RELTYPE=DEC) - the
record ID is the last twc zoned decimal
kytes (RR) in the 10-byte track
reference field (TTTTTTTTRR).

When a REALC or WRITE macro that searches
for record ID is executed, lcgical IOCS
refers tc the track reference field to
determine which record is requested by the
Frogram. The numker in this field is
compared with the corresronding field in
the count areas of the DASD reccrds.

When a READ ID macro is executed, IOCS
searches the specified track for the
particular record. If the reccrd is fcund,
the key area (if present and defined by the
KEYLEN= parameter in the DTFDA racro) and
the data area of the reccrd are transferred
into the main storage I/0 area. If the
cocrresponding recocrd ID (R portion of the
count area on the track) is not fcund, a nc
record found indicator is placed in the
user's errcr status indicator. The WRITE
ID operation is the same as the READ ID
excert a record is written instead of read.

RECORD KEY

If the DASD records include key areas, the
records can be identified by the ccntrcl
informaticn contained in the key. Whenever
this method of referencing is used, the
rrcblem rrcgram must supply the key of the
desired record to logical IOCS befcre a
READ or WRITE macro is issued. When a REAL
or WRITE macro is executed, IOCS searches
the track identified ky the track reference
field for the desired key. The search is
ccnfined to one track unless multiple track
search is specified ky the user. (See
Multiple Track Search.)

If the desired key is not found on the
track, IOCS posts a no record fcund
indicaticn in the user's error status
indicator. When the desired key is fcund,
I0CS reads the data area of the DASD record
into main storage if a READ KEY macrc was
issued.

When a WRITE KEY macro is executed and
the desired key is found, IOCS transfers
the data in main storage to the data area
of the DAST record. This replaces the
information previously recorded in the data
area.

Direct Access Files 21

W

(\0\}*

&
\@\}"’k
e

@5

CONVERSION COF RELATIVE ADDRESSES

When the record address supplied by the
user in the track reference field (SEEKADR)
is in relative address form, it must be
converted to an actual DASC address (CCHHR)
kefore it can be handled by the routines of
the DA logic modules. The Seek Overlag
sukroutine in the logic module performs the
conversion.

If the user wants to express the
relative address as a 10-byte zcned decimal
numker (RELTYPE=DEC), the address is packed
and converted to binary so that it takes
the hexadecimal TTTR form before ccnversion
to an actual address.

Conversion to an actual DASD address
starts by comparing the TTT value given in
the user-supplied relative address with the
TTT2 value cf each entry in the DSKXTNT
takle. Relative
Addressing under Initialization and
Termination in this section of the manual.)
The proper DSKXTNT entry is reached when
the TTT2 value cf the entry exceeds the TIT
value in the address. The M and BZ vailues
from the table entry are inserted into the
seek address, MBECCHHR (Bl is always 0).
The reconversion factor is calculated by
suktracting the TTT1 value of the current
extent entry from the TTT2 value cf the
previous entry. The reconversicn factor is
saved for reconversion of an actual address
to a relative address if IDLOC is
specified.

The user's TTT value is then divided, in
turn, by the three device-derendent
alteration factors; Cl1l, C2, and H1 (refer
to Figure 14). The quotient after each
divide operation is placed in the
respective pcsition in the seek address.
For example; the guotient (after the TIT
value is divided by the C1l alteration
factor), is inserted in the first C-byte of
the seek address, MBBCCHHR. The remainder
after each divide operation becomes the
dividend for the next divide operation.

The remainder after the final divide
operation is the H2 value in the seek
address, MBBCCHHR. The R-byte cf the
actual seek address is identical to the
R-byte (or equivalent to the RR kytes if
decimal relative addressing is used) in the
TTTR relative address.

If a record ID is returned to the user
in relative address form after a READ or
WRITE macro instruction is executed (IDLOC
specified), reconversion is accomplished by
reversing the conversion process. Thus,
the corresponding CCHH porticns of the
actual address are multiplied by the
respective alteration factcrs and the
reconversion factor is added to the result.

22. DOS/VS LIOCS Volume 3 DAM and ISAM

Again, the R-byte remains unncdified
throughout the reconversion process. If
the decimal form of relative addressing is
specified, the TTTR hexadecimal form is
further converted to the 10-byte zcned
deciral fcrm TTTTTTTTRR.

MULTIPLE TRACK SEARCH

The Direct Access READ KEY and WRITE KEY
macro routines for processing DASD files
normally search one track for the desired
lcgical record. The user can specify a
search of multiple tracks by including the
CTFDA entry SRCHM (SeaRCH Multiple tracks)
in the DTF. When SRCHM is sgecified, 10CS
begins the search for a specified record
key on the track specified in the track
reference field. The search continues
until one of two conditicns cccur:

1. An equal compare occurs ketween the key
argument (record key) in main stcrage
and the key of the required record.

The end of the specified cylinder is
reached.

The search for multiple tracks ccntinues
through the cylinder, even thcugh part of
the cylinder may be assigned to a different
logical file. This occurs with cr without
relative addressing. IOCS provides the
user with an end of cylinder indicatcr when
the search reaches the end of a cylinder.
This indicator is placed intc the
error/status byte ky ICCS.

IDLOC

\The parameter IDLOC= is prcvided (in bcth
the DTFDA and DAMCD or DANCDV macros) if
the user wants to identify reccrds after
each READ or WRITE operation is ccrplete.
If specified, IDLOC identifies a main
storage location where ICCS surgplies the
address (either actual or relative) of a
DASD record. If spanned reccrds are being
prccessed, the ID returned will ke that cf
the first segment of the record. The
address returned in location IDLCC after a
particular macro depends on a variety of
conditions. These conditicns and the
addresses returned are summarized in
Figure 3.

When the problem
record by ID or KEY

progranr references a
and does not specify
the search multiple tracks (SRCHM) ortion,
I0CS returns the ID of the next record
under normal conditions. If the user is
processing records sequentially cn the

basis of the next ID, he can check the ID
suprlied by IOCS against his file limits to

determine when he has reached the end of
his logical file.

r - T T T T T==" - - D | T -1
	SRCHM = YES	SRCHM # YES		Seek				
Read/Write = = f=-=——o T T -——4 T T -	address							
Function	Normal	No	*End	Norral	No	#*End	EOF	not in
	1/0	reccrd	of	70	record	of	reccrd	extent
	complete	[found	cylinder	ccmplete	found	cylinder	read	area
- t———————t———— - -t e + - -1
|READ Filenare ,KEY | Same |Blank |wnext |Next |Dummy |Next |Dunry | Dunmy |
| |record | |record |reccrd |recocrd|record |record| record |
- e e O Bt B et Sl + + 1
|WRITE Filename,KEY |Same |Blank |wnext | Next |Dummy |Next |Dunrry | Dummy |
| |record | |record |reccrd |record|record |record| record |
- -—=- +-——t--— -t fe e + t --1
|READ Filename,ID |Next |Durny | Next |Next |Dummy |Next |Dunry | Durmy |
| |record |record|record |reccrd |record|record |record| record |
————= +--—- + + + -t----— - +-- t 1
| WNRITE Filename,ID | Next |Durny | Next |Next |Dummy |Next |Dunrry | Dumny |
| |record |record|record |reccrd |record|reccrd |record| record |
b t——————— t—— t-————— e B +-——-- - 8|
|WRITE Filename,AFTER|None |Durry |Dummy | None |Dummy |Dummy |Dunry | Dumnmy |
| | |record|record | |record|record |record| record |
----- ——— -4----—t-——t———t—— e
|WRITE Filename,RZERO|None |Durmy |Dummy |None |Dummy |Dummy |Dunrry | Dummy |
| | |record|record | |record|record |record| record |
b———— ———— S e 1 i P j Lo L i
| |
| *If an end-of-cylinder condition coincides with either a physical or a logical end of |
| volume, the ID supplied is that cf the first record on the next volume. If this |
| condition occurs on the last volume, the ID surplied in IDLOC is equal to the maximum |
|number of tracks for the file. A dummy record is supplied when a physical end cf |
| volume is reached if actual DASD addressing is used.
| |
| Dummy yecord: |
| Actual addressing ---------- 5 kytes (CCHHR) containing X'FFs |
| Relative addressing (HEX) -- 4 pytes (TTITIR) containing X'FFs |
| Relative addressing (DEC) -- 10 bytes ccntaining decimal 9s |
L Z _— - e ——— ———— ——— _

Figure 3. Record ID returned to IDLOC.

If the next record ID is returned to
IDLCC, LIOCS searches for the ID of the
next record cn the specified cylinder. If
an end of cylinder occurs before the next
record is found, logical ICCS:

1. Posts the end-of-cylinder kit in the
error/status indicator, and
2. Updates the address to head 0, record 1

of the next cylinder, and pcsts this
updated address in IDLOC.

It is possikle that there will be no record
at this new address. 1In this case, logical
IOCS posts a nc-record-found in the
error/status indicator. Two ways to avoid
this possibility:

1. 1Initialize the volume by writing a
durry record at the keginning cf each
cylinder.

2. Add 1 to the record address and read or

write again, and continue this prccess
until lcgical IOCS finds the desired
record.

CONTROL FIELD - SPANNED RECORDS

Figure 4 illustrates the fcrmat cf the
8-byte ccntrol field asscociated with each
spanned record. The first fcur bytes are
called the block descriptor word and
contain information supplied by LIOCS when

Cirect Access Files 23

the record is written. The seccnd four
bytes are called the segment descriptor
word and contain segment type information,
the user surplied record length, and the
segment control flag.

Normal Segment: The term normal segment
refers to any segment cf the kind descriked
ky the segment control flag.

Null Segment: The term null segment refers
to a special 8-byte segment (control field
only) that may be written by a WRITE AFTER
macro when the file is being created. A
null segment is written as the last record
on a volume and indicates that the next
logical record is written cn a new volume.
Spanned records do not span volumes; that
is, the first portion of a lcgical record
cannot exist on one volume and the
remainder on ancther.

ERRCR/STATUS INDICATOR

Wheﬂ processing records in a DASD
environment, certain excepticnal ccnditions
must be handled within the program.

Because the method used for handling these
exceptional conditions depends on the
application and cperating envircnment, the
logical IOCS routines of the Direct Access
Method provide the user with excertion
indicators.

The user must specify a symbolic name
for the address of a 2-byte field where
IOCS places the exceptional condition
codes. The symbolic name is written by the
user in the DTFDA entry ERRBYTE. When
needed, IOCS sets one cr mcre cf the bits
in this error/status indicator for the
conditions illustrated in Figure 5.

24 DOS/VS LIOCS Volure 3 DAM and ISAM

Block Descriptor Word Segment Descriptor Word

fa A N A)
T T
LlL le;elz] e DmiD
L I
Segment Type—/ LSegment Control
(Bit 0) Flag (bits 6 and 7)

Block Descriptor Word

LL = Record length including the 8- byte control
field (££+4).

RR = Used by the system.
Segment Descriptor Word

£LL = Record length including the 4-byte segment
descriptor (data length+4).

Segment Type:

0 = Normal segment
1 = Null segment

f = Contains binary zeros except bits 6 and 7.
Segment Control Flag:
00 = This segment is not followed or preceded by
another segment; that is, a single contiguous

segment contains the entire logical record.

01 = This segment is the first segment of a multi-
segment logical record.

10 = This segment is the last segment of a multi-
segment logical record.

11 = This segment is neither the first nor the last
segment of a multisegment logical record. .

r = Contains binary zeros.

Figure 4.

Spanned record control field.

Y Il et
| Byte| Bit |Error/Status Indicator

-t
| |
I 01 O
| |
I o 1
| |
I I
| |
| I
| |
I |
| I
| |
| I
| |
| |
| |
| |
| |
I I
| |
| I
| |
| |
| |
I |
| |
I |
| |
| |
| |
| |
| I
| |
| I
| I
| |
| |
! |
| |
| !
| I
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
I |
| i
bl
Figure 5.

e e T

wrong-length record

Error/status indicator (1 o

_T—-|
|
|
|
|
|
|
|
]
|
|
|
|
]
)
|
|
]
]
|
|
|
|
|
]
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| Not used.

|FIXUNB_records: This bit is set on whenever the
|data length or key length of a record differs
|from the criginal record. If an updated record
|is shorter than the original reccrd, the updated
|record is radded with binary zercs tc the length

|]of the criginal record. If the updated record is|

|longer than the original record, the criginal
|record pecsiticns are filled and the rest of the

Jupdated record is truncated and lost.

I

|UNDEF_records: This bit is set cn under the
|following ccnditicns:

KEYLEN plus eight, if AFTER is used), a

is that of the actual record length.

maximur data size, a wrong-length error

If the DASD record is larger than the
maximur data size, the remainder of the

to that of the maximum data length.

maximum data length.

following ccnditicns:

e When a REAL is issued and the LL (data
length + 8) count of the reccrd read is

the LL count is greater than the value

low-order Lytes truncated.

e e e ———— e ————— e —————————— i —

fWw.

Direct Access Files

¢ When a REAL is issued and the record is
greater than the maximumr data size (BLKSIZE
rinus KEYLEN; or BLKSIZE minus the value of

wrcng-length error conditicn is given and
the value returned in the RECSIZE register

e When a WRITE ID or KEY is issued and the
record to ke written is greater than the
condition is given and the reccrd written is

equal to that of the maximum data length.

record is padded with binary zercs. The
value in the RECSIZE register is set equal

VARUNB records: This bit is set on under the

greater than the maximum value specified by
the BLKSIZE= parameter in the DTFDA nacrc.

e When a WRITE ID or KEY macro is issuved and

specified by the BLKSIZE parareter in the
DTFDA racrc. The record is written with the

|
|
I
|
I

e When a WRITE AFTER is issved and the record|
to be written is greater than the maximum
data size, a wrong-length error ccnditicn is|
given and the record written is truncated to|
the maximum data length. The value in the
RECSIZE register is set equal to that of thej

e o e e e — e, e, o —

25

P e o e e .

T
| Byte| Bit | Error/Status Indicator

——— ——— ——

Explanation

When a WRITE AFTER macro is issued and the
LL ccunt is greater than the value specified
ky the BLKSIZE parameter in the DTFDA macrc.

kytes truncated.

SPNUNB _records: This bit is set cn under the

e upmyumm S p——

[— T . T o, . S — — — T qp——— — — t— — — — — — —— — T —— T — S — o T {——— ——— — " — . a— " — T ——— — " —— T —— ——— — ——
[e e e e e e e e e e e e e ——— e ————————— — — ————
e e e e ——————————————— e ——+

——— —-—— ——— ——— R

following ccnditicns:

When a REALC macro is issued, the
wrong-length record error indicatcr is set
if the LL (data length + 8) count is larger |
than the value specified by the BLKSIZE |
parameter in the DTFDA macro. The number of|
data kytes read into the I/0 area is equal |
to the value of BLKSIZE minus 8 kytes for |
the control words. |

|

When a WRITE ID or KEY macrc is issued, the]
wrcng-length record indicator is set if: |

|

1. The LL ccunt for the record to ke writtenj
exceeds the value specified by the |
BLKSIZE parameter in the DTFDA macro. |

|
2. The data length of the record to ke
written exceeds the data length cf the |
criginal record.

|
1
|
|
|
The record is written with the low-order |
|
|
|
i
|
|
|

|l
In either cf the akove cases the record is |
written with the low-order bytes truncated. |

|
The wrong-length record indicatcr is alsc]|
set when the first segment encountered for |
the original record is nct type 00 cr 01. |
In this case the no-record-found (kit 4 in |
kyte 1) indicator is also set cn and nc |
portion cf the new record is written. |
|

|

The wrong-length record indicator is set
for multisegment records if any segment cf |
the criginal record encountered after the |
first segment is not type 11 cr 10. In this|
case the remainder cf the new record is not |
written. |

I
When a formatting WRITE AFTER macrc is |
issued and the LL count for the record being|
written exceeds the valuve specified by the |
BLKSIZE rparameter in the DTFDA macro. The |
record is written with the low-crder bytes
truncated.

|
II
Nondata Transfer Error |The reccrd in errcr was neither read nor written.|
|If ERREXT is specified and this bit is cff (0), |
|transfer tcck place and the proklem programmer |
|should check for other errors in the ERRRYTE |
|field. |

- - ———— -

Figure 5. Error/status indicatcr (2 of 4).

26 DOS/VS LIOCS Volume 3 DAM and ISAM

_— e U 1
| Byte|Bit |Error/Status Indicator | Explanation |
________________________ O — e e - -4
|
|
|
|

-
[}
]
1
1
1
]
]
|

o
w

----- |Not used.
I

o
=

No-room-found |The no-rccm-fcund indication is applicakle only
|when the formatting WRITE AFTER macrc is used fcrj
|a file. If the kit is set on, ICCS has
|determined that there is not encugh rccm left tc |
|write the reccrd; consequently, the record is not|
|written.

----- |Not used.

|
|
|
I |

----- |Not used. |

| ‘ |

Record out of extent area |The relative address given is outside the extent |
|area of the file. No I/C activity has keen |

|started and no other error indicators are set. |
|

|

|

|

|

|

|

ata check in ccunt area |This is an unrecoverable error.

T
|

+

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

I

| Track overrun |The number cf bytes cn the track exceeds the

| |theoretical capacity. (Will not occur when DOS

| |macro instructicns are used.)

| |

| End-of-cylinder |The end-cf-cylinder indicator kit is set on when |
| |SRCHM is specified for a READ or WRITE KEY and |
| jthe end-cf-cylinder is reached kefore the record |
| |is found (kit 4 of byte 1 is alsc turned cn). If]
| {IDLCC is also srecified, certain conditions also |
	turn this kit on, possibly in ccnjuncticn with
	the no-record-fcund indicator (kit 4 in byte 1) -
	for further information see IDLCC.
Data check when reading	This is an unrecoverable error.
key or data	

|

|

|

|

|

|

I

|

|

|

|

|

|

|

|

4

II

No-record-found |The no-record-fcund indication is given when a |
|SEARCH ID or KEY is issued and the reccrd is not |

|found. |

| |
| If SRCHM=YES is specified, the end-of-cylinder|
|indicator (kit 2 in byte 1) is also set cn. |

|
| For SPNUNB records: the nc-record-fcund |
|indicatcr is alsc set on if, when the identified |
|record is found, the control flag in the first |
|segment enccuntered is not 00 or 01. In this |
|case, the no-record-found indicator is set c¢cn in |
|conjuncticn with the wrong-length-record |
|indicator (kit 1 of byte 0). |
1 J

- — T = 2 T " P o 7 o o s o e i e s ———— - ——— —— —— - - o

[—— i e . . .t S . T . S s " e, S e, S s, S e, S e, S e, S . . e S . e, . . S e, S e, S s, s, S e, S s, =
o e e e e e e e e e e e e e T s T s, . S T e, T . T . S e, "t T e, S e, e, = e

Figure 5. Error/status indicator (3 of 4).

PCirect Access Files 27

r T
| Byte| Bit
b-——-

1 End-of-file

| zero.

End-of-volune

IR =

|area.

[T e S e S s, T s, S s . e, " i, T s, o G, e g, S s, T e, S o, S i, S . W e
o e e T i T e . e, . S . . " s . S e, e S e, S

Figure 5. Errcr/status indicatcr (4 of 4).

CAPACITY RECCRD (RZERO OR RO0)

The Direct Access Method utilizes the first
record on each track, RO, tc mcnitcr the
amount of available space on the track.
This record is unique in that it dces not
contain a key area even though keys may be
specified fcr the data records of the file.

The Direct Access Method reads the data
portion of the RO record into the
Filename.K lccation in the DTF takle.
data portion has the following format:

The
e 5-bytes - The identifiexr (CCHHR) of the
last record written on the track.

e 2-bytes - The number of unused Lytes
remaining on the track.

e 1-byte - Flag for the Direct Access
Method for the Operating System.

28 DOS/VS LIOCS Volume 3 DAM and ISAM

|the data records have been processed. |
|example, in a file having n data reccrds |
|n+l is the end-cf-file record), the end-of-file |
|
|

|[The end-cf-file indication is applicakle only |
|when the record to be read has a data length cf |
The ID returned in IDLOC, if specified, is]|
|hexadecimal FFFFF.

The bit is set cnly after allj
For
(reccrd

| indicator is set on when the user reads the n+l
|record.
|volume marker is detected.
|responsibility tc determine if this kit means |
| true EOF or end of volume on a SAM file. |

This bit is also posted when an end of
It is the user's |

|The end-of-volume indication is given in |
|conjuncticn with the end-of-cylinder indicator |
| (kit 2 of kyte 1).
|next reccrd ID (CCHHR where CC = n+l1, HH =

This bit is set cn if the |
0, and|

1) that is returned on an end-of-cylinder is |
|higher than the vclume address limit.
|address limit is:
|12311; cylinder 199, head 19,
|cylinder 403, head 18 for a 3330; and subcell 19, |
|strip 5, cylinder 4, head 19,
|1imits allow for the reserved altermnate track

The volume|
cylinder 199, head 9, fcr a |
for a 2314 or 2319; |

fcr a 2321. These |

|
|
| If bcth end-cf-cylinder and end-of-volume |
|indicatcrs are set on, the ID returned in IDLOC |
|is FFFFEF. |

|

|

|Not used.
e deo o

WRITE RZERC MACRO

The WRITE Filename,RZERO macro is used to
erase a specified track. To dc this, the
Frcgranmwer must supply the track address in
the track-reference field identified by the
SEEKADR= parameter of the DTFDA mnacrc. The
system locates the track, restores the
numker-of-kytes-remaining infcrration in
the data field of the RO record to the
maximum capacity of the track, and erases
the remainder of the track after the RO
record.

FORMATTING MACRO

The formatting WRITE Filenare ,AFTIER macrc
is used tc write a record after the last
current record on a specified track. To
perfcrrm this function, the proklem

programmer must supply, in the location
specified by the SEEKADR= parareter of the
DTFDA macro, the address of the track on
which the new record is to ke written.
This form of the WRITE macro cannct return
the ID of the new record in the IDIOC
field.

When the formatting WRITE AFTER macro is
used to write FIXUNB or UNDEF records on a
file, the first eight bkytes cf the user's
I/0 area must be reserved for LICCS.
Therefore, the blocksize (BLKSIZE) must ke
equal to:

8 + (KEYLEN, if specified) + DL

The ID of the new record can ke found in
the first five bytes of the I/0 area after
the write operation is complete kecause
IICCS uses the eight bytes that are
reserved for the record count field with
the following format:

e 5-byte track ID (CCHHR)
e 1-byte key length (KL)
e 2-byte data length (DL)

When the formatting WRITE AFTER macro is
used to write VARUNB or SPNUNB records on a
file, the first eight kytes cf the user's
I/0 area contain the record control
information. (Refer tc Figure 4 fcr the
format of the 8-byte control field.)
Therefore, the blocksize (BLKSIZE) must ke
equal to:

Maximum DL + 8

The ID of the new record can be found in
the DTF table at location Filename.C after
the write operation is complete. This area
of the DTF table is generated srecifically
for VARUNB and SPNUNB records and is used
for the count field of the new reccrd. It
has the following format:

e 5-byte track ID (CCHHR)
e 1-byte key length (KL)
e 2-byte data length (DL)

* For VARUNB and SPNUNB records, DL
includes the 8-byte ccntrcl field.

DAM LOGIC MODULE MACROS

IBM supplies twec macros to generate
independent logic modules needed to process
records under the Direct Access Method.
These macros are:

e DAMOD - for fixed-length unklocked and
undefined records.

e DAMOLV - for variakle-length unklocked
and spanned unblocked reccrds.

The modules generated by these macros
include rcutines for the kasic imperative
macros READ and WRITE, which allcw the user
to read, write, update, add, or replace
records in the file.

DIRECT ACCESS MODULES

Under the LCirect Access Methcd an
individual module, either DANMCD cr DAMCDV
(depending on the record format specified),
provides the logic to support all the
imperative macros used tc process the file.
In each case, the CNTRL, FREE, and WAITF
nacrcs have individual entries into the
required module; that is, the lcgic fcr
executing these macro functions is tailored
to the specific macro. Cn the cther hand,
the inrput/cutput macros (READ and WRITE,
with their variations) have a conmcn entry
tc the resgective module and a common logic
in the module for performing their
functicns.

When the user issues a READ or WRITE
macro instruction for a file, prcgrar
centrol transfers to a lcgical ICCS
routine, which builds the prcper channel
rrogram tc accomplish the command. The
IOCS routine issues an execute channel
prcgrar that causes the I/C request to
start. IOCS then returns contrcl to the
prcblem prcgram. A WAITF macro instruction
must ke issued by the user befcre the next
READ or WRITE for the file. The WAITF
macro routines test the status cf the
channel tc ensure that the cperaticn is
complete. If the channel is busy, the
routine waits for I/C conpleticn. The
WAITF macrc routines suprly indications of
exceptional conditions tc the rrcbler
prcgram in the error/status indicator. At
the completion of the I/C operaticn,
control returns to the proklem program.

CAMOL: Chart AA

Input/Output Macrcs

Cbjective: To read or w.ite a fixed-length
unklocked or undefined record cn a direct
access file.

Entry: From any Input/Output macrc used
with the Cirect Access Methcod.

Exit: To the problem prcgran via linkage
register 14.

Direct Access Files 29

Method: Each of the six Input/Output
macros has a unique expansion that results
in a branch to a different entry pcint in
the module. The entry point is at one of a
series of exclusive OR instructions. The
exclusive OR instructicns cause a unique
bit structure to be set up in a one-byte
macro switch in the DTFDA takle. From this
macro switch, the module determines which
macro has been issued.

After the macro switch has keen set, a
test is made for undefined records or an
end-of~-file condition. If neither, the
data length is set to the maximum length.
If end of file, the data length is set to
zero. If undefined and a read operation,
the data length is set to the rmaximum. For
a WRITE AFTER, WRITE KEY, or WRITE ID
instruction, this routine gets the data
length from the user, and determines
whether it is greater than the maximum
length. If so, it is set tc maximum and
the wrong-length record bit is set on in
the DIF table. The CCW data areas are then
updated, and a branch and link is made to
the seek overlar routine ic positicn the
device for subsequent processing. If track
hold has been specified, and entry to the
seek overlap routine was nct frcm the CNIRL
or FREE macros, an SVC 35 is performed to
hold the track.

Next, this routine kranches to the
channel program builder to build the CCW
chain for the macro that is keing processed
(refer to Figure 12). A test is then made
for a WRITE AFTER or WRITE RZERC racro
keing processed. If neither of these, this
routine issues the SVC 0 tc perform a read
or write operation. Control then returns
to the problem rrograr.

If the macro is a formatting racro
(WRITE AFTER or WRITE RZERO), additional
processing is necessary. If the racro is
WRITE AFTER, RO is read and the capacity of
the track is checked. If the stace
remaining on the track is not large enough
for the record, the no-roorm-found kit is
set on in the DTF and control returns to
the problemx program.

If the track capacity is large enough,
the routine calculates the srace remaining
on the track after the record is written
and stores it in the RO write area. The
channel program builder then builds a CCW
chain to WRITE AFTER, updates the fprevious
record ID by 1 in the RO write area, and
tests for end of file. If end cf file, the
key and data length fields in the count
field are set to zero. If nct end of file,
the key and data lengths of the record are
inserted in the count field. BAn SVC 0 is
then issued to write out the record. 1If
track hold has been specified, an SVC 36 is

30 DOS/VS LIOCSs Volume 3 CAM and ISAM

issued to free the held track, and ccntrcl
returns tc the proklem prcgrar.

If the macro issuved is a WRITE RZERO,
CCWs are ncdified, and a new RO record is
written. If track hold has been srecified,
the module issues an SVC 36 to free the
track. Control then retuvrns tc the grcblen
Fregrar.

DAMOD: WAITF Macro__Charts AB-AE

Cbjective: To ensure that the transfer of
a record has been conpleted, tc supply the
IC cf a record to the user, if IDLCC is
specified, and to post error ccnditicns in
the error/status indicatcr, if necessary.

Entry: Frcm the WAITF macro.

Exit: To the problem prcgranm.

Method: After saving the user's registers,
this rcutine first issuves an SVC 7 WAIT
macro tc ensure that the previous I/0
cperation is complete. The seccnd errcr
byte frcem the CCB is placed in the
error/statuvs indicator in the DTF takle.

If IDLCC is specified, IOCS sugplies the
user with the ID of a record after each
READ or WRITE is completed (see Figure 25).
If ITLOC is srecified, a test is made for
the type of macro issved. If a READ KEY cx
WRITE KEY macro, the routine determines if
the search multiple track cpticn (SRCHM)
has been specified. If so, the ID returned
toc the user is the ID cf current record
transferred.

If a READ or WRITE KEY macro has been
issued without a search multiple track
crticn, cr a READ or WRITE ID macro has
keen issued, the ID returned tc the user is
the ID cf the next record location, unless
an end-of-cylinder ccnditicn is
encoyntered. In this case, the ID returned
is that of the first record of the next
cylinder. If an end-of-vclume ccnditicn is
detected while updating the cylinder
address, the end-of-volume bit is set in
the errcr status indicator in the DTF
takle, and a dummy recocrd is returned in
IDLOC.

After the module determines the contents
of IDLOC, the error/status bytes are set in
accordance with the conditions posted to
the CCB Ly physical IOCS, and returned tc
the user. Then, if recoxrd length is
undefined and a READ macrc has been issued,
the record length is calculated and
returned to the user. This rcutine then
restcres the user's registers, resets the
macro switch in the DTF table, and returns

control to the problem program via linkage
register 14.

DAMCD: CNTRL Macro Chart AF

Ckjective: To perform nondata crerations
on a file. For a disk device, a seek

operation is executed. For a 2321, either
a seek operation or a restore operation is

executed.

Entry: From the CNTRL macro.
Exit: To the problem progran.
Method: This routine saves the user's

registers, and then branches and links to
the seek-overlap routine, which performs
the nondata cperation (seek for a disk
device, seek or restore for a 2321).
the operation has been completed, the
user's registers are restored, and control
returns to the problem program via linkage
register 14.

when

DAMOD: FREE Macro Chart AF

Cbjective: To release a prctected (held)
track on a direct access storage device.

Entry: From a FREE macro expansion in the
proklem program.
Exit: To the problem prograr.

After storing the user's
registers, the FREE routine branches to the
seek-overlar subroutine. The sukrcutine
determines the seek address cf the held
track from the seek CCW in the channel
program build area. The mcdule (M) number
from the seek address calculates the
symbolic unit address which is then
inserted into the control-seek CCB. An SVC
36 is issued to free the held track. After
completing the subroutine, the FREE routine
restores the user's registers and returns
control to the problem program.

Method:

DAMCDV: Input/Qutput Macrcs charts AK-AN
Objective: To read or write a

variable-length unblocked cr a spanned
unklocked record on a LCirect Access file.

Entry: From any Input/Output macro used
with the Direct Access Method.

Exit: To the probler prcgram via linkage
register 14.

Methcd: Each of the six Input/Cutput
macrcs has a unique expansion that results
in a kranch to a different entry pcint ir
the rodule. The entry point is tc one cf a
series of exclusive CR instructicns, which
cause a unique bit pattern tc ke set up in
a 1-kyte macro switch in the DTFDA takle.
The module determines which macro has teen
issued ry testing this switch.

READ Macro - VARUNB Records: The prccedure
followed for both the READ ID and the READ
KEY macros is exactly the same. The only
difference between the two macros is in the
CCW chain kuilt by the channel prcgran
builder sukroutine, IJISRID. Refer tc
Figure 12, Chart I for READ ID; Chart J for
REALC KEY.

The byte count in the kasic read data
CCW (Figure 9) is set equal to the length
specified ky the user in the BIKSIZE=
parameter for the DTFDA macrc. The IJISOVP
subrcutine is then entered to execute a
controlled seek to the prcper track. wuext,
the channel rrogram kuilder sukroutine is
used to kuild the required channel prcgran.
The channel program is executed to read the
record into the I/C area and ccntrcl is
returned tc the proklem program.

READ Macrc_- SPNUNB_Records: The procedure
followed for both the READ ID and the KEAD
KEY macrcs is exactly the same. The only
difference ketween the two macros is in the
CCW chain kuilt by the channel prcgrarm
builder sukroutine, IJISRBID. Refer tc
Figure 12, Chart I for READ ID; Chart J for
READ KEY.

The kyte count in the basic read data
CCW (Figure 9) is set equal tc the length
specified ky the user in the BLKSIZE=
parameter for the DTFDA macrc. The IJLSOVP
is then entered to execute a controlled
seek to the proper track. Next, the
channel prcgram builder sukroutine is used
to kuild the required channel grcgranm,
which is then executed to start the read
oreration. If the segment descriptor for
the record read indicates that it is a null
segment or that the segment ccntains the
entire lcgical record (segment type 00),
control is returned to the problem prcgrarm.

If the record read is segment type U1
(the first segment of a nmultisegment reccrd
- at this point, segment types 10 or 11
wculd be in error) which indicates that the
rest of the logical record continues on
another track, the CCW chain is modified
and the seek address is tvpdated tc the next
track. One of the modifications made to
the READ ID CCW chain is the substituting
cf a TIC*+8 CCW for the RDKD CCW when

Direct Access Files 31

KEYIEN is specified. This is dcne because
the record key is associated only with the
first segment of a multisegment record.

The last eight bytes of the last portion
of the record read intc the I/C area are
temporarily stored in the DTF table to
allow the contrcl words (blcck descriptor
and segment descriptor) of the next segment
to be read in alcng with the data (see
Figure 6); these bytes are later restored
after the control word information for the
next segment is processed. The ncdified
channel program is reexecuted to read the
next segment into the I/0 area and its
length is added to the combined length of
the previous segments. The conkined total
length is then compared to the BLKSIZE
specified by the user. Shculd the comkined
length exceed the BLKSIZE, a
wrong-length-record (WLR) indicator is set.
If the segment just read is tyre 11 neither
the first nor the last segment of a
multisegment record) the prccedure
described in this paragraph is repeated.

When the last segment (type 10) is read,
the combined length of all the reccrd
segments is posted to the segment

descriptor word in the I/C area and ccntrcl
is returned to the proklem program.

WRITE Macrc - VARUNB Records: The
prccedure followed for koth the WRITE ID
and the WRITE KEY racros is exactly the
sare. The only difference ketween the twc
macros is in the CCW chain built ky the
channel program builder subrcutine,
IJISELC. Refer to Figqure 12, Chart K for
WRITE ID and VERIFY, Chart L fcr WRITE ID
and NO VERIFY; Chart M for WRITE KEY and
VERIFY, and Chart N for WRITE KEY and NO
VERIFY.

The locgical record length (1l1l) is
oktained from the user's segnent descriptor
werd in the I/0 area. The length specified
foer the record plus four kytes for the
klock descriptor word is then tested tc see
if it is greater than the maximum klock
length specified in the BIKSIZE= raranmneter
cf the DTFLA macro. If it is not greater
than the BLKSIZE valve, the byte ccunt in
the basic read data CCW (RDD CCW - Figure
%) is set equal to the specified 11 + 4
(that is, 1L) value. If, on the other
hand, the LL value is greater than the
BLKSIZE value, the record caracity

BLKSIZE (LL) >

[

RECORD LENGTH >

DATA LENGTH (D)

- First Segment

>i~ Next Segment —-’1

{L

=
Data Record .
Block Segment i ' <
IOAREAI1 Doc . gmen Segment | Segment i Segment
escriptor | Descriptor .
Type 01 | Type 11 H Type 10
1ll||||l LLILL[I[¢

DTFDA Table

2
\!

SPNUNB Area

L4

mlm

Segment Type 01

Segment Type 11 or 10

Lol

be k Segment Control Words —/

Last 8 data bytes of segment are temporarily
stored to make room in the 1/O area for the
control words of the next segment.

Figure 6. Multisegment spanned record.

32 DOS/VS LIOCS Volume 3 DAM and ISAM

register(IJICPR) and the RLCLC CCW byte count
are set equal to the BLKSIZE value and the
wrong-length-record (WLR) indicator is set.
This causes truncation cf the reccrd when
it is written.

The IJISCVP subroutine is entered to
execute a controlled seek to the proper-
track. Next, the channel rrcgram kuilder
sukroutine is used to build the required
channel prograr, which is then executed to
write (and verify, if so specified) the
record. Contrcol is then returned to the
proklem program. If the track hold option
has been specified, the track cn which the
record written resides is freed before
control is returned.

WRITE Macro - SPNUNB Records: The
procedure followed for both the WRITE ID
and the WRITE KEY macrcs is exactly the
same. The only difference between the two
macros is in the CCW chain built by the
channel progran builder subrcutine,
IJISBLD. Refer to Figure 12, Chart K for
WRITE ID and VERIFY, Chart L fcr WRITE ID
and NO VERIFY; Chart M for WRITE KEY and
VERIFY, and to Chart N for WRITE KEY and NC
VERIFY.

The IJISOVP subroutine is entered to
execute a controlled seek tc the proper
track. Next, the channel prcgrar kuilder
subroutine is used to build the first
portion of the WRITE macro channel program.
It is at this point that spanned record
handling differs markedly frcm the handling
of records of other formats.

The first portion of the WRITE macro
channel program (refer to rigure 12, Charts
K or L for WRITE ID; Charts M or N for
WRITE KEY) is actually a CCW chain to read
the eight bytes of control information
contained in the existing DASD record.

This read operation is necessary Lkecause,
before a spanned record can be written, the
arrangement cf the reccrd keing replaced
must be determined. That is, it must be
known if the existing record is ccntained
in a single DASD segment (type 00) or in
multiple DASD segments and, if in rultiple
segments, the lengths of the individual
segments. Thus, for each segment cf a
multisegment spanned record, it is
necessary to execute a read and a write
operation.

If the segment control flag in the
segment descriptor of the existing record
is type 00, the record to be written is
handled in a manner sirilar to a ncrmal
variable-length record. That is, the
channel prograr builder subrcutine is
entered to kuild the write CCW chain, the
channel program is executed to write the
new record, and control is returned to the
proklem program.

If the segmrent control flag in the DASC
segment read is type 01 (the first segment
cf a multisegment record), the channel
Frcgrar ktuilder sukroutine is entered to
kuild the write CCW chain. The CCW chain
is then rcdified according to the various
cptions specified for the tyre cf macrc
being used. Next, the length of the
current DASD segment is determined frcm the
ccntrcl wcrds obtained by the read
operation and compared tc the
user-specified length of the record to be
written (LL). If the reccrd length is less
than the length of the current segment, the
kyte count in the write data (WRD) CCW is
changed tc the length cf the record (if
VERIFY is specified, the byte ccunt in the
verify read data CCW is likewise changed).
Otherwise, the CCW byte ccunt remains equal
tc the length of the segment that can be
acconmcdated on the track; that is, the
length of the current segment. The channel
prcgrarm is then executed to write the
segment.

After the first segment of the reccrd is
written, the seek address is updated to the
next track and a similar procedure is
follcwed fcr the next segment(s) of the
record. CTCuring the prccedure for writing
segrents after the first segment, the last
eight data bytes of the preceding segment
in the I/C are temporarily stored in the
CTF takle to allow the ccntrol words of the
suksequent segment tc be read intc the I/O
area (see Figure 6). The segment length
oktained from the control words is used tc
set the byte count in the WRD CCW for all
tyre 11 segments. Each tire a segnent is
written, its length is added to the
comkined lengths of the rrevicusly written
segrents, and the total is suvktracted fror
the user-specified record length. The
result of this calculaticn is the number cf
bytes in the record that remain to be
written. Wwhen the last segment (type 10)
is written, this remainder is used to
determine if the new reccrd is larger cr
smraller than the original record. If it is
larger, a WLR indicator is set and the
truncated remainder cf the record is
written; if smaller, the byte ccunt in the
WRD CCW is reduced to the value necessary
to write the remainder of the reccrd.

Because each segment cf a multisegment
spanned record is handled as an individual
rhysical DASD record, if the VERIFY orticn
is srecified, each segment is verified
after it is written and before the next
segrent is read. Therefore, if VERIFY is
used, three I/0 operations are required fcr
each segment: read, write, and read.

WRITE AFTER Macro - VARUNB Records: The
byte ccunt of the kasic read data CCW
(Figure 9) is set equal tc the blcck length
(LL) of the record tc ke written, and the

Direct Access Files 33

IJISOVP subroutine is entered to execute a
controlled seek to the track specified by
the user. The channel program builder
subroutine, IJISBLD, is then used to build
the first portion (read RZERC) of the
channel program for the WRITE AFTER macro
(refer to Figure 12, Chart 0).

Next, the ID (CCHHR) of the RO record on
the specified track is set ur in the DTF
takle, at location Filename.F, and the
channel programn is executed to read the
8-kyte data field of RO intc the DIF takle
at location Filename.K. The data field of
the RO record ccntains the fcllcwing
information:

Bytes 0-4: The CCHHR of the last record
currently written cn the
track.

Bytes 5-6: The number of unused bytes
currently rerxaining on the
track.

Byte 7: Not used by DCS/VS.

Using the information contained in bytes
5 and 6 of the RO data field, a test is
made to determine if sufficient room sxists
on the track tc write the new reccrd. 1If
enough room is not available, the
no-room-found indicator is set in the DTF
takle and control is returned to the
problem progranm.

If there is enough room cn the track for
the new record, the DASD space that remains
after the new record is written is
calculated to update the RO record. Next,
the channel program builder sukroutine is
used to build the rest of the WRITE AFTER
channel program, which includes the CCWs
needed to write the updated RO record and
the new record (and verify kcth, if so
specified).

The channel program is then executed and
control is returned to the groklem program.
If the track hold option has been
specified, the track is freed kefcre
control is returned.

WRITE AFTER Macro - SPNUNB Records: The
procedure fcllcwed for the WRITE AFTER
macro for spanned records is the same as
that followed for variable-length records
up to the point of testing tc determine if
there is sufficient room on the specified
track for the new record. Fcr sranned
records, the test is first made to
determine if a minimur length (KEYLEN + 9)
segment can be written in the space
remaining on the track. If not, the
no-room-found indicator is set in the DTF
table and contrecl is returned tc the
proklem program. If the minimum length
segment can fit, a seccnd test determines

34 DOS/VS LIOCS Volurme 3 DAM and ISAM

if the entire record can ke written on the
track. If it can, the record is written in
the nmanner descriked for variakle-length
records.

If the entire record will nct fit in the
srace rermaining on the specified track, the
length of the portion that can fit is
calculated and suktracted from the
user-specified length of the record. 7The
seek address is then updated tc the next
track.

The RO record for the next track is read
and checked for full availability; that is,
if the track is not empty, a no-room-found
indicator is set and ccntrol is returned tc
the prcbler program. The data field of the
RO record is tested to determine if all the
remaining kytes of the record (plus eight
kytes for control words) can be ccntained
cn the new track. If not, the length of
the largest single record that fits cn a
track is subtracted from the numker of
record kytes remaining tc be written, and
the seek address is once again updated.
This process is repeated until the pcint is
reached where the entire logical record can
ke accommodated. If the track hcld cpticn
has been sgrecified, a hold is placed on all
the tracks checked.

The channel program buvilder subroutine
is then used to build the second portion of
the WRITE AFTER channel prcgram, and the
first segment of the reccrd is written on
the specified track. If KEYLEN is
specified, the key is written with the
first segment. The rest cf the record is
then written in as many segments as
necessary, along with the RO reccrds fcr
each of the tracks involved. If the track
hold option has been specified, the tracks
are individually freed after the respective
segment is written.

If, during the checking of the series cf
tracks needed to write the record, the
updated seek address indicates a change tc
a new volume, the R0 reccrds of all the
tracks between the user-srecified track ard
the first track on the new volume are
rewritten with their resrective data fields
indicating no space availakle. Checking is
reinitiated on the new volume and, when it
is established that sufficient rccrm is
available cn the new voclume, the first
segment (and, if specified, the record key)
is written on the first track. The rest of
the record is written cn subsequent tracks
in the ncrrmal manner.

WRITE RZERC Macro - VARUNE or SPNUNB
Reccrds: The IJISCVF and IJISBIL
subrcutines are entered in sequence to
execute a controlled seek to the sgecified
track and kuild the channel prcgran. The

ID for the RO reccrd (CCBHO) on the

<=7

specified track is set up in locations
Filename.F and Filename.K in the DTF takle.
The number of bytes remaining on the track
is set equal tc the full track capacity and
inserted intc bytes 5 and 6 cf the RO data
field (Filename.X). The channel program is
then executed to erase the track and write
the updated RO record, after which control
is returned to the problem prograr.

DAMCDV: CNTRL Macro Chart AF

______ To perform nondata operations
on a file. For a disk device, a seek
operation is executed. For a 2321, either
a seek operation or a restcre creration is
executed.

Entry: Fror the CNTRL macrc.

Exit: To the problem progranm.

Method: This routine saves the user's
registers, and then branches and links to

the seek-overlap routine, which gerforms
the nondata operation (seek for a disk
device; seek or restore for a 2321).
the operation Fras been comgleted, the
user's registers are restored, and control
returns to the problem program via linkage
register 14.

When

DAMCDV: FREE Macro__Chart AF
Ckjective: To release a protected (held)

track on a direct access storage device.

Entry: From a FREE macro expansion in the
problem program.

Exit: To the problem progranm.

Method: After storing the user's
registers, the FREE routine kranches to the
seek-overlap subroutine. The subroutine
determines the seek address of the held
track from the seek CCW in the channel
program build area. The module (M) number
from the seek address calculates the
symbolic unit address which is then
inserted intc the control-seek CCB. An SVC
36 is issued to free the held track. After
completing the subroutine, the FREE routine
restores the user's registers and returns
control to the problem prograr.

DAMOLV: WAITF Macro__Charts BA-BC
Ckjective: To ensure that the transfer cf

a record has been cormpleted, tc sugpply the
ID of a record to the user, if IDLCC is
specified, and to post error conditions in
the errcr/status indicatcr, if necessary.

Entry: From the WAITF macro.

Exit: To the problem grcgrarn.

Method: After saving the user's registers,
this rcutine first issuves an SVC 7 WAIT
racro tc ensure that the rrevious I/0
operation is complete. The seccnd errcr
byte frcenm the CCB is placed in the
error/status indicator in the DIF takle.

If IDLOC is specified, IOCS supplies the
user with the ID of a reccrd after each
READ or WRITE is completed (see Figure 1).
If IDLOC is specified, a test is made for
the type cf macro issved. If a READ KEY cr
WRITE KEY macro, the routine determines if
the search multiple track opticn (SRCHM)
has been specified. If sc, the ID returned
tc the user is the IL of the current record
transferred.

If a READ or WRITE KEY macro has been
issued without a search multiple track
crticn, cr a READ or WRITE ID macro has
keen issued, the ID returned tc the user is
the ID cf the next record location, unless
an end-of-cylinder conditicn is
encountered. In this case, the ID returned
is that of the first reccrd cf the next
cylinder. If an end-of-vclume condition is
detected while updating the cylinder
address, the end-of-volume kit is set in
the error status indicatcr in the DTF
table, and a dummy record is returned in
ICLOC.

After the module determines the ccntents
cf IrCLOC, the errcr/status Lytes are set in
accordance with the conditions pcsted to
the CCR by rhysical I0CS, and returned to
the user. Then, if record length is
undefined and a READ macrc has been issued,
the record length is calculated and
returned to the user. This rcutine then
restcres the user's registers, resets the
nacrc switch in the DTF takle, and returns
control to the problem program via linkage
register 14.

DAMOD_and DAMODV: Channel Program Buildex
Sukroutine Chart AJ

Ckjective: To construct a channel prcgranm
in acccrdance with the processing macrc
issued in the problem program.

Direct Access Files 35

Note: Figure 12 provides a summary of the
channel programs built to prccess DASD
records by the Direct Access Method.

Entry: Fror a direct access lcgic module
(either DAMOL or DAMODV) via a branch and
link instructicn.

Exit: To the calling routine.

Method: To perform direct access
processing, many different channel
programs, varying in length from 5 to 17
CCWs, are needed in DOS/VS (refer to Figure
10). The rany CCWs required can ke built
from 11 basic CCWs by modifying command
codes and/or flag bytes. Of these 11 CCWs,
5 are required for initial file loading.
The other 6 are needed for ncrral file
maintenance processing. TIC CCWs are built
directly frcm stcrage addresses.

For each channel prcgram that is built,
a string of descriptor bytes are generated
in the DTF table at prcgram assernkly time.
The content of the string depends on the
imperative macro issued by the proklem
program to access the file. There is one
descriptor byte for each CCW in the channel
program. This descriptor byte is divided
into three subfields, which perfcrrm the
functions illustrated by Figure 7.

[mm e — s s mm——— e —-—=- 1
| |
|) [m=y——————= B 1 |
| Bit | 0|1 2 3 4|56 7 | |
| b= e 4 |
| Field | A| B | ¢ | |
| L1 e s |
| . |
| Field A: References the ccrrand code. |
[|
| Field B: A relative pcinter tc select]
| one of the 11 basic CCWs |
| (see Figure 9). |
| I
| Field C: Further defines the ccmmand |
| code, and modifies the flag |
| byte as required.]
L e e e e e 4
Figure 7. DAM descriptor byte.

36 DOS/VS LIOCS Volume 3 DAM and ISAM

Because the first CCW in any Disk
Cperating System channel program must be a
seek command, the seek CCW is generated at
rrcgrar assembly time as the first CCW in
the CCW kuild area, and is never rcdified.
As each channel program is requested, the
channel prcgram kuilder sukroutine is
called to ruild the remainder cf the CCW
chain.

Before entering this subroutine, the
logic module uses the macro switch tc
determine the address of the string of
descriptor bytes for the macrc issued
(refer tc Figure 8). After pointers are
set to the current descriptor byte and the
CCW build area, the sukroutine isolates the
relative pointer to the kasic CCW needed
(see Figure 9) and tests to determine if
the CCW is to be a Transfer In Charnnel
(TIC). Figure 9 shows the Basic CCWs used
to kuild channel programs.

If fields A and C cf the descriptor byte
are zero, the CCW is tc ke a TIC. Field B
deterrines the address of the CCW to which
control is to be transferred. This address
and the TIC ccmmand code are stored in the
TIC CCW (see Figure 10). If the end cf the
descrirptcr strxing has not keen reached, the
sukroutine returns tc build the next CCW;
ctherwise, control retirns tc the calling
routine.

If the CCW is not a TIC, Field B
determines which of the bkasic CCws is ncved
to the kuild area. Fields A and C of the
descrigtcr kyte are tested to see which
fields in the CcCW, if any, are to ke
modified (see Figure 10). A test is then
nade fcr the end of the descriptor string.
If the end has not been reached, the
rcutine returns to kuild the next CCW in
the chain; otherwise, control returns to
the calling routine.

Macro

Option

FIXUNB

SRCHM, IDLOC

DC X'A7189A8810918F1815'

DC X'A718B88810938F1815'

DC X'A7189A8810910A1815"

UNDEF VARUNB SPNUNB

READ ID No options DC X'871814' DC X'C718BF14' DC X'871816' DC X'871816'

KEYLEN DC X'87182C' DC X'C718BF2C' DC X'87182A16' DC X'87182A1¢'
IDLOC DC X'8718979E' DC X'C719BF129C"* DC X'8718129E' DC X'8718129¢'
KEYLEN,IDLOC | DC X'8718AF9E' DC X'C718BF2A9C' DC X'87182A129E" DC X'87182A129¢'

READ KEY No options DC X'8F1814' DC X'BF8F1014' DC X'A7188F1816' DC X'A7180A1816'
SRCHM DC X'A718881814' DC X'A718B8881014' DC X'A718881816' DC X'A7188A1816'
IDLOC DC X'8F18979E' DC X'BF8F10129C* DC X'A7188F18129E' DC X'A7180A18129¢"
SRCHM, IDLOC [DC X'A7189A881014' DC X'A718B8881014' DC X'A7189A881016' DC X'A7189A8A1016'

WRITE 1D No options DC X'871895' DC X'871895' DC X'871895' DC X'871814871895'

(No VERIFY)*| KEYLEN DC X'8718AD' DC X'8718AD' DC X'8718AB95' DC X'8718148718AB95*
IDLOC DC X'8718919E' DC X'8718939C" DC X'8718919E" DC X'8718148718919E'
KEYLEN, IDLOC | DC X'8718A99E" DC X'8718AB9C' DC X'8718AB919E" DC X'8718148718AB919E'

WRITE ID No options DC X'871891871815' DC X'871893871815' DC X'871891871815' DC X'871814871891871815'

(VERIFY) KEYLEN DC X'8718A987182D' DC X'8718AB87182D' DC X'8718AB9187182B15' DC X'8718148718AB?187182B15'
IDLOC DC X'8718918718119¢' DC X'8718938718139C" DC X'8718918718119E" DC X'8718148718918718119E*
KEYLEN,IDLOC | DC X'8718A98718299E' DC X'8718AB87182B9C"' DC X'8718AB9187182B119E' | DC X'8718148718AB9187182B119E"

WRITE KEY | No options DC X'8F1895' DC X'8F1895' DC X'A7188F1895' DC X'A7180A18140A1895'

(No VERIFY) | SRCHM DC X'A718881895' DC X'A718881895' DC X'A718881895' DC X'A7189A8A10148A1895'
IDLOC DC X'8F18919E' DC X'8F18939C' DC X'A7188F18919E" DC X'A7180A18140A18919E'
SRCHM,IDLOC | DC X'A7189A881095' DC X'A718B8881095' DC X'A7189A881095' DC X'A7189A8A1014BA1895"

WRITE KEY | No options DC X'8F18918F1815' DC X'8F18938F1815' DC X'A7188F18910A1815' DC X'A7180A18140A18910A1815"

(VERIFY) SRCHM DC X'A7188818918F1815' DC X'A7188818938F1815" DC X'A7188818910A1815' DC X'A7189A8A10148A18910A1815'
IDLOC DC X'8F18918F18119E' DC X'8F18938F18139C' DC X'A7188F18910A18119E' | DC X'A7180A18140A18910A18119E*

DC X'A7189A8A10148A18910A1815'

DC X'C718D752C718B5' WRITE RZERO

DC X'C71834' READ RZERO

If AFTER is specified, these strings are generated for all record formats:

Macros WRITE AFTER and WRITE RZERO use the same strings. If AFTER is not specified in the DTFDA macro, the strings are not generated.

VERIFY

And one of the following strings:

No VERIFY

DC X'C718B18718CD'

DC X'C718B18718C9C7183187184D'

DC X'C718B18718CB91C7183187184B15'

No options DC X'C718B18718CB95'
KEYLEN DC X'C718B18718CBAB95'
No options

KEYLEN

DC X'C718B18718CBAB?1C7183187184B2B15'

One string for each macro to be used is generated, dependent upon the options specified in the DTFDA macro.

* Indicates the operation used in the example given of the Channel Program Builder.

Figure 8.

DAM channel program kuilder strings.

Direct Access Files

37

Field B Basic CCW Function
0000 X'31', &SEEKADR+3,X'40', 5 Search identifier equal using the address specified in the user's
track - reference field.
X'31', &Filename .5+3,X'40',5 If relative addressing is used.
0001 X'29' ,KEYARG, X'40',Key length Search key equal for key specified by user in KEYARG field.
0010 X'06', 8IOAREA+16, X'40', Data length Read data into 1/O area (FIXUNB and UNDEF records) .
X'06', 8IOAREA, X'40', BLKSI ZE Read data into |/O area (VARUNB and SPNUNB records) .
0011 X'12', &IDLOC, X'40', 5 Read count (CCHHR) into IDLOC.
X'12', &Filename.], X'40', 5 Read .count (CCHHR) into work area in DTF table if relative
addressing is used .
0100 X'39', &SEEKADR+3,X'40', 4 Search home address equal using the address specified in the
user's track - reference field.
X'39',&Filename .S, X'40', 4 If relative addressing is used.
0101 X'0E', &IOAREA+8,X'40',Key and Data length Read key and data into 1/O area (FIXUNB and UNDEF records).
X'0E, 8KEYARG, X'C0',Key length Read key into user's KEYARG field (VARUNB and SPNUNB
records) .
0110 X'06', &Filename .K, X'40',8 Read RO data into work area in DTF table.
o X'12', &Filename .K, X'40', 8 Read RO count into work area in DTF table.
1000 X'31', &Filename .F, X'40', 5 Search identifier equal using the address specified in the 5-byte
work area in the DTF table.
1001 X'1E', &IOAREA, X'40', Count, Key, and Data Read count, key, and data into 1/O area (FIXUNB and UNDEF
length records).
X'1E', &Filename .C, X'C0O',8 Read count (CCHHRK| D D) into work area in DTF table
(SPNUNB records) .
1010 | X'11', &Filename. B+32, X'40', Length of the Control erase of track.
largest single record that fits on a track.
Figure 9. PRasic CCWs for DAM channel grogram builder.

38 DOS/VS LIOCS Volume 3 DAM and ISAM

Field A Field B Field C Meaning

1 N N N N 1 1 1 Basic CCW not modified .
1 N N{ N N 0 0 0 Modify command code to multiple-track
i operation .,

1 N N N N 0 0 1 Modify command code in write operation.

1 N N N N 0 1 0 Modify command code to multi-track,
set SLI flag on.

1 N N N N 0 1 1 Modify command code to «'ite, set SLI
flag on.

1 N N N N 1 0 0 Modify command code to multi-truck,
set CC flag off .

1 N N N N 1 0 1 Modify command code to write, set CC
flag off.

1 N N N N 1 1 0 Modify command code to multi-track,

set CC flag off, SLI flag on.

0 N N N N 0 0 1 Set SKIP flag on in CCW.

0 N N N N 0 1 0 Set SLI flag on in CCW.

0 N N N N 0 1 1 Set SLI and SKIP flag on in CCW.

0 N N N N 1 0 0 Set CC flag off in CCW.

0 N N N N 1 0 1 Set CC flag off, SKIP flag on in CCW.

0 N N N N 1 1 0 Set CC flag off, SLI flag on in CCW.

0 N N N N 1 1 1 Set CC flag off, SLI and SKIP flag on
in CCW.

0 0 0 0 0 0 0 0 TIC to *= 32

0 0 0 0 1 0 0 0 TIC to *- 24

0 0 0 1 0 0 0 0 TIC to - 16

0 0 0 1 1 0 0 0 TIC to *- 8

0 0 1 0 0 0 0 0 TIC to -0

0 0 1 0 1 0 0 0 TIC to *+ 8

0 0 1 1 0 0 0 0 TICto *+16

0 0 1 1 1 0 0 0 TIC to =+ 24

0 1 0 0 0 0 0 0 TIC to * +32 N

Bit 0 1 2 3 4 5 6 7

NOTE: NNNN=Zbits 1 - 4 of the descriptor byte and is one of the 11 bit combinations shown in
Figure 7 under the column heading Field B. This field contains the relative
pointer to the basic CCW (Figure 7)

CC - Command Chaining

SLI - Suppress Length Indicatos
SKIP - Suppress Transfer of Information to storage.

Figure 10. DAM channel program descriptor bytes.

Direct Access Files

39

Descriptor Byte CCW Built Meaning
X'07', &SEEKADR+, X'00', 6 Seek to the address specified in
the user's track reference field.
X'87' X'31', &SEEKADR+3,X'40', 5 Search identifier equal the address
specified in the user's track
reference field.
x"18' X'08', Pointer to *-8 TIC to *-8.
X'93' X'05', &IOAREA+16,X'60', Write the data portion of the
Data length record from the IOAREA.
X'9oC' X'12', &IDLOC, X'00', 5 Read the count field into IDLOC.
Figure 11. Example of DAM channel program for a WrRITE ILC macro.

The following discussion describes how
the DAM channel prograr builder ccnstructs
a channel program for the given example.

Example: Write an undefined record
referenced by ID in the locaticn srecified
by the user's track-reference field, and
return the ccrresponding track record
identifier (CCHHR) in IDLOC (opticn).

Figure 11 illustrates the CCWs needed
for the complete channel program to
accomplish this cperation. 1In all, five
CCWs are required. The first CCW (seek) is
generated at assembly time and the
remaining four CCWs are built using the
string of descriptor bytes included as part
of the DTF table for the WRITE ID macro.
Refer to Figure 8. The descriptocr string
for the WRITE ID macro is:

X'8718939cC"

Except for the Seek CCW that is generated
for any channel program at assembly time
and never modified, each pair cf
hexadecimal characters (descriptor byte)
corresponds to cne CCW. Thus, X'87'
corresponds to the CCW to Search Identifier
Equal as illustrated in part 1 cf the
explanation that follows.

The CCW chain is generated from the
descriptor string in this crder:

1. X'87' (10000111): Figure 9 illustrates
that the CCW for a descriptor byte with
a B-field = 0000 is a Search Identifier
Equal CCW. Figure 10 further
illustrates that a descriptor byte with
an A-field = 1 and a C-field = 111
performs no modification of the basic

40 DOS/VS LIOCS Volume 3 DAM and ISAM

CCW. Therefore, the seccnd CCW
first keing the Seek CCW) in the
channel prcgram CCW chain is an
unmodified Search Identifier Equal CCW,
X'31' ,6SEEKADR+3,X'40',5 (refer to
Figure 11).

(the

X'18' (00011000): Because bcth the A
and C fields are all zeros (a
characteristic of a descrirtcr byte
used tc generate a TIC CCW), the second
descriptor byte in the string generates
a TIC CCW for the third CCW in the
channel program. Figure 10 illustrates
that a descriptor kyte of this kind
with a B-field = 0011 surpplies the CCW,
TIC tc * - 8 (refer to Figure 11 fcr
generated CCW).

X'93"' (10010011): The B-field = 0010
in this descriptor byte indicates that
the next CCW in the channel program
chain will be the third basic CCW
(refer to Figure 9). Because the
A-field = 1 and the Cc-field = 011,
Figure 10 shows that the command code
is modified to a WRITE and that the SLI
(Surrress Length Indicator) kit is
turned on.

X'9C' (10011100): The B-field = 0011
in the last descriptor byte indicates
that the last CCW in the chain will ke
the fcurth basic CCW in Figure 9, Read
Count into IDLOC. A descriptor byte
with an A-field = 1 and a C-field = 100
indicates that the command code is
modified for a multitrack creraticn and
that the command chaining kit is turned
off to signify the end of the channel
rrcgrar (Figure 10).

S TTJ SS900Y 3I09ITQ

Th

*ZT sanbta

*(#T 3O T) Suexboxd ypauueyd WYd

MACRO

READ Filename, ID

TEST BYTE

 DESCRIPTOR STRING

YES

FIXUNB

VARUNB/
SPNUNB

NO

GENERATED
CCW CHAIN

DESCRIPTOR BYTES

i
X'31',FilenomeF, X'40',5 :SRCHIDE
¥
X'08',*-8 e
|
X'12', FilenameK, X'40', 8 :RDCNT

X'0E', IOAREAT +a,X'60', K| +Dy 'IRDKD

1
X'92',IDLOC, X"20’,5 IRDID
1

NO

X'31", SEEKADR*3, X'40", 5
X'08',*-8 lec
1
X'0E', IOAREA] +A, X'40',K| +D[IRDKD
ll

X'92',IDLOC, X'20',5 {RDID
1

ISRCHIDE
1

.

.
X'31", FilenameF , X'40", 5 Esncmoe
X'08",*- 8 Tic
X'12", FilenameK, X'40",8 ERDCNT
X'0E',JOAREA 44, X'20", K| +Dy |RDKD

1

NOTES:

1. SHADED AREAS - ASSEMBLY TIME
UNSHADED AREAS - EXECUTE TIME

2, ALLCC.. l4-INS ARE PRECEDED BY THE
FOLLOWING SgEK CCw

\'07', SEEKADR+1, X'00"

3. IFBLKSIZE Kp -Dp THEN & - 0
IF BLKSIZE > K =Dy THEN & <3

FIXUNB

VARUNB/
SPNUNB

X'06', IOAREAT+K| , X'60",D 'RDD
I

X'92',IDLOC, X'20",5 'RDID
H

X'31", FilenameF, X'40',5 ISRCHIDE
1
X'08',*-8 mic
1
X"12", FilenameK, X'40",8 IRDCNT
1

X'31',SEEKADR+3, X'40", 5 SRCHIDE

H

:

'

|

X'08',* - 8 mic

|

X'0E',IOAREAT +a, X'00", K| +Dy |RDKD
i
‘
1

CHART A

T

1
X'31", SEEKADR+3, X'40", 5 ISRCHIDE

1
X'08',*-8 ITic

1
X'06", IOAREAT K, X'40",D) !RDD

1
X'92',1DLOC, X'20",5 \RDID

1

1

T
X'31", FilenameF, X'40',5 ISRCHIDE]
i
X'08',%-8 mc
1
X"12", FilenameK, X'40',8 IRDCNT
1

X'06', IOAREAT+K |, X'20, D :RDD

L

X'31', SEEKADR+3, X'40", 5
X'08',*-8

X'06', IOAREAT K| , X'00", D

-
SRCHIDE|
TIC

I
1
1
1
i
I
|
|RDD
1

1

*ZT 2anbta

W¥YSTI pue WYQ € SwnTcpA SOO0IT SA/SCA Th

* (4T 3O z) swexboad Tauueyd Wud

DESCRIPTOR BYTES

TEST BYTE

MACRO

]7 READ Filename, KEY J

NOTES:

1. SHADED AREAS - ASSEMBLY TIME
UNSHADED AREAS - EXECUTE TIME

2. ALL CCW CHAINS ARE PRECEDED BY
THE FOLLOWING SEEK CCW:

X107, SEEKADR+1 , X'00", 6

YES NO

FIXUNB FIXUNB

VARUNB/

VARUNB/
SPNUNB

SPNUNB

NO YES

GENERATED
CCW CHAIN

T T T T
A7 X'39', SEEKADDR +3,X'40', 4 ISRCHHAE X'39",SEEKADR#3,X'40",4 |SRCHHAE ' H
! i X'12",FilenameK , X'40",8 {RDCNT |
iB X'08',*-8 'TIC X'08",%-8 e H X'29', KEYARG, X'40*, K| | SRCHKE
! i X'29', KEYARG, X'40', K| | SRCHKE !
- 5 1 108" *- rTic
X'92", FilenameK , X'40',8 :RDCNT X'92',IDLOC, X'60',5 ;RDID X8 -16 e X'08',%-8 !
1
8 ‘A9 40! ! SRCHKE X'A9", KEYARG, X'40", K |SRCHKE X'06', IOAREAT+K|, X'40',D; (RDD
85| X'A9',KEYARG, X'40',K|_ :SRC Koo X'06', IOAREAT +K,,X'60',D_ }ROD Lot
1 1991 0" 1
; 108!, %~ X'08*,*-16 TIC ' X'92,IDLOC, X'20, 5 RDID
o} | X8, t1e e ! X'92",1DLOC, X'20", 5 1RDID ' !
100" I
X'06',IOAREA] +K| ,X'20',D {RDD X'06', IOAREAI=K| , X'00", Dy IRDD ! !

:
T
X'39', SEEKADR+3, X'40*, 4 | SRCHHAE] ! !
X X'39", SEEKADR+3, X'40", 4 |SRCHHAE !
X'08",*-8 e X X'12", FilenameK , X*40", 8 IRDCNT
' 008" -8 Tic : X'29', KEYARG, X'40", K|
: -
X'92", FilenameK, X'40',8 {RDCNT ! ! X'29', KEYARG, X'40', K| 1 SRCHKE o
! X'A9",KEYARG,X'40', K| |SRCHKE ' x0',*-8
X'A9",KEYARG .X'40", K | SRCHKE | X'08",%-16 TIC o .
i X08", %8 Tie | X'06', IOAREAT K, X'00",D
X'08",*-16 imic . X'06', IOAREAT+K ,X'20",D, [RDD
| X'06', IOAREAI+K|,X'00°,D; {RDD !
X'06', IOAREAT+K,X'20',D| 1RDD 1 |
i 1 L

CHART B

*ZT 2anbta

*(hT 30 g) swexboad Tauueyd Wvd

SOTTJd SS200Y 3091Td

€h

02 l TEST BYTE

NOTES:
MACRO . DESCRIPTOR STRING - 1. SHADED AREAS - ASSEMBLY TIME
) . POINTER , UNSHADED AREAS - EXECUTE TIME
WRITE Filename, ID o e . .)

2, ALL CCW CHAINS ARE PRECEDED BY
THE FOLLOWING SEEK CCW:

X'07*, SEEKADR+1, X'00", 6

L VERIFY |
Specified 3. IF BLKSIZE = KL+ DL THEN & =0

IF BLKSIZE > K|+ DL THEN a=8

YES & KEYLEN
| Specified

FIXUNB FIXUNB

VARUNB/
SPNUNB

VARUNB/
SPNUNB

1 1
X'0F', IOAREAI +4,X'70', K, , +D_1RDKD X'0F', IOAREAI +A,><'50',KL+D,_]RDKD X06', IOAREAT +K, X170, D :Rnn X'06', IOAREAT+K| +X'50',D RDD

NO
GENERATED
CCW CHAIN
— T T T
X'31', SEEKADR +3, X'40', 5 ISRCHIDE] X'31', SEEKADR +3, X'40', 5 {SRCHIDE X'3I', SEEKADR+3, X'40",5 {SRCHIDE| 187 X'31", SEEKADR+3, X'40",5 ISRCHIDE
1 | 1 !
N X'08',*-8 mc X'08',*-8 \Tic X'08",*-8 me 18] X'08",*-8 me
W K 1
£ X'0D", IOAREAT +4,X'70', K, , +D 'WRKD X0D", IDAREAT +a, X'50', K, +D| {WRKD X'05*, IOAREATHK|, X'70',D 'WRD 191§ X'05*, IOAREAT+K| , X'50',D, JWRD
-3 1 1
9 X'31', SEEKADR+3,X'40', 5 :SRCHIDE X'31", SEEKADR +3,X'40', 5 :SRCH)DE X'31', SEEKADR+3,X'40', 5 :SRCHIDE m X'31*, SEEKADR+3, X'40', 5 :SRCHIDE
=
= 1
§ X'08',*-8 hild X'08",*-8 :nc X'08",*-8 TIc 18] X'08',*-8 lnc
8 m

X'92',IDLOC, X'20, 5 |RDID X192, 1DLOC, X'20', 5 1RDID X'92*,1DLOC, X'20", 5 'ROID X'92',IDLOC, X'20", 5 |RDID
A 1 1 1
T H T T
X3 SEEKADR +3, 40,5 IsRCHIDE| a7 (X3’ SEEKADR+3,x040,5 ISRCHIDE X'31', SEEKADR#3, X'40, 5 ISRCHIDE X'31", SEEKADR+3, X'40", 5 ISRCHIDE
X'08',%-8 ic s) X'08",*-8 me X'08", *-8 e X'08',*-8 hils
X'0D", IOAREAI *Arx'7°’:'<L+DLEWR'<° ASH x'00", IOAREAT +a, X'50', K +D 'WRKD X'05', IOAREAIK , X'70,D WRD X105', I0AREAL+K |, X'50',D, {WRD
X'31', SEEKADR+3,X'40',5 ISRCHIDE| §87H |X'31"SEEKADR+3,X'40',5 SRCHIDE X'31", SEEKADR#3, X'40", 5 SrcHiDE X'31", SEEKADR13, X'40", 5 ISRCHIDE
X'08", %8 !nc sl |xer,es Enc X108, *-8 ‘:nc X108, *-8 E.nc
X'0E", IOAREAT +a, X'30", K| +Dy. ERDKD 2Dfl | X'0E', I0AREAT +a, X'10, K +Dy 'RDKD X'06', IOAREAI+K , X'30',D, RDD X'06', IOAREAT K|, X'10',D ,RDD
- i

i L

CHART C

hh

WYST pue A¥A € SwnIcA SOO0IT SA/ScCd

*ZT =aInbtg

*(#T JO t) swexboid Tsuueyd WYA

DESCRIPTOR BYTES

MACRO

WRITE Filename , ID(Continued) J

YES

No Verify
NOTES:

1. SHADED AREAS - ASSEMBLY TIME
UNSHADED AREAS - EXECUTE TIME

2. ALL CCW CHAINS ARE PRECEDED
BY THE FOLLOWING SEEK CCW

X'07',SEEKADR+1,X'00',6

FIXUNB

VARUNB/
SPNUNB

GENERATED
CCW CHAIN

T
X'31', SEEKADR+3, X'40',5 ISRCHIKE|
]
X'08", -8 ic
i
X'0D', IOAREAI +a, X'70", K| +D| IWRKD

X'92',IDLOC, X'20",5

NO 3. IF BLKSIZE = K|+DL THEN A =0
1 IF BLKSIZE >KL+DL THEN A =8

FIXUNB

VARUNB/
SPNUNB

NO YES

X'31', SEEKADR+3, X'40*,5

X'08", *-8

X'92',IDLOC, X'20',5

|
X'0D’,IOAREAT +A,X'50‘,KL +DL IWRKD
- 1

'
ISRCHIKE]|
I

1 1
X'31', SEEKADR+3, X'40', 5 I'SRCHIDE X'31', SEEKADR+3, X'40', 5 :SRCHIDE

1
x'og', *-8 (TIC

)
X05', OAREALHK|, X'70, D IWRD

'

e X'08',%-8 me

X'05', IOAREAT+K(, X'50', D IWRD
|

IRDID

X'92',IDLOC, X'20',5 :RDID

X192",1DLOC, X'20",5 JRDID
|

1

T
X'31', SEEKADR+3, X'40',5

!
X'08',*-8 (TIC
1

X'0D*, IOAREAT 1, X'30', K| +Dy \WRKD

:SRCHIDE

T T
X'31', SEEKADR#3, X'40", 5 |SRCHIDE X'31', SEEKADR+3, X'40", 5 ISRCHIDE|
1
'
X'08', -8 ITIc X'08',%-8 :TIC
'
X'0D', IOAREAT +4,X"10", K| +D|_ :WRKD X'05', IOAREAT K|, X'30*, D :WRD
1 I

CHART D

X'31', SEEKADR+3, X'40", 5
X'08',*-8

X'05', IOAREAT+K , X'10*, D)

T
|SRCHIDE

I
1TIC
|
JWRD
1

S9TTd SS200V 3J3021Td

Gh

*ZT 2aInbta

(4T Jo G) swexboad Touueyd WYA

DESCRIPTOR BYTES

MACRO

[WRITE Filename, KEY

]

YES

FIXUNB

VARUNB/
SPNUNB

TEST BYTE

NOTES

1. SHADED AREAS

= ASSEMBLY TIME

UNSHADED AREAS - EXECUTE TIME

2. ALL CCW CHAINS ARE PRECEDED BY
THE FOLLOWING SEEK CCW
X'07*, SEEKADR+ , X00", 6

FIXUNB

VARUNB/
SPNUNB

NO YES
GENERATED
CCW CHAIN
X'39', SEEKADR#3, X'40", 4 ESRCHHAE X'39', SEEKADRA3, X'40', 4 ESRCHHAE
X'08',*-8 ETIC X'08*,*-8 ETIC X'29‘,KEYARG,X'40‘,KL SRCHKE|
X'92',FILENAME. K, X'40,8 |RDID X'92", IDLOC, X'60*, 5 |RDID X'08', -8 :TIC
X‘A?‘,KEYARG,X‘AO‘,KL ESRCHKE X'A9‘,KEYARG,X'40',KL ESRCHKE X'05',IOAREAI+KL,X'70',DL :WRD
X108, %16 :nc X'08*,%-16 s X'29', KEYARG,, X'40*, K| ISRCHKE
X'05*, IOAREAT+K|, X'70", D |WRD X'05', IOAREAT), X'50*, D :wm) X'08",*-8 Tic
X129', KEYARG, X'40*, K| ESRCHKE X129, KEYARG, X'40°, K| ESRCHKE X'06*, IOAREAT+K, X'70",D|. :nmn
X08",*-8 hild X'08*,*-8 it X'92*,IDLOC, X*20", 5 RDID
1
X'06', IOAREAT 4K, X'30", D ERDD X'06', IOAREAT 4K, X'10",D |RDD '
i H :
T T

X'39", SEEKADR+3, X'40',4 :SRCHHAE X'39', SEEKADR+3, X'40",4 :SRCHHAE

X'08", *-8 E"C X'08",*-8 Enc

X'A9", KEYARG, X'40', K| |SRCHKE X'A9*, KEYARG , X*40", K| ESRCHKE

X108",*-8 Inic X'08*,*-8 ic

X'05*, IOAREAT+K |, X'70", D ;wm X'05*, IOAREAT+K, X'50*, Dy EWRD

X'29', KEYARG , X'40", K| ‘.SRCHKE X'29', KEYARG, X'40', K ISRCHKE

X'08", *-8 inc X108*,*-8 Enc

X'06*, IOAREAT+K |, X'30*,D) |RDD X'06', IOAREAT+K|,X'10',D, |RDD

1 1

CHART E

X'08',*-8

X'08',*-8

X'92',IDLOC, X"20',5

X'29', KEYARG, X'40', K

X'05', IOAREA1+K) , X'50', Dy

X'29', KEYARG, X'40*, K

X'06', IOAREAT+K) , X'50*, Dy

X129, KEYARG, X'40', K|
X'08", *-8

X'05*, IOAREAT+K |, X'70", D
X'29', KEYARG, X'40', K|
X'08*,%-8

X'06', IOAREAT+K| , X'30",Dy

SRCHKE
Imic
EWRD
| SRCHKE
inc

'rop

X129, KEYARG, X'40*, K|
X'08",*-8

X'05', IOAREAT+K |, X'50*, D
X'29', KEYARG, X'40', K,
X'08', *-8

X'06', IOAREAT+K |, X'10', D

T
1
i
i
1 SRCHKE
i

1

1TIC

|

'

IWRD

i

| SRCHKE

1
1TIC

9t

WUYSI pPu®e WYJI ¢ awnTOA SO0IT SA/SOd

*ZT 2Inbtda

*(hT Jo 9) sweiboxad Tauueyd WYA

DESCRIPTOR BYTES

MACRO

WRITE Filename, KEY (Continued)

YES

FIXUNB

VARUNB/
SPNUNB

GENERATED
CCW CHAIN

139", SEEKADR3, X'40', 4 ISRCHHAE
X08",%-8 gnc
X192", FILENAME.K, X'40', 8 ERDID
X'A9", KEYARG, X'40", K| |SRCHKE
X108",%~16 Enc

X'05", IOAREA' +K[, X'30",DL | WRD
1

ODEEBEE

NO VERIFY

NO

NOTES:

1. SHADED AREAS - ASSEMBLY TIME
,UNSHADED AREAS - EXECUTE TIME

2. ALL CCW CHAINS ARE PRECEDED BY
THE FOLLOWING SEEK CCW:
X'08', SEEKADR+, X'00', 6

UNDEF 7 > FIXUNB

X'39',SEEKADR+3,X'40",4
X'08',*-8

X'92',IDLOC, X'60", 5
X'A9',KEYARG, X'40', K|

X'08',*-16

X'05', IOAREAT+K), X'10", Dy :WRD

VARUNB/
SPNUNB

X'39", SEEKADR+3,X'40",4
X'08',*~8
X'A9', KEYARG, X'40', K|
X'08*,*=8

X'05', IOAREAT+K) , X'30°, D

NO
. . T
] j |
ISRCHHAE i i
1
I i
1TIC X129, KEYARG, X'40", Ky ISRCHKE X'29', KEYARG, X'40", K| | SRCHKE
' 1
1
|RDID X'08',*-8 imic X'08",*-8 Imic
' 1]
!SRCHKE X05', OAREALK[, X'70, D IwRD X'C5¢, IOAREAT+K |, X'50", D |WRD
1
'
me X192',IDLOC, X'20*, 5 {RDID X'92',IDLOC, X'20*, 5 {RDID
! |
1
1
1 I 1
T T = T T
ISRCHHAH X'39', SEEKADR+3, X'40', 4 | SRCHHAE i .
1 I I
1
mc X'08',*-8 Imc X29', KEYARG, X'40", K| !SRCHKE X129', KEYARG, X'40', K |SRCHKE
X]
|SRCHKE X'A9', KEYARG, X'40*, K, ISRCHKE X08',*-8 Enc X'08',*-8 imic
' H !
jTic X'08',*-8 RS X'05', IOAREAT+K[, X'30, D |WRD X'05', IOAREAT+K| ,X'10',D; |WRD
)
IWRD X'05', IOAREAT+K |, X'10,D | wRD ' X
1 1 i 1

CHART F

ST TJd SS3200V 3I033ITd

Lh

*ZT 2anbta

*(hT 3O L) suexboad Tsuueyd WYd

MACRO
[WRITE Filename, RZERO
04 TEST BYTE

POINTER

GENERATED
CCW CHAIN

MACRO

WRITE Filename ,AFTER

DESCRIPTOR STRING
POINTER

NOTES

VARUNB/ 1. SHADED AREAS- ASSEMBLY TIME
SPNUNB UNSHADED AREAS - EXECUTE TIME

2. ALL CCW CHAINS ARE PRECEDED
BY THE FOLLOWING SEEK CCW:

X107*, SEEKADR+1, X'00", 6

(READ RZERO)

X'31", FilenameF, X'40, 5
X'08',*~8

X'06", FilenameK , X'00", 8

X'31', FilenameF, X'40',5

X'08',*-8

X'11*, FilenameB+32, X'C0', 8

X'11*, X'2800", X'60", max. record length

X'31", FilenameF, X'40',5

DESCRIPTOR BYTES

X'08',*-8

X'05*, FilenameK, X'10",8

ISRCHIDE
:

ETIC
IERASE

1

'eRASE

1
ISRCHIDE
Tic

i

"WRD

X'31", FilenameF , X'40", 5
X'08", *-8

X*05', FilenameK , X'50",8
X131°, SEEKADR+3, X'40",5

X'08',*-8

X'ID’,IOAREAI,X'SO',C+KL+DL :WRCKD

X'31", FilenameF, X'40',5
X108',#-8

X'06', FilenameK , X'50",8
X'31", SEEKADR+3, X'40*, 5

X'08',*-8

|
X'IE',IOAREAI,X‘IO',C+KL+DL |RDCKD
Il

YES VERIFY
Specified
(READ RZERO)
T T
I
|SRCHIDE X'31', FilenameF , X'40', 5 1SRCHIDE|
I 1
iTic X'08",*-8 ric
1 I
JRDD X'06', FilenameK , X'00",8 1RDD
L 1
1 [} 1 i
| 1 [!
1 | ' | 1
1 ! | | |
- T
ISRCHIDE _ .
1 “ 1
hils . !
| i !
;WRD . :
M1 Ei 40" 1
:SRCHIDE @ X'31*, FilenameF , X'40", 5 :SRCHIDE
i 18 | X'08",*~8 \TIc
| . '
o X'05', FilenameK , X'50",8 IWRD
i I
1 140° 1
IskcHiDE Eﬂ X'31", SEEKADR+3, X'40", 5 ISRCHIDE
1 i 108 % !
e m X'08',*-8 :TIC
! i ' 0 .
. = X'1D', IOAREA1, X'10*,C+K| +D| | WRCKD
[l - |
ISHCHIDE i !
e 1
1
|
1
]

CHART G

8t

*ZT sanbta

WYSI pue AYJ € aanTOA SOO0IT sA/Sod

*(hT JO 8) sueibdad TauueYD WYA

DESCRIPTOR BYTES

NOTES:

1. SHADED AREAS - ASSEMBLY TIME

MACRO UNSHADED AREAS- EXECUTE TIME

2. ALL CCW CHAINS ARE PRECEDED BY THE

READ Filename, ID ‘l
FOLLOWING SEEK CCW:

YES NO X'07', SEEKADR+1,X'00',6

3. IF RELATIVE ADDRESSING IS USED,
THE DATA ADDRESS IN THE RDCNT
CCW (DESCRIPTOR BYTE 9E) IS

Filename, |

INSTEAD OF IDLOC.

SPNUNB VARUNB SPNUNB

VARUNE RECFORM

4. THE CCW CHAINS SHOWN FOR SPNUNB RECORDS
ARE THOSE INITIALLY GENERATED FOR SINGLE
SEGMENT RECORDS (TYPE 00). THE CCW'S IN

THE CHAINS ARE MODIFIED FOR MULTISEGMENT
RECORDS AND THE BYTE COUNT (BLKSIZE) FOR
THE RDD AND WRD CCW'S WILL BE CHANGED
ACCORDINGLY.

IDLOC NO YES
Specified
GENERATED
CCW CHAIN
T T T T
X'31', SEEKADR+3, X*40", 5 | SRCHIDE 87| X'31*, SEEKADR+3, X'40', 5 | SRCHIDE 1871 X'31", SEEKADR+3, X'40", 5 | SRCHIDE 1871 X'31", SEEKADR+3, X'40", 5 | SRCHIDE
| |
X'08',*-8 |TIC 18] X'08",*-8 i TIC 181 X'08',*-8 :nc 181 X'08', *-8 | TIC
|
X'0E', KEYARG , X'E0", K IRDKD 2A X'0E*, KEYARG, X'E0", K| :RDKD X'06*, IOAREA, X*60", BLKSIZE }RDD 12 X'06', IOAREA, X'60',BLKSIZE }RDD
X'06', IOAREA, X'60*,BLKSIZE |RDD 2 X'06', IOAREA, X'60*, BLKSIZE :RDD 9t X'92',IDLOC, X'20',5 IRDID I9E| X'924,IDLOC, X'20*,5 |IRDID
| i
X192*, IDLOC, X'20", 5 (6ID (9 | X'92+, IDLOC, X'20",5 | ROID
1 L
H T T i
X'31*, SEEKADR+3, X'40", 5 i SRCHIDE 1871 X'31*, SEEKADR+3, X'40", 5 | SRCHIDE 57 X'31*, SEEKADR+3,X'40", 5 | SRCHIDE X'31*, SEEKADR+3, X'40", 5 | SRCHIDE
1
X'08!, *~8 : TiC 18] X'08!,*-8 }T!C Fis) X'08',*-8 ITIC 181 X'08',*-8 : TIC
| !
X'0E*, KEYARG, X'E0", K} :RDKD 124 X'0E', KEYARG, X'E0*, K| {RDKD 161 X'06!, IOAREA, X'20*,BLKSIZE | RDD 16 X'06', IOAREA, X'20*, BLKSIZE ',nm)
1 1
X'06*, IOAREA, X'20*,BLKSIZE | RDD 16 X'06', IOAREA, X'20',BLKSIZE ~ |RDD
1 . |

CHART |

SO TTd SS990Y 309ITd

6h

*ZT sanbtia

*(#T 3O 6) sueaboad Tauueys KYa

DESCRIPTOR BYTES

MACRO

READ Filename, KEY

|

VARUNB

YES

SPNUNB

NOTES:

1. SHADED AREAS - ASSEMBLY TIME
UNSHADED AREAS - EXECUTE TIME

2, ALL CCW CHAINS ARE PRECEDED BY
THE FOLLOWING SEEK CCW:

X107*, SEEKADR+1, X'00",6

NO 3. IF RELATIVE ADDRESSING 1S USED,

THE DATA ADDRESS OF THE SRCHHAE
CCW AND THE RDOCNT CCW RESPECTIVELY
WILL BE CHANGED TO:

SRCHHAE - Filename. $+3

RDCNT

- Filename. |

VARUNB SPNUNB

4. THE CCW CHAINS SHOWN FOR SPNUNB RECORDS
ARE THOSE INITIALLY GENERATED FOR SINGLE
SEGMENT RECORDS (TYPE 00). THE CCW'S IN

THE CHAINS ARE MODIFIED FOR MULTISEGMENT
RECORDS AND THE BYTE COUNT (BLKSIZE) FOR
THE RDD AND WRD CCW'S WILL BE CHANGED
ACCORDINGLY.

YES

NO
GENERATED
CCW CHAIN
T

X'39', SEEKADR+3, X'40", 4 ; SRCHHAE X'39", SEEKADR3, X'40", 4 i SRCHHAE
X108, *-8 %TIC 13 X'08',*-8 :nc
X'92',IDLOC, X'60", 5 : RDID L 9A] X'92', IDLOC, X'60", 5 ; RDID
X'A9', KEYARG, X'40", K| | SRCHKE X'A9', KEYARG, X'60", K| | SRCHKE
X'08',*-16 I TIC 110 | X'08',*-16 i TIC
X'06", IOAREA, X'20', BLKSIZE ERDD n X'06', IOAREA, X'20°, BLKSIZE = RDD

A7}
18]
Eﬁ
118
ot |

X'39", SEEKADR+3, X'40",4 ESRCHHAE X'39*, SEEKADR+3, X'40", 4 TRCHHAE
X'08",*-8 = TIC 18] X'08", *-8 : TIC
X129', KEYARG, X'40, K| II SRCHKE X129', KEYARG, X*60%, K| i SRCHKE
X108t 5-8 :TIC] X'08",*-8 s
X'06, IOAREA, X'60', BLKSIZE | RDD X106', IOAREA, X'60", BLKSIZE | ROD
X'92*,IDLOC, X'20',5 E RDID o | X921, IDLOC, X'20", 5 ;RDID

X'39*, SEEKADR+3, X'40", 4 iSRCHHAE
X'08',*-8 ITIc
X'A9', KEYARG, X*40", K| :SRCHKE
X'08', *-8 ITIC
X'06', IOAREA, X'20", BLKSIZE !RDD

X'39", SEEKARD +3, X*40", 4 ‘ SRCHHAE X'39', SEEKADR+3, X'40", 4 : SRCHHAE A7 | X'39", SEEKADR+3, X'40", 4 i SRCHHAE
X'08',*-8 lnc 18] X'08',*~8 :TIC 18] X'08",*-8 :nc
X'A9", KEYARG, X'60", K| ISRCHKE | X'29',KEYARG, X'40", K| l SRCHKE X'29',KEYARG, X'60", K| }SRCHKE
X108, *-8 I TIC 18] X'08',*-8 } TIC 18] X'08*,*-8 :nc
X'06', IOAREA, X'20", BLKSIZE } RDD m X'06', IOAREA, X'20*, BLKSIZE : RDD 16} X'06', IOAREA, X'20', BLKSIZE :RDD

54- 7

CHART J

W¥YSI pue AVA € swnIcA SOO0IT SA/SCA 0¢

*¢T sanbtg

*(hT 3O 0T) swexboxd Tauueyd Wud

DESCRIPTOR BYTES

BEEHESNEBBER

MACRO

WRITE Filename, ID

VARUNB

YES

SPNUNB

RecroRm

KEYLEN
Spec

VERIFY

NO

VARUNB

SPNUNB

1. SHADED AREAS

NOTES:

~ ASSEMBLY TIME
UNSHADED AREAS - EXECUTE TIME

2. ALL CCW CHAINS ARE PRECEDED BY

THE FOLLOWING SEEK CCW:

X'07', SEEKADR+, X'00*, 6

3. IF RELATIVE ADDRESSING IS USED,

THE DATA ADDRESS OF THE RDCNT
CCW (DESCRIPTOR BYTE 9E) IS
CHANGED TO:

Filename.|

4, THE CCW CHAINS SHOWN FOR SPNUNB RECORDS

ARE THOSE INITIALLY GENERATED FOR SINGLE
SEGMENT RECORDS (TYPE 00). THE CCW'S IN
THE CHAINS ARE MODIFIED FOR MULTISEGMENT
RECORDS AND THE BYTE COUNT (BLKSIZE) FOR
THE RDD AND WRD CCW'S WILL BE CHANGED
ACCORDINGLY.

IDLOC NO YES IDLOC
Specified Specified
GENERATED
CCW CHAIN
T < T
X'31', SEEKADR+3, X'40", 5 ; SRCHIDE X'31', SEEKADR+3, X'40', 5 ; SRCHIDE £ 871 X'31', SEEKADR+3, X'40", 5 } SRCHIDE X'31', SEEKADR+3, X'40", 5 | SRCHIDE
|
X'08*, *-8 ; TiC X'08",*-8 : TIC 18] X'08", *-8 : TiC X'08",*-8 : Tic
|
X'0D*,KEYARG, X'60", K| | WRKD X'06', I0AREA, X'00*, 8 : RDD 191 X'05', IOAREA, X'40*, BLKSIZE | WRD X'06', IOAREA, X'00', 8 : RDD
|
X'05', IOAREA, X'40', B E | W r 1311, SEEKADR+3, X'40", 5 | SRCHIDE
OAREA LKSIZ : RD X'31%,§ .
| X'31", SEEKADR+3, X'40", 5 | SRCHIDE | X'31*, SEEKADR+3,X'40", 5 | SRCHIDE
X'31", SEEKADR+3, X*40", 5 SRCHIDE | 18] X'08",*-8 1 TIC |
| X08',*-8 I mic | X'08',*-8 | TiC
X'08',*-8 | Tic | 1] X'06*, IOAREA, X'50*,BLKSIZE | RDD |
| X'0D*, KEYARG, X'60", K | WRKD ! X'05', IOAREA, X'40",BLKSIZE | WRD
X'0E', KEYARG, X'FO', K| | RDKD I 1OF | X'92*,IDLOC, X'20*,5 | roiD |
| X'05', IOAREA, X'40',BLKSIZE | WRD o ! X'31*, SEEKADR+3, X'40",5 | SRCHIDE
X'06', IOAREA, X'50",BLKSIZE | RDD | |
| X'31', SEEKADR+3, X'40', 5 | SRCHIDE X'08',*-8 | 11c
X'92", IDLOC, X*20*, 5 | PO | |
X'08',*-8 | e X'06', IOAREA, X'50", BLKSIZE : RDD
X'0E*, KEYARG, X'FO", K| } RDKD X921, IDLOC, X'20*,5 I RDID
X'06', IOAREA, X'50*, BLKSIZE : RDD
X'92*,IDLOC, X'20',5 1 RDID
T T A
X131, SEEKADR+3, X' 40,5 | SRCHIDE X'31*, SEEKADR+3, X'40', 5 | SRCHIDE = X'31", SEEKADR+3, X'40", 5 } SRCHIDE X'31*, SEEKADR+3, X'40', 5 : SRCHIDE
| |
i3 X'08',*-8 | e 18] X'08',*-8 # Tic i X1081,%-8 : TIC X'08",*-8 | TIC
|
]
AB] X'0D* , KEYARG, X'60" K| I WRKD X'06', IOAREA, X'00*, 8 t RDD 1911 X'05, IOAREA, X'40",BLKSIZE | WRD X'06', IOAREA, X'00*, 8 E RDD
. I
911 X'05',1 OAREA, X' 40" ,BLKSI ZE | wrD - T 57 X'31*, SEEKADR+3, X'40", 5 | SRCHIDE T
! X'31", SEEKADR+3, X'40", 5 | SRCHIDE ! X'31', SEEKADR+3, X'40", 5 | SRCHIDE
X'31',SEEKADR#3, X' 40,5 % SRCHIDE o % e 18] X'08",*-8 { TiC 108", %5 { e
X'08', -8 | *=
18] X'08',*-8 I TIC | X'06', IOAREA, X'10',BLKSIZE | RDD I
| Abl X'0D*, KEYARG, X'60', K| | WRKD I X'05',IOAREA, X'40',BLKSIZE | WRD
1281 X'0E', KEYARG, X' FO',K|_ | ROKD | |
| En X?05', IOAREA, X*40",BLKSIZE | WRD X'31", SEEKADR+3, X'40', 5 | SRCHIDE
115} X'06', IOAREA, X'10",BLKSIZE | RDD | |
X'31', SEEKADR+3, X'40', 5 | SRCHIDE X'08',*-8 t TiC
18| X'08',*-8 ; TIC X'06*, IOAREA, X'10", BLKSIZE E RDD
X'0E', KEYARG, X'FO*, K g RDKD
X'06', IOAREA, X*10", BLKSI ZE g RDD

S9T T4 SS9D00VY 3O=21TA

19

*ZT @anbta

*(hT 3O TI) swexboad Tauueyd WYd

DESCRIPTOR BYTES

MACRO

WRITE Filename, ID

VARUNB

SPNUNB

KEYLEN
Specified

No VERIFY

NO

SPNUNB

GENERATED
CCW CHAIN
X'317, SEEKADR+3, X'40", 5 | SRCHIDE
X108",*-8 : TIC
X'0D*, KEYARG, X*60", K| i WRKD
X105", IOAREA,, X'40", BLKSIZE { WRD
X1921,IDLOC, X120", 5 { RDID

EEB8d3agaaa8s

NOTES:

1. SHADED AREAS - ASSEMBLY TIME
UNSHADED AREAS - EXECUTE TIME

2, ALL CCW CHAINS ARE PRECEDED BY THE
FOLLOWING SEEK CCW:

X'07', SEEKADR+1, X'00", 6

3. IF RELATIVE ADDRESSING 1S USED,
THE DATA ADDRESS IN THE RDCNT
CCW 1S CHANGED TO:

Filename. |

4. THE CCW CHAINS SHOWN FOR SPNUNB RECORDS
ARE THOSE INITIALLY GENERATED FOR SINGLE
SEGMENT RECORDS (TYPE 00) . THE CCW'S IN
THE CHAINS ARE MODIFI ED FOR MULTISEGMENT
RECORDS ARE THE BYTE COUNT (BLKSIZE) FOR
THE RDD AND WRD CCW'S WILL BE CHANGED
ACCORDINGLY.

CHART L

X'31', SEEKADR+3, X'40", 5 ; SRCHIDE X'31', SEEKADR+3, X'40",5 f SRCHIDE 87 X'31', SEEKADR+3, X'40", 5 ; SRCHIDE
X'08',*-8 é TIc X108, *~8 : Tic 18] X'08", *-8 E TIC
X'06¢, IOAREA, X'00", 8 | roD X'05, IOAREA,, X*40", BLKSIZE : WRD [14] X'06', IOAREA, X'00',8 { RDD
o - X'92',IDLOC, X'20*,5 | RDID
X'31", SEEKADR+3, X'40", 5 } SRCHIDE 1 [87] X'31', SEEKADR+3, X'40", 5 : SRCHIDE
X108',*-8 :nc m X'08*,*-8 I TIC
X'0D*, KEYARG, X'60', K| : WRKD m X'05', IOAREA, X'40", BLKSIZE i WRD
X'05', IOAREA, X'40*, BLKSIZE :wm m X'92*,IDLOC, X'20*,5 l ROI
X192*, IDLOC, X'20", 5 : RDID
X'31", SEEKADR+3, X'40", 5 i SRCHIDE X'31", SEEKADR+3, X'40", 5 ,' SRCHIDE X'31", SEEKADR+3,X'4Q", 5 | SRCHIDE X'31*, SEEKADR+3, X'40", 5 fsxcmDE
X'08',*-8 : TiC X'08",*-8 i TiC B X108',*-8 : TiC 18] X'08", *-8 Enc
X'0D*,KEYARG, X'60", K| : WRKD X'06*, IOAREA, X'00", 8 } RDD 9] X'05', IOAREA, X'00*, BLKSIZE } WRD 1148 | x'06', IOAREA, X'00", 8 I RDD
X'05', IOAREA, X'00*, BLKSIZE : WRD ! T [.
X'31", SEEKADR+3, X'40", 5 : SRCHIDE X131, SEEKADR#3, X'40", 5 :SRCHIDE
X'08',*-8 } TiC 18l | x'08',*-8 :nc
X'0D*, KEYARG, X'60",K | : WRKD X'05, IOAREA, X'00', BLKSIZE iwm)
X105, IOAREA, X'00", BLKSIZE : WRD

(4]

N¥d € SuanToA SOOIT SA/SOd

WYSI pue

*ZT sanbta

MACRO

WRITE Filename, KEY

VARUNB

YES

SPNUNB

VERIFY

VARUNB

SPNUNB

NOTES:

1. SHADED AREAS - ASSEMBLY TIME
UNSHADED AREAS - EXECUTE TIME

2. ALL CCW CHAINS ARE PRECEDED BY

THE FOLLOWING SEEK CCW:
X'07', SEEKADR+1, X'00°, 6

. IF RELATIVE ADDRESSING IS USED,

THE DATA ADDRESSES IN THE SRCHHAE
CCW AND THE RDCNT CCW RESPECTIVELY
ARE CHANGED TO:

SRCHHAE - Filename. $+3

RDCNT - Filename.l

THE CCW CHAINS SHOWN FOR SPNUNB
RECORDS ARE THOSE INITIALLY GENERATED
FOR SINGLE SEGMENT RECORDS (TYPE 00).
THE CCW'S IN THE CHAINS ARE MODIFIED
FOR MULTISEGMENT RECORDS AND THE BYTE

o
>
=
Q
=3
Y]
=]
=]
(0]
[
S
E YE COUNT (BLKSI ZE) FOR THE RDD AND WRD
O CCW'S WILL BE CHANGED ACCORDINGLY.
Qa
o
=
[0}
: X'39', SEEKADR+3,X'40', 4 |l SRCHHAE X'39', SEEKADR+3, X'40', 4 1 SRCHHAE] X'39', SEEKADR+3, X*40', 4 } SRCHHAE ‘m X'39', SEEKADR+3, X'40", 4 : SRCHHAE
| |
N 181 X'08',*-8 :nc X'08',*-8 % TiC mli‘ X'08',*-8 {TIC iﬂ X'08',*-8 I'tic
; | i |
| ;
'C_)h " X'92',1IDLOC, X'60", 5 =RDID X'92',1DLOC, X'60", 5 : RDID X129, KEYARG, X'60",K lSRCHKE [0A] X'29', KEYARG, X'60" K : SRCHKE
o | i
- E X'39‘,KEYARG,X'40',KL : SRCHKE X'A9',KEYARG,X'60’,KL : SRCHKE n X'08",*-8 :nc “IE X'08',*-8 ; TIC
'3 | .
5 o 101 X'08',*-16 | TIC X'08',*-16 :TIC a8 X'05',IOAREA, X'40', BLK SI ZE :WRD 4] X'06',I0AREA, X'00',8 :RDD
=
. ‘ﬂl X'05', IOAREA, X'40', BLK SI ZE IWRD X'06', IOAREA, X'00',8 1‘ RDD 10A/ X'29' KEYARG, X'60" K : SRCHKE T
G | 0A] X'29', KEYARG, X'60" K | SRCHKE
Q X'29', KEYARG, X'60' K| ISRCHKE B X'08',*-8 lrlc |
| i X'A9", KEYARG, X'60", K | -RCHKE t X'08',*-8 Imc
8l | x'08',*-8 jTIe | X'06', IOAREA, X'50',BLKSIZE | RDD |
1 X'08',*-8 | TIC ! 1911 | X'06',IOAREA, X'40' BLKSIZE | WRD
X'06',IOAREA, X'10', BLKSIZE | RDD | 19E | X'92',IDLOC, X'20", 5 I rRDID |
X'05',I0AREA, X'40', BLKSIZE | WRD 1 X'29", KEYARG, X'60" K| | SRCHKE
X'29', KEYARG, X'60", K| } SRCHKE i3l | x'08',*-8 { Tic
X'08',*-8 I'1ic m X'06', IOAREA, X'50', BLKSI ZE I op
. | |
X'06, IOAREA, X'10", BLK SI ZE } RDD [oE X'92",IDLOC, X'20',5 g RDID
T T T T
X'39", SEEKADR+3, X'40', 4 | SRCHHAE A7, X'39", SEEKADR+3, X'40', 4 | SRCHHAE X'39", SEEKADR+3, X'40', 4 : SRCHHAE [A70 | X'39', SEEKADR+3,X'40', 4 1SRCHHAE
| .
m X'08!, -8 | TIC 18| X'08',*-8 | TIC 18] X'08', -8 '1ic B BEYAE: ITIc
, . H .
| i !
X'39', KEYARG, X'40' K | SRCHKE X'92",IDLOC, X'60", 5 | RDID BF | X129', KEYARG, X'40' K : SRCHKE X129 KEYARG, X'60', K | SRCHKE
I : !
B X'08',*-8 : TIC 18A X'A9", KEYARG, X'60", K | SRCHKE 18] X'08',*-8 }nc 18] X'08',*-8 :TIC
m X'05', IOAREA, X'40', BLK S1 ZE } WRD o/ X'08',*-16 }nc o1 | X'05', IOAREA, X'40', BLK SI ZE ; WRD X'06', 10AREA, X'00', 8 :RDD
X'29',KEYARG, X'60' K | SRCHKE 4 X'06', IOAREA, X'00",8 ! RDD X'29',KEYARG, X'60", K | SRCHKE T
| ! X'29', KEYARG , X'60" K | skcHKE
18] X'08',%-8 | Tic | 18] X'08',%-8 I'nic
1 BAL X'A9',KEYARG,X"60' K | SRCHKE | 1181 | x'08',*-8 I'tic
15 X'06', IOAREA, X'10", BLKSI ZE i RDD : L | 51 X'06', IOAREA, X'10',BLKSIZE | RDD I
181 X'08',*-8 ALS L 1911] | X'05',I0AREA, X'40', BLKSI ZE :WRD
m X'05', IOAREA, X'40', BLK SI ZE } WRD oAl X'29', KEYARG, X'60" K| : SRCHKE
X'29',KEYARG, X'60",5 : SRCHKE L184| | x'08',*-8 I TiIC
| |
18/ X'08',*-8 znc <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>