Program Product

SC28-6478-2

IBM DOS/VS COBOL
~ompiler and Library
Programmer’s Guide

Program Numbers: 5746-CB1 (Compiler and Library)
5746-LM4 (Library)

JUSINL

Third Edition (June 1976)

This edition is a reprint of SC28-6478-1 incorporating changes released in Technical Newsletters
SN20-9121 (dated November 1, 1975) and SN20-9141 (dated January 9, 1976) and corresponds
to Release 2 of the IBM DOS/VS COBOL Compiler and Library.

Information in this publication is subject to significant change. Any such changes will be
published in new editions or technical newsletters. Before using this publication, consult the
latest IBM System/370 Bibliography, GC20-0001, and the technical newsletters that amend the
bibliography, to learn which editions and technical newsletters are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality.

A form for readers’ comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California 95150. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972

Summary of Amendments

Date of Publication: January 9, 1976
Form of Publication: SN20-9141 to SC28-6478-0, -1

Support has been added to run DOS/VS COBOL under control of VM/370 CMS Release 3.

DOS/VS COBOL programs can be compiled in CMS and then executed in a DOS virtual machine, or
under a DOS system.

The following restrictions apply to execution of DOS/VS COBOL programs in CMS:

1. Indexed files (DTFIS) are not supported. Various clauses and statements are therefore invalid:
RECORD KEY, APPLY CYL-OVERFLOW, NOMINAL KEY, APPLY MASTER/CYL-INDEX,
TRACK-AREA, APPLY CORE-INDEX, and START.

2. Creating direct files is restricted as follows:

—For U or V recording modes, access mode must be sequential.
—For ACCESS IS SEQUENTIAL, track identifier must not be modified.

3. None of the user label-handling functions are supported. Therefore, the label-handling format of
USE is invalid. The data-name option of the LABEL RECORDS clause is invalid.

4. There is no Sort or Segmentation feature.

5. ASClI-encoded tape files are not supported.

6. Spanned records (S-mode) processing is not available. This means that the S-mode default (block
size smaller than record size) cannot be specified, and that the RECORDING MODE IS S clause
cannot be specified.

In addition, multitasking, multipartition operation, and teleprocessing functions are not supported
when executing under CMS.

For a more detailed description of VM/370 CMS for DOS/VS COBOL, see IBM VM/370 CMS User’s
Guide for COBOL, order number SC28-6469.

Summary of Amendments Number 1

Date of Publication: March 22, 1974
Form of Publication: TNL SN28-1063 to SC28-6478-0

New: Additional Compiler Capabilities
Lister feature

Execution Statistics and
Verb summary feature

SORT-OPTION

Maintenance: Documentation Only

Minor technical changes and corrections.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

PREFACE

This publication describes how to
compile a COEOL program using the Progranm
Product IBM DOS/VS COBOL Compiler. It also
describes how to link edit the resulting
object module, and execute the progran.
Included is a description of the output
from each of these three steps: conmpile,
link edit, and execute. This publication
explains features of the DOS/VS Compiler
and Library, and available options of the
operating systen.

This publication is logically and
functionally divided into four parts.
I contains information useful to
programmers who are running COBOL programs
compiled on the DOS/VS Compiler, under the
control of the IEBM Disk Operating Systenm
Virtual Storage. Part I covers such topics
as job control language, library usage, and
interpreting output.

Part

Part II contains supplemental
information on the use of the language as
specified in the publication IBY DOS Full
American National Standard COBQOL, Order
No. GC28-6394, and should be used in
conjunction with this publication for
coding COBOL programs. Part II covers in
detail such topics as file organization,
file label handling, ‘and record formats.
Part II is intended as reference material
for language features that are primarily
system-dependent.

Part III contains information on
programrming technigues useful to the
programmer running COBOL programs compiled
or the DOS/VS Compiler. Topics such as
coding considerations, table handling
considerations, and formatting data are
covered in Part III.

Part IV contains error determination
information. 'This part covers such topics
as program debugging and program testing.

Diagnostic messages generated by the
DOS/VS Compiler and Library and their
accompanying documentation can be found in
this publication.

Information on installing the DOS/VS
Compiler and Library can be found in the
following publication:

IBH DOS/VS COBOL Compiler and Library,
Installation Reference Material, Order
No. SC28-6479.

Wider ranging and more detailed
discussions of the DOS/VS System are given
in the following publications:

Introduction to DOS/VS, Order
No.*GC33-£370

DOS/VS_ System_Generation, Order
No. GC33-5377

DOS/¥YS System Management Guide, Order
¥o. GC33-5371

DOS/VS_Data Managemert Guide, Order
No. GC33-5372

DOS/VS Supervisor and I/C Macro
Reference, Order No. GC33-5373

DOS/VS Access_Method Services, Order
No. GC33-5382

DOS/V¥S_System Control Statements, Order
No. GC33-5376

DOS/VS System Utilities Reference, Order
No. GC33-5381

DOS/VS Messages, Order No. GC33-537%

The following publications provide
detailed information on the IBM 3886
Optical Character EReader:

IBM 3886 Optical Character Reagder
General Information Manual, Order
No. GA21-9146

IBM 3886 Optical Character Eeader Input
Document Design_and Specifications,
Order No. GA21-9148

DOS/VS Planning Guide for the IBM 38856
Optical Character Reader, Model 1, Order
No. GC21-5059

The following publications provide
information on the IBM DOS/VS Sort/Merge
Program Product, Program Number 5746-SM1,
and the DOS Sort/Merge Program Product,
Program Number 5743-SM1:

IBM_DOS/VS Sort/Merge General
Information, Order No. GC32-4030

IBM DOS/VS Sort/Merge Program Product
Design Objectives, Order No. GC33-4027

IBM.DOS/VS Sort/Merge Installetion
Reference Material, Order No. SC33-4026

IB& DOS_Sort/Merge Programmer's Guide,
Order No. SC33-4018

The titles and abstracts of related
publications are listed in IRM System/360
and System/370 Eibliocraphyv, Order
No. GA22-6822.

FEATURES OF THE PROGRAM PRODUCT DOS/VS
COMPILER « o « o o o o o o o o o o = =

PART I ¢ « ¢ o o o s o o« o o e o o o

INTRODUCTION . o« o« o« «
control Program < « « .
SUpPervisor o
Job Control Processor
Initial Program Loader
Processing Programs
System Service Programs .«
Application Programs « . « « « « < =
IBM-Supplied Processing Programs . .
Data Management e« « « « « « « o o «
Multiprogramming « « o« o o o o o « « o
Background vs. Foreground Programs .

JOB DEFINITION ¢ o @« « o o o o « o
Job Steps . . . « o o @
Compilation Job Steps “- o o =
Multiphase Program Execution .
Types of Jobs o o o
Job Definition statements - . e
Other Job Control Statements . .

¢ & o & 2
4 o 2 &

JOB PROCESSING ¢ « « o « « © « o « o =
Compilation .« o o« o« o« o o @ o o o =
EAiting =« 2« ¢ o o « @« « « o = = « =
Phase EXeCUtion . . ¢ o o « o « = «

Multiphase Programs . « « « « « « « =

PREPARING COBOL PROGRAMS FOR PROCESSING
Assignment of Input/Output Devices . <
JOD CONtXOl .+ o 2 ¢ o « =« o o« « = = =
Job Control Statements « « « « o « «
Comments in Job Control Statements
Statement Formats . . . « a ® =
Sequence of Job Control Sta*ements
Description and Formats of Job
Ccontrol Statements .
JOB Statement .
ASSGN Statement
CLOSE Statement
DATE Statement .
TLBL Statement .
DLBL Statement .
EXTENT Statement
VOL, DLAB, TPLAB and
LBLTYP Statement
LISTIO Statement
MTC Statement .
OPTION Statement
PAUSE Statement
RESET Statement .
RSTRT Statement .
UPSI Statement . .
EXEC Statement . .
CBL Statement -- COBOL Optlon
CONtrol Card o« o a« « =« « « a « =« »« =
LST Statement -- New Compiler
Option Card . o o @ o o o o o « «

tatements

4 o fxis o 2 8 0 o .
2

08 Fs & & 0

s o [Ne & 4 2 s & 4

o e Do 8 2 8 e
H

e o o @ e

U Y TR R)

CONTENTS

Mutually Exclusive Options . . .
Changing the Installation Defaults
Significant Characters for various
OPLtioNS o v ¢ o o o o« o o o « &«
Job Control Commands «
Linkage Editor Control Statements
Control Statement Placement
PHASE Statement
INCLUDE Statement
ENTRY Statement
ACTION Statement « « o« « « &
Autolink Feature . . . o o e
Relocating Loader Feature o .

LR O A I)
LR I Y

¢ & & & & 0
.
.

LIBRARIAN FUNCTIONS =+ ¢ ¢ ¢ o o o « «
Planning the Libraries . « « o« ¢ « o«
Librarian . ¢« ¢« ¢ ¢ o o 2 o o « = o
Core Image Library « « « « ¢ o o o « «
Cataloging and Retieving Program
Phases -- Core Image Library . . «
Relocatable Library
Maintenance Functions
Cataloging a Module -- Relooatable
Library <« ¢« o o ¢ ¢ o o 4 o o o« =
Socurce Statement Library
Maintenance Functions . . . < « . .

e ® o

Cataloging a Book -- Source

Statement Library . « . « .« « . .
Updating Books -- Source Statement
Library . . e s e o 1 s o e e @

UPDATE Functlon -- Invalid Operand
Defaults o o ¢ ¢ @ @« o ¢ ¢ o o o o
The Procedure Library =
MAINT, Procedure Library « . « « « « =
Catalog o« ¢ o ¢ o ¢ o o o = o o
PSERV, Procedure Library « « « « « « «
Calling Cataloged Procedures
Private Libraries . « <« ¢« & o ¢ « o &«
Determining the Location of the
Librari€S =« o « o « o o « o o a =
Source Language Considerations . . .
Extended Source Program Library
FACility o o o o o ¢ o o o o o o « o «
Reformatted Source Deck . .

INTERPRETING OUTPUT . .
Compiler Cutput
Object Module
Linkage Editor Output .
Comments on the Phase Map
Linkage Editor Messages .
DOS ANS COBOL Unresolved External
References . . .
COBOL Execution Output
Operator Messages .
STOP Statement . .
ACCEPT Statement .
System Output

s 4 s
s s s
L IEY I T)

* & 8 0 8

CALLING AND CALLED PROGRAMS . . « «
Linkage “ o e s o o
Linkage In A Calllng Program “ e o

e ¢ & o s s s

Linkage In A Called Program . « « - - 76
Entry Points - . <« e « « 16
Correspondence of Arguments and
PArameterS o« « o« o o = o « = =« o =« « « 17
Link Editing Without Overlay 77
Assembler Language Subprograms . « « - « 78
Register US€ o« o & & o &+ o o o« o« « « « 78
SAVEe AY€A <« o o o o o o « = o 2 « « « 19
Argument List . <« ¢ ¢ ¢ ¢ 4 4 4 o o« & 79
File-Name and Procedure-Name
Arguments . a ¢ ¢ . o o o ° o o o « « 19
In-Line Parameter List « . 81
Lowest Level Program . « « « « « « « o 81
OVErlayS « « o = = = « = s« = « « « = = « 81
Special Considerations When Using
Overlay Structures « . « o« o « o « « « « 81
Assembler Language Subroutine for
n\.\.ompJ..Lbu.Lu‘J uvk—.'.L.Ldy e e e e = = « =« 82
Link Editing with Overlay 83
Job Control for Accomplishing Overlay 84

USING THE SEGMENTATION FEATURE 89
Operation . o o« « ¢ o « = « = « = = « 30
Output From a Segmented Program . - - . 91
Compiler Output . ¢ o« o o o = o « « « 91
Linkage Editor Output + « « o« o« « « « 92
Cataloging a Segmented Program . . . 92
Determining the Priority of the
Last Segment Loaded into the
TranSient Area . « « =« « « = « = « « 92
Sort in a Segmented Program - 93
Using the PERFORM Statement in a
Segmented Program . « .+ « « « = = « 93

PART II . o o 2o o« = o = = o =« o« « = = = 95

PROCESSING COBOL FILES ON MASS STORAGE
DEVICES ¢ 2 o o « @« « « o« a o = = « « « 97
File Organization . « « ¢ o o o « « - « 97
Sequential Organization
Direct Organization . « « « « « « « - 97
Indexed Organization . « « . & <« « - . 97
Data Management Concepts . . - -« + . - 98
Sequential Organization (DTFSD) e e - = 99
Processing a Sequentially Organized
File e o e = = = « 99
Direct Organlzatlon (DTFDA) « e e e 99
Accessing a Directly Organized File .100
ACTUAL KEY ClausSe . . « o o« « = « = 101
Randomizing Techniques - . .102
Actual Track Addressing
Considerations for Specific Devices .116
Randomizing for the 2311 Disk Drive 116
Randomizing for the 2321 Data Cell .117
Indexed Organization (DTFIS) . . . - . .118
Prime AXea « « « « o « « o o « = » « =118
INAEXES .+ o« o o o « = =« » « « = = « 2119
Track IndeX =« « « « o « = 2 =« = « «119
Cylinder Inde€X « o« « « = = o « = .119
Master INdeX « o « « « « = « = « « =119
Overflow Area . « « o« « = = « « = « 119
Cylinder Overflow Area . « « « « -119
Independent Overflow Area - -.119
Adding Records to an Indexed File .120
Accessing an Indexed File (DTFIS) . .121
Key Clauses . « o « « « « « = « « =121
Improving Efficiency . « . . « - . 2122

PROCESSING 3540 DISKETTE UNIT FILES
File ProcessSing . « o « o o o o a « a
DTFDU v ¢ ¢ o o o o o o = s s s =« o« =
Job Control Requirements . . « . .
DLBL Statement . <« o o ¢ ¢ ¢ o o« «
EXTENT Statement
3500 Fil€ ¢ 4 o o @ o o o o a =

VIRTUAL STORAGE ACCESS METHOD (VSAM) .
File Organization
Key-Sequenced Files . . .« .« o . «
Entry-Sequenced Files . . . « o -
Data Organization <« & . «
Data ACCESS o o o o o « o o « o
VSAM Catalog « « - « . “ o =
File and Volume Portablllty « s =
Service Programs . « « « « « « o «
Device SUPPOrt + o o o« « =« o o o« =
SECUTItY o v« o o ¢ ¢ o o « o o « =
EXror ProcCessSing « « « « « + o o« «
VSAM MeSSAJeS o« o ¢ o <« o « o « =

Access Method Services . <« . « o « o« o
Functional Commands . . « 2 « « «
The DEFINE Command . . « « e . o
Specification of the
Defining a VSAM Master Catalog:
DEFINE MASTERCATALOG .
Defining a VSAM Data Space: DEFINE
SPACE . . . - - - « e =
Defining a VSAM Flle. DEFINE
CLUSTER &« o o e 2 o = a = = « = =
File Processing Techniques . . .
Current Record Pointer

Error Handling . . <« . = e o o o a @
Record Formats for VSAM Files . .
Initial Loading of Records into a
File v v ¢ v 4 4 ¢ 2 o o o o = o =
File Status Initialization . . .
Opening a VSAM File

Writing Records into a VSAM File . .
Entry-Sequenced File
considerations for the WRITE
Statement . <« < ¢ ¢ ¢ . e 4 e o .
Key-Sequenced File Considerations
for the WRITE Statement

Rewriting Records on a VSAM File . .
Entry-Sequenced File
Considerations for the REWRITE
Statement . . . 4 4 ¢ . e o e . .
Key-Sequenced File Considerations
for the REWRITE Statement

Reading Records on a VSAM File . . .
Entry-Sequenced File
Considerations for the READ
Statement . . . @ 4 4 0 e . 4 . .
Key-Sequenced File Considerations
for the READ Statement
READ NEXT Statement . . « . « « =«
READ Statement & . « <« .

Using the START Verb + « . =
DELETE Statement « - o
COBOL Language Usage With VSAM - .
Creating a VSAM File « . o« o o « «
Retrieving a VSAM File . o o o o «
Job Control Language for a VSAM
File o @ v ¢ o o o o o « o o o o =

s ® e e o =

.123
-123
.124
.128
.125
-125
.125

.127
.127
.127
.127
.128
.128
-128
.130
-.130
.130
.130
.130
.130
.130
-130
-130

DEFINE Command 131

131
-132

.133
-134
-134
.136
.136

.137
.137
-137
.139

-139

-139
-139

139

.140
-140

-140

-140
-140
.141
.141
<141
.1481
.141
-143

.14y

Converting Non-VSAM Files to VSAM
FI1leS v o o o o o = =« @« o o s o =
Using ISAM Programs to Process

VSAM FileS o o 2o 4 o o @ = @ « = =

-1404
- 144

-145
145
.146
.146
.1u8
-150
-155
-155
-162
-162
-162
.162
-162
-162
.165
.166
<174
.174
-174
.174
<174

DETAILED FILE PROCESSING CAPABILITIES
COBOL VSAM Control blocks . . « « « =
Control Blocks For VSAM . . . <« « . .
VSAM File Information Block (FIB) .
VSAM File Control Block .« <« « « .« .
DTF TableS ¢ ¢ o ¢ ¢ o o o o o o« = =« =
Pre-DTF Switch « « « « « . . . -
Error Recovery for Non-VSAM Flles - .
Volume and File Label Handling
Tape Labels <« ¢ o « o« o « « =
Volume Labels . ¢ o « o « « « «
Standard File Labels . . . « . +
User Standard Labels . « « « « . «
Nonstandard Labels o o o o « o o o
Label Processing Considerations . .
Sample Programs . « « « « « o = «
Mass Storage File Labels
Volume Labels . ¢ o« ¢ o o o « « «
Standard File Labels ¢ o o o « « «
User LabelsS . v o o o o o « o « =
Label Processing Considerations . .
Files on Mass Storage Device
Opened as Input . « « « o o « « =
Files on Mass Storage Devices
Opened as OUtpUt =« o« « o o = « = «
Unlabeled Files « o« o« ¢ « o« «

. 174

-175
-175

-1717
-177
-177
.178

PROCESSING ASCII TAPE FILES «
COBOL Language Considerations
File Handling « < o o 2o o o o « « «
Operational Considerations . . . o
Obtaining an ASCII Collating Sequence
ON @ SOFL &« 2 o o « o =« 2 o o = = = =

]

-178

.179
-179
-180
.180
-.183
-183
-184

RECORD FORMATS FOR NON-VSAM FILES . .
Fixed-length {(Format F) Records . . .
Undefined (Format U) Records . . . « -
Variable-Length Records . « « « « « =«
APPLY WRITE-ONLY Clause . .
Spanned (Format S) Records
S-Mode Capabilities . . « . -
Sequentially Organized S- Node Flles
on Tape or Mass Storage Devices . =
Source Language Considerations . -
Processing Sequentially Organized
S-Mode Files « o« o =
Directly Organized S- Mode Flles -
Source Language Considerations . .
Processing Directly Organized
S-Mode FileS o v v o v « o o o « =

-185
-.185

-.185
.187
.187

-188

PART III 2 2 o « o o o « =« o« =« = -189
-191
-191
.191
.191
.191

PROGRAMMING TECHNIQUES o« o o « = = « =
Coding Considerations for DUS/V3 . . .
General Considerations « « « « « « = =
COPY e © o ° ® ® e o e o ®
Syntax Checklng .
Formatting the Source Program
Listing o o o o« o o o o o s s = =
Environment Division « « « « « « . < -
RESERVE Clause . . « . @ o o = =
APPLY WRITE-ONLY Clause e e o o =

-191
-192
-192
-192

Data DiviSion « « o o o « « o « « =
Overall Considerations . . « . . -
FD ENtries v o o o« o o o o = o « =
Prefixes w o o o 4 ¢ o ¢ o o o o
Level Numbers . . ¢ « « « & « o« o
File Section . . . e e e o = =
RECORD CONTAINS Clause « e o ® = =
BLOCK CONTAINS ClauSe . o« « = « «
Working-Storage Section
Separate Modules - - -
Locating the WOrklng-storage
Section in DUMPS « « « o « o« = « .
REDEFINES ClauSe « « o 2 « « o =« =
PICTURE ClauUS€ v w « = « = « = « =
USAGE ClauS€ . o o o « o = « o = =«
SYNCHRONIZED ClauS€ « o « o« « « o
Special Considerations for DISPLAY
and COMPUTATIONAL Fields « « « «
Data Formats in the Computer . . .
Procedure Division . « <« « ¢« ¢ 4+ ¢ « &
Modularizing the Procedure Division
Main-Line Routine « « .
Processing Subroutines
Input/Output Subroutines
Overall Considerations . . . + « .
OPTIMIZE Option .+ « &« « « « « .
Intermediate ResSUltS « o« o o « = o« o
Intermediate Results and Binary
Data Items « « o o ¢ o o o « = =
Intermediate Results and COBOL
Library Subroutines
Intermediate Results Greater Than
30 DigitS =« o o o« o @ o o = = =
Intermediate Results and
Floating-point Data Items . « « -
Intermediate Results and the ON
SIZE ERROR Option . « ¢ « o « « «
Exponentiation « « « ¢ « o o « <« o« =
Optimization Based on Execution
FrequenCy .« « o o o o o o « « « =
Procedure Division Statements . . .
COMPUTE Statement . « o « « « « «
IF Statement « « « ¢ o o o o o <« =
MOVE Statement « o ¢ o« « o ¢ o « =
NOTE Statement « o« o o o o o = « «
PERFORM Statement . « « « ¢ « « =«
READ INTO and WRITE FROM Options e e =
TRANSFORM Statement . o ¢ ¢ « «

USING THE SORT/MERGE FEATURE . <« « o =
Sort/Merge Job Control Requirements .
Sort Input and Output Control
Statements .« o ® o o & o @
Sort Work File Control Statements .
Amount of Intermediate Storage
Required o o« o « o o « = s o o o @
Improving Performance . . . « . <
SORT-OPTION ClauUSe o« v o« « « = « =
PRINT Option « « =« o « o « « o « =
LABEL Option v o o o o o o = = =« =
STORAGE OpPtion « « « « « o « = « =
ALTWK Option « « « o « o o o « « =
ERASE Option o« o« o o o o « o =« « =
ROUTE Option o« o o o o « o « = « =
SORTWK Option . e« o o o * = =
SORT-OPTION Clause Examples o o e
Output File Statements . « « . « = « «
Sort Diagnostic Messages « « « « « « =

.193
-193
-.193
-193
-193
.194
-194
-194
.194
-194

.194
-194
.19%6
-197
. 200

.200
-200
.202
- 202
.203
. 203
- 203
- 203
-.203
-203

. 203
. 203
. 204
- 204

. 204
.204

. 204
. 204
. 204
. 205
- 205
. 205
. 205
- 205
. 206

. 207
-207

. 207
. 208

. 208
. 208
. 208
. 208
. 208
. 208
. 208
-208
-208
. 208
.208
. 208
- 209

- 209
- 209

Linkage With the Sort/Merge Feature .
Completion Codes - < &« &« & & & « &
Cataloging a Sort Program . . « . =209

Checkpoint/Restart During a Sort210

Using Sort in a Multiphase Environment .210

USING THE REPORT WRITER FEATURE211
REPORT Clause in a File
Description (FD) Entry . . « « + - 211
Summing Techniques . « « <« + « « - <211
Use Of SUM v« ¢ 4 o o o o o « o = « 2211
SUM Routines . . s e s o e = = 2212
Output Line Overlay e e o+ o + = o 4213
Page BreakS .« o o o o o« « « o o« « 2213
Control Footings and Page Format . .213
WITH CODE ClauUS€ o o « = =« o « =« = 214
NEXT GROUP Clause .« « o « « « « « 214
Floating First Detail . . . « . - <215
Report Writer Routines « - .215
TABLE HANDLING CONSIDERATIONS 217
SUDSCIIptS o o o o o o o o o o « «» =217
INdEX-NAMES o o « = = = « « « « = =217
Index Data Ite€mMS « o o o « o « « « 2217
OCCURS ClaUSEe « o« o o « « « « o « 217
DEPENDING ON Option . . e o e = 2217
OCCURS Clause with the DEPENDING ON
OPtiOoN o v ¢ o o o o o o « =« = = « =« =« 2218
SET Statement . . ¢ ¢« o ¢ « ¢ &« o« 2221
SEARCH Statement . « « « o « <« - « <2204
SEARCH ALL Statement . . o« « « <« < 224
Building Tables . « ¢ « ¢ o « o« « 225
PART IV 4« ¢ = o o o o o« o« a o« o s« =« = 227
LISTER FEATURE o o o o« o o = o o « « « <228
Overall Operation of the Lister228
The Listing .« o ¢ o o o o o o =« <« 228
The Output Deck . « « « o « « - . -228
Reformatting of Identification and
Environment Divisions < . . . < . .228
Data Division Reformatting . . « . .228
Procedure Division Reformatting . .228
Summary Listing . « « « <« « o o« o .228
The Source Listing « « « « « « « « - 2228
General AppearancCe . « « « « « - - +228
Format Conventions . « « « « « « « «228
Type IndicatorsS . « « o « « « « « <228
The Summary Listing o « « o « « « « « «228
General AppEarancCe . « « « « « « « 228
The Output Deck . - « = ¢ « « =« -« o « .228
Using the Lister « « « o o « o o « « - 2228
Options . ¢ o o o o o = « o = o 2228
Programming Considerations . . . -« 228
SYMBOLIC DEBUGGING FEATURES .+ o« « « « <229
Use of the Symbolic Debugging Features .229
Statement Number Option « &+ « « « <« 229
Flow Trace Option . « « « o o « « <« <229
Symbolic Debug Option .« « « « « « < «229
Object-Time Control Cards . . « . -230
Overall Considerations . « « « « « « » 2232
Sample Program -- TEeStXUN . « « = « « <232
Debugging TESTRUN < o o o « = = « <233
PROGRAM CHECKOUT 2 o o o o o = o o « = «247
Syntax-Checking Compilation247
Identification of Program Versions . . .247

Debug Language ¢« « « = « = « s « = =
Flow of Control .« o ¢ o ¢ o ¢ o o «
Displaying Data Values During
Execution .« . ¢ @ @ i ¢ ¢ o o o
Testing a Program Selectively

Testing Changes and Additions to

PrOgrams « o« o « o =« o « o « « o

DUMPS ¢ o o o o @ « o o « o =« =

]

How to Use a DUMP o « o « «
Errors That Can Cause a Dump
Locating @ DIF o « « « o =« « =
Locating Data e« « « = =« = « = «

e« & 0 4 8
0" e 5 o 0

EXECUTICN STATISTICS e « o « o = =
Obtaining Execution Statistics .
Debugging and Testing
Optimization Methods . « « « « . «
Resequencing the Program . . .
Insight into SYMDMP Output . .
Common Expression Elimination
Backward Movement
Unrolling . « ¢« o « « . &
JaMMing e o o « « = « «
Unswitching . <« « . »
Incorporating Procedures Inline
Tabling . . « « .
Efficiency Guidelines
Diagnostic MeSSages . « « « o = « »
Working with Diagnostic Messages .
Generation of Diagnostic Messages
Linkage Editor Output . . . <« . . .
Execution Time Messages . . « . « «
Recording Program Status . « « « « «
RERUN Clause . . . e e s o s e o =
Taking a Checkp01nt « e e = ¢ e « =
Restarting a Program « « « « o « = =« =

e -

[S R T R TR S Y)
.

s b o 8

APPENDIX A: SAMPLE PROGRAM OUTPUT . <

APPENDIX B: STANDARD TAPE FILE LABELS
APPENDIX C: STANDARD MASS STORAGE
DEVICE LABELS .« <« « ¢ o « o o o « =« =

APPENDIX D: TRACK FORMATS FOR
DIRECT-ACCESS STORAGE DEVICES . « « «

APPENDIX E: COBOL LIBRARY SUBROUTINES
Input/Output Subroutines . . . <« « «
Printer Spacing . « « « « « o« o
Tape and Sequential Disk Labels .
CLOSE WITH LOCK Subroutine . . .
WRITE Statement Subroutines . .

READ Statement Subroutines . .
REWRITE Statement Subroutines
DISPLAY (EXHIBIT and TRACE)

Subroutines . . .« e e -

LI Y I |

ACCEPT and STUP (llteral) Statement

Subroutines . < <« ¢ '« « < o
CLOSE Subroutine
Multiple File Tape Subroutine
Tape Pointer Subroutine . . .
Input/Output Error Subroutines
Disk Extent Subroutines .
3886 OCR Subroutine . .
VSAM Subroutines
Auxiliary Subroutines .
ASCII Support Subroutines

.« = e

e ® ® e

. 247
- 247

.2u8
.250

+250
. 251
. 251
. 252
252
. 253

- 260
- 260
- 260
-« 260

Zn
« 260

- 260
- 260
<260
- 260
- 260
- 260
- 260
. 260
. 260
. 260
- 260
- 260
- 261
. 261
-262
- 262
- 262
- 263

. 265
- 279

- 281

. 287

. 289
. 289
. 289
. 289
. 289
. 289
. 289
« 290

« 290

- 290
- 290
. 290
- 290
- 290
- 290
- 290
.290
. 291
. 291

Separately Signed Numeric
Subroutine . . . < . .
Conversion Subroutines . . . « < < o
Arithmetic Verb Subroutines . . . <
Sort/Merge Feature Interface Routine
Checkpoint (RERUN) Subroutine .
Segmentation Feature Subroutine . .
Other Verb Routines . . « « « « « &

Compare Subroutines . . . « < o .
MOVE Subroutines . . . ¢« ¢« ¢ o« <« =
TRANSFORM Subroutine « « « « « « «
Class Test Subroutine « .
SEARCH Subroutine . . . ¢ « « = «
Main Program or Subprogram
SUbroutine .« ¢« ¢ o o 2 o o o o o
Object-Time Debugging Subroutines .
Debug Control Subroutine . . . < .
Statement Number Subroutine . . .
Flow Trace Subroutine <
Symbolic Debug Subroutines
Object-Time Execution Statistics
Subroutines .« . ¢ ¢ o ¢ @ o @ o o .
COUNT Initialization Subroutine .
COUNT Frequency Subroutine
COUNT Termination Subroutine . . <
COUNT Print Subroutine « « « « « «
Optimizer Subroutines . . .- o -
GO TO ... DEPENDING ON Subroutlne
Optimizer DISPLAY Subroutine . . .
Transient Subroutines . « « « « « «
Symbolic Debug Subroutines
SYMDMP Error Message Subroutine .
Error Message Subroutine . . . <. .
Error Message Print Subroutine . .
Reposition Tape Subroutine

APPENDIX F: SYSTEM AND SIZE
CONSIDERATIONS ¢« 4 o o o o o = o o « =
Minimum Machine Requirements for the
COMPiler @ v« o« ¢ o « « o = = = o o =
Source Program Size Considerations .
Compiler Capacity « « « « « « o« «
Effective Storage Considerations .
Execution Time Considerations . . .
Multiprogramming Considerations . .
Sort Feature Considerations . . - «

APPENDIX G: COMMUNICATION REGION . . .
Communication Region « « « o o o « « o

APPENDIX H: SAMPLE JOB DECKS o « « « «
Direct FileS o o o « o o o o = o = =
Creating a Direct File « « « - . .

. 297

- 297
-« 297
- 297
- 298
- 299
- 300
- 300

.301
- 301

-303
- 304
- 304

Retrieving and Updating a Direct
File o v ¢ v v 6 6 o o o o o« o =
Indexed FilesS . ¢ ¢ o o « o « « =
Creating an Indexed File
Retrieving and Updating an Indexe
File @ v ¢ v ¢ 4 e o « « o o o«
Files Used in a Sort Operation . .
Sorting an Unlabeled Tape File .

APPENDIX I: DIAGNOSTIC MESSAGES . «
compile-Time MeSSagesS .« o« « « « «
Operator MesSsagesS <« « o « o« « o »
Object-Time Messages . . . « o e

COBOL Object Program Unnumbered

MESSAgES o « o « o o« = o @ « = o o

APPENDIX J: COBOL 3886 OPTICAL
CHARACTER READER SUPPORT o . « « o«
3886 OCR ProcCesSing « « « « « o «
Implementing an OCR Operation . .
Document DesSign < « o o « + o
Document Description
COBOL SUppOrt .« « « « o « o « =
File Description « « « «
Record Description
Procedural Code . . . &« o« « o« -
JCL Considerations . « . « « + «
Subprogram Interface . - o =
Statements for Invoking 3886 I/O
Functions = . . o
OPEN Function (Equ1valent to OPEN
Macro) . « ¢ 4 o o . o o =
CLOSE Function (Equlvalent to DOS
CLOSE MECIO) o « + « « “ e o =
READ Function (Equ1valent to DOS
READ and WAITF Macros) . « « « =
READO Function (Equivalent to DuUS
READ Macro) . « « « . « o o =
WAIT Function (Equlvalent to DOS
WAITF MAcCro) o« o« o o o « « « o« =
MARKL Function (Equivalent to DOS
CNTRL Macro with LMK Option) . .
MARKD Function (Eguivalent to DOS
CNTRL Macro with DMK Option) . .
EJECT Function (Equivalent to DOS
CNTRL Macro, with ESP Option) .
SETDV (Set Device by Loading a
Format Record) Function
(Equivalent to DOS SETDEV Macro)
COBOL 3886 Library Routine . .
Processing Tapes from the OCR 3886,
Model 2 .+ ¢ ¢ o 4 @ e e o e o o =

INDEX o o o o o o s o o o o s o o =

d

-

-

-304
. 305
- 305

-.306
- 306
-306

. 307
. 307
. 307
-309

. 318
. 319
- 319
-319
. 319
. 320
-320
-320
-320
.321
.321
-321
. 324
. 324
. 324
. 324
. 324
- 324
. 324
. 325

. 325

ILLUSTRATIONS

TABLES
Table 1. Job Control Statements . .
Table 2. Symbolic Names, Functions,

and Permissible Device Types . « « « .
Table 3. Significant Characters for
Various Options .« ¢ o o o o o o o =
Table 4. Glossary Definition and
USBJE =« o o o o o« = a = = @ = =« = « =
Table 5. Symbols Used in the Listing
and Glossary to Define
Compiler-Generated Information
Table 6. System Message
Identification Codes « e = -
Table 7. Conventional Use of Linkage
Registers .« o« o o a o « « o - . . e
Table 8. Save Area Layout and Word
Contents ¢ o o ¢ o o o + o o o 4 o = =
Table 9. Recording Capacities of Mass
Storage DeviCeS o o « o o o « o = « =
Table 10. Partial List of Prime
NUMDEYS =« ¢ « o o« o o o o o o o =« = =
Table 11. File Status Values and
Error Handling « « « o« « « « =« - -
Table 12. File Status Key Jalues at
OPEN . « . . . e e ® o © @ o e o
Table 13. File Status at Action
Request TilME w o o o o o o o « o « « =
Table 14. COBOL Statements for
Creating a VSAM File “ e o =
Table 15. COBOL Statements for
Retrieving a VSAM File « « . . - -
Table 16. Fields Preceding DTFMT and
DTFSD .+ o« « « - « o o = o o = =
Table 17. Fields Preceding DTFDA -
ACCESS IS RANDOM -- Actual Track
Addressing e o o = o o o
Table 18. Fields Precedlng DTFDA -
ACCESS IS RANDOM -- Relative Track
Addressing . o« « . . . - « o o -
Table 19. Fields Precedlng DTFDA --
ACCESS IS SEQUENTIAL -- Actual Track
AdAreSSing o o o o 2 ¢ o o 2 « = o w

- 16

- 21

. 40

- 65

- 66

- 73

- 78

- 79

- 97

.105

-136

-138

-138

<141

.143

.151

-151

-152

-153

Table 20. Fields Preceding DTFD
ACCESS IS SEQUENTIAL -- Relative Track

AAAYESSING « « ¢« o « 2« « = s « o « & o <154
Table 21. Fields Preceding DTFIS . . .154
Table 22. Fields Preceding DTFDU . . .155
Table 23. Meaning of Pre-DTF Switch . .155
Table 24. Errors Causing an Invalid

Key Condition e e « = « - <156
Table 25. Meaning of Error Bytes for
GIVING Option of Error Declarative

(Part 1 of 2) . ¢ . o ¢ o =« ¢ ¢ o <« o« 2157
Table 26. TLocation and Meaning of

Error Bits for DTFMT « . « « « - « « « .159
Table 27. Location and Meaning of

Error Bits for DTFSD o « = « « « « - « -159
Table 28. Location and Meaning of

Error Bits for DTFDA . . - « . . « = <160
Table 29. Location and Meaning of

Error Bits for DTFIS . . « - . . « . <160
Table 30. Location and Meaning of

Exrror Bits for DTFDU . . « « « « « - - 161
Table 31. Data Format Conversion

(Part 1 of 2) . . . - - o . . .198
Table 32. Relatlonshlp of PICTURE to
Storage Allocation « . « « « « <« o« -« « 2202
Table 33. Rules for the SET Statement .223
Table 34. Individual Type Codes Used

in SYMDMP Output - e < -« 234
Table 35. Functions of COBOL lerary
Conversion Subroutines e o « +292
Table 36. Functions of CUBOL lerary
Arithmetic Subroutines293
Table 37. OCR Status Key Values and

User ActionsS « o ¢ o o = = « « o = - o 322
Table 38. Possible Status Xey Values,

By Operation .« « « o « o =« 2« « « o « o 322

Table 39. User Responses to Status Key 323
Table 40. CALL Statements for

Invoking 3886 I/0 Functions . . « . . .326

Figure 1. Sample Structure of Job Deck
for Compiling, Link Editing, and
Executing a Main Program and Two
SUbPrOgYamS =« o o « o« « « = = « « « =
Figure 3. Possible Specifications for
X*ss' in the ASSGN Control Statement
Figure 4. Sample Label and File
Extent Information for Mass Storage
FIleS 4 v 4o o o o o o « o« o s « = « =
Figure 5. Job Definition -- Use of
the Librarian . . « ¢ o o = « o« « = =
Figure 6. Options Available During
Link-Editing e o * o o % o o o e o
Figure 7. The Relative Location of
the Four System Libraries
Figure 8. Sample Coding to Calculate
FICA e o e e 2 s s o e 2 ° = @« = <«
Altering a Program from

Figure 9.
the Source Statement Library Using
INSERT and DELETE CardS . « « « « « =

10. Effect of INSERT and
Cards o o e e o o @
11. Examples of Compiler
Cutput (Part 1 of 4) “ o % e s e e =
Figure 12. A Program that Produces
COBOL Compiler Diagnostics e e e o=

Figure
DELETE
Figure

Figure 13. Linkage Editor Output . .
Figure 14. Output from Execution Job
Step e o e % @ s & & e % e @ e e = =
Figure 15. Calling and Called

Programs @ 4 @ o e e o o @ « @ @« @ =
Figure 16. Example of Data Flow Logic

in a Call Structure . « ¢ o o o« « « =
Figure 17. Sample Linkage Routines
Used with a Calling Subprogram
Figure 18. Sample In-line Parameter
List “ e e o
Figure 19. Sample Linkage Routines
Used with a Lowest Level Subprogram .
Figure 20. Example of an Assembler
Language Subroutine for Accomplishing
OVErlay =« 2 o o o o o o 2 = o s = « =
Figure 21. Flow Diagram of Overlay
LOGIC « o o o a o « o a « o« = o =« = =
Figure 22. Job Control for
Accomplishing Overlay . « « « « « « «
Figure 23. Calling Sequence to Obtain
Overlay Between Three COBOL
Subprograms (Part 1 of 3) .
Figure 24. Segmenting the Program
SAVECORE @ o e e ® ® s e e e = e - =
Figure 25. Storage Layout for SAVECORE
Figure 26. Compiler Output for

SAVECORE e e e e ® s e = e e e s e -
Figure 27. Link Editing a Segmented
PrOGTramM « = o e « = o o o« @« o« = o« o =
Figure 28. Location of Sort Program

in a Segmentation Structure
Figure 29. Structures of the Actual

KEY o ¢ 4 o o o « o o s o = = o « = =

-

i3

25

30

41

un

56

58

58
58
60

69
70

72
75
78
80
81

81

82

gu

8u

85

89
91

92

914

94

-102

FIGURES

Figure 30. Permissible Specifications
for the First Eight Bytes of the
Actual Key © o e o & + o e e o e o o
Figure 31. Creating a Direct File
Using Method B (Part 1 of 4) « e . -
Figure 32. Creating a Direct File
with Relative Track Addressing Using
Method B (Part 1 of #) e o o o o e @
Figure 33. Formats of Blocked and
Unblocked ReCOXAS « v v o o o v o « «
Figure 34. Adding a Record to a Prime
Track - .

-102

-107

-112
.118

-120
-129

Figure 35. VSAM Data Organization -
Figure 36. Defining a VSAM Master
Catalog <« v ¢ ¢ 4 4 e 4 e e e e e e o
Figure 37. Defining a VSAM Data Space
Figure 38. Defining a Key-Sequenced
Suballocated VSAM File e e e s e e s
Figure 39. Standard Tape File Label
and TLBL Card (Showing Maximum
Specifications) . . <
Figure 40. Standard Tape File
and TLBL Card (Showing Minimum
Requirements) . o o« o o = « o o a « =
Figure 41. Standard, User Standard,
and Volume Labels . ¢ ¢ o« o o o = « «
Figure 42. Nonstandard Labels
Figure 43. Processing an Unlabeled
Multifile volume (Part 1 of 2) “ o e
Figure 44. Reading a Multivolume File
with Standard Labels; Creating a
Multifile volume with Standard Labels
(Part 1 0f 2) . ¢ @ 4 ¢ o o ¢ o o o @
Figure 45. Creating an Unlabeled
Multivolume File (Part 1 of 2) « o =
Figure #6. Fixed-Length (Format F)
RECOTAS o =« o o o = o « o o o o = o« =
Figure 47. Undefined (Format U)
RECOTAS o« v o o o o o o = s o o o = =
Figure 48. Unblocked V-Mode Records
Figure 49. Blocked V-Mode Records -
Figure 50. Fields in Unblocked V-Mode
RECOYAS o v o v o o o o = o = o = « «
Figure 51. Fields in Blocked V-Mode
RECOYAS @ o o o o = o = = o o o« = = =
Figure 52. First Two Blocks of
VARIABLE-FILE=2 4 o « « = o o o o = =
Figure 53. Control Fields of an
S=-Mode RecOrd .« o o« = o « = a o « « =
Figure 54. One Logical Record
Spanning Physical Blocks « a4 e e e .
Figure 55. First Four Blocks of
SPAN-FILE e v « o o o o o a o o = = =
Figure 56. Advantage of S-Mode
Records Over V-Mode Records . . « « «
Figure 57. Direct and Sequential
Spanned Files on a Mass Storage Device
Figure 58. Treatment of Varying
Values in a Data Item of PICTURE S9 .
Figure 58.1. OPTION Control Statement
tO SORT/MERGE ¢ 4 o o o o « o o o« = =

.131
132

.133

-163

e ®» e e o - -

Label
.164

-165
.165

.168

.170
2172
-179
-180
-180
.181
.182
.182
.183
.184
.185
.186
.186

187

.202

Figure 58.2. File Name and Default

Symbolic Unit Names . . « « « « « - - 208
Figure 58.3. SUMMARY OF SORT-OPTION
Operands e @ = s a s s « = = « o o o 2208
Figure 59. Sample of GROUP INDICATE

Clause and Resultant Execution Output .213
Figure 60. Format of a Report Record

When the CODE Clause is Specified . . .214
Figure 61. Activating the NEXT GROUP
Clause e @ o = + o % e % = s = + =« 2215
Figure 62. Calculating Record Lengths

When Using the OCCURS Clause with the
DEPENDING ON Option . <« « o o = = « « 2220

Figure 63. Table Structure in Virtual
Storage « ¢ 4 ¢ e e e« o =
Figure 64. Using the Symbolic
Debugging Features to Debug the
Program TESTRUN (Part 1 of 12) « . -
Figure 65. Sample Output of EXHIBIT
Statement With the CHANGED NAMED
Option e e e s 2 o e s e e s e ® o =
Figure 66. Sample Dump Resulting from
Abnormal Termination (Part 1 of 6) -
Figure 67. Track Format “ s e s s e
Figure 68. Communication Region in
the Supervisor e e e e e e . -
Figure 69. Sample OCR Program (Part
Of 5) & 4 v 4 i e i e d e e e e e e

.
e ¢ e e =

e

.221

.235

. 249

. 254
. 288

. 302

.327

FEATURES OF THE PROGRAM PRODUCT DOS/VS COMPILER

The IBM DOS/VS COBOL Compiler includes

the following features:

® Object Code:

(1) Optimized Object cCode -- which
results, when specified, in up to
30% space saving in object program
generated code and global tables
as compared with Versicn 2 of the
IBM DOS Full American National
Standard COBOL Compiler. The
space saved depends on 'the number
of referenced procedure-names and
branches, and on 0l-level data
names.

(2) Double-Buffered ISAM -~ allows
faster sequential processing of
indexed files.

(3) The MOVE Statement and Comparisons
-- when a MOVE statement or a
comparison involves a one-byte
literal, generated code for the
move and the comparison saves
object program space and
compilation time.

(4) DISPLAY Routines -- the DISPLAY
routine has been split into
subsets for efficient object
program code.

e Alphabetized Cross-Reference Listing
(SXREF) =-- for easier reference to
user-specified names in a program.
SXREF performs up to 25 times faster
than the source-ordered cross-reference
(XREF) feature of Version 2 of the IBM
DOS Full American National Standard
COBOL Compiler. The larger the source
program, the more that performance is
improved. Total compilation time is up
to 2 times faster.

e Debugging Facilities:

(1) Symbolic Debug Feature -- which
provides a symbolic formatted dump
at abnormal termination, or a
dynamic dump during program
execution.

(2) Flow Trace Option -- a formatted
trace can be requested for a
variable number of procedures
executed before abnormal
termination.

(3) Statement Number Option --
identifies the COBOL statement

being executed at abnormal
termination.

(4) Expanded CLIST and SYM -- for
detailed information about the
Data Division and Procedure
Division.

(5) Relocation Factor -- can be
requested to be included in
addresses on the object code
listing, for easier debugging.

(6) Working-Storage Location and Size
-- When CLIST and SYM are in
effect, the starting address and
size of Working-Storage are
printed.

(7) syntax-Check Feature -- optionally
provides a quick scan of the
source program without producing
object code. Syntax checking can
be conditional or unconditional.

(8) WHEN-COMPILED Special Register --
makes the date-and-time-compiled
constant carried in the object
module available to the object
program. This special register is
a programmer aid .that provides a
means of associating a compilation
listing with both the object
program and the output produced at
execution time.

* Device Support -- the following devices

can be specified in addition to devices
supported by the IBM DOS Full American
National Standard COBOL compilers:
5203,3203 -- line printers

3211 -- 150-character printer

3330,3340 -- mass storage (direct
access) facilities

3540 -- Diskette input/output unit
3410,3420 -~ tape utility devices

2560,3504,3505,3525,3881,3886,5425 --
advanced unit-record devices

ASCII Support -- allows creation and
retrieval of tape files written in the
American National Standard Code for
Information Interchange (ASCII).

VSAM (Virtual Storage Access Method)
Support -- provides fast storage and

Features of the Program Product DOS/VS Compiler 7

retrieval of records, password
protection, centralized and simplified
data and space management, advanced
error recovery facilities, plus system
catalog. COBOL supports indexed
(key-sequenced) files and sequential
(entry-sequenced) files. Records can
be fixed or variable in length.

FIPS (Federal Information Processing
Standard) Flagger -- issues messages
identifying nonstandard elements in a
COBOL source program. The FIPS Flagger
makes it possible to ensure that COBOL
clauses and statements in a DOS/VS
COBOL source program conform to the
Federal Information Processing
Standard.

Lister -- provides a specially
formatted source listing with embedded
cross-references for increased
intelligibility and ease of use. 2
reformatted source deck is available as
an option.

Generic Key Facility for ISAM Files --
sequential record retrieval can be

requested using a search argument
comprised of a user-specified number of
high-order characters (generic portion)
of the NOMINAL KEY. The user need not
specify a full or exact search key.
This feature is supported via the START
verb. -

MERGE Support -- combines from two to
eight ‘identically sequenced files on a
set of specified keys and makes records
available, in merged order, to an
output' procedure or a sequential output
file.

Verb profiles -- facilitates
identifying and locating verbs in the
COBOL source program. Options provide
a verb summary or a verb
cross-reference listing which includes
the verb summary.

Execution-time statistics -- maintains

a count of the number of times each
verb in the COBOL source program is
executed during an individual program
execution.

PART I

INTRODUCTION

JOE DEFINITICN

v

JOB PKOCESSING

PREPARING COBOL PROGRAMS FOR PROCESSING

Y

A\

LIBRARIAN FUNCTIONS

\J

INTERPRETING CQUTPUT

CALLING AND CALLED PROGRAMS

USING THE SEGMENTATION FEATURE

Yo

JOB
DEF

JOB
PROC

COBOL has undergone considerable
refinement and standardization since 1959.
A standard COBOL has been approved by the
American National Standards Institute, an
industry-wide association of computer
manufacturers and users. This standard is
called American National Standard COBOL.
IBM Pull American National Standard COBROL
is compatible with American National
Standard COBOL and includes a number of
extensions to it as well.

kn IBM COBOL program may be processed by
the IBM DOS/VS System. Under control of
the operating system, a set of COBOL source
statements is translated to form a module.
In order to be executed, the module in turn
rust be processed to form a phase. The
reasons for this will become clear later.
For now it is sufficient to note that the
flow of a COBOL program through the
operating system is from source statements
to module to phase.

The DOS/V¥S System consists essentially
of a control program and a number of
processing programs, and data management.

CONTROL PROGRAM

The components of the control program
are: the Supervisor, Job Control
Processor, and the Initial Program Loader.

SUPERVISOR

The main function of the Supervisor is
to provide an orderly and efficient flow of
jobs through the operating system. (A job
is some specified unit of work, such as the
processing of a COBOL program.) The
Supervisor loads into the computer the
phases that are to be executed. During
execution of the program, control usually
alternates between the Supervisor and the
processing program. The Supervisor, for
example, handles all requests for
input/output operations.

JOB CONTROL PROCESSOK

The primary function of the Job Control
Processor is the processing of job control

INTRODUCTION

statements. Job control statements
describe the jobs to be performed and
specify the programmer®s requirements for
each job. Job control statements are
written by the programmer using the job
control language. The use of job control
statements and the rules for specifying
then are discussed later.

INITIAL PROGRAM LOADER

The Initial Program Loader (IPL) routine
loads the Supervisor into storage when
system operation is initiated. Detailed
information about the Initial Program
Loader need not concern the COBOL
programmer. Anyone interested in this
material, however, can find it in the
publication DOS5/¥S System Management Guide.

PROCFSSING_PROGRAMS

The processing programs include the
COBOL compiler, service programs, and
application progranms.

SYSTEM SERVICE PLROGRAMS

The system service programs provide the
functions of generating the system,
creating and maintaining the library
sections, and editing programs into disk
residence before execution. The systen
service programs are:

1. Linkage Editor. The Linkage Editor
processes modules and incorporates
them into phases. A single module can
be edited to form a single phase, or
several modules can be edited or
linked together to form one executable
phase. Moreover, a module to be
processed by the Linkage Editor may be
one that was just created (during the
same job) or one that was created in a
previous job and saved.

The programmer instructs the Linkage
Editor to perform these functions
through job control statements. In
addition, there are several linkage
editor control statements.
Information on their use is given
later.

Introduction 11

2. Librarian. The Librarian consists of
a group of programs used for
generating the system, maintaining and
reorganizing the disk library areas,
and providing printed and punched
output from the libraries. The systenm
libraries are: the core image
library, the relocatable library, the
source statement library, and the
procedure library. In addition, the
Librarian supports private core image,
relocatable, and source statement
libraries. Detailed information on
the Librarian is given later.

APPLICATION PROGRAMS

Application programs are usually
programs written in a higher-level
programming language (e.g., COBOL). All
application programs within the Disk
Operating System/Virtual Storage are
executed under the supervision of the
control program.

IBM-SUPPLIED PROCESSING PROGRAMS

The following are examples of
IBM-supplied processing programs:

1. Language translators, e.g., DOS/VS
COBOL, which translate source programs
written in various languages into
machine (or object} language.

2. Sort/Merge

3. Utilities

DATA MANAGEMENT

A third important class of components is
data management routines. These are
available for inclusion in problem programs
to relieve the programmer of the detailed
programming associated with the transfer of
data between programs and auxiliary
storage.

MULTIPROGRAMMING

Multiprogramming refers to the ability
of the system to control more than one

12

program concurrently by interleaving their
execution. This support is referred to as
fixed partitioned multiprogramming, since
the virtual address space is divided into a
fixed number of partitions. Each program
occupies a contiguous area of storage. The
amount of virtual storage allocated to
programs to be executed may be determined
when the system is generated, or it may be
determined by the operator when the progranm
is loaded into storage for execution.

BACKGROUND VS. FOREGROUND PROGRAMNS

There are two types of problem programs
in multiprogramming: background and
foreground. Background and foreground
programs are initiated by the Job Control
Processor from batched-job input streanms.

Background and foreground programs
initiate and terminate independently of one
another. Neither is aware of the other's
status or existence.

The system is capable of concurrently
operating one background program and four
foreground programs. Priority for CPU
processing is controlled by the Supervisor
with foreground programs normally having
priority over background programs. Control
is taken away from a high priority program
when that program encounters a condition
that prevents continuation of processing,
until a specified event has occurred.
Control is taken away from a lower priority
program when an event for which a higher
priority program was waiting has been
completed. Interruptions are received and
processed by the Supervisor.

In a multiprogramming environment, the
DOS/VS COBOL compiler can execute either in
the background or the foreground. 1In
systems that support the batched-job
foreqground and private core image library
options, the Linkage Editor can execute in
any foreground partition as well as in the
background partition. To execute the
DOS/VS COBOL compiler for the linkage
editor in any foreground partition, a
private core-image library is required.
Additional information on executing the
compiler and linkage Editor in the
foreground is contained in "Appendix PF:
System and Size Considerations.™ COBOL
program phases can be executed as either
background or foreground progranms.

R job is a specified unit of work to be
performed under control of the operating
system. A typical job might be the
processing of a COEOL program -- compiling
source statements, editing the module
produced to form a phase, and then
executing the phase. Job definition -- the
process of specifying the work to be done
during a single job -- allows the
programmer considerable flexibility. 2 Jjob
can include as many or as few job_steps as
the programmer desires.

JOB STEPS

A job step is exactly what the nanme
implies -- one step in the processing of a
job. Thus, in the job mentioned above, one
job step is the compilation of source
statements; another is the link editing of
a nmodule; another is the execution of a
phase. 1In contrast to a job definition,
the definition of a job step is fixed.

Fach job step involves the execution of a
program, whether it be a program that is
part of the Disk Operating System/Virtual
Storage or a program that is written by the
programmer. A compilation regquires the
execution of the DOS/VS COBOL compiler.
Similarly, an editing implies the execution
of the Linkege Editor Finally, the
execution of a phase is the execution of
the problem program itself.

Compilation Job Steps

The compilation of a COBOL program may
necessitate more than one job step (more
than one execution of the DOS/VS COBOL
compiler). In some cases, a COBOL progran
consists of a main program and one or more
subprograms. To compile such a program, a
separate job step must be specified for the
main program and for each of the
subprograms. Thus, the DOS/VS COBOL
compiler is executed once for the main
program and once for each subprogram.
execution of the compiler produces z

Fach

module. The separate modules can then be
combined into one phase by a single job
step -- the execution of the Linkage
Fditor.

For a COBOL program that consists of a
main program and two subprogranms,
compilation and execution reguire five

JOB DEFINITION

steps: (1) compile (mair program), (2)
corpile (first subprogram), (3) compile
{second subprogram), (4} link edit (three
modules combined into one phase}, and (5)
execute (phase). TFiqure 1 shows a sarple
structure of the job deck for these five

job steps. Compilation and execution in
three job steps -- compile, link edit, and
execute -- is applicable only when the

COBOL source proc¢ram is a single main
program.

\// JOE PRQG1

l.

l.

I

{// EXEC FCOEOL

I {source deck - main progranm}
1/*

|.

i.

l.

\// EXEC FCOEBOL

| {source deck - first subprogram}
1/*

l.

|

l.

1// EXEC FCOROL

| {source deck - second subprogram}
V/*

|«

e

l.

\// EXEC LNKEDT

i

.

.

\// EXEC

i

e o e e o e o = e o —_——— —— - - — s 2o o]

Figure 1. Sample Structure of Job Deck
for Compiling, Link Editing,
and Executing a Main Program

and Two Subprogranms

Multiphase Program_ Execution

The execution of a COBOL progranm has
thus far been referred to as the execution
of a phase. It is possible, however, to
organize a COBOL program so that it is
executed as two or more phases. Such a
program is known as a multiphase proarar.

By definition, a phase is that portion
of a program that is loaded into virtual
storage by a single operation of the
Supervisor. A COEOL program can be

Job Definition 13

executed as a single phase only if there is
an area of virtual storage available to
accommodate all of it. A program that is
too large to be executed as a single phase
must be structured as a multiphase progranm.
The technique that enables the programmer
to use subprograms that do not fit into
virtual storage (along with. the main
program) is called overlay.

The number of phases in a COBOL program
has no effect on the number of job steps
required to process that program. As will
be seen, the Linkage Editor can produce one
or more phases in a single job step.
Similarly, both single-phase and multiphase
programs require only one execution job
step. Phase execution is the execution of
all phases that constitute one COBOL
program.

Detailed information on overlay
structures, as well as information on using
the facilities of the operating system to
create multiple phases and to execute then,
can be found in the chapter "Calling and
Called Programs."

TYPES OF JOBS

B typical job falls into one of several
categories. A brief description of these
categories follows; a complete discussion
is found in the chapter "Preparing COBOL
Programs for Processing."

Compile-Only: This type of job involves
only the execution of the COBOL compiler
It is useful when checking for errors in
COBOL source statements. 2 compile-only
job is also used to produce a module that
is to be further processed in a subseguent
job.

A compile-only job can consist of one
job step or several successive job steps.

Edit-Only: This type of job involves only
the execution of the Linkage Editor. It is
used primarily to combine modules produced
in previous compile-only jobs, and to check
that all cross references between modules
have been resolved. The programmer can
specify that all modules be combined to
form one phase; or he can specify that some
modules form one phase and that others form
additional phases. The phase output
produced as the result of an edit-only job
can be retained for execution in a
subsequent job.

£

Compile and Fdit: This type of job
combines the functions of the compile-only
and the edit-only jobs. It requires the
execution of both the COBOL compiler and
the Linkage Editor. The job can include
one or more compilations, resulting in one
or more modules. The programmer can
specify that the linkage Editor process any
or all of the modules just produced; in
addition, he can specify that one or more
previously produced modules be included in
the linkage editor processing.

Execute-Only: This type of job involves
the execution of a phase (or multiple
phases) produced in a previous job. Once a

COBOL program has been compiled and edited
successfully, it can be retained as one or
more phases and executed whenever needed.
This eliminates the need for recompiling
and re-editing every time a COBOL progranm
is to be executed.

Edit and FExecute: This type of job
combines the functions of the edit-only and
the execute-only jobs. It recguires the
execution of both the Linkage Editor and
the resulting phase(s).

Compile, Edit, and_ Execute: This type of
job combines the functions of the compile
and edit and the execute-only jobs. It
calls for the execution of the COBOL
compiler, the lLinkage Editor, and the
problem program; that is, the COBOL progranm
is to be completely processed.

When considering the definition of his
job, the programmer should be aware of the
following: if_a_ <job step_is cancelled
during execution, the entire job is
terminated; any remaining job steps_are
skipped. Thus, in a compile-edit-and
execute job, a failure in compilation
precludes the editinc of the module(s) and
phase execution. Similarly, a failure in
editing precludes phase execution.

For this reason, a job usually should
(but need not) consist of related job steps
only. For example, if two independent
single-phase executions are included in one
job, the failure of the first phase
execution precludes the execution of the
second phase. Defining each phase
execution as a separate job would prevent
this from happeninag. If successful
execution of both phases can be guaranteed
before the job is run, however, the
programmer may prefer to include both
executions in a single job.

JOB DEFINITION STATEMENTS

Once the programmer has decided the work
to be done within his job and how many job
steps are required to perform the job, he
can then define his job by writing job
control statements. Since these statements
are usually punched in cards, the set of
job control statements is referred to as a
job deck. 1In addition to job control
statements, the job deck can include input
data for a program that is executed during
a job step. For example, input data for

the COBOL compiler -- the COBOL program to
be compiled -- can be placed in the job
deck.

The inclusion of input data in the job
deck depends upon the manner in which the
installation has assigned input/output
devices. Job control statements are read
from the unit named SYSRDR (system reader),
which can be either a card reader, a
magnetic tape unit, or a disk extent.

Input to the processing programs is read
from the unit named SYSIPT (system input),
which also can be either a card reader, a
magnetic tape unit, or a disk extent. The
installation has the option of assigning
either two separate devices for these units
(one device for SYSRDR, a second device for
SYSIPT) or one device to serve as both
SYSRDR and SYSIPT. If two devices have
been assigned, the job deck must consist of
only job control statements; input data
must be kept separate. If only one device
has been assigned, input data must be
included within the job deck.

There are four job control statements
that are used for job definition: the JOB
statement, the EXEC statement, the
end-of-data statement (/*), and the
end-of-job statement (/§). 1In this
chapter, the discussion of these job
control statements is limited to the
function and use of each statement. The
rules for writing each statement are given
in the chapter "Preparing COBOL Programs
for Processing."”

The JOB statement indicates the
beginning of control information for a job.
The specified job name is stored in the
communications region of the corresponding
partition and is used by job accountina and
to identify listings produced during
execution of the job.

The JOB statement may be omitted, in
which case the job name NONAME is stored in
the communications region. If the JOB
statement is present, it must contain a job
name; otherwise, an error condition occurs.

The JOB statement is always printed in
positions 1 through 72 on SYSLST and
SYSLOG. The time-of-day and date are also
printed. The JOB statement causes a skip
to a new page before printing is started on
SYSLST.

When a JOB statement is encountered, the
job control program stores the job name
from the JOB statement into the
communications region. If the /& statement
was omitted, the next JOB statement will
cause control to be transferred to the
end-of-job routine to simulate the /&
statement.

The EXEC statement requests the
execution of a program. Therefore, one
EXEC statement is required for each job
step within a job. The EXEC statement
indicates the program that is to be
executed (for example, the COBOL compiler,
the Linkage Editor). As soon as the EXEC
statement has been processed, the program
indicated by the statement begins
execution.

The end-of-data statement, also referred
to as the /* (slash asterisk) statement,
defines the end of a program's input data.
When the data is included within the job
deck (that is, SYSIPT and SYSRDR are the
same device), the /* statement immediately
follows the input data. For example, COEOL
source statements would be placed
immediately after the EXEC statement for
the COBOL compiler; a /#* statement would
follow the last COBOL source statement.

Note: For an input file on a 5425 MFCU,
the /* card must be followed by a blank
card.

When input data is kept separate (that
is, SYSIPT and SYSRDR are separate
devices), the /* statement immediately
follows each set of input data on SYSIPT.
For example, if a job consists of two
compilation job steps, an editing job step,
and an execution job step, SYSIPT would
contain the source statements for the first
compilation followed by a /* statement, the
source statements for the second
compilation followed by a /* statement, any
input data for the Linkage Editor followed
by a /* statement, and perhaps some input
data for the problem program followed by a
/*¥ statement.

The end-of-job statement, also referred
to as the /& (slash ampersand) statement,
defines the end of the job. A /& statement
must appear as the last statement in the
job deck.

Job Definition 15

OTHER JOB CONTROL STATEMENTS

The four job definition statements form
the framework of the job deck. There are a
number of other job control statements in
the job control language; however, not all
of them must appear in the job deck. The
job control statements are summarized
briefly in Table 1.

The double slash preceding each
statement name identifies the statement as
a job control statement. Most of the
statements are used for data management --
creating, manipulating, and keeping track
of data files. (Data files are externally
stored@ collections of data from which data
is read and onto which data is written.)

16

Table 1. Job Control Statements
[T ——— T - 1
| Statement | Function |
P + 1
|7/ ASSGN | Input/output assignments. |
I I
|7/ CLOSE | Closes a logical unit assigned|
| | to magnetic tape. |
I | I
|77 DATE | Provides a date for the |
|] Communication Region. |
| I I
|77 DLAB | Disk file label information. |
| I I
|77 DLBL | Disk file label information i
| | and vsaM file processing. |
| [I
77 EXEC	Execute program.
7/ EXTENT	Disk file extent.
I I	
7/ JOB	Beginning of control
	information for a job.
[i
7/ LBLTYP	Reserves storage for label
]	information.
I I	
// LISTIO	Lists input/output
]	assignments.]
I I	
77/ MTC	Controls operations on
	magnetic tape.
! I I	
77 OPTION	Specifies one or more job
	control options.
	I
/7 PAUSE	Creates a pause for operator
	intervention.
[I	
7/ RESET	Resets input/output
	assignments to standard
	assignments. i
I	[
77/ RSTRT	Restarts a checkpointed
	program. [
[I	
77 TLBL	Tape label information.
I I I	
7/ TPLAB	Tape label information.
I I	
7/ UPSI	Sets user-program switches.
I	
7/ VOL	Disk/tape label information.
I	I
7/ XTENT	Disk file extent.
! I !	
7*	End-of-data-file or
i end-of-job-step.	
! I I	
176§	End-of-job.
!	I
*	Comments.
i L 1

This chapter describes in greater detail
the three types of job steps involved in
processing a COBOL program. Once the
reader becomes familiar with the
information presented here, he should be
able to write control statements by
referring only to the next chapter,
"Preparing COBCOL Programs for Processing."

COMPILATION

Compilation, is the execution of the
COBOL compiler. The programmer reguests
compilation by placing in the job deck an
EXEC statement that contains the progranm
name FCOEOL, the name of the DOS/VS COBOL
compiler. This is the EXEC FCOBOL
statement.

Input to the compiler is a set of COBOL
source statements, consisting of either a
main program or a subprogram. Source
statements must be punched in Extended
Binary-Coded-Decimal Interchange Code
(EBCDIC). The COBOL source statements are
read from SYSIPT. The job deck is read
from SYSRDR. 1If SYSEDKk and SYSIET are
assigned to the same unit, the COBOL source
statements should be placed after the EXEC
FCOBOL statement in the job deck.

cutput from the COBOL compiler is
dependent upon the options specified when
the system is generated. This output may
include a listing of source statements
exactly as they appear in the input deck.
The source listing is produced on SYSLST.
In addition, the module produced by the
compiler may be written on SYSLNK, the
linkage editor input unit, and punched on
SYSPCH. Separate Data and/or Procedure
Division maps, a symbolic cross-reference
list, and diagnostic messages can also be
produced. The format of compiler ocutput is
discussed and illustrated in the chapter
"Interpreting Output.™

The programmer can override any of the
compiler options specified when the systen
was generated, or include some not
previously specified, by using the OPTION
control statement in the compile job step.
Compiler options are discussed in detail in
the chapter "“Preparing COBOL Programs for
Processing.”

JOB_PROCESSING

EDITING

Editing is the execution of the Linkage
BEditor. The programmer reguests editing by

“placing in the job deck an EXEC statement

that contains the program name LNKEDT, the
name of the Linkage EBEditor. This is the
EXEC LNKEDT statement.

Input to the lLinkage Editor consists of
a set of linkage editor control statements
and one or more modules to be edited.
These modules include any of the following:

1. Modules that vwere compiled previously
in the job and placed at that time on
the linkage editor input unit, SYSLNX.

2. Modules that were compiled in a
previous job and saved as module
decks. The module decks rust be
placed on SYSIPT. Linkage editor
control statements are read from
SYSRDR.

3. Modules that were compiled in a
previous job step and cataloged in the
relocatable library. The relocatable
library is a collection of frequently
used routines in the form of modules,
that can be included in a program
phase via the INCLUDE control
statement in the linkage editor job
step.

Output from the linkage Editor consists
of one or more phases. A phase may be an
entire program or it may be part of an
overlay structure (multiple phases).

A phase produced by the Linkage Editor
can be executed immediately after it is
produced (that is, in the job step
immediately following the linkage editor
job step), or it can be executed later,
either in a subsequent job step of the same
job or in a subsequent job. In either of
the latter cases, the phase to be executed
must be cataloged in the core image libary.
Such a phase can be retrieved in the
execute job step by specifying the phase
name in the EXEC statement, where phase
nare is the name under which it was
cataloged. Otherwise, the phase output is
retained only for the duration of one job
step following the linkage editor job step.
That is, if the module that was just link
edited is to be executed in the next job
step, it need not have been cataloged. An
EXEC statement will cause the phase to be
brought in from the temporary part of the

Job Processing 17

core image library and will begin
execution. However, the next time such a
module is to be executed, the linkage
editor job step is required since the phase
was not cataloged in the core image
library.

If a private core image library is
assigned, output from the Linkage Editor is
placed in the private core image library
(either permanently or temporarily) rather
than in the resident system core image
library. When execution of a program is
requested and a private core image library
is assigned, this library is searched first
for the requested phase name and then the
system core image library is searched.

In addition to the phase, the Linkage
Editor produces a phase map on SYSLST.
Linkage editor diagnostic messages are also
printed on SYSLST. If the NOMAP option of
the linkage editor ACTION control statement
is specified, no phase map is produced and
linkage editor diagnostic messages are
listed on SYSLST, if assigned. Otherwise,
the diagnostic messages are listed on
SYSLOG. The contents of the phase map are
discussed and illustrated in the chapter
"Interpreting Output.”

Linkage editor control statements direct
the execution of the Linkage Editor.
Together with any module decks to be
processed, they form the linkage editor
input deck, which is read by the Job
Control Processor from SYSIPT and written
on SYSLNK.

There are four linkage editor control
statements: the ACTION statement, the
PHASE statement, the ENTRY statement, and
the INCLUDE statement. These statements
are discussed in the next chapter.

PHASE EXECUTION

Phase execution is the execution of the
problem program, for example, the progranm
written by the COBOL programmer. If the
program is an overlay structure (multiple
phase), the execution job step actually
involves the execution of all the phases in
the program.

The phase(s) to be executed must be
contained in the core_image library. The
core image library is a collection of
executable phases from which programs are
loaded by the Supervisor. A phase is
written in the temporary part of the core
image library by the linkage Editor at the
time the phase is produced. It is
permanently retained (cataloged)} in the
core image library, if the programmer has
so requested, via the CATAL option in the
OPTION control statement.

The programmer requests the execution of
a phase by placing in the job deck an EXEC
statement that specifies the name of the
phase. However,., if the phase to be
executed was produced in the immediately
preceding job step, it is not necessary to
specify its name in the EXEC statement.

MULTIPHASE PROGRAMS

A COBOL program can be executed as a
single phase as long as there is an area of
virtual storage available to accommodate
it. This area, known as the problem
program_area, must be large enoudgh to
contain the main program and all called
subprograms. When a program is too large
to be executed as a single phase, it must
be structured as a multiphase progranm.

The overlay structure available to the
COBOL programmer for multiphase programs is
known as root phase overlay, and is used
primarily for programs of three or more
phases. One phase of the program is
designated as the root phase (main progranm)
and, as such, remains in the problenm
program area throughout the execution of
the entire program. The other phases in
the program -- subordinate phases -~ are
loaded into the problem program area as
they are needed. A subordinate phase may
overlay any previously loaded subordinate
phase, but no subordinate phase may overlay
the root phase. One or more subordinate
phases can reside simultaneously in storage
with the root phase.

Use of the linkage editor control
statements needed to effect overlay are
discussed in the chapter "Calling and
Called Programs."

This chapter provides information about
preparing COBOL source programs for
compilation, link editing, and execution.

ASSIGNMENT OF INPUT/OUTPUT DEVICES

Almost all COBOL programs include
input/output statements calling for data to
be read from or written into data files
stored on external devices. COBOL prodrams
do not reference input/output devices by
their actual physical address, but rather
by their symbolic names. Thus, a COBOL
program is dependent on the device type but
not on the actual device address. Using
VSAM, it is not even dependent on the
device type. The COBOL programmer need
only select the symbolic name of a device
from a fixed set of symbolic names. At
execution time, as a job control function,
the symbolic name is associated with an
actual physical device. The standard
assignment of physical addresses to
symbolic names may be made at system
generation time. However, job control
statements and operator commands can alter
the standard device assignment before
program execution. This is discussed later
in this chapter.

Using DOS/VS, a logical unit may also be
assigned to another logical unit or a
general device class or specific device
type. For more information on this, see
DOS/VS System Management Guide and DOS/VS
System Control Statements.

The symbolic names are divided into two
classes: system logical units and
programmer logical units.

PREPARING COBQOL PROGRAMS FOR PROCESSING

The system logical units are used by the
control program and by IBM-supplied
processing programs. SYSIPT, SYSLST,
SYSPCH, and SYSLOG can be implicitly
referenced by certain CCBOL procedural
statements. Two additional names, SYSIN
and SYSOUT, are defined for background
program assignments. The names are valid
only to the Job Control Processor, and
cannot be referenced in the COBOL program.
SYSIN can be used when SYSRDR and SYSIPT
are the same device; SYSOUT must be used
when SYSLST and SYSPCH are assigned to the
same magnetic tape unit. A complete
discussicn of the assignment of the logical
unit SYSCLB can be found in the publication
DOS/VS System Control Statements.

Prograrmer logical units are those in
the range SYS000 through SYS240 (depending
on the number of partitions in the system)
and are referred tc in the COROL source
language ASSIGN clause.

A COBOL programmer uses the source
language ASSIGN clause to assign a file
used by his problem program to the
appropriate symbolic name. Although
symbolic names may be assigned to physical
devices at system generation time, the
programmer may alter these assignments at
execution time by means of the ASSGN
control statement. However, if the
programmer wishes to use the assignments
made at system generation time for his own
data files in the COBOL program, ASSGN
control statements are unnecessary.

Table 2 is a complete list of symbolic
names and their usage.

Preparing COBOL Programs for Processing 19

Table 2. Symbolic Names, Functions, and Permissible Device Types

r T T 1
jsymbolic | Function | Permissible |
|Namne | I Device Types |
| SYSKRDR }Input unit for control statements or commands. | Card reader |
i | | Magnetic Tape unit |
I | | Disk extent |
| | | 3540 diskette]
F } + —
jSYSIBT {Input unit for programs. | Card reader |
] i | Magnetic tape unit I
] | | Disk extent |
i | I 3540 diskette |
|SYSPCH {Main unit for punched output. | Card punch |
i i | Magnetic tape unit |
| ! | Disk extent |
| | I 3540 diskette 1
k + } al
|SYSLST jtain unit Zor printed output. | Printer |
| i | Magnetic tape unit |
1 ! | Disk extent]
| i | 3540 diskette |
3 1 } 4
ISYSLOG |Receives operator messages and logs in job control | Printer keyboard t
| jstatements. | Printer |
! | | Display operator consolej
N }] o
T T T ¥
|SYSLWK fInput to the Linkage Editor. { Dick extent i
| | | 1
H } + —
|SYSKES {Contains the operating system, the core image | Disk extent |
| flibrary, relocatable library, source statement | (2314,3330,3340) 1
| }library, ana procedure library. | I
f + —4 4
[SYSCLE |3 private core image library. | Disk extent |
b + + —
]SYSSLE i private source statement library. | Disk extent |
1 l i -
1 i R L
JSYSRLE |42 private relocatable library. | Disk extent f
L i [l .}
L 3 T T 1
[SYSIN fMust be used when SYSEDR and SYSIET are assigned to| Disk |
i lthe same disk extent. #ay be used when they are | Magnetic tape unit |
} jsame disk extent. May be used when they are | Card reader j
] lassicned to the same card reader or magnetic tape. | 3540 Diskette |
3 1 i 3
¥ T T A
[SYSOUT This name must be used when SYSPCH and SYSLST are | Magnetic tape unit i
| jassicned to the same magnetic tape unit. It must | {
i |be assigned by the operator ASSGN command. | |
In N3 i J
L] 1 T 1
}S¥Smax |These units are available to the programmer as work| Any unit |
i }files or for storinc data files. They are called | |
| |procranmer_logical units as opposed to the above- | |
| imentioned names which are always referred to as | |
{ Isystem logical units. The largest number of 1 |
1 jprogrammer logical units available in the system is| |
| }240 (S¥S000 through S¥S240, depending on number of | |
i Ipartitions). The value of S¥Smax is determined by | |
| Jthe distribution of the programmer logical units | |
| lamong the partitions. | |
}SY¥SVIS |¥olds virtuai storage page data set. | Disk extent |
: J. = —
|SYSCAT |Holds the VSiM catalocg. | Disk extent |
i I i}]
3 Ll] 1
| SYSREC jLoge error records. | Disk extent |
L 1 L 3

Preparing COBOL

Programs for Processing 21

JOB _CONTROL

The Job Control Processor for the Disk
Operating System/Virtual Storage prepares
the system for execution of programs in a
batched job environment. Input to the Job
Control Processor is in the form of job
control statements and job_control
commands.

JOB CONTROL STATEMENTS

Job control statements are designed for
an 80-column punched card format. Although
certain restrictions must be observed, the
statements are essentially free form. Job

control statements conform to these rules:

1. Name. Two slashes (//) identify the
statement as a job control statement.
They must be in columns 1 and 2. &t
least one blank immediately follows
the second slash.

Exceptions: The end-of-job statement
contains /& in columns 1 and 2; the
end-of-data-file statement contains /*
in columns 1 and 2; the comment
statement contains * in column 1 and a
blank in column 2.

This identifies the
operation to be performed. It can be
up to eight characters long. At least
one blank follows its last character.

2. Operation.

3. Operand. This may be blank or may
contain one or more entries separated
by commas. The last term must be
followed by a blank, unless its last
character is in column 71.

4, Comments. Optional programmer
conments must be separated from the
operand by at least one space.

Continuation cards are not recognized by
the Job Control Processor. For the
exception to this rule, see the
descriptions of the DLAB and TPLAB
statements.

211 job control statements are read from

the device identified by the symbolic name
SYSRDR.

Comments in Job Control Statements

Comment statements (i.e., statements
preceded by an asterisk in column 1
followed by a blank) may be placed anywhere

22

in the job deck. The remainder of the card
may contain any character from the EBCDIC
set. Comment statements are designed for
communication with the operator;
accordingly, they are written on the
console output unit, SYSLOG, in addition to
being written on SYSLST. 1If followed by a
PAUSE control statement, the comment
statement cam be used to request operator
action.

Statement Formats

The following notation is used in the
statement formats:

1. All upper-case letters represent
specifications that are to appear in
the actual statement exactly as shown
in the statement format. For example,
JOB in the operation field of the JOB
statement should be punched exactly as
shown.

2. All lower-case letters represent
generic terms that are to be replaced
in the actual statement. For example,
jobname is a generic term that should
be replaced by the name that the
programmer is giving his job.

3. Hyphens are used to join two or more
vords in order to form a single
generic term. For exanmple,
device-address is one generic term.

4. Brackets are used to indicate that a
specification is optional and is not
always required in the statement. For
example, [type] indicates that the
programmer's replacement for the
generic term, type, may or may not
appear in the statement, depending on
the programmer's reguirements.

5. Braces enclosing stacked items
ind icate that a choice of one iten
must be made by the programmer. For
example:

SYS
PROG
ALL
SYSxxx

indicates that either SYS, PFROG, RALL,
or SYSxxx must appear in the actual
statement.

6. Brackets enclosing stacked items
indicate that a choice of one item
may, but need not, be made by the
programmer. For example:

e X'ss®
+ALT

indicates that either ,X'ss' or ,ALT
but not both, may appear in the actual
statement, or the specification can be
omitted entirely.

7. All punctuation marks shown in the
statement formats other than hyphens,
brackets, and braces must be punched
as shown. This includes periods,
commas, and parentheses. For example,
. [date]l means that the specification,
if present in the statement, should
consist of the programmer's
replacement for the generic term date
preceded by the comma with no
intervening space. Even if the date
is omitted, the comma must be punched
as shown.

8. The ellipsis (...) indicates where
repetition may occur at the
programmer's option. The portion of
the format that may be repeated is
determined as follows:

a. Scanning right to left, determine
the bracket or brace delimiter
immediately to the left of the
ellipsis.

b. Continue scanning right to left
and determine the logically
matching bracket or brace
delimiter.

c. The ellipsis applies tc the words

and punctuation between the pair
of delimiters.

Sequence of Job Control Statements

The job deck for a specific job always
begins with a JOB statement and ends with a
/& (end-of-job) statement. A specific job
consists of one or more job steps. The
beginning of a job step is indicated by the
appearance of an EXEC statement. When an
EXEC statement is encountered, it initiates
the execution of the job step, which
includes all preceding control statements
up to, but not including, a previous EXEC
statement.

The only limitation on the sequence of
statements within a job step is that which
is discussed here for the label information
statements.

The label statements must be in the
order:

DLBL
EXTENT (one for each area or file in
the volume)

or
TLBL

and must immediately precede the EXEC
statement to which they apply.

DESCRIPTION AND FORMATS OF JOB CONTROL
STATEMENTS

This section contains descriptions and
formats of job control statements.

Job control statements, with the
exception of /%, /&, and %, contain two
slashes in columns 1 and 2 to identify
them.

PREP
PGMS

JOB Statement

The JOB control statement indicates the
beginning of control information for a job.
The JOB control statement is in the
following format:

]
|// JOB jobname
L

b — od

jobname
is a prograrmer-defined nare
consisting of from one to eight
alphanumeric characters. Any user
corments can appear on the JOB control
statement following the jobname
(through column 72). The time of day
and date appear in columns 73 to 80
when the JOB staterent is printed on
SYSLST. The time of day and date are
also printed in columns 1 through 8 on
the next line of SYSLOG.

If a job is restarted, the jobname
must be identical to that used when
the checkpoint was taken.

Note: The JOB statement resets the effect
of all previously issued OPTION and ASSGN
control statements.

Preparing COBOL Programs for Processing 23

ASSGN Statement

The ASSGN control statement assigns a
logical input/output unit to a physical
device. An ASSGN control statement must be
present in the job deck for each data file
assigned to an external storage device in
the COBOL program where these assignments
differ from those established at system
generation time. Data files are assigned
to programmer logical units in COBOL by
means of the source language ASSIGN clause.
An ASSGN statement or command can also be
used

¢ to unassign a logical unit to free it
for assignment to another partition

e to ignore the assignment of a logical
unit, that is, program references to
the logical unit are ignored (useful in
testing and certain rerun situations)

* to specify an alternate tape unit to be
used when the capacity of the original
is reached.

The assignment routines check the
operands of the ASSGN statement/command for
the relationship between the physical
device, the logical unit, the type of
assignment (permanent or temporary), etc.
The following list summarizes the most
pertinent items to remember when making
assignments:

1. Assignments are effective only for the
partition in which they are issued.

2. No physical device except DASD can be
assigned to more than one active
partition at the same time.

3. All system input and output file
assignments to disk or diskette must
be permanent.

4. SYSIN must be assigned if both SYSRDR
and SYSIPT are to be assigned to the
same extent.

5. SYSOUT cannot be assigned to disk or
diskette; it must be a permanent
assignment if assigned to tape.

6. SYSLNK must be assigned kefore issuing
the LINK or CATAL option in the OPTION
statement; otherwise, the option is
ignored and the message 'PLEASE ASSIGN
SYSLNK' is issued to the operator.

7. If SYSRDR, SYSIPT, SYSLST, or SYSPCH
is assigned to tape or diskette, or
disk when the system is generated, it
will be unassigned by IPL. Such
assignments can be made effective only
with the -job control ASSGN statement

3]
s

or command, because ASSGN also opens
the file.

8. Before a tape unit is assigned to
SYSLST, SYSPCH, or SYSOUT,. all
previous assignments to this tape unit
must be permanently unassigned. This
may be done by using a DVCDN command
instead.

9. The assignment of SYSLOG cannot be
changed while a foreground partition
is active.

be assigned by an ASSGN statement or
command. An IPL is required to change
these assignments.

10. SYSRES,. SYSCAT, and SYSVIS can never

The ASSGN control statement may also be
used to change a system standard assignment
for the duration of the job.

The format of the ASSGN control
statement is as follows:

,X'ss?*

r

I

| // ASSGN SY¥Sxxx,device-address
1 ,ALT
L

b

SYSxxx
is one of the logical devices listed
in Table 2.

Exception: SYSOUT must be assigned
using the ASSGN job control command.
Job control commands are described in
detail in the publication DOS/VS
System_Control Statements.

device-address
allows three different formats:

X'cuu'
where ¢ is the channel number and uu
the unit number in hexadecimal
notation. The values of *‘cuu' are
determined by each installation.

c = 0 for multiplexor channel,
1 through 6 for selector:
channels 1 through 6.

00 to FE (0 to 254) in
hexadecimal.

uua

UA
indicates that the logical unit is
to be unassigned. Any source
language input/output operation
attempted on this device causes
cancellation of the job.

IGN
indicates that the logical unit is
to be unassigned. Each time a READ
statement for the file assigned to
IGN is encountered, control will be
transferred to the
imperative-statement following the
AT END option. The IGN option is
not valid for SYSRDR, SYSIPT, and
SYSIN. This option is useful in
program debugging since source
language references to input files
residing on symbolic units for which
IGN has been specified are ignored.
Any file for which the IGN option is
used nmust be a sequential input
file. Output files assigned with
the IGN option are not supported by
DOS/VS COBOL object programs.

X'ss'
is the device specification. It is
used for specifying mode settings for
7-track and dual density 9-track
tapes. If X'ss' is not specified, the
system assumes the value specified at
system generation for 7-track tapes
and X'C0*' for 9-track tapes. The
possible specifications for X'ss' are
shown in Figure 3.

ALT
must be specified in the control
statement that assigns an alternate
magnetic tape unit which is used when
the capacity of the original
assignment is reached. The
specifications for the alternate unit
must be the same as those of the
original unit, since X'ss' cannot be
specified. The characteristics of the
alternate unit must be the same as
those of the original unit. Multiple
alternates can be assigned to a
symbolic unit.

H1
indicates input hopper one for 2560 or
5425.

H2
indicates input hopper two for 2560 or
5425. H2 may only be assigned to
SYSRDR, SYSIPT or SYSPCH.

Device assignments made by the ASSGN
control statement are considered temporary.
They are in effect until another ASSGN
control statement or a RESET statement for
that logical unit, or the next /& or JOB
statement is read, whichever occurs first.
If a RESET, /&, or JOB statement is
encountered, the assignment reverts to the
standard assignment established at system
generation time plus any modification by an
ASSGN cormand.

The COBOL programmer may assign only the
programmer logical units (SYS000 through
SYsS240, depending on the number of
partitions) to data files used in his
program. For example, if the following
ASSIGN clause is used,

SELECT IN-FILE ASSIGN TO SYS004-DA-2314-S

an ASSGN control statement must appear in
the job deck which assigns SYS004 to a
physical device if the physical device
differs from the permanent assignment. In
this case, the physical device must be a
2314 direct access device. BAn example of
such a control statement is:

/7 ASSGN SYS004,X'00C'

Physical unit X'00C' was perranently
assigned to a 2314 direct access device at
system generation time.

Note: The ASSGN control statement is
necessary only when the symbolic unit
assignment is being made to a physical
device address which differs from that
established at system generation time.

"Appendix H: Sample Job Decks"™ contains
illustrations of ASSGN statement usage.

13 T T 1
| | | 7-Track Tape |
| | Bytest T T 4
| | per | | Translate | Convert|
| ss | Inch | Parity | Feature | Feature]
L 1 4 1 4 J
] 1 T 1 T 1
10	200	odd	off] on	
20	200	even	off] off	
28	200	even	on	off
30	200	odd	off	off
38	200	odd	on	off
50	556	odd	of f	on
60	556	even	off	off
68	556	even	on	off
70	556	odd] off	off	
78	556	oda	on	off
1 90	800	odd] of f	on	
A0	800	} even	off	off
A8	800	even	on	off
BO	800	oad] off	off	
B8	800	odd	on	off
I t . ‘ 1				
		9-Track Tape		
	b 1			
co	800	single density 9-track		
] Co	1600	single density 9-track		
cO	1600	dual density 9-track		
] c8	800	dual density 9-track		
DO	6250	single density 9-track		
DO	6250	dual density 9-track		
L 1 1 d

Possible Specifications for
X'ss' in the ASSGN Control
Statement

Figure 3.

Preparing COBOL Programs for Processing 25

CLOSE Statement

The CLOSE control statement is used to
close either a system or programmer logical
unit assigned to tape. As a result of the
CLOSE control statement, a standard
end-of-volume label set is written and the
tape is rewound and unloaded. The CLOSE
statement applies only to a temporarily
assigned logical unit, that is, a logical
unit for which an ASSGN control statement
has been specified within the same job.
The format of the CLOSE control statement
is as follows:

. X' cuu"
L UA

// CLOSE SYSxxx|,IGN
ALT

[,X"ss"]

[——— .
O el T

The logical unit can optionally be
reassigned to another device, unassigned,
or switched to an alternate unit.

Note that when SY¥Sxxx is a system
logical unit, one of the optional
parameters must be specified. When closing
a programmer logical unit, no optional
parameter need be specified.

SYSxxx
may only be used for magnetic tape and
may be specified as SYSPCH, SYSLST,
SYSOUT, or SY¥S000 through SYs240,
depending on the number of partitions.

X'cuu'
specifies that after the logical unit
is closed, it will be assigned to the
channel and unit specified. (See
"ASSGN Control Statement®" for an
explanation of ‘cuu’.) When
reassigning a system logical unit, the
new unit will be opened if it is
either a mass storage device or a
magnetic tape at load point.

X'ss'
represents device specification for
mode settings on 7-track and 9-track
tape. (See "ASSGN Control Statement™
for an explanation of 'ss'.) If X'ss'
is not specified, the mode settings
remain unchanged.

UA
specifies that the logical unit is to
be closed and unassigned.

IGN
specifies that the logical unit is to

26

be closed and unassigned with the
ignore option. This operand is
invalid for SYSRDR, SYSIPT, or SYSIN.

ALT
specifies that the logical unit is to
be closed and an alternate unit is to
be opened and used. This operand is
valid only for system logical output
units (SYSPCH, SYSLST, or SYSOUT)
currently assigned to a rmagnetic tape
unit.

The DATE control statement contains a
date that is put in the Cormunication
Region of the Supervisor. A complete
description of the fields of the
Communication Region is given in "Appendix
G: Communication Region." The DATE
statement is in one of the following
formats:

T
| 7/ DATE mm/dd/yy
L

b e ey e el

T
|7/ DATE dd/mm/yy
L

where:
mm
dd

Yy

month (01 to 12)
day (01 to 31)
year (00 to 99)

The format to be used is the format
selected when the system was generated.

When the DATE statement is used, it
applies only to the current jok being
executed. The Job Control Processor does
not check the operand except to ensure that
its length is eight characters. If no DATE
statement is specified in the current job,
the Job Control Processor supplies the date
given in the last SET command. The SET
command is discussed in detail in the
publication DOS/VS System Control
Statements.

A DATE statement should be included in
every job deck that has as one of its job
steps the execution of a COBOL program that
utilizes the special register CURRENT-DATE,
if the date desired is other than that
designated in the rrevious SET command.

The DATE statement should be used at
compile time so that the DATE-CCMPILED
varaagraph is accurate and the WHEN-COMPILED
special register is effective.

TLBL Statement

The TLBL contrecl statement replaces the
VOL and TPLAR combination used in previous
versions of the system. However, the
current system will continue to support
these statements. The TLBL control
statement contains file label information
for tape label checking and writing. 1Its
format follows:

T
1// TLBL filenanme,

] [*file-identifier*],[date],
| [file-serial-number]j,

| [volume-sequence-number],

i [file-segquence-number],

| [generatior-number],

| [version-number]

e e e o - —— —)

| -

filename
identifies the file to the control
program. 1t can be from three to
seven characters in length. If the

following SELECT sentence appears in a

COBOL program:

SELECT NEWFILE ASSIGN TO
SYS003-UT-2400-S-OUTFILE

the fiilename operand on control
statements for this file must be
OUTFILE. 1If the SELECT clause were
coded:

SELECT NEWFILE ASSIGX TO
SYS003-ur-2400-5

the filename operand on the control
statement for the file must be SYS003.

file-identifier
consists of from 1 to 17 characters,
contained within apostrophes,
indicating the name associated with
the file on the volume. This operand
may contain embedded blanks. If this
operand is omitted on output files,
the filenpame will be used. If this
operand is omitted on input files, no
checking will be done.

date
consists of from one to six
characters, in the format yy/ddd,
indicating the expiration date of the
file for output or the creation date
for input. (The day of the vear may
consist of from one to three
characters.) For output files, a one
to four character retention period
(d-dddd) may be specified. If this
operand is omitted, a 0-day retention
period will be assumed for output
files. For input files, no checking
will be done if this operand is

omitted or if a retention period is
specified.

file-serial-number
consists of from one to six characters
indicating the volume serial number of
the first (or only) reel of the file.
If fewer than six characters are
specified, the field will be
richt-justified and padded with zeros.
If this operand is omitted on output
files, the volume serial number of the
first (or only) reel of the file will
be used. If the operand is omitted on
input files, no checking will be domne.

volume-segquence-number
consists of from one to four
characters in ascending order for each
volume of a multivolume file. This
number is incremented automatically by
OPEN and CLOSE routines as reguired.
If this operand is omitted on output
files, ECD 0001 will be used. If
omitted on input files, no checking is
done.

file-segquence-number
consists of from one to four
characters in ascending order for each
file of a multifile volume. This
number is incremented automatically by
OPEN and CLOSE routines as reguired.
If this operand is omitted on output
files, BCD 0001 will be used. If it
is omitted on input files, no checking
will be donme.

generation-number
consists of from one to four numeric
characters that modify the
file-identifier. If this operand is
omitted on output files, BCD 0001 is
used. If it is omitted on input
files, no checking will be done.

version-number
consists of from one to two numeric
characters that modify the generation
number. If this operand is omitted on
output files, BCD 01 will be used. If
it is omitted on input files, no
checking will be done.

Note: If a tape file with standard labels
is opened two different ways in the same
COBOL program, and that file resides on a
multifile volume, the programmer should use
two separate TLBL cards with different
filenames specified on each.

Preparing COBOL Programs for Processing 27

DLBL Statement

The DLBL control statement, in
conjunction with the EXTENT statement,
replaces the VOL, DLAB, and XTENT
combination used in previous versions of
the Disk Operating System. The DLEBL
statement has the following format:

r
I// DLBL filename

| o[*file-identifer']J,[date],[codes]
L

e —

filename
identifies the file to the control
program. It can be from three to
seven characters long. If the
following SELECT sentence appears in a
COBOL program:

SELECT INFILE ASSIGN TO
SYSQ05-DA-2314-A-INPUTA

the filename operand on control
statements for this file must be
INPUTA. If the SELECT sentence is
coded:

SELECT INFILE ASSIGN TO
SYS005-DA-2314~A

the filename operand on control
statements for the file must be
SYS005.

tfile-identifier?®
is the name associated with the file
on the volume. This can consist of
from 1 to 44 alphanumeric characters
contained within apostrophes,
including the file-identifier and, if
used, generation-number and version-
number of generation. TIf fewer than
44 characters are used, the field is
left-justified and padded with blanks.
If this operand is omitted, filename
will be used.

date
consists of from one to six characters
indicating either the retention period
of the file in the format d through
dddd (0-9999), or the absolute
expiration date of the file in the
format yy/ddd. When the d through
dddd format is used, the file is
retained for the number of days
specified as dddd. For example, if
date is specified as 31, the file will
be retained a month from the day of
creation. When the yy/ddd format is
used, the file is retained until the
day (ddd) in the year (yy) specified.
For example, if date is specified as
737200, the file will be retained

28

through the 200th day of the year
1973.

If date is omitted when the file is
created, a 7-day retention period is
assumed. If this operand is present
for a file opened as INPUT or I-0O, it
is ignored.

codes
is a 2 to 4 character field indicating
the type of file label, as follows:

SD = Seguential Disk
DB = Direct Access
ISC = Indexed Sequential using Load
Create
ISE = Indexed Sequential using Load
Extension, 2dd, or Retrieve
DU = 3540 Diskette
VSAM = VSAM file

If code is omitted, SD is acssumed.

"Appendix H: Sample Job Decks" contains
illustrations of DLBL statement usage.

See the section "Processing 3540
Diskette Unit Files" for the use of DLBL
Cards for 3540 and the section ®Virtual
Storage Access Method" for use of DLBL
cards for VSAM.

EXTENT Statement

The EXTENT control statement defines
each area (or extent) of a DASD file -- a
file assigned to a mass storage device.
One or more EXTENT control statements must
follow each DLEL statement.

The EXTENT control statement replaces
the XTENT statement used in previous
versions of the Disk Operating System. For
more information on the XTENT statement,
see DOS/VS System Control Statements.

The format of the EXTENT control
statement is:

\// EXTENT [symbolic-unit],[serial-number]
| [type], sequence-number]

| ([relative-track],[number-of-tracks]}
| [split-cylinder-track],[B=bins]
[&

b e et e e =

symbolic-unit
is a 6-character field indicating the
symbolic unit (S¥Sxxx) of the volume
for which this extent is effective.
If this operand is omitted, the
symbolic unit of the preceding EXTEXNT
statement will be used. When
specified, symbolic-upit may be any
SYSxxx assigned to the device type

indicated in the SELECT sentence for
the file. For example, if the
following coding appears in a COBOL
program:

SELECT OUTFILE ASSIGN TO
SYSO0Q4~-DA-2314-A

the symbolic unit in the EXTENT
control statement can by any SYSxxx
assigned to a 2314 disk pack. The
symbolic unit operand is not required
for an IJSYSxx filename, where xx is
IN, PH, 1S, RS, SL, or RL. If SYSRDR
or SYSIPT is assigned, this operand
must be included.

serial-number
consists of from one to six characters
indicating the volume serial number of
the volume for which this extent is
effective. If fewer than six
characters are used, the field will be
right-justified and padded with zeros.
If this operand is omitted, the volume
serial number of the preceding EXTENT
control statement will be used. If no
serial number was provided in the
EXTENT control statement, the serial
number will not be checked and it will
be the programmer's responsibility if
files are destroyed as a result of
mounting the incorrect volume.

type
consists of one character indicating
the type of the extent, as follows:

i1 -- Data area (no split cylinder)

2 -- Overflow area (for an indexed
file)

4 -- Index area (for an indexed file)

8 -- Data area {(split cylinder)

If this operand is omitted, 1 is
assumed.

sequence-number
consists of from one to three
characters containing a decimal number
from 0 to 255 indicating the sequence
number of this extent within a
multi-extent file. Extent sequence 0
is used for the master index of an
indexed file. If the master index is
not used, the first extent of an
indexed file has the sequence number
1. The extent sequence number for all
other types of files begins with 0.
If this operand is omitted for the
first extent of 1ISAM files, the extent
will not be accepted. For SD or DA
files, this operand is not required.
For DA files this operand should be
specified when using more than one
EXTENT for a file. Direct files can
have up to five extents. Indexed
files can have up to eleven data

extents (nine prime, one cylinder
index, one separate overflow).

relative-track

consists of from one to five
characters indicating the sequential
number of the track, relative to zero,
where the data extent is tc begin. If
this field is omitted on an ISAM file,
the extent will not be accepted. This
field is not required for DA input or
for SD input files (the extents from
the file labels will be used).

Formulas for converting actual to
relative track addresses (RT) and
relative track to actual for the DASD
devices follow.

Actual to Relative:

2311 10 x cylinder number + track
numker = RT

2314 20 x cylinder number + track
or number = RT
2319

2321 1000 x subcell number + 100 x
strip number + 20 x block
number + track number = RT

3330 19 x cylinder number + track
number = RT

3340 12 x cylinder number + track
number = RT

Relative to Actual:

2311 RT = quotient is cylinder
10 remainder is track

2314 RT = quotient is cylinder,

or 20 remainder is track

2319

3330 RT = quotient is cylinder,
19 remainder is track

2321 RT = quotient is subcell,
1000 remainderl

remainderl = quotient is strip,
100 remainder?2

1

remainder2 = quotient is block,
20 remainder is track

3340 RT = quotient is cylinder,
12 remainder is track

Preparing COBOL Programs for Processing 29

number-of-tracks
consists of from one to five
characters indicating the number of
tracks to be allocated to the file.
For sSD input files, this field may be
omitted. The number of tracks for a
split cylinder file must be a multiple
of the number of cylinders specified
for the file and the number of tracks
specified for each cylinder.

split-cylinder-track
consists of from one to two
characters, with a value of 0 through
19, indicating the upper track number
for the split cylinder in SD files.

bins
consists of from one to two characters
identifying the 2321 bin that the
extent was created for, or on which
the extent is currently located. If
the field is one character, the
creating bin is assumed to be zero.
There is no need to specify a creating
bin for SD or ISAM files. If this
operand is omitted, bin 0 is assumed
for both bins. If the operand is
included and positional operands are
omitted, only one comma is required
preceding the keyword operand. If any
operands preceding the bin
specification are omitted, one comma
for each operand is acceptable, but
unnecessary.

Figure 4 shows examples of using the
DLBL statement in conjunction with the
EXTENT statement. "Appendix H: Sample Job
Decks™ contains illustrations of EXTENT
statement usage.

VOL, DLAB, TPLAE AND XTENT STATEMENTS

These statements have been replaced by
the DLBL, TLBL, and EXTENT statements, and,
although they are still supported by the
Disk Operating System, they cannot be used
for 3330 or 3340 disk files, or for VSAM
files. Details as to their usage can be
found in DOS/VS System Control Statements.
For their use with respect to CCROL, see
IBM DOS Full American National Standard
COBOL Programmer's Guide. When new label
information statements are prepared, DLBL,
TLBL, and EXTENT should be used.

LBLTYP Statement

The LBLTYP control statement defines the
amount of storage to be reserved at linkage
edit time in the problem program area of
storage in order to process tape and
nonsequential DASD file labels. It applies
to both background and foreground object
programs, and is required if the file
contains standard labels.

The LBLTYP control statement immediately
precedes the // EXEC LNKEDT statement in
the job deck, with the exception of
self-relocating programs for which it is
instead submitted immediately preceding the
// EXEC statement for the program. The
format of the LBLTYP control statement is:

TAPE[(nn)]
// LBLTYP i

NSD(nn)

o e s oo g
b —

Direct file:

tracks, beginning on relative track 10.

// DLBL MASTER,,757/001,DA
// EXTENT SYs015,111111,1,0,10,840

Indexed file:

20-track cylinder index.

// DLBL MASTER,,75/001,ISC
// EXTENT SYS015,111111,4,1,1100,20
/7 EXTENT SYS015,111111,1,2,1120,80

[o oo e i o e i o i, o St o i i o i s, S e Ty

The following DLBL and EXTENT statements describe a direct file. occupying 840

The following DLBL and EXTENT statements describe an indexed file on a 2314
occupying 100 tracks, beginning on relative track 1100.
The second EXTENT allocates a 80-track data area.

The first EXTENT allocates a

R e e St i e e S e i i St S et S S e i e o)

Figure 4.

30

Sample Lakel and File Extent Information for Mass Storage Files

TAPE((nn)]
is used only if tape files requiring
label information are to be processed
and if no nonsequential DASD files are
to be processed. nn is optional and
is present only for future expansion.
It is ignored by the Job Control
Processor.

NSD(nn)
is used if any nonsequential DASD
files are to be processed, regardless
of other type files that are used. nn
specifies the largest number of
extents to be used for a single file.

LISTIO Statement

The LISTIO control statement causes the
system to print a list of input/output
assignments on SYSLST. The format of the
LISTIO control statement is:

SYS
PROG
BG
Fl
F2
F3
F4

/7 LISTIO ALL
SYSxxx
UNITS
DOWN
UA
X' cuu'

o o e e o i s e e et
e e e e T

SYS
causes the physical units assigned to
all system logical units to be listed.

PROG
causes the physical units assigned to
all background programmer logical
units to be listed.

BG
lists the physical units assigned to
all logical units of the background
partition.

F1
causes the physical units assigned to
all foreground-one logical units to be
listed.

F2
causes the physical units assigned to
all foreground-two logical units to be
listed.

F3

causes the physical units assigned to
all foreground-three logical units to
be listed.

Fu
causes the physical units assigned to
all foreground-four logical units to
be listed.

ALL
causes the physical units assigned to
all logical units to be listed.

SYSxXX
causes the physical units assigned to
the logical unit specified to be
listed.

UNITS
causes the logical units assigned to
all physical units to be listed.

DOWN
causes all physical units specified as
inoperative to be listed.

UA
causes all physical units not
currently assigned to a logical unit
to be listed.

X'cuu'

causes the logical units assigned to
the physical unit specified to be
listed.

MTC Statement

The MTC control statement controls 2400
and 3400 series magnetic tape orerations.
The format is as follows:

r
|7/ MTC opcode,SYSxxx[,nnl |
L

opcode
specifies the operation to be

performed. opcode can be chosen from
the following:

BSF -- Backspace to taperark

BSR -- Backspace to interrecord gap

ERG -- Erase gap (write klank tape)
FSF -- Forward space to taremark

FSR -- Forward space to interrecord
gap

RUN -- Rewind and unload

Preparing COBOL Programs for Processing 31

REW -- Rewind
WIM -- Write tapemark

SYSxXX
represents any logical unit assigned
to magnetic tape upon which the MTC
control statement is to operate.

[,nnl
is the decimal number (01 through 99)
which, if specified, represents the
number of times the operation is to be
performed. If nn is omitted, the
operation is performed once.

OPTION Statement

The OPTION control statement is used to
specify one or more of the options of the
Job Control Processor. The format of the
OPTION statement is:

r -
|7/ OPTION optionlil[,option2]...
L

b e

The order in which the selected options
appear in the operand field is arbitrary.
Options are reset to the standard
established at system generation time upon
encountering the next JOB statement or the
/& statement.

The options are:

LOG
causes the listing of columns 1
through 80 of all control statements
on SYSLST. If LOG is not the standard
established at system generation time,
control statements are not listed
until a LOG option is encountered.
Once a LOG option statement is read,
logging continues from job step to job
step until a NOLOG option is
encountered or until either the JOB or
/& control statement is encountered.

NOLOG
suppresses the listing of all control
statements on SYSLST until a LOG
option is encountered, or until either
the JOB or /& control statement is
encountered.

DUMP
causes a dump of the registers and
virtual storage to be printed on
SYSLST in the case of an abnormal
program termination (such as a program
check). Using the compiler SYMDMP,
FLOW, or STATE features, it may not be
necessary to use this option.

32

NODUMP
suppresses the DUMP option.

LINK
indicates that the object module is to
be link edited. When the LINK option
is used, the output of the COBOL
compiler is written on SYSLNK. The
LINK option must always precede an
EXEC LNKEDT statement in the job deck.
(CATAL also causes the LINK option to
be set.) LINK is not acceptable to
the Job Control Processor operating in
the foreground unless the private core
image library option is supported and
a private core image library is
assigned.

NOLINK
suppresses the LINK option. The COBOL
compiler can also suppress the LINK
option if the program contains an
error that would preclude the
successful execution of the program,
or if SYNTAX is in effect, or if
CSYNTAX is in effect and an E-level
error is encountered.

DECK
causes the COBOL compiler to punch an
object module on SYSPCH. If both DECK
and LINK are specified, the output of
the compiler is written on both SYSPCH
and SYSLNK.?1

NODECK
suppresses the DECK option. The DECK
option is also suppressed if SYNTAX is
in effect, or if CSYNTAX is in effect
and E-level errors exist.

LIST
causes the compiler to write the COROL
source statements on SYSLST. If
lister is in effect, the LIST option
is overridden; LISTER causes a listing
regardless of whether LIST or NOLIST
is specified.

NOLIST
suppresses the LIST option.

LISTX
causes the COBOL compiler to write a
Procedure Division map on SYSLST. 1In
addition, glokal tables, literal
pools, register assignments, and
procedure block assignments will be
provided. You may want to use the CBL

1The //option card options pertaining to
the compiler will be suppressed if the
"LISTER ONLY" option of lister is in
effect. Otherwise, when "LISTER AND
COMPILE" is in effect, the options
specified will be in effect for
compilation.

option CLIST (condensed list) in place
of this.?

NOLISTX
suppresses the LISTX option, as do the
same conditions as cause DECK to be
suppressed.

XREF
causes the COBOL compiler to write a
symbolic cross-reference list on
SYSLST. You may want to use the CBL
option SXREF in place of this, or the
lister cross-reference information for
large COBOL programs.

NOXREF
suppresses the XREF option. SXREF
also suppresses XREF, as do the same
conditions as cause DECK to be
suppressed.

SYM
causes the COBOL compiler to write a
Data Division map on SYSLST. 1In
addition, global tables, literal
pools, register assignments, and
procedure block assignments will be
provided.*

NOSYM
suppresses the SYM option.

ERRS
causes the COBOL compiler to write the
diagnostic messages related to the
source program on SYSLST.?2

NCERRS
suppresses the ERRS option.
not suppress FIPS messages.

It does

CATAL
causes the cataloging of a phase or
program in the core image library upon
completion of a linkage editor job
step. CATAL also causes the LINK
option to be set. CATAL is not
accepted by the Job Control Processor
operating in a batched-job foreground
environment unless the private core
image library option is supported and
a private core image library is
assigned.

STDLABEL
causes the standard label track to be
cleared and all DASD or tape labels
submitted after this point to be

- ————— - —— - ——

iThe //option card options pertaining to
the compiler will be suppressed if the
"LISTER ONLY" option of lister is in
effect. Otherwise, when "LISTER AND
COMPILE" is in effect, the options
specified will be in effect for
compilation.

written on the standard label track.
This option is reset to the USRLABEL
option at end-of-job or end-of-job
step. All file definition statements
submitted after the STDLABEL option
are available to any program in any
area until another set of standard
file definition statements is
submitted. STIDLABEL is not accepted
by the Job Control Processor operating
in a batched-job foreground
environment. All file definition
statements following OPTION STDLABEL
are included in the standard file
definition set until one of the
following occurs:

¢ End-of-job step

¢ End-of-job

e OPTION USRLABEL is specified
e OPTION PARSTD is specified

USRLABEL
causes all DASD or tape labels
subnitted after this point to be
written at the beginning of the user
label track.

PARSTD
causes all DASD or tape labels
submitted after this point to be
written at the beginning of the
partition standard label track. The
PARSTD option is reset to the USRLAREL
option at end-of-job or end-of-job
step. All file definition statements
submitted after the PARSTD option will
be available to any program in the
current partition until another set of
partition standard file definition
statements is submitted. 2ll file
definition statements subwitted after
OPTICN PARSTD will be included in the
standard file definition set until one
of the following occurs:

¢ End-of-job step

s End-of-job

e OPTION USRIABEL is specified
e OPTION STDIABEL is specified

For a given filename, the sequence of
search for lakel information during an
OPEN is the USRLABEL area, followed by
the PARSTD area, followed by the
STDLABEL area.

Note: If NOLINK and NODECK are requested

on the OPTION control statement and either
SYMDMP or OPT is specified on the CBL card,
the SYMDMP or OPT specification is ignored.

Preparing COBOL Programs for Processing 33

The options specified in the OPTION
statement remain in effect until a
contradictory option is encountered or
until a JOB control statement is read. In
the latter case, the options are reset to
the standard that was established at system
generation time.

Any assignment for SYSLNK, after the
occurrence of the OPTION statement, cancels
the LINK and CATAL options. These two
options are also canceled after each
occurrence of an EXEC statement with a
blank operand.

PAUSE Statement

The PAUSE control statement allows for
operator intervention between job steps.
The format of the PAUSE control statement
is:

r 1
| 7/ PAUSE [comments] |
L J

The PAUSE control statement is effective
just before the next input control
statement in the job deck is read. The
PAUSE control statement always prints on
SYSLOG and SYSLST.

An example of this statement is:

// PAUSE SAVE SYsS004, SYS005, MOUNT
NEW TAPES

This sample statement instructs the
operator to save the output tapes and mount
two new tapes.

When the PAUSE statement is encountered
by the Job control Processor, processing is
stopped in the partition until a response
is given. The end/enter key causes
processing to continue.

RESET Statement

The RESET control statement resets
input/output assignments to the standard
assignments. The standard assignments are
those specified at system generation time
plus any modifications made by the operator
by means of the ASSGN command without the
TEMP option. The RESET corrand is
discussed in detail in the publication
DOS/VS System Control Statements. The
format of the RESET statement is:

34

r -1
| SYS |
|7/ RESET PROG |
| ALL |
| SYSxxx |
L J
SYS

resets all system logical units to
their standard assignments.

PROG
resets all programrmer logical units to
their standard assignments.

ALL
resets all system and programmer
logical units to their standard
assignments.

SYSxxx

resets the logical unit specified to
its standard assignment.

RSTRT Statement

A restart facility is availakle for
checkpoint programs. A programmer can use
the source language RERUN clause in his
program to cause checkpoint records to be
written. This allows sufficient
information to be stored so that program
execution can be restarted at a specified
point. The checkpoint information includes
the registers, tape positioning
information, a dump of virtual storage, and
a restart address.

The restart facility allows the
programmer to continue execution of an
interrupted job at a point other than the
beginning. The procedure is to submit a
group of job control statements including a
RSTRT control statement. The format is as
follows:

)
|7/ RSTRT SYSxxx,nnnn,filename |
L

SYSxxx
is the symbolic unit name of the 2400,
3410, 3420, 2311, 2314, 2319, 3330, or
3340 checkpoint file used for
restarting. This unit must have been
assigned previously.

nnnn
is the identification of the
checkpoint record to be used for
restarting. This serial number
consists of four characters. It
corresponds to the checkpoint
identification used when the
checkpoint was taken. The serial
number is supplied by the checkpoint
routine.

filename
is the symbolic name of the 2311,
2314, 2319, 3330, or 3340 disk
checkpoint file used for restarting.
It must be identical to the SYSxxx of
the system-name specified in the RERUN
clause.

When a checkpoint is taken, the
completed checkpoint is noted on SYSLOG.
Restarting can be done from any checkpoint
record, not just the last. The jobname
specified in the JOB statement must be
identical to the jobname used when the
checkpoint was taken. The proper
input/output device assignments must
precede the RSTRT control statement.

Assignment of input/output devices to
symbolic unit names may vary from the
initial assignment. Assignments are made
for restarting jobs in the same manner as
assignments are made for normal jobs.

See the chapter "Program Checkout" for
further details on taking checkpoints and
restarting a program for which checkpoints
have been taken.

UPSI Statement

The UPSI control statement allows the
programmer to set program switches that can
be tested by problem programs at execution
time. The UPSI control statement has the
following format:

I
|7/ UPSI nnnnnnnn
L

[

nnnnnnnn
consists of from one to eight
characters of 0, 1, or X. Positions
containing 1 are set to 1; positions
containing X are unchanged.
Unspecified rightmost positions are
assumed to be X.

The UPSI byte is the 24th byte in the
Communication Regicn of the Supervisor. A
complete description of the fields of the
Communication Regicn is given in "Appendix
G: Communication Region." The Job Control
Processor clears the UPSI byte to binary
zeros before reading control statements for
each job. when the UPSI control statement
is read, the Job Control Processor sets
these bits to the programmer's
specifications. Any combination of the
eight bits can be tested in the COBOL
source program at execution time by means
of the source language switches UPSI-0
through UPSI-7.

EXEC Statement

The EXEC statement (Execute Program or
Procedure) indicates the end of control
information for a job step and the
beginning of execution of a program, in
which case it must be the last command or
statement processed before a job step is
executed.

// EXEC [[PGM=]programnamel [,REAL][,SIZE]
[PROC=procedurenanel

PGM=programname
represents the name of the program in
the core image library to be executed.
The program name corresponds to the
first or only phase of the program in
the library. The program name can be
one to eight alphameric characters
(0-9, A-Z, #, $, 3). The first
character must not be numeric.

If the program to be executed has just
been processed by the linkage editor,
the program name is omitted and the
PGM keyword cannot be used.

REAL
indicates that the job step started by
EXEC will be executed in real mode.
If REAL is not specified the job step
is always executed in virtual mode.
REAL cannot be specified for progrars
using VSAM, the 3886, for ISAM
programs using the ISAM interface
program or, for programs compiled with
the CBL option count.

SIZE=size
Size can be nK, AUTO or (AUTO, nK).

(a) If specified with REAL, it indicates
the size of that part of the real
partition that will be needed by the
job step's associated EXEC. The
remaining part of the real partition
is given to the page pool.

Preparing COBOL Programs for Processing 35

If SIZE is omitted and REAL is
specified, the whole real partition is
used by the job step.

(b) If used without REAL, it specifies
that the virtual partition to be used
by the job step is divided into two
parts: the lower part with a size of
nK will contain the program initiated
with EXEC; the upper part serves as
additional storage pool for other
modules (for example, VSAM) required
by the program in that partition. The
program reserves the upper storage
part for its needs by issuing GETVIS
macros with the required amount of
storage as parameter: it releases the
storage by issuing FREEVIS macros.

If SIZE is omitted, the whole virtual
partition is used for the job
initiated with EXEC.

SIZE (without REAL) must always be
specified for VSAM programs or for
ISAM programs using the ISAM Interface
Program (IIP), as well as for 3886
processing, and for programs compiled
with the CBL option count.

If you specify SIZE=AUTO, the system
automatically uses the information in
the core image directory to calculate
the size of the program to be loaded.
If you specify SIZE=(AUTO,nK). The
system adds nK bytes to the calculated
length.

The following restrictions apply to n:

e n must not be larger than the size
of the partition it refers to.

e n must be greater than zero.

¢ if n is not a multiple of 2, n+l is
used

PROC=procedurename
represents the name of the procedure
to be retrieved from the procedure
library. The procedure name can be
from one to eight alphameric
characters, the first of which must be
alphabetic.

For more information on cataloged
procedures, as well as the use of
overwrite statements and the rules
that apply to temporary procedure
modification, refer to the DOS/VS
System Management Guide and the
chapter "Librarian Functions" in this
book.

36

CBL STATEMENT -~ CCBOL OPTION CCNTROL CARD

Although some options for compilation
are specified either at system generation
time or in the OPTICN control statement,
the COBOL compiler provides an additional
statement, the CBL statement, for the
specification of compile-time options
unique to COEOL.

The CBL card must be placed between the
EXEC FCOBOL statement and the first
statement in the CCBOL program. The CBL
card cannot be continued. However, if
specification of options will continue past
column 71, multiple CBL cards may be used.

The options shown in the following
format may appear in any order. No
embedded blanks may arpear in the operand
field, and no comments should appear in the
operand field. Underscoring indicates the
default case.

To change the defaults for your
installation, see ''Changing the
Installation Defaults''.

«SEQ ¢« FELAGW
CBL [BUF=nnnnnl | ,NOSEQ +« FLAGE

[,SUPMAP] [,SPACEN] [,CLIST]

. NOSUPMAP ,NOCLIST
STXIT ,QUOTE 7 [, TRUNC] [,ZWB]
 NosTx1iT | | ,APOST || ,NOTRUNC] | ,NOZWB
. SXREF [,PMAP=h] ,OPTIMIZE
,NOSXREF] , NCOPTIMIZE

,OPT
, NCCPT
[,FLOW[=nn]1[,STATE , SYNTAX
. NOSTATE ,CSYNTAX
, NOSYNTAX

[,SYMDMP[=filenamell [,VERBSUM
,NOVERBSUM]

[,VERBREF][,COUNT]

I
!
|
I
]
I
!
!
]
I
I
]
I
I
!
|
|
|
I
|
I
|
|
|
|
I
[
I
]
!

e e o e e S e o ey s e S S T i, S ", T, o, Y, S . . e e e e e S, et S

. NOVEREREF | | , NOCOUNT
A
B
,CATALR , LIB . VERB ,LVL= §C
[,NOCATALR][,NOLIB][,NOVERB] D
, NOLVL

CBL
must begin in column 2 (column 1 must
be blank) and be followed by at least
one blank.

BUF=nnnnn
the BUF option specifies the amount of
storage to be assigned to each
compiler work file buffer. nnnnn is a
decimal number from 512 to 32,767. If
this option is not specified, 512 is
assumed. The BUF option should be
used to specify an optional blocksize
(which will depend on the device type)
for the workfiles. Usually, a larger
blocksize will enhance the performance
of the compiler. However, for any
given BUF specification the compiler
space requirements {(over 60K) are
increased by a factor of
6x(nnnnnn-512).

NOSEQ
indicates whether or not the compiler
is to check the sequence of source
statements. If SEC is specified and a
statement is not in sequence, it is
flagged. If the lister feature is
invoked, the source statements are
resequenced automatically before the
sequence check is performed.

FLAGW

FLAGE
determines which diagnostics the
compiler will list. FLAGW indicates
that all diagnostics will be listed
(severity levels W, C, E, and D).
FLAGE indicates that only those
diagnostics with severity levels C, E,
and D will be listed. This has no
effect on FIPS messages.

SUPMAP

NOSUPMAP
causes the CLIST and LISTX options to
be suppressed if an E-level diagnostic
message is produced by the compiler.
SUPMAP also suppresses the DECK option
and no object module is produced.

SPACEn
indicates the type of spacing to be
used on the output listing. n can be
specified as either 1 (single
spacing), 2 (double spacing), or 3
(triple spacing). If the SPACEn
option is omitted, single spacing is
provided. Single spacing is always in
effect if the lister feature is
invoked.

CLIST

NOCLIST
indicates that a condensed listinc is
to be produced. The condensed listing
will contain only the address of the

first generated instruction for each
verb in the Procedure Division. In
addition, global tables, literal
pools, register assignments, and
procedure block assignments will be
provided. The CLIST opticn overrides
the LISTX or NOLISTX options. The
LISTX or NCLISTX options are either
estaplished at system generation time
or specified in the OPTION control
statement.

STXIT
NOSTXIT

enables a USE AFTER STANDARD ERROR
declarative to receive control when an
input/output error occurs on a unit
record device. The use of STXIT
precludes the use of SYMDMP, STATE,
and FLCW in the compiled program and
in any other program link-edited with
the compiled program, and vice versa.

QUOTE
APCST

QUCTE indicates to the compiler that
the double quotation marks (") should
be accepted as the character to
delineate literals; APOST indicates
that the apostrophe (') should be
accepted instead. The compiler will PREP
generate the specified character for PGMS
the figurative constant CUCTE(S).

NOTRUNC

applies only to COMPUTATIONAL
receiving fields in MOVE statements
and arithmetic expressions. If TRUNC
is specified, extra code is generated
to truncate the final intermediate
result of the arithmetic expression,
or the sending field in the 'MOVE
statement, to the number of digits
specified in the PICTURE clause of the
COMPUTATIONAL receiving field. If
NOTRUNC 1is specified, the compiler
assumes that the data being
manipulated conforms to PICTURE and
USAGE specifications. The compiler
then generates code to manipulate the
data based on the size of the field in
storage (halfword, etc.). TRUNC
conforms to the American National
Standard, while NOTIRUNC leads to more
efficient processing. This will
occasionally cause dissimilar results
for various sendinc fields Lkecause of
the different code generated to
perform the oreration.

determines if the compiler will
generate code to strip the sign when
comparing a signed external decimal
field to an alphanumeric field. If
ZWB is in effect, the signed external

Preparing COBOL Programs for Processing 37

decimal field is moved to an
intermediate field and has its sign
stripped before being compared to the
alphanumeric field. ZwB conforms to
the ANS standard, while NOZWB allows
the user to test input numeric fields
for SPACES to prevent aknormal
termination.

SXREF

NCSXREF
causes the compiler to write an
alphabetically-ordered cross-reference
list on SYSLST. You may want to use
the lister cross-reference information
in place of this option for large
COBOL programs, to decrease run time.

PMAP=h
enables the programmer to request a
relocation factor "h". If the PMAP
option is specified, the relocation
factor is included in the addresses of
the object code listing. The
relocation factor "h"™ is a hexadecimal
number of from one to eight digits.
If the PMAP option is not specified,
the relocation factor is assumed to be
zero. When PMAP is specified in a
segmented program, the listing for
segments of priority higher than the
segment limit (49, if the SEGMENT-
LIMIT clause is not specified), will
not be relocated. The PMAP option
has meaning only when LISTX or CLIST
and/or SYM (for the loc:t-ion of WORKING-
STORAGE) is in effect.

OPTIMIZE
NCOPTIMIZE
OPT

NOOPT

OPTIMIZE (OPT) causes optimized okject
code to be generated by the compiler.
The more efficient code generated con-
siderably reduces the amount of space
required by the object program. If
neither LINK nor DECK is specified in
the OPTION statement, then optimized
code is not generated by the compiler.

This option cannot be used if either the
svmbolic debug option (SYMDMP),
ment number option (STATE), or the flow
trace option (FLOW[=nn]) is requested.

FLOV [=nn]
provides the programmer with a formatted
trace (i.e., a list containing the pro-
gram identification and statement
numbers) corresponding to a variable
number of procedures executed prior to
an abnormal termination. The value "nn"
may range from 0 through 99. If "nn" is
not specified, a value of 99 is assumed.

FLOW and STXIT, and FLOW and OPT are
mutually exclusive options, i.e., only

38

the state-

one may be in effect during a given

compilation. In addition, FLOW and
STXIT are mutually exclusive at
execution time. Additional
information on the flow trace option
can be found in the chapter "Symbolic
Debugging Features."

STATE

NOSTATE

STATE provides the proyrarrer with
information about the statement being
executed at the time of an abnormal
termination of a job. It identifies
the program containing the statement
and provides the number of the
statement and of the verk being
executed. STATE and STXIT, STATE and
SYMDMP, and STATE and OPT are mutually
exclusive options, i.e., no more than
one may be in effect during a given
compilation. (However, the facilities
provided by STATE automatically exist
with SYMDFP.) In addition, STATE and
STXIT are mutually exclusive at
execution time. Additional
information on the statement number
option can be found in the chapter
"Symbolic Debugging Features."

SYNTAX, CSYNTAX, NOSYNTAX,
indicates whether the source text is
to be scanned for syntax errors only
and appropriate error messages are to
be generated. For conditional syntax
checking (CSYNTAX), a full compilation
is produced so long as no messages
exceed the C level. If one or more
E-level or higher severity messages
are produced, the compiler generates
the messages kut does not generate
object text.

Notes:
1. When the SYNTAX option is in
effect, all of the following
compile~-time options are
suppressed:

OPTION control staterent:
DECK, XREF

LINK,

CBL statement: SXREF, CLIST,
COUNT, VERBREF, VERESUM
2. When CSYNTAX is requested and one
or more D—- or E-level messages
occur, then the preceding options
are suppressed and the CBL option
FLAGE is made active.

Unconditicnal syntax checking is
assumed if all of the following
conmpile-tire options are
specified:

OPTION control statement: NOLINK,

NOXREF, NODECK

SUPMAP (and CLIST,
and VERBREF are

CBL statement:
SXREF, VERBSUM,
not specified)

4. Some compiler diagnostics do not
appear when SYNTAX or CSYNTAX is
in effect. These are listed in
"Program Checkout."

SYMDMP [=filenamel
indicates to the compiler that
execution-time dumps might be
requested for the program currently
being compiled. If dumps are desired,
the programmer must provide the
required control cards at execution
time.

Use of the symbolic debug option
necessitates the presence of an
additional work file, SYS005, at
compile time. The "filename"
parameter enables the programmer to
specify a name for the SYS005 file
that he can retain. If no filename is
specified, IJSYS05 will be used. When
several COBOL programs are link edited
together, the "filename" parameter
enables each to have a unique SYMDMP
name. For a tape file, only unlabeled
tapes may be used, and the filename in
the SYMDMP=filename parameter is
ignored.

SYMDMP and STXIT, SYMDMP and STATE,
and SYMDMP and OPT are mutually
exclusive options, i.e., no more than
one may be in effect during a given
compilation. (However, the facilities
provided by STATE are automatically
included with SYMDMP.) In addition,
SYMDMP and STXIT are mutually
exclusive at execution-time.
Additional information on the symbolic
debug option and the required
execution-time control cards can be
found in the chapter "Symbolic
Debugging. Features."

Note: If NODECK and NOLINK are requested

on the OPTION control statement and either
SYMDMP or OPT is specified on the CBL card,
the SYMDMP or OPT specification is ignored.

CATALR

NOCATALR
causes the compiler to generate CATALR
card images on the SYSPCH file if
OPTION DECK is in effect during
compilation. This will allow
cataloging of the compiler produced
object modules into the relocatable
library. The module names in the
CATALR cards adhere to the same rules
as the phase names in the compiler

produced PHASE cards according to the
segmentation and sort phase naming
conventions (see the sections on Sort
and Segmentation Features).

LIB

NCLIB
indicates that BASIS and/or COPY
statements are in the source prograr.
1f either COPY or BASIS is present,
LIB rmust be in effect. 1If COPY and/or
BASIS statements are not present, use
of the NOLIB option yields more
efficient compiler processing.

VERB

NOVERB
indicates whether procedure-names and
verb-names are to be listed with the
associated code on the object-program
listing. VERB has meaning only if
LISTX, CLIST, VERBSUM, VERBREF, COUNT
or READY TRACE are in effect. NOVERB
yields more efficient compilation.

A

LVL= B

C

D

NOLVL
indicates whether the compiler should
identify COBOL clauses and statements
in’'a DOS/VS COBOL source program that
do not conform to the Federal
Information Processing Standard. FIPS
recognizes four language levels: low,
low-intermediate, high-intermediate
and full. The FIPS Flagger provides
four levels of flagging from low (A)
to high (D) to conform to the four
levels of the FIPS.

VERBSUM

NOVERBSUM
provides a brief summary of verbs used
in the program and a count of how
often each verb was used. This option
provides the user with a quick search
for specific types of statements.
VERBSUM implies VERB.

VERBREF

NOVERBREF
provides a cross reference of all
verbs used in the program. This
option provides the programmer with a
quick index to any verb used in the
program. VERBREF implies VERB and
VERBSUM.

COUNT

NOCOUNT
generates code to produce verb
execution summaries at the end of
problem program execution. Each verb
is identified by procedure-name and by

Preparing COBOL Programs for Processing 39

statement number, and the number of
times it was used is indicated. 1In
addition, the percentage of verb
execution for each verb with respect
to the execution of all verbs is
given. A summary of all executable
verbs used in a program and the number
of times they are executed is
provided. COUNT implies VERB.

Note: If COUNT and STXIT are desired,
then either STXIT must be requested in
the program unit requesting COUNT, or
the program unit requesting COUNT must
be entered before the program unit
requesting STXIT. See the chapter
entitled "Execution Statistics" for
additional information on the COUNT
option.

LST Statement -- New Compiler Option Card

The LST statement is used to invoke the
lister, a portion of the compiler that
processes programs written in American
National Standard COBOL to produce a
reformatted source code listing containing
embedded cross-reference information, and
uniform indenting conventions.

The LST option card can be placed
anywhere between the EXEC statement and the
first statement of the COBOL program. It
may be placed between any other compiler
option cards. The options shown in the
following format may appear in any order.
Underscoring indicates the default case.

NODECK || NOCOPYPCH LSTONLY 2col

e ———

[DECK,][COPYPCH,] [LSTCOMPj [PROC=1COli

o — e e G oy
e e

LST
must begin in column 2 (column 1 must
be blank) and be followed by at least
one blank.

DECK

NODECK
indicates whether an updated source
deck is to be produced as a result of
the lister reformatting and/or the
update BASIS library.

COPYPCH

NCCOPYPCH

will punch updated and reformatted
copy libraries as a permanent part of
the source when DECK is specified.
When no updated source deck is

40

requested, an updated and reformatted
COPY library will be punched out.

LSTONLY

LSTCOMP
when LSTONLY is specified, the program
will not be ccmpiled, but a
reformatted listing will be produced
along with a deck if DECK has been
specified. LSTCOMP will provide a
source listing and will compile the
program as part of the job step.
LSTCOMP does not suppress CLIST.

PROC=1col
2col
will list the Procedure Division in
either single- or double-column
format. At least 132 print positions
are required on the printer for the
double-column format.

For more details on the lister program,

see the chapter entitled "Using the Lister
Feature".

Mutually Exclusive Options

In some of the preceding descriptions of
the CBL card options, restrictions have
been placed on the use of one ortion in
conjunction with others. It should be
noted that if these restrictions are
violated, the compiler ignores all but the
last of the conflicting options specified.
For this reason, if after a CBL card is
coded the programmer decides to use a new
option that is mutually exclusive with an
option on the original CBL card, a new CBL
card can be added rather than changing the
original card.

Changing the Installation Defaults

In order to change the compiler default
options to suit your installation, a new
member, C.CBLOPTNS, must be added to the
source statement library. This module must
contain CBL option cards specifying the
desired defaults. Resultant defaults may
be overridden at compilation timre by
supplying a CBL card in the comgpiler input
Stream.

Significant Characters for Various Options

The DOS/VS COBOL compiler selects the
valid options for processing by looking for
three significant characters of each key

option word. When the keyword is
identified, it is checked for the presence
or absence of the prefix NO, as
appropriate. The programmer can make the
most efficient use of the CBL card by using
the significant characters instead of the
entire option. Table 3 lists the
significant characters for each option.

Table 3. Significant Characters for
Various Options
r T 1
| | Significant |
| Option { Characters
F + !
| SEQ , 1 SEQ |
] FLAGE (W) 1 LAG, LAGW]
| BUF] BUF]
| SPACE] ACE |
i PMAP { PMA |
| SUPMAP | SUP |
| CLIST | CLI |
| TRUNC 1 TRU]
| APOST | APO]
l QUOTE | foife] |
| SXREF | SXR]
| STATE] STA |
| FLOW | FLO |
| LIB] LIB |
i SYMDMP | SYM]
[OPTIMIZE | OPT |
SYNTAX	SYN
CSYNTAX	csy
VERB	VER
1 ZWB ! ZWB [
LVL	LVL i
COUNT 1 cou]	
VERBSUM	VERBSUM
VEREREF I VERBREF	
STXIT	STX
] DECK i DEC	
] COPYPCH] COP	
LSTCOMP	STC
i LSTONLY | STO 1
] PROC | PRO 1
L L 4
Note: SYM on the CBL card should not be

confused with SYM on the OPTION card.

JOB CONTROL COMMANDS

Job control commands are distinguished
from job control statements by the absence
of // blank in positions 1 through 3 of
each command. They permit the operator to
adjust the system according to day-to-day
operating conditions. This is particularly
true in the area of device assignment,
where the operator may need to
(1) communicate to the system that a device
is unavailable, or (2) designate a
different device as the standard for a
given symbolic unit. Therefore, these
commands normally are not a part of the

regular job deck for a job. Jok control
commands tend to be effective across jobs,
whereas 7job control statements are confined
within a job.

Job control commands are discussed in
detail in the publication DOS/VS Svystem
Control Statements.

LINKAGE EDITOR CONTROL STATEMENTS

Preparing COBOL Programs for Processing

Object modules used as input to the
Linkage Editor must include linkage editor
control statements. There are four linkage
editor control statements: PHASE, INCLUDE,
ENTRY, and ACTION.

Linkage editor control staterments
initially enter the system through the
device assigned to SYSRDR as part of the
input job stream. PHASE and INCLUDE
statements may also be present cn SYSIPT or
in the relocatable library. 211 four
statements are verified for operation
(INCLUDE, ACTICN, ENTRY, or PHASE) and are
copied to SYSLNK to become input when the
Linkage Editor is executed.

Linkage editor control statements must
be blank in position 1 of the statement.
The operand field is terminated by the
first blank position. It cannot extend
beyond column 72.

The Linkage Editor is executed as a
distinct job step. Figure 5 shows how the
linkage editor function is performed as a
job step in three kinds of operations.

1. Catalog Programs in Core Image
Library. The linkage editor function
is performed immediately preceding the
operation that catalogs programs into
the core image library. When the
CATAL option is specified, programs
edited by the Linkage Editor are
cataloged in the core image library by
the Librarian after the editing
function is performed. The sequence
of this operation is shown in Part A
of Figure 5. Note that the input for
the LNKEDT function could contain
modules from the relocatable library
instead of, or in addition to, those
modules from the card reader, tape
unit, or mass storage unit extent
assigned to SYSIPT. This is
accomplished by naming the module(s)
to be copied from the relocatable
library in an INCLUDE statement.

40.1

40.2

Load-and-Execute. The sequence of
this operation is shown in Part B of
Figure 5. Specifying OPTION LINK
causes the Job Control Processor to
open SYSLNK, and allows the Job
Control Processor to place the object
module(s) and linkage editor control
statements on SYSLNK. As with the
catalog operation, the input can
consist of object modules from the
relocatable library instead of, or in
addition to, those modules from the
card reader, tape unit, or disk extent
assigned to SYSIPT. This is accom-
plished by specifying the name of the
module to be included in the operand
of an INCLUDE statement. After the
object modules have been edited and
placed in the core image library, the
program is executed. The blank
operand in the EXEC control statement
indicates that the program that has
just been link edited and temporarily
stored in the core image library is to
be executed.

Compile-and-Execute. Source modules

can be compiled and then executed in a

single sequence of job steps. 1In
order to do this, the COBOL compiler
is directed to write the object module
directly on SYSLNK. This is done by
using the LINK option in the OPTION
control statement. Upon completion of
this output operation, the linkage
editor function is performed. The
program is link edited and tem-
porarily stored in the core image
library. The sequence of this
operation is shown in Part C of Figure
5.

In each of the operations described in
Figure 5, if a private core image library
is assigned, output from the Linkage Editor
will be placed (either permanently or
temporarily) in the private core image
library rather than in the system core
image library. If the Linkage Editor is
executed in a batched-job foreground
partition, a private core image library
must be assigned. Private core image
libraries are a system generation option.

@ CATALOG AS PERMANENT PROGRAM

EXEC FCOBOL ——————sl OPTION CATAL } |
l PHASE PROGA, * \ |
e INCLUDE le
\ { object module} | EXEC PROGA |
ENTRY
EXEC LNKEDT

® LOAD AND EXECUTE

N,
% Sourc System %ﬂm
Maodule Looder
. % Execution
i
i |
| exec rconoL ‘ ST UK !
L {object module}
| ENTRY
EXEC LNKEDT
EXEC
© COMPILE AND EXECUTE
Core
Source System
Module Loader mﬂ
|
OPTION LINK :
EXEC FCOBOL [
ENTRY o
EXEC LNKEDY I
FXFC
Figure 5. Job Definition -- Use of the Librarian
Control Statement Placement ACTION and ENTRY statements, when
present, must be on SYSRDR. PHASE and
INCLUDE statements may be present on
The placement of linkage editor control SYSRDR, SYSIPT, or in the relocatable
statements is subject tc the following library.
rules:
1. The ACTION statement must be the first PHASE Statement
linkage editor control statement
encountered in the input stream;
otherwise, it is ignored. The PHASE statement must be specified if

the output of the Linkage Editor is to
consist of more than one phase cr if the

2. The PHASE statement must precede each program phase is to be cataloged in the
object module that is to begin a core image library. Each object module
phase. that begins a phase must be preceded by a

PHASE statement. Any object module not
preceded by a PHASE statement will be

3. The INCLUDE statement must be included in the current phase.
specified for each object module that
is to be included in a program phase. The statement provides the Linkage

Editor with a phase name and an origin
point for the phase. The PHASE statement
4. A single ENTRY statement should follow is in the following format:
the last object module when multiple

object modules are processed in a r
single linkage editor run. | PHASE name,origin(,NOAUTO]

Preparing COBOL Programs for Prccessing

41

name
is the symbolic name of the phase. It
is the name under which the program
phase is to be cataloged. This name
does not have to be the name specified
in the PROGRAM-ID paragraph in the
Identification Division of the source
program and, in the case of
segmentation and/or sort, it should
not be the same. It must consist of
from one to eight alphanumeric
characters. Phases that are to be
executed in a segmentation and/or sort
structure should have phase names of
from five to eight alphanumeric
characters, the first four of which
should he the same. 2An asterisk
cannot be used as the first character
of a phase name. If no phase name is
specified, a dummy phase name of
PHASE*** is used and execution stops
at end of compilation. The job is
then cancelled.

origin
indicates to the Linkage Editor the
starting address of this specific
phase. An asterisk may be used as an
origin specification to indicate that
this phase is to follow the previous
phase. This origin specification
format of the PHASE statement covers
all applications that do not include
setting up overlay structures. See
the chapter "cCalling and Called
Programs" for information on the PHASE
statement for overlay applications.

NOAUTO
indicates that the Automatic Library
Look-Up (AUTOLINK) feature is
suppressed for both the private
relocatable library and the system
relocatable library. (The use of
NOAUTO causes the AUTOLINK process to
be suppressed for that phase only.)
The AUTOLINK feature is discussed
later in this chapter.

INCLUDE Statement

The INCLUDE statement must be specified
for each object module deck or object
module in the relocatable library that is
to be included in a program phase. The
format of the INCLUDE statement is as
follows:

r 1
| INCLUDE [module-namel [, (namelist)] |

The INCLUDE statement has two optional
operands. When both operands are used,
they must be in the prescribed order. When
the first operand is omitted and the second

42

operand is used, a comma must precede the
second operand.

module-name
must be specified when the object
module is in the relocatable library.
It is not specified when the module to
be included is in the form of a card
deck being entered from SYSIPT.
module-name is the name under which
the module was cataloged in the
library, and must consist of from one
to eight alphanumeric characters.

(namelist)
causes the Linkage Editor to construct
a phase from the .control sections
specified in the list. Since control
sections are of no interest to the
COBOL programmer, users interested in
this option should refer to the
description of the INCLUDE statement
in the publication DOS/VS System
Control Statements.

ENTRY Statement

The ENTRY statement is required only if
the programmer wishes to provide a specific
entry point in the first phase produced by
the Linkage Editor. When no ENTRY
statement is provided, the Job Control
Processor writes an ENTRY staterent with a
blank oprerand on SYSLNK to ensure that an
ENTRY statement will be present to halt
link editing. The transfer address will be
the load address of the first phase. The
ENTRY statement is described further in the
publication DOS/VS_System Control

Statements.

ACTION Statement

The ACTION statement is used to indicate
linkage editor options. When used, the
statement must be the first linkage editor
statement in the input stream. The format
of the ACTION statement is as follows:

CLEAR
MAP
NCMAP
NOAUTO
NOREL
CANCEL
BG

F1

F2

F3

Fi4

ACTION

T |
R e e e, e i, e i e, ittt S e]

CLEAR
indicates that the entire temporary
portion of the core image library will
be set to binary zero before the
beginning of the linkage editor
function. CLEAR is a time-consuming
function and should be used only when
necessary.

MAP
indicates that SYSLST is available for
diagnostic messages. In addition, a
storage map is output on SYSLST.

NOMAP
indicates that SYSLST is unavailable
when performing the link edit
function. The mapping of storage is
not performed, and all linkage editor
diagnostic messages are listed on
SYSLOG.

NOARUTO
suppresses the AUTOLINX function for
both the private and systen
relocatable libraries during the link
editing of the entire progranm.
AUTOLINK is discussed later in this
chapter.

CANCEL
causes an automatic cancellation of
the job if any of the linkage editor
errors 2100I through 21701 occur.
These diagnostic messages can be found
in the publication DOS/VS System
Control Statements.

86, F1, F2, F3, and P4
are options used to link edit a
program for execution in a partition
other than that in which the link edit
function is taking place. See the
publication DOS/VS System Control
Statements.

NOREL
suppresses the relocating loader.

Link editing for a specific address is
performed.

AUTOLINK FEATURE

If any references to external-names are
still unresolved after all modules have
been read from SYSLNK, SYSIPT, and/or the
relocatable library, AUTOLINK collects each
unresolved external reference from the
phase. It then searches the private
relocatable library (if SYSELB has been
assigned) and the system relocatable
library for module names identical to the
unresolved names and includes these modules
in the program phase. This feature should
not be suppressed (via PHEASE or ACTION
statements) in linkage editor job steps
which include COBOL subroutines cataloged
in the relocatable library. See the
chapter "Calling and Called Programs" for
additional details.

RELOCATING LOADER FEATURE

The relocating loader feature allows
users to load single-phase and multi-phase
programs at any valid problem progran
address in the system. OUnder this option,
the linkage editor catalogs relocatable
phases into the core image library, and the
relocating loader in the supervisor assigns
the absolute machine addresses that are
necessary for program execution. This
means the user need retain only one copy of
the program in the core image library.

The relocating loader is an optional
feature, and must be specified at systenm
generation time.

Figure 6 illustrates options available
during link-editing.

Preparing COBOL Programs for Processing 43

Figure

44

6.

IS

ACTION = NOREL
SPECIFIED AT LINK=~
EDIT TIME
?

YES

'

LINKAGE—-EDITING FOR A
SPECIFIC PARTITION

— Default: Addresses will be
adjusted for the specified
virtual partition.

— Option: User may
specify linking for

LINKAGE EDITOR the associated real
PRODUCES partition.
RELOCATABLE
PHASES

WAS
SYSTEM GENERATED
WITH

RELOCATING LOADER
?

NO

}

This supervisor cannot
load relocatable phases.
The user should specify
ACTION=NOREL at
link-edit time, or generate
another supervisor with
relocating loader.

System retains flexibility of
loading in any partition.

Program may be included in
job stream for any partition
when program is loaded.

— Default: Program runs
in virtual mode.

— Option: User may specify
execution in associated
real partition.

Options Available During Link-Editing

DOS/VS supports four libraries: the
core image library, the relocatable
library, the source statement library, and
the procedure library. The core image,
relocatable, and source statement libraries
are classified as system libraries and
private libraries. The procedure library
exists only as a system library. The
system residence device (SYSRES) contains
the system libraries. Private libraries
can be contained on separate disk packs.
These libraries are discussed under
"pPrivate Libraries"™ in this chapter.
Executable programs (core image format) are
stored in the core image library;
relocatable object modules are stored isn
the relocatable library; source language
routines are stored in the scurce statement
library; catalogued procedures are stored
in the procedure library.

PLANNING TEE LIBEARIES

The components of the DGS/VS system are
shipped in three system libraries: the
core image library, the relocatable
library, and the source statement library.
B fourth library -- the procedure library
-- is available but it does not contain any
information when the cyster is shipped.
Most programs and procedures developed and
used by your installation will also be
stored in these libraries. 1In addition to
the system libraries, DOS/VS supports
private libraries which you can use to
either substitute for or supplement the
corresponding system libraries.

Planning the size, contents, and
location of these libraries according to
the needs of your instailation is an
essential part of the system generation
procedure. Such detailed planning will
ensure that:

¢ No disk space is wasted by components
not regquired in your installation.

e The libraries are large enough to allow
for future additions.

e The libraries are accessed by the
system with maximum efficiency.

LIBRARIAN FUNCTIONS

LIBRARIAN

The Librarian is a group of programs
that perform three major functions:

1. Maintenance
2. Service
3. Copy

Maintenance functions are used to
catalog (that is, add), delete, or renane
components of the four libraries, condense
libraries and directories, set a condense
limit for an automatic condense function,
reallocate directory and library extents,
and update the source statement and
procedure libraries.

The copy function is used either to
completely or selectively copy the disk on
which the system resides. Service
functions are used to translate information
from a particular library to printed
(displayed) or punched output.

Only the catalog maintenance function of
the Librarian is discussed in this
publication for the four system libraries.
In addition, the update function of the
source statement library is discussed. 3
complete description of librarian functions
can be found in the publication DQOS/¥S

CORE_IMAGE_LIBRARY

The core image library may contain any
numnber of programs. Each program consists
of one or more separate phases. Associated
with the core image library is a core image
directory which contains a unique
descriptive entry for each phase in the
core image library. These entries in the
core image directory are used to locate and
retrieve phases from the core image
library.

Cataloging _and Retieving Program Phases --—
Core Image Library

If a program is to be cataloged in the
core image library, the job control
statement // OPTION with the CATAL option

Librarian Functions 45

must be specified prior to the first
linkage editor control card, and must
precede the first PHASE card of the program
to be cataloged. Upon successful
completion of the linkage editor job step,
output from the Linkage Editor is placed in
the core image library as a perranent
menber. The program phase is cataloged
under the name specified in the PHEASE
statement.

If a phase in the core image library is
to be replaced by a new phase having the
same name, only the catalog function need
be used. The previously cataloged phase of
the same name is implicitly deleted from
the core image directory by the catalog
function, and the space it occupies in the
library can later be released by the
condense function.

Note: The necessary ASSGN control
statements must follow the // JOB control
statement if the current assignments are
not the following:

1. SYSRDR -- Card reader, tape unit, or
disk extent

2. SYSIPT -- Card reader, tape unit, or
disk extent

3. SYSLST -- Printer, tape unit, or disk
extent

4, SYSLOG -- Printer keyboard

5. SYSLNK -- Disk extent

The following is an example of
cataloging a single phase, FOURA, into the
core image library. (The program phase
POURR can be executed in the next job step
by specifying the // EXEC statement with a
blank name field.)

// JOB CATALOG

// OPTION CATAL
PHASE FOURA,*
IRCLUDE

{object deck}
/*
// LBLTYP TAPE
// EXEC LNKEDT
// EXEC
/&

To compile, link edit, and catalog the
phase FOURA into the core image library in
the same job, the following job deck could
be used:

// JOB CATALOG

// OPTION CATAL
PHASE FOURA,*

// EXEC FCOBOL

46

{source deck}
Ve
// EXEC LNKEDT
/%
/&

When the phase is executed in a
subseguent job, the EXEC statement that
calls for execution must specify FOUR:,
i.e., the name by which the phase has been
cataloged.

// JOB EXJOB
// EXEC FOURA

/&

Phases can be in either non-relocatable
or relocatable format. The non-relocatable
phases are loaded at the address computed
at link-edit time into a real or virtual
partition. The load addresses and address
constants of relocatable phases can be
modified by the relocating lcader. These
phases can be loaded at a yirtual address
different from the one for which it was
link-edited.

RELOCATABLE LIBRARY

The relocatable library contains any
number of modules. Each module is a
complete object deck in relocatable format.
The purpose of the relocatable library is
to allow the programmer to maintain
frequent 1y used routines in residence and
combine them with other modules without
recompiling.

Associated with the relocatable library
is the relocatable directory. The
directory contains a unicue, descriptive
entry for each module in the relocatable
library. The entries in the relocatable
directory are used to locate and retrieve
modules in the relocatable library.

MAINTENANCE FUNCTIONS

To reguest a maintenance function for
the relocatable library, the following
control statement is used:

// EXEC MRINT

Cataloging a Module -- Relocatable Library

The catalog function adds a module to
the relocatable library. A module in the
relocatable library is the output of a
complete COBOL compilation.

The catalog function implies a delete
function. Thus, if a module exists in the
relocatable library with the same name as a
module to be cataloged, the module in the
library is deleted by deleting reference to
it in the relocatable directory.

The CATALR control statement is required
to add a module to the relocatable library.
The format of the CATALR control statement
is:

r
| CATALR module-name [,v.ml]

b s d

module-name
is the name by which the module is
known to the control program. The
module-name consists of from one to
eight characters , the first of which
must not be an asterisk.

specifies the change level at which
the module is to be cataloged. v may
be any decimal number from 0 through
127. m may be any decimal number from
0 through 255. If this operand is
omitted, a change level of 0.0 is
assumed. A change level can be
assigned only when a module is
cataloged.

All control statements required to
catalog an object module must be read from
SYSIPT.

Note: If SYSRDR and/or SYSIPT are assigned
to a tape unit, the MAINT program assumes
that the tape is positioned to the first
input record. The tape is not rewound at
the end of the job. If a tape mark is
found, MAINT assumes end-of-job.

The following is an example of compiling
a source program and cataloging the
resultant module in the relocatable
library. The job deck is read from SYSIPT.

// JOB NINE
// OPTION DECK
// EXEC FCOBOL

{source deck}
/%
// PAUSE PLACE DECK AFTER CATALR CARD
// EXEC MAINT
CATALR MOD9

(punched deck goes here)
/*
/&

In the above example, as a result of the
compile step, the object module is written

on SYSPCH. The next job step catalogs the
object module (MOD9) into the relocatable
library. Since the object module must be
cataloged from SYSIPT, a message to the
operator instructs him to place the object
module on SYSIPT behind the CATALR
Sstatement.

The following is an example of
cataloging two previously created object
modules in the relocatable library:

/7 JOB EIGHT
/7 EXEC MAINT
CATALR MODSA

{object deckt?
CATALR MODS8B

{object deck}
/%
/&

An additional capability of the system
permits a programmer to compile a program
and to catalog it to the system
relocatable, or private relocatakle,
library in one continuous run. The
programmer inserts a CATALR statement in
his job control input stream preceding the
compiler execute statement. The CATALR
statement will be written on the SYSPCH
file (tape or mass storage device) ahead of
the compiler output when OPTION DECK is in
effect. The programmer then reassigns the
SYSPCH file as SYSIPT and executes the
MAINT program to perform the catalog
function. The output of the compilation
(on tape or mass storage device) may be
cataloged immediately or it may be
cataloged at some later time. It can also
be held after cataloging as backup of the
compilation.

The preceding method is recormended for
single-module object decks. In programs
for which the compiler produces multimodule

" object decks (when segmentation and/or SORT

are being used), it is necessary to use the
CBL card CATALR option. This option causes
a CATALR card to precede each object
module.

SOURCE_STATEMENT LIBRARY

The source statement library contains
any number of books. Each bcok in the
source statement library is composed of a
sequence of source language statements.

The purpose of the source statement library
is to allow the COBOL prograrmer to
initiate the compilation of a book into the
source program by using the COPY statement
or BASIS card.

Librarian Functions 47

Each book in the source statement
library is classified as belonging to a
specific sublibrary. Sublibraries are
defined for three programming languages:
Assembler, PL/I, and COBOL. Individual
books are classified by sublibrary names.
Therefore, books written in each of these
languages may have the same name.

Associated with the source statement
library is a source statement directory.
The directory contains a unique descriptive
entry for each book in the source statement
library. The entries in the source
statement directory are used tc locate
retrieve books in the source statement
library.

and

MAINTENANCE FUNCTIONS

To request a maintenance function for
the source statement library, the following
control statement must be used:

// EXEC MAINT

Cataloging a Book -- Source Statement
Library

The CATALS control statement is required
to add a book to a sublibrary of the source
statement library.

A book added to a sublibrary of the
source statement library is removed by
using the delete function. When a book
exists in a sublibrary with the same name
as a book to be cataloged in that
sublibrary, the existing book in the
sublibrary is deleted. The following is
the format of the CATALS control statement:

r
| CATALS sublib.library-namel,v.m[,C]] |
L J

ug

The operation field contains CATALS.

sublib
represents the sublibrary to which a
book is to be cataloged and can be:

Any alphanumeric character (0-9, A-2Z,
#, $, and a) representing source
statement libraries. The characters
A, C, E, and P have special uses:

A and E are used for the Assembler
sublibrary

C is used for the COBOL sublibrary
P is used for POWER in PL/I

‘The sublib qualifier is required. If
omitted, the operand will be flagged as
invalid and no processing will be done on
the book.

library-name
represents the name of the book to be
cataloged. The library-name consists
of from one to eight alphanumeric
characters, the first of which must be
alphabetic. It is the name the
programmer uses to retrieve the book
when using the source language COPY
statement or BASIS card.

specifies the change level at which
the book is to be cataloged. v may be
any decimal number from 0 through 127;
m may be any decimal number from 0
through 255. If this operand is
omitted, a change level of 0.0 is
assumed. The v.m operand becomes part
of the entry in the directory for the
specified book. Its value is
incremented each time an update is
performed on the book.

indicates that change level
verification is required before
updates are accepted for this book.

See the UPDATE control statement,
discussed later in this chapter, for its
relationship to the v.m and C operands of
the CATALS control statement.

In addition to the CATALS control
statement, a control statement of the
following form must precede and follow the
book to be cataloged:

BKEND [sublib.library-name],[SEQNCE],
{count],[CMPRSD]

L —

(= ——

211 operand entries are optional. When
used, the entries must be in the prescribed
order and need appear only in the BKEND
statement preceding the book to be
cataloged.

The first entry in the operand field is
identical to the operand of the CATALS
control statement.

SEQNCE
specifies that columns 76 to 80 of the
card images constituting the book are
to be checked for ascending sequence
numbers. If an error is detected in
the segquence checking, an error mes-
sage is printed. The error can be
corrected, and the book can be
recataloged.

count
specities the number of card images in
the book. When the count operand is
used, the card input is counted,
beginning with preceding BXEND
statement and including the subseguent
BKEND statement. If an error is
detected in the card count, an error
message is printed. The error can be
corrected, and the book can be
recataloged.

CMPRSD
indicates that the book to be
cataloged in the library is in
compressed format as a result of
CMPRSD having been specified when
performing a PUNCH or DSPCH service
function. These functions are
described in the publication DOS/V¥S
System Control Statements.

Card input for the catalog function is
from the device assigned to SYSIPT. The
CATALS control statement is also read from
the device assigned to SYSIPT.

Prequently used Environment Division,
Data Division, and Procedure Division
entries can be cataloged inm the COBOL
sublibrary of the source statement library.
B book in the source statement library
might consist, for example, of a file

description of the Data Division or a
paragraph of the Procedure Division.

The following is an example of
cataloging a file description in the COBOL
sublibrary of the source statement library.

// JOB ANYNAME
// EXEC MAINT
CATALS C.FILEA
BXEND C.FILEA
BLOCK CONTAINS 13 RECORDS
RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS RECA.

BXEND
/%
/&
Betrieving a Cataloged Book -— COBOL COPY
Statement: The preceding file description

can be included in a COBOL source progran
by writing the following statement:

FD FILEB COPY FILEA.

¥ote that the library entry does not
include ¥D or the file-name. It begins
with the first clause that is actually to
follow the file-name. This is true for all
options of the COPY statement. However,
data entries in the library may have a
level number (01 or 77) identical to the
level number of the data-name that precedes
the COPY statement. In this case, all
information about the library data-name is
copied from the library and all references
to the library data-name are replaced by
the data-name in the program if the
REPLACING option is specified. The change
is made only for this program. The entry
as it appears in the library remains
unchanged. Por example, assume the
following data entry is cataloged under the
library-name DATAR,

01 PAYFILE USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE ¢
OCCURS 1 DEPENDING ON CALC OF
PAYFILE.

and the following statement is written in a
COBOL source module:

01 GROSS COPY DATAR REPLACING PAYFILE
BY GROSS.

The compiler interprets this as:

01 GROSS USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE S
OCCURS 1 DEPENDING ON CALC OF
GROSS.

Librarian Functions 49

Note also that the library-name is used
to identify the book in the library. It
has no other use in the COBOL progranm.

Text cataloged in the source statement
library must conform to COBOL margin
restrictions.

The COBOL COPY statement is discussed in

detail in the section "Extended Source
Program Library Facility."

Updating Books —-- Source Statement Library

The update function is used to make
changes to properly identified statements
within a book in the source statement
library. Statements are identified in the
identification field, columns 73 through
80, which is fixed in format as follows:
Columns 73-76 Program identification
which must be constant
throughout the book.

Columns 77-80 Sequence number of the
statement within the
book.

One or more source statements may be
added to, deleted from, or replaced in a
book in the library without the necessity
of replacing the entire book. The update
function also provides these facilities:

1. Resequencing statements within a book
in the source statement library

2. Changing the change level (v.m) of the
book

3. Adding or removing the change level
requirement

4. Copying a book with optional retention
of the o0ld book with a new name (for
backup purposes)

The UPDATE control statement is used for
the update function and has the following
format:

-
UPDATE sublib.library-name,[s.book1],|
[vem],[nn] |

J

po ——

The operation field contains UPDATE.

sublib
represents the sublibrary that
contains the book to be updated. It
may be any of the characters 0 through
9, R through Z, #, $, or 2.

50

s.book1

nn

provides a temporary update option.
The o0l1d book is renamed s.bookl and
the updated book is named
sublib.library-name. s indicates the
sublibrary that contains the olgd,
renamed book. It may be one of the
characters 0 through 9, A through 2z,
#, $, or @. If this operand is not
specified, the o0ld book is deleted.

represents the change level of the
book to be updated. ¥ may be any
decimal number from 0 through 127; n
may be any decimal number from O
through 255. This operand must be
present if change level verification
is to be performed. Use of the
optional entry C in the CATALS control
statement at the time the book is
cataloged in the library determines
whether change level verification is
reqguired before updating. If the
directory entry specifies that change
level verification is not required
before updating, the change level
operand in the UPDATE control
statement is ignored.

If the change level is verified, the
change level in the book's directory
entry is increased by 1 by the systen
for verification of the next update.
If m is at its maximum value and an
update is processed, m is reset to O
and the value of ¥ is increased by 1.
If both v and m are at their maximun
values and an update is processed,
both v and m are reset to 0.

represents the resequencing status
required for the update. pn may be a
1- or 2-character decimal number from
1 through 10, or it may be the word
NO. If nn is a decimal number, it
represents the increment that will be
used in reseguencing the statements in
the book. If nn is NO, the statements
will not be resequenced. If nn is not
specified, the statements will be
resequenced with an increment of 1.
When a book is resequenced, the
sequence number of thefirst statement
is 0000. Por example, if a book is
cataloged in the source statement
library with sequence numbers ranging
from 0010 through 1000 with increments
of 5 for each statement:

and nn is not specified when the
update function is performed, the book
is resequenced with numbers 0000,
0001, 0002, ... etc.

and NO is specified, insertions,
deletions, and/or replacements are
made with no effect on the original
sequence numbers.

ana npn is specified as 2, the book is
resequenced with numbers (6000, 0C02,
0604, ... etc., regardless of the
original sequencing of the book in the
library or the sequence numbers of the
added or replacement cards.

The UPDATE control statement is followed
by ADD, DEL ({(delete), and/or REP (replace)
control statements as reguired, followed by
the terminating END statement. The ADD,
DEL, REP, and EFD statements are identified
as update control statements by a right
parenthesis in the first position (column 1
in card format). This is a variation from
the general librarian control statement
format; thus, it clearly identifies these
control statements as part of the update
function.

ADD Statement: The ADD statement is used
for the addition of source statements to a
book. The format is:

T]
| } ADD seg-no
L "]

ADD indicates that source statements
following this statement are to be added to
the book.

seg-no
represents the sequence number of the
statement in the book after which the
new statements are to be added. It
may be any decimal number consisting
of from one to four characters.

DEL Statement: The DEL statement causes
the deletion of source statements from the
book. The format is:

r 1
! } DEL first-seq-no[,last-seg-no] i

L 3

DEL indicates that statements are to be
deleted from the book.

first-seg-no

last-seg-no
represent the sequence numbers of the
first and last statements of a section
to be deleted. Each number may be a
decimal number consisting of from cne
to four characters. If last-seg-no is
not specified, the statement
represented by first-seg-no is the
only statement deleted.

REP Statement: The REP statement is used
when replacement of source statements is
reguired in a book. The format is:

¥ L

|) REP first-seg-nof ,last-seg-no]} |

-

REP indicates that source statements
following this statement are to replace
existing statements in a book.

first-seq-no

last-seg-no
represent the sequence numbers of the
first and last statements of a section
to be replaced. Each number may be a
decimal number consisting of from one
to four characters. Any number of new
statements can be added to a book when
a section is replaced. (The number of
statements added need not egual the
number of statements heing replaced.)

Sequence number 9999 is the highest
number acceptable for a statement to be
updated. If the book is so large that
statement seguence numbers have "wrapped
around" (progressed from 9998, 9999, to
0000,0001), it will not be possible to
update statements 0000 and CG001.

END Statement: This statement indicates
the end of updates for a given book. The
format is:

r L

1) END [v.m[,C]]

represents the change level to be
assigned to the book after it is
updated; v may be any decimal number
from 0 through 127. m may be any
decimal number from 0 through 255.
This operand provides an additional
means of specifying the change level
of a book in the library. (The other
method is through the use of the v.m
operand in the CATALS statement.)

indicates that change level
verification is required before any
subsequent updates for a given book.

If v.m is specified and C is omitted,
the book does not require change level
verification before a subsequent update.
This feature removes a previously specified
verification requirement for a particular
book.

If both optional operands are omitted,

the change level in the book's directory
entry is increased as a result of the

Librarian Functions 51

update, and the verification requirement
remains unchanged.

Control Statement Placement: Control
statement input for the update function,
read from the device assigned to SYSIN,
must be in the following order:

1. The JOB control statement.

2. The ASSGN control statements, if the
current assignments are not those
required. The ASSGN control
statements that can be used are SYSIN,

croT A~

SYSLST, and 5Y3L0G.

3. The EXEC MAINT control statement.

4. The UPDATE control statement.

5.) ADD,) DEL, or) REP statements with
appropriate source statements.

6.) END statement.
7. The /* control statement.

8. The /& control statement, which is the
last control statement of the job.

The source statement library can also be
updated by using the DELETE and INSERT
cards. These are discussed in "Extended
Source Program Library Pacility"™ in this
chapter, and in the publication IBM_DOS
Full American Natiopal Stapndard COBOL.

UPDATE Function —- Invalid Operand Defaults

UPDATE Statement:

1. If the first or second operand is
invalid, the statement is flagged, the
book is not updated, and the remaining
control statements are checked to
determine their validity.

2. If change level verification is
required and the incorrect change
level is specified, the statement is
flagged, the book is not updated, and
the remaining control statements are
checked to determine their validity.

3. If the resequencing operand is

invalid, reseguencing is done in
increments of 1.

52

ADD, DEL, or RFP Statements:

1. If there is an invalid operation or
operand in an ADD, DEL, or REP
statement, the statement is flagged,
the book is not updated, and the
remaining control statements are
checked to determine their validity.
All options of the UPDATE and END
statements are ignored.

2. The second operand must be greater
than the first operand in a DEL or KEP
statement. If not, the statement is
considered invalid and is flagged, the
book is not updated, and the remaining
control statements are checked to
determine their validity. All options
of the UPDATE and END statements are
ignored.

3. 1311 updates to a book between an
UPDATE statement and an END statement
nust be in ascending seguential order
of statement sequence numbers. The
first operand of a DEL or REP
statement must be greater than the
last operand of the preceding control
statement. The operand of an ADRD
statement must be ecual to or greater
than the last operand of the preceding
control statement. Consecutive ADD
statements must not have the same
operand. If these conditions are not
met, the default is the same as for
items 1 and 2.

END Statement: If the first operand of the
END statement is invalid, the statement is
flagged, both operands are ignored, and the
book is updated as though no operands were
specified. If the second operand is
invalid, the statement is flagged, the
operand is ignored, and the book is updated
as though the second operand were not
specified.

Out-of-Sequence Updates: If the source
statements to be added to a book are not in
sequence or do not contain sequence
numbers, the book is updated, and a message
indicating the error appears following the
END statement. If the reseguencing option
has been specified in the UPDATE statement,
the book is sequenced by the specified
value, and subsequent updating is possible.
If the resequencing option is not
specified, the book is resequenced in
increments of 1, and subsequent updating
will be possible. If the resequencing
option NO is specified, the boock will be
out of sequence, and subseguent updating
may not be possible.

The Procedure Library

The procedure library is a new system
library that may be used to store -- in
card image format --

e Frequently used sets, procedures, of
job control and linkage editor
statements (basic support).

¢ Procedures additionally containing
inline SYSIPT data, especially control
statements for system utility and
service programs (extended support).
The inline SYSIPT data must be
processed under control of the
device-independent sequential IOCS or
by IBM-supplied service programs and
language translators.

The procedure library is part of SYSRES,
so the maintenance and service functions
available for the other DOS/VS libraries
will also support the procedure library.

Cataloged procedures may ke included in
the job control input stream by a job
control statement and temporarily modified
by overwrite statements. For more details
on cataloged procedures, see DOS/VS System
Control Statements.

MAINT, PROCEDURE LIBRARY

To request a maintenance function for
the procedure library, use the following
EXEC control statement:

// EXEC MAINT

One or more of the maintenance functions
(catalog, delete, rename, condense, set
condense limit, or reallocate) can be
requested within a single run. Any number
of procedures within the procedure library
can be acted upon in this run. Further,
one or more of the maintenance functions
for either of the other three libraries
(core image, source statement, or
relocatable) can be requested within this
run, for the same MAINT program maintains
all four libraries.

Catalog

The control statement required to add a
procedure to the procedure library is the
CATALP statement. Any number of procedures
may be cataloged in a single run. Each
procedure must immediately follow the
respective CATALP statement.

Statement Format:

CATALP procedurenamel,VvM=v.m] [,E0P=yy]
NO
«DATA=YES

Each control statement in the procedure
library should have a unique identity.
This identity is required to modify the job
stream at execution time. Therefore, when
cataloging, identify each control statement
in columns 73-79 (blanks may ke embedded).

procedurename
represents the name of the procedure
to be cataloged. The procedurename
consists of one to eight alphameric
characters, the first of which must be
alphabetic. It must not be ALL.

VM=v.m
specifies the change level at which
the procedure is to be cataloged. v
may be any decimal number from 0-127.
m may be any decimal numker from
0-255. 1If this operand is omitted, a
change level of 0.0 is assumed.

A change level can be assigned only
when a procedure is cataloged. The
change level is displayed and punched
by the service functions.

EOP=yy
specifies a two-character
end-of-procedure delimiter. The EOP
parameter can be any combination of
characters except /*, /&, //; it must
not contain a blank or a comma. The
system assumes /+ as default
end-of-procedure delimiter. Otherwise
you can omit the EOP parameter.

DATA=YES
specifies that a procedure contains
SYSIPT inline data.

These procedures can only be executed
in the extended procedure surport.

A procedure to be cataloged into the
procedure library may consist of Job
Control and linkage editor staterments and,
if the supervisor was generated with the
SYSFIL option, additional controcl
statements for IBM-supplied control and
service programs and data processed under
control of the device-independent
sequential IOCS. The end of a procedure. is
indicated by the /+ end-of-procedure
delimiter or by the end-of-procedure
delimiter as specified in the EOP
parameter.

If SYSIN is assigned to a tape unit, the
MAINT program assumes that the tape is
positioned to the first input record. The
tape is not rewound at the end of job.

Librarian Functions 53

Control statement input for the catalog
function, read from the properly assigned
device (usually SYSIN), is:

1. the JOB control statement, followed by

2. the ASSGN control statements, if the
current assignments are not those
required. The ASSGN statements that
can be used are SYSIN, SYSLST, and
SYSLOG. The ASSGN statements are
followed by

3. the EXEC MAINT control statement,
followed by

4. the CATALP control statement(s),
followed by

5. the module to be cataloged, followed
by

6. the /* control statement if other job
steps are to follow, or

7. the /& control statement, which is the
last control statement of the job.

For example:

/7 JOB CATPROC

ASSGN control statements,
if required

// EXEC MAINT
CATALP PROCA,EOP=AA,DATA=YES
control statements

SY3IPT inline data

/% END OF SYSIPT DATA

control statements

AA END OF PROCEDURE

The following restrictions apply when
you catalog procedures to the procedure
library:

1. A cataloged procedure cannot contain
control statements or SYSIPT data for
more than one job.

2. If the cataloged control statements
include the JOB statement, you must
not have a JOB statement when you
retrieve the procedure through the

(&)

k)

EXEC statement. Conversely, if the
JOB statement is not cataloged, a JOB
statement must precede the EXEC
statement that retrieves the
procedure.

3. A cataloged procedure must not include
any of the following control
statements because they are not
accepted when the procedure is
processed:

// ASSGN SYSRDR,X'cuu!
/7 RESET SY¥S

// RESET ALL

/7 RESET SYSRDR

// CLOSE SYSRDR,X'cuu'
/7 ASSGN SYSIPT,X*cuu'
// RESET SYSIPT only if SYSIPT
data is
included

// CLOSE SYSIPT,X'cuu'

4. cataloged procedures cannot be nested,
that is, a cataloged procedure cannot
contain an EXEC statement that invokes
another catalcged procedure.

Note: Maintenance cannot be performed in
the background partition on the procedure
library while a foreground partition is
using the library.

PSERV, PROCEDURE LIBRARY

To request a service function for the
procedure library, use the following EXEC
control statement:

// EXEC PSERV

One or more of the three service
functions can be requested within a single
run. Any number of procedures within the
procedure library can be acted upon in this
run.

CALLING CATALOGED PROCEDURES

A cataloged procedure is called by a job
that appears in the input stream or via an
operator command. The job must consist of
a JOB statement and an EXEC statement that
specifies the cataloged procedure name.

For example:

/7 EXEC PROC=VCOBCLG

The programmer can write cataloged
procedures which incorporate job control he
used frequently. For example, the
programmer may wish to catalog a procedure

for compiling, link-editing, and executing
a program. It is particularly useful for
compiling in a low-priority test partition
to which no card reader has been assigned.
Using cataloged procedures, the operator
can execute via the EXEC statement a
cataloged procedure from the console.

PRIVATE LIBRARIES

Private libraries are desirable in the
system to permit some libraries to be
located on a disk pack other than the one
used by SYSRES.

Private libraries are supported for the
core image library, the relocatable
library, and the source statement library,
on the 2311, 2314, 2319, 3330, and 3340
mass storage devices. However, the
following restrictions apply:

1. The private library must be on the
same type of disk device as SYSRES;
the private core-image library can be
on a type of device other than the one
SYSRES is on.

2. Reference may be made to a private
core image library only if SYSCLB is
assigned. If SYSCLB is assigned, the
system core image library cannot be
changed.

3. Reference may be made to a private
relocatable library only if SYSRLB is
assigned. If SYSRLB is assigned, the
system relocatable library cannot be
changed.

4. Reference may be made to a private
source statement library only if
SYSSLB is assigned. If SYSSIB is
assigned, the system source statement
library cannot be changed.

5. Private libraries cannot ke
reallocated.

6. The COPY function is not effective for
private libraries except when they are
being created.

An unlimited number of private libraries
is possible. However, each must be
distinguished by a unique file
identification in the DLBL statement for
the library. No more than one private
relocatable library and one private source
statement library may be assigned in a
given job.

The creation and maintenance of private
libraries is discussed in the publication
DOS/VS System Control Statements.

Determining the Location of the Libraries

Having decided which libraries you want
in your system, you must determine where on
the available devices these likraries are
to be placed. BAll system libraries must
reside in the SYSRES extent of the system
disk pack in a predefined sequence (Figure
7). Although it is theoretically possible
to have private libraries on the system
pack (outside the SYSRES extent), this is
noct recommended because it involves
increased moverment of the disk arm.

Librarian Functions 55

Cylinder 0

Label Information

Core Image Library

Relocatable Library

Source Statement Library

Procedure Library

<= end of SYSRES extent

Figure 7.

The directory area for each library is
not shown in the Figure 7. By definition,
all system libraries reside on the system
residence file (SYSRES). If you have
additional disk drives, you can define
private core image, relocatakle, and/or
source statement libraries on the extra
volumes. These volumes must be of the same
type as the SYSRES pack. The system
relocatable and system source statement
libraries can be removed from SYSRES and
established as private libraries; the
system core image library, however, must
always be present on SYSRES. It can be
supplemented but not replaced by a private
core image library. The procedure library
is supported only as a system library; you
cannot create a private procedure library.

56

The Relative Location of the Four System Libraries

SOURCE LANGUAGE CONSIDERATIONS

To use the private source statement
library for COPY, BASIS, INSERT, and
DELETE (see "Extended Source Program Library
Facility" for further details), the ASSGN,
DLBL, and EXTENT contrcl statements that
define this private library must be present
in the job deck for compilation (unless
they are permanently set up by the
installation). When present, a search for
the book is made in the private library.
If it is not there, the system library is
searched. If the staterents for the
private library are not present, the system
library is searched. A prograrmer may
create several private libraries, but only
one private library can be used in a given
job.

EXTENDED SOURCE_ PROGRAM LIBRARY FACILITY

A complete program may ke included as an
entry in the source statement library by
using the catalog function. This program
can then be retrieved by a BASIS card and
compiled in a subsequent job.

The followina control statements would
be used to catalog the program SAMPLE as a
book in the COBOL sublibrary of the source
statement library:

// JOB CATALOG

// EXEC MAINT
CATALS C.SAMPLE
BKEND C.SAMPLE

{source program}

BKEND
/*
/&

When compiling a program that has been
cataloged in the COBOL sublibrary of the
source statement library, a BASIS card
brings in an entire source program. The
following control statements could be used
to compile the cataloged program SAMPLE:

// JOB PGM1
// OPTION LOG,DECK,LIST,LISTX,ERRS
// EXEC FCOBOL

CBL LIB

BASIS SAMPLE

Ve

/&

INSERT or DELETE cards may follow the
BASIS card if the user wishes to modify the
pook SAMPLE before it is processed by the
compiler. The original source program must
have been coded with sequence numbers in
columns 1 through 6 of each source card.

The INSERT statement will add new source
statements after the specified sequence
numbers. The DELETE statement will delete
the statements indicated by the sequence
numbers, or will delete more than one
statement when the first and last sequence
numbers to be deleted are specified,
separated by a hyphen. Source program
cards may follow a DELETE card for
insertion before the card following the
last one deleted. The sequence numbers in
columns 1 through 6 are used to update
COBOL source statements at compilation
time, and are in effect for the one run
only.

Assume that a company runs its payroll
program each week as a source program taken

from the source statement library. The
name of the program is PAYROLL. During a
particular year, the old age insurance tax
(FICA) is deducted at the rate of u4-2/5%
each week for all personnel until earnings
exceed $7800. The coding to accomplish
this is shown in Figure 8.

Now, however, due to a change in the old
age tax laws, tax is to be taken out until
earnings exceed $10800 and a new percentage
is to be placed. The programmer can code
these changes as shown in Figure 9.

The altered program will contain the
coding shown in Figure 10.

Reformatted Source Deck

By specifying the DECK option on the IST
card, a new COBOL source deck can be
produced that reflects the reformatted
source listing. This deck may be saved in
a BASIS library, used directly as input to
the compiler, or punched onto cards.
Because of reformatting, the new deck may
contain more cards than the original, but
the difference is not great enough to cause
any appreciable increase in compilation
time. The output deck differs from the
listing as follows:

1. References, footnotes, and blank lines
are omitted.

2. Literals will be repositicned, if
needed, to assure proper continuation.

3. Statement numkers are converted to
card numbers.

a. The statement number is multiplied
by 10, and leading zeros are added
as necessary to fill columns 1
through 6.

b. Comment and continuation cards are
numbered one higher than the
preceding card.

C. Statement-beginning cards are
given the higher of the two
numbers produced by the first two
rules.

The use of this feature avoids having to
resequence cards for permanent updating
after they have been tested by temporary
updating using the BASIS feature; it also
avoids the errors incurred during that
resequencing process.

Librarian Functions 57

r
1000730
| 000735

IF ANNUAL-PAY GREATER THAN 7800 GO TO PAY-WRITE.
IF ANNUAL-PAY GREATER THAN 7800 - BASE-PAY GO TO LAST-FICA.

1000740 FICA-PAYR. COMPUTE FICA-PAY = BASE-PAY * .044

|
] 000745 MOVE TAX-PAY TO OUTPUT-TAX. |
1000750 PAY-WRITE. MOVE BASE-PAY TO CUTPUT-BASE. |
{000755 ADD BASE-PAY TO ANNUAL-PAY. |
T . |
I . |
I . |
1000850 STOF RUN. |
L F]

Figure 8. Sample

Coding to Calculate FICA

r
|// JOB PGM2

|7/ OPTION LOG,DECK,LIST,LISTX,ERRS

| // EXEC FCOBOL
| CBL QUOTE, LIB
| BASIS PAYROLL

| DELETE 000730-000740
1000730 IF ANNUAL-PAY GREATER THAN 10800 GO TO PAY-WRITE.
1000735 IF ANNUAL-PAY GREATER THAN 10800 - BASE-PAY GO TU LAST-TAX.

| 000740 TAX-PAYR.
j7*
L

COMPUTE TAX-PAY = BASE-PAY * .0585

bt s e e e . e s e e e e

Figure 9. Altering a Program from the Source Statement Library Using INSERT and DELETE

Cards

.
1000730

| 000735

| 000740 TAX-PAYR.
] 000750

| 000760 PAY-WRITE.
[000770

000850

[e s

- 1
IF ANNUAL-PAY GREATER THAN 10800 GO TC PAY-WRITE. |
IF ANNUAL-PAY GREATER THAN 10800 - BASFE-PAY GO TO LAST-TAX.
COMPUTE TAX-PAY = BASE-PAY* .(0585. |
MOVE TAX-PAY TO OUTPUT-TAX. |
MOVE BASE-PAY TO OUTPUT-BASE. |
ADD BASE-PAY TO ANNUAL-PAY. |
I
I
I
I
E}

STOP RUN.

Figure 10. Effect

58

of INSERT and DELETE Cards

The DOS/VS COBOL compiler, COBOL object
module, Linkage Editor, and other system
components can produce output in the form
of printed listings, punched card decks,
diagnostic or informative messages, and
data files directed to tape or to mass
storage devices. This chapter gives the
format of and describes this output. The
same COROL program is used for each
example. “Appendix A: Sarple Program
Output" shows the output formats in the
context of a complete listing generated by
the sample program.

COMPILER OUTPUT

The output of the compilation job step
mray include:

e A printed listing of the job control
statements

e A printed listing of the statements
contained in the source program

e A glossary of compiler-generated
information about data

e Global tables, register assignments,
and literal pools

¢ A printed listing of the object code
¢ A condensed listing containing only the
relative address of the first generated
instruction for each verb
s Compiler statistics
e Compiler diagnostic messages
s Cross-reference listings
¢ System messages
e En object module
e FIPS diagnostic messages
The presence or absence of the
above-mentioned types of compiler output is
determined by options specified at system
generation time. These options can pe
overridden or additional options specified

at compilation time by using the OPTION
control statement and the CBL card.

INTERPRETING OUTPUT

The level of diagnostic message printed
depends upon the FLAGW or FLAGE option of
the CBL card.

All output to be listed is written on
the device assigned to SYSLST. If SYSLST
is assigned to a magnetic tape, COBOL will
treat the file as an unlabelled tape. Line
spacing of the source listing is controlled
by the SPACEn option of the CRL card and by
SKIP 1/2/3 and EJECT in the COBOL source
program. (The lister feature ignores these
commands.) The number of lines per page
can be specified in the SET cormrand. In
addition, a listing of input/output
assignments can be printed on SYSLST by
using the LISTIO ccntrol statement.

On each page of the output, there is a
header which contains the PROGRAM-ID, date
and time of compilation, as well as an
indication of the modification level of the
ccmpiler which produced this listing.

Figure 11 contains the compiler output
listing shown in "Appendix A: Sample
Program Output." Each type of output is
numbered, and each format within each tyre
is lettered. The text below and that
following the fiqure is an exglanation of
the figure.

(:) The listing of the job control
statements associated with this job
step. These statements are listed
because the LOG option was specified
at system generation time.

(:) Compiler opticns. The CRL card, if
specified, is printed on SYSLST unless
the LIST opticn is suppressed.

(:) The source module 1listing. The
statements in the source program are
listed exactly as submitted except
that a compiler-generated card number
is listed to the left of each line.
This is the number referenced in
diagnostic messages and in the object
code listing. It is also the number
printed on SYSLST as a result of the
source language TRACE statement (if
NOVERR is in effect). The source
module is not listed when the NOLIST
option is specified.

Interpreting Output 59

// JCE SAMPLE
/7 OPTION NODECK,LINX,LIST,LIZTX,SY4,ERRS
// EXEC FCOECL

%0,

IBM DOS VS COBOL REL 1.0 PP NO. 5746-CBl

CEL QUOTE,OPT,SXREF,LVL=3a
€0001 G00010 IDENTIFICATIGN LIVISICN.
€0002 000020 PROGRAM-ID. TESTRUW.

€CCO3 AUTHCR. PROGRAMMER NANE.

ccoon INSTALLATION. NEW YORK DLVELOFELNT CENTER

GG005 CATE-WRITTEN. FEBRUARY 18, 1974

CC006 DATE-CCMPILED. 03/03/74

CcL007 REMERKS. THIS FROGRAN HAS EELN WRITTEN AS A SAMPLL PROGRAN FOR
€0co8 CCECL USERS. IT CRSATES AN OUTPUT FIL: ANL READE IT BACK
€G009 AS INPUT.

¢oo10 000100

00011 C0011C ENVIRONMENT LIVISIOWN.

00C12 000120 COJFIGURATION SECTION.

¢0013 000130 SOURCL-COMPUTEK. IBM-370.

€001y 000140 CBJLCT-CCMPUTEK. I8M-370.

c0C15 00015C¢ INPUT-OUTPUT SECTIOW.

c0016 000160 FILE-CCNTROL.

€0017 000170 SELECT FILE-1 ASSIGH TO SYS008-UT-240C-5.
¢oo18 ¢00180 SELECT FILE-2 ASSIGH TO SY¥S008-UT-2400-S.
coo019 000190

C0C56 060550 PROCEDURE DIVISION.

€C057 EEGIN.)
CcCO058 000570 NOTF THAT THE FOLLOWING OFENS THz OUT?UT FILE TO B CRIATLL
€G059 000580 END INITIALIZES CCOUNTEKS.

€Gcu60 (60550 STFP-1. OPed OUTPUT FILL-1. MOVe LERC TO KOUJ1, JUMEx.

C0073 0u0720 STLEF-5. CLCSE r1LE-1. OPEM 1IN#UT FILE-2.

C0C74 660730 JOTF THAT 1HE FCLLOWIWG RIADS EACKR T4k FILk ANu SINGLES
0075 00074C CU1 EMPLOYEES WITH NO DEPLIUDENTS.

€0076 000750 $ThbP-6. READ FILE-2 RECORD INTO WOKK-KLCOURD AT iND GO TG S1if-8.
cuo77 00076C STLP-7. IF NO-CF-DEPENDENTS IS Z(UAL 1C "(" MOVE "i" 10

coo78 00077¢C NC-CF-DEPENLENTS. EXBIL1T NAMEU WCRE-EoCORD. GG 1C STEf-6.
cCC79 000780 sTrP-8. CLOSE FILE-2.

coogo 0u0790 STCF RUN.

Figure 11. Examples of Compiler Output (Part 1 of 4)

60

07.43.04

03/03/74

IBM DOS VS COBOL REL 1.0 PP NO. 5746-CBl 07.43.04 10/03/73

0

INTRNL NAME LVL SOURCE RANME BASE DISPL INTRNL NAME DEFIJITION USaGE R o 9o M
-148 FD FILE-1 DTF=01 DIFMT F
-179 01 RECORD-1 BL=1 G600 Bs o0cL2¢ GROUP

02 FIERLD-A BL=1 000 DS 20C DISP
FL FILE-2 D1F=02 DTFIT F
01 RECCRD-2 BL=2 000 DS 0CL20 GROUP
02 FIELC-A 2L=2 000 bs 20C DISP
01 FILLER BL=3 0co DS 0CL5é GROUP
02 KOUNT BL=3 000 LS 1R CONMP
02 ALPHABET BL=3 0c2 DS 26C DIs?
02 ALPHA BL=3 002 DS 1C DISP R O (:)
02 NUMER BL=3 01¢ DS 1H CCMP
02 DEPENDENTS BL=3 01E DS 20C DISp
02 DEPEND BL=3 01k Ds 1cC D1sP x O
01 WORK-RECORD 3L=3 038 DS 0CL20 GROUP
02 NAME-FIELD BL=3 038 Ds 1C DISP
02 FILLER BL=3 039 Ds 1c DISP
02 RECORD-NO BL=3 03a DS 4C DISP-NM
02 FILLER BL=3 03E Ls 1C DISP
02 LOCATION BL=3 03F DS 3cC DISP
02 FILLER BL=3 042 Ds 1c¢ DISF
02 NO-OF-DEPENDENTS BL=3 043 DS 2C VISP
02 FILLER BL=3 045 Ds 7¢ DISF
MEMORY MAP

IGT 0C3F8

SAVE AKEA GO3F8

SWITCH oouu0

TALLY ocuay

SORT SAVE oouys

ENTRY-SAVE oou4c

SORT CORE SIZE 00450

NSTD-REELS oous54

SORT RET 00456

WORKING CELLS 00458

SORT FILe SIZE 00588

SORT MCDE SIZE 0058C

PGT-VN 1IBL 00590

TGT-VN TBL 00594

SORTAB ADDRESS 0598

LENGTH CF VN TBL 0059C

LNGTH OF SORTAB GO059E

PGM ID 00540

A(INITY) 00528

UPSI SWITCHES 005AC

DESUG TABLE PIR 005B4

CURRENT PRIORITY 005B&

TA LENGTH 005E9

PRSL1 CELL PTIR 005EC

UNUSED 005C0

RESERVED 005Cy

VSAN. SAVE AREA ADDRESS 005¢8

UNUSED 005¢C

RESERVED 005D4

OVERFLCW CELLS 005EC

BL CELLS 005EC

LTFADR CELLS 0G5F8

FID CELLS 00600

TEMP STCRAGE 00608

TEMP STORAGE-2 00610

TEMP STCRAGE-3 00610

TEMP STORAGE-4 0061C (:)

BLL CELLS 60610

VLC CELLS 00614

SBL CELLS 00618

INDEX CELLS 00614

SUBADR CELLS 00614

ONCTL CELLS 0061C

PFMCTL CELLS 0061C

PFMSAV CELLS 0061C

VN CELLS 00620

SAVE AREA =2 00624

XSASW CELLS oo624

LITERAL POCL (HEX)

00640 (LIT+0) 00000061 OO01ASB5E C2D6D7C5 CS5405E5B C2C3D3D6 E2C5535B
00658 (LIT+24) C2C6C3D4 E4D35BSB C00GC0000

DISPLAY LITERALS (BCD)

6C66u4 (LTL+36) *WCRK-RECORD'

PGT 00628
DERUG LINKAGE AREA 00628
OVERFLCW CELLS 00628
VIRTUAL CELLS 0062C
PROCEDURE NAME CELLS 00638
GENERATED NAME CELLS . 00638
SUBDTF ADDRESS CELLS 0063C
VNI CELLS 0063C
LITERALS 00640
DISPLAY LITERALS 00664
PROCEDUKE BLOCK CELLS 00670

i t 61
Figure 11. Examples of Compiler Output (Part 2 of #4) Interpreting Outpu

IBM DOS VS COBOL REL 1.0 PP NO. 5746-CBl 07.43.04
REGLSTEk ASSIGNMENT
REG 6 BL =3 @
REG 7 BL =1
REG 8 BL =2
WORKING-STORAGE STARTS AT LOCATION 00100 FOR A LENGIH OF (0050. @
ERCCEDURE BLCCK ASSIGNMENT @
PEL = REG 11
PEL =1 STARTS AT LOCATION 000674 STATEMENT 60 @ @
57
000674 PN=02 BGU o+
60
000674 PN=03 EQU *
6C
000674 START EJU ¥
000674 58 BO C 048 L 11,648(6,12)
0006678 58 20 D 1F4 L 2,1F4(0,13)
00067C 41 10 C O1E ¥ 1,01E(0,12)
00C680 S8 00 D 200 L 0,200(0,13)
006684 18 40 L&t 4,0
000686 05 FO BALR 15,0
000688 50 00 F 008 ST 0,008(0,15)
00068C 45 00 F 00C BAL 6,06C(0,15)
060690 00000000 DC X'00000000"
000694 0a 02 sve 2
000696 41 00 D 200 1a 0,20000,13) D1F=1
00G692 58 FO C 008 L 15,468(G,12) V(ILECIMLG)
00069E 05 EF EALR 14,15
G006A0 58 10 D 206 L 1,20000,13) DTF=1
0006A4 96 10 1 020 o1 02C(1),X'10"
G006A8 50 20 D 1F4 ST 2,1F4€0,13) BL =1
00G6AC 58 70 D 1F4 L 7,1E400,13) BL =1
60
0006BO D2 01 6 00C C 018 MVC 006C(2,6),018(12) Dak=1-308 L1940
000686 D2 01 6 01C C C18 @ MVC 01C(2,6),018(12) CNM=1-359 L11+6
64
0006EC PN=04 EQU *
64
0006BC 48 30 C 01A La 3,01A(0,12)
0006CC 4A 30 6 00C AH 3,0€0€0,8)
0006C4 4E 30 T 210 cvD 3,210(0,13) T
0006C8 D7 05 D 210 D 210 XC 210(6,13),216(13) 15=01 TS=01
0006CE 94 OF D 216 N1 216113),X"OF' 18=01+6
00066D2 U4F 30 D 210 CVB 3,210(0,13) 18=01
0006D6 40 30 6 000 STH 3,000(0,6) DHN=1-308
00C6DA 48 30 C 01A La 3,01800,12) LiT+2
0006DE 4A 30 6 01C AH 3,01c(0,6) DiM=1-359
0006Ez 4E 30 T 210 cvD 3,210(0,13) 18=01
0006E6 D7 05 b 210 D 210 XC 210(6,13),210(13) 13=01 TS=01
0006EC 94 OF D 216 NL 216(13),X"CF' 18=01+6
GOC6FC 4F 30 D 210 CcVB 3,210(0,13) 15=01
0006F4 40 30 6 01C sTH 3,01C(C,6) OlM=1-359
64
0006F8 41 40 6 002 La 4,002(0,6) LNM=1-341
0CC6FC 48 20 6 000 Lii 2,060(0,6) DIN=1-308
006700 4C 20 C 01 M 2,014(0,12) LIT+2
000704 1A 42 BR 4,2
000706 5E 40 C 018 s 4,018(0,12) LIT+C
000704 50 40 D 21C ST 4,21c(0,13) sis=1
00070E 58 EO D 2iC L 14,21C(0,13) sBS=1
66 000712 D2 00 6 038 E 000G MVC 038(1,6),00G(14) ONM=1-434
000718 41 40 6 OLE LA 4,61E(0,0) LhM=1-354
00071C 48 20 6 000 Lii 2,000(0,6) CRE=1-308
000720 4C 20 C 01A Mid 2,014(0,12) LIT+2
000724 1A 42 AR 4,2
006726 SE 40 C 018 s 4,018(0,12) L1T+C
000723 50 40 T 220 ST 4,220(0,13) ses=2
00072F 58 FO D 220 L 15,220(6,13) SBS=2
000732 D2 00 6 043 F 000 MVC G43(1,6),000(15) LiM=2-37 Ciki=1-394
000738 92 40 6 Ouy MVI GU4(6) ,X°40" DNM=2-37+1
STATISTICS SOURCE RECORDS = 80 DATA ITEMS = 22 NC OF VERES = 28
STATISTICS PAR1ITION SIZE = 655170 LINE COUNT = 56 BUFFER SIZE = 512
#CP1ICNS IN EFFECT* PMAP RELOC ADR = NCNE SPRCING = 1 FLOW = OBk
OFTIONS 1N EFFECT LISTX QUOTE SYN JOCATALR LIST LIKK NCGTXIT
#*CPTICNS IN EFFECT#+ NOCLIS1 FLAGW ZWE NOSUPMAF XREF FRRS SXRLF
CF1ICNS IN EFFECT NOSTATE TRUNC SEL NOSYMDME NCDECK NCVERE NCSENTAX

Figure 11.

Examples of Compiler Output (Part 3 of 4)

10/03/73

NCLLE

LVL=4

IBM DOS VS COBOL REL 1.0 PP NO. 5746-CBl 07.43.04 03/03/7y

@ CROSS-REFERENCE DICTICNARY
CATA NAMES DEFN REFERENCE
ALPdA 000042 000064
ALPHABRT 000041
CEPEND 000045 000066
DEPENLENTS 000044
FIELD-A 000029
FIELD-A 000037
FILE-1 000017 000060 000068 000673
FILE-2 000018 000073 00C076 000079
KCUNT 000040 000060 000064 006066 ©00070
LCCATICN G000S1
NAME-FIELD €00047 000064
NC-CF-DEPENDERTS 000053 000066 000077
NUMBR 000043 000060 000064 000067
RECCrD-NO 000049 000067
RECORD-1 000028 000068 @
RECCRD-2 000036 000076
WCRK-RECORD 000G48 000068 000076 000078

PRCCEJURE NAMLS DEFN REFERENCE
BEGIN 000057

STEP-1 000660

E’IEP-Z 000064 000070
STEP-3 000068 000070
STEP-4 000070

STEP-5 GG0073

STEP-6 060076 000078
STIEP-7 000077

STEP-8 000079 000076

CARD on MESS% @
<:)3306u LA5011I-W HIGH ORDER TRUNCATION MIGHI CCCUR. (:)

CCO64 ILA5011I-W HIGH ORDER TRUNCATION MIGHT OCCUR.
FEDERAL INFORMATICN PROCESSING STANDARDS (FIPS) LCIAGNOSIIC MESSACES PAGE 1
@SNEMBER ‘® MESSAGE @
C6006~~ ILAB003I-W DATE-COMPILED PARAGRAPH IS AN EXTENSION TC ¢IPS LEVEL A.
€0025 ILABOC2I-W RECORDING MODE IS CLAUSE IS AN EXTEWSION TO ALL FIPS LEVELS.
0034 ILAS002I-W RECCRDING MODE IS CLAUSE IS AN EXTENSION TO ALL FIPS LEVELS.
C0CS4 ILABOO3I-W SPACES IS AN EXTENSION TO FIPS LEVEL 2.
0060 ILAB003I-W COMMA CR SENMICOLGN AS EUNCTUATION IS AN EXTENSION TO FIPS LEVEL A.
C0Cb2 ILABOO3I-W COMMA CR SEMICOLON AS PUNCTUATICN IS AN EXTZNSION TO FIPS LEVEL A.
€0662 ILABOO3I-W COMMA OR SEMICOLGN AS PUNCTUATION IS AN EXTESSION TO FIPS LEVEL A. (:)
CC064 ILAS003I-W COMMA OR SEMICOLON AS PUNCTUATIGN IS AN EXTENSION TO FIPS LEVEL A.
C0C64 ILABOO3I-W MULTIPLE RESULTS IN ADD STATEMENT IS AN EXTENSION TO FIPS LIVEL A.
0068 ILABOO3I-W UPON OP1ION OF DISPLAY STATEMENT IS AN EXTLNSICN TC FIPS LEVEL A.
0068 ILABOO2I-W UPON CONSOLE CPTION OF DISPLAY STATEMENT IS AN EXTENSION TC ALL LEVELS.
€0068 ILABOO3I-W FROM OPTION OF WRITE STATENENT IS Ail EXTENSION TO FIPS LEVEL A.
€0070 ILABOO3I- UNTIL OPTION OF PERFORM STATEMENT IS AN EXTENSION TO FIPS LEVEL A.
€0076 ILAB0O3I-W INTO OPTION OF READ STATEMENT IS AN EXTENSION TO FIPS LEVEL A.
€0678 ILABOC2I-W EXHIBIT STATEMENT IS AN EXTENSION 10 ALL FIES LEVELS.
ENC CF CCMPILATION }

Figure 11. Examples of Compiler Output (Part 4 of 4)

Interpreting Output 63

The following notations may appear on
the listing:

C Denotes that the statement was inserted
with a COPY statement.

Denotes that the card is out of
sequence. NOSEQ should be specified on
the CBL card if the sequence check is
to be suppressed.

I Denotes that the card was inserted with
an INSERT or BASIS card.

If DATE-COMPILED is specified in the
Identification Division, any sentences in
that paragraph are replaced in the listing
by the date of compilation. It is printed
in one of the following formats depending
upon the format chosen at system generation

time.

DATE-COMPILED. month/day/year or

DATE-COMPILED. day/month/year

@

64

Glossary. The glossary is listed
when the SYM option is specified.
The glossary contains information
about names in the COBOL source
program.

@and@ The internal-name
generated by the compiler.
This name is used in the
compiler object code listing
to represent the name used in
the source program. It is
repeated in column F for
readability.

A normalized level number.
This level number is
determined by the compiler as
follows: the first level
number of any hierarchy is
always 01, and increments for
other levels are always by
one. Only level numbers 03
through 49 are affected;
level numbers 66, 77, and 88,
and FD, SD, and RD indicators
are not changed.

(:) The data-name that is used in
the source module.

Note: The following Report Writer
internally-generated data-names
can appear under the SOURCE NAME
column:

CTL.LVL Used to coordinate
control break
activities.

GRP.IND Used by coding for GROUP
INDICATE clause.

TER.COD Used by coding for
TERMINATE clause.

FRS.GEN Used by coding for
GENERATE clause.

-nnnn Generated report record
associated with the file
on which the report is
to be printed.

RPT.RCD Build area for print
record.

CTL.CHR First or second position

of RPT.RCD. Used for
carriage control
character.

RPT.LIN Beginning of actual
information which will
be displayed. Second or
third position of

RPT.RCD.
CODE~ Used to hold code
CELL specified.

E.nnnn Name generated from
COLUMN clause in
02-level statement.

S.nnnn Used for elementary
level with SUM clause,
but not with data-name.

N.nnnn Used to save the total
number of lines used by
a report group when
relative line numbering
is specified.

@and@ For data-names, these columns

contain information about the
address in the form of a base and
displacement. For file-names, the
column contains information about
the associated DTF or FIB (for
VSAM). An indication is also
given here if the FD is invalid.

This column defines storage for
each data item. It is represented
in assembler-like termrinoclogy.
Table 4 refers to information in
this column.

Usage of the data-name. For FD
entries, either VSAM is specified,
or the DTF type is identified
(e.g., DTFDA). For group items
containing a JSAGE clause, the
usage type is printed. For group
items that do not contain a USAGE
clause, GROUP is printed. For
elementary items, the information
in the USAGE clause is printed.

Table 4. Glossary Definition and Usage

r T T 1
] Type | Definition | Usage i
F + ¥ —
Group Fixed-Length	DS 0CLN	GROUP
Alphabetic] DS WNC	DISP	
Alphanumeric	DS NC	DISP
{ Alphanumeric Edited] DS NC	AN-EDIT	
Numeric Edited	DS NC] NM-EDIT	
Index-Name	DS 1H	INDEX-NM
Group Variable-Length	DS VLI=N] GROUP	
Sterling Report	DS NC	RPT-ST
] External Decimal	DS NC	DISP-NM
External Floating-Point	DS NC] DISP-FP	
Internal Floating-Point	DS 1F	COMP-1
l	DS 1D	COMP~2
Binary	DS iH, 1F, OR 2F	COMP
Internal Decimal	DS NP	COMP-3
Sterling Non-Report	DS NC] DISP-ST	
Index-Name	BLANK	INDEX-NAME I
File (FD)	BLANK [DTF TYPE I	
Condition (88) 1 BLANK [BLANK I		
Report Definition (RD)	BLANK	BLANK
sort Definition (SD) { BLANK i BLANK I		
*r - L o i		
Note: Under the definiticon column, N = size in bytes, except in grcoup variakle-length		
where it is a variable cell number.		
L J

(:) A letter under column: encountered, or CSYNTAX is specified
and an E-level error is encountered.
R - Indicates that the data-name A global table contains easily
redefines another data-name. addressable information needed by the
object program for executicn. For
O - Indicates that an OCCURS example, in the Procedure Division
clause has been specified for output coding (3), the address of the
that data-name. first instruction under STEP-1 (OPEN
OUTPUT FILE-1) is found in the
Q - Indicates that the data-name PROCEDURE NAME CELLS portion of the
is or contains the DEPENDING Program Global Table (PGT).
ON object of the OCCURS
clause.
(®) The Task Global Table (TGT). This
M - Indicates the record format. takble is used to record and save

information needed during the

This field is not applicable
execution of the object program.

to VSAM. The letters which ¢ -

may appear under column M are: This information includes
switches, addresses, and work

F - fixed-length records areas.

U - undefined records The Literal Pocl. This lists all
literals used in the program, with

V - variable-length records duplications removed. These
literals include those specified

S - spanned records by the programmer (e.g., MOVE

"ABC" TO DATA-NAME) and those
generated by the compiler (e.qg.,
to align decimal points in
arithmetic computations). The
literals are divided into two
groups: those that are referenced
by instructions (marked "LITERAL
POOL") and those that are
parameters to the display object
time subroutine (marked "DISPLAY
LITERALS").

The location and length of WORKING-
STORAGE are noted here when CLIST,

SYM or LSTX is specified, except under
the same conditions as noted below.

Global tables and literal pool:

Global tables and the literal pool are
listed when the CLIST, SYM, or LISTX
option is specified, unless SUPMAP is
specified and an E-level error is

Interpreting Output 65

66

The Program Global Table (PGT).
This table contains literals and
the addresses of procedure-names,
generated procedure-names, and
procedure block locators
referenced by Procedure Division
instructions.

Register assignment: This lists the
permanent register assigned to each
base locator in the object program.
The remaining base locators are given
temporary register assigrments but are
not listed. Register assignments are
listed when CLIST, SYM, or LISTX is
specified, and output is not overriden
by the same conditions as above.

Procedure block assignments:

Procedure block assignments are
printed when OPT is specified. The
procedure block assignments give the
location within the object program for
each block of code addressed by
register 11.

Object code listing. The object code
listing is produced when the LISTX
option is specified, unless SUPMAP is
also specified and an E-level error is
encountered, or unless CSYNTAX is
specified and an E-level error is
encountered. The actual object code
listing contains:

©)

The compiler-generated card
number. This number identifies
the COBOL statement in the source
deck which contains the verb that
generates the object code found in
column C. When VERB is specified,
the actual verb or paragraph-name
is listed with the generated card
number.

The relative locaticn, in
hexadecimal notation, of the
object code instruction in the
module.

The actual object code instruction
in hexadecimal notation.

The procedure-name number. A
number is assigned only to
procedure-names referred to in
other Procedure Division
statements.

The object code instruction in the
form that closely resembles
assembler language. (Displacements
are in hexadecimal notation.)

Compiler-generated information
apout the operands of the
generated instruction. This
includes names and relative
locations of literals. Table 5
refers to information in this

column.

Table 5. Symbols Used in the Listing and
Glossary to Define
Compiler-Generated Information

r T 1

! Symbol | Meaning |

I 1 <'

r T

| DNM | SOURCE DATA NAME |

1sav | SAVE AREA CELL i

| SWT | SWITCH CELL |

] TLY | TALLY CELL |

JWwe | WORKING CELL |

]TS | TEMPORARY STORAGE CELL |

|VLC | VARIABLE LENGTH CELL |

SBL	SECONDARY BASE LOCATOR
BL	BASE LOCATOR
BLL	BASE LOCATOR FOR LINKAGE
	SECTION [
ON	ON COUNTER

| PFM | PERFORM COUNTER I

|psv | PERFORM SAVE |

VN | VERIABLE PROCEDURE NAME |

| SBS | SUBSCRIPT ADDRESS |

XSW	EXHIBIT SWITCH
XSA	EXHIBIT SAVE AREA
PRM	PARAMETER
PN	SOURCE PROCEDURE NAMF
PBL	Procedure Rlock Locator

JGN | GENERATED PROCEDURE NAME |

| DTF | DTF ADDRESS I

|FIB | File Information Block i

| | (for VSAM) |

VNI	VARIABLE NAME INITIALIZATION
LIT	LITERAL
TS2	TEMPORARY STORAGE
	(NON-ARITHMETIC)
RSV	REPORT SAVE AREA
SDF	Secondary DTF Pointer
TS3	TEMPORARY STORAGE]
] (SYNCHRONIZATION)	
TSU	TEMPORARY STORAGE

] I (SYNCHRONIZATION) I

] INX | INDEX CELL |

| V(BCDNAME) | VIRTUAL |

|VIR | VIRTUAL |
| OVF | Overflow Cell |

L R 4

Statistics: The compiler statistics

list the options in effect for this
run, the number of Data Division
statements specified, and the
Procedure Division size. Each level
number is counted as one statement in
the Data Division. The Procedure
Division size is approximately the
nurber of verks in the Procedure
Division.

An indicator is also given here if
dictionary spill occurred during
compilation. If spill occurred, the
amount of storage assigned to the
compiler may be increased for better
performance. Statistics are not
listed if SYNTAX (or CSYNTAX and an
E-level or higher error occurred) was
in effect.

Cross-reference dictionary: The
cross-reference dictionary is produced
when the XREF or SXREF option is
specified. It is suppressed if
CSYNTAX is in effect and an E-level
error is encountered. It consists of
two parts:

®

The cross-reference dictionary for
data-names consists of data-names
followed by the generated card
number of the statement which
defines each data-name, and the
generated card number of
statements where each data-name is
referenced. Report Writer
data-names, with the exception of
data-names in the form "-nnn", are
defined with the generated card
number of their respective RD's.

The cross-reference dictionary for
procedure-names consists of the
procedure-names followed by the
generated card number of the
statement where each
procedure-name is used as a
section-name or paragraph-name,
and the generated card number of
statements where each
procedure-name is referenced.

A reference will appear to a procedure
name if there is a reference to a
logically equivalent procedure-name; a
reference will also appear to a
procedure name, if, in a segmented
program, an implied branch to a
segment entry is made.

If XREF is specified, the names are
presented in the order in which they
appear in the source program. If
SXREF is specified, the names are
presented alphabetically. The number
of references appearing in the
cross-reference dictionary for a given
name is based upon the number of times
the name is referenced in the code
generated by the compiler.

Verb Cross-Reference: A verb
cross-reference is produced when
VERBSUM or VERBREF is specified. It
is suppressed when CSYNTAX is in
effect and an E-level error is
encountered. The cross-reference
consists of a listing of all Procedure

@

Division verbs used in the source
program followed by the number of
times the verb is actually used in the
source program. In additicn, if
VERBREF is specified, the generated
card numbers of each verb are printed.
For VERBSUM and VERBREF, the COBOL
verb OTHERWISE is treated as if the
source program used the verb ELSE.

Diagnostic messages: The diagnostic
messages associated with the

compilation are always listed. The
format of the diagnostic mressage is:

®

Compiler-generated card number.
This is the number of a line in
the source program related to the
error.

Message identification. The
message identification for the
DOS/VS COBOL compiler always
begins with the symbols ILa.

The severity level. There are
four severity levels as follows:

(W) Warning
This level indicates that an
error was made in the source
program. However, it is not
serious enough to interfere
with the execution of the
program. These warning
messages are listed only if
the FLAGW option is specified
in the CBL card or chosen at
system generation time.
(C) Conditional
This level indicates that an
rror was made but the
compiler usually wakes a
corrective assumption. The
statement containing the error
is retained. Execution can be
attempted.
(E) Error
This level indicates that a
serious error was made.
Usually the compiler makes no
corrective assumption. The
statement or option containing
the error is dropped.
Compilation is completed, but
execution of the program
should not be attempted.

(D) Disaster

This error indicates that a
serious error was made.
Compilation is not completed.
Results are unpredictable. If
this is a compiler error, the

job will terminate via the

Interpreting Output 67

CANCEL macro and produce a
dump.

(:) The message text. The text
identifies the condition that
caused the error and indicates the
action taken by the compiler.

Since Report Writer generates a
number of internal data items and
procedural statements, some error
messages may reflect internal
names. In cases where the error
occurs mainly in these generated
routines, the error messages may
indicate the card number of the RD
entry for the report under
consideration. In addition, there
are errors that may indicate the
number of the card upon which the
statement containing the error
ends rather than the card upon
which the error occurs. Internal
name formats for Report Writer are
discussed under "Glossary"
(heading 4, item C). Statement
numbers are generated when a verb
or procedure name is encountered.

The COBOL compile-time message that follows
serves as an example of the format of COBOL
compiler messages:

CARD ERROR MESSAGE

00105 ILA1002I-W ***** SECTION HEADER
MISSING.
ASSUMED PRESENT.

¢ The code "00105" at the left is the

card number of the statement in which
the error has occurred. (Some errors
may not be discovered until information
from various sections of the program is
combined. For this reason, the source
card number in the error message may
not be exact.)

¢ ILA identifies this as a DOS/VS COBOL
compiler message.

¢ The numeral "1002" represents the
identifying number of the message; the
first digit of this identifier
indicates the phase in which the error
was detected. In this case the message
was generated by phase 1.

¢ The symbol "I" means that this is a
message to the programmer for his
action.

e "W" (warning) is a level of severity in
the error codes descriked in item C.

* The five asterisks (#*#*#**#*) indicate
words in a message that vary according
to the program being compiled.

(=)}
[o>]

The message text is usually composed of
two sentences. The first descrikes the
error; the second describes what the
compiler has done as a result cf the error.

Note: By specifying a PROGRAM-ID of ERRMSG
in any source program, the user can
generate a complete listing of compiler
diagnostics and problem determination aids.
(See Figure 12.) 1In this case, a normal
compilation never takes place. Only a list
of all error messages and probler
determination information is produced. The
link option is reset if it was in effect.

Some messages are not given if CSYNTAX
or SYNTAX is in effect. See "Program
Checkout"™ for the list of these messages.
(:) FIPS Diagnostic Messages: The
diagnostic messages associated with
FIPS are listed separately from the
compiler diagnostic messages, with a
header identifying them as FIPS
diagnostics. The format cof the FIPS
diagnostic messages 1is:

(:) Compiler-generated line number.
This is the number of a line in
the source program containing a
nonstandard element.

Message identification. The
message identification for FIPS
diagnostic messages always begins
with the symbols ILA. The
identifying numbers of the
messages will always be 8001,
8002, 8003, or 8004, where:

1 indicates an extension to a
certain level of the FIPS

2 indicates an extension to all
levels of the FIPS

3 indicates an extension to one
or all levels of the FIPS, or
an unusual condition;

4 indicates that there are no
FIPS diagnostic messages.

(:) The severity level. All FIPS
diagnostic messages have a
severity level of W (warning).
This level indicates that
something in the source program
does not conform to the FIPS, but
the compilation of the program
will not ke interrupted.

(:) The message text. The text
jidentifies the condition or
element that does not conform to
the FIPS. The FIPS level is also
designated.

r |
\// J0B ERRORMSG User information |
\// EXEC FCOBOL |
| IDENTIFICATION DIVISION. |
| PROGRAM-ID. ERRMSG. |
| REMARKS. COMPILATION OF THIS PROGRAM WILL RESULT IN ALL COMPILER]
| DIAGROSTICS BEING PRODUCED,., NO OBJECT MODULE AND NO COMPILE- |
i TIME STATISTICS ARE PRODUCED. |
1 ERVIRONMENT DIVISION. i
1 DATAR DIVISION. i
| PROCEDURE DIVISION. 1
| * THE SAME RESULTS CAN BE ACHIEVED BY CHANGING THE PROGRAM-ID OF i
| * ANY PROGRAM TO *ERRMSG'.]
i STOP RUN. |
[% o i
Figure 12. A Program that Produces COBOL Compiler Diagnostics

OBJECT MODULE

The object module contains the external
symbol dictionary, the text of the progranm,
and the relocation dictionary. It is
followed by an END statement that marks the
end of the module. For additional
information about the external symbol
dictionary and the relocation dictionary,
see the publication DOS/VS_System Control
Statements.

An object deck is punched if the DECK
option is specified, unliess an E-level
diagnostic message is generated. The
object module is written on SYSLNK if the
LINK option is specified, unless an E-level
diagnostic message is generated. No deck
is punched if CSYNTAX is in effect and
E-level errors are encountered, or if
SYNTRX is in effect.

LINKAGE EDITOR_OUTPUT

The output of the link edit step may
include:

e A printed listing of the job control
statements

e A map of the phase after it has been
processed by the linkage Editor

¢ Diagnostic messages

A listing of the linkage editor control
statements

e 3 phase which may be assigned to the
core image library

Any diagnostic messages associated with
the Linkage Editor are automatically
generated as output. The other forms of
output may be requested by the OPTION
control statement. All output to be listed
is printed on the device assigned to
SYSLST.

Figure 13 is an example of a linkage
editor output listing. It shows the job
control statements and@ the phase map. The
different types of output are numbered and
each type to be explained is lettered. The
text following the figure is an explanation
of the figure.

Interpreting Output €9

// EXEC LNKEDT (:)

JCE SAMPLE

ACTIOi TAKEN

LISsT
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST

DCS LINKAGE EDITCK DIAGNCSTIC OF INPUT (:)

MAP REL

AUTOLINK IJFFEZZN
AUTOLINK ILEDDSPO
AUTOLINK IJJICEDV
AUTOLINK ILBDDSSO

INCLUDE IJJCEDV
AUTOLINK ILBDIMLO
AUTOLINK ILBDNNSO
AUTOLINK ILBCSAEOQ
ENTRY

PHASE XFR-AD LOCORE HICORE DSK-AD
PHASE*** (7D878 070878 O07F1FF OS5F 0F 4

* UNREFERENCED SYMBOLS

002 UNRESOLVED ADDRESS CONSTANTS

Figure 13.

70

Linkage Editor Output

®

ESp TYPE

-CSECT

CSECT

* ENTRY
* ENTRY
* ENTRY

CSECT
ENTRY

CSECT
CSECIT

CSECT
ENTRY

CSECT
ENTRY
ENTRY
ENTKY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CEECT
ENTRY
* ENTRY

WXTRN
WXTRN

®

LABEL
TESTRUN

IJFFEZZu
IJFFZZZN
IJFFEZZZ
IJFF727222

1LEDSKEC
ILEDSAEL

I1BDMNSOC
ILBLIMLO

ILBDLUSPO
ILBUDSP1

ILEDDSSO
11BDDSS1
ILBDDSS2
I1LBLDSS3
ILBDDSSY
1LEDDSS5
ILBLDSS6
ILBUDSST
ILbUDSSS

1JJCPDV
IJJCPDVL
IJJCPDV2

STXLTPSW
ILEDDEG?2

LOADED
07D878

07E1C8
Q07ElcCe
07E1C8
07E1C8

07F078
07F0CO

075070
07F018

07ES78
07E978

07ECFU¢
O07EF50
O7EFU48
07F008
07ED1b
07EDC2
G7EE22
Q7EDEC
O7EDU6

07LAAB
07EAA8
07EAAR

REL~Fr
07D87¢

07E1CE

07F078

07¥070C
G7F018

07578

G7ECFO

G7LAAS

RELOCATAELL

The job control statements. These
statements are listed because the LOG
option is specified.

Disk linkage editor diagnostic message

of input. The ACTION statement is not
required. If the MAP option is

specified, SYSLST must be assigned.

If the statement is not used and
SYSLST is assigned, MAP is assumed and
a storage map and any error diagnostic
messages are considered output on
SYSLST.

Map of virtual storage. A phase map
is printed when MAP is specified (or
assumed) during linkage editor
processing. The following information
is contained in the storage map:

(:) The name of each phase. This is
the name specified in the phase
statement.

®

The transfer address of each
phase.

The lowest virtual storage
location of each phase.

The highest virtual storage
location of each phase.

The hexadecimal disk address where
the phase begins in the core image
library.

The names of all CSECT's belonging
to a phase.

@ @ ® 6 ©

All defined entry points within a
CSECT. 1If an entry point is not

referenced, it is flagged with an
asterisk (*).

The address where each CSECT is
loaded.

®

The relocation factor of each
CSECT.

©

The number of unresolved weak
external references. This
indication need not concern the
programmer. An unresolved weak
external reference does not cause
the Linkage Editor to use the
automatic library call mechanism.
Instead, the reference is left
unresolved, and the load module is
marked as executable. The number
of unresolved address constants
will not necessarily be the same
as the number of unreferenced
symbols listed in the Linkage
Editor output.

@

Comments on the Phase Map

The severity of linkage editor
diagnostic messages may affect the
production of the phase map. Since various
processing options affect the structure of
the phase, the text of the phase map will
sometimes provide additional information.
For example, the phase may contain an
overlay structure. In this case, a map
will be listed for each segment in the
overlay structure.

Linkage Editor Messages

The Linkage Editor may generate
informative or diagnostic messages. A
complete list of these messages is included
in the publication DOS/VS_ System Control
Statements.

DOS ANS COBOL Unresolved External
References

When the Linkage Editor encounters a
weak external reference (WXTRN),
autolinking is suppressed and the V-type
address constant is either resolved from
those modules included into the load module
or it remains unresolved. Unresolved
WXTRNs will not cause the Linkage Editor to
cancel the link step if ACTION CANCEL is in
effect.

The DOS/VS COBOL object time subroutine
library utilizes WXTRNs not only as address
constants but also as switches to determine
at object time whether certain options are
in effect. It is a very convenient feature
which can lead to tight and efficient code.

Unresolved WXTRNs are normally
intentional but unresolved EXTRNs are
normally unintenticnal and an error.

Any of the following unresolved WXTRNs
may appear when link editing an object

module produced by an ANS COBCL compiler: s
STXITPSW ILBLCFLW2 ILBDMRGO
ILBDDBG2 ILBDSRTO ILBDFLW3
ILBDADR1 ILBCRELO ILEDTCOO
ILBDDBGO ILBDTEFO ILBDTCO1
SORTEP ILBDDSS1 ILBDDEG7
ILBDSTNO ILBLCDSS3 ILBDDBGS8
ILBDFLWO ILBDVOC1 ILBDTC30

Interpreting Output 71

COBOL EXECUTION OUTPUT

The output generated by program
execution (in addition to data written on
output files) may include:

e Data displayed on the console or on the
printer

e Diagnostic messages to the programmer
¢ Messages to the operator
¢ System informative messages

[ad
* SYMDMP, S

output

FLOW, and/or COUNT

e System diagnostic messages
e A system dump

Appendix I contains the full list of
execution time diagnostic messages.

A dump and system diagnostic messages
are generated automatically during program
execution only if the program contains
errors that cause abnormal termination.

SYMDMP output is generated upon request,
or upon abnormal termination. STATE and
FLOW output are generated upon abnormal

termination. The output of these features
// ASSGN SYS008,X'483" (:)
// EXEC

WORK-RECORD = A 0001 dYC 2
WCRK-RECORD = B 0002 NYC 1
WORK-RECORD = C 0003 NYC 2
WCRK-RECORD = D 0004 NYC 3
WORK-RECORD = E 005 NYC 4
WORK-RECORD = F 0006 NYC 2
WORK-RECORD = G 0007 NYC 1
WCRR-RECORD = H 0008 NYC 2
WORK-RECORD = I 0009 NYC 3
WORK-RECORD = J 0010 NYC 4
WORK~RECORD = K 0011 NYC 2
WORK-RECORD = L 0012 NYC 1
WORK-RECORD = M 0013 NYC 2 (:>
WCRK-RECORD = N 0014 NYC 3
WORK-RECORD = O 0015 N¥YC &4
WORK-RECORD = P 0016 NYC Z
WORK-RECORD = Q 0017 NYC 1
WCRK-RECORD = R 0018 NYC 2
WORK-RECORD = S 0019 N¥YC 3
WCRK-RECORD = T 0020 NYC 4
WORK-RECORD = U 0021 NYC Z
WCRK-RECORD = V 0022 NYC 1
WORK-RECORD = W 0023 NYC 2
WCRK-RECORD = X 0024 NYC 3
WORK-RECORD = Y 0025 NYC 4
WCRK-RECORD = Z 0026 NYC Z

Figure 14, oOutput from Execution Job Step

72

is discussed in the chapter entitled
"Symbolic Debugging Features".

COUNT output is generated upon normal or
abnormal terminaticn of the program.
Output from this feature is described in
the chapter "Execution Statistics".

Figure 14 is an example of output from
the execution job step. The following text
is an explanation of the illustration.

(:) Job control statements. These
statements are listed because the LOG
option is specified.

Program output on printer. The
results of execution of the EXHIBIT
NAMED statement appear on the program
listing.

@

©)

console output. Data is printed on
the comnsole output unit as a result of
the execution of DISPLAY UPON CONSOLE.

OPERATOR MESSAGES

The COBOL phase may issue operator
messages. In the message, XX denotes a
system-generated 2-character numeric field
that is used to identify the program
issuing the message.

8G
BG A 0001 NYC 0
BG B 0002 NYC 1
BG C 0003 NYC 2
BG D 0004 NYC 3
BG E 0005 NYC &
BG F 0006 NYC 0
BG G 0007 NYC 1
BG H 0008 NYC 2
BG I 0009 NYC 3
BG J 0010 NYC 4
BG K 0011 NYC 0
BG L 0012 NYC 1
8G M 0013 NYC 2
BG N 0014 NYC 3 (:)
BG 0 0015 NYC &
BG P 0016 NYC 0
BG Q 0017 NYC 1
BG R 0018 NYC 2
BG S 0019 NYC 3
86 T 0020 NYC &4
BG U 0021 NYC 0
BG V 0022 NYC 1
BG W 0023 NYC 2
BG X 0024 NYC 3
BG Y 0025 NYC 4
BG Z 0026 NYC 0

BG EOJ SAMPLE
00.56.19,DURATION 00.03.42

STOP Statement

The following message is generated by
the STOP statement with the literal option:

XX C110A STOP 'literal®

Explanation: This message is issued at the
programmer's discretion to indicate
possible alternative action to be taken by
the operator.

Operator Response: Follows the
instructions given both by the message and
on the job request form supplied by the
programmer. If the job is to be resumed,
hit the end/enter key.

ACCEPT Statement

The following message is generated by an
ACCEPT statement with the FROM CONSOLE
option:

XX C111A “AWAITING REPLY"

Explanation: This message is issued by the
object program when operator intervention
is required.

Operator Response: Enter the reply and hit
the end/enter key. (The contents of the
text field should be supplied by the
programmer on the job request form.)
Alphabetic characters may be entered lower
case.

SYSTEM OUTPUT

Informative and diagnostic messages may
appear in the listing during the execution
of the object program.

Each of these messages contains an
identification code in the first column of
the message to indicate the portion of the
operating system that generated the
message. Table 6 lists these codes,
together with identification for each.

Table 6. System Message Identification
Codes

! T . r . 1
|Code| Identification |
} + 4
| 0] BAn on-line console message from |
| } the Supervisor]
t + 4
| 1} A message from the Job Control |
| | Processor |
b + 1
| 2 | A message from the Linkage Editor |
L 1

T k) "*
] 3| A message from the Librarian i
b=t 1
| 4] A message from LIOCS |
t + i
! 7] A message from the Sort rrogram |
L 1]
r K] 1
| C | A message from COBOL object-time |
| i subroutines]
L 1 J

Interpreting Output 73

This chapter describes the accepted
linkage conventions for calling and called
programs and discusses linkage methods when
using an assembler language program. In
addition, this chapter contains a
description of the overlay facility which
enables different called programs to occupy
the same area in virtual storage at
different times. It also contains a
suggested assembler language program to be
used in conjunction with the overlay
feature.

A COBOL source program that passes
control to amother program is a calling
program. The program that receives control
from the calling program is referred to as
a called program. Both programs must be
compiled (or assembled) in separate job
steps, but the resulting object modules
must be link edited together in the same
phase.

A called program can also be a calling
program; that is, a called program camn, in
turn, call another program. In Figure 15
for instance, program A calls program B
program B calls program C. Therefore:

1. A is considered a calling program by B
2. B is considered a called program by 2
3. B is considered a calling program by C

4. € is considered a called program by E

CALLING AND CALLED PROGRAMS

Compiler-generated switches, e.g., OXN
and ALTER, are not reinitialized upon each
entrance to the called program, that is,
the program is in its last executed state.

Note: It is necessary for an American
National Standard COBOL program to know
whether it is the main or the called
program. For this reason, any non-American
National Standard COBOL program calling an
American National Standard program must
first call the subroutine ILBDSETO. The
function of this subroutine is to set a
switch to X*FF' in subroutine ILBDMNSO,
which is the indication to the COBOL
program that it is a called progranm.
Standard linkage conventions should be
observed when calling ILBDSETO; there are
no parameters to be passed.

LINKAGE

Whenever a program calls another
program, linkage must be established
between the two. The calling program must
state the entry point of the called program
and must specify any arguments to be
passed. The called prograr must have an
entry point and must be able to accept the
argumerts. Further, the called program
must establish the linkage for the return
of control to the calling program.

¥ 1

| A B C | LINKAGE IN A CALLING PROGRAM

l f 1 r a] | SEaEEEEEE—] ‘

| {Calling | jCalled | [Called | |

| fprogranm | |progran | |program | | A calling COBOL program must contain the
| tof B | Jlof A | jof B 11 following statement at the point where

I | —>1 | ——>1 I another program is to be called:

(. | {Calling | | (I

[| Iprogram | | [r 1
I | jof C | | 11 |CALL literal-1 [USING identifier-1 |
| s L ! L e I | | [identifier-2]...] I
i 3 £ -3
Figure 15. Calling and Called Programs

By convention, a called program may call
to an entry point in any other progranm,
except one on a higher level in the "“path"
of that program. That is, A may call to an
entry point in B or C, and B may call C;
however, C should not call A or B.

Instead, C transfers control only to B by
issuing the EXIT PROGRAM or GOBACK
statements in COBOL (or its equivalent in
another language). B then returns to A.

literal-1
is the name specified as the
program-name in the PROGRAM-ID
paragraph of the called program, or
the name of the entry point in the
called program. When the called
program is to be entered at the
beginning of the Procedure Division,
literal-1 is the name of the program
being called. When the called program
is to be entered at some point other
than the beginning of the Procedure

Calling and Called Programs 75

Division, literal-1 should not be the
same as the name specified in the
PROGRAM-ID paragraph of the called
program. Since the program-name in
the PROGRAM-ID paragraph produces an
external reference defining an entry
point, this entry point name would not
be uniquely defined as an external
reference.

If the first character of PROGRAM-ID
is numeric, the correspondence
algorithm is as follows:

0 becomes J
1-9 become A-I

Since the system does not include the
hyphen as an allowable character, the
hyphen is converted to zero if it
appears as the second through eighth
character of the nanme.

identifier-1 [identifier-2]...
are the arquments being passed to the
called program. Each identifier
represents a data item defined in the
File, Working-Storage, or Linkage
Section of the calling program and
should contain a level number 01 or
77. When passing identifiers from the
File Section, the file should be open
before the CALL statement is executed.
If the called program is an assembler
lanquage program, the argquments may
represent file-names and procedure-
names in addition to data-names. If
no arguments are to be passed, the
USING option is omitted.

LINKAGE IN A CALLED PROGRAM

A called COBOL program must contain two
sets of statements:

1. One of the following statements must
appear at the point where the program
is entered.

If the called program is entered at
the first instruction in the Procedure
Division and arguments are passed by
the calling program:

r

|
|PROCEDURE DIVISION [USING

identifier-1 [identifier-2]...].

I

If the entry point of the called
program is not the first statement of
the Procedure Division:

ENTRY literal-1 [USING identifier-1
[identifier-23...1]

po e . — s oy
bt e e e o o

literal-1
is the name of the entry point in
the called program. It is the -
same name that appears in the
CALL statement of the program
that calls this program.

literal-1 must not be the name of
any other entry point or
program-name in the run unit.

identifier-1 [identifier-27]...]
are the data items representing
parameters. They correspond to
the arguments of the CALL
statement of the calling program.
Fach data item in this parameter
list must be defined in the
Linkage Section of the called
program and must contain a level
number of 01 or 77.

2. Either of the following statements
must be inserted where control is to
be returned to the calling program:

EXIT PROGRAM.

GOBACK.

,-—-r-—...
b e e e

Both the EXIT PROGRAM and GOBACK
statements cause the restoration of
the necessary registers, and return
control to the point in the calling
program immediately following the
calling seguence.

ENTRY POINTS

Each time an entry point is specified in
a called program, an extermal-name is
defined. BAn external-name is a name that
can be referenced by another program that
has been separately compiled or assembled.
Each time an entry name is specified in a
calling program, an external reference is
defined. An external reference is a symbol
that is defined as an external-name in
another separately compiled or assembled
program. The Linkage Editor resolves
external-names and external references, and
combines calling and called programs into a
format suitable for execution together,
i.e., as a single phase.

Note: Several different entry points may
be defined in one COBOL source module.
Different CALL statements in any module of
the phase may specify the same entry point,
but each definition of an entry point must
be unigue in the same phase.

CORRESPONDENCE OF ARGUMENTS AND PAKAMETERS

The number of identifiers in the
argument list of the calling program should
be the same as the number of identifiers in
the parameter list of the called progranm.
If the number of identifiers in the
arqument list of the calling program is
greater than the number of identifiers in
the parameter list of the called progranm,
only those specified in the parameter list
of the called program may be referred to by
the called program. There is a one-for-omne
correspondence. The correspondence is
positional and not by name. An identifier
must not appear more than once in the same
USING clause.

Only the address of an argument is
passed. Consecuently, both the identifier
that is an argument and the identifier that
is the corresponding parameter refer to the
same location in storage. The pair of
identifiers need not be identical, but the
data Jdescriptions must be equivalent. For
example, if an argument is a level-77
date-name representing a 30-character
string, its corresponding parameter could
also be a level-77 data-name representing a
character string of length 30, or the
parameter could be a level-01 data itenm
with subordinate items representing
character strings whose combined length is
30.

Blthough ail parameters in the ENTRY
statement must be described with level
numbers 01 or 77, there is no such
restriction made for arguments in the CALL
statement. An argument may be a qualified
name or a subscripted name. When a group
item with a level number other than 01 is
specified as an argument, proper boundary
word alignment is required if subordinate
items are described as COMPUTATIONAL,
COMPUTATIONAL-1, or COMPUTATIONAL-2. 1If
the argument corresponds to an 01-level
parameter, doubleword alignment is
required.

LINK EDITING WITEQUT OVERLAY

Assume that a COBOL main progran
(COBMAIN), at one or more points in its
logic executes CALL statements to COBOL
programs SUEPRGA, SUEPRGE, SUBPRGC, and

SUEPRGD. Rlso assume that the module sizes
for the main program and subprograms are:

Module Size

Program (in_bytes)
COBMAIN 20,000
SUBPRGA 4,000
SUBPRGE 5,000
SUBPRGC 6,000
SUBPRGD 3,000

Through the linkage mechanism, all
called programs plus COBMRIN must be link
edited together to form one module of
38,000 bytes. Therefore, COEMAIN would
reqguire 38,000 bytes of storage in order to
bhe executed. No overlay structure need be
specified at link edit time if 38,000 bytes
of virtual storage are available.

The following is an example of the job
control statements needed to link edit
these calling and called programs without
specifying an overlay structure. The
source decks for CORBMAIN and SUEPRGA are
included in the job deck, whereas SUBPRGB,
SUBPRGC, and SUBPRGD are in the relocatable
library.

// JOB NOVFRLAY

// OPTION LINK,LIST,DUMP
ACTION MAP
PHASE EXAMP1,*
INCLUDE

{object module COBMAIN}
/*

INCLUDE SURPRGR

INCLUDE SUBPRGC

INCLUDE SUBPRGD

INCLUDE

{object module SUBPRGRA}
Ve

ENTRY
// EXEC LNKEDT
// EXEC

{data for program}
Ve
/&

Pigure 16 ic an example of the data flow
logic of this call structure where all the
programs fit into virtual storage.

Calling and Called Programs 77

SYSIPT

Main Program
SUBPRG B [~ SUBPRG A
r_‘_&——
Relocatable
Library SUBPRG C L
\
SUBPRG D Job Control
Execute
LNKEDT

Lirkage

Editor

[SYSLNK 1

MAIN PROGRAM
Object Module

SUBPRG B
SUBPRG C

SUBPRG D

SUBPRG A
Object Module

Storage
Layout

Figure 16. Example of Data Flow Logic in a

Call Structure

Note: For the example given, it is assumed
that SYSLNK is a standard assignment. The
flow diagram illustrates how the various
program segments are link edited into
storage in a sequential arrangement.

ASSEMBLER LANGUAGE SUBPROGRAYS

A main program written in COBOL can call
programs written in other languages that
use the same linkage conventions. Whenever
a COBOL program calls an assembler language
program, certain conventions and techniques
must be used.

There are three basic ways to use
assembler-written called programs with a
main program written in COBOL:

1. A COBOL main program or called program
calling an assembler-writtem program.

2. An assembler-written program calling a
COBOL program.

3. An assembler-written program calling
another assembler-written progranm.

From these combinations,

more

complicated structures can be formed.

In a COBOL program, the expansions of

the CALL and GOBACK or EXIT
statements provide the save
coding that is necessary to
linkage between the calling
programs in accordance with
conventions of the system.

PROGRAHN

and return
establish
and called
the linkage
Assembler

language programs must be prepared in
accordance with the same linkage
conventions. These conventions include:

1. Using the proper registers to
establish linkage.

2. Reserving, in the calling program, a
storage area for items contained in
the argument list. This storage area
can be referenced by the called
program.

3. Reserving, in the calling program, a
save area in which the contents of the
registers can be saved.

REGISTER USE

The Disk Operating System has assigned
functions to certain registers used in
linkages. Table 7 shows the conventions
for using general registers as linkage
registers. The calling program must load
the address of the return point into
register 14, and it must load the address
of the entry point of the called program
into register 15.

Table 7. Conventional Use of Linkage
Registers
I L] 1] 1
{Reg. |Reg. | |
[No. |Name | Function |
} } —+ {
| 1 [|Argument| Address of the argument |
] |1list | list passed to the called |
| jregister| program. |
F + -
113 |Save | Address of the area re- |
| jarea served by the calling pro-|
| |register| gram in which the contents]
| | of certain registers are |
| stored by the called I
| program. i
b— "=
Return | Address of the location in

register| the calling program to

| which control is returned
| after execution of the
called progran.

—
=
e e — - — o — ——

i
1
|
|
1
4
L]
|
{
|

[o o e — g —— o — — —
e o v e o w— - w—— o o]

15 |Entry | Address of the entry point
[point in the called program.
|registert|
. & L

SAVE ARER

B calling assembler language progran
must reserve a save area of 16 words,
beginning on a frllword boundary, to be
used by the called program for saving
registers; it must load the address of this
area into register 13. Table § shows the
layout of the save area and the contents of
each word.

A called COBOL program does not save
floating-point registers. The programmer
is responsible for saving and restoring the
contents of these registers in the calling
program.

Table 8. Save Area Layout and Word
Contents

L 1
l £ 1‘
JARER {This word is a part of the i
I (word 1) |standaré linkage convention ||
| lestablished under the DOS/VS ||
| |System. The word must be il
i freserved for proper 1
| laddressing of the subsedquent ||
{ jentries. However, an I
{ |assenbler subproaram may use ||
! |the word for any desired 1
i |purpose. il
| k - |
{AREA+Y }The address oi the previous ||
i (word 2) |save area, that is, the save ||
} larea of the subprogram that ||
| jcalled this one. I
| I 1|
JARFA+8 |The address of the next save ||
{ (word 3) lJerea, that is, the save