
Program Product

Licensed Material - Property of IBM

L Y28-6423-1

IBM DOS/VS COBOL
Compiler Program Logic

Program Number: S746-CB1

Licensed Material - Property of IBM

Second Edition (September 1975)

This edition is a reprint of LY28-6423-0 incorporating changes released in
Technical Newsletter LN28-l060 (dated March 15, 1974).

Changes are periodically made to the specifications herein; before using
this publication in connection with the operation of IBM Systems, refer
to the latest IBM System/360 and System/370 Bibliography, GA-6822, for
editions that are applicable ana-current.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication.
If the form has been removed, comments may be addressed to IBM Corporation,
Department J57, 1501 California Avenue, Palo Alto, California 94304.
Comments become the property of IBM.

@) Copyright International Business Machines Corporation 1973

Summary of Amendments Number 1

Date of Publication: March 22, 1974

Form of Publication: TNL LN28-1060 to LY28-6423-0

Lister Option

New: Programming

Produces a reformatted source listing with embedded cross-references. A reformat­
ted source deck can also be obtained.

VERBREF and VERBSUM Options

New: Programming

Produces a listing of all verbs in a source program together with the number of
times each appears. The statement numbers in which each verb appears can also
be listed.

COUNT Option

New: Programming

Produces a listing containing the number of times each verb was executed, the
procedure in which it appears, and the number of the statement in which it
appears.

MERGE Verb

New: Programming

Combines from 2 through 8 identically sequenced files into one file in ascending
or descending order according to keys contained in each record.

Miscellaneous Changes

Maintenance: Programming and Documentation

Minor changes have been made to the compiler and to the generated code. These
are indicated in this publication by the bar to the left of the text.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

This publication describes the internal
design of the IBM DOS/VS COBOL compiler.
The manual is intended for use by persons
involved in program support and by systems
programmers involved in altering the
program design for installations requiring
such alteration. It supplements the
compiler listing and its comments but is
not a substitute for them.

The publication is divided into the
following parts:

• An introduction that describes the
compiler functions and specifies the
relationship of the compiler to the
operating system.

• A Method of Operations section that
includes a chapter on each of the
compiler phases. within these
chapters, the material is organized by
phase functions and is not necessarily
presented in the order in which the
phase operations are performed.

• A Program organization section that
includes one chart of the overall logic
flow for each phase and other charts
showing detailed descriptions of some
of the major phase routines.

• A Directory section that shows register
usage, flowchart labels, the tables
used by each phase, and a linkage
editor map.

• ! Data Areas section showing the
formats of the compiler Communication
Region, the dictionary, the internal
texts, the tables that occupy the
table-handling area, and the tables
that are created for object-time
debugging purposes.

• A Diagnostic Aids section.

• An appendix that describes the routines
that handle compiler tables and t~e
dictionary.

• An appendix that describes the object
module produced by the compiler.

• An appendix that describes the Report
Writer subprogram.

Licensed Material - Property of IBM

PREFACE

• An appendix showing the generated
coding for input/output verbs.

• A Glossary of special terms.

• Foldout diagrams

• An index.

Effective use of this manual requires an
extensive knowledge of the IBM Assembler
Language, DOS/VS system Control, and the
IBM DOS/VS COBOL language. Prerequisite
and related publications include:

IBM DOS/yS Operating Procedures, Order
No. GC33-5378

IBM OS/yS and DOSIVS Assembler Language
Guide, Order No. GC33-4010

IBM DOS/yS system Control statements
Reference, Order No. GC33-5376.

IBM DOS/yS System utilities Reference,
Order No. GC33-5381.

IBM DOS/yS Supervisor and IIO Macros
Reference, Order No. GC33-5373.

IBM DOS/yS Access Method Services, Order
No. GC33-5382.

IBM DOS/VS Data Management Guide, Order
No. GC33-5372.

Prerequisite Program Product documents
include:

IBM DOS Full American National Standard
COBOL, Order No. GC28-6394.

IBM DOS/yS COBOL Compiler and Library
Programmer's Guide, Order No. SC28-6478.

IBM DOS/yS COBOL Compiler and Library
Installation Reference Material, Order
No. SC28-6479.

IBM DOS/yS COBOL Subroutine Library
Program Logic, Order No. LY28-6424.

Licensed Material - Property of IBM

ACKNOWLEDGMENT

The following extract from Government
Printing Office Porm Number 1965-0795689 is
presented for the information and guidance
of the user:

"Any organization interested in reproducing
the COBOL report and specifications in
whole or in part, using ideas taken from
this report as the basis for 'an instruction
manual or for any other purpose is free to
do so. However, all such organizations are
requested to reproduce this section as part
of the introduction to the document. Those
using a short passage, as in a book review,
are requested to mention 'COBOL' in
acknowledgment of the source, but need not
quote this entire section.

"COBOL is an industry language and is not
the property of any company or group of
companies, or of any organization or group
of organizations.

"No warranty, expressed or implied, is made
by any contributor or by the COBO~
com,mittee as to the accuracy and
functioning of the programming system and
language. Moreover, no responsibility is
assumed by any contributor, or by the
committee, in connection therewith.

"Procedures have been established for the
maintenance of COBOL. Inquiries concerning
the procedures for proposing changes should
be directed to the Executive Committee of
the Conference on Data Systems Languages.

"The authors and copyright holders of the
copyrighted material used herein

FLOW-MATIC (Trademark of Sperry Rand
corporation), Programming for the
UNIVAC (R) I and II, Data Automation
Systems copyrighted '1958, 1959, by
Sperry Rand Corporation; IBM
Commercial Translator, Form No.
P28-8013, copyrighted 1959 by IBM;
FACT, DSI 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell

have specifically authorized the use of
this material in whole or in part, in the
COBOL specifications. Such authorization
extends to the reproduction and use of
COBOL specifications in programming manuals
or similar publications."

SECTION 1. INTRODUCTION • • • • •
Relationship To The DOS/VS System
Physical Characteristics • •
Operational Considerations • • • • •
Design of the compiler • • • • • •

13
13
13

• • 14

GROUP 1: Control and Initialization
GROUP ~: Reformatting the Source

• 14
18

Deck • • • • • • • • • • • •
GROUP 3: 'I'ransla ting the
Identification, Environment, and
Data Divisions • • •

18

• • 18
GROUP 4: Translating the Procedure
Division • • • • • • • • • .. • 19
GROUP 5: Assembly ••• _ •• 19
GROUP 6: Final and Diagnostic
Output • • • • • • • _ • • 20

Compiler Options • • _ .. _ • • • • • • • 20

SECTION 2. METHOD OF OPERATION •
Phase 00 • • • • • • •
Receiving Control from and Returning
It to the System • • • • • • • ..
Processing Between Phases
Phase Input/Output Requests

• 24
• 24

• 24
• 24
• 28

Table and Dictionary Handling • • • •
Communications Area (COMMON) • • • • •
Unrecoverable Error Conditions
Segmentation Operations

• 34
• 34
• 34
• 34

PHASE 01 ••
Compilation Parameters _ • • • • • •
Buffer Size Determination _ • • _ _
Opening Files
Information Returned to Phase 00 •
Error Conditions • • • • • • • •

• 35
• • 35

35
• 37

37
• 37

LIB Option Processing • • .. _ •
Federal Information processing Standard

• 37

(FIPS) Flagging • • • • 38

PHASE 05 • • • • • • •
Input • • _ •
Output • • • _

Error Conditions • •

PHASE 06 • _
Input
Output _

PHASE 07 ••
Input
Output ••

PHASE 08 • •
Input • • • •
Output • • •• _ ••
Processing _ • • • • • • • •

Error Conditions _

PHASE 10 • • • _ •
Major working Routines • • •

GETCRD Routine •
GETWD Routine • • • •

• • 38
38

• 38
38

• 38
• • 38

• 38

• 38
• 38
• 38

• 38
_ • 38

• 38
• • 38

38

• 39
39

• 39
• 39

Licensed Material - Property of IBM

CON1':ENTS

GETDLI-1 Routine • • • • • • • • • • • 39
Identification Division • 39
Environment Division • • • 40

configuration Section • 40
OBJECT-COMPUTER Paragraph 40
SPECIAL-NA1-1ES paragraph • • • • .. • 40

Input-Output Section • • • 40
File-Control Paragraph • • 40
VSAM File Processing • • 40
I-O-Control Paragraph • • • • • 41

Data Division • • • • • 41
File Section • . • • • • • • • • 42

File Description Entries • • • .. • • 42
Sort Description Entries • • .. • • • 42
Record Description Entries • • 42

\~orking-Storage and Linkdge Sections 43
Syntax Analysis • • • • • 43

PHASE 12 • • • • • • • • • • • • • • •
Operations in Other Phases •

REPORT Clause • • • •
Report Section Header
USE Sentences • • • • •
Procedure Division Verbs
Control-Field Save-Area Names
REDEFINES Clause • • • • • • • •

Producing the rteport Writer Subprogram
(RWS) •••••

Routine RDSCAN •
Routine PROC01 •
Routine PROC02 •
Routine FLUSH
Routine GNSPRT •

Generating Error Messages
Generating the Source Listing
Information for Later Phases •

• 44
• 44
• 44
• 44
• 44
• 44
• 45
• 45

• 45
• 45
• 45
• 47
• 47
• 47
• 47
• 47
• 47

PHASE 11 • • • • • • • • • • • • • • • • 48
Encoding the Procedure Division • 48

Processing Procedure-nawes • • • 48
Priority Checking for Segmentotion • 48

Processing Verbs • • • • • • • • • • • 49
Procedure Branching Verbs • 49
Input/Output Verbs • • • • • • • 49
Other Verbs • • _ • • • • • • • • • 49

Processing Declaratives • • • • • 50
Entering Procedure-names in the
Dictionary • • • • • • • • • • • • • • • 50
Dummy Entry For Phase 80 • • • • • • 50

PHASE 20 • • • • • • • • •
Translating LD Entries into A'IF-Text •

Processing Elementary Items
Processing Group Items • • • • •

Producing Incomplete Data A-text •
Processing File Section Entries

Processing Erro,rs • • • •

PHASE 22 • • • • • • • • •

• 52
• 52
• 53
• 53
• 53
• 53
• 53

• 55
Building Dictionary Entries

Dictionary Preprocessing •
Completing Dictionary Entries

• • • • 55
• 55
• 57

Licensed Material - Property of IBM

• • 58 Generating Data A-text
Q-Routine Generation • • • _ 0 • 58
Processing Errors
Building Tables for Later Phases •

PHASE 21 . _ • _ • • • _ • • • ..
Completing Dictionary Entries
Generating Required DTF"s

Clause Compatibility ..
Common Parameters

Record Size

_ .. 59
59

60
• 60

60
60
60

• • 60
Record Form • 60

Selecting the DTF Generator
Determining the Number of DTF's

Pre-DTF Area • .. • • • • • • .. • •
DTFMT and DTFSD Pre-DTFs • • •
DTFDA, Random Access. Pre-DTF
DTFDA. Sequential Access, Pre-DTF
DTFIS Pre-DTF • • • .. •

61
62
62

• 62
62

• 62
.. 65

65 DTFDU Pre-DTF • • • • •
Pre-DTF Switch • • • • •

COBOL Indicators in DTF's
RE'VHND and COBOLRWD

• _ .. • 66
.. 66

• • 66
• • u •• .. 66 COBOL Bits .. • _ • • •

Writing Data A-text and Pl-text
DTFs For Associated Files
File Information Block (FIB)

Buffer Generation

67
67
68

• _ .. • 68

PHASE 25 • 69
Phase 25 Processing for the Debug
File • • • • _ • • • .. • • • 69

Building the OBODOTAB Table 69
Building the DATATAB Table • • • • • 69

PHASE 30 • •
Phase 30 Method of Operations

Glossary Building • •
Translation from PO-Text to Pl-Text:

• 71
71

• 71

PHGTRL Routine • • • _ • • • • 0

READ Verb Strings: READFN Routine
MERGE/SORT Verb Strings: SMERGE

• 72 _ 72

Routine •• • .. • • .. • • _ • • • • 73
Statements with CORRESPONDING
Options: CORRTN Routine • 73
SEARCH Verb strings: STSRCH Routine 74
Determining the Uniqueness of a
Name: SEARCH Routine • • • _ _ _ _ • 75
Replacing Names with Dictionary
Attributes: GENOP Routine • • • • • 78
Error Processing: ERROR Routine •• 78

PrlASE 40 • • • • • • •
Translation Of Pl-Text to P2-'I'ext

Procedure-Names • • • • .. • • • _
Verb Strings _ • • _ .. • • _ _
Examples • • • • • _ • _ _ •

MOVE Statement -- Subscripting _
DEBUG Card • •
ALTER Statement
PERFORM Statement
COMPUTE Statement
IF Statement • • • _

• • 81
81

• • 81
_ • 81

• 81
81

• • 82
_ 82

• 84
• 87
_ 88

SEARCH ALL Statement • • • .. • • 89
91 Syntax Analysis and Verb Checking

Method of Defining Verb Blocks • •
Phase 40 Initialization Routine
IDS Routine • _ • • • _ • • • •

• 92 _ • 92
92

ISTRUV Routine
IDBRK Routine ••• _ • • • .. • •
IDLH03 Routine
SORT, MERGE Routines
EOF Routine • • • _ •
GETNXT (GET13 and GET14) Routine •
EXIT5 (EXIT PROGRAM) Routine •
Branches to USE FOR DEBUGGING
GENNOD Routine • .. ~ • • • • •
GENPAR Routine • • _ • •
GENTIM Routine • ..
WRSYS4 Routine

PHASE 50 •
Program Breaks • • •
Verb strings • • • _ _ ..

Verb Processing • • • .. • • • •
Resolving Subscripted and Indexed
References • • • • • • • • • • .. • •

Calculating Subscripted Addresses
Literal Subscripts • • • • .
Data-name subscripts .. • • • •
Mixed Literal and Data-name
Subscripts • _ • • • • • • • _
Using and Optimizing Subscript

• 92
• 92
• 92
• 92
• 92
• 92
• 92
• 92
• 92
• 92
• 92
• 92

• 92
• 92
• 92
• 93

• 93
• 93
• 94
• 94

• 95

References • • • • • • • • • .. • 95
Indexed References 0 • .. • .. 96
Arithmetic Verb Strings 96

Work Area •• • .. • _ • .. • • • 97
Compile-Time Arithmetic • 97
Mode of Operation • 97
Register and Storage Allocation .. • 98
Generating SRP Machine Instructions 99

Generating A-Text • _ • • • _ _ • • 99
Literals and Virtuals ... • • • 99
Handling Phase 51 Verb Strings. .103
Additional Processing for the Optimizer
Option (OPT) • • • • • • .103

PHASE 51 • • •
E-Text • • • •
segmentation Control Breaks
PN. GN, and VN Definitions • _ • • • •

Building PN and GN EQUATE strings
Building the PNUTBL Table

Verb Strings • • • • • • • • • • •
Input/Output Verbs • • • • • • • •
Other Nonarithmetic Verb strings.
Special Considerations for
Nonarithmetic Verbs
Verbs Hequiring Calls to
Object-Time Subroutines
DISPLAY Literals • • • • • • • .. •

Generating System/370 Instructions
Generating Object Code To Process VS~l
Files _ • _ • • • • • •

Generating Calls to the ILBDVOCO
and ILBDVIOO COBOL Library
Subroutines • • • • •

PHASE 60 • • • • •
Output of Phase 60 • • _ •
Task Global Table storage Allocation _
Optimizing Storage for the Program

.104

.104

.104

.105

.105

.105

.105

.106

.107

.108

.108
• 109
.109

.110

.110

.111

.111

.112

Global Table •••• _ ••••••••• 112
Virtual References Definitions:
FILTBL Table .114
Building the VN Priority Table _ •• 114

Optimizing PNs and GNs ~ ••• _ •• 114
Optiwizing Literals and DISPLAY
Literals •••••••••••••• 115
Optimizing Virtuals • • • • • .116

Allocating Storage for the Program
Global Table. • • • • • • • • • • .116
Procedure A-Text Processing ••• 118

Processing in a Segmenten Program .121
Execution Time Base Register
Assignment • • • _ • • • • _ • • • .122

Processing Data A-Text, E-Text. and
DEF-Text • • • • • • • • • •
Processing the RLDTBL Table
IniLialization Routines

.123

.123
• •• 123

PPASE 65 • • • • • • • • • .126
Processing the Flow Option. • • •• 126
Common Processing for the STATE and the
SYMDMP Options. • • • • • • • .126

Processing Debug-text .126
Building the PROCTAB Table •• 126
Building the SEGINDX Table •••••• 127

Further Processing for the STATE Option 127
Further Processing for the SYMDMP
Option. • • • • • • • • • • • • .127

Building the CARDINDX Table ••••• 127
Building the PROCINDX Table .127
Debug File Processing • • • • • .127

Final Processing ••••••• _ •••• 128

PEASE 62 • • • • • .. • • • • • .129
Output of Phase 62 • • • 129
Allocating Storage for the Task Global
Table (TGT) • • • • • • .130
Optimizing and Allocating Storage for
the Program Global Table (PGT) • • • .. .130

Optimizing and Building Tables •••• 130
DTF virtuals and VN Priority Table .130
Optimizing Literals and DISPLAY
Literals. _ • • • • • .130
Optimizing Virtuals • • • • .130
Processing for PNs and GNs • • .130

Allocating Storage for the PGT .131
Optimizing Register Assignments •••• 132

Permanent Register Assignwents •••• 132
Temporary Register Assignments. .132

Optimizing and Allocating Storage for
the Procedure Division ••••••••• 133

Building the PNLABTBL and GNLABTBL
Tables. • • • •••••• _ •• 134
Incrementing the ACCUMCTR Counter .134

PHASE 63 • • •• • • • _ •
Initialization of Phase 63 • • •
Constructing Procedure AI-Text

Control Routine ••• •
Processing Programs with One

• •• 138
.138

• •• 138
•• 138

Procedure Block • • • • • • • .138
Processing for Branch Instructions _ .138
Processing for Optimization
Information Elements (C001-C007) _ •• 139
Processing for RPT-ORIGIN (D4)
Element • • • • • _ •••
Processing for Address Reference
Elements • • • • • • _ • • •
Processing for Address Increment
Elements • •••• • • • • •

• •• 139
(78)

• _ .139
(80)
_ •• 139

Licensed Material - Property of IBI'J

Processing for Incremented Address
(A4) Elements •••••••••••• 139

Counters Used in Phase 63 •••• .139
Building the QGNTBL Table ••••••• 140
Making Entries in the RLDTBL Table. _ .140
Processing in a Segmented Program .140
Processing at End of File ••••• 140

PHASE 64 • • • • • • .141
Output of Phase 64 • • •••. 141
Completing the RLDTBL Table •••••• 141
Completing The Machine Language Program 141
Initialization Routines _ • • • • .143
RLDTBL Table Processing •••••• 143

PHASE 61 • •
Producina a Source Ordered
Cross-Reference Listing

.144

.144
Producing an Alphabetically Ordered
Cross-Reference Listing .145

PHASE
Input
Phase

70 • • • • • • • • • • • • • • • .146
.146
.146
.146

from Prior Phases • • • _
70 Error Processing • • ••

The
The

PARTBL and EACTBL Tables
PHxERR Table • .. • •

Generating Messages
Error Message Listing

PHASE 80 •

• • • • .146
• .147

.147

••• 148
Input
Output ••
Processing

• •••••• 148

Scanning The Source Program
Generating Diagnostic Messages
Writing the Source Program _ •

.148

.148

.148

.148
• •••• 148

SECTION 3. PROGRAM ORGANIZATION .149
Flowcharts. • • • • • • • . .149

Explanation of Flowchart Symbols •• 150

SECTION 4. DIRECTORY • • • •
Flowchart Label Directory
Tables Used By Phases
Linkage Editor Map ••

•••••• 259
• 259

SECTION 5. DATA AREAS
Communication Region •

TABLE FORMATS

• .263
.265

.275

.275

.287

TEXT FORMATS •
Data Ie-Text •
A,!'F-text • •

••• _ •• 341

Data A-text • • • •
Procedure IC-text (PO Format)
Procedure IC-text (Pl Format)
Procedure IC-Text (P2 Format)
Procedure A-,!'ext _ • • • • • •

.341
• •••• 348
• •••• 349

.351
• .359

• ... _ .364
• .373

.378 Optimization A-Text
Procedure AI-Text
Listing A-Text
E-Text ••

••••• _ ••• 380
.381

• •••• 382
XREF-Text ••• .383
Debug-Text • _ • .384

DICTIONARY ENTRY FORMATS • • • • • .385
Procedure-name (Paragraph) Entry .385

Licensed Material - Property of IBM

Proceuure-name (Section) Entry •• • .385
.386 F'D Entry •• •••••

FD ENTRY FOR VSAM FILES
SD Entry
PD Entry
LD Entry
Condition-name Entry •
Index-name Entry

• .387
• .387

.388

.388
" •• 388

.389

.395 DEBUG FILE TABLES
PROGSUM-TalJle • .. • • .396
OBODOTAE 'fable "0 •

DATA'IAB Table
PROCTAB Ta.ble
CARDINDX Table •
SEGINDX Table
PROCINDX Table ..

• u ••• __ .397
••• _ • • • • .398
••• 0 .404

•• _ • _ •• 404
• 0 • • • • _ .405
• • _ _ .405

VSAM File Information Block (FIB) .405

SECTION 6. DIAGNOSTIC AIDS .409
Error Message Listing •• 409
Dump Produced For Disaster Level Error
!-lessages _ • _ • _ • • • 0 • 409
Abnormal 'l'ermination During compilation 409

Location of Information in Storage. 0409
Current Phase ••• _ • .409
Current Record •• _ 0 _ •••••• 410
Tables Used by Phases ••••• 410
Compiler Buffers and Their Contents 410
Register Usage •• " • • • .411
Register Saving ••• " • 0418

Input/Output Error Messages _ .418
Erroneous Compiler Output •• 418

Storage Layout .418
Locating a DTF • • • • • • •• 419
Locating Data ••• _ 0 .419
Register Usage _ •••• 419
Error Messages ••• _ • _ .420
Linkage Editor Phase Map.. .420
Diagnostic Assistance •• 420

APPENDIX Al LABEL TABLE DIRECTORY .421
ACC~SS Dictionary Handling Routines '0 .421

Organization of the Dictionary •••• 421
Area for the Dictionary ••••••• 422
Initialization of ACCESS Routines •• 422
ACCESS Routines _ •••••••• _ .422

ENTNAM (Enter Attributes Given
Name) •••••••• _ .422
ENTPTR (Enter Attributes Given
Pointer) •••••• _ • _ •• _ •• 423
GETPTR (Get Pointer) •••• 0 ••• 423
ENTDEL (Enter Delimiter Pointer) •• 423
LATRNM (Locate Attributes Given
Name) ... 0 423
LATRPT (Locate Attributes Given
Pointer) •••••••• _ ••••• 424
LOCNXT (Locate Next Entry) • • '0 • .424
LDELNM (Locate Delimiter Given
Name) • • • • • • • • • • • • • • .424
LATACP (Locate Attributes using
ACCESS Pointer> •••••••••• 424
LATGRP (Locate Attributes Given
Group Pointer) • • • • • • .425

Table Handling with TAMER ••••••• 425
Control Fields ••••••• _ • .425

TIB (Table Information Block) _ •• 425
TAMM (Table Area Mangement Map) _ .425
MASTAM (Master TAMM Table) • • .426

How Space Is Assigned ••••• 426

.426 TAMEIN Routine • •
PRIME Rout.ine
TBGETSPC Routine •
MOVDIC Houtine
DICSPC Routine
STATIC Routine
TABREL Routine

• • • • .427
• .427

.427

.427
• .427

• • • • .428
INS~RT Routine
'l'Jll·1EOP Routine
TBSPILL Routine

• • • • • • .428
.428

• • • • .428
TBWRITE Routine • • • •
TBREADIC Routine •
GETALL Routine • •

•••••• 428
.429

• • _ _ .429

APPENDIX B: OBJECT MODULE •• ••
Initialization 1 Routine (INI'11)
Working-Storage • • .. • •
DTF'S and Buffers ... _ •
Task Global Table (TGT)
Proqram Global Table (PGT)
Report Writer
Procedure Division
Q-Routines • • _ • • • •

COUNT Table • • • •
Initialization 2 Routine (INIT2)
Initialization 3 Routine (INIT3)
FLOW TRACE Table • _ • • • • • _ •
PROCTAB Table (PROCTAB) • • '0 • _

SEGINDX Table (SEGINDX) ••••
Transient Area (Segmented Program)

.430

.430

.430

.430

.430

.435

.436

.436

.436

.437

.437

.437

.438

.438

.438

.438

APPENDIX C: REPORT WRITER SUBPROGRAM •• 440
Structure of the Report Writer
Subprogram (RWS) • • .. • • • • • _ • • .440
Elements of a Report Writer subprogram
(RWS) • _ • • • • _ • • •.. _ .440

Fixed Routines. • • • ••••• 440
1ST-ROUT Routine. • ••• __ .440
LST-ROUT Routine. .440
WRT-ROU'l Routine. .440

Parametric Routines •••••• 440
USM-ROUT Routine. • • _ •• 441
CTB-ROUT Routine. .441
ROL-ROUT Routine. • •• _ .441
RST-ROUT Routine. .441
SAV-ROUT Routine _ ••• _ .441
RET-ROUT Routine. .441
IN'I-ROUT Routine • • .. .• • • • • • .441
ALS-ROUT Routine. • •••• 441'
RLS-ROUT Routine. .446

Group Routines. • • • .446
RPH-ROUT Routine. .446
RPF-ROUT Routine •• _ • _ .446
CTH-ROUT Routine. .446
CTF-ROUT Routine. .446
CHF-ROUT Routine. • •••• 446
CFF-ROUT Routine. • .446
PGH-ROUT Routine. .446
PGF-ROUT Routine _ •• 446
DET-ROUT Routine. • ••••• 447

Data-names _ • • • • .447
COBOL Word Data-names .447
Nonstandard Data-names .447

Special Report writer Verbs .448
Response to Procedure Division Verbs •• 449
Finding the Elements of a Report Writer
subprogram (RWS) • • • • • • • • • • • .449

Locating Data Items in a Storage Dump 449

Locating Data Items in the Object
Module •.••••••••••• _ •• 449
Locating Routines in a storage Dump .449
Locating Routines in the Object
Module •••• _ •• _ ••• _ •••• 452

Locating DET-ROUT and USM-ROUT
Routines _ •• ___ • __ •• _ •• 452
Locating CTF-ROUT and CTH-ROUT
Routines _ . _ • . .453

RWS Logic Flowcharts. • • _ •••• 453

APPENDIX D: GENERATED CODE FOR
INPUT/OUTPUT VERBS •••.. .454
OPEN Coding • • • • • • • • .454

Licensed Material - Property of IBM

CLOSE Coding •••••••.•••••• 457
CLOSE REEL Coding (For D'rFSD, DTFMT,
and DTFDA Sequential Input Only) .459
READ Coding • • • .. • • • • •••• 460
WRITE and REWRITE Coding •• 463
SEEK Coding • • • .. • • .467
START Coding. .467
DISPLAY Coding. .468
ACCEPT Coding: • .468

USE coding.. • • • • .469

GLOSSARY • .470

DIAGRAI'IS • .474

INDEX .509

Figure 1. Compiler storage Layout 13
Figure 2. Compiler Output •••••• 15
Figure 3. List of Internal compiler
Texts (Part 1 of 3) •••••••••• 16
Figure 4. Contents of Work Files
Used in Translating the Data Division
Figure 5. Linkage Codes to Phase 00
Figure 6. optional Phase Processing
Figure 1. Flow of control at End of
Compilation (Normal and Abnormal) ••• 21
Figure 8. Flow of Control for

• 20
• 25
• 26

Processing Between Phases ••••••• 28
Figure 9. Compiler File Handling
(Part 1 of 6) ••••• ••••• • • • 29
Figure 10. Buffer Assignments •• • 36

• 46 Figure 11. Phase 12 Input/Output Flow
Figure 12. Entering PNTABL and PNQTBL
Information into the Dictionary • 51
Figure 13. Phase 20 Input/Output Flow • 52
Figure 14. Phase 22 Input/Output Flow 56
Figure 15. RECFORM Parameters
Supported •••••••••••••• • 61
Figure 16. OPEN Options and DTFs • 62

63 Figure 1,. Pre-DTF for DTFH~ and DTFSD
Figure 18. Pre-DTF for DTFDA, Random
Access, Absolute Addressing ••• • • • 63
Figure 19. Pre-DTF for DTFDA, Random
Access, Relative Addres~ing ••••• • 64
Figure 20. Pre-DTF for DTFDA,
sequential Access, Absolute Addressing • 64
Figu~e 21. Pre-DTF for DTFDA,
sequential Access Relative Addressing • 65
Figure 22. Pre-DTF for DTFIS ••••• 65
Figure 22A. Pre-DTF for DTFDU • • 66
Figure 23. COBOLRWD and REWIND bits • 66
Figure 24. COBOL bit settings •• 61
Figure 25. DTF Chaining for an
Associated File with Three Functions • 68
Figure 26. Pl-text Resulting from an
ADD CORRESPONDING Option • • • • • 74
Figure 27. Pl-text Resulting from a
MOVE CORRESPONDING Option • 74
Figure 28. Pl-Text for SEARCH
Format-l (Part 1 of 2) • • • • • •• 75
Figure 29. Pl-Text for SEARCH Format-2 77
Figure 30. Pl-text Written for
Condition-string without VALUE ••• ThRU
Clause •••••••••••••
Figure 31. Pl-text Written for
Condition-string with VALUE ••• TRRU

• 79
;,

Clause • • • • •• ••• • • • • 80
Figure 32. Tables and Output for a
MOVE statement • • • • • • ••• • • 82
Figure 33. DBGiBL Entries and P2-text
for DEBUG • • • • • • • • • 82
Figure 34. Table Entries and Output
for ALTER Statements • • •• • 83
Figure 35. Execution of an ALTER
Statement •••••••••••• • 84
Figure 36. Flow of Control for
Statements in Figure 35 •••• • 84

Licensed Material - Property of IBft

FIGURES

Figure 37. Effect of a PERFORM
Statement ••••••••••••••• 85
?igure 38. Execution of a PERFORM
Statement
Figure 39. Flow of Control for

• • • 86

statements in Figure 38 ••• • • • •• 87
Figure 40. Evaluation of a COMPUTE
Statement ••• • • • • • • • • • • • • 88
Figure 41. Strings Resulting from a
COMPUTE Statement • • • • • • • • • 88
Figure 42. Evaluation of a Nested IF
Statement •••• • • • • • • • • 89
Figure 43. Output for a SEARCH ALL
Statement ••••• • • • • • • • • • • 90
Figure 44. Flow of Execution for a
SEARCH ALL Statement • • • • • • • • • • 91
Figure 45. Parameter Cells for the
A-Text Generator (Part 1 of 4) •• 100
Figure 46. Analysis of an ON Statement 107
Figure 47. Analysis of a DISPLAY Verb .109
Figure 48. Use of Counters in COMMON
To Allocate Space in the TGT for
Variable-Length Fields • •
Figure 49. PNUTBL, PNTBL, and GNTBL
Tables at the Beginning of
Optimization Processing ,.
Figure 50. GNTBL Table After PN and
Equate strings Have Been Processed •
Figure 51. GNTBL Table After the

• .113

• .114
GN
• .114

Relative Numbers Have Been Assigned •• 115
Figure 52. CONTBL, CONDIS, and LTLTBL
Tables After Processing Literals •••• 115
Figure 53. CVIRTB and VIRPTR Tables
After Processin,g Virtuals • .116
Figure 54. VIRPTR Table After VIRTUAL
Allocation •••••• • .117
Figure 55. PNTBL Values After PGT
Allocation ••••••
Figure 56. Processing Procedure
A-text Elements (Part 1 of 3) • ~
Figure 57. contents of SYS004 when

••• 117

.119

Read by Phase 60 ••••••••••• 123
Figure 58. Processing Data A-text,
E-text, and DEF-text (Part 1 of 2) ••• 124
Figure 59. Optimizing Assignment of
Registers 14 and 15 •••••••• •• 133
Figure 60. Processing for
Optimization Information Elements
(Part 1 of 3) ••••••••••••• 135
Figure 61. Processing of Procedure
A1-Text* •••••••••••••••• 142
?igure 62. Tables Used by Phases
(Part 1 of 2) •••••••••••• .263
Figure 63. SYS005 (Debug File) •• 395
Figure 64. POINT Table Entry Format •• 410
Figure 65. Buffer Control Blocks for
Buffers 1-6 •••••••••••••• 411
Figure 66. Buffer Control Block Format 411
Figure 67. Compiler Register Usage •• 411
Figure 68. Example of Storage Usage
During Execution • • • •••••• 419
Figure 69. Register Usage at Execution 419

Licensed Material - Property of IBM

Figure 70. Register Usage at Execution
when OPT is Specified · · · · · · . . .420
Figure 71. Example of a Phase Map . .420
Figure 72. Arrangement of Tables and
Dictionary Sections in a Contiguous
Region · · · · · · .421
Figure 73. Storage Map of Object
Module Fields · · · .430
Figure 74. INITl Coding · · · · · .431
Figure 75. TGT Fields · · · · · · .432
Figure 76. Debug Table Formats .433

DIAGRAMS

Diagram 1. Overview of t.he Compiler
(Part 1 of 2) •••••••• .475
Diagram 2. Part 1. Method of
operation: Table ot Contents ••••• 479
Diagram 2. Part 2. Method of
operat.ion: Overview • • • • • • •• 481
Diagram 2. Part 3. Method of
Operation: Control and Input/Output •• 483
Diagram 2. Part. 4. Met.hod of
Operation: Identification,
Environment, Data Division Translation 485
Diagram 2. Part 5. Method of
Operation: Procedure Division
translation •••••••••••••• 487
Diagram 2. Part 6. ~ethod of
Operation: Object Module Production •• 489

Figure 77. PGT Fields · · .435
Figure 78. INIT2 coding · · .436
Figure 79. INIT3 coding · .438
Figure 80. Logic of the Generated
Report writ.er Subprogram (Part 1 of 4) .442
Figure 81. First GENERATE Statement
Logic Flow · · · · · · · · .450
Figure 82 • Logic Flow of All GENERATE
Statements After the First · · · · · Figure 63. TERMINATE Statement Logic
Flow · · Figure 84. RiS GN Numbers · · ·

Diagram 2. Part 7. Method of
Operation: Optimization of Object

· ·
· .451

· .452

· .452

Module (Optional) ••••••••••• 491
Diagram 2. Part. 8. Method of
Operation: Debug Data Set Creation
(Optional) •••••••••
Diagram 2. Part 9. Method of
Operation: Error Messages,

• •• 493

Diagnostics, and Cross-Reference
Listings •••••••••••
Diagram 3. Phase 25 Operations
Diagram 4. Phase 25 Processing tor
the OBODOTAB Table • • • • • • •
Diagram 5. Phase 30 Operations
Diagram 6. Phase 65 Operations
Diagram 1. Phase 62 operations ••
Diagram 8. ~hase 63 Operations

• .495
• .497

• .499
• .501
• .503
• .505
• .507

Licensed Material - Property of IBM

Chart AA. Phase 00 (ILACBLOO):
Overall Logic (Part 1 of 7) .151
Chart AA. Phase 00: Overall Logic
(Part 2 of 7) •••••••••• 152
Chart AA. Phase 00: Overall Logic
(Part 3 of 7) •••••••••• 153
Chart AA. Phase 00: Overall Logic
(Part 4 of 7) •••••••••• 154
Chart AA. Phase 00: Overall Logic
(Part 5 of 7) •••••••••• 155
Chart AA. Phase 00: Overall Logic
(Part 6 of 7) •••••••••• 156
Chart AA. Phase 00: Overall Logic
(Put 7 of 7) • • • • • • • .157
Chart BA. Phase 01 (ILACBL01):
Overall Logic (Part 1 of 2) .158
Chart BA. Phase 01 (ILACBL01): Overall
Logic (Part 2 of 2) COPY/BASIS
Functions .' • • • • • • • • .159
Chart CA. Phase 10 (ILACBL10):
Overail Logic ••••••••••••• 160
Chart DA. Phase 11 (ILACBLll):
Overall Logic ••••••••• • .161
Chart EA. Phase 12 (ILACBL12):
Overall Logie •• • • • • • • • • .162
Chart EB. Phase 12: FLUSH Routine •• 163
Chart FA. Phase 20 (ILACBL20):
Overall Logic • • • • • • • • • .164
Chart FB. Phase 20: FILEST Routine •• 165
Chart FC. Phase 20: WSTSCT. LINKST.
and REPORT Routines •••••••••• 166
Chart FD. Phase 20: LDTEXT Routine •• 167
Chart GA. Phase 21 (ILACBL21):
Overall Logic •••••••••• 168
Chart GB. Phase 21: RECORD CONTAINS
Clause Processing ••••••••••• 169
Chart GC. Phase 21: BLOCK CONTAINS,
Clause Processing ••••••••••• 170
Chart GD. Phase 21: RECORDING MODE
Clause Proc~ssing •••• • .171
Chart GE. Phase 21: BUFGEN (Part 1
of 2) • • • • • • .172
Chart GE. Phase 21: BUFGEN (Part 2
of ~) • • • • • •• 173
Chart RA. Phase 22 (ILACBL22):
Overall Logic • • • • • • • .174
Chart RB. Phase 22: FSECT Routine •• 175
Chart RC. Phase 22: WSECT and LSECT
Routines. • ••••••••• 176
Chart RD. Phase 22: RSECT Routine •• 177
Chart HE. Phase 22: LD~XT Routine •• 178
Chart HF. Phase 22: READF4 Routine •• 179
Chart RG. Phase 22: DICTBD Routine •• 180
Chart IA. Phase 25: Overall Logic •• 181
Chart lB. Phase 25: ODOBLD.
BLDOBODO. and ENPPl •••• • .182
Chart IC. Phase 25: BEGPASS .183
Chart ID. Phase 25: TESTSUBS and
SETNAHS •••• • • • • • •• 184
Chart JA. Phase 30 (ILACBL30)':
Overall Logic • • • • .185
Chart JB. ~hase 30: GLOSRY Routine •• 186
Chart JC. Phase 30: PHCTRL Routine •• 187
Chart KA. Phase 40 (ILACBL40) :
Overall Logic •••••••••• 188
Chart KB. Phase 40: IF Processing •• 189
Chart KC. Phase 40: PERFORM
processing • • • .190

CHAR~S

Chart LA. Phase 50 (ILACBL50):
Overall Logic •••••••••• 191
Chart LB. Phase 50: GETNXT (Part 1
of 2) • • • • • • • • • .192
Chart LB. Phase 50: GETNXT (Part 2
of 2) •••••••••• 193
Chart LC. Phase 50: A-text Gen~rator .194
Chart LD. Phase 50: XSPRO and KILSUB
Routines • • • • • • • • .195
Chart LE. Phase 50: DBGTEST •• 196
Chart MA. Phase 51 (ILACBL51):
Overall Logic • • • • •• • .197
Chart MB. Phase 51: DBGTEST •• 198
Chart MC. Phase 51: GETNXT Routine •• 199
Chart MD. Phase 51: PUTDEF Routine •• 200
Chart ME. Phase 51: SET Verb
Analyzer • Format 1 • • • • • • • • • • .201
Chart MF. Phase 51: MOVE4 •• 202
Chart MG. Phase 51: SETLEN and
LOADLIT •••• • • • • • • .203
Chart MH. Phase 51: SET Verb
Analyzer. Format 2 • • • • • • • .204
Chart MI. Phase 51: PERFORM and
TRANSFORB • • • • • • • • • .205
Chart MJ. Phase 51: DISPLAY and
EQUATE • • • • • • • • • • • .206
Chart MK. Phase 51: IMINIT, IMGEN,
RESET, and EXITPGM • • • • • • • • • • .207
Chart ML. Phase 51: DEBUG, READ,
TRACE, and GOBACK Routines • • • • • • ~208
Chart MM. Phase 51: IF-Index Routines 209
Chart MN. Phase 51: GO, and GODEPM •• 210
Chart MO. Phase 51: GODEPL and GO
DEPENDING • • • • • • • • •• 211
Chart MP. Phase 51: Nonumeric IF
(IF ANAL) and Class Test (CLANAB)
Processors • • • • • • • • • .212
Chart MQ. Phase 51: SEGAL and SEGCAL3 213
Chart MR. Phase 51: A-text
Generator. and GATXTC and GATXTV
Routines • • • • • • • • • • .214
Chart NA. Phase 60 (ILACBL60):
Overall Logic • • • • •• •• 215
Chart NB. Phase 60: PH6 Routine ••• 216
Chart NC. Phase 60: PRFTiO Routine •• 217
Chart ND. Phase 60: SE6000 Routine •• 218
Chart NE. Phase 60: PDATEX (Part 1
of 2) •••••••••• 219
Chart NE. Phase 60: PDATEX (Part 2
of 2) • • • • • • • • •• 220
Chart OA. Phase 62: Overall Logic •• 221
Chart OB. Phase 62: PH6 ••••••• 222
Chart OC. Phase 62: PRFTiO • • .223
Chart ODe Phase 62: SE6000 (Part 1
of 2) •••••••••• 224
Chart ODe Phase 62: SE6000 (Part 2
of 2) • • • • • .225
Chart PA. Phase 63 (ILACBL63):
Overall Logic • • • • • •• .226
Chart PB. Phase 63: BRANCH. • .227
Chart PC. Phase 63: GNDEF •••••• 228
Chart PD. Phase 63: PNDEF • • • • •• 229
Chart PEe Phase 63: ADREF and ADINCR .230
Chart PF. Phase 63: C1REF, PNREF.
and GNREP • • • • •• • .231
Chart QA. Phase 64 (ILACBL64):
Overall Logic •••• • • • •• • .232

Chart QS. Phase 64: ADREF, RC4,
HC8C, and RD001 • • • • • • .233
Chart RA. Phase 65 (ILACBL65):
Overall Logic • • • • • • • • • • .234
Chart RB. Phase 65: Debug-text
Element Processors (TENPROC, iWENPROC,
GTEQ10K) • • • • • • _ • . • • • • • • .235
Chart SA. Phase 61 (ILACBL61): Overall
Logic (Fart 1 of 3) •••••••••• 236
Chart SA. Phase 61 (ILACBL61): Overall
Logic (Part 2 of 3) •••••• .237
Chart SA. Phase 61 (ILACBL61): Overall
Logic (Part 3 of 3) ••••••• .238
Chart TA. Phase 1"0 (ILACBL70):
Overall Logic ••••••••••••• 239
Chart UA. DET-ROUT Subroutine, Report
iriter Subprogram •••••••••• .240
Chart UB. 1ST-nOU~ Subroutine, Report
writer Subprogram •••••••••• .241
Chart UC. CTB-ROUT Subroutine, Report
Writer subprogram ••••••••••• 242
Chart ODe usa-ROUT Subroutine, Report
iriter Subprogram •••••••••• .243
Chart UFo PGF-BOUT Subroutine, Beport
Writer subprogram •••••••••• .244
Chart UG. RLS-ROUT Subroutine, Report
writer Subprogram •••••••••• .245

Licensed ftaterial - Property of IBB

Chart UK. BRT-ROUT Subroutine, Report
Writer Subprogram ••• • • • • • • • .246
Chart UI. RPH-ROUT Subroutine, Report
Writer Subprogram •••••••••• .247
Chart UJ. RST-ROU~ Subroutine, Report
writer subprogram •••••••••• .24£
Chart UK. ROL-ROUT Subrontine; Report
Writer subprogram ••••• • • • • • .249
Chart UL. ALS-ROUT Subroutine, Report
Writer Subprogram •••••••••• .250
Chart UM. PGH-ROUT Subroutine, Report
writer Subprogram ••••• • ••••• 251
Chart UN. SAY-ROUT Subro~tine, Report
Writer subprogram •••••••••• .252
Chart 00. CTF-ROUT Subroutine, Report
writer subprogram •••••••••• .253
Chart UP. RET-ROUT Subroutine, Report
writer Subprogram ••••••••••• 254
Chart UQ. INT-ROUT Subroutine, Report
writer Subprogram ••• • • • • • • • .255
Chart DB. LST-ROUT Subroutine, Report
Writer Subprogram •••••••••• .256
Chart OS. CFF-ROUT Subroutine, Report
writer subprogram •••••••••• .257
Chart UTe RPF-ROUT Subroutine, Report
Writer Subprogram •••••••••• .258

The IBM DOS/VS COBOL Compiler analyzes
source modules written in the COBOL
language and translates them into object
modules. This publication describes the
design and function of the compiler and the
characteristics of the object program which
it produces.

RELATIONSHIP TO THE DOS/VS SYSTEM

A COBOL compilation is a run unit under
the control of the IBM DOS/VS System. The
compiler uses the DOS/VS System Control
Program for input/output and other
services. For a general description of the
System Control Program, refer to IBM DOS/VS
System Management Guide, Order
No. GC33-5371. and to IBM DOS/VS Supervisor
and Input/Output Macros Reference, Order
No. GC33-5373.

PHYSICAL CHARACTERISTICS

The compiler consists of 25 phases; from
10 to 14 of these phases perform the actual
transformation of a source module into an
object program. Phases OS, 06, 07, and 08
are called only if an LST card, which
specifies the Lister option, is present.
Phase 12 is called only if a Report Section
appears in the Data Division. If
optimization of the object code has been
requested through the OPT option, phases
62. 63, and 64 replace phase 60. Phase 80
is called to flag source statements which
do not meet the Federal Information
Processing Standard when the LVL option is
specified.

Phases 25, 65, 61 and 70 are also
optional phases: phases 25 and 65 generate
debugging information for the SYMDMP, FLOW,
and/or STATE options; phase -61 produces a
cross-reference listing if the user
requests one; and phase 70 is used to list
the error messages if errors were found in
the source module.

Of the other phases, phase 00 acts as
the interface between the compiler and the
operating system. phase 01 resolves BASIS
and COPY statements and performs compiler
initialization.

The phases are organized into an overlay
structure; but the overlays are controlled

Licensed Material - Property of IBM

SECTION 1. INTRODUCTION

through phase 00. Phase 00 is resident in
lower storage throughout compilation. It
links to other phases as they are needed.
The linkage sequence is as follows:

Phase 00 links to phases 01, 05 (if
LST), 06 (if LIST), 07 (if LST), 08 (if
LST), 10, 12, 11, 20. 21, 22, 25 (if
SYMDMP). 30. 40, 50, 51, 60, 62, 63, 64, 65
(if SYMDMP), 61 {if XREF, SXREF, VERBSUM,
or VERBREF), 70 (if any diagnostic messages
are to be written), and 80 (if LVL).

Most phases occupy the portion of
virtual storage contiguous to phase 00;
pnase 80 overlays phase 00 when LVL is in
effect.

r---,
I Supervisor I
~---~
I Compiler Common I
r---1
I PHOO I
I (Includes LIOCS DTFSD Modules) I
r---~
I Phase 01 I
I (Overlaid after execution) I
r---1
I Tables I
r---~
I Dictionary I
r---1
I Work File Buffers I
r---~
I DTFMT LIOCS Module I
I (Present only if the user specifies mixed I
I (Tape and Disk) work files) I
~---1
I System File Buffers I L ___ J

Figure 1. Compiler Storage Layout

Phase 00 initially occupies 12-13K bytes
of storage (where K=1024 decimal). Phase
00 occupies 11K bytes when phases 40
through 65 are processing; it occupies 7K
bytes when phase 70 is loaded. Phase 80
overlays phase 00. In addition, tables
created by other phases require space in
storage. The amount varies greatly with
each compilation. The approximate sizes of
the other phases are:

Phase 01 -
Phase 05 -
Phase 06 -
Phase 07 -
Phase 08 -
Phase 10 -
Phase 11 -
Phase 12 -

18K bytes
14K bytes

4K bytes
5K bytes

12K bytes
30K bytes
28K bytes
33K bytes

Introduction 13

Licensed Material - Property of IBM

Phase 20 - 22K bytes
Phase 21 - 35K bytes
Phase 22 - 25K bytes
Phase 25 - 6K bytes
Phase 30 - 14K bytes
Phase 40 - 44K bytes
Phase 50 - 40K bytes
Phase 51 - 40K bytes
Phase 60 - 32K bytes
Phase 61 - 8K bytes
Phase 62 - 17K bytes
Phase 63 - 9K bytes
Phase 64 - 22K bytes
Phase 65 - 6K bytes
Phase 70 - 49K bytes
Phase 80 - 28K bytes

OPERATIONAL CONSIDERATIONS

Input to the DOS/VS compiler consists of
a source program written in the DOS/VS
COBOL language. Input is read from either
the SYSIPT or the SYSSLB file.

Output depends on the options that are
in effect for the particular compilation.
These options may be the installation
default options set within the compiler or
the overrides set by the programmer on the
OPTION statement, the CBL card or the LST
card. The "compiler Options" section in
this chapter describes each of these
options. Figure 2 summarizes the output
produced by the compiler. The phases are
shown in the .order in which they are
loaded.

DESIGN OF THE COMPILER

The compiler translates the source
program into a series of internal compiler

14 section 1. Introduction

texts, each more similar to machine code
than the last, until it produces an object
module suitable for input to the linkage
editor. Figure 3 shows the various texts
and the phases which build them, as well as
the files on which they are passed from
phase to phase.

Each translation phase scans its input
for errors and takes appropriate action.
Unless a termination error occurs, it
translates part or all of its input into a
new text, further alters what had been
bequn by a previous phase, or sometimes
passes along existing text to a later
phase. This process continues through
phase 60 or phase 64, when the object
module is assembled.

The phases communicate by placing data
in a communications area (COMMON) in
storage, entries in the dictionary and
other tables, and text on work files
SYS001, SYS002, SYS003, and SYS004. When
the SYMDMP, VERBREF, or VERB SUM option is
specified, an additional work file, SYS005,
is also used. When LVL is specified,
SYS006 is used. Some of the tables are
built, used, and released within a single
phase, and others are passed to later
phases which mayor may not immediately
follow.

Diagram 1 shows the output and the flow
of information and control from phase to
phase; it is designed to supplement the
rest of this discussion. The phases are
discussed below in functional groups rather
than in numerical order.

Licensed Material - Property of IBM

r---------T------------T--T---------------------,
I Phase I File I contents I options Required I
~---------+------------+--+---------------------~
I 01 I SYSLST I List of options I LIST I
I I SYSLST I Error messages resulting from I LIST I
I I I compiler initialization I I
I I SYSLST6 I Source coding I LIB I
~---------+------------+--+---------------------~
I 07 I SYSLST lOne-page preface to Lister option listing I LST I
~---------+------------+--+---------------------~
1 08 1 SYSLST 1 Detailed and summary listings I LST 1
1 1 SYSPCH 1 Reformatted source deck 1 LST 1
~---------+------------+--+---------------------~
I 10 1 SYSLST1,5 1 Source coding of Identification, Environ-I LIST 1
1 1 1 ment, and Data Divisions (less Report 1 1
1 I I Section) I 1
~---------+------------+--+---------------------~
1 12 1 SYSLST1,5 1 Source coding of Report section I LIST 1
~---------+------------+--+---------------------~
I 11 I SYSLST1,5 I Source coding of Procedure Division I LIST i
~---------+------------+--+---------------------~
1 25 I SYS005 I SYMDMP Dictionary (DATATAB) I SYMDMp2 I
~---------+------------+--+---------------------~
I 30 I SYSLST I Glossary I SYM 1--
~---------+------------+--+---------------------~
I 60 I SYSLST J Object module I LISTX and NOCLISTq I
I or I SYSLST I Object module (condensed) I CLISTq I
162,63,6431 SYSPCH I Object deck) DECK I
I I SYSLNK I Object module I CATAL or LINK I
~---------+------------t--+---------------------~
I 65 I I Debugging information in object module or) FLOW, STATE, I
I 1 I on SYS005 I or SYMDMp2 I
~---------+------------+--+---------------------~
I 61 I SYSLST 1 Cross-reference tables I SXREF, XREF, I
I I I I VERBSUM or VERBREF I
~---------+------------+--+---------------------~
I 70 I SYSLST I Error messages J ERRS and FLAGE I
I 1 SYSLST 1 Error and warning messages J ERRS and FLAGW I
~---------+------------+--+---------------------~
1 80 1 SYSLST I Source program with FIPS flagging I LVL I
~---------~------------~---~---------------------~
11If LIB is in effect, source coding is listed by phase 01. 1
12The FLOW, STATE, or SYMDr-1P option is required for phases 25 and 65. I
13 The OPT option is required for phases 62, 63, and 64. I
IqMay be changed by SUPMAP option (see "Compiler Options" in this chapter). I
15If FIPS flagging has been requested (LVL option), source program is written on SYS006 I
I for phase 80 input. I
160nly if LIB, NOLVL, and no Lister options. I L ___ J

Figure 2. Compiler Output

Introduction 15

Licensed Material - Property of IBM

r-------------T---------------------------T---,
1 1 Produced or Passed I 1
1 r-------T------T------------~ 1
1 Text IByCPh) ITO(Ph)IOn(File) I Description I
r-------------+-------+------+------------+---~
lIP 105 106 ISYS002 I Source program with syntactic markers I
I I I I 1 inserted· I
r-------------+-------+------+------------+-----------------------------------~---------~
lIP 106 108 ISYS002 I Source program with cross-reference I
I I I I I information included I
r-------------+-------+------+------------+---~
IData IC 110 120 ISYS003 I I/O and data items from source program 1
I I I I 1 hnvironment and Data Divisions I
r-------------+-------+------+------------+---~
IPO 112 130 ISYS002 I Generated Report Writer subprogram from 1
I 1 1 I I Report Section of source program Data I
I I 1 1 I Division I
r-------------+-------+------+------------+---~
IData IC 112 120 ISYS003 1 Data items from source program Report I
I I I I I Section I
r-------------+-------+------+------------+---~
IPO 111 130 ISYS002 I Translation of source program Procedure I
I I 1 I I Division I
r-------------+-------+------+------------+---1
I Data .IC 120 122 !SYS004 1 Translation of FDs and SDs by phase 10; I
I 1 I I I passed unchanged I
r-------------+-------+------+------------+---1
IATF 120 122 ISYS004 1 Record Descriptions of levels 01-49, 66, 77,1
I I 1 I I and 88. ATF-text is used as part of the I
I I I I I dictionary entries I
r-------------+-------+------+------------+---~
IData A 120 122 ISYS004 I Constants defined by VALUE clauses. This I
I (Incomplete) I I I 1 text has a 2-byte prefix for identification, 1
I I 1 I 1 but lacks location fields I
r-------------+-------+------+------------+------------------------~--------------------1
IPO 122 130 ISYS002 I Generated Q-Routines from OCCURS ••• DEPENDINGI
I 1 1 1 I ON cla uses 1
r-------------+-------+------+------------+---~
IData IC 122 121 ISYS003 1 Translation of FDs and SDs by Phase 10; I
I I 1 I 1 Passed unchanged 1
r-------------+-------+------+------------+--------------~------------------------------1
IData A 122 121 ISYS003 I Remainder of/the source program Data 1
1 1 1 1 1 Division. This text has a 2-byte prefix fori
I I I I 1 identification I
r-------------+-------+------+------------+---~
IDEF 122 121 ISYS003 1 Data-names and file-names from Data Divisionl
1 I I I I for use by phase 61 in producing the I
I 1 I 1 1 cross-reference listing. This DEF-text is I
1 I I I 1 put out by phase 22 when SXREF, XREF, I
1 I 1 I 1 VERBREF, VERBSUM, or SYMDMP has been I
1 1 1 1 1 specified. When SYMDMP has been speci~ied, 1
1 1 1 1 1 phase 21 copies the text onto SYS004. If 1
1 1 1 1 I SXREF, XREF, VERBREF, or VERBSUM has not 1
I 1 1 1 1 been specified, phase 60 reads the text and 1
1 I I I I ignores it. I
r-------------+-------+------+------------+---~
IFTL 122 121 ISYS003 I FDs and SDs I
r-------------4-------~------4------------~---~
I~Phase 60 is replaced by phases 62, 63, and 64 when the optimizer option COPT) has beenl
I specified. I
12 Error text is treated somewhat differently. It is written on SYS003 for phase 70 by I
I phase 60 or 64 only if the ERRTBL table cannot accommodate it. It is produced by all I
I phases between phase 01 and 51, and the accumulation is passed on SYS004. Phase 60 orl
I 64 or phase 70 Cif phase 60 or 64 text processing is bypassed or if SYNTAX is on) I
I reads it from SYS004. I
13When OPT is specified, file SYS004 is used for REF-text. I L ___ J

Figure 3. List of Internal Compiler Texts (Part 1 of 3)

16 Section 1. Introduction

Licensed Material - Property of IBM

r--------------T--------------------------T---1
J I Produced or Passed I I
I ~------T------T------------~ I
I Text I By (Ph) I To (Ph) IOn (File) I Description I
~--------------t------+------+------------+---~
IData A 121 160 or ISYS004 I Coding similar to assembler language for I
I I 1641 I I translation into data and global table I
I I I I I portions of object module I
~--------------t------+------+------------+---1
IDEF 121 160 or ISYS004 I Data-names and file-names from Data Division I
I I 1641 I I This DEF-text is put out by phase 22 when I
I I I I I SXREF, XREF, VERBREF, VERESUM, or SYMDMP hasl
I I I I I been specified. When SYMDMP has been I
I I I I I specified, phase 21 copies the text onto I
I I I I I SYS004. If SXREF, XREF, VERBREF, or VERBSUMI
I 1 I I I has not been specified, phase 60 reads the I
I I 1 I I text and ignores it. 1
~--------------+------+------+------------+---1
IPO 121 130 ISYS002 1 VCONs for system modules, such as logic I
1 1 1 I 1 modules that will be required, determined 1
I I I 1 1 from Data Division statements I
~--------------+------+------+------------+---1
IDEF 130 160 or ISYS004 1 Procedure-names for use by phase 61 in I
I I 1641 1 I producing the cross-reference listing 1
~--------------+------+------+------------+---1
IP1 130 140 ISYS003 I Further translation of PO-text. Names have I
I I 1 1 I been replaced by attributes; CORRESPONDING I
I I I I I statements have been expanded I
~--------------+------+------t------------+---1
IP2 140 150 ISYS001 I Further translation of P1-text. A more I
I I I 1 I precise and expanded version of Procedure I
I I I I 1 Division statements I
~--------------t------+--~---+------------t---1
I Intermediate AI50 151 ISYS002 I Procedure A-text and Optimization A-text I
I I I I I elements with an identifying prefix of X'27'1
I I I I I or X' 28' I
~--------------+------+------+------------+---1
IOptimization AI50 160 or ISYS003 1 A special text, consisting of such items as I
I 1 1621 I I virtuals and literals, used by phase 60 or 1
I I I I I phase 62 to eliminate storage duplication I
~--------------+------+------+------------+---1
I Procedure A 151 160 or ISYS001 I Coding similar to assembler language coding. I
I I 162 andl I It is ready for conversion into the object I
I I 1631 I I module I
~--------------+------+------+------------+---1
IOptimization AI51 160 or ISYS003 I A special text, consisting of such items as I
I I 1621 I I virtuals and literals, used by phase 60 or I
1 I) I I phase 62 to eliminate storage duplication 1
~--------------+------+------t------------+---1
I Procedure A1 163)64 ISYS002 I Coding produced from Procedure A-text, 1
I I I I I optimized to eliminate unnecessary Procedure I
I I I I I Division instructions. It is similar to I
I I I I 1 assembler language, and is ready for I
I I I I I conversion into the object module I
~--------------~------~------~------------~---1
11Phase 60 is replaced by phases 62, 63, and 64 when the optimizer option (OP~) has been I
I specified. I
12 Error text is treated somewhat differently. It is written on SYS003 for phase 70 by I
I phase 60 or 64 only if the ERRTBL table cannot accommodate it. It is produced by all I
I phases between phase 01 and 51, and the accumulation is passed on SYS004. Phase 60 or)
I 64 or phase 70 (if phase 60 or 64 text processing is bypassed or if SYNTAX is on) I
I reads it from SYS004. I
13 When OPT is specified, file SYS004 is used for REF-text. I L ___ J

Figure 3. List of Internal Compiler Texts (Part 2 of 3)

Introduction 17

Licensed Material - Property of IBM

r--------------T--------------------------T---,
1 I Produced or Passed 1 1
1 ~------T------T------------~ I
1 Text IBy(Ph) ITo(Ph)IOn(File 1 Description 1
~--------------+------+------+------------t---~
IE 160 or 170 ISYS003 1 Error Text 2 1
1 164 1 1 I 1 I
~--------------+------+------+------------+---~
IE 1 170 ISYS004 1 Error Text2 1
~--------------+------+------+------------+---i
1 REF 160 161 ISYS003 I For cross-reference table. This text is I
I ~------+------+--------·----i passed only if the SXREF, XREF, VERBREF, 1
I 164 1 161 ISYS004 3 1 or VERBSUM 'option is in effect 1
~--------------+------+------+------------+---i
IDEF 160 or 161 ISYS001 I For cross-reference table. This text is 1
I 164 1 1 1 passed only if the SXREF, XREF, VERBREF, or I
I 1 1 1 1 VERB SUM option is in effect 1
~--------------+------+------+------------+---i
1 Debug 160 165 ISYS002 1 For object-time debugging. This text is 1
1 1 1 I 1 passed only if the SYMDMP or STATE option is I
1 I 1 1 1 in effect 1
~--------------~------~------L------------~---i
11 Phase 60 is replaced by phases 62, 63, and 64 when the opti~izer option (OPT) has been 1
1 specified. 1
12 Error text is treated somewhat differently. It is written on SYS003 for phase 70 by 1
1 phase 60 or 64 only if the ERRTBL table cannot accommodate it. It is produced by all 1
1 phases between phase 01 and 51, and the accumulation is passed on SYS004. Phase 60 orl
1 64 or phase 70 (if phase 60 or 64 text processing is bypassed or if SYNTAX is on) 1
1 reads it from SYS004. 1
13 When OPT is specified, file SYS004 is used for REF-text. 1 L ___ J

Figure 3. List of Internal Compiler Texts (Part 3 of 3)

GROUP 1: Control and Initialization

Phase 00 controls the flow. It receives
control from and relinquishes it to the DOS
system. It interfaces with the system for
such Control Program services as
input/output requested by other phases.

Phase 00 also serves as an interface
between the other phases, controlling the
flow and holding shared information in
COMMON (see "Section 5. Data Areas").
After each phase, except phase 80, control
returns to phase 00, which links to the
next one: phase 80 returns control to the
DOS/vS system. The Table Area Management
Executive Routines (TAMER), part of Phase
00, allocate storage and process tables for
the other routines. The "Table and
Dictionary Handling" chapter describes the
fUnction of TAMER. For descriptions of
tables handled by TAMER, and for the
dictionary format, see "section 5. Data
Areas".

Phase 01 is logically a subroutine of
phase 00 but does not remain in storage
once its tasks are accomplished. This
phase sets the options applicable for the
compilation and opens all files.

If the BASIS or COpy function is used,
the LIB option must be specified on the CBL

18 section 1. Introduction

card. When LIB is specified, Phase 01
reads the source program and resolves BASIS
and COPY statements by performing syntax
analysis on these statements and by writing
the user created COBOL libraries inline
with the remainder of the source program on
SYS004. E-text for BASIS and COpy
functions is written on SYS003 and the
entire source language listing is produced
on SYSLST (or SYS006 for LVL option).

GROUP 2: Reformatting the Source Deck

If the LST option is specified phases
OS, 06, 07, and 08 produce a reformatted
source program with embedded
cross-reference information and a summary
of cross-reference information on SYSLST.
Optionally they also produce a reformatted
source deck on SYSPCH. These phases also
write the source program on SYS004.

GROUP 3: 'I'ranslating the Identification,
Environment, and Data Divisions

Phases 10, 20, 22, and 21 process the
Identification, Environment, and Data
Divisions, with the exception of the Report

Section, if any, (discussed with Group 3,
below). Those source statements requiring
translation are changed to Data Ic-text in
phase 10. Each of the other three phases
translates a portion of this Data Ic-text
into Data A-text. The result is later
joined to the Procedure Division by Phase
60 or to Phase 64 (Group 4, below) if the
optimizer option has been specified.

DEF-text, which provides references to
data-names and file-names required for

Licensed Material - Property of IBM

cross-reference listings, is created in
phase 22 and passed through phase 21 to
~hase 60 or phase 64. Phase 22 also enters
complete entries for LDs.and RDs
(Record-level descriptions) and partial
(dummy) entries for SDs and FDs in the
dictionary. The SD and FD entries are
completed by phase 21, and the dictionary
is then ready for use by phase 30 and ny
phase 25 (if the SYMDMP option 1S in
effect). PO-text, the first form of
internal procedure text (see Group 3

Introduction 18.1

below), is created by phase 22 for
Q-Routines and by phase 21 for VCONs.
Q-Routines are special routines created to
handle OCCURS clauses with the DEPENDING ON
option. They are explained further in the
chapter on phase 22. The PO-text is placed
on SYS002 for later use by phase 30.
Finally, if the LIST option is in effect
and the LST option is not in effect, phase
10 produces a source language listing of
the Identification, Environment, and Data
Divisions on SYSLST (or SYS006 for LVL
option). (If LIB was specified, the source
listing is produced by Phase 01.)

Each of these phases scans its input
text for errors and adds any necessary
diagnostics, written in E-text, to the
textual flow. The accumulated E-text is
intermingled with the Data A-textand
DEF-text on SYS004, and all three provide
part of the input for Phase 60 or Phase 64.
If a listing of error messages is to be
produced, Phase 10 is later called in to
produce it.

The translation process can be
visualized from the contents of the work
files produced by the phases. These work
files are shown in Figure 4. Note that, in
addition to the contents shown, the work
files contain E-text and DEF-text. The
texts are intermingled on the work files,
but they are readily distinguishable by
their prefixes. The formats of the texts
are shown in "Section 5. Data Areas."

GROUP 4: Translating the Procedure
Division

If the Report Writer facility is
required, phase 00 calls on phase 12. This
phase reads the Report Section of the Data
Division, generates the report program in
PO-text, and writes it on SYS002. Phases
11, 30, 40, 50, 51, and 52 then process the
Procedure Division.

Phase 11 encodes the source program's
Procedure Division into PO-text, and adds
it to SYS002. It also begins the
dictionary by placing procedure-names and
their attributes in it. SYS002 and the
dictionary, with the additions from phases
22 and 21, later provide input for phase
30.

Phase 30 uses the information in the
dictionary to replace each name with its
attributes~ It performs any other
processing requiring the dictionary and
then releases the dictionary's storage
space. It also translates the PO-text into
Pl-text. The text is changed into P2-text
by phase 40, and into Procedure A- and
Optimization A-texts by phases 50, 51, and

Licensed Material - Property of IBM

52. These last two texts are placed on
SYSOOl and SYS003 for phase 60 or phase 62.

Phase 60 converts Procedure A-text into
the machine language program. When the
optimizer option (specified by OPT on the
CBL card) is in effect, phases 62 and 63
read Procedure A-text and phase 63 converts
it into Procedure Al-text and passes it to
phase 64. Phase 64 then converts Procedure
Ai-text into the machine language program.

Phase 11 also writes a source listing of
the Procedure Division on SYSLST (SYS006
for LVL option) if the LIST option is in
effect. (If LIB was specified, Phase 01
writes the source listing.) Phase 30
writes a glossary on SYSLST (SYS006 for LVL
option) if the SYM option is in effect.
Phase 30 also creates DEF-text for
procedure-names and places it on SYS004 for
later use in producing the cross-reference
listing.

Each of these phases scans its input
text for errors and adds any necessary
diagnostics, written in E-text, to the
textual flow. 'I'he accumulated E-text is
intermingled with the internal procedure
text until it is isolated by Phase 51 and
added to SYS004 for phase 60 or phase 64.

GROUP 5: Assembly

The function of phase 60 or of phases
62, 63, and 64 is to produce from the
texts, tables, and counters that have been
created by the earlier phases a machine
language program that is suitable for input
to the linkage editor. Phases 62, 63, and
64 are an optional version of phase bO and
are used instead of phase 60 when the
optimizer option (CPT) is requested.

Phase 60 produces code that has been
optimized for literals, virtuals, source
procedure-names, and compiler-generated
procedure-names. Phases 62, 63, and 64
produce code that has been optimized for
instructions generated from tHe Procedure
Division as well as those items optimized
for by phase 60. To produce the object
module, the Data A-text on SYS004, the
Procedure A-text on SYSOOl (used by phase
60) or the Procedure Al-text on SYS002
(used by phase 64), and the Optimization
A-text on SYS003 are used. Phase 63
creates Procedure Al-text from Procedure
A-text.

The object module is written, according
to the options that are in effect, as an
object deck on SYSPCH if DECK is in effect,
as an object listing on SYSLST (SYS006 for
LVL option) if LISTX is in effect, as input

Introduction 19

Licensed Material - Property of IBM

r------------T------------------T-------------T---,
I Work File I Produced By I Read By 1 Contents I

r------------+------------------+-------------+---~
I SYS003 I Phases 10 & 12 1 Phase 20 I Data Division, in Data IC-text I

r------------+------------------+-------------+---~
I SYS004 I Phase 20 I Phase 22 I 1. FDs and SDs, in Data IC-text I

I I I I I
1 I I I 2. Objects of RENAMES clauses, in Datal
I I I I IC-text I

I I I I I
I I I I 3. Table handling keys, in Data I
I I I I IC-text I
I I I I I
I I I I 4. Constant definitions in incomplete I

I I I 1 Data A-text I

I I I 1 I
I I I I 5. Remainder of Data Division, in I
1 I I 1 ATF-text I
r------------+------------------+-------------t---~
I SYS003 I Phase 22 I Phase 21 1 1. FDs and SDs, in Data IC-text I

I I I I I
I I I I 2. Remainder of Data Division, in Datal
I I I I A-text I

r------------+------------------+-------------+---~
I SYS004 I Phase 21 I Phase 60 I Data Division in Data A-text. I

I I I or 64 I I L ____________ ~ __________________ ~ _____________ ~ ___ J

Figure 4. Contents of Work Files Used in Translating the Data Division

to the Linkage Editor on SYSLNK if either
LINK or CATAL is in effect, and as a
condensed object listing on SYSLST (SYS006
for LVL option) if CLIST is in effect.

GROUP 6: Final and Diagnostic Output

Final and diagnostic output for the
compiler consists of the object module
discussed above and other optional
information.

If the SXREF or the XREF option is in
effect, phase 60 or phase 64 reads the
DBF-text from SYS004 and places it on
SYS001. Phase 60 or 64 writes the
necessary REF-text, placing it on SYS003 or
SYS002, respectively. phase 00 calls Phase
61, an optional phase, which produces a
cross-reference listing on SYSLST (or
SYS006 for Lvi option).

If the SYMDMP option is in effect, phase
25 is called to create tables in the Debug
File used by the object-time COBOL library
subroutines in producing the formatted
dump. If the SYMDMP, STATE, or FLOW option
is in effect, phase 60 produces debugging
information and passes it to phase 65, an
optional phase. For SYMDMP, phase 65
completes the Debug File; for STATE, it
uses the debugging information written by
phase 60 to produce two tables in the
object module; for FLOW, it places the
number of traces requested in the variable

20 section 1. Introduction

portion of the Task Global Table in the
object module and allocates space after
INIT3 for the table used by the COBOL
library object-time subroutine ILBDFLWO.
For any of these options, phase 65 writes
the end card in the object module, writes
information in the TGT, and does the
processing necessary for segmented programs
and programs that use the SORT verb or
MERGE verb.

Phase 70 produces an error listing on
SYSLST (SYS006 for LVL option) and is only
given control if source program errors were
detected. Phase 00 calls phase 70 and the
input to the phase in E-text. Any phase
which found an error produced an E-text
element, specifying the error message to be
written. These E-text elernents are
collected by phase 60 or phase 64 and used
to produce the list of error messages (and
warning messages if the user requested
them) •

Phase 80 scans the source program for
deviations from the Federal Information
Processing Standard (FIPS) and issues
messages along with the source program
listing.

COMPILER OPTIONS

Phase 01 stores information in COMMON in
accordance with the options which are to
control the compilation step.

All of the following options except
LINECT may be set by the user at
installation time as defaults or by the
programmer on the OPTION control card.
LINECT may be set at installation time as a
default or by the operator.

If no Lister options are in effect and
an option causes output to be written on
SYSLST. the output is written directly on
SYSLST, if the NOLVL option is in effect.
If the LVL option is in effect, the output
is written on SYS006, which is used by
phase 80 to produce a listing on SYSLST.

CATAL

DECK or NODECK

DUMP or NODUMP

ERRS or NOERRS

LINECT=nn

The Object module is
placed on SYSLNK and
catalogued in the core
image library after link
editing.

A deck is produced on
SYSPCH.

A listing of registers
and storage is printed
when an abnormal program
termination occurs.

Compiler diagnostics are
printed on SYSLST.

The specified number of
lines C'nn') are printed
on each listing page.

LINK or NOLINK The object module is
placed on SYSLNK.

LIST or NOLIST The source module is
printed on SYSLST. If
LST is in effect, NOLIST
is ignored.

LISTX or NOLISTX The object module is
printed on SYSLST.

LOG or NOLOG A listing of all control
statements is printed.

SYM or NOSYM Global tables, literal
pools, register
assignments, and
glossary listing are
printed on SYSLST.

XREF or NOXREF A cross-reference
listing is printed on
SYSLST.

The following options may be set by the
programmer using the CEL card or by making
appropriate entries in source library
member C.CBLOPTNS. Any number of CBL
cards may be used. The default cases are
underlined.

Licensed Material - Property of IBM

APOST or QUOTE

BUF=nnnnn

CATALR or
NOCATALR

The apostrophe or the
double quotation mark
has been used to
deline~te literals or
represents the character
used when the figurative
constant QUOTE is used.

Each compiler work file
buffer is assigned
'nnnnn' nytes of
storage. The minimum is
512 bytes, and the
maximum is the maximum
block size for the
storage device used.
The default is 512
bytes.

CATALR indicates that
CATALR card images are
to be written on the
SYSPCH file if DECK is
specified on the OPTION
card. This allows the
object modules produced
by the compiler to be
catalogued in the
relocatable library.
~he module names on the
CATALR cards follow the
same rules as the phase
names in the compiler
produced PHASE cards
according to the
segmentation and sort
phase naming
conventions.

CLIST or NOCLIST Global tables, literal
pools, register
assignments, and a
condensed listing are
produced. If OPT is
specified, the starting
address of each
Procedure Block (PBL) is
also listed. The
procedure portion
contains source card
numbers and the relative
location of the first
generated instruction
for each verb. This
option overrides
NOLISTX. The default is
LISTX.

COUNT or NOCOUNT COUNT indicates that an
execution surrmary is to
be produced at the end
of execution of the
compiled program. If
both COUNT and STXIT are
desired, the program
unit requesting COUNT
either must contain the
request for S~XIT or

Introduction 21

Licensed Material - Property of IBM

FLAGW or FLAGE

FLOW = (nIn])

LIB or
NOLIB

LVL=c
NOLVL

OPT or NOOPT

must be entered before
the program unit that
requests STXIT. When
COUNT is in effect. the
maximum number of verb
blocks is 32.161.

All warning and error
diagnostics (FLAGW) or
only error diagnostics
(FLAGE) are listed.

A formatted trace (i.e ••
a list containing the
program identification
and statement numbers)
corresponding to a
variable number of
procedures executed
prior to an abnormal
termination is printed
on SYSLS~. FLOW must
not be specified for the
same compilation as OPT
or STXIT.

LIB indicates that BASIS
and/or COPY statements
are in the source
program. If either COpy
or BASIS is present. LIB
must be in effect. If
neither COpy nor BASIS
statements are present.
use of the NOLIB option
yields more efficient

- compiler processing.
-
Indicates whether the
Federal Information
Processing Standard
flagger is to be
activated. c indicates
the level of the
standard to De checked
(A = low~ B = low
intermediate~ C = high
intermediate~ D = full
standard). When LVL=c
is designated as the
default at installation
time. NOLVL can not be
specified at
compile-time.

The object module is
optimized by Phases 62.
63. and 64 for
instructions generated
from the Procedure
Division. If OPT is
speci-fied. the starting
address of each
Procedure Block (PBL) is
also listed. OPT must
not be specified for the
same compilation as
SYMDMP, FLOW. or STATE.

22 Section 1. Introduction

PMAP=n

SEQ or NON SEQ

SXREF or NOSXREF

SPACE1, SPACE2.
or SPACE3

STATE or NOSTATE

STXIT or NOSTXIT

This option enables the
user to request a
relocation factor nnn to
be added to the lpcation
counter field in the
object code listing.
The relocation factor
"nn is a hexadecimal
number of from one to
eight digits. If the
PMAP option is not
specified. the
relocation factor is
assumed to be zero. If
the PMAP option is
specified in a segmented
program. the object code
listing for segments of
priority higher than the
segment limit (default =
49) will not be
relocated. This option
is in effect only if
LISTX is specified.

~he source statements
are (SEQ) or are not
(NONSEQ) sequence
checked. If LST is in
effect. this option is
ignored.

An alphabetically
ordered cross-reference
listing is printed on
SYSLST. SXREF overrides
XREF, which is specified
on the OPTION control
card. The default value
is XREF.

The output listing is
single, double, or
triple spaced.

~he number of the
statement being executed
at the time of abnormal
termination is printed
on SYSLST. STATE must
not be specified for the
same compilation as
SYMDMP, OPT or STXIT.

Control is passed to a
user error procedure if
an error occurs on a
unit-record file. If
both COUNT and STXIT are
desired, the program
unit requesting COUNT
either must contain the
request for STXIT or
must be entered before
the program unit that
requests STXI~.

SUPMAP or
NCSUPMAP

SYMDMP[=filename]

The Phase 60 output
is suppressed if any
E-Ievel messages are
produced by the
compiler.

A formatted symbolic
dump of specified data
areas is printed on
SYSLST at various points
dynamically during
execution of a program;
in the event of an
abnormal termination, a
formatted symbolic dump

Licensed Material - Property of IB~

of all data areas is
printed on SYSLST.
SYMDMP must not be
specified for the same
compilation as STATE,
CPT or STXIT. For all
the mutually exclusive
options, the last
encountered option is
the one remaining in
effect. If "filename"
is not specified, the
debug file (on SYSOOS)
is named IJSYSOS. If
more than one COBOL

Introduction 22.1

SYNTAX
CSYNTAX
NOSYNTAX

program with the SYMDMP
option is included in a
run unit and all the
debug files are on the
same direct access
device, each must be
given a unique name.

Indicates whether the
source text is to be
scanned for syntax
errors only and
appropriate error
messages are to be
generated. For
conditional syntax
checking (CSYNTAX), a
full compilation is
produced as long as no
messages exceed the W
level. If one or more
C-Ievel or higher
severity messages are
produced, the compiler
generates the messages
but does not generate
object text.

1. When the SYNTAX
option is in effect,
all of the following
compile-time options
are suppressed:

OPTION control
statement: LINK,
DECK, XREF

CBL statement:
SXREF, CLIST, LISTX,
VERBSU~I, VERBREF,
COUNT

2. When conditional
syntax-checking is
requested, the
preceding options are
suppressed only if
one or more E- or
D-Ievel messages are
generated.

3. Unconditional syntax
checking is assumed
if all of the
following
compile-time options
are specified:

OPTION control
statement: NOLINK,
NOXREF, NODECK

CBL statement:
SUPMAP, CLIST,
VERBSUM, VERBREF,

Licensed Material - Property of IBM

SXREF, and LISTX are
not specified

TRUNC or NOTRUNC Standard or nonstandard
truncation will be
applied to computational
items. If standard
(TRUNC), itenls are
truncated according to
their pictures; if
nonstandard (NOTRUNC),
they are truncated
according to the actual
amount of storage
occupied.

VERB or NOVERB Indicates whether
procedure-naroes and
verb-names are to be
listed with the
associated code on the
object program listing.
VERB has meaning only if
the LISTX or CLIST
compiler option is
specified, if RE~~Y
'I'RACE is used in the
source program, or if
VERBSUM, VERBREF, or
COUN'I' is specified.

VERBREF or
NOVERBREF

VERBSUM or
NOVERBSUM

ZWB or NOZWB

VERB REF indicates that
a verb cross-reference
listing is to be
produced for the
compiled program.

VERB SUM indicates that
a verb summary listing
is to be produced for
the compiled program.

Indicates whether the
compiler is to generate
code to strip the sign
when a signed external
decimal field is
compared to an
alphanumeric field. ZWB
specifies stripping.

The following Lister options may be set
by the programmer using the LST card. The
default cases are underlined.

COPYPCH or
NOCOPYPCH

COPYPCH indicates that
the updated and
reformatted copy
libraries are to be
punched. If the Lister
DECK option is in
effect, the libraries
will be punched as part
of the source deck. If
the Lister NODECK option
is in effect, the
libraries will be

Introduction 23

Licensed Material - Property of IBM

DECK or NODECK

LSTONLY or
LSTCOMP

punched as a separate
deck.

DECK indicates that an
updated source deck is
to be produced. If the
COPYPCH option is in
effect, the updated
source deck will include
the updated and
-reformatted copy
libraries.

LSTONLY indicates that
a listing of the
reformatted source
program is to be
produced, but that the
program is not to be
compiled; if the Lister
DECK option is in effect

24 section 1. Introduction

PROC=lCOL or
PROC=2COL

the updated source deck
will also be produced.
LSTCOMP indicates that,
in addition to the
listing and optional
deck produced by the
LSTONLY option, the
source program is to be
compiled.

PROC=lCOL indicates that
the Procedure Division
is to be listed in
single-column format.
FROC=2COL, which can be
specified only if the
printer has 132 print
positions, indicates
that the Procedure
Division is to be listed
in double-column format.

PHASE 00

Phase 00 (ILACBLOO), the interface
between the COBOL compiler and the DOS/VS
System, is resident in storage throughout
compilation. Its major functions are:

• Receiving control from the DOS/VS
System and, at the end of compilation,
returning control to it.

• Performing reallocation and linkage
after each of the other phases has
completed its operations.

• Handling input/output requests from the
other phases.

• Manipulating tables for the other
phases.

• providing a communications area
(COMI-iON) for the other phases.

o Processing terminal error conditions.

RECEIVING CONTROL FROM AND RETURNING IT TO
THE SYSTEM

Compilation is invoked by an EXEC
control card. Phase 00 is entered at entry
point START. Routine LINKA calls phase 01,
and passes to it the parameters for
processing and the addresses of certain
areas in phase 00 for phase 01 to fill in.

When phase 60, 64, 65, 61, or 70 is the
last phase, it calls phase 00 after its
processing is complete. Routine SKPLNK
issues an EOJ macro to return control to
the DOS/VS System. If an error occurs that
stops compilation (see "Unrecoverable Error
Conditions" in this chapter), routine
TRMNATE prints a message and returns
control to the system with a CANCEL or DUMP
macro instruction. If an error occurs and
OPT is specified, phase 62 returns to phase
00 with a CANCEL code. When LVL is in
effect, phase 80 is the final phase and it
returns control directly to the system.

Phase 00 keeps track of which processing
phase is currently active by means of a

Licensed Material - Property of IBM

SECTION 2. MET'HOD OF OPERATION

two-byte cell named LINKCNT. Routine LINKA
increments LINKCNT by two before it links
to the next phase, so that, for example,
the value of LINKCNT is four at entry to
phase 10. If phase 70 is not executed, or
if termination is abnormal, the termination
routines set LINKCNT to the value it would
have on entry to phase 70, that is, the
hexadecimal value '26'. The location of
LINKCNT is internal to phase 00.

Figure 4 traces the routines used by
Phase 00 for both normal and abnormal end
of compilation.

PROCESSING BETWEEN PHASES

Other phases call phase 00 for
between-phase processing or for
input/output request with the following
sequence:

L register,=A(COS) See note 1.
BALR 0, register
DC X'XY' See note 2.
DC X'ZZ' See note 3.

Notes:

1. A(COS) is the relocated address of the
entry point to phase 00. Routine
LINKPHl passes this address in
register 1 to each phase that it calls
into storage.

2. 'XY' is a hexadecimal linkage code.
'X' bits indicate the function to be
performed. 'Y' bits indicate the
affected file. 'y' bits are ignored
when the function does not involve a
file. See Figure 5 for 'XY' values~

3. 'ZZ' indicates functions to be
performed by phase 00. See Figure 5
for 'ZZ' values.

Other phases call the table handling
routines of phase 00 at the entry point of
each routine. These routines are discussed
in "Appendix A. Table and Dictionary
Handling."

Phase 00 24.1

Licensed Material - Property of IBNI

r------T--------------T---,
IX codelRoutine Called I Function of Routine I
r------+--------------+---~

o READ I Read a utility file. Pass back to the callinq routine the

1

2

3

6

7

9

A

B

C

D

E

F

WRITE

WRITEA

~RMNATE

CLOSET

READQ
I
ISEGPNT
I
1

LINKB

EOJ

SEGNOTE

I storage address of the logical record. If Y is 9, read a COpy
I or BASIS library.
I

)
I

PU~N: Write IC-text. where the calling routine gives the
record's address in register 2, and its length in register 3.

PUT: write a record, where the calling routine gives the
record's address in register 2, and the first two bytes of the
record define its length.

Cancel jOb. A D-level error has been encountered.

Purge, if necessary, and rewind the indicated file. If the
second parameter byte (ZZ) contains X'OO', last use of file was
to read. If the second parameter byte (ZZ) contains X'Ol', last
use of file was to write.

Read SYSIPT.

position the access mechanism to a disk address supplied by the
calling routine (on SYS001) and read the record (see phase 60
and phases 62 and 63).

Issue a RETURN macro to terminate the previous phase.

Return to the system.

Write the current record, if required, in a short block, and
pass back to the calling routine the relative disk address of
the next record to be written on SYSOOl (see phase 51).

EJECT or SKIP I Position the printer. The exact function is determined by a

I
I

CLOSER

I CLOSER
I

I second parameter byte as follows:
I
I
I
I
I
I
I
I
I
I

X'OO'
X'Ol'
X'02'
X'03'

Eject
Skip one line
Skip two lines
Skip three lines

Flush the buffer. Do not write an end-of-file indicator (see
F). If the second parameter byte (ZZ) contains X'CC', call was
not from phase 00 internally but from another phase.

I When a file is to be closed, move 'FF' and an end-of-file code
I into the buffer. pad the buffer with zeros, check the previous

I) input/output operation, and write out the file.
r------~--------------~---1
Y Code File ZZ Code Meaning I

o SYS005 X'Ol' NOTE macro instruction to retrieve the absolute address I
1 SYSOOl X'02' POINT macro instruction to cause processing to start at I
2 SYS002 the specified block in the file I
3 SYS003 X'03' POINTS to rewind the file I
4 SYS004 X'04' WRITE UPDATE (disk only) I
5 SYSIPT X'05' When preceded by a X'22', WRITE on SYS002 from SYS005 I
61 SYSLST buffer with a buffer size of 512 bytes; when preceded by a I
7 SYSPCH X'02', RE~D from SYS002 into SYS005 buffer with a buffer I
8 SYSLNK size of 512 bytes. I
9 SYSSLB I

I
11Also for SYS006 when LVL is in effect. I L ___ J

Figure 5. Linkage Codes to Phase 00

I-hase 00 25

Licensed Material - Property of IBM

When the linkage code indicates end of
phase the following Occurs:

• Routine LINKB issues RETURN macro to
terminate calling phase.

• Control passes to the instruction
following the LINK instruction in
routine LINKA.

• Files are purged.

• If necessary, an interlude routine is
called (INTi after phase 10; INTll
after phase 11, etc.). The interlude
routine rewinds files, sets up POINT
table buffers, determines next phase,
etc.

• Routine LINKA updates LNKCNT, sets
switches for TAMER, loads and calls the
next phase.

Figure 6 shows the conditions under
which optional phases are called. Figure 8
shows the flow of control for processing
between phases.

Use of buffers by files in each phase is
predetermined and is descrited in Figure
10. Buffer addresses are recorded in a
buffer pojnter table. Phase 00 contains a
pointer to the current buffer address.

Phase 01 opens all files.

phase 00 closes work files as they are
no longer needed.

26 Section 2. Method of Operation

r-----------T--------------T--------------,
I optional I Preceding I Compiler I
I Phase I Phase I Option I
~-----------+--------------+--------------~
I 05 I 01 I LST I
~-----------+--------------+--------------~
1 06 , 05 I LST I
t-----------+--------------+--------------~
1 07 I 06 I LST I
t-----------+--------------+--------------~
, 08 , 07 I LST ,
t-----------+--------------+--------------~
1 25 , 21 I SYMDMP I
~~----------+--------------+--------------~
I 61 I 60 I XREF I
, ,64 I SXREF I
I ,65 I VERBSUM I
1 I , VERBREF I
t-----------+--------------+--------------~
I 62 I 51 I OPT I
I 63 I I I
I 64 I I I
t-----------+--------------+--------------~
I 65 I 60 I SYMDMP I
I I 64, I
t-----------+--------------+--------------~
I 70 I Varies IIf errors in I
I I ,source program I
t-----------+--------------+--------------~
I 80 I 60 I LVL I
I ,61 I I
I ,64, I
I I 65 I I
I ,70 I I L ___________ ~ ______________ ~ ______________ J

Figure 6. Optional Phase Processing

ClINCEL request
I I

BASIS Library
not found

IRequest received
Ifrom either phase
101, 60, 62, 70, or
Ifrom TAMER

ICBNOFND Routine
I
I
I

I

I

I
I
I
I
V

ITRMNATE Routine ,
IPrint error message,

Set I Ion printer.
ILINKCNT to
,hexadecimal 26.

I

I

I , ,
V

,Cancel Job ,

, ,
I

IDump if request wasl
,received from TAMER I , ,
I I
I I
I I
I I , ,

Licensed Material - Property of IBM

X'BO' Request from
phase 70

I
ILINKB
I

Routine

I Issue
I

RETURN macro. I
I

r
I

I
I
I

(tINKBA) V
I

IPURGF ROUTINE ,
Ipurge files, if
Inecessary.

I
IINT7 ,
,Close
I
I ,
I

I

I

I
I ,
V

Routine

files.

I

I , ,
V

ISKPLNK Routine
I
ITurn off LINK bit
lin System Communi­
Ication Region if
IE-level source
lerrors were en­
,countered
,Issue FOJ macro.
I

I

Figure 7. Flow of Control at End of Compilation (Normal and Abnormal)

Phase 00 27

Licensed Material - Property of IBM

PHASE INPUT/OUTPUT REQUESTS file is double buffered, and checks to
determine whether the operation was
completed successfully. If necessary,
TAMER handles dictionary spill during phase
processing (see "Appendix A. Table and
Dictionary Handling"). Figure 9 shows the
input/output reguests for each phase.

Phase 00 translates all phase
input/output requests into system macro
instructions or SVCs. It switches the
buffer pointers in the POINT table if the

Processing Phase *
I

I<--------------------------------------~I
BALR j---, 1

~--------------------~I 1 ,
I I
I I

COS I 1
r-----------------~I I I

Analyze
X parameter
(see Table 4)

1<-1 LINKB I LINK A
I I I I I
... 1----->1 Terminates calling 1 ILoad new 1<--,

1 phase by issuing 'Iprocessing phase I
I a RETURN macro I I I
1 instruction I 1 I

TAMER Routine (optional) I
I

I (---l

1 1 1 I

Reallocate
storage
for tables

I
1

r---->I , 1 ,
1 1 L--...t Call phase I
, 1 I I

I ~---->IDetermines value 1
lof next interlude I

.--I routine 1
IN T Routine I' L. -----------------'

I I 1
IOPEN, CLOSE files I<---J
I Real10cate 1

storage for buffers 11---------------------'
I

Note: The blocks do not indicate relative locations or sizes of the routines.

*This box changes contents at the end of each cycle. Exit from the cycle occurs after
the last processing phase, which may be phase 60, 61, 62, 64, 65, or 70, when control is
returned to COS with a request for an EOJ macro instruction. Exit may occur through
abnormal termination (see ~igure 7) •

Figure 8. Flow of Control for Processing Between Phases

28 section 2. Method of Operation

Licensed Material - Property of IBM

r-------T--------T--------T--------T--------------T-------T--------T---------T------~-----T------l
.Phase 'SYS001 ISYS002 ISYS003 ISYS004 'SYSOOS 'SYSIPT 'SYSLST18 ,SYSPCH,SYSLNK,SYSSLB,
r-------+--------+--------+--------+--------------+-------+--------+---------+------+------+------~
I 01 I Open 'Open ,open , Open , Open ,open ,open ,open, Open 'Open ,

, , ,E-text16 , Put16 , 'Get16 , Put16 , , ,Get,
, , " ",Close21 " ,Close ,

--------+--------+--------+--------+--------------+-------+--------+---------+------+------+------~
00, , , , Rewind , , , , , , ,

(INT01) I , " """ I
--------+--------+--------+--------+--------------+-------+--------+---------+------+------+------~
OS (if I , " "" I , 1
LST) I 1 Write , IGet25 I IGet 1 1 I I 1
--------+--------+--------+--------+--------------+-------+--------+---------+------+------+------~
00 1 'Flush I ,Rewind , , , , 1 , ,

(INTOS)I 'Rewind " ""'"
._------+--------+--------+--------+--------------+-------+--------+---------+------+------+------~
06 (if 1 1 Read, ,Write , , , , , , ,
LST)] ,Write, IRead 1 1 , , I 1 1
._------+--------+--------+--------+--------------+-------+--------+---------+------+------+------~
00 1 'Flush I 'Flush I 1 I , 1 1 ,
(INT06)I 1 Rewind I 'Rewind 1 1 I , I , ,
._------+--------+--------+--------+--------------+-------+--------+---------+------+------+------~
07 (if I I· " '" Put I I I I
LST)] 1 I I 1 1 1 I I 1 ,
._------+--------+--------+--------+--------------+-------+--------+---------+------+------+------~
00 1 1 I 1 I' 1 I , 1 I
(INTO?) I 1 1 I I' 1 1 1 I ,
-------+--------+--------+--------+--------------+-------+--------+---------+------+------+------~
08 (if 1 IRead) 1 Write I , 1 Put I Put 1 I ,
LST) I I I 1 1 I I Close24 I I I I
-------+--------+--------+--------+--------------+-------+--------+---------+------+------+------~
00 t I Rewind I I Flush , I , I I I I
(INT08)) I 1 I Rewind I I I I 1 I ,
-------+--------+--------+--------+--------------+-------+--------+---------+------+------+------~

I I I write I I' I 1 1 1 1
, I 1 Data 1 I' I I 1 1 I
1 I IIc-text I 1 1 I , 1 1 1

10] I]& E-textlGet16 ,22 I IGet17,231put17,23 I I I I
-------+--------+--------+--------+--------------+-------+--------+---------+------+------+------~
00] I I I I I I I 1 1 ,
(INTll I 1 1 I I' 1 , 1 1 1
-------t--------t--------+--------+--------------+-------+--------+---------+------+------+------~
12 1 I Write I Write 1 I 1 1 1 I I I
(Report] IPO-text IData- I I I I I I 1 I
writer») 1& E-textIIc-text IGet16 ,22 I IGet17,231put17,23 1 I 1 ,
-------+--------+--------+--------+--------------+-------+--------+---------+------+------+------~
00 I 1 1 1 I 1 I I I I 1
(INT12) , 1 1 I I' 1 I I I I _______ L ________ L ________ L ________ L ______________ L _______ L ________ L _________ L ______ L ______ L ______ ~

Footnotes. Only those footnotes referred to on this page are listed below. I
1

1Used for dictionary spill. I
L6If LIB or LST is in effect. 1
L7If NOLIB is in effect. I
L8If LVL is in effect, SYS006 is used in place of SYSLST. 1
21If LVL is in effect and no Lister options, SYS006 is opened for LVL. ,
22If LSTCOMP is in effect. I
23If LSTCOjl.jP is not in effect. I
24Close SYSLS'I· if LVL and LSTCOMP are in effect; SYS006 is used for LVL. ,
250nly if LIB is in effect; otherwise input is on SYSIPT. I ___ J

19ure 9. Compiler File Handling (Part 1 of 6)

Phase 00 29

Licensed Material - Property of IBM

r-------T--------T--------T--------T--------------T--------T--------T--------T------T------T------·
IPhase ISYSOOl ISYS002 ISYS003 ISYS004 ISYS005 ISYSIPT ISYSLST~8ISYSPCHISYSLNKISYSSLB

~-------+--------+--------+--------+--------------+--------+--------+--------+------+------+-----_.
I I (See I Write I I I I I I I I
I I note 1) I PO-Text I I I I I I I I
111 I 1& E-Textl IGet~6,22 I IGet~7,23IPut~7,231 I I
~-------+--------+--------+--------+--------------+--------+--------+--------+------+------+------
100 I I I Flush I I I I I I I
I (I NT 11) I I Flush I Rewind I I I Close I I I I Close
r-------+--------+--------+--------+--------------+--------+--------+--------+------+------+------
I I I I Read IWrite Incom- I I I I I I
I I I IData IC-Iplete Data I I I I I I
I I I land IA-text,.Data I I I I I I
I I I I E-texts IIc-text, A1F- I I I I I I
I 20 I I I I text, & E-text I I I I I I
r-------+--------+--------+--------+--------------+--------+--------+--------+------+------+------
100 I I I I I I I I I J
I (INT2) I I I Rewind I Rewind I I I I I I
r-------+--------+--------+--------+--------------+--------+--------+--------+------+------+------
I I IWrite IWrite IRead Data IC- I I I I I I
I I IPO-text IData A- Itext, Incom- I I I I I I
I I I (Q- I & Data I plete Data A- I I I I I I
I I Iroutine)IIc-textsltext, ATF-textl I I I I I
I I I lDEF- land E-text I I I I I I
I 22 I I I text 8 I I I I I I I
r-------+--------+--------+--------t--------------+--------+--------t--------t------+------+------
100 I I I Flush I I I I I I I
I (INT22)I IFlush I Rewind I Rewind I I I I I I
r-------+--------+--------+--------+--------------+--------+--------+--------+------+------+------
I 1 (See IWrite IRead I Write I I I I I I
I Inote 1) IPO-text IData I Data I I I I I I
I I I (VCONs) IIC-text I A-text I I I I I I
I I I IData A- IE-text. & I I I I I I
I I I I text. & IDEF-text8 I I I I I I
I I I IDEF- I I I I I I I
121 I I I text8 I I I I I I I
~-------+--------t--------+--------t--------------+--------+--------+--------+------+------+------
100 I IFlush I I I I I I I I
I (INT21) 1 I Rewind I Rewind IFlush 1 I I I I I
~-------+--------+--------+--------+--------------+--------+--------+--------+------+------t------
I I I write I INote Rewind IWrite I I I I I
I I I E-text I I Read DEF-text I DATATAB I I I 1 I
1257 I I 1 I point IOBODOTABI I I I I
r-------+--------+--------+--------+--------------+--------+--------+--------+------+------+------
100 1 I I I I I I I I I
I (INT2 5) I I I I I I I I I I
r-------t--------+--------+--------+--------------+--------t--------t--------+------+------+------
I I (See I Read PO I I I I I I I I
I Inote 1) Itext I write I I I I I I I
I I I (Q-rout) I Pl-text I Write I I I Put I I I
130 I 1& E-textl & E-text IDEF-text2 I I I (SYM) I I I
~-------+--------+--------+--------+--------------+--------+--------+--------+------+------+------
100 I I I Flush I I I I I I I
I (INT3) IRewind I Rewind I Rewind I Flush I I I I I I
r-------~--------~--------~--------~--------------~--------~--------~--------~------~------~-----.
I Footnotes. Only those footnotes referred to on this page are listed below.
I
I ~Used for dictionary spill.
I 2SXREF, XREF, VERBSUM. or VEREREF only.
1 7SYMDMP only.
I 8SXREF, XREF. VERBSUM, VERBREF. or SYMDMP only.
1~8If LVL is in effect. SYS006 is used in place of SYSLST.
122If LSTCOMP is in effect.
123If LSTCOMP is not in effect. L ___ _

Figure 9. Compiler File Handling (Part 2 of 6)

30 Section 2. Method of Operation

Licensed Material - Property of IBM

r-------T--------T--------T--------T--------------T---------T------T---------T------T------T------,
1 Phase ISYSOOl ISYS002 ISYS003 ISYS004 ISYS005 ISYSIPTI SYSLST1B ISYSPCHISYSLNKISYSSLBI
~-------+--------+--------+--------+--------------+---------+------+---------+------+------+------~
1 IWrite 1 IRead IWrite I I I I I I I
I IP2-text I IP1-text IE-text19 I I I I I I I
140 1& E-textl I&E-text I&Data A-text 2 °1 I I I I I I
~-------+--------+--------+--------+--------------+---------t------+---------+------+------+------~
100 I Flush I I I Flush I I I I I I I
1 (Int4) IRewind 1 I Rewind I I I I I I I I
r-------+--------+--------+--------+--------------+---------+------+---------+------+------+------~

] Wr ite I I I I I
1 P 2-text, I 1 1 1 I
I Inter- I 1 1 I ' I
1 mediate I I I I I
I Proced. 1 1 1 I I
1 F,-text, I I I I I
I Inter- I I I I I
1 mediate I I 1 I I
I E-text 1 I I I I
1 & Inter-III I I
I Read mediate I Write I I I I
I P2-text Optimiz·1 Opt. 1 I I 1

50 1& E-text A-text lA-text I 1 1 I
t-------+--------+--------+--------+--------------+---------+------+---------+------+------+------~
100 I , Flush I' 'I' 1 I , I
1 (INT5) IRewind I Rewind 'Flush I I 1 I I I , I
t-------+--------+--------+--------+--------------+---------+------+---------+------+------+------~
, I Read I 1 I
I P2-text, I I I
I Inter- 1 I I
I mediate I I I
1 Proced. I I I
I A-text, I I I
1 Inter- I I I
I mediate, I I
I E-text, I I I
I & Inter- I I I
I Write mediate Write I 1 I
I Proced. Optimiz. Opt. I Write I I
151 A-text A-text A-text I E-text I I
t-------~--------~--------~--------L--------------~---------~------~---------~------~------~------~
1 Footnotes. Only those footnotes referred to on this page are listed below. I
1 I
11BIf LVL is in effect, SYS006 is used in place of SYSLST. I
119 If SYNTAX or CSYNTAX is in effect. I
1 20 If COUNT is in effect. I L ___ J

~igure 9. Compiler File Handling (Part 3 of 6)

Phase 00 31

Licensed Material - Property of IBM

r-------T--------T--------T--------T--------------T---------T------T---------T------T------T------,
IPhase ISYSOOl ISYS002 ISYS003 ISYSOOq ISYS005 ISYSIPTI SYSLST18 1SYSPCHISYSLNKISYSSLBI
~-------+--------+--------+--------+--------------+---------+------+---------+------+------+------~
100 IFlush IRewinds IFlush I Flush I 1 1 I I I I
I (INT51) I Rewind I I Rewind I Rewind I I I I I I I
I I 1 I ~--------------~ I I I 1 I I
I I I I I No Rewind 3 I I I 1 I I I
~-------+--------+--------+--------+--------------+---------+------+---------+------+------+------~
I I I Write I IWrite SYSLNK I I I
I 1 Read I Debug- I Read I OUTPUT for I I
I IProced. ItextS IOptimiz·lnon-root I I
1 I A-text I I A-text I segments3 I I
I ~--------~ ~--------+--------------~ I
I 1 I I) I Put I
16013 IRewind2 I IRewind2 IRewind3 I (LISTX) IPut Put
I ~--------~ ~--------+--------------~ I
I 1 I IWrite IRead Data A-, I I
1 I I I REF- IDEF-, I I
I 1 I I texP' & I and E-texts ~ I I
I I I I E-text I Reads SYSLNK I I
I 1 Write 1 I loutput for I I
I I DEF-text 1 I 1 non-root I I
I I 2 I I 1 segments3 I I
~-------+--------+--------+--------+--------------+---------+------+--~------+------+------+------~
100 IRewind2 IFlush 1 Flush IFlush3 1 I I I I I I
I (INT60)I IRewinds IRewind INO rewind1s I I I I I I I
I 9 I I I I Rewind I I I I I I I
~-------+--------+--------+--------+--------------+---______ +------+---------+------+------+------J
I I IRead I I Read I Write I I I PUT I PUT I
I 1 1 Debug- I I non-root I PROCTAB I I I I I
I I I text I I segments I PROGSUM I I I I I
I I IWrite 1 I 110 1 I I I I
I I I text I I I 1 I I I I
I I 1 from I I I I I I I I
16513 I ISYS00511 1 I I I I I I I
r-------+--------+--------+--------+--------------+---______ +------+---------+------+------+------J
100 1 Rewind2 I 1 I I 1 I I I I
1 (INT65) 1 I I 1 I 1 I I I I
~-------+--------+--------+--------+--------------+---------+------+---------+--~---+------+-------
I I Read I I Read I I I I I 1 1
1 I Proced. I I Optimiz. I 1 I I I 1 I
]6212 IA Text 1 lA-text 1 I 1 I I I 1
~-------~--------~--------~--------~--------------~---------~------~---------~------~------~------.
1 Footnotes. Only those footnotes referred to on this page are listed below.
I
I 2SXREF, XREF, VERBSUM, or VERBREF
I 3Segmentation only.
I sIf SYMDMP or STATE in effect.
I 9Debugging options in effect. This phase can only follow phase 60.
]10If SYMDMP is not in effect, SYS005 is not used.
1~1Use this file, if SYS005 is assigned to a tape device.
)12Control flows in this sequence when the OPT option is in effect.
113Control flows in this sequence when the OPT option is not in effect. Phase 65 is an
) optional phase.
11sIf SYMDMP, STATE, FLOW with segmentation.
118 If LVL is in effect, SYS006 is used in place of SYSLST. L ___ .

Figure 9. Compiler File Handling (Part q of 6)

32 Section 2. Method of Operation

Licensed Material - Property of IBM

r-------T--------T--------T--------T--------------T---------1------T---------T------T------T------l
I Phase ISYSOOi ISYS002 \SYS003 ISYS004 ISYS005 SYSIPT\ SYSLST181SYSPCHISYSLNKISYSSLBI
~-------+--------+--------+--------+--------------+---------+------+---------+------+------+------i
100 I Rewind I Rewind I I I I I I I I I
I (INT62) I I I I I I I I I I I
~-------+--------+--------t--------t--------------+---------+------t---------+------+------t------i
I I Read I Write I I I I I I I I I
I I Proced. I Proced. I I I I I I I I I
16312 lA-text IAi-text I I I I I I I I 1
~-------+--------+--------+--------+--------------t---------t------+---------+------+------t------~
100 IRewind2 IFlush I Rewind I Rewind I I I 1 I I 1
I (INT63) I I Rewind I 1 I I I I I I 1
~------_+--------t--------t--------+--------------+---------+------+---------t------+------+------~
1 IWrite IRead I Write IRead DATA A- I I 1 I I I 1
I]DEF-textIProced. IE-text I text, DEF- 1 I 1 I I I 1
I 12 IAi-text I I text, & E-textl I I I I I 1
I 1 I 1 IRewind2 Write 1 I I 1 I I 1
16412 I 1 I IREF-text2 I I I I I 1 1
~-------+--------+--------+--------+--------------+---------+------+---------+------+------+------~
100 I 1 I Flush I 1 1 I I I I 1
I (INT64) I I I Rewind 1 I I I I I 1 1
16 1 1 1 1 I I I I I 1 1
~-------+--------+--------t--------t--------------t---------+------t---------+------+------+------~
100] Flush2 I I Flush I Flush2 1 I 1 1 1 1 1
1 (INT6X) 1 Rewind2 I I Rewind 1 Rewind2 I 1 1 1 1 I 1
12 I 1 1 1 1 I I I I 1 1
~-------+--------+--------+--------+--------------+---------+------+---------+------t------+------~
I I Read 1 I Read 1 Read REF- I I I Put I I I 1
I I DEF-text 1 1 REF- 1 text1.2 1 I 1 (SX~F or I I I I
1 612 1 I I text? I 1 1 1 XREF 1 1 I I 1
~-------+--------+--------+--------t--------------+---------+------t---------+------t------t------~
100 1 1 I I I I I I I 1 1
1 (INT61) I 1 1 I Rewind I I I 1 I 1 I
I 2 \ 1 1 1 1 I I I 1 1 1
~-------+--------+--------+--------+--------------+---------t------+---------+------+------+------~
] I 1 1 I (See note 4) I] 1 Pu t I I 1 I
I I 1 I Read I 1 I I (error I I I 1
170 I 1 IE-text 1 I I I messages 11 I I 1
~-------t--------+--------+--------+--------------+---------+-----_+---------+------+------+------~
100 'I I I I 1 I I I I 1 1
I (INT7) jClose IClose IClose IClose 1 I 1 Close IClose IClose 1 1
~-------~--------~--------~--------~--------------~---------~------~---------~------~------~------~
I Footnotes. Only those footnotes referred to on this page are listed below. I
I 1
I 2SXREF~ XREF, VERBSUM, or VERBREF only. 1
I 4E-text read from SYS004 if phase 60 or 62 determines that no output is required or if 1
I SYNTAX is on. 1
1 6SXREF or XREF not in effect. 1
1 7SYMDMP only. 1
112Control flows in this sequence when the OPT option is in effect. 1
118 If LVL is in effect, SYS006 is used in place of SYSLST. 1 L ___ J

Figure 9. compiler File Handling (Part 5 of 6)

Phase 00 33

Licensed Material - Property of IBM

r----------T-------T-------T-------T-------T-------T-------T-------T------y------T------'
I Phase ISYS001 ISYS002 \SYS003 ISYS004 ISYS005 ISYS006 ISYSLST ISYSPCHISYSLNKISYSSLBI
~----------+-------t-------t-------t-------+-------+-------t-------+------+------+------~
180 (only IOpen I I I I I Open I Open I I I I
lif LVL is IWrite 1 J I I I Read I Write I I I I
lin effect) \ Read I I I I IClose IClose I I I I
I I Close I I I I I I I I I I L __________ ~ _______ ~ _______ ~ _______ ~ _______ ~ _______ ~ _______ ~ _______ ~ ______ ~ ______ i_ _____ J

Figure 9. compiler File Handling (Part 6 of 6)

TABLE AND DICTIONARY HANDLING

A portion of storage is reserved
throughout compilation for tables built and
used by the phases. All processing
(inserting new entries, releasing a table
when no longer needed, etc.) involving
these tables is handled by a group of
routines known collectively as TAMER.
These routines are resident in phase 00.
They are described in "Appendix A. Table
and Dictionary Handling."

COMMUNICATIONS AREA (COMMON)

The communications area (COMMON) is
resident in phase 00. It contains
information to which all phases can refer
directly. The format of COMMON is given in
"Section 5. Data Areas."

UNRECOVERABLE ERROR CONDITIONS

The following conditions will cause
abandonment of compilation. In each case a
console message is printed, and phase 00
returns control to the DOS/VS System via
the routines described earlier in this
chapter under "Receiving Control From and
Returning It to the System."

34 Section 2. Method of Operation

1. A permanent input/output error is
encountered on a device.

2. An invalid BASIS library name is
encountered.

3. The partition size is too small for
this program.

Conditions detected by TAMER:

1. A table has exceeded the maximum
permissible size.

2. Because of an error in compiler logic
or a machine error, TAMER is unable to
handle a request.

SEGMENTATION OPERATIONS

For a segroented program phase 51 keeps
track of the sections of Procedure A-text
that belong to each segment. It calls the
NOTE routine of phase 00 (·XY· code = C1).
to record the absolute track address on
SYS001 of the first record of each segment.

Phase 60 or phases 62 or 63 use the
SEGTBL table built by phase 51 to read
Procedure A-text in order of ascending
segment priority. They call the SEGPNT
routine of phase 00 ('XY' code = 91) for
this purpose. Phase 60 writes the object
module and phase 63 writes Procedure
A1-text in order of ascending priority.

Phase 01 (ILACBL01) initializes compiler
operations. Although logically a subset of
phase 00. it is not needed in storage
throughout compilation and exists as a
separate load module. The major functions
of phase 01 are:

• Attempts to read source statement
library member C.CBLOPTNS and. if
present. sets the compiler default
options to correspond to those in the
library member. Normal default options
are used if no library member is
present.

• Determines compilation parameters from
the system OPTION card and the COBOL
compiler CBL and LST cards from SYSIPT
and sets indicator bits in COMMON.

• Determines buffer sizes for all files
used by the compiler.

• Obtains storage for buffers. tables.
and the dictionary.

• Opens all files used by the compiler.

• Returns information to phase 00 on the
results of the initialization.

• Takes appropriate action in the event
of certain error conditions.

• Handles COPY and BASIS functions if LIB
is specified.

COMPILATION PARAMETERS

compilation parameters are set as
defaults at installation time. Thereafter.
they may be changed by the operator through
a console command or by the programmer
through a system OPTION card. one or more
CBL option cards. or an LST option card.
CBL option cards are placed in front of the
first compiler source card.

Based on the parameters. phase 01 moves
flag bytes to the LISTERSW. PHZSW. PHZSW1.
PHZSW2. PHZSW3. and PHZSW4 cells in the
compiler communications region (COMMON) so
that other phases can determine which
options were chosen.

The parameters processed by phase 01
include:

• From the system OPTION card: DECK.
ERRS. LINK. LIST. LISTX. LVL. SYM. and
XREF

Licensed Material - Property of IBM

PHASE 01

• From the CBL card: CATALR. CLIST.
COUNT. CSYNTAX. FLAGW. FLOW. LIB. LVL.
OPT. QUOTE. SEQ. STATE. STXIT. SUP~~P.
SXREF. SYMDMP. SYNTAX. TRUNC. VERB,
VERB~EF, VERBSUM. and ZWB

• From the LST option card: COPYPCH,
DECK. LSTCOMP. LSTONLY. and PROC

If SYNTAX was specified, phase 01 turns
off the bits for conflicting options. From
the CBL card parameter BUF. phase 01
obtains the buffer size for the work files
(see "Buffer Size Determination" below).
From the CBL card parameter SPACE. phase 01
sets the print control character in the
first byte of the cuffer area for SYSLST.

In addition to the above parameters.
phase 01 uses the system communications
region to determine the date of compilation
and the number of lines to be printed per
page. The number of lines is passed to
phase 00 as described in this chapter under
"Information Returned to Phase 00." Phase
10 sets the RPTWR bit in the PHZSW~ cell.

BUFFER SIZE DETERI"lINATION

The compiler uses six buffer areas.
Figure 10 shows which files use which
buffers in each phase. Because buffers 1
through 5 are always used for work files,
they are all the same size so that they can
be used for different files froIT phase to
phase. Buffer 6 is also used for a work
file in phases 20. 21, 22, 50, and 51;
therefore. it must be at least as large as
the other buffers. Buffer 6 may have to be
larger than the other buffers. however,
because in phases 10, 11. 12. and 60 it is
used for up to three double-buffered
compiler files.

The buffer sizes of the compiler files
are:

SYSLST
SYSPCH
SYSIPT
SYSLNK

133 bytes
81 bytes
80 bytes
82 bytes

Files SYS001 through SYS005 are assigned
five buffers and may also use buffer 6 when
it is available. The minimum buffer size
for these files is 512 bytes each. This
size can be changed by means of the BUF
parameter on the CBL card. The maximum is
32.767 bytes. specifying a larger size
will cause a default to this value.

Phase 01 35

Licensed Material - Property of IBM

r-------T--------T--------T--------T--------T--------T--------T-------~--------T-------,
I Phase I SYSOOl I SYS002 I SYS003 I SYS004 I SYS005 I SYSIPT I SYSLST I SYSPCH I SYSLNKI
~-------+--------+--------+--------+--------+--------+--------t--------+--------+-------i
I 01 I I I 1,2 I 4.5 I I 6,6 I 6,6 6 1 1 I
t-------+--------+--------+--------+--------+--------+--------+--------f--------+-------~
1 05 I 1 3,3 I 1 4.5 9 1 I 6.6 1 I 1 I
t-------+--------+--------+--------+--------+--------t_-------t_-------+--------+-------i
I 06 1 1 3,3 1 1 4,5 1 1 I I 1 I
r-------+--------+--------+--------+--------+--------+--------+--------+--------+-------~
I 07 I 1 I I 1 1 I 6,6 1 1 I
~-------+--------+--------+--------+--------+--------+--------+--------+--------+-------1
I 08 I I 3,3 I I 4.5 I 1 I 6,6 I 6,6 1 I
t-------+--------+--------+--------+--------+--------+--------+--------+--------+-------1
1 10 I I I 1.2 I 5.5 8 1 1 6,6 I 6.6 6 1 1 1
t-------+--------+--------+--------+--------+--------+--------+--------+--------+-------1
I 11 I 1 3.4 1 1 5.5 8 1 I 6.6 1 6,6 6 I 1 1
r-------+--------+--------+--------+--------+--------+--------+--------+--------+-------~
! 12 1 I 3.4 1 1,2 I 5,5 8 1 I 6.6 I 6,6] 1 1
t-------+--------+--------+--------+--------f--------+--------+--------+--------+-------~
, 20 1 1 3,4 1 1,2 1 5,6 1 1 1 1 I I
t-------+--------+--------+--------+--------+--------+--------+--------+--------+-------~
1 22 1 I 3,4 1 1,2 I 5.6 I I 1 1 1 I
t-------+--------+--------+--------+--------+--------+--------+--------+--------+-------1
1 21 1 1 3. 4 I 1, 2 1 5. 6 1 1 1 1 I I
r-------+--------+--------+--------t--------+--------+--------+--------t--------+-------~
I 25 I I I I 5, 6 I 1, 2" I I I 1 I
~-------t--------+--------+--------+--------+--------+--------+--------+--------+-------1
I 30 I I 3.4 1 5.5 1 11. I 1 1 6,6 I I I
r-------+--------+--------t--------t--------+--------+--------+--------+--------+-------1
I 40 I 3,4 1 I 2,5 I 17 I I 1 I I I
r-------+--------+--------+--------+--------+--------+--------+--------+--------+-------i
1 50 I 3,4 I 2,6 I 1 I I 1 I I I I
t-------+--------+--------+--------+--------+--------+--------+--------+--------+-------~
I 511 3,4 I 2.6 1 5 I 1 I I 1 1 I 1
t-------t--------t--------+--------t--------+--------t_-------+--------+--------+-------~
I 60 I 3.4 I 2 3 I 2,5 1 1 I 1 I 6,61 6,6 I 6,6 I
1 t--------~ r--------1 I 1 1 I 1 1
I I 3 2 I 1 53 1 1 1 1 1 I 1
t-------+--------+--------+--------+----~---+--------+--------+--------+--------+-------i
I 62 I 3,4 I 1 2,5 1 I 1 1 I 1 1
1 t--------~ I 1 1 I 1 1 I I
1 I 3.3 2 1 1 I I I I I I 1
~-------+--------+--------+--------+--------+--------+--------+--------+--------+-------i
I 63 I 3.4 I 2,5 1 1 I 1 I 1 I I
I r--------~ I 1 1 1 I I 1 I
I I 3,32 1 1 1 I 1 I I 1 1
t-------f--------+--------+--------+--------f--------+--------+--------+--------+-------~
I 64 I 1 1 2.3 I 4 1 5 1 1 1 1 I 1
~-------t--------+--------+--------+--------+--------+--------+--------+--------+-------i
1 65 I 1 4 1 1 1 J 1,2" 1 1 1 6.6 1 6,6 I
t-------t--------+--------+--------+--------+--------+--------+--------+--------+-------~
I 61 I 1 5 ,2 5 1 1 1 3 5 ,4 1 I I 6 1 1 I
I r--------i 1 t--------~ 1 I I I I
I I 3,3 I 1 1 1 1 1 I I I I
r-------+--------+--------+--------+--------t--------+--------+--------+--------+-------1
1 70 I 1 1 2 5 ,5 I 17 1 1 I 6,6 1 I 1
I I 1 t--------~ 1 I I I 1 I
1 I 1 1 5 I 1 1 1 I 1 1
t-------L--------~--------~--------~--------~--------~--------~--------~--------~-------~
I Note: The SYSSLB buffers are resident in phase 01. 1
I1.SXREF or XREF only. I
12 File 1 is single buffered for segmentation. 1
13SYMDMP only. 1
1 "SYMPMP requires a buffer of 512 bytes, which is the combined size of buffers 1 and 2. I
15 0PT. I
16When LVL is specified, the SYS006 workfile replaces SYSLST for input to phase 80. I
1 Phase 80 output is in turn directed to SYSLST. I
17used if SYNTAX is on. I
18 Used only if LIB or LSTCOMP. 1
19 used only if LIB. I L ___ J

Figure 10. Buffer Assignments

36 Section 2. Method of Operation

The m~n~mum buffer space required for
the compiler (that is, the total space
required for buffers 1 through 6) is 2986
bytes. Buffers 1 through 5 require 2560
bytes (5 x 512 bytes). Buffer 6 requires a
minimum of 426 bytes, as follows:

SYSLST: 133 x 2 266
SYSIPT: 80 X 2 160
Total 426

If the DECK and LINK options are
specified, 3152 bytes are required for
buffers as follows:

Buffers 1-5:

Buffer 6:
2 x SYSLST
2 x SYSPCH
2 x SYSLNK
Total

2560

266
162
164

3152

SYSPCH and SYSLNK reuse the space
originally occupied by the SYSIPT buffers.

In a 60K byte partition, about 4K bytes
are available for buffers. SYSLST block
size (BLKSIZE) should not be larger than
605. For example:

Buffers 1-5:

Buffer 6:
2 x SYSLST
2 x SYSPCH
2 x SYSLNK
Total

2560

1210
162
164

4096

Phase 01 records the buffer sizes in
phase 00 buffer control blocks. Phase 00
uses the control blocks to locate the
current buffer for a file and to keep track
of how much of the buffer has been used.

OPENING FILES

Phase 01 opens the four utility files
(SYS001 through SYS004), SYSIPT, and SYSLST
and, if required, SYSLNK, SYSPCH, SYSSLB,
SYS005, and SYS006. It determines whether
the files are operable and prints a message
on SYSLST if a file cannot be opened.

INFORMATION RETURNED TO PHASE 00

Phase 01 passes the following
information back to phase 00 in the manner
indicated:

1. The flags indicating the compilation
options via the PHZSW, PHZSW1, PHZSW2,
and PHZSW3 cells in COMMON.

Licensed Material - Property of IBM

2. The LINES indication, by filling in an
area in phase 00 called LINECNT, the
address of which was passed to phase
01 by phase 00.

3. The beginning and ending addresses of
the main free area (initial table
area) by filling in an area, as in 2
above, called TAMAREA.

4. The address of the buffer area and the
buffer lengths, by filling in an area,
as in 2 above, called BUFCNLS.

5. The alternate name for the symbolic
debug file, if requested on the CBL
card (disk file only).

6. The date and time of the compilation
via the DATE/~IME cells in COMMON.

7. The value of PMAP relocation factor
from CBL card in PMAPADR cell in
COMMON.

ERROR CONDITIONS

If any of the error conditions listed
below are discovered by phase 01, an
appropriate error message is placed into an
internal phase 01 table by .. the QUE routine.
Routine PRINT writes the wessages out on
SYSLST (SYS006 for LVL option) before
control is finally returned to phase 00.
Where necessary., an end-of-job indication
is sent to phase 00 via the XY code (see
Figure 5 in the chapter on phase 00), and
phase 00 terminates the compilation. The
specific error conditions are:

1. A file cannot be opened. Compilation
is terminated only if the file is
required.

2. The BUF parameter is invalid or
insufficient. An alternate value is
chosen or compilation is abandoned.

3. The virtual partition size is too
small to accorrmodate the compiler.
Compilation is terminated.

4. A premature end-of-file condition has
been encountered on SYSIPT.
Compilation is terminated.

LIB OPTION PROCESSING

If the LIB option has been specified,
phase 01 scans the source program for BASIS
and COPY statements. It performs syntax

Phase 01 37

Licensed Material - Property of IBM

analysis on these statements and copies
library information with the remainder of
the source program on SYS004 for subsequent
phase analysis. The phase also

• Writes the source program listing on
SYSLST (SYS006 for LVL option) if LIST
is in effect and no Lister options are
in effect.

• Generates internal sequence numbers for
source program.

• Performs sequence error checking if SEQ
is in effect.

If BASIS or COPY statements are
syntactically incorrect, phase 01 writes
error text on SYS003.

38 Section 2. Method of operation

FEDERAL INFORMATION PROCESSING STANDARD
(F'IPS) FLAGGING

When the LVL option is specified, phase
01 enters the level character into byte 12
of the System Communication Region to
indicate to phase 80 what level of the FIPS
standard is to be flagged (A = low; B = low
intermediate; C = intermediate; D = full
standard). SYS006 receives the source
listing that is used for input to phase 80
for FIPS flagging).

Control is given to phase OS (ILACBLOS)
only when the Lister option (LST) has been
specified. Phase OS is the Lister scan
phase, which analyzes the syntax of the
COBOL source program. This phase inserts
syntactic markers between the various
elements of the source program. The
syntactic markers are used by subsequent
phases to produce the cross-references and
to reformat the program for the Lister
option listing.

The input to phase 05 is the COBOL
source program. If NOLIB is in effect,
input is read from the card reader. If LIB
is in effect, input is read from SYS004
(output from the COPY rreprocessor).

Output

The output from phase as is written on
SYS002. The output consists of the COBOL
source program with syntactic markers
inserted to identify the various elements
of the program. Syntactic markers indicate
such items as new statement, reference
type, level number, indentation, and

Licensed Material - Property of IBM

PHASE 05

qualifiers. If phase as detects syntax
errors, the output also includes error and
recovery markers, to indicate that the
errors are to be identified in the Lister
option listing.

ERROR CONDITIONS

Phase as will recover from any syntax
error that it detects in the COBOL source
program. When such an error is detected,
phase 05 inserts an error marker to
identify those elements of the source
program that are in error. A recovery
marker is inserted at the point where the
recovery takes effect. These warkers are
used by phase OS to flag the incorrect
source statements in the listing.

Unusual termination of phase as can
occur if the source program contains:

• Too many (approximately SO or more)
consecutive *-comments cards.

• Too many (approximately 100 or more)
consecutive blank cards.

If unusual termination of phase 05
occurs, the file written on SYS002 will be
incomplete.

Phase 05 3S.1

Licensed Material - Property of IBM

PHASE 06

Phase 06 (ILACBL06), the Lister sort
phase, inserts cross-reference information
into the source program. Phase 06 makes
two or more passes of the file created by
phase 05. Based on the syntactic markers
contained in the file, this phase inserts
pointers into the source program as
follows:

• At the place of definition, pointers to
the places where references to that
item occur •

• At the places of reference, pointers to
the place of definition.

During each pass of the file, phase 06
resolves references and merges them into
the source program: the number of passes
depends on the amount of storage available
and the number of cross-references to be
processed. A partial dictionary of all
definitions is used by all passes. The
dictionary is continually updated by adding
new definitions as space becomes available
and deleting definitions that have been
completely processed and are no longer
needed.

38.2 Section 2. Method of Operation

The input for the first pass of phase 06
is the file written on SYS002 by phase 05.
Input for subsequent passes of phase 06 is
the output of the previous pass. That is,
input will be read alternately from SYS002
and SYS004 (beginning with SYS002) •

Output

The output of phase 06 is written
alternately on SYS004 and SYS002. Output
of the first pass of phase 06 will always
be written on SYS004 and output of the last
pass will always be written on SYS002. The
output file consists of the source program
with cross-reference information embedded
in it: the contents of the file will be
formatted and printed by phase 08.

The function of phase 07 (ILACBL07) is
to print the first page (preface) of the
Lister option listing.

Phase 07 uses no input.

Output

The output of phase 07 is printed on
SYSLST. It consists of the preface, which
describes:

Licensed Material - Property of IBM

PHASE 07

• The format of the listing

• The use of statement numbers

• The classification of references

• The use of footnotes in the listing

• The method of indentation

• The reformatted deck that can be
obtained

• The summary listing

Phase 07 38.3

Licensed Material - Property of IBM

PHASE 08

The functions of phase 08 (ILACBLOS) are
as follows:

• Print the body of the Lister option
listing

• Depending on the options specified for
LST

Punch the reformatted source pr9gram
on SYSPCH

Pass the reformatted source program,
via SYS004 to phase 10 for
compilation

Phase 08 reads input from SYS002. Input
consists of the source prograID with
embedded cross-reference information from
phase 06.

Output

The output of phase 08 consists of:

• The Lister option listing

• An internal card-image COBOL source
program

• A reformatted source deck.

The Lister option listing is printed on
SYSLST. The internal card-image source

38.4 section 2. Method of Operation

program, which may serve as input for
subsequent compilation, is produced on
SYS004 if the LSTCOMP option is in effect.
The reformatted source deck is produced on
SYSPCH if the Lister DECK option is in
effect.

Processing

From the source program with embedded
cross-reference information, phase 08
builds an entire page in sto~age. The
phase reformats the source program and
creates footnotes as 'required. When the
optimum place for a new page is reached,
phase 08 prints the created page on SYSLST
and then deletes the page from storage.
The process is repeated until all data from
SYS002 has been processed. To produce the
summary listing, phase 08 repositions
SYS002 to the first record and reads it
again.

ERROR CONDITIONS

It is possible that some footnotes on
some COBOL programs may be lost. If a
particular COBOL program requires a very
large number of footnotes, there may not be
enough storage space to contain the
complete footnote table. In those cases
not all of the footnotes will be printed in
the Procedure Division of the Lister option
listing.

Phase 10 (ILACBL10) reads the source
statements for the Identification,
Environment, and Data Divisions, except the
Report section. As it reads the card
images, it performs the following major
functions:

• Encoding in Data IC-text (see "Section
5. Data Areas"), and storing in tables
and in cells of the compiler
communications area (COMMON)
information from the Identification,
Environment. and Data Division source
statements.

• Analyzing the syntax of the statements
read.

• Writing. on SYSLST (SYS006 for LVL
option). the source program listing of
the Identification. Environment. and
Data Divisions (except the Report
Section) if the LIST and NOLIB options
are in effect.

Phase 10 includes several major working
routines and the division processing
routines.

MAJOR WORKING ROUTINES

There are three routines in phase 10
that are used extensively by more than one
of the division processing routines. These
are the GETWD. GETCRD, and GETDLM routines.
These routines are also used by phases 11
and 12.

GETCRD Routine

The GETCRD routine reads the next card
from SYSIPT, or from SYS004 if LIB or LST
is in effect, stores its image into a work
area called COMWRK, and writes a line on
SYSLST (SYS006 for LVL option) if the LIST
option was specified and no Lister options
were specified.

GETWD Routine

The main functions of the GETWD routine
are:

Licensed Material - Property of IBM

PHASE 10

• Getting a logical unit from the input
card image provided by the GETCRD
routine, identifying and encoding it,
and sending it to the calling routine
for processing. A logical unit is
defined as all the characters between
one blank and the next.

• Generating a card number for each input
card, starting with 1. The current
card number is kept in a halfword
labeled CURGCN.

• Making sure the next logical unit is
valid for the division being processed.

Each logical unit is analyzed and
encoded into internal phase 10 code which
tells the processing routine what type of
item it is (COBOL word, qualified BCD name,
etc.).

GETDLM Routine

The GETDLM routine acts as the
coordinator for the processing of the
Identification, Environment, and Data
Divisions. The major functions of the
routine are:

• Looking for delimiters (division
headers, level numbers, etc.) and
passing control to the proper division
routines.

• Recognizing literals that are level
numbers and encoding them as such.

• causing termination of phase 10 when it
recognizes the Report Section header,
the end of the Data Division, or an
end-of-file condition on the input
device.

IDENTIFICATION DIVISION

The Identification Division scan routine
(IDDSCN) is entered immediately after the
phase 10 initialization routines. The
input is scanned for an Identification
Division header. When one is encountered,
the cell for the next logical unit is
filled by GETWD and checked to see whether
it is PROGRAM-ID. If it is, the program
name is saved in the PROGID field of COMMON
(see "Section 5. Data Areas") to be used

Phase 10 39

Licensed Material - Property of IBM

later either as the CSECT name of the
object module or to form the names of the
segments in a segmented program.

After the PROGRAM-ID has been saved, the
Identification Division is written on
SYSLST (SYS006 for LVL option) if the LIST
option was specified or on SYS006 if LVL
was specified. If a DATE-COMPILED
paragraph is included in the Identification
Division, the information in the paragraph
is deleted and the current date is inserted
from COMMON.

ENVIRONMENT DIVISION

When the Environment Division header is
encountered, the Environment scan routine
(ENVSCN) searches for the configuration and
Input-Output Sections and, as each is
found, branches to the routines that
process it. These routines produce the
file definition portion of Data-IC text
(for text formats, see Data Areas section),
which is combined with the data definition
portion later in phase 10.

CONFIGURATION SECTION

The OBJECT-COMPUTER paragraph, including
the SEGMENT-LIMIT clause and the
SPECIAL-NAMES paragraph is processed in
phase 10.

OBJ~CT-COMPUTER Paragraph

SEGMENT-LIMIT Clause: When the priority
number specified is less than 50, this
number is stored in the SEGLMT cell of
COMMON. If no SEGMENT-LIMIT clause is
specified, or if the value exceeds 49,
SEGLMT was s~to 49 by phase 00.

SPECIAL-NAMES Paragraph

CURRENCY-SIGN Clause: The literal
specified is checked for validity and then
stored in the CURSGN cell of COMMON.
Thereafter, whenever phase 20 scans a
PICTURE clause, it recognizes the literal
as the currency sign.

DECIMAL-POINT Clause: The KDECML field is
changed from "period" to "comma".
Thereafter, when phases 10, 11, and 12 scan

40 Section 2. Method of Operation

numeric and floating-point literals, commas
instead of periods are recognized as
decimal points.

UPSI-n Clause: Dummy dictionary entries
are created from the data in each UPSI-n
clause and are entered in the UPSTBL table.
The dummy dictionary entries are so
constructed that phase 22 can enter into
the dictionary an LD entry froIT each UPSI-n
and each mnemonic-name, and a condition­
name entry from each condition-name-1.

Function-name IS Mnemonic-name Clause: An
entry is made in the SPNTBL table for each
mnemonic-name. These table entries are
used by phase 11 during processing of the
Procedure Division. When phase 11 scans
ACCEPT or DISPLAY statements, it replaces
the mnemonic-name with the proper console
or device name by checking this table.
When phase 11 scans a WRITE ••• AFTER
ADVANCING statement, it replaces the
mnemonic-name with the proper carriage
control word.

INPUT-OUTPUT SECTION

The routines that process the
Input-Output Section build and use the
ENVTBL and QNMTBL tables. The QNMTBL table
contains variable-length names; the ENVTBL
table contains pointers to each entry in
the QNMTBL table. These tables are
released later in phase 10. Their formats
are given in "Section 5. Data Areas".

File-Control Paragraph

The SELSCN routine produces one partial
Data IC-text entry for each SELECT
sentence. These entries contain only file
information and are stored in the ENVTBL
table. Later. during Data Division
processing (see "File Section" in this
chapter), these entries are used to produce
complete FD entries in Data IC-text.

For each SELECT sentence, the file-name
and other pertinent information are entered
into' the ENVTBL table. Variable-length
names are entered into the QNMTBL table,
and pointers to the QNMTBL entries are
placed in the appropriate ENVTBL fields.

VSAM File processing

For FILE STATUS clause processing,
SELSCN passes control to the file status

routine to enter the FILE STATUS dataname
into the QNMTBL and to set a pointer to
ONMTBL in the corresponding ENVTBL table
field. A corresponding bit is also turned
on in the ENVTBL to indicate that a FILE
STATUS clause has been specified.

F.or PASSWORD clause processing, SELSCN
passes control to the password routine to
enter the password into the QNMTBL and to
set a pointer to QNMTBL in the
corresponding ENVTBL table field. A
corresponding bit is also turned on in the
ENVTBL to indicate that a PASSWORD clause
has been specified.

I-a-Control Paragraph

When the I-O-Control paragraph header is
encountered, the ENVSCN routine calls the
pertinent routines for processing the SAME,
RERUN, MULTIPLE FILE TAPE, and APPLY
clauses.

SAME Clause: For each clause encountered,
the files named are entered into one of the
following tables: for SAME AREA, the SATBL
table; for SAME RECORD AREA, the SRATBL
table; for SAME SORT AREA, the SSATBL
table.

At the end of the Environment Division
processing, a unigue number is assigned to
each clause of each type (by means of
incrementing counters). For example, the
first SAME AREA clause is assigned the
number 1; the second SAME AREA clause is
assigned the number 2; and so forth.
Similarly, the first SAME RECORD AREA
clause is assigned the number 1; the second
SAME RECORD AREA clause is assigned the
number 2; and so forth. The same procedure
is followed for SAME SORT AREA clauses.

The ENVTBL table is then searched for
all the files named in the SAME clauses,
and appropriate numbers are inserted into
these entries of the ENVTBL table to
identify the SAME clauses in which the
files were named. For example, if three
SAME RECORD clauses were specified, each
file named in the first clause would have
"1" in the SAME RECORD field of its ENVTBL
table entry; each file named in the second
clause would have "2" in the SAME RECORD
field; each file named in the third clause
would have "3" in the SAME RECOPD field.

The appropriate switches are set in the
ENVTBL table entries. At this time, the
SATBL, SRATBL, and SSATBL tables are
released.

RERUN Clause: Format 1: An entry for the
file name is made in the CKPTBL table. In

Licensed Material - Property of IBM

the FNVTBL table entry for this file, the
CKPTBL bit is set to 1 and a pointer to the
CKPTBL table entry is inserted. The RERUN
bit in the PIOTBL tahle entry associated
with the file-name is later set to 1 during
Data Division processing. The RERUN switch
in COMMON is turned on.

Format 2 (SORT-RERUN): An entry is made
in the CKPTBL table, with the INTEGER field
set to zero.

MULTIPLE FILE TAPE Clause: The MULTIPLE
FILE TAPE switch is set to 1 in the ENVTBL
table entry for the file named in the
clause. A number indicating the file's
position on the tape is placed in the
POSITION INTEGER field.

APPLY Clause: For each option, a switch is
set in the EN~TBL table entry for the file
named in the clause.

Option 1 : The WRITE-ONLY switch is set.

option 2: The EXTENDED-SEARCH bit is
set.

Option 3: The WRITE-VERIFY switch is
set.

option 4: The CYL-OVERFLOW switch is
set. The number of tracks is converted
to binary and placed into the
CYL-OVERFLOW-TRACKS field.

option 5 (Format 1): The MASTER-INDEX
switch or the CYLINDER-INDEX switch is
set. The -device-number is stored in the
DEVICE-TYPE-CODE field.

option 5 (Format 2): The CORE-INDEX
switch is set. The data-name is stored
in the ONMTBL table, and a pointer to it
is entered in the ENVTBL table entry for
this file.

DATA DIVISION

When the Data Division header is
encountered, the GETDLM routine calls the
DDSCN routine, which in turn calls the
routines that process the File,
Working-Storage, and Linkage Sections. If
a Report Section is encountered, phase 00
is called to load phase 12, which processes
the Report Section.

As the Data Division source statements
are encountered, the following steps are
taken to form Data IC-text:

• Pile and record information is entered
into a work area (ICTEXT).

Phase 10 41

Licensed Material - Property of IBM

• Entries are made in the OD2TBL, ONMTBL,
FNTBL, and RCDTBL tables.

• Information for FDs in the ICTEXT work
area is merged with the corresponding
ENVTBL table entry.

• Data IC-text for FDs, LDs, and SDs is
generated and written on file SYS003.
At this time, space is reserved in the
PIOTBL table.

Completed Data IC-text is used in Phases
22 and 21 to make dictionary entries for
data-names and file-names and to generate
Data A-text.

The routines that process the Data
Division use the ENVTBL and QNMTBL tables
(additional entries are made in the QNMTBL
table) and build the OD2TBL, FNTBL, and
RCDTBL tables (see "Section 5. Data Areas"
for formats). All of these tables except
the ENVTBL and QNMTBL tables are passed to
phase 11. 'The PIOTBL table is also used by
phase 21, and the OD2TBL table by phase 22
and phase 25. The PIOTBL table entries are
filled in by phase 11 during Procedure
Division processinq and indicate which OPEN
options and input/output verbs are used for
each file; the OD2TBL table is used to
generate Q-Routines (object module
subroutines used to calculate variable
lengths for OCCURS ••• DEPENDING ON fields
and variably located fields following the
variable-length fields). The OD2TBL table
is also used in building the debug file if
SYMDMP has been specified (see "Buildinq
the OBODOTAB Table" in the chapter "Phase
25") •

FILE SECTIO~

After the File Section header is
encountered, the DDSCN routine calls the.
appropriate routines to process FDs, SDs,
and LD's in the source program.

File Description Entries

Each File Description entry (FD) is
analyzed, and information from the clauses
is entered into the ICTEXT work area. This
information, which includes the file-name
and the LABEL RECORDS switches, is merged
with some of the ENVTBL information and
placed into the FNTBL table. This ENVTBL
information includes the ACCESS RANDOM and
mass-storage switches and the CKPTBL bit
that were set during Environment Division
processing. A PIOTBL table entry is set
up, and pointers to this entry are placed

42 Section 2. Method of Operation

in the FNTBL and ENVTBL tables. The PIOTBL
table contains binary zeros at this time.
variable-length names such as LABEL RECO~D
data-names are entered into the QNMTBL
table, and pointers to these entries are
placed in the work area.

Note that the REPORT clause in the FD
statement requires special processing; this
is described in the phase 12 chapter.

When this processing has been completed,
the ENVTBL entry and the file description
information from the work area are merged
into Data IC-text FD entries. Names from
the QNMTBL table are located (from their
ENVTBL table pointers) and inserted where
needed. Each completed Data IC-text
element is written out. When File Section
processing has been completed, the QNMTBL
table is released.

Sort Description Entries

Each Sort Description entry (SD) is
placed in work area ICTEXT and is used to
generate an SD entry of Data-IC text.

Record Description Entries

When a level-number entry (LD) is
encountered, the DDSCN routine calls a
routine to analyze the entry and store
information from the clauses into work area
LDTEXT. (This area is the same physically
as ICTEXT.) If the OCCURS clause with the
DEPENDING ON option is included, the object
of the clause and its qualifiers are
entered into the OD2TBL table (no duplicate
entries are made). A pointer to the entry
is inserted later into the Data IC-text for
the Record Description. (Each level-number
results in a Data IC-text element in
tD-text format. LD-text is an internal
phase 10 text.)

For 01-level items, an RCDTBL table
entry is made, consisting of a pointer to
the most recent file-name entry in the
FNTBt table, followed by the record name.
As a result, each RCDTBL table entry
contains a pointer to a corresponding FNTBL
table entry, which in turn contains a
pointer to a corresponding PIOTBL table
entry (see "Section 5. Data Areas"). This
relationship is used by phase 11 when
processing WRITE and REWRITE statements to
relate records to their associated files.

When all the information about the
data-name has been stored in LDTEXT, the
contents are written out as an LD entry in
Data IC-text on SYS004.

WORKING-STORAGE AND LINKAGE SECTIONS

The Record Descriptions in the
Working-Storage and Linkage sections are
processed in much the same way as those in
the File section. However, since they are
not associated with files, no RCDTBL table
entries are made.

Licensed Material - Property of IBM

SYNTAX ANALYSIS

Phase 10 performs a syntax analysis of
the Identification, Environwent, and Data
Divisions during division processing.
Included are such things as checking for
division headers and making sure that the
PROGRAM-ID clause appears in the first
paragraph of the Identification Division.
If user errors are detected during syntax
analysis, E-text is generated.

Phase 10 43

Licensed Material - Property of IBM

PHASE 12

Phase 12 reads the source statements of
the Report Section of the Data Division,
producing one complete Report writer
Subprogram (RWS) for each RD that it
encounters. As it does so, it also:

• Scans its input for errors and
generates any necessary E-text.

• Generates a listing of the Report
section on SYSLST (SYS006 for LVL
option), if the LIST and NOLIB options
are in effect and no Lister options are
in effect.

• Records information for later phases in
TAMER tables and in COMMON cells.

Phase 12 reads its input from SYSIPT or
from SYS004 if the LIB or 1ST option is in
effect. It writes its output, the RWS, in
the form of Data IC-text on SYS003 and in
PO-text on SYS002. Any E-text produced is
also written on SYS002, intermingled with
the PO-text. The input and output are
summarized in Figure 11. The RWS is
described in Appendix C.

If the VERB option is in effect, Listing
A-text is generated and passed to phase 60
or 64 so that the object program listing
can include verb-names and procedure-names.
Each text element is simply a word in
EBCDIC format preceded by a code and a
count. For every Listing A-text element
written, a card number element is written
in PO-text. This card number (passed on
through the changing text forms) indicates
to phase 60 or 64 when to read a Listing
A-text element.

OPERATIONS IN OTHER PHASES

In addition to normal processing of the
Data IC- and PO-texts, other phases perform
related operations in response to elements
of the source program or of the RWS. These
elements include the REPORT clause, the
Report Section header, USE sentences, the
Procedure Division verbs INITIATE,
GENERATE, and TERMINATE, control-field
save-area names, and REDEFINES clauses.

RE.PORT CLAUSE

When a REPORT clause in an FD statement
is encountered, routine TBLRPT of phase 10
primes the RWRTBL table (first REPORT

44 Section 2. Method of Operation

clause only), sets a flag bit in the P1BTBL
table (first REPORT clause only), and
enters the report name into the RWRTBL
table (each REPOR'r clause encountered).
Phase 12 later checks the flag bit and, if
it is not set, returns control to phase 00
without producing an RWS.

REPORT SECTION HEADER

Upon encountering the Report section
Header, phase 10 sets the RPTWR bit in the
PHZSW switch in COMMON. Routine INTI0 of
phase 00 later checks the bit and calls
phase 12 when it is set.

USE SENTENCE.S

Upon encountering a USE sentence in the
Declaratives Section of the Procedure
Division. phase 11:

• Generates REPORT-ORIGIN, a special
Report Writer verb, to cause the
address counter to be set to the first
instruction in the RWS group routine
resulting from the report group
specified in the USE sentence.

• Inserts, at that point in the RWS
routine, a link to the USE routine.

• Generates another Report Writer special
verb, REPORT-REORIGIN, to reset the
address counter.

Note: Report Writer verbs are discussed
under "Elements of a Report writer
Subprogram" in Appendix C.

PROCEDURE DIVISION VERBS

Upon encountering an INITIATE, GENERATE,
or TERMINATE verb, phase 11 generates
PO-text, and phase 51 later generates
linkage between the main program and
appropriate routines in the RWS. The
INITIATE verb results in a link to the
INT-ROUT routine, TERMINATE to the LST-ROUT
routine, GENERATE report-name to the
1ST-ROUT routine, and GENERATE detail-name
to the DET-ROUT routine.

CONTROL-FIELD SAVE-AREA NAMES

Upon encountering control-field
save-area names (which are generated by
phase 12), phase 22 generates a dictionary
entry consisting of the "-nnnn" name and
the attributes of the control field which
had been previously defined in the Data
Division. Further discussion of
control-field save-areas is provided under
"Nonstandard Data-names" in Appendix C.

REDEFINES CLAUSE

Upon encountering Data IC-text for a
Report Writer REDEFINES clause, phase 22 so
processes it that the E-point name data
item generated from the COLUMN clause
points to the relative location in the
print-line work area, RPT.LIN, equal to the
integer specified in the COLUMN clause.
When an item is later to be moved to
RPT.LIN, the location can be determined
from the E-point name. The length is taken
from the PICTURE clause information in the
dictionary attributes for the item.
E-Point and RPT.LIN are discussed under
"Nonstandard Data-names" in Appendix C.

PRODUCING THE REPORT WRITER SUBPROGRAM
(RWS)

Generating a complete subprogram is the
task of five routines in phase 12: RDSCAN,
PROC01, PROC02, FLUSH, and GNSPRT. Routine
GETDLM controls the flow of processing for
phase 12. That flow is tailored to the
particular source program, but the
following discussion explains the general
concept.

The RDSCAN routine processes the RD
statement and is followed by routine
PROC01, which processes the Cl-level
sentence. If that sentence is an
elementary item, routine PROC02 is called
upon to process each elementary-level
clause until the entire sentence has been
processed. At that point, the E'LUSH
routine is called to finish generating the
group routine. If the sentence is the
01-level statement of a group item, routine
PROCOl processes the sentence, and routine
PROC02 is called to process the elementary
and lower-Level group items following.
When that is done, routine FLUSH is called,
does its processing, and the compiler goes
on to the next 01-level staterr.ent.

The PROC01-FLUSH or PROC01-PROC02-FLU5H
loops continue until phase 12 has generated

Licensed Material - Property of IBM

FWS group routines for all of the 01-level
statements defined in the source program.
Routine GNSPRT is then called on to
complete the RWS by filling in the fixed
and parametric routines and any necessary
dummy group routines. Phase 12 then checks
to see if the next logical record is an RD
statement', in which case another RWS is
needed and the process begins again with
routine RDSCAN, or if it is the Procedure
Division header, in which case phase 12,
being finished, returns control to phase
00.

ROUTINE RDSCAN

The RDSCAN routine is responsible for
processing the RD entry of the source
program. After first ensuring that an RWS
should be generated (by deterrrining whether
the RWRTBL table is primed), it reads each
logical unit of the RD and processes it.
The routine operates in a loop-type scan,
checking each item to see if it is a
period, CODE clause, CONTROL clause, or
PAGE clause. If it is none of these, it is
treated as an error.

Routine RDSCAN then sets appropriate
switches and enters data into storage areas
and tables. It then gets 'a new record and
repeats the loop until it encounters a
period. WhEn this happens, control returns
to routine GETDLM, which calls routine
PROCD1.

ROUTINE PROC01

Routine PROCOl processes the 01-level
record descriptions. Valid input for this
routine includes the period and the NEXT
GROUP, LINE, TYPE, and USAGE clauses. It
operates in a loop-type scan and processes
each clause in much the same way as the
RDSCAN routine does. Since an 01-level
elementary entry is permiSSible, other
clauses can also be valid. Before assuming
an error, routine PROC01, therefore,
branches to the PROC02 routine to check for
and process elementary-level clauses. Once
a valid clause is processed in one or
another of these routines, control returns
to the beginning of the loop in routine
PROCOl.

Processing of the TYPE clause marks the
generation of the initial codinq for the
group routine. Since the compiler has, at
that point, enough input to begin the group
routine, the first part of that routine is
generated here.

Phase 12 45

Licensed Material - Property of IBM

SYSIPT (SYS004 if LIB or LST)
r-------------------,
ISource Program I
1 ~----,
I (Report Section) 1 1 L ___________________ J 1

I
1
I
1

SYSLS'!':L (if NOLIB and no Lister)
r------------------,To
ISource Program jprinter

r---> I ~-------->
I I <Report Section) J] L __________________ J

]
I
I
J SYS003
I r------------------,To
I I Data IC-text I phase 20
r---> I 1-------->
I I I J L __________________ J

'I
1
J

Storage (TAMER) 1 SYS002
r-------------------, I r------------------,To
ITables passed to I I IPO-text and E-text]phase 11
phase 12 I r-------------------, ~--->I ~-------->

FNTBL'
PIOTBL
P1BTBL
QLTABL
RWRTBL
SPNTBL
RCDTBL

I V I I I I I
~-------->I PHASE r--->] L __________________ J

1 "I 12 I I
1 I 1 I I 1 I L ___________________ J I
1 I " I Storage (PHOO)
1 1 I J r------------------,
I 1 1 J I I
1 1 I ~---> I COMMON I
1 I I I I ___________________ J I V I L __________________ J

I Storage (TAMER) I
I r-------------------, 1
I 1 Tables built by I I

Storage (PHOO) I Iphase 12 1 I Storage (TAMER)
r-----------~-------, I I I I r------------------,

~----J I CTLTBL 1 I ITables passed to ,
COi"jMON I I DETTnL I I Ilater phases I

I 1 I GCNTBL 1 I 1 I
L ___________________ J I NPTTBL I I 1 DETTBL I

I QALTBL I I 1 FNTBL I
I RNMTBL I I 1 PIOTBL I
I ROLTBL I 1 1 P1BTBL I
1 ROUTBL I I 1 RNMTBL 1
1 SMSTBL I L ___ > I ROUTBL I
I SNMTBL I I RWRTBL I
1 SRCTBL I 1 SPNTEL I
1 SUMTBL 1 I RCDTBL I L ___________________ J 1 I

:LSYS006 is used if the LVL option is in effect.

Figure 11. Phase 12 Input/Output Flow

46 Section 2. Method of Operation

INote: Tables not 1
Ishown here are re-I
Ileased by phase 121 L __________________ J

ROUTINE PROC02

Routine PROC02 is entered when routine
GETDLM encounters an 02-49-level entry or.
at entry point PR02A. during PROC01's scan
of an 01-level elementary item. Its
operation is similar to that of routines
RDSCAN and PROC01. except that checks are
made so that control returns to routine
PROCOl when appropriate.

ROUTINE FLUSH

When routine FLUSH is called. all the
information needed to complete one group
routine is available in the form of table
entries. contents of data areas in storage,
and switch settings. Routine FLUSH
generates the exit coding for the group
routine, and then returns control to
routine GETDLM.

ROUTINE Gl~SPRT

Routine GNSPRT is called when the GETDLM
routine encounters a new RD or the
Procedure Division header. At this point,
all group routines defined in the source
program have been written onto SYS002 (in
PO-text), and all data needed to complete
the RWS is in storage. Routine GNSPRT
first writes out the necessary Data IC-text
on SYS003 and then, in order:

1. Generates the WRT-ROUT routine.

2. Generates a dummy group routine for
any of the following groups not
defined in the source program:
Control Heading Final, Control Footing
Final, Page Footing. Page Heading,
Report Heading, and Report Footing.

3. Generates the INT-ROUT routine.

4. Generates, if a PAGE LIMIT clause was
specified in the source program, an
ALS-ROUT routine and an RLS-ROUT
routine. If no PAGE LIMIT clause was
specified, the RWS contains neither of
these two routines.

5. Generates one USM-ROUT routine for
each TYPE IS DETAIL group specified
under the RD statement being
processed.

6. Generates in order, one each of the
following routines: CTB-ROUT,
RST-ROUT, 1ST-ROUT, LST-ROUT, and
ROL-ROUT.

Licensed Material - Property of IBM

7. Generates any needed CTH-ROUT
routines. A CTH-ROUT routine is
needed for any control specified in
the source program after the highest
level (or FINAL) control. If the
source program contains no TYPE IS
CONTROL HEADING report description for
such a control, routine GNSPRT
generates a dummy group routine here
to fill the need.

8. Generates any needed CTF-ROUT
routines. A CTF-ROUT routine is
needed under circumstances like those
for a CTH-ROUT routine.

9. Generates one SAV-ROUT routine and one
RET-ROUT routine.

G£NERATING ERROR MESSAGES

Coincident with producing the RWS, phase
12 scans its input for syntax errors.
Checks are made to ensure that each routine
is both correct in itself and compatible
with the rest of the RWS. If errors are
detected, messages are written in E-text
and recovery is attempted. When n~cessary,
attempts to produce the particular RWS are
abandoned. The E-text is written,
intermingled with PO-text, on SYS002.

GENERATING THE SOURCE LISTING

As each record is read from SYSIPT, a
check is made to determine if the LIST
option is in effect. If so, the source
statement is copied out onto SYSLST (or
SYS006 for LVL option).

INFORMATION FOR LATER PHASES

During its processing, phase 12 stores
various types of information for later
phases to use. For example, phase 12
builds the ROUTBL table, which contains the
specific GN numbers assigned to certain RWS
routines. Phase 11 needs this information
in order to process INITIATE. TERMINATE,
GENERATE, and USE BEFORE REPORT'ING
statements. Such items are stored in TAMER
tables and in cells in COMMON. For more
details on this su£ject, refer to Figure 11
and to "Communications Region" and "Table
Formats" in "section 5: Data Areas."

Phase 12 47

Licensed Material - Property of IBM

PHASE 11

Phase 11 (ILACBLll) reads the source
statements of the Procedure Division. It
is entered via phase 00 when phase 12
encounters the Procedure Division neader,
or when the GETDLM routine in phase 10
encounters an end-of-file condition. As it
reads each card in the Procedure Division,
phase 11 does the fOllowing:

• Encodes the Procedure Division into,
PO-text.

• Enters procedure-names into the
dictionary.

• Writes the Procedure Division on SYSLST
(SYS006 for LVL option), if the LIST
and NOLIB options are in effect and no
Lister options are in effect.

• Generates error text (E-text) for
syntax errors it encounters.

The phase 11 routines first process the
out-of-line procedures contained in the
Declarative Sections. (Processing
declaratives is described later in this
chapter.) Then the in-line program is
processed.

Tables passed from phase 10 and used by
phase 11 inc1:ude the PIO'IBL, FNTBL. RCDTBL,
PIBTBL, and SPNTBL tables. Tables passed
from phase 12 and used by phase 11 are the
DETTBL, RNMTBL, ROUTBL, and RWRTBL tables.
'Ihe PN'IABL and PNQTBL tables are built
during phase 11. If the VERBREF or VERB SUM
option is in effect, phase 11 will create
the VERBDEF Tamer table. Formats for
tables, text entries, and dictionary
entries are given in "section 5. Data
Areas."

Phase 11 functions are performed under
the control of the PDSCN routine and the
two major working routines GETCRD and GETWD
(which supply input to PDSCN). The GETCRD
and GETWD routines are described under
"J:'.lajor Working Routines" in the phase 10
chapter. These and all other routines used
by both phases do not remain in storage
from phase 10, but are reloaded with phase
11.

If the VERB, VERBREF, or VERBSUM option
is in effect, Listing A-text is generated
and passed to phase 60 or 64 so that the
object program listing can include
verb-names and procedure-names. bach text
element is simply a word in EBCDIC format
preceded by a code and a count. For every
Listing A-text element written, a card

48 section 2. Method of Operation

number elerr.ent is written in PO-text. This
card number (passed on through the changing
text forms) indicates to phase 60 or 64
when to read a Listing A-text element.

ENCODING THE PROCEDURE DIVISION

A major activity of\phase 11 is writing
PO-text. This text is,\ roughly, the source
program Procedure Division encoded into a
form acceptable to later phases. Logical
units (source program character
configurations) are processed, encoded, and
written out one at a time. Sorre
information, such as card numbers. is
generated for PO-text. All user-assigned
names are passed unchanged (preceded by
code and count fields) from the source
text. Verbs and other COBOL words are
replaced by unique 2-byte codes. For the
cOIl'plete text formats, see "Section 5.
Data Areas."

PROCESSING PROCEDURE-NAMES

At its point of definition, each
procedure-name (paragraph-name or
section-name) is given a PN number. The
point of definition is that point at which
the name appears in Area A of the source
program. PN numbers are assigned
sequentially. starting with 1, from cell
PNCTR in COMMON. 'Ihe procedure-name is
entered into the dictionary and written in
PO-text. Some dictionary attribute bits
are set when the entry is made, and others
are moved in from the PNTABL or PNQTBL
tables later when the attributes are known.
The building of the PNTABL and PNQTBL
tables is described below under "Processing
Verbs." Entering PNTABL and PNQTBL
information into the dictionary is
described later in this chapter.

Priority Checking for segmentation

For each section-name, the segmentation
priority is entered into the dictionary_
If no priority number was specified, zero
is entered as the priority (in a
nonsegmented program, all sections are
given a zero priority). If a priority
number was specified, its value is compared

to the value of the SEGLMT cell in COMMON
(this cell either was set by phase 10 when
processing the SEGMENT-LIMIT clause or
contains a default segment-limit of 49).
If the priority number of the section-name
is less than SEGLMT, it means that the
section is part of the root segment. In

Licensed Material - Property of IEI>:!

Phase 11 48.1

this case, the priority number of the
section-name is entered into the dictionary
as zero. If the priority number exceeds
SEGLMT, the specified number is entered
into the dictionary.

Each time a section-name is found whose
priority exceeds the value of SEGLMT, a
phase 11 switch is turned on. If, at the
end of Procedure Division processing, this
switch still contains zero, it means that
the program is not segmented and SEGLMT is
set to hexadecimal 'FF'. If the switch is
on, SEGLMT is left as it was. The value of
SEGLMT is used by later phases to determine
whether or not the program is segmented.

PROCESSING VERBS

All verbs are encoded and written as
PO-text. In addition, the verbs discussed
below require special handling.

Procedure Branching Verbs

When the procedure branching verbs
(ALTER, EXIT, GO TO, and PERFORM) are
processed, information about how a
procedure-name is used is entered into the
PNTABL or PNQTBL table. If the
procedure-name to be entered is'qualified
by a section-name, the procedure-name and
its qualifier are entered into the PNQTBL.
If the procedure-name is not qualified, it
is entered into the PNTABL. Entries from
the tables are used to set some of the
attribute bits in the dictionary entries
for the procedure-names. A unique bit is
turned on in the attributes field for the
procedure-name according to their use.

~: The left-hand name (the
procedure-name appearing in Area A, not the
object of the GO TO) is entered into the
PNTABL table. If the DEPENDING ON option
is used, no entry is made.

EXIT: The left-hand name is entered into
the PNTABL table.

~: The procedure-name following the
word ALTER and the procedure-name following
the phrase TO PROCEED TO are entered in the
PNTABL table.

PERFORM ••• THRU: The procedure-name
following the THRU is entered into the
table. If the THRU option is not used, the
procedure-name following PERFORM is
entered.

Licensed Material - Property of IBM

Input/output Verbs

switches are set in the PIOTBL table
entry for the file named in input/output
verbs. These switches tell phase 21 how
the file was used. In addition, the
following processing takes place. The
REDSVB routine also checks for the word
NEXT in the READ verb. If it is present,
the routine turns on the appropriate bit in
the Pl0TBL tabl~.

OPEN: If the label or error-processing
declaratives were written for this file,
GNs (generated procedure names) for the
declaratives are encoded into the PO-text
following the file-name in the OPEN
statement. The handlinq of these
declaratives is described under "Processing
Declaratives" ill: this chapter.

DELET~: The FILSVB subroutine checks that
the filename specified in the DELETE verb
was previously specified in a SELECT
statement. The subroutine turns on the
appropriate bit in the PIOTBL table if the
file-name is valid.

WRITE, REWRITE: The record name is sought
in the RcnTBL table; the RCDTBL entry
contains a pointer to the FNTBL table,
which is used to find the file-name. The
file-name is then included in the PO-text
entry (in the form II~lRITE file.,.name
record-name"). If the ADVANCING option of
the WRITE statement is used with the
mnemonic-name option, it is sought in the
SPNTBL table and replaced with the proper
function-name.

Other Verbs

ACCEPT, DISPLAY: If a mnemonic name is
used, it is sought in the SPNTBL table and
replaced by the proper function-name.

DEBUG: The attribute bits in the
dictionary entry for the paragraph referred
to are set.

EXHIBIT: A special EXHIBIT data-name is
generated.

~: The TRACE switch in COMMON is set.

SORTIMFRGE: If the USING or GIVING option
is specified, the appropriate bits are set
in the PIOTBL table-entries for the files
named. If these files are also specified
in label or error processing declaratives,
the GNs for the declaratives are appended
to the file-name.

Phase 11 49

Licensed Material - Property of IBM

Report Writer Verbs: See "Appendix C:
Report writer Subprogram."

PROCESSING DECLARATIVES

When a Dec1aratives Section is
encountered, the section-name (and any
paragraph-names as they are encountered)
are entered into the dictionary. A PNTABL
entry is made for the section-name; the
declarative bit and the bit identifying the
type of declarative are set. Every
paragraph-name in the section is also
entered into this table, with only the
declarative bit set. These bits are used
later to set dictionary attribute bits.

Each label or error declarative is given
a GN (generated procedure-name) number.
These numbers are assigned sequentially,
starting with 1, from the GNCTR cell of
COMMON. If the USE sentence specified ON
file-name, the GNs are entered into the
appropriate fields of the FNTBL entry for
the file. If the USE sentence specified ON
IWPUT, ON OUTPUT, or ON 1-0, the GN number
is entered into a particular OPEN option
work area. '

For each file-name specified in an OPEN
statement, the correspondinq FNTBL table
entry is inspected. If GNs were entered
into the FNTBL during declarative
processing, they are inserted into the
PO-text. Otherwise, the work areas for the
particular OPEN option are searched for the
appropriate GNs for this file. For an
error declarative, if a GN for ON INPUT is
found in the work area, the GN num~er is
inserted into all OPEN INPUT PO-text
entries. The GNs for label dec1aratives
are appended only for files whose FD
entries include a LABEL RECORD IS data-name
clause. OUTPUT and 1-0 GNs are handled the
same way.

The USESVB routine builds the GVNMTBL
table containing the fully qualified
data-names used in the GIVING option of the
STANDARD ERROR/EXCEPTION PROCEDURE
declarative for VSAM files. The routine
also builds the GVFNTBL table when a VSAM
file has been specified in the ON option of
the declarative.

ENTERING PROCEDURE-NAMES IN THE DICTIONARY

A dictionary entry is made for all
procedure-names (PNs) upon their point of
definition (appearance in Area A) in the
source program. The entry's 2-byte

50 Section 2. Method of Operation

characteristics field is later filled in
from the flag field of either the PNQTBL or
PNTABL table if the PN (1) follows the
PEFFORM in a PERFORM ••• THROUGH statement,
(2) follows the PERFORM in a PERFORM
statement without the THROUGH, (3) is
altered by an ALTER statement, (q) follows
TO PROCF.FD TO in an ALTER statement, (5)
precedes a GO TO or an EXIT statement, (6)
is referred to or nefined in a DEBUG
paragraph, (7) is a dummy name, or (8)
appears in the Dec1aratives Section. The
three fields are identical.

Each time such a PN is encountered, the
PNOTBL table (if it is a qualified name) or
the PITABL table (if it is not) is searched
to find an earlier entry for it. If one is
found, the flag bytes are modified; if not,
a complete entry is made. At the end of
the Procedure Division, or the section
currently beinq processed if the Procedure
Division is divided into sections, a search
is made in the dictionary. When an entry
is found for that PN, the characteristics
field is modified, and the PNTABL or PNQTBL
entry is deleted. A new table entry is
made for that PN if it is encountered in a
later section.

Whenever the Procedure Division is
divided into sections, the technique used
to search the dictionary is affected.
Phase 11 calls the appropriate TAMER ACCESS
routine, giving it the name of a particular
Procedure Division section. All PNs
entered in the dictionary from that section
are then searched. If the search is for a
PN from the PNTABL table and the dictionary
has been searched without finding the PN, a
search bit is turned on in the table entry.
The next time the dictionary is searched
for this PN, only entries from the newly
processed section will be searched. In the
case of the PNQTBL table, the table entry
contains the section-name qualifier. Thus,
if the section named in the table entry has
been processed, the dictionary entry is
found among the entries for that section.
If the section-name has not yet been
encountered, no search is made, and no
search bit, therefore, is needed.

Figure 12 shows an example of such a
search. Note that the figure does not show
the entry formats. Dictionarv formats and
table 'formats are shown in "Section 5.
Data Areas."

DnMMY ENTRY FOR PHASE 80

Phase 11 places a dummy element after
the source statements; this dummy element
is used by phase 80.

Licensed Material - Property of IB~

DICTIONARY
iii
IPoint of definition I Procedure I
lis in section I name
I I
I I PN1
I 1 I PN2
I I
I 2 I
I I
I I PNS
I 3 I PN6 , ,

PNTABL
iii
I Section I I
lof Table I Procedure I
I Entry
I

IName
I

Action Taken

PN2 I Dictionary
I

entry found on first search. Table entry is deleted.

1 PN6 isl
I
I
I

IOn first search, the dictionary entry not yet made, so search bit
Iset. On sEcond search, only entries from section 2 are searched.
ISince the name is still not entered in the dic- tionary, the search
Ibit remains on. On third search, only entries from section 3 are

3 PNS

PNQTBL

I searched. Entry is found and the table entry deleted.
I
IOn the third search, the whole dictionary is searched for
Iwhich is in the table for the first time. Dictionary en­
Ifound and the table entry is deleted. ,

i I I

ISection IQualifiedl
lof TablelProcedurel
IEntry IName I Action Taken
I I I

I ,
this name, I
try is I

I ,

I 2 IPN1 in IOn the second search, the entries from section 1 are immediately
I I Isearched. The entry is found and the table entry deleted.
I I I

Figure 12. Entering PNTABL and PNQTBL Information into the Dictionary

Phase 11 51

Licensed Material - Property of IBM

Phase 20 is the third of five phases
that process the Data Division. It follows
phase 11, overlaying it in storage. After
it is loaded, storage contains phase 00
(including COMMON), the TAMER table and
dictionary area, and phase 20. The primary
concerns of phase 20 are the VALUE and
PICTURE clauses of the data descriptions,
which it translates from Data IC-text into­
ATF-text.

Phase 20 processing is initiated and
controlled by the BEGIN routine. It reads
each Data IC-text element and, from each LD
entry, it computes and writes a partial
dictionary entry to be passed to phase 22.
After completing the partial entry, phase
20 writes it on SYS004 (the format of the
entry is called ATF-text) and reaas the
next Data IC-text element, continuing until
SYS003 has been exhausted. All Data
IC-text for FDs, SDs, and keys for table
handling and any E-text encountered is
copied unchanged onto SYS004~

Phase 20 also scans its input for syntax
compatability and error conditions,
producing any necessary E-text it produces
and passes two tables, the-VALTRU and the

SYS003

Data IC-text
F.-text

I

1
J--,
1 _ 1
1 1

~ ________________________ --J' _ 1

storage (In phase 00)

COMMON

Storage (TAMER Area) ,
ITables built by phase 20
1
1
1
I ,

LABTBL table
VALGRP table
VALTRU table

1
1

- 1
1
1 , I

1 1 1
r-~'---->IPhase,

1 20 1
I 1
« I

" 1
I
I

I 1
1 I
1 1 1 < _______ ~I
1
1
I

Figure 13. Phase 20 Input/Output Flow

52 Section 2. Method of Operation

VALGRP, to later phases. The input and
output for this phase are summarized in
Figure 13.

TRANSLATING LD FNTRIES INTO ATF-TEXT

Routine BEGIN first determines whether
the element read is an LD element; that is,
one resulting from a source program record
description entry of level 01-49, 66, 77,
or B8. If so, BEGIN stores the current
input card number into a halfword in COMMON
called CURCRD and calls on routine LDTEXT.
LDTEX f copies the elementfrom the input
buffer into a work area, called ATFTXT,
reads the next record (Data IC-text
element) into the buffer, compares the
current level number to the next element's
level number to determine whether it is a
group or an elementary item, and calls the
appropriate routines to create the
ATF-text.

SYS004
r'--------------------,
1 Incomplete Data A-text ITo

r-> I Da ta IC-text t-I ---->
1 1 ATF-text I phase
1 IE-text 122 1 L' ____________________ ~

1
1
1
1
1
I 1
1 >1
1 I
1 I

Storage (In phase 00)

COMMON

I L' _______________ ~

I
I
1
1
I
1
I I
'-->1

I
1 ,

Storage (TAMER Area)

VALTRU table
VALGRP table

PROCESSING ELEMENTARY ITEMS

For an elementary item, the LDTEXT
routines described below produce a portion
of an ATF-text element that contains fields
identical to a dictionary entry except for
the addressing parameters. Routine DICTBD
of phase 22 fills these in later.

If there was a PICTURE flag in the Data
IC-text for the elementary item, the LDTEXT
routine calls routine GSPICT to distribute
the PICTURE into work areas. The kind of
character is stored in work area IPT and
the number of occurrences of that character
in IPLT. Subroutines, depending on the
type of the PICTURE, determine the length
of the item and its attributes. The
attributes are entered in the variable
information field of the ATF-text element.

An indication of how many subscripts are
needed to refer to the item is set in the
text element by subroutine BMBSRN. The
REDEFINES bit is set from the REDEFINES
flag in the Data IC-text, and the object of
the REDEFINES clause is saved for
processing by phase 22. (If the REDEFINES
clause is internal, that is, generated for
the Report Section, and the subject of the
clause is a name plus a displacement, phase
22 adjusts the addressing parameters of the
object of the clause to reflect the
displacement.) The major code, which is
changed only when a new section header is
encountered, is moved from a work area to
an ATF-text field. In addition, the level
numbers are normalized as an aid to phase
30.

If there was a COpy flag in the Data
IC-text, routine COPYRN picks up the name
from the text so that the data-name of the
entry can replace the COpy library-name in
the copied entry.

Routine BUS AGE utilizes the USAGE
information in the Data IC-text to
determine the size of the elementary item
if there was no PICTURE. It provides
enough information to set the minor code
field in the ATF-text element to the type
of the entry and to fill in the variable
information field with a description of the
item. If there was a PICTURE, the USAGE
information, together with the PICTURE,
provides enough information to set the
minor code and variable information fields.

If a RENAMES clause is associated with a
data item, no partial dictionary entry
exists in the ATF-text element, and all
processing is done by phase 22. The BCD
names are passed on unchanged from the Data
IC-text element.

Licensed Material - Property of IBM

PROCESSING GFOUP ITEMS

For a group item, the LDTEXT routines
produce a portion of an ATF-text element
that is identical to a dictionary entry
except for the addressing parameters and
the length of the group. These are later
filled in by phase 22.

The processing is the same as that for
elementary items with two exceptions.
Routine BUSAGE saves the USAGE, in area
GUI, to verify the USAGE of the elementary
items. Routine SRCHTB passes the keys, if
any, unchanged to phase 22.

PRODUCING INCOMPLETE DATA A-TEXT

Phase 20 generates incomplete Data
A-text elements for constants defined by
VALUE clauses. Information for
constructing this text comes from the Data
Ie-text read from SYS003. For LD entries
with VALUE clauses, the value is given in
the Data IC-text element and is entered
directly by routine VALGEN into the
incomplete Data A-text element. Constants
defined by VALUE IS SERIES clauses are
discussed under "Building Tables for Later
Phases" in this chapter. For the formats
of Data A-text and Data IC-text, see
"section 5. Data Areas."

PROCESSING FILE SECTION ENTRIES

When it encounters the File Section
header, the BEGIN routine transfers control
to routine FILEST, which controls the
processing of the section. Routine FILEST
uses the BSUBRN routine to read the Data
IC-text elements. For a critical program
break or EOF, routine FILEST returns
control to routine BEGIN.

PROCESSING ERRORS

As phase 20 processes Data IC-text, the
clauses are checked to determine whether
they are allowed to be used together. The
following is an example of the checking
that is performed.

When routine LDTEXT processes Data
IC-text elements for LD entries, some of
the clauses are processed before a
determination is made of whether the item
is a group or elementary item. Then, when
the LDTEXT routine determines whether the

Phase 20 53

Licensed Material - Property of IBM

item is a group or elementary item, it
eliminates any invalid clauses. For
example, if a PICTURE clause is given for a
group item, routine LDTEXT processes it.
Then when it determines the item is a group
item, routine ERRTN issues E-text for the
invalid PICTURE clause.

54 section 2. Method of operation

Phase 22 is the fourth of five phases
that process the Data Division. (For an
overview of that processing, refer to
Figure 4 of the introduction to this book
and to Diagram 1 in the Diagrams section.)
Phase 22 follows phase 20, overlaying it in
storage. Its major functions are:

• Producing dictionary entries.

• Completing Data-A text.

• Generating Q-routines.

Phase 22 processing is initiated and
controlled by the DIRECTOR routine. A Data
IC-text or ATF-text element is read from
SYS004 and distributed to work areas.
Routine DICTBD then completes fields in the
entry and places it in the dictionary.
While building the dictionary entry, phase
22 also checks for syntax compatibility and
error conditions. After phase 22 has
completed the dictionary entry for a given
text element, it picks up the next element
for processing, continuing until SYS004 has
been exhausted. All Data IC-text for FDs
and SDs and any E-rext encountered is
copied unchanged onto SYS003.

Incomplete index-name entries (prefix
04) are entered into the dictionary by
routine FEADF4 when they are encountered.
Later, information is filled in by routine
ITEN, a subroutine of DICTBD.

The input and output for this phase are
summarized in Figure 14.

BUILDING DICTIONARY ENTRIES

Phase 22 stores the current card number
for each input card in a halfword in COMMON
labeled CURCRD. It then calls the
appropriate routine for preprocessing of
the data item, and after the preprocessing
is finished, it calls routine DICTBD to
complete the entries.

The routine makes either complete or
dummy dictionary entries.

Licensed Material - Property of IBM

PHASE 22

DICTIONAFY PREPROCESSING

RENAMES Entries: If a RENAMES clause is
associated with a data item, routine FENAMS
goes to the dictionary and locates the data
item or items being renamed. The routine
picks up the attributes and addressing
parameters for the dictionary entry or
entries and assigns them to the RENAMES
item. The routine then places the
completed entry for the RENAMFS item into
the dictionary. The entire dictionary
entry for a RENAMES item is formulated by
the RENAMS routine.

LD Entries: Before the dictionary build
routine is called to complete the
dictionary entry for an elementary item,
routine LDTIT obtains a dictionary pointer
for the item by calling an ACCESS routine,
GETPTR. (ACCESS routines are described in
"Appendix A. Table and Dictionary
Handling.")

A delimiter pointer is needed for group
items. Level-SS entries are put into the
dictionary directly by the input routine
READF4.

FD Dictionary Entries: A skeleton
dictionary entry is created by routine
FSTIT. This entry contains only the file
name; the attributes are filled in by phase
21. ~he length of the file attribu"l:es is
determined by the access method specified;
phase 22 determines that in making the
skeleton dictionary entry. Routine FSTIT
assiqns the next DTF number to the file and
writes the Data IC-text for the FD on
SYS003. Phase 22 determines if there is an
ISAM file which has no RESERVE NO clause
and is opened INPUT or I-O.

Since phase 21 processes the Data
IC-text for FDs, routine FSTXT passes this
text to SYS003 (the same file on which
phase 22 writes Data A-text) except for
user label record information.

A dictionary pointer is obtained and
processing of the entry is completed by
routine DICTBD and its subroutine FSTOOO.

Phase 22 55

Licensed Material - Property of IBM

INPUT

SYSOO~

ATF-tp.xt
Data A-text

(incomplete)
Data IC-text
E-text

i

I
I
I
r---,
I I L-__________________ ~i I

Storage (PhOO)

COMMON

Storage (TAMER)

Tables passed
to phase 22:

DICOT
OD2TBL"
UPSTBL
VALTRU
VALGRP

I
I
I , ,

i

V I Phase
r----------->I 22

/\

i , , ,
I
I-----'
I , ,

I

,
./\

V
Storage (TAMER)

,Tables built by
phase 22:

GPLSTK
QITBL
QRTN
RD'FSTK
RNMTBL
SReRKY

Figure 1~. Phase 22 Input/Output Flow

56 Section 2. Method of operation

QUTPUT

SYS003
i r
, Data A-text ,
, Data IC-text ,
,DEF-text ,To

r-->' E-text f-->Phase
, , I 21
, iL-__________________ ~1 ,
I ,
I SYS002
, Ir-------------------~i
, , Q-routines I To
, >, f-->Phase
I ' i 30
I
I , , ,
I Storage (PhOO)
I ir-----------·--------~
I , COMMON
l-->I
I I
I ~,------------------~
I ,
I , ,
I
I
I
I I
t---->I

I
I
I

Storage

Dictionary

Storage (TAMER)

Tables:
DICOT
FDTAB
I'NDKEY
MASTODO

'----> OCCTBL
OFILE
OVAR
RENA!!TB
VALTRU
VJl.RLTBL

Partial RD Dictionary Entries: Routine
RDTXT does most 9f the processing for the
RD dictionary entry. At the end of this
processing, the entry is complete and
entered in the dictionary by routine
DICTBD.

SD Dictionary Entries: SD entries are
handled like FD entries. Routine SDTXT
performs this processing.

COMPLETING DICTIONARY ENTRIES

The dictionary build routine, DICTBD,
completes these dictionary entries which
were begun in phase 20 by filling in
addressing information. Each data item is
addressed by a base locator number and a
displacement.

The addressing parameter field has three
parts, called i, d, and k, where i
specifies the type of base locator (BL,
BLL. or SBL), d specifies the displacement
of the item from the beginning of the area
controlled by the base locator, and k
specifies the base locator number.

A base locator number is assigned to the
beginning of each major data area, such as
the Working-Storage Section, and to each FD
and SD entry. Then the displacement of
each item in these areas from the beginning
of the area is calculated. If the items in
the area occupy more than 4.096 bytes, a
second base locator number is aSSigned to
the second 4,096 bytes. etc. (In this
case, RD entries are considered to be an
extension of the Working-Storage Section
and the same base locators are used.)

There are three types of base locators
(BL. BLL, and SBL) depending on the type of
data area. Base locator numbers are
assigned sequentially from counters in the
COMMON area.

~
BL

ELL

SEL

Counter
ELCTR

BLLCTR

SBLCTR

Use
BL numbers are assigned to
the working-Storage Section,
the Report Section. and to
each file (FD, RD, and SD
entry) .

BLL numbers are assigned to
the Linkage Section and to
label records.

See "Q-routine Generation"
in this chapter.

fompleting Working-storage section Entries:
The Working-Storage Section contains only
LD entries. Routine DICTBD completes the

Licensed Material - Property of IBM

LD dictionary entries by filling in the
addressing parameter field for group and
elementary items and by determining the
length and the delimiter pointer for group
items.

Routine DICTBD assigns a base locator
number to the beginning of the
Working-Storage Section. The type of the
base locator number is EL, and the base
locator number is the next available number
from field BLCTR in CO~~ON. The d part of
the addressing parameter is obtained from
the LOCCTR counter in COMMON. Each time a
Data A-text element is written out, the
counter is incremented by the number of
bytes the element will occupy at object
time.

Routine DICTBD uses the GPLSTK table to
keep track of the length of group items.
It enters the length and the delimiter
pointer (the dictionary pointer of the
group delimiter) in the dictionary entry
for the group. It also deletes the GPLSTK
table entry for the group.

Note: The lengths of 77-level items are
not added to the GPLSTK table since they
are independent items.

If an item contains a REDEFINES clause,
routine DICTED calls routines REDEF and
RDSYN to process the item using tables
RDFSTK and RNMTEL. The REDEF routine makes
an entry in the RDFSTK table, giving the
length of the REDEFINES object and the
level number and current addressing
parameters of the REDEFINES subject. Then
the REDEF routine assigns the addressing
parameters of the REDEFINES object to the
REDEFINES subject. An entry is also made
in the RNl>lTBL table, giving the level
number, dictionary pointer, and length of
the object of the REDEFINES.

When an item is encountered with a level
number less than or equal to the last level
number in the RDFSTK table, it is assigned
the addressing parameters from the entry.

The length of the REDEFINES object is
saved in the RDFSTK table. If the
REDEFINES subject is a group item, its
length is determined by the GPLSTK table.
If it is an elementary item, routine RDSYN
determines its length.

Table RNMTBL is also used if there are a
series of items with REDEFINES clauses.

completing File Section Entries: Routine
DICTBD uses its subroutine FSTOOO to
complete dictionary entries for FDs.
Subroutine FSTOOO performs two major
functions:

Phase 22 57

Licensed Material - Property of IBM

• It resolves the previous FD, if any.

• It completes the processing of the
current FD, if any.

Routine DICTBD processes SD entries in
the same way it processes FD entries.

Completing Linkage Section Entries:
Linkage Section entries are processed the
same as Working-Storage section entries
except that the type of base locator number
assigned is BLL. For a label record item,
the first BLL is assigned. For other items
in the Linkage Section, BLL numbers are
assigned starting with the second BLL. All
level-77 items and all group items starting
with level-Ol in the Linkage Section are
assigned unique BLL numbers.

completing Report Section Entries: Routine
DICTBD adds no information to Report
Section entries before it puts them in the
dictionary.

DOS UPSI Feature Names: When routine INIT
first receives control, it checks to see if
phase 10 created the UPSTBL table. If so,
it calls routine UPSI to enter the
function-names, mnemonic-names, and
condition-names into the dictionary.

GENERATING DATA A-TEXT

Phase 22 completes the incomplete Data
A-text elements passed to it by phase 20 by
adding the location counter values. The
two prefix bytes (the X'10' indicator and
the length count affixed by phase 20) are
left to serve as an indicator to phase 21
that the text element needs no further
processing. Phase 21 deletes the first 2
bytes and then passes it unchanged to Phase
60 and selects the Data IC-text elements
(for FDs and SDs) for translation into Data
A-text.

Phase 22 generates five types of Data
A-text elements itself. While doing so, it
prefixes them with the same two bytes of
information discussed above. The four
types are:

• Working-Storage Section address
elements.

• Constants from VALUE clauses.

• Data-name DEF elements.

• Verb DEF elements.

• Q-routine identification elements.

To create these elements. phase 22 uses
information stored in COMMON, tables

58 Section 2. Method of Operation

GPLSTK, VERBDEF, and VALGRP, Data IC-text
created in phase 10 or 12 and passed by
phase 20, and ATF-text created by phase 20.
The format of COMMCN. the tables, and the
texts are described in "Section 5. Data
Areas."

Q-ROUTINE GENERATION

Phase 22 uses the following tables to
generate Q-routines: OD2TBL, QFILE, QVAR,
OBJSUB, QITBL, and QRTN. The OD2TBL table
is created by phase 10 and the other tables
by phase 22. The QFILE and QVAR tables are
passed on to phase 30; the OD2TBL, OBJSUB,
QITBL, and QRTN tables are released by
phase 22. (When the SYMDMP option is in
effect, however, the QITBL and QRTN tables
are passed to Phase 25.) The OD2TBL table
contains the qualified names of objects of
OCCURS ••. DEPENDING ON clauses.

Routine QVARBD combines the information
contained in the OD2TBL, the QRTN, the
OBJSUB, and the QI~BL and QFILE tables into
the QVAR and QFILE tables for phase 30.
The routine then releases the OD2TBL, QRTN,
and QITBL tables. (When SYMDMP is in
effect. it releases only the OD2TBL table.)

If phase 10 created an OD2~'BL table,
phase 22 checks each elementary item that
it processes to see whether or not it is in
the OD2TBL table. If it is, phase 22 sets
the dictionary entries of the item and all
its groups to reflect that they are objects
of OCCURS •.• DEPENDING ON clauses. If it is
a group item, routine XTEN performs the
processing; if it is an elementary item,
routine ELIPR handles the processing.
Routine ELIODO then places the dictionary
pointer for the it ern and a pointer to the
related OD2TBL entry in the QITBL table.
If an object of an OCCURS ••• DEPENDING ON
clause is encountered while processing the
File section, its OD2TBL table displacement
is placed in the OBJSUB table.

When phase 22 encounters an ATF-text
element for an LD entry with a pointer to
the OD2TBL table (that is, the item was
described with an OCCURS ••. DEPENDING ON
clause), routine INTVLC marks all the group
items currently in table GPLSTK as variable
in length by assigning a VLC
(Variable-length cell) number from field
VLLCTR in COMMON to each item. If a
subject of an OCCURS ••• DEPENDING ON clause
is encountered while processing the File
section, its GN number is placed in the
OBJSUB table.

In addition, if an item follows a
variable-length field and is not a new file
or record, it is variably located. To each

of these items, phase 22 assigns an SBL
(secondary base locator) number from field

SBLCTR in COMMON. At execution time, there
are secondary base locator cells (one for
each SEL number) in the Task Global Table
that contain the current location of the
variably located field. Phase 22 generates
O-routines to calculate initial values and
changes in these secondary base locator
cells.

Whenever phase 22 generates Q-Routine
text, a determination is made to see
whether it is the first time that Q-Routine
text has been generated for this record.
If it is the first time, a GN number is
generated and routine QBUILD places it in
front of the Q-Routine text for
identification. This routine then makes an
entry in the QRTN table containing the GN
and the pointer to the OD2TBL.table. If it
is not the first time, the ORTN table is
checked to see whether or not the pointer
to the OD2TEL table is there. If the
pointer is missing, it is put in.

Data A-text Q-routine identification
elements are generated for each O-routine
and placed on the Data A-text data set.
These indicate that the Q-routines are to
be executed during initialization
processing at execution time.

PROCESSING ERRORS

As Phase 22 processes Data Ie-text and
ATF-text, a check is made of the clauses to
be sure that they ar~ allowed to be used
together.

Licensed Material - Property of IBM

EBCDIC names for keys (prefix 01 or 02)
are entered into the SRCHKY table by
routine READF4 while the dictionary· is
being built. This table is used for syntax
checking whenever the names are
encountered.

If CSYNTAX is specified and an error is
detected, the syntax option bit in COMMON
is forced on and conflicting options are
forced off.

BUILDING TABLES FOB LATER PHASES

Phase 22 builds eight tables for later
phases. In addition, it uses the VALTRU
table for syntax checking of the VALUE IS
SERIES clause, but then leaves that table
in main storage for phase 30. The VALTRU
table is built by phase 20 and described
under that heading.

The OVAR and 0FILE tables are built
during Q-Routine generation and stored for
use by phase 30. They are discussed above
under nO-routine Generation."

During predictionary processing
(described above), routine SRH200 creates
the INDKEY table.

The FDTAB table is built for phase 21.

If the SYMDMP option is in effect, phase
22 primes and builds as many as four
tables, depending on the clauses in the
source program, for phase 25: the OCCTBL
table, the MASTODO table, the VARLTBL
table, and the RFNAMTB table.

Phase 22 59

Licensed Material - Property of IBM

When phase 21 is loaded into storage,
all data items except FDs and SDs have been
translated from Data IC-text into Data
A-text, and the dictionary is complete
except that the FD and SD entries-are dummy
entries ~ithout data attributes written by
phase 22. After phase initialization,
routine BEGINPH is given control. This
routine reads each record from SYS003 and
determines the action to be taken. For an
A-text or E-text element, the two-byte
prefix attached in phase 20 or 22 is
removed, and the element is copied onto
SYS004; PD and SD elements are selected for
processing by phase 21; all other records
are copied unchanged onto SYS004.

From the FD and SD Data IC-text elements
and from information stored by previous
phases in the DICOT, PIOTBL, and FDTAB
tables, phase 21:

• Com p1etes the dictionary entries.

• Generates the required DTFs.

• Generates input/output areas (buffers).

• Writes the Data A-text f.or the DTFs and
buffers onto SYS004 and PO-text for
VCONs onto SYS002.

COMPLETING DICTIONARY ENTRIES

When phase 21 encounters an SD record,
routine SORTPROC reserves space for a
buffer according to the maximum record
size, generates a BL to point to the sort
area, and fills in the SD dictionary entry.
When the phase encounters an FD record,
routine SETDIC fills in all fields of the
~ictionary which can be picked up directly
from that record. Routine ACCMODE
determines the access method specified and
enters it into the dictionary.

Phase 21 builds the FD dictionary
entries, the File Information Block (FIB),
and the IND2TBL table (indexed file only)
for VSAM files.

GENERATING REQUIRED DTF'S

To develo~ a DTF, phase 21 checks the FD
for clause compatibility, collects the
parameters common to more than one type of

60 section 2. Method of Operation

DTP, and selects the proper DTF generator.
Each DTF generator then determines the
number of DTFs required, reserves space for
additional file information in the Pre-DTF,
fills in certain fields of the Pre-DTF, and
develops the body of the DTF itself.

CLAUSE COMPATIBILITY

The compatibility testing performed by
phase 21 is primarily a check to determine
if the clauses specified are compatible
with the file description. For example, an
APPLY CORE INDEX is acceptable only for an
ISAM file.

COMMON PARAMETEFS

Certain parameters are common to many or
all types of DTFs and are determined before
entry into the DTF generator. The
remaining parameters are established by the
particular DTF generator specified. Of the
common parameters, the size and form of the
records of a file are most important.

Record Size

Routine RECCONT processes the RECORD
CONTAINS clause. With only one exception
the record size is the maximum size of any
record described as a data record in the
File Description. This value is determined
in phase 22, and is passed to phase 21 in
the FDTAB table. The one exception to
using the maximum calculated size is the
case where the clause RECORD CONTAINS N1 TO
N2 CHARACTERS is specified, the value of N2
is less than the maximum calculated size,
and there is more than one OCCURS clause
with the DEPENDING ON option in the record
description. In this case, the value of N2
is used as the maximum possible record
size.

Record Form

Prior to any attempt at determining the
record form, the BLOCK CONTAINS clause is
checked by routine BLKCTNS for basic

compatibility. If any errors are found,
the clause is either dropped from further
consideration or altered to an assumed
acceptable format.

Every supportable DTF used in Full
American National standard COBOL requires
an entry for its RECFORM parameter. The
allowable entries are selected from the six
possible kinds shown in Figure 15.

I I
ICLASS= ICLASS= CLASS=
I fUR • I 'UTi 'DA'
I I
I I Tape
I I and , ,Indexed, , Card ISequen-IDirectISequen-1
I and I Hal IAccessl Hal
IPrinter, Disk Il!ethodll!ethod , I I I

FIX UNB I Yes I Yes I Yes I Yes
I I I I

FIX BLK I No I Yes I No I Yes
I I I I

VAR UNB I Yes I Yes I No I No
I I I I

VAR BLK I No I Yes I No I No
I I I I

UNDEF I Yes I Yes I Yes I No
I I I ,

SPANNED I No I Yes , Yes , No

Figure 15. RECFORM Parameters supported

The four factors which influence the
selection of the record form are:

1. RECORDING MODE Clause.
has five possibilities:
V, U or S.

This clause
omitted, F,

2. RECORD CONTAINS Clause. This clause
has three possibilities: omitted, N1
TO N2 CHARACTERS, or N2 CHARACTERS.

3. BLOCK CONTAINS Clause. This clause
has five possibilities: omitted, N1
TO N2 RECORDS, N2 RECORDS, N2
CHARACTERS, or N1 TO N2 CHARACTERS.

I ,
I
I
I
I
I
I
I
I
I
I
I ,

4. Variability of the record descriptions
found during phase 22 processing.
This value is found in table FDTAB,
referred to as VARIND and is either
set or clear (FIXED or VARIABLE).

There are 150 possible combinations
within these four factors. Most of the
combinations are errors, but each is
checked by routine CHKMODE, and a message
is issued in E-text, if appropriate.

Licensed Material - Property of IBM

These four factors are encoded into a
single byte Which is used as an index
(displacement) into a 156-byte error table,
MODTAB. The referenced byte in the MODTAB
table contains, in coded form, the assumed
record form, an indicator to show if an
error has occurred, and four bits to
indicate the clause or clauses which are to
be ignored.

After checking the table results, the
recording mode can be determined, making
assumptions where an error condition
exists. If CHARACTERS or more than one
recora is specified in the BLOCK CONTAINS
clause, the-file is assumed to be blocked.
If the block contains only one record, the
file is assumed to be unblocked.

SELECTING THE DTF GENERATOR

After establishing the variables, phase
21 determines which DTF generator to use:
GENDTFCD, GENDTFPR, GENDTFMT, GENDTFSD,
GENDTFDA, GENDTFIS, GENDTFDU. The
generator checks the OPEN options specified
for the file to determine what type of DTF
to generate. The OPEN options
corresponding to each type of DTF are shown
in Figure 16. Descriptions of the DTFs may
be found in IBM DOS/yS Supervisor and 1/0
Macros, Order No. GC33-5373.

Each DTF generator makes entries in two
tables, the BLTABL and the BUFTAB. The
BLTABL table contains an entry for each FD
in the program. It is used later in the
phase, when buffers are generated, to
determine how to initialize the base
locator (or locators) for the file. The
BUFTAB table contains an entry for each
buffer area address constant which must be
filled into a DTF. This table is also used
when the buffers are generated. The
formats of these tables are shown in
"Section 5. Data Areas."

Phase 20 assigns a DTF number for each
file. Every file having more than one DTF
has secondary DTF numbers assigned
consecutively. Counters located in COMMON
are incremented each time a new number is
assigned. At execution time, pointers in
the TGT and PGT indicate the particular DTF
for the file being processed. If all
necessary DTFs have been generated for a
file, routine ENTDIC enters the attributes
of the file in the dictionary area reserved
by Phase 22. When the next FD record is
encountered, variables are again
determined. This process continues until
all the input has been processed.'

Phase 21 61

/

Licensed ~aterial - Property of IBM

I

IDTF Type
I
I
IDTFCD
I
IDTFCD
I
IDTFPR
I
IDTF~T

I
IDTF~T

I
IDTFMT
I
IDTFSD
I
I
IDTFSD
I
I
IDTFSD
I
I
IDTFDA
I
I
IDTFDA
I
I
IDTFDA
I
I
IDTFDA
I
I
IDTFIS
ILoad
IMode
I
IDTFIS
IRetrieve
IMode
I
IDTFIS
I Retrieve
IMode
I
IDTFIS
I Retrieve
I~ode

I
I'OTFIS
I Add/
I Retrieve
IMode
I
IDTFDU
I
I

i i
IFile I Options
IType I
I I
ICard I Input
I I
ICard loutput
I I
IPrinter 10utput
I I
ITape 10utput
I I
I Tape IInput
I I
ITape IInput, Reversed
I I
IMass Isequential, Input
IStorage I
I I
IMass ISequential, Output
IStorage I
I I
IMass ISequential, I-O
IStorage I
I I
IMass IDirect, sequential
IStorage IAccess, Input
I I
IMass IDirect, Random
IStorage IInput
I I
IMass IDirect, Random
IStorage 10utput
I I
IMass IDirect, Random
IStorage II-O
I I

Access, I
I
I

Access, ,
I
I

Access, I
I
I

IMass IIndexed, Sequential
IStorage IAccess, Output
I I
I I
IMass IIndexed, sequential
IStorage IAccess, Input, I-O
I I
I I
IMass IIndexed, Random
IStoraqe IAccess, Input
I I
I I
IMass IIndexed, Random
IStorage IAccess, I-Ol
I I
I I
IMass IIndexed, Random
IStorage IAccess, I-02
I I
I I
I I
IDiskettelInput Sequential,
IUnit 10utput Sequential , ,

I1If there
I file.
12If there

are no WRITE verbs for this I
I

are WRITE verbs for this file. I

Figure 16. OPEN Options and DTFs

62 section 2. Method of operation

DETERMINING THE NUMBER OF DTF·S

The number of DTFs is determined by the
number and type of OPEN statements for each
file. The DTF generator determines this
from entries in the PIOTBL table. For a
DTFCD or DTFPR file, only one DTF need be
generated. For a DTFMT file, a maximum of
three DTFs may be needed -- one for each
INPUT, INPUT REVERSED, and OUTPUT. DTFS'O
files may also require three DTF·s, one
each for INPUT, OUTPUT, and I-O. Only one
DTF is needed for a DTFDA file. It may be
used for INPUT, OUTPUT, and I-O. Only one
DTF is needed for any ISAM file
description.

PRE-DTF AREA

Before phase 21 develops the body of a
given DTF, it reserves space immediately
preceding the DTF in storage for PNs,
pointers, and file description information.
In some cases, phase 21 fills in certain
fields of this space. The area is known as
the Pre-DTF.

DTFMT and DTFSD Pre-DTFs

For magnetic tape and sequential disk
files, a 24-byte Pre-DTF is reserved in
front of the DTF. The contents of this
Pre-DTF are shown in Figure 17.

DTFDA, Random Access, Pre-DTF

For a file whose organization is direct
and which will be accessed randomly, a
variable-length Pre-DTF is reserved in
front of the DTF. Figure 18 shows the
contents of the Pre-DTF for a file with
absolute addressing; Figure 19 shows the
cpntents for a file with relative
addressing.

DTFDA, sequential Access, Pre-DTF

For a file wbose organization is direct
and which will be accessed sequentially, a
31-byte Pre-DTF is reserved in front of the
DTF. Fiqure 20 shows the contents of the
Pre-DTF for a file with absolute
addressing; Fi~ure 21 shows the contents
for a file with relative addressing.

Licensed Material - Property of IBM

r--------T-------T--,
1 ILength I I
1 Locationl (Bytes) I Contents 1
}--------+-------+--~
1 D'IF - 261 2 I Lenqth of nonstandard label if present. I
I I I I
ID'IF - 241 1 1 Number of nonstandard-labeled reels if specifi€~ in the system-name. I
I I 1 I
IDTF - 231 1 1 Counter used by the ILrlDNSLO subroutine. It is initially set equal to I
1 I 1 byte DTF-24. Thereafter, it is decremented each time a I
1 I I nonstandard-labeled reel is processed, and so indicates the nun,ber yet I
I I I to be proces seC!. I
I I 1 I
IDTF - 221 2 I Maxi~um record length, if the file is variatly blocked without an I
I I I APPLY ilRI'IE ONLY clause specified. I
I I 1 I
I DTF - 20 I 4 I l'.ddress of the PN for a USE declarative to process BOV labels. The I
I I 1 USE statement has either the BEGIi~NItlG REEL or the BEGINNING UNIT 1
1 I option. 1
1 I 1
IDTF - 16 4 I Address of the ?N for a USE declarative to process EOV labels. The 1
1 USE statement has either the ENDING REEL or the ENDING UNIT option. 1
1 I
ID'IF - 12 4 Address of the PN for a USB declara~ive to process trailer labels. 1
1 The USE statement has the ENDING FILE option. 1
1 I
IDTF - 8 4 Address of the PN for a USE ~eclarative to process header labels. The I
I USE statement has the BEGI~NING FILE option. I
I 1
IDTF - 4 1 Pre-DTi" switch. For the format of this switch, refer to "Pre-D'IF I
1 switch" in this chapter. 1
I I
IDTF - 3 3 Address of the PN for a USE declaLative to process standard errors. I
I Format 2 of the USE declarative is used. I
r--------L------- --,
I Notes: I
11. If any of the options concerned are not specified, the field contains Os. I
12. Phase 21 fills in only the four tytes beginning at GTF - 24. I L ___ J

Figure 17. Pre-DTF for DTFMT and DTFSD

r--------T-------T--,
1 ILength I I
1 Location I (Bytes) I Contents I
r--------+-------+--,
ID'IF - n In - 26 I ACTUAL KEY. This field is present only for COEOL WRITE staterr,ents.
I I (9-263 I
I I bytes) I
I I 1
IDTF - 261 8 I SEEK address, in the form MEECCHHR.
I I I
ID'IF - 181 2 I Error bytes. This area is reserved for the DOS/VS Supervisor and
I I I assi9ned the ndme ERRBYTE. For a complete discussion, refer to IEH
I I I QOS/VS Supervisor and I/O fVlacros, Order No. GC33-5373.
I I I
IDTF - 161 4 I Pointer to area where extent information is saved.
I I I
I DTF - 121 4 I Address of the P~l fer a USE declarative to ;:orocess trailer labels.
I I I The USE st,_,te~ent bas the ENDING FIL':': option.
I I I
I DTF - 8 I 4 I Address of the PN for a USE declarat,i ve to ['rocess header labels. The
I I I USE statement has the BEGINt,ING FILE option.
I I I
I D'lF - 4 I 1 I P:r:c-DTF Switch. For tile format of this swi.tch, refer LO "Pre-L'lF
I I I Switch" in this chapter.
I I 1
IDTF - 3 I 3 I Addrpss 01 the PN for a USE declarative to process standard errors.
I 1 I Format 2 of the USE declarative is used.
r--------L-------L--,
INotes: I
11. If any of tne options concerne::l. are not specified, tbe field contains Os. I
12. Phase 21 fills in only the four bytes beainning at D'lF - lb. 1 L ___ J

Figure 18. Pre-DTF for DTFDA, Random Access, Absolute Addressing

Phase 21 63

Licensed Material - Property of IBM

r--------T-------T--,
I ILength I' I
I Location I (Bytes) I Contents I
~--------+-------+--~
DTF - n In - 26 I AC~UAL KEY. This field is present only for COBOL WRITE state~ents.

I (5-258 I Standard C
I bytes) I
I I

DTF - 261 4 I SEEK address, in the form ~TTR.
I

DTF - 22 3 Last extent used, in the form ~~T.

DTF - 19

DTF - 18

IDTF
I
IDTF - 15
I
IDTF - 12
I
I
IDTF - 8
I

, I
IDTF - 4
I
I

1

2

1

3

4

4

1

Not used.

Error bytes. This area is reserved for the DOS/vS Supervisor and
assigned the name ERRBY'l'E. For a complete discussion refer to IBM
~OS/VS Supervisor and I/O Macros, Order No. GC33-5373. ---

Index to the last extent used in the disk extent table in the DTF.

Pointer to the disk extent table in the DTF.

Address of the PN for a USE declarative to process trailer labels.
The USE statement has the ENDING FILE option.

Address of the PN for a USE declarative to process header labels.
USE statement has the BEGINNING FILE option.

Pre-D'I'F switch. For tne format of this switch, refer to "Pre-D~F
Switch" in this chdpter.

IDTF - 3 3 Address of the PN for a USE declarative to process stanuard errors.

The

I I Format 2 of the TJSE declarative is used. I
~--------~-------~--~
INotes: ' I
11. If any of the options concerned are not specified, the field contains as. I
12. Phase 21 fills in only the four bytes beginning at UTF - 16. I L ___ ~

E'igure 19. l're-DTF for DTFDA, Random Access, Relative Addressing

r--------T-------T--,
I ILength I I
I Location I (Bytes) I Contents I
~--------+-------+--~
IDTF - 311 8 I SEEK address, in the forro MBBCCHHR.
I I I
IDTF - 231 5 I Address of the next record to be read, in the form CCHHR. This area
I I I is named IDLOC.
I I I
IDTF - 181 2 I Error bvtes. This area is reserven for thp. DOS/vS Supervisor nn:l
I I I assigned the name ERRBYTE. For a complete discussion, refer to IB~
I I ~OS/VS supervisor and I/O Macros, Order No. GC33-5373.
I I
ID~F - 16 4 1 Pointer to area where exte~t information is saved.
I I
IDTF - 12 4 I Address of the PN for a USE declarative to process trailer labels.
I I The USE statement has the ENDING FILE option.
I I
IDTF - 8 4 1 Address of the PN for a USE declarative to process header labels. The
I I USE statement has the BEGINNING FILE option.
I 1
IDTF - 4 1 I Pre-DTF Switch. For the format of this switch, refer to "Pre-D~F
I I Switch" in this chapter.
I I 1
IDTF - 31 3 1 Address of the PN for a USE declarative to process standard errors.
I 1 I Format 2 of the USE declarative is used.
~--------~-------~--~
1 Notes: 1
11. If any of the options concerned are not specified, the field contains as. I
12. Phase 21 fills in only the four bytes beginning ~t uT}' - 16. I L ___ J

Figure 20. Pre-DTF for DTFDA, Sequential Access, Absolute Addressing

64 Section 2. Method of Operation

Licensed ~aterial - property of IBM

I I

1 ILength 1
1 Location 1 (Bytes) 1 Contents
1 1
IDTF - 311
1 1
IDTF 271
1 1
IDTF 241
1 1
IDTF - 231
I 1

I
DTF - 191

I
DTF - 181

DTF - 16

DTF - 15

DTF - 12

DTF - 8

DTF - 4

DTF - 3

Notes:

4

3

1

4

1

2

1

3

4

4

3

SEEK address, in the form TTTR.

Last extent used, in the form TTT.

Not used.

Address of the next record to be read, in the form TTTR. This area
is named IDLOC.

Not used.

Error bytes. This area is reserved for the DOS/VS Supervisor and
assigned the name ERRBYTE. For a complete discussion, refer to IBM
DOS/VS Supervisor and I/O Mac£Q2, Order No. GC33-5373.

Index to the location in the disk extent table in the DTF where the
last extent is stored.

Pointer to the disk extent tahle in the DTF.

Address of the PN for a USE declarative to process trailer labels.
The USE statement has the ENDING FILE option.

Address of the PN for a USE declarative to process header labels.
The USE statement has the BEGINNING FILE option.

Pre-DTF Switch. For the format of this switch, refer to "Pre-DTF
Switch" in this chapter.

Address of the PN for a USE declarative to process standard errors.
Format 2 of the USE declarative is used.

I~-rf any of the options concerned are not specified, the field contains Os.
12. Phase 21 fills in only the four bytes beginning at DTF - 16.

Figure 21. Pre-DTF for DTFDA, sequential Access Relative Addressing

I
I I Length I
ILocationl (Bytes) I Contents

IDTF 8
I
IDTF - 6
I
I
IDTF - 4
I
I
I
1
IDTF - 3
I
I
I
I
I

Figure 22

2 Unused.

2 Displacement of record
key within record.

1 Pre-DTF Switch. For the
format of this switch,
refer to "Pre-DTF
Switch" in this chapter.

3 Address of the PN for a
USE declarative to
process standard errors.
Format 2 of the USE
declarative is used.

Pre-DTF for DTFIS

DTFIS Pre-DTF

For a file whose organization is
INDEXED, eight bytes will be reserved in
front of the DTF. The contents of the
Pre-DTF are shown in Figure ?2. Only the
displacement of the record key within the
record is filled in by phase 21.

DTFDU Pre-DTF

For a file that is assigned to a 3540
Diskette unit device, eight bytes will be
reserved in front of the DTF. The contents
of the pre-DTF are shown in Figure 22A.
None of the bytes of the pre-DTF are filled
in by phase 21.

Phase 21 65

Licensed Material - Proper~y of IBM

iii
I ILength I
I Location I (Bytes) I Contents
I I I
IDTF - 8 I 4 IUnused
I I I
IDTF - 4 I 1 IPre-DTF switch.
I I I
IDTF - 3 I 3 IAddress of ERROR
I I I declara ti ve PN. , ,

Figure 22A. Pre-DTF for DTFDU

Pre-DTF switch

This switch provides communication
between the executing program and its
input/output subroutines at execution time.
The entire byte may be set to X'FF' to
indicate that the file was closed with lock
and cannot be reopened. Otherwise, the
switch is used as follows:

Bit Meaning, if ON
-0- DTFSD output file. The entire

DTF was saved for subsequent
OPEN OUTPUT statements.

1

2

3

4

5-7

DTFDA or DTFSD, and OPEN 1-0.

This call is for ~OV, rather
than BOF, processing. The bit
is set OFF when a file is opened
to indicate to the ILBDUSLO
library subroutine that BOF
labels are to be processed.
That subroutine sets the bit ON
after BOF processing to indicate
that all subsequent calls will
,be for BOV label processing.

A test must be made by the
ILBDVBLO library subroutine to
determine whether the present
block is full. This bit is
turned OFF when a file,is opened
and ON for all WRITEs after the
first.

DTFDA, spanned records.

Not used.

COBOL INDICATORS IN DTF'S

Certain bits within the DTFs are used as
indicators at execution time. These
indicator bits are the REWIND and the
COBOLRWD bits in the DTFMT, which are set
by phase 21, and the COBOL bits in the
DTFMT and DTFSD, which are set as described
in this chapter under "COBOL Bits."

66 Section 2. Method of Operation

REWIWD and COBOLRWD

Phase 21 sets the COBOLRWD indicator
(bit 6 of byte 31 of the DTFMT DTF) to 1 to
force a rewind and unload at automatic
end-of-volume. A setting of 0 indicates
that tIOCS should check the REWIND
indicator to find out what action is to be
taken.

Phase 21 sets the REWIND indicator (bits
2 and 3 of byte 32 of the DTFMT DTF) to 00
to indicate rewind, to 01 for no rewind,
and to 10 for rewind and unload. After the
OPEN is executed, REWIND is set to 01 to
ensure that the last reel is not rewound
when the end~of-file condition is detected.

Before a CLOSE REEL (FEOV) is executed,
REWIND is set to the specified option and
COBOLRWD to 00. After an FEOV, REWIND is
set to 1 and COBOLRWD to 01. BefDre a
CLOSE for the file, REWIND is set to the
specified option.

A summary of the REWIND and COBOLRWD
settings and their meanings is shown in
Figure 23.

i
SETTING I

Ii'
ICOBOLRWDIREWINDI MEANING
I I I
I 1 00 ISetting at compile time
I 1 01 IOPEN NO REWIND
I 1 01 ISetting after any OPEN
I I until next verb
I 0 00 ICLOSE REEL
I 0 01 ICLOSE REEL NO REWIND
I 1 01 ISetting after any CLOSE
I I REEL
I 1 00 ICLOSE
I 1 01 ICLOSE NO REWIND
I 1 10 ICLOSE LOCK
I 1 00 ISetting after CLOSE or
I I CLOSE NO REWIND , ,

Figure 23. COBOLRWD and RFWIND bits

COBOL Bits

There are six COBOL bits in DTFs. Their
locations and meanings are shown in Figure
24 and the notes following it.

i I I I I

I DTF BYTEIBITI MEANING, IF ON INOTEI

• I I I
IDTFMT 16 2 IFile is assigned IGN 1
I I on the ASSIGN
I I control card
IDTFMT 16 3 IRead EOF labels at 2
I I CLOSE time
IDTFMT 36 1 IDO not write a user 3
I I label
IDTFSD 16 2 IFile is assigned IGN 1
I I on the ASSGN
I 1 I control card
IDTFSDI 16 5 IRead trailer labels 2
I I I at CLOSE time
IDTFSDI 16 1 ICOBOL End-of-Extent 4
I I I option
I I I

Figure 24. COBOL bit settings

Notes:

1. The bit was set to 1 by the DOS system
OPEN transient routine if the file was
assigned IGN. In that case, a branch
is taken to the AT END address instead
of executing a READ. This test is
generated by phase 51 before all READ
statements.

2. COBQL always requires that user FOF
labels be read at CLOSE time. Since
the DOS system LIOCS routine normally
reads these labels at EOF time, phase
21 sets this bit to 1 to indicate that
the COBOL procedure must be followed
if the file is labeled.

3. COBOL requires that user labels be
written selectively (header labels,
but no trailer labels, for example).
Since the DOS/VS system LIOCS routine
normally writes at least one user
label when user labels are specified,
this bit is used to indicate that the
COBOL procedure is to be followed.
The bit is set to 1 by the COBOL
library subroutine, ILBDUSLO, if there
is no user label to be written.

4. Phase 51 generates code to set this
bit to 1 for all output files. When
it is so set, the DOS system tIOCS
routine transfers control to the
end-of-extent address (INVALID KEY
address) in the DTF when there are no
more available extents.

Licensed Material - Property of IBM

WRITING DATA A-TEXT AND P1-TEXT

Phase 21 produces buffers, FIBs, and
DTFs as a series of Data A-text elements
(see "Section 5. Data Areas" for the
format). Each element created is one of
the following:

• DTF address element

• Secondary DTF address element

• Constant definition element

• Block address element

• FIB address element

• Bt reference element

• BtL reference element

For each DTF, the DTF generator creates
an address element consisting of the
location from field tOCCTR in COMMON and
the DTF number. For each additional DTF
for the same file, a secondary DTF address
element, consisting of the location from
field LOCCTR in COMMON and the secondary
DTF number, is issued.

Constant definition elements record the
values of constants to be filled into
fields of the DTF.

As phase 21 creates buffers (see "Buffer
Generation"), a block address element is
also created for each FD. The element
contai~s the location of the first byte of
data information in the buffer and the size
of the data element in words.

Phase 21 creates an FIB address element
for each FD entry that describes a VSAM
file.

In addition to the Data A-text elements,
phase 21 writes a virtual definition
element of PO~text on SYS002 for each VCON
needed. Phase 51 later writes it on SYS003
as optimi~ation A-text input for phase 00.

DTFs For Associated Files

When a 5425, 3525 or 2560 unit record
device with optional read and print
features has been specified as an
associated file, phase 21 generates a
unique DTF for each function to be
processed by the device. Routine GENDTFCD

Phase 21 61

Licensed Material - Property of IBM

and GENDTPPR read the Data IC-text elements
created by phase 10 for each associated
file and build the ASCTAB table. After all
of Data IC-text bas been read, routine
GENASC uses the table to generate the Data
A-text elements used to create the DTP's.
Figure 25 shows the way in which these DTFs
are chained together.

Pigure 25. DTP Chaining for an Associated
Pile with Three Functions

File Information Block (FIB)

Phase 21 creates the File Information
Block (FIB) for VSAM files. The FIB work
area is generated by means of the GENFIB
macro. The AMTXT routine fills in fields
of the FIB, and the BEGIN routine writes
the PIB as Data A-text.

BUFFER GENERATION

Buffer areas are determined after all
the text processing is completed. Routine

68 Section 2. Method of Operation

BUFGEN selects a buffer to be generated
from the BUFTAB table established by the
DTF generators. This routine allocates a
buffer area according to the maximum size
given in the table. (The size of each
buffer includes any control fields required
for a particular access method, for
example, COUNT and KEY fields for direct
access.) BUFGEN then determines the
beginning of the buffer area so the data
portion of each record is aligned on a
~oubleword boundary. After the buffer
space has been allocated, the addresses of
the IOAREAs are filled into the DTF, and
buffer area addresses are issued as Data
A-text block address elements.

Entries in the BUFTAB table indicate
which files are associated by SAME AREA or
SAME RECORD AREA clauses. For SAME RECORD
AREA, IOAREAs are assigned in the above
manner, and an additional work area is also
assigned. The size of this work area is
the size of the largest record area plus
the size of the largest pre-record area of
any of the files specified in one SAME
RECORD AREA clause. The SRA generator
routine builds the SRATBL, SRAMAX, and
snSRATBL tables to calculate the length and
location of the SAME RECORD AREA work area
in the object module. All files with a
SAME AREA clause will share the same buffer
area.

Using the BLTABL table formed by the DTF
generators, routine PUTBL netermines how to
initialize the~base locator or locators for
the file.

Processing continues in this manner
until the BUFTAB table is exhausted. After
all input/output areas are generated, the
tables are released, and control passes to
phase 00.

Phase 25 is loaded only if the SYMDMP
option has been specified on the CBL card.

The major functions of phase 25 are:

• Building the OBODOTAB table and writing
it on the debug file (SYS005) if the
program contains any OCCURS ••• DEPENDING
ON clauses

• Building the DATATAB table and writing
it on the debug file (SYS005).

The operations of phase 25 are described
in Diagram 3.

PHASE 25 PROCESSING FOR THE DEBUG FILE

To build the OBODOTAB and DATATAB
tables, phase 25 uses the following tables
passed from phase 22:

• The DICOT table which contains
information about the COBOL dictionary

• The QITBL table which contains a COBOL
dictionary pointer for every object of
an OCCURS ••• DEPENDING ON clause

• The QRTN table which contains a COBOL
dictionary pointer for every subject of
an OCCURS ••• DEPENDING ON clause

• The RENAMTB table which associates
renamed data-names with their renamers

• The OCCTBL table which contains
information about each subject of an
OCCURS clause

• The MASTODO table which identifies all
data-names which do not contain an
OCCURS ••• DEPENDING ON clause
themselves, but one of whose
subordinate items at the next level
does

• The VARLTBL table which contains an
entry for each variable-length item.

There is a DATA TAB table entry for each
data item in the Data Division. There is
also a DATATAB table entry for some of the
compiler-generated names associated with
the Report writer feature. There is an
OBODOTAB table entry for each unique object
of an OCCURS ••• DEPENDING ON clause.

Licensed Material - property of IBM

PHASE 25

The OBODOTAB and DATATAB tables list the
characteristics of data items in the Data
Division. (See "Section 5. Data Areas"
for the format of the OBODOTAB and DATATAB
tables.)

Entries for either the OBODOTAB or
DATATAB table are built in a work area
(WRKAREA) in phase 25. Each entry in the

OBODOTAB and DATATAB tables is moved
directly into the debug file buffer as soon
as it is completed. OBODOTAB table entries
are entered in the debug file on fullword
boundaries. DATATAB table entries are not
aligned.

Certain of the DATATAB entries contain
pointers to OBODOTAB entries. Each DATATAB
entry for the subject of an
OCCURS ••• DEPENDING ON CLAUSE contains a
pointer to the OBODOTAB entry for its
corresponding object. The pointer consists
of the relative block number within the
OBODOTAB table and the displacement into
the block (in full words). Each DATATAB
entry for a data-name subordinate to the
subject of an OCCURS ••• DEPBNDING ON clause
also contains a pointer to the OBODOTAB
entry for the object of that
OCCURS ••• DEPENDING ON clause.

Building the OBODOTAB Table

The OBODOTAB table lists the
characteristics of each unique object of an
OCCURS ••• DEPENDING ON clause. For details
on how the OBODOTAB table is built, see
Diagram 4.

Building the DATATAB Table

The BEGPASS routine controls building of
the DATATAB table entries, using the
SYMDICT DSECT. It performs the following
functions:

• Calls LOCNXT to read dictionary
entries.

• Calls GETDEF to get generated card
number for data-name from DEF-text.
RENAMES items are ignored.

• Calls BLDRD to process RD level
entries.

Phase 25 69

Licensed Material - Property of IBM

• Calls SETNAM to build fixed portion of
entry. SETNAM calls PROCESLD to build
variable portion of entry for LD under
FD, SD, Working-Storage, Linkage
Section.

• Calls PROCRENM to process RENAMES items
for data-name. PROCRENM calls ENTRDATA
to move completed entry in output
buffer.

70 Section 2. Method of operation

• Branches to TESTSUBS to determine
subscripted items. TESTSUBS uses the
OCCTBL table for subscripting
information, and calls ENTRDATA as
above.

ENTRDATA routine calls WRITES to write
buffer on SYS005 at end of buffer. PHASEND
routine releases tables and repositions
SYS004 when the dictionary processing is
complete.

By the time Phase 30 (ILACBL30) is
loaded into storage, almost all information
on source program-names in the PO-text has
been concentrated in the attributes of the
dictionary entries. Supplementary
information is stored in the QVAR, QFILE,
INDKEY, and VALTRU tables. Phase 30 can
now replace each name with its attributes,
as well as add information to verb strings
such as SEARCH and OPEN.

Phase 30 also performs any other
processing that requires the dictionary.
In this manner, storage space for the
dictionary and for dictionary ACCESS
routines is freed for later phases.

There are four main categories of phase
30 processing, all dependent upon the
dictionary:

• Building a Data Division glossary of
all source program data-names.

• Replacing source program-names with
their attributes.

• Performing special processing on
procedure names in segmented programs,
READ and SEARCH verb strings, and verb
strings with CORRESPONDING options.

• Performing any syntax analysis that
requires the dictionary.

Code in the phase 30 load module is
organized as follows:

• EQUATE statements for COMMON,
registers, ACCESS routines, TAMER
routines, and miscellaneous values.

• Phase initialization headed by the
PHI NIT routine and including the
dictionary ACCESS routines.

• Phase control for the translation stage
(PHCTRL routine).

• Main processing routines, including
utility routines for acquisition and
movement of data.

• Glossary-building routines, headed by
the GLOSRY routine and including
utility routines for placing elements
in a print buffer.

• Constants.

Licensed Material - Property of IBM

PHASE 30

PHASE 30 METHOD OF OPERATIONS

Diagram 5 shows the overall flow of
phase 30 operations. Phase 30 input
consists of PO-text and E-text on SYS002,
the dictionary, and the QFILE, QVAR,
INDKEY, and VALTPU tables in storage. Its
output consists of P1-text and E-text on
SYS003, DEF-text on SYS004, and the
glossary on SYSLST (or SYS006 for LVL
option) •

After the PHI~IT routine receives
control from phase 00 and performs
initialization for the phase, operations
occur in two stages: glossary building
under the control of the GLOSRY routine and
translation of PO-text into P1-text under
the control of the PHCTRL routine. During
translation, special processing is
performed on READ verb strings; OPEN verb
strings; ADD, SUBTRACT, and MOVE verb
strings with the CORRESPONDING option;
SEARCH verb strings; source program-names
and special registers: and syntax errors.

GLOSSARY BUILDING

The PHINIT routine determines from the
SYM bit of the PEZSW1 switch in COMMON
whether a glossary has been requested. If
it has not, the PHINIT routine branches to
the TSTWRO routine. For each file
definition entry in the dictionary in which
the WRITE-ONLY switch is on, the TSTWRO
routine sets the major code to 7 in all the
data-name entries associated with the file.
When all the WRITE-ONLY files have been
processed, the TSTWRO routine branches to
the GLORET routine, which initializes the
translation stage of processing, reads in
the first block of PO-text, and branches to
the PHCTRL routine.

If a glossary has been requested, the
PHINIT routine branches to the GLOSRY
routine, which prints out the glossary on
SYSLST (SYS006 for LVL option) and
simultaneously takes the same course of
action as the TSTWRO routine.

Phase 30 71

Licensed Material - Property of IBM

The GLOSRY routine scans the dictionary
with the use of the DICND1 field in COMMON
(pointing to the last Procedure Division
entry placed by phase 11) and the DICND2
field (pointing to the last Data Division
entry placed by phase 22). As each
data-name is encountered in the dictionary,
it is placed in location PRLINE along with
pertinent information from its attributes.
Phase 00 is then called to print the
contents of PRLINE. When necessary, the
GLOSRY routine converts numbers in the
attributes from one mode to another.

TRANSLATION PROM PO-TEXT TO P1-TEXT:
PHCTRL ROUTINE

Before the GLORET routine branches to
the PHCTRL routine for the translation
stage of phase 30 operations, it stores the
address of the first PO-text element in
location PNTIN. The GETNXT routine moves
the identification code of the element (the
first halfword) into location GOTTEN. The
PHCTRL routine then tests GOTTEN to
determine the processing that should be
performed.

If the element is a READ or RETURN verb,
the PHCTRL routine calls the READFN routine
to insert the appropriate record-name after
the file-name.

If the element is a MERGE or SORT verb,
the PHCTRL routine calls the SMERGE routine
to process these verbs.

If the element is an ADD, SUBTRACT, or
MOVE verb followed by an element for
CORRESPONDING, the PHCTRL routine copies
out the entire statement as P1-text, using
the SEARCH routine to determine the
uniqueness of the operands. It then
branches to the CORRTN routine to break
down the statement into simple statements,
each using one of the matching pairs of
elementary items.

If the element is a source program name,
the PHCTRL routine calls the SEARCE routine
to determine whether it is unique and then
calls the GENOP routine to replace the name
with its dictionary attributes and write it
out as P1-text. If the name is a special
register, however, the SEARCH routine
generates the appropriate P1-text element.

If the PHCTRL routine encounters a
SEARCH verb, it calls the STSRCH routine.
If the element is a source card number, the
PHCTRL routine places the number in CURCRD
and then writes the eleaent unchanged on
SYS003. All remaining elements are also
written on SYS003 unchanged.

72 Section 2. Method of Operation

If the element is a file-name in an OPEN
verb string, the GENOP routine adds
information for label and error processing
to the strinq.

If the element is a VSAM file-name, the
PILENM routine initializes the KEY CLAUSE
work area. This information is used by the
PHCTRL routine to determine that the file
specified in the KEY clause is a VSAM file
and by the DATANM routine to determine that
'the data-name specified in the KEY clause
was specified as a RECORD KEY data-name.

The READFN, CORRTN, and STSRCH routines
each process the entire string associated
with its special condition. They use the
SEARCH routine to determine whether the
names in their verb strings are unique.

All these routines use the GENOP routine
to replace the names with their dictionary
attributes and write them as P1-text
elements. The GENOP routine also generates
DEF-text for procedure-names.

The processing routines perform any
diagnostic analysis that requires the
dictionary. When a routine detects an
error that requires action parameters which
only a subsequent phase can determine, it
substitutes an error symbol for the element
in error.

When it detects an error condition for
which it can provide an entire messaqe, it
calls the ERROR routine with appropriate
error parameters before returning to the
PHCTRL routine.

When the PHCTRL routine detects an
end-of-file condition, it branches to the
EOP routine, which releases tables and
returns to phase 00.

READ Verb Strings: READPN Routine

The READPN routine checks the next
PO-text element in the input buffer after a
READ or RETURN verb to see if it is a
file-name. If not, the READFN routine
writes the verb element unchanged on SYS003
and returns to the PHCTRL routine. Phase
40 can detect the error without the
dictionary.

If a file-name does follow the READ verb
element, the next dictionary entry after
the file-name entry is checked to see if it
is a record name. If it is, the GENOP
routine is used to build a P1-text
data-name reference element for the record
and write it out after the file-name. In
the case of multiple records, the
attributes of the longest record in the

file are used. An error symbol is
substituted for the record name attributes
if the dictionary entry following the
file-name is not a record name.

MERGE/SORT Verb Strings: 5MBRGE Routine

The SMERGE routine enters file-names
specified in the USING clause into the
USNGTBL table. At the end of USING clause
processing, the routine prooduces OPEN INPUT
strings for each file-name. In the case of
file-names being repeated, the SMERGE
routine produces an error message.

statements with CORRESPONDING Options:
CORRTN Routine

The CORRTN routine checks to determine
whether the operands in the source
statement are valid. It then matches the
subordinate, lower-level data-names defined
within the source statement hierarchies,
and writes a P1-text statement for each
matching pair. This, in effect, breaks
down the CORRESPONDING option source
statements into a series of similar
statements, all of which together
explicitly represent the operations implied
by the source statement.

Two sample CORRESPONDING PO-text
statements are given in Figures 26 and 27
along with the resulting Pl-text. The step
numbers given on the left in these figures
refer to the procedure sequence discussed
below:

Step 1: If the source statement is a MOVE,
the PHCTRL routine writes out only the
first object hierarchy operand as P1-text.
If there are others, the CORRTN routine
processes them separately after the
subject-object pairs. The source
statements are put out so that phase qO can
perform a syntax check on them.

Step 2: Operand-1 and operand-2 are
checked to make sure that they are both
group items and valid data-names. Various
procedures are followed, depending on what
the checks reveal:

If operand-1 is not an EBCDIC name or
data operand, no more processing is done
on the statement, and the next PO-text
element is read in. Phase qO finds this
type of error.

If operand-l is not an EBCDIC name but
is a data operand (for example, a

Licensed Material - Property of IBM

literal), the CORRTN routine substitutes
an error symbol for the operand in
P1-text, calls the ERROR routine to put
out error text, and reads in the next
PO-text element. When phase qO finds
this error, the error symbol tells it
that phase 30 has already produced an
error messa~e.

If operand-1 is not a group item, error
text is generated, an error symbol is
sUbstituted for the operand, and the
next PO-text element is read. Phase qO
does not find this error.

If operand-1 is valid and operand-2 is
neither an EBCDIC name nor a data
operand, an error symbol is substituted
for operand-2 and a P1-text string is
produced as follows:

verb, attributes, preposition,
error symbol

The word CORRESPONDING is written after
the string, and then the next PO-text
element is read. The string tells phase
qO that no matching pairs were put out
because of an invalid operand-2.

If operand-1 is valid and operand-2 is
not a group item, then error text, a
P1-text string containing an error
symbol, and the word CORRESPONDING are
all written out, and the next PO-text
element is read in.

Step 3: Assuming that both operands are
valid, the subject (operand-l) hierarchy in
the dictionary is scanned for corresponding
items at the same relative level in the
object (operand-2) hierarchy.

Since the source statement operands have
already been checked by the dictionary
hOandling routines, the CORRTN routine knows
which operand has the highest level
dictionary pointer. Before initiating the
object hierarchy search, it makes sure that
the subject hierarchy pointer is at a lower
level than that of the object hierarchy.
If this is not the case, the operand-2
group becomes the subject hierarchy. This
is done to optimize the scan, since the
dictionary handling routines look for the
latest entry first using the HASH table
(see the "Appendix A. Table and Dictionary
Handling"

Phase 30 73
0"

Licensed ~aterial - Property of IBM

i
IPO-text: ADD CORRESPONDING R TO K
I
I
,P1-text:
IStep 1: ADD CORRESPONDING R TO K
I
IStep 5: ADD R TO K
I
,Step 5: ADD R1 TO K1
I
IStep 5: ADD R2 TO K2
I
IStep 5:
I
IStep 5:
I
IStep 5:
I
IStep 5: ADD Rn TO Kn
I
IStep 6: CORRESPONDING

Figure 26. P1-text Resulting from an ADD
CORRESPOWDING option

If a group item in the subject hierarchy
does not have a matching name at the same
level in the object hierarchy, the rest of
the items in the group are skipped. This
is done because there is no possibility of
finding a match for any of the items in the
group.

step 4: The subordinate items in the
hierarchies are checked for conformity to
the source language regulations. (For
example, does the item contain a REDEFINES
clause or an OCCURS clause with a DEPENDING
ON option? If it does, ignore the item.)
No error symbols or messages are generated
if a match is found for any of the subject
hierarchy items. If no match is found, a
P1-text string (verb, error symbol,
preposition, error symbol) is written to
tell phase 40 that there were no matching
items.

Step 5: When a correspondence is found,
assuming both items are valid, P1-text
statements similar to the source statement
are generated.

Step 6: If there are no more corresponding
items, a P1-text element for CORRESPONDING
is written, and the next PO-text element is
gotten. The word CORRESPONDING tells phase
40 that the previous element was the last
of a complete CO~RESPOWDING statement.

Step-I: If the source verb is MOVE and the
next PO-text element is another operand,
the procedure is started over again •. For
step 1, SA~E is used for operand-l, the
current PO-text element is used for
operand-2, and CORRESPONDING is omitted.

74 Section 2. Method of Operation

i

IPO-text: , ,
,Pl-text:
,Step 1:
,Step 5: ,
,Step 5:
I
,Step 5: ,
IStep 5: ,
IStep 5:
I
IStep 5: ,
Step 6:

Steps 7&1:

Step 2:

Step 6:

Step 7:

Step '5:

MOVE CORRESPONDING A (1) TO
E, undefined (x), D.

MOVE CORRESPONDING A (1) TO B
MOVE A (1)+ TO B+

MOVE A (1) (TO BC

~OVF A (1)0 TO BO

CORRESPONDING

~OVE SAME TO error
symbol (x)

~OVE error symbol TO
error symbol

CORRESPONDING

MOVE SAME TO D

MOVE A (1)+ TO D+

step 5: MOVE A (1)C TO DC ,
IStep 5: ,
IStep 5:
I
IStep 5: ,
IStep 5: MOVE A (1)0 TO DO
I
,step 6: CORRESPONDING
I
,Note: The term "undefined" means the
,operand is not an EBCDIC name or data
,element; the term "error ~ymbol" is a
,code signaling an error.

Figure 27. P1-text Resultina from a MOVE
CORRESPONDING Option

SEARCH Verb strings: STSRCH Routine

For each table to be searched, there is
an entry in the INDKEY table containing
literals expressing such information as the
length of the table, as well as pointers to
attributes in the dictionary for all the
data items associated with the table. The
STSRCH routine adds some of these literals
and attributes to the SEARCH verb string.

The STSRCH routine first writes the verb
element on SYS003 and then examines the
element that follows. This element should

be the EBCDIC name for the table that is to
be searched. If it is not, the STSRCH
routine abandons processing the text as a
SEARCH string and returns to the PHCTRL
routine to process it in the normal manner.
No error text is put out, since phase 40
detEcts the error later on.

If the element is an EBCDIC name, the
STSRCH routine uses the SEARCH routine to
determine that the name is unique. During
its processing, the SEARCH routine places
the pointer to the dictionary entry for the
name in location ID1PTR. The STSRCH
routine uses this pointer as an argument to
find an entry in the INDKEY table that
contains the same pointer. This entry in
turn contains pointers to entries in the
dictionary for all the index-names, keys,
and OCCURS ••• DEPENDING ON objects
associated with this SEARCH verb string.
Figure 28 shows the P1-text output for a
verb string of format 1 of the SEARCH
statement with the VARYING option. Figure
29 shows the output for a verb string of
format 2 of the SEARCH statement.

Note that, although in the source
program the SEARCH statement may continue
beyond the AT END through a number of
conditional and imperative statements, the
STSRCP routine stops processing before the
AT END and returns control to the PHCTRL
routine to handle the rest of the
statement.

Licensed Material - Property of IBM

Determining the unigueness of a Name:
SEARCH Routine

The SEARCH routine moves the source
program-name it is to analyze from the
input buffer to the location WKAREA. It
determines if the name is unique. If it
is, the SEARCH routine returns to the
PHCTRL routine to replace the name with its
dictionary attributes and put the result
out as P1-text.

Special Registers: If the name is not in
the dictionary, the SEARCH routine looks
for it in the SPCREG area, which contains
the names of the special registers.
Associated with each name is a pointer to
dummy attributes in the REGATT area. The
SEARCH routine replaces the special
register name with its dummy attributes and
calls the GENDAT routine to have them
written as P1-text.

Qualified Names: In PO-text, a name and
its qualifiers are in reverse order of
their appearance in the source program.
When the SEARCH routine finds that a name
is a aualifying name, it calls the QUALIF
routine. The QUALIF routine searches the
dictionary for each name in the string of
qualifying and qualified names. If the
qualified name is truly unique, it is
returned through the SEARCH routine to the
PHCTRL routine. Its qualifiers are
discarded.

Phase 11 Output Phase 30 Output Meaniny of Element Processing by Phase 30
copied out unchanged iii I I I Verb, SEARcH format-1

14415EI 14415EI
I , , , , I

ii' iii
1231EBCDIC Namel 130 I Attributes I
, , " I I

iii

154 1881
I I

iii
130 1 Attributes 1

OR

i I

132 I Literal

iii
1541881 , , ,

Data-name, identifier-1
(table to be searched)

Data-name, object of
OCCURS ••• ~EPENDING ON

Represents maximum
number of occurrences

VARYING

Figure 28. P1-Text for SEARCH Format-1 (Part 1 of 2)

Name replaced by its dic­
tionary attributes

Attributes taken from dic­
tionary, us1ng pointer in
INDKEY table eatry that
contains pointer to
identifier-1 diction~
entry

Literal taken from INDKEY
table entry that contains
pointer to identifier-1
dictionary entry

Copied out unchanged

Phase 30 75

Licensed Material - Property of IBM .

I

IPhase 11 output Phase 30 Output Meaning of Element

i , j Iii

1231EBCDIC Namel 1361Attributesl
I

OR

i i

1231EBCDIC Name I

OR

ii'
1231EBCDIC Namel

Iii

1541701

, i i

1541A 11

iii

1361Attributesl

iii
1541881

ii,

1361Attributesl

iii

136 I Attributes I

i 'I I

1541881

I I i

130 11Ittributes I

Iii

1541701

iii

1541 A 11

Data-name for
index-name-1 that
belongs to table

Data-name for
index-name-1 that does
not belong to table,
if specified

Data-name for
index-name-1 that
belongs to table

VARYING

Data-name for
index-name-1 that does
not belong to table,
if specified

Data-name for
identifier-2 not
belonging to table,
specified

Data-name for
index-name-1 that
belongs to table

VARYING

Data-name for
identifier-2 not
belonging to table
if specified

AT

END

if

igure 28. P1-Text for SEARCH Format-1 (Part 2 of 2)

76 Section 2. Method of operation

Processing by Phase 30

Name replaced by attributes
found in dictionary using
pointer in INDKEY entry for
identifier-1

Name replaced by attributes
found in dictionary using
pointer in INDKEY entry for
identifier-1

Added for phase 40 con­
venience

Name replaced by attributes
found in dictionary

Name replaced by attributes
found in dictionary using
pointer in INDKEY entry for
identifier-1

Added for phase 40
convenience

Name replaced by attributes
found in dictionary

Copied out unchanged by
PHCTRL

Copied out unchanged by
PHCTRL

I

Licensed Material '- Property of IBM

Phase 11 Output Phase 30 Output Meaning of Element

ii, Ii.

14415FI 14415FI
I I ,

iii I I
1231EBCDIC Namel 130 1 Attributes 1

I

i ,

1 BB 1 Literal

i I I

130 1 Attributes 1
I I ,

ii'
130lAttributesl

iii

1361Attributesl

Verb, SEARCE format-2

Data-name,
identifier-1 (table
to be searched)

Literal representing
number of keys

Attributes of first
key

Attributes of last
key

First index-name
attached to table

I i I Data-name, object of

I i I

1541701

i I I

1541A11

130 1 Attributes 1 OCCURS ••• DEPENDING ON

OR

I I I

1321Attributesl

iii

1541701

iii

1541A11

Literal representing
maximum number of
occurrences

AT

END

igure 29. P1-Text for SEARCH Format-2

Processing by Phase 30

Copied out unchanged

Name replaced by its dic­
tionary attributes

Literal taken from INDKEY
entry that contains pointer
to identifier-1 dictionary
entry

Name replaced with dic­
tionary attributes pointec
to in entry containing
pointer to identifier-1
dictionary entry

Name replaced with
dictionary attributes
pointed to in entry
containing pointer to
identifier-1 dictionary
attribute

Name replaced with dic­
tionary attributes pointed
to in entry containing
pointer to identifier-1
dictionary attribute

Attributes taken from
dictionary using pointer in
INDKEY table entry that
contains pointer to
identifier-1 dictionary
entry

Literal taken from INDKEY
table entry that contains
pointer to identifie~-1
dictionary entry.
Copied out unchan~ed by
PHCTRL

Copied out unchanged by
PHCTRL

Phase 30 77

Licensed Material - Property of IBM

Replacing Names with Dictionary Attributes:
GENOP Routine

The PHCTRL routine calls the GENOP
routine to replace a name with its
dictionary attributes and then write the
result in P1-text format through the GENDAT
routine.

Except for condition-names and special
registers, the pointer to the dictionary
entry itself is appended to these
attributes. Although the dictionary does
not exist after phase 30 operations, Phases
50 and 51 use the pointer as an argument in
syntax analysis, and phase 60 uses it as an
identification code.

The GENOP routine
attributes what kind
should be generated.
for particular types
below.

determines from the
of P1-text elements
Special processing

of names is described

Data-nanles: Data-name reference elements
are generated for data-names. If the
Q-routine bit in the attributes is on, the
OVAR table pointer is used to find the GN
number to be added to the attributes. In
the case of an elementary item, the GN
number in the entry pointed to is used. In
the case of a group item, the GN number in
the entry for the next subordinate item is
used.

File-names: File-name reference items are
generated fo~ file-names. If the Q-routine
bit in the attributes is on, the QFILE
table is searched, using the pointer in the
attributes for a GW number to be added to
the attributes.

If the verb is an OPEN verb, the GENOP
routine looks for the GN numbers following
the file-name element for label and error
processing. These numbers are inserted
between the attributes and the dictionary
pointer in the resulting P1-text element
for the file-name.

If the file is a VSAM file, a VSAK
file-name reference element is generated.

Procedures-names: When the name is a
procedure-name definition in a segmented
program, the GENOP routine inserts a

78 Section 2. Method of Operation

segmentation control break after the
generated P1-text element each time it
encounters a section-name with a different
priority.

When the name is a procedure name
reference, the GENOP routine searches the
dictionary for the section in which the
name is defined. It then adds the priority
number of the section to the attributes of
the procedure-name reference.

Condition-names: When the GENOP routine
encounters a conditi~n-name, it creates a
P1-text string that associates the
elementary item with the values for which
it is to be tested. It uses pointers in
the dictionary attributes of the
condition-name to find the dictionary
attributes of the elementary item, as well
as to find the test-values in the VALTRU
table. Figure 30 shows the PO-text input
and P1-text output for a condition-string
without a VALUE ••• THRU clause. Figure 31
shows the PO-text and P1-text for a
condition-string with a VALUE ... ·.THRU
Clause.,

Error processing: ERROR Routine

The processing routines branch to the
ERROR routine when E-text for a complete
diagnostic message can be generated. The
parameter list following each branch
consists of the message number, the
severity code, a count of the parameters if
any, and the addresses of the parameters.
The ERROR routine builds E-text for a

'-message in location ERKSG, calls phase 00
to write it on SYS003 along with P1-text,
and then returns to the calling routine.
The format of E-text and the manner in
which diagnostic messages are later
generated from it are described in the
chapter on phase 70.

If CSYNTAX is specified and an error is
detected~the syntax option bit in COKMON
is forced on and conflicting options are
forced off.

I

Licensed Material - Property of IBM

Phase 11 Output Phase 30 output Meaning of Element

I i I Iii

1541071 1541071
I I

iii i

1231**IEBCDIC Name I
I ,

Imperative
statement

iii

1301**IAttri­
I I Ibutes
, J

i i t

1501061

Iii I

1* 1**ILiterall

iii

15415EI
I I I

I I ,

1501061
I I I

iii i

1* 1**ILiterall

Imperative
statement

IF

Condition-name

Conditional variable

EQUALS

First value to be
tested for

OR

EQUALS

Last value to be
tested

*Code indicating type of literal, as follows:

Code
32
33
34
39

Type of Literal
Numeric
Floating-point
Alphanumeric
ALL constant

**Count indicating number of bytes in following field

Processing by Phase 30

Copied unchanged by PHCTRL

Uses pointer in dictionary
entry for condition-name to
find entry for elementary
item

Writes conditional variable
attributes from its diction­
ary entry replacing its
dictionary pointer with that
of the condition-name

Generated by GENDAT

Taken from VALTRU table
entry pointed to in con­
dition-name attributes

Generated by GFNDAT

Generated by GENDAT

Taken from VALTRU entry
pointed to in condition­
name attributes

GENOP returns to PHCTRL to
handle remaining processing

Figure 30. P1-text Written for Condition-String Without VALUE ••• THRU Clause

Phase 30 79

Licensed Material - Property of IBM

Phase 11 Outout Phase 30 output Meanina of Element

iii , , i

1541071 1541071
t , I I

i I r
1231**IEBCDIC Namel
" I

Imperative
statement

iii
1301**IAttri-
1 1 Ibutes
I

iii

1521001
t

j I i

15415CI
I ,

iii

15010AI
I , I

iii

*1**ILiterall

iii

15415DI

, i •

15415CI

, i •

1501081
I I

iii I

IBBI**ILiterall
I 'J ,

i I I

1521011
I I I

Imperative
statement

IF

Condition-name

Conditonal variable

Left parenthesis

NOT

LESS THAN

First value in
series

AWD

NOT

GREATER THAN

Last value in series

Right parenthesis

*Code indicating type of literal, as follows:

Code
32

33
34
39

Tvpe of Literal
Numeric
Floating-Point
Alphanumeric
ALL constant

**Count indicating number of bytes in following field.

processing by Phase 30

Copied unchanged by PHCTRL

Uses pointer in dictionary
entry for condition~name to
find entry for elementary
item

Writes conditional variable
attributes from its diction-I
ary entry replacing its
dictionary pointer with that
of the condition-name

Generated by GENDAT

Generated by GENDAT

Generated by GENDAT

Taken from VALTRU entry
pointed to in condition­
name attributes

Generated by GENDAT

Generated by GENDAT

Generated by GENDAT

Taken from VALTRU table
entry pointed to in
condition-name attributes

Generated by GENDAT

GENOP returns to PHCTRL to
handle remaining processing

Figure 31. P1-text Written for Condition-stri~g with VALUE ••• THRU Clause

80 section 2. Method of operation

Phase 40 (ILACBL40) continues the
transformation of a source program
Procedure Division into machine-Ianguaqe
instructions. Its main functions are:

• Transforms P1-text into P2-text.

• Analyzes syntax and checks for errors
in the P1-text statements.

o If COUNT is in effect, converts all
verbs and procedure-names to Data
A-text and defines v~rb-block nodes
with a counter in both the COUNT table
(Data A-text) and P2-text.

During phase 40, the compiler-generated
card number of the statement currently
being processed is kept in a halfword
labeled CARDNO.

TRANSLATION OF P1-TEXT TO P2-TEXT

PROCl!.DURE-NAMES

P1-text is read by routine IDENT. If
IDENT determines that an element is a
procedure-name definition, it calls routine
IDLHN to process the element.

VERB STRINGS

If the element encountered is a verb, a
verb analyzer is called. There is a
separate verb analyzer routine for each
COBOL verb.

The verb analyzer routines use a number
of tables while building a verb string.

The STRING table is used by all verb
analyzers that produce output. It holds an
output string while it is being built. The
string is held in the table, rather than
being put out in parts as it is built. for
the following reasons:

• A string is not issued unless it is
free of errors. This cannot be
determined until the entire string is
produced.

• Sometimes the information which appears
at the end of a P1-text statement (for
example. UPON CONSOLE in a DISPLAY

Licensed Material - Property of IBM

PHASE 40

statement) is nut at the beginning of
the string as an aid to phase 50 or 51.

A string of P2-text is put out with a
maximum of five operands. If rrore than
five operands are required by a single
verb, a continuation string is put out.
See the discussion of the DISPLAY statement
in the chapter on phase 51 for an example
of a continuation string.

The following sections give examples of
phase 40 processing for several types of
verbs. These examples show the general
pattern of analysis for all the verbs and
use all of the phase 40 tables except the
SETTBL table. The SETTBL table is used to
accumUlate index-names or identifiers which
may precede the COBOL words TO, UP, or DOWN
in the SET statement.

EXAMPLES

MOVE Statement -- Subscripting

Phase 40 processing for the MOVE
statement consists simply of putting out a
MOVE string which gives the number of
operands and names the operands. For the
input elements:

MOVE A TO B

Phase 40 generates the string:

MOVE (2) A B

The operands of a MOVE statement may be
subscripted. When subscripted operands are
encountered in any statement, the
generating routine first issues a SUBSCRIPT
string for each subscripted operand and
then issues the string for the verb. The
following MOVE statement exemplifies the
building of SUBSCRIPT strings:

MOVE A(6) TO B(C,D,E).

Processing for this statement is
illustrated by Figure 32, which shows the
contents of tables built for the statement
and the P2-text strings produced.

Phase 40 81

'\

Licensed 1'1aterial - Property of IBM

r--------T------------T-------------------;
ISTRING I I I
I Table IDEFSBS Table I output I
~--------+------------+-------------------~
IMOVE(2) SUBSCRIPT(3)ISUBSCRIPT(3)A 6
I I SSIDl
I I
I SSIDl A I SUBSCRI PT (5)
I I BCD E SSID2

I
SSID2 6 I MOVE (2)

I SSIDl SSID2
I

SSIDl I
I

SUBSCRIPT(5) I

When the period ending the statement is
encountered, all three strings are written
on SYSOOl.

DEBUG Card

If a procedure-name is referred to on a
DEBUG card, phase 40 produces a CALL
string.

The output generated for debugging
procedures is illustrated in Figure 33.

I When routine IDLHN analyzes a PN
IB
I
IC
I
ID
I
IE
I

I definition, it determines from the
I attributes that this PN is referred to on a
1 DEBUG card. Routine IDLHN first issues a
I PN definition element. Then it obtains a
I GN number from GNCTR in COMMON and issues a
I CALL string with this GN as its operand.
I The PN number and the GN number are saved
I I - together in table DBGTBL.

ISSID2 I I L ________ ~ ____________ ~ ___________________ J

Figure 32. Tables and Output for a MOVE
Statement --

EXPLANATION: The MOVE verb, with 2 to
indicate the number of operands, is placed
in the STRING table. Then the first
subscripted operand is processed. For this
operand, a SUBSCRIPT string is built in_
table DEFSBS. (SUBSCRIPT is a special
COBOL verb us€d only within the compiler;
table DEFSBS is similar to the STRING --­
table, but it is used only to hold
subscript information.)

The SUBSCRIPT string is' used by phas~ 50
to resolve the subscripted reference. _~he
first SUBSCRIPT string shown in Figure 32
means: "compute the address of the sixth
occurrence of A; place that address into-a
temporary cell called SSID1." At execution
time, the address of the data item to -be
moved is held in SSID1; therefore SSIDl
becomes the operand of the MOVE verb. The
same applies to the second operand.

When a DEBUG card is encountered, the
DBGTBL table is searched for a PN number
that matches the one on the DEBUG card.
the table, this PN number has a
corresponding GN number, and a GN
definition element is issued for this GN.
Therefore, the GN defines the location of
the debugo,:ring procedure.

ALTER Statement

In

For each ALTER statement in a program,
two statements require ALTER processing:
the ALTER itself, and the GO TO statement
named in the ALTER. Either of these
statements may be encountered first. When
one statement of an ALTER/GO TO pair is
encountered, a VN number is assigned, and a
string of P2-text is written using this VN
number. A VNTBL entry is made, giving the
VN number and the PN number to which it
corresponds. When the second statement of
the pair is encountered, this VNTBL entry
supplies the VN number for this statement"s
P2-text output.

r---------------------------------T--------------------T--------------------------------,
I Input Statement I DBGTBL Table I Output I
~---------------------------------+--------------------+--------------------------------~
I PNl. ADD... I PNl GNl I PNl. CALL GNl ADD... I
I I I I
I PN2. MOVE... I PN2 GN2 I PN2. CALL GN2 MOVE... I
I I I I
I DEBUG PN2 I I GN2. DEBUG PN2 I
I I I 1
I DEBUG PNl I I GN1. DEBUG PNl I l _________________________________ ~ ____________________ ~ ________________________________ J

Figure 33. DBGTBL Entries and P2-text for DEBUG

82 section 2. Method of Operation

Licensed Material - Property of IBM

,
I Input Statement 1 VNTEL I output
1 I
1 Q)PN1. GOTO PN3. 1(0 PN1 VN1
1 I

I
I@ PN1. GO VN1.
I

1 1 10) EQUATE VN1 PN3
I I
1(2) ALTER PN4 TO PROCEED TO PN6.1~ PN4 VN2
1

I
I MOVE PN6 VN2
I

1 PN2 •••••• I PN2 ••••••
1 I
I GO TO PM1. I GO TO PN1.
1 I
1 PN3 •••••• I PN3 ••••••
1
I~ ALTER PN1 TO PROCEED TO PN2.
1

I
I@ MOVE PN2 TO VN1
I

I PN4. GO TO PN5. I PN4. GO VM2.
1 I
1 I EQUATE VN2 PN5
1 I
1 PN5 •••••• I PN5 ••••••
1 I
I PN6 •••••• I PN6 •••••• ,
Figure 34. Table Entries and output or ALTER statements

At execution time, each PN is assigned a
cell in the PGT (Program Global Table). In
this cell, the address of the first
instruction for the PN is permanently
stored. Each VN is assigned a cell in the
VN field of the TGT (Task Global Table);
however, the contents of these cells are
not permanent. When a GO TO instruction is
modified by an ALTER statement (or a
PERFORM statement, as described later in
this chapter), the address contained in the
VN cell is changed.

Figure 34 gives an example of phase 40
processing for the ALTER statement.

In this example, the first statement
read is PM1. When routine IDLHN
examines the definition of PM1, it
determines fro~ the attributes that
this statement is a GO TO statement
referred to by an ALTER statement

(The ALTER statement follows PN3)

Then the GO verb analyzer processes
the statement. It obtains a VN
number, which it stores with PN1 in
the VNTBL table, and it puts out two
strings.

The GO VN1 means that, when
uted, the address

to be branched to is obtained from a
uniquely identified VN cell in the
TGT.

CZ) EQUATE VN1 PN3 means that, at
execution time, the initial content

of this VN-I cell is the address of
PN3. until the value is changed by
an ALTER statement, the cell is
unchanged, and any execution of PN1
branches to PN3. The equated address
is also placed in a VN cell in the
PGT.

(In a segmented program, the VM is given
the same priority as the PN to which it is
equated.)

®

when the ALTER PN1 statement is read,
the VNTBL table is searched for PM1.
Since an entry is found, the
corresponding-vN number (VN1) is used
as the receiving field of the MOVE.

At execution time, this MOVE takes
the address of PN2, stored in a PM
cell in the PGT, and places it in the
VN cell for VN1.

The execution-time operation of this
ALTER/GO TO pair is illustrated in Figure
35. The flow of control resulting from
this ALTER is shown in Figure 36.

.Figure 34 illustrates a second ALTER/GO
TO pair.

(i) In this case, the ALTER statement
(ALTER PN4) is read first.

® A search of the VNTBL table reveals
that no entry for PN4 has been made,
so the ALTER analyzer obtains a VN
number and enters that VN number with
PN4 in the table.

Phase 40 83

Licensed Material - Property of IBM

COBOL Source simplified Assembler code

PN1. GO TO PN3.

ALTER PN1 TO PRO­
CEED TO PN2.

L
BR

L
ST

REG,VN
REG

0,PN2
O,VN

Figure 35. Execution of an ALTER Statement

i
IBeginning
I of
I program

i

I
r

~-------->I<---------------------------,
r----->I

I
V

Ilyes

" " II

" VV

PN3

no i

------->1 PN2
I ,

I ,
I ,
V

i I
I "
IALTERf--J
, I
, ,

Figure 36. Flow of control for Statements
in Figure 35

Note: ~ssuming that no other ALTER or GO
TO statements occur in this program, the
flow of control follows the single-line
path the first time through and,the
double-line path every time after.

aq Section 2. Method of operation

PN (cells of PGT)

a (PN1)

a (PN2)

a (PN3)

VN (cells of TGT)

a (PN3)

1\
I ,

1------,

Special Processing for Optimization:
When OPT has been specified, most PN cells
are eliminated from the Program Global
Table (PGT). Phases 62,63, and 6q develop
a different method for addressing these
PHs, using Procedure Block base locators
for this purpose. Some GN and PN cells
reIDain unchanged by the optimizer phases.
Phase qO generates P2-text Optimization
Informat.ion elements (changed to
optimization A-text elements by phase 50)
to identify what type of element follows.

PERFORM Statement

The processing of a PERFORM statement
resembles that of an ALTER statement.,

The r~turn from a performed procedure is
a GO-string with a VN as its object. This
GO string is placed at the end of the
performed procedure; that is, just before
its delimiter.

Phase 40 uses the VNTBL and PFMTBL
tables to keep track of the VNs. Figure 37
gives an example of the use of these
tables.

Procedure Statement VNTBL Table

SN1 SECTION.

G) SN2 SECTION. (3) SN2 VN1

o
®

PN3.

SN4 SECTION ••••

PNS. PERFORM SNl THRU
SN2.

PN6. ADD •••

Figure 37. Effect of a PERFORM Statement

The dictionary attributes of
section-name SN2 indicate that it is
the object of the THRU option of a
PERFORM statement.

Routine IDLHN obtains a VN number
from cell VNCTR in COMMON and enters
VNl and SN2 in table VNTBL.

In table PFMTBL, it enters VN1 and
the delimiter of SN2, which is SN4.

When section name SN4 is encountered,
routine IDLHN knows it is the
delimiter of the performed procedure
because it is in table PFMTBL.
Therefore, before the procedure-name
definition element for SNII is issued,
routine IDLHN sets up the return from
the performed procedure.

It obtains the VN number from the
PFMTBL entry and issues a GO string
to go to VN1.

It issues an EQUATE string to equate
VN1 to SN4.

It then issues the procedure-name
definition for SNII.

When the PERFORM statement identified
by PNS is encountered, verb analyzer

Licensed Material - Property of IBM

PFMTBL Table

G)SN4 VN1

'~I

output

SN1.

SN2.

PN~3 •••
S GO VN 1

EOUATE VN1 SNII

G)SN4.

(2)PNS. MOVE VN1 PFMSAV1

MOVE GN1 VN1
GO SNl

GN1. MOVE PFMSAVl VN1

PN6. ADD •••

routine PERFORM sets up the return
from the performed procedure before
it issues a GO string to go to it.

It obtains a PFMSAV number from cell
PSVCTR in COMMON and issues a MOVE
string to save VN1 by moving it to
PFMSAV1. (There are PFMSAV cells in
the TGT to hold these values at
execution time.) Then it obtains a
generated procedure-name (GN) number
from cell GNCTR in COMMON and issues
a MOVE string to alter VNl with GN1.
This GN is issued as a GN definition
for a MOVE statement to restore VN1
after the performed procedure is
executed.

At execution time, the performed
procedure is executed first in-line; that
is, the return from it is the next
sequential statement SN4. Then~ when PNS
is encountered, the performed procedure is
executed again. This time the return from
it is GN1 (where the normal return of SN4
is restored). Then the 'next statement
(that is, PN6) is executed.

Figure 38 gives an example of how a
PERFORM s~atement operates at execution
time. Figure 39 illustrates the flow of
control for the program shown in Figure 36.

Phase 110 8S

Licensed Material - Property of IBM

Source statement (COBOL):
PERFORM SEC2 THRU SEC3.

SEC1 SECTION.

SEC2 SECTION.

SEC3 SECTION.

SEC4 SECTION.
GO TO SEC1.

Resulting code (Simplified
L

GN

I SEC1
I
I
I SEC2
I
I
I SEC3
t
I
I
I SEC4
I
I

ST
L
ST
L
B

L
ST

L
B
L
E

Assembler L~nguage):
O,VN Save initial value of VN=A(SEC4)
O,PFMSAV
O,GN Set up value of VN=A(GN1)
O,VN
REG,PN+4 Branch to SEC2
REG

O,PFMSAV
O,VN

REG,VN
REG
REG,PN
REG

Re-initialize cells in TGT

LOAD A (SEC4)
Branch
LOAD A (SEC1)
Branch

I Resulting code if OPT
I

is
L
ST
LA
ST
B

specified (Simplified Assembler Language) :

I
I
I
I
I

GN1

SEC1

SEC2

SEC3

SEC4

L
ST

L
B
B

O,VN Save initial value of VN=A(SEC4)
O,PFMSAV
O,DISP(11) Set up value of VN=A(GN1)
O,VN
DISP(11) Branch to SEC2

O,PFMSAv
O,VN

Reg,VN
Reg
DISP (11)

He-initialize cells in TGT

Load A (SECA)
Branch
SEC1

INote: PN and GN are cells in the Program Global Table (PGT); VN and PFMSAV are cells
lin the Task Global Table (TGT). The TGT and PGT are discussed in "Appendix B. Object
IHodule."
I

Figure 38. Execution of a PERFORM Statement

86 Section 2. Method of Operation

SEC'

1\ I\.
I
I
I
I
I
1

1\
I
I
I
I
I

Ire- I yes

1
>1
>1

I

1 initialize I <---------
I 1

PERFORM

I

I
I
I
I
1
1
V

SEC2
SEC3
I

1 1
1 I
1 1
1 1
1 I
V V

I Ino
I I
I I
I I
I I
I I
I I
V V

SEC4

Figure 39. Flow of Control for Statements
in Figure 38

~: Assuming that no other procedure
branching statements occur in this program,
the flow of control follows the single-line
path the first time through and the
double-line path every time after the
first.

COMPUT~ statement

Verb analyzer routine COMPUT, in
conjunction with its major subroutine
FORMLA, breaks down the arithmetic
expression of a COMPUTE statement into a
series of simple arithmetic strings. It
uses two tables, PNOUNT and PSIGNT, in the
processing. PNOUNT contains the nouns
(that is, operands) of the arithmetic
expression. PSIGNT contains the signs

Licensed Material - property of IB~

(that is, operators anQ parentheses) of the
expression. ,

These two tables are needed because the
hierarchy of arithmetic operators may
necessitate a rearranqement of the
expression. The operators, in order of
first-performed to last-performed
operations, are:

unary + and -
**
* and /
+ and -

For example, the statement COMPUTE
X=A-B*C reguires arithmetic strings in the
order:

MULT C B IR'
SUB IR1 A IR2
STORE IR2 X

where IR' and IR2 are intermediate results.

Figure 40 gives an example of the use of
tables PNOUNT and PSIGNT in evaluating the
following statement:

COMPUTE X=A+(C-D/E)*P-G.

It shows which elements are added to or
deleted from these tables as a result of
reading a new input element, and which
strings are placed in table STRING as a
result of encountering this element. Each
row in the figure shows table contents
after processing the input element to the
left

Phase 40 builds a single arithmetic
string when the siqns in table PSIGNT
indicate that the arithmetic hierarchy of
operators requires a string. To build a
string, the last operator in table PSIGNT
is made into a verb, the last two nouns in
table PNOUNT are used as operands, and an
intermediate result is appended-as the
temporary result. (The intermediate result
is placed in table PNOUNT as an operand.)
The following paragraphs give the rules for
building a string. The numbers of the
explanatory items correspond to the circled
numbers in Figure 40.

1. If a right parenthesis is encountered,
all strings up to the left parenthesis
are built.

2. If an operator is encountered that (in
the hierarchy of arithmetic operators)
is lower than or equal to the last
sign in .PSIGNT, a string is built.

3. If there are no more input elements,
all remaining strings are built.

Phase 40 81

Licensed Material - Property of IBM

iii
ITable I Table I

IInput ,PNOUNT IPSIGNT IStrinqs Stored I
IElementlContentslContentslin Table STRINGI
, I I I ,
, A ,A I I I
I I I I I
I + ,A ,+ I ,
I I I I ,
, I A I + I ,
, I I' I , , 'I ,
, C I A I +, I
I I C , (I , , , " ,
I I A I + I I
I I C I I ,
I , I I I
I I I I ,
, D I A ,+ I I
, 'C I (I I
, I D" I
I , I I I
, / ,A I + I I
, ,C" ,
I ,D I I I
, , ,/ I ,
I I I I I
I E I A ,+ I I
I ,C I I I , ,D I I ,
I ,E ,/ , ,
I , I I I ,) r:\' A ,+ ,DIV E D IR 1 ,
I ~I C I I ,
, ,IR1 I I I
, I I I ,
I ,A I + I SUB IR 1 C IR2 I
I I IR2 I I ,
, I I' ,
I * ,A ,+ I ,
, I IR2 I * I I
, I I I I
, F ,A ,+, ,
, ,IR2 I * I I
I ,F I' ,
, I I' , , -1':'\' A I + IHULT F IF2 IR3 ,
, ~':ER3 I' ,
, , I' ,
, I IR4, IADD IR3 A IR4 , . , " ,
, G I IR4" ,
I ,G, I I
, , " I
I • t'::\ I , ,SUB G IR4 IRS ,
, ~ , , ,STORE IRS X ,
, I I I I
,Note: The circled numbers in the figure ,
I refer to explanations in the text., , ,

Figure 40. Evaluation of a COMPUTE
Statement

88 Section 2. Method of Operation

Figure 41 gives the final output from
the statement.

EVAL DMAX DCURRENT X •••
DIV F. D IR1 (-C)
SUB IR1 C IR2 (*F)
MULT F IR2 IR3 (+A)
ADD IR3 A IR4 (-G)
SUB G IR4 IR5 (ST X)
STORE IR5 X

Figure 41. Strings Resulting from a
COMPUTE Statement

As an aid to phase 50, an EVAL string is
issued preceding the arithmetic strings.
The EVAL string contains information such
as the maximum number of decimal places in
an operand, the number of decimal places in
the result, and the presence of ROUNDED
and/or ON SIZE ERROR clauses. Appended to
any string containing an intermediate
result is an indication of the use of that
intermediate result., For example, IR1 is
used in a subtraction with C.

IF Statement

The IF verb analyzer, assisted by its
major subroutine PFINDL, evaluates IF
statements. It issues strings consisting
of a relational verb, two operands to be
compared, and a third operand. This last
operand is a generated procedure-name (GN)
to which a branch is to be made if the next
statement, or the next test in a compound
IF statement, is to be bypassed. The
following list shows the verb string issued
from a simple IF statement.

Statements Strings
IF A=B DISPLAY C. IF-NOTEQ A B GN1

DISPLAY C

ADD ••• GN1. ADD •••

Note that the condition is reversed in the
string to minimize the number of branches
required.

The tables PNOUNT and PSIGNT are used in
evaluating arithmetic expressions in IF

Licensed Material - Property of IBM

i i

I Procedure I Status of
I Statement IPSHTBL Table output string
I I

>1 IF A=B I GN1 IF-NOTEQ A B GN1
1 I

>1 IF C=D I GN1 IF NOTEQ C D GN2
1 I GN2
1 I

>1 IF E=F I GN1 IF-NOTEQ E F GN3
I I GN2 , I GN3
1 I
I STOP '0' I GN1 STOP '0 '
I I GN2 GO GN4
I I GN3
I I

>1 ELSE STOP '3' I GN1 GN3. STOP '3'
I I GN2 GO GN4.
1 I

>1 ELSE STOP '2' I GN1 GN2. STOP '2 '
I I GO GN4
1 I

>1 ELSE STOP , 1 ' I GN1. STOP '1 i
I I
I ADD ••• I GN4. ADD •••

Figure 42. Evaluation of a Nested IF Statement

statements. The strings produced are the
same as for COMPUTE statements except that
the last string is a relational string (for
example, IF-EQ or IF-NOTGT) instead of a
STORE string.

In addition, tables PSHTBL and PTRFLS
are used in evaluating IF statements.
Table PSHTBL collects branches to ELSE
statements in nested IF statements. Table
PTRFLS collects branches within compound IF
statements.

Nested IF Statement: Figure 42 shows how
table PSHTBL is used in evaluating the
following statements:

IF A=B THEN IF C=D THEN IF E=F STOP '0'
ELSE STOP '3' ELSE STOP '2' ELSE STOP '1'.

ADD ••••

IF and ELSE statements are paired from the
inside outward. Table PSHTBL saves the
procedure-names generated for branching to
the ELSE statements. When an ELSE is
encQuntered, the last generated name in the
table is issued as its procedure-name
definition.

SEARCH ALL Statement

The SEARCH ALL statement is executed by
an object-time subroutine. (For a
description of the subroutine see the
publication IBM DOS/yS COBOL Subroutine

Library, Program Logic, Order
No. LY28-6424.) Therefore, phase 40 does
not generate statements to perform the
search. Instead, it produces a parameter
list for the object-time subroutine (the
actual call to the subroutine is generated
by phase 50), and it creates verb strings
for the imperative statements following AT
END and WHEN clauses.

Figure 43 gives an example of phase 40
output for SEARCH ALL. The example shows
the P-2 text that would be produced for the
following statement:

SEARCH ALL TABLE-K AT END GO TO NOT-FOUND
WHEN KEY-1 (INDFX-K) = 5 AND KEY-2

(INDEX-K) = 10 AND
KEY-3 (INDEX-K) = DATANAME-K3

MOVE TABLE-K (INDEX-K) TO ENTRY-FOUND.

The SFARCHALL verb analyzer first
receives TABLE-K and the maximum
number of occurrences as P1~text
inp~t and saves them.

Then it receives a count of the
number of keys, followed by the keys
themselves. The dictionary pointer
for each key is entered into table
KEYTBL with a flag byte of 00.

If any of·the keys are found to be
sterling or floating-point, a C-level
E-text element is generated, and the
statement is processed as if it were a
format 1 of the SEARCH statement. At the

Phase 40 89

Licensed Material - Property of IBM

same time, WHEN conditions are processed by
the IF analyzer and no special WHEN
statements are generated.

After the table has been built, the
SEARCHALL analyzer transfers control to the
SEARCH analyzer to scan the WHEN and AT END
clauses.

To generate verb strings for the
imperative statements following AT END and
WHEN clauses, the SEARCH verb analyzer
calls other verb analyzers. However, the
IF analyzer is not called to generate
conditional statements. Instead, SEARCH
returns control to SEARCHALL to do special
WHEN processing. If the AT END and WHEN
imperative statements do not provide exits
from the search, phase 40 generates a GO TO
NEXT SENTENCE statement.

In the example, this is accomplished
via the GO GN4 statement.

Figure 44 is a generalized diagram
showing the flow of execution into and out
of the SEARCH ALL subroutine.

Phase 40 checks WHEN conditions for
conformity to language rules by using the
KEYTBL table.

When the first part of the WHEN
. condition is processed, the dictionary

pointer for the key named in the condition
is compared to that of the first key in the
KEYTBL table. If it matches, the flag byte
is set to 01 and the condition is valid.
The second part of the condition should
name a key matching the second entry in the
KEYTBL table, and its flag byte will be
set.

If keys in the WHEN clause are specified
in any order other than the order of
KEYTBL, E-text for a conditional error
message is issued, and the S~ARCH routine
is given control to produce a SEARCH
format-1 statement instead of SEARCH ALL.

If, in any part of the WHEN condition,
none of the operands named is a key, or if
any other error condition is detected#
E-text is issued, and no P2-text is
produced.

90 section 2. Method of Operation

I

1
1
IGN2.
1
1
IGN3.
1
I@
1
1
1
1
1 10

®

GO GN1.

GO PN50. (PN50 is the PN number
of NOT-FOUND)

WHEN (3)*

TABLE-K

num-occur**

GN2

EVAL DMAX DCURRENT
KRY-1.
EQUATE 5 KEY-1.

EVAL DMAX DCURRENT
KEY-2.

EQUATE 10 KEY-2.

EVAL DMAX DCURRENT
KEY-3.

EQUATE DATANAME-K3
KRY-3.

ENDWHEN.

Information
used for pa­
rameter list

SUBSCRIPT (3) TABLE-K INDEX-K
SSID1.

MOVE (2) SSID1 ENTRY-FOUND.

GO GN4.

IGN1. GO GN3 •
1
IGN4. Next sentence.
1
1 *If KEY-1 required two levels of
1 subscripts or indexes, the first
1 subscript would be put out as the
1 fourth operand of the WHEN verb. If
1 three levels were required, the first
1 two subscripts would be operands 4 and
1 5 of WHRN. All keys must be
1 subscripted or indexed when used in
1 WHEN conditions, but phase 40 does not
1 produce SUBSCRIPT strings or SSIDs for
1 them.
I**num-occur: If TABLE-K has a fixed
1 number of entries, num-occur is a
1 literal specifying the number (the
I value following the OCCURS clause in
1 the data description for TABLF.-K). If
1 the table has a variable number of
1 entries, num-occur is the name of the
I data item which follows the OCCURS
I clause with the DEPENDING ON option. ,
Figure 43. Output for a SEARCH ALL

Statement

SYNTAX ANALYSIS AND VERB CHECKING

Phase 40, in subroutine ERROR, issues
E-text when an error is detected.

Primarily, phase 40 checks to see
whether required COBOL words are present
and in the correct order and whether
operands are compatible with each other
and in permissible format for the
statement in which they are used.

In addition, it performs a limited
check of the relationship between
statements. For example. it detects a

GN3
r----------,
I Call I
I subroutine I
L----T-----J

I
I
I

r----------------t-----------,
I I I
I r--------->I I
I I I I
I I I I
I I v I
I I I

I I

Licensed Material - Property of IBM

conditional statement that has no
conclusion.

It also checks miscellaneous special
requirements, such as: subscripts must be
integers, parentheses in logical and
arithmetic expressions must be paired, and
a maximum of twelve sort keys must not be
exceeded.

If CSYNTAX is specified and an error is
detected, the SYNTAX option bit in COMMON
is forced on and conflicting options are
forced off. If SYNTAX or CSYNTAX is
specified, all error text is written to
file 4.

GN2
r----------, Exit from SEARCH

I yes I I Imperative I via GO statement or
I -----t------------------------->Istatement r-------------------->
I I I following I NEXT SENTENCE
I I I WHEN I
I I I I I I L __________ J

I I
I I
I I
I I
I I
I I Return at a specified r----------, Exit frow SEARCH
I yes I number of bytes after I Imperative I via GO statement or
I -----t------------------------->Istatement r-------------------->
I I GN3 (first executable Ifollowing I NEXT SENTENCE
I I instruction immediately IAT END (if I
I I follows parameter list) I specified) I I I L __________ J

I I I L __________ J I
L ____________________________ J

(Solid box indicates that control flows within the SEARCH ALL object-time subroutine;
blocks not within the box are executed in-line.)

Figure 44.. Flow of Execution for a SEARCH ALL Statement

Phase 40 91

Licensed Material - Property of IBM

METHOD OF DEFINING VERB BLOCKS

The major routines used in defining verb
blocks and the functions they perform are
explained below.

Phase 110 Initialization Routine

This routine turns off the ENTRYSW,
FNDPARNM, NNODEOS, NNODSW, NTIMSW,
TIMFLOSW, UPPROC, and VBSKIP switches.

IDS Routine

Before branching to the verb analyzer
routines, this routine calls TIMCNT.

ISTRUV Routine

This routine turns on NNODSW and
NNODEOS.

IDBRK Routine

If not a r€port writer declarative, this
routine turns on NNODSW, ENTRYSW, UPPROC,
NTIMSW, and turns off NNOuEOS and VBSKIP.
If it is a report writer start, IDBRK turns
on VBSKIP; if it is a report writer end, it
turns off VBSKIP.

IDLH03 Routine

Just before FLOW is tested, this routine
turns on NNODSW, UPPROC, ENTRYSW, FNDPARNM,
and turns off NNODEOS. Then, if FLOW is
on, it turns on TIMFLOSW. Then GENTIM is
called. In addition, if there is a DEBUG
packet, at the end of IDLH10, GENTU: is
called again. Note: the test and code
generation for USE FOR DEBUGGING
paragraph-name precede the tests for FLOW.

SORT, MERGE Routines

Upon final exit from these routines,
NNODSW is turned on if INPUT or OUTPUT
procedures were specified. If INPUT or
OUTPUT procedures are specified, NTIMSW is

92 section 2. Method of Operation

also turned on upon exit from processing
the INPUT or OUTPUT procedure phrase.

EOF Routine

If COUNT or TIMER is on, this routine
indicates the end of the COUNT T'able in
Data A-Text and rounds the size of the
COUNT Table to the next even number.

GETNXT (GET13 and GET111) Routine

This routine saves Listing A-Text in
order to maintain the last procedure-name
for GENPAR.

EXIT5 (EXIT PROGRAM) Routine

Prior to generating this verb, this
routine calls GENTIM, passing zero as the
parameter to be generated. Afterwards,
NTIMSW is turned on.

Branches to USE FOR DEBUGGING

After generating the return point from
any USE FOR DEBUGGING procedure (other than
for Procedure-name definitions), GENTIM is
called.

GENNOD Routine

If COUNT is off, or if VBSKIP is on,
GENNOD returns. Otherwise, if NNODSW is
on, NODECTR is updated. In any case, Data
A-Text is generated. In addition, if
NNODSW is on, a COUNT verb with a counter
is generated, and NNODSW is turned off.

GENPAR Routine

First GENPAR turns off UPPROC. Then, if
COUNT is off GENPAR returns. In any case,
Data A-Text for the paragraph,
section-name, or missing paragraph-name is
generated (using FNDPARNM), and FNDPARNM is
turned off.

GENTIM Routine

First GENTIM turns off NTIMSW. If
UPPROC is on, it calls GENPAR. In any
case, if ENTRYSW is off, GENTIM generates a
TIMERA verb (with a zero or PROCCTR as the
count, depending on input parameters) and
then returns. GENTIM turns off ENTRYSW,
and if TIMFLOSW is off, generates a TI~ERB
verb (with PROCCTR as the count) and
returns. Otherwise it turns off TIMFLOSW

Licensed Material - Property of IBM

and generates a TIMERC verb with PROCCTR as
the first constant and with ISN or
Card-number as the second constant.

WRSYS4 Routine

This routines puts the Data A-Text on
SYS004.

Phase 40 92.1

Licensed Material - Property of IBM

PHASE 50

Phase 50 (ILACBL50) reads elements of
P2-text written by phase 40 and. depending
upon the type of each element. either
processes it or passes it to phase 51 for
processing. Output from phase 50 includes
P2-text passed unchanged. Intermediate
A-text. and Intermediate E-text. all
written on SYS002 for phase 51. and
Optimization A-text written on SYS003 for
phase 60 or 62. Intermediate E-text
consists of E-text passed from phase 40 or
generated by phase 50. to which is added a
prefix to make it readily recognizable.
Intermediate A-text consists of Procedure
A-text or Optimization A-text. which is
generated by phase 50 and to which has been
added a prefix.

Procedure A-text is generated by
analyzing P2-text verb strings and
generatina elements that correspond to
assembler language instructions. That is.
the elements combine to form name.
operation. and operand fields.
Optimization A-text is generated for use by
phase 60 or 62 in eliminating duplicate
references.

Input to phase 50 (a combination of
P2-text and E-text) is read from file
SYS001. Output is written on file SYS002.
except for lLteral definitions written as
Optimization A-text. These are written on
file SYS003. (See the section "Literals
and Virtuals" later in this chapter.)

Routine PH5CTL calls routine GETNXT,
which obtains ?2-text elements, determines
what type they are. and calls the routines
required to process them. The elements may
be of the following types:

• Program breaks

• Verb strings

• E-text

• Segmentation control breaks

• PN, GN, and VN definitions

Of these, only program breaks and
certain verb strings are processed by phase
50. The others are passed to phase 51 for
processing. Elements of E-text are
prefixed with headers for identification by
phase 51, and copied as output.
segmentation control breaks and PN, G~~. and
VN definitions are written with an
Optimization A-text prefix. Before a PN,
GN, or VN d~finition is copied, all entries

92.2 Section 2. Method of Operation

in the XSCRPT table, used in calculating
subscript values, are deleted. The section
"Using and Optimizing Subscript References"
explains why this is necessary.

PROGRAM BREAKS

Routine GETNXT uses program breaks to
determine where to issue a START macro-type
instruction. This indicates where in the
object-time coding the first executable
instruction is generated. The Procedure
Division, Start Declaratives. and End
Declaratives breaks are used for this.

If no Start Declaratives break is
encountered, routine GETNXT issues the
Procedure A-text for START immediately
after finding the Procedure Division break.
If a Start Declaratives break is
encountered. the START Procedure A-text is
issued after the End Declaratives break has
been found.

Because the coding for a START macro is
always the same. this A-text is generated
from constant A-text. which is described
later in this chapter.

VERB STRINGS

The P2-text for a verb string consists
of a verb followed by from one to five
operands. Any operands beyond the fifth
have been placed into one or more
continuation strings by phase 40; the first
operand of the first string is the COBOL
word FIRST. and the last element of the
last string is the COBOL word LAST.

Once routine PH5CTL has established that
an element of P2-text is a verb string. it
moves the operands into work areas labeled
DOP1 through DOP5 (hereafter, a reference
to a DOP is a reference to one of these
work areas). The verb code for the verb
currently being processed is moved into a
cell called GANLNO, where it is kept until
overlaid by the next verb code.

The PH5CTL routine then calls routine
XIS31. which determines whether any of the
operands are subscripted or indexed
data-names. If one is, the pointer to the
desired occurrence has already been
computed in phase 50 '(subscripts and
indexes are resolved by processing

SUBSCRIPT verb strings, which always
precede the verb string in which they are
referenced; see the section "Resolving
Subscripted and Indexed References" later
in this chapter). Routine XIS31 changes
the idk field in the DOP from a subscripted
or indexed reference to a data-name
reference (idk represents addressing
parameters; they are described fully in
"Section 5. Data Areas" under the
addressing parameters field of the LD
dictionary entry).

Upon return, routine PH5CTL checks to
see whether the verb string is one that is
to be processed by phase 50. Verb strings
processed by phase 50 include:

ADD
SUBTRACT
MULTIPLY
DIVIDE
EXPONENTIATION
Numeric IF
Numeric MOVE
SEARCH
EVAL
STORE
SUBSCRIPT
EQUATE, when in SEARCH ALL
END OF, when in SEARCH ALL

The last five are verb strings created
by phase 40. If the verb is one of those
listed, an appropriate verb processor is
called. Otherwise, routine PH5BVB is
called, which performs some checking of
phase 51 verb strings before passing them
as P2-text to phase 51. (See "Handling
Phase 51 Verb Strings" in this chapter.)

Note: The PH5CTL routine distinguishes
between numeric and nonnumeric IF and MOVE
verb strings as follows: the numeric IF
verb has a different verb code from the
nonnumeric IF. For all MOVE strings,
control is given to the numeric MOVE
analyzer; if this routine finds nonnumeric
operands, it returns control to routine
PH5CTL with an indication that such is the
case.

VERB PlWCESSING

From the verb code, routine PH5CTL
determines which verb analyzer to call. If
the SYMDMP or STATE option is in effect,
phase 50 generates a call to the
object-time COBOL library debugging
subroutine ILBDDBG4 before the code to call
any other object-time subroutine. For
details on the object-time subroutines, see
the publication, IBM DOS/VS COBOL
Subroutine Library. Program Loaic, Order
No. LY28-6424. In general, there is a
specific routine to analyze each COBOL

Licensed Material - Property of IBM

verb, but there are a few cases of overlap.
For example, all arithmetic verbs use parts
of a processor known as the arithmetic
translator.

The illustrations in this chapter show
P2-text strings as a verb followed by
data-names, and Procedure A-text elements
as assembler language instructions. These
are simplifications for the reader; the
texts actually contain codes rather than
verbs, and the P2-text for data-names
contains the dictionary attributes of the
item, rather than its name. The actual
text formats, including the codes, are
shown in "Section 5. Data Areas.".

Note: When phases 50 and 51 use registers
14 and 15 in their generated instructions,
Procedure A-text DESTROY and RESERVE
elements are passed to phase 60 or to
phases 62, 63, and 64. The purpose of the
DESTROY element is to indicate that the
contents of the registers are not to be
relied upon any longer. The purpose of the
RESERVE element is to indicate that the
register may not be used by phase 60 or by
phases 62, 63, and 64 in the generated code
until a FREE elem~nt for that register,
issued by phase 50 or 51, is read.

RESOLVING SUBSCRIPTED AND INDEXED
REFERENCES

This section describes the processing of
the SUBSCRIPT verb string. It shows how
subscripted addresses are calculated and
how the XSSNT and XSCRPT tables are used to
eliminate duplicate calculation. Then the
handling of indexes (which are very similar
to subscripts and use the same tables) is
discussed.

Calculating Subscripted Addresses

To refer to a subscripted item, the
object program must know the displacement
in bytes of the desired occurrence from the
beginning of the subscripted field. To
calculate this displacement, the following
must be known:

• The number of bytes in the entire
subscripted field.

• The relative position in the field of
the desired occurrence.

The size of the field is known from the
Data Division description of the field,
including the PICTURE clause of the
elementary item. The relative position is
known from the value of the subscripts.

Phase 50 93

Licensed Material - Property of IBM

The examples which follow show three
levels of subscripting. The same concepts
(and the same formula) apply to one or two
levels of subscripting.

The formula used to calculate a
subscripted address is:

(subscript1*length1) + (subscript2*length2)
+ (subscript3*length3)
- (length1+length2+lengt~3)

This formula is used whether the
calculation is done in phase 50 or in the
object program.

The following discussions use examples
based on this entry in the Data Division:

02 FIELD OCCURS 10 TIMES.
03 SUB FIELD OCCURS 10 TIMES.

04 ITEM OCCURS 10 TIMES PICTURE-XX.

Literal Subscripts

When all the subscripts in a reference
are literals, the subscripted address can
be calculated at compile time (the
calculation is done by routine XSCOMP). If
a reference is made to ITEM (9, 8, 7), the
calculation is:

(9*200)+(8*20)+(7*2)-(200+20+2)

The value of the result is the displacement
in bytes of ITEM (9, 8, 7) from ~he
~eginning of the subscripted field.

When the SUBSCRIPT string was first
encountered, an entry was made for it in
the XSCRPT table (hoW and why this table is
built is described more fully later in this
section). One field of the entry, called
the idk field, contains a code, i, a
displacement, d, and a base locator (BL)
number, k. (For a de~cription of BLs, see
"Appendix B. Object Module") The value of
d is the displacement away from the BL of
the beginning of the subscripted field.
After the formula has been calculated, the
results are added to d. If this value is
less than 4096, it becomes the new value of
d. If it is 4096 or greater, it is
decremented by 4096; this decremented value
is then placed in the d field of the XSCRPT
table entry, and the BL number is
incremented by one. The table entry now
points to the desired occurrence at
execution time.

94 Section 2. Method of operation

Data-name Subscripts

When the subscripts are data-names,
their values vary at execution time.
Therefore, code must be generated to
perform the calculations in the object
program. This is done in routine XSCOMP,
using the A~text generator.

Suppose that reference is made to ITEM
(X, Y, Z). Routine XSCOMP must first
determine whether each subscript is binary.
If not, code must be generated to pick the
value of the subscript from the data area
of the object program, move it into a work
area, and convert the value in the work
area to binary. It is then handled as a
binary subscript, using the value in the
work area rather than the data- area.

The generated code performs the
following actions at execution time:

1. The value of d in the XSCRPT table
(the address of the subscripted field)
is loaded into a register.

2. The first subscript, in binary, (X in
the example) is loaded into another
register. This subscript denotes the
desired occurrence number for FIELD,
the highest level in the hierarchy.
If FIELD is of constant length (that
is, if it does not contain the
DEPENDING ON option) , the value of X
in the register is multiplied by a
literal representing the length of
FIELD (200 bytes). If FIELD does
contain the DEPENDING ON option, a
value, instead of the literal, is
picked up from a VLC (variable-length
cell) where it was placed by a
Q-routine. This value represents the
current length of FIELD.

3. The result of this multiplication is
added to the value of d in the first
register, and this process is repeated
for each subscript.

4. Phase 50 has generated a literal
(referred to in this discussion as
LITX) whose value is:

length of FIELD + lenqth of
SUBFIELD + length of ITEM

5. When the multiplications have been
finished and the final increment has
been added to the address in the
register, this literal is subtracted
from the register and the result is
the address of the desired occurrence.

This computation is an exact duplicate
at execution time of the formula applied to
literal subscripts at compile time.

Mixed Literal and Data-name Subscripts

When the subscripts are mixed literals
and data-names, for example, ITEM (X, 4,
Z), part of the calculation can be done in
phase 50 to save time in the object
program. XSCOMP multiplies the literal
subscrip.t by the length of the field it
refers to. In the example, this is 4*20
(SUBFIELD is 20 bytes long). This result
is subtracted from LITX before A-text for
LITX is generated. Then, at execution
time, the multiplications .and additions
will be performed for X and Z and this new
value of LITX will be subtracted.

Note that, in order to arrive at a
meaningful value, the entire formula must
be evaluated. The intermediate results are
meaningless in themselves.

using and Optimizing subscript References

Part of the use of the XSCRPT table is
to avoid duplicate calculations for a
subscripted reference. For example,
consider the source statements:

PARAGRAPH1. MOVE ITEM (X, Y, Z) TO D.
ADD ITEM (X, Y, Z) TO E.

It is unnecessary to calculate the address
of ITEM (X, Y, Z) twice. Later, when the
ADD statement is executed, the correct
address will already be in a register.

The P2-text for these statements would
be:

PH1. SUBSCRIPT (5) ITEM X Y Z SSID1
MOVE (2) SSID1 D
SUBSCRIPT (5) ITEM X I Z SSID2
ADD (2) SSID2 E

When the first SUBSCRIPT string is
encountered, the XSCRPT table is searched
for a matching entry. None is found, so an
entry is made after the instructions for
the subscript calculations have been
generated. This entry includes the idk
field described earlier and the dictionary
pointers for ITEM and all the subscripts.
(Note that the dictionary pointer is used
only because it provides a unique
identifier. The value of the pointer
itself is meaningless.) There is also a
field for the total length of the entry.

An entry is also made in the XSSNT
table. This entry includes the subscript
number (SSID1) and a pointer to the XSCRPT
entry.

Licensed Material - property of IBM

After the SUBSCRIPT string has been
processed, the MOVE string is encountered.
Routine XIS31 (also called XSUDB3) searches
the XSSNT table for SSID1. It uses the
pointer in the XSSNT table to pick up the
idk field in the XSCRPT table. This field
replaces SSID1 in the DOP, and when the
verb is processed, the operand is treated
as though it were a data-name.

The XSSNT entry for SSID1 is now
deleted, since it will never again be
referenced. This is because phase 40 gave
a unique number to each subscript
identifier.

When the second SUBSCRIPT string is
encountered, the XSCRPT table is searched
for a match. Th~ search is made on total
entry length (if this does not match, the
entries cannot be identical). When the
match is found, an XSSNT entry is made for
SSID2, with a pointer to the same XSCRPT
entry as for SSID1.

If there are not enough registers for
the subscripted address to remain in a
register for the second time it is
referenced, code is generated before the
register is used to store the address in a
subscript save cell. An indication of
this, along with cell number, is placed in
the XSCRPT entry, so that the second time
the address is needed, the contents of the
cell can be loaded into another register.
The section "Register and Storage
Allocation" later in this chapter describes
how values in registers are saved.

Every time a PN, GN, or VB definition is
encountered in the P2-text, the entire
XSCRPT table must be deleted. The reason
is shown by the following source program
statements:

ON 2 AND EVERY 2 GO TO
PARAGRAPH2.
MOVE ITEM (X, Y, Z) TO D.

PARAGRAPH2. ADD ITEM (X, I, Z) TO E.

In this example, if PARAGRAPH2 is
entered through the branch in the ON
statement, the subscript calculations
generated for the MOVE will not have been
executed, and the register will contain
whatever value was left from the last time
it was used. Therefore, the calculation
must be performed· in PARAGRAPH2. Deleting
all the entries ,in the XSCRPT table
whenever a paragraph-name is encountered
assures that the code will be generated.

The XSCRPT table must also be deleted
when any verb is encountered which can pass
control to any point other than the next
sequential instruction. An example of such
a verb is a SORT verb or a VSAM verb.

Phase 50 95

Licensed Material - property of IBM

INDEXED REFERENCES

Indexed references are resolved by the
same routines, applying the same logic, as
subscripted references. The difference in
their handling occurs because index-name
values are never known at compile time, and
because, at execution time, the index-name
cells (each index-name is a one-word cell
in the TGT) contain values expressing a
displacement in bytes from the beginning of
the indexed field. The value in the cell
corresponds to the following formula:

(occurrence number - 1) * length of
elementary item

It is the responsibility of the source
programmer to set the value in the
index-name via a SET statement before an
indexed reference is made.

Indexing may be direct or indirect.
Direct indexing uses only index-names.
Indirect indexing uses literals as
increments or decrements. Given the Data
Division statements:

02
03

04

FIELD OCCURS 10 TIMES INDEXED BY A.
SUBFIELD OCCURS 10 TIMES INDEXED BY B.

ITEM OCCURS 10 TIMES INDEXED BY C
PICTURE XX.

a reference to ITEM (A, B, C) would be
direct indexing, and a reference to ITEM
(A+4, B-5, C+6) would be indirect indexing.

Direct Indexing: The P2-text contains a
SUBSCRIPT verb string with a special code
in the operands to indicate that they are
index-names rather than subscripts.
Entries in the XSCRPT and XSSNT tables are
made and used in the same way as for
subscripted references. Object code is
generated to place the value of d from the
idk field into a register and add the
values of all the index-names to it.

Indirect Indexin~: Routine SSCRPT
determines that there are literals in the
SUBSCRIPT string. Thp.se literals are
placed in an information gathering work
area. When the XSCRPT entry is made for
the indexed reference, the dictionary
pointers are not entered, in order to
prevent a match from being found. This is
necessary for possibilities such as the
following:

MOVE ITEM (A+4, B-5, C+6) TO D.
MOVE ITEM (A, B, C) TO R.

If a normal XSCRPT entry was made for the
first statement, the dictionary pointers
would be identical and the second statement
would use the register set up by the first.
Since the indexing does not point to the

96 Section 2. Method of Operation

same place, the operation would be
incorrect.

After routine XSCOMP has generated the
code to add the index-names (as described
earlier under "Direct Indexing"), it tests
the information gathering work area. When
literals are present, it generates
additional instructions. These
instructions load the literal into a' free
register, multiply the register by the
length in the VLC for that level (in the
example, the literal 4 would be multiplied
by 200), and add this value to the register
pointing to the indexed field (this
register has already been incremented by
the index-name values). This process is
repeated for every literal. The
multiplication must be done because the
literals, unlike the index-names, represent
occurrence numbers, not displacements in
bytes.

ARITHMETIC VEFB STRINGS

The Arithmetic Translator is a group of
verb analyzers used to process arithmetic
verb strings. It is also used for all MOVE
statements and IF statements processed by
phase 50.

Given the source program statement:

COMPUTE X=A+(C~D/E)*F-G

the following P2-text would be generated by
phase 40:

EVAL DMAX DCURRENT X •••
DIV E D IR1 (-C)
SUB IR1 C IR2 (*F)
MULT F IR2 IR3 (+A)
ADD IR3 A IR4 (-G)
SUB G IR4 IRS (ST X)
STORE IRS X

For each verb string, the Arithmetic
Translator routines do the following:

1A Place information about each operand
in a work area.

2. Determine the sizes of intermediate
and temporary fields, and check for
possible overflow by performing
compile-time arithmetic.

3. Determine the mode for the operation.

4. Allocate registers and temporary
storage for the operation.

5. Call the A-text Generator (described
later in this chapter) to produce the
Procedure A-text.

Work Area

For each
area called
is set up.
operands:

operand in a string, a work
an operand information buffer
There are three types of

1. Data-name operands. In the example,
all the operands named in the source
program COMPUTE statement are
data-name operands.

2. Intermediate results. In the example,
these include all the operands named
with IR. Intermediate results are
required because arithmetic machine
instructions can handle only two
operands at a time. The result of one
arithmetic operation becomes an IR,
which is then used as an operand of
the next operation.

3. Temporary results. These are used by
series addition and subtraction with
multiple receiving fields. For the
source statement:

ADD M, N, 0 TO P ROUNDED, 0

a temporary result is required to hold
the sum of M, W, and o.

Each operand information buffer holds
information similar to an entry in the
table XINTR. This includes such attributes
as the mode of the operand, the number of
digits to the left and right of the decimal
point, and the largest possible value of
the operand. (The format of table XINTR is
given in "Section 5. Data Areas".) For a
data-name operand, these attributes are
found in the P2-text element. For
intermediate results or temporary results,
the information is found in table XINTR,
when the operand is used in the operation.
It was placed in the table after processing
of the string in which the intermediate or
temporary result was created. The
attributes for the intermediate result that
is the result of the operation are filled
in after the processing of the operands
which form it (how the attributes are found
is discussed in this section under
"Compile-Time Arithmetic"). When the MULT
string is processed, in the COMPUTE
statement example above, IR2 is found in
table XINTR.' The attributes of IR3 are
determined during processing of the MULT
string, and IR3 is then used as an operand
of the ADD string which follows.

If any of the operands are
floating-point, the floating-point verb
analyzer is called immediately to generate
the Procedure A-text. Otherwise,
compile-time arithmetic is performed.

Licensed Material - Property of IBM

!Q!g: The operand information buffers are
defined on the same storage as the data
area for the SUBSCRIPT analyzer.

Compile-Time Arithmetic

Compile-time arithmetic is performed
with the maximum possible values of the
operands (9 in every digit place) to find
out if overflow is possihle and to
determine how many places are required to
hold the intermediate or temporary result.

For example, assume that for the string
ADD IF3 A IRq (-G), the attributes of A
show that it has a PICTURE of 99V9 and the
attributes of IR3 (from table XINTR) show
that it has a PICTURE of 9(3}V9(2). The
compile-time arithmetic for the maximum
value of the scaled operands is:

9990+99999=109989

The result determines the attriDute~
(including the maximum po~sible value) of
IRq, which are placed in table XINTR at the
end of the ADD processing.

If the intermediate result (IRq in this
case) exceeds or is equal to 10**30,
overflow is possible. To avoid overflow,
instructions are generated to truncate the
intermediate result down to 30 digits.

That is, let DMAX be the maximum number
of decimal places in any operand in the
source statement, let DIR be the number of
decimal places in the intermediate result,
and let IIR be the number of integer places
in the intermediate result. Then the rules
for truncation are:

1. If DIB exceeds DKAX and IIR+DKAX is
less than or equal to 30, then
low-order decimal place~ are truncated
from DIR until IIR+DIR=30.

2. If DIR exceeds DKAX and IIR+DKAX is
greater than 30, then low-order
decimal places are truncated from DIR
until it equals DKAX, and high-order
integer places are truncated from IIR
unti~ DMAX+IIR=30.

Mode of Operation

The mode of the operands determines the
mode of operation. In general, the mode of
operation is predetermined (for example, if
one of the operands is floating-point, all
of the operands are converted to
floatinq-point and the operation is in

Phase 50 97

Licensed Material - Property of IBM

floating-point). However, for operations
involving binary and internal decimal
operands, routine XHSMD is used to perform
some tests to determine whether the
operation is to be in binary or in internal
decimal.

If any of the operands is external
decimal, it is converted to internal
decimal unless it is in a MOVE statement.
If an operand is sterling nonreport, it is
converted to internal decimal unless it is
the target field of a MOVE or STORE verb.

If any conversions are required, they
are handled by in-line conversion or calls
to COBOL library subroutines, depending on
the complexity of the conversion. See the
publication IBM DOS!VS COBOL Subroutine
I,ibrary, Program Logic, Order
No. LY28-6Q24.

Register and Storage Allocation

To assign registers for an instruction,
special register handling routines are
used. These are:

XRSASG to assign a single register
XRDBIR to assign a register pair
XRSASF to assign a floating-point

register

Phase 50 maintains an internal table for
registers 0 through 5, which are the
arithmetic work registers of the object
program. Each table entry contains a flag
indicating whether the register is being
used, how it is being used (for example, as
one of a pair), and what it contains (such
as a subscript or index calculation, or an
intermediate result) •

If a register must be freed, routine
XFREER' is called. The calling routine
passes the number of the register to be
freed to XFRFER in the XREGNO cell of the
phase 50 data area. (XFREER is also used
by phase 50 when it is analyzing Phase 51
verbs; see "Handling Phase 51 Verb
Strings.") If registers 0 through 5 must
be freed, routine DFREER is called.

XFREER checks the register table entry
for the specified register and, if it is in
use, generates instructions to store it.
It must then indicate that the value
formerly in the register is no longer
there. If the register was being used for
an arithmetic operation, it updates the
operand information buffer by filling in
the number of the TS (execution-time
arithmetic temporary storage) cell where
the register contents are stored, and the
displacement of the cell in bytes from the

98 Section 2. Method of Operation

beginning of the TS area. If the value in
the register was a subscript, XFREER
changes the code of the idk (addressing
parameter) field in the XSCRPT table entry
(see "using and optimizing Subscript
References" earlier in this chapter) to
indicate that the value is in a subscript
save cell, and provides the cell number.
subscript save cells are assigned in the
SUBADR field of the Task Global Table (TGT)
during program execution.

Operations in binary are performed in
registers, and the intermediate results are
left there whenever possible. Decimal
operations are pe~formed in storage, and
the intermediate results are placed in
cells of the TS area.

Space in the TS is always allotted in
cells of eight bytes, regardless of how
many bytes are actually required to hold
the operand. (If more than eight bytes are
needed, two cells are allotted.) To
minimize total temporary storage area used
by the program, each TS cell is made
available as soon as the value in it is no
longer, needed.

TS cells for arithmetic operations are
assigned by using the counter TSMAX in
COMMON (for the format of COMMON, see
"Section 5. Data Areas"). TSMAX contains
the number of the highest numbered cell
that has been assigned. When a new TS cell
is assigned, this counter is incremented by
one. As soon as the value in the TS cell
is no longer needed, the cell number is
placed in table XAVAL. The next time a TS
cell is required, XAVAL is searched first;
if it has any entries, the cell found there
is used, and the XAVAL entry is deleted.
Only if table XAVAL is empty is a new TS
cell assigned from TSMAX.

Intermediate results are handled in such
a way that, as soon as possible after an
intermediate result has been computed, it
is used in the next computation and then no
longer needed. In the COMPUTE statement
shown earlier, for example, IR3 is the
result of the MULT operation and then is
immediately used as an operand of the ADD.

Note that an intermediate result is also
required after the last arithmetic
operation (IRS in the example) and that the
value is moved into the data-name result
(X) via the STORE verb. This is necessary
because the value may have to be converted,
truncated, or aligned to conform to the
format for X.

A temporary result, on the other hand,
must be saved until all operations
requiring it are finished. In the
statement:

ADD M, N, 0 TO P ROUNDED, Q

the temporary result (the sum of M, N, and
0) is first added to P and then added to Q.
All steps involving P (rounding,
truncation, or conversion, if needed) are
completed before the temporary result is
added to Q. When the temporary result is
added to P, its value is moved into another
cell of the TS, and the operation is
performed from that cell.

Generating SRP Machine Instructions

If, at any time during processing for
arithmetic verbs, scaling becomes
necessary, the SRP machine instruction is
generated to do left scaling or right
scaling when the number of places to be
shifted is even. If rounding of a number
is requested, the SRP machine instruction
is generated.

GENERATING A-TEXT

A-text is generated from three sources:
constant A-text, Direct A-text, and the
A-text Generator. The nature of the text
required determines which source is used to
generate a particular block of text.

Constant A-text: This type of Procedure
A-text resides in the phase 50 data area.
It is stored in the form of DCS, ready to
be written out when needed. It is used for
standard. frequently occurring
execution-time operations. such as START.

Direct A-text: This is generally
written as a block of instructions at a
time. It is written out by routine GATXTV.
which is called by the verb analyzers using
two parameters:

• Displacement of the desired block of
text from the beginning of the text
area

• Length of text to be written

The verb analyzer fills in the variable
fields before calling GATXTV.

A-text Generator: The A-text Generator
is called by a verb analyzer to write one
instruction of Procedure A-text at a time.
It also generates optimization A-text for

Licensed Material - Pro~erty of IBM

virtual and literal definitions. It is
used frequently by the Arithmetic
Translator and by other analyzers requiring
the generation of A-text too variable to be
stored as Constant or Direct A-text.

To call the A-text Generator. the verb
analyzer fills in the appropriate cells in
the parameter area (Figure 45) and calls a
particular generating routine. The
generating routine usually has the same
name as the instruction it produces (for
example. MVC. LOAD). The A-text Generator
has no common entry point.

Before returning to the caller, the
~enerating routine sets the entire
parameter area to zeros.

From the parameter information. the
generating routine determines exactly what
type of instruction to write. For example,
if the LOAD routine finds that the only
operands specified are two registers, it
writes an LR instruction. If a nonregister
operand is two bytes long, the generating
routine generates an LH.

LITERALS AND VIRTUALS

The A-text Generator does not include
literals and virtuals in the Procedure
A-text. Rather, it writes the virtual with
an Optimization A-text prefix on SYS002 and
writes the literal as Optimization A-text
on SYS003. At execution time. virtuals and
literals are stored in the Program Global
Table. By processing Optimization A-text,
phase 60 or 62 can eliminate duplicate
storage if the same virtual or literal is
used more than once.

For virtuals, the A-text Generator
assigns an identifying number to the
virtual and writes the number as Procedure
A-text. The virtual itself is then written
with an Optimization A-text prefix on
SYS002, along with its identifying number.

Virtual identifying numbers are assigned
from the VIRCTR cell of COMMON. This
counter is initialized to 1 in phase 00 •
It is incremented by 1 at phase 50
initialization because virtual 1 (MNSO) is
reserved. The counter is also incremented
to indicate the number of virtuals required
by the options that are in effect. Each
virtual and the options for which it is
required are listed below. Although more
than one option may require the same
virtual. the virtual appears only once.

Phase 50 99

Licensed Material - Property of IBM

Virtual
DBGO
DBG5
FLWO
STNO
CT10
TCOO

Options that
require the virtual
COUNT, FLOW, STATE, SYMDMP
SYMDMP
FLOW
STATE
COUNT
COUNT

The total number of virtuals processed by
phase 50 is equal to the number of virtuals
r~quiied by the options in the above list
plus one for MNSO. At the end of phase 50
initialization. the value in VIRCTR is one
greater than the total number of virtuals
processed by the phase. Within phase 50,
whenever a new virtual is needed, the
current value of VIRCTR is used as the
virtual numbern and then the counter is
incremented. At the end of phase 51, the
counter is decremented by 1. (VIRCTR is

the only counter in COMMON handled in this
manner. For all other counters, the value
of the counter is incremented before being
used.)

When a literal reference is required,
the Procedure A-text element contains a
code and a counter. The literal itself is
put out as Optimization A-text, and the
LTLCTR counter of COMMON is incremented .•
An identifying number is assigned to the
literal, so that phase 60 or 64 can
determine which literal reference applies
to a given literal.

During phase 50 processing, the
Optimization A-text for a literal
definition is written on file SYS003; all
other output from phase 50 is written on
file SYS002.

r---,
I Parameter Cells for the A-text Generator I
~--------------------------------T-------T--------------T-------------------------------~
I Operand-1 Parameters ILength I I Operand-2 Parameters I
~------T-------------------------~ I ~------T------------------------~
I Name I Meaning I (Bytes) I Element I Name I Meaning I
~------+-------------------------+-------+--------------+------+------------------------~
IOP1 Pointer to the DOP 4 Address OP2 Same for second operand.
I (storage cell in the reference
I phase for a data-narr,e
I operand
I
XL1 Length of operand (used

for SS instructions such
as EX, MVC, AP). The
routine which generates
the text decrements this
value by 1 before using
it, as required by these
instructions.

2

I
I
I
I
I
I
I
I
J

I
XWCl For arithmetic operands, I 3

specifies the operand's I
position in the TEMPORARY I
STORAGE field of the TGT.I
TEMPORARY STORAGE is usedl

Ifor arithmetic operands I
only. I

I
Bytes 1 and 2: I
Displacement of the I
a-byte slot containing
this operand from the
beginning of the
TEMPORARY STORAGE field.

Byte 3: Number of bytes
actually required by the
operation. TEMPORARY
STORAGE is always
assigned in slots of 8
bytes, but frequently an
arithmetic operand is
shorter, using only a fewl

XL2

t

XWC2

I of the low-order bytes. I I I

Length of second
operand (for SS in­
structions with two
lengths, such as AP,
SP, ZAP). The
generating routine
decrements value by 1.

Same for second operand.

L ______ ~ _________________________ ~ _______ ~ ______________ L ______ L ________________________ J

Figure 45. Parameter Cells for the A-Text Generator (Part 1 of 4)

100 Section 2. Method of Operation

Licensed Material - Property of IBM

Parameter Cells for the A-text Generator

Operand-1 Parameters

IName Meaning
I I
ITALLY11First operand is TALLY.
I I
IBDISP11Base (specifies a
I Iregister number) and
I Idisplacement of operand.
RELAD110perand is referenced by

lits relative location
Iwithin a field.
I
IByte 1: Code indicating
Ithe type of cell being
Ireferenced (the codes are
Ilisted under "Relative
IAddress Element" in the
IProcedure A-text formats,
,given in "Section 5.
IData Areas"). ,
,Byte 2: Number of bytes
Ineeded to express the
,address constant.
I
IBytes 3 and 4:
,Identifying number which
Ipinpoints this cell
Iwithin its field.
I

VIRTC11Identifying number
lassigned from VIRCTR when
Ithe operand is a virtual.
IThe number begins in byte
13.
1

GVIRTllName of virtual (used
Iwith VIRTCR) •
1

ICON1 IUsed for two distinct
Itypes of information:
I
IA) Operand is a literal
I
1 Bytes 1-16: value of
I literal, right adjusted
I
I Byte 17: length of
I literal
I
IB) Operand is a DC-type
Iconstant other than an
laddress constant
I
I Byte 1: length of
I constant
I
I Bytes 2-17: value of
I constant, left adjusted ,

I
ILength

I
(Bytes) I Element

1

2

4

8

17

I
I
I
IBase and
I displacement
I
IRelative
address

Ivirtual
Jreference
I
I
I
J
I
I
I
I Literal
re:ference

I
I Operand-2 Parameters
1 I

I Name,
I I

Meaning

ITALLY21Second operand is
I I

TALLY.

,BDISP2ISame for second operand.
I I
1 I
JRELAD2 Unused. ,
J
I
J ,
J
J ,
J ,
1
J , , ,
I ,
I
I
I
I
IVIRTC2 Unused.
I
I
I
I
I
IGVIRT2 Unused.
I
I
ICON2 Same for second operand.

Figure 45. Parameter Cells for the A-Text Generator (Part 2 of 4)

Phase 50 101

Licensed Material - Property of IBK

I ,

I Parameter Cells for the A-text Generator I
I I I
I Operand-1 Parameters ILength Operand-2 Parameters I
I I I r-~~I------------------~I
IName Meaning I (Bytes) I Element Name I Meaning I
I I I I I
IXGN1 IGN number when operand is 2 IGenerated pro-IXGN2 ISame for second operand.
I la GN reference. Icedure-name ,
, I I reference I I
IXPN1 IOperand is a PN reference 4 IProcedure-namelXPN2 ISame for second operand.
I I I I I
I IByte 1: code 00 I I I

I I " I , ,Byte 2: priority number, 'I
I lof PN I I I
I I I I I
I IBytes 3 and 4: PN number I I I
I I I I I
IXCNTR110perand is an item in one 3 IGlobal table XCNTR21Same for second operand
I lof the variably located ,variably I
I ,fields of a global table. Ilocated area I
, ,Byte 1: type code (the reference I
I Icodes are listed under I
I I"Global Table Other Area I
I I Reference" in the r I
, IProcedure A-text formats, ,
I Igiven in "Section 5. I
I IData Areas") • I
I I I
PLUS1 IDisplacement from 3 PLUS2 Same for second operand

Ibeginning of allocated
Istorage of a
Iright-adjusted operand.
I

XVN1 IOperand is a VB reference
I
IByte 1: code 00
I
IByte 2: priority number
I
IBytes 3 and 4: VN number
I

BDEBG110perand is an item in a
Ifixed-Iocation field of
la global table.
I
IByte 1: type code (the
Icodes are listed under
I"Global Table Standard
IArea Reference" in the
IProcedure A-text formats,
Igiven in "Section 5.
IData Areas").
I

IBLREF110perand is a base locator
I I
I IByte 1: type of base
I Ilocator; BL, BLL, SBL
I I ('i' field of idk)
I I
I IByte 2: BL number , ,

4

2

2

I variable
,procedure-name
I reference
I
I
I
I
I
IGlobal table
Istandard area
I reference
I
I
I
I
I
I
I
I
I
IBase locator
I
I
I
I
I
I ,

GDEBG2 Same for second operand.

IBLREF2IUnused.

Figure 45. Parameter Cells for the A-Text Generator (Part 3 of 4)

102 Section 2. Method of Operation

Licensed Material - Property of IBM

I

r Parameter Cells for the A-text Generator
I I
r Operand-1 Parameters ILength
I~--~I~------------------~' I
IName I Meaning r (Bytes) I
• I I I
XREG1 JRegister number if first 1

IMM

rXXREG
I
J
I

loperand is a register.
INote: When this is used,
Ithe second operand
I (unless it is a register
I also) is still considered
Jthe first non register
loperand and is placed in
Ithe operand-1 cell.
I
JImmediate field value for
Ian SI instruction.
I
IRegister number for index
Iregister in an RX
linstruction. ,

1

1

Element

I
I Operand-2 Parameters
I
I Name
I
XREG2

Meaning

Register number for
second register. in an
RR instruction.

Figure 45. Parameter Cells for the A-Text Generator (Part 4 of 4)

HANDLING PHASE 51 VERB STRINGS

Once the PH5CTL routine has determined
that a verb string is not one of those
processed by phase 50, it calls routine
PH5BVB to handle the verb string.

The PH5BVB routine first checks to see
if the verb is one that will use registers
o through 5 at execution time. If it is,
routine DFREER is called to free registers.
(DFREER is described in "Register and
Storage Allocation" earlier in this
chapter.)

Routine PH5BVB then writes the header
and operands of the verb string in file
SYS002 as P2-text. Then it determines
whether the verb is MOVE, EXAMINE, or
TRANSFER. If it is one of these, routine
XSPRO is called. This routine checks to
see whether there is an object of an OCCURS
clause with the DEPENDING ON option in the
data-name being moved into, examined,
transferred, or read into, in Which case it
generates calls to Q-routines.

Finally, routine PH5BVB determines
whether the verb is one that requires
deletion of all the entries in the XSCRPT
table. These verbs include:

CALL
LINK
ENTRY
SORT
OPEN
CLOSE
ACCEPT
RETURN

READ
WRITE
REWRITE
RPTCAL
RELEASE
ON
STOP

If the verb is one of the above, routine
KILSUB is called to delete the XSCRPT table
entries.

ADDITIONAL PROCESSING FOR THE OPTIMIZER
OPTION (OPT)

If OPT is specified on the CBL card,
phase 50 performs the following additional
functions:

• Converts phase 40 Optimization
Information elements (43XX) to phase 50
Optimization Information elements
(COXX) •

• Primes and zeros out the BLUSTBL table
for the number of BLs and BLLs present
in the program. For each reference to
a data-name, it adds 1 to the entry for
that BL or BLL. This usage table is
used by phase 62 to assign permanent
base registers to the BLs and BLLs.
Phase 51 also updates the BLUSTBL
table.

• Writes GNUREF elements for Q-Routine
calls.

Phase 50 103

Licensed Material - Property of IBM

PHASE 51

Phase 51 (ILACBL51) functions in a
manner similar to phase 50. Elements of
text written by phase 50 are read from file
SYS002. Phase 51 checks each element and
performs whatever processing is required,
based on the type of element read. After
processing, it writes the element as
Procedure A-text on file SYS001, as
Optimization A-text on file SYS003, or as
E-text on file SYS004. (Optimization
A-text is written immediately after any
Optimization A-text that was written on
file SYS003 by phase 50.)

Input to Phase 51 can be any of the
following:

Intermediate Procedure A-text
Intermediate Optimization A-text
Verb strings
Intermediate E-text

An element of Intermediate Procedure
A-text may be a Q-routine control break, or
it may be text generated by phase 50 and
requiring no further processing. If it is
a Q-routine control break, routine GETNXT
generates the text element of 4440.
Otherwise, the element is merely copied as
Procedure A-text output without the
identifying prefix of 28 and its count
field.

An element of Intermediate Optimization
A-text, identified by a prefix of 27, can
be a segmentation control break or a PN,
GN, or VN definition.

Verb strings written in P2-text require
processing by one of the phase 51 verb
analyzer routines.

E-TEXT

Whenever it encounters E-text in its
input or generates an E-text element
itself, phase 50 writes it on SYS002 with
an identifying prefix. This text is
referred to as Intermediate E-text. Phase
51 recognizes it, discards the prefix, and
writes the E-text on SYS004.

Phase 51 must determine the highest
severity level encountered in the program.
When routine GETNXT encounters an element
of E-text or when the phase 51 processing
routines find an error situation requiring
that E-text be written, routine ERRPRO is
called. This routine uses a cell in COMMON

104 Section 2. Method of Operation

called ERRSEV. If any E-text was generated
by Phases 10, 20, 22, or 21, ERRSEV was set
by Phase 21. Otherwise, it contains a
value of zero at the beginning of phase 51.

Routine ERRPRO adds one to the severity
code of the current E-text element and
multiplies this value by four (the code
must be incremented by one because certain
errors produce a severity code of 0; adding
one to the severity code distinguishes such
an error from no errors at all) •

ERRPRO then compares this value to the
current value of ERRSEV and enters the code
of the E-text into ERRSEV if it is higher.
The E-text is then written on SYS004. Note
that this is the first time that E-text is
separated from the other output of a phase,
rather than embedded in it.

SEGMENTATION CONTROL BREAKS

Phase 51 writes Procedure A-text on the
direct access device SYS001. When phase 60
or phases 62 and 63 read this text,
segments must be read and processed in
order of priority, rather than in the order
in which the source program wrote them. To
facilitate this, routine SEGENTR builds a
table (called SEGTBL) containing the
relative disk address of the beginning of
each segment.

The relative disk addresses are obtained
through phase 00 (note that phase 00
handles all input/output requests for the
other phases). When phase 00 writes
Procedure A-text for the first physical
record of a segment, after the CHECK has
been issued for that WRITE, it issues a
NOTE macro, instruction. The NOTE macro
instruction returns the relative disk
address of the record just written, which
is saved in SEGSAVE, 'a cell internal to
phase 00.

The segmentation control break
encountered by phase 51 signals the end of
one segment and the beginning of a segment
with a different priority. Routine GETNXT
calls phase 00 with a', request for the
SEGNOTE function (for; a description of the
calling sequence and parameters, see "Phase
Input/Output Requests" in the chapter on
phase 00). To complete the output for the
previous segment, Phase 00 writes whatever
is left in the buffer, and passes back to
phase 51 the value in SEGSAVE. Phase 51

stores this as an entry in SEGTBL, along
with the priority number of the previous
segment. (For the SEGTBL table format, see
"Section 5. Data Areas".

The call to SEGNOTE also indicates to
Phase 00 that the next time it writes on
SYS001, it will be the beginning of a new
segment and that another NOTE must be
issued.

PN, GN, AND VN DEFINITIONS

When a PN, GN, or VN definition is
encountered, routine PUTDEF is called.
This routine changes the definition to
Procedure A-text and writes it out.

For PN definitions, the PN number and
the priority number are saved before PUTDEF
is called. For VN definitions, the SEGLMT
cell in C0MMON is tested to see if the
program is segmented (a value other than
hexadecimal FF in SEGLMT means the program
is segmented). If it is segmented, the VN
definition is written as both Procedure
A-text and Optimization A-text.

Building PN and GN EQUATE Strings

It is possible that earlier phases have
generated more than one GN to define a
single verb within a procedure statement.
When this occurs, several GN definition
elements are encountered in a row without
any intervening text. If the source
program included a procedure-name at this
point, a PN definition also occurs,
preceded by one or more GN definitions.
Since only one procedure-name is required
to provide a branch-in point in the object
program, the rest can be eliminated. All
the GNs (and the PNs, if any) are collected
in a Phase 51 work area called GNLIST, from
which they are written in Optimization
A-text as an EQUATE string. In Procedure
A-text6 only the PN definition is written,
or if there was none, the first GN
definition (the one with the lowest number)
is written. Phase 60 uses the EQUATE
string to change all references throughout
the program from the equated GNs to the one
for which Procedure A-text was issued.

If OPT has been specified on the CBL
card, these PN and GN EQUATE strings are
not written. All PNs and GNs are written
in Procedure A-text regardless of their
position. Since no cells in the PGT are
allocated for their addresses, it is not
necessary to equate their addresses. They
are addressed instead by using a
displacement from a base register.

Licensed Material - Property of IBM

Buildinq the PNUTBL Table

The source programmer may have coded
some procedure-name definitions to which
reference is never made. The address cells
for such procedure-names can be eliminated.
To do this, routine PNUSED in phase 51
builds the PNUTBL table for phase 60 or
phase 62.

This table contains one bit for every PN
definition in the program. The size of the
table is determined from the cell PNCTR in
COMMON, which was incremented by phase 11
every time a PN definition was created.
All bits in the table are initialized to
zero, and every time a PN is referenced
throughout phase 51 processing, the bit in
the table corresponding to the PN number is
set to one. Phase 60 can thus eliminate
any PN definitions whose bits are still
zero.

In phase 62, the PNUTBL table is used to
determine if a PN has been referenced. If
it has not been referenced, no special
entry point processing is done at the point
of definition.

VERB STRINGS

Phase 51 processes input/output verbs,
other nonarithmetic verb strings (including
some requiring calls to object-time
subroutines), and DISPLAY literals. As
examples, the ON string is discussed below
under "Other Nonarithmetic Verb Strings"
and the DISPLAY verb under "Verbs Requiring
Calls to Object-Time Subroutines." Samples
of coding are included in those
discussions.

If the SYMDMP or the STATE option is in
effect, a call to the COBOL library Save
Register 14 routine <ILBDDBG4)" is
generated for all verb analyzers (except
FLOW and COUNT) which produce code
branching outside the main line of the
program. When routine PH5CTL encounters
the READ, WRITE/REWRITE, OPEN/CLOSE,
RETURN, RELEASE" and START verbs, it calls
routine DBGTEST to generate the call. The
call is also generated before the code
generated to call any COBOL object-time
subroutine or any program which is the
operand of a CALL statement, and before any
branch to a Q-Routine. In addition, if the
verb is a CALL, code is generated, after
the BALR to the called program, to call the
COBOL library debugging subroutine entry
point ILBDDBG3. This is done so that the
subroutine can update TGT pointers. The
verb analyzers for GOBACK and STOP RUN
generate a call to the COBOL library

Phase 51 105

Licensed Material - Property of IBM

debugging subroutine entry point TC20. For
a description of the COBOL library
subroutines see IBM DOS/VS COBOL Subroutine
Library, Program Logic, Order
No. LY28-6424.

Input/Output Verbs

Phase 51 generates the object code
required for the nine input/output verbs
discussed in this section. There is a \
separate verb analyzer routine for each
verb. Each routine may share several
subroutines with other analyzers.

The coding generated is basically the
required linkage to a LIOCS module, and
therefore depends on the access method.
Additionally, the following factors
influence the coding: the organization of
the data records, the blocking factor, the
recording mode, double buffering, use of a
SAME RECORD AREA clause, inclusion of a
RERUN clause, use of label records and
declaratives, and the type of device. For
examples of the generated coding for the
nine verbs discussed below, refer to
Appendix D.

By convention, the following register
assignments are used at execution time: Rl
contains a pointer to the DTF; R2 contains
IOCS's pointer to the record; R3 contains
the record size; R15 contains the address
of the LIOCS module or of the COBOL library
subroutine called. The nine verbs and
their descriptions follow.

OPEN: The general form of the c6de is the
expansion of the OPEN macro. Several
additions may be made depending on the
device and access method used. The input
is two strings, the first of which is used
to generate device-type code and the OPEN
macro expansion. The second is used to
generate the device-dependent code needed
after the file is open.

If the user has specified the STXIT
option on the CBL card and has provided an
error procedure for the unit record file,
phase 51 includes linkage to COBOL library
subroutine ILBDABXO in the object module.
The user routine will then gain control in
the event of an error on the unit-record
file being opened, but only if the operator
replies "cancel" to a system error message
such as a data check. Phase 51 tests the
PHZSW2 switch in COMMON to determine
whether STXIT is in effect.

CLOSE: The code generated is the expansion
of the CLOSE macro. CLOSE REEL or CLOSE
UNIT, for DTFSD files, causes an expansion

106 section 2. Method of Operation

of the FEOV macro instruction. For DTFDA
sequential input files, subroutine ILBDCRDO
is called to implement volume switching.
If relative track addressing is used for
DTFDA sequential input files, subroutine
ILBDRCRO switches volumes. Additions may
be made depending on the device and access
method used. If RERUN is specifi'ed, a call
to ILBDCKPO subroutine is generated.

READ: This verb may cause either of two
distinct sets of code: a GET macro
expansion is generated for sequential
files; a COBOL library subroutine linkage
is generated for nonsequential files and in
special cases.

WRITE: This verb may cause either of two
distinct sets of code: a PUT macro
instruction expansion is generated for
sequential files; a COBOL library
subroutine linkage is generated for
nonsequential files and in special cases.

Note: For the READ, WRITE, OPEN and CLOSE
verbs, Procedure A-text BLCHNG elements are
written. This indicates to phase 60 or to
phase 62, 63, and 64 that if they have
permanently or tem~orarily loaded that BL
or BLL into a register, they must reload
the register or flag the register as no
longer containing that BL or BLL.

SEEK: For direct-access files, the SEEK
statement results in a CNTRL macro
expansion.

START: The START statement for ISAM files
results in the macro expansion of a SETL
macro instruction with the KEY parameter or
GKEY parameter.

DISPLAY: The DISPLAY statement results in
the generated code for a call to the
DISPLAY subroutine. The calling sequence
generated is shown in IBM DOS/VS COBOL
Subroutine Library, Program Logic, Order
No. LY28-6424.

ACCEPT: The ACCEPT statement results in
the generated code for a call to the ACCEPT
subroutine. The calling sequence generated
is shown in IBM DOS/VS COBOL Subroutine
Library, Program Logic, Order
No. LY28-6424.

USE: The USE verb" on entry to the
Declaratives Section, generates code which
sets up fields (pointers) for the
information requested, such as the address
of a label or an error block. At the end
of the section, the code needed to return
to the object-time subroutine is generated.

other Nonarithmetic Verb Strinqs

This section discusses the ON strinq as
an example of a nonarithmetic verb string.

When routine PH5CTL encounters an ON
string, it moves the operands into a work
area and calls routine ON to process the
string.

The processing depends on the options
given in the ON statement. In the simplest
case (ON 1), instructions are generated to
test a switch to see if the statement
completing the ON has been executed and, if
it has, to branch around this statement.

Figure 46 shows the Procedure A-text
produced for an ON statement with an
initial value, increment, and maximum
value. The numbers of the following
explanations refer to the. circled numbers
in the figure.

1. GN1 is the generated procedure-name
assigned to the next sequential source
program statement. A branch must be
made to this statement when the ON
condition is false, that is, in this
example, when the ON instructions to
test and increment the counter have
been executed an odd number of times,
or more than 16 times.

2. This instruction loads the contents of
ONCTR1 into register 3. ONCTR1 is the
identifying number of an ON control
cell. At execution time, this cell
will be incremented by one each time
the ON statement is executed and
compared with the maximum value, as
specified in the UNTIL option.

Phase 51 assigns identifying numbers
to ON control cells using the ONCTR
cell in COMMON. At execution time,
each ON control cell will occupy four
bytes in the ONCTL field of the Task
Global Table.

Registers 1 and 2 are generally used
in the object program for
nonarithmetic operatiohs. When a
nonarithmetic register is needed by a
phase 51 verb, one will have been
freed by phase 50's issuing of an
instruction to store its contents in a

,subscript save cell, if necessary.
(See "Register and Storage Allocation"
in the Phase 50 chapter for a fuller
description of register saving.)
subscript save cell numbers are
obtained from the SUBCTR cell in
COMMON. They correspond to SUBADR
cells in the Task Global Table of the
object program. The instructions to

Licensed Material - Property of IBM

save the registers would precede the
code generated for the statement.

3. The literal 16 is not actually issued
in the Procedure A-text. Rather, a
literal definition element is issued
and the literal itself is written as
Optimization A-text. See "Literals
and Virtuals" in the phase 50 chapter.

4. This branch statement transfers
control to GN1 (the next source
program statement) when ONCTR1
contains a value greater than 16.

5. This statement causes a branch to GN1
when ONCTR1 contains a value which is
less than 2.

6. XSASW1 identifies a cell that will
control the increment (EVERY option)
of the ON statement at execution time.
The switch will be flipped each time
the statement is executed and tested
to determine whether the imperative
statement should be branched around.
It is used only if the increment is 2
or in the ON 1 case.

The identifying numbers are assigned
from cell, XSWCTR in COKMON. They
correspond to cells in the XSASW field of
the Task Global Table in the object
program.

If the increment is not 2, an ON control
cell is used to control the increment.
Like the cell described in item 2, it is
assigned an identifying number from ONCTR
in COMMON, and it is used in a similar
manner.

I
,Source Statements
, ON 2 AND EVERY 2 UNTIL 16 MOVE
, A TO B. ADD C TO D. ,
IP2~text Strings ~1
I ON 2 2 16 GN1. ~
, MOVE (2) A B.
GN1. ADD (2) C D.

Procedure A-text '-'2
L 3,ONCTR1 \V
LA 3,1 (3)
ST 3,ONCTR1
C 3,= (16) 0
L 2,A(GN1) Q
BCRNOTLO,2 ..
C 3, = (2) 1'"::\
BCRLO,2 \V
X1 XSASW1,X'01' CY
CL1XSASW1,X'01'
BCRNOTEQ,2
instructions for MOVE

GN1. instructions for ADD

Figure 46. Analysis of an ON Statement

Phase 51 107

Licensed Material - Property of IBM

special considerations for Nonarithmetic
Verbs

Honarithmetic Conversions: In a few
instances, non arithmetic data items must be
expressed in binary form during execution
of the object program. These instances are
illustrated by the following source program
statements:

GO TO ABC DEPENDING ON X.
PERFORM RTNA X TIMES.

In both these cases, the value of X must
be in binary when the statement is
executed; however, the source programmer is
not required to create X as a binary data
item. This situation also arises in some
O-routines.

To handle this, the verb analyzer calls
routine DNTOR1. This routine determines
whether the value is already in binary or
must be converted. If conversion is
needed, DNTOR1;generates code which
converts the value at execution time, and
p1aces the binary value in a work area
(leaving the value in the data area
unchanged). The work area, rather than the
data area, is then used when the value is
referenced.

Procedure Branching in a Segmented Program:
If a GO statement transfers control out of
the current segment and the current segment
is not the root segment, phase qO passes a
special verb code (see "Checking for
Segmentation in Procedure Branching" in the
phase qO chapter). When phase 51
encounters this verb code, it generates a
ca11 to the COBOL library subroutine,
ILBDSEMO or ILBDSEM1 if OPT is requested.
The calling sequence is given in IBM DOS/yS
COBOL Subroutine Library, Program Logic,
Order No. LY28-6q24. This subroutine
checks to see whether the necessary segment
(the one containing the object of the GO

TO) is in, storage already, brings it into
storage if it is not already there,
initia1izes the segment, and transfers
contr01 to the named procedure.

If the operand is a PN or GN in a GO
statement with the regular GO verb code, a
normal branch is made whether or not the
program is segmented. No test is made
because phase 40 issues a regular verb code
if the branch did not require segment
initialization. If the operand is a VN,
the SEGLMT cell in COMMON is tested. If
the test indicates that the program is

108 Section 2. Method of Operation

segmented (a value other than hexadecimal
PP), a call to ILBDSEMO is generated. If,
at execution time, the VB is within the
same segment, the subroutine will execute a
normal branch.

If the GO TO statement contains a
DEPENDING ON option, SEGLMT is tested to
see whether the program is segmented. If
it is, a call to the COBOL library
subroutine, ILBDSEMO, is generated. If OPT
is specified, a call to the COBOL library
subroutine, ILBDGDOO, is generated. This
subroutine passes control to the
appropriate PH. If the program is
segmented, the address of entry point
ILBDSEM1 is passed in register 2 to
subroutine ILBDGDOO. This subroutine then
determines which PN to branch to and passes
control to entry point ILBDSEM1 to do
standard processing for segmentation.

Verbs Reguiring Calls to,Object-Time
Subroutines

In this section, the DISPLAY verb is
discussed as an example of a verb which is
executed by a COBOL library subroutine.
The discussion is based on the DISPLAY
statement shown in Figure q7. In this
example, A, B, C, D, and E are data-names
whose usage is DISPLAY and whose picture is
XX. The numbers of the following
explanations refer to the circled numbers
in the figure.

1. Phase qO puts a maximum of five
operands in a string. Since the
number of operands in this DISPLAY
statement requires a continuation
string, the first operand generated by
phase qO is the COBOL word PIRST, and
the last operand is the COBOL word
LAST. This is the form of all
continued strings. The second operand
identifies the device and the third
throughnex~-to-last operands are the
data items named in the source
statement. (Note that the P2-text
contains the attributes, not the
names, of the data items.)

2. ILBDDSPO is the name of the DISPLAY
COBOL library subroutine. Since it is
a virtual, it is not written as part
of the Procedure A-text. Rather, its
virtual number is written as Procedure
A-text; the name of the virtual itself
is put out as Optimization A-text.
See "DISPLAY Literals" below and
"Literals and Virtuals" in the phase

50 chapter for a discussion of how
this text is produced.

3. This parameter gives the device code,
which is 02 for CONSOLE. The section
on ILBDDSPO in the publication ~
DOS/VS COBOL Subroutine Library,
Program Logic, Order No. LY28-6424,
contains a complete list of device
codes.

4. This parameter and the three which
follow it qive onerand information for
data-name A. Each. operand is
specified in a 10-byte field. The
description of ILBDDSPO in the
publication IBM DOS/yS COBOL
Subroutine Library, Program Logic,
Order No. LY28-6424, describes all the
codes; the meanings of the codes used
in this example are as follows:

Code Meaning
00-- Specifies the type of

the item. In this case,
data-name A is
nonnumeric, ready to
display.

000002 Specifies the length of
the item. Since the
PICTURE for A is XX, the
length is two bytes.

AL4(BC-DISP) Specifies a displacement
of an item from the
beginning of the table
identified by a base
code.

1F Specifies the
displacement of A from
the' beginning of the
area controlled by its
base locator.

5. Following the description of A are
similar 10-byte fields describing each
of the other operands. The code FFFF
follows the last description.

Licensed Material - Property of IBM

ISource Statement
I DISPLAY ABC D F UPON CONSOLE.
I
IP2-text
I DISPLAY (5) FIRST CONSOLE ABC CV
I DISPLAY (3) D E LAST
I
Procedure A-text

L 15,=V(ILBDDSPO) ~
BALR 1,15
DC XL2'02' ~~
DC XL1'OO' ~
DC XL3'000002'
DC AL4(BC-DISP)
DC XL2'1F'

DC XL2'FFFF' CV
Figure 47. Analysis of a DISPLAY Verb

DISPLAY Literals

Generation of A-text, including literals
and virtuals, is almost identical to that
performed in phase 50. There is one
exception, however. If a literal is in a
DISPLAY statement that requires a call to a
COBOL library subroutine, a separate
DISPLAY literal Optimization A-text element
is written. This element is of a different
type than an internal literal. It is
generated differently so that phase 60 or
phase 62 can build separate tables for
internal and DISPLAY literals and search
these tables using different techniques.

GENERATING SYSTEM/370 INSTRUCTIONS

If a variable-length move or compare is
required, the MVCL (for a move) or the CLCL
(for a compare) machine instruction is
generated. If a compare involves a field
greater t~an 256 bytes long or if the
receiving field for a move is greater than
512 bytes long, the CLCL or MVCL machine
instruction, respectively, is generated.
If the receiving field for a move is right
justified and the receiving field for the
move is either greater than 512 bytes long
or variable in length, a call is generated
to the ILBDSMVO COBOL library subroutine.

Phase 51 109

Licensed Material - Property of IBM

GENERATING OBJECT CODE TO PROCESS VSAM
FILES

Phase 51 contains a verb analyzer
routine for each of the VSAM input/output
verbs: OPEW, CLOSE, RRAD, WRITE, REWRITE,
START, and DELETE.

The routine:

• Analyzes the operands in the verb
string.

• Creates the parameter list to be passed
to the object-time subroutine that
performs input/output operations for
VSAM files.

• Generates the calling sequence for
object-time subroutine.

The calling sequences to the COBOL
object-time subroutine (ILBDACLO) are

110 Section 2. Method Qf Operation

"

described in IBM DOS/yS COBOL Subroutine
Library Program Logic, Order No. LY28-6424.

Generating Calls to the ILBDVOCO and
ILBDVIOO COBOL Library Subroutines

The ILBDVOCO and ILBDVIOO COBOL
object-time subroutines act as interfaces
between the CO~OL ,object program and VSAM.
They use the File Information Block (FIB)
(built by phase 21), the File Control Block
(FCB) (created at object-time), and the
parameter list and options list (created in
the calling sequence for the sUbroutine by
phase 51). Phase 51 determines the
parameters and the list of options by
examining the verb string following each
VSAM verb.

Phase 60 (ILACBL60) prepares a machine
language program suitable for input to the
linkage editor. The phase is divided into
several sequential parts, each of which
performs specific functions. These are, in
order:

• Determines object program storage
allocation for the Task Global Table
(TGT) by processing counters in COMMON
and calculating the displacements of
items which reside in the TGT at
execution time.

• Optimizes literals, virtuals, source
procedure-names. and compiler-generated
procedure-names by processing
Optimization A-text and the PNUTBL
table. Determines storage allocation
in the Program Global ~able (PGT) for
these items and calculates their
displacements by using counters in
COMMON.

• With Procedure A-text as input.
generates and writes machine language
instructions. If the program is
segmented. groups the sections of
instructions into segments and provides
the appropriate linkage editor
statements.. If the SXREF. XREF.
VERBREF, or VERBSUM option was
specified, passes procedure-name and
data-name definition elements. written
in DEF-text. to phase 61 on SYS003 and
passes procedure-name and data-name
references, in REF-text, to phase 61 on
SYSOOl.

• With Data A-text as input, writes
object text for the data area of the
object program.

• Writes object text for the TGT and PG~
from the RLDTBL table and Data A-text.

• Writes object text for the INIT2,
INIT3, and INIT1 routines of the object
program, in that order.

• Writes INCLUDE statements for COBOL
library subroutines to be entered at
secondary entry points.

• Writes ESD, RLD. and TXT statements for
all virtuals.

• Prints out compile-time statistics.

Licensed Material - Property of IBM

PHASE 60

OUTPUT OF PHASE 60

The output of the phase depends on the
compiler options specified by the user.
The SXREF and XREF options have already
been mentioned. Following are the other
options which determine the output produced
by phase 60:

LISTX:

CLIST:

SYM:

LINK or
CATJ>L:

DECK:

Causes the ~GT. Literal pool.
PGT, register assigments and a
listing of the object text to be
written on SYSLST (or SYS006 for
LVL option).

Causes the TGT, Literal Pool,
PGT. register assignments and a
condensed object program listing
to be written on SYSLST (or
SYS006 for LVL option). The
object program listing is limited
to the card number. verb name,
and address of the first
instruction for each verb.

Causes the TGT. Literal Pool.
PGT n and registe,;r:: assignments to
be written on SYSLS~ (or SYS006
for LVL option).

Causes the object program
to be written on SYSLNK.

Causes the object program to be
written (punched) on SYSPCH.

The user may specify both the LINK and
DECK options, in which case the object
program is written on both SYSLNK and
SYSPCH. He may also specify NOLINK and
NODECK; in this case, he receives no
executable copy of his object program.

Note that unless at least one of these
eight options is in effect, phase 60
produces no output. In this event. Phase
60 returns control to phase 00 without
doing any text processing unless XREF,
SXREF, VERBREF, or VERB SUM has been
specified. If one of these options has
been specified. phase 60 processes the text
to provide phase 61 with the DEF-text and
REF-text elements for the cross-reference
listing.

The omission of any phase 60 text
processing also occurs if the SUPlf~P
(suppress output) option is in effect and
at least one E-level or D-level error
message was generated by any phase. This
is determined by testing the ERRSEV cell in

Pnase 60 111

Licensed ~aterial - Property of IBM

COMMON. A value of 12 or greater means
that at least one such error occurred. The
EHRSEV cell is discussed further under
HE-text" in the phase 51 chapter.

Phase 60 does not write object text in
execution-time sequence. Rather, it
instructs the linkage editor to reorder the
text by assigning relative addresses in
execution-time order. To do this, it
allocates space for areas that will be
written later, incrementing the LOCCTR
(location counter) cell of COMMON to
reflect the relative location at execution
time of the area currently being processed.

TASK GLOBAL TABLE STORAGE ALLOCATION

When phase 60 receives control, the
LOCCTk contains the relative address of the
Task Global Table (TGT) in the load mo~ule.
It was incremented by phases 22 and 21,
which added the length of the data area to
that of the INIT1 routine (these areas
precede the TGT in the load module).

Routine TGTINT first does preliminary
computations to determine the length of the
entire TGT. If this length exceeds 4096
bytes" one 4-byte OVERFLOW cell is
allocated for each 4096-byte area after the
first. Then this routine computes the
locations of TGT fields after the OVERFLOW
cells.

Some fields of the TGT are constant in
length; others are variable -- their
lengths depend on the requirements of the
program being compiled. For most of the
variable fields, there is a counter in
C~~ON used to compute its length. When
the value has been used, the counter is set
to the displacement of the corresponding
field in the TGT. Figure 48 lists these
counters and the TGT fields to which they
correspond. As the TGT is processed, a
count of the displacement of the current
field from the start of the TGT is kept in
a register called RW1.

Some of the counters in COP.MON specify a
number of bytes. Others specify a number
of entries, where each entry requires two
or four bytes. In the latter case, the
value of the counter is multiplied by two
or four before it is used to compute
displacements.

This is done in routine DSPLAC, which is
called for each variable-length field. Two
parameters are passed to this routine: the
address of the counter in COMMON and the
number of bytes for each entry. From the
number of bytes, DSPLAC also determines
boundary alignments. DSPLAC places the

112 section 2. Method of Operation

value of RW1 (the displacement of the field
in the TGT) into the counter and adds the
length of the field to RW1.

If the LISTX, CLIST, or SYM option was
specified, DSPLAC calls routine MAPLOC,
which prints one line at a time. If the
SUPMAP condition exists, no printing is
done.

If any of the debugging options is in
effect, the SWITCH cell, the CURRENT
PRIORITY cell (initialized to zero only),
the DEBUG TABLE PTR cell, and the DEBUG
TABLE information in the TGT are set by
phase 65.

·After the length of the entire TGT has
been calculated, the value of RW1 (the
length of the TGT) is added to the LOCCTR
cell. The value of the LOCCTR cell is now
the displacement of the PGT.

OPTIMIZING STORAGE FOR THE PROGRAM GLOBAL
TABLE

The general function of this part of
phase 60 is to allocate space for the
Program Global Table (PGT) in the same way
that TGT storage was allocated. Before
this can be done, however, the required
space must be determined for the literals,
virtuals, and procedure-names which reside
in this table at execution time. The
routines which determine the lengths of
these fields also optimize the contents of
the fields by eliminating duplication.

For optimizing, the PNUTBL table and
optimization A-text are used. Processing
of the PNUTBL table occurs first. Then the
Optimization A-text is read and processed.

Optimization A-text, which was generated
by phases 50 and 51, contains the following
kinds of elements:

• EQUATE strings, which equate generated
procedure-names (GNs) to corresponding
user defined procedure-names (PNs) or
equate GNs to other GNs in cases where
all the PNs and GNs refer to the same
location. (For a description of how
and why these strings are built, see
"Building PN and GN EQUATE Strings" in
the chapter on phase 51.)

• Literal definitions, containinq the
actual value of the literal. -

• DISPLAY literal definitions.

• Virtual definitions.

• Virtual reference definitions for error
processing and input/output routines •

• Variable procedure-name (VN)
definitions, if the program is
segmented, for building the VNPTY
table.

Licensed Material - Property of IBM

Phase 60 112.1

Counter

TSMAX

TS2MAX

TS3MAX

TS4MAX

BLLCTR

VLCCTR

INDEX1

SBLCTR

BLCTR

SUBCTR

ONCTR

PFMCTR

PSVCTR

VNLOC*

DTFNUM

XSiCTR

XSACTR

PARMAX

RPTSAV

CKPCTR

IOPTRCTR

AIHCTR

Licensed !aterial - Property of IBM

Contents from Earlier Phases

Number of doublewords needed for arithmetic
temporary storage

Number of bytes needed for nonarithmetic
temporary storage

Number of bytes needed for aligninq
non-SYNCHRONIZED data items

Number of byte.s for table-handling verbs

Number of base locators assigned to Linkage
Section

Number of variable location cell (containing
current length of a variable-length field)

Number of index-names defined in files

Number of secondary base locators (location of a
field variably located because it follows a
variable-length field)

Number of base locators assigned to files and
Working-storage

Number of subscript cells

Number of ON control cells

Number of PERFORM control cells (for PERFORM X
TIMES)

Number of PERFORM save cells

Number of variable procedure-names

Number of DTFs

Number of EXHIBIT switches

Number of bytes for EXHIBIT saved area

Number of words for parameter area

Number of words for report save area

Number of checkpoint cells needed

Number of pointers for SAME RECORD AREA clauses

Number of FIBs for VSAM files

i i

IMUltiplicationl
TGT Field I Factor I

I I
TEMPORARY 8
STORAGE

TEMPORARY 1
STORAGE-2

TEMPORARY 1
STORAGE-3

TEMPORARY 1
STORAGE-4

BLL 4

VLC 2

IND 4

SBL 4

BL 4

SUBADR 4

ONCTL 4

PFMCTR 4

PFMSAV 4

VN 4

DTFADR 4

XSASW 1

XSA 1

PARAM 4

RPTSAV AREA 4

CHECKPT CTR 4

IOPTR CELLS 4

FIB 4

I*The number of VNs in the program is passed to phase 60 in the VNCTR cell of COMMON, I
not the VNLOC cell. However, this va~ue is moved into the VNLOC cell and all further I

I TGT processing uses VNLOC rather than VNCTR. This is because the number of VNs in thel
I program must also be known for PGT allocation to determine the size of the VNI field I
I in the PGT. I
I ,

Figure 48. Use of Counters in COMMON To Allocate Space in the TGT for Variable-Length
PieldR

Phase 60 113

Licensed Material - Property of IBM

Virtual References Definitions: FILTBL
Table

During the virtual optimization, the
FILTBL table is built for the virtual names
related to the input/output and
error-processing routines. Virtual
reference elements are not optimized and do
not become part of the PGT. It is
convenient to have them here, since RLDs
and ESDs can be punched for them at the
same time as for the other virtuals. They
are placed in the DTF portion of the object
module in the LIoes module name field.

Buildina the VN Priority Table

VN definition elements are not used for
optimization. They are included in the
optimization A-text for a segmented program
because they are used to build a table
(called VNPTY) which must be completely in
storage for the next part of phase 60
processing. As an element is read, it is
entered unchanged into this table. After
the optimization A-text file has been
closed, the VNPTY table is sorted in
ascending order of VN number.

Optimizing PNs and GNs

The first step in optimizing PNs and GNs
is to allocate space in the compiler table
area for the PNTBL and GNTBL tables. The
lengths of these tables are determined from
the values of PNCTR and GNCTR in COMMON.
Then, in routine PNUPRO, the PNTBL is
processed against the PNUTBL. (The PNTBL
table, containing one entry for each
procedure-name in the program, is used only
in phase 60; the PNUTBL was built by phase
51. See "Building the PNUTBL Table" in the
chapter on phase 51 for a description of
how and why this table was created.) If a
PNUTBL entry has a value of one, the
corresponding PNTBL entry is numbered. The
numbers are sequential, beginning with one.
If the PNUTBL entry has a value of zero,
this means that the procedure-name is never
referred to in the program and can be
eliminated; therefore, the corresponding
PNTBL entry is set to zero. Once the PNTBL
values have all been set, the PNUTBL table
is released.

Figures 49 through 51 provide an example
of this processing for a program containing
six PNs and six GNs. In Figure 52, the
table entries are shown as they would
appear after the PNUTBL table processing.
Optimization A-text is then read by routine

114 Section 2. Method of Operation

READF2. Each time a PN or GN EQUATE string
is encountered, READF2 calls the routines
(PNEQUR or GNEQUR, respectively) which
process these strings.

Note: In Figures 49 through 51 the numbers
to the left of the tables are A-text PN and
GN numbers. They specify implicit
positions in the table.

PNUTBL PNTBL GNTBL
r--. r--. ,.----,

1 I 1 I 1 I 1 I 1 I 0 I
I---f I----f I----f

2 I 0 I 2 I 0 I 2 I 0 I
I---f I----f I----f

3 I 1 I 3 I 2 I 3 I 0 I
I---f I----f I----f

4 I 1 I 4 I 3 I 4 I 0 I
I---f I----f I----f

5 I 0 I 5 I 0 I 5 I 0 I
I---f I----f I----f

6 I 1 I 6 I 4 I 6 I 0 I
L--l L--l '----J

Figure 49. PNUTBL, PNTBL, and GNTBL Tables
at the Beginning of
Optimization Processing

Figure 50 shows the effect of a PN
EQUATE string indicating that GNl equals
PN3. The referenced number of PN3 (the
number found in the PNTBL entry for PN3 --
2 in the example) is entered into the
position for GN1. If there were no other
EQUATE strings read, the following would
occur after the Optimization A-text file
had been closed: GU2 through GN6 would be
assigned relative numbers sequentially,
starting with the number after the last
referenced PN number in the PNTBL table
(which is 4 in the example). The GNTBL
entries would then read 2, 5, 6, 7, 8, 9.
If, however, as shown in Figure 50, a GN
EQUATE string is encountered, equating GN2
with GN4 and GN5, the relative number of
GN2 is assiqned to GN4 and GN5. This
number is 5: since GN2 contains the next
sequential number after PN6.

GNTBL

1 2 ; f Equates GN1 to PN3
I

2 0 I
I

3 0 I
I

4 5 '} Equates GN4 and
I GN5 to GN2, which,

5 5 I it can be assumed,
I will be assigned a

6 0 , relating number of
I

Figure 50. GNTBL Table After PN and GN
Equate strings Have Been
Processed

5.

After the Optimization A-text file has
been closed, relative numbers are assigned
to each GN not equated to a PN or another
GN. The completed GNTBL table for the
example is shown in Figure 51.

1

2

GNTBL

2

5

3 6

4 5

5 5

6 7

Figure 51. GNTBL Table After the Relative
Numbers Have Been Assi~ned

Licensed Material - Property of IBM

Figure 52 shows an example of these
tables after all optimization A-text has
been processed. The optimization A-text
contained literal definition elements for
the following literals:

8, 3(DISPLAY), 3, 9, Y(DISPLAY), 8

The DISPLAY literal "3" is assumed to have
a length of 5, and the CONTBL literals each
have a length of 1.

CONTBL

Literals 8

3

9 write text,
increment RW1,
and release tables

Note: In the object code listing, the CONDIS
optimized GNs are numbered sequentially,
starting with 1. 3

DISPLAY
Literals Y

Optimizing Literals and DISPLAY Literals],TLTBL

The literal optimizing routines are used
to eliminate storage duplication in cases
where the source programmer used the same
literal more than once. Routine LTLRTN
processes internal literals, and routine
LTLDIS processes DISPLAY literals. These
routines build three tables: the CONTBL
and CONDIS tables (for internal and DISPLAY
literals, respectively) contain one entry
for each unique literal, and the LTLTBL
table contains an entry for each use of a
literal.

When a literal definition is
encountered, the CONTBL or CONDIS table is
searched for an entry identical to the
literal (to be identical, two internal
literals must meet the same boundary
requirements as well as having the same
value). If no match is found, the new
literal is entered into the CONTBL or
CONDIS table. Any bytes skipped because of
boundary alignment are filled with zeros.
The displacement of this entry from the
beginning of the table is placed into table
LTLTBL with a bit set to indicate whether
it is a CONTBL or CONDIS entry. If a match
is found, only an LTLTBL entry is made.
This LTLTBL entry is the displacement of
the CONTBL or CONDIS entry that matched the
literal being processed.

i
o (CONTFL Displacementl

of 8) I
I

o (CONDIS Displacement I
of 3) I

I
1 (CONTBL Displacement I

of 3) I ,
2(CONTBL Displacement I

of 9) I ,
5(CONDIS Displacement I

of Y) I
I

o (CONTBL Displacement I
of 8) I

i

Add PGT dis­
placements and
save table

Figure 52. CONTSL, CONDIS, and LTLTBL
Tables After Processing
Literals

After the Optimization A-text file is
closed, the literal pool is written on
SYSLST (SYS006 for LVL option), using the
contents of the CONTSL and CONDIS tables,
if the LISTX, CLIST, or SYM option was
specified (no printing is done if the
SUPMAP condition exists).

Phase 60 115

Licensed ftateria1 - Property of IB~

optimizing Virtua1s

The virtual o~timizing routine (VIRRTN)
is used to e1iminate storage dup1ication in
cases where the same EBCDIC na~e of a
ca1led program is referred to in more than
one CALL statement or in more than one ca11
to a COBOL 1ibrary subroutine. The 10gic
of this processing is simi1ar to that of
1itera1 optimization. Two tab1es are
bui1t: the CVIRTB tab1e, containing one
entry for each unique virtua1, and the
YIRPTR tab1e, containing one entry for each
reference to a virtual.

When a virtua1 definition is
encountered, the CVIRTB is searched for an
identica1 entry. If none is found, the new
virtua1 is entered in the CVIRTB tab1e.
The disp1acement of this virtua1 from the
beginning of the CVIRTB is entered into the
VIRPTR tab1e. If a match is found, on1y a
VIRPTR entry is made. This VIRPTR entry
contains the disp1acement in the CVIRTB
tab1e of the entry that matched the virtua1
being processed.

Figure 53 shows the contents of these
tables after processing optimization A-text
for a program containing the fo1lowing
virtua1s:

CVIRT1, CVIRT2, CVIRT3, CVIRT1, CVIRT2.

CALL virtua1s

PGT (CVIRTB)
displacements:

CVIRTB

i{ Write text,
1------11 increment

I~ RW1 re1ease
1------11 tab1es

CVIRT1

CVIRT2

CVIRT3 I 1..-____ --',

VIRPTR
i

o (Disp. ofl
CVIRT1) I

I
8(Disp. ofl

CVIRT2) I
I 1
116 (Disp. ofl
I CVIRT3) I
I I
I 0 (Disp.. of I
I CVIRT1) I
I I
I 8 (Disp. ofl
I CVIRT2) I
, I

Save

Note: Each CVIRTB entry is 8 bytes 10ng.

Figure 53. CVIRTB and VIRPTR Tables After
Processing Virtuals

116 section 2. 8ethod of operation

ALLOCATING STORAGE FOR THE PROGRA8 GLOBAL
TABLE

When all optimization A-text has been
read, storage is allocated for the PGT. If
the program is not segmented, entries for
the external symbol dictionary are created
for virtuals, object text is written for
virtuals and literals, and entries are made
in the RLDTBL table for subsequent writing
of the re1ocation dictionary. Counters in
COft80N are set to the displacements of
their corresponding PGT fields from the
beginning of the PGT.

If the LISTX, CLIST, or SYM option was
specified, the format of the PGT is written
on SYSLST (SYS006 for LVL option) using
routine MAPLOC (if the SUPM~P condition
exists, this writing does not take place).

OVERFLOW Allocation: Preliminary
calculations are made to determine whether
the size of the PGT exceeds 4096 bytes. If
it does, one 4-byte OVERFLOW cell is
required for each 4096-byte area after the
first. The number of bytes required is
placed in register RW1, which is used
throughout PGT allocation to hold the
displacement of the field currently being
processed.

VIRTUAL Allocation: After the OVERFLOW
CELLS field of the PGT has been calculated,
the VIRTUAL field is processed. The VIRCTR
cell of COMMON is set to the displacement
of the VIRTUAL field from the beginning of
the PGT (this value is zero unless OVERFLOW
cells have been allocated) •

To determine the length of the VIRTUAL
field, four bytes are allowed for each
entry in the CVIRTB table. The calculated
length is added to RW1. The CVIRTB table
is kept for use during Procedure A-text
processing, when the values (EBCDIC names)
in it are used to generate in-line
constants for CALL statements.

The entries in the VIRPTR table are
changed to contain displacements in the
VIRTUAL field (see the example in Figure
41). The table is saved for subsequent use
during Procedure A-text processing.

In Figure 54, the p1us sign (+) means
the displacement in bytes of the VIRTUAL
from the beginning of the VIRTUAL field in
the PGT. The values are also PGT
displacements if no overflow cel1s are
present.

VI RPTR
r--------,
I +0 I
t--------~
I +4 I
~--------~
I +8 I
/---------~
I +0 I
/---------~
I +4 I
L ________ J

Each VIRTUAL in the
PGT is four bytes
long.

Figure 54. VIRPTR Table After VIRTUAL
Allocation

PN Allocation: After the VIRTUAL field has
been processed. the value in RW1 is the
displacement of the PN field in the PGT.
This value is saved in the PNCTR cell of
COMMON.

For each referenced PN in the PNTBL
table. a 4-byte cell is allocated in the
PGT. The PNTBL entry is set to the
displacement of this cell from the
beginning of the PGT. If a PN was not
referenced (if the value in the PNTBL entry
was zero). no space is allocated. In the
example in Figure 55. only four 4-byte
cells are required in the PGT. After the
PNTBL table entries have been adjusted. the
entry for PN3 exceeds the entry for PN1 by
four. and the entry for PN2 remains zero.
The total length of the PN field (16 bytes
in the example) is then added to RW1.

Figure 55 shows the PNTBL table for the
same program as in Figure 49 after PGT PN
allocation. The table is saved for use
during Procedure A-text processing. when
the values it contains are used as
displacements in instructions.

In Figure 55. the plus sign (+) means
the displacement in bytes of the PN from
the beginning of the PN field in the PGT
The values are also PGT displacements if no
overflow cells are present. The numbers to
the left of the tables are A-text PN and GN
numbers. They specify implicit positions
in the table.

GN Allocation: The value in RW1 is now the
displacement of the GN field in the PGT.
This value is placed in the GNCTR cell of
COMMON.

Licensed Material - Property of IBM

PNTBL
r------,

11 + 0 I
/--------1

21 0 I
/-------~

31 + 4 I
/-------~

41 + 8 I
/-------~

51 0 I
/--------1

61 +12 I L ______ J

GNTBL
r------,

11 + 4 I
/--------1

21 +16 I
/--------1

31 +20 I
/--------1

41 +16 I
t------~

51 +16 I
/--------1

61 +24 I L ______ J

Figure 55. PNTBL Values After PGT
Allocation

For each unique GN. a 4-byte cell is
allocated in the PGT. The GNTBL entry is
set to the displacement of this cell from
the beginning of the PGT. However. if the
GN was equated to a PN or another GN. the
GNTBL entry is set to the PGT displacement
of that PN or GN. This is illustrated in
Figure 55. which shows the GNTBL table
after this processing. for the same example
as in Figures 49. 50 and 51. In this
example. GN4 and GN5 were equated to GN2.
Therefore. the GNTBL entries for GN4 and
GN5 contain the displacement of GN2. The
PGT for this program contains only three
unique GN entries, or twelve bytes. After
all entries have been processed. the length
of the GN field (12 in the example) is
added to RW1.

The GNTBL table is saved for use during
Procedure A-text processing.

SDTFADR Allocation: The SDTFCTR cell in
COMMON is used to deterroine how much space
is required; four bytes are reserved for
each SDTF in the program. The cell is set
to the value of RW1. and RW1 is then
incremented to reflect the allocated bytes.

VNI Allocation: The VNCTR cell of COMMON
was used by earlier phases to count the
number of variable procedure-names in the
program. The value of VNCTR is moved to
the VNILOC cell of COMMON. FroID VNILOC.
four bytes are allocated for every VN. The
displacement of the VNI field (the value of
RW1) is placed in the VNILOC cell. and the
number of bytes allocated is added to RW1.

LITERAL Allocation: The displacement of
the LITERAL field in the PGT (the value of
RW1) is placed in the LTLCTR cell of
COMMON. The length and contents of the
LITERAL field will be identical to the
CONTBL and CONDIS tables.

Phase 60 117

Licensed Material - Property of IBM

For each LTLTBL entry that refers to
CONTBL, the value in the LTLTBL table is
replaced by the displacement of the
specific literal from the beginning of the
PGT. This displacement is calculated by
adding the value already in the LTLTBL
entry (which is the CONTBL displacement of
the literal) to the value of RW1.

The same processing occurs for LTLTBL
entries that refer to CONDIS, except that
the increment includes the length of the
CONTBL table. This is because DISPLAY
literals are placed after internal literals
in the PGT. The LTLTBL table is saved for
use during Procedure A-text processing.
The lengths of the CONTBL and CONDIS tables
are used to increment RW1. If the program
is not segmented, the contents of the
tables are used to write object text, and
the tables are released. In a segmented
program, writing of object text is delayed,
and therefore the tables are kept.

PROCEDURE A-TEXT PROCESSING

Phase 60 reads Procedure A-text to
produce machine-language instructions for
the object program. One element of text is
read and processed at a time, and the
object code produced for this element is
placed in a work area called OU6REC. One
or more elements are required to produce a
complete instruction. When an instruction
is complete, it is written out from the
work area, and the LOCCTR cell in COMMON is
incremented by the number of bytes written.

If the instruction involves a base
locator, the processing routine refers to
or updates the REGMTX table (see "Execution
Time Base Register Assignment" in this
chapter), which is a table internal to
phase 60. Base locators were assigned by
phase 22.

If the LISTX compiler option is in
effect, routine PUT is called to write a
line of text on SYSLST (SYS006 for LVL

118 Section 2. Method of Operation

option) every time a complete instruction
has been written. If the CLIST option is
in effect, this routine is called only for
each verb (if the SUPMAP condition exists,
this writing does not take place).

If the SYMDMP or STATE option is in
effect, Procedure A-text is used to create
Debug-text which is written on file SYS002.
Vebug-text elements are written by the
WRITE10A, WRITE20A, and WRITE30A routines.
WRITE10A is called for all card numbers
encountered and produces Debug-text
elements which contain the card number and
the contents of the LOCCTR cell when the
card number was encountered. Debug-text
also contains:

• Priority elements, which give the
priority number of each segment in a
segmented program or zero priority for
a program which is not segmented,

• Discontinuity elements, which are
created when phase 60 combines two
sections of equal priority that have
discontinuous card numbers because of
an intervening section or sections of
different priority,

• Segment elements which identify the
last byte of each segment.

Debug text is used by phase 65 to
~roduce debugging information for the
object-time COBOL library debugging
subroutines. If any of the debugging
options is in effect, phase 60 builds the
TGTADTBL table, which is used to pass
debugging information to phase 65.

If the SXREF, XREF, VERBREF, or VERBSUM
option is in effect, Procedure A-text is
used to create REF-text and to write it on
file SYS003. This text, containing an
element for every data-name, file-name,
procedure-name, and verb in the program, is
used by phase 61 to produce a
cross-reference listing.

Figure 56 describes the processing for
each type of Procedure A-text element.

I

ICode and Type
I
12C*
Icard number
I
I
I
130*
IPN definiton
I
I
I
13LJ*
IGN definition
I
138*
IVN definit.ion
I
pc
IEBCDIC
I procedure-name
I
I
I
ILJLJ
I macro-type
linstruction
I
I
ILJB
lop code
1
I
I
I
ILJC
IPN reference
I
I
I
I
I
150
IGN reference
I
15LJ
IVN reference
I
I
I
I
I
I
I

Licensed ~aterial - Property of IBM

i i

I Action Taken I
I I
IStore in OU6CDN, XFCDNO, and OUCCDN. If LISTX or CLIST is re- I
Iquested, read LISTING A-text. Used to generate an in-line constant I
Ifor TRACE, which calls the DISPLAY object-time subroutine. If I
ISYMD~P or STATE is requested, write Debug-text. I
I I
IUsing PN number as an index, look in PNTBL (see "PN Allocation" in I
Ithis chapter) to get displacement in PGT of the cell for this PN. I
ICreate an RLDTBL entry which will place the current value of LOCCTR I
lin the PGT cell. I
I I
ISame as PN definition, using GN number and GNTBL. (See IIG~ I
IAllocation" in this chapter.) I
I I
ICreate an indirect RLDTBL entry from this element and the PN I
Ireference which follows it. I
I _ I
IConvert the current card number into an EBCDIC constant. of the form: I
I I
I I
I DC XILJI I
I DC CL5 1 generated card number l I
I I
IUse byte 2 of the element as index to a branch table. phase 60 I
Iproduces the required coding or takes t.he required action. The I
Icontents of these elements are listed in the Procedure A-text I
Iformats of "Section 5. Data Areas." I
I I
IThis element. cont.ains in machine language the first two bytes of an I
I instruction. The first byte is the op code; the second may give I
Icondition codes, registers, or other operands. For an RR type, this I
lelement contains the complete inst.ruction. The 2 bytes following LJ81
lare written out as received. I
I I
IThis is the operand of a LOAD instruction. Procedure branching I
lis accomplished by loading an address and then branching to it. I
IUsing register 12** as base, find displacement by using PN number asl
Ian index into PNTBL (see "PN Allocation" in this chapter). Using I
Icard number stored in XFCDNO, write an element of REF-text for phase I
161 if XREF was specified. I
I I
ISame as PN reference, using GN number and GNTBL. See "GN I
IAllocation" in this chapter. No REF-text is written. I
I I
IUse register 13** as'base. Get displacement of VN-I field of TGT I
Ifrom VNLOC cell in CO~MON (see "Task Global Table storage I
IAllocation ll in t.his chapt.er). If program is unsegment.ed, use VN I
Inumber to comput.e displacement of this VN cell. If program is I
Isegmented, VNs are stored in t.he TGT in order of priorit.y number, I
Inot. VN number; search the VNPTY table (see "Building the VN Priorit.YI
ITable" in this chapter) for this element. Displacement in the VN-I I
Ifield will be t.he same as displacement. in the table. I
, I

*Indicates no object text written for this element. , ,
**At execution time, register 12 always points to the beginnin~ of the PGT, register 131

always points to the beginning of the TGT. If the displacement of an item in the PGTI
or TGT exceeds LJ096 bytes, an OVERFLOW cell must,be used. The OVERFLOW CELLS fields I
of both the PGT and TGT are at fixed displacements from register 12 and register 13, I
respectively. The OVERFLOW cell to be used is determined from the value of the I
displacement; that is, a value from LJ096 to 8191 uses cell 1, from 8192 to 12,227 I
uses cell 2, etc. An instruction is generated to load register 1LJ or register 15 I
from the OVERFLOW cell. Then, in the operand currently ,being processed, register 1LJ 'I
or register 15 is used as the base, and the displacement. is decremented by LJ096, I
8192, etc. I

I

Figure 56. Processing Procedure A-text Elements (Part 1 of 3)

Phase 60 119

Licensed Material - Property of IBM

,
ICode and Type
I
158
Ivirtual
I reference
I
15C
IBL reference
I
I
I
160
,TGT standard
larea reference ,
164
IGlobal Table
Ivariable located
larea reference
I
I
168
I literal
I reference
I
I
16C
IDC definition
I
170
Ibase and
I displacement
I
178
laddress
Ireference
I
I
I
I
I
I
I
17C
IEBCDIC
I data-name
I reference
I
180
I address
I increment
I
I

i i
I Action Taken I
I •
IUse virtual number as an index into the VIRPTR table (see "VIRTUAL ,
IAllocation" in this chapter). Table entry contains displacement I
lof this virtual in the PGT. Use register 12** as base. I
I ,
IThis element is operand of an instruction which loads a base I
Iregister. Use register 13** as base. Get the displacement of BLL I
lor BL field in the TGT from BLLCTR or BLCTR in COMMON. Use BL I
Inumber to compute displacement of this cell. Update table REGMTX. I
I ,
IUse register 13** as base. Displacement is picked up from a list ofl
I constants. I , ,
I r
IUse register 13** as base (unless the element specifies the SDTFADR I
Ifield of the PGT, which uses register 12**). Get displacement of I
Ithe TGT or PGT field from the appropriate cell in COMMON, and use ,
,identifying number to compute displacement of this item. See "Task ,
IGlobal Table Storage Allocation" and Figure 48 in this chapter. I
I ,
IThe number in the text element refers to the sequential number I
lassigned to the literal from the LTLCTR cell in COMMON. The element I
lis used to calculate the displacement of the literal in the LITERALSI
,field of the PGT. I
I ,
IThis element is used to create an in-line constant for a calling I
I sequence. Bytes following the code are used to write text. I
I I
ISpecifies the actual register number and displacement for the I
I instruction. Bytes following the code are used to write text. I
I I
I ,
ISearch table RRGMTX on i and k (BL type and BL number). If match isl
Ifound, the required BL is already in a register. Use that register I
las base. If no match is found, generate an instruction to load I
Iregister 14 or register 15 with the BL from the BL or BLL field of I
Ithe TGT and use that register as the base (see Code 64, "Global I
ITable variably located area reference," in this table for a I
Idescription of how the LOAD is generated). Displacement is d field I
lof the element. Get card number from XFCDNO to write an element of I
IREF-text. I
I I
IThis element always follows a 2C element. It is used for listing I
IVERBS and paragraph-names when CLIST or LISTX is in effect. It is I
lalso used to generate an in-line constant for TRACE, which calls I
Ithe DISPLAY object-time subroutine. I
I ,
IThis element is required, for example, by the second MVC for a ,
IMOVE of more than 256 bytes. The element itself would have a value, I
lin this case, of 256 (the value of the increment). Add it to the d I
I (displacement) field of whatever reference preceded it. I ,

I *Indicates no object text written for this element.
**At execution time, register 12 always points to the beginning of the PGT, register 13

always points to the beginning of the TGT. If the displacement of an item in the PGT
or TGT exceeds 4096 bytes, an OVERFLOW cell must be used. The OVERFLOW CELLS fields
of both the PGT and TGT are at fixed displacements from register 12 and register 13,
respectively. The OVERFLOW cell to be used is determined from the value of the
displacement; that is, a value from 4096 to 8191 uses cell 1, from 8192 to 12,227
uses cell 2, etc. An instruction is generated to load register 14 or register 15
from the OVERFLOW cell. Then, in the operand currently being processed, register 14
or register 15 is used as the base, and the displacement is decremented by 4096,
8192, etc.

igure 56. Processing Procedure A-text Elements (Part 2 of 3)

120 Section 2. Method of operation

Licensed Material - Property of IBM

i i
ICode and Type I Action Taken
I I
184
I relative
laddress
I

IThis element is used to create an in-line pointer to an item in a
Ifield of the TGT or PGT for a calling sequence. Get displacement
lof field from appropriate counter in COMMON and use identifying
Inumber to compute displacement of item.

I I
IAO*
Iregister
I specification
I

ISpecifies the register used by a macro instruction element, and
Imust follow certain of these elements. See the list of macro-type
linstructions in "Section 5. Data Areas" under "Procedure A-text."
I

IA4
I incremented
laddress

IThis element combines the address reference (code 78) and increment
I (code 80) elements into one. See those elements in this table.
I

I I
IBO
Icalling sequence
I displacement

IUsed to create an in-line TGT or PGT pointer for a call to an
lobject-time subroutine which expects a parameter containing a
Idisplacement from register 13 or register 12.

I I
IB4*
Icalling sequence
I dictionary
IPointer

IUsed, when a file-name or data-name occurs in a calling
Isequence, to write a REF-text element for phase 61. Pick up
Icard number from XFCDNO.
I

I I
IB8*
Ifile reference
I

IUsed to write an element of REF-text.
I ,

*Indicates no object text written for this element.
**At execution time, register 12 always points to the beginning of the PGT, register 13

always points to the beginning of the TGT. If the displacement of an item in the PGT
or TGT exceeds 4096 bytes, an OVERFLOW cell must be used. The OVERFLOW CELLS fields
of both the PGT and TGT are at fixed displacements from register 12 and register 13,
respectively. The OVERFLOW cell to be used is determined from the value of the
displacement; that is, a value from 4096 to 8191 uses cell 1, from 8192 to 12,227
uses cell 2, etc. An instruction is generated to load register 14 or reqister 15
from the OVERFLOW cell. Then, 'in the operand currently being processed, register 14
or register 15 is used as the base, and the displacement is decremented by 4096,
8192, etc.

Figure 56. Processing Procedure A-text Elements (Part 3 of 3)

Processing in a Segmented Progra~

When a program is not segmented, phase
60 reads Procedure A-text in the order in
which it was written. When a program is
segmented, Procedure A-text is read in such
an order that the procedure instructions
for the root segment are processed last.
The compilation of the root segment is
deferred because information contained in
Data A-text must be included in the root
segment and Data A-text is only processed
after Procedure A-text processing is
completed. Although the root segment is
processed last by phase 60, all object text
for the root segment before the text for
the non root (independent and overlayable)
segments is written. Nonroot segments
contain only procedure instructions. The
TGT, PGT, Report Writer routines,
Q-routines, and data area for the entire
program are included in the root segment,
which is resident in storage throughout
program execution.

If the program is segmented, the value
of the LOCCTR cell in COMMON is saved, and
LOCCTR itself is set to zero. LOCCTR is
again set to zero every time the processing
of a new segment begins. This is because
LOCCTR points~o a location relative to the
beginning of the object module; since each
segment is a separate object module, each
begins at a relative address of zero.

Procedure A-text is read from the
direct-access file SYS001 using the segment
priority ~able-(SEGTBL). For a description
of how this table is built, see
"Segmentation Control Breaks" in the
chapter on phase 51. The table format is
given in "Section 5. Data Areas."

In phase 11, the priority numbers of all
sections in the root segment were set to
zero. If the SEGMENT-LIMIT clause was
specified, the root segment consists of all
sections whose priority number is less than
the val·,e ."~ SEGMENT-LIMIT. If
SEGMEN,'-LII!! [T was not specified, the root

Phase 60 121

Licensed Material - Property of IBM

segment consists of all segments whose
priority is less than 50.

Routine SEGPROC searches the SEGTBL
table for the first entry whose priority is
not zero. It then calls cos in phase 00
with a request for SEGPNT, passing the
relative disk address of this section. The
SEGPNT routine in phase 00 positions the
access mechanism to the correct address on
the file (more information on this routine
is in the phase 00 chapter under "Phase
Input/Output Requests"). The section of
Procedure A-text is then read and
processed. When a segmentation. control
break is encountered in the text, the
SEGTBL is searched for other sections of
the same priority.

Note: A section is a series of source
program procedure instructions grouped
under the same section-name. A segment is
all the instructions whose sections have
the same priority. A segment may consist
of one or more sections. There is a SEGTBL
entry for every section whose priority
differs from that of the section preceding
it.

When all sections of one priority have
been processed, the SEGTBL table is
searched for another nonzero priority, and
the process is repeated (LOCCTR is set to
zero each time). If the SYMDMP or the
STATE option is in effect, at the end of
processing for each segment, the final
LOCCTR value for that segment and the
priority for the next segment to be
processed are both written on file SYS002
for phase 65. As machine instructions are
generated, object text for the nonroot
segments is written temporarily on work
file SYS004. This is done so that the root
segment can be written first on the output
file.

After the last nonroot segment has been
processed, the LOCCTR cell of COMMON is set
to the location in the root segment of the
PGT. Object text is then written from the
CVIBTB, CONTBL, and CONDIS tables, which
contain the values of virtuals and literals
to be stored in the PGT (see "LITERAL
Allocation" and "VIRTUAL Allocation" in
this chapter). Then LOCCTR is set to the
beginning of the procedure area.of the root
segment, which was saved in cell LOCPGM,
and processing of the Procedure A-text for
the root segment begins. The text is
located on file SYS001 by finding all
entries of zero priority in the SEGTBL
table.

Object text for the root segment is
written directly into the output file. The
o~ject text for the nonroot segments is
then copied from SYS004 on the output file.

122 section 2. Method ~f Operation

No procedure or verb names are printed
on the listing. Instead, the card number
is printed, and if a card contains more
than one verb, the object code for each
verb is accompanied by a number beginning
with 1 for each card.

Execution Time Base Register Assignment

Before Procedure A-text processing
begins, permanent base registers are
assigned. Register 12 is always assigned
to the PGT, and register 13 to the TGT.
Registers 6 through 11 are available to the
data area. Of these registers, one is
permanently assigned to the beginning of
the Working-Storage Section, and the rest
to files, in the order in which FDs
occurred. If any registers are still left,
they are assigned to the rest of working
Storage (if there is any). If the LISTX,
SYM, or CLIST option was specified, a list
of permanently assigned registers and the
BLs (base locators) associated with them is
written on SYSLST (or SYS006 for LVL
option). At execution time, permanent base
registers are loaded from the TGT by
routine INIT3. (Registers 0 through 5 are
work registers; instructions using these
registers are generated from the Procedure
A~text.) Registers 14 and 15 are used as
temporary base registers.

To assign base registers in procedure
instructions, phase 60 refers to and
updates table REGMTX (internal to phase
60), which contains an entry for each of
registers 6 through 11, 14, and 15. Into
an entry are placed the BL type and BL
number (the i and k of the idk field of an
addressing parameter) of the area to which
the register is currently pointing, and the
status of the register (that is, how it is
being used). When a field of the data area
is the operand of a procedure instruction,
table REGMTX is searched for a matching i
and k. If it is found, this means that the
register already contains the desired base
locator, and therefore the register can be
used in the instruction.

If no register contains the necessary
base locator, an instruction is generated
to load the base locator (which is stored
in the TGT) into temporary register 14 or
15.

When a register is used in an
instruction, the status Dortion of the
REGMTX entry is updated to indicate how it
is currently being used. Status bits may
also be updated by the macro-instruction
type A-text elements produced by Phase 50
or 51. (See Figure 56 in this chapter.) A
list of these elem~nts and their meanings

appears in the Procedure A-text formats in
"Section 5. Data Areas.".

PROCESSING DATA A-TEXT, E-TEXT, AND
DEF-TEXT

The primary function of Data A-text
processing is to place values into fields
of the data area and alobal tables of the
object program. Each-element results in
either the writing of an object text
element or an entry in the RLDTBL. Some
RLDTBL entries will later be written out as
relocation dictionary (RLD-text) entries
for the data area and as object text.
Others, for the global tables, will be
written as object text only (these will be
relocated by the object program).

File SYS004, from which Data A-text is
read, also contains E-text generated by
phases 10 through 51 and DEF-text for the
cross-reference listing if the SXREF, XREF,
VERBREF, or VERB SUM option was specified.
Figure 57 illustrates the contents of this
file when it is read by phase 60. Figure
58 describes how each type of element is
processed.

r---,
1 Beginning of File 1
~------------------------------T----------~
IText Description Iwritten Byl
~------------------------------+----------~
DATA A-text Phase 21 1

DEF-text (for data-names and
file-names)

E-text (generated by Phases
10, 20, 21, and 22)

1
Phase 21* --1

~'l

1
Phase 21**1

1
1

DEF-text (for procedure-names) Phase 30* 1

E-text (generated by Phases
12, 11, 30, 40,

1
Phase 51 1

1
50, and 51> 1

~------------------------------~----------~
1 End of File 1
~---~
1 *Generated only if the SXREF, XREF, 1
I VERBREF, or VERBSUM option is in 1
1 effect. I
1**Phase 21 intermixed these first three 1
1 text~ on SYS004. There are no I
1 separations between texts generated by 1
1 different phases. The texts are I
I distinguishable solely by their code, 1
1 which is the first byte of each I
1 element. 1 L ___ J

Figure 57. Contents of SYS004 When Read by
Phase 60

Licensed Material - Property of IBM

PROCESSING THE RLDTBL TABLE

After an end-of-file condition has been
reached on file SYS004, the RLDTBL table is
processed. Indirect address constants are
resolved and then the table is sorted in
ascending order of target address. object
text is written for items that are in the
global tables. This text consists of
address constant definitions that will be
stored in the global tables at execution
time. No RLD-text is required for these
items, because the addresses are relocated
during program execution by routine INI'l'3.
Object text is also written for data area
address constants (obtained from address
constant and indirect address ccnstant
definitions). For the data area address
constants, RLD-text is written so that the
linkage eJitor can relocate the addresses.
See "GETALL routine" in tne "Appendix A.
Table and Dictionary Handling."

INITIALIZATION ROUTINES

After the RLDTBL table has been
processed. the initialization coding is
generated.. The three initialization
routines, in the order in which phase 60
writes them, are INIT2, INIT3, and INIT1.
All three are resident in the root segment
if the program is segmented. INITl sets up
address constants for the program's TGT,
PGT, and first executable instruction, and
for the three initialization routines. It
then transfers control to INIT2 if the
program is a subprogram, or to INIT3 if it
is not. INIT2 is executed if the program
is a subprogram or is entered at a
secondary entry pOint. It establishes
standard subroutine linkage. Control then
passes to INIT3, which sets base registers,
relocates addresses to absolute values, and
transfers control to the proper point in
the program to begin the execution. (For a
fuller description of these three routines,
including the generated code, see "Appendix
B. Object Module.")

Phase 60 123

Licensed Material - Property of IBM

r----T---------------T--,
ICodelType I Action Taken I
~----+---------------+--i

00 E-text IAII E-text is built into a table called ERRTBL, which is passed tal
Iphase 70. Phase 60 does not process the E-text. If the ERRTBL I
Itable overflows the space allocated to it, it is written on I
ISYS003. I
I I
IThere are two types of E-text elements: message definition and I
lmessage parameters. Message parameters are optional; however. if I
Ithey occur, one or more message parameters immediately follow the I
Imessage definition to which they apply (the uses of these elements I
lare explained in the chapter on phase 70). Phase 60 examines eachl
lelement to determine its length, so that the correct number of I
Ibytes may be stored in the table. To do so, it checks the third I
Ibyte of the element. If the byte contains a zero, the element is I
la message definition whose length is eight bytes. If the third I
I byte is nonzero,. the eleroent is a message parameter, which is of I
Ivariable length. and the length is determined from the value of I
Ithe second byte. See "Section 5. Data Areas" for format of I
IE-text and the ERRTBL format. I

~----+---------------+--i
104 ISDTF address IGenerate an RLDTBL entry which will cause the address of the SDTF I
I I Ito be placed in the correct cell of the SDTFADR field of the PGT I
I I lat execution time. Get displacement of the SDTFADR field from thel
I I ISDTF number to compute displacement of cell. Text element I
I I Icontains the value (relative address of the SDTF) to be placed in I
I I I the PGT cell. I
~----+---------------+-------------------------~--i
108 IDTF address IGenerate an RDLTBL entry which will cause the address of the DTF I
I I Ito be placed in the correct cell of the DTFADDR field of the TGT I
I I lat execution time. Get displacement of the DTFADDR field from I
I I Icell DTFNO (see Figure 48 in this chapter) and use the DTF number I
I I Ito compute displacement of cell. Text element contains the value I
I I I (relative address of the DTF) to be placed in the cell. I
~----+---------------+---~--i

OC Block address IGenerate an RLDTBL entry which will cause the address of the I
Ibuffer to be placed in the correct BL cell of the TGT at execution I
I time. Get displacement of the BL field from cell BLCTR in COMMON I
I (see Figure 48 in this chapter) and use the BL number to compute I
Idisplacement of the cell. Text element contains the value I
I (relative address of the buffer) to be placed in the TG'I cell. I
I I
IIf the value of the SIZE field of the element exceeds 1024 (SIZE I
Ispecifies length of the block in fullwords), more than one BL has I
Ibeen assigned to the buffer. For each 1024-word area after the I
I first, another RDLTBL entry is made. The second RDLTEL entry willi
Icause the buffer address + 4096 (TGT addresses are in bytes) to bel
Iplaced in the next BL cell of the TGT. I

~----+---------------+--i
114 IFIB address IGenerate an RLDTBL entry that will cause the address of the File I
I I I Information Block [F'IB) to be placed in the correct cell of the I
I I I FIB field in tne TG'l' at execution time. Get displacement of the I
I I IFIB field from AMICTR cell in COMMON and use the FIB number to I
I I Icompute displacement of cell. Text element contains the value I
I I I (relative address of the FIB) to be placed in the TGT cell. I
~----+---------------+--i
120 IData A-text IGenerate the COUNT option information. I L ____ ~ _______________ ~ __ J

Figure 58. Processing Data A-text, E-text, and DEF-text (Part 1 of 2)

124 Section 2. Method of Operation

Licensed Material - Property of IBM

r----T---------------T--,
IcodelType I Action Taken I
~----+---------------+--~
24- working-Storage Generate an RLDTBL entry which will cause the address of the

Section address Working-Storage Section to be placed in the correct BL cell of the
TGT at execution time. Get displacement of the BL field from cell
BLCTR in COMMON (see Figure 48 in this chapter) and use the BL
number to compute displacement of the item. Text elerrent contains
the value (relative address of the working-Storage Section) to be
placed in the TGT cell.

If the value of the SIZE field exceeds 1024 (SIZE specifies the
length of the Working-Storage Section in fullwords), more than one
BL has been assigned. For each 1024-word area after the first,
another RLDTBL entry is made. The second entry will cause the
address + 4096 (TGT addresses are in bytes) to be placed in the
next BL cell.

~----+---------------+--~
128 I Constant IWrite object text which will place the value of the constant I
I I definition linto a specified location in the data area at execution time. I
I I IThis type of element is used to fill some fields of SDTFs and DTFsl
I I land to initialize data items for which a VALUE clause was I
I I I specified. I
~----+---------------+--~
12C I Address IGenerate an RLDTBL table entry which will permit the linkage I
I I constant leditor to insert the desired address at the correct location. I
I I definition I I
~----+---------------+--~
130 I I (Not used) I
~----+---------------+--~
134 IQ-routine IThis type of element contains a GN number for a Q-routine. I
I lidentification IThe elements are built into a table called QTBL. Each entry is I
I I Iresolved so that it contains the actual address of the routine I
I I Irather than simply the GN number. This processing is identical tol
I I Ithat for GN references in Procedure A-text (see Figure 56). When I
I I Iphase 60 generates the code for INIT3 (one of the initialization I
I I Iroutines), it uses the QTBL table to generate a call to every I
I I IQ-routine in order to initialize the data and table areas affectedl
I I Iby OCCURS ••• DEPENDING ON data items. I
~----+---------------+--~
138 IBL reference IGenerate an RLDTBL entry that will cause the displacerrent in the I
I I ITGT of the BL number assigned to VSAM files to be placed in a I
I I I specified location of the data area at execution time. I
~----+---------------+--~
13C IBLL reference IGenerate an RLDTBL entry that will cause the displacement in the I
I I ITGT of the BLL numbers assigned to VSAM files in the Linkage I
I I I Section to be placed in a specified location of the data area at I
I I lexecution time. This type of element is used to complete the I
I I Ibuilding of the FIB at execution time. I
~----+---------------+--~
148 IData name or IThese elements are present only if the SXREF, XREF, VERBREF, or I
I I file-name IVERBSUM option was specified. Each element is written out as I
I IDEF-text lit is encountered on file SYS001, to be read by phase 61. The I
I I Iphase 61 chapter describes how these elements are used. I
~----+---------------+--~
14C IProcedure name IThese elements are present only if the SXREF, VERBREF, XREF, or I
I IDEF-text IVERBSUM option was specified. Each element is written out as it I
I I lis encountered on file SYS003, to be read by phase 61. The I
I I Ichapter on phase 61 describes how these elements are to be used. I L ____ ~ _______________ ~ __ J

Figure 58. Processing Data A-text, E-text, and DEF-text (Part 2 of 2)

Phase 60 125

Licensed Material - Property of IBM

PHASE 65

The function of phase 65 (ILACBL65) is
to produce debugging information which is
used by object-time COBOL library debugging
subroutines. For information about the
object-time COBOL library subroutines, see
the publication IBM DOS/VS COBOL Subroutine
LibrarYL Program Logic, Order
No. LY28-6424. The phase is given control
only if the flow trace (FLOW), statement
number (STATE), or symbolic debug (SYMDMP)
compiler options are specified by the user
on the CBL card. The transfer of control
to phase 65 is described in "Processing
Between Phases" in the chapter "Phase 00."
The operations of phase 65 are described in
Diagram 6.

PROCESSING THE FLOW OPTION

If FLOW is specified, phase 65 obtains
the number of traces requested (n[n) from
the FLOWSZ cell in COMMON. The number is
stored in the first byte of the DEBUG TABLE
in the TGT. Phase 65 allocates space for
the FLOW trace table in the object module
following INIT3 and saves the address of
the beginning of the table in the DEBUG
TABLE in the TGT. If the number of traces
requested is zero, no space is allocated.
For the FLOW option, the PNCHSW routine
writes the flow trace information in the
DEBUG TABLE and the END card. Further
processing for the FLOW option is discussed
in "Final Processing" later in the chapter.

COMMON PROCESSING FOR THE STATE AND THE
SYMDMP OPTIONS

For the STATE or the SYMDMP option,
phase 60 created Debug-text, which is used
by phase 65 to produce tables that provide
information needed by the STATE or SYMDMP
COBOL library subroutines. Phase 65 builds
the PROCTAB and SEGINDX tables for either
option. For the STATE option, the PROCTAB
and SEGINDX tables are written in the
object module; for the SYMDMP option, they
are written on the debug file. The
CARDINDX, PROCINDX, and PROSUM tables are
created only for the SYMDMP option and are
written on the debug file. The OBODOTAB
and DATATAB tables have already been
created for the SYMDMP option by phase 25.

126 Section 2. Method of Operation

PROCESSING DEBUG-TEXT

Routines GETF2 and RDF2 locate and read
the Debug-text, which is passed to Phase 65
on file SYS002. Debug-text consists of the
following elements:

• CARDLOC elements (10), which contain
COBOL source card numbers, a switch to
indicate the presence or absence of a
verb on the card, and the contents of
LOCCTR in COMMON when the card number
element was read by phase 60.

• ENDSEG elements (20), which signal the
end of a segment.

• SEGMENT elements (30), which signal the
beginning of a segment.

• DISCONTINUITY elements (40), which
signal a discontinuity in the card
numbers of the source program resulting
from combining two sections of equal
priority with intervening section(s) of
different priority.

The Debug-text elements are directly
involved in the creation of the PROCTAB,
SEGINDX, and CARDINDX tables.

The F2PROCS branch table is used to
branch to one of four routines which
control the processing for the elements.
Routine TENPROC controls processing for
CARDLOC elements; routine TWENPROC controls
processing for ENDSEG elements; routine
SEGINDX controls processing for Segment
elements; and routine FRTYPROC controls
processing for Discontinuity elements.

BUILDING THE PROCTAB TABLE

Routine TENPROC builds the PROCTAB
entries from the information in the CARDLOC
elements. Each PRCCTAB entry contains the
relative address of the first instruction
generated for the card and verb number in
the entry. Phase 65 divides any program or
segment which exceeds 64K bytes in size
into program fragments less than 64K bytes
in length. Each segment also begins a new
program fragment.

BUILDING THE SEGINDX TABLE

A SEGINDX entry is created for each
fragment of the program.

If routine TENPROC determines that the
code generated for the last verb causes the
current fragment to exceed the maximum size
of a fragment (64K bytes), it calls routine
GTEQ10K to handle the processing for end of
the fragment. Routine GTEQ10K calls
routine saF to start the new fragment make
a SEGINDX table entry for the old fragment.
and begin collecting inforroation for the
next SEGINDX table entry ..

In a segmented program, the end of a
segment orn in a non-segmented program, the
end of the Procedure Division is signalled
by an ENDSEG element (20). When routine
RDF2 reads an ENDSEG element, it calls
routine TWENPROC to process the end of the
segment.

FURTHER PROCESSING FOR THE STATE OPTION

If STATE is specified, the PROCTAB and
SEGINDX tables are created and written in
the object module as described above.
Addresses passed in the TGTADTBL table are
used in writing the PROCTAB and SEGINDX
tables in the object module. The TXPNCH
routine writes the PROC~AB table in the
object module following either INIT3 or the
Flow Trace table if space has been
allocated for it. At end of file on
SYS002, routine EOF2 writes the SEGINDX
table in ascending order of priority after
the PROCTAB table in the object module.
The addresses of the beginnings of the
PROCTAB and SEGINDX tables and of the end
of the SEGINDX table are saved in the DEBUG
TABLE in the TGT.

The discussion of processing for the
S~ATE option continues in "Final
Processing" later in the chapter.

FURTHER PROCESSING FOR THE SYMDMP OPTION

If SYMDMP is specified, phase 65 builds
the CARDINDX, PROCINDX, and PROGSUM tables
for the debug file. Processing for the
CARDINDX and PROCINDX tables occurs in
conjunction with processing for the PROCTAB
and SEGINDX tables. The PROGSUM table is
processed after the other tables have been
written on the debug file.

Licensed Material - Property of IBM

BUILDING TilE CARDINDX 'I'ABLE

The CARDINDX table contains an entry for
each fragment of the program and for each
discontinuity in the COBOL instructions
within a segment of the program.

The discontinuity elements in Debug-text
indicate the discontinuity in COBOL source
card numbers at the end of each
non-contiguous section.

When routine RDF2 reads a Discontinuity
element (40), it branches to routine
FRTYPROC which sets a switch indicating
that special processing is to be done for
the end-of-section.

CARDINDX entries are created for
discontinuity within segments and for each
program segment.

BUILDING TBE PROCINDX TABLE

Before routine TXPNCrl moves a PROCTAB
element into the SYS005 buffer. it
determines whether the buffer is full. If
the buffer is full, it calls phase 00 to
write the buffer and builds a PROCINDX
entry providing card and verb number
information about the first entry in the
block and the note address of the block
after it has been written.

DEBUG FILE PROCESSING

The TXPNCH routine writes the PROCTAB
table on the debug file at the beginning of
a new block.

At end of file on SYS002 control is
transferred to the EOFON2 routine to
collect information about the number of
entries in each of the CARDINDX, SEGINDX
and PROCINDX tables. It stores this
information for the PROGSUM table in the
CARDINUM, SEGINUM, and PROCNUM save areas.
respectively. It then sorts the CARDINDX
table in order of ascending card number and
the SEGINDX table in order of ascending
priority.

Routine EOFON2 then moves the CARDINDX.
SEGINDX. and PROCINDX tables (in that
order) to the buffer for the debug file
(SYS005). (These tables are written on the
debug file, beginning at a new block.)
Routine EOFON2 saves the displacement
within the buffer of the start of the
SEGINDX and PROCINDX tables in the SEGDISPL
and PROCDISPL save areas, respectively.

Phase 65 127

Licensed Material - Property of IBM

This information becomes part of the
PROGSUM table.

Routine EOFON2 then calls phase 00 to
write the tables and note those blocks
which contain the beginning of a table.
Routine EOFON2 saves the note information
in the CARDNOTE, SEGNOTE, and PROCNOTE save
areas for the PROGSUM table.

All the information gathered by routine
EOFON2 is entered in the PROGSUM table.

If the debug file is located on disk,
the first 512-byte record is read back into
the buffer, and the PROGSUM table is moved
into the first 84-byte field. The record

lis then rewritten on the disk.

i If the debug file is located on tape,
/ routine ENDOFTBL writes the end of file

/ mark, and repositions both SYS005 and
SYS002 to the first record. It reads the
first 512-byte record of SYS005 into the
buffer and inserts the PROGSUM table in the
first 84 bytes. It writes the buffer on
file SYS002 and copies the remainder of
file SYS005 to file SYS002. Then it
recopies file SYS002 onto file SYS005.

FINAL PROCESSING

For any of the options, routine PNCHSW
sets the fullword SWITCH in the TGT to
reflect the options in effect and it also

128 Section 2. Method of Operation

sets the DEBUG TABLE PTR in the TGT. If an
error has occurred, the DEBUG TABLE PTR is
set to zero. The DEBUG TABLE is created
from information produced during phase 65
processing and from information in the
TGTADTBL table, and it is written in the
~GT. Finally, the END card for the program
is written in the object module.

For segmented programs the root segment,
written on SYSLNK by phase 60, is completed
by phase 65; the independent segments are
copied on SYSLNK from SYS004 where they
were written by phase 60. For
non-segmented programs that use the
SORT/MERGE verb, phase 65 writes PHASE and
text cards for a dummy SORT/~£RGE
subroutine load point on SYSLNK. For
segmented programs that use the SORT/MERGE
verb, the PHASE and INCLUDE cards are
copied on SYSLNK from SYS004 where they
were written by phase 60.

Routine ENDCODE releases all tables and
determines whether the compiler options
specified by the user require phase 00 to
call phase 61 or phase 70 or whether the
compilation is complete. Phase 61 is
called if the SXREF, VERBREF, VERBSUM or
XREF option was specified. Phase 70 is
called if the highest severity message
produced during compilation matches the
user's specification (FLAGE or FLAGW).

Phase 65 returns control to phase 00
either to call the next phase or to process
for the end of the job.

Phase 62 is first phase of the three
phases that make up the optimizer section
of the compiler. It begins the work
necessary to produce the machine language
program optimized for procedure name
address ability and for register usage and
suitable for input the linkage editor ..

The optimizer phases of the compiler
(phases 62. 63, and 64) employ a method for
addressing most procedure-names (PNs and
GNs) in the completed machine language
program which differs from the method
employed by phase 60. Phase 60 places the
address of the definition point of each
referenced procedure-name (PNs and GNs)
into the PROCEDURE NAME and GENERATED NAME
cells of the Program Global Table (PGT).
Each time that one of these procedure-names
is referenced, a load instruction of the PN
or GN address is generated. This
instruction is followed by an RR-type
branch instruction.

The optimizer phases divide the
Procedure Division code into blocks of
approximately 4095 bytes in length. These
blocks are referred to as Procedure Blocks.
Procedure-names (PNs and GNs) are addressed
as displacements added to a base register
(register 11) containing the address of the
beginning of a Procedure Block. Register
11 must be loaded with the Procedure Block
address when addressability is needed for
the Procedure Block. Addressability must
be established only when a reference is
made to a PN or GN whose Procedure Block
address is not the same as the one
currently contained in register 11, or
whenever the contents of register 11 cannot
be known (see "Phase 5 optimization
Elements" under "Procedure A-text" in
"section 5. Data Areas").

The optimizer phases, eliminate the need
to generate most of the instructions to
load the addresses of the PNs and GNs from
the PGT and instead of the RR-type branch
instructions generate RX-type branch
instructions. The optimizer phases also
eliminate the need for most PROCEDURE NA~E
and GENERATED NAME cells from the PGT.

The optimizer phases optimize load
instructions for base locators (BLs, BLLs,
and SBLs) ~n the TGT and the PGT and
OVERFLOW cells by permanently loading the
OVERFLOW cells and then the most frequently
used base locators into registers 6 through
10. Since phases 62, 63 and 64 eliminate
most of the GN and PN cells, there are
fewer OVERFLOW cells in a program where OPT

Licensed Material - Property of IBM

PHASE 62

has been specified than there are in a
program without the OPT option. Other base
locators are loaded into register 14 or
register 15 on a temporary basis. See
"Optimizing Register Assignments" below.

Phase 62 is divided into several parts,
each of which performs specific functions.
The functions are:

• Determining object program storage
allocation for the Task Global Table
(TGT) by processing counters in COMMON
and calculating the displacements of
items which reside in the 'IGT at
execution time.

• Optimizing literals and virtuals by
processing Optimization A-text.
Determining storage allocation in the
Program Global Table (PGT) for these
items and for the procedure name (PN)
and generated procedure naITe (GN)
cells.

• If the program is segmented, reading
the segments in order of ascending
priority.

• Determining approximate object program
storage for the Procedure Division by
reading Procedure A-text and
calculating the Procedure Block number
in which each procedure-name (PN or GN)
is located.

• Optimizing usage for both permanent and
temporary register assignments.

The operations of Phase 62 are described
in Diagram 7.

OUTPUT OF PHASE 62

The output of phase 62 depends on the
options specified by the user. The LISTX,
CLIST, LINK (or CATAL), and DECK options
are processed by phase 62 in the same way
as they are processed by phase 60.

If the LISTX, CLIST, or SYM options have
been specified, phase 62 causes the TGT,
Literal pool, PGT, land register assignments
to be written on SYSLST (or SYS006 for LVL
option). Phase 64 causes the object
program listings produced for the LISTX and
CLIST options to be written on SYSLST (or
SYS006 for LVL option). Phase 64 also
passes XREF-text to phase 61 if the user

Phase 62 129

Licensed Material - Property of IBM

specified the SXREF, XREF, VERBREF, or
VERB SUM option.

For details see "output of Phase 60· in
the chapter ·Phase 60."

ALLOCATING STORAGE FOR THE TASK GLOBAL
TABLE (TGT)

Phase 62 calculates the length of the
Task Global Table (TGT) in the same manner
as phase 60 does. It receives the relative
address of the TGT from phases 22 and 21 in
LOCCTR; and it computes the length of the
variable-length fields of the TGT from the
counters in COMMON. In addition to the
fields which both phase 60 and phase 62
allocate, phase 62 initializes a fullword
to the address of the first Procedure Block
cell in the PGT. For more details on the
general functioning of this part of phase
62, see "Task Global Table Storage
Allocation" in the chapter "Phase 60." See
also Figure 48 for a description of the
counters in COMMON used by this phase.

OPTIMIZING AND ALLOCATING STORAGE FOR THE
PROGRAM GLOBAL TABLE (PGT)

Phase 62 optimizes the fields of the
Program Global Table (PGT) by eliminating
duplications which may have been generated
by earlier phases. It also calculates the
lengths of the optimized fields so that
storage requirements for the PGT may be
determined.

OPTIMIZING AND BUILDING TABLES

While optimizing for the PGT, Phase 62
reads Optimization A-text from file SYS003
and merges its information with information
from tables and counters built by earlier
phases. This information is used to:

• Process DTF virtuals.

• Build the VN priority (VNPTY) table.

• Optimize and calculate storage
requirements for literals, DISPLAY
literals, and virtuals.

• Build the BLVNTBL, PNATBL, and GNATBL
tables.

130 Section 2. Method of Operation

DTF Virtuals and VN Priority Table

Phase 62 builds the FILTBL table to
store the virtuals needed for input/output
and error-processing routines as well as
the VN priority (VNTPY) table in the same
way that phase 60 does. For details see
"Virtual References Definitions: FILTBL
Table" and "Building the VN Table" in the
chapter "Phase 60."

Ootimizing Literals and DISPLAY Literals

Phase 62 builds the CONTBL, CONDIS, and
LTLTBL tables to optimize for internal
literals and DISPLAY literals in the same
way as phase 60 does. The CONTEL table is
used to eliminate duplicate internal
literals; and the CCNDIS table is used to
eliminate duplicate DISPLAY literals. The
LTLTBL table contains the displacements of
individual literals within their respective
tables. It is used later in the phase to
calculate the relative address of each
literal and DISPLAY literal in the PGT of
the completed object program. For details
see "Optimizing Literals and DISPLAY
Literals" in the chapter "Phase 60."

Optimizing Virtuals

Phase 62 builds the CVIRTB table and the
VIRPTR table to optimize for virtuals (that
is, names in EBCDIC of called programs or
of object-time COBOL library subroutines)
in the same way as phase 60 does. The
CVIRTB table is used to eliminate duplicate
virtuals, and the VIRPTR table contains the
displacements of individual virtuals in the
CVIRTB table. It is used later in the
phase to calculate the relative address of
each virtual in the PGT of the completed
object program. For details see
"Optimizing Virtuals" in the chapter "Phase
60."

processing for PNs and GNs

Phase 62 builds four tables for PN and
GN processing for the PGT. These are the
BLVNTBL, VNPNTBL, PNATBL and GNATBL tables.
Routine VNPNSCRT builds the VNPNTBL table
from the VN EQUATE PN or VN EQUATE GN
elements of Optimization A-text.

Routine GNVNRTN builds the BLVNTBL table
from GN and VN perform elements. Routine
PGNARTN builds the PNATBL and GNATBL

tables. These tables list the PNs and GNs
for which address cells are required in the
PGT.

ALLOCATING STORAGE FOR THE PGT

When all Optimization A-text has been
read, storage is allocated for the PGT.
ESD cards and TXT cards are produced for
virtuals and literals. Counters in COMMON
are set to the displacements of their
corresponding PGT fields from the beginning
of the PGT.

If the LISTX, CLIST or SYM options are
specified, the format of the PGT is written
on SYSLST (SYS006 for LVL option) usinq
routine MAPLOC (if the SUPMAP condition
exists, this writing does not take place).

OVERFLOW Allocation: Preliminary
calculations are made to determine whether
the size of the PGT exceeds 4096 bytes. If
it does, one 4-byte OVERFLOW cell is
required for each 4096-byte area after the
first. Since OVERFLOW cell allocation
occurs before the first reading of
Procedure A-Text in this phase, this part
of phase 62 cannot determine the number of
PROCEDURE BLOCK cells that are required in
the PGT. Therefore, it allocates one
additional OVERFLOW cell to allow for the
possibility that allocation of the
PROCEDURE BLOCK cells may cause the PGT to
exceed the final 4096-byte area that has
already been determined. The number of
bytes required is placed in register RW1,
which is used throughout PGT allocation to
hold the displacement of the field
currently being processed.

VIRTUAL Allocation: Phase 62 allocates
storage for the VIRTUAL cells field of the
PGT in the same way that phase 60 does.
The displacement of the VIRTUAL cells field
from the beginning of the PGT is placed in
the VIRCTR cell in COMMON; the calculated
length of the field is added to the
contents of register RW1; the displacements
of the individual virtuals in the VIRTUAL
field are placed in their respective VIRPTR
table entries. For details see "VIRTUAL
Allocation" in the chapter "Phase 60."

PN Allocation: After the VIRTUAL cells
field has been processed, the value in
register RW1 is the displacement of the PN
field in the PGT. This value is saved in
the RPNCNTR cell of COMMON.

Only those PNs which follow TO PROCEED
TO in an ALTER statement and section-names
defined in a USE statement in the
Declaratives Section require PN cells in
the PGT. Phase 51 sets the RPNCNTR counter

Licensed Material - Property of IBM

in COMMON to the number of cells required.
Phase 62 uses the RPNCNTR counter to
allocate 4 bytes for each PN. The total
length of the PN field is then added to
register RW1.

GN Allocation: After the PN cells field
has been processed, the value in register
RW1 is the displacement of the GN field in
the PGT. This value is saved in the RGNCTR
cell in COMMON.

Only those GNs which are used in
instructions for an AT END phrase or an
INVALID KEY option require G~ cells in the
PGT. Phase 51 sets the RGNCTR counter in
COMMON to the number of cells required.
Phase 62 uses the RGNCTR counter to
allocate 4 bytes for each GN. The total
length of the GN field is then added to
register RW1.

SDTFADR Allocation: The SDTFADR cell in
COMMON is used to determine the storage
requirements for the SDTFADR ADDRESS cells
of the PGT. Four bytes are reserved for
each SDTF in the program. The cell is set
to the value of register RW1, and register
RW1 is then incremented to reflect the
allocated bytes.

VNI Allocation: The VHCTR cell of COMMON
was used by earlier phases to count the
number of variable procedure names in the
program. The value of VNCTR is moved to
the VNILOC cell of COMMON. Fom VNILOC,
four bytes are allocated for every VN. The
displacement of the VNI field (the value of
RW1) is placed in the VNILOC cell, and the
number of bytes allocated is added to RW1.

LITERAL Allocation: Phase 62 allocates
storage for the LITERAL field in the PGT in
the same way that Phase 60 does. The
displacement of the LITERAL field is placed
in the LTLCTR cell in COMMON; the
calculated length of the fielc is added to
the contents of RW1; and the LTLTBL table
is saved for Procedure A-text processing.
For details, see "LITERAL Allocation" in
the chapter "Phase 60."

PROCEDURE BLOCK Allocation: Phase 62 does
not allocate storage for the PROCEDURE
BLOCK cells until after it reads and
orocesses Procedure A-Text. It reads
Procedure A-Text to determine the number of
blocks, containing approximately 4096 bytes
of storage, that are required for the
optimized Procedure Division. For details
on the phase 62 optimization of Procedure
A-text, see "Optimizing and Allocating
Storage for the Procedure Division" later
in this chapter.

After the allocation of storage for the
other fields of the PGT, the value in
register RW1 is the displacement of the

Phase 62 131

Licensed Material - Property of IBM

PROCEDURE BLOCK cells field in the PGT.
This value is saved in the PRBLDISP cell of
COMMON. After Procedure A-text processing,
phase 62, using the PROCBL counter,
allocates one 4-byte field for each
Procedure Block.

OPTIMIZING REGISTER ASSIGNMENTS

Seven registers are used by the compiler
to address Data Division items or overflow
cells in the machine language program.
Registers 6 through 10 are assigned
permanently, that is, for the entire object
program; registers 14 and 15 are assigned
on a temporary casis, that is, for single
instructions or for short sections of code
only. Phase 62 assigns registers 6 through
9 before Procedure A-text is read, and
register 10 after Procedure A-text is read.
Use of registers 14 and 15 is determined as
Procedure A-text is processed.
Optimization takes place for both permanent
and temporary register assignments.

PERV~NENT REGISTER ASSIGNM~NTS

Phase 62 builds the BLASGTBL table for
permanent register assignments. Before
Procedure A-text is read, routine REGMV1
first assigns the OVERFLOW cells of the TGT
and the PGT to permanent registers,
starting with register 6, except for the
OVERFLOW cell. Register 12 points to the
PGT permanent register. Next, routine
BLSRCH searches the BLUSTBL table, built by
phases 50 and 51, to determine the base
locator most frequently referred to. That
base locator is assigned to the next
unassigned register. The process is
repeated until each of registers 6 through
9 have been assigned. After Procedure
A-text has been read, register 10 is
assigned to the next most frequently
referenced base locator if it is not needed
for the additional OVERFLOW cell of the
PGT.

TEMPORARY REGISTER ASSIGUMENTS

Registers 14 and 15 are assigned to base
locators for single instructions or for

132 Section 2. Method of Operation

short blocks of object code only. While
Procedure A-text is being read, routines
ENTDRP and ENTDRPL build the DRPTBL and
DRPLTBL tables, respectively, to optimize
the assignment of these registers.

Phase 62 optimizes the assignment of
temporary registers by avoiding
unnecessaryrepetition of load instructions.
To do this, it assigns the first two unique
base locators referenced in Procedure
A-Text to registers 14 and 15 by making
entries in the DRPLTBL table. It builds
the DRPTBL table from the subsequent base
locators referenced until a condition is
met which makes resolution of register
assignment possible. These conditions are
as follows:

• A reference to a base locator whose
previous assignment to a register is
still in effect.

• A referenced PN, a GN, or the entry
pOint of a new program segment.

• The base locator which will be
permanently assigned to register 10 if
that register is not needed for the
extra OVERFLOW cell of the PGT.

• A RESERVE, DESTROY, FREE, or BLCHNG
element.

Figure 59 exemplifies the optimizing
process for base locator assignments to
registers 14 and 15.

Phase 62 builds the DRPLTBL table for
address in~rement elements as well as for
address references. DRPLTBL table
processing for address increments is done
only if the increment is greater than 4095,
in which case an additional generated
instruction is needed to load the address
of the data-name plus the address
increment, which is at least 4096 bytes,
into temporary register 14 or 15. Phase 62
adds 4 bytes to ACCUMCTR for each such LA
instruction needed. The DRPLTBL entry for
an address increment indicates to phase 63
which temporary register to use in the RX
field of the LA instruction being
generated.

Licensed Mat~rial - Property of IBM

Steps Temporary BLs DRPTBL DRPLTBL

BL=6 > R14*

BL=7 > R15*

o
o
o
®
®
o
o

BL=8 ® ---------------------------------:> 8 --------------~-----------®
> R15*

BL=10 ---------------------------------->. 10 -----------------------------> R15*

BL=6 > R14**

BL=10 > R15**1

BL=11 --------------------------------.) 11 > R14*

®
®
@
@
@
@
@
@

BL=12 --------------------------------> 12 > R14*

BL=5*** > R14*

BL=6 > R14*

BL=10 > R15*

BL=7 --------------------------------> 7 > R14*

BL=10 > R15**

BL=12
@

--------------------------------~> 12 -----------------------------> R14*

Entry point (referenced PN or GW definition or new segment)
I ,
I *Indicates that a load instruction is generated for this assignment by phase 63. I
I **Indicates that the BL is already loaded and that no load instruction is generated bYI
I phase 63. I
I***BL=S is the base locator that will be loaded into register 10 if the additional I
I OVERFLOW CELL for the PGT is not required. I , ,

Figure 59. Optimizing Assignment of Registers 14 and 1S

OPTIMIZING AND ALLOCATING STORAGE FOR THE
PROCEDURE DIVISION

Whenever a PN or GN is referred to in an
instruction, a check is made to determine
whether the address of the Procedure Block
that contains the PN or GN has already been
loaded into register 11. I£ it has not
been loaded, then an instruction is
generated to load the address of the
Procedure Block into register 11.

As phase 62 reads Procedure A-text, it
determines the Procedure Block number for
each PW and GN and builds the PNLABTBL and
GNLABTBL tables. These tables are passed
to phase 63, Which generates the actual
instructions necessary for establishing
addressability.

To build the PWLABTBL and GNLABTBL
tables phase 62 uses a counter, called
ACCUMCTR, to generate displacements within
Procedure Blocks. This counter is
incremented with the length of each

instruction occurring in the completed
object program. Phase 62 uses ACCUMCTR to
determine when the displacement of the
definition of a GN or PH from the beginning
of the Procedure Block exceeds 4095 bytes.
When the displacement is greater than 4095
bytes, a new Procedure Block is begun.

Phase 62 also builds the PNFWDBTB and
GNFWDBTB tables for all PN's and GW's which
are referred to prior to their definition
point. Since it cannot be determined
whether the reference and the definition
occur within the same Procedure Block, it
is not possible to determine whether the
Procedure Block address of the definition
is already loaded into register 11 at the
point where the reference is made to it.
The forward branch tables (PNFWDBTB and
GNFWDBTB) are used to accumulate the number
of forward references to PBs and GNs,
respectively, which mayor may not be
defined in a different Procedure Block. As
a PH or GN definition is encountered which
has been entered into the PNFWDBTB or

Phase 62 133

Licensed Material - Property of IBM

GNFWDBTB table, the counter for that PN or
GN is set to zero.

Since references to PNIS and GN's which
have not yet been defined may entail an
additional instruction to load the
Procedure Block address of a different
block, the number of bytes represented by
the counters in the PNFWDBTB and GNFWDBTB
tables must be added to the displacement in
ACCUKCTR to determine the current length of
the block.

Building the PNLABTBL and GlJ1ABTBL Tables

Phase 62 sets a counter, called PROCBL,
for use in building the PNLABTBL and
GNLABTBL tables. PROCBL is incremented for
each procedure Block. The value contained
in PROCBL is the Procedure Block number for
the current block of code. Using PROCBL,
phase 62 enters the Procedure Block number
of each referenced PN and GN definition
into the PNLABTBI. and GNLABTBL tables for
use by phase 63.

Routine NOBLST uses the PNCTR and GNCTR
cells in COMMON to determine the number of
PH entries and GN entries, respectively,
that are required in the PNLABTEL and
GNLABTBL tables.

Incrementing the ACCU~CTR Counter

As phase 62 reads Procedure A-text, it
increments ACCUMCTR by the length of each
machine-language instruction that is part
of the completed object program. For this
purpose it uses the codes listed in Figure
60, as well as Procedure A-text, and the
PWLABTBL, G~LABTBL, PNFWDBTB, and GNFWDBTB
tables.

Since the optimizer phases of the
compiler use Procedure Block addresses to
address PNs and GNs, these phases eliminate
and change some of the instructions in
Procedure A-text. Phase 62, therefore,
determines Which instructions are to be
eliminated or changed during the

134 section 2. Method of Operation

optimization process. Phase 62 then
increments ACCUMCTR accordingly. The
PNLABTE.L and GNLABT'BL tables, as well as
the PNFWDBTB and GNFWDBTB tables and the
PROCBL counter are used for this purpose.

PROCESSING FOR BRANCH INSTRUCTIONS: The
PROCBL counter contains the number of
Procedure Blocks that are required for the
Procedure Division. Each time that
ACCUKCTR and the information in the
PNFWDBTB and GNFWDBTB tables indicate that
a PN or GN definition is at a location
greater than 4095 bytes from the start of
the Procedure Block, block transition takes
place. The PROCBL counter is incremented
and ACCUMCTR is set to zero. Using the
PROCBL counter, routine DEFLD11 enters the
Procedure Block number of each PN or GN
definition into the PNLABTBL and GNLABTBL
tables, respectively.

When a branch is taken to a PN or GN
within the Procedure Block whose address is
already loaded into register 11, 4 bytes
are added to ACCUMCTR for the RI-type
branch instruction. When a branch is taken
to a PN or GN whose Procedure Block is not
already loaded into register 11, 8 bytes
are added to the ACCUMCTR for the load of
the Procedure Block address and the RI-type
branch instruction.

Each time that routine ENTPT01 processes
a PN or GN definition, it determines
whether the value in ACCUMCTR plus the
number of bytes necessary to branch to the
procedure names listed in the FWDBCTBL
tables is greater than 4095 bytes. If it
is not, then Procedure A-text processing
continues. If it is, then the routine
determines whether the definition being
processed has a count of forward references
in the PNFWDBTB or GNFWDBTB table. If it
does not, a new procedure block begins at
this defin1tion point. If a count is
found, however, the number of bytes
represented by the count is compared to the
number of bytes in ACCUKCTR minus 4096. If
the count value is low, a new procedure
block begins at this definition point. If
it is high, the count field is zeroed and
this definition point remains within the
current block. Phase 62 then makes new
calculations to determine the size of the
Procedure Block.

Licensed Material - property of IBM

i , ,

I I ACTION TAKEN BY I
I IMEANING/procedure-Name~I-------------------ri-------------------ri-------------------il
ICODEI Definition status I PHAS~ 62' I PHASE 63 I PHASE 64 I
I I I I I I
COOllLoad instruction not I I I I

Ifollowed by branch in-I I , ,
Istruction. I I I I
I , I I I
I A Procedure-name waslAdd 4 to ACCUMCTR. ISet COOl switch; IFill in displace- I
I defined in same 1 Ireplace L instruc- Iment using PNLBDTBLI
I Procedure Block. I Ition with LA in- lor GNLBDTBL table I
I I Istruction. Add land Procedure base I
I I IProcedure base Iregister element. 1 I
I I Iregister element. 1 I I
I I IAdd 4 to counters. I I
I I I Do not rewrite I I
I I IC001. I I
I I I ' I I

INotes:

B procedure-name was Add 8 to ACCUMCTR. ISet COOl switch; IFill in displace-

C

defined in differ- Igenerate: L Rll, Iment of Procedure
ent Procedure IProcedure block IBlock in PGT using
Block. Inumber element. 2 IProcedure block

Procedure-name is
not yet defined
(forward
reference) •

IGenerate LA in- Inumber element. 2
Istruction. IFill in displace-
IAdd Procedure base Iment of procedure­
Iregister element. 1 Iname using PNLBDTBL
IAdd 8 to counters. lor GNLBDTBL table
IDo not rewrite land Procedure base
IC001. Iregister element. 1

I I
I I

orl I
IEnter procedure­
Iname in PNFWDBTB
IGNFWDBTB table.
IResolve procedure­
Iname definition
Istatus by end of
IProcedure Block.

I I
I I
I I
I I
I I

I , ,

1 Procedure Base Register Element:

Bytes 0 1 2-3

C8 PN
CC GN Register number PN/GN Number

2Procedure Block Number Element:

Bytes 0

C4 Bloc~ Number

3These phase 50 optimization Information elements (COxx) are created by phase 50 from
phase 40 optimization Information elements (43xx).

Figure 60. Processing for Optimization Information Elements3 (Part 1 of 3)

Phase 62 135

Licensed Material - Property of IBM

iii
I 1 ACTION TAKEN BY I

I IHEANING/Procedure-Namel I I r
ICODEI Definition Status I PHASE 62 I PRASE 63 I PRASE 64 I
I I I I I ,
IC002lBranch-in point. IAdd 4 to ACCUMCTR. IIndicate that Pro- I I
1 I (Addressability for I Icedure Block I I
I I Procedure Block is I laddress is to be I I
I I uncertain.) I Iloaded at next re- I I
I I I Iference to PN or I I
I I I IGN. Do not rewrite I I
I I I IC002. I I
I I I I I I
IC0031An address constant islAdd 4 to ACCUHCTR. IWrite Procedure A1-IProcess PN or GN I
I Ito be used for this I Itext element iden- Ireference as in I
I lelement; PGT to con- I Itical to Procedure Iphase 60. I
I Itain a PH cell or GN I lA-text element. I I
I Icell. I IAdd 4 to counters. 1 I
, I I IDo not rewrite , I
I I I IC003. I ,
I I , I I I
IC0041PERFORM exit. ,Find all entries iniDo not rewrite I I
I , Ithe BLVNTBL for thelC004. , I
I I I VN whose reference 1 I I
I , Ifollows this ele- I 1 I
1 I Iment. Enter I 1 I
I , Icurrent block num- I I r
, I Iber into these , I I
I I Itable entries. , I I
I ! I I I
INotes:
I
, lProcedure Base Register Element: ,
I Bytes 0 1 2-3 ,
I C8 = PN
I CC = GN Register number PN/GN Number
I

2Procedure Block Number Element:

Bytes o

C4 Block Number

~These phase 50 optimization Information elements (COXX) are created by phase 50 from
phase 40 Optimization Information elements (43xx).

Figure 60. Processing for Optimization Information Elements 3 (Part 2 of 3)

136 Section 2. Method of operation

Licensed Material - Property of IBM

i I I

I I ACTION TAKEN BY I
I
ICODE

MEANING/Procedure-Namerl--------------------ri------------------~I._------------------~,
Definition status I PHASE 62 I PHASE 63 , PHASE 64 I

I I I I ,
ICOOS , Return point from a

performed procedure
(GN definition).
Element is followed
a GN definition
element.

IAdd 4 to ACCUMCTR. ,Search BLVNTBL to IFill in displace- I
I Idetermine if the Iment of Procedure I

I ,
I
I
I
I
I

I IEXIT from the per- Iblock in PGT, using I
byl Iformed procedure is,Procedure Block I

I lin the same Proce- number element. z I
I Idure Block as the I
I Ireturn point. I
I IRewrite GN defini- I

,tion element with- I
lout COOS. If I
IPERFORM EXIT and I
Ireturn point are in I
Isame block, rewrite I
lelement without I
ICOOS. I
IIf they are not in I
Isame block, indi- ,
,cate that register I
111 contains Proce- I
Idure Block address I
lof PERFORM exit. I
IRewrite element I
Iwithout COOS. I
I I

C006,Load instruction
Ifollowed by an uncon­
Iditional branch.

I , I
I , I
, I I

I
I A
I
I
I
I
I B
I
I
I
I ,
I

Procedure-name
defined in same
Procedure Block.

Procedure-name
defined in dif­
ferent procedure
block.

IAdd 4 to ACCUMCTR
Ifor RX-type branch
linstruction to be
Igenerated. ,
IAdd 8 to ACCUMCTR
Ifor load of regis­
Iter 11 and RX-type
Ibranch instruction
Ito be generated.
I
I

I C Procedure-name notlEnter procedure­
Iname into PNFWDBTB
lor GN1"WDBTB;
Iresolve procedure­
Iname definition
,status by end of
IProcedure Block.

I yet defined.
I
I
I
I
I

I I r
ITurn on LOADSW I I
Iswitch. I I
IDo not rewrite I I
IC006. I I
I I r
ITurn on LOADSW IFill in displace- I
Iswitch. Iment of Procedure I
IDo not rewrite IBlocks in PGT, I
IC006. ,using Procedure I
I Iblock number I
I lelement. z I
I I r
ITurn en LOADSW IWrite EX-type I
Iswitch. Ibranch instrucion I
IDo not rewrite Ifollowing the C006 I
IC006. Iload instruction. ,
, , I
I I ,
I I ,

I I I I I I

zProcedure Block Number Element:

Bytes o

Cll

4

Block Number

I ,
I
I
I
I ,
I ,

3These phase 50 Optimization Information elements (COxx) are created by phase 50 from ,
phase 40 optimization Information elements (43xx). I

i

Figure 60. Processing for Optimization Information Elements 3 (Part 3 of 3)

Phase 62 137

Licensed Mat~rial - property of IBM

PHASE 63

Phase 63 is the second of the three
phases that make up the optimizer section
of the compiler. Its principal function is
to produce Procedure Al-text, which is
written on file SYS002. Phase 63 produces
the text according to the information
supplied from phase 62. Upon completion,
the text is passed to phase 64 where it is
used to produce the optimized machine
language program. Phase 63 also causes the
Procedure Block assignments to be written
on SYSLST (SYS006 for LVL option) if the
LISTX, CLIST, or SYM options are in effect.

Phase 63 produces Procedure A1-text from
Procedure A-text by:

• Inserting information for addressing
PBs and GNs and Procedure Blocks in
instructions such as displacements of
PBs and GNs within a given block and
the Procedure Block number to be used.

• Generating all remaining instructions
for the object program except the load
instruction elements required when a
data-name is only temporarily
addressable.

• Reading the program in ascending order
of priority if it is segmented.

The operations of Phase 63 are described
in Diagram 8.

INITIALIZATION OF PHASE 63

Routine PHAS63 performs the
initialization process for phase 63. It
saves LOCCTR for restoration at end of
file, relocates all of the TIB addresses,
and primes all the new tables used by the
phase, except for the QGNTBL which is
primed in routine QBEGIN if there are
Q-routines. If the program is segmented, a
call to phase 00 is issued to request a
POINT to the first section of text on file
SYS001. otherwise, the initialization
routine requests phase 00 to read the first
Procedure A-text buffer from file SYS001.

CONSTRUCTING PROCEDURE A1-TEXT

Phase 63 reads Procedure A-text from
file SYS001 and writes Procedure A1-text on
file SYS002.

138 Section 2. Method of Operation

Procedure A1-Text is described in
"Section 5. Data Areas."

CONTROL ROUTINE

Routine GET serves as the control
routine for phase 63 processing of
Procedure A-text elements. It reads each
element of Procedure A-text and branches to
one of several routines for specific
processing of each type of element.

For CO elements, macro-type instruction
elements, and operation code elements, it
branches to routines CO, MACRO, and
FOURTY8, respectively.

For each of the other elements it uses
the GETBTBL table to branch to the proper
routine for specific proce~sing of that
element.

PROCESSING PROGRAMS WITH ONE PROCEDURE
BLOCK

In programs which do not exceed one
Procedure Block in length and which have no
Report Writer or Declaratives Section, and
in which segmentation does not occur, the
Procedure Block address is loaded into
register 11 only when the ENTRY macro
(4404) and/or START macro (4420) of
Procedure A-text is read.

PROCESSING FOF BRANCH INSTRUCTIONS

Routine BRANCH processes the branch
element following the PN or GN reference.
It uses the SAVETBL and either the PNLABTBL
or GNLABTBL table to determine whether the
PN or GN referenced by this branch is
defined in the Procedure Block that is
currently loaded in register 11. If the PN
or GN is defined outside of the Procedure
Block currently loaded, a Procedure A1-text
element is generated to load register 11
with the address of the Procedure Block
which conains the PH or GN definition.
Routine BRANCH then generates an RX-type
Procedure A1-text branch element instead of
the RR-type of Procedure-A text so that an
instruction will be generated to branch to
the PN or GN.

If the PN or GN is defined within the
Procedure Block that is currently loaded in
register 11, the routine merely changes the
RR-type branch instruction to an Rx-type
branch instruction. The register number in
the original instruction is changed to zero
since register 11 is inserted in the branch
instruction by Phase 64. The PN (CS) or GN
(CC) number element from the SAVETBL work
area follows the instruction.

PROCESSING FOR OPTIMIZATION INFORMATION
ELEMENTS (C001-C007)

Phase 63 processing for optimization
information elements is described in Figure.
60 in the chapter "Phase 62."

PROCESSING FOR RPT-ORIGIN (D4) ELEMENT

An RPT-ORIGIN (D4) element indicates
that an RLDTBL table entry is to be made
for this location in the program. The
location is the point of definition (or the
point of definition plus 4 bytes) of the GN
for a REPORT-ORIGIN verb. Routine D4
creates the RLDTBL entry for the location,
saving the value contained in LOCCTR. It
sets the high-order byte to hexadecimal
'10" to indicate the purpose of this entry
to Phase 64. The entry is used to generate
text cards at the proper location; but
phase 64 does not produce an RLD card for
this type of entry. When the ORG macro
element is read later, LOCCTR is -set by
phase 64 to the value of LOCCTR at the time
of the RPT-ORIGIN element.

PROCESSING FOR ADDRESS REFERENCE (7S)
ELEMENTS

Address reference elements are generated
to address data areas. The data areas are
addressed by means of a displacement from a
base locator.

When an Address reference element is
found in Procedure A-text, routine GET
branches to routine ADREF for processing.

PROCESSING FOR ADDRESS INCREMENT (80)
ELEMENTS

When address increment elements occur,
they follow Address reference elements and
indicate that an additional displacement

Licensed Material - Property of IBM

value is to be added to the value indicated
by the Address reference element to address
a data-name.

When Routine GET finds an Address
increment element in Procedure A-text, it
branches to routine ADINCR which determines
whether the sum of the displacement and the
value contained in the Address reference
element is less than 4096 bytes. If the
sum is less, then routine ADINCH adds a
byte containing X'OO' to the Address
reference element and writes the element in
Procedure A1-text.

If routine ADINCR determines that the
sum is 4096 bytes or greater, it adds a
byte containing X'OE' or X'OF', which
indicates to phase 64 that LA instructions
are to be generated using either register
14 or register 15, respectively, to the
Address increment element and writes the
element in Procedure A1-text. LOCCTR and
ACMCTR are incremented by 4 for each
multiple of 4095 bytes in the added
displacement.

PROCESSING FOR INCREMENTED ADDRESS (A4)
ELEMENTS

The Incremented address (A4) element in
Procedure A-text is functionally a
combination of the Address reference (7S)
and Address increment (SO) elements and is
treated as such by phase 63. Routine ADREF
(if no load is required, that is, if the
data-name is already in a register) changes
the element into a Base displacement
data-name element (see "Processing for
Address Reference (7S) Elements· in this
chapter). If it does. the increment
portion of the Increm~nted address (A4)
element is written out as an Address
increment (SO) element with the high-order
bit of the low-order byte set to 1 to
indicate that the increment has already
been added.

COUNTERS USED IN PHASE 63

While producing Procedure AI-text phase
63 uses two counters, LOCCTR in COMMON and
ACMCTR. LOCCTR is used to generate the
relative displacements of each instruction
listed and enter target addresses in the
RLDTBL table.

For details, see "Making Entries in the
RLDTBL Table" in this chapter.

ACMCTR is incremented for all code that
is to be contained in the completed machine

Phase 63 139

Licensed Material - Property of IBM

language program. It is used to generate
the displacements of PN and GN definitions
within each separate Procedure Block.
Routines PNDEF and GNDEF build the PNLBDTBL
and GNLBDTBL tables for this purpose.
Phase 64 uses these tables to generate the
proper displacements.

BUILDING THE QGNTBL TABLE

The QGNTBL table lists the Q-routine GNs
and their corresponding Procedure Block
numbers. These are needed by phase 64 to
initialize Q-routines during INIT3
processing. The table is built from the
GNLABTBL by Phase 63 at each GNDEF
following the Q-BEGIN macro-type
instruction (4440) element.

MAKING ENTRIES IN THE RLDTBL TABLE

RLD entries are made to:

• Resolve VN addresses

• Resolve the GNs for REPORT-ORIGIN verbs

• Produce RLD-text for the linkage editor

An RLD entry contains the relative address
within the object module for the entry
item.

Before an entry is made, the RLDTBL
table is sorted. RLDTBL entries are
created by phases 63 and 64; the RLDTBL
table is completed and processed by phase
64. Processing the RLDTBL table entails
writing RLD-text in some cases. At object
time, the linkage editor relocates
addresses contained in the RLD-text. (Not
all RLD entries cause RLD-text to be
written.)

Routines PNDEF, GNDEF, and STARTMAC
enter the relative address of an address
constant in the RLDTBL table as well as the
target address.

Routine D4 makes entries for locations
associated with REPORT-ORIGIN verbs. It
sets a bit to indicate to phase 64 that RLD
cards for these entries are not to be
produced. For details on these entries,

140 Section 2. Method of Operation

see "Processing for RPT-ORIGIN (D4)
Elements" above.

PROCESSING IN A SEGMENTED PROGRAM

When a program is not segmented, phase
63 reads Procedure A-text from file SYS001
in the order in which it was written. When
a program is segmented, Procedure A-text is
read in order of ascending priority so that
the procedure instructions for the root
segment are processed first.

Routine PHAS63 first determines whether
the program is segmented by checking SEGLMT
in COMMON. If SEGLMT does not contain
X'FF', the routine relocates SEGTBL and
indicates to phase 00 that a POINT macro
instruction is to be issued to access the
root segment in Procedure A-text.
Processing of Procedure A-text begins at
that point.

When routine MACRO comes to the end of a
section, it branches to routine SEGBRK,
which determines whether the end of the
section is also the end of a segment. If
it is the end of the segment, the routine
zeros out LOCCTR and ACMCTR and points to
the next segment of next highest priority;
the routine also calls the routine SAVTCTBL
to save the address of the end of the root
segment, which is either the address of
INIT2 or, if COUNT is in ,effect, the
address of the COUNT table. If it is not
the end of the segment, the routine points
to the next section of the sarre priority.
When the end of the SEGTBL table is
reached, control passes to routine EOF.

PROCESSING AT END OF FILE

When all segments have been processed or
at end of file in an unsegmented program,
routine EOF calls routine RLDSORT to sort
the final RLD entry.

Then it releases the tables used by
phase 63, except for the PNLBDTEL,
GNLBDTBL, VNPTY, VIRPTR, LTLTBL, BLASGTBL,
GNATBL, PNATBL, QGNTBL, and RLDTBL tables
which are passed to phase 64. Finally, it
restores LOCCTR, and returns control to
phase 00.

Phase 64 is the third of the three
phases which make up the optimizer section
of the compiler. It completes the
necessary processing to produce the
machine-language program. The major
functions of phase 64 are:

• Processing Data A-Text and completing
the RLDTBL table.

• Processing Procedure A1-text, and
entering displacements into the
instructions generated in phase 63.

• writing object text and RLD-text from
the RLDTBL table.

• Writing object text from Procedure
A1-text

• Writing object text for the INIT2,
INIT3, and INIT1 routines of the object·
program, in that order.

• Building the QTBL and ERRTBL tables.

• Processing DEF-text, E-text, and
REF-text.

OUTPUT OF PHASE 64

The output of phase 64 depends on the
options specified by the user. The LISTX,
CLIST, LINK (or CATAL), and DECK options
are processed by phase 64 in the same way
as they are processed by phase 60. For
details, see "Output of Phase 60" in the
chapter "Phase 60."

If the SXREF, XREF, VERBREF, or VERBSUM
option is in effect, Procedure A1-text is
used to create REF-text and to write it on
file SYS004. This text, containing an
element for every data-name, file-name, and
procedure-name in the program, is used by
phase 61 to produce a cross-reference
listing. DEF-text, which is also produced
in response to the specification of the
SXREF, XREF, VERBREF, or VERB SUM option, is
read by phase 64 from file SYS004 and
passed to phase 61 on file SYS001.

COMPLETING THE RLDTBL TABLE

Phase 64 reads Data A-text from file
SYS004 before it reads Procedure A1-text

Licensed Material - Property of IBM

PHASE 64

from file SYS002. It does this because
Procedure A1-text for segmented programs
has been written by phase 63 in order of
ascending priority with the root segment
first. Before phase 64 reads ~rocedure
A1-text, therefore, it must corrplete all
RLD entries for the root segment.

The primary function of Data A-text
processing is to place values in fields in
the data area or in the global tables in
the object module. Each element causes
either the generation of an object text
element or the creation of an entry in the
RLDTBL or Q'I"BL table. Routine RLDSORT is
used to make entries in the RLDTBL table in
sorted order. Some RLDTBL table entries
are later written out as relocation
dictionary (RLD-text) entries for the data
area and as object text. Other entries
(for the global tables) will be written
out as object text only (these will be
relocated by the object program).

File SYS004, from which Data A-text is
read, also contains E-text, generated by
phases 10 through 63. and DEF-text for the
cross-reference listing if the SXREF, XRFF,
VERBREF, or VERBSUM option was specified.
Figure 57 in the chapter "Phase 60"
illustrates the contents of this file when
it is read by. phase 64. E-text and
DEF-text are processed by phase 64 in the
same way as they are processed by phase 60.
Figure 58 in the chapter "Phase 60"
describes how each type of elerrent is
processed.

After end of file on SYS004, Procedure
A1-text is processed.

COMPLETING THE MACHINE LANGUAGE PROGRAM

Routine SE6000 reads Procedure A1-Text
from file SYS002. Since Procedure A1-Text
has been written by phase 63 in order of
ascending priority with the root segment
first, routine SE6000 reads the text
sequentially for segmented programs, as
well as for non-segmented programs.

The special processing done by phase 64
for Procedure A1-text elements is descr"ibed
in Figure 61 "Processing of Procedure
A1-text." All other Procedure A1-text
elements are processed by phase 64 in the
same way that phase 60 processes Procedure
A-text elements. See "Procedure A-Text
Processing" and Figure 56 "Processing of
Procedure A-Text" in the chapter "Phase
60."

Phase 64 141

Licensed Material - Property of IBM

r--------------T--,
ICode and Type I Action Taken I
~--------------t--1
178 I If the i field contains X'03' the BL, BLL, SBL, or SBS indicated is I
I address I already loaded. Process in the same way as phase 60 does. Otherwise, I
I reference I save contents of print buffers and generate load of register lij or I
I I register 15 with the BL, BLL, SBL, or SBS indicated by the high-order I
I I bit of the i field. If the bit is on, use register 15; if it is off, I
I I use register lij. Restore buffers and complete ~rocessing in the same I
I I way as phase 60 does. I
~--------------+--~
180 I If appended byte is not zero, print buffers are saved. One LA instruc-I
I address I tion is generated for each multiple of 4095 in the sum of the displace-I
I increment I ment saved for the 78 (or DO) and 80 elements. Buffer is restored; itsl
I I displacement field is replaced by the amount in excess of the final I
I I multiple of 4095. Value of the 8'0 element is included in the symbolic I
I I field as "+NNN." I
~-~------------t--1
I BC 1 Generate 3 DC instructions, used as parameters by the GO '1'0 ••• DEPEND- I
I segmentation I ING ON and segmentation subroutines. Code generated is as follows: I
I and GO TO... I I
IDEPENDING ON I DC X'priority' I
Icall parameter 1 DC XU Procedure Block number' I
I I - DC X2'displacement, with Procedure Block' I
~--------------+------~-~--~
IC4 I Add displacement within PGT of Procedure Block cell (or OVERFLOW cell) I
I procedure I to each instruction that establishes addressability for a Procedure I
Iblock number I Block. Use PRBLDISP cell set in COMMON by purpose. I
~--------------+----------~---1
IC8 I Enter displacement in branch instructions generated by phase 63, I
Iprocedure basel using PNLBDTBL. I
Iregister for I I
I~s I I
~--------------+--1
ICC I Enter di~placement in branch instructions generated by phase 63, I
Iprocedure basel using GNLBDTBL. I
Iregister for I I
IGNs I I
~--------------t--1
IDO J Specifies actual register number, displacement from start of area con- I
Ibase displace-j trolled by base register, and a data-name dictionary pointer. Write I
Iment data-name I base and displacement; branch to routine for processing dictionary I
I I pointer. - I
~--------------~--1
I *This table describes only those elements which are unique to Procedure Ai-text. All I
I other elements are identical with their counterparts in Procedure A-text, and are I
I processed by phase 64 in the same way as they are processed by phase 60. See I
I "Processing of Procedure A-text" in the chapter "Phase 60." I L ___ J

Figure 61. Processing of Procedure Al-Text*

142 Section 2. Method of Operation

INITIALIZATION ROUTINES

After Procedure A1-text has been
processed, the initialization coding is
generated. Routines GINIT1, GINIT2, and
GINIT3 generate the code for INIT1, INIT2.
and INIT3, respectively. The three
initialization routines, in the order in
which phase 64 writes them, are INIT2,
INIT3, and INIT1. All three are resident
in the root segment if the program is
segmented.

INIT1 sets up address constants for the
program"s TGT. PGT, and first executable
instruction, and for the three
initialization routines. It then transfers
control to INIT2 if the program is a
subprogram, or to INIT3 if it is not.

INIT2 is executed if the program is a
subprogram or is entered at a secondary
entry point. It establishes standard
subroutine linkage. Control then passes to
INIT3 which sets up base registers.
relocates addresses. and transfers control
to the proper point in the program to begin
execution. (For a more complete
description of these three routines,

Licensed Material - Property of IBM

including the generated code, see "Appendix
B. Object Module.")

RLDTBL TABLE PROCESSING

After the initialization routines are
generated (after Procedure Division or root
segment processing), the RLDTBL table is
processed. Indirect address constants are
resolved. Object text is written for items
that are in the global tables. This text
consists of address constant definitions
that will be stored in the global tables at
execution time. No RLD-text is required
for these items, because the addresses are
relocated during program execution by
routine INIT3. However, in a nohsegmented
program, RLD-text is written for relocating
all Procedure Block cells contained in the
PG'I'. Object text is also written for data
area address constants (obtained from
address constant and indirect address
constant definitions). For the data area
address constants. RLD-text is written so
that the linkage editor can relocate the
addresses.

Phase 64 143

Licensed Material - Property of IBM

PHASE 61

The function of phase 61 is to produce a
cross-reference listing on SYSLST (or
SYS006 for LVL option). The phase is aiven
control only if the SXREF, VERBREF,
VERBSUM, or XREF compiler option was
specified by the user. The transfer of
control is described under "Processing
Betw,een Phases" in the chapter "Phase 00."

Phase 61 tests the PHZSW2 byte in COMMON
to determine whether the option specified
is SXREF. If SXREF is in effect, phase 61
generates an alphabetically ordered
cross-reference listing. Phase 61 tests
the PHZSW4 byte in COMMON 'to determine
whether the option specified is VERBREF or
VERESUM. If VERBREF is in effect, phase 61
produces the verb cross-reference listing.
If VERBSUM is in effect. phase 61 produces
only ,the verb summary listing. Otherwise,
XREF is in effect and a cross-reference
listing ordered by source statement
sequence is generated.

Phase 61 performs the following
operations:

• Reads DEF-text into storage until
either storage is filled or end-of-file
is reached. It creates a DATA record
and, if SXHEF is in effect, a CONTROL
record, f~r each DEF-text element. For
SXREF, the CONTROL records are used in
sorting the external names.

• Reads REF-text and appends references
to the proper DATA record (or OVERFLOW
record) if the definition has been read
into storage.

• Prints each DATA record and its
associated OVERFLOW records.

These three operations constitute the
fundamental cycle which is repeated until
all DEF-text has been processed.

DEF-text for verbs has the same format
and is processed in the same manner as
DEF-text for data-names. similarly,
REF-text for verbs (VERBREF only) has the
same format and is processed in the same
manner as REF-text for data-names. The
only special processing for verbs is the
recognition of the first verb-element and
the first procedure-name thereafter.

During phase initialization, Phase 61
uses the GETALL routine in TAMER to g,et all
available storage for use in creating the
DATATBL table, OFLOTBL table, and the
CNTLTBL table (if the SXREF option is in

144 Section 2. Method of Operation

effect), which contain the DATA records,
OVERFLOW records, and CO~TROL records,
respectively. It does not, however, use
TAMER routines to access these tables.
phase 61, therefore, is able to construct
tables occupying more than 32K bytes.

PRODUCING A SOURCE ORDERED CROSS-REFERENCE
LISTING

The maxirrmm amount of space is obtained
for the DATATBL and OFLOTBL tables by a
call to GETALL in phase 00. An algorithm
is used for dividing the area into two
parts, one for the OFLOTBL and cne for the
DA'I'ATBL.

The DEF-text is read from file SYS001
where it was written by phase 60, or 64.
There is one element of DEF-text for each
data-name, file-name, and procedure-name in
the sourc~ program. The text on file
SYS001 is read into storage and the
contents of each element are moved into the
corresponding area in a DATA record. This
is repeated until all assigned DATA records
(for which there was space) are filled with
DEF-text. One DATA record is created from
each DEF-text element.

The REF-text is read from file SYS003
or, if OPT is in effect, from file SYS001.
There is one element of REF-text for each
time a name is referred to in the source
program. The text on file SYS003 or SYS004
is read, one element at a time, until
end-of-file is reached.

In the REF-text, for a data-name or
file-name, the internal name is the
dictionary pointer assigned by phase 22.
For a procedure-name, the internal name is
the PN number assigned by phase 11. The
setting of a bit in each entry indicates
whether it contains a dictionary pointer or
a PN number. When a REF-text element is
read, the high-order bit of the referencing
card number is tested to determine whether
the reference is to a data-name or to a
procedure-name. This test is made in case
a dictionary pointer and a PN number
happened to have the same bit
configuration.

If the DEF-text element for the
referenced data-name or procedure-name was
processed in this cycle, the DATA record is
in storage. For a REF-text element for a
data-name, a binary search of the DATATBL

table is made to locate the matching DATA
record for the data-name. A REF-text
element for a procedure-name is matched
directly by means of an algorithm with the
DATA record for the procedure-name. If a
match is not found, the REF-text element is
ignored. If a match is found, the
referencing card number contained in the
REF-text element is placed in the DATA
record, or if it is full, in an OVERFLOW
record which was chained to it when the
first overflow record was needed. If the
current OVERFLOW record is full, another
OVERFLOW record is added to the chain, and
the referencing card number is inserted in
the first three bytes of the record. If
no space is available for the OVERFLOW
record; the DATA record containing the last
DEF-text element read is taken out of the
DATATBL and the space is assigned to the
OFLOTBL. The space is divided into three
OVERFLOW records which are placed on the
overflow free chain. Before the
referencing card number is placed in the
newly designated OVERFLOW record, the
REF-text element is rechecked to ensure
that the matching DATA record was not just
deleted. At end-of-file, the REF-text file
is closed.

At the end of the cycle, each DATA
record and its associated OVERFLOW records
are printed on SYSLST (or SYS006 for LVL
option) •

If this is the last or only cycle,
processing is completed when all names,
defining card numbers, and referencing card
numbers in main storage have been printed.
If this is not the last cycle, DEF-text is
again read into main storage. (If it was
necessary to split one or more DATA records
into OVERFLOW records in the preceding
cycle, the DEF-text file must be rewound,
and the DATATBL and OFLOTBL set back to
their original lengths. REF-text must also
be reread. Names are read and ignored
until the last name processed in the
preceding cycle is reached.) Data records
are created for unprocessed names and the
cycle continues with the reading of
REF-text.

PRODUCING AN ALPHABETICALLY OaDERED
CROSS-REFERENCE LISTING

The maximum amount of space is obtained
for the DATATBL, OFLOTBL, and CNTLTBL
tables by a call to routine GETALL in Phase
00. An algorithm is used for dividing the
space among the three tables.

Licensed Material - Property of IBM

The DEF-text is read from file SYS001.
The text is read into storage and the
contents of each element are moved into the
corresponding area in a OATA record. This
is repeated until all assigned DATA records
(for which there was space) are filled with
DEF-text. One DA~A record and one CONTROL
record are created for each DEF-text
element. The CONTROL records are used in
sorting the external names, which is done
as the DEF-text is read.

The REF-text is read from file SYS003,
or, if OPT was specified, from file SYS004.
The text on file SYS003 or SYS004 is read,
one element at a time, until end-of-file is
reached and the bit is tested as described
in "Producing a Source Ordered
Cross-Reference Listing." A search of the
DATATBL table is made for the ~atching DATA
record and if it is found, the referencing
card number is placed in the DATA record,
or if it is full, in an OVERFLOW record
chained to it. If the current OVERFLOW
record is full, another OVERFLOW record is
added to the chain, and the referencing
card number is inserted in the first three
bytes of the record.' If no space is
available for an OVERFLOW record, the DATA
record which is last on the chain of sorted
DATA records is split into three OVERFLOW
records which are placed on the ov~rflow
free chain. Before the referencing card
number is placed in the newly designated
OVERFLOW recorn, the REF-text element is
rechecked to ensure that the matching DA~A
record was not just deleted. If a matching
DATA record is not found, the REF-text
element is ignored. At end-of-file, the
REF-text file is closed.

At the end of the cycle, each DATA
record and its associated OVERFLOW records
are printed in alphabetical order on SYSLST
(or SYS006 for LVL option). The lines
printed give the external name (from the
DEF-text element), the card number of the
statement in which the item was defined
(from the DEF-text element), and the card
numbers of all the references (from the
REF-text elements).

If this is not the last or only cycle,
DEF-text is again read into storage.
(Whenever more than one cycle is required
to process the entire DEF-text file, the
file must be rewound.) Names are read and
each name is compared with the last name
processed in the preceding cycle. If the
name read alphabetically precedes the last
name processed, it has already been
processed. If the name read alphabetically
follows the last name processed, the cycle
continues with the creation of DATA and
CONTROL records.

Phase 61 145

Licensed Material - Property of IBM

PHASE 70

Phase 70 (ILACBL70) generates all the
compiler diagnostics for source program
errors. Its input consists of E-text from
phases 01 through 51 that is either in
storage or on SYS003. If no output from
phases 60, 62, 63, or (4 has been requested
or if a message of sufficient severity has
been generated and the SUPMAP option is in
effect, phases 60, 62, 63 and 64 text
processing is bypassed, and phase 70 reads
its input from SYS004. Its output consists
of completed messages, which are written on
SYSLST (or SYS006 for LVL option).

INPUT FROM PRIOR PHASES

Phases 01 through 51 produce E-text in
the same manner. Whenever a processing
routine detects a source program error, it
writes out message definition elements of
E-text described in "Section 5. Data
Areas."

If parameters are associated with the error
message, the Fhase sets up a message
parameter entry immediately after the error
entry.

Phase 01 writes E-text for BASIS and
COPY statements on SYS003. Phase 10 writes
E-text intermixed with Data A-text on
SYS003. Phase 21 reads E-text,
interspersed with other texts, from SYS003.
It writes the E-text back onto SYS004
without change, along with Data A-text and
its own E-text. Phases 12 and 11 writes
the E-text produced during PO-text
processing on SYS002 intermixed with the
PO-text. From then until phase 51, E-text
is added to the Procedure IC-text stream as
errors are encountered. Phase 51 isolates
this E-text and writes it, together with
its own, on SYS004. Phase 60 or phase 64
encounters E-text on SYS004 during its
ope:r"ations. To avoid extra input/output
operations, phase 60 or phase 64 attempts
to save the E-text in a storage area, the
ERRTBL table. The ERRTBL table, however,
is of a fixed size. If all the E-text
cannot be saved in ERRTBL phase 60 or phase
64 writes the E-text on SYS003 for phase 70
to read. (ERRTBL is of a fixed size to
allow all available space to be assigned to
the RLDTBL juring phase 60 processing.)

146 section 2. Method of Operation

PHASE 70 ERROR PROCESSING

Upon receiving control from phase 00,
phase 70 uses the PARTBL, EAC~BL, and
PHxERR tables, along with E-text, to
construct error messages which it then
writes out.

THE PARTBL AND EACTBL TABLES

The PARTBL table is a fixed table
assembled as part of the phase and not
handled by TAMER routines. It contains
pointers to all possible error message
parameters (COBOL words, verbs, operations,
etc.) that are not programmer-supplied
names. The pointer is a displacement from
the beginning of all parameters to the
parameter for that entry. Its entries are
of the form:

r-----------,
I 2 bytes I
I------------~
IPointer to I
lparameter I
L ___________ J

The EACTBL table is a fixed table
assembled as part of the phase and not
handled by the TAMER routines. It contains
pointers to error statements which describe
what compiler action was taken because of
the error; for example, "STATEMENT ACCEPTED
AS WRITTEN." Its entries are of the
following form:

r-----------,
I 2 bytes I
I------------~
IPointer to I
I statement I
L ___________ J

The pointer is a displacement from the
start of the list of actions to the start
of the action for this entry.

THE PHXERR TABLE

The PHxERR tables are fixed tables
assembled as part of the phase and are not
handled by TAMER routines. For each
message, an entry is made in the
appropriate PHxERR table, where x has the
following values:

0 Phase 00
1 Phase 01 (BASIS/COPY) , 10,

11, or 12
2 Phase 20, 21, 22, or 25
3 Phase 30
II Phase 110
5 Phase 50 or 51
6 Phase 60. 62, 63, 64, or 65

Each entry is of the following form:

r-------------------,
12 bytes 1
r-------------------~
IPointer to text of 1
lappropriate messagel L ___________________ J

The pointer is of the form of a
displacement of the specific message from
the start of messages for that phase.

The message text is found in phase 70
starting at label TXI000.

GENERATING MESSAGES

The XNORML routine scans each E-text
item in turn. It first moves. into work
area XU6REC, the card number, the message
and phase numbers. and the severity code
listed in the entry as follows:

bnnnnnbbILApxxxI-S

where:
b

nnnnn

p

xxx

indicates a blank

is the compiler-generated number of
the statement containing the error

indicates the phase in which the error
occurred, where:

1 Phase 01, 10, 11, or 12
2 Phase 20, 21. 22, or 25
3 Phase 30
4 Phase 40
5 Phase 50 or 51
6 Phase 60, 62, 63, 64, or 65

is the number of the message

Licensed Material - Property of IBM

s
is the severity code, as follows:

W warning
C conditional
E error
D disaster

Routine XNORML next uses the pointer in
the corresponding PHxERR table entry for
the E-text entry to find the text of the
message itself. It places the text in work
area XU6REC. It scans the text entry for
the presence of the symbols $, =, and /.

The symbol $ indicates that a parameter
following the E-text for this message must
be inserted at this point. Parameters are
taken either from the parameter entry
itself or from the location pointed to
indirectly through the PARTBL by the value
field of the parameter entry.

The symbol = indicates that an error
action message must be added. In this
situation, a number directly follows the
symbol. Phase 70 uses this number as a
pointer to determine the displacement into
the EACTBL table for the pOinter to the
appropriate error action message.

The symbol/indicates that thi~ is the
end of the text for this message.

The error action messages are in phase
70, starting at label EACTOO. Routine
XNORML moves the error action message into
the work area irrlmediately following the
text for the message. Routine XPUT then
writes the message on SYSLST (or SYS006 for
LVL option).

ERROR MESSAGE LISTING

At phase 70 initialization, control
transfers to a string routine to generate a
comprehensive listing of all compiler
messages if the PROGRAM-ID is ERRMSG. The
SEVTBL table and SC MACRO instruction are
used for this purpose. A description of
the listing is given in "Section 6:
Diagnostic Aids."

Phase 70 147

Licensed Material - Property of IBM

PHASE 80

The function of Phase 80 is to flag the
COBOL source statements that are at
variance with the Federal Information
Processing Standard (FIPS). The phase is
given control only if the LVL compiler
option is specified by the user or was
defined as the default value at
installation time. The transfer of control
is described under "Processing Between
Phases" in the chapter "Phase 00."

When phase 01 determines which level of
flagging has been specified (A = low; B
low intermediate; C = high intermediate; D
= full standard), the level is stored in
the System Communication Region. Phase 80
picks up the level from there via the COMRG
macro;· the LINECOUNT for the listing output
is also picked up.

Input to phase 80 is the COBOL source
program listinq and other data on the
SYS006 utility data set.

When FIPS processing has been requested,
the source pr~gram is written on SYS006 by
phase 01 if no Lister options are in effect
or by phases 10, 12, and 11.

Output

The output of Phase 80 is written on
SYSLST. It consists of the COBOL source
program listing flagged according to the
specified level'of the Federal Information
Processing Standard and other data written
on SYS006 during compilation. However, if
the LST option is in effect, the listing of
the source program will be suppressed to
avoid duplicating the Lister option
listing; FIPS messages will be printed.

Processing

Phase 80 performs the following
functions:

• Scans each Division of the COBOL source
prograrr.

148 Section 2. Method of Operation

• Generates diagnostic messages for
exceptions to the standard.

• Writes the source program and messages
on SYSLST.

SCANNInG THE SOURCE PROGRAM

The source program is scanned by the
four scanning routines of Phase 80. They
are IDSCAN, ENVSCAN, DATASCAN, and
PROCSCAN; they process the Identification,
Environrroent, Data, and Proce,dure Divisions,
respectively. These routines are under
control of the ILACBL80 routine and they
use the GETLINE, PUTLINE, GETWORD, CHKCOPY,
CHKGLBLS, MSGHNDLR, and VERBCHK routines.

The scanning routines call the GETLINE
routine to read a line of the source
program and the GETWORD routine to
determine each word of the line.
Subroutines in each scanning routine check
eact word to see if it meets the FIPS
standard. Diagnostic messages are issued
for exceptions to the standard.

GENERATING DIAGNOSTIC MESSAGES

When an exception to the FIPS standard
is discovered in the source program, the
MSGHNDLR and MSGWRITE routines are called
to format the diagnostic message and to
write it on the output data set.

Each Division scanning routine contains
the text of the messages that are issued by
that routine. When the MSGHNDLR routine is
called, the address of the message is
passed to the routine. The routine formats
the message for printing by the MSGWRITE
routine.

WRITING THE SOURCE PROGRAM

Each time the GETLINE routine is called
by one of the scanning routines. it reads a
line of the source program and then calls
the PUTLINE routine to write the line on
SYSLST. After the line is written on the
output data set, control is returned to the
scanning routine for FIPS processing.

FLOWCHARTS

This chapter contains flowcharts of all
the phases of the compiler. There is an
overall flowchart for each phase, followed
in most cases by more detailed flowcharts
of the major routines in the phase. Also
provided is a set of flowcharts for a
typical Report writer subprogram generated
by the compiler.

Licensed ~aterial - Property of IB~

SECTION 3. PROGRAM ORGANIZATION

The contents of this chapter are:

1. Explanation of flowchart symbols

2. Phase flowcharts (Charts AA through
TA)

3. Report Writer Subprogram flowcharts
(Charts UA through UT)

Flowcharts 149

Licensed Material - Property of IBM

Explanation of Flowchart Symbols

FUNCTIONAL SYMBOLS

*****A 1********** · . * PROCESSING >I< * BLOCK >I< · . · . *****************

****c1*********
:~~~~iNA~A~r6c~R:
o •

*********** ****

n1**"** • •
>I< PREPARATION >I<

>I< BLOCK >I<
o • . .

E 1********

*INPU~{gg~PUT >I<

• 0

*****F 1****:t***** · . *-*-*-*-*-*-*-*-*
>I< SUEROUTINE *
* BLOCK '" o •

*****Gl**********
** .* ** PREDEFINED ** ** PROCESS ** o.
** ** *****************

150

ON-PAGE
CONNECTOR

L **** >* * * C3 >I< . .

OFF-PAGE
CONNECTOR

L **** >*02 '* * A 1 >I< • •

Section 3.

****B3*********
• * * HOURSRTN * · . ***************

: *:;*: I
>I< *_>

BRAN~:** ~
*****C3**********
----OPDATE-----

• 0 o 0

o *
o *

: *:;*: 1
>I< *_>

*****n3********** o 0

• * o 0
o •
* * *."'* *********
**** I *01 *
*' E3 *->t * * *"'.* .0.

F3 "'. .* * . . * *. *. .* *. .* *. .* * .. * .
GOTO 1 YYO 1A 1

*****P3**********
*SUBNM '"
--*-*-*-*-*-*-* o •
* •
• * *****************

THE TERMINAL BLOCK IS USED
TO SHOW ENTRY AND EXIT
POINTS OF A ROUTINE.
BLOCK 83 SHOWS AN ENTRY
POINT NAMED HOURSRTN ..

THE INSTRUCTION AT LOCATION
BRANCH CALLS A SUBROUTINE
NAMED UPDATE. UPDATE IS
A SMALL ROUTINE AND NO
FLOWCHART OF IT IS PROVIDED.

ON-PAGE ENTRY CONNECTOR ..
ONE OR MORE BRANCHES TO
THIS BLOCK APPEAR ON THIS
PAGE OF THE FLOWCHART ..

OFF-PAGE ENTRY CONNECTOR.
A BR A NCH TO THIS BLOCK
APPEARS ON ANOTHER PAGE (5)
OF THIS FLOWCHART ..

THE INSTRUCTION AT LOCATION GOTO
CALLS A SUEROUTINF NAMFD SUENI'J.
THE LOGIC OF SUBN?! IS SHOWN ON
CHART YY STARTING AT B1.0CK 11.1.

1< LINE JUNCTION

L .*.
I G3 *.

****G2********* N .* "'.. ON-PAGE EXIT CONNECTOR.. CONTROL '" * E.* "'.. BRANCHES TO BLOCK D3 ON THIS PAGE
: RETURN :<--.. 1-*". 0.·*---' OF THE FLDWCEA"RT.

*************** HI 0*. .* v
o * .. * ****
s '" '" '"
II .. '" 5 I * D3 •

~L--> ****
t

*****83**********
** ** ** EXECUTE ** ** UTLXYZ **
** ** ** ** *****************

1
.*.

J3 *.

THIS BLOCK REFERS TO A ROUTINE
OR PROGRAM THAT IS DOCUMENTED
IN SOME OTHER PUBLICATION ..

****J2********* .. '" *. OFF-PAGE EXIT CONNECTOR.. CONTROL
'" '" .o!< *. BFANCHES TO BLOCK A 1 ON PAGE 2
: RETURN : <----* .. "'.. .* .*--, OF THIS FLOWCHART ..

*************** "'.... '" v
CONTROL IS RETURNED TO
A VARIABLE POINT. iF OR

~~AU~i~li ~~!~H~O~~I:~
WAS INVOKED.)

"'.. .* *****
4: *02 '" I '" A 1*

• 0
o

1 XX02A 1
****K3*********

• 0 '" T1I.XRTN '" o •

Program Organization

CONTROL BRANCHES TO AN ENTRY
POINT ON ANOTHER FLOWCHART ..
BLOCK K3 SHOWS A ERANCH
TO L·OCATION TAXRTN THAT
APPEARS IN CHART XX, PAGE
2, STARTING AT BLOCK A1.

Chart AA. Phase 00 (ILACBLOO)

• ***A 1 ••• *****.
* * '" ILACBLOO '" • * .**** ••• ***.*.*

I
GOSYSGO !

.*E 1**.***.
'" DECIPHER '"
.. LINKAGE '"
.PARAMETERS FROM'"
'" CALLING PHASE '" • *
****.** •••• *****.

1 . *.
C1 "'. .* *. .* * .. YES *. READ X = 0 -*"""1 *. .* *. .•
* .. * ***** *NO *02 '" 1 * .:J*
. *. n, *.

. * *. .* *. YES *. PUTN X = 1 -*"""1 *. .•
o. ••

* ... * "'*"'*. *NO *04 '" 1 .. :J'
. *.

El *.
• * "'. .* *. YES *. PUT X = 2 -*"""1 *. .• *. .•

* .. * ***** *NO *03 '" 1 * * :J*
.0.

Fl "' •
• 0 * . .. * *. YES

"' .. CANCEL X = 3 .*~ *. .* *. .* * .. * ***** "'RO *02 '" 1 * o:~*

.'.
Gl "' •

. * "' .. . * *. YES
"'.REWIND X = 6 .*----,

*-.. .."'. t
* .. * *****

*NO *04 '" 1 .. !~o
.*.

R1 "' • . * "' . • OREAD SYSIPT"' .. YES
. X = 7 .~ *. .* *. .•

* .. * ***** "'NO *02 '" 1 * *!~ .
. '.

oJl ."' ••
. * *. YES *. POINT X=-9 .*~ *. .* *. ..*

* .. * ***** *NO *06 '" 1 *o~2*
.0.

Kl * .
. * "' . . * *. YES

"' .. L!NK X = A -*"""1 *. .•
o. ••

* .. * ***** *NO *06 '"
L>* **** •• * A~.

* Jl.1I *' ,. . .
••• *

Licensed Material - Property of IBM

Overall Logic (Part 1 of 7)

..** * 0 • 14 •

• •••• ·9
.0.

14 .oo
oo. *. YES

oo EOJ X = B ."""1 ·Oo .,.
oo . •.. * ** •••

*NO *02 •

* * • 1 * ESo

.*.
B4 *Oo .* •. .* *Oo YES

*.SEGNOTE X = COO."""1
·oo .* *. oo*

oo . *****
*NO *06 *

1 * D1' o 0

*
.0 •

CQ *. oo* *oo .* *oo YES *. EJECT X = D •• """1
·oo .* *. .* ·oo •• ** •• *

*NO *04 *
• * o 1 · C1'

.0 •
D4 •• •• * . .* FLUSH *oo YES

.BUFFERS X = EOO"""1 *. .* *. .* *oo .* ***** *NO *07 ,.

* * * 1 • A10

.0 •
E4 ••

.* * . .*EHD OF FILE*. NO *. X = F .*----,
*·*oo .*.* ~

* •. * *****
*YES *07 *
L **** • B5*

>*07· *,.
* 11 * * * •

Flowcharts 151

Licensed Material - Property of IBM

Chart AA. Phase 00: Overall Logic (Part 2 of 7)

•••• *
*02 ..
.. 11* •• •
!

READ .*.

NO

11
. * •• .* *. rES

. SYSLIB .! *. .•
. . * •• * •••• *

*NO *05 ... 1 ',:l'
.'. S1 •• .* •.

•••• , ..
* B2 * • * !

..*82··*·····**· *··83**·*·····*·
. * *. YES *. FILE SYS005 .*----> READ ----> CHEep;: REID ! *. .*

.. . *. .." ••• ** •• *.*.***.* •• ** ••••••• **...
, . , l*WO :Oi,,:

• *.
Cl •• • * ...

. * *. • FILE SYS002 .'
. . *. .* * .• * rs

.•. .*.
D1 *. D2 *. • •••• D3 ••••••••••

. * *. .* *. * *. YES .. "'RECORD SIZE •• NO ... CHANGE RECORD .. *. zz=s .*->*. CHANGE .*->* SIZE TO 512 .~ *. .* *. .* *..* *..* * .. * * ... * •••••••••••••••••••••
*110 .YES

L---____ :> >* ! L •••• .. B2 ..

.. 82 .. • •• * , * •••• . *. .*. El *. • •• E2........... X3 ..
• * *. ..* •• . * *. YES .READ TO FIRST" .* *. NO *. FIRST READ .*----> AREA ---->*.SINGLE BUFFER •• ! *. .* *. .* *. .* *. .*" **** ••••••• *.*.* .. oo oo. o.o. •• . r rs =.::.:

F1 .oo •• *P2*****...... • •• P3 •••••••••••
oo· ••

.*. P4 ••
woo. .oo YES • * eo. •• YES

o.ooSI.NGLE BUFFER •• ----) BEAD •. .*
*e •• ••••• * •••••••• *.

: .:~*: 1'·0
* *-> * •• *

··*G1 ••• ** •••• *.
• CHECK *

PREVIOUS READ ..
••• ** •••••••• * ••

1 . ".
111 * .

• * * • . * * .. YES
. EOF .!

*.. ... *. .• • •• ** r ::~~:

----> CHECK READ

*
••••••••••••••••

•••• *02 '" : 83·*1
TRl!JH1TE

---->.. EOP •• !
*oo •• *. . • ... •• .*o. ••

.NO .07 *
L .**o. • C3· >·07* ••

• A3o. ••• *

.*·83*······.··· ..
PRINT fIIESSAGE •

1 .*. J3 ... • •••• J".* ••••••••

••••• *02 •
• AS·
l

BEl DO .*.
AS •• • * o.. YES

... IPTBUF=O •• ! *. .•
o.. •• • •••• r :::~:

··.B5*··.·· •••••
GET • ..

..* ••• o.*.* ••••••

. .. * *02 •

L •••• >.07 •
• 13 •
* .. ** ••

• ES.! .. * • ••• SKPLRtc: .*.
E5 •• .* •.

•• IS ERRSEV ... HO
•• GT OB EO TO .* *. 12 ••

·YES

JCARCEL 1
·····P5·········· .. *
• TOBN OPP LINK *
• BIT •
* , • ••••••••••••••••

I' ····GS········· * RETURlf TO DOS •
• SYSTEll • · .. • ••••••••••••••

···J1···· .. ····•·
INITIATE

NEWREAD
.••. • • ·*··JS*·······*

................

152

L •••• >*07 •
• A3 •
* • *.*.

Section 3.

.. * RETURN IS •• YES • ISSUE DUftP.. •
... FROll TAftER •• ---->* nACRO .---->. EOJ • r ···*·K3* ••••••• ** · • ····K4 *.
• ISSUE CANCEL •• •
.. KACRO .---->. EOJ • · • • • •••••••••••• ** ••••••••••• *.** ••

Program organization

Licensed Material - Property of IBM

Chart AA.

**** *03 ..

Phase 00: Overall Logic (Part 3 of 7)

.. 81 *! * * **** .*. .*oo
B 1 *. B2 .. *****S3 •• ******* • . * *. .* *. * WRITE ON *. YES .. * ,. .. NO" * *. FILE 4 .*---->*. ZZ=O .*---->*GET FILE 4 ADDR. •. .* *. .* ,. ,. *..* *..." ,. ,. ,... .* ,... .." ••••• *._

*NO ·YES L
1 '" L>:o~· '" >'" * ••••

.. C2 '" .. A 1 .. * C2 '"
.*.. **** ~ ***. .*.. ****

Cl "'.. .*.**C2* ••• *.**** C3 * .. .* *. • '" .* ***CI.J***********
. * WRITE ON *. YES -MULTIPLY ZZ BY * .. * *. YES" • *. FILE 5 .*----)* 4 *----)*. ZZ=O .*----> WRITE RECORD -! *. .* • '" *. .* •* •*

.... ..* **********.****** "'.. .." •• * •• "'_ •••••••• * *.*.*
*NO *NO *07 '"
L *... 1 .. B5· >*oq. ,. ...

.. A 1 '" * • *
**** .'. 03 ... ·**D4******* **** .* * . . * * .. YES *. ZZ=4 .*---->

*NOTE AND SAVE *
ADDRESS

*~ *. .* .. *. .* "' ... * r .*.
R3 *. .* *.

.'" YES

.***.***_.* •• *** ***-*
*07 * * B5* ..

*

E4********

. ZZ=8 .---->
*GET ADDR AND *

POIHTW
.~ *. .* .. *. .* * ..• r ...

FJ *.
.* * .* *. YES

**************** *****
*07 *
• B5* ..

•
F4********

.. ZZ=12 .----> POINTS

~ *. .* '" "'.. .* * .••
·NO

1
···G3**··***··** .
WRITE UPDATE

.~
**************** *****

*07 * * B5* ..
*

*** ••• *.**** •• * * **.** *07 * * B5* * • .

Flowcharts 153

Licensed Material - Property of IBM

Chart AA. Phase 00: Oveiail Logic (Part 4 of 7)

.....
*Oq '"
'" 11.
* * *

WRITEA !
·A , ••• * •••••• • • .PICK UP LENGTH '"
'" FROP.! IO-TEXT • • • • •
:Oi:· -->1 • •

ilRITE .*. ."'.
B1 *. B2 ... • •••• 83** ••••••••

• * *. ..* *. '" '" .* * .. YES .. * *. YES '" •
.UTILITY FILE .----)* .. PIT IN OOTPDT.*----->*MOVE TO OUTPUT *----,•.• *.... - -: : t

CLOSET
CLOSETA

•••• *
*04 * • 14* • • •
l .'. 14 *. **.**15********** .• *. • •

•• WAS •• 110. •
•• PREVIOUS I/O •• ---->. FLUSH BUFFERS • *. I READ .* • • •..• * • ··r ·······r~ .. ·

··*Bq·······*·**
*ISSUE POINTS •

MACRO

. . "'.. .* •••• ** •• *............. **.*.***** •• ***.

~~~:: '_>l*No l*No :~:~: 1 .... 
WOUT .*. CLOSET!" 

C1 *. • •• C2* ••••• **... ..***C4**.******* 
.* *. '" '" YES '" '" '" '" SWITCH BOFFER '" I:"'::T··:· "':::'T:::' L.::y .. J 

•• *01 •••••• **... D2 *. • •• n3........... • •••• Dq •••••••••• 
*!lOVE TO POliCH • 
AREA AlID PUlICH • • 

• **** •• * ••••• **. 
L •••• >*07 • * BS .. • • ••• * 

.**F 1*******.*** 
*1'I0VE TO LIRE • > AND PRINT • 

*.*****.**.***** 

154 

L ••• * >*07 .. 
.. BS .. 
• • •• ** 

Section 3. 

• * *. '" '" .* "' .. YES '" TORR ON FIRST '" 
..~!NGLE BOFF~~ .*-> '" PUT :I/O IlI0ICATIOtf : 

*.. .* '" '" * ... * •••••••••••••••• • •••••••••••••••• 
'NO 1 L . ... >'07 • 

'" 85 '" . . 
**** 

. '. 

···E3*****·····* 
* CHECK 
.~ 

•••• **.*.****.*. .* •• * *07 • * BS· •• • 

F2 *. *****P3*** •••••• * .• *. * * •• •• YES • SWITCH BUPFER • 
• ••• FIRST 1/0 ••• *---->: AREAS : 

*..* * • '. t~ ........ ! .. * ••••• * 
l 

••• G2* ••• * ••• *.. • •. G3 •••• *.***.' 
• CHECK -. - .. 

• PREVIODS I/O • PUT 
.~ 

••••••••••• ***.* 

1 
·····82··*····*·· · . • SWITCH BUFFER * 
.. AREAS • · . · . ••••• * ••••••••••• 

1 
·**J2****··*···* 

POT • 
••••• ****.* •• *** 

L .* •• 
>·07 • 

.. BS • . . 
•••• 

•••• * ••• ******.. • •••• *07 • • B5* •• . 

Program Organization 



Chart AA. 

•••• * 
*05 ... 
.. 1'1 • . . 

• 
l 

Phase 00: Overall Logic (Part 5 of 7) 

REIDLIB .... .*. CBASIS .* .. 

Licensed Material - Pro~erty of IBM 

A 1 *.. A2 *.. A3 "'.. *****A4*****"'*"".* .* *. .* *. .* *. ... ... 
*:~IBi~~~A~iHE*:._NO ___ >*:"'BASIS CALL *:*~>*:·BASISN = 0 *:.~>: HOV~A~l~~) TO: 

*. .* *. .* *. .* ... ... *..* *..* *...* ... ... 
* .. * * .. * * .. * ***************** 

'LYES 
•••• l·NO "1"0 .... 1 >*... -- -" ... ... ... D3 ... ... 84 ... 

... '" ... *-> •••• .*.* .*.. PTSL PRDSt 
B2 *. * ••• *83********** .****84***** •• *.* .* *. ... ... *' ... • * *. YES ... LOAD RETURN ..... '" 

"' .. CUBHAME = 0 _*----, ... ADDRESS'" ... FHDSL ... 
*. .* v'" '" '" ... 

"' .. ·"l·N~·· :*::': :·······1········: :u"u'j"'.o;;: 
NTSL •••• .*. CBHOFND .'. 

*****C2*** •• ***** .*.**C3********** elf "'.. C5 "' .. 
... ...... ... 0* *. .* *. 
... ...... '" .. '" "'.. NO .. * "'.. HO 
... NTSL ... ... PTSL'" *. POUND .*----)*. BASIS .*---, ... ...... ... *. .* *. .* ... ...... ... *..* *..* ... UT...... (~~:l .... U ~ ... ,;, ··r 
....... n2*.** ****** G ET ~~ •• * 03**** •• "'*.* .... *DS.* •••••••• * '" . '" . 
• SAVE RETURN *. '" • '" 
• ADDRESS. '" GETSL "'< MESSAGE ILA0031 · . *. .. · *. . * •••• *** •••• ** •• * ********** ••• ** •• • ••• ** •••••••• *. 

L:'::': 1 . . 
***. 

L * ••• >·02 • * E5 • . . 
•••• ••• CBENDIN 

Po3 *. .****EIS •• * ••••• ** *****E5*******.** 
.* *. * • '" '" .• *. YES * '" '" * 

•• EOF •• ---->. CLEAR CURRA!!! .<----* ADD 4 TO RB .< .. .. . "'. . •..• • "'. * '""" 'r · .... · .. r .. U • .. ............. .. 

* .* •• F3 ••••• *.... . .... PIS .*. ** ••••• · . '" . 
: !lOV~u~J~gl: TO : : ADD B TO RB : 
'" . '" . · . '" . ** •• * ••• ***.*.... ***.* •••••• ** •••• 

1 1 
••••• G3 •••• ** •• *. *****G4* •• ** ••• *. 
• • * * • • .CONDITION CODE. 
• ADD B TO Re • • = EOF • 
• •• * • •• * •• ** •• ****.****** *********.** •• *** 

1 L:o;* • 
• c5 • 
• * 
**** 

···**R3·*········ * • 
"'RO = ADDRESS OF* 
• CDAREA • • • • • •••• * •••••••••••• 

L * ••• >*07 • 
• A3 * 
• * ••• * 

Flowcharts 155 



Licensed Material - Property of IBM 

Chart AA. Phase 00: Overall Logic (Part 6 of 7) 

***** *06 .. 
'" Al* . . 

• 
SEGPNT ! 

*****A 1*********. • • 
'" POINT USING '" 
"'RELATIVE TRACK * 
'" ADDRESS IN Rl .. 

• * ***************** 

1 
***B ,*********** 

READ 

**************** 

1 
***cl*********** 

CHECK 

**************** 
**** *06 '" 
'" D1 *~ * * "''''** SEGNOTE .*. 

• 
! 
***** *01 .. 
.. A3* 
• * 
* 

D1 .... *****D2********** . * *. • '" .* *. YES '" SEG SAVE .. 
.... FIRST WRITE .. *---->* (RELATIVE TRACK'" *. .* "'ADDRESS) = 0001* 

*..* ,. '" 
* •• * ***************** r 

***El*·********* 
'" CHECK 
PREVIOUS WRITE · . 

**************** 

1 .'. 
Fl *. 

• * "'. 

SBGNOTEO 
***F2*********** 

• "'PIRST WRITE"'. NO '" iRITE SHORT *. OF SEGMENT .*----> BLOCK 
*. .* '" *. .* * ..• 

·YES 

I 
SEGNOTE2 ! 

***Gl··********* 
*-SEE NOTE AND '" 
STORE RESUL T IN 

* SEG SAVE * 
**************** 

1 .'. 
H1 *. .* * • . * *. NO *. LAST CALL .*! *. .* *. .* 

* •• * ***** 
*YES *07 * 1 · .:~ . 

**************** 
L **** >*07 '" 

'" Bll '" . . 
**** 

. *. .*. J1 *. J2 *. 
.* *. .* *. 

•• FINAL *. NO .* *. YES 

LINKE 

***** 
*06 * * 11.3* .. 

* 

t 
.*. .*. 

A3 *. A4 *. *****11.5*****"**** 
.* *. .* *. * J * .* *. NO .*APTER PHASE*. NO * LINK TO TAMER * *. FIRST LINK .*---->*. 01 .. *--->* INTERLUDE * 

* .* *. . * * * ...* *..* * * * .• * * ... * ***************** 

: .::. Ll*YES l·:ES I 
**** LINK A LINKR 

*****B3********** *****B4********** 
* INCREMENT * * * 
'" LINECNT, MOVE * '" ISSUE RETORN * * PHASE NOM TO .. *MACRO TO RETUFN* 
* LINKNAME * * TO LINKBA * 
* *.. * 
***************** ***************** 

1 ~m~A J 
*****c3********** C4 *. 
.MOVE FIRST I/O * .* *. * INDICATION * .• BEFORE *. YES 
: ~¥t~A~~~~SI~O : • *.PHASE 20 .*.*----------, 
*BUFFER IS EMPTY* * .. .. * ........ j........ *·r~ 

v v 
***D3*********** *****D4"'********* 

*PRINT HEADER * 
IF NEEDED 

**************** 

1 

· . * FLOSH BUFFER * >* INDICATED IN * 
* PORGER * · . ***************** 

1 .'. 
E4 *. .* *. 

INTERLUD 
***E5*********** *****E3********** · . * LOAD R13 WITH * .* *. YES * REWIND * SAVE AREA * * ADDRESS * · . ***************** 

1 
*****F3********** · . · . * LOAD * · . · . ***************** 

1 
*****G3*·******** · . · . * CALL • · . · . ***************** 

***J3*********** 

*. LAST BUFFER • *----> REQUIRED FILES 
*. ~* * * *. .* •.. * 

*NO 

1 
*****F4********** 
• * · , '" SHIFT PURGER * · , · . ***************** 

**************** 

1 
****·F5******··** * • 
*CHANGE POINTERS* 
• TO BUFFERS • · . 
• * *******.******.** 

1 .'. 
G5 *. 

.* * . . * CALL IS *. NO 
*.PROH PHASE 70.*! * ~ .* *. ~* 

* •• * **** . . 
**** I'YES : B3 : 

***H5*********** . . 
* CLOSE ALL FILE~ 

************.*** 

1 
*****J5*·******** · . 
• * *.SEGMENT NOTED.*---->*.CHECK NEEDED .*----> CHECK *ISSUE EOJ MACRO* 

156 

*. .* *. .* .. *..* *...* 
* .. * * •. * **********.***** 

*YES *NO 

L>:~7** I 
.. B4 * 
• • < 
**** ~ 

Section 3. 

***K2*********** 
*NOTE & STORE 

RESULT IN 
SEGSAVE 

**************** 

1 
***** 
*07 * * B4* .. . 

Program Drganization 

I 
· . · . ***************** 

j 
****K5********* * RETURN TO DOS * 

'" SYSTEM * · . .************** 



Licensed Material - Property of IB" 

Chart AA. Phase 00: Overall Logic (Part 7 of 7) 

•••• * 
*07 .. 
.. 11· 

* * * 

CLOSER 1 
* •• *A ,**.***... CLOSER lUt BE * *---- CALLED BY PHASE 00 

.. STADT" OR BY ANOTHEB PHASE 

* * ••••••••••••••• 

1 
. *. E 1 .... ..***82** •••••••• 

. * *. .. .. .* *. YES .. SET LAST .. 
•• UTILITY PILE .*----)* POSITION IN .. .. .. .* .BUFFER TO X 'FF·. *..* .. .. 

*. I:~ ~*******. 

.*. cl *. • •••• C2 •••••••••• 
. * *. .. .. .* SPECIAL = *. YES • SWITCH BOPPER .. *. x·ppt .* ____ )* POINTERS .. 

*. .* .. • *...* .. * ... ..* .................. . 

r .*. n 1 .... • •••• D2*.*** ••••• 
. * *. • .. .* *. NO" • 

... SINGLE BOFFER .. *----)* CHECK *-> *. .* .. .. *..* • • ... .." ................ . 
j:"S 

.'. E' •. .* •. 
YES .* *. i *.,,:LOSER = 0.*.' .. .. 

* .... 
'NO 

.*. G 1 ... • •••• G2 •••••••••• 
. * *. • *' .* ... NO .. SET CLOSE TO .. 

*.DTILIT! FILE .. *----)* X IFF' .. 
*. .* * .. *..* .. • 

L----....;·~i:;S ** ••• ***j** ...... 

! ···H1 ••••••••••• 
* WRITE ........... -.. -. 

1 
·····Jl··***···** • • · . ... CHECK '" • • * • 
***********.*.*.* 

1 
* •• "'K 1****.*.*. 

'" DETURN TO * 
'" CALLER '" * • ••• *.*** ••••••• 

..... 
*07 '" 
'" A3* • * 

* 

EXIT ! 
••• •• A3 ••••••• **. * • 
'" LOAD READ '" 
:BDFFfBT~DRgESS :-------, 
* * . ............... . 
•••• • •• * •••• 
*07 '" *07 '" *07 • 
'" B3 *l '" 84 *-> • B5 • 

EXI;~·* '" Exr;~*· '" EX I;:·· *l .** •• 83.......... . .... 84.......... . .... 85 ......... . 
'" '" '" * '" '" '" '" '" SET UNEQUAL '" '" SET CONDITION '" 
'" CLEAR IPTBOF *----)*COHDITION conE'" .CODE TO LIBECT '" 
'" '" '" '" '" .. 
'" '" '" :0: '" '" ••••••••••••••••• ••••••••••••••••• • •••••• * •••• * •• ** 

'" '" '" '" •••• .*** 
ENDIN V EXIT1A 

:;Z; '" *, 1 :o~: '" ·->1 
. .... C3.......... . .... cs •••••••••• 
* '" '" '" '" SET EQUAL '" '" '" 
:CONDITIOll CODE :'--------------~>:LOAD BS INTO Rl: 

'" '" '" '" .....••.. **...... • •.......••.•...• 
1 .·.·.DS·.·**.···. * * * RESTOBE * 

*REGISTERS 2-15 * • • * • ..****.* •• *.** ••• 

1 
****E5******··· * • 

*RETUBft TO B1+2** 
* * *******.***.*** 
*CALLlftG PHASE 

Flowcharts 157 



Licensed Material - Property of IB~ 

Chart BA. Phase 01 (ILACBL01) 

****A 1********* I ENTER FROM 
: ILACBLOl : --- PHASE 00 · . ********"'****** 

j 
*****B 1********.. ENTRY PARAMETERS * '" 1. ADDRESS OF COS .. 
'" PICK UP PHASE *--- 2 .. ADDRESS POR RETURN 
'" 00 PARAMETER '" LIST OF BUFFER. 
'" LIST '" 3 .. ADDRESS OF DT}, 
'" '" ADDRESS TABLE. 
***************** 

1 .*. 
*****Cl********** C2 *. 
:GEfIg~~5f_g:iE,: NO .*-* *"*. YES 
: cb~g~ ~~~i5U : "' .. '" ~ FINISHED .. '" "*---, 
'" '" *..* v 
***************** * .. * **** 1 . . . 

•• : lA: .::': 

D 1 "'.. ****"'n2* ******** 
. * "'.. '" '" .* SYSTEM "' .. YES "'TURN ON BIT IN '" 

*.COHM .. REGION .*---->* ASSOMED ... 
*. OPTION .* '" '" 

*. .. '" '" '" "'.. .. '" ***************** 'NO 
: *:~*: 11 
'" *-> 
**** 

*****El********** *****E2********** 
'" '" '" * '" '" '" '" "'READ COCBLOPTNS*J>* SCAN CSL CARD '" 
'" '" '" * · ,.. ,. ····· .. r······ ...... 1 ...... · 

F 1 *. F2 *. 
.* *. .* *. .* MEMBER *. YES.* •• NO *. PRESENT.* *. END-OF-FILE .*----, 

*.*. .*.* *.*. .*.* t 
* •• * * •• * **** 

*NO *YES * * 
**** 1 I * E1 * * * * * 

: G1 =_> < I *.** 
**** F'FADOPTS v 

*****G1********** *****G2********** 
* * * * * SCAN eBL CARD * * SET OPTION * * OPTIONS * .-->* SWITCH * 

· '! ' , * • * * **.************** ** ****************** 

1 : G2 : I 
**** I 

v 
. *. .*. 

H1 *. H2 *. 
. * *. .* *. .* *.NO .* *.'NO 

*.~:TION CHOS~=.*---A->*.*:AST OPTIO~*.*I 

*.* •• *.* I *'* •• *.* ***~ 

'lYES , r s : G1 : 1 •••• 
J1· *. *. I *****J2********** 

.* *. *ALLOC BUFSPACE * 
NO .* *. I * IF REO FOR * 
~. BUF.* *SYSLST, SYSIPT,* 
~ *... • •• * :Si~L¥~ATS6~b~g : 

:*::': '·1··;5 I ·········1········ 
**** 

I t 
*****1< 1**********~ ***K2*********** · . *STORE NEW SIZE" * 
* IN BEALBUF * OPEN REQUIRED .. . · . ***************** **************** 

L **** 
)' . 
* A3 * . . 

**** 

Overall Logic (Part 1 of 2) 

**** • • * A3 * 
* **** *--, 

SETBUF6 V 
*****A3********** 
* DETERMINE * 
* BUFFER 6 SIZE * 
*AND NEW HIGHEST* 
*AVAILABLE CORE * 
.. ADDRESS * 
***************** 

1 .'. 
83 *.. *****B"'********** 

.* *. * * 

**** · . * AS * · . **** ~ 
*·***A5********** · . *HOVE MESSAGE NO* * ILAC1021 TO * 
• PRINT AREA * 
• * ***************** .... 1 · . * 85 '" 
'" *-> 

**** MPUT 
***B5*********"'* 

.* MINIMUM * .. NO *MOVE MESSAGE NO* *PRINT MESSAGE '" 
*. CORE .*---->* ILAC10QI TO *----> ON SYSLOG AND 

*.AVAILABLE.* '" PRINT AREA * * SYSLIST * 
*..* * '" *. .* ***************** ****.*********** 

.rES 1 
C3 *.. *****C"'********** 

.* ... * * ****cs********* 
.*BUFSIZE TOO*. YES * USE MINIMUM * *RETURN TO PHASE* 

*.*. ~MALL '.*.*---->: SIZE : : 00 ** : 
•• . * * * ***** •• ******** 

*. .* **************.** **-WITH X' 30 f 

*NO I ~~~~~fi~~6N 

1 I ABANDONED. 

< 110VEHOD • *. 
*****D3********** D4 *. *****D5********** 
* * .* *. * • *ALLOCATE BUFFER* .* *. YES * 110VE HTHOD TO * 
'" SPACE FOR * >*. TAPESW ON .. *---->* UPPER CORE 
* WORKPILES * *.. .* * 
* * *..* * * ....... 1'...... 'r ........ j" ... -
*****E3********** Ell *. *****E5**.******* 
* '" .* *. * * * MOVE BLKSIZE * .*WILL UNUSED*. YES * SET UP WORK * 
'" AND RECL TO * * .CORE ACCOJllMO-.*---->* PILE BUFFER • 
* TAPE DTF * *. DATE • * *CONTROL BLOCKS * 
* * *..* '" * 
*********1******** *. *lN~ ********1********* 

: *;;* : * *-> **** NXTFILE 
*****P3********** *****P"'********** ***p5*********** 
* * * * *SCAN PUB TABLE * "'!'lOVE ftESSAGE NO* 
:ENT~5E~fsg6~001: : ~~~iJO~~EiO : 
* * * * ***************** ***********.***** 

1 L "" )' . 
• B5 * · . **** .'. 

G3 *. 
.* "'. . * *. YES 

*. LAST .. * 
*.. .* 

*. ..* * .. * r 
.* . 

R3 *.. *****H4.********* 
.. * *. * * 

. . 
OPEN WORK FILES · . 

**************** 

1 
*****G5******·*** , . 
.HOVE ASSUMED TO* 
* PHZSW * 
• * • • ***************** 

1 
.*. 

H5 * .. .* * . 
*:* x (t~~RiN *:*~>:MO~i:Ag~~~~G~ONO: .* *. YES 

* .. LIB SPECIFIED. *----, *. .* * PRINT AREA * 
*..* * * *... .*.* t 

*. .* ***************** * .. * ***** 
~O L 
1 >: *:;*: 

* • 
• *** .'. J3 •• *****J4********** 

•• • 
',NO :O~l: 

.* *. * * •• *. YES * MOVE BLKSIZE. * 
"'. DISK .*---->* RECL TO DISK '" 

*. .* * DT!' * *..* * * * •• * ***************** 
'NO L 
I "" I >: F3 : 

• • v **** .'. 

v 
****JS********* 

*RETURN TO PHASE* 
* 00 '" 

• * ****.********** 

K3 *. *****K4********** **.**K5********** .* *. * OVERLAY * * * 
• * * .. YES * CORRESPONDING * * * *. TAPE .. *---->*DTPSD IN PH 00 *--->* SET TAPESW ON * 
*. .* *WITH DTPMT FROM* * * 

*.. .. * * PH 01 * * * 
* •• * ***************** ***************** 

'NO L 
L>* **** * >* **** * 

* AS * * F3 * 
• * * * 

**** **** 

158 Section 3. Program Organization 



Licensed Material - property of IEM 

Chart EA • Phase 01 (ILACBL01) Overall Logic (Part 2 of 2) COPY/BASIS Functions 

••••• *02 .. 
.. 11. 

o 0 
o 

PREPROC ! ··&1······· o • 
.. INITIALI.ZE .. 

.. TAllER .. • • • • ••••••••••• 

1 
**81*****·· o • 

• PRInE HEPTAD .. 
.... ITIB29) .. " 

• 0 

••••••••••• 

STARTPP 1 
···C1***········ o o 

GET A CARD 

.** ••••••••••••• 

1 
.*oo STARTO 

D1 *oo •••• *D2 •••••••••• . * *oo .. .. 
.. " .... YES .. SET CALL TO .. 

·*·03*·****····* **·04* •••••••••• 
.. PRINT BASIS .. .. '" 

*oo BASIS CARD .*---->* READ BASIS *----> CARD ----> GET NEXT CARD ---, 
*oo .* • LIBRARY" .. 

*oo.* .. .. 
*oo .* •• *** •••••• *** ••• •••••••• * ••••••• 

: *::*: 1 .. 0 

.. *-> •••• HOTBASIS .*oo GETCOPY J GETCOPyq .*. 
El *oo ···E2**········* E3 "'. 

oo- *. .'" "'. 

• • v .... -........... -.* . 
• * .. El .. 
o • 
•••• 

ASETCPY2 

···E"·········"'* oo- COpy .... YES .. READ PROll * .*END OF COPY*. NO .WRITE SOURCE '" * • >*. STATE!lENT .*-> COPY LIBRARY 
*oo .* .. *oo •• 

*oo •• 
*NO 

GETCARD4 1 
*.*p ,*** •• ****** 

.WRITE SOORCE • 
TO SYsoaq 

***.*******.***. 

1 
**.G 1** •••• ***.* 

o * WRITE TO SYSLST 
• * 

.****.**.******* 

**.**.*****.*.*. 

------->*. MEMBER .*-------> TO sts004 ----> WRITE TO SYSLST •. .* • o • • "'. .. • .. * *.* ••• **** •••••• .**********.*.** ·YES 

GC3 
1<--~ 

·**B1·*···*····* 
• • GET NEXT CARD 

* 0 

*.* ••••• ******** 

1 
.0. 

J1 *. .. .. 
NO •• *. 

"'. BOF •• *. .* *. .• * .. * r ···*K1 ••••••••• 
"'RETURN TO PHASE'" 
• 00 • 
o • •• ** ••• * ••••••• 

Flowcharts 159 



Licensed Material - Property of IBM 

Chart CA. Phase 10 (ILACBL10) 

**··.11···**···· * • 
0: ILACBL10 0: 

* • * ••••• *.*.*.* •• 

,,~~ I .. Ol·······i * • 
.~luTrALlzATIO • 
* • * • .*.* ••••••• 

IDDSC. 1 
••••• C1 •••• • ••••• 

• * 

Overall Logic 

••• * 
* * 0: B3 0: 

* * .*.* --, 
EIIYSCR t ***** •••••••••• 

*p * 
*0 * 
* * * * *' SE 0: **** •••• * ••••• **. 

1 
• •••• c3**····**·· 
* * 

SOURCE PROCESSING 
RODTINE 

• STORE 0: 0: PROCESS INPUT * __ SELECT SEIfTENCE 5 

: Di¥~~~=plfiD : *OUTPOT SECTION *' APPLY CLAUSE A 
0: • RERUN CLAUSE P • • ................. • 0: SA PIE CLIUSE 5 .***............. PlULTIPLE-FILE fI 

1 
L CLAUSE >...... L-~~~ ____________ ___ 

·····01·········· * * • PASS .. 
0: ID-DIVISION 0: 
0: COIUIEaTS • • • ••••••••••••••••• 
:*:~.: 1 
0: *_> 
** •• 

0: 21 0: 

* * •••• 

GETDL!I .. *'.. DDSCH .. 0: .. 
El *. £3 •• 

• * *. .* •. 
BHY .* BRIBeD TO *. DATA .* BRANCH TO *. r-* .HEXT DIVISION.*O-------------------------------;)*. SECTION .* *. .* ·.PROCESSOR .. * *. .* ., *' 

•••• * ... * ···1'" 0:" -PROC 
.. 83 .. 

* * • **. 

160 

*.*. 
* * * H1 • 
• *-> •••• U0613 

••• *a 1*.*****.* 
*RETURN TO PHASE. 
• 00 * 
• * ••••• * •••••••• * 

section 3. 

PILE ---) Eq 
v-s ----) pq 
LIHK----) Gq 
REPT----) Hq 

Program orqanization 

..... 
* * * ElJ. • • • ...... --, 

FDSCH' t """*"E4. _...... .... • ••• *ES ........... . · ... . 
• SCAN PILE. .SCAN RECORDS OP" 
• rRFORflATI:OH' .------->. FILE SECTI.OH • • •• • .. .. . 
••••••••••••••••• • ••• :t** ••• * •••••• •••• L •••• 
• • >. * • P4 • • E1 • • .*.* *---, •••••• 

WLVSCIf + 
**·*·P4 ••••• * •••• 
* • * SCAN RECORDS • 
.. AND CONSTARTS .~ 

• * • * ..................... 
•••• • • 

• G4 * • • 
· . • E1 • 
* * .... --, 

LDSC1I t 
*"*··Gq··""······ 

• * • SCAN LINKAGE * 

•••• 

• RECORDS .~ 

• * · . •••••••••••••••••••• * 
* * •••• • • · B4 • • • 
• E1 • • • .... ~ 

·····B4·········· • * • SET UP POR • 
• REPORT WRITER. 

• * • * ................. 
L •••• ). . 

• H1 • 
* • .... 

. ... 



Licensed Material - Property of IBM 

Chart DA. Phase 11 (ILACBL11) Overall Logic 

****A 1......... I ENTER PROM 
: ILACBL 11 : --- PHASE 00 

" " ••••••• ** •• ***. 

1 
.". B1 *. • •• **B2.** ••••••• 

. * *. * .. _* PROCEDURE *. NO .PUT ERROR TEXT .. *. DIVISION .*---->* ONTO SYS002 *. HEADER .* .. *. .." .. .. '. i:;S ........ j** •• ** .. 

CHKDCL . *. neLseN 
cl *. **.*.C2********** .* *. .. .. 

•• DECLARATIVE •• YES" .. 
*. SECTION .*---->* PROCESS USE *i *. .* .. .. *..* .. .. 

* .. * ****.*.******** ••••• * *NO .. .. *.*. 1 * Dl .. ,.. .. .. .. 
.. Dl .. **** .. *-> ** •• 

DELII! ...... IHNAI'I DICENT 
D1 *. *****02********** *****D3*****.*.* • • * *. .. .... .. .. * LEFT-HAND .... YES .. SET UP LEFT .. .. POT IN .. 

.. NAME .*---->*HAND NAME WITH *---->* DICTIONARY *i *. .* .. ATTRIBUTES"" .. .....* 0: .... .. 

.... .." .*******.****.*.* **** •• ***.*******.*** *NO .. .. I : D1 : 

.*.* 
v .*. VRBSCN .*. 

El *.. E3 *. *****E4********** 
.* *.. .* *. * * .* *. YES .* *. YES *PROCESS SPECIAL* 

*.. VERB .. *---------------:>*.SPECIAL VERB •• ---->. VERBS 
*. .* *. oo* • *. .. * *.. -* * .. - ... "'oo .* *.**.****.****.** 

r r 
.*.. .*. 

F1 *.. .**.*P2********** P3 *_ *****1'4********** 
.* * - * * -* *. * * .. * END *. YES * RESET. ... BEPORT *. YES • SUBSTITUTE * *. DECLARATIVE .*---->* DECLARATIVE • * .. WRITER VERB .*---->* ENCODED COBOL *-> 

*. SECTION .. * * SWITCH * *. ..* *PROC STATEMENTS* 
*....* * * *....* * * 

• 'l*N~ *"'******["'*::::. • "l*N~ .********."'**"'*.* 

>: D1 : <: _______________ ~ 
"'*** GENA 

*****G1*****.**** ***G3*********.* 
'" END PRoe * * DIVISION AND '" 
• PHASE 11 '" 
'" PROCESSING '" . . 
***************0* 

1 
****H1********* 

'" EXIT TO PHASE '" 
: 00 : 

**********.***. 

• • 
POT ONTO SYS002 . . 

.**** ... ********* 

L •••• 
)* • 

'" D1 • . . 
•• ** 

Flowcharts 161 



Licensed Material - Property of IBM 

Chart EA. Phase 12 (ILACBL12) Overall Logie 

***.12......... I ENTER FROPl 
• * --- PHASE 00 ... ILACBL12 .. 
* * *** •••••• ** •••• 

~D" 1 ··B2*·*·*·· * • 
• SET SVITCHBS .. 

** •• 
* * • 14 * 
.... *** *---, 

~ EGOU1 ***··14*········· *GR'SPRT • 
*-*-*-*-*-*-*-*-* 
.GEN PARA!lETBIC ... 
• FIXED ROUTINES-* 
.GET NEXT RECORD. 
• •• ********* ••••• 

1 .*. 
84 *. .. * •. 

YES .* * .. 
r---------------*.~~ (SEE NOT~~.* * PRIME TABLES .. • • 

* * ***** •• ** •• 

GETCRD 1 
***c2**····***** 

GET FIRST ... 
RECORn 

********.******* 

RDSCAB 1 ····*02····**··*· * * .. PROCESS DD .. 
.. STATEftENT GET *< 
'" NEXT RECORD .. 
* * ••• ** •••••••••••• 

PRoc01 1 ··***E2*····*···· 
• * '" PROCESS 0 1- .. i>.LEVEL STATEMENT·< 
-GET NEXT RECORD. ~ 
• * •••••• ** ••• ** •••• 

1 .*. EB01A1 
F2 "'.. .****P3* **** •••• 

. * *.. *PLUSH • 
. * 01-LEVEL *. YES *-"'-*-*-*-*-*-*-* 

•• *~SEE ROTE) ..... *---->:GENE«~ij~I;loup : 
*....* II' * 

... • * * ••• **.* •• ***.*.* 
*.0 
L .. *. >* • * • 

* * **** 
PROC02 

*****G2*********· * • 
'" PROCESS 02-49 '" 
* LEVEL * 
'" STATEl'IENTS '" 

• * .*****.*********. 

I 
! n01A 1 

*****S2********** 
*FLUSH .. 
*-*-*-*-*-*-*-*-'" 
*GENERATE GROOP • 
'" ROUTINE GET * * HEXT RECORD • 
******.****"'***** 

1 .*. b J2 *. 
oo* "'oo 

YES .* 01-LEVEL *. 
• (SEE NOTE) .* 

162'" Section 3. 

*. .* 
*oo .. * *. oo* 

*NO 
L .*.* >. * 

• A4 '" • * 
**** 

Program Organization 

*. .* * . .o. r 
** •• C4··**···· .. .. EXIT TO PRIS E ... 

.. 00 '" . . 
••••••••••••••• 

HaTE. OVERALL CONTROL OR PROCESSING 
IS DONE BY THE GETDLK BOOTINE, 
WHICH HAS A SIIULAR FUNCTION 
TO THE GETDLH ROOTINE IN 
PHASES 10 AND 11. 



Licensed Material - property of IBM 

Chart EB. Phase 12: FLUSH Routine 

."''''. * * '" A4 .. 

******--v 
XITS .*. XIT7 

A4 "'.. *****A5********** * •• "'A , •••• *.*** ."'TYPE IS*. '" • .. .. .* CONTROL *. YES .GENERATE END OF. 
'" FLUSH .. ..HEADING 1"19AL.*---->* CRY-HOOT 
'" .. *. .* '" •••• *********** .....* '" '" 

1 *. r~ * .. *********** .. * 
DONGP .*. .*. I1T6 

B 1 *. ."' •• *a2.......... BU *. *****B5********** .* *. '" '" .• TYPE IS*. .. .. 
•• NEXT GROUP *. YES .. PROCESS HEXT .. .* CONTROL *. YES "'GENERATE END 01"* *. CLAUSE VAS .*---->* GROUP .. "'.POOTING PI9AL.*---->* CPF-ROOT 
"'.SPECIFIED.'" "'.. *.. ..* .. .....* "'.. .....*.... 

*·I:~ ·· .. **·T****··· ··I:~ ....... *1* ••• ** .. 
FLEXl .*. EPpT XITXIT .*. 

c1 *. *****C2********.* ell *. ** ••• C5"*.*.**** • 
• * *. .. * .* *. .. .. . * TYPE IS *. YES .GENERATE END 01"* •• NEED LINES *. YES * INSERT LINES '" 

•• PAGE FOOTING .*---->* PGE-ROUT '---------------,-:>*. COUNT .. *->*COUNT IN SUKTBL* *. .* .. A *. .* ,. TABLE .. *..* ,. '0: *..*,.. 
··r~ ............. **.. ··l·:~ *"'****r""'** 
.*. EPBD 

D1 *. *****02********** 
.* *. * * **··Oq***··**** .* TYPE IS *. YES *GEHER1TE END op. ,. '0: 

*.PAGE HEADING .*---->* PG.I!-ROUT '* > *EXIT TO GETDLn • *. .* *. ,.. ,.....* ,. * .*********.**** * ... * *********.******. r .'. R1 .... • ••• *E2.*.*.**** • . * *.. * ,. .* TYPE IS *. YES *GEHERATE END OF. 
* .•• :~6~¥iG .... *---->: BPP-ROUT :'-------------:> 

*..* .. ,. 
* .. * ***** ••••• *.***** r 

XITl .... 
P1 *. .****p2*** •• ***** .* *. .. .. . * TYPE IS *. YES .GENERATE END OF* 

*- •. :ii8¥iG .... *---->: RPH-BOOT .. :-------------:> 
*..* .. .. * .. * ***.**** •••• *** •• r 

XIT2 .*.. XIT2) 
G 1 .... .****G2********* • • * *. .. .. . * TYPE IS *. YES .GENERATE END OP. 

""' •• DETAIL ••• *->: OET-ROOT :-------------:> 
*..* .. .. 

.... .." ************ *** •• r 
XIT3 .*. 

Hl *. *****»2***.****** oo* *. * * .* TYPE IS *. YES *GENEBATE END OF* 
*_ •• ~~~~¥~~ .• oo*---->: CTH-ROUT :-------------> *... .. * 

·oo .* ************.**** r 
XIT4 .*. 

J1 *. *****J2********** .* *oo * .. • * TYPE IS *. YES .GENERATE END OF* 
*.*. iggn~~ .*.*---->: CTF-ROUT :---------------' 

*...* * • •. ... .**************** 'NO 
L>. **** .. 

.. Aq * • * 
**.* 

Flowcharts 163 



Licensed Material - Property of IBM 

Chart FA. Phase 20 (ILACBL20) Overall Logic 

164 section 3. 

*.**12*.******* IENTER FROft 
• • --- PHASE 00 * ILACBL20 *' 
• * ••••••••••••••• 

BEGIN I 
·*B2···*··· * * • • ·INITIALIZATION .. 

.. PROCESSING .. 
* • ••••••••••• 

1 .*. FB01A1 
C2 .... • •••• C3 •••••••••• 

.. " NEXT *. .PILEST .. 
•• SECTION IS .... YES *-*-*-*-*-*-*-*-* 

•• PILE SECTION .*->* PROCESS FILE .. .... .* .. SECTION .. *...* .. .. 

··I:~ ·······T···· .. · 
.'. FC01Al 

D2 *.. • •••• 03 ••••••• ** • .. * NEXT *. *1iSTSCT .. 
•• SECTION IS *. YES *-*-*-*-*-*-*-*-* *. 'lfORKIRG- .*-->* PROCESS *' 
... STORAGE .* .WORKING-STORAGE. *...* .. SEeTIOIf' .. 

'r~ ·······T······· 
.'. FCOlA3 

E2 .... • ••• -El •••••••••• 
.. " NEXT .... *1..1IlK51' .. 

.. • SECTION IS .... YES *-*-*-*-*-*-*-*-* *. LINKAGE .*->*PROCESS LINKAGE. *'.. SECTION .. " .. SECTION .. *...* .. .. 
··I:~ ·······T······· 
.'. FC01AS 

P2 *. • ••• *1'3 •••••••••• 
.o* NEXT *. .REPORT .. 

.. • SECTION IS *. YES *-*-*-*-*-*-*-*-* 
*. REPORT .*----)*PROCESS REPORT * 

... SECTION ... • SECTION * 
*....* • • 

'·.Ii~ •••• .... r·· .. ··· 
PO'lED! 1<-----------' 

·*···G2********·· * • 
• TEBftINITIOIf .. 
• PROCESSING • · . • • *.*.* ••• * ••••• * •• 

I 
.*.*n2***······ .. EXIT TO PHISE • * 00 • • • • * •• * •••••• * •• * 

Program .Organization 



Licensed Material - Property of IBM 

Chart F'B. Phase 20: F'ILEST Routine 

••• *A 1 ••• * ••••• 
* * .. FILBST • 

* * •• * •••••••••••• 

: *:~*: 1 
* *-> .... 

.... SEE CHART 
B1 *. FA01D2 

.* *.. ····B2***···**· .. " END OF "'.. YES .. RETURN TO .. >*. SECTION OR .*---->* HAINLI.HE • *. FILE.* .. .. *..* ••••••••••••••• 
* .. * r .*. FDTEXT .*. 

e1 *. • •• C2**.* •• ****. C3 *. • •••• cq •••••••••• 
. * *.. .* *. .. .. . * *. YES .. PLACE FD ON .. ... ANY LABEL *. YES '" .. *. PD ENTRY.*-> 5Y5004 FOR PH ---->*. RECORDS .*---->* BUILD LABTBL .. *. .* .. 22" *. .* .. .. *. .* *..*... *. .." ••••••••• ***.**. .... .* * •••••• **.*** •••• . r SDTEXT BSUBRN r I 

D1 .... ***02******.*... * •• **03*** ••• ** •• . * *. .. .. 
.. " *.. YES * PLACE SD ON .... .. *. SD ENTRY .*----> 5Y5004 FOR PH ---->*GET NEXT ENTRY" 
*.. .* .. 22" .. .. *. .* .... 

*·1·:N~ •••••. * •••• **... ···***···L···::::* 
>* * .. B1 .. 
* • ••• * .*. 

El * . . * *. 

<·~~~~~~:~··>l·O 
·YES 

..... F1.! ....... . 
• CHECK TO SEE IF. 
• ITEM IS • 
• LABEL/PAT! * 
• RECORD ... * • ••••• * ••• ****.*** 

i 
*****G 1****.***** 
• * *SET APPROPRIATE* 
• CODES ... 

• * * * ********.******.* 

l ····,,·t2111 ·LDTEXT ... 
• _*-*-*-*-*-*-*-* 

PROCESS 01-119- • 
• LEVEL AND 88- ... 
.. LEVEL ENTRIES ... 
• ****.********.** 

Flowcharts 165 



Licensed Material - Property of IBM 

Chart FC. 

****A , ••••••••• 
* • 
.. WSTSCT '" 
* • *.*.* •• *.**.*** 

j 
.*01******· * • 

.. INITIALIZE .. 
*~Ri:~t Ti~!i~HE;* 

* * .********** 

1 PDO,., 
*·*·*Cl****·***** 
*LDTEXT '" 
*-*-*-*-*-*-*-*-* 

Phase 20: 

: P~g~~ip~fXiL =] .. ENTRIES .. 

··_···:c··_· 
n1 *. 

. * *. .* END OF *. NO 
.... SECTION OR .* 

*. FILE .* 
*. .* * ..• 

*YES 

1 SEE CHART 
FA01E2 

****E1********· 
.. RETURN TO .. 
'" IUIHLINE * * • 
********* ••• *** 

WSTSCT, LINKST, and REPORT Routines 

*·*"'A3*·******· * • 
.. LINKS'! .. 

• * ********* ••• *** 

j 
*"'83******· • * .. INITIALIZE .. 

*AREAS, SWITCHES. 
.. AND TABLES .. • • **.*.* •••• * 

1< FDO,., 
•••• .. C3·*****·*** *LDTEIT .. 
*-*-*-*-*-*-*-*-* 
.. PROCESS LEVEL .. 
.. DESCRIPTION .. 
... ENTRIES .. .* ....... -.. "'."'*. 

1 . '. 
n3 *. 

.* *. .* END OF *. NO 
... SECTIOR OR .. '" 

*. 'FILE .* 
*. .* * ..• 

·YES 

1 SEE CHART 
FAO 'F2 

****E3********* 
.. RETURN TO • 
• MAINLINE • • • .*** •• ** •• * ••• * 

166 Section 3. Program Organization 

****A5*·**···*· 

• * ... REPORT • • • *.**.** •• ** ••• * 

j 
**B5**·**** • * * INITIALIZE • 

*AREAS, SWITCHES* 
* AND TABLES * 
• * 
.*.*** •• *** 

I 
!< FDO,., 

*****C5********** 
·LDTEXT * 
*-*-*-*-*-*-*-*-* * PROCESS LEVEL • 
* DESCRIPTION * * ENTRIES • 
******.*.*.****** 

1 .' . 
DS *. 

.* * . .* END OF *. NO 
*. SECTION OR .* 

*. FILE .* 
*. .* 

* .. * 
*YES 

1 SEE CHART 
FAO 'G2 

****E5********* 
.. RETURN TO • 
• "AIRLINE * • • •••••••••• * •• *. 



Chart FD. Phase 20: 

**** A 1********* · . .. LDTEXT '" · . *************** 

1 .*. GSPICT 

LDTEXT Routine 

81 *. *****82********** 
.. '" .... '" '" .* PICTURE *. YES '" CHECK AND '" *. CLAUSE .*---->* ENCODE CLAUSE .. 

*. .* '" * *..* * * 
*.. .. '" ***************** r \ 

BMBSHN V 
*****C1********** · . .. DETERMINE * 
'" SUBSCRIPT '" 
'" REQUIREMENT '" · . ***************** 

1 .*. SReHTB 
D1 *. *****D2********** .* *. .. * 

.*OCCURS AND *. YES * WRITE OUT ID .. *. INDEXED BY .*---->*NArmS AND KEYS * 
.... CLAUSE .* '" ON SYS004 * 

*. .. *' * * "' .. iN~ ********i******** 

1< I 
BREAD V 

***>t:*El********** · . '" BRING IN NEXT * 
.. ITEM '" · . · . ***************** 

I 
COPYRN t 

*****F 1********** · . *IF COPY CLAUSE * 
'" COpy IN SAVE .. 
.. AREA '" · . ***************** 

BUSAGE 1 
*****G 1********** · . .. CHECK OSAGE * 
* CLAUSE '" * COMPATIBILITY * · . ***************** 

ITEMRN 1 
*****H1***"'**"'*** · . · . * ITEM ANALYSIS '" · . · . ***************** 

1 

Licensed Material - Property of IBM 

**** · . * A4 '" · . **** I 
BELEMI V 

*****A4********** * CHECKS FOR * 
'" VALIDITY OF '" 
* CLAUSES ON * 
*ELEMENTARY ITEM* • • ***"'**"'********** 

1 . *. PICTAN 
B4 *. *****B5********** .* *. * CALL * .* PICTURE *. YES '" APPROPRIATE '" *. PRESENT • *---->* PICTURE 

*.. .* * ANALYSIS *. '" * ROUTINE '" 

• 0 t ""*"'j**""" 
.*. VALGER 

C4 *. *****C5********** .* *. • '" .* *. YES * CALL APPRO * *.VALUE CLAUSE .. "'---->>I<VALUE ANALYSIS >I< 
*. . * * ROUTIN E * 
*...* * * 

* *"'** * '" 'l*N~ *********\ ******** 

* D4 * . ******_> < ____________________ -J 

BNORML 
*·***D4********** 
• * *NORMALIZE LEVEL* * NUMBER * · . 
• * ***************** 

I 
GETOUT t 

***E4*********** 
* GENERATE 

ATP-TEXT ON 
SYS004 

*************** * 

1 
0*0 

F4 *. 
e* *. 

.*DATA-A TEXT ... YES 
*. FOR .. *-------> 

*e .* * 
• 0 • 

***F5*********** 
* GENERATE 

DATA-TEXT ON 
SYS004 

* .. * ***********.**** 

i:_O _----'I 
v 

****G4********* * RETURN TO * * CALLER * * • 
*************** 

.*. BGROUP .*. VALGEN 
J 1 *. *****J2********** J3 *. *****J4********** .• *. *' CHECKS FOR * .*.. * • 

• * *. YES • VALIDITY OF • .* *. YES '" CALL APPRO *' *. GROUP .*---->. CLAUSES ON *---->*.VALUE CLAUSE .*---->*VALUE ANALYSIS * *. .* * GROUP * *. .* * ROUTINE • *..* • • *..* * * 
•• •• ***************** *.. ..* ***************** 

*NO *NO L 
L>* **** * L>* **** * >* **.* * 

* A4 '" *' D4 * '" D4 * 
* * *' * * * -- _._" 

Flowcharts 167 



Licensed Material - Property of IBM 

Chart GA. Phase 21 (ILACBL21) Overall Logic 

168 Section 3. 

****12******... IENTER FROM * * --- PHASE 00 * ILACBL21 '" 

• * *************** 

j 
*·***B2**·*·*·*** 
• * * CLEAR WORK .. 
*AR:&AS AND PRISE'" 
... TABLES ... • • 
*****.".********* 1<---, 

···C2··***·***** 
* • READ 

••• ** •• ****."' •• * 

1 
..... GE0111 

D2 "'.. ** ••• D3** •••• ** •• 
.. '" "'.. "'BUPGER ... 

.. '" "'.. YES *-*-*-*-*-*-*-*-* *. EOF .. *---->* GO TO BUFPER .. *. ..* ... GENERATOR ... *..* ... ... or o_·-r-·· 
•••• *E2** •••• ***. • •••• :&3 ••• * ••• ** • 
• SET ALL FIlL"'''' ... 
'" IN ...... ... 
... CAN ... "'RELEASE TABLES ... 
... UP ...... ... 
... PH T"'" ... **... •.••••• • .•••.•••••••••.. 

1 .... -2·········· ... MIllE DTF ... 
... AND SET '" 
... ITOR IN ... 
.. D IOliARY ... • • ............. ** ••• 

1 GB01A2 

·····G2*···*****· "'RECODD ... 
*-*--*-*-*-*-*-*-* 
... CHECK RECORD • 
*CONTAINS CLAUSE* 
.AND SET IN DrCT • ................. 

1 GC01A2 ·····H2·········· ·BLOCK * *-*_.-*-*-*_._*-* * CHECK BLOCK * 
.CORTAINS CLAUSE. 
"'AND SET IN DIeT. 
**.****.*** ••• *** 

1 GD01Al 
**·**J2*·*·*··*·· *RECORDING • 
*-*'-*-*-*--*-*-*-* * INE· 
"'REC HaDE. 
*AND N DI.CT* 
.** •• *. .***.** 

1 

j 
····P3········· "'BETUBN TO PHASE'" 

... 00 ... 
• * *.** •• ** ••• *.* • 

*.*.*K2**.* •• *.** * •••• K3 •• **** •• ** * • * • 
• GERERATE. *HAKE CO!lPLETED * 
*APPROPRIATE DTP.---->* ENTRY IN * '" *.. DICTIONARY * * ... '" .***.** ••• ***.... • ••• *.*** •••••••• 

Program organization 



Chart GB. 

Licensed ~aterial - Property of IBM 

Phase 21: RECORD CONTAINS Clause Processing 

····12········· • * ,. RECORD * 
• * •••••••• *** •••• 

1 
.*. 

B2 * .. . * *oo oo. RECORD *. NO *. CONTAINS .*~ *. CLADSE .* 
*. .* ,. ... * ***. ·YES ,. ,. 

•••• 1 : D5 : 

oo·. .*. C2 *. *****C3**.*.*.*.* Cq *. • •••• cs •••••••••• . * *.. ,. ,. .* *. ,. ,. .. * 1N7-1 TO ,. .. YES *SE!' INDEX BYTES. ..* *. YES" • *. 197-2 .*---->* TO H1 TO H2 *---->*. 151ft 'FILE .*----)* ERROR ftSG ,. *. .* ,. ,. *. .* 1\. ,. *..* ,. • *..* ,. ,. ,... .." •••••• * •••• *.*.*. ,... ..* ••••••••••••••••• r .r (:::Ll ...•. D2.......... D4 *. • •••• D5 •••••••••• ,.,. .* ,... ,. SET nrCT nAX ,. 
.SET INDEX BYTE ,. .* N1 LESS *oo NO ,. BEC SIZE = ,. 
,. TO ONLY H2 ,. ,. .. THIN H2 .. *--> ,. COMPOTED ftAX ,. ,.,. *. .* • BEC SIZE ,. 
,.,. *oo.*"" ·······I-··· ··t' ._._.j ........ . 

E2 *oo oo. , *. ****ES*.*** •••• 
EQO.* H2 = ,. .. HIGH • • 

.COMPUTER lUX .*,-------------------------:> .. RETURN .. 
*.REC SIZE .* .. .. 

*.. .* *************** * .. * 

rw 
.*. 

F2 * . 
. * "' . • "'HORB THAN 1*. HO *. ODO .*'~ ______________________________________________ __J 

I ······t··· 
L *****G2**·*****·· * • * SET DIeT MAX ,.. 

>* BEC SIZE = N2 .. 
* • • • 
***************.* 

1 ···"'H20 •••••••• 
* • 
'" RETURN .. · . •• ** ••••••••••• 

Plowcharts 169 



Licensed Material - Property of IBM 

Chart GC. Phase 21: BLOCK CONTAINS Clause Processing 

*****A3********** 
·***A2********· '" '" 

'" ,. .SET INDEX BYTE '" 
'" BLOCK *---->* POR UNBLOCKED * 
'" '" '" PILE '" 
*********.***** '" '" .**************** 

1 
.*. 

B3 * . . * *. ****84******·*· 
.. '" IS FILE "'.. NO * '" *. BLOCKED .*---->* RETURN '" 
*. .* '" '" *..* ************ ••• * .. * 

·YES 

1 
.*. 

C3 * . 
.. '" "'.. ****C4********* 

."'UNIT-REC OR"' .. YES '" * *. DIRECT ORG .*---->* RETURN '" 
*. .* '" '" "'...* ****** ••• ****** * ... * r .0. 

D3 "'.. *****D4*.******** 
.* *. '" '" .* "' .. NO '" '" •• N1 TO N2 USED.*---->*CONSIDER N1 I'!AX*~ 

*. .* '" '" "'...* '" '" * .• * ******* •• ************ 
·YES '" '" 

**** 1 : H3 : 

.0. 
E3 "'.. *.***E4********** .. * *.. '" '" ****E5********* 

.* *. YES '" '" '" '" *. ISAM .*---->* ERROR HSG *---->* RETURN '" 
'" '" 1\. ... '" '" .. '" ,." I '" '" *************** .. "' ... *" ***************** 

F3 *oO .r j 
oO* *oO 

~* *oO HIGH *. N1: N2 .* 
*oO oO* 

*oO oO* 
*oO ~* 

rw 
·****G3********** • • *SET N1 TO N2 IN* 
* INDEX BYTE * 
• * · . ***************** 

: *::*: 1 
* *-> 

**** 
.*. ..*oO 

H3 *. H4 *oO *****H5********** .* *.. oO* * * * 
oO* RECORDS *oO NO .* *. YES * * 

*oO OPTION USED .*---->*. IS AM .*---->* ERROR HSG * 
*. .* *oO .* * * 
*..* *.oO* * * 

*'O oO* *'O .* ***************** 

.rs .r j 
*****J2********** J3 *oO J4 *oO 

****J1********* * * .* *. oO* *oO ****JS********* 
* * * CONSIDER FILE * YES • * BLOCK * ~ . * 82 LESS *. YES * * 
* RETURN *<---* UNBLOCKED *<---*. CONTAINS 1 .* *. THAN REC. 'O*---->* RETURN * 
* • * * *. RECORD .* *.DESCRIP •• * * * 

*************** * * *oOoO* *..* *************** 
***************** *.. . * *. .* 

*NO *NO 

1< ! 
~ 

***·*K3********·* 
• '" ****K4********* *SET INDEX BYTE * * * 
* FOR BLOCKED *---->* RETURN • 
* FILE * * '" 
* '" *********"'***** 
***************** 

170 Section 3. Program Organization 



Licensed Material - Property of IBM 

Chart GD. Phase 21: RECORDING HODE Clause Processing 

.*. .*. 
12 *. A3 "' .. ···*1 ,***.***.. .* *. ... "' .. * '" .* RECORDING *. NO .* SPANNED *. NO 

'" RECORDING .---->*. P10DE CLAUSE .*->*. RECORDS .*~ '" '" *. .* *. II'fPLIED .* ••• ** •• **...... *...* "'...* * .• * "' ... * •••• 

l*YES *lYES : G2 : 

•••• 
. *. .*. .*. 0*. 

B2 *. B3 "'.. B4 "'.. B5 "' .. . * *. 0* *. .* *. 0* * . . * * .. YES ."'SEQUENTIAL *. NO .* *. NO .* *. HO 

"'.. .* "'.. .. '" *. .. JOE "'.. .. '" *...* *..* *..* *. 0* * •• * * ... * * .. * * .. * r I:ES rs rs 

.*. ..*. 

*. SPAHN ED .. *---->*. DISK .*---->* .. ftAGNETIC TAPEo*----)*.DIBECT ACCESS,""'] 

** ••• c1.......... C2 *. C3 "'.. • •• **C4"' •••••• *.* ••••• C5* •••• ****. 
'" '" .* *. .* BLOCK *. '" '" '" '" 
.SET INDEX BYTE '" YES .* "'.. .* CONTAINS "' .. NO '" '" '" '" 
'" TO lIODE F *<-*. FIXED.* "'.. CHARACTER .*---->* ERROR "5G '" '" ERROR "5G *< * '" ... ..* *.. OSED.· • •• * 
• * *..* *..* • *. * · .... ··r .... ·· 'r 'or ·······T ...... · .... · .. r .. · .. 

D1 *. D2 *. *****D3********** ****.05******.**'" 
.* *.. .'" *. '" * • '" 

YES .'" *. NO.'" •• '* SET RECORDING '* *SET INDEX BYTE '* 
'*. UNDEFINED .*<-*. VARIABLE.'* '* HaDE IN *~ * TO MODE V • 

*. •• *. ..* *DICTIONARY TO s* * * 
*...'" *..* • '* * * *. . * "' •. * •• ***********"'******* ****"'.*********.* 

IONO l*YES. ***. * : K2 : 

* E3 '" **** o 0 **** -, .*. .*. V 
E1 *. E2 *. *"'***E3*'**"''''****'* .* *. .* *. .. * •• •• YES.. • .. YES '* '* 

•• rSAM .*~ •• DA OR IS .'*---->. ERROR HSG • 
•• .o'" *. .• • * ...* *..* • * 

*. ... **** *. • * "'**"'************* 

**** I*NO : E3 : I*NO 

***.*p 1.********* *****P2*****.*.*. 
* • '" '" .SET INDEX BYTE • "'SET IRDEX BYTE • 

>* TO ftODE U * '" TO ftODE V * . *. '* .. *. * ********.****.**. • ••• *."'*.** •• *.** 

I >1<:-----' 
.*. .*. 

G2 •• G3 *. • •••• G4*.** ••• * •• 
.• *. .* *. .. • 

• * RECORD •• YES .. * * .. YES * * 
[

> •. DESCRIPTION .*---->*. rSUf •• ---->. ERROR ftSG • 

: :;*: *·!~:~l::~~*·* J *·· .. *·l*N~···* t*_**** •• **.**': 
•. *. 

.*. 
H2 "'. *****H3*.*** •• *** .* *. • • . * *. YES "'SET INDEX BYTE. 

*. ANY ODO'S •• • TO ftODE V • 
*. .'" • '" *..'" * * *. 'N~ ********r******* 

1<---'---------'----------' 
"'··**J2*·*******· 
* * • SET RECORDING • 
* !lODE 18 • 
*DICTIORARY TO v* 

• * ****"'***.**.* •• ** 

: .:;.: 1 
'" *-> •• ** 
****·K2****··**** 
• CALCULATE. • ••• K3.*.****** 
*BUFFER SIZE AND. * GO TO DTF • 
• PUT DT'F NUMBER .---->* GENERATOR • 
• IN DATA A-TEXT • * • 
... * *** ••• ****.*** • 
• *.* •• * ••• ** •• * •• 

Flowcharts 171 



Licensed Material - Property of IB" 

Chart GE. Phase 21: 

• ••• * • 
• A2 • 

BUFGEN (Part 1 of 2) 

****11********* 

• *-•• o. *--l 
·····A2·········· • • • STOBB ENDLOC IN. • • *' BUFG!. • .. LOCCTR • • • • * ************* •• • • 

: *::*: 1 *' *-> •••• 

• •••••••••••••••• L ••• o. 
>. • 

• K2 • • • •• * • . '. 
B 1 *'.. ..***S2* •• ***** •• . * *. • '" .. * ILL SAnE *. YES '" INDICATE !JOT '" *. AREI FILES .*---->* PROCESSING A *! 

"'.PROCESSED .. '" .SAftE AREA PXLE '" 
*..* '" • *. ..* •• ** •• * •• *** ••••••••• 

I·NO ~1: H1 : 

•••• 
NO .*. .. . 

el *. C2 "'. . * .lUST *. .* "' . 
• "'PROCESSED I"' .. NO .* IS THIS A *. YES '" 

*.. SAftE AREA .*->*. SAftE AREA .*----). B 
*.. 'FILE .* *. FILE.* ... 

"'.ENTRY.'" *...If: ... 
* .. * * .. * *** •• ** rs 

• 

. '. n 1 "'.. ..***02********** . * THIS *. '" * 
.. "'PILE HAS NO*. NO "'GET NEXT ENTRY '" 

"'.SAffE ARBA NO .*->*IN BUFFER 'rADLE • 
... AS LAST .* '" '" *. OffE .* '" '" 

··1';S ········r······· 
.*. .*. 

E1 *. E2 *. .* Loe *. .* "'. 
YES .. '" CODNTER "'.. .. '" "'.. NO 

• LESS THAN OR .. * •. END OF TABLE •• *. EO TO .* *. .• 
"'.ENDLO.· *... 

* •. * * .. * r IES 
*****p 1** •• ****** F2 "'.. ..***F3******.* •• 
* • .* *. * * *STORE LOCATIOll * .• IS LOCCTR •• YES .STORE E'NDLOC IN. 
• COUNTER IN. *. LESS THAN •• ---->. LOCCTR * 
* ENDLOC * • . ENLoe • - • * 
- * -...* * • ·· .... r····· ·r ........ j--
** ••• G 1* ••• * •• *** ••••• G2**.*** •• ** 
• *. POINT TO • 
• RESTORE Loe .. • BEGINNING OF -

>* COURTER PRO! • .BUFFER TABLE lD. 
• BEGINLOC. .TABLE Bt TABLE .. • *. .. .* •••••• * ••••• *.. ** ••••• * ••••••••• 

: *:~.: 1 L>: .:~* : 
* *-> • • •••• • •• * 
••••• 81** •••• **** ••••• R2 ••••••••• * 
• •• • .. ... POINT TO HEXT • 

• SAVE FILE ID .1>. ENTRl IN BUP' • • •• TAB * * ... • . *............... . .. *.* •••••••••• * 

~oj:: ·->1 1 
*.*. ..*. ••• . •• 

J1 •• J2 •• .13 * . 
. * *. ...* *.. ..* *. 

NO •• FILE ID IN •• YES YES .*BHD OF BUF •• NO .* FILE ID •• lES r* .. BUPTAD = 0 •• .. TAB .*-> •. EQUALS SAVED •• ! 
... ... •• •• •• FILE ID .. * 
*..* *..* *... 

•• *** *.. •• *. .• *. •• * ••• 
• 02 •• • .NO .. .. 
* A2* ••• - I\. •••• I * .1' • ..•. --0.. .. 

• • Jl • • 1\2 • • ••• .. . . .. .... ..*. ---, .•• t .•. 

NO 

NO 

• ••• • • .. All • 

* * .... ~ 
••••• '4 •••••••••• 

* * • • 
• SAVE SRA NO .< * • • • • •••••••••••••••• 

1 .' . Bli •• ... *. 
•• SINGLE •• 
.BOFFER UNBLK •• 
• Oo OR ISlft •• ... .* • .. * rs 

*····C4·········· *LOCATE ENTRY IN. 
.BOFTAB AND PILL. 
.. IN ADCODS IN .. 
.. DTF • 

• * ................. * 

1 
**·**D4.** ••• " ••• • • .PUT OUT BL FOR .. 

>* THIS FILE' • • • · . * •••••••••••• ** •• 

1 .'. E4 •• .* SIZE •• 
•• GREATER •• 
.THAN MAX SIZE ... *. so FAR .* *. .• * ... * rs 

··.··P4 •.••• ** ... • • .IUKE THIS SIZE' • 
.. THE flAX SIZE *' 
• * • • ••••••••• * ••• ** •• 

j 
·····G4·········· • ZERO OUT THIS. 
• ENTRY TO • >* INDICATE THAT. 
• IT IS DONE • • • • •••••••••••••••• 

1 ·····HII·······**· • • .. POINT TO NBXT • 

NO 

* ••• • • .. AS .. · . .... ~ 
.····15··**······ • • .UPDATE Loe eTR • 
.BY t!I.AXI6UM SIZE. 
• SO FAR • • • • •••• * ••• * ••••••• 

1 
• •••• B5········** • • 
• PUT 0 IN rux • 
• SIZE .. 

• * • * ••••••• * ••••• * ••• 

j 
·····CS·········· · . .. POINT TO • 
.. BEGINNING OF • 
• TABLE .. • • ••••••••••••••••• 

1 .' . 
D5 '. .* •. ... . .. 

P1NISHED •• 
•• Oo* 

*. .* . .... r 
····E5 •••• • ••• • 

*-RETURN TO PHASE. * 00 • · . • •••••••••••••• 

• ENTRY .<--------, 
t .............. : I 

1 IHO 
J4···... .15· ••• 

Oo··.. ••• .. 
Oo. *. NO •• *-. 

•• END OF TABLE .. *----) •. SAME SRA NO .* •. .* *. Oo* ...* ....* * •• * * ..• 
.YES .YES 
L> ••• *o. • L>. * •••• 

• AS • ... A4 • .. .. . . 
•••• • ••• 

K' ... • •••• K2 •••• *..... 1\3 *. ..**.K4 ••• * ...... 
. * *. .. .. •• *.. * * 

... IS LOCCTR •• NO .POIHT TO START. ..PILE ID IN •• NO • GET NEIT FD • 
•• LESS THAll •• ---->* OF SRA TABLE • •• BUFTAB =- 0 ... ----).ElITRl AND NEXT • 

•• GEDLOC •• • • *. .• • LD ENTRY • *..* * • •..• • • .. .. *................ ... Oo· ••••••••••••••••• 
·YBS L ·YE'S L L>. •••• • > ••••• * L>. ••••• >* •• ** .. 

• A2 * .. All. *' • .11 • • B 1 • . . . . . . . . •••• •••• ..*. • ... 
172 section 3. Program organization 



Chart GE. 

Licensed Material - Property of IBM 

Phase 21: BUFGEN (Part 2 of 2) 

* ... *. 
*02 .. 
.. A2· -. • 
! 

:****A2*******.*: 
.SAVE AREA SIZE .. 
.. AND AREA NO .. · . - . ************** ••• 

1 
**.**82·***······ · . .. SET LOCCTR TO .. 
:NEXTLg~l::T~TORE : · . **.*.*.*********. 

1 .*. 
C2 *. 

• * *. 
NO .* SHOULD BL *. 

.. PT TO TRIS .* *. AREA .* *. .* ..... * rs 

.'. 
D2 *. .* THIS •• 

NO .* PILE HAVE *. 
<~. SAnE RECORD .* *. AREA .* *. .* * •. * ·YES 

1 .'. 
E2 *. 

.·SINGLE •• 
•• BUFFERED * .. YES 

*.UNBLK OR 1511'1 •• •. .* 
*. .* * ..• 

**** **** 
* * * * * A3 • * A4 * 

'" *****---:t * *~ y * •• * .'. 
A3 *.. *****A4******- **-

.. * * * * 
..* * .. YES * SET SAVEZ TO * 

i >- .. END OF TABLE ... ---->* MULTIPLE OF q * 
*.. ... • • 
*...* * * 

*. r~ *·····**r*·*···* 
.. *.. ..* .. 

B3 *. B4 * .. 
..* *.. .* * • 

.*PILE ID IN * .. YES .* SHOULD BL * .. NO *. BUFTAB = 0 .*~ * .. PT TO THIS .*~ 
*. .* *. AREA .. * 
*....* *..* 

"' .... * *"'** * ... * **** 
*NO *.. *YES * * 

**** **** 1 : K2 : 1: DS : 

..*.. .* .. 
C3 *. C4 *. *****C5******.** • .* *. .* THIS *.. * .. 

..* PILE ID = *. NO .. * FILE HAVE *. NO * MAKE ENTRY IN '" 
"'.SAVED PILE ID.*~ *. SAME RECORD .*---->* BL TABLE * 

*.. .* *. AREA .. * .. * 
*..* *...* * * 

*. 'lY:S : *::*: *. "'lY;S *::::***1********* 

.. '" * .. 
**** • nS * 

* *-> 
**** .'. 

D3 *. ***.*D4********** *****DS********** 
..* *. '" *.. * .* AREA NO = •• NO *CALL INSERT POR* * ADD SAVESZ TO .. 

*.SAVED AREA NO.* .. SRA TABLE" • LOCCTR • 
*. .• .. * * • *...* * * * '" .... ;, ...... ·r· .... · · .. · .. ·r ...... 

*****E4********** *****ES***.***.** '" *. '" * ENTER DTF NO * * CLEAR SAVESZ .. 
.. AND SRA NO IN * * AND POINT TO *< 

• * * • * ••••• **.******** *.***.*****.***** r .'. 
* SRA TABLE· *START OF BUPTAB* l 

I L>!ol*_ 

p). '. "-**PS-'*' ::::::J .*.**p2******.*** F3 *- • 
.. PICKUP" .. * •• 
.. ADJUSTKENT" NO .. * AREA SIZE "' .. 

>* FACTOR AND *<----*.GT SAVED AREA ... 
*-TARGET ADDRESS * A *. SIZE .. * 

:.m·IIl::!': l ···t· 
G2 .... *****G3********** .* *. .. * 

YES .* *. .SAVE THIS AREA .. 
,--*. NORKS ENTRY .* .. SIZE .. *. .* .. .. .....* .. .. 

* .. * ******** •• ******* r 
***H2*********** 

.CALL PROa TO .. 
WRITE ADCON 

**.*.******.**** 

'-----:>1 
! 

*****J2****·***** · . *SET FILE ID = 0* 
* IN BUFTAB '" · . · -***************** 

I 
**"'* 1 * • 

• K2 '" * *->1< 
**** ? 

*****K2********** 

• * *GET NEXT ENTRY * * IN BUFTAB * 
* • 
* * ***************** 

L **** 
>- * * 13 * - . **** 

.* *. * * .* SINGLE *. YES *ENTER ENTIRE 10* 
• • BUFPER UNBLK .. *---->* AREA SIZE IN * 

*. OR ISAM • * * SRA TABLE * 
*..* * * 

•• .* ***** .. *****.**** r 
*****G4********** · . *ENTER ONLY DATA* 
* SIZE IN SRA *~ 
* TABLE * · . * •• * •• *. *. **** ***.*.* . . 

* n5 * * • 
**** 

Flowcharts 173 



Licensed Material - Property of IBM 

Chart HA. Phase 22 (ILACBL22) Overall Logic 

****A 1********* I ENTER FROM 
: INIT : --- PHASE 00 

• • 
*************** 

j 
**81******* . . 

.. INITIALIZE .. 
'" CONSTANTS AND '" 

.. WORD AREAS '" . . 
*********** 

1 .*. UPSI 
Cl "'.. *****C2********** .* *. .HAKE DICTIONARY • .. * DOES THE "' .. YES ,.. ENTRIES FOR '" 

*.UPSTBL EXIST .*---->* UPSI '" *. .* .. ITEMS-RELEASE .. *...* '" UPSTBL '" '. 'N~ •••••••• j ....... . 
DIR l<-H-F-O-l-B-l-------~ 

*****D 1********** 
*READF4 '" 
*-*-*-*-*-*-*-*-* 

>* GET HEXT '" 
"'LOGICAL RECORD '" 
'" PROM 5Y5004 .. 
"'* "''''*'''* •• '''.'''. "'''''''. 

1 
DIR010 .*. TERI'! 

174 

E 1 *. *****E2********** 
•• "* *"*. YES !RELEASE TABLES,: *;;;;~J*;~*;~;;;* 

*. EOF .*---->* DELHIIT *---->* 00 '" *. .* '" DICTIONARY "'.. '" 
"'.. .. '" '" .. *************** *. .." ***************** r .'. 

F1 * . 
• * *" ····F2···**·"'·· .. * *. NO "'EXIT TO SECTION* *. CPB .*~>* ROUTINE * 

*. .* * * 
*...* *.***.********* * ... * 

fS 
*****G1********** * SET UP FOR * 
.. BRANCH TO * 

CORBES SECTION * * ROUTINE * . . 
************ ***** 

Section 3. 

FSECT - FOR FILE SECTION. (CHART HB) 
WSECT - FOR WORKING-STORAGE SECTION .. JCHART HC) 

*§i§t : ~g: ~~~~:~Es~~ii5~~" (J~~:~TH~» 

Program Drganization 



Licensed Material - Property of IBM 

Chart HB. Phase 22: FSECT Routine 

.**.A2 ••••••• ** ENTER FROH 
• • --- DIRECTOR 
... FSECT ... • • ............... 

I 
·"'82··***·· • • ... INITIALIZE ... 

• SECTION '" 
'" CONSTANTS ... . . 

*.******.*. 

1 .*. l'STXT 
C2 *. • •••• C3 •••••••••• 

. * *. ... ... .. * ... YES ... PASS DATA '" r> •• l~ ITEM AN :f··---->:IC-~iX§y§gn3FD :~ 
*..* ... ... "' ... * •••••• ** ••••• **** 

r -
.. "'.. SDTXT GETPTR 

D2 "'.. • •• *.D3 •••••• *.** *****nq.******* ••• . * *. ... ...... • I .. " "' .. YES • PASS DITA IC ... "'GET DICTIONARY'" 
*.IS ITE!'!! AN SD .. *----)*TEXT FOR SD ON *----)* POINTER FOR ... 

.... .." ... 5Y5003. ... IT Eft • "'....* ... ...... ... 
··r~ ................. ··· .. ···1········· 
.'. XREF 

E2 *. .* ••• E3***** •••• * * ••• *EfI******.*** .. '" *. ... SET HAJOR'" ... WRITE * .* IS ITEM "' .. YES '" COD BL TYPE ... *s XREF DATA'" 
"'.LEVEL HO. 01 .*---->* IRG TO ... *A ELEMENT ... 

"'.. .. '" *w ITEM IS* ... ITEM-IP'" *...* *L ATA RCD * • ICABLE * 
* .•• ~ ~... ** •• **... ········r··· .. ·· 

••••• F2J**~i~lH BCO:~:.. .1 ....... . 
"LDTXT * .IF S COHD* 
*_.-*-*-*-*-*-*-* • VAR tllTER * 
.. PROCESS LEVEL *< .. DEL COND. 

:Eg~'~"iNiaEB~CT: : v L~ : 
***.**.***.****** •••• * •• *** ....... . 

1 HF01B1 1 HG01B2 
*.***G2******.... *** •• G4**** •• **** 
*'READF" • *DICTBD • 
*-*-*-*-*-*-*-*-* .-*-*-*-*-*-*-*-* 
• GET NEXT .< .ENTER ITE!! INTO • 
• LOGICAL BECOBD .. • DICTIONARY * 
*' FROl! SYS004 * *. 
** ••••• *** •• *.... ..* •• ******* •• **. 

1 .'. 
82 * . . * *. 

NO .* * .. YES • SHIT 
.. EOF OR CPB .. *---->* PRoe ... .* • ....* * * •• * .*** •• . 

I SEE CHART 
HA01E1 

····J3·******** 
... RETURN TO • 
• !!AINLINE .. • • ••••••••••••• ** 

Flowcharts 175 



Licensed Material - Property of IBM 

Chart HC. Phase 22: WSECT and LSECT Routines 

•••• 11......... I EIiTER FROB 
• 0 ___ . DIB010 
: WSDCT : '--------

••••••••••••••• 

.... -
* I 
* 
" C 
" SW * W ..... 

j 
1*········· TIALIZE * 

ON • 

~S IIID : 
.lS'IS * ....... 

1 HE01A2 ·····Cl**···**··· ·LDTIT *' 
*-*-*-*-*-*-*-*-* >* PROCESS LEVEL * 
:~~T~~' Ij~or~¥~~: ................. 

1 BP01B1 **···D1·········· *READF4 * 
*-*-*-*-*-*-*-*-* 
,. GET BEXT *' 
.LOGICAL B BeCRD *' 
.. FROJII 5Y5004 *' ................ -

1 .0. 
El III .. . * •. 

HO .* *. 
.. EOP OR CPB .-
*. .* *. .• * .... 

·YES 

1 SEE CBART 
BA01E1 ····Pl ........ . * RBTURIf TO • 

.. ftAIHLII1E *' 
o 0 

••••••••••••••• 

*·**A 3......... I ENTER PRO! * " ---.DI1I0-10 
: LSECT : '-------

• •••••••••••••• 

j 
··· .. S3·······*·· • INITIALIZE • 
• SHeTlOR .. 

: si~~~~~=Ti'D : 
• WORD AREAS *' . ............... . 

1 BEom ·····C3···**····· *LDTXT * 
*-*-*-*-'*-*-*-*-* * PROCESS LEVEL * 
:gJT~~' rifo lfiI~~: 
********.****.*** 

1 BF01B1 
·***·D3········*· 
·READPQ * 
.-*-*-*-*-*-*-*-* * GET NEXT • 
.LOGICAL RECORD '" 
• ON SYSOOlt • 
•• *.*******.*.**. 

1 .*. 
E3 ". .* •. 

BO .* *. 
tOo EOF OR CPB .* 

t. ..* *. ... 
* ... * 

·YES 

1 SEE CHART 
HA01E1 

•• t*F3·*······· 
• RETURN TO • * I!IAINLIRE • 

• 0 ••••••• * ••••••• 

176 section 3. Program Orqanization 



Chart HD. 

Licensed ftaterial - Property of IEM 

Phase 22: RSECT Routine 

NO 

····A2·**······ I EHTER FRon * * ---. DIRO 10 
: RSEer : '-------

•• ** ••••••••••• 

1 ·····B2*·**······ • INITIALIZE • 
• SECTION • 
• CONSTANTS. • 
• SWITCHES AND • 
• wonD AREAS • ••••••••••••• ** •• 

1 .*. QUAL C2 *. • •••• c3.......... *.*.*cta •. ** •••••• . * *. • • _SET 'lES • . * IS THIS A *. YES .DISTRIBUTE TEXT. .OP C • 
>*.COHTROL ITE!! .. *---->* TO VORK ABEAS *---->*TO • *. .* • • * • *..* • •• ED· 

*.. .* .*.*.* ••• ***.**** ••• * ••••••• 

or GETPTB 1 
D2 *. ..***D3 ••• ****.*. *** •• D4********* • • * *. • *. • .* *. YES .DISTRIBUTE TEXT. .GET DICTIONARY * 

*.IS ITEM AN 8D.*---->* TO WORK AREAS *---->* POINTER POR • *. .* * • * ITEn • *..* • •• * .. r .m'~ •••• _._._.. ..~-···T···-· 

.****E2********.* •••• *Eq***.**** •• 
*LDTXT * * ITE • 
*-*-*-*-*-*-*-*-* *s REF DATA. 
* PROCESS LEVEL * *1 ELEl'IEliT * 
:Eg~E~9 fN~6EgiCT: : F ~~BLEIF : 
********** •• ***** •• *. .* ••• ** •• 

Beom 1 ••• *. 4·· •• ***·· • 
• IF IS COBD • 
• VA IMITER - • 
• D COBD. 
• ABLE· 
* • • ** •••••••••••••• 

HFO lB 1 1 HGO lB2 ••••• G2* •• **..... ..***G4 •• **** •••• 
*READFij • *DICTBD • 
*-*-*-*-*-*-*-*-* .-*-*-*-*-*-*-....... 
:LOGi~LN~~~ORD :<---------------!:EBfif~Tlfii~RIBTO: 
• ON SYS004 • • .. * ••••• * •• *.**.... • •••••• * ••••••• *. 

1 
0*0 

H2 •• •• * .. 
.. * * .. .. EOF OB CPB .. * 
... ..* 

*. .* .... 
·YES 

1 SEE CHART 
HA01El 

*···J2········· 
• RETURN TO • 
• MAINLINE' • 
• * ••••••••• * ••••• 

FlowCharts 177 



Licensed Material - Property of IBM 

Chart HE. Phase 22: LDTXT Routine 

178 Section 3. 

····11.2·····*··· 

• * • LDTXT • • • •••••• * •••••• ** 

1 
··***02***··*·*** • • 
• DISTRIBUTE • 
• ATF-TEXT TO * 
• WORD AREAS * · . **.** •• *.** ••• *** 

1 ... . .. 
C2 *. C3 •• . * *. .• *. 

•• IS IT!!! * .. YES .. *15 THIS THE*. NO 
•• LEVEL 01 .. *->.. FILE SECT .* *. .* *. ... .... .... *. .• • .. * 

'NO rs 
·····D3····*··**· 
.SA VE INFO ABOUT • 
• PREV RECORD SET. * UP FOR REV • 
• RECORD • • • *.* •••••• ***.**** 

.*. 1 
!2 •• ..E3***.* •• 

•• *.. * * 
.. '" IS ITE" "'. YES '" INITIALIZE • 

"'. LEVEL 77 • "'---->* VORD AREAS, *< 
"'.. •• • SWITCHES '" *... * • 

·"fi.nn "'~" ····:r·· 
·····F3*···*·*·** • INITIAL • 
• CONDITIONAL • 
• VARIABLE • 
• PROCESSING • · . • *** ••••• **** •••• 

1 .*. GETPTR XREP 
G3 *. ..* •• sta******.... *.* •• G5***.****** 

.*15 ITE".. • *. V * .* A REPORT •• NO .GET DICTIONABY * *s DATI.. 
*.SECTION RAftE .*--__ )* POIN'!'ER FOR .---->*1 EN'!' * 

······t··· J' :--.:::: ...... : ~~!! I .1::.: 
3***······· .*.** *.****** 

B OF * .IF I CORD* 
TO '" *VAR ITER -. 
DEC '" * DEL CORD. 
T OF • • V LE * 

• ER * •• •• ** ***.**** •• *. ..* ... **.*** ••• *. 

Program organization 

1 HG01B2 
***·*,,5*****··*·· 
*DICTBD '" 
*-*-*-*-*-*-*-*-* 
"'ENTER ITE! I1ITO* 
• DICTIONARY * 
• * ***** •• ** •• * •••• * 

1 
·***KS*········ 

* * • RETURN * · . • ****.********* 



Licensed Material - Property of IBM 

Chart HF. Phase 22: 

****Bl********· · . '" READF4 * · . *************** 

READF4 Routine 

I<----O---A--------, 
GETNXT v 

*****Cl********** · . .. GET NEXT .. 
"'LOGICAL RECORD '" 
'" PROM SYS004 '" · . ***************** 

1 .'. 
n1 * . . * *. ****D2********* .* "' .. YES '" RETURN TO * *. EOP .*---->* CALLER * 

*. .* * * 
*...* ***"'***"''''***'''** * ... * r 

E1" *..... *****E2********** I 
.. * *. * *~ .*IS LOGICAL *. YES .ENTER KEY INTO * 

*.. REC A KEY .*---->* SRCHKY TABLE * 
*. .* .. * *...* * * * .. * "'***"''''.*'''*******''' r .*. .*. RENAJ'lS 
.• Pl *".. ...P3 '" *. :****P4*********: l 

.*IS LOGICAL *. YES .* IS ITE!! *. YES *PROCESS RENAKES· I 
"'.REC ATP TEXT .*---------------:>*. LEVEL 66 .*---->*ITEM AND ENTER *-> ...... ...... . ..... ...... :~::~.:~~:~~:;::: I 

1'·0 1 •• 0 : G4 : I 
**** I .*. .*. FNTHAH v 

Gl *. G3 *. *****G4**********~ .* *. .* *. .. * 
.*IS LOGICAL *. YES .* IS ITEM *Oo YES * ENTER ITEM '" 

*.REC AN INDEX .*! "'. LEVEL 88 Oo*---->* DIRECTLY INTO * 
*. NAME • * *Oo • * '" DICTIONARY '" 

*. Oo* *...* * * 
*Oo • '" **** "'. .* ***************** 

"'NO * * *NO 

1 : G4 : I 
.'. •••• I 

H1 *Oo t 
Oo* *Oo ****H3********* 

.*IS LOGICAL "'. YES '" '" 
*.. REC A CPB Oo* >* RETURN * 

*. ..'" * * "'Oo • * *************** 
* •• * r 

*****J1******"'*** • • * SET CODE TO * 
*INDICATE ERROR '" · . · . ***"'************* 

1 
****K 1********* 

*RETURN TO PHASE* 
'" 00 '" · . *************** 

Flowcharts 179 



Licensed Material - Property of IBM 

Chart HG. Phase 22: DICTBD Routine 

180 Section 3. 

···*82* •• ***·*· * • .. DIeT8D .. 

• * ••••• ** •••••••• 

1 .*. FSTOOO 
C2 .... ****.C4********** .* *. .. .. 

... ERD OF PILE ... YES" OF .. .. RESOLVE LAST .. 
.... SECT .. *---->* *----)* PILE .. 

.... .." .. .... DESCRIPTION' .. *..* .. ... .. * .. * ••••••••••••••••• • •••• ** •• ** •• **** r I .*. REDEr RDSYH 
D2 *. *.... • •..• D4 ......... .. . * *. .. 1 .. .. .* IS ITE! A *. YES" .. *CHECK SYNTAX OF. *. REDEFINES .*----)*508 *----)* REDEFINES • 

.... SUBJECT .. " .. A .. .. CLI USE .. *...* .PAR T*. .. * .. * ••••• *** ................. . 1::_0 

___ --'I 
.*. PROC77 

22 .... *** •• E3 ••••••• ** • . * *. .. .. 
.. • IS ITER .... YES .. DELII!IT ALL .. 

*.. LEVEL 77 .*----)* GROUPS-I" ARY *i *. .* .. .. *...* .. .. * ... * ••••••••••••••••••••• 
·NO .. .. 

•••• 1 : B2 : 

. *. 
F2 * .. 

.* *. 3**········ *' ····P4········· .. *IS IT!!H AN .... YES .. * * * *. FD/DS/RD .*---->*CUR *. .* .. TO*---->* RETURN *' 
• * * *...* .. F • • •••••••••••••• * •. * •••• * ........ 

r .*. GRIPB 
G2 *. *.***G3**.**** ••• . * *. *' EHTER GROUP *' ****G4****** ••• .. *' IS THIS A *. YES *ITEI! IHTO DIeT,.. * *. GROUP ITEft .*->* DXLI!!IT PREV .. *----)* RETuRR *' *'.. .* *' GROOP-BOILD *' *' *' *'.. .. *' *' GPLSTK ERTRY *' * •••••••••••••• * .. * ••••••••••••••••• 

: *::.: IORO 

• *-> •••• ELIPR **···H2·········· *EHTER ELEft ITE!!. 

:DE!~i¥TD~i56ps ,: 
*' COftPLETE DATA *' 
• A-TXT * ................. 

I 
• ••• J2* ••• ***** 

* * * RETORlJ *' 
* * ............... 

Program organization 



Chart IA. 

ENTER PROH 
.PHASE 00 
IF SYSDftP 
IS SPECIPIED 

Licensed Material - Property of IBM 

Phase 25: Overall Logic 

****A2******·** 
-----!: ILACBL25 : · . *** ••• ********. 

j 
··82·····*· . . 

• INITIALIZE ... 
• BASE REGISTER .. 

*AND WORK AREA. . . 
*.* ••• ** ••• 

1 
.. *.. SCATHEN 

c2 *. • •••• C3 ••••••• *** 
.. * *. .. * 

•• ANY RENAMES •• YES ... SORT RENAMES .. *. IN PROGRAM .*->* TABLE ... *. .* • * ......* .. .. ··t ·······T······· 
.*. IB01A3 

D2 *.. *** •• D3** ••• ***.. • ••• *04 •• ******** .. * *.. ... BUILD QDOTBL • *BLDOBODO '" 
.. * ANY ODO'S *. YES .. PROH aceTBL, .. *-*-*-*-*-*-*-*--* 

* .• ~N PROGRAM ... "'*->: Qlf~~f.E~RTN :---->::rgg ~go~~§~g5: .....* .. .. *-COMPLETE aceTBL. 

'·i::-~-------·-·-'-··-·-'-·-'-·-'-"-·-·-·-·-----·-'·_'_'_'_'~'i"""" 
v ICOlAl 

··***E2****·*···· *BEGPASS • 
*-*-*-*-*-*-*-*-* 
.READ DICTIONARY. 
• BUILD DATA TAB .. 
• WRITE TO SYS005* **** ••••••••••••• 

PHASEND 1 
·****P2********** * SAVE * 
*INFORMATION IN * * COMMON FOR * 
*PROGSUM OBJECT * 
* TIME TABLE * 
***************** 

j 
****G2********* * EXIT TO PHASE * 

• 00 * · . ***.*.**.*****. 

Flowcharts 181 



Licensed Material - Property of IBM 

Chart IB. Phase 25: ODOBLD, BLDOBODO, and ENPP1 

.*. 
A2 *. 

****A 1*****.*** .* *. .. .. .* *. YES 

: ****:~~:~~***.* !---->* .. ~~~ .. OF oc~:~~ .. *] 
* .. -* 

r-----..,< r 
GETD ~ IBO 1A3 

*****B1********** *****B2********** 
.. .. *BLDOBODO .. 
.CALCULATE N FOR* *-*-*-*-*-*-*-*-* 
.. NUMBER OF 000 *<----*BU1LD OBonDTAB *< 
*ENTRY IN oceTEL* * ENTRY .. .. .... .. 
***************** *************** ... 

1 
*****Cl********** · . *FIND NTH OD2TBL* 
.. PTR IN QRTH .. 
.. TABLE .. 
* • 
***************** 

I 
OD2FND ! 

*****D1********** 
.. .. MATCH OD2TBL 
.. .. POINTER WITH ONE *' PERPARE ENTRY *---- IN OITEL. SlIVE 
'" .. DICTIONARY POINTER 
.. .. OF OBJECT OF 000 
***************** WHOSE SOBJECT IS I 'N'TH ENTRY IN OCCTBL 

QIPOUND t 
*****E 1********** · . *----INSFRT-----* 
.. MAKE ODOTBL .. 
.. ENTRY .. · . ***************** 

****A3**"'****** · . * BLDOBODO '" · . *"'************* 

: .:;*: j 
* *-> 

**** 
*****B3********·* 
*SAVE DICTIONARY* 
'" POINTER OF * * OBJECT OF ODD * 
'" IN ODOTBL '" · . ***************** 

ELDOE02 1 
*****C3********** * * SET DICTIONARY 
* PREPARE '" POINTER TO OBJECT 
* PARAMETER *---- OF ODD IN THIS * * ENTRY AS PARAI'!ETER '" * POR CALLDIN ..... _.r ... - '0"'''' 

*****D3********** 
"'----CALLDIN----* 
'" LOCATE COBOL '" 
"'DICT ENTRY VIA * * DINeOR ACCESS * * RTN * 
***************** 

1 ID01AS 
*****E3********** 
*SETNAI1 * 
*-*-*-*-*-"'-*-*-* 
"'BUILD ODOBOTAB '" 
'" ENTRY IN WORK * 
'" AREA * 
*"'*************** 

1 ID01F1 
*****F3********** 
*ENTRDATA * 
*-*-*-*-*-*-"'-*-* * ENTER IN * * OBODOTAB ON * 
'" SYS005 * 
***************** 

BLDOB06 1 
*****G3********** * FILL IN * 
* CBODOTAB * * POINTER IN * 
'" ODOTBL ENTRY * 
• * "''''*'''************* 

BLDOBO? 1 
*****H3********** * * LOOP THRU RES T OF 
: ~g~i~~~~ : ____ lg~g5~i:ABF~~~Ni:RS 
'" * IN ENTRIES WHOSE * * DICTIONARY POINTER 
***************** "ATCHES ONE SAVED 

1 
.*. 

J3 *~ 
.* * . • * *. NO 

*.END OF ODaTBL.*~ 
*. .* *. -* *0- .* **** 

*YES * '" I * B3 * . . 
**** 

! 
****K3********* · . '" EXIT TO ENDP 1 * · . *************** 

182 Section 3. Program Organization 

****A5********* · . 
• ENDP1 * • • *******.******* 

j 
*****B5********** *FILLIN OBonOTAB'" * POINTERS IN * * aceTBL FROII * 
* ODOTBL * 
* * ******.********** 

ENDP13 1 
*****C5********** 
* * * • * SET SWITCH * · . 
• * ******.********** 

I 
INDICATE 
NEXT BLOCK 
WRITTEN 
WILL BE 
FIRST IN 
DATA TAB 
ABO WILL 
CONTAIN 
FIRST 
DATATAB 
ENTRY 

*****E5**·******* * MOVE DICNDl * 
*CELL IN COMMON * 
* TO CURRENT * 
*DICTIONARY PTR * 
* CELL (CORPTR) * 
***************** 

j 
****FS********* 

• RETURN TO * 
'" BEGPASS '" 

• * **************. 



Chart IC. Phase 25: 

****A1********* • • 
:0: BEGPASS .. • • ****.******.*.* 

Licensed Material - property of IBM 

BEGPASS 

:·:~·:->l<------------------------------------------------------------------------·----------------------------, **.* LOGNWT WRITES SEE CHART 
.****81********** ***82*********** *****83**** •• **** lAO lF2 
'" LOCATE NEXT '" .SAVE NUKBER OF '" •••• Bq ••••••••• 
'" COBOL '" EOF .WRITE BUFFER ... ... BLOCKS OF "'.. '" 
: DICii~:~RY :-------- ON SYS005 ------->: DAE~~A~NIN :------->:EXIT TO PHASEHD: 
"'.. ... '" •••••••• * •••••• 
•••••• *********** •••• *.* ••• ** •• ** ••• ************** 

1 
·*·*·Cl********** · . '" SAVE CURRENT '" 
'" DIeT PTR IN * * CORPTR • · . *********** •••• *. 

1 
*****01*********· 
*----GETDEF-----* 
.GET CARDNUM AND. 
'" DICT PTR PROM '" 
'" DEF-TEXT ON * 
'" SYS004 *' 
****.**.*****.*** 

1 
BOGET .*. 

E 1 *.. *****E2*.***.**** 
.* *. '" * ."'DIeT PTR IN"'. NO '" SET eARDRUM '" 

*.. DEF-TEXT = .. *-------)* CELL TO 0 '" 
"'. CURPTR .. * • • 

*.oo* * • 

'·1:;5 ········r· .... · 
BPASS12 .'. F 1 *oo .****P2********** 

.* *. * * .* RD BEING *. YES *-----BLDRD-----* 
*. PROCESSED .*------->* PROCESS RD *. oo· • 

*..* * * 
•• !*N~ *********L***::::* 

>. • 
* Bl * . . 
*.*. 

BPASS2 .*. 
Gl *. .* •. 

• *DICT EHTRY *. YES 
*.IS A RENAMER .*~ *. ..* *. .* *. •• **** 

***- **** 
* * * * * C4 * * cs * 
* -*** *--y. * *.** *--, 

.•. t ID01Fl 
C4 *. *****C5****-***** 

o.* *.. *ENTRDATA * 
... -. YES *-*---*-*-*-*-*-* 

*. SD ENTRY .*------->* ENTER DA'l'ATAB * 
*. • * *ENTRY IN SYS005* *. - .. BUPFER * 

*. •• ***************** 

1'·0 L •••• 
H • 

.. B 1 * . . 
***-.*. .*. 

D4 -. D5 *. .* *.. o.* *. 
.:* LD UNDER RD *:*~>* :;PT .LIN ENTR;:*~ 

*. .• *. ..* 
*..* *..* 

- .* * •. * r r5 

FILED .*. V 
***.*E3*****.**** E4 - .-*.*ES********** • .. .* *. * SET SWITCH TO -
-SET DTP NOH PUT. YES .* *. *BYPASS RENAMES -
*ACCESS METH IN .<-*. PD ENTRY.* • AND SUBSCRIPT * 
* DATATAB ENTRY * *. • * * TESTS * 
* • *..* * * 
·********L***::::* * .. */ N~ *********L***::::* 

>* * >* * 
* C5 '" - J2 -
* * * * **** v **** .'. F4 •• *-***p5**.-*-**** .. *... .. * 

.* INDEXNAME *. YES *SET INDEX CELL * 
*. ENTRY .*------->. NUMBER IN * 

•• • * .. DATATAB ENTRY * 
-... • * 

*. • * *.***-******.*-** 
*NO L 
1 >: *::*: . . 

**** 
.*. REPORTD 

G4 *. *****GS********** 
.* *. - * •• •• YES * SET SWITCH TO • *. RD ENTRY .*------->* INDICATE RD * 

*. • * * PROCESSIHG * 
*. ' .* * * 

*oo .* **********.****** 
*NO I 
L>* **** • L>* ****. 

*81* *81* 
• * * .. 
-_.- **-* 

I*NO : *:~*: 

DICTP1 ID01A5 ID01A1 
*****81********** *****H3********** 
*SETHAf'lS • *TESTSUBS '" 
*-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* 
* BUILD FIXED * * TEST FOR * 
* PORTION OF * * SUBSCRIPTED *--' 
* DATATAB ENTRY * *ITEI'! & PROCESS * V 
***************** *.******************* 

1 A •• 

* *"''''* '" I : C5 : 
'" J2 * **** 
* *.** *--, 1 NO 

Jl·*· *. *****J2*!******** J3" • *. REN~22**J4********** *****J5****!~2J~~ .. * *. *----PROCESLD---* .* *.. *SET DICT PTR op* *ENTRDATA * 
NO .* LD UNDER *. YES .PUT ATTRIBUTES * .* *. YES * RENAI'!ER * *-*-*-*-*-*-*-*-* 

r--*, .. t~ST~g ~~~~?*.*------->: IN DATA TAB *------->*.ENTRY RENAMEDo.*------->* INDICATE THAT *------->* ENTER DATATAB *<--, 
V *..* * ENTRY: *.*. .*.* : E:~~iH~~: :ENTR~u~;E~ySOOS: I 
**** *o. • * **"'************** *.. ..* ***************** ***************** I 

: C4 : * • I I 
•• **. * J I 

! !DOn5.·. ID01p1 J 
***.*K 1********** *****K2********** K3 *. *****K4******* *** *****K5***_****** 
* * *SETNAM • .* *.. *ENTRDATA * * INDICATE IN • 
• ----CALLDIN----* *-*-*-*-*-*-*-*-* .* ANOTHER .o. NO *-*-*-*-*-*-*-*-* * THIS ENTRY * 
*LOCATE RENAMER *------->*SET ATTRIBUTES *------->.. RENAMER .*------->* ENTER DATATAB • .--->* THERE IS * 
* * * IN DATATAB * *. .* *ENTRY IN SYS005* 1 *ANOTHER RENAI'IER* 
* * * ENTRY '" "'.. * * BOFFER *. * 
**-************** *.****.********** * •• * ***************** ******************** 

*YES I *. 
L>* ***. * L>* **** * : K5 : 

* K5 • * B 1 • **** 
* * * * .*-* **** 

Flowcharts 183 



Licensed Material - Property of IBM 

Chart ID. Phase 25: TESTSUBS and SETNA"S 

****A 1********* 
• 0 '" TESTSUBS '" • • 
*************** 

1 .0. 
B1 *. .* * .. . * HUPIBER OF "'. 

"'.. SUBSCRIPTS .. '" * .REOUIRED .. '" *. ..* * .. * • 

::~:::-ol--------------------~'~'--------------------~2~'------------------~31 
DICTENTR ~ TWQSUBS * THRESOBS t 

*****cl********** *****c2*******... *****c3*.******** *****Cq********** 
*ENTRDATA '" '" SET SUBSCRIPT '" '" SET SUB RIPT '" '" SET SUBSCRIPT '" *-*-*-*-*-*-*-*-* '" INFO BIT IN '" '" INTO BI IN '" '" INFO BITS IN '" 
'" ENTER INTO '" '" DATATAB ENTRY'" * DATATAB '" '" DATAT!B ENTRY'" 
'" 5Y5005 BUPFER * '" SET SUBSCRIPT .. '" SET SUB 1PT '" '" SET SUBSCRIPT '" 
'" '" '" COUNT TO 1 '" '" COURT 2 '" '" COUNT TO 3 '" 
********* •• ****** ••• ************** ***************** ***************** 

11 SEE CHART TESTSB2 J ~------------T-E-S-T-SB-6-----!----------------------,1 
ICO lC3 D2 "'.. *****03********** 

•••• Dl •••• **... .* ENTRY *~ .----LATRPT-----* 
* RETORN TO * •• CONTAINS •• NO * LOCATE COBOL * 
• BEGPASS * *.OCCORS CLAUSE.*------->.DICT ENTRY WITH* 
* • *. o.. 1\. OCCURS * 
***.*.***.***** *. "'. .*. * !* •• : •• *.** •• *******! 

****Fl***·***** 

• * * ENTRDATA * · . ***********.**. 

j 
*.***G 1********.* 
• 0 * ENTER DATA IN * 
• BUFFER FOR * * SYsOOS • · . ***************** 

j 
****H 1********* 

* RETURN TO • 
* CALLER * • • 

*************** 

rs 
: .:!.! 

·****E2*·****··** 
*SET DICT PTR TO. 
*THIS ENTR! FOR • 
* SRCH THRD • 
* OCCTBL • • • *** •• ******** ••• * 

TESTSB3 1<--------------------.....1 
:****F 2***** *** *! r:A"SC-::P:-AR=-A'""=E=T:::E=-R---
*SETS OCCURS PTR* FOR LATRPT 
• IN TH IS CO BOL *--------t:A~C~C:.:E::S.:S_R~T::N~ __ _ 
* DIeT ENTR! * · . **.******* ••••• ** 

1 .'. 
G2 *. *****G3**.***.*** 

.* *. * * o.. ENTRY IS *. YES *SET BIT IN VLC * 
•• VARIABLE LNG .*------->* INFO BYTE * *. GROUP o.* • * *... * • 

'.,,;~ *.** •••• j ....... . 
TESTSB4 1<:---------------------' 

*·***H2********** · . *HOVE INFO FRon * 
*TBL TO DATATAB * 
• ENTRY .* · . ** ••• **.*** •• **** 

1 
.*. TESTSBS .*o. 

·***AS*******·· 

• * • SETNJU!S * 

• * *******.******. 

1 
·****B5****·***** 
* !lOVE EBCDIC • * NAl!E AND CT * 
*PROll COBOL DICT* 
* TO DATATAB * 
* ENTRY * 
***** •• *******.** 

1 
**·**C5·********* 

• * * SET BASE BEG * 
• FOR SYliDICT • 
* DSECT '" · . ***************** 

1 
·****D5********** · . *SET CARD NUM IN. 
* DATATAB ENTRY • · . • • *.*************** 

1 
*****ES****···*** o • 
*SET !!AJOR CODE • 
* IN DATATAB • 
• ENTRY • * • 
*** •••• ********** 

1 
****F5*·******* · . * RETURN * 

* • 
**********.**** 

J2 *. **.**J3*********. J4 *. *****JS********* • 
• * *.. • • • * *o. *SET BIT TO IN - * 

.* *0 YES • nOVE ODODOTAB * .* LOWEST *. YES * DICATE LOWEST '" 
*. ODD ENTRY •• ------->. PTR TO SAVE *-------)*. LEVEL GROOP .*-------)*LEVEL GROUP HAS. 

•• .* * AREA. *0 .* * 000 CLAUSE '" 
*. 0* * * *.* '" • '. I:~ ................. '. t~ ""*"or""'" 

.*. 
K2 *o. *****K3*.****.*** 

.* *. * * ... SUBSCRIPT *. NO • REDUCE • 
*. CT IS ZERO .*------->*SUBSCRIPT COUNT* 

*. 0* • BY ONE * 
*.o.. * • 

*. •• **** ••• ******.*** 
*YES L 
L)* .*** * >* **** * 

'" cl * * D3 * • • * • 
**** **** 

184 section 3. Program Organization 



Chart JA. Phase 30 (ILACBL30) 

Licensed ftaterial - Property of IBM 

Overall Logic 

• ••• A3......... tENTER FRO! 
• • --- PHASE 00 
• ILACBL30 • • • ••••••••••••••• 

.. ,," I ·*B3······· • • • INITIALIZE • • .:=~A~'ri~~i:s •• . . ........... 

1 JBOlA 1 ·····C)·········· .GLOSBY • 
*-*-*-*-*-*-*-*-* 
• SCAN DATA DIV • 
• ENTRIES IN DIeT­
• AND LIST THE!! • ••••••••••••••••• 

1 JCOlAl ·····D3·········· ·PHCTRL • 
*-*-*-*-*-*-*-*-* 
*EXAllltfE • 
• REPLACE • 
• WITH ATT ••••••••• 

EOF 1 ·····B3·········· • • • TERlUlfATIOH • 
• ROUTINE • • • • • ••••••••••••••••• 

I ····P3········· • EXR TO PHASE • 
• 00 • • • ............... 

Flowcharts 185 



Licensed Material - Property of IBM 

Chart JB. Phase 30: GLOSRY Routine 

186 

****A 1********. . . 
'" GLaSBY '" * • 
*************** 

1 .*.* • * * B2 '" . . 
.*. DICS~;" ~ 

B 1 "'.. *****82*****.***-
.* "'.. '" '" .* ANY DATA *. YES *GET DICTIONARY'" *. DIVISION .*---->* ENTRY '" 

* .•••. 'N~···· "l· :. .. ···r .... ·: 
1 SEE CHART .. *. .*. 

JA01B3 C2 *. C3 "'.. ****.C4*.*.*****. 
****Cl*******.. .* *_ .* *. '" !'lOVE HEADER .. 

'" RETURN TO * NO.* *. YES.* *. YES "'LIRE TO BUFFER •• *' HAINLINE '" "'.DATA OPERAND .. *---->*.HEADER-SWITCH.*---->* WRITE ON '" '" '" *. ,,* *. ON.* *SYSPRINT. TURN '" 
*************** *..* .'..* '" SWITCH OFF. * 

Section 3. 

..... '. i:~ """"r"'**'* 

PRINIT v 
*****03*****···*· · . '" MOVE DATA TO '" *' PRINT LINE '" * • 
• * •••• ****.*******. 

PRINT 1 ·····E3········** · . _MOVE PRINT LINE'" 
"'TO BUFFER WRITE'" *' ON SYSPRINT '" 
* • 
• ** ••• *********** 

1 .*. 
F3 *" .* ••• F4.*****.*** 

.* "'. '" '" .* *. YES "" SET '" *. END OF PAGE .*---->* HEADER-SWITCH * 
*. .* * ON * 
*..* * '" * .• * ***************** 

7"0 I 
!<----'-

CHKENT .*. SEE CHART 
G3 *.. JAO 1D3 

.* *. ****GQ********* .* LAST DATA "'. YES '" RETURN TO * 
"'.. DIVISION .*---->* HAINLINE '" 

Program Organization 

* .. ENTRY .* * * 
"'...'" **************'" "' ... * -.0 

L>* **"'* * 
* B2 '" • * 
**** 



Licensed Material - Property of rBM 

Chart JC. Phase 30: PHCTRL Routine 

**."'A 1*** •••••• • • 
'" PHCTRL '" • • ••••••••••••••• : ':~': I 
'" *-> * ••• 

GETNXT .... e* • 
•• **.B1 ••••••• *** B3 *. 5q *. 
"'. ..* *.. .* *. 
'" GET Ie-TEXT '" .0 *. NO .0 *. NO 
'" ELEMENT '" >*.. READ .*----)*.. SEARCH •• ~ '" '" *. .0 *. .* •• "'...* *..* ••••• * ••••••••• *. "'.. .* ... ..* **** 1 I·YES I·YES : .:!. : 

.*. SEE CHART BEADFN STRSCH 
C1 *. JA01E3 ••••• C3 •••••• **.. • •••• Cq •••••••••• .. '" . .. ·**·C2········· ... ... '" ... . * *. YES '" BETDRN TO * * APPEND'" .PROCESS SEARCH ... *. END OF PILE .. *---->* PlAIRLINE '" ... RECORD-NAME ... ... STRING ... 

*. .* ... ... '" ... '" '" ... .. ..'" *** •• *......... '" ... * '" * •• 0 ••••••••••••• **.. * •••••••••••••••• 
.... l*NO L ••• * L ••• * 

: D1 : >: B 1 : >: B 1 : 
• *-> ... ... '" '" •••• NO ••• * ••• * 

D 1·"''' ..... VERB D2" "'.. COPI;~ •• D3 ••••• *.** • 
• 0 *. .0 *'O .. * 

*:* VERB *:*~>*:*o~DR6B~gX~T*:*~>: cgf;~p~~RfR~~ : 
*'O 'O* *. 'O* * * 
*...* *'O.* ... * 

*. 'lti~ * **** * .. 'O *.* ********1********· 

• E2 • • • ** •• --, 
'O.'O COPlIN V GETNXT 

E 1 *. .****E2********** ***.*£3 •• ******** 
'O. *'O • • * • . * *. YES *HOVE ELEMENT TO* • GET NEXT * 

•• CARD NO. .*---->. OUTPUT ABEA • .. ELEMENT • 

*·*"'··l*lif··· JA t**···T::::::: t······1**·*····: 

'" J3 .. • • **.* 
.*. .*. COPY IN 

F1 *'O F3 *'O •• ***F4.*** •• **** 
.. * *'O .* *. .. * .. * *. NO .* •. YES *COPY CORRES. IN* 

*. BCD BAKE .* *.CORRESPONDIRG.*---->* OUTPUT AREA * 
*. .* •. .'" * * *'O .* *.'O*.. * *. . '" •. .* ****.******.***** 

'US ·NO 1 
*****G2********** *****G4******.**. 
* '" *GET OPRD HAMES '" THIS ROUTINE 

L EARCH .- > - L>: ::::: COBRTB 

>: igo~I~~~O=:~~ : :~§:8Dg~§~~NT;~H:_ ~~5SGi~a~X~6 g5N~~i§ESEARCH. 
* * .APPEND CORRES. * OPERATIOHS. WHEH COKPLETE. 
* '" .. WRITEODT * NEXT ELEftENT ALREADY ·"·*·*··1"""·" ·······T:;::::; GO~~EN. 

• • 
"'*"'''' .*. GENOP 

B2 *'O *****H3***.*****t: 
~.* *. .. * .*NAME FOUND .'O YES .. GEN OPERAND * *. AND URIQUE 'O*->* USING ATTR IN * *. .* .. OUTPUT AREA .. 
*'O.* * * 

· ·1·1i~ ;::::;"1********* 

• *-> *.*. ERROR GERDAT 
** •• *J2**.******* .**J3*********** • • • GENERATE ERBOR • 
• TEXT '" · . · . **.************** 

L *."'* >. • 
* B1 * • • **** 

• WRITE DATA 

************.*.* 

L •• ** >. • 
• B1 • . . 

**** 

Flowcharts 187 



Licensed Material - Property of IBM 

Chart KA. Phase 40(ILACBL40) Overall Logic 

..**A3.·.·..... IERTER PROft 
• • --- PHASE 00 * IL1CBL40 * 
* • ............... 

j 
•••••••••• • s * .. • . . •••••••••••••••• 

: *:;-: 1 
• *-> .... 

IDENT ..... e3·········. • • • PROCESS PROGRA!!. >: B~~t~~H ii:~~ : • • ••••••••••••••••• 

1 
.... BOP 

03 *. • •••• D4 •••••••••• .. * III.. • • • ••• DS ••••••••• . * ... YES • TER!lIHATIOIl • • EXIT TO PHASE • *. EHD OF FILE .*---->* RODTINES *---->* 00 • *. .* • •• • *..* *' • • •••••••••••••• * .• 111 ••••••••••••••••• r 
.*. VERB ANALYZER 

E3 *.. • •••• E4 •••••••••• 
. * *. • • . * *. YES· • 

*'.. VERB .. *---->* PROCESS VERB • *. .111 • • 
*..* *' • 

IDLAR 

. ·l·Ji~ ·········L···::::· 
>. • 

• C3 • 
• • •••• 

·····P3*········· *' PROCESS • 
• PROCEDURE HABES. *' AT POIHT OF • * DEFIlfITIOB • • • ••••••••••••••••• 

188 section 3. Program .organization 



Chart KB. Phase 40: 

····Al········· • • .. IP • • • ............... 
I ··· •• S1·········· .. INITIALIZE .. 

.. TABLES, .. 

: ~:iI~B~~ED AI¥ : 
.. IP. .. ................. 

ISPRRC I ..... el·········· 
• * .. PROCESS 'HOT r .. 

>:AHD LEADING I (' : · . •••••• ** ••••••••• 

1 

IF Processing 

pOUnL! .... .*Oo 
Dl *Oo D2 *Oo 

Oo· *Oo .* *Oo Oo. COLLECT .... YES .* CLASS OR .... YES 

Licensed Material - Property of IBM 

CKCO!lP .'. D4 •• • •••• D5 •••••••• *. 
*. • * * .. YES • GENERATE • 

•••• OPift~gs .* .• ----> •.•. SI~~X~EST ..... ---->~~_~,!!~ ~~.L.!---;-->·'·~CQ!!Bl~!!t!'ON~··---A->: ER~~:Ii~~E : 

*Oo.* *Oo •• 
*Oo .* *Oo .* 

rFERR r .r 
••••• E , ••••••• *** E2 ... 
.. DISCARD STilT.. .. .* *Oo * GRlf ERR TEXT. .. .* RELATION *Oo 
: ==~E§wi~~ii:§ : tOo •• TEST NEXT ...... ---->.'R~ 
.. .. *...* 

;:;::;"1·······** ··l·H~ 
.. *-> * ••• 

Il'SO .... ••• **', ••••••••• * P2 *Oo ••••• P3 •••••••••• 
.. PI IF" .* *Oo .. .. 
.. PRO IHGf." NO .*RELATIOlfAL *Oo YES -ERROR CONDITION-
.. GRlf! A L .. r-*. REQUIRED .*---->* ASSU!!E '=. .. 
-THROO ELS .. *Oo .* .. .. 
.. OR .. *Oo.* .. * ·······T······· : :!!) ..... ""'·"1********* 

. *. SEE CHART ERROR 

G 1 •• KAO 1c3 ***.*G3.* ••• ***** .• •. ·"'·*G2"'*·*"'···'" • • 
... END OF IF ... YES * RETURR TO * * GENERATE • 

•• STATEMEHT .*---->* 8.AINLINE * • EBROR-TEXT • *. ... • •• • .....* ** ••••••• ** •• ** • • •. ... *.*****.* ••• ****. 1·HO L •••• 
>. * 

• E3 * • • •• ** .'. H1 ... ... "'. 
HO .* * . 

•• RELATIONAL .* .. .. 
*. ..* * .... 

·YES L>* .** •• 
• £3 • 
* • •••• 

.. .. 
'NO 

ERROR 1 ·····E4·····*···· * • 
• GENERATE • 
• ERBOR-TEXT • • • • • •• * ••• *********** 

1 *.* •••• *.* 
UTE * 
TEnER1'* 
HRECT • 

* • • .* •••• ** •••• *** •• 

• * ••• ** •••••••• * ••• 
L .*** >. • 

• F1 '" • • .**'" 

Plowcharts 189 



Licensed Material - Property of IBM 

Chart KC. Phase 40: PERFORM Processinq 

****11********* · . BRANCHED TO 
FROH IDERT 
OR SORT '" PERFOR!I ... 

• * **************. 

1 
.*. ..*. .*. B 1 ..... B2 ..... B3 ..... *****Bq.*.*.",***** 

.* *. .* *. .* *. ... ,. .* *. YES .* DOES TBRU * .. YES .. * *. YES ... SAVE PH2 TO ... *. IS IT PH1 .*---->*. PN2 POLLOW .*->*. VALID PB2 .*---->* PIND ERD OF • *. .* *. .* *. .* '" PEBPORfI '" *...* *..* *..o* * :0: * .. * * .. * *. 'O* ••••• ** •••••• ** •• 

l*NO SEE CHART *NO }"O 

KAO 1C3 *** •• C3 •••• *.*.** 
·***C1 ••• ***.·· ...... 

... RETURN TO * • DISCARD THRU • 
• PJAIlfLIHE * ... PU2. POT OUT ... 
•• • ERROR TEXT.. • 

190 

.*** •• * •• ***... "'. 

section 3. 

*** ••• * •••••• ***. 

1 
<:------------------~----------------~ 

GETPVR ····*02*···**··*· • * • FIRD LOCATION ... 
... OF ERD OF * 
• PERPOR!! '" 

• * ***** •••••• **.*** 

1 **.* · . '" £3 ... • • 
. *. • ••• ~ .*. 

E2 "'.. • •••• E3** ••••• *** E4 - • . * *. • '" .* *. *···ES···****·* 
•• END OF *. YES • STOBE. •• PERFORM *. YES * • 

•• STATEMENT •• ---->. APPROPRIATE *---->.. CALLED BY .*-->* EXIT TO SORT • 
... ... • STRINGS. •• SORT •• • • •..• • • •..• • •••••• * ••••••• *. .• • ••••••••••••••• * * ..• r *NO 

.*. F2 ... * •••• F3**** •••••• .... . . 
•• • .. YES • GENERATE • *. UNTIL •• ---->*INITIIL STRINGS* •. .• * • 
*..* • • 

*. tN6 ····**··1****···** * *.*. • 

• G4 • • ._> 
*.*. 

UNTIL GENSTR SEE CHART 
•••• *G3.......... • •••• GLI.** •••••• * KAD 1C3 
* • * • ····G5*········ 
*GENERATE STRING* *GBR'ERATE FINAL. • RETURN TO • 
• FOR CONDITION .---->. STRINGS .---->. KIINLINE • 
* *. * * * • •• • .* •• * ••• * •• * ••• • * •••••••• * ••••• * * •• * •• * •••••••••• 

. *. UNTIL 
B2 •• • ••• *H3.*****.... • •• **84.*** •••• * • 

• * *. * •• * •• *. YES • GENERATE * * GENERATE • *. VABYING .*---->*IRITI1L STRIHGS*---->* STRINGS FOR • 

·····r.... ~ ............. ' ""::T=''''J 
J2 •• *****J3 ••• ******* J4 •• o· *. * * .•• . .. * *. YES .CRECK THAT tN' * .* *. YES *. N-TIBES .*---->* IS VALID *. AFTER. ETC •• * *. .*. •..• *..* • * *..* *. .• • ••• * •••• * •••• *** ••• * 

*RO L *NO 
L>. * ••• * >. ***. • L> •••••• 

* E3 * • E3 • • GLI * * * • * • • •••• •••• * ••• 

Program organization 



Chart LA. 

Licensed !aterial - Property of IB! 

Phase 50 (ILACBL50) Overall Logic 

•••• A2 •• **·.... I ERTBR OFRO°ft 
• • ---.PHASE : ILACBL50: L-______ _ 

••••••••••••••• 

:.:;.:_>j<---------------------------, •••• PB5CTL 
**··*B2··***·*··· *GETHXT '" BORMAL EXIT 
*-.-*-*--*-.-....... -* --- FROK PHSC'l'L 
'" GET NEXT. IS 1M GETUXT 
'" ELBKEHT '" • • ••••••••••••••••• 

I .*. .. •. 
C2 "'.. C3 "'.. • •••• C4* ••••••••• 

a* *. .* *. • DESTROY '" 

.:"'YERB STRIHG·:*-Ho--->*:·g~fI:¥TIg= .:*~>: opi~~i~f~iaN : 
*. .* *. ..* '" TABLE '" *..* *...* '" .. ··r ·r ·····-r·--

••• **02**........ • •• **D3*.*** •• *.* 
.. .... WRITE • 
'" KOYE OPERANDS .. • INTERMEDIATE .. 
.. TO WORK ARBA .. .. OPTI!UZATIOR *~ 
.. .... A-TEXT '" '" .... .. ••••••••••••••••• • •••••••••••••••••• ** 

1 : B2 : . . 
.. *.* 

·····E2····· .. ··** · . '" UPDATE ANY .. 
... SOBSCRIPTED ... 
.. ITEMS .. 

• * •••••• ** ••••••••• 

1 
.*. .*. P2 "'.. *****P3*.***.*... Fq •• .. * *.. * • •• * • .. * ... YES • ANALYZE VERB * .• * .. YES 

•• PHASE 50 yERB ... ----). STRIHG *---->*.HHD OF STRIHG.*-> 
•. .• * * *. .* ..... ,.. ,.. *..* 

*.. ... .************.*** *.. •• r 'IHO 

PH5BVB .' • LCD 1A 1 
G2 *. ****'*G3***.****** *****G4********** 

.* VERB *.. * * *GENERATE * 
.*HEEDS REGS *. YES *STORE SUBSCRIPT*' *-*-*-*-*-*-*-*-* 

*.1-5 AT OBJECT .. *----)* BEGISTERS 1-5 *' * GENERATE PROC *-> 
*.. TIlIE.* * IF NECESSARY * *A- OR IHTERIIED * 

*.. •• * * * OPT A-TEXT * ·r ·······r······ ............... .. 
·*·**H2******···* 
*WRITE VERB * 
• BEA HD *' * OPE AS *' * p2-T NTO * 
* S * ••• *.* •••• *****.* 

1 
.. *.. .*.. I.DO 1A4 

J2 ... J3 *.. *****J4******.*** 
.* VERB *. .* MUST *. *KILSUB • 

• * REQUIRES •• NO ... DESTROY * .. YES *-*-*-*-*-*-*-*-* 
•• CALL TO .. *---->*.SUBSCRIPT OPT.*---->* DESTROY • 

*.2:ROOTI~!.* '" * .... TABLE •••• : SUB~i~£~~ OPT: 

* •• * J * •• * .*.* •• * •••• **.**. 

',YES L~: *::': 
* • 

• **. 
V LOO1A1 

*****K2·********* 
*XSPRO * 
*-*-*-*-*-*-*-*-* 
*GENERATE CALLS * 
: TO O-RODTINES : 

***************** 

Flowcharts 191 



Licensed Material - Property of IBM 

Chart LB. Phase 50: GETNXT (Part 1 of 2) 

****A 1********* 
• * .. GETNXT • 

• * ****.* •••• *.*** 

:~l:" *->j · . **** 
*****81*****··*** 
* • 
... POINT TO NEXT ... 

>* ELEMENT IN * 
[ * BUFFER * 

• * ******** •• ********** 

:.:~) 1 

192 

*****C1*********­· . *SAVE COUNT FOR ... 
'" ELEI'IENT * · , • • 
*****.*********** 

: *:~.: 1 
'" *-> .*.* .•. .*. 

D 1 *. *****D2********** D3 ..... *****04********* • . * *. * ... .* *. .. ... ****D5··* •• ··** .* .... YES ... READ NEXT * .* "' .. YES'" ... "'RETURN TO PHASE'" 
•• END OF RECORD.*---->* RECORn *---->*. EOP .. *---->*BELEASE TABLES *---->* 00 ,. 

*. .* * * *. .* ... ...... '" 
*..* * * *..* ... ... *************** "' .... '" ****** ••• ******** "'.. .* .**************** .r r (::)~ 

E1 *. *****E2********** *****E3******.*** *****E4********** .* ..... ... '" * *... ... .* *. YES ... WRITE AS '" * POINT TO HEW • .TURN OFF DEBUG • 
•. ERROR MESSAGE.*---->* ItfTERl'!.EDIATE '" • BUFFER '" * CALL SUPPRESS '" 

"'. •• • ERROR TEXT. * * '" SWITCH '" 
*. . '" '" '" * '" * • *. .* *"'*"'*"'''''''*'''*''''''''''''** ************.*.** *."''''**'''*****''''''**. 

1"0 L>: *::': L: '::*: : *;:': 1 
** "'* **-> **** * •• * **** .*. . ... 

F 1 *. F2 *. *****F3********** *****F4********** ** •• *p5***"'****** 
.* *. •• *. .TORNONSWTO* * •• VRITEAS * .• *. YES .* STAE OR "' .. NO .SUPPRESS OUTPUT'" * SAVE CARD. '" INTERMEDIATE • 

*. CARD NUMBER .*---->.o.SySDMP OPTION.*---->*OF ALL CALLS TO*---->* NunBER .---->* PROCEDURE '" 
*. .* *. '" * ILBDDBGO *. • * A-TEXT '" 

* • • * *.... * SUBROUTINE * * * * • 
•• • * *. ... ***.*****.******. ****.** •••••• ***. *.** ••••••••••• ** 

1*NO L~: * ••• * L>. ***. '" 
* E4 '" • B 1 '" . . . '" 

*.** *** • . *. .*. 
G 1 *. *.***G2**.******. G3 *. .****G4******.*** .*.. * * .* *. • * .* 43 CODE •• YES * MOVE cO CODE • ... •• YES. • 

•• (FOR OPT) .*---->* INTO ELEMENT .---->*. 4304 CODE .*---->. OPTSW=1 • *. .• • * *. .* • • 
*..* '" * *... * • 

"'. • * .*.************** *. ..* * •• ********** •••• 
~ ~ L 

>* • >* • 1 L * •• * *.** 

. *. 
H1 •• *"* •• H2.****.**** .• *. • * .* •. YES· * 

•• OPTSW ON •• ---->* OPTSW=O * 
*. .* * * *...* • • 

* ... * ******.*****.***. 

'1'0 L ••• * >* • 
• 1"4 • 

* * **** .*. SEE CHART 
J1 *. LA01C2 

... *. ****J2********* 
•• CRITICAL *. NO '" RETURN TO * 

*.. BREAK .*---->* PH5CTL * *. ..* • * 
*. • * *****.*.******* •.. * rs 

.*. 
K 1 •• *.***&2********** .* *. * WRITE START * o.* *. YES * MACRO ELEMENT * 

* .. START BREAK .*---->* AS IMMEDIATE * 
"'. . * * PROCEDURE * *..* * A-TEXT • 

*.. . * ***************** 
*NO L ! **** 

>* • * B1 * 
***** • * *02 * *** • 
• A1* 
• * • 

Section 3. Program organization 

• F4 * .. P4 * 
'" * * • **** **"' • 



Chart LB • 

•••• * 
*02 .. 
.. A1· 
* * * 
l .*. 

11 * . 
.. * * . 

Phase 50: 

. * START *. YES * .. DECLADATIVES ... ~ 
*. BREAK .. * 

*.. .* * ... * •• *** 
*HO *01 .. 1 * *:2* 

.*. 
01 * . 

. * * .. .. * EHD *. YES 
*. DECLARATIVE .*~ *. BREAK .. * 

*. .* * .. * ••••• 
*NO *01 .. 1 **:1* 

GETNXT (Part 2 of 2) 

.*. .. •. 
Cl *. C2 .... ** ••• c3.** ••••••• 

. * *o. .* *o. .. .. .* Q-ROOTIHE .... NO .* SEG!!IEHTA- *. YES .. WRITE OOT .. 
*o. BREAK .*->*. TIOH BREAK. .*----)* OPTIBATIOR .~ *o. .* *o. .* .. A-TEXT .. 

*o..* *o..* .. .. *o. .* * ... * ••••••••• * •••••••••••• 

l*YES 1*·0 :~~l: 

SEE CHART • 
••••• D ,.......... LAO lc2 .. .. ···*02········· .. WarTE OUT" .. RETORN TO .. 
.. PROCEDURE" .. PHSCTL .. 
.. A-TEXT"''' • .. .. .............. . ................. 

1 ·····Et·········· .. DESTROY .. 
.. SUBSCRIPT .. 
.. OPTIBBATION .. 
.. TABLE .. 

* * ................. 
L •••• >*01 .. 

.. B1 .. 
* * .. *. 

Licensed Material - Property of IBM 

Flowcharts 193 



Licensed Katerial - Property or IBK 

Chart LC. Pbase 50: A-text Generator 

****11 •••••• ••• • • ., GENERATE *' • • ............... 
J ·····81**········ · . -SET UP OP CODE .. 

*POB INSTRUCTION*' • • • • .................. 
J ·····cl·········· .. CALCULATE .. 

.. LENGTH FIELDS '" 
'" OR REGISTER .. 
.. FIELDS '" • • •••••• * •••••••••• 

: *:~*: 1 
'" *-> * .. *. GCKOP3 ·····01···***···· *DETERftINE FIRST'" 
"'ADDRESS OPERAND'" 
.. AND SET UP .. 
.. A-TEXT • 
* • ................. 

1 .'. El *. • •• *. • •• ** ••• * 
.* *. '" TB '" . * *. YES .. OPT TIOH '" 

"'.. LITERAL .*---->* I OR '" *. .* .. SYS 3 • 
*..* '" '" *. e* ••••••••••••••••• r .'. F1 "'.. • ••• ",.,2 ••• ** •••• * 
.* *. '" G E .. 

• "'VIRTUAL OR .... YES .. rUT ATE" 
.... PIGeON .*---->* OPT ION *-> *. .* .. A- ON'" *...* '" S 2 .. *. .." •••••• • ....... . 

j:_O _--------' 

•· .• ·Gl·········· • • • CHANGE OP CODE .. 
• I!' NOT DR TYPE .. • • * • 
•••••••• *.*** •• ** 

L •• ** 
>* • 

'" 13 * • * 
**** 

• •• * · . * 13 • · . • **. ---, 
PLUS1 V 

*····.13···*****·· • • 
'" SET UP PLUS * * ELE!lEBT IF IN * 
• EXISTERCE • * • ..*** ••••• ** •• * •• 

1 
GDDIGR .*. . •. 

B3 .oo all .oo "'* •• "'BS ••• ******. .* *.. .*.. • • 
.* 55 ... YES .. * SECOND * .. HO • CHARGE • 

*. INSTRUCTION .*---->*.. ADDRESS .*->*WORK-AREA 2 TO * 
*. .* *.cmIPLETED.* * WORK-AREA 1 '" *..* •..• * • * ... * * •. * ***************** 

GJlOPT 

1*:0 rs 1 
•• *.*C3 •• *.*.**** .* •• *cs ••• *** •• ** 
* * .. '" * WRITE '" • CHARGE EACH '" 
• CONSTRUCTED * • POINTER 2 TO '" 
* A-TEXT * * POINTER 1 * *. *. .** •• *.*****..... • •• **** •• ***.*** • 

1 L •••• 
>. • 

• 01 • 
• * 

*"''''* 

***.·03*·****·.·· 
'" CLEAR WOBK • 
* ABEAS AND • 
• POIlfTERS, • 
• BESTOBE • * REGISTERS ... 
..* •• * •••••• ***** 

I !1!,ijU' 
****£3·******·* 

• RETURN TO • 
• PB5CTL * · . •• *"'**.*** •• *** 

194 Section 3. Program organization 



Chart LD. Phase 50: XSPRO and KILSUB Routines 

* ••• A 1********* . . 
.. XSPRO .. . . 
*************** 

1 
.*. 

B 1 *'.. *****B2********** .* *. .. ,. .* *. NO *' UPDATE ,. 
,... Q-BIT ON .*---->* SUBSCRIPT OPT .. 

*.. .* .. TABLE .. *..* ,. .. 'r ·······r····u 

•••• *el.......... ..*.*C2***** •• * •• * :0;.. * 
*----WRC005-----* .UPDATE REGISTER. 
.IF 'OPT' WRITE :0: .. TABLE .. .. coos ... .. .. .... .. 
*.*************** **********.****** 

..... ...1........ I m"j'" 

.. .. **·*02.**····** .. GENERATE L 2, ,. .. RETURN TO .. 

.. GRREF FOR" .. PH5CTL .. 

.. Q-RQUTINE"" ,., 

.. .. .******* •• *.*** 
****.************ 

1 .*. Rl *. *****E2* ••• ** •••• 
. * *. .. .. . * * .. YES" .. 

... OPT REQUESTED .. *---->*ADD 1 TO RGNCTR* 
*. .* * * *..* .. .. 

***. 

* .. * *********** ••• *** *NO I 

I I 
I .*.*.F2.! •••••••• · . .. WRITE GNUREP .. 
< .. ELEftEHT .. · . · . ***********.***** 

: G1: ! .. *-> 
**** .'. 

G 1 .... • ••• *G2********** 
.* *. * * .* NUMBER OF *~ NO * GENERATE BALH * 

*.Q-ROUTINE TO .*---->* 2,.2 *. CALI.=O .* * *. ~* • * 
*. .* ***************** 

*YES i 

I I 
J SEE CHART ! t LAO 1J3 *****H2.********* 

****H 1********* *SUBTRACT 1 FROI'I* 
'" RETURN TO '" * NunBER OF * * PH5CTL '" * Q-ROUTINES TO * 
'" '" * CALL * 

*******.******* * • 
**.************** 

L **** >. • 
* Gl * . . 

**** 

Licensed Material - Property of IBM 

****A4******* ** · . * KILSUB '" · . ************* ** 

I 
*****B4******* "'** * ZERO OOT '" 
*DISPLACEMENT IN* 
• SUBSCRIPT OPT * 
:TABLE (XSCRPT) : 

************** *** 

1 
*****C4********** • • * ZERO OUT * 
*DISPLACE1HNT IN* * XSSNT TABLE .. 
* • 
***************** 

I m,.~", 
****D4********* * RETURN TO * * PH5CTL * * • 
*************** 

Flowcharts 195 



Licensed Material - Property of IEM 

Chart LE. Phase 50: DFGTEST 

****A 1********. * • 
,. DBGTEST '" . . 
.********.***** 

1 .*. 
B1 * . . * *. ***.B2********* 

.* *. YES" '" *. SWITCH ON .*---->* RETURN '" *. .* ,. ,. ,...* *.************. * •• * r 
*****c 1***.*****-'" '" ****C2**·****** 
.SET OP ILBDDBG4* '" '" 
,. VIRTUAL *<-* DBGRTNOO * ,. .. '" '" 
'" '" *************** **********.*.**.* 

1 
*****D1*********· 
'" '" ***·D2****·**** 
"'GENERATE L 15 '" '" 
:VE~~T~~iR1J4~~5:<---: DBGRTNOl '" 

'" ' * **********.*.** 
***************** 

1 
*****E 1********** 
• * · . "'TORN SWITCH ON '" • • • • 
***************** 

j 
···*Fl··*···*·· · . '" RETORN * · . ******** •••• *** 

196 Section 3. Program Drganization 



Chart MA. 

VERBS IN LIST ARE: 

READ 
~~~~~BERUN) 
WRITE (RERON)
OPEN
CLOSE
RELEASE
RETURN
START
REWRITE

Licensed Material - Property of IBM

Ph ase 51 (ILACBL51) Overall Logic

****A2******.** IENTER FROP! * *---- PHASE 00
'" ILACBL51 '"
* * •••• ******.**** : ':~': I
'" *-> * •••

PB5CTL PlC01A1 ••• .. ·82······**·· *GETHEXT '" BCRHAL EXIT
--*-*-*-*-*-*-* FRon PH5CTL
"'GET TXT ELEHEHT*---- IS IN GETNXT
.PROCESS UNLESS '" * VERB STRING • ••••• ** ••••••••••

1
.*.

C2 "'.. ** ••• C3 •• "' •••••••

. * *. • * ····Cq·**······ .. '" "' .. NO .WRITE COftPILEB * '" EXIT TO PHASE '" *. VERB STRING .*---->* ERROR MESSAGE *---->* 00 '"
.. .. '" • '" '" *...* '" '" •••••• *.*.*.*.* "'.. .* •••••• *****.** ••• rs

.*. D2 "'.. • ••• *03.** •••••••
. * *. * * .. '" *'.. YES '" 'ilRITE ELEMENT * * .. SEGHENTATION .*->* AS PROCEDURE *~ *. VERB.* '" A-TEXT * *..* * * "'.. .* ••• * ••• **.*.* •• *****.

·NO .. •

1 * **** * : B2 :
.. E3 * ** ••
* •••• 1

.*.. v
E2 .oO ***.*E3**.***.**.

oO* *.. * *
•• SYl'WI"!P OR *oO NO * nOVE OPERANDS *

*.. STATE • *---->*INTO WORK AREA •

· ·-·:t·-· J' l...··T··#·:
F2 *. *****P3*****.**.*

oO* *oO • ..
oO* ... NO .. SELECT •

---*oO VERB IN LIST .. * .. APPROPRIATE ..
.. . • VERB ANALYZER ..
.. • ..

.. .. ****.************
*YES I

1 I SEE CHARTS
MBO 1A 1 t ME-'P

*****G2****.***** *****G3*.*.******
*DBGTEST * * *
--*-*-*-*-*-*-* * GO TO .. * GEN LOAD AND * * APPROPRIATE •
• BALR lHST'S POR* * VERB ANALYZER ..
.. ILBDDBG4" * ..
•• *************** *****************

L **** L .***
~ * » *

.. B3 * * 82 •

.. * * * **** *.**

Flowcharts 197

Licensed Material - Property of IBM

Chart MB. Phase 51: DBGTEST

198

****A 1*********
* * *- DBGTEST ..
• *

1
.* .

. * B 1 "'. *. ****S2********* .. *. YES * .. *: •. SWITCH ON *0*---->: RETURN :

* ... ***************
0 ••• *. r

*****C1********** '" '" ****C2*********
-SET UP ILBDDBG4 '"
: VIRTUAL :<---: DBGRTNOO *
* .. ***************

1
*****D 1********** .. * ****D2*********
:~~~iiR~itRL1J515:<-= DBGRTNOl *
: DESTROY 14, \5 : *' ***************

1
*****El********** . .
* * "'TURN SWITCH ON * . .
* * *****************

I
****p 1********* * •

.. RETURN *
* •

section 3. Program organization

Licensed Material - Property of IBM

Chart MC. Phase 51: GETNXT Routine

••• ftD01A1
1\2 *. • •••• A3* ••••••• *. • ••• *Aq.* •••••• * •

•••• A1········· • * *. • • ·PUTDEF •

• * • GETBXT .. * * ••••••••••• * •••
>*: ;;N DE~~lh~~o=: .~>:I!OV~RBgE~g~=ECT: ____ >:C:i;<;;-~it"=i~-:+

. Oo • A-TEXT conE • • TI01l TO PRO- • *. Oo. * •• CEDORE A-TEXT *

: *:~*: I
•• Oo* *.* •• * •••••• _.*.* .*** •• * •••• *** ••••• *.

·NO * •

• ••••• _>! 1 : B1 :

*.**

····*B1··········
* * * PO:INT TO REXT •

.•.
B2 ... • ••• *B3******.*** ••••• 84**.*** ••••

•• *Oo • •• *
Oo. .Oo YES * WRITE. .PLACE ENTRY IN *

• ELE!lEHT IN •
• BUPPER •
* *

.OoSEGftENTATION .*---->. SEGftENTATIOH .---->* SEGTBL *+
*. CONTROL • * • CONTROL BREAK •• *

*.BLOCK.· * * * * •• * •••• * •••• ***.* ... •• *.*.*.**.*....... * ••••••••••• **.*.**.*

1
r !.::,!

••• ··C1·····*····

* * • SAVE CT POR •
• ELEI!ENT •
* * * • ••••• ** ••• * •• * •••

:.:~.: 1
• ._>
***. . *.

D1 * * * ..

···**c2·****··*·* * •
• WRITE *
• OPTltlIZATIOH • * A-TEXT •
* • *.* •••••••• *** •••

L **** >* •
* B1 * • * * ••• .' . 03 *. ..***011.* ••• *.* ••

Oo*·. * * .* Q-ROOTIHE ... NO .WRITE PROCEDURE. .. * :INTER!!ED *. YES
*.OPT:I!!IZATION Oo.

•• A-TEXT .. * >*.;?NTROL BLO:~.*->: A-TEXT h
.. Oo *...* • • v

*Oo .. * *Oo •• ..* ••• * •• ** •• **.***** r
.*.

rs !.::.:
El ... *****E3*.**.***** * •• **£11.**** •• **.

Oo* *Oo • .. * • •• IHTEBKED *. YES • GENERATE EOJ * .WRITE Q-ROOTINE •
*·.Oo Pf~I~~RE *-------------...J *ftACRO IF NEEDED*---->* BREAK *----, : :: : ~ *Oo •• *** •••• **.* •• **.. .** •••• * •• * ••••••••••

r • •
• B1 • · .

.... Oo* ..
P1 *.. F3 .Oo .****F4 ••• ** •••••

• * .Oo .* ERROR *.. • *
•• •• YES Oo* KrSSAGE ... YES. •

.:IHTERftEDIATE ... > •• DEFINITION Oo---->. TEST SEVERITY *
* .. E-TEXT .* *. .* * .-

... .* ·Oo.·· * *. . * *. ... • •• * ••• * •••• * ••• * [r I
G 1 •• • •• **G2**........ • •• *.G3.** ••••••• Oo··. • • * •Oo YES • READ NEXT. • WRITE ERROR •

.ERD OP RECORD •• ----> REcoaD. * TEXT • *. .• * •• •
..Oo • • * •

SEE CHART ••• ..*.

'" B1 • . ,
.**.

'. 'lH~ ········1*'**'·'·' "**"'T:::::::
!1A01B2 82 *. 83 *. * •• *.811** •• * •• ***

.***H1*****.*.* .*.. .* *. .. liB LAST •
* RETORN TO. .* *. YES •• PBOGRA!I *Oo YES .. SEG 0 *
* !lAIHLINE. *. EOF •• ---->*. SEGKEHTED •• ---->* COB K •
• • .Oo .* .Oo •• .. AS •

* •••••••••••• *.* ..Oo* • A- •
·Oo .* *. Oo. • ••• ** ••• * •••••• r r 1

••••• J2.......... • •••• J3.*** ••••• * •••• *JII ••• **.** ••
* • * *. •
.. POINT TO HEW *. • .MAKE LAST ENTRY.
* BUPFER· ·RELEASE TABLES .<t* IN SEGTBL • * • * .. * * * *. •• * -···c=::: _...... ···-T····· : ~:.: I

***·K3··**··*·*· •
* EXIT TO PHASE • • HAKE SEGTBL •
• 00. STATIC.
• • * • • *.** •• *.**.... * •

** •••• * •• ** •• ** ••

•• **

Flowcharts 199

Licensed Material - Property of IBM

Chart MD.

•• ··A1 •••••• ••• • •
• PUTDEY • • • •••••••••••••••

1

Phase 51: PUTDEF Routine

.... B1 *. • •••• 02.......... B3 *. • •••• B4 ••••••••••
. * *. ... '" .* *. ... '" .* *. YES :tWRITE Vlf DEF AS. .* PROGRAI'I ... YES .WRITE VN DIP .IS. *. VB DEFINITION .*----)* PROCEDURE *----)*. SEG!!EHTED .. *---->* OPTI!lIZATIOR • *. ..'" • A-TEXT'" *. .* • A-TEXT* ... '" *..* ; ... ~-........ 'r r ·

····C3········· • •
• BETORK ... • • •••••••••••••••

• *oo .*. .. •.
D1 *. • •••• 02.......... D3 *. D4 ••

. * *. • • ..* *. .* *. .···05··· ..• ·•• .. '" "'.. 110 * ENTER GB INTO '" .. * ... BO .. * ... 110. *
"'.PH DEPIHITIOlf.*----)* GNLIST *->*. GBLIST FULL .*----)*.OPT BEQUESTED.*->* RETURN • *. .* ... • *. .* *oo .* • • *..* '" $: *..** ••••••••••••••• * .. * ••••••••••••••••• * ... - * .. * rs rs 'YES

••... E1.......... E3 ••••••• **.
•• •• • ERTER PN INTO. • SET CODE POR •
: GHLIST : : GREOO STRIRG :------->
•• '* • .. *.............. .*

1 r-->
••••• 1'1 •• *.*.···· • • '* SET CODE FOB •
: PREQO STRIRG :

• • •••••••••••••••••

1
••••• G 1 •••• *.* •• * • •
• SET BIT OR IN •
• PNUTBL FOR THIS.
• PN •

• * •••••••••••••• * ••

200 section 3.

••• POTEQU .* .
F3 .oo pq •• . * .. .*.. ..**ps*·· NO .* ... EO.. •• LO. • r . PREOU .*<----*. GRCIlT:1 oo*->· RETURR • •. .• •. .'* • •*'* ••••••••••••••• • •• * •. .• * •.•

*. .YES *BI : us : 1
.*. G4 •• • •••• Gs* ••••••••• ... *.. '* • •• '*. YES '* GET LOWEST Gil '*

• .GEBEQU STRIHG.*---->. FROIS GHLIST '* •. •• * • ...* • •
··l·N~ ~::;:~:·l*····*··

*** •
•• * •• U4 •••• **.... OUS •••••••••• * •• •
• '*. • • WRITE PREOD • • WRITE GNEOD •
• '*. • • •• • ••••••••••••••••• • ••••••••••••••••

~>l 1 .* ••• ,)4.......... • ,)5 •.........
• •• • '* WRITE PN DEP • '* WRITE GR DEP' '*
• GHCBT=O. • GBCBT=O • '* '*. • '* •• • *................ * ••••••••••• * ••••

I j
•••• Xq.** •••• ** •••• KS ••••••••• · . '" . • RETURN. • BETURN •

• • '* • *.** ... *....... * ••••••••

Program Organization

Licensed Material - property of IBM

Chart ME. Phase 51: SET Verb Analyzer, Format 1

••• *.1 1** •• **... I ENTER PDC!
: SET : --- PHASE 00

* * ** ••• ** •• ** ••••

1*. "GOtA"
B1 *. • •••• B2 •••••••••• · 83 *. • ••• *B" •••••• **** ** ••• 85 •••••••••• .. " *. • • *LOADLIT •

... DoPt = *. NO • GET LENGTH OF • ..* ooPt = NO" • *--*-*-*-*-*-*-*-* *. INDEXHAfiE .*->* DOPt *---->*. INDEX .*----)*GEHERATB 5R 0.0*---->* GENERATE LOAD .. *. .* • • * .. DAT1HAflE .* POR LITERAL .. *..* *..* • "'.. .. * •• **.............* ••••••••••••••••• • ••••••••••••••••
·YES ·YES L

~ * ~ * 1 L •••• • •••
.. Pl &3
•••• • ••• . *. .*. .*. Cl *. C2 *. • •••• c3.......... C4 * .

. * *. .* *. .. • .* * . . * DOP2 = *. NO .* DOP2 = *. NO .. GET LENGTH OF .. .* DOP2 = *. YES *. IHDEXIlAfiE .*->*. RUftERIC .*->* DOP2 *----)*. INDEX •• ~ *. .* *. LITERAL .* •. DATANA!!E .* *..* •..• • • •..• •. .• •. .• ••••••••••••••••• *. .• • ••• r 1- l~ ~
••• ftG01A4 GERRITOR

**** * *
• D5 *
** ••• "'v .*. D1 •. • ..•• D2.......... • .••• D4 •••••••.•• • * nop 1 •• .LOlDLIT. ••

•• IBD 2 ARE •• NO .-*--*-*-*-*-*_.-* .. CONVERT IND •
•• SAKE TYPE OP.] • GENERATE LOAD. *LOAD DOP2 INTO.

•• INDEX •• • POR LITERAL • • R 1 •
·.HAftE •• ... ••

*. r;s ********r******* *******:*1········

.*. HG01l2
E 1 •• • •••• E2 ••• *...... E3 •• **...... E4 •••••••• *.

•••• • .. *SETLER "'. • .*SA!!E ENTRY •• NO • GENERATE '" *-*-*-*-"'-*-*-*-* • GENERATE • *- •. LEBGTH ••• *->: L 1,IR'DEX 2 :---->: (POR DOP1) : BCTR 1,0 :
: *;:* ::~l*i:S * •• *.* •••• *.*.... ········1·**······ ···*··**1***··**··

.*.*
"GO 1A2 ****.Pl* •••• * •• ** * ••• *P3.......... • •••• P4* ••••• ** ••

•• • '" *SETLEH •
.. GERERATE !lVC * .GERERATE LB 2, '" :""""*-*-*-*--*-*-*-!
: OPl (4) ,OP2 : :LENGTB OF DOP 1: ** (POR DOP 1) .*
•• * ••••••••• **... • •• *.............. ** •••• **.* ••• * ...
~Ll 1 1 ••• *

gI51~~ART ••• **G3.......... * •••• G4 ••••••••••
··*·G1***"···· ... * •

• RETURN TO * •• :GLEERUEGRTHATEOp"UDOp1.1 :
: !!AIBLIBE : :GEHERATE ftH 0,2: • 1 • .. * *....... •••• *********.... • •••• *.***.** ••••

: *::*: 1 1< • .-> •••• HG01A2 **.**H3.*** •• *... • •••• 04* ••• * •• * ••
• SETLER '" '" GENERATE * *-*-*-*-.-*-*_._'" .ST 1,IBDEXHAP.l.E •
• *. OR * : (PaR nap 2) : :ST 1,IDENTIFIER:

* •• ***.** •• ** •• *'" *.**** •••• * •• *.**

1 L **** >* * * G1 *
* * *.**

••••• J 3****** ••••
* * *GENERATE LH 2, •
*LENGTB OF DOP 2.

* *
• * • * ••• *.* •• *.**.**

1
*···*K3·*····*"'*·
* * * * :GElfERATE DR 0,2:

* * ***"'****** •• **.*. L .* •• >* * • D5 •

* * * •• *

D5 ••
YES... Dop1 = "' • r . INDEX BAI!E

. . •.. * r
****·E5*·**····*· * * • GElIBRATB •
: AD 1,=11' :

* * * •• *.* ••• * ••• ***.

1 .*. P5 ...
..* ••

YES.* DOP 1 = * ..
<--*. BINABY .. *

... ..*
.. . • ... * r

···G5*·*·······
* * • GENERATE *
: CVD 1,TS2 :

• * • •••••• ** ••••••••

1 ...
HS •• .** DOPl = •• NO

•• INTERNAL .*
•• DECI!!AL ••

•• ..*
* ... * rs

·····J5*········*
* * • GEBEBATE *
: ZAP DOP1,TS2 : · . ••••••• * •••••• ***

L •• *. >* * • G1 *
* * *.*.

·····K5*····*··"'*
• * • GENEBATE *
• ONPK DOP1,TS2 *<
* •
* * • •• * •••••• *.** •••

L •••• >* *
: G1/*

Flowcharts 201

licensed Material - Property of IBM

Chart MF • Phase 51: MOVE4

202

••• *B1········· • * ... MOYE,q ..

* * ••• ** ••••••••••

1 .*. C1 *. *** •• C2.**....... ..***C3* ••• ** •••• . * *. * *. YES .. GENERATE'" .. GEHE8ATE .. *. DOP1=PFftSAV .*->* L O,PFftSAY *---->* ST O,VH ... *. .* *..*
*. ..'" ******.*********. .* •••••••••••••••
. [0 j

D1 *. • •• **02***.***** • . * *.. ****03***·***** .* *. YES ... GENERATE"'" ..
. DOP1=VNREP .---->* L O,Vlf *---->* RETURN *<~

*. *. * : ST O,PF!lSAV : ... *****.*.****** ..
*. .." *************.*.* r .•.

E1 *****E2******.... .* •.. E3* •••• *.... E4 ••• * ••••• . * *. • * *. YES *----WRC001-----* *----POTGNPER---* ... GENERATE .. *. DOP1=GNREP .*---->* WRITE C001 *----::>*PUT GH PERPORM *---->* L O,Gll .. *. .* ... ELEftENT'" ... ELEKERT'" .. ST O,VII ... *..*• ..** •• ***.** ** •• * ••• **_ •• _. __ ._... ._ •••• _*_._ ••••••

r
··**·Y1··***·*·*· • • *----WRC003---*
• YRtTE coo 5 •
• ELEt!ENT * * • * •• ***** •• * ••• ***

1 ·····G1·········-· . • •
• WRITE PHUREF • · . · . • * ••• *._ *

1
.H 1.**.*.***.
• * * GENERATE •
• LO,PN •
: ST O,VR : ••••••••••••••• *.

j
••• *J 1********* * •

• RETURN • · . **** •• * ••• _.***

section 3. Program organization

Chart MG. Phase 51: SETLEN and LOADLIT

****A2*********
* * '" SETLBN
*** •• *********.

1 .*.
B2 *. *****e3**********

. * *. '" '" .* nop, = * .. NO '" SET A-TEXT '" *. VARIABLE • *----> * BUFFER FOR '" *. LENGTH .* '" LITERAL * *..* ,. ,.
* .. * ***************** rs

I
*****C2********** V
,.. ,. ****C3**·*****·
'" SET A-TRXT "',. ,.
"'BUPFER FOR VLC *---->* RETURN '" ,. ,. * '"
'" ,. *************** ***.*************

Licensed Material - Property of IBM

****A4*******·*
• * .. LOADLIT ,.

• * ************* **

j
*****B4********** * •
>I< GENERATE ,.

:L 1£L~~~:~~XOR : · . **************.*.

j
****C4******* **

• * '" RETURN *
• * ***********.***

Flowcharts 203

Licensed Material - Property of IBM

Chart MH. Phase 51: SET Verb Analyzer, Format 2

204 section 3.

****A2 •• ·**.... lEITER FRO! • * --_. PH5CTL
: SET : ~-------------

*** •••• *******.

j
*.***82*******·*· : : ___ gJpI!pS~iTUK6wM
.. SET SETUPSW ..

* * * • ••••••••• *** •••••

1
••• !G01Al

C2 *. • •••• C3 ••••••••••
• * *. *LOADLIT" .* DOP 2;:: *. YES *-*-*-*-*-*-*-*-*

.. HOBERle .->* GENERATE LOAD .. *. LITERAL .. * .. FOR LITERAL ..

*.... .•.• : ••••••••••••••• :

r ·.···D2·········· • • .. ID ..
• LOAD ERAL*
.. I 1 .. • • •••••••••••••••••

1< !G01A2 .····E2·········· *SETLEN ..
--*-*-*-*-*-*-* * •
: (FOR DOP 1) :

1 ·····1"2·········· * ..
.. GEHERATE ..
:au 1,nOP1 LGTB :

• * •••••••••••••••••

1 .*. G2 *. • •••• G3 ••••••••••
. * *. .. '"

.. " 11'0 .. GENERATE ..
. SETUPSW OB .->* S 1.IBDEX1 ..

. *..* ··r ·······T-·~
..... 02*......... • ..•• U3
• •• • • GUER1TE * * GElfEBATB •
: A 1,1lIDEJ1: : LCR 1,1 :

• • * •

--i-·~ ---r······
··*J3*········· • • * GDBRATE •
: ST 1,1RDE%1 :

* • ••••••• * •••••••••

j SEE CH1BT
BA01B2

•• •• lt3 •• ••••••• •]mTUBV TO ..
• l'IA1NLIlfE ..
* * ** ... ***********

Program Organization

Chart MI. Phase 51: PERFORM and TRANSFORM

****A ,** ••••• *. I ENTER FROH * *----_ PH5CTL
: PERFORM: '--------...............

1 .*.
B 1 *. ** •• *B2 •• ******* • • * *. * nop 2 = * .. YES .. GENERATE .. *. HUMERIC .*---->* L ',LITERAL .. *. LITERAL .* *..* * •. * ****.**.*.* ••• *** r

.·cl*****.*
.. GENERATE ..
.CONVERSION AND ..
.. LOAD OF DOP 2 '"
.. IN R1 ..

• * ••• ** •• *** •••• *.*
I

1<------'
*****01**·******·
* * II' GENERATE ..
: ST ',PPHCTL :

* * ••• **************

1 *····E ,*** •• _ ••••
* * *----WRCCOOS----*
.. WRITE coos ..
.. ELEKENT ..
* • ***.*****.* ••••• *

1
·*p1····*** * * * •
.GENERATE GHDEF .. • • * • * ••••••••• ,. ••••••

1 .*. G 1 *.* •• G2********** .* *. * *. NO .GENERATE DIRECT.
.... PH IN ROOT .. *---->* A-TEXT .. *. .* *..* -·r ----r----
••• **Hl •••••••• ** •• ***B2**.*.* •• *.
GENERATE DIRECT * SET BIT IN *
* A-TEXT * * PNOTBL ON POR *
* *. PN *
* * * * *************.*.* .*****.* ••• * ••• **

I 1
1 .*.

**** * •
• 23 *
* * ***. ~
*****E3**********
* * * GENERATE *
: BCR NOTHEG,15 :

* * ** ••••• **.*.*****

L **** >* •
* K1 *
* * ****

..*.J1*******.*. J2 *. ..* •• .J3**********
* * .* *. * *
• GENERATE * .* *. YES * GENEBATE CALL *
* BCR NOTlfEG,PN * ... OPT REQOESTED.*-->* TO ILBDSEf!l *
* * *. .* * • • • ...* * *
::::::**j********* * ·l*N~ ******.*j.*.******

* Kt * * *->

~f5t~~ART *.*.*K2.*.*******
****K1.*****.** * * * •• *K3*****.***

* RETURN TO '" * GENERATE CALL *. *
* HAINLINE * * TO :ILBDSEHO * * BETORY *
* • * * * * *****.********* * * ****.**********

L ****
>* * * 23 •
* * .***

Licensed Material - Property of IBM

****A4******.*" IENTER PROM * ~*--------~P~B~5~C~T~L ______ ___ * TRANS PORK ! * •
**********.*.**

j
*****B4*****.**** * GEN !fOVE OF •
* TRANS TBL •
:I~~g;T~~6Ri~iO :
* •
.*********.

1
·*C4**·****
.GET LENGTHS OF *
* OPD 3 AND 4 *
: (:i~~H~ND :

:***2t~~~=~;~***:

1
*****04**********
CHANGE OP03 AND
* 4 INTO *
* ALPHANOI'JEBIC *

: Lii~foi~ :
*"'****** **.******

1
*****E4**********
* * *GENERATE PROPER*

CODE NUHBER *
* •
* *
"*<:"**r******'

.*.
P4 *. *****P5**********

.* *. * * . * OPD 2 = *. YES * GENERATE CALL *
•• VARIABLE .*---->* TO ILBDTRBO *

. LENGTH . * *
.. * * -r ------j---::~ ...

*****G4******* *** SAO 1B2
* * ****G5***·*****
* GENERATE * * RETURN TO * * TRANSLATE *---->* tlAIBLINE *
* INSTRUCTION * * * • * ***************
************** * ••

CODE NUMBER TO BE GENERATED IS AS FOLLOW:

1. OP03 IS A LITERAL NOT GT 8 BYTES AND
OPD4 IS A FIGCON OR LITERAL = 1 BYTE.

2. OPD3 IS A DATA NAtlE GT 1 BYTE OR A
LITERAL GT 8 BYTES.

3. OPD3 IS A DATANAME = 1 BYTE.
4. OP01 IS A 1-BYTE FIG CON OR LITERAL AND

OPD4 IS A DATANA!!E.
5. g~~3B~~~,oi~g ~~~E5~ifRtiiGi~.8 BYTES,

Flowcharts 205

Licensed ftaterial - Property of IBM

Chart MJ. Phase 51: DISPLAY and EQUATE

206

* ••• 1. 1 •• *.*.*.* I ENTER FROIl
• • ---. PHSCTL
: DISPLAY: '-------...............

1 -.-B1 *. • •••• 82 ••• ** •••••
... *. *' * .. * DEVICE = *'.. YES *' GENERATE LA *' *. SYSPCH .*---->*2,=(PROGRAft ID)*

. . • *' *..* ... *' 'l ··T-.. ·
.***.c1········ •• • * *' GENERATE CALL*' *' TO ILBDDSPO *' • •
• *

1
-*-D1 *. *****D2**.******* .*.. • • . * DEVICE = *. YES • GENERATE '"

... CONSOLE .. *->* PARAMETER FOR * *. .• • CORSaLE ** * •
•• •• ******* ••• **.*.** r _.-

E1 *. • ••• *E2 •••• **.*** . *.. * * .. * DEVICE = *. YES • GENEBATE • *. SYSPCH •• ---->* PARAMETER FOR *-> *. .* '" SYSPCB * •..• • * •.. * •• * •• * ••••• * •••• * r
.*F 1 •• *.***
• * • GENERATE •
• PABAMETER FOR • .. SYSLST 'II • • •• ****.**.*****.*

1<----'
•••• *G 1*.**** •• **
* * • GENERATE * *PAR11ofIETERS FOR • * OPERANDS * · . ***.*.********.*.

I SFE CHART
!AD1B2

···*H1····*··** * RETURN TO •
• "AIRLINE * * • ***.* •• **.*** ••

section 3. Program organization

.*.*1.4**.*****. I ~NTER FRO! * • ---. PHSCTL
: EQUITE : '--------

.**************

I
···**BII·********· * * * * *' PUTDEF FOR VB *' * •
* * ** •• *********. * ••

1 -.-ell *. * •••• C5**********
.* *. *' *' .* * .. YES *GBRBRATE VB EQO*

'.. DOP2 = GH .---->* GN *'
. . *' *' *...* *' III *'.. ..* .* ••••••••••••••• r

*****04···*··*···
* * *' GENERATE • *' VB EOO PH *' • • * • • ••••••••••••••••

I SEE CHABT
BAD 1B2

***·E4 ••••••••• * RETURN TO *'
: !AINLINE :<--------'
•••••••••••••••

LicensEd Material - Property of IBM

Chart MK. Phase 51: IMINIT, IMGEN, RESET, and EXITPGM

*.**A 1*.*******
* * • IKINIT '" · . ***************

1
.*.

B 1 "'. .*.**B2*.* ••• **"'.
.* *. * '"

• '" OPD = "'. YES '" GENERATE CALL '"
'" .PLURAL PIGeON .*---->* TO ILBDIVLO '"

. . '" .. *. . '" '" '" 'r ·······r······
.*C1.****.* *****C2**********
'" TEST AND '" '" GENERATE CODE '"
• PROCESS NUMERIC. '" POR BRANCH ON '"
'" LITERAL IF '" *RESULT OF KOVE '"
'" PRESENT '" '" OR COMPARE '"

'" '" '" '" ***************** *****************

j, I
****01******·**

• * '" RETURN * · . ***************

****G 1********* · . .. IMGEN *
* •

j
*****H1********** * GENERATE •
.NECESSARY Hves *
* DB CLCS FOR *
MOVE OR COMPARE · . *****************

j
****J1********* * • * RETURN * · . *******.*******

*·**A4******.·· IENTER FRon * *----_ PH5CTL
: RESET: '--------

j
*****B4***·***··· '" GENERATE '"
"'INSTRUCTION TO '"
"'TURN OFF TRACE '"
'" SIiITCH * * •
•• ***************

j SEE CHART
HAO 1B2

****C4**·****** • •
'" RETURN '" · . * ••• ***********

****G4********* I ENTER FROM
: EXITPGH :----ILP_B_5_C_TL ____ _

j
*****84*****.****
* • * DESTROY *
• REGISTERS 14 .. * AND 15 * · . *****************

1
··***J4**********
* * *GENERATE DIRECT* * A-TEXT •
* *
• * ************** ***

I

1 SEE CHART
HAO 1B2

****K4********* * RETURN TO •
.. MAINLINE *
* •

Flowcharts 207

Licensed Material - Property of IBM

Chart ML. Phase 51: DEBUG, READ, TRACE, and GO BACK Routines

****A 1********. I ~NTEB FROK * *---. PH5CTL : DEBUG : L-______ _

.* *.******

.. n" I
*****81**********
"'TERMINATB LAST '"
: ~~¥gGI~RfI~§T :
: DE~RgGR2AIB :
********* •• ******

1
*****Cl*····***** · . '" TURN DEBUG '" * SWITCH ON '"

• * • •

1
••• **D 1** •• ** •• ** • • ... GENERATE GN ...
... DEFINITION * • • · . *.******* •• ******

1
··***El**·****··* · . ,.. GENERATE ...
... ST llf.,PPMCTL ...
* •
• * ********* •• ******

1
****·Pl********** • •
... DESTROY *
... REGISTER 14 ...

• * · . *****************

j SEE CHART
KA01B2

****G 1*********
... RETURN TO '"
... MAINLINE ... • • **************.

****81********. I ENTER PROM • *---. PH5cTL : READY : L-______ _

**************.

j
*****J 1**.**** •••
... GENERATE ...
*INSTRUCTION TO ... * TURN ON TRACE * ... SWITCH •

• * •• * ••••••••••••••

j l!!,W"
•• *·K1 •• • •• ·.*·

• RETURN TO • * flAlNLIRE •
* * * •••••••••• *.*.

.***13** ••••• ** I ERTER PROK * * ---. POSC'lL : TRACE : L-"--= ___ _

.** •• * •• **.* •••

I
*****B3********·*
o * * GENERATE CALL '" * TO ILBDDSPO *
* * o * .****** •••••• * •••

1
*****C3·*········
* * * GENERATE *
• P1RAnETER POB *
• SYSLST *
• 0 •••••••••••••••• *

1
····*D3"'·******** * • *GENERATE DC POR. * CURRENT ..
.PROCEDURE NAHE •
* • ************ ••• **

I
1 SEE CHART

MA01B2
·**·E3·····**··

• RETURN TO • * MAINLINE *
• * ***.*** •• * ••• *.

·***F 3******.** I ENTER FRon • *---. PHSCTL : GOBACK : L-_____ _

.** •• ****

I
··*··G3********** • • * DESTROY *
• REGISTERS 14 •
• AND 15 •
o *
.**********"'*****

1
*****83*****·*·**
.. WRITE VIRTUAL * * DEFINITION ON •
• FILE 3 FOB * * ILBDPlNSO • ---.--- * .."'.* •• * •• * ••••• *

1 .*. **"'**J3 ••••• * •• *. J4 •• **.*.JS.*** •• **** * • .• *. * •
*GENERATE DIRECT. •• PLOW, *. YES * GENERATE CALL *
: A-TEXT :----> •. *. S§~~~'pOR .*.*->: TO ILBDDBG6 :

* • *..* * * .***"' ••• *."'* •• *** * ~ ~. ..* •• *.* •••••••••
ORO L

.*.. 1 **** • • • • * K4 • • Jt'4 • .. ._> • •

.*** SEE CHART * •••
MA01B2

·**·K4*··*****· * RETURN TO •
• .UlINLIH! •

* * * •• * •••••• ****.

208 Section 3. Pro~ram Organization

Chart MM. Phase 51: IF-Index Routines

.***A1********* IENTER FROM
* * ---. PH5CTL : IF : L-~~ ______ ___

*********.*** ••

j
*****B ,*.******** , *
... SET CODE AND SEE NOTE BELOY
.. COD2 ..

* * • *

1 .*. c1 *. *****c2********** . * *.* DOPt = *. NO ... EXCHANGE Dopt ... *. INDEX HAME .*------->* FOR DOP2 *. .* ... *..*

I~ ·······r····-
D1 *. ** •• *D2********** . * *.

YES.* DOP2 = *. ... REVERSE CODE ..

r*. INDEX NAME "<t' AND COD2 * *. .** (::*: *. *lH~ ********1*********

.*. .*.

E1 *. E2 *. .* *.. .* *.
YES.* Dop2 = *. YES .* oap1 (OLD *. r*. NUMERIC.* .nOP21 = INDEX.' *. LITERAL .* *. tlAME .* *..* *..* **** * .. * * .. *

:*:~.: r *NO

*****p 1**********
* * ... GET LENGTH OF *
... DOP2 .. , ,
• *

1 .*. !
Gl *. *****G2***** •• *** .* *.

..
• * * A3 ... ••••. *-l
··***11.3········*· , * , *
:GEHERATE sa 2,2:

* •
.**** ••• *********

1
·****B3*·**······
• * '" GENERATE '"
... L 3,DOPl ...
* *
• * •••••••• ***** ••••

1 "G01A2
*·***C3******··** *SETLER ...
--*-*-*-*-*-*-* , ,
: (FOR nop 1) :

** ••••• ****** ••••

1
*****D3***···***·
• * ... GEHERATE ...
:1.H a 'fig~lTH OF :
* ,
*********.*.*.*.*

1
*****E3*********·
• * * * "'GENERATE DR 2,0* , *
* • *.**** ••• ***.****

J
*****P3****·*·*** · . '" GENERATE '" * L 1,OOP2 * , .
• * **********.******

Licensed Material - Property of IBM

**** * •
.. AS *
* * **** --,

V "GO 1A2
****.A4.*.****.** ••• **As.* ••• *****
• * *SETLER *
• * *-*-*-*-*-*-*-*-*

>.GERERATE S8 0,0* * •
: :: (POR OOP1) :

.****.****.**.*** *********** •• ****

1 MG01A2 1
* **.*B4 •••••• * .*. ..* B5* **. * ••• **
*SETLER •• •
.-*-*-*-.-*-*-*-* • GENERATE * .. * *HH 1,LENGTH OP •
: (FOR OOP2): : DOp1 :

****.******** •• ** **.** .. **.*.*.****

1 1
.*C4******* *.***cs.**.* *.
* • '" • '" GENERATE * '" REVERSE COD2 *
"'LH 2,LERGTH OP '" * AND CODE *
.. OOP2 ... * * ... •
.****.*********** **.*** •• *******.*

1 1
*****04********** .****05********** * .. * .. * GENERATE *
GENERATE DB 0,2 * C 1,DOPl *
* • * * .. * * * ******:f:** •• *** *** .*:f:***.**********

1 1
*****E4********** *.***E5**********
*' *' * * .. *.. GENERATE *
:GEHERATE CR 3, 1:-----A->: BC CODE, GH :

* • * •
.********** ***.********.***.

I
I SEE CHART V 'A01B2

·***FS********* * RETURN TO •
• HAINLINE * * ,

**********.****

• * DOP2 = *. YES ... GENEBATE ...
•• *:ND:iK~ATA .. *.*------->: CLC DOPt,DOP2 :--'

.. '" '" "'. . '" ****.* •••• ***.*.*

l'No (:~:L,
v ftG01A4

*****H1*.******** ••••• H2 ••••••••••
... GENERATE * *LOADLIT ...
.CONVERSION AND '" *-*-*-*-*-*-*-*-*
,.. LOAD OF Dop2 GENEBATE LOAD '"
... IUTO Rl'" ... FOR LITERAL '"
... "'.. '" *****.*********** *.** •• ***.*****.*

1<--------'1
••• **J 1***.*.**** , ,
.. GENERATE ...
'" BeTH 1,0 '"
* * , *
•• *.****** •• *****

L •• **
>* *

... A5 '" , *

NOTE

FOR
FOR
FOR
paR
paR
FOR

, SET CODE AND COD2 TO tI=n
SET CODE AND COD2 TO "NOT
SET CODE AND COD2 TO IIGT"
SET CODE AND COD2 TO "NOT GT"
SET CODE AND COD2 TO liLT"
SET CODE AND COD2 TO tlNOT LT"

Flowcharts 209

Licensed Material - Property of IBK

Chart MN. Phase 51: GO, and GODEPM

****A ,********* I ENTER FROII · * ---. PH5CTL : GO : L-__________ ___

•••• * ••••••••••

1 .'.
B 1 *. .****02** •• ***** • . * *. • * *. YES" .. *. PN .*->*SAVE PII NUlIBER '"

. . '" .. *..* • '" r .'. C1 *. .****C2****** •• ** .* *. .. '" .* *. YES * ... *. Gft .*------->*SAVE Gft HOftBER .. *. .*-*..* .. '" '" ******.* ••• ****** r * •••• D 1** ••••••• *
• *
• * .SAVE TN NOftBER • • • • •
········r*····**

.*.
E1 *. • •• **E2* ••••••• ** .* *. .. GEHEBATE ..

• ::. si~gi=~ID .::._HO _____ >: t ii!ig!t.8B :<
.. * '" * .• * ••••••••••••••••• rs 1

••• **P1********.* .****F2 ••• *** ••••
'" GENERATE CALL" • GENEIiATE ..
: TO ILBDSEftO : : BCR 15,REG :
..****** •••• *** ••• * •••••••••••••

1
···G ,*****.*. · . • PASS PARAftETERS.
• OF PRIORITY '"
'" NUBBER '" • • • * •••• * ••• **.****

j< SEE CHART
KA01B2

.* H 1******* ... RETURN TO ..
.. PJAINLIRE * • •
*******.*******

GaDEP"
···*82···****** .. ENTER PROB *

• puse'lL *'
* • • •• *.*********.

. .
* * * •

210 Section 3. Program Organization

Licensed Material - Property of IBM

Chart BO. Phase 51: GODEPL and GO DEPENDING

··**A 1 •• *.* •• *. I EHTER FROB
• ·--------lP~H~5~C~T~L~~ ____ _ ... GODEPL ... • • **.*.*.*.*.*.*.

1 .'. 81 *. *.***B2** •••• **** .* *. .GENERATE AOCCN * . * * .. NO ... OF PH ...
"'.OPT REQUESTED.*------->* REFERENCED IN ... *. ..* *GO DEPENDING ON* *..* ... STATEMENT '"'" •• *.*.*.* •• *** •••

*IES

1 "0113
••• **c 1* •••• 2.***
*SEGCAL2 ...
--*-*-*-*-*--*-*
... GENERATE ...
... INSTROCTIONS ...

• * ***** ••••• * •••• **

j< SEE CHART
ftA01B2

• *.*D 1* ••••••••
... RETURN TO ...
... KAIBLINE ...

• * * •••• **********

*.**13 •••••••• * I ENTER FROtl
* *'--------.l!PH~5~C~T~L~ ____ .
... GO DEPEHDIHG ~

* *
j

·····83·········· ... GENER"TE LOAD ...
*01' BIN1RY VALUE.
... OF DATA BAftE ...
... INTO R1 ...

* * • ••••••••••••••••

1 .*. .* . C3 c4 *. • •••• C5 ••••••••••
.* *. .* *.* * .. YES.* *. NO ... GENERATE L *

* ·2~T REOUEST:~.*------->". *. SEGftENTED ------->:ft\=~!I;gD~Jt!~~S:
...* •. e* • *

'r l' ·_····r···-
** ••• D3 ••• * •• *.** ** ••• D" •••• ** •• *. * •••• D5 •• * ••••••• ·
• GENERATE. • GENERATE *. *
*COftPARE OF DATA. • Sft 2,2. • CALL ILBDGDOO •
• lllME TO COUNT. .LH 3, NO OF PRS.. •
• •• • * • *................ * •• *............. . ••. * •• * •••••••••

1 1
••••• E3 •• **...... • •..• E4 ••••••••••
• CALCDLATE·· •
DISPL1CEflENT TO • GENERATE CALL.
.. USB IN BRANCH • • TO II.BDGDOO •
• INSTRUCTION •• • • •• • ••••••••••••••••• • •• * •••••••••••••

1
.* .

•••• *F2 •••••• *.** F3 *.
• * .• *. .. ADD 6 TO • IES •• PROGR1!l *.
• DISPLACEtlBNT *<-------.. SEGMENTED •• .. • •. .* • • ...* --T····· 'r

··**·G3*···*·····
• SAVE •
• DISPLACE.I!ENT ..
• FOB A-TEXT •
• GEHEBITOB •
* * •••••••••••••• * ••

1 .*. H3 *. .* ••• !4 •••••• ** •• e··. . . . * PBOGRIK *. YES • GENERATE CALI. •
•• SEG.I!EHTED .*------->* TO ILBDSEftO • *. .* .. • ...* * • * ••••••••••••••••• r
·*···J3*·········
* * .VRITE PROCEDURE. * A-TEXT •
* * * *

<: _____ ..J

!l<:--SE-E--C-H-l-B-T----------------------------------~
ftA01B2 ····lt3········· • RETURN TO • * !AIHLINE •

* * * •••••• * •••• *.*

Flolfcharts 211

Licensed Material - Property of IBM

Chart MP. Phase 51: Nonumeric IF (IFANAL) and Cla~s Test (CLANAB) Processors

212

****1 , •• *****.*
o *
.. CLANAB '"

• * ******** ••••• **

j
*****Bl···*******

CLASS TEST
--- PROCESSOR

ENTER FROr!
P85CTL

'" '" 1. ALPHABETIC
• SET CODE FOR * --- 2. ROT ALPHABETIC
'" TYPE OF TEST • 3. HO!BRIC
• * 4. lIOT HUftERIC !******** ••• *.*.! L-' ____________ _

1
*****Cl.* ••• *****
• * '" GET LENGTH OF * * OPERAND '" * •
• * ••• ***** ••••••• **

1
*****n ,****.*.**.
'" '" 1. '" GENERATE CALL II< --- 2.
'" TO SUBROUTINE '" 3.
• '" Q.. • * 50'

ILBDATBO
ILBDETBO
ILBDli'BO
ILBDWTBO
ILBDUTBO •• *************** L-_____ ___

1 .0.
E1 *. *** •• E2 •••• ******

.* *. '" '" .* VA LE *. YES '" GENERATE CALL '"
.. L OR .---->* TO J:LBDCLSO '"

*.L GT.'" '" '"
.. '" '" *. .. '" •• **.*.* •••• ***** r

•• ***p 1***.*****·
o *
'" GENERATE TRT '"
"'INSTROCTION IN *
• LIRE '"

• * .***.******* •••••

1<·-
*****G 1 •••• ** ••••
• 0 • GENERATE '"
"'INSTRUCTION FOR'"
• ALPHA TEXT *
* * ********* •• ******

II!Mp"
****81********·

.. RETURN TO ..

.. PJAIlfLINE .. · . • **************

Section 3. Program Organization

.***A4******.*. IF PROCESSOD * • --- ENTER FRon
.. IPAlfAL" PHSCTL
.. c:.::.:..:= ____ _

j
.****B4.· •••• • •••
.. SET CODE FOR ..

:ia~E = OF G~F JOT :
:GT. Lfboi NOT:
••• *.* ••• ~* ••••••

1 !K01A1 * ••• *C4··**·*·***
*IKINIT ..
--*-*-*-*-'*-*-*
'" PERrOR" ..
*INITIALIZATI:ON ..
.. FOR IF HOVE .. * ••• ** •• ** •••••••

1 ·***.DfI ••••• • ••••
"'TEST L A1ID.
-SAVE N OF ..
.. CHARA TO ..
"'BEC ED. • •

1 !K01G1 *····B4·········· *I!lGEN If:
--*-*-*-*-*-*-*
.. GENERATE IIIF'I ..
.. CODING .. • • •• ** •••••••••••••

jIll.:!'"
····P4··******·

.. RETORN TO .. I

.. I!AINLINE .. • •
***.* •• *.*.~.*.

Chart MQ.

Licensed Material - Property of IBM

Phase 51: SEGAL and SEGCAL3

• •• *A3 ••••••• ** I ENTER FDOH
• ·--------lP~H~S~C~T~L ____ __ * SEGCAL *
• * ••••••• * •••••••

1 .*. *****82****.***.* B3 *.
* * .. * *. * GBNERATE CALL. YES .. * *. * TO ILBDSEKl *<-------*.OPT REQUBSTED ...
* • *. .* * * *..*

·······r:::: ·r
••••• C2 •••• ***... ** ••• c3.* •••• ** ••
*SEGCAL3 * * •
--*-*--*-*-*-*--* * GEHERATB • • • * L O,PN If;
WBITE PABAl'IETER. *
• *... * *................ * ••••••••••••••••

I ,1_u
****D2*··*···.*· •

• If; * GENERATE '"
• RETURN * * LTR 0,0 • • *'. • ******* •••• *... • * * ••••••••••••••••

····P2***···*·* * • * SEGCAL3 • * • * ••••••••••••••

j
·*G2*·*···*
• W BC • * OR •
• P TO * · . * TiRE * *... ********

1
*** •• 2********** *---- --* *SET BITS.
*!'OR HCED •

• * · . ***.** •• **** •• **.

j
·J2*·*··· * •

• RETURN • · . •••• ***.***** ••

1 ·····B3·········· • * • GENERATE CALL • *' TO ILBDSEl'IO •

* * * *
I m,~!'"

····P3·**··*··· * RETURN TO * * ftAIHLIRE ..
* • • ••••••••••••••

Flowcharts 213

Licensed Material - Property of IBM

Chart MR. Phase 51: A-text Generator, and GATXTC and GATXTV Routines

****A 1*********
• A-TEXT ,..
• GENERATOR ..

* * .*.* •• ****** •••

I
•• ***8 , •• ** ••••••
* * ., SET UP TYPE *'
: tg~~, (~¥crF :
• ***.** ••••••••••

1 ·.···C1 •• ** •••••• *' CALC E .,
,.. LENGTH S •
.. OR BE * * FIE *
* * •••••••••••• ****.

: .:~.: 1
• *->

GCKOp3 .*.*. 1*·***····* *0 HE FIRST.
*1 OPERAHD. * ET OP ..
• EXT ,.. * • •••• *** ••••••••••

1
.0.

E1 *. • ••• *E2 •••• ** •••• .* *. ,.. •
... VIRTUAL * .. YES .. GENERATE •

... LITERAL OR .. *----)* OPTIftIZATIOII *
,.... PIGeON3 .. " ,.. A-TEXT • *..* ,.. • ·r -.MTM.U

····*F1*.* ••• ** •• · . .CHANGE OF CODE ..
*IF HOT RB TYPE. • • o • ••••••••• * •••••••

L .*** >0 * • 13 ...
* 0 ** ••

••• *
o * ,.. 13 •
* 0 **.* --,

PLUS1 t

····*13*··*······ * * ,.. SET UP PLUS ,..
,.. ELEftENT IF Itf ,..
., EXISTEBCE •
o * • •••••••• ****** ••

1
GDOAGIf .0.

B3 ••
..* "'. .* S8 *. YES

*. INSTRUCTION •• j *. .•
*. e· * • .o • r .*.

.*.C3*******. C4 "'.
• • .* "'. • WRITE '" YES .. '" SECOND ••
If; CONSTRUCTED *<----*.. ADDRESS ••
'" A-TEXT. • .. COflPLETBD ...
'" '" *....* ... U··r····· ·r
_.... **** •• **.. **···D4*·*···***·
*C WORK. * If;
.. AIID" "'!lOYE WOnK-AREA '"
.. PO AlID '" *2 TO VORK AREA.
* '" '" 1 '"
• S If; '" ••

j
···"'B3****··*** '" RE'l'OBJI TO ..

'" CALLER *
• * • •• * •• ***** •• *.

1
····*B4···*·*··*· • * '" nOVE POINTER If;

*2'S TO POINTER h * 1'5 • • * • ••••••••••••••••••••
* * • D1 '"

···"'P3········· '" GATXTC '" ---
.. GITXTVY '"

• * •••••••••••••••

I ·····G3*········· • * .PICK UP LENGTH •
'" IN REGISTER 3 * * • * •

1 ·····B3·········· • D • *DISPLA op.
o TEXT RT '"
'" OF Dl 1.
* * ••••••••••••••• **

1 **·**J3.·.···· •• • • • • WRITE PROCEDURE* * A-TEXT OR • * SYS001 * * 0 *.*.*.* ***** .. *

I
··**K3*·******* * RETOBN TO R14 ..

.. PLUS 4 * * •
**************.

* * ••••

Eft
il-TBXT OBLY.

"l'C OR GilTXTV
POSITYON OF TEXT
I.RNING OF DATA AREA t:
GTH OF TEXT'

214 Section 3. Program organization

Chart NA. Phase 60 (ILACEL60)

Licensed Material - Property of IBM

Overall Logic

****A3"'******** IENTER PROM
• • --- PHASE 00
'" ILACBL60 '" · . ***************

j .. .,,,
"'''''''**B 3*"'''' "'*"'''' "'''''''
"'PH6 '"
--*-*-*-*-*-*-*
*INIT SWITCHES A *
:~~~Li~T ~N~R~G~:
************ ••• **

1 NC01.1
*····C3**********
*PRPTWO *
--*-*-*-*-*-*-*
'" PROCESS *
'" OPTIMIZATION *
'" A-TEXT * ** •••• *** ••••• ***

1 ND01A1
·*·**03*****···*· *SE6000 '"
--*-*-*-*-*-*-*
'" PROCESS '"
'" PROCEDURE '"
• ~-TEXT '"
** ••• ********.*.*

1 NE01.1 ····*E3·········· ·PDATEX '"
--*-*-*-*-*-*-* * PROCESS DATA • * A-TEXT • · . ******.*.*******.

1
··*P3****····*·
'" GENERATE CODE '"
• FOR INIT26 *
: INliifT~N : · . *****************

CLOSE 1
*****G3··*******· · . '" TERI'lIRATION '"
'" ROUTINES '" · . · .
······'T······

···*83********* * EXIT TO PHASE '"
'" 00 • · . * •• ********.***

Flowcharts 215

Licensed Material - Property of IBM

Chart NB. Phase 60: PH6 Routine

****13"'*···***· * • .. PH6 .. · . ••• ************

j
*****B3********** • • • INITIALIZE AND ..
.. HAll OLE IU.P ..
.. SUPPRESSION ,..
* • •••• *.**.*******.

1 .*.
C3*.*.Cq •••• ***... *****cs*.*** •• *** .* *. * IS PGI! YES .SORT SEGTBL BY PONCH PHASE ..

. SEGHEHTED .---->*PRIORITY HOr!BER*---->* CARD *. .* *..* ·r ._ _. ·_·1-· .. ···
···.*03·····**··· * * .. INITIALIZE ..
.. COUNTERS AND ..
.. SWITCHES ..

* *
1 .*. R3 * •• **:E4.****.* ••• . * *.. * YES .. PRINT HEADER ..

. LIST KODE .----)*AHD KEHORY HAP ..
. *..*

*. *Ji~ *****··*r*******

TGTIBT l<----------~ *····P3······***-.COftPUTE SIZE OF.
.. TGT AND ..
.. DISPLACEMENTS ..
• OF ITS FIELDS.. .. ·

PGTIHT 1 **··*G3··**······
• * -COMPUTE LENGTHS*' *' OP FIELDS IN •
• PGT •

• * _ ..

PHUPRO 1
··.»3·*·*·*·**·
* * • PRlftE PlITBL & •
• GNTBL •
* * • • ... * .. * ••••••••••

INSERT 1
*·***'J3****···*··
* * • USE PKUTBL TO *'
!'IAKE ENTRIES IN
: PlITBL/GIlTBL :

•• * ••••• *** •• * •• *

RELEASE 1 STATIC SEE CHART ***.*K3.**....... K"'.*........ lICO 1A 1 * • * * ···*K5 •••••••••
• * * *. . : PNUTBL :---->: PNTBL/GNTBL :---->:EXIT TO PRPTWO :

* • * * ••••••••••••••• ... *.*...........

216 Section 3. Program Organization

Chart WC. Phase 60:

****A 1********* · . '" PRPTWQ •

· * .*************.

j
····"'B ,*** •• *.* •• · . * •
'" PRIME TABLES '" · . • • * ••••••••••••••••

BEADF2 1
·****Cl··****·*** · . "'READ OPT A-TEXT.

>* FROl'J SIS003 * · . · . *****.********* ••

1

PRFTWO Routine

~ *. XREF .*. RE~IND
nl *. D2 *. *.***n3****** ••••

. * *. .* *. .. '" .* *. YES .* IS *. YES .. SYS003 FOR '"
0.. EOP .·*---->··*~~~8b~~~h.*·*-->: s~~~~'i~gF :

.. *..* '" '"

I : E1 :'. '~I ii~ '. r~ ········1"'··******
* *-> ' >
**** lEND .*.

El *. *****E3******.*** .* *.
~:~ND OF BLOCK *:.< :REsg~tEu~~~~Lr :

. . '" LENGTH OF PGT .. *. .* "' ..

··r~ ··**····1·········
.*. INSERT PUNCH

Fl *. *****P2********** *****F3**********
.. *. '" "'. '" . * *. YES • INSERT UNIQUE." * *. VIRTUAL DEY .*---->*VIRT IN LVIRTB *-> *VIRTUALS, ESDI'S.

'" 0- ... *OR CVIBTS TBLS "'.. *
.. '" • '" *

*.i"~ j

.!. INSERT TXPNH 1
.* G1 *. *. :****G2*********: :****G3*********:

• * *. YES * MAKE ENTRY IN * * PUNCH TEXT * *. VN REF .*---->* VNPTY TABLE *-> * CARDS FOR TGT *
. .. * * "" AND PGT *
.. * *.. ""

*. . * ****************. ***************** . r INSERT RELEASE 1
II1 *. *****H2********** *****H3**********

.* *. * *. *
.* LITERAL *. YES "" INSERT UNIQUE. • CONTBL AND * *. DEFINITION .*---->* LITERAL IN *-> *CONDIS, FILTBL *
. . * CONTBL·· ..
.. * * * * '. r~ ········r·······

J. INSEBT I ~
J 1 *. *****J2********** *****J3**********

.* *. * *:~. • .* VIRTUAL *. YES * INSERT IN * WRITE MEffORY *
... POINTER .*---->* FILTBL .. MAP ON SYSLST * *. .* • *.. .. *.. * * * * •• • * ***************** *********.*******

*NO

L>* **** *
.. A4 * . .

Licensed Material - Property of IBM

*.** · . * A4 *
* ••• **v

.... INSERT
A4 *. **.*.A5******.***

.. * *. • ..
.* DISPLAY *. YES .. INSERT IN *

*. LITERAL • *---->. CORDIS TABLE •
•. .* * -*...*

- •• * **_.*******.*.* ••
qO L
1 >(:~:

• *.
• • *.* •

B4 *. *****B5********** .* *. • •
.* *. YES .PROCESS GN EQU •

.GN EQU STRING •• ----> STRING *'
*. . * * * *'..* • * · ·l·N~ ********·L***::::*

>* •
* E1 * • * ._ ..

·C4 ***.*.* *_. · . *PROCESS PN EQU ..
* STRING • · . · . *****.***********

L **** >. •
* E1 * . .

*****E4********** • • I>: RLDm'~TBL : · . ·····_·c·····
P4 *. .* * . .* IS PGM * .. NO

•• SEGMENTED .*

I '· .' *. .* • .• * rs

*****G4********** · . * carmINE SECTS *
OF EQO PTY INTO
* SEGMENTS * · . *****************

j SEE CHART
NCO 1A 1

****H4****·**** * •
*EXIT TO SE6000 *< · . .******.* •••• **

Flowcharts 217

Licensed Material - Property of IBM

Chart ND. Phase 60: SE6000 Routine

GET

****& ,********. • • .. SE6000 .. • • ** •• *.*.* ••••••

: *::.: 1
• *-> * •••

···B1·**········ .READ ELEfiERT ..
FROM SYS001

*
•••••• ** ••••••••

1
~... EOP EHDPTX .* .. C1 *. • •••• C2.......... * •••• C3*......... C4 *. BEllIRD

*··cs·· .. *····** .* *. * .. * TIOR * .* * .
• :*EHD OF PILE·:.~>:LlST LAST LIBE : ____ >!p -~~~T : ____ >.:.sx=~gbi~¥P *:~> * SYSg~.~OB

"o. .* * IHG" *. .* • • *..* * *.. .. *..*• ••••••••••••••••• •••••••••••••••••*

.. *_> L ___________ -'> ~l~ ~ *I~ 1 *... --,
SE6025 .*. epPRO Y GET .*. SEE CHART

D1 ... • •••• D2 •••••• **.. .**03* •••• ****.* DII ... BEO 111
.** • •• *05········· •• OP CODE ABO ... YES *PBOCESS UP ABO" • READ NEXT" .* OPEBATIOB *. YES. .. *. ADDRESS .*---->* ADDRESS *----> BLEIIERT FROB ---->*. DESCRIPTIYE ... ~ .BXIT TO PDATEX •

•• BLEBERT ... • ELEftENTS. • STSOO 1 r l*NO : .~!* :
.... VNDEFR E1 *. • •••• E2.......... . •... EII •••••••• **

•••• ... • PORB •

• :;NPgEF~:I~¥O::.~>:Li~!ogA~i~i~iE : :L~:
... •• • RLDTBL ENTRY • • l: • *. .. * *. ... • ••• *............

I*NO L •••• L ** ••
>: B1 : >: D1 :
~" "" ••• PRBRRO

P 1 •• ** •• *F2 •••• *** •• *
•••• .CREATE IN-Ll:NE *

•• PH BCD NAftE •• YES • CONSTANT FRO" •
.. BLEftERT ... ---->.PREVIOOS SYSOOII

... ... • ELEftERT
·l·;'~ ········L***::::*

>* • * B1 •

• * •••• . *. G1 •• • •••
.. * *. • R

... PN REF ... YES .VBI
•• AND;'QR PILE •• ---->.POB

•• REP... • S* •
r

••• I'fACPRO

• ••••••••• D •
S003*
1 :IF.
F •
D * * ••••

L * •••
>* *

• B1 • * • •• *.
H 1 •• .*.**82 •••• * •••••

. * BACRO •• YES *DETERBIRE TYPE.*
*. INSTRUCTION •• ---->. GO TO RODTIRB •

•• ELEftEIfT TO PROCESS • •••• *' •
*. •• *****.* ••••••••••

·NO L
1 >: .:~.:

* * *' •••
••• SEGPROC POl:UTD

oJ 1 •• • •••• .)2 •• *....... J3 ••••••••••
•••• • •• SEGIIElfTIS •

•• SEGHENT *. YES • SEARCH SEGTBL • T ADDRESS.
.CONTROL BREAK ... ---->. POB DISK .----> ROUTINE. •. . • ADDRESS. • T IN PHASE. * ... 00 • *. *.............

l*BO L * •• * >. •
• D1 •
• *

GIDEIfL
** ••• Kl •• *** •••• * ** ••• K2* ••••• * •••
• • .CREATE IN-LIRE. * SPECIAL. • CONSTANT FROB •
• INTERNAL .---->. SPECIFIED
• ELEftENT. • ELEftEUT • •• • *........

218 Section 3.

L ••••
>* *

• B1 •
* *

Program .Organization

Licensed Material - property of IBM

Chart NE. Phase 60: PDATEX (Part 1 of 2)

····Al········· * * • PD1TEX •

* *

I .' *8'.......... B2 • .. * ••
• GENEBATE 1NI'1'2 • .* IS PGft * .. YES 5Y5004 ..
• AND IHIT3 *----)*. SEGHER'!'!D .*-> POSITI.ON TO
.. CODING" *.. .* • DATA A-TEXT ,.,
* • *...'"

:*::*:_>l·:~O _________ ~1
•••• PDT020

...--­---- --·····C2*········· .GET 01'1'1 OR ERB.
• ELEH OR .. >: S~;iF ~~:~R~R : ·

1 .*. PDT030 D6SR10 D6PN10 D2 *. *** •• D3.......... • •••. D4.......... * •••• 05* ••••••••• • * *. .RELEASE TABLES '" .SOBT RLDTBL IN .,.. ,., .* ,.. .. YES '" NO LORGED '" .ASCENDING OBDER. .PUNCH TEXT ARD ,.. * .. END OF FILE .*----)* NEEDED lUKE *----)* OR TARGET *----)* BLD'S PROft ,.. ,.,.. .* *BLDTBL ENTRIES .. • ADDRESS '" .. RLDTBL • *..* ,.. DIRBCT"'· "'. .. *.. ..'" ••••••••••••••••• • ••••••••••••• *** ••••••••••••••••• . r D6000 1
E2 *.. ****.E3*.*.*****. ** •• *ES.**.*.*.* • .. *... * * • * •• *.. YES * IDENTIFY AND * *SHT UP REGISTER. *. DATA A-TEXT .*->* PROCESS DITA * *ASSIGRlIENTS POR*

.. .. * A-TEXT * • PBOGRAr!.. •
.. * * * * · ·l-H~ ·_··*-·T::::::: ·_*-·*·*-1********

• C2 * • •
**** .*. RELEASE

1"2 *. ***F3.***.****.* * •• **F5*.******.* .• *. * '* .. * *. YES * WRITE OR * *. *. DEF'S .. *-> SYS001 FOR • RLDTBL *
. .. • PHASE 61 *.

*.. •• * •
* •• * *** •• *** •• *.*.** •• * ••••••••••• * ••

V

-IRO L .*** L .*** >. • >·02 * * C2 * * B2 •
• • * • ••• * ** ••

·****G2*···**·*** · . • PLACE E-TEXT TN*
TABLE FOR EBB • * PROCESSING * • • • **.* •• *.********

Flowcharts 219

Licensed Material - Property of IBM

Chart PR. Phase 60: PDATEX (Part 2 of 2)

."'.* *02 *' : 82**1 ••••
GI:NIT2

·****B2*******··· · " '" GEIlEBATE PGT *
·INITIALIZATION *'
" * * " ••••••••• *** •••••

.*. FSEQ 1 cl****C2 •••••••••• . * *. • .,
YES .* DEBUGGING *. ., GENERATE 'l'GT '"

"" •• OPTIONS ••• *<-:'IlfITIALIZATIOlf :

... • ., .,.. .* •• * •••••••••• ***.
"HO

GIHIT3 *····D2*·****····
• * .. GENERATE" .GENERATE COOING.

>*DEBOGGIRG IlIIi' *---->* TO INITIALIZE '"
'" CODE .. '" VB CELLS "'.. ***.*.... . .. ***.* ••• ***.*.

EIHRG I ·····£2*······**· ... GBB CODING TO ..
.IRIT ARY Q-ROOT*
• THAT DEPEND ON ..
·WORKING-STORAGE· · . *.* ••• **** ••••• *.

1 ·····P2······***· o •
---RELEASE---
: RELEASE QTBL :

" . • ** ••••••••••• ***

IHIT1 1 ***··G2*········· · . • GENERATE IBITl ..
• CODING ..

• 0 " " ***.** ••• * •••••••

FTER 1 ·····H2·*········ · . • PORCH IND LIST •
• INIT 1 CODIlIG •
• PORCH LIST CIRD*
o •
••••• *.**.***.*.*

1 ·····J2**··***··* · . ·----RELEISE---·

:3:~itS~H&H~~~~y:
• 0 •••••••• ***** ••• *

L *.** >* 0
• 83 •
" . *.*.

•• ** • •
• B3 •
* •• *.*v

.0.
B3 ". .• * .. . * IS PG! •• NO

•• SEGKENTED ••
*.. .• *.. .. • .. . *

rs

.*. C3 ••
*: *FSgw ~ Y~fiA~E*: .!.!~

. .. •. .*

····*D ·cPYO
• NOV-
• SEG
• S • • ••••

* r •• * •• * ••• *
D FOR.
EllT •
FROB·
TO " 11K •

••••••••

meH 1 ··*··E3**·······* o " .GERERITE ENTRY •
• CIID • " .
" " ..*

l' ····P3········· • EXIT TO PHASE •
• 00 • "

220 Section 3. Program Organization

Chart OA. Phase 62:

Licensed Material - Property of IBM

Overall Logic

****13......... BNTER PROK
• *---- PHASE 00 IF
• ILACBt62' OPT IS SPECIFIED • • •••••••••• *** ••

j 0,"'" ·····83·········· *PH6 *
--*-*-*-*-*-*-*
:i=i£B~V~T~:I~§ :
.FOll 'lGT AND PGT* _

1 ocon1
****·c3*··***····
*PBFTVO ..
• -*-*-*-*-* -*-*
.. PROCESS •
.. OPTIMIZATION *
.. A-TEXT *

1 OD0111 ·····D3*········· *SE6000 ..
--*-*-*-*-*--*-*
• PROCESS ..
.. PROCEDURE ..
.. A-TEXT * •••••• ** •••••••••

CLOSE
··*G3**********
• * • TERftINATIOH ..
• ROUTINES •

• * • • ••••• ** ••• * ••••••

j
····93········· • EXIT TO PHASE •

• 00 • • • •••••••••••••••

Flowcharts 221

Licensed "aterial - Property of IB"

Chart OB. Phase 62: PH6

..13······**· * *
: PB6 :'---- i~fim~muo •
•••••••••••••••

j
·*03*****·· * * • .INITI1LIZE AllD ..
.. HANDLE !lAP ..
.. SOPPRESSIOR ..

* * •••••••••••••••••

!
.*. Cl • •••• eq.......... • •••• cs*** ••••••• • * *. • * IS PGI! YES -SORT SEG'l'BL BY PURCD PHASE .. *. SEGaRHTED .. *----)*PBIORITY HDf!BER*----)* CABD .. *. .* *...* 'r _ .. __ ... - ·····-r--

···03*·*····· * * .. INITIALIZE ..
.. COUHTERS AND ..
.. SWITCHES ..

* * •••••••••••••••••

1 .*. E3 • •••• E" ••••••••••
. * *. * *. YES .. PRINT HEADER .. *. LIST HODE .*->*1&0 ftEftORY SAP .. *. .* .. • *..*

•. *i~ ********r*******'

~G~r.~ !<: __________ -J

····1"3····***** *COftPUTE SIZE OF.
• TGT AND ..
.. DISPLACEftBNTS ..
• OF ITS FIELDS.. ..

* * •••••••••••••••••

PG~m 1 ··.··G)····_····· * * -COftPOTE LENGTHS.
• OF FIELDS I'M • * PGT. •
* * •••••••••••••••••

I SEE CHAR~
oCalA1

····B3······*** * * .EXIT TO PRPTWO •

* * ••• ~.*.**** •• **

222 section 3. Program Organization

Chart OC. Phase 62: PRFTWO

• •• *A , ••••• ***. * • .. PRPTWO • ·

1 · •••• B1·········· • • · . .. PRI.I!IB TABLES .. • • • •
BEADP2 1

••• *.Cl •• *·.···*. • • -READ OPT A-TEXT.
>* PROI! SYS003 ..
* 0 • • *** ••••••••••••••

1
• 0.

01 ••
. * -. • * *. YES

. EOF .---1 *. .* *. .* * .• * ••••
*KO .. * .*.. 1 .. F3 .. ,...

.. E1 .. • •••
* *-> ••••

END .*.
E1 ••

. * -.
YES .* *.

.. END OF BLOCK .. "
*.. •• *. .•

* .. * r . '. P1 • ••• *"2 ••••• ** ••• .* ,... *----IH5ER1'--· • * YES .. IBSERT UNIQUE .. *. VIRTUAL DEl' .*---->*VIRT IH LVIRTS-"
.... ... *OR CYIBIB TBLS .. *..* .. ,. * .. * •••••••••••••••••

*wo L ! >: *:~.:
. '.

· . ••••
Gl ,... *****G2***.*****. .. * *. • ,. .* *. YES *-----IHSEBT----* *. Vll REP .*->* BAKE ENTRY III .. *. .* .. VNPTY TABLE ,.
.. .. * ,... .." .**** •••••• *** •••

*wo L
1 >: *:~.:
. *.

• • ••••
B 1 ,... • •••• 62* •••• * ••• * .* *.. .----- ERT----·

•• LITERAL ". YES • IN URIQUE " *. DEFINITION ... ---->. L IN.
•• w* • L *
.. * •
· 'l'Ji~ ···**···'L···::::·

>* *
• E1 * · '. J1 •• • •••• J2 ••••• ** •• *

• * *w • * • * VIRTUAL *. YES .-----INSERT---. *. POINTER •• ---->* IHSERT III *
•• •• • PILTBL * *..* . * •. . * ••• * ** •• *** •••

'NO L L>* .* •• * >* •••••
• 14 • " E1 • . . . "

Licensed Material - Property of IBM

.* •• • •
• Pl • · --,

PUNCH t
····*P3.*.** •••• * • • • • .VIBTUILS. ESD '5. • • * ,
* •• ***.** •• * •••••

I

TXPNB 1
****·G3*******··* • •
• PUIICH TEXT • * CARDS FOR TGT •
• AIID PGT • • • ***.*****.* ••• **.

RELEASE 1
"'·***H3···*····*· * •
• conRL AND •
• CON DIS FILTBL • • • • • .*.*.**** •• **.**.

.* •• • •
• A'S " • •••• ·v .'. A4 *. ..*.*AS" •• *.* •••• .* *. • •

•• DISPLAY •• YES *-----IBSERT---. *. LITERAL .*---->. INSERT IH • *. .• • CORDIS TABLE • *... . • • •. * •••••••••••••••••

1·HO G ••••••
• E1 • • • •• * • . '. B'S •• *.**.BS •• * *** .. .* *. • •

•• •• YES .-----INSERT---*
... GRUBBF •• ---->. lUKE ENTRY IN "

". •• • GNATBL • *... • •
· '!.H~ ·······*·L···::::·

>. •
• E1 • · , •• * • . '. C4 ... • •••• CS

..* *. " • •• ... YES *-----INSEBT---.
•• PRunEP •• ---->" lUKE ENTRY IN •

•• •• • PRATBL * *... " " •. .• • •••••• *** ••••• *.
*NO I ! 4.····.
. ' .

" E1 • • • ••••
D4 ".. * •••• D5 •••••• * ••• .*.. • ..

..*GN PERPORII *. YES *----IlfSERT--• *. ELT .*->. lUKE ENTRY III * •. .* * BLVNTBL • ...* • •
"l'!i~ ···*···**L···::::*

>. •
• E1 • • • .* .. .*.

E4 •• **.**E5*.* •• **.** .*.. * • w. VN EOO •• YES .----IHSERT--*
• ••• PN/GH ELT.*.*->: JUK~H:=~li IN :

"... " * " **.,,* ••• ,,"*******
'NO L L>* ••• * * >. * ••• *

.. E1 • • E1 .. * • • • **.. .* ••

1 .*.
••••• J3*"' ••• ** •• '" .J4 * • · '" ... " WRITE HEftORY • .* 1.5 PGft •• 110
• !!lAP ON SYSLST .----> •. SEGMENTED •• 1 • .. *. .* .. • *w' w*
•••••••••• *.***.. .. •••

rES SEE CHART

.* •• *K4*** •• *.**. ODD 1A 1
• • ··**KS·*·*····· * COP.l.BINE SECT S "'. ..
:OF MigHiiisIHTO:---->:EXIT TO SE6000 :

* '" **.*.*** ••• *.* • •••• ".* ••• ** •••• *

Flowcharts 223

Licens-ed- Material - Property of IB!'!

Chart OD. Phase 62: SE6000 (Part 1 of 2)

•••• 1.1 ••••• **·. • •
• 5E6000 * • • •••••••••••••••

:·::·:->1<:---, ... -
GET EBDP'rX •••• *s 1 ••••• **.*. • •••• B •••••••••• • * -lUKE AL REG * •••• B3* ••••••••

• BEAD PBOCEDURE *EOP • AS BElli'S. • EXIT TO PHISE • L ilia-TEXT ELE!lElfT *------->* REG *-->* 00 •
• PRO!! SYSOOl • • A I!ERTS.. • • •• • • •••••••••••••••...•...•.........

:O~l: 1 _
.. • C2

..... OPPRO .*. Cl *. ca • •••• C3.......... • C4 ...•.•...• .• *. .. -2-BYTE *.. *----B 11---111" .. • * OpeDD! YES .* BBAlfCB YES .. PH PM" .. ADD" TO ..
.... BLEIlBR'f ... >*. XIfSTROCT.IOB .*------->* lIG *->* ACCUI!CTB *->*" .. LOAD catJRTEB .. *..- *..* • lOB' * •. * * .. * •••••••• *.......

".0 r

...

.'. D2 *. • •••• D3.......... . ..•. D"• •• *-----5 A VE------.. •
•• LOAD ' •• YES • SAVE. *' lDD" TO •

•• IRSTBDCTIOR •• ->* IRS'rBDC'rIOH *------->. ACCD.!ICTB •
•• •• .OIlTIL NEXT ELi' * • COOlfTEB •
...... • IS BEID.. •

'·,H6 '···'·"·'·L"'·"
IP BEXT ELE~EIIT r
n~tfmClb~R~~n

L ** •• >. •
• Bl • • • ••••

POR THB SABE REGr
LOAD USTRUCTrOR

P1 •• .* ••• P2 ••••••••••
•• •• YES .SET APPROPRIATE. * .. co ELEIIER'! .*->. co SWITCH • •. .• * • ...* • • *. .• • •••••••••••• * •••

·BO L 1 >: .:~. : : .::. :
• • • • ---,

.*. .•. .*. ...
G1 •• G2 •• G3 •• • •••• G *.. .*.. .• EBTRY •• • •

• :"'DEFilg¥Olf .:~>.:.AcCRB~~B < .:~>.:.~= ~=J:&I~I·:.~>: ;:~SD~iK 51 : *. .• •. .• •. TABLE •• .GNFWDB1"B TABLE. *... •..• *... • • .. ~ J .. , ·--l-·-
H2 •• • •••• 0" ••••••••••

•••• COBCTB • .DEPLD11 '" .* BRUY IR •• RO .U & PRIIIE* .~-*-*-*-*-.-*
•• PRPWDBrB OR •• -------;>. orB lDD.->. *

.. :~::D~:~* .. J" :; ***~::.~::: :.:::~=::.~::!~.:
·YES L 1 >:.:~.:

• • •••• . ". J2 •• .• * •
• ' ACCU!CTR '. 10

•• WITHOUT ADDED. * .. LOAD < ••
'.4095 .' * ... * ·YES

G."'·.
• GLI • · .. _.* .*. ."'. Xl.. X2 *. • •••• tt3 ••••••••••

. * *. .* "'. • •
: BE;~~=CE .:*~.:* sa~~diOOlf .:~>:PROg~~~II¥gRcO :

224

*. ... *. ... • • ... ~ •. ... * ... * •••••••••••••••••
*BO ·.0 L

1-.>. • >. • ! I •••• • •••

• C2 • • B1 • ••••• • • • • *02 • •••• • •••
• A1· •• •

section 3. Program organization

Chart OD • Phase 62:

• * •••
*02 ..
.. A 1 • . "

" J .".

SE6000 (Part 2 of 2)

A 1 • •••• A2 •••• ** ••••
.. * *. .. *---- IF HOT PEBftAREHTLY .. * ADDRESS YES *-----R64aQ-----* ASSIGNED TO A

.... REFEBENCE .. *---->*PBOCESS ADDRESS. REGISTER BUILD
.... .." .. REFERENCE" DRPTBL ABO DRLPTBL *..* POR REGISTER

.... .." ••••••••••••••••• OPTIlUZATIOH
"NO L 1 >:01'* ..

.. 81 ..

* *
. *.

B 1 B2 • ••• *83 ••• **.*** •
• * *. ..* *.. .. TURN opp C004 ..

• * *. YES .. *C004 SWITCH ... YES .. SWITCH- ENTER ..
.VN REFERENCE .---->*. ON .*----)* CORRENT HL IN .~** .. BLVNTBL .. *..* *..* * ... * * .. * ••••••••••••••••••••••

• HO *NO *01 ..

L>:~~** *.81·
.. B1

" * ••••

. *. D 1 • •• **02* •••••••••
• * *. * EBCDIC PH YES .. ADD 5 TO ..

.... GENERATOR .. *----)* ACCUl'fCTR h *. .* .. * *....*
.... .:* •••••••••••••••••••• *.

*NO *01 * ! · .:l"
.... .* ...

E1 *. E2 •• * •• **E3* •• ****.*.
•••• .*PERftAK-*. • *

.*GLOBAL TBL •• YES .* EHTLY •• HO * ADD 4 TO •
•• OTHER AREA .*---->*. ADDRESSABLE .*->* ACCOftCTR *~

. REF . *. .* * * *... ...* • • * .. * * •. * .* ••••••• ** •••• **.**.*
*lfO *YES *01 •

1 L .*.* ... B1·
>·01 • * •

• B1 *' • . .
**** .*.

F1 *.. *****F2********** .* *. • •
• * * .. YES *----ftACRO-----*

.I'tACRO ELEfi!ENT.---->* PROCESS 8ACRO *~
*.. •• • ELEKEHTS ..
.. * ..

. . **********************
"0 ~1'

L>:~1* * * *B1·
• B1 * * * •

Licensed Material - Property of IBM

FioYcharts 225

Licensed Material - Property of IB~

Chart PA. Phase 63 (ILACBL63) Overall Logic

226 section 3.

****12***···*** I * *----. IP OP~ IS SPECIPIED
: ILICBL63: '---------

••• ***

I
.****B2****** ••• *
* * .. IHITXALIZE ..
.. TABLE BUPPERS ..
* •
• * •••••••••••••••••

GET 1 EOP .•• **C2.......... . ..•• C3.** .••.••• ·.··C4···.····· -GET PRoe A TEXT.BOF .RELEASE 'fABLES,. -RETURN TO PHASE. >: ELEtiElIIT: '!-=---»: ETC. :---->: 00 :
••••••••••••••••• • ••••••••••••••••

1
••• IUCRO

D2 *. • •••• 03* ••••••••• . * *.. * YES .. BRllCH TO ..
.IS IT A flACBO.---->* APPROPR'IATE • *. .* .BACHO ABAloYZIR .. *..* * .. * ••••••••••••••••• r .*. ponua

E2 *. • •••• E3 •••••••••• . * *..
• *IS IT .H Qp*. rES .. BRAIICD TO .. *. CODE .*---->*APPROPRIATE OP *-> *. .* .. CODE AlfI.LYZ)'R III* * •• * •••••••••••• ** ••• r .*. CO 1'2 •• • •••• P3 ••••••••••

.. * *. • •
•• IS rT I •• YES • BRIBeR TO •

•• C007 ELEnEB'! •• ~ ... APPROPRIaTE *->
•• C007 ARALYZER • *... • • •. .• • •• * ••••••••••••• r

••••• G2· ••• • •• ··*
* * • BRARCH TO *
• APPROPRrATE •
• ANALYZER •
* * •••••••••••••••••

1< SEE CHARTS

•• * •• H2 ••• *t~;ri.
* * .OTHER PROCEDURE.

A-TEXT •
• .llf.lLYZERS •
* * •••••••••••• * ••••

Progr~m organization

IIOTE: VARIODS J.1IILYZERS
IDD ~O ACBCTB UD LOCCTR
.IBD PRODUCE PROCEDURE
11-TEI~

Chart PB. Phase 63:

•

Licensed Material - Property of IBM

BRANCH

****12**** •• *.* ElfTER PROB
: BRlMCH! !----I~gA~~M~~LfiRAHCB
• .. :IHSTROCTI:OIfS ** •••••••••••••

* * .. 85 • 1
* *

.*. **** 1 SEE CHAR~
82 *. • •••• 03.......... • ••• *Bq •• ***..... PAD 1e2 .* *. • • .ADD 2 TO AC!lCTR* •••• 05 ••••••••• . * P1f/GH ... NO .. CALL PHASE 00 .. .ABD LOCCTR POR

•• HU!lOER SAYED .*----)*'1'0 WRITE BRAHCU*----)* THIS *----)* RETURR TO GET • *. .* .. IHSTBUCTIOH " • IHSTRUCTIOR *.. • *..* • •••••••••••••••
* ... * * ••• ********.**** *****.** •••••••••

rs

.*. C2 *. • •••••••••
.. "BHAReH *. ATE * TO YES -IRS rOB TO .. *. DIl"PBRERT .*->* HEV.

.... PRce .. " .PRO E BLOCK-
-.BLOCK.- * I EG 11 • l ---1----

****·D2·········· -CHARGE DR-TIPB ..
.. BRARCH' ..
*IRS'l'BOCTIOH TO .. * IX-TYPE ..
* * ••• * •••••••••••••

1 ·····E2·········· • CALL E 00 •
• TOV BEIi.

* * .1:R ioa.
* * •••••••••••••••••

1
" ••• F2 ••••• ** •••
• ADD " TO .lCBCTR.
*IBD LOCCU POB *
• THiS •
• rRSTBUCTIOB' •
* •

1 ·····G2·.··· ... ·· * CALL PHASE 00 -
-TO VRXTE co OR •
• CC BL'l VI:TB •
: P1I/GR BOBBER :

L ••••
>* * • B5 •

* * ****

Flowcharts 227

Licensed Material - Property of IBM

Chart PC. Phase 63: GNDEF

****11.2*.*.***** ENTER VIA *' • BRANCH TABLE * GNDEF *'
* * ***************

I
···**82**********
• * "'ENTER DISPL IN *
"'PROCEDURE BLOCK'"
'" INTO GlILBDTBL *
• * ************* ••••

1
·*·**c2*****··*** * * '" CALL PHASE 00 '"
'" TO WRITE GN *
'" DEFINITION '"
* * ***.***** •••• *.*.

1 .*. D2 *. *****03********* • .. * "'.. *----RLDSORT----*

: p~~ ~~~SG~H *:*~>:ft~~ER!fiDT~~rly :
. . '" FOB TRIS GH '"
.. '" '" "'.. .* .***** ••••••• **** r .*. E2 *. • •• **E3********* •

.. '" "'.. *----RLDSORT----*
.. '" ADDRESS "'.. YES -,U.KE HLD ENTRY ... *. CONSTANT .*---->* III BLDTBL FOB '" *. .* '" THIS GN '"
.. '" '"

·l:~ ********j******** * ****.
'" .,5 '" • * •• *. l SEE CHAnT

F2 *. .****1'3*.*******. **.**1'4*.******** PA01C2
.. '" "'.. '" '" '" '" ****1'5**··****· .* IS C2 *. YES '" TURN OFP C2 • • SAVE CURRENT •• •

~ SWITCH ON ~.----> SWITCH *---->. BLOCK NUltBER *---->* EXIT TO GET *
~ . * • A * *. •
.... • * * * *********.****.***.*******.*.** ***.* •••• ***.**** r .*.

G2 * . .. * SAPIE * • . * PROCEDURE "'.. YES
*.BLOCK AS LAST .. *~

oo GN oo
* .• * ••• *

·NO • •

.* •• 1 : 1'5 :

. '.
H2 * . . * •.

• *LAST BRANCH... NO
* ... :ONDITIONA:._*---------------------------J

~ .
* ... '" rs

****·J2**·***····
* * .ZERO PROCEDURE *'
• BLOCK *'
* *
* * * ••••••• *****.*.*

L * •••
>* * * 1'5 •
* * * •••

228 Section 3. Progr~m Organization

..

Licensed Material - Property of IBM

Chart PD. Phase 63: PNDEF

••• *A2......... ENTER VIA * *---- BRARCD TABLE
.. PHDBP ..
• * •••••••••••••••

J ····*02·········· * * * ENTER DISP IN ..
• PROCEDURE BLOCX­
• FROK PHLBDTBt •

* * •••••••••••••••••

1 **··.c2*········. * * .. CALL PHASE 00 •
.. TO WRITE PH •
.. DEFINITION ..

* * ••••••••••••• ** ••

1 .'.
D2 * .

• 0: * ..
.. -PH HAS BEEN •• NO

.... BEFERENCED -*-1 *. ..* *. .* * .. * _ •••
·YES .. •

_ ... 1 : K4 :

. '. E2 *. • •••• E3 ••••••• **. * •••• E4.......... • •••• E5 ••• * ••••••
. * *. *' • * HEW *. YES" .. *----RLDSOBT----* .. REPLACE OLD •

.... PROCEDURE .*-->*ZEBO OUT lCftC'ra*---->* BtD FOR *---->*PROCBDURE BLOCK*' *". BLOCK .* *' • .PROCEDURE BLOCK. * VITH HEW .. *..* • •• * ••••••••••••••••• *................ r I .•.
F2 *'.. ..* .. P3 •••••••••• . *.. • • . * ADDRESS •• YES .----RLDSORT----*

•• COBSTINT .*-->. !lAKE PN RLD * .oo .. .ENTRY I.H RLDTBL. *.... • • .. I:~ ·**·***T·*****·
.•.

G2 •• *.***G3.*.** •• *** .* *. .. •
•• VB EQ PH ... YES .----RLDSORT----. *. FOR TH:IS PH .. *-->. lUKE VII' RLD •
•• •• ."TRY IN RLDTBL*

*·I:~ *·**·**T···· .. *
.•.

82 *. • •• **03**** •• **** .• *. * • .• *. YES * TURR OPP C2 •
.C2 SWITCH OB .->. SIUTCH • *. .• .. • •••• *' .. ·oo .* *.*****.* ••••••••

·XO L
1 >: .::.:

* •
*** • . *.

J2 *. oo· •.
•• SAftE *. YES

•• PROCEDURE "*-1 *. BLOCK .* *. . • •• • * ••••
·BO • ..

* •••• .. 1 : K4 : • •••• •

: ,::.:---, •••• : .::**-1*
v SEE CDART

••••• 11**.***.... K2 •• • •• *.K3.***...... PA01C2 ····K"······*·· .ZERO PROCBDURB *' YBS •• LASOl DRilleD •• BO • SAVE CURRENT •• •
• BLOCK *<.-*. COllDITIORAL .*->* BLOCK HUBBER *->. EXIT TO GET • *' * •. .• • •• • .. • •..• • • *.*.** •• ** •• *.* ***********......* •••••••••••••••••

L •• *. • >. •
• K4 •
* • * •••

Flowcharts 229

Licensed Material - Property of IBM

Chart PE. Phase 63: ADREF and ADINCR

****A2********* ERTER VIA
'" '" BRANCH TABLE * ADREF '"
* *

1
~*. ..*.. ..* ..

B2 "'.. 83 "'.. B4 "'.. ** •• *85******** ••
. * *. .* *. .* *.. * '" .* ADDRESS * .. NO .* * .. YES .* PERl!ARERT *. YES '" CALL PHISE 00 '"

.. ALREADY .---->*. BI. OR BLL .*---->*.RBG ASSI~NED .*---->*TO WRITE ELT AS.
"' .. LOADED .* *. ..* *. .. '" * DO ELT * *..* *...* *..* '" '"

"'.. ..* "'.. .* "'.. .* .****************
~ ~ ~ L
1 1 ~BL o~ >:*:;*:

- SBS '" '" ** ••
*****C2********** *****c3**.*******
'" CALL PHASE 00 '" '" SET PLAG TO *
... TO WRITE '" '" INDICATE LOAD '" * INSTRUCTION * "'INTO R14 OR R1S*<
.WITHOUT CHANGE '" * FOR 58 '"

'" '" '" '" ***************** *****************

: *::*: I 1 '" *->

~fff 19~ART *****D3**********
****D2********* '" '"

'" '" '" CALL PHASE 00 '"
'" RETURR TO GET - • TO WRITE • * •• ELEMENT *
****.*.**.***** • •

.**-*.*.***.*****

1
·****E3********** .ADD 4 TO ACftCTR •
• AND LOCCTR FOR.
* LOAD * * INSTROCTION •
* * •• *.*.**.* •• *.*.*

L •• *. >* * * 02 •
* * •• **

.***P2**-•• **** ENTER VIA * *---- BRANCH TABLE * ADTHCR *
* * *****.*********

I
****.G2**********
* * * ADD INCREftENT • * TO VALOE IN •
* DIPSAVE •
* *

1
.*.

82 *. *****H3**********
.* *.. * * .*DISPSAVE > *. NO * ADD BYTE OF *

*. 4095 .. *---->* ZEROS *
.. .. * *
... * * -'r -----r-----

*****J2***.****** ****.J3**********
* •• *
.ADD BYTE ACMCTR* * •
·POR EACH UNIT >*J>* ZERO DISPSAVE * * 4095 * * *
* *. . ****************. .***.**** •• ******

1 1 SEE CHART
*****K2********.* .*.**K3********** PAO lc2
* • * * "-***K4****·**.*
ADD q TO AClICTR * CALL PHASE 00 * * *
*POR EACH UNIT >. • TO WRITE *--->* RETURN TO GET. * 4095 • • ELEMENT * * •
* *. • *.**** •••• *.** •
•• *.*.***.******* .******.*********

230 Section 3. Program Organization

Licensed Material - Property of IBM

Chart PF. Phase 63: C1REF, PNREF, and GNREF

•• **11 ••• *****. BBTER 'VIA
: C1KE? ::----.~BB!!:A~B~C::H~T~AB~L~B~_
• • .. *._

1 .•.
B 1 •• ••••• • •••••• *.* .***.83 •••••••••• . * PBoe *. • ATE LOAD. * • . * BLOCK 01' •• HO *I CTIOB POR* .ADD q TO ACl'ICTR*

•• REP SAftB IS .. *->* BOCIDUD! *---->* AND LOCCTR •
•• CORRERT .* • LOCK.. • *..* • •• • * ... - ••••••••••••••••• • •••••••••••••••• rs I

..... e1·········· • •
• GEIIER!T! LA •
*nSTBOCTIOB FDa.
• REPERENCE • • • •••••••••••••••••

1 ·····0·········· -GEBER CO OR •
• C POR.
• oaE·
• XT· • •

1 ·····B1·········· • • .ADD " TO ACIlCTB*
• ABD LOCCTR • · . • • •••••••••••••••••

j SEE CBART
PA01C2

····1'1***····*· • • .. RETORR TO GET * • • •••••••••••••••

*.**G 1 ••••• **.. BRTER FROII GET
• .*-----~VI~A~B!BA~R~C~H~T~A!BL:!E
• GRREF ! · .. * •• * ••••• ** ••••

1
••• PPOU1

81 *. .****H2.* •••••••• .. *.. .C1REF •
• • COO 1 SWITCH... YES *-*-*-*--*-*--*-*-*

... ow ... ---->* PROCESS FOR •
.... •• .PROCEDURE BLOCK. ...*** ••• ***** •••••• r ••• ·."1··· ••• •• •• • • • • • SAVE ZB SAYE'lBL* • • • • •••••••••••••••• *

j< SEE CHAB~
PI01C2 •• *.It 1 ••••••• *.

• RETURK TO GET • • • ••••• ** ••••• * ••

•••• E3 •••••• *.. ERTER PRon
• .----IGBT 'In BUNCH
• PRRHF. TABLE

• ••• * ••••• *..... .. '-------
1 .•.

F3 •• • •••• pq.......... ..* .. "5 •••••••••• . *.. • •• CALL PHASE 00 • .* ADDRESS ... YES .ADD 2 TO ACflCTR. • TO WRITE *
•• COHSTANT ... ---->* ARD LOCCTR .----). ELBftEHT OR ..

*.. •• • •• SYS002 • •• •• • •••••••••• * •• *** •••••••••••• * ••••

• *-) ••••
l*NO :.:;.: j

.... SEE CHART G3 •••• G4*...... ••• PAO 1C2
... ... • • ·**·GS···****·· .*C001 SWITCH ... HO .. SAVE' PH IH." •

•• OB •• ---->. SAVETBL *---->. RETURB TO GET .. *. .• • •• • * .. * •••• * •••••• * •••••
·YES

1 PPOU1 ••••• H3 ••••••• **.
*C1REP *
--*-*--*-*-*-*-*
.. PROCESS "OR -
.PROCEDURE BLOCK* • • ..•............•.

L •••• >. •
• GS • . ..
-* ••

Flowcharts 231

Licensed Material - property of IBM

Chart QA. Phase 64 (ILACBL64) Overall Logic

232

* ••• 11.......... PfllTER PROI!
.. .. PHASE 00
: rLACBL64 :----I~~EmIiE
•••••••••••••••

I ••• ··Bl·········"" • • *IN.ITIALIZATIOB ..
.. OF OPTIONS, ..
.. SWITCHES .. • • ••••••• *** •••••••

1 NEOlA1 ·····C1 .•••.. ···· .PDATEX • THIS ROUTINE PROCESSES DATA A-TEXT
:--;~~t"-!----lm~uT~FI~Hm ~aB~ol~Y THAT
.. A-TEXT .. • • •••••••••••••••••

1 9D0111 **···D1·········· *SE6000 ..
--*-*-*-*--"-*-*
: PROK~~M'OC :----1

OCBDURE A1-TEXT
THAT ROUTINE SE6000
CEDURE A-TEXT
B A1-TEXT PROCESSING • • ** ••• **.***** ••••

1 ·····E1·········· .. GENERATE CODE ..
• POR IHIT2fi •
: IHIiif~N :
* *

1 ••••• "1 ••••••• * •• • • .. TERIIIBATIOIl ..
.. ROUTINES ..
* •
* * •••••••• *** ••••••

I ····G1········· • EXIT TO PHASE ..
.. 00 ..
* • •••••••••••••••

Section 3. Program Organization

Chart QB. Phase 64:

*·**11······*·· • • ... ADREY ... · . •••••••• ** •••••

j
·*·**81·········· • •
>I< SAVE CURRENT *
... PRINT LINE ...

• * • * •••••••••• **** •••

1
·****cl*******·**
.. GENERATE LOAD •
*IHTO R14 OR 815.
.. OF 8t BLL SSL * .. sas • · . •• ** ••• *.*.****.*

1
••• •• 01**** ••••••
'-PUT 814 OR R15 ..
.. IN BASE PIELD •
.. ABO '"
*DISPLACEftENT IN.
• DISP FIELD • •• ***.***.** •••••

1 '" m"
.**.El ••• *S!~~~l

.. RETURN TO •

.. nAINLIHE .. · . •••••••• *** ••• *

-.*-.Pl· •••• _ •• • · . .. RC4 * · . ** •• ***.* ••• ***

j
** ••• G 1***** **.* *
-FIND DISPLACE- ..
.. KENT OP P80- ..
.. CEDURE BLOCK •
.. CELL IN PGT • · . ******* •• ** •• ** ••

1
***·*e1·.** •• **·.
.. GENERATE BASE *
.. AND DISPLACE- *
.. PlEHT BLOCK *
.. NOftBEB .. · . *.*.****.*.*** •••

j SEE CHART
QA01Dt

•• **Jl*** •• ***.
.. RETURN TO *
.. HAINLINE * · . •• *************

ADREF, RC4, RCSC, and RD001

****A3*******··
• * • RC8C • · . • ************* •

1
·*B3*·***·* · . • FILL IN PRINT * * SytlBOLICS *
* * • • *****************

1
*****C3*·*··***·· * GET DISPLACE- *
* tlEST OPP R11 *
• FROtl LBOTBL • * FILL nISPL IN * * PRINT AREA •
*******.*********

j SEE CHART
QAO tDt

****03********* * RETURN TO *
* HAINLINE *
* * ***************

*··*F3*·******* · . * R0001 *
• * ***************

j
*****G3*********·
• PILL IN BASE * * AND DISPLACE- '" * tlEIlT ODTPUT *
'" AREA * · . *.***************

1 SEE CHART
QAO 1n1

****H3********* * BETURN TO * * lIAINLINE * · . ***************

Licensed Material - Property of IBM

Flowcharts 233

Licensed Material - Property of IBn

Chart RA. Phase 65 (ILACBL65) Overall Logic

234 Section 3.

····12········· · .-------- PROR
OOIP

• ILACBL65 • • • •••••••••••••••

".. j ·**··B2·········· .. PHI ..
*ZBJ:TIA ..
.. PBI.!lE ..
"'IWIT D s* • • •••••••••••••••••

L STITE
• IS
IED

1 ~ . ..•.. C2.......... C3 * .
.. DETER op- .. .* "'.
TIORS FECT- YES
.. SII!ID! 'l'E *-------)*.. PLOW CRLY
.. p .. *. ..* *...* ••••••••••••••••• * ... * •••• ·.0 I : 1"3 :

. • •• *
m~2 !r------------g- 0-P-2------• .J ••

••••• 0 •••••••••• D3 *.. • •••• 04
.. RD D" .* *. .SORT SEGIBDX BY.
• BU ES .. .* SY!lD!lP 110 .. ASCBRDIlIG ..
"':rOR AID *------->*. OPTI.01floR .*-------)* parORI'lY AllD ..

---* EFFECT .. " .. pUlleD 1:111'0* -OBJECT BODULES .. ••••••••••••••• ** * .. *

WRITE CARDIHDX

~~gm~XTaBLES
OB SYS006

rs

••••• •••••••••• 0112-----·
PO •

*----• ----.p TBL'"
UG •
005 •
•••••

• ·PI •••••••••

: *;;*: 1
• •••• *-> <:---------------------'

·····P3·········· *----PRCBs¥----·
.PURCH IRFO POR •
• TGT PURCD ElID •
• CIBD * • • **.*.* ••••••• ** ••

1 ...
G3 •• * PROGRAK ...

•••• SEGftER~gD •• -------->~~SE:G

*.. ...
* ... * r .•.

B3 *. *****BIJ ••• * •• * •• * .*WRITE PHASE A1ID.
... SOlT rH *. YES • IHCl.UDE CIBD *

•• PROGRIIt .*-------). POR SORT OR • •. ..* • SYSI.HK • •..• • * • . .* •••••• * ••• * ••••••
·RO !
1<------' ·····J3·········· • • • • • REt.EISE TIBI.ES • • • • • • * •••••••••••••••

j
*··*K3***··**·*

• EXIT TO PHASE •
• 00 • • • •••••••••••••••

Program Organization

Licensed Material - Property of IBM

Chart RB. Phase 65: Debug-text Element Processors (TENPROC, TWENPROC, GTEQ10K)

****1. 1......... EHTER PROH GEIXP2
" • VIA BRAReD TABLE * ~BHPROC *---- SBB CHART RA01D2
* * •••••••••••••••

1 .*. 81 *. • ••• *82 •••••••••• .* *. ., .,
... *. YES ., PROCESS POB *

. VEBB .----)* VEBB WOllBER •
.. . * ., *..* • * 'J: "'-r-'"

••••• Cl •••••• ••••
• CALC •
., REL1TI B .,
*OF CAR I ••
., PRAG .,

* * •••••••••••••••••

1 .*. RB01BS
D1 *. • •••• n2 ••••• *** •• . * *. *GTEQ10K •

• "REL ADDO > ".. YES *-*--*-*-*-*--*-*-* *.. 64K BITES .*----)* B *. .* • *..* • PBI. l -'--1
·····E1·········· *----TXPRCB---*
• ENTER PBE'Yl: aUs •
• PROCTIB ENTRY •
" OB PILE •
* *

1 .*. P1 *.. • •••• P2
.* *. • " .* CBDXBXSW ... YES .SUILD CARDl»DX ,.

. SWITCH OR .----)* EITRY .,
. . • • *..* ., • ··t -'1-'-

••••• G1 ••••••••••

* * '" !Ion RELATI1'E •
• ADDRESS IlI'l'O •
• PROCTAB ABEl. ., * • •••••••••••••••••

1 .*.
H1 * . . * •.

•• DIsesw •• NO
•• SWITCH DB ••

•. .* •.. *

rs

·····Jl·········· * * .TURB OFF DISCSW •
• SWITCH TUBB OB •
*CDDl:IfXSW SWITCH.

* * •••• * •• * •••••• **.

j< SEl! CHART
8A01D2 ····K1 •. ···•··· .BETUDH TO GftP2.

.. RTHE •

* * •••••••••••••••

• ••• 13......... ENTER PROH
• *---- GBTP2 VIA
• TWEHPROC. BRANCH TABLE
• • SEE CHADT ·······r·_· .. ,,"
·····B3··········
• * .CALCULATE DD!I!lY.
• ADDR WITHIN •
• PRAG!lEB'r •

* * •••••••••••••••••

1 .*. RB01BS e3 •. ..* .. c4.......... . •.•• cs •.•.••••••
. •. * DD!UIY HO :~~~---= : RELATIVE :

•• ADDRESS < 641\.*---->* ElIO PRAGKEIIT .---->.ADDRESS EQUALS.
•• BYTES •• • BEGIli HEW. • DmUIY ADDRESS •
•••• • PR.lGftBHT·· • ··t -....... - -··-r .. ·· ..

.*··.03·.*·.···.· .----T -----.
*EIITBH ODS •
• PRoe THY.
*011 PI 05 •

* * •• _ •• * ••••••• * •••

1 RB01BS .*· .. B3.·· •• ·**·*
:G~B~1~K* • *---!'
*ElIO SEGIlElIT DE-.
.GIB BEl SEGIlElIT.
• & PDAGBEBT •

1 ·····P3·········* * * • SET PRAGIIO •
• COURTER TO ZERO.

* * * * ••••••••••••••• **

j SEE CHART
RA01D2

• ••• G3·········

* * .RETORH TO GE1'!'2.

* *

.. ".ES··"······ * * : GTEQ10! : ····-r-
·····FS·········· * * .POT' DUIIBY :ealTHY •
• IHTO PROCT AD •
• TABLE •
* * •••••••••••••••••

j
**··GS···*·····

• RETUD:R TO •
• CALLER •
* * **.*.** •••••• **

Flowcharts 235

Licensed Material - Property of IB!

Chart SA. Phase 61 (ILACBL61) Overall Logic (Part 1 of 3)

•••• A 1......... BlITBR "ROft

: ILACBL61 :----lfJAiMOOB
• * SXRE" :IS *.............. SPECIPI:ED

1
·····01*····*····
o * * * *:tB:IUALJ:ZlT:tOlf * * 0

• * •••••••••••••••••

1 ·····C1·········· *----GET ALL----* CHURED TO
DATA BEC

•••• • •
• 13 • ••••• *-1
••••• • ••••••••• *---- CH----*
... DATI ...
... BY'"
... BI EABCH ... • •
:*:;*: 1
• *-> •••• . ..

B3 *. • •••• 114 ••••••••••
.. * *. * WILL BEF YES ... INSERT RU III ... *. 'PIT 1M DATI .*---->* DATA RECOID ...

*.. BEC .. *
... ... *'
· ·l·B~ .. ·······L··*::::·

>. •
... 81 ...
• • •••• ...

C3 *. • •••• C4 ••••••••• .* *.. ... •
.-BEF PIT IH *. YES *' IIfSEBT REF IN ... • GET !lAXI!lOft •

.AftOUlIT OP !lAXH •
'" STORAGE •

______ ..J ____ -** .~~siEg~:gFL~~ •• ---->: LI.SiEgXi~PLOW :
* * ••••••• * •• * ••••••

1 . *.
D1 •• .• *.

... •• YES
... SXREP BI.T OR .. ~ *. .• •. .• ***** .NO .02 •
••• * 1 * 11. *. • •

• E1 .. •_>
••• *
•• *B 1 •••••• **.*. ••••• • •••••••••

*'TORlI T TO *'
'" .EO!' * IIID ALL.

READ DEY-TEXT ---->* DEI' HAS"

-:*-"r--J' ~::*I~~~:
71 ••

. * HAftB * ..
.. '" PROCESSED "'.. YES

*.IN LAST CYCLE ••
.. .. *. .* * .. * r .*. Gl *.. .** •• G2 ••••••••••
. * *. *' .. • * 'IS BAlli *. HO .PORtlAT DATA BEC •

•• STORAGE PULL .*->* FOR HAftE *~
. . '" '" *...* .. '" * .. * •••••• ** •••••••••••••

·YES '" '" · '" '" '" '" 81 '" '" 82 .. • •••
'" *-> .. '"

... • • * .. * •••••••••••••••••
*.0 L
1 >: .:~.:

• • ••••
• 0 •

n3 *. • •••• 04 •••••••••• .* *---5 ITRTlf--*
.. *15 OVERFLOW*'.. NO • HIGHEST *'

.. SPACE .---->* ORDER •
•• AVAILABLE... • RECORD '" *..* -r ----r---

·····£3·········· • ADD HEW O'l'EI- ...
-PLOW RECODD TO ...
... CHAIN ABD *'
• INSERT BEF •
• 0 ••••••••••••••••• L ••••

>0 0
... H1 ...
• 0 ••••

••• * 1 E1 --,
t .*. .*. .* . •.. 01........... • .. 02........... 83 *'.. 811 *. 85

PRIWT BI!!B ."'VAS rf *. ..* *.. ..* *.
.. '" "'DEFINING CARD '" .. '" LAST RAilE *. YES .. * HAV! ALL *. YES .* WAS DATA *. 110

_ .. READ REF-TEXT. ---->.lfU!! :~RL~'FS O! ---->*.l~oc~i~~R r~ •. *->* ~=b~E~~I~ *-> BBG SPLIT •• _

• * •••••••• *.* •.. •• ** •• * ••• ** •• * •

1
J1 •• J2 ••

•••• .*fIATCB- ••
•• ... HO ... ING PROC ... HO •. DATA BAftE REP.*-> •• BA!!E BEING .~
•• •• • .PROCESSED.* ...* *...* *. .•• • •••

l*YES l*YBS : U1 : •• *.
K1 .. ·.... • •••• K2*.* •• *.*" * DATA RAftE *. HO * LOCATE DATI • *. BEING .*~ • RECORD VIA •

*.PROCESSED.. .DI.RECT LOOK UP • *... • ... •. .• •••• ** •••••••••••••••
·YES *-... I
L> •••• *: 81 : G. ****.

• 13 ••••• • B3 •
• • • • .*..

.. *..* *..* * .• * * •. * * .• * r r rs

*** •• .13.......... •14.......... *J5 •......... '" '" . * POIBT TO BEXT • • SlY! HIGHEST • .CLOSB DE:P-TEXT ..
• DATA REC. ... NIHE JUST • <----. PXLE •
• PROCESSED·· • • •• •• • .*-.**-.* ••• ** •••• * •• ** *....... • ...•.. ** ••• ** •••

L>: *:;*: 1
• • • *.*

••••• !I:.fI"'
o *
.CLOSE REl"-TEXT •
.. 'PILE RESET •
• SWITCHES ...
o 0 ••• *

I ••••
L:.* *

• E1 •
* * • •••

•••• 1\5 •••••••••
.RETURR TO PHASE* * 00 • * 0 • •••••• * •••••••

236 Section 3. Program Organization

Licensed Material - Property of IR~

Chart SA. Phase 61 (ILACBL61) Overall Logic (Part 2 of 3)

• * ••
• * • A1 *
• * ~

* ••• • * * 13 ..

*.****-1 ···1.1··········· .•••.. 2.......... *** ••• 3.......... . ..•.• 4 .••••• ***. • •••• '5*
.. TORH or.. .----CBAIHTRR---. .---YHI ---* *---COIlPLETE----*

> "all» DEP-TEH .~>: In~~ : ____ >:PR8~AB~T~AiA~s :---->:~~i igr=-):SEif~ftA~Ei~~EST:
[.. PRO D" .. IN Ase & DISC .. "'TOUB SORT- .. OHPROCESSED ..

.. SOORCE ORDER 11 AilES •.................
:~!l: J 1

B1 *. • •••• BS •••••••••• . * VAS *----EXHIDST---*
.. *BI.IIE BBIlfG YES .. BEIIOVE BAilES ..

.. • PROCESSED III .*+ .. PROft TREE ..
_.PREVIOUS .* .. STRUCTURE XU ..

.. • CYCLE.*' .. ALPHA ORnER .. * ... * •••• • ••••••••••••••••
*.0 • .. 1 1 : A1 :

•• * •

. *. C1 •• • •••• cS ••••••••••
•• •• ·--BOILDBTB-·

•• IS !lIIN •• YES • BOILD SEIBCH •
•• STOBAGE •• + .BEC TABLES 'POR ..

•• 'PI'LLED •• • DATA BECS • *. .• •••• • ••••••••••••••••
·BO • .. 1 1 : .13 : .***.. • •••••

•••• • D2 • • DS ..
.. • • *-> --,

.... t
D1 *. .* ••• D2 ••••••••• * D3 •• ..*D5 •••••••••••

...... • * .* * •
•• IS DBI' 'POB •• IES *l'ORBA~ DATA REC. •• IS THIS *. YES * * *. DATA BAilE' .. *-->*' :FOB DATa ll'AIIE .---->* .. 'PIRST lIAIIE 01' .. *+ *. .* • • ... A PAIR •• *... • • ...*

BEID REF-TEXT ----,

* * t * ... * ••••••••••••••••• •. •• • •••

1··0 1*BO : A1 :

** ••
.•.

·*····**T***** ::!i:
.*. E1 *. .****E2** ••• *.... • •••• E3* •• * •• * •••

•• IS THIS*.. • ---CHAIBRTB--•• •

• :. PR&~g6RE *:~>:cg:~= ~l~~ ~IIE: :cO~il~¥AlI=~S; : *. HA!lE.. .. ASC & DEse" • CORTBOL RECS • *. ... * SOOBCE ORDER •• •

*·l·i~ ········1·** .. ***· ·***·*·T:::::::
• 11 .. • • * •••

••••• !' ,.......... ·····P2··········
• • *---IIlITRTIl----.
.'PORBI.T DATA BEC. *"I8ITIALIZE TREE*"
.:rOB PUOC .. BAftE .< .. STRUCTURE POR •
• • .TOOBB'A!lEIiT SORT* • •• • ••••••••••••••• ** •• **** •• * ••••• * ••

L>:*::*: 1
* * ••••

• *.*.G2*·**·*····
• • PRO .---EXBAOS'l---* REIl
• PROCESS DATA *- FBO
• BAilES • IB
• .. PROII ••••••••• **

1
DBT8---*

ReB •
FOR ..
DITA:

•••• * •••

G CONSISTS IB
DAn uns

STRUCTURE
nIC ORDER

TO LOW

••••• •••••••••• £5 ...
-- ASRCH--. . •.
• POB. YES .*IS REP "OR ••
• IS RG DATA .<-*. DATA Rl.ftE ••
• RATA BEC * * • •..• *···****r··***** * .. ,;~

... 1
P4 •• ..***,,5***** •• * ••

.* IS ... *----ALP1SBCB---*
NO .* RATCH IR *.. • SEARCH POB • r* .. !lAIR' STORAGE • *<-* ftATCHING PROC •

•• THIS •• '* H A!lE DATA BEC •
·.CYCLE.· '* • •••• •• .• • ••••••• * ••••••••

• '* ·YES

•••• : Ds : 1
. ..

Gil •• • •••• G5 •••••••••• .••. • *
•• WILL BEP *. YES • IlfSERT RE" r. '*

•• PIT IR DATA .*->. DATA BEC •
... BEC.· • • •. ... * ••••••••••••••••

·80 L
1 >: .:;*:

• * '****
H" •• ***.*HS ••••• *** ••

... RE" "IT*.. • •
... III LAST ... YES • IRSERT REP IR •

.OYEBPLOW BEC •• ---->' LAST OVEB.PLOll •
•• rR CHAn ... • REC • •.•• • *

··I·B~ ·*··**·**L·*·:::· >* . • DS •
* • * ••• ...

JlI *. .* ••• JS •• * ••• *.**
..... ·----AL"ASPLT--·

*:*IS gHg~LOV.:._BO ___ >:A~~iiiE¥igHB~~A:
•• AVAILABLE... * BEC • *.... '* • or --r-~o

·····K4*········· • ADD HEW •
• OVERPLOW REC TO*
• CHAIB ABD • * rBSERT REF ..

* * .* •••••••••••••••
L •••• >. * • DS • • • ••••

Flowcharts 237

Licensed ~ateria~ - property of IBM

Chart SA. Phase 61 (ILACBL61) Overall Logic (Part 3 of 3)

"''''.*'.
*03 '"
'" Al • • *

*

!
•••• *1. 1**** •• ** ••
'" REVEBSE '"
'" ALPHABETIC •
'" OBDER OF DATA •
: RECSHl~gw TO :

.*.**** •• *~ •• *.**

1<:-
***B 1* •••• ** ••••

WRITE HAn
.DHP CABD lIUR •
REFS OR SYSLST * •

••• ** •••••••••••

1 .*. C1 "'.. • •••• C2* .** •••••
• ·HIGHEST·. '" '" .* RlnE *. NO '" POINT TO NEXT.

'" .. PROCESS!D .. *----)* DATA BEC '"
•• THIS.* • ' •

•• CYCLE.'" '" • * .. * ••••••••••••••••• rs

.•. . ..
n1 lit. D2 ••
.••. .• *. ····D3········· .* BIVE ALL *. YES .. * RAS DITA *. NO .BETORll TO PRASE.

'.. DE!'S BEElf .----)*. BEC SPLIT .. "'---->* 00 •
'" ·i!OCESS~~.. *.... ~ •. * '" ••••••••••••••• *'

* ... * * .. *

r rs

·····E1
• * '" SAVE HIGHEST •
•• ABE PROCESSED '" *' I8 THIS CYCLE '"
* * •••• * ••••••••••••

1 ··***:r1·········· * * -CLOSE DEP-TEXT *
• REF-TEXT FILE •
* * * * •••••••••••••••••

1 ·····G1·········· • •
* * .RESET SWITCHES •

* * * * •••••••••••••••••

238

L * ••• >·02 •
* A1 •
* * ••• *

section 3. Progr~m organization

Chart TA • Phase 70 (ILACBL70) Overall Logic

• *.*A 1*........ Oft
: l:LACBL70 "':----1 ARE
'" . •••••••••••••••

1 .*. Bl *. • •••• B2 ••••••••••
.. * *. • • • ••• B3········· .*PROGR11I-l:D *. YES • PROCESS ABO • IItBETURK TO PHISE.

... = BaRIiSG .*->* LIST BRROR *----:)* 00 •* • IIBSSAGES • A. • *...* • • ••••••••••••••• * .. * ••••••••••••••••• r
XBoallAL .*. e1 *.. • •••• ca ••••••••••

. * *. • 5 L •
.. *!!ESSAGES I.*.. YES • C G.

. TABLE .---->* '1'0 • *. .* • B •
..... .•.• : •••• !2. • :

*.0 I
GETPq l<----------~ ·····D1·········· • • • •

)* GET 1 RBCORD .. • • • •
1 .•.

E1 *. • •• E2 •••••••••••
.. * * .

.. " ... YES .PORGE OUTPUT •
IIt.ERD OP B-TBXT.*----> BunER

. . • • *. .• * .. * r .•.
P1 ••

.. lit ••
BO .* *. <-*. E-TEXT .1It

. .-. .•
* ... * rs

... ·.a1··········
• PROCESS ABO •

LIST • .. .
• • •••••••••••••••••

Licensed Material - Property of IBM

'Flowcharts 239

Licensed Material - Property of IBK

Chart UA. DET-ROOT Subroutine, Report Writer Subprogram

GB=032 *** .. 1.1 •••••••• •
: DET-ROOT :'----1
• • **

j
·····B1·····.···· • • • 51 VB RETnR.. ..

•••• • • *' 14 .. • • ---,
GH=034 t ··1.4····· .. • • .. SET PBS .GIP •

.. SWITCHES .. • • • * •••••••••••

1 .•.
B4 *.

.* *. .* * ... 0
.. ADDRESS XR ..
.. REPOBT-SIoYE-1 .. • • •••••••••••••••••

1----... * •• ~P.OOOl = ~ ••

1 UB01A2 ·····C1··.··.···· • 1ST-ROOT ..
~-*-*-.-*-*
• GBNERATB •
.. :I.RXTIIL ..
.. HBADIJIGS ..
•••••••••••••••••

J UCOU2
••••• 01 ••••••••• •
.eTB-BOUT .. IR oaDn
• -*-*-*-*-*-~ OF prIlL
MiB;~A~M:3L ::----IU=g:GHBADIXGS
.. BEIDIHGS ..
•••••••••••••••••

1 UD0113 ·····B1·**·**···· ·USft-ROOT ..

. .. * ... * rs

·····c,,········ .. • • • SBT GP .000 1 ~O •
• 1 • • • • • • ••••••••••••••••

1 ••• •• 0" ••• •••• .. • · . • SRI! DATA IX •
• BORTH AllEA OJ' ..
• trBE .. • • • ••••••••••••••••

1<-----'
GB=046 •••

Ell ••
- • *-*-*
.COBPUTB AND SET •
.. SUBS FOR THIS ..
.. DE-TIIL

1----.... :·GP.0002 = 0.:.10

1
••• GB=033 ••• UP01l2

1'1 *. !'2 *. • •••• 1'3 ••••••••••
. * *. .* *. .PGP ..

... ... 10 .-WILL GROOP ... BO *-A-*-*-*-*-*-*-*
. FBSGBP=1 .---->*. FIT OB PIGE ----». GEllBBA'lE PAGE .. *. .* *. .* .. POOTrWG .. *..* *..* * .. * * .. * •••••••••••••••••

GH=043

·YES ·YES J

.!. GH=045 1 UGOlAl UG01Al
G 1 ... • G2.**....... . •... G3•••

. *ltS-BOOT" -ItS-ROOT ..
•• WILL GROUP ... YES *-*-*-*-*-*""""*-*-* *-* """"*-*-t:--*-*-*

. 1'1'1' OR PAGE . • DETERSI.:! AID" • DETER!lIRB AMD •
.... ... • SET LIRE" • Sft LIRE • *...* • SPACrlIG" • SP.l.CIRG • .. ·l;~ ····***··L··· ::::* ·········L···::::·

" . " . .. 14 14 •
UPOU2 ····*81·**······· *PGl'-BOU'l' •

--'II .. $: $: • ...
.. GEBEIITE PAGE.
• FOOTING • • • •••••••••••••••••

GB=044 1< UGOUl

240

·····J1·········· ·BtS-BOUT •
• ~.-*-*-*
.. DBTERftIIIB lBO .. *' SET LIBE •
.. SPACING * •••••••••••••••••

L •••• >. •
• 1.4
••••

section 3. Program Organization

. . * rs

• •••• pq
• • • SBT GP.0002 TO •
• 1 • • • • • •••••••••••••••••

1 • •••• G" •• • • • .SET DATI. IV DAY*
• AREA OP LXI. • • • • • •••••••••••••••••

GB=047 1< ·····84·········· • • .BOILD REBAI..D 0 • .0" DftAIL LIBE • • • • • • ••••••••••••••••

i UH01AT ·····J4··.······· ·WBT-BOOT •
.-*-*-*-*-*""""*-*-*
• WRITE DETAIL ..
• LIRE • • •

1 It"'......... or
• ·----s
• BETDR." I
• • A B

'------

Chart DB.

Licensed Material - Property of IBM

1ST-ROOT Subroutine, Report Writer Subprogram

GB=OS * ••• .1.2**** •••• * EITER!:D paoli
.. .. nET-ROOT OR
* lsr-Boor *------~B=S~T::-!B~OO~r~ __ _
* * •••••••••••••••

1 ·····B2·········· * * .. SIVE BETOBB ..
.. ADDRESS:Ia ..
.. REPOBT-SAYE-2 ..

* * •••••••••••••••••

1 .*.
C2 * . . * *. • ••• C3......... TO

.* IS THIS HO" *---- ADDRESS III *.. PI'BST .*----)* BETURH" REPORT-SAVE-2
.GEHBR1TE *..* •••••••••••••••

* .. --YES

GB=073 1 OHOUl ·····D2·········· -WRT-BOOT ..
--*-*-*-*-*-*-*
.. SKIP TO NEXT ..
.. PAGB ..

* * •••••••••••••••••

1 ··E2·······
- * .. SET l'RS.GElf ..

.. TO 1 ..
* * * *

1 •• '2 •••••••
* * .. Sft PAGE ..

.. COO.TElI TO 1 ..

- * * * •••••••••••

1 010111 .••.. G2··· ·
·aPR-BOOT ..
--*-*-*-*-*--*-­
GEkERUE REPORT-' HBADIB'G ..
* * •••••••••••••••••

1 ·····H2·········. DUlllfY BOUTIBBS * GEBEBlTE An *---- IB TBl:S RWS
.. OTHER IIBEDED ..
.. BEIDIRGS •

* * •••••••••••••• * ••

1 * ••• J2......... TO
: RErOBB *:----llim~l!snB-2
* * •••••••••••••••

Flowcharts 241

Licensed Material - Property of IBM

Chart uc. CTB-ROUi Subroutine, Report Writer Subprogram

242 Section 3.

GH=010
****A2** •• ***** ENTERED • *---- FROM DET-ROOT

.. CTB-HOOT .. · . ***************

j
*****B2***.******
.. .. RETURN IS
.. SAVE RETURN .. FRO!! THIS
.. ADDRESS III *---- ROUTINE OR
.. REPORT-SAVE-2 .. PROl! RST-RODT · . • ****************

1
C2*·*·* • • .. SET CTL.LVL ..

... TO 0 .. • • • • ****.******

1
D2"*·.. .. **D3* •••• ** ..

. * ·;~iLIH~~; YES .. SET FRS .GBB ..
. FIRST .---->* TO 2 ..

.. .. GENERATE .* ""." . '. r j
E2***.. UJ01A2

.. .. ****E3*·*·****·
.. INCREMENT EXIT TO ..

.. CTL .. LVL BY 1 RST.ROOT
.. .. *.* ••• ***.***** .* ****

1
F2 .*. *. ..P3 •••••••

.. *CTL .LVL*..
... :~oH~RgtL~EVE~ :*_H_O ___ >* * 5~i~cg~§ .. ~gD 0

-.FOR !lORTH..

0'-'" 0. 0. t' · ._OJ'.* ... ''
G2***** UK01A2 * .. *···G3*********

.. INCREMENT • • EXIT TO •
• CTL.LVL BY 1 • * ROL-BOUT *
• * * * • * •• *** •••• ****** *.*** •••• **

1 .* .
• H2 *.* G'N=O~2**H3**.***.*. TO ADDRESS IN

.*'"CTL .. LVL = .•. YES. *'----.~R~EP~O~R::T::-::S~A:VE:::2~_
•• CONTROL LEVEL.*---->. RETURN :

"'. '" POR DAY *.'" * *************** .* .. *.

r
J2***** * • * SET GRP.IBD * * SWITCHES TO 0 '"

• * * * ***********

j """ ****K2*********
'" EXIT TO * * ROL-BOUT *
* * ***************

Program organization

Chart OD.

Licensed Materia1 - Property of IBM

OSM-ROUT Subroutine, Report writer Subprogram

GH=031
•• **A3**....... EHTBRED PROM * *---- DE'l'-BOO'l'

.. USB-ROOT ..

• * •• *** ••••••••••

I
·····03******·*··
* * .. SA VB RETORR ..
.. ADDRESS IN •
.. REPORT-SAVE-2 ..

* * •••••••••••••••••

1 ·····e3·········· * * .. ACCUftULATB ..
.. TOTAL OP ..
.. HO-PURCHASES ..
* • •••••••• ** •••••••

1 ·····D3·········· * * .. ACCOflULATE ..
.. TOTAL OF COST ..

* * • • ••••••••••••••• **

I .•. :tE3......... TO
* *---- ADDRESS IN
• RETDRlI" BEPORT-SAVE-2

• * ••••••••••••• **

F10llcharts 243

Licensed Material - Property of IB~

Chart UFo PGF-ROUT Subroutine, Report Writer Subprogram

244

GB=O: ••• A2*****.... E'BTERED FROB

: PGP-BOOT :---- ~:~:Igg~: gi!'c~~!i6oT
* * •••••••••••••••

I ·***·B2 ••••••••••
* * • SAVE BETUR. *' *' ADDK II • *' REPORT-SAVE-4 *'
• * •••••••••••••••••

1
.'. OH01A1

.*C~IBE --.. :;:;~~5~;·······:
... COURTER ... YES *-*-*-*-*-*-*--*-*

- .. INDICATES ERD.*->* StrIP TO NEXT •
* .• OF PAGE •• - : PAGE :

.. *.. .. *," •••••••••••••••••

*NO I
GN=056 l<~------------------J

·*D2··***" • • • SET ADS.LIB *' *' 'lOS7 •
• * • • •••••••••••

I OL01A2 ·····E2·········· *ALS-ROOT •
--*-*-*-*-*-*-* *' SET LIRE •
• SPACI.BG • • •

1 ·····P2····· .. ··· • •
• BUILD LIIIB TO •
• BE PRI'BTBD • * • • • •••••••••••••••••

1 OH01!1
••••• G2 ••••• ** ...
·WRT-ROO'l' *'
.-*~-*-*-*-.-*
• VRITE PAGE •
• FOOTING *
• * *"'*"'r""'"

.' .
. * H2 * .. *.. • ••• B3......... TO ADDRESS

.* *. YES. * :Ill
1-----* •.• :Ea.cOD = ~ ••• *-------»: RETUBR :'----t~RE~P~O~R~T::-~S~AV~E~-4~_

-------~

Section 3.

*.0

GR=057 i oao 11 1 ** •• ·J2 ••• ** •••••
• VRT-ROUT •
--*-*--+-..Jt:-*-*-*
• SK:IP TO BEXT •
• PAGE -* • _

I .. "" ····K2**··· .. ••
• EXIT TO •
• PGH-ROU1' *

• *

Program Organization

Licensed Material - Property of IBM

Chart UG. RLS-ROUT Subroutine, Report Writer subprogram

GI=022 •••• '1......... KRTHRED PRon
: RLS-BOUT :----lg~i:lggi OR

• 0

""···r··"
·····Bt·········· • • .. SAVE nETBRII •
.. ADDRESS IB ..
• BEPORT-SAYE-5 ..

• 0 •••••••••••••••••

1 .*. ct *. • •••• C2 ••••••••••
. * *. • • .. * ... YES .nOVE 1 TO LIRE •

.LIHE-COUBTEB. .----)* COURTER •
·.I.OIeATBS.* * .. *. 0 .* • • * .• * •••••••••••••••••

*RO I
1<---

GH=064 .0. D1 *. • •••• 02.......... D3 ..•...••..
. * LIHB- *. *SE'l' LIN .BOII 'to ..

... COUNTER IS *. no .. SET LISE" .. ORB LESS THAN .. *. LESS THAB .*---->*COOtrlER TO UllB*----)*lfOftBEB OF LINES*' *. LIllE 9 .* .. 8 TO BE SKIPPED .. *...* * ... * ••••••••••••••••• • ••••••••••••••••
·YBS I
1<-------1-

GN=065 .•.
Rl *.. • •••• E2 ••••••••••

• * *. • .. . * *. YES .. ADD 1 TO LIH. * *. 'PaS.GRP = 0 .*->* HUll AND .. *. .." .. LXllE-COOHTBB *
.. • * • •• * •••••••••••••

*RO I
GN=066 l<---------------------J

•• **P1* ••••• "* TO
: RETURN :'----lmg:~~SnE-5
o 0 •••••••••••• * ••

Flowcharts 245

Lice~sed Material - Property of IBM

Chart UH. WRT-ROUT Subroutine, Report Writer Subprogram

G.=07
****A 1********* ENTERED

: WRT-ROUT :----I~~IRT A LINE
* * OF REPORT

1
*****B 1******"'*** · . * SAVE RETURN ...
... ADDRESS IN ...
'" REPORT-SAVE-5 ... · . *****************

1
*****Cl**********
... P10VE CONTENTS ...
• OF WORK AREA TO.
... OUTPUT RECORD ...
... AREA ... · . *******.*********

1
*****Dl********·*
*ILBDSPAO '" PRINTER SPACING
--*-*-*-*-*-*-* SUBROOTINE PROI'l
... SPACE PRINTER *---- COBOL SUBROUTINE
*AND PRINT LIRE ... LIBRARY

:***.***** •• ***.: '-------

G.=061 1
*****E 1****.*****
• * "'LOAD REGISTER 1*
... FOR BRANCH TO ...
... GN=09 ... • • ••• *.**** •• ******

GN=OB
.*.*A3*****.... ENTERED * *---- TO PROVIDE

'" WRT-ROUT" A SKIP
... ... TO NEXT PAGE
****** •••• *.**.

1
*****e3**********
• * '" SAVE RETURN * * ADDRESS Ilf *
... REPORT-SAVE-S *
* •
• •• ** •• *.* •••• ***

1
··.·*C3*·******** * nOVE CONTENTS •
.OF WORK AREA TO*
• OUTPUT RECORD •
... AREA • · . .***********.****

1
*****03********·* * SET OUTPUT *
*RECORD AREA TO *
INDICATE SKIP A
* LINE * • • ** •• ********** •• *

G.=062 1
·****E3*****·**** · . * RESET LINE * * COUNTER TO 1 *
• * • • ***********.** •••

1
·*·F3·*·*·*** * •
• ADD 1 TO PAGE.
• COUNTER * • • * •
****.*.**********

G'=09 >1
··*G3****····**

• * *SET OUTPUT WORK*
.ABEA TO BLAlfKS •

• * • • ***.*.********* ••

1
U3****· • * *RESIT LIN .. NUP.!*

• TO 0 * • * * • *.* •• *.*.**

1
****J3.******** TO ADDRESS

• *---- IN * RETURN. REPORT-SAVE-5
* •

******.*.******

246 Section 3. Frogr~m organization

Licensed Material - Property of IBM

Chart UI. RPH-ROUT Subroutine, Report writer Subprogram

GR=01
.*.*11*.* ••• *.* ENTERED PRon

,., ,., 1ST-ROUT * RPH-ROOT ,., • • *.*****.*.** •••

j
·····Bl·······*·· • ,., RETURN
,., SAVE RETURN ,., 15 FROf!
,., ADDRESS IN *---- PGH-ROOT
.. REPOBT-SAVE-q • • • ••••••••••• ** ••••

1
~.. DBOll3

C 1 ,., • • •••• c2 •••••••••• . * LIHE- *. .WRT-ROUT'"
... COUNTER ,.,.. YES *-*-*-*-*-..-*-*-*

,., .. INDICATES HEW .. *---->* SKIP TO NEXT
.. PAGE. .. PAGE

.REQI'D. • ,.,

'. 'N; ········r··· .. ··
GH=039 l<-----------~

··D1 •••••••
• * .. SET ABS .LIB ,.,

,., TO 1 ,.,
1 ULOU1 ***··El·········· *ALS-ROUT ...

---*-*-*-*-*-*-*
,., SET LINE ...
,., SPACING ... • • •• ** •• ** •••• *.***

1
•• ***p 1***···*··· * *
... BUILD FIRST * *' LINE TO BE ... *' PRINTED ...

* * ••• *.*.*.* ••• ****

1 OBOH 1
*·***Gl*·*··**··· ·WRT-ROOT ...
--*-*-*-*-*-*-*
:LI=~I5~ ~iI5iNG:--------------------------J
* •
* •• **************

·*A4*······ • • • SET ABS aLIN •
>. TO 3 • . .

* • •••• * ••••••

1 OLom ·····BLi· •••.• * •• • ·ALS-RODT •
.-*-*-.-*-*-*-*-.
• SET LINE •
• SPACING •
* * ** •••••••••••••••

1 ·*·*·cLi······· ••• * •
• BUILD SECOND •
• LINE TO BE •
• PRINTED • · . •• * ••••••••••••••

1 4IiJ
ORO H 1 ·····DLi·····*···· .VRT-ROUT •

---*-*-.-.-*-*-*
• WRITE SECOND •
• LINE OP BEADING. • • • •••••••••••• *.*.

j .,,'" ····ELi········· • EXIT TO •
• PGH-ROUT •
* • • ••••••• * ••••••

Flowcharts 247

Licensed Material - Property of IBM

Chart UJ. RST-ROUT Subroutine, Report Writer Subprogram

248 Section 3.

GN=012 ····A2········· -----r~~tii1yiiOi'-., • ENTERED FROll
• BST-ROOT" eTB-ROOT
* * •••• * •• ** ••••••

1 .*. B2 ... *****B3*** •••• * ••
.. * *. '" '" ."'IS PBS .. GEN *. YES "'RESTORE RETURN •

*.. = 1 .. *---->* ADDRESS PHD! '"
.. . '" REPORT-S1VE-3 '"
... '" '"

,,~~ · r ... __ .j"'
*****C2** •• ***... UB0111 '" '" ····c3········· "'!lOVE DAY HUllBER'" '" EXIT TO '"
'" TO WORK AREA '" '" 1ST-ROUT '"
'" -0004 '" '" '" '" '" • * ••• * ••••• *** •••

1 ··D2····· .. '" SET SUft '"
'" COONTERS '"

*-0005, 5-0001, •
'" AND fJIN '" • • •••••••••••

1
.*. E2 .,.. • ••• *E3* •••••••• *

.. *CTL.LVL*. ., '"
.. * EQUALS "' .. YES "'RESTORE RETURN '"

"' .. CONTROL LEVEL.*---->* ADDRESS PROll '"
* .. POR DAY .. * '" REPOBT-Sln-2 '"
... '" '"

0,-", 'r j
·····F2·········· '" * ····1'3···*·**·*
• ftOVE KONTH * * ..
*BUPIBER TO WORK * .. EXIT •
.. AREA -0002 *. * • • .* •••••••• ***** *.*****

1
G2*·*·· * •

• SET SUft *
• COUNTERS 0003 •

• AND INT •
• *
.** •• ******

1 .*. 82 *. .****83********** .. *CTL.LVL*. * * .. * EQUALS ... YES .RESTORE RETURN *
... CORTROL LEVEL.*->* ADDRESS PROK ..

.FOR !lONTH. * REPORT-SAVE-2 *
.. '" ..

,,-on 'r "'~-'j*********

*****J2********** * * ****J3********* *RESTORE RETORN * * *---- TO DET-ROOT
* ADDRESS FROll • • EXIT * CHART OAOt A 1
* REPORT-SAVE-2 * ADDRESS SAnD
• .. **.************ BY CTB-ROOT ••••• * •• * •• *.**.*

j
··K2*·***** ____ ~Q.!~~~~--* *- TO DET-ROUT

.. EXIT * CHART 0&0111 .. * ADDRESS SAVED
*********.**.** BY eTB-ROUT

Program Organization

Chart UK.

Licensed Material - Property of IBM

ROL-RonT Subroutine, Report Writer Subprogram

GH=019
****12****** •••

• .---- ENTERED PRon
• LAST-BOLL" LST-ROOT • • •• * •••••• *.* •••

j
..*B2* ••••• **.. GN=O 11 ····B3········· • SAVE RETURN • "" *---- ENTERED
• ADDRESS IN. • ROL-BOUT. PRon
• REPOBT-SAVE-2 ... • CTB-BODT *' .. • ••••••••••••••

···· .. ···1 ·_·_·_··_' _______ ,:j
·····C3·**······· · . :ADDT60i~iAJ~DAY) :
: (nORTH) :

1 .*.. oNa 113
D3 • D4 ••••••• ***

.. * *. -SAY-ROUT" .* LOWEST YES *-*-*-*-*-*-*-*-*
•• CONTROL LEVEL.*----)*51V£ VALDES POR* *. .* .. DAY LEVEL .. *..It<

".m 'r j
·····E3·········· ·***E4·······** .. ADD TOTAL"" *---- TO CTP-BOOT

: Td~~!T'~Ii~L) : : ••• **::~~ : ~g~R~Afio01A 1
1 .'.

FJ *. GH=076
.* *. • ••• pq ••••••••• -----~~~~~Gl!-.* HIGHEST * .. NO" ! TO ADDRESS IN

•• CONTROL LEVEL.*---->* RETURN. REPORT-SAVE-2 *. .* ,. • *..* ••• ****** ••• *.* * ... *
·YES

1 UWOU3
*****G3*****···** ·SAV-ROUT ,.
--*-*--*-*-*-*-*
-SAVE VALUES POR.
,. I!OHTH LEVEL ,. · . •••••• *** ••••••••

j
·***53***·*··*· • .---- TO CTF-ROUT

,. EXIT" POR DAY
'" '" CHART U001A 1 ••••••••• ** ••••

Flowcharts 249

L~censed Material - Property of IBM
tt

Chart UL. ALS-ROUT Subroutine, Peport writer Subprogram

250 Section 3.

GI<=021
• •••• 1.2 •••• • ••• , .----rE!iB!i~fJEijR!!E~D=pPiR~oii!L==
• II.S-ROOT 41 PGF-Rotrt, PGH-BODT.
41* •••••••••••••• • giFcJ~~i6o'PH-BODT

j
**.·.B2·· •• ···.*· * •
41 SAYE BETUR. 41
• ADDRESS ra •
• REPOBT-SAVE-5 •

• *
1 .*. C2 • •••• C3 ••••••••••

. * .* CaR':!R ··41.. YES !aOVE 1 TO LIRE :
... IRDleATES 0 .. *---->* COURTER 41

. . • • *..* 41 • * .. * ••• _ •••••••••••••
·BO I

GI<=063*.D2*1::-.-.-~----------~
* • * SEt PRS .GRP •

• TO 1 • • * • • •••••••••••

1 ·····E2*·······** 41 * CO!l.PUTES
• SET CODNTERS • LIR.IOft ABn
::rOR BfI~EOUTPD'l':'----I~~f=GcOD1I'l'ER
• • ABS .. LXII COURTER •••••••••••••••••

j
.. ·.P2·········

• • TO ADDRESS
• RITOJf *---- IB
• • REPORT-S.lVE-S •••••••••••••••

Proqr~m organization

Licensed Material - Property of IBM

Chart UM. PGH-ROUT Subroutine, Report Writer Subprogram

GN=03
****A 1********* ENTERED PROtt * ,., PGP-ROOT

,., PGH-ROUT ,., --- OR aPR-ROOT • •

1
*****B 1 •• ******.­
** ** ** EXECUTE OSE *. .* STATElIENT *. • * PROCEDURES .* *. ••
* •••• ******.****.

1 .*.
C1 *.

.. *PRINT- *.
•• SWITCH *. NO *. INDICATES .. ~
.. PRINT . *. .* * ... * **** *YB5 • ,.,

**** 1 : c4 :

GN=OQO .*. UHOlA1
D 1 ,... *****n2********.*

.. " LINE- ,... *WRT-ROOT" . * COUNTER *. YES *-*-*-*-*-*-*-*-*
,. .INDICATES NEW.*---->* SKIP TO NEXT ,.

*.. PAGE .. * ,., PAGE *
.REQtD. • ,.

'. 'N~ ········r·······
GN=041 1<------------'

.*E 1******* • • ,. SET ABS .LIN *
,. TO 5 ,. . . · . • *.****.***

1 UL01A2
*****p 1*····***** *ALS-BOOT ,.,
--*--*-*-*-*-*-*
• SET LINE ,.
,. SPACING * · . • **************.*

1
*.***G 1*.* •• * •••• · . ,. BUILD FIRST •
,. LINE TO BE ,.
,. PRINT ,.
• • *******.**.****.*

1 UH01Al
*****H1**********
*WRT-BOUT ..
--*-*-*-*-*-*-* * WRITE FIRST * * LINE OF PAGE *
• HEADING ..

1
J1****. · . * SET ABS .. LIN *

* TO 7 * . .
• • ***********

1 UL01A2
*****1\ 1**********
*ALS-ROUT *
--*-*-*-*-*-*-*
.. SET LINE *~ * SPACING * · . *************.**.***. • • * All

**** · . * All * · . ** •• ~
·*A4**·* *** · . * BUILD SECORD .. * LINE TO BE *
• PRINTED *
• * *._.* •• *.*******.

1 UH01Al
·*·**Bq*·****-**·
*WST-ROOT •
.~-*-*-*-*-.-*-* * WRITE SECOND ... * LINE OF PAGE *
.. BEADING *
*********.** •• ***

: *::*: 1
• *-> ****

GN=029
*·CII***·*·· · . • SET *

.PRINT-SWITCH TO*
* PRINT * · . ***.*.*.***

o INDICATES 1
SKIP IS NOT
DUE TO AN .. *.
EARLIER NEXT nil ...
GROUP CLAUSE, .* * .
VALUE OTHER •• *. YES
~:~~ ~oI=~i¥ATES ------ *.",,~IN.SAV = ?* ..
PAGE BECADSE *. .*
OF ABSOLUTE * ... *
LINE SPECIFIED *NO
IN NEXT 1 GROUP CLAUSE

GN=042
EII**·** · . *!lOYE LIN .SAV '"

'" TO ABS .. LIN * . . · . **.********

1 ULO U2
*****F4**********
*ALS-ROUT *
--*-*-*-*-*-*-* * SET LINE * * SPACING • · . *****************

1 UHOUl
*****G4******-***
*WRT-RODT *
--*-*-*-*-*-*-* * SKIP TO -*SPECIFIED LINE *
• * *******.*********

GN=030 1<
H4***** .. * LIN .SAV * BESET * PRS .. GBP * INDICATORS *--- GRP.IND

* +: * * '--------

1
****J4****.**** TO ADDRESS

• *- SAVED BY * RETURN * RPH-ROUT IN • * REPORT-SAVE-4
*** •• **********

Flowcharts 251

Licensed Material - Property of IBM

Chart UN. SAY-ROUT Subroutine, Report writer subprogram

252 section 3.

GR=023
****'3********. ElITEBED FROI! * *--- HOL-ROOT

.. SAV-BOOT" OR CTF-ROOT
* * *** •• *.* •• *.***

j
*****B3**********
* *
.. SATE RETURN ..
.. ADDRESS IN ..
.. BEPORT-SAVE-5 "
• *
***.**.**.** •••••

1 .· ... c3**········ * *
.. ftOYE PRESENT ..
• CONTROL VALUES .­
... TO SAVE AREAS ..
* * •• ******* •• ***.**

I ·····03**·····.*· ... ftOVE OS ...
• eoNTR ES •
.. TO '"
... CO ALOE ..
... AB ...
**** ••• * .*****

j
.. *.E3......... TO

* *--- ADDRESS IN
.. RETURN" REPORT-SAVE-5 . .
••• **********.*

Program organization

Licensed Material - Property of IBM

Chart 00. CTF-ROOT Subroutine, Report Writer Subprogram

1. GR=036
GR=028 ••••• 1" •••••••••• ... *a1......... 2. ...

.. BOZLD FIRS! •

.. CTP-ROUT *--- >* LXB!: TO BE •

.. .. 3. .. PRINTED •
1 *****************

.*. GR=035 1 OROU1 B 1 • •••• B2.......... • •••• B" ••••••••••
. * *. *iRT-ROOT •

.. " YES .. CQIIPOTE LIBE .. • -A-*_.-*-*_*-* *. PRS. GRP =1 .*-)* BOBBEB WRITE PIRST •
.... .." -LIRE OP POOTIBG* *..*

*. *i~ ********r******* ********1·········

.*. GR=050 UEOU1

GR=04S .*.
01 *

•• VILL REPOBT.. YES
• .GROOP 'PIT OR •

... PAGE ••
*HO

1 UP01A3
·····B1·*········
·aET-ROOT •
--* -*-*-*--'11

• RESBT CORTROL •
• 1I1BB TILDES •
* * •••••••••••••••••

C2 C3.......... ..e4 .•.•...
.. " *. -BLS-BOOT" .. SET • • * LAST LIBE *. RO -* """'*-* -* *LIHE-CO EI.

.... OH PAGE .**----»*DETERI!IBE LIBE ABO DET E •* .. SPACIBG" .. LXH .110 • *..* '-SECORD * •• * ••••••••••••••••• • ••••••

r:P01A3 1
• •••• 02 ••• **..... D4
-RET-ROOT
--*-*-*-*-*-*-* .. BUILD SECORD •
.. R ESBT COBTJlOL .. • tINE TO BE •
• NI!!E YILUES • • PRINTED •• **.......... _ ..•.•.•. _ .. .

I 01'0112 I UHDU1
••••• E2.......... • ••• *E4 ••••••••••
.PGF-ROtrr • .'HT-ROUT •
--*-*-*--*-*--*-* .-*-*-*-.-*-*-*--*
• GElIERI.TE PIGE • • WRITE SECOND •
• POOTI'RG • .tIRE OP POOTIRG. •• •• ••••••••••••••••• • ••••••••••••••••

1 U1'01A2
••••• 'P1 ••••••••••
·PGP-ROUT •
'----*-* -*-*-*
• GEBBBITB PAGE •

1 non3 .1. GB=051 UP01A3 "2*......... P4 "5
• POOTIBG •
* * •••••••••••••••••

1 Ullom
·····G1··········
·SAY-ROOT •
• ••• * .------• SAn COHTBOL •
• WlftE VILDBS •
* * •••••••••••••••••

GII=049 1< OG01Al
·····S1··········
·ILS-BOOT •
• -*-*-*-*-*-.-*-*

.SAY-ROUT • ~.CTL.LVL.. .RE'l'-ROUT.
--*-*-*-*-*-*-* ... INDICATES •• rES .-*-* ~--*-*-*
• SIYE CONTROL • •• THIS IS DAY •• ->* BESET COliTROL •
• HlftE VILUES • *. LEVEL .* • HillE TILDES • •• * •

"l~:: '. 'IR~]

·····G2···*····.·
.BLS-ROOT • • •• *Gq......... • ••• GS •••••••••

-':;;.i*rn*!!:*F*iI*~*;-------------...: • EIIor TO BORTH • • EXIT TO Dlt • • DETBBIUBE LINE • > • CTP-ROOT. * CTH-BOOT •
• SPACING • •• * • -•••••••••••••••••

:DEn~n~f.~IIIB : ________________________ ---J

* * •••••••••••••••••

Flowcharts 253

Licensed Material - Property of IBM

Chart UP. RET-ROUT Subroutine, Report Writer Subprogram

254 section 3.

G'=024
.13**.*.* ENTERED PROn

• • --- CTF-BOOT
.. RET-ROUT" OR CPF-ROOT

• * .**** ••• *******

j
*·***B3*********·
* *
'" SAVE RETURN '"
'" ADDRESS IR ..
.. BEPORT-SAVE-5 .. · . • ***************.

1
·*c3****·*·
• * "'RESTORE PRESENT'"
.CONTROL VALUES '"
.PHOtl SAVE AREIS.

• * ********.*.*.*.*.

j
•••• D3 •• **..... TO * • --- ADDRESS IN

'" RETURN * REPORT-SAVE-5 • • •• *********.*.*

Program Organization

Chart UO.

Licensed Materia1 - Property of IBM

INT-ROUT Subroutine, Report Writer Subprogram

GB=020
•••• 12 ••• **.... EXTERSD

• • --- FROII BArB'
• IHT-llOUT" LIRE PROGR!!!
• • I.Xrr:UTE STATEftElfT •••••••••••• **.

I ·····B2·········· • • • SAVE BETURB •
• ADDRESS IB •
• REPORT-SAYE-2 .. • • •••••••••••••••••

1 rC~T~L-.~L~VL~-------
PRIBT-SWITCH
GRP.IBD ca.......... PRS .GEM

.. • TEB.COD
*IRITIALI.ZE Ri'S • --- PRS.GRP
• VARIABLES. LXII.BOft
• .. IBS.LIB
• • LIB.SIY'
••••••••••••••••• LIBB-CODlfTER I ~-...
.... D2......... TO * • --- VEXT SEQUERTIAL

• RETORR" IJlSTRDCTIOB APTER

• •••••••••••••••• I~IiiAilpoA¥~~f~~_2

F10wcharts 255

Licensed Material - Property of IBK

Chart UR. LST-ROUT Subroutine, Report Writer Subprogram

256 section 3.

GR=06
•••• "2......... CALLED IS I.

• .--- RESULT o:r I
• LST-BOOT. TERBIHIT! STATEIIDT • •

······r·_··
·····B2·········· • •
• SAVE RHORII •
• ADDRESS 1'1 •
• REPORT-SI YE-6 • • • •••••••••••••••••

1 .•.
C2 * . .• -:1." I.y·· •• 110 ••••• c3·········. ____ II~s'I~TiBa(Jf~~lt

•· •. g~Gligs ---~>: BETORK: 'HlIlg3ils~TtrIlE.~r
.. ••••••••••••••• BEPOBT-S1YE-6

* .. -·YES

GR=07Q 1 ··D2······· *SIT CO.TROL-
.LEVEL SWITCH •

• JCU.LVLI TO 0.-

• • •••••••••••

I .. E2······· * • I'R'DI"CATBS
• SET TEB.COD. --- liD !lORE

• TO 1 • COBTBOL HEADIWGS • • • •

1 U~OlB3 ·····P2·········· .BOL-ROUT • ERTEB BOL-DOUT
--*-*--*-*-*-*-*--- YTI. LAST-ROtL
:CALCU~~U PUAL: (GR=0191 .. .
•••••••••••••••••

1 US01A3 ·····G2·········· *CPP-ROO'r •
--*-*-*-*-*-*-*
*GEBBBITE PIlAt •
.. POOTI'RG .. · .. •••••••••••••••••

1 ··U2······· • • :IlfDICATES
• SET TER.COD • --- 80 !lOBE PAGE

• TO 2 • BEADINGS • • * • •••••••••••

1 UF01A2 ····*J2····· .. ··· *PGP-BOO'l' •
...... -*--*-*-*~-*
• GZBZR1TE PAGE.
• POO'l'I:lfG .• • • •••••••••••••••••

1 SEE CHART
UT01A2 ····K2.····**·· • EXIT TO •

• RPP-BOOT • • • ••••••• ** ••••••

program Organization

Chart us.

Licensed Material - Property of IBM

CFF-ROUT Subroutine, Report Writer Subprogram

GR=D17 .** •• 3*........ BNTERED * *--- FROll LS'l'-ROO'l'
.. CPF-ROOT ..

* * •••••••••••••••

I ·*···83·········· * • .. SAn 8270BH ..
.. IDDH :IB ..
.. REPOBT-5ATB-l ..
* • •••••••••••••••••

1 UPD112 ·····C3········.· *PGP-ROO'l' ..
--*-*-*
.. GEHER1'rE PAGE ..
.. FOOTING ..

• * •••••••••••••••••

1 ··D3······· • • *SBT ADS. LIII ..
.. FOR BEXT PAGE .. • • • • •••••••••••

1 ULD1l2 ·····E3·········· *ILS-BOO'l' ..
--*-*-*--*-*-*-*
.. SET LIRE ..
.. SPACIHG ..

* * •••••••••••••••••

I ·····P3
* * .. BUILD LIBE 'l'0 ..
.. BE PRINTED .. • • • •

1 UBDU1 ·····G3·········· ·VRT-ROOT ..
--* -*-*-*-*-*
.. va:!'l'! J'II'AL ..
.. PQO'l'l:BG ..

* * •••••••••••••••••

1 UPD1A3 ·····e3·········· *RB'l'-ROO'r ..
~--*-*
.. RESET COllorROL ..
.. VA!E YALUJ!!S ..

• * •••••••••••••••••

I
•••• J3......... TO ADDRESS IR

• *--- BEPORT-SJ.YE-3
• BETUBR •

• * •••••••••••••••

Flowcharts 251

Licensed naterial - Property of IBM

Chart UT. RPF-ROUT Subroutine, Report writer Subprogram

258

GN=02
****A2********* ENTERED

• .--- PROM LST-ROUT
* RPP-ROUT '" . .

1 .*. UB01A1
B2 "'.. *****B3********** .. * *. *WBT-ROOT '"

... ENOUGH ROOH"' .. NO *-*-*-*-*-*-*-*-* *. ON PAGE .*---->* SKIP TO NEXT *
oo . '" PAGE '" "'...* '" '"

GN=058

·.·I.Y .. ;5 ********1*********

.*el •• * ••• * C2 "'.. **C3*******
'" * .* *.. '" '" '" SET ADS.LIN '" NO.* LINE IS *. '" SET IIBS.LIN '" * TO LINE 54 *<-*. BELOW PAGE .* '" TO 2 '"

'" '" *oo POOTING .* * *
'" '" *..* '" * ·····1······ · ·1·YiS ·····1······

ULO 1A2 GN=060 ULO 1A2
*****D 1********** **n2******* *****D3**********
"'ALS-BOUT '" * * *ALS-ROOT '" *-*-*-*-*-*-*--*-* '" SET LIN .NUft '" *-*-*-*-*-*-*-*-*
'" SET LINE '" '" AND LINE * '" SET LINE '"
'" SPACING '" ,., COUNTER * * SPACING '"

*' * '" '" '" '" ***************** *********** ***********"'*****

I ! GN=059 >1

Section 3.

*****E3********** · . * BUILD LINE TO * * BE PRINTED * · . • •

1 UH01A 1
*****P3**·*·***** ·NRT-ROUT *
"'-*-*-*-*-*-*-*-*
'" WRITE REPORT * * FOOTING * · . **.****** •• ***.**

j
****G3********* TO ADDRESS

• .--- STORED IN
• RETURN * REPORT-SAVE'-6
• ... BY LST-ROUT

**************.

Progr~m Organization

Licensed Material - Property of IBM

SECTION 4. DIRECTORY

FLOWCHART LABEL DIRECTORY

Label Chart Page Block Label Chart Page Block

ADETER ML 01 B1 DONGP EB 01 B1
ADINCR PE 01 F2 DUMTST CA 01 B1
AD REF PE 01 A2 D6PN10 NE 01 D5
ADREF QB 01 Al D6SR10 NE 01 D4
ASETCPY2 BA 02 E4 D6000 NE 01 E3
BCONDE HE 01 H5 EINRG NE 02 E2
BCONDE HB 01 F4 ELIPR HG 01 H2
BCONDE HD 01 F4 END NC 01 E1
BEGIN FA 01 B2 END OC 01 E1
BELEMI FD 01 A4 ENDIN AA 07 C3
BLDOB02 IB 01 C3 ENDPTX ND 01 C3
BLDOB06 IB 01 G3 ENDPTX OD 01 B2
BLDOB07 IB 01 H3 ENDP13 IB 01 C5
BGROUP FD 01 J2 ENTNAM HF 01 G4
BMBSRN FD 01 C1 ENVSCN CA 01 B3
BNORML FD 01 D4 EOF J·A 01 E3
BREAD FD 01 E1 EOF KA 01 D4
BPASS12 IC 01 F1 EOF ND 01 C2
BPASS2 IC 01 G1 EOF PA 01 C3
BSUBRN FB 01 D3 EOF2 RA 01 D3
BUS AGE FD 01 G1 EPFT EB 01 C2
CBASIS AA 05 A3 EPHD EB 01 D2
CBENDIN AA 05 E4 EQUATE MJ 01 Al
CBEXIT AA 05 F3 ERROR JC 01 J2
CBNOFND AA 05 CS ERROR KB 01 G3
CHKDCL DA 01 C1 ERROR KB 01 E4
CHKENT JB 01 G3 EXIT AA 07 A3
CKCOMP KB 01 D4 EXITPGM MK 01 G4
CKPFCP KC 01 J3 EXITQ AA 07 B3
CLANAB MP 01 Al EXITR AA 07 B5
CLOSE NA 01 G3 EXIT1 AA 07 B4
CLOSE OA 01 G3 EXIT1A AA 07 C5
CLOSER AA 07 Al FDSCN CD 01 E3
CLOSETA AA 04 A4 FDTEXT FB 01 C2
CLOSETF AA 04 C4 FILED IC 01 E3
COPYIN JC 01 E2 FLEX1 EB 01 C1
COPY1N JC 01 D3 FNDSL AA 05 B4
COPY1N JC 01 F4 FORMLA KB 01 D1
COPYRN FD 01 F1 FOURTY8 PA 01 E3
CORRTN JC 01 G4 FSECT HB 01 ·A2
CPPRO ND 01 D2 FSEND HG 01 C3
CO PA 01 F3 FSEQ NE 02 C2
C1REF PF 01 Al FSTXT HB 01 C3
DCLSCN DA 01 C2 FSTOOO HG 01 C4
DDSCN CA 01 E3 FSTOOO HG 01 F3
DEBUG ML 01 Al FTER NE 02 H2
DELIM DA 01 D1 GCKOP3 LC 01 D1
DICENT DA 01 D3 GCKOP3 MR 01 D1
DICSCN JB 01 B2 GC3 BA 02 HI
DICTBD HG 01 B2 GDDAGN LC 01 B3
DICTENTR 1D 01 C1 GDOAGN MR 01 B3
DICTP1 IC 01 HI GENA DA 01 G3
DIR HA 01 D1 GENDAT JC 01 J3
DIR010 HA 01 E1 GENRATOR ME 01 D4
DISPLAY MJ 01 Al GENOP JC 01 H3

Directory 259

Licensed Material - Property of IBM

Label Chart Page Block Label Chart Page Block

GENSTR KC 01 G4 INTERLUD AA 06 E5
GET ND 01 Bl ISPRNC KB 01 Cl
GET ND 01 D3 ITEMRN FD 01 Hl
GET OD 01 Bl JCANCEL AA 02 F5
GET PA 01 C2 KILSUB LD 01 A4
GETCARD4 BA 02 Fl LDSCN CA 01 G4
GETCOPY BA 02 E2 LDTXT HE 01 A2
GETCOPY4 BA 02 E4 LINKA AA 06 B3
GETCRD EA 01 C2 LINKB AA 06 A3
GETDLM CA 01 E1 LINKR AA 06 B4
GETF2 RA 01 Dl LINKST FC 01 A3
GETF4 TA 01 Dl LOADLIT MG 01 A4
GETN IB 01 Bl LOGNWT IC 01 Bl
GETNXT HF 01 Cl LSECT HC 01 A3
GETNXT JC 01 E3 MACPRO ND 01 H2
GETNXT JC 01 Bl MACRO PA 01 D3
GETOUT FD 01 E4 MOVEMOD BA 01 D4
GETPTR HE 01 G4 MOVE 4 MF 01 Bl
GETPTR HD 01 D4 MPUT BA 01 B5
GETPTR HB 01 D4 NOGET IC 01 El
GETPVN KC 01 D2 NOTBASIS BA 02 El
GETSL AA 05 D3 NTSL AA 05 C2
GIDENL ND 01 K2 NXTFILE BA 01 F3
GINIT2 NE 02 B2 OD2FND IB 01 Dl
GINIT3 NE 02 D2 OPPRO OD 01 C2
GLOSRY JB 01 Al PDATEX NE 01 Al
GNDEF PC 01 A2 PDT020 NE 01 C2
GNREF PF 01 Gl PDT030 NE 01 D3
GNOPT LC 01 C3 PERFORM KC 01 Al
GO MN 01 Al PERFORM MI 01 Al
GO DEPENDING MO 01 A3 PGTINT OB 01 G3
GOBACK ML 01 F3 PGTINT NB 01 G3
GODEPL MO 01 Al PHASEND IA 01 F2
GODEPM MN 01 H2 PHCTRL JC 01 Al
GOSYSGO AA 01 B1 PHINIT JA 01 B3
GRIPR HG 01 G3 PHINIT EA 01 B2
GSPICT FD 01 B2 I:HINIT KA 01 B3
GTEQ10K RB 01 E5 PHTERM FA 01 G2
IDDSCN CA 01 C1 PH5BVB LA 01 G2
IDENT KA 01 C3 PH5CTL LA 01 B2
IDLAN KA 01 F3 PH5CTL MA 01 B2
IF MM 01 Al PH65 RA 01 B2
IFANAL MP 01 A4 PICTAN FD 01 B5
IFERR KB 01 E1 PLUS1 LC 01 A3
IF SO KB 01 Fl PLUSl MR 01 A3
IHNAM DA 01 D2 PNBRRO ND 01 F2
IMGEN MK 01 G1 PNDEF PD 01 A2
IMINIT MK 01 Al PNREF PF 01 E3
INIT HA 01 Al PNUPRO NB 01 H3
INIT1 NE 02 G2 POINTO ND 01 J3
INSERT NB 01 J3 PREPROC BA 02 Al
INSERT NC 01 F2 PRFTWO NC 01 Al
INSERT NC 01 A5 PRFTWO OC 01 Al
INSERT NC 01 G2 PRINIT JB 01 D3
INSERT NC 01 H2 PRINT JB 01 E3
INSERT NC 01 J2 PROC01 EA 01 E2

260 Section 4. Directory

licensed Material - property of IBM

Label Chart Page Block Label Chart Page Block

PROC02 EA 01 G2 SKPLNK AA 02 ES
PROC77 HG 01 E3 SRCHTB FD 01 D2
PTSL AA 05 B3 STARTPP BA 02 Cl
PUNCH NC 01 F3 STARTO BA 02 D2
PUNCH NE 02 E3 STATIC NB 01 K4
PUNCH OC 01 F3 STRSCH JC 01 C4
PURGE AA 06 C4 TENPROC RB 01 Al
PUTDEF MD 01 Al TERM HA 01 E2
PUTEQU MD 01 F4 TESTSB2 ID 01 'D2
QIFOUND IB 01 El TESTSB3 ID 01 F2
QUAL HD 01 C4 TESTSB4 ID 01 H2
QUAL HE 01 H3 TESTSB6 ID 01 D3
RC4 QB 01 Fl TESTSB8 ID 01 J3
RC8C QB 01 A3 THRESUBS ID 01 C4
RDSCAN EA 01 D2 TGTINT OB 01 F3
RDSYN HG 01 D4 TGTINT NB 01 F3
RDOOI QB 01 F3 TRACE ML 01 A3
READ AA 02 Al TRANSFORM MI 01 A4
READFN JC 01 C3 TRMNATE AA 02 H3
READF2 NC 01 Cl TWENPROC RB 01 A3
READF2 OS 01 Cl TWOSUBS ID 01 C3
READF4 HF 01 Bl TXPNH NC 01 G3
READLIB AA 05 Al TXPNH OC 01 G3
READOPTS BA 01 Gl UNTIL KC 01 G3
READQ AA 02 AS UNTIL KC 01 H4
READY ML 01 HI UPSI HA 01 C2
REDEF HG 01 D3 VALGEN FD 01 J4
RELEASE NB 01 K3 VALGEN FD 01 CS
RELEASE NC 01 H3 VERB JC 01 D2
RELEASE NE 01 FS VNDEFR ND 01 E2
RELEASE OC 01 H3 VRBSCN DA 01 E3
RENAMS HF 01 F4 WLVSCN CA 01 F4
RENMI0 IC 01 J4 WOUT AA 04 Cl
REPORT FC 01 AS WRITE AA 04 Bl
REPORTD IC 01 GS WRITEA AA 04 Al
RESET MK 01 1\.4 WRITES IC 01 B2
REWIND NC 01 D3 WSDCT HC 01 Al
REWIND ND 01 CS WSTSCT FC 01 Al
REWIND NE 01 B3 XITXIT EB 01 C4
RSECT HD 01 A2 XITI EB 01 Fl
S CAT REN IA 01 C3 XIT2 EB 01 Gl
SDTEXT FB 01 D2 XIT2A EB 01 G2
SDTXT HB 01 D3 XIT3 EB 01 HI
SEARCH JC 01 G2 XIT4 EB 01 Jl
SEGCAL MQ 01 A3 XITS EB 01 A4
SEGCAL3 MQ 01 F2 XIT6 EB 01 BS
SEGNOTE AA 06 Dl XIT7 EB 01 AS
SEGNOTEO AA 06 F2 XNORMAL TA 01 Cl
SEGNOTE2 AA 06 Gl XREF HB 01 E4
SEGPNT AA 06 Al XREF HD 01 E4
SEGPROC ND 01 J2 XREF HE 01 GS
SETBUF6 BA 01 A3 XREF NC 01 D2
SETLEN MG 01 A2 XSPRO LD 01 Al
SE6000 ND 01 Al
SE6000 OD 01 Al
SE602S ND 01 Dl

Directory 261

Licensed Material - Property of IBM

TABLES USED BY PHASES

i

I Table and TIB Number
I I~----------------------------------~ir------------------------
IPhasel Built or Changed by Phase I Referenced Only

01

10

12

20

22

21

25

30

40

50

51

60

61

REP TAB (29)

CKPTBL(8), ENVTBL(3), FNTBL(10)
INDXTB (27), KEYTAB (26), OD2TBL (9) ,
PIOTBL (7), P1BTBL (2), OLTABL (1) ,
ONI'lTBL (2), RCDTBL (11) , RWRTBL (13) ,
SATBL (5), SPNTBL (21), SUTBL (6) ,
SSATEL(7), UPSTBL(25)

CTLTBL (14) ,
NPTTBL (18) ,
QALTBL (23) ,
ROLTBL (15) ,
SNMTBL (35) ,

DETTBL (17), GCNTBL (21) ,
PIOTBL(7), P1BTBL(2),
OLTABL (1), RNMTBL (12) ,
ROUTBL(16), SMSTBL(2S)
SRCTBL (22), SUMTBL (19)

DICOT (20), GVFNTBL (4) , GVN?!TBL (3) ,
PIOTBL(7), PNQTBL(6), PNTABL(5),
QLTIBL (1), RCDTEL (11), RtlMTBL (12)

VALGRP (6), VALTRU (33), LABTBL (13)

DICOT(20), FDTAB(28), GPLSTK(10),
INDKEY (31), MASTODO (13), OBJSUB (5) ,
OCCTBL(2), QFILF(23), QITBL(22),
QRTN (21), aVAR (24) , QSBL (1) ,
RDFSTK (11), RENAMTB (3), RNMTBL (12) ,
SRCHKY(34), VARLTBL(15)

ASCTAB (3), BLTABL (27) , BUFTAB (29) ,
CKPTBL (8), IND2TBL (35), SDSRATBL (11) ,
SRAMAX (10), SRATBL (9)

OCCTBL (2), ODOTBL (14) , VARLTBL (15)

QFILE(23), QVAR(24)

~BGTBL(13}, DEFSBS(18}, KEYTBL(20),
PFMTBL (12), PNOONT (14), PSHTBL (17) ,
PSIGNT(15), PTRFLS(16), SETTBL(21),
STRING (9), VARYTB (10), VNTBL (11)

BLUSTBL(10), XAVAL(2), XINTR(l),
XSCRPT(3), XSSNT(4)

BLUSTBL(10), GNCALTBL(16), IOPTBL(5),
PNUTBL(6), SEGTBL(15)

CONDIS(14), CONTBL(9), CVIRTB(12),
ERRTBL(10), FILTBL(2), GNTBL(8),
LTLTBL (4), PNTBL (7), aTIlL (3) ,
RLDTBL(NONE), TGTADTBL(18), VIRPTR(13),
VNPTY (17)

CNTLTBL(none), DATATBL(none),
OFLOTBL(none)

Figure 62. Tables Used by Phases (Part 1 of 21

I

FNTBL(10), RWRTBL(13), SPNTBL(21)

DETTBL (17), FNTBL (10), P1BTBL (2) ,
ROUTBL (16), RWRTBL (13), SPNTBL (21)

OD2TBL (9), UPSTBL (25), VALGRP (6) ,
VALTEU (33)

FDTAD(2S), DICOT(20), PIOTEL(7)

DICOT(20), MASTODO(13), OD2TBL(9),
QITBL(22), ORTN(22), RENAMTB(3)

DICOT(20), INDKEY(31), VALTRU(33),
QSBL (1)

CKPTBL (S)

PNUTBL(6), SEGTBL(15)

Directory 263

Licens~d Material - Property of IBM

, i

I Table and TIE Number ,
('r---------------------------------~i------------------------------__;,
(Phase(Built or Changed by Phase t Referenced Only (

62

63

64

65

70

80

BLASGTBL(16), ELVNTBL(23), CONDIS(14),
CONTBL(9), CVIRTB(12), DRPTBL(24),
DRPLTBL(25), FILTBL(2), GNATBL(8),
GNFWDBTB(21), GNLABTBL(19), LTLTBL(4),
PNATBL (7), PNFWDBTB (20), PNLABTBL (18) ,
VIRPTR(13), VNPNTBl(29), VNPTY(17)

GNLBDTBL(27), PNLBDTBL(26), QGNTBL(24),
RLDTBL(28), VNPTY(17)

~RP.TBL(10), QTEL(3), RLDTBL(28),

CARDINDX(11), PROCINDX(5), SEGINDX(16)

Figure 62. Tables Used by Phases (Part 2 of 2)

264 section 4. Directory

1 ,
r BLUSTBL(10), PNUTBL(6), SEGTBL(15) (
((
(,
I I
(,
I I
(,
I BLASGTBL (16), BLVNTBL (23), DJlPLTBL (25) I
I GNATBL(8), GNLABTBL(19), PNATBL(7), I
I PNLABTBL (18), SEGTBL (15), VNPNTBL (29) I
I ,
I BLASGTBL(16), GNATBL(8), GNLBDTBL(27),1
I LTLTBL(4), PNATBL(7), PNLBDTBL(26), I
I QGNTBL(24), VIRPTR(13), VNPTY(17) ,
I ,
I TGTADTBL(18) ,
I ,
I ERRTBL (10) ,
I ,
I I , ,

LINKAGE EDITOR MAP

- A-CTTON TAKFN-- "1~p RI:-L-- -
LIST INCLUOF ILAcrvs

Licensed Material - Property of IBl-J

on!' LINKAGE FDITOR DlftGNOSTIC OF INPUT

LIST PH_SF FcnBOL,S 0001
- LIST -- IN-CLlJDf' -ILAf.Rt.f'fl--- - - -- --- ------- - -- ----- -------------------- --- - -----0002-

LIST INCLUD~ TLACBLOI 0003
LIST PHASF FCOBOLO~,CLT~(FCn~OL} 0004

3 -t; IS'!' -IN-C-tHf\E- H -AE-&lO:;- -- - -- - - - ---- -- --- - ---------------- -- - - --- -------- --00{'5----- -

LIST PHA~F FCOSOL06,CLT8(FCORrL} 0006
LIST INCLUDE ILACH()f, 0007

4 -- L 15-1'-- - PH- A-Sf: -F£ ftf\-flt-f)7-,-E-t- I-!'\-{ F-€ Hfi(~L+ - --- -- -- ----------- ------- -------- - -- -- ------00&&------
LIST INCLUrF TLACBlD7 OOOq
LIST PHASE' FCDBOLOP. ,r:.LIFlIFcnnOL} 0010

-li-5-T- - -fNt-l:l:IftE- -llAt:BH7h-- ------- - - - -- -- ------- -------------------- - ------------OOH---
LIST PHASE FCOBOl10,CLI8(FCnpOL) 0012
LIfT INCLUOF ILACFlLlO 0013

6 ---lI-S-T-- ---PHA-5f FC-flftOl--l-r-,-CH-s-t-FC--f+F;{l1:. r-- --------- ----- ------ --------- ------OOI~4~--
LIST INCLUDE IlACBL12 0015
LJ~T PHASF FCOSnLll,CLTBIFCOPOL) 0016

1 --l-I-5+-- INCLU9-F ILACIlI::-H-- --(l&-l-'1-- --
LIST PHASE FCOBOL2D,PHOCOPVIFCOBOl) 0018
LIST INCLUDF ILACRL2C 0019

8 ----l-fS'T-----PH-_S E F COflOI=2r-,-P-II0COPY (FCO-P.-e\;-t-- 0020
LIST INCLUDE ILACRL22 0021
LIST PHASE FCOBOl21,PHOCOPV(FCOBOL) 0022

9 ----H5--T- --IN-GtHflE JLACBL 21 0023
LIST PHASE FCOBOL?5,PHOCOPVIFCOBOl) 0024
LIST INCLUD~ ILACPL?~ 0025

o-~- PHASE FC8BOL30,PHOCO n YIFCOBOLI 0026
LIST INCLUQF ILACPL30 0027
LIST PHASE FCOROL40,PHOTBOICIFCOSrL} 0028

11 LIST INCWfl.E- ILACBL4C 0029
LIST REP n07612 0014000 0953
LIST PHASF FrOPOL50,PHCTBDIC(FCOfOL) 0030

12 LIST INCLUDE ILACH';;(? 0031
LIST PHASE FCnSOL51,PHOTBDICIFCOPOL) 0032
LIST INCLUDE ILAC~L51 0033
LIST PHASE FcnBou,C',pI-!OTBI'lTC(FCOBOLl 0034
LIST INCLUDE IL~CBL60 0035
LIST PHASE FCOSOL62,PHOTSDIC(FCOBCL) 00~6

14 --l-I-H- INCLUOE - ILACBL62 0037
LIST PHASE FCOSOL63,P~OTBDIC(FCO~OLI 003~
LIST TNCLUrE ILACBL63 0039

.5 LIST PIIASE FCOBOL64 ,P~:OTBOIC(FC(l!,OLl 0040
LIST INCLUDE ILACBL64 0041
LIST PHASE FCOSOL65,PHOTBOICIFCOBOL} 0042

~ LIST INCLUPE ILACBL65 0043
LIST PHASE FCOBOL61,PHOTBDICIFCOeOLl 0044
LIST INCLUDE ILACBL61 0045

n LIST PHASE FCOBOL70,P~OTBSTIIFCO~Ol) 0046
LIST INCLUDE ILACBL70 0047
LIST PHASE FCOBOl80,FCOBOL 0048

18 ---t.-IST INCLUDE IlACRLBO 0049
LIST INCLUDE ILACBL£1 0050
LIST INCLUnE ILACBL~2 0051

1~IST INCLUDE JLACBLB3 6052
LIST INCLUDE IL_CBL~4 0053
LIST INCLUDE ILACBLB5 0054
LIST INCLUDE ILACBLB6 60~5
LIST INCLunF !LACBl87 0056
LIST INCLUnE TLACALB8 0057
LIST INCLllDf IlACBlB9 6051'>
LIST INCLUDE ILAC~LB~ 0059
LIST INCLlIf)E .JLACAL8f1 0060
lIST INClUDE IlACBlBE 0061
LIST INCLUDE ILACBLPD 0062
LJST AUTOLINK IJJCPOIN
LIST ENTRY

Directory 265

Licensed Material - Property of IBM

r'\-{/,sr YF~-f [I LC'CP~ f: L'Tcnp~ D~K-~r: F~ r, TYPF L~"c L LnAI'1f't1 RfL-F~

Fer-H[L 0'7<' f-' () P7['F7t, O~~[''I7 021 03 (ll CSFrT JL Ar ~l l(\(' Q7Df'7f. 07Dft1'fl P.£'LOCATA-SU:

(<;I=(T TLI\CRLOI OPl(lRf ORIM!'
.- ---- . . -

C~FCI p1-I0<;rCT2 07F81C (170878 .. c~'T"Y STAPT 07FR 1 ('
-- - -- ---

r:SFcr T ,IGWINZ1J C7F0!'8 07('l87P
fNTRV IJGWlNZ7. 07F058

",. f-NTRV . J Jr.W7 7'7 Z- fl7F-(lS e

* FIITRV T J(,~r711 Z 7 (l7F(l"~

'" <NTP.V T ,lrWZ7ZIJ 07F05fl

'" . FNTP.Y -I,IGWZ1UtJ- 07F05!:'

[SECT TJJCPf'0 07F4E8 (17D878 ILACBLOO
-- "-NTJ'.V -.. I.IJr PDo-M (17F4,-A (Phase OO)

* _NTOY 1 JJC Pr>l C7F4[,~

<NT~Y T JJC PI'12 (l7F4ff)
FNlR-V- --T-.!.fC"~'3 --{)7F4Ff -- -- ----- -------

* ctJT~.Y TJJrpnHl 07F .. ~13

f.~'E-f'T t>1'WTRSTl- -('l7Fft-l.fr - -{,7f.l'8-7t1--- --- -- - -- _ .. _--

r:~"(T Tf.,1II>T" CR(131~ 07[\871'
-- ---- ------- - - ---.- ---- ----.-

(SEC1 PI-IOTP:-lTC rp(171(; 07DP7f1

C~rf.-r -- PI-I-j)Cf-I>-V- ()fflAf--f'----fl7f}f.''ff; - .. _- . ---- - --- -- --- --- --

CSECT CUP- 08('\"(10 nOfl?!'!
- --- ------ .- -------- - ---- .-

r ~,t=rl "Hr nl (, C81(1RO 07f'B78

t7H"" ('/'('1> - - -f'R ce-A tl - ---ft"i-ef- "c- - -------- - -----

rS'7rT r .I7Mrr44 ['IR2Qt-f) rP,IOPR
--- --- -- - --------- -------- ILACBLOI

CSr-CT r ,1"W1NZ Z 0f';>Ql'fl OR10[tI (Phase Ol)

- (-S-F'!'- MfU"lH} ------{,P2'f'-'lf+--~fHt~---------

c!,rCT ILAnr'? ('P?~"P nfl 1 01.18
--- - ---.-- -- -------- - ----- ----

.::r{ :'!'Lf"r (·r· 1 f 1'- rtf (.r : i' r f 4":<.(11 O:?l pp C(-' C~ECT Tlt-CPU!" (IQ(,n(\r ORO[\(,(' ~FLnCAH-F'lF ILACBLOS

F('1<-"_;I'16 r'F:\f.) ,~ 0F-(~r,"":() ()Plf,rlG 021 (lb (1;> C~f(T JLH-"1:(}6 Of-flf'N'I (l P f'H\f,o- - ftFt-f.\€ A HI'H- - -- ILACBL06 - -

F CP?r',L(7 r~t.(~:l"t (.pr (i'C' PQ?ll7 071 OC (lJ C~~\.T !t~r<Lr7 rllnr,('IO ORO{lOO Q,FLnCATABLf- ILACBL07
- --- --- --- - -- - ---_.-

F rl'Rl Lr,;- r f (~ 14 (l~ 1\ r: (\ (: N·;·f,'17 r?l Gn f.l C~·r.T lLArol0~ ('['«"'(10 oenfl(,,['1 RFL0CAHflLf ILACBL08

266 section 4. Directory

Licensed Material - Property of IBl-1

'-, 1/1:;,:- '(f-r _I. r' Lr ([«': ~I T rpr,! r::',~-f-"'" r- ~ ~ Ty"r L" (, rl L:' f. "",!= [. R.cL-~R

c: (" r" r.. f'L 1 r (,\0 (I' ~ (' .' l .- \ (, ('f't::-::::C.-\ 021 nF- P1 [<OfT 1 L f J (1 fiF (·P(1((If,;[\(-(\ I':FLGfATpoLf

" rNTC'v nl.' 1/1 (-n,,1?

(~ f r T ILl !(.? ("'1 b(f. (!f+(-P(°C'

UFCl I I t-l(j (,-" ~"tr i' I'Pc;oro

C <, tel 1L A 1 (4 rf2rrf' r,p-nrw(1

":C"-C(l TI rt 1 ("oC:; ('f3j:4r~ f1Pflf'00

C ',[-eT TL ~ 1 (,.. {' ~ '~r:"i C or onl'O

(" c;!: (T IL:lf,'l rf'.5rrr (FeG(r ILACBL10
(Phase 101

r<FeT lUll " ("'~lF() (: R lI[tf' (,

C~ r(T TLtlCr? rf'~r.c.r OeCN'(\

r < to TLf.l('o 0Pl:]r-n nroorn

r.~. to (1 1 L~]('('6 P6t,f;~'e (' '\or>en

C~: (T Itf.l H' rr74ff' (:«(lrrfl

C~["LT IU,lll (;f-7C. Q O (R(1[':C1O

C::fCT III 117- rr?f'~~n- -f'f<f:N'O . - -- - - --

c cr': :. '- 1;' (' (, (,[I - \~ i' (,,: (' (I?; L,A f- r?? (\ (~ (.] f': ECl TL'1(,J t1P0[J[d'l 01'0P('(\ PFL(lCA1A'ILE
-~ fN1QY P~lP ~I\,I ('1'(,[,1 "

C~~CT II ,t] n;: onA! (. OCOD0(,

CeFn lLt,1(~ OQ?3f<:' O'1(;D(1(,

C,Fn 1 Lt 1 ,-4 (, i'? 130 fJI'0r,(1(l

«OCT ,I Al (' t:, O:'?o.70 OPODflO

C' t (, T TLfllCt, OPL7fl0 OBDrc'o

CSt CT lUH'7 0f"'~-F 1 r {lp(If'('(l

C,'CT IU 1('P r,pc:::nr0 (20['''0 lLACBL12

(<'[CT JL ,\1 (10 nFC\?~)B ('8npro
(Phase 12)

C~ Fr,l HAlle f!~,t:,,'='CQ fJ-tO!)C'('

r ('f C:1 lUll] c' e f,(, 1 (\ 0800,0

C~~(T TLtlllA (\P79F£ O"OD(\O

C~; FC T lL~lI? nr,,(P6F l'fD[H'O

Co Fr1 !Lf~1~1 ri',f6U, oenper

U~CT lLAll4 r~"PAOr. (,Ptlnf'r

Directory 267

Licensed Material - Property of IBM

Lfift"~f1 PFL-FR

c: ((,!'" L 11 1'£1 ",' (\ t 11.1 ('0 (~ ?h3J oi"2 ('~. 1'3 -CSFr1' tLA 1 rr' (H'O!i('() OBON'!' P.LOCATIlf\L~

C~FrT J L,\l(,l OR15Rn fJPODnO

* r:NTPY Pfl1F- O?l"f.'Cl

C~ECT IUle? (If\?l7° 08f10{lC

C~IE(T lUf", 0"7-.6 1 P, ('RCOOO

CS~r:T JU.lr-4 (ltl?-~,(')tl Of10Q()O
:o.ACBL11

C~r-Cl TlhlC'i nf141flfl OROOOO (Phase 11)

C~EfT Il A 1('" (lR4"30 080N'O

CSFCT TLIIl!'7 (,f':-4lP {l80rWfI

('>FCT lL~lr,.R Oll627R 0800('0

eSECT 'ILII 1<'" (IF<7141'- '0 POl'lO (l -- - ... ~ - .-

C~,FCT 1 l/, lC'A !1G71CO oeCloon
-- - ._ .. -- --- ----

!=cr.or'L?C PFe t-r t. (1'C "r(. C"117F 022 OA (' 1 C~Fn ru rJ.' L20 ('GOAEO !'8()A"'0 RELflf:ATARLf

€~F.CT -- - - -H-,o\;>'O - OR-e-t-f'f'-- ftttfrAHJ- - -_.- -------- - --_. --

r~FCT TL~21r !,POFcn 080A[-0
------------ ---- ._--- .---- -_.- ._------- ------------ -------- - ------

C~rCT TI1I7(o2 ()81C70 fl80AE:O

-- f.~.Ff-'f-·· - ftl<;>('3---· - ·lTl1-?A-A-e - -f}-8{'t-A-FO --- ------- -------- ---

C~",fT ILA;>('4 (jfl3400 080A"'0 ILACBL20
- ---- -- -- .-- - .- - --------_ .. __ .. ~ .--_. ~---.-- ------~ - - - (Phase 20)

CS['(T TLA?(,~ r,;J3R£lfl 01l0AO::O

OPI.OCIl 080AEO

CSECl !LA 7L8 (\1l5(l90 080A"'0

eSf'AF(l------- - --.-

CS[CT TL~ 702

H:1\?f'':I-.- %Z-&-M)---flPfrA-H\---'--'--- -..... --

C5FCT 08;>Bfln O!'OllfO

'C~EtT-
-ILACBL22
-- (Phase 221

084'.1<P. 080A"0

I LA ;>07 r'34F9S 080AtIC

C$FCT

268 Section 4. Directory

Licensed Material - Property of IBM

?l!t,~r' xr~ ~_An Lflr 1::- ~"1 rf"lq r n~~'_~r"'1 J:<::!", Tvc>r L ~ F ' L LIi6:"'rn "EL-FO

~ C('"(IL,, 1 (.... , ;, r r.((' , r (\ (1/: 0 (.;....1- ('2? 1? f'1 r:~FC1 (l[, f) ~ F ~ I1FIJA~(, r,f_Lr.CA 1 '.'lU

r: C',r- fT '-)r f·r f.? ('IO('A~P (l~(ll\(:..O

C~,:- r T ~. p!. r! ; rn"'r-n O1'0A :-r

* l t...tTlly I"~':' c. ('~]., 1,('

C r.;rc T Tur'" r-,
''-' i

rf~lr,?l".I nllrAr f'

Cf",r:CT T 'J~: ? (J Of?]4f OfIJArr

("S~r:T Tv~~r'4 ,-, q ~ ~r'~ I i\f'(1A~ r

C~r,CT ltA7rI f't.:;:'C"ICP nrr'Aor
lLACBL21

(SECT 1 Ll,;->f,' ('j.,)"l.l r ll OfGA""O (Phase 21)

C~FT I Li-..;'P' n[(~7~n Cl6lHFC'

C src 1 ~ ,.,":"'t 4- 0h4;>7Q. OI<f1Aro

UF:n Il/?r', ('~4CAC "Beller.

c~rfT 1 Lt,;,r" (1f'~A 7fJ ORnAf-C

C S!:C r I Lt,:.'l -I (' ~ t..') ('(, OFflAr-n

C< FC1 r f" ','rr n f Of'/-.P4IJ f'lP'IJAf-C

r~Fn "'1I"'(;~'\i (!R"7f"\4~ ()Ri!AFO

C !"f:"'CT "1-'?r.r,["1 0[3('7"('\ flflOA I n

cU'''::L?': r c l 1r f'ol f rf ("":(;04 ('73 C4 81 CCC'(l TLJ\~,r 1 0f«" "1' OROAf{, PI;:LOCAl M\L~

* f NT~V ~H/. Sl-:";:' r.R] 21 P

ILACBL25
C~ECT 1 L~ :'~<? ()81"41' "f<IJ~F(' (Phase 25)

C5~CT TLA?~A 0[.1(\80 OAOII"(1

FrrJl-Wl "0 (,r,,?rrp (;;.(' A ~-r; rf':.F5 P (',n 05 [oj u:rCT TLf ('ll,fl ('B()~Fr (,~L'fd::0 q~L(1U TA[ll[-

C~F(,T IC""01 0f\1?lfl OI?r:A'-'(

i
CSf r.T TC(''',(,7A r"lF7'~ 0Rfl-A!'O

lLACBL30
(Phase 30)

C"<=CT 1 r- ~\ ~ 0? 05?f'f'P C'P.0AFO

C.~t:CT TJ: ("'?""3 (0,3"10 C80A ,,'0

Directory 269

Licensed Material - propertY,of IBM

D!- A (" r XF' -I.f' t (C"F r- hTcr·l.I !" n< V-f[f"t"p TYPO LI ~"·I. Ulr.f'f P "fL-FR

Fcr:':'lld r" t.< ~ -: i, f flfO"IH' ('r-:~·? A F f\2?- "7 0" {'~~r:T T L ~ rr'l4~ (1f{(7J(1 Of'0710 !~rLnC~TJ!F>U

c~r('1 !l.~Cn4r. 0 f , 1 '1["3 OP07Hl

C!:<:CT JUr.!'L4C C!37!'30 OA0710

CSI-('f TltC"L4!) {\P3~"0 ('1'0710

r~,rCT J LA(!'L4t:: (}; L.~p.p CH0710

("reT TL A cr· L4 f, CP4 0.PO C'P0710

C~FCl Tl~r<'L47 (H1&:(\CjR 0807-10

C~f':"T Tl~r"L4~ rpSF3~ O~(>71(\

c~rcT TLACFl',~ f'of!f,4AP OflC710

r~'CT ! Uf-f't;-4r, ('PUff;' OflfT710

CSECT lLfr.~L4S ('r7~'~ Of 0710 *. F~IFY -PPTNll 'Oef74~

C~FCT

FCP~,r L"0 (;~, 1 ;'" ("1f..71\. flPfI(JAF 0:.>3 OF n~ CSff. T 0ro710 O~071{\ R~LOCAT~BLF

(SECT (,I'l/)Fil Ofl0710

"ff'i;.'~f'''l' . -·Nt-21-2'l---~-- --------.--

c~rCT

C<;ECT Ofl4FHIl (,B0710

£~f.c-T '

CSECT lr..0~,r'p OF!6?7fl (,!A071(1

01'6.70 0(\0710

-~H;t-"----, ;~f'f-- ---f\-P-7C"-e-- Of\{."'H{l----,-- ,-,--.

CSH.T 0!;1l970 (lf0710

('5<:CT (1'1 0 370 01'0710

210 Section 4. Directory

"ILACBL40
(Phase 40)
,,--,---

lLACBL50
(Phase 50)

Licensed Material - Property of IBI-l

PHASF XFP,-H' LOC('f,C' 14ICORF DSK-AD

FcnS0L51 089140 OPO?10 oPtlQR 024 01 03 CSFCT OP('71G 050710 RELOCATA8LF

3 ---- --.------------ ---- ----- ---- ------ -- ---.---- ---- ---e'~F-£l- ------{-~f'S-- {}t'-l'i-f;-t'-----f'f\iTTt-O-------- ----- --- -.--

C5FCT 031748 (,,80710
4 -~- -------- ---------- ---- -_ .• - ----,-----.------ ----- - --- ._- -~-- ---- ----------- --- -------------- - -_ ... -

C~ECT O"27?R OR0710

---.- -- ... - - --- -- - ----- ----- ------- -- .. -- -. --------- - -- -------e5Ff-'f----fff~ ('I:- -- - -Of' 2"""[1-1>- -f\"R-fr-r-rft--

CoFCT OP3~7i) O~0710
:5 -----.- ----

(;841413 oe07l0

7···-- - -------- -- _ .. --.-------.------- -"----- -------------- - (-<"-1"101---- - -- - -lH'-'Tf'+t-- ----UB4',A fl-. --68ft7-J:-fT- ---.--

3 -- - - - ------- --

CSECT OrAl?0 080710

l-- - - -{1ft-f"Ff' --i1frG-1'-HJ -- - - ---- -- -.- -----

CSECT 0R75Ff. M0710

UFO I¥F<;('V ('87rC'8 080710

1 --_.

CSECT IFo~rq 08PA~n 01'0710
~ -_ .. _ .. * - H"TR-Y-- P"'''S-F'i -- -- Gf<>i·4.G-·

CSFcr T~G505 (l"92H' OR0710
3 - --- --- --- +-----

F(O'lnl6C 0,9(\7?4 r)R('llCi 011[,59 0 024 OF ('1 (SECT IUf P L6r CP('l71C G[,(,>710 "FLOC ATAPLF

---C5-ECf --H:h+D;;: - - (1-"-l--"-6-'l -- -01"0710 ~ -,. - -

(5FC'T I U f,r, Of:~2?08 (,(,07IO

!L~604 0113028 0(1(\710

C5ECT IL' "('5 CA3E':'t-' Of'0710

(SEn ILA60~A 08"'",\((,PC'7]0

(SeCT !LHf'6 (,P<;",Q8 0"'0710

TUl:r'7 OR64(,R M0710

«,IOcr TL~H'8 Oil??C;!' 0<:0710

-

ILACBL51
(Phase 51)

ILACBL60
(Phase 60)

Directory 271

Licensed Material - Property of IBM

PHISf XFR-An LOC0KE HJtP~r DSK-AD E!:D TYPE LARrL LOADEO K~L-FR

FcnpnL~2 0P"7?~ "P071C ()R4!<F7 fl?4- flO (!4-fSErT

CSFCl ILA6?2 OPl?7P 080710

CSECT (l!HF!.'8 080710

C<;fC1'

CSECT TLA(2) rJS2D70 0~0710

CSFCT (If\3C90 Ofl0710

- CS-FCT-- - IUI6-'?i'--- ---oe41.3-R--fff.!-O'HO

C~ECT

r5?R7b 024 10 (13 CSE'CT

TLACRL64 060710 080710 R[LOCATABlE'

CSECT TlAf>44 OFIRAO 0(10710

CSFCT TlA64'i 0826CO 080710

---€S-F€l----I-t:-M-47'5-- -f\fB4l-f\--~ -------

CSF.CT rU.046 OR3Dr-R 080710
- ------------- -------------------

CSE'c-r ILA647 084"C8 080710

- -- - --- - -C-5-F£l- - - - ---It,w,-lrf<- - --e-f!-5-Mft- --efl-6'1'-t-e---------------

FCCRrLh t OP07~7 ORn?1" nrlCRO C2~ 01 0- CSFCT lLAf>'i) OR0710 080710 ~FlOrATABlF
-------- ---"*-- ----E'N-l'P.-¥---PI-I" Sf-Ir5--- -4)-f>~

cseCT JLI\6~? 081161' M0710

(Sf(T CR1590 (;11(\710

- C<;-fi'.-T-- - --'f-U6"-4-----B'H0M- -~-e-------

lLACBL62
(phase 621

ILACBL64
(Phase 641

ILACBL65
(Phase 651

FcrScLh) t"tH'72;- (1[-(:7)(' C'P?,)FF n?5 02 no- eSE'CT tLAAIOl 0110710 0'-'0710 RHDCATflf3lF
---} --ILACBL61

CSFCl n~6103 ('IFl3FrJ 01'0710 (Phase 611

-f:SHT HAf;-l{fi.'- - OEH'm{j- IWG'H:&----
_ _ _ _ ___ 4 _______

272 Section 4. Directory

Licensed Material - Property of IBM

PH{.~, r: XFQ-M u,r,f r; f- f TCCIl,[" D~K-AC Esr. TYPF l ~ f' ! L Lr,vlH' 'l,FL-r'"

FCflr;nL7r 07~r"C (17Ff'4fl (F'HAtr (~? ~ 0'" l'1 r~:,r {"" T ("7F24:i \'7F~48 P,FLPc /lTARLF

C~~CT JIJ(r'L 7p (l7Fo4'1 -07Ft<4P

r",f'rT 1 Lt,7('.2 CIP("IhAC' i,17FB48

[,O(T 1It712 ("" 1',30 07FRl, n
ILACBL70

CSPf T 1L'7n f' f; ""0(7 ()1Ff48' ' (l?hase 701

(SUT TL!\,r O ,,<'U,[f'7F8413
- .-- - --

C,OCT TL,\71" ("'Ii to. /I. ·(C 071'-848

, ('1'0('1 -h,f'"(- (''11\['1] tl t'7F!"i.[,

FCnrrll.fC (,,7f" -'f' e 71 r'7P l f'/ q7r: r 25 ,oc C1 r~~CT rcnFf)LQr. r7p"7Q n-rI)R7R R<:LnCHAHLf ILACBL80

c,reT rrSC,~t\ 07J:nr;) \~7Frf10 ILACBL81

E.oFCT- H'V,CA~I ' Deono" ,0 ft10(T() , " ILACBL82

CSIO'CT f)AT~,CHJ 01'0(60 01'0(60 ILACBL83

C~r:\T pr.::CS(,AN 0f>Ur:q Of:l11l.F8 ILACBL84

CSE'CT ~~(',Wf', fTF (!~4fr9.-e (:I'Af)f<O ILACBL85
["IT~Y F ['0 H:D[lT rClt~13C

rr'-JTR. Y rr'~nt!EUF 0['l~30r

CSECT FJ P"VT 07[)"[IC 07[,)c['lO ILACBL86

O,H,T 'U'KU'PY - rnPi 2f' 07Fl-ze-- ILACBL87

(SECT C"'~,r:L 'lL5' 07F??P 07FL?e ILACBL88

csr:n c;r-lt.JUQ.D 07<=6"P 07F('.f!R ILACBL89

C~fCT --{;fTl fNE o 7F4,\1) 07P43fl ILACBL8A

(SECT PtJTLTNf r7Fo,f'P 07FPP8 ILACBL8B

C~ECT t.,~r.Ht\!!)L~ ('7FA1S 07FA 18 ILACBL8C

U'fC"f VEP.F.CHK-- {;7FeA R 01'1"C6B' ILACBL8D

CSECT I .',I(~ POIN C'!\4<;ER OP45E:8
fNTRv -LlJC.ppj' Of\45F8

Directory 273

Licensed ~aterial - Property of IBM

SECTION 5. DATA AREAS

COMMUNICATION REGION

This chapter lists and describes the different cells that form the
Communications Region (COMMON). COMMON is resident in storage
throughout compilation as part of phase 00. Its format is defined as
DSECTs in the rest of the phases, and therefore each phase can refer to
any cell in COMMON by name: Much of the information saved in COMMON by
phases 10 through 51 is used by phase 60 or phase 62 to form the Task
Global Table (TGT) and Program Global Table (PGT) of the object program.
The TGT and PGT are described in "Appendix B. Object Module."

Cell
COS

TIBO­
TIB35

APRIME
AINSRT
ADSTAT
RELADD
TAMNAD

ACCESW

AMAINF

ALSTAf!

LOCCTR

No. of
Byte§

12

8
each

4
each

1

3

4

4

Displacement
Hex Decimal
000 --0-

OOC

12C
130
134
138
13C

140

141

144

148

12

300
304
308
312
316

320

321

324

328

Purp~
Phase 00 initialization coding.

T~ble Information Blocks (TIBs) used by
TAMER (see "Appendix A. Table and
Dictionary Handling"). TIB20 is
reserved for the DrCOT table, and TIB30
is reserved for the HASH table. The
rest are assigned to various compiler
tables throughout compilation; one TIB
may be reassigned when the table for
which it was used is released.

Address constants of TAMER used by the
phases in table management requests.

ACCESS initializatio~ switch (see
"Appendix~. Table and Dictionary
Handling"). X'01' if DrCOT primed.

Pointer to the main free area for tables
and the dictionary. This is also the
address of the beginning of the HASH
table. Routine ACCESS uses this field
to locate the HASH table (see "Appendix
A. Table and Dictionary Handling") •

Pointer to routine TBDICSPC, which
obtains space for a new dictionary
section (see "Appendix A. Table and
Dictionary Handlingll) •

Contains the relative address of the
next location available in the object
program. It is initialized by phase 00
to the lenqth of the INTT1 routine and
incremented by phases 21 and 22 as they
assign locations to data, and then by
phase 60 or, under the optimizer version
of the compiler, py phases 62, 63, and
64 as they assign locations to the
global tables and procedure
instructions.

Communications Region (COMMON) 275

Licensed Material - Property of IBM

Cell
PROGID

LABELS

PRBLDISP

PNCTF

GNCTR

J

VIRCTR

LTLCTR

WCMAX

TSMAX

No. of
Bytes

B

2

2

2

2

2

2

2

2

Displacement
Hex Decimal
14C 332

154

156

15B

15A

15C

15E

160

162

340

342

344

346

348

350

352

354

276 Section 5. Data Areas

Purpose
PROGRAM-ID from the Identification
Division of the source program. It is
saved for use as the CSECT name of the
object module. If the program is
segmented, the name is the CSECT name of
the root segment, and its first six
characters are used with priority
numbers to name the other segments.

Contains label information.

Contains displacement of beginning of
PROCEDURE BLOCK CELLS in the PGT.

Used in phase 11 as a counter for
assigning unique PN numbers to source
program procedure-names. In phase 60 or
62, it is set to the displacement of the
PN field from the beginning of the PGT.

Used in phases 10, 11, 22, 40, 50, and
51 as a counter for assigning unique GN
numbers to compiler-generated
procedure-names. In phase 60 or 62, it
is set to the displacement of the GN
field from the beginning of the PGT.

Used in phases 50 and 51 as a counter
for assigning unique identifying numbers
to virtuals (names of external
procedures). In phase 60 or 62, it is
set to the displacement of the VIRTUAL
field from the beginning of the PGT. It
is initialized to 1 by phase 00.

Used in phases 50 and 51 as a counter to
save the number of literals. In phase
60 or 62, it is set to the displacement
of the LITERAL field from the beginninr
of the PGT.

Set by phase 50 to the size of the
largest work area needed by any COBOL
library subroutine. In phase 60 or 62,
it is set to the displacement of the
WORKING CELL field from the beginning of
the TGT.

Set by phase 50 to the maximum number of
double word cells needed for temporary
storage at execution time by arithmetic
statements. In. phase 60 or 62, it is
set to the ~isplacement of the TEMPORARY
STORAGE field from the beginning of the
TGT.

Cell
TS2MAX

ODOCTR

CKPCTR

SBLCTR

VLCCTR

BLLCTR

SEQERR

DICND2

DICND1

No. of
Bytes

2

2

2

2

2

2

2

4

4

Displacement
Hex Decimal
164 356-

166 358

168 360

16A 362

16C 364

16E 366

170 368

174 372

178 376

Licensed Material - Property of IBM

Purpose
Set by phase 51 to the number of bytes
needed for temporary work areas by
nonarithmetic statem~nts. In phase 60
or 62, it is set to the displacement of
the TEMPORARY STORAGE-2 field from the
beginning of the TGT.

Set in phase 22 to the number of
O-routines qenerated to initialize an
item in Working-storage or in a file
containing an OCCURS clause with the
DEPENDING ON option. A Q-routine is a
subroutine which, at execution time,
calculates the length of a
variable-length field created by the
OCCURS ••• DEPENDING ON option, and the
location of the variably located field
which may follow it. It is used in
phase 60 or 64 to set up table QTBL.

Set in phase 21 to the number of
checkpoint requests. It is used in
phase 60 or 62 to allocate space for the
CHECKPOINT CTR field of the TGT. Phase
60 or 62 sets it to the displacement of
the CHECKPOINT CTR field from the
beginning of the TGT.

Used in phase 22 as a counter for
assigning unique identifying numbers for
secondary base locators (SBLs).
Intermediate and final values are stored
in SBLIMX. In phase 60 or 62 it is set
to the displacement of the SEL field
from the beginning of the TGT.

Used in phase 22 as a counter for
assigning unique identifying numbers for
variable length cells (VLCs).
Intermediate and final values are stored
in VLCIMX. In phase 60 or 62 it is set
to the displacement of the VLCI field
from the beginning of the TGT.

Used in phase 22 to assign unique
identifying numbers to Linkage Section
base locators. In phase 60 or 62, it is
set to the displacement of the BLL field
from the beginning of the TGT.

Count of source cards whose user-written
card numbers are out of sequence. Set
by phases 10 and 11, and used by phase
70 in error message processing.

Dictionary pointer for the last
dictionary entry made in phase 22.

Dictionary pointer for the last
dictionary entry made in phase 11. If
the UPSI feature was used, this cell
contains instead the last dictionary
entry made for an UPSI item by phase 22.

Communications Region (COMMON) 277

Licensed Material - Property of IBM

Cell
WSDEF

ERRSEV

DICADR

DLSVAL

DICPTR

DCPTR

RPTSAV

SA2CTR

LCSECT

RGNCTR

ERF4SW

PTYNO

No. of
Bytes

7

1

1

3

2

2

4

2

1

1

Displacement
Hex Decimal
17C 380

183

188

18C

18D

190

192

194

198

19A

19B

387

388

392

396

397

400

402

408

410

411

278 Section 5. Data Areas

Purpose
Set in phase 22 to the last seven bytes
of the Data A-text element for the
working-storage Section address
definition, which gives the first base
locator number and the length of the
working-storage Section. When phase 60
assigns permanent base registers for
base locators, it uses this information
because it assigns base registers to the
working-storage Section first. When OPT
is specified, this field is not used
since base registers are assigned
differently.

~ Bytes Meaning
WSSTRT 3 starting address of

working. storag~
WSBL 1 BL number assigned to

beginning of the
Working-Storage section

WSSIZE 3 Number of bytes occupied
by the working-storage
Section

Set by phases 21 and 51 to the highest
error severity level encountered in any
phase.

ACCESS communication cell (see "Appendix
A. Dictionary and Table Handling").

ACCESS communication cell.

ACCESS communication cell.

ACCESS communication cell.

Set by phase 10 if a Report Save Area is
needed at execution time. Used by phase
60 or 62 to determine whether that area
should be set in the TGT and then set to
the displacement of the REPORT SAVE
field from the beginning of the TGT.

Used to save register 14 in declaratives
for return.

Contains the length of the object module
CSECT.

Set by phase 60 to the number of unique
GNs or, under the optimizer version of
the compiler, set by phase 51 to the
number of GNs requiring an address
constant cell in the PGT.

Switch used by phases 60 or 62 and 64,
and 70.

Priority number of current section.

Cell
COMMAD

AMOVDC

SDSIZ

SEGLMT

CURSGN

DATABDSP

INDEX1

IOPTRCTR

TS3MAX

TS4MAX

FLOWSZ

RPNCNTR

AGETALL

IDENTL

No. of
Bytes

2

4

4

1

1

2

2

2

2

2

1

2

4

4

Displacement
Hex Decimal
19C 4"12-

1AO 416

1A4 420

UB 424

1A9 425

1AA 426

1AC 428

HE 430

1BO 432

1B2 434

1B4 509

1B6 510

1BB 512

1BC

Licensed Material - Property of IBM

Purpose
Contains a comma followed by a decimal
point. If the DECIMAL-POINT IS COMHA
clause is specified, the order of the
two is reversed; that is, a decimal
point is followed by a comma. This is
set by phase 10.

Address of TAMEB routine MOVDC. Phase
30 uses this cell.

Set by phase 22 to the size of the
largest SD entry in the program.

Contains the priority number of the
highest numbered Procedure Division
section to be considered part of the
root segment. Set in phase 10 to the
value specified in the SEGMENT-LIMIT
clause or to 49 (hexadecimal 31). If
phase 11 finds that the prograru is not
segmented, it is set to hexadecimal 'FF'
as an indication to later phases.

Set in phase 10 to contain the literal
specified in the CURRENCY-SIGN clause,
and used by phase 20 to recognize this
literal.

Contains displacement into DATATAB. Set
by Phase 25 for use by Phase 65.

Numbtr of index-names defined in INDEXED
BY clause. Set in phase 60 or 62 to the
displacement of the IND field from the
beginning of the TGT.

Number of input/output pointers
resultinq from SAME RECORD AREA clauses.

Set by phases 50 and 51 to the number of
bytes needed for temporary storage for
the SYNCHRONIZED option.

Set by phase 51 to the number of bytes
needed for temporary storage by table
handling verbs.

Set by phase 01 to the number of traces
requested for the flow trace option.
The default is 99. Used by phase 65 to
fill in the Debug table in the TGT.

When OPT is specified, set by phase 51
to the number of PHs requirip-g an
address constant cell in the PGT.

Address of routine GETALL in phase 00.
This is used by phases 60 and 61 to
obtain all available table space.

Set in phase 60 or 64 to the relative
location of' the first executable
instruction.

Communications Region (COMMON) 279

Licensed Material - Property of IBM

Cell
BLCTR

VNCTR

ONCTR

PFl'lCTR

PSVCTR

XSACTR

XSWCTR

PH6ERR

No. of Displacement
Bytes Hex- Decimal

2 lCO 448

2 lC2 450

2 1C4 452

2 le6 454

2 lC8 456

2 lCA 458

2 lCC 460

2 lCE 462

280 section 5. Data Areas

Purpose
Used in phase 22 as a counter for
assigning unique identifying numbers to
base locators for files and the
Working-Storage Section. In phase 60 or
62, it is set to the displacement of the
BL field from the beginning of the TGT.

Used in phase 40 as a counter for
assigning unique assign unique
identifying numbers to variable
procedure-names. In phase 60 or 62, it
is set to four times the phase 40 value,
which equals the number of bytes
occupied by the VN cells.

Used in phase 51 as a counter to assign
unicrue identifying numbers to ON control
cells. In phase 60 or 62, it is set to
the displacement of the ONCTL field from
the beginning of the TGT.

Used in phase 40 as a counter to assign
unique identifying numbers to PERFORM
control cells. In phase 60 or 62, it is
set to the displacement of the PFMCTL
field from the beginning of the TGT.

Used in phase 40 as a counter to assign
unique identifying numbers to PERFORM
save cells. In phase 60 or 62, it is
set to the displacement of field PFMSAV
from the beginning of the TGT.

Contains the relative location within an
EXHIBIT or SORT Save Area of the next
area to be assigned. It is used by
phase 51 in processing EXHIBIT or SORT
and then set to the total number of
bytes needed for the Save Area. In
phase 60 or 62, it is set to the
displacement of field XSA from the
beginning of the TGT. (This counter is
used and then incremented, unlike other
counters which are incremented and then
used. The increment is equal to the
number of bytes in the Save Area used.)

Used by phase 51 as a counter to assign
unique identifyina numbers to EXHIBIT
first-time switches and special ON
switches. In phase 60 or 62, it is set
to the displacement of field XSASW from
the beginning of the TGT.

Used by phases 60, 62, 63, 64, and 65 to
indicate that an error message is to be
generated by phase 70. Bits 2, 4-7, and
9-10 are correlated to messages
ILA6003I, ILA6005I-ILA6008I, and
ILA6010I-ILA6011I. Phase 70 checks
these bits and if a bit is set to 1, the
corresponding message is generated.

Cell
RELLOC

GTLNG

VNILOC

VNLOC

SUBCTR

PARMAX

SPACING

PRBLNUM

CORESIZE

INDEX

FILSBUF

ADATAB

DATATBNM

OBODOTBN

NODECTR

PROCCTR

AMICTR

No. of
Bytes

4

2

2

2

2

2

1

1

4

4

4

4

2

2

2

2

2

Displacement
Hex Decimal
100 464

104 468

106 470

1D8 472

1DA 474

1DC 476

1DE 478

1DF 479

lEO 480

1E4 484

lE8 488

lEC 492

1FO 496

lF2 498

lF4 SOO

lF6 S02

lF8 S04

Licensed l'iaterial - Property of IBIvl

Purpose
Set in phase 60 or 62 to the relative
location, within the object module or
root segment, of the beginning of the
'IGT.

Set in phase 60 or 62 to the length of
the 'I'GT.

Set in phase 60 or 62 to the relative
location of the VNI field froril the
beginning of the PGT.

Set in phase 60 or 62 to the relative
location of the VN field from the
beginning of the 'IGT.

Used in phase 40 as a counter to assign
unique identifying numDers to
subscripted references. In phase 60 or
62, it is set to the displacement of the
field SUBADR from the beginning of the
TGT.

Set in phase Sl to the size of the
parameter area. needed for parameter
lists for macro instruction expansion of
some of the source statements. In phase
60 or 62, it is set to the displacement
of the PARAM field from the beginning of
the TGT.

Set by phase 01. Used for statistics.

Set by phase 62 to indicate the number
ot Procedure Block Cells in the PG~ if
the optimizer option (OPT) is specified.
Phases 63 and 64 use this information.

Set by phase 01. Used for statistics.

Number of index names.

Used by phase 01 to store the address of
SYSOOS buffer. Used by phases 2S and
6S.

Note address for first block of the
DATA'IAB table on SYSOOS.

Number of DATATAB blocks on SYSOOS.

Total number of bytes used for OBODOTAB
entries on SYSOOS, including the slack
bytes needed to align each OBODOTAB
entry on a fullword boundary.

Number of node counters.

Procedure-name counter.

Used by phase 21 as a counter for
assigning unique identifying numbers for
File Information Blocks (FIBs). Phase
60 or 62 sets-- the field to the
displacement of the FIB field from the
beginning of the 'I'GT.

communications Region (COMMON) 281

Licensed Material - Property of IBM

Cell
FSTCDNMl

SWITV2

TMCNTBSZ

CCBLOC

AMILOC

INTVIRT

LOCTMCTT

LISTERSW

Pt-lAPADR

BUFSIZE

DATE

TIME

PH7LOD

CRDNUMXX

DTFNUM

SDTFCTR

D'I'FNOXX

No. of
Bytes

2

1

3

4

2

2

2

2

4

2

1

45

4

4

8

8

4

2

1

2

2

Displacement
Hex Decimal
lFA 506

lFC

lFD

200

204

206

208

20A

20C

210

212

213

240

244

248

250

258

508

509

512

516

518

520

522

5.24

528

530

531

S76

580

584

592

600

25E 606

25F 607

260 608

262 610

282 Section 5. Data Areas

Purpose
Number of CCB cells.

Switch

Name Bit
COMPAT -0-
MRGBIT 1
CNTFDECL 4

Unused

Meaning
ANS Version 2
MEP.GE specified
Phase 11 found a
declaratives card.

Size of timer count table.

Reserved

Displacement of first CCB cell.

Reserved

Initial routine virtual number.

Start of timer count table.

Unused

Lister option switch.

Name
LSTRDECK
LS'IRCPCH
LSTRCOMP
LSTRONLY
LSTRPRC2

Unused

Bit
-0-

1
2
3
4

Meaning
Lister source deck
Lister copy deck
Lister and compile
Lister only
Two-column procedure
Division listing

COBOL entry address.

Size of buffers for compilation work
files. Used for statistics.

Set by phase 01 to the date of
compilation.

Set by phase 01 to the time of the start
of compilation.

Used ey phases 62 and 64 in sequencing
the object deck.

Used in phase 21 as a counter for
assigning unique identifying numbers to
DTFs.

Used in phase 21 as a counter for
assigning unique identifying numbers to
secondary DTFs.

Used by phases 62 and 64 to calculate
the relative address of DTF cells from
the beginning of the TGT.

Cell
DNCNT

VRBCNT

CURCRD

No. of
Bytes

4

4

2

Displacement
Hex Decimal
264 612

268 616

26C 620

Licensed Material - Property of IBM

Purpose
Number of data-names for statistics.
Set by phase 10.

Number of verbs for statistics. Set by
phase 11.

Contains the compiler-generated card
number of the text item currently being
processed. If the text item is a verb,
the high-order bit of CURCRD is on.

Communications Region (COMMON) 282.1

Cell
SWITCH

No. of
Bvtes

2

Displacement
Hex Decimal
26E 622-

Licensed Material - Prop~rty of tBM

Purpo~

Contains TP~CE, DEBUG, SYMDMP, and
Q-routine information.

Name Bit Meaning
SWTRCR 0 Set by phase 11 if TRACE is

encountered so that phase
40 will generate TRACE
coding at each
procedure-name definition.

DEtDSW 1 set by phase 11 if there is
a DISPLAY on SYSLST in a
LABEL declarative. Tested
by phase 51 to determine if
a call to subroutine
ILBDASYO should be
generated.

DSLDSW 2 Set by phase 11 if there is
a DISPLAY on SYSPCH in a
LABFL declarative. Tested
hy phase 51 to determine if
a call to subroutine
ILBDASYO should be
generated.

SPILL 3 Used if SYMDMP needs note
or point on SYS005.

~LDSW 4 Set by phase 11 if there is
an ACCEPT in a LABEL
declarative. Tested by
phase 51 to determine if a
call to subroutine ILBDOSYO
should be generated.

MQVAR 5 Set by phase 22 if it
builds a OVAR table.

LDECLSW 6 Set by phase 11 if there is
a LABEL declarative.

MOFILE 7 Set by phase 22 if it
builds a QFILE table.

SYMIPP 8 Set by phase 25 if there is
an internal floating-point
data item and SYMDMP is
reguested. Tested by phase
60 to determine if a
virtual for subroutine
ILBDTEP3 should be
generated.

SYS5TD 9 Set by phase 01 if SYS005
is on tape. Tested by
Dhase 65 to determine if a
WRITE UPDATE can be done on
SYS005 if it is a disk
file. If SYS005 is a tape
file, copy SYS005
information on SYS002 and
then recopy on SYS005.

SORTRTN 10 Set by phase 30 if the sort
RETURN verb is specified,
and used by phase 51.

RERUNN 11 Set by phase 10 if RERUN is
speci~ied, and used by
phases 21, 51, and either
60 or 62 and 64.

SORTSW 12' Set by phase 10 if SOFT is
specified.

Communications Region (COMMON) 283

Licensed Material - Property of IBM

PHZSW

PHZSW1

PHZSW2

PHZSW3

No. ,of
Bytes

1

1

1

1

Displacement
Hex Decimal

270 624

271 625

272 626

273 627

284 section 5. Data Areas

~ Bit Meaninq
NOFITSW ~ P~ase 70 must read SYS003

for R-text,since RRRTB~
exceeded 256 bytes and has
to be spilled.

DOPH7 14 Tested by phase 60 or 62 or
64 to determine whether to
call phase 70.

RDERRFIL 15 Set by phase 60 or 64 if it
did no processing. Tested
by phase 70 to determine if
SYS004 is to be read to
find E-text.

Set by phase 01 from the compilation
options. If the bit is on, the option
was chosen.

Name Bit
LIST 0-
LISTX 1
DFCK 2
LINK 3
SEQ q
FLAGW 5
LIER 6
ERRS 7

Saree as PHZSW for additional options.
Phase 10 sets RPTWR on if a Report
Section is encountered.

~
XREF
CLIST
SYM
FLOW
RPTWR

APOST
MAPSP
TRUNC

Bit -0-
1
2
3
4 (Not a compiler option,

this bit is tested to
determine whether to load
phase 12).

5
6 (SUPMAP)
7

Same as PHZSW for adaitional options.

Name Bit
SXREF 0
STXIT 1
ZWB 2
CATALR 3
[unused) q
SYMCAN 5
STATE 6
SYMDMP 7

Same as PHZSW for additional options.

~ Bit
OPT 0
SYNTAX 2
CSYNTAX 3
VFRBR 7

Cell
PHZSW4

PH1BYTE

No. of
Bytes

1

1

Displacement
Hex Decimal
274 628

275 629

Licensed Material - Property of IBM

Purpose
Same as PHZSW for additional options.

Name Bit
VERB SUM 0
VERBREF 1
COUNT 2
Reserved 3
LVL 4

Switch for phases 10, 11, 22, 21, 50,
51, 62, and 63.

ADRSYM

OPTDISP

QRTN1PBL

S370IN

DBLBUFIS

EOPPHl

UPSIBT

Bit
-0-

1

2

3

4

5

6

7

Meaning
Unused
set by phase 51 when SYIvlDMP
is in effect and a call to
the ILBDVMOO subroutine has
been generated. Phase 60
tests the bit and generates
a call to the TLBDADRO
subroutine if the bit is
set to 1-
Set by phase 50 if OPT is
specified and a call to the
ILBDDSPO subroutine is to
be generated. Phase 51
tests the bit and generates
the call if the bit is set
to 1. If the bit is set to
0, phase 51 generates the
call to ILBDDSSO.
Set to 1 by phase 62 if all
Q-routine GNs are contained
in 1 Procedure Block. If
phase 63 finds this bit
turned on, it does not
generate load instructions
of register 11 for branches
to Q-routines.
Set to 1 by phase 10 if
object-computer paragraph
specifies IBM-370. Used by
phases 50 and 51 to
generate System/370
instructions.
Set to 1 by phase 22 if
there is an ISA~j file with
no RLSERVE NO clause which
is opened input or 1-0.
Phase 21 tests to determine
what module name to use for
ISAM files.
Set to 1 if phase 10
encounters an end-of-file
condition in the source
program.
Set to 1 if an UPSI clause
is specified.

The remaining bits are unused.

Communications Region (COMMON) 285

License~ Material - Property of IBM

Cell
SWITCH1X

SRTRl!:RUN

IPRECS

AHSEGMSG

LNCOUNT

ATPLENT

No. of
Bytes

1

8

1

4

4

2

2

4

14

Displacement
Hex Decimal
276

'1.77

27F

280

284

288

28A

28C

290

631

639

640

644

648

650

652

656

286 Section 5. Data Areas

Purpose
compiler internal switch byte

Name Bit Meaning
RENAMON --0- set to 1 by phase 22 if

RENAMTB exists. Tested by
phase 25.

OCCTBON 1 set by phase 22 if OCCTBL
exists. Tested by phase
25.

DICTSPIL 2 Set by phase 00 if
dictionary spill occurs.
Used for statistics.

File-name and logical unit number of
file used for SORT checkpoint.

Unused

Number of source cards for statistics.
Set by phases 10, 12, 11. Used by phase
60 or 64.

Address constant of header line in ph2se
00. Used by phase 60 or 64.

Number of lines per page of compilation
listing. Set to 1 by phase 01; used for
statistics.

Unused

Length and address of Phase Length
table.

Unused

This chapter contains descriptions of
all tables handled by the TAMER routines of
Phase 00. whether built. used. and released
within a single phase or passed to a later
one. These tables differ from others in
that additional storage can be obtained for
them and they occupy space in the T~MER
area rather than within a phase. Their
descriptions are not intended to be
complete. but to provide a quick reference
to which phases use a table and for what
general purpose. More explanation is
provided in the chapters on the individual
phases.

The tables are arranged in alphabetical
order. Each description include~ the TIB
number (where applicable) and the format of
an entry in the table. The TIB is
explained in "Appendix A. Table and

ASCTAB
(TIB 10) Purpose

Licensed Material - Property of IBM

TABLE FORMATS

Dictionary Handling." The following notes
apply to the format diagrams in this
chapter:

• The top row of figures shows the number
of bytes in the field.

• Shaded areas indicate optional fields
or a series of similar fields.

• n = the total number of bytes to follow
in the entry.

• c = the number of bytes in the
following field.

• Individual notes. applying to
particular fields. are numbered
consecutively with the numbers
encircled.

i
1 1 I 1 3

I I I I
Store address constants
of DTFs for associated
files when 3525 device
if specified in ASSIGN,
clause.

IProcess-ISystem unitlDevicelHopperlTypelType of,Addressi

Code
00

01
02

Code
80

40
20
10

Entry Frequency
One entry for each DTF
for an associated file.

Phases Involved
Phase 21 builds and

uses this table
for generating
address constants
for each DTF for
an associated file.

Meaning
R (READ file)
P (PUNCH file)
W or M (WRITE file)

Meaning
V (READ. PRINT)
X (READ. PUNCH. PRINT)
Y (READ. PUNCH)
Z (PUNCH. PRINT)

ling by tel (SYSnnn) Icode Iselectlof lassoci-Iof DTF
I Ifor associ-I , Ifilelation,
I I ated file I I r:-.4 I 1':\ I ,
I I I G) I \.::!) I \.!II Q) I

i
I 3
I
I Address
I address
I constant
lin this
IDTI" ,

i
2 I

I
of ICard I

,numberl
I I
I I
I I
, I

Code
80
40

Code
80

40

Device
3525
2560

Meaning
Primary hopper
Secondary hopper

,

Table Formats 287

Licensed Material - property of IBM

BLTABL
(TIB 27) Purpose i

Associate DTF numbers
with buffers.

1 1, 2 1

o

Bits
-0-

1-6
7

Entry Frequency
One entry for each FD
in source program.

Phases Involved
Phase 21 builds and

uses when generating
buffers to determine
how to initialize the
base locator for each
file.

Meanina, if ON
VSAM file
(Not used)
File is single buffered

unblocked, or indexed
sequential.

X'01' for VSAM file

" 1 1 IDTF IBufferiAdjustmentiFLAGI
Inumberlarea 1 factor 1 1:\'
1 In~erl 1 \.!) 1
1 '0 1 1 1
I " "

and

BLASGTBL
(TIB 16) Purpose

1 Assign object-time
permanently loaded
registers. Type cell

Entry Frequency
One entry for each
register: 6-10.

Phases Involved
Phase 62 builds this table

using the BLUSTBL table.
Phases 63 and 6q use the

information to determine
which BL or BtL or OVERFLOW
CEtL is in a permanent
register.

(!) The type cell contains one of the
following hex values:

Code
FF

FO
00
01

Meanina
TGT overflow
PGT overflow
data BL
data BLL

Overflow cells for the TGT and PGT
are assigned registers first. Since
the number of PROCEDURE BLOCK ADDRESS
cells has not yet been determined, it
is impossible to know if another OVER­
FLOW cell will be required for the PGT.
Therefore, phase 62 assigns registers
6 - 9 to the known OVERFLOW cells and
to the most used data Bts and BLLs
and reserves register 10 for the pos­
sible PGT OVERFLOW cell. If no OVER­
FLOW cell is needed, register 10 is
assigned to the next most used data
BL or BLL.

288 Section 5. Data Areas

1

BL, BLt,
or overflow
number

ELUSTBL
(TH 10)

BLVNTBL
(TIB 23)

BUFTAB
(TIB 29)

Licensed Material - Property of IBM

Purpose
3 contains a count of

the references to
each BL and BLL. Usage

counter
Entry Freauency
One entry for each
BL and BLL assigned
to the Data Division.

Phases Involved
Phases 50 and 51 build this

table during the scan of
P2-text.

Phase 62 uses this table to
assign registers to the
most used data BLs/BLLs.
BLs 1 through n are followed
by BLLs 1 through m.

Purpose
2 Optimize generation

of instructions to
return control GN number
from a performed
procedure to the
GN return point.

Entry Frequency
One entry for each EXIT
statement in the range
of a PERFORM statement.

Phases Involved
Phase 62 builds this table

during Optimization A-text
processing upon reading a
GN PERFORM (2q) element.
It fills in the block num­
ber during Procedure ~-text
processing upon reading the
VNREF element which follows
the COOq element at the
PERFORM EXIT.

Phase 63 uses this table to
determine whether the GN
return point (C005) is in
the same block as the EXIT
statement and thus which
Procedure Block is contained
in register 11 on return from
the performed procedure.

2

VN number

1

Block
number

Purpose iii i
store ad cons to buffers
for files.

Entry Frequency
One entry for each
address constant for
for an I/O area that must
be filled into a DTF.

I I 1 I 1 1 I 1
I I I I I
IDTF IDTF ISAME ISAME IFlagl
I number I number IAREA IRECORDlbytel

InumberlAREA I I
I I I I
I Inumberl CD I
, I

Table Formats 289

Licensed Material - Property of IBM

o

Bits
0-1

2-4

Phases Involved
Phase 21 builds and uses

for buffer genp.ration.

contents 1

Size, minus 1, of DTF
field receiving new
(generated) address

Alignment of generated
area
000 at doubleword
001 at doubleword + 1

i

I 3
I
IAddress of
IDTF field
lor FIB
If*d
10 ,

111 = at double word + 7
5-7 Uniq'ue area number for

individual area within a
file

X'01' for VSAM file

i ,

I 2 I 2
I I
IAdjustment I!aximum
Ivalue (with larea for
Isign) for Ithis gen- I
larea addressleration orl
I IDTF I , , ,

The address, relative to the beginning of the object module, of either the DTF field rece1v1ng
the generated address or, for VSAM, the FIB field (IRECOBL) receiving the displacement in the
TGi of the record's first BL cell.

CARDINDX
(TIB 11) Purpose i i

CD Bits
o=f9
20-23

Store information about
the first card number for
each program fragment
and user-written
discontinuity within a
segment for use by the
COBOL library subroutines
when SYMDMP is specified.

Entry l"reauency
One entry for each
program fragment and one
entry for each non­
contiguous section other
than the first within a
seqment.

Phases Involved
Phase 65 builds this table

while reading SYS002 and
buildinq the PROCTAB
table. -

I 3 1 I 1
I I I
ICard/verb number I Priority I Relative
Ifor first card I I fragment
lin this ~roup I I number I
I I Iwithin thisl
I (!) , 'priority I
I " ,

Phase 65 writes this table
on SYS005 and COBOL
library subroutines use
this table to relate card
nuwbers to entries in
the PROCTAB table.

contents
Card number
Verb number

(verb number is always 0 or 1)

290 Section 5. Data Areas

CKPTBL
(TIB 8)

CNTLTBL

Licensed ftaterial - Property of IBM

Purpose
Save RERUN statement
information from source
program scan.

,
7 121

I

,
241

I
IExternal-ISYS ICKPT IDTF
Iname or Inumberlcounterl
ISYSxxx I Inumber I

numberlNumber I

Entry Frequency
One entry for each
RERUN statement.

Phases Involved
Phase 10 builds this table

from RERUN statement in
source program.

Phase 21 adds DTF number
and checkpoint counter
number.

Phase 51 uses to generate
coding to count and test
"integer" with RERUN
file OPENs, READs and
WRITEs.

Purpose
Sorts data-names and
procedure-names for the
SXREF option.

i , i i

I 4 I 2 I 2 I
I I I I
IPointer to IPointer tolPointer tol
lassociated ICONTROL I CONTROL I

Entry Frequency IDATA recordlrecord forlrecord forI
One entry (CONTROL record) I Ilower name I lower namel
for each DEF-text element. I Ion first Ion next I

I I compare I compare I
Phases Involved , , I I

Phase 61 builds and uses
this tahle to reorder
data-names and procedure­
names alphabetically for
the SXREF option.

lof records I
I I

(!) There is no TIB for this table.
Phase 61 uses the phase 00 routine
GETALL to get space, but moves data
in and out of the table by itself.

CONDIS
(TIB 14) Purpose

Store DISPLAY literals
during literal optimiza­
tion.

Entry FreqUency
One entry for each
unique DISPLAY literal.

Phases Involved
Phase 60 or, when OPT is

specified, phase 62 builds
this table while process­
ing Optimization A-text.

Phase 60 or phase 62 uses
this table with CONTBL
and LTLTBL tables to
eliminate duplicate
DISPLAY literals.

variable

Literal

Table Formats 291
'.­,,'

Licensed Material - Property of IBM

CONTBL
(TIB 9)

CTLTBL
,(TIB 14)

Purpose
store each non-DISPLAY
literal.value during
optimization of literals.

Entry Freguency
One entry for each
unique n~n-DISPLAY
literal.

Phases Involved

Variable

Literal

Phase 60 or, when OPT is
specified, phase 62 builds
this table while process­
ing Optimization A-text.

Phase 60 or phase 62 uses
this table with CONDIS
and LTLTBL tables to
eliminate duplicate
non-DISPLAY literals.

purpose
Store information on
control names to check
validity and build
routines using them.

Entry Freguency
One for each control
name.

Phases Involved
Phase 12 routine RDSCAN

builds this table.
Phase 12 routine GNSPRT

and most other routines
use this table to
create CTB-ROUT,
SAV-ROUT, and RET-ROUT
routines.

I I
21 1 1 11 2

I I I
n IDuplicate ~save name IFlagiLevel IGN number I

Iname (-nnnn) I (-nnnn) inlbytelof thislfor control I
lin EBCDIC IEBCDIC I Icontrollheading I

: CD : G) : 0:: :
I I I. I I

i i

I 2 2 I 2
I I I
IGN number foriUnusediSize of
Icontrol foot-I Iprevious
ling I lentry
I I I
I I I
I I I
I "

G) In PO-text form:

Bytes Contents
0 23
1 05
2 - (hyphen)

3-6 nnnn

CD Bit Meaning l if on
-0 Control-name is
1-2 Unused

3 Control footing
4-6 Unused

7 control heading

I

I variable
I I
IControl-name includ-I
I ing qualifiers, I
lindexes, and sub- I
Icripts, if any, in I
IPO-text form. I
I I
I I

subscripted or indexed

specified

specified

292 Section 5. Data Areas

CVIRTB
(TIll 12)

DATATBL

Purpose
Store virtual name from
definition elements dur­
ing virtual optimization.

Entry Frequency
One entry for each unigue
virtual.

Phases Involved
Phase 60 or, when OPT is

specified, phase 62 makes
an entry when it finds a
virtual definition during
Optimization A-text
processing.

phase 60 or Phase 62 uses
this table with the
VIRPTR table to elim­
inate duplicate refer­
ences to virtuals.

Purpose
store information for
XREF or SXREF processing.

8

Virtual

3

IPointer to
Entry Frequency I dictionary
One entry (DATA record) lentry for
for each DEF-text element. I data-name

IPN number
Phases Involved

Licensed Material - Property of IBM

i I

I 33 I 2
I I
IExternal name in EBCDIC, IAscending
Idefininq card number, andlsource orderl
la variable number of I pointer I

orlcard numbers referring I (SXREF only) I
Ito name I I

Phase 61 builds and uses
this table in producing
an XREF or SXREF
listing.

i I
I 2 131 3 I
r I I

There is no TIB for this table.
Phase 61 uses the Phase 00
routine GETALL to get space, but
moves data in and out of the
table by itself.

I Descending I Offset in byteslPointer I Length I Pointer I
I source Ifrom start of Ito cur- lof Ito first I
lorder Irecord to loca-Irent lexter-IOVFRFLOWI
I pointer Ition for the I (last) Inal I record I
I (SXREF Inext card num- IOVERFLOWlname I I

DBGTBL
(TIB 13)

I only) Iber referring I record I I I
I I to name I I I I

Purpose
store information on
procedure-names referred
to in DEBUG statements.

Entry Frequency
One entry for each pro­
cedure-name referred to
by DEBUG.

Phases Involved
Phase 40 builds this table

I

I 2
I
IPN number
Ifor procedure-name
I
I
I

from PNs in P1-text referred to
in DEBUG statements and
from GNs from GNCTR in
COMMON.

Phase 40 uses this table
to issue P2-text CALL

i i

I 2 I
I I
IGN number for debug I
Iprocedure associated I
Iwith procedure-name I
I I
I ,

Table Formats 293

Licensed Material - property of IBM

DEPSBS
(TIB 18)

DETTBL
(UB 17)

statements to DEBUG
procedures.

Purpose
I 1 I Variable store subscript-defining

string until all sub­
scripts in statement are
collected.

I IPirst
Iclelement
I lin string

Entry Preguency
One entry for current
string being built.

Phases Involved
Phase 40 builds this table

from P1-text of subscripted
data-name.

Phase 40 uses this table
with STRING table to issue
P2-text subscript strings.

Purpose
Store information on
detail report group for I

30
i

I
I

processing SUM ••• UPON IDetail reportl
clauses and generating Igroup data- I

i i ,
1 I 2 1 I 2 I

I I ,
IGN numberl IDisplacement of I
Ifor this fori

detail-names. lname
G)

I Idetail
1@lreport

1(1) I entry in RWRTBL
I 3 Ireport-name I

I I lassociated with I
Entry preguencI I I I group I Ithis detail report I
One entry for each detail I I I I I group I
report group. I , , I , ,
Phases Involved , ,
Phase 12 builds this tablel 2 I 1

from scan of 01-level I I
statements. IGN number fori ~ ~

Phase 12 uses this table IUSM-ROUT I
to process SUM ••• UPON ' I

clauses, and to generate
USM-ROUT. , Q)Left-justified, padded with binary zeros in

Phase 11 uses this table low-order bytes.
to generate detail-names.~2

\t) Length of the detail report group data-name.

~ Code for correlating SOURCE and SUM ••• UPON clauses.

~
00

PP

Meaning
This entry was made as the result of a

detail report group encountered.
This entry was made when an UPON clause was

encountered. (This code is changed
to 00 when a detail report group is
encountered for the data-name.)

~ Code for unique detail-name.

Code
00

01

Meaning
This entry was made as the result of a

unique detail group data-name.
This entry is a non-unique detail group

name that must be qualified.

294 Section 5. Data Areas

DICOT
(TIB 20)

Bits
-0-

1
2
3

4-7

DRPTBl
(TIB 24)

Code
80

40
20
10
08

(code

Licensed Material - Property of IBM

~ First entry in table is a dummy.

Purpose
store starting address
of each section in the
dictionary.

Entry Freguency
One entry for each
dictionary S6ction.

phases Involved

, iii

I 1 1 3 I 8 I
I I 1 I
1(2),Displacement 1(2)1
I lof section inl I
I I dictionary I I
I r , ,

Phases 11 and 22 build as they
build the dictionary.

Phases 11, 22, 21, 25, and 30 use
to find dictionary sections.

Meaning, If ON
Section has been spilled
Section is now in main storage
Section has been updated

Address on disk where section has been
spilled, if it was ever spilled.

A section, which had been spilled and
read back into storage, has been
modified and the copy on the
external device is obsolete.

Not used.

Purpose
Optimize the use of
temporary registers
14 and 15.

Entry Freauency
One entry for each BL,
BLL, SEL, SBS, or BDISP
address increment if it
is not assigned a
permanent register and
if a temporary register
is unavailable.

Phases Involved
Phase 62 builds this table

and keeps the entries
until a decision is made
as to which temporary
register, 14 or 15,
should be used.

Meaning
BL
BLL
SBL
SBS
BDISP address increment

values are in hexadecimal)

i

1 I
I I
lItem type I Item
I I
I CD I
I I

i

1 I
I

numberl
I
I
I

Table Formats 295

Licensed Material - property of IBM

DRPLTBL
(TIB 25)

ENVTBL
(TIB 3)

Purpose ri--------~--------------ri--------------_,i
store information for I 1 bit I 1 bit I
addressing BL, BLL, SBL, ~I------------------------TI--------------~f
SBS, or BDISP address 10 Load instruction 10 Register 141
increment items. I required 11 Register 151

11 No load instruction I I
Entry Frequency I required I I One entry for each of L-______________________ -L ______________ -J

the above items if it is
not assigned a permanent
register.

Phases Involved
Phase 62 builds this table

during Procedure A-text
processing.

Phase 63 uses this table.
If a load instruction is
to be generated, it generates
the instruction and inserts
the proper temporary
register to address the
item. If no load instruction
is to be generated, it uses
the proper temporary register
as the base in the
instruction.

Purpose
store file information
from Environment Division
to be merged with Data
Division information to
form Data IC-text.

Entry Frequency
One entry for each file.

Phases Involved
Phase 10 builds this

table from Environment
Division.

Phase 10 uses this table
to merge with Data
Division information

I i

I 2 I 7 1
I I
I Compiler- IEither external Innn
I generated Iname (if specified) I from SYSnnn
Isource cardlor SYSnnn Iportion of
Inumber I Ifile-name in
I I I binary

i
1 2 I 1

I
IBufferlPointer tolDevice organiza­
loffsetlentry in Ition codes for
I I PIO~ I associa~ files
I I t2J I ~
" .

IFlag I
Ifieldl

: G) :
, I

i I

3 1 I 2 121
I I

IUnusedlNumber IPointer toiNumber IFlag I
lof SORTIentry in lassignedlfieldl
Iwork ICKPTBL Ito SAME ~ I
lunits I IAREA ~ I
I I ~ I clause I I
, , I I

296 section 5. , Data Areas

i
2 I

I
Flag I
field I

(VI
I

1

Licensed Material - property of IBM

i i i i r I i I

11 I 1 I 1 I I 1 1 I 1 I B 11
I I I I I I I I I
15 INumber assigned
I Ito SAKE RECORD
I IAREA clause

IInteger in INumber of IDevicelDevice INumber assigned I ~ Ic
I MULTIPLE Itracks for Itype Inumber Ito SAME SORT I I
IFILE ••• POSITIONICYL-OVERFLOWlcode lof IAREA clause I I

I I
I I
I I
I I , ,

I clause I I Ihighestl I I
I I I @ lindex I I I
I I I I t;\6 I I I
I I I I \V I I I
, , • I I I ,

I I I I I

30 I 4 4 I 4 I 4 I 4 I
I I I I I I

IFile-name ITRACKINOMINAL I ACTUAL I RECORD IPointer to data-name I
lin FD entrYIAREA IKEY and IKEY and IKEY and I qualifiers from APPLY I
I Isize Igualifiers I gualifiers I gualifiersloption I
I I

G)
I

G
I (j) I

0 I I I I I
I I I I I

iii

141 4 I 4 4 I
I I I I ,
IPointer to I File I Password IUnusedl
Idn qualifierslstatus anQland I I
Ifrom APPLY Iqual~erslqua~iersl I
I option I \.!) I \?) I I , , , "

Bit Meaning
---0 1 - RANDOM ACCESS
1-3 Organization

000 Not specified
001 = INDEXED
010 = DIRECT
100 = RELATIVE

4-6 Device Class
000 Not snecified
001 = DIRECT-ACCESS
010 = UNIT-RECORD
100 = UTILITY

7 1 No RESERVE
ALTERNATE AREA

8 1 = SELECT OPTIONAL
9 1 = SAME AREA specified

10 EXTENDED-SEARCH
11 SAME RECORD AREA specified
12 SAME SORT AREA specified
13 1 = CKPTBL pointer exists
14 1 = PIOTBL pointer exists
15 'ALTERNATE' specified in

RESERVE clause

Displacement of entry in table.

Device organization codes for
associated files

Bits
-0-

Meaning
1 - AS specified in ORGANIZATION
p~rameter of system-name

0

Bits
-1-

2-4

5
6
7

Bit
0

1
2

3-4

5-6

7

I (APPLY CORE-INDEX) I
I I
I I

!f~ning
1 = No organization parameter
specified in system-name
ORGANIZATION clause

!!eaning Code
000
001
010
100

Not specified
SEQUENTIAL
INDEXED
Reserved

ACCESS MODE IS DYNAMIC
Unused
PASSWORD data-name specified
with RECO~D KEY or for the file.

Meaning
1 - COpy
Unused
RECORD CONTAINS clause
BLOCK CONTAINS integer

00 = Not specified
01 = RECORDS
10 = CHARACTERS

LABEL RECORDS
00 Not specified
01 = STANDARD
10 = OMITTED
11 = Data-name

1 = REPORT clause

Table Formats 297

Licensed Material - Property of IBM

Bit
0-1

2
3
4
5
6
7
8
9

10

11
12
13
14
15

Bits
0-3

II
5-6

7

Code
-1-

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Meaning
TRACK AREA

00 = Not specified
10 = Integer

Unused
1 NOMINAL KEY
1 = ACTUAL KEY
1 = RECORD KEY
1 = WRITE ONLY
FILE STATUS clause specified
1 = WRITE VERIFY
CYL-OVERFLOW
'integer' of RESERVED clause not
in valid range
MULTIPLE REEL/UNIT
MULTIPLE FILE TAPE
MASTER-INDEX
CYL-INDEX
Unused

Contents
Temporary storage for Phase 10,

Phase 11, or the number of
nonstandard reels.

CORE-INDEX
Unused
'integer' of ASSIGN clause not
in valid range

Device
14112R
111112P
2520R
2520P
2540R
2540P
2501
11103, 5203, or 3203
1404
111113
14115
3211
3505 or 35011
3330
3525R
3525P
3525W or 3525M
Unused

298 Section 5. Data Areas

19
20
21
22,
231
211
25
26
27

28-30
31
32
33
311
35
36

37-39
110

Byte
35

36-37

3881
Unused
5425R
51125P
542511'
Unused
2560R
2560P
2560W
Unused
2311
Unused
23111 or 2319
2321
33110
35110
Unused
21100, 3410, or 31120

Meaning
Count of ALTERNATE RECORD KEY

clauses
INDTBL displacement, the dis­

placement to the first entry
associated with this file
(that is, if any ALTERNATE
RECORD KEY clauses appear
under the select)

38 Bit
0-

1
2

Meaning
Incorrect class
Incorrect device
Incorrect organization
parameter

3-7

39 Bit
-0-

1
2-7

Unused

Meaning
Assigned
Assigned
Unused

40-112 Unused

Bytes Contents
0-1 Length of name(s) in bytes

(or binary literal if TRACK
AREA is specified)

2-3 Displacement of name in QNMTBL

ERRTBL
(TIB 10)

FDTAE
(TIB 28)

Licensed Material - Property of IBM

Purpose
Store E-text to separate
it from Data A-text for
phase 70.

Entry Freguency
One entry for each mes­
sage to be generated.

Phases Involved

i

I 8 1
I
IE-text 100
Ifor basici
Imessage I
I

i
11 ,
Ic
I
I

i i i ,
IVariable 1 I 1 IVariab1e I , , I ,
IFirst 001 c ILast I 0) I message I I I message I
Iparameterl I I parameter I
I I I

Phase 60, or when OPT is
specified, phase 64 build
this table from Data A-text.

(!) Table ends with one-byte element X'77'

Phase 70 uses this table
to generate error messages.

Purpose
Pass record
information
22 to 21.

description
from phase

Entry Freguency
One entry for each FD in
source program.
Phases Involved
Phase 22 builds from

I i
I 2 2 1 I 1
I I I I
IMaximum I Minimum IFirst IFlag
Irecord Irecord Ibase I byte
Ilength Ilength I locator I
I I Inumber I (2)

Record Descriptions in ATF-text.
Phase 21 uses to generate

DTFs and buffers.

i
2 113

I I I I
IMaximumlBuff~rlDictionarYI
I label loffsetlpointer I
Irecord I I I
Isize I I CD I

CD Flits
0-3

4

Use
Number of base locators
OD02 switch: ON, if any

6 aDO object switch: ON, if any
record description contained
the object of an aDO clause.

FIT.TEL
(TIB 2)

record descriptions
contained more than one
aDO c1ause.

7 (Not used)

5 ODO switch: ON, if any record
description contained an aDO
clause.

Used by phase 21 to get dictionary
attributes when LATRNM returns

Purpose i
148
I

a dup1icate code.

store virtuals related
to input/output label­
or error-processing
virtuals.

ILocation tolName ofl
Ibe entered I virtual I
Ion ESD cardl I

Entry Frequency
One entry for each vir­
tual related to input/
output label- or error­
processing routines.

Phases Involved
Phase 60, or when OPT

is specified, phase
62 builds this table during
virtual optimization.

Phase 60 or phase 62 uses this table
to place virtual names in DTFs,
for example, for SYNAD routines.

Table Formats 299

Licensed Material - Property of IBM

FNTBL
(TIB 10) Purpose ri------------,-----------r-----~------------_r----------~ir_----------,

Store Environment Division I 2 2 2 2 2 I 2
information about a file ~I------------~----------+-----_;------------_+----------~I~----------~
for Procedure Division IPointer to IPointer tolunusedlGN number IGN number IGN number I
processing. I PIOTBI, entry IGVNMTBL I for STANDARD I for headerl for trailer I

I I IERROR Ilabels Ilabels I
Entry Frequency I I , , I J

One entry for each file.

Phases Involved
Phase 10 builds this

table from the ENVTBL
table and the Data
Division.

Phase 12 uses in Report
section processing.

Phase 11 uses this table
in Procedure Division
processing.

; 2 2 1 i11variable
I I I I ,
IGN numberlGN number I switch I clFile-name I
Ifor EOV Ifor BOV Ib~ I lin EBCDIC I
I labels Ilabels I ~ I I I

Bit
-0-

1
2
3
4
5
6-7

I I I ,

MeaninO', if on
ACCESS RANDOM
Mass storage file
LABEL RECORDS ARE STANDARD
LABEL RECORDS ~FE OMITTED
BF.FORE (in USE statement)
AFTER (in USE statement)
Unused

GCNTBI
(TIB 24) Purpose i

store card numbers for
statements that contain
NEXT GROUP or LINE
clauses that may be in
error; also, store card
numbers for TYPE IS PAGE
HEADING or TYPE IS PAGE
FOOTING groups that may
be in error.

Entry Frequency
One entry for each clause
in error.

Phases Involved
phase 12 builds and uses.

I 4 I 2
I I
1(DIGenerated
I Inumber

It makes an entry for
each clause that con­
flicts with the PAGE
LIMIT clause. Entries
are saved until the end
of the report, when it
can be established whether
these statements are ac­
tually in error, as sig­
nalled by the presence of
at least one relative LINE
or relative NEXT GROUP clause.

These four bytes contain the
address of one of the following
messages:

300 section 5. tiata Areas

cardl
I
i

,

MSG94, for a NEXT GROUP clause error
MSG119, for a LINE clause error
MSG165, for an illeqal PAGE HEADING
MSG166, for an illegal PAGE FOOTING

GNATBL
(TIB 8)

GNCALTBL
(TIB 16)

GNFWDBTB
(TIE 21)

Purpose
Determine which GNs
require an address
constant cell in the

I 2 I
I I

PGT. I GN number I

Entry Frequency
One entry for each GN
reguiring an address
constant cell in the PGT.

Phases Involved
Phase 62 builds this table

from GNUREF elements in
optimization A-text.

Phase 63 uses this table to
determine whether a GN
requires an address
constant cell.

Phase 64 uses this table when
determininq the address in
the PGT of-the GN cell to
be used in an instruction.

Purpose
Store GN numbers
for C)-routines.

Entry Frequency
One entry for each
GN number.

Phase Involved
Phase 51 builds this table

and uses it to generate
call to the Q-routines
after return from the
CALL statement.

Purpose
OptiMize size of a
procedure block.

"Entry Frequency
One entry for each
forward reference to a
GN within a Procedure
Block.

Phases Involved
Phase 62 builds this table

from Procedure A-text.
Phase 62 uses this table

to keep count of the
number of 4-byte load
instructions of the
Procedure Block which

1

Count-1 of
Q-routines
to call

2

GN number

Licensed Material - Property of IBM

2

GN first
number for
C)-routine call

1

Counter

- I

Table Formats 301

Licensed Material - Property of IBM

GNLABTBL
(TIB 19)

GNLBDTBL
(TIE 27)

GNTBL
(TIB 8)

might be needed if a new
block is begun before the
GN is defined.

Purpose
Determine inter-block
and intra-block
references.

Entry Frequency
One entry for each GN.

Phases Involved
Phase 62 enters in this

table the block number
for each GN as it reads
Procedure A-text.

Phase 63 extracts the block
number in which a GN is
defined each time a GN is
referred to.

?urpose
Determine displacements
from the beginning of
the hlock for GN defini­
tions.

Entry Frequency
One entry for each GN.

Phases Involved
Phase 63 builds this table

during Procedure A-text
processing.

Phase 64 uses this table to
insert the displacement
in generated instructions
which address the GN.

Purpose i

1

Block
number for
GN

12 bits

Displacement
from beginning
of block for GN

create and store a list
of optimized GN numbers.

I 2

Entry Frequency
One entry for each GN
number.

Phases Involved
Phase 60 builds this table

from GNCTR and PN and GN
equate strings.

Phase 60 uses this table

I
INumber relative I
Ito beginning ofl
IPN cells I

to optimize procedure-names
and process Procedure
A-text.

302 section 5. Data Areas

GPLSTK
(TIB 10) purpose

Count length of group
item while subordinate
items are being pro­
cessed.

Entry Freguency
One entry for each group
item being currently
processed.

Phases Involved
Phase 22 builds this

table from dictionary.
Phase 22 uses this table

to determine group item
length.

Licensed Material - Property of IBM

I I I
II I 2 I 2 I 2

I I I
IFlag IOD2TBL displacement
Ibyteslentry for OCCURS
I~ IDEPENDING ON object
1\2; Iwithin gr.oup item

of IMaximum
Inumber of

1 Generated
Icard

I I (if none, field
I Icontains zeros)
I •

I occurrences
I (if none,
I field is 0)
1
I

1 number
1
I
1
I

I --,

I 3 3 II I
I I
IPointer to dictionary I Pointer tolMaxiwum length I
lentry for REDEFINES IdictionarYlof variable I
lobject within group lentry for Igroup I
litem (0, if ,none) litem I I
I " I

I I

1 3 I 1 1 I
I ,

ILevel
I
I

numberlAddress INumher of
Iparameterslnames (0,
I (idk) I none)

index-INumber ofl
if Ikeys (0, 1

lif none) I
I , , , I

i i.
I 2 2 I 2 I
I I I
IDisplacement of entry I Displacement of entrYIDisplacement of I
Ifor item in INDKEY Ifor item in SRCH~Y lentry for VALUE I
I table (0, if none) I table (0, if none) I clause literal I
I I lin VALGRP table, I
I I lif used (0, if I
I I Inot) I
I , , I

i i
I 2 I 1 1
I 1 I I
IDisplacement of IFlaglFlaql
lentry for VALUE Ibytelbytel
Iclause literal inl I I
IVALTRU table, if I I I
lused (0, if not) 10 10 I
, I I ,

Bits
-0-

1
2

3
4

5

6
7

8-11

12-13
14

15-31

Meaning
1 - group occurs more than once;

alignment required
1 contains object of OCCURS DEPENDING ON
1 SYNC clause in item under

group item
1 SYNC clause in group item
1 VALUE clause in group

item
1 Condition-name under group

item
1 Group is or is in a label record
Unused
Minor code (see LD dictionary

entry format)
MBS (must be subscripted) bits
1 = Item contained OCCURS or an ODO clause
Length of group or VLC

Table Formats 303

Licensed Material - Property of IBM

GVFNTBL
(TIS 3)

GVNMTBL
(TIB 4)

Purpose
store pointer to FNTBL
for VSAK files referred
to in USE AFTER STANDARD
ERROR/EXCEPTION with
GIVING option.

Entry Freguen.£Y.

Bits
-3-

4-7

Meaning
Justified
Set to X'1111' if US~GE is other than
DISPLAY

~ Bit 3 is set to 1 for the master of an ODO clause.

i
, 2
I
,Displacement in PNTBL

On entry for each file-name
mentioned in USE Declarative.

Phases Involved
Phases 11 builds the table
using the FNTBL.
Phase 11 uses the table
to complete the FNTBL
entries after building
the GVNMTBL table.

Purpose
Store the data-name
specified in the GIVING
option of the STANDARD
ERROR/EXCEPTION PROCEDURE
Declarative for VSAM
files.

Entry Freguency

I i
11 ,Variable 1
I , ,
,00Idata-name,number of bytes ,
I , lin preceding field, , ,

For qualified data-names the following fields are added

One entry for each ~--~.~--~--~--~~~~---r.~------~~--~r---~~~

~:~!a~:t!::iifi;d t~~e d:!:- :Vadable., '. I:}£j:' " "variable. . ',,'1 . 1
try contains all of its IFi,r~t::qu~li~y:inglNulli~r 'of 'I Last qu,alif.yingHfumber"q'f
qualifiers fga:taf:~ailfe . '. :'I1iyt~~.J,.n Idata-nalll,e , " Ibyte$,;;L~ "

I, . " . ;c,: " " .1 tl:g!~9ing I ' " '.' ,pr~CEld':!,,"ltg

! ~\, _~/~. 'ff~~<!:::' " " ,:'::':.' :p;:i:,e.ld~~.;: I
Phases Involved
Phase 11 builds the table
from the entries in the
CURBCD and CURN data areas
and for qualified data names
from the OLTABL table.
Phase 11 uses the table to
create the OPEN coding for
VSlIM files.

304 section 5. Data Areas

INDKEY
(TIB 31) Purpose

Store OCCURS ••• DEPENDING
ON (aDO) information for
use in table handling.

Entry Frequency
One entry for each item
that has an OCCURS cluase
and an INDEXED BY clause.

Phases Involved
Phase 22 builds this

table from Data IC-text
data-names with OCCURS
and INDEXED BY clauses.

Phase 30 uses this table
to process SEARCE and
SEARCH ALL verbs.

I

I
I

Licensed Material - property of IBM

I i

I 3 311
I I

n IDictionary pointer tolFlaglDictionarYINumber I
Isubject of OCCURS or Ibytelpointer lof index-I
Imaximum number of~ I Ito object Inames I
I occurrences \2J I~ lof OCCURS I I
I 1 lor maxi- I I
I 1 Imum numberl I
1 1 lof occur- I 1
I I Irences 1 I 1
I I I I I

I I •
3 I I 3 I

I I I I
I Dictionary I I Dictionary INumberl
Ipointer to I
Ifirs0nde~-1
Iname 1 I
I I

i

3 I
I 1
I Dictionary I
1 pointer to I
lfi~ key I
I \.V I
, I

IPointer to lof
IlastcI)dex-lkeys
Iname 1 I
I I

i

I 3
I
I Dictionary
Ipointer to,
IlasHey
I~

I
1
1
•

(i) contents of dictionary pointer: o I Bi t Meaning
0-2 Unused

Bits
0-,

2-14
15-23

INDXTB
(TIB 27)

Content§
Zeros
Dictionary section number
Displacement in section

3 1 Next three bytes contain
pointer to subject of aDO clause

o = Next three bytes contain
maximum number of
occurrences.

4-6 Unused

Purpose
Save all index-names
associated with a data
item.

I I

1 111 Variable
I I I

104 IclIndex-namel
1 (hex) 1 I in EBCDIC I

Entry Fr~ency L-____ ~.~I __________ ~

One entry for each index-
name associated with the
data-item currently being
processed.

Phases Involved
Phase 10 builds this table from

level-number entries in
the source program Data
Division.

Phase 10 uses this table
to append index-names
to the Data IC-text LD
entry for the data
item.

7 1 Error detected in key processing
(Phase 30 uses)

o No error found

Table Formats 305

Licensed Material - property of IBM

IND2TBL
(TIB 35)

IOPTBL
(TIB 5)

KEYT.AB
(TIB 26)

Bits
0~5

6
7

Purpose
Store information on VSAM
files for ORGANIZATION IS
INDEXED.

Entry Frequency
One entry for each FD
entry for VSAM files with
ORGANIZATION IS INDEXED.

Phases Involved
Phase 21 builds this table
from Data IC-text.
Phase 30 uses the table
to build P1-text.

Purpose
Store SAME RECORD AREA
information.

Entry Frequency
One entry for each
unique BL number within
an output file FD entry
that also contains a
SAME RECORD AREA clause.

Phases Involved
Phase 51 builds and uses

as object-time I/O
buffer pointers.

Purpose
Save all key-names
associated with a data
item.

Entry Frequency
One entry for each key­
name associated with the
data item currently being
processed.

Phases Involved
Phase 10 builds from

level-number entries
in source program Data
Division.

Phase 10 uses this table
to append,key-name to
Data IC-text LD entrv
for data item. -

Meaning. if on
Unused
Descending key
Ascending key

306 Section 5. Data Areas

I

3 311
I

IDictionary Ildk Ilevel I
Ipointer fori parameters Inumberl
IRECORD KEY Ifor RECORDI I
I IKEY I I
I ,

I

I 1
I
IDTF IIOPTR I
Inumberlnumberl
I I r

i i
1 11 I Variable

I I I
l~glcIKey-name
I~ I lin EBCDIC
I "

Licensed Material - Property of IBM

KEYTBL
(TIB 20)

CD Bits
0-3

4-15
16-23

Purpose r---------------------T-'
Ensure that, if key is
tested in WHEN condition,
all previous keys are
also tested.

I 3 111
t---------------------+-~
IAddressing parameters I I
I for item (IDK) fror., I I
Idictionary entry ~

Entry Frequency
One entry for each key
in KEY clause associated
with identifier-l in
SEARCH ALL statement.

I CD II L _____________________ i_J

Phases Involved
Phase 40 builds this table

while processing a SEARCH
ALL statement.

Phase 40 uses this table to
make sure SEARCH ALL
statement processing tests
keys associated with iden­
tifier-l and does not test
a key without having tested
the previous key.

Field Meaning:
i Type of BL containing

address of area

0000 BL
0001 BLL
0100 SBL

base

d
k

Displacement from base address
BL number

Initially 0, but set to 1 whenever a
WHEN condition for KEY is found during
processing of this SEARCH ALL statement.

LABTBL
(TIB 13) Purpose

Save LABEL RECORD data­
names referred to in a
Data IC-text FD entry.

Entry Frequency
One entry for each LABEL
RECORD data-name referred
to in the Data IC-text FD
entry currently being
processed.

Phases Involved

r-T------------,
111variable I
t-+------------~
IclLABEL RE.CORD!
I I data-name in I
I IEBCDIC I
L_~ ____________ J

Phase 20 builds this table from
Data IC-text FD entries.

Phase 20 uses this table
to differentiate label
records from nonlabel
records in processing
Data IC-text LD entries.

Table Formats 307

Licensed r'laterial - Property of IBM

LTLTBL
(TIE 4)

MASTODO

Purpose
Contains pointers to
CONTBL and CONDIS tables
during optimization of
literals.

Entry Freguency
One entry for each
reference to a literal.

Phases Involved
Phase 60 or. when OPT

is specified. phase

r-----------------------,
I 2 I
~-----------------------~
IDisplacement from start I
lof appropriate table I
lof entry for literal I L _______________________ J

62 builds this table
while building CCNDIS and
CONTBL tables.

Phase 60 or. when OPT
is specified. phase
64 uses this table
with CONDIS and CONTBL
tables to eliminate duplicate
DISPLAY and non-DISPLAY
literals.

(TIB 13) Purpose r-----------------------1
Identify masters of
OCCURS ••• DEPENDING
ON clause1 if SYMDMP is
specified.

Entry Freguency
One entry for each
master of an OCCURS •••
DEPENDING ON clause. 1

Phases Involved

I 3 I
~-----------------------~
IDictionary pointer for I
Imaster of an OD01 I L _______________________ J

Phase 22 builds this table
as it encounters OCCURS •••
DEPENDING ON clauses.

Phase 25 uses this table
to identify master of
OCCURS ••• DEPENDING ON
clauses1 for the DATATAB
table •.

1See "Glossary for definition of "master of an
OCCURS Clause with the DEPENDING ON Option."

NPTTBL
(TIB 18) purpose r-------T--T--------------,

store N.nnnn names that
contain number of lines
a particular report
group occupies.

Entry Freguency

I 1 I 11 6 I
~--------+--+--------------~
123 (hex) I071Name in EBCDIC I L ________ ~ __ ~ ______________ J

One entry for each report
group that contains PLUS
clause. This table is cleared
at the end of each RD.

Phases Involved
Phase 12 builds from

relative line clauses.
Phase 12 uses this table

to generate Data IC-text

308 Section 5. Data Areas

OBJSUB
(TIB 5)

LD entries at the end
of the RD.

Purpose
Relate files to objects
and subjects of OCCURS •••
DEPENDING ON clauses.
It is used to build the
QFILE table.

-Licensed Hateriiil - Property of IBM

r------T---T---T-------,
I 2 I 2 I 2 I 2 I
~------+---+---+-------~
IDTF I <D I CD IX'FFFF" I
I Number I I I I L ______ ~ ___ ~ ___ ~ _______ J

Table Formats 308.1

Licensed Material - property of IBM

Entry Frequency
One entry for each file
whose record descriptions
contain at least one ob­
ject and/or subject of an
OCCURS ••• DEPENDING ON
clause.

Phases Involved
Phase 22 builds and uses

·to build the QFILE table.

When present, this field contains the
OD2TBL table displacement if the
field refers to the object of an
aDO clause, or the GN number of
the subject if the field refers
to the subject of an aDO clause.
If the field contains a GN number, the
high-order bit is ON.

OCCTBL
(TIB 2) Purpose Iii

o

store information about
items in OCCURS and
OCCURS ••• DEPENDING ON
clauses if SYMDMP is
specified and program
contains an OCCURS or
OCCURS ••• DEPENDING ON
clause.

I 3 I 2 ,
I I I
IDictionary pointer IMaximum number I
Ifor subject of clauselof occurrences (!)I

Entry Frequency
One entry for each
subject of an OCCURS
or of an OCCURS •••
DEFENDING ON clause.

Phases Involved
Phase 22 builds this

table as it encounters
an OCCURS or OCCURS •••
DEPENDING ON clause.

I

I 2
I
INumber of
Ito next
I occurrence
I

Phase 25 uses this table
and the QRTN and QITBL
tables to build the
ODOTBL table. The ODOTBL
table is then used
to fill in the OBODOTAB
pointers in this table.

The field contains either the number of
occurrences for an OCCURS clause or the
maximum number of occurrences for an
OCCURS ••• DEPENDING ON clause.

If the subject of the clause is a
variable-length group, the field contains
its VLC number.

If this byte contains 0, the entry is for
an OCCURS clause; if it contains 1, the
entry is for an OCCURS ••• DEPENDING ON
clause.

,

I

2 I ,
byteslODO IReserved for I

IS~chIOBODOTAB pointer fori o ! 0 !object of ODD Q) !

Table Formats 309

Licensed Material - Property of IBM

The field is present only when the entry
is for an OCCURS ••• DEPENDING ON clause.
Phase 22 fills the field with zeros.
Phase 25 enters the OBODOTAB pointer; then
the contents of the field are as follows:

Bits contents
0-8 Relative block number within the

OBODOTAB table
9-15 Displacement in fu11words within

the block

ODOTBL
(TIB 14) Purpose I

1 3
I

I

1 2
1

I

I 2
1

Determine which entries
in the dictionary are
objects of OCCURS •••
DEPENDING ON clauses and
therefore must be entered
in the OBODOTAB table if
SYMDMP is specified and
the program contains and
OCCURS ••• DEPENDING ON
clause.

1 Dictionary
Ipointer for
lobject of ODO
I

1 Displacement
Iwithin OCCTBL
Ifor OBODOTAB
1 pointer

IOBODOTAB
Ipointer for
lobject of
IODO

OD2TBI.
(TIB 9)

Entry Freguency
One entry for each
OCCURS ••• DEPENDING ON
clause.

Phases Involved
Phase 25 builds this table

using the OCCTBL, QRTN,
and QITBL tables.

Phase 25 uses this table
to build the OBODOTAB

I

table and to fill in the
OBODOTAB pointers for objects
of OCCURS ••• DF.PENDING ON
clauses in the OCCTBL table.

I

Purpose ~,----~,~-r,--------------,r------i~~
Store objects of OCCURS I 2 1 1 IVariable I I 1
DEPENDING ON clauses and ~I----rl---rl--------------rl------Ir-~
their qualifiers for 1 n 1 c IEBCDIC name ofl . I c
Q-routine generation. 1 1 Ihighest level 1 I

1 1 1 qualifier I . J Entry Freguency L' ____ LI __ -L' ______________ L' _____ ·_·L-~

One entry for each OCCURS
DEPENDING ON clause.

Phases Involved
Phase 10 enters EBCDIC

names from OCCURS
DEPENDING ON clauses.

Phase 22 uses this table
to qenerate Q-routines.

Phase-25 uses this table
in building the OBODOTAB
table.

I
I Variable 1
I. I
IEBCDIC name ofl c
lowest-level' I

1 qilali'fiex'''' :1
I

i I I
IVariable 1 11
I 1 1
IEBCDIC namel cl
lof object 1 1
I I 1
i I I

310 Section 5. Data Areas

1

00

o

Purpose
store referencing card
numbers when the DATATBL
table entry is full.
Used in processing for
the SXREF or the XREF
option.

Entry Frequency
One entry for each
referencing card number
which cannot be stored
in the DATATBL table
entry for the data-name
or the procedure-name.

Phases Involved
Phase 61 builds and uses

Licensed Material - Property of IBM

I

33331
I I I I I
I Referencing I Referencing I Referencing I Referencing I
Icard number Icard numberlcard numberlcard numberl
, • I I ----'

131
I I I
lo~etlPointer tol
I ~ Ipreceding I
I IOVERFLOW I
I I record I
I t

this table to store referencing
card numbers for the SXREF
or the XREF option.

There is no TIB for this table.
uses the phase 00 routine GET ALL
space, but moves data in and out
table by itself.

Phase 61
to get
of the

This byte contains binary values 3, 6, 9, 12
as the OVERFLOW record contains 1, 2, 3, 4
referencing card numbers.

PFMTBL
(TIB 12) Purpose

store procedure-names and
VNs to be equated in
PERFORM statements.

Entry Frequency'
One entry for each
delimiting
procedure-name.

Phases Involved

122
I
IPN number of IVN number cor­
Inext procedure-I responding to
Iname after IPN that is
lend-of-range lend-of-range
I ,

Phase 40 builds this table
from P1-text procedure-names
and VNCTR in COMMON.

Phase 40 uses this table
to keep track of de­
limiters of performed
procedures to set up
return VNs.

Table Formats 311

Licensed ~aterial - Property of IBM

PIOTBL
(TIB 7) Purpose

Store input/output
information for a file
from Procedure Division.

Entry Frequency
One entry for each file.

Phases Involved
Phase 10 sets aside space

3 1

ISwitchlVSAM 1
Iby~
110'
1

Iswitchl

Ibtl) 1
1 1
, r

for one entry for each file.
phases 11 and 12 set appropriate bits.
Phase 21 uses this table to

generate Data A-text.

Bits
-0-

Statement referring to file, if bit is on
OPEN INPUT

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Bit
0---
1
2
3

4-7

PNATBL
(TIB 7)

OPEN OUTPUT
OPEN 1-0
Unused
WRITE AFTER ADVANCING
CLOSE WITH LOCK
CLOSE
REWRITE
RERUN
OPEN INPUT REVERSED
SEEK
WRITE BEFORE ADVANCING
USING
GIVING
USE
WRITE AFTER POSITIONING
BEFORE in USE
OPEN NO REWIND
WRITE
USE ON file-:name
START
Unused
REVERSED
Unused

Statement referring to file if on
KEY IS data-name (for START)
DELETE
USE AFTER STANDARD ERROR GIVING DN
OPEN EXTEND
(physical sequential only)
Unused

Purpose
Determine which
PNs require an
address constant cell
in the PGT.

Entry Frequency
One entry for each
PN requiring an address
constant cell in the PGT.

Phases Involved
Phase 62 builds this table

from PNUREF elements in
Optimization A-text.

i

1 3
1
IPN number
I

Phase 63 uses this table to
determine which PNs require

312 section 5. Data Areas

PNFWDBTB
(TIB 20)

PNLABTBL
(TIB 18)

PNLBDTBL
(TIB 26)

address constant cells.
Phase 64 uses this table

when determining the address
in the PGT of the
PN cell to be used in
an instruction.

Purpose
Optimize size of a
procedure block.

Fntry Frequency
One entry for each
forward reference to

I 2
I
IPN number
I

a PH within a Procedure Block.

Phases Involved
Phase 62 builds this table

from Procedure A-text.
Phase 62 uses this table

to keep count of the
number of 4-byte load
instructions of the
Procedure Block which
might be needed if a
new block is begun before
the PN is defined.

Purpose

ICounter

Determine inter-block
and intra-block
references. IBlock nUlJlber

Ifor PN
Entry Frequency
One entry for each PN.

Phases Tnvolved
Phase 62 enters in this

table the block number
for each PH as it reads
Proced ure A -text.

Phase 63 extracts the block
number in which a PN
is defined each time a PN
is referred to.

Purpose
Determine displacements
from the beginning
of the block for PN
definitions.

Entry Frequency
One entry for each PN.

Phases Involved
Phase 63 builds this table

during Procedure A~text
processing.

I 12 bits
I
IDisplacement from
Ibeginning of block
Ifor PN

Phase 64 uses this table to
insert the displacement
in generated instructions
which address the PN.

Licensed Material - Property of IBM

Table Formats 313

Licensed Material - Property of IBM

PNOUNT
(TIB 14) purpose

stack operands of CO~PUTF
and IF statements.

Entry Freguency
One entry for each
operand in statement.

Phases Involved
Phase 40 builds this table

from P1-text scan.
Phase 40 uses this table

with PSIGNT table
to stack operands until
the string is ready to
be created.

I

Variable 1 I ,
ISame operand as in I I
IP1-text. including I I
!byte 0 identification!(2)!

(!) Number of bytes in the ~receding field.

PNQTBL
(TIB 6)

CD Bit
-0

1
2

3
4
5
6

7
8
9

10
11

12
13
14
15

Purpose iii I
Store information on
references to qualified
PNs for completion of
dictionary entry.

11 111Variable 2 1 11
I I I I I
In IclProcedure-IPlag IUnusedl221
I I Iname in IbQ)esl

Entry Freguency
One entry for each
qualified PN.

Phases Involved
Phase 11 builds this

table from Procedure
Division.

Phase 11 uses this table
to complete procedure­
name dictionary entries.

Meaning. if on
Procedure-name
Section-name

I I I EBCDIC I 1 I
I " "

i I
111 Variable
, I ,
ICIProcedure-namel
I Iqualifier in I
I IEBCDIC I
, I ,

Either name follows
THRU in PERFORM ••• THRU ..
or follows PRRFORM without THRU
Referred to by ALTER
Procedure-name of GO TO
Procedure-name of EXIT
Procedure-name following
TO PROCBED TO in ALTER
statement
Unused
Referred to in DEBUG
Defined in DEBUG
Dummy section-name
Defined in Declaratives Section (or

in DEBUG statement referring to such·
section). Bits 12-15 describe type of section.

Declarative error routine
Declarative label routine
Unused
Declarative report section.

314 section 5. Data Areas

PNTABL
(TIE 5)

G) Bit
-0

1
2

3
4
5
6

7
B
9

10
11

12
13
14
15

0 Bit
0

1-7

PNTBL
(TIB 7)

Licensed Material - Property of IBM

Purpose 1r--rI~I-----------'------r------------'1
store information on 11 111Variabie 2 1 I
references to unqualified I I I I I
PNs for later In IclProcedure-IFlag IDictionary I
completion of PNs I I Iname in I~eslse~h codel
dictionary entry. I I IEBCDIC 10 I 0 I

Entry Freguencv
One entry for each PN
that is not qualified.

Phases Involved
Phase 11 builds this table

from Procedure Division.
Phase 11 uses this table

to complete procedure­
name dictionary entries.

Meaning. if on
Procedure-name
Section-name
Either name follows
TERU in PERFORM ••• THRU,
or follows PERFORM without THRU
Referred to by ALTER
Procedure-na~e of GO TO
Procedure-name of EXIT
Procedure-name following TO
PROCEED TO in ALTER statement
Unused
Referred to in DEBUG
Defined in DEBUG
Dummy section-name
Defined in Declaratives Section (or
in DEBUG statement referring to such

" I

section). Bits 12-15 describe type of section.
Declarative error routine
Declarative label routine
Unused
Declarative report section

Meanin!L.-if on
Dictionary was searched for
this PN before this section
Unused

Purpose
Create and store list of
optimized PN numbers.

Entry Freguency
One entry for each
optimized PN number.

Phases Involved

I 2 I
I I
IDisplacement of PN I
Ifrom start of PN cells I
lin object module I
r I

Phase 60 builds this table
from PNCTR in COMMON and PN
equate strings.

Phase 60 uses this table
to optimize PNs and
process Procedure A-text.

Table Formats 315

Licensed Material - Property of IBM

PNUTBL
(TIB 6)

PROCTNDX
(TIB 5)

G) Bits
0-19
20-23

Purpose r,-----------------------------,
Optimize procedure-names I 1 bit
by eliminating those not ~I----------------------------~
referred to or, when 11 Name is referred to

Name is not referred to OPT is specified, 10 determine entry points. L-__________________________ ~

Entry Frequency
One entry for each source
program procedure-name.

Phases Involved
Phase 51 reserves space

for as many entries as
there have been PNs
counted in PNCTR. These
entries are initially
set to O. In later
processing, phase 51
turns on a bit each
time the PH associated
with the bit is referred to.

Phase 60 uses this table
to eliminate names not
referred to, or, when
OPT is specified,
phase 62 uses this table
to determine which
PNs are entry points.

Purpose
store information about
the PROCTAB table which
is written on 5Y5005 if
5Y!DMP option is in
effect.

Entry Frequency
One entry for each block
of PROCTAB entries.

Phases Involved
Phase 65 builds this

table while reading
SY5002 and building the
PROCTAB table.

Phase 65 writes this
table on 5YS~5 and

iii i
1 3 I 3 I 4 I
1 I I I
ICard/verb numberlRelative addresslDevice address I
Ifor first entry lof code for thislof PROCTAB I
lin ~CTAB blocklentry within I block I
I ~ I segment I I
, , I ,

COBOL library subroutines
use this table to address
entries in the PROCTAB table.
table.

Contents
Card number
Verb number

316 Section 5. Data Areas

PSHTBL
(TIB 17)

PSIGNT
(TIB 15)

PTRFLS
(TIB 16)

Licensed Material - Property of IBM

Purpose
store GN numbers of
ELSE branches in nested
and compound IF state­
ments.

Entry Freguency
One entry for each false
branch.

Phases Involved
Phase 40 builds this table

from P1-text and GNCTR
in COMMOll.

Phase 40 uses this table
to qenerate branches.

Purpose
Store operators in
COMPUTE and IF
statements.

Entry Freguencv
One entry for each
operator in the state­
ment being processed.

Phases Tnvolved
Phase 40 builds

from P1-text.
this table

operators
are ready

i

1 2 I ,
116
I 0

Master labellGN I
Otherwise Inumberl

i

I 2
I
IP1-text I
Icode forI
Isign I
, I

Phase 40 stacks
until strings
to generate.
PNOUNT.

Table used with

Purpose
Store branches in an IF
statement.

Entry Freguency
One entry for each
decision in statement.

Phases Involved
Phase 40 builds this table

from P1-text compound IF
statements and GNCTR
in COMMON.

Phase 40 uses this table

Iii

I 1 I 2 2 I
~I-----------;I· ,
11 'NOT' is IGN number forlGN number I
I active Ifall-through Ifor bypassl
10 'NOT' is I branch I branch I
I not active I I I
I , I I

with the PSBTBL table to select
branches for P2-text.

Table Formats 317

Licensed Material - Property of IBM

P1BTBL
(TIB 2) Purpose r�--r-----------r�-----------r------r-----~I

Pass phase operating in- 12 BIB 3 BO I
formation from phase 10 ~I--r-----------rl-----------r------r-----~I
to phase 11 or 12 or In IGenerated I Generated IUnusedlLast I
from phase 12 to phase 11 I Icard number Icard number I I record I

Entry Frequency
One entry made at end of
phase 10 processing and,
optionally, at end of
phase 12 processing.

Phases Involved

I Ifor last Ifor last I Iread I
I Irecord readlrecord readl I I
I I (packed) I (unpacked) I 1 I
I , , " I

I I I I
I 6 I 1B I B2 I 6
I I I I

I
I 2
I

Phases 10 and 12 build I Sequence I Error in-IINSERT I Sequence IPhase ,
this table from stored
information.

Phase 11 and/or 12 moves
data into its own data
areas.

0) Bits Byte 1 Byte 2
-0- Unused INDLSW

1 COPYSW INSTSW
2 BASISW INDFRR
3 Unused INOWSW
4 Unused DELSW1
5 Unused DELSW2
6 Unused DELSW3
7 CPYXSW CPYCSW

0 Bits ~ Byte 2
-0- FSTRC Unused

1 Unused Unused
2 Unused Unused
3 Unused USF.PDL
4 Unused USEPDE
5 Unused SRTSW
6 Unused Unused
7 Unused Unused

For Phase 10

,number of Iformationlcard work I number I switches I
Ilast recordlon recordlarea fromlfrom BASIS,
Iread I

I

114 I 4
I I
IUnusediSYS004 pointer
I Ifor BASIS/COPY
I I READ
I I
I I

IBASIS I , ,

4 2 I
I

IUnused,Phase I
I switches I

101
I I

• i , , ,

I 2 I 4 I BO I B I 2

I ,

I I I I I
I Current IPhase IDouble- ~Icontents
I genera ted I swi tches·1 buffer for I lof
Icard number I ICOPY... I I columns
I I 0 IREPLACING I 172 and 73
I , I I

0 Bits Byte 1 Byte 2 Byte 3
-0- Unused CDSURP CON2SW

1 Unused BUF2SW NWCDSW
2 Unused BUF3SW SKCDSW
3 Unused BUF4SW Unused
4 REPSW CONTSW Unused
5 Unused Unused Unused
6 Unused Unused Unused
7 Unused Unused DBRDSW

CD
I
I
I

I
1 ,

I
IPhase I
I switches I

: G) : , ,

Byte 4
Unused
SURPSW
BUF5SW
Unused
Unused
Unused
Unused
Unused

G Bytes 0-2 = Report writer generated name
Bytes 3-7 = Not used

0 Bits 0-6: Not used
7: FRGNSW

31B Section 5. Data Areas

QALTBL
(TIB 23)

QFII.E
(TIE 23)

Purpose
Work table, for example,
to store qualified names
and qualifiers in reverse
order of appearance
in RD.

Entry Frequency
One for each name in the
current string of a name
and its qualifier.

Phases Involved

iii
111Variablei
I I I I
IclName in I
I IEBCDIC I . , .

I , I
111Variablei
I I
IclName in
I IEBCDIC , ,

Licensed Material - Property of IBM

Phase 12 builds this table as
it scans a name and its
qualifiers.

Phase 12 uses this table
to reverse the order of a
name and its qualifiers.

Purpose
store Q-routine GN
numbers connected with
all files in which at
least one of the records
contains an OCCURS •••
DEPENDING ON clause.

Entry Frequency
One entry for each file
of this type.

Phase Involved

i i

I 2 2 I
I ,
IDTF number forlGN number for single O-routine fori
Ifile Ifile or for chain of GNs, where I
I Ithere is more than one Q-routine I
I (associated with the file (L' ______________ ~ _______________________________ ____J

Phase 22 builds this table
from Q-routines for file.

Phase 30 adds O-routine GN
numbers to dictionary
attributes for corre­
sponding files.

(!) Table ends with a word of zeros.

QGNTBJ.
(TIB 24) Purpose

Pass O-Routine GN numbers
and their Procedure Block
numbers from phase 63 to
phase 64. This table is
built only if there is a
Q-BEGIN macro element
passed in Procedure
A-text.

Entry Frequency
One for each Q-Routine G~.

Phases Involved
Phase 63 builds this table

from the GNLABTBL.
Phase 64 uses the data to

initialize Q-Routines
during processing for
INIT3.

I •
(2 1 (
(I
(GN numberlProcedure (
((Block number (
I • I

Table Formats 319

Licensed Material - Property of IBM

QITBL
(TIB 22)

OLTABL
(TIB 1)

Purpose I

contains a pointer to 4 I 4
the dictionary attributes ~I---------------------rl--------------------;
of each OCCURS ••• DEPENDINGIPointer to entry IDisplacement of
ON object entered in the lin dictionary for lentry in OD2TBL for
OD2TBL table. IOCCURS ••• DEPENDING IOCCURS ••• DEPENDING

ION variable ION variable
Entry Frequency , ,

One entry for each OD2TBL
table entry.

Phase Involved
Phase 22 builds this table from

dictionary and OD2TBL table.
Phase 22 combines this

table with OD2TBL and
QRTN tables to form QVAR table.

Phase 25 uses this table with
QRTN and OCCTBL to build
the ODOTBL.

Purpose I I
Store qualified names in
order of receipt.

11 1 I Variable

135100lName

Entry Frequency
One table entry con­
taining name currently
being processed and its
qualifiers.

Phases Involved

I I

Phase 10 builds this table when
a qualified EBCDIC name

I
in

;'1
EBCDICQ),

! ~,

is inserted in the QNMTBL or OD2TBL table.
Phase 12 builds and uses

when a qualified EBCDIC name is
to be written in PO-text.

Phase 11 builds and uses when a
qualified EBCDIC name
is to be written in PO-text.

I
I Variable

f,Pirst. ,Qua'lifi.~
,tName ," ' " "

I

(2) Count of bytes in preceding field.

QNMTBL
(TIB 2) Purpose

Store BCD names for
REPORT, L~BEL RECORD,
ACTUAL KEY, NOMINAL KEY,
RECORD KEY, and APPLY
CORE-INDEX clauses from
Data and Environment
Divisions until Data
IC-text is written.

Entry Frequency
One entry for each name
of this type.

320 Section 5. Data Areas

i 2 i 1 i Variable i'"~,, ': :J~11' '
I I I 1","'1 -
In IclLast qualified:':,:, 'dcl
I I Iname in EBCDICj " ,I,'
I , I i I t

!1lvariable
I I

111

1 Last qualifier 1
I Iname in EBCDIC I I
i I I I

QRTN
(TIB 21)

QSEL
(TIB 1)

Phases Involved
Phase 10 builds this table

from clauses in FD, SELECT,
and APPLY statements.

phase 10 uses this table to
write out Data IC-text.

Purpose i i
Store GN numbers of
Q-routines and OD2TBL
pointers for each OCCURS
DEPENDING ON clause in
a record.

Entry Frequency
One entry for each
record containing an
OCCURS DEPENDING ON
clause.

Phases Involved
Phase 22 builds this

table from GNCTR in
COMMON and OD2TBL table.

phase 22 combines-this

I 2 I 2
I I
IGN numberlNumber of fields
lof first Ito follow
I Q-routine I

I

I 4
I
IDisplacement of
IOD2TBL entry forI
Ilast Q-routine ,

table with OD2TBL and
QITBL to form QVAR table.

Phase 25 uses this table
with QITBL and OCCTBL
to build ODOTBL.

Purpose
Hold information
on secondary base
locators (SBLs).

Entry Freguency
One entry for each INCRA
verb generated.

Phases Involved
Phase 22 builds as it

generates INCRA verbs
for ()-routines.

IFirst SBL number I
lassociated with I
Ian INCR! verb I

Phase 30 uses table to
generate for each INCRA
verb a P1-text literal
the value of which equals
the number of SELs
associated with the verb.

(J) Last entry is followed by a byte of zero~.

OTBL
(TIE 3) Purpose

store GN numbers for
Q-routines during Data
A-text processing.

Entry Preguency
One entry for each
Q-routine definition
in Data A-text.

I i

I 2 I
I I
IGN number I
lof Q-routinel , ,

Licensed !aterial - Property of IBft

I
I 4
I
IDisplacement of
lentry for first
IQ-routine

OD2TBLI
I
I

Table Pormats 321

Licensed Material - Property of IBM

QVAR
(TIB 24)

Bits
0=9

10-22
23-31

Phases Involved
Phase 60 or, when OPT is

specified, phase 64 makes an
entry when it finds a
O-routine identification
element in Data A-text.

Phase 60 or phase 64 uses
this table to initialize
Q-routines when
generating INIT3 code
for object module.

Purp~ ~---------------------i~------------'i-----r--------,
store Q-routine GN
numberE connected with
items containing OCCURS
DEPENDING ON clauses.

Entry Frequency
One entry for each item.

Phases Involved
Phase 22 builds this table

from ORTN, QITBL, and
OD2TBL tables.

Phase 30 adds O-routine
GN numbers to dictionary
attributes of items that
are objects of OCCURS
DEPENDING ON clauses.

Contents
Zeros

4 I 2 I 1 I
I I I

IPointer to dictionarYIGN number forI ~2 'I
lentry for object of lO-routine fori ~
IOCCURS DEPENDING ON Ifirst item I I
!for first item (2) I I I

Dictionary section number
Displacement in section

~ Last entry is followed by a byte of zeros.

RCDTBL
(TIB 11) Purpose i i

2 111 Variable
I I I

Store each level-01
record-name in FD Section
until input/output verb
processing.

IDisplacement ofl clRecord-name I

Entry Freauency
One entry for each
01-level entry in FD
section.

Phases Involved

lentry for file I lin I
lin FNTBL I IEBCDIC I

Phase 10 builds this table from
01-level statements.

Phase 11 uses this table
in processing input/output
statements.

322 Section 5. Data Areas

RDFSTK
(TIB 11)

RENAMTB
(TIB 3)

REPTAB
(TIB 29)

Purpose
store information
about subject and
object of
REDEFINES clauses

Entry Frequency
One entry for each
REDEFINES clause.

Phases Involved
Phase 22 builds from

dictionary.
Phase 22 uses this table

to assign address
parameter to items
after REDEFINES clause.

Purpose
Store information for
associating a renamed
item with all of its
renaming items if SYMDMP
if specified.

Entry Frequency

Licensed Material - Property of IBM

I

1 3 I 4 4
I I I I I
ILevel numberiContents of addressiDisplacement (d) I Length oflt:\
lof REDEFINESIparameter field lof i d k, right-IREDEFINESI\!)
Isubject I (i d k) I justified lobject I
I I

(2) First entry is a dummy.

I

3 I 3
I

IDictionary pointeriDictionary pointer I
Ifor renamed item Ifor renaminq item

One entry for each FENAMES item.

Phases Involved
Phase 22 builds this table

while processing RENAMES
clauses.

Phase 25 uses this table
to associate renamed items
with renaming items.

purpose
Store COPY •••
REPLACING data-names
to be used during a
READ from library.

Entry Frequency
One entry for each pair
specified in the REPLACING
clause of the COPY
statement currently
being executed.

Phases Involved
Phase 01 builds this

iii i
111Variable 111 Variable
I I I I I
IclWord beinglclReplacing word, I
I I replaced I I literal, or I
I I I lidentifier I
, I I I I

table from COPY ••• REPLACING
clause in source program.

Phase 01 uses this
table to replace data­
names while source
statements are being
read from a library.

1

(2) Last entry followed by a byte of zeros.

Table Formats 323

Licensed Material - Property of IBM

RLDTBL (Phase 60)
Purpose

o

i iii
store information
on items to be
inserted in the
data area or a
Global Table in the
object module.

, 1 , 3 ,1 3, ,
, 1 "

ICode
1 defining
liteh
10

ITarget ,Priority ,Value,
,address, (0, if no ,of ,

segmenta-,ADCONI
ti~n) , 1

Entry Freguency
One entry for each PN
definition, VN definition,
and ADCON in Data A-text.

Phases Involved

i

Phase 60 builds this table
during Data A-text processing.

Phases 60 uses this table to
punch RLD and text
cards for object module.

There is no TIB for this table. Phase 60 uses the phase 00
routine GETALL to get space, but moves data in and out of
the table by itself. When it receives control back from
phase 00, phase 60 stores the first address in the table
space in location ARLDTB and the length in bytes in
location RLDSIZ. During processing, it uses location
RLDINDEX as a counter of the bytes used so far.

Code
--a4

911
All
CII

Meaning
Data-A text RLD
GN or PH information to be used to match VN definitions
VN definitions
VCONTBL ADDR INITI ADDR

, ,

RLDTBL (Phases 63 and 611)
(TIB 2S) Purpose , i

Code
10

SII
911
All
CII

store information on
items to be inserted in
the data area or a Global
Table in the object
module.

Entry Freguency
One entry for each PH
and GN definition
VN definition, and each
address constant in
Data A-text.

Phases Involved
Phases 63 and 611 build

this table during
Procedure A-text and
Data A-text processing.

Phase 611 uses this table
to punch RLD and text

1 3, 1 3 I
, I

,Code ,Target ,Priority ,Value of,
Idefin~·n 1 address I (0, if no ,ADCON ,
,item 1 I Isegmentation) , I
I " "

cards for the object module
and VN EQUATE GN addresses.

Meaning
RPT-ORIGIN GN
DTF address
PN definition
VN definition
INIT1 address

3211 Section 5. Data Areas

Licensed ~aterial - Property of IB!

RNMTBL (Phase 22)
(TIB 12) Purpose I

store information
on objects of
REDEFINES clauses.

Entry Freguency
One entry for each
REDEFINES clause.

Phases Involved
Phase 22 builds this table

from dictionary.
Phase 22 uses this table

1 311
I I

ILevel numberlPointer tol Dictionary I
lof REDEFINESIdictionarYIminor codel
I subject lentry for Ifor objectl
I IREDEFINES I I
I I object I I
, "

to check whether the
REDEFINES clause is valid.

RNMTBL (Report Writer)
(TIB 12) Purpose i i

Store data-names
of report groups.

32 2 1 2 111

IData-name IGN numberiNOP code IDisplacement of entry 2
Entry Frequency Ifor reportlfor this 100 - NOP PLUS lin RWRTBL for report-I
One for each Igroup in I report- 101 = NOP ZEROIname associated with I
report group IEBCDIC 1 Igroup I Ithis data-name I that has a data-name and L� __________ ~I __________ LI ____________ ~~ ____________________ ~I~

is not a detail report group.

Phases Involved
Phase 12 builds this table from

scan of report groups.
Phase 11 uses this table to

generate coding in response to USE
BEFORE REPORTING statements.

<!) Left-justified, padded with binary zeros in low-order bytes.

~ Code for unique report group names

~
00
01

Meaning
This entry was made as the result of a unique report group name.
This entry is a non-unique report group name that must be qualified.

~ First entry is a dummy.

ROLTBL
(TIB 15) Purpose

Store the SUM clause
data-names and operand­
names that are needed to
create ROL-ROUT and
RST-ROUT routines.

Entry Freguency
One entry for each sum
rolled forward.

Phases Involved
Phase 12 DOROL routine

builds this table.
Phase 12 GNSPRT routine

uses this table to
create ROL-ROUT and
RST-ROUT routines.

. ,
121 1 1 2 2 4
I I I I I I
~unusedlSUM IUnusedlDisplacementlDisplacement of sum name I
\J) I level l lof SUM name lin SNMTBL or nnnn portion I
I I I I lentry in lof S.nnnn. This is the I
I I I I ISNMTBL. Thislitem into which the I
I I I I lis the item Isumming takes place I
I I I I Ito be rolled I I
I I I I I forward I 0 I
, , , '" ,

Table Formats 325

Licensed Material - Property of IBM

. Contains zeros if last entry in table.

Bytes
o
1

2-3

ROUTBL
(TIB 16)

RWRTBL

Contents
FF
00

Displacement

Purpose
store GNs for
routines in each
Report Writer
generated subprogram.

Entry Frequency
One entry for
each report
in Report
Section.

Phases Involved
Phase 12 builds and uses

this table.
Phase 11 uses this table

in Report Writer verb
processing

(TIB 13) purpose
Store information on a
report-name.

Entry Frequency
One entry for each
report -n am e •

Phases Involved
Phases 10 and 12 build

this table from scan
of FD and RD entries.

Phases 12 and 11 use
+his table nuring scan
of Report Writer verbs.

326 Section 5. Data Areas

\

Iii

I 2 221 2 I
I I _ I
IGN numberlGN numberlGN numberlGN numberlG' number I
Ifor Ifor Ifor Ifor Ifor I
IRPH-ROUT IRPF-ROUT IPGH-ROUT IPGF-ROUT 11ST-ROUT I
I I , , , ,

i i ----,
2 I 2 2 I 2 2 I

I I ~
IG' numberlGN numberlGN numberlGN numberlG' number I
Ifor Ifor Ifor Ifor Ifor I
ILST-ROUT IWRT-ROUT IWRT-1 IWRT-2 ICTB-ROUT I
" I ,

I i
2 I 2 2 I 2 2

I I I
IGN numberlGN numberiGN numberiUnusedlUnused
Ifor Ifor Ifor I I
IROL-ROUT IPST-ROUT IRST-1 I I
I I , , I

Iii
I 2 2 I 2 2 2 I
I I I
IGN numberlGN numberlGN numberlGN numberlGN number I
Ifor Ifor Ifor PH-1 Ifor Ifor I
ICHF-ROUT CFF-ROUT I ILAST lINT-ROUT I
I I IROlL I I
, '" I

I

I 2
I
IGN number
Ifor
IlLS-ROUT

2 2 2

GN numberlGN numberlGN number I
for Ifor Ifor
RLS-ROUT ISAV-ROUT IRET-ROUT

I iii
I 30 5 I 2 I 2 I
I I I I ,
IReport-namel-nnnn portion IPointer to ISize in I
lin EBCDIC lof record-name Ifile-name-1Ibinary I
I Ifor file-name-1Ientry in lof larger I
I Q) I I FNTBL I record, ,
, , I , ,

, i

I 5 2 I 2
I I
I-nnnn portion oflPointer to entrYIDisplacement inl
Irecord-name ~2 Ifor file-n~-2 IROUTBL ,of entrYI
Ifile-name-2 ~ lin FNTBL ~ Ifor this report I , . ,

Licensed Material - Property of IBM

(2) Left-justified, padded with binary zeros in low-order bytes.

~ Contains zeros if report is to be written on only one file.

SATBL
(TIB 5)

SDSRATBL
(TIB 5)

SEGINDX
(TIB 16)

purpose
store file-names
associated with SAME AREA
clauses until all SAME
AREA clauses have been
processed.

Entry Freauency
One entry for each file
in a SAME AREA clause.

Phases Involved
Phase 10 builds this

table from SAME AREA
clauses in source pro­
gram.

Phase 10 uses this table
to check SAME AREA
clause syntax.

purpose
Determine the size of the
SAME RECORE AREA and the

I I
1 2 11 I Variable

I I I
ICount of ICard IclFile-namel
Inumber of IN umber I lin EBCDICI
Ifiles in I I I I
I clause I I I I
I • • , I

i
1 I 1

I

i

j I ,

111Variable I
I I ,
IclFile-namel
I I in EBCDIC I
I I I
I I I
, t I

record boundary within ISAME
the area for SORT records.IAREA

RECORDIBL INumber
numberlnumberlof BLs

I 2
I
IMaximum
Irecord
Isize

Entry Frequency
One entry for every
sharing SAME RECORD
with an FD.

Phase Involved

SD
AREA

Phase 21 SORTPROC routine
builds this table. SRA
routine uses the table
to build the SRAMAX

I I I
! I I i

table and also to generate
SAME RECORD AREAs.

Purpose
Store information about
program fragments if
SYMDMP or STATE is
specified.

Entry Frequency
One entry for each
program fragment.

phases Involved
Phase 65 builds this table

while reading SYS002

iii

I 1 3 3 I 3 I
I I I I
I Priority I Address of thislTable-locator forlTable-locator fori
I Ifragment rela- IPROCTAB entry forlPROCTAB entry forI
I Itive to the Ifirst card/verb (last card/verb in(
I (beginning of lin this fragment Ithis fraament I
! !the segment ! Q) ! 0 - !

and buildinq the PROCTAB table.
COBOL library subroutines
use this table.

Table Formats 327

Licensed Material - Property of IBM

(!) For the SYKDMP option, the field contents are:

Bits
0-11J
15-23

contents
Relative block number in PROCTAB
Displacement within block

For the STATE option, the field contents are:

Bits
0=23

SEGTBL
(TIB 15)

Byte
0-1

2
3

SETTBL
(TIB 21)

Contents
Displacement from the beginning of the
PROCTAB entries in the object module

Purpose ,
Store disk address of
sections of Procedure
A-text.

1 IJ I

Entry Freguency
One entry for each
segment control break.

Phases Involved
Phase 51 creates an entry

when it finds a
segment control break.
Gets priority from
PNOUT + 1 in phase 51,
and device address from
cell SEGSAV in phase 00.

I I I
I Priority I DeviC!>address I
Inumber I 1 I
" ,

Phase 60 or, when OPT is
specified, phases 62 and 63
use this table to
combine sections into
a segment.

Contents
Relative track number
Block number on track
Record identification

Purpose
Build SET strings for the
SET statement after
processing the. final
operand of the statement;
or determine whether the
ON SIZE ERROR option is
present before building
strings for ADD and
SUBTRACT statements with
mUltiple receiving fields.

Entry Freguency
One entry for each operand
before the TO, UP BY, or
DOWN BY options of the
SET statement; or one entry
for each operand between

,
1 IVariable

I
c IP1-text

I element I
Ifor operandi , ,

either the first receiving field
and ON SIZE ERROR or ~he next
verb after the ADD (or SUBTRACT)
statement. The table is cleared
at the end of processing
for each verb.

328 Section 5. Data Areas

SMSTBL
(TIB 28)

Phases Involved
Phase 40 builds this table to

store operands before the TO,
UP BY, and DOWN BY options of the
SET statement.

Phase 40 also uses this table to
store the operands after the receiving
field and before either the ON
SIZE ERROR option or the verb
following the ADD (or SUBTRACT) verb.

phase 40 uses the table to build
SET strings after processing the
operand following the TO, UP BY,
and DOWN BY key words of the SET
statement.

Phase 40 uses the table to determine
whether the ON SIZE ERROR option
is present before issuing the
string for the receiving fields
after the first in an ADD or
SUBTRACT statement.

Purpose I

store SUM clause operand­
names for correlation of
SUM and SOURCE clauses.

2 c I

Entry Frequency
One for each operand-name
in a SUM clause.

Phases Involved
phase 12builds this table

from SUM clauses.
Phase 12 uses this table

I
I SUM clause I

c loperand-namel C!)
lin EBCDIC I

with SRCTBL and SUMTBL tables
to qenerate a USM-ROUT routine
for-each detail report
group and to build the
ROLTBL table.

(2) First entry is a dummy.

SNMTBL
(TIB 35) Purpose

Store all data-names of
SUM clauses.

Entry Frequency
One entry for each SUM
clause.

Phases Involved
Phase 12 builds this table

from SUM clause.
Phase 12 uses this table

to correlate SOURCE and
SUM clauses, build

I

32 3 I
I I I
IData-namelUnusedl ~
Ifor su~1 I
Ibucket~1 I
, I ,

ROLTBL table, and generate
USM-ROUT routines.

Left-justified, padded with binary
zeros in low-order bytes.

First entry is a dummy.

Licensed Material - property of IBM

Table Formats 329

Licensed Material - Property of IBM

SPNTBL
(TIB 21) Purpose

store function-name
information from -
SPECIAL-NAMES paragraph
in Enviro~ment Division.

Entry Frequency
One entry for each
function-name implementor.

Phases Involved

, iii

I 3 111Variable I
1 I I 1
1(!)lcIMnemonic-namel
I I lin EBCDIC I

I I

Phases 10 builds this table
from SPECIAL-NAMES
paragraph. ,

Phases 11 and 12 uses this table
to SUbstitute function-
name for mnemonic-name
in Procedure Division.

(!) Three possible configurations are:

Byte 0 ~ ~~
a. 1-character Unused Unused

literal in-
EBCDIC

b. 54 Code for device used (see COBOL word Unused
--- list under PO-text in "Section 5.

Data Areas") •
c. 55 c:OBOL word code for carriage control Unused

word (see special name element
under PO-text in "Section 5. Data Areas") •

SRAMAX
(TIB 10) ;turpose I I

SRATBL
(TIB 6)

1 I 1 1 I
I I

Determine the size of
the SAME RECORD AREA and
the record boundary
within the area.

ISAME
IAREA
I

RECORDIMaximum BLIMaximum I
numberladjustmentlrecord sizel

Entry Frequency
One entry for every
SAME RECORD AREA number.

Phase Involved
Phase 21 builds this table

I

on entry to routine SRA
using the SRATBL, BLTABL,
and SDSRATBL. Routine
SRA uses this table to
generate SAME RECORD AREAs.

(Phase 10)
Purpose
Store file-names
associated with SAME
RECORD AREA clauses
until all SAME clauses
have been processed.

Entry Frequency
One entry for each
SAME RECORD AREA clause.

i

I 1
1
ICount of
lof files
I clause
i

I factor I I
I , ,

i

2 I 1
I

number I Card I
in 1 number I c

I I
• I

i i ~

IVariable I
I I
I File-name I
lin EBCDIC I
I I , ,

330 section 5. Data Areas

i 1, i variable _. i
1 I ,"
I I File-name I
I c, I in EBCDIC I
I 1 'I

, t t •

Phases Involved
Phase 10 builds this table

from SAME RECORD AREA
clauses in source program.

Phase 10 uses this table
to check SAME RECORD
AREA clause syntax.

Licensed Material - Property of IBM

SRATBL
(TIB 9)

(Phase 21)
Purpose j i i

SRCHKY
(TIB 34)

SRCTBL
(TIE 22)

I 1 1 I 2 1 I
I I I

Store address of buffers
for files with SAME
RECORD AREA clauses. IDTF ISAKE

InumberlAREA
RECORDISize
numberlarea

i

oflBL I

Entry Frequency
One entry for each file
named in a SAME RECORD
AREA clause.

Phases Involved

I I

Phase 21 builds by extracting
files entered in the BUFTAB table
with a SAME RECORD AREA clause.

Phase 21 uses for buffer generation.

Inumberl
I ,

Purpose ~i--------------~i~ir---------'
Save names of keys cited I 2 111Variable
in KEY clause for group ~1--------------~I~Ir---------i
item until group item is 101 ASCENDING IclName of
processed. 102 DESCENDING I Ikey in

I I IEBCDIC
Entry Frequency Li ______________ ~i~iL_ ______ __J

One entry for each key
named in KEY clause in
current group item.

Phases Involved
Phase 22 builds this table

from group items in
Data IC-text.

Phase 22 uses this table
to make sure keys named
are defined in group.
If not, sets error bit
in INDKEY table for
Phase 30 reference.

Purpose
Store SOURCE clause
operand names to corre­
late SOURCE and SUM
clauses.

Entry Frequency
One for each SOURCE
clause in each detail
report group.

Phases Involved
Phase 12 builds this table

while scanning detail
report groups.

2 I 2
I

ILength oflDisplacement
Ivariable linto DETTBL
I field Itable of detail
I Ireport group
I I data-name
i

Variable I ,
ISOUPCE operand with I
lall qualifiers, indexes, I
land subscripts, if any, I
lin PO-text format. I
I I
I I

Table Formats 331

Licensed Material - Property of IBM

SSATBL
(TIB1)

STRING
(TIB 9)

Phase 12 uses this table
in conjunction with SMSTBL
and SUMTBL tables to generate a
USM-ROUT routine for each detail
report group.

Purnose
Store file-names
associated with
SAME SORT AREA
clauses until all
SAME clauses have
been processed.

1 2 (1 (Variable
i

I

Entry Prequency
One entry for each
SAME SORT AREA clause.

Phases Involved
Phase 10 builds from

SAME SORT AREA clauses
in the source program.

Phase 10 uses to check

I
ICount of ICard I
Inumber of In umber I c
Ifiles in I I
I clause I I , . .

SAMF SORT AREA clause syntax.

Purpose
Store verb strings
while they are being
~uilt for output as
P2-text.

Entry Prequency
One entry for each operand
in current string.

Phases Involved
Phase 40 builds as strings

are processed.

i i
I Variable 1 1
I I
I"erb 10)
Istring I

Phase 40 uses this table to
collect output before generating.

I I i
IFile-name,-[Repeat once 1
lin EBCDIC for each filel
I in clause] I
I I I
,t ,

This field contains the number of bytes in
the preceding field.

SUMTBL
(TIB 19) Purpose

Store data-names and
operand-names from SUM
clauses that are used to
create routines USM-ROUT,
INT-ROUT, RST-ROUT, and
ROL-ROUT.

Entry Prequency
One for each SU~ clause.

332 Section 5. Data Areas

Iii
211112 11

I I I I 1
I n IUnusedlSUM IGenerated card IResetl
11:\1 Ilevellnumber for thisllevell
I \.!I I I - ISUM clause 1 1
I I I I I I

Phases Involved
Phase 12 builds this

table from scan of
SUM clauses.

Phase 12 uses this table
to build routines
USM-ROUT, INT-ROUT,

RST-ROUT, and ROL-ROUT.

Licensed Material - property of IB~

I

2 (
I

IDisplacement of entry(
lin DETTBL for detail I
Iname in SUM ••• UPON (
Iclause (. .
, i I

(1 (4 7 24 I
I I (-r
(Code for (Pointer to SUM (E.-name (PICTURE fori
Inext fieldlname in SNMiBL 1 (REDEFINES) (name in I

(or nnnn portion(in PO-text (EBCDIC (o (of S.-name (formatQ) ((
I , '--..-J

, I
2 (2 I 2

(
(Displacement of entry I
lin SMSTBL for first ,
,operand-name in SUM I
(clause (
, ,

I I
IDisplacement of entry I Zeros (
(in SMSTBL for last, (
(operand-name ~n SUM (,
(clause I (
I , ,

Contains zeros if last entry in table.

CD

Code
00

10
FF

Byte
o
1
2

3-6

TGTADTBL
(TIB 18)

Meaning
2 bytes contain displacement into SNMTBL table
Next 4 bytes contain nnnn portion of S.-name
Next field contains nnnn portion of S.-name

Contents
06
E
• (period)

nnnn

Purpose
Gather information
needed by phase 65 for
processing the SYMDMP,
STATE, and PLOW options.

Entry Frequency
Information entered
depends on options in
effect.

Phases Involved
Phase 60 builds this

table.
Phase 65 uses this

table in processing
SYMDMP, STATE,
and PLOW options.

I

I 4 4
(
(Displacement of (ID number of
(Debug table from(card written
Ibeginning of TGT(phase 60

I

,
4 (4

(

lastl
by (

(,

(Relative address (Relative address ofl
lof byte following(O-routines, o~f
Ilast byte of (none, INIT2 ~
!INIT3 (2) !

,
4 , (4 ,

(Relative address of (Relative
Ifirst instruction lof START
lin Declarative I
! Section ® 0 !

a~essl
~,

(
(
I

Table Formats 333

Licensed Material - Property of IBM

G)

CD
@

,
I 2
I
IDisplacement of
I first DTF cell
Ifrom beginning
lof TGT

:®C>

If FLOW is in effect, phase 65 changes this
value to the relative address of the byte
following the last byte allocated for the use
the COBOL library subroutine for the FLOW
option (ILBDFLWO).

The field is not present if FLOW is the only
option in effect.

The field contains the relative address of
START if there are no declaratives.

The field is allocated but not filled in if
the STATE option is in effect.

I I

I 2 I
I I
IDisplacement f~om I
Ibeginning of PGT I
Ito virtual for I
IILBDTEF3 (0 if I
Ivirtual~t present) I

! ®~ !

UPSTBL
(TIB 25) Purpose

Store UPSI-switch byte
information for phase
22 use in dictionary
processing.

Entry Freguency
One entry for each UPSI
name.

Phases Involved
Phases 10 builds from

Special-names paragraph
and Data Division.

Phase 22 uses in diction­
ary processing.

334 Section 5. Data Areas

Iii

12 I 2 I
I I I
In ICard number I
I lof UPSI-x namel

1; 6 9", I
I , ,

, IUPSI-x I Dictionary I
1061name inlattri~utesl
1 IEBCDIC lof ~SI-x I
I , - , '~. , ,

,
1 I Variable 9

I I ----f
I Mnemonic-I Dictionary I

c Iname in lattributes ofl
I EBCDIC I mnemonic-name I

, , i • I
11· IVariable. 10,
I , .'.0 I

(.II I .. ·10.
I ,
I Dictionary. J
lattr~~u~es of ,
IconcU.i£l,p)I ·.name.1
I ' ',>, V. ·:e " >,'"

1 IVariable . I

lcondition,.name ·1
c Ifor Opp·or ON I

,STATUS in E~CDICi I I
, .

USNGTBL
(TIB 2)

VALGRP
(TIB 6)

Code
01
FF

VALTRU
(TIB 33)

Licensed Material - Property of IBM

Purpose rl----------~------------_r------_,
store dictionary pointer I 0-3 4-13 14-15
and PNs for Error or Label~I----------41--------------t-------4
Declarative associated IDictionarYIPns for Errorlunu~ed
with the USING clause of Ipointer lor Label
SORT or MERGE verb until I I Declarative
all file-names in clause ~I __________ ~I ______________ L-______ ~

have been processed.

Entry Frequency
One entry for each file-name
in SORT ••• OSING clause. One
entry for each file-name in
MERGE ••• USING clause.

Phase Involved
Phase30 builds and uses
this table during USING
processing.

purpQ§.g iii
Save Data A-text
address constant
definitions object for
group items containing
VALUE clauses.

Entry Frgg]!ency
One entry for each group
item with a VALUE clause
that is currently being
processed.

Phases Involved
Phase 20 builds this table

from Data IC-text LD
entries.

Phase 22 uses this table
to generate Data
A-text entries.

Meaning
Alphanumeric literal
ALL or a figurative

nonnumeric constant.

Purpose
Store literals for
VALUE ••• THRU clause or
VALUE clause in level
88 group item.

Entry Frequency
One entry for each value
in €ach VALUE clause of
this type.

Phases Involved
Phase 20 builds from Data

IC-text LD entries.
Phase 30 uses to fill in

P1-text literals with
the actual values.

3 I 3 1 2 I Variable I
I I I I
IX'100028'ITarget ICodelSize of IValue ofl
I laddressl~ Iconstantlconstantl
I I I~ lin bytesl I
I I I t

I
1 IVariable

I I
I ffi IP1-text
I 1 lelement
I 4 I
I ,

I
1 IVariable

I
literal I c IP1-text

I tI1\ I element o 10.;1
, I

I
11
I I

literallFFI

lcl

Table Formats 335

Licen~ed Material - Property of IBM

Phase 22 uses for syntax­
checking of the VALUE
IS SERIES clause.

(!) In the high-order bit: If the count field is all zeros, the entry
is a dummy entry for a group item

CD

C, = value is not followed by THRU
1 = value is followed by THRU

This portion of the entry follows
the format of a P1-text element
as follows:

I.Y.~
32
33
34
39

Meaning
Numeric literal
Floating-point literal
Alphanumeric literal
ALL constant

Indicates the end of the entries
for a V~LUR clause.

vhose subseguent Level-88 items are
in error and were ignored by phase 20.

VARLTJlL
(TIB 15) Purpose ii,

VARYTB
(TIB 10)

Store information about
variable-length items
needed for the DATATAB
table if SYMDMP is
specified.

Entry Frequency
One entry for each
variable-length item.

Phases Involved
Phase 22 builds this table

using information in the
GPLSTK table.

I 3 I 3 I
~'-----------------41------------------~
IDictionary pointer forlMaximum size (including I
,variable-length items Islack bytes) in bytes ,

Phase 25 uses this table
while processing variable­
length items for the
DATATAB table.

Purpose
Control GN numbers
branched to in
PERFORM ••• VARYING.

Entry Freauency
One entry for each
PEP.PORM ••• YARYING.

Phases Involved

, I

3 3, 3 I 3
I I

IGN number IVN number IGN number IGN number
Ifor conditionlfor variedlfor PLUSGNlfor !OVEGN
Ibranch I branches , I
I , , I

Phase 40 builds this table from
PERFORM ••• VARYING
strings in P1-text.

Phase 40 uses this table
to issue P2-text. strings
with correct branches
for different steps.

336 Section 5. Data Areas

VERBDEF
(TIB 14) Purpose

store information about
the occurrences of COBOL
verbs.

Entry Frequency
One entry for each COBOL
verb used.

Phases Involved

Licensed Material - property of IBM

r--T-----------T--T---------------T--'
10 11 11 11 11 I
~--+-----------+--+---------------+--~
I 48 I Number of IEOlll.lphabetic verl::IOOI
I I occurrences I I sequence number I I L __ ~ ___________ ~ __ ~ _______________ ~ __ J

r------T--T---------,
11 11 IVariable I
~------+--+---------~

tablelLengthl FB I Verb-text I Phase 11 builds this
when VERBREF or
VERBSUM is specified.

L ______ ~ __ ~ _________ J

Phase 22 uses this table
to generate verb DEF-text.

~able Formats 336.1

VIRPTR
(TIB 13)

VNPNTBL
(TIB 29)

Code
00

OF
FO
Fl"

Pur:£Q§g I

store pointers to CVIRTB
during virtual
optimization.

I 2
I

Entry Frequency
One entry for each
virtual definition
element.

IDisplacement from start of
IPGT in the object module to
Ivirtual

Phases Involved
Phase 60 or, when OPT

is specified, phase 62
builds this table when it
builds table CVIRTB.

Phase 60 or, when OPT is
specified, phase 6~ uses
this table with table CVIRTB
to eliminate duplicate
virtuals. After PGT
allocation, each entry
points to entry in PGT
virtual field.

Purpos~
Establish addressability
at PN definition
location.

Entry Frequency
One entry for each
VN EQU PN or VN EQU GN
element encountered during
Optimization A-text
processing.

Phases Involved

I

I 1
I
IType

Phases 62 builds this table
during Optimization A-text
processing.

Phase 62 uses this table
to update the ACCUMCTR
counter by ~ for each load
instruction to be generated
by phase 63 for each PN or
GN associated with
an ALTER statement.

Phase 63 creates, for
every entry in this table,
RLD entries for the VNI
cells in the PGT. The
phase generates a load
instruction of the
current Procedure Block
into reqister 11
at the point of definition
of the PN or GN associated
with an ALTER statement.

Meanill
PN, ALTER
PN, PERFORM
GN, ALTER
GN, PERFORM

I

2 I
I

(DIPN
I

or GN numberlVN

(code values are in hexadecimal)

Licensed Material - Property of IBM

I

2 I
I

numberl

Table Formats 337

Licensed Material - Property of IBM

VNPTY
(TIB 17)

VNTBL
(TIB 11)

Purpose
store VN numbers and
associated priority
numbers to later compute
the position of VNI
cells in the object
module.

Entry Frequency
One entry for each VN
number.

Phases Involved
Phase 60 or, when OPT

is specified, phase 62
builds from VN
DEF-text elements in
Optimization A-text.

Phase 60 or, when OPT
is specified, phases 63
and 64 sort entries
by priority numbers
and uses the resulting
order to compute the
position of VNI cells
in the object module.

Purpose
Store information on
procedure-names that
have been altered by an
ALTER STATEMENT or are
ends-of-ranges of
PERFORM statements.

Entry Frequency
One entry for each
procedure-name.

Phases Involved

I

2 I
I

IPrioritYIVN I
Inumber Inumberl

I 2 I 2
I I
IPN numberlVN number I
I I corresponding I
I Ito PN I

Phase 40 builds this table from
P1-text PNs and VNCTR

XAVAL
(TIB 2)

in COMMON.
Phase 40 uses this table

to modify addresses
and set up return VNs.

Purpose
Optimize use of
arithmetic temporary
storage by object module.

Entry Frequency
One entry for each
8-byte slot.

Phases Involved
Phase 50 makes an entry

for each slot as it is
released.

Phase 50 uses this table

338 Section 5. Data Areas

2 I ,
110 number of 8-bytel
Islot available in (
(temporary storage (
I I

XINTR
(TIB 1)

CD Bit -0-

1
2
3
q
5
6
7

XSCRPT
(TIB 3)

Licensed Material - Property of IBM

to obtain temporary
storage that has been
used and released in the
object module.

Purpose i -,

store and analyze
intermediate results in
compile-time arithmetic.

16 I 2 2 I
I I

ICompile-time
Ivalue in

ILength after ILength afterl
Iscaling in Iscaling in 1

Entry Frequencv I internal decimal 1 internal decinallbinary I
One entry for each
intermediate result.

i , I -J

I i
phases Involved 2 1 2 1 2
Phase 50 builds this table I 1 1

from ID number of inter-INumber of INumber of ILength
mediate result passed Idigits afterldecimal placesloccupied
from phase qO and its I scaling lafter scaling lin
own analysis of I I I temporary
operands in arithmetic I I I storage
statements. Ii'

Phase 50 uses this table
to process compile-time
arithmetic verbs.

I

1 1 I 2
I I 1 1
IRegisterlCharacteris~slIntermediatel
I number lof operand \!} Iresult 1
I I Inumber 1
I I I I

Meaning. if on
Register used in double-precision

mode
Overflow could occur
Double-precision floating-point
Operand is in register
Operand is a literal
Operand is floating-point
Operand is generated constant
Operand is literal ZERO

i

2 1
I

IRelative I
I pointer in I
Itemporary 1
I storage I
I I
I I

Purpose I I i ---,
store subscript and index
information for optimi­
zation.

Entry FreqUency
One entry for each sub­
scripted or indexed item.

2 I 2 111 3 q I
I I I I I
In+2lNumber of I INew addressing I Dictionary pointer 1
I I subscripts 10 I parameter of Ito unique identi- I
I lor indexes I Isubscripted orlfier of sub- I
I I I lindexed ite<2)lscriPte~tem I
I 1 I I 1 1 2 I
I i I I I I

Table Formats 339

Licensed Material - Property of IBM

G) Bit
0-3

Phases Involved ri,----T---------------------Ti-----,----~Ir_--------~------------__,
Phase 50 builds this tablet 1 3 I 1 I 3

from subscript verb r----+---------------------,+I--~~.~I-----I~.--------~--~--------~
string passed by lPlaglDictionary pointer I ,Flagll"lag Dictionary pointer
phase 40. Ibytelto unique id~ntifierl Ibyte,byte to unique identi-

Phase 50 uses this table! I lof'first subscr~t I 111\ Ifier of third ~script
to calculate address of ! ~!or index-name \!J! ,~ lor index-name ~
subscripted or indexed. - - I I

item, or to generate
object code for the
calculation.

Meaning
3 = byte 2 contains number of

register which at object time
contains new address.

6 bytes 2 and 3 contain the
number of a SUBSCRIPT CEL!, which
at object time contains the
new address.

If bits 0-3 contain any other value, then the
configuration is as follows:

0

0

0

Bits
0-3

4-15
16-23

Bits
----0=--9
10-22
23-31

Bit
0
1-7

Bits
0:-1

2-14

15-23

XSSNT
(TIB 4)

Field Meaning
i Type of BL containing base

address of area:
OOOO=BL
0001=BLL
o 100=SB1.

d
k

Displacement from base address
DL number

contents
Zeros
Dictionary section number
Displacement in section

Meaning. if on
Literal
Unused

contents
Zeros
Dictionary section

number
Displacement in

section

Purpose
Store pointers to
XSCRPT table during
calculation of sub­
scripted or indexed
addresses.

Entry Freguency
One entry for each entry
in XSCRPT table.

Phases Involved

i i
121 2
I I
lID number IDisplacement in XSCRPT
lof subscriptltable of new address
lor index Iparameter of subscripted I
Icomputation lor indexed item
I ,

Phase 50 builds this table while
building XSCRPT table.

Phase 50 uses this table
to locate entries in
XSCRPT table.

340 Section 5. Data Areas

This chapter contains diagrams of the
formats of the texts used by the compiler.
The diagrams are arranged in the following
order:

1. Data Translation Texts: Data IC-,
ATF-, and Data A-texts.

2. Procedure Translation Texts: PO-,
P1-, P2-, Procedure ~-, Optimization
A-, and P~ocedure A1-texts.

3. E-text.

4. XREF-text.

5. Debug-text.

With some exceptions, one IC-text
element represents one source element.
(IC-text here refers to Data IC-, ~TF-,
PO-, P1-, or P2-text; a source element is a
COBOL reserved word, a punctuation symbol,
an arithmetic operator, a relational
symbol, an EBCDIC name, or a literal.) The
major exception is that one IC-text element
represents a complete data item
description. Other exceptions are: the
word DIVISION is suppressed in division
headers, the word SECTION is suppressed in
section headers, and standard
paragraph-names are omitted.

All internal text elements begin with an
identifier byte. In IC-text and A-text the
first two bits of this byte contain a code
with the following significance:

Licensed Material - property of IBM

TEXT FORMATS

Code ~eaninq
01

10
11
00

1 byte follows
2 bytes follow
3 bytes follow
The byte immediately following

this gives the number of
bytes that follow it.

The following notes apply to the format
diagrams in this chapter:

• The top row of figures shows the byte
number for each field except where the
preceding fields include a
variable-length field.

• Broken lines indicate fields that are
present only if the condition they
satisfy is present.

• C : Number of bytes in the following
field.

• n Total number of bytes to follow in
the text element.

• 1b = Length of field is one byte.

• Individual notes, applying to
particular fields, are numbered
consecutively with the numbers
encircled.

• Double sets of characters in bytes 0
and 1 represent hexadecimal numbers.

DATA IC-TEXT

LD ELEMENT
I I I I I I I I I

I 01112 13-4 15 16 17-8 19 110
I I I I I I I I I
1031nlLevel I ICompiler-generatedlSwitchlSwitchlOCCURS DEPENDINGISwitchlNumber of
I I I indicator I I source card nUlI!berlbyte I byte ION maximum Ibytes I indexes
I , ,

CD
I I ,

@
I

Q)
I occurrences ,

CD
Ifollowinq

I I I I I I I I I I , I I I I I , I I I

I I I I I I I I I I

111 112 I Variable I 1blVariablei 1b IVariable I 1blVariable I Variable
I I I I I I I I I
,Number oflc IName of Ie IPICTURE Ie IEncoded Ie IREDEFINFSIOCCURS DEPENDING ·ON
Ikeys I Idata item I I (actual) I IVALUE I I data-name I pointer
I following I I I I I I

®
I I I

® I I I , I I I I I I
I I I

Text Formats 341

Licensed ~aterial - property of IBM

Note: A series of logical records can follow the LD element. The types of records are
ordered as follows:

Value for
condition-name

i , i i

11b I 1b I Variable I
I I

with multiple values Iswitchlc
Ibyte I

IEncoded
I VALUE

I I 10 I , .

iii

I
I ,

Indexes (first)
or

11b 11blVariable
I I I I

Keys (second) IFlaglc
I I

I Index-name I
lin EBCDIC I

!®! I I , ,

i i i
RENAMES 11b 11blVariable
or I I I
THRU lID Ic I~Jame in
name I code ! IEBCDIC

I I I
!® I I

i i

0 Bits Contents
0-2 Zeros

3 1
4 0 = Either value is upper limit

of THRU range, or THRU was
not specified.

1 Value is lower limit of
range; upper limit name
follows.

5-7 Value Meaning
001 Alphanumeric literal

010 Numeric literal
011 Ploating-point literal
100 Pigurative constant or ALL
101 Pigurative constant ZERO

342 section 5. Data Areas

® Bits Meaning
0-3 Zeros

4 Unused
5 1 INDEXED BY
6 1 DESCENDING KEY
7 1 ASCENDING KEY

(£)
ID
Code Meaning
22 This name qualifies the name that

follows.
23 This is either a nanle without

qualifiers or it is the last
(qualified) name in a string.

Licensed Material - Property of IBM

SD ELEMENT

i

011
I I
1031n

'0' I 7
I I

I i

i

12
I
ILevel
I indicator
136 (hex)
I

110111

iii I I
13 14-S 16-7 18-9 I
I I I I ,
~lcompiler-generatedIMinimum RECORDIMaximum RECORD I
I Isource card numberlCONTAINS valuelCONTAINS valuel
I I I I I
, I , I •

I I i
112 113114-43
I I m: SAME

I IAREA
RECORD I Device Ie
numberlcode

I Sort-name
lin EBCDIC,
Ilow order I
lunused bytes I
I padded with I

I I
I I
I I
I I
, I

RD ELEMENT
Iii

10 1112
I I I
1031nlLevel
I I I indicator
I I 134 (hex)
I I

FD ELEMRNT
Iii

l@
I
I
I

I blanks I
I I

iii i i

13-4 IS I Variable 11bl
I I I I I
I Compiler- ICIUser-assigned 1001
Igenerated source I IEBCDIC report-I
Icard number I Iname I

, I ,

Iii Iii i i

I 01112
I I I

13-4 15-11112 113 114 115 116 117-18

1031nlLevei I
I I I indicator I
I I 138 (hex) I
I I I I
I " I

I I I I I I I
ICompiler- I ~ ISYS I Switch I Switch I Hopper IBuffer
I generated I ~ I number I byte Ibyte I switch I offset
Icard numberl lin I a I Q I n I
I I Ibinaryl ~ I ~ I ~ I
, """

I I I i i i

I
I Displacement
lof entry for I
Ifile in PIOTBLI
I I , .

119 120 121-22 123-24 125-26 ,27-28
I I I I
IDevice and or- ISwitchlInteger-1 I Integer-1
Iganization codelbyte Ispecified in I specified
Ifor asso~ted I IBLOCK CONTAINSIRECORD
I files \!..:J I @ I I CONTAINS
I " I

i i i i i i
129-30 ,31-32 ,33 134 135 136
I I I I I I

I
IInteger-2

in I specified
IRECORD
ICONTAINS
i

i i

137 138
I I

I
IUnused

inl
I
I
I

i
139
I

IUnused,Displacement ISAME ISwitchlSwitchlSwitchlSAME IInteger inlNumber of
I lof entry for ,AREA Ibyte Ibyte Ibyte IRECORDIPOSITION ICYL-OVERFLOW
I Ifile in CKPTBLlnumberl

@ I @ I @
IAREA ,option forltracks , I , I I I Inumber'thi~ile , , I I I , I I I 18 I

i I I i I I I I I

Text Formats 343

Licensed Material - property of IBM

i

140
i
141

i
142

i
143-44

i
145

i
146

i
147-48 49

iii
50 151-53 1541Variable

I Device I Device ISAME I Integer-2lSwitch IReservedlUnusedl 81 20 IUnusedlc I File-name I
Icode Inumber oflSORT I specified I byte I I I I I lin FD I
I Ihighest IAREA lin BLOCK I I I I I

I
I

I I lentry I
I lindeb InumberlCONTAINS I a I I I
I@I ® I I I~I I I

I I
I I

I I
I I

L' , I , , , , , I , , I

i I iii i i
I Variable I Variable I Variable I Variable I Variable I Variable I Variable
I I I I I I I
ITRACK
Isize
I

AREAINOMINAL KEYIACTUAL KEYIRECORD KETIAP?LY CORE-IFILE STATUS IPASSWORD
land land land IIN~EX data-Idata-name andldata-name andl
Iqualifiers Igualifierslqualifierslname and Iqualifiers I qualifiers

I
I
I

I I I Igua~iers I I ~
I I@I@I~I@) I@
I , , , , I

i If. i
I variable I Variable I Variable 11bl
I I I I I
lOne byte of
IX'OO'

ITOTALING AREAILABEL RECORDSIOOI
Idata-name andlnames I I

I reserved
I ,

CD
Code
ili!.l
01-31

32
33
34
36
38

39

G) Bits
0
1

2-4

5-7

Iqualif~rs I I I
I l.SJ I @ II
I , , ,

Meaning
G)

Levels 01-49
Level 77
Level 88
RD
SD
FD
'-nnnn' name in Report section
Level 66

Code
1 = ELANK WHEN 'ZERO
1 = JUSTIFIED
TYEe of VALUE Clause
000 - No clause
001 Alphanumeric literal

0 010 Numeric literal
011 Floating-point literal
100 Figurative constant or ALL
101 Figurative constant ZERO
111 Condition-name with

multiple values
1YEe of USAGE
000 No clause
001 DISPLAY
010 COMPUTATIONAL
011 COMPUTATIONAL-1
100 COMPUTATIONAL-2

® 101 COMPUTATIONAL-3
110 DISPLAY-ST
111 INDEX

344 Sect~on 5. Data Areas

Bits Code
-0- 1 OCCURS DEPENDING ON

1 1 REDEFINES
2 1 PICTURE
3 1 COpy
II 1 Internal REDEFINES

(RD entry)
5 S.nnnn description

(PICTURE field contains
the E.nnnn from which
P.ICTURE information is
to be extracted)

6 RENAMES data-name entry
follows

7 1 SYNCHROlnZED

Bits Meaning! if SYNCHRONIZED -0- o - SYNC LEFT
1 = SYNC RIGHT

1 RENAMES THRU data-name follows
2-4 000 No SIGN clause

001 TRAILING
011 LEADING
101 SEPARATE TRAILING
111 SEPARATE LEADING

5-7 Unused

VALUE encoded like a figurative
constant, literal, or ALL character in
Procedure Ie-text, except: for numeric

literal, digits not packed but in EBCDIC
format, with sign in zone of low-orner
digit ..

Note: This field contains zeros when
the i te.n is a condition-name with
multiple values.

® a. If there is an OCCURS DEPENDING ON
clause, the field is a 16-bit number
repre'senting displacement from start
of OD2TBL of entry for object o~
clause.

(2)

®

h.

c.

If internal REDEFINES (RD entry),
tne field is a 16-bit number
representing the displacement which
added to the object gives address of
REDEFINES sUbject.
If neither, field i~ 8 bits of
zeros.

Always contains 42 (hexadecimal).

Bits
0-3
4-5

6
7

Bits
0-2

3-6

Contents
Number of work units
Label Records are:

01 Standard
10 Omitted

1 SAME RECORD AREA
1 SAME SORT AREA

Contents
Device Class

000 Not specified
001 Direct Access
010 unit Record
100 Utility

Recording Mode
1000 - F
0100 V
0010 = U (invalid)
0001 = S

7 ASCII collating sequence

Code(decimal)
1
2
3
4
5
6
7
8
9

10
11
12
13

Device
1442R
1442P
2520R
2520P
2540R
2540P
2501
1403, 3203, or 5203
1404
1443
1445
3211
3505

Licensed Material - Property of IBM

14 3330
15 3525R
16 3525P
17 3525W or 35251·1
18 Unused
19 3881
21 5425R
22 5425P
23 5425W
24 Unused
25 2560R
26 2S60P
27 2560W

28-30 Unused
31 2311
32 Unusad
33 2314 or 2319
34 2321
35 3340
36 3540

37-39 Unused
40 2400 or 34L:O or 3410

seven-byte external name or six-oyte
SYSnnn with a padaing blank.

Bits
-0-

1-3

Code
1 = RANDOM ACCESS
Organization

000 Not specified or
SEQUENTIl\L 's'

001 INDEX£D
010 DIREC'I with FEWRITF. 'u'

or 'w'
011 DIRECT 'A' or 'D'

4-6 Device class
000 Not specified
001 DIRECT-ACCESS
010 UNIT-RECORD
100 UTILI'I:t

7 1 = RESERVE NO ALTERNATE AREA

Bits
a
1
2
3
4
5
6
7

Meaning, if on
SELECT OPTIONAL
SAME AREA
EXTENDED SEARCH
SAME RECORD AREA
SA~lE SORT AREA
Pointer to CKPTBL in entry
Pointer to PIOTBL in entry
Wora ALTERNATE specified in
RESERVE. clause

~ VSAM Support Byte Format

Bits
o

Meanl.ng
1 = AS specified in ORGANIZATIO;~
parameter of system-name

Text Formats 345

\

Licensed Material - Property of IBM

1

2-4

5
6
7

Code
02

04
08

80

90
AO

co

;)0
EO

FO
82

A2

1:.2

01

Bits
-0-

1
2

3-4

5-6

7

1 = No organization paraweter
specified in system-name
ORGANIZATIOl~ clause

Code
000
001
010
100

Meaning
Not specified
SEQUEN'IIAL
VW;:;XED
RESEF:VED

ACCESS MODE IS DYNAMIC
Unused
PASSWORD data-name specified
with RECORD KEY or for the file.

f1eaninq
RCE {Read column eliminate)

(3505 or 3525R)
Optical mark READ (3505)
PUNCH/PRINT (5424P, 3525P or

2560R)
READ/PUNCH/PRIN'I (5424R, 5424P,

5424W, 3525R, 3525P, 3525W,
2560R, 2560P, or 2560W)

READ/PUNCH/PRIN'I (3525M)
READ/PUNCH (5424R, 5424P, 3525P,

3525R, 2560P, or 2560R)
PUNCH/PRIN'I (5424P, 5424W,

3525P, 3525W, 2560P, or 2560W)
PUNCH/PRINT (3525~)

READ/PRINT (5424R, 5424W, 3525R,
3525~, 2S60R, or 2560W)

READ/PRINT (3525M)
READ (with RCE feature)/PUNCH/

PRINT (3525R)
READ (with RCE feature)/PUNCH

(3525R)
READ (with RCE feature)/PRINT

3525R)
RESERV~ integer-1 []!,LTERNATEJ

AREA in binary (maximum is 1)

Code
1 = COpy
Unused
RECORD CONTAINS clause
BLOCK CONTAINS integer option

00 = Not specified
01 = RECORDS
10 = CHARACTERS

LABEL RECORDS option
00 Not specified
01 STANDARD
10 OMITTED
11 Data-name

1 = REPORTS clause

346 Section 5. Data Areas

Bits
0-1

2

3
4
5
6
7

Bits
o
1
2

3
4
5
6
7

Bits
0-3

4
5
6
7

Code
TRACK AREA

00 = Not specified
10 = Integer

1 Direct file with relative
addressing

1 NOMINAL KEY
1 ACTUAL KEY
1 RECORD KEY
1 WRITE ONLY
FILE STATUS clause specified

Meaning, if on
WRITE VERIFY
CYL OVERFLOW
'integer' of RESERVE clause
not in valid range
Multiple REEL/UNIT
~ultiple File Tape
MASTER-INDEX
CYL-INDEX
Unused

Meaning, if on
Number of SORT work units or
number of reels with non­
standard labels
CORE-INDEX
Unused
ASCII file
'integer" of ASSIGN not in
valid range

If not specified. file-names in
multiple file clauses are assigned
sequential numbers as encountered,
starting with 1, and an entry is made
in this field for each file.

Initialized as 2311.

Bits
0-1

2
3
4
5

6-7

Bit
-0-

I'leaning, if on
Unused
RECORDING MODE
Format F
Format V
Format U
Format S
Unused

Meaninq, if on
Incorrect class parameter of
implementor

1

2

3-7

Bit
o
1

2-7

Incorrect device parameter of
implementor name
Incorrect organization
parameter
Unused

Meaning, if on
Primary input hopper select
secondary input hopper select
Unused

2-byte field giving integer TRACK ARE~
count.

@ Subfield Contents
1 2-byte count of bytes in all

the subfields that follow in

2

n

Licensed Material - Property of IBM

this field.
Name of highest-level qualifier

preceded by 1-byte count
of characters.

Name of lo~est-Ievel gualifier
preceded by l-byte count
of characters.

n+l Zero, to separate this field
from the next.

If the option is not specified, the
fiel~ consists of one byte of zeros.

Series of all label record-names
preceded by 1-byte count of characters.

Text Formats 347

Licensed Baterial - Property of IBM

ATF-TEXT'

Level
01-49
or 77
items

Level
88
items

iii iii I iii

10 1112 13-4 15-6 17-8 19 110 111-12 I
I I I I I I I I I I
1031nlLevel IGeneratedlFLAGIBaximum INumber INumberlLength of thel

~numberlcard I Inumber of I of I of litem in the I
~ !nUmber! ~!occurrences!indeXeS!keyS !object module!

iii ,
I 13-Variable I Varia91etVariable iVariable I variable

I
IVari~ble

I EBCDIC name El1CDIC . 'Table jpartial VALGRP IVALTRU I
lof item Iname of
I IOb(;)ct
I ~ I 4

I displacement I dictionary jtable I table , I
I t;\.latt~utes displ~mentldisp~ement'

! 0 "I ~ 1, \!) , ! . \..!Y J I •

i i i I i i

10 111 I 2 13-4 I Variable
I I I I I I
I031nl I (X 1 33 1 IGENRRATEDIEBCDIC
I I I I (Level Icard Iname of
I I I I number) I number lit0
I I I I I I 3
i i i i i i

The maximum length of any element is
204 bytes.

~he flag indicates the origin of the
element, as follows:

Bit Meaning, if on
o RENABES ••• THFU clause
1 Next element is an FD
2 Next element is an SD
3 Next element is an RD
4 Conditional variable
5 Data A-text follows
6 VALTRU table entry
7 VALGRP table entry
8 ODO
9 REDFFINES clause

10 USAGE is not DISPLAY
11 Item is or is in a LABEL record.
12 Internal Redefines
13 RD
14 RENAMES clause
15 SYCHRONIZED.

The name is prefixed by a l-byte count
of its length.

Either:

1. A l-byte length count folloved by
the objects of the REDFoFINES
clause, if flag bit 9 is on; or

®

i
I Variable
I
I DICTIONARY
I attributes
I (p&,ial)
1 6
i

2. A l-byte length count followed by
the object of the internal
REDEFINES clause, if flag bit 12
is on; or

3. A 1-byte len~th count followed by
the Report Section (RD) name, if
flag bit 13 is on; or

4. The field does not exist.

Either:

1. A 2-byte On2TBL table displacement
if flag bit 8 is on; or

2. A 2-byte Internal Redefines
displacement, if flag bit 12 is
on; or

3. The field does not exist.

The attributes are prefixed by a
1-byte count of their length

Either:

1. A 2-byte VALGHP table displacement
if flag bit 7 is on; or

2. The field does not exist.

l;:ither:

1. A ?'-byte VALTHU table displacement
if flag bit 6 is on: or

2. The field does not exist.

348 ATF-Text

Licensed Material - Property of IBM

DATA A-TEXT

S~CONDARY DTF ADDRESS
r--T--------------------T-------------------------------------,
1011-3]4 I
r--f--------------------+-------------------------------------~
I 04 I Relative address in INumber assigned from SDTFCTR in I
I IObject module of I COMMON" I
I I SDTF 1 I L __ ~ ____________________ ~ _____________________________________ J

DTF ADDRESS
r--T--------------------T---------------------------------------,
I 011-3 14 , I
r--f--------------------t---------------------------------------1
I 08 I Relative address in I Number assigned from DTFCTR in COMMON I
J jobject module of DTFI I L __ ~ ____________________ ~ _______________________________________ J

BLOCK ADDRESS
r--T-----------------------T--------------------------------------T---T---'
1 011-3 14 15-617-81
r--f-----------------------+--------------------------------------+---+---~
I OC I Relative address in IBL number -- first base locator nlli~berlOO ICD I
I lobject module of bufferlassigned to file from BLCTR in COMMON I I I
I I assigned to file. I I) I L __ ~ _______________________ ~ ______________________________________ ~ ___ ~ ___ J

FIB ADDRESS
r--T----------------------T------------------------------,
10 11-3 14 I
r--+----------------------+------------------------------~
114 I Relative address in)FIB number -- File Information)
I lobject module of IBlock number assigned from I
) jFile Information BlocklAMICTR in COMMON I L __ i ______________________ ~ ______________________________ J

COUNT INFORMATION
r--T--------------------------T--T---T---------------------------------------,
)0 11-3)4 15-6)7 through 6 + c i
r--+--------------------------+--+---+---------------------------------------i
I 201 Relative address followinglOOI c IActual constant (COUNT table I
] I Q-routines during I I) information) I
I IData-A-text processing I I] I L __ ~ __________________________ i __ i ___ i _______________________________________ J

WORKING-STORAGE SECTION ADDRESS
r--T-----------------------T---T---'
I 011-3 14 15-7)
r--+-----------------------+---+---~
)24lRelative address in IBL nlli~ber -- first base locator number assignedlQ))
I lobject module of Ito Working-Storage section from BLCTR in I I
I Iworking-Storage Section)COMMON I I L __ ~ _______________________ ~ ___ i ___ J

CONSTANT DEFINITION
r--T-------------------T--------T---T-------------------------,
J 011-3 14)5-6)7 through 6 + c I
t--+---------------~---+--------+---+-------------------------i
I 28 I Relative address inlType 01 c IActual constant I
J lobject module wherelof) I I
I I constant is located I constant I CD I CD I L __ i ___________________ i ________ i ___ ~ _________________________ J

Text Formats 349

Licensed Material - ?roperty of IBM

ADDRESS CONSTANT DEFINITION
r--T---------------------------T---------------T-----------------------,
1 0 11-3 1 4 I 5-7 1
~--+---------------------------+---------------+-----------------------~
12CIRelative address in object ISize. in bytes. I Relative address in 1
1 Imodule where address lof address lobject module specified 1
I Iconstant is located 1 constant Iby address constant 1 L __ .1. ___________________________ .L-______________ .1. ____________ , ___________ J

Q-ROUTINE IDENTIFICATION
r--T--,
I 011-2 I
~--+--~
1341GN number -- generated procedure-name numl:;erl
1 lassigned from GNCTR in COMMON 1 L __ .L-___ J

BL REFE.RENCE
r--T-------------------------------T-------------------------,
)0 11-3 14 1
~--+-------------------------------+-------------------------~
1381Relative address froID beginninglBL number -- base locator 1
1 lof TGT where displacement for I number I
I Ibase locator cell described in I 1
I Inext field is to be placed 1 I L __ .1. _______________________________ .1. _________________________ J

BLL REFhRENCE
r--T-------------------------------T-------------------------,
10 11-3 14 I
~--+-------------------------------+-------------------------~
13CIRelative address from beginninglBLL number -- base 1
1 lof TGT where displacement for Ilocator number 1
I Ibase locator described in next I 1
I Ifield is to be placed I 1 L __ .L-______________________________ .L-________________________ J

DATA-NAME XREF ELEMENT

CD
o

r--T--------------------------T---------------------T-T-------------,
I 011-2 13-5 1617 through 6+cl
~-+--------------------------+---------------------+-+-------------~
1481Card number in source IPointer to dictionarylclEBCDIC 1
I Iprogram defining data-namelentry of data-name I Idata-name 1 L __ .1. __________________________ .1. _____________________ .1._.1. _____________ J

Size. in words. of block section or area to which this entry refers.

Code
(Hex)
-00

01
FF

Meaning
Binary
Alphanumeric
ALL constant

If the constant is an ALL constant. the format is
different, beginning with byte 5, as follows:
r---T-T--------------------------------,
15-61718 through 7 + c 1
~---+-+--------------------------------1
Id Iclvalue specified for the constant I L ___ .1._.1. ________________________________ J

where d is the number of bytes
reserved for the constant.

350 Section 5. Data Areas

PROCEDURE IC-TEXT (PO FO~MAT)

PROCEDURE-NAME DEFINI'I'ION
r--T-T------------------------,
I 01112 through 1 + c I
r--+-+------------------------~
105lclProcedure-name in EBCDICI L __ ~_~ ________________________ J

QUALIFYING EBCDIC NAME
r--T-T------------------------------,
I 01112 through 1 + c I
~--+-+------------------------------~
I 221c I user-assigned name in EBCDIC I
I I Itnat qualifies procedure-name I
I I lor data-name 1 L __ ~_~ ______________________________ J

EbCDIC NAME
r--T-T----------------------------,
I 01112 through 1 + c I
r--+-+----------------------------~
I 23lcluser-assigned name in EBCDIC 1 L __ ~_~ ____________________________ J

EBCDIC data-name of GIVING option for USE
error declarative

r--T-T---------------------------------,
10 1112 through 1 + c 1
~--+-+---------------------------------~
1241clUser assigned EBCDIC name that 1
I I Iwas object of GIVING option I L __ ~_~ _________________________________ J

PN'S FOR ERROR/LABEL DECLARATIVES
r--T--T------------T--------------,
I 0 I 11 2- 3 I 4- 5 I
r--+--+------------+--------------~
]2610AIGN number IGN number for I
I I Ifor STANDARDlfile header 1
I I I ERROR 1 labels I l __ ~ __ ~ ____________ ~ ______________ J

r-------------T-------------,
16-7 18-9 I
r-------------+-------------~
IGN number forlGN number fori
Ifile trailer lend-of-volumel
I labels I labels I L _____________ ~ _____________ J

r-------------,
110-11 I
t-------------~
IGN number fori
Ibegining-of- I
Ivolume labelsl L ___ ~ _________ J

Licensed Material - ProJ;erty of IBM

NUMERIC LIT.E.RAi.
r--T-T------------T------------,
I 01112 13 I
r--+-+------------+------------~
I 321nlPositions tolPositions tal
I I Ileft of I right of I
1 1 Ideciwal Idecirr.al I l __ ~_~ ____________ ~ ____________ J

r-------------------------,
14 through 1 + n 1
t-------------------------~
ILiteral in packed decimal I
1 format I L _________________________ J

FLOATING-POINT LITERAL
r--T--T-----------------------,
I 011 12-9 I
t--+--+-----------------------~
1331081Literal representee as I
I I I double-precision I
I I Ifloating-foint number I L __ ~ __ ~ ______________________ ~

ALPHANUMERIC LITERAL
r--T-T-----------------,
I 01112 through 1 + c 1
r--+-+-----------------~
\34Ic\Literal in EBCDIC \ L __ ~_~ ________________ J

"EXHIBIT NAMED" NAME
r--T-T----------------------------,
1 01112 through 1 + c I
r--+-+----------------------------~
135Ic\EBCDIC name used in EXHIPIT I
I 1 INAME~ statement I L __ ~_~ ____________________________ J

LISTI~G A-TEXT FOR PROCEDURE-NAMES
r--T-T---------------------------------,
10 1112 through 1 + c I
r--+-+---------------------------------1
1371clEBCDIC procedure-name; bit 0 of I
I I I toe preceding field is set to 1. I L __ ~_~ ________ ~ ________________________ J

LISTING A-TEXT FOR VERBS
r--T-T-----------T------------------,
\0 1112 through nln + 1 I
r--+-+-----------+------------------1
I 371 n lEBCDIC verblAlphabetic verb I
\ I 1 \sequence number \ l __ ~_~ ___________ ~ _________________ J

CRITICAL PROGRAM BREAK
r--T-------------,
\ 011 I
r--+-------------~
I 421 Break code CD I L __ ~ _____________ J

Text Formats 351

Licensed l<iaterial - Property of IBM

VERB
r--T------------------------,
I 011 I
r--+------------------------~
1441Verb code I
I I ~ I L __ ~ ________________________ J

RELATIONAL CODE
r--T-----------------------,
1 011 I
~--+-----------------------~
150106 (hex) equal I
I 108 (hex) = greater thanl
I lOA (hex) = less than I
I IOC (hex) = not equal I L __ ~ _______________________ J

PARENTHESIS
r--T----------------------------,
I 011 I
~--+----------------------------~
152100 (hex) = left parenthesis I
I 101 (hex) = right parenthesis I L __ ~ ____________________________ J

Af<ITrlME'I'.lC OPERATOR
r--T----------------,
I 011 I
~--+----------------~
1531 0 perator corte@ I L __ ~ _______________ J

COBOL WORD
r--T---------T-------------------------,
1 011 12 I
~--+---------+-------------------------~
154lwor~odelcode (phases 10, 12, 11 I
I I (0 lonly, not passed on) ® I L __ ~ ________ ~ _________________________ J

SPECIAL NAME
r--T-------,
I 011 I
I---+-------~
155lcode® I
L __ ~ ______ J

FIGURATIVE CONSTANT
r--T--------------------------,
I 011 I
I---+--------------------------~
1751EBCDIC value of figurative I
I I constant I L __ ~ __________________________ J

STANDARD DATA-NAME REFERENCE
r--T----------------,
I 011 I
I---+----------------~
179105 (hex) = TALLY I
L_~ ________________ J

352 Section 5. Data Areas

"

CARD NUMBER
r--T-----------------------------,
I 011-2 I
I---+-----------------------------~
181lCompiler-generated s~entiall
I I SOUL'ce cal.-a number ~ I L __ ~ _____________________________ J

GE.NERATED PROCEDURE-NAME DEFINITION
r--T-----------------------------------,
I 011-2 I
I---+-----------------------------------~
IR81GN number -- identifying number I
I lassiqned to compiler-generated I
I Iprocedure-names from CO~~ON field I
I IGNCTR I L __ ~ ___________________________________ J

GENERATE.D PROCEDURE-NAME REFERENCE
r--T-----------------------------------,
I 011-2 I
I---+-----------------------------------~
IAAIGN number -- identifying number I
I lassigned to compiler-generated I
I Iprocedure-names from CO~MON field I
I IGNCTR - I L __ ~ ___________________________________ J

ERROR SYMBOL
r--T--'

o

I all I
I---+C\~
IB91'01 L __ ~ __ J

Each field contains zeros if there is
GN for that purpose.

Code
(hex) or-
02
03
04
as
06
07
08
09
OA
OB

Meaning
Data Division
File Section
Working-Storage Secticn
Linkage section
Report Section
Procedure Division
start of Declaratives
End of Declaratives
Start of DEBUG Packets
Start of Q-Routines
Start of Report writer Procedures

OC
OD
OF
FO
Fl
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE

End of ~eport Writer Procedures
End of Segment
Date-Compiled entry
Security entry
Identification Division
Program-ID entry
Author entry
Environment Division
Configuration Division
Source-Computer entry
Object-Computer entry
Input-Output Section
File-Control entry
1-0 Control entry
Special-Names section
Date-written entry
Installation entry
Remarks entry

o Verb Code List:
of verb.

Code indicates the type

Code
(j()

01

02

03

04

05

06

07

08

09

OA

OB

OC

OD

OE

OF

10

11

12

13

14

15

Meaning
PO- and Pi-text
ADD

SUBTRACT

MULTIPLY

DIVIDE

COMPUTE

"P2-text
ACD

SUBTRACT

MULTIPLY

DIVIDE

EXPONENTIATE

STORE

END OF SENTENCE IF-EQ-NUI-i.l!;RIC

IF IF-NOTEQ-NUHERIC

ELSE (OTHERWISE) IF-GT-NUMERIC

IF-NOTGT-NUMERIC

IF-LT-NUMERIC

IF-NOTLT-NUMERIC

IF-ALPHABETIC

IF-NOT-ALPHABETIC

IF-NUMERIC

IF - NOT- NUNEiUC

STOP STOP

GO GO

GO-DEPEND-~'IRST

GO-DEPEND-MIDDLE

GO-DEPEND-LAST

EVAL

Code
~

17

18

19

lA

lB

lC

lD

lE
iF

20

21

22

23

24

25

26

27

28

29

2A

2E

2C

2D

31

32

33

34

35

36

37

38

39

3A

Lic~nsed Material - Property of IB~

i"Jeaning
PO- and Pi-text

ALTER

MOVE

EXAMINE
TRANSFOaM

READ

OPEN

CLOSE

WRITE

REWRITE

ACCEPT

DISPLAY

EXHIBIT

RESET

READY

RETURN

ON

ENTRY

CALL

USE

EXIT

REPORT-NOP

GENERATE.

TERMINATE

SORT

RELEASE

PERFORM

INITIATE

P2-text
IF- EQ- NONNUl'l

U'- NOTEQ-NONNUlo!l

IF-GT-NONNUM

IF-NOTGT-NONNU~j

IF-LT-NONNUM

IF-NO'ILT-NONNUM

r..;oVE-4

MOVE

EXAMINE
TRANSFORM

READ

OPEN

CLOSE

WRITE

RE~>1RITE

ACCEPT

DISPLAY

EXHIBIT

READY

RETURN

ON

ENTkY

CALL

SOR'I

RELEASE

GO-N-'I'IMES

SUBSCRIPT

Text Formats 353

Licensed Material - Property of IBM

Code
~

3C

3D

3E

3F

40

41

42
43
44

45

46

47

4A

4:a

4C

4D

4£

4F

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

[-leaning
PO- and Pi-text
DEBUG

INIT

INCRA

ST£.P
U:?DATE

Q-CALL

Q-RETURN2

Q-RETURN3

REPORT-CALL

REPORT-SAVE-O

REPOrtT-SAVE-1

REPORT-SAVE-2

REPORT-SAVE-3

REPORT-SAVE-4

REPORT-SAVE-5

REPORT-RETURN-O

R.EPORT-RETUR~-l

REPORT-RETURN-2

REPORT-RETURN-3

REPORT-RETURN-4

REPORT-RETURN-5

REPORT-ORIGIN

REPORT-REORIGIN

SEAPCH'

P2-text
DEBUG

START (FOR~mT-2)

TRACE

EQUATE

MOVE-l

INIT

INCRA

STEP
UPDATE
USE-ERROR

ENDUSE-ERROR

USE-LABELS

ENDUSE-LABELS

USE-REPORT

ENDUSE-REPORT

Q-CALL

Q-RETUR~2

Q-RBTURN3

REPORT-CALL

REPORT-SAVE-O

REPORT'-SAVE-l

REPORT-SAVE-2

REPORT-SAVE-3

REPORT-SAVE-4

REPORT-SAVE-5

REPORT-RETURN-O

REPORT-RETURN-l

REPORT-RETURN-2

REPORT-RETURN-3

REPORT-RETURN-4

REPORT-RETURN-5

REPORT-ORIGIN

REPORT-REORIGIN

Beginning of WHEN
in SEARCH ALL

354 Section 5. Data Areas

Code
~

60

61

63

64

66

67

68

69

6A

6B

6C

6D

6E

6F

70

73

74

76

77

79

7A

7C

7E

7F

lJ.eaning
PO- and Pi-text
SEARCH ALL

SET

SEEK

START

Virtual
Definition

EQUATE in
SEARCH ALL

GOBACK

SETVLC (for
RENAMES
Q-routine)

GNRPT
(for OPT)

P2-text
End of WHEN in

SEARCH ALL

SET forrnat-l

SET forrnat-2
(UP BY)

SEEK

START

IF EQUAL
(index name)

IF NOT EQUAL
(index name)

IF GREATER
<index name)

IF NO'I GREATER
(index name)

IF LESS
(index name)

IF NOT LESS
(index name)

Virtual Definition

EQUATE in SEARCH
ALL

SET forrnat-2
(DOWN BY)

GO TO
(Segmentation)

Segmentation
initialize

GOBACK

EXIT program

SETVLC (for
Q-routine)

FLOW

OPEN (VSAM)

CLOSE (VSAM)

GNRPT

READ (vsru-D

WRITE (VSAM)

Code
Meaning

PO- and P1-text P2-text
REwRITE (VSAM) 8()

81 START (VSA~)

82 DELETE (VSAM)

86 SERVICE SERVICE.

87 MERGE

88

G)

G)

COUNT

Code
Hex Operator
(iQ Addition

01 subtraction
02 Multiplication
03 Division
04 Exponentiation

Code special
(hex) Name
00 CSP

01 COl
02 CO2
03 C03
04 C04
05 C05
06 C06
07 C07
08 C08
09 C09
OA C10
OB Cll
OC C12
OD SOl
OE S02
OF S03
10 S04
11 S05

Error Syrr,nol
COBOL word

code

00 (hex)

COBOL Word Code:

If reserved word used
invalidly (see also
note 7)
If undefined or
multiply-defined
symbol found

This list shows the code number assigned
to each COBOL reserved word for use in
Procedure IC-text (PO, Pl, .and P2). In
the COBOL word table, COBWRD, in phases
10, 11, and 12 of the compiler listing,
the words appear in alphabetical order
according to their length.

Licensed Material - Property of IBM

Meaning:
Code Po- and P1-text P2-text
Code Word
~ DATA

02 SKIP1

03 SKIP2

04 SKIP3

05 ,C;JECT

06 NSTD-REBLS

07 SUPPFESS

09 SORT-OP'IION

OA ORGANIZATION

OB WHEN-COMPILED

OC COR£- Ir~m:X

00 PROGRAM

OE RF

OF' WRITE-ONLY

12 COMIV:A

13 DECIMAL-POINT

14 FILE-I.INIT(S)

15 MODE

16 !<ECORDING

17 REEL

18 SYSHT

19 SYSLST

lA TRACK-AREA
26 DISPLAY
28 RESET
2B ON

30 Cl'RRENCY

32 INDEX

33 STATUS

34 MODULES

35 MEMORY

36 WORDS

3"l SYNCHRONIZED (SYNC)

38 OFF

Text Formats 355

Licensed Material - Property of IB~

Meanina Meaning
Code PO- and Pi-text P2-text Code po- and Pi-text P2-text
~ RENAMES ~ END-OF-PAGE (EOP)

3A UP 5B CHARACTER

3B DOWN 5C NOT

3C FILE (in Procedure 5D AND
Division and after
File section header) 5E OR

3D OPTIONAL 5F LIMIT(S)

3E RE.MAINDER 61 BEGINNING

3F' POSITION 62 ENDING

40 TAPE 63 MORE-LABELS

41 TRAILING 64 OUTPUT

42 ADDRESS 66 INPUT

43 ALPHANUME.RIC 67 i~ANDOM

44 NUIvlBER 68 PROCESSING

45 CURRENT-DATE 69 BEFORE

46 TIME-OF-DAY 6A REPORTING

47 COM-REG 6B I-O

48 SORT-RETURN 6C WITt!

49 SEPARATE 6D REWIND

4B REREAD 6E REVERSED

4C DISP 6F INTO

4D EXTENDED-SEARCH 70 AT

4£ MASTER-INDEX 71 INVALID

4F CYL-OVERFLOW 72 AFTER

50 THEN 73 ADVANCING

51 CYL-INDEX 76 LOCK

52 WRITE-VERIFY 77 SYSPCH

53 THAN 78 CONSOLE

54 RECORD-OVERFLOW 79 ALL

55 ALPHABETIC 7A CORRESPONDING (CaRR)

56 NUMERIC 7B TALLYING

57 POSITIVE 7C LEADING

58 NEGATIVE 7D UNTIL

59 UPDATE 7E REPLACING

356 Section 5. Data Areas

~eanin~
Code PO- and P1-text
7F BY

81 GIVING

82 ROUNDED

83 SIZE

84 ERROR

85 RUN

86 PROCEED

87 THROUGH (THRU)

88 VARYING

89 USING

8A COBOL

8B UPSI-1 through

8C DESCENDING

8D ASCENDING

8E TRACE

SF CHANGED

90 NAMED

92 CHARACTER (S)

93 TIMES

94 DEPENDING

95 LINE (S)

96 FIRST

97 NEXT

98 UPON

99 PROCEDURE

91\ EVERY

9B TO

9C IS, ARE

9D 'FROM

9E NO

9F KEY

AO RETURN-CODE

A1 END

P2-text

UPSI-7

Licensed Materia1 - Property of IB~

Meaning
Code PO- and P1-text P2-text
A2 UNIT (5)

A3

A4

AS

A6

A7

A8

A9

AA

AB

AC

AD

AF

B1

B2

B3

B4

B5

B6

BS

BA

BC

BE

BF

C1

C4

C6

C8

C9

CA

CB
CC
CD

FOR

IN, OF

SECTION

LABEL-RETURN

DIVISION

SORT-FILE-SIZE

SORT-CORF-SIZE

SOBT-MODE-SIZE

SIGN

SOBT (appears in
Procedure Division as verb
with 36 code)

MULTIPLE

FILLER

ASSIGN

ACCESS

EXCEPTION

RESERVE

NOMINAL

ACTUAL

DYNAMIC

S"EQUENTIAL

INn EX ED

ALTERNATE

APEA (5)

RELOAD

TRACK (5)

CYCLES

PASSWORD

EXTEND

VUUR (5)

PRINT-SWITCH
BLOCK
RECORD (5)

Text Formats 357

Licensed Material - Property of IBM

Meaning
PO- and Pl-text
CLOCK lJNITS

CF RECORDS

DO CONTROL(S)

Dl LABEL (S)

D3 CONTAINS

D4 OMITTED

D5 STANDARD

D6 REPORT (5)

D7 REDEFINES

DB PICTURF. (PIC)

D9 BLANK

DA OCCURS.

DB JUSTIFIED (JUST)

DC POSITIONING

DD

DE

DF

EO

El

E2

E3

E4

E5

F,6

USAGE

COMPUTATIONAL (COMP),
COMPUTATIONAL-4 (COMP-4)

COMPUTATIONAL-l (COMP-l)

COMPUTATIONAL-2 (COMP-2)

COMPUTATIONAL-3 (COMP-3)

WHEN

RIGHT

LEFT

CODE

PAGE

358 Procedure Ie-text (PO Format)

Meaning
Code PO- and Pl-text P2-text
F:7 FINAL

Eq HEADING

Ell DETAIL (DE)

EB LAST

EC FOOTING

EE GROUP

E'P TYPE

1"0 PLUS
1"2 DISPT,lIY-ST
F3 RE

1"4 PH

F6 CH

1"8 C1"

FA PP

FB SENTENCE

FC COLUMN

FD INDICATE

FE

FF

SOURCE

SUM

Bits
o
1
2
3
4

5
6
7

MeaniruI.
FD, SD, RD
Paragraph word
Section word
Division word
Allowed in Environment

Division
Allowed in Data Division
Allowed in Procedure Division
Allowed in Identification

Division

The first bit of byte 1 is used as a
flag. A setting of 0 indicates a PN
statement. A setting of 1 indicates a
verb statement.

PROCEDURE IC-TEXT (P1 FORMAT)

PROCEDURE-NA~E DEFIWITION
iii
I 01112 through 1 + c
I I I
1061cIDictionary attributes of
1 I Iprocedure name. See "D~
I I !tionary Entry Formats."~

i

I C+1
I \
Ipr~ity\

10 I , ,

PROCEDURE-NAME REFERENCE
iii
I 01112 through 1 + c
, I I
120lciDictionary attributes of
I I 1 procedure name. See "D~
! ! !tionary Entry Formats."0

i

I C+1
, r
Ipr~itYI
10 I , ,

FILE-NAME REFERENCE
iii
I 01112 through 21
I I I
121 In I Dictionary attributes of
I I Ifi1e. see"~ Entry" in
I I IAppendix F. \2)
, "

i

I 22
I '
Icoti.nt'ofntimber
jof Q~utine calls
i 0 ,

I i

I
123-24'
I
IGN number for
IQ-r~ines,
I' 0 , .

In - 11 to n - 101 n - 9 to n - 8
I I
I PH number for I PN number for \
ISTANDARD ERROR I file header '
I declarative I label

I

I
.. I

Licensed Material - Property of IBM

i i
In - 7 to n - 61 n - 5 to n - 4
I I
IPN number for I PN number for
Ifi1e trailer I end-of-volume
1 label I label

I

i i
In - 3 to n - 21 n - 1 to n + 1
I I
IPN number for I Pointer to
Ibeginning-of- I dictionary
Ivo1ume label I entry for fi1e~ ,

SD ELEMENT
iii i' i
10 1112-9 10 111-12 In-1 to n+11
I I I I I I
121 In I Dictionary I 0 IGN I Dictionary I

1 attributes I ~ Inumberlpointer 1
Ifor SD I ~ Ifor Q I I
I (see "SD I Irou- I 1
I ENTRY") I I tines I I

~ Bytes 10-12 are present only if the
O-hit is on.

VSAM FILE-NAME REFERENCE
, Iii

10 1112 through 9 110
I I 1 I
1261nlDictionary attri-ICount of all
I 1 Ibutes of file IGNs for Q-
I I !.(see "FD ENTRY" Iroutines as­
I 1 I in Appendix D) Isociated with
I I I Ithis file

, Iii

111-12 113-14 115-22 123-24
I I I I I
IGN numberlN number I Reserved I Pointer I
Ifor Ifor I Ito dic-I
Istring of\STANDARD I Itionary\
I Q-routine I ERROR de-\ I entry I
IGNs Ic1~tivel I for I
I I 0 I 0 I file I , - ,

Text Formats 359

Licensed Material - Property of IBM

DATA-NAME REFERENCE
Iii

1 01112 to n - 5 or n - 2
I I I
130lniDictionary attributes.
I I ISee "LD Entry" in "Section 5.
I I 1 Da ta Areas."
I II ®

,
In - 4
I
Count of all GNs for Q-rou­
tines under 'item

I

In - 3 to n '- 2
I

1 ,
jFirst GN number in
lall GV numbers for
iunder item

series of I
(I-routines I

1

i i
In - 1 to n + 1 1
I 1
IPointer to 1
Idictionar~ntrYI
Ifor item ~ I
I ,

DATA-NAME REFERENCE FOR KEY CLAUSE
Iii i
10 1112 to n - 6 or n - 3 i ~ 5

I

130lniDictionary attri-"
I I I butes (see "LD
I I IENTRY" in "Section
I 1 15. Dat~reasll)

,couJlt ,of all ,I
GNs for Q- ,
routines i
under'item I

I 1 1 \2)

In -: 4 to n.,- ji:n -, 2 'in - 1 to n+1

IFirst GV num- 'IIndex' ,Pointer to
Iber in series licB I dictionary
lof all' 'Gil num-rn~mber".lentry forr,:'\
111ers for Q- 1 ' I item ~
Iroutinj:!s underl ' 1
litem" t " ',I
, " 1

360 Procedure IC-text (P1 Format)

I

NUMERIC LITERAL
, i i I i

1 01112 13 I
1 I I I ,
1321nlPositions
I 1 Ileft of

tolPositions tol
lright of I

I I Idecimal I decimal I

I

14
I

I
through n + 1 I

r
ILiteral
Idecimal

in packed I
format I

FLOATING-POINT LITERAL
Iii ----,

I 0 I 1 I 2-9 1
I 1 I I
1331081Literal represented as I
I I Idouble-precision floating-I
I I Ipoint number 1
I I I

ALPHANUMERIC LITERAL
i r, I

I 01112 through 1 + c 1
I 1 1 I
1341clLiteral in EBCDIC I

, I

IIFXHIBIT NAMED II NAME
iii i
I 01112 through 1 + c I
1 I I --i
1351clEBCDIC form of name usedl
I I lin EXHIBIT NAMED state-
I I Iment.
I "

INDEX-NAME REFERENCE
i i ' i ,
1 01112 13-4 15-6
1 I I 1 ,
136Ic~IIndex-namel~
I I I I number I

r---------------------------,
17-9 I
r---------------------------~
IPointer to dictionary entry I
I for index-name ® 1 L ___________________________ J

LIS~ING A-TEXT FOR PROCEDURE-NA~ES
r--T-T---------------------------------,
JO 1112 through l+c 1
r--t-+---------------------------------~
1371clEBCDIC procedure-name; bit 0 of I
1 lIthe preceding field is set to 1. I L __ ~_~ _________________________________ J

LISTING A-TEXT FOR VERBS
r--T-T-----------T------------------,
10 1112 through nln + 1 I
r--t-t-----------t------------------~
1371nlEBCDIC verblAlphabetic verb I
I I I Isequence number I L __ ~_~ ___________ ~ __________________ J

DATANAME REFERENCE FOR OBJECT OF GIVING
OPTION OF USE ERROR DECLARATIVE

r--T-----------------------------------,
10 11 through n+l I
~--t-----------------------------------~
,]381 Same as "Data-name Reference" (3 0) I
1 lelement above I L __ i ___________________________________ J

"ALL" LITERAL LONGER THAN ONE CHARAC'IER
r--T-T---------------------------------,
10 1112 through c + 1 1
r--+-+---------------------------------~
1391clAlphanumeric value following ALL I L __ ~_~ _________________________________ J

CRITICAL PROGRAM BREAK
r--T--------------,
I 011 I
r--+--------------~
I 42 I Break code (f) 1 L __ ~ ______________ J

VERB
r-~---------------,

I 011 I
r--+---------------~
1441 Verb code I
I I (see note 3 I
I lunder PO-text) I L __ ~ _______________ J

RELATIONAL CODE
r--T-----------------------,
I 011 1
r--t-----------------------~
)50)06 (hex) = Equal I
I 108 (hex) = Greater thanl
I lOA ~hex) = Less than I L __ ~ _______________________ J

Licensed l'laterial - Property of IBM

PAREN'I'HESIS
r--T----------------------------,
10 11 I
~--t----------------------------~
152100 (hex) = Left parenthesis I
I 101 (hex) ~ Right parenthesis I L __ ~ ____________________________ J

lIRITHI'lE'I'IC OPERATOR
r--T-------------,
I all I
r--+------------~
153lo?erator codel
I I ® I L __ ~ _____________ J

r--T---------------,
I all I
r--+---------------~
1541Word code I
I I(see note 7 I
I lunder PO-text) I L __ ~ _______________ J

NFILES
r--T---------------,
10 11 I
r--t---------------~
1561Number of filesl
I lin USING I L __ ~ _______________ J

FIGURATIVE CONSTANT
r--T--------------------,
I 011 I
r--t--------------------1
1751EBCDIC value of I
I Ifigurative constant I L __ ~ ____________________ J

STANDARD DATA-NAME REFERENCE
r--T----------------,
10 11 I
r--t----------------1
179105 (hex) = TALLY I L __ ~ ________________ J

Text Formats 361

Licensed NateL-ial - Property of IBM

CA~D NUMBbR
r--T-----------------------------,
10 11-2 I
~--+-----------------------------~
181lcompiler-generated sequential I
1 1 source card n'unber @ I L __ ~ _____________________________ J

GENERATED PROCEDURE-NAME DEFINITION
r--T---------------------------------,
10 11-2 I
~--+---------------------------------~
1881GN number -- identifying number I
I lassigned to compiler-generated I
I Iprocedure-names from COMMON fieldl
I lGNCTR I L __ ~ _________________________________ J

GENERATED PROCEDURE-NAME REFERENCE
r--T---------------------------------,
10 11-2 I
t--+---------------------------------~
JAAIGN n~mber -- identifying number I
I lassigned to compiler-generated I
I Iprocedure-names from COMMOH fieldl
I IGNCTR 1 L __ ~ ___________________________ ~ _____ J

ERROR SYIvlBOL
r--T--'
10 11 I
1---+--,
l B9 1®1 L __ J. __ J

Dictionary at~ributes without count and
major code fields.

For alphanumeric edited items.
elementary items with report pictures.
and elementary items with sterling
report pictures. phase 30 discards bits
10-17 while copying the dictionary
attributes.

Priority appended to procedure-name
reference and definition by phase 3.
Priority is part of dictionary
attributes for section-names.

Bytes 22-24 are ·present only if the
Q-bit is on.

Pointer
Bits
---0=-1

2-14
15-23

contents:
Contents
Unused
Dictionary section number
Displacement in section

Dictionary attributes with fla~ byte
field removed. Bits 1-4 of flag byte
overlay bits 1-4 of level number. Bits
5-8 of flag byte overlay count field
preceding major code field. In level
number field. if bit 5 is on, the level
is 01: if bit 6 is on, the level is
77. Otherwise, the bits are off.

362 Section 5. Data Areas

(J)

In the case of data-name references to
special registers, the addressing
parameters field of the dictionary
attributes contains an ID number
according to the following schedule:

ID
FFOOOO

to
FF0007
FF0008
FF0009
FFOOOA
FFOOOB
FFOOOC
FFOOOD
FFOOOE
FF0010
FF0015

SPECIAL REGISTER
UPSI-O

to
UPSI-7
CURRENT-DATE
TIME-OF-DAY
COM-REG
SORT-RETURN
SORT-CORE-SIZE
SOR'I'-FILE-SIZE
SORT-MODE-SIZE
NSTD-REELS
WHEN-COMPILED

Bits
-0-

contents
If 1, subject has variable
length; bytes 5-6 contain
VLC number.

1-3
4-7

Code
(hex)
-err-

02
03
04
05
06
07
08
09
OA
OB

OC

OD
OF
FO
Fl
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE

If 0, bytes 5-6 contain fixed
length of suoject.
Unused
1111

Meaning
Ddta Division
File section
Working-storage section
Linkage Section
Report section
Procedure Division
start of Declaratives
End of Declaratives
Start of DEBUG Packets
Start of Q-Routines
start of Report Writer

Procedures
End of Report Writer

Procedures
bnd of Segment
Date-Compiled Entry
security Entry
Identification Division
Program-ID Entry
Author Entry
Environment Division
Configuration Division
Source-Computer Entry
Object-Computer Entry
Input-Output section
File-Control Entry
1-0 Control Entry
Special-Names Section
Date-Written Entry
Installation section
Remarks Entry

Code
lhex)
00
01
02
03
04

Operator
Addition
Subtraction
Multiplication
Division
Exponentiation

Error symbol
COBOL word.

number
If reserved. word
used. invalidly
(see also note 7
under "Procedure
Ie-text (PO
Format)")

00 (hex) If undefined or
multiply-defined
symbol found

Licensed Material - Property of IBM

The first bit of byte
flag. A setting of 0
statement. A setting
verb statement.

1 is used as a
indicates a PN
of 1 indicates a

Text Formats 363

Licensed Material - Property of IBM

PROCEDURE IC-TEXT (P2 FORMAT)

FILE-NAME REFERENCE
iii i

I 0111 2 3 II 5 6 I 7 8-9
I I I I I
1211nlI/O verblSwitcheslPirst IDTF ISwitcheslFile numberlMaximuml
I I loPt~s IBL Ipointerl Ion multiplelrecord
I I I \2) ~ Inumberlnumber I ~ Ifile reel I length
I " I

10 I 11 12-13 111 15 16
I I I I I
ISwitcheslSwitcheslUser maximum I Access I Print controllUnusedl
I I Ilabel lengthlm~odlcom~icationl
IG) 10 I I~ I \!J I
I I I " I

17 18 i 19 20-21 22-211 25-27 'In-H·tn-13 to n-121
I 'I , "I

I Secondary I Secondary I Secondary I Block I idk for I Pointer to I '0 I GN ,numbers J
IDTF pointerlDTF pointerlDTF pointerlsize foriACT~AL KEY I dictionary I Ifor I
I number I number Inumber Ifile Idata-name lentry for' IQ-routines j
I I I I lif DA IACTUAL KEY~ "J.:.",8 I
I I I I I Idata-name ~ \V ,I
I I I I I, G lif DA ® " I
I I I I I I' 9 I ' I' 1 ,.' " " '

Iii i
In-11 to n-10 In-9 to n-3 In-7 to n-6 In-5 to n-II
I I I I I
IPN number for I?N number forlPN number forlPN number forI
Istandard errorlfile header Ifile trailer lend of volumel
I declarative Ilabel (BOF) Ilabel (EOP) Ilabel (EOV) I
I I I , ,

i

In-3 to n-2
I
IPN number for
Ibeginning of
Ivolume label
I (BOV)
I

i
In-1 to n+1
I
IPointer to
I dictionary
lentry f~
I file ~
I

VERB INFORMATION
Iii

10 1112 through 1 + c
I I I
12111clFollows verb string for EXAMINE, TRANSFORM, EVAL, ADD,
I I ISUBTRACT, MULTIPLY, DIVIDE, USE,' DEBUG.
, "

VERB INFORMATION (VSAM) For VSAM READ, WRITE, REWRITE, DELETE, and START
i i i i
10 I 1 I 2 3 4 5-7 1
I I I I
12111 c IACB IExecution-timeICompile-timeIDictionary pointer I
I I I number I information I information Ito RECORD KEY I
I I I

®
I

@
I

® Idata-~ I
I !@! I I I 3d I
i I I I I

3611 Procedure IC-Text (P2 Format)

Licensed Material - Property of IBM

VSAM FILE-NAME REFERENCE
r--T----T-------------------------T---------------------,
10 I 1 12 through 9 110 I
~--+----+-------------------------+---------------------~
1261 n IDictionary attributes of ICount of all GNs for I
I I Q I file (see "FD ENTRY" in I Q-routines associated 1
I I ~ I "Section 5. Data Areas") Iwith this file I L __ L_ ___ ~ _________________________ ~ _____________________ J

r-------------T--------------T--------T--------------,
111-12 113-14 115-22 123-24 I
~-------------+--------------+--------+--------------~
IGN number forlGN number for IReservedlPointer to I
Istring of I STANDARD ERRORI I dictionary I
lQ-routines ldec~rative I ~ lentry for filel
lGNs I 0 I I I L _____________ ~____ _ ________ ~ ________ ~ ______________ J

DATA-NAME REFERENCE
r--T-T------------------------------T-----------------T-------------------------T--------------,
I 0 111 2 to n - 5 or n - 2 In - 4 In - 3 to n - 2 In - 1 to n + 11
~--+-+------------------------------+-----------------+-------------------------+--------------~
1301nlDictionary attributes of data-ICount of all GNs IFirst GN number in serieslPointer to I
I I Iname. See "LD Entry" in Ifor Q-routines lof all GN numbers for I dictionary I
I I I "Section 5. Data Areas." lunder item IQ-routines under item lentry for I
I I I h.;\ I I litem ~ I
I II ~ I I I ~ I L __ ~_~ ______________________________ ~ ______ ~ ________ ~ ________________________ ~ ______________ J

DATA-NAME REFERENCE FOR KEY CLAUSE
r--T-T------------------------T----------------T------------------,
10 1112 to n - 6 or n - 3 In - 5 In - 4 to n - 3 I
~--+-+------~-----------------+----------------+------------------~
130lniDictionary attributes oflcount of all GNslFirst GN number inl
I I Idata-name (see "LD Ifor Q-routines Iseries of all GN I
I I IENTRY" in "Section 5. lunder item Inumbers for Q- I
I I I Data Areas") I I Routines under I
I I I @ I I item I L __ L_L ________________________ ~ ________________ ~ __________________ J

r------T----------------,
In - 2 In - 1 to n + 1 I
r------+----------------~
IIndex IPointer to I
IACB Idictionary entry I
Inumberlfor item @ I L ______ ~ ________________ J

SUBSCRIPTED DATA-NAME REFERENCE
r--T-T------------------------------------T---------------------,
10 1112 through n - 2 In - 1 to n + 1 I
r--+-+------------------------------------+---------------------~
1311nlDictionary attributes of subscriptedlPointer to dictionary I
I I I data-name. See "LD Entry" i~ I entry I
I I I "section 5. Data Areas." QJI @ I @ I L __ ~_~ ____________________________________ ~ _____________________ J

NUMERIC LITERAL (DECIMAL)
r--T-T----------------T----------------T---------------,
10 1112 13 14 through 1 + nl
r--+-+----------------+----------------+---------------~
1321nlPositions to thelPositions to thelLiteral in I
I I Ileft of decimal Iright of decimallpacked decimal I
I I I I I format I L __ L_~ ________________ ~ ________________ L_ ______________ J

Text Formats 365

Licensed Materi~l - Property of IBM

FLOATING-POINT LITERAL
r--T--T-------------------------------,
I 011 12-9· I
t--f--f-------------------------------~
1331081Literal represented as double- I
I I Iprecision floating-point number I L __ ~ __ ~ _______________________________ J

ALPHANUMERIC LITERAL
r--T-T-----------------,
10 1112 through 1 + c I
r--+-+-----------------1
1341clLiteral in EBCDIC I L __ ~_~ _________________ J

"EXHIBIT NAMED" NAME
r--T-T------------------------------------,
10 1112 through 1 + c I
r--f-f------------------------------------1
1351clEBCDIC form of name used in EXHIBIT I
I I INAMED statement I L __ ~_~ ____________________________________ J

INDEX-NAME REFERE~CE
r--T-T--T----------T----------T----------------------T-----,
10 1112 13-4 13-6 17-9 110-111
t--+-+--f----------f----------+--------------~-------+-----~
136InlQ]Wlndex-nameILength of IPointer to dictionary I I
I I I I number I subject @Ientry for item @ I @ I L __ ~_~ __ ~ __________ ~ __________ ~ ______________________ ~ _____ J

LISTING A-TEXT FOR PROCEDURE-NAMES
r--T-T-------------------------------------,
10 1112 through 1 + c I
t--+-f-------------------------------------~
1371clEBCDIC procedure-name; bit 0 of the I
I I Ipreceding field is set to 1 I L __ ~_~ _____________________________________ J

LISTING A-TEXT FOR VERBS
r--T-T-----------T--------------------------------,
]0 1112 through nln + 1 I
t--f-+-----------+--------------------------------~
j371nlEBCDIC verblAlphabetic verb sequence number I L __ ~_~ ___________ ~ ________________________________ J

MULTIPLE GN REFERENCE
r--T-T---------T----~
jO 1112-3 I /
r--+-f---------+----~
1381 n l GN number I '7 L __ ~_~ _________ ~ ____ ~

~
-----T---------------'

In through n + 11
-----f---------------~ ______ l:~_~~~~~= ______ J

FIGURATIVE CONSTANT "ALL" (Greater than 1 character)
r--T-~--------------------------------l

10 111 variable I
~--+-+----------------------------------1
1391clAlphanumeric literal following ALL I L __ ~_~ __________________________________ J

CRITICAL PROGRAM BREAK
r--T-------------,
10 11 I
r--t-------------i
]421 Break code @I L __ ~ _____________ J

366 Section 5. Data Areas

RELATIONAL CODE
I i I

1 ° 11 1
I I I
150106 (hex) = Equal 1
I 108 (hex) = Greater thanl
1 lOA (hex) Less than 1
1 1°C (hex) = Not less I
1 1 than I , I I

PHASE 40 OPTI~IZATION INFORMATION
i I

I 011
1 I
1431 TY~ code
1 I 16
I ,

COBOL WORD
i i

10 11
1 1
1541Word code
I I (See note 7 under
1 I"Procedure IC Text (PO Format) ")
I

FIGURATIVE CONSTANT
i i

10 11
I I
1751EBCDIC value of figurative constant 1 , ,

STANDARD NAME REFERENCE
, I

10 11
I I
179105 (hex) TALLYI

CARD NUMBER
i i
10 11-2
I I
181 1 Compiler-generated
I Isource card number
I ,

CARD NUMBER FOR FLOW
i i

I ° 11-2
I I
1821Card
I I

number I
I

,

seqUBtiall
\t]) I ,

Licensed Material - Property of IBM

Text Formats 367

Licensed Material - Property of IBM

VERB
i i

10 11
1 I
1841Verb code
I I (See note 3 under
I I"Procedure IC-text (PO
I 1 Format) ") , ,

i i

12 I
I 1
ICount of elements that I
Ifollow for this statement I
I I
I I , ,

GENERATED PROCEDURE-NAME DEFINITION
, i

10 11-2
1 I
IBBIGTf number
1 1 genera ted

identifying number assigned to compiler-I
procedure-names from COMMON field GNCTR 1 ,

GENERATED PROCEDURE-NAME REFERENCE
i i
10 11-2
I 1
IAAIGN number -- identifying number assigned to
I Igenerated procedure-names from COMMON field ,

INTF.RMEDIATE RESULT REFERENCE
i i

10 11-2
I I
IBAIIR number -- identifying number
I Ito intermediate result
I I

assigned I
I ,

compiler-I
GNCTR 1

I

NUMERIC LITERAL (BINARY) TEMPORARY RESULT PFFF.RENCE
i ,

10 11-2
1 I
IBBILiteral in I
1 Ibinary formatl
, , I

PROCEDURE-NAME ,DEFINITION
i' ,
10 11 12-3

I ,

10 11-2
I I
IBCITR number
I 1
I ,

I I I ,
IC71PrioritYIPN number -- identifying sequential number of
I 1 number Isource procedure-name, assigned from COMMON
I 1 Ifield PNCTR
I I

FILE-NAME REFERENCE
i ,

10 11-3
1 1
IC81Dictionary pointer , ,

368 Procedure IC-Text (P2 Format)

Licensed Material - Property of IBM

VARIABLE PROCEDURE-NAME DEFINITION
I i j ,

10 11 12-3 I
I I I I
IC91Priority number oflVN number -- identifying number assigned to compiler-I
I Isegment in which Igenerated variable procedure-names from COMMON I
I IVN located Ifield VNCTR I

PROCEDURE-NAME REFERENCE
i I I i

10 11 12-3 I
I I I ,
IDOIPriority number oflPN number ~- identifying sequential number ofl

Isegment in which Isource procedure-name, assigned from COMMON 1
IP~1 is located Ifield PNCTR I
" I

PROCEDURE-NAME REFERENCE FOR XREF
, iii

10 11 12-3 I
I I I ,
ID41Priority number oflPN number -- identifying sequential number ofl
~Isegment in which Isource procedure-name, a~signed from COMMON I
~IPN is located tfield PNCTR I
I " ,

VARIABLE PROCEDURE-NAME REFERENCE

I

i I I -,

10 11 12-3 I
I 1 I --l
IDBIPriority number oflVN number -- identifying number assigned to compiler-I

Isegment in which Igenerated variable procedure-names from COMMON 1
IVN is located Ifield VNCTR t ~-L __________________ -L__--J

GLOBAL TABLE REFERENCE (TYPE 1)
, i i

10 11 12
I I I ,
IF91Cell code for ~sklDisplacement in bytesl
I IGlobal Table ~ Ifrom start of cell I
, , I ,

GLOBAL TABLE REFERENCE (TYPE 2) OS CLOSE REEL
i j i 1 09 CLOSE REEL, NO REWIND
10 11 12-31
I I I ,
IFAICel1 code for Task or I I
I I Program Global Table @t@ I
I I I ,

~ Bits 0-3: Not used

Bits 4-7: Verb options, per table:

YIDill
OPEN

READ
WRITE
CLOSE

CODE
00

01
02
04
OC
08
08
00
01
02

OPTION
OPEN, INPUT
OPEN, NO REWIND
OPEN, REVERSED
OPEN, OUTPUT
OPEN, INPUT/OUTPUT
READ INTO
WRITE FROM
CLOSE, REWIND
CLOSE, NO REWIND
CLOSE WITH LOCK

Bit o
1-2

3
4-7

Meaninq
If 1, Q-routines required
As follows:
00 Variable records
01 Fixed records
10 Undefined records
11 Spanned records
If 1, Multiple reel file
Number of BLs for file

Mask
X'SO'

X'OO'
X'20'
X'40'
X'60'
X'10'

Bits 0-3: Access method, as follows:

Bits
0001
0010
0011
0100
0101
0110

Access Method
DTFCD
DTFPR
DTFMT
DTFSD
DTFDA
DTFIS

Text Formats 369

Licensed Material - Property of IBM

@

<§

Bit 4: Set to 1 if any of the
following conditions occurs:

• OMR, if access method is DTFCD.

• APPLY WRITE ONLY, if access method is
DTFMT or DTFSD.

• ACTUAL KEY SPECIFIED, if access
method is DTFDA for DA Sequential
File.

• IBM extension (REWRITE) for DTFDA,
Random File.

• Load type DTF generated, if access
method is DTFIS.

Bit 5

Bit
0

1-7

Eit
0

1-7

• Set to 1 if access method is DTFDl
and relative track addressing is
used.

• Set to 1 if access method is DTFMT
and file is an ASCII file.

• Set to 1 if access method is DTFI~
and file is double buffered.

Bits 6-7: Not used.

MeanilliI
o = SEQUENTIAL ACCESS or READ

NEXT with DYNAMIC ACCESS
1 = RANDOM or DYNAMIC ACCESS
Unused

MeanilliI
o = No duplicate string follows
1 = Duplicate string follows

(READ INTO with MOVE only)
Unused

This field is used only for a READ verb
with a KEY clause.

Count field = 6 for READ verb,
otherwise 3.

For START with KEY aataname clause,
field = ACBi, otherwise = o.

Bit Meaning, if ON
-0- Blocked
1-3 Not used

4 SAME RECORD AREA
5 Random access

6-7 Labp.l type, as follows:

Code
~

80
40
20

00 - Standard
01 - User standard
10 - Nonstandard
11 - Omitted

Meaning
USING/GIVING
ACTUAL KEY in working storage
BEFORE ADVANCING used in

program*

370 Procedure IC-Text (P2 Format)

10
08

04

02
01

Code
.lli.§!.l

01
02
03
04
05
06

AFTER ADVANCING used in program*
AFTER POSITIONING used in

proqram*
Minimum casp. (single buffered,

unblocked file or ISAM)
CLOSE with lock
OPEN optional

*carriage control DTFPR

Access Method
DTFCD
DTFPR
DTFMT
DTFSD
DTFDA
DTFIS

This byte is used for print control
communication between phases 40 and 51.

Bit Meaning
0-1 Not used
2-3 As follows:

4-5

6

00 BEFORE ADVANCING
01 AFTER POSITIONING
10 AFTER ADVANCING

As follows:

00 Integer
01 Identifier (data-name)
10 Mnemonic Name

If 1, END OF PAGE test is
required

7 Not used.

Bytes n-14 to n-12 are present only if
the Q-bit i.s ON.

Bytes 22-27 are present only for a
file-name reference in a READ or WRITE
statement.

pointer Contents:

Bits
D,""1
2-14

15-23

contents
Unused
Dictionary section

number
Displacement in section

~ Field contains zeros if GN is not
generated.

Dictionary attributes with flag byte
field removed. Bits 1-4 of flag byte
overlay bits 1-4 of level number. Bits
5-8 of flag byte overlay count field
preceding major code field. In level
number field, if bit 5 is on, the level
is 01; if bit 6 is on, the level is 77.
Otherwise, the bits are off.

In the case of data-name references to
special registers, the addressing
parameters field of the dictionary
attributes contains an lD number
according to the following schedule:

ID
FFOOOO

SPECIAL REGISTBR
UPSI-O

to
PF0007
FF0008
FF0009
FFOOOA
FFOOOB
FFOOOC
FFOOOD
FFOOOE
FF0010
FF0015

to
UPSI-7
CURRENT-DATE
TIME-OF-DAY
COM-REG
SORT-RETURN
SORT-CORE-SIZE
SORT-FILE-SIZE
SORT-MODE-SIZE
NSTD-REELS
WHEN-COMPILED

If this data-name reference contains a
subscript or index address calculation
ID number, bit 0 will be on, bits 1-7
will contain 0, and bits 8-23 will
contain the ID number. The high-order
bit is turned on by Phase 40 when it
assigns the ID number.

~: Addressing Parameters field in
attributes in "LD entry" has been
replaced by unique subscript identifier
element to match entry in DEFSBS table.

For alphanumeric edited items,
elementary items with report pictures,
and elementary items with sterling
report pictures, Phase 30 discards bits
10-17 while copying 'the dictionary
attributes.

This field is present only if the
indexing is relative. When present, it
contains a 2-byte binary literal, the
object of the plus or minus.
Bit Contents
--0- 1 - Subject has variable

1-3
4-7

Code
(Hex)
01
02
03
04
05
06
07
08
09

length: bytes 5-6
contain VLC number

o = Bytes 5-6 contain
fixed length of
subject

Unused
1111

Meaning
Data Division
File Section
Working-Storage Section
Linkage Section
Report Section
Procedure Division
Start of Declaratives
End of Declaratives
Start of DEBUG Packets

@

@

@

Licensed Material.- Property of IBH

OA
OB

OC

OD
OF
FO
P1
F2
F3
P4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE

Code
(hex)
02

04

05

Code
(Hex)
02
04
06
08
OA

Code
~

00
04
08
OC
10
111
18
1C
1D

Start of Q-Routines
Start of Feport Writer

Procedures
End of Report writer

Procedures
End of Segment
Date-Compiled entry
Security entry
Identification Division
Program-ID entry
Author entry
Environment Division
Configuration Division
Source-Computer entry
Object-computer entry
Input-Output Section
File-Control entry
1-0 Control
Special-Names Section
Date-Written entry
Installation entry
Remarks entry

Meaning
Precedes a Procedure-name
definition element equated to a
VN for an ALTER verb, each
generated Procedure-name
defined for INVALID KEY/AT END,
each procedure-name definition
following TO PROCEED TO in an
ALTER statement, each USE
declarative, and each ENTRY
verb. PERFORM ••• TIMES
Precedes a Variable
procedure-name reference
element at a PERFORM verb exit
Precedes a Generated
procedure-name definition
element at the returning point
of any performed procedure
except a PERFORM ••• TIMES
procedure in a non-segmented
program.

Meaning
SAVE-AREA
SWITCH
Unused
DEBUG
Unused

Meaning
SDTPADR
VLC
CNCTL
PFMCTL
PFMSAV
DTFADR
ISA
PARAM
Single-precision

Text Formats 371

Licensed Material - Property of IBM

1E

20
24
28
2C
30
34

floating-point
Double-precision

floating point
WORKING CELLS
TF.MPORARY STORAGE
XSASW
BL, SEL, BLL
VIRTUAL
FIB

Except when the code for the preceding
field is 2C, this field contains the
identifying number from one of the
COMMON counters as described in
"Section 5. Data Areas." When the
preceding field is 2C, this field
contains the i and k fields of the
addressing parameters, as follows:

Bits Field
0-3 i

4-7
8-15 k

Value Meaning
0000 DL
0001 BLL
0100 SBL
0000 Unused
Base locator number
assigned from
corresponding
COMMON counter.

372 Procedure IC-Text (P2 Format)

When the code for t~e preceding field
is 1D or 1E, this field contains zeros.

Used to write an XREF element for
procedure-name B in the following
cases:

• PERFORM A THRU B.

• ALTER A TO PROCEFD TO B.

• A. GO TO B. (where A iR altered)

The first bit of byte 1 is used as a
flag. A setting of 0 indicates a PN
statement. A setting of 1 indicates a
verb statement.

PROCEDURE A-TEXT

PN AND GN DEFS AND PROGRAM BREAKS
i i C

10 1112
1 1 1
1271n124, C7, or 88 elements

I I

MISCELLANEOUS A-TEXT
i I I

10 1112
1 1 1
1281nlAll elements except 24, C7, 88
1 1 1 (see 27) and 00 (see 29)
, I I

E-TEXT
f i i

10 1112
I 1 1
1291nl00 elements

, ,

CARD NUMBER
i

011-3
1 I
12cISequentially
1 I card number ,

gene(!)ted I
1 I

i

SOURCE PROCEDURE-NAME DEFINITION
I I I

I 0 I 1 12-3
I I 1
1301 2 IPN number -- number assigned 1
1 1 Ifrom PNCTR in COMMON

GENERATED PROCEDURE-NAME DEFINITION
i I

1 011-2
I 1
1341GN number -- number assigned
I IGNCTR in COMMON

from I
I , ,

VARIABLE PROCEDURE-NAME DEFINITION
Ii,

I 01 1 12-3
I I I
1381~IVN number -- number assigned
I I Ifrom VNCTR in COMMON

,

Licensed Material - Property of IBM

EBCDIC PROCEDURE-NAME GENERATOR
Iii

1 OIConsists only of this one-byte I
~field. Used to create in-line DCI
,3Clinstruction for current card I
1 Inumber to be used by the TRACE I
1 Iverb I
I'

MACRO-TYPE INSTRUCTIO~
j i

1 0 11
I I

i

12 ,
144 I Ty~code
I 10

IPriority number if
'type code is 4C , ,

OPFRATION CODE
i I

I 011
I I

,

14BIMachine operation
I 100 (hex) used for

i

code. I
CNOP I

12 I
I I
IValue of second instruction I
Ibyte: condition code, length, I
Iregister, or immediate field I
I ,

PROCEDURF-NAMF REFERENCE
iii

1 01 1 12-3
1 1 1
14CI~IPN number assigned at
I I Idefinition from PNCTR

point ofl
(COMMON) 1

GENERATED PROCEDURE-NAMF REFERENCE
I I

I 011-2
I I
150lGN number assigned at
I Idefinition from GNCTR ,

point ofl
(COMMON) 1

i

VARIABLE PROCEDURE-NAME REFERENCE
iii

I 0 I 1 12-3
I I I
1541~IVN number assigned at
I 1 Igeneration from VNCTR

point of I
(COMMON) I

i

Text Formats 373

Licensed Material - Property of IBM

VIRTUAL REFERENCE
i i

1 011-2
I I
IsalVIR number assigned to source
I Istatement operand from VIRCTR
I 1 (COMMON)

BASE LOCATOR REFERENCE

o i 1 \2
I 1 I
15CITypelBL or BLL number
1 I~elassigned from BLCTR
1 I~ lor BLLCTR in COMMON
I I •

GLOBAL TABLE STANDARD AREA REFERENCE
i I I

I 011 12
I 1 I

CALLI
I
I

160lTypeiDisplacement in bytes froml
I I~elstart of specified area
1 I\,V 1
I r I

GLOBAL TABLE OTHER AREA REFERENCE
i. I

I 011 12-3
I I 1
1641TypelIdentifying number of
1 Ic®elwithin specified area
1 1 6 1

, I

LITERAL REFERENCE
iii

I 011-2 I
I I 1
1681Number of literal I

DC DEFINITION
I I i

1 01112 through
I

C + 11
I 1 1 1
16ClciActual constant 1
, " ,

BASE AND DISPLACEMENT
I

011-2
I 1
170 1 Bits
I 10-3
1 14-15
I ,

Contents
Register number
Displacement

374 Procedure A-Text

item 1
1
1

ADDRESS REFERENCE
ii,

I 011-3 14-6
I I 1
178IAddressingl7\'Diction~
I Iparameters\Z;IPointer~ , , ,

EBCDIC DATA-NAME REFERENCE
iii i
I 01112 through 1 + c (
I I I 1
17ClciData-name in EBCDICI

, I

ADDRESS INCREMENTS
i I -,

1 011-3 I
1 1 --t
lao (Value that is to modify an I
I laddress. Negative value inl
I 12's complement. I L--L ________________________ ~

RELATIVE ADDRESS
i , i

I 0" 12
I 1 I
(84(Code for ISize, in bytes, I

lobject~dulelof address
(field ~ (constant , ,

i

13-4
(
INumber of
1 specified

item inl
field I ,

SPECIAL PHASE 60 ELEMENTS

REGISTER SPECIFICATION
i ,

1 011
I 1
IAOIRegister number:
1 100 through OF(hex) ,

INCREMENTED ADDRESS
i i

I 0 \1-3
I I
IA41Addressing
I I pa(?5meter
I I 7 ,

I
17-9
I

I

14-6
I
I Dictionary
I poC!)o ter
I 8 ,

I Value of increment I ,

SPECIAL PHASE 60 ELEMENTS

CALLING SEQUENCE DISPLACEMENT
iii

I 011 12
I I I
IBOICode for IBase codel

I object Bdule-I SW~Ch
Ifield ~ I 12
, I

I

13-4
1
INumber of
1 specified

item inl
field I

I

CALLING SEQUENCE DICTIONARY POINTER
i j

I 011-3
1 I
IB41Pointer to dictionary
I Ifile-name,-data-name,
I Iscripted data-name

entry fori
or sub- I

I ,

FILE REFERENCE ELEMENT
I

011-3
I I
IB81Pointer to dictionary I
I lentry for file , ,

I

PARAMETER FOR CALL TO SEGMENTATION AND GO
TO DEPENDING ON SUBROUTINES
Iii

I 011 12-3
1 1 1
I BCIl?rioritYIPN
" ,

number I
I

Licensed Material - Property of IBM

PHASE 5 OPTIMIZATION INFORMATION
i i

1 011
I , I
'COITY~ code I
I ,13 I
I I I

RPT-ORIGIN
i i

I 011-2
I I
ID41GN number I

r

The first bit of byte 1 is used
as a flag. A setting of 0 indicates
a PN statement. A setting of 1
indicates a verb statement.

Byte 1 contains the priority number of
the segment within which the procedure­
name is located.

o Code
lli&

00

08

OC

10

18

20

24

28

2C

Meaning
EQUATE -- equates variable

procedure-names to initial
value; followed by
procedure-name reference.

ENTRY -- defines entry point;
followed by EBCDIC data-name
reference giving entry point
name.

BLCHNG -- specific contents of
base locator changed; followed
by base locator. reference.

ENDOPT -- indicates end of
register optimization.

DECLARATIVES START -- indicates
beginning address of
Declarative section; produced
only if SYMDMP or STATE is in
effect.

ADCON -- defines address
constant; followed by relative
address reference, procedure­
name reference, calling
sequence displacement element,
or calling sequence dictionary
pointer to which ADCON points.

START -- identifies first
executable instruction.

DC -- identifies constant;
followed by DC definition.

RESERVE -- specifies registers
not to be used by phase 60 or
phases 62 and 63 followed by
register specification element.

FREE -- indicates registers no
longer reserved; followed by
register specification element.

Text Formats 375

Licensed Material - Property of IBM

30

34

38

3C

40

44
4C

50

Bit:::
0-3
U-7

Code
(hex)

02
04
06

Code

DESTROY -- indicates that
contents of register' 14 or 15
were destroyed; followed by
register specification element.
(phase 60 or Phase 63 generates

a reload for the register from
the appropriate cell when it
needs the address contained
there .)

INIT -- indicates when permanent
registers must be loaded.

ORIGIN -- indicates where to set
location counter for overlaying

.USE BEFORE REPORTING code;
followed by generated
procedure-name reference.

REORIGIN -- indicates that the
reset location counter is to be
reset.

Q-BEGIN -- indicates start of
Q-routine coding; destroys
permanent register assignment.

Segmentation control break.
Segment initialization (1-byte

priority number in next field) •
Dummy procedure-name reference

element to force an XREF
element to be written for the
following procedure-name
reference element.

Code Meaning
0000 Unused
0000 BL
0001 BLL
0100 SBL

M~aning:
SAVE-AREA
SWITCH
TALLY

l!!.£& Meaning
00 SDTFADR
04 VLC
08 ONCTL
OC PFMCTL
10 PFMSAV
14 DTFADR
18 XSA
1C PARAH
20 Working Cells
24 Temporary Storage
28 XSASW
2C SUBADR
30 Temporary Storage-2
34 FIB
3C SAVE-AREA-2
44 REPORT-SAVE area
48 Global Table Overflow cell
50 Checkpoint counter
54 Temporary Storage-3
58 Temporary Storage-4
5C Index-name
60 IOPTRCTR

376 Procedure A-Text

G) Bits
0-3

4-15

16-23

Bits
0-1
2-14
15-23

Code
1h.!ill.

00
04
08
OC
14
1C
28
2C
30
34
38
3C
40
44

48
4C
50
58
5C
60
64
68

d

k

Meaning
INIT1
TALLY
PARAH
BL
SBL
VLC
BLL
LITERAL
INIT3

Code
0000
0001
0011

Content or Meanina
BL
BLL
Address of
data-name as in
register specified
by bits 12-15

0100 SBL
0110 Subscript cell
Displacement from start
of area controlled by
base locator.
SBL, BL, or BLL number
assigned from SBLCTR,
BLCTR, or BLLCTR in COM~ON
or subscript cell number.

contents
Unused
Dictionary section numbE'r
Displacement in section

Checkpoint counter
PGT
TGT
INIT2
START (first executable

instruction identified
by START)

PN
VIRTUAL
GN
vt!
VNI
SUBADR
Temporary Storage .
External ADCON (for address of

transient area in segmented
program)

The following special Phase 60 A-text
elements are generated and then used by
phase 60 to generate MVC instructions
to initialize VN cells in the TGT:

Identifier
Byte Text Element

90

a Code
\!.].Ilhm.

04
08
oe
10
14
18
1e

A8

AC

A 4-byte element that
contains the number of
VNI cell in the PGT.

the

A 1-byte element that
indicates that the value in
the P6PLUS field should be
used as the "plus II element
of the Mve instruction

A 1-byte element that
indicates that the value in
the P6LNG field should be
used as the "length"
element of the Mve
instruction

Meaning
TALLY
PARAM
BL
SAVE2
SEL
FIB
VLC

20
24
28
2C
60
64

Code
@.ru&

00
01

@code
(hex)
01

02

03

04

os

06

Licensed Material - Property of IBM

PN
GN
BLL
Literal
SUBADll
Temporary storage

Meani!!,g
No preceding base code
Base code precedes

this element

Meaning
Precedes a load instruction which
is not foLlowed by a branch
instruction
Precedes any possible entry point
for which addressability must be
established
Precedes a load instruction for a
PN or GN which must be processed
with an address constant cell in
the PGT
Precedes a Variable
procedure-name reference element
at a PERFORM verb exit
Precedes a Generated
procedure-name definition element
at the returning point of any
performed procedure eycept a
PERFORM ••• TIMES procedure in a
non segmented program
Precedes a load instruction for a
PN or GN which is followed by an
unconditional branch instruction

Text Formats 311

Licensed Material - Property of IBM

OPTIMIZATION A-TEXT

VIRTUAL DEFINITION
iii

I 01 112-3
I I I
100lOOlVIR number assigned
I I IVIRCTR in COMMON

i

14-11
I

from I
I

IExternal-name in operand of
ICALL statement, .left justified,
Ipadded with blanks ,

LITERAL DEFINITION
Ii. i

I 01 1 1213 through
I I I I
1041TypelciValue of
I I code I Ili teral
I !Q)! I

i

2 + cl
I

GENERATED PROCEDURE-NAME EQUATE STRING
(NON-OPTIMIZER VERSION)
iii

I 011 12-3
I I I
1081n / 2 IFirst GN number assigned I
I I (Number of Ito identify a location
I I fields to I
I I follow) I
, I ,

,'[Variable number of 2-byte fields
'containing GN numbers)

i

i

In through n + 1
I
ILast GN number assigned to same
Ilocation as others in string

DISPLAY LITERAL DEFINITION
Iii I i
I 011 1213 through 2 + CI
I I I I I
110lTypelciValue of I
I I~el lliteral I
11011 I
I' " t

378 optimization A-Text

SOURCE PROCEDURE-NAME EQUATE STRING
(NON-OPTIMIZBR VERSION)
ii'
I 011 12-3
I I I
10CIn / 2 IFirst PN number assigned I
I I (Number of Ito identify a location
I Ifields to I
I I follow) I , , ,

i
1 [variable. number of 2-byte'
Ifields containing GN numbers]
t '

i

In through n + 1
I
ILast GN number assigned to same
Ilocation as others in string

SEGMENTATION ELEMENT
i , i

I 011 12-3
1 I 1
1141Priority number oflVN I
I Isegment to which Inumberl
I I VN belongs 1 1
I , "

VIRTUAL CONSTANT ELEMENT
ii'
I 011-2 13-10
I 1 I
1181Contents oflExternal-name
I ILOCCTR in Iroutine to be
I ICOMMON Icalled

GNUREF ELEMENT
I i

I 011-2
I I

ofl
1
I

11CIGN number for AT
1 Ibranches, or GNs

END or INVALID KEYI
at REPORT-ORIGIN I , ,

PNUREF ELEMENT
i I

I 011-2
I I
120lPN number for PNs following TO
I IPROCEED TO in ALTER verbs or
1 IDeclaratives PP number

GN-VN ELEMENT FOR PERFORM VERB
I i I

1 011-2 13-4
1 1 1
1241GN number IVN number
1 lassociated withlassociated with
1 Ireturn point oflPERFORM EXIT
I la performed 1
1 1 procedure 1
I , I

VARIABLE PROCEDURE-NAME EQUATE
PROCEDURE-NAME OR VARIABLE PROCEDURE-NAME
EQUATE GENERATED PROCEDURE-NAME ELEMENT
(OPTIMIZER VERSION)

VARIABLE PROCEDURE-NAME DEFINITION
, I I

1 01 112-3
r-+=7I------------------------~
138 [0. VN number -- number assigned
1 I Ifrom VNCTR in COMMON

MACRO-TYPE INSTRUCTION
i i

I 011
I I
1441~
I I 3
I I

Licensed Material - Property of IB~

PROCEDURE-NAME REFERENCE
I i I

I 0 I 112-3
I I I
14CI~PN number assigned at point of
I I Idefinition from PNCTR (COMMON)

GENERATED PROCEDURE-NAME REFERENCE
i I

I 011-2
I I
ISOIGN number assigned at point of
I Idefinition from GNCTR (COMMON)
I

CD Bit
0-1

Code
00

01
10
11

Meaning
No boundary requirement
Halfword boundary
Fullword boundary
Doubleword boundary
Floating-point number
EBCDIC numeric value
Binary number
Packed-decimal number
EBCDIC character string
Hexadecimal number

2
3
4
S
6
7

1
1
1
1
1
1

Byte 1 contains the priority number of
the segment within which the
procedure-name is located.

~ The code 00 indicates EQUATE.

Text Formats 379

Licensed Material - Property of IBM

PROCFDURE A1-TEXT

The following elements of Procedure Al-text
are identical to their counterparts in
Procedure A-text.

Code
2C

30
34
38
3C
44
48
4C
50

54
58
5C
60

64
68
6C
70
7C
84
AO
BO
B4
B8
BC

Element Name
CARD NUMBER
SOURCE PROCEDURE-NAME DEFINITION
GENERATED PROCEDURE-NAME DEFINITION
VARIABLE PROCEDURE-NAME DEFINITION
EBCDIC PROCEDURE-NA"E ~ERATOR
MACRO-TYPE INSTRUCTION\!)
OPERATION CODE
PROCEDURE-NAME REFERENCE(2)
~NERATED PROCEDURE-NAME'iEFERENCE

'ViRIABLE PROCEDURE-NAME REFERENCE
VIRTUAL REFERENCE
BASE LOCATOR REFERENCE
GLOBAL TABLE STANDARD AREA
REFERENCE
GLOBAL TABLE OTHER AREA REFERENCE
LITERAL REFERENCE
DC DEFINITION
BASE AND DISPLACEMENT
EBCDIC DATA-NAME REFERENCE
RELATIVE ADDRESS
REGISTER SPECIFICATION
CALLING SEQUENCE DISPLACEMENT
CALLING SEQUENCE DICTIONARY POINTER
FILE REFFRENCE ELEMENT
SEGMENTATION AND GO TO DEPFNDING ON
SUBROUTINE CALL PARAMETER

The SPECIAL PHASE 60 ELEMENTS are also
present in Procedure Al-text and are
processed by Phase 64 if OPT is specified.

ADDRESS INCREMENT
, i

1 011-3
1 1

I
1 4
1

laOlValue that is to
1 Imodify an address

IC~
I~ ,

ADDRESS REFERENCE
i i
1 011-3
1 1
1781Addressing
1 1 parameters
, I

BLOCK NUMBER
i I

1 011
1 1

I

I
14-6
1 . I

r....! Dictiona~ 1
~pointer 5 1 , ,

IC41Block number

380 Procedure A1-Text

PROCEDURE BASE REGISTER ELEMENT FOR PHs
i i

1 011-2
I 1
IcaiPN number

PROCEDURE BASE REGISTER ELEMENT FOR GNs
I i

1 011-2
1 1
ICCIGN number

BASE DISPLACEMENT DATA-NAME

®

0

i i ,
I 011-2 13-5
1 I , I
IDOIAddressing
1 1 parameters

r.:-lDictiona~1
~pointer \V 1

, I

A MACRO-TYPE INSTRUCTION element with a
44 type code (segmentation control
break) has an added byte which contains
the priority number.

Present only for those PNs and GNs that
have address constant cells in the PGT.

Code Meaning
00 LA instruction not to be

generated
OE LA instruction to be generated,

using register 14 as base
register

OF LA instruction to be generated,
using register 15 as base
register.

Bits Field Code Content or Meaning
-0- i -0- Use register 14 to

address item. (A
load instruction is
generated if bits 2
and 3 are on.)

1 Use register 15 to
address item. (A
load instruction is
generated if bits 2
and 3 are on.)

1-3 000 BL
001 BLL
011 Address of data-name

is in register
specified in bits
12-15. Referred to
by zero displacement
from register.

100 SBL
110 Subscript cell

®

4-15

16-23

Bits
0-1
2-14
15-23

k

Displacement from start of
area controlled by base
locator. If a register
is specified in bits
0-3, however, bits 4-11
contain zeros, and bits
12-15 contain the
register number.

1 BL or BLL number
assigned from BLCTR, or
BLLC~R in COMMON

2 subscript cell number
3 SBL number assigned from

SBLC'IR in COMIY!ON

Contents
Unused
Dictionary section number
Displacement in section

For data-names with ~ermanently
addressable BLs, phase 63 changes the
ADDRESS REFERENCE element to a BASE
DISPLACEMENT DATA-NAME element, using
the permanently assigned register
number from the BLASGTBL table and the
dispiacement given in the Address
reference element. The contents of the
field are:

Bits
0-3
4-15

Contents
Base register
Displacement from start of
area controlled by base locator

Licensed Material - Property of IBM

LISTING A-TEXT

LISTING A-TEXT FOR PROCEDURE-NAMES
r--T-T---------------------------------,
10 1112 through l+c I
~--+-+---------------------------------~
17ClciEBCDIC procedure-name; bit 0 of 1
I lithe preceding field is set to lu I L __ ~_~ _________________________________ J

LISTING A-TEXT FOR VERBS
r--T-T-----------T------------------,
10 1112 through nln+l I
~--+-+-----------+------------------~
17ClniEBCDIC verblAlphabetic verb I
I I I Isequence nurr·ber I L __ ~_~ ___________ ~ __________________ J

END OF LISTING A-TEXT
r--,
10 I
~--~
1011
L __ J

Text Formats 381

Licensed Material - Property of IBM

E-TEXT

MESSAGE DEFINITIONS
r--T--T--T--------------,
I 01 11 213-4 I
~--+--+--+--------------i
100106100lIdentifying 1
1 1 I Imessage number I L __ ~ __ ~ __ ~ ______________ J

r-----------T--------------------,
15-6 17 I
~-----------+--------------------~
ISequential I I
Isource cardl '" 1
I number 1 ~ I L ___________ ~ ____________________ J

MESSAGE PA~AMETERS
r--T-T------------------,
I 01112 I
~--+-+------------------i
100lnlIC-text identifier I
I 1 Ifor parameter0 1 L __ ~_~ __________________ J

r--------------------------------,
13 through n + 1 . I
~--------------------------------~
IEither the actual value to be 1
linserted, or a pointer to the I
IPARTBL field where the value is. I L ________________________________ J

DELIMITi~R

r------,
I 0 I
~------~
I 01 (] L ______ J

382 section 5. Data Areas

o Bits
0-3

4-7

Code
(hex)
---os

22
23
34
42
43
44
50
52
53
54
75
79
87
F9
AA
FE

Contents
Severity code, as follows:

0000 = W-level (Warninq)
0001 C-level (Conditional)
0010
through = E-level (Error)
0111
1000 = D-level (Disaster)

Phase number

Meaning
Alphanumeric literal
Alphanumeric literal
EBCDIC name
Alphanumeric literal
Critical program break
Level number
Verb
Relational
Parenthesis
Arithmetic operator
COBOL word
Figurative constant
Standard data-name
Procedure-name definition
Global Table reference, Type 1
Global Table reference, Type 2
Dictionary pointer

(not an IC-text element)

This element is written on SYS004 only
if the SYMDMP, STATE, or FLOW option is
in effect and the program is segmented.
It identifies the end "of ·DA~A A-text,
DEF-text. and E-text to Phase 60 and
the beginning of text that is to be
pass~d to phase 65.

XREF-TEX'I

DEF-TEXT LLEMENT FOR DATA-NA~E DEFINITION
Of{ FILE-NAME DE.fINITION

r--T------T----------------T-T---------,
I 011-2 13-5 1617 to c+6 I
~--+------+----------------+-+---------~
]48lCard IPointer to lclExternal-1
I I number I dictionary entryl Iname in I
1 I I for data-name I I EBCDIC I l __ ~ ______ ~ ________________ ~_~ _________ J

DEF-TEXT ELEMENT FOR VE~B DEFI~ITION
r--T------T--T--------T--T-T--T--------,
I 011-2 13 14 15 1617 18 to c+61
~--+------+--+--------+--+-+--+--------1
148lNumberlEOIAlpha- 100lclFBIverb I
] lof I Ibetic I I I Itext I
I loccur-I I verb I I I I I
] I rences I I sequence I 1 1 1 I
I I I 1 number I I I I 1 l __ ~ ______ ~ __ ~ ________ ~ __ ~_~ __ ~ ________ J

DEF-TEXT ELEMENT FOR PROCEDURE-NAME
DEFINITION

r--T------T-----------T-T-------------,
I 011-2 13-4 1516 to c+5 1
~--+------+-----------+-+-------------1
]4CIPN ICard numberlclExternal-namel
I I number I I I in EBCDIC I l __ ~ ______ ~ ___________ ~_~ _____________ J

Licensed Material - Property of IBM

REF-TEXT
r---------------------T------------,
10-2 13-4 I
~--------------------7+------------1
IPointer to dictionarylCard nUMber I
lentry for data-name J CD I
lor PN number J I L _____________________ ~ ____________ J

REF-T3XT FOR VERBS
r--T----T------------,
I 011-2 13-4 I
r--+----+------------~
IEOlverblCard number I
I I code I r;:\, I
I I Q)I 0; I l __ ~ ____ ~ ____________ J

DELIMITER

CD

CD

r----'
I 0 I
!-----1
I 77 I
I I
101
L ____ J

Bit
o

Meaning
o - Reference is for data-name
1 = Reference i~ for

procedure-name

This element identifies end of REF-TEXT.

The alphabetic verb sequence number
followed by X'OO'.

The high-order bit will always be off.

Text Formats 383

Licensed Material - Property of IBM

DEBUG-TEXT

CARDLOC ELEMENT
r--T----------T----------------------,
1 011-3 14-6 I
t--+----------+----------------------~
11CICOBOL cardlContents of LOCCTR in I
I I number CD I COMMON when this I
) I Icard was encountered I L __ i __________ i ______________________ J

ENDSEG ELEMENT
r--T-----T-----------------------------,
I 011-3 14-6 I
~--+-----+-----------------------------1
j20lZerosiContents of LOCCTR in COMMON 1
) I lafter processing last verb inl
I I la segment or last verb in I
1 lithe program if not segmented 1 L __ i _____ i _____________________________ J

384 Section 5. Data Areas

SEGMENT ELEMENT
r--T--------,
I 014 I
~--+--------~
1 301 Priority I L __ i ________ J

DISCONTINUITY ELEMENT
r--1
I 01
~--1
1401 L __ J

The high order bit in the second byte
of the card number field is set to 1 if
the card precedes a COBOL verb.

This chapter contains diagrams of the
formats of the entries in the dictionary.
The dictionary is built in storage by
phases 11, 22, and 21, respectively. If it
exceeds its allotted storage space, the
compiler uses SYSOOl as a spill file. The
dictionary is used by phase 30 to replace
names with their dictionary attributes in
Procedure IC-text and is then released. It
is also used by phase 25 to build the
DATATAB and OBODOTAB tables for the Debug
File when SYMDMP has been specified.
Dictionary handling is performed by the
ACCESS routines described in "Appendix A.
Table and Dictionary Handling."

The following notes apply to the format
diagrams in this chapter:

PROCEDURE-NAME (PARAGRAPH) ENTRY

HASH Table Pointer

--------~----------
I 3 I
I I
IPointer to dic- I
Itionary entry fori
Ilast name with I
Isame HASH table I
!value (2) I

PROCEDURE-NAME (SECTION) ENTRY

HASH Table Pointer
Delimiter
Pointer

r-----------------'I·r--------------,
I 3 II 3

:pointer to dic- Ir:p-0-1-·n-t--e-r--t-o----;
Itionar! entry fori I dictionary
Ilast name with I I entry for
Isame HA~table Iinext s~ion­
tvalue 0 ~ Iiname 0
I I L' ______ -==--____ ..l

Basic Fields -------i i

I 1 I Variable
I I
ICIName
I I
I I
I I
I I
I I

Basic Fields ----------­, j

I 1 I Variable
I I
IclName
I I
I I
I I
I I
I I

Licensed Material - Property of IBM

DICTIONARY ENTRY FORMATS

• The top row of figures shows the number
of bytes in the field.

• Shaded areas indicate fields that are
present only if the condition they
satisfy is present.

• c = Number of bytes in the following
field.

• n = Total number of bytes to follow in
the entry.

• Individual notes, applying to
particular fields, are numbered
consecutively with the numbers
encircled.

Attributes

------------------~------------------I

I 1
I I
ICountl
land I
Imajorl
IC~ I
18 1 . ,

I

I 1
I
ICount
land
Imajor

lCW

i i

2 I 2 1 I 1
I I I I I
ICharacter-IPN IUnusedlPriorityl
lis~s I number I Inumber I
I 0 lof this I I I
I I paragraph I I I
I I I I I
, I , I ,

llttributes

t j

2 I 2 1 I
I I I I
ICharacteristicslPN I Unused I
I Inumber I I
I lof this I I
I Isectionl I
I 0 I I I , ",

I I

1 I 2 I
I I I
IPrioritYIPN numberl
I number lof next I
I Isection I
I , J

Dictionary Entry Formats 385

Licensed Material - Property of IBB

FD ENTRY

HASH Table Pointer

386

~

3 . i
I

IPointer to ftic- I
Itionary entry fori
Ilast name with I
Isame H~ table i
I val ue \..!.J !

i

Delimiter
Pointer

I 3
I
IPointer to
Inext entry
lafter last LD
lentry for
Ithis file CD
i

Basic Fields

i i
I 1 I Variable
I I
IclName
I I
I I
I I
I I
I ,

i~~~~~~~~
I 1
I
ICount
land
Imajor
IC~
1l.,V
i .

, ,
I 1 2 1 I 1
I I
IPosi- IMaximumlCount IFlag
Ition Irecord land I/Olbyte
Inumberllength lop~nsl
I I I ~ I Q)
, , , I

,
2 I 3

I
Ir:aximum I
luser label I ~
I length I
I ,

i

1 1 2 1 I
I I I I I I
I Secondary I Secondary I Secondary IBlocklDevicel
IDTF IDTF IDTF ,size ,code I
,num~r 'num~ ,num~ I ~r;::::.. ,
I ~ , ~ , ~ I ~ ~ , , , , " '

FD ENTRY FOR VSAM FILES

HASH Table Pointer

--------~--~------i I I 3
I I
I Pointer t.o dictionary I
lentry for last name
Iwith se!) HASH table
I value 1
I

SD ENTFY

HASH Table pointer

f I

: 3 I
IPointer to dic- I
Itionary entry for
Ilast name with I
!same H~ table I
!ValUe ~ I

I
I
I
I ,

i

Delimiter
Pointer

i

Basic Fields

i i

I 3 11 I variable I , , I
IPointer to Iclliame

i

Inext entry I
lafter last I
ILD entry ~I
Ithis file 1 I
I I

Delimiter
Pointer

I 3 ,
IPointer to
Inext entry
lafter last I
ILD entry f~1
Ithis file \.2)1
, I

I
I
I
I
i

Basic Fields

I 1 I Variable
I I
IclName
I I
I I
I I
I I
I •

Licensed Material - property of IBM

Attributes

i i i

I , 1 , I 1 , ,
I I I I I
ICountlFlaglFirst I FIB numberlAccess method I
land IbytelBL I land I/O speci-I
Imajor l@ Inumberl Ifications
I(!)e 14 I I I
I 2 I I I I
I I I I I

I , i •

I 1 I 2 I 1 I
I , I I
ICount of IDispl.
lent~ies I first
lin IND1TBLIentry in
Ifor file IIND2TBL

of I Number of I
IBLs I
Ineeded I
Ifor this I

I I I file I
I I , ,

Attributes

@

i i •
1 I 1 2 2 11

I
I
I
I

I 1 , I I I I I I
ICount
land
Imajor
IC~
I~
I

IFlaglFirst I Maximum I Minimuml Second I
IbytelBL Irecord Irecord 'flag I
I ~ I number I length Ilength I byte I
'~I I I I I
I I I ! !®!

Dictionary Entry Formats 381

Licensed Material - Property of IBM

RD ENTRY

HASH Table Pointer

I

I
I.. 4
I ~ointe-r to die- .1
!'t:tonary entry' fo:C1
Ijlst name with· I
same HA~table I
value ,Q}' ,'I

LD ENTRY

HASH Table pointer ------------I 3 I
t, ' i
I'P~inter ·to die- I
l,ti9nary entry fori
, last name wit.h' .,
,sam'e' Hll~ table i rval ue ", \:!.J .,",:
"t ' I

CONDITION-NAME ENTRY

HASH Table Pointer

388

I

Delimiter
Pointer

I 3
I
IPointer to
Inext entry
lafter last
ILD entry *
Ithis fi1e~ ,

Delimiter
Pointer

Basic
Fields

I i
111Variable
I I
lelName
I I
I I
I I
I I , ,

Basic
Fields ---"-' 3 I 11ivariablel

~------II I I
IIf group item, I IclName
Ipointer to next I I I
I entry after I I I
Ilast LD entry I I I
I for th~ group I I I
I \..!) I I I
I I 'L-"'--___ ~

Basic
Fields

iii

11 I Variable I
I
Ie
I
I
I
I
I

IName
I
I
I
I
I

Attributes ---------I r-----1

I I 7 I
I 1--1
I Count. I ° I
land I I
Imajor I I

:c~ : :
I L--J

i

i i

I I
I I
ICount I
land I
Imajor I
Icode I :0@:
I ,

I 1
I
ICount
land
Imajor
IC~
I~ ,

Attributes

I i
3 I' I Variable

I I I I
IMinoriAddressingiFlagiLevel num­
Icode Iparameterslbytelber and I
I and I for item I a I variable I
Iflagsl I ~ linfo~~nl
I b I~I ®®I
@) ~ !®! !

i i

111
I I

Attributes

3 1

IOlPointer to dic­
I Itionary entry

I switch
I

tol @
I

I Ifor data item
I Ibe tested ~
I I condi tion \2) , ,

Ii'
I11Variablei
I I
IclP1-text
I lele~t
I I 18 , ,

I ,

INDEX-NAME ENTRY

HASH Table Pointer ----------- i ,

Basic
Fields

i I 3 I
, J

I 1 I Variable
1 I

1 1
I

,Pointer to dic- I
,tionary entry fori
,last name with 1
Isame H~ table 1
Ivalue ~ 1

IciName
I I
1 I
I I
1 I

f I . ,

G) Bits
0-1

2-111
15-23

Bits
0-3

11-7

Contents
00 - Neither HASH table

nor delimiter pointer
01 Delimiter pointer
10 HASH table pointer not

followed by delimiter
pointer

11 = HASH table pointer followed
by delimiter pointer

Dictionary section number
Displacement in section

Contents
Number of bytes in attributes
field. If 0, see "Elementary
Item with Report Picture" portion
of note 16. Count=9 if VSAM file
1101 Procedure-name entry
1000 FD entry
1001 SD entry
1110 RD entry
0000 LD entry
0001 LD entry
0011 FD entry
0100 LD entry

Storage

under FD
under SD
(VSAM)
in Working-

0101 LD entry in Linkage

0110
1100
1111

Section
LD entry in Report Section
Condition-name entry
Index-name entry

®

1 Count
land
Imajor
IC~

'0 I

Bit o
1
2

3
II
5
6

7
8
9

10
11

12
13
111
15

@ Bits
-0-

1-2

3
11-7

Licensed Material - Property of IBM

Attributes

-I
1 I 2 2

I 1
IFlagllndex-name ILength of
Ibytelnumber takenlsubject of 1
I Q I from INDEX1 IOCCURS clause I
I ~ lin COMMON 1 I
1 1 I 1

Meaning, if on
Procedure-name
Section-name

, I

Either name follows TERU in
PERFORM ••• THRU or it follows
PERFORM in a PERFORM without
THRU.

Referred to by ALTER
Procedure-name of simple GO TO
Procedure-name of EXIT
Procedure-name following

to PROCEED TO in ALTER
statement

Unused
Referred to by DEBUG
Defined in DEBUG
Dummy section-name
Defined in Declaratives Section

or in DEBUG statement
referring to such section.
Bits 12-15 describe type of
of section.

Declarative error routine
Declarative label routine
Unused
Declarative report section

contents
1 - O-routine indication

00 Format V
01 Format F
10 Format U
11 1"0rmat S
Multiple Reel
Number of BLs needed
for this file

Dictionary Entry Formats 389

Licensed Material - Property of IBM

390

Bits
0-3

4

5

6
7

Bits
0-2

~aning
Access Method
0001 DTFCD
0010 DTFPR
0011 DTFMT
0100 DTFSD
0101 DTFDlI
0110 DTFIS
0111 DTFDU

1 OMR (optical mark read) if
DTFCD

1 LOAD file if DTFIS
1 APPLY WRITE ONLY if DTFMT

or DTFSD
1 IBM extension, if DTFDA,

Random Access
1 = ACTUAL KEY, if DTFDA,

Sequential Access
Otherwise, Unused
1 Direct file with relative

addressing
1 ASCII, if DTFMT
1 = Double buffered, if DTFIS
1 3525 associated file (print)
1 3525

Meaning
Access mode
100 ACCESS IS SEQUENTIAL
010 = ACCESS IS RANDOM
001 = ACCESS IS DYNAMIC

3 Unused
4-5 Reserved

6 1 VSAM INDEXED
7 1 = VSAM ADDRESSED SEQU~NTIAL

Bits
0-3

4
5

6-7

Bits
-0-

1
2-4

5

6
7

Contents
Number of bytes that follow
1 SAME RECORD AREA
1 = RANDOM ACCESS
o = SEQUENTIAL ACCESS
00 standard label
01 user standard label
10 nonstandard label
11 labels omitted

Contents
1 - USING or GIVING specified
Unused
Carriage control type
000 none
001 WRITE AFTER POSITIO~ING
010 WRITE AFTER
100 WRITE BEFORE
110 = mixed
1 file single-buffered,

unblocked or ISAM
1 CLOSE WITH LOCK
1 SELECT OPTIONAL

Dictionary
specified.
addressing
KEY.

pointer to ACTUAL KEY, if
Phase 30 appends idk

parameters for the ACTUAL

If access method is DTFDA, DTFCD,
DTFDR, or DTFIS (ACCESS RANDO~), fields
contain zero.
Fields also contain zeros, unless OPEN
option for a particular access method
was specified. Otherwise, fields are
as follows:

Access method
DTFMT

Field
-1st

OPEN option
INPUT
OUTPUT

DTFSD
INPUT REVERSED
INPUT
OUTPUT
I/O

DTFIS (ACCESS
SEQUENTIAL)

2nd
3rd
1st
2nd
3rd
1st
2nd
3rd

RETRIEVE
LOAD

I'9a\ Code
'V 80

40

@Bits
0

1-2

3
4-7

Bits
0-1

2-3
4-7

contains zeros

Device
2560
5424

Contents
0

00 Format
01 Format

V or S
F

10 Format U
1 = ASCII collating

Number of BLs needed
file

Contents

sequence
for this

01 LABEL RECORD STANDARD
10 = LABEL RECORD OMITTED
o
Number of work units

During phase 30 operations, the flag
byte field is removed. The first four
bits overlay the first four bits of the
level number, and the last four bits
overlay the count field preceding the
major field. In the level number
field, if bit 4 is on, the level is 01;
if bit 6 is on, the level is 77.
Otherwise, these bits are off.

@Eits
0-3

4-5

6
7

Code
0000

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
Code
""""00

01
10
11

1
1 =

Operand's Characteristics
Error detected for this

operand
Fixed-length group
Alphabetic
Alphanumeric
Variable.length group
Numeric-edited item
Sterling report item
Usage is index
External decimal
External floating-point
Internal floating-point
Binary
Internal decimal
Sterling nonreport
Alphanumeric edited
Unused
Subscripts Reguired
None
1
2
3

OCCURS clause in this item
REDEFINES clause for this
item

Location of item in data area of object
module:

Licensed Material - Property of IBM

Meaning
Type of BL containing

address of area:
0000 = BL
0001 = BLL
0100 = SBL

4-15 d Displacement from
base address

16-23 k BL number

Bits
-0-

1
2
3

4
6-7

Bits
0-5

6
7-End

Meaning, if on
INDEXED BY
SYNCHRONIZED
Subject of key
(If bit 3 = 1)
o = DESCENDING
1 = ASCENDING
Report WITH CODE
00 TRAILING
01 LEADING
10 SEPARATE TRAILING
11 = SEPARATE LEADING

Contents
Level number
1 = O-routine required
Variable, according to

the following chart:

base

Dictionary Entry Formats 391

Licensed Material - Property of IBM

@ (Continued)
i

I Characteristic
I
(Fixed-Length Group Item
I
IElementary Alphabetic
1 or
IAlphanumeric Item
I
1 ,
1
IExternal Decimal
I or
lInternal Decimal
1 or
IBinary
I or
IUsage is index
1
I ,
I ,
IInternal Floating-Point
1
I
I
1
1

I
External Floating-Point

I

I Bits
I
I 1-17
I
1 1
1 2-17
118-32*
1
1
133-41*
1

1
2

3-9

10-17
18-32*

I . 1-16
I 17
I
116-32*
I
I
133~41*

I
1

2
3

4- 9
10-17
18-32*

33-41*

Contents

Length of group

1 if JUSTIFIED RIGHT.
Length of item.
Dictionary section number of entry for group in
which this item is included, if the group contains
an OCCURS clause.
Displacement in section.

1, if PICTURE contains·S.
Flag bit
If bit 2 is on, bits 3 through 9
of Ps to left of decimal point.
they contain the total number of
right of decimal point.

contain the number
If bit 2 is off,
Ps plus 9s to

Number of decimal digits.
Dictionary section number of entry
which this item is included if the
an OCCURS clause.
Displacement in section.

Unused
o = Short form
1 = Long form

for group in
group contains

Dictionary section number of entry for group in
which this item is included if the group contains
an OCCURS clause.
Displacement in section.

o = Mantissa blank when positive
1 = Sign plus when positive
Same for exponent sign
o = Implied decimal point
1 = Real decimal point
Scale of mantissa
Total length
Dictionary section number of entry for group in
which this item is included, if the group contains
an OCCURS clause.
Displacement in section.

*These bits are present only if the item is
are not present after phase 30, but at the
3 bytes are appended indicating either the
subordinate to or the VLC of the item.

in a group with an OCCURS clause. They ,
end of the attributes from the dictionary"
length of the item Which this is I ,

I

392

@ (Continued)
I I
I Characteristic , IBits

ISterling Non-report
Elementary Item

1

2

3

4- 9

10-14
15-17

18-25
or

18-32*

,Variable-Length Group Iteml 1- 2
I 1 3- 5
I 1 6-17
I 118-32*
I 1
I 1
I 133-41*
I ,
IAlphanumeric Edited Item 1 1
I 1 2- 9
1 110-17**
I 118-32*
I 1
, 1
I 133-41*
1 142-57
1 158-END
, I
1 1
I 1
, I

Licensed MatArial - Property of IBM

Contents

o BSI shillings
1 IBM shillings
o = 1-character pence
1 2-character pence
o BSI pence
1 IBM pence
Number of decimal positions to right of V in pence
field
Number of pound field digits
000 No sign specified
001 Sign on high-order pound character
010 Sign on low-order pound character
011 = Sign on high-order shilling character
100 Sign on low-order pence character
10J Sign on low-order decimal position in pence

field
110 Unused
111 = Unused
Number of character positions

or
Dictionary section number of entry for group in
which this item is included, if the group contains
an OCCURS clause.
Displacement in section
Number of character positions

Unused
Number of ELLs for items
VLC number
Dictionarv section number of entry for group in
which this item is includ@d, if the group contains
an OCCURS clause
Displacement in section

1 = JUSTIFIED RIGHT
Number of bytes fo1lowinq
All zeros
Dictionary section number of entry for group in
which this item is included, if the group contains
an OCCURS clause
Displacement in section
Size of item
Byte 1 contains PICTURE character. Bytes
contain count of consecutive occurrences.
three bytes are repeated until the entire
is recorded.

2 and 3
These

PICTURE

1 *These bits are present only if the item is
1 are not present after phase 30, but at the
I 3 bytes are appended indicating either the
I subordinate to or the VLC of the item.
I**These bits are not present after phase 30.

in a group with an OCCURS clause. They I
end of the attributes from the dictionary, 1
length of the item which this is I

1
I

I I

Dictionary Entry Formats 393

Licensed Material - Property of IBM

~ (Continued)
I
I Characteristic Bits Contents
I
INumeric Edited Item 1 1 = 2 or *·in PICTURE.
I 2- 9 Number of bytes following.
I 10-17** All zeros
I 18-32* Dictionary section number of entry for group in
I which this item is included, if the group contains
I an OCCURS clause
I 33-41* Displacement in section
I 42 1 = BLANK WHEN ZERO
I 43 1 = * represents all numeric characters
I 44 Unused
I 45-49 Number of digit places in item
I 50-57 Scaling factor
I 158-65 Size of item
I 166-END Byte 1 contains PICTURE character (except V or P) •
I I Byte 2 contains count of consecutive occurrences.
I I These two bytes are repeated until the entire
I I PICTURE is recorded.
I I Exception: for CR and DB, first character appears
I I in byte 1, the second in byte 2.
I' I

,Elementary Item with 1 Unused I
Isterling Report PICUTRE 2- 9 Same as for Report PICTURE above ,
I 10-17 All zeros I
I 18-32* Dictionary section number of entry for group in I
I which this item is included, if the group contains I
I an OCCURS clause I
I 33-41* Displacement in section I
, 42 1 BLANK WHEN ZERO I
I 43 0 = shilling delimiter is D I
, 1 = shilling delimiter is S ,
I 44 Same as bit 19 for pounds I
I 45 1 = No pounds field I
I 46-57 Unused I
I 58-65 Total length of item ,
, 66-73 Number of pound integer places I
I 74-81 Number of pence decimal places ,
I I
I *These bits are present only if the item is in a group with an OCCURS clause. They ,
, are not present after phase 30, but at the end of the attributes from the dictionary"
I 3 bytes are appended indicating either the length of the item which this is ,
, subordinate to or the VLC of the item. ,
1**These bits are not present after phase 30. I

394

If the switch = 1, the next (c) field
is followed by a 2-byte field
containinq the displacement in the
VALTRU table of the object of the VALUE
clau~e. If the switch = 0, the rest of
the entry is as shown.

The first byte indicates the type of
element according to the table below.
It is followed by the rest of the
P1-text element.

@

BIte
32
33
34
39

Bit
--0

1-7

1 TIpe of Element
NUMERIC LITERAL
FLOATING-POINT LITRRAL
ALPHANUMERIC LITERAL
ALL Constant

Meaning, if on

I

Sub;ect is variable lenqth; last
fieid contains VLC number.
Unused

When SYMDMP or STATE are specified on
the CBL card, phases 25 and 65 build
additional tables for debugging purposes.
When SYMDMP is specified, all seven tables
which are diagrammed in this appendix are
built and written on file SYS005. This
file may be either on disk or on tape.
When STATE is specified, only the PROCTAB
and SEGINDX tables are built. These are
written by phase 65 in the object module.

The tables are accessed during execution
of the program or at abnormal termination
of the p~ogram by the subroutines of the
Symbolic Dump program. Por details see the
publication IBM DOS/yS COBOL Su~routine
Library. Program Logic, Order
No. LY28-6424.

,
The seven tables list the

characteristics of the data areas defined
by the user as well as information about
the relative location in the object module
of the code associated with the card
numbers generated for PNs and COBOL verbs.
This information is used by the object-time
COBOL library subroutines to produce the
dumps at user-specified card numbers or
card and verb numbers. If abnormal
termination occurs, this information is
also used to associate the address of the
instruction at which abnormal termination
occurred with its corresponding card and
verb number in the COBOL source program.

Phase 25 builds the OBODOTAB table if
there are any OCCURS clauses with the
DEPENDING ON o~tion. It also builds the
DATATAB table. Phase 65 builds the
PROGSUM, PROCTAB, CARDINDX, SEGINDX, and
PROCINDX tables.

The tables are made up of fixed-length
512-byte blocks; a 1-byte field containing

Licensed Material - Property of IBM

DEBUG PILE TABLES

the hexadecimal value 'PF' marks the end of
usable information within a block. Table
entries are never split across a block.

The debug file is single buffered and
the address of the buffer is placed by
phase 01 in location FIL5BUF in COMMON.
Each phase that uses the debug file is
responsible for moving information into the
buffer and marking the end of the buffer.
Phase 00 is called only to write the buffer
on the debug file.

Figure 63 shows the positions of the
tables in the debug file (SYS005). The
PROGSUM table contains information about
and pointers to the other tables in the
file:

I PROGSUM
I

~
I
I
I
I OBODOTAB
I r
I t
I I
I DATATAB ,
I I
I I
I PROCTAB ,
I I
I ,
I CARDINDX J
I SEGINDX ,
I I

PROCINDX , ,
Figure 63. SYS005 (Debug File)

Debug File Tables 395

Licensed Material - Property of IBM

PROGSUM TABLE

The PP.OGSUH table is the first table on the debug file. It consists of a single
fixed-length 108-byte entry and contains information about the program and the dehug file
itself.

Dec
-0-

8
12
16
20
24
28
32
36
40
44
48
50
52
56
60
64
68
70
72
74
76
78

80

82

84

88
89

P.ex
-0-

8
C

10
14
18
lC
20
24
28
2C
30
32
34
38
3C
40
44
46
48
4A
4C
4E

50

52

54

58
59

Field Name
PGPROGID
PGDECLEN
PGBL1
PGBLL1
PGSBL1
PGDTF1
PGVLC1
PGINDEX1
PGENDDTF
PGENDNDX
PGDTDVAD
PGDTNUM
PGDTDSP
PGPTDVAD
PGCXDVAD
PGSXDVAD
PGPXDVAD
PGCXNUM
PGSXNUM
PGPXNUM
PGSXDSP
PGPXDSP
PGFPDSP

PGODONUM

PGHASH

PGFIB

PGLNGTH
PGSLACK

Bytes
B
4
4
4
4
4
4
4
4
4
4
2
2
4
4
4
4
2
2
2
2
2
2

2

2

4

1
19

Field Description
PROGRAM-ID
Length of Declaratives section
BL1 address relative to the start of the TGT
BLL1 address relative to the start of the TGT
SBL1 address relative to the start of the TGT
DTF1 address relative to the start of the TGT
VLC1 address relative to the start of the TGT
INDEX1 address relative to the start of the TGT
End of the DTFs relative to the start of the TGT
End of the indexes relative to the start of the TGT
Device addres~ of first block in DATATAB
Number of blocks in DATATAB
Displacement in the block of the first DATATAB entry
Device address of PROCTAB
Device address of CARDINDX
Device address of SEGINDX
Device address of PROCINDX
Number of entries in CARDINDX
Number of entries in SEGINDX
~umber of entries in PFOCINDX
Displacement in the block of the first SEGINDX entry
Displacement in the block of the first PROCINDX entry
Displacement of floating-point virtual from the start
of the PGT
Number of bytes in OBODOTAB including the unused bytes
at the end of the blocks
Hashed compilation indicator which is matched by the
COBOL library subroutine with the one in the DEBUG
TABLE in the TGT. The date is hashed from the
Communication Region within the supervisor.
Address of first File Information Block (FIB) relative
to start of TGT.
Length of PROGSUM table
Reserved

Note: The only fields that may be zero in this table are PGDFCLEN, PGODONUM, and PGFPDSP
¥hen there is no Declarative Section, or no OCCURS ••• DEPENDING ON clauses, or no internal
floating-point items in the program. For TGT addresses which do not exist, the address
of the first byte following the previous cell is used because these cells are used in
calculating the number of TGT cells of a given kind to dump.

396

Licensed ~aterial - Property of IBM

The OBODOTAB table is an abstract of the DATATAB entries for all objects of
OCCURS ••• DEPENDING ON clauses in the program. The OBODOTAB table, if present, follows
the PROGSUM table on the next fullword boundary and contains one variable-length entry
for each unique object of an OCCURS ••• DFPFNDING ON clause. Each entry begins on a
fullword boundary within the block.

The entries are essentially the same as the DATATAB entries for the same name. See
the entries for elementary numeric items in the format of the DATATAB table. OBODOTAB
entries differ only in that the card-number field is zero and the renaming information is
omitted. Table-locators within the DATATAB entries are used to access the OBODOTAB
entries. See the subscripting information portion in the format of the DATATAB table.

Debug File Tables 397

Licensed Material - Property of IBM

DATAXAB TABLE

The Dll.~!'ATAB tahle is the third tahle in the dehug file. It immediately follows the
last entry of the OBODorAB tahle, if that tahle is present. Otherwise, it follows the
PROGSUM table. The DATATAB table lists the characteristics of each data item in the DATA
Division. The table consists of two fields, the Count-Name-Type field has the same
format for all entries. It- varies in length between 7 and 35 bytes. The Variable
Attributes field differs for each type of entry and is described on the following pages.

Distl
Dec Hex
o 0
1 1

l+c l+c
2+c 2+c

5+c 5+c

398

Field Name Bytes
1
c
1

CARDNUM 3

M!l.JMIN 1

COUNT-NAME-TYPE FIELD

Field Description
Count field: Number of bytes (c) in name field
Name field: Number of varies between 1 and 30
Count field: Number of bytes in remainder of entry
Card number where name is defined {contains zeros for
RENAMES items}
Type of entry

Bits
0-3

4-7

Bit
settings
1000XXXX
10l1XXXX
1001XXXX
1110XXXX
lll1XXXX
OOOOXXXX
0001XXXX
01l0XXXX
0100XXXX
0101XXXX

XXXXOOOl
XXXX0010
XXXXOOll
XXXX0100
XXXX010l
XXXX0110
XUXOll1
XXXX1000
XXXX1001
XXXX1010
XXXX1011
XXXX 1100
XXXX1101
XXXXlll0
XXXXllll

Meaning
FD entry (non-VSAM)
FD entry (VSAM)
SD entry
RD entry
Index-name
Level description under FD
Level description under SD
Level description under RD
Level description in Working-Storage
Level description in Linkage

Fixed length group
Alphabetic
Alphanumeric
Variable length group
Numeric edited
Sterling report
Usage index
External decimal
External floating point
Internal floating point
Binary
Internal decimal
Sterling non-report
Alphanumeric edited
RRNJI.lmS {level 55}

Licensed Material - Property of IBM

VARIABLE ATTRIBUTES FIELD

Field Description

SD item: There are no variable attributes for an SD entry.

RFNAMES item (level 66):
6+c 6+c RENAMES

INDEX name:
6+c 6+c INDXCELL

FD itero (other than VSAM):

1

2

6+c 6+c DTFNUM 1
7+c 7+c ACCESSFLG 1

FD item (VSAM):
6+c 6+c FIB
7+c 7+c ORGACC

RD item:
6+c --6+c

9+c 9+c

LINECTR

PAGECTR

1
1

3

3

Meaning Bit
7

Bit
Settinq
XXXXXXX1 Next DATATAE entry RENAMES

xxxxxxxo
the same item as this one does
This is the last (or only) item
renaming an item.

Index cell number in TGT

DTF number
Access method

Bit
'0-3

Meaning
DTFCD
DTFPR
DTFMT
DTFSD
DTFDA
DTFIS

7

Bit
Settinqs
0001XXXX
0010XXXX
0011XXXX
0100XXXX
0101XXXX
0110XXXX
XXXXXXX1
XXXXXXXO

Seguential access method
Random access method

FIE number

Bit Meaning
o Access is sequential
1 Access is random
2 Access is dynamic
3 Unused
4 Reserved
5 Reserved
6 Organization is indexed
7 organization is sequential

Addressing parameters of line counter

Bit
0-3

Bit
settings Meaning
OOOOXXXX BL entry
0001XXXX BLL entry
0100XXXX SBL entry

4-15 Displacement from BL
16-23 BL Number
Addressing parameters of page counter (same form as
addressing parameters above)

Debug File Tables 399

Licensed Material - Property of IBM

Level Description item:
Variable attributes for level description items are divided into two portions: (1)
the type-dependent portion, (2) subscripting information portion. The sUbscripting
information portion is the same for all level description item entries. It follows
and is described after the typ~ dependent portion d~scriptions.

(1) Type dependent portion:

FIXED LENGTH GROUP:
6+c 6+c IDKFLD
9+c 9+c LVLRDEFN

VARIABLE LENGTH GROUP:
6+c 6+c
9+c 9+c MAXSIZE

12+c C+c VLCNUM

3
3

3
3

2

Addressing parameters (same form as above)

Bit
0-5

6
7-23

Bit
settings
XXXXXX1X

Meaning
Normalized level number
REDEFINES
Object time storage size
(in bytes)

Addressing parameters (same form as above)

Bit
0-5

6
7-23

Bit
o

1-3
4-1")

Bit
Settings
XXXXXXlX

Bit
Settings
lXXXXXXX

Meaning
Normalized level number
REDEFINES
Maximum object time storage
size (in bytes)

Meaning
ODO Master
(Unused)

VLC number

ELEMENTARY, ALPHARETIC, ALPHANUMERIC, REPORT, EDITED, STERLING, EXTERNAL FLOATING PO!WT:
6+c 6+c 3 Addressing parameters (same form as above)
9+c 9+c JUSTRGT 3

INTERNAL FLOATIWG POINT:
6+c 6+c
9+c 9+c FLPTYPE

10+c A+c

400

3
1

2

Bit
0-5

6
7

8-23

Bit
Settings

XXXXXX1X
XXXXXXXl

!leaning
Normalized level number
REDEFINES
JUSTIFIED RIGHT
Ob;ect time storage size
(iii bytes)

Addressing parameters (same form as above)

Bit
0-5

6
7

Bit
Settings

XXXXXX1X
XXXXXXXO
XXXXXXXl

(unused)

Meaning
Normalized level number
REOEFINF.S
COI'lP-1
COMP-2

Licensed Material - Property of IBM

BINA~Y, INDEX, INTERNAL DECIMAL EXTERNAL DECIMAL:
6+c 6+c 3 Addressing parameters (same form as above)
9+c 9+c NUMINF01 1

Bit
0-5

6
7
0

1

2

3

4 8

9-13

14-15

Bit
Settings

XXXXXX1X
XXXXXXX1
1XXXXXXX
OXXX!!!!
XUXXXXX
XOX!XXXX
XX1XXXXX

XXOXXXXX

XXX1XXXX

XXXOXXXX

f1eaniruI.
Normalized level number
REDEFINES
S in PICTURE
Leading sign
Trailing sign
separate sign
overpunch
significant digits left of
decimal point
No significant digits left
of decimal point
Significant digits right of
decimal point
No significant digits right
of decimal point
If bit 2 equals 1, number of
digits to left of decimal point.
If bit 2 eguals 0, number of
digits to right of decimal point.
If bits 2 and 3 both equal 1,
number of digits to right of ,
decimal point. If only bit 2 or
bit 3 equals 1, number of Ps
in picture
(Unused)

Debug File Tables 401

Licensed Kateria1 - property of IBM

(2) Subscripting Information Portion:

402

This portion of the Variable Attributes section begins immediately after the
type-dependent portion.

It ranges in size from byte for an unsubscripted item to a maximum of 20 bytes for
an item belonging to 3 variable-length groups.

1 Guide to RENAMES and subscripting

1 VLC

Bit
Bit settings
-0- 1XXXXXXX

1 xnxxxxx
2 xxnxxxx
3 xxxnxxx

4 XXXX1XXX

5 XXXXX1XX

6 XXXXXX1X
7 XXXXXXX1

information

Fit
-0-

1

Bit
Settings
1XXXXXXX
X1XXXXXX

2 xxnxxxx

Meaning
This item is renamed. The
next DATATAB entry renames it.
This item contains an ODO clause.
Item requires at least 1 subscript.
OCCURS clause connected with the
most inclusive or only group; or
e1ementarv item contains an ODO.
Item requires at least two
sUbscripts.
OCCURS clause connected with the
less inclusive group of 2 or the
middle inclusive group of 3 or
elementary group contains an ODO.
Item requires 3 subscripts.
OCCURS clause connected with the
least inclusive group of three or
elementary item contains an ODO.

PIeanina
Most inclusive or only group of 3
Less inclusive group of 2 or middle
inclusive group of 3
Least inclusive group of 3

If any of these bits equals 1, bytes 2 and 3
of the group length information for the
associated group contain a VLC number rather
than the length of t.he group.

1st subscript
(if present)

(most inclusive
with OCCURS)

Number of occurrences (Kaximum number if ODD) speCified

J
in OCCURS clause governing this item.

Displacement of next occurrence governed by OCCURS
clause (See note)

2nd subscript
(if present)

3rd. subscript
(if present)

(least inclusive
with OCCURS)

Number of occurrences (as above)

Displacement of next occurrence governed by OCCURS

Number of occurrences (as above)

Displacement of next occurrence governed by OCCURS

]

]

1s-t subscript
with ODO
(if present)

2nd subscript
with ODO
(if present)

3rd subscript
with ODO
(if present)

2

Licensed Material - Property of IBM

OBODOTAB pointer for most inclusive group or elementary
item containin~ an ODO

Bit
0-8
9-15

Contents
Relative block number in OBODOTAB
Displacement within block (in fullwords)

OBODO?AB pointer for less inclusive group (as above)

OBODOTAB pointer for least inclusive group (as above)

Note: All subscript length information precedes any OBODOTAB pointers.

Debug File Tables 403

]
]

Licensed Material - property of IBM

PROCTAB TABLE

The PROCTAB table contains one 5-byte entry for each card and/or verb in the source
listing of the COBOL Procedure Division. The table is ordered on three levels:

1. Priority (in ascending order of independent segments, with the root segment last)

2. Card-number within priority

3. Verb-number within card

The last PROCTAB entry for a priority has a card and/or verb number of zero. In
addition, the relative address field contains the address of the first byte following all
instructions for the segment with that priority.

Displ
Dec Hex
-0- 0

3 3

CARDINDX TABLE

PTRELAD 2

Field Description
Card-number and verb-number on source listing

Bit Contents
0-19 card=iiUiiiber

20-23 Verb-number
Relative address of instructions for this entry within
program fraqment to which it belongs

The CARDINDX table is a directory to the SEGINDX table and contains one 5-byte entry
for each program fragment and one entry for each discontinuity in the COBOL instructions
within a segment. Entries, in the CARDINDX table are in ascending card-number order and
are accessed by indexing through the table sequentially.

The CARDINDX table starts at the beginning of a block.

Displ
Dec Hex
0" 0"

3
4

404

3
4

Field Name Bytes
CXCDVB 3

CXPRIOR
CXFRAG

1
1

Field Description
Card-number and verb-number of first card represented
by this entry

Bit
0-19
20-23

contents
Card-number
Verb-number

Priority number associated with this card
Relative fragment number within the priority to which
this card belongs

Licensed ~aterial - P~operty of IBM

SEGINDX T ABI.E

The SEGINDX table contains one 10-byte entry for each program fragment. The table is
ordered on two levels:

1. Ascending priority number

2. Ascending fragment number within a priority

Displ
Dec Hex Field Name
-0- 0 SYPRIOR

1 1 SXRELAD

4 4 SXPTLOC1

7 7 SXPTLOC2

PROCIND::~ TABLE

Bytes
1
3

3

3

Field Description
Priority number
Address of this fragment relative to the beginning of
the segment
Table locator for PROCTAB entry of first card number
and verb number in this fragment

Bit Contents
0-14 Relative block number in PPOCTAB

15-23 Displacement within block
Table locator for PROCTAB entry of last card and/or
verb in this fragment

The PROCINDX table is a summary index of the PROCTAB table and contains one 10-byte
entry for each block of PROCTAB entries. PROCINDX entries are ornered by relative block
number in the PROCTAB table and are accessed by searching sequentially after indexing to
a Rtarting point determined by the block number from the CARDINDX or SEGINDX table.

Displ
Dec Hex
o 0

3

6

3

6

Field Name Bytes
PXCDVB 3

PXREJ.AD 3

PXDEVADR 4

VSA! FILE INFORMATION BLOCK (FIB)

Field Description
Card number and verb number of first entry in block of
PROCTAB table.

Bit Contents
0-19 Card number

20-23 Verb number
Relative address of instructions for this entry within
segment to which it belongs.
Device address of PROCTAB table block related to this
entry.

The file information block, a portion of the completed object module, is used at
execution time by the ILBDVOCO and ILBDVIO COBOL library subroutines for processing
input/output verbs used with VSAM files. The ~IB is built by phase 21 and completed by
the ILBDVOCO subroutine.

Fixed Portion:

Displacement
Hex Decimal
-0- 0

7 7
8 8
9 9

Field
INAHED
INAMECB
IDEVICE
IORG

No. of
Bytes

7
1
1
1

Description
External name
External name'
Device class and number
ORGANIZATION

Debug Pili Tables 405

Licensed Material - Property of IBM

Code:
Equate Bit

Bits ~ Settincrs !l~nincr Source
0-7 IORVPS 1000 1000 VSAM ADDI<ESSED Code=S

SEQUENTIAL
IORGSQO 1000 0100 SEOUENTIAL Code=S
IORGASC 1000 0001 ASCII file Code=C

SEQUENTIAL
IORGSEQ 1000 0000 SEQUENTIA L ORGANIZATION IS

SEQUENTIAL
IORGVIX 0100 1000 VSAM INDEXED
IORGINO 0100 0100 INDEXED Code = I
IORGIND 0100 0000 INDEXED ORGANIZATION IS

INDEXED
IORGRLO 0010 0100 RELATIVE Code R
IORGDIR 0010 0010 DIRECT Code 1)

IORGDIW 0010 1000 DIRECT (WRITE/ Code = W
REWRITE)

IORGVSAM 0000 1000 VSAt'I Pile

A 10 IACCESS 1 ACCESS MODE

Code:
Equate Bit

Bits !~ settings Meaning
0-7 IACCSEQ 1000 0000 SEQUENTIAL

IACCRAN 0100 0000 RANDOM
IACCDYN 0010 0000 DYNAMIC

B 11 IRCDMODE 1 RECORDING MODE

Code:

Equate Bit
Bits !ill!g Settings !1eaning
0-7 IRCDFIX 1000 0000 PIXED

IRCDVAR 0100 0000 VARIABLE
IRCDUND 0010 0000 Undefined
IRCDSPN 0001 0000 SPANNED

C 12 ISW1 1 Miscellaneous switches

Code:

Equate Bit
Bits ~ Settings Meaning
0-7 ISOPTNL 1000 0000 OPTIONAL specified

ISBLKED 0100 0000 File is blocked
ISSAMREC 0010 0000 SAME RECORD AREA specified
IS SAME 0001 0000 SAME AREA specified
ISLBOI!UT 0000 1000 LABEL RECORDS ARE OMITTED
ISLBSTAY 0000 0100 LABEL RECORDS ARE STANDARD
ISLBUSER 0000 0010 LABEL RECORDS ARE data name

OD 13 ISW2 1 Miscellaneous switches

Cod.e:
0-7 ISADVAN 1000 0000 WRITE ADVANCING

ISPOSIT 0100 0000 WRITE POSITIONING
ISAPTER 0010 0000 WRITE APTER
ISBEPOR"E 0001 0000 WRITE BEFORE
ISNOSPAC 0000 1000 WRITE WITHOUT SPACING

406

Displacement
Hex Decimal
OE- 14
OF 15
10 16
11 17
12 18

14
15

18
19
1A

1C
1E
20
21
22
24
25
25
28
36
38

3C
40

44

48

20
22

24
25
26

28
30
32
33
34
36
37
38
40
54
56'

50
64

68

72

Field
ISW3
ISW4
IAPPLY1
IAPPLY2
IBLKLEN

IRECLEN
IRECDBL

IRECNBL
IRESERVE
ISTATDBL

ISTATDDN
ISTATLDN
IKEYISW
IKEYNO
IKRYFNTL
IPSWISW
IPSWNO
IPSWENTL

I?1ISCAD

ILABELAD
IKEYLST'

IPSWLSTA

No. of
Bytes

1
1
1
1
2

2
2

1
1
2

2
2
1
1
2
1
1
2

14
2
!J

4
4

4

4

Licensed Haterial - Property of IBM

Description
Unused
Unused
APPLY statements
APPLY statements
If 'BLOCK CONTAINS (integer-1 TO) integer-2
CHARACTERS', field contains integer-2.
If 'BLOCK CONTAINS (integer-1 TO) integer-2 RECORDS,
field = integer-2 x (IRECLEN + control) + control +
IASBFO,

WheLe control 0 (ReCording mode F or U)
4 (Recording mode v, S, or D)

IASBFO = 0 (Non-ASCII file)
= Buffer offset (ASCII file)

If BLOCK CONTAINS clause is omitted, field contents
are set in 'BLOCK CONTAINS 1 RECORD'.

Number of bytes in longest 01-entry
Displacement in TGT of record's first base locatoL
cell
Number of base locators for RECORD ARFA
Reserve integer areas
Dis~lacement in TGT of base locator for STATUS
data-name
Displacement from base locator of STATUS data-name
Lenqth of STATUS data-name
Miscellaneous switches
Number of entries in key list
Length of each entry in-key list
Miscellaneous switches
Numb,er of entries in password list
Length of each entry in password list
Reserved
Slack bytes
AddLess in variable length portion of FIB for
miscellaneous clauses
Address of labeling information block
Address in variable length portion for first Key list
entry
Address in variable length portion for first Key list
list entry.
Reserved

Debug File Tables 407

Licensed Material - Property of IBM

variable Length Portion:

Supplementary Information for ~iscellaneous Clauses (one for each clause) :

Displacement
Hex Decimal
-0- 0

2

6
E

2

6
14

Field
IKSW1

IRERUNI

IRE:RUNN

Indexed Record Key List:

o
2

408

o
2

IRKEYLDN
IRKEYDDN

No. of
Bytes

2

Code:

Bits
0-7
8-15

4

8

2
2

Description
Switch bytes

E~uate

~
IKRREOV

Bit
settings
1000 0000

Meaning
RERUN at end of volume
Unused

RERUNN integer (Field contains zeros if RERUN not
specified)
External-name of RERUN clause
Slacll. bytes

Length of RECORD KEY data-name
Displacement in record of RECORD KEY
Record Key information follows for each ALTERNATE
RECORD KEY specified

This chapter provides information about
compiler error messages and provides a few
diagnostic aids for use in case a compiler
error, rather than a user error, appears.
A compiler error may produce one of two
results: an abnormal termination while the
compiler is still in storage, or erroneous
output from a completed compilation.

Note: The compiling program-name, its
version numbers, its modification number,
and the Program-ID can be found at the end
of the INIT1 routine (see Appendix B).
INIT1 is at the end of the object module
listing.

ERROR MESSAGE LISTING

A complete listing o£ all the error
messages produced by the compiler can be
obtained by compiling a program with a
PROGRAM-ID of ERRMSG. The listing consists
of:

• compiler identification and level

• Brief description of the remainder of
the listing

• Description of listing conventions

• Action codes and meanings

• General procedure in recurring problem
situations

• Error messages in the following format:

Message number

Severity level

Action code

Message text

The messages are listed by phases of the
compiler in the following order: 10, 11,
20, 21, 22, 30, 40, 50, 60, 62, 63, 64, 00.
The completed listing can be inserted in an
8 1/2" by 11" binder for convenient
reference.

Licensed Material - Property of IBI-l

SECTION 6. DIAGNOSTIC AIDS

DUMP PRODUCED FOR DISAS~ER LEVEL ERROR
MESSAGES

Under severe circumstances the compiler
determines that processing during a phase
cannot continue. The phase issues a
Disaster-level (D-Ievel) messaae on SYSLST
and initiates a storage dump. -compilation
is abandoned and control is returned to the
operating system.

The dump indicates which phase of tne
compiler was executing at the time of the
D-level circumstance. The contents of
registers 0 through 15 at the time of the
last entry to the TAMER routines in phase
00 may be found in the 16 fullwords
starting at label TBSAV1 in the load module
ILACBLOO.

ABNORMAL TERMINATICN DURING COMPILATION

If the compiler terminates execution
abnormally, the resulting .~ump can be used
to locate some information frow the data in
storage at the time. If certain
input/output error messages were printed,
additional information is available.

LOCATION OF INFORMATION IN STORAGE

The programmer can determine from a dump
the current processing phase in storage,
the current record, the status of tables
and buffers already in use, and the
reqisters saved during the previous calling
process.

Current Phase

If the compiler terminates execution
while a processing phase (OS, 06, 07, 08,
10, 11, 12, 20, 22, 21, 25, 30, 40, 50, 51,
60, 61, 62, 63, 64, 65, or 70) is in
storage, the name of the phase can be found
in the Phase 00 location LINKNAME.
LINKNAME contains an 8-byte narre in the
form FCOBOLxx, where xx represents the
phase number.

Each of the five words located 15
statements after LINKNAME in storage
contains an address. These addresses point
to the locations where one or more phases

Diagnostic Aids 409

Licensed "1aterial - Property of IBM

are loaded. The five address constants, in
order, are:

1- Address of Phase 01- .
2. Address of Phases 10, 11, and 12.

3. Address of Phases 20, 21, 22, 25, and
30.

4. 1\.ddress of Phases 40, 50, 51, 60, 62,
63, 64, 65, and 61-

5. Address of Phase 70.

Phase 00 is loaded immediately after the
uos/vs System supervisor.

Current Record

Unless either phase 20 or phase 21 is
executing, the record that is being
processed at the time of the error can be
related to a statement in the listing
through a location in COMMON named CURCRD,
which contains the current generated card
number. (CUrtCRD is located at relative
address 26C. See "Section 5. Data Areas"
for more information on COMMON.) If either
phase 20 or phase 21 is executing, the
generated card number can be found in the
CARDNO field or the CARDNUM field,
respectively. If there is no source
listing available, the buffers for the
files being read or written can be located,
and the contents of the last bytes used can
be examined. This process is described
below under "compiler Buffers and Their
Contents."

':..'ables Used by Phases

The status of the tables built or
referenced by the current phase may reveal
how much processing the phase had done
before the dump occurred. Tables currently
being used by a given phase can be located
by the following steps:

1. The Table Information Block (TId)
number for any table handled by the
TAMEk routines can be found in
"Section 4. Directory" (listed by
phase) or in "Section 5. Data Areas"
(listed alphabetically by table name).

2. Add the phase 00 load address to the
displacement (shown in the listing of
phase 00) for the particular TIB

410 Section 6. Diagnostic Aids

number. The result is the address of
the proper TIB.

3. The second, third, and fourth bytes in
the TIB contain the address of the
Table Area Management Map (TAMM) for
the table.

4. The second, third, and fourth bytes of
the TAMM contain the address of the
table. The seventh and eighth bytes
contain the number of bytes used so
far in the table.

The entry format for each table
manipulated by the TAMER routines is shown
in "Section 5. Data· Areas." See also
"Appendix A. Table and Dictionary
Handling."

Compiler Buffers and Their Contents

When a processing phase requests an
input/output operation via phase 00,
register 9 contains tne address of an entry
for the file within the phase 00 PQINT
table. Figure 64 shows the contents of a
POINT table entry. Each consists of two
bytes, with the low~rder bits of each byte
containing the buffer numbers. If a file
is double buffered, the numbers are
different. If it is single buffered, the
numbers are the same. If the first four
bits of the entry contain a hexadecimal
'F', no physical input/output has been done
on the file in the current phase.

r------------------T----------------------,
I Bits I Contents I
~------------------+----------------------~
I 0-3 I X'O' or X'F' I
~------------------+----------------------~
I 4-7 I buffer number I
~------------------+----------------------~
I 8-11 I X· 0' I
~------------------+----------------------~
I 12-15 I buffer nurrber I L __________________ ~ ______________________ J

Figure 64. POINT Table Entry Format

The buffer number can then be used to
locate the associated Buffer Control block
(BCB). BCDs are contained in an area
starting at BUFCNLS in phase 00, as shown
in Figure 65. The format of a BCB is shown
in Figure 66. For SYSIPT, SYSLST, SYSPCH,
and SYSLNK, the buffer addresses are
contained in the phase 00 locations IPTBUF,
LSTBUF, PCHBUF, and LNKBUF, respectively.

r------------------T----------------------,
I Location I Control Block I
~------------------t----------------------~
I BUFCNLS+O I Buffer lBCB I
t------------------t----------------------~
j BUFCNLS+8 I Buffer 2BCB I
t------------------t----------------------~
I BUFCNLS+16 I Buffer 33CB I
t------------------+----------------------~
j BUFCNLS+24 I Buffer 4BCB I
r------------------t----------------------~
I BUFCNLS+32 I Buffer 5BCB I
t------------------t----------------------1
I BUFCNLS+40 j Buffer 6BCB I l __________________ ~ ______________________ J

Figure 65. Buffer Control Blocks for
Buffers 1-6

r-----T---------T----------T------,
Bytes I 1 I 3 j 2 I 2 j

r-----t---------+----------+------1
contentsjX'OO'jAddress IBytes used j Length I

I lof Bufferlso far fori of I
I I IGET or PUTIBufferl l _____ ~ _________ ~ __________ ~ ______ J

Figure 66. Buffer Control Block Format

Note: The above does not apply to file
SYS005. Phases 25 and 65 perform buffer
manage~ent processing for SYS005.

Reaister Usage

When linking to another phase, phase 00
passes a pointer in register 1 to a
parameter list starting at location COSPARM
in phase 00. The first word of this list
always contains the address of COS, another
location in phase 00. This address is used
by the other phases in two ways: as the
point in phase 00 to which control should
be passed for an inputloutput request and
as the base address for the COMr10N DSECT
used in the other phases. General register
usage for each phase is shown in F'igure 67.

Licensed Material - Property of IBM

r---,
I PHASE 00 (ILACBLOO) I
~--------T--------------------------------~
I Register I Use I
r--------t--------------------------------1
10 I Contains COS address at entry I
I I to COS; contains buffp.r address I
I I at exit from READ routine I
I I I
11 I Used to return to calling I
I I phase; otherwise, work. I

2

3

4

5

I
6

7

8

9

10

11

12

13

14

1 I
I
I
I
I

Note: Registers 0 & 1 are
destroyed by phase 00
during calls to COS.

j Address of data for a WRITE.
I
I Length of data for a WRITE.
I
I Work; Address of TRMNATE CSECT
I
I Base register for ILACBLOO
I CSECT
I
I Points to buffer control block
I for logical IIO
I
I Points to buffer control block
I for physical IIO
I
I Return address-2 (Linkage
I parameters)
I
I
I
I
I
I
I
I
I
I

Address of file pointers (Point
table) for the file on which
IIO is currently being
performed.

(File number-i) * 4; used to
index into EUFCNLS and the
table of DTF ADCONS.

1 Linkage; base register for
I PHOTBDIC CSECT
I
J Linkage; base register for
J TBDATA CSECT
I
I Save area pointer (from calling
I phase)
I
I Linkage.
I

115 I Linkage; base for PHOTBST1 l ________ ~ ________________________________ J

Figure 67. Compiler Register Usage

Diagnostic Aids 411

Licensed Material - Property of IBr1

r---,
IPHASE 01 (ILACEL01) I
~--------~-------------------------------1
I Registerl Use I
t--------t--------------------------------1
o I Linkage to phase 00; work in I

I CSECT ILA002 I
I I

1 Contains address of phase 00 I
parameters when phase 01 is I
called; work in CSECT ILA002 I

I
2-3 Work I

I
4 Work; input pointer in CSECT I

ILA002 I
I

5 Base for CSECT ILACBL01; base I
for CSECT ILA002 (COPY/BASIS) I

6

7

8

9

10

11

12

Base for DATA; base for CSECT
ILA002 (COPY/BASIS)

Work; base for CSECT ILA002
(COPY/BASIS)

Highest available storage
address; linkage in CSECT
ILA002

Base for CSECT ILA002
(COPY/BASIS)

Address of system's
communication region; work in
CSECT ILA002

Address of COS; work in CSECT
ILA002

Address of phase 00 parameter
list; work in CSECT ILA002

113 Address of phase 01 save area
1
114 Internal linkage <SCAN
I routine); work in CSECT ILA002
I
115 Internal linkage (SCAN
I routine); address of COS in
1 CSECT ILA002 L ________ ~ _______________________________ _

412 Section 6. Diagnostic Aids

r---,
I PHASE 05 (ILACBL05) I
~--------T--------------------------------1
I Register I Use I
t--------t--------------------------------1
10 I Linkage to phase 00; work I
1 I I
11 1 Address of COS; work I
1 I 1
12-9 1 Work I
1 I I
110-12 I Base I
I I I
113 I Work area DSECT base I
I 1 I
114-15 I Internal linkage I L ________ ~ ________________________________ J

r---,
IPHASE 06 (ILACBL06) I
~--------T--------------------------------1
I Register] Use I
r--------+--------------------------------1
10 I Linkage to phase 00; work
I I
11 1 Address of cos; work
I I
12-9 I Work
I I
110-12 1 Base
I 'J
113 J Work area DSECT base
I]
114-15 '~Internal linkage L ________ ~ _______________________________ _

r---,
IPHASE 07 (ILACBL07) I
t--------T--------------------------------~
I Register I Use I
~--------+--------------------------------1
10] Linkage to phase 00; work I
I] I
11 1 Address of COS; work I
I I I
12-9 I Work I
I 1 I
110-12 I Base I
I I I
113 I Work area DSECT base I
I I I
114-15 1 Internal linkage I L ________ ~ ________________________________ J

r---,
1PHASE 08 (ILACBL08) 1
r--------T--------------------------------~
1 Register1 Use 1
t--------+--------------------------------~
10 1 Linkage to phase 00; work 1
1 1 I
11 1 Address of COS; work 1
1 1 I
12-9 I Work I
I I I
110-12 I Base I
I I I
113 I Work area DSECT base I
I I 1
114-15 I Internal linkage 1 L ________ L ________________________________ J

r---,
I PHASE 11 CILACBL11) I
t--------T--------------------------------1
IRegisterl Use 1
r--------+--------------------------------1
10 I Work
I I
11 I Address of COS in phase 00

I
2-7 I Work

I
8 I Base of IFQ109 (EXHSVB)

I
9 I Base of IEQ10? (LETTER)

I
10 I Base of IEQ104 (COBWRD)

I
11 I Base of IEQ103 (GETWD)

I
12 I Base of IEQ102 (IDDIV1)

I
13 I Base of IEQ101 (PH1SAV),

I pointing directly to the phase
I 11 Save Area in that CSECT
I

114 I Linkage
I I
115 I Linkage to TAMER
I I Addressability to IEQ108
I I (PDSCN) and temporary
I I addressability to IEQl16
I I (VARPQ) and to IEQ106 (UNLVSN) I L ________ L ________________________________ J

Licensed Material - Property of IBM

r---,
I PHASE 20 CILACBL20) I
t--------T--------------------------------~
IRegister! Use I
t--------t--------------------------------~
10-6 1 Work I
I 1 I
17 1 Address of input buffer area I
I I I
18-101 Work I
I I I
111 I Address of COMMON, except I
I I during ACCMET routine I
I 1 I
112 I Work I
I I I
113 J Address of save area 1
1 I I
114 I Branching i
1 I i
115 J Base for all routines 1 L ________ L ________________________________ J

Diagnostic Aids 412.1

i

IPHASR 21 (ILACBL21)
1 i
1 Register I Use
I I
10-1 Work
1
12 BUFTAB pointer
I
13-6 Work
1
17 Data IC-text pointer
1
18 Work
I
9 FDTAB pointer

10 PIOTBL pointer

11 Address of COS in phase 00

12 Base of PERMCODE

13 Pointer ,to SAVEAREA

14, 15 Linkage

I
IPHASE 22 (ILACBL22)
1 I

I Register I Use
I I
·10-6 Work
1
17 Address of input buffer area
1
8-10 Work

12

13

14

15

Address of COMMON, except
during ACCMET routine.

Work

Address of save area

Branching

Base for all routines

Licensed Material - property of IBM

i
IPHASE 25 (ILACBL25)
1 i
I Register I Use
I I
10-8 Work
I
9 Base register for SYMDICT DSECT

10

11,12

13

14

15

Address of COS in phase 00

Permanent base of first 2
CSECTS

Permanent base of data CSECT

Linkage

Linkage, base of access
routines

Diagnostic Aids 413

Licensed Material - Property of IBM

i
,PHASE 30 (ILACBL30)
I i
IRegisterl Use
I I
o Work

1

2

3

Freguently contains dictionary
pointer to the entry currently
being processed

Frequently points to the start
of attributes in the dictionary
entry currently being processed

Frequently contains dictionary
pointer to the entry currently
being processed

1J-6 Work

7

8

9

Permanent base for the CSRCT
containing the following
routines:

GLORET
PH5CTRL
READ
EOF
GENOP
SEARCH
QUALIF
CORRTN

Permanent base for the CSECT
containing the following
routines:

GLOSRY
ENTRPD
TSTWRD
EllROR
GETNXT
GET ALL
GENDAT
COPYIN
COPREN
ISTDLM
ISTBCD
GETLVL
COUNT
DESCUP
ISPTR

Permanent base for phase 30
data area

414 Section 6. Diagnostic Aids

i
IPHASE 40 (ILACBL40)
I i
IRegisterl Use
I I
10-6
I
I
I
7-11

12

Work; used by verb analyzers,
subroutines, and phase
controller

Permanent bases for the nonverb
analyzer routines:

phase controller
subroutines
constants
data area

Points to current contents of
input buffer

Unused

Branching
I

13

14

15 Temporary base register for
verb analyzer currently in
control

the I ,
Linkage to TAMER

i
IPHASE 50 (ILACBL50)
I i
IRegisterl Use
I I
10-6
1
7

8

9

10

11

12

13

14

15

Work

Base for first eSECT in the
phase, beginning with PH5CTL

Base of second CSECT, beginning
with xrNSCN

Temporary base for verb
analyzer routines beyond the
third CSECT

Points to COMMON in phase 00

Base of third CSECT, beginning
with A-text Generator

Base of phase 50 constant area
(next-to-last CSECT)

Base of phase 50 data area
(last CSECT)

Linkage

Temporary base for some
routines called by verb
analyzers

I
I
I

i
IPHASE 51 (ILACBL51)
I i

IRegisterl Use
I I
10-6 Work
I
7 Same as 50

B

9

10

11-15

i

Work

Base register for each verb
analyzer

Base register for each verb
analyzer

Base register for each verb
analyzer

IPP.ASE 60 (ILACBL60)
1 i
IBegisterl TJse
I
10-3 Work
I
14 Input for all texts
I
15-7 Work
I ,8 Base for the following CSECTs:
I 1--performs phase
I initialization (switches,
I work areas, etc.);
I processes the TGT
I 3--processes Procedure
I A-text
I
19 Points to COMMON in phase 00
I
110 Base for the following CSECTs:
1 2--processes Optimization
I A-text
1 4--processes Procedure
I A-text and Data A-text;
I generates initialization
1 routines
I
111 Nork
I
112 Base for CSECT containing
I constants (IEQ605)
I
113 Points to phase 60 save area
I
,14 Linkage to sUbroutines
I
115 Linkage to subroutines

Licensed Material - Property of IBM

i
IPHASE 62 (ILACBL62)
I i
I Register I Use
I I
I
10-3
I
14
I
15-7
I
IB
1
1
I
1
I
I
I
19 ,
110
I
I
I
I
I
I
I
111
1
112
t
I
113
I
114
1
115

i

Work

Input for all texts

Work

Base for thp. follo~ing CSECTs:
1--performs phase

initialization (switches,
work areas, etc.) ;
processes the TGT

3--processes Procedure
A-text

Points to COMMON in phase 00

Base for the following CSECTs:
2--processes Optimization

A-text
4--processes Procedure

A-text and Data A-text;
generates initialization
routines

Work

Base for CSECT containing
constant (IEQ625)

Points to phase 62 save area

Linkage to subroutines

Linkage to subroutines

IPHASE 63 (ILACBL63)
I i

,Registerl Use
I ,
,0-10 I Work
I I
111-13 ,Base registers
I ,

I
I , ,

114 I Return for internal , ,
115 , Address of internal

subroutines 1
I

subroutines I ,

Diagnostic Aids 415

Licensed Material - Property of IBM

,
IPHASE 64 (ILACBL64)
I ,
IRegisterl Use
I I
10-3 I Work
I I
14 I Input for all texts
I I
5-7 I Work

I
I
I
I
I
I

8 Base for the following CSECTs: I

9

l--performs phase I
initialization (switches"
work areas, etc.);
processes the TGT

3--processes Procedure
A-text

Points to COMMON in phase 00

10 Base for the following eSECTs:
4 2--processes Optimization
I A-text
I 4--processes Procedure
I A-text and Data A-text;
I generates initialization
I routines
I
111 i Work , ,
112 I Base for CSECT containing
I 4 constants (IEQ645)
I I
113 I Points to phase 64 save area
I I
114 , Linkage to subroutines
I I
115 I Linkage to subroutines ,

,
IPHASE 65 (ILACBL65)
I ,
IRegister I Use
I I
10-3 I Work
I I
14 I Input for Debug-text and for
I I generating TXTCRD DSECT
I I
15-7 .1 Work
, I
IS I Base for CSECT ILA651
I I
9 Points to COMMON in phase 00

10

11-12

13

14-15

Base for CSECT ILA652

Work

Points to phase 65 save area;
base for phase 65 constant
CSECT ILA653

Linkage to subroutines

416 Section 6. Diagnostic Aids

,
IPHASE 61 (ILACBT,61)
, I

IRegister, Use
I I
10 I
, I

Work; return address when phase I
61 has branched to phase 00 I

I I
11 I Work; base for input DSECT
I I
12 I Worlq pointer to data record
I , being formatted
I I
13-9 I Work

I
10

11

12

13

14

15

,

Points to COMMON in phase 00

Base for CSECT ILA6102

Base for CSECT ILA6101

Points to phase 61 save area

Return address for internal
subroutines

Work; address of internal
subroutines

IPHASE 70 (ILACBL70)
I I
IRegisterl Use

10-3 Work
I
14 Input for E-text

I ,

,
I ,

I
15
I

I
Points to message in message ,
table during processing of mostl

I
I
16-7
I
IS
I
19
I
110
I
111-12
I
113
I
114
I
115
I ,

messages

Work

Base for phase instructions

Points to COMMON in phase 00

Base for most constants

Work

Points to phase 70 save area

Linkage to subroutines

Base for PUT, CONVERT, GET,
STRING, and XPRIME routines

I
IPHASE 80 (ILACBL80-8D)
I ,
I Register , lise ,
10 Work
11 Base for ILACBL80; work
12 DTF pointer for ILACBL80; work
13 DTF pointer for ILACBL80i work
14 DTF pointer for ILACBLBO; base
, for ILACBL8C; work
15 Base for ILACBL8C; work
16 Internal link for ILACBL8B,
I ILACBL8C, and ILACBL8D; work
17-9 Work
110 DTF pointer for ILACBL84,
I ILACBL86, and ILACBL8D
111 DTF pointer for ILACBL8D; work
112 Points to FIPSVT (FIPS vector
I table)
113 Save
114 Link
115 Base

Licensed Material - property of IBM

Diagnostic Aids 417

Licensed Material - Property of IBM

Register Saving

When phase 00 gets control from the
system, it places the address of the DOS
control program's save area in location
MYSAVE+4. When it is called by another
compiler phase, phase 00 places the address
of the calling phase's save area in
SAVER13. It puts the address of its own
save area (MYSAVF) in register 13.

The calling phase's registers can be
located by adding decimal 12 to the address
contained in SAVER13. This locates
register 14, followed by 15, etc. The
following registers have significance in
connection with the call:

Register 0: Contains the address of the
X and Y parameters of the linkage
request. (See "Processing Between
Phases" in the chapter on phase 00.)
These parameters can be used with Fi~ure
11 in the phase 00 chapter to verify
that the calling phase is making a
legitimate request.

Note: Register 10 of phase 00 should
contain the file number code (Y
?arameter minus 1) multiplied by 4.

Register 2: Contains the address within
the calling phase from which phase 00 is
to write if the X parameter above is a
request for a PUT. It can be used to
determine that the indicated area is
within the range of the storage
allocated to the calling phase.

Register 3: Contains the length, in
bytes, of the data to be written if a
PUT has been requested. The number must
be less than 256, but not equal to zero.

If the calling phase is asking for
action by a TAMER routine, the registers of
the calling phase are saved in an area
starting at location TBSAV1 by means of a
STM 0,15 instruction. Register 14 contains
the address of the instruction following
the call to the TAMER routine; register 15
contains the address of the TAMER routine
entry point. For the complete calling
sequence, including parameters, see
"Appendix A. Table and Dictionary
Handling. II The MAST!M, also described in
that chapter, can be found at location
TBMASTAM and should be investigated to
determine whether the table and dictionary
areas are being properly used.

418 Section 6. Diagnostic Aids

INPUT/OUTPUT ERROR MESSAGES

Phase 01 generates messages if it
discovers error conditions during
initialization. The system handles
directly all input/output errors.

ERRONEOUS COMPILER OUTPUT

If the compilation terminates normally
(with the desired options in effect) and if,
the object module nevertheless executes
incorrectly, the source program should be
checked first for mistakes in logic,
language, data formats, etc. Using the
SYMDMP, STATE, and FLOW compiler options
can help in dp.termining mistakes. For
information on the use of these options,
see the publication IBM DOSIYS COBOL
compiler and Library Programmer's Guide,
Order No. SC28-6418. If a compiler error
is still suspected, the information below
can help to pinpoint the problem.

Note: The LIST and LISTX compiler options,
along with the linkage editor's MAP option,
are invaluable under these conditions. The
SYM, XRFF or SXREF and FLAGW compiler
options are also useful.

STORAGE LAYOUT

An example of the general storage usage
for a COBOL program being executed in the
background area is given in Figure 68. The
Memory Map printed as a result of the LISTX
option contains the relative addresses of
the TGT fields, the literal pool, PGT
fields, the register assignments, the
instructions generated from the Procedure
Division, and-the INIT2, INIT3, and INIT1
routines, in that order. (See IIAppendix B
Object Module ll for a discussion of these
fields.) The absolute addresses can then
be found with the assistance of the phase
map (see IILinkage Editor Phase Kap" in this
chapter) •

r--------T--------------------------------,
1 IPermanent storage locations usedl
1 Iby cPu; Communication Region; 1
I~ONTROL ISupervisor Nucleus; I
IPROGRAM 11/0 Units Control Tables; and 1
1 ITransient Area I
~--------+------T-------------------------~
1 I I INIT1 I
I 1 1 Working-storage I
I I I DTFs and BUFFERs I
I I I TGT 1
I I I PGT I

I I Literals 1
I 1 Report Writer 1

BACK- I OBJECT I Procedure Division I
GROUND I MODULE 1 (Priority less than I

I 1 segment limit) I
I * I Q-routines I
1 I IlUT2 I
I I INIT3 I
I I Transient Area I
I I (Nonresident !
I I Segments) I
~------i-------------------------~
ILIOCS Modules I

I ICOBOL Library Subroutines I
~--------+--------------------------------~
I FORE- I I
I GROUNDS I I
1 II /; II 1
~--------i--------------------------------~
I*The object module is not always first I
I in its partition. I L ___ J

Figure 68. Example of Storage Usage During
Execution

LOCATING A DTF

A particular DTF may be located in an
execution-time dump as follows:

1. Determine the order of the DTF address
(D'l'FADR) cells in t;he TGT from the DTF
numbers shown for each file-name in
the GLOSSARY.

Note: Since the order is the same as
the order of FDs in the Data Division,
it can be determined from the source
program whether the SYM option was not
used (that is, no glossary was
printed) •

2. Determine the relative starting
address of the block of DTFADR cells
from the TGT listing in the Memory
Map.

3. Calculate the absolute starting
address of the block by adding the
hexadecimal relocation factor for the

Licensed Material - Property of IBM

beginning of the object module as
given in the linkage editor map.

4. Allowing one fullword per DTFADR cell,
count off cells from the starting
address found in Step 3, using the
order determined in Step 1, to locate
the desired DTFADR cell.

5. The DTFADR cell contains the absolute
address of the desired DTF.

Note: The procedure for locating a
secondary DTF is essentially the same, the
only differences being that the SUBDTF
address cells pointed to by the PGT are
used and that the order of the cells is
Input, Output, 1-0, or Input Reversed.

LOCATING DATA

The location assigned to a given
data-name may similarly be found by using
the BL number and displacement given for
that entry in the GLOSSARY, and locating
the appropriate one-word BL cell in the
TGT. The hexadecimal sum of the GLOSSARY
displacement and the contents of the cell
should give the relative address of the
desired area. This can then be converted
to an absolute address as above.

REGISTER USAGE

The compiler assigns registers for use
at execution time according to the general
rules indicated in Figure 69. When OPT is
specified. the register assignment is that
indicated in Figure 70. In addition, the
LISTX or CLIST or SYM option causes the
permanent register assignments for the data
areas to be printed in the Memory Map,
along with the Base Locators associated
with them.

r--------T--------------------------------,
I Register \ Assignme~t I
~--------+--------------------------------~
I 0-5 I Work I
I 6 I Pointer to beginning of I
I I working-Storage I
I 7-11 I Pointers to FDs and then I
I I remainder of working-Storage I
I I areas if needed 1
I 12 I Pointer to PGT I
I 13 I Pointer to TGT I
I 14,15 I Temporary base registers I L ________ i ________________________________ J

Figure 69. Register Usage at Execution

Diagnostic Aids 419

Licensed Material - Property of IBM

r--------T--------------------------------,
I Register I Assignment I
~--------+--------------------------------1

0-5 Work
6-9 Assigned in the following

order:
1 TGT or PGT OVERFLOW CELLS
2 Most used BLs or BLLs

10 PGT OVERFLOW if another
OVERFLOW results after
allocation of PROCEDURE BLOCK
CELLS or next most used BL
or BLL

11 Procedure Block cell
12 PGT
13 TGT
14-15 Temporary base registers
--------~--------------------------------

Figure 70. Register Usage at Execution
when OPT is Specified

ERROR MESSAGES

All error and warning messages listed
during compilation should be examined.
(~he warning messages will be listed only
if the FLAGW option is in effect.) If any
message seems inappropriate, it can
sometimes be traced back to the originating
phase by examining the message
identification code. The format is as
follows:

ILAnxxxI-s

where:

n is the first digit of the phase number

xxx represents the assigned identifying
numbers for the message

s indicates the severity code (W, C, E,
or D)

Several phases can begin with the same
digit (for example, phases 10, 11, and 12)
but no further general distinction is made
between the message numbers assigned by the
various phases.

LINKAGE EDITOR PHASE MAP

If the MAP option is in effect, the
linkage editor produces a phase map showing

420 Section 6. Diagnostic Aids

the absolute addresses of all entry points
of all CSECTs in the phase. Figure 71 is
an example of a phase map.

In the figure, ILBDSAEO, a COBOL libra'ry
subroutine, handles sequential access
input/output errors and ILBDDSPO handles
DISPLAY verbs. IJJCPDl is a DOS logic
module which is present whenever a DISPLAY
or an ACCEPT verb is used. ILBDMNSO is a
l-byte COBOL library subroutine which is
always present and which provides a flag
indicating whether a subprogram or a main
program is executing.

DIAGNOSTIC ASSISTANCE

When you (the CE) telephone for
diagnostic assistance, you can get a faster
and more precise response if you provide as
much information about the problem as
possible. To determine whether your
problem has been documented, it is
necessary that you provide certain items,
referred to as search arguments, that are
needed to retrieve such documentation.
Search arguments include such items as
component identification, when failure
occurred, type of failure" phase that
failed, and verb being processed.

To assist you in determining search
arguments. a COBOL Abstract Worksheet
appears on the next page. The worksheet
describes each search item, the search
argument that identifies that item, and an
explanation of how to find the search
argument. For most efficient retrieval of
documentation regarding your problem,
provide as many search arguments as you
can.

In addition to the search arguments,
have as many of the following items
available as possible when you telephone
for diagnostic assistance:

• JCL

• source listing

• dump

• console sheet

• program output

Licensed Material - Property of IBM

r---,
PHASE XFR-AD LOCORE HICORE DSR-AD ESD TYPE LABEL LOADED REL-FRI

1
PHASE*** 002800 002800 003EB3 5D 05 2 CSECT EXAMPLE 002800 0028001

1
CSECT ILBDSAEO 003E08 003E081

EN'l'~Y ILBDSAE1 003E1E 1
1

CSECT ILBDMNSO 003EOO 003EOOI
1

CSECT lLBDDSPO 003630 0036301
1

CSECT IJJCPD1 003468 0034681
ENTRY IJJCPD1N 003468 1

* ENTRY IJJCPD3 003468 1
___ J

Figure 71. Example of a Phase Map

Diagnostic Aids 420.1

Licensed Material - Property of IBM

COBOL Abstract Worksheet (Side A)
r-----------------------T----------------------T--,
I Search Item I Search Argument I How to Find Argument I
~-----------------------t----------------------t--~
I 1. Component ID: I 1. 5746-CB-xxx I The program product version level is I
I 5746-CB-xxx where I I printed at the top of the first page ofl
I xxx is the program I I the COBOL listing. It is also con- I
I product version I I tained in byte X' 17' of the load I
I level I I module. I
r-----------------------t----------------------t--~
I 2. Keyword entry I If unsure, check the JCL to see which
I (use as indicated): I step was being executed at the time of
I UnsureJ the failure.
I r-- ---->1
I I I
I V I
I ~~ I
I Side B J
I I
I J

I I
I 2. CMPL I
~-----------------------t----------------------t--~
I 3. Type of failure: I 3. I I
I one of the I I I
I following: I J I
I I I I
J abend ABENDxxx J I I
I wait WAIT I I I
I loop LOOP I I I
I msg. J:1.1SGILAxxxxx I I I
~-----------------------t----------------------+--~
I 4. Failing phase: I 4. ILACBLxx I Location LINKNAME in phase 00 contains I
I ILACBLxx, where xx I I a name in the form FCOBOLxx, where xx I
I is the compiler I I is the compiler phase number. I
I phase number. I I I
~-----------------------t----------------------+--~

5. COBOL verb being I 5. I A. Find the register used by the
processed: (e.g., I I failing phase (argument 4 above) to
ADD, MOVE. GO) I I point to COIVlNON; see "Register

I 1 Usage" in "Section 6. Diagnostic
I] Aids. "1

I I
I GPRxx ~B Obtain the address of CO~MON from
I r---L -----, i· the register.
I (L~. COMMON I I

! ~~~~;:~~~~.
I '14C" I Program ID I I
I -'153' lentry I I

I t--------~·
I '26C' ICard being I I
I -'26D" t-----------~ I
I Iprocessed I I

Verify that you are at the correct
area for COMMON; the contents of
COMMON address + X'14C' should be
the same as the word coded on the
PROGaAM-ID card (card 2 or 3 in the
source program).

Find card number at Cor-WON address
+ X·26C· (e.g., 8000030 would
indicate card 48 because X'30' =
decimal 48>"

I I I I E. Find the indicated card in the
I L ___________ J I source program and determine the

I I I COBOL verb being processed.
r-----------------------~----------------------~--~
11If this worksheet has been removed from the DOS/VS COBOL PLM, the address of COMMON I
I can be found by using all of the registers listed un~er REG AT ENTRY TO AEEND. I
I Starting with register 10 (then 11, then 9) perform steps Band C until step C resultsl
I in a match; then do ste?s D and E. I L ___ J

Diagnostic Aids 420.3

Licensed Material - Property of IBM

COBOL Abstract Worksheet (Side B)
r-----------------------.----------------------T---------------------------------~------,
, Search Item , Search Argument , How to Find Argument ,
r-----------------------+----------------------+--~
, 1. Component ID: , 1. 5746-CB-xxx , The program product version level is ,
, 5746-CB-xxx, where, , printed at the top of the first page of,
, xxx is the program , , the COBOL listing,. It is also con- ,
, product version , , tained in byte X'17' of the load ,
,level., , module. ,

r-----------------------+----------------------+--i
2. Keyword entry (use , If unsure, check the JCL to see which ,

as indicated): , step was being executed at the time of ,
No Unsure' the failure. ,
r- --->, ,
'I ,
'I ,
V I ,
Go to 'Yes I ,
Side A I l ,

V , , , ,
2. EXEC I ,

r-----------------------+----------------------+--i
, 3. Type of failure: I 3. I I
, one of the, I ,
,following: I' ,
, abend ABENDxxx I I I
, wait WAIT' I ,
, loop = LOOP I I ,
, msg. = MSGILAxxxxxl I I
, bad output, I I
, = INCORROUT 'I ,
r-----------------------+----------------------+-----------·----------------------------i
, 4. COBOL verb , 4. I A. Determine the CSECT name assigned
, statement being , l to the failing program in the
'executed:, , PROGRAM-ID source statement* which
I I , is usually the second or third card
, , , in the source program.
, I , , ,
, I
, I
, I , ,
I , , ,
I , , ,
, I , ,
I , , ,
, I , , , , , , ,

B. Determine the length of the compiled
CSECT from one of the following
areas:

• linkage editor map

• extent list

• compiler generated Memory Map

c. Use the PSW AT ENTRY TO ABEND to
determine the address of the failing
instrur::tion.

D. Is the failing instruction within
the scope of the code compiled for
the COBOL CSECT? If yes, see note 1

, , , below. If no" see note 2 below.
r-----------------------+----------------------+--~ I 5. Optional COBOL I 5. , .,
I library module name' I ,
, being executed: I I ,
r-----------------------+----------------------+--i
I 6. special COBOL , 6. I ,
, features being usedl I ,
I (optional): I I ,
I (e.g., SORT, I I ,
'SYMDUMP) I I ,
~-----------------------~----------------------~--~ INote 1. (a) Calculate the displacement of the failing instruction from the CSECT entry'
I point. (b) Find this displacement in the Memory Map assembler listing. (c) The ,
,statement number related to the generated code is printed on the left side of the ,
lassembler listing. In some cases, the COBOL verb is also printed in the listing. I , ,
,Note 2. (a) Trace back from failing CSECT to exit from COBOL CSECT,. (b) Use the ,
Ilinkage editor map, the CDE, and extent list or the PSW in the PRB in conjunction with I
Ithe SAVE AREA TRACE to find the name of the failing CSECT and the entry point for the ,
ICSECT. (c) If the return address saved by the failing CSECT is within the scope of thel
'compiled CSECT, proceed as in Note L If not, continue the traceback. , L ___ J

420.4

The tables that the compiler uses to
store information within a phase or between
phases are manipulated by a set of routines
called TAMER (Table Area Management
Executive Routines). TAMER is part of
phase 00 and is resident in storage
throughout compilation.

The dictionary, which- is an internal
data area used by phases 11, 21, 22, 25 and
30, is manipulated by a set of routines
called ACCESS routines. ACCESS routines
are loaded into storage as part of these
phases.

The chapter on phase 01 explains how a
region for tables and the dictionary is
obtained. Figure 72 shows the arrangement
of tables and the dictionary.

ITable 11 ••• ITable NIMain Free
I I I IArea

DictionarYI ••• IDictionarYI
Section N I I Se:ction 1 I

Figure 72. Arrangement of Tables and
Dictionary sections in a
contiguous Region

ACCESS DICTIONARY HANDLING ROUTINES

ACCESS routines enter and retrieve
dictionary entries. They are assembled by
means of a macro instruction, with phases
11, 21, 22, 25, and 30 the only phases that
use the dictionary. Only those routines
that are needed in a phase are assembled
with it. Using the ACCESS routines, phases
11, 21, and 22 make dictionary entries for
data-names and procedure-names in the order
in which the names are defined in the
source program. (Phase 11 makes entries
for procedure-names. Phases 21 and 22 make
entries for data-names.) Basically, a
dictionary entry consists of a name and
attributes. Formats for the types of
dictionary entries are illustrated in
"Section 5. Data Areas". Phases 11, 21,
and 22 do not use LOCNXT.

Phase 30 uses the ACCESS routines to
replace data-names and procedure-names in
procedure statements with their dictionary
attributes. It tells the ACCESS routines
the name, and the ACCESS routines obtain

Licensed Material - Property of IBM

APPENDIX A. TABLE AND DICTIONARY HANDLING

the attributes from the dictionary entry
for that name. It also uses the ACCESS
routines to resolve qualification and the
CORRESPONDING option. Phase 30 does not
use lenterl or 'get l ACCESS routines.

ORGANIZATION OF THE DICTIONARY

The dictionary is divided into sections
of 512 bytes each. The location of a
dictionary entry is indicated by its
section and its displacement from the
beginning of that section. For each
dictionary section, table DICOT has an
entry which gives the starting address of
that section.

The ACCESS routines use table HASH to
keep track of the locations of dictionary
entries. HASH is a hash table with 521
entries. When a dictionary entry is made
for a name, its section and displacement
are entered in the HASH table entry for
that name. When an ACCESS routine wants to
find an entrY, it determines the hash value
of the name in order to find the HASH table
entry for that name and obtains the section
and displacement from the HASH table entry.

If a name hashes to the same value as a
previous name, the section and displacement
for the previous name are taken from table
HASH and placed in front of the dictionary
entry for the new name as a dictionary
pointer. Then the section and displacement
of the new entry are entered in table HASH,
and an indication is made that there were
duplicate hash values. When an ACCESS
routine wants to find an entry for a name
and the HASH table indicates that there
were duplicate hash values, it uses these
dictionary pointers to search the
dictionary, in reverse order, to find the
specified name. That is, it obtains the
section and displacement from the HASH
table for the hash value and looks at the
name in the indicated entry. If the names
match, this is the correct entry, unless
duplicate names were defined. Then the
ACCESS routine looks at the entry wit~ the
section and displacement specified by the
dictionary pointer of the last entry. This
process continues until the names of all
entries with duplicate hash values have
been compared. At that time, the ACCESS
routine has found a single unique name, a
duplicately defined name, or no name at
all. It issues an error indication if it
does not find a name or if the name is
duplicately defined.

Appendix A. Table and Dictionary Handling q21

Licensed Material - property of IBM

Note: If a name is unique because it is
qualified, the phases specify a range of
dictionary entries to be searched when they
call an ACCESS routine. This is explained
in routine LATACP.

AREA FOR THE DICTIONARY

Area for a new dictionary section can be
obtained from the free area between the
tables and the dictionary.

When the outstandinq available area is
exhausted, dictionary sections are written
on disk and the area is reused. Table
DICOT is used to keep track of the
dictionary sections. There is an entry for
each section, giving the beginning address
of the section and an indication of whether
or not it has been written (spilled) on
disk. For further information, see
subroutine MOVDIC in the section "Table
Handling with TAMER" in this appendix.

When control passes from a smaller to a
larger phase, any tables in danger of being
overlaid must be moved to upper storage.

The ACCESS routines do not restore
registers 0 and 1 on exit.

In the following descriptions of the
ACCESS routines, the format of the BCD name
pointed to is:

No. of Bits:

Contents:

2 I 6
I

00 I n

n*8

name

where n is the number of characters in the
name. The entry starts on a word boundary
and is a multiple of four bytes. Padding
is done with zeros starting with the
low-order bytes.

INITIALIZATION OF ACCESS ROUTINES

In order to use the ACCESS routines, the
phases must call routine INTACC to
initialize them. INTACC primes the DICOT
table and performs other initialization
functions. The call to INTACC must follow
the call to TAMEIN, the routine that
initializes the TAMER. The calling
sequence to INTACC is:

L
BALR

15 ,=A (INTACC)
14,15

422 Appendixes

ACCESS ROUTINES

ACCESS routines are available to perform
the following functions:

1. Enter attributes when given a
data-name.

2. Enter attributes when given the
dictionary pointer.

3. Get a dictionary pointer when given
the data-name and the length of its
attributes.

4. Enter delimiter (dictionary pointer of
the entry that delimits a group or
section) when given the dictionary
pointer of the group or section.

5. Locate attributes when given a
data-name.

6. Locate attributes when given a
dictionary pointer.

7. Locate attributes of next entry when
given a dictionary pointer.

8. Locate delimiter when given a
data-name.

9. Locate attributes when given an ACCESS
pointer (name of an entry that is a
sUbfield of the last entry referred to
by an ACCBSS routine).

10. Locate attributes when given a
data-name and a dictionary pointer to
a group of which it is a subfield.

ENTNAM (Enter Attributes Given Name)

It

Given the address of a BCD name
(procedure-name or data-name), routine

ENTWAM makes a dictionary entry for it.
places its section and displacement in
table HASH and also in register 1, for
by the calling phase as a dictionary
pointer. The calling sequence is:

use

L
L
BALR

1 ,=A (parameter)
15,=A(ENTNAM}
14,15

where parameter has the following format
starting on a full~ord boundary:

No. of
Bytes

i ,
,1313
I J ,

Contents ,Code ,Address ,Count of , Address of,
, ,of BCD ,Attri- ,Attributes,
, ,Name ,butes I I
" I , I

where code is 0 for elementary items and
paragraph-names and 4 for group items and
section-names.

ENTPTR (Enter Attributes Given Pointer)

Given a dictionary pointer, that is, a
section and displacement, routin~ ENTPTR
enters a specified name and its attributes
into the dictionary. The calling sequence
is:

L
L
BALR

1, =A (parameter)
15,=A(ENTPTR)
14,15

where parameter has the following format
starting on a fullword boundary:

i i i i i

No. of I I I , I
Bytes ,1 3 , 1 I 3 111 3

I I I I I
contents ,161Ad- ,Count IAd- ,O,Dic- I

I dress ,of Idress I ItionarYI
lof I Attri-Iof I ,Pointer,
IBCD Ibutes I Attri-I ,
,Name , ,butes , ,
I I I I I

GETPTR (Get Pointer)

Given a BCD name and the length of its
attributes, routine GETPTR determines its
section and displacement and places this
dictionary pointer in register 1. The
calling sequence is:

L
L
BALR

1, =A (parameter)
15,=A(GETPTR)
14,15

where parameter has the following format
starting on a fullword boundary:

No. of
Bytes

contents

i I , ,
1, 3 , 1

" I ,CodelAddress oflCount of
, ,BCD name ,Attributes

, ,
I

Licensed Material - Property of IBM

where code is 8 for elementary items and
paraqraph-names and 12 for group items and
saction-names.

ENTDEL (Enter Delimiter PointerL

Given a dictionary pointer for a group
item or section-name and its delimiter
pointer, routine ENTDEL enters the
delimiter pointer into the dictionary entry
for the group item or section-name. A
delimiter pointer for a group item is the
section and displacement of the next group
item on the same or a lower level. A
delimiter pointer for a section-name is the
section and displacement of the next
section-name. The calling sequence is:

L 1,= A (parameter)
L 15,=A{ENTDEL)
BALR 14,15

where parameter has the following format
starting on a fullword boundary:

No. of
Bytes

Contents

, i i i
, I , I
111 3 111 3
, I I I
10 I Dictionary I 0 I Delimiter
I IPointer I IPointer , , , ,

LATRNM (Locate Attributes Given Name)

Given a BCD name, routine LATRNM locates
its dictionary pointer and the ~tarting
address of its attributes. If the entry is
found, the attributes' starting address is
placed in register 2, the dictionary
pointer is placed in register 3, and
reqister 15 is set to zero. If the entry
is not found, the contents of registers 2
and 3 are meaningless. Register 15
contains a 4 if the name was not found and
an 8 if the name was duplicately defined.
The calling sequence is:

L
L
BALR

1, =A (parameter)
l5,=! (LATRNM)
14,15

where parameter has the following format
starting on a fullword boundary:

i i I
No. of I I I
Bytes 11, 3 I

I I ,
Contents 10lAddress of BCD Name,

I I

Appendix A. Table and Dictionary Handling 423

Licensed Material - Property of IBM

LATRPT (Locate Attributes Given Pointer)

Given a dictionary pointer for an entry~
routine LATRPT locates the starting address
of its attributes and places it in register
2. The calling sequence is:

L
L
BALR

1 ~=A (parameter)
15~=A (LATRPT)
14,15

where parameter has the following format
starting on a full word boundary:

No. of
Bytes

Contents

i i

I I
111 3
I I
14 I Dictionary Pointer I
I ,

LOCNXT (Locate Next Ent~

Given the dictionary pointer of an
entry, routine LOCNXT locates the next
entry. In register 2, it places the
starting address of the next entry's
attributes. In register 1, it places the
dictionary pointer of the next entry. In
register 3, it places the starting address
of the BCD name of the next entry. The
calling sequence is:

L
L
BALR

1, =A (parameter)
15, =A (LOCNXT)
14~15

where parameter has the following format
starting on a fullword boundary:

No. of
Bytes

Contents

i i

I I
111 3
J I
lOlDictionary Pointer I , ,

LDELNM (Locate Delimiter Given Name)

Given the BCD name of a group item or a
section~ LDELNft locates its delimiter. It
places the starting address of the given
name's attributes in register 2. It places
the dictionary pointer of the data-name in
register 3. It places the delimiter
pointer in register 1. It sets register 15
to zero.

If an error is detected, one of the
following codes is placed in register 15.

424 Appendixes

1. If the unique name located was a
paragraph-name or elementary item
name, register 15 is set to 12.
Registers 2 and 3 are set as above.

2. If the name is not found, register 15
is set to 4. Registers 2 and 3
contain meaningless information.

3. If the name is duplicately defined,
register 15 is set to 8. Registers 2
and 3 contain meaningless information.

The calling sequence is:

L
L
BALR

1,=11 (parameter)
15,=A (LDELNM)
14,15

where parameter has the following format
starting on a fullword boundary:

, ,
No. of I I I
Bytes 11 I 3 I

I I I
Contents 1161Address of BCD Namel

I

LATACP (Locate Attributes Usina ACCESS
Pointer)

Given the BCD name of an entry that is a
subfield of the last entry referred to by
an ACCESS routine, routine LATACP puts the
starting address of the attributes in
register 2 and the dictionary pointer in
register 3. Register 15 is set to zero.
(This routine is used to locate qualified
names. It limits the search of the
dictionary.)

If an error is detected, a code is
placed in register 15: the code is 4 if
tbe name was not found, 8 if the name was
duplicately defined, and 12 if the last
entry referred to was an elementary item.
Registers 2 and 3 contain meaningless
information. The calling sequence is:

L
L
BALR

1 ~=A (parameter)
15~=A(Ll\TACP)
14~ 15

where parameter has the following format
starting on a fullword boundary:

, I I
No. of I I I
Bytes 111 3 I

I I ,
Contents IOIAddress of BCD Namel

I I

Note: There must have been no call to a
TAMER routine intervening between routine
LATACP and the last call to an ACCESS
routine.

LATGRP (Locate Attributes Given GrouE
Pointer)

Given the BCD name of an entry and the
dictionary pointer of the group item or
section-name of which it is a subfield,
routine LATGRP puts the starting address of
the entry's attributes in register 2 and
the dictionary pointer of the entry in
register 3. It sets register 15 to zero.

If an error occurs, it places a code in
register 15: the code is 4 if the name was
not found, 8 if the name was duplicately
defined, and 12 if the given dictionary
pointer pointed to an elementary item or
paragraph-name. Registers 2 and 3 contain
meaningless information. The calling
sequence is:

L
I,
BALR

1 ,=A (parameter)
15 ,=A (LATGRP)
14,15

where parameter has the following format
starting on a fullword boundary:

No. of
Bytes

Contents

iii

I I I I
11 I 3 111 3
I I I I
1121Addressi0lGroup or Section
I lof BCD I IDictionary Pointer
I IName I I

TABLE HANDLING WITH TA~ER

TAMER (Table Area Management Executive
Routines) resides permanently in storage as
part of phase 00 and is available to all
phases to handle tables.

CONTROL FIELDS

The three control fields described below
are set up and used by the TAMER routines
as aids in the handling of tables.

Licensed Material - Property of IBM

TIB (Table Information Block)

For each table, there is a TIB in a
fixed location. A TIE may be reassigned
when the table for which it was used is
released. The TIE points to another
control field for that table -- the TAMM
(see below). Each TIB has the following
format:

No. of I
Bytes I 1 3 2 2

I
contents IEntry ITAMM ITable IGrowth

ILengthlAddresslLengthlFactor

Entry Length
number of bytes in a table entry.

TAMM Address
address of the TAMM for the table.

Table Lencrth
number of bytes reguested for the
table (used by the PRIME routine) •

"Growth Factor
not used; a table is always increased
256 bytes at a time.

TAMM (Table Area Mangement Map)

For each table there is a TAMM in a
variable location within a fixed block (the
TAMM block). Each TAMM points to a table
and to the TIE for the table. The format
of a TAI'IH is:

I
No. of 1 1
Bytes 1 3 21 21 4

I I 1
Contents IStatuslTable IN11N21TIB

I Address 1 I I Address
, '"

Status
code indicating the status of the
table:

01

02

Meanincr

Indicates that the table has
been released so that its
area is available as free
area.

Indicates that the table has
been set static so that no
further entries will be made.

Appendix A. Table and Dictionary Handling 425

Licensed Material - Property of IBM

04 Indicates that the table has
been primed so that entries
can be made.

Table Address
address of the first byte of the
table.

If status Is
01

02 or 04

If status Is
01

02

04

TIE Address

Number of bytes used so
far

N2 Is
Length of the freed area

Number of unused bytes
in the table

Number of bytes assigned
to the table

address of the TIB for the table.

Noi~: Since the N1 fi~ld is two bytes
long, the maximum length of any table
handled by TAM1R is limited both by the
amount of storage available to the
programmer and by the maximum size that can
be described in two bytes, or 32K-1
(32,767) bytes. If either limit is
exceeded, compilation will terminate and an
error message will be issued. This
limitation does not apply to the
dictionary, which uses SYS001 as a spill
file, or to the RLDTBL table in phase 60,
or to the CNTLTBL, DATATBL, and OFLOTBL
tables in phase 61 Which are not built by
TAMER and hence are limited only by the
size of storage available.

MASTAM (Master TAMM Table)

The MASTAM contains the characteristics
of the area in storage assigned to TAMER.
The MASTAM has the following format:

426 Appendixes

i

IBeginning of area
I
ILength of area
I
IFirst free byte not used so far
I
ILength of free area left over
I
IFirst TAMM used
I
INext TAMM to be used
I
INumber of dictionary sections within the
I area

HOW SPACE IS ASSIGNED

At the beginning of compilation, the
space between the end of the largest phase
and the beginning of the buffer area is
defined as the main area of storage for
TAMER. The MASTAM is set up for the area.
If more space is needed later on, COBOL
space is allocated (COBOL space is the
difference in length between the longest
phase and the current phase) •

If the next phase to process is larger
than the current phase, the tables which
are to be passed between phases are packed
and moved so that none of them are overlaid
hy the current phase.

Within the TAMER area, the tables start
in lowest storage and the dictionary starts
in highest storage. The TAMMs are assigned
contiquously within the TAMM block, and
their order reflects the storage order of
the tables to which they point.

TAME IN Routine

TAMEIN is the TAMER initialization
routine. It is called during phase 00
before linking to phase 30. It is also
called by Phase 01 (for BASIS or COPY) or
Phase 10. Its operations are as follows:

Phase 01
or 10:

Called before any other TAMER
routine. Sets up the first
MASTAM for the table area
requested at the beginning of
compilation. Sets up a <TAMM and
TIB for the HASH table (see
"ACCESS Dictionary Handling
Routines" at the beginning of
this appendix).

Phase 00: Before phase 30. if the
dictionary was not spilled (that

is, if no dictionary sections
were written on an external
device), no action is taken. If
the dictionary spilled, TAMEIN
calls TBGETSPC which tries to get
more space for dictionary
sections. If space is available,
TBREADIC is called to read back
as many sections as possible.

The calling sequence for TAMEIN is:

L
BALR

PRIME Routine

15,=A (TAMEIN)
14,15

~outine PRIME allocates space to the
table named in the calling sequence. The
following steps are taken in sequence until
the required space is found:

1. A check is made for the required area
in the remaining space of the main
area.

2. A check is made for the required area
in the space made available because of
the release of tables by TAMER
called freed area.

3. An attempt is made to pack the tables
(eliminating the free bytes between
the primed and static tables) to make
the main area larger.

4. A request is made for COBOL space.

5. The primed tables are packed; that is,
all of the unused area minus the
length of one more entry for each
table is considered available.

6. An attempt is made to spill a
dictionary section (write it on an
external device). For steps 5 and 6,
table space is assigned only on a
single-entry basis.

If none of these methods is successful,
compilation cannot continue. If space is
found, a TAMM is created for the new table
(or is just updated in the case of success
in step 2).

The PRIME routine can also be called
internally by other routines just to find
space. In this case, a TAMM is not created
and the calling routine takes whatever
action is necessary.

The calling sequence for PRIME is:

L
L
BALR

1, =A (PARAt1)
15,=A (PRIME)
14,15

Licensed Material - Property of IB~

where PARAM has the following format,
starting on a fullword boundary:

No. of
Bytes

Contents

I

I
1 I 3 2 2

I
IEntry ITIB I Requested I Growth
ILengthlAddresslSize IFactor
I I I

TBGETSPC Routine

Routine TBGETSPC is called by routine
PRIME to obtain COBOL space. The area
between the current starting table address
and the end of the current phase is made
available to TAMER routines.

MOVDIC Routine

Routine MOVDIC reads back into storage a
dictionary section which has been spilled.
First, MOVDIC calls the PRIME routine to
make space available for the section and,
then, reads the section back into the space
made available.

The calling seguence for MOVDIC is:

L
L
BALR

DICSPC Routine

15, =A (MOVDIC)
3,=A(DICOT table entry)
14,15

Routine DICSPC is called only by an
ACCESS routine, and requests space for a
dictionary section. The space is provided
by an internal call to routine PRIME.
Routine PRIME returns t~e starting address
of the section in Register 1 and the ending
address in Register 2.

The calling sequence for DICSPC is:

L
BALR

STATIC Routine

15 ,=A (DICSPC)
14,15

Routine STATIC sets a table static.
This means that no new entries will be made
in the table during the rest of the phase.
It sets the TAMM for the table to static
format, that is, to the form:

Appendix A. Table and Dictionary Handling 427

Licensed Material - Property of IBM

No. of
Bytes

Contents

I

I I
11 3 2 I 2

I I
I021Table IUsed IFree I

IAddresslByteslBytesl
, I , I

The calling sequence to routine STATIC
is:

L
L
BALR

TABREL Routine

1,=A(TIB)
15,=A (STATIC)
14,15

Foutine TABREL releases a table when it
is no longer needed so that its area can be
used as free area. It sets the TAMM for
the table to released format, as follows:

No. of
Bytes

Contents

I I
I 11 3 4
I I
IOllTable IReleasedl
I IAddressl Bytes
I I I

The table address field is set to
Both the TAMM and the TIB for the
table can now be used for another
a call to routine PRIME.

zero.
released
table in

The calling sequence for routine TABREL
is:

L
L
BALR

INSERT Routine

l,=A (TIB)
15,=A (TABREL)
14,15

Routine INSERT provides for inserting an
entry into a table. It adjusts the
displacement field of the TAMM for the
table and returns to the phase the starting
address (in register 2) and the
displacement (in register 3) of the entry.

If the area allocated to the table will
not hold the entry, routine INSERT calls
the PRIME routine to obtain additional
space.

The phases call routine INSERT with the
follo~ing calling sequence:

L
L
BALH

1 ,=A (TIB)
15 y=A (INSERT)
14,15

428 Appendixes

Note: If a table contains variable-length
entries, the entry length specified in the
TIB mllst be changed before a phase calls
routine INSERT. Alternatively, the current
entry length can be placed in register 0
and the entry length field of the TIB set
to O. When this is done, the number of
bytes currently occupied by table entries
is returned to the phase in register 3.

TAMEOP Routine

Routine TAMEOP is called at the end of
every phase to reset TAMER switches. It
also handles the passing of tables between
phases.

The calling sequence for TAMEOP is:

L
BAtR

15,=A (TAMEOP)
1.4,15

TBSPILL Foutine

Routine TBSPILL is called by routine
PRIME, checks for the last dictionary
section (the section in highest storage),
and calls routine TBWRITE to spill it in
order to provide additional storage for
tables. If the section in highest storage
is currently being built, the next-to-last
one will be spilled.

After the dictionary section is spilled,
the TBSPILL routine moves the first section
(the section in lowest storage and,
therefore, closest to the tables) to the
area just freed.

TBWRITE Routine

Routine TBWRITE is called by routine
TBSPILL to spill dictionary sections by
writing them on an external device. the
TBWRITE routine uses the DICOT table to
check and indicate the status of dictionary
sections (see "ACCESS Dictionary Handling
Routines" in this appendix).

If a section has never been spilled,
routine TBWRITE spills it by issuing the
WRITE macro instruction. If a section has
been spilled before, but has been changed
since then, routine TBWRITE issues the
POINTW macro instruction followed by WRITE
to put the fresh copy on the external
device. If a section has been spilled and
has not been changed since then (that is,
an exact copy already exists on an external
device), it is not spilled again.

TEREADIC Routine

Routine TBREADIC is called by routine
MOVDIC to read a dictionary section back
into storage.

GETALL Routine

Routine GETALL is called by the Lister
phases and phases 60 and 61. Its function
is to provide space for a table which may
be in excess of 32K bytes, the normal
maximum size. This routine requests all
available table space in a contiguous area.
This request may be made only when all
current tables have been set static. The
tables are packed, and GETALL passes the

Licensed Material - Property of IBM

startinq address and length of the
remaining table area back to the calling
phase in registers 0 and 1, respectively.

All subsequent use of that area is
handled internally by the phase which
called routine GET ALL, since a call to the
TABREL routine is the only TAMER call which
may legitimately follow a call to GETALL in
the same phase. At the end of the phase
which called routine GE'IALL, the area then
becomes available for normal phase 00
table-handling procedures.

In the event that additional space is
needed after some tables have been
released, a second call to the GETALL
routine is issued. TAMER then packs the
tables again and uses the additional space
obtained to expand the original GETALL
area.

Appendix A. Table and Dictionary Handling 429

Licensed Material - Property of IBM

APPENDIX B: OBJECT MODULE

This appendix describes the object
module produced by the compiler for input
to the linkage editor. The fields in the
object module are shown in Figure 73 as
they appear after linkage editing. The
fields are discussed in separate sections
as they appear in this figure.

r---,
, INIT1 ,
~---~
, WORKING-STORAGE ,
~---~
, DTFs and BUFF~Rs ,

~---~ , TGT ,
~----------------------------~------------~
, PGT ,
~---1
, LITERALS ,
~---~
I REPORT WRITER ,
~---~
, PROCEDURE DIVISION I
, (for sections whose priority is less ,
I than segment limit) ,
~---~
, Q-ROUTINES ,
r---1
, COUNT TABLE ,
~---~
, INIT2 ,
~---1

ll~;=~~~~~~~~"!I!~~;:;;~;~~~;~1
, TRANSIENT AREA I
, (coding for sections whose priority is I
,greater than segment limit and do not ,
'reside in storage throughout the entire ,
,execution of the program; used only for ,
I segmented programs) , l ___ J

Figure 73. Storage Map of Object Module
Fields

INITIALIZATION 1 ROUTINE (INIT1)

The Initialization 1 routine begins at
relative location zero and is constant in
length for every compilation. It performs
the following:

430 Appendixes

1. Saves the calling prograre registers
and the pointer to its Task Global
Table or save area.

2. Sets up address constants for this
program's Task Global Table, Program
Global Table, first instruction to be
executed. and Initialization 1, 2, and
3 routines.

3. Branches to INIT2 if it is a
subprogram, or to INIT3 if it is a
main program.

4. Passes the address of the transient
area to INIT2 in a segmented program.

5. contains a save area so that the
program can be reset to the state 'it
was left in upon re-entry.

6. Branches to ILBVOCO COBOL Library
Subroutine to initialize for
input/output verbs with VSAM files.

The code generated by INIT1 is shown in
Figure 74. The same block of code at the
end of the object module differs in that
the relative addressing of the object
module is here shown in a symbolic manner.

WORKING-STORAGE

This area contains reserved storage for
the working-storage Section of the Data
Division. The data items for which VALUE
clauses were specified have been
initialized.

DTF'S AND BUFFERS

This area contains data areas from the
Data Division, including SDTFs, DTFs ,
record areas, and £uffers. Buffers for the
SORT SDs may be intermixed with DTFs.

TASK GLOBAL TABLE (TGT)

The TGT is used to record and save
information needed during the execution of
the object program. It consists of a fixed
and a variable portion. In the fixed
portion are those fields for which space is
allocated for every object program. The
variable portion is tailored to a
particular object program. The fields in
the TGT are shown in Figure 75 and are
described in alphabetical order following
the table.

Licensed Material - Property of IB~

r--,
I Hexadecimal I
I location I
10000 INITl BALR 15,0 I
I BCR 0,0 I
I STM 0, 14, SAVEPl Save Registers I
I BC 15,TRANOOO I
1000C SAVEPl DS 30F Register Save areas for entryl
I and exit I
I TRANOOO L 12,ADCON003 Load with address of PGT I
I L 14 n =V(ILBDMNSO) Get address of byte MAIN. SUB I
I SWITCH I
I L 13 n ADCON004 Load with address of TGT I
I CLI 0(14),0 I
I BC 7,TRA"l001 Not a main program I
I 01 SWITCH,X'10' Set main program switch I
I (Displacement is 48 (hex) I
I from start of TGT) I
I ~VI 0(14),X'FF' I
I BC 15.I1 TRAN002 i
IOOA4 TRANOOl LM 12,14,SAVEP1+48 For Subroutine; again save I
I STM 14 n 12,12(13) registers to comply with I
I LR 5,13 standard linkage convention I
100AE TRAN002 LM 9,15,ADCONOOO I
I TM SWITCH,X'10' I
I BCR 1,9 For main bypass saving of 13 I
I BCR 15,15 I
I BCR 0,0 I
100BC ADCONOOO DC A(INIT3) I

00D8

100DC
I
IOOEO
I
I
I
I
I
I
I

ADCONOOl DC A(INIT1) I
ADCON002 DC A(INIT1) I

or
DC

ADCON003 DC
ADCON004 DC
ADCON005 DC
ADCON006 DC

DC
or

DC

DC

DC
DC

or
DC

DC

DC

A(SEGMT)
A(PGT)
A (TGT)
A(START)

If program is segmented
I
I
I
I
I
I A (INIT2)

X'C3D6C2C6' COBF corr.piling program-narr.e I

X'CBD6C2D6"

X" FOFOFOFO'

X'NNNNNNNN"
A (BLL2)

X'OOOO'

COBOL compiling program-narre
if compiled with OPT
Version number, level of
modification number
Program-id name
Address of BLL2 if program
has Linkage Section
If program has no Linkage
Section

X'F9F961F9F961F9F9'
Date of compilation

X'F1F242F5F942F5F9'

I
I
I
I
I
I
I
I
I
I
I
I
I

I Time of compilation start I L __ J

Figure 74. INITl coding

Appendix B: Object Module 431

Licensed Material - Property of IBM

r----------------T------------------------,
IRelative Addressl ,
I (Hex) (Dec) I Field I
r----------------+------------------------~
I 0 0 I SAVE AREA I
, 48 72 I SWITCH I
I 4C 76 TALLY ,
I 50 80 SORT SAVE ,
, 54 84 ENTRY-SAVE ,
, 58 88 SORT CORE SIZE ,
I 5C 92 NSTD-REELS ,
, 5E 94 SORT RET ,
, 60 96 WORKING CELLS ,
, 190 400 SORT FILE SIZE
I 194 404 SORT MODE SIZE
, 198 408 PGT-VN TEL
, 19C 412 TGT-VN TEL
I lAO 416 SORTAB ADDRESS
I 1A4 420 ILENGTH OF VN TBL
, 1A6 422 ILENGTH OF SORTAB
, 1A8 424 IPGM ID
I 1BO 432 IA(INIT1)
I 1B4 436 UPS I SWITCHES
I 1BC 444 DEBUG TABLE PTR
, 1CO 448 CURRENT PRIORITY
, 1C1 449 TA LENGTH
, 1C4 452 PROCEDURE BLOCK1 PTR
I 1C8 456 Unused
I 1CC 460 COUNT TABLE ADDRESS
,1DO 464 VSAM SAVE AREA
I 1D4 468 Unused
I 1DC 476 COUNT CHAIN ADDRESS
, lEO 480 Reserved
,lF4 500 OVERFLOW CELLS
I BL CELLS
, DTFADR CELLS
, 'FIB
I !TEMP STORAGE
I ITEMP STORAGE-2
I ITEMP STORAGE-3
I ITEMP STORAGE-4
, IBLL CELLS
, VLC CELLS
I SBL CELLS
I INDEX CELLS
I SUBADR CELLS
I ONCTL CELLS
, PFMCTL CELLS
I ,
I ,
I ,

PFMSAV CELLS
VN CELLS
SAVE AREA = 2
XSASW CELLS
XSA CELLS
PARAM CELLS

, RPTSAV AREA
I CHECKPT CTR
, IOPTR CELLS
, DEBUG TABLE ,
r----------------L------------------------~
'Note: The portion of the TGT following ,
,the OVERFLOW CELLS consists of ,
Ivariable-Iength fields. ,
L ___ J

Figure 75. TGT Fields

432 Appendixes

BL CELLS
Base locators. These are fullwords
containing the addresses of data
areas in object module field DATA.
Phases 22 and 21 assign a ~ase
locator to each block of 4096 bytes
in the Working-storage section and to
each file in the File Section.

BLL CELLS
Base locators for Linkage Section.
These are fullwords containing the
addresses of areas passed as a result
of ENTRY statements, label records,
or the GIVING option in USE ••• ERROR
clauses.

CHECKPT CTR
Four-byte counters used to count the
numbers of records processed for
files for which checkpOints are to be
taken.

COUNT CHAIN ADDRESS
Address of the COUNT CHAIN for this
program. The address is initialized
to zero if COUNT is specified; the
address is filled in at execution
time.

COUNT TABLE ADDRESS
Relative address of the COUNT table
from the beginning of the TGT. The
COUNT table, which is generated by
phase 60 or phase 64 if COUNT is
specified, is located between the
Q-routines, if any, and the INIT2
routine. The count table is used
only when the program terminates.

CURRENT PRIORITY
Priority of the segment currently in
the transient area. If the STATE or
SYMDMP option is specified, the
segmentation subroutine (ILBDSEMO)
inserts the priority in this cell.
It is initialized to 0 by phase 65.

DEBUG TABLE
This table is used by the SYMDMP
(ILBDMP10-ILBDMP25). FLOW (ILBDFLWO),
and STATE (ILBDSTNO) COBOL library
subroutines. It is built by phase
65; the format depends on the options
specified. (See Figure 76: Debug
Table Formats)

DEBUG TABLE PTR
A fullword containing the
displacement from the beginning of
the TGT to the DEBUG TABLE field if
SYMDMP. STATE, or FLOW option was
specified.

DTFADR C~LLS
DTF address. There is one fullword
containing the address in the object
module of each DTF used by the object
module.

ENTRY-SAVE
A 4-byte cell used to save the entry
point of the object program during
INIT2 and INIT3 execution.

FIB

Licensed Material - Property of IBM

File Information Block addresses.
There is one fullword cell pOinting
to the address of the FIB for each
VSAM file. At initialization time,
it is changed to contain the address
of the FIB for that file.

INDEX CELLS
Index-name cells for each index name
in the program.

Appendix B: Object Module 432.1

Licensed Material - Property of IBM

r--------------T--------T-------T---,
I Options I Length I Byte I Contents I

~--------------+--------+-------+---1
I If FLOW is I 4 I 0 I Number of traces requested. I
I specified: I I 1-3 I Address of table area to be used by FLOW subroutine. I

~--------------+--------+-------+---1
I If FLOW and I 24 I 0 I Number of traces requested. I
I STATE are I I 1-3 I Address of table area to be used by FLOW subroutine. I
I specified: I I 4-7 I Address of beginning of Q-routines, or if none, INIT2. I
I I I 8-11 I Size of Declaratives Section within Procedure I
I I I I Division. I
I I I 12-15 I Address of beginning of PROCTAB in object module. I
I I I 16-19 I Address of beginning of SEGINDX in object module. I
I I I 20-23 I Address of end of SEGINDX. I
~--------------t--------+-------+---1
I If FLOW and I 10 I 0-7 I The same as shown for bytes 0-7 for FLOW and STATE. I
I SYMDMP are I I 8-9 I Hashed compilation indicator. See "PROGSUM Table" in I
I specified: I I I "Section 5. Data Areas." I
~--------------+--------+-------+---~
I If STATE is I 20 I 0-19 I The same as shown for bytes 4-23 for FLOW and STATE. I
I specified: I I I I
~--------------t--------+-------+---~
I If SYMDl>iiP I 10 I 0-3 I Unused. I
I only is J I 4-7 I Address of the beginning of Q-routines or, if none, I
I specified: I I I INIT2. I
I I I 8-9 I Hashed compilation indicator. See "PROGSU/yJ Table" in I
I I I I "Section 5. Data Areas." I L ______________ ~ ________ ~ _______ ~ ___ J

Figure 76. Debug Table Formats

A (INITl)
Address of INIT1 for GOBAeK, STOP
RUN, and EXIT PROGRAM instructions,
and for segmented coding.

IOPTR CELLS
Four-byte cells used when SAME RECORD
AREA clause is specified.

LENGTH OF SORTAB
A halfword n reserved but not presently
being used.

LENGTH OF VN TBL
Two-byte field containing the length
of the VNs for the independent
segment.

NSTD-REELS
One-byte field for nonstandard labeled
reels.

ONCTL CELLS
ON control counters. These are
fullwords that control the execution
of ON statements. They are
initialized to zero. There is one
ONCTL. for each ON statement in the
program.

OVERFLOW CELLS
One pointer to each 4096-byte section
after the first in the TGT, if
necessary.

PARAM CELLS
Parameter area, consisting of
fullwords. It contains narameter
lists for certain verb expansions in
the source program. The size of the
parameter area is equal to the largest
number of words required for anyone
verb"s uses.

PFMCTL CELLS
Control counters for PERFORM
statements. PFMCTL cells are
fullwords that control the execution
of PERFORM n TIMES statements. There
is one PFMCTL cell for each PERFORM n
TIMES statement in the program.

PFMSAV CELLS
Saved locations for PERFORM and DEBUG
statements. These are fullwords that
contain addresses which enable the
source program logic to execute
in-line a paragraph that is also the
object of a PERFORM statement. There
is one PFMSAV cell for each PERFORM
statement in the in-line procedure.
In addition. there is one full word to
hold the contents of register 14 upon
entering a debug packet. Debug
packets are called by BALR 14,15.

PGM ID
An 8-character root segment name. It
is used by the COBOL library
subroutine ILBDSEMO to generate names
of nonresident segments.

Appendix B: Object Module 433

Licensed Material - Property of IBM

PGT-VN TBL
A fullword pointer to the VN cells in
the PGT belonging to independent
segment.

PROCEDURE BLOCK1 PTR
A fullword containing the address of
the first PROCEDURE BLOCK CELL in the
PGT.

RPTSAV AREA
six words used to save branch
addresses during the execution of
Report Writer routines, if necessary.

SAVE AREA
Save area for the program.

SAVE AREA=2
Save area pointer provided for label­
and error- processing declaratives.

SBL CELLS
Secondary base locators. These are
fullwords, set by the execution of a
Q-routine. each containing the address
of a field that has a variable
location because it follows a
variable-length field.

SORT CORE SIZE
Four bytes containing the
SORT-CORE-SIZE special register as
specified in the source program.

SORT FILE SIZE
Four bytes containing the
SORT-FILE-SIZE special register as
specified in the source program.

SORT MODE SIZE
Four bytes containing the SORT-MODE
SIZE special register as specified in
the source program.

SORT RET
A halfword containing the return code
from a SORT or MERGE operation.

SORT SAVE
A fullword used to save a GN cell
during the execution of a SORT or
MERGE RETURN statement.

SORTAB ADDRESS
A fullword. reserved but not currently
used.

SUBADR CELLS
Subscript addresses. These are
full words each containing the address
calculated from a subscripted
reference. They are filled in at
execution time, Rot written as text.

434 Appendixes

SWITCH
A fullword switch. Only the following
bits are used.

Bit
-0-

1

2

3

4

5

6

7

8

10

11

15

20
23

24-31

Meaning
Set to 1 if SIZE ERROR for ADD

and SUBTRACT CORRESPONDING
Set to 1 for TRACE READY: set to

o for RESET TRACE
Set to 1 when initialization is

performed for the program
Set to 1 if the program is a main

program: set to 0 if it is a
subprogram

Used for SYMDMP. It is set to 1
by phase 65 if the SYMDMP
option is in effect for the
program. This bit is tested by
the COBOL library Debug Control
subroutine (ILBDDBGO).

Used for FLOW. It is set to 1 by
phase 65 if the flow trace
option is in effect for the
program. This bit is tested by
COBOL library Debug Control
subroutine (ILBDDBGO).

Used for STATE. It is set to 1
by phase 65 if the statement
number option is in effect for
the program. This bit is
tested by the COBOL library
Debug Control subroutine
(ILBDDBGO) •

Used for OPT. Set to 1 by phase
62 if optimization has been
requested for this program.
This bit is tested by the COBOL
library SORT subroutine
ULBDSRTO) •

Used by IBM DOS Subset American
National Standard COBOL
compiler. It is set to 1 in a
SUbset compilation to
differentiate between full and
subset COBOL object programs.

Used for segmentation. Set to 1
by the IBM DOS Subset American
National Standard COBOL
compiler if there is
segmentation in this program.

Used for SORT. Set to 0 for V3
or to 1 for VS.

Set to 1 if OCCURS ••• DEPENDING ON
maximum length is to be
calculated. Set to 0 if
OCCURS ••• DEPENDING ON actual
length is to be calculated.

COUNT switch
Used by ILBDSRTO and ILBDCKPO.

Set to 1 on entry to ILBDSRTO:
set to 0 if checkpoint restart
occurs.

DECIMAL-POINT IS COMMA

'lA LENGTH

TALLY

A halfword initialized by phase 60 to
the length of the largest segment with
a nonzero priority.

A fullword for source program
reference to the TALLY special
register.

TEMP STORAGE
Variable-length cells analogous to
WORKING-CELLS but used by arithmetic
procedure instructions. Each must
start on a doubleword boundary. They
are allocated by phase 50 in blocks of
8 bytes.

TEMP STORAGE-2
variable-length cells analogous to
WORKING CELLS but used by
nonarithmetic procedure instructions.

TEMP STORAGE-3
These cells are the same as TEMPORARY
STORAGE-2, but used for SYNCHRONIZED
clause handling. They start on a
doubleword boundary.

TEMP STORAGE-4
These cells are the same as TEMPORARY
STORAGE-2, but used for table
handling. They start on a doubleword
boundary.

TGT-VN TBL
A fullword pointer to VN cells in the
TGT belonging to the independent
segment.

UPSI SWITCHES
User Program Switch Indicators. This
is an a-byte field containing switches
that can be tested by a problem
program.

VLC CELLS
variable-length cells. These are
halfwords, set by the execution of a
Q-routine, each containing the current
length of a variable-length field.
There is one VLC for each
variable-length field.

VN CELLS
Variable procedure-names. There is
one fullword VN containing the current
address of each procedure-name in the
object module field PROCEDURE that is
altered by an ALTER statement or is
the procedure-name of a paragraph that
follows a paragraph (or a series of
paragraphs) which is in the range of a
PERFORM statement.

VSAM SAVE AREA
Fullword pointer to the save area used

Licensed Material - Property of IBM

by the VSAM COBOL Library Subroutines
(ILBDVOCO and ILBDVIOO).

WORKING CELLS
Variable-length celis used by COBOL
library subroutines called by the
generated code. The total length of
the field is 304 bytes.

XSA CELLS
EXHIBIT saved areas. These are
variable in length and are referred to
in the coding generated for an EXHIBIT
statewent with a CHANGED option.
There is one XSA for each operand to
be exhibited with a CHANGED option in
the in-line procedure. These areas
are also used for SORT and RELEASE
verbs.

XSASW CELLS
One-byte EXHIBIT switches. These are
used as first-time switches for the
coding generated for the EXHIBIT
CHANGED statement. They are also used
in miscellaneous cases of SORT
statements and special cases of ON
statements.

PROG~j GLOBAL TABLE (PGT)

The Program Global Table contains
address constants and literals referred to
by procedure instructions. The fields are
shown in Figure 77.

r---,
DEBUG LINKAGE AREA I
COUNT LINKAGE AREA I
OVERFLOW CELLS I
VIRTUAL CELLS I
PROCEDURE NAME CELLS I
GENERATED NAME CELLS I
SUBDTF ADDRESS CELLS I
VNI CELLS I
LITERALS
DISPLAY LITERALS
PROCEDURE BLOCK CELLS

I
I
I ___ J

Figure 77. PGT Fields

DEBUG LINKAGE AREA
Eight-byte area which contains the
linkage for dynamic dumps. The area
contains the following code:

L 11,=V(ILBDDBG5)
BR 11
(2 slack bytes)

If the SYMDMP option is not specified,
this 8-byte area does not exist.

COUNT LINKAGE AREA
Eight-byte area which contains the

Appendix B: Object Module 435

Licensed Material - Property of IBM

linkage to the COUNT routine. If the
COUNT option is not specified, this
8-byte area does not exist. The area
contains the following code:

L 15,=V(ILBDC710)
BR 15
DC 1H'0'

OVERFLOW CELLS
One pOinter to each 4096-byte section
after the first in the Program Global
Table.

VIRTUAL C);'LLS
A virtual is a fullword containinq the
address of each unique external
procedure (the result of an ESD and
RLD in the object module). It is
required because of a CALL statement
to the external procedure or a branch
to a COBOL library subroutine.

PROCEDURE NAME CELLS
Source procedure-names. Each PN cell
is a fullword containing the address
of an instruction. It corresponds to
the procedure-name in the source
program, except that a source proqram
procedure-name which is not referenced
is not assigned a PN. when OPT has
been specified on the CBL card, only
those PNs associated with ALTER and
DECLARATIVES references receive PN
cells.

GENERATED NAME CELLS
Compiler generated procedure-names.
Each GN cell is a fullword containing
the address of an instruction. The
compiler assigns a GN wherever
necessary in order to branch around
generated code statements. When OPT
has. been specified on the CBL card,
only those GNs associated with AT END
and INVALID KEY receive GN cells.

SUBDTF ADDRESS CELLS
SDTF addresses. Each SDTFADR is a
fullword containing the address of an
SDTF in the "DTFs and BUFFERs" field
of the Object Module. There is one
SDTFADR cell for each SDTF generated
by the compiler.

VNI CELLS
Variable procedure-name initialization
cells. There is one VN for each
variable procedure-name. It cbntains
the initial address and is used to
initialize the VN locations in the
Task Global Table.

LITERALS
Literals that are referred to by
instructions. Duplicate literals are
deleted during phase 60 or 62
processing. The literals are variable
in length.

DISPLAY LITERALS
Literals that are referred to by
calling sequences, rather than by
instructions. Duplicate literals are
delet~1 during phase 60 or 62
processing. The literals are variable
in length.

PROCEDURE BLOCK CELLS
Each cell is a full word containing the
address of a Procedure Block. The
compiler assigns these cells when OPT
is specified.

REPORT WRITER

See "Appendix C: Report Writer
Subprogram."

PROCEDURE DIVISION

This area contains the generated code
for the Procedure Division of the source
program. If the program is segmented, the
root segment is loaded here (see "Transient
Area" in this appendix).

Q-ROUTINES

Q-routines are special routines
qenerated for data items described by the
aCCURS ••• DEPENDING ON option. The function
of these routines is to update the length

r---,
IINIT2 ST 13,008(0,5) For subroutine only; chain I
I ST 5,004(0,13) save area of called and calling programs. I
I L 2,=V(ILBDMNSO) In case program was entered I
I CLI 0(2),X'00' from a secondary entry point, I
I BCR 7,9 check whether it is a main I
I MVI 0(2),X'FF' or a subprogram. I
I 01 SWITCH,X"10' I L ___ J

Figure 78. INIT2 Coding

436 Appendixes

of the variable-length data item when that
length changes and to update the location
of the field which follows it. The actual
output of a Q-routine is a new value in the
appropriate VLC cell of the TGT and the
corresponding SBL cell (see the description
of the TGT in this chapter for the meaning
of these cells).

The Q-routine only updates the pOinters;
it does not change the contents of the data
area involved. For this reason, if the
OCCURS .•• DEPENDING ON area is followed by
another fiel~ within the same 01-level item
and if the OCCURS ••• DEPENDING O(-l area
becomes longer, the information that had
immediately follO\-Jed the area before it
changed is now no longer accessible. The
pointer to it in the SBL has been moved.
The source programmer can avoid a loss of
data by moving it out of the SBL field
before any change in the value of the
DEPENDING ON object and moving it back
after the change. This problem does not
arise between one 01-level item and the
next, because each 01 field of data is
allocated enough space for the maximum
number of occurrences.

The generating of Q-routines is
discussed under "Q-routine Generation" in
the Phase 22 chapter.

COUNT TABLE

The COUNT table is used by the COBOL
library subroutine ILBOTC30. It contains
entries for each procedure-name and source
verb. Tnis table is present only if COUNT
was specified. The format of each entry
is:

Byte
o

1

*2-4
*5-6

Contents
Identification code

Code
(i()

01
02

Meaning
end of table
procedure-id
verb-id

Length of entry. If byte 0
contains 00, this byte
contains zero.
Card number
Block number
If byte 0 contains 01, these
bytes contain zeros.
If byte 0 contains 02. the
block number of the count
block for executable verbs;
the count block is 00 for

*This field is not present if byte 0
contains 00.

Licensed Material - Property of IBM

non-executable verbs.
*7 If byte 0 contains 02, the

verb number (PL-code)

or

*7 to n+l If byte 0 contains 01, the
EBCDIC name of the procedure

INITIALIZATION 2 ROUTINE (INIT2)

The Initialization 2 routine is
generated by phase 60 or 64 and performs
the following operations:

1. Stores the address of the Task Global
Table for this program (pointed to by
register 13) into the Save Area of the
Task Global Table of the calling
program.

2. Stores the location of the Save Area
of the Task Global Table of the
calling program into the Save Area of
this program's Task Global Table.

3. Determines if this module is a main
program or a subprogram in the run
unit and sets a switch accordingly.

The code generated by INIT2 is shown in
Figure 78. Symbolic addressing has been
substituted in some instru'ctions (see the
INITl coding above).

INITIALIZATION 3 ROUTINE (INIT3)

The Initialization 3 routine is executed
whenever the program is entered. It is
generated by phase 60 or 64 and immediately
checks the SWITCH field in the TGT to
determine whether this is the first time
the module was entered. If so. it performs
the following operations:

1. Initialize the VN locations in the
Task Global Table from the associated
VN locations in the Prograrr. Global
Table.

2. Relocate each address cO'nstant in the
Task Global Table and the Program
Global Table to its absolute location.
(Before the execution of this routine,
the addresses are relative to the
beginning of the program.) The
relocation of the address constants
for this program (or for only the root
segment in a segmented program) is
done by adding the absolute location
of the first instruction in the
program (Initialization 1 routine).
which is in general register 11. to
the relative addresses. If the high

Appendix B: Object Module 437

Licensed Material - Property of IBM

(

byte of an ADCON is not zero, the
address of the transient area
(contained in register 10) is used as
a relocation factor. If OPT is
specified, the addresses contained in
the PROCEDURE BLOCK CELLS in the PGT
are processed as follows: If the
program is not segmented, RLD-text is
generated for the PROCEDURE BLOCK
CELLS. If the program is segmented.,
all PROCEDURE BLOCK CELLS are
relocated by INIT3.

3. Load and BALR to the addresses of
Q-routines to initialize the VLC and
SBL cells in the TGT for OCCURS •••
DEPENDING ON fields that depend on an
item in Working-Storage.

4. Load permanent base registers for BLs
assigned to the program and, if OPT is
specified, for BLs, BLLs and OVERFLOW
CELLS.

5. Branch either to the first executable
instruction of the object program, or
to the instruction following the BALR
to the Initialization 2 routine in the
coding generated for an ENTRY
statement.

6. If the module was entered previously,
INI~3 resets the program to the state
it was left in the last time it was
exited (from the register save area in
INITl) •

The code g€nerated by INIT3 is shown in
Figure 79. Symbolic addressing has been
substituted in some instructions (see the
INIT1 coding above).

FLOW TRACE TABLE

The Flow trace table is used by the
COBOL liorary subroutine (ILBDFLWO), if
FLOW has been specified.

438 Appendixes

The compiler only allocates the area for
the table, the size of which is dependent
on the number (n[n]) of traces requested;
the COBOL library subroutine ULBDFLWO)
makes the entries in the table.

PROCTAB TABLE (PROCTAB)

The PROCTAB table is used by the COBOL
library subroutine (ILBDS~NO). It contains
entries for all the card numbers and verb
numbers in the COBOL program. ~he format
of each entry is:

Byte Contents
0-2 Card number and verb number. The

verb number is contained in the
last 4 bits of byte 2.

3-4 Displacement of the verb within
the program fragment.

SEGINDX TABLE (SEGINDX)

The SEGINDX table is used by the COBOL
library subroutine (ILBDSTNO). It contains
an entry for each fragment of the program;
these entries are wirtten in ascending
order of priority in the object module.
~he format of each entry is:

Byte
o
1-3
4-6

7-9

Contents
Priority.
Program fragment address.
Displacement from start of

PROCTAB table of first PROCTAB
entry for this program
fragment.

Displacement from start of
PROCTAB table of last PROCTAE
entry for this program
fragment.

Licensed Material - Property of IBM

r---,
IINIT3 ST 14,0054(0,13) Save entry point to go to after INIT3 I
I (See Note) I
I BALR 15,0 I
I TM SWITCH,X·20·
I BC 14,TRAN003 Register 11 used as base
I L O,SAVEP1+48
I LM 2,13#SAVEP1+50 Restore registers to what they were on last exit
I L 14,0054(0,13)
I BCR 15,14
TRAN003 01 SWITCH,X·20'

LA 6,4

Relocate OVERFLOW, PN, GN, SUBDTF, and VNI cells of the PGT.

If OPT is specified and the program is segmented, relocate all PROCEDURE BLOCK
CELLS in the PGT.

Relocate OVERFLOW, BL, and DTFADR cells of the TGT.

Call Q-routine for OCCURS ••• DEP~NDING ON fields which have their object in
Working-Storage.

Load base locators.

Call initialization of checkpoint routine.

L 14,0054(13)
BCR 15,14

~~--1
Iclote: If the SYMDMP, FLOW~ STATE, or COUNT option is in effect, the following ,
,instructions are interposed between the first instruction (ST 14,0054,(0,13» and ,
,the second instruction (BALR 15,0) of INIT3 coding. ,
I I
I L 15,=V<ILBDDBGO) ,
I BALR 14,15 ,
I ,
lIn addition, if COUNT is in effect. the f~llowing instruction is added after the BALR: , , ,
I DC H 'number of verbs blocks' , L ___ J

Figure 79. INIT3 coding

TRANSIENT AREA (SEGMENTED PROGRAM)

This area contains object modules of
program segments of a higher priority than
the segment limit (49 by default). The
segments are compiled in ascending order of
priority number. and the root segment is
compiled last. If OPT is specified, Phase

64 compiles the root segment first and then
the other seaments. (The root segment is
stored in the Procedure Division area of
the object module, as explained above.)
Assuming the name of the program is
SORTEST, and the segments are of priorities
51, 52, and 00 the object module produced
by the compiler has the following format:

Appendix B: Object Module 438.1

ROOT SEGMENT

INDEPENDENT
SRGMFNT

INDEPENDENT
SEGMENT

PRASE SORTEST.ROOT
(Object deck for the root
segment)

PHASE SOFTES51,*
(Object deck for segment of
priority 51)

PHASE SORTES52,SORTES51
(Object deck for segment of
priority 52)
ENTRY SORTEST

If no root segment is specified, one is
generated by the compiler.

Licensed Material - Property of IBM

A root segment consists of the Data
Division specified areas, including Report
Writer routines, O-routine~, Global Tables,
INIT1, INIT2, INIT3, and Procedure Division
coding for sections of a priority less than
the seqment limit.

Each nonresident segment will be loaded
into the transient area when necessary.
The transient area is large enough to
accommodate thE. largest segment with a
nonzero priority.

Appendix B: Object Module 439

Licensed Material - Property of IBM

APPENDIX C: REPORT WP.ITEP SUBPROGRAM

This appendix describes the Report
Writer subproqram (RWS), its structure,
elements, and response to verbs in the
Procedure Division. The RWS is generated
by phase 12 from statements in the Report
Section of the Data Division. The
operation of phase 12 and associated
activities in other phases are described in
the "Phase 12" chapter.

If OPT is specified, the code generated
for the Report Writer Subprogram is
optimized for procedure-name addressability
and register usage by phase~ 62, 63, and 64
in the same manner as the code generated
for the other parts of the Procedure
Division is optimized. The operation of
phases 62, 63 and 64 is described in the
chapters "Phase 62," "Phase 63," and "Phase
64."

STRUCTURE OF THE REPORT WRITER SUBPROGRAM
.1!lli2L

Each RWS is a complete subprogram which,
when executed, produces a report according
to the specifications coded in one RD
statement and its associated group and
elementary items. The RWS has a fixed
logical structure; that is, it contains
fixed, parametric, and group routines in a
prescribed order and quantity. In certain
cases, dummy routines are inserted to
maintain the structure. The RWS produced
contains all linkages and exits needed.
Each routine refers to the compiler­
generated card number of its respective RD.
This is reflected when LISTX is in effect.
Figure 80 shows the logic of a Report
Writer Subprogram. The coding in the boxes
is intended to be indicative rather than
comprehensive.

ELEMENTS OF A REPORT WRITER SUBPROGRAM
l.RWS)

An RWS includes data items and three
types of routines: fixed, parametric, and
group. The data items are assigned special
data-names; these can be either COBOL
words, which may be used in the source
program, or nonstandard words, which may
not. These routines and data-names are
discussed below, together with the special
internal Report Writer verbs generated by
the compiler.

440 Appendixes

FIXED ROUTINES

Fixed routines never vary in logical
content. Phase 12 generates one and only
one copy of each of them after all of the
statements under an RD have been sca~ned.
The three fixed routines are 1ST-ROUT,
LST-ROUT, and WRT-ROUT.

1ST-ROUT Routine

This routine causes the first headings
to be printed by calling on the RPR-ROUT
and the CHF-ROUT routines. Routine
1ST-ROUT is executed when either GENERATE
Report-name or the first occurrence of
GENERATE Detail-name is encountered.

LST-ROUT Routine

This routine terminates the report. It
causes the highest-level control break (by
setting CTL.LVL to 1) and then causes the
final footings to be printed by calling
routines CFF-ROUT and RPF-ROUT. Routine
LST-ROUT transfers control to LAST-ROLL,
which provides return linkage to the main
program. (LAST-ROLL is the name of a STORE
instruction located just before the
ROL-ROUT routine. It is not itself an RWS
routine.) control then falls through to
the FOL-ROUT routine.

WRT-ROUT Routine

This routine writes a record from the
output work area, RPT.RCD. It then moves
blanks to CTL.CHR and to RPT.LIN. This
routine contains two sets of coding if the
program specifies two output files. The
programmer may suppress printing of a line
by coding "MOVE 1 TO PRINT-SWITCH".

PARA~ETRIC ROUTINES

Parametric routines are generally fixed
in structure but vary according to the data
obtained from the source (01-49 level)
statements. They may also include

statements or blocks of statements that are
repeated as needed. Except as noted under
USM-ROUT, RLS-ROUT, and ALS-ROOT, the RWS
contains one and only one copy of each
parametric routine. The nine parametric
routines are discussed in the following
paragraphs.

USM-ROUT Routine

This routine adds the operands of all
SOM clauses that either have UPON (this
detail-name) or that appear as SOORCE items
in a TYPE IS DETAIL group to as many
:::um-buckets as required. A sum-buc]cet is a
work area which may be given a data-name by
the programmer or else is assigned an
S-point name by the compiler. (S-point
names are described under "Nonstandard
Data-names" in this appendix.) Phase 12
generates one OSM-ROUT routine for each
DET-ROOT routine. If there is no DET-ROUT
routine in an RWS, no USM-ROUT routine is
generated.

CTB-ROOT Routine

This routine acts as a control break
supervisor. It tests for a change in value
of a control field, always beginning with
the hiqhest level and continuing until
either the lowest level is tested or a
control break occurs. A break causes
control to be passed to the ROL-ROOT
routine, leaving the current control level"
number in location CTL.LVL. The CTB-ROUT
routine contains one block of coding for
each control level.

ROL-ROOT Routine

This routine adds SUM-clause operands
originally defined in another control
group. It starts with the lowest level and
continues until the level number of the
current hlock is equal to the value found
in CTL.LVL. At this point, control is
transferred to the lowest level CTF-ROUT
rOU~1ne. Routine ROL-ROUT contains one
block of coding for each control level.

Licensed Material - Property of IBM

RST-ROUT Routine

This routine moves the current contents
of sum-buckets to control-field save areas
and sets the sum-buckets to zero for all
control levels just processed by the
ROL-ROUT routine. The RST-ROUT routine
contains one block of coding for each
control level. When the level number of
the block being executed is equal to the
value in CTL.LVL, control is returned to
the routine that called the CTB-ROOT
routine.

SAY-ROUT Routin~

This routine moves the current control
name contents to a save-area and the
previous control name values to the current
control names.

RET-ROUT Routine

This routine resets the control nameE'; to
their current values.

Note: Routines SAY-ROUT and RET-ROUT are
used only when processing TYPE IS CONTROL
FOOTING or TYPE IS CONTROL FOOTING FINAL
report groups. Therefore, any source
control name areas contain the previous
value (i.e., the value prior to the control
break) •

INT-ROUT Routine

This routine sets initial values of all
switches, counters, and SUM-names
(data-names or S-point names). Routine
INT-ROUT is called when an initiate
statement is encountered.

ALS-ROUT Routine

This routine determines the line spacing
for absolute lines. The ALS-ROUT routine
is generated only if the RD entry contains
a PAGE LIMIT clause.

Appendix C: Report writer Subprogram 441

Licensed Material - Property of IBM

(INITIATE report-name)

REPORT-CAllINT-ROUT'----------------+-.. -0
(GENERATE report-name)

REPORT-CAllIST-ROUT'----------------4---.<
REPORT-CAll CTB-ROUT'----------------+--~f__(
REPORT-CAll USM-ROUT (for each detail in report, in order of sequence)I-+----1~

(GENERATE detail-name)

REPORT-CAll DET-ROUT (for this detail)I-----------+---8

(TERMINATE report-name)

REPORT-CAll LST-ROUT I
I

?
1ST-ROUT 5B lST-ROUT --

REPORT-SAVE-2 REPORT -SAVE-6
IF FRS,GEN NOT = 0 IF FRS. GEN = 0
REPORT-RETURN-2. REPORT-RETURN-6.
REPORT-CAll WRT-ROUT MOVE 1 to CTl. lVl, TER. COD
MOVE 1 TO FRS.GEN REPORT-CAll (LAST -ROlL)

*MOVE 1 TO PAGE-COUNTER REPORT-CAll CFF-ROUT
REPORT-CALL RPH-ROUT MOVE 2 TO TER. COD
REPORT-CAll CHF-ROUT- REPORT-CAll PGF-ROUT
REPORT -RETURN-2 GO TO RPF-ROUT

• RPF-ROUT

CHF-ROUT 02-cading
REPORT-CAll WRT-ROUT

REPORT -SAVE-3 REPORT - RETURN-6
02-coding

GO TO CTH-ROUT (highest
leveQ or (if no .. ,

5A controls exist)
REPORT-RETURN-3 PGH-ROUT

02-coding
IF lIN.SAV = 0, GO TO

• (GNNN) ELSE MOVE
lIN.SAV TO ABS.lIN

RPH-ROUT * REPORT -CALL ALS-ROUT-

~
REPORT-CAll WRT-ROUT-

REPORT-SAVE-4 (GNNN)
02-coding MOVE 0 TO lIN.SAV,

GO TO PGH-ROUT FRS.GRP, GRP.IND
REPO RT - RETURN-4

*Generated only if there is a PAGE clause.

(LAST-ROll)

REPORT-SAVE-2, then
fa II through to
ROl-ROUT routine I

! ~
CFF-ROUT

REPORT -SAVE-3
02-coding

REPORT-RETURN-3

~
PGF-ROUT

REPORT-SAVE-4
02-coding

IF TER.COD = 2 REPORT-
RETURN-4.

REPORT -CAll WRT -ROUT
GO TO PG H-ROUT--,

I

5B

Figure 80. Logic of the Generated Feport Writer subprogram (Part 1 of 4)

UU2 JI.ppendixes

Licensed Material - Property of IBM

DET -ROUT (for this detail group)

REPORT-SAVE-l

REPORT-CALL lST-ROUT---II-t{2)l
REPORT-CALL CTB-ROUT--t--....;::: =------------, 2

REPORT-CALL USM-ROUT--+-.......,
02-coding

REPO RT - RETURN-l

3

USM-ROUT (for this DET-ROUn

REPORT-SAVE-2
for each statement with UPON
clause whose object is this
DE and each statement with
SOURCE-SUM correlation:

ADD operand TO sum bucket.

(may be more than one operand
or sum bucket)

REPORT-RETURN-2

·Source-control is the name
specified in the CONTROL
clouse of the source program.

··Control-field save area name.

CTB-ROUT

REPORT-SAVE-2
MOVE 0 TO
CTL.LVL. IF FRS.GEN NOT = 2 k0
MOVE 2 TO FRS.GEN GO TO RST-ROUT 8

(highest level)

one set
per
control
level

ADD 1 TO cn. LVL
IF source-control'
NOT = -nnnn*'
MOVE 0 TO GRP.IND
GO TO ROL-ROUT ----+-...,

(after lowest level)

REPORT-RETURN-2

one set
per
control
level

4

ROL-ROUT

(lowest level)

ADD (this level bucket)
TO (higher level bucket)
IF (this level-number) =

Cn.LVL
RPT-CALL SAV-ROUT--+--t 1l
GO TO (lowest level)
CTF-ROUT

(next-higher level)

REPORT-RETURN-2

7

Figure 80. Logic of the Generated Report writer Subprogram (Part 2 of 4)

Appendix C: Report writer Subprogram 443

Licensed Material - Property of IBM

RST-ROUT

{lowest level}
IF FRS.GEN=I RPT-RETURN-3.
MOVE 0 TO sum bucket.
MOVE source-control**TO

-nnnn.***
IF this level number=CTl. LVL
REPORT-RETURN-2.
(next higher level)

REPO RT - RETURN-2

If 2 files,
code
repeated

(GNAA)
If 2 files,
code
repeated

WRT-ROUT

RPT-SAVE-5
WRITE FILE-NAME RECORD-NAME
(-nnnn) FROM RPT. RCD AFTER
ADVANCING lIN.NUM LINES
GO TO (GNBB).

RPT-SAVE-5
WRITE FILE-NAME RECORD-NAME
(-nnnn) FROM RPT. RCD AFTER
ADVANCING COl LINES.

MOVE 0 TO LINE-COUNTER
ADD I TO PAGE-COUNTER. *

(GNBB) MOVE SPACES TO RPT. LIN
MOVE 0 TO LIN. NUM
RPT - RETURN-5

Note: All calls of the WRT-ROUT routine are
not shown. Other routines call it as
often as necessary to print all output
lines to be produced.

*Generated only if there is a PAGE clause.
**Source-control is the name spec ified in the

CONTROL clause of the source program.
*** Control-field save orea name.

~
CTF-ROUT (lowest level)

02-coding
IF (this level number)=CTl.LVL

RPT-CALL RET-ROUT
GO TO (this level) CTH-ROUT.
GO TO (next higher level) CTF-ROUT

CTF-ROUT (highest level)

RPT-CALL RET-ROUT
IF TER.COD=O GO TO
CTH (highest level).
GO TO RST-ROUT.

CTH-ROUT (highest level)

: -,
I~TH-ROUT (control breok level) JJ

02-coding
GO TO (next lower level) CTH-ROU

CTH-ROUT (next lower level)

CTH-ROUT {lowest level}
GO TO RST-ROUT.

Figure 80. Logic of the Generated Report Writer Subprogram (Part 3 of 4)

444 Appendixes

12

12

8

8

ALS-ROUT*

REPORT-SAVE-5
IF LINE-COUNTER = 0 MOVE 1 TO

LINE-COUNTER.
MOVE 1 TO FRS.GRP
SUBTRACT LINE-COUNTER FROM

ABS. LIN GIVING LIN. NUM
MOVE ABS. LIN TO LINE-COUNTER.
REPORT-RETURN-5

RLS-ROUT*

REPO RT -SA V ~-5
IF LINE-COUNTER = 0 MOVE 1 TO

LINE-COUNTER.
IF LINE-COUNTER LESS THAN

(integer for FIRST DETAIL)
SUBTRACT LINE-COUNTER FROM

(FIRST DETAIL MINUS 1) GIVING LlN.NUM
MOVE (FIRST DETAIL MINUS 1)
TO LINE-COUNTER.

IF FRS.GRP = 0 ADD 1 TO
LINE-COUNTER ADD 1 TO
LlN.NUM.

REPORT -RETURN-5

Note: Not all calls to ALS-ROUT and
RLS-ROUT are shown since each routine
will be called as many times as necessary
ta determine line spacing.

*Generated only if there is a PAGE clause.
"*Source-contral is the name specified in the

CONTROL clause of the source program.
***Control-field save area name.

One for
each
control

One for
each
control

Licensed Material - Property of IBM

SAV-ROUT

REPORT-SAVE-5
MOVE source-control"* (CTB

va lue) TO -nnnn*"*
MOVE -nnnn+l

(va lue previaus to CTB)
TO source-contra I.

REPORT-RETURN-5

RET-ROUT

REPORT -SAVE-5
MOVE -nnnn*** TO

source-control. **

REPO RT -RETURN-5

INT-ROUT

REPORT -SAVE-2
MOVE 0 TO ClL. LVL, PRINT SWITCH,

GRP.IND, FRS.GEN, TER.COD,
FRS.GRP, LlN.NUM, ABS.LlN,
LlN.SAV, & all sum caunters

*MOVE 0 TO LINE-COUNTER
*MOVE 1 TO PAGE-COUNTER

REPORT - RETURN-2

Figure 80. Logic of the Generated Report Writer Subprogram (Part 4 of 4)

Appendix C: Feport Writer Subprogram 445

Licensed Material - Property of IBM

ELS-ROUT Routine

This routine determines the line spacing
for relative lines. Routine RLS-ROUT is
generated only if the RD entry contains a
PAGE LIMIT clause.

GROUP ROUTINES

Phase 12 generates one group routine for
each 01-level record description
encountered. The group routine selected is
determined by the TYPE clause of the
01-level statement. The coding within the
routine varies according to the 01-Q9-level
statements associated with it. An 01-level
elementary item contains all necessary
information and hence results in a complete
group routine.

If any of the group routines, except as
discussed under DET-ROUT, CTH-ROUT, and
CTF-ROUT routines, is not generated because
there is no corresponding 01-level
statement, phase 12 supplies a dummy
routine to maintain the fixed logical
structure of the RWS. The nine group
routines are discussed in the following
paragraphs.

RPH-ROUT Routine

This routine produces the report
headinq. There is one RPH-ROUT routine in
an RWS; it results from a TYPE IS REPORT
HEADING group.

RPF-ROUT Routine

This routine produces the report
footing. There is one RPF-ROUT routine in
an RWS; it results from a TYPE IS REPORT

.FOOTING group.

crR-ROUT Routine

This routine produces the control
headings. There is one CTH-ROUT routine
for each control (except FINAL) in the
source program. It results from a TYPE IS
CONTROL READING group. If there is no such
group, a dummy CTH-ROUT routine is
generated for each control below the
highest (FINAL) level. If, however, there
are no controls (again, except FINAL) ,

446 Appendixes

there is neither an actual nor a dummy
CTH-ROUT routine generated.

CTF-ROUT Routine

This routine produces the control
footings. There-is one CTF-ROUT routine
for each control (except FINAL) in the
source program. It results from a TYPE IS
CONTROL FOOTING group. If there is no such
group, a dummy CTF-ROUT routine is
generated for each control below the
highest (FINAL) level. If, however, there
are no controls (again, except FINAL),
there is neither an actual nor a dummy
CTF-ROUT routine generated.

CHF-ROUT Routine

This routine produces the heading for
the highest (FINAL) level control. There
is one CHF-ROUT routine in an RWS. It
results from a TYPE IS CONTROL HEADING
FINAL group. If there is no such group
defined, or if there is no CONTROL clause
in the program, a dummy CHF-ROUT routine is
generated.

CFF-ROUT Routine

This routine produces the footing for
the highest (P~NAL) level control. There
is one CFF-ROUT routine in an RWS. It
results from a TYPE IS CONTROL FOOTING
FINAL group. If there is no such group
defined or if there is no CONTROL clause in
the program, a dummy CFF-ROUT routine is
generated.

PGH-ROlTT Routine

This routine produce~ the page headings.
There is one PGH-ROUT routine in an RWS; it
results from a TYPE IS PAGE HEADING group.

PGF-ROUT Routine

This routine produces the page footings.
There is one PGF-ROUT routine in an RWS; it
results from a TYPE IS PAGE FOOTING group.

DET-ROUT Routine

This routine produces a detail line (or
group of lines) of the report. There is
one DFT-FOUT routine for each TYPE IS
DETAIL group. If there is no such group in
the source progra~, there is neither an
actual nor a dummy DET-ROUT routine
generated.

DATA-NA!!ES

Report Writer data-names are generated
to identify counters, switches, and control
fields. ~'here are two types of data-names
used in an RWS, COBOL word data-names and
nonstandard data-names.

COBOL Word Data-names

The COBOL word data-names follow the
rules for coding COBOL names and are
accessible to the source programmer. They
are PAGE-COUNTER, I.INE-COUNTER, and
PRINT-SWITCH.

PAGE-COUNTER: A counter generated only if
there is a PAGE LIMIT clause in the RD
entry. There can be only one PAGE-COUNTER
in an RWS. If present, it is initialized
to 1 by the INT-ROUT routine and used by
the WRT-ROUT routine. .

LINE-COUNTER: A counter generated only if
there is a PAGE LIMIT clause in the RD
entry. There can be only one LINE-COUNTER
in an RWS. If present, it is initialized
to zero by the INT-ROUT routine and reset
to zero by the WRT-ROUT routine for each
new page.

PRINT-SWITCH: A 1-byte switch generated by
Phase 12 for any program that contains a
Report Section. (It may then be used by
any RWS generated for that program.) It is
set to 0 by the INT-ROUT routine,
indicating that the current line is to be
printed. The source programmer can use
PRINT-SWITCH to suppress printing of a
report group by coding "MOVE 1 TO
PRINT-SWITCH".

Nonstandard Data-names

The nonstandard data-names contain the
special character 11.11 or begin with a
hyphen; they cannot, therefore, be used by
the programmer. Data-names in the form,
II-.nnnn ll (for example, E.0001) and
control-field save area names have no limit

Licens~d Material - Property of IB!!

and are uniquely numbered; the other nine
appear once per report. The nonstandard
data-names are:

CTL.LVL: A counter used by the CTP.-ROUT,
ROL-ROUT, CTF-ROUT, and RST-ROUT routines
to coordinate control break activities. It
is initialized to 0 by the INT-ROUT routine
and set to 1 by the LST-~O"! routine.

FRS.GEN: A one-byte switch used by the
1ST-ROUT and CTB-ROUT routines to ensure
that routine 1ST-ROUT is executed once
only. After the 1ST-ROUT routine is
finished, FRS.GEN has a value of 1; after
routine CTB-ROUT is executed, the value is
2. FRS.GEN is also tested by routine
LST-ROOT to determine whether a TER!!INATE
was coded without an earlier GENERATE.

GRP.INn: ~ wor~ area consisting of 1-byte
switches. There is one switch for each
GROUP INDICATE clause in a TYPE IS DE!AIL
group. The switches are turned on by the
CTB-ROUT routine and individually tested by
DET-ROUT routines after control or page
break activities so that items specified in
a GROUP INDICATE clause will be moved to
the output line work area. The switches
may be treated as a group or individually,
as follows:

a. GRP.TND: Group name (01-level)
for a set of GF.nnnn names. It is
set to 0 after a page or control
break hy the PGH-ROUT or the
CTB-ROUT routine.

h. GP.nnnn: Elementary names
(02-level) following the GRP.IND.

They are tested and, if zero, set
to 1 by the DET-ROUT routine for a
~pecific TYPE IS DETAIL group.
Each GP.nnnn represents one 1-byte
switch.

TER.COD: A 1-byte switch tested by the
PGF-ROUT routine to prevent printing of an
extra.page heading, and by the CTF-ROUT
routine (highest level) to determine if
control headings should be produced. It is
initialized to 0 by the INT-ROUT routine
and set to 1 by the LST-ROUT routine.

RPT.RCD: The work area for the record
containing the output print line. It is
133 bytes long and consists of either two
or three parts (CODE-Cell is optional) in
the following order: CODE-Cell, a 1-byte
cell used to hold the code specified in the
CODE clause of the RD statement and defined
in the SPECIAL-NAMES paragraph; CTL.CHR, a
1-byte cell used to hold the carriage
control character; and RPT.LIN, which
contains the actual output print line.
Note that, if there is no CODE clause,
there will be no CODE-Cell and RPT.LIN will

Appendix C: Report writer Subprogram 447

Licensed Material - Property of IBM

be 132 bytes. The equivalent COBOL coding
for the RPT.RCD group would be:

01 RPT.RCD.
02 FILLER PICTURE X VALUE code.
02 CTL.CHR PICTURE X VALUE SPACE.
02 RPT.LIN PICTURE X(131) VALUE SPACE.

ABS.LIN: ~ 2-byte counter used by the
ALS-ROUT routine for absolute line spacing.
It is initialized to 0 by the INT-ROUT
routine and set to the appropriate value as
report lines are produced. It is set,
therefore, by all group routines generated
as a result of source statements, but not
by dummy group routines.

LIN.SAV: A 2-byte save area. It contains
either zero or an absolute line to be
skipped to after a page heading is
produced. If a Control Footing, Control
Heading, or Detail report group contains a
NEXT GROUP IS integer clause and if, after
the presentation oZ that report group, the
value of integer is less than or equal to
LINE-COUNTER, then the integer is saved in
LIN.SAV and the report group will space up
to and including FOOTING.

tIN.NUM: A work area used in the WRT-ROUT
routine in conjunction with the WRITE AFTER
ADVANCING ••• LINES clause. LIN.NUM can be
set by any group routine or by either the
ALS-ROUT or the RLS-ROUT routine. Routine
WRT-ROUT fills in LIN.NUM with zeros before
exiting.

FRS.GRP: A switch set to zero after the
PGH-ROUT routine is executed. It is tested
and set to 1 by a CTH-ROUT, CTF-ROUT, or
DET-ROUT routine. If one of these groups
is to be printed and if its first line is
relative (that is, LINE PLUS integer), and
if FRS.GRP is zero, the first relative line
will be printed on either FIRST DETAIL or
(LIN .SAV + 1).

Control-field Save Area Names: Data-names
in the form "-nnnn" are names of
control-field save areas. (There are two
save areas per control level.)

A "-nnnnn name is also generated for any
FD that contains a REPORT clause. The size
of the 01-level item is determined from the
RECORD CONTAINS clause or is 133 characters
by default.

E-point Data-names: Data-names in the form
"E.nnnn" are generated from COLUMN clauses
in elementary recorc descriptions. They
use the special Ri-Redefines of "RPT.LIN +
COLUMN - (integer-1) II.

N~point Data-names: Data-names in the form
"N.nnnn" are counters used to hold the
number of lines in a report group that
contains a relative NEXT GROUP clause, at

qqS Appendixes

least one relative LINE clause, or both.
Using the N-point counter, the initial
coding for a report group determines
whether there are enough lines left on a
page to print the entire group.

S-point Data-names: Data-names in the form
"S.nnnn" are used for accumulators
(sum-buckets) for Control Footing record
descriptions that have a SUM clause but no
data-name specified. They are generated so
that coding of MOVE sum-bucket TO E.nnnn
can be produced. Attributes of the SUM
clause are picked up in the normal manner,
except for the PICTURE which is picked up
from the corresponding E.nnnn name
generated for the sum bucket. If the
statement has a data-name, S.nnnn is not
generated. Its PICTURE, however, is picked
up in the same manner as an S.nnnn name.

SPECIAL REPORT WRITER VERBS

Phase 12 generates five special verbs
for use in the RiS: REPORT-CALL,
REPORT-SAVE, REPORT-RETURN, REPORT-ORIGIN,
and REPORT-REORIGIN. The first three of
these are used for linkage between the main
program and the RiS -- for example, as a
result of a GENERATE statement -- and
between routines of the RWS itself. Their
equivalent assembler language coding is
shown below. The remaining two verbs are
used to process USE BEFORE REPORTING
sentences •. In the following descriptions,
the PO-text and P1-text verb codes are
shown in parentheses after each verb.

REPORT-CALL (qF): The equivalent. coding
is: •

L
BALR

15,A(Called Routine)
1,15

REPORT-SAVE-O through REPORT-SAVE-n
(50-55): The equivalent coding is:

ST 1,Save-cell-n

REPORT-RETURN-O through REPORT-RETURN-n
(56-5B): The equivalent coding is:

L 1,Save-cell-n
BCR 15,1

REPORT-ORIGIN (5C): The execution of this
verb causes the address counter to be set
to the address of the Ri-NOP statement at
the start of the specified routine. A link
to the USE routine is inserted at this
point.

REPORT-REORIGIN (5D): The execution of
this verb causes the address counter to be
reset to the address it contained before
the REPORT-ORIGIN was encountered.

RESPONSE TO PROCEDURE DIVISION VERBS

Once the Report Writer Subprogram has
been generated, it is called at particular
entry points and executed as a result of
INITIATE, GENERATE, and TERMINATE
statements in the Procedure Division of the
source program. These responses are as
follows:

Response to INITIATE: As a result of
INITIATE, a branch is made to the INT-ROUT
routine of the particular report. Routine
INT-ROUT is executed and control returns to
the next instruction after the INITIATE.

Response to GENERATE: The response to a
GENERATE statement depends on whether the
statement is the first such GENERATE or a
subsequent one. Figures 81 and 82
illustrate the two cases. The loqic flow
shown is that for GENERATE detail~name
statements. The logic for GENERAT~
report-name statements is the same except
that all DET-ROUT routines are skipped and
all USM-ROUT routines, in the order of
their DET-ROUT routines, are executed.

Response to TERMINATE:
TERMINATE statement is
Figure 83.

The response to a
illustrated in

FINDING THE ELEMENTS OF A REPORT WPITER
SUBPROGRA~ (FWS)

It may become necessary to locate, in
the object module or in a storage dump, th~
data items and routines that mak~ up the
RWS. This can best be done using a listing
that includes a glossary and a
cross-reference dictionary. The following
discussion assumes the use of the SYM and
XREF options.

LOCATIUG DATA ITEMS IN 11. STORAGE DUMP

The glossary lists the cells, switches,
and work areas mentioned under "Data-names"
in this appendix. A portion of the four
pertinent columns of a typical glossary
look, for example, like this:

SOURCE NAME BASE DISPL INTRNJJ NAME

CTL.LVL BL=3 088 DNM=2-426

Licensed Material - Property of IBM

To find cell CTL.LVL, turn to the Memory
Map and find the BL CELLS field in the TGT.
BL1 is located at the address listed there
and, 8 bytes farther, BL3. To the contents
of BL3 add the displacement (DISPL), 88.
The result is the address of CTL.LVL.

Note that if there are registers
available for each BL needed in the
program, one register is assigned
permanently to BL3 and listed in th~
REGISTER ASSIGNMENT column of the Memory
Map. In that case, add the DISPL to the
contents of that register.

LOCATING DATA ITEMS IN THE OBJECT MODULE

To find references to a data item in the
object module, note its internal name in
the glossary and refer to the
cross-reference dictionary. A portion of
the cross-reference dictionary would look
like this (again using CTL.LVL as the
example) :

DATA NAMES TIFFN REFERENCE

CTL. TJVL 00100 00100 00118

To the left of the object module appear
the numbers of the source statements that
generate each section of code; to the
right, in the remarks column, are the
internal data-names. Among the
instructions generated for source
statements 00100 and 00118 will be found
references to item "DNM=2-426", the
internal name for CTL.LVL.

LOCATING ROUTINES IN A STORAGE DUMP

To locate RWS routines in storaqe,
identify the desired routine in the object
module (discussed below), add the relative
address to the load address (shown in the
Linkage Editor map), and proceed as in
finding any other instruction or routine.

Appendix C: Report writer subprogram 449

Lic~nsed Material - Property of IBM

1ST-ROUT
RPH- PGH-

MAIN PROGRAM
1 ROUT - ROUT

(IN-LINE CODE) I
2

GENERATE DET-ROUT
detail-name CTH-
Next sequen- 1

4 CHF- r- ROUT
tia I ins truc- ROUT (Major)
tion --

2 1 through

CTH-
ROUT
(Minor)

3

I
4

CTB-
ROUT RST-

(NOP) ROUT

~ USM-ROUT

Figure 81. First GENFRATE Statement Logic Flow

450 Appendixes

MAIN PROGRAM

(IN-LINE CODE)

GENERATE
detail-name
Next Seq. Instr.

STOP RUN

,....---
CTB-
ROUT

-....-

DET-ROUT

~-
2

3

Licensed r!aterial - property of IB!'

Control
break
path

~ SAV- 1 . I ROUT

~oL-'""" CTF- CTF-ROUT
ROUT ~ ROUT - {lnter- -- (Minar) mediate-I} -

-

Nan-
control
break
path

1

RET-

1 1

RET- -I ROUT ROUT

CTH-ROUT CTH-ROUT

(Inter- -
mediate-n) (Major) -

CTF-LOGIC:
IF the CTF level::; the cantrol break level,
GO ta CTH far that level; else
GO to CTF far next higher level.

USM- 1
ROUT

I

CTF-ROUT

{lnter- -mediate-n)

1
~ RET- 1

ROUT

CTH-ROUT

(Inter- -
mediate-I)

CTF-
ROUT

(Major)

I RET- I
ROUT

CTH-ROUT

(Minar)

I RST-. I
ROUT

Figure 82. Logic Flow of All GENERATE Statements After the First

Appendix C: Report Writer subprogram 451

Licensed Material - property of IBM

MAIN PROGRAM

(IN-LINE CODE)

TERMINATE
REPORT-NAME -+----1 LST-ROUT

Nexl Seq. Inslr.

STOP RUN

3

ROL­
ROUT

Figure 83. TERMINATE Statement Logic Flow

LOCATING ROUTINES IN THE OBJECT MODULE

FWS routines can be found by scanning
the name field of the object module for
their GN numbers. Most of their GN numbers
can be found by using Figure 84. Phase 12
reserves 24 GN num~ers while scanning each
RD statement and assigns 17 of them to
routines as shown in this table. (The
other four routines, DET-ROUT, USH-ROUT,
eTH-ROUT, and CTF-ROUT, are discussed
separately below.) The GN numbers in
Figure 84 may be considered absolute for
the first RWS and relative for any
succeeding RWSs generated. In the latter
case, the GN number of the INT-ROUT routine
can be used as a base. It may be found
from the coding for the INITIATE statement,
vhich is a branch to the INT-ROUT routine,
with the GN number of that routine
indicated in the remarks column.

Locating DET-ROOT and USH-ROOT Routines

There is one DET-ROUT routine generated
for each detail group in the source
program. Each DET-ROOT routine hag one
corresponding uSa-ROUT routine. The

452 Appendixes

CTF­
ROUT

(Minor)

Ihrough

CTF­
ROUT

(Major)

DET-ROUT routines can be found by tracing
from the 01-level statement containing the
TYPE IS DETAIL clause. The generated
instruction would look about like this:

GN=032 EQU *

I
GW I ROUTINE

I
01 I RPH-"ROUT
02 I RP"F-ROUT
03 I PGH-ROUT
04 I PGF-ROUT
05 I 1ST-ROOT
06 I LST-ROOT
07 I WRT-ROUT

010 I CTB-ROUT
011 f ROL-ROUT
012 I RST-ROUT
016 I CHP-ROUT
017 I CFF-ROUT
020 I INT-ROUT
021 I ALS-ROUT
022 I RLS-ROOT
023 I SAy-ROUT
024 I RET-ROUT

Figure 84. RiiS GN Numbers

This is the first instruction of the
DET-ROUT routine and 032 is the GN number.

Each DET-ROUT routine has one
corresponding USM-ROUT routine. The
USM-ROUT routine is assigned a GN number
one ~ess than its DET-ROUT routine, in this
case 031.

Locatina CTF-ROUT and CTH-ROUT Routines

One CTF-ROUT and one CTH-ROUT routine
are assigned to each contro~ after the
highest (FINAL) ~eve~ contro~ (whose
heading and footing are provided by the
CHF-ROUT and CFF-ROUT routines). If they
are described in the source program, they
may be found in the same way as the
DET-ROUT routines. If not, they can be
found by tracing the ~ogic, using Figure 80
as a guide.

Licensed Materia~ - Property of IBM

RWS LOGIC FLOWCHARTS

A set of flowcharts for a typical report
writer subproqram is included in the
Flowcharts chapter of this publication
beginning with chart number 501. The ~ogic
of many of the routines varies with
different source programs. The particular
program used to produce this RWS is the
report writer program ACME, which is used
as the example in the publication IBM DOS
Full American National Standard COBOL,
Order No. GC28-6394.

The CTF-ROUT routines generated for DAY
and MONTH, the two contro~s used in ACME,
are virtually identical; therefore, only
the CTF-ROUT flowchart for DAY is included.
CTH-ROUT routines were not required for
this source program for either control.
Phase 12, therefore, generates dummy
CTH-ROUT routines; these dummy routines are
not included in the set of flowcharts.

Appendix C: Report writer Subprogram 453

licensed Material - Property of IBM

APPENDIX D: GENERATED CODE FOR TNPUT/OPTPUT VERES

This appendix shows the generated codinq produced by the compiler for
input/output verbs. The presentation closely follows the organization
of phase 51, where input/output verb coding is generated (see
"Input/output Verbs" in that chapter for further discussion). Por each
verb, the set of instructions is built in the sequence shown. For
example, decision 1 is made and the code shown under it is accordingly
skipped or generated, then decision 2, and so on.

OPEN CODING

1. If the file is opened more than one way in a program:

MVC

2. If

L
LA

MVC
SH
OI

DTPPTR(4) ,SECPTF

OPEN OUTPUT and DTPSD:

1,DTFl'TR
2,224 (1)

0(224,2) ,0 (1)
1,=H'4'
0(1),X"80'

Secondary DTF address to current DTF
pointer cell

Beginning of DTF
Get the address of the save area behind

the PTF (+224) in order to save the
entire DTF in case of subsequent OPEN
OUTPUT statements

Move the DTF
Point to PRF.-DTF switch byte
Set P~E-DTF switch to indicate that DTF

was saved

3. If the file is ever closed with lock:

L 1,DTFPTR

L 15,=V (ILBDCLKO)

BALR 14,15

DTP pointer for subroutine to test the
pre-DTF byte switch which indicates
whether the file was closed with lock

Subroutine to handle error condition
(cannot open the file again if
pre-DTF switch contains X"FF')

4. If the STIIT option is requested and there is a standard error
declarative for a unit record device:

L 15,=V{ILBDABXO)
BALR 14,15

Subroutine to issue STXIT AB to estab­
lish linkage to the user procedure

5. If DTFDA and not relative track addressing, sequential access, OPEN
INPUT:

L
SH
XC

1,DTFPTR
1, =H "12 I
0(12,1),0 (l)

454 Appendixes

The three words preceding the DTF (for
ERROR, BOP, and BOP addresses) are
cleared before the OPEN, since
different addresses may be used when
the file is opened more than one way
and there is only one DTF for a
direct-access file

6. If

L
SH
MVI
xc
MVI
XC

DTFDA, relative

1,DTFFTR
1, =H' 31'
14 (1) ,1. 100'
0(3,1) ,0 (1)
3 (1) , X '0 1 '
18 (12,1) ,18 (1)

Licensed Material - Property of IBM

track addressing, sequential, and OPEN INPUT:

Initialize current-extent bucket
Clear TTT of SEEK address
Record 1
elear PN area

7". If there are any declaratives pertaining to this OPEN:

I.
SH

Mve

Mve

live

Mve

Mve

Mve

Mve

!'lve

Mve

1,DTFPTR
1,=H'nn'

0(4,1) ,PNBOV

4 (4, 1) ,PNEOV

0(4,1) ,PNEOF

8 (4,1) ,PNEOF

4 (4,1) ,PNBOF

12 (4,1) ,PNBOF

0(4,1) ,PNERR

8 (4, 1) ,PNERR

16 (4,1) ,PNERR

Beginning of DTF
nn=20 for DTFMT, SD (5 possible

declarati ves)
nn=12 for DTFDA (3 possible

declaratives)
nn=4 for DTFCD, PF, IS (1 possible

declaratives

Generated only if MT or SD with a BOY
declarative

Generated only if MT or SD with an FOV
declarative

Generated only if DA with an EOF
declarative

Generated only if MT or SD with an EOF
declarative

Generated only if DA with a BOF
declarative

Generated only if MT or SD with a BOF
declarative

Generated only if CD, PR, IS or DU,
with an ERROR declarative

Generated only if DA with an ERROR
declarative

Generated only if MT or SD with an
ERROR declarative

8. If either DTFMT or DTFSD, and there are user-standard labels:

L
SH
HI

1,DTPPTR
1 ,=H' 4 '
0(1) ,XIDF'

PRE-DTP switch will be turned off to
indicate to subroutine ILBDUSLO that
any labels processed are BOF rather
than BOY

9. If DTFDA or DTFSD; note that during user standard label processing,
a LBRET3 instruction is issued by subroutine ILBDUSLO if labels are
being updated. Otherwise, a LBRET1 (no more label processing
needed) or LBRET2 (GO TO more labels) is issued, depending on the
declarative:

L
S8
01
NI
01

1,DTFPTR
1,=H'4'
0(1) ,X'401
0(1),X'BP'
o (1) ,X'08'

If not already done
If not already done
Generated only for OPEN 1-0
Generated if not OPEN 1-0
Spanned records indicator (generated

only for DTFDA)

10. If variable blocked records:

L
SH
NI

1,DTPPTR
1,=H'4'
0(1) ,x IEF'

Point to PRE-DTF switch if R1 does not
already contain this address

Indicates next WRITE will be the first
one

Note: Subroutine ILBDVBLO will not check the space available in the
buffer the first time. It will set the PRE-DTF switch on so that, for
each subsequent WRITE, the space available will be checked.

Appendix D: Generated Code for Input/Output Verbs 455

Licensed Material - Property of IBM

11. If DTFDA:

L
OI
NI
OI

4,DTFPTR
21 (4) ,X'SO'
21 (4) ,X'?!'"
16 (4) ,XISO'

Generated only if OPEN OUTPUT
Generated only if OPEN INPUT
Generated only if EOP labels

12. If DTFMT and nonstandard labels:

BALR
CLI
BE
L
SH
MVC
MVC

15,0
93 (13) ,X'OOI
28 (15)
1,DTFPTR
1,=H I 24'
0(1,1) ,93 (13)
1(1,1),0(1)

Establish address ability
user-specified number of reels in TGT
No - Skip next four instructions
Set address of DTF~24, where 2 bytes

are set to the reel number for
subroutine ILBDNSLO to count reels.

13. If DTFMT, first or only file on reel, and OPEN NO REWIND:

L
OI

1,DTFPTR
32 (1) ,X'10'

Set byte 32, bit 3, in DTFMT to
indicate OPEN NO REWIND

14. If DTFMT and not the first file on the reel:

L
LA

L
BALR
OI

1,DTFPTR
2, Number of file

15,=V (ILBDl1FTO)
14,15
32(1) ,X'10'

Point to DTF
Number (sequence) of this file on the

reel
This subroutine positions the reel

to the reguested file
Indicate NO REWIND

15. If DTFMT, DTPSD, DTPCD, or DTFPR, opened OUTPUT, and record format
F or V:

L2,BL cell

16. Basic OPEN coding (generated in all cases):

LA
L
LR

CNOP

BALR
ST

BALR
DS
SVC

1,=CLS'$$BOPEN'
O,DTFPTR
4,0

2,4

15,0
0,S(15)

0,12(15)
1F
2

17 • If DTFMT:

LA
L
BALR

O,DTFPTR
15,=V(ILBDIMLO)
14,15

Transient subroutine
Point to DTF
Save DTF address for subroutine

ILBDUSLO, ILBDNSLO, or ILBDSAEO
Porce full word boundary after the next

instruction
Establish addressability
Store DTF address for transient

subroutine $$BOPEN
Branch around DS instruction
To contain DTF address
Fetch transient subroutine

Point to DTF
Subroutine to save the PUB number of

the first reel in a multiple-reel
file

1S. If DTFMT and not OPEN NO REWIND:

L
OI

1,DTFPTR
32(1),X'10 1

Point to DTF
Indicate NO REWIND for CLOSE time

unless REWIND was requested

19. If OPEN OUTPUT. and not single-buffered and not unblocked,
and not DTFDA, and if variable records:

456 Appendixes

LA 2,4(2)

Licens~d Material - Property of IBM

Point to data area of record, by­
passing the first 4 bytes (the
RECLENGTH field) •

20. If OPEN OUTPUT, and not single-buffered and not unblocked, and not
DTFDA, and if the records are either fixed, undefined, or variable
records with two IOAREAS:

ST
ST

2,IOPTR Cell
2,BL cell

21. If DTFDA and OPEN OUTPUT:

L
L
BALR

1,DTFPTR
15,=V(Subroutine)
14,15

22. If DTFIS and OPEN OUTPUT:

L
LA

SVC

O,DTFPTR
1,=CLS'$$BSETFLI

2

If SAME RECORD AREA
If not SAME RECORD AREA

Point to DTF
Subroutine to initialize the file by

writing RO onto each track of the
specified extents and an EOF record
at the end of the last extent, as
follows:

ILBDFMTO, if not relative track
addressing

ILBDRFMO, if relative track
addressing.

Point to DTF
Transient subroutine to preform at

tracks for loading or extending a
file

Fetch transient subroutine

23. If DTFIS and OPEN INPUT and sequential:

L 1,DTFPTR
L 15,GB next sentence

TM 16 (1) ,X'20'
BCR 1,15

L O,DTFPTR
LA 1,=CLS'$$BSETL'

CHOP 2,4

BALR 15,0
ST O,S (15)
BAL 0,16(15)
DC XL4'001
DC CL4 1BOF I
SVC 2

CLOSE CODING

Sentence beyond fetch, transient
UBSETL

Was file assigned IGN
Yes, branch around transient $$BSETL,

otherwise fall through

Transient which initiates the mode for
sequential retrieval

Force full word boundary after the next
instruction

Establish addressability
Store DTF address
Branch around DC instruction
To contain DTF address
Retrieval begins at' BOF
Fetch, transient $$BSETL

1. If DTFMT and either CLOSE WITH REWIND or CLOSE WITH LOCK:

L
HI
XI
LR

1,DTFPTR
32 (1) ,X'EFI
32 (1) ,X'30 t

0,1

[Go to Number 4]

2. If DTFIS:

Generated only if CLOSE WITH REWIND
Generated only if CLOSE WITH LOCK
Load DTF address into RO

Appendix D: Generated Code for Input/Output Verbs 457

Licensed ~aterial - Property of IBM

[Go to Number 9]

3. If not DTFMT CLOSE WITH REWIND or LOCK:
L O,DTFPTR

4. Basic coding for all files (CLOSE macro expansion):

LF

LA
CNOP

BALR
ST
BAL
DS
SVC

4,0

1,=CL'$$BCLOSE'
2,4

15,0
0,8 (15)
0,12(15)
F
2

5. If DTFMT:

L
LA

SVC

O,DTFPTR
1,=CL8'$$BPCMUL'

2

Save DTF address in R4 for label
subroutines

Transient subroutine to close file
Force full word boundary after the next

instruction
Establish addressability
Store DTF address
Branch around next instruction
To contain DTF address
Fetch transient subroutine

Transient to shift JIB pointers until
the PUB pointer of the first volume
of the file is found (for
multiple-reel files)

Fetch transient subroutine

6. If DTPMT and CLOSE NO REWIND:

L
NI

7. If

L
SH
BALR
TM
BZ
LA
LA
MVC

1,DTFPTR
32 (1) ,X'CF'

DTFSD:

1,DTFPTR
1,=H'4'
15,0
O(1),X'BO'
22 (15j
1,4 (1)
2,224(2)
0(224,1) ,0 (2)

Indicate NO REWIND

Point to Pre-DTF switch to determine
whether this DTF was saved

Establish addressability
Was DTF saved (was it OPEN OUTPUT)
No - Bypass next three instructions
Point to closed DTF
Point to save area
Move initialized DTF into position for

next OPEN OUTPUT

B. If CLOSE WITH LOCK and file is opened only one way:

L
SH
MVI

1,DTFPTR
1,=H'4'
0(1),X'FF'

[Exit - End of CLOSE Coding]

Point to Pre-DTF switch
Indicate that file must not be reopened

9. If CLOSE WITH LOCK and file is opened more than one way:

L 1,SDTFPTR1
SH 1,=H'4'
MVI 3(1),X'FF'
L 1,SDTFPTR2
SH 1 ,=H'4'
MVI 0(1),X'FF'
L 1,SDTFPTR3

SH 1,=H'4'
MVI 0(1),X'FF'

[Exit - End of CLOSE

458 Appendixes

coding]

Point to first secondary DTF pointer
Point to Pre-DTF switch
Indicate that file must not be reopened
Point to second secondary DTF pointer
Point to Pre-DTF switch
Indicate that file must not be reopened
Point to third secondary DTP pointer.

(Note: skip this and the next two
instructions if there is no third
SDTF)

Point to Pre-DTF switch
Indicate that file must not be reopened

Licensed Material - Property of IBM

10. If DTFIS and random access:

[Go to number 3]

11.. If DTFIS and never opened as output:

[Go to Number 14]

12. If DTFIS and OUTPUT and two IOAREAs:

L
BAL
DC

15,16(1)
14,6(15)
X'AAOO"

(Go to 13]

Address of logic module
l!:NDFL routine

13. If DTFIS and OUTPUT and one or two IOAREAs:

L
LA

SVC
LR
TM
L
BCR

O,DTFPTR
1,=CL8~$$BENDFL·

2
1,0
30(1),X'Ol'
15,=V(ILBDISE1)
7,15

(Go to Number 3]

Transient subroutine to write last
necessary block of data and on EOF
record after it

Fetch transient subroutine

Check if EOF written

If EOF record not written ll go to ISA1"l
error subroutine to handle

14. If DTFIS and opened either as sequential input or 1-0:

L
L
BAL

1,DTFP'I'R
15,16 (1)
14,20(15)

(Go to Number 8]

Address of LIOCS module
Enter LIOCS module for ESETL (End

Sequential Mode)

15. If RERUN specified for this file:

LA
CLI
L
BCR
L
L
L
BCTR
BALR
DC
DC

GN=XY
L

GN=XX
ST

3,CHKPTC'IR
CHKPTCTR, X, FF'
14,GN=XY
8,14
O,CHKPTCTR
15,=V(ILBDCKP1)
14,GN=XX
0,14
14,15
ALl (SYStW)
CL7'File name'

0, Number of records

O,CHKPTCTR

If this is first record,
branch around call to
Checkpoint Subroutine.

Number of records remaining.
Checkpoint Subroutine
If number of records left
is not 0, branch around
checkpoint.
Parameter for subroutine
Parameter for subroutine

Maximum number of records

Reset counter to maximum number of
records.

CLOSE REEL CODING (FOR DTFSD, DTFMT, AND DTFDA SEQUENTIAL INPUT ONLY)

1. If DTFSD and CLOSE UNIT:

CNOP
L
LA

2,4
O,DTFPTR
1,=CL8'$$EOSDEV'

Force fullword boundary
Address of DTF
Transient subroutine to handle FEOVD

Appendix D: Generated Code for Input/Output Verbs 459

Licensed Material - Property of IBM

BALR
ST
BAL
DC
SVC

15,0
0,8(15)
0,12(15)
F'O'
2

2. If DTFDA, sequential input:

L
L
BALR

l,DTFPTR
15,=V(Subroutine)
14,15

Establish addressability
Save DTF address in fullword constant
Bypass constant, addressing it with RO
DTF address
Fetch subroutine $$BOSDEV

Subroutine to point to beginning of
first extent specified on next
volume, as follows:

ILBDCRDO, if not relative track
addressing.

ILBDRCRO, if relative track
addressing.

3. If DTFDA, sequential input, with relative track addressing:

L
L
BALR

l,DTFPTR
15, =V CILBDRCRO)
14,15

4. If DTFMT:

L
LR
NF

1,DTFPTR
4,1
31(1) ,X'FD'"

Address of DTF
Subroutine to point to beginning of

first extent specified on next
volume, for relative track addressing

Point to beginning of DTF
Save DTF address for label subroutine
Turn off FORCE-REWIND indicator

5. If DTFMT and CLOSE REEL with REWIND:

NI 32 (1) ,X'EF'

6. If DTFMT:

L
BAL

15,16(1)
14,16(15)

Turn off NO-REWIND indicator

Address logic module
~nter module for EOV processing

7. If DTFMT and CLOSE REEL WITH REWIND:

01 32 (1) , X'10· Turn on NO-REWIND indicator

8. If DTFMT or DTFSD, and variable records:

LA 2,4(2) point to data section of record

9. If DTFMT or DTFSD, and fixed, variable, or undefined records and
not single buffered, unblocked records:

ST 2,BL Save pOinter to data record

READ CODING

1. If CHKPT was requested for this file:

LA
CLI
L
BCR
L
L
L
BCTR

3,CHKPTCTR
CHKPTCTR,X"'FF'
14.GN=XY
8,GN=XY
O,CHKPTCTR
15. =V (ILBDCKP1)
14,GN=XX
0,14

460 Appendixes

If this is first record, branch
around call to Checkpoint subroutine

Number of records remaining
Subroutine to issue checkpoint macro

If count is greater than zero, subtract
one and skip next four instructions

BALR 14,15

DC AL 1 (SYSNO)
DC CL7'File name'

GN=XY
L O,Number of Records

GN=XX
ST O,CHKPTCTR

Licensed Material - Property of IBM

If count equals zero, branch to
subroutine to issue CHKPT

Parameter for subroutine
Parameter for subroutine

Maximum number of records

Reset counter

2. Basic coding (generated in all cases) :

L
L
'1'1'1
BCR

1,DTFPTR
15,GN (EOF)
16 (1) ,X 9 20 D

1,15

Pointer to beginning of DTF
Address for EOF
Was file assigned IGN
Yes - Go ·to EOF

3. If sequential and not unit record:

LR 4,1 Save DTF address

4. If spanned records and either DTFSD or DTFMT, multiple-reel
file labels omitted:

L
SH
CNOP

I.
BALR
ST
ST
LA
L
B
DS
DS
BAL

O,BL
o ,=H'4'
2,4

5,EOFADDR
15,0
5,20(15)
0,24 (15)
5,20 (15)
15,16(1)
8 (5)
F
F
14,8 (15)

[GO to Number 10]

Address of record
Point to RECSIZE field
Force full word boundary after the BALR

instruction
User EOF address
Establish addressability
Save EOFADDR in first fullword
Save WORKAREA adds in second fullword
Point to first DS
Address of logic module
Branch around next two constants
To contain EOFADDR
To contain WORKAREA address
Enter logic module

5. If DTFMT, multiple reel file, labels omitted, and not spanned
records:

L
BALR
LA
I.
EAL

[Go

6. If

LA
MVC
L
BAL

5,EOFADDR
15,0
3,12(15)
15,16(1)
14,8 (15)

to Number 10]

sequential access:

15,GN (EOP)
Disp (3, 1) ,1(15)
15,16 (1)
14,8(15)

EOP address
Establish addressability
Address of instruction after BAL
Address of logic module
Enter logic module

At end address
Move EOFADDR into DTP
Address of logic module
Enter l~gic module '

7. If DTFDA and either random or sequential access:

LA

SR

O,ACTUAL KEY

0,0

Generated only if ACTUAL KEY is
specified

Generated only if sequential with no
ACTUAL KEY specified

Appendix D: Generated Code for Input/output Verbs 461

Licensed Material - Property of IBM

8. If DTFIS and sequential access:

L O,BL

9. If DTFDA or DTFIS:

L
L

5,GN(INVALID KEY)
15,=V(Subroutine)

BALR 14,15
[Go to Number 12]

10. tf variable records:

LA 2,4 (2)

Point to user's record

Address of INVALID KEY routine
Address of subroutine, as-follows:

ILBDDSRO, if sequential access, DA,
and not relative track addressing.

ILBDRDSO, if sequential access, DA,
and relative track addressing.

ILBDDI01, if random access, American
National Standard, and not relative
track addressing.

ILBDRDI1, if random access, American
National Standard, and relative
track addressinq.

ILBDDI02, if random access, IBM
American National Standard, and not
relative track addressing.

ILBDRDI2, if random access, IBM
~merican National Standard, and
relative track addressing.

ILBDISM3, if sequential access and
ISAM.

ILBDISM2, if random access and ISAM.

Point to data portion of record

11. If two IOAREA1s or blocked records, and not SAME RECORD AREA:

ST 2,BL Reset BL to point to buffer in use

12. If DTFIS and SAME RECORD AREA and one IOAREA:

LH
L

2,100(1)
2,4 (2)

Get address of
IOAREA into R2

13. If either SAME RECORD AREA and not single-buffered, unblocked or
ISAM and SAME RECORD AREA:

L
MVC

1,]3L
o (BECSIZE, 1) ,0 (2)

Point to SAME RECORD AREA
Move data from buffer to SAME FECORD

JI.REA

14. If file has a sub;ect or an object of an OCCURS clause with a
DEPENDING ON option:

L 3,GN=NN
BALR 2,3

NN = GN number for the
Q-Routine for this file

15. Basic coding, ~enerated in all cases:

L
BCR

15,GN=NN
15,15

NN = GN number of next sentence
after AT END or INVALID KEY coding

Note: This is followed by the expansion of the imperative statements
following AT END or INVALID KEY.

462 Appendixes

Licensed ~aterial - Property of IBM

WRIT¥. AND REWPTTE CODING

1. If checkpoint is reguested:

LA 3,CHKPTCTR
CL1 CHKPTCTR,X'FF'
L 14,GN=XY
PCR B,GN=XY

L O,CHKPTC~R

L 15,=V(ILBDCKP1)

L 14,GN=XX
BCTR 0,14

BALli 14,15
DC AL 1 (SYSNO)
DC CL7'Pile name"

GN=XY
L O,Number of records

GN=XX
ST O,CHKPTCTR

I~ this is first record; branch
around call to Checkpoint subroutine

Number of records rema~n~nq in count
Subroutine to issue CP.KPT macro

instruction

If number of records rema~n~ng is not
0, subtract 1 and skip the next four
instructions

Go to subroutine
Parameter for subroutine
Parameter for subroutine

load with maximum number of records

Reset counter to maximum number

2. Basic coding (generated in all cases):

L 1,DTF'PTF

3. If DTFDA:
[Go to Number 27]

4. If D'IFIS:
[Go to Number 28]

Address of beqinning of DTF

5. If DTFPR, and sinqle-buffered, unblocked, and an END-OF-PAGE test is
required:

6.

01

If

a.

b.

c.

2(1),X'04' Inaicate that device end posting lS
reguired

one of the following controls is specified:

WRITE {BEFORE or AFTER} {ADVANCING or POSITIONING} identifier

WRITE {PEFORE or AFTER} {ADVANCING or POSITIONING}
integer-greater~than-3

WRITE AFTER {ADVANCING or POSITIONING} with S/360 CTLCHR logic
module:

LA

L
L
MVC
L
LA
LH
L
BALH
DC
DC
DC
DC

4,Identifier

2,IOPTR
3,BL
D (XX,2),0 (3)
2,BL
O,RECORD
3,Lenqth
15, =V -(ILBDSPAO)
14,15
XL1'Flag'
XL1'YY'
XL1'ZZ'
XL1'XX'

Generated if Identifier is used in the
WRITE statement

Generated only if SRA and not MINCASF
and not APPLY WRITE ONLY.

Generated only if not APPLY WRITE ONLY
Generated only if APPLY WRITE ONLY
Lenqth of record
Subroutine to issue the I/O requests to

the logic module
See Note 1, below
See Note 2, below
See Note 3, below
XX is 01 if WITH CODE is specified and
00 if it is not

Appendix D: Generated Code for Input/Output Verbs 463

Licensed Katerial - Property of IBK

Note 1:

Bits
0&1

2

3

4 & 5

set To
00
01
10
o
1
o
1

00
01
10

If
Binary data-name
Packed data-name
Zoned data-name
BEFORE
AFTER
5/360 control characters
ASA control characters
Integer
Identifier
Mnemonic-name

6 & 7 Remainder of
Integer
divided by 3

Note 2: YY = mnemonic-name equivalant skip/space code, or quotient
of integer divided by 3, or length of data-name

Note 3:
ZZ
00
01
02

04
08

[Go to Number 21]

If
Fixed records
Variable unblocked records
Variable blocked records and not APPLY WRITE
ONLY
Undefined records
Variable blocked records and APPLY WRITE ONLY

7. If control was specified, and if not DTFCD, and if no
subroutine linkage was required:

MVI RECORD,NN NN = control character for LIOCS

8. If DTFCD with Mnemonic-name and a control is
specified (see note under 9 below):

MVI RECORD,NN liN = control character for LIOCS

9. If DTFCD with Identifier and a control character is specified:

MVI
L
!lVC

RECORD,NN
2,BL
0(1,2) ,Data-name

NN = POCKET SELECT 1 or 2
Pointer to record
Kove control character to first byte of

record for POCKET SELECT 1 or 2

Note: Subroutine ILBDSPAO is not required except in cases specified
under 6 above. The appropriate spacing is placed in the first byte of
the record by the code shown, and normal PUT linkage to LIOCS is
generated.

10. If spanned records:

L O,BL
SH O,=H'4'

11. If DTFSD:

LA 15,GN (INVKEY)
LR 4,1
SH 4,=H'4'
BAtR 14,0
TM 0(4),X'40'
BO 18 (14)
HVC NN (3,1) ,1(15)

464 Appendixes

Record address
Point to record length field in front

of record

INVALID KEY address
DTF address
Fullword preceding DTF
Establish addressability
Was there an OPEN I-O
Yes - Skip next two instructions
Kove INVALID KEY address into DTF

01 16(1),X'01'

Licensed Material - Property of IBM

NN 173 if variable or spanned records
NN 165 if undefined records
NN 161 if Fixed records

Indicate end of extent function
requested

~: At end of extent, go to user INVALID KEY address.

12. If SAME RECORD AREA and two IOAREAs and not APPLY WRITE only

a. If record length less than 2047 bytes:

L
L
HVC
MVC

2,IOPTR
3,BL
o (Length, 2) ,0 (3)
256 (length,2) ,256(3)

Address of buffer
Address of SAME RECORD AREA
Move record to buffer
If greater than 256

b. If record length egual to or greater than 2047 bytes:

L
L
LH
L
BALR

5,IOPTR
2,BL
3,=H'RECSIZE'
15, =V (ILBDMOVO)
14,15

Address of buffer
Address of SAME RECORD AREA

Move record to buffer

13. If variable-length and blocked records.

L 2,BL

L 2,IOPTR

LA 2,sending field
LH 3,=H'RECSIZE'
LH 3,VLC
LH 5,=H'SENDING FIELD

LENGTH' or 'VLC'
L 15,=V(ILBDVBL1)
BALR 14,15

[Go to Number 22J

Generated only if not APPLY WRITE ONLY
and not SAME RECORD AREA or SAME RECORD
AREA and single buffering
Generated only if SAME RECORD AREA and
double buffering and not APPLY WRITE
ONLY
Generated only if APPLY WRITE ONLY
Generated only if not aDOs
Generated only if ODOs
Generated only if APPLY WRITE ONLY

Subroutine to write variable-length
blocked records

14. If variable or undefined records, and not SAME RECORD AREA:

L 2,BL Address of record

15. If variable or undefined records, and they contain an
OCCURS ••• DEPENDING ON clause:

LH
SH
LA
STH

3,VLC
2,=IP4 '
3,4 (3)
3,0(2)

Variable-length cell, containing length
Point to record length field
Add 4 to include record length field
Put length in record length field

16. If variable records and no OCCURS ••• DEPENDING ON clause:

SH
LH
LA
STH

2,=H'4 1

3,=HIRECSIZE'
3,4 (3)
3,0 (2)

Point to record length field
Record length given by user
Include record length field
Store length in Record length field for

tIOCS

17. If variable records, of if undefined records with an
OCCURS ••• DEPENDING ON clause:

Appendix D: Generated Code for Input/Output verbs 465

Licensed Material - Property of IBM

xe 2(2,2) ,2(2) Set record ha1fword of record length
field to zero

18. If undefined or spanned records, and no OCCURS ••• DEPENDING ON
clause:

LH 3,=H'RECSIZE' Record 1enqth for LIoes

19. .If spanned records:

AH 3, =H' 4 ' Include record length =ie1d

20. If any file except DA, IS, or PR with SR linkage:

LR

L
BAL

4,1

15,16 (1)
14,12(15)

If sequential but not unit record, save
nTF address for label or error
processing subroutine

Address of LIOCS module
Branch into logic module

21. If variable and double buffered records:

LA 2,4 (2) Point to data, past record length
field.

22. If variable and double buffered records and SAME RECORD AREA:

ST 2,IOPTR Save cell for IOAREA being used

23. If variable records not SAME RECORD AREA, and two IOAREAs:

ST 2,BL

24. If Q-routines are required:

OI

L
BUR
NI

73 (13,X'01'

3,GN (Q-RrN)
2,3
73(13) ,X'01'

Address of IOAnEA

Turn on CALCULATE MAXIMUM RECORD LENGTH
indicator

Address of Q-routine for this file

Turn off CALCULATE MAXIMUM RECORD
LENGTH indicator

25. If END-OF-PAGE test required:

L
NI
TI'I

BCR

15,GN(Next Sentence)
2 (1) ,X'FB'
NN(1) ,X'01'

8,15

26. If INVALID KEY is used:

L 15,GN(Next Sentence)

BR 15

466 Appendixes

For branch if not EOP
Turn off DEVICE END posting request
Test for unit exception:

NN = 4 if 5/360 control characters
NN = 39 if ASA control characters

Not EOP, branch to next sentence; else,
fall through to user's EOP coding

Address for bypass of INVALID KEY
coding

Go to user's next sentence

27. If DTFDA:

LA

L
L

O,ACTKEY

5, GN (INVKEY)
15,=V(Subroutine)

BALR 14,15

Licensed Material - Property of IBM

Point to user's ACTUAL KEY for
subroutine

Address of user's INVALID KEY coding
Address of subroutine, as follows:

ILBDDIOO, if American National
Standard WRITE and not relative
track addressing.

ILBDRDIO, if American National
Standard WRITE and relative track
addressing.

ILBDDI03, if REWRITR and not relative
track addressing.

ILBDRDI3, if REWRITE and relative
track addressing.

ILBDDI04, if IBM American National
Standard WRITE and not relative
track addressing.

ILBDRDI4, if IBM American National
Standard WRITE and relative track
addressing.

28. If DTFIS and SEQUENTIAL RRWRITE:

L O,=A(RECORD)

29. If DTFIS:

L
L

5 ,GN (INVKEY)
15,=V(Subroutine)

BALR 14,15

[Go to Number 26J

SEEK CODING

Address of user's INVALID KEY coding
Address of subroutine, as follows:

ILBDISMO if WRITE SEQUENTIAL
ILBDISMl if RANDOM WRITE
ILBDISM4 if RANDOM REWRITE
ILBDISM5 if REWRITE SEQUFNTIAL

1. Basic coding, generated in all cases:

L
LR
SH
LA
MVC
LA
L
BALR

1,DTFPTR
15,1
15,=H'26'
3,ACTUAL KEY
0(7,15),0(3)
0,7
15,42 (15)
14,15

START CODING

Point to beginning of DTF

Point to PRE-DTF area for SEEK address
Move first seven bytes (MBBCCHH)

of user's ACTUAL KEY to PRE-DTF area
SEEK command code
Logic module address (DTF+16)
Enter logic module

1. Basic coding, generated in all cases:

L
L
TM
BeR

1, DTFPTR
15,GN next sentence
16 (1) ,X'20'
1,15

Point to beginning of DTF
Sentence beyond INVALID KEY coding
Was file assigned IGB?
Yes. Branch around INVALID KEY coding.

Appendix D: Generated Code for Input/Output Verbs 467

Licensed Material - Property of IBM

L
BAL
L

15,16 (1)
lQ,20(15)
O,DTFPTB

otherwise, fall through.
Address of logic module for ESET
Enter logic module

2. Generated only if KEY EQUAL TO:

LA 3,data-name

LH 5, 'LENGTH'
L 15,=V(!LBDSTRO)

BALB 1Q,15

Address of data-name containing key
value

Length of identifier
Address of sUbroutine to move value of

data-name to NOMINAL KEY and issue
$$BSETL MACBO with 'GKEY' option

3. Generated only if no KEY EQUAL TO:

L
BALB
TM
L
BCR

15,=V(ILBDSTB1)
14,15
30 (1) ,X 'DB'
15,GN Next sentence
8,15

DISPLA Y CODING

Address of subroutine to issue
$$BSETL MACRO with 'KEY' option
Test for SETL errors
Sentence beyond INVALID KEY coding
No errors; else, fall through to user's

INVALID KEY coding

The coding generated for a DISPLAY statement consists of linkage to
the DISPLAY subroutine or, when the OPT option has been specified, the
Optimizer DISPLAY subroutine (ILBDDSSO). The various forms of that
linkage are discussed in the description of those subroutines in the
publication IBM DOS/yS COBOL, Subroutine Library, Order No. LY28-6Q2Q.

ACCEPT CODING:

1. Basic coding, generated in all cases:

L
BALR
DC

DC

DC

DC

DC

15, =V (ILBDACP 0)
1,15
XL2'Device Code'

XL1'TYPE'

XL3'MNN'

ALQ(Base locator)

XL2'Displacements'

Q68 Appendixes

Subroutine to read a record from
SYSIPT or console

The device codes are:
X'0002', if CONSOLE
X1000QI, if SYSIPT

The bits have the following meanings
Bit 0-1: (not used)

2 Variable Length
3 Pointer ADCON is direct
Q-7: (not used)

If binary or internal decimal, M=length
of input item and NN=length of
converted result

If variable length, MNN=the address of
the VLC-cell;
otherwise, MNN=length of the item

Or ALQ(operand-text) if bit 3 of TYPE
is set

Displacement of text from base

USE CODING

1. If USE ••• ERROR:

ST 14,SA2
CNOP 2,8

BALR 15,0
B 12 (15)

Licensed Material - Property of IBM

Return address
Force doubleword boundary after branch

instruction
Establish addressability
Skip eight bytes

2. If USE ••• ERROR and GIVING ••• Option 1 (error bytes):

LA 2, Data-name User's error byte area
CNOP a,s Position to next doubleword boundary

3. If USE ••• ERROR and not GIVING ••• Option 1:

DC XLS"OO· Indicates no request for error bytes

4n If USE ••• ERROR and GIVING ••• Option 2, i.e., data-name-2:

5.

6.

7.

S.

9.

10.

ST

MVC

If

L
BR

ST
ST

L
L
BR

L
L
BR

L
L
BR

L
L
BR

If

If

If

If

If

l,BLL=N

Data-name, 0 (1)

USE ••• ERROR:

14,SA2
14

USE ••• LABELS:

2,BLL=1
4,SA2

USE ••• LABELS and

4,SA2
15. =V (ILBDNSL1)
15

USE ••• LABELS and
4,SA2
15, =V (ILBDUSL1)
15

GO TO MORE-LABELS

4,SA2
15.=VULBDNSL2)
15

GO TO MORE-LABELS

4,SA2
15,=V(ILBDUSL2)
15

Point to error block. If D-N is in
working storage, n=l; if D-N is in
the linkage section, n=the number of
the next available ELL.

Move to user-defined area. This
statement is generated by Phase 40
The length of the buffer is the "TO"
field of the operand; of the length
of the record is the "FROM" field

Restore return address
Return to subroutine ILBDSAEO,

ILBDDAEO, or ILBDISEO

SAVE address of label
SAVE DTF address

nonstandard labels:

Subroutine which will return control
to user·s procedure

user-standard labels:

and

and

Subroutine which will return control to
user·s procedure

non-standard labels:

Restore DTF address
Subroutine to return control to

LIOCS to read or write the next

user-standard labels:

Restore DTF address
Subroutine to return control to

LIOCS to read or write the next
label.

label

Appendix D: Generated Code for Input/Output Verbs 469

Licensed Material - Property of IBM

GLOSSARY

The words listed below are defined
according to their use in this book. and
the definitions are not necessarily
applicable elsewhere. Efforts have been
made to exclude terms which are common in
tr.e programming profession unless they are
used in a special sense.

Associated file: A file on a 3525 card
punch device with optional read and print
feature for which more than one of the
read, punch, or print functions has oeen
specified in the ASSIGN clause of the
SELECT sentence.

ATF-text: An internal compiler text
generated by phase 20 for phase 22. It is
used in preparing entries for the
dictionary. See "Section 5. Data Areas."

ACCESS routines: A group of routines which
build and access the dictionary. They
reside in storage as part of Phase 00. See
"Appendix A."

Base Locator (BL): A 4-byte address cell
in the TGT. There is one BL pointing to
the Report section, one to the
Working-Storage Section, and one to each
FD, SD, and RD entry. Any FD, SD, or RD
entry exceeding 4,096 bytes will have one
BL assigned to each 4,096 bytes. Phase 60
loads a register with each address unless
there are too many BLs. In that case, it
loads registers with BLs as they are
needed. BLs are assigned in phase 22.

Base Locator for Linkage Section (BLL): A
4-byte address cell in the TGT. BLLs are
assigned by counter and are unique. BLLl
points to a work area used to process label
records. BLL2 through BLLn are assigned to
each 77-level and each 01-level entry in
the Linkage Section. Any 77- or 01-level'
entries exceeding 4,096 bytes have one BLL
assigned per 4,096 bytes. BLLs are
assigned in phase 22.

BL: see Base Locator.

BLL: see Base Locator for Linkage Section.

COBOL Library Subroutine: One of a set of
subroutines that perform frequently I

required operations and which, because they
are too extensive to be efficiently placed
into the object module wherever needed, are
stored in the COBOL library and included in
the load module by the linkage editor when
neeoed. See the publication IBM DOS/VS
COBOL Subroutine Library Program Logic,
Order No. LY28-6424.

470

COBOL space: The difference in length
between the longest phase and the phase
currently processing. This space is
available to supplement the space initially
assigned to TAMER.

COMMON: A communications region available
to all phases for storing and accessing
information. It is resident in storage at
the beginning of phase 00 and accessible
via DSECTs to other phases. See "Section
5. Data Areas."

COUNT Table: A part of the object module
only when the COUNT option is specified.
It contains entries for each procedure-name
and verb in the source program.

Data A-text: An internal compiler text
generated by phases 21 and 22. It is used
by phase 60 to generate the data and global
table areas of the object module. See
"Section 5. Data Areas."

Data IC-text: An internal compiler text
generated by phases 10 and 12. It is used
in phases 21 and 22 to create Data A-text.
See "Section 5. Data Areas."

Debug text: A type of debugging text which
contains card numbers g their displacement
within the object module, the priority of
each segment, and discontinuity elements.

DEF-text: An internal compiler text
qenerated in phases 22 and 30. It is used
by phase 61 to create the cross-reference
table. See "Section 5. Data Areas."

Delimiter: An internal compiler text
category that consists of the following
elements: critical prograrr breaks, verbs,
source procedure-names at point of
definition, and compiler-generated
procedure-names at point of definition.

Delimiter pointer: A dictionary pointer to
the next item with the same or a lower
level number.

Dictionary: A table, built by phases 11,
21, and 22, in which is stored information
about procedure-names and data operands.
When SYMDMP is in effect, it is used by
phase 25 to build the Debug File. It is
used by phase 30 when creating Pl-text and
then released. The dictionary format is
shown in "Section 5. Data Areas."

Dictionary attributes: Descriptive
information about a source program-name
placed in the dictionary by phases 11. 21,
and 22. Phase 30 replaces each name with
its dictionary attributes.

Dictionary pointer: The pointer to the
location of an entry in the dictionary.
Since it provides a unique identification
for a name, it is retained and used by some
phases after the dictionary has been
released.

E-text: An internal compiler te¥t
generated by phases 10 through 51 whenever
an error is detected. It is used by phase
70 to generate error messages. See
"Section 5. Data Areas."

Fixed routine: One of a set of routines
generated by phase 12 as part of the Report
Writer subprogram. Fixed routines never
vary in logic content. See Appendix C.

Fragment: A portion of code having a
maximum size of one less than 64K bytes
(65,535). A fragment begins with the first
byte of a verb and ends with the last byte
of a verb preceding the verb with a final
relative displacement greater than 64K
bytes. This unit is used in processing for
the SYMDMP or STATE option.

GN: see Procedure-name.

Group routines: One of a set of routines
generated by phase 12 as part of the Report
Writer subprogram. There is one group
routine for each 01-level statement in the
Report Section. See Appendix C.

Incomplete Data A-text: An internal
compiler text generated by phase 20. It
has a blank location field, later filled in
by phase 22, and a 2-byte prefix.
Otherwise, its format is that shown for
Data A-text in "Section 5. Data Areas."

Initialization routines: collectively,
routines INIT1, INIT2, and INIT3. These
are generated by phase 60 as part of the
object module. A discussion of them,
including their coding, is provided in
Appendix B.

Intermediate A-text: An internal compiler
text generated by phase 50. It may be
basically Procedure A-text or Optimization
A-text and has an identification prefix
attached for phase 51. See "Section 5.
Data Areas."

Intermediate E-text: An internal compiler
text generated by phase 50. It consists of
E-text to which an identification prefix
has been added for phase 51. See "Section
5. Data Areas."

Main Free Area: Space in storage
permanently allocated for tables and the

Licensed Material - Property of IBM

Ma;or code: A 4-bit code identifying the
different types of dictionary entries. The
codes are listed in "Section 5. Data
Areas. 1I

Master of an OCCURS clause with the
DF.PENDING ON option: A data-name for a
variable-length group item which does not
itself contain an OCCURS clause with the
DEPENDING ON option, but at least one of
its subordinate items at the next level
does contain an OCCURS clause with the
DEPENDING ON option. See the "Phase 25"
and "Phase 65" cha?ters and "Section 5.
Data Areas."

Minor code: A 4-bit code identifying the
type of operand in the dictionary entry of
an LD item. The codes are listed in
"Section 5. Data Areas."

Object hierarchy: The order of all group
and elementary items defined within the
second group item in a MOVE CORRESPONDING
statement.

Object module: The result of a successful
compilation. It is the output of a single
execution of the compiler and is the input
to the linkage editor.

Optimization A-text: An internal compiler
text generated by phase 51. It is used by
phase 60 "to eliminate storage duplications.
See "Section 5. Data Areas."

Parametric routine: One of a set of
routines generated by phase 12 as part of
the Report Writer subprogram. See Appendix
C.

"PGT: see Program Global Table.

PN: see Procedure-name.

Priority: see segmentation.

Procedure-name (GN, PN, or VN): The name
of a point in a program which can be the
object of a branch instruction. PNs are
user-assigned procedure-names which
correspond to paragraph or section names in
the Procedure Division of the source
program. GNs are compiler generated and
are inserted wherever a need for an
additional name occurs. VNs are variable
names; that is, they may vary at execution
time because of a PERFORM or ALTER
statement. All procedure~names are unique
since they include a number assigned by a
counter (for example, PN1, VN2, GN1, and
GN2). See the chapter on phase 40 for a
fuller discussion of procedure-names.

dictionary. It is located immediately Procedure A-text: An internal compiler
---aft"er-(th"at-is,-in-next-hiqh"er-l:ocation-of--text-qen"erate"d-by-phase-51-.-It-±s-s±m±"l:ar-----

storage after) COBOL space. to assembler language and is used by phase

Glossary 471

Licensed Material - Property of IBM

60 to create machine code for the object
module. See "Section 5. Data Areas."

Procedure Block: unit of addressability in
the machine language program which is
produced when OPT is specified. Each
Procedure Block consists of approximately
4096 bytes of code. Most PHs and GNs
within a Procedure Block are addressed as
displacements added to a base register
which contains the address of the first
instruction of the Procedure Block.

Procedure IC-text: One of a series of
three texts. PO.-P1. and P2, generated by
phases 11, 12,21, and 22 (PO-text), 30
(P1-text) and 40 (P2-text). They are based
on the source program Procedure Division
and Report Section statements, and
represent stages in the translation process
from source statement to Procedure A-text.
See "Section 5. Data Areas."

Program Global Table (PGT): A part of the
object module. The PGT contains virtuals,
literals, and addresses used during
execution. See Appendix B.

PO-text: See Procedure IC-text.

P1-text: See Procedure IC-text.

P2-text: See Procedure IC-text.

Q-routine: One of a set of routines
generated by phase 22. Q-routines
calculate the length of variable-length
fields and the location of variably located
fields resulting from an OCCURS clause with
the DEPENDING ON option.

REF-text: An internal compiler text
produced by phase 60 if the SXREF or XREF
option is in effect. Phase 61 uses
REF-text and DEF-text to produce a
cross-reference listing. Each element of
REF-text consists of a user-assigned name
and the card number of a statement that
included that name.

Root segment: See Segmentation.

~: See Secondary Base Locator.

Secondary Base Locator (SBL): A 4-byte
address cell in the TGT. Phase 22 assigns
a unique SBL, using a counter in COMMON, to
each variably located field. At execution
time, each SBL points to its field.
Variably located fields are those which
follow a variable-length field and which
are not new files or records; they occur as
a result of OCCURS ••• DEPENDING ON
statements in the source program. If a
variably located field exceeds 4,096 bytes,
phase 22 assigns one SBL to each 4,096
bytes.

472

Section: A series of source program
procedure instructions grouped under the
same section-name.

Segment: A section or a group of sections
all having the same priority.

segmentatiQA: A special feature of the
compiler which permits the programmer to
organize his program into several load
modules. Each section in the Procedure
Division is assigned a priority number.
All sections having the same prio:r:ity are
loaded together as a segment. One of
these, the root segment, resides in storage
throughout execution of the program. The
other segments are loaded in order of the
priority number, each segment overlaying
the one before.

Subject hierarchy: The order of all group
and elementary items defined within the
first group item to appear in a MOVE
CORRESPONDING statement.

Table: An area in storage containing a
number of entries of a fixed, often
identical, format. Many tables used within
a single phase and all tables used by two
or more phases are handled by the TAMER
routines of phase 00.

TAMER: A set of routines, resident
throughout compilation as part of phase 00
and accessible to all phases, which get
space for, access, and build tables. Those
tables which employ TAMER routines include
those passed between phases and those used
by a single phase and having a variable
length. Usually, tables which have a fixed
length and which are built, used, and
released within one phase are not handled
by TAMER routines.

TAMER suace: Space in storage occupied by
TAMER tables. It follows (that is, is in a
higher location of storage COBOL space.

Task Global Table (TGT): A part of the
object module. The TGT contains
information, addresses, and work areas for
use during execution. See Appendix B.

TIB (Table Information Block): One of
thirty-six 8-byte cells in COMMON used to
provide information about TAMER tables.
The TIBs are numbered and can be reassigned
after a table has been released. See
Appendix A.

TGT: See Task Global Table (TGT).

Transient area: A portion of storage
reserved during execution time to contain
seqments which are not permanently
resident. It contains one such segment at
a time and is large enough to hold the
largest nonresident segment in the program.

~: User Program status Information.
There are eight 1-bit UPSI switches
provided by the DOS/VS system. The UPSI
feature of this compiler provides the
facility of naming and using these
switches. Phases 10 and 22 perform the
processing of this feature.

Verb string: A verb and its operands.

Virtual: The name of a procedure switch or
table referenced by a procedure, but not
defined in the source module. It is

Licensed Material - Property of IBM

necessary because of a CALL to an external
procedure or a reference to a COBOL library
subroutine. At execution time, the address
of all procedures referred to by virtuals
(which have been link edited into the load
module) are stored in the Program Global
Table.

!!: See Procedure-name.

Glossary 473

Licensed Material - Property of IBM

DIAGRAMS

474

LEGEND I
T""f., of 0010 10 0'; >

r

I
PHASE 07

Prints
lister
preface

Licensed Material - Property of IBM

Dato IC-, ATF-, E-,
and Data A- Data A-, Data IC-,

from flies I Data IC-text and E-text ,ex'(~bDEF~ ~ !::::of dafciln~~1 ~-
SYSLST "'"

listing of entire
source program

~

If LIST
Ind no
ister
'ption

A
1r~.x'

PHASE 01

Resolves BASIS
and COPY
statements

II LIB

~/-------,

IP-text

PHASE OS

Scans source
program.
Inserts
syntactic
markers.

~
PHASE 06

Sorts source
program.
Inserts

references.

~
PHASE 08

Produces
lister
option
output.

SYSLST ,o,.
Source listing of
ID,ENV,and DATA
DiVisions

L--:
If

~
LIST
o,d
NOLIB
and no
lister
option

E-text

If DECK

f--

,

PHASE 10

Encodes into
from 10, ENV,
and DATA Div.
Analyzes
syntax

"

SYSIPT· 1
ID,ENV,and DATA

If NOllB

[
lfl!.'., l I A _,I

ophon

I

~----------------~~---
Divbion (without
Report Section)

SYSLST ..

_______ ~ SYS003

Dato IC-Text v I r:::; I ~ C/1
Source listing of
Report Section

L-:;
If liST
o,d
NOllB
and no
Lister
option

f>

f I I OPTIONAL
I PHASE 12 I ~ ~HASE2) II

Produces Report
Writer Subprogram

IflVL

Translates I
VALUE and
PICTURE clauses,

Procedure NCimes

l Vl ,----",,-"'':'-:,,-1--,

PHASE 22

Produces
dictionary
entries;
completes Data
A-Text,
generatesQ-
routines

LD & RD entrIes,
dummy for FD4 & SD

Data A-text
& E-text, DEF­
text for data &
file-names

1\

Completes
dictionary
entries
generates DTF,
generales I/O
buffers

SYS005

-r

Builds DATATAB
and OBODOTAB
table for Debug
File

ifSYMDMP,
Debug File
tables

OPTIONAL

DEF-text for
Procedure
Names

PHASE 30

SYSIPT*

If Report Section
and NOLIB

1---'-="-'-'---1 If 11IST'
o,d
NOllB
and no

PO-text
(for VCONs)

Builds DATA
DIV glossary
Replaces names
with attrib­
ute.

Pl- & E-texts

-, , "
• If LIB or Lister OPtIo) SYSOO4, instead of SYSJPT, Is input

to Phoses 10,12, and 11.
If L VL, saurce listing 19oes on SYS006 for Phase 80 processing.

...
SYSOO4'

~~~t ~~~:~~~~ 1-1-------

SYSIPT* If NOLIS ~' 
PROCEDURE ~ 

DIVISION 

Encodes 
PROCEDURE 
DIVISION 

Diagram 1. Overview of the Compiler (Part 1 of 2) 
PO-text and E-text 

LIster 

pO-text and E-text 

SYSOOl 
(SPill) 

L-

Special process­
ing for Segmented 
Peru 
S",tox 
analysis that 
requires diction­
o,y 

Diagrams 475 

).< 

SYSOO3 





Licensed Material - Property of IBM 

" PHASE 70 

JII No ov.,flow --.: 
Generat~ 

'J 

IPC3 
v compiler 

,~ diognostics (, 
"-

~~~ overflow 
Debug File ...

ERRTBL SYSOO3 ~
SVSOO5

{ SYSPNCH

" PHASE 65 Object Deck
"

~
If SYMDMP, V rl SYS004 builds PROCTAB, If 'LINK' Dr 'CATAL'

f; I SYS002 CARDINDX,
)f SYSLNK I SEGINDX,

1(')\ Object Module ,
i" PROCINDX,

If STATE or PROGSUM
7' SYMDMP tables for V

Debug filo; II'LlSTX'

~ PHASE 60 OPTIONAL PROCTAB,

", IF CARD INDX, ----v Object Module
Optimization A-text SYMDMP SEGINDX if ,

Determines STATE ,STATE SYS003
storage require- or FLOW

If 'LINK' or 'CATAV ; ments for object If'DECK' i SYSPNCH code; optimized

r ~
Object Deck

i!>- literals, virtuals,
procedure names, V
produces machine

'~
language pgm; PHASE 61

SYSLST

l
writes object text J..
and INITS \~~ Cross Reference

"17 Table

I I DEF-'ext -" IIXREF
Produces
cross-reference

SYSOOI lilting on

" SYSLST "- "

~
FIPS flog
source listing

E-text (If E-tex~

SYNTAX or REF-text " IfXREF r-..
CSYNTAX) SYS003 I
Data A-text Intermediate E-,
(IFCOUNn Intermediate A-,

PHASE BO P2-, &
(if OPT) F2-text

~ P8 ,& PHASE 40 PHASE 50 PHASE 51 PHASE 62 PHASE 63 PHASE 64

I';cmv'
WSOOI Do FIPS

processing;

Detvrmines write source

Transforms Analyzes Analyzes storage require- Generates mach- Completes OPT
listing

REF text
Pl- into P2-text text from ments for pgm inc language pgm optimized mach-with optimized SYS004
P2-Text. and generates SYS002 with OPT; ina language
Analyzes text for ond optimizes literals, addrcssobillty

pgm; writes
V

syntax Phase 51. Procedure virtuals, Pns & for PNs & GNs
object text and A-text GNs, builds and register
INITS. If 'LINK' or 'CATAL'

tables for 0 PT OSsilil",!,cnts SYSLNK I
optimization Object Module

> (g;r &;~~ .. i!>-

~~
II'LISTX'

~ II OPT If OPT Procedure If Object Module
A-text AHox' OPTJ

' SYSOOI J SYSOO2 SYSOO~ SYS002 If 'DECK' ')(SYSPUNCH
Object Deck

V

Diagram 1. overview of the Compiler (Part 2 of 2)

Diagrams 477

Licensed Material - Property of IBM

OVERVIEW

Part 2

I I I
CONTROL

REFORMATTED IDENTIFICATION PROCEDURE
AND 1/0

SOURCE CODE ENVIRONMENT DIVISION LISTING AND AND DATA TRANSLATION
EMBEDDED DIVISIONS
CROSS- TRANSLATION

Phases 00 REFERENCES Phases 10 Phases 11
01 Phases 05 12 30

06 20 50
07 21 51
08 22

Part 3 Part 3A Part 4 Part 5

J I I
OBJECT OPTIMIZATION DEBUG DATA ERROR
MODULE OF OBJECT SET MESSAGES.
PRODUCTION MODULE CREATION DIAGNOSTICS.

CROSS-
REFERENCE

Phases 50 Phases 62 Phases 25 LISTINGS
51 63 65

Phases 61 52 64
70 60
80

Part 6 Part 7 PartB Part 9

Diagram 2. Part i. Method of Operation: Table of Contents

Diagrams 479

licensed I~aterial - Proferty of IBM

INPUTS FUNCTIONS RESULTS

SYSIPT

COBOL
Source Program

Controls compilation and performs I/O functions
SYSLST

Part 3 If LSTONLY I Reformatted source
or LSTCOMP listing with cross·

Reformats source code listing and embeds cross - references references

~
Translates Identification, Environment. & Data Divisions SYSPCH

Part 4 If DECK
or CPYCPCH Reformatted

Translates Procedure Division Part 5
source deck

SYSOO4

Produces Object Module ~
If LSTCOMP

Optimizes Object Module

I Part 7 I
SYSLST

Produces Debug Data Set

_I Source listing
Part 8 If SOURCE object module

listing

Issues error messages, diagnostics, & cross-reference listings
Part 9 I I I I I ~

SYSPCH

If DECK - r-::ject code

SYSLNK

If LINK
Obj.

SYSOO5

IfSYMDMP

SYSLST .----
Error messages

~I
cross-reference

If XREF, SXREF, or LVL source listing with
FIPS flag

Diagram 2. Part 2. Method of Operation: Overview

Diagrams 481

Licensed naterial - property of IBM

INPUTS FUNCTIONS RESULTS

0 Receives control from Operating System
SYS001-SYS005 Storage ------------------

LINKCNT Performs reallocation and linkage functions

-------------------- Compiler 0 'XV' code Handles input/output requests
texts

® -----------------'ZZ' code
Provides routines for permanent input/output errors

------------------ SYSLST

0 Ma.nipulates tables for other phases

8 ------------------ and

I ® Provides Communications Area diagnostics

I ® Determines compiler options

SYSPCH CD Determines compiler buffer sizes and

Object module I Opens compiler data sets.

Description Module Chapter Chart

01 Receives control from; returns control to operating system. ILACBLOO Phase 00 AA

01 Provides Table Area Management Executive Routines (TAMER) for acquiring storage for and ILACBLOO Table and
building tables. Dictionary

Hamling

® Provides Communications area (COMMON) used to pass information between phases. ILACBLOO Section 5:
Communi-
cations Area

I (COMMON)

®I Contains installation default values of compilation parameters, determines user options. ILACBL01 Phase 01 BA
If LIB is specified, handles COPY and BASIC functions.

°1 Processes compilation parameters, d.etermines buffer sizes for all phases, obtains storage for ILACBL01 Phase 01 BA
tables, dictionary, and buffers, enters information in COMMON, opens data sets.

01 Activity of data sets and buffer assignments is summarized in Figure 10.

®I 'XV' and 'ZZ' codes are summarized in Figure 5.

. I
D~agram 2. Part 3. Method of Operation: Control and Input/Output

Diagrams 483

Licensed Material - Property of IBM

SYS002
INPUTS FUNCTIONS RESULTS

I Source
SYSIPT

r ICOBOL source Ilf NOLIB

Analyzes syntax of COBOL program; inserts program SYS002 SYSLST
SYS002

0 syntactic markers. with SYS004
markers

;program I ------------------ @) ",mm5J Source Source source listing

I
program Inserts cross - reference information.
with

program
with cross-

SYS004 markers ® references -
------------------- SYSPCH

COBOL If LIB ® Prints reformatted source listing with embedded
(Reformatted I source cross - references;

I source program
If DECK

I
Punches reformatted source program;

I SYS004

Passes source program for compilation;
If LSTCOMP

I Reformatted
source

Description Module Chapter

0 To ILACBLlO
Inserts syntactic markers to indicate such items as new statement, reference type, level ILACBL05 Phase 05 (Part 4)

I
number, indentation. and qualifiers. Detects syntax errors and inserts error and recovery
markers.

® Makes two or more passes of input source; inserts pointers at place of definition to ILACBL06 Phase 06

t places of reference and at place of reference to place of definition.

@ Output is written alternately on SYS004 and SYS002 at each pass of input source. Phase 06

! Output of the last pass is always written on SYS002.

® Prints preface consisting of format description, statement number uses, footnote use, ILACBL07 Phase 07

j

method of indentation, summary listing; lister option listing; punches source program ILACBL08 Phase 08
for later compilation if the DECK option is in effect; passes source program to phase
10 if the LSTCOMP options is in effect .

. 1 2 Dlagram •

)

Part 3A. Reformatted Source Code Listing and Embedded Cross-references

Diagrams 483.1

o
®

®

®

I

FUNCTIONS

INPUTS

SYSIPT
o Encodes Identification, Environment, and Data Divisions

I COBOL soulce Ilf NOLIB

program

Analyzes syntax

SYS003 ® Generates Report Writer Subprogram

SYS004

® Translates VALUE and PICTURE clauses

If LIB

® Produces dictionary entries;

Generates Data A-text

Generates Q-routines

Description

Reads source cards and stores information in the form of Data Ie-text, builds tables, sets
cells in COMMON, analyzes syntax, writes source on SYSLST if LIST is in effect or on
SYS006 if LVL is in effect.

If source program contains Report Section, generates Report Writer Subprogram (for the
structure of this program see Appendix G "Report Writer Subprogram") as Data Ie-text
scans input for errors and generates E-text, writes Report Section on SYSLST If LIST
is in effect (or on SYS006 if LVL is in effect). builds TAMER tables and sets COMMON
cells. If VERB is in effect, generates Listing A-text.

Translates VALUE and PICTURE clauses from Data IC·text to ATF-text, writes partial
dictionary entry for each LO, scans input for errors and generates E-text, builds TAMER

tables.

Produces dummy FD and SO dictionary entries, builds CD, LD, RD, and 10 entries,
completes Data A-text, generates O-routines, produces E-text, builds TAMER tables;
completes FD and SO entries, writes Data A-text for DTFs, determines buffer sizes,
produces E-text.

Module

ILACBL10

ILACBL 12

ILACBL20

ILACBL22

ILACBL21

--·~CD

----.. .. 0

Chapter Chart

Phase 10 CA

Phase 12 EA

Phase 20 FA

Phase 22 HA

Phase 21 GA

If LIST

. I
Dlagrjam 2. Part 4. Method of Operation:

Translation
Identification, Environment, Data Division

Licensed Material - Property of IBM

SYS003

Data
IC-text;
E-text

RESULTS

SYS LST or SYS006

Source listing of
Identification,
Environment &
Data Divisions and
Report Section

-

SYS003

2\ I 1
PO-text
E-text

1 1 ~I

SYS004

Data IC-;
ATF-; E-;
Data A­
texts

Storage

Dictionary

Diagrams 485

0 I
I

I
®

® I
I
I
I
I

INPUTS

I SYSIPT

I
COBOL source
I
program
I

FUNCTIONS

o Encodes Procedure Division

Storage

SYS004

® Inserts dictionary attributes in Procedure Ie-text

Expands CORRESPONDING statements

Dictionary CD ~n;~ S~~1t: -
Expands verbs

Description Module Chapter Chart

Reads Procedure Division of source program; creates dictionary entries for procedure-names; ILACBL11 Phase 11 DA
writes Procedure Division on SYSLST if LIST is in effect (or on SYS006 if LVL is in
effect); processes Declaratives Section: generates Listing A-text if VERB is in effect.

Creates P'-text; replaces source program names wIth dictionary attributes; builds Data ILACBL30 Ph a .. 30 JA
Division Glossary of all source program data-names; performs special processing on
procedure-names in segmented programs, verb strings, and verb strings with
CORRESPONDING options; performs syntax analysis requiring dictionary; releases
dictionary.

Translates Pl-text from SYS003 to P2-text on SYSOO1. ILACBL40 Phase 40 KA

Processes arithmetic verbs from SYSOOl to SYS002. ILACBL50 Phase 50 LA

Processes input/output verbs and other non-arithmetic verbs from SYS002 to SYS001. ILACBL51 Phase 51 MA

. I
D~agl)am 2. Part 5. Method of Operation: Procedure Division Translation

I
i

J'

Licensed Material - Property of IBM

If LIST

Procedure-names

SYS003

RESULTS

SYSLST or SYS006

Source Listing of
Procedure Division
Data Glossary

Storage

Dictionary

SYSOOl

SYS003

Diagrams 487

®

I
@

INPUTS FUNCTIONS

SYS001

o Produces intermediate assembler-like instructions'
SYS004

®OPt:i::;:;'mGIOb;T:;:I~--------

SYS002

Assigns base registers

Creates object program

SYS001

SYS003

Description

Receives P2-text as input on SYS001; produces intermediate Procedure A-text, intermediate
Optimization A-text, and P2-text on SYS002, and Optimization A-text on SYS003_

Receives intermediate Procedure A-text and intermediate Optimization A-text, P2-text on
SYS002; produces Procedure A-text on SYS001_

When OPT is not in effect; determines object program storage for Task Global Table and
Program Global Table; optimizes literals, virtuals, source program procedure-names, and
compiler-generated procedure-names; generates and writes machine language instructions;
writes object text for data area of program. writes object text for initialization routines;
passes E-text to phase 70_
When OPT is in effect, the functIons described in Part 7 of this dIagram take place instead_

Module

ILACBL50

ILACBL51

ILACBL60

Chapter Chart

Phase 50 LA

Phase 51 MA

Phase 60 NA

Dilgram 2. Part 6. Method of Operation: Object Module Production

Licensed Material - Property of IBM

SYS001

SYS003

If XREF or
SXREF

If SXREF or
XREF

If LOAD

If DECK

PMAP, DMAP, or
CLIST

STATE

RESULTS

SYS001

SYS003

SYSLNK

SYSPCH

ESD, TXT, and RLD
statements for
object programs

SYSLST

Global Tables,
literal pools, object
program listing

SYS003

Diagrams 489

I
.1

\
Fro,], part 6

I I I

@

INPUTS, FUNCTIONS

SYSOOl

o Determines storage requirements

Optimizes literals, virtuals, PNs, GNs

SYS003 ® Generates object program with optimized addressability

0:

®I
0\

SYS002

SYS004
o Completes object program

Description

Determines object program storage allocation for Task Global Table; optimizes literals and
and virtuals by processing Optimization A-text, determines storage allocation in Program
Global Table for these, for PN and GN cells, and for DCBADR, VNI, and PROCEDURE
BLOCK fields; calculates displacements; determines object program storage requirements
for Procedure Division; optimizes usage for both permanent and temporary register
assignments.

Produces Procedure A l-text; inserts information for addressing PNs and GNs and Procedure
Blocks in instructions; generates all remaining instructions, except Load instructions;
writes segmented programs in order of ascending priority.

Completes instructions from Procedure A l-text; writes object program text and REF-text
from ProcedureAl-text; writes INITl,INIT2,and INIT3; writes RLD-text.

Module

ILACBL62

ILACBL63

ILACBL64

Chapter Chart

Phase 62 OA

Phase 63 PA

Phase 64 QA

DiaJram 2. Part 7. Method of Operation: Optimization of Object Module (Optional)

Licensed Material - Property of IBM

If DMAP, PMAP, or CLiST

If STATE or SYMDMP

SYS002

If LINK

If DECK

If PMAP, DMAP,
CLiST

If SXREF or
XREF

If SXREF or
XREF

RESULTS

SYSLST

Global Tables,
literal pool

SYS004

Storage

ERRTBL

SYSLNK

SYSPCH

ESD, TXT, RLD
statements for
object program

SYSOOl

SYS003

Diagrams 491

0
®

INPUTS

SYS003

Storage

IISYMDMP

FUNCTIONS

o Builds tables for SYMDMP

Writes Debug Data Set

Dictionary

® Produces debugging information for SYMDMP, STATE,

and FLOW

SYS002
Completes Debug Data Set

I

I

SYS004

Description

I

If STATE

If STATE or SYMDMP
and OPT

II SYMDMP is In effect, builds OBODOTAB table for OCCURS ... DEPENDING ON clauses;
b'uilds DATATAB table; writes tables on SYSUT5 data set.

I

~or the FLOW option, stores number 01 traces requested in DEBUG TABLE 01 Task Global
Table. For STATE, produces PROCTAB and SEGINDX tables and writes them in object
~odule. For SYMDMP, produces CARDINDX, PROCINDX, PROGSUM, PROCTAB, and
SIEGINDX~ab~es and writes them on Debug Data Set (SYSUT5).

Module Chapter

ILACBL25 Phase 25

ILACBL65 Phase 65

Chart

IA

RA

D " I
~agram' 2. Part 8. Method of Operation: Debug Data set Creation (Optional)

I
I
!

Licensed Material - Property of IBM

If LOAD and STATE

If DECK and STATE

If SYMDMP

RESULTS

SYS005

SYSLNK

SYSPCH

PROCTAB and
SEGINDX tables

SYS005

Diagrams 493

Licensed Material - Property of IBM

INPUTS FUNCTIONS - - -- RESULTS --------

I
SYS004

SYSLST o Contains text for and produces error messages Error messages Listings:
E-text Error

I
-------------- ---- cross-reference

® Produces cross-reference listing
If XREF or SXREF FIPS flag

Storage -II ERRTBL ----------------
SYS001

r'"' ® Flags FIPS deviations
If LVL

I If XREF or SXREF
DEFr-xt SYS003

I If XREF or SXREF

SYS006
REF-text

I
Source If LVL
Listing

I
I

Description Module Chapter Chart

0 Produces E-text as it scans source program listing and analyzes syntax. ILACBL10 Phase 10
ILACBL12 Phase 12
ILACBL11 Phase 11
ILACBL20 Phase 20
ILACBL22 Phase 22
ILACBL21 Phase 21
ILACBL25 Phase 25
ILACBL30 Phase 3
ILACBL40 Phase 4
ILACBL45 Phase 45

I ILACBL50 Phase 50

I
ILACBL51 Phase 51

ILACBL60 Phase 6

I ILACBL62 Phase 62
ILACBL63 Phase 63

I
ILACBL64 Phase 64 I

I ILACBL65 Phase 65

I Contains text for error messages. ILACBL70 Phase 70

Formats messages and prints them on SYSLST.

® I'f XREF is in effect. produces a source-ordered cross-reference listing; if SXREF is in effect, ILACBL61 Phase 61
I produces an alphabetically ordered cross-reference listing.

® I'f LV L is in effect, scans COBO L source program after compilation is complete and ILACBL80 Phase 80
produces messages indicating deviations from the Federal Information Processing Standard
(FIPS).

DiagrJm 2. Part 9. Method of Operation: Error Messages, Diagnostics, and
Cross-Reference Listings

Diagrams 495

Licensed Material - Property of IBM

ODOTBl Table

~ OBODOTA8 table

..J
u

QILOOP
PHASE 22 QRTN Table I r---- I SRCHQRTN

I
anBl Table

ODOBLD BLDOBODO ENDPI

~ Build

"-
OBODOTAB

==) If on)' Build table;

000 are

~
ODOTBL complete

present
V ODOTBL

table

Phase 22 OCCTBL ~
(

POINTS4
f '-1 I

COBOL
Dictionary

NOTE4 L NORENAMS

1
PH25 EXCHRENM PROCESLD WRITES

I
PHASE25 SORTREN OCCTEST SETNAM ENTRDATA

Phase 21
via

These route in! ere used by BLDQBODO
Enter doto

~
Build RouHne$ in tables;

f\. I\. Test for /'
and BEG PASS

I\. entries

~
to process prepare to

Initialization Process
~ pre~nce . > fo. different print entry

---,/ RENAMERS
--V kinds of orODO's ~ v V tables on Debug

l- I- entries File f-

I
"'\

DATATAB table t
Note: If 000 not present control passes ..J ..J ,/

immediately to BEG PASS from OCCTEST

Legend: I LOCNXT
Debus .. file

0
Flow of Data I BLDRD

> I Phase 22
VARLTBL

BEG PASS TESTSUBS J>

Fla.v of Control SYSOOS
Work File

D 0 Test fer

~
Build -1' subscripted

Phose 22 MASTODO
DATATAB items; uses

I I table ----v entries in V OCCTBL I-
Routine Tobie Branch Tobie table

-

Diagram 3. Phase 25 Operations Diagrams 497

~ The COBOL source program
contaIns both OCCURS
and OCCURS ••• DEPEND­
ING ON clauses.

77 X USAGE IS COMP PIC 9(3).

77 Y USAGE IS COMP PIC 9(3).

01 A.

02 B OCCURS 2 TIMES.

~ Phase 22 builds the
LY OCCTBl tablo inltal·

Izlng it with the dictionary
pointer of each subject
of OCCURS and OCCURS •••
DEPENDING ON clause,
setting a bit to indicate
the latter.

03 C OCCURS 10 TIMES DEPENDING ON X.

04 0 OCCURS 10 TIMES DEPENDING ON Y.

05 EPIC 9.

aCCTBl Tobie

Dictionary Length

D":~ I:::n,., I :~:onn.Hon I ~:Ol ~il~ In
II III OFF ~asi25

1081c C

11810 1 I I I ~ I I~' I I I

OCcrEST

Tests for
presence
of OCCURS .•.
DEPENDING ON
clause

G"'" Routine DOOBlO builds the
L..:/ QDOTBL table by:

~ Checking the OOCCT counter defined in Phose 25
L..:./" for the number of the 000

entry to be processed.

ODOBlD

Builds
'he
ODOTBl
table

OOOCT counter

v Using that number to find
the QRTN table entry
f", tho, OCCURS .•• DEPENDING ON
clause.

Licensed Material - Property of IBM

Displacement
of OD2TBl entry
associated with
000 clause

@ Routine BlDOBODO builds the OBODOTAB toble
from entries in the CDOTBl table and inserts
a pointer (i.e., the black number and
displacement within the block)
to each OBODOTAB entry into its
corresponding ODOTBl entry

BlDOBODO

Builds the
OBODOTAB
table;
completes
the ODOTBl
table

OBODOTAB Table

0-012--+-----1

0-0201--+-----;

QRTN Table I-I..,...+.,-+-.-.-rl
010'16

1st entry

0101018
QITBl Table 2nd entry LI..;J....;J....;J..-L-L-'--'--'

V The QRTN table entry is used
to find in the QITBl table the
dictionary pointer for the object
of the 000 clause.

ODOleL Tobie

Oisp\ in
OCcrBl
for corr
entry to

Dictionary
pointer to
attributes
of object of
000 clause

Displacement
of OD2TBl entry
associated with
000 clause

8 The dictionary pointer for
the object of 000 is
inserted inta the ODOTBl

Dictionary
pointer to
attributes of
object of
000 clouse OBODOTAB Fo,OBODOTAB

Pointer
for X

Pointer
f",y

pointer pointer

116

126

Dictionary
pointer to
attributes af
object of
000 clause

Pointer
for X

Pointer
forY

OCCTBl Table

Dictionary length
Pointer Information
for for

Dlspl

Displ in F",
OCcrBl OBODOTAB
fOr carr pointer
entry

0012

0020

Pointer to
000 ODOBOTAB
SW

::II~III ~ II~~I ~~~f
Displ "" 126

ENDPI

V Finally, using the ODOTBl
Table, routine END PI fills
in the OBODOTAB pointer
for each aCCTOl table
entry which is the subject
of en 000 clouse.

Diagram 4. Phase 25 Processing for the OBODOTAB Table
Diagrams 499

Licensed Material - Property of IBM

~ourcc earn numlJer --------
--II> l.iL~UI' fut

I ULr-tc~t

ConUms all l names ill source m:ADFN
program wlth
their attnbutes •

HEAD, HETUHN verbs * • ln~crts u!cord-
D.JIllC .dtel' hIe-

...

DlctlOnary CAlII)NO

name.

TSTWRO, · GLOSRY,

r-~
PHCTRL, and

COHRESPQNDING ln
CORHTN

other PO-text
processors. ADD, SUBTRACT. or

Exp.mds lnto MOVE statements * * ...
Simple state-
ments for
matching pall'S.

· IND2TBL

TSTWRO RECORD KEY SEARCH
Changes major

mformation
MAP bIt MAP bit off code to 7 for CD Name: IS It umque?

Dummy attributes

- Determmcs 1f of spec loll reglsterb

\ each data Item name IS WllqUC
m dictionary

® Name IS umque
Ul dictionary.

Wlder FD With
GLORET PHCTRL PIUNiT WRITE ONLY · switch on. Imtializes

K
ln1tmllZcs Reads text element,

PHASE 00 phase opera- PHCTRL opera- r-- branches to appro-K ® Subshtute attributes for unique name' •• _I
tlons, branches tlons. Reads prate routme, or

/ INDKEY Table
,

to TSTWRO or first block of passes element on
GLOSRY. GLOSRY input. Without change.

_I Data items and

Writes Data PHASE 22 Ilterals aSSOCl-

MAP bit aD DIV1SlOD
ated With tables

-glossary. per-
fonns TSTWRO
operatlOD. STSRCH

SEARCH verbs * ,. Adds attnbutes
SYSOO2 of all data Items

3ssoclated With

PHASES 12, 11, tables.
PO-text

22, and 21 E-text J I
All other elements passed on' Mthaut change PNTIN

GETNX"l" (Used by PO-text

Q)

Reads mput. processors) QVAR Table ERROR Routmes that
puts locahon 1D End-of-flle

requlre next, ---I>
buffer of next I: I Comerts error

l'rors requlrmg E-text. word of mput
word Ul

GN's assocl.1ted codes and pJ.r.l- E-lc\t

i umqueness m dictionary PNTIN.
wlth data-ti.lmes meters from

processmg
QFILE Table ~ routmes mto

mes wlth thelr dlctlOnary PHASE 22 I ~'-JOndlhon strLngs, adds GN'~ assoclated

wlth Ilie-names UEXOP ngs, mserts segmenta- J DEF-text.
VALTRT.: Table

1

I r-'" ms. Values aSSOCl- J ,
ated "dh Icvel-
88 Items

[OF

Tel"mUlate~

~ Phase 30 OpCl'U-
PHASE 00 tlOn~. C.11b

ph.lSl' Oil. ,

Diagram 5. Phase 30 Operations
Diagrams 501

Phose 60

Phose 60

Phase 00

-------".
~

PH 65

Initializa­
tiOn routines,
Prime
Tables

SYSOQ2

Debug text

8
TGTADTBl Table

legend

D 0 Branch TobIe

ROF2

GETF2

Get next
element
and branch

processing
routine

F2PROCS
Branch
toble

D ~."' ..
Flow of Data

. >
Flow of Control

Routine Table

r--v

TENPROC

Proce;$
CARDlOC (10)
elements,
build
PROCTAB and
CARDINDX CARDINDX TobIe L
TobIe! t--J>l

~---r--~ ~P~RO~C=TA~'~To~b~I'~

~

b ~

T'NENPROC

Pro,eu
ENDSEG (20)
element!;
enter ,ode
into PROCTAB
to indicote
end.

SEGINX

Procel5
SEGMENT (30)
elements

FRTYPROC

~
~~'"
DISCONTINUITY
(-40) elements
Tum 0"1 DISCSW
switch

EOF2

~

~ I\l:.vCOMAD

ENDOFTBL

~ EOFON2

--v

Collect in­
formation
for PROGSUM
IQble

GTEQ10K

Determine
end of

VI fragment

Procen for
STATE or
SYMDMP
options

I
'-______ .~_lI'ROGSUM Tobl,

SYSOO2 I

Diagram 6. Phase 65 Operations

SYSOO4

If prQgram is
.egmented

PNCHSW

Licensed Mate~ial - Property of IBM

SNF

Stort

frogmenl

ENCODE

Release tables
determine
opliom,
set return
codes

V

SEGINDX Table

==:J

If 'SYMDMP'
~ SYSOO5

TXPNCH

Write tables
in fde
build
tables

SYSlNK

l

Diagrams 503

PhaS(! 62 uses the
fallowmg Tablel in
the same way as
Phase 60 does

CVIRTB
VIRPTR
FILTBL
VNPTY
lVIRTB
PNUTBl
CONDIS
CONTBL
LTLTBL

Phase 51 Via Phase 00

BLUSTBL tobl.J

-v

Pha5e 50
Forb..llldmgBLASGTBL

TGTlNT

PH62

Initiallza­
lion Routines

SYS003

I ~i"'TG? (lfLISTX,
CLlST,
SYM,
option in
effect)

Optimization
A-Text

REGMVl

READF2

PRFT'NO

Process
optimlzo­
tionA-Text
elements

PrInt literal
pool. DISPLAY
literals and PGT
(ifLlSTX, CLlST,
SYMaptlonls
incffcct)

I--

PNATBl table

PNaddrenes

GNATBLtable

GNaddrenes

VNPNTBLtable

PNii used as VNs

~
Proc:edure
A-text

~

SE6000

5eleci Pro­
cedureA-Text
Processor

! t BLVNTBL •

table Phase 63
VN Block Numbe;;

SE6020toble

Bronchtoble

SYSLST SYSLST far Procedure
f--

Legend

BtASGTBl table

BLsassigned to Regs

D[JQ· .. ~·
I I :>

Routine T_L'. ". ___ . _r r __ ,-_I

Diagram 7. Phase 62 Operations

A-text
proc:eSSlng

R6202table

Branch Table
for Procedure f---A-text0P""
code elements

~Phoses63,64

Licensed Material - Property of IBM

I----,

--
PNDcr"

I---~ ACCUMCTR
=4096 Process for

proc:edurename (PN)
definition

~ Procenfor
PNdefiniticns

I I LFfL
~11U I

~R
Precenfor I generaledname

(GN) d,f,"1t,~ ~

Pracessfar
operation codes

I Several routines I farpraccssmg
I Procedure A-text
I elements and
1 addmg to ACCUMCTR
1 counter

End-of-file

Process
forGN
definitions

.6400

Builds
DRPTBLand
DRPLT8L
for Reg
14 and 15
Optimization

OPPRO

Process
operation
codes

REGLIST

ENDPTX

Process for
end of Proce­
dure A-Text
and Phase

v

DRPTBl table

~ For building DRPLTBL

DRPLTBLlable

~ For Reg 14-15 Assignmeni

2 byte branch InStruction

:3
l~di""N'''O"~

AIIOlh,n~

Print permanentregilter
aSSignments

ifCLlST. LlSTX, SYM
SYSLST

NEWBLOCK

PrQC;essfor
new procew

dure block ~

11
DEFLOll

f.-
PNLABTBL table

PrQC;essfor
procedure
namedef­
inition

For b ldmg PNFWDBTB I-­
GNLABTBL table

For building GNFWDBTB

REFLDll

Pracessfor
Procedure
name pre­
cedmg
Branch
Instruction

PNFWDBTBtllbie

For branches farword

GNFWD£lTB table

For btanches forward

SAVE

SAVE,nstruc-
tion unlll
block
number IS
resolved

'ADo"LGTii

Add length
of iniitruc-
han to
ACCUMCTR
counter

Diagrams 505

SYSOOI

PHASE 63

InitIalize-

lion, .. I.",.. F::J
TIB addretHs;
p-lmetobl ••
read Ant
• 18mento(
PROe A-Text

LTBLtabl. r

GETBTBLtobl.

Branch tabl.
taroutln.
forproCtlu-
Ing PRoe
A-Text .Iemlnb

r
GET

Control
routIne

co

COal.llllnl

~~~:: 17 ') 
ure A-Text ~f------.....,i/ 

Control 
routine ~ olomenh CRLAYTBL lobi. 

f-l-----' 
To add length. to buff.r 

Brench table 
to routines 
(orpoc:eu­
Ins CO 
elementl 

MACRO 

Rautinc. 
forproceu­
Ing CO 
.Iementl 

~ R.I""' ... T'a ..... ~ 1--, ~ MACRO ~ ~ Roun,,, I", 
) Control proc:euing 

routine Macro 

MRLAYTSL lable elemenh 

Branch table 
Legend: for P'OCeq­

IngMacro 
elemenb FOURTY8 

Table 

Flow of Data .. :=;:;: 
Flow ICon ,:> 0 Branc:htabl. o Ira farproceu-D ~'!.:':I::::".:'b EOF 

Work File Proc:essfor 
end-of-fIIe IIIIgmented 

pgms and 
close phase 
62 by releallng 
orpossing D .SEGTBltabl, tables, claslng 

FOrS'gm'ntldPlilm....... ' 
Routine Branch Table 

r:= 1" ... ". 
fha.o 51 

Diagram 8. Phase 63 Operations 

< 

Licensed Material - property of IBM 

~ 
r--

Routines to 
procell all 
Procedure 
A-Texl 
elementl 

PNRff 

Procllufor 
procedure 
nom. 
r.felenclIl 

GNREF 

lj '''".ul", 
generated 

,.ferenell • 

5, WETSL'able 

PN/GN number 

~ 
rV 

CNOP 

Routine for 
processing 
CNOP 
.Iemenll 

u 
PhQ5I162 

VNPNTBLloble 

~lngRUi 

VNPTY tabl. 

~ For bUlldlngRLD 

h 
~ 
r-v' 

~ 

CNOPTlable 

CIREF 

Generate 
In, SLaCK. 
Ifnlllceuary 
chonge l to LA 
Instruction 

I-

L--. 
GN 

0=; 

~ 

GNDEF 

Pr~elf 
genarat.d 
p-oc:edUfe 
oome 
definitions 

..,REF 

Proceufor 
7Selomenh 

ADINCR 

'--___ --'~ No. of bytos for UPDATE 
~ 

L-....v' 
Ptoelll1Sfor 
SO,lemenh 

4-

" 2: --v 

~ 

SRANCH 

Rautine for 
processing 
branch 
Inslructlons 

Routines for 
proceuing 
all other 
operotbn 
code .Iem-

0'" 

These 
thrill' 
routines 
M. 
called 
by 
several 
routines 
In Phase 
63 

r=:> 
RLOSORT 

Sort the 
RLD table 
usIng larget 
.d,,,"u 
as key 

PNLABTBL table Phase 62 

to buIld PNLBDTBL 

PNLBDTBL toble F'ha.1I 64 

DIsplacement of PN 

PNATBl tablo Phcue 62 

~ 

RLDTBl table Phose 64 
, • For Relocation Dlct 

GNATBL table Phase 62 

To build RLDTBL 

Phog62 
r:-::::T"'o:;'bu"''':::d "G:.,NL"."DT""BL,.--, 

GNLBDTBL Tabl. Phas.64 

Displocementof'GN 

SLASGTBL tabl. Phase 62 

~ list of BLReg. Aulgn'h 

I--

" 

DISPSAVEloveoreo 

DRPLTBL IGble Phas.62 

Reg 14/15 Auign'" 

ACMCTR counter 

~ Block sin 

lOCCTR counter 

r----i Blac:k .ize 

umATE 

Add to the 
ACCUMCTR 

." lOCCTR 
c:ounters 

InCOMo'v\ON 

p 
WRITE 

Write 
Prac:.dure 
A-Text 
element 

Diagrams 507 





Licensed Material - Property of IBM 

INDEX 

(Where more than one page reference is given, the major reference is first.) 

-nnnn name cells 448 

A(INIT1) field (TGT) 432 
A-text generator 

called by Arithmetic Translator 96 
literals 99 
parameter cells 100-103,99 
virtuals 99 

ABEND 409 
abnormal termination during 

compilation 409 
ABS.LIN cell 448 
ACCEPT statement 

entries in SPNTBL table 40 
output coding 468 
phase 11 processing 49 
phase 51 processing 106 

access method, effect on coding 106 
ACCESS Routine 

ENTDEL 423 
ENTNAM 422 
ENTPTR 423 
GETPTR 423,55 
INTACC 422 
LATACP 424 
LATGRP 425 
LATRNM 423 
LATRPT 424 
LDELNM 424 
LOCNXT 424 
TAMEIN 422 

ACCESS routines 
definition 470,421 
functions 422 
handling CORRESPONDING 73 
HASH table 421,73 
initialization 422 
list 422 
phases involved 421 
residence 421 
sectional procedure Division 50 

ACCESW cell (COMMON) 275 
ACCUMCTR counter 134 
ACMCTR counter 139 
ADATAB cell (COMMON) 281 
ADD CORRESPONDING option 74 
ADD verb 74 
address element 58 
address increment element 139 
address reference element 139 
addressing parameter field (see 10K field) 
ADSTAT cell (COMMON) 275 
AGE TALL cell (COMMON) 279 
AHSEGMSG cell (COMMON) 286 
AINSRT cell (COMMON) 275 
ALS-ROUT routine 

description 441 
flowchart 250 

ALSTAM cell (COMMON) 275 

ALTER statement 
execution diagram 
flow of control 84 
optimization (OPT) processing 130 
phase 11 processing 49 
phase 40 processing 82-84 
PN cells in the PGT 117 

ALTER/GO TO pair 82-84 
AMAINF cell (COMMON) 275 
AMICTR cell (CO~MON) 281 
AMILOC cell (COMMON) 282 
AMOVDC cell (CO~MON) 279 
APOST option 21 
appendix A. table and dictionary 

handling 421-429 
appendix B. object module 430-439 
appendix C. report writer 

subprogram 440-453 
appendix D. generated code for input/output 
verbs 454-469 

APRIME cell <COMMON) 275 
arithmetic operator hierarchy 87 
arithmetic strings 87 
Arithmetic Translator 96-98 

compile-time arithmetic 97 
functions 96 
general description 
maximum operand size 
register allocation 
storage allocation 
work area 97 

96" 
97 

98 
98 

arithmetic verb strings 96 
(see also Arithmetic Translator) 
data-name operands 96 
intermediate results 97 
mode of operation 97 
operand types 96 
temporary results 97 

arithmetic verbs, register usage 98 
ASCTAB table 

description 287 
use in phase 21 68 

associated files 
ASCTAB table 287 
definition 470 
device code for 343 
organization code for 343 
phase 21 processing 68 

AT END clause 89 
ATF-text 

data-name DEF elements 58 
definition 418 
description 348 
elementary item entries 53 
format 52 
group routine entries 53 
OCCURS ••• DEPENDING ON clauses 58 
use in phase 22 58 

ATFTXT work area 53 
ATPLENT cell (COMMON) 286 

Index 509 



Licensed Material - Property of IBM 

base locators 
assignment in phase 22 57 
BL number 

assignment 57 
base register assigning 122 
definition 470 
FDs 58 
locating data 419 
locating RWS elements 449 
OPT processing 130-133 
subscripts 94 

,Working-Storage Section 58 
BLL number 

assignment 57 
definition 470 
Linkage Section 58 

example of OPT processing 133 
optimization <OPT) processing 130-133 
SBL number 

assignment 57 
definition 472 
variably located fields 59 

types 57 
use by phase 60 57 
use by phase 62 /130-133 
use of permanent registers 57 

base registers 122 
BASIS library 

action if not found 37 
action in phase 10 37 
invalid name 34 

BCB (Buffer Control Block) 462 
BEGIN routine 52 
BEGINPH routine 60 
BEGPASS routine 69-" 
BL CELLS field (TGT) 432 

locating RWS elements 449 
space allocation 113 

BL number (see base locators) 
BLASGTBL table, description 287 
BLCTR cell (COMMON) 280 

addressing parameter 57 
assigning BL number 57 
processing FDs 58 
TGT space allocation 113 

BLDOBODO routine 69 
BLKCTNS routine 60 
BLL CELLS field (TGT) 

description 432 
space allocation 113 

BLL number 
assignment 57 
definition 470 
Linkage section 58 

BLLCTR cell (COMMON) 277 
assigning BLL number 57 
description 277 
TGT space allocation 94 

BLOCK CONTAINS clause 60,61 
blocking factor, effect on coding 106 
BLTABL table 

buffer generation 68 
description 287 

BLUSTBL table 
description 289 
primed by phase 50 103 

BLVNTBL table 289 
BMBSRN routine 53 

510 

branch instructions 
phase 62 processing 134 
phase 63 processing 138 

BSUBRN routine 53 
BUF option 21,37 
BUFCNLS area 410 
BUFCNLS cell 37 
Buffer Control Block (BCB) 410 
buffer generation, use of BLTABL table 68 
buffers 

address of area 35 
allocation of space 35-37 
assignment 36 
beginning of area 68 
finding contents 350 
generating 68 
locating 36 
pointer in POINT table 28 
size determination 35 
size of area 68 

BUFGEN routine 68 
BUFSIZ cell (COMMON) 282 
BUFTAB table 

buffer generation 68 
description 289 

BUSAGE routine 53 

CALL statement 
allocating PGT space 116 

CALL string 82 
CANCEL request 27 
card numbers 

generated by phase 11 48 
object text listing 122 

CARDINDX table 
built in phase 65 127 
description 290 

CARDLOC elements 
(see also Debug-text) 
phase 65 processing 126 
use in building debug file 126 

CARDNO cell 81 
carriage control word 40 
CATAL option 21,111 
CATALR option 21 
CBL card 

information passed to phase 00 37 
OPT option 129 
options permitted 21-23 
phase 01 actions 18 
STXIT option 106 
SYMDMP option 69 

CBNOFND routine 27 
CCBLOC cell (COMMON) 282 
CE abstract worksheet 420.3 
CFF-ROUT roptine 

description 446 
flowchart 252 

CHECKPT CTR field (TGT) 
description 432 
space allocation 113 

CHF-ROUT routine 446 
CHKMODE routine 61 
CKPCTR cell <COMMON) 

description 277 
TGT space allocation 113 



CKPTBL table 
description 291 
entries for RERUN 41 

clause com~atibility 
BLOCK CONTAINS clause 60 
DTF generation 60 

CLIST option 
definition 21 
effect on PGT listing 116 
phase 60 processing 111,118 
phase 64 processing 141 

CLOSE macro instruction 28 0 106 
CLOSE REEL statement, output coding 459 
CLOSE statement 

output coding 457 
phase 51 processing 106 

closing files 28 
CNTLTBL table 291 
CNTRL macro instruction 106 
COBOL bits in DTFs 66 
COBOL Library Subroutines 

(see also COBOL subroutines) 
changing operating mode 96 
definition 470 
example of linkage generating 108 
for VSAM 110 
READ processing 106 
SEARCH ALL statement 89 
USE coding 106 
STATE processing (see STATE option) 
SYMDMP processing (see SY~DMP option) 
WRITE processing 106 

COBOL space 
assigning 426 
definition 470 

COBOL Subroutines 
(see also COBOL Library Subroutines) 
ACCEPT 

ACCEPT coding 106 
DISPLAY 

DISPLAY processing 109 
example of linkage codes 109 
generating call 108 

for VSAM 110 
segmentation 

generating call 108 
COBOL word list 355-358 
COBOLRWD bit in DTFs 66 
CODE-cell cell 447 
coding organization, phase 30 71 
COM-REG register 370 
COMMAD cell (COMMON) 279 
COMMON 275-286 

cells 
ACCESW 275 
ADATAB 281 
ADSTAT 275 
AGETALL 279 
AHSEGMSG 286 
AINSRT 275 
ALSTAM 275 
AMAINF 275 
AMICTR 281 
AMILOC 282 
AMOVDC 279 
APRIME 275 
ATPLENT 286 
BLCTR 280 

Licensed Material - Property of IBM 

COMMON, cells 
BLLCTR 
BUFSIZE 
CCBLOC 
CKPCTR 
COMMAD 
CORESIZE 

<continued) 
277 

282 
282 
277 
279 

281 
COS 275 
CRDNUMXX 282 
CURCRD 282 
CURSGN 279 
DATABDSP 279 
DATATBNM 281 
DATE 282 
DCPTR 278 
DICADR 278 
DICND1 277 
DICND2 277 
DICPTR 278 
DLSVAL 278 
DTFNOXX 282 
DTFNUM 282 
DNCNT 282 
ERF4SW 278 
ERRSEV 278 
FIL5BUF 281 
FLOWSZ 279 
FSTCDNM1 282 
GNCTR 276 
GTLNG 281 
IDENTL 279 
INDEX 281 
INDEXl 279 
INTVIRT 282 
IOPTRCTR 279 
IPRECS 286 
LABELS 276 
LCSECT 278 
LISTERSW 282 
LNCOUNT 286 
LOCCTR 275 
LOCTMCTT 282 
LTLCTR 276 
NODECTR 281 
OBODOTBN 281 
ODOCTR 277 
ONCTR 280 
PARMAX 281 
PFMCTR 280 
PHZSW 284 
PHZSWl 284 
PHZSW2 284 
PHZSW3 284 
PHZSW4 285 
PH1BYTE 285 
PH6ERR 280 
PH7LOD 282 
PMAPADR 282 
PNCTR 276 
PRBLDISP 276 
PRBLNUM 281 
PROCCTR 281 
PROGID 276 
PSVCTR 280 
PTYNO 278 
RELADD 275 
RELLOC 281 
RGNCTR 278 

Index 511 



Licensed Material - Property of IBM 

COMMON, cells (continued) 
RPNCNTR 279 
RPTSAV 278 
SA2CTR 278 
SBLCTR 277 
SDSIZ 279 
SDTFCTR 282 
SEGLMT 279 
SEQERR 277 
SPACING 281 
SRTRERUN 286 
SUBCTR 281 
SWITCH 283 
SWITCH1X 285 
SWITV2 282 
TAMNAD 275 
TIBs 275 
TIME 282 
TMCNTBSZ 282 
TSMAX 276 
TS2MAX 277 
TS3MAX 279 
TS4MAX 279 
VIRCTR 276 
VLCCTR 277 
VNCTR 280 
VNILOC 281 
VNLOC 281 
VRBCNT 282 
WCMAX 276 
WSDEF 278 
XSACTR 280 
XSWCTR 280 

contents 275-286,34 
counters used to allocate space 133 
definition 470 
general concept 275 
option flags 35 
residence 34 
TGT-field counters 112,113 

Communications Area (see COMMON) 
Communications Region (see COMMON) 
compare in System/370 109 
compiler 

512 

active phase 24 
(see also LINKCNT) 

buffers 
assignments 36 
contents 410 
size 35.37 

code organization 66 
communications area (see COMMON) 
concept 14 
design of 14 
diagnostic aids 409-420 
execution-time register use 411 
file handling 29-34 
initialization 35 
input (see input) 
layout of storage 13 
Linkage Editor Map 265-274 
minimum buffer size 35 
operational considerations 
options 20-23 
output (see output) 
overall design 18-20,14 
overview 477-480 
parameters 20-22 

phases 
addresses 409-410 
approximate sizes 13 
intercommunication 14 

physical characteristics 13 
relationship to DOS/vS system 13 
storage layout 13 
storage locations 1 13 

names 13 
order of loading 13 
overlaying in storage 13 
translation 14 
use of work files 29-34 

compiler buffers 
assignments 36 
contents 410 
size 35,37 

compiler options (see options) 
compiler tables 

allocation of space 37 
current record 410 
current status 410 
exceeding permissible size 34 
for Q-routines 58 
list, by phases 263-264 
locating in storage 410 
location in storage 421 
Main Free Area 421 
maximum length 426 
object module map 430 
passed by phase 22 59 
permissible size 35 
processing in phase 00 35,429 
Report writer feature use 45 
RWS data items 449 
RWS routines 449 
saved register contents 418,411-416 
SDTF location 461 
table area 421 
table contents 410 
table size 426 

compiler texts (see internal texts) 
COMPUT routine 87 
COMPUTE statement 87 

EVAL string 88 
ON SIZE ERROR option 88 
phase 40 processing 87 
ROUNDED clause 88 

COMWRK work area 39 
CONDIS table 

description 291 
optimizing literals 115 
PGT space allocation 118 
segmented program object text 121 

condition-names 78 
UPSI feature 58 

condition-string 
P1-text 79,80 
with VALUE THRU clause 80 
without VALUE THRU clause 79 

Configuration Section 40 
Constant A-text 99 
CONTBL table 

description 292 
optimizing literals 115 
PGT space allocation 118 
segmented program object text 122 

control and inpu~/output diagram 485 



Control breaks 104 
Control-field save-area names 448 
COpy library 

flag in Data IC-text 53 
phase 10 actions 39 

COPYPCH option 23 
COPYRN routine 53 
CORESIZE cell (COMMON) 281 
CORRESPONDING option 73 
CORRTN routine 73 
COS cell (COMMON) 275 
COS routine 

address location 24 
handling segmentation 34 
processing between phases 28 

COSPARM area 462 
COUNT CHAIN ADDRESS field (TGT) 432 
COUNT LINKAGE AREA field (PGT) 435 
COUNT option 

definition 21 
phase 40 processing 81 
virtuals required 99 

COUNT table 437,470 
COUNT TABLE ADDRESS field (TGT) 432 
counters in COMMON 113 
CRDNUMXX cell (COMMON) 282 
critical program break, action by 

phase 20 53 
cross-reference list 

(see also Lister option) 
diagram 497 
locating RWS elements 449 
phase 61 processing 144.145 
use of REF-text 118 
used by phase 11 48 
used in phase 20 52 
used in phase 22 55 

CSYNTAX option 
(see also SYNTAX) 
definition 23 
phase 22 processing 59 
phase 30 processing 78 
phase 40 processing 91 

CTB-ROUT routine 
description 441 
flowchart 242 

CTF-ROUT routine 
description 446 
flowchart 253 

CTH-ROUT routine 446 
CTL.CHR cell 447 
CTL.LVL cell 447 
CTLTBL table 292 
CURCRD cell (COMMON) 

description 282 
locating processing record 410 
use in phase 20 52 
use in phase 22 55 

CURGCN cell 39 
CURRENCY-SIGN clause 40 
CURRENT-DATE register 370 
CURRENT PRIORITY field (TGT) 432 

set by phase 65 112 
CURSGN cell (COMMON) 

contents 40 
description 279 

CVIRTB table 
description 293 

Licensed Material - Property of IBM 

optimizing virtuals 116 
segmented program object text 122 
virtual allocation 116 

"d" addressing parameter 60 
Data A-text 

associated file DTFs 67 
data-name DEF elements 58 
data-names and file-names 41 
definition 470 
description 349-350 
location on file SYS004 123 
phase 22 generation 58 
phase 60 processing 123 
purpose 123 
Q-routine identification elements 58 
VALUE clause constants 58 
Working-Storage Section address 

elements 58 
data areas 275-408 
Data Division 

addressing with OPT 132 
controlling processing 39 
processing by phase 10 41 
processing overview 18,477-480 
syntax analysis 43 
translation, diagram 487 

Data IC-text 
BCD names 53 
copied unchanged by phase 20 52 
data-name DEF elements 58 
data-names and file names 42 
definition 470 
description 341-347 
FD element 343 
FD entries 40 
FD processing in phase 10· 42 
FILE-CONTROL paragraph 40 
input to phase 20 52 
items from Environment Division 40 
LD element 341 
processing in phase 20 53 
processing in phase 21 60 
RD element 343 
RD processing phase 10 42 
read by phase 20 53 
Report writer data items 47 
SD element 343 
SD processing in phase 10 42 
use in phase 22 58 

data-names 
discussion 78 
location in storage 419 
REF-text elements 144 
reference elements 78 
subscripts 94,95 

DATABDSP cell (COMMON) 279 
DATATAB table 

description 398 
phase 25 processing 69 
phase 65 processing 128 

DATATBL table 293 
DATATBNM cell (COMMON) 281 
DATE cell (COMMON) 

description 282 
setting in phase 01 37,35 

DATE-COMPILED paragraph 40 
DBGTBL table 

Index 513 



Licensed Material - Property of IBM 

description 293 
generating P2-text 82 
processing verb strings 81 

DCPTR cell (COMMON) 278 
DDSCN routine 42 
debug data set. creation ofo diagram 495 
Debug File 395-405 

built by phase 25 69 
CARDINDX table 395 

built by phase 65 127 
DATATAB table 398 

built by phase 25 69 
information about 37 
OBODOTAB table 397 

built by phase 25 69 
phase 65 processing 127 
PROCINDX table 405 

built by phase 65 127 
PROCTAB table 404 

built by phase 65 126 
PROGSUM table 396 

built by phase 65 127 
SEGINDX table 405 

built by phase 65 127 
tables built by phase 22 59 

debug file tables 395 
DEBUG LINKAGE AREA field (PGT) 435 
debug options (see FLOW option; STATE 
option; SYMDMP option) 

DEBUG TABLE field (TGT) 
description 342 
phase 65 processing 126 

DEBUG TABLE POINTER field (TGT) 342 
set by phase 65 112 

Debug-text 
description '. 384 
phase 65 processing 126 
use in building Debug File 127.126 

DEBUG verb processing 
phase 11 processing 49 
phase 40 processing 82 

debugging compiler (diagnostic 
aids) 409-420 

debugging packet 82 
DECIMAL-POINT clause 40 
DECK option 

definition 21 
effect on buffers 37 
phase 60 processing 111 
phase 64 processing 141 

DECK option in LST card 24 
declaratives 

effect on coding 106 
OPEN .verb 49 

Declaratives section 
processing in phase 11 50 

DEF-text 
data-name DEF elements 58 
definition 470 
description 383 
from Procedure Division 19 
generation in phase 30 72 
location on file SYS004 123 
processing by phase 60 123 
processing in phase 61 144-145 

DEFSBS table 
description 294 
MOVE statement 82 

514 

DELETE verb processing 49 
delimiter 470 
delimiter pointer 

definition 470 
determining 41 
group items 55 

DEPENDING ON option 60 
DESTROY macro element 132 
DET-ROUT routine 

description 447 
flowchart 240 

DETTBL table 294 
device type. effect on coding 105 
DFREER routine 98 
diagnostic aids 409-420 

abnormal termination during 
compilation 409 

CE abstract worksheet 420.3 
dump produced 409 
erroneous compiler output 418 
error message listing 409.420 
input/output error messages 418 
linkage editor map example 420 
location of information in 
storage 409-410.419 

register saving 418 
register usage 411-417.419-420 
storage layout 418 
tables used 410 

diagnostic assistance (CE) 420 
diagnostics 146-148 
diagrams. foldout 475-509 
DICADR cell (COMMON) 278 
DICNDl cell (COMMON) 

description 277 
use by phase 30 72 

DICND2 cell (COMMON) 
description 277 
use by phase 30 72 

DICOT table 
description 295 
use in phase 25 69 

DICPTR cell (COMMON) 278 
DICSPC routine 427 
DICTBD routine 

description 57 
elementary item processing 53 
purpose 55 

Dictionary 
addressing parameters (see 1DK field) 
area 421.422 
assigning space 426 
building entries in phase 22 55-58 
completing entries in phase 22 57,55 
data-name entries 42 
Declaratives section entries 50 
definition 470 
description 385-394.421-422 
dummy entries 55 

UPSI feature 40 
entries made by phase 22 55 
FD entries, filling in reserved 
space 60 

FD entry 386 
file attributes 61 
File Section entries 57 
file-name entries 42 
formats of entries 385-394 



generating Pl-text 81 
glossary production 71 
handling, table and dictionary 421-429 
handling spill 28 
incomplete index-name entries 55 
index-name entry 389 
interaction with tables 50 
LD entry 388 
Linkage section entries 58 
locating entries 421-422 
logical position in phase 22 55 
major code 385-389 
minor code 388,390 
organization 421 
PERFORM attributes 85 
phase 21 functions 60 
pointer 78 
pointer for WHEN statement 90 
preprocessing in phase 22 55 
procedure-name characteristics 50 
procedure-name entries 48,50 
procedure-name (paragraph) entry 385 
procedure-name (section) entry 385 
procedure-names 78 
Q-routine entries 58 
RD entry 388 
replacing names 78 
Report section entries 58 
residence 421 
SD entry 387,60 
SEARCH processing 74 
searching sectioned Procedure 
Division 50 

skeleton FD entry 55 
space allocation 35 
spill onto disk file 422 
SYMDMP processing in phase 25 69 
Working-Storage Section entries 57 

Dictionary Area 421 
Dictionary attributes 

condition-name 78 
definition 470 
Q-routine bit 78 
replacing names 72 
substituting for names 78 

Dictionary entry formats 385-394 
Dictionary handling (see ACCESS routines) 
Dictionary pointer 

definition 471 
use after phase 30 78 
use in building OBODOTAB table 501 

Dictionary section addresses 421 
Direct A-text 99 
DIRECTOR routine 55 
directory 259-274 
DISCONTINUITY element 

(see also Debug-text) 
phase 65 processing 126 
use in building Debug File 127 

Diskette unit device 65 
DISPLAY literals, optimization for PGT 115 
DISPLAY LITERALS field (PG'I) 

description 436 
optimizing with OPT 130 
space allocation 118 

DISPLAY statement 
entries in SPNTBL table 40 
output coding 468 

Licensed Material - Property of IBM 

phase 11 processing 
phase 51 processing 
subroutine linkage 

49 
106 

108 
278 

282 
DLSVAL cell (COMMON) 
DNCNT cell (CO~MON) 

DNTOR1 routine 108 
DOP work areas 92 
DOS/VS system 

interface with compiler 24 
relationship with compiler 13 
returning control 28 
supervisor 418 
UPSI-feature-names 58 
use of Control Program 13 

double buffering, effect on coding 105 
drop tables (see DRPTBL table; DRPLTBL 
table) 

DRPTBL table 
description 295 
use in register assignment 132 

DRPLTBL table 
description 295 
use in register assignment 132 

DSPLAC routine 112 
DTF 

address element 67 
associated files 67 
choice of type 61 
COBOL bits 66 
COBOL indicators 66 
COBOLRWD bit 66 
common parameters 60 
constant definition elements 67 
DTFCD, number of DTFs 62 
DTFDA 

number of DTFs 62 
pre-DTF 62,63-64 

DTFDU 65,62 
DTFIS 

number of DTFs 62 
pre ... DTF 65 

DTFMT 
number of DTFs 62 
pre-DTF 62,63 

DTFPR, number of DTFs 62 
DTFSD 

number of DTFs 62 
pre-DTF 62,63 

generating 60-66 
IOAREA address 68 
location in object module 430 
location in storage 419 
number assigned 62 
number required 62 
order of addresses 419 
pointer location 105 
pre-DTF area 62 
REWIND bit 66 

DTF generation 60-66 
clause compatibility checking 60 

DTF generator 
functions 61-66 
GENDTFCD 61 
GENDTFDA 61 
GENDTFDU 61 
GENDTFIS 61 
GENDTFMT 61 
GENDTFPR 61 

Index 515 



Licensed Material - Property of IBM 

GENDTFSD 61 
selecting 61 

DTF number 
files with OCCURS ••• DEPENDING ON 

clauses 58 
OBJSUB table element 58 
QFILE table elements 58 

DTF parameters 
Record form 60 
Record size 60 

DTFADR CELLS field (TGT) 
description 432 
locating DTFs 418 
space allocation 113 

DTFCD 62 
DTFDA 

number of DTFs 62 
pre-DTF 62.63-64 

DTFDU 
number of DTFs 62 
pre-DTF 65 

DTFIS 
number of DTFs 62 
pre-DTF 65 

DTFMT 
number of DTFs 62 
pre-DTF 62,63 

DTFNOXX cell (COMMON) 282 
DTFNUM cell (COMMON) 

description 282 
TGT space allocation 113 

DTFPR 62 
D'IFSD 

number of DTFs 62 
pre-DTF 62.63 

dummy entry for phase 80 50 
dump, producing for disaster-level 

messages 409 
dynamic dump request 

(see also SYMDMP option) 
phase 25 processing 69 
phase 65 processing 126 

E.nnnn name cells 447 
E-point name cells 448 
E-text 

definition 471 
description 382 
from Prodcedure Division 19 
identification prefix 90 
input to phase 20 52 
input to phase 30 71 
location on file SYS004 123 
phase 21 processing 60 
phase 30 processing 78 
phase 51 processing 104 
phase 60 processing 123 
phase 70 process~ng, 146 
producing 19 
RECFORM parameter 61 
WHEN clause 90 
written by phase 12 47 

EACTBL table 146' 
EACTOO area 147 
elementary report items 47 
ELIPR routine 58 
ENDSEG elements 

(see also Debug-text) 

516 

phase 65 processing 126 
use in building Debug File 127 

ENTDEL routine 423 
ENTDIC routine 61 
ENTNAM routine 422 
ENTPTR routine 423 
ENTRDATA routine 69 
ENTRY-SAVE field (TGT) 432 
Environment Division 

controlling processing 40 
processing 40 
processing overview 18 
syntax analysis 43 
translation, diagram 487 

ENVSCN routine 40 
ENVTBL table 

APPLY clause switch 41 
CKPTBL bit 41 
description 296-298 
FNTBL table use 42 
MULTIPLE FILE TAPE switch 41 
phase 10 processing 40-42 
pointers 40 
POSITION INTEGER field 41 
SAME clause files 41 
SELECT clause entries 40 

EOF routine 92 
EOJ macro instruction 24 
EQUATE string 

built by phase 51 
used by phase 60 

ERF4SW cell (COMMON) 
ERMSG area 78 

105 
112 

278 

erroneous compiler output 418 
error conditions 

(see also error messages; error 
processing) 

ATF-text 59 
background size 37 
BUF parameter 37 
checking by phase 20 
clause compatibility 
CORRESPONDING operands 
Data IC-text 58 

52 
52 

73 

Dictionary requirements .72 
E-text 382 
EBCDIC key-names 58 
execution-time messages 418 
file-names after READ 72 
file-names after RETURN 72 
footnotes in phase 08 38.4 
I/O error messages 418 
invalid diagnostics 409 
messages from phase 01 37 
OCCURS ••• DEPENDING ON clauses 58 
phase 05 processing 38.1 
phase 08 processing 38.4 
phase 22 process~ng 59 
phase 30 messages 78 
phase 30 processing 78 
phase 70 process~ng 146-147 
premature EOF 37 
producing a dump for disaster level 
messages 409 

SEARCH verb 75 
syntax checking 

in phase 05 38.1 
in phase 12 47 



TAMER-detected 34 
unopened file 37 
unrecoverable 34 
using table SRCHKY 59 
using table VALTRU 59 

error message listing, obtaining 147 
error message parameters 146 
error messages 

(see also error conditions; error 
processing> 

diagram 497 
disaster level 409 
execution-time 418 

(see also phase 70) 
FIPS flagging 148 
identification code 420 
input/output 418 
invalid 420 
listing 147 
parameters 146 

error processing 
(see also error conditions; error 
messages) 

COBOL word checking 91 
E-text severity code 104 
operand-checking 91 
phase 40 91 
severity code 104 
unit-record error 106 
verb checking 91 
WHEN conditions 90 

ERROR routine, phase 30 
ERROR routine, phase 40 
errors detected by ,TAMER 
ERRPRO routine 104 
ERRS option 21 
ERRSEV cell (COMMON) 

79 
91 

34 

description 278 
testing for SUPMAP 111 
use by phase 51 112 

ERRTBL table 
description 299 
saving E-text 146 
spilling 146 

ESD (External Symbol Dictionary) 114 
EVAL string 88 
execution-time statistics (see COUNT 
option) 

EXHIBIT statement 49 
EXIT verb, phase 11 processing 49 
EXIT5 routine 92 
External Symbol Dictionary (ESD) 114 

FD (see file description entries) 
FD element 

(see also file description entries) 
Data IC-text 341 
Dictionary entry 386,387 

FDTAB table 
description 299 
phases 22 and 21 59 

federal information processing standard 
(FIPS> 

diagnostic messages 148 
flagging 38 
LVL option 22 
phase 01 processing 38 

Licensed Material - Proferty of IBM 

phase 80 processing 148 
scanning source program 148 
SYS006 22,148 

FIB (VSAM file information block) 68 
FILE-CONTROL paragraph 40 
file description entries (FDS) 

assignment of BL number 57 
Dictionary entries 57,60 
dummy dictionary entries 55 
processing in phase 10 42 
processing in phase 20 52,53 
processing in phase 21 60 

file handling 29-34 
file information block, VSAM (FIB) 68 
file-name reference items 78 
file-names 

following RETURN 72 
phase 30 processing 78,72 
REF-text elements 144' 

File section 
Dictionary entries 58 
phase 10 processing 43 
phase 20 processing 53 

FILE STATUS clause processing 41 
FILEST routine 53 
FILTBL table 

description 299 
optimizing VNs 114 

FIL5BUF cell (COMMON) 281 
FIPS (see federal information frocessing 

standard) 
fixed routine, definition 471 

(see also Report Writer Subprogram) 
flag, FIPS 22 
FLAGE 21 
FLAGW 21 
FLOW option 

compiler overview 18-20 
definition 21,126 
diagram 477-480 
file handling for 29-34 
INIT3 instructions 438 
parameters 35 
phase 25 processing 69 
phase 51 processing 105 
phase 65 processing 126,127 
PHZSW1 switch (COMMON) 284 
procedure A-text processing 118 

segmented program 122 
TGTADTBL table 333 
vi~tuals required 99 

Flow Trace Table 
allocation in phase 65 126,127 
description 437 

flowcharts 149-258 
explanation of symbols 150 
label directory 259 
Report Writer Subprogram 240-258,453 

FLOWSZ cell (COMMON) 
description 279 
tested in phase 65 126 

FLUSH routine 
description 47 
relationship to other routines 45 

FNTBL table 
description 300 
entries for USE sentences 50 
finding file-names 50 

Index 517 



Licensed Material - Property of IBM 

use for file section 
foldout diagrams 475 
forward branch tables 

GNFWDBTB table 
description 301 
use in phase 62 

PNFWDBTB table 
description 313 
use in phase 62 

free area 426 
FREE macro element 132 
FRS.GEN cell 447 
FRS.GRP cell 448 
FSTCDNMI cell (COMMON) 
FSTEXT routine 53 
function-names for UPSI 

GANLNO cell 92 
GATXTV routine 99 
GCNTBL table 300 
GENASC routine 68 
GENDAT routine 75 
GENDTFCD routine 67 
GENDTFPR routine 68 
GENERATE statement 

processing 

161 

282 

58 

42 

diagram of first RWS response 449 
diagram of succeeding RWS responses 450 
RWS response 449-451 

generated card number, REF-text 
element 144,145 

generated code for input/output 
verbs 454-469 

generated name (see procedure-names) 
GENERATED NAME CELLS field (PGT) 

description 436 
space allocation 117 
space allocation with OPT 131 

GENNOD routine 92 
GENOP routine 78,72 
GENPAR routine 92 
GENTIM routine 92.1 
GET macro instruction 106 
GETALL routine 429 
GETCRD routine 

function in phase 10 39 
function in phase 11 50.48 

GETDLM routine 
function in phase 10 39 
function in phase 11 50 
function in phase 12 45 

GETF2 routine 126 
GETNXT routine 92 
GETPTR routine 423 
GETWD routine 

function in phase 10 39 
function in phase 11 50.48 

GLORET routine 71 
GLOSRY routine 

coding organization 71 
description 71.72 

Glossary 
DTF numbers 419 
finding RWS elements 449 
locating data 419 
production 71 

GN number 
allocation 117 
with OPT 131 

518 

data-name references 78 
DEBUG procedure 82 
definition 471 
deleting XSCRPT entries 95 
effect of ALTER/GO TO pair 82 
eliminating duplication 105 
file-name references 78 
from Declaratives Section 50 
generated for error declaratives 50 
generated for label declaratives 50 
locating RWS routines 449 
optimizing 114 
optimizing with OPT 134.129 
phase 50 processing 92 
phase 51 processing 105 
Q-routines 58 
segmented program 108 
simple IF statement 88 

GNATBL table 
description 301 
used by phase 62 130 

GNCALTBL table 301 
GNCTR cell (COMMON) 

allocating GN numbers 117 
assigning GN number 50 
building GNTBL table 114 
description 276 
PERFORM statements 85 

GNFWDBTB table 
description 301 
use in phase 62 133 

GNLABTBL table 
built by phase 62 134.133 
description 302 

GNLBDTBL table 
description 302 
used by phase 64 134 

GNLIST work area 105 
GNSPRT routine 

description 47,45 
relationship to other routines 45 

GNTBL table 
description 302 
GN space allocation 117 
optimizing GNs 114 

GO statement 
effect on SEARCH verb 90 
segmented programs 108 

GO TO NEXT SENTENCE statement 
exit from SEARCH 90 
generated by SEARCH verb analyser 90 

GO TO verbs 49 
GOBACK verb analyzer 105 
GP.nnnn cells 447 
GPLSTK table 

description 303 
generating Data A-text 58 
use in Dictionary building 57 

group routine, definition 471 
(see also Report Writer Subprogram) 

GRP.IND cell 447 
GSPICT routine 53 
GTEQI0K routine 127 
GTLNG cell (COMMON) 281 
GUI work area 53 
GVFNTBL table 

description 304 
phase 11 processing 50 



GVNMTBL table 
description 304 
phase 11 processing 50 

HASH table 73,421 
hierarchy of arithmetic operators 87 

I-O-CONTROL paragraph 41 
ICTEXT work area 42 
IDBRK routine 92 
IDDSCN routine 39 
IDENT routine 81 
Identification Division 

controlling processing 39 
processing 39 
processing overview 18 
syntax analysis 43 
translation. diagram 487 

IDENTL cell (COMMON) 279 
IDK field 

base register assigning 122 
data-name subscripts 94 
defined 57 
DOP work area 93 
literal subscripts 94 
optimizing subscripts 95 
Working-Storage Section 57 

IDLHN routine 
DEBUG statement 82 
PERFORM processing 85 
Pl-text processing 81 

IDLH03 routine 92 
ID1PTR work area 75 
IDS routine 92 
IF routine 88 
IF statements 88 
ILBDABXO 

linkage included by phase 51 106 
ILBDDSPO 

example of linkage codes 109 
generating call 108 

ILBDSEMO 
generating call 108 

ILBPSMVO subroutine 108 
ILBDVIOO subroutine 110 
ILBDVOCO subroutine 110 
incomplete Data A-text 

completing elements 58 
definition 471 
generating in phase 20 53 

incremented address element 139 
INDEX cell (COMMON) 281 
INDEX CELLS field (TGT) 

contents 96 
description 432 
space allocation 113 

index-names 
direct indexing 96 
indirect indexing 96 
processing formula 96 
processing in phase 50 96-98 

indexed references, phase 50 
processing 96-98 

(see also index-names) 

Licensed Material - Property of IBM 

INDEX1 cell (CO~MON) 
description 279 
TGT space allocation 113 

INDKEY table 
description 305 
phases 22 and 30 processing 59 
phase 30 searching 74 
SEARCH Format-1 75 
SEARCH Format-2 77 

INDXTB table 305 
IND2TBL table 306 
initialization routines 

concept 123 
definition 471 
INIT1 

coding 430 
description 431 
functions 430 
location in object module 430 
purpose 123 

INIT2 
coding 436 
description 437 
functions 437 
location in object module 430 
purpose 123 

INIT3 
coding 438 
description 437 
functions 437 
loading base registers 122 
location in object module 430 
purpose 123 
RLD-TEXT 123 
use of QGNTBL table 140 

location 123 
order written 123 

INITIATE statement 
locating INT-ROUT routine 452 
phase 11 actions 44 
response of RWS 440-445 

INITl 
coding 430 
description 431 
functions 430 
location in object module 430 
purpose 123 

INIT2 
coding 436 
description 437 
functions 437 
location in object module 430 
purpose 123 

INIT3 
coding 438 
description 437 
functions 437 
loading base registers 122 
location in object module 430 
purpose 123 
RLD-TEXT 123 
use of QGNTBL table 140 

input 
COMPUTE statements 87 
error messages 418 
phase 05 38.1 
phase 06 38.2 
phase 08 38.4 

Index 519 



T,icensed Material - Property of IBM 

phase 12 46 
phase 20 52 
phase 22 56 
phase 30 71 
phase 50 92 
phase 51 104 
phase 70 146 
phase 80 148 
read from SYSIPT 14 
SEARCH ALL statement 89 
segmented program 121 

input card number 55 
input/output 28 
input/output, control and, diagram 485 
input/output error messages 418 
Input-Output section 40 
input/output verbs 

coding 454-469 
influences on coding 106 
phase 11 processing 49 
phase 51 processing 106 
register usage 106 
VSAM 110 

INSERT routine 428 
INT-ROUT routine 

description 441 
flowchart 255 

INT-routines, processing between phases 28 
INTACC routine 422 
Intermediate A-text, definition 471 
Intermediate E-text 

definition 471,104 
input to phase 51 104 

Intermediate Optimization A-text 104 
Intermediate Procedure A-text 104 
intermediate REF-text 107 
intermediate results, maximum operand 
size 97 

(see also COMPUTE statement) 
internal texts 341-384 

A-text generation 99 
generated by phase 05 38.1 
generated by phase 12 46 
generated by phase 20 52 
generated by phase 22 56 
identifier byte 341 
list 16-18 
phases producing 16-18 
produced from Data Division 18 
produced from Procedure'Division 19 
processing 14 
use of work files 29-34 

INTVIRT cell (COMMON) 282 
INTVLC routine 58 
INVALID KEY option 67 
IOAREA area 

address in DTF 68 
buffer generation 68 

IOPTBL table 306 
IOPTR CELLS field (TGT) 

description 433 
space allocation 113 

IOPTRCTR cell (COMMON) 
description 279 
TGT space allocation 113 

IP-text 16 
IPLT work area 53 
IPRECS cell (COMMON) 286 

520 

IPT work area 53 
IPTBUF area 410 
ISTRUV routine 92. 

KDECML field 40 
KEYTAB table 306 
KEYTBL table 

description 307 
processing SEARCH ALL 89 

KILSUB routine 103 

label records, effect on coding 106 
LABELS cell (COMMON) 276 
LABTBL table 

description 307 
LATACP routine 424 
LATGRP routine 425 
LATRNM routine 423 
LATRPT routine 424 
LCSECT cell (COMMON) 278 
LD (see record description entries> 
LD element 

(see also record description entries> 
Data IC-text entry 341 
Dictionary entry 388 

LDELNM routine 424 
LDTEXT routine 53 
LDTEXT work area 42 
LENGTH OF SORTAB field (TGT) 433 
LENGTH OF VN TBL field (TGT) 433 
level-number entries 

(see also record description entries) 
Data IC-text entry 341 
Dictionary entry 388 

LIB option 22 
effect on Lister 38.1 
processing 37 

library subroutines (see COBOL subroutines) 
LIN.NUM cell 448 
LIN.SAV cell 448 
LINE-COUNTER cell 447 
LINECNT cell contents 37 

SYMDMP output 126 
LINECT option 21,35 
LINK option 

definition 21 
effect on buffers 
phase 60 processing 
phase 64 processing 

LINKA routine 

36 
111 
141 

calling phase 01 24 
functions 24,28 
processing between phases 28,24 
updating LINKCNT 24 

linkage codes 
definition 24 
end of compilation 27 
list 25 
segmentation 34 

linkage editor map 
compiler 265-274 
executed program example 420 

Linkage Section 
dictionary entries 58 
processing in phase 10 43 

LINKB routine 



Licensed Material - Property of IBM 

Procedure Block 
(see also optimization (OPT) processing) 
definition 472 
for PERFORM statement 84-86 

PROCEDURE BLOCK CELLS field (PGT) 
description 436 
space allocation 131 

PROCEDURE BLOCKl PTR field (TGT) 
description 434 

Procedure Division 
encoding in PO-text 48 
generated code location 436 
listing 48 
processing by phase 11 48 
processing overview 477 
sectional 50 
translation. diagram 489 

Procedure IC-text, definition 498 
(see also PO-text; Pl-text; P2-text) 

PROCEDURE NAME CELLS field (PGT) 
description 435 
effect of ALTER 83 
space allocation 117 

with OPT 131 
procedure-name reference 78 
procedure-names 

530 

DEBUG attribute 82 
definition 471 
dictionary attributes 78 
Dictionary entry 385 
duplicate GNs 105 
equate strings 105 
GN number 

data-name references 78 
DEBUG procedure 82 
definition 471 
deleting XSCRPT entries 95 
effect of ALTER/GO TO pair 82 
eliminating duplication 105 
file-name reference 78 
from Declaratives Section 50 
generated for error declaratives 50 
generated for label declaratives 50 
locating RWS routines 449 
optimizing 114 
optimizing with OPT 
phase 50 processing 
phase 51 processing 
Q-routines 58 
segmented program 108 

133,129 
92 
105 

simple IF statement 88 
space allocation 117 

with OPT 131 
PERFORM statement 85 
PN number 

ALTER statements 82-84 
DEBUG 82 
definition 471 
deleting XSCRPT entries 95 
optimizing 114 
phase 50 processing 92 
phase 51 processing 105 
segmented program 108 
space allocation 117 
without reference 105 

REF-text elements 144.145 
replacement of 78 
seqmented proqram 78 

space allocation 117 
space allocation with OPT 131 
VN number 

ALTER statements 82-84 
deleting XSCRPT entries 95 
definition 471 
effect of ALTER/GO TO pair 82 
GO string object 84 
optimizing virtuals 116 
PERFORM statement 84-86 
phase 50 processing 92 
phase 51 processing 105 
segmented program 108.105 
VNPTY table entry 114 

processing between phases 24 
PROCINDX table 

built in phase 65 127 
description 316 

PROCTAB table 
built in phase 65 126 
description 404 

PROCOl routine 45 
P~OC02 routine 47 
PROGID cell (COMMON) 276 
program breaks. use by phase 50 92 
Program Global Table (PGT) 435-436 

allocating space 116,130 
base register 122 
concept 435 
definition 472 
diagram of fields 435 
fields 

COUNT LINKAGE AREA 435 
DEBUG LINKAGE AREA 435 
DISPLAY LITERALS 436 
GENERATED NAME CELLS 436 
LITERALS 436 
OVERFLOW CELLS 435 
PROCEDURE BLOCK CELLS 
PROCEDURE NAME CELLS 
SUBDTF ADDRESS CELLS 
VIRTUAL CELLS 435 
VNI CELLS 436 

GN allocation 117 
listing 116 

436 
435 
436 

location in object module 435 
LTLTBL table displacements 115 
optimizing iiterals 115 
optimizing space 112.116 

with OPT 131 
optimizing virtuals 116 
overflow allocation 116 
PN allocation 117 
residence in segmented program 121 
virtual allocation 116 

PROGRAM-ID statement 39 
program organization (flowcharts) 149-258 
PROGSUM table 

built in. phase 65 127 
description 396 

PSHTBL table 
description 317 
IF statement 89 

PSIGNT table 
COMPUTE processing 87 
description 317 
IF processinq 88 



PSVCTR cell (COMMON) 
description 280 
TGT space allocat~on 113 

PTRFLS table 
description 317 

PTYNO cell (COMMON) 278 
PUT macro instruction 106 
PUT routine 118 
PUTDEF routine 105 
PO-text 

condition string 78-80 
CORRESPONDING option 73 
definition 472 
description 351-358 
encoded by phase 11 48 
input to phase 30 71,72 
Report Writer group routines 45 
SEARCH Format-l 75-76 
SEARCH Format-2 77 
translation 72 

Pl-text 
condition string 78-80 
condition-name 78 
CORRESPONDING option 73 
data-name reference element 72 
definition 472 
description 359-363 
determining type 78 
dictionary attributes 78 
file-name 78 
generation 72 
phase 40 processing 81 
procedure-name 78 
replacing names 78 
SEARCH statement 

SEARCH ALL 89 
SEARCH Format-l 75-76 
SEARCH Format-2 77 

syntax analysis 91 
P1BTBL table 

description 318 
Report Writer flag 44 

P2-text 
DEBUG 82 
definition 472 
description 364-371 
DISPLAY coding 109 
indexing 96 
input to phase 51 104 
MOVE statements 81 
nested IF statement 89 
ON statement 107 
passed by phase 50 93 
PERFORM output 86 
phase 40 processing 81 
presentation 93 
SEARCH ALL statement 89 
SEARCH statement 89 
subscript optimizing 95 
verb strings 81,92 
VN for ALTER 82 

Q-routine bit 78 
Q-routines . 

(see also OCCURS._.DEPENDING ON clause) 
definition 498 
discussion 436 
EXAMINE verb 103 
generation 58 

Licensed Material - Property of IBM 

identification elements 58 
location in object module 430 
location in segmented program 121 
MOVE verb 103 
object module 436 
OD2TBL table. use of 42 
optimization (OPT) processing 139 
processing OCCURS ••• DEPENDING ON 
clauses 58 

purpose 55 
TRANSFER verb 103 

QALTBL table. description 319 
QBUILD routine 58 
QFILE table 

description 319 
file-name references 78 
phase 22 and 30 58 
Q-routines. use in generating 58 

QGNTBL table 
built in phase 63 140 
description 319 

QITBL table 
description 320 
Q-routines. use in generating 58 
phase 25 processing 69 

QLTABL table. description 320 
QNMTBL table 

data-name from APPLY clause 41 
description 320 
File Section processing. use in 42 
phase 10. use in 40.41 

QRTN table 
description 321 
Q-routines. use in generating 58 
used by phase 25 69 

QSBL table, description 321 
QTBL table, description 321 
QUALIF routine 75 
qualified names 75 
QUE routine 37 
QUOTE option 21 
QVAR table 

description 322 
finding GN numbers 78 
generating Q-routines 58 
phases 22 and 30 58 

QVARBD routine 58 

RCDTBL table 
description 322 
searching for REWRITE verbs 49 
searching for WRITE verbs 49 
use by phase 10 42 

RD (report description entries) 55.57 
RD statement 

Data IC-text 343 
Dictionary entry 385 
phase 12 actions 45 

RDFSTK table 
description 323 
use in dictionary building 57 

RDF2 routine 126 
RDSCAN routine 45 
RDTXT routine 57 
READ statement 

error 72 
output coding 460 

Index 531 



Licensed Material - Property of IBM 

phase 30 processing 12 
phase 51 processing 106 
READ verb strings 12 

READFN routine 12 
READF4 routine 55 
READY verb 49 
RECCONT routine 60 
RECFORM parameter 61 
RECFORr1 parameters supported 61 
RECORD CONTAINS clause 

determining record size 60 
selecting record form 61 

record description entries (LDS) 
completed dictionary entries 51 
dictionary entries 55 
processing in phase 10 42 
processing in phase 20 53 
translation in phase 20 52 

record form 60 
record organization, effect on coding 105 
record size 60 
recording mode, effect on coding 105 
RECORDING MOOE clause, selecting record 

form 61 
REDEF routine 51 
REDEFINES clause 

entries in Dictionary 57 
processing by phase 22 45 

REF-text 
contents 144,145 
definition 412 
phase 60 producti~n 118 
phase 61 processing 144w145 

REFTBL table 
description 421 
overflow handling 144 
phase 61 processing 144 

REGATT area ·15 
register assignments 

object module 122 
optimizing 14 and 15 133 
permanent 132 
temporary 132 

register handling routines 98 
register save areas 469 
register saving 418 
register usage 

compile time 411-417 
execution time 419,420 
saving 418 

REGMTX table 118,122 
RELADD cell (COMMON) 275 
RELLOC cell (COMMON) 281 
Relocation Dictionary (RLD) 

phase 60 processing 123 
virtuals 114 

RENAMES clause 
Dictionary entry adjustment 55 
processing in phase 22 53 

RENAMS routine 55 
RENAMTB table 

built by phase 22 59 
description 323 
used by phase 25 69 

REPORT clause 44 
report description entries (RDs) 55,57 
Report section 

Dictionary entries 58 

532 

encountered by phase 10 41 
listing 41 
processing 44-41 
related statements 45 
translating 14 

Report Section header, phase 10 actions 44 
Report Writer feature (see phase 12; Report 

Writer Subprogram) 
Report Writer REDEFINES clause 45 
Report Writer subprogram (RWS) 440-453 

COBOL word data-names 447-448 
control-field save-area names 45 
data-names 441-448 
data items 441-449 
definition 440 
DET-ROUT routine, from GENERATE verb 44 
E-Point data item, REDEFINES clause 45 
elements 440-449 
fixed routines 440 

description 440 
LST-ROUT 

description 440 
flowchart 256 

WRT-ROUT 
description 440 
flowchart 246 

1ST-ROUT 
description 440 
flowchart 241 

flowcharts 240-258,453 
general concept 392 
group routines 446 

CFF-ROUT 
description 446 
flowchart 251 

CHF-ROUT 446 
CTF-RGUT 

description 446 
flowchart 253 

CTH-ROUT 446 
description 446 
DET-ROUT 

description 441 
flowchart 240 
generating initial coding 44 

PGF-ROUT 
description 446 
flowchart 244 

PGH-ROUT 
description 446 
flowchart 251 

RPF-ROUT 
description 446 
flowchart 258 

RPH-ROUT 
description 446 
flowchart 241 

INT-ROUT routine from INITIATE verb 44 
LAST-ROLL instruction 440 
location of data items 449 
locations of elements 449-453 
logic flow diagram 442-449 
LST-ROUT routine from TERMINATE verb 44, 
nonstandard data-names 447-448 
object module location 436 
parametric routines 440-446 

ALS-ROUT 
descri!ltion 441 



flowchart 25 
CTB-ROUT 

description 441 
flowchart 242 

INT-ROUT 
description 441 
flowchart 255 

RET-ROUT 
description 441 
flowchart 254 

RLS-ROUT 
description 446 
flowchart 245 

ROL-ROUT 
description 441 
flowchart 249 

RST-ROUT 
description 441 
flowchart 248 

SAV-ROUT 
description 441 
flowchart 252 

USM-ROUT 
description 441 
flowchart 243 

producing fixed routines 47 
producing parametric routines 4'7 
Report Writer verbs 448 
residence in segmented program 121 
response to verbs 448-452 
routines 392-447 
RPT.LIN data item, from REDEFINES 
clause 45 

1ST-ROUT routine, from GENERATE verb 44 
REPORT-CALL verb 448 
REPORT-ORIGIN verb 448 

processing with OPT 139~140 
REPORT-REORIGIN verb 448 
REPORT-RETURN-n verbs 448 
REPORT-SAVE-n verbs 448 
REPTAE table 323 
RERUN clause 

effect on coding 106 
processing in phase 10 41 

RERUNN switch (COMMON) 283,,41 
RESERVE macro element 132 
RET-ROUT routine 

description 441 
flowchart 254 

RETURN verb 72 
REWIND bit in DTFs 66 
REWRITE statement 

output coding 463 
phase 11 processing 49 
processing using table pointers 42 

RGNCTR cell (COMMON) 
description 278 
used by phase 62 131 

RLD-text 123.140 
RLDTBL table 

description 324 
entries, for Relocation Dictionary 

(RLD) 116 
phase 60 processing 123 
phase 63 processing 139~140 

RLS-ROUT routine 
description 446 
flowchart 245 

Licensed Material - Property of IEM 

RNMTBL table (phases 11, 12) 324 
RNMTBL table (phase 22) 

description 324 
Dictionary building 57 

ROL-ROUT routine 
description 441 
flowchart 249 

ROLTBL table 325 
root segment 48 
ROUNDED clause 

effect on EVAL string 88 
temporary result 99 

ROUTBL table 326 
RPF-ROUT routine 

description 446 
flowchart 258 

RPH-ROUT routine 
description 446 
flowchart 247 

RPNCTR cell (CO~MON) 
description 279 
used by phase 62 131 

RPT.LIN cell 447 
RPT.RCD cell 447 
RPTSAV AREA field (TGT) 

description 434 
space allocation 113 

RPTSAV cell (COMMON) 
description 278 
TGT space allocation 113 

RST-ROUT routine 
description 441 
flowchart 248 

RWRTBL table 
checking for priming 1(5 
description 326 
priming by phase 10 44 
use by phase 12 45 

RWS (see Report Writer Subprogram) 
RWl counter 112 

S.nnnn name cells 448 
s-point name cells 448 
SAME AREA clause 

BUFTAB table entries 68 
processing in phase 10 41 

SAME clause 41 
SAME RECORD AREA clause 

BUFTAB table entries 68 
effect on coding 106 
processing in phase 10 41 

SAME SORT AREA clause 41 
SATBL table 

description 327 
processing in phase 10 41 

SAV-ROUT routine 
description 441 
flowchart 252 

SAVE AREA field (TGT) 434 
SAVE AREA=2 field (TGT) 434 
save areas 418 
SA2CTR cell (CO~MON) 278 
SBL (secondary base location) 472 
SBL CELLS field (TGT) 

assigning SBL 57 

Index 533 



Licensed Material - Property of IBM 

description 11311 
OCCURS ••• DEPENDING ON clauses 58 
Q-routines 57,59 
space allocation 113 

SBL number 
assignment 57 
definition 1172 
variably located fields 59 

SBLCTR cell (COMMON) 277 
scaling 118 
SD (see sort description entries) 
SD element 

(see also sort description entries) 
Data IC-text 3111 
Dictionary entry 385 

SDSIZ cell (COMMON) 279 
SDSRATBL table 

description 327 
use in phase 21 68 

SDTF 
address element 67 
location 67 
location in object module 1130 
location in storage 1119 
number assigned 67 
order of addresses 1119 

SDTFADR, space in PGT 1135 
allocation 117,131 

SDTFCTR cell (COMMON) 
allocating PGT space 117 
description 282 

SDTXT routine 57 
SEARCH ALL statement 

example of processing 89-91 
flow of execution 91 
output 90 
phase 110 processing 89-91 

SEARCH routine 
STSRCH routine processing 74 
uniqueness of names 75 

SEARCH statement 
phase 30 processing 711-77 
uniqueness of names 75 

SEARCH verb analyzer 89 
SEARCH verb, Format-l 75-76 
SEARCH verb, Format-2 77 
SEARCHALL routine 89 
secondary base location (SBL), 
definition 1172 

section-names, PERFORM delimiters 85 
section 1. introduction 13-23 
section 2. method of operation 211-1118 
section 3. program organization 149-258 
section 4. directory 259-274 
section 5. data areas 275-408 
section 6. diagnostic aids 409-420 
SEEK statement 

output coding 467 
phase 51 processing 106 

SEGINDX table 
built in phase 65 127 
description 327 

SEGLMT cell (COMMON) 
checking in phase 51 108 
description 279 

534 

setting contents 40 
testing in phase 51 105 
use in phase 11 48 

SEGMENT element 
(see also Debug-text) 
phase 65 processing 126 
use in building Debug File 126 

SEGMENT-LIMIT clause 
effect on root segment 121 
priority number 40 
processing in phase 11 
storing priority numb~r 

segmentation control breaks 
segmentation feature 

ALTER statement 83 
control break 78 
definition 472 
description 438-1139 

48 
40 

1011 

operations in phase 00 34 
optimization 

order of reading segments 140,1111 
procedure branching 108 
root segment 141 
segmentation control break 1011 

passing control breaks 92 
PERFORM statement 85 
phase 51 processing 104 
priority checking 118 
Procedure A-text processing 121 
procedure branching 108 
procedure-names 78 
root segment 121 
segment locations 438 
segment names 39 
SYMDMP processing 127 
use of CONTBL and CONDIS tables 118 

SEGNOTE function 1011 
SEGPROC routine 122 
SEGSAVE cell 124 
SEGTBL table 

description 327 
processing Procedure A-text 121 
segment addresses 104 
use by phase 60 311 

SELECT clause 40 
SELSCN routine 40 
SEQ option 22 
SEQERR cell (COMMON) 277 
SET statement 96 
SETL macro instruction 106 
SETTBL table 

description 328 
processing verb strings 81 

SEVTBL table 147 
size of phases 13 
size of records 60 
SKPLNK routine 

action at end of compilation 27 
issuing EOJ macro 28 

SMERGE routine 73 
SMSTBL table 329 
SNF routine 127 
SNMTBL table 329 
SORT CORE SIZE field (TGT) 4311 
sort description entries (SDs) 

assignment of BL number 57 
Dictionary entries 60 
dummy Dictionary entries 55 
processing in phase 10 112 
processing in phase 20 53 
processing in phase 21 60 



SORT FILE SIZE field 
SORT MODE SIZE field 
SORT RET field (~GT) 
SORT SAVE field (TGT) 
SORT verb processing 
SORT verb strings 73 

(TGT) 
(TGT) 

434 
434 

149 

434 
434 

SORTAB ADDRESS field (TGT) 434 
SORTPROC routine 60 
source element, definition 341 
source program 

branching verbs 47 
commas as decimal pOints 40 
debugging packet 82 
Declaratives Section, USE 

processing 106 
file description entries (FDs) 

assignment of BL number 55 
Dictionary entries 57,60 
dummy dictionary entries 55 
processing in phase 10 42 
processing in phase 20 53 
processing in phase 21 60 

file-name processing 72 
FIPS flagging 148 
group item processing 53 
I/O verb processing 49 
LD (see record description entries) 
level-number entries (see record 
description entries) 

Lister processing 38.1-38.4 
listing 39 
LVL option 22 
MOVE statement processing 81 
proce¢!ure-names 

point of definition 48 
processing in phase 11 50 

RD, partial dictionary entries 57 
READ verb processing 72 
record d.escription entries (LDs) 

completed dictionary entries 57 
dictionary entries 57,55 
processing in phase 10 42 
processing in phase 20 55,57 
translation in phase 20 52 

reformatting 18 
report description entries (RDs) partial 
dictionary entries 57 

scanning by phase 80 148 
SDs (see sort description entries) 
section, definition 121 
SEGMENT, definition 121 
sort description entries (SDs) 

assignment of BL number 57 
Dictionary entries 60 
dummy Dictionary entries 55 
processing in phase 10 42 
processing in phase 20 52 
processing in phase 21 60 

verb processing in phase 11 49 
verb profiles (VERBREF, VERBSUM) 23 

SPACE option 22 
SPACING cell (COMMON) 281 
SPCREG area 75 
special registers 75,78 
SPECIAL-NAMES paragraph 40 
SPNTBL table 

ACCEPT entries 40.,49 
description 330 

Licensed Material - Pro~erty of IBM 

DISPLAY entries 40,49 
entries by phase 10 40 
REWRITE entries 49 
WRITE entries 49 
WRITE ••• AFTER entries 40 

SRA routine 68 
SRAMAX table 

description 330 
use in phase 21 68 

SRATBL table (phase 10) 
description 330 
processing in phase 10 41 
processing in phase 21 68 

SRATBL table (phase 21) 331 
SRCHKY table 

description 331 
syntax checking 59 

SRCHTB routine 53 
SRCTBL table 331 
SR~RERUN cell (COMMON) 286 
SSATBL table 

description 332 
processing in phase 10 41 

SSCRPT routine 96 
START macro instruction 92 
START statement 

output coding 467 
phase 51 processing 106 

STATE option 
CARDINDX table 290 
compiler overview 20,475-480 
Debug File 395-405 
Debug-text 384 
definition 22,126 
file handling 29-34 
parameters 35 
phase 50 processing 99 
phase 51 processing 105 
phase 65 processing 126,127 
PHZSW2 switch (COMMON) 284 
Procedure A-text processing 118 

segmented program 122 
SEGINDX table 327 
SWITCH field of TGT 434 
TGT fields 112 
TGTADTBL table 333 
verb processing for 93 
verb strings 105-107 
virtuals required 99 

STATIC routine 428 
STOP RUN verb analyzer 105 
storage 

allocation for PGT 112 
allocation for PGT with OPT 130,131 
allocation for ~GT 112 
allocation for TGT with OPT 130 
COBOL space 426 
contents during phase 20 52 
contents during phase 22 55 
data locations 418 
Dictionary area 425 
Dictionary location 428 
DTF location 418 
free area 428 
layout during compilation 

buffer contents 410 
compiler 13 
current phase 409 

Index 535 



Licensed Material - Property of IBM 

location of information in 13 
required for phases 13 

STRING table 
COMPUTE processing 89 
description 332 
MOVE statements 81 
processing verb strings 81 
purpose 81 

STSRCH routine 72.74 
S'IXIT option 

definition 22 
processing OPEN statements 106 

SUBADR CELLS field (TGT) 
assigning subscript save cells 
description 434 
ON verb processing 105 
space allocation 113 

SUBC'I'R cell (COMMm:J) 
description 281 
ON verb processing 105 
TGT space allocation 113 

SUBDTF ADDRESS CELLS field (PGT) 
description 436 
locating on SDTF 419 
space allocation 117 

subject hierarchy, 'definition 472 
subroutine (see COBOL subroutines) 
SUBSCRIPT string 81,82 
SUBSCRIPT verb 93 
subscripted MOVE, output from phase 
subscripted references 

calculating addresses 93-95 
data-names 94 
formula 94 
literals 94 

98 

40 

mixed literals and data-names 95 
rules 93 
use of ~ICTURE 93 

DATATAB entries 402 
optimizing 95 
resolving in phase 50 93-95 

SUBTRACT verb processing 72 
SUMTBL table 332 
SUPMAP 

definition 22 
deter~ining error severity 111 
effect on PGT listing 116 
effect on phase 60 118 
effect on phase 70 146 
listing TGT 112 
literal pool 115 

SWITCH cell <COMMON) 283 
set by phase 65 112 

SWITCH field (TGT) 434 
SWITCH1X cell (COMMON) 285 
SWITV2 cell (COMMON) 282 
SXREF option 

definition 22 
effect on file SYS004 123 
output of phase 60 11 
phase 60 processing 111,118 
phase 61 processing 144,145 
phase 64 processing 141 

SYM option 
definition 21,71 
effect on PGT listing 116 

SYMDMP option 
buffer assignments 36 

536 

82 

CARDINDX table 290 
compiler overview 20,475-480 
Debug File 395-405 
Debug-text 384 
definition 22,126 
Dictionary 19 
E-text element 382 
file handling for 29-34 
INIT3 instructions 438 
OBODOTAB processing 69 
OD2TBL table 42 
parameters 35 
phase 25 processing 69 
phase 50 processing 99 
phase 51 processing 105 
phase 60 processing 118,122 
phase 65 processing 126,127 
PHZSW2 switch (COMMON) 284 
Procedure A-text processing 

segmented program 122 
Q-routine generation 58 
SEGINDX table 327 
SWITCH cell of COMMON 283 
SWITCH field of TGT 434 
tables built by phase 22 59 
TGT fields 112 
TGTADTBL table (TIB18) 333 
verb processing for 93 
verb strings 105,106 
VARLTBL table 336 
virtuals required 99 

syntax analysis in phase 10 43 
syntax errors in phase 05 38.1 
SYNTAX option 

(see also CSYNTAX option) 
definition 23 
phase 01 processing 35 

SYSIPT 
buffer control block 410 
buffer sizes 35,37 
opening 37 

SYSLNK 
buffer control block 462 
buffer sizes 35,37 
opening 37 

SYSLST 
buffer sizes 35,37 
change to SYS006 38 
control block 410 
cross-reference list 144,145 
E-text 146 
glossary listing 71 
listing by phase 07 38.3 
listing by phase 08 38.4 
listing by phase 10 39 

118 

listing of Identification Division 40 
listing of Report Section 44 
literal pool 115 
opening 37 
output of options 21 
PGT listing 116 
phase 70 146 
phase 80 148 
Procedure A-text output 118 

SYSnnn files 
buffer sizes 35~37 
opening 37 



SYSPCH 
buffer control block 410 
buffer sizes 35,37 
opening 37 

SYS004 contents 123 
SYS005 file 

(see also Debug File) 
buffer assignments 36 
compiler file handling 29-34 
phase 25 processing 69 
phase 65 processing 127,.128 
sequence of phases 28 

SYS006 file 38,21 

TA LENGTH field (TGT) 
description 472 

table 
(see also compiler tables) 
definition 472 
maximum size 426 

table and dictionary area 421 
table and dictionary handling 421-429 
table area 427 
Table Area Management Executive Routines 

(see TAMER) 
Table Area Management Map (see TAMM) 
table control fields 425-426 
table formats 287-340 
table handling (see TAMER) 
Table Information Block (see TIB) 
table of contents diagram 481 
tables used by phases 263,459 
TABREL routine 428 
TALLY field (TGT) 434 
TAMAREA cell 37 
TAMEIN routine 422,426 
TAMEOP routine 428 
TAMER 

control fields 425-426 
(see also TIBi TAMMi MASTAM) 

definition 472,421 
error handling 34 
function 34 
GETALL routine 144 
location 425,421 
processing between phases 24-26 
routines 

427 
429 
428 
427 

427 

DICSPC 
GETALL 
INSERT 
MOVDIC 
PRIME 
STATIC 
TABREL 
TAMEIN 
TAMEOP 
TBGETSPC 
TBREADIC 
TBSPILL 
TBWRITE 

428 
428 
426,422 
428 

427 
429 

428 
428 

saving registers 418 
TAMER space, definition 472 
TAMER tables 287-340 
TAMM 

address 425 
contents 425 
description 425 
format 425 

Licensed Material - Property of IBM 

locating tables 410 
location in storage 426 

TAMNAD cell (COMMON) 275 
Task Global Table (TGT) 430,432-435 

base register 122 
concept 430 
diagram of fields 432 
fields 432-435 

A (INITl) 432 
BL CELLS 432 
BLL CELLS 432 
CHECKPT CTR 432 
COUNT CHAIN ADDRESS 432 
COUNT TABLE ADDRESS 432 
CURRENT PRIORITY 432 
DEBUG TABLE PTR 432 
DEBUG TABLE 432 
DTFADR CELLS 432 
ENTRY-SAVE 432 
INDEX CELLS 432 
IOPTR CELLS 433 
LENGTH OF SORTTAB 433 
LENGTH OF VN TBL 433 
NSTD-REELS 433 
ONCTL CELLS 433 
OVERFLOW CELLS 433 
PARAM CELLS 433 
PFMCTL CELLS 433 
PFMSAV CELLS 433 
PGM ID 433 
PGT-VN TBL 433 
PROCEDURE BLOCK1P~R 434 
RPTSAV AREA 434 
SAVE AREA 434 
SAVE AREA=2 434 
SBL CELLS 434 
SORT CORE SIZE 434 
SORT FILE SIZE 434 
SORT MODE SIZE 434 
SORT RET 434 
SORT SAVE 1134 
SORTAB ADDRESS 434 
SUBADR CELLS 434 
SWITCH 434 
TA LENGTH 434 
TALLY 434 
TEMP STORAGE 434 
TEMP STORAGE-2 435 
TEMP STORAGE-3 435 
TEMP STORAGE-4 435 
TGT-VN TBL 435 
UPSI SWITCHES 435 
VLC CELLS 435 
VN CELLS 435 
WORKING CELLS 435 
XSA CELLS 435 
XSASW CELLS 435 

location of fields 112 
location in object module 430 
overall length 112 
residence in segmented program 121 
storage allocation 112 
UPSI bit switches 58 
using PN, GN, and VN 58-59 
variable-length fields 

COMMON counters 112 
determining location 112 
discussion 112 

Index 537 



Licensed Material - Property of IBM 

lengths 58 
TBGETSPC routine 427 
TBREADIC routine 429 
TBSPILL routine 428 
TBWRITE routine 428 
TEMP STORAGE field (TGT) 

description 434 
space allocation 113 

TEMP STORAGE-2 field (TGT) 
de~cription 435 
space allocation 113 

TEMP STORAGE-3 field (TGT) 
description 435 
space allocation 113 

TEMP STORAGE-4 field (TGT) 
description 435 
space allocation 113 

tel.lporary register assignments 132 
temporary result 99 
temporary storage 98 
TER.COD cell 309 
TEm~INATE statement 

diagram of RWS response 452 
phase 11 actions 44 
RWS response 449 

terminating compilation 24 
text formats 341-384 
texts (see internal texts) 
TGT (see Task Global Table) 
TGT-VN TBL field (TGT) 435 
TGTADTBL table 333 
TGTINT routine 112 
THRU option 85 
TIB (Table Information Block) 

address 425 
contents 425 
definition 472 
description 425 
format 425 
locating tables 410 

TIB cells (COMMON) 275 
TIME cell (COMMON) 282 
TMCNTBSZ cell (COMMON) 282 
transient area. definition 472 
transient area for segmented program 
TRMNATE routine 27 
TRUNC option 23 
TS area 98 
TS cells 98 
TSMAX cell (COMMON) 

description 276 
relation to XAVAL table 98 
TGT space allocation 113 

TSTWRO routine 71 
TS2MAX cell (COMMON) 

description 277 
TGT space allocation 113 

TS3MAX cell (COMMON) 
description 279 
TGT space allocation 113 

TS4MAX cell (COMMON) 
description 279 
TGT space allocation 113 

TXPNCH routine 127 

438.1 

TYPE ,IS DETAIL claus~, locating DET-ROUT ' 
routine 452 

538 

unrecoverable error conditions 34 
UPSI 

bit switches 58 
definition' 473 

UPSI routine 58 
UPSI SWITCHES field (TGT) 

contents 58 
description 435 

UPSI-n clause 40 
UPSTBL table 

description 334 
entries by phase 10 40 
use in Dictionary building 58 

USAGE clause 53 
usage for group items 53 
USE statement 

ON clauses 50 
output coding 469 
phase 11 actions 44 
phase 51 processing 106 

USM-ROUT routine 
description 441 
flowchart 243 

USNGTBL table 335 

VALGEN routine 53 
VALGRP table 

description 335 
generating Data A-text 
produced and passed by 

VALTRU table 
description 335 
produced and passed by 
use in phase 22 59 

VALUE clause 
Data A-text 58 
data items initialized 
phase 20 processing 53 

VALUE IS SERIES clause 
syntax checking 59 

58 
phase 

phase 

430 

20 

20 

VALGRP and VALTRU table entries 
VARLTBL table 

built by phase 22 59 
description 336 
used by.phase 25 69 

VARYTB table 336 
VCON 67 
verb analyzer 91 
verb analyzer routine 81 
verb blocks, defining 92 
verb code list 353-354 
VERB option 23 
verb processor 93 
verb strings 

(see also input/output verbs; 
nonarithmetic verb strings) 

ALTER statement 82-83 
COMPUTE statement 87-88 
continuation strings 81 
definition 473 
distinguishing numerics 93 
EQUATE 85 
GO 84 
IF statements 88 
MOVE statement 81 
number of operands 81 

52 

52 

52 



PERFORM statement 84-87 
phase 40 processing 81 
phase 50-phase 51 '103 
phase 50 processing 92-97 
p2-text 92 
SEARCH ALL statement 89-91 

VERBDEF Tamer table 
description 336.1 
phase 11 processing 48 
phase 22 processing 58 

VERBREF option 23,144 
VERBSUM option 23,144 
VIRCTR cell (COMMO~) 

description 276 
displacement of virtuals 116 
virtual number assigning 99 

VIRPTR table 
after VIRTUAL allocation 117 
description 337 
optimizing virtuals 116 
virtual allocation 116 

VIRRTN routine 116 
VIRTUAL CELLS field (PGT) 

description 435 
space allocation 116 
space allocation with OPT 131 

virtual references optimizing 116 
virtuals 

optimizing for PGT 116 
phase 50 processing 99 

VLC CELLS field (TGT) 
description 435 
space allocation 113 

VLCCTR cell (COMMON) 
description 277 
OCCURS ••• DEPENDING ON clauses 58 
TGT space allocation 113 

VN CELLS 'field (TGT) 
description 435 
effect of ALTER 83 
space allocation 113 

VN number 
ALTER statements 82 
deleting XSCRPT entries 95 
definition 471 
effect of ALTER/GO TO pair 82 
GO string object 84 
optimizing virtuals 116 
PERFORM statement 84 
phase 50 processing 92 
phase 51 processing 105 
segmented program 108,104 
VNPTY table entry 114 

VNCTR cell (COMMON) 
description 280 
PGT space allocation. 117 

with OPT 131 
VN number for PERFORMs 85 

VNI CELLS field (PGT) 
description 436 
space allocation 117 

with OPT 131 
VNILOC cell (COMMON) 

description 281 
PGT space allocation 117 

with OPT 131 
VNLOC cell (COMMON) 

description 281 

Licensed Material - Property of IBM 

TGT space allocation 113 
VNPNTBL table 

built by phase 62 130 
description 337 

VNPTY table 
description 338 
table building 130,114 

VNTBL table 
ALTER statements 82 
ALTER/GO TO pair 82 
description 338 
keeping track of VNs 85 
PERFORM processing 84 
processing verb strings 81 

VRBCNT cell (COMMON) 282 
VSAM file information block (FIB) 68 
VSAM file processing 

phase 10 processing 40 
phase 11 processing 50 
phase 51 processing 110 

VSAM input/output verbs 110 

WCMAX cell (CO~MON) 276 
WHEN clause effect on SEARCH verb 90 
WKAREA work area 75 
work files 14,16-18 
WORKING CELLS field (TGT) 

description 435 
working-Storage section 

address elements 58 
assignment of BL number 57 
data items location 430 
processing in phase 10 43 

WRITE statement 
output coding 463 
phase 11 processing 49 
phase 51 processing 106 
processing using table pointers 42 

WRITE ••• ADVANCING statement 
entries in SPNTBL table 40 

WRITE-ONLY files 71 
WRITE-ONLY switch 71 
WRSYS4 routine 92.1 
WRT-ROUT routine 

description 440 
flowchart 246 

WSDEF cell (COMMON) 278 

X code 
definition 24 
end of compilation 28 
list 25 
segmentation 34 

XAVAL table 
description 338 
temporary storage assignment 98 

XFREER routine 98 
XINTR table 

arithmetic verb translating 97 
description 339 

XNORML routine 147 
XPUT routine 147 

Index 539 



Licensed Material - Property of IBM 

XREF option 
definition 21 
effect on SYS004 123 
phase 60 processing 111.118 
phase 61 processing 144.145 
phase 64 processing 141 

XREF-text 
data-name DEF elements 58 
description 383 
location on file SYS004 123 
output of phase 60 111 
processing in phase 60 123 
processing in phase 61 144,145 
use in cross-reference listing 144,145 

XREGNO cell 98 
XSA CELLS field (TGT) 

description 435 
space allocation 113 

XSACTR cell (COMMON) 
description 280 
TGT space allocation 113 

XSASW CELLS field (TGT) 
description 435 
space allocation 113 
ON verb processing 107 

XSCOMP routine 
description 94 
indexing 96 

XSCRPT table 

540 

data-name subscripts 94 
deleting entries 94,103 
description 339 

direct indexing 96 
indirect indexing 96 
literal subscripts 94 
optimizing subscripts 95 

XSPRO routine 103 
XSSNT table 

description 340 
direct indexing 96 
optimizing subscripts 95 

XSWCTR cell (COMMON) 
description 280 
ON verb processing 107 

XU6REC work area 147 

Y code 
definition 24 
end of compilation 28 
list 25 
segmentation 34 

ZWB option 23 

01-level Report writer statements 45 
1ST-ROUT routine 

description 440 
flowchart 241 



IBM DOS!VS COBOL 
Compiler Program Logic 
LY28-6423-1 

Your comments about this publication will help us to improve it for you. 
Comment in the space below, giving specific page and paragraph references 
whenever possible. All comments become the property of IBM. 

Please do not use this form to ask technical questions about IBM systems and 
programs or to request copies of publications. Rather, direct such questions or 
requests to your local IBM representative. 

If you would like a reply, please provide your name, job title, and business 
address (including ZIP code). 

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere, 
any IBM representative will be happy to forward your comments.) Thank you for your 
cooperation. 

Reader's 
Comment 
Form 



L Y28-6423-1 

Folc! and Staple 

Business Reply Mail 
No postage necessary if mailed in the U.S.A. 

Postage will be paid by: 

I BM Corporation 
General Products Division 
Programming Publishing-Department J57 
1501 California Avenue 
Palo Alto, California 94304 

Fold and Staple 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(I nternationall 

Fi rst Class Permit 
Number 439 
Palo Alto, California 

to 
s: 
o o en 
< en 
(") 

o 
to 
o 
r 
g 
3 
"!' 
." 
r 
s: 
." 
:::!. 
:J .... 
CD 
c.. 
:J 

C 
en 
~ 





L Y28-6423-1 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

OJ 
s: 
o 
o 
C/l -...... 
< 
C/l 
(') 
o 
OJ 
o 
r 
(') 
o 
3 
"0 

""0 
r 
s: 
""0 
::::!. 
::J .... 
CD 
c.. 


