

c

Program Product

SH24-5001-2

Data Language/l
Disk Operating System I
Virtual Storage
(DL/I DOS/VS)

Guide For New Users

Program Number 5746-XX1

\: f r 't :; i;~"i'--~~

~,~ ~~\11 ~ i~~,P:
- 1

--- ------ - ---- ---- - ---- - - ----------_.-

Third Edition (June 1979)

This is a major revision ofSH24-500l-1. Changes to the text and illustrations are indicated by a vertical
line to the left ofthe change. This edition applies to Version I, Release 5 (Version 1.5) ofIBM
System/370 Data Language/I Disk Operating System/Virtual Storage (DL/I DOS/VS), Program
Number 5746-XXI, and to all subsequent versions and modifications until otherwise indicated in new
editions or Technical Newsletters. Changes are continually made to the information contained herein;
any such changes will be reported in subsequent revisions or Technical Newsletters.

Summary of Amendments

For a detailed list of changes, see page iii.

Publications are not stocked at the address given below; requests for publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Programming Publications, Dept. G60, P.O. Box 6, Endicott, New
York U.S.A., 13760. IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of course, continue to use
the information you supply.

© Copyright International Business Machines Corporation 1977, 1978, 1979

Summary of Amendments
for DL/I DOS/VS Guide for New Users

Summary of Amendments
for S824-5001-2
Version 1.5
This edition has been revised to include the following DL/I
DOS/VS functional enhancements.

Field Level Sensitivity
This feature allows you to select fields from within a physical
segment defmition to build a new view of the segment for exclu­
sive use by a particular application program.

Extended Logical Relationships
Extended logical relationships removes or changes some of the
rules and restrictions concerning an application's view of a data
base structure.

Unique Segment Support
A new keyword (NOTWIN) is added to the POINTER param­
eter on the SEGM statement to allow a segment to be limited to
a single occurrence per parent.

Sample Application Update
The customer data base for the Sample Application is updated
to show an example of field level sensitivity. Source code for
this sample application in COBOL, PL/I, and RPG II is ship­
ped with this version.

DL/I DOS/VS-IMS/VS Compatibility
DL/I DOS/VS users planning future migration to IMS/VS are
cautioned that the VIRFLD statement and some options of the
SENFLD statement (PSB generation), and some options of the
SEGM and FIELD statements (DBD generation) are not sup­
ported by IMS/VS. See the Utilities and Guide for the System
Programmer for details.

Miscellaneous
Several sections in this manual have been enhanced to include
additional information for increased understanding. This man­
ual also includes some miscellaneous corrections and updates.

Summary of Amendments
for S824-5001-1
Version 1.4
This edition has been revised to include the following DL/I
DOS/VS functional enhancements.

RPG II Support
Application programs written in RPG II can now access DL/I
data bases in a manner similar to programs written in COBOL,
PL/I, and Assembler language.

Prefix Resolution Improvement
The prefix resolution utility now passes an actual maximum
record length, instead of a maximum possible record length, to
the DOS/VS or DOS sort/merge program.

Extended DL/I Call Interface
This support, along with CICS/VS high level language support,
eliminates the need for application programs to reference inter­
nal CICS/VS control blocks. A new parameter has been added
to the PCB call to obtain the address of the DL/I User Interface
Block. This control block contains the information previously
returned in the TCA.

This enhancement is required for application programs
written in RPG II. It may also be used in programs written in
COBOL, PL/I and Assembler.

Intersystem Communication
CICS/VS intersystem communication support enables DL/I
application programs to access a data base that is resident on
another CPU.

High Level Language Debugging for PL/I
This support PL/I allows diagnostic information to be supplied
by both PL/I and DL/l. It is designed only for batch and MPS
batch execution of DL/I, and does not require any changes to
the PL/I code.

Online Sample Application Update
The customer data base for the Online Sample Application now
includes a variable length segment. A sample segment
edit/compression exit routine has been added to show how
variable length segments can be used.

Performance Improvements
This edition also contains information on these performance
improvements:

• Batch Partition Controller (BPC)
The BPC program has been changed frem non­
reenterable to quasi-reenterable. This reduces the work­
ing set requirements of the BPC.

• Log Buffer
When using CICS/VS journaling, a blocksize larger than
1024 bytes can now be specified in the CICS/VS jounal
control table. The maximum blocksize is 32767 bytes.

• Program Isolation
Two enhancements have been added to program isola­
tion. They are the "0" procopt and MPS Batch Notifica­
tion.

Miscellaneous
Several sections in this manual have been enhanced to include
additional information for increased understanding. This man­
ual also includes some miscellaneous corrections and updates.

Summary of Amendments iii

--

IV DL/I DOS/VS Guide For New Users

•

DL/I DOS/VS (Data Language/I Disk Operating
System/Virtual Storage) is a data base management
control system that improves an installation's ability to
implement and maintain batch processing applications.
DL/I DOS/VS permits the writing of data independent
applications and provides program and data base in­
tegrity. The DL/I DOS/VS system supports application
programs written in COBOL, PL/I, RPG II, and Assembler
language. DL/I DOS/VS executes as an application pro­
gram under DOS/VS.

DL/I DOS/VS permits concurrent scheduling of mul­
tiple programs requesting DL/I DOS/VS services, there­
by allowing access by more than one user to the same
or different data bases at the same time. Application
programs may utilize this concept in conjunction with
CICS/VS (Customer Information Control
System/Virtual Storage) to access DL/I DOS/VS data
bases in a teleprocessing environment.

This publication is intended primarily for first time
users of DL/I DOS/VS. It provides the information the
user needs to design and implement a basic DL/I data
base system. This includes assistance for the user in
developing his application programs.

This publication is a starter document. It is not doc­
umentation for a subset (reduced function) or a simpli­
fied version of DL/I. It is a systematic approach to
guide the user in designing simple data base structures,
and controlling access to the data contained in these
structures. Through extensive use of examples and
references to the sample application program provided
with DL/I, this publication guides the user through the
basic and most often needed DL/I facilities.

This manual describes the operation and mainte­
nance OfDL/1 applications from the viewpoint of both
data base administration and application program­
ming. The topics covered are designed to:

• Reinforce the user's knowledge of data base con­
cepts, and the functions available in DL/I. The
new user is expected to be familiar with the DL/I
DOS/VS General Information manual before using
this manual.

• Describe organizing, creating, and maintaining
data bases.

Preface

• Guide the user in writing data base application
programs.

• Provide workable examples for setting up a specif­
ic data base application such as the online order
entry and inquiry system provided as a sample
application with DL/I.

Because the features and facilities of DL/I are pre­
sented in this publication so the user will need to make
few ~eferences to other DL/I DOS/VS publications, this
publication repeats certain information that is also
presented in other DL/I DOS/VS publications. However,
references are made to the other publications in the
DL/I DOS/VS library to assist the user in locating specif­
ic additional information that may be needed for uni­
que application requirements.

The following IBM publications provide additional
details about DL/I DOS/VS:

DL/I DOS/VS General Information, GH20-1246

DL/ I DOS/ VS Application Programming Reference
Manual, SHI2-5411

DL/I DOS/VS Utilities and Guidefor the System
Programmer, SH12-5412

DL/I DOS/VS System/Application Design Guide,
SH12-5413

DL/I DOS/VS Messages and Codes, SH12-5414

References are made in this publication to CICS/VS.
More information about CICS/VS can be found in the
Customer Information Control System/ Virtual Storage
(CICS/VS) General Information Manual, GC33-0066.

Because of the special nature of DL/I DOS/VS as a
functional subset of IBM'S Information Management
System (IMS/VS), some IMS or os specific terms are
retained in DL/I DOS/VS documentation. These terms
are used for ease of reference to corresponding IBM
documentation and to facilitate subsequent upgrading
to an upward-compatible IBM system.

All further references in this manual to DL/I DOS/VS
are shortened to DL/I.

Preface v

vi DL/I DOS/VS Guide For New Users

Contents

Chapter I: General Information, , , , , "" , "" , , , , , , "" '" , , , " , , , '" , ' , , , , , , , , , " ",'" ,I-I
Introduction """"""""""""',""""""""""""""',"""",",""" I-I
Potential Users of DL/I , ' , , , , , , , , , , , , , " , , I-I
General System Description, , , , , , , , , '" , , "" , " " "" , , , ' " , " , , , , , , , , , , , , ' " , , ""'" ,I-I

Program Structure "',"""",""',',,""""""",,""""""""","""'" 1-2
Data and Device Independence ,,',""",""""""',,"""""""""',"""'" 1-2
Program Execution """',',',"""","""""""""""",',"""',"""'" 1-2
Utility Programs, , ' , , , , , , , , ' , ' , , ' , , , , , , , , , , , , 1-2
File Integrity and Recovery ",',"""",""',"""""""""', , .. ,, .. , 1-3
Online Environment ,",'" , 1-4

Data Base Facility , "., .. 1-4
Data Base Concepts ... , . 1-4

Logical Data Base Structure , , , . 1-4
Physical Data Base Structure " , ,., 1-7
Basic Segment Types in a Hierarchical Data Structure 1-7
Sequence Fields and Access Paths " 1-7
Logical Relationships ' , 1-9
Secondary Indexing ... , ... , , , .. ' ... , , ... , 1-9

Data Base Defmition , ,. , , , , , ... , , 1-11
DBD (Data Base Description) ' , ... "'"., .. ,, I-II
PSB (Program Specification Block) ", ,', .. ".,", I-II

User Responsibilities ... , , . , , , , , , , , , , , . , , I-II
System Installation , , .. , , , .. , , ... , , , , , .. , , I-II
Data Base Administration, , , ... , , , ... , , .. , , 1-12

Project Approach, , , , , , , , , .. , .. , 1-12
ProjectCyc1e., " ... , , .. , 1-12
Sample Project Plan , .. , . 1- \3

Implementation Overview , , ' ,. ,1-15

Chapter 2: Data Base Design , , , . , , . , ' 2-1
About This Chapter , ' , 2-2
Section I: DL/I Sample Application , ,2-2

Inventory Data Base ,"' , " 2-2
Customer Data Base , , 2-2
Naming Conventions Used in the Sample Applicatio[1 " ... ,', ... " ... , 2-3
Sample Application Description - Phase I ,', .. ,', .. , 2-4
Sample Application Description - Phase 2 ,", ... , .. " ... , , 2-4
Sample Application Description - Phase 3 ,.".,., .. , ... , ... , 2-5
DL/I Sample Programs , .. , .. , , , , .. , 2-5

Section 2: 0 L/I Data Base Facility ' , .. , , , . , . , , 2-6
Physical Data Bases and Access Methods ' , , , .. , , , , , 2-6
DL/I Data Base Record ... , ,', ... ,"., ",., 2-6
Segment Format ,", , ... ,"""', ,', 2-7
Concatenated Key , , 2-7
Calls and Data Base Positioning , 2-7
VSAM (Virtual Storage Access Method) , 2-9
Data Base Access Methods .. , ,. 2- \0

Logical Relationships " 2-17
Why Logical Relationships .. 2-17
Building Logical Relationships , , , , . , . , .. , , , .. , , 2-17
Logical and Physical Data Bases , " ... , " 2-19
Concatenated Segment " , " .. " 2-20
Logical Relationship Design Rules , " 2-22
Processing Logically Related Segments, , ' , 2-25
Logical Relationships Implementation Technique ' , 2-27

DL/I Secondary Indexes , 2-28
When to Use Secondary Indexes " , ,., 2-28
Segment Types Involved in Secondary Indexes , ... , ... 2-28
Design Rules for Secondary Indexing ,., , ... 2-30
Implementation Technique , . , , , , 2-30
Creating a Secondary Index , " .. '.' 2-32

Variable Length Segments " ... , .. ' , .. , 2-32
iegment Edit/Compression Exit ' .. "." .. " 2-32

Contents vii

Field Level Sensitivity ... 2-32
Virtual Fields ... 2-33
Automatic Data Format Conversion .. 2-33
User Field Exit Routine ... 2-33
Dynamic Segment Expansion .. 2-34
Additional Field Sensitivity Considerations .. 2-34

Section 3: The Data Base Design Process ... 2-35
Concepts of Data Base Design ... 2-35

Data Base Design Tasks ... 2-38
Gathering Requirements .. 2-38
Design the Application Data Structure .. 2-39
Design the Physical Data Structures .. 2-39
Defining VSAM Clusters ... 2-41
Data Base Design Checklist ... 2-41

Chapter 3: Data Base Implementation .. 3-1
Introduction .. 3-1
Data Base Description Generation .. 3-1

DBDGEN Coding Conventions ... 3-2
Basic DBDGEN Control Statements Format .. 3-3
Execution ofDBDGEN (JCL) ... 3-14
Examples of Physical DB Os ... 3-14

DBDGEN for Logical Relationships ... 3-20
Coding a Logical Relationship in a Physical DBD 3-20
Coding a Logical DBD ... 3-30

DBDGENS for Secondary Indexes .. 3-35
Coding an Index Target Data Base ... 3-35
Coding the Index Target Segment .. 3-35
Coding the Index Source Segment " 3-37
Coding A Secondary Index DBD ... 3-39

Program Specification Block Generation (PSBGEN) 3-45
Basic PSB Coding .. 3-48
Sample Basic PSBs ... 3-54
Execution of PSBGEN - JCL .. 3-55
Description of PSBGEN Output ... 3-55
Coding PSBs for Logical Data Bases .. 3-55
Coding PSBs for Secondary Indexes .. 3-57

Application Control Blocks Creation and Maintenance (DLZUACBO) 3-61
Control Statement Requirements ... 3-61
JCL Requirements ... 3-63

VSAM Requirements ... 3-64
Data Set Defmition .. 3-64

Loading Data Bases ... 3-67

Chapter 4: Processing Data Bases (Batch Conslderatloas) 4-1
Structure of This Chapter .. .4-1
Introduction to Data Base Processing ... 4-1
Program Structure and Interface to DL/I .. 4-1

Language and Compilation ... 4-1
Interface Components ... 4-1
Entry to an Application Program .. 4-2
PCB-Mask .. , " 4-3
CalIs to DL/I .. 4-8
Qualification4-10
General Characteristics of Segment Search Arguments 4-10
Termination4-10
Status Code Handling4-10
Sample Presentation of a Call4-11

DL/I Application Program for RPG II .. .4-11
RQDLI Commands for DB Access .. .4-11
Statements for SSA Specification ... 4-13
SSA Specification in RPG-Like Format: (USSA and QSSA Statement) 4-13
SSALIST -Option .. 4-14
ELIST-Command ... 4-14

DB (Data Base) File Defmition ... 4-14
Basic Data Base Processing ... 4-15

DL/I Positioning '" 4-15

viii DL/I DOS/VS Guide For New Users

Sample Environment .. .4-15
Retrieving Segments .. 4-16

Get Unique Call (GU) .. 4-16
Get Next Call (GN) .. " 4-16
Get Hold Calls .. 4-18

Updating Segments ... 4-18
Deleting Segments .. 4-19
Inserting Segments .. 4-20
Calls With Command Codes ... 4-21

D Command Code ... 4-21
N Command Code ... 4-21
F Command Code ... 4-22
L Command Code ... 4-22
Q Command Code ... 4-22

Data Base Positioning After a DL/I Call ... 4-22
Using Multiple PCBs For One Data Base ... 4-23
COBOL Batch Program Structure ... 4-23
PL/I Batch Program Structure .. 4-25
RPG II Batch Program Structure .. 4-28
Assembler Language Batch Program Structure .. 4-32
Restrictions .. 4-34

On COM REG Use ... 4-34
On Overlay Programs .. 4-34
Set Exit Abnormal Linkage .. 4-34

Job Control Statements .. 4-34
Compile and Link-Edit ... 4-34
Translator Output ... 4-35
Batch Application Program Execution .. 4-36
Parameter Statement ... 4-36
UPSI Byte Settings for Batch DL/I ... 4-37
Job Control Statements ... 4-38

Data Base Load Processing ... 4-38
Loading A Basic Data Base .. 4-38
Loading Data Bases With Logical Relationships .. 4-38
Sample Data Base Load Program ... 4-38
Loading a HIDAM Data Base ... 4-39
Loading a HDAM Data Base .. 4-39
Status Codes for Loading Data Bases ... 4-39

Status Code Error Routines4-39
DL/I DOS/VS Buffer Pool Characteristics Report ... 4-39
Processing With Logical Relationships ... 4-39

Accessing A Logical Child In A Physical DBD ... 4-40
Accessing Segments in a Logical DBD .. 4-40

Processing With Secondary Indexes .. 4-40
Accessing Segments Via a Secondary Index .. 4-40

Secondary Index Creation .. 4-41

Chapter 5: Online and MPS CODsideratioDs ... 5-1
DL/I Online System Execution ... 5-1

MPS (Multiple Partition Support) .. 5-1
Differences Between Batch, MPS. and Online DL/I 5-3
Security ... 5-3
Integrity ... 5-3
Performance ... 5-5
Restrictions .. 5-5

VSAM Data Set Share Options .. 5-5
CICS/VS System Generation .. 5-5

CICS/VS System Table Preparation ... 5-5
DL/I Application Control Table ... 5-7
Establishing the Control Section for the DL/I Application Control Table 5-7

Defming the Online Environment for DL/I ... 5-8
Describing the Application Program Relationship to DL/I Data Bases 5-8
Specifying a Data Base Resident on Another System 5-9
Specifying Buffer Pool Control Options .. 5-9
Specifying the End of the DL/I Application Control Table 5-10
Description of Online Nucleus Generation Output 5-10
Control Statement Listing ... 5-10

Contents ix

Diagnostics ... 5-10
Assembly Listing .. 5-10
Load Module ... 5-lO

CICS/VS-DL/I Table Example ... 5-lO
Initialization of the DL/I Online System ... 5-13

DOS/VS UPSI Byte Settings (Online) .. 5-13
Programming Considerations ... 5-14
Obtaining the Address of the PCB: The Scheduling Call 5-14
Releasing a PSB in a CICS/VS Application Program: The Termination Cail 5-15
Checking the Response to a DL/I Call ... 5-16

Issuing the DL/I Call ... 5-18
Online Application Coding Examples ... 5-18
DL/I Requests in an ANS COBOL Program ... 5-18
DL/I Requests in a PL/I Program .. 5-21
Requests in an Assembler Language Program .. 5-23
RQDLI Commands in an RPG II Program .. 5-26
Executing CICS/VS With DL/I MPS ... 5-28
Executing Batch MPS Programs ...• 5-28

DL/I Data Base Integrity Online .. 5-29
Intent Scheduling .. 5-29
Intent Conflict .. 5-29
Potential Intent Conflict Matrix .. 5-30

Minimizing Intent Conflicts .. 5-3 I
PSB PROCOPT Selection ... 5-32
Using Multiple PSBs Within One Program ... 5-32
Scheduling a PSB for a Short Duration At a Time 5-33

Program Isolation ... 5-33
Programming Considerations .. 5-35

Controlling the Number ofCICS/VS and DL/I Tasks 5-35
CICS/VS MXT Parameter .. 5-36
CICS/VS AMXT Parameter ... 5-36
CICS/VS CMXT and TCLASS Parameters .. 5-37
DL/I MAXT ASK Parameter .. 5-37
DL/I CMAXTSK Parameter .. 5-38

Chapter 6: Data Base Reorganization/Load Processing 6-1
Introduction .. 6-1
What is Reorganization ... 6-1

When to Reorganize .. 6-1
Overview of the Reorganization/Load Utilities ... 6-1
Reorganization of HDAM and HIDAM Data Bases ... 6-2
Logical Relationship Resolution ... 6-2
Reorganization/Load Flowchart ... 6-2
Data Base Initial Load/Reload .. 6-4

With Logical Relationships ... 6-4
With Secondary Indexes ... 6-5

Resolution Utilities Overview .. 6-5

Chapter 7: DL/I Data Base Recovery/Restart ... 7-1
Introduction .. 7-1
DL/I Logging Facility .. 7-3

Asynchronous Logging Option. '.' ... 7-5
Logging and Performance " 7-5
Choosing the DL/I Log Medium .. 7-5

DL/I Abnormal Termination Routines .. 7-6
Abnormal Termination in Batch .. 7-6
Abnormal Termination in MPS ... 7-7
Abnormal Termination in CICS/VS ... 7-7

DL/I Recovery Utilities .. 7-8
Data Base Backout .. 7-8
Data Base Recovery .. 7-lO

DL/I Checkpoint Facility .. 7-11
CHKP (Checkpoint) Call ... 7-11
DL/I Checkpoint in Batch Programs .. 7-12
DL/I Checkpoint in Batch MPS Programs ... 7-12

VSAM Considerations in DL/I Recovery-Restart .. 7-13
VSAM Catalog .. 7-13

x DL/I DOS/VS Guide For New Users

Closing VSAM Data Sets ... 7-14

Chapter 8: DL/I Sample Application ... 8-1
Sample Application Job Stream .. 8-1 I Defming the VSAM Master Catalog : : 8-2
DLZSAMCP - Sample Program Compresslon/Expanslon Routme 8-2
DLZSAM40 - DL/I Online Sample Load Program .. 8-5
DLZSAM50 - DL/I Online Sample Print Program .. 8-6
DLZSAM60 - DL/I Online Sample Application Program 8-6

DLZSAM60 Screen Formats ... 8-9

Appendix A: DL/I System InstaDation and Batch Initialization A-I
Minimum Machine Requirements ... A-I
Building the DL/I System .. A-I

DOS/VS Supervisor Generation ... A-I
DOS/VSE Supervisor Generation .. A-2

Relinking DL/I Modules .. A-2
CICS/VS-DL/I Release Dependencies ... A-2
Initialization of the DL/I Batch System .. A-3

DL/I Parameter Information Requirements .. A-3
DL/I Initialization Job Control Language Requirements A-4

DL/I MPS Batch Partition Initialization .. A-4
DOS/VS UPSI Byte Settings for MPS .. A-4
DL/I MPS Parameter Information Requirements A-5
DL/I MPS Initialization Job Control Language Requirements A-5
Executing Batch MPS Programs .. A-5
Dynamically Scheduling MPS or Non-MPS Execution A-5

Appendix B: Controlling the DL/I OnUne System Environment B-1
DL/I System Call Formats and Returns ... B-2
Scheduling the DL/I System Call .. B-3

DL/I System Call Examples .. B-4
CMXT Call Example ... , , B-4
STRT and STOP Call Example .. B-5
TSTR and TSTP Call Example .. B-6

Glossary .. G-I

Index .. I-I

Contents xi

xii DL/I DOS/VS Guide For New Users

Introduction
Data Language/I DOS/VS (DL/I) is a data base manage­
ment system that improves the DOS/VS user's ability to
implement and maintain batch and/or teleprocessing
data processing applications. DL/I helps to reduce data
processing costs by:

• Reducing application program maintenance.

• Reducing application programmer time required
to implement new applications, including telepro­
cessing applications.

• Reducing the cost of converting to new hardware
(for example, from 2314 to 3340).

• Reducing the number of programs and/or data
files required to implement applications.

• Reducing the number of files in which data is
repeated.

Potential Users of DL/I
The DOS/VS user who is modifying existing applica­
tions and/or adding new applications may be faced
with some of these situations:

• Data is duplicated on multiple data files with dif­
ferent formats for different applications.

• Programmers are spending a significant amount of
time updating existing application programs to
handle changes to record layouts or I/O device
characteristics; often, even though program logic
is not affected by these changes.

• Changing applications make it desirable to move
data files from one storage device to another (tape
to disk), or from one access method to another
(sequential to direct).

• Programmer productivity is hindered by a limited
knowledge of specific device characteristics (for
example, optimum block size for indexed sequen­
tial processing) or specific access methods.

• Batch applications must be expanded smoothly
and easily to teleprocessing applications.

DL/I is a control system designed to assist the user
with these needs.

General System Description
DL/I has the following characteristics:

• It runs in a user program partition under DOS/VS.

• It provides a subset of the batch data management
facilities offered by IMS/VS. Application programs

Chapter 1: General Information

are upward compatible through DL/I for easy
growth.

• It includes four file organizations: Sequential,
Indexed Sequential, Direct, and Indexed Direct.
The user may choose the organization best suited
for each data file, and later change to another or­
ganization as his application needs change, with­
out reprogramming.

• User application programs may be written using
Assembler, COBOL, PL/I, or RPG II.

• DL/l includes an interface module that allows
transaction processing programs accessing data
bases to run in the teleprocessing environment
provided by CICS/VS. This interface module inter­
prets requests for data, but does not alter the sys­
tem in any way.

• DL/I enables application programs executing in
different partitions to access the same data base
concurrently. This capability, multiple partition
support, permits, for example, online applications
to issue inquiries to a data base while a batch pro­
gram updates it.

• The DL/I data structure handles variable occur­
rences of fixed length data without wasting sec­
ondary storage space. For example, a customer
master file containing purchase order information
does not require reserved space for the maximum
number of line items possible in a single purchase
order.

• The complex and changing details of data access
are concentrated within DL/I. Only one person or
group within the data processing department
needs in-depth education on the specifics of device
characteristics and access methods.

• It provides for the separation of application pro­
gram logic from device oriented details. This
means that movement of data from one device to
another (for example, tape to 3330, to 3350) does
not affect the application program. This is called
device independence.

• It provides for the separation of application logic
from data organization. For example, data files
may be expanded to contain additional data, or
changed from indexed sequential to indexed direct
organization without affecting existing application
programs. If existing programs do not reference
newly defined data, there is no need to recompile
the application program. This is called data
independence.

Chapter I: General Information 1 - 1

• Both DL/I data bases and other DOS/VS files may
be accessed by the same application program.

Program Structure
The following program modules are required to exe­
cute a DL/I application program:

• The user application program containing DL/I
calls.

• For each application program, a PSB (program
specification block) that identifies each DL/I data
base used by this program and describes how each
can be processed by this program.

• For each DL/I data base, a data base description
block that describes the physical data base struc­
ture, the file organization, and the device on
which the data base resides.

• The DL/I processing modules.

These modules are stored in the core image li­
brary. For online execution, the CICS/VS system
control functions load the modules as required.

Data and Device Independence
The separation of the application program from data
base oriented logic allows both data and device inde­
pendence.

Data independence means:

• Adding new types of data to existing data bases
with no application program recompile

• Optimizing system performance by varying record
size, blocking factor, space allocation, and access
method with no application program recompile

• Allowing programs to refer to the same data by
the same name

• Reducing programming maintenance caused by
changes in existing data format.

Device independence means:

• Data bases can be moved from tape to disk access
methods with no application program recompile

• Device changes from 2400 to 2314, to 3330, to
3340, to 3350 or FBA (or any combination of these)
can be made with no application program recom­
pile.

Program Execution
DL/I acts as an interface between the application pro­
gram and the DOS/VS data management routines. DL/I
is actually the main program in the DOS/VS partition,
and the user written COBOL, PL/I, RPO II or Assembler
program is treated as a subroutine. The application

1 ·2 DL/I DOS/VS Ouide For New UHrs

program communicates with DL/I via the DL/I lan­
guage interface. Program requests to DL/I are issued
by using a standard DL/I call statement or an RQDLI
command in RPG II. These call statements provide for
reading, deleting, adding, and changing segments in
the data base. (A segment consists of one or more logi­
cally associated data fields, and is of fixed or variable
length.) Feedback information is provided by DL/I
after every call indicating successful or unsuccessful
completion, and complete identification of the data
base segment retrieved or processed.

The relationships between DL/I and the application
program are illustrated in Figure 1-1.

1. DOS/VS loads DL/I and gives control to DL/I. DL/I
loads the PSB and analyzes the data base require­
ments of this application program as defined in
the PSB. DL/I then loads and initializes the DMBS
required.

2. DL/I loads and gives control to the application
program.

3. The application program processes segments in
the data base through calls to DL/1.

4. The DL/I call analyzer decodes the call parame­
ters into specific data base actions.

5. The DL/I action modules translate the data base
calls into I/O requests appropriate to each data
base.

6. DL/I determines which access method is required
for the data base and optionally logs any changes.

7. The DOS/VS SAM or VSAM routines read and write
data in the data base files.

8. Changes are made to the data base or data is
returned as requested by the application program.

9. DL/I returns the requested data or a status code to
the application program.

10. When the application program reaches end of
job, control is returned to DL/1.

11. DL/I closes the data bases and returns control to
DOS/VS.

Utility Programs
DL/I supplies a number of utility programs that provide
for the reorganization and recovery of a data base file.
These utilities are used to improve DL/I performance
and to facilitate future expansion. The use of the reor­
ganization and recovery utilities is discussed in Chap­
ters 6 and 7 of this manual.

L DOSIVS

Application Program for
DLII Data Base Processing ,

1
I
I
I
I
I

Language Interface

1f3\
Control Facility I ~

Program Reque:t Handler r---.J

DLII Facility

.--------------
I

------,
I
I

-----,
I
I
I
I

I
I
I
I
I
I ----r-------- - ______ .., ____ J

I
I
I
I

I
I
I

Hierarchical Direct
Modules for HIDAM and HDAM

I
I
I

L ____ _ --01-
t

-l- - - - - - - - 1-0- - -
", G ~

I
-r

I
I
I
I
I

_J

1

'- --IL---r--VtM ----,I SAM

t

Figure I-I. DL/I Batch System

File Integrity and Recovery

I
I
1
I
L __ _

As a user option, all modifications to any data base
used in the DL/I environment can be recorded on the
DL/I log. If multiple executions are performed concur­
rently without using MPS (multiple partition support), a
DL/I log is associated with each partition. With MPS,

one central DL/I log is used. No attempt should be
made to access the same data base from more than one
DOS/VS partition, unless MPS is used.

I
I
I

___ J 0

Data base logging provides the DL/I system with a
record of all modifications to all data bases used during
a data base execution and, in the online system, can be
carried out in either of two ways. One is to use the
standard DL/I log feature as it is used in the batch sys­
tem. The other possibility is to assign the DL/I log to
the CICS/VS system journal. In this case, the log file is
shared between DL/I log records and any other system­
provided or user-provided CICS/VS journal records.
The DL/I log may, in either case, be used in conjunc­
tion with the DUI data base recovery utilities to rebuild

Chapter I: General Information I - 3

a data base. The Utilities and Guide for the System
Programmer provides additional detail on the use of
data base log information for recovery.

Online Environment
The CICS/VS interface module provided with DL/I al­
lows DL/I VSAM data bases to be processed by CICS/VS

application programs written in COBOL, Assembler,
PL/I, or RPG II. The CICS/VS application program issues
DL/I calls to process DL/I data base records.

All functions available to a batch application pro­
gram are also provided to online transactions except

I for the loading of data bases and DL/I utility functions.

DL/I with CICS/VS controls access by multiple trans­
action processing programs to the same data, so that a
single data base can concurrently be updated by any
number of transaction processing programs.

Data Base Facility

Data Base Concepts
All data files within your organization are candidates
for inclusion in a data base. A data base can be dermed
as a nonredundant collection of interrelated data items
processable by one or more applications. DL/I, as a
data base management facility, provides a structure for
this data, and makes it easier to store and retrieve these
items.

Segments
The segment is the unit of data processed by DL/1. The
segment is processed with DL/I call statements. DL/I

provides the application program independence from
access methods, from physical storage organizations,
and from the characteristics of the devices on which the
data of the application is stored. This independence is
provided by a symbolic program linkage and by data
base descriptions external to the application program.
A reduction in application program maintenance is a
natural result of this separation.

Segment Sensitivity
An important capability of DL/I that permits develop­
ment of a multi-application data base is the concept of
segment sensitivity. Each application program using
the data base can be sensitive to its own unique subset
of the data base segments. Segment sensitivity is de­
rmed in the PSB that the application program uses dur­
ing execution.

I - 4 DL/I DOS/VS Guide For New Users

Field Level Sensitivity
In addition to segment sensitivity, the user can specify
fields from within the physical segment definitions to
build a new view of the segment for exclusive use by a
particular application program. Field level sensitivity
is defined in the PSB used by the application program
during execution.

Logical Data Base Structure
Each record in the data base (except for HSAM, SHSAM,

and HDAM), must contain a key identifying that record.
Data base records are variable in length and contents,
as required, and normally contain all the data logically
related to a particular key. Data base records are pre­
sented to the application programmer in a hierarchical
segmented structure as illustrated in Figure 1-2. Logi­
cally related fields within the records are grouped to­
gether into segments. Segments themselves are related
hierarchically, that is, some segments are dependent on
the existence of a segment at a higher level.

The first segment in a data base record contains the
key of the data base record and is called the root
segment. There can be only one root segment per data
base record. Segments at lower levels may be of any
type, in any combination, and may occur any number
of times, within the limits of the DL/I architecture. All
DL/I calls issued by the application programs relate to
retrieving, deleting, inserting, or replacing a segment in
a data base record. As shown in Figure 1-2, level 3
segments such as segment type C are dependent for
their existence on the level 2 segment type B and can
not be present if the corresponding type B segment is
not present in the data base record. Segment type C is
called the child of segment type B. Thus, segment B is

SEGMENT R

LEVEL 1

ROOT
SEGMENT

KE-yi

I
SEGM ENT A I SEGMENT B I

LEVEL 2

DEPENDENT DEPENDENT
SEGMENT SEGMENT

OF R OF R

SEGMENT C I
LEVEL 3

DEPENDENT
SEGMENT

OF B

Figure \-2. Hieratchical Data Structure

the parent of segment c. Each segment type can be
ftxed or variable length, contains logically associated
ftelds, and has a 1 to 8 character name, such as C,
which is used to reference the segment type.

File Record Layout
A customer file record layout might appear as shown in
Figure 1-3.

I CUSTOMER I I SHIP-TO LOCATION I
NUMBER NAME ADDRESS I I I

(CUSTOMER ORDERS I etc.

, I I .
Figure \-3. Customer File Record Layout

Figures 1-4 and 1-5 illustrate the format and con­
tents of a simple customer data base record using a
hierarchical data structure. The use of multiple occur­
rences of a segment type is illustrated by the presence
oftwo ORDER ITEM segments for the September
CUSTOMER ORDER segment. At times a segment type
may have zero occurrences. The hierarchical sequence
of segments is top to bottom and left to right. Thus, the
sequential retrieval for the data base structure shown in
Figure 1-4 is:

1. CUSTOMER segment for Company z.

2. CUSTOMER LOCATION segment for Southeastern
Region.

3. CUSTOMER ORDER segment of Southeastern Re-
gion segment for September.

4. ORDER ITEM segment-l for this order.

5. ORDER ITEM segment-2 for this order.

6. CUSTOMER ORDER segment of Southeastern Re­
gion segment for October.

7. ORDER ITEM segment for this order.

8. CUSTOMER LOCATION segment for Northwestern
Region.

9. CUSTOMER ORDER segment of Northwestern
Region segment for April.

10. ORDER ITEM segment for this order.

11. CREDIT STATUS segment.

Rules for Data Base Structures
The rules concerning data base structures are:

• Any number of data bases may be deftned.

• 1 to 20 data bases can be used by anyone applica­
tion program.

• A data base may consist of 1 to n data base re­
cords.

• A data base record may consist of 1 to 255 seg­
ment types (in Figure 1-4 there are 5 segment
types). The segment type, CUSTOMER, is the root
segment.

• Within a data base record each segment type may
have 0 to n occurrences, except the root segment
which can occur only once.

• A data base record may have a maximum of 15
segment levels. (The example in Figure 1-4 has 4
segment levels.)

• A dependent segment can occur only if its parent
exists in the data base record.

• Each segment type has a 1 to 8 byte alphameric
name and can be either ftxed, or for HD organiza­
tion, variable length.

• Application programs sensitive to a dependent
segment must also be sensitive to its parents all the
way up to and including the root segment.

• The key of the data base record is the sequence
fteld of the root segment. It must be a ftxed length
fteld within the root segment. This key fteld is
used by the application program to directly access
data base records. A key field of all binary Isis
reservedfor use by DL/ I only.

• Although it is not required, any dependent seg­
ment which itself has children should contain a
unique sequence fteld. The sequence fteld is user
data within the segment that is unique for each
segment within a parent. This field is used to
identify a segment, and to determine where new
segments are inserted. Dependent segments may
or may not have a sequence fteld. If no sequence
fteld is deftned, segment sequence is controlled by
user specified rules.

Adding New Segment Types
The modiftcation of the data base structure requires a
new DBD, which replaces the existing DBD in the core
image library.

New segment types may be added to an existing
data base without affecting existing programs as long
as the associated PSBs are not affected.

For HSAM and H1SAM data bases, if the new seg­
ments being deftned are at the "end" (that is to the
right and bottom of existing segments in the hierarchy)
no further action is required.

If the new segment type being deftned is within the
existing hierarchy, the data base must be reloaded.

Chapter I: General Information I - 5

l

CUSTOMER

CUSTOMER NAME ADDRESS NUMBER

I I
CUSTOMER ,
LOCATION CREDIT STATUS

LOCATION NAME ADDRESS CREDIT
NUMBER LIMIT

CUSTOMER ORDER

ORDER ORDER REFERENCE
DATE NUMBER DATA

ORDER ITEM

INVENTORY LINE QUANTITY QUANTITY QUANTITY ITEM ITEM ITEM ORDERED SHIPPED BACK AMOUNT NUMBER NUMBER ORDERED

Figure 1-4. Customer Data Base

000003 I Company Z, Inc. I 6 Hyde Street I
I 000010 I Southeastern Region I 715 Roundtrip Place I

I
770920 I 100700 I Third 1977 Order I

000300 10 000080 000040 000040 000000000160

000400 01 000050 000050 000000 000000000750

I 771015 161293 I Fourth 1977 Order I
000300 10 000080 000040 000040 000000000160

I 000011 I Northwestern Region I 1220 North Ave. I
I 770415 I 100012 I First 1977 Order I

000400 01 000050 000050 000000 000000000750

l 000000100000 I 000001500000
I

Figure 1-5. Customer Data Base -- Sample Record

• Create the new DBD.

CREDIT
BALANCE

CUSTOMER

CUSTOMER LOCATION

CUSTOMER ORDER

ORDER ITEM

ORDER ITEM

CUSTOMER ORDER

ORDER ITEM

CUSTOMER LOCATION

CUSTOMER ORDER

ORDER ITEM

CREDIT STATUS

This simple task can be accomplished using the follow­
ing procedure: • Use the DL/I utility to reload the new data base.

• Use the DL/I utility to unload the old data base.

I - 6 DL/I DOS/VS Guide For New Users

Application Program Data Base Processing
Functions
DL/I provides a set of functions that allows the applica­
tion programmer to access and process data base re­
cords. Your application programmer issues a standard
DL/I statement, referred to as a call statement, from his
COBOL, PL/I, or Assembler language programs. For
RPG II, your application program issues the RQDLI
(request DLI) command to access the data base. Specif­
ic details regarding the coding of DLI calls are included
in Chapter 4.

Data base records can be processed sequentially,
skip sequentially, or in random order. If sequential or
skip sequential techniques are used, the program can
interchangeably use a tape or a disk data base.

The DL/I call statements allow the application pro-
grammer to:

• Retrieve a unique segment (GET UNIQUE)

• Retrieve the next sequential segment (GET NEXT)

• Retrieve the next sequential segment within the
same parent (GET NEXT WITHIN PARENT)

• Replace the data in the existing segment
(REPLACE)

• Delete an existing segment (DELETE)

• Insert a new segment (INSERT)

• Write a checkpoint record to the DL/I log
(CHECKPOINT).

A DL/I call may deal with one or more segments in a
hierarchical path. Segment retrieval is based upon
either or both of the following:

• Position in the data base, as set by previous calls

• Comparisons between fields within the segments
in the specified path, and values supplied with the
DL/I call.

The DL/I calls are independent of the data base access
method.

Physical Data Base Structure
Six access methods are available for processing DL/I
data bases. In all instances, the logical data structure
presented to the application programmer is identical.
The six access methods are:

• Simple hierarchical sequential access method
(SHSAM)

• Hierarchical sequential access method (HSAM)

SHSAM and HSAM use the DOS/VS Sequential Access
Method (SAM) to access physical storage.

• Simple hierarchical indexed sequential access
method (SHISAM)

• Hierarchical indexed sequential access method
(HISAM)

SHISAM and HISAM use the DOS/VS Virtual Storage
Access Method (VSAM). A HISAM data base is com­
posed of one key sequenced file (KSDS) and one entry
sequenced file (ESDS). A SHISAM data base consists of
only a key sequenced file (KSDS).

• Hierarchical direct access method (HDAM)

HDAM consists of one entry sequenced file (VSAM

ESDS).

• Hierarchical indexed direct access method
(HIOAM)

HIOAM consists of one key sequenced file (VSAM
KSDS) and one entry sequenced file (VSAM ESDS).

Basic Segment Types in a Hierarchical Data
Structure
Figure 1-6 shows the segment types and how they are
related in a hierarchical data structure. The segment
types are:

• Root Segment: This segment is at the top of the
structure. Each root segment has a key field which
serves as the unique identifier of that root seg­
ment, and as such, of that particular data base
record. The key field for this root segment is the
customer number.

• Dependent Segment: The dependent segment relies
on some higher level segment for its full meaning
and identification.

A parent/child relationship exists between a seg­
ment and its immediate dependents.

• Twin Segment: Multiple occurrences of a particu­
lar segment type under the same parent are called
twin segments.

Sequence Fields and Access Paths
To identify and provide access to a particular data base
record and its segments, DL/I uses sequence fields. Each
segment normally has one of its fields denoted as the
sequence field. Although not required, it is a good
practice to make sequence fields unique in value for
each occurrence of a segment type below its parent
occurrence. However, not every segment type need
have a sequence field dermed. Particularly important is
the sequence field for the root segment, because it
serves as the identification for the data base record.
DL/I provides a fast, direct access path to the root seg­
ment of the data base record based on this sequence
field.

Note: The sequence field is often referred to as the keyfleld or simply
key.

Chapter I: Oeneral Information 1 • 7

Root segments
one per data base
record.

CUSTOMER
2

CUSTOMER
1

Shaded line
shows
access path to
ITEM 1132

\ 7

CUSTOMER
LOCATION
11

CUSTOMER
3

CUSTOMER
n

Parent of LOCATION, ORDER,
ITEM, CREDIT STATUS, and
CUSTOMER HISTORY segments.

All segments below are
dependents of CUSTOMER 1

1
CREDIT
STATUS
11

~CUSTOI\1ERI
ORDER
113

CUSTOMER
ORDER
112

CUSTOMER
ORDER
111

ORDER
ITEM
1111

ff1 ORDER
\ , ITEM

1"1.S2

ORDER
ITEM
1131

Figure \-6. Segment Types and Their Relationships in a Hierarchical Data Structure

1 - 8 DL/I DOS/VS Guide For New Users

CREDIT
STATUS
n1

I

CUSTOMER
HISTORY
n1

1
CUSTOMER
HISTORY
11

Twin segments, children of
the same parent and are
the same segment type. The
OR DER segments in this
record are also twins.

I

Figure 1-6 shows as a shaded line an example of an
access path to the ORDER ITEM t 132 segment. It must
always start with the root segment. This is the access
path as used by DL/l. The application program, how­
ever, can directly request a particular ORDER ITEM
segment of a given CUSTOMER ORDER to a given
CUSTOMER LOCATION for a specific CUSTOMER in a
single DL/I request by specifying a sequence field value
for all four segment levels.

Logical Relationships
In addition to the basic DL/I facilities discussed so far,
DL/I provides a facility to interrelate segments from
different hierarchies, or within the same hierarchy. In
doing so, new hierarchical structures are defined that
provide additional access capabilities to the segments
involved. The segments can belong to the same or
different data bases. A new data base can be defined
called a logical data base. This logical data base allows
presentation of a new hierarchical structure to the ap­
plication program.

The basic mechanism used to build a logical relation
is to create a dependent segment as a logical child that
points to a second parent, the logical parent.

In Figure 1-7, the logical child segment ORDER ITEM

exists only once, yet participates in two hierarchical
structures. It has a physical parent, CUSTOMER ORDER,
and a logical parent, INVENTORY ITEM. The data in the
logical child segment, if any, is called intersection data.

By defining two additional logical data bases, two
new logical data structures as shown in Figure 1-8 can
be made available for application program processing.
The ORDER ITEM/INVENTORY ITEM segment in Figure
I-SA, is a concatenated segment. It consists of the logi­
cal child segment plus the logical parent segment. The
ORDER ITEM/CUSTOMER ORDER segment of Figure
I-SB is also a concatenated segment, but it consists of
the logical child segment plus the physical parent seg­
ment. Logical children with the same logical parent are
called logical twins. In this case, all ORDER ITEM seg­
ments which point to the same INVENTORY ITEM seg­
ment are logical twin segments. As can be seen in Fig­
ure 1-7, this logical child has two access paths. One via
its physical parent, the physical access path, and one via
its logical parent, the logical access path. Both access
paths are maintained by DL/I and can be concurrently
available to one program. When the logical child seg­
ment has two access paths as in Figure 1-7, the logical
relationship is called bidirectional. DL/I also provides
for unidirectional logical relationships in which case the
logical child segment can be accessed only via its physi­
cal parent.

Because the DL/I logical relationship function may
not be required for your first DL/I application, we will

deal with it separately in this manual. To show the use
of logical relationships, we will use phase 2 of the sam­
ple application as described in Chapter 2.

Secondary Indexing
DL/I provides additional access flexibility with
secondary index data bases. Each secondary index rep­
resents a different access path to the data base record
other than via the root key. The additional access
paths can result in faster retrieval of data. For exam­
ple, the CUSTOMER and CUSTOMER ORDER segments in
Figure 1-9 could be retrieved based on the order num­
ber in the CUSTOMER ORDER segment, if an index were
defmed for that field. Once defined, DL/I will automat­
ically maintain the index if the data on which the index
relies changes, even if the program causing that change
is not aware of the index.

The segments involved in a secondary index are
depicted in Figure 1-9:

• The index source segment contains the source
field(s) on which the index is constructed, for ex­
ample, ORDER NUMBER.

• The index pointer segment is the segment in the
index data base that points to the index target seg­
ment. The index pointer segments are ordered
and accessed based on the field(s) contents of the
index source segment, for example, the order
number. This is the secondary processing sequence
of the indexed CUSTOMER data base. There is one
index pointer segment for each index source seg­
ment, but muitiple index pointer segments can
point to the same target segment.

• The index target segment is the segment which
becomes initially accessable via the secondary
index. It is in the same hierarchical record as the
index source segment and is pointed to by the in­
dex pointer segment in the index data base. Often,
but not necessarily, it is the root segment.

The index source segment and index target segment
may be the same, or the index source segment may be a
dependent of the index target segment as shown in
Figure 1-9.

In our examples, we will always choose the root
segment as the target segment. With this approach, it is
(for the application program) as if the index search
field replaces the original root key field. At the same
time, however, the original structure is still available to
the same application program.

Because you might not need the secondary index
function for your initial data base requirements, we
separate its discussion throughout the manual. The use

Chapter I: General Information I - 9

CUSTOMER
ORDER

ORDER
ITEM

CUSTOMER DATA BASE

CUSTOMER

~ PHYSICAL
PARENT OF
ORDER ITEM

~ LOGICAL
CHILD OF
INVENTORY ITEM

INVENTORY DATA BASE

VENDOR

INVENTORY ~ LOGICAL
PARENT OF

ITEM ORDER ITEM

SUBSTITUTE
ITEM

Figure 1-7. Two Logically Related Data Bases, CUSTOMER and INVENTORY

CUSTOMER
ORDER

ORDER
ITEM

CUSTOMER

VENDOR

INVENTORY
ITEM

A. LOGICAL DATA STRUCTURE -
CUSTOMER ORDER -INVENTORY ITEM

INVENTORY
ITEM

ORDER CUSTOMER
ITEM ORDER

,

CUSTOMER

B. LOGICAL DATA STRUCTURE·
INVENTORY ITEM - CUSTOMER ORDER

Figure 1-8. The Logical Data Bases After Relating CUSTOMER and INVENTORY Data Bases

1 - 10 DL/I DOS/VS Guide For Ne~ Users

I
VENDOR

-;

ORDER NUMBER
SECONDARY
INDEX DATA
BASE

CUSTOMER
DATA BASE

INDEX
POINTER
SEGMENT
provides the
means for the
index access

ORDER
NUMBER CUSTOMER

INDEX
TARGET
SEGMENT
accessed via
the index

\
\
\

\ CUSTOMER
\ LOCATION

\~--'r-----l
\

ORDER
ITEM

INDEX
SOURCE
SEGMENT
contains the
field on which
the index is
established

Figure 1-9. A Data Base and its Secondary Index

of secondary indexing is shown in the phase 3 sample
application as described in Chapter 2.

Data Base Definition
The data base definition language of DL/I provides two
levels of data base definitions. Both are generated and
maintained independently of your application
program(s), thus providing the basis for data independ­
ence.

DBD (Data Base Description)
The first level is called the DBD (data base description).
It describes most of the file characteristics you must put
into every non-data-base DOS/VS program. Each DBD
is created from statements you provide. The statements
define the hierarchical data structure and physical
organization of the data base. These statements are
assembled as the DBD generation procedure.

The DBD describes the contents of the data base, the
names of the segments, their hierarchical relationship,
and the physical organization and characteristics of the
file. You can think of the DBD as the master descrip­
tion of everything that is in the data base.

The DBD provides DL/I with the mapping from the
application data structure of the data base used in the
application program to the physical organization of the
data used by DOSjVS. The data structure can be re­
mapped into a different physical organization without
application program modification. Other application
data can also be added to this data base and not re­
quire a change to the original application programs.
The concept of the DBD reduces application program
maintenance caused by changes in the data require­
ments of the application. The three types of DBDs are:

• The physical DBD provides the defmition of a
single hierarchical structure. It can be used, in this
form, by application programs. If logical relation­
ships exist, the physical DBD contains a definition
of these relationships with the other hierarchical
structure. These relationships can be within the
same DBD or with another DBD. Multiple logical
relationships can exist within a single physical
DBD.

• The logical DBD provides the redefmition of one
or more related hierarchical structures into a new
hierarchical structure. These hierarchical struc­
tures can be from the same or different DBDs. The
logical DBD relies on the logical relationships that
were defined in the physical DBD(S).

• The index DBD allows the definition of an alter­
nate access path into a physical or logical DBD.

The process of generating a DBD is called data base
description generation (DBDGEN).

PSB (Program Specification Block)
The second level of data base definition, the PSB
(program specification block), defines the application
data structure for each application program. It is creat­
ed from statements you provide for each of your appli­
cation programs. The PSB defines which segments of
the data base a specific program requires (the applica­
tion data structure required by that application pro­
gram). A PSB contains one or more PCBs (program
communication blocks), one for each hierarchical data
structure the program intends to use. Each PCB defines
the hierarchical (sub)structure the program sees from
the physical or logical data base. It specifies for each
segment the kind of access allowed by the program
(read only, update, insert, and delete). There is at least
one PSB for every program that uses the data. An on­
line program may use more than one PSB; more than
one program may use the same PSB. You can think of
the PSBs as describing the logical data needed for the
program (usually a subset ofthe entire data base). The
process of generating a PSB is called program specifica­
tion block generation (PSBGEN).

User Responsibilities

System Installation
The user of DL/I has two primary responsibilities:

1. The development of data processing applications
that use DL/I. This includes application programs,
as well as backup and recovery procedures using
the DL/I utilities.

2. The structuring of his data processing environ­
ment:

Chapter I: General Information I - II

• Data Bases

• Batch Processing Programs

• CICS/VS as the teleprocessing support for trans­
action processing programs

Data Base Administration
The centralization of data and control of access to this
data is essential to a data base management system.
One of the advantages of this centralization is the
availability of consistent data for more than one appli­
cation. This dictates a tighter control of that data and
its usage. Responsibility for an accurate implementa­
tion of control lies with the data base administration
function. Although the data base administration func­
tion is usually performed by a person called the data
base administrator, this function may actually be per­
formed by a group of individuals with experience in
both application and system programming. The duties
of the data base administrator are to:

• Identify, defme, implement, and maintain data
base specifications

• Control and monitor the use of data base informa­
tion

• Integrate application requirements for common
information

• Provide for efficient application migration from a
batch to online environment

• Establish a reliable and efficient data base operat­
ing environment

• Identify data base security requirements

• Monitor and evaluate performance

The data base administration function can be sepa-
rated into three general areas:

• Data Base Analysis

• Data Base Management

• Data Base Operations

Data Base Analysis
Responsibilities:

• Design data base structures that will be easy to
program, and use available hardware resources
efficiently.

• Establish data base recovery and reorganization
procedures.

• Authorize and control use of data bases.

• Establish a data base environment for testing use.

1 - 12 DL/I DOS/VS Guide For New Users

Data Base Management
Responsibilities:

• Create and maintain a data element dictionary.
This dictionary should contain each identifiable
data element together with its attributes, source,
edit and integrity responsibility, and a cross refer­
ence to all programs and data bases that use it.

• Determine file organization schemes.

• Evaluate how and by whom data is used. On op­
erational data bases, a use profile should be main­
tained to detemline if design decisions remain
valid.

• Defme, code, execute, and control all PSB and DBD
generations.

Data Base Operations
Responsibilities:

• Monitor all operational data base activity. The
foremost goal is to preserve the integrity of the
data base system.

• Based on results of the monitoring function, make
recommendations for changes to the data
base/data communications environment,
configuration, or procedures that will improve
performance, recoverability, and integrity.

• For online system operation, initialize, terminate,
monitor, and control the online data base/data
communications environment.

• Assist in the procedures required to properly re­
cover from a compromised data base, should this
occur.

Project Approach
The implementation of a DL/I application is most suc­
cessfully done using the project approach. With this
approach, you assure that adequate planning is done in
a timely manner, stating all the necessary steps for the
design, test and installation of the application. For
more complex applications, you may want to try using
a project team with a defmition of the tasks and re­
sponsibilities of all parties involved, if possible.

Project Cycle
Like most other data processing projects, a DL/I project
can generally be divided into the following phases:

• Preliminary investigation

• Planning

• Design

• Implementation

• Testing

• Operation

Figure 1-10 shows the relative manpower requirements
for each of the phases.

Following is a brief introduction to each of the phases:

The Idea: Normally there is a user requirement or
a management decision which is the initial starting
point of the project.

Preliminary Investigation: This phase concentrates
on the defmition of the objectives. A feasibility
study, with a preliminary cost/benefit analysis, is
conducted.

Planning: A project plan is established. A Project
team is formed and the tasks and responsibilities
of individuals and departments are defmed.
Budget and other resources are allocated. Approv­
al for the implementation is obtained. A change
control procedure is implemented to control modi­
fication during implementation.

Design and Implementation: The system is de­
signed, followed by a design and performance
review. After design approval, detail designs are
worked out together with a test plan.

Test: Both unit test and integrated system tests are
performed, resulting in the acceptance test.

Production: Production is started. Any further
changes to the system are controlled via mainte­
nance procedures.

Administration: Another important aspect is pro­
ject administration. The timely and accurate plan­
ning for and establishing of standards and guide­
lines is mandatory for an efficient project imple­
mentation and later maintenance. Most organiza­
tions already have standards which should be ex-

Figure 1-10. The Project Cycle

tended into the data base environment. At least,
standards should be available for:

• Naming of data base items such as DBDs, PSBs,

segments, fields, etc.

• Documentation of data structures, programs
and procedures (production, reorganization,
recovery)

• Administration of data sets, data bases, back­
up copies and log tapes and their interrelation­
ships.

All of this is under the control of the data base ad­
ministration function.

Sample Project Plan
The following sample project plan should be adapted
to your specific environment. Typical additional activi­
ties might be clean-up and conversion of existing pro­
grams and data.

Gross PERT Chart
Figure 1-11 shows a gross PERT chart for the imple­
mentation of a DL/I project. The necessary system­
oriented activities such as hardware and operating
system installation, and system maintenance, are not
included since these are largely dependent upon the
installation's environment. The following descriptions
apply to the activities shown in the PERT chart (Figure
l-ll).

System Planning (000-100): The sample PERT

chart is adapted to your project. Manpower and
machine time estimates are compiled. External
references are defmed. Elapsed time calculations
are performed and the chart is extended with the
proper time frame. The critical path is calculated.
A Gantt chart can be constructed showing the du­
ration and people involved for each activity. Fig­
ure 1-12 shows an example of such a Gantt chart.

ADMINISTRATION AND MANAGEMENT

P
R
o
D
U
C
T
I
o
N

Chapter I: General Infonnation I - 13

The Gantt chart should clearly state the actual
days/months spent by each individual.

System Design (100-200): The overall system de­
sign is made. All components and their interfaces
are defmed. The user interface is detailed and
reviewed for acceptance.

Development Plan (200-300): A detailed plan is
devised for the development of data bases and
programs. All single activities and their depen­
dencies are determined.

Data Base Gross Design (300-430): An overall data
base design, specifying the logical data structures
and the basic physical implementation, is created.

Program Design (300-400): Each individual appli­
cation program is designed. Its input, processing,
output and data base accesses are defined. Com­
mon guidelines and routines are established. Of­
ten more than 50% of the data processing pro­
grams are reports. Using COBOL or PL/I report
writer features can significantly reduce the re­
quired manpower for program design.

Collect Data (300-5301300-630): Both test data and
live data are collected, or procedures/programs
are established for the conversion of existing data
files.

Recovery and Reorganization
(300-440-650/640-700): A timely plan for re­
covery and reorganization can avoid later rede­
signs and reprogramming. These procedures, al­
though rarely needed, are vital to the data base
integrity and availability. Therefore, a thorough
test plan must be made and carried out before

SYSTEM DEVELOPMENT a DESIG~ a PLA~
~ 300):::",--"':':'::::~:::"'::'::":"'--1

Figure I-II. DL/I Installation Plan PERT Chart

I - 14 DL/I DOS/VS Guide For New Users

production starts. The production staff should be
carefully trained in problem determination and
the secure and accurate execution of such proce­
dures. An incomplete treatment of this topic is the
most common source of problems with data base
management systems.

Install DL/ I and Run Sample App/ication(s)
(300-420-600): The system programmer installs
the DL/I data base system. The samples provided
with the system are exercised to get practical expe­
rience with the system. Conventions and proce­
dures are established for system maintenance.

Data Base Detail Design (430-600): The detailed
logical and physical data base structures are dt:­
fmed. Access methods are selected and the DBDs
are coded and tested.

Program Specification (400-500): Detail flow.
charts are established. The data base call sequen­
ces are defmed in a standard fashion.

Test Plan (400-600): A detail test plan is made.
Procedures for unit test and systems test are estab­
lished.

Develop Load Programs -- Load Test Data Bases
(400-530-600): Load programs are designed, writ­
ten and tested with the test data, resulting in test
data bases for program and
recovery /reorganization tests.

Design Review (600): At this stage it is appropriate
to conduct a design review. The basic aim of a
design review is to assure that the specified re­
quirements are met. Major review topics are:

SYSTEMe PRODUCTION8
TEST

)-__ --.1_(700 800 ... 900

't DESIGN AND PERFORMANCE REVI EW

• Are the applications really what the users
want?

• Is the performance as expected?

• Are there any pitfalls in the data base and
program design?

Program and PSB Coding and Test (500-600-700):
Each application program is coded and tested,
using the test data bases and the test procedures.

Load Live Data Bases (630-700): The data bases
are loaded with the actual data. Backup copies are
made immediately after initial load. The process
at times exposes existing inconsistencies in data.
You may need to include extra time to resolve
these inconsistencies.

System Test (700-800): Integrated tests are execut­
ed on the live data bases. Reorganization and

ACTIVITY

EDUCATION

DL/I INTRODUCTION

DL/I IMPLEMENTATION

DEVELOPMENT

SYSTEM DESIGN

DB GROSS DESIGN

DB DETAI L DESIGN
(DBDs and PSBs)

PROGRAM DESIGN

PGM CODE AI\JD TEST

INSTALLATION

INSTALL DL/I

RUN SAMPLE

SYSTEM TEST

Figure 1-12. Sample Gantt Chart

~

~

TIME

It I DATA BASE SPECIALIST

~ SYSTEM ANAL YST

I;~~I PROGRAMMER

§ SYSTEM PROGRAMMER

D OPERATIONS STAFF

backup/recovery procedures are tested on those
data bases.

Production (800-900): Production starts. The es­
tablished monitoring and maintenance procedures
are enforced. Final feedback is given to develop­
ment for future projects. It is strongly recom­
mended that the test environment be maintained
in addition to the production environment. This
will be of benefit to future trouble shooting, appli­
cation modification, and application extensions.

Implementation Overview
Based on the information presented in this chapter, the
following steps are necessary to implement a data base:

• Define the application requirements.

• Design the physical data base.

ALL I

PRODUCT'ON t

Chapter I: General Information I - 15

• Define the logical relationships.

• Design the logical data bases.

• Derme the secondary indexes.

• Code the DBDs of the physical and logical data
bases.

• Code the PSBs.

• Use the DBDs and PSBs to build the control blocks
(ACB Generation).

1 - 16 DL/I DOS/VS Guide For New Users

• Define YSAM data sets for the physical data bases.

• Load the physical data bases (User Written Appli­
cation).

• Use the DL/I utilities to resolve the logical rela­
tionships between the data bases.

• Execute the applications.

As in almost any system implementation, the design is
the most challenging task to be performed. Yet, a de­
signer is often bound to a time limit and does not know
all future requirements. To cope with these problems,
a designer needs a good plan and proper techniques.

DL/I itself is not an application. It is a data manage­
ment control system that provides the method of con­
structing data base/data communication applications.
To simplify the use of this manual as a tool to guide
you in your data base design, a sample application is
used throughout this manual as a base for all the exam­
ples. This sample is intended to guide you in a normal
sequence through all the steps needed for successful
implementation of an application using DL/1.

The sample application is an online Customer Order
Processing Program using DL/I in conjunction with
CICS/VS. However, the examples for, and discussion of,
data base and application program design are also
valid for batch processing considerations. Any material
presented that applies to online considerations only is
clearly defined.

The sample application uses two data bases: Inven­
tory, and Customer. The Inventory data base is de­
signed first based on existing (non-data-base) ISAM

and/or VSAM files already in use at the installation (for
example, Inventory Master, Item Location, and Ven­
dor). This data base is used initially for batch applica­
tions, but the installation has plans to eventually relate
this data base to another data base (Customer), using
logical relationships to eliminate redundant data. To
gain an alternate path to retrieving the data, the instal­
lation will also use secondary index data bases.

Finally, the data bases will be placed in an online
environment using the DL/I interface to CICS/VS.

The fact that the examples used in this manual are
directed towards a specific application should not pre­
clude your using DL/I for other applications. Actually,
the basic data structure and processing shown in these
examples can readily be adapted to other applications.

Installing a Jata base management system involves
two separate processes:

• Data base design

• Data base implementation.

Data base design is a user process of determining
which data base structures will satisfy the
organization's application program data needs while
satisfying an organization's data security, integrity, and
redundancy objectives.

Chapter 2: Data Base Design

Data base implementation is a user process of creat­
ing, tuning, and maintaining data bases. This process
includes the selection of DL/I access method options,
storage allocation, and other performance and tuning
options. The implementation process is fully described
in the next chapter.

This chapter introduces the concepts, techniques
and guidelines for the designing of DL/l data structures.
It is aimed at those individuals who are designing their
first DL/I data base.

Data Base Design Objectives -Just as reasons for installing a data base management
system vary among users, data base design objectives
will also vary. Some objectives of a data base design
are to:

• Provide an access path to the stored data required
by an application.

• Isolate current applications from the impact of
future applications on the same data base.

• Support data security objectives

• Support data redundancy objectives

• Support multiple applications, making trade-offs
in the best interest of the organization as a whole.

Each user must determine the applicability and
priority of the design objectives to the current design
effort. The more limited and simple the objectives the
more simple the task of data base design.

In addition to the guidelines provided in this chap­
ter, the data base design process may also be accom­
plished by using one of the application development
aids available that support data base design. Examples
are:

• DOS/VS DBDA (Data Base Design Aid) - pp num­
ber 5748-XX4

The DBDA is a collection of programs that assist in
performing a major portion of the data base de­
sign process. The DBDA uses your installation's
input that describes the data base requirements
and produces a structural model of the data base
by mapping the data elements into segments and a
hierarchical structure that shows the minimum set
of relationships required by an integrated data
base (one which serves many application pro­
grams).

• DOS/VS DB/DC Data Dictionary - PP number 5746-
XXC

Chapter 2: Data Base Design 2 - I

The DB/DC dictionary is a collection of programs
that provide a data definition interface, store the
data definitions, provide displays and reports of
the defined data and, upon request, produce defi­
nitions for the DL/l control block generation proc­
ess.

Data base design aids are also available for certain
industry applications. If your installation intends to
use an IBM Chain File Bridge PP or some of the indus­
try application programs available, you should investi­
gate the data base design aids offered by these pro­
grams.

Because data base design is an area where there has
been little standardization, there has been no consistent
vocabulary for describing the concept involved. The
reader who intends to utilize one of the above facilities
may wish to skip the rest of this chapter.

About This Chapter
This chapter consists of three different sections:

• Section 1. The DL/ I Sample Application intro­
duces the sample applications in detail. It sets the
requirements and the environment for the actual
data base design process. It provides the back­
ground for the examples used in the two following
sections.

• Section 2.' The DL/ I Data Base Facility introduces
the functions of DL/I available to the data base
designer.

• Section 3. The Data Base Design Process intro­
duces the concepts, techniques and guidelines for
the designing of data bases with DL/I. It is aimed
at those individuals who are designing their first
data bases with DL/I.

Each of the above three parts is constructed along
the three phases of data base implementation:

• Phase 1: Basic data bases

• Phase 2: Data bases with logical relationships

• Phase 3: Data bases with secondary indexes

With this gradual approach you will be able to de­
sign simple data structures with a minimal amount of
effort and still be able, when the need arises, to exploit
the full DL/I function. Remember, data base design is
not just a matter of creative imagination. Most of it is
systematic labor. The intention ofthis chapter is to
help you with this by providing techniques for an effi­
cient accomplishment of this challanging task.

2 - 2 DL/I DOS/VS Guide For New Users

Section 1: DL/I Sample Application
The sample application documented in this manual is
for a fictitious company (a wholesale distribution firm)
that offers a wide variety of electronic components.
The components are purchased from various vendors
and sold to customers. Most customer orders arrive by
telephone. Because of this and the growth in numbers
of orders and variety of items, an upgrade of the exist­
ing inventory control and customer order applications
became necessary. It was decided to build a new sys­
tem which integrated these applications utilizing the
DL/l data base approach.

Some objectives for the new application were:

• Implement:

- Inventory control with its associated purchase
order processing

- Customer order processing

• Provide central control of inventory, purchase
orders, and customer orders

• Provide accurate status information on items in
stock, on order and delivered

• Provide accurate entry of both purchase orders
and customer orders with respect to items in stock

• Provide a base for online processing of orders and
inquiries

The implementation of this system will be the com­
mon thread throughout the examples used in this man­
ual.

Inventory Data Base
Information about items in stock is managed by the
inventory control department. All data will be stored
in the Inventory data base. This data base consists of
one record for each item the company stocks. Each
record identifies:

• Standard information for all items

• Stock location information for those items that are
in stock

• Purchase information for those items that need
restocking

Customer Data Base
Information about customer orders is managed by the
sales department. All order data will be stored in the
Customer data base. It consists of one record for each
customer order. Each record identifies:

• Standard information for each order and customer

• Order detail information for each ordered item

• Shipment information for this order

L

A link is required to the Inventory data base because
it is necessary to know which parts are on order by
each customer and vice versa.

Naming Conventions Used in the
Sample Application
The naming conventions used in the sample applica­
tion observe the following format:

Reserved for DOS/VS,
CICS/VS, and DL/I

Description (within
application)

Application (within
application area)

Category of name
(DBD, PSB, etc)

General Application
Area

INDEX 1 VSAM CLUSTER

CUSTOMER

DBD

SAMPLE TRANSACTION

Thus: The name STDCXIC represents the VSAM cluster
definition for Index I of the CUSTOMER data base with­
in the Sample Transaction set of applications.

Naming Conventions - Application Area

ABCDEFGH

ST - Sample Transaction

Naming conventions - Categories

ABCDEFGH
A - not used
B - PSB
C - Real Logical Child
o - DBD
E - not used
F - Field
G - Length Field (Variable

Length Segment)
H - Segment Search Argument
I - Indexing Segment
J - not used
K - Concatenated Key Field
L - Logical (Concatenated) Segment
M - not used
N - not used
0 - not used
P - Destination Parent Segment
Q - Sequence Field
R - Index Search Field
S - Segment
T - not used
U - Index Duplicate Data Field
V - Virtual Logical Child
W - not used
X - Indexed Field
Y - Indexing Field
Z - Index User Data Field

Naming Conventions - Applications

ABCDEFGH

C - Customer
I - Inventory

Naming Conventions - DBD

ABCDEFGH

lL
'0' - DBD

DBD TYPE

DBP - Physical DBD
DBL - Logical DBD
XnP - Index DBD

(n = 0-9)
DBC - Physical DBD

Cluster (VSAM)
OBI - Physical DBD

Index (VSAM)
DBD - Physical DBD

Data (VSAM)
XnC - Index DBD

Cluster (VSAM)
XnI - Index DBD

Index (VSAM)
XnD - Index DBD

Data (VSAM)

Chapter 2: Data Base Design 2 - 3

Note: The names for the segments and data elements shown in all
data base examples are as they will be used in the final (Phase 3)
online application. Therefore some names used in the Phase I and
Phase 2 examples are not consistent with the naming conventions
described.

Sample Application Description -
Phase 1
The phase I data base is the Inventory data base. It
contains the data the installation needs to monitor
stock status and to process customer orders. The data
base contains four segment types as shown in Figure
2-l.

INVENTORY
ITEM
(STPIITM)

I I
VENDOR

SUBSTITUTE ITEM
ITEM LOCATION

(STSIVND) (STCISUB) (STSILOC)

Figure 2-1. Inventory Data Base

The segments and the data elements they contain
are:

Inventory Item Segment (STPllTM): contains the
item number, description, quantity on hand, quantity
on order, unit price, and unit of issue.

Name Description Length (bytes)

STQIINO Item Number 6 (key)
STFIIDS Description 25
STFIIQH Quantity on hand 6
STFIIQO Quantity on order 6
STFIIQR Quantity reserved 6
STFIIPR Unit price 6 (3 dec. places)
STFIIUN Unit of issue I

Vendor Name Segment (STSIVND): contains the
vendor number, name, and three lines of address.

Name

STQVVNO
STUVVNM
STFVVAI
STFVVA2
STFVVA3

Description

Vendor Number
Vendor Name
Loc. Address Line I
Loc. Address Line 2
Loc. Address Line 3

Length (bytes)

6 (key)
25
25
25
25

Substitute Item Segment (STCISUB): This segment
contains the number of the item (if any) that can be
substituted for the item referenced in this record. The
field is:

Name Description

STQCCNO Sub. Item Number

Length (bytes)

6 (key)

2 - 4 DL/I DOSjVS Guide For New Users

Inventory Location Segment (STSILOC): This seg­
ment contains the Inventory location number for the
item, and the quantity. The fields are:

Name

STQILNO
STFILQT

Description

Inventory Loc. No.
Quantity

Length (bytes)

6 (key)
6

Sample Application Description -
Phase 2
The second data base is the Customer data base. For
phase 2, this data base will be related to the Inventory
data base using logical relationships. Details on how
this is done are presented later in this chapter. The
customer database contains the customer information
the installation needs to begin processing a customer
order, such as customer name, address, order informa­
tion, and credit status. It contains six segment types as
shown in Figure 2-2.

CUSTOMER
NAMEI
ADDRESS
(STSCCST)

I I
CUSTOMER CREDIT CUSTOMER
LOCATION STATUS HISTORY
(STSCLOC) (STSCSTA) (STSCHIS)

I
CUSTOMER
ORDER
(STPCORD)

I
ORDER
ITEM
(STCCITM)

Figure 2-2. Customer Data Base

The segments and the data elements they contain
are:

Customer Name and Address Segment (STSCCST):
contains the customer number, customer name, and a
three line address.

Name Description Length (bytes)

STQCCNO Customer Number 6 (key)
STUCCNM Customer Name 25
STFCCAI Cust. Address Line 1 25
STFCCA2 Cust. Address Line 2 25
STFCCA3 Cust. Address Line 3 25

Customer Location Segment (STSCLOC): similar in
format to the Customer Name and Address segment. It
provides multiple 'Ship to' locations for a customer. It.
contains the location number, location name, and three
lines of address.

Name Description Length (bytes)

STQCLNO Location Number 6
STFCLNM Location Name 25
STFCLAI Loc. Address Line 1 25
STFCLA2 Loc. Address Line 2 25
STFCLA3 Loc. Address Line 3 25

Customer Order Segment (STPCORD): A segment
exists for each active (open) order. This segment con­
tains totals and reference information unique to the
order. Fields are: Order Date, Order Number, Order
Reference Data, Item Count, and Total Order Amount.

Name Description Length (bytes)

STQCODN Order Date (yr-mo-day)
and Order Number 12

STFCORF Order Reference Data 25
STFCOIC Order Item Count 2
STFCOAM Order Amount 12

Order Item Segment(STCCITM): One segment ex­
ists for each line item of the order. It contains quantity
and amount fields unique to the line item. The fields
are: Inventory Item Number, Line Item, Quantity
Ordered, Quantity Shipped, Quantity Back Ordered,
and Order Amount.

Name

STKCIIN
STQCILI
STFCIQO
STFCIQS
STFCIQB
STFCIAM

Description

Inventory Item Number
Line Item Number
Quantity Ordered
Quantity Shipped
Quantity Back Ordered
Item Amount

Length (bytes)

6
2
6
6
6
12

Customer Status Segment (STSCST A): contains
information pertaining to the credit status of the cus­
tomer. This information is placed in a separate seg­
ment so that access to it can be restricted to those who
are authorized to use it. This data security is provided
using the segment sensitivity feature of DL/1. The seg­
ment contains two fields: Credit Limit and Credit Bal­
ance.

Name Description

STFCSCL Credit Limit
STFCSBL Credit Balance

Length (bytes)

12
12

Customer History Segment (STSCHIS): this seg­
ment is similar in format to the Customer Open Order
Item segment. It is used to retain summary information
about previous (closed) orders. This segment is defined
as a variable length segment to provide flexibility in
recording the order status field, STFCLOS, while optim­
izing storage requirements for the segment. The first

field in a variable length segment is used to record the
length of the segment. See "Variable Length
Segments" later in this chapter for details.

Name Description Length (bytes)

STGCSL Segment Length 2
STQCHDN Order Date (yr-mo-day)

and Order Number 12
STFCHRF Order Reference Data 25
STFCHIC Order Item Count 2
STFCHAM Order Amount 12
STFCLOS Order Status 77

Sample Application Description -
Phase 3
The phase 3 data ba:;e environment includes the addi­
tion of secondary indexes to the customer-and invento­
ry data bases. This is done in the sample application to
allow alternate access paths to the data as required for
the online order/inquiry system. Details on how this is
done are included later in this chapter.

D L / I Sample Programs
In DL/I Version 1.3, several new sample data bases and
sample programs were added to demonstrate the use of
DL/I with logical relationships and secondary indexes,
and to allow you to test DL/I in an online environment.
The sample programs are used to load, access, and
print or display the contents of the Customer and In­
ventory data bases as described in this manual for the
Phase 3 environment. All DBD, PSB, and ACB genera­
tion control statements are included for the physical,
logical, and secondary index data bases.

The sample jobstream also includes the access me­
thod services DEFINE commands for VSAM and the
utilities used to create the secondary indexes and re­
solve the logical relationships. The sample application
programs are:

• DL/I Online Sample Load Program - DLZSAM40

This program loads the Customer and Inventory
data bases for the DL/I online sample program.

• DL/I Online Sample Print Program - DLZSAM50

This program prints the Customer and Inventory
data bases as loaded by DLZSAM40.

• DL/I-CICS/VS Sample Online Application -
DLZSAM60

This program is an interactive DL/I-CICS/VS online
application designed to allow customer order in­
quiry and customer order entry to the Customer
and Inventory data bases defined for this sample
application.

The online sample application also includes a pro­
gram that defines the format of the displays to the 3270

Chapter 2: Data Base Design 2 - 5

screen as used by DLZSAM60. See Chapter 8, "DL/I
Online Sample Application," for more information.

Section 2: DL/I Data Base Facility
This section of Chapter 2 provides an introduction to
DL/I functions and their use. It is the main source of
reference for the data base administrator. This section
is subdivided into two parts. The first part provides the
necessary insight into DL/I for doing the data base de­
sign. The second part provides details for the imple­
mentation of the data base(s). Each part has three
sections. These sections cover the following main data
base facilities:

• Physical data bases and access methods

• Logical relationships

• Secondary indexes

Physical Data Bases and Access Methods
To support a wide variety of data base requirements,
DL/I provides several data base access methods. How­
ever, your application programs will be typically inde­
pendent of the particular access method chosen for a
given data base.

The access methods are:

• Simple Hierarchical Indexed Sequential Access
Method (Simple HISAM)

• Hierarchical Indexed Sequential Access Method
(HISAM)

• Hierarchical Indexed Direct Access Method
(HIDAM)

• Hierarchical Direct Access Method (HDAM)

• Simple Hierarchical Sequential Access Method
(Simple HSAM)

• Hierarchical Sequential Access Method (HSAM)

The data base type, its access method, and structure
are defined in the DBD (data base description). To use
a data base in an application program, you must pro­
vide a PSB (program specification block). The PSB
specifies the data base(s) to be used and the kind of
usage required. DBDs and PSBs are created during data
base description generation (DBDGEN) and program
specification block generation (PSBGEN) respectively.
This is discussed in detail later in this chapter.

Before discussing each of the access methods fur­
ther, this section will first elaborate on some of the
basic DL/I concepts that were introduced in Chapter 1.

2 - 6 DL/I DOS/VS Guide For New Users

DL/ I Data Base Record
The DL/I data base record as shown in Figure 2-3 con­
sists of one root segment and a number of dependent
segments. Each dependent segment can have a varia­
ble number of occurrences below its parent occurrence.

In its most elementary form, this record could be
stored in one or more physical records. In principal,
the segments would be stored in their hierarchical se­
quence, as shown in Figure 2-4.

Note that Figure 2-4 is a simplification. In reality
DL/I uses more elaborate storage organizations to allow
for efficient replacement, insertion, and deletion of
segment occurrences. Generally available functions
include for example:

r }
CUSTOMER CREDIT CUSTOMER
LOCATION STATUS HISTORY
11 11 11

I
.... -----

I I 112.

CUSTOMER
ORDER
111 I.-

I
1. _____ ,

! I 1122

ORDER ORDER
ITEM ITEM I--1111 1121

Figure 2-3. A DL/I Data Base Record

DLII DATA BASE

-------------~--"-==~~CU~ST=OM~ER~
RECORD

RECORD

RECORD

ORDER
ITEM
1111

ORDER
111

CUSTOMER
HISTORY

11

I--~- ------ --- ---- - ----
CUSTOMER

2
I-----l------------- --- __

Figure 2-4. A DL/I Data Base Record in Physical Storage

• Space reuse of deleted segments

• Direct or key-sequenced access for the root seg­
ment based on the root segment sequence field
(=key field).

This will be discussed in more detail for each of the
data base access methods.

Segment Format
A segment in a DL/I data base record consists of a pre­
fix and data portion. The prefix contains the system
data used by DL/I and is not presented to application
programs. The data portion contains the user data as
seen by the application program. The prefix of a seg­
ment contains a segment code, a delete byte, and op­
tional pointers. Figure 2-5 illustrates the segment for­
mat. The one byte segment code is used to identify
each segment stored in a DL/I data base. It is the first
byte of the prefix. The second byte is the delete byte. It
is used to maintain the status of a segment within the
data base.

Note: SHSAM and SHISAM data bases can contain only one seg­
ment type. (The root segment for the data base record.) These data
base organizations do not contain segment prefixes.

Figure 2-5 shows that segments also contain a point­
er area. Pointers are used in HDAM and HIDAM data
bases for linking the segments within one data base
record in their hierarchical order. Pointers are also
used to link segments involved in logical relationships,
and to implement index pointing.

1

I
2 5

I
I I I
3 4 6

Figure 2-6. Segment Types Numbered in Hierarchical Sequence

I
7

I
8

The segment types in each data base are coded in
hierarchical sequence from 1, the root segment, up to
255, as shown in Figure 2-6.

1-1 •• ------ PREFIX ------... \- DATA-l

L-S_E C_GO_M_~_EN_T---l.~D_~_~_~_~_E_L-p_O_1 N_T-:lE :: AR EA I USE: ;AT A I
Figure 2-5. Segment Format

Note that each occurrence in a data base of a given
segment type contains the same segment code. Each
segment occurrence is normally identified by its conca­
tenated key.

Concatenated Key
The concatenated key of a segment consists of all se­
quence fields from the root down the hierarchical path
to and including the sequence field of the segment itself
as shown in Figure 2-7.

Calls and Data Base Positioning
To help gain a better understanding of each particular
data base organization, a basic description of the DL/I

calls used to process segments in a data base follows.

1
9

I
I I

10 11

Chapter 2: Data Base Design 2 - 7

CUSTOMER

SEQUENCE FIELDS
000001

I-;===================~:> '--_--.--_---J CONCATENATED KEYS

CUSTOMER
LOCATION

000010

,000001,000010,--.-

CUSTOMER
ORDER

~=::::::> 770129100500 ... > "------,------'

000001

CREDIT
STATUS

NONE

000001 ~

CUSTOMER
HISTORY

I

761205

,000001,76 1 205,

,000001,000010,7701 291 00500, _1-------------------1

ORDER
ITEM

L====~ 01 :> 1--_____ --'

,000001,000010,770129100500,0 1, __ ---------------~

Figure 2-7. Concatenated Keys

The segments in a DL/I data base are processed
through calls issued by an application program. Calls
are issued to get, insert, delete, or replace a segment or
a path of segments. A call references a parameter list
which includes all data required by DL/I to complete
the call. Included in the list are a function code and,
optionally, one or more SSAs (segment search argu­
ments). The function code states the call to be per­
formed, and the SSAS define the segments along the
hierarchical path down to, and including the segment
to be processed. A call is unqualified when no SSA is
included with the call, and is qualified when one or
more SSAs are included. A brief description of SSAS
follows. For more detailed information, refer to Chap­
ter 4, "Processing Data Bases".

2 - 8 DL/I DOS/VS Guide For New Users

The basic direction of movement in a DL/I data base
is top to bottom, left to right. Position in a data base is
the segment or segments from which the search for
another segment starts. Normally, DL/I retains position
at each level of the hierarchical path down to the last
retrieved segment.

The basic DL/I calls are:

• GU (get unique) call is used to retrieve a specific
segment or path of segments from a data base. At
the same time it establishes a position in a data
base from which additional segments can be proc­
essed in a forward direction.

• GN (get next) call is used to retrieve the next de­
sired segment or path of segments from a data

base. The get next call normally moves forward in
the hierarchy of a data base from current position.
It can be modified to start at an earlier position
than current position in the data base through a
command code, but its normal function is to move
forward from a given segment to the next desired
segment in a data base. Command codes are dis­
cussed in detail in Chapter 4.

• GNP (get next within parent) is used to retrieve the
next desired segment or path of segments within
established parentage. Parentage must have been
established by a successful GU, GHU (get hold uni­
que, see following text), GN, or GHN (get hold
next, see following text) call either immediately
before this call, or at some prior time, provided no
other call that changes parentage has intervened.
A GNP call or GHNP call does not establish paren­
tage.

• GHU (get hold unique), GHN (get hold next), or
GHNP (get hold next within parent indicates the
intent of the user to issue a subsequent delete or
replace call. A get hold call must be issued to re­
trieve the segment before issuing a delete or re­
place call.

• ISRT (insert) call is used to insert a segment or a
path of segments into a data base. It is used to
initially load segments in data bases, and to add
segments in existing data bases.

To control where occurrences of a segment type
are inserted into a data base, the user normally
defines a unique sequence field in each segment.
When a unique sequence field is defined in a root
segment type, the sequence field of each occur­
rence of the root segment type must contain a uni­
que value. When defined for a dependent segment
type, the sequence field of each occurrence under
a given physical parent may contain a nonunique
value. If no sequence field is defined, a new oc­
currence is inserted according to rules specified by
the user when the data base is defined.

• DLET (delete) call is used to delete a segment from
a data base. When a segment is deleted, its de­
pendents, if any, are also deleted. This call must
be preceded by a get hold call.

• REPL (replace) call is used to replace the data in
the data portion of a segment or path of segments
in a data base. Sequence fields cannot be changed
with a replace call. This call must be preceded by
a get hold call.

• CHKP (checkpoint) causes a checkpoint record to
be written on the DL/I log as an aid in restart proc­
essing.

SSA (segment search argument)
An SSA specifies the conditions that a segment must
meet to satisfy a call. An SSA can contain three parts.
As a minimum, it contains the name of the segment
type. Optionally, an SSA can also contain command
codes and/or qualification statements. Command
codes, when used, specify a functional variation of the
call. Qualification statements identify, through field
values, the segment occurrence of the specified segment
type. A qualification statement contains a field name,
relational operator, and comparative value. When
occurrences of the segment type are searched by DL/I,

the specified field is compared to the comparative
value in accordance to the relational operator specified.
If only the name of the segment type is spscified, the
first encountered occurrence of that type will satisfy the
call.

VSAM (Virtual Storage Access Method)
VSAM is very flexible in that this single access method
can be used to process data sets organized in several
different ways. Two of these data sets are called the
ESDS (entry-sequenced data set), and the KSDS (key­
sequenced data set). The primary difference between
these data sets is the sequence in which records are
stored in them.

In a KSDS, records are stored logically in order of
collating sequence of the contents of a key field. This
field is part of the data content of each record. It ap­
pears in the same position of each record in the data
set. The key field contains a unique value, such as
customer number or order number, which determines
the record's collating position in the data set.

A KSDS has an index which is used to locate the
record's physical position in the data set. Each entry in
the index couples a key of a record with its location in
the data set. This key is the highest key value in that
section of the data set.

In an ESDS, the records are stored physically in the
order in which they are entered into the data set, that
is, their entry sequence. The data content of an ESDS

record has no effect on the position in which it is
stored. New records are simply stored at the end of the
data set. VSAM does not maintain an index for an ESDS.

Cluster Concept
In VSAM (for a KSDS), both the index component and
the data component can be treated as independent data
sets. You can give each component a name. For exam­
ple, you could name the index of a payroll data set
PAYDEX and the data part PAYDAT.

Note: The index component of a KSDS is a VSAM index. It is not
the primary or secondary index you can define for DL/I data bases.

Chapter 2: Data Base Design 2 - 9

Thus, it is possible to process the data portion sepa­
rately from the index portion and vice versa. In DL/I,

you will be treating the index and data as a single data
set with its own name. In VSAM, this combination is
called a cluster and the name that is given to the com­
bined components (index and data) is called a cluster
name. For example, you could give the payroll data set
a cluster name of PAYROLL. This is the name you use
as the file-ID in a DLBL statement to process the payroll
data set as a single functional unit.

II DLBL PAYFILE,'PAYROLL', ,VSAM

This concept of a cluster is carried over to the ESDS.

It is considered by VSAM to be a cluster without the
index component. To be consistent, the ESDS is given a
cluster name, just as the KSDS, which is normally used
as the file-ID when processing the data set.

In VSAM it is necessary to define a cluster before it
can be used as a dataset. A DL/I data base that is physi­
cally stored as a VSAM KSDS and/or ESDS must be de­
fined as a cluster to VSAM. VSAM clusters are defined
with the access method services DEFINE command.

Data Base Access Methods

Simple "SAM
The simple HSAM data base consists of root segments
only. Segments contain data only and are placed se­
quentially in a physical record of a DOS/VS Sequential
Access Method (SAM) file on DASD or tape. Any
DOS/VS SAM file defined with RECFORM=FlXUNB may
be defined as a simple HSAM data base.

"SAM
Figure 2-8 shows the HSAM physical storage of the
logical data structure. HSAM uses the DOS/VS Sequen­
tial Access Method (SAM) data management facility for
DASD and TAPE files. Segments which contain DL/I

prefix information and data are placed sequentially in
a physical record until the remaining space in the re­
cord will not hold the next segment to be stored. The
next segment is then placed in the next physical record.
Unused space at the end of a physical record is filled
with binary zeros.

Call Functions
• GET: SHSAM and HSAM will accept GET functions

• INSERT: SHSAM and HSAM will accept ISRT func­
tions on initial load only. Inserts to an HSAM data
base must be in sequence.

• DELETE: SHSAM and HSAM will not accept a DLET

function.

2 - 10 DL/I DOS/VS Guide For New Users

• REPLACE: SHSAM and HSAM will not accept a REPL

function.

Simple "ISAM
The simple H1SAM data base access method may be
used for indexed sequential access to a root segment
only data base. Because of this, there is no segment
prefix needed. Each segment contains only data and
constitutes one record of a DOS/VS VSAM key se­
quenced file (KSDS). This makes it possible to process a
non DL/I KSDS as a DL/I data base with full DL/I func­
tion. The main use of SHISAM is as a migration tool to
DL/I for existing KSDS files. It is not recommended for
new data bases. Any fixed length KSDS may be defined
as a simple HISAM data base.

"ISAM
The HISAM data base access method is used for indexed
sequential access. Data management capabilities are
provided by DOS/VS VSAM. HISAM requires a KSDS and
an ESDS.

One KSDS record is allocated to each DL/I data base
record. Each segment contains DL/I prefix information
and data. A root segment and as many dependent seg­
ments of the DL/I data base record as can be accomo­
dated are placed in the KSDS record.

If additional space is required for storage of depend­
ent segments of a DL/I data base record, one or more
ESDS records is used. Direct addresses relate the KSDS

record and all ESDS records for one DL/I data base
record. The ESDS records together form a VSAM entry
sequenced data set. Figure 2-9 presents the HISAM

physical storage of the logical data structure.

A VSAM control interval (KSDS or ESDS) consists of
one or more logical records. KSDS control intervals
may contain several logical records, each of which
relates to a different data base record. KSDS and ESDS

records may differ in size, however the KSDS record
must be large enough to contain at least the root seg­
ment plus prefix. The ESDS logical record length must
be large enough to contain the largest dependent seg­
ment plus prefix and it must be at least as large as the
KSDS record.

Considerations of "ISAM and "SAM
In deciding whether to use HISAM or HSAM, the HSAM

restrictions must first be considered. Since HSAM is
used to reference a sequential file, data cannot be add­
ed, deleted, or replaced in an existing HSAM data base.
DELETE and REPLACE calls are not valid for HSAM.

INSERT calls are invalid except when loading the data
base.

HSAM is useful for processing existing sequential
files and archival storage of data bases.

DATA BASE RECORD

CUSTOMER
1

I
CUSTOMER CREDIT CUSTOMER
LOCATION STATUS HISTORY
11 11 11

SAM.

I 112

CUSTOMER
ORDER
111 IT

L_ - - --,
I

I 1123
I 1112 I j1122

ORDER ORDER
ITEM ITEM I-
1111 I- 1121 I--

CUSTOMER 1 CUSTOMER CUSTOMER ORDER
LOCATION 11 ORDERlll ITEM 1111

PHYSICAL RECORD 1

ORDER CUSTOMER ORDER ORDER
ITEM 1112 ORDER 112 ITEM 1121 ITEM 1122

PHYSICAL RECORD 2

ORDER CREDIT CUSTOMER
ITEM 1123 STATUS 11 HISTORY 11

PHYSICAL RECORD 3

Figure 2-8. HSAM Physical Storage of a Logical Data Structure

Chapter 2: Data Base Design 2 - II

CUSTOMER DATA BA SE RECORD

1

I
CUSTOMER CREDIT CUSTOMER
LOCATION STATUS HISTORY
11 11 11

I 112

CUSTOMER
ORDER
111 r-r-L ______ -;

I

I 1123
1112 I 1122

ORDER ORDER
ITEM ITEM f--
1111 ~ 1121 I-

KSDS

Figure 2-9. HISAM Physical Storage of a Data Base Record

2 - 12 DL/I DOS/VS Guide For New Users

HISAM data bases have these limitations:

• No support for variable length segments, second­
ary indexes, or logical relationships.

• Less efficient use of DASD space than HD organiza­
tions (for example, no space is reclaimed on delete
processing). Space is reclaimed during a reorgani­
zation.

HDAM and HIDAM
Both of these data base access methods are implement­
ed with the hierarchical direct method of segment stor­
age. In the hierarchical direct method, the segment
occurrences in a hierarchy are connected in storage via
four byte direct address pointers in the segment prefix­
es. A description of the types of pointers used in HDAM

and HIDAM data bases is included at the end of this
section.

HDAM and HIDAM Characteristics
Two of the primary advantages of HDAM and HIDAM

data bases are space reuse and the ability to directly
access segments within the data base.

The segment storage organization used for HDAM

and HIDAM data bases is essentially the same. The
primary difference, at the access method level, between
HDAM and HIDAM data bases is that access to occur­
rences of the root segment type is through a randomiz­
ing module for an HDAM data base, and through an
index for a HIDAM data base. To access a given root
segment in an HDAM data base, the randomizing mo­
dule examines the key of the root, and through hashing
or some other arithmetic technique, computes the ad­
dress of the root and passes it to DL/1. To access the
same root in a HIDAM data base, an index must be
searched by DL/I to find the address of the root. By
using a randomizing module to locate root segments,
the need for I/O operations required to search the index
is eliminated.

"DAM: Figure 2-10 shows that an HDAM data base
consists of one ESDS. To access the data in an HDAM

data base, DL/I uses a randomizing module. This mo­
dule converts a sequence field value, supplied by an
application program for root segment insertion into or
retrieval from an HDAM data base, into an address for
the root segment.

The ESDS is divided into two areas:

• The root addressable area: This is the first of n
control intervals/blocks in the data set. You de­
fine n in your DBD (data base description).

• The overflow area: This area is the remaining por­
tion of the data set.

The root addressable area is used as the .primary
storage area for segments in each data base record.
The overflow area is used for overflow storage. Since
data base records vary in length, a parameter (in the
DBD) is used to control the amount of space used for
each data base record in the root addressable area.
This parameter limits the number of segments of a data
base record that can be consecutively inserted into the
root addressable area. When consecutively inserting a
root and its dependents, each segment is stored in the
root addressable area until the next segment to be
stored causes the total space used to exceed that speci­
fied. The total space used for a segment is the com­
bined lengths of the prefix and data portions of the
segment. When exceeded, that segment and all remain­
ing segments in the data base record are stored in the
overflow area. Note that this parameter controls only
segments consecutively inserted in one data base re­
cord. Consecutive inserts are inserts to one data base
record with no intervening call to process a segment in
a different data base record.

Chapter 2: Data Base Design 2 - 13

I
CUSTOMER
LOCATION
11

I
I 112

CUSTOMER
ORDER
111 I"L-- -

I
I 1112

ORDER
ITEM
1111 -

VSAM ESDS

ROOT
ADDRESSABLE

AREA

RANDOMIZING t---t-i~
ALGORITHM '--_____ .j...

OVERFLOW AREA

I I
L

Figure 2-10. HDAM Data Base Record In Physical Storage

CUSTOMER DATA BASE RECORD
1

I
CREDIT CUSTOMER
STATUS HISTORY
11 11

-,
!
I 1123
1122

ORDER
ITEM -
1121 -

J 91 j

_ I CUSTOMER 1
CUSTOMER CUSTOMER
LOCATION 11 ORDER111

I
• • • I ORDER ORDER ORDER CUSTOMER

ITEM 1112 ITEM 1121 ITEM 1111 ORDER112

•
9 • tl • .J CREDIT CUSTOMER ORDER I ORDER

STATUS 11 HISTORY 11 ITEM 1122 ITEM 1123

fined as the main HIDAM data base. In the following
discussion the term 'HIDAM data base' refers to the
main HIDAM data base.

I

I

"lOAM: A HIDAM data base in auxiliary storage is
actually comprised of two data bases that are normally
referred to collectively as a HIDAM data base. When
defining each during DBDGEN, one is defined as the
HIDAM primary index data base and the other is de- The HIDAM primary index data base is used to lo­

cate the data base records stored in a HIDAM data base.

2 - 14 DL/I DOS/VS Guide For New Users

When a HIDAM data base is defined at DBDGEN, a uni­
que sequence field must be defined for the root seg­
ment type. The value of this sequence field is used by
DL/I to create an index segment for each root segment.
This index segment in the HIDAM primary index data
base contains in its prefix, a pointer to the root segment
in the main HIDAM data base.

r----------...,
I INDEX I
I· I
I I
I I

: 00- ---i------ CUSTOMER 1
I ---+----- --'-r----.....
I I

VSAM I
I
I
I
I

KSDS

I I L _________ --.J

r:=:::::f
c:::=:::J
r::==:J,

VSAM
ESDS

,
/

, ,

/ ,
/

..
'"

/
/

/
/ ,

/
/ ,

, , , , ,

ORDER
ITEM 1112

The HIDAM primary index data base consists of a
KSDS; its only data (and key) is the sequence field of
the root segment. The main HIDAM data base is an
ESDS. The segment storage organization in this ESDS is
comparable to the one in the HDAM ESDS. Figure 2-11
shows the lay-out of the HIDAM data base.

CUSTOMER
ORDER111

CUSTOMER n

'~----------~----------~----------~----------~------------~
Figure 2-11. HIDAM Data Base Record in Physical Storage

Inserts and Deletes in "DAM and "IDAM
The techniques used to insert or delete segments are
the same for both HDAM and HIDAM data bases. The
techniques involve use of bit maps and free space ele­
ments. These system fields are used by DL/I to find
space when inserting a segment, or to record free space
when a segment is deleted. Normally, the space a seg­
ment occupies is immediately freed up after the delete
of the segment. You need only be aware of these sys­
tem maintained fields when doing control interval
blocksize calculations because they are allocated within
your selected control interval blocksize.

DL/I allows you to specify free space for the ESDS at
data base load time (initial load or reload during reor­
ganization). This feature, distributed free space, allows

segments to be loaded as close to related segments as
possible. Distributed free space is specified in the data
base description.

For a primary index KSDS, free space can be as­
signed with the VSAM access method services DEFINE

command. In theory, you can also specify free space in
the DBD for an HDAM data base. This is, however, not
recommended because it might conflict with the ran­
domizing module algorithm.

Direct Access Pointers in "DAM and "IDAM
Refer to Figure 2-12 for the following description of
pointers.

Chapter 2: Data Base Design 2 - IS

DATA BASE RECORD

ORDER ITEM
1112

ORDER
ITEM
1111

Iplp
IT:T
IFIB
:.. LO 1...-___ ---'

CUSTOMER
LOCATION
11

112

CUSTOMER
ORDER
111

CUSTOMER
2

CREDIT
STATUS
11

CUSTOMER
HISTORY
11

ORDER ITEM

ORDER ITEM
1121

1123

LEGEND:
PTF Physical twin forward pointer
PTB Physical twin backward pointer
PCF Physical child first pointer
peL Physical child last pointer

Figure 2-12. Direct Access Pointers in HDAM and HIDAM

2 - 16 DL/I DOS/VS Guide For New Users

Physical Child/ Physical Twin Pointers: Every parent
segment in the data base has a pointer to the first oc­
currence of each of his child segment types. This is the
physical child first pointer. Optionally, per child seg­
ment type, there is also a pointer to the last occurrence
of that child segment type, the physical child last
pointer. This physical child last pointer will improve
segment insert performance of that child if that seg­
ment has no sequence field defined.

Every segment-in a HIDAM or HDAM data base has a
pointer in its prefix which points to the next occurrence
of this segment under the same parent. (If it is the last
occurrence under the parent, this pointer is zero.) This
pointer is named the phYSical twin forward pointer.

Optionally, you can also select a pointer in each
segment prefix which points to the previous segment
occurrence under the same parent. This is the physical
twin backward pointer. This pointer is useful for delete
processing.

When physical twin forward and backward pointers
are specified for the root segment type of a HIDAM data
base, they enable sequential processing across data
base records without intervening references to the
HIDAM index. When only physical twin forward point­
ers are specified for the root segment type of a HIDAM

data base, sequential processing across data base re­
cords requires intervening references to the HIDAM

index.

Logical Relationships

Why Logical Relationships
We have so far addressed only single hierarchical data
structures. Often, especially with different applica­
tions, several DL/l data bases are needed. In addition,
there is often a requirement to access the same data in
different hierarchical structures and different data bases.

PHYSICAL
PARENT

PHYSICAL DATA BASES

CUSTOMER
ORDER

ORDER
ITEM

INVENTORY
ITEM

LOGICAL
. CHILD

Figure 2-13. Segment Types Involved in Logical Relationships

LOGICAL
PARENT

This can create problems of:

• Consistency - if stored more than once how to
update at same time.

• Data redundancy - if large data elements were
stored many times this could consume excessive
external storage.

• Access of data - which access path should be used
to access the appropriate copy of the data.

The above problems can be solved by storing the
data only once and providing a linkage mechanism
between hierarchical structures. With this linkage a
new access path is provided to data in data base A,

based on data in data base B, and vice versa.

DL/I's logical relationships provide this function.
The basic linkage is always between two segments.
However, the linkage can extend to several data bases.
The resulting compound data structure will always be
presented as a single hierarchical data structure to a
particular application. The basic mechanism of the
DL/I logical relationship is the connection of a segment
to two parents in two different hierarchical structures.
All segments below the root segment must have a phys­
ical parent. By giving a segment a logical parent, that
segment (and its dependents) now belongs to two dif­
ferent hierarchical structures. This enables the defini­
tion of a new hierarchical structure which contains
segments from both related structures. Such a defini­
tion is called a logical data base. Once this logical data
base is defined, DL/I automatically maintains the rela­
tionship between the two data bases.

Building Logical Relationships
Segment Types Involved in Logical Relationships

Figure 2-13 shows that three segment types are needed
to establish a logical relationship.

LOGICAL DATA BASE

CUSTOMER
ORDER

ORDE;.R
ITEM'

INVENTORY
ITEM

CONCATENATED
SEGMENT

Chapter 2: Data Base Design 2 - 17

The segment types are:

• Logical Child: This segment has two parents. A
logical parent and a physical parent. The logical
child segment and its dependents, if any, are ac­
cessable via both parents. The access path via its
physical parent is called the physical acce~v path.
The access path via its logical parent is called the
logical access path. When presented to the user a
logical child segment contains the concatenated
key of the logical parent followed by user data, if
any. The user data in the logical child is called
intersection data. It consists of data unique to the
intersection of the two parents. The logical parent
concatenated key (LPCK) is always presented with
the intersection data whenever the logical child is
accessed via its physical path (see Figure 2-14).

PREFIX LPCK INTERSECTION DATA

~- - TO/FROM USER'S I/O AREA-~
Figure 2-14. Logical Child Segment Format

Whenever you insert a logical child segment in its
physical data base, you must present the LPCK. It iden­
tifies the logical parent.

• Logical Parent: This segment may reside in the
same or different data base as the logical child.

• Physical Parent: This is the normal parent segment
of the logical child in its physical data base as de­
fined earlier.

Logical relationships between HDAM and HIDAM

data bases are implemented using direct address point­
ers, which are all4-byte relative byte address pointers
similar to other pointers in HDAM and HIDAM.

The Virtual Logical Child Segment (VLC)
In order to define the relationship between the logical
parent and its logical children, DL/I uses a special seg­
ment type. It is called the virtual logical child and is
defined as a dependent of the logical parent segment.
It does not exist on DASD. Its only purpose is to pro­
vide a mechanism to define the logical parent's view of
the data in the logical child. It controls the access from
the logical parent to the logical child. It is used to de­
fine the sequencing of the logical child segment when
that logical child segment is accessed via its logical
parent. The virtual logical child is said to be paired
with the real logical child. Because the logical child
can be accessed as a dependent of the logical parent as
well as the physical parent, the logical relationship is
bidirectional. See Figure 2-15.

PHYSICAL DATA BASES LOGICAL DATA BASES

CUSTOMER
ORDER

ORDER
ITEM

LP

I
I

,--_..1._--,
I

: ORDER I
I ITEM :

i
CUSTOMER
ORDER

~AN

I
ORDER I INVENTORY
ITEM liTEM

i

INVENTORY

D /OR~
ITEM

ORDER I CUSTOMER
ITEM I ORDER

I L_7 -_.J

~'----------------------y~----------------------/
REAL VIRTUAL
LOGICAL CHILD LOGICAL CHILD

KEY:

(Represents customer
order when accessed
from inventory item)

PP - Physical parent pointer
LP . Logical parent pointer
LCF - Logical child first pointer

Figure 2-15. Virtual Paired Bidirectional Logical Relationship

2· 18 DL/l DOS/VS Ouide For New Users

CONCATENATED SEGMENTS

L
When accessed, the virtual logical child contains the
concatenated key of the physical parent of the real
logical child, plus the intersection data of the reallogi­
cal child. So the virtual logical child ORDER ITEM, in
Figure 2-15 contains the key of the CUSTOMER ORDER
segment plus the user data of the real ORDER ITEM
segment.

Destination Parent
With bidirectional pairing, DL/I refers to the parent
that is other than the one used to access the logical
child, as the destination parent. When the logical child
is accessed from its physical parent, the logical parent
concatenated key (LPCK) is returned. When the logical
child is accessed from its logical parent, the physical
parent concatenated key is returned. Therefore, the
logical child always starts with the destination parent
concatenated key (DPCK).

CUSTOMER DATA BASE

CUSTOMER
NAME/ADDRESS
(STSCCST)

I 1
CUSTOMER CREDIT CUSTOMER
LOCATION STATUS HISTORY
(STSCLOC) (STSCSTA) (STSCHIS)

I
CUSTOMER PP

ORDER
(STPCORD)

Logical and Physical Data Bases
The physical data bases used to implement a logical
relationship must be HDAM or HlDAM data bases. Fig­
ure 2-16 shows the physical data bases of the phase 2
sample environment. The INVENTORY ITEM segment in
the inventory data base is the logical parent of the
ORDER ITEM segment in the customer data base. Note
that the INVENTORY ITEM segment in the inventory
data base is also a physical and logical parent of the
SUBSTITUTE ITEM segment in the same data base. In
this example, the first occurrence of INVENTORY ITEM
is the physical parent of the logical child segment,
SUBSTITUTE ITEM, and the second occurrence is the
logical parent of SUBSTITUTE ITEM. In either case, the
virtual logical child is not shown in Figure 2-16. How­
ever, the virtual logical child segments will appear in
the DBDs as discussed later.

I
INVENTORY DATA BASE

LP r LP

ORDER RLC
INVENTORY r--

ITEM ITEM
(STCCITM) r-' (STPIITM) I--

r 1
SUBSTITUTE f--- ITEM VENDOR
ITEM LOCATION (STVIVND)
(STCISUB) RLC (STSILOC)

Figure 2-16. The Phase 2 Physical Data Bases 2-16

Chapter 2: Data Base Design 2 - 19

A logical data base is a redefinition of one or more
physical data bases which contain logical relationships.
It yields a new hierarchical structure that is composed
of structures from both related structures. The new
structure can be processed by application programs as
if it were physically present. The logical data base can
only be defined if the proper logical relationships are
defined in the physical data bases.

Concatenated Segment
All segments in the logical data base stem from one
segment in one of the physical data bases, except when
the logical child is accessed. Whenever the logical child
is accessed in a logical data base, it is concatenated with
the destination parent segment. See Figure 2-17. The
destination parent is the parent of the logical child in
the access path other than the one from which you
came.

LOGICAL CHILD

INTERSECTION DESTINATION PARENT
DPCK

DATA

Figure 2-17. Concatenated Segment Format

Notice that the concatenated segment is different for
the two paths:

2 - 20 DL/I DOS/VS Guide For New Users

• When accessing the concatenated segment from its
physical parent, it consists of:

I. The real logical child which consists of the
concatenated key of the logical parent and the
data of the real logical child segment, if any.

2. The logical parent segment itself.

• When accessing the concatenated segment from
the logical parent, it consists of:

1. The virtual logical child which consists of the
concatenated key of the physical parent and
the data of the real logical child segment, if
any.

2. The physical parent itself.

Note: The concatenated segment exists only in a logical
data base.

With bidirectional virtual pairing, you can always
define two logical data bases with one logical relation­
ship.

Figure 2-18 shows the two logical data bases used in
the sample application. These two data bases are de­
fmed using the related physical data bases of Figure
2-16.

L

ORDER
ITEM

CUSTOMER
ORDER

(DP) (LC)

CUSTOMER
LOCATION

CUSTOMER
NAME/
ADDRESS

Figure 2-18. Phase 2 Logical Data Bases

I

LOGICAL INVENTORY DATA BASE

INVENTORY
ITEM

VENDOR
SUBSTITUTE
ITEM

INVENTORY
ITEM

VENDOR
(FOR
SUBSTITUTE
ITEM)

(LC) (DP)

1
ITEM
LOCATION
(FOR
SUBSTITUTE
iTEM)

LOGICAL CUSTOMER DATA BASE

CUSTOMER
NAME/
ADDRESS

I
CUSTOMER CREDIT
LOCATION STATUS

I
CUSTOMER
ORDER

1
ORDER INVENTORY
ITEM ITEM

(LC) (DP)

r I
VENDOR

ITEM
LOCATION

I

I
ITEM
LOCATION

CUSTOMER
HISTORY

Chapter 2: Data Base Design 2 - 21

These logical data bases will be used by the sample
application programs.

The exact rules for defining and processing logical
data bases are discussed in the following section.

Logical Relationship Design Rules
In constructing logical relationships with DL/I, two sets
of rules must be observed. One set for constructing the
physical data bases and the second set for constructing
the logical data bases. Note that a logical data base can
be defined only if the underlying physical data base(s)
are properly defined.

If necessary, multiple logical data bases can be de­
fined for a given set of logically related physical data
bases. However, it is a good practice to generate one
logical data base for each physical root segment which
contains only the segments needed in your applica­
tions.

Rules for Defining Logical Relationships in
Physical Data Bases

• Logical Child:

1. A logical child segment must have one and
only one physical parent segment and one and
only one logical parent segment.

2. A logical child segment is defined as a physical
child segment in the physical data base of its
physical parent.

3. In its physical data base, a logical child seg­
ment cannot have another logical child as its
immediate dependent.

• Logical Parent:

1. A logical parent segment can be defined at any
level of a physical data base including the root
level.

2. A logical parent segment can have one or more
logical child types.

3. A segment in a physical data base cannot be
defined as both a logical parent and a logical
child.

4. A logical parent segment can be defined in the
same or a different physical data base as its
logical child segment.

2 - 22 DL/I DOS/VS Guide For New Users

• Physical Parent:

1. A physical parent segment of a logical child
cannot also be a logical child. This is the same
as rule 3 for the logical child.

Multiple logical relationships can be established
within a single data base or between two or more data
bases, as long as the above rules are obeyed.

Rules for Defining Logical Data Bases

1. The logical data base itself is always a single hier­
archical structure.

2. It must start with the root segment of a physical
data base and can contain only segments defined
in physical data bases.

3. In following a hierarchical path, no segments may
be skipped.

4. The logical child plus the destination parent is
always presented as one concatenated segment.

5. The dependents of a concatenated segment are:

• The dependents of the logical child and/or,

• The physical dependents of the destination
parent.

• The physical parents (and their dependents)
up to the root of the destination parent in des­
tination parent to root order.

The above three groups of dependents should not
be intermixed, nor should the relative order of the
segments within the groups be changed. However,
you can start with anyone of the groups.

Notes:

• Because of the virtual logical child concept, paths are
bidirectional and can be intermixed.

• All segments of related data bases are available as long as
you follow the above rules.

Figure 2-19 shows some examples oflogically relat­
ed physical data bases and their associated logical data
bases. These examples are not representative for a
typical DL/I application. They merely show the differ­
ent possible combinations.

LOGICAL
PARENT

LOGICAL ,.....--1._...,
PARENT

r----J---'-,,,./.--
, I

,..---I._-t"';-...L. ___ ')- _ .1 _ ,

: D' I
'- ___ .J

PAIRED~
VIRTUAL
LOGICAL
CHILD

Figure 2-19. Using Multiple Logical Relationships (Part I of 2)

Chapter 2: Data Base Design 2 - 23

c A D' B D x

F E

c A D x D

F E

Figure 2-19. Using MultipleLogical Relationships (Part 20f2)

2 - 24 DL/l DOS/VS Guide For New Users

Processing Logically Related Segments
The segments involved in logical relationships can be
accessed through their physical data bases, and insert,
delete, or replace operations may be performed
through either access path. In order to avoid contradic­
tory conditions, for instance a logical child pointing to
a deleted logical parent, such updates are performed
according to rules specified by the user in the DBDs for
the physical data bases. Three modes, called physical
(P), logical (L), and virtual (V) can be specified for each
of the three update functions. (See Chapter 3 for de­
tails on how to code these rules.)

In general, the physical rule places restrictions on
update requests through the logical data bases and

PHYSICAL
PARENT

PHYSICAL PATH

CUSTOMER
ORDER

requires that appropriate updates have previously been
performed in the physical data bases. The logical rule
removes some of these restrictions. while the virtual
rule is the least restrictive for updates through logical
data bases.

A detailed discussion of these rules is contained in
the System/Application Design Guide" and a general
discussion follows.

Consider the virtual paired bidirectional logical
relationship of Figure 2-20.

INVENTORY
ITEM

LOGICAL
PARENT

r-._-LOGICAL PATH

LOGICAL
CHILD

DPCK

ORDER
ITEM

LOGICAL CHILD

INTERSECTION
DATA

Figure 2-20. Virtual Paired Bidirectional Logical Relationship

The rules for the logical relationships are coded as xxx,
where the first x is for insert, the second x is for delete,
and the third x is for replace. The value of x can be
specified as P (Physical). or L (Logical), or V (Virtual).

Physical Parent Segment
(CUSTOMER ORDER)
The rules for the physical parent are as follows:

Insert Rule: Affects the insertion of the logical child
and the creation of the physical parent as a result of the
insert of the logical child segment from the logical
path.

DESTINATION PARENT

P (Physical)
The physical parent must exist in the data base
before the logical child may be inserted from the
logical path. The destination parent portion of
the concatenated segment (the physical parent) is
ignored.

Chapter 2: Data Base Design 2 - 25

L (Logical)
The physical parent need not exist prior to inser­
tion of logical child from the logical path. If the
physical parent exists, the destination parent por­
tion ofthe concatenated segment (the physical
parent) is ignored. If the physical parent does not
exist, the destination parent portion of the conca­
tenated segment is used to create a physical par­
ent segment in the data base.

V (Virtual)
Same as (L) above except that ifthe physical par­
ent already exists, the destination parent portion
of the concatenated segment will replace the cur­
rent physical parent segment. Use caution when
implementing this rule.

Delete Rule: This rule does not apply to the physical
parent.

Replace Rule: Affects the replacement of the physical
parent (destination parent) whenever a replace call is
issued against a logical child concatenated segment
with physical parent data as part of its content. It also
affects the replacement of the logical child segment if
this portion of the concatenated segment is altered.
This rule is usually coded as p for the physical parent
segment.

P (Physical)
Any replace of a logical child concatenated seg­
ment that contains a changed physical parent
(destination parent) is not allowed. If the conca­
tenated segment contains both the logical child
and a changed physical parent, neither will be
replaced. If the concatenated segment contains a
physical parent that is not changed, the replace is
allowed. However, only the logical child portion
of the concatenated segment is replaced.

L (Logical)
A replace of the logical child concatenated seg­
ment that contains a physical parent (destination
parent) is allowed even if the physical parent por­
tion is changed, however, the physical parent por­
tion is not replaced. If the concatenated segment
contains both the logical child and the physical
parent, only the logical child will be replaced. Be
careful about using this rule for the physical par­
ent.

V (Virtual)
A replace of a logical child concatenated segment
that contains a changed physical parent is al­
lowed and the physical parent is replaced as well
as the logical child. Use caution when imple­
menting this rule for the physical parent.

2 - 26 DL/I DOS/VS Guide For New Users

Logical Parent (INVENTORY ITEM)
The rules for the logical parent are usually coded as
PPP.

Insert Rule: Affects insertion of the logical child from
the physical path and creation of the logical parent
segment as a result of the insertion of a logical child
concatenated segment from the physical path.

P (Physical)
The logical parent must exist in the data base
before the logical child may be inserted from the
physical path. The logical child concatenated
segment need not contain the logical parent and if
the logical parent is present, it is ignored.

L (Logical)
The logical parent need not exist prior to inser­
tion of the logical child from the physical path. If
the logical parent already exists, the logical par­
ent portion of the concatenated segment
(destination parent) is ignored. Ifthe logical par­
ent segment does not currently exist, the logical
parent portion of the concatenated segment is
used to create a logical parent segment.

V (Virtual)
Same as (L) above except that if the logical parent
already exists, the logical parent portion of the
concatenated segment will replace the current
logical parent segment. Use caution when imple­
menting this rule for the logical parent.

Delete Rule: Affects deletion of a segment and all its
dependents.

P (Physical)
All of the logical parent's logical children must
have been deleted from their physical path before
a delete will be allowed against the logical parent
segment. The logical parent segment can be de­
leted only from its physical path by a delete call
issued to its physical path.

L (Logical)
The logical parent may be deleted from its physi­
cal path at any time, but will remain available
from any of its logical paths. If the logical parent
is deleted by its physical path, and then all of its
logical children are deleted from their physical
paths, the logical parent is removed.

V (Virtual)
Same as (L) above except that when all of the
logical parent's logical children are deleted from
their physical and logical paths, the logical parent
is automatically deleted from its physical path,
and will be removed from the data base. Use cau-

tion when implementing this rule for the logical
parent.

Replace Rule: Assuming the replace rule for the logi­
cal child has been satisfied, this rule affects the replace­
ment of the logical parent when the logical parent is
the destination parent of the logical child concatenated
segment. The replace rule can also affect the replace­
ment of the logical child when the concatenated seg­
ment contains both the logical child and the logical
parent.

P (Physical)
Any replace of the logical child segment when the
concatenated segment contains a logical parent
that has been altered is not allowed.

L (Logical)
Any replace of the logical child when the conca­
tenated segment contains a logical parent (altered
or not) is allowed. However, the logical parent is
not replaced.

V (Virtual)
Same as (L) above except that the logical parent
will be replaced.

Logical Child (ORDER ITEM)
The rules for the logical child segment are usually cod­
ed as VVV, VLV, or VPV.

Insert rule: Has no meaning for the logical child.
Code P, L, or V.

Delete Rule: Affects the deletion of the logical child
and indirectly the deletion of the physical parent from
its physical path.

P (Physical)
The logical child must have been deleted from its
logical path before it can be deleted from its
physical path. This effectively keeps the physical
parent from being deleted until all of its logical
children have been deleted from their logical par­
ents.

L (Logical)
The logical child can be deleted from either path
and will remain available on the other path.

V (Virtual)
The logical child can be deleted from either path
and as a result will be deleted from both paths.

Replace Rule: Affects the replace of a logical segment.
This must be coded as v.

V (Virtual)
Segment can be replaced from either path.

Logical Relationships Implementation Tech­
nrque
The following pointers are used by DL/I to implement
logical relationships. These pointers are maintained in
the segment prefix in the same way as the previously
discussed physical child and physical twin pointers.
Detailed guidelines for the selection and implementa­
tion of these pointers are included in Chapter 3, Data
Base Implementation.

Pointers Used for Logical Relationships in
HDAM/HIDAM

Logical Parent Pointer (LP): The logical parent
pointer is within the prefix of the logical child segment
and points to the logical parent occurrence of that logi­
cal child. This pointer is always present and is never
zero. Each logical child must have one and only one
logical parent just as it has only one physical parent.

Logical Child First Pointer (LCF): The logical child
first pointer is within the prefix of the logical parent
and points to the first occurrence of its logical child
segment. If a segment has several logical segment
types, it contains one LCF pointer for each segment
type. If a logical parent has no logical child occurrenc­
es, the corresponding LCF pointer is zero. The logical
child first pointer is required.

Logical Child Last Pointer (LCL): The logical child
last pointer is within the prefix of the logical parent
and points to the last occurrence of its logical child.
There is one LCL for each defined logical child segment
type. The LCL pointer is optional. Its only use is to
improve the performance of the logical child insert if
no sequence field is defined for the logical chain. See
''The Virtual Logical Child Segment" earlier in this
chapter.

Logical Twin Forward Pointer (LTF): The logical
twin forward pointer is within the prefix of the logical
child segment and links all logical child occurrences of
a particular logical parent. This pointer is required.

Logical Twin Backward Pointer (LTB): The logical
twin backward pointer links logical twins but in the
reverse order of the LTF. This pointer serves a compli­
mentary performance role as the physical twin back­
ward pointer in deleting logical children. It should
always be used together with the LCL if there are multi­
ple occurrences of a logical child for any logical parent
occurrence.

Physical Parent Pointer (PP): DL/I uses a physical
parent pointer in the prefix of the logical child to locate

Chapter 2: Data Base Design 2 . 27

that physical parent if the access was via the logical
parent. This PP pointer is repeated up through the hier­
archy to the root. A physical parent pointer is also
present in the logical parent if this is not a root seg­
ment. It then points to the physical parent of the logi­
cal parent, etc. You never need to specify the inclusion
of this pointer in the DBD. DL/I will include it automat­
ically if needed.

DL/I Secondary Indexes
The secondary indexing capability of DL/I allows addi­
tional access paths to a data base record. Secondary
indexes provide:

• A secondary processing sequence, enabling direct
and/ or sequential processing of data base records
on non-root-key field values. These search fields
can be located in the root segment or a dependent
segment.

• Automatic updating of the secondary index is
always done, even if the program causing the
change is not sensitive to the secondary index.

When to Use Secondary Indexes
Secondary indexes should be used mainly when fre­
quent direct access to the data base record is required
on non-root-key fields. A secondary index incurs addi­
tional system cost in CPU and I/O time. If the informa­
tion on which the secondary index is established is
changed, then DL/I has to change the index entry.
Therefore, avoid the use of volatile fields as secondary
index source fields.

For batch processing, compare the costs of full or
partial data base scans plus subsequent sort of the out­
put versus the cost of using secondary indexes. For
online data base processing, the choice is easier. Online
response requirements normally do not allow for full
data base scans and sorts.

2 - 28 DL/I DOS/VS Guide For New Users

Segment Types Involved in Secondary In­
dexes
The segment types and associated terms involved in
secondary indexes are (See Figure 2-21):

• Secondary Indexes

A secondary index is comprised of an index point­
er segment type defined in a secondary index data
base.

• Index Pointer Segment

A segment defined in a secondary index data base
that contains data and a pointer to the index target
segment. It controls the secondary indexing proc­
ess.

• Index Target Segment

The segment that is pointed to by an index pointer
segment.

• Index Source Segment

A segment that is the source from which a second­
ary index is created.

• Secondary Processing Sequence

The sequence in which occurrences of an index
target segment type are accessed through a sec­
ondary index. It is the order of the index pointer
segment.

Although secondary indexes can be used in pro­
grams which use only logical data bases, their imple­
mentation is strictly on the physical data base level.
Figure 2-22 shows the physical data bases of the phase
3 sample environment. The only difference from phase
2 is the addition of the secondary index data bases.
The secondary index provides an alternate processing
sequence. For example, by utilizing secondary index
data bases, an application program can process the
Customer data base in either order number or name
sequence.

Usually the
root segment;
can be a
dependent
s!!gment.

Can be the
same segment
as index
target segment,
or as shown,
a dependent
of the index
target segment.

PHYSICAL OR LOGICAL DATA BASE

INDEX TARGET
SEGMENT

INDEX SOURCE
SEGMENT '

Figure 2-21. Segment Types Associated with a Secondary Index

SECONDARY
INDEX DATA BASE

INDEX POINTER
SEGMENT

The content of the specified search
field in each index source segment
is duplicated in the respective index
pointer segment generated from each
index source segment.

Chapter 2: Data Base Design 2 - 29

ORDER
SECONDARY
INDEX

CUSTOMER DATA BASE

CUSTOMER
NAME/ADDRESS
(STSCCST)

Figure 2-22. Phase 3 Physical Oata Bases

Design Rules/or Secondary Indexing
Several rules should be observed when designing basic
secondary indexes:

I. The index source segment and the index target
segment must be defined in the same physical
OBO. They can be the same segment.

2. A logical child segment cannot be used as an in­
dex source segment. However, a dependent of a
logical child can be used as an index source seg­
ment.

2 - 30 OL/I OOS/VS Guide For New Users

NAME
SECONDARY
INDEX

INVENTORY DATA BASE

INVENTORY
ITEM
(STPIITM)

LP

ITEM#
SECONDARY
INDEX

3. A secondary index can be used with a logical OBO,

but the index target segment must be the root seg­
ment of the physical data base.

Implementation Technique
In discussing secondary indexes, we have to distinguish
between two different data base types. The first is the
indexed data base. This data base contains the index
source and index target segments. It is an HOAM or
HIDAM data base. The second is the secondary index

data base. This data base contains the index pointer
segments that contain pointers in their prefix to the
index target segments. An INDEX data base consists of

a single KSDS. Figure 2-23 shows the physical format
of the KSDS logical record for the INDEX data base.

1-41-------------- VSAM LOGICAL RECORD---------------II-~

4 BYTES
X'OO'

Segment

Prefix

SC = Segment Code
DB = Delete Flag Byte

I

I
SEARCH
FIELD

DL/I System

Maintained Data

SSA for Indexed
Data Base

--
SSA for Index - Data Base

VSAM Key

SEQUENCE FIELD OF - INDEX POINTER SEGMENT

THE SHADED AREA
IS OPTIONAL

User

Data

SSA for indexed Data Base - The search field is used in qualified SSAs for the secondary
data structure.

SSA for I ndex Data Base The search and subsequence fields are the sequence field of
the index pointer segment and are used in qualified SSAs when
the secondary index is processed as a data base itself.

EOD = End of Data

Figure 2-23. Logical Record Format for the Index Pointer Segment

Index Pointer Segment
The index pointer segment contains a:

• Reserved Area - 4 bytes

• Segment Code - I byte field (X'DI')

• Delete byte that controls the delete status of the
index pointer segment

• Pointer to the index target segment (4 bytes)

• Search field (n bytes) that contains a duplication
of one to five index source segment fields which
together define the secondary sequence

• Subsequence field (n bytes), optional. It is re­
quired if the search fields in the index pointer seg­
ments are non-unique. Its sole use is to provide a
unique key for the KSDS logical record.

• Duplicate Data Field. This field is optional. It is
of use only when the index data base is processed
as a data base itself. The data from the indexed
data base that is also included in the index data
base is automatically maintained by DL/1. If a

duplicate data field is changed in the indexed data
base, it is also changed in the index data base.

• User data field. You can include any additional
data desired in index pointer segments by speci­
fying a length for the index pointer segment that is
sufficient to include the additional data. This ad­
ditional data is available to you when processing
the secondary index as a data base itself. Remem­
ber, however, that initial loading of additional
data, and maintenance of the additional data
when reorganizing an indexed data base is a user
responsibility.

During reorganization of an indexed data base,
the secondary index(es) for the data base are re­
created. When the secondary index is re-created,
any additional user data that exists in the original
secondary index is lost.

• End-of-data field - 1 byte (X'OO')

Chapter 2: Data Base Design 2 - 31

Creating a Secondary Index
Secondary indexes are created with the standard OL/I

data base reorganization utilities, see Chapter 6. No
user programming is needed to create a secondary in­
dex. Existing programs need not be changed unless
they want to use the secondary index.

Variable Length Segments
Variable length segments enable you to vary the
amount of storage space used to store the different
occurrences of the same segment type. They are in­
tended for use by application programs that process
variable length text or descriptive data. In addition, in
some cases, they can be used to enhance utilization of
secondary storage. You can vary the space for each
occurrence of a segment type between a maximum and
minimum number of bytes through a 2-byte size field
loaded with each segment occurrence. You specify the
maximum and minimum number of bytes for a varia­
ble length segment type during OBO generation.

The size field for a variable length segment is loaded
with each segment to inform OLI of the length of data
in the segment. Because the size field is in the data
portion of a segment, the data length must be included
in the length of the size field itself. In addition, if a
sequence field is defined in the segment type, the mini­
mum length specified must include at least the 2-byte
size field and the length of all the data to the end of the
seq uence field.

When initially loading occurrences of a variable
length segment type, the space used to store the data
portion of a segment occurrence is the minimum length
specified at DBO generation or the length specified in
the size field of the segment occurrence, whichever is
greater. The application program can then either in­
crease or decrease the length of the data in the segment
by replacing the data and changing the size field ac­
cordingly. When the data in an existing segment is
replaced with data that is greater in length and the
space is allocated for the existing segmnet is not suffi­
cient for the new data, the prefix and data portions of
the segment are separated to obtain space for the new
data.

A variable length segment must not be a logical
child segment or an index source segment, and may
reside in a HDAM or HIOAM data base.

Chapter 3 of this manual contains the details you
need to specify a variable length segment during OBD

generation. A variable length segment is also included
in the customer data base of the online sample applica­
tion. If you need additional information about variable
length segments, see the System Application Design
Guide.

2 - 32 OL/I OOS/VS Guide For New Users

Segment Edit/Compression Exit
The segment edit/compression exit facility of OL/I

enables you to supply a routine to edit a segment dur­
ing its movement between the application program I/O
area and the data base buffer pool. You can use your
routine to encode data for security purposes, to format
data to be used by application programs, and to com­
press a segment to eliminate redundant characters.
Segments to be processed by an edit/compression rou­
tine must be variable length. Application programs are
never aware of the operation ofthe edit/compression
routine.

A segment compression/expansion routine is pro­
vided with the online sample application program as
an example of one way to use this facility to optimize
space needed to store individual occurrences of varia­
ble length segments. This routine is documentd in
Chapter 8 of this manual.

General considerations that apply to using the seg­
ment edit/compression exit facility are:

• All segment editing takes place only on variable
length segmets described in a physical data base.

• Neither the relative position nor the contents of
the key field (if one exists), can be changed by the
routine.

• If the user routine in an online environment is
designed to edit more than one segment type, in
one or more physical data bases, the routine must
be reentrant.

• The size ofthe edit routine(s) should be consid­
ered when estimating main storage requirements
for the OL/I system.

• The user routine cannot employ OOS/VS system
macros such as STXIT.

Chapter 3 of this manual shows how to specify this
facility for variable length segments during OBO gener­
ation. If you need additional information, see the
System Application Design Guide.

Field Level Sensitivity
Field level sensitivity allows you to specify only those
fields in the physical definition of a given segment that
are needed in the application program's view of that
segment. You may also specify the locations of the
chosen fields in the application's view of the segment.
These field locations may be the same or different from
their locations within the physical definition. This'
makes it possible for different application programs to
have entirely different views of the same segment. This
specification, done during PSB generation, enables OL/I

to automatically map the chosen fields from the physi-

cal segment into the application program's view during
execution.

Field level sensitivity also provides these capabili­
ties:

• Virtual Fields
You can identify fields for the application
program's view of a segment that do not exist in
the physical segment.

• Automatic Data Format Conversion
DL/I automatically changes the format of the
physical data to a format you specify for a given
application program.

• User Field Exit Routine
DL/I will give control to a user-written routine
each time a given field is retrieved or stored.

• Dynamic Segment Expansion
You can add fields to a segment without reloading
the data base or re-compiling other application
programs that access the segment.

Virtual Fields
During PSB generation, you can specify fields for the
application program's view of a segment that do not
exist in the physical segment. You can also specify an
initial value to be assigned to the field and/or the name
of a user-written routine, that can be used to create the
field. When you specify both an initial value and the
name of a user-written routine, DL/I inserts the initial
value in the application program's view of the field
before the routine is called during a retrieve for the
field. If a routine is specified, it is called for both re­
trieves and stores involving the field. See "User Field
Exit Routine" later in this section for further details.

Automatic Data Format Conversion
If, during DBD generation, you define the type of data
~o be maintained in a given field, that data can be auto­
matically converted to another type for a particular
application program. You do this during PSB genera­
tion by specifying a different data type in the SENFLD

macro for the application program's view of the field.
The data types are:

'x' - hexadecimal
'H' - halfword binary
'F' - fullword binary
'P' - packed decimal
'Z' - zoned decimal
'C' - character
'E' - floating point (short)
'D' - floating point (long)
'L' - floating point (extended)

The automatic conversions supported are:

From To

X H, F, P,orZ
H X, F, P, or Z

Notes:

F
P
Z
C

X, H, P, or Z
X, H, F,orZ
X, H, F, or P
C (length conversion only)

• Conversion of data types E, D, and L is not supported.

• Data contained in a field specified as type 'C' is considered to
be in an "as is" format, and no conversion is made when the
field being moved into is specified as containing data of a
different type. That is, if a field in a physical segment is speci­
fied as type 'C' and the field in that application's view is speci­
lied as type 'P', the data from the physical field is treated as
though it is packed decimal. Only any necessary length adjust­
ments are made.

Non-supported Conversions
Conversions that are not supported (such as: physical
type 'Z' to user's type 'E') will pass through the ACB

generation phase if, but only if, you specified a user
written exit routine for the field. Such a non-supported
conversion causes a status code of 'KD' to be returned
to the application program when encountered during
an access of the field.

If the status code is not corrected (reset) by a user
exit routine, DL/I terminates the request. No more
fields or segments are processed. See "User Field Exit
Routine" in this Chapter for additional information
about resetting the conversion status code.

Additional information about field type conversion
(programming considerations, status codes, etc.) is
included in Chapter 3, under the description of the
'SENSEG' statement for PSB generation.

User Field Exit Routine
During PSB generation, you may specify the name of a
user-written field exit routine. This must be the name
by which the routine is cataloged in the DOS/VS core
image library. DL/I passes control to this routine when­
ever the associated field is referenced in either a re­
trieve or a store.

For retrieves, the routine is entered after the field
has been moved (and converted, if necessary) from the
physical segment to the application program's view.
For virtual fields, it will occur after the field has been
initialized with the null value,

For stores, the routine is entered after the field has
been moved (and converted, if necessary) to the physi­
cal view. If the field is virtual, the routine is entered
immediately because no conversion is done.

DL/I provides the addresses of both the physical
segment and the application's view to the user through
the parameter list described below. Because the order
in which fields are processed is arbitrary, the user writ­
ten routine should not rely on the contents of other
fields in the application program's view during re­
trieves, or fields in the physical view during stores.

Chapter 2: Data Base Design 2 - 33

The conversion status code indicates problems de­
tected during automatic data format conversion. If the
user routine corrects the problem, it should reset the
code to blank. Setting the code to a non-blank results
in the termination of the request with a status code of
Kx, where 'x' is the code set by the user routine.

NAME DISP LENGTH CONTENTS DESCRIPTION

FERPEC 0 1 ENTRY CODE
FERPGET G GET
FERPPUT P PUT
FERPFNCT FUNCTION CODE
FERPRET G RETRIEVE
FERPINS I INSERT
FER PREP R REPLACE

Upon entry to the user field exit routine, register 15
contains a pointer to the entry point, register 14 con­
tains the return address, register 13 contains a pointer
to a standard format register save area, and register I
points to a parameter list. The format of this list is:

FERPCSC 2 CONVERSION STATUS CODE
FERPCSOK (BLANK) OK
FERPCSNT A NUMERIC TRUNCATION ERROR
FERPCSCT B CHARACTER TRUNCATION ERROR
FERPCSFE C FORMAT ERROR
FERPCSTC D TYPE CONFLICT

3 1 RESERVED
FERPDSA 4 4 PHYSICAL SEGMENT ADDRESS (IF VARIABLE

LENGTH, POINTS TO TWO BYTE LENGTH FIELD)
FERPPSL 8 2 PHYSICAL SEGMENT LENGTH
FERPPFL 10 2 PHYSICAL FIELD LENGTH
FERPPFA 12 4 PHYSICAL FIELD ADDRESS
FERPUSA 16 4 USER SEGMENT ADDRESS
FERPUSL 20 2 USER SEGMENT LENGTH
FERPUFL 22 2 USER FIELD LENGTH
FERPUFA 24 4 USER FIELD ADDRESS
FERPFSBA 28 4 FSB ADDRESS
FERPUWA 32 32 USER WORK AREA

Dynamic Segment Expansion
Fields·may be added to a segment in the application
program's view without unloading and reloading the
data base, and without re-compiling other application
programs that access the segment. To do this, use the
following procedure:

I. During DBD generation, define the physical seg­
ment as variable length with the maximum and
minimum lengths both set to the data length (plus
2 for the length field).

Programs that utilize field level sensitivity always
view these segments as fixed length. The two-byte
length field is maintained by DL/1. The applica­
tion program does not see the length field unless it
is also defined as a sensitive field.

2. During PSB generation, define all fields to which
the application program is sensitive using SENFLD
or VIRFLD statements.

3. To add a field to a segment, add a FIELD state­
ment after the last currently existing field and in­
crease the maximum length parameter for this
segment. Re-run the DBD, PSB, and ACB genera­
tion for that data base.

When a variable length segment is called by an
application program that utilizes field level sensi-

2 - 34 DL/I DOS/VS Guide For New Users

tivity, and the added field does not yet exist
(contains no data), DL/I expands the segment with
null values (for defined fields) or binary zeroes
(for undefined areas) to fit the application
program's view.

Additional Field Sensitivity Considerations
• SSAs

Any field to be used as a SSA in a segment defined
by field level sensitivity must be defined as a sen­
sitive field using either a SENFLD statement or a
VIRFLD statement containing SENFLDs.

Field information supplied in an SSA should be in
the format of the application program's view of
the field. The field identified in the SSA, and any
subfields that the application is sensitive to, is con­
verted to the physical view before the compare is
done. Any fields overlapping either end of the
field identified in the SSA are not converted.

Notes:

DL/I does not take field type into consideration for compares
for SSAs. As a consequence, for binary SSAs, a negative num­
ber will be larger than a positive number.

Also. fields converted by DL/I to packed or zoned format will
use the S/370 preferred sign.

• Insert

L

If you specify insert activity for a segment con­
taining fields the application is sensitive to, sensi­
tivity must also be specified for any sequence
fields in the segment. The field need not be identi­
fied by name, as long as its area is included in
some field that sensitivity has been specified for.

Insert sensitivity of bi-directionallogical children
requires sensitivity to both normal and logical
twin sequence fields.

If insert sensitivity is specified for a logical child,
the application must be sensitive to the entire des­
tination parent concatenated key. If the destina­
tion parent is to be inserted as part of the conca­
tenated segment, the application must be sensitive
to its sequence field.

• Key feedback area
The information returned in the key feedback
area is not converted.

• Fields and Subfields
You may define a field for the application
program's view that contains a number of other
fields as subfields. This allows a set of separately
processed fields to be referenced as a group and
used as a segment search argument. For purposes
of this discussion, we will call this field an
"overfield". The following considerations apply:

- Overfields must be completely defined for the
application view by the sub fields they contain.
These sub fields must be contiguous (no holes).

- Overfields may be defined via the SENFLD

statement only if there is a corresponding over­
field defined in the physical view, and any
non-virtual sub fields in the application view
appear in the physical view of the correspond­
ing field.

- Overfields for which there is no matching
physical field that contains all the same physi­
cal sub fields must be defined via a VIRFLD

statement.

- Field exit routines for overfields may do no
conversion. The overfield is always processed
before the subfields that make it up.

- Two fields that overlap must both be com­
pletely defined in the application view by sub­
fields. Their intersections must be completely
(no holes) and exactly (no overlap on ends)
defined by subfields.

- DL/I allows no conversion on overfields.

Section 3: The Data Base Design
Process
The process of data base design in its simplest form can
be described as: The structuring of the data elements
for the various applications in such an order that:

• Each data element is readily available by the vari­
ous applications, now and in the foreseeable fu­
ture.

• The data elements are efficiently stored on sec­
ondary storage.

• Controlled access is enforced for those data ele­
ments with specific security requirements.

In practice, one is often forced to compromise, based
on available resources in manpower, hardware, and
software.

Concepts of Data Base Design
Because data base design is an area where there has
been little formal standardization, there has been no
consistent vocabulary for describing the concepts in­
volved. This section presents some concepts and terms
required to understand the remainder of the chapter.

Entities
A data base contains information about entities. An
entity is something that:

• Can be uniquely identified.

• We may now or in the future collect information
about.

In practice this definition is limited to the context of
the applications under consideration. Examples of
entities are: parts, projects, orders, customers, etc. De­
fining entities is a major step in the data base design
process. The information we store in data bases about
entities is described by data elements.

Data Elements
A data elerilent is a unit of information that specifies a
fact about an entity. For example, suppose the entity is
an inventory item. Item Number=200,
Description=Transistor, and Quantity on hand=50 are
three facts about that inventory item. Thus there are
three data elements. A data element has a name and a
value. A data element name tells the kind of fact being
recorded; the value is the fact itself. In the above exam­
ple, Item Number, Description, and Quantity on hand
are data element names; 200, Transistor, and 50 are
values. A value must be associated with a name to
have a meaning.

An occurrence is the value of the data element for a
particular entity. Figure 2-24 illustrates the concepts of
data elements and their occurrences in recording the

Chapter 2: Data Base Design 2 - 35

facts about two entities, INVENTORY ITEMS (A) and
ORDER ITEMS (B).

ENTITY A: INVENTORY ITEMS

DATA ELEMENT OCCURRENCES

NAME VALUE VALUE

Item Number 200 300
Description Transistor Resistor
Quantity on Hand 10500 8000
Quantity on Order 500 2000
Quantity Reserved 550 1000
Unit Price $3.00 $18.00
Un it of Issue 1 25

ENTITY B: ORDER ITEMS

DATA ELEMENT OCCURRENCES

NAME VALUE VALUE

I nventory Item 200 300
Line Item Number 01 02
Quantity Ordered 500 500
Quantity Shipped 500 500
Quantity Back Ordered 0 0
Item Amount $1500 $9000

Figure 2-24. Concepts of Data Elements

Data elements which add information to an entity
are called attributes. An attribute is always dependent
on an entity. It has no meaning by itself. Depending
on its usage, an entity can be described by one single
data element or more. Ideally, an entity should be
uniquely defined by one single data element, such as
the order number of an order. Such a data element is
called the key of the entity. The key serves as the iden­
tification of a particular entity occurrence. It is a spe­
cial attribute of the entity. Keys are not always unique.
In such cases, entities with equal key values are called
synonyms. For instance, the full name of an employee
is possibly not a unique identification. In such cases,
we have to rely on other attributes such as full address,
date of employment, or an arbitrary sequence number.
A more common method is to define a new attribute,
that serves as the unique key, for example the employ­
ee number.

Transaction
Data in itself is not the ultimate goal of a data base
management system. It is the application function
performed on the data that is more important. The best
way to represent that function is the transaction, which
is the smallest application unit representing a user in­
teracting with the data base. See Figure 2-25.

2 - 36 DL/I DOS/VS Guide For New Users

INPUT

USER

D

TRANSACTION PROGRAM j
--~------------~~

I

OUTPUT

Figure 2-25. The Transaction

Transactions are processed by application programs.
In a batch system, large numbers of transactions are
accumulated (for example, all orders of a day), then
processed against the data base with a single schedul­
ing of the desired application program. Although
transactions are always distinguishable, even in batch,
we sometimes tend to think in terms of programs rather
than transactions. However, especially in a DB/DC

environment, a clear understanding of transactions is
mandatory for good data base design. The transaction
is in some way the individual usage of the application
by a particular user. As such, it is the focal point of the
DB/DC system.

In this chapter we will utilize the transaction for the
data base design. A similar role is set aside for the
transaction in program design by adding detailed in­
put, processing and output descriptions to the data
element usage.

Access Paths
Each transaction bears in its input some kind of identi­
fication with respect to the entities used (such as the
item number when accessing an Inventory data base).
These are referred to as the access paths of that transac­
tion. In general, transactions require random access,
although for performance reasons, sequential access is
sometimes used. This is particularly true if the transac­
tions are batched and they are numerous, relative to
the data base size or if information is needed from most
data base records.

For efficient direct access, each access path should
utilize the entity's key. With proper data base design,
DL/I generally provides fast physical access via a key.
Therefore identification of the transaction access path
is essential for a design to yield good performance.

The Transaction/Data Element Matrix
A convenient way to specify the transactions, the data
elements and their interaction is to use a
transaction/data element matrix, as shown in Figure
2-26.

APPLICATION INVENTORY

..\.
>- /... $" I- g: & i= DATA ~ z ~ UJ ELEMENTS q:;

Item Number 0 ~
2:

Description R R
UJ

!:: Quantity on Hand R R
>-a: Quantity on Order R R
0
I-

Quantity Reserved R R z
UJ
> Unit Price R R z

Unit of Issue R R

Inventory Item

2:
Line Item Number

UJ

!:: Quantity Ordered
a:
UJ Quantity Shipped
Cl
a:

Quantity Back Ordered 0

Item Amount

a:
UJ Order Number Cl
a:
0 Reference Data
a:
UJ

Order Item Count 2:
0
I- Order Amount en
::l
U

LEGEND: o DIRECT ACCESS PATH (KEY) o SEQUENTIAL ACCESS PATH

Figure 2-26. The Transaction/Data Element Matrix

0
R

R

U

R

R

R

PURCHASE CUSTOMER
ORDERS ORDERS

$ $" $" p p P 0 0 0
J' J' /...'<t
~ ~ '<t

;l:-'" ;l:-'" ~
(j (j Q

0 R R

R R R

R R R

U R R

R R R

R R R

R R R

GJ ~ ~
U D

U D

U D

U D

U D

GJ 0 [£J
U D

U D

U D

Chapter 2: Data Base Design 2 - 37

The transaction/data element matrix specifies, in its
simplest form, the processing intent of the application
transactions against the data base elements:

• Retrieve (read only)

• Update in place

• Add, insert

• Delete

• All of the above

• Null, not sensitive

R

U

I

o
A

- or blank

The data elements which are direct access paths for
a transaction are denoted by a boxed matrix item.
These should be keys. Sequential access is indicated by
a circle around the matrix item .

Data Base Design Tasks
The process of designing a data base (Figure 2-27) can
be generally divided into the following tasks:

• Gathering requirements

• Designing application data structures

• Designing physical data structures

• Design and performance evaluation

Usually the above steps are repeated until the design
satisfies the requirements. After this design process, the
actual development, implementation (data base load)
and production begins. During production, the system
is subject to monitoring which can provide feedback
for the design phase.

... 1--------DESIGN PHASE --------l ... --.l1

I

GATHERING
DESIGNING DESIGNING DESIGN AND

PHYSICAL OPERATION &
REQUIRE- ~

APPLICATION
I-' PHYSICAL ~

PERFOR- I-' IMPlEMENTA -~ EVALUATION DATA MANCE
MENTS STRUCTURES STRUCTURES

EVALUATION TION MONITORING

DATA
ELEMENTS

~ T f ... f ... t
R
A
N
S f. .. t
A
C
T
I
0
N
S §

I'

Figure 2-27. The Steps In Data Base Design

Gathering Requirements
The first step of the data base design poses many ques­
tions: What do the applications need? What inputs are
required to drive them? What data outputs will they
produce? How are the data elements related to one
another? Which elements are identifiers and which
elements do they identify? How frequently are they
used? Have input sources been specified for all data
elements?

2 - 38 DL/I DOS/VS Guide For New Users

If

r

'" ../

Cil

r -......
I'--. --"

DATA
BASE

'- ./

During the process of gathering requirements, these
and related questions are answered primarily during
conversations between a data base designer and an
analyst from the department that requests the applica­
tion. In some organizations, a set of forms appropriate­
ly filled in marks the end of the requirements gathering
step; in other organizations, less formality is involved.
In any case, this first step in data base design ends
when the designer collects the data needs of the indi-

vidual applications that will use the data base being
designed.

The requirement for a data base should contain:

• The data being managed, such as the entities and
associated data elements.

• The relations between the entities and data ele­
ments as needed by the various users.

• The functions being performed against the data
(the transactions).

• The access path as required by the transactions.

The first step in gathering the requirements is to
determine the entities. This is not a trivial task, be­
cause the choice of entities is dependent on the envi­
ronment.

A data element which, initially, is considered an
attribute, could become an entity itself when new ap­
plications are added. For example, the data element
color, is normally seen as an attribute. But in a paint
factory process it might very well be an entity itself.
Clearly, the change of a given data element from attri­
bute to entity could have a significant impact on the
data structure. To avoid this as much as possible, be
very careful in the choice of entities.

To register the functions performed against the data
elements, first construct the transaction/data element
matrix. Optionally, when the matrix becomes too large,
construct a separate matrix for each major application.
Another useful approach is to make a large drawing for
display on the wall. This process is most effective if the
matrix not only contains the applications of the imme­
diate future, but also as much as possible about future
applications and data elements.

Additional columns could be added for miscellane­
ous information such as:

• Occurrence frequencies of transactions and data
elements

• Size and format of data elements

• Priorities and response/turnaround time criteria

• Availability (batch or online)

• Security (who may have access to the information
made available by this transaction)

• Input/output descriptions per transaction, for
application program design

The transaction/data element matrix, together with
a detailed description of the data base and its use, con­
stitutes the requirements for the design step. For the
detailed description of the data base, its segments and
fields, a documentation scheme should be established.
As a minimum, forms should be used for a manual

registration of the data base, the segment layout. the
fields and their attributes. It is very important to regis­
ter which program uses which data elements. The next
step would be to use the Assembler DSECT. COBOL

COPY, or PL/I %INCLUDE facility for centralized man­
agement of segment descriptions. Ultimately, the
DB/DC data dictionary system might be utilized.

Design the Application Data Structure
Once the transaction/data element matrix has been
built, it can be used as a guide to designing your appli­
cation data structure(s). This is the logical data struc­
ture that may consist of one or more hierarchical physi­
cal data structures with the data elements arranged the
way the application programmer views it.

Segment Grouping
In general, prior to the design of the hierarchical struc­
ture, segment design should be addressed. The process
of segment design involves determining what data ele­
ments to group together to form a segment. Logically
related data elements should be grouped together
based upon application, usage and growth of new data
elements. If you know that a future application is go­
ing to require a field that is logically associated with
the other fields that form your segment, it should be
placed in that segment now, even though it will not be
used until the second application is implemented.
Changing segment content, unlike adding new seg­
ments to a hierarchical structure, requires modifica­
tions to all application programs which utilize the seg­
ment and is thus a generally undesirable option to con­
sider once application programming has begun. Data
elements should be combined into a single segment
type when they are used together. For example, name
and address, or order number and order quantity, hav­
ing a one-to-one relationship, should be considered
candidates for inclusion in the same segment. Data
elements should not be grouped together into a single
segment type when they occur independently of each
other, are used at different times by different applica­
tion programs, or there is a large discrepancy in fre­
quency of access. For example, if name is a highly
used data element but address is a little used data ele­
ment, consider the separation of name and address into
different segment types, regardless of the aforemen­
tioned recommendation that logically related data
elements should be placed in the same segment.

Design the Physical Data Structures
In this step, the logical data structures are matched
against the functions and characteristics of DL/1. Physi­
cal data base structures are defined and specified in
DBDGEN control statements. The DL/! storage organi­
zation and access method is selected. Additional con-

Chapter 2: Data Base Design 2 - 39

siderations that may yield changes in the segment de­
sign are shown in Figure 2-28.

GROUP IN ONE SEGMENT<-------- >SEPARATE SEGMENTS

Few Occurrences«3) Multiple Occurrences(>1 0)

Small«20 bytes) Large(>1 00 bytes)

High Use (Every access to re- Low Use (Once a Month)
cord.)

Read-only Update. Insert. Delete

General Use Secured Use

Only dependent upon a single Dependent upon relation of
data element data elements

Figure 2-28. Grouping Data Elements Into Physical Segments

The numbers shown in Figure 2-28 are not fixed.
They merely provide a basis for your own estimates.
Additional considerations are:

• Single verses mUltiple occurrences. If a data ele­
ment has a high number of occurrences, it is likely
to be a segment itself, especially if it is large. If it
is small and highly used, then it could be stored
with multiple field occurrences per segment, even
in the root segment.

• If a data element needs special security, i.e., only
particular applications may have access to it, it
can be stored in a seperate segment together with
other data elements with the same security re­
quirements. The final result of the physical struc­
ture design steps is the data base descriptions
(DBDS) and program specification blocks (PSBS) for
the data bases and their processing programs.

Selecting Data Base Access Methods
Access methods can, in general, be changed during
data base reorganization without affecting application
programs. Still, because the access method is one of the
most critical performance factors, it should be carefully
selected. This manual addresses only the considera­
tions for the selection of HDAM, HIDAM, and SHISAM.

When to Choose HDAM: HDAM is recognized in
practice to be the most efficient storage organization of
DL/l. It should be your first choice, especially in the
online environment. HDAM's prime advantages are:

• Fast direct access (no index accesses) with few I/O
operations

• Smallest working set of the six access methods

The disadvantage of HDAM is:

• Sequential access in root key order is not possible
if the physical sequence of data base records in
storage is not the same as the root key sequence.

2 - 40 DL/I DOS/VS Guide For New Users

This is dependent on the randomizing module and
root key characteristics.

If heavy sequential processing is required and a
randomizing module which maintains key sequence
cannot be designed, then these techniques can be used:

• Sort the output: If the program is non-input driv­
en, as is the case with many report programs, sim­
ple Get Next processing presents all the data base
records in physical sequential order. The output
could then be sorted in the desired order. Also, in
many instances, only certain selected segments are
required, so the output file of the extract can be a
fairly small file.

• Sort the input: If there are input transactions that
would normally be sorted in root key sequence
they should instead be sorted in physical se­
quence. This can readily be done with a sort exit
routine which passes each root key to the random­
izing module for address calculation and then
sorts on the generated addresses plus root key in­
stead of the root key itself.

• Build a secondary index: A secondary index could
be built with the root key as the index search argu­
ment. The cost of this should be weighed against
the cost of sorting. However, the secondary index
provides full generic key search capability.

When to Chose HIDAM: If you cannot use HDAM for
some reason, then use HIDAM (see above discussion).

When to Choose SHISAM: This access method
should be used only as a migration tool. That is, if your
organization currently has files based on ISAM or KSDS
access methods, it is not recommended for new data
bases. With SHISAM, new programs can use the DL/I
interface with full recovery function. Existing VSAM
programs can access the data base as a regular KSDS
and older ISAM-based programs can use the VSAM liP.

Additional Considerations
In the final steps of data base design we must look at
the physical parameters closely:

• The segment length

• The number of occurrences per segment per par­
ent

• Location of segments in the hierarchy

• Average data base record size

Performance Aspects: The main measure of access
performance is the number of I/O requests to satisfy the
calls an application program issues. Those are mainly
dependent upon the physical data base d '!sign and the

data base buffer pool size; the latter is discussed in
Chapter s. Second, the number of required DL/I calls
should be considered.

Basic recommendations (HDAM and HIDAM)

• Try to locate the segments most often used togeth­
er with the root segment into one control interval.
The segments are initially physically stored in
hierarchical sequence so the most frequently used
segments should be on the left of the structure
(low segment codes).

• Try to avoid long twin chains, for example, many
occurrences of a particular segment under one
parent.

• Inserts after initial load will first check the block
of the hierarchically preceding segment for avail­
able space. If no space is found, a bit map block is
used to search for space within plus or minus 3
cylinders. The bit map block contains one bit for
each block in the data set. Bit map blocks are re­
peated for each n blocks; n is number of bits in a
block. The bit is set to one if the corresponding
block contains enough consecutive free space to
hold the largest segment (including prefix) of the
DBD. If no space is found, the segment is stored at
the end of the data set for HIDAM and in the over­
flow area for HDAM.

Basic recommendation (HDAM):

• During consecutive inserts (no intervening calls)
of segments of a particular data base record, the
BYTES parameter in the RMNAME keyword of the
DBD statement will limit the amount of data stored
in the root addressable area. If the limit is reached
(bytes include prefix) consecutive inserts are
placed in the overflow area. Using this parameter,
especially during initial load and reload, can bene­
fit an equal distribution in the case of a large vari­
ation in data base record size.

Defining VSAM Clusters
Whenever defining a VSAM cluster, you should check
the DBDGEN output listing. It gives the proper access
method services control statements for the definition of
the KSDS (i.e. the location of the key in the KSDS re­
cord).

Always use the VSAM share option I and perform a
LISTCAT after a DEFINE command to verify that the
parameters specified in DEFINE were accepted by
VSAM.

Data Base Design Checklist
The following checklist gives an overview of the most
important considerations/guidelines for data base de­
sign optimization. These considerations/guidelines are
oriented towards performance. Sometimes, they will
contradict application requirements. In such cases, a
compromise must be made based on a cost/function
analysis.

• Use no more complex a structure than necessary.

• Keep frequently accessed segments near the top
and to the left of the hierarchy.

• A void widely varying segment sizes for volatile
segments in the same data space.

• Check the requirement for any segment type
whose relative frequency under its parent is one,
or whose prefix length is greater than or equal to
its data length.

• Oversegmentation results in many DL/I calls and
longer reorganization times.

• Undersegmentation results in less security and less
data independence.

• Avoid movement of data from one data base into
another or from one part of a data base record to
another.

• A void secondary indexing on highly volatile
source segments.

• Use secondary indexing for alternate entry not
sequential processing.

• If logical relationships exist, place the real logical
child so that the physical path is the most active
path. Also consider placing the real logical child
on the longest twin chain.

• Sequencing of the logical twin chain is expensive
on insert and delete processing.

• A void long twin chains, particularly logical twin
chains.

Chapter 2: Data Base Design 2 - 41

/

2 - 42 DL/I DOS/VS Guide For New Users

Introduction

Chapter 3: Data Base Implementation

This chapter introduces the two level data base definition language, used by data
base administration, to defme to OL/I the physical and logical characteristics of the
data bases, and the application data structures for each application program. The
first level, called the OBO (data base description), describes to OL/I the contents of
the data base, the names of the segments, their hierarchical relationship, and the
physical organization and characteristics of the file. The second level, the PSB
(program specification block), defines the application data structure for each
application program.

Before the data base descriptions and program specification blocks can be used
by OL/I, they must be merged and expanded into an internal format. OL/I provides
a utility that creates a OMB (data management control block) for each related OBO
CSECT and an expanded PSB for each related PSB CSECT. When OL/I is initialized,
the OMBs and PSBS for the applications are loaded into storage and control is passed
to the application program.

This chapter is divided into three sections:

• Section 1. Data Base Description Generation: Describes the OL/I macro
instructions you must code to define your data bases. The data bases for the
sample application discussed in Chapter 2 are used as examples throughout
this section to guide you in determining your own data base requirements.

• Section 2. Program Specification Block Generation: Describes how to generate
the PSBs you will need to define your application program(s) use of your data
bases.

• Section 3. Application Control Blocks Creation and Maintenance: Describes
how to create the internal control blocks, from the previously generated OBOs
and PSBS, that OL/I uses to process your data bases.

Data Base Description Generation
After you fmish the design of your data bases, you must specify them to OL/I. This
section gives the guidelines for the use of the OL/I data base definition language:
the data base description generation (OBOGEN). This section is also divided into
three subjects in concurrence with the three phases:

1. Basic OBOGEN for physical data bases

2. OBOGEN for logical relationships

3. OBOGEN for secondary indexes

For each data base to be used with OL/I, a data base description (OBO) must be
generated. A OBO consists of a set of OL/I macro instructions, coded by you to
specify the data base characteristics you need. Figure 3-1 illustrates the execution
of a OBO generation. The OL/I user creates control statements that are presented to
the OBO generation procedure as a normal OOS/VS problem program job. The OL/I
macro instructions used for OBO generation exist in a OOS/VS source statement
library. The result of a OBO generation is the creation of a OL/I OBO CSECT. The
generated OBO is cataloged and link-edited into a OOS/VS core image library, for
subsequent processing ofthe data base.

Figure 3-2 shows the sequence ofthe control statements in the OBO input
stream.

Chapter 3: Oata Base Implementation 3 - I

DBD
GENERATION
CONTROL
STATEMENTS

DOS/VS

DBD
GENERATION

Figure 3-1. Data Base Description Generation

DBDGEN Coding Conventions
DBDGEN statements are DOS/VS assembler language macro instructions and
therefore are subject to the rules contained in OS/VS-DOS/VSE- VM/370Assem­
bier Language, GC33-401O.

In the generalized format shown in the following descriptions of the control
statements, these syntax conventions apply:

a. Words written in all capital letters must appear exactly as written.

b. Words written in lowercase letters are to be replaced by a user-specified value.
Valid user-specified values are numeric values or one- to eight-character
alphameric names.

c. The control statements are free form. Operation codes must begin after
column one. Operands must follow an operation code or prior operand. The
first operand must be separated from the operation code by at least one blank
column. Each operand should be separated from the previous operand by a
comma. Operands may be continued in subsequent statements, but must start
in column sixteen on the continuation statement. A nonblank character must
be coded in column 72 if a continuation statement follows.

3 - 2 DL/I DOS/VS Guide For New Users

DBDGEN

Assembler
END Macro

Required: 1

J.-______ ~ Required: 1

Repeat for each seg-
• • • ment type in the£l

data base. The FIE LD
order is the ____ --,

hierarChiC~1 FIELD
sequnce.
Maximum:
255 LCHILD J Repeated for each defined field

for th is segment.
Maximum: 255 per segment type.

1000 per data base.
SEGM Required for

index and/or
logical relationsh ips.

DBD
Required: 1 c

Required:1

Figure 3-2. DBDGEN Input Deck Structure

[]

{}

, ...

Example:

indicates optional operands. The operand enclosed in the brackets (for
example (VL]) mayor may not be present, depending on whether or not
the associated option is desired. If more than one item is enclosed in
brackets one or none may be coded.

indicates that a choice of an operand parameter must be made. One of
the operand parameters from the vertical stack within the braces must
be coded.

indicates that more than one set of parameters may be designated in the
same operand.

1+ Column 1 1+ Operands - Column 16
1 1 +Operation - Column 10

Basic DBDGEN Control Statements Format

INAME=STDIDBP,
ACCESS=HDAM

Column 72 .. 1

This section addresses the control statements required to perform the DBDGENS

necessary for the sample applications. Because the purpose of this manual is to
show by example the basic requirements for implementing a simple data base
application, we are including only the keywords and parameters or operands of
each statement as they are needed for the sample applications. (All other available
keywords are mentioned only briefly.) For more detailed information about these
keywords and the other options available, see the Utilities and Guide for the System
Programmer.

Examples of the DBD statements for the sample data bases follow the discussion
of the control statements.

Chapter 3: Data Base Implementation 3 - 3

DBD Statement

DBD

This statement names the data being described and specifies the organization used.
There is only one in the input to DBDGEN. The format of the DBD control state­
ment is:

NAME=dbdname
,ACCESS={HDAM,RMNAME=(mod,{l } [,rbn[,bytes]])}

The
and

{anch}
{HIDAM }
{INDEX }

following parameters do not apply to HDAM or HIDAM data bases
therefore are given only general consideration in this manual.

{HSAM }
{HISAM }
{SHSAM }
{SHISAM }

DBD
identifies this statement as the DBD control statement

NAME=
dbdname

ACCESS=

specifies the name of the DBD for this data base. This name can be from
one to seven alphameric characters. However, the at-sign (@) must not
be used. This name should be unique for each DBD in your
installation's DL/I environment.

specifies the DL/I access method to be used for this data base. The value of
the operand has the following meanings:

HSAM
specifies the hierarchical sequential access method.

HISAM
specifies the hierarchical indexed sequential access method.

HIDAM

INDEX

specifies the hierarchical indexed direct access method. An INDEX DBD

must be associated with any HIDAM DBD.

specifies the INDEX data base of a HIDAM data base. This index data
base contains root segments that perform indexing to the sequence field
of root segments in a HIDAM data base. This is called a primary index.
This parameter is also used for secondary indexes. See "DBDGEN for
Secondary Indexes" later in this chapter.

SHSAM
specifies the simple hierarchical sequential access method. This data
base consists of root segments only and does not contain segment pre­
fixes.

SHISAM

HDAM

Notes:

specifies the simple hierarchical indexed sequential access method. This
data set consists of root segments only and does not contain segment
prefixes.

specifies the hierarchical direct access method.

• Guidelines for selecting the best access method for a particular data base are provided under the

3 - 4 DL/I DOS/VS Guide For New Users

DATASET statement

topic "Data Base Access Methods" in Chapter 2.

• Parameters for the VSAM Access Method Services DEFINE command are produced in the
DBDGEN output listing. These parameters must be used when defining the VSAM data set
cluster. See "VSAM Requirements" later in this chapter.

RMN AME=(mod,anch,rbn,bytes)
mod

anch

rbn

bytes

specifies the name of a randomizing module used for storing and
accessing segments contained in this data base. DL/I provides several
general randomizing modules (DLZHDClO, DLZHDC20, and DLZHDC30)

that you can use, or you can provide your own randomizing routine.
See the Utilities and Guide for the System Programmer for details.

specifies the number of root anchor points desired in each control
interval or block in the root addressable area of a HDAM data base. The
default value of the parameter is one. "anch" must be an unsigned
decimal integer and must not exceed 255 or be less than 1.

When a randomizing routine produces an anchor point number in
excess of the number specified for this parameter, the anchor point used
is the highest number in the control interval or block. When a random­
izing routine produces an anchor point number of zero for DL/I, DL/I

uses anchor point one in the control interval or block.

specifies the maximum relative block number value that the user wishes
to allow a randomizing module to produce for this data base. This
value determines the number of control intervals or blocks in the root
addressable area of an HDAM data base. "rbn" must not exceed 224_1 or
be less than 1. If the randomizing module produces an rbn greater than
this parameter, the highest control interval or block in the root address­
able area is used by DL/I. If the randomizing module produces a block
number of zero, control interval or block one is used by DL/I.

Note: If one of the randomizing modules supplied with DL/I will be used, this value may
not be omitted. Omitting this value will cause a program check to occur in the randomiz­
ing module during load execution.

specifies the maximum number of bytes of a data base record that can
be stored into the root addressable area in a series of inserts unbroken
by a call to another data base record. If this parameter is omitted, no
limit is placed on the maximum number of bytes of a data base record
that can be inserted into this data base's root segment addressable area.
"bytes" must be an unsigned decimal integer whose value does not
exceed 232_1 and is not less than 1.

This statement defines each data file that makes up the data base defined by the
DBD generation. There can be only one DATASET statement for each DBD genera­
tion, and it must follow the DBD statement. The format of the DATASET statement
is:

Chapter 3: Data Base Implementation 3 - 5

DATASET DD1=fname1

{3330}
{3340}

,DEVICE={3350}
{2314}
{TAPE}
{FBA }

[,BLOCK=(blk-fct-1l]
[,SCAN={cyls}]

{blks}
{]. }

[,RECORD=(rec-len-1 [,rec-len-2]l]
[,FRSPC=({fbff,fspf}l]

{ 0 0 }

The following parameters are not used for
HDAM, HIDAM, or INDEX data bases and there-
fore are given only general consideration
in this manual.

[, DD2=fname2]
[,DEVADDR=(SYSnnn-1,SYSnnn-2l]
[,OVFLW=fname3]

DATASET
identifies this statement as the DATASET control statement.

DDI=fnamel
identifies the DLBL filename (1-7 characters) used in the JCL to execute DL/I

application programs using the data base. It is the symbolic filename of the
VSAM KSDS when ACCESS=HISAM, SHISAM, or INDEX; the VSAM ESDS when
ACCESS=HDAM, or HIOAM; or the sequential input file when ACCESS=HSAM

or SHSAM.

DEVICE=
specifies the device type used for storage of this data set. TAPE may be
specified only if ACCESS=HSAM or SHSAM is specified in the DBD statement.

Specify DEVICE=FBA if your data base data files are to reside on FBA devices.
Remember that the addressing scheme of an FBA device is different from that
of other direct access storage devices. Because an FBA device is laid out as a
series of fixed blocks (of 512 bytes each) starting at zero and numbered
sequentially to the capacity of the device, it is addressed by block number
rather than by the familiar concept of tracks and cylinders. For this reason, if
an FBA device is used, the number specified in the SCAN parameter represents
the number of fixed blocks to be scanned when looking for space rather than
the number of cylinders (see SCAN Parameter).

BLOCK=

3 - 6 DL/I DOS/VS Guide For New Users

specifies the control interval size (HDAM or HIOAM) to be used for each file of
this data base. For SHISAM, HISAM, and INDEX data bases this parameter
specifies the number of VSAM records per VSAM control interval. If this
operand is not specified, the value(s) is calculated during DBD generation
using a control interval size of 2048 bytes wherever possible. For HIOAM and
HDAM, the parameter blk-fact-l is the size of the VSAM ESDS control interval
and must be a multiple of 512 bytes. The maximum value permitted by DL/I
is 4096.

In choosing the block size, the following considerations apply (Remember,
the block size is the CI size):

• Try to choose a CI size that allows all highly needed segments of a data
base record to fit into one or more consecutive CIS.

L

ACCESS
METHOD

SHISAM

HISAM

INDEX

HIDAM

HDAM

Notes:

CI=

T=I

I T=2

Clof
C20f
LPlof

LP20f

LP3 of
LC for

PP=4

RAP =

NA=

•

•

Large CI sizes favor sequential processing and DASD space utilization .
However, if you are primarily processing directly, you should determine

the segments needed per data base record per transaction.

The VSAM CI size must be a multiple of 512 bytes. The maximum CI size
allowed by DL/I is 4096 bytes. The CI contains 10 bytes OfVSAM control
information.

Figure 3-3 may be helpful in calculating the size in bytes for the BLOCK and
RECORD parameters of the DATASET statement.

SCAN=
specifies the number of cylinders (for direct access devices) or blocks (for FBA
devices) to be scanned in both directions when searching for available storage
space during segment insertions. This operand is used only for HDAM or
HIDAM data bases.

If you specify cyls, it can be any integer from 0 to 255. Typical values are 0 to
5. The default value is 3 (suggest you start with 0). If SCAN=O is specified,
only the current cylinder is scanned for space. Scanning is performed in both
directions from the current position. If space is not found for segment inser­
tion within the bounds defmed by this operand, space at the end of the data

base is used.

ALLOCATION IN BYTES

SEGMENT DUI CONTROL
PREFIX INFORMATION

RECORD

0

2

6

2 + 4T + 4CI
+ 8C2 + 4LP1
+ 8LP2 + 4LC
+ 4LP3 + PP

VSAM Control Interval

ifPOINTER=TWIN
ifPOINTER=NOTWIN
if POINTER=TWINBWD

0

5

5

NA

NA

BLOCK

0

0

0

8

4+
4RAP

VSAM CI MAXIMUM MAXIMUM DEFAULT
CONTROL SEGMENT CI CI
INFORMA- SIZE SIZE SIZE
TION

10 4086 4096 2048

10 4078 4096 2048

10 4074 4096 2048

10 4068 4096 2048

10 4068 4096 2048

physical parent segment = the number of SEGM statements that specify PARENT=«parent-segment,SNGL» or default to this.
physical parent segment = the number of SEGM statements that specify PARENT=«parent-segment,DBLE».
logical parent segment = the number of LCHILD statements defming logical child segments of this segment that specify
POINTER=SNGL or NONE or default to this.

logical parent segment = the number of LCHILD statements defining logical child segments of this segment that specify
POINTER=DBLE.

logical parent segment = 0 if segment is a root segment. I if segment is a dependent segment.
logical child segment = 3 if POINTER=L TWIN or not specified. 4 if POINTER=L TWINBWD.

for all segments between (and not including) the root segment and a logical child, or logical parent, or indexed segment in a
physical path. If one segment is part of more than one such path, PP counts only once.

the number ofroot anchor points as specified in the RMNAME operand of the DBD statement (minimum is one).

not applicable.

Figure 3-3. Maximum Segment Lengths

Chapter 3: Data Base Implementation 3 - 7

If you specify blks, it can be any integer from 0 to 32767. If this parameter is
omitted, a default is calculated that is approximately equal to three cylinders.
If SCAN=O is specified, only the current fixed block is scanned for space.
Scanning is performed in both directions from the current position. If space
is not found for segment insertion within the bounds defmed by this operand,
space at the end of the data base is used.

RECORD=
specifies the data management logical record length(s) to be used for each
data file. This operand is optional. If omitted, the values are calculated
during DBD generation. The rec-Ien-l and rec-Ien-2 must be numeric values
which are a multiple of two. The meaning of each parameter depends on the
type of data base being defmed.

HIDAM and HDAM
This parameter is ignored.

INDEX
The parameter rec-Ien-l is the KSDS record length which is large
enough to contain the index pointer segment plus the length of the
prefix plus the length of the DL/I control information.

FRSPC=
specifies the amount of free space to be reserved in the data base during a
load (or reload) operation for HD (HDAM or HIOAM) data bases.

fbff

fspf

3·8 OL/I OOS/VS Ouide For New Users

specifies that every nth block is to be left free. This is a number from 0
to 100 excluding 1. Zero is the default.

specifies the percentage of each block to be left free. This is a number
from 0 to 99. This number expresses the minimum space to be left free.
Due to segment size, the actual space may be larger. Zero is the default.

Either fbff or fspf or both may be specified to achieve any combination
of free and/or partially free blocks within the constraints of the parame­
ter values.

A specification of FRSPC=(5,40) results in a data base load (or reload) in
which every fifth block (5, 10, 15, etc.) would be left free and at least 40
percent of all other blocks would also be left as free space. This free
space would be used at insert time to place the inserted segments as
close to the related segments as possible.

The amount of free space to be reserved depends on record size and the
number of inserted segments anticipated. There are no rules for deter­
mining the necessary free space. Various values will have to be experi­
mented with to find the optimum for each data base.

SEGM Statement

L This statement is used once for each segment to be defmed in the DBD. Its basic
format is:

SEGM NAME=seg-namel

{O }
[,PARENT={T(seg-name2[{,SNGL}))}]

{,DBLE}
[,BYTES={bytes }]

{(max-bytes,min-bytes)}

{TWIN }
[,POINTER={TWINBWD}]

{NOTWIN }
{,FIRST}

[,RULES=({,LAST })]
{,HERE}

[,COMPRTN=(routine-name[,Q,INIT])]

NAME=
specifies the name of the segment being defined. The specified name is used
by DL/I and application programs in all references to this segment. Duplicate
segment names are not allowed within a DBD generation. The parameter
seg-name-l must be I to 8 alphameric characters.

PARENT=
specifies the name of the physical parent of this segment. This keyword may
be omitted for the root segment. The second parameter controls the physical
child pointer(s) in the physical parent ofthis segment.

SNGL
specifies only a physical child first pointer is used in this segment's
parent.

DBLE
specifies both a physical child first and physical child last pointer are
used in this segment's parent.

DBLE should be specified ifthe average twin chain is more than 3 to 5 and
segment has no sequence field and frequent inserts.

BYTES=
specifies the length of the data portion of the segment in bytes. This length
does not include the prefix, which is established solely by DL/1. This length
cannot exceed the maximum logical record length or control interval size of
the data set minus the space occupied by system fields.

If this parameter is not specified, DL/I calculates the size of the segment based
on the location and length of the fields identified as belonging to it.

max-bytes specifies in bytes the maximum length of the data portion of a
variable length segment type, including the 2-byte length field (see "Variable
Length Segments", in Chapter 2).

min-bytes specifies the minimum length (including the 2-byte length field) of
the data portion of a variable length segment type. Four is the minimum
specification. If you specify a minimum length greater than the actual mini­
mum length (+2) of the data to be stored, DL/I will reserve an amount of
space equal to the min-bytes specification. This, in effect, reserves free space
at the end of the inserted data, and may result in more efficient processing
later if the data length is increased.

Chapter 3: Data Base Implementation 3 - 9

POINTER=
(or its abbreviation PTR) specifies the fields to be reserved in the segment's
prefix area. These fields are used to relate this segment to its physical twin
segments and, in the case of a logical child segment, to its logical twin seg­
ments. The POINTER operand applies to HDAM and HIDAM data bases only.

• TWINBWD (twin forward and backward pointers)

specify this parameter if:

No sequence field is defined and frequent inserts are expected.

Retrieve last plus subsequent delete is frequently used.

The segment is a logical child (see Phase 2).

It is the root segment of a HIDAM data base.

• TWIN (only twin forward pointer)

this parameter is usually specified and is the default for a physical
segment or a logical parent segment.

• NOTWIN (no twin pointer)
specify this parameter to ensure that no more than one occurrence of
this segment will exist under this parent.

Note: If you desire more details on the use and creation of pointers, see Appendix A in the Utilities and
Guide for the System Programmer.

RULES=

{,FIRST}
({,LAST })

{,HERE }

This parameter ofthe RULES keyword determines where new occurrences of
the segment being defmed by this SEGM statement are to be inserted in the
physical twin chain. This value is significant only when processing segments
without a sequence field or without a unique sequence field (as indicated by
the FIELD statement). It is ignored for a st;gment which contains a unique
sequence field.

FIRST (F)
states that a new occurrence is to be inserted before the first existing
occurrence of this segment type.

LAST (L)
states that a new occurrence is to be inserted after the last existing
occurrence of this segment type.

HERE (H)
assumes the user has determined positioning by a previous DL/I call,
and the new occurrence is inserted before the segment that satisfied the
last call.

COMPRTN=
this keyword is used to select the segment compression option. This facility
allows the reduction in length of variable length segments to increase the
effective utilization of secondary storage. This operand must not be specified
for virtual logical child segments or secondary index source segments.

routine-name

3 - 10 DL/I DOS/VS Guide For New Users

specifies the name of a user-supplied routine used to compress this
segment. This name must be a 1- to 8-character alphameric value
and must not be the same as any other name in any DOS/VS core
image library that is assigned.

L

LCHILD Statement

FIELD Statement

D

INIT

(default value) maintains upward source compatibility to IMS/VS.

indicates that initialization and termination processing control is
required by the segment compression routine.

This statement is used once for each index or logical relation a segment has. It
immediately follows the SEGM statement of the segment involved. At this point we
will only discuss its use in defming the primary index of a HIDAM data base. The
basic format is:

LCHILD NAME=(seg-namel,db-name)
[,POINTER=INDX]
[,INDEX=fld-name]

The LCHILD statement is coded both in the INDEX DBD and in the HIDAM DBD.
For the INDEX data base, code:

NAME=
(seg-name I ,db-name)

seg-namel is the name of the HIDAM root segment and db-name is the
name of the HIDAM data base as coded in the DBD statement.

INDEX=
fld-name

specifies the name of the sequence field of the HIDAM root segment.

F or the HIDAM main data base, code:

NAME=
(seg-name 1 ,db-name)

seg-namel is the name ofthe only segment in the primary INDEX data
base for this data base, and db-name is the name of that INDEX data
base.

POINTER=
INDX

provides for the linkage with the INDEX data base.

This statement is used once for each field to be defined in the DBD. The FIELD

statements follow the SEGM statement of the segment in which these fields belong.
This statement is required for all sequence fields and fields which are to be used in
SSAS. The basic format is:

FIELD NAME=(fld-namel [,SEQ[{,~}]])
{,M}

[,BYTES=bytes]
[,START=pos]
[,TYPE=t]

NAME=
fld-namel

specifies the name of the field being defined within a segment type. The
name specified can be referred to by an application program in a DL/I

call SSA. Duplicate field names must not be defined for the same seg­
ment type. The fld-name 1 must be a 1- to 8-character alphameric value.

Chapter 3: Data Base Implementation 3 - I I

SEQ

u

M

the presence of the keyword SEQ as a parameter of this operand identi­
fies this field as a sequence field in the segment type. As a general rule,
a segment can have only one sequence field. If a sequence field is
specified, then its value must be unique for all segment occurrences
under a given parent.

A unique field is optional for all dependent segment types. It must
be provided for the root segment of all data bases except simple HSAM

and HSAM.

When no sequence field is dermed for a segment, new occurrences
of the segment will be inserted at the end of the physical twin chain
unless changed by the RULES parameter in the SEGM statement. It is
highly recommended that all segments which participate in a logical
relationship have sequence fields. This includes physical and logical
parents as well as logical child segments.

indicates that only unique values of this sequence field are allowed in
which case any RULES parameter in the SEGM statement is ignored.

indicates that duplicate values of this sequence field can occur in
multiple occurrences of the segment. Each new occurrence of a segment
will be inserted according to the appropriate RULES operand specifica­
tion (see Phase 2) or default.

BYTES=
specifies the length of this field in terms of bytes and must be a numeric term
whose value does not exceed 256 (236 for the root segment sequence field of a
simple HISAM, HISAM, HIDAM, or INDEX data base).

Notes:

• The BYTES parameter must be specified for field data types X, P, C, or Z (see TYPE
parameter for field data types).

• The BYTES parameter is optional for field data types Hand F. If omitted, DL/I assumes
a field length of 2 bytes for type Hand 4 bytes for type F.

• Do not specify the BYTES parameter for field data types E, D, or L. These data types have
implicit lengths of 4, 8, and 16 respectively.

START=
specifies the starting position of the field being defined in terms of bytes
relative to the begirming of the segment. Start position for the first byte of a
segment is one (maximum 32767). Overlapping fields are permitted. If an
overlapping field starts in the same position as a previously dermed field, you
may specify the name of the previously dermed field, instead of a numeric
value, to indicate the starting position (START=fieldname). Each field must
not extend beyond the defined segment length (start position plus byte value).

If you do not specify this parameter, DL/I places this field adjacent to the end
of the previous field, or if it is the first field in the segment, at the beginning
of the segment (START=I). (Note that for concatenated segments, the begin­
ning of the segment is the start of the destination parent concatenated key.)

TYPE=
specifies the type of data that is to be contained in this field. The value of the
parameter specified for this operand indicates that one ofthe following types
of data will be contained in this field.

3 - 12 DL/I DOS/VS Guide For New Users

DBDGEN Statement

FINISH Statement

END Statement

Notes:

'X' - hexadecimal
'H' - half word binary
'F' - fullword binary
'P' - packed decimal
'Z' - zoned decimal
'C' - character
'E' - floating point (short)
'D' - floating point (long)
'L' - floating point (extended)

If this parameter is omitted, TYPE=C is assumed. It is recommended, howev­
er, that you explicitly specify the desired data type. Failure to do so could
result in problems if you later decide to use the "automatic data format
conversion" option of field level sensitivity (see TYPE parameter in SENFLD

statement).

• All DL/I calls perform field comparisons on a byte-by-byte binary basis. No check is made by
DL/I to ensure that the data contained within a field is of the type specified by this operand,
except when the defined field is indexed, or converted by the Field Level Sensitivity feature.

• Do not unnecessarily defme fields in the DBD as this increases the size of the DBD and conse­
quently the working set. You could include FIELD statements as comments (* in column I) for
documentation. However, be sure to defme all fields that will also be defined in the SENFLD
statements for PSB generation.

This statement must be included. It indicates the end of DBD generation control
cards to defme the DBD. The format is:

IDBDGEN

This statement must be included for source-level compatibility with IMS/VS. The
format is:

IFINISH

This statement must be included. It indicates the end of the input statements to the
DOS/VS assembler.

cpapter 3: Data Base Implementation 3 - 13

Execution of DBDGEN (leL)
DBDGEN is run as a standard DOSjVS job. The DL/I macro instructions used for
DBDGEN exist in a DOS/VS source statement library. The generated DBD is cata­
loged and link-edited into a DOS/VS core image library. DBDGEN requires the
following job control statements:

II JOB
II OPTION
II EXEC

1*
II EXEC
IF,

DBDGEN
CATAL
ASSEMBLY

DBD
DATASET
SEGM
LCHILD
FIELD
DBDGEN
FINISH
END

LNKEDT

DBD GENERATION CONTROL STATEMENTS

Note: If the defined DBD is for the primary INDEX data base of an HIDAM data base, only one
SEGM, FIELD, and LCHILD statement are allowed.

Examples of Physical DBDs
Figure 3-4 shows a sample HDAM data base and the DBD statements required to
assemble it. This is the Phase 1 Inventory data base of the batch sample applica­
tion. The data base is assumed to reside on a 3340. If the device is other than a
3340, the DATASET statement should be changed.

3 - 14 DL/I DOS/VS Guide For New Users

CUSTOMER
NAME/
ADDRESS
(STSCCST)

I I
CUSTOMER CREDIT CUSTOMER
LOCATION STATUS HISTORY
(STSCLOC) (STSCSTA) (STSCHIS)

I
CUSTOMER
ORDER
(STPCORD)

L
ORDER
ITEM
(STCCITM)

Customer Data Base

INVENTORY
ITEM
(STPIITM)

L l
VENDOR SUBSTITUTE ITEM

(STSIVND) ITEM LOCATION
(STCISUB) (STSILOC)

Inventory Data Base

Figure 3-4. DBDGEN for the Phase I Data Bases (Part I of 4)

Chapter 3: Data Base Implementation 3 - 15

II JOB STJDBDGN GENERATE DBDS FOR SAMPLE PROBLEM
II OPTION CATAL,NODECK
II EXEC ASSEMBLY
• THIS IS THE PHYSICAL DBD FOR THE CUSTOMER DATA BASE
• PHASE 1 NO LOGICAL RELATIONSHIPS, NO SECONDARY INDEXES

PRINT NOGEN NO MACRO EXPANSION PRINTING
DBD

NAME=STDCDBP,
ACCESS=HDAM,
RMNAME=(DLZHDC10,
3,
100,
600)

DATASET
DD1=STDCDBC,
DEVICE=3340,
BLOCK=(2048) ,
SCAN=2

SEGM

FIELD

SEGM

FIELD

SEGM

FIELD

NAME=STSCCST,
PARENT=O,
BYTES=106,
POINTER=TWIN

NAME=(STQCCNO,SEQ,U),
BYTES=6,
START=l,
TYPE=C

NAME=STSCLOC,
PARENT=STSCCST,
BYTES=106,
POINTER=TWINBWD

NAME=(STQCLNO,SEQ,U),
BYTES=6,
START=l,
TYPE=C

NAME=STPCORD,
PARENT=STSCLOC,
BYTES=55,
POINTER=TWINBWD

NAME=(STQCODN,SEQ,U),
BYTES=12,
START=l,
TYPE=C

X
DATA BASE DESCRIPTION NAME X
HIERARCHICAL DIRECT X
RANDOMIZING ROUTINE PHASENAME X
ROOT ANCHOR POINTS PER BLOCK X
ROOT ADDR. AREA HI RELATIVE BLK X
INSERT BYTES LIMIT FOR RAA

DLBL FILE NAME
DISK DEVICE
VSAM CONTROL INTERVAL SIZE
CYLINDERS SCAN FOR ISRT SPACE

x
X
X
X

X
SEGMENT NAME
IT IS A ROOT
DATA LENGTH

FOR CUST NAME/ADDR X
SEGMENT X

X
PHYSICAL TWIN FWD ONLY

UNIQUE KEY FIELD (CUST #)
FIELD LENGTH
WHERE IT STARTS IN SEGMENT
ALPHAMERIC DATA

X
X
X
X

X
SEGMENT NAME CUSTOMER LOCATION X
PARENT IS CUST. NAME/ADDR SEGM X
FIELD LENGTH X
BOTH PHYS. TWIN FWD AND BWD

X
UNIQUE KEY FIELD (LOCATION #) X
FIELD LENGTH X
WHERE IT STARTS IN SEGMENT X
ALPHAMERIC DATA

X
SEGMENT NAME CUSTOMER ORDER X
PARENT IS CUST. LOCASTION SEGM X
DATA LENGTH X
BOTH PHYS.TWIN FWD AND BWD

X
UNIQUE KEY FIELD (DATE & ORD #) X
FIELD LENGTH X
WHERE IT STARTS IN SEGMENT X
ALPHAMERIC DATA

Figure 3-4. DBDGEN for the Phase I Data Bases (Part 2 of 4)

3 . 16 DL/I DOS/YS Guide For New Users

~

SEGM

*

NAME=STCCITM,
PARENT=STPCORD,
BYTES=38,
POINTER=TWINBWD

X
SEGMENT NAME LINE ITEM X
PHYSICAL PARENT IS CUSTOMER ORD X
DATA LENGTH X
BOTH PHYS. TWIN FWD AND BWD

* THE FOLLOWING FIELDS ARE DEFINED TO SHOW AN EXAMPLE OF FIELD LEVEL
* SENSITIVITY. NOTE THAT IT IS NOT REQUIRED FOR THE SEQUENCE FIELD
* TO BE DEFINED FIRST AND IF THE START PARAMETER IS NOT CODED THE FIELD
* IS ASSUMED CONTIGUOUS TO THE PRECEEDING FIELD. SEE PSB'S STBCUSR
* AND STBCUSU FOR AN EXAMPLE OF HOW THE FIELDS ARE SELECTED BY THE
* APPLICATION PROGRAM.

FIELD NAME=STKCIIN, INVENTORY ITEM NUMBER X

*

*

*
*
*
*

1*
II EXEC
1&

BYTES=6, FIELD LENGTH X

FIELD
TYPE=C ALPHAMERIC DATA

NAME=(STQCILI,SEQ,U) ,
BYTES=2,
START=7,
TYPE=C

UNIQUE KEY FIELD (LINE #)
FIELD LENGTH
WHERE IT STARTS IN SEGMENT
ALPHAMERIC DATA

FIELD NAME=STFCIQO,BYTES=6,TYPE=C
FIELD NAME=STFCIQS,BYTES=6,TYPE=C
FIELD NAME=STFCIQB,BYTES=6,TYPE=C
FIELD NAME=STFCIAM,BYTES=12,TYPE=C

QUANTITY ORDERED
QUANTITY SHIPPED
QUANTITY BACK ORDERED
ITEM AMOUNT

SEGM
NAME=STSCSTA, SEGMENT NAME CREDIT STATUS
PARENT=STSCCST, PARENT IS CUST. NAME/ADDR SEGM
BYTES=24, DATA LENGTH
POINTER=TWIN PHYSICAL TWIN FWD ONLY
RULES= (, FIRST) INSERT THIS OCCURRENCE BEFORE

EXISTING OCCURENCE
OF SEGMENT
NOTE THERE IS NO KEY FIELD

SEGM
NAME=STSCHIS, SEGMENT NAME CUSTOMER HISTORY
PARENT=STSCCST, PARENT IS CUST. NAME/ADDR SEGM
BYTES= (130,53) , SEGMENT IS VARIABLE LENGTH
COMPRTN=DLZSAMCP, NAME OF COMPRESSION ROUTINE
POINTER=TWINBWD BOTH PHYS. TWIN FWD AND BWD

FIELD
NAME=(STQCHDN,SEQ,U) , UNIQUE KEY FIELD (DATE & ORD #)
BYTES=12, FIELD LENGTH
START=3, WHERE IT STARTS IN SEGMENT
TYPE=C ALPHAMERIC DATA

DBDGEN REQUIRED TO MARK DBD END
FINISH FOR SOURCE COMPAT WITH IMS/VS
END

LNKEDT

X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X

Figure 3-4. DBDGEN for the Phase I Data Bases (Part 3 of 4)

Chapter 3: Data Base Implementation 3 - 17

// JOB DBDGEN
// OPTION CATAL,NODECK
// EXEC ASSEMBLY
* THIS IS THE PHYSICAL DBD FOR THE INVENTORY DATA BASE
* PHASE 1 NO LOGICAL RELATIONSHIPS, NO SECONDARY INDEXES

PRINT NOGEN NO MACRO EXPANSION PRINTING

/*
// EXEC
/&

DBD
NAME=STDIDBP,
ACCESS"'HDAM,
RMNAME=(DLZHDC30,
3,
100,
400)

DATASET
DD1=STDIDBC,
DEVICE=3340,
BLOCK= (2048) ,
SCAN=2

SEGM

FIELD

SEGM

FIELD

SEGM

FIELD

SEGM

NAME=STPIITM,
PARENT=O,
BYTES=56,
POINTER=TWIN

NAME=(STQIINO,SEQ,U) ,
BYTES=6,
START=l,
TYPE=C

NAME=STSIVND,
PARENT=STPIITM,
BYTES=106,
POINTER=TWIN

NAME=(STQVVNO,SEQ,U) ,
BYTES=6,
START=l,
TYPE=C

NAME=STCISUB,
PARENT=STPIITM,
BYTES=56,
POINTER=TWINBWD

NAME=(STQCCNO,SEQ,U) ,
BYTES=6,
START=l,
TYPE=C

NAME=STSILOC,
PARENT=STPIITM
BYTES=12,
POINTER=TWINBWD

FIELD
NAME=(STQILNO,SEQ,U) ,
BYTES=6,
START=l,
TYPE=C

DBDGEN
FINISH
END

LINKEDT

DATA BASE DESCRIPTION NAME
HIERARCHICAL DIRECT
RANDOMIZING ROUTINE PHASENAME
ROOT ANCHOR POINTS PER BLOCK
ROOT ADDR. AREA HI RELATIVE BLK
INSERT BYTES LIMIT FOR RAA

DLBL FILE NAME
DISK DEVICE
VSAM CONTROL INTERVAL SIZE
CYLINDERS SCAN FOR ISRT SPACE

SEGMENT NAME INVENTORY ITEM
IT IS A ROOT SEGMENT
DATA LENGTH
PHYSICAL TWIN FWD ONLY

UNIQUE KEY FIELD (ITEM #l
FIELD LENGTH
WHERE IT STARTS IN SEGMENT
ALPHAMERIC

AUTHORIZED VENDOR INFORMATION
PARENT IS INVENTORY ITEM SEGM.
FIELD LENGTH
PHYSICAL TWIN FWD ONLY

UNIQUE KEY FIELD (VENDOR #l
FIELD LENGTH
WHERE IT STARTS IN SEGMENT
ALPHAMERIC DATA

SEG. NAME FOR SUB-ITEM INFO.
PARENT IS INVENTORY ITEM SEGM
DATA LENGTH
BOTH PHYS. TWIN FWD AND BWD

UNIQUE KEY FIELD (SUB-ITEM #)
FIELD LENGTH
WHERE IT STARTS IN SEGMENT
ALPHAMERIC DATA

X
X
X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
SEGMENT NAME INVENTORY LOCATION X
PARENT IS INVENTORY ITEM SEGM. X
DATA LENGTH X
BOTH PHYS. TWIN FWD AND BWD

X
UNIQUE KEY FIELD INVENTORY LOC# X
FIELD LENGTH X
WHERE IT STARTS IN SEGMENT X
ALPHAMERIC DATA
REQUIRED TO MARK DBD END
FOR SOURCE COMPAT WITH IMS/VS

Figure 3-4. DBDGEN for the Phase I Data Bases (Part 4 of 4)

3 - 18 DL/I DOS/VS Guide For New Users

.J

HIDAM

Figure 3-5 shows an example of a HIDAM version of the same data base. The
difference here is that two DBDS are required, one for the index data base and one
for the main data base. The index for a HlDAM data base is called a primary index.
The DBD example in Figure 3-5 is for the primary index of the Inventory data base.

The HIDAM DBD for the Inventory data base differs from the HDAM DBD in that
ACCESS=HIDAM is specified in the DATASET statement, and an LCHILD statement is
added to relate this data base to the index data base. The LCHILD statement is
placed after the SEGM statement for STPIlTM, and identifies the segment name and
the DBD name of the index data base.

The coding of a DBD for a primary index is slightly different from the coding of
a DBD for a secondary index. See "DBDGEN for Secondary Indexes" later in this
chapter for details.

PRIMARY INDEX DATA BASE

INVENTORY
ITEM NO.
(STlIITM)

DBD
NAME=STDIX1P,
ACCESS=INDEX

DATASET
DD1=STDIX1C,
DEVICE=3340

SEGM

LCHILD

FIELD

NAME=STIIITM,
PARENT=O,
BYTES=6

NAME= (STPIITM,
STDIDBP) ,
INDEX=STQIINO

VENDOR
(STSIVND)

NAME=(STYIINO,SEQ,U),
BYTES=6,

DBDGEN
FINISH
END

START=1,
TYPE=C

INVENTORY
ITEM
(STPIITM)

SUBSTITUTE
ITEM
(STCISUB)

DATA BASE DESCRIPTION NAME
THIS IS AN INDEX

DLBL FILE NAME
DISK DEVICE

INVENTORY DATA BASE

ITEM
LOCATION
(STSILOC)

X
X

X
X

X
SEGMENT NAME OF THE INDEX X
IT IS A ROOT SEGMENT X
LENGTH

X
TARGET SEGMENT ITEM NUMBER X
FOUND IN INVENTORY DATA BASE X
INDEXED FIELD NAME

X
UNIQUE KEY FIELD X
FIELD LENGTH X
WHERE IT STARTS IN SEGMENT X
ALPHAMERIC DATA
TO MARK END OF DBD
FOR SOURCE COMPAT WITH IMS/VS

Figure 3-5. Sample DBD For a HIDAM Primary Index Data Base

Chapter 3: Data Base Implementation 3 - 19

DBDGEN for Logical Relationships
To support the logical relationships function, DBDGEN is extended in two ways:

• Additional control statements and parameters can be specified in the physical
DBD.

• A new type of DBD is created for the defmition of the logical data base,
however, this is done with an extension of the existing control statements.

The DBDGEN process itselfis unchanged.

Coding a Logical Relationship in a Physical DBD
The following control statements are unchanged:

DBD
FIELD
DBDGEN
FINISH
END

The following statements are extended:

SEGM
LCHILD

Logical Child: For each defined logical child, you need to code two SEGM state­
ments. One within its physical parent's DBD and one within its logical parent's
DBD. The format under the physical parent DBD, that is, for the real logical child is:

SEGM NAME=seg-namel
,PARENT=

((seg-name 2 , {SNGL})
{DBLE}

, (lpseg-name[,Y,db-namel)))
, BYTES=bytes
,POINTER=({TWIN },[{LTWIN }))

{TWINBWD} [{LTWINBWD})

NAME=
seg-name I

{NOTWIN }

{PHPHP} {,FIRST}
,RULES= ([{!!H!!H!!}) [{, LAST }))

{VHVHV} {,HERE }

is the name of the logical child segment.

PARENT=
seg-name 2

is the name of the physical parent segment of this logical child.

SNGL orDBLE
have the same meaning as before.

lpseg-name
is the name of the logical parent of this logical child.

db-name I
is the DBD name ofthe logical parent's data base.

v (default value)
maintains upward source compatibility to IMS/VS

3 - 20 DL/I DOS/VS Guide For New Users

BYTES=
has the same meaning as before. Notice however that the logical child always
contains the logical parent's concatenated key in the first n bytes, and its
length must be included here. If you do not specify this parameter, DL/I

automatically calculates a segment size large enough to contain all defmed
fields.

POINTER=
TWIN (T)

the same considerations as before apply.

TWINBWD (TB)
It is highly recommended that you specify TB.

NOTWIN
may be specified to ensure that there will never be more than one
occurrence of this segment per physical parent.

LTWIN (T)
if specified, only a logical twin forward pointer is used for the logical
twin chain.

LTWINBWD (LTB)
if specified, both a logical twin forward and backward pointer are used
for the logical twin chain. This should be selected whenever there are,
on the average, more than 2 to 3 logical child occurrences for a logical
parent.

RULES=

{P}{P}{P} {,FIRST}
{L}{L}{L}[{,LAST }]
{V}{V}{V} {,HERE}

The parameter values are:

• P specifies physical rule

• L specifies logical rule

• Y specifies virtual rule

The first parameter of this operand is of the format xxx, where x can be one of
the characters P, L, or Y. Each of the three positions can contain the same or
different characters. If all three are omitted the default values are assumed.
Likewise the second and third, or just the third can be omitted, in which case
the default values are assumed for the omitted positions.

In the first parameter the first value, x .. , applies to SEGMENT INSERTION, the
second value,.x., applies to SEGMENT DELETION, and the third value, .. x,
applies to SEGMENT REPLACEMENT.

Note: For a logical child segment type, the third value, the replace rule, must be Y. Any other
rule specified will be changed to Y during DBD generation.

The parameter xxx is only meaningful for physical logical child segments and
for their logical parent segments if the logical relationship is unidirectional or
for their physical and logical parent segments if the logical relationship is
bidirectional.

Recommendation: Do not use this parameter for segments that do not partici­
pate in a logical relationship.

The following paragraphs will assist you in determining when to specify P, L,

or Y for the RULES= parameter.

Chapter 3: Data Base Implementation 3 - 21

Insertion Rules: The insertion rules have meaning only for the destination parent
in the access path of a logical relationship. When a concatenated segment is ..J
presented for insertion into alogical data base, its destination parent portion may
or may not be inserted, depending on which of the insertion rules, as shown in
Figure 3-6, is specified for the destination parent.

Deletion Rules: When a segment is deleted all its dependent segments are also
deleted. The physical deletion of a segment is caused by an explicit deletion request
either for the segment itself, or for a segment on which it is physically dependent.
If deletion of a logical child segment was caused by propagating an explicit dele­
tion request across a logical relationship, then it is called a logical deletion request.

If a segment is deleted on one path, it can no longer be accessed through this
path. It may, however, still be accessible through the other path. Such conditions
are indicated in the delete byte of the segment prefix. The deletion rules for the
logical parent and logical child are shown in Figures 3-7 and 3-8.

Replacement Rules: The replacement rules determine what actions take place
when a concatenated segment is presented in a REPLACE call and one or both
portions of it are to be altered. Replacement rules, as shown in Figure 3-9, can be
specified for the destination parent portion of the concatenated segment.

RULES=

{,FIRST}
(... { , LAST })

{,HERE }

The second parameter of this operand determines where new occurrences of the
segment being dermed by this SEGM statement are to be inserted in the physical
twin chain. This value is significant only when processing segments without a
sequence field or without a unique sequence field (as indicated by the FIELD

statement). It is ignored for a segment that contains a unique sequence field.

IF AN INSERT CALL OF A INSERT RULE SPECIFIED IN DP
CONCATENATED SEGMENT IS
ISSUED ... P L V

AND .. DESTINATION PARENT
EXISTS IN DB X X X

DESTINATION PARENT
DOES NOT EXIST IN DB X X X

THEN LOGICAL CHILD SEGMENT
IS INSERTED X X X X X

DESTINATION PARENT
PORTION OF THE CON-
CATENATED SEGMENT
IGNORED X X

DESTINATION PARENT SEGMENT
IS INSERTED (*REPLACED) X* x X

CALL IS REJECTED (IX) X

NOTE: The insert rules are specified for destination parent only. Insert rules affect whether or
not the DP portion of a concatenated segment is inserted.

Figure 3-6. Insertion Rules for Logical Relationships

3 - 22 DL/I DOS/VS Guide For New Users

DELETE RULE SPECIFIED IN LP

P L V
(BI-DIR)

IF ... A DELETE CALL IS
ISSUED FOR AN LP X X X X X X

AND ALL LC PDF'S ARE ON X X

ALL LC LDF'S ARE ON X

LP DEPENDENTS NOT
INVOLVED IN AN LR X

LC DELETE RULE IS 'V' X X

THEN SET PDF IN LP AND
LDF IN LC X X X X X X

SET PDF I N ALL
ACCESSIBLE LC X X

SET LDF IN LP X X

CALL IS REJECTED WITH
A DX STATUS CODE X

NOTE: Logical parent delete rules do not apply to destination parent unless it is also an LP.

Figure 3-7. Logical Parent Deletion Rules

DELETE RULE SPECIFIED IN LC

P L V

IF ... A DELETE CALL IS ISSUED FOR AN LC X X X - X --

THE LDF OF THE LC IS ON X
AND

RELATIONSHIP IS BIDIRECTIONAL X X X X

SET PDF IN LC X X X X

THEN SET LDF IN LC X X X

CALL REJECTED WITH A DX STATUS X

NOTE: Logical child delete rules establish criteria for removal of LC. V rule is required for LC in uni-directional LR.

* delete call issued for virtual logical child

* * applies to delete call for either real logical child or virtual logical child.

Figure 3-8. Logical Child Deletion Rules

Chapter 3: Data Base Implementation 3 - 23

IF A REPL CALL OF A CON- REPLACEMENT RULE SPECIFIED IN DP
CATENATED SEGMENT IS
ISSUED ...

P L V

AND THE LC IS ALTERED X X X

LP (DEST PARENT) IS
ALTERED X X X

THEN REPLACE THE LC SEGMENT X X X

REPLACE THE LP (DP)
SEGMENT * X

CALL IS REJECTED WITH
AN RX STATUS CODE X

NOTE: REPLACE RULES:

• Specified for destination parent only

• Implied rule for logical child is 'V'

• Determines ability to alter DP portion of a concatenated segment

• If SEQ field of LC or DP altered, call rejected with 'DA' status code

*LP or DP is not replaced. This is ignored by DL/I.

Figure 3-9. Replacement Rules for Logical Relationships

FIRST
states that a new occurrence is to be inserted before the first existing occur­
rence of this segment type. If the segment has a nonunique sequence field, a
new occurrence is inserted before all existing occurrences of the same se­
quence field value.

LAST
states that a new occurrence is to be inserted after the last existing occurrence
of this segment type. If the segment has a nonunique sequence field, a new
occurrence is inserted after all existing occurrences of the same sequence field
value. This is the default option.

HERE
assumes the user has determined positioning by a previous DL/I call, and the
new occurrence is inserted before the segment that satisfied the last call. If
the segment has a nonunique sequence field and the position pointer is not
pointing to occurrences of this segment type with equivalent sequence field
value, a new occurrence is inserted before all existing occurrences of the same
sequence field value.

The format of the SEGM statement under the logical parent, that is, for the
virtual logical child is:

SEGM NAME=virtchild

,PARENT=seg-name2

,SOURCE=«seg-name3[,Q,db-name2]»

,POINTER=PAIRED

3 - 24 DL/I DOS/VS Guide For New Users

NAME=
virtchild

specifies the name of the virtual logical child. Remember that the virtual
logical child does not actually exist. Its only purpose is to define the logical
child as seen from the logical path. It can be followed by a sequence field
which controls the sequence of the logical child segment when accessed via its
logical path, that is, the logical twin chain sequence.

PARENT=
seg-name 2

is the name of the logical parent, that is, the physical parent of the virtual
logical child.

SOURCE=
«seg-name3,D,db-name2»

seg-name3 is the name of the real logical child and db-name2 is the DBD

name of the data base which contains that logical child.

PTR=
PAIRED

defines this segment as a virtual logical child.

Physical and Logical Parent: One additional parameter must be specified in the
SEG M statement of both the physical and the logical parent:

SEGM NAME ,RULES=PPV

For each logical child segment type, an LCHILD statement must be added immedi­
ately following the SEGM and/or FIELD statement of the logical parent. Its basic
format is:

LCHILD NAME=(seg-namel,db-name)

{NONE}
,POINTER={SNGL}

{DBLE}

,PAIR=virtchild

{FIRST}
,RULES={LAST }

{HERE }

NAME=
(seg-name I ,db-name)

seg-namel is the segment name of the logical child in the DBD whose name is
db-name.

POINTER=

NONE

{NONE}
{SNGL}
{DBLE}

specifies a unidirectional logical relationship from the logical child to the
logical parent segment. No pointer fields are reserved in the prefix of the
logical parent segment, however, a 4-byte counter field will be reserved in the
prefix of the logical parent segment.

Chapter 3: Data Base Implementation 3 - 25

SNGL or DBLE
dermes a bidirectional logical relationship.

SNGL specifies that there will be only a logical child first pointer in the prefix ..J
of the logical parent.

DBLE specifies that both a logical child first pointer and last pointer will
appear in the logical parent.

Recommendations:
• specify SNGL if a sequence field is dermed for the virtual logical child

and command code L (retrieve last) is rarely or never used to access the
logical child.

• Specify DBLE if no sequence field is dermed for the virtual logical child
and there are generally more than three occurrences of virtual children
within a logical parent.

PAIR=
virtchild

specifies the name of the virtual logical child which should be dermed in the
same DBD (see previous SEGM statement).

RULES=

{FIRST}
{LAST }
{HERE }

See the preceding discussion of this parameter for an explanation.

Examples of Physical ODDs With Logical Relationships
Figure 3-10 shows the two logically related physical DBDs of the phase 2 sample ."
environment. Only those DBD statements are shown which are essential to the ...""
logical relationship function. Compare these DBDS with the ones of Figures 3-4 and
3-5.

Note the addition ofthe virtual logical child segment, ITEM ORDER, to the
Inventory data base. Also, the SUBSTITUTE ITEM segment is now defined as a
logical child to eliminate the need for redundant data. In the phase I Inventory
data base, this segment has the same fields as the INVENTORY ITEM segment.

In the Customer data base the ORDER ITEM segment is now dermed as a logical
child segment.

3 - 26 DL/I DOS/VS Guide For New Users

I
I

I
CUSTOMER
LOCATION
(STSCLOC)

I
CUSTOMER
ORDER
(STPCORD)

--1-
ORDER
ITEM
(STCCITM)

CUSTOMER
NAME/ADDRESS
(STSCCSn

I I

CREDIT CUSTOMER I
STATUS HISTORY
(STSCSTA) (STSCHIS) I

1
L

- - l
I

(LC) I

INVENTORY
ITEM
(STPIITM)

I
- - I I - - I 1

ITEM I I SUBSTITUTE I ITEM
ORDER

VENDOR
ITEM LOCATION

(STVICOR) 1 (STSIVND) 1 (STCISUB) 1 (STSILOC)

1 I I
- ~LC.:J 1- - ~C)~

Notes:

1. Rules for STPIITM
P for Insert

When adding logical child segments to the Customer logical data base, I do not want the child added if the inventory item does not
exist. If the INVENTORY ITEM segment does exist, I want the child added but I do not want the INVENTORY ITEM segment
modified.

P for Delete
When deleting the INVENTORY ITEM segment I want to insure that no more orders are pointing to this item before allowing
deletion. The only allowable path for deletion will be the physical.

V for Replacement
When replacing the logical child/Inventory Item concatenated segment in a logical DBD, the INVENTORY ITEM segment will
be replaced if altered.

2. Rules Parameter in LCHILD macro for STCCITM

LAST
Implies the logical twin chain will have no required sequence. For example, when I process orders for an item, I need no specific
sequence for orders.

3. POINTER=DBLE in LCHILD macro for STCCITM
specifies that inserts last will go faster.

Inventory Data Base
The following DBD example shows the changes made to the Inventory data base DBD of phase 1.

PRINT NOGEN
DBD

NAME=STDIDBP,
•
•
•

DATASET
DD1=STDIDBC,

Figure 3-10. Phase 2 Physical DBDs (Part I of 3)

NO MACRO EXPANSION PRINTING

DATA BASE DESCRIPTION NAME

DLBL FILE NAME

X
X

X
X

Chapter 3: Data Base Implementation 3 - 27

SEGM

•
•
•
NAME=STPIITM,
PARENT=O,
BYTES=56,
POINTER=TWIN,

SEGMENT NAME INVENTORY ITEM
IT IS A ROOT SEGMENT
DATA LENGTH
PHYSICAL TWIN FWD ONLY

x
X
X
X
X

• IN THE SEGM MACRO FOR STPIITM, ADD THE K0LES PARAMETER

RULES=(PPV) LOGICAL RELATIONSHIP RULES

• THE FOLLOWING LCHILD STATEMENT IS ADDED TO ESTABLISH A BI-DIRECTIONAL
• LOGICAL RELATIONSHIP WITH THE CUSTOMER DATA BASE VIA THE VIRTUAL
• LOGICAL CHILD SEGMENT, CUSTOMER ORDER. THIS STATEMENT FOLLOWS THE
• SEGM STATEMENT FOR INVENTORY ITEM, THE LOGICAL PARENT SEGMENT.

LCHILD
POINTER=DBLE,
NAME=(STCCITM,
STDCDBP) ,
PAIR=STVICOR,
RULES=LAST

X
BI-DIR L.R. ,LCHILD FST&LST PTRS X
REAL LOGICAL CHILD SEGMENT NAME X
DATA BASE WHERE FOUND--CUSTOMER X
VIRTUAL LOGICAL CHILD SEG NAME X
REAL LOG. CHILD INSERT RULES

• THE NEXT LCHILD STATEMENT IS
• LOGICAL RELATIONSHIP BETWEEN
• ITEM AND ITS LOGICAL PARENT,

USED TO ESTABLISH A UNI-DIRECTIONAL
THE LOGICAL CHILD SEGMENT, SUBSTITUTE
INVENTORY ITEM.

LCHILD
POINTER=NONE,
NAME=(STCISUB,
STDIDBP)

X
UNI-DIR LOGICAL RELATIONSHIP X
REAL LOGICAL CHILD SEGMENT NAME X
D/B WHERE FOUND-ITEM-THIS ONE

FIELD NAME=STFIIDS,BYTES=25,TYPE=C
FIELD NAME=STFIIQH,BYTES=6,TYPE=C
FIELD NAME=STFIIQO,BYTES=6,TYPE=C
FIELD NAME=STFIIQR,BYTES=6,TYPE=C
FIELD NAME=STFIIPR,BYTES=6,TYPE=C
FIELD NAME=STFIIUN,BYTES=l ,TYPE=C

ITEM DESCRIPTION
QUANTITY ON HAND
QUANTITY ON ORDER
QUANTITY ON RESERVE
COST PER ITEM
UNIT OF ISSUE

• THE NEXT SEGM STATEMENT IS ADDED TO DEFINE THE VIRTUAL LOGICAL
• CHILD, CUSTOMER ORDER.

SEGM

SEGM

NAME=STVICOR,
PARENT=STPIITM,
POINTER=PAIRED,
SOURCE~((STCCITM,

0,
STDCDBP))

NAME=STSIVND
•
•

X
SEGMENT NAME VIRT.LCHILD ORDERS X
PARENT IS ITEM INFORMATION X
PAIRED WITH REAL LOGICAL CHILD X
REAL LOGICAL CHILD NAME X
REQUIRED FOR IMS/VS UPWARD COMP X
D/B WHERE REAL LCHILD IS FOUND

AUTHORIZED VENDOR INFORMATION
X
X

• IN THE SEGM MACRO FOR STCISUB WE MUST INDICATE THE LOGICAL PARENT.
• ADD A POINTER AND INCLUDE SOME RULES. THIS SEGMENT IS NOW A LOGICAL
• CHILD, SO THE BYTES PARAMETER IS MODIFIED.
• THE FIELD STATEMENT FOR THIS SEGMENT AS USED IN PHASEl IS REMOVED
• AND THE KEY FIELD FOR THE LOGICAL PARENT SEGMENT, STPIITM, IS USED
• AS DESCRIBED BELOW.

SEGM
NAME=STCISUB,
PARENT=((STPIITM,
SNGL) ,
(STPIITM,
V,
STDIDBP» ,
BYTES=6,
POINTER=TWINBWD,
RULES=(PPV,
HERE)

Figure 3-10. Phase 2 Physical DBDs (Part 2 of3)

3 - 28 DL/I DOS/VS Guide For New Users

X
SEG NAME REAL LCHILD-ITEM SUBS X
PHYSICAL PARENT NAME X
PHYS. CHILD FIRST PTR. ONLY X
LOGICAL PARENT SEGMENT NAME X
REQUIRED FOR IMS/VS UPWARD COMP X
LOG.PAR.DATA BASE-ITEM-THIS ONE X
LENGTH OF REAL LCHILD-SEE BELOW X
BOTH PHYS. TWIN FWD & BWD PTRS X
LOGICAL RELATIONSHIP RULES X
PHYSICAL INSERT RULE

• BYTES IN REAL LOGICAL CHILD'S SEGM MACRO (SEE ABOVE)
• INCLUDES THE LOGICAL PARENT'S CONCATENATED
• KEY, IN THIS CASE THE STPIITM SEGMENT'S KEY
• WHICH IS FIELD STQIINO 6 BYTES IN LENGTH;
• THE BYTES LENGTH ALSO INCLUDES ANY INTERSECTION
• DATA WHICH IN THIS CASE IS NONE.

SEGM

DBDGEN
FINISH
END

NAME=STSILOC,
•
•
•

Customer Data Base

X
SEGMENT NAME INVENTORY LOCATION X

REQUIRED TO MARK DBD END
FOR SOURCE COMPAT WITH IMS/VS

These are the changes made to the DBD of the phase 1 Customer data base.

• IN THE SEGM MACRO FOR STPCORD WE MUST ADD THE RULES PARAMETER

RULES=(PPV) LOGICAL RELATIONSHIP RULES

• IN THE SEGM MACRO FOR STCCITM WE MUST INDICATE THE LOGICAL PARENT
• ADD A POINTER AND INCLUDE SOME RULES. MODIFY THE EXISTING PARAMETERS
• AS FOLLOWS AND ADD THE RULES

Notes:

PARENT=«STPCORD) ,
(STPIITM,
v,
STDIDBP)) ,
POINTER=(TWINBWD,
LTWINBWD) ,
RULES=(PPV)

PHYSICAL PARENT IS CUSTOMER ORD X
LOGICAL PARENT IS ITEM INFORMAT X
REQUIRED FOR IMS/VS UPWARD COMP X
LOG. PARENT IS IN INV. DATA BASE X
BOTH PHYS. TWIN FWD AND BWD X
BOTH LOGICAL TWIN FWD AND BWD X
LOGICAL RELATIONSHIP RULES

I. STCCITM is now a logical child. A few points regarding its layout need to be made:

BYTES=38 still applies

The first 6 bytes are the concatenated key of the logical parent, STPIITM, in the Inventory data base. The remaining 32 bytes are the
intersection data; data belonging to the order item to inventory item specific relationship. The key to this segment, STQCILI, is the first
two bytes of this intersection data.

The concatenated key mentioned above is not stored on disk but will be in the application I/O area as the first 6 bytes in this case.

If this logical relationship had not been planned for earlier, the bytes parameter might have had to be changed and the segment laid out
differently.

2. RULES for STCCITM - The Real Logical Child

P for Insert
Do not add child unless logical parent exists. Item must exist in Inventory data base if this line item is to be added to this order. The
INVENTORY ITEM segment itself remains unchanged

P for Delete
Do not physically delete this line item unless its association with the Inventory data base is logically deleted and then only allow deletion
through the physical path.

V for Replacement
When replacing the logical child/Inventory Item concatenated segment in a logical DBD, the INVENTORY ITEM segment will be
replaced if altered.

3. Rules for STPCORD

P for Insert
When adding virtual logical segments to the Inventory logical data base, I do not want the child added if the order does not exist. If the
CUSTOMER ORDER segment does exist, I want the child added but I do not want the CUSTOMER ORDER segment modified.

P for Delete
When deleting the CUSTOMER ORDER segment I want to ensure that no more items are pointing to this order before allowing deletion.
The only allowable path for deletion will be physical.

V for Replace
When replacing the virtual logical child/CUSTOMER ORDER concatenated segment in a logical data base, the CUSTOMER ORDER
segment will be replaced if altered.

Figure 3- 10. Phase 2 Physical DBDs (Part 3 ofJ)

Chapter 3: Data Base Implementation 3 - 29

Coding a Logical DBD

OBO Statement:

OAT ASET statement

SEGM Statements:

A logical DBD, based on existing physical DBDS, defines a new view oflogically
related data bases. This view is always a hierarchical data structure. The control
statements and their format are:

IDBD INAME=dbdname1,ACCESS=LOGICAL

NAME=
dbdnamel

specifies the name of this logical DBD. It must be unique in your installation.

ACCESS=
LOGICAL

defines this DBD as a logical DBD

I DATASET I LOGICAL

This statement is optional for logical DBDS.

The segments in a logical DBD must be coded in hierarchical sequence following
the rules for defming logical data bases as presented earlier in this chapter.

SEGM

NAME=
seg-namel

NAME=seg-name1

{O }
[,PARENT={seg-name2}]

,SOURCE=«seg-name3,D,db-name1)
[,(seg-name4,~,db-name2)])

specifies the name of this segment.

PARENT=
seg-name2

specifies the name of the parent of this segment. seg-name2 must be defined
previously in this DBD. This parameter may be omitted for the root segment.

SOURCE=
«seg-name3,D,db-name I)[,(seg-name4,D,db-name2)])
specifies the source(s) of the defined segment. The long form is applicable
only to concatenated segments.

N onconcatenated segments:
seg-name3 defines the source segment. The source segment must be
defined in a physical DBD whose name is db-name 1.

Concatenated segments:
• seg-name3 defines the logical child as defined in the physical DBD. If

the preceding parent segment is the physical parent or physical child of
the logical child, then the name of the logical child must be coded. If
the preceding parent is the logical parent, then the name of the virtual
child must be coded.

• db-name I defmes the physical DBD in which seg-name3 is defmed .

• seg-name4 defmes the destination parent.

3 - 30 DL/I DOS/VS Guide For New Users

• db-name2 defines the physical DBD name of the destination parent.

DDDGEN, FINISH, and END Statements

Example of Logical DDDs

CUSTOMER
LOCATION
(STSCLOC)

CUSTOMER
ORDER
(STPCORD)

ORDER INVENTORY
ITEM ITEM

(STLCITM)

ITEM
LOCATION
(STSILOC)

These should be coded as before.

Note that no LCHILD or FIELD statements are allowed in a logical DBD.

Figure 3-11 shows the logical DBD for the phase 2 Customer data base.

CUSTOMER
NAME/ADDRESS
(STSCCST)

CREDIT
STATUS
(STSCSTA)

I
CUSTOMER
HISTORY
(STSCHIS)

Figure 3-11. Phase 2 Logical DBD for the Customer Data Base (Part I of 2)

Chapter 3: Data Base Implementation 3 - 31

PRINT NOGEN NO MACRO EXPANSION PRINTING
DBD X

NAME=STDCDBL, LOGICAL DBD NAME X

~ ACCESS=LOGICAL REQUIRED
DATASET X

LOGICAL OPTIONAL
SEGM X

NAME=STSCCST, SEGMENT NAME CUST NAME/ADDR X
PARENT=O, IT IS A ROOT SEGMENT X
SOURCE=«STSCCST, IT IS THIS SEGMENT CUST N/A X
, UPWARD COMPAT WITH IMS/VS X
STDCDBP)) FOUND IN THE CUSTOMER DATA BASE

SEGM X
NAME=STSCLOC, SEGMENT NAME CUSTOMER LOCATION X
PARENT=STSCCST, PARENT IS CUST. NAME/ADDR SEGM X
SOURCE=«STSCLOC, IT IS THIS SEGMENT CUST LOCATN X
, UPWARD COMPAT WITH IMS/VS X
STDCDBP)) FOUND IN THE CUSTOMER DATA BASE

SEGM X
NAME=STPCORD, SEGMENT NAME CUSTOMER ORDER X
PARENT=STSCLOC, PARENT IS CUST. LOCATION SEGM X
SOURCE=«STPCORD, IT IS THIS SEGMENT CUST. ORDER X
, UPWARD COMPAT WITH IMS/VS X
STDCDBP)) FOUND IN THE CUSTOMER DATA BASE

SEGM X
NAME=STLCITM, SEGMENT NAME LINE ITEM CONCAT. X
PARENT=STPCORD, PARENT IS CUSTOMER ORDER SEGM X
SOURCE=«STCCITM, PARTIALLY THE ORDER ITEM SEGM X
, UPWARD COMPAT WITH IMS/VS X
STDCDBP) , FOUND IN CUSTOMER DATA BASE X
(STPIITM, THE REST IS INVENTORY ITEM SEGM X
, UPWARD COM PAT WITH IMS/VS X
STDIDBP)) FOUND IN INVENTORY DATA BASE

SEGM X
NAME=STSILOC, SEGMENT NAME INVENTORY LOCATION X
PARENT=STLCITM, PARENT IS ORD. ITEM CONCAT.SEGM X
SOURCE=«STSILOC, IT IS THIS SEG INVENTORY LOCN X
, UPWARD COM PAT WITH IMS/VS X
STDIDBP)) FOUND IN INVENTORY DATA BASE

SEGM X
NAME=STSCSTA, SEGMENT NAME CREDIT STATUS X
PARENT=STSCCST, PARENT IS CUST. NAME/ADDR SEGM X
SOURCE=«STSCSTA, IT IS THIS SEGMENT CREDIT STAT X
, UPWARD COMPAT WITH IMS/VS X
STDCDBP)) FOUND IN THE CUSTOMER DATA BASE

SEGM X
NAME=STSCHIS, SEGMENT NAME CUSTOMER HISTORY X
PARENT=STSCCST, PARENT IS CUST. NAME/ADDR SEGM X
SOURCE=«STSCHIS, IT IS THIS SEGM CUST. HISTORY X
, UPWARD COM PAT WITH IMS/VS X
STDCDBP)) FOUND IN THE CUSTOMER DATA BASE
DBDGEN REQUIRED TO MARK DBD END
FINISH FOR SOURCE COMPAT WITH IMS/VS
END

Figure 3-11. Phase 2 Logical DBD for the Customer Data Base (Part 20f2)

3 - 32 DL/I DOS/VS Guide For New Users

ORDER CUSTOMER
ITEM ORDER

(STLICOR)

CUSTOMER
LOCATION
(STSCLOC)

CUSTOMER
NAME/ADDRESS
(STSCCST)

Figure 3-12 shows the logical DBD for the phase 2 Inventory data base.

I
VENDOR
(STSIVND)

INVENTORY
ITEM
(STPIITM)

I

SUBSTITUTE INVENTORY
ITEM ITEM

(STLISUB)

I
SUBSTITUTE
VENDOR
INFORMATION
(STSISVD)

I
SUBSTITUTE
ITEM LOCATION
INFORMATION
(STSISLC)

I
ITEM
LOCATION
(STSILOC)

Figure 3-12. Phase 2 Logical DBD for the Inventory Data Base (Part lof2)

Chapter 3: Data Base Implementation 3 - 33

PRINT NOGEN
DBD

NAME=STDIDBL,
ACCESS=LOGICAL

DATASET

SEGM

SEGM

SEGM

SEGM

SEGM

SEGM

SEGM

SEGM

SEGM

LOGICAL

NAME=STPIITM,
PARENT=O,
SOURCE=«STPIITM,
,
STDIDBP))

NAME=STLICOR,
PARENT=STPIITM,
SOURCE=«STVICOR,
,
STDIDBP) ,
(STPCORD,
,
STDCDBP))

NAME=STSCLOC,
PARENT=STLICOR,
SOURCE=«STSCLOC,
,
STDCDBP))

NAME=STSCCST,
PARENT=STSCLOC,
SOURCE=«STSCCST,
,
STDCDBP))

NAME=STSIVND,
PARENT=STPIITM,
SOURCE=«STSIVND,
,
STDIDBP))

NAME=STLISUB,
PARENT=STPIITM,
SOURCE=«STCISUB,
,
STDIDBP) ,
(STPIITM,

STDIDBP))

NAME=STSISVD,
PARENT=STLISUB,
SOURCE=«STSIVND,
,
STDIDBP))

NAME=STSISLC,
PARENT=STLISUB,
SOURCE=«STSILOC,
,
STDIDBP))

NAME=STSILOC,
PARENT=STPIITM,
SOURCE=«STSILOC,
,
STDIDBP))

DBDGEN
FINISH
END

NO MACRO EXPANSION PRINTING

LOGICAL DBD NAME
REQUIRED

OPTIONAL

SEGMENT NAME INVENTROY ITEM
IT IS A ROOT SEGMENT
IT IS THIS SEGMENT INV. ITEM
UPWARD COM PAT WITH IMS/VS
FOUND IN INVENTORY DATA BASE

X
X

X

x
X
X
X
X

X
SEGMENT NAME ORDER CONCATENATED X
PARENT IS INVENTORY ITEM SEGM X
PARTIALLY THE VIRT.LOG.SEGM X
UPWARD COMPAT WITH IMS/VS X
FOUND IN INVENTORY DATA BASE X
THE REST THE ORDER SEGMENT X
UPWARD COM PAT WITH IMS/VS X
FOUND IN THE CUSTOMER DATA BASE

X
SEGMENT NAME CUSTOMER LOCATION X
PARENT IS ORDER SEGM CONCAT X
IT IS THIS SEGM CUST. LOCATION X
UPWARD COMPAT WITH IMS/VS X
FOUND IN THE CUSTOMER DATA BASE

X
SEGMENT NAME CUST. NAME/ADDR X
PARENT IS CUSTOMER LOCATION X
IT IS THE CUSTOMER NAME/ADDR X
UPWARD COMPAT WITH IMS/VS X
FOUND IN THE CUSTOMER DATA BASE

X
AUTHORIZED VENDOR INFORMATION X
PARENT IS INVENTORY ITEM SEGM. X
IT IS THE VENDOR SEGMENT X
UPWARD COMPAT WITH IMS/VS X
FOUND IN INVENTORY DATA BASE

X
SEGMENT NAME ITEM SUBS. CONCA X
PARENT IS INVENTORY ITEM SEGM X
PARTIALLY THE ITEM SUB SEGM X
UPWARD COM PAT WITH IMS/VS X
FOUND IN INVENTORY DATA BASE X
THE REST IS INVENTORY ITEM SEGM X
UPWARD COM PAT WITH IMS/VS X
FOUND IN INVENTORY DATA BASE

X
SUBSTITUTE VENDOR INFORMATION X
PARENT IS SUBSTITUTE ITEM SEGM. X
IT IS THE VENDOR SEGMENT X
UPWARD COMPAT WITH IMS/VS X
FOUND IN INVENTORY DATA BASE

X
SUBSTITUTE INVENTORY LOCATION X
PARENT IS SUBSTITUTE ITEM SEGM. X
IT IS THE INVENTORY LOCAT. SEGM X
UPWARD COMPAT WITH IMS/VS X
FOUND IN INVENTORY DATA BASE

X
SEGMENT NAME INVENTORY LOCATION X
PARENT IS INVENTORY ITEM SEGM X
IT IS THE INVENTORY LOCAT. SEGM X
UPWARD COMPAT WITH IMS/VS X
FOUND IN INVENTORY DATA BASE
REQUIRED TO MARK DBD END
FOR SOURCE COMPAT WITH IMS/VS

Figure 3-12. Phase 2 Logical DBD for the Inventory Data Base (Part 20f2)

3 . 34 DL/I DOS/VS Guide For New Users

DBDGENS for Secondary Indexes
To support the secondary index function, the DBDGEN process is extended. We
differentiate between the index target segment DBD and the index pointer DBD.

Coding an Index Target Data Base
The control statements extended for the secondary index function are:

FIELD
LCHILD

A new control statement is added:

XDFLD

The following control statements are unchanged:
DBD
DATASET
SEGM
DBDGEN
FINISH
END

Coding the Index Target Segment

SEGM Statement

LCHILD Statement

(See Figure 3-13.)

SEGM
is a standard SEGM statement for the root segment. It has no additional
parameter for secondary indexes. It is recognized as an index target segment
because of the following LCHILD and XDFLD statements. It cannot be a
logical child or a dependent of a logical child segment.

LCHILD NAME=(seg-name1,db-name),POINTER=INDX

LCHILD
This statement provides the link to the index data base.

NAME=(seg-namel,db-name)
seg-name 1 is the name of the index pointer segment as defmed in the INDEX

data base.

db-name specifies the name of the HDAM or HIDAM data base that contains
the index pointer segment.

PTR=INDX
identifies the LCHILD statement as an index type.

NAME ~ ...

• • •
NAME~ ...

Figure 3-13. DBD Statements for Index Target Segment

Chapter 3: Data Base Implementation 3 - 35

XDFLD Statement

Note: There are three types of LCHILD statements. One for the primary index of a HIDAM data base.
One for the definition of a logical child under its logical parent, and one for the defmition ofthe index
target segment. All three types could occur below the root segment of a HIDAM data base. There
could be multiple occurrences of LCHILD statements for both logical relationships and secondary
indexes.

XDFLD NAME=xdfld-name
[,SEGMENT=iss-name]

,SRCH=list1
[,SUBSEQ=list2]
[DDATA=list3]

The following keywords can be used to sup-
press creation of an index entry. A sec-
ondary index does not necessarily have to
contain an entry for every index source
segment occurrence. These keywords are not
used in the sample program documented in
this manual and will not be discussed fur-
ther. See ' 'Suppress Creation of an Index
Entry' , in the Utilities and Guide for the
System Programmer if you need this func-
tion.

[,NULLVAL=value1]
[, EXTRTN=name 1]

XDFLD
This statement dermes the index source fields; the fields used for the second­
ary index access. It dermes the source data for the index search field in the
INDEX data base.

NAME=xdfld-name
specifies the name of the secondary index field. xdfld-name is a normal field
name which can be used in the SSA for the call which requests secondary
index access. It must be unique among all field names specified for the above
index target segment.

SEGMENT=iss-name
specifies the index source segment for this secondary index relationship.
iss-name must be the name of a subsequently dermed segment type, which is
hierarchically below the index target segment type or it can be the name of
the index target segment itself. The segment name specified must not be a
logical child segment. If this operand is omitted, the index segment type is
assumed to be the index source segment.

SRCH=listl
specifies which field or fields of the index source segment are to be used as
the search field of a secondary index. list I must be a list of one to five field
names defined in the index source segment type by FIELD statements. If two
or more names are included, they must be separated by commas and enclosed
in parentheses. The sequence of names in the list is the sequence in which the
field values will be concatenated in the index pointer segment search field.
The sum of the lengths of the participating fields forms the length of this
XDFLD as used in SSAS.

3 - 36 DLjl DOSjVS Guide For New Users

L

SUBSEQ=list21 DO AT A=list3
Either keyword must be coded if duplicate index pointer segments would
occur. SUB SEQ and DDATA specify which, if any, fields of the index source
segment are to be regarded as duplicated data in the index data base. Dupli­
cated data consists of system-maintained fields of data copied from the
indexed data base. The parameters list2 and list3 may each be a list of up to
five field names defmed by appropriate FIELD statements for the index source
segment.

Names of system-related fields, as defmed in the FIELD statement for the index
source segment are allowed.

If two or more names are specified in one list, they must be separated by com­
mas and enclosed in parentheses.

To the application program, SUB SEQ and DDATA have no significance because
only the indexed field(s) specified in the SRCH operand is referenced in the segment
search arguments. The duplicated data is access able only if the index is processed
as a data base itself.

The difference between the SUBSEQ and the DDAT A keywords is as follows:

SUB SEQ

Duplicated data described by the SUBSEQ operand is appended in the se­
quence specified by list2 as a subsequence to the field(s) specified in the SRCH

operand. The implicit length of all specified SRCH plus SUBSEQ fields must be
equal to the length of the key sequence field specified for the index pointer
segment, which cannot exceed 236 bytes.

The purpose of the SUBSEQ operand is to allow an internal expansion of the
key of an index entry. This may eliminate the possibility of duplicate key
values, since neither DL/I nor VSAM supports access to an indexed data base
through nonunique keys.

When SUBSEQ specifies a system-related field as /CKn, the defmed portion of
the concatenated key of the index source segment is appended to the SRCH

field(s). If the system-related field is specified as /SXn, the 4-byte VSAM RBA

of the index source segment is appended. The concatenation of SRCH and
SUB SEQ fields defme the key of the index pointer segment.

DDATA

Duplicated data described by the DDAT A operand is placed into the data
portion (behind the specified key sequence field) of the index pointer segment
in the sequence specified by list3. /CKn system-related field names can be
specified in list3, but not /sXn names. /CKname must be the same as coded in
the corresponding FIELD statement of the index source segment. (See next
section: "Coding the Index Source Segment".)

Coding the Index Source Segment

SEGM Statement:

(See Figure 3-14.)

SEGM

This is a standard SEGM statement with no additional parameters. It is
recognized as an index source segment because it is defined in a preceding
XDFLD statement under the index target segment. It must not be a logical
child.

Chapter 3: Data aase Implementation 3 - 37

Field Statement

NAMEJ/CKname ... t
1/SXname •.. ~

SEGM NAME= ...

Figure 3-14. DBD Statements for Index Source Segment

In addition to the normal FIELD statements for the segment the FIELD statement
may be used, in the defmition of an index source segment, to force uniqueness of
the secondary index entries. In this case, the FIELD statement is used to defme a
system-related field, which can be referred to by the SUBSEQ operand of the
corresponding XDFLD statement for the index target segment. This field is then
appended to the key of the index entry, thus making it unique.

A system related field may be part of the source segment's concatenated key, or
its VSAM RBA (relative byte address).

• For referring to the concatenated key, the format of the FIELD statement is:

FIELD NAME=/CKname
,BYTES=bytes
,START=pos

NAME=/CKname
specifies the name of the system-related field consisting of all or a portion of
the concatenated key of the index source segment described by the preceding
SEGM statement and name is to be replaced by 1 to 5 alphameric characters
thus permitting unique identification of the field. More than one /CKname
field can be specified for one index source segment. They may be nonconti­
guous or overlap each other.

BYTES=
specifies the number of bytes of the concatenated key, or a portion ofit, and
must be a numeric value that does not exceed the length of the segment's
concatenated key.

START=
specifies the start position of this portion relative to the beginning of the
concatenated key, the first byte of which is considered to have position 1. It
must be a numeric term whose value does not exceed the length of the conca­
tenated key plus 1, minus the value specified in the BYTES operand.

For example, consider the concatenated key shown in Figure 3-15.

If the uniqueness of the secondary index key has to be achieved by bytes 2-8 of the
root key, byte 1 of the second key, and bytes 5-6 of the fourth key, the FIELD

statements specifying this are as follows:

FIELD NAME
FIELD NAME
FIELD NAME

/CK1,BYTES=7,START=2
/CK2,BYTES=1,START=11
/CK3,BYTES=2,START=25

3 - 38 DL/I DOS/VS Guide For New Users

11

KEY 1 KEY 2 KEY 3 KEY4

1 1 2

I ~ I 1 1 I 1 1 1 I 11 I 141 \1 I

I I I I
I /CK1 1 /CK2 I/CK3 I L ______ J LJ L-_J

Figure 3-15. Concatenated Keys

/CK system related fields may also be used in the DDATA operand of the XDFLD
statement.

• Referring to the index source segment's VSAM RBA, the FIELD statement has
the following format:

IFIELD INAME=/sxname

/SXname
specifies the name of the system-related field consisting of the 4-byte VSAM
RBA of the index source segment described by the preceding SEGM statement,
and name is to be replaced by 1 to 5 alphameric characters. Only one
/sxname field can be specified for one index source segment.

Coding A Secondary Index DBD

OBO Statement

The following statements are used in a secondary index DBD:

DBD
DATASET
SEGM
LCHILD
FIELD
DBDGEN
FINISH
END

NAME=dbname 1

INAME=dbnamel
,ACCESS=INDEX

specifies the name of the secondary index data base.

ACCESS=INDEX
INDEX specifies this as an index data base.

Chapter 3: Data Base Implementation 3 - 39

DAT ASET Statement

SEGM Statement

LCHILD Statement

I DATASET !DD1=ddnamel
,DEVICE=dev~ce

The values specified for the DDI and DEVICE parameters are exactly the same as
discussed under "BASIC DBDGEN".

INAME=segname,
, BYTES=bytes

Only one SEGM statement with its associated LCHILD and FIELD statements is
required for the secondary index data base.

NAME=segname 1
specifies the name of the segment being defined. It should be unique among
the segment names in your installation.

BYTES=bytes
specifies the length of the data portion of the index pointer segment. If a
/sxname field is defmed in the SUBSEQ parameter of the corresponding
XDFLD statement, then its 4 bytes length must be included here.

LCHILD NAME=(segnamel,dbname)
,PTR=SNGL
,INDEX=fldname

NAME=(segnamel,dbname)
specifies the segment name of the index target segment and the name of the
DBD in which it is defined.

PTR=SNGL
specifies that a 4-byte direct byte address pointer in the prefix of the index
pointer segment will be used. It will point to the index target segment.

INDEX=fldname
specifies the fieldname of the indexed field. This fldname must be specified
as the name of an XDFLD below the index target segment.

3·40 DL/I DOS/VS Guide For New Users

FIELD Statement

L

FIELD NAME=(fldname1,SEQ,U)
,BYTES=bytes

,START=1

,TYPE=n

N AME=(fldname 1 ,sEQ, U)
fldname 1 is the name of this field. It should be specified following the rules
of other fieldnames. SEQ.V defines this as the sequence field and must be
specified.

BYTES=bytes
specifies the length of the field. This is the length of the search field as
defmed in the XDFLD statement, plus four if the /SX field is included. It also
is the length of the key for the KSDS.

START=l
specifies the starting position ofthe field being defmed in terms of bytes
relative to the beginning of the segment.

TYPE=n
specifies alphameric data as explained in the description of the FIELD state­
ment for the basic DBDGEN.

The DBDGEN. FINISH. and END statements should be coded as before. Figure
3-16 shows the physical DBDS and the associated secondary index DBDs for the
phase 3 sample environment.

Chapter 3: Data Base Implementation 3 - 41

Physical DBD - Inventory Data Base - Phase 3

SI

ORDER
DATE/#

CUSTOMER

CUSTOMER
NAME/
ADDRESS

SI

CUSTOMER
NAME

(ISS)

SI

ITEM #

I

INVENTORY

INVENTORY
ITEM

CUSTOMER
LOCATION

CREDIT
STATUS

CUSTOMER
HISTORY

ORDER
ITEM

VENDOR SUBSTITUTE
ITEM

(VLC)

CUSTOMER
ORDER

(ISS)

ORDER
ITEM

(LC)

* IN THIS SECTION WE WILL REPEAT THE PHASE 2
* DBD STATEMENTS AS WELL AS INCLUDE THE REQUIRED
* SECONDARY INDEX ENTRIES (ITEM NUMBER WILL BE INDEX)
* NO COMMENTS WILL APPEAR EXCEPT FOR THE NEW ENTRIES

PRINT NOGEN
DBD NAME=STDIDBP,ACCESS=HDAM,RMNAME=(DLZHDC30,3,100,400)
DATASET DD1=STDIDBC,DEVICE=3340,BLOCK=(2048),SCAN=2
SEGM NAME=STPIITM,PARENT=O,BYTES=56,POINTER=TWIN,RULES={PPV)
FIELD NAME={STQIINO,SEQ,U) ,BYTES=6,START=1 ,TYPE=C

* THE FOLLOWING LCHILD AND XDFLD MACROS ARE FOR THE SECONDARY INDEX
LCHILD X

POINTER=INDX, SECONDARY INDEX X
NAME={STIININ, SEGMENT NAME IN INDEX DBD X
STDIX1P) DBD NAME OF INDEX DBD

XDFLD X
NAME=STXININ, INDEXED FIELD NAME X
SEGMENT=STPIITM, SOURCE SEGMENT OF INDEX X
SRCH=STQIINO INDEXED DATA WITHIN SOURCE SEGM

* THERE ARE NO FURTHER CHANGES IN THIS DBD FOR THE SECONDARY INDEX
LCHILD POINTER=DBLE,NAME=(STCCITM,STDCDBP),PAIR=STVICOR, X

RULES=LAST
LCHILD POINTER=NONE,NAME={STCISUB,STDIDBP)
FIELD NAME=STFIIDS,BYTES=25,TYPE=C ITEM DESCRIPTION
FIELD NAME=STFIIQH,BYTES=6,TYPE=C QUANTITY ON HAND
FIELD NAME=STFIIQO,BYTES=6,TYPE=C QUANTITY ON ORDER
FIELD NAME=STFIIQR,BYTES=6,TYPE=C QUANTITY ON RESERVE
FIELD NAME=STFIIPR,BYTES=6,TYPE=C COST PER ITEM
FIELD NAME=STFIIUN,BYTES=l , TYPE=C UNIT OF ISSUE

Figure 3-16. Phase 3 Physical DBDs (Part I of 4)

3 - 42 DL/I DOS/VS Guide For New Users

(LC)

ITEM
LOCATION

SEGM

SEGM

SEGM

SEGM
FIELD
DBDGEN
FINISH
END

NAME=STVICOR,PARENT=STPIITM,POINTER=PAIRED,
SOURCE=((STCCITM,D,STDCDBP))
NAME=STSIVND,PARENT=STPIITM,BYTES=110,
POINTER=TWIN
NAME=STCISUB,
PARENT=((STPIITM,SNGL) , (STPIITM,V,STDIDBP)),BYTES=6,
POINTER=TWINBWD,RULES=(PPV,HERE)
NAME=STSILOC,PARENT=STPIITM,BYTES=12,POINTER=TWINBWD
NAME=(STQILNO,SEQ,U) ,BYTES=6,START=1 ,TYPE=C

Physical DBD - Customer Data Base - Phase 3

* IN THIS SECTION WE WILL REPEAT THE PHASE 1
* AND PHASE 2 DBD STATEMENTS AS WELL AS INCLUDE
* THE REQUIRED SECONDARY INDEX ENTRIES (DATE 6 ORDER# WILL BE INDEX)
* NO COMMENTS WILL APPEAR EXCEPT FOR THE NEW ENTRIES

* THE

PRINT NOGEN
DBD NAME=STDCDBP,ACCESS=HDAM,RMNAME=(DLZHDC10,3,100,600)
DATASET DD1=STDCDBD,DEVICE=3340,BLOCK=(2048) ,SCAN=2
SEGM NAME=STSCCST,PARENT=O,BYTES=110,POINTER=TWIN
FIELD NAME=(STQCCNO,SEQ,U) ,BYTES=6,START=1 ,TYPE=C
FIELD

NAME=STUCCNM,
BYTES=25,
START=7,
TYPE=C

INDEX SOURCE SEG SEARCH FLO
FIELD LENGTH
WHERE IT STARTS IN SEGMENT
ALPHAMERIC DATA

FOLLOWING LCHILD AND XDFLD MACROS ARE FOR THE SECONDARY INDEXES
LCHILD

XDFLD

FIELD

POINTER=INDX,
NAME=(STICMNA,
STDCXIP)

NAME=STXCMNA,
SEGMENT=STSCCST,
SRCH=STUCCNM,
SUBSEQ=/CKSCCST

NAME=/CKSCCST,
BYTES=6,
START=l

LCHILD

XDFLD

POINTER=INDX,
NAME=(STIRCRDN,
STDCX2P)

SECONDARY INDEX
SEGMENT NAME IN INDEX DBD
DBD NAME OF INDEX DBD

INDEXED FIELD NAME
SOURCE SEGMENT OF INDEX
INDEXED DATA WITHIN SOURCE
INDEX SUBSEQUENCE FIELD

CONCATENATED KEY
FIELD LENGTH
WHERE IT STARTS IN SEGMENT

SECONDARY INDEX
SEGMENT NAME IN INDEX DBD
DBD NAME OF INDEX DBD

SEGM

X

X
X

x
X
X
X

X
X
X

X
X
X
X
X
X
X
X

X
X
X

X
NAME=STXCRDN, INDEXED FIELD NAME X
SEGMENT=STPCORD, SOURCE SEGMENT OF INDEX X
SRCH=STQCODN, INDEXED DATA WITHIN SOURCE SEGM X

SEGM
FIELD
SEGM

DDATA=/CKPCORD FIELD NAME OF CONCATENATED KEY
NAME=STSCLOC,PARENT=STSCCST,BYTES=106,POINTER=TWINBWD
NAME=(STQCLNO,SEQ,U) ,BYTES=6,START=1 ,TYPE=C
NAME=STPCORD,PARENT=STSCLOC,BYTES=51,POINTER=TWINBWD,
RULES=(PPV)

FIELD NAME=(STQCODN,SEQ,U),BYTES=12,START=1 ,TYPE=C
* THE FOLLOWING FIELD MACRO IS FOR THE DUPLICATE DATA
* FIELD THAT WILL BE CARRIED IN THE SECONDARY INDEX
* DATA BASE. IT DEFINES THE FIRST 12 BYTES OF THE ORDER
* SEGMENT FULLY CONCATENATED KEY. THE FIRST 6 BYTES ARE
* CUSTOMER NUMBER (STQCCNO) AND NEXT 6 ARE LOCATION
* NUMBER (STQCLNO). HAVING THIS DATA CARRIED IN SECONDARY
* INDEX WILL ALLOW US TO HAVE CUSTOMER AND LOCATION
* AVAILABLE TO US WHEN PROCESSING THE SECONDARY INDEX
* BY ITSELF. ALSO DL/I AUTOMATICALLY MAINTAINS THIS
* DATA WHEN PROCESSING THE CUSTOMER DATA BASE.

Figure 3-16. Phase 3 Physical DBDs (Part 2 of 4)

X

Chapter 3: Data Base Implementation 3 - 43

FIELD
NAME=jCKPCORD, MUST START WITH jCK
BYTES=12, LENGTH DESIRED
START=l STARTING AT THIS POSITION

* THERE ARE NO FURTHER CHANGES IN THIS DBD FOR THE SECONDARY INDEX
SEGM NAME=STCCITM,PARENT=«STPCORD) ,(STPIITM,V,STDIDBP)),

BYTES=38,POINTER=(TWINBWD) ,RULES=(PPV)
* THE FOLLOWING FIELDS ARE DEFINED TO SHOW AN EXAMPLE OF FIELD LEVEL
* SENSITIVITY. NOTE THAT IT IS NOT REQUIRED FOR THE SEQUENCE FIELD
* TO BE DEFINED FIRST AND IF THE START PARAMETER IS NOT CODED THE FIELD
* IS ASSUMED CONTIGUOUS TO THE PRECEEDING FIELD. SEE PSB'S STBCUSR
* AND STBCUSU FOR AN EXAMPLE OF HOW THE FIELDS ARE SELECTED BY THE
* APPLICATION PROGRAM.

x
X
X

X

FIELD NAME=STKCIIN, INVENTORY ITEM NUMBER X
BYTES=6, FIELD LENGTH X
TYPE=C ALPHAMERIC DATA

FIELD X
NAME=(STQCILI,SEQ,U) ,
BYTES=2,
START=7,
TYPE=C

UNIQUE KEY FIELD (LINE #)
FIELD LENGTH
WHERE IT STARTS IN SEGMENT
ALPHAMERIC DATA

X
X
X

FIELD NAME=STFCIQO,BYTES=6,TYPE=C QUANTITY ORDERED
FIELD NAME=STFCIQS,BYTES=6,TYPE=C QUANTITY SHIPPED
FIELD NAME=STFCIQB,BYTES=6,TYPE=C QUANTITY BACK ORDERED
FIELD NAME=STFCIAM,BYTES=12,TYPE=C ITEM AMOUNT
SEGM NAME=STSCSTA,PARENT=STSCCST,BYTES=24,POINTER=TWIN X

RULES= (, FIRST)
SEGM NAME=STSCHIS,PARENT=STSCCST,BYTES=(130,53), X

POINTER=TWINBWD,COMPRTN=DLZSAMCP
FIELD NAME=(STQCHDN,SEQ,U) ,BYTES=12,START=3,TYPE=C
DBDGEN
FINISH
END

Secondary Index DBD - Inventory Item #

PRINT NOGEN
DBD

NAME=STDIX1P,
ACCESS=INDEX

DATASET
DD1=STDIX1C,
DEVICE=3340

SEGM
NAME=STIININ,
PARENT=O
BYTES=6

LCHILD
NAME=(STPIITM,
STDIDBP) ,
INDEX=STXININ,
POINTER=SNGL

FIELD

DBDGEN
FINISH
END

NAME=(STYIINO,SEQ,U) ,
BYTES=6,
START=l,
TYPE=C

Figure 3-16. Phase 3 Physical DBDs (Part 3 of 4)

3 - 44 DL/I DOS/VS Guide For New Users

NO MACRO EXPANSION PRINTING

DATA BASE DESCRIPTION NAME
THIS IS AN INDEX

DLBL FILE NAME
DISK DEVICE

X
X

X
X

X
SEGMENT NAME OF THE INDEX X
IT IS A ROOT SEGMENT X
LENGTH

X
TARGET SEGMENT ITEM INFORMATION X
FOUND IN THE ITEM DATA BASE X
INDEXED FIELD NAME X
SPECIFIES THIS IS INDEX PTR SEG

X
UNIQUE KEY FIELD(ALSO THE INDX) X
FIELD LENGTH X
WHERE IN SEGMENT IT STARTS X
ALPHAMERIC DATA
TO MARK END OF DBD
FOR SOURCE COMPAT WITH IMSjVS

~

Secondary Index DBD - Customer Order #

PRINT NOGEN
DBD

NAME=STDCX2P,
ACCESS=INDEX

DATASET
DD1=STDCX2C,
DEVICE=3340

SEGM
NAME=STIRCRDN,
PARENT=O,
BYTES=24

LCHILD
NAME=(STSCCST,
STDCDBP) ,
INDEX=STXCRDN,
POINTER=SNGL

FIELD

DBDGEN
FINISH
END

NAME=(STYCRDS,SEQ,U) ,
BYTES=12,
START=l,
TYPE=C

Secondary Index DBD - Customer Name

PRINT NOGEN
DBD

NAME=STDCX1P,
ACCESS=INDEX

DATASET
DD1=STDCX1C,
DEVICE=3340

SEGM
NAME=STICMNA,
PARENT=O,
BYTES=31

LCHILD
NAME=(STSCCST,
STDCDBP) ,
INDEX=STXCMNA,
POINTER=SNGL

FIELD
NAME=(STYCMNS,SEQ,U) ,

DBDGEN
FINISH
END

BYTES=31 ,
START=l,
TYPE=C

Figure 3-16. Phase 3 Physical DBDs (Part 4 of 4)

NO MACRO EXPANSION PRINTING

DATA BASE DESCRIPTION NAME
THIS IS AN INDEX

DLBL FILE NAME
DISK DEVICE

X
X

X
X

X
SEGMENT NAME OF INDEX X
IT IS A ROOT SEGMENT X
LENGTH INCL. INDEX & DUP DATA

X
TARGET SEGMENT CUST. NAME/ADDR X
FOUND IN THE CUSTOMER DATA BASE X
INDEXED FIELD NAME X
SPECIFIES THIS IS INDEX PTR SEG

X
UNIQUE KEY FIELD(ALSO THE INDX) X
FIELD LENGTH X
WHERE IN SEGMENT IT STARTS X
ALPHAMERIC DATA
TO MARK END OF DBD
FOR SOURCE COMPAT WITH IMS/VS

NO MACRO EXPANSION PRINTING

DATA BASE DESCRIPTION NAME
THIS IS AN INDEX

DLBL FILE NAME
DISK DEVICE

x
x

X
X

X
SEGMENT NAME OF THE INDEX X
IT IS A ROOT SEGMENT X
LENGTH INCL. INDEX & DUP DATA

X
TARGET SEGMENT CUST. NAME/ADDR X
FOUND IN THE CUSTOMER DATA BASE X
INDEXED FIELD NAME X
SPECIFIES THIS IS INDEX PTR SEG

X
UNIQUE KEY FIELD X
(ALSO THE INDX)
FIELD LENGTH X
WHERE IN SEGMENT IT STARTS X
ALPHAMERIC DATA
TO MARK END OF DBD
FOR SOURCE COMPAT WITH IMS/VS

Program Specification Block Generation (PSBGEN)
For each program which uses a DL/I data base, a program specification block (PSB)

is needed. Although one PSB can serve different batch application programs, it is
recommended, for integrity purposes, that each program have its own PSB. Each
PSB consists of one or more program communication blocks (PCBS), one for each
data base the program uses.

PSB generation is the execution of DL/I supplied macro instructions to define an
application program's use of one or more data bases. The DL/I user creates control
statements that are presented to the PSB generation procedure as a normal DOS/VS

assembly job. The DL/I macro instructions used for PSB generation exist in a
DOS/VS source statement library. The result of the PSB generation is the creation of

Chapter 3: Data Base Implementation 3 • 45

/ PSB
GENERATION
CONTROL
STATEMENTS

a PSB CSECT. The generated PSB is link-edited into a OOS/VS core image library (see
Figure 3-17). The PSB is used as input to the application control blocks creation
and maintenance utility to build other OL/I blocks for use at execution time.

Figure 3-18 shows the sequence of the macro statements in the PSBGEN input
deck. The coding conventions for the PSB are exactly the same as for the OBO.

DOS/VS

PSB "'- ./
GENERATION

CORE IMAGE
LIBRARY

8

~ ./
SOURCE
STATEMENT
LIBRARY

Figure 3-17. Program Specification Block Generation (PSBGEN)

3 - 46 OL/I OOS/VS Guide For New Users

•
•

•
VIRFLD

SENFLD

PCB

Figure 3-18. PSBGEN Input Deck Structure

(END

I REQUIRED: 1

PSBGEN -
•

•
•

SENSEG

PCB

OPTIONAL

REQUIRED: ONE FOR EACH
SEGMENT IN THE DATA BASE
THIS PROGRAM ACCESSES.

REQUIRED: 1

REQUIRED: ONE
FOR EACH DATA
BASE (DBD) THIS
PROGRAM USES.

Chapter 3: Data Base Implementation 3 - 47

Basic PSB Coding

PCB Statement

Following are the basic PSB control statement formats.

This statement is coded once for each data base the program intends to use. The
format is:

PCB TYPE=OB
,0BONAME=ddname

{{ [G] [I] [R] [O]} }
,PROCOPT={{A }[P][E]}

{ L[S] }
{{GO}[P] }

,KEYLEN=value

{MULTIPLE}
[,POS={SINGLE }]

[,PROCSEQ=index-db-name]

TYPE=DB
is a required keyword parameter for all data base PCBs.

DBDNAME=
specifies the name of the DBD which is accessed via this PCB. It can be a
physical or logical DBD.

PROCOPT=
specifies the processing options on sensitive segments declared in this PCB
that may be used in an associated application program. Specifying superflu­
ous processing options is undesirable from a data base security point of view
and can result in unnecessary additional data base processing. This operand
allows a maximum of four characters. The letters in the operand have the
following meanings:

G- Get function

1- Insert function

R- Replace function

D- Delete function

Note: The above functions can be coded in any combination of three, if all four are required, code "A".

A - All, includes the above four functions.

P - Required if command code D (path call) is to be used on get type calls
or insert calls. Determines the maximum length of the I/O area. To be
used in conjunction with G, I, and A.

E - Exclusive use ofthe data base or segment. To be used in conjunction
with G, I, D, R, and A. Use this option only when you wish to override
program isolation in an MPS or online environment.

Note: PROCOPT=E is not propagated. Specifying it on the PCB statement does not force E onto the
SENSEG statements if they also specify a PROCOPT. Therefore, PROCOPT=E must be coded on any
senseg statement that requires it when any other PROCOPT is also coded.

L- Load function for data base loading (except HIDAM)

LS- Segments loaded in ascending sequence only (HID AM, HDAM). This load
option is required for HIDAM.

0- Inhibits locking (enqueuing) by program isolation during retrievals of
the same segment types in a data base. 0 can be used only in conjunc­
tion with G or GP.

3 -48 DL/I DOS/VS Guide For New Users

SENSEG Statement

See chapter 5 in this manual for a description of program isolation.
Note: Consider always coding PROCOPT=G on the PCB statement and using the SENSEG statement
to override this specification as required.

KEYLEN =value
is the value specified in bytes of the longest concatenated key for a hierarchi­
cal path of sensitive segments used by the application program in the hier­
archical data structure.

POS=
specifies whether single or multiple positioning is desired for this logical data
structure. When SINGLE or S is specified, for a PCB, DL/I maintains only one
position in that data base for that PCB. This is the position that will be used in
attempting to satisfy all subsequent GN calls. If MULTIPLE or M is specified,
DL/I maintains a unique position in each hierarchical path in the data base.
F or a detailed description of positioning, see the Application Programming
Reference Manual.

Note: Use of single or multiple positioning affects application program logic. Therefore, ensure that the
PSB and program logic match.

PROCSEQ
specifies the name of a secondary index that is used to process the data base
named in the DBDNAME operand through a secondary processing sequence.
This operand is optional. It is valid only if a secondary index exists for this
data base. If this operand is used, subsequent SENSEG statements must reflect
the secondary data structure of segment types in the indexed data base. For
example, the first SENSEG segment must name the index target segment as the
root segment. This operand is invalid if PROCOPT is L or LS.

This statement is coded once for each segment the program is sensitive to in the
DBD defined in the preceding PCB. The SENSEG statements should appear in the
same hierarchical sequence as in the DBD. However, only those segments should be
specified in the hierarchical path to any required segment. The basic format of the
SENSEG statement is:

SENSEG NAME=segnamel
[,PARENT={segname2}]

{Q }

[,PROCOPT={[G][I][R][D]}[P] [E]
{A }

NAME=
is the name of the segment type as defmed through a SEGM statement during
DBD generation. This field is from 1 to 8 alphameric characters.

PARENT=
is the name of the segment type that is the parent of the segment type whose
name is specified in the NAME operand. If this SENSEG statement defmes a
root segment type,this operand must be zero. For all dependent segment
types, this operand must specify the name of the dependent's parent.

PROCOPT=
is the processing options available for use of this sensitive segment by an
associated application program. This operand has the same meaning as the
PROCOPT operand on the PCB statement. If this PROCOPT operand is not
specified, the PCB PROCOPT operand is used as the default.

Note: PROCOPT=P does not propagate. Therefore PROCOPT=P must be coded on any
SENSEG statement that requires it. This is in addition to coding it on the PCB statement.

Chapter 3: Data Base Implementation 3 - 49

I SENFLD Statement

If there is a difference in the processing options specified on the PCB and
SENSEG statement, the SENSEG PROCOPT overrides the PCB PROCOPT. When
loading a data base, you should specify a PROCOPT in the PCB statement.

This statement follows the SENSEG statement and is coded once for each field in
the physical definition of this segment to which the application program is sensi­
tive. This enables you to restrict an application program's access to only those
fields in a segment that it needs. If the SENFLD statement is not specified, DL/I
assumes that the application program has access to the entire segment identified in
the previous SENSEG statement. This statement is part of the field level sensitivity
feature. See "Field Level Sensitivity" in Chapter 2 for details. The format of the
SENFLD statement is:

SENFLD

NAME=

NAME=fldname
[,BYTES=n]
[, START=pos]
[,TYPE=t]
[,RTNAME=prog]
[,REPLACE= ~~~Sf]

is the name of the related field defined in the physical DBD.

BYTES=
specifies the length (in bytes) of this field. If specified, it must be a numeric
value in the range of I through 256.

Rules and Restrictions

• Do not specify the BYTES parameter for field data types E, D, and L.

These data types have implicit lengths of 4,8, and 16, respectively.

• The BYTES parameter is optional for field data types Hand F. If omit­
ted, DL/I assumes a field length of2 for types Hand 4 for type F.

• The BYTES parameter is also optional for field data types x, P, C, and z.

START=

If omitted, DL/I defaults to the same field length as is in the physical
view.

specifies the starting position of this field. It can be the same starting position
previously specified for the field in the FIELD statement during DBD genera­
tion, or it can be different.

The starting position can be specified in terms of bytes relative to the begin­
ning of your new view of the segment within which this field is defined. In
this case, it must be a numeric value in the range of 1 through 32767. For the
first byte of a segment it is one. Each field must not extend beyond the
defmed segment length (START position plus BYTE value).

Subfields are permitted and can be defmed on the START parameter in one of
two ways. You can specify its starting position in bytes as previously de­
scribed (START=position), or, ifthe subfield starts at the same location as
another defmed field you can simply specify the name of that field
(sTART=name).

The START parameter can be optionally omitted. Ifit is not specified, a DL/I
feature called 'automatic defmition sequencing' places this field adjacent to
the end of the previous field, or if it is the first field in the segment, at the
beginning of the segment (START=I).

3 - 50 DL/I DOS/VS Guide For New Users

TYPE=
specifies the type of data that is to be contained in the application program's
view of this field. If you specify a data type that is different from that defmed
in the physical DBD for this field, DL/I will (in most cases) convert the data
type to that needed by the program. (See "Field Level Sensitivity" in Chap­
ter 2 for additional information.) If you do not specify this parameter, DL/I
assumes the type to be the same as specified for this field in the physical DBD.

The valid data types are:
'x' -hexadecimal data (binary)
'H' - half word binary
'F' - full word binary
'P' - packed decimal
'C' - character data
'Z' - numeric character data
'E' - floating point (short)
'X' - floating point (long)
'L' - floating point (extended)

The automatic conversions supported are:
From To

X H,F,P,orZ
H X,F,P,orZ
F X,H,P,orZ
P X,H,F,orZ
Z X,H,F,orP
C C (length conversion only)

Conversion of data types E, 0, and L is not supported.
Notes:

• Restrictions on values
- Binary (X, H, F)
Packed or zoned decimal fields to be converted to binary fields are restricted to values within the
range of 2147483647 to -2147483648. This is because numbers outside this range cannot be
contained in a four byte binary word.

- Packed and zoned decimal (P, Z)
Hardware restrictions limit the size of decimal fields to 16 characters, so the values contained in
fields to be converted must be within the range of ±9999999999999999.

• Length conversions
Numeric data types (X, H, F, P, Z) are padded with zeros on the left to extend field lengths.
Truncation also occurs from the left. Truncation of significant digits results in the field being set
to the maximum (or minimum, if negative) value, and status code 'KA' is returned.

Character fields are padded with blanks on the right to extend field lengths. Truncation also
occurs from the right. Truncation of non-blank characters results in the return of status code
'KB'. Only character field length conversion is performed if both the physical and user's view
data types are 'C'.

• Format checking
To ensure valid formats, packed and zoned decimal fields are pre-scanned prior to conversion. An
invalid format results in the setting of the converted field to the null value, and the return of status
code'KC'.

• Data type 'C'
Data contained in a field specified as type 'C' is considered to be in an "as is" format, and no
conversion is made when the related field is specified as containing data of a different type. For
instance, if a field in a physical segment is specified as type 'C' and the field in the application's
view is specified as type 'P', the data from the physical field is treated as though it is packed
decimaL Only any necessary length adjustments are made.

• Non-supported conversions
Conversions that are not listed above as being supported (such as: physical type 'Z' to user's type
'E') will pass through the ACB generation phase if, but only if, you specified a user written exit
routine for the field. Such a non-supported conversion causes a status code of 'KD' to be returned
when encountered during an access of the field.

• Conversion Errors
If not corrected (reset) by a user exit routine, an uncorrected status code results in an immediate
termination of the request. No more fields or segments are processed. No provision is made for
correction of errors by the application program. If required. conversion must be done via a user
written field exit routine. See "User Field Exit Routine" under "Field Label Sensitivity" in
Chapter 2.

Chapter 3: Data Base Implementation 3 - 51

-------------- --

I VIRFLD Statement

RTNAME=
identifies the name of the user-written field exit routine in the DOS/VS core
image library that is given control whenever this field is retrieved or stored.
See "Field Level Sensitivity" in Chapter 2 for a description of this routine.

REPLACE (or its abbreviation, REPL)
indicates whether the program using this PSB may modify this field. If you
specify NO, and an application program attempts to replace this field with a
new value, DL/I returns a status code of 'KE'.

This statement is used to defme a field in the application program's view of a
segment that does not exist in the physical segment. This statement also allows you
to specify an initial value for the virtual field and/or the name of a user-written
routine that is called to create the field as needed. See "Field Level Sensitivity" in
Chapter 2 for a complete description of virtual fields. The format of the VIRFLD

statement is:

VIRFLD

NAME=

NAME=fldname
[,BYTES=n]
[,START=pos]
[,TYPE=t]
[,VALUE=value]
[,RTNAME=prog]

specifies the name of the field.

BYTES=
specifies the length of this field in terms of bytes. BYTES is specified as a
numeric whose value does not exceed 256. You must specify this parameter
for field types X. C, Z, or P. Do not specify this parameter for field types E, D,

or L. See the 'TYPE' parameter for field types.

START=
specifies the starting position of this field in terms of bytes relative to the
beginning of the application program's view of the segment for which this
field is defmed. Start position for the first byte of the segment is I; the maxi­
mum specification is 32767.

Subfields are permitted. If a subfield starts in the same position as another
defined field, you may specify the name of that field, instead of a numeric
value, to indicate the starting position.

If you do not specify this parameter, DL/I places this field adjacent to the end
of the previous field, or if it is the first field in the segment, at the beginning
ofthe segment (START=I).

TYPE=
specifies the type of data that is to be contained in the application program's
view of this field. This parameter must be specified if the VALUE parameter is
used. The valid data types are:

'x' - hexadecimal data (binary)
'H' - half word binary
'F' - full word binary
'P' - packed decimal
'C' - character data
'Z' - numeric character data
'E' - floating point (short)
'D' - floating point (long)
'L' - floating point (extended)

3 - 52 DL/I DOS/VS Guide For New Users

PSBGEN Statement

END Statement

VALUE=
specifies an initial value for this virtual field. If the RTNAME parameter is
also used, this field is initialized before the user-written field exit routine is
called.
Notes:

• The TYPE parameter must be specified if the VALUE parameter is specified.

• If the VALUE parameter is specified for field type H, F, P, or Z, the initial value must be
numeric.

• If the number of characters supplied for VALUE is not sufficient to make up the length
specified by the BYTES parameter, the initial value will be padded:

- With binary zeros on the left for types X, H, F, and P.
- With EBCDIC zeros on the left for type Z.
- With binary zeros on the right for types E, 0, and L.
- With EBCDIC blanks on the right for type C.

RTNAME=
specifies the name of the user-written field exit routine in the DOS/VS core
image library that is given control whenever this field is retrieved or stored.
See "Field Level Sensitivity" in Chapter 2 for a description of this routine.

This statement specifies the end of the PSB and provides interface parameters for
the application program. It is the last statement before the END statement. The
basic format is:

PSBGEN {COBOL}
LANG={PL/I }

{ASSEM}
{RPG }

,PSBNAME=psbname

LANG=
specifies the language in which the application program is written. It must be
either COBOL, PL/I, ASS EM, or RPG with no trailing blanks.

PSBNAME=

Notes:

is the parameter keyword for the alphameric name of this PSB. The name
value for PSBNAME must be seven characters or less in length. However, the
(@) must not be used. See notes.

• The application control blocks creation and maintenance utility uses the output of the PSB
generation to build a PSB containing other internal control blocks based on the related DBD
characteristics. The name of this special PSB is generated by the utility program. Since this PSB
is also cataloged and link-edited into a DOS/VS core image library, care must be taken to avoid
duplicate names. The generated PSB name is eight characters in length and consists of the PSB
generation CSECT name extended to seven characters by at-signs (@), if necessary, with P as the
eighth character.

• There may be several PCB statements for data bases, but only one PSBGEN statement as input to
a PSB generation. The PSBGEN statement must immediately precede the END statement.

This statement is required at the end of the PSB deck. It indicates the end of the
assembly data.

Chapter 3: Data Due Implementation 3 - 53

Sample Basic PSBs
Figure 3-19 shows two PSBS for the Phase 1 sample environment. The first one is
the PSB for loading the Phase 1 Customer data base. The second one is an example
of a PSB for an application program to process the phase 1 Customer data base.

Because the basic PSBS to load and process the Inventory data base for Phase 1
are similar to the above examples, they are not included here.

Load PSB - Customer Data Base

•
*
*

PRINT NOGEN
PCB

SENSEG

TYPE=DB,
DBDNAME=STDCDBP,
PROCOPT=L,
KEYLEN=50

NAME=STSCCST,
PARENT=O

SENSEG
NAME=STSCLOC,
PARENT=STSCCST

SENSEG
NAME=STPCORD,
PARENT=STSCLOC

SENSEG
NAME=STCCITM,
PARENT=STPCORD

SENSEG
NAME=STSCSTA,
PARENT=STSCCST

SENSEG
NAME=STSCHIS,
PARENT=STSCCST

PSBGEN

END

LANG=ASSEM,
PSBNAME=STBICLD

PSB to Process Customer Data Base

•

PRINT NOGEN
PCB

TYPE=DB,
DBDNAME=STDCDBP,
PROCOPT=AP,
KEYLEN=50

NO MACRO EXPANSION PRINTING
X

REQUIRED X
FROM DBD MACRO IN DBD ASSEMBLY X
LOAD PSB X
LONGEST CONCATENATED KEY
26 IS THE LONGEST IN CUSTOMER
DATA BASE. 50 LEAVES EXPANSION
ROOM FOR FUTURE

X
USING THE SAME NAMES AS FOUND X
IN THE SEGM MACROS IN THE DBD

X
ASSEMBLY FOR THE CUSTOMER DATA X
BASE AND PUTTING THE SENSEG

X
MACROS IN THE SAME ORDER AS X
THOSE SEGM MACROS IS REQUIRED

X
X

X
X

X
X

X
OR PL/I OR COBOL X
PROGRAM SPECIFICATION BLK NAME

NO MACRO EXPANSION PRINTING
X

REQUIRED X
FROM DBD MACRO IN DBD ASSEMBLY X
A=ALL FUNCS. ,P=PATH CALL POSSIB X
SEE LOAD PSB FOR EXPLANATION

• SENSEG MACROS WILL BE SAME AS LOAD PSB

*
PSBGEN

END

LANG=ASSEM,
PSBNAME=STBCPHA

Figure 3-19. Sample PSBs for Phase I

3· 54 DL/I DOS/VS Guide For New Users

X
OR PL/I OR COBOL X
PROGRAM SPECIFICATION BLK NAME

Execution of PSBGEN - JCL
PSBGEN is run as a standard DOS/VS job and requires the following DOS/VS job
control statements:

II JOB PSBGEN
II OPTION CATAL
II EXEC ASSEMBLY

I·

PCB
SENSEG
PSBGEN
END

PSB GENERATION CONTROL STATEMENTS
FOR ONE PSB

II EXEC LNKEDT
1&

Description of PSBGEN Output
PSBGEN produces the following:

• Control statement listing
This is a listing of the input statement images.

• Diagnostics
Errors discovered during the processing of each control statement result in
diagnostic messages, which are printed immediately following the image of
the control statement. A message may reference either the control statement
immediately preceding it or the preceding group of control statements. It is
also possible for more than one message to be printed for each control state·
ment. In this case, the messages follow each other on the output listing. After
all control statements have been read, a further check is made of the reasona·
bleness of the entire group. This may result in one or more additional diag·
nostic messages.

If any error is discovered, all control statements are read, checked, and listed
and the diagnostic message(s) are printed, but the other outputs are sup·
pressed, before the PSB generation is terminated.

The PSB error condition messages are contained in the Messages and Codes
manual.

• Assembly listing
A DOS/VS Assembler language listing of the PSB macro expansion created by
PSB generation execution.

• Object Module
After the PSB generation macro is assembled, the PSB is link·edited and
cataloged as a load module in a DOS/VS core image library.

Coding PSBs for Logical Data Bases
When a physical DBD contains logical relationships, the PCB and the application
program can still refer to the physical DBD. However, this should be restricted to
initial data base load programs. Remember also, the logical child always contains
the logical parent's concatenated key. This should not be forgotten when inserting
a logical child in a physical DBD. You can never access a virtual logical child in a
physical data base, because it does not exist.

To use a logical data base, the program needs a separate PCB. This PCB is coded
in the same manner as a PCB for a physical DBD. The only difference is that it
refers to the DBD name and SEGMENT names of a logical DBD. You should code
SENSEG statements only for the segments the program actually needs and the
segments in the hierarchical path to those segments. All of this is based on the
logical DBD, so the hierarchical path may well include physical and logical paths.
Figure 3-20 shows sample PSBS for the phase 2 logical data bases.

Chapter 3: Data Base Implementation 3 - 55

PSB Logical Inventory Data Base - Phase 2

PRINT NOGEN
PCB

SENSEG

TYPE=DB,
DBDNAME=STDIDBL,
PROCOPT=AP,
KEYLEN=50

NAME=STPIITM,
PARENT=O

SENSEG
NAME=STLICOR,
PARENT=STPIITM

SENSEG
NAME=STSLOC,
PARENT=STLICOR

SENSEG
NAME=STSCCST,
PARENT=STSCLOC

SENSEG
NAME=STSIVND,
PARENT=STPIITM

SENSEG
NAME=STLISUB,
PARENT=STPIITM

SENSEG
NAME=STSILOC,
PARENT=STPIITM

PSBGEN

END

LANG=ASSEM,
PSBNAME=STBILGA

NO MACRO EXPANSION PRINTING
X

REQUIRED X
LOGICAL DBD NAME X
A=ALL FUNCS.,P=PATH CALL POSSIB X
SEE LOAD ITEM PSB FOR DISCUSSION

X
USING THE SAME NAMES AS FOUND X
IN SEGM MACROS IN THE LOGICAL

X
DBD FOR THE ITEM DATA BASE AND X
PUTTING THE SENSEG MACROS IN

X
THE SAME SEQUENCE AS THOSE SEGM X
MACROS IS REQUIRED

X
X

X
X

X
X

X
X

X
OR PL/I OR COBOL X
PROGRAM SPECIFICATION BLK NAME

PSB Logical Customer Data Base - Phase 2

PRINT NOGEN
PCB

SENSEG

TYPE=DB,
DBDNAME=STDCDBL,
PROCOPT=AP,
KEYLEN=50

NAME=STSCCST,
PARENT=O

SENSEG
NAME=STSCLOC,
PARENT=STSCCST

SENSEG
NAME=STPCORD,
PARENT=STSCLOC

Figure 3-20. Sample PSBs for Phase 2 (Part lof2)

3 - 56 DL/I DOSjVS Guide For New Users

NO MACRO EXPANSION PRINTING
X

REQUIRED X
LOGICAL DBD NAME X
A=ALL FUNCS.,P=PATH CALL POSSIB X
SEE LOAD CUST PSB FOR DISCUSSIN

X
USING THE SAME NAMES AS FOUND X
IN SEGM MACROS IN THE LOGICAL

X
DBD FOR THE CUSTOMER DATA BASE X
AND PUTTING THE SENSEG MACROS

X
IN THE SAME SEQUENCE AS THOSE X
SEGM MACROS IS REQUIRED

SENSEG
NAME=STLCITM,
PARENT=STPCORD

SENSEG
NAME=STSILOC,
PARENT=STLCITM

SENSEG
NAME=STSCSTA,
PARENT=STSCCST

SENSEG
NAME=STSCHIS,
PARENT=STSCCST

PSBGEN

END

LANG=ASSEM,
PSBNAME=STBCLGA

x
x

x
x

x
x

x
x

X
OR PL/I OR COBOL X
PROGRAM SPECIFICATION BLK NAME

Figure 3-20. Sample PSBs for Phase 2 (Part 2 of 2)

Coding PSBsfor Secondary Indexes

PCB Statement

To use a secondary index, an application program should use a PCB with the
following additional parameter in the PCB statement.

lTYPE=DB, ... ,PROCSEQ=indxdbname

PROCSEQ=indxdbname
specifies the name of the secondary index used to process the data base
named in the DBNAME operand through a secondary processing sequence.
The operand is invalid if PROCOPT=L or LS.

Note: If non-unique fields are used, and subsequence is the /SX field, then the sequence of root
segments with the same index field value will be unpredictable. This sequence will also vary during
reorganization of the target data base.

Figure 3-21 shows the PSBS as used in the sample application for the phase 3
environment.

Chapter 3: Data Base implementation 3 - 57

Inventory and Customer Load PSBs - Phase 3

II JOB STJPSBGN GENERATE ALL PSBS
II OPTION CATAL,NODECK
II EXEC ASSEMBLY

TITLE 'DLII ONLINE PROGRAM - INVENTORY AND CUSTOMER LOAD PSBS
•

PRINT NOGEN
PCB

NO MACRO EXPANSION PRINTING x
x

TYPE=DB,
DBDNAME=STDIDBP,
PROCOPT=L,
KEYLEN=50,

REQUIRED X
FROM DBD MACRO IN DBD ASSEMBLY X

•
• •

•

POS=S
SENSEG

NAME=STPIITM,
PARENT=O

SENSEG
NAME=STSIVND,
PARENT=STPIITM

SENSEG
NAME=STCISUB,
PARENT=STPIITM

SENSEG
NAME=STSILOC,
PARENT=STPIITM

LOAD PSB X
LONGEST CONCATENATED KEY X
26 IS THE LONGEST IN CUSTOMER
DATA BASE. 50 LEAVES ROOM FOR
FUTURE EXPANSION
SINGLE POSITIONING (DEFAULT)

X
USING THE SAME NAMES AS FOUND X
IN THE SEGM MACRO IN THE DBD

X
ASSEMBLY FOR THE CUSTOMER DATA X
BASE AND PUTTING THE SENSEG

MACROS IN THE SAME ORDER AS
THOSE SEGM MACROS IS REQUIRED

X
X

X
X

• THE FOLLOWING PCB IS FOR THE CUSTOMER DATA BASE.
• THE STATEMENTS ARE THE SAME FORMAT AS FOR THE INVENTORY DATA BASE,
• SO THE COMMENTS HAVE BEEN OMITTED.
•

PCB TYPE=DB,DBDNAME=STDCDBP,PROCOPT=L,KEYLEN=50
SENSEG NAME=STSCCST,PARENT=O
SENSEG NAME=STSCLOC,PARENT=STSCCST
SENSEG NAME=STPCORD,PARENT=STSCLOC
SENSEG NAME=STCCITM,PARENT=STPCORD
SENSEG NAME=STSCSTA,PARENT=STSCCST
SENSEG NAME=STSCHIS,PARENT=STSCCST
PSBGEN X

LANG=ASSEM, APPLICATION PROG IS ASSEMBLER X
PSBNAME=STBICLD PROGRAM SPECIFICATION BLK NAME

•
• DO NOT INCLUDE ANY SENSEG MACRO FOR VIRTUAL LOGICAL
• CHILDREN IN A LOAD PSB.
•

END
I·
II EXEC LNKEDT

Inventory and Customer Data Base PSBs - Logical

II OPTION CATAL,NODECK
II EXEC ASSEMBLY

•

TITLE 'DLII SAMPLE PROGRAM - INVENTORY AND CUSTOMER PSBS -LOGIX
CAL'

PRINT NOGEN NO MACRO EXPANSION PRINTING

Figure 3-21. PSBs Used for the Phase 3 Sample Application (Part I of 3)

3 - 58 DL/I DOS/VS Guide For New Users

* THIS PSB IS FOR THE LOGICAL DATA BASES USED BY THE PRINT PROGRAM
* DLZSAM50.
* THE FIRST PCB IS FOR THE INVENTORY LOGICAL DATA BASE.
* NOTE THE USE OF THE PROCSEQ PARAMETER FOR THE SECONDARY INDEX.
* THIS ALLOWS THE APPLICATION TO ACCESS THE INVENTORY ITEMS IN NUMERIC
* SEQUENCE.

* * BECAUSE THE FORMAT OF THE PSB STATEMENTS IS THE SAME AS FOR THE LOAD
* PSB, NO FURTHER COMMENTS ARE INCLUDED.

*

1*

PCB

SENSEG
SENSEG
SENSEG
SENSEG
SENSEG
PCB
SENSEG
SENSEG
SENSEG
SENSEG
SENSEG
SENSEG
PSBGEN
END

TYPE=DB,DBDNAME=STDIDBL,PROCOPT=G,KEYLEN=50,POS=S,
PROCSEQ=STDIX1P
NAME=STPIITM,PARENT=O
NAME=STLICOR,PARENT=STPIITM
NAME=STSIVND,PARENT=STPIITM
NAME=STLISUB,PARENT=STPIITM
NAME=STSILOC,PARENT=STPIITM
TYPE=DB,DBDNAME=STDCDBL,PROCOPT=G,KEYLEN=50,POS=S
NAME=STSCCST,PARENT=O
NAME=STSCLOC,PARENT=STSCCST
NAME=STPCORD,PARENT=STSCLOC
NAME=STLCITM,PARENT=STPCORD
NAME=STSCSTA,PARENT=STSCCST
NAME=STSCHIS,PARENT=STSCCST
LANG=ASSEM,PSBNAME=STBICLG

II EXEC LNKEDT,SIZE=100K

Online Order Inquiry Application PSB - Read Only

II EXEC ASSEMBLY,SIZE=300K

*

TITLE 'DLII ONLINE SAMPLE PROGRAM - ORDER INQUIRY AND ENTRY PSX
BS - READ ONLY'

PRINT NOGEN

* THIS PSB IS USED BY DLZSAM60 TO RETRIEVE SEGMENTS FROM THE CUSTOMER
* AND INVENTORY DATA BASES UNDER CICS/VS.
* THIS PSB CONTAINS PCB'S FOR TWO SECONDARY INDEX DATA BASES.
* (DBDNAME=STDCX1P AND DBDNAME=STDCX2P)
* THIS ALLOWS THE ONLINE PROGRAM TO USE THESE SECONDARY INDEXES
* AS DATA BASES. THE INFORMATION MAINTAINED BY DLII IN THE
* SECONDARY INDEXES IS USED TO ACCESS (BUILD SEARCH ARGUMENTS FOR)
* THE LOGICAL DATA BASE DEFINED BY THE OTHER PCB (DBDNAME=STDCDBL).
* THE PROCOPT FOR THIS PCB HAS A PROCOPT OF GP WHICH ALLOWS THE
* ONLINE PROGRAM TO ISSUE PATH CALLS (*0).

*
\

* THIS PSB SHOWS AN EXAMPLE OF FIELD LEVEL SENSITIVITY FOR SEGMENT
* STLCITM. SINCE THE PHYSICAL LENGTH AND CHARACTER FORMAT ARE
* DESIRED THE TYPE AND BYTE PARAMETERS ARE NOT CODED.

*

Figure 3-21. PSBs Used for the Phase 3 Sample Application (Part 2 of 3)

X

Chapter 3: Data Base Implementation 3 - 59

1*

PCB TYPE=DB,DBDNAME=STDCX1P,PROCOPT=G,KEYLEN=50,POS=S
SENSEG NAME=STICMNA,PARENT=O
PCB TYPE=DB,DBDNAME=STDCDBL,PROCOPT=GP,KEYLEN=50,POS=S
SENSEG NAME=STSCCST,PARENT=O
SENSEG NAME=STSCLOC,PARENT=STSCCST
SENSEG NAME=STPCORD,PARENT=STSCLOC
SENSEG NAME=STLCITM,PARENT=STPCORD

SENFLD NAME=STKCIIN
SENFLD NAME=STQCILI
SENFLD NAME=STFCIQO
SENFLD NAME=STFCIQS
SENFLD NAME=STFCIQB
SENFLD NAME=STFCIAM
SENFLD NAME=STQIINO
SENFLD NAME=STFIIDS
SENFLD NAME=STFIIQH
SENFLD NAME=STFIIQO
SENFLD NAME=STFIIPR

PCB TYPE=DB,DBDNAME=STDCX2P,PROCOPT=G,KEYLEN=50,POS=S
SENSEG NAME=STIRCRDN,PARENT=O
PSBGEN LANG=ASSEM,PSBNAME=STBCUSR
END

II EXEC LNKEDT

PSB for the Online Application - Update

II OPTION CATAL,NODECK
II EXEC ASSEMBLY

*

TITLE 'DL/I ONLINE SAMPLE PROGRAM - CUSTOMER AND INVENTORY PSBX
- UPDATE'

PRINT NOGEN

* THIS IS THE PSB WHICH ALLOWS DLZSAM60 TO UPDATE THE
* CUSTOMER AND INVENTORY DATA BASES. UPDATE CAPABILITY VIA PATH
• CALL IS SPECIFIED BY PROCOPT=AP .
•

1*

PCB TYPE=DB,DBDNAME=STDCDBL,PROCOPT=AP,KEYLEN=50,POS=S
SENSEG NAME=STSCCST,PARENT=O
SENSEG NAME=STSCLOC,PARENT=STSCCST
SENSEG NAME=STPCORD,PARENT=STSCLOC
SENSEG NAME=STLCITM,PARENT=STPCORD

SENFLD NAME=STKCIIN
SENFLD NAME=STQCILI
SENFLD NAME=STFCIQO
SENFLD NAME=STFCIQS
SENFLD NAME=STFCIQB
SENFLD NAME=STFCIAM
SENFLD NAME=STQIINO
SENFLD NAME=STFIIDS
SENFLD NAME=STFIIQH
SENFLD NAME=STFIIQO
SENFLD NAME=STFIIPR

PSBGEN LANG=ASSEM,PSBNAME=STBCUSU
END

II EXEC LNKEDT
If,

Figure 3-21. PSBs Used for the Phase 3 Sample Application (Part 30f3)

3 - 60 DL/I DOS/VS Guide For New Users

Application Control Blocks Creation and Maintenance (DLZUACBO)
The previously defined physical (OBO) and logical (PSB) data structures must now
be tied together so that OL/I can provide the correct data base management services
for the application program. Thus, a third preparatory function, the creation of
internal control blocks (OL/I application control blocks, or ACBS) is necessary prior
to execution.

The application control blocks creation and maintenance utility is executed as a
OOS/VS problem program and accepts control statements as input. The PSB for the
application program and its related OBO(S) are loaded from a OOS/VS core image
library. An expanded PSB is built from the PSB CSECT. A data management block
(OMB) is created for each related OBO CSECT if the OMB does not already exist in a
core image library.

The output of the application control blocks creation and maintenance utility
must be link-edited and cataloged into a OOS/VS core image library (see Figure
3-22). The core image library then contains one OMB and one utility PSB for each
OBO, and one expanded PSB for each original PSB. When the OL/I system is initial­
ized, these OL/I control blocks for the application program are loaded into storage.

Control Statement Requirements
The control statement requirements for this program are free form. A statement is
coded as a card image and is contained in columns 1-71. The control statement
may contain a name starting in column 1. The operation field must be preceded by
and followed by one or more blanks. The operand field is composed of one or

I more PSB names and optionally an output destination and/or a OMB generation
control parameter. It must be preceded by and followed by one or more blanks.
Commas, parentheses, and blanks can be used only as delimiting characters.
Comments may be written following the last operand of a control statement,
separated from the operand by one or more blanks.

A control statement or PSB operand may be contained on more than one line by
inserting a comma after the last PSB name of the first line, inserting a character
other than a blank in column 72, and continuing the statement in column 16 of the
next line. Columns 1-15 of the continuation line must be blank.

Chapter 3: Oata Base Implementation 3 - 61

DOSIVS CORE
IMAGE LIBRARY

DOSIVS CORE
IMAG E LI BRARY

1- ---

I

APPLICATION CONTROL
BLOCKS CREATION
AND MAINTENANCE
UTILITY

------l

ir "----___ -----' 0 1

I
I
I

SYSPCH
OR
SYSLNK

L _____ _

I
I

_____ -.J

DOSIVS
LINKAGE
EDITOR

Figure 3-22. DL/I ACB Creation and Maintenance for Each PSB

3 - 62 DL/I DOS/VS Guide For New Users

PSBs
AND
DMBs

MESSAGES

MESSAGES
AND STATISTICS

JCL Requirements

The format of the control statement is:

[label] BUILD PSB=(psbname, ...)

label

[, OUT=LINK]

{CONO}
[,OMB={YES }]

{NO }

is optional and is useful only for documentation purposes. If specified it must
be a 1- to 8-character alphameric value.

BUILD
indicates that blocks are to be built for the named PSBS.

PSB=(psbname, ...)
means blocks are to be built for all PSBS named. As many of this type of
control card as required may be submitted.

OUT=LINK
if specified in any BUILD statement the output destination of all the created
control block(s) is SYSLNK. If the parameter is omitted, the output of all the
control blocks is on SYSPCH.

DMB=

Notes:

{CONO}
{YES }
{NO }

controls the generation of DMBS for data bases referenced by the named PSBs.
The default, COND, indicates that only those DMBs not currently present in
the DOS/VS core image library (or assigned private library) will be generated.

If you specify DMB=YES, all DMBS will be generated. IfDMB=NO is specified,
no DMBS will be generated.

1. This program creates PSB and DMB object modules that contain DOS/VS linkage editor control
statements. This output must be cataloged and link-edited into a core image library (private or
system) before control blocks may be accessed by DL/1. If output in on SYSPCH, the necessary
DOS/VS JOB and EXEC LNKEDT control statements are also written.

2. A maximum of 255 DBDs may be referenced by one PSB. Included in this maximum are those
DBDs that are indexes to, or are logically related to, those referred to by the PCBs in this PSB.
Also included in this maximum are any other DBDs that have index or logical relationships with
any of the above related DBDs, no matter how remote.

3. A maximum of 500 unique DBD names (for all PSBs) may be referenced in a single execution.
4. There is no maximum to the number of input control statements that may be submitted in a single

job execution.
5. Control statements are read from the SYSIPT device.
6. DMBs are built for DBDs referenced directly in a PSB generation PCB statement (with the

exception of a LOGICAL DB D) or referenced indirectly by a previously referenced DBD.

The application control blocks creation and maintenance utility is executed as a
standard DOS/VS application program. If you do not specify OUT=LINK in the
BUILD statement, a job stream including DOS/VS JOB and EXEC LNKEDT statements
as well as the requested object module is written onto SYSPCH. If you specify
OUT=LINK on the BUILD statement, and object module is written to SYSLNK.

The following job stream is used to execute the application control blocks
creation and maintenance utility and catalog and link-edit the object modules to a

Chapter 3: Data Base Implementation 3 - 63

DOS/VS core image library. This is the ACB generation for the phase 3 environ­
ment.

II JOB STJACBGN GENERATE ALL ACBS
II OPTION CATAL,NODECK,DUMP
II EXEC DLZUACBO,SIZE=200K

I BUILD PSB=(STBICLD,STBCUSR,STBCUSU),OUT=LINK,DMB=YES
BUILD PSB=(STBICLG) ,OUT=LINK,DMB=YES

1*
II EXEC LNKEDT
1*
1&

VSAM Requirements

Data Set Definition

Before your data bases can be loaded, they must first be defmed to VSAM using the
DOS/VS Access Method Services utility functions. The Access Method Services
must be used to defme a VSAM catalog, VSAM data space, and VSAM data sets.

• VSAM Catalog: A master catalog must be defmed first and then, optionally,
any number of VSAM user catalogs. A VSAM catalog is a central information
point for all VSAM data sets and the direct-access storage volumes on which
they are stored. The VSAM catalog provides VSAM with the information to
allocate space for data sets, verify authorization to gain access to them, com­
pile usage statistics on them and relate relative byte addresses (RBAS) to
physical locations.

• VSAM Data Spaces: This is DASD space assigned to VSAM, from which VSAM

allocates space for VSAM data sets. A record of this data space is maintained
in a VSAM catalog. VSAM does its own DASD space management (for example,
allocating space for VSAM data sets). Each VSAM data space can occupy part
or all of a DASD volume.

• VSAM Data Sets: When a VSAM data set is defmed, it is allocated space in a
VSAM data space. A record of the data set and the space that it occupies is
maintained in a VSAM catalog. All VSAM data sets must be cataloged.

The sample application supplied with Version 1.3 includes the Access Method
Services job needed to define the VSAM data sets. It is assumed that you already
have defmed your VSAM catalog(s) and VSAM data spaces. That is, you have used
the Access Method Services DEFINE command (DEFINE MASTERCATALOG. DEFINE

USERCATALOG. DEFINE SPACE) to establish your VSAM system. This section covers

I the use of the Access Method Services DEFINE CLUSTER command. See Using
VSEjVSAM Commands and Macros, SC24-5144, for additional information.

All VSAM data sets are defmed with the DEFINE CLUSTER command. At the time a
data set is defmed, its attributes and all volume serial numbers of the volumes for
the data set are recorded in the catalog. A catalog record is set up for each compo­
nent ofthe cluster and one for the cluster as a whole. This method of establishing a
catalog record for each data set component and a catalog record for the cluster
provides the structure to:

• store the information required to manage a data set

• allow access to each component of the data set as well as the whole data set.

As explained in Chapter 2, a VSAM KSDS consists of two components; the data
component (the actual data to be processed) and the index component (used to
address the data). A VSAM ESDS consists of one component -- the data component.
Figure 3-23 shows the catalog entries made when the data set (cluster) is defined.

3 - 64 DL/I DOS/VS Guide For New Users

VSAM
CATALOG

Figure 3-23. Defming VSAM Data Sets

L

1
VSAM
KSOS

} VSAM
ESOS

An Access Method Services DEFINE command is used to define a VSAM data set.
This means that space is allocated for the data set, the name is assigned, and other
data set information is entered into the VSAM catalog. The DEFINE command does
not put any data into the data set.

The following job is used to define the Inventory, Customer, and Index data
bases to VSAM. Note the use of the DELETE CLUSTER command for each cluster at
the beginning of the job. The DELETE command is necessary if you are redefining
a cluster (to reload a data base) to remove the name of the file from the VSAM

catalog and release the space allocated for it. The following DEFINE commands
then cause the new data set definition to be recorded on the VSAM catalog. This is
job STJDFINV in the sample jobstream.

Chapter 3: Data Base Implementation 3 - 65

II JOB STJDFINV DEFINE INVENTORY, CUSTOMER AND INDEX DATA BASES
II EXEC IDCAMS,SIZE=AUTO

1*
1&

DELETE (SAMPLE.INVEN) CLUSTER NOERASE PURGE
DELETE (SAMPLE.INVDX) CLUSTER NOERASE PURGE
DELETE (SAMPLE.CUST) CLUSTER NOERASE PURGE
DELETE (SAMPLE.CUSTDX1) CLUSTER NO ERASE PURGE
DELETE (SAMPLE.CUSTDX2) CLUSTER NOERASE PURGE
DEFINE CLUSTER (

NAME(SAMPLE.INVEN)
NONINDEXED)

DATA (
NAME(INVENT)
VOLUMES(llllll)
CYL (1 1)
CNVSZ(2048)
RECSZ(2038 2038))

DEFINE CLUSTER (
NAME(SAMPLE.INVDX)
INDEXED
KEYS(06 10)

INDEX (
VOLUMES(111111)
NAME(SAMPLE.INVEN.INDEX))

DATA (
NAME(SAMPLE.INDX1)
VOLUMES(111111)
CYL (1 1)
FREESPACE(10 10)
CNVSZ(2048)
RECSZ (18 18)

DEFINE CLUSTER (
NAME(SAMPLE.CUST)
NONINDEXED)

DATA (
NAME (CUSTOMER)
VOLUMES(llllll)
CYL (1 1)
CNVSZ(2048)
RECSZ(2038 2038)

DEFINE CLUSTER (
NAME(SAMPLE.CUSTDX1)
INDEXED
KEYS (31 10)

INDEX (
VOLUMES(llllll)
NAME(SAMPLE.CUDX1.INDEX))

DATA (
NAME(SAMPLE.CUDX1)
VOLUMES(llllll)
CYL(1 1)
FREESPACE(10 10)
CNVSZ(2048)
RECSZ(42 42)

DEFINE CLUSTER (
NAME(SAMPLE.CUSTDX2)
INDEXED
KEYS (1 2 10)

INDEX (
VOLUMES(llllll)
NAME(SAMPLE.CUDX2.INDEX))

DATA (
NAME (SAMPLE.CUDX2)
VOLUMES(llllll)
CYL (1 1)
CNVSZ(2048)
RECSZ(3636))

Notes:
• The file attribute information for the DEFINE commands is taken directly

from the output listing of the DBDGEN for each data base. For example, the
output of the physical DBDGEN for the Inventory data base is:

3 - 66 DL/I DOS/VS Guide For New Users

Loading Data Bases

L

130+*,CONTROL INTERVAL SIZE FOR THIS DATA
141+*, .. NR BLKS IN TRK ... 3 .. IN CYL ... 60 ..
348+*,VSAM DATA SET DESCRIPTIONS
349+*,
350+* ,DATA BASE NAME
351+*,DATA BASE ORGANIZATION
352+*,DEVICE TyPE
353+*,
354+* ,ESDS DATA SET NAME
355+*,CONTROL INTERVAL SIZE
356+*,NUMBER OF RECORDS IN CI
357+* ,RECORD LENGTH
358+*,

SET IS 2048

STDIDBP
HDAM
3340

STDIDBC
2048
1
2038

The attributes CONTROL INTERVAL SIZE and RECORD LENGTH are used
to specify the parameter values for CNVSZ and RECSZ in the DEFINE

CLUSTER command for SAMPLE.lNVEN.

• The values for the KEYS parameter of the DEFINE CLUSTER command for
SAMPLE.INVDX are also in the DBDGEN listing for the Inventory Index - Item
N umber data base.

•
•
•

162+* ,KEY LENGTH........................ 6
163+*,RELATIVE KEY POSITION 10

•
•

This is also the case for the Customer data base and its indexes. Using the
output listing of the DBDGEN for parameter information will assure that you
have defined your VSAM data sets correctly.

After the data set is defined, it can be loaded with the data intended for the data set
(in this case, the data base records). This entails moving of data records from a
source data set such as a sequential data set or an indexed-sequential data set to the
VSAM data set. DL/I data bases are loaded using a series of DL/I insert calls. This is
job STJLDCST in the sample jobstream (DLZSAM40). Because it is necessary to use
DL/I calls to load a data base, this program will be discussed in Chapter 4, follow­
ing the presentation of the DL/I call macros.

Chapter 3: Data Base Implementation 3 - 67

3 - 68 DL/I DOS/VS Guide For New Users

Chapter 4: Processing Data Bases (Batch Considerations)

I Structure of This Chapter
This chapter is divided into four parts. The first part
deals with a general introduction to DL/I data base
processing. It defines the basic structure of a DL/I ap­
plication program. The second part introduces basic
DL/I calls against a single hierarchical data base struc­
ture. It therefore uses the phase 1 sample environment.

I It also gives guidelines for Assembler, COBOL, PL/I, and
RPG II application programs. However, the visualiza­
tion of each DL/I call in particular is done following the
COBOL syntax. The third part covers the processing of
logical data bases which are implemented with the DL/I
logical relationships function. The fourth part deals
with secondary indexes.

Introduction to Data Base
Processing
In general, data base processing is transaction oriented.
See "Chapter 2. Data Base Design", for a more de­
tailed discussion of transactions and data bases. Gener­
ally, an application program accesses one or more data
base records for each transaction it processes. There
are two basic types of DL/I application programs:

• The direct access program
• The sequential access program

A direct access program accesses, for every input
transaction, some segments on one or more data base
records. These accesses are based on data base record
and segment identification. This identification is essen­
tially derived from the transaction input. Normally it is
the root-key value and additional (key) field values of
dependent segments. For more complex transactions,
segments could be accessed in several DL/I data bases
concurrently.

A sequential application program accesses sequen­
tially selected segments of all or a consecutive subset of
a particular data base. The sequence of processing data
base records is usually determined by the key of the
root-segment. The most common class of sequential
application programs are report programs, which list
some part of the data base. For such programs, consid-I er using PL/I, RPG II, or the report feature of COBOL.

A DL/I application program normally processes only
particular segments ofthe DL/I data bases. The portion
that a given program processes is called an application
data structure. This application data structure is de­
fined in the program specification block (PSB). There is
one PSB defined for each application program. More
than one application program may use the same PSB.
An application data structure always consists of one or

more hierarchical data structures, each of which is
derived from a DL/I physical or logical data base.

Program Structure and Interface to
DL/I

Language and Compilation
The application program is written in one of four lan­
guages: PL/I, COBOL, RPG II, or Assembler language.
The program is compiled through the user-selected
language compiler and placed in the appropriate pro­
gram library, after it is link-edited with the DL/I lan-

I guage interface module. For RPG II, a translation step
is required prior to compilation.

Interface Components
A DL/I batch application program executes in a man­
ner similar to any other DOS/VS job in a partition. It
executes, however, under control of DL/l. To perform
the data base accesses as required by the application
program, DL/I uses its own processing modules which
in turn invoke DOS/VS services. DL/I also relies on the
defined DBD and PSB control blocks to determine the
data base organization and the program's access char­
acteristics. Figure 4-1 presents an overview of DL/I and
the application program during execution.

Before you execute an application program, a
program specification block generation (PSBGEN) must
be performed to create the program specification block
(PSB) for the program. The PSB contains at least one PCB
for each DL/I data base (logical or physical) accessed
by the application program. The PCBs specify which
segments the program will use and the kind of access
(retrieve, update, insert, delete) the program is allowed
to do. The PSBS are maintained in the DOS/VS Core
Image Library. The coding and generation of PSBs is
described in Chapter 3 of this manual.

During initialization, both the application program
and its associated PSB are loaded from the library by
the DL/I DOS/VS system. The DL/I modules interpret
and execute data base call requests issued by the pro­
gram.

The application program interfaces with DL/I via the
following program elements:

• An entry statement specifying the PCBS utilized by
the program

• A PCB-mask that corresponds to the information
maintained in the pre-constructed PCB and which
receives return information from DL/I

• An I/O area for passing data segments to and from
the data bases

Chapter 4: PrOClaim, Data Bases (Batch Considerations) 4 - 1

OOSIVS

OL/I
CONTROL

OL/I

~

PCB
MASK __

APPLICATION
PROGRAM

OMB

PSB

c:J

Figure 4-\. DL/I Interface with an Application Program

• Calls to DL/I specifying processing functions
• A termination statement

The PCB mask(s) and I/O areas are described in the
program's data declaration portion. Program entry,
calls to DL/I, processing, and normal termination are
described in the program's procedural portion. Calls to
DL/I, processing statements, and program termination
may reference PCB mask(s) and/or I/O areas. In addi­
tion, DL/I may reference these data areas. Figure 4-2
illustrates how these elements are functionally struc­
tured in a program and how they relate to DL/1. The
elements are discussed in the text that follows.

Entry to an Application Program
Figure 4-2 shows that when DOS/VS gives control to the
DL/I control facility, the DL/I control program in turn
passes control to the application program (through the
entry point as defmed below). Register I contains an
address of a list of pointers to PCBS used by the applica­
tion program. At entry, all the PCBS used by the appli­
cation program are specified. The order of the
PCB-names in the entry statement must be the same as
in the PSB for this application program. The sequence
of the PCBS in the linkage section or declaration portion
of the application program need not be the same as the
sequence in the entry statement.

COBOL: The following statement must be the first in
the procedure division.
ENTRY 'DLITCBL' USING pcb-name-I, ... , pcb-name-n.

4 - 2 DL/I DOS/VS Guide For New Users

DOSIVS
CORE IMAGE
LIBRARY

PLI: The first statement of a PL/I program must be:
DLITPLI: PROCEDURE (pcb-pointer-I, ... ,pcb-pointer-n)

OPTIONS(MAIN);

RPG II: In order to run an RPG II program using
DL/I in batch mode, position 56 of the Header Specifi­
cation must contain a "B". If "B" is not specified, the
Translator does not perform any translate functions.
For the DL/I control program to establish addressabili­
ty to the PCBS and pass control to the application pro­
gram, an *ENTR Y PLIST must be the first entry in the
Calculation Specifications.

The Translator will automatically generate the
*ENTRY PLIST for a main program if the programmer
does not explicitly specify it. However, the program­
mer must define all data bases as DB-files in the File
Description Specifications with corresponding Contin­
uation Lines (K-lines) specifying the PCBS. (For a de­
tailed description of DB-files and PCB specification see
"Data Base File Definition" in this chapter.) The entry
parameter list will contain a PARM statement for each
PCB, ordered according to the integers 'ij' as specified
by pCBij in the K-line. If the programmer chooses to
specify the *ENTRY PLIST himself, the PCB names in the
PARM statements must be in the same sequence as in
the PSB generation for the program. The Translator
will not check the contents of the list.

ASSEMBLER: The entry point to an Assembler lan­
guage program that utilizes DL/I may have any desired

L

name. However, when control is passed to the applica­
tion program, register 1 contains the address of a
variable-length fullword parameter list. Each word in
this list contains a PCB control block address which
must be saved by the application program. These ad­
dresses are in the same order as the PCB statements
specified during PSB generation. The addresses in this
list are subsequently used by the application program
when executing DL/I calls.

Register 15 contains the address of the application
program entry point. Additionally, registers 14 through
12 must be stored on entry to the application program
in an 18 fullword save area which the application pro­
gram must provide prior to the first DL/I call and which
is pointed to by register 13. Generally, this is per­
formed during program initialization.

APPLICATION PROGRAM COMPONENTS

PCB· MASK

RETURN
INFORMATION
from ,
DUi ,

I
10/AREA I

I
SEGMENT(s) I
to/from
DATA BASE

.1

PROGRAM ENTRY 1

_ CALLS TO DUI DB FUNCTIONS - ---I
RETRIEVE

I INSERT
REPLACE I DELETE

1
PROCESSING _ - - - ---I · · 1

· I r TERMINATION

t I
I

E C E
N A X
T L I DUI
R L T
Y

Figure 4-2. Structure of a Batch Application Program

The following is an example of an initialization performed by an application program; in this case it is the data
base load program, DLZSAM40:

DLZSAM40 CSECT
USING DLZSAM40,R12
SAVE (14,12)
LR R12,R15 LOAD BASE REG
ST R13,SAVE+4 SAVE AREA CHAIN
LA R13,SAVE SAVE AREA AD DR FOR THIS PROGRAM
L R9,O(Rl) ADDR OF INVENTORY PCB
L Rl0 ,4(Rl) ADDR OF CUSTOMER PCB
•
•
•

DLZPARM DC A(COUNT) START OF DL/I PARM LIST
DLZFUNC DC A(FUNCTION) INSERT FUNCTION
DLZPCB DC A(O) ADDRESS OF CURRENT PCB
DLZIOAR DC A(IOAREA) ADDRESS OF SEGMENT TO INSERT
DLZSSA DC A(SSA) ADDRESS OF SEGMENT NAME
COUNT DC F'4' NUMBER OF PARMETERS IN LIST
SAVE DS 18F PROGRAM SAVE AREA

•
•
•
END

PCB-Mask
A mask or skeleton data base PCB must be provided in
the application program. The program views a hier­
archical data structure via this mask. One PCB is re­
quired for each data structure. The details are shown
in Figure 4-3.

Because the PCB does not actually reside in the ap­
plication program, care must be taken to define the
PCB-mask as an assembler DSECT, a COBOL Linkage
Section entry, or a PL/I based variable.

For RPG II the PCB structure is defined in the input
specifications. If you specify a K-line in the F-specs for
a DB file, the Translator will generate this automatical-

Chapter 4: Processing Data Bases (Batch Considerations) 4 - 3

ly. If you want to specify names of your choice, you
may do so following the layout of the automatically
generated PCB (Figure 4-3, part 2).

The data base PCB provides specific areas used by
DL/I to inform the application program of the results of
its calls. At execution time, all PCB entries are con­
trolled by DL/I. Access to the PCB entries by the appli­
cation program is for read only purposes.

The following items comprise a PCB for a hierarchi­
cal data structure from a data base.

1. Name of the PCB - This is the name of the area
which refers to the entire section of PCB fields. It

APPLICATION PROGRAM

",/

~CB 0
MASK _ _ __ U\

\ \
\ \

is used in program statements. This name is not a
field in the PCB. It is the 01 level name in the

I COBOL mask in Figure 4-3. In RPG II, it is the
data structure name of the PCB mask.

2. Name of Data Base - This is the first field in the
PCB and provides the DBD name associated with a
particular data base. It contains character data
and is eight bytes long.

3. Segment Hierarchy Level Indicator - DL/I uses this
area to identify the level number of the last seg­
ment encountered that satisfied a level of the call.
When a retrieve is successfully completed, the
level number of the retrieved segment is placed
here. If the retrieve is unsuccessful, the level

/'
./

/'

APPLICATION /"
DATA
STRUCTURE ",/

",/
",/

CUSTOMER

I
I 1

\ \
CUSTOMER CREDIT
LOCATION STATUS

I

~
NOTES MASK WRITTEN IN COBOL

01 PCBNAME

2 02 DBD-NAME

3 02 SEG-LEVEL

4 02 STATUS-CO DE

5 02 PROC-OPTIONS

6 02 RESERVE-DLI

7 02 SEG-NAME-FB

B 02 LENGTH-FB-KEY

9 02 NUMB-SENS-SEGS

10 02 KEY-FB-AREA

(LINKAGE
SECTION)

\ \
\ \

\
\

,.L

\.
BYTES

PICTURE X(81.- - - -, f-8

PICTURE xx. I
JUSTIFIED RIGHT. - -

_ -2

I
PICTURE xx. - - - -I -2

PICTURE XXXX. - - - I -4

PICTURE S9(5) I
COMPUTATIONAL. - -

PICTURE X(8). - - - - I
PICTURE S9(5) - -

COMPUTATIONAL

PICTURE S9(5). - -

-I
I
I

PICTURE X(N). - - - -\

__ 4

_ -8

- -4
__ 4

_ -N

Figure 4·3. Application Program Data Base PCB Malk (Part 10f2)

4·4 DL/I DOS/VS Guide For New Usera

FUNCTION

DA T A BASE NAME

SEGMENT HIERARCHY
LEVEL INDICATOR

DUI RESULTS STATUS CODE

DL/I PROCESSING OPTIONS

RESERVED FOR DUI

SEGMENT NAME FEEDBACK AREA

LENGTH OF FEEDBACK KEY

NUMBER OF SENSITIVE
SEGMENTS

KEY FEEDBACK AREA

RPG INPUT SPECI FICATIONS GX21·9094-3 UlM05Q·
Printed in U.S.A.

Program

Programmer

I

Figure 4-3. Application Program Data Base PCB Mask (Part 2 of2)

number returned is that of the last segment that
satisfied the search criteria along the path from
the root (the root segment level being '0 I ') to the
desired segment. If the call is completely unsatis­
fied, the level returned is '00'. This field contains
character data; it is two bytes long and is right­
justified numeric.

4. DL/ I Status Code - A status code indicating the
results of the DL/I call is placed in this field and
remains here until another DL/I call uses this PCB.
This field contains two bytes of character data.
When a successful call is executed, this field is
returned blank or with an informative status indi-

12 757677181980

p ... IT] 01 _ ::::'~''';O" I I I I I I I

2

3

4

5
6

See
Notes

1
8

10

cation. DL/I status codes are summarized for
quick reference in Figure 4-4.

5. DL/I Processing Options - This area contains a
character code that tells DL/I the 'processing
intent' of the program against this data base, (for
example, the kinds of calls that may be used by
the program for processing data in this data
base). This field is four bytes long. It is left­
justified. It does not change from call to call. It
gives the default value coded in the PCB PROCOPT
parameter (see Chapter 3), although this value
may be different for each segment. DL/I will not
allow the application program to change this
field, nor any other field in the PCB.

Chapter 4: Processing Data Bases (Batch Considerations) 4 - 5

I

6. Reserved A rea for DL/ 1- DL/I uses this area for
its own internal linkage related to an application
program. This field is one fullword (4 bytes).

7. Segment Name Feedback Area - DL/I fills this
area with the name ofthe last segment encoun­
tered that satisfied a level of the call. When a
retrieve call is successful, the name of the re­
trieved segment is placed here. If a retrieve is
unsuccessful, the name returned is that of the last
segment, along the path to the desired segment,
that satisfied the search criteria. This field con­
tains eight bytes of character data. This field may
be useful in GN and GNP calls. If the status code
is 'AI', the data set filename, of the related data
set, is returned into this area.

8. Length of Key Feedback Area - This entry speci­
fies the current active length of the key feedback
area described below. This field is a four byte
binary number. For restrictions on the contents
of binary fields in RPG II, see DOS/VS RPG II

9.
Language.
Number of Sensitive Segments - This entry speci­
fies the number of segment types in the data base

4 - 6 DL/I DOS/VS Guide For New Users

that the application program is sensitive to. This
represents a count of the number of segments in
the logical data structure as viewed through this
PCB. This field is one fullword (4 bytes) binary.

10. Key Feedback Area - DL/I places in this area the
concatenated key of the last segment encountered
that satisfied a level of the call. When a retrieve is
successful, the key of the requested segment, and
the key field of each segment along the path to
the requested segment, are concatenated and
placed in this area. The key fields are positioned
from left to right, beginning with the root seg­
ment key and following the hierarchical path.
When a retrieve is unsuccessful, the keys of all
the segments along the path to the requested seg­
ment, for which the search was successful, are
placed in this area. Segments without sequence
fields are not represented in this area.

Note: This area is never cleared. so it should not be used after
a completely unsuccessful call. See Chapter 2 for an explana­
tion of concatenated keys.

DATA BASE CALLS Z
0
iii
CC
w
>
Z
0 CC
U 0

0 5 cc
w cc
I- ..J W

W W ..J
~

0 ..J c(
0 11- U W

0 0 I-
U 11- c(~ z (I)

~ z z 0 0 0 - > (I) J: ..J ~ U cc (I)
~ J: J: (!) - 0 I- (!) (!) I- ..J 11- ..J 5 c(11- W 11- l- I- !!IIi: ..J cc
I- ~ Z Z ..J W cc cc J: c(cc 0 DESCRIPTION (I) (!) (!) (!) 0 cc !!? !!? u u w ~

AB X X X X X X X X SEGMENT I/O AREA REQUIRED, NONE SPECIFIED IN CALL

AC X X X X X X HIERARCHICAL ERROR IN SSAs

AD X INVALID FUNCTION PARAMETER

AH X X X CALL REQUIRES SSAs, NONE PROVIDED

AI X X X X X X X X DATA MANAGEMENT OPEN ERROR

AJ X X X X X X X X INVALID SSA QUALIFICATION FORMAT OR COMMAND CODE

AK X X X X X X INVALID FIELD NAME IN CALL

AM X X X X X X X X CALL FUNCTION NOT COMPATIBLE WITH PROCESSING OPTION OR
SEGMENT OR PATH SENSITIVITY

AO X X X X X X X X I/O ERROR

DA X X SEGMENT KEY FIELD HAS BEEN CHANGED

DJ X X X NO PRECEDING SUCCESSFUL GET HOLD CALL

DX X X VIOLATED DELETE RULE

GA * * X CROSSED HIERARCHICAL BOUNDARY INTO HIGHER LEVEL
(RETURNED ONLY ON CALLS WITH NO SSA SPECIFIED)

GB * END OF DATA SET, LAST SEGMENT REACHED

GE * * * * SEGMENT OR PARENT SEGMENT NOT FOUND

GK * * X DIFFERENT SEGMENT TYPE AT SAME LEVEL RETURNED
(RETURNED ON UNQUALIFIED CALLS ONLY)

GP X X A GNP CALL AND NO PARENT ESTABLISHED, OR REQUESTED SEGMENT
LEVEL NOT LOWER THAN PARENT LEVEL

II * SEGMENT TO INSERT ALREADY EXISTS IN DATA BASE OR IS NON-UNIQUE

IX X X VIOLATED INSERT RULE

KA X X X X X X X X NUMERIC TRUNCATION ERROR DURING CONVERSION

KB X X X X X X X X CHARACTER TRUNCATION ERROR DURING CONVERSION

KC X X X X X X X X INVALID PACKED/ZONED DECIMAL CHARACTER DURING CONVERSION

KD X X X X X X X X TYPE CONFLICT DURING CONVERSION

KE X X REPLACE VIOLATION

LB * SEGMENT TO INSERT ALREADY EXISTS IN DATA BASE OR IS NON-UNIQUE

LC * KEY FIELD OF SEGMENTS OUT OF SEQUENCE

LD * NO PARENT FOR THIS SEGMENT HAS BEEN LOADED

LE * SEQUENCE OF SIBLING SEGMENT NOT THE SAME AS DBD SEQUENCE

NA X X DATA IN SEARCH OR SUBSEQUENCE FIELD HAS BEEN CHANGED

NE X X X X INDEX MAINTENANCE CANNOT FIND SEGMENT

X X X X X INDEX MAINTENANCE UNABLE TO OPEN INDEX DATA BASE
NI

X X X X DUPLICATE KEY FOUND FOR INDEX DATA BASE

NO X X X X X I/O ERROR

RX X X VIOLATED REPLACE RULE

Vl X X X X INVALID LENGTH FOR VARIABLE LENGTH SEGMENT

XD X ERROR DURING DATA BASE BUFFER WRITE OUT

XH X DATA BASE LOGGING NOT ACTIVE

t'>t'> * * * * * * * * X GOOD. NO STATUS CODE RETURNED, PROCEED!

I * Indicates status code that could be expected as normal situation.

Figure 4-4. DL/I Status Codes

Chapter 4: Processing Data Bases (Batch Considerations) 4 - 7

Calls to DL/ I
COBOL, PL/I and Assembler application programs com­
municate with DL/I using a program call. In RPG II,
communication with DL/I is established by using an
RQDLI (Request DL/I) command which is translated
into a CALL statement by the Translator. Therefore,
"call" in this manual implies "RQDLI command" for
RPG II applications, unless RQDLI is specifically men­
tioned.

Note: Because the syntax ofRPG II is significantly different, RPG II
is discussed separately. See "DL/I Application Program for RPG II"
later in this chapter.

A call request is composed of a call statement with
an argument list. The argument list specifies the proc­
essing function to be performed, the hierarchical path
to, and the segment occurrence of, the segment to be
accessed. One segment or multiple segments along the
hierarchical path of segments may be operated upon
with a single DL/I call. However, a single call will nev­
er return more than one occurrence of one segment
type.

The arguments contained within any DL/I call re­
quest include:

• For PL/I, a field (parm-count) containing the num­
ber of call arguments in the statement, excluding
itself

• The input/output function to be performed

• The PCB name

• The segment input/output work area

• The identification ofthe data segment(s) to be
operated upon.

Following is a sample of a basic call statement for
COBOL:

CALL 'CBLTDLI' USING function,
PCB-narne,I/OArea,SSA1, ... ,SSAn.

function
identifies the DL/I function to be performed. This
argument is the name of a four-character field
which describes the desired I/O operation. The
DL/I functions are described briefly below, and in
full detail later in this chapter.

PCB-name
is the name of a data base program communica­
tion block (PCB). See "PCB-name Argument" be­
low.

I/O Area
is the name of an I/O work area. See the section
"I/O Work Area Argument" below.

4 - 8 DL/I DOS/VS Guide For New Users

SSA I through SSAn
the names of segment search arguments
(optional). A maximum of I SSA per level is al­
lowed for the hierarchical path being accessed.
See "Segment Search Arguments" below.

Function Argument: The I/O functions specified in the
"function" argument of the call statement request data
services of DL/I. The functions provide a full data
processing capability of retrieving, updating, adding,
and deleting data.

Following are the basic DL/I call functions to re­
quest DL/I data base services:

Meaning

GET UNIQUE
GET NEXT
GET NEXT WITHIN PARENT
GET HOLD UNIQUE
GET HOLD NEXT
GET HOLD NEXT WITHIN PARENT
INSERT
DELETE
REPLACE

DL/I CAD Function

'GUbb'
'GNbb'
'GNPb'
'GHUb'
'GHNb'
'GHNP'
'ISRT'
'DLET'
'REPL'

Note: b stands for blank, each call function is always four characters.

The above calls constitute four categories of segment
access:

• Retrieve a segment: GU, GN, GNP, GHU, GHN.
GHNP

• Replace a segment: REPL

• Delete a segment: DLET

• Insert a segment: ISR T

In addition to the above data base calls, DL/I pro­
vides system service calls. These are used for requesting
system services such as CHKP (checkpoint). All of the
above calls are discussed in detail in the following sec­
tions. The CHKP call is discussed in detail in Chapter 7,
"DL/I Data Base Recovery/Restart."

PCB-name Argument: "PCB-name" is the second
(third in PL/I) argument in the call statement. It is the
name of the PCB within the PSB that identifies for DL/I
which specific hierarchical data structure the applica­
tion program wishes to process.

I/O Work Area Argument: The I/O work area name
is the third (fourth in PL/I) argument in the call state­
ment. The work area is an area in the application pro­
gram into which DL/I puts a requested segment, or
from which DL/I takes a designated segment. If a com­
mon area is used to process multiple DL/I calls, it must
be as long as the longest path of segments to be proc­
essed. The work area name points to the leftmost byte
of the area. Segment data is always left-justified within
the work area.

When inserting or retrieving a hierarchical path of
segments with one call, the I/O work area must be large
enough to hold the longest concatenation of segments
to be retrieved or inserted.

Note: It is good practice to make the length of a general I/O area
large enough to accomodate future segment extensions. An installa­
tion standard could be set for this.

Segment Search Arguments: One SSA can be provid­
ed for each segment accessed in a hierarchical path.
The purpose of the SSA is to identify the segment to be
accessed, by segment name and, optionally, by a field
value.

The basic function of the SSA permits the applica­
tion program to apply three different kinds of logic to
call:

• Narrow the field of search to a particular segment
type, or to a particular segment-occurrence.

• Request that either one segment or a path of seg­
ments be processed.

• Alter DL/I'S position in the data base for a subse­
quent call.

Segment search argument (SSA) names represent the
fourth (fifth in PL/I) through last arguments (SSAI

through SSAn) in the call statement. There can be 0 or I
SSA per level, and, since DL/I permits a maximum of 15
levels per data base, a call may contain from 0 to 15
SSA names. An SSA can consist of one, two, or three
elements: the segment name, command code(s), and a
qualification statement as shown in the following dia­
gram.

SEGMENT COMMAND QUALIFICATION STATEMENT (QS)
NAME CODE

QSIField NameIR.o. I Value I Begin End QS
8 bytes variable 1 1 8 1

where:
SEGMENT NAME

The segment name must be eight bytes long, left
justified with trailing blanks as required. This is
the name of the segment as defined in a physical
and/or logical DBD referenced in the PCB for this
application program.

COMMAND CODES
The command codes are optional. They provide
functional variations to be applied to the call for
that segment type. An asterisk (*) following the
segment name indicates the presence of one or
more command codes. A blank or a left paren­
thesis is the ending delimiter for command codes.
Blank is used when no qualification statement
exists. The command codes are discussed in de­
tail later in this chapter.

QUALIFICATION STATEMENT
The presence of a qualification statement is indi­
cated by a left parenthesis following the segment
name or, if present, command codes. The qualifi­
cation statement consists of a field name, a rela­
tional operator, and a comparative value.

Begin Qualification Character
The left parenthesis, (, indicates the beginning of
a qualification statement. If the SSA is unquali­
fied, the eight-byte segment name or, if used, the
command codes, should be followed by a blank.

2 11 - 2551 1

Field Name
The name of a field statement which appears in
the description ofthe specified segment type in
the DBD. The name is up to eight characters long,
left-justified with trailing blanks as required. The
named field may be either the key field
(preferably) or another data field within a seg­
ment. The field name is used for searching the
data base, and must have been defined in the
physical DBD.

RO = Relational Operator
A set of two characters which express the manner
in which the contents of the field, referred to by
the field name, is to be tested against the
comparative-value.

Operator

1)= or =1)

=>

=<
I»or >1)
1)< or <I)

Meaning

must be equal to
must be greater than or equal to
must be less than or equal to
must be greater than
must be less than
must be not equal to

Note: I) represents a blank character.

Chapter 4: Processing Data Bases (Batch Considerations) 4 - 9

Comparative-value
is the value that the contents of the field, referred
to by the field name, is to be tested against. The
length of the field must be equal to the length of
the named field in the segment of the data base.
That is, it includes leading or trailing blanks (for
alphameric) or zeros (usually needed for numeric
fields) as required. A collating sequence, not an
arithmetic, compare is performed.

End Qualification Character
The right parenthesis,), indicates the end of the
qualification statement.

Qualification
Just as calls are "qualified" by the presence of an SSA,
SSAs are categorized as either "qualified" or
"unqualified", depending on the presence or absence
of a qualification statement. Command codes may be
included in or omitted from either qualified or unqual­
ified SSAS.

In its simplest form, the SSA is unqualified and con­
sists only of the name of a specific segment type as
defined in the DBD. In this form, the SSA provides DL/I
with enough information to define the segment type
desired by the call.

EXAMPLE:
SEGNAMEbb last character blank to unqualify

Qualified SSAs (optional) contain a qualification state­
ment composed of three parts: a field name defined in
the DBD, a relational operator, and a comparative
value. DL/I uses the information in the qualification
statement to test the value of the segment's key or data
fields within the data base, and thus to determine
whether the segment meets the user's specifications.
Using this approach, DL/I performs the data base seg­
ment searching and the program need process only
those segments which precisely meet some logical crite­
ria.

EXAMPLE: SEG N AMEb(FIELDXXX>=value)

The qualification test is terminated either when the
test is satisfied by an occurrence of the segment type, or
when it is determined that the request cannot be satis­
fied.

General Characteristics of Segment Search
Arguments

• An SSA may consist of the segment name only
(unqualified). It may optionally also include one
or more command codes and a qualification state­
ment.

4 - \0 DL/I DOS/VS Guide For New Users

• SSAS following the first SSA must proceed down a
hierarchical path. Not all SSAS in the hierarchical
path need to be specified. DL/I provides, internal­
ly, SSAs for missing levels according to the rules
given later in this chapter. However, it is a good
practice to always include SSAs for every segment
level.

Examples of SSAS are given with the sample calls at
each DL/I call discussion in the following section.

Termination
At the end of processing of the application program,
control must be returned to the DL/I control program.

ANS COBOL PL/I Assembler RPGII

GOBACK. RETURN; RETURN (14,12) SETON LR

The GOBACK or RETURN statement in a batch program
returns control to DL/I. In RPG II control is returned to
DL/I by setting on the Last Record (LR) indicator, spec­
ified in the calculation specifications. After DL/I re­
sources are released and the data bases are closed, DL/I
subsequently returns control to DOS/VS.

Warning: Since DL/llinks to your application pro­
gram, return to DL/I causes storage to be occupied by
your program to be released. Therefore you should
close all non-DL/I data sets for COBOL and Assembler
before return to prevent abends during close by
DOS/VS.

Status Code Handling
After each DL/I call, a two-byte status code is returned
in the PCB which is used for that call. The three catego­
ries of status codes are:

• The blank status code, indicating a successful call

• Exceptional conditions and warning status codes,
for example, valid status codes from an applica­
tion point of view

• Error status codes, specifying an error condition in
the application program and/or DL/l.

The grouping of status codes in the above categories
is somewhat installation dependent. The examples will,
however, give a basic recommendation after each spe­
cific call function discussion.

You should also use a standard procedure for status
code checking and the handling of error status codes.
The first two categories should be handled by the ap­
plication program after each single call; Figure 4-5
gives an example.

L

CALL 'CBLTDLI' USING ...
IF PCB-STATUS EQ 'GE' PERFORM

PRINT-NOT FOUND.
IF PCB-STATUS NE 'bb' PERFORM

STATUS-ERROR.
ELSE everything okay, proceed

Figure 4-5. Testing Status Codes

Notice that it is more convenient to directly test the
regular exceptions in-line instead of branching to a
status code check routine. In this way, you clearly see
the processing of conditions that you wish to handle
from an application point of view, leaving other error
situations to a central status code error routine. A de­
tailed discussion of the error status codes and their
handling is presented later in this chapter.

Sample Presentation 0/ a Call
The following sections introduce the DL/I calls. The
discussion of each call includes a sample in the stan­
dard format as shown in Figure 4-6.

Although the sample application programs provided
with DL/I are written in Assembler language, for ease
of presentation the calls in the examples of this text are
presented in ANS COBOL format. The coding of a call in

I PL/I, RPG II, or Assembler are presented later. Each call
example contains three sections. The first section pre­
sents the essential elements of working storage as need­
ed for the call. The second part, the processing section,
contains the call itself. Note that the PCB-NAME param­
eter should refer to the selected PCB defined in the
Linkage Section. Some examples include some proc­
essing function description before and/or after the call,
in order to show the call in its right context. The third
section contains the status codes and their interpreta­
tion, that can be expected after the call. The last cate­
gory of status code, labelled "other: error situation", is
normally handled by a user written status code error
routine.

77 GU-FUNC PICTURE XXXX VALUE 'GUbb' .

01 SSA001-GU-SE1PART.
02 SSA001-BEGIN PICTURE ., .
02
02

01 IOAREA PICTURE X (256) .

DL/I Application Program for
RPGII
Access to DL/I is provided in RPG II by means of
RQDLI commands (Request DL/I) and, optionally,
DB-files. The Translator tranlates the RQDLI com­
mands into RPG II CALL statements and parameter lists
and the DB-file specifications into File Description
Specifications for SPECIAL files.

Note: The following syntax notation is used in the RPG II statement
formats.

• I is used to separate alternatives, one of which has to be coded.

• (optional) is used to indicate that the construct is optional.

• uppercase letters are used to indicate system-defined informa­
tion.

• lowercase letters are used to indicate user-defined informa­
tion.

RQDLI Commands/or DB Access
The application program accesses a data base, which
may be defined previously in the File Description
Specifications, with the help of RQDLI commands,
which have to be specified in the Calculation Specifica­
tions. An RQDLI command consists of an RQDLI state­
ment followed by optional ELEM, USSA, and QSSA state­
ments.

The format of the RQDLI statement is as follows:

Position

1-5
6
7-8
9-17
18-27
28-32
33-42
43-55
56-57
58-59
60-80

Contents

see the publication, DOS/ VS RPG II Language
C
blank I Ln I SR
see the publication, DOS/VS RPG II Language
func-name
RQDLI
file-name (optional)
blank
indicator
blank
see the publication, DOS/ VS RPG II Language

Note: No AN or OR lines are allowed with RQDLI commands.

CALL 'CBLTDLI' USING GU-FUNC,PCB-NAME,IOAREA,SSA001-GU-STPIITM.

STATUS CODES:

bb: successful call
exceptional but correct condition

other: error situation

Figure 4-6. Sample Call Presentation

Chapter 4: Processing Data Bases (Batch Considerations) 4 - II

fune-name: The following function names may be
used in an RQDLI statement:

• GU Get unique
GHU Get hold unique

• GN Get next
GHN Get hold next

· GNP Get next within parent
GHNP Get hold next within parent

• DLET Delete

· REPL Replace

• ISRT Insert:
-load a new data base
-add to an existing data base

· PCB Schedule a PSB

· TERM Release a PSB

• CHKP Establish a checkpoint

The use and meaning is the same as explained under
"Basic Data Base Processing" in this chapter.

file-name: The file-name specifies the data base to be
accessed. Ifno FROMIINTO option is explicitly specified
in the RQDLI command, standard RPG data transfer is
used.

standard RPG data transfer: Extracting input fields
from records, or building output records from fields. It
is used if an RQDLI command requires a FROM or INTO
option, which is not explicitly specified. In this case the
I/O operation is executed in an RPG-like manner,
namely using the record specification in the Input
Specifications for input operations (that is, using the
extract fields routine via READ statement instead of an
explicit INTO option) or building the output record with
the help of Output Specifications (that is, using the
build lines routines via EXCPT instead of an explicit
FROM option).

With an RQDLI command, only the first record is put
out to the specified file; if more records are conditioned
they are ignored. In addition, the RQDLI command
causes all E-records with indicators on to be put out to
the corresponding non-DB files. The user must ensure
that files are conditioned in accordance with the RPG II
rules for update files (read before write). A user­
written EXCPT causes output to only non-DB files, but
DB files also must be conditioned so that no output is
attempted before a read. For standard data transfer, an
EXCPT is automatically generated.

Note: Using the RPG II standard data transfer for an input opera­
tion on a DL/I data base, a READ will be issued even if the "record
not found" condition is encountered. That means that in any case
the contents of the fields within the record will be initiated with the
information at which xREC is pointing.

indicator: An indicator must be reserved for use by
the Translator. You may specify in the RQDLl com­
mand which indicator is to be used. If no indicator is

4 - 12 DL/I DOS/VS Guide For New Users

specified, the Translator will use indicator 13. The
indicator should not be tested since, on return from
DL/I, the status is undefined.

An RQDLI statement may be followed by one or
more ELEM, USSA, or QSSA statements. The ELEM state­
ments specify the FROMIINTO option, the PCB option,
and the SSA option. The SSAS can also be specified by
USSA and QSSA statements, which allow the definition
of an SSA in RPG-like format. The statements speci­
fying the SSA list must be in the proper hierarchical
sequence.

The CHKP RQDLl statement may be followed by
ELEM statements specifying the CHKPID option and the
PCB option. No other ELEM statements are allowed.

An ELEM statement for the CHKPID option has the
following format:

Position Contents
1-5 see the publication, DOS/VS RPG II Language
6 C
7-8 blank I SR I Ln
9-\7 blank
18-27 CHKPID
28-32 ELEM
33-42 literal (see note)
43-48 var-name (see note)
49-52 optional entries (see I. note) (2. the publication,

DOS/VS RPG II Language)
53-59 blank
60-80 see the publication, DOS/VS RPG II Language

Note: Entries in positions 33-42 and 43-52 are mutually exclusive.

The checkpoint identification can be specified either
in positions 33-42 as an alphameric literal (maximum
length eight bytes) or in positions 43-48 as a variable
referring to an eight byte field. If no checkpoint identi­
fication is specified, the file-name, if any, specified in
the CHKP RQDLl statement is used as a default check­
point identification and for the PCB option if it is not
explicitly specified and a K-line for a PCB has been
defined for the DB-file.

var-name: denotes the name of a variable that de­
scribes an RPG Il field, array, array-element, or data
structure.

An ELEM statement for the FROMIINTO option has
the following format:

Position
1-5
6
7-8
9-\7
18-27
28-32
33-42
43-48
49-52

53·59
60-80

Contents
see the publication, DOS/VS RPG II Language
C
blank I SR I Ln
blank
FROMIINTO
ELEM
blank
var-name
optional entries (see the publication, DOS/ VS RPG II
Language)
blank
see the publication, DOS/VS RPG II Language

...... .,

L

If a FROMIINTO option is explicitly specified in an
ELEM statement, the input/output request is executed
using the specified area, ignoring any record definitions
for the named DB-file in the Input or Output Specifica­
tions. If no FROMIINTO option is used with an RQDU
command, the record area optionally defined with the
DB-file is loaded with the segment handled by the oper­
ation. The record area (corresponding to a data base
segment) may be described in the Input or Output
Specifications, depending on the requested function.
The INTO option is used with input operations, and the
FROM option is used with output operations.

An ELEM statement for the PCB option has the fol­
lowing format:

Position

\-5
6
7-8
9-17
18-27
28-32
33-42
43-48
49-52

53-59
60-80

Contents

see the publication, DOS/ VS RPG I I Language
C
blank I SR I Ln
blank
PCB
ELEM
blank
var-name
optional-entries (see the publication, DOS/ VS RPG II
Language)
blank
see the publication, DOS/VS RPG II Language

The PCB option may be used to specify the
pCB-address to which the RQDU request is directed. If
not specified, the pCB-address is derived from the file­
name specified with the RQDLI statement.

Statements for SSA Specification
There are two kinds of statements used to describe an
SSA, which may be used intermixed; either the
sSA-option or the SSA specification in RPG-like format.
In addition, an SSALIST option together with an
EusT-command are provided for ease of use. (The
physical makeup of the SSA is fully described under
"Calls to DL/I" earlier in this chapter.)

sSA-option
The SSA is a var-name. It is the user's responsibility
to define the proper format and to put the correct
values into it together with delimiters.

Note: The format of the area has to correspond exactly to the re­
quirements as specified for the SSA in "Calls to DL/I".

ELEM statements of this kind are characterized by
the keyword SSA in factor 1 of an ELEM statement and
have the following format:

Position

1-5
6
7-8
9-\7
18-27
28-32
33-42
43-48
49-52

53-59
60-80

Contents

see the publication, DOS/VS RPG II Language
C
blank I SR I Ln
blank
SSA
ELEM
blank
var-name (see note)
optional entries (see the publication. DOS/VS RPG II
Language)
blank
see the publication, DOS/ VS RPG I I Language

The area referred to by var-name must describe the
SSA with all required entries as defined under SSA in
"Calls to DL/I" earlier in this chapter.

Note: For USSA and QSSA statements, var-name must not be an
array name.

SSA Specification in RPG-Like Format:
(USSA and QSSA Statement)
The statement contains all the relevant fields of an SSA
in RPG-like format. The Translator maps these fields
into the proper DL/I format. For details see the follow­
ing definitions.

USSA Statement

For an unqualified SSA it is only necessary to specify
either the segment-name in quotes or a field containing
the segment name in factor 1 of the Calculation Specifi­
cations in a USSA statement.

The proper area is provided by the Translator, and
the segment will be moved into it with the required
blanks.

USSA statements for an unqualified SSA have the
following format in the Calculation Specifications:

Position

1-5
6
7-8
9-17
18-27
28-32
33-55
56-57
58-59
60-80

Contents

see the publication, DOS/ VS RPG II Language
C
blank I SR I Ln
blank
segment-name
USSA
blank
command code (optional)
blank
see the publication, DOS/VS RPG II Language

segment name: Either var-name containing the
name of a segment (up to 8 characters) or the name of
a segment in apostrophes.

command code: One or two command codes may be
specified. For a more detailed definition of command
codes, see "Calls With Command Codes", later in this
chapter.

Chapter 4: Processing Data Bases (Batch Considerations) 4 - I3

QSSA Statement
A QSSA statement for a qualified SSA has the following
format:

Position Contents
1-5 see the publication, DOS/ VS RPG II Language
6 C
7-8 blank I SR I Ln
9-17 blank
18-27 segment-name
28-32 QSSA
33-42 segment-field-name
43-48 comparative-value
49-51 blank
52 blank
53 blank
54-55 relational-operator
56-57 command-code (optional)
58-59 blank
60-80 see the publication, DOS/VS RPG II Language

segment name: As above with unqualified SSA.

segment-field-name: Name of the segment-field in
apostrophes or var-name containing name of the
segment-field (up to 8 characters). The length of the
field as defined in the DBD is specified by positions
49-51.

comparative-value: Var-name containing the value
against which the contents of the field referred to by
the segment-field-name are to be tested. The length of
the contents of var-name should correspond to that
defined in positions 49-51. This information is used to
generate the proper area. The length as specified must
correspond to the actual length of the field defined by
the segment field name in the DBD.

length: Length of the segment-field (in bytes) in the
DBD.

position 52: A blank entry indicates that the field is
alphameric. MOVEL is used to put the comparative
value into the generated SSA (possibly padded with
blanks to the right).

relational operator: The following relational opera­
tors may be used:
relational
operator meaning
EQ equal to
GE greater than or equal to
LE less than or eq ual to
GT greater than
LT less than
NE not equal to

command-code: One or two command codes may be
specified for each SSA. For a more detailed definition,
see "Calls With Command Codes", later in this chap­
ter.

4 - 14 DL/I DOS/VS Guide For New Users

SSALIST-Opt;on
It is possible to specify in an ELEM statement the name
of an sSA-list. This ELEM statement has the following
format:

Position
1-5
6
7-8
9-17
18-27
28-32
33-42
43-52
53-59
60-80

Contents
see the publication, DOS/ VS RPG II Language
C
blank I SR I Ln
blank
SSALIST
ELEM
name-of-SSA-list
blank
blank
see the publication, DOS/ VS RPG II Language

The keyword SSALIST indicates that this statement
stands for a list of statements defmed elsewhere in an
ELIST. The Translator will expand the SSALIST-option
by the list of SSAS defmed in the ELIST. The indicator
in position 7-8 of the SSALIST option is appended to
each SSA. As default the indicator in position 7-8 of the
RQDLI statement is used.

name-of-SSA-Iist: This name refers to the name of
the ELIST defined in an ELIST statement.

ELIST-Command
The ELIST command defines the SSA list. The ELIST
command consists of an ELIST statement immediately
followed by one or more statements specifying SSAS.
The EUST statement has the following format:

Position
1-5
6
7-8
9-17
18-27
28-32
33-59
60-80

Contents
see the publication, DOS/ VS RPG / / Language
C
blank I SR I Ln
blank
name-of-SSA-list
ELIST
blank
see the publication, DOS/VS RPG II Language

The statements specifying SSAS must be specified in
the proper hierarchical sequence. The format of the
statements is the same as that used to describe the SSA
directly in the RQDU commands.

Restriction: The SSALIST -option must not be used in an ELIST
command. Optionally, a DB-file may be specified to access DL/1.

DB (Data Base) File Definition
Each data base an application program wants to access
may be defined in the File Description Sepcifications.
The File Description Specifications for such a DB-file
are only required if standard data transfer is intended
for that DB-file and/or if use is made of the possibility
of defining the PCB for a DB-file via a K-line in the File
Description Specifications.

The File Description Specification for a DB-file has
the following format:

Position

1-5
6
7-14
15
16
17-18
19
20-23
24-27
28-39
40-46
47-74
75-80

Contents

see the publication, DOS/VS RPG II Language
F
file-name
I I U I 0
D I blank
blank
F I blank
blank
maximum-segment-length
blank
DB
blank
see the publication, DOS/VS RPG II Language

file name: The file-name can be freely chosen; it is
the name by which the application refers to the data
base.

maximum-segment-Iength: This length specifies the
maximum length (in bytes) of the segments of the data
base which the application is going to access. This
length is used if no explicit FROMIINTO option is speci­
fied in an RQDLI command referencing the specific
DB-file. In this case the segment has to be defined as a
record in the Input or Output Specifications. If this
length is omitted, a length of 80 is assumed.

Notes:

• If position 19 is blank, it will default to F.

• Output Specifications for DB-files must be of type E (position
15=E), exception records.

Additionally, for each DB File Description Specifi­
cation, a continuation line may be specified which
defmes the corresponding PCB. The continuation line
has the following format:
Position

1-5
6
7-23
24-27
28-50
51-52
53
54-59
60-65
66-74
75-80

Contents

see the publication, DOS/VS RPG II Language
F
blank
pcb-key-Iength (optional)
blank
blank
K
PCB
PCBij
blank
see the publication, DOS/ VS RPG II Language

PCBij: This defines the program communication
block (PCB) connected with the DB file. ij ... establishes
the relationship to the ordering of the PCBS in the PSB.
ij defines this data base PCB as the element ij of the
ordered list of PCBs. This ordering is used when the
addressability of PCBs is established; ij may range be­
tween Oland 99.

pcb-key-Iength: This integer specifies the length (less
than or equal to 256) of the field in the data structure
defining the PCB. If a K-line is specified, the Translator
automatically generates the definition ofthe data struc­
ture for the PCB and puts it into the Input Specifica-

tions, with the names of the fields qualified by ij. The
general format and the naming conventions can be
seen in Figure 4-3 in "PCB Mask", in this chapter. If
the K-lines for several DB Files define the same pCBij
name, only the first causes the PCB data structure to be
generated. The others are ignored and a warning mes­
sage is issued. However, when these file names are
specified in RQDLI statements, this pCBij name is used
as the default value for the PCB option.

Ifno K-line is specified, it is the user's responsibility
to define the proper PCB. For more detailed informa­
tion, see "PCB Mask", in this chapter.

Note: With the automatic generation of the PCB data structure,
name clashes with user-defined field names may occur.

The user should never write into PCB fields.

Basic Data Base Processing

DL/ I Positioning
To satisfy a call, DL/I relies on two sources of segment
identification:

• The established position in the data base as set by
the previous call against the PCB

• The segment search arguments as provided with
the call

The data base position is the knowledge by DL/I of
the location of the last segment retrieved and all seg­
ments above it in the hierarchy. This position is main­
tained by DL/I as an extension of, and reflected in, the
PCB. When an application program has multiple PCBS
for a single data base, these positions are maintained
independently. For each PCB, the position is represent­
ed by the concatenated key of the hierarchical path
from the root segment down to the lowest level segment
accessed. It also includes the positions of non-keyed
segments.

If no current position exists in the data base, then
the assumed current position is the start of the data
base. This is the first physical data base record in the
data base. With HDAM this is not necessarily the root­
segment with the lowest key value.

Sample Environment
The phase I sample environment is used to exemplify
the basic DL/I calls presented in the following sections.
The data base used is the Inventory data base as shown
in Figure 4-7.

Chapter 4: Processing Data Bases (Batch Considerations) 4 - 15

INVENTORY
ITEM
(STPIITM)

I I
VENDOR SUBSTITUTE ITEM

(STSIVND) ITEM LOCATION
(STCISUB) (STSILOC)

Figure 4-7. The Phase I Inventory Data Base

Retrieving Segments
There are three basic functions in retrieving a segment:

• Retrieve a specific segment: GU

• Retrieve the next segment in the hierarchy: GN

• Retrieve the next segment within parent in the
hierarchy: GNP

77 GU-FUNC PICTURE XXXX VALUE 'GUbb' .

01 SSA001-GU-STPIITM.

Get Unique Call (GU)
The get unique call, function code 'GUbb', retrieves one
segment in a hierarchical path. The segment retrieved
is identified by an SSA for each level in the hierarchical
path down to and including the requested segment.
Each SSA should contain at least the segment name.
The SSA for the root segment should provide the root­
key value. Figure 4-8 shows an example of the get
unique call.

The main use of the GU call is to position your pro­
gram to a data base record to obtain (a path of)
segment(s). Typically, the GU call is used only once for
each data base record you wish to access. Additional
segments within the data base record are then retrieved
by means of get next or get next within parent calls (see
following section). The GU call can also be used for
retrieving a dependent segment, by adding SSAS to the
call. For example, if you add a second SSA which speci­
fies the item location, you would retrieve an ITEM

LOCATION segment below the identified item. If the
SSA did not provide an item location number, this
would be the first occurrence of the ITEM LOCATION

segment for this item.

02 SSA001-BEGIN PICTURE X(19) VALUE 'STPIITMb(STQIINOb=b' .
02 SSA001-STQIINO PICTURE X(8).
02 SSA001-END PICTURE X VALUE ')' .

01 IOAREA PICTURE X(256).

MOVE ITEM-NUMBER TO SSA001-STQIINO.

CALL 'CBLTDLI' USING GU-FUNC,PCB-NAME,IOAREA,SSAOO1-GU-STPIITM.

STATUS CODES:

bb: requested INVENTORY ITEM segment has been moved to IOAREA
GE: segment not found; supplied item number not in data base

other: error situation

Figure 4-8. Basic Get Unique Call

Get Next Call (GN)
The get next call, function code 'GNbb', retrieves the
next segment in the hierarchy as defined in the PCB. To
determine the next segment, DL/I relies on the previ­
ously established position.

The unqualified get next call (Figure 4-9) using no
SSAS will, if repeated, return the segments in the data
base in hierarchical sequence. DL/I returns only those
segments that are defined as sensitive in the PCB for the
program issuing the call. If this call were issued after
the get unique call of Figure 4-8, it would retrieve the
first VENDOR segment for this INVENTORY ITEM (if one
exists). Subsequent calls will retrieve all other
VENDOR, SUBSTITUTE ITEM, and ITEM LOCATION seg­
ments for this INVENTORY ITEM. After this, the next

4 - 16 DL/I DOS/VS Guide For New Users

INVENTORY ITEM segment is retrieved and its depend­
ent segments, etc., until the end of the data base is
reached. DL/I returns special status codes whenever a
different segment type at the same level or a higher
level is returned. No special status code is returned
when a different segment at a lower level is returned.
You can check for reaching a lower level segment type
using the segment level indicator in the PCB. Remem­
ber, only those segments to which your program is
sensitive via its PCB are available to your application
program.

Although the above unqualified GN call may be
efficient, especially for report programs, you should use
a qualified GN call whenever possible.

77 GN-FUNC PICTURE XXXX VALUE 'GNbb' .

01 IOAREA PICTURE X(256) .

CALL 'CBLTDLI' USING GN-FUNC,PCB-NAME,IOAREA.

STATUS CODES:
bb: if a previous call retrieved an INVENTORY ITEM, then

a VENDOR segment will be retrieved.
GK: a segment is returned in IOAREA, but it is a different

type at the same level, for instance, a SUBSTITUTE
ITEM segment after the last VENDOR segment.

GA: segment returned in IOAREA, but it is of a higher level
than the last one, that is, a new INVENTORY ITEM segment

GB: end of data base reached, no segment retrieved
other: error situation

Figure 4-9. Unqualified Get Next Call

Qualified Get Next Call: The qualified GN call
should at least identify the segment you want to re­
trieve. In doing so, you will achieve a greater inde­
pendence towards possible data base structure changes
in the future. If you supply the segment name in the
SSA, then you will retrieve all segments of that type
from all data base records with subsequent get next
calls (see figure 4-10).

Repetition of the qualified GN call (Figure 4-10) will
retrieve all subsequent SUBSTITUTE ITEM segments of
the data base until the end of the data base is reached.
To limit this to a specific INVENTORY ITEM, you could

77 GN-FUNC PICTURE XXXX VALUE 'GNbb' .

add a fully qualified SSA for the INVENTORY ITEM seg­
ment. This would be the same as used in Figure 4-8.

Note: You could follow this call with the get next within parent call,
function code 'GNPb', with a qualified SSA. See the Application
Programming Reference Manual for specific details about coding this
call.

An example of a get next call with a fully qualified
SSA is shown in Figure 4-11. Because the fully quali­
fied SSA always clearly identifies the hierarchical path
and the segment you want to retrieve, it should be used
whenever possible.

01 SSA002-GN-STCISUB PICTURE X(9) VALUE 'STCISUBbb' .
01 IOAREA PICTURE X(256).

CALL 'CBLTDLI' USING GN-FUNC,PCB-NAME,IOAREA,SSA002-GN-STCISUB.

Note the use of the function code in the SSA name to help the
application programmer identify which SSA to use. SSAs for each
type of cali for each segment in each data base should be
constructed once by the data base administration function and
placed in the source statement library so all programs using
that data base will use common names.

STATUS CODES:

bb: next SUBSTITUTE ITEM segment has been moved to IOAREA
GB: end of data base reached, no more SUBSTITUTE ITEM segments

other: error situation

Figure 4·10. Qualified Get Next Call

Chapter 4: Processing Data Bases (Batch Considerations) 4 - 17

77 GN-FUNC PICTURE XXXX VALUE 'GNbb' .

01 SSA001-GU-STPIITM.
02 SSA001-BEGIN PICTURE X(19) VALUE 'STPIITMb(STQIINOb=b.
02 SSA001-STQIINO PICTURE X(6) .
02 SSA001-END PICTURE X VALUE ')' .

01 SSA002-GN-STCISUB PICTURE X(9) VALUE 'STCISUBbb' .
01 IOAREA PICTURE X(256).

CALL 'CBLTDLI' USING GN-FUNC,PCB-NAME,IOAREA,SSA001-GU-STPIITM,
SSA002-GN-STCISUB.

STATUS CODES:

bb: next SUBSTITUTE ITEM segment is in IOAREA
GE: segment not found; no more substitute items for this item,

or item number in SSAOOl does not exist
other: error situation

Figure 4-11. Get Next Call With Qualified SSA

Get Hold Calls
To change the contents of a segment in a data base
through a replace or delete call, the program must first
obtain the segment. It then changes the segment's con­
tents and requests DL/l to replace the segment in the
data base or to delete it from the data base.

This is done by using the get hold calls. These func­
tion codes are like the standard get function, except the
letter 'H' immediately follows the letter 'G' in the code
(for example, GHU, GHN, GHNP). The get hold calls
function exactly as the corresponding get calls for the
user. For DL/I, they indicate a possible subsequent
replace or delete call.

After DL/I has provided the requested segment to
the user, one or more fields, but not the sequence field,
in the segment may be changed.

After the user has changed or examined the segment
contents, he can call DL/l to return the segment to, or
delete it from, the data base. If after issuing a get hold
call, the program determines that it is not necessary to
change or delete the retrieved segment, the program
may proceed with other processing, and the 'hold' will
be released by the next DL/I call against the same PCB.

4 - 18 DL/I DOS/VS Guide For New Users

Updating Segments
Segments can be updated by application programs and
returned to DL/I for restoring in the data base, with the
replace call, function code 'REPL'. Two conditions must
be met:

• The segment must first be retrieved with a get
hold call (GHU, GHN, or GHNP); no intervening calls
are allowed referencing the same PCB.

• The sequence field of the segment cannot be
changed; this can only be done with combinations
of delete and insert calls for the segment and all its
dependents.

Figure 4-12 shows an example of a combination of a
GHU and REPL call. Notice that the replace call must
not specify an SSA for the segment to be replaced. If,
after retrieving a segment with a get hold call, the pro­
gram decides not to update the segment, it need not
issue a replace call. Instead the program can proceed
as if it were a normal call.

Note: Because there is very little performance difference between the
get and the get hold call, you should use the get hold call whenever
there is a reasonable chance that you will change the segment.

I 77 GHU-FUNC PICTURE XXXX VALUE 'GHUb' .
I 77 REPL-FUNC PICTURE XXXX VALUE 'REPL' .
01 SSA001-GU-STPIITM.

02 SSA001-BEGIN PICTURE X(19) VALUE 'STPIITMb(STQIINOb=b' .
02 SSA001-STQIINO PICTURE X(6).
02 SSA001-END PICTURE X VALUE ') , .

01 SSA002-GN-STCISUB PICTURE X(9) VALUE ' STCISUBbb.

01 IOAREA PICTURE X(256).

MOVE INVENTORY-ITEM-NO TO SSAOO l-STQIINO.

CALL 'CBLTDLI' USING GHU-FUNC,PCB-NAME,IOAREA,SSAOO1-GU-STPIITM,
SSA002-GN-STCISUB.

The retrieved SUBSTITUTE ITEM segment can now be changed
in the IOAREA by the program.

CALL 'CBLTDLI' USING REPL-FUNC,PCB-NAME,IOAREA.

STATUS CODES (after REPL call):

bb: segment is replaced with contents in IOAREA
other: error situation

Figure 4-12. Basic REPL Call

Deleting Segments
To delete the occurrence of a segment from a data
base, the segment must first be obtained by issuing a
get hold call (GHU, GHN, or GHNP) through DL/l. Once
the segment has been acquired, the DLET call may be
issued.

No DL/I call that uses the same PCB must intervene
between the get hold call and the DLET call, or the
DLET call is rejected. Quite often a program may want
to pr;)cess a segment prior to deleting it. This is permit­
ted as long as the processing does not involve a DL/I
call that refers to the same data base PCB used for the
get hold/delete calls. However, other PCBs may be
referred to between the get hold and delete calls.

77 GHU-FUNC PICTURE XXXX VALUE 'GHUb' .
77 DLET-FUNC PICTURE XXXX VALUE 'DLET' .
01 SSAOO1-GU-STPIITM.

DL/I is advised that a segment is to be deleted when
the user issues a call that has the function DLET. The
deletion of a parent, in effect, deletes all the segment
occurrences beneath that parent, whether or not the
application program is sensitive to those segments. If
the segment being deleted is a root segment, the whole
data base record is deleted. The segment to be deleted
must still be in the IOAREA of the delete call (with
which no SSA is used), and its sequence field must not
have been changed. Figure 4-13 gives an example of a
DLET call.

02 SSA001-BEGIN PICTURE X(19) VALUE 'STPIITMb(STQIINOb=b' .
02 SSA001-STQIINO PICTURE X(6).
02 SSA001-END PICTURE X VALUE ')' .

01 SSA002-GN-STCISUB PICTURE X(9) VALUE 'STCISUBbb' .

01 IOAREA PICTURE X(256).

CALL 'CBLTDLI' USING GHU-FUNC,PCB-NAME,IOAREA,SSA001-GU-STPIITM,
SSA002-GN-STCISUB.

The retrieved SUBSTITUTE ITEM segment can now be processed in
the IOAREA by the program

CALL 'CBLTDLI' USING DLET-FUNC,PCB-NAME,IOAREA.

STATUS CODES (after DLET call):

bb: requested SUBSTITUTE ITEM segment is deleted from the
data base; all its dependents, if any, are also
deleted.

other: error situation

Figure 4-13. Basic DLET Call

Chapter 4: Processing Data Bases (Batch Considerations) 4 - 19

Inserting Segments
Adding new segment occurrences to a data base is done
with the insert call, function code 'ISRT'.

The DL/I insert call is used for two distinct purposes:

• Load the segments during creation of a data base,
and

• Add new occurrences of an existing segment type
into an established data base.

The processing options field in the PCB indicates
whether the data base is being added to or loaded. The
format of the insert call is identical for either use.

When loading or inserting, the last SSA must specify
only the name of the segment being inserted. It should
specify only the segment name, not the sequence field.
Thus an unqualified SSA is always required.

Up to the level to be inserted, the SSA evaluation
and positioning for an insert call is exactly the same as

77 ISRT-FUNC PICTURE XXXX VALUE 'ISRT' .
01 SSAOO-GU-STPIITM.

for a GU call. For the level to be inserted, the value of
the sequence field in the segment in the user I/O area is
used to establish the insert position. If no sequence
field is identified, then the segment is inserted
(assuming RULES=LAST) at the end of the physical twin
chain. If multiple non-unique keys are allowed, then
the segment is inserted after existing segments with the
same key value.

Figure 4-14 shows an example of an ISRT call. The
status codes in this example apply only to inserts after
the data base has been loaded. The status codes at
initial load time are discussed under the topic "Loading
A Basic Data Base" later in this chapter.

Note: There is no need to check the existence of a segment in the
data base with a preceding retrieve call. DL/I will do that at insert
time, and will notify you with an II or GE status code. Checking
previous existence is only relevant if the segment has no sequence
field. However, if your application typically expects a segment to be
present in the data base, then you should check for its existence first.
If typically the segment does not exist, then insert first.

02 SSA001-BEGIN PICTURE X(19) VALUE 'STPIITMb(STQIINOb=b' .
02 SSA001-STQIINO PICTURE X(6).
02 SSA001-END PICTURE X VALUE ')' .

01 SSA002-GN-STCISUB PICTURE X(9) VALUE ' STCISUBbb' .

01 IOAREA PICTURE X(256).

MOVE INVENTORY-ITEM-NO TO SSA001-STQIINO.

MOVE SUBSTITUTE-ITEM TO IOAREA.

CALL 'CBLTDLI' USING ISRT-FUNC,PCB-NAME,IOAREA,SSA001-GU-STPIITM,
SSA002-GN-STCISUB.

STATUS CODES:

bb: new SUBSTITUTE ITEM segment is inserted in data base
II: segment to insert already exists in data base
GE: segment not found; the requested inventory item number

(i.e. , the parent of the segment to be inserted) is not
in the data base.

other: error condition

Figure 4-14. Basic ISRT Call

4 - 20 DL/I DOS/VS Guide For New Users

Calls With Command Codes
Both unqualified and qualified SSAS may contain one
or more optional command codes which specify func­
tional variations applicable to either the call function
or the segment qualification. Command codes in an
SSA are always prefixed by an asterisk (*), which im­
mediately follows the 8-byte segment name. Figure
4-15 illustrates this. Following are some important
command codes.

D Command Code
The 'D' command code is the one most widely used. It
requests DL/I to issue path calls. A path call enables a
hierarchical path of segments to be inserted or re­
trieved with one call. (A "path" was defined earlier as
the hierarchical sequence of segments, one per level,
leading from a segment at one level to a particular
segment at a lower level). The meaning of the 'D' com­
mand code is as follows:

• For retrieval calls, multiple segments in a hier­
archical path will be moved to the I/O area with a
single call. This type of call will subsequently be
referred to as a path call. The first through the last
segment retrieved are concatenated in the user's

77 GU-FUNC PICTURE XXXX VALUE 'GUbb' .

01 SSA004-GUO-STPIITM.

I/O area. Intermediate SSAS may be present with
or without the 'D' command code. Ifwithout,
these segments are not moved to the user's I/O
area. The segment named in the PCB segment
name feedback area is the lowest-level segment
retrieved, or the last level satisfied in the call in
case of a not-found condition. Higher-level seg­
ments associated with SSAs having the 'D' com­
mand code will have been placed in the user's I/O
area even in the not-found case. The 'D' is not
necessary for the last SSA in the call, because the
segment that satisfies the last level is always
moved to the user's I/O area. A processing option
of 'P' must be specified in the PSBGEN for any seg­
ment type for which a command code of'D' is
used.

• For insert calls, the 'D' command code designates
the first segment type in the path to be inserted.
The SSAS for lower-level segments in the path need
not have the 'D' command code set, that is, the 'D'
command code is propagated to all specified
lower-level segments.

Figure 4-15 shows an example of a path call.

02 SSA004-BEGIN PICTURE X(21) VALUE 'STPIITMb*O(STQIINOb=b' .
02 SSA004-STQIINO PICTURE X(6).
02 SSA004-ENO PICTURE X VALUE ')' .

01 SSA005-GN-STSILOC PICTURE X(9) VALUE 'STSILOCbb' .

01 IOAREA PICTURE X(256).

CALL 'CBLTOLI' USING GU-FUNC,PCB-NAME,IOAREA,
SSA004-GUO-STPIITM,SSA005-GN-STSILOC.

STATUS CODES:

bb: both segments (INVENTORY ITEM and ITEM LOCATION)
have been placed in IOAREA

GE: segment not found; INVENTORY ITEM segment may be retrieved
in IOAREA; check segment name and level

other: error condition

Figure 4-15. Sample Path Retrieve Call

The correct use of the path call can provide a signifi­
cant performance advantage. You should use it when­
ever possible, even if the chance of the existence or the
need for the dependent segment(s) is relatively small.
If, for instance, you would need, in 10% or more of the
occurrences, the first dependent segment after you
inspect the parent, then it is generally advantageous to
use a path call to retrieve them both initially.

indicator in PCB.

N Command Code
When a replace call follows a path retrieve call, it is
assumed that all segments previously retrieved with the
path call are being replaced. If any of the segments
have not been changed, and, therefore, need not be
replaced, the 'N' command code may be set at those
levels, telling DL/I not to replace the segment at this
level of the path. The status codes returned are the
same as for a regular replace call.

Chapter 4: Processing Data Bases (Batch Considerations) 4 - 21

F Command Code
This command code allows you to back up to the first
occurrence of a segment under its parent. It has mean­
ing only for a get next call. A get unique call always
starts with the first occurrence. Command code 'F' is
disregarded for the root segment.

L Command Code
This command code allows you to retrieve the last
occurrence of the segment type that satisfies the quali­
fication statement; or, if unqualified, to retrieve the last
occurrence of this segment type under its parent. If this
command code is used at the root level, it is disregard­
ed. When used with ISRT calls, the command code
applies only to segments with a nonunique sequence
field and with RULES=(,FIRST) or RULES={,HERE), in
which case the rule is overridden.

Q Command Code
The 'Q' command code causes OL/I to lock the
segment(s) returned by the call to prevent modification
by another task.

It provides a facility which permits segments to be
enqueued (locked) when the application needs to ex­
amine a number of segments and at the same time,
prevent any of them from being modified while the
others are being examined. The application can obtain
the segments using the 'Q' command code and then
retrieve them again with the assurance that none of
them can be modified until the application terminates
or issues a checkpoint.

To provide IMS compatibility, the 'Q' command code
must be followed by the character 'A'.

Note: By definition, the 'Q' command is always followed by a one­
byte field. Therefore, the second byte after the 'Q' must contain
another command code, a left paren, or a blank.

The 'Q' command code will be ignored by DL/I un­
less the segment for which it was specified is actually
returned to the user (that is, used with ·0 or with the
lowest level SSA).

Data Base Positioning After a DL/I
Call
As stated before, the data base position is used by OL/I

to satisfy the next call against the PCB. The segment
level, segment name, and the key feedback areas of the
PCB are used to present the data base position to the
application program.

The following basic rules apply:

• If a get call is completely satisfied, current posi­
tion in the data base is reflected in the PCB key
feedback area.

4 - 22 DL/I OOS/VS Guide For New Users

• A replace call does not change current position in
the data base.

• Data base position after a successful insert call is
immediately after the inserted segment.

• Data base position after return of an II status code
is immediately prior to the duplicate segment.
This positioning allows the duplicate segment to
be retrieved with a GN call.

• Data base position after a successful delete call is
immediately after all dependents of the deleted
segment. If no dependents existed, data base posi­
tion is immediately after the deleted segment.

• Data base position is unchanged by an unsuccess­
ful delete call.

• After a (partial) unsuccessful retrieve call, the PCB

reflects the lowest level segment which satisfied
the call. The segment name or the key feed back
length should be used to determine the length of
the relevant data in the key feedback area. Con­
tents of the key feedback area beyond the length
value must not be used, because the feedback area
is never cleared after previous calls. If the level­
one (root) SSA cannot be satisfied, the segment
name is cleared to blank, and the level and key
feedback length are set to O.

In considering 'current position in the data base',
remember that OL/I must first establish a starting posi­
tion to be used in satisfying the call. This starting posi­
tion is the current position in the data base for get next
calls, and is a unique position normally established by
the root SSA for get unique calls.

The following are clarifications of 'current position
in the data base' for special situations:

• If no current position exists in the data base, then
the assumed current position is the start of the
data base.

• If the end of the data base is encountered, then the
assumed current position to be used by the next
call is the start of the data base.

• If a get unique call is unsatisfied at the root level,
then the current position is such that the next seg­
ment retrieved is the first root segment with a key
value higher than the one specified for the unsuc­
cessful call. Two exception are: 1. When the end
of the data base is reached, and 2. For HDAM,

where it is the next segment in physical sequence.

You can always reestablish your data base position­
ing with a GU call specifying all the segment key values
in the hierarchical path. It is highly recommended that
you use a get unique call after each not found condi­
tion.

L

Using Multiple PCBs For One Data
Base
Whenever there is a need to maintain two or more
independent positions in one data base, you should use
different PCBS. This avoids the reissue of get unique
calls to switch forward and backward from one data
base record or hierarchical path to another. There are
no restrictions as to the call functions available in these
multiple PCBs. However, to avoid position confusion in
the application program, you should not apply changes
via two PCBs to the same hierarchical path. For sim­
plicity reasons, it is best to limit the updates to one PCB
unless this would cause additional calls.

COBOL Batch Program Structure
Figure 4-16 illustrates in outline form the fundamental
parts in the structure of a COBOL batch program which,
in this example is to retrieve data from a detail file to
update a master data base. The following explanation
relates to the reference numbers along the left side of
the figure.

1. A 77 level or 0 I level working storage entry de­
fines each of the call functions used by the batch
program. Each picture clause is defined as 4 al­
phameric characters and has a value assigned for
each function (for example, 'GUbb'). If the op­
tional count field were to be included in the call
statement, count values could be initialized for
each type of call. The COBOL copy function could
be used to include these standard descriptions
into the program.

2. A 9-byte area is set up to be used in the calls that
require an unqualified SSA. Before the call is is­
sued, a segment name is moved into this field. If a
call requires 2 or more unqualified SSAS, addi­
tional areas may be required.

3. An 01 level working storage entry defines each
SSA used by an application program.

A separate SSA structure is required for each seg­
ment type accessed by the program because the
key-value fields should be different. Once the
fields other than key-value are initialized, they
need not be altered.

4. A 01 level working storage entry defines the pro­
gram segment I/O area. This area can be further
defined with 02 entries. Separate I/O areas may
be allocated for each segment type prescribed, or
a single area can be used.

5. A 01 level Linkage Section entry describes the
data base PCB entry for every input or output data
base. It is through this linkage that a COBOL pro­
gram may access the status codes after a DL/I call.
The individual fields in the PCB are defmed in the
linkage section so that they may be referenced in
the program.

6. This is the standard entry point in the procedure
division of a batch program. After DL/I control
has loaded the PSB for the program in the batch
partition, it gives control to the application pro­
gram. The PSB contains all the PCBS used by the
program. The USING statement at the entry point
to the batch program must contain the same
number of names in the same sequence as there
are PCBS in the PSB.

7. These are typical calls to retrieve data from a data
base using a qualified search argument.

Before issuing the call, the key value of the SSA
must be initialized to specify the particular seg­
ment to be retrieved. Immediately following the
call a test should be made of the status-code field
of the PCB to determine if the call was successful.

8. This is a typical call to retrieve data from a data
base using no SSA. This call is also a hold call for
a subsequent delete or replace operation.

9. This statement replaces data in the data base with
data from a COBOL batch program.

10. The GOBACK statement causes the batch program
to return control to DL/1.

11. • A language interface module (DLZLIOOO), which
must be link-edited to the batch program after
compilation, provides a common interface to
DL/l. The call statement causes a v-type address
constant (CBLTDLI) to be generated for the lan­
guage interface module. When the application
program is link-edited, the DOS/VS automatic
library look-up (AUTOLINK) feature retrieves the
language interface module from a DOS/VS relo­
catable library (system or private) and link-edits
it with the application program. If AUTOLINK is
suppressed, an INCLUDE statement must be pre­
sent for the language interface module.

Note: The user must include the following additional state­
ments in the input to the linkage editor:

INCLUDE DLZBPJRA
ENTRY CBLCALLA

Chapter 4: Processing Data Bases (Batch Considerations) 4 - 23

REF.
NO. ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

77 FUNC-GU PICTURE XXXX VALUE 'GU
77 FUNC-GHU PICTURE XXXX VALUE 'GHU ,
77 FUNC-GN PICTURE XXXX VALUE 'GN
77 FUNC-GHN PICUTRE XXXX VALUE 'GHN ,
77 FUNC-GNP PICTURE XXXX VALUE 'GNP ,
77 FUNC-GHNP PICTURE XXXX VALUE 'GHNP' .
77 FUNC-REPL PICTURE XXXX VALUE 'REPL' .
77 FUNC-ISRT PICTURE XXXX VALUE 'ISRT' .
77 FUNC-DLET PICTURE XXXX VALUE 'DLET' .
77 COUNT PICTURE S9(5)VALUE +4 COMPUTATIONAL.

2 01 UNQUAL-SSA.
02 SEG-NAME PICTURE X(08)VALUE ,
02 FILLER PICTURE X VALUE , ,

3 01 QUAL-SSA-MAST.
02 SEG-NAME-M PICTURE X(08)VALUE 'ROOT
02 BEGIN-PAREW-M PICTURE X VALUE '(' .
02 KEY-NAME-M PICTURE X(08)VALUE 'KEY
02 REL-OPER -M PICTURE X(02)VALUE , ='
02 KEY-VALUE-M PICTURE X(06)VALUE 'vvvvvv' .
02 END-PAREN-M PICTURE X VALUE ')' .

01 QUAL-SSA-DET
02 SEG-NAME-D PICTURE X(08)VALUE 'ROOT
02 BEGIN-PAREN-D PICTURE X VALUE '(' .
02 KEY-NAME-D PICTURE X(08)VALUE 'KEY
02 REL-OPER-D PICTURE X(02) VALUE , ='
02 KEY-VALUE-D PICTURE X (06) VALUE 'vvvvvv' .
02 END-PAREN-D PICTURE X VALUE ')' .

4 01 DET-SEG-IN.
02 --
02 --

01 MAST-SEG-IN.
02
02 --

Figure 4-16. General COBOL Batch Program Structure (I of2)

4 - 24 DL/I DOS/VS Guide For New Users

5

6

7

8

9

LINKAGE SECTION.
01 DB-PCB-MAST.

02 MAST-DBD-NAME
02 MAST-SEG-LEVEL
02 MAST-STAT-CODE
02 MAST-PROC-OPT
02 FILLER
02 MAST-SEG-NAME
02 MAST-LEN-KFB

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

02 MAST-NU-SENSEG PICTURE
02 MAST-KEY-FB PICTURE

01 DB-PCB-DETAIL.
02 DET-DBD-NAME
02 DET-SEG-LEVEL
02 DET-STAT-CODE
02 DET-PROC-OPT
02 FILLER
02 DET-SEG-NAME
02 DET-LEN-KFB
02 DET-NU-'SENSEG
02 DET-KEY-FB

PROCEDURE DIVISION.

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

X(8) •
XX.
XX.
XXXX.
S9(5) COMPUTATIONAL.
X(8) •
S9(5) COMPUTATIONAL.
S9(5) COMPUTATIONAL.
X---X.

X(8) .
XX.
XX.
XXXX.
S9(5)
X(8) •
S9(5)
S9(5)
X---X.

COMPUTATIONAL.

COMPUTATIONAL.
COMPUTATIONAL.

ENTRY 'DLITCBL' USING DB-PCB-MAST, DB-PCB-DETAIL.

CALL 'CBLTDLI' USING FUNC-GU, DB-PCB-DETAIL,
DET-SEG-IN, QUAL-SSA-DET.

CALL 'CBLTDLI' USING COUNT, FUNC-GHU, DB-PCB-MAST,
MAST-SEG-IN, QUAL-SSA-MAST.

CALL 'CBLTDLI' USING FUNC-GHU, DB-PCB-MAST,
MAST-SEG-IN.

CALL 'CBLTDLI' USING FUNC-REPL, DB-PCB-MAST,
MAST-SEG-IN.

10 GOBACK.

11 COBOL LANGUAGE INTERFACE

Figure 4-16. General COBOL Batch Program Structure (2 of2)

PL/I Batch Program Structure
Figure 4-17 illustrates in outline form the fundamental
parts in the structure of a PL/I batch program which, in
this example, is to retrieve data from a detail file to
update a master data base. The following explanation
relates to the reference numbers along the left side of
the figure.

1. This is the main entry point to a PL/I batch pro­
gram. After the DL/I control program has loaded
and relocated the PSB for the program, it gives
control to this entry point. The PSB contains all
the PCBs used by the program. The entry point

statement of the batch program must contain the
same number of names in the same sequence as
there are PCBS in the PSB.

2. Each area defines one of the call functions used
by the PL/I batch program. Each character string
is defined as 4 alphameric characters, with a
value assigned for each function (for example,
'GU .). Other constants may be defined in same
the manner. Standard defmitions could be stored
in a source library and included using a
%INCLUDE statement.

Chapter 4: Processing Data Bases (Batch Considerations) 4 - 25

REF.
NO. /* */

*/
*/

3

4

/*
/*

/*
/*
/*
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL

ENTRY POINT

DLITPLI: PROCEDURE (DB_PTR~ST_,DB_PT~DETAIL
OPTIONS (MAIN);

DESCRIPTIVE STATEMENTS

DB_PT~ST POINTER;
DB_PT~DETAIL POINTER;
FUNC_GU CHAR(4)
FUNC_GN CHAR(4)
FUNC_GHU CHAR(4)
FUNC_GHN CHAR(4)
FUNC_GNP CHAR(4)
FUNC_GHNP CHAR(4)
FUNC_ISRT CHAR(4)
FUNC~EPL CHAR(4)
FUNC_DLET CHAR(4)

INIT('GU ');
INIT('GN ');
INIT('GHU ');
INIT('GHN ');
INIT('GNP');
INIT ('GHNP ,) ;
INIT (, ISRT') ;
INIT('REPL');
INIT('DLET');

DCL 1 QUAL_SSA STATIC UNALIGNED,
2 SEG_NAME
2 SEG_QUAL
2 SEG_KEY_NAME
2 SEG_OPR
2 SEG-KEY_VALUE
2 SEG_END_CHAR

DCL 1 UNQUAL_SSA

DCL 1

DCL 1

2 SEG_NAME_U
2 BLANK

MAST_SEG_IO~REA,

2 ---
2 ---
2 --­
DET_SEG_IO~REA,

2
2
2 ---

CHAR(8) INIT('ROOT '),
CHAR (1) INIT (, (,) ,
CHAR(8) INIT('KEY ') ,
CHAR(2) INIT(' ='),
CHAR(6) INIT('vvvvvv'),
CHAR (1) INIT (,) ,) ;
STATIC UNALIGNED,
CHAR(8) INIT('NAME '),
CHAR(1) INIT(' ');

*/
*/
*/

Figure 4-17. General PL/I Batch Program Structure (1 of 2)

3. A structure declaration defines each SSA used by
the problem program. The unaligned attribute is
required for SSA data interchange with DL/I. The
SSA character string must reside contiguously in
storage. Assignment of variables to key values,
for example, could result in the construction of an
invalid SSA if the key value has the aligned attri­
bute.

A separate SSA structure is required for each seg­
ment type accessed by the program because the
key-value fields should be different. Once the
fields other than key-value are initialized, they
should not have to be altered.

A 9-byte area should be reserved for use as an
unqualified SSA. Before issuing an unqualified
call, a segment name is moved into this field.

4. The segment I/O areas are defmed as structures.

5. One level I declarative (similar to COBOL'S link­
age section) describes as a structure the data base
PCB entry for each input or output data base. It is

4 - 26 DL/I DOS/VS Guide For New Users

through this description that a PL/I program may
access the status codes after a DL/I call.

6. This statement is used to identify a binary num­
ber (fullword) that represents the parameter
count of a call to DL/1. The parameter count
value equals the remaining number of arguments
following the parameter count set off by commas.

7. These are typical calls to retrieve data from a data
base using a qualified SSA.

Prior to execution of the call the
SEG_KEY_VALUE field of the SSA must be initial­
ized if a fully qualified SSA is required. For a call
using an unqualified SSA, the segment name field
must be moved to one of the 9-byte UNQUAL_SSA

areas.

Immediately following the call the status code
field of the PCB must be checked to determine the
results of the call.

L

8. This is a typical call to retrieve data from a data
base using no SSA. This call is also a HOLD call for
subsequent delete or replace operation.

9. This call is used to replace data in the data base
with data from a PL/I batch program.

10. This RETURN statement causes the batch program
to return control to DL/I.

II. A language interface module (DLZLIOOO), which
must be link-edited to the batch program, pro­
vides a common interface to DL/I. The call state­
ment causes a v-type address constant (PLITDLI)

to be generated for the language interface mo-

dule. When the application program is link­
edited, the DOS/VS automatic library look-up
(AUTOLINK) feature retrieves the language inter­
face module from a DOS/VS relocatable library
(system or private) and link-edits it with the ap­
plication program. If AUTOLINK is suppressed, an
INCLUDE statement must be present for the lan­
guage interface module.

Note: The user must include the following additional state­
ments in the input to the linkage editor:

INCLUDE
ENTRY

IBMBPJRA
PLICALLB

DCL 1 DB_PCB~ST BASED (DB_PT~ST) ,
2 MAST_DB_NAME CHAR(8) ,
2 MAST_SEG_LEVEL CHAR(2) ,
2 MAST_STAT_CODE CHAR (2) ,

5 2 MAST_PROC_OPT CHAR(4) ,
2 FILLER FIXED BINARY (31 ,0) ,
2 MAST_SEG_NAME CHAR(8) ,
2 MAST_LEN_KFB FIXED BINARY (31 ,0) ,
2 MAST_NO_SENSEG FIXED BINARY (31 ,0) ,
2 MAST_KEY_FB CHAR(X) ;

DCL DB_PCB_DETAIL BASE (DB_PTLDETAIL),
2 DET_DB_NAME CHAR(8) ,
2 DET_SEG_LEVEL CHAR(2) ,
2 DET_STAT_CODE CHAR(2),
2 DET_PROC_OPT CHAR(4) ,
2 FILLER FIXED BINARY (31 ,0) ,
2 DET_SEG_NAME CHAR(8) ,
2 DET_LEN_KFB FIXED BINARY (31 ,0) ,
2 DET_NU_SENSEG FIXED BINARY (31 ,0) ,
2 DETJEY_FB CHAR (X) ;

DCL THREE FIXED BINARY (31.0) INITIAL (3) ;
DCL FOUR FIXED BINARY (31 .0) INITIAL(4);
DCL FIVE FIXED BINARY (31 .0) INITIAL (5) ;

6 DCL SIX FIXED BINARY (31 .0) INITIAL(6);
/* */
/* MAIN PART OF PL/I BATCH PROGRAM */

7 CALL PLITDLI(FOUR,FUNC_GU,DB_PCB_DETAIL,
DET_SEG_IO~REA,QUAL_SSA);

CALL PLITDLI(FOUR,FUNC_GHU,DB_PCB~ST,
MAST_SEG_IO~REA,QUAL_SSA);

8 CALL PLITDLI(THREE,FUNC_GHN,DB_PCB~ST,
MAST_SEG_IO~REA

9 CALL PLITDLI(THREE,FUNC-REPL,DB_PCB~ST,
MAST_SEG_IO~REA);

10 RETURN;
END DLITPLI;

11 PL/I LANGUAGE INTERFACE

Figure 4-17. General PL/I Batch Program Structure (2 of 2)

Chapter 4: Processing Data Bases (Batch Considerations) 4 - 27

RPG II Batch Program Structure
Figure 4-18 illustrates in outline form the fundamental
parts in the structure of an RPG II batch program
which, in this example, is to retrieve data from a detail
file to update a master data base. The following expla­
nation relates to the reference numbers along the right
side of the figure.

RPG CONTROL AND FILE DESCRIPTION SPECIFICATIONS

H

........ -...... I ::~ I I I I I I I I C.dEIKt~Nu_1
Control Specifications

File Description Specifications

Figure 4-18. General RPG II Batch Program Structure (Part I of6)

4 - 28 DL/I DOS/VS Guide For New Users

GX21·9092·5 UM/050-
Printed in U.s.A.

Refer to the $p<!cific System Reference
Librarv manual for actual entries.

L 1::- I"'"
Punching
INtruction

RPG INPUT SPECIFICATIONS

1 ::~ 1 1 1 I 1 I I I ~,dEI~~Num~' 1

Figure 4-18. General RPG II Batch Program Structure (Part 2 of 6)

RPG INPUT SPECIFICATIONS

I

Une Filename

Figure 4-18. General RPG II Batch Program Structure (Part 3 of6)

GX21·9094·3 UlM050-
Printed in U.S.A.

12 167877787980

.... !ili]O,_ :: .. , ... JoiLJIJRJp JGJ

1 2

P ... [!li] .. _

GX21.909.U U/M050-
Printed in U.S.A.

Chapter 4: Processing Data Bases (Batch Considerations) 4 - 29

RPG CALCULATION SPECIFICATIONS

Figure 4-18. General RPG II Batch Program Structure (Part 4 of 6)

RPG CALCULATION.SPECIFICATIONS
JIM In_rnation.! Bulin_ Machine CorporlhQl'l

Program

Prowammer

Figure 4-18. General RPG II Batch Program Structure (Part 5 of6)

4 - 30 DL/I DOS/VS Guide For New Users

GX21-9D93-2 UM/OSO" Printed In U.S.A.
*No. ollorms per pad may vary sllghtiy

75 76 77 78 79 80

:~::,:,,;~IDILIIIRlpIGI

Comments

GX21-9093-2 UM/OSO" Printed in U.S.A.
·No. ot forms per pad mllly vary slighUy

12 757677787980

P ... [ili]o,_ :::::,: .. ;onIDILIIIRlp IGI

Comments

RPG OUTPUT SPECIFICATIONS GX21-toII).3UMJOIO"

.......

...... -
o

Figure 4-18. General RPG II Batch Program Structure (Part 6 of 6)

O. The user may specify any program name.

1. Specify B in position 56 to tell the Translator that
this is an RPG II program which will run under
DL/I.

2. A data base may be defined as a DB-file. In this
case the PCB can be specified in a continuation
line (K in position 53) to the DB-file specification.

3. The continuation line defines the PCB associated
with the DB-file. In this case the PCB will be auto­
matically generated. The Translator will put the
defmition into the Input Specifications as a data
structure.

4. This is the segment definition of the DB-file
MASTDB.

5. This data structure provides an I/O area for use by
RQDLI commands without referring to a File De­
scription Specification.

6. This is an example of a user-defined PCB. It must
have the same layout as the automatically generat­
ed PCB; however, the user may use names of his
own choice.

7. This data structure can be used to build a quali­
fied SSA.

1 2 767677787980

P ... [ili]o,_ ::~';"'tionIDILIIIRlpIGI

Com"", z.,.o S.lIncli NoS!", to Print co X· R.-nove
.... SItn

v. v" A J Y· Dlite

v" No • K Field Edit
No v. C L Z .. Zero
No No D M s.."",_

Constant or Edit Word
,

'12346818 16 11 18 19

8. Since not all data bases are defined as DB-files, the
user must explicitly specify the "ENTRY PLIST.
After the DL/I control program has loaded the PSB,
it gives control to the RPG II program. The PSB
contains all the PCBS used by the program. There­
fore, the PARM statements of the "ENTRY PLIST
must specify the PCBs in the same sequence they
are specified in the PSB.

9. The following MOVE statements build a qualified
SSA to be used in an SSA option of the RQDLI com­
mand. Reference numbers 10-12 show typical
commands to retrieve data from a data base.

10. This RQDLI command explicitly uses the I/O area
DETAR.

Immediately following the RQDLI command the
status code field of the PCB must be checked by
the user (by using compare operations, as illustrat­
ed in Figure 2-4, to determine the results of the
RQDLI command.

11. This MOVE statement specifies that a new value
for KEYV AR will be used in the following RQDLI
command (reference number 12).

12. This RQDLI command does not use our I/O area.
In this case the Translator takes the information
and adds it to the records defined in the Input
Specifications. This command is used to show

Chapter 4: Processing Data Bases (Batch Considerations) 4 - 31

how it is possible to specify a qualified SSA in a
QSSA statement.

13. This is a typical RQDLI command to retrieve data
from a data base using no SSA. This RQDLI com­
mand is also a HOLD RQDLI command for subse­
quent delete or replace operations.

14. This RQDLI command is used to replace data in
the data base with data from an RPG II batch pro­
gram. It uses MASTDB as defined in the Output
Specifications to define the I/O area.

15. SETON LR must be coded to return control to DL/1.

16. This is the segment definition for output of the
MASTDB file.

17. A language interface module (DLZLlOOO) must be
link-edited to the application program to provide
a common interface to DL/I. When the application

PGMSTART CSECT
USING *,R 12
SAVE (R14,R12)
LR R12,R15
ST R13,SAVEAREA+4
LA R 1 3 , SAVEAREA

2 MVC DBPCBMST(8) ,O(Rl)

MVC DLIFUNC,GU
MVC PCB,DBPCBDET
LA Rl,DETSEGIO
ST Rl,IOAREA
LA Rl,SSANAME
ST Rl,SSA
LA Rl,PARMLIST

3 CALL ASMTDLI

MVC DLIFUNC,GHU
MVC PCB,DBPCBMST
LA Rl,MSTSEGIO
ST Rl , IOAREA
MVI SSANAME+8,C'
LA Rl,PARMLIST

4 CALL ASMTDLI

MVC DLIFUNC,GHN
MVI PARMCT+3,3
LA R 1, PARMLIST

5 CALL ASMTDLI

MVC DLIFUNC,REPL
LA R 1 , PARMLIST

6 CALL ASMTDLI

L R13,4(R13)
7 RETURN (R14,R12)

* CONSTANT AREA

8 PARMLIST DC A(PARMCT)
FUNC DC A(DLIFUNC)
PCB DC A(O)
IOAREA DC A(O)
SSA DC A(O)

program is link-edited, the DOS/VS automatic li­
brary look-up (AUTO LINK) feature retrieves the
language interface module from a DOS/VS relocat­
able library (system or private) and link-edits it
with the application program. If AUTO LINK is
suppressed, an INCLUDE statement must be pre­
sent for the language interface module.

Assembler Language Batch Program
Structure
Figure 4-19 illustrates in outline form the fundamental
parts in the structure of an Assembler Language batch
program which, in this example, is to retrieve data from
a detail file to update a master data base. The following
explanation relates to the reference numbers along the
left side of the figure.

Figure 4-19. General Assembler Language Batch Program Structure (I of 2)

4 - 32 DL/I DOS/VS Guide For New Users

..J

9 DBPCBMST DC F'O'
DBPCBDET DC F'O'

PARMCT DC F'4'
DLIFUNC DC CL4'
GU DC CL4'GU

10 GHU DC CL4'GHU '
GHN DC CL4'GHN '
REPL DC CL4'REPL'

SSANAME OS OCL26
ROOT DC CL8'ROOT

11 DC CL1' ('
DC CL8'KEY
DC CL2' ='

NAME DC CL6'vvvvvv'
DC CL1') ,

12 MSTSEGIO OS CL100
DETSEGIO OS CL100
SAVE AREA DC 18F'0'

PCBNAME DSECT
DBPCBDBD OS CL8 DBD NAME
DBPCBLEV OS CL2 LEVEL FEEDBACK
DBPCBSTC OS CL2 STATUS CODES
DBPCBPRO OS CL4 PROC OPTIONS
DBPCBRSV OS F RESERVED
DBPCBSFD OS CL8 SEGMENT NAME FEEDBACK
DBPCBMKL OS F CURRENT LENGTH OF KEY FEEDBACK

• AREA
DBPCBNSS OS F NO OF SENSITIVE SEGMTS IN PCB
DBPCBKFD OS CL6 KEY FEEDBACK AREA

END

13 ASSEMBLER LANGUAGE INTERFACE

Figure 4-19. General Assembler Language Batch Program Structure (2 of2)

1. The entry point to the Assembler Language Pro­
gram. See the discussion under "Assembler" in
the section "Entry to an Application Program"
earlier in this chapter. The base register 12 is used
in this example.

2. When control is passed to the application pro­
gram, register 1 contains the address of a
variable-length fullword parameter list. See the
discussion under "Assembler" in the section
"Entry to an Application Program" earlier in this
chapter. As only explicit calls are issued in this
example, there is no need to reset the 0 bit from 1
toO.

3. This is a typical call to retrieve data from the
detail data base using a qualified search argu­
ment. All DLII calls should be executed with the
CALL macro instruction. Prior to execution of the
call statement register 1 must point to the
variable-length fullword parameter list. This may
be done through operands of the CALL macro
instruction. If the user constructs his own param­
eter list, the leftmost bit of the last entry in the list

must be set to one unless a parameter count is
specified as shown in this example. Immediately
following the call, the status code of the PCB
should be tested to determine the result of the
call.

4. This call (and calls 5 and 6) are to the master data
base and therefore the PCB address and I/O area
must be reloaded. This call has an unqualified
SSA by setting the left parentheses in position 9 to
blank.

5. This is a typical call to retrieve data from a data
base, which, by setting the parm-count to three,
uses no SSA. This call is also a HOLD call for sub­
sequent delete or replace.

6. This call is used to replace data in the detail data
base.

7. The RETURN statement loads DLII registers and
causes the batch program to return control to
OL/I.

8. In this illustration, one variable-length parameter
list is defined to process all data base calls. The

Chapter 4: Proccllina Data BaHI (Batch Conllderations) 4 • 33

list contains pointers to the parameter count, DL/I
call function, PCB, I/O area, and SSA. The value in
PARMCT determines the length of the parameter
list. In this case, the count of four indicates that
the following four addresses constitute the par­
ameter list.

9. A fullword must be defined for every data base
PCB. The Assembler language program may ac­
cess the status codes after a DL/I call using the
PCB base addresses.

10. The call functions are defined as 4-character
constants.

11. The SSAS must be dermed by the problem pro­
gram.

12. An I/O area large enough to contain the largest
segment of a data base must be provided. In Fig­
ure 4-19, it is assumed that the longest segment
does not exceed 100 bytes. As previously men­
tioned, an 18-fullword register save area must be
provided in the application program.

13. A language interface module (DLZLlOOO) must be
link-edited to the batch program after assembly
to provide a common interface to DL/1. The call
statement causes a V -type address constant
(CBL TOll or ASMTDLI) to be generated for the
language interface module. When the application
program is link-edited, the DOS/VS automatic
library look-up (AUTOLlNK) feature retrieves the
language interface module from a DOS/VS relo­
catable library (system or private) and link-edits
it with the application program. If AUTO LINK is
suppressed, an INCLUDE statement must be pre­
sent for the language interface module.

Restrictions

On COMREG Use
Bytes 16 through 19 ofthe communication region are
used by DL/I and therefore must not be used by the
application program.

On Overlay Programs
Overlay structures are not supported for application
programs executed under DL/I. Although the COBOL
SORT verb automatically produces an overlay structure
the restriction does not apply if the job control state­
ments used to compile and link-edit the program as
shown below are used. (For COBOL programs that do
not contain the SORT verb, the INCLUDE DLZBPJRA
statement may, alternatively, be placed immediately
before the entry statement.) The use of "PL/I-SORT"
programs, using the sort program product, is not affect-

4 - 34 DL/I DOS/VS Guide For New Users

ed by this restriction provided that an overlay structure
is not explicitly specified.

Set Exit Abnormal Linkage
The DL/I user has the option, through the use ofthe
user program switch indicator (UPS I), of permitting
STXlT AB and STXIT PC linkage to pass control to DL/I
prior to abnormal termination so that a controlled
shutdown may occur. The DL/I system log and DL/I
data base are closed and a storage dump is provided.
However, non-DL/I files are not closed; this is a user
responsibility.

If a COBOL application program is executing under
DL/I control, any attempt by the application program
to execute the COBOL debug function may cause unpre­
dictable results. Therefore, no COBOL debug function
(any COBOL option that makes use of a STXIT routine)
should be used if DL/I STXIT is used. Refer to your
COBOL publications for options that use STXIT linkages.

The High Level Language (HLL) Debugging facility
makes the job of an application programmer writing in
PL/I easier by allowing diagnostic information to be
supplied by both PL/I and DL/I. When a program
check is detected during application program execu­
tion, a STXIT PC routine will be given control if STXIT
support has been requested of DL/I (UPSI bit 7 = 0 for
batch, and always for MPS batch). This facility applies
only to batch and MPS batch execution of DL/I.

Job Control Statements
DL/I application programs cannot be processed in a
compile-link-go environment. Programs must first be
compiled and link-edited to a DOS/VS core image li­
brary and then executed as a separate job, as they run
as a subprogram ofthe DL/I initialization program.

Compile and Link-Edit

COBOL

II JOB COBSAMPL
II OPTION CATAL

PHASE COBSAMPL,*
INCLUDE DLZBPJRA

II EXEC FCOBOL

•
•

SOURCE DECK
•
•

1*
ENTRY CBLCALLA

II EXEC LNKEDT
1&

PLjl

II JOB PLISAMPL
II OPTION CATAL

PHASE PLISAMPL,*
II EXEC PLIOPT

•
•

SOURCE DECK
•
•

1*
INCLUDE IBMBPJRA
ENTRY PLICALLB

II EXEC LNKEDT
1&

Assembler

II JOB ASSSAMPL
II OPTION CATAL

PHASE ASSSAMPL,*
II EXEC ASSEMBLY

•
•

SOURCE DECK
•
•

1*
II EXEC LNKEDT
1&

RPGII
The compilation of an RPG II program which is going
to run under DL/I is a batch operation with the follow­
ing steps:

RPG II program
(with B specified in Column 56
of Header Specifications) ..
Translator ..
RPG II Compiler
(Auto report optional) ..
Appl. prog.

The RPG II program may optionally use Auto Re­
port, to include RPG II program pieces from libraries,
etc.

The function of the Translator is to accept as input a
source program, written in RPG II, in which DL/I re­
quests have been coded via RQDLI commands. The
Translator produces as output an equivalent source
program in which the DL/I requests have been translat­
ed into CALL statements together with READ and EXCPT
statements. At execution time the CALL statements
invoke DL/I, passing appropriate arguments.

The Translator is executed in a separate job step.
The job step sequence for compiling an application
program is thus translate-compile-link edit. The Trans­
lator requires a minimum of 96K bytes of virtual stor­
age. Its phase name is RPGIXLTR.

The Translator reads its input from SYSIPT, pro­
duces its output (the translated source program) on

SYSPCH, or optionally on SYSOO2 or SYSOO3, and writes
the source listing, error messages, etc. on SYSLIST.

The RPG II Translator provides a number of options.
They may be specified in the / / OPTION Job Control
Statement.

The Translator options for RPG II in a DL/I batch
environment are:

LIST NOLIST
DUMP NODUMP

Defaults are according to SYSGEN.

LIST: A listing of the source program is printed on
SYSLST.
DUMP: When unrecoverable errors occur, a dump is
produced.
NODUMP: When unrecoverable errors occur, no dump
is produced.

Translator Output
The DB-file descriptions are translated into File De­
scription Specifications for SPECIAL files.

An RQDLI command not specifying a file-name or
with an explicit FROM or INTO option is translated into
a CALL statement followed by PARM statements.

For standard data transfer (existing Input and/or
Output Specifications and no FROM or INTO option
explicitly specified) the RQDLI command is translated
into a CALL statement followed by a READ statement
for input, or an EXCPT statement for output.

Additionally, the Translator generates data struc­
tures and fields together with MOVE or Z-ADD state­
ments to build the proper SSAs from the USSA and QSSA
staM:ments, which are then used in the PARM state­
ments of the generated CALL statement.

Note: When link-editing an RPG II batch program using standard
data transfer, an unresolved external reference message for DFHEII
will appear in the linkage editor output listing unless the entry exists
in the user's core image library. The reason for this is that, in the
case of standard data transfer, the RPG module contains entry points
DFHEII and RPGDLI for both CICS/VS and the batch environ­
ment respectively.

If the leftmost two bits of the UPSI byte are 00 (either
the standard setting, or set by / / UPSI (0), the Transla­
tor directs its output to SYSPCH.

Example of JCL for output on SYSPCH:

II JOB T
II EXEC RPGIXLTR (Translator)

1*
1&

•
• Source to be translated
•

If the leftmost two bits of the UPSI byte are 01, the
Translator directs its output to SYSOO2. This method

Chapter 4: Processing Data Bases (Batch Considerations) 4 - 35

should be used if an RPG II compilation is to immedi­
ately follow the Translator run. The RPG II compiler
will then read its input from SYSOO2 instead OfSYSIPT.

Example of JCL output on SYS002:

II JOB TRPG
II UPSI 01
II EXEC RPGIXLTR

•
• Source to be translated
•

1*
I I EXEC RPG II
IF,

If the leftmost two bits of the UPSI byte are 10, the
Translator directs its output to SYSOO3. This method
should be used if an Auto Report compilation is to
immediately follow the Translator run. Auto Report
will then read its input from SYSOO3 instead of SYSIPT.

DLI,progname,psbname[,{buf}]
ill

Example of JCLfor output on SYS003:
II JOB TAR
II UPS I 10
II EXEC RPGIXLTR

•
• Source to be translated
•

1*
II EXEC RPGAUTO
IF,

Batch A.pplication Program Execution
When a DL/I application program is executed, it actual­
ly runs under control of DL/1. The EXEC statement in
the job stream names the DL/I initialization module
rather than the application program name.

Parameter Statement
The application program to be executed and the PSB it
uses are identified in a parameter statement that fol­
lows the EXEC statement.

The format of the parameter statement, beginning in
column I, is as follows:

[, HDBFR= ({bufno} [, dbdname 1 , dbdname2 , ...])] [, ...]
{g }

[, HSBFR= ({indno} , {ksdsbuf} , [{esdsbuf}] , [dbdname3)] [, ... 1
Q } G } G }

[, TRACE=modname] [, ASLOG=YES] [, LOG= ({TAPE) , {PAUSE })]
{DISK1} {NOPAUSE
{DISK2 }

The parameters HDBFR, HSBFR, TRACE, ASLOG, and
LOG as well as continuation statements, can be used if
input is on SYSIPT. Continuation, if required, is indi­
cated by a non-blank character in position 72 of the
statement being continued. The keyword parameters,
once started, can be stopped anywhere up to column
71, and then continued in the next statement. The con­
tinuation may start in any position from 1 to 71. The
parameters can also be entered from SYSLOG, but with
a limitation of71 characters. Continuation is not per­
mitted with SYSLOG entry.

progname
specifies a one to eight alphameric character
name of the application program or utility to be
executed.

psbname
specifies a one to seven alphameric character
name of the PSB as indicated in the PSB genera­
tion and referenced by the application program.

4·36 DL/I DOS/VS Guide For New Usen

buf
specifies the number of data base subpools re­
quired for this execution which can be a numeric
value 1 to 255; if omitted, 1 is assumed. If no
buffer pool control options are specified, a sub­
pool consists of 32 fixed-length buffers. The buff­
er size is generally consistent with the VSAM data
base control interval size and may be 512 or any
multiple of 512 bytes up to 4096. A data base is
assigned a subpool that contains buffers equal to
or greater in size than the size ofthe data base
control interval. More information on the DL/I
data base buffer pool is contained in Chapter 7 of
the Utilities and Guide for the System
Programmer.

HDBFR
describes one DL/I subpool (See Chapter 7 of the
Utilities and Guide for the System Programmer.

• bufno specifies the number of buffers to be
allocated for this subpool and is a numeric
value from 2 to 32. If omitted for a specific
subpool, 32 is assumed. A specification ex-

ceeding 2 digits will cause an abnormal termi­
nation.

• dbdnamel,dbdname2, ... specifies the names of
DBDS that are to be allocated to this subpool. If
no dbdnames are specified, this subpool is
used for DMBS not explicitly assigned; the par­
entheses around the number of buffers are still
required. The DBD name used should be the
physical DBD even though a logical DBD is be­
ing used. However, since a logical DBD has 2
or more physical DB os, all physical DBDs
should be specified that are to be allocated to a
specific subpool.

HSBFR
defmes VSAM buffer allocation for HISAM,
SHISAM, and INDEX data bases. See Chapter 7 of
the Utilities and Guide/or the System
Programmer.

• indno specifies the number of index buffers for
a KSDS; if omitted, 3 is assumed. A specifica­
tion of I or 2 digits is permitted. A specifica­
tion exceeding 2 digits will cause an abnormal
termination.

• ksdsbuf specifies the number of data buffers
for a KSDS; if omitted, 2 is assumed. A specifi­
cation of 1 or 2 digits is permitted. A specifica­
tion exceeding 2 digits will cause an abnormal
termination.

• esdsbuf specifies the number of data buffers
for the ESDS (applies to HISAM only); if omit­
ted, 2 is assumed. A specification of I or 2 dig­
its is permitted. A specification exceeding 2
digits will cause an abnormal termination.

• dbdname3 is the name of the HIS AM or INDEX
DBD referenced by the application program.

TRACE
indicates that tracing is to be active during execu­
tion. See the DL/I DOS/VS Diagnostic Guide for
details on tracing.

ASLOG=YES

LOG

specifies that asynchronous logging is to be used.
See Chapter 5 of the Utilities and Guide/or the
System Programmer.

specifies the type of logging to be used.

•

•

TAPE indicates the log records are to be
written to a tape device. It is the default if
the LOG parameter is omitted.

DISK1 indicates the log records are to be
written on one disk extent with the filename
DSKLOGI.

•

•

DISK2 indicates that the log records are to
be written on two disk extents. If one disk
extent becomes full, the extent is closed and
the other extent is used. DSKLOG I is used
first; then DSKLOG2. If DKSLOG2 becomes
full, logging will switch back to DSKLOG I
and continue to repeat the sequence.

PA USE indicates that before reusing the
only disk extent (DISKI) or before switching
to the next extent (DlSK2), the operator is
notified and the partition waits for the
operator's reply. PAUSE is the default if the
second option in the LOG parameter is omit­
ted.

• NOPA USE indicates that reusing a log
extent or switching log extents is done with­
out notifying the operator.

Note: The UPSI byte (bit 6=0) must be set to indicate
that DL/I logging is required.

If anything other than the above parameters are speci­
fied, an error message is issued and the job is canceled.

In the online and/or MPS environments, DL/I disk
logging is not supported. If program isolation is active,
the user must select CICS/VS journalling services for
writing log information.

UPSI Byte Settingsfor Batch DL/ I
Several execution-time functions can be controlled by
the UPSI byte setup. The format of the UPSI statement
is as follows:

II UPSI xOOOOxxx

The meanings of the bit settings are as follows:

Bit 0 = 0 Read parameter information via
SYSIPT

Bits 1-4

Bit 5

Bit 6

Bit 7

= 1 Read parameter information via
SYSLOG

=0

= 1

=0

=1

=0

= 1

Available for use by the applica-
tion programmer

Storage dump on set exit (STXIT)
abnormal task termination if
STXIT active (that is, bit 7 = 0).
No storage dump in STXIT ab­
normal task termination if STXIT
active (that is, bit 7 = 0).

All data base modifications writ­
ten on to the DL/I system log
tape.
DL/I system log function inactive

Set exit (STXIT) linkage to DL/I
for abnormal task termination.
STXIT inactive

Chapter 4: Processing Data Bases (Batch Considerations) 4 - 37

Note that UPS I byte settings in the online environ­
ment have different meanings than those for batch. See
Chapter 5 of this manual, and Chapter 10, "DL/I On­
line System" in the Utilities and Guide for the System
Programmer for more information. If you are unsure
of the significance of these functions consult your sys­
tem programmer or data base administrator.

Job Control Statements
If data base changes are to be logged, either disk (batch
only) or tape logging must be specified on the DL/I
parameter statement with the LOG parameter. If the
LOG parameter is omitted and UPSI byte bit 6=0, the
default is tape logging.

If tape logging is used, ASSGN and TLBL statements
as shown below are required. The log tape must have a
standard label.

II ASSGN SYSOll,X'cuu'
II TLBL LOGOUT

If disk logging is used, ASSGN, DLBL, and EXTENT

statements as shown below are required. The log file
must have been previously defmed with a DEFINE com­
mand because it is a VSAM file.

II ASSGN SYSxxx,X'cuu'
II DLBL {DSKLOG1},'cluster-name' "VSAM

{DSKLOG2}
II EXTENT extent information

The execution job stream must contain ASSGN,

DLBL, EXTENT, or TLBL statements that define the data
base(s) that are to be processed. When initially loading
a data base, additional DLBL and EXTENT statements
may also be required for system work files.

The EXEC statement specifies the DL/I initialization
and the SIZE parameter. Typically, you will require a
512K virtual partition for execution with a size param­
eter of 250K. See DOS/ VSE System Control
Statements, GC33-5376, for details.

II EXEC DLZRRCOO,SIZE=xxxK

Data Base Load Processing

Loading A Basic Data Base
After generating the physical DBD, you can load your
data base using a load program. Basically the load
program reads a sequential file with the data base re­
cord contents; it builds the segments and inserts them
in the data base in hierarchical order. Quite often the
data to be stored in the data base already exists in one
or more files, but merge and sort operations may be
required to present the data in the correct sequence.
Sometimes even clean-up and correction activities are
required, especially when multiple files with redundant
data are merged into one data base (see Figure 4-20).

4 - 38 DL/I DOS/VS Guide For New Users

~---------

Figure 4-20. Basic Data Base Load Process

Loading Data Bases With Logical
Relationships
To establish the logical relationships during initial load
of data bases with logical relationships, DL/I provides a
set of utility programs. These are necessary because the
sequence in which the logical parent is loaded is nor­
mally not the same as the sequence in which the logical
child is loaded. To cope with this, DL/I will automati­
cally create a workfile whenever you load a data base
that contains a logical child and/or logical parent. This
workfile contains the necessary information to update
the pointers in the prefixes of the logically related seg­
ments. Before doing so, the workfile is sorted in physi­
cal data base sequence with the prefix resolution utility
(DLZURGlO). This utility also checks for missing logical
parents. Next, the segment prefixes are updated with
the prefix update utility (DLZURGPO). After this, the data
base(s) are ready to use. The above data base load,
prefix resolution and update should be preceded by the
prereorganization utility (DLZURPRO). This utility gener­
ates a control data set to be used by data base load. A
detailed discussion of this data base load process and
the associated utilities can be found in Chapter 6,
"Data Base Reorganization/Load Processing".

Sample Data Base Load Program
The sample data base load program, DLZSAM40, is used
to load the sample data bases. This sample is provided
for use as a guide in writing your own data base load
program(s).

L
Loading a HIDAM Data Base
When loading a HIDAM data base initially, you must
specify PROCOPT=LS in the PCB. Also, the data base
records must be inserted in ascending root key se­
quence, and the segments must be inserted in their
hierarchical sequence.

Sorting segments in their hierarchical sequence: If
there is a need to sort on a segment level, you must
provide the following sort control fields with each seg­
ment (Figure 4-21).

When loading a HIDAM data base, DL/I will also load
the primary index data base.

Note: When loading a HIDAM data base, DL/I will automatically
insert a high key (X'FF ... ') at the end of the data base. This is for its
chain maintenance, it is completely transparent to your program.
You should not use this key in your application.

Loading a HDAM Data Base
When initially loading a HDAM data base, you should
specify PROCOPT=L in the PCB. There is no need for
DL/I to insert the data base records in root key order,
but you must still insert the segments in their hierarchi­
cal order. For performance reasons it is advantageous
to sort the data base records into physical sequence.
The physical sequence should be the ascending se­
quence of the block and root anchor point values as
generated by the randomizing algorithms. This can be
achieved by an E61 type sort exit routine, which gives
each root key to the randomizing module for address
conversion, and then directs SORT to sort on the gener­
ated address + root key value.

Status Codes for Loading Data Bases
The following status codes can be expected after the
ISRT call when loading data bases:

bb OK, segment is inserted in data base

LB: the segment you tried to insert already exists
in the data base

LC: key field of segment is out of sequence

ROOT LEVEL 2 LEVEL 2 LEVEL 3 LEVEL
KEY SEGMENT KEY SEGMENT KEY

CODE CODE

Notes:

LD:

other:

no parent has been inserted for this segment
in the data base.

error situation

Status Code Error Routines
There are essentially two categories of error status
codes: those caused by application program errors and
those caused by system errors. Sometimes, however, a
clear split cannot be made immediately. Figure 4-4
contains a listing of the status codes in both of these
categories.

To handle all other status codes, it is recommended
that a standard error routine be made available by the
data base administrator that will print as much inform­
ation as possible prior to termination of the program.
This would include all fields in the PCB, I/O area, etc.
Most of the status codes in this category are usually
encountered during the debugging of the application
program. The standard error routine could be included
in each program using COBOL COPY, PL/I %INCLUDE, or
Assembler COpy statements.

DL/I DOS/VS Buffer Pool
Characteristics Report
DL/I will print a report on SYSLST of the characteristics
of its buffer pool at initialization time. This report con­
tains information on number of subpools, subpool size,
DMB assignment. etc.

Note: When coding DL/I application programs, you should avoid
printing preprinted forms such as checks, etc. on SYSLST and use a
programmer logical unit instead. This way the printing of the buffer
pooL characteristics on the preprinted forms can be supressed by
assigning SYSLST to IGN.

Processing With Logical
Relationships
Generally, there is no difference between the process­
ing of physical data bases and logical data bases; all
call functions are available for both. Some considera­
tions do apply when accessing a logical child or a con-

3
etc.

1. For every level, the key field length should be equal to the largest segment key field on that level. Shorter keys should be left
adjusted and padded with low value characters.

2. Segments on the lowest level need not have a key field ifno sequence field is defined, however, their sequence below their parent
might be different after the sort. If no sequence field is available in the segment itself, you should provide one. This could be a
simple dependent segment counter provided by a user written "clean up and format" program as shown in Figure 4-19.

Figure 4-21. Control Field for Sorting Segments into Hierarchical Sequence

Chapter 4: Processing Data Bases (Batch Considerations) 4 - 39

catenated segment. For a definition of these terms see
"DL/I Logical Relationships" in Chapter 2.

Accessing A Logical Child In A Physical
DBD
When accessing a logical child in a physical DBD, you
should remember the layout of the logical child. It
always consists of the logical parent concatenated key
(i.e., all the consecutive keys from the root segment
down to and including the logical parent) plus the logi­
cal child itself; the intersection data (see Figure 2-15).
This is especially important when inserting a logical
child. You will also get an IX status code when you try
to insert a logical child and its logical parent does not
exist (except at initial load time). This will typically
happen when you forget the LPCK in front of the
LCHILD.

Note: In general, physical data bases should not be used when proc­
essing logical relationships.

Accessing Segments in a Logical DBD
The considerations that apply for each call function
when accessing segments in logical DBDS is directly
related to the rules for logical relationships as discussed
in Chapters 2 and 3. Review these sections before at­
tempting to insert, delete, or replace a concatenated
segment. Additional information can be found in the
System Application Design Guide.

77 GU-FUNC PICTURE XXXX VALUE 'GU ,

01 SSA005-GU-STPIITM.
02 SSA005-BEGIN PICTURE X(19) VALUE 'STPIITM
02 SSA005-STXININ PICTURE X(8).
02 SSA005-END PICTURE X VALUE ') , .

01 IOAREA PICTURE X (2 56) .

MOVE INVENTORY-ITEM-NO TO SSA005-STXININ.

Processing With Secondary Indexes
For a review of the terminology and functions of sec­
ondary indexes see "DL/I Secondary Indexes" in Chap­
ter 2.

As discussed before, DL/I will always maintain the
secondary index, whether or not the program making
the change is using the index. As a consequence, DL/I

must always have access to the index data bases when
processing the main data base. So, the DD statements
for the index data bases must be supplied in the JCL of
every job which could change the secondary index.

Accessing Segments Via a Secondary Index

Retrieving Segments
The same calls are used as before. However, the index
search field, defmed by an XDFLD statement in the DBD

will be used in the SSA for the get unique of the root
segment. It defines the secondary processing sequence.

Figure 4-22 shows an example of a get unique call
for an INVENTORY ITEM using the secondary process­
ing sequence. After the successful completion of this
call, the PCB and lOA REA look the same as after the
basic GU of Figure 4-8, except that the key feedback
area now starts with the INVENTORY ITEM number
defmed by this secondary processing sequence.

(STXININ ='

CALL 'CBLTDLI' USING GU-FUNC,PCB-NAME, IOAREA, SSA005-GU-STPIITM.

STATUS CODES:

bb: requested INVENTORY ITEM segment has been moved to IOAREA
GE: segment not found, requested purchase order number not in

data base
other: error situation

Figure 4-22. GU Call Using a Secondary Index

When using the secondary processing sequence,
consecutive get next calls for the INVENTORY ITEM

segment will present the INVENTORY ITEM segments in
item number sequence. This is done in our sample
application for printing the Inventory data base, be­
cause the randomizing module does not store the
INVENTORY ITEM segments in Item Number sequence.

If both the primary and the secondary processing
sequence are needed in one program, you should use

4 - 40 DL/I DOS/VS Guide For New Users

two PCBS. Should your application, however, require
more complex search strategies, then consult the other
DL/I DOS/VS publications.

Replacing Segments
To replace segments in the indexed data base a combi­
nation of get hold and replace calls can be used as be­
fore. Again, no sequence fields may be changed. The
index search fields, however, can be changed. If an

L

index search field is changed, DL/I will automatically
update the index data base via a delete old and insert
new pointer segment.

Note: When using a secondary processing sequence, this could result
in the later reaccessing of a data base record.

Deleting Segments
When using a secondary processing sequence, you
cannot delete the index target segment (i.e., the root
segment). If you have a need to do so, you should use a
separate PCB with a primary processing sequence.

Inserting Segments
Again, when using a secondary processing sequence,
you cannot insert the index target segment. In all other
cases, the ISRT call will function as before.

Secondary Index Creation
A secondary index can be created during initial load of
the indexed data base or later. The secondary index
data base is created with the DL/I reorganization utili­
ties. No application program is required for this cre­
ation. Chapter 6 will cover this in detail.

Chapter 4: Processin& Data Bases (Batch Considerations) 4 - 41

4 - 42 DL/I DOS/VS Guide For New Users

Chapter 5:

This section contains the DL/I considerations for the
design of online programs. DL/I is used in conjunction
with CICS/VS to form a complementary system to aid
users in online application development and imple­
mentation. All CICS/VS program design guidelines and
recommendations apply equally in a CICS/VS-DL/I
environment and in a pure CICS/VS environment. To
understand how to use DL/I in an online environment,
you must have a good understanding of both DL/I and
CICS/VS. See Customer Information Control

I System/Virtual Storage (CICS/VS) General
Information, GC33-0066 for additional information.

Because of the dependencies of MPS on CICS/VS, the
programming considerations for MPS are also included
in this chapter.

Figure 5-1 illustrates DL/I operation under CICS/VS,
where the application calls are issued by the online
application program. DL/I resolves any conflict that
might be created when different transactions wish to
update the same data base simultaneously. Execution
of the call request is identical to the batch environ­
ment.

DL/ I Online System Execution
Initialization of CICS/VS includes loading the DL/I fa­
cility and, optionally, opening the DL/I log. It does not
necessarily include opening DL/I data bases that can be
accessed online, because CICS/VS allows the operator to
add or remove data bases in the online system.

The arrows 1 and 2 in Figure 5-1 indicate CICS/VS
transaction input and output between the terminal and
the application program. CICS/VS creates a task based
upon either an input message from a terminal or an
activity initiated by CICS/VS. If an application program
is needed that is not already loaded, CICS/VS loads the
program.

DL/I verifies that the program can request DL/I ser­
vices before it is given control.

All application programs that use DL/I have a lan­
guage interface link-edited with the application pro­
gram. The language interface accepts data base calls
from the application program and passes control to the
DL/I data base modules (arrow 3).

Once the online program begins execution, the fol­
lowing functions are performed:

• The program issues a DL/I scheduling call to ac­
quire a PSB prior to issuing calls involving data.
This is necessary because unlike the batch envi­
ronment, many CICS/VS transactions accessing the
same data base may be active at one time. Con-

Online and MPS Considerations

current updating and deletion of data base records
or segments as well as deadlock conditions make it
necessary for DL/I to schedule resources selective­
ly. In scheduling a PSB for a program, DL/I con­
siders processing options and segment sensitivity
in relation to other DL/I application programs
currently executing. The address of all PCB point­
ers for a PSB is placed in the TCA (line A) for use
by the application program, if the scheduling call
is successful.

• The application program makes CICS/VS requests.
These may include transient data input or output,
storage requests, and non-DL/I file activity (arrows
4).

• CICS/VS controls all wait situations that may occur
either in the application program itself or in any
DL/I module. Therefore, control is passed back
and forth between CICS/VS and the application
program (or DL/I) during processing of the appli­
cation program (arrows 4).

• When the program makes a data base call, the
same operations take place in the online system as
in the batch environment (arrows 5 through 8).

• When the program no longer needs the services of
DL/I, it issues a termination call, or DL/I will do it
automatically on task termination. This call is the
opposite of a DL/I scheduling call. It causes the
program to relinquish all DL/I resources. This
includes the PSB and the ability to access DL/I data
bases until the next scheduling call is issued.

MPS (Multiple Partition Support)
MPS allows several application programs running in
different partitions to access the same data bases con­
currently with full data base integrity.

MPS uses the CICS/VS-DL/I DOS/VS interface and thus
requires CICS/VS to operate. Batch DL/I programs com­
municate their DL/I requests to the CICS/VS partition
via the cross partition event control facilities of DOS/VS.
Special transactions in the CICS/VS partition receive
these requests, issue the appropriate DL/I calls and pass
back the results to the batch partitions. All data base
I/O is performed by the DL/I facility within the CICS/VS
partition.

MPS is transparent to the application program. Exist­
ing batch application programs need not be changed
when used in this environment.

MPS is especially applicable to users who must keep
data bases online for the major part of a day and need
to be able to run batch reports or perform minor file

Chapter 5: Online and MPS Considerations 5 - I

CICS/vS

DL/I
DOS/VS

DOS/VS

or ,

0--~A
\
\
I 7

~r------'------I I

BUFFER
POOL

8

DATA
BASES

........

PCB POINTER
LIST

DMBs

Figure 5-1. Online Data Base System Flow

5 - 2 DL/I DOS/VS Guide For New Uscrs

/
./

/

DL/I
TASK
CONTROL
BLOCKS

TRANSACTION

RESPONSE

updating during this time. Without MPS, the data bases
would have to be closed in the online system while the
batch programs are run. DL/I DOS/VS is the only
DOSjVS data management facility that provides full
multiple partition support with complete data base
integrity.

Figure 5-2 describes the control flow for an MPS

batch program when it has been given control.

• A parameter address list is provided by the DL/I

system control facility when the application pro­
gram is entered. The addresses in this list establish
a connection from the application program to
each data base PCB in the PSB (arrow 1). These
data base PCB addresses are subsequently used by
the application program when issuing data base
call requests.

Arrows 2 and 3 indicate the transaction input and
response output functions in the application pro­
gram. These functions are the same as in any
batch application programs.

All application programs which operate under
DL/I have a "language interface" automatically
link-edited with the application program. The
language interface accepts a data base call from
the application program and passes control to the
DL/I facility (arrow 4). The parameter addresses
in a call list, except for the PCB address, are veri­
fied by the MPS facility.

• The MPS facility communicates with the online
task created by DL/I for this MPS batch job. This
task is the BPC (batch partition controller), (arrows
5).

• The BPC issues the DL/I call, (arrow 6). DL/I per­
forms normal verification, as in the case of an
ordinary online task, except for parameter ad­
dresses which are verified by the MPS facility in
the batch partition.

• The same operations occur then as in regular on­
line batch processing (arrows 7 - to).

Differences Between Batch, MPS, and On­
line DL/I
The differences between batch, MPS, and online pro­
gramming with DL/I are minor, as shown in the follow­
ing table. Otherwise, all batch functions are similar,
using the same languages, call formats, and status
codes.

Batch

The application program
is a subprogram to DL/I.

Because the PSB for the
application is dermed to
D L/I at initialization,
the application program
does not have to explicitly
request a PSB.

Code need not be
reentrant.

Assembler call statement
is CALL ASMTDLI.

MPS

The application program
is a subprogram to DL/I.
It also is connected with
a CICS/VS task that
uses the common DL/I code.

Because the PSB for the
application is dermed to
D L/I at initialization, the
application program does
not have to explicitly
request a PSB.

Code need not be reentrant.

Assembler call statement
is CALL ASMTDLI.

Security

Online

The application programs
are CICS/VS tasks, utilizing
the common DL/I code.

The online program must
explicitly issue a scheduling
call for a PSB.

Code must be quasi-reentrant
(unless RELOAD=YES is
specified in the CICS/VS PPT).

Assembler call statement is
CALLDLI ASMTDLI.

Special CICS/VS transactions are provided by DL/I to
allow the user to dynamically enable and disable the
multiple partition support facility.

Additional security is provided via the DL/I ACT
(application control table). The ACT serves as a master
list of all authorized programs and PSB combinations
that may be used to access a data base. This facility, in
conjunction with VSAM'S share option 1, will prevent
batch programs from accessing online data bases ex­
cept under control of MPS.

The DL/I PSB provides an additional level of security
on a program-by-program basis. The PSB allows the
user to control the access rights of individual programs
to any segment within a data base record.

Integrity
Because all data base requests from both batch and
online programs are channeled to a single facility, DL/I

is able to prevent programs from attempting to update
the same information simultaneously. In a similar way,
DL/I is able to detect deadlocks between programs and
resolve them.

The key to DL/I'S data base integrity mechanism is
its program isolation and segment intent checking facil­
ities.

Chapter 5: Online and MPS Considerations 5 - 3

MPS BATCH PARTITION ONLINE PARTITION

DO~/vS DOS/VS ,
CICS/VS

MPS BATCH 5

1

CONTROL
I CICS FACI LlTY

FACILITY AND CONTROL

5 t
APPLICATION

BATCH I TCA
TRANSACTION

r-t ... PROGRAM
PARTITION WORK AREA

DL/I , 1 CONTROLLER or I
INTERFACE,

\ 8 L ---Al t 4
rDLII- --1

r--
\ ~1~T~R~~Ej 6 I

DL/I MPS
f- f- ~ FACILITY \ .c..,

\ DL/I DOS/VS ~ I ~

\ I DL/I FACILITY DL/I LOGGING I 9 DAT9 BASE

\ I AND CONTROL or CICS/VS
I CHANGES

JOURNALING
\ • I L1' (TRANSACTION \ 8 I 1 PCB r-- ~

~ - ...J

\ r . POINTER LIST

3
RES:::J

\ I
~

BUFFER\~ DL/I

DMBs TASK
POOL CONTROL

BLOCKS

t L __ j I
- - - _____ J

7
L......, H VSAM

10

r -.....
-...... /

DATA
BASES

-...... /

Figure 5-2, MPS Batch Data Base System Flow

5 - 4 DL/I DOS/VS Guide For New Users

DL/I provides logging facilities and a comprehensive
set of utilities to allow for recovery of the data base in
the event of a software or hardware failure. With MPS,
a single log is written for all DL/I partitions (from the
CICSjVS partition). This log may be assigned to the
CICS/VS system journal, or created as an independent
(of CICSjVS) DL/Ilog. If desired, with CICS/VS journal­
ing, CICSjVS Emergency Restart will invoke the DL/I
backout utility during emergency restart processing to
restore the DL/I data bases back to a known point
where processing may be restarted, backing out any
updates resulting from inflight tasks.

Performance
DL/I provides excellent data base performance when:

• Sufficient real storage is available.

• Segment intent conflict is minimal.

• Good data base and application program design
principles are followed.

Experience has shown that where DL/I does not meet
performance expectations, one or more of the above
conditions was not met. With use of MPS, minimizing
segment intent conflicts is of utmost importance. Po­
tential MPS users should carefully evaluate potential
intent conflict situations between batch and online
programs.

Restrictions
Certain DL/I programs are restricted from running in
the MPS environment, i.e. the data bases they access
may not be shared across several partitions while these
programs are executing. The programs in this category
are:

• All DL/I utilities

• All programs that access SHSAM or HSAM data
bases

• All programs that load data bases

In addition any batch DL/I programs that modify the
contents of the DL/I control blocks cannot run under
MPS since the DL/I control blocks no longer exist in the
batch partition.

All data bases accessed by a program running under
MPS control must be defined in the CICS/VS partition
and accessed through MPS. A program running under
MPS control cannot access any data bases not known to
MPS, i.e. not defmed in the CICS/VS partition.

VSAM Data Set Share Options
Share option I is the only VSAM share option that
should be used with any VSAM data set being accessed
by DL/1. DL/I operating in an MPS environment does
not require any different VSAM share options than DL/I
operating in a non-MPS environment. Since any
DL/I-MPS programs residing in different partitions are
really accessing the data bases through a common par­
tition, the CICS/VS partition, VSAM share option I is
sufficient.

Because DL/I always opens its VSAM data sets for
update, VSAM share option 2 provides no functional
benefits to DL/l.

VSAM share option 3 should never be used in con­
junction with DL/1. It provides no protection against
inadvertently scheduling non-MPS DL/I programs that
update the same data bases in two different partitions
simultaneously. Damage to data bases used in this
manner may go undetected for some time, after which
recovery is very difficult.

VSAM share option 4 does not apply to ESDSs proc­
essed at the control interval level. As this is the way
DL/I processes its HD ESDSs, share option 4 provides no
functional benefits to DL/l. Share option 4 causes VSAM
to override updated contents of records in HISAM, sim­
ple HISAM, or INDEX data bases which results in the
loss of delete or replace calls.

CICS/VS System Generation
There are no parameters for CICS/VS system generation
specifically for DL/I MPS. The parameter DLl=YES must
be specified in the DFHSG TYPE=INITIAL macro to gen­
erate support for DL/I in a CICS/VS system, whether or
not MPS will be used.

If program isolation is used your CICS/VS system
must have dynamic transaction backout support and
CICS/VS journalling generated.

CICS/VS System Table Preparation
For DL/I MPS support within CICS/VS the following
CICS/VS tables require specific entries.
FCT File Control Table
JCT Journal Control Table (iflogging to CICS/VS journal)
PCT Program Control Table
PPT Program Processing Table
SIT System Initialization Table
PL T Program List Table

FCT (File Control Table)
An entry in the FCT is required for each DL/I data base
referenced either by an online DL/I transaction or by a
batch DL/I MPS program. The only parameters that can
be specified are dataset name (use the dbdname from

Chapter 5: Online and MPS Considerations 5 - 5

the DBD statement), access method (DL/I), and open
option (initial or deferred).

Because the entries are referenced only during
CICS/VS initialization, for best performance they should
be grouped with other low activity entries in your FCT.

JCT (Journal Control Table)
The JCT is used to describe your journal data sets
(optional) to CICS/VS. There must be one entry in the
table to derme the CICS/VS system journal.

The minimum journal buffer size is 554 bytes (512
bytes plus the size ofthe CICS/VS label record). The
maximum journal buffer size handled by DL/I is 32,767
bytes.

PCT (Program Control Table)
A PCT is used to derme all transactions that may be
processed by the system. Each transaction is described
in a table entry that includes:

• Transaction identifier (up to four characters)

• Transaction priority value

• Security key

• Name of program that (initially) processes the
transaction

Several PCTS can be assembled and identified by suffix.
characters.

There are four DL/I MPS transactions that must be
defined in the PCT. The entries are coded as follows:

DFHPCT

I DFHPCT

DFHPCT

DFHPCT

TYPE=ENTRY,PROGRAM=DLZMSTRO,
TRANSID=CSDA
TYPE=ENTRY,PROGRAM=DLZMPCOO,
TRANSID=CSDB,TWASIZE=268
TYPE=ENTRY,PROGRAM=DLZBPCOO,
TRANSID=CSDC,TWASIZE=256
TYPE=ENTRY,PROGRAM=DLZMSTPO,
TRANSID=CSDD

These transactions are used as follows:

CSDA Start MPS operation
CSDB Master Partition Controller
CSDC Batch Partition Controller
CSDD Stop MPS Operation

x

x

x

x

Because these transactions are probably of low activity
compared to most of the transactions in your system,
their entries should be placed with other low activity
entries in your PCT. Use the CICS/VS statistics to aid
you in determining their placement in the PCT. These
transactions should be specified as CLASS=LONG.

Only the CSDA and CSDD transactions are ever en­
tered from a terminal. The CSDB and CSDC transac­
tions are internally attached by DL/I MPS. If you inad­
vertently enter the CSDB or CSDC transaction-id from a
terminal, the Master Partition Controller or Batch Par-

5 - 6 DL/I DOS/VS Guide For New Users

tition Controller program ignores the request, however,
no message is returned to the terminal.

Since the CSDA and CSDD are special transactions
you will probably want to put a transaction security on
these so that they can only be executed by the master
terminal operator or other authorized users.

Note: Because these transaction-ids start with the letter "C" you
cannot use the CICS/VS TCLASS/CMXT facility with these trans­
actions.

If PI is used, then all DL/I transactions must be
marked for dynamic transaction backout (DTB=YES).
Failure to do so can cause loss of data integrity.

PPT (Program Processing Table)
Use the PPT to derme all application programs that are
valid for processing under CICS/VS. Each application
program is described in a table entry that includes:

• Program name

• Source coding language (ANS COBOL, PL/I or As­
sembler)

Several PPTs can be assembled and identified by
suffix characters.

The programs referenced by the four DL/I MPS trans­
actions must be dermed in the PPT. They are coded as
follows:

DFHPPT TYPE=ENTRY,PROGRAM=DLZMSTRO
DFHPPT TYPE=ENTRY,PROGRAM=DLZMPCOO
DFHPPT TYPE=ENTRY,PROGRAM=DLZBPCOO
DFHPPT TYPE=ENTRY,PROGRAM=DLZMSTPO

Because these programs are probably oflow activity
relative to the regular online programs, they should be
placed with other low activity entries in your PPT.
Since DLZMSTRO and DLZMSTPO are low usage
(normally used only once per CICS/VS session), they
should be specified as RES=PGOUT. DLZMPCOO and
DLZBPCOO should be specified as RES=YES for best per­
formance. These specifications can also be made via an
ALT (see the example later in this chapter).

If a DL/I formatted dump is printed in the event of a
CICS/VS ABEND, the DL/I Formatted System Dump
Program (DLZFSDPO) must be identified in the PPT. As
this is used only in the event of a CICS/VS ABEND, it
should be specified as RES=PGOUT for best perfor­
mance.

SIT (System Initialization Table)
The SIT contains user-specified data that controls the
system initialization process; in particular, a SIT can
identify (by suffix characters) the user-specified ver­
sions of CICS/VS system control programs and CICS/VS
tables that are to be loaded.

The system programmer can assemble several SITS -­
each SIT being identified by suffix characters. Then,
whenever the system is initialized, the required SIT can
be specified by its suffix. Parameters in the chosen SIT
can also be overridden at system initialization time for
greater flexibility.

The SIT must have DLl=YES or DLl=xx specified. In
addition, DL/I requires entries in a shutdown PLT and
optionally in an initialization PLT. Specify the suffix of
the appropriate initialization and shutdown PL Ts in the
PLTPI and PLTSD parameters respectively.

Each active batch MPS program requires a CICS/VS
task to support it. Therefore, you may want to increase
your current AMXT and MXT specifications. The DL/I
MPS Master Partition Controller task (CSDB) is not
counted by CICS/VS when calculating the number of
active tasks for AMXT purposes, just as the CICS/VS
terminal control, task control and journal control tasks
are not counted. The performance implications of the
AMXT and MXT parameters are discussed later in this
chapter.

PLT (Program List Table)
The PL T contains program identifications that perform
various functions within CICS/VS. Each program iden­
tified must also appear in the PPT, making the PLT a
subset of the PPT. The PLT provides the following:

• List of programs to be executed during the post­
initialization phase of system initialization.

• List of programs to be executed during the first
quiesce stage of system termination.

• List of programs to be executed during the second
quiesce stage of system termination.

By providing suffixes for PL TS, you can use many ver­
sions of these tables.

DL/I does not process any MPS batch programs until
the Master Partition Controller program is initiated in
the CICS/VS partition. This program can be initiated in
the following ways:

• by a terminal operator entering the transaction
"CSDA".

• by letting CICS/VS execute the MPS start program
(DLZMSTRO) during its system initialization proc­
essing.

If the second option is taken, a start-up PLT must be
coded with the DL/I MPS Start program as one of the
entries. The suffix of the start-up PLT must be specified
in the "PLTPI" parameter of the SIT.

If you want DL/I MPS to stop automatically when
CICS/VS starts its shut-down processing, you should
make an entry in the shut-down PL T for the program

DLZMSTPO. This entry must appear before the
DFHDELIM entry.

DL/I requires an entry in a shut-down PL T for the
program DLZSTPOO following the DFHDELIM entry.
This is required whether or not MPS is used. The suffix
of this shut-down PLT must be specified in the PLTSD
parameter ofthe SIT.

Remember to code the PLT names in the PPT.

Cautio,,: An operator should never do an Immediate
Shut-down of CICS/VS. CICS/VS Emergency Restart,
DL/I Backout, or Forward Recovery may be required
following an Immediate Shut-down of CICS/VS to re­
cover the data bases.

DL/I Application Control Table
The online DL/I Application Control Table (ACT) has
two functions. One function is to provide DL/I with
environmental information such as buffer pool size,
DMB assignments, maximum number of concurrent
DL/I tasks that may execute, etc. If you have an exist­
ing CICS/VS - DL/I system, you should review your ACT
environmental parameters (MAXTASK, etc.) to see if
they require changing for MPS. Each active batch DL/I
MPS program requires a Batch Partition Controller
(BPC) transaction in the online system to support it.
Therefore, you may need to increase the values of
MAXT ASK and CMAXTSK. If you are introducing more
data bases into the online system (those that were for­
merly used only in batch and now are to be accessed
via MPS), you should examine the size of your buffer
pool and DMB assignments.

The second function of the ACT is to defme the valid
application program and PSB combinations for the
online system. When an online DL/I transaction at­
tempts to schedule a PSB, DL/I checks to insure that the
program issuing the scheduling call is authorized to use
that PSB. DL/I accomplishes this by scanning its ACT
for the name of the requesting program. Once DL/I
locates the program name in the ACT, it then checks to
see if the requested PSB is authorized for that program.

After assembly and link-edit, the ACT becomes the
online DL/I nucleus (DLZNUCxx).

Establishing the Control Section for
the DL/I Application Control Table
The control section into which the ACT is assembled is
established by means of the DLZACT macro:

DLZACT TYPE=INITIAL[,SUFFIX=xx]

This macro must be coded as the first statement in the
source deck used to assemble the DL/I ACT.

Chapter 5: Online and MPS Considerations 5-7

SUFFIX
specifies a 2-character alphameric suffix for the
DL/I ACT being assembled. The suffix, if speci­
fied, is appended to the standard module name
(DLZNUC) and is used to name the module on the
linkage editor output library. If this operand is
omitted, a suffix is not provided.

Defining the Online Environment/or DL/ I
The DLZACT TYPE=CONFIG macro instruction defines
the online environment for the CICS/VS DL/I DOS/VS
user. Information from this statement is used to deter­
mine the size of PST prefix table and to initialize fields
in the SCD. There may be only one DLZACT

TYPE=CONFIG statement for each DL/I ACT generation.

The DLZACT TYPE=CONFIG macro instruction can
include the following operands:

DLZACT TYPE=CONFIG
[,MAXTASK={nnn}]

{ 10 }
[,CMAXTSK={nnn }]

{maxtaskvalue}

[,BFRPOOL=nnn]
[,PASS={password}]

{DLZPASS1}
[,SLC=phname] [,PI={YES}] [,REMOTE={YES}

{NO } {NO }

MAXTASK
specifies the maximum number of DL/I tasks that
may be processed concurrently, where nnn is a
numeric value from I to 255. If this operand is
omitted, the value 10 is assumed for MAXT ASK.

See "Controlling the Number of CICS/VS and
DL/I Tasks" later in this chapter.

CMAXTSK
specifies the maximum number of concurrent
DL/I DOS/VS tasks allowed, where nnn is a num­
ber from I to 255. However, it must not exceed
the value specified for MAXT ASK. If this operand
is omitted, the value specified for MAXT ASK is
used. See "Controlling the Number of CICS/VS

and DL/I Tasks" later in this chapter.

BFRPOOL
specifies the number of buffer subpools to be
acquired and formatted during the initialization
of the online DL/I system, where nnn is a numeric
value from 0 to 255. If the value is omitted or
zero, a request for the value is made at the system
log during DL/I online system initialization.

If no buffer pool control options are specified, a
subpool consists of 32 fixed-length buffers. The
buffer size is generally consistent with the VSAM

data base control interval size and is some multi­
ple of 512 bytes. The buffer size value is deter-

5 - 8 DL/I DOS/VS Guide For New Users

mined at DL/I system initialization and is based
on the value specified in BFRPOOL, the number of
data bases, and the size of the VSAM control inter­
vals. A data base is assigned a subpool that con­
tains buffers equal to or greater in size than the
size of the data base control interval.

PASS

SLC

PI

specifies the password (1 to 8 alphameric charac­
ters) associated with the special functions of the
system control calls. See "DL/I System Call For­
mat and Returns" in the Utilities and Guide for
the System Programmer. If this parameter is omit­
ted the value "DLZPASSl" is used as default.

specifies the phase name of the storage layout
control table to be used. See "Storage Layout
Control Option" in the Utilities and Guide for the
System Programmer.

specifies the program isolation option (default is
YES). See "Program Isolation" later in this chap­
ter.

REMOTE
REMOTE=YES simplifies DL/I online nucleus gen­
eration for processing requests from other sys­
tems. This optional parameter enables all PSBS
defmed in this (local) system's DL/I nucleus to be
accessed from other (remote) systems through the
CICS/VS mirror program DFHMIR.

The REMOTE=YES parameter accomplishes this
by generating a
DLZACT TYPE=PROGRAM,PGMNAME=DFHMIR

statement for the CICS/VS mirror program which
includes the PSB names of all PSBS that are de­
fined in this DL/I nucleus.

If there are PSBS that are to be accessed only from
remote systems, a
DLZACT TYPE=PROGRAM,PGMNAME=DFHMIR

statement must be used to defme these PSBS. If, in
addition, REMOTE=YES is specified, all PSBS that
can be accessed by the local system are added to
the list of PSBS specified in the
DLZACT TYPE=PROGRAM,PGMNAME=DFHMIR
statement. See the Utilities and Guide for the Sys­
tem Programmer for details.

Describing the Application Program Rela­
tionship to DL/ I Data Bases
A logical connection between a CICS/VS application
program and a DL/I data base is achieved through the
DLZACT TYPE=PROGRAM macro instruction.

A maximum of 4095 DLZACT TYPE=PROGRAM state-

L

ments and a maximum of 4095 unique entries (an entry
consisting of program name and one PSBNAME) may
occur in one ACT generation. Therefore, a maximum of
4095 unique program names and 4095 PSB names is
possible.

Note: During the DL/I scheduling call, if the PSBNAME is omitted
from the call parameter list, the first PSBNAME defined in order of
appearance in the macro generation associated with the program
becomes the default PSB for that program.

DLZACT

PGMNAME

TYPE=PROGRAM,
PGMNAME=name,
PSBNAME=(name,name, ...)

specifies the application program name (may be I
to 8 alphameric characters) defined for the
TYPE=PROGRAM statement.

PSBNAME
specifies the PSBNAME(S) associated with the
program's entries. Valid PSB names are from I to
7 alphameric characters. The first PSB name en­
countered in the PSBNAME list becomes the de­
fault PSB for the application program named in
this entry. Because all batch MPS programs actu­
ally communicate to DL/I through the BPC (batch
partition controller) running in the online parti­
tion, you must make an entry in the ACT for this
program. You should list with this program the
names of all PSBs that are used with MPS batch
application programs. Note that the DL/I utility
programs cannot run under MPS. Nor can you
execute any batch DL/I programs under MPS that
require a PCB PROCOPT ofL or use SHSAM or
HSAM access methods. The form ofthis ACT entry
is as follows:

DLZACT TYPE=PROGRAM,PGMNAME=DLZBPCOO, x
PSBNAME=(name,name ...)

Potentially you could have quite a few PSBS to be
associated with the BPC. The DLZACT macro accepts up
to 4095 PSB names (and program names). In general,
this quantity is sufficient for any user. The macro lan­
guage of the DOS/VS assembler, however, accepts no
more than 255 characters (including parentheses) in a
sublist as the operand in a macro. A sublist is one or
more entries separated by commas and enclosed in
parentheses, such as the list of PSB names following the
PSB name key word parameter in the DLZACT macro.
Because this probably won't be sufficient for the BPC
entry in the ACT, DL/I provides a continuation facility.
To continue the PSBNAME sublist, code the parameter
"CONT=YES" on each line that is to be continued as
shown in the following example.

DLZACT TYPE=PROGRAM,PGMNAME=DLZBPCOO, x
PSBNAME=(PSBA,PSBB,PSBC), X
CONT=YES

DLZACT PSBNAME=(PSBD,PSBE,PSBF), X
CONT=YES

DLZACT PSBNAME=(PSBG,PSBH)

In this example, PSBs A through H are associated with
the BPC. The use ofthe continuation facility is not
limited to the BPC entry in the ACT.

Specifying a Data Base Resident on Another
System
Using CICS/VS intersystem communication support,
DL/I application programs can access a data base that
is resident on another CPU. The application program
can be unaware of where the data base is located. In­
tersystem communication support is invoked when the
DL/I program request handler detects a remote PSB
during a scheduling call.

The system programmer, when generating a DL/I
online nucleus, can optionally specify the location of
remote PSBS through the DLZACT TYPE=RPSB macro
instruction. See the Utilities and Guide for the System
Programmer for details.

Specifying Buffer Pool Control Options
The size of DL/I buffer subpool and their assignments
to DMBS as well as VSAM buffer usage can optionally be
specified through the DLZACT TYPE=BUFFER macro
instruction. For each buffer subpool or HISAM or
INDEX data base, one TYPE=BUFFER macro instruction
can be specified.

DLZACT TYPE=BUFFER,{HDBFR=(bufno
[,dbdname1 ,dbdname2, ... j)
[, HSBFR= ... J }
{HSBFR=(indno,ksdsbuf,
[esdsbufJ ,dbdname) [,HDBFR= ... J}

HDBFR describes one DL/I subpool where:

• bufno
specifies the number of buffers to be allocated for
this subpool and is a numeric value from 2 to 32.
If omitted for a specific subpool, 32 is assumed,
and

• dbnamel,dbname2, ...
specifies the name of DBDS that are to be allocated
for this subpool.

HSBFR defines VSAM buffer allocation for HISAM and
INDEX data bases.

• indno
specifies the number of index buffers for a KSDS.

• ksdsbuf
specifies the number of data buffers for a KSDS.

Chapter 5: Online and MPS Considerations 5 - 9

• esdsbuf
specifies the number of data buffers for the ESDS

(applies to HISAM only).

• dbdname
the name of the HISAM or INDEX DBD referenced
by the application program.

IIJOB
IIOPTION
IIEXEC

NUCGEN
CATAL
ASSEMBLY,SIZE=272K

DLZACT TYPE=INITIAL

Specifying the End of the DL/ I Application
Control Table
The end of the ACT generation is indicated by the fol­
lowing macro instruction:

DLZACT TYPE=FINAL

JCL for Creating the Online Nucleus
Online nucleus generation is run as a standard DOS/VS

job and requires the following job control statements:

DLZACT TYPE=CONFIG, .. .
DLZACT TYPE=PROGRAM, .. .

ONLINE NUCLEUS GENERATION
CONTROL STATEMENTS

1*
ENTRY

IIEXEC
1&

DLZACT TYPE=RPSB, .. .
DLZACT TYPE=BUFFER, .. .
DLZACT TYPE=FINAL
END

DLZNUC
LNKEDT

Note: When assembling an ACT a size parameter of at least 272K is
required (/ / EXEC ASSEMBL Y,SIZE=272K), otherwise the
assembler will terminate with an IPK 100 error.

Description of Online Nucleus Generation
Output
Online nucleus generation produces three types of
printed output and one load module. Each of these
items of output is described in the following para­
graphs.

Control Statement Listing
This is a listing of the input.

Diagnostics
Errors discovered during the processing of each control
statement result in diagnostic messages. These mes­
sages are printed immediately following the image of
the control statement to which they apply. The mes­
sage may reference either the control statement imme­
diately preceding it or the preceding group of control
statements. It is also possible that more than one mes­
sage could be printed for each control statement; in this
case, the messages follow each other on the output
listing. After all control statements have been read, a
check ofthe entire deck is made to determine reasona­
bility. This may result in one or more additional diag­
nostic messages.

5 - 10 DL/I DOS/VS Guide For New Users

Discovery of any errors results in the diagnostic
message(s) being printed, the control statements being
listed, and the other output being suppressed. Howev­
er, all control statements are read and checked before
the online nucleus generation execution is terminated.

Assembly Listing
A DOS/VS Assembler language listing of the assembled
online nucleus is provided.

Load Module
After the online nucleus generation is assembled, the
online nucleus must be link-edited and cataloged into a
oos/vs core image library. During the link-edit step,
the relocatable library modules for both CICS/VS and
DL/I must be available to the linkage editor as modules
from both products are required in the DL/I online
nucleus.

CICS/VS-DL/I Table Example
The following is an example of the parameters required
in the various CICS/VS and DL/I tables to support DL/I

(and MPS). The numbers on each line refer to the com­
ments that follow.

1 . DFHSIT TYPE=CSECT,DL1=01 ,FCT=Ol ,PCT=Ol ,PPT=Ol ,JCT=Ol ,ALT=Ol, X
PLTPI=SU,PLTSD=SD,DBP=Ol ,DBUFSZ= ... , ...

2. DFHFCT TYPE=INITIAL,SUFFIX=Ol
•
•

3. DFHFCT TYPE=DATASET,DATASET=DB1,ACCMETH=DL/I,OPEN= ...
DFHFCT TYPE=FINAL

4. DFHPCT TYPE=INITIAL,SUFFIX=Ol

5. DFHPCT TYPE=ENTRY,PROGRAM=DL1PROG,DTB=YES, ...

6. DFHPCT TYPE=ENTRY,PROGRAM=DLZMSTRO,TRANSID=CSDA,CLASS=LONG

7. DFHPCT TYPE=ENTRY,PROGRAM=DLZMPCOO,TRANSID=CSDB,TWASIZE=268, X
CLASS=LONG

8. DFHPCT TYPE=ENTRY,PROGRAM=DLZBPCOO,TRANSID=CSDC,TWASIZE=256, X
CLASS=LONG,DTB=YES

9. DFHPCT TYPE=ENTRY,PROGRAM=DLZMSTPO,TRANSID=CSDD, X
CLASS=LONG

•
•

DFHPCT TYPE=FINAL

10. DFHPPT TYPE=INITIAL,SUFFIX=Ol
•
•

11. DFHPPT TYPE=ENTRY,PROGRAM=DLZMSTRO

12. DFHPPT TYPE=ENTRY,PROGRAM=DLZMPCOO

13. DFHPPT TYPE=ENTRY,PROGRAM=DLZBPCOO

14. DFHPPT TYPE=ENTRY,PROGRAM=DLZMSTPO
15. DFHPPT TYPE=ENTRY,PROGRAM=DLZSTPOO

16. DFHPPT TYPE=ENTRY,PROGRAM=DL1PROG

17. DFHPPT TYPE=ENTRY,PROGRAM=DFHPLTSU

L 18. DFHPPT TYPE=ENTRY,PROGRAM=DFHPLTSD

19. DFHPPT TYPE=ENTRY,PROGRAM=DLZFSDPO,RES=PGOUT

20. DFHPPT TYPE=ENTRY,PROGRAM=DFHDBPOl

•
•

DFHPPT TYPE=FINAL

21. DFHJCT TYPE=INITIAL,SUFFIX=Ol

22. DFHJCT TYPE=ENTRY,JFILEID=SYSTEM,BUFSIZE=1024, ...
•
•

DFHJCT TYPE=FINAL

23. DFHPLT TYPE=INITIAL,SUFFIX=SU

24. DFHPLT TYPE=ENTRY,PROGRAM=DLZMSTRO
•
•

DFHPLT TYPE=FINAL
25. DFHPLT TYPE=INITIAL,SUFFIX=SD

26. DFHPLT TYPE=ENTRY,PROGRAM=DLZMSTPOO
•
•

27. DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM

28. DFHPLT TYPE=ENTRY,PROGRAM=DLZSTPOO
•
•

DFHPLT TYPE=FINAL

29. DFHALT TYPE=INITIAL,SUFFIX=Ol
•
•

30. DFHALT TYPE=ENTRY,PROGRAM=DLZMPCOO,ADRSPCE=LOW,PAGEOUT=NO, X
ALIGN= ...

31. DFHALT TYPE=ENTRY,PROGRAM=DL1PROG,ADRSPCE=LOW, ...
•
•

Chapter 5: Online and MPS Considerations 5 - 11

32. DFHALT TYPE=ENTRY,ALIGN=YES,ADRSPCE=HIGH, X
PROGRAM=(DLZMSTRO,DLZMSTPO,DLZSTPOO,DLZFSDPO) , x
PAGEOUT=YES

•
•

DFHALT TYPE=FINAL

33. DLZACT TYPE=INITIAL,SUFFIX=Ol

34. DLZACT TYPE=CONFIG,PI=YES, ...

35. DLZACT TYPE=PROGRAM,PGMNAME=DL1PROG,PSBNAME=(...)

36. DLZACT TYPE=PROGRAM,PGMNAME=DLZBPCOO,PSBNAME=(...)
•

37. DLZACT TYPE=BUFFER, ...
DLZACT TYPE=FINAL

1. This defines the SIT with a suffix of "01" for the
CICS/VS FCT, PCT, PPT, JCT, and AL T; a sufftx of
"sU" for the start-up PL T; "SD" for the shut-down
PLT; and a sufftx of"OI" for the DL/I ACT. DBP=
and DBUFSZ= must be specified to schedule the
DTB facility in this execution OfCICS/VS. Note
that there must be an entry in the PPT for the ver­
sion of the dynamic transaction backout program
specified here.

2. This defines the FCT with a sufftx of "01" to
match the SIT specification.

3. This is an example of a DL/I data base FCT entry.
Since these entries are only referenced during
open processing they should be placed at the end
of the FCT.

4. This defmes the PCT with a sufftx of "01" to
match the SIT specification.

5. Defines a DL/I transaction (non-batch MPS) with
dynamic transaction backout specified as re­
quired for DL/I PI support.

6. DL/I MPS Start transaction.

7. DL/I MPS Master Partition Controller transaction.

8. DL/I MPS Batch Partition Controller transaction.
Note that dynamic transaction backout support is
specified for the MPS Batch Partition Controller
transaction. This will cause the DL/I updates
made by a batch MPS program to be backed out if
the batch program abnormally terminates.

9. DL/I MPS Stop transaction.

10. This defines the PPT with a sufftx of "01" to
match the SIT specification.

11. DL/I MPS Start program referred to by (6).

12. DL/I MPS Master Partition Controller program
referred to by (7).

13. DL/I MPS Batch Partition Controller program
referred to by (8). Note that this program is also
defined in the DL/I ACT (36).

14. DL/I MPS Stop program referred to by (9).

5 - 12 DL/I DOS/VS Guide For New Users

15. DL/I System Termination Program.

16. An example of a DL/I application program PPT
entry. Note that this program is also defined in
the CICS/VS ALT (31) and the DL/I ACT (35).

17. Start-up PLT entry referenced in (1) and defmed
in (23).

18. Shut-down PL T entry referenced in (1) and de­
fined in (25).

19. DL/I'S formatted system dump program used
during CICS/VS ABEND processing.

20. This defines the dynamic transaction backout
program specified in (1).

21. This defines the JCT with a suffix of "01" to
match the SIT specification.

22. Although a buffer size of 1024 bytes (default
value) is defmed here, the maximum size handled
by DL/I logging is 32,767 bytes.

23. This defines the start-up PLT with a suffIX of "SU"
to match the SIT specification.

24. The MPS Start program is listed in the start-up
PL T so that MPS operation will be initiated auto­
matically during CICS/VS initialization.

25. This defmes the shut-down PLT with a sufftx of
"SD" to match the SIT specification.

26. This defines the MPS stop-transaction in the shut­
down PLT so that MPS operation will be stopped
during the first stage of CICS/VS shut-down proc­
essing.

27. This is the special CICS/VS delimiter entry for
shut-down PLTS. Programs listed after this point
are executed during the second shut-down proc­
essing stage.

28. This is the required DL/I System Termination
Program entry.

29. This defmes the ALT with a suffix of "01" to
match the SIT specification.

30. This marks the DLZMPCOO program resident in
low address space. Its alignment (YES or NO) and
its position in the ALT must be determined based
on its usage relative to other CICS/VS application
programs. The CICS/VS statistics can be used to
better determine this for your system.

31. This makes this DL/I application resident in low
address space. Its alignment (YES or NO) and its
position in the AL T must be determined based on
its usage relative to other CICS/VS application
programs. The CICS/VS statistics can be used to
better determine this for your system.

32. This makes the DL/I MPS Start and Stop pro­
grams, the DL/I System Termination program,
and the DL/I Formatted System Dump Program
resident in high address space. Because they have
very low usage CICS/VS has been requested to
page them out (PAGEOUT=YES). They are aligned
to allow a clean page-out, i.e. the page-out will
not carry code for other programs with it.

33. This defines the DL/I ACT with a suffix of "01" to
match the SIT specification.

34. This specifies the DL/I environmental factors.
Note that PI=YES is specified. This is also the
default action.

35. This is an example of a DL/I online application
program entry. Note that this program is also
defined in the CICS/VS PPT (16).

36. This defines all PSBS that are valid for use by the
MPS Batch Partition Controller program. Normal­
ly this would be all previous batch application
program PSBs. Because this program is probably
infrequently accessed relative to online DL/I ap­
plication programs, it should be placed towards
the end of the ACT. This program is also defined
in the CICS/VS PPT (13). This is the only one of
the four DL/I MPS programs that should be de­
rmed in the DL/IACT.

37. This specifies the DL/I buffer pool characteristics.

CICS/VS-DL/I Tables for the Sample Program
The following tables are specified for use by the online
sample program, DLZSAM60:

DFHFCT TYPE=INITIAL,SUFFIX=HV, X
•
•
•
•

DFHFCT TYPE=DATASET,DATASET=STDCDBP, X
ACCMETH=DL/I

DFHFCT TYPE=DATASET,DATASET=STDIDBP, X
ACCMETH=DL/I

DFHFCT TYPE=DATASET,DATASET=STDIX1P, X
ACCMETH=DL/I

DFHFCT TYPE=DATASET,DATASET=STDCX1P, X
ACCMETH=DL/I

DFHFCT TYPE=DATASET,DATASET=STDCX2P, X
ACCMETH=DL/I
•
•
•
•

DFHFCT TYPE=FINAL
END DFHFCTBA

DFHPCT TYPE=ENTRY,TRANSID=DLZZ, X
PROGRAM=DLZSAM60,TWASIZE=2048, X
INBFMH=EODS,LOGREC=NO

DFHPPT TYPE=ENTRY,PROGRAM=DLZMAPS X
DFHPPT TYPE=ENTRY,PROGRAM=DLZSAM60, X

RELOAD=YES

DLZACT TYPE=PROGRAM,
PGMNAME=DLZSAM60,
PSBNAME= (STBCUSR, STBCUSU)

x
x

Note: DLZSAM60 is the online sample program. DLZMAPS is the
mapping module for DLZSAM60.

Initialization of the DL/I Online
System
DL/I online initialization consists of a CICS/VS initiali­
zation overlay phase called by the CICS/VS system ini­
tialization program. This phase of initialization de­
pends on information contained in the DL/I online
nucleus and use of the DOS/VS UPSI byte information.

The DL/I initialization job control requirements are
essentially the same as the batch DL/I requirements,
however, you may elect to make use of the combined
CICS/VS-DL/I journal facility. See Chapter 7 "DL/I
Data Base Recovery Restart."

When using this feature the DL/I log records are
written directly to the CICS/VS system journal file using
CICS/VS journal requests. If the DL/I logger is used,
SYSOll must be assigned to the output log file device.
The DL/I logger may not be used with PI support active.

DOS/VS UPSI Byte Settings (Online)
Bits 0 - 2 Reserved for CICS/VS.

Bits 3 - 5

Bit 6 =0
=1

Bit 7 =0

Available subject to Note.

DL/I system log function active.
DL/I system log function inactive.

DL/I system log function on CICS/VS
system log.

Chapter 5: Online and MPS Considerations 5 - \3

= 1 DL/I system log function on DL/I sys­
tem log device (SYSOII-LOGOUT).

Note: For further information, see the CICS/VS System Program­
ming Guide (DOS/VS).

Programming Considerations
Before attempting to write a CICS/VS-DL/I program,
you should be familiar with DL/I DOS/VS batch pro­
gramming concepts and Customer Information Control
System/Virtual Storage (CICS/VS) programming funda­
mentals. References to the prerequisite publications are
contained in the preface to this manual.

A programmer in a CICS/VS-DL/I environment ac­
cesses data bases in much the same manner as in the
batch environment. Because the CICS/VS-DL/I user may
share access to DL/I data bases with other applications
programs, the user has additional responsibilities when
writing a CICS/VS-DL/I program. This chapter discusses
these additional programming requirements and con­
siderations. Batch and online requirements are the
same, except where differences are noted.

The CICS/VS application programmer requests DL/I
services by issuing a DL/I call just as would be done in
a batch environment (except in Assembler language,
where CALLDLI must be used instead of CALL). All call
function codes described for batch use are valid in the
online environment.

In CICS/VS, if several transactions requiring the use
of one message processing program are being serviced,
one copy of the program is executed in a reentrant
manner by several CICS/VS subtasks. Therefore, DL/I
areas that can be modified, such as PCB pointers, seg­
ment I/O areas, and SSAs may not be placed in either
static storage or working storage. In order to maintain
quasi-reentrancy, storage for PCB pointers, SSAS, and
segment I/O areas must either be obtained from
CICS/yS dynamic storage or be defined in the transac­
tion work area. The transaction work area is preferred
for several reasons, the prime one being its ease of use.

The steps to request DL/I services are:

1. Obtain addresses of PCBS for use by the transac­
tion by issuing a DL/I call with 'PCB' as the func­
tion code. This is described in the following dis­
cussion, "Obtaining the Address of the PCB: The
Scheduling Call."

2. Acquire working storage for Assembler language
programs: for COBOL and PL/I, this is automatical­
ly handled. For Assembler, there are several ways
to reserve storage for the count field, function
code field, I/O area, SSAS, and parameter list.

a. The recommended approach is to reserve these
in the transaction work area.

5 - 14 DL/I DOS/VS Guide For New Users

b. You may issue one CICS/VS GETMAIN macro to
hold all these areas.

c. The least efficient method is to issue one
CICS/VS GETMAIN macro for each area.

As with all CICS/VS GETMAIN operations, storage
account areas must be considered when techni­
ques "b" and "c" are used.

3. Set the parameter count and function code as in
the batch environment.

4. Furnish the PCB address provided by the 'PCB' call
previously issued.

5. Issue the call.

Obtaining the Address of the PCB:
The Scheduling Call
Before accessing DL/I data bases, a CICS/VS program
must issue a special DL/I call to initiate scheduling of a
PSB. It is the responsibility of the programmer to deter­
mine the results of this call, details of which are given
under "Checking the Response to a Scheduling or Ter­
mination Call".

The format of the scheduling call is:

For COBOL:

Call 'CBLTDLI' USING [parm-count,]
call-function[,psbname[,uibparm]] .

For PL/I:

CALL PLITDLI (parm-count,
call-function[,psbname[,uibparm]]);

For Assembler:

CALLDLI ASMTDLI,([parm-count,]
call-function[,psbname[,UIBPARM]])

parm-count
is the name of a binary fullword containing the
parameter count. This count equals 1,2, or 3 de­
pending on whether or not psbname and uibparm
are specified. This parm-count parameter is op­
tional in Assembler and COBOL.

call-function
is the name of the field containing the 4-character
function 'PCBb'

psbname
is the name of the 8-byte field containing the 1- to
7-character PSB generation name (right padded
with blanks) that the application program access­
es. If uibparm is not used this parameter is op­
tional, and, if omitted, the default is the first PSB
name associated with the application program

name in the DL/I application control table gener­
ation.

Note: In order to indicate that a default PSB is to be scheduled when
uibparrn is specified in COBOL, PL/I, or Assembler, a psbname of
"*b" must be used.

uibparm
is the name of a fullword to which DL/I returns
the address of the User Interface Block. Use of
this parameter is optional, but desirable in
COBOL, PL/I, and Assembler calls. RPG II requires
use of the User Interface Block. The User Inter­
face Block (UIB) is a control block used to pass to
the user the address of the PCB list and the sched­
uling and termination response and error codes.
If this parameter is omitted, the PCB list address
and response and error codes will be returned in
fields in the CICS/VS task communication area
(TCA).

For RPG II:

PCB RQDLI in
psb-namej
BUlB

[PSBNAME ELEM
SET ELEM

in
indicator required in positions 56-57.

psb-name
is the name of the PSB to be scheduled. It can be
specified either as a var-name (a variable psb­
name containing the psbname as a character
string, as shown in [---] above) or as an alphamer­
ic literal constant

PSBNAME ELEM 'PSBNAMl '

where PSBNAMI is the name of the PSB.

BUlB
refers to a field in DFHDUM that is the base of
DUUIB. User must specify such a field in
DFHDUM to establish the addressability of PCBs
after a scheduling call. (See Figure 3-7 for exam­
ples.)

If no PSB name is explicitly specified, the Translator
will generate a PSB name of '*', which will cause the
first PSB to be scheduled by default.

After a successful scheduling call, the field
UIBPCBAL or TCADLPCB if the UIB is not used, or

I UAPCBL in RPG II, contains the address of a PCB list.
The PCB list consists of a series of 4-byte addresses that
point to the PCBs within the PSB that has been sched­
uled. The last address in the list is indicated by the
high order bit being I.

Releasing a PSB in a CICS/VS
Application Program: The
Termination Call
To reduce intent contention, the CICSjVS application
program should release the PSB when no more DL/I
services are required by the program.

Conversational programs should release the PSB
before writing output onto a terminal so that other
transactions can use the PSB while the conversational
program is waiting for an operator response. Before
issuing any other DL/I CALLS requesting DL/I access to
a data base, however, the application program must
again schedule the PSB using a scheduling call. (This is
not necessary if PI is used, however, it is probably a
good practice to do so anyway.) Ifnecessary, position
in the data base must also be reestablished.

To release a PSB for use by other transactions, the
program issues a call of the following format:

For COBOL:

CALL 'CBLTDLI' USING [parm-count,j
call-function.

For PL/I

CALL PLITDLI (parm-count,
call-function) ;

For Assembler:
CALLDLI {ASMTDLI}, ([parm-count,j

[CBLTDLlj
call-function)

Note: The contents ofregisters 1, 14, and 15 are altered.

parm-count
is the name of a fullword containing a binary
value of I.

call-function
is the name of a 4-byte field containing the value
'TERM' or 'T and three blanks.

For RPG II:

TERM RQDLI

N~te: A 'T, or 'TERM' call causes a CICS/VS synchronization
pomt. Also, a CICS/VS synchronization point causes a 'T call if a
PSB is still scheduled by the transaction. Refer to the section on
Recovery Services in the CICS/ VS System Application Design Guide,
SC33-0068. However, in the latter case, storage used by DL/I is held
by the a!>plication program until a ''T'' call is issued or the CICS/VS
transaction ends. Therefore, the application programmer should
Issue a "TERM" call instead of a DFHSP macro.

Chapter 5: Online and MPS Considerations 5 - 15

Checking the Response to a DL/I
Call
When an application programmer issues a PCB, TERM,
or data base call, he should check the response to his
request using either of the two ways described below.
In addition the application programmer should check
the PCB status code field after all data base calls, as in
batch application programs. However, the response
field in the TCA or UIB must always be checked first to
insure that the call was accepted.

1. Include code immediately following the call to
examine the field UIBFCTR, or TCAFCTR (TCAFCRC
in ANS COBOL) if the UIB is not used or UAPCBL in
RPG II, and, based on its contents, transfer control
if necessary to an exception-handling routine. The
possible response codes in these fields are:

Scheduling Call

Condition Response Code

Assem. ANS PL/I
RPG II

COBOL

NORESP X'OO' 12-0-1-8-9 00000000 00000000
Normal
Response

INVREQ X'08' 12-8-9 00001000 00001000
Invalid
Request

NOTOPEN X'OC' 12-4-8-9 00001100 00001100
Not
Open

NORESP
indicates that the requested function was com­
pleted normally and that the field UIBPCBAL, or
TCADLPCB if the UIB is not used, or UAPCBL in
RPG II contains the address of the PCB list.

INVREQ

X'OI'

X'02'

X'03'

indicates that field UIBDL TR or TCADL TR if the
UIB is not used, or UDL TR in RPG II, contains one
of the following error codes:

PSB name, as provided in the scheduling call, is
not in the PSB dictionary.

The calling program name is not defined in the
DL/I application control table.

The calling program has already successfully
issued a scheduling (PCB) call that has not been
followed by a termination (TERM) call.

5 - 16 DL/I DOS/VS Guide For New Users

X'04'

X'OS'

X'06'

X'09'

Either the calling program is written in PL/I and
the language specified in the PSB is not PL/l; or
the calling program is not written in PL/I, but the
PSB specifies PL/l.

The PSB could not be initialized by DL/l online
initialization.

The PSB in the scheduling call is not defined in
the program's application control table entry.

An MPS batch program attempted to issue a PCB
call for a read-only PSB or for a non-exclusive PSB
if program isolation is active.

X'FF'
The DL/I interface has been terminated or DL/I
initialization failed.

NOTOPEN
indicates that one or more DBD entries associated
with this PSB are stopped or that a scheduling
conflict with an MPs-scheduled task has occurred.
Stopped means that the data base is not available
for use because of an initialization error or an I/O
error, or because it is closed. Conflict with an
MPS-scheduled task means that a task running
under MPS in a batch partition that has not done
its own scheduling has update sensitivity to a seg­
ment for which update sensitivity has been re­
quested.

\
Field UIBDLTR or TCADLTR if the UIB is not used, or

UDTLR in RPG II, contains one of the following error
codes:

X'OI'
One or more DBD entries associated with the PSB
are stopped.

X'02'
A scheduling conflict with a currently active MPS
batch partition occurred.

Data Base or Termination Call

Condition Response Code

Assem.
ANS

PL/I
RPG II

COBOL

NORESP X'OO' 12-0-1-8-9 00000000 00000000
Normal
Response

INVREQ X'08' 12-8-9 00001000 00001000
Invalid
Request

NORESP
indicates that the DL/I resources have been re­
leased.

INVREQ
indicates that the field UIBDLTR, or TCADLTR if
the UIB is not used, or UDLTR in RPG II, contains
one of the error codes that are listed together with
their explanations below:

X'OT "TERM" requested but task not scheduled.
X'08' A DL/I call was made but the task has not
scheduled a PSB.
X'FF' The DL/I interface has been terminated or
DL/I initialization failed.

If a DL/I task abnormal termination occurs during
online processing, control is not returned to the appli­
cation program and the transaction is terminated with
a CICSjVS message. In that message, the numeric part
of the code that follows the word ABEND corresponds
to the numeric portion of the applicable DL/I message
number as listed in Chapter 3 of DL/ I DOS/ VS Mes­
sages and Codes. The code normally begins with D but
it begins with E if the termination cannot be noted on
the transient data destination CSMT.

2. Include the DFHFC TYPE=CHECK macro immedi­
ately following the call. The operands that are
appropriate for checking the CICS/VS-DL/I inter­
face response and their meanings are summarized
in the following table:

DFHFC TYPE=CHECK
[,NORESP=syrnbolic address]
[,INVREQ=syrnbolic address]
[NOTOPEN=syrnbolic address]

TYPE=CHECK
is always coded.

NORESP
specifies the entry label of a user-written routine
to which control is passed upon normal execu­
tion of the request.

INVREQ
specifies the entry label of the user-written rou­
tine to which control is passed if the application
program has not scheduled a PSB and obtained
PCB addresses.

NOTOPEN
specifies the entry label of the user-written rou­
tine to which control is passed if the data base
specified in the PCB used in this request is stop­
ped. Stopped means that the data base is not
available for use because of an initialization er­
ror or an I/O error, or because it is closed. The
PCB does not contain an AI status code.

If a DL/I task abnormal termination occurs during
online processing, control is not returned to the appli­
cation program and the transaction is terminated with
a CICS/VS message. In that message, the numeric part
of the code that follows the word ABEND corresponds
to the numeric portion of the applicable DL/I message
number as listed in the DL/I System Messages chapter
of the Messages and Codes. The code normally begins
with D but it begins with E if the termination cannot
be noted on the transient data destination CSMT.

MPS (Multiple Partition Support) Considerations
An online program receives a return code from a PCB
call if it conflicts with an MPS batch job, instead of
waiting. In this case, UIBFCTR, or TCAFCTR (TCAFCRC
in ANS COBOL), or UFCTR in RPG II contains a X'OC' and
UIBDLTR or TCADLTR or UDLTR in RPG II contains a
X'02'. When the data base is not open, the fields will
contain X'OC' and X'OI' respectively.

If any online tasks must wait for a resource owned
by a batch MPS task, the MPS task will be informed on
the next and all subsequent calls until a DL/I check­
point is issued. (Note that making the resource avail­
able through some other action makes no difference.
The pass back indicates that a wait was required, not
necessarily that a task is currently waiting.) This condi­
tion is indicated by setting the high-order bit of the first
byte of the "JCB Address" field in the PCB to a one
(X'80'). The application program must test for this con­
dition by examining the field in the PCB mask that is
reserved for DL/I. In COBOL, it is labeled
"RESERVE-DL/I"; in PL/I, "RESERVE DL/I; in RPG II,
"RESRij"; and in Assembler, "DBPCBSRV".

MPS batch jobs not using program isolation are per­
mitted to issue PCB and TERM calls. This allows tasks
conflicting with the batch job to run before the batch
job completes. However, this practice is not recom­
mended because of the following restrictions:

1. The first PCB call is issued automatically by DL/I
so before an MPS batch job issues its first PCB call,
it must issue a TERM call.

2. The PSB name used by an MPS batch job in a PCB
call must always be the one specified in the DL/I
parameter statement. This PSB must not be a read­
only PSB. The PCB addresses are the same as at the
start of the application program. These addresses
should be used after a PCB call.

3. The format of the PCB and TERM calls are the
same as in online execution except the CALL ma­
cro is used instead of CALLDLI.

4. The user must not issue PCB calls and TERM calls
for a read-only PSB.

Chapter 5: Online and MPS Considerations 5 - 17

5. There is no feedback information passed to the
program. The MPS batch program request handler
intercepts the return code, and if it is non-zero, it
will ABEND the batch job.

6. After an MPS batchjob has successfully issued its
own PCB call, it will be considered to be an online
task from a scheduling viewpoint.

Notes:

• If PCB and TERM calls are used by MPS batch jobs, the jobs
must not be run in a non-MPS batch environment or in an
MPS batch environment using program isolation. The use of
these calls is also not upward compatible with IMS/VS, that is
these calls are not permitted in batch IMS/VS.

• Using CICS/VS Intersystem Communication Support, DL/I
application programs can access a data base that is resident on
another CICS/VS system. The application program, except in
the following situation, need not be aware of where the data
base is located: If your MPS batch application program is to
run on a system where Intersystem Communication support is
active, it must not issue 'PCB' calls. If issued, such calls would
receive an abnormal return code of X'OS' in UIBFCTR, or
TCAFCTR (TCAFCRC in ANS COBOL) if the UIB is not
used, or UFCTR in RPG II; and X'09' in UIBDL TR, or
TCADLTR if the UIB is not used, or UDLTR in RPG II.

Issuing the DL/ I Call
DL/I data base services are available to CICS/VS appli­
cation programs through call statements. The call state­
ment formats for ANS COBOL and PL/I are similar. For
assembler language application programs, a CALLDLI
macro instruction is used. The general formats of the
DL/I calls are as follows:

For COBOL:

CALL 'CBLTDLI' USING [parm-count,j
call function,
db-pcb-name,
i/o-area [,
ssa ... j.

For PL/I:

CALL PLITDLI (parm-count,call-function,
db-pcb-name,i/o-area[,
ssa ... j) ;

For RPG II:
The format of the RQDLI commands in RPG II is the
same as in the batch environment, see Chapter 4,
"RQDLI Commands for DB Access".

For Assembler:
CALLDLI {ASMTDLI,}([parm-count,j

{CBLTDLI}
call-function,db-pcb-name,
i/o-areal ,ssa ... j)

parm-count
is the name of a binary fullword containing the
parameter count. For COBOL and Assembler it is
optional.

5 - 18 DL/I DOS/VS Guide For New Users

call-function
is the name of the field containing the 4-character
DL/I call function desired.

db-pcb-name
is the name ofthe PCB (or DSECT if Assembler).

i/o-area

ssa ...

Notes:

is the name of the I/O area.

are the names of the SSAS; these parameters are
optional.

I. If no parameters are specified in an Assembler language
CALLDLI macro instruction, register I is assumed to contain
the address of a parameter list.

2. In Assembler language, the following format may be used as an
alternative.
CALLDLI {ASMTDLI} ,MF=(E, {(register)})

{CBLTDLI} {address }
Register contains the address of the parameter list. Address is
the address of the parameter list.
Register 13 must contain the address of a 72-byte user-provided
save area. The CALLDLI macro alters the contents of registers
I, 14, and IS.

3. If the application program makes a DL/I data base call with­
out previously making a successful scheduling call, a I-byte
response code (X'OS') is placed in the field UIBFCTR or
TCAFCTR (TCAFCRC in ANS COBOL) or UFCTR in
RPG II indicating an invalid request. If the call is accepted, the
field is set to binary zeros, however, the user must still check
the DL/I PCB status code.

Online Application Coding Examples
The following examples assume the application pro­
grammer has a thorough understanding of CICS/VS
coding requirements and techniques. The examples,
therefore, only illustrate the use of the DL/I portions of
the application programs.

DL/ I Requests in an ANS COBOL Program
The PCB addresses must be obtained upon entry by
issuing a scheduling call. After CICS/VS returns the
control to the application program, the programmer
moves the contents of UIBPCBAL, or TCADLPCB if the
UIB is not used, to the BLL pointer which is the base for
the layout of the PCB pointers in the linkage section. He
then moves the addresses of the PCBs to their BLL point­
ers to provide the base addresses for the PCBs. When
this has been done, the program is in the same state as
a DL/I DOS/VS batch application program in which the
following statement has been executed.

ENTRY 'DLITCBL' USING PCB1,PCB2.

The following examples show how to code DL/1.
The first example shows how to write DL/I requests in
an ANS COBOL program when the UIB is used. The
second example is for when the UIB is not used. Only
some of the possible combinations of operands are
shown, but other combinations are acceptable.

L

COBOL Example 1 (UIB used)
IDENTIFICATION DIVISION.
PROGRAM-ID. DLIEIB.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 PSBNAME PICTURE X(8) VALUE 'PSBNAME'.
77 PCB-FUNCTION PICTURE X(4) VALUE 'PCB'.
77 FUNCTION-l PICTURE X(4) VALUE 'DLET'.
01 WORKAl PICTURE X(40).
01 SSAREA.

02 SSAl PICTURE X(40).
02 SSA2 PICTURE X(60).

LINKAGE SECTION.
01 BLLCELLS.

02 FILLER PICTURE 9(8)
02 UIP-PTR PICTURE 9(8)
02 B-PCB-PTRS PICTURE 9(8)
02 B-PCBl PICTURE 9(8)
02 B-PCB2 PICTURE 9(8)

• COpy UIB DEFINITION - HERE
01 UIB.

COMPo
COMPo
COMPo
COMPo
COMPo
IT IS

02 UIBPCBAL
02 UIBFCTR
02 UIBDLTR

PICTURE 9(8) COMPo
PICTURE X(l).
PICTURE X(l).

01 PCB-PTRS.
02 PCB1-PTR PICTURE 9(8) COMPo
02 PCB2-PTR PICTURE 9(8) COMPo

01 PCB1.
•
•
•

01 PCB2.
•
•
•

PROCEDURE DIVISION.
• GET PCB ADDRESSES

EXPANDED BY HAND

CALL 'CBLTDLI' USING PCB-FUNCTION, PSBNAME, UIB-PTR.
• MOVE ADDRESS OF PCB ADDRESS LIST INTO BLL SLOTS
• SO PCB ADDRESS LIST CAN BE ADDRESSED

MOVE UIBPCBAL TO B-PCB-PTRS.
• MOVE PCB ADDRESSES INTO BLL SLOTS SO PCB'S CAN BE ADDRESSED

MOVE PCB1-PTR TO B-PCB1.
MOVE PCB2-PTR TO B-PCB2.
•
•
•

• ISSUE DL/I REQUEST
CALL 'CBLTDLI' USING FUNCTION-l, PCB1, WORKA1, SSA1, SSA2.

• TEST CICS/VS-DL/I INTERFACE RESPONSE
IF UIBFCTR IS NOT EQUAL LOW-VALUES THEN GO TO ERROR1.

• TEST DL/I RESPONSE
IF STATUS-CODE IS NOT EQUAL SPACES THEN GO TO ERROR2.
GOBACK.

Chapter 5: Online and MPS Considerations 5 - 19

COBOL Example 2 (UIB not used)
WORKING STORAGE SECTION
77 PCB-FUNCTION PICTURE X(4) VALUE 'PCBb'.
77 PSBNAME PICTURE X(8) VALUE 'COBOLPSB'.
77 FUNCTION-l PICTURE X(4) VALUE 'DLET'.
77 SSA-COUNT PICTURE S9(8) COMPUTATIONAL VALUE + 2.
LINKAGE SECTION.
01 DFHBLLDS COpy DFHBLLDS.

02 NOTE POINTERS TO OTHER CICS/VS
* AREAS NEEDED

02 B-PCB-PTRS PICTURE S9(8) COMPUTATIONAL.
02 B-PCB1 PICTURE S9(8) COMPUTATIONAL.
02 B-PCB2 PICTURE S9(8) COMPUTATIONAL.
02 B-WORKAREA PICTURE S9(8) COMPUTATIONAL.
02 B-SSAs PICTURE S9(8) COMPUTATIONAL.

01 DHFCSADS COPY DFHCSADS.
01 DHFTCADS COPY DFHTCADS.

• NOTE TWO DEFINITIONS.
• NOTE OTHER AREA DEFINITIONS.

01 PCB-PTRS.
02 PCB1-PTR PICTURE S9(8) COMPUTATIONAL.
02 PCB2-PTR PICTURE S9(8) COMPUTATIONAL.

01 PCB1.
•
•
•

01 PCB2.
•
•
•

01 WORKAREA.
02 FILLER PICTURE X(8).
02 WORKAl PICTURE X(40).
•
•
•

01 SSAREA.
02 FILLER PICTURE X(8).
02 SSAl PICTURE X(40).
02 SSA2 PICTURE X(60).
•
•
•

PROCEDURE DIVISION.
* GET PCB ADDRESSES

STORAGE PREFIX

CALL 'CBLTDLI' USING PCB-FUNCTION
DFHFC TYPE=CHECK,NOTOPEN=OPENERR,INVREQ=OTHERERR

* SAVE PCB ADDRESSES IN BLL TABLE SO PCB'S CAN BE ADDRESSED
MOVE TCADLPCB TO B-PCB-PTRS
MOVE PCB1-PTR TO B-PCBl
MOVE PCB2-PTR TO B-PCB2.

* OPTIONALLY, ACQUIRE STORAGE FOR WORK AREA
DFHSC TYPE=GETMAIN, ...
MOVE TCASCSA TO B-WORKAREA.

* OPTIONALLY, ACQUIRE STORAGE FOR SEGMENT SEARCH ARGUMENTS
DFHSC TYPE=GETMAIN, ...
MOVE TCASCSA TO B-SSAS.

* CALL DL/I VIA CALL
CALL 'CBLTDLI' USING FUNCTION-1, PCB1, WORKA1, SSA1, SSA2.

5 - 20 DL/I DOS/VS Guide For New Users

L

DL/ I Requests in a PL/ I Program
The PCB addresses must be obtained upon program
entry by issuing a scheduling call. When CICS/VS re­
turns control to the application program, the base ad­
dress of a structure of PCB pointers is in UIBPCBAL, or
TCADLPCB if the UIB is not used. The PL/I programmer
must move the value from TCADLPCB to the based vari­
able for his declared structure of PCB pointers. He then
loads the pointers to all PCBS from this structure. When

PL/I Example 1 (UIB used)
TEST: PROC OPTIONS (MAIN,RE-ENTRANT);
DCL 1 DLIO,

2 DESCRIBE DL/I I/O AREA

DCL
2
SSA,
2
2

DESCRIBE SSA

DCL COUNT FIXED BIT (31);
DCL FUNCTION CHAR (4);
DCL UIBPTR PTR;
, INCLUDE DLIUIB;
/* PRODUCES THE FOLLOWING
/*
/* DLC 1
/*

UIB BASED (UIBPTR),
2 UIBPCBAL PTR,

/*
/*
/*
/*
DCL

DCL 1
2
2

2 UIBRCODE CHAR (2),
3 UIBFCTR CHAR (1),
3 UIBDLTR CHAR (1);

PCB-ADDR BASED (UIBPCBAL),
2 PCB1_PTR,
2 PCB2_PTR;
PCB~ST BASED
MAST_DB_NAME CHAR
MAST_SEG_LEV CHAR

(PCB1_PTR) ,
(8) ,
(2) ,

2 MAST-KEY_FB CHAR(*);

PCB_CALL:
COUNT=3;
FUNCTION='PCB ';

*/
*/
*/
*/
*/
*/
*/
*/

CALL PLITDLI (COUNT,FUNCTION"UIBPTR);
IF UIBFCTR,= 'OOOOOOOO'B THEN GOTO

DATA-BASE_ERROR-RTN;
SET_UP_CALL:

, . ,

this has been done, the program is in the same state as
a DL/I DOS/VS batch application program in which the
following statement has been executed.

DLITPLI: PROCEDURE (pcbnarne1, ...)
OPTIONS (MAIN);

The PL/I programmer may then make DL/I requests, as
the following examples show.

COUNT=4;
FUNCTION='GU
CALL PLITDLI (COUNT,FUNCTION,PCB1_PTR,DLIO,SSA);

Chapter 5: Online and MPS Considerations 5 - 21

PL/I Example 2 (UIB not used)
'INCLUDE DFHCSADS;
'INCLUDE DFHTSADS;

DECLARE 1
2
2

DECLARE 1
2
2

PCB POINTERS BASED
PCB1_PTR POINTER,
PCB2_PTR POINTER;
PCB1 BASED (BPCB1),
... ,

/*CSA DEFINITION */
/*CSA DEFINITION-INCLUDES*/
/*DL/I FIELDS*/

(B_PCB_PTRS) ,

DECLARE 1 DLI_IOAREA BASED (BDLIIC) , /* DL/I I/O AREA */
2 STORAGE_PREFIX CHAR (8),
2 IOKEY CHAR (6),
2 ... ,

DECLARE 1 DLI_SSADS BASED (BSSADS), /* DL/I SSA LIST */
2 STORAGE_PREFIX CHAR (8),
2 SSA1,

3 SSA1SEG CHAR (8),
3 ... ,
3 .•• ;

DECLARE SSADEF CHAR (20) DEFINED SSA1;
DECLARE DLI_FUNCTION CHAR (4) INIT('GU ');
DECLARE PARM_CT BIN FIXED(31) INIT(5);

/* OBTAIN PCB POINTERS */
CALL PLITDLI (parmcount,'PCB ');

DFHC TYPE=CHECK,NOTOPEN=OPENERR,INVREQ=OTHERERR
/* SAVE POINTERS IN PCB BASES */

B_PCB_PTRS=TCADLPCB;
BPCB1=PCB1_PTR;
BPCB2=PCB2_PTR;

/* ACQUIRE STORAGE FOR DL/I I/O AREA */
DFHSC TYPE=GETMAIN,CLASS=USER, ...
BDLIIO=TCASCSA;

/* OPTIONALLY ACQUIRE STORAGE IN WHICH TO BUILD SSA'S */
DFHSC TYPE=GETMAIN,CLASS=USER, ...
BSSADS=TCASCSA;

/* OPTIONALLY BUILD SEGMENT SEARCH ARGUMENTS */
SSA1SEG=SEGNAME

•
•
•

/* CALL DL/I */
CALL PLITDLI (PARM-CT,DLI-FUNCTION,PCB1,IOKEY,SSADEF,

SSA2);

5 - 22 DL/I DOS/VS Guide For New Users

Requests in an Assembler Language Program

Assembler
R4
R7
PCBPTRS
PCB1PTR
PCB2PTR
DFHEISTG
UIBPTR
IOAREA

• PRODUCES

Example I (UIB
EQU 4
EQU 7
DSECT
DS A
DS A
DSECT
DS A
DS CL100

DLIUIB

THE FOLLOWING:

The application programmer must first obtain the PCB addresses. The following
examples show the options available to the application programmer in a few of the
acceptable combinations. Note that the application program must be quasi-
reentrant.

used)

•
••
• DLIUIB DSECT •
• UIB DS OF EXTENDED CALL USER INTFC BLK •
• UIBPCBAL DS A PCB ADDRESS LIST •
• UIBRCODE DS OXL2 DL/I RETURN CODES •
• UIBFCTR DS X RETURN CODE •
• UIBDLTR DS X ADDITIONAL INFORMATION •
• DS 2X RESERVED FOR DL/I •
• DS OF LENGTH OF FULLWORD MULTIPLE •
• UIBLEN EQU ·-UIB LENGTH OF UIB • ••
• USER
PCBFUN
GNFUN

SHOULD ADD CSECT INSTRUCTION IF NO FURTHER DSECTS FOLLOW
DC CL4'PCB '
DC CL4'GN
USING UIB,R7

•
•
•
CALLDLI ASMTDLI,(PCBFUN"UIBPTR)

L R7,UIBPTR

CLI UIBFCTR,O IF BAD RETURN CODE,
BNE SCHEDERR BRANCH TO ERROR ROUTINE
USING PCBPTRS,R4

L R4,UIBPCBAL GET ADDR OF PCB LIST

CALLDLI ASMTDLI,(GNFUN,PCB1PTR,IOARA)

Chapter 5: Online and MPS Considerations 5·23

Assembler Example 2 (UIB not used)

II JOB ASSEMBL
II OPTION CATAL

PHASE PITRAN,.
II EXEC ASSEMBLY
EXAMPLE CSECT
RO EQU 0
R1 EQU 1
R3 EQU 3
R4 EQU 4
R9 EQU 9
R12 EQU 12
R13 EQU 13

BALR
USING
USING
USING

• •

R3,RO
·,R3
DFHTCADS,R12
DFHCSADS,R13

LOAD BASE REGISTER (R3)
... AND TELL ASSEMBLER
TELL ASSEMBLER ABOUT TCA
... AND CSA ADDRESSABILITY

• ESTABLISH ADDRESSABILITY TO OTHER CICS/VS AREAS
• AS REQUIRED BY THE APPLICATION PROGRAM
• • •
•

•

• •

•
•
•

•
•

•
•

LA
ST
LA
ST

LA
ST
MVC

LA
ST

LA

CALLDLI
L

CLI
BNE

DFHFC

L
USING
L
USING

• •

SET UP AND ISSUE SCHEDULING (BCB) CALL
(MF=E FORM OF CALLDLI MACRO DEMONSTRATED)
R1,COUNT SET DL/I COUNT PARAMETER
R1,COUNTADR ... ADR IN CALL PARM LIST
R1,PCB GET ADR OF PCB FUNCTION CODE
R1,FUNADR ... AND STORE IT IN PARM LIST
OPTIONALLY SPECIFY NAME OF PSB TO BE SCHEDULED
R1,PSBNAME GET ADR OF NAME OF PSB TO SCHED
R1,PCBADR ... AND STORE IT IN PARM LIST
COUNT,=F'2' SET PARM COUNT = 2

R1,DLIPARMS
R13,CSASAVE

R13,CALLSAVE

IF PSB NAME WAS NOT SPECIFIED
... COUNT SHOULD BE SET TO ONE
POINT R1 AT PARM LIST
SAVE CSA ADR PRIOR TO MF=E
... CALLDLI MACRO FORMAT USAGE
PUT ADR OF SAVE AREA IN R13
... PRIOR TO USING MF=E CALLDLI
... MACRO FORMAT (CSA ADR LOST)

ASMTDLI,MF=(E,(l)) ISSUE PCB CALL (MF=E FORMAT)
R13,CSASAVE RECOVER CSA ADR AFTER MF=E

... CALLDLI MACRO FORMAT USAGE
CHECK SUCCESS OF SCHEDULING CALL - METHOD 1
TCAFCTR,X'OO' CALL SUCCESSFUL?
SCHERROR ... NO, GO DETERMINE PROBLEM
CHECK SUCCESS OF SCHEDULING CALL - METHOD 2
TYPE=CHECK,INVREQ=SCHERROR,NOTOPEN=SCHERROR
SCHEDULE CALL OK, ESTABLISH ADDRESSABILITY TO PCBS
R9,TCADLPCB GET ADR OF PCB ADDRESSES
PCBADRS,R9 ... AND TELL ASSEMBLER
R4,PCB1ADR GET ADR OF 1ST PCB IN PSB
PCB 1 , R4 ... AND TELL ASSEMBLER

• ESTABLISH ADDRESSABILITY TO THE REMAINING PCBS IN THE PSB
• AND CONTINUE WITH APPLICATION PROGRAM LOGIC
• •
•

*
*

*

*

MVC
MVI
•
MVC
MVI
MVC
MVC
MVC
MVC
CALLDLI

CLI
BNE

DFHFC

INITIALIZE SSAS
COMCODE1,=C'*--'
RP1 ,C') ,

SET NULL COMMAND IN 1ST SSA
... AND ENDING RIGHT PAREN

SET UP TO RETRIEVE A SEGMENT
SEGNAME1,=CL8'ROOT' PUT SEG NAME IN SSA
LP1,C'(' MAKE CALL QUALIFIED
KEYNAME1,=CL8'SEQ' ... PUT KEY FIELD NAME
R01 ,=C' = '
KEY1,=CL5'OOOOl' ... AND KEY FIELD VALUE IN SSA
COUNT,=F'4' INDICATE 4 PARMS USED IN CALL
ASMTDLI,(COUNT,GU,PCB1,SEGIO,SSA1)
CHECK FOR CALL ACCEPTANCE - METHOD 1
TCAFCTR,X'OO' WAS CALL ACCEPTED?
CALLERR ... NO, GO DETERMINE REASON
CHECK FOR CALL ACCEPTANCE - METHOD 2
TYPE=CHECK,INVREQ=CALLERR,NOTOPEN=CALLERR

5 - 24 DL/I DOS/VS Guide For New Users

~

* •
* CALL WAS ACCEPTED. CHECK DL/I PCB STATUS CODE
* AND CONTINUE APPLICATION PROGRAM LOGIC
* •

DFHPC TYPE=RETURN
* DL/I CALL ERROR ROUTINES
CALLERR OS OH
SCHERROR OS OH
* AT THIS POINT THE PROGRAM CAN DETERMINE THE REASON FOR
* THE ERROR BY EXAMINING THE FIELD 'TCADLTR'. IN MOST
* CASES A CICS/VS ABEND SHOULD BE ISSUED.

DFHPC TYPE=RETURN

*
*
*
*

•
•

PCB DC
GU DC
GHU DC
GN DC
GHN DC
GNP DC
GHNP DC
REPL DC
ISRT DC
DLET DC
TERM DC

*
PSBNAME DC
TWALEN DC
* •

DL/I ONLINE FUNCTION CODE CONSTANTS
(COULD BE A COPY BOOK)
CL4'PCB'
CL4'GU'
CL4'GHU'
CL4'GN'
CL4'GHN'
CL4'GNP'
CL4'GHNP'
CL4'REPL'
CL4'ISRT'
CL4'DLET'
CL4'TERM'
MISCELLANEOUS PROGRAM CONSTANTS
CL8'PIPSBA1' NAME OF PSB TO BE SCHEDULED
A(TWASTOP-TWASTART) LENGTH OF TWA REQUIRED

* OTHER PROGRAM CONSTANTS
* •
* CICS/VS DSECTS

COPY DFHCSADS
COPY DFHTCADS

* TWA STARTS HERE
TWAS TART
CSASAVE
CALLSAVE
DLIPARMS

*
COUNTADR
FUNADR
PCBADR
IOADR
SSA1ADR
SSA2ADR

*
*
*
SSAl
SEGNAMEl
COMCODEl
LPl
KEYNAMEl
ROl
KEYl
RPl

*

EQU
OS
OS
OS

OS
OS
OS
OS
OS
OS
•
•

OS
OS
OS
OS
OS
OS
OS
OS

COUNT OS
SEGIO OS
ROOTKEY OS
* •

*
F
18F
OF

A
A
A
A
A
A

CSA ADR SAVE AREA FOR MF=E CALLS
REG SAVE AREA FOR MF=E CALLS
DL/I CALL PARM LIST
FOR USER CREATED CALL PARM LISTS
ADR OF PARM COUNT VALUE
ADR OF FUNCTION CODE
ADR OF PCB USED WITH CALL
ADR OF SEGMENT I/O AREA USED
ADR OF 1ST SSA USED IN CALL
ADR OF 2ND SSA USED IN CALL

SSAS (COULD BE COPY BOOKS)
OCL29
CL8
CL3
CLl
CL8
CL2
CL5
CLl
MISCELLANEOUS
F
OCL40
CL6

SEGMENT NAME
COMMAND CODE AREA OF SSA
LEFT PAREN '('
SEGMENT KEY FIELD NAME
RELATIONAL OPERATOR
KEY FIELD VALUE
SSA ENDING RIGHT PAREN

WORKING STORAGE AREAS
NUMBER OF PARMS IN LIST
A SEGMENT I/O AREA (COPY BOOK?)
ROOT KEY FIELD IN ROOT SEGMENT

* DEFINITIONS OF OTHER FIELDS IN SEGMENT
* •
* •
* DEFINITIONS OF OTHER WORKING STORAGE AREAS
* REQUIRED BY PROGRAM
* •
TWAS TOP EQU * END OF TWA
* DSECT USED TO ESTABLISH ADDRESSABILITY TO PCBS
* (COULD BE A COPY BOOK FOR EACH PSB IN INSTALLATION)
PCBADRS DSECT

Chapter 5: Online and MPS Considerations 5 - 25

PCB1ADR OS
PCB2ADR OS

A
A

ADR OF 1ST PCB IN PSB
ADR OF 2ND PCB IN PSB

* •
* CONTINUE FOR AS MANY PCBS IN PSB
* •
PCB1 DSECT
PCB1DBDN OS

(COULD BE
CL8

CONTINUATION OF PSB COpy BOOK)
DBD NAME

PCB1LEV OS
PCB1STC OS
PCB1PRO OS

OS

CL2
CL2
CL4
F

LEVEL FEEDBACK
STATUS CODE
PROCESSING OPTIONS
RESERVED

PCB1SFD OS CL8 SEGMENT NAME FEEDBACK
PCB1KFDL OS
PCB1NSS OS
PCB1KFD OS

F
F
CL255

CURRENT LENGTH OF KEY FEEDBACK
NUMBER OF SENSITIVE SEGMENTS
KEY FEEDBACK AREA

* •
* CONTINUE FOR AS MANY PCBS IN PSB
* •
* COPY OTHER CICS/VS DSECTS AS REQUIRED BY PROGRAM
* •

END
1*
II EXEC LNKEDT
1&

RQDLI Commands in an RPG II Program
The following lists all the peculiarities for RPG II appli­
cations using DL/I under CICS/VS.

Exception: For a scheduling call
(func-name=pcB), additionally a SET option and a
PSB-name option are supported.

1. File Description Specifications for DB-files may be
specified and have the same format as in a batch
environment. Their implication on the RQDLI
command for standard data transfer is the same.

2. ·ENTRY PLIST for DL/I under CICS/VS.

The RQDLI commands have the same format as
those specified for the batch environment in
Chapter 1.

I*THE LAYOUT IN DFHDUM MUST EXACTLY CORRESPOND TO THE
I*LAYOUT OF THE *ENTRY PLIST STARTING WITH DFHDUM
IDFHDUM OS
I
I
I
I
I
I
IPCB01 OS
I
IPCB02 OS
I

1 4 SELPTR
5 8 BUlB
9 12 BPSB

13 16 BPCB01
17 20 BPCB02

1* USER MUST SPECIFY THE PROPER LAYOUT OF THE PCBS
1* PSB DEFINES THE ADDRESSLIST OF THE PCBADDRESSES
IPSB OS
I
I
I/INSERT .DLIUIB

1
5

4 PCB01P
8 PCB02P

In addition to the PARMs required by CICS/VS,
additional parameters for DLIUIB, the PSB, and
PCBs have to be specified by the user. The bases
for those parameters must also be specified in
DFHDUM, in the same order as in the ·ENTRY
PLIST.

An example of an online RPG II application pro­
gram follows:

1* See' '/INSERT Statement in RPG II" following this example.
1* THE FOLLOWING DATA STRUCTURE FOR THE UIB CONTROL BLOCK
1* WILL BE INSERTED FROM THE LIBRARY BY THE TRANSLATOR
IDLIUIB DS
I
I
I
I
I* END OF THE INSERTED UIB CONTROL BLOCK

S • 26 DL/I DOS/VS Guide For New Users

1
5
6

4 UPCBAL
5 UFCTR
6 UDLTR

C*
C
C
C
C
C
C

USER HAS TO SPECIFY AT LEAST THE PARAMETERS AFTER DFHDUM

C
C
C*
C*
C
C
C
C*

*ENTRY PLIST
PARM DFHEIB
PARM DFHCOM
PARM DFHDUM
PARM DLIUIB
PARM PSB
PARM PCB01
PARM PCB02

BEFORE ACCESSING THE DATA BASE THE FOLLOWING
STATEMENTS MUST BE CODED BY THE USER

PCB RQDLI
SET ELEM BUlB
PSBNAME ELEM 'PSBNAM1'

PSBNAME OPTION MUST BE SPECIFIED IN
C* AN ELEM STATEMENT

13

c* THIS ESTABLISHES THE ADDRESSABILITY OF THE DATA STRUCTURE
C* DLIUIB AND ITS FIELDS
c* WITH THE HELP OF A MOVE STATEMENT THE ADDRESS OF THE PCBADDRESS
C* LIST IS PUT INTO THE BASE OF THE OS DEFINING THE ADDRESSLIST
C MOVE UPCBAL BPSB
C CALL 'ILNSAD'
C* CHECK CICS/VS INTERFACE RESPONSE
C
C 10

TESTB'01234567'UFCTR
GOTO NORESP

C
C
C
C

TESTB'4'
TESTB'5'

10N11 GOTO INVREQ
10 11 GOTO NOTOPEN

UFCTR
UFCTR

10

10
11

C* DATA STRUCTURE CONTAINING THE ADDRESS LIST OF THE PCBS IS
c* NOW ADDRESSABLE IN THIS CASE PSBNAM1 CONTAINS ONLY
C* PCB01
C* ESTABLISH THE ADDRESSABILITY FOR PCB01 BY MOVE STATEMENT
C* FOLLOWED BY CALL TO ILNSAD
C MOVE PCBO 1 P BPCB01
C CALL 'ILNSAD'
C* NOW THE USER CAN ACCESS THE DATA BASE PCB01
C GU
C PCB
C INTO
C* CONTINUE
C TERM
C* NOW PCB01 CAN
C •.•.•••••••

RQDLI
ELEM
ELEM

WITH PROGRAM
RQDLI

NO LONGER BE ADDRESSED

PCB01
IOAREA200

13

C* BEFORE ACCESSING A NEW DATA BASE THE FOLLOWING
c* STATEMENTS MUST BE CODED BY THE USER
C PCB RQDLI 13
C SET ELEM BUlB
C PSBNAME ELEM 'PSBNAM2'
C* PSBNAME OPTION MUST BE SPECIFIED IN
c* AN ELEM STATEMENT
C* THIS ESTABLISHES THE ADDRESSABILITY OF THE DATA STRUCTURE
C* DLIUIB AND ITS FIELDS
C MOVE UPCBAL BPSB
C CALL 'ILNSAD'
c* DATA STRUCTURE CONTAINING THE ADDRESS LIST OF THE PCBS IS
c* NOW ADDRESSABLE IN THIS CASE PSBNAM2 CONTAINS ONLY
C* PCB02
C* ESTABLISH THE ADDRESSABILITY FOR PCB02 BY MOVE STATEMENT
C* FOLLOWED BY CALL TO ILNSAD
C MOVE PCBO 1 P BPCB02
C CALL 'ILNSAD'
C* NOW THE USER CAN ACCESS THE DATA BASE PCB02
C GU RQDLI
C PCB ELEM PCB02
C •.•.•••••••••
C TERM RQDLI
C* NOW USER CAN NO LONGER ACCESS PCB02
C* BEFORE ACCESSING A NEW DATABASE THE FOLLOWING
C* STATEMENTS MUST BE CODED BY THE USER

13

C PCB RQDLI 1 3
C SET ELEM BUlB
C PSBNAME ELEM 'PSBNAM3'
C* PSBNAME OPTION MUST BE SPECIFIED IN

Chapter 5: Online and MPS Considerations 5 - 27

C* AN ELEM STATEMENT (PSBNAM3 SCHEDULES PCB01 AND PCB02)
C* THIS ESTABLISHES THE ADDRESSABILITY OF THE DATA STRUCTURE
C* DLIUIB AND ITS FIELDS
C MOVE UPCBAL BPSB
C CALL 'ILNSAD'
C* DATA STRUCTURE CONTAINING THE ADDRESS LIST OF THE PCBS IS
C* NOW ADDRESSABLE IN THIS CASE PSBNAM3 CONTAINS
C* PCB01 AND PCB02
C* ESTABLISH THE ADDRESSABILITY FOR BOTH BY MOVE STATEMENTS
C* FOLLOWED BY CALL TO ILNSAD
C MOVE PCB01P
C MOVE PCB02P
C CALL 'ILNSAD'

BPCB01
BPCB02

C* NOW THE USER CAN ACCESS THE DATA BASES PCB01 AND PCB02
C GU RQDLI 13
C PCB ELEM
C ••••••••••••
C* CONTINUE WITH PROGRAM

/INSERT Statement in RPG II

PCB02

/INSERT may be used to include data structures, pro­
gram pieces, etc. from source statement libraries. The
inserted text must be un translated source and must not
itself contain /INSERT statements.

Note: For RPG II the /INSERT statement is a facility of the Trans­
lator and, therefore, the inserted text is untranslated source. For
COBOL, PL/I, and Assembler, COPY or INCLUDE is a language
facility and, therefore, the inserted text is translated source.

Format of the /INSERT Statement:

Position
1-5
6
7-13
14
15
16
17-24
25-49
50-74
75-80

Contents
see the publication, DOS / VS RPG I I Language
HiFlEILlllCiO
/INSERT
blank
sublibrary-namelblank
•
book-name
blank
comment
see the publication, DOS/VS RPG II Language

sublibrary-name
Name of the sublibrary from which the insertion
should be made. If no sublibrary is specified the name
is defaulted to R.

book-name
Name of sublibrary member to be inserted.

Function of the /INSERT Statement
Inserts the contents of the book specified by book­
name, from the sublibrary specified by sublibrary­
name, in place of the /INSERT statement.

ExecutingCICS/VS WithDL/I MPS
There are several additional operational considerations
when executing DL/I MPS under CICS/VS as compared
with executing CICS/VS with a non-MPS version OfDL/I.

With MPS you may have defined additional data
bases in the ACT that were formerly used in batch parti­
tions only. If this is so, then any ASSGN, DLBL, and
EXTENT statements necessary for these data bases have

5 - 28 DL/I DOS/VS Guide For New Users

to be placed in the JCL stream used to execute CICS/VS.
In addition, the presence of additional data bases in the
CICS/VS partition increases the GETVIS requirements of
the partition. This is due to the additional VSAM con­
trol blocks and buffers needed to support the new data
bases. Therefore, it may be necessary to change the
SIZE parameter on the EXEC statement or increase the
virtual partition size of the CICS/VS partition.

With the addition of MPS to your CICS/VS system,
you should expect the volume of log records written by
CICS/VS-DL/I to increase. Therefore, if you are logging
to disk, you should consider allocating larger extents to
the log data sets.

Executing Batch MPS Programs
In order to execute a batch MPS application program
CICSjVS must be running in another partition and MPS
operation must have been started (CSDA transaction).

The batch UPSI byte settings for MPS are the same as
for non-MPS batch execution with the exception that
bits 6-7 are not used. Data base logging, normally con­
trolled by UPSI bit 6, is controlled in the CICS/VS parti­
tion under MPS operation. STXIT linkage to DL/I for
abnormal task termination, normally controlled by
UPSI bit 7, is always active under MPS operation. It may
not be turned off as in the case of non-MPS batch exe­
cution.

No ASSGN, DLBL, EXTENT, or TLBL statements are
required to describe the data bases or DL/Ilog in the
batch MPS job stream. This information is contained in
the JCL for the CICSjVS partition.

The DL/I parameter information for batch MPS oper­
ation need only specify the program name and the PSB
name. Any other parameter information such as buffer
pool options, etc. are ignored as this is controlled in the
CICS/VS partition.

The phase name on the EXEC statement must be
"DLZMPIOO". A size parameter is not required unless
your application program invokes some DOS/VS func-

tion that requires a partition GETVIS area; however the
use of the SIZE parameter is recommended as an opera­
tional standard. DL/I MPS does not require a partition
GETVIS area in the batch MPS partition.

DL/I Data Base Integrity Online
DL/I provides two facilities to insure integrity of data
bases concurrently accessed by multiple tasks in an
online or MPS environment. These facilities are pro­
gram isolation and intent scheduling. Program isola­
tion generally allows a greater degree of concurrency
but requires additional processing and real storage.
Intent scheduling requires less processing and real
storage but generally permits fewer DL/I tasks to exe­
cute concurrently. Program isolation is the default
choice and should normally be used. However, intent
scheduling is a better choice in a system that has severe
real storage constraints and can concurrently execute
only two or three DL/I tasks. Each of these facilities is
discussed in the following sections.

Intent Scheduling
During PSB generation, you specify processing options
on each sensitive segment in each data base PCB within
the PSB. This is done using the PROCOPT parameter in
either the PCB statement or in the SENSEG statements
for each PCB.

Scheduling of a task is by segment intent, that is,
according to the manner in which you intend to access
segments in your logical data structure. The intent
derived from the processing options specified for cer­
tain segment types may implicitly affect other segments
as well. For instance, delete intent for a certain seg­
ment also means delete intent for its dependents. This
is called segment intent propagation and further details
are discussed later in this section.

Intent Conflict
Intent conflict is a consequence of the intent scheduling
data integrity mechanism within DL/1. In order to in­
sure against losing updates and preventing deadlock
situations with intent scheduling, DL/I does not allow
two tasks to access the same data base concurrently if
there is a possibility that each could update a segment
being processed by the other. "Update" in this context
means insert, delete, or replace.

DL/I determines a task's update intent by examining
the PSB the task is using. If two tasks are using PSBs
which permit the capability to update the same seg­
ment type, DL/I makes the second task wait until the
first task is finished, i.e. until a TERM call has been
issued by the first task. The intent checking is per­
formed during the scheduling of the PSB, i.e. when the
PCB call is issued. Batch MPS programs normally don't

issue PCB or TERM calls; these calls are issued on their
behalf during initialization and termination of the pro­
gram by the MPS Batch Partition Controller program
DLZBPCOO.

Note that this intent checking is performed not only
against running tasks, but also against tasks that are
waiting as a result of intent conflict. Because of this,
tasks can be waiting due to intent conflict even though
they do not conflict with running tasks. Consider the
following example:

Task A
Task B
Task C

UPDATE INTENT
-----SEGMENT----
1 234
x x

X X
X X

Assume Task A is running. If Task B attempts to sched­
ule, DL/I forces it to wait due to intent conflict with
Task A. Now, if Task C attempts to schedule, it will
also waits because it has an intent conflict with Task B.
Note that programs A and C do not have any intent
conflicts. In this example the response time of Task C
is the sum of the times for programs A, B, and C since
they are single threading due to intent conflict.

One of the tasks in this example could be a batch
MPS program. Batch programs typically have run times
measured in minutes and hours where online transac­
tions have run times measured in seconds or less. If
Task B were a batch MPS program and Task C were an
online transaction, then Task C might wish to inform
the terminal operator that the data base may be un­
available for quite a while. For this reason, transac­
tions that have intent conflict with batch MPS programs
are not forced to wait. Instead of making the transac­
tions wait, DL/I returns a code indicating that they have
intent conflict with a batch MPS program. The transac­
tion can then notify the terminal operator or take other
alternate action. Batch programs that have intent con­
flict with other batch programs are abended during
initialization.

To provide compatibility for previously existing
online application programs, DL/I returns a "not open"
condition, X'OC', in TCAFCTR (TCAFCRC in ANS COBOL)
when a program has intent conflict with a batch MPS
program. Thus for existing online application pro­
grams, intent conflict with a batch MPS program results
in the online program executing its logic for "data base
not open" conditions. To provide the ability for new
online application programs to discriminate between
true not open conditions and intent conflict with batch
MPS programs, the field TCADLTR contains a X'02'. For
true not open conditions TCADLTR contains a X'OJ'.

Figure 5-3 summarizes the consequences of intent con­
flict under the various possible conditions.

Chapter 5: Online and MPS Considerations 5 - 29

Condition Consequence

Online vs. Online 2nd task waits

Online vs. Batch Batch program waits

Batch vs. Online Online is returned "data base not
open" (TCAFCTR=X'OC') plus
TCADLTR=X'02'

Batch vs. Batch 2nd batch program ABENDs

Figure 5-3. Intent Conflict Consequences

Determining the Intent
Because of the consequences of intent conflict, you
need to be able to determine which segments in a data
base have update intent for each program (PSB) used in
your system, Segments in a data base to which a PSB is
not sensitive, or specified with a read-only processing
option (PROCOPT=G), may still have update intent pro­
pagated to them by DL/I due to processing options
chosen for other segments. For example, if delete sensi­
tivity is specified at the root, then update intent is pro­
pagated down to all segments in the data base, even if
they are not defined in the PSB. This is because delet­
ing the parent implies the deletion of all its children.
Basically, the intent propagation rules used by DL/I are
as shown in Figure 5-4.

PROCOPT Intent and Propagation

G No update intent, no propagation

R Update intent, no propagation

I Update intent, propagated down one level

D Update intent, propagated down ail levels
and up one level

E Propagates down to ail non-sensitive
segments

Figure 5-4. DL/I Intent Propagation Rules

The presence of logical relationships may cause update
intent to be propagated to segments in related data
bases. How the intent is propagated in these circum­
stances depends on what insert, delete, and replace
rules were used in the generation of the DBDS involved.
More details on intent propagation can be found in the
System/Application Design Guide.

One of the functions of the Application Control
Blocks creation and maintenance utility program
(DLZUACBO) is to determine and propagate intent for
each segment of each data base referenced in a PSB.
This information is stored in the expanded PSB created
by the ACB utility in an area called the PSB segment
intent list (PSIL). Therefore, if PSBs for the application
programs already exist, a CSERV display of the expand­
ed PSB can be used to determine the actual intent of
each segment, rather than attempting to apply the in­
tent propagation rules manually.

5 - 30 DL/I DOS/VS Guide For New Users

The PSIL is a variable length list found near the front
of the expanded PSB. The PSIL contains an entry for
each DMB used by that PSB. Each entry varies in length
depending on the number of segment types defmed in
the DBD.

The format of each PSIL entry is as follows:

Displacement

0-7

8

Description

DMB name for this list entry
Segment intent description byte. X'OO' in core
image library. Filled in during CICS/VS-DL/I
initialization.

9 Length of this entry in list.
10-?? Segment intent bits. Two bits are used for each

segment in the DMB and represent the PSB's
sensitivity to each segment. Their meanings are:

Bit Meaning

00 PSB is not sensitive to the segment.
01 PSB is read-only sensitive to the segment.
\0 PSB is update sensitive to the segment.
II PSB requests exclusive control of the

segment.

The bits are allocated to the segments in the following
manner:

Byte 1 Byte 2

Bit O-r 1 213 415 61 7 011 2J 3 415 617

Segment 4 3 2 1 8 7 6 5

Note that the root segment sensitivity is found in bits
6-7 of byte I, etc. Refer to the section "PSB Intent List -
DLZPSIL" in the Logic Manual for more information on
the PSIL.

Potentia/Intent Conflict Matrix
With many programs potentially capable of executing
against several data bases in a variety of ways, determi­
nation of potential intent conflicts becomes an impor­
tant part of both application and data base design. In
addition, determination of when to run batch MPS so as
to minimize intent conflict situations with online and
other batch MPS programs becomes an important factor
in computer operations and scheduling.

One good technique to aid in this environment is to
develop a "Potential Intent Conflict Matrix". The
development and maintenance of this matrix is a sys­
tem wide function. Much of it should be the responsi­
bility of the system programmer, or data base adminis­
trator.

To develop the matrix, list along the top of a large
sheet of paper the names of all the segments in all data
bases. Along one side list all batch MPS programs and
online transactions that can access any of the data ba­
ses with an update PSB. At the intersection ofthe pro-

gram and the segment that can be updated, enter the
product of the number of online transactions per day
(or number of times the batch program is run per day)
times the number of calls that the transaction makes
against that segment. As new data bases and programs
come into existence, this matrix should be updated.

By updating this chart, you can determine which
programs and transactions can potentially conflict with
one another. This matrix can also show relative activi­
ty between data bases and online transactions and
batch MPS programs. This can assist you in deciding
how to initially assign the data bases to the DL/I buffer
subpools. These assignments can then be modified
based on the buffer pool statistics.

Potential Intent Conflict Matrix Example

Figure 5-6 is an example of a potential intent conflict
matrix. This example is based upon a simple order
entry application using the data bases as shown in Fig­
ure 5-5.

There are six online transactions and two batch pro­
grams in this example whose functions are as follows:

ORDE
Order entry online transaction. This transaction
inserts a record in the Open Order data base.
About 800 new orders are entered each day.

ORDM
Open order maintenance transaction. This online
transaction allows changes to be made to any part
of an existing open order. About 10% of the new
open orders require some maintenance each day.

NEWC
New customer online transaction. This transac­
tion inserts a record in the Customer data base.
Normally two new customers are entered into the
Customer data base each day.

OPEN ORDER

ROOT -f ~ 2400

I

I /
I

ITEM CUST
f = 10 f = 1

- --- "\
-\-r - -

/ \

I
SPEC
f ~ ,1

Fiaure 5·5. Sample Order Entry Application Data Bues

\
\

CUSM

SHIP

Customer maintenance transaction. This onhne
transaction allows changes to be made to an exist­
ing customer master record in the Customer data
base. It is used only about once a day.

This is an online transaction to mark an order as
ready to ship complete. About 80% of the orders
are shipped complete each day.

PART
This is an online transaction to mark an order to
be shipped partially complete, flagging those
items that cannot be shipped. About 20% of the
orders are partially shipped each day.

INVP
This is a batch program that runs twice a day.
This program scans the Open Order data base
and prints invoices for those orders that have
been marked as ready to ship.

CASH
This is a batch program that runs once a day.
This program applies cash receipts from custom­
ers and deletes the corresponding open orders.
About 100 customers remit daily, closing about
800 open orders.

Minimizing Intent Conflicts
Because of the performance implications of intent con­
flicts, every attempt should be made to minimize po­
tential intent conflict situations during the design and
coding of DL/I applications. There are several ways in
which applications and programs can be designed and
written to minimize intent conflicts. They involve:

• selecting the proper PSB PROCOPT

• using multiple PSBS within one program

• scheduling a PSB for a short duration of time

CUSTOMER

ROOT

-- ... f ~ 150

I
I I

ORDER ADP
f = 16 f = 3

Chapter 5: Online and MPS Considerations 5·31

UPDATED SEGMENTS

PGM/ OPEN ORDER DB
TRAN ROOT ITEM CUST

ORDE 800 4000 800

ORDM 80 160 10

NEWC

CUSM

SHIP 640

PART 160 480

INVP* 4800

CASH* 800 (4000) (800)

7280 8640 1610

* indicates batch program

() indicates update intent via intent propagation

Figure 5-6. Potential Intent Conflict Matrix

SPEC

80

(80)

160

Each of these areas will be examined using the sample
order entry application previously described.

PSB PROCOPT Selection
Proper PROCOPT selection prevents unnecessary propa­
gation of update intent. By specifying PROCOPT=G on
the PCB statement, and then overriding it on the
SENSEG statement as required, you can insure that
intent is not propagated unnecessarily.

When specifying PROCOPT, use the following guide­
lines:

• Specify G whenever possible as there is no update
intent with this processing option.

• Specify R instead of I and D whenever possible as
there is no intent propagation with this processing
option.

• Specify I and D only as required. If only insert
capability is required, don't specify D also. To
minimize the number of PSBs with a PROCOPT of
D, consider establishing a "delete flag" in the seg­
ment and using replace logic to "delete" the seg­
ment. The "deleted" segments could be actually
deleted on some periodic basis, perhaps in a
non-MPS batch maintenance run weekly or at
some other appropriate interval.

• The use of PROCOPT=A is justified only when all
processing options, i.e. GIRD, and a P or E process­
ing option is also required.

5 - 32 DL/I DOS/VS Guide For New Users

CUSTOMER DB NO.
ROOT ORDER ADR TRAN

800 800 800

80

2 6 2

1 3 1

640

160

2

100 800 1

903 1600 9 1686

• The use of PROCOPT=E should be well justified
before it is used as it also prevents read-only tasks
from running concurrently.

Figure 5-6 shows that the CASH program is the only
one with update intent propagated to non-sensitive
segments. This is due to the delete sensitivity against
the root segment of the Open Order data base. The
CASH program's logic could be changed to use a "delete
flag" in the root segment, or to otherwise indicate the
open order record was deleted through replace logic.
This eliminates the intent propagation to dependent
segments. However, the potential intent conflict matrix
shows that the CASH program still has potential intent
conflict with almost all other batch and online transac­
tions through the root segment. Therefore, in this case,
the use of the "delete flag" is not justified.

Using Multiple PSBs Within One Program
The shorter the duration that a task has an update PSB
scheduled, the less time other tasks with intent conflict
have to wait. One way the time a task has an update
PSB scheduled can be minimized is to use different PSBs
at different points during the execution of the task
according to the needs of the task at that point in time.
Consider the following example CICS/VS-DL/I transac­
tion.

PCB call (update PSB) ----------,
Map input
Edit input
If input bad write error message to

terminal and return to CICS/VS
Retrieve data base information and

validate input
If input bad write error message to

terminal and return to CICS/VS
Update data base
Write acknowledgement message to

terminal and return to CICSjVS-----....J

UpdatePSB
scheduled

Note that this transaction has an update PSB scheduled
for the entire life ofthe transaction, even though it is
needed only after the decision to update the data base
has been made. The transaction could have been writ­
ten as follows:

Map input
Edit input
If input bad, write error message to

terminal and return to CICS/VS
PCB call (read-only PSB)
Retrieve data base information and

validate input
If input bad write error message to

terminal and return to CICS/VS
TERM call (read-only PSB)
PCB call (update PSB)----------,
Reposition in data base !+Update PSB
Update data base I scheduled
TERM call (update PSB) ---------....1
Write acknowledgement message to

terminal and return to CICS/VS

The revised version of this transaction has an update
PSB scheduled for a much shorter period of time, thus
reducing wait time for other tasks with intent conflict.
Note that the transaction must reposition itself within
the data base following the first TERM call. This is
because a TERM call causes position to be lost. The
repositioning, while introducing some additional DL/I
calls into the transaction logic, does not normally cause
any additional I/O due to the nature of DL/I'S I/O buff­
ering techniques.

Transactions should not normally schedule an up­
date PSB more than once during one execution. To
schedule more than one may logically invalidate the
backing out of the effects of a task should the task or
system fail while an update PSB is scheduled. This is
because DL/I backout only backs out changes made to
the data bases that were not followed by a TERM call.
For example, if a transaction scheduled an update PSB
twice, or two different PSBs one after the other, and the
system failed during processing with the second PSB,
DL/I would only back out the changes made by the task
while the second PSB was scheduled. The TERM call
made with the first PSB indicates to DL/I that any proc­
essing up to that point is complete and should not be
backed out in the event of a subsequent failure. If the
logic of the application was such that the processing

using the first PSB was related to the processing using
the second PSB, then backing out the effects of process­
ing using the second PSB (which was not completed),
but not backing out the effects of processing using the
first PSB (which was completed), may result in informa­
tion in the data base which is logically incorrect (from
the application point of view). Note that the data bases
are not damaged in this case, but the data within the
data bases may not be logically consistent from an
application viewpoint.

Batch MPS programs should not schedule a different
PSB from that which is specified in the DL/I statement
because there is no mechanism to reestablish addressa­
bility to a different PSB once the batch program has
been initialized. However, batch MPS programs may
terminate and reschedule the same PSB several times
during execution if desired. The considerations and
consequences of this are discussed in the following
section.

Scheduling a PSB for a Short Duration A t a
Time
When an online DL/I transaction or a batch DL/I MPS
program has a considerable amount of processing to do
using an update PSB, it may be desirable to occassional­
ly release the PSB (via a TERM call). This allows other
tasks with intent conflict to get a chance at the data
base. This can be thought of as "time-sharing" the data
base among several update PSBS with intent conflict.

Because this technique involves scheduling an up­
date PSB multiple times within a single task execution,
you must insure this does not affect the logical consis­
tency of the data base should a failure and subsequent
backout occur while processing in this manner. Termi­
nal applications where the operator fills the screen with
multiple items of input that are not related by applica­
tion logic are well suited to this technique. If a failure
occurs, the terminal operator could inquire into the
data base to determine what input from the last screen
was not processed and reenter it.

Program Isolation
Program isolation provides the capability for online
and/or MPS users to perform concurrent updates on the
same segment type in a data base. Use of this feature
results in less resource contention in a DL/I-CICS/VS
environment (including MPS). It is an optional replace­
ment for intent scheduling and, as does intent schedul­
ing, applies only to the online environment. It is inac­
tive for normal batch (non-MPS) mode processing. PI is
the recommended choice for DL/I online and MPS ap­
plications.

The disadvantage of intent scheduling is that no two
tasks that state conflicting intents for a particular seg-

Chapter 5: Online and MPS Considerations 5 - 33

ment type are allowed to execute concurrently. This
may be an undesirable limitation. In the first place,
two tasks cannot have a conflict for a segment type; the
conflict exists for a particular segment occurrence. In
the second place, the conflict occurs only if the segment
is referenced, and a particular task may have to state
intent for more segment types than it actually refers to
during any particular execution.

Program isolation attempts to reduce the amount of
unnecessary contention by managing it, for most cases,
only when segments are actually referenced. Thus
program isolation operates at the segment occurrence
level where intent scheduling operates at the segment
type level. It does this with two functional areas, con­
tention management and deadlock avoidance.

Contention Management: Contention management
avoids conflicts in data usage by making contenders for
a resource wait until the resource is available and then
rescheduling them. This is functionally equivalent to
intent scheduling processing. There are, however, some
differences, which are explained in the following com­
parisons of the results of a task specifying each of the
three processing intents (exclusive, update, and read
only) under both intent scheduling and program isola­
tion.

Exclusive Intent:
Intent Schedu6ng

Restrictions on task:

Is not scheduled until
all other tasks with any
specified intent for this
segment type have issued a
TERM call.

Restrictions on other tasks:

Other task is not scheduled
if it specified any intent
for this segment type until
this task has issued a TERM
call.

Program Isolation

Identical to intent
scheduling.

Identical to intent
scheduling.

Comparison: Intent scheduling is used for exclusive
intent under both procedures.

Update Intent: Update is defined for any segment for
which the user has specified replace, delete, or insert
intent plus any additional segments so defined by the
intent propagation rules.

Intent Schedu6ng

Restrictions on task:

Is not scheduled until
any other task with either
exclusive or update intent
specified for this segment
has issued a TERM call.

Program Isolation

a. Is not scheduled
until any other task
with exclusive intent
specified for this
segment type has issued
a TERM call.

5 - 34 DL/I DOS/VS Guide For New Users

Restrictions on other tasks:

Other task is not scheduled
if it specified update or
exclusive intent for this
segment type until this task
has issued a TERM call.

b. Waits to read any segment
updated by another task with
update intent for that segment
type until that task has issued
a TERM call.

c. Waits to update any segment
read by another task with a Q
command code until that task
has issued a TERM call.

a. Any other task with
exclusive intent for this
segment type waits to be
scheduled until this task
issues a TERM call.

b. Any other task with update
intent for this segment type
waits to update a segment read
by this task with the Q com­
mand code until this task has
issued a TERM call.

c. Any other task with either
read-only or update intent for
this segment type waits to read
segments updated by this task
until this task has issued a
TERM call.

Comparison: Specification of update intention under
program isolation provides the same protection from
data usage conflicts as does intent scheduling. Addi­
tionally, contention is greatly reduced with program
isolation because multiple tasks can concurrently up­
date segments of the same type as long as they are in
different data base records.

Read-Only Intent:

Intent ScheduHng

Restrictions on task:

Is not scheduled if any
other scheduled task has
specified exclusive intent
for this segment until
that task has issued a
TERM call.

Restrictions on other tasks:

Any other task with exclusive
intent for this segment type
waits to be scheduled
until this task has issued
a TERM call.

Program Isolation

a. Identical to intent
scheduling.

b. Waits to read any
segment updated by
another scheduled task
until that task has issued
a TERM call.

Identical to intent
scheduling.

Comparison: Specification of read-only intent under
program isolation provides functionally superior sup­
port because, under intent scheduling, a task specifying
read-only intent could read a segment subsequently
backed out due to failure of another task. This cannot
occur under program isolation.

Deadlock Avoidance: Deadlock avoidance recognizes
and remedies the case where two or more tasks are
interlocked on resources for which they are waiting.
Program isolation detects deadlocks on requests for
segments. When a deadlock is recognized, it is avoided
by terminating one of the involved tasks. The decision
as to which task to terminate is made as follows:

1. Online tasks are terminated when a potential
deadlock with an MPS batch task develops.

2. Within a class, the task with the fewest resources
currently enqueued is terminated (i.e. MPS batch
vs. MPS batch or online vs. online).

CICS/yS dynamic transaction backout is called for the
terminated task.

Specification in DLZACT Macro: Program isolation
is automatically included in the application control
table generation (DLZACT macro) unless you specify
otherwise in the TYPE=CONFIG statement. The option­
al keyword parameter used is

[,PI={YES} 1
{NO }

with YES as the default. If you wish to avoid additional
CPU load inherent to program isolation, you may do so
by specifying PI=NO. In that case, you cause intent
scheduling to be in effect.

Operational Considerations: Three informational
error messages are issued by program isolation. The
one indicating task termination due to invalid data
usage conflict (DLZI06I) indicates a resource contention
problem that is very dependent on the current mix of
tasks. The task may execute successfully if rerun. If
not, some evaluation of the mix of other tasks and the
resources they reference is required.

Message DLZIOSI, indicating insufficient space, iden­
tifies a problem in getting more space from the
CICS/yS-DL/I partition for queueing control blocks.
The task being terminated may not be at fault. More
likely, some task(s) (probably MPS) is running for an
excessive length of time without issuing a checkpoint or
a CICS/yS SYNCH point, thereby using up a lot of stor­
age.

Message DLZ031I indicates that the user did not ena­
ble CICS/VS dynamic transaction backout. DL/I needs
this facility to ensure data base integrity when running
with program isolation. DL/I initialization is termi­
nated. The CICS/VS system stays active.

Programming Considerations
1. MPS batch programs with update intent for seg­

ments should either issue frequent CHKP calls or, if
possible without increasing contention, use
PROCOPT=E on all segments to avoid excessive
queue lengths.
Note: A code is passed back in the high-order byte of the
JCB address field in the PCB whenever another task is re­
quired to wait on a resource owned by the calling task. This
could be used to trigger checkpoints.

Existing MPS batch programs doing TERM/PCB call
sequences with an update PSB must be modified to
use the CHKP call instead. Under PI, addressability
to the update PSB is not correct after a TERM/PCB

call sequence.

2. If data is read that will be used in data base up­
date, and the PCB used references a different data
base record before the update occurs, the Q com­
mand code should be specified to protect the data
from modification by another concurrently exe­
cuting task.

3. CICS/VS transactions that are not restartable (i.e.
are not specified with the DTB operand of the
DFHPCT macro) must use PROCOPT=E on all seg­
ments to bypass PI and thus avoid the possibility
of termination due to deadlock conditions.

4. Program isolation may cause an increased level of
transaction backouts. Additionally, these can now
occur when there is no task error. Where users
may have been willing to accept unrestartable task
failures, they may not be willing to accept failures
due to deadlock conditions.

5. Users having transaction processing that requires
special backout code must either rewrite the code
or schedule tasks with 'exclusive' intent for all
segments for which sensitivity has been specified.

6. For program isolation, logging is required and the
CICS/VS journal must be used for such logging.

7. Any task that relies on replace, delete, or insert
intent to protect a segment being used from later
modification by another task must specify the Q

command code on the read to accomplish the
same purpose.

8. Specifying processing option '0' in the PCB will
avoid all PI locking. This is useful for a task with
read only processing when the integrity of the data
received is not critical.

Controlling the Number of CICS/VS
and DL/I Tasks
There are a variety of parameters present in the
CICS/VS and DL/I system that affect performance by
controlling the number of tasks that can be active at

Chapter 5: Online and MPS Considerations 5 - 35

one time. The parameters include:

• CICS/VS MXT

• CICS/VS AMXT

• CICS/VS CMXT and TCLASS

• DL/I MAXTASK

• DL/I CMAXTSK

By choosing the proper values for these parameters you
can prevent your CICS/VS-DL/I system from overcom­
mitting the resources available. The following discus­
sion should help you in understanding the effect of
each of these parameters on system performance.

Tasks in a CICS/VS system are either "active" or
"suspended". The CICS/VS Task Control Program
maintains the status of each task through the use of two
chains: the active chain and the suspend chain. The
active task chain is maintained in task priority se­
quence by CICS/VS. When a new task is created or a
suspended task is resumed, it is placed in the active
chain according to its priority relative to other tasks on
the chain. Tasks of equal priority are placed in the
active chain in FIFO sequence. The active chain is
searched by the task dispatcher when attempting to
locate a task that can be dispatched. The suspend
chain is only used in response to specific requests by
other CICS/VS management modules. A task on the
suspend chain must be moved to the active chain be­
fore it can be dispatched. However, a task may be on
the active chain and still not be dispatchable.

CICS/ VS MXT Parameter
The total number of tasks in the CICS/VS system, active
and suspended, is controlled by the CICS/VS MXT par­
ameter. A request to CICS/VS to create a new task
(attach) is honored provided the MXT value is not ex­
ceeded. If a request to attach a new task would cause
MXT to be exceeded, then the request is generally
queued. In addition, CICS/VS does not initiate any new
polling of the terminals because there is no point in
inviting more tasks when the limit has already been
reached. Note, however, that if a user program re­
quests an attach, the request is honored even if MXT is
exceeded. Therefore, it is possible to have more tasks
in the system than specified in the MXT parameter. In
particular, the DL/I MPS Master Partition Controller
and Batch Partition Controller tasks are attached with
a "user" request. Therefore, if your CICS/VS system is
running at or near MXT, executing batch DL/I MPS pro­
grams can cause your CICS/VS MXT limit to be exceed­
ed, thus suspending polling operations. This situation
is likely to occur only in a system with MXT set too low
and primarily conversational terminal tasks.

5 - 36 DL/I DOS/VS Guide For New Users

Every task requires some amount of CICS/VS dy­
namic storage. Therefore, the primary resource usage
that you can control with the CICS/VS MXT parameter is
dynamic storage requirements. Since the cost of dy­
namic storage is small (as it is primarily virtual stor­
age), and the consequences of reaching MXT are severe
(CICS/VS BT AM systems stop polling and begin to dis­
card input messages causing increased network traffic),
you should provide sufficient dynamic storage to sup­
port a MXT value large enough to avoid reaching it in
normal circumstances. Setting the MXT value equal to
the sum of the number of terminals in your CICS/VS
system, plus the number of journals, plus the number
of DL/I MPS tasks to be run concurrently should be
adequate.

CICS/VS AMXT Parameter
Tasks on the active chain are either "dispatchable" or
"nondispatchable". When a new task is created or a
suspended task is resumed, it is placed on the active
chain in a nondispatchable state. Note that the terms
"dispatchable" and "nondispatchable" as used here do
not exactly match the terms used within CICS/VS inter­
nal program documentation (PLMS and listings).

Tasks on the active chain are also either "ready" or
"waiting". CICS/VS dispatches the highest priority
ready task that is dispatchable. If a dispatchable task is
waiting, it remains dispatchable. CICS/VS assumes that
dispatchable tasks that are waiting will become
"ready" in a short time (a few milliseconds). There­
fore, the task dispatcher makes no attempt to swap the
dispatchable status of a waiting task with one that is
ready but nondispatchable.

Once a task becomes dispatchable it remains dis­
patchable until it terminates or is suspended. A task
can be suspended for one of the following reasons:

• The task issued a terminal control wait. This type
of task is commonly called "conversational".

• The task issued an interval control wait.

• The task issued an enqueue and could not be
granted the resource. Often this enqueue request
is not explicitly coded in the application program,
but results from a file control request (CICS/VS

enqueues on logical record for update requests), a
transient data PUT to an intra-partition data set
with logical recovery (CICS/VS enqueues on the
data set id), or a temporary storage PUTQ,

RELEASE or PURGE against recoverable temporary
storage data sets (CICS/VS enqueues on the data-id
name).

• The task issued an unconditional GETMAIN that
could not be satisfied (short on storage condition).

• The task issued a DL/I PCB call and DL/I CMAXTSK

had already been reached.

• The task issued a DL/I PCB call and DL/I deter­
mined it had intent conflict with another DL/I

task.

• The task issued a DL/I data base call and the seg­
ment or record requested is currently enqueued by
the program isolation facility for another DL/I

task.

A suspended task is resumed when the condition
that caused it to be suspended disappears. However,
when it is resumed it reenters the active chain in a non­
dispatchable state.

A task can be nondispatchable for one of several
reasons:

• AMXT limit reached

• CMXT limit reached

• Short-on-storage

When a task is placed on the active chain, either
because it is a new task, or a task being resumed, it is
normally marked nondispatchable for AMXT reasons.
The task is changed to dispatchable status during a task
dispatcher scan of the active chain if, in fact, AMXT has
not been reached. The remaining three nondispatcha­
ble conditions can only occur as a result of an uncondi­
tional user program attach request during abnormal
CICS/VS conditions (short on storage or CMXT limit
reached).

During a scan of the active chain, the task dispatch­
er changes a task from nondispatchable to dispatchable
state provided the total number of currently dispatcha­
ble tasks is less than the AMXT parameter value and no
other condition exists (CMXT or short on storage) to
prevent the task from becoming dispatchable. When
the task dispatcher changes a task from nondispatcha­
ble to dispatchable state, the count of dispatchable
tasks is increased by one. When a task is terminated or
suspended, the count of dispatchable tasks is decreased
by one. The only exceptions to this are "special" tasks.
These "special" tasks are the CICS/VS terminal control,
task control, and journal tasks and the DL/I MPS Master
Partition Controller task. Although they may be dis­
patchable, they are not counted as part of the dispatch­
able tasks for AMXT purposes. The total number of
tasks that can be dispatchable at any point in time is
limited by the AMXT parameter value (not counting
"special" tasks).

The task dispatcher scans the active chain looking
for a task to dispatch until either it finds a dispatchable
task ready to run (i.e. not waiting), or it passes as many
dispatchable tasks (which are waiting) as specified in
AMXT. Because of this, the DL/I MPS Master Partition

Controller task, which is not counted when determin­
ing if AMXT has been reached, should be given a high
priority to insure it is always examined by the task
dispatcher during its scan of the active chain. The oth­
er "special" CICS/VS tasks already have a priority high­
er than user tasks so they are always examined by the
CICS/VS task dispatcher during its scan of the active
chain.

Because AMXT limits the number of tasks that can
be dispatched by CICS/VS, AMXT controls the number
of tasks that can compete for resources within the
CICS/VS system. The key resource that AMXT controls
is real storage, because only dispatchable tasks are
allowed to execute, and only executing programs use
real storage. Therefore, you should set AMXT no higher
than the amount of real storage available for the user
tasks, divided by the average storage required for a
user task.

CICS/VS CMXTand TCLASS Parameters
The CMXT and TCLASS parameters allow you to sepa­
rate transactions into classes and control the number of
tasks of a class that can be dispatchable at any point in
time. Note that this facility can be used only with
transactions whose transaction-id does not begin with
the letter "C". Thus it cannot be used for any CICS/VS

provided transactions or the DL/I MPS transactions
CSDA, CSDB, CSDC, and CSDD. If a task that is being
attached has been specified as belonging to a class (via
the TCLASS parameter in the PCT), CICS/VS checks the
count of the number of tasks currently in existence of
that class. CICS/VS does not attach the task if doing so
causes the CMXT limit for that class to be exceeded. If
the attach request is unconditional, and attaching the
task causes CMXT to be exceeded for that class, the task
is entered on the active chain in a nondispatchable
state (for CMXT reasons). Ifthe attach request is condi­
tional, and attaching the task would result in exceeding
CMXT for that class, the attach is not performed and the
requesting task is returned a code indicating the attach
was unsuccessful. All CICS/VS attach requests, e.g.
from terminal control, are conditional requests.

DL/I MAXTASK Parameter
The DL/I MAXT ASK parameter in the ACT specifies an
upper limit on the number of DL/I tasks that may exist
concurrently under CICS/VS. This parameter cannot be
changed dynamically during CICS/VS execution as can
the CICS/VS MXT and AMXT parameters. It can only be
changed by assembling a new ACT.

Chapter 5: Online and MPS Considerations 5 - 37

DLj I CMAXTSK Parameter
The intent ofthe DL/I CMAXTSK parameter is to allow
the upper limit of DL/I tasks within the system to be
lowered dynamically. A special DL/I system call is
available to change the CMAXTSK value, (see
"Controlling the DL/I Online System Environment" in
the Utilitites and Guide for the System Programmer).
Note that CMAXTSK can never exceed MAXTASK.

If a DL/I task issues a PCB call and DL/I CMAXTSK
has already been reached, then DL/I suspends the
scheduling task. Suspending the task reduces the
CICS/VS active task count (AMXT) and allows other
non-DL/I tasks to run.

The DL/I CMAXTSK parameter should be used to set
an upper limit on the number of DL/I tasks that you
wish to have exist concurrently. Since only dispatcha­
ble tasks can issue PCB calls, and the number of dis­
patchable tasks is limited by AMXT, there is no benefit
in setting the DL/I CMAXTSK parameter higher than the
CICS/VS AMXT parameter. The CICS/VS TCLASS and

5 - 38 DL/I DOS/VS Guide For New Users

CMXT parameters can be used to classify and control
DL/I tasks, according to individual characteristics.

For best performance, the combined effect of the
CICS/VS AMXT and the DL/I MAXTASK and CMAXTSK
parameters must be considered. Three key points to
keep in mind when choosing values for these parame­
ters are:

• The major controlling factor in the CICS/VS envi­
ronment is the value of AMXT, i.e. the number of
active tasks that are allowed to execute concur­
rently.

• A DL/I task that has requested DL/I services and is
waiting for VSAM I/O is considered an active task
by CICS/VS.

• A DL/I task that has been suspended due to
CMAXTSK being reached is not considered active
by CICS/VS.

L

Chapter 6: Data Base Reorganization/Load Processing

Introduction planned use of the data base in the future.

This chapter introduces the function of data base reor­
ganization in a DL/I environment. It is a first-time
introduction into the requirements for, and the process
of, data base reorganization and load processing. As in
the previous sections of this manual, the primary em­
phasis is on HDAM and HIDAM data bases.

The content of this chapter is intended to be a gener­
al overview; for specific details on how to code the
utility programs, see the Utilities and Guide for the Sys­
tem Programmer. Additional information is also con­
tained in the System Application Design Guide.

DL/I provides eight utility programs of two distinct
types to assist you: those dealing with data base reor­
ganization (physical reorganization utilities), and those
dealing with load processing (logical relationship reso­
lution utilities).

The utility programs supplied for load processing
are in no way concerned with the actual loading of the
data base. This is your responsibility. However, certain
pointer relationships cannot be resolved during initial
loading, and it is for the resolving of these relationships
that the utility programs are provided.

What is Reorganization
Reorganization is the process of changing the physical
storage and/or structure of a data base to better
achieve the application's performance requirements.
The two types of reorganization are:

• Physical reorganization, to optimize the physical
storage of the data base.

• Logical reorganization, to optimize the data base
structure.

When to Reorganize
A general guideline is to reorganize a data base when
the benefits you expect to receive from reorganization
more than offset the time required to reorganize. The
amount of time needed to reorganize depends on the
data base access method used and the reorganization
facility used.

The DL/I reorganization programs provide statistical
data that can help data base administration personnel
determine whether a data base should be reorganized.
Determining when a data base should be scheduled for
reorganization depends, to a large extent, on knowing
the overall activity on the data base (that is, the num­
ber of segment additions and deletions), the physical
organization of the data base, the relationship of the
data base to other data bases, and the installation's

Most data base reorganizations are done to recover
space occupied by deleted segments and/or to rese­
quence segments physically in their logical order. The
number of segment insertions and deletions can be
determined from data provided by the application
accounting report, and the distribution of transaction
response times. When segment chains become long,
and when they involve segments that are in different
areas of a storage device, response times tend to in­
crease. Growing response times may indicate a need
for data base reorganization.

Frequency of reorganization should be considerably
less for HDAM and HIDAM than for HISAM data bases,
because both HDAM and HIDAM reuse space freed by
deleted segments, and because both HDAM and HIDAM

attempt to place inserted segments physically near their
logically related segments (that is, near segments to
which they are chained by physical child/physical twin
forward pointers).

Overview of the
Reorganiza tion/Load Utilities
The DL/I reorganization utilities provide three basic
functions:

• The reorganization of DL/I data bases

• Establishing logical relationship connections when
initially loading data bases having logical relation­
ships

• Creation of secondary index data base(s) when
loading your data bases or when you reorganize
them

The eight basic utility programs involved in data
base reorganization/load processing are:

• HISAM Reorganization Unload (DLZURULO)

• HISAM Reorganization Reload (DLZURRLO)

• HD Reorganization Unload (DLZURGUO)

• HD Reorganization Reload (DLZURGLO)

• Data Base Prereorganization (DLZURPRO)

• Data Base Prefix Resolution (DLZURGIO)

• Data Base Prefix Update (DLZURGPO)

• Data Base Scan (DLZURGSO)

Chapter 6: Data Base Reorganization/Load Processing 6 - 1

Reorganization of HDAM and
HIDAM Data Bases
Two methods can be used to accomplish reorganization
of HDAM and HIDAM data bases. The first method
involves use of GET NEXT and INSERT calls with a user­
written application program.

The second method is to use the DL/I HD reorganiza­
tion unload and reload utilities. These utilities use
unqualified GET NEXT calls to sequentially unload
segments from the data base to be reorganized.

These utilities can also be used to reorganize HISAM

data bases. The HISAM unload/reload utility offers
better performance, but if structural changes are re­
quired, you must use the HD reorganization utilities.

Logical Relationship Resolution
A set of four utility programs is used in conjunction
with initially loading and/or reorganizing data bases
that are involved in logical relationships.

The logical relationship resolution utility program
set includes:

• The data base prereorganization utility.

This program controls the execution of the other
utility programs that are concerned with the reso­
lution of logical relationships.

6 - 2 DL/I DOS/VS Guide For New Users

• The data base scan utility

This program searches one or more data bases for
all segments that are involved in logical relation­
ships. For each such segment, the program gener­
ates one or more output records. This output
serves as input to the prefix resolution utility.

• The data base prefix resolution utility

The general operation of this program consists of
combining and sorting all work files that are de­
fined as input to this program. These input files
may be files generated by the prereorganization
utility, the scan utility, the HD reload utility, or a
user load program.

• The data base prefix update utility

This program applies the necessary changes to the
prefix of segments involved in logical relationships
after an initial load or a reload. It uses as input
the file generated by the prefix resolution utility.

Reorganization/Load Flowchart
Figure 6-1 shows the necessary programs required for
physical reorganization and/or logical relationship
resolution processing during initial load or reorganiza­
tion of an HDAM or HIDAM data base.

5

1

DATA BASE SCAN

DLZURGSO

EXECUTE
DATA BASE
SCAN UTILITY

NO

REORGANIZATION
LOAD PROCESSING
UTI LlTY START

8

DLZURPRO

EXECUTE
PRE-REORG
UTILITY

DLZURGUO

EXECUTE
HD REORG
UNLOAD
UTILITY

DLZURGLO

EXECUTE
HD REORG
RELOAD
UTI LlTY

REORGANIZATION/
LOAD PROCESSING
COMPLETE

Figure 6-1. Reorganization/Load Flowchart

DATA BASE INITIAL LOAD

6

EXECUTE
USER PROVIDED
LOAD PROGRAM

1 1
DLZURGIO

EXECUTE
PREFIX
RESOLUTION
UTILITY

7

DLZURGPO

EXECUTE
PREFI X
UPDATE
UTI LlTY

Chapter 6: Data Base Reorganization/Load Processing 6 - 3

Notes:

I. The physical reorganization/logical relationship resolution
utilities may be used to operate on one or more data bases
concurrently. For example, one or more data bases may al­
ready exist, or any number of existing data bases may be reor­
ganized while other data bases are being initially loaded. Any
or all of the data bases being operated upon may be logically
interrelated. A data base operation is defined to be an initial
data base load, a data base unload/reload (reorganization), or
a data base scan.

Invalid combinations can occur when a mixed operation of
initial loading and reorganization is performed on logically
related data bases. See the section "Restrictions" of "Data
Base Logical Relationship Resolution Utilities" in the Utilities
alld Guide for the System Programmer for details.

2. The YES branch must be taken if any segment in any data base
being operated upon is involved in a logical relationship, or if a
data base involved in secondary index relationships is being
reorganized. Taking the YES branch is also recommended
when loading data bases with secondary index relationships;
see the section "With Secondary Indexes" of "Data Base Initial
Load/Reload" later in this chapter. In other circumstances the
NO branch should normally be taken (this includes the case
when primary index relationships exist) but it need not be, as
you may wish to let the prereorganization utility determine
which data base operations are to be performed.

3. If virtual logical child segments are present in the data base
being reorganized, then the data base containing the physical
segment of the physical-virtual pair must also be scanned or
reorganized to retain the proper logical relationships through
prefix resolution and prefix updates.

4. Based upon the information presented to it in control state­
ments, the data base pre reorganization utility provides a list of
data bases that must be initially loaded, reorganized, or scan­
ned.

5. This program should be executed for each data base listed in
the output of the prereorganization utility. A work file may be
generated for each data base that this utility scans. Data bases
to be scanned are listed after the characters "DBS=" in one or
more output messages of the pre reorganization utility.

6. The user-provided initial data base load program may auto­
matically cause the generation of a work file to be later used by
the prefix resolution utility. You need not add code to your
initial load program to generate the work file. This is done
automatically by internal routines. Data bases to be initially
loaded are listed after the characters "DBIL=" in one or more
output messages of the prereorganization utility.

7. This area of the flowchart must be followed once for each data
base to be operated upon, whether the operation consists of an
initial load, a reorganization, or a scan. The operations may be
done for all data bases concurrently, or for one data base at a
time. However, all scans and unloads for logically related data
bases must be done before any reload.

8. The HD reorganization reload utility may cause the generation
of a work file to be later used by the prefix resolution utility.
Data bases to be reorganized using the HD unload/reload
utilities are listed after the characters "DBR=" in one or more
output messages of the prereorganization utility.

9. Be sure that all operations indicated by the prereorganization
utility (ifit was executed) are completed prior to taking the
YES branch.

10. If any work files were generated during any of the data base
operations that were executed, the YES branch must be taken.
Note that the presence of a logical relationship in a data base
does not guarantee that work files will be generated during a
data base operation. The physical reorganization/logical rela­
tionship resolution utilities determine the need for work files
dynamically, based upon the actual segments presented during
a data base operation. If any segments that participate in a

6 - 4 DL/I DOS/VS Guide For New Users

logical relationship are loaded, work files are generated and the
YES branch must be taken.

Iffor any specific data base operation no work file is generated
for the data base, processing of that data base is complete, and
it is ready for use.

When a H1DAM data base is initially loaded, its index is
automatically generated. This may also apply to secondary
indexes. See the section "With Secondary Indexes" of "Data
Base Initial Load/Reload" later in this chapter.

II. The data base prefIX resolution utility combines the output
from the data base scan utility, the HD reorganization reload
utility, and the user initial data base load program to create an
output file to be used by the prefIX update utility. The prefix
update utility then completes all logical relationships defmed
for the data bases that were operated upon.

Data Base Initial Load/Reload
It is your responsibility to provide a program for ini­
tially loading a data base. This program must use a
PCB with a PROCOPT of either L or LS. If LS is specified,
or if the organization is HIDAM or HISAM, or HSAM

(simple HSAM) with keys, the data base must be loaded
sequentially. The PCB must reference a physical DBD,

not a logical DBD. The load program must use the DL/I

ISRT call function to load segments into a data base.
Each segment must be placed in the I/O area with a
length and field placement as described in the physical
DBD for the data base. The segments of a data base
record must be inserted in hierarchical order. See
"Data Base Load Processing" in Chapter 4 for addi­
tional details.

With Logical Relationships
If a data base to be loaded or reloaded contains seg­
ments involved in logical relationships, one or more of
the logical relationship resolution utilities may have to
be executed as shown in Figure 6-1.

If a segment is a logical child, both the logical
parent's fully concatenated key and the logical child
intersection data, if any, must be placed in the user I/O
area. The data for the logical parent must be loaded in
a separate DL/I insert call. Be sure that the logical par­
ent for each logical child loaded during initial data
base load is loaded before the prefix resolution utility
(DLZURG 10) is executed.

All work files produced when data bases that partic­
ipate in a logical relationship are initially loaded must
be supplied as input to one execution of the prefix reso­
lution utility.

Ifthe data base being initially loaded or reloaded
contains logical relationships, job control statements
must be provided for the load or reload program for
one input and one output file as follows:

• The input file contains control information and is
created by the data base prereorganization utility.
Filename must be specified as CONTROL. The

L

logical unit assignment must be SYSOI2. The file
can be only DASD.

• The output file contains logical relationship in­
formation created by the loading ofthe data base.
Filename must be specified as WORKFIL. The
logical unit assignment must be SYSOI3. The file
can be tape or DASD.

In the case ofloading only logical parent segments
and no logical child segments, the execution of the
logical relationship resolution utilities can be bypassed
by:

• Specifying / / ASSGN SYSOI3,IGN in the job loading
the data base, so that no work file is generated.
Message DLZOO71 with a return code of 04 will be
printed as a warning but processing continues.

• Loading the logical child segments subsequently
in an update type job, (that is, with a PCB that has
a PROCOPT of A or I). See "Loading Data Bases
with Logical Relationships" in Chapter 4 for addi­
tional details.

With Secondary Indexes
If the data base initially loaded contains secondary
index relationships, the secondary indexes are built
automatically during initial loading, provided all
ASSGN, DLBL, and EXTENT statements for the second-

ary index data bases are included in the job stream for
initial load. However, because the index records are
not normally in ascending key sequence, this usually
leads to a significant performance degradation. There­
fore, you may choose to treat secondary index relation­
ships as normal logical relationships. ASSGN and TLBL

(or DLBL and EXTENT) statements must then be provid­
ed for the work file WORKFIL, as mentioned above, and
the logical relationship resolution utilities must be used
to build the secondary index data base(s). In this case
the DLBL and EXTENT statements for the secondary
index data bases must be omitted in order to prevent
the indexes from being created automatically.

Note: When using this method, message DLZ0201 with a VSAM
return code of X'SO' occurs for every secondary index data base
(because the index maintenance routine tries to open them), but
loading does continue.

This discussion also applies to reloading a data base
with the HD reload program.

Resolution Utilities Overview
Figure 6-2 provides an overview of how to use the logi­
cal relationship resolution utilities when loading data
bases with logical relationships and/or secondary in­
dexes.

Chapter 6: Data Base Reorganization/Load Processing 6 - 5

INPUT PROCESSING OUTPUT

CONTROL CARDS PREREORGANIZATION UTILITY MESSAGES
DLZURPRO CONTROL DATA SET

[CONTROL]

CONTROL CARDS, optional

DATA BASE(S) DATA BASE SCAN UTILITY WORK FILE 1

CONTROL CARDS DLZURGSO [WORKFIL]

or

CONTRO L DATA SET

[CONTROL]

CONTROL DATA SET} EACH USER LOAD PROGRAM LOADED DATA BASE(S)

[CONTROL LR only physical DBD indicates presence of physical pointers established
logical relationsh ips or secondary

WORKFILE1} indexes
[WORKFIL] LR only

SECONDARY INDEXES, optional

CONTROL DATA SET HD RELOAD UTILITY RE-LOAD DATA BASE

[CONTROL] DLZURGLO physical pointers established
physical DBD indicates presence of WORK FILE 1 logical relationships or secondary
indexes [WORKFIL]

SECONDARY INDEXES, optional

CONTROL DATA SET PREFIX RESOLUTION UTILITY MESSAGES

[CONTROL] DLZURG10 SORT WORK FILES

1 TO n WORK FILE 1's [SORTWK n]

[WRKIN01-WRKINOn] WORK FILE 2

[INTRMED]

WORK FI' E 3

[WORKFIL]
control information and sequenced
pointer values

SECONDARY INDEX

WOR K FILE, OPtional

[INDXWRK]

WORK FI LE 3 PREFIX UPDATE UTILITY MESSAGES

[WORKFIL] DLZURGPO USER DATA BASE(S)

SECONDARY INDEX logical pointers established

WORK FILE, optional SECONDARY INDEXES, optional

[INDXWRK]

Figure 6-2. Loading Data Bases with Logical Relationships and/or Secondary Indexes

6 - 6 DL/I DOS/VS Guide For New Users

Figure 6-3 is an example of loading two data bases with logical relationships and secondary indexes

CONTROL STATEMENT 0) DLZURPRO ""
...... .,.,

DATA BASE
PREREOR- CONTROL
GANIZATION SYS012
UTILITY

~'
,..,

~
...... .;" G)

DATA - BASES LOAD DATA BASES
SYSOO5 WORKFIL

...... ".
SYS013

.;"

@ DLZURG10

".'
DATA BASE
PREFIX ". RESOLUTION ". ".

". UTI LlTY ". ,.
f""" ~ ".
...... ". INTRMED

".
~ SYS010

INDXWRK,.,
SYS014

.....)' "" , r--. .,.,

L
.... 0 DLZURGPO WORKFIL ~ SYSOll

DATA BASE
PREFIX

". UPDATE
UTI LITY

Figure 6-3. Loading of Two Data Bases with Logical Relationships and Secondary Indexes

Chapter 6: Data Base Reorganization/Load Processing 6 - 7

The following JCL examples relate to Figure 6-3 for the Inventory and
Customer data bases used in the sample application.

(2)11 JOB STJPREOR PRE-REORGANIZATION UTILITY
II OPTION PARTDUMP
II DLBL CONTROL, 'CONTROL FILE' ,O,SD
I I EXTENT SYSO 12,111111 ,1 ,0,1680,10
II ASSGN SYS012,X'230'
II EXEC DLZRRCOO,SIZE=300K
ULU,DLZURPRO
DBIL=STDIDBP ,STDCDBP
OPTIONS= (NOPUNCH, STAT,SUMM)
1*
1&

~/I JOB STJLDCST LOAD INVENTORY AND CUSTOMER DATA BASES
II OPTION PARTDUMP
II ASSGN SYS005,X'230'
II DLBL STDIDBC,'SAMPLE.INVEN' "VSAM
II EXTENT SYS005,111111
II DLBL STDCDBC,'SAMPLE.CUST' "VSAM
II EXTENT SYS005,111111
* NOTE: NO DLBL EXTENTS FOR SECONDARY INDEXES (BUILT BY PREFIX UPDATE) - Note 1
II DLBL CONTROL, 'CONTROL FILE' ,O,SD
I I EXTENT SYSO 12,111111 ,1 ,0,1680,10
II ASSGN SYS012,X'230'
I I DLBL WORKFIL,' WORKFILE J' ,0 - Note 2
I I EXTENT SYSO 13,111111 ,1 ,0,1690,5
II ASSGN SYS013,X'230'
I I UPSI 00000010 NO LOG - Note 3
II EXEC DLZRRCOO,SIZE=300K
DLI,DLZSAM40,STBICLD,1,HDBFR=(6)

1*
1&

•
• data cards
•

Notes:

I. No DLBL and EXTENT statements are included in this job for secondary indexes.
Because of this an OPEN error message is printed, but the appropriate work file records
are written on the file WORKFIL for later processing by the prefix resolution and prefix
update utilities to create the secondary indexes.

2. This job loads two data bases, Inventory and Customer, so only one work file is produced.
This affects the prefix resolution utility control statement.

3. The UPS I byte setting is described in the Utilities and Guide/or the System Programmer
(Chapter 8).

6 - 8 DL/I DOS/VS Guide For New Users

~/I JOB STJPRRES PREFIX RESOLUTION UTILITY
II OPTJON PARTDUMP
II ASSGN SYS001 ,X'230'
II OLBL SORTWK1 ,'SORTWK FILE NR1' ,O,SO
II EXTENT SYS001,111111,1,0,3600,100
II ASSGN SYS002,X'230'
/1 OLBL SORTWK2,'SORTWK FILE NR2' ,O,SO
II EXTENT SYS002,111111,1 ,0,3700,100
II ASSGN SYS003,X'230'
II OLBL SORTWK3,'SORTWK FILE NR3' ,O,SO
II EXTENT SYS003,111111,1,0,3800,100
II OLBL WRKIN01,'WORKFILE J' ,O,SO
I I EXTENT SYSO 13,111111 ,1 ,0,1690,5
II ASSGN SYS013,X'230'
II OLBL CONTROL, 'CONTROL FILE' ,O,SO
II EXTENT SYS012,111111,1,0,1680,10
II ASSGN SYS012,X'230'
II ASSGN SYS010,X'230'
II OLBL INTRMEO,'INTERMEOIATE WORK FILE' ,O,SO
II EXTENT SYS010,111111,1 ,0,1620,20
II ASSGN SYS011,X'230'
II OLBL WORKFIL,'PREFIX WORK FILE LR' ,O,SO
II EXTENT SYS011 ,111111,1,0,1640,10
II ASSGN SYS014,X'230'
II OLBL INOXWRK,'PREFIX WORK FILE SI' ,O,SO
II EXTENT SYS014,111111,1 ,0,1660,20
II EXEC OLZURG10,SIZE=300K
R 3
1*
IF,

Notes:

- Note 1

- Note 2

I. The number of sort work files is specified in the utility control statement and may be from
one to eight for DASD and from three to nine for tape.

2. These DLBL and EXTENT statements are required because the secondary index is not
created at initial load time.

Chapter 6: Data Base Reorganization/Load Processing 6 - 9

~/I JOB STJPRUPD PREFIX UPDATE UTILITY
II OPTION PARTDUMP
II ASSGN SYS005,X'230'
II DLBL STDIDBC,'SAMPLE.INVEN' "VSAM
II EXTENT SYS005,111111
II DLBL STDCDBC,'SAMPLE.CUST' "VSAM
II EXTENT SYS005,111111
II ASSGN SYS011,X'230'
II DLBL WORKFIL,'PREFIX WORK FILE LR' ,O,SD
I I EXTENT SYS011, 111111,1,0,1640,10
II ASSGN SYS014,X'230'
II DLBL INDXWRK,'PREFIX WORK FILE SI' ,O,SD
I I EXTENT SYSO 14, 111111 ,1 ,0,1660,20
II DLBL STDCX2C,'SAMPLE.CUSTDX2' "VSAM
II EXTENT SYS005,111111
II DLBL STDCX1C,'SAMPLE.CUSTDX1' "VSAM
II EXTENT SYS005,111111
II DLBL STDIX1C,'SAMPLE.INVDX' "VSAM
II EXTENT SYS005,111111
II UPSI 00000010 NO LOG
II EXEC DLZRRCOO,SIZE=300K
ULU,DLZURGPO
U
1*
1&

Notes:

- Note 1

- Note 2

- Note 2

- Note 3

l. These DLBL and EXTENT statements are required because the secondary indexes are to
be created by this job.

2. These DLBL and EXTENT statements are always required for secondary indexes.

3. The UPSI byte setting is described in the Utilities and Guidefor the System Programmer
(Chapter 8).

6 - 10 DL/I DOS/VS Guide For New Users

Chapter 7: DL/I Data Base Recovery/Restart

Introduction
In any data processing environment, inevitably some
type of failures or errors occur that damage the data
being maintained. Successful recovery and restart from
these failures and errors can be characterized by a five
step process:

1. Detection of the error or failure

2. Determination of the cause of the error or failure

3. Recovery of the data from the error or failure

4. Correction of the cause of failure

5. Restart of processing

In traditional batch file processing, normally not
much thought or effort is spent developing and imple­
menting recovery and restart procedures. The usual
recovery-restart procedure in this environment is to:

• Periodically dump the files

• Save all input since the last file dump

• When an error is detected or a failure occurs, re­
store the files and rerun all the jobs from the time
of the file dump.

This traditional recovery approach is illustrated in
Figure 7-1.

In a data base environment where timeliness of in­
formation is important, this simple procedure often is
not sufficient because of the time required to dump and
restore large data bases and rerun all the jobs since the
last data base dump.

Error detection and correction in a data base envi­
ronment is complicated by the various interrelation­
ships inherent in the data base. For example, if a data
base participating in a logical relationship is damaged
or destroyed, simply restoring a copy of the data base
from the last dump does not replace the interrelation­
ships between the data bases. Nor can the jobs execut­
ed since the last dump be rerun because the related
data bases already reflect the relationships created by
the original execution of those jobs. To recover in the
traditional manner, all related data bases have to be
restored from earlier dumps. Unless the dumps of all
the related data bases are taken at the same time, it is
impossible to recover from the failure in the traditional
manner.

In an online environment, the time to recover and
restart after a failure or error becomes critical. Often,
while the damage is being repaired, key applications
may not be able to run, tying up personnel in many
user departments. In extreme cases the entire enter­
prise will be affected while the damage is corrected.

Recovery in an online environment is further compli­
cated because other input to the online programs may
not be available for reprocessing. For example, in a
customer service environment where the terminal input
may come from direct interaction with the customer
over a telephone, the input data is often unreproduci­
ble.

DL/I provides several special mechanisms to over­
come these problems and facilitate recovery in an on­
line data base environment. Of course, these facilities
can be used to advantage in developing a recovery
system for a batch-only DL/I environment as well.
These recovery and restart facilities include:

• A logging facility to capture all changes made to
the data bases

• An abnormal termination routine to minimize
data base damage on a program check or other
condition that prevents a normal end of job

• A set of utility programs to correct errors or recon­
struct data bases after damage

• A checkpoint facility to minimize the time re­
quired to restart processing

In addition to these facilities provided by DL/I, you
will have to establish standards and procedures for
detection of errors and failures and for subsequent
recovery and restart. The facilities provided by DL/I

are not complete by themselves. You have to combine
their use with other facilities provided by VSAM,
DOS/VS, and your own user written programs.

You are not required to use the recovery facilities
provided by DL/1. However, an understanding of ex­
actly what these facilities can provide will help you in
planning for recovery in your application.

Recovery and restart procedures must be planned
and designed as part of the design of your data base
applications. As you define and develop a data base
application, you should also define and develop re­
covery procedures for all possible failure conditions for
the application. It is important that recovery proce­
dures be planned as part of the application design be­
cause they can influence design choices. One way to
start is by making a list of different types of failures.
This list would include:

• Power failure, "hard wait" in DOS/VS and other
failures where the DL/I abnormal termination rou­
tine is not executed

• Physical damage to the data base that renders the
data unreadable, for example, disk head crash,
dropped disk pack, etc.

Chapter 7: DL/I Data Base Recovery/Restart 7 - I

INPUT

,
I

PROGRAM ••••• PROGRAM

•••

8

, ,

, , , ,

• • •

• • •

FAILURE

D

• MASTER FILES

RESTORE MASTER FILES ,"
I

I

t RERUN JOBS

--~~ TIME

Figure 7-1. Traditional Recovery Approach

• Batch application program abend where the DL/I

abnormal termination routine is executed

• Online transaction abends

• Logic error in an application program such that
the program terminates normally but updates the
data base incorrectly, for example, the application
adds to a field in a segment when it should sub­
tract

• VSAM catalog damage rendering the VSAM data
sets defined in the catalog inaccessible

7 - 2 DL/I DOS/VS Guide For New Users

• DL/I abend conditions where the DL/I abnormal
termination routine is executed, for example, "bad
pointer", no room, etc.

By reviewing the various DL/I messages found in the
DL/I Messages and Codes manual, you can identify
other failure conditions and their symptoms.

When planning the recovery procedures for each of
the failure conditions you define, consider the applica­
tion needs and environment. For example, is the appli­
cation online, batch, or both? How frequently are the
data bases updated? How large are the data bases? Are
logical relationships or secondary indexes used? What

are the consequences of the data bases being unavaila­
ble for 10 minutes, 10 hours, 10 days?

With this type of information, you can better plan
such things as:

• Frequency of data base dump

• Log record volumes, if logging is used, and conse­
quently log space requirements and change accu­
mulation frequency

• Alternate processing plans should a lengthy re­
covery be required for particular types of failures

• Procedures to determine if the recovered data is
correct.

When testing the application programs, you should
also be testing your recovery procedures. The time to
test your recovery procedures is before the first real
failure. Don't wait until the application is in produc­
tion to find out if your recovery procedures work. Dur­
ing the testing of your recovery procedures you can
also determine recovery timings. For example, if a DL/I
image copy of your test data base takes 5 minutes, and
the planned data base will be ten times larger, then you
can approximate the DLjI image copy time for the full
data base as 50 minutes. This aids you in determining
if your planned frequency of image copy is reasonable.
A 50 minute image copy once a day may be reasonable
where a 5 hour image copy once a day may not. Simi­
lar times should also be developed for such operational
steps as DOS/VS IPL. CICS/VS restart, etc.

Finally, just as you must document the operation of
your application programs, you must document the
various recovery steps in your procedures. One way to
document recovery procedures is to use the flow-chart
approach. For example, a recovery flow-chart for a
non-MPS batch program abend might look something
like Figure 7-2.

Notice that this recovery procedure includes the use of
facilities in addition to those provided by DL/I, for
example, VSAM VERIFY. Often user written programs
are required as part of a recovery procedure. For ex­
ample, if the abending batch program also updated
non-DLjI files (VSAM. ISAM. etc.) with related informa­
tion, then user programs might be required to recover
the information in them after a failure. These steps
should be included in the recovery procedures.

The numbers in parentheses in the recovery flow­
chart refer to additional narrative documentation. This
documentation should include information on such
items as:

• Messages that indicate successful or unsuccessful
execution of a recovery step

• Disposition of output produced by a step, for ex­
ample, save for later analysis or destroy. This is
especially important if sensitive or confidential
data is involved.

• Instructions on how to execute the particular re­
covery step, including JCL, operator responses to
messages, etc.

The following sections of this chapter are intended
to provide an understanding ofthe various DL/I re­
covery facilities so you can construct recovery proce­
dures suitable to your DL/I applications and environ­
ment.

DL/I Logging Facility
DL/I provides a data base change logging mechanism
that records every change made to a DL/I data base.
DL/I records both "before" and "after" images of all
segments changed by application programs. Applica­
tion program requests may cause segment changes that
are "invisible" to the application program. For exam­
ple, if an application program deletes a segment, all the
segment's children are also deleted, even if the applica­
tion program is not sensitive to them. This same delete
request may also cause pointers in related segments to
be modified. All these changes to the data base are
recorded on the log, even though they may be invisible
to the application program. The use of these log re­
cords is explained in the following sections on the vari­
ous DL/I recovery utilities. Note that a DL/I log is not
created wht:n a data base is initially loaded (that is,
when the processing option "L" or "LS" is selected in the
PCB).

Before any physical change is made to the data base
on disk, DL/I ensures that the log records reflecting the
changes are physically recorded on the log medium.
This is called "write ahead logging". This write ahead
logging technique is used in both batch and online
environments. Thus, if a failure occurs there can be
only one of three possible relationships between the log
and the data base:

1. Neither the log nor the data base reflects the latest
change req uest made by the application program.
This is the case when a failure occurs after the
application program makes its change request
(insert, delete, or replace) to DL/I but before DL/I
is able to act on the request.

2. The log reflects the latest data base change request
made by the application program but the data
base does not reflect the change. This is the case
when a failure occurs between the physical write
of the log record and the physical write of the data
base record.

Chapter 7: DL/I Data Base Recovery/Restart 7 - 3

(START)

YES

YES

RUN DL/I
BACKOUT

(8)

YES

RERUN JOB
(10)

USE DL/I LOG
NO PRINT UTILITY

YES

NO

NO

TO CLOSE LOG
(3)

VERIFY VSAM
DATA SETS

(6)

NO

REFER TO
VSAM CATALOG
REBUILD
PROCEDURE

Figure 7-2. Sample Recovery Procedure Flowchart

7 - 4 DL/l DOS/VS Guide For New Users

NO

YES

REFER TO
DATA BASE
REBUILD
PROCEDURE

REFER TO
DATA BASE
REBUILD
PROCEDURE

3. Both the log and the data base reflect the latest
change request made by the application program.
This is the case when a failure occurs after the
physical write of the data base record.

The various DL/I recovery utilities include logic to
correct the data base for any of the above three condi­
tions.

Asynchronous Logging Option
There is one case where the data base can be physically
updated before the corresponding log record is physi­
cally written to the log medium. This can occur if you
elect to use the "asynchronous" logging option in a
batch DL/I execution and a failure occurs of the type
that prevents DL/t from executing its abnormal termi­
nation routine successfully, for example, a power fail­
ure. Asynchronous logging is provided as a perfor­
mance option by DL/1. The potential disadvantage of
this option is that after some types of failures, the DL/I
backout utility cannot be used to correct the data base
damage. These conditions are explored in more detail
in the section on the DL/I backout utility later in this
chapter.

The use of the asynchronous logging option is re­
stricted by DL/I to batch jobs only. It may not be used
in a CICS/VS or MPS environment. Generally, the per­
formance improvements to be gained by using this
option are small and not worth the risk of not being
able to use the DUI backout utility in the event of a
failure.

Logging and Performance
The performance of your application programs can be
very dependent on the efficiency of the DL/I logging
mechanism. You can effect the efficiency of the DUt
logging mechanism in the design of your data base
application. Minimizing the number of physical writes
to the log improves the efficiency of the logging mecha­
nism. Physical writes to the log are required whenever:

• The log buffer fills up

• A modified data base record is about to be written
back to disk and the log records corresponding to
the change have not yet been written

The second condition is known as a "force write" of
the log. Physical writes to the log because of the first
condition are performed asynchronously by DL/1.
Force writes are by their very nature synchronous.
Thus, the execution of your application program will
be delayed until the log record is written. If your appli­
cation program causes many force writes to the log,
you will find that the performance of your application
program is dependent on the speed of the log device.
Note that the effect of using the asynchronous logging

option is to skip the force writing of the log as de­
scribed under the second condition.

There are several things you can do in designing
your data base applications to minimize writing to the
log:

• Avoid the use of HISAM. The HISAM access me­
thod uses VSAM logical record processing. As a
consequence, DL/I has no control over when a
physical write to the data base will occur. There­
fore, DL/I must assume every PUT request to VSAM
will result in a physical write to the data base.
This causes DL/I to force write the log more often
than would normally occur if an HD access me­
thod were chosen. With the HD access methods,
DL/I has complete knowledge of when physical
writes to the data base are actually occurring.
Physical writes to the data base in the HD access
methods tend to be deferred longer, thus allowing
a greater opportunity for an asynchronous log
write.

• Index data bases, either HIOAM primary index
data bases or secondary index data bases, are also
processed using VSAM logical record processing.
Therefore, the same conditions exist when DL/I
updates those data bases as exist for HISAM data
bases. Be particularly careful with secondary in­
dexes. Every time the source field value changes
for a secondary index, DL/I writes at least three log
records. If the source field is very volatile, consid­
erable logging activity occurs.

• Consider the relative data base activity when as­
signing several HD data bases to the same HD buff­
er subpool. If two highly active data bases are
assigned to the same subpool, activity in one data
base may cause DL/t to write back updates to the
other data base sooner than would otherwise be
necessary. DL/I does this to free up buffer space in
the subpool. This, in turn, could cause force writes
to the log. Balancing the activity across subpools
reduces the chances that this premature writing
will occur.

Choosing the DL/ I Log Medium
DL/I has the capability to write its log records on sever­
al different media. However, only one can be chosen
for any DL/I program execution. Your choices are:

• VSAM ESDS on disk

• SAM data set on standard labeled tapes

• The CICS/VS system journal

In a batch non-MPS environment, you may use ei­
ther of the first two choices.

Chapter 7: DL/I Data Base Recovery/Restart 7 - 5

In a batch-MPS environment, the logging is per­
formed from the C'ICS/VS partition, and no log device is
assigned in the batch-MPS partition.

In a CICS/VS environment, the last two choices are
available. However, if either of the CICS/VS recovery
facilities (Emergency Restart or Dynamic Transaction
Backout) are to be used with DL/I tasks, the DL/I log
must be assigned to the C'ICS/VS system journal. This
choice usually performs better in a CICS/VS environ­
ment as well. The CICS/VS system journal is a SAM data
set and can reside on either disk or tape. Note that,
unlike batch DL/I logging, CICS/VS does not use stan­
dard labels on its tape journals. However, the DL/I
utilities, with the exception of backout, accept all forms
of log input. The DL/I backout utility will not accept a
CICS/VS disk journal as input. Any CICS/VS journal
records on the log input are ignored by the DL/I utili­
ties.

If the DL/I log is assigned to the CICS/VS system
journal, CICS/VS assumes all responsibility for opening
and closing the logging device and performing I/O as
required. DL/I still maintains its write ahead logging
logic correctly when its log is assigned to the CICS/VS
journal.

You should attempt to use the device that will give
you the best performance for your log. Figure 7-3 com­
pares the time required to write the default OK) DL/I
log record on a variety of IBM devices. This figure as­
sumes no seek is required on disk and no channel con­
tention is encountered during the write.

As can be seen in Figure 7-3, device start-stop time
(rotational delay for disk devices), is generally the ma­
jor factor in the log write time. This is more pro­
nounced if the log records are shorter than I K, which is
often the case in an online environment.

Data transfer Start-Stop Total log
IBM Device rotational

type
time for 1K

delay time
write time

bytes (ms) (ms) (ms)

3410/11-1 51.2 15.0 66.2

3410/11-2 25.6 12.0 37.6

3410/11-3 12.8 6.0 18.8

3420-3 8.5 4.0 12.5

3420-5 5.1 2.9 8.0
3420-7 3.2 2.0 5.2

3330-1 1.3 8.4 9.7

3340/44 1.2 10.1 11.3

3350 .9 8.4 9.3

Figure 7-3. Example Log Write Times

7 - 6 DL/I DOS/VS Guide For New Users

DL/I Abnormal Termination
Routines
DL/I provides abnormal termination routines to assist
in an orderly shut-down of its data bases in the event of
a program error. The abnormal termination routines
apply to all environments, batch, MPS, and CICS/VS.
However, successful completion of a DL/I abnormal
termination routine does not imply that the data bases
are intact. Some recovery processing is almost always
required on any abnormal termination.

Abnormal Termination in Batch
In a batch (non-MPS) environment the DL/I abnormal
termination routine performs the following functions:

• Closes the DL/I log. The contents of the log data
buffer are written onto the log and the log is
closed. If the log is assigned to tape, the tape is
rewound and unloaded. Successful execution of
this phase of processing is indicated by message
"DLZOOIl" on the system console. This message is
normally preceded by other DL/I messages de­
scribing why the job is being abended. If no DL/I
message precedes this message, the abnormal ter­
mination routine was entered because of a pro­
gram check or some other condition that causes
DOS/VS to invoke a STXIT AB exit. Possible causes
of a STXIT AB wait can be found in DOS I VS Su­
pervisor and 110 Macros, GC33-5373, in the sec­
tion that discusses the STXIT macro.

• Writes any altered data base records still in main
storage back to the data bases and closes the data
bases. Closing the data bases causes the VSAM
catalog entries for the DL/I data base data sets to
be updated. Successful execution of this phase of
processing is indicated by the "DLZOO21" message
on the system console.

• Depending on the setting of the UPSl byte, option­
ally produces a storage dump.

• Cancels the job. Any remaining job steps in the
job are not executed.

DL/l uses the DOS/VS STXIT AB and STXIT PC macros
in a batch environment to establish its abnormal termi­
nation routine. Consequently, your batch application
programs should not use the STXlT AB and STXIT PC
functions as well. To do so would disrupt the proper
operation of DL/l'S abnormal termination routine.
While the STXIT AB and STXIT PC facilities are not di­
rectly usable in COBOL programs, any use of the appli­
cation program debugging facilities provided by the
COBOL compiler invokes the STXIT AB function. There­
fore, your production application programs should not
use these debugging facilities.

It is possible, via the UPSI byte settings, to bypass the
use of Dl/I'S abnormal termination routine and thus
Dl/I'S use of STXIT AB and STXIT Pc. This can be done
only in a non-MPS batch environment. This ability can
be useful in testing where the state of the data base
after a program error is unimportant. If Dl/I'S abnor­
mal termination routine is bypassed, the COBOL debug­
ging aids can be used. The Pl/I debugging aids cannot
be used however, as DUI always resets Pl/I'S STXIT PC,
even if the DUI abnormal termination routine is by­
passed. If you bypass the Dl/I abnormal termination
routine in a testing environment and a program error
occurs, you should reload the data bases before using
them further. The condition of the data bases after an
error, where the Dl/I abnormal termination routine
was not executed, is unpredictable. Attempting to use
the data bases for additional program testing without
recreating them may cause additional program errors
due only to the incorrect status of the data bases and
not because of an application program bug.

Abnormal Termination in MPS
The Dl/I abnormal termination routine in a DUI
batch-MPS program cannot be bypassed. In a
batch-MPS environment, the Dl/I abnormal termina­
tion routine performs the following functions:

• Writes message "DlZ096I"' on the system console if
the abnormal termination was caused by a pro­
gram check or other error that causes DOS/VS to
invoke a STXIT AB exit. Possible causes of a STXIT
AB can be found in DOS/VS Supervisor and I/O
Macros, GC33-5373, in the section that discusses
the STXIT macro. If DUI'S abnormal termination
routine was entered directly from Dl/I, rather
than through a STXIT, then the "DlZ0961" message
is not produced. Instead, Dl/I produces messages
indicating the explicit reason for the abend.

• Notifies Dl/I in the CICS/VS partition that the
batch-MPS job is abending. If the condition that
caused the abend originated in the batch-MPS par­
tition, the batch partition controller task support­
ing this batch partition issues a CICS/VS abend
request.

• Deletes the XECB defined by this partition.

• Depending on the setting of the UPSI byte, it op­
tionally produces a storage dump if the abnormal
termination routine was entered via a STXIT AB or
STXIT Pc. If Dl/I'S abnormal termination routine
was entered directly from Dl/I rather than
through a STXlT, a dump is always produced, re­
gardless of the UPSI setting.

• Cancels the job. Any remaining jobsteps in the
job are not executed.

Because Dl/I always uses STXIT AB and STXIT PC in
a batch-MPS environment, your application programs
should not use any facilities that require STXIT AB or
STXIT Pc. To do so would disrupt Dl/I's abnormal
termination routine and would cause unpredictable
errors in the C1CS/VS partition, possibly causing it to
terminate abnormally as well.

Abnormal Termination in CICSj VS
There are three types of DUI abnormal termination
possible in CICS/VS:

I. An application task is abnormally terminating due
to some reason that does not affect subsequent
DUI operation.

2. DUI has detected an error internally and is termi­
nating its operation.

3. CICS/VS has detected an error internally and is
terminating its operation.

For a DUI application task abend, including the
abend of a MPS batch partition controller task, Dl/I'S
abnormal termination routine performs the following
functions:

• Writes a dump of the DUI control blocks and
related information that are unique to that task on
the C1CS/VS dump data set.

• If the abending task is a MPS batch partition con­
troller task, the XECBs defined by that task are
deleted.

• Issues a TERM call on behalf of the abending task
to cause any data base records altered by that task
that are still in main storage to be written back to
the data bases. The action also causes any log
records reflecting these changes to be written to
the log. If PI (program isolation) was used for this
task, any Dl/I records or segments enqueued for
this task are released.

• Writes a Dl/I termination record on the log and a
CICS/VS synch-point record on the CICS/VS system
journal.

• Releases any Dl/I resources that belong to this
task, such as, PST, PPST, PSB, etc.

• Returns control to CICS/VS

DUI and CICS/VS do not terminate in the event of a
Dl/I application task abend. Dl/I data bases are not
closed on a task abend condition. If CICS/VS dynamic
transaction backout is specified for this task, CICS/VS
performs that processing before the DL/I abnormal
termination routine gains control.

For the condition where DL/1 has detected an inter­
nal error that does not permit it to continue processing,

Chapter 7: DL/1 Data Base Recovery/Restart 7·7

the DUI abnormal termination routine performs the
following functions:

• Abends all DL/I tasks for which it is currently
processing a call with a C1CS/VS abend code of
"D062"

• Disables the CICS/VS-DL/I interface. An error
code is returned in the TCA to any new DUI tasks
attempting to issue a call after this condition oc­
curs.

• Writes message "DLZ0621" to the system console

• Returns control to CICS/VS

Note that no attempt is made to close DUI data
bases on this type of error. No DL/I task termination
records are written on the log either. However, CICS/VS
writes its own task termination record on the CICS/VS
system journal.

Because of the presence of the CICS/VS end-of-task
record on the CICS/VS system journal, CICS/VS emer­
gency restart processing will not consider these tasks to
be "in-flight" and thus will not attempt to back them
out. However, the DUI backout utility, if executed in
batch, will back out the data base updates made by
these tasks since there is no DL/I termination record on
the log.

DUI does not terminate CICS/VS on this condition.
CICS/VS remains operational so that non-DL/I tasks
may continue to be processed. When a CICS/VS shut­
down is later attempted, DL/I issues message "DLZ0681",
and does not attempt to close its data bases at that
time. However, the DUI log, if not assigned to the
CICS/VS system journal, is closed at CICS/VS shut-down.

If CICS/VS is terminating abnormally, the DL/I ab­
normal termination routine performs the following
functions:

• If the DUI log is not assigned to the CICS/VS sys­
tem journal, the log buffer is written to permanent
storage, the log is closed, and the DOS/VS subtask
for the DUI log is detached.

• If MPS was active, it deletes all XECBs that had
been defined.

• Writes message "DLZ0701" to the system console

• Attempts to load and execute the DUI online for­
matted dump program "DLZFSDPO"

Note: This program must be specified in the CICS/VS PPT for
this step to execute.

• Returns control to CICS/VS.

Note that no attempt is made to close the DUI data
bases on this error condition. However, the VSAM auto­
matic close facility will be invoked by DOS/VS end-of­
job processing to close the VSAM data sets used by DUI.

7 - 8 DL/I DOS/VS Guide For New Users

Refer to the section on VSAM considerations in this
chapter for more discussion on the VSAM automatic
close facility. DL/I task termination records are not
written to the DL/I log on this error condition. CICS/VS
does not write its task termination records on the
CICS/VS system journal on this abend condition. Thus,
either CICS/VS emergency restart or the DL/I backout
utility executed in batch can back out the effects of the
"in-flight" DL/I tasks.

DL/I Recovery Utilities
The data base recovery system is supported by the
following utility programs:

• Data base back out

• Data base data set image copy

• Data base change accumulation

• Data base data set recovery

• Log Print utility

These utility programs support the basic functions of
the recovery system, which are:

• Removal of changes made to data bases by select­
ed application programs

• Creation of dump images of data base data sets

• Accumulation of data base changes since the last
complete image dump

• Restoration of a data base using a prior image
copy and the accumulated changes

• Printing of the contents of DUI log files

Because log records are not created when initially
loading a data base, and HSAM does not support inserts,
deletes, or replaces, the recovery utilities do not sup­
port simple HSAM or HSAM organizations.

Data Base Backout
When the status of a data base is uncertain because the
program that was updating the data base terminated
abnormally, the data base backout utility may be used
to eliminate (back out) the effects of the program. This
utility reads backwards the log created during the proc­
essing of the erroneous program. Using the data base
log records thus read, it restores the data base to its
status at the time the abnormally terminated program
began processing. It also creates a log that must be
used as input to any future recovery operation unless
the data base data set image copy utility or HISAM reor­
ganization unload/reload utilities are executed imme­
diately after a successful data base backout utility exe­
cution.

The data base backout utility removes (backs out)
the effects of any user program that accessed data bases

using DL/I calls. If the program was operating in a DL/I
batch partition, all data base changes made by the
program from the time it began processing until it ter­
minated abnormally are backed out. If the program
issued checkpoint calls, only the changes made since
the last checkpoint are backed out. See "DL/I Check­
point Facility" later in this chapter.

If the data bases were not closed by DL/I during
abnormal termination, you must execute the VSAM
access method services command, VERIFY, to update
the VSAM master catalog for each file. If this is not
done, an error occurs when the DL/I system attempts to
open the data bases. Refer to the section "VSAM Con­
siderations in DL/I Recovery Restart", later in this
chapter.

A log is created to reflect the backout history. The
log must be included in any data base recovery at­
tempted for the data bases involved in the backout.

Input to the data base backout utility as illustrated
in Figure 7 -4 consists of:

I. One PSB and one or more DMBs loaded from a
DOS/VS core image library during DL/I initializa­
tion.

2. The input data base(s) with which the data base
backout utility is to execute.

3. The DL/I log for the DL/t job execution which
abnormally terminated.

Output from the data base backout utility as illus­
trated in Figure 7-4 consists of:

I. The data bases reflecting the status prior to the
DL/I job execution which abnormally terminated.

2. The output DL/I log reflecting the changes made
to the data base during the data base backout util­
ity execution. This log as well as the input log
must be used as input for any future recovery exe­
cution against the above data bases, unless the
image dump utility or HISAM reorganization
unload/reload utilities (HISAM or simple HISAM)
are executed after the data base backout utility.

3. Messages on the SYSLIST and SYSLOG devices.

For online operation, DL/t backout can be invoked
automatically by CICS/VS emergency restart, or dynam­
ic transaction backout. See the CICS/ VS System Ap­
plication Design Guide, SC33-0068, for more informa­
tion.

DATA BASE
BACKOUT

INPUT DATA BASE(S)

PSB
DBDs

DOS/vS CORE IMAGE LIBRARY

Figure 7-4. Data Base Backout Utility

MESSAGES MESSAGES

Chapter 7: DL/I Data Base Recovery/Restart 7 - 9

Data Base Recovery
Data base recovery is accomplished using the informa­
tion on the DL/I system log and periodically created
copies of the data base. The DL/I system log contains
records that describe the modifications made to the
data base. The number of logs necessary for data base
recovery depends upon the frequency of data base copy
execution, the volume of data base modifications, and
the amount of usage of DL/t. Because information
from a considerable number of logs may be necessary
for data base recovery (all logs created since the last
data base copy), a technique for accumulating all the
latest changes to each specific file in a data base is pro­
vided. This accumulation of the latest data base modi­
fication is performed by the data base change accumu­
lation utility. Thus the information necessary for data
base recovery is contained within the following sources.

• Data base copy created when the data base was
last dumped, through the data base data set image
copy utility.

• Data base change accumulation created from logs
available since the last data base copy creation
(not supported for simple HISAM).

• Logs employed since the last data base copy cre­
ation and not incorporated into the accumulation
tape. This includes at least the log in use at the
time problems were encountered with the data
bases.

The data base data set recovery utility, which is the
final stage of data base recovery, operates as an appli­
cation program under control of the DL/I system. Re­
covery is done individually for each file. In most cases,
a file is synonomous with a data base. This is true with
HDAM. INDEX. HIDAM, and simple HISAM data bases.
HISAM data bases consist of two files, a KSDS and an
ESDS. Thus, for HISAM, if the contents of one file are
destroyed, it is not necessary to recover the complete
data base. Recovery is by direct physical replacement
of data within a file rather than by logical reprocessing
of transactions.

7 - 10 DL/l DOS/VS Guide For New Users

The following functions, as illustrated in Figure 7-5,
are required to acccomplish data base recovery:

1. Log the change data for a segment replace, insert,
or delete, including the identification of the updat­
ed segment. This function is performed for all
data bases.

2. Select the changed data base log records from the
log file(s) and sort them in order by data base and
file (not supported for simple HISAM). If the file is
VSAM key sequenced (KSDS), the sort is ordered by
VSAM key. If the file is VSAM entry sequenced
(ESDS), the sort is by ESDS relative byte address
(RBA). Selecting and sorting are performed as part
of the change accumulation file creation by the
data base change accumulation utility.

3. Merge the sorted selected changed records with
the prior cumulative changes, keeping only the
most recent data. Merging is performed as part of
the change accumulation file creation by the data
base change accumulation utility.

4. Dump the data set occasionally to provide a
backup copy using the data base data set image
copy utility.

5. When recovery is necessary, read the prior copy of
the file to be restored and merge the cumulative
changes, thereby reloading a partially restored
file. Then read logs not included in the most re­
cent cumulative changes and update the file to the
point at which the error was detected. These func­
tions are performed using the data base data set
recovery utility.

Note: Items 2 and 3 are optional and are not supported for simple
HISAM. All updates to the data base at recovery time may be ap­
plied from the logs rather than from the sorted cumulative changes
and the logs. Occasional data base dumps reduce recovery time by
reducing the number of records on the sorted change accumulation
file.

DUI DATA
BASE SYSTEM

1
Image of All
Data Base
Changes

Changes Applied in
Normal Processing

DATA BASE ~---------.... ~

DATA BASE
DATA SET

IMAGE COPY
UTILITY

2

DATA BASE
CHANGE

ACCUMULATION
3 UTILITY

Figure 7-5. Data Base Recovery

DL/I Checkpoint Facility
DL/I provides a checkpoint facility to reduce the time
required to back out data base changes after a failure.

Do not confuse this facility with the DOS/VS CHKPT
macro or program check pointing facilities provided by
COBOL and PL/I. The use of the DL/I checkpoint facili­
ty does not require the use of the DOS/VS facility.

CHKP (Checkpoint) Call
The CHKP call causes a checkpoint record to be written
on the DL/Ilog as an aid in restart processing. For
batch, the data base buffers are written to secondary
storage and a checkpoint log record, with a user­
supplied unique checkpoint identification, is written to
the DL/Ilog.

For MPS and online tasks running with CICS/VS jour­
naling active, a CHKP call is in effect a CICS/VS sync
point call with the exception that the task's PSB sched­
uling status is not changed. Therefore, if the task has a

Periodic Copy Created

DATA BASE
RECOVERY

UTILITY

4

G).@.@
are the three sources of information
that may be used for recovery.

scheduled PSB in effect at the time the CHKP is issued, a
PSB scheduling call is not required after the CHKP call.
In fact, a scheduling call issued under these circum­
stances causes a scheduling error. (See the Application
Programming Reference Manual, "Checking the Re­
sponse to a Scheduling or Termination Call".)

You should issue periodic CHKP calls in long­
running MPS and online tasks running with program
isolation to keep control block size to a minimum.

You should also not use DL/I logging for MPS and
online tasks. With DL/Ilogging active, a CHKP call
causes data base buffers to be written to secondary
storage and a checkpoint log record to be written to the
DL/I log, as in the batch environment. However, these
functions are not usable for performing backout be­
cause batch backout cannot be used in an online envi­
ronment. Backout for an MPS or online DL/I task can
only be performed using CICS/VS dynamic transaction
backout, which requires the CICS/VS journalling be

Chapter 7: DL/I Data Base Recovery/Restart 7 - II

active. See the Application Programming Reference
Manual for additional details about the CHKP call.

DL/ I Checkpoint in Batch Programs
The DL/I Backout utility normally backs out all
changes made to the data bases by the program in exe­
cution at the time of failure back to the start of the
program's execution. Start of program execution is
indicated on the log by a scheduling record. If a long­
running batch program fails towards the end of its run,
a considerable number of data base changes have to be
backed out, a lengthy process. By issuing the DL/I
checkpoint call, "CHKP", at intervals during your
program's execution, you can shorten the time required
for this recovery step. When a batch non-MPS program
issues a checkpoint call, DL/I performs the following
functions:

1. Writes any altered data base records currently in
main storage back to the data bases. This action
will also force write the log records for these
changed records if necessary. At this point, any
position in the data base is lost.

2. Writes a checkpoint record on the log.

3. Writes message "DLZI051" to the system console
indicating that a DL/I checkpoint call has been
sucessfully executed.

4. Returns control to the application program.

Thus after a checkpoint call, all data base changes
are reflected on the data bases. However, the data
bases are not closed on a checkpoint call. Note that
after a checkpoint call your program must reestablish
position in the data bases before continuing.

If your program were to fail immediately after the
checkpoint call, the data base pointers would be good
and the information intact. Consequently, when the
DL/I Backout utility encounters a checkpoint record on
the log while backing out changes, it stops operation as
it knows any changes recorded on the log prior to the
checkpoint record are correctly written on the data
bases. This then reduces the volume of data base re­
cords that must be backed out and consequently re­
duces the time required to back out changes after a
failure. The effect of a checkpoint call then, is to
"commit" the data base changes made by your applica­
tion program to the data bases even if a subsequent
failure and backout occur. Figure 7-6 illustrates the
relationship between the checkpoint records and the
DL/I backout utility.

The DL/I forward recovery utility ignores any check­
point records on the log. Checkpoint records are not
carried onto the change accumulation file created by

7 - 12 DL/I DOS/VS Guide For New Users

the DL/I change accumulation utility. Checkpoint re­
cords are used only by the DL/I backout utility.

The data base changes made by your program prior
to the checkpoint call are still present on the data base
after your program fails and the DL/I backout utility is
run. Therefore you cannot simply rerun your program
again from the beginning with all of the original input.
You must have logic in your program to allow it to
start at a point where the environment corresponds to
that present when the last checkpoint call was issued.
This may require logic in your program to reposition
other files, restore internal counters and total fields, etc.
To assist in this restart, each checkpoint message writ­
ten on the system console contains an 8-byte identifica­
tion field that your program can specify in the check­
point call. This information can be used as input to
your program when it is restarted to assist it in reestabl­
ishing the proper environment. You must provide the
mechanism to enter this information into your program
for restart; DL/I does not provide this function.

The DOS/VS CHKPT macro and similar facilities in
COBOL and PL/I cannot be used in your non-MPS batch
DL/I programs. The DOS/VS CHKPT facility (which is
used by the COBOL and PL/I checkpoint facilities) re­
quires that any VSAM data sets be closed before it is
used. DL/I data bases are not closed by its checkpoint
call, thus preventing the use of the DOS/VS CHKPT facil­
ity.

DL/ I Checkpoint in Batch MPS Programs
DL/I checkpoint should only be used in a batch-MPS
program operating in the following environment:

• The DL/I log is assigned to the CICS/VS system
journal.

• Dynamic Transaction Backout support has been
generated into the CICS/VS system.

• The DL/I Batch Partition Controller transaction,
CSDC, has "DTB=YES" specified in its CICS/VS PPT
entry.

When a DL/I checkpoint call is issued in a DL/I
batch-MPS program under these conditions, DL/I per­
forms the following functions:

1. Writes any altered data base records currently in
main storage back to the data bases. This action
will also force write the log records for these
changed data base records, if necessary. At this
point any position in the data bases is lost.

2, Writes a CICS/VS synch-point record on the
CICS/VS system journal.

3. Dequeues any records or segments enqueued for
this program if PI is being used.

SCHEDULE
RECORD

DATA BASE
• • • CHANGE

RECORDS
•• CHKP

RECORD

FAILURE

D

DATA BASE

••• CHANGE •••••
RECORDS

'I~ ------~,,~------~/~I~----~"~--~--
I I

PROGRAM I ISRT I ISRT
EXECUTION 1 DLET CHKP 1 DLET
::...;.;,;:::..;::,c:....;,.....=...:...:----i-I---_· R EPL ----- CA LL -71---' REP L

I CALLS 1 CALLS

1 '~----------~,,~------------
1 THESE DATA BASE CHANGES
I REMOVED BY DUI BACKOUT
I WITH CHECKPOINT

"--------------------------~,,~----------------------------1
ALL DATA BASE CHANGES REMOVED BY
DUI BACK OUT WITHOUT CHECKPOINT

Figure 7-6. Checkpoint Records and DL/I Backout

4. Writes message "DLZIOSI" to the system console
indicating that a DL/I checkpoint call has been
successfully executed.

5. Returns control to the application program.

If a failure subsequently occurs, CICS/VS invokes its
dynamic transaction backout facility and backs out all
data base changes made since the last checkpoint call
was issued.

As is the case with non-MPS batch programs, your
batch-Mps program must reestablish the environment
at the point ofthe last checkpoint call when restarting
after a failure. Unlike the non-MPS batch environment,
however, there are no open DL/I VSAM data sets in the
batch-Mps partition. Therefore, your programs may
use the DOS/VS CHKPT facilities as long as they obey
the other restrictions imposed by DOS/VS. However,
there is no restart facility in DL/I CHKP, so do not use it
with DOS/VS CHKPT.

VSAM Considerations in DL/I
Recovery-Restart
Because VSAM is the primary access method used by
DL/I, you should understand how VSAM and DL/I inter­
act when failures or errors occur. Like DL/I, VSAM
provides some facilities to assist in recovery. These
facilities include:

• A facility to capture all changes made to the VSAM
catalogs

• A mechanism to close VSAM data sets on an ab­
normal termination

• Utility programs to determine and correct catalog
damage and reconstruct damaged data sets.

The DL/I recovery utilities normally provide all the
facilities necessary to repair or reconstruct DL/I data
base data sets after a failure. Therefore, the VSAM data
set reconstruction utilities (REPRO being the primary
one) are not normally used against the DL/I data sets.
However, any catalog damage caused by a failure has
to be corrected with the assistance of the VSAM facili­
ties. DL/I provides no facilities to repair VSAM catalogs.

VSAM Catalog
The VSAM catalog contains a variety of information
about its environment, including information about the
volumes it owns and the data sets defined to it. The
volume information includes information on:

• The VSAM space on each volume owned by the
catalog, where the space is located on the volume,
and when it was acquired (time stamp)

• The data sets that are assigned to particular vol­
umes and the space they occupy

Chapter 7: DL/I Data Base Recovery/Restart 7 - \3

The information about each data set that VSAM
maintains in its catalog includes:

• Extents of the data set

• Volume-key range information

• Data set description (CI/CA size, allocation, key
size (if KSDS), etc.)

• High RBA (Where is the current end of the data set
within the space allowed to it?)

• Statistics on usage and activity (number of reads,
number of updates, etc.)

The information in the catalog changes whenever:

• You DELETE, DEFINE, or extend the VSAM space
on a volume

• You DELETE, DEFINE, or ALTER a data set

• A data set grows within the space allocated to it
(high RBA)

• A secondary allocation is made for the data set

• The data set is accessed or updated (statistics)

The most frequent values that change in the catalog
are the data set high RBA and the data set statistics.
Therefore, these two values are the most likely to be in
error after a failure. VSAM provides a special utility,
VERIFY, to correct the high RBA in the catalog and an
automatic close facility to minimize the chances of it
not being updated on a failure.

The data set statistics are not essential to the integri­
ty of the data sets so no facility is provided to recover
the information in the event of a failure.

There are several things you can do in VSAM to min­
imize the potential for catalog and data set damage:

• Protect the master catalog from change by using
user catalogs for all data set definitions. If the
only objects defined in the master catalog are user
catalogs, the master catalog will change very infre­
quently as the addition or deletion of a user cata­
log is normally a rare occurrence. Establishing an
update password for the master catalog helps pre­
vent unplanned master catalog changes.

• Establish separate user catalogs for each applica­
tion and type of usage, i.e., test or production data
sets. In this way catalog damage caused by failure
in one application does not affect other applica­
tions. Because a volume can be owned by only
one catalog, this may be difficult if there are many
small VSAM data sets required by a large variety of
applications. At a minimum, you should try to
establish separate test and production user cata­
logs.

7 - 14 DL/I DOS/VS Guide For New Users

• Use share option I or 2 for all VSAM data sets.
This will prevent more than one partition from
updating the data set at a time. Note that DL/I
always opens its data base data sets for update,
regardless of the intent of the PSB. Therefore,
share option 2 provides no functional benefit for
DL/I's VSAM data sets. Share option 3 should nev­
er be used as it allows for concurrent scheduling of
update jobs in different partitions with no warn­
ings or data set integrity protection. It is especially
important that share option 3 not be used with
DL/I data base data sets as this could allow the
high RBA value in the catalog to be updated incor­
rectly when the data sets are closed. Because DL/I
depends on the high RBA value in the catalog for
its operation, use of share option 3 can cause loss
of information and internal data base pointer
damage. You should only access DL/I data bases
from mUltiple partitions using DL/I MPS. Share
option 4 should not be used with DL/I's VSAM data
sets either, as this can also result in improper DL/I
operation.

Closing VSAM Data Sets
When a VSAM data set is closed, the data set statistics
and the high RBA (if the data set was opened for up­
date) are rewritten in the catalog. If at end-of-job, the
VSAM open list in the partition indicates that there are
any open VSAM data sets, the VSAM close routines are
invoked by DOS/VS job management routines. VSAM
then closes the data sets provided the necessary VSAM
control blocks in the partition GETVIS area are not
damaged. If the automatic close fails, DOS/VS writes a
"4n261" or "4n271" message on the system console.
Automatic close is invoked on a CICS/VS abend, as the
DL/I data base data sets are not closed by DL/I under
these conditions.

If a VSAM data set was not closed, e.g., due to a pow­
er failure or VSAM control block damage, the next time
a program attempts to open a data set, VSAM returns an
X'74' error code to the program. Under these condi­
tions, the high RBA value in the catalog is probably
incorrect. DL/I always writes a DLZ0201 message (which
includes the VSAM error code) on the system console
and terminates if any error occurs during open. How­
ever, the data set is then closed and a subsequent open
appears normal, hiding the earlier close failure. There­
fore, if DL/I terminates with an open error, you should
always run VSAM's VERIFY utility to insure that the
high RBA value in the catalog is correct.

Chapter 8: DL/I Sample Application

The DL/I sample application utilizes the Phase 3 customer and inventory data
bases, and demonstrates an online order processing application. The sample
application along with this manual can be very useful to the data base administra­
tor, system programmer, and application programmer as an aid in understanding
and implementing a DL/I data base system.

The sample application represents a fictitious wholesale distribution firm that
offers a wide variety of electronic components. The components are purchased
from various vendors and sold to customers. Most customer orders are processed
by telephone, so an application program was developed to implement an interac­
tive online order inquiry - order entry system.

The application programs, written in Assembler language, consist of a load pro­
gram (DLZSAM40), a batch print program (DLZSAM50), and the online sample
application program (DLZSAM60). These programs have been assembled, link
edited and placed in the core image library. The mapping module (DLZMAPS)

needed for DLZSAM60 is also included in the core image library. In addition, a
sample compression/expansion routine (DLZSAMCP) is included to demonstrate the
segment edit/compression facility of DL/I for variable length segments.

The source code for equivalent programs written in COBOL, PL/I, and RPG II is also
included in File 3 of the PID distribution tape. They are located in the DL/I Option­
al Source Statement Library as A. Books. The program names are:
COBOL PL/t RPG II

DLZCBL40
DLZCBL50
DLZCBL60
DLZCBMAP

DLZPLl40
DLZPLI50
DLZPLl60
DLZPLMAP

DLZRPG40
DLZRPG50
DLZRPG60
DLZRGMAP

These source code files differ from the Assembler language programs only in that
they do not include an example of field level sensitivity.

This sample application does not include a job to create the VSAM master catalog.
It is assumed that your installation has already defined the VSAM master catalog

I and any optional user catalogs for VSAM. If your installation has not done this, see
"Defining the VSAM Master Catalog" in this chapter.

Sample Application Job Stream
I File 7 ofthe PID distribution tape contains the DOS/VS job control and input data

statements necessary to define the logical and physical data structures to DL/I and
VSAM and to execute the online sample application programs. The online sample
application utilizes the phase 3 data bases as described earlier in this manual. The
sample program source and object modules are included with the DL/I source and
object modules.

The DL/t online sample application assumes a 3340 direct access storage device
with the volume label '111111', residing on unit 230. Ifthe unit you assigned is
other than 230, you will want to punch a new card to assign the proper unit.
Volume' 111111' is chosen because this is normally used as a work pack by most
users, or a work pack can easily be renamed to this.

You should also check the EXTENT statements in the JCL for the utility programs to
insure that the relative track specification and number of tracks specified meet the
requirements of your installation. The JCL for the reorganization and logical
relationship resolution utilities used for the online sample application is included
in Chapter 6 of this manual.

File five on the PID tape contains the following jobstream:

Chapter 8: DL/I Sample Application 8 - I

• Assemble DBDs (STJDBDGN)

• Assemble PSBS (STJPSBGN)

• ACB generation (STJACBGN)

• Prereorganization Utility (STJPREOR)

• Access Method Services DEFINE (STJDFINV)

• Data Base Load (STJLDCST, executes DLZSAM40)

• Prefix Resolution Utility (STJPRRES)

• Prefix Update Utility (STJPRUPD)

• List Data Bases (STJPLIST, executes DLZSAM50)

Because the DBD generation, PSB generation, ACB generation, access method
services DEFINE job, and utilities for the online sample application are discussed in
earlier chapters, this chapter will cover only DLZSAM40, DLZSAM50, and DLZSAM60.

I Defining the VSAM Master Catalog
These DOS/VS job control and input job statements maybe used to define the
master catalog in volume '111111'. This job may be skipped if you wish to use your
own catalog. If this job is executed, be sure you have previously named the device
address for the master catalog during IPL so that it is consistent with the assignment
in this job.

II JOB DEFINE MASTERCATALOG
II ASSGN SYSOOO,X'336'
II DLBL IJSYSCT,'AMASTCAT'
II EXTENT SYSCAT,111111,1 ,0,20,20
•
• ••••• IF NO MASTER CATALOG CREATION DESIRED CANCEL - ELSE EOB
•
• ••••• USER MAY ENTER NEW ASSIGNMENT FOR SYSOOO
• ••••• IF OTHER THAN ABOVE
•
II PAUSE
II EXEC IDCAMS,SIZE=25K

DEFINE

I·
1&

MASTERCATALOG (
NAME (AMASTCAT)

FILE (IJSYSCT)
VOLUMES (111111)
CYLINDERS (1 0))

DLZSAMCP - Sample Program Compression/Expansion Routine
DLZSAMCP is a sample routine that demonstrates one way to use the segment
edit/compression facility of DL/I to optimize storage required for individual
occurrences of variable length segments.

The function ofthis routine is to remove all trailing blanks from the data portion of
the variable length segment, STSCHIS, in the customer data base before that seg­
ment is stored in the data base.

When the segment is called by an application program, the expansion routine
replaces the blanks removed by the compression routine to restore the segment to
its maximum length for processing by the application program.

This routine is invoked by DL/I whenever the variable length segment, STSCHIS, is
processed by the load program, or by the batch or online application programs.

8 - 2 DL/I DOS/VS Guide For New Users

PUNCH '
PUNCH '

TITLE 'DLZSAMCP - ONLINE SAMPLE PROBLEM COMPRESSION/EXPANSION X
ROUTINE'

CATALR DLZSAMCP,l .4'
PHASE DLZSAMCP,.'

••
• •
• DLZSAMCP - SAMPLE PROBLEM COMPRESSION/EXPANSION ROUTINE. @D14D399.
• THIS ROUTINE PERFORMS THE COMPRESSION/EXPANSION FUNCTIONS FOR THE •
• VARIABLE LENGTH SEGMENT STSCHIS IN THE CUSTOMER DATA BASE. •
• THE COMPRESSION ROUTINE REMOVES ALL TRAILING BLANKS BEFORE •
• THE SEGMENT IS STORED IN THE DATA BASE. •
• •
• THE EXPANSION ROUTINE PADS THE SEGMENT FROM THE END OF THE •
• STORED DATA OUT TO THE MAXIMUM SEGMENT LENGTH. •
• •
•
•
• • •
•
• • • •
•
•
•
•

THE INPUT TO THIS PROGRAM IS AS FOLLOWS:
REGISTER 1
REGISTER 2

- PST ADDRESS

REGISTER 3

REGISTER 4
REGISTER 5

REGISTER 6

REGISTER 13
REGISTER 14
REGISTER 15 -

ADDRESS OF FIRST BYTE OF SEGMENT TO BE
PROCESSED (SOURCE ADDRESS)
ADDRESS OF WORK AREA WHERE SEGMENT IS TO
BE MOVED (DESTINATION ADDRESS)
PSDB ADDRESS
ADDRESS OF SEGMENT COMPRESSION TABLE (SEE
DMBCPAC DSECT)
ENTRY FUNCTION CODE
o - COMPRESS SEGMENT
4 - EXPAND SEGMENT
SAVE AREA ADDRESS
DL/I RETURN ADDRESS
ENTRY ADDRESS OF DLZSAMCP

•
•
•
•
• •
•
•
• • • • •
•
•
• ••

EJECT
DLZSAMCP START

USING
ST
STM
LA

.,R 15
R13,SAVE+4
R14,R12,12(R13)
R13,SAVE

SAVE DL/I'S REGS FOR RETURN
SAVE AREA FOR THIS ROUTINE

••
• CHECK REGISTER 6 TO DETERMINE IF COMPRESS OR EXPAND. •
••

LTR R6,R6 IF ZERO, THEN COMPRESS FUNCTION
BZ COMPRESS
SPACE 3

••
• THIS IS THE EXPANSION ROUTINE. THE SEGMENT IS EXPANDED AND MOVED •
• INTO THE DESTINATION ADDRESS SPECIFIED IN REGISTER 3. THE •
• SEGMENT WILL ALWAYS APPEAR AS THE MAXIMUM LENGTH TO THE APPLI- •
• CATION PROGRAM. •
•••••••••••••••••••••••••••••• *** ••••• * •••••• ** ••• * •• * ••••••••••••••••••••

EXIT

SPACE
LA
LA
USING
LH
STH
LH
SH
SH
L
OR
MVCL
SPACE
EQU
L
LM
BR
SPACE

1
R8,2(R2)
R10,2(R3)
DMBCPAC,R5
R11,DMBCPSGL
R 11 ,0 (R3)
R9,O(R2)
R9,=H'2'
R 11 ,=H' 2'
R7,=X'40000000'
R9,R7
R10,R8
3

* R13,SAVE+4
R14,R12,12(R13)
R14
3

ADDRESS OF DATA FOR SOUCE
ADDRESS OF DATA FOR DESTINATION

PICK UP MAXIMUM SEGMENT LENGTH
NEW LENGTH TO SEGMENT
PICK UP COMPRESSED SEGMENT LENGTH
MINUS 2 BYTE LENGTH FIELD
MINUS 2 BYTE LENGTH FIELD
LOAD PADDING CHARACTER FOR MVCL
PUT PAD CHARACTER IN RIGHT REG
MOVE SEGMENT AND EXPAND TO MAX

ADDRESS OF DL/I'S SAVE AREA
RESTORE DL/I REGISTERS
RETURN TO DL/I

Chapter 8: DL/I Sample Application 8 - 3

**
* THIS IS THE COMPRESSION ROUTINE. THE TRAILING BLANKS ARE
* REMOVED FROM THE SEGMENT AND THE LENGTH FIELD IS UPDATED TO
* REFLECT THE NEW LENGTH OF THE SEGMENT.

*
*
*

**
COMPRESS

NEXT

DONE

SAVE

DMBCPAC
DMBCPCNM
DMBCPCSG
DMBCPEP
DMBCPFLG
DMBCPSQF
DMBCPSQL
DMBCPSGL
DMBCPLNG

EQU
LH
LA
SH
EQU
CLI
BNE
BCTR
BCT
EQU
STH
SH
LR
LR
LA
LA
MVCL
B
DS

*
Rl0,DMBCPSGL
R9,O(R2,Rl0)
R9,=H'1 '

* O(R9) ,C' ,
DONE
R9,O
R10,NEXT

* R10,O(R3)
R10,=H'2'
R9,R10
Rl1,R9
R8,2(R2)
R10,2(R3)
R10,R8
EXIT
18F

EJECT
DLZQUATE
DSECT
DS
DS
DS
DS
DS
DS
DS
DS
END

CL8
CL8
A
XL1
XL1
H
H
H

8 - 4 DL/I DOS/VS Guide For New Users

PICK UP MAX SEGMENT LENGTH
STEP TO SEGMENT END
BACK UP TO LAST CHARACTER

IS THIS POSITION BLANK?
NO, THEN ALL BLANKS ARE OUT
BACK UP ONE POSITION
REDUCE SEGMENT LENGTH AND LOOP

COMPRESSED LENGTH TO SEGMENT
COMPRESSED DATA LENGTH
CORRECT REG FOR MVCL
OTHER LENGTH IS SAME FOR MVCL
DATA ADDRESS FOR SOURCE
DATA ADDRESS FOR DESTINATION
MOVE ONLY DATA TO DESTINATION

SAVE AREA FOR DLZSAMCP

REGISTER EQUATES
SEGMENT COMPRESSION TABLE
SEGMENT NAME
COMPRESSION ROUTINE NAME
COMPRESSION ROUTINE ENTRY ADDR
FLAG BYTE
EXECUTABLE LENGTH OF SEQ. FIELD
SEQUENCE FIELD OFFSET IN SEGMENT
MAXIMUM SEGMENT LENGTH
LENGTH OF CSECT

L

DLZSAM40 - DL/I Online Sample Load Program
DLZSAM40 is the load program for the data bases used by the online sample appli­
cation program, DLZSAM60. All input to the program is from SYSRDR. The pro­
gram reads the card images from SYSRDR, constructs the data base segments from
the card images, and issues DL/I insert calls to load the segments. The segment
input for the inventory data base must be in the reader first. The segment input for
the customer data base must be preceded by a card with the word 'CUSTOMER' in
the first 8 columns. Each segment name must be in columns 1-7 of the input cards.
The segment data starts in column 8 following the segment name. If continuation
cards are needed for segment data, use a non-blank continuation punch in column
72. The segment data on continuation cards starts in column 1.

The PSB name STBICLD is referenced in the parameter information statement. This
name is converted by the DL/I initialization module (DLZRRCOO) to STBICLDP so
that the internal DMB and PSB control blocks can be loaded.

The DOS/VS job control and DL/I input statements to execute DLZSAM40 are as
follows:

I I JOB STJLDCST LOAD INVENTORY .AND CUSTOMER DATA BASES
II OPTION PARTDUMP

I II ASSGN SYS005,X'230'
II DLBL STDIDBC,'SAMPLE.INVEN' "VSAM
II EXTENT SYS005,111111 I II DLBL STDCDBC, 'SAMPLE.CUST' "VSAM
II EXTENT SYS005,111111
* NOTE: NO DLBL EXTENTS FOR SECONDARY INDEXES (BUILT BY PREFIX UPDATE)
II DLBL CONTROL, 'CONTROL FILE' ,O,SD
II EXTENT SYS012,111111,1 ,0,1680,10
II ASSGN SYS012,X'230'
II DLBL WORKFIL,'WORKFILE J',O
II EXTENT SYS013,111111,1 ,0,1690,5
II ASSGN SYS013,X'230'
II UPSI 00000010 NO LOG
II EXEC DLZRRCOO,SIZE=500K
DLI,DLZSAM40,STBICLD,1,HDBFR=(6}
STPIITM000100INTEGRATED CIRCUIT 002500002000000000000010
STSIVND000010COMPANY A INC. 207 FREY AVENUE ENDICOTTX
,NY 13760 MR. JOHN DOE
STCISUB000300
STSILOCOOOOOl 12-2

CUSTOMER

•
•
•

STSCCST000001COMPANY X INC. 10 MAIN STREET NEW YORKX
, NY 10010 MR. JOHN SMITH
STSCLOC000010EASTERN REGION 69 BROAD STREET PHILADELX
PHIA, PA 11020 MR. JOHN DOE
STPCORD770129100500FIRST 1977 ORDER 000040000000000400
STCCITM00010001000040000040000000000000000400
STSCLOC000020WESTERN REGION 5296 BATTLESHIP BLVD. SAN DIEGX
0, CA 93210 MR. JOHN SMITH
STPCORD770510102050SECOND 1977 ORDER 000035000000000088
STCCITM00020001000018000008000010000000000054
STCCITM00030002000017000017000000000000000034
STSCSTA000000250000000000001000
STSCHISSL761205928654LAST 1976 ORDER 100000000150000RDER SHIPPX
ED COMPLETE AND ON TIME

1*
IF,

•
•
•

Chapter 8: DL/I Sample Application 8 - 5

DLZSAM50 - DL/I Online Sample Print Program
DLZSAM50 is the print program. This program prints the customer and inventory
data bases as loaded by DLZSAM40. This program uses the logical DBDs for the
sample application and is dependent upon the order of the segments as defined to
format the output listing. Both data bases are printed with the customer list
appearing first. This program issues a series of unqualified DL/I get next calls to
access all segments in both the customer and inventory data bases through logical
relationships from the customer data base.

The DOS/VS job control and DL/I input statements to execute DLZSAM50 are as
follows:

NAME: COMPANY X INC.
STREET: 10 MAIN STREET

REGION: EASTERN REGION
STREET: 69 BROAD STREET

II JOB STJPLIST LIST INVENTORY AND CUSTOMER DATA BASES
II OPTION PARTDUMP
II ASSGN SYS005,X'230'
II DLBL STDIDBC,'SAMPLE.INVEN' "VSAM
II EXTENT SYS005,111111
II DLBL STDCDBC,'SAMPLE.CUST' "VSAM
II EXTENT SYS005,111111
II DLBL STDCX2C,'SAMPLE.CUSTDX2' "VSAM
II EXTENT SYS005,111111
II DLBL STDCX1C,'SAMPLE.CUSTDX1', ,VSAM
II EXTENT SYS005,111111
II DLBL STDIX1C,'SAMPLE.INVDX' "VSAM
II EXTENT SYS005,111111
II UPSI 00000010 NO LOG
II EXEC DLZRRCOO,SIZE=500K
DLI,DLZSAM50,STBICLG,1,HDBFR=(6)
1*
IF,

The output listing for each customer has the following format:

LIST OF CUSTOMER DATA BASE

NUMBER: 000001 CONTACT: MR. JOHN SMITH
CITY: NEW YORK, NY 10010

CONTACT: MR. JOHN DOE
CITY: PHILADELPHIA, PA 11020

01/29/77 ORDER NUMBER: 100500 DESCRIPTION: FIRST 1977 ORDER DOLLAR AMOUNT: $
ITEM NUMBER DESCRIPTION ORDERED SHIPPED BACK ORDERED

000100 INTEGRATED CIRCUIT 000040 000040 000000

REGION: WESTERN REGION
STREET: 5296 BATTLESHIP BLVD.

CONTACT: MR. JOHN SMITH
CITY: SAN DIEGO, CA 93210

05/10/77 ORDER NUMBER: 102050 DESCRIPTION: SECOND 1977 ORDER DOLLAR AMOUNT: $
ITEM NUMBER DESCRIPTION ORDERED SHIPPED BACK ORDERED

000200 TRANSISTOR 000018 000008 000010
000300 RESISTORS 000017 000017 000000

CREDIT BALANCE:$ 1000.00 AMOUNT LAST ORDER:$ 15000.00

LAST ORDER DATA: ORDER SHIPPED COMPLETE AND ON TIME

The output listing for each inventory item has this format:

LIST OF INVENTORY DATA BASE

ITEM NUMBER: 000100 DESCRIPTION: INTEGRATED CIRCUIT UNIT COST:$ 10.00
QUANTITY ON HAND: 002500 QUANTITY ON ORDER: 002000

OPEN ORDERS: DATE ORDER NUMBER ORDERED SHIPPED
01/29/77 100500 000040 000040

VENDOR NAME: COMPANY A INC. CONTACT: MR. JOHN DOE
STREET: 207 FREY AVENUE CITY: ENDICOTT, NY 13760

WAREHOUSE LOCATION: 12-2 SUBSTITUTE ITEM NUMBER: 000300

DLZSAM60 - DL/I Online Sample Application Program

400.00

88.00

DLZSAM60 is an assembler written application program that runs as a transaction
under DOS/VS CICS/VS and which accesses and updates several business oriented
data bases using DL/l. DLZSAM60 makes use of the basic mapping support feature
of CICS/VS to request directions and data from terminal users. This program works
only with IBM 3277 terminals and makes no use of the optional 3277 terminal
program function keys.

8 - 6 DL/I DOS/VS Guide For New Users

L

In order to use DLZSAM60, you must first run the jobstream supplied on the DL/I

PID distribution tape to defme and load the sample customer and inventory data
bases. This jobstream also includes DL/I utility jobs which create the secondary
index data bases used with the customer and inventory data bases.

DLZSAM60 also requires several additions to your CICS/VS control tables. Entries
must be placed in the DFHFCT table for the following DBD names:

• STDCDBP

• STDIDBP

• STDIXIP

• STDCXIP

• STDCX2P
An entry must also be placed in the DFHPCT table for the transaction id (in our
example, we used DLZZ). In addition entries are needed in the DFHPPT for the
program name, DLZSAM60, and for DLZMAPS, the mapping module. Besides these
CICS/VS required entries, you must add an entry to the DLZACT DL/I online nucleus
generation job that your installation has prepared. The entry is for DLZSAM60 and
the PSB names which that program will schedule (use): STBCUSR, STBCUCU. Also,
remember that the JCL for the data bases must be included in the statements used
to start CICS/VS. The JCL is the DLBL and extent statements used to define the
customer, inventory, and secondary index data bases to the DOS/VS system.

Examples of the types of entries needed are:

DFHFCT - CICS/VS File Control Table

DFHFCT TYPE=DATASET,DATASET=STDCDBP,ACCMETH=DL/I
DFHFCT TYPE=DATASET,DATASET=STDIDBP,ACCMETH=DL/I
DFHFCT TYPE=DATASET,DATASET=STDIX1P,ACCMETH=DL/I
DFHFCT TYPE=DATASET,DATASET=STDCX1P,ACCMETH=DL/I
DFHFCT TYPE=DATASET,DATASET=STDCX2P,ACCMETH=DL/I

DFHPCT - CICS/VS Program Control Table

DFHPCT TYPE=ENTRY,TRANSID=DLZZ,
PROGRAM=DLZSAM60,TWASIZE=2048,
INBFMH=EODS,LOGREC=NO

DFHPPT - Processing Program Table

DFHPPT TYPE=ENTRY,PROGRAM=DLZMAPS MAPS FOR ONLINE PROG

x
x

DFHPPT TYPE=ENTRY,PROGRAM=DLZSAM60,SAMPLE ONLINE PROGRAM X
RELOAD=YES

DLZACT - DL/I Online Nucleus Generation

DLZACT TYPE=PROGRAM, X
PGMNAME=OLZSAM60, ONLINE SAMPLE PROGRAM x
PSBNAME=(STBCUSR,STBCUSU)

DOS/VS Job Control Language for the Data Bases

II ASSGN SYS005,X'230'
II DLBL STDCX2C,'SAMPLE.CUSTDX2'
II EXTENT SYS005,111111
II DLBL STDCX1C,'SAMPLE.CUSTDX1'
II EXTENT SYS005,111111
II DLBL STDIX1C,'SAMPLE.INVDX'
II EXTENT SYS005,111111
II OLBL STOIOBC,'SAMPLE.INVEN'
II EXTENT SYS005,111111
II DLBL STOCOBC,'SAMPLE.CUST'
II EXTENT SYS005,'SAMPLE.CUST'
II EXTENT SYS005,111111

Chapter 8: DL/I Sample Application 8 - 7

DLZSAM60 allows the terminal user to enter and query information about a custom-
er order. The customer can have one or many individual locations placing orders. . .~
The information about customers and orders is kept in the customer data base ...",
while the information about the items the sample company sells is kept in the
inventory data base. Using DL/I's facilities, the data bases are connected so that
orders entered automatically cause updates to the inventory data base without the
need to run some type of program to change inventory status due to orders re-
ceived.

Each customer location can place one or many orders. The order entry terminal
operator assigns an order number, order description and order date with each order
received. The order itself consists of item numbers and quantities. Our sample
company describes each item it sells, but requests that it be ordered by item
number rather than by item name. Anyone order is restricted to a maximum of
five (5) order items. This restriction is caused by the way the DLZSAM60 application
program accepts orders from the terminal. There is also a quantity restriction of
9,999 for anyone item. Again, these restrictions are not caused by DL/I or the data
bases. They simply reflect the method DLZSAM60 uses to process the data. These
restrictions could be changed if the sample company decides that DLZSAM60 does
not provide adequate function.

Order entry consists of placing an order for:

• a new customer and new location, or

• an existing customer and new location, or

• an existing customer and existing location.

The order entry requires an order number, order description, item numbers and
quantity of each item desired.

After each order is entered, DLZSAM60 displays on the terminal the results of the
order. That is, a listing of the customer, location, order and item information
associated with this new order. For example, ifthe order data looks like this to our
terminal operator:

customer number

location number

date = 1/11/77

111111

002200

order number = 232323

order description = '1977 first order'

items 000100/55
000200/200
000300/157

and the operator places this data in the proper fields on the 3277 terminal screen,
then DLZSAM60 will respond with a screen full of data describing the company
name, address, contact, location name, address and contact, order date, description
number, items ordered, item number, cost per item, amount ordered, amount
shipped, amount back ordered and total cost for the order. This example assumes
that the order is for an existing customer and existing location. Similar results are
obtained when the order is for a new location or new customer. The terminal
input, however, will increase. The action of entering an order automatically
(through DLZSAM60) causes the inventory data to be updated to show the drop in
stock or the need for back-ordering items.

DLZSAM60 also allows our sample company to query order information. They can
look at an order, find the status of the items: amounts shipped or back ordered, cost
per item, total cost of order, etc. They can also discover exact customer and
location information associated with a specific order. They can query the orders

8 - 8 DL/I DOS/VS Guide For New Users

associated with a specific customer location and the locations associated with a
specific customer. They can list this information by supplying the DLZSAM60

program with the information known about an order, customer or location such as:
order date, customer name or number, location name or number.

DLZSAM60 Screen Formats
The following examples show the 3270 screen formats presented by DLZSAM60.

DLZSAM60 is activated by entering the transaction ID, (in this case, DLZZ). The
screen formats are designed to allow data entry using a basic 3270 keyboard. No
program function keys are used. Curser positioning to the proper input field is
accomplished by the tab (+\) and backtab (1+) keys. After you key in the requested
data, use the ENTER key to start processing. The program can be terminated at any
time by pressing the CLEAR key.

DLZSAM60 DLI/CICS/VS ONLINE SAMPLE PROGRAM

THIS PROGRAM ALLOWS YOU TO ACCESS TWO DL/I DATA BASES: CUSTOMER
AND INVENTORY. THE TWO DATA BASES ARE LOGICALLY RELATED AND BOTH CAN
BE ACCESSED VIA SECONDARY INDEXES.

DLZSAM60 ALLOWS YOU TO DISPLAY AND ADD CUSTOMER NAMES, LOCATIONS
AND ORDERS. IT ALSO ALLOWS YOU TO DISPLAY AND UPDATE INVENTORY ITEMS
RELATED TO SPECIFIC CUSTOMER ORDERS.

IN ORDER TO USE THIS SAMPLE PROGRAM, THE JOBSTREAM AS SUPPLIED ON YOUR
DL/I PID DISTRIBUTION TAPE MUST HAVE BEEN RUN SUCCESSFULLY. IN ADDITION
ENTRIES MUST HAVE BEEN MADE TO THE FOLLOWING TABLES: DFHFCT, DFHPPT,
DFHPCT AND DLZACT. (SEE DL/I GUIDE FOR NEW USERS)

PROCESSING OPTIONS:

1. CUSTOMER INQUIRY

PLEASE ENTER DESIRED OPTION -

2. CUSTOMER ORDER ENTRY

THE 'CLEAR' KEY ALWAYS ENDS THE PROGRAM

This is the first screen that you will see after entering the transaction id, (we used
DLZZ) to start the program. To enter the desired option, key a 1, for Customer
Inquiry, or a 2, for Customer Order Entry, and press the ENTER key.

DLZSAM60 DLI/CICS/VS ONLINE SAMPLE PROGRAM

YOU HAVE CHOSEN THE CUSTOMER ORDER INQUIRY FEATURE. PLEASE ENTER
ANY OF THE FOLLOWING INFORMATION KNOWN:

CUSTOMER NAME: _

CUSTOMER NUMBER:

DATE OF ORDER: MONTH DAY YEAR

ENTERING ONLY DATE OF ORDER WILL RESULT IN A DISPLAY OF UP TO 10
POSSIBLE ORDER CANDIDATES FOR SELECTION. CANDIDATES WILL BE ORDERS
WHOSE ORDER DATE IS EQUAL TO OR LATER THAN THE DATE ENTERED.

This screen appears if you choose option 1, Customer Inquiry. You must fill in at
least one of the three fields to identify a customer order. The fields are:

1. Customer Name - up to 25 characters

2. Customer Number - 6 digits

Chapter 8: DL/I Sample Application 8 - 9

3. Date of Order - 2 digits for each (month, day, year)

If an incomplete field is entered the message, "PLEASE FILL IN FIELDS: NAME,

NUMBER, OR FULL DATE", appears at the bottom of the screen. An order date that
is later than the date of any order that is in the data base will cause the message
"NO ORDERS ON OR AFTER THAT DATE. TRY AGAIN PLEASE.", to appear at the
bottom of the screen.

DLZSAM60 DLI/CICS/VS ONLINE SAMPLE PROGRAM

NUMBER: 000001

STREET

CONTACT

LOCATION

CITY

COMPANY X INC.

10 MAIN STREET

MR. JOHN SMITH

CITY NEW YORK, NY 10010

STREET

CONTACT

LOCATION NAME

1. EASTERN REGION
2. WESTERN REGION

LOCATION NUMBER

000010
000020

ONE CUSTOMER LOCATION.

STREET

CONTACT

This screen appears if a valid customer name or order number was entered on the
previous screen. (In this case, Company x was chosen.) To select a customer
location, enter a number from the left of the list of locations associated with the
customer (1 for EASTERN REGION, or 2 for WESTERN REGION). If an invalid
customer location is entered, the message, "ERROR: SELECT ONE CUSTOMER

LOCATION." appears on the screen.

DLZSAM60 DLI/CICS/VS ONLINE SAMPLE PROGRAM

NAME: COMPANY X INC.

10 MAIN STREET

MR. JOHN SMITH

NUMBER: 000001

CITY NEW YORK, NY 10010

LOCATION

CITY

EASTERN REGION

PHILADELPHIA, PA 11020

STREET 69 BROAD ST

CONTACT MR. JOHN DOE

ORDER DATE NUMBER DESCRIPTION

1. 01/29/77 100500 FIRST 1977 ORDER

ITEMS

40

TOTAL COST

$400.00

CUSTOMER ORDER.

This screen appears if you chose customer location 1, EASTERN REGION, on the
previous screen. It lists the orders associated with the location chosen. You select).
an order to display by entering a number from the left of the list of orders associ at-,
ed with that customer location. In this case, there is only one customer order, order

8 - 10 DL/I DOS/VS Guide For New Users

number 100500. Up to five customer orders could be displayed on this screen. If
an error is made in selecting the customer order, the message, "ERROR IN REPLY;

SELECT ANY VALID ORDER.", appears on the bottom of the screen.

DLZSAM60 DLI/CICS/VS ONLINE SAMPLE PROGRAM

NUMBER: 000001

STREET

CONTACT

NAME: COMPANY X INC.

10 MAIN STREET

MR. JOHN SMITH

CITY NEW YORK, NY 10010

LOCATION

CITY

EASTERN REGION

PHILADELPHIA, PA 11020

STREET

CONTACT

69 BROAD ST

MR. JOHN DOE

DATE: 29/01/77 NUMBER 100500 FIRST 1977 ORDER
TOTAL COST OF ORDER: TOTAL ITEMS IN ORDER: 40 $400.00

ITEM DESCRIPTION
1. 000100 INTEGRATED CIRCUIT

ORDER
40

SHIP
40

B/O
o

COST
$400.00

PRESS ENTER KEY TO DISPLAY OPTION MAP.

This screen shows all the details about a specific customer, location, and order as
requested in the previous sequence of screens. Up to five items will be displayed
for each customer order on this screen. Pressing the enter key returns processing
back to the option screen.

DLZSAM60 DLI/CICS/VS ONLINE SAMPLE PROGRAM

THE COMPANY NAME OR NUMBER YOU HAVE ENTERED IS NOT LISTED IN THE
CUSTOMER DATA BASE. BELOW IS A LIST OF THE CURRENT CUSTOMER NAMES
AND NUMBERS:

1 •
2.
3.
4.
5.
6.

CUSTOMER NAME

COMPANY K INCORPORATED
COMPANY L INC.
COMPANY N INC
COMPANY X INC.
COMPANY Y INC
COMPANY ZINC

CUSTOMER NUMBER

000006
000005
000004
000001
000002
000003

PLEASE MAKE CUSTOMER SELECTION _

This screen appears if the customer name or number you have entered does not
match a valid data base entry. Up to 10 customer names can appear on this screen.
Select a valid customer by entering the corresponding number from the left of the
list of customer names.

Chapter 8: DL/I Sample Application 8 - 11

DLZSAM60 DLI/CICS/VS ONLINE SAMPLE PROGRAM

FOLLOWING IS A LIST OF ORDERS ON OR AFTER THE DATE ENTERED:

ORDER DATE

1. 03/10/77
2. 03/20/77
3. 05/10/77
4. 05/10/77
5. 09/20/77
6. 10/20/77

ORDER NUMBER

100600
100722
100610
102050
100700
100705

CUSTOMER NUMBER

O()0002
000006
000004
000001
000003
000005

~E MAKE OROER SELECTION ~

---------~
This screen appears if you have entered only an order date for your customer
inquiry. Select a specific order by entering a number from the left of the list of
order data. Up to ten customer orders can be displayed on this screen.

DLZSAM60 DLI/CICS/VS ONLINE SAMPLE PROGRAM

YOU HAVE CHOSEN THE CUSTOMER ORDER ENTRY FEATURE OF DLZSAM60.

YOU CAN ENTER A COMPLETELY NEW CUSTOMER, LOCATION AND ORDER.
THIS IS OPTION 1. SIMPLY PRESS ENTER TO SELECT THIS OPTION.

2. A NEW LOCATION AND ORDER FOR AN EXISTING CUSTOMER. THIS IS OPTION 2.
ENTER AN EXISTING CUSTOMER NUMBER HERE:

3. A NEW ORDER FOR AN EXISTING CUSTOMER AND LOCATION. THIS IS OPTION 3.
ENTER CUSTOMER NUMBER ABOVE, LOCATION NUMBER HERE:

PLEASE MAKE YOUR SELECTION AND PRESS ENTER.

This screen appears if you select order entry mode, option 2, on the option screen.
To select option 1, press the enter key. For option 2, enter a 6-digit customer
number. Option 3 requires a 6-digit location number. If you use option 3, you
must also fill in data for option 2. Press the ENTER key to start processing.

If you enter an incorrect customer or location number, DLZSAM60 will produce an
error screen. An example of this error screen is included at the end of this chapter.

8 - 12 DL/I DOS/VS Guide For New Users

DLZSAM60 DLI/CICS/VS ONLINE SAMPLE PROGRAM

MUST FILL IN ALL FIELDS IN ORDER TO UPDATE THE CUSTOMER AND INVENTORY

DATA BASES. INVALID OR DUPLICATE INPUT WILL CAUSE AN ERROR SCREEN TO APPEAR.

CUSTOMER NAME:_ (up to 25 characters) CUSTOMER NUMBER : (6 digits)

STREET (up

CONTACT (up

LOCATION

CITY

ORDER DESCRIPTION:
ORDER DATE: MONTH

ITEM NUMBER:
(6 digits)

•
•
•
•

DLZSAM60

to 25 characters) CITY : (up to 25 characters)

to 25 characters) LOCATION NUMBER : (6 digits)

(up to 25 characters) STREET (up to 25 characters)

(up to 25 characters) CONTACT (up to 25 characters)

(up to 25 characters) ORDER NUMBER: (6 digits)
xx DAY xx YEAR xx (2 digits each)

AMOUNT ORDERED:
(up to 5 digits)

•
•
•
•

This screen appears with all fields blank if you have selected order entry option 1.
For option 2, the customer data is filled in by DLZSAM60. For option 3, the custom­
er and location data is filled in by the program. You fill in all other fields as
needed. You may enter up to five items for the order. If an order is not entered
completely, the message, "PLEASE FILL IN ALL NEEDED FIELDS ON MAP.", appears
on the bottom of the screen.

DLI/CICS/VS ONLINE SAMPLE PROGRAM

STREET

CONTACT

NAME: COMPANY X INC.

10 MAIN STREET

MR. JOHN SMITH

NUMBER: 000001

CITY NEW YORK, NY 10010

LOCATION

CITY

EASTERN REGION

PHILADELPHIA, PA 11020

STREET

CONTACT

69 BROAD ST

MR. JOHN DOE

DATE: 29/01/77 NUMBER 100500
TOTAL ITEMS IN ORDER: 40

FIRST 1977 ORDER
TOTAL COST OF ORDER: $400.00

ITEM DESCRIPTION
1. 000100 INTEGRATED CIRCUIT

ORDER
40

PRESS ENTER KEY TO DISPLAY OPTION MAP.

SHIP
40

B/O
o

COST
$400.00

To verify the order entry, DLZSAM60 displays the above screen showing your order
entry data after a successful data base update.

Chapter 8: DL/I Sample Application 8 - 13

DLZSAM60 DLI/CICS/VS ONLINE SAMPLE PROGRAM

MAP:

DL/I CALL: GU

LINK DISPLACEMENT

DL/I STATUS CODE:

XXXXXX

GE

PCB ADDRESS: 24B248 PARM COUNT: 5

SSA1 = STSCCST *D(STQCCNO =000007)

SSA2

SSA3

SSA4

REGISTER 7

REGISTER 9

REGISTER 10

REGISTER 12

***NOTE: ALL SSA'S ARE SHOWN. ALL MAY NOT BE USED IN FAILING CALL.

PRESS ENTER TO RETURN TO INTRODUCTION MAP.

This screen appears when there has been an error in requesting DL/I services.
Typically, this map appears when an incorrect location or customer number has
been used during order entry or when an existing data base entry matches the one
entered by the terminal operator. The valuable information on the map consists of
the DL/I call parameters, the hex displacement into the DLZSAM60 program where
the DL/I call was made, the storage address of the PCB used in the call, and several
important general purpose registers used by DLZSAM60. Register 12 contains the
address of the program's TCA (task control area), registers 10 and 7 are the program
base registers, and register 9 contains the storage address of the output map itself.

DLZSAM60 uses a maximum of 4 SSAS in its calls to DL/I and all are displayed in the
error map. The value of PARM COUNT minus 3 is the number of SSAS that were
used in the failing call.

8 - 14 DL/I DOS/VS Guide For New Users

Appendix A: DL/I System Installation and Batch Initialization

The DL/I system is distributed in machine-readable
format as macro and Assembler source statements as
well as preassembled object modules. Since the entire
DL/I system is in object module format, there is no DL/I
system generation. However, before application pro­
grams may be executed in a DL/I environment, the user
must prepare for and install the DL/I system. To assist
in this, the following topics are discussed in this chap­
ter:

• Minimum machine requirements

• Deblocking the PID distribution tape

• Building the DL/I system

• Initialization of the DL/I batch system.

Minimum Machine Requirements
The minimum machine requirements for DL/I is any
IBM System supported by DOS/YS or DOS/YSE with a
minimum real storage of 256K for a batch system or
5l2K for an online system in conjunction with CICS/YS.
Data base storage files may be on 2314 Direct Access
Storage Facilities, 2319 Disk Storage, 3330, 3340, or
3350 Disk Storage, or FBA device. In addition, two
9-track 2400 or 3400 series tape units and control units
are required (if tape logging is used) as well as one
2821 Control Unit Modell (or equivalent), one 2540
Card Read Punch (or equivalent), and one 1403 Print­
er Model NI (or equivalent).

Building the DL/I System
The DL/I DOS/YS system is distributed as a DOS/YS
BACKUP/RESTORE OfDL/I private core image, relocata­
ble, and source statement libraries. The distribution
tape contains the following files:

File 1-
File 2-
File 3-

Null t .
Null f RequIred by MSHP and RESTORE
Backup of 3 DL/I Private Libraries containing basic code
• DLl PRIY ATE CIL - Core Image Library
• DLl PRIYATE RL - Relocatable Library
• DLl PRIY ATE EBOOKS - Edited Macros (E. Books) plus

Source for the following: C.DLIUIB, P.DLIUJB,
R.DLIUIB, Y.HISTINFO, Y.INST

File 4 - Null
File 5 - A5746XXl. HISTORY. FILE (MSHP History File)
File 6 - Null
File 7 - Null
File 8 - Backup of DL/I Private Source Statement Library

o D L1 PRIY A TE A.OPT - Optional source material -
A. Books for module and macros

File 9 - Null
File 10 - A57460PT.HISTORY.FILE (Dummy MSHP History

File for Optional SSL above in File No.8)
File 11 - Null
File 12 - Online Sample J obstream
File 13 - Tapemark
File 14 - Tapemark

The DL/I libraries can be restored by using the sys­
tem RESTORE utility (DOS/YS Release 33 or later). Ref­
er to the Program Directory document included with
the distribution for library sizes and JCL for the Re­
store.

After the DL/I libraries have been successfully re­
stored and DL/I has been tested, the libraries may be
merged to permanent private libraries or to the system
libraries.

The following modules may be placed in the SY A
(shared virtual area) to improve performance. If they
are placed in the SY A, they must reside in the system
core image library.

Module Name

DLZDBHOO
DLZDDLEO
DLZDHDSO
DLZDLAOO
DLZDLDOO
DLZDLROO
DLZDXMTO

Function
Buffer handler
Load/Insert
Space management
Call analyzer
Delete/Replace
Retrieve
Index maintenance

DOS/ VS Supervisor Generation
The following parameters in the SUPYR and FOPT mac­
ros must be specified when generating the DOS/YS Re­
lease 34 Supervisor in order to run DL/I Version 1.4:

SUPYR
AP=YES

Required if logging is being performed in an
online partition by either DL/I or CICS/YS or if the
CICS/yS asynchronous loader option is used.

PAGEIN=nn
Required because DL/I and CICS/YS use the
RELPAG macro. This is also required if the antici­
patory paging feature of CICS/YS is used
(ANTICPG parameter in the PCT). Set PAGEIN at
least equal to the AMXT value in your CICS/YS
system when using the ANTICPG feature.

FOPT
AB=YES

Both DL/I and CICS/YS use STXIT AB macros.

IT=YES
Required by CICS/YS.

GETYIS=YES
Forced because YSAM=YES is required by DL/I.

OC=YES
Required if CICS/YS is to support the central
processor console as a terminal.

PC=YES
Both DL/I and CICS/YS use STXIT PC macros.

Appendix A: DL/I System Installation and Batch Initialization A - I

PCIL=YES
Required to install DL/I from the PID distribution
tape.

RELLDR=YES
Forced by VSAM=YES and GETVIS=YES.

TOD=YES
Required by CICS/VS.

VSAM=YES
Required by DL/l.

XECB=YES
Required for MPS support. A specification of YES
is sufficient for MPS as it requires «NPARTS-l) * 4)
+ 2 XECBs (4 per active MPS batch partition, plus
two additional for use in the CICS/VS partition).
If other programs are also using XECBS, you may
need to specify more XECBS than you would get
with the YES option. A specification of YES gen­
erates space for four XECBs per partition (NPARTS
* 4). The addition of the XECB parameter will add
about I K to 2K to the size of your supervisor,
depending on the other supervisor options you
have specified.

DOS/ VSE Supervisor Generation
The following parameters in the SUPVR and FOPT mac­
ros must be specified when generating the DOS/VSE
supervisor in order to run DL/I Version 1.4 ICR or Ver­
sion 1.5:

SUPVR
MODE= {370IE}

Specifies whether the supervisor is generated for
S/370-mode or Ecps:vsE-mode. The default is E.

NP AR TS= {3In}
Default is 3; the minimum value is 2.

PAGIN=nn
Required because DL/I and CICS/VS use the
RELP AG macro. This is also required if the antici­
patory paging feature of CICS/VS is used
(ANTICPG parameter in the PCT). Set PAGEIN at
least equal to the AMXT value in your CICS/VS
system when using the ANTICPG feature.

TP= {BT AMIVT AM}

FOPT

Required by CICS/VS. The specification ofVTAM
automatically includes BT AM support.

XECB=nn
Required for MPS support. Also, 'All-Partition
MPS Support' requires you to specify the number
of XECBs to be generated. The following formula
can be used to calculate the minimum number of
XECBS to be generated:

A - 2 DL/I DOS/VS Guide For New Users

2+(2*(N+ M»

where N is the number of partitions generated in
the supervisor and M is the maximum number of
concurrent MPS tasks. Nand M can vary from 1
to 7.

As soon as MPS is started, 2 XECBS are defined for
each partition in the system plus 2 additional
XECBS. For example, 5 partitions generated and
MPS started would result in 12 XECBS without any
MPS processing in progress. Each active batch
MPS task requires 2 additional XECBS during their
execution.

Do not forget to consider the requirements of
other programs using XECBS. For example, the
use of VSE/POWER cross partition communication
macros GETSPOOL, CTLSPOOL, and PUTS POOL will
require 2 XECBs.

Relinking DL/I Modules
If any changes are made to DL/I by the user, that is,
DL/I modules are reassembled, the affected core image
modules must be relinked. A book containing the job
control statements to link all of DL/I is included in the
source statement library as A.DLZLNKBK. This may be
punched using SSERV.

Before relinking DL/I, ensure that the DOS/VS se­
quential access method (SAM) modules listed below (or
a superset of these modules) exist in a DOS/VS relocata­
ble library. These modules are required to execute the
DL/l system, including utilities, and, optionally, DL/I
for HSAM data bases. See DOS/VSE Macro Reference
for information about the following DOS/VSE SAM
modules:

IJJFCBZD - Device independent (DL/I)
IJFSZZWN - Tape (DL/I)
IJFUBZZN - Tape (DL/I)
IJFFZZZN - Tape (HSAM)
IJGQICZZ - DASD (DL/I)
IJGQOCZZ - DASD (DL/I)
IJGUICZZ - DASD (DL/I)
IJGUOCZZ - DASD (DL/I)
IJGFICZZ - DASD (HSAM)
IJGFOCZZ - DASD (HSAM)
IJFUZZZN - Tape (DL/I)

CICS/VS-DL/I Release
Dependencies
Some of the DL/I action modules reference fields in the
CICS/VS system areas of the TCA, PPT, etc. via DSECT.
The absolute displacement of these fields is not guaran­
teed by CICS/VS from release to release because they
are not intended for use by other than CICS/VS. There­
fore, it may be necessary to reassemble some DL/I
modules after a new release of CICS/VS is installed.
When installing a new release of CICS/VS, check the

documentation for that release to determine if displace­
ment changes were made. The DL/I modules that need
to be reassembled and cataloged after a CICS/VS system
area DSECT change are:

DLZOLIOO DL/I Online Initialization
DLZSTPOO DL/I System Termination
DLZRDBL I DL/I Online Journalling
DLZMPCOO MPS Master Partition Controller
DLZBPCOO MPS Batch Partition Controller
DLZMSTRO MPS Start Transaction
DLZMSTPO MPS Stop Transaction
DLZMPIOO MPS Batch Nucleus
DLZODP DL/I Online Interface
DLZFTDPO DL/I Formatted Task Dump

All the above modules except DLZODP must be cata­
loged to the core-image library. DLZODP must be reas­
sembled and cataloged into the relocatable library as it
is linkedited with the DL/I ACTs. The JCL statements
required to reassemble and catalog these modules are
shown in the following four examples:

Example 1: Use these statements for modules
DLZOLIOO, DLZSTPOO, DLZMPCOO, DLZBPCOO, DLZMSTRO,
DLZMSTPO, and DLZFTDPO.

II JOB
II OPTION CATAL
II EXEC ASSEMBLY

COPY xxxxxxxx
END

1*
II EXEC LNKEDT
1&
where xxxxxxxx is the module name

Example 2: Use these statements for module
DLZMPIOO.

II JOB
II OPTION CATAL
II EXEC ASSEMBLY

COPY DLZMPIOO
END DLZMINIT

1*
II EXEC LNKEDT
1&

Example 3: Use these statements for module
DLZRDBLI.

II JOB
II OPTION CATAL
II EXEC ASSEMBLY

COPY DLZRDBLl
END DLZRDBLl

1*
II EXEC LNKEDT
1&

Note: The above DOS/VS job control statements may contain
additional information. Refer to DOS/ VSE System Control
Statements for more detailed information concerning DOS/VS job
control statements.

DLZOLIOO punches a phase card during assembly
that changes its name to DFHSIDL when it is linkedited
into the core-image library. After the above modules
have been reassembled and cataloged to the appropri­
ate libraries, reassemble and linkedit all ACTs.

Note: The CICS/VS modules DFHTBP2$ and DFHDBP2$ that are
supplied in the CICS/VS starter system relocatable library contain
DL/l DSECTS. If you use these modules with your CICS/VS
system, you must ensure that they contain DL/I DSECTS for the
same release as your DL/I system. If not, these CICS/VS modules
must be reassembled.

Initialization of the DL/I Batch
System
A batch DL/I program is executed as a called program
in a DOS/VS partition. The following DL/I utilities are
executed as stand alone programs:

DLZUCUMO - Data base change accumulation
DLZUDMPO - Data base data set image copy
DLZURULO - HISAM reorganization unload
DLZURRLO - HISAM reorganization reload
DLZURG \0 - Data Base prefix resolution
DLZLOGPO - Log Print
DLZUACBO - Application Control Blocks Creation and Main­

tenance.

For all other DL/I utilities and for user-written appli­
cation programs the DL/I initialization module
DLZRRCOO is the program name executed by DOS/VS.
The actual user-written DL/I program name, or the
utility name, and, as required, the name of the PSB or
DBD to be used with the program, the size of the data
base buffer pool, buffer sub pool sizes, subpool assign­
ments, VSAM buffer options, storage layout control
options, and whether this is a DL/I batch or utility ini­
tialization is passed to DL/I through either a parameter
card on SYSIPT or directly from SYSLOG, depending on
the UPSI byte setting.

The required control blocks and executable modules
are loaded from a DOS/VS core image library (system or
private), space for the buffer pool is obtained, and the
buffer pool is initialized. The DL/I system log is opened
(if applicable), the application program is loaded, and
control is passed to the application program.

Example 4: Use these statements for module DLZODP.

DL/ I Parameter Information Requirements
The following parameter information, beginning in
column 1, must be entered from either SYSIPT or
SYSLOG:

II JOB
II OPTION
II EXEC

1*
1&

COPY
END

DECK
ASSEMBLY
DLZODP

For data base reorganization or logical relationship
resolution utility execution:

IULU,prOgname[,dbdname 1

Appendix A: DL/I System Installation and Batch Initialization A - 3

Notes:

I. For reload restan, ULR replaces ULU in the above example.

2. For HD Reorganization Unload and HD Reorganization
Reload, buf, HDBFR=, HSBFR=, and TRACE= may option­
ally be entered.

F or data base data set recovery utility execution:

UDR,progname,dbdname[,{buf}]
{ 1 }

[,HDBFR=] [,HSBFR=][~TRACE=]

For data base backout utility execution:

DLI,DLZBACKO,psbname[,{buf}]
{ 1 }

[,HDBFR=] [,HSBFR=][~TRACE=]
[,ASLOG=] [,LOG=]

DL/ I Initialization Job Control Language
Requirements
The job control statements required for utility program
execution are shown for each utility in the section deal­
ing with the particular utility. The job control state­
ments required for batch application program execu­
tion are shown below.

II UPSI xOOOOxxx The x values identify the desired DL/I function.

[I I ASSGN
[I I TLBL

SYSO 11 , X' cuu ']
LOGOUT]

These statements define the output log file. It must be tape and contain
standard labels. LOGOUT is the symbolic name of the output file as
specified in its DTF. If no output log file is desired, bit 6 of UPSI must be
set to 1. These cards may then be omitted.

II ASSGN
II TLBL (Tape)

or

SYSnnn,X'cuu'
filename

These statements define a data base file. Statements must be present
for each file referenced by every data base referenced by the PSB. The
parameters are explained as follows:

II DLBL (Disk)
II EXTENT

filename
extent data

nnn - logical unit assignment of the file.
cuu - physical unit assignment of the file.
filename - symbolic name of the file (VSAM ACB name or SAM DTF
name) to be processed. It must be the same as the DD1 , DD2, or
OVFLW parameter of the DATASET statement for the data base.

I I EXEC DLZRRCOO,SIZE=xxxK DL/I initialization module. Refer to DL/I DOS/VS System/Application
Design Guide Chapter 7, for storage requirements.

Note: The above DOS/VS job control statements may contain additional information. Refer to the publication DOS/ VSE System Control
Statements for more detailed information concerning DOS/VS job control statements.

DL/I MPS Batch Partition
Initialization
Starting an MPS batch partition requires an online DL/I

partition being active and the master partition control­
ler being initialized.

All data bases referenced by a batch program exe­
cuting under MPS control must be defined in the
CICS/VS partition and accessed through MPS. A pro­
gram running under MPS control cannot access any
data bases not known to MPS, that is, not defined in the
CICS/VS partition.

Certain DL/I programs are restricted from running
in the MPS environment, i.e. the data bases they access
may not be shared across several partitions while these
programs are executing. The programs in this catagory
are:

• Utilities
• Programs loading a data base
• Programs using SHSAM or HSAM

In addition, any batch DL/I programs that modify
the contents of the DL/I control blocks cannot run un-

A - 4 DL/I DOS/VS Guide For New Users

der MPS because the DL/I control blocks no longer exist
in the batch partition.

DOS/ VS UPSI Byte Settings/or MPS
Bit 0 = 0

=1

Bits 1 - 4

Bit 5 =0

= 1

Read parameter information via
SYSIPT.
Read parameter information via
SYSLOG.

Available for use by the applica­
tion program.

Storage dump on set exit (STXIT)
abnormal termination.
No storage dump on STXIT ab­
normal termination.

Bits 6 - 7 Not used for MPS. Data base
logging, normally controlled by
UPSI bit 6, is controlled in the
CICS/VS partition under MPS op­
eration. STXIT linkage to DL/I
for abnormal task termination,
normally controlled by UPSI bit
7, is always active under MPS op­
eration.

DL/ I MPS Parameter Information
Requirements
The following information, beginning in column 1,
must be entered from either SYSIPT or SYSLOG:

IOLI,progname,PSbname

progname
specifies a one to eight alphameric character
name of the application program to be executed.

psbname
specifies a one to seven alphameric character
name of the PSB as indicated in the PSB genera­
tion and referenced by the application program.

Any other parameters on the DL/I parameter state­
ment are ignored. The parameter statement informa­
tion is printed on SYSLST.

DL/ I MPS Initialization Job Control
Language Requirements
The job control statements required for MPS batch
application program execution are shown below.

II UPSI xOOOOxoo

II EXEC OLZMPIOO,
SIZE=xxxK

The x values identify the de­
sired DL/I function.

DL/I MPS initialization mo­
dule. Refer to DL/I DOS/VS
System/Application Design
Guide, Chapter 7, for storage
requirements.

No ASSGN, DLBL, EXTENT, or TLBL statements are
required to describe the data bases or DL/I log in the
batch MPS job stream. This information is contained in
the JCL for the CICS/VS partition.

Note: The above DOS/VS job control statememts may contain
additional information. Refer to the publication DOS/ VSE System
Control Statements for more detailed information concerning
DOS/VS control statements.

Executing Batch MPS Programs
CICS/VS Release 1.4 or a subsequent release is required
for DL/I Release 1.5. The parameter DLI=YES must be
specified in the DFHSG TYPE=INITlAL macro to gener­
ate support for DL/I in a CICS/VS system. This is inde-

pendent of whether MPS or PI (program isolation) will
be used. There are no parameters for CICS/VS system
generation specifically for DL/I MPS. DL/I PI requires
that the CICS/VS system be generated to include sup­
port for the CICS/VS dynamic transaction backout facil­
ity.

For ease in maintenance of your CICS/VS system,
you should try to use the preassembled CICS/VS pro­
grams provided in the CICS/VS starter system private
core image library. DL/I support has been generated
into the appropriate starter system CICS/VS programs
with the exception of the CICS/VS dynamic back out
program (DFHDBPl$) and the transaction backout pro­
gram (DFHTBPI$) versions in the starter system core
image library. To produce a version of each that sup­
ports DL/I, you must first merge the DL/I Release 1.5
private relocatable library into either the system relo­
catable library or the CICS/VS private relocatable li­
brary. Then you can linkedit the relocatable modules
of the dynamic backout program and transaction back­
out program provided in the CICS/VS relocatable li­
brary (DFHDBP2$ and DFHTBP2$ respectively). Refer to
the CICS/VS System Programmer's Guide (DOS/VS),
Appendix A, for more information on this subject.

The phase name of the / / EXEC statement must be
DLZMPIOO. A SIZE parameter is not required unless
your application program invokes some DOS/VS func­
tion that requires a partition GETVIS area. However,
the use of the SIZE parameter is recommended as an
operational standard. DL/I MPS does not require a par­
tition GETVIS area in the batch MPS partition.

Dynamically Scheduling MPS or Non-MPS
Execution
The requirement that a different phase name be used
on the EXEC statement to distinguish between MPS and
non-MPS operation can cause operational difficulties.
. The operations staff must be aware of when CICS/VS is
active and MPS is in operation and modify the JCL of
batch DL/I jobs to specify the appropriate phase name
on the EXEC statement.

An alternate approach would be to use a program to
dynamically test to see if MPS was in operation or not
and fetch the corresponding phase. The program can
use the XECBT AB TYPE=CHECK macro to test for the
presence of the XECB "DLZXCBOO". If this XECB is cur­
rently defined (RI5=O) then MPS operation is active and
the program can fetch the phase "DLZMPIOO". IfMPS
operation is not active (RI5""O) then the program should
fetch the phase "DLZRRCOO". Note that this technique
will not work if logging is required as there is no way to
dynamically assign the DL/I log device ifnon-MPs op­
eration is required.

Appendix A: DL/I System Installation and Batch Initialization A - 5

The JCL to execute a batch DL/I program in this
environment would use an EXEC statement that speci­
fies the XECB testing program's name, not DLZMPlOO or
DLZRRCOO. No other changes in JCL would be required.

I An example program to do this for read-only (no
logging) DL/I programs is given below.

DLZCTRL

NOMPS

OUTPUT

MPSMSG
NOMPSMSG
PRINTER
IOAREAC

IOAREA
CONSOLE

CSECT
BALR
USING
OPEN
XECBTAB
LTR
BNZ
LA
MVC
LA
B
EQU
LA
MVC
LA
EQU
PUT
PUT
CLOSE
FETCH
DC
DC
DTFDI
DS
DC
DC
DTFCN

END

R12,O ESTABLISH BASE REG (R12)
*,R12 ... AND TELL ASSEMBLER
PRINTER,CONSOLE
TYPE=CHECK,XECB=DLZXCBOO
R15,R15 IS MPS ACTIVE?
NOMPS ... NO
R2,=C'DLZMPIOO' YES, USE DLZMPIOO
IOAREA(L'MPSMSG),MPSMSG
R7,L'MPSMSG SET UP MPS ACTIVE MSG
OUTPUT GO WRITE MSG & FETCH DL/I

*
R2,=C'DLZRRCOO' NOT ACTIVE,USE DLZRRCOO
IOAREA(L'NOMPSMSG) ,NOMPSMSG
R7,L'NOMPSMSG SET UP MPS NOT ACTIVE MSG

*
PRINTER INDICATE CHOICE TAKEN
CONSOLE ... ON SYSLST AND SYSLOG
PRINTER,CONSOLE
(R2) FETCH APPROPRIATE PHASE
C'MPS ACTIVE - WILL EXECUTE DLZMPIOO'
C'MPS NOT ACTIVE - WILL EXECUTE DLZRRCOO'
DEVADDR=SYSLST,IOAREA1=IOAREAC,RECSIZE=81
OCL81
X'F1 '
CL80' ,
DEVADDR=SYSLOG,IOAREA1=IOAREA,BLKSIZE=80, X
RECSIZE=(7) ,RECFORM=UNDEF,MODNAME=DLZCONSL

Note that since the data base I/O operations are
being carried out in the CICS/VS partition for the batch
MPS job, the DOS/VS job accounting information for the
batch partition will not reflect any data base I/OS or
associated CPU time for the data base call processing.

Ifthe Performance Analyzer II FDP (5798-CFP) or
similar program is being used to collect job accounting
information for the CICS/VS partition, the data base
I/OS and associated CPU time for the data base call
processing will be charged to the DL/I batch partition
controller task, CSDC.

A - 6 DL/I DOS/VS Guide For New Users

Appendix B: Controlling the DL/I Online System Environment

The online system environment can be controlled using system generation parame­
ters to establish the initial configuration of the online system. Dynamic services
(CICS master terminal function) can be used for adjusting the system configuration.

The DL/I online system can also be controlled in various ways. By specifying a
unique DL/I online nucleus during CICS system initialization (SIT parameter
DLl=sufflX), different configurations of the DL/I online system may be selected. By
adjusting the parameters within the online nucleus generation, buffer storage
allocation (BFRPOOL), program storage allocation (SLC), and DL/I system loading
(MAXT ASK and CMAXTSK) may be controlled.

Note: An on-line test program that you may find useful as a debugging aid is documented in Appendix
D of DL/ I DOS/VS Diagnostic Guide. The program, DLZMDLlO, accepts DL/I system calls and some
special calls, and displays the results on a screen.

Directly related to system performance is the number of tasks allowed to run
concurrently within the online system. Optimum performance requires a detailed
knowledge of the available system resources and each task's usage of these resour­
ces.

System resources consist of dynamic storage acquired from the CICS storage pool
for the DL/I PST. Additionally, if read-only tasks are being scheduled, the storage
requirements are increased by the size of the PSB being scheduled plus its index
work areas.

The deferred-open option of the DL/I entry in the CICS file control table has the
effect of reducing the time required for system initialization. However, if the data
bases are required at a later time, invoking the dynamic-open option causes
degradation of the system response due to the nonasynchronous DL/I open func­
tion. During DL/I open/close the partition loses control for the duration of the
request and no task dispatching occurs. The CSMT transaction cannot be used to
open data bases for which the deferred-open option has been specified. They
must, instead, be opened by using a DL/I system call with the function STRT, as
explained below.

A third possibility exists to control the DL/I system in an on-line environment
through the use of special DL/I calls. These system calls may be issued from a
special application program and allow for a more dynamic control than that
provided by the methods previously described.

Note: Utilization of the system calls should be kept under control and, if possible, be restricted to one
program since these calls are specific to DL/I DOS/VS and are not supported by IMS/VS. Unrestrict­
ed use could therefore make a potential migration to CICS/OS/VS with DL/I interface more difficult.

The system calls provide the ability to adjust the current maximum task value
(CMXT), to start and open a DBD (STRT), and to stop and close a DBD (STOP). In
addition, the tracing facility can be controlled by two system calls, TSTR (trace
start) and TSTP (trace stop). Refer to DL/ I DOS/ VS Diagnostic Guide, SH24-5002,
for a description of the tracing facility. While the CMXT call may be used primarily
for the purpose of balancing the DL/I online system load, the STRT and STOP calls
may typically be used for closing a data base previously stopped by DL/I due to an
I/O error. The user may then perform off-line recovery procedure and then make
the data base available again for online processing. Great care should be exercised
when invoking the open/close functions due to the nonasynchronous execution of
the VSAM open/close function. When the data base calls are issued, the online
system is not dispatched until the open/close function is completed. This has an
adverse affect on the teleprocessing system and therefore the timing of the DL/I
STRT and STOP calls should be carefully considered.

Appendix B: Controlling the DL/I Online System Environment B-1

In addition, the STOP call terminates scheduling for all PSBs that reference the
DBD being stopped. Those tasks that are actively scheduled on any affected PSBS
are allowed to continue until they are unscheduled through either the DL/I TERM
call or end-of-task processing.

I DL/ I System Call Formats and Returns
The DL/I system calls are only supported for Assembler language programs and
have a special call format. The general structure of the calls is:

CALLDLI ASMTDLI, (function,pararneter-list)

function
is the name of the 4-byte field containing CMXT, STRT, STOP, TSTR, or TSTP.

parameter-list
is the name of a 64-byte field containing function parameters and the inter­
face work area.

The following is a description of the parameter requirements and return condi­
tions for each call.

CMXTCall
Parameter requirements

bytes 0-1 of the parameter list contain the requested new value for current
maximum task in packed decimal format.

Return normal
TCAFCTR contains X'DO'
bytes 0-1 of parameter list are unchanged
bytes 2-3 of parameter list contain the previous value of current maximum
task.

Return abnormal
TCAFCTR contains X'08'
this indicates that the requested value was negative, zero, or exceeded the
MAXTASK specification in the ACT.

STRT Call
Parameter requirements

bytes 0-7 contain the DMB name which consists of the DBD generation name
extended to seven characters with at-signs (@) if necessary, and with the
alphabetic character D as the eighth character.

Return normal
TCAFCTR contains X'DO';
bytes 8-11 contain the value of register 15 returned by VSAM open/close,

bytes 12-15 contain the address ofthe ACB for this data base (ifHISAM
contains HISAM KSDS),

bytes 16-19 contain the address of the ACB for the ESDS if the data base
organization is HISAM.

Return abnormal

B-2 DL/I DOS/VS Guide For New Users

TCAFCTR contains X'Ol'; data base previously started
TCAFCTR contains X'02'; DBD is unusable
TCAFCTR contains X'03'; TESTCB failed.
TCAFCTR contains X'08'; DBDNAME is invalid.

L
STOP Call
Parameter requirements

bytes 0-7 contain the DMB name which consists of the DBD generation name
extended to seven characters with at-signs (@) if necessary and with the
alphabetic character D as the eighth character.

Return normal
TCAFCTR contains X'OO';
bytes 8-11 contain the value of register 15 returned by VSAM open/close,

bytes 12-15 contain the address of the ACB for this data base (if HISAM

contains HISAM KSDS),

bytes 16-19 contain the address of the ACB for the ESDS if the data base
organization is HISAM.

Return abnormal
TCAFCTR contains X'OI'; data base previously stopped
TCAFCTR contains X'02'; DBD is unusable
TCAFCTR contains X'03'; TESTCB failed
TCAFCTR contains X'08'; DBDNAME is invalid.

Note: It is the user's responsibility to verify the contents of the return code from VSAM open/close
stored in bytes 8-11 of the parameter list. If an error has occurred, the user may use the VSAM
SHOWCB macro using the ACB(s) addresses returned.

TSTR Call
Parameter requirements

bytes 0-7 contain the name of the trace module to be used. This program
name must have been placed in the processing program table (PPT) prior to
execution of CICS/VS.

Return normal
TCAFCTR contains X'OO'.

Return abnormal
TCAFCTR contains X'OI'; tracing already active
TCAFCTR contains X'02'; trace module not found
TCAFCTR contains X'04'; GETMAIN failed for trace table.

TSTP Call
Parameter requirements

none the work area must, however, be provided.

Return normal
TCAFCTR contains X'OO'.

Return abnormal
TCAFCTR contains X'Ol'; tracing was not active.

I Scheduling the DL/ I System Call
In order to provide the system programmer with a method of controlling the use of
the DL/I system calls, a special scheduling call must be issued prior to invoking
them. If a system call is issued with an invalid password, the violating task is
abnormally terminated with the abend code DLPV.

The following is the format of the call and an explanation of its return codes:

CALLDLI ASMTDLI,(function,psbname,password[,uibparm])

function
is the name of a field containing the 4-byte constant pCBb

Appendix B: Controlling the DL/I Online System Environment B-3

psbname
is the name of a field containing the 8-byte constant SYSTEMDL

password
is the name of a field containing an 8-byte constant equal to the password
generated during the online nucleus generation.

uibparm
is the address of a fullword in which DL/I returns the address of the user
interface block (UlB).

Upon return from the call, the field TCAFCTR or UlBFCTR (if the UlB is used)
contains a I-byte return code indicating the following:

X'OO'

X'08'

indicates the task may proceed with the system calls.

indicates the system call interface is active. Only one task may be active on
this interface at a time.

To terminate activity on the system call interface the standard DL/I termination
call may be used (TERM).

DL/I System Call Examples

CMXT Call Example

MODCMXT CSECT
•
•

CALLDLI
CLI
BNE

•
•

DFHSC

L
MVC

CALLDLI

CLI
BNE

•
•
•

SCHEDERR DS
•
•
•

SCHED DC
SYSPCB DC
PASSWORD DC

•
•

FUNCTION DC
COPY

NEWCMXT DS
OLDCMXT OS

OS
•
•
•

Using the CMXT call the following shows a method of modifying the current
maximum task value.

ASMTDLI,(SCHED,SYSPCB,PASSWORD) SCHEDULE SYSTEM CALL
TCAFCTR,O DID SCHEDULING SUCCEED
SCHEDERR IF NOT GO PROCESS ERROR

TYPE=GETMAIN, GET PARAMETER STORAGE *
NUMBYTE=72, *
CLASS=USER

SAACBAR,TCASCSA FIND PARAMETER STORAGE
NEWCMXT,=PL2'S' SET TO MODIFY CMXT TO 5

ASMTDLI,(FUNCTION,NEWCMXT) ISSUE CMXT SYSTEM CALL

TCAFCTR,O INSURE NORMAL COMPLETION
CMXTERR IF NOT CHECK RETURN CODE

OH PROCESS SCHEDULING ERROR

CL4'PCB' SCHEDULING CALL CONSTANT
CL8'SYSTEMDL' SPECIAL SYSTEM SCHEDULING REQUEST
CL8'MYPASS' PASSWORD SPECIFIED IN NUCLEUS

CL4'CMXT' MODIFY CURR MAX TASK VALUE REQ
DFHSAADS
PL2 VALUE CMXT IS TO BE ADJUSTED TO
PL2 PREVIOUS VALUE OF CMXT
CL60 WORKAREA FOR CALL PROCESSOR

B - 4 DL/I DOS/VS Guide For New Users

j

.j

I STR T and STOP Call Example
(The following illustrates a method of issuing a STRT open DBD system call. The
'-" STOP close DBD system call is the same as this except that the FUNCTION DC is

coded FUNCTION DC CL4'STOP'.

MODDBD CSECT
•
•
•

CALLDLI ASMTDLI,(SCHED,SYSPCB,PASSWORD) ENABLE SYSTEM CALL
CLI TCAFCTR,O DID SCHEDULING SUCCEED
BNE SCHEDERR IF NOT, PROCESS ERROR
•
•
•

DFHSC

•
•
•

TYPE=GETMAIN,
NUMBYTE= 72 ,
CLASS=USER

GET PARAMETER STORAGE *
*

MVC DMBNAME,=CL8'DMB1MMMD' SET DMB NAME FOR STRT CALL

CALLDLI ASMTDLI,(FUNCTION,DMBNAME) ISSUE STRT CALL TO SYSTEM
•

CLI
BNE
•
•
•

L
LTR
BNZ
•
•
•

TCAFCTR,O
STRTERR

WORK2,VSAMRET
WORK2,WORK2
OPENERR

IF OPEN NOT ISSUED
CHECK WHY NOT

GET OPEN R15 FOR VSAM RETURN
TEST OPEN RETURN CODE
DO SHOWCB IF OPEN BAD

SCHED DC CL4'PCB'
CL8'SYSTEMDL'
CL8'MYPASS'

SCHEDULING CALL CONSTANT
SPECIAL SYSTEM SCHEDULING REQ
PASSWORD AS SPECIFIED IN NUC

SYSPCB DC
PASSWORD DC

FUNCTION

DMBNAME
VSAMRET
ACBADRl
ACBADR2

•
•

DC

COPY
OS
OS
OS
OS

CL4'STRT'

DFHSAADS
CL8
F
F
F

START/OPEN DATA BASE REQUEST

DMB TO BE MODIFIED
OPEN REGISTER 15 RETURN CODE
POINTER TO ACB
POINTER TO SECOND ACB IF HISAM

Appendix B: Controllina the DL/I Online System Environment B • 5

I TSTR and TSTP Call Example

STTRC CSECT
•
•
•

CALLDLI
•
•

DFHSC

L

MVC

CALLDLI
•

CLI
BNE
•
•
•

SCHED DC
SYSPCB DC
PASSWORD DC

•
•
•

FUNCTION DC
COpy

MODNAME OS
OS
•
•
•

The following shows a method of issuing a TSTR call to start tracing. The TSTP call
is the same except that no module name is required and that the FUNCTION DC is
coded FUNCTION DC CL4'TSTP·.

ASMTDLI,(SCHED,SYSPCB,PASSWORD) ENABLE SYSTEM CALL

TYPE=GETMAIN, GET PARAMETER STORAGE *
NUMBYTE=72, *
CLASS=USER
SAACBAR,TCASCSA FIND PARAMETER STORAGE

MODNAME,=CL8'TRACEMOD' SET MODULE NAME

ASMTDLI,(FUNCTION,MODNAME) ISSUE CALL TO SYSTEM

TCAFCTR,O INSURE NORMAL COMPLETION
TRCERR IF NOT, CHECK RESPONSE

CL4'PCB' SCHEDULING CALL CONSTANT
CL8'SYSTEMDL' SPECIAL REQUEST
CL8'MYPASS' PASSWORD SPECIFIED IN NUCLEUS

CL4'TSTR' START TRACE REQUEST

DFHSAADS

CL8 TRACE MODULE NAME
CL56 WORKAREA

B - 6 DL/I DOS/VS Guide For New Users

A number of terms and phrases used in the detailed
explanation and description of DL/I are either new to
most readers, or have new meanings. To improve the
readability and understandability of this and other
DL/I DOS/VS publications, the significant and impor­
tant terms and phrases are defmed here in alphabetic

A
001

I
I

I
B

03

J
B

02 -~

B '-
01

I
1 c

7 C
2

C 1-D
• Each block represents a seflment.

• The Sf.'qrnent names are A through F.

Glossary

order for ease of reference. These defmitions refer to
Figure 9-1 which is a representative DL/I hierarchical
structure. It is suggested that the reader become famili­
ar with the terms that are defmed here and refer to this
section frequently during the initial use of DL/1.

~------D
Levell

I
I F

D

I F J-
D Level 2

E

Level 3

• The numilel s represent the sequence fields (keys). It no numbel IS present, the segment has no key.

• The lines conneClInq the se~Jment blocks show the hierarchical paths.

Figure 9-1. Representative DL/I Hierarchical Structure

Glossary G - I

call. The instruction in the COBOL, PL/I, or Assembler pro­
gram that requests DL/I services. For RPG II, see RQDLI com­
mand.

child. Segment one or more levels below the segment which is its
parent, but with a direct path back up to the parent. Depending
on the structure of the data base, a parent may have many chil­
dren. Referring to Figure 9-1:

• All the B, C, 0, E, and F segments are children of A-OOI.

C-5 and C-7 are children of B-OI(and A-OOI) but not chil­
dren of the other B segments.

B-02 has no children.

command code. An optional addition to the SSA that provides
specification of a function variation applicable to the call func­
tion.

data base. An organized grouping ofrecords, where each record
contains an organized grouping of segments, and each segment
contains an organized grouping of data or information. A data
base can usually be thought of as a file.

data base administrator. See DBA.

data base definition. See DBD.

data management block. See DMB.

DBA. data base administrator - The person in an installation
who has the responsibility (full or part time) for technically sup­
porting the use of DL/I. The normal responsibilities of the DBA
are outlined in Chapter I of this manual.

DBD. data base definition - One DBD is generated by the DBA
and cataloged in a core image library for each data base that is to
be used in the installation. It defines the structure, segment keys,
physical organization, names, access method, devices, etc. of the
data base.

DMB. data management block - The DMB is created from a
DBD by the application control blocks creation and maintenance
utility and link-edited into a core image library by the DBA.
Before an application program using DL/I facilities can be run,
one DMB for each data base accessed plus a PSB for the program
itself must be cataloged in a core image library (by the DBA).
The DMBs and the associated PSB are automatically loaded into
main storage from the core image library at the beginning of
application program execution (their loading is controlled by the
parameter information supplied to DL/I at the beginning of
program execution).

dependent segment. Synonym for child.

forward. Movement in a direction from the beginning of the data
base to the end of the data base, accessing each record in ascend­
ing root key sequence, and accessing the dependent segments of
each root from top to bottom and from left to right. Referring to
Figure 9-1, forward accessing of all the segments shown would be
in the following sequence:

A-OOl, B-OI, C-S, C-7, B-02, B-03, C-2, 0, E, F, F, F, A-002.

key. A segment mayor may not have a key, that is, a sequence
field; all root segments, except for HSAM and simple HSAM
data bases. must have keys. DL/I insures that multiple segments
of the same type that have keys are maintained in strict ascending
sequence by key. The key may be located anywhere within a
segment; it must be in the same location in all segments of the
same type within a data base. The maximum sizes for keys are

o ·2 DL/I DOS/VS O!Jide For New Users

236 alphameric characters for root segments and 255 for all de­
pendent segments. Keys provide a convenient way to retrieve a
specific occurrence of a segment type, maintain the uniqueness
and sequential integrity of multiples of the same segment type,
and determine under which segment of a group of multiples new
dependent segments are to be inserted, Keys should normally be
prescri bed for all segment types; the exceptions being if there will
never be multiples of a particular type or if a particular segment
type will never have dependents.

level. Level is the depth in the hierarchical structure at which a
segment is located. Roots are always the highest level and the
segments at the bottom of the structure are the lowest level. The
maximum number oflevels in a data base is 15. For purposes of
documentation and reference, the levels are numbered from I to
IS, with the root segments being level number I. Referring to
Figure 9-\:

• Three levels are shown.

• The A segments (roots) are at the highest level (Levell).

• The C and E segments are at the lowest level (Level 3).

logical. When used in reference to DL/I components, logical
means that the component is treated according to the rules of
DL/I rather than physically as it may exist, or as it may be organ­
ized, on a physical storage device. For example, a logical DL/I
record (a root segment and all of its dependent segments
grouped) might be contained on several physical records or
blocks on a storage device, and because of prior insertions and
deletions, the segments might be in a different physical sequence
than that by which they are retrieved logically for the application
program by DL/I.

MPS. multiple partition support provides a centralized data
base facility to permit multiple applications to access DL/I data
bases concurrently.

multiple partition support. See MPS.

multiple SSA. A series ofSSAs included in a DL/I call to identi­
fy a specific segment or path.

parent. A parent is the opposite of a child, or dependent seg­
ment, in that dependent segments exist directly beneath it at
lower levels. A parent may also itself be a child. Referring to
Figure 9-1:

• A-OO I is the parent of all B, C, 0, E, and F segments.

• 0 is a parent of E, yet a child of A.

• B-02 is not a parent.

• None of the level 3 segments are parents.

parentage. Establishment in a program of a particular parent as
the formal beginning point for the use of the GNP or GHNP call
functions. Parentage can only be established by issuing successful
GU, GHU, GN, or GHN calls.

path. The chain of segments within a record that leads to the
currently retrieved segment. The formal path contains only one
segment occurrence from each level from the root down to the
segment for which the path exists. The exact path for each re­
trieved segment is returned in the PCB by means of four of its
nine fields:

Field 2.

Field 6.

Field 7.

Field 9.

Segment hierarchy level indicator

Segment name feedback area

Length of key feedback area

Key feedback area, containing the

concatenated keys in the path,

Referring to Figure 9-1:

The path to C-S is A-OOI, B-Ol.

• The path to C-7 is the same as the path to C-S.

• There is no path to A-002 since it is a root segment.

path call. The retrieval or insertion of multiple segments in a
hierarchical path in a single caU, by using the D command code
and multiple SSAs.

PCB. program communication block. Every data base accessed
in an application program has a PCB associated with it. The PCB
actuaUy exists in DL/I and its fields are accessed by the applica­
tion program by defining their names within the application
program as follows:

COBOL - The PCB names are defined in the Linkage
Section.

PL/I - The PCB names are defined under a pointer varia­
ble.

• RPG II - The PCB names are automaticaUy generated by
the Translator, or may be defined by the user.

Assembler - The PCB names are defined in a DSECT.

There are nine fields in a PCB:

I. Data base name

2. Segment hierarchy level indicator

3. DL/I results status code

4. DL/I processing options

S. Reserved for DL/I

6. Segment name feedback area

7. Length of key feedback area

8. Number of sensitive segments

9. Key feedback area.

These fields are described in detail under "PCB-Mask" in Chap­
ter 4 of this manual.

PI. program isolation is a facility that isolates all data base
activity of an application program from all other application
programs active in the system until that application program
commits, by reaching a synchronization point, that the data it has
modified or created is valid.

This concept makes it possible to dynamicaUy backout the data
base activities of an application program that terminates abnor­
mally without affecting the integrity of the data bases controlled
by DL/I. It does not affect the activity performed by other appli­
cation programs processing concurrently in the system.

position pointer. For most call functions a position pointer exists
before. during, and after the completion of the function. The
pointer indicates the next segment in the data base that can be
retrieved sequentially. It is normally set by the successful com­
pletion of all call functions. Referring to Figure 9-1:

If A-OOI has just been retrieved, it points to B-Ol.

Ifa new segment C-6 has just been inserted, it points to
C-7.

• If the D segment has been deleted (E will be deleted along
with it). it points to the first F segment.

• If the last F segment has just been retrieved, it points to
A-002.

During PSB generation it is possible to specify either single or
multiple positioning. Refer to "Multiple Positioning with DL/I
CaUs" in Chapter 4.

program communication block. See PCB.

program isolation. See PI.

program specification block. See PSB.

PSB. program specification block. The DBA generates a PSB
for each application program that uses DL/I facilities. The PSB
is associated with the application program for which it was gener­
ated and contains a PCB for each data base that is to be accessed
by the program. Once it is generated, the PSB is cataloged in a
core image library, and subsequently processed by a utility along
with the associated DBDs to produce the updated PSB and
DMBs; all of these are cataloged in a core image library for sub­
sequent use by the application program during execution. (See
DMB.)

qualified SSA. A qualified segment search argument contains
both a segment name that identifies the specific segment type,
and segment qualification that identifies the unique segment
within the type for which the call function is to be performed.
The physical makeup of an SSA is fuUy described in "Segment
Search Arguments" under "Calls to DL/I" in Chapter 4.

record. A data base record is made up of a unique root segment
and aU of its dependent segments. Referring to Figure 9-\: A-
001, B-OI, C-5, C-7, B-02, B-03, C-2, D, E, F, F, F constitute a
data base record.

root segment. The highest level (level I) segment in a record. A
root segment must have a key unless the organization is HSAM
or simple HSAM. The sequence of the root segments constitutes
the fundamental sequence of the data base. There can be only
one root segment per record. Dependent segments cannot exist
without a parent root segment but a root segment can exist with­
out any dependent segments.

RQDLI command. The instruction in the RPG II program used
to request DL/I services.

secondary Indexing. Secondary indexes can be used to establish
alternate entries to physical or logical data bases for application
programs. They can also be processed as data bases themselves.

segment. A segment is a group of similar or related data that can
be accessed by the application program with one I/O function
call. There may be a number of segments of the same type within
a record.

segment name. The segment name is assigned to each segment
type by the DBA. Segment names for the different segment types
must be unique within a data base. The segment name is used by
the application programmer when constructing a qualified or
unqualified SSA prior to issuing a call for a specific segment.

segment search argument. See SSA.

segment type. Same meaning as segment name. Different seg­
ment types may have different lengths, but within each single
type, all segments must be the same length (unless variable length
segments have been specified by the DBA). Referring to Figure
9-\, there are six different types of segments; A through F.

sensitivity. The DBA controls sensitivity to the various segments
that constitute a data base on a program-by-program basis (when
the PSB for each program is generated). A program is said to be
sensitive to a segment type when it can access that segment type.
When a program is not sensitive to a particular segment type, it
appears to the program as if that segment type does not exist at all
in the data base. Sensitivity applies to types of segments, not to
specific segments within a type, and to all segment types in the
path to the lowest level sensitive segment type.

Glossary G - 3

sequence field. See Key.

sequential processing. Processing or searching through the
segments in a data base in a forward direction (see Forward).

SSA. segment search argument. Describes the segment type, or
specific segment within a segment type, that is to be operated on
by a DL/I call. The physical makeup of an SSA is fully described
in "Segment Search Arguments" under "CalIs to DL/I" in Chap­
ter4.

status code. Each DL/I call returns a status code that reflects the
exact result of the operation. The status codes are returned in
field 3 of the PCB. The first operation that a program should
perform immediately following a DL/I call is to test the status
code in the PCB to insure that the function called for was success­
ful. The normally expected status codes associated with each call
function are in Figure 4-3.

G - 4 DL/I DOS/VS Guide For New Users

synchronization point. A logical point during the excution of an
application program where the changes made to the data bases by
the program are committed and will not be backed out if the
program subsequently terminates abnormally. Also referred to as
sync point or synch point.

A synch point is created by a DL/I CHKP call, a DL/I TERM
call, a CICS/VS synch point request, or end of task or program.

unqualified SSA. An unqualified SSA contains only a segment
name that identifies the specific type of segment for which the
I/O function is to be performed. As a general rule, the use of an
unqualified SSA retrieves the first occurrence of the specified
type of segment. The physical makeup of an SSA is fully de­
scribed in "Segment Search Arguments" under "Calls to DL/I"
in Chapter 4.

A
abnormal termination

in batch 7-6
in CICS/VS 7-7
in MPS 7-7
routine 7-1
routines 7-6

access method services
ALTER command 7-14
DEFINE command 3-64 - 3-66, 7-14
DELETE command 7-14
VERIFY command 7-9

access methods
and physical data bases 2-6
call functions allowed 2-10
HDAM (hierarchical direct access method) 2-6,2-13
HIDAM (hierarchical indexed direct access method) 2-6,2-13
HID AM characteristics 2-13
hierarchical direct access method (HDAM) 2-6, 2-13
hierarchical indexed direct access method (HIDAM) 2-6,2-13
hierarchical indexed sequential access
method (HISAM) 2-6,2-10
hierarchical sequential access method (HSAM) 2-6, 2-10
HISAM (hierarchical indexed sequential
access method) 2-6, 2-10
HISAM considerations 2-10 - 2-13
HISAM physical storage of a data base record 2-12
HSAM (hierarchical sequential access method) 2-6,2-10
HSAM considerations 2-10 - 2-13
HSAM physical storage of a logical data structure 2-11
overview 1-7
simple hierarchical sequential access method
(simple HISAM) 2-6, 2-10
simple hierarchical sequential access method
(simple HSAM) 2-6,2-10
simple HISAM (simple hierarchical indexed
seq uential access method) 2-6, 2-10
VSAM (virtual storage access method) 2-9,2-10

ACCESS operand
DBD statement 3-4
DBD statement for a secondary index 3-39
logical DBD statement 3-30

access path 1-7 - 1-9
data base 2-36
in a data base record 1-7 - 1-9
logical 1-9,2-17 - 2-18
physical 1-9,2-18

accessing
a logical child in a physical DBD 4-40
segments in a logical DBD 4-40
segments via a secondary index 4-40 - 4-41

ACT (application control table) 5-3,5-7
specifying the end of 5-10

adding new segment types to a data base structure 1-5 - 1-6
administration, data base user responsibility 1-12
ALTER command, access method services 7-14
AMXT parameter, CICS/VS 5-36 - 5-37
analysis, data base user responsibility 1-12
application control blocks creation and
maintenance (DLZUACBO) 3-1,3-61

BUILD statement 3-63
control statement requirements 3-61
JCL requirements 3-63 - 3-64

application control table (ACT) 5-3,5-7

specifying the end of 5-10
application data structure 4-1
application data structure, designing 2-39 - 2-40
application program

data base PCB mask, Figure 4-3 4-4 - 4-5
data base processing functions 1-7
entry 4-2
execution, batch 4-36
execution, batch parameter statement 4-36
interface 4-2
job control statements 4-35 - 4-36, 4-38
requests, ANS COBOL 5-18 - 5-20
requests, assembler language 5-23 - 5-26
requests, PL/I 5-21 - 5-22
termination 4-10

AS LOG parameter 4-36, 4-37
assembler language

batch program structure 4-32 - 4-34
entry point 4-2 - 4-3
requests in an application program 5-23 - 5-26

asynchronous logging option 7-5
attributes, defmition 2-36

B
backout utility, data base 7-8 - 7-9
backout, data base 7-8 - 7-9
basic

data base load process, Figure 4-20 4-38
data base processing 4-15
DLET call, Figure 4-13 4-19
get unique call, Figure 4-8 4-16
ISRT call, Figure 4-14 4-20
PSB coding 3-48
PSBs, sample 3-54
REPL call, Figure 4-12 4-19
segment types in a hierarchical data structure 1-7

batch
abnormal termination 7-6 - 7-7
application program execution 4-36

Index

application program execution, parameter statement 4-36
MPS programs, executing 5-28
partition controller 7-12
program structure, assembler batch 4-32 - 4-34
program structure, COBOL 4-23 - 4-25
program structure, PLI 4-25 - 4-27
program structure, RPG II 4-28 - 4-32
system, DL/I 1-3

begin qualification character field in SSA 4-9
BFRPOOL parameter, DLZACT macro 5-8
BLOCK operand, DATASET statement 3-6 - 3-7
buffer pool characteristics report 4-39
buffer pool control options, specifying 5-9 - 5-10
BUILD statement (ACBGEN) 3-63
BYTES operand

FIELD statement 3-12
FIELD statement for a secondary index DBD 3-41
FIELD statement for index source segment 3-38
SEGM statement 3-9
SEGM statement for a logical child 3-20
SEGM statement for a secondary index DBD 3-40

C
call functions for access methods 2-10

Index I - I

call path 4-21
call statements

checkpoint (CHKP) 4-8
delete (DLET) 4-8
delete (DLET), example of 4-19
function argument 4-8
get hold 4-18
get hold next (GHN) 4-8
get hold next within parent (GHNP) 4-8
get hold unique (GHU) 4-8
get next (GN) 4-8,4-16 - 4-17
get next (G N), example of qualified 4-17
get next call (GN), example of with qualified SSA 4-17
get next call (GN), unqualified 4-16 - 4-17
get next within parent (GNP) 4-8
get unique (GU) 4-8,4-16
get unique call (GU), example 4-16
I/O work area argument 4-8
insert (ISRT) 4-8
insert (ISRT), example of 4-20
overview 1-7
path retrieve call, example of 4-21
PCB name argument 4-8
positioning in data base after a DL/I call 4-22
replace (REPL) 4-8
replace (REPL), example of 4-19
segment search argument (SSA) 4-9

call, qualified 2-8
call, sample presentation 4-11
call, unqualified 2-8
calls and data base positioning 2-7 - 2-9
calls with command codes 4-21 - 4-22
catalog, VSAM 7-13 - 7-14
change accumulation utility, data base 7-8,7-10
checking the response to a DL/I call 5-16 - 5-18
checklist for data base design 2-41
checkpoint

(CHKP) call 2-9, 7-11
(CHKP) call function 4-8
call 7-9
call (CHKP) 2-9,7-11
facility 7-1
facility, DL/I 7-11
in batch MPS programs 7-12,7-13
in batch programs 7-12
records in DL/I backout, Figure 7-6 7-13

child, coding logical 3-20
child, logical 2-18
CHKP (checkpoint) call 2-9,7-11
CHKPT facility, DOS/VS 7-12,7-13
choosing the DL/I log medium 7-5 - 7-6
CICS/yS

abnormal termination 7-7,7-8
ACT (application control table), specifying the end of 5-10
AMXT parameter 5-36 - 5-37
call statement in application program 5-18
CMXT parameter 5-37
controlling the number of tasks 5-35 - 5-36
data base integrity 5-29
DFHFCT (file control table) 5-5,8-6
DFHPCT (program control table) 5-6,8-6
DFHPPT (processing program table) 5-6,8-6
differences between batch, MPS, and online 5-3
DL/Itable example 5-10 - 5-13
DL/I tables for the sample program, DLZSAM60 5-13
DOS/yS UPS I byte settings 5-13 - 5-14

1-2 DL/I DOS/VS Guide For New Users

emergency restart 7-8
executing with DL/I MPS 5-28
FCT (file control table) 5-5, 8-6
initialization 5-1
integrity 5-3 - 5-5
integrity, data base 5-29
JCL for creating the online nucleus 5-10
JCT (journal control table) 5-6
load module for online nucleus 5-10
MXT parameter 5-36
online application coding examples 5-18
online environment, DL/I 1-4
online nucleus generation, assembly listing 5-10
online nucleus generation, control statement listing 5-10
online nucleus generation, diagnostics 5-10
online nucleus generation, output 5-10
PCT (program control table) 5-6, 8-6
performance 5-5
PLT (program list table) 5-7
PPT (program processing table) 5-6,8-6
programming considerations 5-14,5-35
restart 7-3
restrictions 5-5
RQDLI commands, RPG II 5-26 - 5-28
scheduling call 5-14 - 5-16
security 5-3
SIT (system initialization table) 5-6,5-7
synch-pointrecord 7-7,7-12
system generation 5-5
system journal 7-7
system table preparation 5-5
tasks, controlling the number of 5-35 - 5-36
TCLASS parameter 5-37
TERM call 7-7
termination call 5-15

closing VSAM data sets 7-14
cluster concept, VSAM 2-9 - 2- 10
clusters, derming 2-41
CMAXTSK parameter, DL/I 5-38
CMAXTSK parameter, DLZACT macro 5-8
CMXT parameter, CICS/VS 5-37
COBOL

batch program structure 4-23 - 4-25
DL/I requests in application program 5-18 - 5-20

coding
a logical DBD 3-30
conventions,DBDGEN 3-2 - 3-3
logical relationship in a physical DBD 3-20
PSBs for logical data bases 3-55 - 3-57
PSBs for secondary indexes 3-57
secondary index DBD 3-39 - 3-41

command code
o 4-21
F 4-22
in call statements 4-21
in SSA 2-9, 4-9
L 4-22
N 4-21
Q 4-22

comreg, restrictions on use of 4-34
concatenated key 2-7

destination parent (DPCK) 2-19
logical parent (LPCK) 2-18, 2-19

concatenated keys, Figure 2-7 2-8
concatenated segment 1-9,2-20, 3-26

Figure 2-17 2-20

L
format, Figure 2-17 2-20

concepts of data base design 2-35
concepts of data elements, Figure 2-24 2-36
concepts, data base 1-4
conflict, intent 5-29
consequences of intent conflict 5-30
considerations, PI operational 5-35
control field for sorting segments into hierarchical
sequence, Figure 4-22 4-39

control interval, VSAM 2-10
control statements, basic DBDGEN 3-3
controlling the number of CICS/VS and DL/I tasks 5-35 - 5-36
correcting data bases 7-1
creating a secondary index 2-32,4-41
customer data base

DBD example phase 2 3-29
Figure 1-4 1-6
Figure 2-2 2-4
load PSB 3-54
load PSB phase 3 3-58
logical PSB 3-58 - 3-59
logical PSB phase 2 3-56 - 3-57
physical DBD phase 3 3-43 - 3-44
PSB to process 3-54
sample application description 2-2, 2-3
sample record, Figure 1-5 1-6

customer file record layout, Figure 1-3 1-5
customer history segment (STSCHIS), description 2-5
customer location segment (STSCLOC), description 2-5
customer name and address segment (STSCCST), description 2-4
customer order segment (STPCORD), description 2-5
customer status segment (STSCSTA), description 2-5

D
D command code 4-21
data base

access methods 2-10
access methods, selecting 2-40
access paths 2-36
administration, user responsibility 1-12
analysis, user responsibility 1-12
and its secondary index, Figure 1-9 I-II
attribute, data element 2-36
backout 7-8 - 7-9
backout utility 7-8 - 7-9
backout utility, Figure 7-4 7-9
change accumulation utility 7-8,7-10
checklist, data base design 2-41
concepts 1-4
correction 7-1
data dictionary 2-1 - 2-2
data element 2-35 - 2-36
data set image copy utility 7-8, 7-11
data set recovery utility 7-8,7-11
defming VSAM clusters 2-41
defmition 1-11
description (DBD) 1-11,2-6
description (DBD), index I-II
description (DB D), logical I-II
description (DBD), physical I-II
description generation (DBDGEN) 1-11,2-6,3-1
description generation, Figure 3-1 3-2
design 2-1,2-2
design aid 2-1
design and performance evaluation 2-38
design checklist 2-41
design concepts 2-35 - 2-38

design objectives 2-1,2-2
design process 2-35
design steps 2-38
design tasks 2-38
designing the application data structure 2-39
designing the physical data structure 2-39 - 2-41
entities 2-35
error detection 7-1
facility 1-4
gathering requirements, data base design 2-38 - 2-39
implementation 2-1, 3-1
implementation, Gantt chart 1-14, 1-15
implementation, gross PERT chart 1-14
implementation, overview 1-15 - 1-16
implementation, project approach 1-12, 1-13
implementation, project cycle 1-13
implementation, sample project plan 1-13
index target, coding 3-35
initial load/reload 6-4
initial load/reload, with logical relationships 6-4, 6-5
initial load/reload, with secondary indexes 6-5
integrity, online 5-29
key 2-33
load processing 6-1
load, with logical relationships 6-4 - 6-7
load, with secondary indexes 6-5 - 6-7
loading 3-67
loading HDAM 4-39
loading HIDAM 4-39
loading, status codes 4-39
log 7-3,7-5
log print utility 7-8
logging facility 7-1
logical 1-9, 2-17 - 2-20
logical data structure 1-4 - 1-5
management, user responsibility 1-12
multiple PCBs 4-23
online system 5-1 - 5-2
operations, user responsibility 1-12
performance aspects, physical data structure 2-41
physical 2-19 - 2-20
positioning 2-7 - 2-9
positioning after a DL/I call 4-22
prefix resolution utility (DLZURG 10) 6-1,6-2
prefix update utility (DLZURGPO) 6-1 - 6-2
prereorganization utility (DLZURPRO) 6-1,6-2
processing functions, application program 1-7
PSBs, logical 3-55 - 3-57
record 2-t' 2-7
record in physical storage, Figure 2-4 2-6
record, access path 1-7
record, description 1-4 - 1-5
record, Figure 2-3 2-6
record, key 1-5
record, key field 1-5, 1-7
record, sequence field 1-7
recovery 7-1, 7-10
recovery, Figure 7-5 7-11
reorganization 6-1
reorganization/load processing 6-3, 6-4
reorganization, HDAM 6-2
reorganization, HIDAM 6-2
restart 7-1
rules for data base structures 1-5
scan utility (DLZURGSO) 6-1 - 6-2
secondary index 1-9
segment grouping, data base design 2-39

Index 1-3

structure, logical 1-4 - 1-5
structure, physical 1-7
synonyms 2-36
transaction 2-36
transaction/data element matrix 2-36 - 2-38

data dictionary, DB/DC 2-1 - 2-2
data elements 2-35 - 2-36
data elements, grouping into physical segments 2-39
data independence I-I - 1-2
data set

image copy utility 7-8 - 7-10
recovery utility 7-8,7-10
share options 5-5
VSAM 7-14

data structure, physical (see physical data structure)
DATASET statement 3-5 - 3-8

BLOCK operand 3-6 - 3-7
DDloperand 3-6
DEVICE operand 3-6
logical DBD 3-30
RECORD operand 3-8
SCAN operand 3-7 - 3-8
secondary index DBD 3-39 - 3-41

DB/DC data dictionary 2-1 - 2-2
DBD (data base description) 1-11,2-6

index I-II
logical I-II
physical I-II

DBD example, phase 2 customer data base 3-29
DBD example, phase 2 inventory data base 3-27 - 3-29
DBD statement, basic 3-4, 3-5

ACCESS operand 3-4
HDAM parameter, ACCESS operand 3-4
HIDAM parameter, ACCESS operand 3-4
HISAM parameter, ACCESS operand 3-4
HSAM parameter, ACCESS operand 3-4
INDEX parameter, ACCESS operand 3-4
NAME operand 3-4
RMNAME parameter, ACCESS operand 3-5
SHISAM parameter, ACCESS operand 3-4
SHSAM parameter, ACCESS operand 3-4

DBD statement, secondary index 3-39
DBD statements for index source segment, Figure 3-14 3-38
DBD statements for index target segment, Figure 3-13 3-35
DBD, coding a logical relationship in physical 3-20
DBD, HIDAM data base 3-19
DBD, logical 3-30, 3-31
DBD, secondary index 3-39
DBDGEN

(data base description generation) 1-11,2-6,3-1
coding conventions 3-2, 3-3
EN D statement 3-13
execution, job control language 3-14
FINISH statement 3-13
for the phase I data bases, Figure 3-4 3-15 - 3-18
input deck structure, Figure 3-2 3-3
logical relationships 3-20
secondary indexes 3-35
statement 3-13

DBDNAME operand, PCB statement 3-48
001 operand, DATASET statement 3-6
deadlock avoidance, PI 5-35
DEFINE command, access method services 3-57 - 3-59, 7-14
defining the online environment for DL/I 5-8
defining VSAM clusters 2-41
defining VSAM data sets, Figure 3-23 3-65

1-4 DL/I DOS/VS Guide For New Users

defmition, data base I-II
DELETE command, access method services 3-65 - 3-66, 7-14
delete

(DLET) call function 4-8
byte 2-7
call (DLET) 2-9
call (DLET), example of 4-19
rule for logical child segment 2-27
rule for physical parent segment 2-26

deleting segments 4-19
deleting segments via a secondary index 4-41
deletion rules, logical relationships 3-22
dependent segment, definition 1-7
description of DL/I I-I
description of PSBGEN output 3-55
description of the online nucleus generation output 5-10
design

aid, data base 2-1
data base 2-1
process for data bases 2-35 - 2-38

destination parent 2-19
destination parent concatenated key (DPCK) 2-19
determining the intent, intent scheduling 5-30
device independence I-I - 1-2
DEVICE operand, DATASET statement 3-6
DFHFCT - CICS/VS me control table 8-7
DFHPCT - CICS/VS program control table 8-7
DFHPPT - CICS/VS processing program table 8-7
differences between batch, MPS, and online DL/I 5-3
direct access pointers in HDAM and HIDAM 2-15 - 2-17
direct access pointers in HDAM and HIDAM, Figure 2-12 2-16
distributed free space 2-15,3-8
DL/I

abnormal termination routines 7-6 - 7-8
ACB creation and maintenance for each PSB, Figure 3-22 3-62
ACT (application control table) 5-7
ACT (application control table), specifying the end of 5-10
application program for RPG II 4-11 - 4-15
batch system, Figure I-I 1-3
batch UPSI byte setting 4-37 - 4-38
call in CICS/VS application program 5-18
calls to 4-8
checkpoint facility 7-9,7-11
checkpoint in batch MPS programs 7-12,7-13
checkpoint in batch programs 7-12
CICS/VS programming considerations 5-14
CICS/VS table example 5-10- 5-13
CICS/VS tables for the sample program, DLZSAM60 5-13
CMAXTSK parameter 5-38
controlling the number of tasks 5-35 - 5-36
customer sample data base description 2-2, 2-3
data base facility 2-6
data base integrity, online 5-29
data base record 2-6, 2-7
data base record in physical storage, Figure 2-4 2-6
data base record, Figure 2-3 2-6
defming the online environment 5-8
differences between batch, MPS, and online 5-3
DOS/VS buffer pool characteristics report 4-39
entry to an application program 4-2
executing CICS/VS with MPS 5-28
general information I-I
general system description I-I
installation plan PERT chart, Figure I-II 1-14
intent propagation rules, Figure 5-4 5-30
interface 4-1

interface with an application program, Figure 4-1 4-2
introduction I-I
inventory sample data base description 2-2
log medium, choosing 7-5 -7-6
logging facility 7-3 - 7-5
online environment 1-4
online sample application program 2-5 - 2-6
online sample load program, DLZSAM40 2-5
online sample print program, DLZSAM50 2-5
online system execution 5-1
online system, initialization of 5-13
positioning 4-15
potential users I-I
processing options, PCB mask 4-5
program execution 1-2
program structure 1-2, 4-1
programming considerations for CICS/VS 5-14
recovery utilities 7-10
recovery, VSAM considerations 7-13
requests in an ANS COBOL program 5-18 - 5-20
requests in an assembler language program 5-23 - 5-26
requests in PL/I program 5-21 - 5-22
reserved area in PCB mask 4-6
restart, VSAM considerations 7-13
sample application 2-2
sample programs 2-5
secondary indexes 2-28
segment, defmition 1-4
status codes, Figure 4-4 4-7
status code, PCB mask 4-5
tasks, controlling the number of 5-35 - 5-36
UPSI byte setting for batch 4-37 - 4-38
utility programs 1-2
VSAM considerations in recovery 7-13
VSAM considerations in restart 7-13

DLET (delete call) 2-9
DLET (delete call), example of 4-19
DLZACT macro 5-7 - 5-9

BFRPOOL parameter 5-8
CMAXTSK parameter 5-8
DL/I online nucleus generation 8-7
HDBFR parameter 5-9
HSBFR parameter 5-9
MAXT ASK parameter 5-8
PASS parameter 5-8
PGMNAME parameter 5-9
PI parameter 5-8
REMOTE parameter 5-8
SLC parameter 5-8
specification for PI 5-35

DLZFSDPO, formatted dump program 7-8
DLZPSIL, PSB intent list 5-30
DLZSAMCP, sample compression/expansion routine 8-2 - 8-4
DLZSAM40 sample load program 2-5, 4-30, 8-5
DLZSAM50 sample batch print program 2-5, 8-6
DLZSAM60 online sample application program 2-5, 5-13, 8-6 - 8-8

CICS/VS-DL/I tables 5-13
DFHFCT - CICS/VS file control table 8-7
DFHPCT - CICS/VS program control table 8-7
DFHPPT - CICS/VS processing program table 8-7
DLZACT - DL/I online nucleus generation 8-7
JCL 8-7
restrictions 8-8
screen formats 8-9

DLZU ACBO, application control blocks creation and
maintenance 3-53

BUILD statement 3-63

control statement requirements 3-61
JCL requirements 3-63 - 3-64

DLZURGLO (HD reorganization reload) utility 6-1
DLZURGPO (data base prefix update) utility 6-1
DLZURGSO (data base scan) utility 6-1
DLZURGUO (HD reorganization unload) utility 6-1
DLZURGIO (data base prefIX resolution) utility 6-1
DLZURPRO (data base prereorganization) utility 6-1
DLZURRLO (HISAM reorganization reload) utility 6-1
DLZURULO (HISAM reorganization unload) utility 6-1
DLZ020I message 7-14
DLZI051 message 7-12,7-13
DOS/VS

CHKPT facility 7-12
UPSI byte settings, online 5-13 - 5-14

DPCK (destination parent concatenated key) 2-19
dump program, DLZFSDPO 7-8
dynamic segment expansion 2-34

E
END statement (PSBGEN) 3-53
END statement, DBDGEN 3-13
entities 2-35
entry sequenced data set (ESDS) 2-9,2-10
entry to an application program 4-2
error routines for status codes 4-39
ESDS (entry sequenced data set) 2-9,2-10
example log write times, Figure 7-3 7-6
example oflogical DBDs 3-31 - 3-34
examples of

loading data bases 6-8
physical DBDs 3-14 - 3-18
physical DBDs with logical relationships 3-26
prefix resolution utility 6-9
prefix update utility 6-10
prereorganization utility 6-8

exclusive intent, compared with PI 5-34
executing batch MPS programs 5-28
execution of DBDGEN (JCL) 3-14
execution ofDL/1 programs 1-2
execution ofPSBGEN, JCL 3-55
exit routine, field 2-33 - 2-34

F
F command code 4-22
facility, data base 1-4
FCT (file control table), CICS/VS 5-5 - 5-6
field exit routine 2-33 - 2-34
field level sensitivity 1-4,2-32 - 2-35
field name, in SSA 4-9
field, virtual 2-33
FIELD statement 3-11, 3-13

BYTES operand 3-12
index source segment 3-38 - 3-39
NAME operand 3-11
secondary index DBD 3-41
SEQ parameter, NAME operand 3-12
START operand 3-12
TYPE operand 3-12 - 3-13

file control table (FCT), CICS/VS 5-5 - 5-6
file integrity and recovery 1-3, 1-4
file record layout, data base 1-5
FINISH statement, DBDGEN 3-13
format, basic DBDGEN control statements 3-3
formatted dump program, DLZFSDPO 7-8
free space, distributed 2-15,3-8
FRSPC operand, DATASET statement 3-8

Index 1-5

function argument, call statements 4-8

G
Gantt chart, data base implementation 1-14, 1-15
Gantt chart, sample I-IS
general assembler language batch program
structure, Figure 4-19 4-32 - 4-34
general characteristics of segment search arguments 4-10
general COBOL batch program structure, Figure 4-16 4-23 - 4-25
general information I-I
general PL/I batch program structure, Figure 4-17 4-25 - 4-27
general system description ofDL11 I-I
get hold calls 4-18
get hold next call (GHN) 2-9

function 4-8
get hold next within parent call (G HNP) 2-9

function 4-8
get hold unique call (GHU) 2-9

function 4-8
get next call (GN) 2-8,4-16

example of qualified 4-17
example of with qualified SSA 4-18
function 4-8
qualified 4-16 - 4-18
unqualified 4-16

get next within parent call (GNP) 2-9
function 4-8

get unique call (GU) 2-8,4-16
example 4-16
function 4-8

G HN (get hold next call) 2-9
GHNP (get hold next within parent call) 2-9
GHU (get hold unique call) 2-9
GN (get next call) 2-8,4-16

example of qualified 4-17
example of with qualified SSA 4-18
qualified 4-16 - 4-18
unqualified 4-16

GNP (get next within parent call) 2-9
gross PERT chart 1-14
grouping data elements into physical segments, Figure 2-28 2-40
grouping segments 2-39
GU (get unique call) 2-8,4-16

H

using a secondary index, example 4-40
using a secondary index, Figure 4-22 4-40

HD reorganization reload utility (DLZURGLO) 6-1
HD reorganization unload utility (DLZURGUO) 6-1
HDAM

(hierarchical direct access method) 2-6, 2-13 - 2-17
characteristics 2-13
data base in physical storage 2-14
data base record in physical storage, Figure 2-10 2-14
data base reorganization 6-2
data base, loading 4-39
direct access pointers 2-15 - 2-17
inserts and deletes 2 -15
when to choose 2-38

HDBFR parameter, DLZACT macro 4-36 - 4-37,5-9
HIDAM

(hierarchical indexed direct access method) 2-13 - 2-17
characteristics 2-13
data base record in physical storage 2-15
data base record in physical storage, Figure 2·11 2·15
data base reorganization 6-2

1 - 6 DL/I DOS/VS Guide For New Users

data base, loading 4-39
direct access pointers 2-15 - 2-17
inserts and deletes 2-15
primary index 2-14 - 2-15
when to choose 2-40

hierarchical data structure, Figure 1-2 1-4
hierarchical direct access method (HDAM) 2-6, 2-13 - 2-17
hierarchical indexed direct access method (HIDAM) 2-6,2-13 - 2-17
hierarchical indexed sequential access method (HISAM) 2-6, 2-10
hierarchical sequential access method (HSAM) 2-6, 2-10
HISAM ..

(hierarchical indexed sequential access method) 2-6, 2-10
physical storage of a data base record 2-12
physical storage of a data base record, Figure 2-9 2-12
reorganization reload utility (DLZURRLO) 6-1
reorganization unload utility (DLZURULO) 6-1

HSAM (hierarchical sequential access method) 2-6, 2-10
HSAM considerations 2-10
HSAM physical storage of a logical data structure 2-11
HSAM physical storage of a logical data structure, Figure 2-8 2-11
HSBFR parameter, DLZACT macro 4-37, 5-9

I/O work area argument, call statement 4-8
image copy utility 7-3,7-8
image copy utility, data set 7-10
implementation of data base

gross PERT chart 1-14
project approach 1-12,1-13
project cycle 1-12 - 1-13
sample project plan 1-13

implementation overview, data balie 1-15 - 1-16
implementation technique, logical relationships 2-27
implementation, data base 3-1
IMS/VS I-I
independence, data I-I· 1-2
independence, device I-I - 1-2
INDEX operand, LCHILD statement 3-11
INDEX operand, LCHILD statement for a secondary
index DBD 3-40
index

DBD I-II
pointer segment 1-9
pointer segment, secondary indexes 2-28
primary 3-19
secondary (see secondary index)
source segment 1-9
source segment, coding 3-37 - 3-39
source segment, DBD statements 3-38
source segment, secondary indexes 2-28
target data base, coding 3-35
target segment 1-9
target segment, coding 3-35
target segment, secondary indexes 2-28

indexing, secondary 1-9
initialization of the 0 L/I online system 5-13
insert (ISRT) call function 4-8
insert call (IS RT) 2-9
insert call (ISRT), example of 4-20
insert rule

logical child segment 2-27
logical parent segment 2-26
physical parent segment 2·25

inserting segments 4·20
inserting segments via a secondary index 4·41
insertion rules for logical relationships, Figure 3·6 3·22

L
insertion rules, logical relationships 3-22
inserts and deletes in HDAM and HIDAM 2-15
integrity, CICS/VS 5-3 - 5-5
integrity, file 1-3 - 1-4
integrity, online data base 5-29
intent conflict 5-29

consequences, Figure 5-3 5-30
matrix 5-30 - 5-31
minimizing 5-31 - 5-32

intent scheduling 5-29
intent scheduling, determining the intent 5-30
intent, exclusive compared with PI 5-34
intent, read-only compared with PI 5-34
intent, update compared with PI 5-34
interface components 4-1,4-2
interface with an application program 4-2
introduction, DL/I I-I
inventory data base

DBD example phase 2 3-27 - 3-29
Figure 2-1 2-4
load PSB phase 3 3-58
logical DBD phase 2 3-33, 3-34
logical PSB phase 2 3-56
physical DBD phase 3 3-42 - 3-43
PSB, logical 3-58 - 3-59
sample application description 2-2

inventory item segment (STPIITM), description 2-4
inventory location segment (STSILOC), description 2-4
ISRT (insert call) 2-9

example of 4-20
function: 4-8
loading data bases 6-4

issuing the DL/I call, CICS/VS application program 5-18

J
J CL for creating the online nucleus 5-10
JCT (journal control table), CICS/VS 5-6
job control statements

application program 4-34 - 4-36, 4-38
COBOL application program 4-34
PL/I application program 4-35

journal control table (JCT), CICS/VS 5-6
journal, CICS/VS system 7-6

K
key feedback area length, PCB mask 4-6
key feedback area, PCB mask 4-6
key field 1-7
key field in a data base record 1-7
key of a data base record 1-5
key sequenced data set (KSDS) 2-9,2-10
key, concatenated 2-7
KEYLEN operand, PCB statement 3-49
keys, concatenated, Figure 2-7 2-8
KSDS (key sequenced data set) 2-9,2-10

L
L command code 4-22
LANG operand, PSBGEN statement 3-53
LCF (logical child first pointer) 2-27
LCHILD statement 3-11

IND EX operand 3-11
index target segment: 3-35 - 3-36
index target segment: NAME operand 3-35
index target segment: PTR operand 3-35 - 3-36
NAME operand 3-11,3-25

PAIRoperand 3-26
POINTER operand 3-11, 3-25 - 3-26
RULES operand 3-26
secondary index DBD 3-40

LCL (logical child last pointer) 2-27
load module, online nucleus 5-10
load processing

data base 6-1
load program, sample application (DLZSAM40) 2-5
load PSB, customer data base 3-54, 3-58
loading

data bases 3-67
data bases with logical relationships 4-38, 6-6, 6-7
data bases with logical relationships and/or secondary
indexes, Figure 6-2 6-6

data bases with secondary indexes 6-6, 6-7
data bases, status codes 4-39
HDAM data base 4-39
HIDAM data base 4-39
of two data bases with logical relationships and secondary
indexes, Figure 6-3 6-7

LOG parameter 4-37
log print utility, data base 7-8
log, data base 7-3 - 7-5
logging and performance 7-5
logging facility 7-1
logging facility, DL/I 7-3 - 7-5
logging option, asynchronous 7-5
logical access path 1-9, 2-18
logical child 2-18

accessing in a physical DBD 4-40
coding 3-20
deletion rules, Figure 3-8 3-23
fust pointer (LCF) 2-27
last pointer (LCL) 2-27
segment 1-9
segment format 2-18
segment format, Figure 2-14 2-18
virtual (VLC) 2-18

logical data base 1-9, 2-17
logical data base structure 1-4
logical data bases 2-19 - 2-20
logical data bases after relating CUSTOMER and
INVENTORY data bases, Figure 1-8 1-10

logical DBD I-II
logical parent 2-18

concatenated key (LPCK) 2-18
deletion rules, Figure 3-7 3-23
pointer (LP) 2-27
segment 1-9

logical record format for the index pointer segment,
Figure 2-23 2-31

logical relationships, replacement rules 3-22
logical relationships 2-17

ACCESS operand, logical DBD statement 3-30
accessing segments in a logical DBD 4-40
accesssing a logical child in a physical DBD 4-40
bidirectional 1-9
building logical relationships 2-17 - 2-18
BYTES operand ofSEGM statement for a logical child 3-21
coding a logical child 3-20
coding a logical DBD 3-30
coding in a physical DBD 3-20
concatenated segment 1-9,2-20
concatenated segments 3-30 - 3-31
DATASET statement, logical DBD 3-30
DBD examples, physical 3-26

Index 1-7

DBD, logical 3-30
DBDGEN 3-20
DBDGEN statement in logical DBD 3-31
delete rule for logical child segment 2-27
delete rule for logical parent segment 2-26
delete rule for physical parent segment 2-26
deletion rules 3-22
design rules 2-22
destination parent 2-19
END statement in logical DBD 3-31
FINISH statement in logical DBD 3-31
general description 1-9
implementation technique 2-27
insert rule for logical child segment 2-27
insert rule for logical parent segment 2-26
insert rule for physical parent segment 2-25
insertion rules 3-22
intent propagation 5-29
LCHILD statement 3-25
loading data bases with 4-38
logical access path 1-9,2-18
logical child 1-9,2-18
logical child first pointer (LCF) 2-27
logical child last pointer (LCL) 2-27
logical child, coding 3-20
logical data base 1-9
logical DBD I-II
logical DBD, coding 3-30
logical parent 1-9, 2-18
logical parent concatenated key (LPCK) 2-18
logical parent pointer (LP) 2-27
logical parent segment 1-9
logical twin backward pointer (L TB) 2-27
logical twin forward pointer 2-27
NAME operand ofSEGM statement for a logical child 3-20
NAME operand, LCHILD statement 3-35
NAME operand, logical DBD statement 3-30
NAME operand, SEGM statement for a logical parent 3-25
NAME operand, SEGM statement in logical DBD 3-30
PAIR operand, LCHILD statement 3-26
PARENT operand ofSEGM statement for a logical child 3-20
PARENT operand, SEGM statement for a logical parent 3-25
PARENT operand, SEGM statement in logical DBD 3-30
physical access path 1-9, 2-18
physical DBD I-II
physical DBDs with logical relationships 3-26
physical parent pointer 2-27 - 2-28
physical parent segment 1-9
POINTER operand of SEG M statement
for a logical child 3-21
pointers used in HDAM 2-27 - 2-28
pointers used in HIDAM 2-27 - 2-28
processing logically related segments 2-25
processing with 4-39 - 4-40
PTR operand, SEGM statement for a logical parent 3-25
replace rule for logical child segment 2-27
replace rule for logical parent segment 2-27
replace rule for physical parent segment 2-26
resolution 6-2
rules for defming in logical data bases 2-22
rules for defming in physical data bases 2-22
RULES operand of SEG M statement for a
logical child 3-21 - 3-22
RULES operand, LCHILD statement 3-26
SEGM statement for a logical parent 3-24 - 3-25
SEGM statement, coding 3-20 - 3-22, 3-24 - 3-25

1-8 DL/I DOS/VS Guide For New Users

SEGM statement, logical DBD 3-30 - 3-31
segment types involved 2-17 - 2-18
SOURCE operand, SEGM statement for a logical parent 3-25
SOURCE operand, SEGM statement in logical DBD 3-30 - 3-31
unidirectional 1-9
virtual logical child (VLC) 2-18
virtual paired bidirectional logical relationship 2-18
VLC (virtual logical child) 2-18
why logical relationships 2-17

logical twin backward pointer (L TB) 2-27
logical twin forward pointer (L TF) 2-27
logically related segments, processing 2-25
LP (logical parent pointer) 2-27
LPCK (logical parent concatenated key) 2-18
L TB Oogical twin backward pointer) 2-27
L TF (logical twin forward pointer) 2-27

M
management, data base user responsibility 1-12
master catalog, VSAM 8-1
maximum segment lengths, Figure 3-3 3-7
MAXT ASK parameter, DLZACT macro 5-8
messages

DLZOOII 7-6
DLZOO2I 7-6
DLZ0201 7-14
DLZ026I 7-8
DLZ068I 7-8
DLZ070I 7-8
DLZ096I 7-7
DLZI05I 7-12,7-13

minimizing intent conflicts 5-31 - 5-32
MPS (multiple partition support) 5-1 - 5-3

abnormal termination 7-7
batch data base system flow, Figure 5-2 5-4
batch programs, executing with MPS 5-28
CICS/VS-DL/I DOS/VS interface 5-1
considerations 5-17
differences between batch, MPS, and online 5-3
executing batch MPS programs 5-28
executing CICS/VS with DL/I MPS 5-28
programming considerations 5-35

MPS and online considerations 5-1, 5-17
multiple partition support (see MPS)
multiple PCBs for one data base 4-23
MXT parameter, CICS/VS 5-36

N
N command code 4-21
NAME operand

DBD statement 3-4
DBD statement for a secondary index 3-39
FIELD statement 3-11
FIELD statement for a secondary index DBD 3-41
FIELD statement for index source segment 3-38 - 3-39
LCHILD statement 3-11
LCHILD statement for a secondary index DBD 3-40
logical DBD statement 3-30
SEGM statement 3-9
SEGM statement for a logical child 3-20
SEGM statement for a logical parent 3-25
SEGM statement for a secondary index DBD 3-40
SEGM statement in logical DBD 3-30
SENSEG statement (PSBGEN) 3-49
XDFLD statement in index target DBD 3-36

naming conventions for sample application 2-3

L
nucleus

assembly listing for online generation 5-10
control statement listing for online 5-10
diagnostics for online generation 5-10, 5-11
J CL for creating the online 5-10
online load module 5-10

number of sensitive segments, PCB mask 4-4 - 4-6

o
obtaining the address of the PCB, the scheduling call 5-14 - 5-15
occurrence, defmition 2-35
online application PSB, update 3-53
online data base system 5-1,5-2
online data base system flow, Figure 5-1 5-2
online nucleus generation 8-6

assembly listing 5-10
control statement listing 5-10
diagnostics 5-10
output 5-10

online nucleus, JCL for creating 5-10
online nucleus, load module 5-10
online order inquiry application PSB, read only 3-59 - 3-60
online sample application job stream 8-1
online sample application program, DLZSAM60 2-5
online sample application program, DLZSAM60

DFHFCT - CICS/VS file control table 8-7
DFHPCT - CICS/VS program control table 8-7
DFHPPT - CICS/VS processing program table 8-7
DL/I online nucleus generation 8-6
JCL 8-7
screen formats 8-9

online sample application, DL/I 8-1
online sample load program, DLZSAM40 2-5
online system, initialiZlltion of 5-13
operational considerations, PI 5-35
operations, data base user responsibility 1-12
order item segment (STCCITM), description 2-5
overflow area (ESDS) 2-13
overlay program, restriction 4-34
overview, data base implementation 1-15 - 1-16

p
parameter statement for batch application program execution 4-36
PARENT operand

SEGM statement 3-9
SEGM statement for a logical child 3-20
SEGM statement for a logical parent 3-25
SEGM statement in logical DBD 3-30
SENSEG statement 3-49

parenti child relationship 1-7
parent, logical 2-18
PASS parameter, DLZACT macro 5-8
path call 4-21
path retrieve call, example of 4-21
PCB (program communication block) 1-11,4-1,4-2
PCB-name argument, call statement 4-8
PCB mask 4-3 - 4-6

DL/I processing options 4-5
DL/I status code 4-5
key feedback area length 4-6
key feedback area 4-6
number of sensitive segments 4-6
reserved area 4-6
segment hierarchy level indicator 4-4
segment name feedback area 4-6

PCB statement 3-48 - 3-49
DBDNAME operand 3-48

KEYLEN operand 3-49
POS operand 3-49
PROCOPT operand 3-48 - 3-49
PROCSEQ operand 3-49

PCB
segment name feedback area 4-21

PCBs, multiple for one data base 4-23
PCT (program control table), CICS/VS 5-6
performance and logging 7-5
performance aspects, physical data structure 2-39 - 2-40
performance, CICS/VS 5-5
PERT chart 1-14
PGMNAME parameter, DLZACT macro 5-9
phase I

inventory data base, Figure 4-7 4-16
sample application, description 2-4

phase 2
logical data bases, Figure 2-18 2-21
logical DBD for the customer data base, Figure 3-11 3-31 - 3-32
logical DBD for the inventory data base, Figure 3-12 3-33 - 3-34
physical data bases, Figure 2-16 2-19
physical DBDs, Figure 3-10 3-27 - 3-29

phase 3
physical data bases, Figure 2-22 2-30
physical DBDs, Figure 3-16 3-42 - 3-45

physical access path 1-9,2-18
physical child pointer 2-17
physical data base structure 1-7
physical data bases 2-19 - 2-20
physical data bases and access methods 2-6
physical data bases, Figure 2-22 2-30
physical data structure

designing 2-39 - 2-41
performance aspects 2-40 - 2-41
selecting data base access methods 2-40
when to choose HDAM 2-40
when to choose SHISAM 2-40

physical DBD I-II
coding a logical relationship in 3-20
examples 3-14 - 3-18
HIDAM data base 3-19
with logical relationships, examples 3-27

physical parent pointer (PP) 2-27 - 2-28
physical parent segment 1-9
physical twin pointer 2-17
PI (program isolation) 5-33 - 5-35

CICS/VS abnormal termination 7-7 - 7-8
comparison with intent scheduling 5-34
contention management 5-34
deadlock avoidance 5-35
DLZACT macro specification 5-35
exclusive intent 5-34
operational considerations 5-35
parameter, DLZACT macro 5-8
programming considerations 5-35
read-only intent 5-34
update intent 5-34

PL/I
batch program structure 4-25 - 4-27
PROCEDURE statement 4-2
requests in application program 5-21 - 5-22

PLT (program list table), CICS/VS 5-7
POINTER operand

LCHILD statement 3-11
SEGM statement 3-10
SEGM statement for a logical child 3-21

pointer, physical child 2-17

Index 1-9

pointer, physical twin 2-17
POS operand, PCB statement 3-49
positioning in data base after a DL/I call 4-22
potential intent conflict matrix 5-30 - 5-32
poterttial intent conflict matrix, Figure 5-6 5-32
potentiallisers of DL/I I-I
PP (physical parent pointer) 2-27 - 2-28
PPT (program processing table), CICS/VS 5-6
primary index 3-19
primary index (HIDAM) 2-14 - 2-15
print program, sample application (DLZSAM50) 2-5
PROCEDURE statement, PL/I 4-2
processing

data bases 4-1
logically related segments 2-25
sequence, secondary 1-9,2-28
with logical relationships 4-39 - 4-40
with secondary indexes 4-40 - 4-41

PROCOPT
operand, PCB statement 3-48 - 3-49
operand, SENSEG statement (PSBGEN) 3-49 - 3-50
parameter 6-4, 6-5
selection, PSB 5-32

PROCSEQ operand, PCB statement 3-49
PROCSEQ operand, PCB statement (PSBGEN) 3-57
program

communication block (PCB) 1-11,4-1
control table (PCT), CICS/VS 5-6
execution, DL/I 1-2
list table (PL T), CI CS/VS 5-7
processing table (PPT), CICS/VS 5-6
specification block (PSB) 1-11,2-6,4-1
specification block generation (PSBGEN) 2-6,3-45,4-1
specification block generation (PSBGEN), Figure 3-17 3-46
structure and interface to DL/I 4-1
structure, COBOL batch 4-23 - 4-25
structure\ DL/I 1-2
structure, PL/I batch 4-25 - 4-27

programming considerations, CICS/VS 5-14
programming considerations

CICS/VS 5-35
MPS 5-35
PI 5-35

project approach to data base implementation 1-12 - 1-13
project cycle, data base implementation 1-12 - 1-13
project cycle, Figure 1-10 1-13
PSB

(program specification block) 1-11,2-6,4-1
coding 3-41
for the online application, update 3-61
intent list, DLZPSIL 5-30
load customer and inventory data bases phase 3 3-58
logical customer data base 3-58 - 3-59
logical customer data base phase 2 3-56 - 3-57
logical inventory data base 3-56
logical inventory data base phase 2 3-56
online order inquiry application - read only 3-59 - 3-60
PROCOPT selection 5-32
scheduling for a short duration of time 5-33
to process customer data base 3-54

PSBGEN
(program specification block generation) 2-6, 3-45, 4-1
execution, JCL 3-55
input deck structure, Figure 3-18 3-47
output, description 3-55
secondary index PCB statement 3-57

1- 10 DL/I DOS/VS Guide For New Users

SENFLD statement 3-50 - 3-52
SENSEG statement 3-49 - 3-50
statement 3-53
statement, LANG operand 3-53
statement, PSBNAME operand 3-53
VIRFLD statement 3-52 - 3-53

PSBNAME operand, PSBGEN statement 3-53
PSBNAME parameter, DLZACT macro 5-9
PSBs used for the phase 3 sample application,
Figure 3-21 3-58 - 3-60
PSBs, using multiple within one program 5-32 - 5-33
PTR operand, LCHILD statement for a secondary index DBD 3-40
PTR operand, SEGM statement for a logical parent 3-25

Q
Q command code 4-22
qualification statement, in SSA 4-9 - 4-10
qualification statements (in SSA) 2-9
qualification, in SSA 4-9 - 4-10
qualified call 2-8
qualified get next call 4-17
qualified get next call, Figure 4-10 4-17

R
read-only intent, compared with PI 5-34
RECO RD operand, DATASET statement 3-8
recovery

considerations, VSAM 7-13
data base 7-1
file 1-3, 1-4
online 7-1
procedure 7-1 - 7-3
procedure documentation 7-3 - 7-4
procedure flowchart 7-4
utilities 7-1
utilities, DL/I 7-8
utility, data set 7-8,7-10
VSAM considerations 7-13

relational operator field in qualification statement, SSA 4-9
relationships, logical (see logical relationships)
releasing a PSB in a CICS/VS application program,
the termination call 5-15
REMOTE parameter, DLZACT macro 5-8
reorganization/load flowchart, Figure 6-1 6-3
reorganization/load

flowchart 6-3
processing 6-1

reorganization
data base 6-1 - 6-2
frequency 6-1
HDAM data bases 6-2
HIDAM data bases 6-2
logical 6-1
overview 6-1
physical 6-1
programs 6-1
utilities 6-1
what is it 6-1
when to 6-1

REPL (replace call) 2-9
REPL (replace call) example of 4-19
replace

(REPL) call function 4-8
call (REPL) 2-9
call (REPL), example of 4-19
rule for logical child segment 2-27

L
rule for logical parent segment 2-27
rule for physical parent segment 2-26

replacement rules for logical relationships, Figure 3-9 3-24
replacement rules, logical relationships 3-22
replacing segments via a secondary index 4-40
requests in an assembler language program 5-23 - 5-26
resolution utilities, overview 6-5 - 6-6
response code, scheduling call 5-15,5-16
response code, termination call 5-16
restart

considerations, VSAM 7-13
data base 7-1
procedure 7-1,7-3
VSAM considerations 7-13

restrictions
CICSjVS 5-5
on comreg use 4-34
on overlay programs 4-34
set exit abnormal (STXIT AB) linkage 4-34

retrieve call, example of 4-21
retrieving segments 4-10
retrieving segments via a secondary index 4-40
RMNAME parameter, ACCESS operand in DBD statement 3-5
root addressable area (ESDS) 2-13
root segment, defmition 1-7
routines, abnormal termination 7-6
RPG II 4-11 - 4-15
RPG II batch program structure 4-28 - 4-32
RQDLI command, RPG II 4-11 - 4-15, 5-26 - 5-28
rules for data base structures 1-5
rules for designing logical relation~hips 2-22
RULES operand of SEG M statement for a logical child 3-21 - 3-24
RULES operand, SEG M statement 3-9 - 3-10
rules, intent propagation 5-30

S
sample application

CICSjVS-DL/I tables for DLZSAM60 5-13
customer data base description 2-2, 2-3
customer data base, Figure 2-2 2-4
customer history segment(STSCHIS), description 2-5
customer location segment (SToSCLOC), description 2-5
customer name and address segment (STSCCST),
description 2-4

customer status segment (STSCST A), description 2-5
delete rule for logical child segment 2-27
delete rule for logical parent segment 2-26
delete rule for physical parent segment 2-26
DLZSAMCP, sample compression/expansion routine 8-2 - 8-4
DLZSAM4O, initialization example 4-3
DLZSAM4O, online sample load program 2-5
DLZSAM50, online sample print program 2-5
DLZSAM60, online sample application 2-5
insert rule for logical child segment 2-27
insert rule for logical parent segment 2-26
insert rule for physical parent segment 2-25
inventory data base description 2-2
inventory data base, Figure 2-1 2-4
inventory item segment (STPIITM), description 2-4
inventory location segment (STSILOC), description 2-4
job stream 8-1
load program, DLZSAM40 2-5
naming conventions 2-3
online application program 2-5
order item segment (STCCITM), description 2-5
phase I description 2-4
phase I environment 4-15 - 4-16

phase 2 description 2-4, 2-5
phase 3 description 2-5
print program, DLZSAM50 2-5
replace rule for logical child segment 2-27
replace rule for logical parent segment 2-27
replace rule for physical parent segment 2-26
substitute item segment (STCISUB), description 2-4
vendor name segment (STSIVND), description 2-4

sample basic PSBs 3-54
sample batch print program, DLZSAM50

description 8-6
sample call presentation, Figure 4-6 4-11
sample data base load program (DLZSAM4O) 4-38
sample DBDs for a HIOAM data base, Figure 3-5 3-19
sample Gantt chart, Figure 1-12 1-15
sample load program, DLZSAM40

description 8-5
example 8-5

sample path retrieve call, Figure 4-15 4-21
sample project plan, data base implementation 1-13
sample PSBs for phase I, Figure 3-19 3-54
sample PSBs for phase 2, Figure 3-20 3-56 - 3-57
sample recovery procedure flowchart, Figure 7-2 7-4
SCAN operand, DATASET statement 3-7 - 3-8
scheduling

a PSB for a short duration of time 5-33
call, obtaining the address of the PCB 5-14 - 5-15
call, response code 5-15 - 5-16
intent 5-29

secondary index DBD - customer name 3-45
secondary index DBD - customer order # 3-45
secondary index DBD - inventory item # 3-44
secondary index 2-28

ACCESS operand, DBD statement 3-39
accesssing segments 4-40
BYTES operand, FIELD statement for a secondary
index DBD 3-41

BYTES operand, FIELD statement for index source
segment 3-38
BYTES operand, SEGM statement for a secondary
index DBD 3-40

coding a secondary index DBD 3-39
coding an index target data base 3-35
coding an index target segment 3-35
creation 4-41
DATASET statement, secondary index DBD 3-40
DBD statement 3-39
DBDGEN 3-35
deleting segments 4-41
design rules 2-30
FIELD statement for a secondary index DBD 3-41
FIELD statement, index source segment 3-38 - 3-39
implementation technique 2-30 - 2-31
INDEX operand, LCHILD statement for a secondary
index DBD 3-40
index pointer segment 1-10, 2-28
index source segment 1-10,2-28
index source segment, coding 3-37
index target segment 1-10, 2-28
inserting segments 4-41
LCHILD statement, index target segment 3-35 - 3-36
LCHILD statement, secondary index DBD 3-40
NAME operand, DBD statement 3-39
NAME operand, FIELD statement for a secondary
index DBD 3-41
NAME operand, FIELD statement for index source
segment 3-38

Index I - II

NAME operand, LCHILD statement for a secondary
index DBD 3-40

NAME operand, SEGM statement for a secondary
index DBD 3-40

NAME operand, XDFLD statement in index target DBD 3-36
processing with 4-40
PROCSEQ operand, PCB statement (PSBGEN) 3-57
PSB coding 3-57
PTR operand, LCHILD statement for a secondary
index DBD 3-40

replacing segments 4-41
retrieving segments 4-40
secondary processing sequence 1-10, 2-28
SEGM statement, index source segment 3-37 - 3-38
SEGM statement, index target segment 3-35
SEGM statement, secondary index DBD 3-40
SEGMENT operand, XDFLD statement in index
target DBD 3-36

segment types 2-28
segment types, Figure 2-21 2-29
SRCH operand, XDFLD statement in index target DBD 3-36
START operand, FIELD statement for a secondary
index DBD 3-41

START operand, FIELD statement for index source
segment 3-38
SUBSEQ operand, XDFLD statement in index target DBD 3-37
TYPE operand, FIELD statement for a secondary
index DBD 3-41

when to use 2-28
XDFLD statement, index target DBD 3-36 - 3-37

secondary indexing 1-9
secondary processing sequence, secondary index 1-9, 2-28
security, CICS/VS 5-3
SEGM statement, BYTES operand 3-9
SEGM statement, index source segment 3-37
SEGM statement, index target segment 3-35
SEGM statement, logical child

BYTES operand 3-21
NAME operand 3-20
PARENT operand 3-20
POINTER operand 3-21
RULES operand 3-21 - 3-24

SEGM statement, logical parent
NAME operand 3-24 - 3-25
PARENT operand 3-25
PTR operand 3-25
SOURCE operand 3-25

SEGM statement, POINTER operand 3-10
SEGM statement, secondary indexDBD 3-40
SEGM statement 3-9 - 3-11

NAME operand 3-9
PARENT operand 3-9
RULES operand 3-10

SEGMENT operand, XDFLD statement in index target DBD 3-36
segment

accessing via a secondary index 4-40
code 2-7
concatenated 1-9,2-20
deleting 4-19
dependent 1-7
edit/compression exit 2-32
expansion, dynamic 2-34
format 2-7
format, Figure 2-5 2-7
grouping 2-39
hierarchy level indicator, PCB mask 4-4

1- 12 DL/I DOS/VS Guide For New Users

index pointer 1-9
index source 1-9
index target 1-9
inserting 4-20
lengths, maximum 3-7
logical child 1-9
logical parent 1-9
name feedback area, PCB 4-21
name feedback area, PCB mask 4-6
name, in SSA 4-9
physical parent 1-9
root 1-7
search argument (SSA) 2-9
search argument (SSA), call statement 4-8 - 4-10
sensitivity 1-4
sorting in hierarchical sequence 4-39
twin 1-7
types and their relationships in a hierarchical
data structure, Figure 1-6 1-8
types associated with a secondary index, Figure 2-21 2-29
types in a hierarchical data structure 1-7
types involved in logical relationships 2-17 - 2-18
types involved in logical relationships, Figure 2-13 2-17
types involved in secondary indexes 2-28 - 2-29
types numbered in hierarchical sequence, Figure 2-6 2-7
updating 4-18

segments, accessing in a logical DBD 4-40
segments, adding new types to a data base structure 1-5
segments, defmition 1-4
segments, retrieving 4-16
segments

concatenated 3-30 - 3-31
variable length 2-32

SENFLD statement 3-50 - 3-52
BYTES operand 3-50
NAME operand 3-50
REPLACE operand 3-52
RTNAME operand 3-52
START operand 3-50
TYPE operand 3-51

SENSEG statement (PSBGEN)
NAME operand 3-49
PARENT operand 3-49
PROCOPT operand 3-49 - 3-50

sensitivity
field 2-32 - 2-35
segment 1-4

SEQ parameter, NAME operand of FIELD statement 3-12
sequence field 1-7
sequence field in a data base record 1-7
sequence fields and access paths 1-7
share option I, VSAM 5-3, 5-5, 7-14
share option 2, VSAM 5-5,7-14
share option 3, VSAM 5-5,7-14
share option 4, VSAM 5-5,7-14
share options, data set 5-5
SHISAM, when to choose 2-40
simple hierarchical indexed sequential access
method (simple HISAM) 2-6, 2-10

simple hierarchical sequential access method
(simple HSAM) 2-6, 2-10

simple HISAM (simple hierarchical indexed
sequential access method) 2-6, 2-10
SIT (system initialization table), CICS/VS 5-6,5-7
SLC parameter, DLZACT macro 5-8
sorting segments in hierarchical sequence 4-39

L
SOURCE operand, SEGM statement for a logical parent 3-25
SOURCE operand, SEGM statement in logical DBD 3-30 - 3-31
specifying a data base resident on another system 5-9
specifying buffer pool control options 5-9 - 5-10
specifying the end of the DL/I application control table 5-10
SRCH operand, XDFLD statement in index target DBD 3-36
SSA

(segment search argument) 2-9
(segment search argument), call statement 4-8 - 4-10
begin qualification character field 4-9
field name in qualification statement 4-9
general characteristics 4-10
qualification 4-9 - 4-10
relational operator field in qualification statement 4-9

START operand, FIELD statement 3-12
START operand, FIELD statement for a secondary
index DBD 3-41
START operand, FIELD statement for index
source segment 3-38 - 3-39

status code error routines 4-39
status code handling 4-10
status code, testing 4-11
status codes for loading data bases 4-39
status codes, D L/I 4-7
STCCITM (order item segment), description 2-5
STCISUB (substitute item segment), description 2-4
steps in data base design, Figure 2-27 2-38
STPCORD (customer order segment), description 2-5
STPIITM (inventory item segment), description 2-4
structure of a batch application program, Figure 4-2 4-3
structure of a physical data base (see physical data structure)
STSCCST (customer name and address segment), description 2-4
STSCHIS (customer history segment), description 2-5
STSCLOC (customer location segment), description 2-5
STSCSTA (customer status segment), description 2-5
STSILOC (inventory location segment), description 2-4
STSIVND (vendor name segment), description 2-4
STXIT AB 7-6,7-7
STXIT PC 7-7
SUBSEQ operand, XDFLD statement in index target DBD 3-37
substitue item segment (STCISUB), description 2-4
synch-point record, CICS/VS 7-12
synonyms, data elements 2-36
system

T

DL/I batch 1-3
generation, CICS/VS 5-5
initialization table (SIT), CICS/VS 5-6, 5-7
initialization, online 5-13
installation, user responsibilities 1-11 - 1-12
journal, CICS/VS 7-5 -7-6
table preparation, CICS/VS 5-5

tasks in data base design 2-38 - 2-41
tasks, controlling the number of CICS/VS and DL/I 5-35 - 5-36
TCLASS parameter, CICS/VS 5-37
termination call, CICS/VS application program 5-15
termination call, response code 5-16
termination, application program 4-10
testing status codes, Figure 4-5 4-11
the transaction, Figure 2-25 2-36
TRACE parameter 4-37
traditional recovery approach 7-1
traditional recovery approach, Figure 7-1 7-2
transaction/data element matrix 2-36 - 2-37
transaction/data element matrix, Figure 2-26 2-37
transaction, data base 2-36

twin segment, defmition 1-7
two logically related data bases, CUSTOMER and
INVENTORY, Figure 1-7, 1-10

TYPE operand, FIELD statement 3-12 - 3-13
TYPE operand, FIELD statement for a secondary index DBD 3-41
TYPE operand, PCB statement 3-48

U
unqualified call 2-8
unqualified get next call, Figure 4-9 4-17
update intent, compared with PI 5-34
updating segments 4-18
UPSI byte setting for batch 4-37 - 4-38
UPSI byte settings, online 5-13 - 5-14
user responsibilities

data base administration 1-12
data base analysis 1-12
data base management 1-12
data base operations 1-12
field exit routine 2-33 - 2-34
system installation 1-11 - 1-12

using multiple logical relationships, Figure 2-19 2-23 - 2-24
using multiple PCBs for one data base 4-23
using multiple PSBs within one program 5-32 - 5-33
utilities

data base backout 7-8 - 7-9
data base change accumulation 7-8,7-10
data base data set image copy 7-8,7-9
data base data set recovery 7-8, 7-10
data base prefix resolution (DLZURG 10) 6-1,6-2,6-4
data base prefix update (DLZURGPO) 6-1,6-2
data base prereorganization (DLZURPRO) 6-1,6-2
DLZURGLO (HD reorganization reload) 6-1
DLZURGSO (data base scan) 6-1,6-2
DLZURGUO (HD reorganization unload) 6-1
DLZURGIO (data base prefIX resolution) 6-1,6-2
DLZURPRO (data base prereorganjzation) 6-1,6-2
DLZURRLO (HISAM reorganization reload 6-1
DLZURULO (HISAM reorganization unload 6-1
HD reorganization reload (DLZURGLO) 6-1
HD reorganization unload (DLZURGUO) 6-1
HISAM reorganization reload (DLZURRLO) 6-1
HISAM reorganization unload (DLZURULO) 6-1
image copy 7-3
log print 7-8
overview 6-1
reorganization 6-1
VSAM VERIFY 7-14

utility programs, DL/I 1-2

V
variable length segments 2-32
vendor name segment (STSIVND), description 2-4
VERIFY command, access method services 7-9
VERIFY utility, VSAM 7-14
virtual field 2-33
VIRFLD statement (PSBGEN) 3-52 - 3-53
virtual logical child (VLC) 2-18
virtual paired bidirectional logical relationship, Figure 2-15 2-18
virtual paired bidirectional logical relationship, Figure 2-20 2-25
virtual storage access method (VSAM) 2-9 - 2-10
VLC (virtual logical child) 2-18
VSAM

(virtual storage access method) 2-9 - 2-10
access method services ALTER command 7-14
access method services command, VERIFY 7-9
access method services DEFINE command 7-14

Index 1- 13

SH24-5001-2

accesss method services DELETE command 7-14
catalog 3-64, 7-14
cluster concept 2- IO
considerations in DL/I recovery 7-13
considerations in DL/I restart 7-13
considerations in recovery restart 7-9
control interval 2-10
data set defmition 3-64 - 3-65
data sets 3-64
data sets, closing 7-14
data spaces 3-64
defining clusters 2-39
master catalog 8-1, 8-2

-------- --------. - -- - - - ------_~_11'_

®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue. White Plains. N. Y. 10604

IBM World Trade Americas/Far East Corporation

X

requirements 3-64
share option I 5-3,5-5,7-14
share option 2 5-5, 7-14
share option 3 5-5, 7-14
share option 4 5-5,7-14
share options 5-5
VERIFY 7-3
VERIFY utility 7-14

XDFLD statement, index target DBD 3-36

Town of Mount Pleasant, Route 9, North Tarrytown, N. Y., U. S. A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenua, Whita Plains, N. Y .• U. S. A. 10601

o
r
---o
o

~,J
c
Ci
C1l

'T1
o
"'\

z
C1l
~
C
VI
C1l
"'\
VI

L

DL/IDOSfVS
Guide For New Users
SH24-5001-2

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of I BM systems. This form may be used to communicate
your views about this publication. They will be sent to the author's department for
whatever review and action, if any, is deemed appropriate. Comments may be written
in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Note: Copies of IBM publications are not stocked at the location to which this
form is addressed. Please direct any requests for copies of publications, or for assistance
in using your IBM system, to your IBM representative or to the IBM branch office
serving your locality.

• Does the publication meet your needs?

Did you find the material:

Easy to read and understand?

Organized for convenient use?

Complete?

Well illustrated?

Written for your technical level?

What is your occupation?

How do you use this publication:

As an introduction to the subject?

For advanced knowledge of the subject'!

To learn about operating procedures?

Your comments:

Yes

0

0
0
0
0
0

o
o
o

No

0

0
0
0
0
0

As an instructor in class?

As a student in class?

As a reference manual?

If you would like a reply, please supply your name and address on the reverse side of
this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

o
o
o

READER'S
COMMENT
FORM

SH24-5001-2

Reader's Comment Form

Fold and Tape

Fold

Please Do Not Staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

I nternational Business Machines Corporation
Department G60
P. O. Box 6
Endicott, New York 13760

If you would like a reply, please print:

Fold and Tape

Fold

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Your Name _____________________________ _

Company Name _______________ _ Department _____ _
Street Address ____________________ _

a~---
State _____________ Zip Code ______ _

--...- ----- IBM Branch Office serving you ___________________ _

----. ---- - -------------- - .-®
International Businass Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N. Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N. Y., U. S. A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N. Y., U. S. A. 10601

0
r

0

~
0
C/l

---<
C/l

Gl
c
is:
Cll

'T1
0
Z
Cll
::E
c
~
'"
"'0
~.
:::l ...
Cll
a..
:::l

C
en
~
C/l
I
f\.) ..,.
u,
0
0

~

