Data Language/|

Disk Operating System/
Virtual Storage

(DL/1 DOS/VS)

Guide For New Users

Program Product

SH24-5001-2

Data Language/|

Disk Operating System/
Virtual Storage

(DL/I DOS/VS)

Guide For New Users

Program Number 5746-XX1

,;-':-‘ S -, - A R Fron'Tmrmma o oan gy
. . .. s e T, s —~ R
d . .o . . N P . : v
E 5oL oCtL el d PRI N s B T S S YO N AR Y "

DATACENTER LIZAARY

Third Edition (June 1979)

This is a major revision of SH24-5001-1. Changes to the text and illustrations are indicated by a vertical
line to the left of the change. This edition applies to Version 1, Release 5 (Version 1.5) of IBM
System/370 Data Language/I Disk Operating System/Virtual Storage (DL/1 DOS/VS), Program
Number 5746-XX1, and to all subsequent versions and modifications until otherwise indicated in new
editions or Technical Newsletters. Changes are continually made to the information contained herein;
any such changes will be reported in subsequent revisions or Technical Newsletters.

Summary of Amendments
For a detailed list of changes, see page iii.

Publications are not stocked at the address given below; requests for publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Programming Publications, Dept. G60, P.O. Box 6, Endicott, New
York U.S.A,, 13760. IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of course, continue to use
the information you supply.

© Copyright International Business Machines Corporation 1977, 1978, 1979

Summary of Amendments

for DL/I DOS/VS Guide for New Users

Summary of Amendments
for SH24-5001-2

Version 1.5
This edition has been revised to include the following DL/I
DOS/VS functional enhancements.

Field Level Sensitivity

This feature allows you to select fields from within a physical
segment definition to build a new view of the segment for exclu-
sive use by a particular application program.

Extended Logical Relationships

Extended logical relationships removes or changes some of the
rules and restrictions concerning an application’s view of a data
base structure.

Unique Segment Support

A new keyword (NOTWIN) is added to the POINTER param-
eter on the SEGM statement to allow a segment to be limited to
a single occurrence per parent.

Sample Application Update

The customer data base for the Sample Application is updated
to show an example of field level sensitivity. Source code for
this sample application in COBOL, PL/I, and RPG Il is ship-
ped with this version.

DL/I DOS/VS—IMS/VS Compatibility

DL/IDOS/VS users planning future migration to IMS/VS are
cautioned that the VIRFLD statement and some options of the
SENFLD statement (PSB generation), and some options of the
SEGM and FIELD statements (DBD generation) are not sup-
ported by IMS/VS. See the Utilities and Guide for the System
Programmer for details.

Miscellaneous

Several sections in this manual have been enhanced to include
additional information for increased understanding. This man-
ual also includes some miscellaneous corrections and updates.

Summary of Amendments
for SH24-5001-1

Version 1.4
This edition has been revised to include the following DL/I
DOS/VS functional enhancements.

RPG II Support

Application programs written in RPG 1I can now access DL/1
data bases in a manner similar to programs written in COBOL,
PL/I, and Assembler language.

Prefix Resolution Improvement

The prefix resolution utility now passes an actual maximum
record length, instead of a maximum possible record length, to
the DOS/VS or DOS sort/merge program.

Extended DL/I Call Interface

This support, along with CICS/VS high level language support,
eliminates the need for application programs to reference inter-
nal CICS/VS control blocks. A new parameter has been added
to the PCB call to obtain the address of the DL/I User Interface
Block. This control block contains the information previously
returned in the TCA.

This enhancement is required for application programs
written in RPG II. It may also be used in programs written in
COBOL, PL/I and Assembler.

Intersystem Communication

CICS/VS intersystem communication support enables DL/I
application programs to access a data base that is resident on
another CPU.

High Level Language Debugging for PL/I

This support PL/I allows diagnostic information to be supplied
by both PL/I and DL/I. It is designed only for batch and MPS
batch execution of DL/I, and does not require any changes to
the PL/I code.

Online Sample Application Update

The customer data base for the Online Sample Application now
includes a variable length segment. A sample segment
edit/compression exit routine has been added to show how
variable length segments can be used.

Performance Improvements
This edition also contains information on these performance
improvements:

e Batch Partition Controller (BPC)
The BPC program has been changed frcm non-
reenterable to quasi-reenterable. This reduces the work-
ing set requirements of the BPC.

* Log Buffer
When using CICS/VS journaling, a blocksize larger than
1024 bytes can now be specified in the CICS/VS jounal
control table. The maximum blocksize is 32767 bytes.

e Program Isolation
Two enhancements have been added to program isola-
tion. They are the “O” procopt and MPS Batch Notifica-
tion.

Miscellaneous

Several sections in this manual have been enhanced to include
additional information for increased understanding. This man-
ual also includes some miscellaneous corrections and updates.

Summary of Amendments il

iv DL/1 DOS/VS Guide For New Users

DL/1 DOS/VS (Data Language/I Disk Operating
System/Virtual Storage) is a data base management
control system that improves an installation’s ability to
implement and maintain batch processing applications.
DL/1 DOS/VS permits the writing of data independent
applications and provides program and data base in-
tegrity. The DL/1 DOS/VS system supports application
programs written in COBOL, PL/I, RPG II, and Assembler
language. DL/1 DOS/VS executes as an application pro-
gram under DOS/VS.

DL/1DOS/VS permits concurrent scheduling of mul-
tiple programs requesting DL/I DOS/VS services, there-
by allowing access by more than one user to the same
or different data bases at the same time. Application
programs may utilize this concept in conjunction with
CICS/VS (Customer Information Control
System/Virtual Storage) to access DL/1 DOS/VS data
bases in a teleprocessing environment.

This publication is intended primarily for first time
users of DL/1 DOS/VS. It provides the information the
user needs to design and implement a basic DL/1 data
base system. This includes assistance for the user in
developing his application programs.

This publication is a starter document. It is not doc-
umentation for a subset (reduced function) or a simpli-
fied version of DL/1. It is a systematic approach to
guide the user in designing simple data base structures,
and controlling access to the data contained in these
structures. Through extensive use of examples and
references to the sample application program provided
with DL/1, this publication guides the user through the
basic and most often needed DL/1 facilities.

This manual describes the operation and mainte-
nance of DL/I applications from the viewpoint of both
data base administration and application program-
ming. The topics covered are designed to:

e Reinforce the user’s knowledge of data base con-
cepts, and the functions available in DL/1. The
new user is expected to be familiar with the DL/1
DOS/VS General Information manual before using
this manual.

e Describe organizing, creating, and maintaining
data bases.

Preface

¢ Guide the user in writing data base application
programs.

¢ Provide workable examples for setting up a specif-
ic data base application such as the online order
entry and inquiry system provided as a sample
application with DL/1.

Because the features and facilities of DL/I are pre-
sented in this publication so the user will need to make
few references to other DL/1 DOS/VS publications, this
publication repeats certain information that is also
presented in other DL/1 DOS/VS publications. However,
references are made to the other publications in the
DL/1 DOS/VS library to assist the user in locating specif-
ic additional information that may be needed for uni-
que application requirements.

The following 1BM publications provide additional
details about DL/1 DOS/VS:

DL/I DOS/VS General Information, GH20-1246

DL/I DOS/VS Application Programming Reference
Manual, SH12-5411

DL/I DOS/VS Utilities and Guide for the System
Programmer, SH12-5412

DL/I DOS/VS System/Application Design Guide,
SH12-5413

DL/I DOS/VS Messages and Codes, SH12-5414

References are made in this publication to CICS/VS.
More information about CICS/VS can be found in the
Customer Information Control System/ Virtual Storage
(CICS/VS) General Information Manual, GC33-0066.

Because of the special nature of DL/1 DOS/VS as a
functional subset of 1BM’s Information Management
System (IMS/VS), some IMS or OS specific terms are
retained in DL/1 DOS/VS documentation. These terms
are used for ease of reference to corresponding IBM
documentation and to facilitate subsequent upgrading
to an upward-compatible IBM system.

All further references in this manual to DL/1 DOS/VS
are shortened to DL/I.

Preface \

vi DL/1 DOS/VS Guide For New Users

Contents

Chapter 1: General Information 1-1
INtrodUCtIONo iy 1-1
Potential Users of DL /L i it 1-1
General System DeSCIIPLION ittt it it it it 1-1
Program SIMUCIUTEottt ettt ittt 1-2
Data and Device Independence i 1-2
Program Execution i 1-2
Utility Programs it e e e 1-2
File Integrity and RECOVEIY iiiuiiiiii it ittt e 1-3
Online EnvirONMEntttt 1-4
Data Base Facilityco i it e 1-4
Data Base COMCEPLSttt ittt ettt e 1-4
Logical Data Base StIUCIUTE ittt ittt ettt e aes 1-4
Physical Data Base Structure e 1-7
Basic Segment Types in a Hierarchical Data Structurecooiiiiinna.. 1-7
Sequence Fieldsand Access Paths i i 1-7
Logical Relationships i 1-9
Secondary Indexing e 1-9
Data Base Definition o i e 1-11
DBD (Data Base DesCription)c.iuuiiitiiiit it 1-11
PSB (Program Specification Block) e 1-11
User Responsibilities I-11
System Installation e 1-11
Data Base Administrationttt e 1-12
Project Approach e 1-12
ProJect CyCle e 1-12
Sample Project Plan e 1-13
Implementation OVEIVIEW i e 1-15
Chapter 2: DataBaseDesign i 2-1
About This Chapter e 2-2
Section 1: DL/I Sample Applicationttt 2-2
Inventory Data Base i 2-2
Customer Data Base e 2-2
Naming Conventions Used in the Sample Applicationcoieeee.. 2-3
Sample Application Description - Phase 1 i i 2-4
Sample Application Description-Phase 2 2-4
Sample Application Description - Phase 3 i 2-5
DL/I Sample Programsttt et 2-5
Section 2: DL/I Data Base Facility ittt 2-6
Physical Data Bases and AccessMethods il 2-6
DL/IDataBase Record it e 2-6
Segment FOrmat e 2-7
Concatenated Key e 27
Calls and Data Base POSItioningttt 2-7
VSAM (Virtual Storage Access Method) it 29
Data Base Access Methods e 2-10
Logical Relationshipst aiieee e 2-17
Why Logical Relationships o i it 2-17
Building Logical Relationships i i 2-17
Logical and Physical Data Bases i 2-19
Concatenated SEEMENLt 2-20
Logical Relationship Design Rules i 2-22
Processing Logically Related Segments i ittt 2-25
Logical Relationships Implementation Technique 2-27
DL/ISecondary Indexesottt i e 2-28
When to Use Secondary Indexes i 2-28
Segment Types Involved in Secondary Indexes i 2-28
Design Rules for Secondary Indexing o i 2-30
Implementation Technique 2-30
Creating a Secondary Index 2-32
Variable Length Segments 2-32
Segment Edit/Compression EXit 2-32

Contents vii

viii

Field Level Sensitivityottt ettt e e e et e e 2-32

Virtual Fields ... 2-33
Automatic Data Format COnVersionooiiiiiiiniii it iiaiinaenns 2-33
User Field EXit ROUtINE e i 2-33
Dynamic Segment EXpansiont 2-34
Additional Field Sensitivity Considerations it .. 2-34
Section 3: The Data Base Design Processo i 2-35
Concepts of Data Base Designo it 2-35
Data Base Design Taskso ... e e 2-38
Gathering Requirements i 2-38
Design the Application Data Structuret 2-39
Design the Physical Data Structurest 2-39
Defining VSAM Clusters ittt it it ittt tiae e 2-41
Data Base Design Checklist i e 241
Chapter 3: Data Base Implementation i 3-1
INtroduction e 3-1
Data Base Description Generationttt ittt e e 3-1
DBDGEN Coding Conventionsottt 32
Basic DBDGEN Control Statements Format it 33
Execution of DBDGEN (JCL) . ..ottt ittt e e e 3-14
Examples of Physical DBDs e 3-14
DBDGEN for Logical Relationships i, 3-20
Coding a Logical Relationship ina Physical DBD 3-20
Coding a Logical DBD e e 3-30
DBDGENS for Secondary Indexes i i e 3-35
Coding an Index Target DataBase i, 3-35
Coding the Index Target Segment i 3-35
Coding the Index Source Segment 3-37
Coding A Secondary Index DBD 3-39
Program Specification Block Generation (PSBGEN) 3-45
Basic PSB Cogingttt e e e 3-48
Sample Basic PSBs e 3-54
Execution of PSBGEN - JCL 3-55
Description of PSBGEN Qutput i 3-55
Coding PSBs for Logical Data Bases i 3-55
Coding PSBs for Secondary Indexes i 3-57
Application Control Blocks Creation and Maintenance (DLZUACBO) 3-61
Control Statement ReqUITemeEnts ittt ittt iin e iaaanaaan 3-61
JCL REQUITEMENLSottt ettt et et e et et e e ettt an 3-63
VSAM REQUITEMENLSt et e e 3-64
Data Set Definition e 3-64
Loading Data Bases i e 3-67
Chapter 4: Processing Data Bases (Batch Considerations) 4-1
Structure of This Chapler i i i ettt et et 4-1
Introduction to Data Base Processing i 4-1
Program Structure and Interface to DL/I i e 4-1
Language and Compilation 4-1
Interface COMPONENLSttt ittt iia s ettt a et i ennannes 4-1
Entry to an Application Program i e 4-2
POB-MasK e 43
Calls to DL/ .o e e 4-8
QUAlIFICALION\ttt 4-10
General Characteristics of Segment Search Argumentst 4-10
TerMINAtION oottt ettt e e e 4-10
Status Code Handling i i i et e 4-10
Sample Presentationof a Call 4-11
DL/1 Application Program for RPG II i s 4-11
RQDLI Commands for DB ACCESSttt i en et 4-11
Statements for SSA Specification 4-13
SSA Specification in RPG-Like Format: (USSA and QSSA Statement) 4-13
SSALIST-OPtONottt ettt et et ettt 4-14
ELIST-Command ittt et e et 4-14
DB (Data Base) File Definition i i e 4-14
Basic Data Base Processing i e 4-15
DL/LIPOSIIONINE . . . o ettt ettt ettt e et e a e et e e s 4-15

DL/1 DOS/VS Guide For New Users

Sample ENVITOMMENtttt e e 4-15
Retrieving SEGMENLSttt ittt ittt 4-16
GetUnique Call (GU) s 4-16
Get Next Call (GN) . ..ottt e et e et et et et aes 4-16
GetHold Calls i i e it 4-18
Updating SEBMENTSttt ittt e 4-18
Deleting Segmentsiiiiiiiiitttttt it i i 4-19
INSErtINg SEBMENLS\ttt ettt ittt et e 4-20
Calls With Command Codes i ittt 4-21
DCommand Code ...ttt i e 4-21
NCommand Codettt ittt 4-21
FCommand Code ettt 4-22
LCommand Codettt i ettt 4-22
QCommand Codettt e e e e s 4-22
Data Base Positioning Aftera DL/ICall i 4-22
Using Multiple PCBs ForOne DataBaseo i, 4-23
COBOL Batch Program Structure ittt 4-23
PL/I Batch Program Structurettt ittt e eeiannanen 4-25
RPG IT Batch Program Structure ittt 4-28
Assembler Language Batch Program Structure ool 4-32
RESIIICHONSottt ittt e et ittt 4-34
ONCOMREG USEttt ittt e e et i 4-34
On Overlay Programs i i ittt 4-34
Set Exit Abnormal Linkageottt s 4-34
Job Control Statementsttt e e 4-34
Compileand Link-Edit e 4-34
Translator QULPULt e e e 4-35
Batch Application Program Executiont 4-36
Parameter Statement e e 4-36

UPSI Byte Settings for Batch DL/T i i e 4-37

Job Control Statements i e e 4-38
Data Base Load Processingttt e 4-38
Loading ABasicDataBase i e 4-38
Loading Data Bases With Logical Relationshipst 4-38
Sample Data Base Load Programt 4-38
Loadinga HIDAM Data Basettt 4-39
Loadinga HDAMData Baseoiiiiiiiiiintiianttiiiniiieeeinaneenns 4-39
Status Codes for Loading DataBases i i it 4-39
Status Code Error Routines it 4-39
DL/I DOS/VS Buffer Pool Characteristics Report, 4-39
Processing With Logical Relationships i i 4-39
Accessing A Logical Child In A Physical DBD ittt 4-40
Accessing Segmentsina Logical DBD i 4-40
Processing With Secondary Indexes i i e 4-40
Accessing Segments Viaa SecondaryIndex il 4-40
Secondary Index Creationttt e 4-41
Chapter 5: Online and MPS Considerations 5-1
DL/I Online System Execution it 5-1
MPS (Multiple Partition Support)iiiiiiiii i i e 5-1
Differences Between Batch, MPS,and Online DL/Ioi ottt iennnnenn. 5-3
ULty . o ottt ettt et e e e e 5-3
IOty e 5-3
Performance e, 5-5
RESIICHONS e e 5-5
VSAM Data Set Share Optionsoiiuiiiiiiitt ittt ittt eiiiaaeaiiinannn 5-5
CICS/VS System Generationuiiiutitiinaeee ettt 5-5
CICS/VS System Table Preparationcciiiieeiiiiiineeeianinennnnnn.. 5-5
DL/I Application Control Tablettt ittt aiieans 5-7
Establishing the Control Section for the DL/I Application Control Table 5-7
Defining the Online Environment for DL/I ittt 5-8
Describing the Application Program Relationship to DL/I Data Bases 5-8
Specifying a Data Base Resident on Another System 5-9
Specifying Buffer Pool Control Options i ... 5-9
Specifying the End of the DL/I Application Control Table 5-10
Description of Online Nucleus Generation Qutputc.oiiiiiiininenaaiina... 5-10
Control Statement Listing ittt e 5-10

Contents ix

X

DHABNOSIICSttt e e 5-10

Assembly Listing 5-10
Load Module e e 5-10
CICS/VS-DL/ITable Example e 5-10
Initialization of the DL/I Online Systemttt 5-13
DOS/VS UPSI Byte Settings (Online)ttt 5-13
Programming Considerations i i e e 5-14
Obtaining the Address of the PCB: The Scheduling Call 5-14
Releasing a PSB in a CICS/VS Application Program: The Termination Call 5-15
Checking the Response toa DL/I Call i 5-16
Issuing the DL/T Call. o e 5-18
Online Application Coding Examples i 5-18
DL/I Requests in an ANS COBOL Program i iiiiiiiiaaao... 5-18
DL/IRequestsina PL/I Program i i 5-21
Requests in an Assembler Language Program iiiiiiiia.. 5-23
RQDLI Commandsinan RPG Il Program it 5-26
Executing CICS/VS With DL/IMPS e 5-28
Executing Batch MPS Programs i e 5-28
DL/I Data Base Integrity Online i e e 5-29
Intent Scheduling e e e 5-29
Intent Conflict 5-29
Potential Intent Conflict Matrixt e 5-30
Minimizing Intent Conflicts i i i e s 5-31
PSB PROCOPT Selectionttt 5-32
Using Multiple PSBs Within One Programo i i 5-32
Scheduling a PSB for a Short Duration AtaTime 5-33
Program Isolation 5-33
Programming Considerationsttt 5-35
Controlling the Number of CICS/VSand DL/ITasks, .. 5-35
CICS/VS MXT Parameter ... oottt ettt et et et et e ettt et anns 5-36
CICS/VS AM X T Parameterottt i et ittt et e e et ittt et e ettt 5-36
CICS/VS CMXT and TCLASS Parametersoouniiitie et iieeeiieaee s 5-37
DL/IMAXTASK Parameter i ittt i e et et et 5-37
DL/I CMAXTSK Parameterottt iie e ettt et et c it 5-38
Chapter 6: Data Base Reorganization/Load Processing 6-1
INtrodUction e 6-1
What is REOTZANIZAION it e e e e e e 6-1
Whento Reorganize i i et 6-1
Overview of the Reorganization/Load Utilities it 6-1
Reorganization of HDAM and HIDAM Data Baseso i iiiiiiavnnnnnn. 6-2
Logical Relationship Resolution i ittt 6-2
Reorganization/Load Flowchart 6-2
Data Base Initial Load/Reload e 6-4
With Logical Relationships o i i ittt 6-4
With Secondary Indexes e 6-5
Resolution Utilities OVEIVIEW i i i it 6-5
Chapter 7: DL/I Data Base Recovery/Restartciiiiiiernaiinrnnnnnon. 7-1
Introduction e 7-1
DL/I Logging Facility o e e s 7-3
Asynchronous Logging OptiOn i it i 7-5
Logging and Performance i e 7-5
Choosing the DL/I Log Medium ittt i e et enns 7-5
DL/1 Abnormal Termination ROULIIESttt it it e ettt et ieeens 7-6
Abnormal Terminationin Batch 7-6
Abnormal Terminationin MPS 7-7
Abnormal Termination in CICS/V S e i e e e e s 77
DL/IRecovery UtILEsttt e 7-8
DataBase Backout i e e 7-8
Data Base RECOVETYttt et i it e et e e s 7-10
DL/I Checkpoint Facility e e 7-11
CHKP (Checkpoint) Call e 7-11
DL/1 Checkpoint in Batch Programs i i 7-12
DL/I Checkpoint in Batch MPS Programs ittt 7-12
VSAM Considerations in DL/I Recovery-Restart i iiiiiiiniinnnn.. 7-13
VSAM Catalogo e 7-13

DL/IDOS/VS Guide For New Users

Closing VSAM Data Setsttt ittt en e et enann 7-14

Chapter 8: DL/1 Sample Application i 8-1
Sample Application Job Stream e 8-1
Defining the VSAM Master Catalog i 8-2
DLZSAMCP - Sample Program Compression/Expansion Routine 8-2
DLZSAMA40 - DL/I Online Sample Load Programo ian, 8-5
DLZSAMSO0 - DL/I Online Sample Print Program oo, 8-6
DLZSAMG60 - DL/I Online Sample Application Program, 8-6
DLZSAMO0 Screen FOImMatsottt ittt i enannnns 8-9
Appendix A: DL/1 System Installation and Batch Initialization A-1
Minimum Machine Requirements i A-1
Building the DL /L System i e e e A-1
DOS/VS Supervisor GENerationitiatit ettt eaaeenannnn A-1
DOS/VSE Supervisor Generationc.uuuununinnneeat ettt A-2
Relinking DL/IModules i it it et e e A-2
CICS/VS-DL/I Release Dependenciesuitimetmne e eiieaeenannns A-2
Initialization of the DL/ Batch System A-3
DL/I Parameter Information Requirements i, A-3
DL/1 Initialization Job Control Language Requirements A-4
DL/I MPS Batch Partition Initialization i i A4
DOS/VS UPSI Byte Settings for MPS et A-4
DL/1 MPS Parameter Information Requirementsoiiiiiiiaenaaiaan ... A-5
DL /I MPS Initialization Job Control Language Requirements A-5
Executing Batch MPS Programs i e A-5
Dynamically Scheduling MPS or Non-MPS Execution e e A-5
Appendix B: Controlling the DL/1 Online System Environment B-1
DL/1 System Call Formats and Retums ittt B-2
Scheduling the DL/I System Call i, B-3
DL/1 System Call Examples AP B-4
CMXT Call Exampleoooii e e it s B-4
STRT and STOP Call Example i B-5
TSTRand TSTP Call Example i e B-6
GOSSAIY G-1
DX . . 1-1

Contents xi

xii DL/I DOS/VS Guide For New Users

Introduction

Data Language/I DOS/VS (DL/1) is a data base manage-
ment system that improves the DOS/VS user’s ability to
implement and maintain batch and/or teleprocessing
data processing applications. DL/1 helps to reduce data
processing costs by:

¢ Reducing application program maintenance.

¢ Reducing application programmer time required
to implement new applications, including telepro-
cessing applications.

¢ Reducing the cost of converting to new hardware
(for example, from 2314 to 3340).

¢ Reducing the number of programs and/or data
files required to implement applications.

e Reducing the number of files in which data is
repeated.

Potential Users of DL/1

The DOS/VS user who is modifying existing applica-
tions and/or adding new applications may be faced
with some of these situations:

e Data is duplicated on multiple data files with dif-
ferent formats for different applications.

e Programmers are spending a significant amount of
time updating existing application programs to
handle changes to record layouts or 1/0 device
characteristics; often, even though program logic
is not affected by these changes.

e Changing applications make it desirable to move
data files from one storage device to another (tape
to disk), or from one access method to another
(sequential to direct).

e Programmer productivity is hindered by a limited
knowledge of specific device characteristics (for
example, optimum block size for indexed sequen-
tial processing) or specific access methods.

e Batch applications must be expanded smoothly
and easily to teleprocessing applications.

DL/1 is a control system designed to assist the user
with these needs.

General System Description
DL/1 has the following characteristics:

e It runsin a user program partition under DOS/VS.

e It provides a subset of the batch data management
facilities offered by iMS/vs. Application programs

Chapter 1: General Information

are upward compatible through DL/1 for easy
growth.

¢ It includes four file organizations: Sequential,
Indexed Sequential, Direct, and Indexed Direct.
The user may choose the organization best suited
for each data file, and later change to another or-
ganization as his application needs change, with-
out reprogramming.

e User application programs may be written using
Assembler, COBOL, PL/I, or RPG II.

e DL/l includes an interface module that allows
transaction processing programs accessing data
bases to run in the teleprocessing environment
provided by cics/vs. This interface module inter-
prets requests for data, but does not alter the sys-
tem in any way.

e DL/1 enables application programs executing in
different partitions to access the same data base
concurrently. This capability, multiple partition
support, permits, for example, online applications
to issue inquiries to a data base while a batch pro-
gram updates it.

e The DL/1 data structure handles variable occur-
rences of fixed length data without wasting sec-
ondary storage space. For example, a customer
master file containing purchase order information
does not require reserved space for the maximum
number of line items possible in a single purchase
order.

e The complex and changing details of data access
are concentrated within DL/1. Only one person or
group within the data processing department
needs in-depth education on the specifics of device
characteristics and access methods.

¢ It provides for the separation of application pro-
gram logic from device oriented details. This
means that movement of data from one device to
another (for example, tape to 3330, to 3350) does
not affect the application program. This is called
device independence.

¢ It provides for the separation of application logic
from data organization. For example, data files
may be expanded to contain additional data, or
changed from indexed sequential to indexed direct
organization without affecting existing application
programs. If existing programs do not reference
newly defined data, there is no need to recompile
the application program. This is called data
independence.

Chapter 1: General Information -1

e Both DL/1 data bases and other DOS/VS files may
be accessed by the same application program.

Program Structure

The following program modules are required to exe-
cute a DL/1 application program:

¢ The user application program containing DL/I
calls.

¢ For each application program, a PSB (program
specification block) that identifies each DL/I data
base used by this program and describes how each
can be processed by this program.

e For each DL/1 data base, a data base description
block that describes the physical data base struc-
ture, the file organization, and the device on
which the data base resides.

e The DL/I processing modules.

These modules are stored in the core image li-
brary. For online execution, the CICS/VS system
control functions load the modules as required.

Data and Device Independence

The separation of the application program from data
base oriented logic allows both data and device inde-
pendence.

Data independence means:

¢ Adding new types of data to existing data bases
with no application program recompile

¢ Optimizing system performance by varying record
size, blocking factor, space allocation, and access
method with no application program recompile

¢ Allowing programs to refer to the same data by
the same name

e Reducing programming maintenance caused by
changes in existing data format.

Device independence means:

e Data bases can be moved from tape to disk access
methods with no application program recompile

e Device changes from 2400 to 2314, to 3330, to
3340, to 3350 or FBA (or any combination of these)
can be made with no application program recom-
pile.

Program Execution

DL/I acts as an interface between the application pro-
gram and the DOS/VS data management routines. DL/I
is actually the main program in the DOS/vS partition,
and the user written COBOL, PL/1, RPG II or Assembler
program is treated as a subroutine, The application

1-2 DL/1 DOS/VS Guide For New Users

program communicates with DL/I via the DL/1 lan-
guage interface. Program requests to DL/I are issued
by using a standard DL/1 call statement or an RQDLI
command in RPG 1I. These call statements provide for
reading, deleting, adding, and changing segments in
the data base. (A segment consists of one or more logi-
cally associated data fields, and is of fixed or variable
length.) Feedback information is provided by DL/1
after every call indicating successful or unsuccessful
completion, and complete identification of the data
base segment retrieved or processed.

The relationships between DL/I and the application
program are illustrated in Figure 1-1.

1. DOs/VvS loads DL/ and gives control to DL/1. DL/I
loads the PsB and analyzes the data base require-
ments of this application program as defined in
the PSB. DL/I then loads and initializes the DMBs
required.

2. DL/I loads and gives control to the application
program.

3. The application program processes segments in
the data base through calls to DL/1.

4. The DL/I call analyzer decodes the call parame-
ters into specific data base actions.

5. The DL/I action modules translate the data base
calls into 1/0 requests appropriate to each data
base.

6. DL/ determines which access method is required
for the data base and optionally logs any changes.

7. The DOS/VS SAM or VSAM routines read and write
data in the data base files.

8. Changes are made to the data base or data is
returned as requested by the application program.

9. DL/I returns the requested data or a status code to
the application program.

10. When the application program reaches end of
job, control is returned to DL/I.

11. DL/I closes the data bases and returns control to
DOS/VS.

Utility Programs

DL/I supplies a number of utility programs that provide
for the reorganization and recovery of a data base file.
These utilities are used to improve DL/1 performance
and to facilitate future expansion. The use of the reor-
ganization and recovery utilities is discussed in Chap-
ters 6 and 7 of this manual.

DOS/vS

HoHEC

DL/I Initialization/
termination

i@

Application Program for
DL/I Data Base Processing e

Language Interface

T
1

Control Facility ;

Program Requezt Handler

DL/I Facility 1

r--"""-—"—"—-=-—-""7=—"—"”"—"” = _‘

DL/l Call Analyzer

® | o}

Load/Insert Module

Retrieve Module

Delete/Replace Module

® i

Hierarchical Sequential
Modules for HSAM and HISAM *

L t H

}

Hierarchical Direct @ * Data Base
Modules for HIDAM and HDAM Logger

|
[
|
|
| R S
|
|

N— =]

I DN
;@- :
VSAM :
t i

Figure 1-1. DL/I Batch System

File Integrity and Recovery

As a user option, all modifications to any data base
used in the DL/I environment can be recorded on the
DL/I log. If multiple executions are performed concur-
rently without using MPS (multiple partition support), a
DL/1 log is associated with each partition. With MPS,
one central DL/1 log is used. No attempt should be
made to access the same data base from more than one
DOS/VS partition, unless MPS is used.

i
! > '
L

Data Bases

1
a@®

Data base logging provides the DL/1 system with a
record of all modifications to all data bases used during
a data base execution and, in the online system, can be
carried out in either of two ways. One is to use the
standard DL/1 log feature as it is used in the batch sys-
tem. The other possibility is to assign the DL/1 log to
the CICS/VS system journal. In this case, the log file is
shared between DL/I log records and any other system-
provided or user-provided CICS/VS journal records.
The DL/1 log may, in either case, be used in conjunc-
tion with the DL/1 data base recovery utilities to rebuild

Chapter 1: General Information 1-3

a data base. The Utilities and Guide for the System
Programmer provides additional detail on the use of
data base log information for recovery.

Online Environment

The cics/vs interface module provided with DL/1 al-
lows DL/1 VSAM data bases to be processed by CICS/VS
application programs written in COBOL, Assembler,
PL/I, or RPG 1I. The cics/vs application program issues
DL/I calls to process DL/1 data base records.

All functions available to a batch application pro-
gram are also provided to online transactions except
for the loading of data bases and DL/I utility functions.

DL/1 with CICS/VS controls access by multiple trans-
action processing programs to the same data, so that a
single data base can concurrently be updated by any
number of transaction processing programs.

Data Base Facility

Data Base Concepts

All data files within your organization are candidates
for inclusion in a data base. A data base can be defined
as a nonredundant collection of interrelated data items
processable by one or more applications. DL/I, as a
data base management facility, provides a structure for
this data, and makes it easier to store and retrieve these
items.

Segments

The segment is the unit of data processed by DL/1. The
segment is processed with DL/1 call statements. DL/J
provides the application program independence from
access methods, from physical storage organizations,
and from the characteristics of the devices on which the
data of the application is stored. This independence is
provided by a symbolic program linkage and by data
base descriptions external to the application program.
A reduction in application program maintenance is a
natural result of this separation.

Segment Sensitivity

An important capability of DL/I that permits develop-
ment of a multi-application data base is the concept of
segment sensitivity. Each application program using
the data base can be sensitive to its own unique subset
of the data base segments. Segment sensitivity is de-
fined in the PSB that the application program uses dur-
ing execution.

1-4 DL/1 DOS/VS Guide For New Users

Field Level Sensitivity

In addition to segment sensitivity, the user can specify
fields from within the physical segment definitions to

build a new view of the segment for exclusive use by a
particular application program. Field level sensitivity
is defined in the PSB used by the application program

during execution.

Logical Data Base Structure

Each record in the data base (except for HSAM, SHSAM,
and HDAM), must contain a key identifying that record.
Data base records are variable in length and contents,
as required, and normally contain all the data logically
related to a particular key. Data base records are pre-
sented to the application programmer in a hierarchical
segmented structure as illustrated in Figure 1-2. Logi-
cally related fields within the records are grouped to-
gether into segments. Segments themselves are related
hierarchically, that is, some segments are dependent on
the existence of a segment at a higher level.

The first segment in a data base record contains the
key of the data base record and is called the root
segment. There can be only one root segment per data
base record. Segments at lower levels may be of any
type, in any combination, and may occur any number
of times, within the limits of the DL/1 architecture. All
DL/I calls issued by the application programs relate to
retrieving, deleting, inserting, or replacing a segment in
a data base record. Asshown in Figure 1-2, level 3
segments such as segment type C are dependent for
their existence on the level 2 segment type B and can
not be present if the corresponding type B segment is
not present in the data base record. Segment type C is
called the child of segment type B. Thus, segment B is

SEGMENT R
LEVEL1
ROOT
SEGMENT
[Kev|
SEGMENT A SEGMENT B
LEVEL 2
DEPENDENT DEPENDENT
SEGMENT SEGMENT
OF R OF R
SEGMENT C
LEVEL 3
DEPENDENT
SEGMENT
OF B

Figure 1-2. Hierarchical Data Structure

9

the parent of segment C. Each segment type can be
fixed or variable length, contains logically associated
fields, and has a 1 to 8 character name, such as C,
which is used to reference the segment type.

File Record Layout

A customer file record layout might appear as shown in
Figure 1-3.

SHIP-TO LOCATION

[)

CUSTOMER

NUMBER NAME | ADDRESS

(CUSTOMER ORDERS
\ T I etc.

Figure 1-3. Customer File Record Layout

Figures 1-4 and 1-5 illustrate the format and con-
tents of a simple customer data base record using a
hierarchical data structure. The use of multiple occur-
rences of a segment type is illustrated by the presence
of two ORDER ITEM segments for the September
CUSTOMER ORDER segment. At times a segment type
may have zero occurrences. The hierarchical sequence
of segments is top to bottom and left to right. Thus, the
sequential retrieval for the data base structure shown in
Figure 1-4 is:

1. CUSTOMER segment for Company Z.

2. CUSTOMER LOCATION segment for Southeastern
Region.

3. CUSTOMER ORDER segment of Southeastern Re-
gion segment for September.

4. ORDER ITEM segment-1 for this order.
ORDER ITEM segment-2 for this order.

6. CUSTOMER ORDER segment of Southeastern Re-
gion segment for October.

7. ORDER ITEM segment for this order.

8. CUSTOMER LOCATION segment for Northwestern
Region.

9. CUSTOMER ORDER segment of Northwestern
Region segment for April.

10. ORDER ITEM segment for this order.
11. CREDIT STATUS segment.

Rules for Data Base Structures
The rules concerning data base structures are:

* Any number of data bases may be defined.

e 1 to 20 data bases can be used by any one applica-
tion program.

e A data base may consist of 1 to n data base re-
cords.

e A data base record may consist of 1 to 255 seg-
ment types (in Figure 1-4 there are 5 segment
types). The segment type, CUSTOMER, is the root
segment.

e Within a data base record each segment type may
have 0 to n occurrences, except the root segment
which can occur only once.

e A data base record may have a maximum of 15
segment levels. (The example in Figure 1-4 has 4
segment levels.)

e A dependent segment can occur only if its parent
exists in the data base record.

e Each segment type has a 1 to 8 byte alphameric
name and can be either fixed, or for HD organiza-
tion, variable length.

* Application programs sensitive to a dependent
segment must also be sensitive to its parents all the
way up to and including the root segment.

e The key of the data base record is the sequence
field of the root segment. It must be a fixed length
field within the root segment. This key field is
used by the application program to directly access
data base records. A4 key field of all binary 1s is
reserved for use by DL/I only.

e Although it is not required, any dependent seg-
ment which itself has children should contain a
unique sequence field. The sequence field is user
data within the segment that is unique for each
segment within a parent. This field is used to
identify a segment, and to determine where new
segments are inserted. Dependent segments may
or may not have a sequence field. If no sequence
field is defined, segment sequence is controlled by
user specified rules.

Adding New Segment Types

The modification of the data base structure requires a
new DBD, which replaces the existing DBD in the core
image library.

New segment types may be added to an existing
data base without affecting existing programs as long
as the associated PsBs are not affected.

For HSAM and HISAM data bases, if the new seg-
ments being defined are at the “end” (that is to the
right and bottom of existing segments in the hierarchy)
no further action is required.

If the new segment type being defined is within the
existing hierarchy, the data base must be reloaded.

Chapter 1: General Information 1-5

CUSTOMER

CUSTOMER
A NAME ADDRESS
{
CUSTOMER ,
LOCATION CREDIT STATUS
LOCATION CREDIT CREDIT
NUMBER NAME ADDRESS CIMIT BALANCE
CUSTOMER ORDER
ORDER ORDER REFERENCE
DATE NUMBER | DATA
ORDER ITEM
:#‘,\E’,&NTORY :-TIEII\EA QUANTITY | QUANTITY CB’X@ET'TY ITEM
NUMBER NowgER | ORDERED | SHIPPED B RED AMOUNT
Figure 1-4. Customer Data Base
000003 (7Company Z, Inc. | 6 Hyde Street CUSTOMER

000010 Southeastern Region 715 Roundtrip Place
770920 100700 Third 1977 Order
000300 10 000080 000040 000040 000000000160
000400 01 000050 000050 000000 000000000750
771015 161293 Fourth 1977 Order
000300 10 000080 ‘ 000040 000040 000000000160
000011 Northwestern Region 1220 North Ave.
770415 100012 First 1977 Order
000400 ‘ 01 ‘ 000050 ‘ 000050 000000 000000000750

000000100000

000001500000

Figure 1-5. Customer Data Base -- Sample Record

This simple task can be accomplished using the follow-
ing procedure:

e Use the DL/ utility to unload the old data base.

1-6 DL/1 DOS/VS Guide For New Users

e (Create the new DBD.

e Use the DL/1 utility to reload the new data base.

CUSTOMER LOCATION
CUSTOMER ORDER
ORDER ITEM

ORDER ITEM
CUSTOMER ORDER
ORDER ITEM
CUSTOMER LOCATION
CUSTOMER ORDER
ORDER ITEM

CREDIT STATUS

9

Application Program Data Base Processing
Functions

DL/1 provides a set of functions that allows the applica-
tion programmer to access and process data base re-
cords. Your application programmer issues a standard
DL/1 statement, referred to as a call statement, from his
COBOL, PL/1, or Assembler language programs. For
RPG II, your application program issues the RQDLI
(request DLI) command to access the data base. Specif-
ic details regarding the coding of DLI calls are included
in Chapter 4.

Data base records can be processed sequentially,
skip sequentially, or in random order. If sequential or
skip sequential techniques are used, the program can
interchangeably use a tape or a disk data base.

The DL/1 call statements allow the application pro-
grammer to:

¢ Retrieve a unique segment (GET UNIQUE)
o Retrieve the next sequential segment (GET NEXT)

e Retrieve the next sequential segment within the
same parent (GET NEXT WITHIN PARENT)

e Replace the data in the existing segment
(REPLACE)

¢ Delete an existing segment (DELETE)
e Insert a new segment (INSERT)

e Write a checkpoint record to the DL/1 log
(CHECKPOINT).

A DL/1 call may deal with one or more segments in a
hierarchical path. Segment retrieval is based upon
either or both of the following:

e Position in the data base, as set by previous calls

e Comparisons between fields within the segments
in the specified path, and values supplied with the
DL/I call.

The DL/1 calls are independent of the data base access
method.

Physical Data Base Structure

Six access methods are available for processing DL/1
data bases. In all instances, the logical data structure
presented to the application programmer is identical.
The six access methods are:

e Simple hierarchical sequential access method
(SHSAM)

¢ Hierarchical sequential access method (HSAM)

SHSAM and HSAM use the DOS/VS Sequential Access
Method (SAM) to access physical storage.

* Simple hierarchical indexed sequential access
method (SHISAM)

¢ Hierarchical indexed sequential access method
(HISAM)

SHISAM and HISAM use the DOS/VS Virtual Storage
Access Method (VSAM). A HISAM data base is com-
posed of one key sequenced file (kSDS) and one entry
sequenced file (ESDS). A SHISAM data base consists of
only a key sequenced file (KSDS).

e Hierarchical direct access method (HDAM)

HDAM consists of one entry sequenced file (VSAM
ESDS).

e Hierarchical indexed direct access method
(HIDAM)

HIDAM consists of one key sequenced file (VSAM
KSDS) and one entry sequenced file (VSAM ESDS).

Basic Segment Types in a Hierarchical Data
Structure

Figure 1-6 shows the segment types and how they are
related in a hierarchical data structure. The segment
types are:

® Root Segment: This segment is at the top of the
structure. Each root segment has a key field which
serves as the unique identifier of that root seg-
ment, and as such, of that particular data base
record. The key field for this root segment is the
customer number.

® Dependent Segment: The dependent segment relies
on some higher level segment for its full meaning
and identification.

A parent/child relationship exists between a seg-
ment and its immediate dependents.

e Twin Segment: Multiple occurrences of a particu-
lar segment type under the same parent are called
twin segments.

Sequence Fields and Access Paths

To identify and provide access to a particular data base
record and its segments, DL/I uses sequence fields. Each
segment normally has one of its fields denoted as the
sequence field. Although not required, it is a good
practice to make sequence fields unique in value for
each occurrence of a segment type below its parent
occurrence. However, not every segment type need
have a sequence field defined. Particularly important is
the sequence field for the root segment, because it
serves as the identification for the data base record.
DL/1 provides a fast, direct access path to the root seg-

ment of the data base record based on this sequence
field.

Note: The sequence field is often referred to as the keyfleld or simply
key.

Chapter 1: General Information 1-7

Root segments
one per data base
record.

CUSTOMER

CUSTOMER
n

o8

3
2 CREDIT CUSTOMER
STATUS HISTORY
ni ni
CUSTOMER
i Parent of LOCATION, ORDER,
ITEM, CREDIT STATUS, and
CUSTOMER HISTORY segments.
Shaded line All segments below are
shows dependents of CUSTOMER 1
access path to
I TEM 1132
CUSTOMER CREDIT CUSTOMER
LOCATION STATUS HISTORY
1" 11 11
CUSTOMER
P ORDER
113
CUSTOMER
ORDER
112
CUSTOMER
ORDER
11
ORDER
ITEM
1132
Twin segments, children of
the same parent and are
ORDER the same segment type. The
ORDER l1'l1'§l1\ll ORDER segments in this
ITEM record are also twins.
1111

Figure 1-6. Segment Types and Their Relationships in a Hierarchical Data Structure

1-8 DL/1 DOS/VS Guide For New Users

Figure 1-6 shows as a shaded line an example of an
access path to the ORDER ITEM 1132 segment. It must
always start with the root segment. This is the access
path as used by DL/1. The application program, how-
ever, can directly request a particular ORDER ITEM
segment of a given CUSTOMER ORDER to a given
CUSTOMER LOCATION for a specific CUSTOMER in a
single DL/1 request by specifying a sequence field value
for all four segment levels.

Logical Relationships

In addition to the basic DL/1 facilities discussed so far,
DL/1 provides a facility to interrelate segments from
different hierarchies, or within the same hierarchy. In
doing so, new hierarchical structures are defined that
provide additional access capabilities to the segments
involved. The segments can belong to the same or
different data bases. A new data base can be defined
called a logical data base. This logical data base allows
presentation of a new hierarchical structure to the ap-
plication program.

The basic mechanism used to build a logical relation
is to create a dependent segment as a logical child that
points to a second parent, the logical parent.

In Figure 1-7, the logical child segment ORDER ITEM
exists only once, yet participates in two hierarchical
structures. It has a physical parent, CUSTOMER ORDER,
and a logical parent, INVENTORY ITEM. The data in the
logical child segment, if any, is called intersection data.

By defining two additional logical data bases, two
new logical data structures as shown in Figure 1-8 can
be made available for application program processing.
The ORDER ITEM/INVENTORY ITEM segment in Figure
1-8A, is a concatenated segment. It consists of the logi-
cal child segment plus the logical parent segment. The
ORDER ITEM/CUSTOMER ORDER segment of Figure
1-8B is also a concatenated segment, but it consists of
the logical child segment plus the physical parent seg-
ment. Logical children with the same logical parent are
called logical twins. In this case, all ORDER ITEM seg-
ments which point to the same INVENTORY ITEM seg-
ment are logical twin segments. As can be seen in Fig-
ure 1-7, this logical child has two access paths. One via
its physical parent, the physical access path, and one via
its logical parent, the logical access path. Both access
paths are maintained by DL/1 and can be concurrently
available to one program. When the logical child seg-
ment has two access paths as in Figure 1-7, the logical
relationship is called bidirectional. DL/1 also provides
for unidirectional logical relationships in which case the
logical child segment can be accessed only via its physi-
cal parent.

Because the DL/1 logical relationship function may
not be required for your first DL/1 application, we will

deal with it separately in this manual. To show the use
of logical relationships, we will use phase 2 of the sam-
ple application as described in Chapter 2.

Secondary Indexing

DL/I provides additional access flexibility with
secondary index data bases. Each secondary index rep-
resents a different access path to the data base record
other than via the root key. The additional access
paths can result in faster retrieval of data. For exam-
ple, the CUSTOMER and CUSTOMER ORDER segments in
Figure 1-9 could be retrieved based on the order num-
ber in the CUSTOMER ORDER segment, if an index were
defined for that field. Once defined, DL/1 will automat-
ically maintain the index if the data on which the index
relies changes, even if the program causing that change
is not aware of the index.

The segments involved in a secondary index are
depicted in Figure 1-9:

¢ The index source segment contains the source
field(s) on which the index is constructed, for ex-
ample, ORDER NUMBER.

e The index pointer segment is the segment in the
index data base that points to the index target seg-
ment. The index pointer segments are ordered
and accessed based on the field(s) contents of the
index source segment, for example, the order
number. This is the secondary processing sequence
of the indexed CUSTOMER data base. There is one
index pointer segment for each index source seg-
ment, but muitiple index pointer segments can
point to the same target segment.

® The index target segment is the segment which
becomes initially accessable via the secondary
index. It is in the same hierarchical record as the
index source segment and is pointed to by the in-
dex pointer segment in the index data base. Often,
but not necessarily, it is the root segment.

The index source segment and index target segment
may be the same, or the index source segment may be a
dependent of the index target segment as shown in
Figure 1-9.

In our examples, we will always choose the root
segment as the target segment. With this approach, it is
(for the application program) as if the index search
field replaces the original root key field. At the same
time, however, the original structure is still available to
the same application program.

Because you might not need the secondary index
function for your initial data base requirements, we
separate its discussion throughout the manual. The use

Chapter 1: General Information 1-9

CUSTOMER DATA BASE

CUSTOMER

d
T

CUSTOMER
ORDER

ORDER
ITEM

PHYSICAL
PARENT OF

ORDER ITEM

LOGICAL
CHILD OF
INVENTORY ITEM

Figure 1-7. Two Logically Related Data Bases, CUSTOMER and INVENTORY

CUSTOMER

L
T

INVENTORY DATA BASE

CUSTOMER
ORDER
ORDER INVENTORY
ITEM ITEM
VENDOR

A. LOGICAL DATA STRUCTURE -
CUSTOMER ORDER - INVENTORY ITEM

B. LOGICAL DATA STRUCTURE -

INVENTORY ITEM - CUSTOMER ORDER

Figure 1-8. The Logical Data Bases After Relating CUSTOMER and INVENTORY Data Bases

1-10

DL/1 DOS/VS Guide For New Users

LOGICAL
:ﬁgﬁNTORY PARENT OF
ORDER ITEM
I 4 y 4
J 4
SUBSTITUTE
VENDOR TTE
INVENTORY
ITEM
ORDER CUSTOMER VENDOR
ITEM ORDER
han ¥
CUSTOMER

ORDER NUMBER

SECONDARY
INDEX DATA CUSTOMER
BASE DATA BASE
INDEX INDEX
POINTER ORDER TARGET
SEGMENT NUMBER CUSTOMER V" seGMENT
provides the accessed via

means for the \\ the index
index access \

\ |CUSTOMER
\ [LOCATION

INDEX
SOURCE
SEGMENT
contains the
field on which
the index is
established

CUSTOMER
ORDER

ORDER
ITEM

Figure 1-9. A Data Base and its Secondary Index

of secondary indexing is shown in the phase 3 sample
application as described in Chapter 2.

Data Base Definition

The data base definition language of DL/I provides two
levels of data base definitions. Both are generated and
maintained independently of your application
program(s), thus providing the basis for data independ-
ence.

DBD (Data Base Description)

The first level is called the DBD (data base description).
It describes most of the file characteristics you must put
into every non-data-base DOS/VS program. Each DBD
is created from statements you provide. The statements
define the hierarchical data structure and physical
organization of the data base. These statements are
assembled as the DBD generation procedure.

The DBD describes the contents of the data base, the
names of the segments, their hierarchical relationship,
and the physical organization and characteristics of the
file. You can think of the DBD as the master descrip-
tion of everything that is in the data base.

The DBD provides DL/I with the mapping from the
application data structure of the data base used in the
application program to the physical organization of the
data used by DOS/vS. The data structure can be re-
mapped into a different physical organization without
application program modification. Other application
data can also be added to this data base and not re-
quire a change to the original application programs.
The concept of the DBD reduces application program
maintenance caused by changes in the data require-
ments of the application. The three types of DBDs are:

e The physical DBD provides the definition of a
single hierarchical structure. It can be used, in this
form, by application programs. If logical relation-
ships exist, the physical DBD contains a definition
of these relationships with the other hierarchical
structure. These relationships can be within the
same DBD or with another DBD. Multiple logical
relationships can exist within a single physical
DBD.

e The logical DBD provides the redefinition of one
or more related hierarchical structures into a new
hierarchical structure. These hierarchical struc-
tures can be from the same or different DBDs. The
logical DBD relies on the logical relationships that
were defined in the physical DBD(s).

¢ The index DBD allows the definition of an alter-
nate access path into a physical or logical DBD.

The process of generating a DBD is called data base
description generation (DBDGEN).

PSB (Program Specification Block)

The second level of data base definition, the PSB
(program specification block), defines the application
data structure for each application program. It is creat-
ed from statements you provide for each of your appli-
cation programs. The PSB defines which segments of
the data base a specific program requires (the applica-
tion data structure required by that application pro-
gram). A PSB contains one or more PCBs (program
communication blocks), one for each hierarchical data
structure the program intends to use. Each PCB defines
the hierarchical (sub)structure the program sees from
the physical or logical data base. It specifies for each
segment the kind of access allowed by the program
(read only, update, insert, and delete). There is at least
one PSB for every program that uses the data. An on-
line program may use more than one PSB; more than
one program may use the same PSB. You can think of
the PsBs as describing the logical data needed for the
program (usually a subset of the entire data base). The
process of generating a pSB is called program specifica-
tion block generation (PSBGEN).

User Responsibilities

System Installation
The user of DL/I has two primary responsibilities:
1. The development of data processing applications
that use DL/I. This includes application programs,

as well as backup and recovery procedures using
the DL/I utilities.

2. The structuring of his data processing environ-
ment:

Chapter 1: General Information 1-11

¢ Data Bases
e Batch Processing Programs

e CICS/VS as the teleprocessing support for trans-
action processing programs

Data Base Administration

The centralization of data and control of access to this
data is essential to a data base management system.
One of the advantages of this centralization is the
availability of consistent data for more than one appli-
cation. This dictates a tighter control of that data and
its usage. Responsibility for an accurate implementa-
tion of control lies with the data base administration
function. Although the data base administration func-
tion is usually performed by a person called the data
base administrator, this function may actually be per-
formed by a group of individuals with experience in
both application and system programming. The duties
of the data base administrator are to:

¢ Identify, define, implement, and maintain data
base specifications

e Control and monitor the use of data base informa-
tion

¢ Integrate application requirements for common
information

* Provide for efficient application migration from a
batch to online environment

o Establish a reliable and efficient data base operat-
ing environment

e Identify data base security requirements
e Monitor and evaluate performance
The data base administration function can be sepa-
rated into three general areas:
e Data Base Analysis
e Data Base Management

¢ Data Base Operations

Data Base Analysis
Responsibilities:

e Design data base structures that will be easy to
program, and use available hardware resources
efficiently.

o Establish data base recovery and reorganization
procedures.

e Authorize and control use of data bases.

e FEstablish a data base environment for testing use.

1-12 DL/I DOS/VS Guide For New Users

Data Base Management
Responsibilities:

e C(Create and maintain a data element dictionary.
This dictionary should contain each identifiable
data element together with its attributes, source,
edit and integrity responsibility, and a cross refer-
ence to all programs and data bases that use it.

¢ Determine file organization schemes.

¢ Evaluate how and by whom data is used. On op-
erational data bases, a use profile should be main-
tained to determine if design decisions remain
valid.

e Define, code, execute, and control all PSB and DBD
generations.

Data Base Operations
Responsibilities:

* Monitor all operational data base activity. The
foremost goal is to preserve the integrity of the
data base system.

¢ Based on results of the monitoring function, make
recommendations for changes to the data
base/data communications environment,
configuration, or procedures that will improve
performance, recoverability, and integrity.

¢ For online system operation, initialize, terminate,
monitor, and control the online data base/data
communications environment.

* Assist in the procedures required to properly re-
cover from a compromised data base, should this
occur.

Project Approach

The implementation of a DL/1 application is most suc-
cessfully done using the project approach. With this
approach, you assure that adequate planning is done in
a timely manner, stating all the necessary steps for the
design, test and installation of the application. For
more complex applications, you may want to try using
a project team with a definition of the tasks and re-
sponsibilities of all parties involved, if possible.

Project Cycle

Like most other data processing projects, a DL/I project
can generally be divided into the following phases:

¢ Preliminary investigation
¢ Planning
¢ Design

¢ Implementation

J

C

C

e Testing
e Operation

Figure 1-10 shows the relative manpower requirements
for each of the phases.

Following is a brief introduction to each of the phases:

The Idea: Normally there is a user requirement or
a management decision which is the initial starting
point of the project.

Preliminary Investigation: This phase concentrates
on the definition of the objectives. A feasibility
study, with a preliminary cost/benefit analysis, is
conducted.

Planning: A project plan is established. A Project
team is formed and the tasks and responsibilities
of individuals and departments are defined.
Budget and other resources are allocated. Approv-
al for the implementation is obtained. A change
control procedure is implemented to control modi-
fication during implementation.

Design and Implementation: The system is de-
signed, followed by a design and performance
review. After design approval, detail designs are
worked out together with a test plan.

Test: Both unit test and integrated system tests are
performed, resulting in the acceptance test.

Production: Production is started. Any further
changes to the system are controlled via mainte-
nance procedures.

Administration: Another important aspect is pro-
ject administration. The timely and accurate plan-
ning for and establishing of standards and guide-
lines is mandatory for an efficient project imple-
mentation and later maintenance. Most organiza-
tions already have standards which should be ex-

PLANNlNi/’_\
ADMINISTRATION AND MANAGEMENT

tended into the data base environment. At least,
standards should be available for:

e Naming of data base items such as DBDs, PSBs,
segments, fields, etc.

* Documentation of data structures, programs
and procedures (production, reorganization,
recovery)

e Administration of data sets, data bases, back-
up copies and log tapes and their interrelation-
ships.

All of this is under the control of the data base ad-
ministration function.

Sample Project Plan

The following sample project plan should be adapted
to your specific environment. Typical additional activi-
ties might be clean-up and conversion of existing pro-
grams and data.

Gross PERT Chart

Figure 1-11 shows a gross PERT chart for the imple-
mentation of a DL/I project. The necessary system-
oriented activities such as hardware and operating
system installation, and system maintenance, are not
included since these are largely dependent upon the
installation’s environment. The following descriptions
apply to the activities shown in the PERT chart (Figure
1-11).

System Planning (000-100): The sample PERT
chart is adapted to your project. Manpower and
machine time estimates are compiled. External
references are defined. Elapsed time calculations
are performed and the chart is extended with the
proper time frame. The critical path is calculated.
A Gantt chart can be constructed showing the du-
ration and people involved for each activity. Fig-
ure 1-12 shows an example of such a Gantt chart.

IMPLEMENTA-
TION

TECHNICAL SUPPORT

DOCUMENTATION

z0~-H4H0OCQgoxm™©

Figure 1-10. The Project Cycle

Chapter 1: General Information 1-13

DESIGN @ PLAN

The Gantt chart should clearly state the actual
days/months spent by each individual.

System Design (100-200): The overall system de-
sign is made. All components and their interfaces
are defined. The user interface is detailed and
reviewed for acceptance.

Development Plan (200-300): A detailed plan is
devised for the development of data bases and
programs. All single activities and their depen-
dencies are determined.

Data Base Gross Design (300-430): An overall data
base design, specifying the logical data structures
and the basic physical implementation, is created.

Program Design (300-400): Each individual appli-
cation program is designed. Its input, processing,
output and data base accesses are defined. Com-
mon guidelines and routines are established. Of-
ten more than 50% of the data processing pro-
grams are reports. Using COBOL or PL/I report
writer features can significantly reduce the re-
quired manpower for program design.

Collect Data (300-530|300-630): Both test data and
live data are collected, or procedures/programs
are established for the conversion of existing data
files.

Recovery and Reorganization
(300-440-650/640-700): A timely plan for re-
covery and reorganization can avoid later rede-
signs and reprogramming. These procedures, al-
though rarely needed, are vital to the data base
integrity and availability. Therefore, a thorough
test plan must be made and carried out before

SYSTEM OEVELOPMENT

production starts. The production staff should be
carefully trained in problem determination and
the secure and accurate execution of such proce-
dures. An incomplete treatment of this topic is the
most common source of problems with data base
management systems.

Install DL/I and Run Sample Application(s)
(300-420-600): The system programmer installs
the DL/1 data base system. The samples provided
with the system are exercised to get practical expe-
rience with the system. Conventions and proce-
dures are established for system maintenance.

Data Base Detail Design (430-600): The detailed
logical and physical data base structures are de-

fined. Access methods are selected and the DBDs
are coded and tested.

Program Specification (400-500): Detail flow.
charts are established. The data base call sequen-
ces are defined in a standard fashion.

Test Plan (400-600): A detail test plan is made.
Procedures for unit test and systems test are estab-
lished.

Develop Load Programs -- Load Test Data Bases
(400-530-600): Load programs are designed, writ-
ten and tested with the test data, resulting in test
data bases for program and
recovery/reorganization tests.

Design Review (600): At this stage it is appropriate
to conduct a design review. The basic aim of a
design review is to assure that the specified re-
quirements are met. Major review topics are:

SYSTEM

PHODUCTION

f DESIGN AND PERFORMANCE REVIEW

Figure 1-11. DL/I Installation Plan PERT Chart

1-14 DL/1 DOS/VS Guide For New Users

C

e Are the applications really what the users
want?

e [sthe performance as expected?

e Are there any pitfalls in the data base and
program design?

Program and PSB Coding and Test (500-600-700):
Each application program is coded and tested,
using the test data bases and the test procedures.

Load Live Data Bases (630-700): The data bases
are loaded with the actual data. Backup copies are
made immediately after initial load. The process
at times exposes existing inconsistencies in data.
You may need to include extra time to resolve
these inconsistencies.

System Test (700-800): Integrated tests are execut-
ed on the live data bases. Reorganization and

backup/recovery procedures are tested on those
data bases.

Production (800-900): Production starts. The es-
tablished monitoring and maintenance procedures
are enforced. Final feedback is given to develop-
ment for future projects. It is strongly recom-
mended that the test environment be maintained
in addition to the production environment. This
will be of benefit to future trouble shooting, appli-
cation modification, and application extensions.

Implementation Overview
Based on the information presented in this chapter, the
following steps are necessary to implement a data base:

Define the application requirements.

Design the physical data base.

ACTIVITY

TIME

EDUCATION

DL/I INTRODUCTION
DL/I IMPLEMENTATION

DEVELOPMENT
SYSTEM DESIGN

DB GROSS DESIGN

DB DETAIL DESIGN
(DBDs and PSBs)

SYSTEM TEST

v

minz

[1F~

PROGRAM DESIGN v
NN
PGM CODE AND TEST e VRS
Q\Q\\\§\\\
INSTALLATION
INSTALL DL/I =|
RUN SAMPLE T
1
 —

DATA BASE SPECIALIST

SYSTEM ANALYST

PROGRAMMER

SYSTEM PROGRAMMER
OPERATIONS STAFF

PRODUCTION

ALL

Figure 1-12. Sample Gantt Chart

Chapter 1: General Information 1-15

1-16

Define the logical relationships.
Design the logical data bases.
Define the secondary indexes.

Code the DBDs of the physical and logical data
bases.

Code the PSBs.

Use the DBDs and PSBs to build the control blocks
(ACB Generation).

DL/1 DOS/VS Guide For New Users

Define VSAM data sets for the physical data bases.

Load the physical data bases (User Written Appli-
cation).

Use the DL/1 utilities to resolve the logical rela-
tionships between the data bases.

Execute the applications.

9

As in almost any system implementation, the design is
the most challenging task to be performed. Yet, a de-
signer is often bound to a time limit and does not know
all future requirements. To cope with these problems,
a designer needs a good plan and proper techniques.

DL/1 itself is not an application. It is a data manage-
ment control system that provides the method of con-
structing data base/data communication applications.
To simplify the use of this manual as a tool to guide
you in your data base design, a sample application is
used throughout this manual as a base for all the exam-
ples. This sample is intended to guide you in a normal
sequence through all the steps needed for successful
implementation of an application using DL/1.

The sample application is an online Customer Order
Processing Program using DL/1 in conjunction with
cics,/vs. However, the examples for, and discussion of,
data base and application program design are also
valid for batch processing considerations. Any material
presented that applies to online considerations only is
clearly defined.

The sample application uses two data bases: Inven-
tory, and Customer. The Inventory data base is de-
signed first based on existing (non-data-base) ISAM
and/or VSAM files already in use at the installation (for
example, Inventory Master, Item Location, and Ven-
dor). This data base is used initially for batch applica-
tions, but the installation has plans to eventually relate
this data base to another data base (Customer), using
logical relationships to eliminate redundant data. To
gain an alternate path to retrieving the data, the instal-
lation will also use secondary index data bases.

Finally, the data bases will be placed in an online
environment using the DL/1 interface to CICS/VS.

The fact that the examples used in this manual are
directed towards a specific application should not pre-
clude your using DL/I for other applications. Actually,
the basic data structure and processing shown in these
examples can readily be adapted to other applications.

Installing a Jata base management system involves
two separate processes:

e Data base design
¢ Data base implementation.

Data base design is a user process of determining
which data base structures will satisfy the
organization’s application program data needs while
satisfying an organization’s data security, integrity, and
redundancy objectives.

Chapter 2: Data Base Design

Data base implementation is a user process of creat-
ing, tuning, and maintaining data bases. This process
includes the selection of DL/I access method options,
storage allocation, and other performance and tuning
options. The implementation process is fully described
in the next chapter.

This chapter introduces the concepts, techniques
and guidelines for the designing of DL/1 data structures.
It is aimed at those individuals who are designing their
first DL/1 data base.

Data Base Design Objectives

Just as reasons for installing a data base management
system vary among users, data base design objectives
will also vary. Some objectives of a data base design
are to:

e Provide an access path to the stored data required
by an application.

e Isolate current applications from the impact of
future applications on the same data base.

* Support data security objectives
e Support data redundancy objectives

e Support multiple applications, making trade-offs
in the best interest of the organization as a whole.

Each user must determine the applicability and
priority of the design objectives to the current design
effort. The more limited and simple the objectives the
more simple the task of data base design.

In addition to the guidelines provided in this chap-
ter, the data base design process may also be accom-
plished by using one of the application development
aids available that support data base design. Examples
are:

* DOS/VS DBDA (Data Base Design Aid) - PP num-
ber 5748-XX4

The DBDA is a collection of programs that assist in
performing a major portion of the data base de-
sign process. The DBDA uses your installation’s
input that describes the data base requirements
and produces a structural model of the data base
by mapping the data elements into segments and a
hierarchical structure that shows the minimum set
of relationships required by an integrated data
base (one which serves many application pro-
grams).

* DOS/VS DB/DC Data Dictionary - PP number 5746-
XXC

Chapter 2: Data Base Design 2-1

The DB/DC dictionary is a collection of programs
that provide a data definition interface, store the
data definitions, provide displays and reports of
the defined data and, upon request, produce defi-
nitions for the DL/I control block generation proc-
ess.

Data base design aids are also available for certain
industry applications. If your installation intends to
use an IBM Chain File Bridge PP or some of the indus-
try application programs available, you should investi-
gate the data base design aids offered by these pro-
grams.

Because data base design is an area where there has
been little standardization, there has been no consistent
vocabulary for describing the concept involved. The
reader who intends to utilize one of the above facilities
may wish to skip the rest of this chapter.

About This Chapter

This chapter consists of three different sections:

e Section 1. The DL/I Sample Application intro-
duces the sample applications in detail. It sets the
requirements and the environment for the actual
data base design process. It provides the back-
ground for the examples used in the two following
sections.

e Section 2. The DL/I Data Base Facility introduces
the functions of DL/1 available to the data base
designer.

e Section 3. The Data Base Design Process intro-
duces the concepts, techniques and guidelines for
the designing of data bases with DL/I. It is aimed
at those individuals who are designing their first
data bases with DL/L

Each of the above three parts is constructed along
the three phases of data base implementation:

e Phase |I: Basic data bases
e Phase 2: Data bases with logical relationships
e Phase 3: Data bases with secondary indexes

With this gradual approach you will be able to de-
sign simple data structures with a minimal amount of
effort and still be able, when the need arises, to exploit
the full DL/I function. Remember, data base design is
not just a matter of creative imagination. Most of it is
systematic labor. The intention of this chapter is to
help you with this by providing techniques for an effi-
cient accomplishment of this challanging task.

2-2 DL/I DOS/VS Guide For New Users

Section 1: DL/I Sample Application

The sample application documented in this manual is

for a fictitious company (a wholesale distribution firm)
that offers a wide variety of electronic components.
The components are purchased from various vendors
and sold to customers. Most customer orders arrive by
telephone. Because of this and the growth in numbers
of orders and variety of items, an upgrade of the exist-
ing inventory control and customer order applications
became necessary. It was decided to build a new sys-
tem which integrated these applications utilizing the
DL/1 data base approach.

Some objectives for the new application were:
¢ Implement:

- Inventory control with its associated purchase
order processing

- Customer order processing

¢ Provide central control of inventory, purchase
orders, and customer orders

e Provide accurate status information on items in
stock, on order and delivered

¢ Provide accurate entry of both purchase orders
and customer orders with respect to items in stock

¢ Provide a base for online processing of orders and
inquiries
The implementation of this system will be the com-
mon thread throughout the examples used in this man-
ual.

Inventory Data Base

Information about items in stock is managed by the
inventory control department. All data will be stored
in the Inventory data base. This data base consists of
one record for each item the company stocks. Each
record identifies:

e Standard information for all items

e Stock location information for those items that are
in stock

e Purchase information for those items that need
restocking

Customer Data Base

Information about customer orders is managed by the
sales department. All order data will be stored in the
Customer data base. It consists of one record for each
customer order. Each record identifies:

e Standard information for each order and customer
e Order detail information for each ordered item

¢ Shipment information for this order

J

A link is required to the Inventory data base because
it is necessary to know which parts are on order by
each customer and vice versa.

Naming Conventions Used in the

Sample Application

The naming conventions used in the sample applica-
tion observe the following format:
ABCDELFGH

Reserved for DOS/VS,
CICs/VS, and DL/I

Description (within
application)

Application (within
application area)

l———— = Category of name
(DBD, PSB, etc)

General Application

Area
Example:
STDCX1Ch
INDEX 1 VSAM CLUSTER
CUSTOMER
DBD

SAMPLE TRANSACTION

Thus: The name STDCXIC represents the VSAM cluster

definition for Index | of the CUSTOMER data base with-
in the Sample Transaction set of applications.

Naming Conventions - Application Area

ABCDEFGH
ST - Sample Transaction

Naming conventions - Categories

ABCDEFGH

- not used

— PSB

- Real Logical Child

DBD

- not used

- Field

- Length Field (Variable
Length Segment)

— Segment Search Argument

— Indexing Segment

- not used

— Concatenated Key Field

- Logical (Concatenated) Segment

- not used

- not used

— not used

— Destination Parent Segment

Sequence Field

— Index Search Field

— Segment

— not used

— Index Duplicate Data Field

— Virtual Logical Child

- not used

— Indexed Field

- Indexing Field

— Index User Data Field

QMmoo QWP
|

N<XE<<CHNBMOUWOZIEHRLHM®T
|

Naming Conventions - Applications

ABCDEFGH

C — Customer
I - Inventory

Naming Conventions - DBD

ABCDEFGH

DBD TYPE
'D' - DBD

DBP - Physical DBD

DBL - Logical DBD

XnP — Index DBD
(n = 0-9)

DBC - Physical DBD
Cluster (VSAM)

DBI - Physical DBD
Index (VSAM)

DBD - Physical DBD
Data (VSAM)

XnC — Index DBD
Cluster (VSAM)

XnI - Index DBD
Index (VSAM)

XnD - Index DBD
Data (VSAM)

Chapter 2: Data Base Design

Note: The names for the segments and data elements shown in all
data base examples are as they will be used in the final (Phase 3)
online application. Therefore some names used in the Phase | and
Phase 2 examples are not consistent with the naming conventions

described.

Sample Application Description -

Phase 1

The phase | data base is the Inventory data base. It
contains the data the installation needs to monitor
stock status and to process customer orders. The data
base contains four segment types as shown in Figure

2-1.
INVENTORY
ITEM
(STPIITM)
VENDOR |STUEB|\§TITUTE :_TOECMAﬂON
{STSIVND)
{STCISUB) {STSILOC)

Figure 2-1. Inventory Data Base

The segments and the data elements they contain

are:

Inventory Location Segment (STSILOC): This seg-
ment contains the Inventory location number for the
item, and the quantity. The fields are:

Name Description Length (bytes)
STQILNO Inventory Loc. No. 6 (key)
STFILQT Quantity 6

Sample Application Description -
Phase 2

The second data base is the Customer data base. For
phase 2, this data base will be related to the Inventory
data base using logical relationships. Details on how
this is done are presented later in this chapter. The
customer database contains the customer information
the installation needs to begin processing a customer
order, such as customer name, address, order informa-
tion, and credit status. It contains six segment types as
shown in Figure 2-2.

Inventory Item Segment (STPIITM): contains the

item number, description, quantity on hand, quantity
on order, unit price, and unit of issue.

Name Description Length (bytes)
STQIINO Item Number 6 (key)
STFIIDS Description 25

STFIIQH Quantity on hand 6

STFIIQO Quantity on order 6

STFIIQR Quantity reserved 6

STFIIPR Unit price 6 (3 dec. places)
STFIIUN Unit of issue 1

Vendor Name Segment (STSIVND): contains the
vendor number, name, and three lines of address.

Name Description Length (bytes)
STQVVNO Vendor Number 6 (key)
STUVVNM Vendor Name 25

STFVVA1l Loc. Address Line | 25

STFVVA2 Loc. Address Line 2 25

STFVVA3 Loc. Address Line 3 25

Substitute Item Segment (STCISUB): This segment

contains the number of the item (if any) that can be

substituted for the item referenced in this record. The

field is:
Name Description Length (bytes)
STQCCNO Sub. Item Number 6 (key)

2-4 DL/I DOS/VS Guide For New Users

CUSTOMER

NAME/

ADDRESS

(STSCCST)
CUSTOMER CREDIT CUSTOMER
LOCATION STATUS HISTORY
(STSCLOC) {STSCSTA) (STSCHIS)
CUSTOMER
ORDER
(STPCORD)
ORDER
ITEM
(STCCITM)

Figure 2-2. Customer Data Base

The segments and the data elements they contain
are:

Customer Name and Address Segment (STSCCST):
contains the customer number, customer name, and a
three line address.

Name Description Length (bytes)
STQCCNO Customer Number 6 (key)
STUCCNM Customer Name 25

STFCCA1l Cust. Address Line | 25

STFCCA2 Cust. Address Line 2 25

STFCCA3 Cust. Address Line 3 25

Customer Location Segment (STSCLOC): similar in
format to the Customer Name and Address segment. It
provides multiple ‘Ship to’ locations for a customer. It.
contains the location number, location name, and three
lines of address.

Name Description Length (bytes)
STQCLNO Location Number 6

STFCLNM Location Name 25

STFCLAIl Loc. Address Line 1 25

STFCLA2 Loc. Address Line 2 25

STFCLA3 Loc. Address Line 3 25

Customer Order Segment (STPCORD): A segment
exists for each active (open) order. This segment con-
tains totals and reference information unique to the
order. Fields are: Order Date, Order Number, Order
Reference Data, Item Count, and Total Order Amount.

Name Description Length (bytes)
STQCODN Order Date (yr-mo-day)
and Order Number 12
STFCORF Order Reference Data 25
STFCOIC Order Item Count 2
STFCOAM Order Amount 12

Order Item Segment(STCCITM): One segment ex-
ists for each line item of the order. It contains quantity
and amount fields unique to the line item. The fields
are: Inventory Item Number, Line Item, Quantity
Ordered, Quantity Shipped, Quantity Back Ordered,
and Order Amount.

Name Description Length (bytes)
STKCIIN Inventory Item Number 6
STQCILI Line Item Number 2
STFCIQO Quantity Ordered 6
STFCIQS Quantity Shipped 6
STFCIQB Quantity Back Ordered 6
1

STFCIAM Item Amount

N

Customer Status Segment (STSCSTA): contains
information pertaining to the credit status of the cus-
tomer. This information is placed in a separate seg-
ment so that access to it can be restricted to those who
are authorized to use it. This data security is provided
using the segment sensitivity feature of DL/I. The seg-
ment contains two fields: Credit Limit and Credit Bal-
ance.

Name Description Length (bytes)
STFCSCL Credit Limit 12
STFCSBL Credit Balance 12

Customer History Segment (STSCHIS): this seg-
ment is similar in format to the Customer Open Order
Item segment. It is used to retain summary information
about previous (closed) orders. This segment is defined
as a variable length segment to provide flexibility in
recording the order status field, STFCLOS, while optim-
izing storage requirements for the segment. The first

field in a variable length segment is used to record the
length of the segment. See “Variable Length
Segments” later in this chapter for details.

Name Description Length (bytes)
STGCSL Segment Length 2
STQCHDN Order Date (yr-mo-day)
and Order Number 12
STFCHRF Order Reference Data 25
STFCHIC Order Item Count 2
STFCHAM Order Amount 12
STFCLOS Order Status 77

Sample Application Description -
Phase 3

The phase 3 data base environment includes the addi-
tion of secondary indexes to the customer and invento-
ry data bases. This is done in the sample application to
allow alternate access paths to the data as required for
the online order/inquiry system. Details on how this is
done are included later in this chapter.

DL/I Sample Programs

In DL/I Version 1.3, several new sample data bases and
sample programs were added to demonstrate the use of
DL/I with logical relationships and secondary indexes,
and to allow you to test DL/I in an online environment.
The sample programs are used to load, access, and
print or display the contents of the Customer and In-
ventory data bases as described in this manual for the
Phase 3 environment. All DBD, PSB, and ACB genera-
tion control statements are included for the physical,
logical, and secondary index data bases.

The sample jobstream also includes the access me-
thod services DEFINE commands for VSAM and the
utilities used to create the secondary indexes and re-
solve the logical relationships. The sample application
programs are:

¢ DL/I Online Sample Load Program - DLZSAM40

This program loads the Customer and Inventory
data bases for the DL/I online sample program.

* DL/I Online Sample Print Program - DLZSAM50

This program prints the Customer and Inventory
data bases as loaded by DLZSAM40.

® DL/I-CICS/VS Sample Online Application -
DLZSAM60

This program is an interactive DL/I-CICS/VS online
application designed to allow customer order in-
quiry and customer order entry to the Customer
and Inventory data bases defined for this sample
application.

The online sample application also includes a pro-
gram that defines the format of the displays to the 3270

Chapter 2: Data Base Design 2-5

screen as used by DLZSAM60. See Chapter 8, “DL/I
Online Sample Application,” for more information.

Section 2: DL/I Data Base Facility

This section of Chapter 2 provides an introduction to
DL/I functions and their use. It is the main source of
reference for the data base administrator. This section
is subdivided into two parts. The first part provides the
necessary insight into DL/I for doing the data base de-
sign. The second part provides details for the imple-
mentation of the data base(s). Each part has three
sections. These sections cover the following main data
base facilities:

e Physical data bases and access methods
o Logical relationships

¢ Secondary indexes

Physical Data Bases and Access Methods
To support a wide variety of data base requirements,
DL/1 provides several data base access methods. How-
ever, your application programs will be typically inde-
pendent of the particular access method chosen for a
given data base.

The access methods are:

e Simple Hierarchical Indexed Sequential Access
Method (Simple HISAM)

e Hierarchical Indexed Sequential Access Method
(HISAM)

o Hierarchical Indexed Direct Access Method
(HIDAM)

e Hierarchical Direct Access Method (HDAM)

e Simple Hierarchical Sequential Access Method
(Simple HSAM)

¢ Hierarchical Sequential Access Method (HSAM)

The data base type, its access method, and structure
are defined in the DBD (data base description). To use
a data base in an application program, you must pro-
vide a PSB (program specification block). The PSB
specifies the data base(s) to be used and the kind of
usage required. DBDs and PSBs are created during data
base description generation (DBDGEN) and program
specification block generation (PSBGEN) respectively.
This is discussed in detail later in this chapter.

Before discussing each of the access methods fur-
ther, this section will first elaborate on some of the
basic DL/I concepts that were introduced in Chapter 1.

2-6 DL/1 DOS/VS Guide For New Users

DL/I Data Base Record

The DL/I data base record as shown in Figure 2-3 con-
sists of one root segment and a number of dependent
segments. Each dependent segment can have a varia-
ble number of occurrences below its parent occurrence.

In its most elementary form, this record could be
stored in one or more physical records. In principal,
the segments would be stored in their hierarchical se-
quence, as shown in Figure 2-4.

Note that Figure 2-4 is a simplification. In reality
DL/1 uses more elaborate storage organizations to allow
for efficient replacement, insertion, and deletion of
segment occurrences. Generally available functions
include for example:

CUSTOMER
CUSTOMER CREDIT CUSTOMER
LOCATION STATUS HISTORY
11 11 1
112
CUSTOMER
ORDER
111
b-—--- 1
I
1 |
ORDER ORDER
ITEM ITEM
1111 1121

Figure 2-3. A DL/I1 Data Base Record

< o >

CUSTOMER
LOCATION
1"

CUSTOMER
ORDER
111

RECORD CUST10MER

ORDER CUSTOMER
RECORD ITEM ORDER
mn 112

CUSTOMER
HISTORY

CREOIT
STATUS
11

ITEM ITEM
1121 | 1122

RECORD | CUSTOMER
2

ORDER l ORDER

Figure 2-4. A DL/1 Data Base Record in Physical Storage

e Space reuse of deleted segments

¢ Direct or key-sequenced access for the root seg-
ment based on the root segment sequence field
(=key field).

This will be discussed in more detail for each of the
data base access methods.

Segment Format

A segment in a DL/I data base record consists of a pre-
fix and data portion. The prefix contains the system
data used by DL/I and is not presented to application
programs. The data portion contains the user data as
seen by the application program. The prefix of a seg-
ment contains a segment code, a delete byte, and op-
tional pointers. Figure 2-5 illustrates the segment for-
mat. The one byte segment code is used to identify
each segment stored in a DL/I data base. It is the first
byte of the prefix. The second byte is the delete byte. It
is used to maintain the status of a segment within the
data base.

Note: SHSAM and SHISAM data bases can contain only one seg-

ment type. (The root segment for the data base record.) These data
base organizations do not contain segment prefixes.

Figure 2-5 shows that segments also contain a point-
er area. Pointers are used in HDAM and HIDAM data
bases for linking the segments within one data base
record in their hierarchical order. Pointers are also
used to link segments involved in logical relationships,
and to implement index pointing,.

|~ #———————— PREFIX

The segment types in each data base are coded in
hierarchical sequence from 1, the root segment, up to

255, as shown in Figure 2-6.
rl‘— DATA —>|
ITL

fL
77 JJ
SEGMENT DELETE
CODE BYTE POINTER AREA USER DATA
— I re
17 17

Figure 2-5. Segment Format

Note that each occurrence in a data base of a given
segment type contains the same segment code. Each
segment occurrence is normally identified by its conca-
tenated key.

Concatenated Key

The concatenated key of a segment consists of all se-
quence fields from the root down the hierarchical path
to and including the sequence field of the segment itself
as shown in Figure 2-7.

Calls and Data Base Positioning

To help gain a better understanding of each particular
data base organization, a basic description of the DL/1
calls used to process segments in a data base follows.

10 1

Figure 2-6. Segment Types Numbered in Hierarchical Sequence

Chapter 2: Data Base Design 2-7

SEQUENCE FIELDS

CUSTOMER

000001

\/P

CONCATENATED KEYS
000001 et

CUSTOMER CREDIT CUSTOMER
LOCATION STATUS HISTORY
> 000010 NONE 761205
000001000010, 000001 1000001,761205, .

000001,000010,770129100500,0 7, g

CUSTOMER
ORDER
—> 770129100500
.000001.000010,7701 29100500, g
ORDER
ITEM
S— o1

Figure 2-7. Concatenated Keys

The segments in a DL/I data base are processed
through calls issued by an application program. Calls
are issued to get, insert, delete, or replace a segment or
a path of segments. A call references a parameter list
which includes all data required by DL/I to complete
the call. Included in the list are a function code and,
optionally, one or more SSAs (segment search argu-
ments). The function code states the call to be per-
formed, and the SSAs define the segments along the
hierarchical path down to, and including the segment
to be processed. A call is unqualified when no SSA is
included with the call, and is qualified when one or
more SSAs are included. A brief description of $SAs
follows. For more detailed information, refer to Chap-
ter 4, “Processing Data Bases™.

2-8 DL/I DOS/VS Guide For New Users

The basic direction of movement in a DL/ data base
1s top to bottom, left to right. Position in a data base is
the segment or segments from which the search for
another segment starts. Normally, DL/1 retains position
at each level of the hierarchical path down to the last
retrieved segment.

The basic DL/I calls are:

* GU (get unique) call is used to retrieve a specific
segment or path of segments from a data base. At
the same time it establishes a position in a data
base from which additional segments can be proc-
essed in a forward direction.

* GN (get next) call is used to retrieve the next de-
sired segment or path of segments from a data

base. The get next call normally moves forward in
the hierarchy of a data base from current position.
It can be modified to start at an earlier position
than current position in the data base through a
command code, but its normal function is to move
forward from a given segment to the next desired
segment in a data base. Command codes are dis-
cussed in detail in Chapter 4.

GNP (get next within parent) is used to retrieve the
next desired segment or path of segments within
established parentage. Parentage must have been
established by a successful GU, GHU (get hold uni-
que, see following text), GN, or GHN (get hold
next, see following text) call either immediately
before this call, or at some prior time, provided no
other call that changes parentage has intervened.
A GNP call or GHNP call does not establish paren-
tage.

GHU (get hold unique), GHN (get hold next), or
GHNP (get hold next within parent indicates the
intent of the user to issue a subsequent delete or
replace call. A get hold call must be issued to re-
trieve the segment before issuing a delete or re-
place call.

ISRT (insert) call is used to insert a segment or a
path of segments into a data base. It is used to
initially load segments in data bases, and to add
segments in existing data bases.

To control where occurrences of a segment type
are inserted into a data base, the user normally
defines a unique sequence field in each segment.
When a unique sequence field is defined in a root
segment type, the sequence field of each occur-
rence of the root segment type must contain a uni-
que value. When defined for a dependent segment
type, the sequence field of each occurrence under
a given physical parent may contain a nonunique
value. If no sequence field is defined, a new oc-
currence is inserted according to rules specified by
the user when the data base is defined.

DLET (delete) call is used to delete a segment from
a data base. When a segment is deleted, its de-
pendents, if any, are also deleted. This call must
be preceded by a get hold call.

REPL (replace) call is used to replace the data in
the data portion of a segment or path of segments
in a data base. Sequence fields cannot be changed
with a replace call. This call must be preceded by
a get hold call.

CHKP (checkpoint) causes a checkpoint record to
be written on the DL/I log as an aid in restart proc-
essing.

SSA (segment search argument)

An SSA specifies the conditions that a segment must
meet to satisfy a call. An SSA can contain three parts.
As a minimum, it contains the name of the segment
type. Optionally, an SSA can also contain command
codes and/or qualification statements. Command
codes, when used, specify a functional variation of the
call. Qualification statements identify, through field
values, the segment occurrence of the specified segment
type. A qualification statement contains a field name,
relational operator, and comparative value. When
occurrences of the segment type are searched by DL/I,
the specified field is compared to the comparative
value in accordance to the relational operator specified.
If only the name of the segment type is specified, the
first encountered occurrence of that type will satisfy the
call.

VSAM (Virtual Storage Access Method)

VSAM is very flexible in that this single access method
can be used to process data sets organized in several
different ways. Two of these data sets are called the
ESDS (entry-sequenced data set), and the KSDS (key-
sequenced data set). The primary difference between
these data sets is the sequence in which records are
stored in them.

In a KSDS, records are stored logically in order of
collating sequence of the contents of a key field. This
field is part of the data content of each record. It ap-
pears in the same position of each record in the data
set. The key field contains a unique value, such as
customer number or order number, which determines
the record’s collating position in the data set.

A KSDS has an index which is used to locate the
record’s physical position in the data set. Each entry in
the index couples a key of a record with its location in
the data set. This key is the highest key value in that
section of the data set.

In an ESDS, the records are stored physically in the
order in which they are entered into the data set, that
is, their entry sequence. The data content of an ESDS
record has no effect on the position in which it is
stored. New records are simply stored at the end of the
data set. VSAM does not maintain an index for an ESDS.

Cluster Concept

In vsAM (for a KSDS), both the index component and
the data component can be treated as independent data
sets. You can give each component a name. For exam-
ple, you could name the index of a payroll data set
PAYDEX and the data part PAYDAT.

Note: The index component of a KSDS is a VSAM index. It is not
the primary or secondary index you can define for DL/I data bases.

Chapter 2: Data Base Design 2-9

Thus, it is possible to process the data portion sepa-
rately from the index portion and vice versa. In DL/I,
you will be treating the index and data as a single data
set with its own name. In VSAM, this combination is
called a cluster and the name that is given to the com-
bined components (index and data) is called a cluster
name. For example, you could give the payroll data set
a cluster name of PAYROLL. This is the name you use
as the file-ID in a DLBL statement to process the payroll
data set as a single functional unit.

// DLBL PAYFILE, 'PAYROLL',,6VSAM

This concept of a cluster is carried over to the ESDS.
It is considered by VSAM to be a cluster without the
index component. To be consistent, the ESDS is given a
cluster name, just as the KSDS, which is normally used
as the file-1D when processing the data set.

In VSAM it is necessary to define a cluster before it
can be used as a dataset. A DL/I data base that is physi-
cally stored as a VSAM KSDS and/or ESDS must be de-
fined as a cluster to VSAM. VSAM clusters are defined
with the access method services DEFINE command.

Data Base Access Methods

Simple HSAM

The simple HSAM data base consists of root segments
only. Segments contain data only and are placed se-
quentially in a physical record of a DOS/VS Sequential
Access Method (SAM) file on DASD or tape. Any
DOS/VS SAM file defined with RECFORM=FIXUNB may
be defined as a simple HSAM data base.

HSAM

Figure 2-8 shows the HSAM physical storage of the
logical data structure. HSAM uses the DOS/vSs Sequen-
tial Access Method (SAM) data management facility for
DASD and TAPE files. Segments which contain DL/I
prefix information and data are placed sequentially in
a physical record until the remaining space in the re-
cord will not hold the next segment to be stored. The
next segment is then placed in the next physical record.
Unused space at the end of a physical record is filled
with binary zeros.

Call Functions
® GET:SHSAM and HSAM will accept GET functions

e INSERT:SHSAM and HSAM will accept ISRT func-
tions on initial load only. Inserts to an HSAM data
base must be in sequence.

e DELETE: SHSAM and HSAM will nor accept a DLET
function.

2-10 DL/I DOS/VS Guide For New Users

® REPLACE: SHSAM and HSAM will not accept a REPL
function.

Simple HISAM

The simple HISAM data base access method may be
used for indexed sequential access to a root segment
only data base. Because of this, there is no segment
prefix needed. Each segment contains only data and
constitutes one record of a DOS/VS VSAM key se-
quenced file (kSDS). This makes it possible to process a
non DL/1 KSDS as a DL/I data base with full DL/I func-
tion. The main use of SHISAM is as a migration tool to
DL/I for existing KSDS files. It is not recommended for
new data bases. Any fixed length KSDS may be defined
as a simple HISAM data base.

HISAM

The HISAM data base access method is used for indexed
sequential access. Data management capabilities are
provided by DOS/VS VSAM. HISAM requires a KSDS and
an ESDS.

One KSDS record is allocated to each DL/1I data base
record. Each segment contains DL/I prefix information
and data. A root segment and as many dependent seg-
ments of the DL/I data base record as can be accomo-
dated are placed in the KSDS record.

If additional space is required for storage of depend-
ent segments of a DL/I data base record, one or more
ESDS records is used. Direct addresses relate the KSDS
record and all ESDS records for one DL/I data base
record. The ESDS records together form a VSAM entry
sequenced data set. Figure 2-9 presents the HISAM
physical storage of the logical data structure.

A VSAM control interval (KSDS or ESDS) consists of
one or more logical records. KSDS control intervals
may contain several logical records, each of which
relates to a different data base record. KSDS and ESDS
records may differ in size, however the KSDS record
must be large enough to contain at least the root seg-
ment plus prefix. The ESDS logical record length must
be large enough to contain the largest dependent seg-
ment plus prefix and it must be at least as large as the
KSDS record.

Considerations of HISAM and HSAM

In deciding whether to use HISAM or HSAM, the HSAM
restrictions must first be considered. Since HSAM is
used to reference a sequential file, data cannot be add-
ed, deleted, or replaced in an existing HSAM data base.
DELETE and REPLACE calls are not valid for HSAM.
INSERT calls are invalid except when loading the data
base.

HSAM is useful for processing existing sequential
files and archival storage of data bases.

PHYSICAL RECORD 1

PHYSICAL RECORD 2

PHYSICAL RECORD 3

DATA BASE RECORD

CUSTOMER
1
CUSTOMER CREDIT CUSTOMER
LOCATION STATUS HISTORY
1 1
112
CUSTOMER
ORDER
11
e - - — =
1123
1112 11122
ORDER ORDER
ITEM ITEM
1111 1121
CUSTOMER CUSTOMER ORDER
CUSTOMER 1 LOCATION 11 ORDER 111 ITEM 1111
ORDER CUSTOMER ORDER ORDER
ITEM 1112 ORDER 112 ITEM 1121 ITEM 1122
ORDER CREDIT CUSTOMER
ITEM 1123 STATUS 11 HISTORY 11

Figure 2-8. HSAM Physical Storage of a Logical Data Structure

Chapter 2: Data Base Design

2-11

CUSTOMER
1

DATA BASE RECORD

[

Figure 2-9. HISAM Physical Storage of a Data Base Record

2-12

CUSTOMER CREDIT CUSTOMER
LOCATION STATUS HISTORY
11 1 11
[12
CUSTOMER
ORDER
m
[1112
ORDER
ITEM
111
ESDS
/’4
ORDER ORDER CUSTOMER
1 PTR ITEM 1111 | ITEM 1112 | ORDER 112
CUSTOMER ORDER ORDER ORDER
PTR CUSTOMER 1| "GCATION 11 PTR ITEM1121 | ITEM1122 | ITEM 1123
o CREDIT CUSTOMER
STATUS 11 | HISTORY 11

DL/1 DOS/VS Guide For New Users

C

HISAM data bases have these limitations:

¢ No support for variable length segments, second-
ary indexes, or logical relationships.

¢ Less efficient use of DASD space than HD organiza-
tions (for example, no space is reclaimed on delete
processing). Space is reclaimed during a reorgani-
zation.

HDAM and HIDAM

Both of these data base access methods are implement-
ed with the hierarchical direct method of segment stor-
age. In the hierarchical direct method, the segment
occurrences in a hierarchy are connected in storage via
four byte direct address pointers in the segment prefix-
es. A description of the types of pointers used in HDAM
and HIDAM data bases is included at the end of this
section.

HDAM and HIDAM Characteristics

Two of the primary advantages of HDAM and HIDAM
data bases are space reuse and the ability to directly
access segments within the data base.

The segment storage organization used for HDAM
and HIDAM data bases is essentially the same. The
primary difference, at the access method level, between
HDAM and HIDAM data bases is that access to occur-
rences of the root segment type is through a randomiz-
ing module for an HDAM data base, and through an
index for a HIDAM data base. To access a given root
segment in an HDAM data base, the randomizing mo-
dule examines the key of the root, and through hashing
or some other arithmetic technique, computes the ad-
dress of the root and passes it to DL/I. To access the
same root in a HIDAM data base, an index must be
searched by DL/I to find the address of the root. By
using a randomizing module to locate root segments,
the need for 1/0 operations required to search the index
is eliminated.

HDAM: Figure 2-10 shows that an HDAM data base
consists of one ESDS. To access the data in an HDAM
data base, DL/I uses a randomizing module. This mo-
dule converts a sequence field value, supplied by an
application program for root segment insertion into or
retrieval from an HDAM data base, into an address for
the root segment.

The ESDS is divided into two areas:

e The root addressable area: This is the first of n
control intervals/blocks in the data set. You de-
fine n in your DBD (data base description).

e The overflow area: This area is the remaining por-
tion of the data set.

The root addressable area is used as the primary
storage area for segments in each data base record.
The overflow area is used for overflow storage. Since
data base records vary in length, a parameter (in the
DBD) is used to control the amount of space used for
each data base record in the root addressable area.
This parameter limits the number of segments of a data
base record that can be consecutively inserted into the
root addressable area. When consecutively inserting a
root and its dependents, each segment is stored in the
root addressable area until the next segment to be
stored causes the total space used to exceed that speci-
fied. The total space used for a segment is the com-
bined lengths of the prefix and data portions of the
segment. When exceeded, that segment and all remain-
ing segments in the data base record are stored in the
overflow area. Note that this parameter controls only
segments consecutively inserted in one data base re-
cord. Consecutive inserts are inserts to one data base
record with no intervening call to process a segment in
a different data base record.

Chapter 2: Data Base Design 2-13

$USTOMER DATA BASE RECORD
CUSTOMER CREDIT CUSTOMER
LOCATION STATUS HISTORY
11 " 11
112
CUSTOMER
ORDER
111
-— — ="
1112
ORDER
ITEM
111
‘ROOT’ SEGMENT
SEQUENCE FIELD
l ROQT
ADDRESSABLE
AREA - I vl L
-1 CUSTOMER CUSTOMER
RANDOMIZING CUSTOMER 1
ALGORITHM 5__ _] LOCATION 11| ORDER 111
2] ¥
OVERFLOWAREA L -~ ORDER ORDER ORDER CUSTOMER
ITEM 1112 ITEM 1121 ITEM 1111 ORDER 112
[|
— ; 3 C
T~ CREDIT CUSTOMER ORDER ORDER
_’/ ~~ STATUS 11 HISTORY 11 ITEM 1122 ITEM 1123

Figure 2-10. HDAM Data Base Record In Physical Storage

HIDAM: A HIDAM data base in auxiliary storage is
actually comprised of two data bases that are normally
referred to collectively as a HIDAM data base. When
defining each during DBDGEN, one is defined as the
HIDAM primary index data base and the other is de-

2-14 DL/1 DOS/VS Guide For New Users

fined as the main HIDAM data base. In the following
discussion the term ‘HIDAM data base’ refers to the
main HIDAM data base.

The HIDAM primary index data base is used to lo-
cate the data base records stored in a HIDAM data base.

When a HIDAM data base is defined at DBDGEN, a uni-
que sequence field must be defined for the root seg-
ment type. The value of this sequence field is used by
DL/I to create an index segment for each root segment.
This index segment in the HIDAM primary index data
base contains in its prefix, a pointer to the root segment
in the main HIDAM data base.

The HIDAM primary index data base consists of a
KSDSs; its only data (and key) is the sequence field of
the root segment. The main HIDAM data base is an
ESDS. The segment storage organization in this ESDS is
comparable to the one in the HDAM ESDS. Figure 2-11
shows the lay-out of the HIDAM data base.

F—————————= =
| INDEX :
I
<
|
I e
I oo-—c _L CUSTOMER 1 CUSTOMER 2|— — — — —— CUSTOMER n
I | T
! VSAM I
| KSDS |
| | [¥ v
! | ’ CUSTOMER CUSTOMER
| I ,»" | cusToMER 1 | [GcaTION 11| ORDER 111 | CUSTOMER 2 CUSTOMER n
— VA
7/
4
4
7
7
4
,/
- I 3
ORDER ORDER ORDER CUSTOMER
—— ITEM 1112 ITEM 1121 ITEM 1111 ORDER 112
C = L |
—
VSAM | N
ESDS .
. X b I
o CREDIT CUSTOMER ORDER ORDER
~| sTATUS 11 HISTORY 11 ITEM 1122 ITEM 1123

Figure 2-11. HIDAM Data Base Record in Physical Storage

Inserts and Deletes in HDAM and HIDAM

The techniques used to insert or delete segments are
the same for both HDAM and HIDAM data bases. The
techniques involve use of bit maps and free space ele-
ments. These system fields are used by DL/1I to find
space when inserting a segment, or to record free space
when a segment is deleted. Normally, the space a seg-
ment occupies is immediately freed up after the delete
of the segment. You need only be aware of these sys-
tem maintained fields when doing control interval
blocksize calculations because they are allocated within
your selected control interval blocksize.

DL/1 allows you to specify free space for the ESDS at
data base load time (initial load or reload during reor-
ganization). This feature, distributed free space, allows

segments to be loaded as close to related segments as
possible. Distributed free space is specified in the data
base description.

For a primary index KSDSs, free space can be as-
signed with the VSAM access method services DEFINE
command. In theory, you can also specify free space in
the DBD for an HDAM data base. This is, however, not
recommended because it might conflict with the ran-
domizing module algorithm.

Direct Access Pointers in HDAM and HIDAM

Refer to Figure 2-12 for the following description of
pointers.

Chapter 2: Data Base Design 2-15

DATA BASE RECORD

CUSTOMER
1

CUSTOMER
ORDER
m

CUSTOMER
LOCATION
11

CREDIT
STATUS
11

CUSTOMER

HISTORY
11

Figure 2-12. Direct Access Pointers in HDAM and HIDAM

2-16

DL/1 DOS/VS Guide For New Users

rerrrr
) 1
pip! v
i3) 1 | CUSTOMER
- 2
g
T Leol
;:‘ reryrr
Iptelplplpiplplp
!)
TiTiciciciclcic| FUSTOMER
JFIBFILIFyLIFL
e
ren # -
1
121217 cusToMER 12171 creoiT i212] cusTomer
14T CICT LocaTioN el STATUS et HISTORY
IF‘BIFIL 11 \FiB 1 PB4
0 0
o0 | i e
CUSTOMER
ORDER 112
CUSTOMER
ORDER
1
|
¥
jon ORDER |TEM
1 1123
i 1| ORDER ITEM I | ORDER ITEM
i{_o‘; 1112 Vo 122
1ol Df LEGEND:
':-I-F,'- ORDER 1217 | oRDER ITEM PTF: Physical twin forward pointer
‘F| ITEM lF'B 1121 PTB: Physical twin backward pointer
: 'g’ mnn : I0 PCF: Physical child first pointer
\.f. I-L PCL: Phys:ical child last pointer

C

Physical Child/ Physical Twin Pointers: Every parent

segment in the data base has a pointer to the first oc-
currence of each of his child segment types. This is the
physical child first pointer. Optionally, per child seg-
ment type, there is also a pointer to the last occurrence
of that child segment type, the physical child last
pointer. This physical child last pointer will improve
segment insert performance of that child if that seg-
ment has no sequence field defined.

Every segmentin a HIDAM or HDAM data base has a
pointer in its prefix which points to the next occurrence
of this segment under the same parent. (If it is the last
occurrence under the parent, this pointer is zero.) This
pointer is named the physical twin forward pointer.

Optionally, you can also select a pointer in each
segment prefix which points to the previous segment
occurrence under the same parent. This is the physical
twin backward pointer. This pointer is useful for delete
processing.

When physical twin forward and backward pointers
are specified for the root segment type of a HIDAM data
base, they enable sequential processing across data
base records without intervening references to the
HIDAM index. When only physical twin forward point-
ers are specified for the root segment type of a HIDAM
data base, sequential processing across data base re-
cords requires intervening references to the HIDAM
index.

Logical Relationships

Why Logical Relationships

We have so far addressed only single hierarchical data
structures. Often, especially with different applica-
tions, several DL/1 data bases are needed. In addition,
there is often a requirement to access the same data in

different hierarchical structures and different data bases.

PHYSICAL DATA BASES

T

This can create problems of:

e Consistency - if stored more than once how to
update at same time.

¢ Data redundancy - if large data elements were
stored many times this could consume excessive
external storage.

® Access of data - which access path should be used
to access the appropriate copy of the data.

The above problems can be solved by storing the
data only once and providing a linkage mechanism
between hierarchical structures. With this linkage a
new access path is provided to data in data base A,
based on data in data base B, and vice vetsa.

DL/I’s logical relationships provide this function.
The basic linkage is always between two segments.
However, the linkage can extend to several data bases.
The resulting compound data structure will always be
presented as a single hierarchical data structure to a
particular application. The basic mechanism of the
DL/I logical relationship is the connection of a segment
to two parents in two different hierarchical structures.
All segments below the root segment must have a phys-
ical parent. By giving a segment a logical parent, that
segment (and its dependents) now belongs to two dif-
ferent hierarchical structures. This enables the defini-
tion of a new hierarchical structure which contains
segments from both related structures. Such a defini-
tion is called a logical data base. Once this logical data
base is defined, DL/1 automatically maintains the rela-
tionship between the two data bases.

Building Logical Relationships
Segment Types Involved in Logical Relationships

Figure 2-13 shows that three segment types are needed
to establish a logical relationship.

LOGICAL DATA BASE

v

PHYSICAL CUSTOMER INVENTORY LOGICAL
PARENT ORDER ITEM PARENT
ORDER LOGICAL
ITEM CHILD

Figure 2-13. Segment Types Involved in Logical Relationships

CUSTOMER

ORDER
ORDER INVENTORY CONCATENATED
ITEM ITEM SEGMENT

Chapter 2: Data Base Design

2-17

The segment types are:

e Logical Child: This segment has two parents. A
logical parent and a physical parent. The logical
child segment and its dependents, if any, are ac-
cessable via both parents. The access path via its
physical parent is called the physical access path.
The access path via its logical parent is called the
logical access path. When presented to the user a
logical child segment contains the concatenated
key of the logical parent followed by user data, if
any. The user data in the logical child is called
intersection data. 1t consists of data unique to the
intersection of the two parents. The logical parent
concatenated key (LPCK) is always presented with
the intersection data whenever the logical child is
accessed via its physical path (see Figure 2-14).

PREFIX

LPCK ’ INTERSECTION DATA

I-‘- - TO/FROM USER’S I/O AREA ——3m
Figure 2-14. Logical Child Segment Format

Whenever you insert a logical child segment in its
physical data base, you must present the LPCK. It iden-
tifies the logical parent.

PHYSICAL DATA BASES

T T

® Logical Parent: This segment may reside in the
same or different data base as the logical child.

® Physical Parent: This is the normal parent segment
of the logical child in its physical data base as de-
fined earlier.

Logical relationships between HDAM and HIDAM
data bases are implemented using direct address point-
ers, which are all 4-byte relative byte address pointers
similar to other pointers in HDAM and HiIDAM.

The Virtual Logical Child Segment (VLC)

In order to define the relationship between the logical
parent and its logical children, DL/1 uses a special seg-
ment type. It is called the virtual logical child and is
defined as a dependent of the logical parent segment.
It does not exist on DASD. Its only purpose is to pro-
vide a mechanism to define the logical parent’s view of
the data in the logical child. It controls the access from
the logical parent to the logical child. It is used to de-
fine the sequencing of the logical child segment when
that logical child segment is accessed via its logical
parent. The virtual logical child is said to be paired
with the real logical child. Because the logical child
can be accessed as a dependent of the logical parent as
well as the physical parent, the logical relationship is
bidirectional. See Figure 2-15.

LOGICAL DATA BASES

LP
CUSTOMER INVENTORY CUSTOMER INVENTORY
ORDER ITEM ORDER | t—AND/OR-g| |TEM
PP |
LCF :
——
r - |
ORDER i ORDER | ORDER I INVENTORY ORDER | CUSTOMER
ITEM | ITEM ! ITEM | ITEM ITEM | ORDER
Lo _ N | 1 |
/ / \. ~- 4
REAL VIRTUAL

LOGICAL CHILD LOGICAL CHILD

(Represents customer
order when accessed
from inventory item)

KEY:

PP - Physical parent pointer
LP - Logical parent pointer
LCF - Logical child first pointer

Figure 2-15. Virtual Paired Bidirectional Logical Relationship

2-18 DL/1 DOS/VS Guide For New Users

CONCATENATED SEGMENTS

When accessed, the virtual logical child contains the
concatenated key of the physical parent of the real
logical child, plus the intersection data of the real logi-
cal child. So the virtual logical child ORDER ITEM, in
Figure 2-15 contains the key of the CUSTOMER ORDER
segment plus the user data of the real ORDER ITEM
segment.

Destination Parent

With bidirectional pairing, DL/I refers to the parent
that is other than the one used to access the logical
child, as the destination parent. When the logical child
is accessed from its physical parent, the logical parent
concatenated key (LPCK) is returned. When the logical
child is accessed from its logical parent, the physical
parent concatenated key is returned. Therefore, the
logical child always starts with the destination parent
concatenated key (DPCK).

CUSTOMER DATA BASE

Logical and Physical Data Bases

The physical data bases used to implement a logical
relationship must be HDAM or HIDAM data bases. Fig-
ure 2-16 shows the physical data bases of the phase 2
sample environment. The INVENTORY ITEM segment in
the inventory data base is the logical parent of the
ORDER ITEM segment in the customer data base. Note
that the INVENTORY ITEM segment in the inventory
data base is also a physical and logical parent of the
SUBSTITUTE ITEM segment in the same data base. In
this example, the first occurrence of INVENTORY ITEM
is the physical parent of the logical child segment,
SUBSTITUTE ITEM, and the second occurrence is the
logical parent of SUBSTITUTE ITEM. In either case, the
virtual logical child is not shown in Figure 2-16. How-
ever, the virtual logical child segments will appear in
the DBDs as discussed later.

Figure 2-16. The Phase 2 Physical Data Bases

CUSTOMER
NAME/ADDRESS
(STSCCST)
CUSTOMER CREDIT CUSTOMER
LOCATION STATUS HISTORY
(STSCLOC) (STSCSTA) (STSCHIS)
cusTomer | PP
ORDER
(STPCORD)
INVENTORY DATA BASE
LP Lp
ORDER RLC INVENTORY
ITEM | > {TEM
(STCCITM) (STPIITM)
SUBSTITUTE ITEM
(STCISUB) (STSILOC)

2-16

Chapter 2: Data Base Design 2-19

A logical data base is a redefinition of one or more
physical data bases which contain logical relationships.
It yields a new hierarchical structure that is composed
of structures from both related structures. The new
structure can be processed by application programs as
if it were physically present. The logical data base can
only be defined if the proper logical relationships are
defined in the physical data bases.

Concatenated Segment

All segments in the logical data base stem from one
segment in one of the physical data bases, except when
the logical child is accessed. Whenever the logical child
is accessed in a logical data base, it is concatenated with
the destination parent segment. See Figure 2-17. The
destination parent is the parent of the logical child in
the access path other than the one from which you
came.

LOGICAL CHILD

INTERSECTION DESTINATION PARENT

K
pPC DATA

Figure 2-17. Concatenated Segment Format

Notice that the concatenated segment is different for
the two paths:

2-20 DL/1 DOS/VS Guide For New Users

* When accessing the concatenated segment from its
physical parent, it consists of:

I. The real logical child which consists of the
concatenated key of the logical parent and the
data of the real logical child segment, if any.

2. The logical parent segment itself.

e When accessing the concatenated segment from
the logical parent, it consists of:

1. The virtual logical child which consists of the
concatenated key of the physical parent and
the data of the real logical child segment, if
any.

2. The physical parent itself.

Note: The concatenated segment exists only in a logical
data base.

With bidirectional virtual pairing, you can always
define two logical data bases with one logical relation-
ship.

Figure 2-18 shows the two logical data bases used in
the sample application. These two data bases are de-
fined using the related physical data bases of Figure
2-16.

C

LOGICAL INVENTORY DATA BASE

INVENTORY
ITEM
ORDER CUSTOMER SUBSTITUTE| INVENTORY ITEM
ITEM ORDER VENDOR ITEM ITEM LOCATION
(LC) (DP) (LC) (DP)
ITEM
VENDOR
CUSTOMER (FOR (Fom TIoN
LOCATION SUBSTITUTE SURSTITUTE
ITEM) ITEM)
CUSTOMER
NAME/
ADDRESS
LOGICAL CUSTOMER DATA BASE
CUSTOMER
NAME/
ADDRESS
CUSTOMER CREDIT CUSTOMER
LOCATION STATUS HISTORY
CUSTOMER
ORDER
ORDER INVENTORY
ITEM ITEM
(LC) (DP)
ITEM
VENDOR LOCATION

Figure 2-18. Phase 2 Logical Data Bases

Chapter 2: Data Base Design

2-21

These logical data bases will be used by the sample
application programs.

The exact rules for defining and processing logical
data bases are discussed in the following section.

Logical Relationship Design Rules

[n constructing logical relationships with DL/1, two sets
of rules must be observed. One set for constructing the
physical data bases and the second set for constructing
the logical data bases. Note that a logical data base can
be defined only if the underlying physical data base(s)
are properly defined.

[f necessary, multiple logical data bases can be de-
fined for a given set of logically related physical data
bases. However, it is a good practice to generate one
logical data base for each physical root segment which
contains only the segments needed in your applica-
tions.

Rules for Defining Logical Relationships in
Physical Data Bases
e Logical Child:

1. A logical child segment must have one and
only one physical parent segment and one and
only one logical parent segment.

2. A logical child segment is defined as a physical
child segment in the physical data base of its
physical parent.

3. Inits physical data base, a logical child seg-
ment cannot have another logical child as its
immediate dependent.

e Logical Parent:

1. A logical parent segment can be defined at any
level of a physical data base including the root
level.

2. A logical parent segment can have one or more
logical child types.

3. A segment in a physical data base cannot be
defined as both a logical parent and a logical
child.

4. A logical parent segment can be defined in the
same or a different physical data base as its
logical child segment.

2-22 DL/1 DOS/VS Guide For New Users

e Physical Parent:

1. A physical parent segment of a logical child
cannot also be a logical child. This is the same
as rule 3 for the logical child.

Multiple logical relationships can be established
within a single data base or between two or more data
bases, as long as the above rules are obeyed.

Rules for Defining Logical Data Bases

1. The logical data base itself is always a single hier-
archical structure.

2. It must start with the root segment of a physical
data base and can contain only segments defined
in physical data bases.

3. In following a hierarchical path, no segments may
be skipped.

4. The logical child plus the destination parent is
always presented as one concatenated segment.

5. The dependents of a concatenated segment are:
¢ The dependents of the logical child and/or,

e The physical dependents of the destination
parent.

e The physical parents (and their dependents)
up to the root of the destination parent in des-
tination parent to root order.

The above three groups of dependents should not

be intermixed, nor should the relative order of the
segments within the groups be changed. However,
you can start with any one of the groups.

Notes:
* Because of the virtual logical child concept, paths are
bidirectional and can be intermixed.

* All segments of related data bases are available as long as
you follow the above rules.

Figure 2-19 shows some examples of logically relat-
ed physical data bases and their associated logical data
bases. These examples are not representative for a
typical DL/I application. They merely show the differ-
ent possible combinations.

<9

PARENT

N
N

AS
N

C

G

LOGICAL
CHILD

Figure 2-19. Using Multiple Logical Relationships (Part { of 2)

LOGICAL
PARENT

\

LOGICAL

.-
Y-4-q
I D
| U |

\ PAIRED/

VIRTUAL
LOGICAL
CHILD

Chapter 2: Data Base Design

2-23

A
B8 X
c A D' B
l I
A E G
F E
A
B8
T
c A D X
z U E
F E

Figure 2-19. Using Multiple Logical Relationships (Part 2 of 2)

2-24 DL/1 DOS/VS Guide For New Users

C

Processing Logically Related Segments

The segments involved in logical relationships can be
accessed through their physical data bases, and insert,
delete, or replace operations may be performed
through either access path. In order to avoid contradic-
tory conditions, for instance a logical child pointing to
a deleted logical parent, such updates are performed
according to rules specified by the user in the DBDs for
the physical data bases. Three modes, called physical
(P), logical (L), and virtual (v) can be specified for each
of the three update functions. (See Chapter 3 for de-
tails on how to code these rules.)

In general, the physical rule places restrictions on
update requests through the logical data bases and

r

requires that appropriate updates have previously been
performed in the physical data bases. The logical rule
removes some of these restrictions, while the virtual
rule is the least restrictive for updates through logical
data bases.

A detailed discussion of these rules is contained in
the System/Application Design Guide,, and a general
discussion follows.

Consider the virtual paired bidirectional logical
relationship of Figure 2-20.

PHYSICAL STOMER
PARENT gll;('DER

INVENTORY
ITEM PARENT

LOGICAL

PHYSICAL PATH ——3=

LOGICAL ORDER
CHILD ITEM

LOGICAL PATH

LOGICAL CHILD

INTERSECTION
DPCK DATA

DESTINATION PARENT

Figure 2-20. Virtual Paired Bidirectional Logical Relationship

The rules for the logical relationships are coded as xxx,
where the first x is for insert, the second x is for delete,
and the third x is for replace. The value of x can be
specified as P (Physical), or L (Logical), or v (Virtual).

Physical Parent Segment
(CUSTOMER ORDER)

The rules for the physical parent are as follows:

Insert Rule: Affects the insertion of the logical child
and the creation of the physical parent as a result of the
insert of the logical child segment from the logical
path.

P (Physical)
The physical parent must exist in the data base
before the logical child may be inserted from the
logical path. The destination parent portion of
the concatenated segment (the physical parent) is
ignored.

Chapter 2: Data Base Design 2-25

L (Logical)
The physical parent need not exist prior to inser-
tion of logical child from the logical path. If the
physical parent exists, the destination parent por-
tion of the concatenated segment (the physical
parent) is ignored. If the physical parent does not
exist, the destination parent portion of the conca-
tenated segment is used to create a physical par-
ent segment in the data base.

V (Virtual)
Same as (L) above except that if the physical par-
ent already exists, the destination parent portion
of the concatenated segment will replace the cur-
rent physical parent segment. Use caution when
implementing this rule.

Delete Rule: This rule does not apply to the physical
parent.

Replace Rule: Affects the replacement of the physical
parent (destination parent) whenever a replace call is
issued against a logical child concatenated segment

with physical parent data as part of its content. It also
affects the replacement of the logical child segment if
this portion of the concatenated segment is altered.

This rule is usually coded as p for the physical parent
segment.

P (Physical)
Any replace of a logical child concatenated seg-
‘ment that contains a changed physical parent
(destination parent) is not allowed. If the conca-
tenated segment contains both the logical child
and a changed physical parent, neither will be
replaced. If the concatenated segment contains a
physical parent that is not changed, the replace is
allowed. However, only the logical child portion
of the concatenated segment is replaced.

L (Logical)
A replace of the logical child concatenated seg-
ment that contains a physical parent (destination
parent) is allowed even if the physical parent por-
tion is changed, however, the physical parent por-
tion is not replaced. If the concatenated segment
contains both the logical child and the physical
parent, only the logical child will be replaced. Be
careful about using this rule for the physical par-
ent.

V (Virtual)
A replace of a logical child concatenated segment
that contains a changed physical parent is al-
lowed and the physical parent is replaced as well
as the logical child. Use caution when imple-
menting this rule for the physical parent.

2-26 DL/1 DOS/VS Guide For New Users

Logical Parent (INVENTORY ITEM)

The rules for the logical parent are usually coded as
PPP.

Insert Rule: Affects insertion of the logical child from
the physical path and creation of the logical parent
segment as a result of the insertion of a logical child
concatenated segment from the physical path.

P (Physical)
The logical parent must exist in the data base
before the logical child may be inserted from the
physical path. The logical child concatenated
segment need not contain the logical parent and if
the logical parent is present, it is ignored.

L (Logical)
The logical parent need not exist prior to inser-
tion of the logical child from the physical path. If
the logical parent already exists, the logical par-
ent portion of the concatenated segment
(destination parent) is ignored. If the logical par-
ent segment does not currently exist, the logical
parent portion of the concatenated segment is
used to create a logical parent segment.

V (Virtual)
Same as (L) above except that if the logical parent
already exists, the logical parent portion of the
concatenated segment will replace the current
logical parent segment. Use caution when imple-
menting this rule for the logical parent.

Delete Rule: Affects deletion of a segment and all its
dependents.

P (Physical)
All of the logical parent’s logical children must
have been deleted from their physical path before
a delete will be allowed against the logical parent
segment. The logical parent segment can be de-
leted only from its physical path by a delete call
issued to its physical path.

L (Logical)
The logical parent may be deleted from its physi-
cal path at any time, but will remain available
from any of its logical paths. If the logical parent
is deleted by its physical path, and then all of its
logical children are deleted from their physical
paths, the logical parent is removed.

V (Virtual)
Same as (L) above except that when all of the
logical parent’s logical children are deleted from
their physical and logical paths, the logical parent
is automatically deleted from its physical path,
and will be removed from the data base. Use cau-

C

tion when implementing this rule for the logical
parent.

Replace Rule: Assuming the replace rule for the logi-
cal child has been satisfied, this rule affects the replace-
ment of the logical parent when the logical parent is

the destination parent of the logical child concatenated
segment. The replace rule can also affect the replace-
ment of the logical child when the concatenated seg-
ment contains both the logical child and the logical
parent.

P (Physical)
Any replace of the logical child segment when the
concatenated segment contains a logical parent
that has been altered is not allowed.

L (Logical)
Any replace of the logical child when the conca-
tenated segment contains a logical parent (altered
or not) is allowed. However, the logical parent is
not replaced.

V (Virtual)
Same as (L) above except that the logical parent
will be replaced.

Logical Child (ORDER ITEM)

The rules for the logical child segment are usually cod-
ed as VVV, VLV, or VPV.

Insert rule: Has no meaning for the logical child.
Code P, L,o0r V.

Delete Rule: Affects the deletion of the logical child
and indirectly the deletion of the physical parent from
its physical path.

P (Physical)
The logical child must have been deleted from its
logical path before it can be deleted from its
physical path. This effectively keeps the physical
parent from being deleted until all of its logical
children have been deleted from their logical par-
ents.

L (Logical)
The logical child can be deleted from either path
and will remain available on the other path.

V (Virtual)
The logical child can be deleted from either path
and as a result will be deleted from both paths.

Replace Rule: Affects the replace of alogical segment.
This must be coded as v.

V (Virtual)
Segment can be replaced from either path.

Logical Relationships Implementation Tech-
nique

The following pointers are used by DL/I to implement
logical relationships. These pointers are maintained in
the segment prefix in the same way as the previously
discussed physical child and physical twin pointers.
Detailed guidelines for the selection and implementa-
tion of these pointers are included in Chapter 3, Data
Base Implementation.

Pointers Used for Logical Relationships in
HDAM/HIDAM

Logical Parent Pointer (LP): The logical parent
pointer is within the prefix of the logical child segment
and points to the logical parent occurrence of that logi-
cal child. This pointer is always present and is never
zero. Each logical child must have one and only one
logical parent just as it has only one physical parent.

Logical Child First Pointer (LCF): The logical child
first pointer is within the prefix of the logical parent
and points to the first occurrence of its logical child
segment. If a segment has several logical segment
types, it contains one LCF pointer for each segment
type. If a logical parent has no logical child occurrenc-
es, the corresponding LCF pointer is zero. The logical
child first pointer is required.

Logical Child Last Pointer (LCL): The logical child
last pointer is within the prefix of the logical parent
and points to the last occurrence of its logical child.
There is one LCL for each defined logical child segment
type. The LCL pointer is optional. Its only use is to
improve the performance of the logical child insert if
no sequence field is defined for the logical chain. See
“The Virtual Logical Child Segment” earlier in this
chapter.

Logical Twin Forward Pointer (LTF): The logical
twin forward pointer is within the prefix of the logical
child segment and links all logical child occurrences of
a particular logical parent. This pointer is required.

Logical Twin Backward Pointer (LTB): The logical
twin backward pointer links logical twins but in the
reverse order of the LTF. This pointer serves a compli-
mentary performance role as the physical twin back-
ward pointer in deleting logical children. It should
always be used together with the LCL if there are multi-
ple occurrences of a logical child for any logical parent
occurrence.

Physical Parent Pointer (PP): DL/1 uses a physical
parent pointer in the prefix of the logical child to locate

Chapter 2: Data Base Design 2-27

that physical parent if the access was via the logical
parent. This PP pointer is repeated up through the hier-
archy to the root. A physical parent pointer is also
present in the logical parent if this is not a root seg-
ment. It then points to the physical parent of the logi-
cal parent, etc. You never need to specify the inclusion
of this pointer in the DBD. DL/I will include it automat-
ically if needed.

DL/I Secondary Indexes

The secondary indexing capability of DL/I allows addi-
tional access paths to a data base record. Secondary
indexes provide:

e A secondary processing sequence, enabling direct
and/or sequential processing of data base records
on non-root-key field values. These search fields
can be located in the root segment or a dependent
segment.

e Automatic updating of the secondary index is
always done, even if the program causing the
change is not sensitive to the secondary index.

When to Use Secondary Indexes

Secondary indexes should be used mainly when fre-
quent direct access to the data base record is required
on non-root-key fields. A secondary index incurs addi-
tional system cost in CPU and 1,0 time. If the informa-
tion on which the secondary index is established is
changed, then DL/1 has to change the index entry.
Therefore, avoid the use of volatile fields as secondary
index source fields.

For batch processing, compare the costs of full or
partial data base scans plus subsequent sort of the out-
put versus the cost of using secondary indexes. For
online data base processing, the choice is easier. Online
response requirements normally do not allow for full
data base scans and sorts.

2-28 DL/I DOS/VS Guide For New Users

Segment Types Involved in Secondary In-
dexes

The segment types and associated terms involved in
secondary indexes are (See Figure 2-21):

® Secondary Indexes

A secondary index is comprised of an index point-
er segment type defined in a secondary index data
base.

¢ Index Pointer Segment

A segment defined in a secondary index data base
that contains data and a pointer to the index target
segment. It controls the secondary indexing proc-
ess.

» Index Target Segment

The segment that is pointed to by an index pointer
segment.

® Index Source Segment

A segment that is the source from which a second-
ary index is created.

» Secondary Processing Sequence

The sequence in which occurrences of an index
target segment type are accessed through a sec-
ondary index. It is the order of the index pointer
segment.

Although secondary indexes can be used in pro-
grams which use only logical data bases, their imple-
mentation is strictly on the physical data base level.
Figure 2-22 shows the physical data bases of the phase
3 sample environment. The only difference from phase
2 is the addition of the secondary index data bases.
The secondary index provides an alternate processing
sequence. For example, by utilizing secondary index
data bases, an application program can process the
Customer data base in either order number or name
sequence.

SECONDARY
PHYSICAL OR LOGICAL DATA BASE INDEX DATA BASE

P> sl
Usually the \

root segment;

can be a INDEX TARGET INDEX POINTER
dependent SEGMENT SEGMENT
sagment.

T

Can be the

same segment

as index INDEX SOURCE

target segment, SEGMENT < The content of the specified search
or as shown, field in each index source segment

a dependent is duplicated in the respective index
of the index pointer segment generated from each
target segment. index source segment.

Figure 2-21. Segment Types Assoctated with a Secondary Index

Chapter 2: Data Base Design 2-29

CUSTOMER DATA BASE

ORDER NAME
SECONDARY SECONDARY
INDEX INDEX
CUSTOMER
L .| NAME/ADDRESS rf———
(STSCCST)

INVENTORY DATA BASE

ITEM #
SECONDARY
INDEX
LP
P —
INVENTORY —
RLC ITEM
{STPIITM)
RLC
Figure 2-22. Phase 3 Physical Data Bases
Design Rules for Secondary Indexing 3. A secondary index can be used with a logical DBD,
Several rules should be observed when designing basic but the index target segment must be the root seg-
secondary indexes: ment of the physical data base.
1. The index source segment and the index target
segment must be defined in the same physical Implementation Technique
DBD. They can be the same segment. In discussing secondary indexes, we have to distinguish
2. A logical child segment cannot be used as an in- between two different data base types. The first is the
dex source segment. However, a dependent of a indexed data base. This data base contains the index
logical child can be used as an index source seg- source and index target segments. It is an HDAM or
ment. HIDAM data base. The second is the secondary index

2-30 DL/I DOS/VS Guide For New Users

data base. This data base contains the index pointer a single KSDS. Figure 2-23 shows the physical format
segments that contain pointers in their prefix to the of the KSDS logical record for the INDEX data base.
index target segments. An INDEX data base consists of

- VSAM LOGICAL RECORD i
Segment DL/I System User
—d ol —
Prefix Maintained Data Data
S | D [POINTER 5 - : E
4BYTES TO INDEX SEARCH [SUBSEQUENCE| DUPLICATE DATA USER DATA 0
X'00 TARGET FIELD FIELD FIELD D
C | B |SEGMENT |
SSA for Indexed
Data Base
-l — THE SHADED AREA
1S OPTIONAL
SSA for Index
Data Base —
et ———— VSAM Key —————
SEQUENCE FIELD OF
INDEX POINTER SEGMENT
SC = Segment Code
DB = Delete Flag Byte
SSA for indexed Data Base — The search field is used in qualified SSAs for the secondary
data structure.
SSA for Index Data Base — The search and subsequence fields are the sequence field of
the index pointer segment and are used in qualified SSAs when
the secondary index is processed as a data base itself.
EOD = Endof Data
Figure 2-23. Logical Record Format for the Index Pointer Segment
Index Pointer Segment duplicate data field is changed in the indexed data
The index pointer segment contains a: base, it is also changed in the index data base.
e Reserved Area - 4 bytes e User data field. You can include any additional
e Segment Code - 1 byte field (x‘01") da_ta desired in index pointer segments by speci- .
fying a length for the index pointer segment that is
* Delete byte that controls the delete status of the sufficient to include the additional data. This ad-
index pointer segment ditional data is available to you when processing
* Pointer to the index target segment (4 bytes) the secondary index as a data base itself. Remem-

ber, however, that initial loading of additional
data, and maintenance of the additional data
when reorganizing an indexed data base is a user
responsibility.

o Search field (n bytes) that contains a duplication
of one to five index source segment fields which
together define the secondary sequence

e Subsequence field (n bytes), optional. It is re-
quired if the search fields in the index pointer seg-
ments are non-unique. Its sole use is to provide a
unique key for the KSDS logical record.

During reorganization of an indexed data base,
the secondary index(es) for the data base are re-
created. When the secondary index is re-created,
any additional user data that exists in the original

e Duplicate Data Field. This field is optional. It is secondary index is lost.
of use only when the index data base is processed . fel o
as a data base itself. The data from the indexed End-of-data field - 1 byte (x'00")

data base that is also included in the index data
base is automatically maintained by DL/1. If a

Chapter 2: Data Base Design 2-31

Creating a Secondary Index

Secondary indexes are created with the standard DL/1
data base reorganization utilities, see Chapter 6. No
user programming is needed to create a secondary in-
dex. Existing programs need not be changed unless

they want to use the secondary index.

Variable Length Segments

Variable length segments enable you to vary the
amount of storage space used to store the different
occurrences of the same segment type. They are in-
tended for use by application programs that process
variable length text or descriptive data. In addition, in
some cases, they can be used to enhance utilization of
secondary storage. You can vary the space for each
occurrence of a segment type between a maximum and
minimum number of bytes through a 2-byte size field
loaded with each segment occurrence. You specify the
maximum and minimum number of bytes for a varia-
ble length segment type during DBD generation.

The size field for a variable length segment is loaded
with each segment to inform DLI of the length of data
in the segment. Because the size field is in the data
portion of a segment, the data length must be included
in the length of the size field itself. In addition, if a
sequence field is defined in the segment type, the mini-
mum length specified must include at least the 2-byte
size field and the length of all the data to the end of the
sequence field.

When initially loading occurrences of a variable
length segment type, the space used to store the data
portion of a segment occurrence is the minimum length
specified at DBD generation or the length specified in
the size field of the segment occurrence, whichever is
greater. The application program can then either in-
crease or decrease the length of the data in the segment
by replacing the data and changing the size field ac-
cordingly. When the data in an existing segment is
replaced with data that is greater in length and the
space is allocated for the existing segmnet is not suffi-
cient for the new data, the prefix and data portions of
the segment are separated to obtain space for the new
data.

A variable length segment must not be a logical
child segment or an index source segment, and may
reside in a HDAM or HIDAM data base.

Chapter 3 of this manual contains the details you
need to specify a variable length segment during DBD
generation. A variable length segment is also included
in the customer data base of the online sample applica-
tion. If you need additional information about variable
length segments, see the System Application Design
Guide.

2-32 DL/1 DOS/VS Guide For New Users

Segment Edit/Compression Exit

The segment edit/compression exit facility of DL/1
enables you to supply a routine to edit a segment dur-
ing its movement between the application program 1/0
area and the data base buffer pool. You can use your
routine to encode data for security purposes, to format
data to be used by application programs, and to com-
press a segment to eliminate redundant characters.
Segments to be processed by an edit/compression rou-
tine must be variable length. Application programs are
never aware of the operation of the edit/compression
routine.

A segment compression/expansion routine is pro-
vided with the online sample application program as
an example of one way to use this facility to optimize
space needed to store individual occurrences of varia-
ble length segments. This routine is documentd in
Chapter 8 of this manual.

General considerations that apply to using the seg-
ment edit/compression exit facility are:

e All segment editing takes place only on variable
length segmets described in a physical data base.

e Neither the relative position nor the contents of
the key field (if one exists), can be changed by the
routine.

e Ifthe user routine in an online environment is
designed to edit more than one segment type, in
one or more physical data bases, the routine must
be reentrant.

¢ The size of the edit routine(s) should be consid-
ered when estimating main storage requirements
for the DL/1 system.

e The user routine cannot employ DOS/VS system
macros such as STXIT.

Chapter 3 of this manual shows how to specify this
facility for variable length segments during DBD gener-
ation. If you need additional information, see the
System Application Design Guide.

Field Level Sensitivity

Field level sensitivity allows you to specify only those
fields in the physical definition of a given segment that
are needed in the application program’s view of that
segment. You may also specify the locations of the
chosen fields in the application’s view of the segment.
These field locations may be the same or different from
their locations within the physical definition. This
makes it possible for different application programs to
have entirely different views of the same segment. This
specification, done during PSB generation, enables DL/1
to automatically map the chosen fields from the physi-

cal segment into the application program’s view during
execution.

Field level sensitivity also provides these capabili-
ties:

e Virtual Fields
You can identify fields for the application
program’s view of a segment that do not exist in
the physical segment.

e Automatic Data Format Conversion
DL/1 automatically changes the format of the
physical data to a format you specify for a given
application program.

e User Field Exit Routine
DL/1I will give control to a user-written routine
each time a given field is retrieved or stored.

e Dynamic Segment Expansion
You can add fields to a segment without reloading
the data base or re-compiling other application
programs that access the segment.

Virtual Fields

During PSB generation, you can specify fields for the
application program’s view of a segment that do not
exist in the physical segment. You can also specify an
initial value to be assigned to the field and/or the name
of a user-written routine, that can be used to create the
field. When you specify both an initial value and the
name of a user-written routine, DL/I inserts the initial
value in the application program’s view of the field
before the routine is called during a retrieve for the
field. If a routine is specified, it is called for both re-
trieves and stores involving the field. See “User Field
Exit Routine” later in this section for further details.

Automatic Data Format Conversion

If, during DBD generation, you define the type of data
to be maintained in a given field, that data can be auto-
matically converted to another type for a particular
application program. You do this during PSB genera-
tion by specifying a different data type in the SENFLD
macro for the application program’s view of the field.
The data types are:

‘X’ - hexadecimal

‘H’ - halfword binary

‘F’ - fullword binary

‘P’ - packed decimal

‘Z’ - zoned decimal

‘C’ - character

‘E’ - floating point (short)

‘D’ - floating point (long)

‘L’ - floating point (extended)

The automatic conversions supported are:
From To

X H,F,P,orZ
H X,F,P,orZ

F X,H,P,orZ

P X,H, F,orZ

z X,H, F,orP

C C (length conversion only)
Notes:

e Conversion of data types E, D, and L is not supported.

e Data contained in a field specified as type ‘C’ is considered to
be in an “as is” format, and no conversion is made when the
field being moved into is specified as containing data of a
different type. That is, if a field in a physical segment is speci-
fied as type ‘C’ and the field in that application’s view is speci-
fied as type ‘P’, the data from the physical field is treated as
though it is packed decimal. Only any necessary length adjust-
ments are made.

Non-supported Conversions

Conversions that are not supported (such as: physical
type ‘Z’' to user’s type ‘E’) will pass through the ACB
generation phase if, but only if, you specified a user
written exit routine for the field. Such a non-supported
conversion causes a status code of ‘KD’ to be returned
to the application program when encountered during
an access of the field.

If the status code is not corrected (reset) by a user
exit routine, DL/I terminates the request. No more
fields or segments are processed. See “User Field Exit
Routine” in this Chapter for additional information
about resetting the conversion status code.

Additional information about field type conversion
(programming considerations, status codes, etc.) is
included in Chapter 3, under the description of the
‘SENSEG’ statement for PSB generation.

User Field Exit Routine

During PSB generation, you may specify the name of a
user-written field exit routine. This must be the name
by which the routine is cataloged in the DOS/VS core
image library. DL/I passes control to this routine when-
ever the associated field is referenced in either a re-
trieve or a store.

For retrieves, the routine is entered after the field
has been moved (and converted, if necessary) from the
physical segment to the application program’s view.
For virtual fields, it will occur after the field has been
initialized with the null value.

For stores, the routine is entered after the field has
been moved (and converted, if necessary) to the physi-
cal view. If the field is virtual, the routine is entered
immediately because no conversion is done.

DL/1 provides the addresses of both the physical
segment and the application’s view to the user through
the parameter list described below. Because the order
in which fields are processed is arbitrary, the user writ-
ten routine should not rely on the contents of other
fields in the application program’s view during re-
trieves, or fields in the physical view during stores.

Chapter 2: Data Base Design 2-33

The conversion status code indicates problems de-
tected during automatic data format conversion. If the
user routine corrects the problem, it should reset the
code to blank. Setting the code to a non-blank results
in the termination of the request with a status code of
Kx, where ‘x’ is the code set by the user routine.

Upon entry to the user field exit routine, register 15
contains a pointer to the entry point, register 14 con-
tains the return address, register 13 contains a pointer
to a standard format register save area, and register 1
points to a parameter list. The format of this list is:

LENGTH, POINTS TO TWO BYTE LENGTH FIELD)

NAME DISP LENGTH CONTENTS DESCRIPTION
FERPEC 0 1 ENTRY CODE
FERPGET G GET
FERPPUT P PUT
FERPFNCT 1 1 FUNCTION CODE
FERPRET G RETRIEVE
FERPINS I INSERT
FERPREP R REPLACE
FERPCSC 2 1 CONVERSION STATUS CODE
FERPCSOK (BLANK) OK
FERPCSNT A NUMERIC TRUNCATION ERROR
FERPCSCT B CHARACTER TRUNCATION ERROR
FERPCSFE C FORMAT ERROR
FERPCSTC D TYPE CONFLICT

3 1 RESERVED
FERPDSA 4 4 PHYSICAL SEGMENT ADDRESS (IF VARIABLE
FERPPSL 8 2 PHYSICAL SEGMENT LENGTH
FERPPFL 10 2 PHYSICAL FIELD LENGTH
FERPPFA 12 4 PHYSICAL FIELD ADDRESS
FERPUSA 16 4 USER SEGMENT ADDRESS
FERPUSL 20 2 USER SEGMENT LENGTH
FERPUFL 22 2 USER FIELD LENGTH
FERPUFA 24 4 USER FIELD ADDRESS
FERPFSBA 28 4 FSB ADDRESS
FERPUWA 32 32 USER WORK AREA

Dynamic Segment Expansion

Fields'may be added to a segment in the application
program’s view without unloading and reloading the
data base, and without re-compiling other application
programs that access the segment. To do this, use the
following procedure:

I. During DBD generation, define the physical seg-
ment as variable length with the maximum and
minimum lengths both set to the data length (plus
2 for the length field).

Programs that utilize field level sensitivity always
view these segments as fixed length. The two-byte
length field is maintained by DL/I. The applica-
tion program does not see the length field unless it
is also defined as a sensitive field.

2. During pSB generation, define all fields to which
the application program is sensitive using SENFLD
or VIRFLD statements.

3. To add a field to a segment, add a FIELD state-
ment after the last currently existing field and in-
crease the maximum length parameter for this
segment. Re-run the DBD, PSB, and ACB genera-
tion for that data base.

When a variable length segment is called by an
application program that utilizes field level sensi-

2-34 DL/1 DOS/VS Guide For New Users

tivity, and the added field does not yet exist
(contains no data), DL/1 expands the segment with
null values (for defined fields) or binary zeroes
(for undefined areas) to fit the application
program’s view.

Additional Field Sensitivity Considerations
® SSAS
Any field to be used as a SSA in a segment defined
by field level sensitivity must be defined as a sen-
sitive field using either a SENFLD statement or a
VIRFLD statement containing SENFLDS.

Field information supplied in an SSA should be in
the format of the application program’s view of
the field. The field identified in the $SA, and any
subfields that the application is sensitive to, is con-
verted to the physical view before the compare is
done. Any fields overlapping either end of the
field identified in the SSA are not converted.

Notes:

DL /I does not take field type into consideration for compares
for SSAs. As a consequence, for binary SSAs, a negative num-
ber will be larger than a positive number.

Also, fields converted by DL/I to packed or zoned format will
use the S/370 preferred sign.

e Insert

5

If you specify insert activity for a segment con-
taining fields the application is sensitive to, sensi-
tivity must also be specified for any sequence
fields in the segment. The field need not be identi-
fied by name, as long as its area is included in
some field that sensitivity has been specified for.

Insert sensitivity of bi-directional logical children
requires sensitivity to both normal and logical
twin sequence fields.

If insert sensitivity is specified for a logical child,
the application must be sensitive to the entire des-
tination parent concatenated key. If the destina-
tion parent is to be inserted as part of the conca-
tenated segment, the application must be sensitive
to its sequence field.

Key feedback area
The information returned in the key feedback
area is not converted.

Fields and Subfields

You may define a field for the application
program’s view that contains a number of other
fields as subfields. This allows a set of separately
processed fields to be referenced as a group and
used as a segment search argument. For purposes
of this discussion, we will call this field an
“overfield”. The following considerations apply:

- Overfields must be compietely defined for the
application view by the subfields they contain.
These subfields must be contiguous (no holes).

- Overfields may be defined via the SENFLD
statement only if there is a corresponding over-
field defined in the physical view, and any
non-virtual subfields in the application view
appear in the physical view of the correspond-
ing field.

- Overfields for which there is no matching
physical field that contains all the same physi-
cal subfields must be defined via a VIRFLD
statement.

- Field exit routines for overfields may do no
conversion. The overfield is always processed
before the subfields that make it up.

- Two fields that overlap must both be com-
pletely defined in the application view by sub-
fields. Their intersections must be completely
(no holes) and exactly (no overlap on ends)
defined by subfields.

- DL/1 allows no conversion on overfields.

Section 3: The Data Base Design

Process

The process of data base design in its simplest form can
be described as: The structuring of the data elements
for the various applications in such an order that:

¢ FEach data element is readily available by the vari-
ous applications, now and in the foreseeable fu-
ture.

e The data elements are efficiently stored on sec-
ondary storage.

e Controlled access is enforced for those data ele-
ments with specific security requirements.

In practice, one is often forced to compromise, based
on available resources in manpower, hardware, and
software.

Concepts of Data Base Design

Because data base design is an area where there has
been little formal standardization, there has been no
consistent vocabulary for describing the concepts in-
volved. This section presents some concepts and terms
required to understand the remainder of the chapter.

Entities

A data base contains information about entities. An
entity is something that:

e Can be uniquely identified.

* We may now or in the future collect information
about.

In practice this definition is limited to the context of
the applications under consideration. Examples of
entities are: parts, projects, orders, customers, etc. De-
fining entities is a major step in the data base design
process. The information we store in data bases about
entities is described by data elements.

Data Elements

A data elerent is a unit of information that specifies a
fact about an entity. For example, suppose the entity is
an inventory item. Item Number=200,
Description=Transistor, and Quantity on hand=50 are
three facts about that inventory item. Thus there are
three data elements. A data element has a name and a
value. A data element name tells the kind of fact being
recorded; the value is the fact itself. In the above exam-
ple, Item Number, Description, and Quantity on hand
are data element names; 200, Transistor, and 50 are
values. A value must be associated with a name to
have a meaning.

An occurrence is the value of the data element for a
particular entity. Figure 2-24 illustrates the concepts of
data elements and their occurrences in recording the

Chapter 2: Data Base Design 2-35

facts about two entities, INVENTORY ITEMS (A) and
ORDER ITEMS (B).

ENTITY A: INVENTORY ITEMS
DATA ELEMENT OCCURRENCES
NAME VALUE VALUE
Item Number 200 300
Description Transistor Resistor
Quantity on Hand 10500 8000
Quantity on Order 500 2000
Quantity Reserved 550 1000
Unit Price $3.00 $18.00
Unit of Issue 1 25
ENTITY B: ORDER ITEMS
DATA ELEMENT OCCURRENCES
NAME VALUE VALUE
Inventory ltem 200 300
Line Item Number 01 02
Quantity Ordered 500 500
Quantity Shipped 500 500
Quantity Back Ordered 0 0
Item Amount $1500 $9000

Figure 2-24. Concepts of Data Elements

Data elements which add information to an entity
are called artributes. An attribute is always dependent
on an entity. It has no meaning by itself. Depending
on its usage, an entity can be described by one single
data element or more. Ideally, an entity should be
uniquely defined by one single data element, such as
the order number of an order. Such a data element is
called the key of the entity. The key serves as the iden-
tification of a particular entity occurrence. It is a spe-
cial attribute of the entity. Keys are not always unique.
In such cases, entities with equal key values are called
synonyms. For instance, the full name of an employee
is possibly not a unique identification. In such cases,
we have to rely on other attributes such as full address,
date of employment, or an arbitrary sequence number.
A more common method is to define a new attribute,
that serves as the unique key, for example the employ-
ee number.

Transaction

Data in itself is not the ultimate goal of a data base
management system. It is the application function
performed on the data that is more important. The best
way to represent that function is the transaction, which
is the smallest application unit representing a user in-
teracting with the data base. See Figure 2-25.

2-36 DL/1 DOS/VS Guide For New Users

INPUT

o — — D
USER TRANSACTION |PROGRAM }' <>
—— - — !
OUTPUT

Figure 2-25. The Transaction

Transactions are processed by application programs.
In a batch system, large numbers of transactions are
accumulated (for example, all orders of a day), then
processed against the data base with a single schedul-
ing of the desired application program. Although
transactions are always distinguishable, even in batch,
we sometimes tend to think in terms of programs rather
than transactions. However, especially in a DB/DC
environment, a clear understanding of transactions is
mandatory for good data base design. The transaction
is in some way the individual usage of the application
by a particular user. As such, it is the focal point of the
DB/DC system.

In this chapter we will utilize the transaction for the
data base design. A similar role is set aside for the
transaction in program design by adding detailed in-
put, processing and output descriptions to the data
element usage.

Access Paths

Each transaction bears in its input some kind of identi-
fication with respect to the entities used (such as the
item number when accessing an Inventory data base).
These are referred to as the access paths of that transac-
tion. In general, transactions require random access,
although for performance reasons, sequential access is
sometimes used. This is particularly true if the transac-
tions are batched and they are numerous, relative to
the data base size or if information is needed from most
data base records.

For efficient direct access, each access path should
utilize the entity’s key. With proper data base design,
DL/I generally provides fast physical access via a key.
Therefore identification of the transaction access path
is essential for a design to yield good performance.

The Transaction/Data Element Matrix
A convenient way to specify the transactions, the data
elements and their interaction is to use a

transaction/data element matrix, as shown in Figure
2-26.

PURCHASE CUSTOMER
APPLICATION INVENTORY ORDERS ORDERS
& & &
'3 & & & Q
TRANSACTIONS & & & S &
A Q Q)
> A & < & & & <
= oama S £/ F/8§ §F &
i ELEMENTS < ~ S < Q
Item Number ® IE ® @ R R
s Description R R R R R R
L
= Quantity on Hand R R R R R R
>
g Quantity on Order R R 9] U R R
£ Quantity Reserved R R R R R R
i
2 Unit Price R R R R R R
Unit of Issue R R R R R R
Inventory Item D E @
s Line Item Number | U D
L
= Quantity Ordered | U D
o
IEJ Quantity Shipped | U D
?5 Quantity Back Ordered | J D
Item Amount | U D
o
"('j' Order Number D E @
i
O Reference Data 1 u D
o
"§u Order Item Count | U D
(@]
5 Order Amount ! u D
o
(O] /\

LEGEND: D DIRECT ACCESS PATH (KEY)
O SEQUENTIAL ACCESS PATH

Figure 2-26. The Transaction/Data Element Matrix

Chapter 2: Data Base Design 2-37

The transaction/data element matrix specifies, in its
simplest form, the processing intent of the application
transactions against the data base elements:

e Retrieve (read only) R
e Update in place U
e Add, insert I
* Delete D
e All of the above A
e Null, not sensitive - or blank

The data elements which are direct access paths for
a transaction are denoted by a boxed matrix item.
These should be keys. Sequential access is indicated by
a circle around the matrix item.

Data Base Design Tasks
The process of designing a data base (Figure 2-27) can
be generally divided into the following tasks:

e Gathering requirements

e Designing application data structures

e Designing physical data structures

e Design and performance evaluation

Usually the above steps are repeated until the design
satisfies the requirements. After this design process, the
actual development, implementation (data base load)
and production begins. During production, the system
is subject to monitoring which can provide feedback
for the design phase.

jt———————— DESIGN PHASE——————————3-]

nzo——H0Oprpnzr>In—

GATHERING oG | |pEsiGhinG DESIGRAND PHYSICAL OPERATION &
REQUIRE- Hm{ DATA PHYSICAL PETNGE ! VP ENIENTA- Lo EVALUATION
MENTS STRUCTURES STRUCTURES EVALUATION TION MONITORING
DATA
ELEMENTS O
3 —

CIL

UL

DATA
BASE

:

t

Figure 2-27. The Steps In Data Base Design

Gathering Requirements

The first step of the data base design poses many ques-
tions: What do the applications need? What inputs are
required to drive them? What data outputs will they
produce? How are the data elements related to one
another? Which elements are identifiers and which
elements do they identify? How frequently are they
used? Have input sources been specified for all data
elements?

2-38 DL/1 DOS/VS Guide For New Users

During the process of gathering requirements, these
and related questions are answered primarily during
conversations between a data base designer and an
analyst from the department that requests the applica-
tion. In some organizations, a set of forms appropriate-
ly filled in marks the end of the requirements gathering
step; in other organizations, less formality is involved.
In any case, this first step in data base design ends
when the designer collects the data needs of the indi-

J

C

vidual applications that will use the data base being
designed.

The requirement for a data base should contain:

e The data being managed, such as the entities and
associated data elements.

e The relations between the entities and data ele-
ments as needed by the various users.

¢ The functions being performed against the data
(the transactions).

e The access path as required by the transactions.

The first step in gathering the requirements is to
determine the entities. This is not a trivial task, be-
cause the choice of entities is dependent on the envi-
ronment.

A data element which, initially, is considered an
attribute, could become an entity itself when new ap-
plications are added. For example, the data element
color, is normally seen as an attribute. But in a paint
factory process it might very well be an entity itself.
Clearly, the change of a given data element from attri-
bute to entity could have a significant impact on the
data structure. To avoid this as much as possible, be
very careful in the choice of entities.

To register the functions performed against the data
elements, first construct the transaction/data element
matrix. Optionally, when the matrix becomes too large,
construct a separate matrix for each major application.
Another useful approach is to make a large drawing for
display on the wall. This process is most effective if the
matrix not only contains the applications of the imme-
diate future, but also as much as possible about future
applications and data elements.

Additional columns could be added for miscellane-
ous information such as:

e Occurrence frequencies of transactions and data
elements

¢ Size and format of data elements
e Priorities and response/turnaround time criteria
¢ Availability (batch or online)

e Security (who may have access to the information
made available by this transaction)

¢ Input/output descriptions per transaction, for
application program design

The transaction/data element matrix, together with
a detailed description of the data base and its use, con-
stitutes the requirements for the design step. For the
detailed description of the data base, its segments and
fields, a documentation scheme should be established.
As a minimum, forms should be used for a manual

registration of the data base, the segment layout, the
fields and their attributes. It is very important to regis-
ter which program uses which data elements. The next
step would be to use the Assembler DSECT, COBOL
COPY, or PL/I %INCLUDE facility for centralized man-
agement of segment descriptions. Ultimately, the
DB/DC data dictionary system might be utilized.

Design the Application Data Structure

Once the transaction/data element matrix has been
built, it can be used as a guide to designing your appli-
cation data structure(s). This is the logical data struc-
ture that may consist of one or more hierarchical physi-
cal data structures with the data elements arranged the
way the application programmer views it.

Segment Grouping

In general, prior to the design of the hierarchical struc-
ture, segment design should be addressed. The process
of segment design involves determining what data ele-
ments to group together to form a segment. Logically
related data elements should be grouped together
based upon application, usage and growth of new data
elements. If you know that a future application is go-
ing to require a field that is logically associated with
the other fields that form your segment, it should be
placed in that segment now, even though it will not be
used until the second application is implemented.
Changing segment content, unlike adding new seg-
ments to a hierarchical structure, requires modifica-
tions to all application programs which utilize the seg-
ment and is thus a generally undesirable option to con-
sider once application programming has begun. Data
elements should be combined into a single segment
type when they are used together. For example, name
and address, or order number and order quantity, hav-
ing a one-to-one relationship, should be considered
candidates for inclusion in the same segment. Data
elements should not be grouped together into a single
segment type when they occur independently of each
other, are used at different times by different applica-
tion programs, or there is a large discrepancy in fre-
quency of access. For example, if name is a highly
used data element but address is a little used data ele-
ment, consider the separation of name and address into
different segment types, regardless of the aforemen-
tioned recommendation that logically related data
elements should be placed in the same segment.

Design the Physical Data Structures

In this step, the logical data structures are matched
against the functions and characteristics of DL/1. Physi-
cal data base structures are defined and specified in
DBDGEN control statements. The D1./1 storage organi-
zation and access method is selected. Additional con-

Chapter 2: Data Base Design 2-39

siderations that may yield changes in the segment de-
sign are shown in Figure 2-28.

GROUP IN ONE SEGMENT<-------- >SEPARATE SEGMENTS
Few Occurrences(<3) Mulitiple Occurrences(>10)
Small(<20 bytes) Large(>100 bytes)

High Use (Every access to re- [Low Use (Once a Month)
cord.)

Read-only Update, Insert, Delete

General Use Secured Use

Only dependent upon a single [Dependent upon relation of
data element data elements

Figure 2-28. Grouping Data Elements Into Physical Segments

The numbers shown in Figure 2-28 are not fixed.
They merely provide a basis for your own estimates.
Additional considerations are:

¢ Single verses multiple occurrences. If a data ele-
ment has a high number of occurrences, it is likely
to be a segment itself, especially if it is large. If it
is small and highly used, then it could be stored
with multiple field occurrences per segment, even
in the root segment.

e Ifa data element needs special security, i.e., only
particular applications may have access to it, it
can be stored in a seperate segment together with
other data elements with the same security re-
quirements. The final result of the physical struc-
ture design steps is the data base descriptions
(DBDs) and program specification blocks (PSBs) for
the data bases and their processing programs.

Selecting Data Base Access Methods

Access methods can, in general, be changed during
data base reorganization without affecting application
programs. Still, because the access method is one of the
most critical performance factors, it should be carefully
selected. This manual addresses only the considera-
tions for the selection of HDAM, HIDAM, and SHISAM.

When to Choose HDAM: HDAM is recognized in
practice to be the most efficient storage organization of
DL/I. It should be your first choice, especially in the
online environment. HDAM’s prime advantages are:

e Fast direct access (no index accesses) with few 1/0
operations

e Smallest working set of the six access methods
The disadvantage of HDAM is:

e Sequential access in root key order is not possible
if the physical sequence of data base records in
storage is not the same as the root key sequence.

2-40 DL/1 DOS/VS Guide For New Users

This is dependent on the randomizing module and
root key characteristics.

If heavy sequential processing is required and a
randomizing module which maintains key sequence
cannot be designed, then these techniques can be used:

® Sort the output: If the program is non-input driv-
en, as is the case with many report programs, sim-
ple Get Next processing presents all the data base
records in physical sequential order. The output
could then be sorted in the desired order. Also, in
many instances, only certain selected segments are
required, so the output file of the extract can be a
fairly small file.

e Sort the input: If there are input transactions that
would normally be sorted in root key sequence
they should instead be sorted in physical se-
quence. This can readily be done with a sort exit
routine which passes each root key to the random-
izing module for address calculation and then
sorts on the generated addresses plus root key in-
stead of the root key itself.

® Build a secondary index: A secondary index could
be built with the root key as the index search argu-
ment. The cost of this should be weighed against
the cost of sorting. However, the secondary index
provides full generic key search capability.

When to Chose HIDAM: 1f you cannot use HDAM for
some reason, then use HIDAM (see above discussion).

When to Choose SHISAM: This access method
should be used only as a migration tool. That is, if your
organization currently has files based on ISAM or KSDS
access methods, it is not recommended for new data
bases. With SHISAM, new programs can use the DL/I
interface with full recovery function. Existing VSAM
programs can access the data base as a regular KSDS
and older ISAM-based programs can use the VSAM IIP.

Additional Considerations
In the final steps of data base design we must look at
the physical parameters closely:

¢ The segment length

¢ The number of occurrences per segment per par-
ent

¢ Location of segments in the hierarchy

e Average data base record size

Performance Aspects: The main measure of access
performance is the number of 1/0 requests to satisfy the
calls an application program issues. Those are mainly
dependent upon the physical data base d=sign and the

J

C

C

data base buffer pool size; the latter is discussed in
Chapter 5. Second, the number of required DL/1 calls
should be considered.

Basic recommendations (HDAM and HIDAM)

e Try to locate the segments most often used togeth-
er with the root segment into one control interval.
The segments are initially physically stored in
hierarchical sequence so the most frequently used
segments should be on the left of the structure
(low segment codes).

e Try to avoid long twin chains, for example, many
occurrences of a particular segment under one
parent.

¢ Inserts after initial load will first check the block
of the hierarchically preceding segment for avail-
able space. If no space is found, a bit map block is
used to search for space within plus or minus 3
cylinders. The bit map block contains one bit for
each block in the data set. Bit map blocks are re-
peated for each n blocks; n is number of bits in a
block. The bit is set to one if the corresponding
block contains enough consecutive free space to
hold the largest segment (including prefix) of the
DBD. If no space is found, the segment is stored at
the end of the data set for HIDAM and in the over-
flow area for HDAM.

Basic recommendation (HDAM):

¢ During consecutive inserts (no intervening calls)
of segments of a particular data base record, the
BYTES parameter in the RMNAME keyword of the
DBD statement will limit the amount of data stored
in the root addressable area. If the limit is reached
(bytes include prefix) consecutive inserts are
placed in the overflow area. Using this parameter,
especially during initial load and reload, can bene-
fit an equal distribution in the case of a large vari-
ation in data base record size.

Defining VSAM Clusters

Whenever defining a VSAM cluster, you should check
the DBDGEN output listing. It gives the proper access
method services control statements for the definition of
the KSDS (i.e. the location of the key in the KSDS re-
cord).

Always use the vSAM share option 1 and perform a
LISTCAT after a DEFINE command to verify that the
parameters specified in DEFINE were accepted by
VSAM.

Data Base Design Checklist

The following checklist gives an overview of the most
important considerations/guidelines for data base de-
sign optimization. These considerations/guidelines are
oriented towards performance. Sometimes, they will
contradict application requirements. In such cases, a
compromise must be made based on a cost/function
analysis.

* Use no more complex a structure than necessary.

* Keep frequently accessed segments near the top
and to the left of the hierarchy.

¢ Avoid widely varying segment sizes for volatile
segments in the same data space.

e Check the requirement for any segment type
whose relative frequency under its parent is one,
or whose prefix length is greater than or equal to
its data length.

e Oversegmentation results in many DL/I calls and
longer reorganization times.

e Undersegmentation results in less security and less
data independence.

e Avoid movement of data from one data base into
another or from one part of a data base record to
another.

e Avoid secondary indexing on highly volatile
source segments.

e Use secondary indexing for alternate entry not
sequential processing.

e Iflogical relationships exist, place the real logical
child so that the physical path is the most active
path. Also consider placing the real logical child
on the longest twin chain.

* Sequencing of the logical twin chain is expensive
on insert and delete processing.

e Avoid long twin chains, particularly logical twin
chains.

Chapter 2: Data Base Design 2-41

2-42 DL/1 DOS/VS Guide For New Users

C

Introduction

Chapter 3: Data Base Implementation

This chapter introduces the two level data base definition language, used by data
base administration, to define to DL/1 the physical and logical characteristics of the
data bases, and the application data structures for each application program. The
first level, called the DBD (data base description), describes to DL/I the contents of
the data base, the names of the segments, their hierarchical relationship, and the
physical organization and characteristics of the file. The second level, the PSB
(program specification block), defines the application data structure for each
application program.

Before the data base descriptions and program specification blocks can be used
by DL/1, they must be merged and expanded into an internal format. DL/I provides
a utility that creates a DMB (data management control block) for each related DBD
CSECT and an expanded PSB for each related PSB CSECT. When DL/1 is initialized,
the DMBs and PSBs for the applications are loaded into storage and control is passed
to the application program.

This chapter is divided into three sections:

e Section 1. Data Base Description Generation: Describes the DL/I macro
instructions you must code to define your data bases. The data bases for the
sample application discussed in Chapter 2 are used as examples throughout
this section to guide you in determining your own data base requirements.

e Section 2. Program Specification Block Generation: Describes how to generate

the PsBs you will need to define your application program(s) use of your data
bases.

e Section 3. Application Control Blocks Creation and Maintenance: Describes
how to create the internal control blocks, from the previously generated DBDs
and PSBs, that DL/I uses to process your data bases.

Data Base Description Generation

After you finish the design of your data bases, you must specify them to DL/1. This
section gives the guidelines for the use of the DL/1 data base definition language:
the data base description generation (DBDGEN). This section is also divided into
three subjects in concurrence with the three phases:

1. Basic DBDGEN for physical data bases
2. DBDGEN for logical relationships
3. DBDGEN for secondary indexes

For each data base to be used with DL/1, a data base description (DBD) must be
generated. A DBD consists of a set of DL/I macro instructions, coded by you to
specify the data base characteristics you need. Figure 3-1 illustrates the execution
of a DBD generation. The DL/I user creates control statements that are presented to
the DBD generation procedure as a normal DOS/VS problem program job. The DL/1
macro instructions used for DBD generation exist in a DOS/VS source statement
library. The result of a DBD generation is the creation of a DL/1 DBD CSECT. The
generated DBD is cataloged and link-edited into a DOS/VS core image library, for
subsequent processing of the data base.

Figure 3-2 shows the sequence of the control statements in the DBD input
stream.

Chapter 3: Data Base Implementation 3-1

DOS/VS
DBD 58D
ENERATION
gONTROL L GENERATION
STATEMENTS CORE
IMAGE LIBRARY
DBD

SOURCE STATEMENT
LIBRARY

Figure 3-1. Data Base Description Generation

DBDGEN Coding Conventions

DBDGEN statements are DOS/VS assembler language macro instructions and

therefore are subject to the rules contained in OS/VS-DOS/VSE-VM/370 Assem-
bler Language, GC33-4010.

In the generalized format shown in the following descriptions of the control
statements, these syntax conventions apply:

a. Words written in all capital letters must appear exactly as written.

b. Words written in lowercase letters are to be replaced by a user-specified value.

Valid user-specified values are numeric values or one- to eight-character
alphameric names.

c. The control statements are free form. Operation codes must begin after
column one. Operands must follow an operation code or prior operand. The
first operand must be separated from the operation code by at least one blank
column. Each operand should be separated from the previous operand by a
comma. Operands may be continued in subsequent statements, but must start
in column sixteen on the continuation statement. A nonblank character must
be coded in column 72 if a continuation statement follows.

3-2 DL/1DOS/VS Guide For New Users

<

rEND

Assembler
(FINISH END Macro
DBDGEN .
Required: 1
Required: 1
[]

Repeat for each seg- o
ment type in the
data base. The (FIELD
order is the
hierarchical r
sequnce. FIELD Repeated for each defined field
Maximum: for this segment.
255 LCHILD Maximum: 255 per segment type.

1000 per data base.

SEGM Required for
index and/or
logical relationships.
(DATASET
DBD .
Required: 1.
Required:1

Figure 3-2. DBDGEN Input Deck Structure

[1 indicates optional operands. The operand enclosed in the brackets (for
example [VL]) may or may not be present, depending on whether or not
the associated option is desired. If more than one item is enclosed in
brackets one or none may be coded.

{ indicates that a choice of an operand parameter must be made. One of
the operand parameters from the vertical stack within the braces must
be coded.

yeue indicates that more than one set of parameters may be designated in the
same operand.

Example:

|4 Column 1 |+ Operands — Column 16

| | «Operation — Column 10 Column 72 =|
DBD NAME=STDIDBP, *

ACCESS=HDAM

Basic DBDGEN Control Statements Format

This section addresses the control statements required to perform the DBDGENSs
necessary for the sample applications. Because the purpose of this manual is to
show by example the basic requirements for implementing a simple data base
application, we are including only the keywords and parameters or operands of
each statement as they are needed for the sample applications. (All other available
keywords are mentioned only briefly.) For more detailed information about these
keywords and the other options available, see the Utilities and Guide for the System
Programmer.

Examples of the DBD statements for the sample data bases follow the discussion
of the control statements.

Chapter 3: Data Base Implementation 3-3

DBD Statement

This statement names the data being described and specifies the organization used.
There is only one in the input to DBDGEN. The format of the DBD control state-

ment is:
DBD NAME=dbdname
,ACCESS={HDAM, RMNAME= (mod, {1 }[.,rbn[,bytes]])}
{anch}
{HIDAM }
{ INDEX }

The following parameters do not apply to HDAM or HIDAM data bases
and therefore are given only general consideration in this manual.

{HSAM }
{HISAM }
{ SHSAM }
{SHISAM }

DBD
identifies this statement as the DBD control statement
NAME=
dbdname
specifies the name of the DBD for this data base. This name can be from
one to seven alphameric characters. However, the at-sign (@) must not
be used. This name should be unique for each DBD in your
installation’s DL/I environment.
ACCESS=
specifies the DL/1 access method to be used for this data base. The value of
the operand has the following meanings:
HSAM
specifies the hierarchical sequential access method.
HISAM
specifies the hierarchical indexed sequential access method.
HIDAM
specifies the hierarchical indexed direct access method. An INDEX DBD
must be associated with any HIDAM DBD.
INDEX
specifies the INDEX data base of a HIDAM data base. This index data
base contains root segments that perform indexing to the sequence field
of root segments in a HIDAM data base. This is called a primary index.
This parameter is also used for secondary indexes. See “DBDGEN for
Secondary Indexes” later in this chapter.
SHSAM
specifies the simple hierarchical sequential access method. This data
base consists of root segments only and does not contain segment pre-
fixes.
SHISAM
specifies the simple hierarchical indexed sequential access method. This
data set consists of root segments only and does not contain segment
prefixes.
HDAM
specifies the hierarchical direct access method.
Notes:

* Guidelines for selecting the best access method for a particular data base are provided under the

3-4 DL/I DOS/VS Guide For New Users

5

topic “Data Base Access Methods” in Chapter 2.

o Parameters for the VSAM Access Method Services DEFINE command are produced in the
DBDGEN output listing. These parameters must be used when defining the VSAM data set
cluster. See “VSAM Requirements” later in this chapter.

RMNAME=(mod,anch,rbn,bytes)

mod

anch

rbn

bytes

DATASET statement

specifies the name of a randomizing module used for storing and
accessing segments contained in this data base. DL/I provides several
general randomizing modules (DLZHDC10, DLZHDC20, and DLZHDC30)
that you can use, or you can provide your own randomizing routine.
See the Utilities and Guide for the System Programmer for details.

specifies the number of root anchor points desired in each control
interval or block in the root addressable area of a HDAM data base. The
default value of the parameter is one. “anch” must be an unsigned
decimal integer and must not exceed 255 or be less than 1.

When a randomizing routine produces an anchor point number in
excess of the number specified for this parameter, the anchor point used
is the highest number in the control interval or block. When a random-
izing routine produces an anchor point number of zero for DL/I, DL/I
uses anchor point one in the control interval or block.

specifies the maximum relative block number value that the user wishes
to allow a randomizing module to produce for this data base. This
value determines the number of control intervals or blocks in the root
addressable area of an HDAM data base. “rbn” must not exceed 2%*-1 or
be less than 1. If the randomizing module produces an rbn greater than
this parameter, the highest control interval or block in the root address-
able area is used by DL/1. If the randomizing module produces a block
number of zero, control interval or block one is used by DL/I.

Note: If one of the randomizing modules supplied with DL/I will be used, this value may

not be omitted. Omitting this value will cause a program check to occur in the randomiz-
ing module during load execution.

specifies the maximum number of bytes of a data base record that can
be stored into the root addressable area in a series of inserts unbroken
by a call to another data base record. If this parameter is omitted, no
limit is placed on the maximum number of bytes of a data base record
that can be inserted into this data base’s root segment addressable area.
“bytes” must be an unsigned decimal integer whose value does not
exceed 232-1 and is not less than 1.

This statement defines each data file that makes up the data base defined by the
DBD generation. There can be only one DATASET statement for each DBD genera-
tion, and it must follow the DBD statement. The format of the DATASET statement

18:

Chapter 3: Data Base Implementation 3-5

DATASET DD1=fname?

{3330}
{3340}
,DEVICE={3350}
{2314}
{TAPE}
| {FBA }

[,BLOCK=(blk-fct-1)]
[,SCAN={cyls}]

| {blks}
{3 }
[,RECORD=(rec—-len-1 [,rec-len-2])]
[,FRSPC=({fbff, fspf})]
{0 [V

The following parameters are not used for
HDAM, HIDAM, or INDEX data bases and there-

fore are given only general consideration
in this manual.

[,DD2=fname2]
[,DEVADDR=(SYSnnn—-1,5YSnnn-2)]
[,OVFLW=fname3]

DATASET
identifies this statement as the DATASET control statement.

DD Il1=fnamel
identifies the DLBL filename (1-7 characters) used in the JCL to execute DL/1
application programs using the data base. It is the symbolic filename of the
VSAM KSDS when ACCESS=HISAM, SHISAM, or INDEX; the VSAM ESDS when
ACCESS=HDAM, or HIDAM; or the sequential input file when ACCESS=HSAM
or SHSAM.

DEVICE=
specifies the device type used for storage of this data set. TAPE may be
specified only if ACCESS=HSAM or SHSAM is specified in the DBD statement.

Specify DEVICE=FBA if your data base data files are to reside on FBA devices.
Remember that the addressing scheme of an FBA device is different from that
of other direct access storage devices. Because an FBA device is laid out as a
series of fixed blocks (of 512 bytes each) starting at zero and numbered
sequentially to the capacity of the device, it is addressed by block number
rather than by the familiar concept of tracks and cylinders. For this reason, if
an FBA device is used, the number specified in the SCAN parameter represents
the number of fixed blocks to be scanned when looking for space rather than
the number of cylinders (see SCAN Parameter).

BLOCK=
specifies the control interval size (HDAM or HIDAM) to be used for each file of
this data base. For SHISAM, HISAM, and INDEX data bases this parameter
specifies the number of VSAM records per VSAM control interval. If this
operand is not specified, the value(s) is calculated during DBD generation
using a control interval size of 2048 bytes wherever possible. For HIDAM and
HDAM, the parameter blk-fact-1 is the size of the VSAM ESDS control interval

and must be a multiple of 512 bytes. The maximum value permitted by DL/I
is 4096.

In choosing the block size, the following considerations apply (Remember,
the block size is the CI size):

J Try to choose a CI size that allows all highly needed segments of a data
base record to fit into one or more consecutive Cls.

3-6 DL/IDOS/VS Guide For New Users

. Large CI sizes favor sequential processing and DASD space utilization.
However, if you are primarily processing directly, you should determine
the segments needed per data base record per transaction.

. The VSAM CI size must be a multiple of 512 bytes. The maximum CI size
allowed by DL/1 is 4096 bytes. The CI contains 10 bytes of VSAM control
information.

Figure 3-3 may be helpful in calculating the size in bytes for the BLOCK and
RECORD parameters of the DATASET statement.

SCAN=
specifies the number of cylinders (for direct access devices) or blocks (for FBA
devices) to be scanned in both directions when searching for available storage
space during segment insertions. This operand is used only for HDAM or
HIDAM data bases.

If you specify cyls, it can be any integer from 0 to 255. Typical values are O to
5. The default value is 3 (suggest you start with 0). If SCAN=0 is specified,
only the current cylinder is scanned for space. Scanning is performed in both
directions from the current position. If space is not found for segment inser-
tion within the bounds defined by this operand, space at the end of the data
base is used.

ALLOCATION IN BYTES
ACCESS SEGMENT DL/I CONTROL VSAM CI MAXIMUM MAXIMUM DEFAULT
METHOD PREFIX INFORMATION CONTROL SEGMENT [of] Cl
RECORD | BLOCK INFORMA- SIZE SIZE SIZE
TION
SHISAM 0 0 0 10 4086 4096 2048
HISAM 2 5 0 10 4078 4096 2048
INDEX 6 5 0 10 4074 4096 2048
HIDAM NA 8 10 4068 4096 2048
2+ 4T +4ClI
+8C2 + 4LP1
+8LP2+4LC
+4LP3 + PP
HDAM NA a4+ 10 4068 4096 2048
4RAP
Notes:
CI= VSAM Control Interval
T=1 if POINTER=TWIN
if POINTER=NOTWIN
T=2 if POINTER=TWINBWD
Clof physical parent segment = the number of SEGM statements that specify PARENT=((parent-segment,SNGL)) or default to this.
C2 of physical parent segment = the number of SEGM statements that specify PARENT=((parent-segment, DBLE)).
LP1 of logical parent segment = the number of LCHILD statements defining logical child segments of this segment that specify
POINTER=SNGL or NONE or default to this.
LP2 of logical parent segment = the number of LCHILD statements defining logical child segments of this segment that specify
POINTER=DBLE.
LP3 of logical parent segment = 0 if segment is a root segment. 1 if segment is a dependent segment.
LC for logical child segment = 3 if POINTER=LTWIN or not specified. 4 if POINTER=LTWINBWD.
PP =4 for all segments between (and not including) the root segment and a logical child, or logical parent, or indexed segment in a
physical path. If one segment is part of more than one such path, PP counts only once.
RAP = the number of root anchor points as specified in the RMNAME operand of the DBD statement (minimum is one).
NA= not applicable.

Figure 3-3. Maximum Segment Lengths

Chapter 3: Data Base Implementation 3-7

3-8

If you specify blks, it can be any integer from 0 to 32767. If this parameter is
omitted, a default is calculated that is approximately equal to three cylinders.
If sScAN=0 is specified, only the current fixed block is scanned for space.
Scanning is performed in both directions from the current position. If space
is not found for segment insertion within the bounds defined by this operand,
space at the end of the data base is used.

RECORD=

specifies the data management logical record length(s) to be used for each
data file. This operand is optional. If omitted, the values are calculated
during DBD generation. The rec-len-1 and rec-len-2 must be numeric values
which are a multiple of two. The meaning of each parameter depends on the
type of data base being defined.

HIDAM and HDAM
This parameter is ignored.
INDEX
The parameter rec-len-1 is the KSDS record length which is large

enough to contain the index pointer segment plus the length of the
prefix plus the length of the DL/I control information.

FRSPC=

DL/IDOS/VS Guide For New Users

specifies the amount of free space to be reserved in the data base during a
load (or reload) operation for HD (HDAM or HIDAM) data bases.

Joff
specifies that every nth block is to be left free. This is a number from 0
to 100 excluding 1. Zero is the default.

Ssof
specifies the percentage of each block to be left free. This is a number
from 0 to 99. This number expresses the minimum space to be left free.
Due to segment size, the actual space may be larger. Zero is the defauit.

Either fbff or fspf or both may be specified to achieve any combination
of free and/or partially free blocks within the constraints of the parame-
ter values.

A specification of FRSPC=(5,40) results in a data base load (or reload) in
which every fifth block (5, 10, 15, etc.) would be left free and at least 40
percent of all other blocks would also be left as free space. This free
space would be used at insert time to place the inserted segments as
close to the related segments as possible.

The amount of free space to be reserved depends on record size and the
number of inserted segments anticipated. There are no rules for deter-
mining the necessary free space. Various values will have to be experi-
mented with to find the optimum for each data base.

SEGM Statement

‘ This statement is used once for each segment to be defined in the DBD. Its basic
format is:

SEGM NAME=seg—-name

{0 }
[,PARENT={((seg-name2[{,SNGL}))}]
{ ,DBLE}

[,BYTES={bytes }1]
{ (max-bytes,min-bytes)}
{TWIN }

[,POINTER={TWINBWD}]
{NOTWIN }

{,FIRST}
[,RULES=({,LAST })]
{ ,HERE }

[,COMPRTN=(routine-name(,D,INIT])]

NAME=
specifies the name of the segment being defined. The specified name is used
by DL/I and application programs in all references to this segment. Duplicate
segment names are not allowed within a DBD generation. The parameter
seg-name-1 must be 1 to 8 alphameric characters.

PARENT=
specifies the name of the physical parent of this segment. This keyword may
be omitted for the root segment. The second parameter controls the physical
child pointer(s) in the physical parent of this segment.

SNGL
‘ specifies only a physical child first pointer is used in this segment’s
parent.

DBLE

specifies both a physical child first and physical child last pointer are
used in this segment’s parent.

DBLE should be specified if the average twin chain is more than 3 to 5 and
segment has no sequence field and frequent inserts.

BYTES=
specifies the length of the data portion of the segment in bytes. This length
does not include the prefix, which is established solely by DL/1. This length
cannot exceed the maximum logical record length or control interval size of
the data set minus the space occupied by system fields.

If this parameter is not specified, DL/I calculates the size of the segment based
on the location and length of the fields identified as belonging to it.

max-bytes specifies in bytes the maximum length of the data portion of a

variable length segment type, including the 2-byte length field (see “Variable
Length Segments”, in Chapter 2).

min-bytes specifies the minimum length (including the 2-byte length field) of
the data portion of a variable length segment type. Four is the minimum
specification. If you specify a minimum length greater than the actual mini-
mum length (+2) of the data to be stored, DL/1 will reserve an amount of
space equal to the min-bytes specification. This, in effect, reserves free space
at the end of the inserted data, and may result in more efficient processing
L later if the data length is increased.

Chapter 3: Data Base Implementation 3-9

3-10

POINTER=

(or its abbreviation PTR) specifies the fields to be reserved in the segment’s
prefix area. These fields are used to relate this segment to its physical twin
segments and, in the case of a logical child segment, to its logical twin seg-
ments. The POINTER operand applies to HDAM and HIDAM data bases only.

J TWINBWD (twin forward and backward pointers)
specify this parameter if:
- No sequence field is defined and frequent inserts are expected.
- Retrieve last plus subsequent delete is frequently used.
- The segment is a logical child (see Phase 2).
- It is the root segment of a HIDAM data base.
o TWIN (only twin forward pointer)

this parameter is usually specified and is the default for a physical
segment or a logical parent segment.

o NOTWIN (no twin pointer)
specify this parameter to ensure that no more than one occurrence of
this segment will exist under this parent.

Note: If you desire more details on the use and creation of pointers, see Appendix A in the Utilities and
Guide for the System Programmer.

RULES=

{ ,FIRST])
({,LAST })
{ ,HERE }

This parameter of the RULES keyword determines where new occurrences of
the segment being defined by this SEGM statement are to be inserted in the
physical twin chain. This value is significant only when processing segments
without a sequence field or without a unique sequence field (as indicated by
the FIELD statement). It is ignored for a segment which contains a unique
sequence field.

FIRST (F)

states that a new occurrence is to be inserted before the first existing
occurrence of this segment type.

LAST (L)
states that a new occurrence is to be inserted after the last existing
occurrence of this segment type.

HERE (H)
assumes the user has determined positioning by a previous DL/I call,

and the new occurrence is inserted before the segment that satisfied the
last call.

COMPRTN=

this keyword is used to select the segment compression option. This facility
allows the reduction in length of variable length segments to increase the
effective utilization of secondary storage. This operand must not be specified
for virtual logical child segments or secondary index source segments.

routine-name
specifies the name of a user-supplied routine used to compress this
segment. This name must be a 1- to 8-character alphameric value
and must not be the same as any other name in any DOS/VS core
image library that is assigned.

DL/I DOS/VS Guide For New Users

9

9

LCHILD Statement

FIELD Statement

(default value) maintains upward source compatibility to IMS/VS.

INIT

indicates that initialization and termination processing control is
required by the segment compression routine.

This statement is used once for each index or logical relation a segment has. It
immediately follows the SEGM statement of the segment involved. At this point we
will only discuss its use in defining the primary index of a HIDAM data base. The
basic format is:

LCHILD NAME= (seg—-name1,db—name)
[,POINTER=INDX]
[,INDEX=f1ld—-name]

The LCHILD statement is coded both in the INDEX DBD and in the HIDAM DBD.
For the INDEX data base, code:
NAME=
(seg-namel,db-name)
seg-namel is the name of the HIDAM root segment and db-name is the
name of the HIDAM data base as coded in the DBD statement.
INDEX=
fld-name
specifies the name of the sequence field of the HIDAM root segment.

For the HIDAM main data base, code:

NAME=
(seg-namel,db-name)
seg-namel is the name of the only segment in the primary INDEX data
base for this data base, and db-name is the name of that INDEX data
base.

POINTER=
INDX
provides for the linkage with the INDEX data base.

This statement is used once for each field to be defined in the DBD. The FIELD
statements follow the SEGM statement of the segment in which these fields belong.
This statement is required for all sequence fields and fields which are to be used in
ssAs. The basic format is:

FIELD NAME=(fld—name1[,SEQ[{,H}]])
{/M

[,BYTES=bytes]

[,START=pos]

[, TYPE=t]

NAME=
fld-namel
specifies the name of the field being defined within a segment type. The
name specified can be referred to by an application program in a DL/1
call ssA. Duplicate field names must not be defined for the same seg-
ment type. The fld-namel must be a 1- to 8-character alphameric value.

Chapter 3: Data Base Implementation 3-11

3-12

SEQ

the presence of the keyword SEQ as a parameter of this operand identi-
fies this field as a sequence field in the segment type. As a general rule,
a segment can have only one sequence field. If a sequence field is
specified, then its value must be unique for all segment occurrences
under a given parent.

A unique field is optional for all dependent segment types. It must
be provided for the root segment of all data bases except simple HSAM
and HSAM.

When no sequence field is defined for a segment, new occurrences
of the segment will be inserted at the end of the physical twin chain
unless changed by the RULES parameter in the SEGM statement. It is
highly recommended that all segments which participate in a logical
relationship have sequence fields. This includes physical and logical
parents as well as logical child segments.

indicates that only unique values of this sequence field are allowed in
which case any RULES parameter in the SEGM statement is ignored.

indicates that duplicate values of this sequence field can occur in
multiple occurrences of the segment. Each new occurrence of a segment
will be inserted according to the appropriate RULES operand specifica-
tion (see Phase 2) or default.

BYTES=

specifies the length of this field in terms of bytes and must be a numeric term
whose value does not exceed 256 (236 for the root segment sequence field of a
simple HISAM, HISAM, HIDAM, or INDEX data base).

Notes:
e The BYTES parameter must be specified for field data types X, P, C, or Z (see TYPE
parameter for field data types).

s The BYTES parameter is optional for field data types H and F. If omitted, DL/I assumes
a field length of 2 bytes for type H and 4 bytes for type F.

e Do not specify the BYTES parameter for field data types E, D, or L. These data types have
implicit lengths of 4, 8, and 16 respectively.

START=

specifies the starting position of the field being defined in terms of bytes
relative to the beginning of the segment. Start position for the first byte of a
segment is one (maximum 32767). Overlapping fields are permitted. If an
overlapping field starts in the same position as a previously defined field, you
may specify the name of the previously defined field, instead of a numeric
value, to indicate the starting position (START=fieldname). Each field must
not extend beyond the defined segment length (start position plus byte value).

If you do not specify this parameter, DL/1 places this field adjacent to the end
of the previous field, or if it is the first field in the segment, at the beginning
of the segment (START=1). (Note that for concatenated segments, the begin-
ning of the segment is the start of the destination parent concatenated key.)

TYPE=

specifies the type of data that is to be contained in this field. The value of the
parameter specified for this operand indicates that one of the following types
of data will be contained in this field.

DL/1 DOS/VS Guide For New Users

<9

C

DBDGEN Statement

FINISH Statement

END Statement

‘X’ - hexadecimal

‘H’ - halfword binary

‘F’ - fullword binary

‘P’ - packed decimal

‘Z’ - zoned decimal

‘C’ - character

‘E’ - floating point (short)

‘D’ - floating point (long)

‘L’ - floating point (extended)

If this parameter is omitted, TYPE=C is assumed. It is reccommended, howev-
er, that you explicitly specify the desired data type. Failure to do so could
result in problems if you later decide to use the “automatic data format
conversion” option of field level sensitivity (see TYPE parameter in SENFLD
statement).

Notes:

e All DL/I calls perform ficld comparisons on a byte-by-byte binary basis. No check is made by
DL/1to ensure that the data contained within a field is of the type specified by this operand,
except when the defined field is indexed, or converted by the Field Level Sensitivity feature.

¢ Do not unnecessarily define fields in the DBD as this increases the size of the DBD and conse-
quently the working set. You could include FIELD statements as comments (* in column 1) for
documentation. However, be sure to define all fields that will also be defined in the SENFLD
statements for PSB generation.

This statement must be included. It indicates the end of DBD generation control
cards to define the DBD. The format is:

DBDGEN

This statement must be included for source-level compatibility with IMS/vS. The
format is:

FINISH

This statement must be included. It indicates the end of the input statements to the
DOS/VS assembler.

END

Chapter 3: Data Base Implementation 3-13

Execution of DBDGEN (JCL)
DBDGEN is run as a standard DOS/VS job. The DL/I macro instructions used for
DBDGEN exist in a DOS/VS source statement library. The generated DBD is cata-
loged and link-edited into a DOS/VS core image library. DBDGEN requires the
following job control statements:

// JOB DBDGEN
// OPTION CATAL
// EXEC ASSEMBLY
DBD
DATASET
SEGM
LCHILD
FIELD DBD GENERATION CONTROL STATEMENTS
DBDGEN
FINISH
END
/*
// EXEC LNKEDT
/6

Note: If the defined DBD is for the primary INDEX data base of an HIDAM data base, only one
SEGM, FIELD, and LCHILD statement are allowed.

Examples of Physical DBDs

Figure 3-4 shows a sample HDAM data base and the DBD statements required to
assemble it. This is the Phase |1 Inventory data base of the batch sample applica-
tion. The data base is assumed to reside on a 3340. If the device is other than a
3340, the DATASET statement should be changed.

3-14 DL/I1 DOS/VS Guide For New Users

CUSTOMER

NAME/
ADDRESS
(STSCCST)
CUSTOMER CREDIT CUSTOMER
LOCATION STATUS HISTORY
(STSCLOC) (STSCSTA) (STSCHIS)
CUSTOMER
ORDER
(STPCORD)
ORDER
ITEM
(STCCITM)
Customer Data Base
INVENTORY
ITEM
(STPIITM)
VENDOR Trem o LOCATION
(STSIVND)
(STCISUB) (STSILOC)

Inventory Data Base

Figure 3-4. DBDGEN for the Phase 1 Data Bases (Part 1 of 4)

Chapter 3: Data Base Implementation

3-15

// JOB STJDBDGN GENERATE DBDS FOR SAMPLE PROBLEM

// OPTION CATAL,NODECK

// EXEC ASSEMBLY

* THIS IS THE PHYSICAL DBD FOR THE CUSTOMER DATA BASE

* PHASE 1 NO LOGICAL RELATIONSHIPS, NO SECONDARY INDEXES

PRINT NOGEN NO MACRO EXPANSION PRINTING

DBD X
NAME=STDCDBP, DATA BASE DESCRIPTION NAME X
ACCESS=HDAM, HIERARCHICAL DIRECT X
RMNAME= (DLZHDC10, RANDOMIZING ROUTINE PHASENAME X
3, ROOT ANCHOR POINTS PER BLOCK X
100, ROOT ADDR. AREA HI RELATIVE BLK X
600) INSERT BYTES LIMIT FOR RAA

DATASET X
DD1=STDCDRBC, DLBL FILE NAME X
DEVICE=3340, DISK DEVICE X
BLOCK=(2048), VSAM CONTROL INTERVAL SIZE X
SCAN=2 # CYLINDERS SCAN FOR ISRT SPACE

SEGM X
NAME=STSCCST, SEGMENT NAME FOR CUST NAME/ADDR X
PARENT=0, IT IS A ROOT SEGMENT X
BYTES=106, DATA LENGTH X
POINTER=TWIN PHYSICAL TWIN FWD ONLY

FIELD X
NAME= (STQCCNO, SEQ,U), UNIQUE KEY FIELD (CUST #) X
BYTES=6, FIELD LENGTH X
START=1, WHERE IT STARTS IN SEGMENT X
TYPE=C ALPHAMERIC DATA

SEGM X
NAME=STSCLOC, SEGMENT NAME CUSTOMER LOCATION X
PARENT=STSCCST, PARENT IS CUST. NAME/ADDR SEGM X
BYTES=106, FIELD LENGTH X
POINTER=TWINBWD BOTH PHYS. TWIN FWD AND BWD

FIELD X
NAME= (STQCLNO, SEQ,U), UNIQUE KEY FIELD (LOCATION #) X
BYTES=6, FIELD LENGTH X
START=1, WHERE IT STARTS IN SEGMENT X
TYPE=C ALPHAMERIC DATA

SEGM X
NAME=STPCORD, SEGMENT NAME CUSTOMER ORDER X
PARENT=STSCLOC, PARENT IS CUST. LOCASTION SEGM X
BYTES=55, DATA LENGTH X
POINTER=TWINBWD BOTH PHYS.TWIN FWD AND BWD

FIELD X
NAME= (STQCODN, SEQ,U), UNIQUE KEY FIELD (DATE & ORD #) X
BYTES=12, FIELD LENGTH X
START=1, WHERE IT STARTS IN SEGMENT X
TYPE=C ALPHAMERIC DATA

Figure 3-4. DBDGEN for the Phase | Data Bases (Part 2 of 4)

3-16 DL/I DOS/VS Guide For New Users

SEGM X
NAME=STCCITM, SEGMENT NAME LINE ITEM X
PARENT=STPCORD, PHYSICAL PARENT IS CUSTOMER ORD X
BYTES=38, DATA LENGTH X
POINTER=TWINBWD BOTH PHYS. TWIN FWD AND BWD

*

* THE FOLLOWING FIELDS ARE DEFINED TO SHOW AN EXAMPLE OF FIELD LEVEL

+ SENSITIVITY. NOTE THAT IT IS NOT REQUIRED FOR THE SEQUENCE FIELD

* TO BE DEFINED FIRST AND IF THE START PARAMETER IS NOT CODED THE FIELD

* IS ASSUMED CONTIGUOUS TO THE PRECEEDING FIELD. SEE PSB'S STBCUSR

* AND STBCUSU FOR AN EXAMPLE OF HOW THE FIELDS ARE SELECTED BY THE

* APPLICATION PROGRAM.

FIELD NAME=STKCIIN, INVENTORY ITEM NUMBER X
BYTES=6, FIELD LENGTH X
TYPE=C ALPHAMERIC DATA

FIELD X
NAME= (STQCILI,SEQ,U), UNIQUE KEY FIELD (LINE #) X
BYTES=2, FIELD LENGTH X
START=7, WHERE IT STARTS IN SEGMENT X
TYPE=C ALPHAMERIC DATA

*

FIELD NAME=STFCIQO,BYTES=6,TYPE=C QUANTITY ORDERED

FIELD NAME=STFCIQS,BYTES=6,TYPE=C QUANTITY SHIPPED

FIELD NAME=STFCIQB,BYTES=6,TYPE=C QUANTITY BACK ORDERED

FIELD NAME=STFCIAM,BYTES=12,TYPE=C ITEM AMOUNT

*

SEGM X
NAME=STSCSTA, SEGMENT NAME CREDIT STATUS X
PARENT=STSCCST, PARENT IS CUST. NAME/ADDR SEGM X
BYTES=24, DATA LENGTH X
POINTER=TWIN PHYSICAL TWIN FWD ONLY X
RULES=(,FIRST) INSERT THIS OCCURRENCE BEFORE

* EXISTING OCCURENCE

* OF SEGMENT

* NOTE THERE IS NO KEY FIELD

*

SEGM X
NAME=STSCHIS, SEGMENT NAME CUSTOMER HISTORY X
PARENT=STSCCST, PARENT IS CUST. NAME/ADDR SEGM X
BYTES=(130,53), SEGMENT IS VARIABLE LENGTH X
COMPRTN=DLZSAMCP, NAME OF COMPRESSION ROUTINE X
POINTER=TWINBWD BOTH PHYS. TWIN FWD AND BWD

FIELD X
NAME= (STQCHDN,SEQ,U), UNIQUE KEY FIELD (DATE & ORD #) X
BYTES=12, FIELD LENGTH X
START=3, WHERE IT STARTS IN SEGMENT X
TYPE=C ALPHAMERIC DATA

DBDGEN REQUIRED TO MARK DBD END

FINISH FOR SOURCE COMPAT WITH IMS/VS

END

/l

// EXEC LNKEDT

/&

Figure 3-4. DBDGEN for the Phase 1 Data Bases (Part 3 of 4)

Chapter 3: Data Base Implementation 3-17

// JOB DBDGEN

// OPTION

// EXEC

CATAL, NODECK
ASSEMBLY

* THIS IS THE PHYSICAL DBD FOR THE INVENTORY DATA BASE
* PHASE 1 NO LOGICAL RELATIONSHIPS, NO SECONDARY INDEXES

/t
// EXEC
3

PRINT
DBD

NOGEN

NAME=STDIDBP,
ACCESS=HDAM,
RMNAME=(DLZHDC30,
3,
100,
400)

DATASET

SEGM

FIELD

SEGM

FIELD

SEGM

FIELD

SEGM

FIELD

DD1=STDIDBC,
DEVICE=3340,
BLOCK=(2048),
SCAN=2

NAME=STPIITM,
PARENT=0,
BYTES=56,
POINTER=TWIN

NAME=(STQIINO,SEQ,U),
BYTES=6,

START=1,

TYPE=C

NAME=STSIVND,
PARENT=STPIITM,
BYTES=106,
POINTER=TWIN

NAME= (STQVVNO,SEQ,U),
BYTES=6,

START=1,

TYPE=C

NAME=STCISUB,
PARENT=STPIITM,
BYTES=56,
POINTER=TWINBWD

NAME= (STQCCNO,SEQ,U),
BYTES=6,

START=1,

TYPE=C

NAME=STSILOC,
PARENT=STPIITM
BYTES=12,
POINTER=TWINBWD

NAME= (STQILNO,SEQ,U),
BYTES=6,

START=1,

TYPE=C

DBDGEN
FINISH

END

LINKEDT

NO MACRO EXPANSION PRINTING

DATA BASE DESCRIPTION NAME
HIERARCHICAL DIRECT

RANDOMIZING ROUTINE PHASENAME
ROOT ANCHOR POINTS PER BLOCK
ROOT ADDR. AREA HI RELATIVE BLK
INSERT BYTES LIMIT FOR RAA

DLBL FILE NAME

DISK DEVICE

VSAM CONTROL INTERVAL SIZE

CYLINDERS SCAN FOR ISRT SPACE

SEGMENT NAME INVENTORY ITEM
IT IS A ROOT SEGMENT

DATA LENGTH

PHYSICAL TWIN FWD ONLY

UNIQUE KEY FIELD (ITEM #)
FIELD LENGTH

WHERE IT STARTS IN SEGMENT
ALPHAMERIC

AUTHORIZED VENDOR INFORMATION
PARENT IS INVENTORY ITEM SEGM.
FIELD LENGTH

PHYSICAL TWIN FWD ONLY

UNIQUE KEY FIELD (VENDOR #)
FIELD LENGTH

WHERE IT STARTS IN SEGMENT
ALPHAMERIC DATA

SEG. NAME FOR SUB-ITEM INFO.
PARENT IS INVENTORY ITEM SEGM
DATA LENGTH

BOTH PHYS. TWIN FWD AND BWD

UNIQUE KEY FIELD (SUB-ITEM #)
FIELD LENGTH

WHERE IT STARTS IN SEGMENT
ALPHAMERIC DATA

SEGMENT NAME INVENTORY LOCATION
PARENT IS INVENTORY ITEM SEGM.
DATA LENGTH

BOTH PHYS. TWIN FWD AND BWD

UNIQUE KEY FIELD INVENTORY LOC#
FIELD LENGTH

WHERE IT STARTS IN SEGMENT
ALPHAMERIC DATA

REQUIRED TO MARK DBD END

FOR SOURCE COMPAT WITH IMS/VS

Figure 3-4. DBDGEN for the Phase 1 Data Bases (Part 4 of 4)

3-18

DL/I DOS/VS Guide For New Users

E - - -

Ea il

E - oo X X EE - oo X X oo X DD DK K X X

K X

Figure 3-5 shows an example of a HIDAM version of the same data base. The
difference here is that two DBDs are required, one for the index data base and one
for the main data base. The index for a HIDAM data base is called a primary index.
The DBD example in Figure 3-5 is for the primary index of the Inventory data base.

The HIDAM DBD for the Inventory data base differs from the HDAM DBD in that
ACCESS=HIDAM is specified in the DATASET statement, and an LCHILD statement is

added to relate this data base to the index data base. The LCHILD statement is

placed after the SEGM statement for STPIITM, and identifies the segment name and
the DBD name of the index data base.

The coding of a DBD for a primary index is slightly different from the coding of
a DBD for a secondary index. See “DBDGEN for Secondary Indexes” later in this

Figure 3-5. Sample DBD For a HIDAM Primary Index Data Base

Chapter 3: Data Base Implementation

chapter for details.
HIDAM
PRIMARY INDEX DATA BASE
INVENTORY
ITEM NO.
(STIITM)
INVENTORY DATA BASE
INVENTORY
ITEM
(STPIITM)
SUBSTITUTE ITEM
}QET':R,ONHD, ITEM LOCATION
(STCISUB) (sTSILOC)
DBD X
NAME=STDIX1P, DATA BASE DESCRIPTION NAME X
ACCESS=INDEX THIS IS AN INDEX
DATASET X
DD1=STDIX1C, DLBL FILE NAME X
DEVICE=3340 DISK DEVICE
SEGM X
NAME=STIIITM, SEGMENT NAME OF THE INDEX X
PARENT=0, IT IS A ROOT SEGMENT X
BYTES=6 LENGTH
LCHILD X
NAME= (STPIITM, TARGET SEGMENT ITEM NUMBER X
STDIDBP), FOUND IN INVENTORY DATA BASE X
INDEX=STQIINO INDEXED FIELD NAME
FIELD X
NAME=(STYIINO,SEQ,U), UNIQUE KEY FIELD X
BYTES=6, FIELD LENGTH X
START=1, WHERE IT STARTS IN SEGMENT X
TYPE=C ALPHAMERIC DATA
DBDGEN TO MARK END OF DBD
FINISH FOR SOURCE COMPAT WITH IMS/VS
END

3-19

DBDGEN for Logical Relationships

To support the logical relationships function, DBDGEN is extended in two ways:

e Additional control statements and parameters can be specified in the physical
DBD.

e A new type of DBD is created for the definition of the logical data base,
however, this is done with an extension of the existing control statements.

The DBDGEN process itself is unchanged.

Coding a Logical Relationship in a Physical DBD
The following control statements are unchanged:

DBD
FIELD
DBDGEN
FINISH
END

The following statements are extended:

SEGM
LCHILD

Logical Child: For each defined logical child, you need to code two SEGM state-
ments. One within its physical parent’s DBD and one within its logical parent’s
DBD. The format under the physical parent DBD, that is, for the real logical child is:

SEGM NAME=seg—name1
, PARENT=
((seg—name2, {SNGL})

{DBLE}
, (lpseg—name[,V,db—-namel1]))
,BYTES=bytes

,POINTER=({TWIN }, [{LTWIN }
{TWINBWD} [{LTWINBWD}
{NOTWIN }

{P}{P}{P} {,FIRST}
+RULES=([{L}{L}{L})[{,LAST }1)
{vi{vi{v} {,HERE }

)

—

NAME=
seg-name |
is the name of the logical child segment.
PARENT=
seg-name 2
is the name of the physical parent segment of this logical child.
SNGL or DBLE
have the same meaning as before.
Ipseg-name
is the name of the logical parent of this logical child.
db-namel
is the DBD name of the logical parent’s data base.

v (default value)
maintains upward source compatibility to IMS/VS

-20 DL/I1 DOS/VS Guide For New Users

BYTES=
has the same meaning as before. Notice however that the logical child always
contains the logical parent’s concatenated key in the first n bytes, and its
length must be included here. If you do not specify this parameter, DL/1

automatically calculates a segment size large enough to contain all defined
fields.

POINTER=
TWIN (T)
the same considerations as before apply.

TWINBWD (TB)
It is highly recommended that you specify TB.

NOTWIN
may be specified to ensure that there will never be more than one
occurrence of this segment per physical parent.

LTWIN (T)
if specified, only a logical twin forward pointer is used for the logical
twin chain.

LTWINBWD (LTB)
if specified, both a logical twin forward and backward pointer are used
for the logical twin chain. This should be selected whenever there are,
on the average, more than 2 to 3 logical child occurrences for a logical
parent.

RULES=

{P}{P}{P} {,FIRST}
{L}{L}{L}[{,LAST }]
{V}{Vv}{Vv} {,HERE }

The parameter values are:
e P specifies physical rule
¢ L specifies logical rule
¢ v specifies virtual rule

The first parameter of this operand is of the format xxx, where x can be one of
the characters P, L, or v. Each of the three positions can contain the same or
different characters. If all three are omitted the default values are assumed.
Likewise the second and third, or just the third can be omitted, in which case
the default values are assumed for the omitted positions.

In the first parameter the first value, x.., applies to SEGMENT INSERTION, the
second value,.x., applies to SEGMENT DELETION, and the third value, ..x,
applies to SEGMENT REPLACEMENT.

Note: For a logical child segment type, the third value, the replace rule, must be V. Any other
rule specified will be changed to V during DBD generation.

The parameter xxx is only meaningful for physical logical child segments and
for their logical parent segments if the logical relationship is unidirectional or
for their physical and logical parent segments if the logical relationship is
bidirectional.

Recommendation: Do not use this parameter for segments that do not partici-
pate in a logical relationship.

The following paragraphs will assist you in determining when to specify P, L,
or V for the RULES= parameter.

Chapter 3: Data Base Implementation 3-21

Insertion Rules: The insertion rules have meaning only for the destination parent
in the access path of a logical relationship. When a concatenated segment is
presented for insertion into a logical data base, its destination parent portion may

or may not be inserted, depending on which of the insertion rules, as shown in

Figure 3-6, is specified for the destination parent.

Deletion Rules: When a segment is deleted all its dependent segments are also
deleted. The physical deletion of a segment is caused by an explicit deletion request
either for the segment itself, or for a segment on which it is physically dependent.
If deletion of a logical child segment was caused by propagating an explicit dele-
tion request across a logical relationship, then it is called a logical deletion request.

If a segment is deleted on one path, it can no longer be accessed through this
path. It may, however, still be accessible through the other path. Such conditions
are indicated in the delete byte of the segment prefix. The deletion rules for the
logical parent and logical child are shown in Figures 3-7 and 3-8.

Replacement Rules: The replacement rules determine what actions take place
when a concatenated segment is presented in a REPLACE call and one or both
portions of it are to be altered. Replacement rules, as shown in Figure 3-9, can be
specified for the destination parent portion of the concatenated segment.

RULES=

{,FIRST}
(...(,LAST })
{ ,HERE }

The second parameter of this operand determines where new occurrences of the
segment being defined by this SEGM statement are to be inserted in the physical
twin chain. This value is significant only when processing segments without a
sequence field or without a unique sequence field (as indicated by the FIELD
statement). It is ignored for a segment that contains a unique sequence field.

ISSUED . ..

IF AN INSERT CALL OF A
CONCATENATED SEGMENT IS

INSERT RULE SPECIFIED IN DP

P L

AND ..

DESTINATION PARENT
EXISTS IN DB

DESTINATION PARENT
DOES NOT EXIST IN DB

THEN

LOGICAL CHILD SEGMENT
IS INSERTED

DESTINATION PARENT
PORTION OF THE CON-
CATENATED SEGMENT
IGNORED

DESTINATION PARENT SEGMENT
IS INSERTED (*REPLACED)

CALL IS REJECTED (IX)

X

NOTE:

The insert rules are specified for destination parent only. Insert rules affect whether or
not the DP portion of a concatenated segment is inserted.

Figure 3-6. Insertion Rules for Logical Relationships

3-22 DL/I DOS/VS Guide For New Users

DELETE RULE SPECIFIEDIN LP

P L ' v
(BI-DIR}

IF ... A DELETE CALL IS
ISSUED FOR AN LP X X X X X X

AND ALL LCPDF'S ARE ON

ALL LCLDF'S ARE ON X

LP DEPENDENTS NOT
INVOLVED IN AN LR X

LC DELETE RULE ISV’ X X

THEN SET PDF IN LP AND
LDF IN LC X X X X X X

SET PDF IN ALL
ACCESSIBLE LC X

SET LDF IN LP X X

CALL IS REJECTED WITH
A DX STATUS CODE X

NOTE: Logical parent delete rules do not apply to destination parent unless it is also an LP,

Figure 3-7. Logical Parent Deletion Rules

DELETE RULE SPECIFIED IN LC
P L \
IF... A DELETE CALL IS ISSUED FOR AN LC X X X * X**
THE LDF OF THE LC ISON X
AND
RELATIONSHIP IS BIDIRECTIONAL X X
SET PDF IN LC X
THEN SET LDF IN LC X X
CALL REJECTED WITH A DX STATUS X
NOTE: Logical child delete rules establish criteria for removal of LC. V rule is required for LC in uni-directional LR.

* delete call issued for virtual logical child

** applies to delete cali for either real logical child or virtual logical child.

Figure 3-8. Logical Child Deletion Rules

Chapter 3: Data Base Implementation 3-23

IF A REPL CALL OF A CON-
CATENATED SEGMENT IS REPLACEMENT RULE SPECIFIED IN DP

ISSUED ...

P L \%

AND

THE LC IS ALTERED X X X

LP (DEST PARENT) IS
ALTERED X X X

THEN

REPLACE THE LC SEGMENT X X X

REPLACE THE LP (DP)
SEGMENT * X

CALL IS REJECTED WITH
AN RX STATUS CODE X

NOTE:

REPLACE RULES:

Specified for destination parent only

Implied rule for logical child is 'V’

Determines ability to alter DP portion of a concatenated segment

If SEQ field of LC or DP altered, call rejected with ‘DA’ status code

*LP or DP is not replaced. This is ignored by DL/I.

Figure 3-9. Replacement Rules for Logical Relationships

FIRST
states that a new occurrence is to be inserted before the first existing occur-
rence of this segment type. If the segment has a nonunique sequence field, a
new occurrence is inserted before all existing occurrences of the same se-
quence field value.

LAST
states that a new occurrence is to be inserted after the last existing occurrence
of this segment type. If the segment has a nonunique sequence field, a new
occurrence is inserted after all existing occurrences of the same sequence field
value. This is the default option.

HERE
assumes the user has determined positioning by a previous DL/I call, and the
new occurrence is inserted before the segment that satisfied the last call. If
the segment has a nonunique sequence field and the position pointer is not
pointing to occurrences of this segment type with equivalent sequence field
value, a new occurrence is inserted before all existing occurrences of the same
sequence field value.

The format of the SEGM statement under the logical parent, that is, for the
virtual logical child is:

SEGM NAME=virtchild

,PARENT=seg—name2

,SOURCE=((seg—name3[,D,db—-name2]))
, POINTER=PAIRED

3.24 DL/1 DOS/VS Guide For New Users

NAME=
virtchild
specifies the name of the virtual logical child. Remember that the virtual
logical child does not actually exist. Its only purpose is to define the logical
child as seen from the logical path. It can be followed by a sequence field
which controls the sequence of the logical child segment when accessed via its
logical path, that is, the logical twin chain sequence.
PARENT=
seg-name 2
is the name of the logical parent, that is, the physical parent of the virtual
logical child.
SOURCE=
((seg-name3,D,db-name2))
seg-name3 is the name of the real logical child and db-name?2 is the DBD
name of the data base which contains that logical child.
PTR=
PAIRED
defines this segment as a virtual logical child.

Physical and Logical Parent: One additional parameter must be specified in the
SEGM statement of both the physical and the logical parent:

SEGM NAME..... ,RULES=PPV

For each logical child segment type, an LCHILD statement must be added immedi-

ately following the SEGM and/or FIELD statement of the logical parent. Its basic
format is:

LCHILD NAME=(seg-name1,db-name)
{NONE }
,POINTER={ SNGL}
{DBLE}
,PAIR=virtchild
{FIRST}
,RULES={LAST }
{HERE }

NAME=
(seg-namel,db-name)
seg-namel is the segment name of the logical child in the DBD whose name is
db-name.
POINTER=

{NONE}
{SNGL}
{DBLE}

NONE

specifies a unidirectional logical relationship from the logical child to the
logical parent segment. No pointer fields are reserved in the prefix of the
logical parent segment, however, a 4-byte counter field will be reserved in the
prefix of the logical parent segment.

Chapter 3: Data Base Implementation 3-25

SNGL or DBLE
defines a bidirectional logical relationship.

SNGL specifies that there will be only a logical child first pointer in the prefix
of the logical parent.

DBLE specifies that both a logical child first pointer and last pointer will
appear in the logical parent.

Recommendations:
o specify SNGL if a sequence field is defined for the virtual logical child
and command code L (retrieve last) is rarely or never used to access the
logical child.

o Specify DBLE if no sequence field is defined for the virtual logical child
and there are generally more than three occurrences of virtual children
within a logical parent.

PAIR=
virtchild
specifies the name of the virtual logical child which should be defined in the
same DBD (see previous SEGM statement).

RULES=

{FIRST}

See the preceding discussion of this parameter for an explanation.

Examples of Physical DBDs With Logical Relationships

3-26

Figure 3-10 shows the two logically related physical DBDs of the phase 2 sample
environment. Only those DBD statements are shown which are essential to the
logical relationship function. Compare these DBDs with the ones of Figures 3-4 and
3-5.

Note the addition of the virtual logical child segment, ITEM ORDER, to the
Inventory data base. Also, the SUBSTITUTE ITEM segment is now defined as a
logical child to eliminate the need for redundant data. In the phase | Inventory
data base, this segment has the same fields as the INVENTORY ITEM segment.

In the Customer data base the ORDER ITEM segment is now defined as a logical
child segment.

DL/I DOS/VS Guide For New Users

)

INVENTORY
ITEM -~
CUSTOMER (STPIITM)
NAME/ADDRESS
(STSCCST)
el e == -
CUSTOMER CREDIT CUSTOMER |’ITEM l VENDOR | SUBSTITUTE | ITEM
LOCATION STATUS HISTORY ORDER (STSIVND) ITEM LOCATION
(STSCLOC) (STSCSTA) (STSCHIS) I | sTvicor) | | | | (sTcisus) | (STSILOC)
| | | | |
(VLC) {LC)
Lo | v — — [=]
CUSTOMER
ORDER
{STPCORD)
- 7| — 71
| | orper |
ITEM =2
[(STCCITM) |
(LC)
L - - _]
Notes:

1.

Rules for STPIITM

P for Insert
When adding logical child segments to the Customer logical data base, I do not want the child added if the inventory item does not
exist. If the INVENTORY ITEM segment does exist, | want the child added but I do not want the INVENTORY ITEM segment
modified.

P for Delete
When deleting the INVENTORY ITEM segment I want to insure that no more orders are pointing to this item before allowing
deletion. The only allowable path for deletion will be the physical.

V for Replacement
When replacing the logical child/Inventory Item concatenated segment in a logical DBD, the INVENTORY ITEM segment will
be replaced if altered.

Rules Parameter in LCHILD macro for STCCITM

LAST
Implies the logical twin chain will have no required sequence. For example, when I process orders for an item, I need no specific
sequence for orders.

POINTER=DBLE in LCHILD macro for STCCITM
specifies that inserts last will go faster.

Inventory Data Base
The following DBD example shows the changes made to the Inventory data base DBD of phase 1.

PRINT NOGEN NO MACRO EXPANSION PRINTING

DBD X
NAME=STDIDBP, DATA BASE DESCRIPTION NAME X
L4
L4
L4

DATASET X
DD1=STDIDBC, DLBL FILE NAME X

Figure 3-10. Phase 2 Physical DBDs (Part 1 of 3)

Chapter 3: Data Base Implementation 3-27

SEGM X
NAME=STPIITM, SEGMENT NAME INVENTORY ITEM X
PARENT=0, IT IS A ROOT SEGMENT X
BYTES=56, DATA LENGTH X
POINTER=TWIN, PHYSICAL TWIN FWD ONLY X
* IN THE SEGM MACRO FOR STPIITM, ADD THE KJLES PARAMETER
RULES=(PPV) LOGICAL RELATIONSHIP RULES

* THE FOLLOWING LCHILD STATEMENT IS ADDED TO ESTABLISH A BI-DIRECTIONAL
* LOGICAL RELATIONSHIP WITH THE CUSTOMER DATA BASE VIA THE VIRTUAL

* LOGICAL CHILD SEGMENT, CUSTOMER ORDER. THIS STATEMENT FOLLOWS THE

* SEGM STATEMENT FOR INVENTORY ITEM, THE LOGICAL PARENT SEGMENT.

LCHILD X
POINTER=DBLE, BI-DIR L.R.,LCHILD FSTELST PTRS X
NAME= (STCCITM, REAL LOGICAL CHILD SEGMENT NAME X
STDCDBP) , DATA BASE WHERE FOUND-—CUSTOMER X
PAIR=STVICOR, VIRTUAL LOGICAL CHILD SEG NAME X
RULES=LAST REAL LOG. CHILD INSERT RULES

* THE NEXT LCHILD STATEMENT IS USED TO ESTABLISH A UNI-DIRECTIONAL
* LOGICAL RELATIONSHIP BETWEEN THE LOGICAL CHILD SEGMENT, SUBSTITUTE
* ITEM AND ITS LOGICAL PARENT, INVENTORY ITEM.

LCHILD X
POINTER=NONE, UNI-DIR LOGICAL RELATIONSHIP X
NAME= (STCISUB, REAL LOGICAL CHILD SEGMENT NAME X
STDIDBP) D/B WHERE FOUND~ITEM-THIS ONE

FIELD NAME=STFIIDS,BYTES=25,TYPE=C ITEM DESCRIPTION

FIELD NAME=STFIIQH,BYTES=6,TYPE=C QUANTITY ON HAND

FIELD NAME=STFIIQO,BYTES=6,TYPE=C QUANTITY ON ORDER

FIELD NAME=STFIIQR,BYTES=6,TYPE=C QUANTITY ON RESERVE

FIELD NAME=STFIIPR,BYTES=6,TYPE=C COST PER ITEM

FIELD NAME=STFIIUN,BYTES=1,TYPE=C UNIT OF ISSUE

* THE NEXT SEGM STATEMENT IS ADDED TO DEFINE THE VIRTUAL LOGICAL
* CHILD, CUSTOMER ORDER.

SEGM X
NAME=STVICOR, SEGMENT NAME VIRT.LCHILD ORDERS X
PARENT=STPIITM, PARENT IS ITEM INFORMATION X
POINTER=PAIRED, PAIRED WITH REAL LOGICAL CHILD X
SOURCE= ((STCCITM, REAL LOGICAL CHILD NAME X
D, REQUIRED FOR IMS/VS UPWARD COMP X
STDCDBP)) D/B WHERE REAL LCHILD IS FOUND

SEGM X
NAME=STSIVND AUTHORIZED VENDOR INFORMATION X
L[]

L[]
* IN THE SEGM MACRO FOR STCISUB WE MUST INDICATE THE LOGICAL PARENT.
*+ ADD A POINTER AND INCLUDE SOME RULES. THIS SEGMENT IS NOW A LOGICAL
* CHILD, SO THE BYTES PARAMETER IS MODIFIED.
*+ THE FIELD STATEMENT FOR THIS SEGMENT AS USED IN PHASE! IS REMOVED
* AND THE KEY FIELD FOR THE LOGICAL PARENT SEGMENT, STPIITM, IS USED
* AS DESCRIBED BELOW.

SEGM X
NAME=STCISUB, SEG NAME REAL LCHILD-ITEM SUBS X
PARENT=((STPTITM, PHYSICAL PARENT NAME X
SNGL) , PHYS. CHILD FIRST PTR. ONLY X
(STPIITM, LOGICAL PARENT SEGMENT NAME X
v, REQUIRED FOR IMS/VS UPWARD COMP X
STDIDBP)), LOG.PAR.DATA BASE-ITEM-THIS ONE X
BYTES=6, LENGTH OF REAL LCHILD-SEE BELOW X
POINTER=TWINBWD, BOTH PHYS. TWIN FWD & BWD PTRS X
RULES=(PPV, LOGICAL RELATIONSHIP RULES X
HERE) PHYSICAL INSERT RULE

Figure 3-10. Phase 2 Physical DBDs (Part 2 of 3)

3-28 DL/1 DOS/VS Guide For New Users

C

C

L R B BRI R

BYTES IN REAL LOGICAL CHILD'S SEGM MACRO (SEE ABOVE)
INCLUDES THE LOGICAL PARENT'S CONCATENATED

KEY, IN THIS CASE THE STPIITM SEGMENT'S KEY

WHICH IS FIELD STQIINO 6 BYTES IN LENGTH;

THE BYTES LENGTH ALSO INCLUDES ANY INTERSECTION
DATA WHICH IN THIS CASE IS NONE.

SEGM X
NAME=STSILOC, SEGMENT NAME INVENTORY LOCATION X
L]
°
°

DBDGEN REQUIRED TO MARK DBD END

FINISH FOR SOURCE COMPAT WITH IMS/VS

END

Customer Data Base
These are the changes made to the DBD of the phase 1 Customer data base.

* IN THE SEGM MACRO FOR STPCORD WE MUST ADD THE RULES PARAMETER

RULES=(PPV) LOGICAL RELATIONSHIP RULES

* IN THE SEGM MACRO FOR STCCITM WE MUST INDICATE THE LOGICAL PARENT
* ADD A POINTER AND INCLUDE SOME RULES. MODIFY THE EXISTING PARAMETERS
* AS FOLLOWS AND ADD THE RULES

PARENT=((STPCORD) , PHYSICAL PARENT IS CUSTOMER ORD X
(STPIITM, LOGICAL PARENT IS ITEM INFORMAT X
v, REQUIRED FOR IMS/VS UPWARD COMP X
STDIDBP)), LOG.PARENT IS IN INV. DATA BASE X
POINTER=(TWINBWD, BOTH PHYS. TWIN FWD AND BWD X
LTWINBWD), BOTH LOGICAL TWIN FWD AND BWD X
RULES=(PPV) LOGICAL RELATIONSHIP RULES

Notes:

1. STCCITM is now a logical child. A few points regarding its layout need to be made:

BYTES=38 still applies

The first 6 bytes are the concatenated key of the logical parent, STPIITM, in the Inventory data base. The remaining 32 bytes are the
intersection data; data belonging to the order item to inventory item specific relationship. The key to this segment, STQCILI, is the first
two bytes of this intersection data.

The concatenated key mentioned above is not stored on disk but will be in the application 1/0 area as the first 6 bytes in this case.

If this logical relationship had not been planned for earlier, the bytes parameter might have had to be changed and the segment laid out
differently.

. RULES for STCCITM - The Real Logical Child

P for Insert

Do not add child unless logical parent exists. Item must exist in Inventory data base if this line item is to be added to this order. The
INVENTORY ITEM segment itself remains unchanged

P for Delete

Do not physically delete this line item unless its association with the Inventory data base is logically deleted and then only allow deletion
through the physical path.

V for Replacement

When replacing the logical child/Inventory Item concatenated segment in a logical DBD, the INVENTORY ITEM segment will be
replaced if altered.

. Rules for STPCORD

P for Insert

When adding virtual logical segments to the Inventory logical data base, I do not want the child added if the order does not exist. If the
CUSTOMER ORDER segment does exist, I want the child added but I do not want the CUSTOMER ORDER segment modified.

P for Delete

When deleting the CUSTOMER ORDER segment I want to ensure that no more items are pointing to this order before allowing deletion.
The only allowable path for deletion will be physical.

V for Replace

When replacing the virtual logical child/CUSTOMER ORDER concatenated segment in a logical data base, the CUSTOMER ORDER
segment will be replaced if altered.

Figure 3-10. Phase 2 Physical DBDs (Part 3 of 3)

Chapter 3: Data Base Implementation 3-29

Coding a Logical DBD

DBD Statement:

DATASET statement

SEGM Statements:

3-

30

A logical DBD, based on existing physical DBDs, defines a new view of logically
related data bases. This view is always a hierarchical data structure. The control
statements and their format are:

DBD NAME=dbdname 1, ACCESS=LOGICAL
NAME=
dbdnamel
specifies the name of this logical DBD. It must be unique in your installation.
ACCESS=
LOGICAL

defines this DBD as a logical DBD

DATASET LOGICAL

This statement is optional for logical DBDs.

The segments in a logical DBD must be coded in hierarchical sequence following
the rules for defining logical data bases as presented earlier in this chapter.

SEGM NAME=seg—-name

{0 }
[,PARENT={ seg-name2}]

,SOURCE=((seg—name3,D,db—name1)
[,(seg—name4,D,db—name2)])

NAME=
seg-namel
specifies the name of this segment.

PARENT=
seg-name?2
specifies the name of the parent of this segment. seg-name2 must be defined
previously in this DBD. This parameter may be omitted for the root segment.

SOURCE=
((seg-name3,D,db-namel)[,(seg-name4,D,db-name?2)}])
specifies the source(s) of the defined segment. The long form is applicable
only to concatenated segments.

Nonconcatenated segments:
seg-name3 defines the source segment. The source segment must be
defined in a physical DBD whose name is db-namel.

Concatenated segments:

. seg-name3 defines the logical child as defined in the physical DBD. If
the preceding parent segment is the physical parent or physical child of
the logical child, then the name of the logical child must be coded. If
the preceding parent is the logical parent, then the name of the virtual
child must be coded.

o db-namel defines the physical DBD in which seg-name3 is defined.

o seg-name4 defines the destination parent.

DL/IDOS/VS Guide For New Users

9

J

¢ db-name?2 defines the physical DBD name of the destination parent.

DBDGEN, FINISH, and END Statements
These should be coded as before.

Note that no LCHILD or FIELD statements are allowed in a logical DBD.

Example of Logical DBDs
Figure 3-11 shows the logical DBD for the phase 2 Customer data base.

CUSTOMER
NAME/ADDRESS
(STSCCST)
CUSTOMER CREDIT CUSTOMER
LOCATION STATUS HISTORY
(STSCLOC) (STSCSTA) (STSCHIS)
CUSTOMER
ORDER
(STPCORD)
ORDER INVENTORY
ITEM ITEM
(STLCITM)
ITEM
LOCATION
(STSILOC)

Figure 3-11. Phase 2 Logical DBD for the Customer Data Base (Part 1 of 2)

Chapter 3: Data Base Implementation

3-31

PRINT NOGEN

DBD

NAME=STDCDBL,
ACCESS=LOGICAL

DATASET

SEGM

SEGM

SEGM

SEGM

SEGM

SEGM

SEGM

LOGICAL

NAME=STSCCST,
PARENT=Q,
SOURCE=((STSCCST,

’
STDCDBP))

NAME=STSCLOC,
PARENT=STSCCST,
SOURCE=((STSCLOC,

’
STDCDBP))

NAME=STPCORD,
PARENT=STSCLOC,
SQURCE=((STPCORD,

STDCDBP))

NAME=STLCITM,
PARENT=STPCORD,
SOURCE=((STCCITM,

’
STDCDBP) ,
(STPIITM,

’
STDIDBP))

NAME=STSILOC,
PARENT=STLCITM,
SOURCE=((STSILOC,

’
STDIDBP))

NAME=STSCSTA,
PARENT=STSCCST,
SOURCE=((STSCSTA,

!
STDCDBP))

NAME=STSCHIS,
PARENT=STSCCST,
SOURCE=((STSCHIS,

r
STDCDBP))
DBDGEN
FINISH
END

NO MACRO EXPANSION PRINTING

LOGICAL DBD NAME
REQUIRED

OPTIONAL

SEGMENT NAME CUST NAME/ADDR

IT IS A ROOT SEGMENT

IT IS THIS SEGMENT CUST N/A
UPWARD COMPAT WITH IMS/VS

FOUND IN THE CUSTOMER DATA BASE

SEGMENT NAME CUSTOMER LOCATION
PARENT IS CUST. NAME/ADDR SEGM
IT IS THIS SEGMENT CUST LOCATN
UPWARD COMPAT WITH IMS/VS

FOUND IN THE CUSTOMER DATA BASE

SEGMENT NAME CUSTOMER ORDER
PARENT IS CUST. LOCATION SEGM
IT IS THIS SEGMENT CUST. ORDER
UPWARD COMPAT WITH IMS/VS

FOUND IN THE CUSTOMER DATA BASE

SEGMENT NAME LINE ITEM CONCAT.
PARENT IS CUSTOMER ORDER SEGM
PARTIALLY THE ORDER ITEM SEGM
UPWARD COMPAT WITH IMS/VS

FOUND IN CUSTOMER DATA BASE

THE REST IS INVENTORY ITEM SEGM
UPWARD COMPAT WITH IMS/VS

FOUND IN INVENTORY DATA BASE

SEGMENT NAME INVENTORY LOCATION
PARENT IS ORD. ITEM CONCAT.SEGM
IT IS THIS SEG INVENTORY LOCN
UPWARD COMPAT WITH IMS/VS

FOUND IN INVENTORY DATA BASE

SEGMENT NAME CREDIT STATUS
PARENT IS CUST. NAME/ADDR SEGM
IT IS THIS SEGMENT CREDIT STAT
UPWARD COMPAT WITH IMS/VS
FOUND IN THE CUSTOMER DATA BASE

SEGMENT NAME CUSTOMER HISTORY
PARENT IS CUST. NAME/ADDR SEGM
IT IS THIS SEGM CUST. HISTORY
UPWARD COMPAT WITH IMS/VS

FOUND IN THE CUSTOMER DATA BASE
REQUIRED TO MARK DBD END

FOR SOURCE COMPAT WITH IMS/VS

Figure 3-11. Phase 2 Logical DBD for the Customer Data Base (Part 2 of 2)

3-32

DL/1 DOS/VS Guide For New Users

EE -] E - - = =

g

T]

EE - e R]

oo XX

C

Figure 3-12 shows the logical DBD for the phase 2 Inventory data base.

INVENTORY
ITEM
(STPIITM)
ORDER CUSTOMER VENDOR SUBSTITUTE INVENTORY ITEM
ITEM ORDER ITEM ITEM LOCATION
(STLICOR) (STLISUB)
CUSTOMER
LOCATION
(STSCLOC) SUBSTITUTE SUBSTITUTE
VENDOR ITEM LOCATION
INFORMATION INFORMATION
(STSISVD) (STSISLC)
CUSTOMER
NAME/ADDRESS
(STSCCST)

Figure 3-12. Phase 2 Logical DBD for the Inventory Data Base (Part 1 of 2)

Chapter 3: Data Base Implementation

3-33

PRINT NOGEN
DBD
NAME=STDIDBL,
ACCESS=LOGICAL
DATASET
LOGICAL
SEGM
NAME=STPIITM,
PARENT=0,
SOURCE=((STPIITM,

1
STDIDBP))

SEGM
NAME=STLICOR,
PARENT=STPIITM,
SOURCE=((STVICOR,

’
STDIDBP),
(STPCORD,

’
STDCDBP))

SEGM
NAME=STSCLOC,
PARENT=STLICOR,
SOURCE=((STSCLOC,

’
STDCDBP))

SEGM
NAME=STSCCST,
PARENT=STSCLOC,
SOURCE=((STSCCST,

’
STDCDBP))

SEGM
NAME=STSIVND,
PARENT=STPIITM,
SOURCE=((STSIVND,

’
STDIDBP))

SEGM
NAME=STLISUB,
PARENT=STPIITM,
SOURCE=((STCISUB,

’
STDIDBP),
(STPIITM,

’
STDIDBP))

SEGM
NAME=STSISVD,
PARENT=STLISUB,
SOURCE=((STSIVND,

’
STDIDBP))

SEGM
NAME=STSISLC,
PARENT=STLISUB,
SOURCE=((STSILOC,

!
STDIDBP))

SEGM
NAME=STSILOC,
PARENT=STPIITM,
SOURCE=((STSILOC,

1
STDIDBP))
DBDGEN
FINISH
END

NO MACRO EXPANSION PRINTING

LOGICAL DBD NAME
REQUIRED

OPTIONAL

SEGMENT NAME INVENTROY ITEM
IT IS A ROOT SEGMENT

IT IS THIS SEGMENT INV. ITEM
UPWARD COMPAT WITH IMS/VS
FOUND IN INVENTORY DATA BASE

SEGMENT NAME ORDER CONCATENATED

PARENT IS INVENTORY ITEM SEGM
PARTIALLY THE VIRT.LOG.SEGM
UPWARD COMPAT WITH IMS/VS
FOUND IN INVENTORY DATA BASE
THE REST THE ORDER SEGMENT
UPWARD COMPAT WITH IMS/VS

FOUND IN THE CUSTOMER DATA BASE

SEGMENT NAME CUSTOMER LOCATION

PARENT IS ORDER SEGM CONCAT

IT IS THIS SEGM CUST. LOCATION

UPWARD COMPAT WITH IMS/VS

FOUND IN THE CUSTOMER DATA BASE

SEGMENT NAME CUST. NAME/ADDR
PARENT IS CUSTOMER LOCATION
IT IS THE CUSTOMER NAME/ADDR
UPWARD COMPAT WITH IMS/VS

FOUND IN THE CUSTOMER DATA BASE

AUTHORIZED VENDOR INFORMATION

PARENT IS INVENTORY ITEM SEGM.

IT IS THE VENDOR SEGMENT
UPWARD COMPAT WITH IMS/VS
FOUND IN INVENTORY DATA BASE

SEGMENT NAME ITEM SUBS. CONCA
PARENT IS INVENTORY ITEM SEGM
PARTIALLY THE ITEM SUB SEGM
UPWARD COMPAT WITH IMS/VS
FOUND IN INVENTORY DATA BASE

THE REST IS INVENTORY ITEM SEGM

UPWARD COMPAT WITH IMS/VS
FOUND IN INVENTORY DATA BASE

SUBSTITUTE VENDOR INFORMATION

PARENT IS SUBSTITUTE ITEM SEGM.

IT IS THE VENDOR SEGMENT
UPWARD COMPAT WITH IMS/VS
FOUND IN INVENTORY DATA BASE

SUBSTITUTE INVENTORY LOCATION

PARENT IS SUBSTITUTE ITEM SEGM.
IT IS THE INVENTORY LOCAT. SEGM

UPWARD COMPAT WITH IMS/VS
FOUND IN INVENTORY DATA BASE

SEGMENT NAME INVENTORY LOCATION

PARENT IS INVENTORY ITEM SEGM

IT IS THE INVENTORY LOCAT. SEGM

UPWARD COMPAT WITH IMS/VS
FOUND IN INVENTORY DATA BASE
REQUIRED TO MARK DBD END
FOR SOURCE COMPAT WITH IMS/VS

Figure 3-12. Phase 2 Logical DBD for the Inventory Data Base (Part 2 of 2)

3-34

DL/I DOS/VS Guide For New Users

o

e T Ead ol >

E i S e e e e T

< < K Bl

Ealea i

C

DBDGENS for Secondary Indexes

To support the secondary index function, the DBDGEN process is extended. We
differentiate between the index target segment DBD and the index pointer DBD.

Coding an Index Target Data Base
The control statements extended for the secondary index function are:
FIELD
LCHILD
A new control statement is added:
XDFLD

The following control statements are unchanged:

DBD
DATASET
SEGM
DBDGEN
FINISH
END

Coding the Index Target Segment
(See Figure 3-13.)

SEGM Statement
SEGM
is a standard SEGM statement for the root segment. It has no additional
parameter for secondary indexes. It is recognized as an index target segment
because of the following LCHILD and XDFLD statements. It cannot be a
logical child or a dependent of a logical child segment.

LCHILD Statement

LCHILD NAME=(seg—-namel1,db—-name) , POINTER=INDX

LCHILD
This statement provides the link to the index data base.
NAME=(seg-namel,db-name)
seg-namel is the name of the index pointer segment as defined in the INDEX
data base.
db-name specifies the name of the HDAM or HIDAM data base that contains
the index pointer segment.

PTR=INDX
identifies the LCHILD statement as an index type.

XDFLD NAME =. ..

(LCHILD | NAME=...

(I FIELD |NAME=...

SEGM NAME= ...

Figure 3-13. DBD Statements for Index Target Segment

Chapter 3: Data Base Implementation 3-35

XDFLD Statement

Note: There are three types of LCHILD statements. One for the primary index of a HIDAM data base.
One for the definition of a logical child under its logical parent, and one for the definition of the index

target segment. All three types could occur below the root segment of a HIDAM data base. There
could be multiple occurrences of LCHILD statements for both logical relationships and secondary
indexes.

XDFLD NAME=xdfld~name

[,SEGMENT=1iss—-name]
,SRCH=list1

[,SUBSEQ=list2]
[DDATA=1ist3]

The following keywords can be used to sup-—
press creation of an index entry. A sec-
ondary index does not necessarily have to
contain an entry for every index source
segment occurrence. These keywords are not
used in the sample program documented in
this manual and will not be discussed fur-
ther. See ''Suppress Creation of an Index
Entry'' in the Utilities and Guide for the
System Programmer if you need this func-
tion.

[,NULLVAL=valuel]
[,EXTRTN=name1]

XDFLD

This statement defines the index source fields; the fields used for the second-
ary index access. It defines the source data for the index search field in the

INDEX data base.
NAME=xdfld-name

specifies the name of the secondary index field. xdfld-name is a normal field

name which can be used in the $SA for the call which requests secondary

index access. It must be unique among all field names specified for the above

index target segment.

SEGMENT=iss-name
specifies the index source segment for this secondary index relationship.

iss-name must be the name of a subsequently defined segment type, which is
hierarchically below the index target segment type or it can be the name of
the index target segment itself. The segment name specified must not be a
logical child segment. If this operand is omitted, the index segment type is

assumed to be the index source segment.
SRCH=list!1

specifies which field or fields of the index source segment are to be used as
the search field of a secondary index. listl must be a list of one to five field
names defined in the index source segment type by FIELD statements. If two
or more names are included, they must be separated by commas and enclosed
in parentheses. The sequence of names in the list is the sequence in which the
field values will be concatenated in the index pointer segment search field.

The sum of the lengths of the participating fields forms the length of this
XDFLD as used in SSAs.

3-36 DL/1 DOS/VS Guide For New Users

»

SUBSEQ=1list2 | DDATA=list3
Either keyword must be coded if duplicate index pointer segments would
occur. SUBSEQ and DDATA specify which, if any, fields of the index source
segment are to be regarded as duplicated data in the index data base. Dupli-
cated data consists of system-maintained fields of data copied from the
indexed data base. The parameters list2 and list3 may each be a list of up to
five field names defined by appropriate FIELD statements for the index source
segment.

Names of system-related fields, as defined in the FIELD statement for the index
source segment are allowed.

If two or more names are specified in one list, they must be separated by com-
mas and enclosed in parentheses.

To the application program, SUBSEQ and DDATA have no significance because
only the indexed field(s) specified in the SRCH operand is referenced in the segment
search arguments. The duplicated data is accessable only if the index is processed
as a data base itself.

The difference between the SUBSEQ and the DDATA keywords is as follows:

SUBSEQ
Duplicated data described by the SUBSEQ operand is appended in the se-
quence specified by list2 as a subsequence to the field(s) specified in the SRCH
operand. The implicit length of all specified SRCH plus SUBSEQ fields must be
equal to the length of the key sequence field specified for the index pointer
segment, which cannot exceed 236 bytes.

The purpose of the SUBSEQ operand is to allow an internal expansion of the
key of an index entry. This may eliminate the possibility of duplicate key

values, since neither DL/I nor VSAM supports access to an indexed data base
through nonunique keys.

When SUBSEQ specifies a system-related field as /CKn, the defined portion of
the concatenated key of the index source segment is appended to the SRCH
field(s). If the system-related field is specified as /SXn, the 4-byte VSAM RBA
of the index source segment is appended. The concatenation of SRCH and
SUBSEQ fields define the key of the index pointer segment.

DDATA
Duplicated data described by the DDATA operand is placed into the data
portion (behind the specified key sequence field) of the index pointer segment
in the sequence specified by list3. /CKn system-related field names can be
specified in list3, but not /SXn names. /CKname must be the same as coded in
the corresponding FIELD statement of the index source segment. (See next
section: “Coding the Index Source Segment”.)

Coding the Index Source Segment
(See Figure 3-14.)

SEGM Statement:
SEGM
This is a standard SEGM statement with no additional parameters. It is
recognized as an index source segment because it is defined in a preceding

XDFLD statement under the index target segment. It must not be a logical
child.

Chapter 3: Data Base Implementation 3-37

Field Statement

_Y/CKname . . t
(FIELD NAME= /SXname . . .

(FIELD NAME=. ..

SEGM NAME-=. ..

Figure 3-14. DBD Statements for Index Source Segment

In addition to the normal FIELD statements for the segment the FIELD statement
may be used, in the definition of an index source segment, to force uniqueness of
the secondary index entries. In this case, the FIELD statement is used to define a
system-related field, which can be referred to by the SUBSEQ operand of the
corresponding XDFLD statement for the index target segment. This field is then
appended to the key of the index entry, thus making it unique.

A system related field may be part of the source segment’s concatenated key, or
its VSAM RBA (relative byte address).

¢ For referring to the concatenated key, the format of the FIELD statement is:

FIELD NAME=/CKname
,BYTES=bytes
START=pos

NAME=/CKname
specifies the name of the system-related field consisting of all or a portion of
the concatenated key of the index source segment described by the preceding
SEGM statement and name is to be replaced by 1 to 5 alphameric characters
thus permitting unique identification of the field. More than one /CKname

field can be specified for one index source segment. They may be nonconti-
guous or overlap each other.

BYTES=
specifies the number of bytes of the concatenated key, or a portion of it, and
must be a numeric value that does not exceed the length of the segment’s
concatenated key.

START=
specifies the start position of this portion relative to the beginning of the
concatenated key, the first byte of which is considered to have position 1. It
must be a numeric term whose value does not exceed the length of the conca-
tenated key plus 1, minus the value specified in the BYTES operand.

For example, consider the concatenated key shown in Figure 3-15.

If the uniqueness of the secondary index key has to be achieved by bytes 2-8 of the
root key, byte 1 of the second key, and bytes 5-6 of the fourth key, the FIELD
statements specifying this are as follows:

FIELD NAME = /CK1,BYTES=7,START=2
FIELD NAME = /CK2,BYTES=1,START=11
FIELD NAME = /CK3,BYTES=2,START=25

3-38 DL/I DOS/VS Guide For New Users

KEY 1 KEY 2 KEY 3 KEY 4

1 1 3
|1 L4 1 1
I N T T N O M| 1| [| [Y W N O R A
I | I 1
1 /CK1 | /CK2 1/ck3 |
J LJd _-dJd

Figure 3-15. Concatenated Keys

/CK system related fields may also be used in the DDATA operand of the XDFLD
statement.

e Referring to the index source segment’s VSAM RBA, the FIELD statement has
the following format:

FIELD NAME=/SXname

/SXname
specifies the name of the system-related field consisting of the 4-byte VSAM
RBA of the index source segment described by the preceding SEGM statement,
and name is to be replaced by 1 to 5 alphameric characters. Only one
/Sxname field can be specified for one index source segment.

Coding A Secondary Index DBD

The following statements are used in a secondary index DBD:

DBD
DATASET
SEGM
LCHILD
FIELD
DBDGEN
FINISH
END

DBD Statement

DBD NAME=dbname 1
,ACCESS=INDEX

NAME=dbnamel
specifies the name of the secondary index data base.

ACCESS=INDEX
INDEX specifies this as an index data base.

Chapter 3: Data Base Implementation 3-39

DATASET Statement

DATASET DD1=ddname1
,DEVICE=device

The values specified for the DD1 and DEVICE parameters are exactly the same as
discussed under “BASIC DBDGEN”.

SEGM Statement

SEGM NAME=segname1
,BYTES=bytes

Only one SEGM statement with its associated LCHILD and FIELD statements is
required for the secondary index data base.

NAME=segnamel
specifies the name of the segment being defined. It should be unique among
the segment names in your installation.

BYTES=bytes
specifies the length of the data portion of the index pointer segment. If a
/SXname field is defined in the SUBSEQ parameter of the corresponding
XDFLD statement, then its 4 bytes length must be included here.

LCHILD Statement

LCHILD NAME={(segnamel,dbname)
, PTR=SNGL
,INDEX=fldname

NAME=(segnamel,dbname)
specifies the segment name of the index target segment and the name of the
DBD in which it is defined.
PTR=SNGL
specifies that a 4-byte direct byte address pointer in the prefix of the index
pointer segment will be used. It will point to the index target segment.
INDEX=fldname

specifies the fieldname of the indexed field. This fldname must be specified
as the name of an XDFLD below the index target segment.

3-40 DL/1DOS/VS Guide For New Users

FIELD Statement

FIELD NAME= (fldnamel1,SEQ,U)
,BYTES=bytes

, START=1

, TYPE=n

NAME=(fldname1,SEQ,U)
fldnamel is the name of this field. It should be specified following the rules
of other fieldnames. SEQ,U defines this as the sequence field and must be
specified.

BYTES=bytes
specifies the length of the field. This is the length of the search field as
defined in the XDFLD statement, plus four if the /sX field is included. It also
is the length of the key for the KSDS.

START=1
specifies the starting position of the field being defined in terms of bytes
relative to the beginning of the segment.

TYPE=n

specifies alphameric data as explained in the description of the FIELD state-
ment for the basic DBDGEN.

The DBDGEN, FINISH, and END statements should be coded as before. Figure
3-16 shows the physical DBDs and the associated secondary index DBDs for the
phase 3 sample environment.

Chapter 3: Data Base Implementation 3-41

Physical DBD - Inventory Data Base - Phase 3

CUSTOMER INVENTORY
sI st S|
ORDER CUSTOMER
DATE/# NAME ITEM #
CUSTOMER
- NAME/ e (NVENTORY e
ADDRESS (ISS)
CUSTOMER CREDIT CUSTOMER ORDER VENDOR SUBSTITUTE ITEM
LOCATION STATUS HISTORY ITEM ITEM LOCATION
‘ (vLC) (LC)
CUSTOMER
ORDER (1s8)

ORDER
ITEM B

(LC)

IN THIS SECTION WE WILL REPEAT THE PHASE 2

DBD STATEMENTS AS WELL AS INCLUDE THE REQUIRED

SECONDARY INDEX ENTRIES (ITEM NUMBER WILL BE INDEX)

NO COMMENTS WILL APPEAR EXCEPT FOR THE NEW ENTRIES
PRINT NOGEN

“* % % »

DBD NAME=STDIDBP,ACCESS=HDAM,RMNAME=(DLZHDC30,3,100,400)

DATASET DD1=STDIDBC,DEVICE=3340,BLOCK=(2048) ,SCAN=2

SEGM NAME=STPIITM,PARENT=0,BYTES=56,POINTER=TWIN,RULES=(PPV)

FIELD NAME=(STQIINO,SEQ,U),BYTES=6,START=1,TYPE=C

* THE FOLLOWING LCHILD AND XDFLD MACROS ARE FOR THE SECONDARY INDEX

LCHILD X
POINTER=INDX, SECONDARY INDEX X
NAME=(STIININ, SEGMENT NAME IN INDEX DBD X
STDIX1P) DBD NAME OF INDEX DBD

XDFLD X
NAME=STXININ, INDEXED FIELD NAME X
SEGMENT=STPIITM, SOURCE SEGMENT OF INDEX X
SRCH=STQIINO INDEXED DATA WITHIN SOURCE SEGM

*+ THERE ARE NO FURTHER CHANGES IN THIS DBD FOR THE SECONDARY INDEX
LCHILD POINTER=DBLE,NAME=(STCCITM,STDCDBP), PAIR=STVICOR, X

RULES=LAST
LCHILD POINTER=NONE,NAME=(STCISUB,STDIDBP)
FIELD NAME=STFIIDS,BYTES=25,TYPE=C ITEM DESCRIPTION
FIELD NAME=STFIIQH,BYTES=6,TYPE=C QUANTITY ON HAND
FIELD NAME=STFIIQO,BYTES=6,TYPE=C QUANTITY ON ORDER
FIELD NAME=STFIIQR,BYTES=6,TYPE=C QUANTITY ON RESERVE
FIELD NAME=STFIIPR,BYTES=6,TYPE=C COST PER ITEM
FIELD NAME=STFIIUN,BYTES=1,TYPE=C UNIT OF ISSUE

Figure 3-16. Phase 3 Physical DBDs (Part | of 4)

31-42 DL/1 DOS/VS Guide For New Users

SEGM

SEGM

SEGM

SEGM
FIELD

NAME=STVICOR,PARENT=STPIITM,POINTER=PAIRED,

SOURCE=((STCCITM,D,STDCDBP))
NAME=STSIVND, PARENT=STPIITM,BYTES=110,

POINTER=TWIN
NAME=STCISUB,

PARENT=((STPIITM,SNGL), (STPIITM,V,STDIDBP)) ,BYTES=6, X
POINTER=TWINBWD,RULES=(PPV,HERE)
NAME=STSILOC,PARENT=STPIITM,BYTES=12, POINTER=TWINBWD

NAME=(STQILNO,SEQ,U) ,BYTES=6,START=1,TYPE=C

DBDGEN

FINISH
END

Physical DBD - Customer Data Base - Phase 3

IN THIS SECTION WE WILL REPEAT THE PHASE 1

AND PHASE 2 DBD STATEMENTS AS WELL AS INCLUDE
THE REQUIRED SECONDARY INDEX ENTRIES (DATE & ORDER# WILL BE INDEX)
NO COMMENTS WILL APPEAR EXCEPT FOR THE NEW ENTRIES

* % %

PRINT
DBD

DATASET DD1=STDCDBD,DEVICE=3340,BLOCK=(2048) ,SCAN=2
SEGM NAME=STSCCST,PARENT=0,BYTES=110,POINTER=TWIN
FIELD NAME=(STQCCNO,SEQ,U) ,BYTES=6,START=1,TYPE=C

FIELD

NOGEN

NAME=STDCDBP ,ACCESS=HDAM , RMNAME= (DLZHDC10,3,100,600)

NAME=STUCCNM,
BYTES=25,
START=7,
TYPE=C

INDEX SOURCE SEG SEARCH FLD

FIELD LENGTH

WHERE IT STARTS IN SEGMENT

ALPHAMERIC DATA

x4 XK X

*# THE FOLLOWING LCHILD AND XDFLD MACROS ARE FOR THE SECONDARY INDEXES

I K B S BE NE N R B)

Figure 3-16. Phase 3 Physical DBDs (Part 2 of 4)

LCHILD

XDFLD

FIELD

LCHILD

XDFLD

SEGM
FIELD
SEGM

FIELD NAME=(STQCODN,SEQ,U) ,BYTES=12,START=1,TYPE=C

POINTER=INDX,
NAME=(STICMNA,
STDCXIP)

NAME=STXCMNA,
SEGMENT=STSCCST,
SRCH=STUCCNM,
SUBSEQ=/CKSCCST

NAME=/CKSCCST,
BYTES=6,
START=1

POINTER=INDX,
NAME= (STIRCRDN,
STDCX2P)

NAME=STXCRDN,
SEGMENT=STPCORD,
SRCH=STQCODN,
DDATA=/CKPCORD

NAME=(STQCLNO, SEQ,U) ,BYTES=6,START=1,TYPE=C

SECONDARY INDEX

SEGMENT NAME IN INDEX DBD
DBD NAME OF INDEX DBD

INDEXED FIELD NAME

SOURCE SEGMENT OF INDEX

INDEXED DATA WITHIN SOURCE SEGM
INDEX SUBSEQUENCE FIELD

CONCATENATED KEY
FIELD LENGTH

XXX

DO D4 D X X X

WHERE IT STARTS IN SEGMENT

SECONDARY INDEX

SEGMENT NAME IN INDEX DBD
DBD NAME OF INDEX DBD

INDEXED FIELD NAME
SOURCE SEGMENT OF INDEX
INDEXED DATA WITHIN SOURCE SEGM

MO X X XXX

FIELD NAME OF CONCATENATED KEY
NAME=STSCLOC , PARENT=STSCCST ,BYTES=106 , POINTER=TWINBWD

NAME=STPCORD , PARENT=STSCLOC, BYTES=51, POINTER=TWINBWD, X

RULES=(PPV)

THE FOLLOWING FIELD MACRO IS FOR THE DUPLICATE DATA
FIELD THAT WILL BE CARRIED IN THE SECONDARY INDEX
DATA BASE. IT DEFINES THE FIRST 12 BYTES OF THE ORDER
SEGMENT FULLY CONCATENATED KEY. THE FIRST 6 BYTES ARE
CUSTOMER NUMBER (STQCCNO) AND NEXT 6 ARE LOCATION

NUMBER (STQCLNO). HAVING THIS DATA CARRIED IN SECONDARY

INDEX WILL ALLOW US TO HAVE CUSTOMER AND LOCATION
AVAILABLE TO US WHEN PROCESSING THE SECONDARY INDEX
BY ITSELF. ALSO DL/I AUTOMATICALLY MAINTAINS THIS
DATA WHEN PROCESSING THE CUSTOMER DATA BASE.

Chapter 3: Data Base Implementation

3-43

FIELD X
NAME=/CKPCORD, MUST START WITH /CK X
BYTES=12, LENGTH DESIRED X
START=1 STARTING AT THIS POSITION
* THERE ARE NO FURTHER CHANGES IN THIS DBD FOR THE SECONDARY INDEX
SEGM NAME=STCCITM,PARENT=((STPCORD), (STPIITM,V,STDIDBP)), X

BYTES=38,POINTER=(TWINBWD) ,RULES= (PPV)

* THE FOLLOWING FIELDS ARE DEFINED TO SHOW AN EXAMPLE OF FIELD LEVEL
* SENSITIVITY. NOTE THAT IT IS NOT REQUIRED FOR THE SEQUENCE FIELD
* TO BE DEFINED FIRST AND IF THE START PARAMETER IS NOT CODED THE FIELD
* IS ASSUMED CONTIGUOUS TO THE PRECEEDING FIELD. SEE PSB'S STBCUSR
* AND STBCUSU FOR AN EXAMPLE OF HOW THE FIELDS ARE SELECTED BY THE
* APPLICATION PROGRAM.
FIELD NAME=STKCIIN, INVENTORY ITEM NUMBER X
BYTES=6, FIELD LENGTH X
TYPE=C ALPHAMERIC DATA
FIELD X
NAME= (STQCILI,SEQ,U), UNIQUE KEY FIELD (LINE #) X
BYTES=2, FIELD LENGTH X
START=7, WHERE IT STARTS IN SEGMENT X
TYPE=C ALPHAMERIC DATA
FIELD NAME=STFCIQO,BYTES=6,TYPE=C QUANTITY ORDERED
FIELD NAME=STFCIQS,BYTES=6,TYPE=C QUANTITY SHIPPED
FIELD NAME=STFCIQB,BYTES=6,TYPE=C QUANTITY BACK ORDERED
FIELD NAME=STFCIAM,BYTES=12,TYPE=C ITEM AMOUNT
SEGM NAME=STSCSTA,PARENT=STSCCST,BYTES=24,POINTER=TWIN X
RULES=(,FIRST)
SEGM NAME=STSCHIS,PARENT=STSCCST,BYTES=(130,53), X
POINTER=TWINBWD , COMPRTN=DLZSAMCP
FIELD NAME=(STQCHDN,SEQ,U),BYTES=12,START=3,TYPE=C
DBDGEN
FINISH
END
Secondary Index DBD - Inventory Item #
PRINT NOGEN NO MACRO EXPANSION PRINTING
DBD X
NAME=STDIX1P, DATA BASE DESCRIPTION NAME X
ACCESS=INDEX THIS IS AN INDEX
DATASET X
DD1=STDIX1C, DLBL FILE NAME X
DEVICE=3340 DISK DEVICE
SEGM X
NAME=STIININ, SEGMENT NAME OF THE INDEX X
PARENT=0 IT IS A ROOT SEGMENT X
BYTES=6 LENGTH
LCHILD X
NAME=(STPIITM, TARGET SEGMENT ITEM INFORMATION X
STDIDBP), FOUND IN THE ITEM DATA BASE X
INDEX=STXININ, INDEXED FIELD NAME X
POINTER=SNGL SPECIFIES THIS IS INDEX PTR SEG
FIELD X
NAME= (STYIINO,SEQ,U), UNIQUE KEY FIELD(ALSO THE INDX) X
BYTES=6, FIELD LENGTH X
START=1, WHERE IN SEGMENT IT STARTS X
TYPE=C ALPHAMERIC DATA
DBDGEN TO MARK END OF DBD
FINISH FOR SOURCE COMPAT WITH IMS/VS
END

Figure 3-16. Phase 3 Physical DBDs (Part 3 of 4)

3-44 DL/1 DOS/VS Guide For New Users

C

Secondary Index DBD - Customer Order #

PRINT NOGEN

DBD
NAME=STDCX2P,
ACCESS=INDEX

DATASET
DD1=STDCX2C,
DEVICE=3340

SEGM
NAME=STIRCRDN,
PARENT=0,
BYTES=24

LCHILD
NAME= (STSCCST,
STDCDBP) ,
INDEX=STXCRDN,
POINTER=SNGL

FIELD
NAME= (STYCRDS,SEQ,U),
BYTES=12,
START=1,
TYPE=C

DBDGEN

FINISH

END

Secondary Index DBD - Customer Name

PRINT NOGEN

DBD
NAME=STDCX1P,
ACCESS=INDEX

DATASET
DD1=STDCX1C,
DEVICE=3340

SEGM
NAME=STICMNA,
PARENT=0,
BYTES=31
LCHILD
NAME=(STSCCST,
STDCDBP) ,

INDEX=STXCMNA,
POINTER=SNGL

FIELD
NAME=(STYCMNS,SEQ,U),

BYTES=31,
START=1,
TYPE=C

DBDGEN

FINISH

END

Figure 3-16. Phase 3 Physical DBDs (Part 4 of 4)

NO MACRO EXPANSION PRINTING

DATA BASE DESCRIPTION NAME
THIS IS AN INDEX

DLBL FILE NAME
DISK DEVICE

SEGMENT NAME OF INDEX
IT IS A ROOT SEGMENT

LENGTH INCL. INDEX & DUP DATA

TARGET SEGMENT CUST. NAME/ADDR
FOUND IN THE CUSTOMER DATA BASE

INDEXED FIELD NAME

SPECIFIES THIS IS INDEX PTR SEG

UNIQUE KEY FIELD(ALSO THE INDX)

FIELD LENGTH

WHERE IN SEGMENT IT STARTS
ALPHAMERIC DATA

TO MARK END OF DBD

FOR SOURCE COMPAT WITH IMS/VS

NO MACRO EXPANSION PRINTING

DATA BASE DESCRIPTION NAME
THIS IS AN INDEX

DLBL FILE NAME
DISK DEVICE

SEGMENT NAME OF THE INDEX
IT IS A ROOT SEGMENT

LENGTH INCL. INDEX & DUP DATA

TARGET SEGMENT CUST. NAME/ADDR
FOUND IN THE CUSTOMER DATA BASE

INDEXED FIELD NAME

SPECIFIES THIS IS INDEX PTR SEG

UNIQUE KEY FIELD

(ALSO THE INDX)

FIELD LENGTH

WHERE IN SEGMENT IT STARTS
ALPHAMERIC DATA

TO MARK END OF DBD

FOR SOURCE COMPAT WITH IMS/VS

Program Specification Block Generation (PSBGEN)

> X XX X

> X X

>

>

XX X X X X

>

For each program which uses a DL/I data base, a program specification block (PSB)
is needed. Although one PSB can serve different batch application programs, it is
recommended, for integrity purposes, that each program have its own PsB. Each
PSB consists of one or more program communication blocks (PCBs), one for each
data base the program uses.

PSB generation is the execution of DL/I supplied macro instructions to define an
application program’s use of one or more data bases. The DL/I user creates control
statements that are presented to the PSB generation procedure as a normal DOS/VS

assembly job. The DL/I macro instructions used for PSB generation exist in a

DOS/VS source statement library. The result of the PSB generation is the creation of

Chapter 3: Data Base Implementation

3-45

a PSB CSECT. The generated PSB is link-edited into a DOS/VS core image library (see
Figure 3-17). The PSB is used as input to the application control blocks creation
and maintenance utility to build other DL/I blocks for use at execution time.

Figure 3-18 shows the sequence of the macro statements in the PSBGEN input
deck. The coding conventions for the PSB are exactly the same as for the DBD.

PSB
GENERATION
CONTROL
STATEMENTS

DOS/VS
PSB
. o GENERATION
CORE IMAGE
LIBRARY

= rse]

SOURCE
STATEMENT
LIBRARY

Figure 3-17. Program Specification Block Generation (PSBGEN)

3-46 DL/I DOS/VS Guide For New Users

L (END

REQUIRED: 1
PSBGEN
REQUIRED: 1
L]
L[]
L]
(SENseG
PCB
L]
L]
[]
(VIRFLD B REQUIRED: ONE
FOR EACH DATA
(SENFLD . OPTIONAL [BASE (DBD) THIS
{ SENSEG PROGRAM USES.
(sensec —
REQUIRED: ONE FOR EACH
- |- SEGMENT IN THE DATA BASE
PCB — THIS PROGRAM ACCESSES.

Figure 3-18. PSBGEN Input Deck Structure

C

Chapter 3: Data Base Implementation 3-47

Basic PSB Coding

Following are the basic PSB control statement formats.

PCB Statement

This statement is coded once for each data base the program intends to use. The
format is:

PCB TYPE=DB
,DBDNAME=ddname
{{[GI[I][R][D]} }
, PROCOPT={ {A }[PI[E]}
{ L[S]
{{GO}[P]}
,KEYLEN=value

{MULTIPLE}
[,POS={SINGLE 1}]

[, PROCSEQ=index—-db~name]

TYPE=DB
is a required keyword parameter for all data base PCBs.

DBDNAME=
specifies the name of the DBD which is accessed via this PCB. It can be a
physical or logical DBD.

PROCOPT=

specifies the processing options on sensitive segments declared in this PCB

that may be used in an associated application program. Specifying superflu-
ous processing options is undesirable from a data base security point of view
and can result in unnecessary additional data base processing. This operand

allows a maximum of four characters. The letters in the operand have the
following meanings:

G - Get function
I- Insert function
R - Replace function

D - Delete function

Note: The above functions can be coded in any combination of three, if all four are required, code “A”.

A - All includes the above four functions.

P- Required if command code D (path call) is to be used on get type calls
or insert calls. Determines the maximum length of the 1/0 area. To be
used in conjunction with G, I, and A.

E - Exclusive use of the data base or segment. To be used in conjunction
with G, 1, D, R, and A. Use this option only when you wish to override
program isolation in an MPS or online environment.

Note: PROCOPT=E is not propagated. Specifying it on the PCB statement does not force E onto the

SENSEG statements if they also specify a PROCOPT. Therefore, PROCOPT=E must be coded on any
senseg statement that requires it when any other PROCOPT is also coded.

L- Load function for data base loading (except HIDAM)

LS- Segments loaded in ascending sequence only (HIDAM, HDAM). This load
option is required for HIDAM.

O- Inhibits locking (enqueuing) by program isolation during retrievals of
the same segment types in a data base. O can be used only in conjunc-
tion with G or GP.

3-48 DL/1 DOS/VS Guide For New Users

<9

C

SENSEG Statement

See chapter 5 in this manual for a description of program isolation.

Note: Consider always coding PROCOPT=G on the PCB statement and using the SENSEG statement
to override this specification as required.

KEYLEN=value
is the value specified in bytes of the longest concatenated key for a hierarchi-
cal path of sensitive segments used by the application program in the hier-
archical data structure.

POS=
specifies whether single or multiple positioning is desired for this logical data
structure. When SINGLE or § is specified, for a PCB, DL/I maintains only one
position in that data base for that PCB. This is the position that will be used in
attempting to satisfy all subsequent GN calls. If MULTIPLE or M is specified,
DL/I maintains a unique position in each hierarchical path in the data base.
For a detailed description of positioning, see the Application Programming
Reference Manual.

Note: Use of single or multiple positioning affects application program logic. Therefore, ensure that the

PSB and program logic match.

PROCSEQ
specifies the name of a secondary index that is used to process the data base
named in the DBDNAME operand through a secondary processing sequence.
This operand is optional. It is valid only if a secondary index exists for this
data base. If this operand is used, subsequent SENSEG statements must reflect
the secondary data structure of segment types in the indexed data base. For
example, the first SENSEG segment must name the index target segment as the
root segment. This operand is invalid if PROCOPT is L or LS.

This statement is coded once for each segment the program is sensitive to in the
DBD defined in the preceding PCB. The SENSEG statements should appear in the
same hierarchical sequence as in the DBD. However, only those segments should be
specified in the hierarchical path to any required segment. The basic format of the
SENSEG statement is:

SENSEG NAME=segname
[,PARENT={segname2}]
1) }

[,PROCOPT=£[G][I][R][D]i[P][E]
A

NAME=
is the name of the segment type as defined through a SEGM statement during
DBD generation. This field is from 1 to 8 alphameric characters.
PARENT=
is the name of the segment type that is the parent of the segment type whose
name is specified in the NAME operand. If this SENSEG statement defines a
root segment type,this operand must be zero. For all dependent segment
types, this operand must specify the name of the dependent’s parent.
PROCOPT=
is the processing options available for use of this sensitive segment by an
associated application program. This operand has the same meaning as the
PROCOPT operand on the PCB statement. If this PROCOPT operand is not
specified, the PCB PROCOPT operand is used as the default.

Note: PROCOPT=P does not propagate. Therefore PROCOPT=P must be coded on any
SENSEG statement that requires it. This is in addition to coding it on the PCB statement.

Chapter 3: Data Base Implementation 3-49

SENFLD Statement

If there is a difference in the processing options specified on the PCB and
SENSEG statement, the SENSEG PROCOPT overrides the PCB PROCOPT. When
loading a data base, you should specify a PROCOPT in the PCB statement.

This statement follows the SENSEG statement and is coded once for each field in
the physical definition of this segment to which the application program is sensi-
tive. This enables you to restrict an application program’s access to only those
fields in a segment that it needs. If the SENFLD statement is not specified, DL/1
assumes that the application program has access to the entire segment identified in
the previous SENSEG statement. This statement is part of the field level sensitivity

feature. See “Field Level Sensitivity” in Chapter 2 for details. The format of the
SENFLD statement is:

SENFLD NAME=fldname

[,BYTES=n]

[,START=pos]

[,TYPE=t]

[,RTNAME=prog]

[\REPLACE= 3@2]
NO

NAME=
is the name of the related field defined in the physical DBD.

BYTES=

specifies the length (in bytes) of this field. If specified, it must be a numeric
value in the range of 1 through 256.

Rules and Restrictions

. Do not specify the BYTES parameter for field data types E, D, and L.
These data types have implicit lengths of 4, 8, and 16, respectively.

° The BYTES parameter is optional for field data types H and F. If omit-
ted, DL/I assumes a field length of 2 for types H and 4 for type F.

. The BYTES parameter is also optional for field data types X, P, C, and z.

If omitted, DL/I defaults to the same field length as is in the physical
view.

START=
specifies the starting position of this field. It can be the same starting position

previously specified for the field in the FIELD statement during DBD genera-
tion, or it can be different.

The starting position can be specified in terms of bytes relative to the begin-
ning of your new view of the segment within which this field is defined. In
this case, it must be a numeric value in the range of 1 through 32767. For the
first byte of a segment it is one. Each field must not extend beyond the
defined segment length (START position plus BYTE value).

Subfields are permitted and can be defined on the START parameter in one of
two ways. You can specify its starting position in bytes as previously de-
scribed (START=position), or, if the subfield starts at the same location as
another defined field you can simply specify the name of that field
(START=name).

The START parameter can be optionally omitted. If it is not specified, a DL/I
feature called ‘automatic definition sequencing’ places this field adjacent to
the end of the previous field, or if it is the first field in the segment, at the
beginning of the segment (START=1).

3-50 DL/I DOS/VS Guide For New Users

J

5

TYPE=

specifies the type of data that is to be contained in the application program’s
view of this field. If you specify a data type that is different from that defined
in the physical DBD for this field, DL/I will (in most cases) convert the data
type to that needed by the program. (See “Field Level Sensitivity” in Chap-
ter 2 for additional information.) If you do not specify this parameter, DL/1
assumes the type to be the same as specified for this field in the physical DBD.
The valid data types are:

‘X’ - hexadecimal data (binary)

‘H’ - half word binary

‘F’ - full word binary

‘P’ - packed decimal

‘C’ - character data

‘Z’ - numeric character data

‘E’ - floating point (short)

‘X’ - floating point (long)

‘L’ - floating point (extended)

The automatic conversions supported are:

From To

X H,F,P,orZ

H X,F,P,orZ

F X,H,P,orZ

P X,H,F,orZ

Z X,H, F,orP

C C (length conversion only)

Conversion of data types E, D, and L is not supported.
Notes:

Restrictions on values

- Binary (X, H, F)

Packed or zoned decimal fields to be converted to binary fields are restricted to values within the
range of 2147483647 to -2147483648. This is because numbers outside this range cannot be
contained in a four byte binary word.

- Packed and zoned decimal (P, Z)
Hardware restrictions limit the size of decimal fields to 16 characters, so the values contained in
fields to be converted must be within the range of £9999999999999999.

Length conversions

Numeric data types (X, H, F, P, Z) are padded with zeros on the left to extend field lengths.
Truncation also occurs from the left. Truncation of significant digits results in the field being set
to the maximum (or minimum, if negative) value, and status code ‘KA’ is returned.

Character fields are padded with blanks on the right to extend field lengths. Truncation also
occurs from the right. Truncation of non-blank characters results in the return of status code
‘KB’. Only character field length conversion is performed if both the physical and user’s view
data types are ‘C’.

Format checking

To ensure valid formats, packed and zoned decimal fields are pre-scanned prior to conversion. An
invalid format results in the setting of the converted field to the null value, and the return of status
code ‘KC’.

Data type ‘C’

Data contained in a field specified as type ‘C’ is considered to be in an “as is” format, and no
conversion is made when the related field is specified as containing data of a different type. For
instance, if a field in a physical segment is specified as type ‘C’ and the field in the application’s
view is specified as type ‘P’, the data from the physical field is treated as though it is packed
decimal. Only any necessary length adjustments are made.

Non-supported conversions

Conversions that are not listed above as being supported (such as: physical type ‘Z’ to user’s type
‘E’) will pass through the ACB generation phase if, but only if, you specified a user written exit
routine for the field. Such a non-supported conversion causes a status code of ‘KD’ to be returned
when encountered during an access of the field.

Conversion Errors

If not corrected (reset) by a user exit routine, an uncorrected status code results in an immediate
termination of the request. No more fields or segments are processed. No provision is made for
correction of errors by the application program. If required, conversion must be done via a user
written field exit routine. See “User Field Exit Routine” under “Field Label Sensitivity” in
Chapter 2.

Chapter 3: Data Base Implementation 3-51

VIRFLD Statement

RTNAME=
identifies the name of the user-written field exit routine in the DOS/VS core
image library that is given control whenever this field is retrieved or stored.
See “Field Level Sensitivity” in Chapter 2 for a description of this routine.

REPLACE (or its abbreviation, REPL)
indicates whether the program using this PSB may modify this field. If you
specify NO, and an application program attempts to replace this field with a
new value, DL/I returns a status code of ‘KE'.

This statement is used to define a field in the application program’s view of a
segment that does not exist in the physical segment. This statement also allows you
to specify an initial value for the virtual field and/or the name of a user-written
routine that is called to create the field as needed. See “Field Level Sensitivity” in
Chapter 2 for a complete description of virtual fields. The format of the VIRFLD
statement is:

VIRFLD NAME=fldname

[,BYTES=n]

[,START=pos]
[,TYPE=t]

[,VALUE=value]
[,RTNAME=progq]

NAME=
specifies the name of the field.

BYTES=
specifies the length of this field in terms of bytes. BYTES is specified as a
numeric whose value does not exceed 256. You must specify this parameter
for field types X, C, Z, or P. Do not specify this parameter for field types E, D,
or L. See the ‘TYPE’ parameter for field types.

START=
specifies the starting position of this field in terms of bytes relative to the
beginning of the application program’s view of the segment for which this
field is defined. Start position for the first byte of the segment is 1; the maxi-
mum specification is 32767.

Subfields are permitted. If a subfield starts in the same position as another
defined field, you may specify the name of that field, instead of a numeric
value, to indicate the starting position.

If you do not specify this parameter, DL/I places this field adjacent to the end
of the previous field, or if it is the first field in the segment, at the beginning
of the segment (START=1).

TYPE=
specifies the type of data that is to be contained in the application program’s
view of this field. This parameter must be specified if the VALUE parameter is
used. The valid data types are:

‘X’ - hexadecimal data (binary)
‘H’ - half word binary

‘F’ - full word binary

‘P’ - packed decimal

‘C’ - character data

‘Z’ - numeric character data

‘E’ - floating point (short)

‘D’ - floating point (long)

‘L’ - floating point (extended)

3-52 DL/I DOS/VS Guide For New Users

VALUE=
specifies an initial value for this virtual field. If the RTNAME parameter is
also used, this field is initialized before the user-written field exit routine is
called.

Notes:

* The TYPE parameter must be specified if the VALUE parameter is specified.

* 1fthe VALUE parameter is specified for field type H, F, P, or Z, the initial value must be
numeric.

¢ [f the number of characters supplied for VALUE is not sufficient to make up the length
specified by the BYTES parameter, the initial value will be padded:

- With binary zeros on the left for types X, H, F, and P.
- With EBCDIC zeros on the left for type Z.

- With binary zeros on the right for types E, D, and L.
- With EBCDIC blanks on the right for type C.
RTNAME=
specifies the name of the user-written field exit routine in the DOS/VS core
image library that is given control whenever this field is retrieved or stored.
See “Field Level Sensitivity” in Chapter 2 for a description of this routine.

PSBGEN Statement

This statement specifies the end of the PSB and provides interface parameters for
the application program. It is the last statement before the END statement. The
basic format is:

PSBGEN {COBOL}

LANG={PL/I }
{ASSEM}
{RPG }

, PSBNAME=psbname

LANG=
specifies the language in which the application program is written. It must be
either COBOL, PL/I, ASSEM, or RPG with no trailing blanks.

PSBNAME=
is the parameter keyword for the alphameric name of this PSB. The name
value for PSBNAME must be seven characters or less in length. However, the
(@) must not be used. See notes.

Notes:

¢ The application control blocks creation and maintenance utility uses the output of the PSB
generation to build a PSB containing other internal control blocks based on the related DBD
characteristics. The name of this special PSB is generated by the utility program. Since this PSB
is also cataloged and link-edited into a DOS/VS core image library, care must be taken to avoid
duplicate names. The generated PSB name is eight characters in length and consists of the PSB
generation CSECT name extended to seven characters by at-signs (@), if necessary, with P as the
eighth character.

¢ There may be several PCB statements for data bases, but only one PSBGEN statement as input to
a PSB generation. The PSBGEN statement must immediately precede the END statement.

END Statement

This statement is required at the end of the pSB deck. It indicates the end of the
assembly data.

END

Chapter 3: Deta Base Implementation 3-53

Sample Basic PSBs

Figure 3-19 shows two PSBs for the Phase 1 sample environment. The first one is
the PsB for loading the Phase 1 Customer data base. The second one is an example
of a PSB for an application program to process the phase 1 Customer data base.

Because the basic PSBs to load and process the Inventory data base for Phase 1
are similar to the above examples, they are not included here.

Load PSB - Customer Data Base

PRINT NOGEN

PCB
TYPE=DB,
DBDNAME=STDCDBP,
PROCOPT=L,
KEYLEN=50
.
.
.
SENSEG
NAME=STSCCST,
PARENT=0
SENSEG

NAME=STSCLOC,

PARENT=STSCCST
SENSEG

NAME=STPCORD,

PARENT=STSCLOC
SENSEG

NAME=STCCITM,

PARENT=STPCORD
SENSEG

NAME=STSCSTA,

PARENT=STSCCST
SENSEG

NAME=STSCHIS,

PARENT=STSCCST
PSBGEN

LANG=ASSEM,

PSBNAME=STBICLD
END

PSB to Process Customer Data Base

PRINT NOGEN
PCB
TYPE=DB,
DBDNAME=STDCDBP,
PROCOPT=AP,
KEYLEN=50
.

NO MACRO EXPANSION PRINTING

REQUIRED

FROM DBD MACRO IN DBD ASSEMBLY
LOAD PSB

LONGEST CONCATENATED KEY

26 IS THE LONGEST IN CUSTOMER

DATA BASE. 50 LEAVES EXPANSION
ROOM FOR FUTURE

USING THE SAME NAMES AS FOUND
IN THE SEGM MACROS IN THE DBD

ASSEMBLY FOR THE CUSTOMER DATA
BASE AND PUTTING THE SENSEG

MACROS IN THE SAME ORDER AS
THOSE SEGM MACROS IS REQUIRED

OR PL/I OR COBOL
PROGRAM SPECIFICATION BLK NAME

NO MACRO EXPANSION PRINTING

REQUIRED

FROM DBD MACRO IN DBD ASSEMBLY
A=ALL FUNCS.,P=PATH CALL POSSIB
SEE LOAD PSB FOR EXPLANATION

*+ SENSEG MACROS WILL BE SAME AS LOAD PSB

.
PSBGEN
LANG=ASSEM,
PSBNAME=STBCPHA
END

Figure 3-19. Sample PSBs for Phase |

3-54 DL/1 DOS/VS Guide For New Users

OR PL/I OR COBOL
PROGRAM SPECIFICATION BLK NAME

oo K X

J

C

Execution of PSBGEN - JCL

PSBGEN is run as a standard DOS/VS job and requires the following DOS/VS job
control statements:
// JOB PSBGEN

// OPTION CATAL
// EXEC ASSEMBLY

PCB
SENSEG PSB GENERATION CONTROL STATEMENTS
PSBGEN FOR ONE PSB
END
/*
// EXEC LNKEDT
/6

Description of PSBGEN Output

PSBGEN produces the following:

e Control statement listing
This is a listing of the input statement images.

¢ Diagnostics
Errors discovered during the processing of each control statement result in
diagnostic messages, which are printed immediately following the image of
the control statement. A message may reference either the control statement
immediately preceding it or the preceding group of control statements. It is
also possible for more than one message to be printed for each control state-
ment. In this case, the messages follow each other on the output listing. After
all control statements have been read, a further check is made of the reasona-
bleness of the entire group. This may result in one or more additional diag-
nostic messages.

If any error is discovered, all control statements are read, checked, and listed

and the diagnostic message(s) are printed, but the other outputs are sup-
pressed, before the PSB generation is terminated.

The PSB error condition messages are contained in the Messages and Codes
manual.

e Assembly listing
A DOS/VS Assembler language listing of the PSB macro expansion created by
PSB generation execution.

¢ Object Module

After the PSB generation macro is assembled, the PSB is link-edited and
cataloged as a load module in a DOS/VS core image library.

Coding PSBs for Logical Data Bases

When a physical DBD contains logical relationships, the PCB and the application
program can still refer to the physical DBD. However, this should be restricted to
initial data base load programs. Remember also, the logical child always contains
the logical parent’s concatenated key. This should not be forgotten when inserting
a logical child in a physical DBD. You can never access a virtual logical child in a
physical data base, because it does not exist.

To use a logical data base, the program needs a separate PCB. This PCB is coded
in the same manner as a PCB for a physical DBD. The only difference is that it
refers to the DBD name and SEGMENT names of a logical DBD. You should code
SENSEG statements only for the segments the program actually needs and the
segments in the hierarchical path to those segments. All of this is based on the
logical DBD, so the hierarchical path may well include physical and logical paths.
Figure 3-20 shows sample PSBs for the phase 2 logical data bases.

Chapter 3: Data Base Implementation 3-55

PSB Logical Inventory Data Base - Phase 2

PRINT NOGEN

PCB
TYPE=DB,
DBDNAME=STDIDBL,
PROCOPT=AP,
KEYLEN=50

SENSEG
NAME=STPIITM,
PARENT=0

SENSEG

NAME=STLICOR,

PARENT=STPIITM
SENSEG

NAME=STSLOC,

PARENT=STLICOR
SENSEG

NAME=STSCCST,

PARENT=STSCLOC
SENSEG

NAME=STSIVND,

PARENT=STPIITM
SENSEG

NAME=STLISUB,

PARENT=STPIITM
SENSEG

NAME=STSILOC,

PARENT=STPIITM
PSBGEN

LANG=ASSEM,

PSBNAME=STBILGA
END

NO MACRO EXPANSION PRINTING

REQUIRED

LOGICAL DBD NAME
A=ALL FUNCS.,P=PATH CALL POSSIB X
SEE LOAD ITEM PSB FOR DISCUSSION

-

X
USING THE SAME NAMES AS FOUND X
IN SEGM MACROS IN THE LOGICAL

X
DBD FOR THE ITEM DATA BASE AND X
PUTTING THE SENSEG MACROS IN

X

THE SAME SEQUENCE AS THOSE SEGM X
MACROS IS REQUIRED

PSB Logical Customer Data Base - Phase 2

Figure 3-20. Sample PSBs for Phase 2 (Part 1 of 2)

3-56

PRINT NOGEN

PCB
TYPE=DB,
DBDNAME=STDCDBL,
PROCOPT=AP,
KEYLEN=50

SENSEG
NAME=STSCCST,
PARENT=0

SENSEG

NAME=STSCLOC,

PARENT=STSCCST
SENSEG

NAME=STPCORD,

PARENT=STSCLOC

DL/I DOS/VS Guide For New Users

X

X

X

X

X

X

X

X

X
OR PL/I OR COBOL X
PROGRAM SPECIFICATION BLK NAME
NO MACRO EXPANSION PRINTING

X
REQUIRED X
LOGICAL DBD NAME X
A=ALL FUNCS.,P=PATH CALL POSSIB X
SEE LOAD CUST PSB FOR DISCUSSIN

X
USING THE SAME NAMES AS FOUND X
IN SEGM MACROS IN THE LOGICAL

X
DBD FOR THE CUSTOMER DATA BASE X
AND PUTTING THE SENSEG MACROS

X
IN THE SAME SEQUENCE AS THOSE X

SEGM MACROS 1S REQUIRED

SENSEG

NAME=STLCITM,

PARENT=STPCORD
SENSEG

NAME=STSILOC,

PARENT=STLCITM
SENSEG

NAME=STSCSTA,

PARENT=STSCCST
SENSEG

NAME=STSCHIS,

PARENT=STSCCST
PSBGEN

LANG=ASSEM,

PSBNAME=STBCLGA
END

OR PL/I

OR COBOL

PROGRAM SPECIFICATION BLK NAME

Figure 3-20. Sample PSBs for Phase 2 (Part 2 of 2)

Coding PSBs for Secondary Indexes

To use a secondary index, an application program should use a PCB with the

following additional parameter in the PCB statement.

PCB Statement

PCB

TYPE=DB, ...

, PROCSEQ=indxdbname

PROCSEQ=indxdbname

Note: If non-unique fields are used, and subsequence is the /SX field, then the sequence of root

specifies the name of the secondary index used to process the data base

named in the DBNAME operand through a secondary processing sequence.
The operand is invalid if PROCOPT=L or LS.

segments with the same index field value will be unpredictable. This sequence will also vary during
reorganization of the target data base.

Figure 3-21 shows the PSBs as used in the sample application for the phase 3

environment.

Chapter 3: Data Base Implementation

3-57

Inventory and Customer Load PSBs - Phase 3

// JOB STJPSBGN GENERATE ALL PSBS

// OPTION CATAL,NODECK
// EXEC ASSEMBLY

TITLE 'DL/I ONLINE PROGRAM - INVENTORY AND CUSTOMER LOAD PSBS

*
PRINT NOGEN
PCB
TYPE=DB,
DBDNAME=STDIDBP,
PROCOPT=L,
KEYLEN=50,

POS=S
SENSEG
NAME=STPIITM,
PARENT=0
SENSEG
NAME=STSIVND,
PARENT=STPIITM
SENSEG
NAME=STCISUB,
PARENT=STPIITM
SENSEG
NAME=STSILOC,
PARENT=STPIITM

L B B B B

NO MACRO EXPANSION PRINTING

REQUIRED

FROM DBD MACRO IN DBD ASSEMBLY
LOAD PSB

LONGEST CONCATENATED KEY

26 IS THE LONGEST IN CUSTOMER
DATA BASE. 50 LEAVES ROOM FOR
FUTURE EXPANSION

SINGLE POSITIONING (DEFAULT)

USING THE SAME NAMES AS FOUND
IN THE SEGM MACRO IN THE DBD

ASSEMBLY FOR THE CUSTOMER DATA
BASE AND PUTTING THE SENSEG

MACROS IN THE SAME ORDER AS
THOSE SEGM MACROS IS REQUIRED

THE FOLLOWING PCB IS FOR THE CUSTOMER DATA BASE.
THE STATEMENTS ARE THE SAME FORMAT AS FOR THE INVENTORY DATA BASE,
SO THE COMMENTS HAVE BEEN OMITTED.

PCB TYPE=DB, DBDNAME=STDCDBP , PROCOPT=L,KEYLEN=50

SENSEG NAME=STSCCST, PARENT=0

SENSEG NAME=STSCLOC,PARENT=STSCCST
SENSEG NAME=STPCORD, PARENT=STSCLOC
SENSEG NAME=STCCITM, PARENT=STPCORD
SENSEG NAME=STSCSTA,PARENT=STSCCST
SENSEG NAME=STSCHIS,PARENT=STSCCST

PSBGEN
LANG=ASSEM,
PSBNAME=STBICLD

CHILDREN IN A LOAD PSB.

* % ® »

END
/*
// EXEC LNKEDT

APPLICATION PROG IS ASSEMBLER
PROGRAM SPECIFICATION BLK NAME

DO NOT INCLUDE ANY SENSEG MACRO FOR VIRTUAL LOGICAL

Inventory and Customer Data Base PSBs - Logical

// OPTION CATAL,NODECK
// EXEC ASSEMBLY

XXX X XX

TITLE 'DL/I SAMPLE PROGRAM - INVENTORY AND CUSTOMER PSBS -LOGIX

CAL'
PRINT NOGEN

NO MACRO EXPANSION PRINTING

Figure 3-21. PSBs Used for the Phase 3 Sample Application (Part 1 of 3)

3-58 DL/I DOS/VS Guide For New Users

THIS PSB IS FOR THE LOGICAL DATA BASES USED BY THE PRINT PROGRAM
DLZSAM50.

THE FIRST PCB IS FOR THE INVENTORY LOGICAL DATA BASE.

NOTE THE USE OF THE PROCSEQ PARAMETER FOR THE SECONDARY INDEX.

THIS ALLOWS THE APPLICATION TO ACCESS THE INVENTORY ITEMS IN NUMERIC
SEQUENCE.

BECAUSE THE FORMAT OF THE PSB STATEMENTS IS THE SAME AS FOR THE LOAD
PSB, NO FURTHER COMMENTS ARE INCLUDED.

LR K R BN B K BN

PCB TYPE=DB, DBDNAME=STDIDBL , PROCOPT=G,KEYLEN=50, POS=S, X
PROCSEQ=STDIX1P
SENSEG NAME=STPIITM,PARENT=0
SENSEG NAME=STLICOR,PARENT=STPIITM
SENSEG NAME=STSIVND,PARENT=STPIITM
SENSEG NAME=STLISUB,PARENT=STPIITM
SENSEG NAME=STSILOC,PARENT=STPIITM
PCB TYPE=DB, DBDNAME=STDCDBL , PROCOPT=G ,KEYLEN=50, POS=S
SENSEG NAME=STSCCST, PARENT=0
SENSEG NAME=STSCLOC,PARENT=STSCCST
SENSEG NAME=STPCORD, PARENT=STSCLOC
SENSEG NAME=STLCITM,PARENT=STPCORD
SENSEG NAME=STSCSTA,PARENT=STSCCST
SENSEG NAME=STSCHIS,PARENT=STSCCST
PSBGEN LANG=ASSEM,PSBNAME=STBICLG
END
/#
// EXEC LNKEDT,SIZE=100K

Online Order Inquiry Application PSB - Read Only

// EXEC ASSEMBLY,SIZE=300K
TITLE 'DL/I ONLINE SAMPLE PROGRAM - ORDER INQUIRY AND ENTRY PSX
BS - READ ONLY'
PRINT NOGEN

THIS PSB IS USED BY DLZSAM60 TO RETRIEVE SEGMENTS FROM THE CUSTOMER
AND INVENTORY DATA BASES UNDER CICS/VS.

THIS PSB CONTAINS PCB'S FOR TWO SECONDARY INDEX DATA BASES.
(DBDNAME=STDCX1P AND DBDNAME=STDCX2P)

THIS ALLOWS THE ONLINE PROGRAM TO USE THESE SECONDARY INDEXES

AS DATA BASES. THE INFORMATION MAINTAINED BY DL/I IN THE

SECONDARY INDEXES IS USED TO ACCESS (BUILD SEARCH ARGUMENTS FOR)
THE LOGICAL DATA BASE DEFINED BY THE OTHER PCB (DBDNAME=STDCDBL) .
THE PROCOPT FOR THIS PCB HAS A PROCOPT OF GP WHICH ALLOWS THE
ONLINE PROGRAM TO ISSUE PATH CALLS (*D).

THIS PSB SHOWS AN EXAMPLE OF FIELD LEVEL SENSITIVITY FOR SEGMENT
STLCITM. SINCE THE PHYSICAL LENGTH AND CHARACTER FORMAT ARE
DESIRED THE TYPE AND BYTE PARAMETERS ARE NOT CODED.

N R N BRI BN N BN R K R AR 4

Figure 3-21. PSBs Used for the Phase 3 Sample Application (Part 2 of 3)

Chapter 3: Data Base Implementation

3-59

PCB TYPE=DB, DBDNAME=STDCX 1P, PROCOPT=G ,KEYLEN=50, POS=S
SENSEG NAME=STICMNA,PARENT=0
PCB TYPE=DB, DBDNAME=STDCDBL , PROCOPT=GP ,KEYLEN=50,P0OS=S
SENSEG NAME=STSCCST,PARENT=0
SENSEG NAME=STSCLOC, PARENT=STSCCST
SENSEG NAME=STPCORD, PARENT=STSCLOC
SENSEG NAME=STLCITM, PARENT=STPCORD
SENFLD NAME=STKCIIN
SENFLD NAME=STQCILI
SENFLD NAME=STFCIQO
SENFLD NAME=STFCIQS
SENFLD NAME=STFCIQB
SENFLD NAME=STFCIAM
SENFLD NAME=STQIINO
SENFLD NAME=STFIIDS
SENFLD NAME=STFIIQH
SENFLD NAME=STFIIQO
SENFLD NAME=STFIIPR
PCB TYPE=DB, DBDNAME=STDCX2P , PROCOPT=G ,KEYLEN=50,P0S=5
SENSEG NAME=STIRCRDN, PARENT=0
PSBGEN LANG=ASSEM, PSBNAME=STBCUSR
END
/*
// EXEC LNKEDT

PSB for the Online Application - Update

// OPTION CATAL,NODECK
// EXEC ASSEMBLY
TITLE 'DL/I ONLINE SAMPLE PROGRAM - CUSTOMER AND INVENTORY PSBX
- UPDATE'
PRINT NOGEN

THIS IS THE PSB WHICH ALLOWS DLZSAM60 TO UPDATE THE
CUSTOMER AND INVENTORY DATA BASES. UPDATE CAPABILITY VIA PATH
CALL IS SPECIFIED BY PROCOPT=AP.

PCB TYPE=DB, DBDNAME=STDCDBL , PROCOPT=AP ,KEYLEN=50,POS=S
SENSEG NAME=STSCCST, PARENT=0
SENSEG NAME=STSCLOC,PARENT=STSCCST
SENSEG NAME=STPCORD, PARENT=STSCLOC
SENSEG NAME=STLCITM, PARENT=STPCORD
SENFLD NAME=STKCIIN
SENFLD NAME=STQCILI
SENFLD NAME=STFCIQO
SENFLD NAME=STFCIQS
SENFLD NAME=STFCIQB
SENFLD NAME=STFCIAM
SENFLD NAME=STQIINO
SENFLD NAME=STFIIDS
SENFLD NAME=STFIIQH
SENFLD NAME=STFIIQO
SENFLD NAME=STFIIPR
PSBGEN LANG=ASSEM, PSBNAME=STBCUSU
END
/*
// EXEC LNKEDT
/&

Figure 3-21. PSBs Used for the Phase 3 Sample Application (Part 3 of 3)

3-60 DL/1DOS/VS Guide For New Users

C

Application Control Blocks Creation and Maintenance (DLZUACBO0)

The previously defined physical (DBD) and logical (PSB) data structures must now
be tied together so that DL/I can provide the correct data base management services
for the application program. Thus, a third preparatory function, the creation of
internal control blocks (DL/I application control blocks, or ACBs) is necessary prior
to execution.

The application control blocks creation and maintenance utility is executed as a
DOS/VS problem program and accepts control statements as input. The PSB for the
application program and its related DBD(s) are loaded from a DOS/VS core image
library. An expanded PSB is built from the PSB CSECT. A data management block
(DMB) is created for each related DBD CSECT if the DMB does not already exist in a
core image library.

The output of the application control blocks creation and maintenance utility
must be link-edited and cataloged into a DOS/VS core image library (see Figure
3-22). The core image library then contains one DMB and one utility PSB for each
DBD, and one expanded PSB for each original PSB. When the DL/I system is initial-
ized, these DL/I control blocks for the application program are loaded into storage.

Control Statement Requirements

The control statement requirements for this program are free form. A statement is
coded as a card image and is contained in columns 1-71. The control statement
may contain a name starting in column 1. The operation field must be preceded by
and followed by one or more blanks. The operand field is composed of one or
more PSB names and optionally an output destination and/or a DMB generation
control parameter. It must be preceded by and followed by one or more blanks.
Commas, parentheses, and blanks can be used only as delimiting characters.
Comments may be written following the last operand of a control statement,
separated from the operand by one or more blanks.

A control statement or PSB operand may be contained on more than one line by
inserting a comma after the last PSB name of the first line, inserting a character
other than a blank in column 72, and continuing the statement in column 16 of the
next line. Columns 1-15 of the continuation line must be blank.

Chapter 3: Data Base Implementation 3-61

CONTROL STATEMENT

APPLICATION CONTROL
BLOCKS CREATION

AND MAINTENANCE

DBDs /

PSBs

DOS/VS CORE
IMAGE LIBRARY

; ______________ T MESSAGES
| |
| |
| I
, |
| I
| |
| on o | PpsBs
| SYSLNK | S,'\\','gs
I

I
| |
L J

DOS/VS

LINKAGE

EDITOR

MESSAGES

DOS/VS CORE AND STATISTICS
IMAGE LIBRARY

Figure 3-22. DL/1 ACB Creation and Maintenance for Each PSB

3-62 DL/1 DOS/VS Guide For New Users

JCL Requirements

The format of the control statement is:

[label] |BUILD PSB=(psbname,...)
[,OUT=LINK]
{COND}
[,DMB={YES 1}]
{NO }
label

is optional and is useful only for documentation purposes. If specified it must
be a 1- to 8-character alphameric value.

BUILD
indicates that blocks are to be built for the named PSBs.

PSB=(psbname,...)
means blocks are to be built for all PSBs named. As many of this type of
control card as required may be submitted.

OUT=LINK
if specified in any BUILD statement the output destination of all the created

control block(s) is SYSLNK. If the parameter is omitted, the output of all the
control blocks is on SYSPCH.

DMB=

{COND}
{YES }
{NO 1}

controls the generation of DMBs for data bases referenced by the named PSBs.
The default, COND, indicates that only those DMBs not currently present in
the DOS/VS core image library (or assigned private library) will be generated.

If you specify DMB=YES, all DMBs will be generated. If DMB=NO is specified,
no DMBs will be generated.

Notes:

1. This program creates PSB and DMB object modules that contain DOS/VS linkage editor control
statements. This output must be cataloged and link-edited into a core image library (private or

system) before control blocks may be accessed by DL/I. If output in on SYSPCH, the necessary
DOS/VS JOB and EXEC LNKEDT control statements are also written.

l 2. A maximum of 255 DBDs may be referenced by one PSB. Included in this maximum are those

DBDs that are indexes to, or are logically related to, those referred to by the PCBs in this PSB.
Also included in this maximum are any other DBDs that have index or logical relationships with
any of the above related DBDs, no matter how remote.

3. A maximum of 500 unique DBD names (for all PSBs) may be referenced in a single execution.

. There is no maximum to the number of input control statements that may be submitted in a single
job execution.

5. Control statements are read from the SYSIPT device.

6. DMBs are built for DBDs referenced directly in a PSB generation PCB statement (with the
exception of a LOGICAL DBD) or referenced indirectly by a previously referenced DBD.

The application control blocks creation and maintenance utility is executed as a
standard DOS/VS application program. If you do not specify OUT=LINK in the
BUILD statement, a job stream including DOS/VS JOB and EXEC LNKEDT statements
as well as the requested object module is written onto SYSPCH. If you specify
OUT=LINK on the BUILD statement, and object module is written to SYSLNK.

The following job stream is used to execute the application control blocks
creation and maintenance utility and catalog and link-edit the object modules to a

Chapter 3: Data Base Implementation 3-63

VSAM Requirements

Data Set Definition

DOS/VS core image library. This is the ACB generation for the phase 3 environ-
ment.

// JOB STJACBGN GENERATE ALL ACBS

// OPTION CATAL,NODECK,DUMP

// EXEC DLZUACBO,SIZE=200K
BUILD PSB=(STBICLD,STBCUSR,STBCUSU),OUT=LINK,DMB=YES
BUILD PSB=(STBICLG),OUT=LINK,DMB=YES

/t

// EXEC LNKEDT

/t

/6

Before your data bases can be loaded, they must first be defined to VSAM using the
DOS/VS Access Method Services utility functions. The Access Method Services
must be used to define a VSAM catalog, VSAM data space, and VSAM data sets.

e VSAM Catalog: A master catalog must be defined first and then, optionally,
any number of VSAM user catalogs. A VSAM catalog is a central information
point for all VSAM data sets and the direct-access storage volumes on which
they are stored. The VSAM catalog provides VSAM with the information to
allocate space for data sets, verify authorization to gain access to them, com-
pile usage statistics on them and relate relative byte addresses (RBAs) to
physical locations.

e VSAM Data Spaces: This is DASD space assigned to VSAM, from which vSAM
allocates space for VSAM data sets. A record of this data space is maintained
in a VSAM catalog. VSAM does its own DASD space management (for example,
allocating space for vSAM data sets). Each vSAM data space can occupy part
or all of a DASD volume.

* VSAM Data Sets: When a VSAM data set is defined, it is allocated space in a
VSAM data space. A record of the data set and the space that it occupies is
maintained in a VSAM catalog. All vSAM data sets must be cataloged.

The sample application supplied with Version 1.3 includes the Access Method
Services job needed to define the VSAM data sets. It is assumed that you already
have defined your VSAM catalog(s) and VSAM data spaces. That is, you have used
the Access Method Services DEFINE command (DEFINE MASTERCATALOG, DEFINE
USERCATALOG, DEFINE SPACE) to establish your VSAM system. This section covers
the use of the Access Method Services DEFINE CLUSTER command. See Using
VSE/VSAM Commands and Macros, SC24-5144, for additional information.

All vsAM data sets are defined with the DEFINE CLUSTER command. At the time a
data set is defined, its attributes and all volume serial numbers of the volumes for
the data set are recorded in the catalog. A catalog record is set up for each compo-
nent of the cluster and one for the cluster as a whole. This method of establishing a
catalog record for each data set component and a catalog record for the cluster
provides the structure to:

¢ store the information required to manage a data set
¢ allow access to each component of the data set as well as the whole data set.

As explained in Chapter 2, a VSAM KSDS consists of two components; the data
component (the actual data to be processed) and the index component (used to
address the data). A VSAM ESDS consists of one component -- the data component.
Figure 3-23 shows the catalog entries made when the data set (cluster) is defined.

3-64 DL/1 DOS/VS Guide For New Users

9

VSAM
CATALOG

CLUSTER ENTRY

INDEX ENTRY

DATA ENTRY

CLUSTER ENTRY

/ SPACE FOR INDEX

DATA ENTRY

SPACE FOR DATA
SPACE FOR DATA

~_

VSAM
KSDS

VSAM
ESDS

Figure 3-23. Defining VSAM Data Sets

An Access Method Services DEFINE command is used to define a VSAM data set.
This means that space is allocated for the data set, the name is assigned, and other
data set information is entered into the VSAM catalog. The DEFINE command does
not put any data into the data set.

The following job is used to define the Inventory, Customer, and Index data
bases to VSAM. Note the use of the DELETE CLUSTER command for each cluster at
the beginning of the job. The DELETE command is necessary if you are redefining

a cluster (to reload a data base) to remove the name of the file from the VSAM

catalog and release the space allocated for it. The following DEFINE commands
then cause the new data set definition to be recorded on the VSAM catalog. This is
job STIDFINV in the sample jobstream.

Chapter 3: Data Base Implementation

3-65

// JOB STJDFINV DEFINE INVENTORY, CUSTOMER AND INDEX DATA BASES
// EXEC IDCAMS,SIZE=AUTO

DELETE (SAMPLE.INVEN) CLUSTER NOERASE PURGE

DELETE (SAMPLE.INVDX) CLUSTER NOERASE PURGE ;

DELETE (SAMPLE.CUST) CLUSTER NOERASE PURGE

DELETE (SAMPLE.CUSTDX1) CLUSTER NOERASE PURGE

DELETE (SAMPLE.CUSTDX2) CLUSTER NOERASE PURGE

DEFINE CLUSTER (-
NAME (SAMPLE . INVEN) -
NONINDEXED) -

DATA (-

NAME (INVENT) -
VOLUMES(111111) -
CYL(1 1) -
CNVSZ(2048) -
RECSZ (2038 2038))

DEFINE CLUSTER (-
NAME (SAMPLE . INVDX) -
INDEXED -
KEYS (06 10)) -

INDEX (-

VOLUMES(111111) -
NAME (SAMPLE. INVEN. INDEX)) -

DATA (-
NAME (SAMPLE . INDX1) -
VOLUMES (111111) -
CYL(1 1) -
FREESPACE(10 10) -
CNVSZ (2048) -

RECSZ (18 18))
DEFINE CLUSTER (-
NAME (SAMPLE . CUST) -
NONINDEXED) -
DATA (-
NAME (CUSTOMER) -
VOLUMES (111111) -
CYL(1 1) - .
CNVSZ(2048) - ,
RECSZ (2038 2038))
DEFINE CLUSTER (-
NAME (SAMPLE . CUSTDX 1) -
INDEXED -
KEYS(31 10)) -
INDEX (-
VOLUMES (111111) -
NAME (SAMPLE.CUDX1.INDEX)) -

DATA (-
NAME (SAMPLE.CUDX1) -
VOLUMES (111111) -
CYL(1 1) -
FREESPACE(10 10) -
CNVSZ(2048) -

RECSZ (42 42))
DEFINE CLUSTER (-
NAME (SAMPLE.CUSTDX2) -
INDEXED -
KEYS(12 10)) -
INDEX (-
VOLUMES (111111) -
NAME (SAMPLE.CUDX2.INDEX)) -
DATA (-
NAME (SAMPLE . CUDX2) -
VOLUMES (111111) -
CYL(1 1) -
CNVSZ(2048) -
RECSZ (36 36))
/t
/6

Notes:
¢ The file attribute information for the DEFINE commands is taken directly
from the output listing of the DBDGEN for each data base. For example, the J
output of the physical DBDGEN for the Inventory data base is:

DL/I DOS/VS Guide For New Users

130+* ,CONTROL INTERVAL SIZE FOR THIS DATA SET IS 2048

141+*,. .NR BLKS IN TRK...3..IN CYL...60..

‘ 348+* ,VSAM DATA SET DESCRIPTIONS
349+%,
350+* ,DATA BASE NAME.ciitiienennn STDIDBP
351+* ,DATA BASE ORGANIZATION............ HDAM
352+% ,DEVICE TYPE.ttt ineennnnnn 3340
353+%,
354+* ,ESDS DATA SET NAME................ STDIDBC
355+%,CONTROL INTERVAL SIZE............. 2048
356+* ,NUMBER OF RECORDS IN CI........... 1
357+% ,RECORD LENGTH. ...t iienneeennnnn 2038
358+%,

The attributes CONTROL INTERVAL SIZE and RECORD LENGTH are used
to specify the parameter values for CNVSZ and RECSZ in the DEFINE
CLUSTER command for SAMPLE.INVEN.

e The values for the KEYS parameter of the DEFINE CLUSTER command for
SAMPLE.INVDX are also in the DBDGEN listing for the Inventory Index - Item
Number data base.

[)

[]
[]
162+% KEY LENGTH. oo vvinenennnnennnns 6
163+% ,RELATIVE KEY POSITION............. 10
[]
[]

This is also the case for the Customer data base and its indexes. Using the
output listing of the DBDGEN for parameter information will assure that you
have defined your VSAM data sets correctly.

L Loading Data Bases
After the data set is defined, it can be loaded with the data intended for the data set
(in this case, the data base records). This entails moving of data records from a
source data set such as a sequential data set or an indexed-sequential data set to the
VSAM data set. DL/I data bases are loaded using a series of DL/I insert calls. This is
job STILDCST in the sample jobstream (DLZSAM40). Because it is necessary to use
DL/I calls to load a data base, this program will be discussed in Chapter 4, follow-
ing the presentation of the DL/I call macros.

Chapter 3: Data Base Implementation 3-67

3-68 DL/I DOS/VS Guide For New Users

C

Chapter 4: Processing Data Bases (Batch Considerations)

Structure of This Chapter

This chapter is divided into four parts. The first part
deals with a general introduction to DL/I data base
processing. It defines the basic structure of a DL/I ap-
plication program. The second part introduces basic
DL/I calls against a single hierarchical data base struc-
ture. It therefore uses the phase 1 sample environment.
It also gives guidelines for Assembler, COBOL, PL/I, and
RPG II application programs. However, the visualiza-
tion of each DL/1 call in particular is done following the
CcoBOL syntax. The third part covers the processing of
logical data bases which are implemented with the DL/1
logical relationships function. The fourth part deals
with secondary indexes.

Introduction to Data Base

Processing

In general, data base processing is transaction oriented.
See “Chapter 2. Data Base Design”, for a more de-
tailed discussion of transactions and data bases. Gener-
ally, an application program accesses one or more data
base records for each transaction it processes. There
are two basic types of DL/I application programs:

The direct access program
e The sequential access program

A direct access program accesses, for every input
transaction, some segments on one or more data base
records. These accesses are based on data base record
and segment identification. This identification is essen-
tially derived from the transaction input. Normally it is
the root-key value and additional (key) field values of
dependent segments. For more complex transactions,
segments could be accessed in several DL/I data bases
concurrently.

A sequential application program accesses sequen-
tially selected segments of all or a consecutive subset of
a particular data base. The sequence of processing data
base records is usually determined by the key of the
root-segment. The most common class of sequential
application programs are report programs, which list
some part of the data base. For such programs, consid-
er using PL/I, RPG II, or the report feature of COBOL.

A DL/1 application program normally processes only
particular segments of the DL/I data bases. The portion
that a given program processes is called an application
data structure. This application data structure is de-
fined in the program specification block (PSB). There is
one PSB defined for each application program. More
than one application program may use the same PSB.
An application data structure always consists of one or

more hierarchical data structures, each of which is
derived from a DL/1 physical or logical data base.

Program Structure and Interface to
DL/I

Language and Compilation

The application program is written in one of four lan-
guages: PL/I, COBOL, RPG II, or Assembler language.
The program is compiled through the user-selected
language compiler and placed in the appropriate pro-
gram library, after it is link-edited with the DL/1 lan-
guage interface module. For RPG II, a translation step
is required prior to compilation.

Interface Components

A DL/1 batch application program executes in a man-
ner similar to any other DOS/VS job in a partition. It
executes, however, under control of DL/I. To perform
the data base accesses as required by the application
program, DL/I uses its own processing modules which
in turn invoke DOS/VS services. DL/I also relies on the
defined DBD and PSB control blocks to determine the
data base organization and the program’s access char-
acteristics. Figure 4-1 presents an overview of DL/ and
the application program during execution.

Before you execute an application program, a
program specification block generation (PSBGEN) must
be performed to create the program specification block
(PSB) for the program. The PSB contains at least one PCB
for each DL/1 data base (logical or physical) accessed
by the application program. The PCBs specify which
segments the program will use and the kind of access
(retrieve, update, insert, delete) the program is allowed
to do. The PSBs are maintained in the DOS/Vs Core
Image Library. The coding and generation of PSBs is
described in Chapter 3 of this manual.

During initialization, both the application program
and its associated PSB are loaded from the library by
the DL/1 DOS/VS system. The DL/1 modules interpret
and execute data base call requests issued by the pro-
gram.

The application program interfaces with DL/I via the
following program elements:

* An entry statement specifying the PCBs utilized by
the program

¢ A pPCB-mask that corresponds to the information
maintained in the pre-constructed PCB and which
receives return information from DL/I

* An1/0 area for passing data segments to and from
the data bases

Chapter 4: Processing Data Bases (Batch Considerations) 4-1

DL/I

DOS/VS

!

DL/
CONTROL - DMB

PSB
PCB
MASK PCB
APPLICATION ‘.__/
PROGRAM

Figure 4-1. DL/I Interface with an Application Program

e Calls to DL/I specifying processing functions
* A termination statement

The PCB mask(s) and 1/0 areas are described in the
program’s data declaration portion. Program entry,
calls to DL/I, processing, and normal termination are
described in the program’s procedural portion. Calls to
DL/I, processing statements, and program termination
may reference PCB mask(s) and/or 1/0 areas. In addi-
tion, DL/I may reference these data areas. Figure 4-2
illustrates how these elements are functionally struc-
tured in a program and how they relate to DL/1. The
elements are discussed in the text that follows.

Entry to an Application Program

Figure 4-2 shows that when DOS/VS gives control to the
DL/1 control facility, the DL/I control program in turn
passes control to the application program (through the
entry point as defined below). Register 1 contains an
address of a list of pointers to PCBs used by the applica-
tion program. At entry, all the PCBs used by the appli-
cation program are specified. The order of the
PCB-names in the entry statement must be the same as
in the psB for this application program. The sequence
of the PCBs in the linkage section or declaration portion
of the application program need not be the same as the
sequence in the entry statement.

COBOL: The following statement must be the first in
the procedure division.

ENTRY ‘DLITCBL’ USING pcb-name-1, ..., pcb-name-n.

4.2 DL/I DOS/VS Guide For New Users

DOS/VS
CORE IMAGE
LIBRARY

PLI: The first statement of a PL/I program must be:

DLITPLI: PROCEDURE (pcb-pointer-1,...,pcbh-pointer-n)
OPTIONS(MAIN);

RPG II: Inordertorunan RPGII program using
DL/I in batch mode, position 56 of the Header Specifi-
cation must contain a “B”. If “B” is not specified, the
Translator does not perform any translate functions.
For the DL/I control program to establish addressabili
ty to the PCBs and pass control to the application pro-
gram, an *ENTRY PLIST must be the first entry in the
Calculation Specifications.

The Translator will automatically generate the
*ENTRY PLIST for a main program if the programmer
does not explicitly specify it. However, the program-
mer must define all data bases as DB-files in the File
Description Specifications with corresponding Contin-
uation Lines (K-lines) specifying the PCBs. (For a de-
tailed description of DB-files and PCB specification see
“Data Base File Definition” in this chapter.) The entry
parameter list will contain a PARM statement for each
PCB, ordered according to the integers ‘ij’ as specified
by PCBij in the K-line. If the programmer chooses to
specify the *ENTRY PLIST himself, the PCB names in the
PARM statements must be in the same sequence as in
the PSB generation for the program. The Translator
will not check the contents of the list.

ASSEMBLER: The entry point to an Assembler lan-
guage program that utilizes DL/I may have any desired

9

9

name. However, when control is passed to the applica-
tion program, register 1 contains the address of a

L variable-length fullword parameter list. Each word in
this list contains a PCB control block address which
must be saved by the application program. These ad-
dresses are in the same order as the PCB statements
specified during PSB generation. The addresses in this
list are subsequently used by the application program
when executing DL/1 calls.

Register 15 contains the address of the application
program entry point. Additionally, registers 14 through
12 must be stored on entry to the application program
in an 18 fullword save area which the application pro-
gram must provide prior to the first DL/I call and which
is pointed to by register 13. Generally, this is per-
formed during program initialization.

C

APPLICATION PROGRAM COMPONENTS

PCB - MASK

RETURN
INFORMATION
from

DL/i

I0/AREA

SEGMENT (s)
to/from = — = = —
DATA BASE

= PROGRAM ENTRY
3= CALLS TO DL/I DB FUNCTIONS — — 3]
RETRIEVE

INSERT |
REPLACE I
DELETE

PROCESSING — — — — — —
. ™
.

—— TERMINATION

—

DL/

>0
—em

<THzm

Figure 4-2. Structure of a Batch Application Program

The following is an example of an initialization performed by an application program, in this case it is the data

base load program, DLZSAMA40:

DLZSAM40 CSECT
USING DLZSAM40,R12
SAVE (14,12)

SAVE AREA ADDR FOR THIS PROGRAM

LR R12,R15 LOAD BASE REG

ST R13,SAVE+4 SAVE AREA CHAIN

LA R13,SAVE

L R9,0(R1) ADDR OF INVENTORY PCB

L R10,4(R1) ADDR OF CUSTOMER PCB

[]

L]

[]
DLZPARM DC A(COUNT) START OF DL/I PARM LIST
DLZFUNC DC A (FUNCTION) INSERT FUNCTION
DLZPCB DC A(0) ADDRESS OF CURRENT PCB
DLZIOAR DC A(IOAREA) ADDRESS OF SEGMENT TO INSERT
DLZSSA DC A(SSA) ADDRESS OF SEGMENT NAME
COUNT DC F'4' NUMBER OF PARMETERS IN LIST
SAVE DS 18F PROGRAM SAVE AREA

L]

[]

[]

END
PCB-Mask

Because the PCB does not actually reside in the ap-

A mask or skeleton data base PCB must be provided in
the application program. The program views a hier-
archical data structure via this mask. One PCB is re-

quired for each data structure. The details are shown
in Figure 4-3.

plication program, care must be taken to define the
PCB-mask as an assembler DSECT, a COBOL Linkage
Section entry, or a PL/I based variable.

For RPG 11 the PCB structure is defined in the input
specifications. If you specify a K-line in the F-specs for
a DB file, the Translator will generate this automatical-

Chapter 4: Processing Data Bases (Batch Considerations) 4-3

ly. If you want to specify names of your choice, you
may do so following the layout of the automatically
generated PCB (Figure 4-3, part 2).

The data base PCB provides specific areas used by 2.

DL/I to inform the application program of the results of
its calls. At execution time, all PCB entries are con-
trolled by DL/I. Access to the PCB entries by the appli-

cation program is for read only purposes. 3.

The following items comprise a PCB for a hierarchi-
cal data structure from a data base.

1. Name of the PCB - This is the name of the area
which refers to the entire section of PCB fields. It

is used in program statements. This name is not a
field in the PCB. It is the Ol level name in the
COBOL mask in Figure 4-3. In RPG 11, it is the
data structure name of the PCB mask.

Name of Data Base - This is the first field in the
PCB and provides the DBD name associated with a
particular data base. It contains character data
and is eight bytes long.

Segment Hierarchy Level Indicator - DL/1 uses this
area to identify the level number of the last seg-
ment encountered that satisfied a level of the call.
When a retrieve is successfully completed, the
level number of the retrieved segment is placed
here. If the retrieve is unsuccessful, the level/

/
/
/
/
APPLICATION
DATA ~
STRUCTURE ~
APPLICATION PROGRAM P
/
/
_ CUSTOMER
— —— — — /
PCB PCB
MASK
I R
| N
\
\ CUSTOMER CREDIT
| \ LOCATION STATUS
| N\ L
* (LINKAGE \
NOTES MASK WRITTEN IN COBOL SECTION) \
— e ——— — — — — — —
T 01 PCBNAME n BYTES FUNCTION
2 02 DBD—NAME PICTURE X(8). — — — — — ! DATA BASE NAME
3| 02 SEG—LEVEL PICTURE XX. _ -2 SEGMENT HIERARCHY
| JUSTIFIED RIGHT. — LEVEL INDICATOR
|
a 02 STATUS—CODE PICTURE XX, — — — — T -2 DL/I RESULTS STATUS CODE
5 | 02 PROC—OPTIONS PICTURE XXXX. — — — |4 DL/l PROCESSING OPTIONS
6 | o02RESERVE-DLI PICTURE S9(5) e RESERVED FOR DL/l
COMPUTATIONAL. —
I |8 SEGMENT NAME FEEDBACK AREA
7 | 02 SEG-NAME—FB PICTURE X(8). — — I-|-a L ENGTH OF FEEDBACK KEY
8 | 02LENGTH-FB—KEY PICTURESQ(S) — — —
| COMPUTATIONAL |- NUMBER OF SENSITIVE
-7 SEGMENTS
9 | 02 NUMB—SENS—SEGS PICTURE §9(5), ~
| — —=N KEY FEEDBACK AREA
10 02 KEY—FB—AREA PICTURE X(N). —
| I

Figure 4-3. Application Program Data Base PCB Mask (Part | of 2)

4-4 DL/1DOS/VS Guide For New Users

RPG INPUT SPECIFICATIONS

GX21 9084-3 U/MO50"

Printed in U.S.A
m Iniernationsl Busines Machine Corporstion
80
Program Punching Graphic Card Eisctro Numbes ' 2 Program 1576 77 18 79
Programmer Daw lmtucvon | p Page o enutcation
5 5 Record Identification Cod: N
I AE ecord Identification N Freld Location (g F Frekd
H 1 2 3 - Indicators
£, ‘ il 1 i '
. A P S g e o N 4 d(sg],
Line Filename zZPR| £ " - 1 F] Field Name k]
2 S S e LB F e | A l-_ 2e0 | .
t Arglz ™ E""’"z Rl EZ sprem HHE M
£ 5 ek e H B HilH | s
A 4 < 4 3 - .
3 4 (8|7 8 8 1013 121314 nnuszohnnﬂnﬂﬂ"wst:zlﬁyg‘-u‘iunn 43144 48 90 €7(48 49 50 51 82|53 54 55 55 57 50(00 80[s1 628 G4cs s T W6 o[TATI M
ofr| |z[p]c[B]ilj 1 Elolst 1T T ' 11T T4 i] 1
of2(|1 h i 1 8| |DBID|N|i|j 2
o3l |1 u 1|0} |S|E[G|L|i|j 3
ofe| 1 1] | [1]2l |s|7lcln]i]i] 4
ofs| [z 13 16} |p[R[ojc|i|j[8 5
ols| |1 B 0 2|0 R(E|S[R|i|j 6
07| |1 b y RESBij overlays RESRij j 2‘0 R|E|S|B|i|] Z?:les
ofs| [x 111 jaly | |2[8] [s|e[s]w]ii 7
ofa |T . n',t_-Aﬂ_ 32 (K E[Y|Lilj 8
el [T 3 ' KEYBij overlays KEYLij =8 {20 3(2||KIE|Y(B]i[j
1NE - 1T B[| {3[3] | [3]6[@[s]s[cN]ili[" 9
2| |1 % . SSGBij overlays SSGNi| 313 38| [s|s|G|B|i |
a| |z b] : | 3(?] |n{n|n] [KE|Y]A|i]j 10
14 |T
BEE I 0) ot 8 2 = 1 - t
nnn s the pcb-length + 36 (pcb-length is taken from
le| (1 pcb-keytength of the K-line of F -specs for DB -files).
7| |T
tla| [T
e I
2(0| |T
I
I 3
I
I h |
I = 1 I
LU NBWBWO VRO IF PO QIS IS IS OB Y PP Sy P Ev 2y vy OP L M IC O SE WO CC L0 1f OCBZ WL (LW KL W EZ L IO M i divigeZiinon 6§ 8§ ¢ 99 » €72 L

Number 01 shesh pi Dt may vary Hightly

Figure 4-3. Application Program Data Base PCB Mask (Part 2 of 2)

number returned is that of the last segment that
satisfied the search criteria along the path from

the root (the root segment level being ‘01”) to the 5.

desired segment. If the call is completely unsatis-
fied, the level returned is ‘00’. This field contains
character data; it is two bytes long and is right-
justified numeric.

4. DL/I Status Code - A status code indicating the
results of the DL/I call is placed in this field and
remains here until another DL/I call uses this PCB.
This field contains two bytes of character data.
When a successful call is executed, this field is
returned blank or with an informative status indi-

cation. DL/I status codes are summarized for
quick reference in Figure 4-4.

DL/I Processing Options - This area contains a
character code that tells DL/I the ‘processing
intent’ of the program against this data base, (for
example, the kinds of calls that may be used by
the program for processing data in this data
base). This field is four bytes long. It is left-
justified. It does not change from call to call. It
gives the default value coded in the PCB PROCOPT
parameter (see Chapter 3), although this value
may be different for each segment. DL/1 will not
allow the application program to change this
field, nor any other field in the PCB.

Chapter 4: Processing Data Bases (Batch Considerations) 4-5

4-6

Reserved Area for DL/I - DL/1 uses this area for
its own internal linkage related to an application
program. This field is one fullword (4 bytes).
Segment Name Feedback Area - DL/I fills this

area with the name of the last segment encoun- 10.

tered that satisfied a level of the call. When a
retrieve call is successful, the name of the re-
trieved segment is placed here. If a retrieve is
unsuccessful, the name returned is that of the last
segment, along the path to the desired segment,
that satisfied the search criteria. This field con-
tains eight bytes of character data. This field may
be useful in GN and GNP calls. If the status code
is ‘AI', the data set filename, of the related data
set, is returned into this area.

Length of Key Feedback Area - This entry speci-
fies the current active length of the key feedback
area described below. This field is a four byte
binary number. For restrictions on the contents
of binary fields in RPG 11, see DOS/VS RPG 11
Language.

Number of Sensitive Segments - This entry speci-
fies the number of segment types in the data base

DL/I DOS/VS Guide For New Users

that the application program is sensitive to. This
represents a count of the number of segments in
the logical data structure as viewed through this
PCB. This field is one fullword (4 bytes) binary.
Key Feedback Area - DL/I places in this area the
concatenated key of the last segment encountered
that satisfied a level of the call. When a retrieve is
successful, the key of the requested segment, and
the key field of each segment along the path to
the requested segment, are concatenated and
placed in this area. The key fields are positioned
from left to right, beginning with the root seg-
ment key and following the hierarchical path.
When a retrieve is unsuccessful, the keys of all
the segments along the path to the requested seg-
ment, for which the search was successful, are
placed in this area. Segments without sequence
fields are not represented in this area.

Note: This area is never cleared, so it should not be used after
a completely unsuccessful call. See Chapter 2 for an explana-
tion of concatenated keys.

DATA BASE CALLS g
L 2
[+ o
w
>
2
ol
Q|0
s
JHE
e
w w dls
Q oy - 5 w
I} o alal (& [
3] < 2lz|lm
2 o|a o|=|>
2 12|12 Jl<| [O|e«|®
> Il [T] =|-
= lolo [Pl I I Y Ols
< slwla|ElE(¥|2fc o
N HHHEHEEERHE DESCRIPTION
AB XX X[X|X]|X]|X X SEGMENT 1/O0 AREA REQUIRED, NONE SPECIFIED IN CALL
AC X| X[X X | X X HIERARCHICAL ERROR IN SSAs
AD X INVALID FUNCTION PARAMETER
AH XX X CALL REQUIRES SSAs, NONE PROVIDED
Al X|IX[X|X|X[X]|X X DATA MANAGEMENT OPEN ERROR
Al X[{X|X|X|[X]|X]|X X INVALID SSA QUALIFICATION FORMAT OR COMMAND CODE
AK X| XX X | X X INVALID FIELD NAME IN CALL
CALL FUNCTION NOT COMPATIBLE WITH PROCESSING OPTION OR
AM X XXX XXX SEGMENT OR PATH SENSITIVITY
AO X|IX|X|X[X]|X]|X X 1/0 ERROR
DA X X SEGMENT KEY FIELD HAS BEEN CHANGED
DJ X [X X NO PRECEDING SUCCESSFUL GET HOLD CALL
DX X X VIOLATED DELETE RULE
GA | % X CROSSED HIERARCHICAL BOUNDARY INTO HIGHER LEVEL
(RETURNED ONLY ON CALLS WITH NO SSA SPECIFIED)
GB * END OF DATA SET, LAST SEGMENT REACHED
(GE *| N | K * SEGMENT OR PARENT SEGMENT NOT FOUND
GK *| % X DIFFERENT SEGMENT TYPE AT SAME LEVEL RETURNED
(RETURNED ON UNQUALIFIED CALLS ONLY)
GP X X A GNP CALL AND NO PARENT ESTABLISHED, OR REQUESTED SEGMENT
LEVEL NOT LOWER THAN PARENT LEVEL
1 * SEGMENT TO INSERT ALREADY EXISTS IN DATA BASE OR IS NON-UNIQUE
IX X X VIOLATED INSERT RULE
KA XIX|X[|X[X]|X]|X X NUMERIC TRUNCATION ERROR DURING CONVERSION
KB XIX|X|X[X][X]|X X CHARACTER TRUNCATION ERROR DURING CONVERSION
KC XIX|X[X[X]|X|X X INVALID PACKED/ZONED DECIMAL CHARACTER DURING CONVERSION
KD X|IX|IX|X[X]|X]X X TYPE CONFLICT DURING CONVERSION
KE X X REPLACE VIOLATION
LB * SEGMENT TO INSERT ALREADY EXISTS IN DATA BASE OR IS NON-UNIQUE
LC * KEY FIELD OF SEGMENTS OUT OF SEQUENCE
LD * NO PARENT FOR THIS SEGMENT HAS BEEN LOADED
LE * SEQUENCE OF SIBLING SEGMENT NOT THE SAME AS DBD SEQUENCE
NA X X DATA IN SEARCH OR SUBSEQUENCE FIELD HAS BEEN CHANGED
NE X X X X INDEX MAINTENANCE CANNOT FIND SEGMENT
NI X |IX[X]|X X INDEX MAINTENANCE UNABLE TO OPEN INDEX DATA BASE
X [XX X DUPLICATE KEY FOUND FOR INDEX DATA BASE
NO X [X|X|X X 1/0 ERROR
RX X X VIOLATED REPLACE RULE
Vi1 X |X|X X INVALID LENGTH FOR VARIABLE LENGTH SEGMENT
XD X ERROR DURING DATA BASE BUFFER WRITE OUT
XH X DATA BASE LOGGING NOT ACTIVE
BB LA AR AR AL db A 4R 2R GOOD. NO STATUS CODE RETURNED, PROCEED!
(* |ndicates status code that could be expected as normal situation.

Figure 4-4. DL/I Status Codes

Chapter 4: Processing Data Bases (Batch Considerations)

Callsto DL/I

COBOL, PL/I and Assembler application programs com-
municate with DL/I using a program call. In RPG II,
communication with DL/1 is established by using an
RQDLI (Request DL/1) command which is translated
into a CALL statement by the Translator. Therefore,
“call” in this manual implies “RQDLI command” for
RPG 1 applications, unless RQDLI is specifically men-
tioned.

Note: Because the syntax of RPG Il is significantly different, RPG II
is discussed separately. See “DL/I Application Program for RPG II”
later in this chapter.

A call request is composed of a call statement with
an argument list. The argument list specifies the proc-
essing function to be performed, the hierarchical path
to, and the segment occurrence of, the segment to be
accessed. One segment or multiple segments along the
hierarchical path of segments may be operated upon
with a single DL/I call. However, a single call will nev-
er return more than one occurrence of one segment
type.

The arguments contained within any DL/I call re-
quest include:

e For PL/I, a field (parm-count) containing the num-
ber of call arguments in the statement, excluding
itself

e The input/output function to be performed
e The PCB name
¢ The segment input/output work area

o The identification of the data segment(s) to be
operated upon.

Following is a sample of a basic call statement for
COBOL.:

CALL 'CBLTDLI' USING function,
PCB-name,l/OArea,SSA1,...,SSAn.

function
identifies the DL/I function to be performed. This
argument is the name of a four-character field
which describes the desired /0 operation. The
DL/1 functions are described briefly below, and in
full detail later in this chapter.

PCB-name
is the name of a data base program communica-
tion block (PCB). See “PCB-name Argument” be-
low.

I/OArea
is the name of an I/0 work area. See the section
“I/0 Work Area Argument” below.

4-8 DL/1 DOS/VS Guide For New Users

SSAI through SSAn
the names of segment search arguments
(optional). A maximum of 1 SSA per level is al-
lowed for the hierarchical path being accessed.
See “Segment Search Arguments” below.

Function Argument: The 1/0 functions specified in the
“function” argument of the call statement request data
services of DL/I. The functions provide a full data
processing capability of retrieving, updating, adding,

and deleting data.

Following are the basic DL/I call functions to re-
quest DL/I data base services:

Meaning DL/1 CAll Function
GET UNIQUE ‘GUbY

GET NEXT ‘GNbY

GET NEXT WITHIN PARENT ‘GNPYH

GET HOLD UNIQUE ‘GHUY’

GET HOLD NEXT ‘GHNY®

GET HOLD NEXT WITHIN PARENT ‘GHNP’

INSERT ‘ISRT’

DELETE ‘DLET’

REPLACE ‘REPL’

Note: b stands for blank, each call function is always four characters.

The above calls constitute four categories of segment
access:

e Retrieve a segment; GU, GN, GNP, GHU, GHN,
GHNP

* Replace a segment: REPL
e Delete a segment: DLET
e Insert a segment: ISRT

In addition to the above data base calls, DL/I pro-
vides system service calls. These are used for requesting
system services such as CHKP (checkpoint). All of the
above calls are discussed in detail in the following sec-
tions. The CHKP call is discussed in detail in Chapter 7,
“DL/1 Data Base Recovery/Restart.”

PCB-name Argument: “‘PCB-name” is the second
(third in PL/1) argument in the call statement. It is the
name of the PCB within the psB that identifies for DL/1
which specific hierarchical data structure the applica-
tion program wishes to process.

I/0 Work Area Argument: The 1/0 work area name
is the third (fourth in PL/1) argument in the call state-
ment. The work area is an area in the application pro-
gram into which DL/I puts a requested segment, or
from which DL/I takes a designated segment. If a com-
mon area is used to process multiple DL/I calls, it must
be as long as the longest path of segments to be proc-
essed. The work area name points to the leftmost byte
of the area. Segment data is always left-justified within
the work area.

9

9

When inserting or retrieving a hierarchical path of
segments with one call, the /0 work area must be large
enough to hold the longest concatenation of segments
to be retrieved or inserted.

Note: It is good practice to make the length of a general I/0 area

large enough to accomodate future segment extensions. An installa-
tion standard could be set for this.

Segment Search Arguments: One SSA can be provid-
ed for each segment accessed in a hierarchical path.
The purpose of the SSA is to identify the segment to be
accessed, by segment name and, optionally, by a field
value.

The basic function of the SSA permits the applica-
tion program to apply three different kinds of logic to
call:

e Narrow the field of search to a particular segment
type, or to a particular segment-occurrence.

e Request that either one segment or a path of seg-
ments be processed.

e Alter DL/I's position in the data base for a subse-
quent call.

Segment search argument (SSA) names represent the
fourth (fifth in PL/I) through last arguments (SSAl
through SSAn) in the call statement. There can be 0 or |
SSA per level, and, since DL/I permits a maximum of 15
levels per data base, a call may contain from 0 to 15
SSA names. An SSA can consist of one, two, or three
elements: the segment name, command code(s), and a
qualification statement as shown in the following dia-
gram.

SEGMENT COMMAND QUALIFICATION STATEMENT (QS)
NAME CODE
Begin QS|Field Name|R.O.| Value End QS
8 bytes variable 1 8 2 |1 - 255 1
where: Field Name
SEGMENT NAME

The segment name must be eight bytes long, left
justified with trailing blanks as required. This is
the name of the segment as defined in a physical
and/or logical DBD referenced in the PCB for this
application program.

COMMAND CODES
The command codes are optional. They provide
functional variations to be applied to the call for
that segment type. An asterisk (*) following the
segment name indicates the presence of one or
more command codes. A blank or a left paren-
thesis is the ending delimiter for command codes.
Blank is used when no qualification statement
exists. The command codes are discussed in de-
tail later in this chapter.

QUALIFICATION STATEMENT
The presence of a qualification statement is indi-
cated by a left parenthesis following the segment
name or, if present, command codes. The qualifi-
cation statement consists of a field name, a rela-
tional operator, and a comparative value.

Begin Qualification Character
The left parenthesis, (, indicates the beginning of
a qualification statement. If the SSA is unquali-
fied, the eight-byte segment name or, if used, the
command codes, should be followed by a blank.

The name of a field statement which appears in
the description of the specified segment type in
the DBD. The name is up to eight characters long,
left-justified with trailing blanks as required. The
named field may be either the key field
(preferably) or another data field within a seg-
ment. The field name is used for searching the
data base, and must have been defined in the
physical DBD.

RO = Relational Operator
A set of two characters which express the manner
in which the contents of the field, referred to by
the field name, is to be tested against the
comparative-value.

Operator Meaning

b=or=b must be equal to

=> must be greater than or equal to
=< must be less than or equal to
b>or>b must be greater than

b<or<b must be less than

—-=

must be not equal to

Note: b represents a blank character.

Chapter 4: Processing Data Bases (Batch Considerations) 4-9

Comparative-value

is the value that the contents of the field, referred
to by the field name, is to be tested against. The
length of the field must be equal to the length of
the named field in the segment of the data base.
That is, it includes leading or trailing blanks (for
alphameric) or zeros (usually needed for numeric
fields) as required. A collating sequence, not an
arithmetic, compare is performed.

End Qualification Character
The right parenthesis,), indicates the end of the
qualification statement.

Qualification

Just as calls are “qualified” by the presence of an SSA,
SSAs are categorized as either “qualified” or
“unqualified”, depending on the presence or absence
of a qualification statement. Command codes may be
included in or omitted from either qualified or unqual-
ified SSAs.

In its simplest form, the SSA is unqualified and con-
sists only of the name of a specific segment type as
defined in the DBD. In this form, the SSA provides DL/I
with enough information to define the segment type
desired by the call.

EXAMPLE:
SEGNAME®b last character blank to unqualify

Qualified ssAs (optional) contain a qualification state-
ment composed of three parts: a field name defined in
the DBD, a relational operator, and a comparative
value. DL/I uses the information in the qualification
statement to test the value of the segment’s key or data
fields within the data base, and thus to determine
whether the segment meets the user’s specifications.
Using this approach, DL/I performs the data base seg-
ment searching and the program need process only
those segments which precisely meet some logical crite-
ria.

EXAMPLE: SEGNAME®(FIELDXXX>=value)

The qualification test is terminated either when the
test is satisfied by an occurrence of the segment type, or
when it is determined that the request cannot be satis-
fied.

General Characteristics of Segment Search
Arguments
e An SSA may consist of the segment name only
(unqualified). It may optionally also include one
or more command codes and a qualification state-
ment.

4-10 DL/1 DOS/VS Guide For New Users

e SsAs following the first SSA must proceed down a
hierarchical path. Not all ssAs in the hierarchical
path need to be specified. DL/1 provides, internal-
ly, SsAs for missing levels according to the rules
given later in this chapter. However, it is a good
practice to always include SSAs for every segment
level.

Examples of SSAs are given with the sample calls at
each DL/1 call discussion in the following section.

Termination

At the end of processing of the application program,
control must be returned to the DL/1 control program.

ANS COBOL PL/I
GOBACK.

Assembler RPG II
RETURN; RETURN (14,12) SETON LR

The GOBACK or RETURN statement in a batch program
returns control to DL/I. In RPG 11 control is returned to
DL/1 by setting on the Last Record (LR) indicator, spec-
ified in the calculation specifications. After DL/I re-
sources are released and the data bases are closed, DL/1
subsequently returns control to DOS/VS.

Warning: Since DL/1 links to your application pro-
gram, return to DL/I causes storage to be occupied by
your program to be released. Therefore you should
close all non-DL/I data sets for COBOL and Assembler
before return to prevent abends during close by
DOS/VS.

Status Code Handling

After each DL/I call, a two-byte status code is returned
in the PCB which is used for that call. The three catego-
ries of status codes are:

* The blank status code, indicating a successful call

¢ Exceptional conditions and warning status codes,
for example, valid status codes from an applica-
tion point of view

* Error status codes, specifying an error condition in
the application program and/or DL/1.

The grouping of status codes in the above categories
is somewhat installation dependent. The examples will,
however, give a basic recommendation after each spe-
cific call function discussion.

You should also use a standard procedure for status
code checking and the handling of error status codes.
The first two categories should be handled by the ap-
plication program after each single call; Figure 4-5
gives an example.

5

CALL 'CBLTDLI' USING

IF PCB-STATUS EQ 'GE' PERFORM
PRINT-NOT FOUND.

IF PCB-STATUS NE 'bb' PERFORM
STATUS-ERROR.

ELSE everything okay, proceed

Figure 4-5. Testing Status Codes

Notice that it is more convenient to directly test the
regular exceptions in-line instead of branching to a
status code check routine. In this way, you clearly see
the processing of conditions that you wish to handle
from an application point of view, leaving other error
situations to a central status code error routine. A de-
tailed discussion of the error status codes and their
handling is presented later in this chapter.

Sample Presentation of a Call

The following sections introduce the DL/I calls. The
discussion of each call includes a sample in the stan-
dard format as shown in Figure 4-6.

Although the sample application programs provided
with DL/I are written in Assembler language, for ease
of presentation the calls in the examples of this text are
presented in ANS COBOL format. The coding of a call in
PL/1, RPG II, or Assembler are presented later. Each call
example contains three sections. The first section pre-
sents the essential elements of working storage as need-
ed for the call. The second part, the processing section,
contains the call itself. Note that the PCB-NAME param-
eter should refer to the selected PCB defined in the
Linkage Section. Some examples include some proc-
essing function description before and/or after the call,
in order to show the call in its right context. The third
section contains the status codes and their interpreta-
tion, that can be expected after the call. The last cate-
gory of status code, labelled “other: error situation”, is
normally handled by a user written status code error
routine.

DL/I Application Program for
RPGII

Access to DL/I is provided in RPG II by means of
RQDLI commands (Request DL/I) and, optionally,
DB-files. The Translator tranlates the RQDLI com-
mands into RPG Il CALL statements and parameter lists
and the DB-file specifications into File Description
Specifications for SPECIAL files.

Note: The following syntax notation is used in the RPG II statement
formats.

* |isused to separate alternatives, one of which has to be coded.
e (optional) is used to indicate that the construct is optional.

e uppercase letters are used to indicate system-defined informa-
tion.

* Jowercase letters are used to indicate user-defined informa-
tion.

RODLI Commands for DB Access

The application program accesses a data base, which
may be defined previously in the File Description
Specifications, with the help of RQDLI commands,
which have to be specified in the Calculation Specifica-
tions. An RQDLI command consists of an RQDLI state-

ment followed by optional ELEM, USSA, and QSSA state-
ments.

The format of the RQDLI statement is as follows:

Position Contents

1-§ see the publication, DOS/VS RPG 11 Language
6 C

7-8 blank | Ln | SR

9-17 see the publication, DOS/VS RPG 11 Language
18-27 func-name

28-32 RQDLI

33-42 file-name (optional)

43-55 blank

56-57 indicator

58-59 blank

60-80 see the publication, DOS/VS RPG 11 Language

Note: No AN or OR lines are allowed with RQDLI commands.

77 GU-FUNC PICTURE XXXX VALUE 'GUbb'.

01 SSAOO01-GU-SE1PART.
02 SSAOO1-BEGIN PICTURE ...
02
02

01 IOAREA PICTURE X(256).

CALL 'CBLTDLI' USING GU-FUNC,PCB—NAME,IOAREA,SSAQ01-GU-STPIITM.

STATUS CODES:

bb: successful call
——: exceptional but correct condition
other: error situation

Figure 4-6. Sample Call Presentation

Chapter 4: Processing Data Bases (Batch Considerations) 4-11

func-name: The following function names may be
used in an RQDLI statement:

e GU Get unique
GHU Get hold unique
* GN Get next
GHN Get hold next
*» GNP Get next within parent
GHNP Get hold next within parent
* DLET Delete
e REPL Replace
e ISRT Insert:

-load a new data base
-add to an existing data base

* PCB Schedule a PSB
¢ TERM Release a PSB
e CHKP Establish a checkpoint

The use and meaning is the same as explained under
“Basic Data Base Processing” in this chapter.

file-name: The file-name specifies the data base to be

accessed. If no FROM|INTO option is explicitly specified
in the RQDLI command, standard RPG data transfer is
used.

standard RPG data transfer: Extracting input fields

from records, or building output records from fields. It
is used if an RQDLI command requires a FROM or INTO
option, which is not explicitly specified. In this case the
1/0 operation is executed in an RPG-like manner,
namely using the record specification in the Input
Specifications for input operations (that is, using the
extract fields routine via READ statement instead of an
explicit INTO option) or building the output record with
the help of Output Specifications (that is, using the
build lines routines via EXCPT instead of an explicit
FROM option).

With an RQDLI command, only the first record is put
out to the specified file; if more records are conditioned
they are ignored. In addition, the RQDLI command
causes all E-records with indicators on to be put out to
the corresponding non-DB files. The user must ensure
that files are conditioned in accordance with the RPG 11
rules for update files (read before write). A user-
written EXCPT causes output to only non-DB files, but
DB files also must be conditioned so that no output is
attempted before a read. For standard data transfer, an
EXCPT is automatically generated.

Note: Using the RPG Il standard data transfer for an input opera-
tion on a DL/I data base, a READ will be issued even if the “record
not found” condition is encountered. That means that in any case

the contents of the fields within the record will be initiated with the
information at which xREC is pointing.

indicator: An indicator must be reserved for use by

the Translator. You may specify in the RQDLI com-
mand which indicator is to be used. If no indicator is

4-12 DL/1DOS/VS Guide For New Users

specified, the Translator will use indicator 13. The
indicator should not be tested since, on return from
DL/I, the status is undefined.

An RQDLI statement may be followed by one or
more ELEM, USSA, or QSSA statements. The ELEM state-
ments specify the FROM|INTO option, the PCB option,
and the SSA option. The $SAs can also be specified by
USSA and QSSA statements, which allow the definition
of an SSA in RPG-like format. The statements speci-
fying the SSA list must be in the proper hierarchical
sequence.

The CHKP RQDLI statement may be followed by
ELEM statements specifying the CHKPID option and the
PCB option. No other ELEM statements are allowed.

An ELEM statement for the CHKPID option has the
following format:

Position Contents

-5 see the publication, DOS/VS RPG Il Language

6 C

7-8 blank (SR | Ln

9-17 blank

18-27 CHKPID

28-32 ELEM

33-42 literal (see note)

43-48 var-name (see note)

49-52 optional entries (see 1. note) (2. the publication,
DOS/VS RPG II Language)

53-59 blank

60-80 see the publication, DOS/ VS RPG II Language

Note: Entries in positions 33-42 and 43-52 are mutually exclusive.

The checkpoint identification can be specified either
in positions 33-42 as an alphameric literal (maximum
length eight bytes) or in positions 43-48 as a variable
referring to an eight byte field. If no checkpoint identi-
fication is specified, the file-name, if any, specified in
the CHKP RQDLI statement is used as a default check-
point identification and for the PCB option if it is not
explicitly specified and a K-line for a PCB has been
defined for the DB-file.

var-name: denotes the name of a variable that de-
scribes an RPG 1 field, array, array-element, or data
structure.

An ELEM statement for the FROM|INTO option has
the following format:

Position Contents

1-5 see the publication, DOS/ VS RPG 11 Language

6 C

7-8 blank | SR | Ln

9-17 blank

18-27 FROM|INTO

28-32 ELEM

33-42 blank

43-48 var-name

49-52 optional entries (see the publication, DOS/VS RPG 11
Language)

53-59 blank

60-80 see the publication, DOS/VS RPG 11 Language

If a FROM|INTO option is explicitly specified in an
ELEM statement, the input/output request is executed
using the specified area, ignoring any record definitions
for the named DB-file in the Input or Output Specifica-
tions. If no FROM|INTO option is used with an RQDLI
command, the record area optionally defined with the
DB-file is loaded with the segment handled by the oper-
ation. The record area (corresponding to a data base
segment) may be described in the Input or Output
Specifications, depending on the requested function.
The INTO option is used with input operations, and the
FROM option is used with output operations.

An ELEM statement for the PCB option has the fol-
lowing format:

Position Contents

1-5 see the publication, DOS/VS RPG II Language

6 C

7-8 blank | SR | Ln

9-17 blank

18-27 PCB

28-32 ELEM

33-42 blank

43-48 var-name

49-52 optional-entries (see the publication, DOS/VS RPG 11
Language)

53-59 blank

60-80 see the publication, DOS/VS RPG II Language

The PCB option may be used to specify the
PCB-address to which the RQDLI request is directed. If
not specified, the PCB-address is derived from the file-
name specified with the RQDLI statement.

Statements for SSA Specification

There are two kinds of statements used to describe an
SSA, which may be used intermixed; either the
SSA-option or the SSA specification in RPG-like format.
In addition, an SSALIST option together with an
ELIST-command are provided for ease of use. (The
physical makeup of the ssA is fully described under
“Calls to DL/I” earlier in this chapter.)

SSA-option
The SSA is a var-name. It is the user’s responsibility
to define the proper format and to put the correct
values into it together with delimiters.

Note: The format of the area has to correspond exactly to the re-
quirements as specified for the SSA in “Calls to DL/I”.

ELEM statements of this kind are characterized by
the keyword SSA in factor 1 of an ELEM statement and
have the following format:

Position Contents

1-5 see the publication, DOS/VS RPG II Language

6 C

7-8 blank | SR | Ln

9-17 blank

18-27 SSA

28-32 ELEM

33-42 blank

43-48 var-name (see note)

49-52 optional entries (see the publication, DOS/VS RPG II
Language)

53-59 blank

60-80 see the publication, DOS/VS RPG II Language

The area referred to by var-name must describe the
SSA with all required entries as defined under SSA in
“Calls to DL/1” earlier in this chapter.

Note: For USSA and QSSA statements, var-name must not be an
array name.

SSA Specification in RPG-Like Format:
(USSA and QSSA Statement)

The statement contains all the relevant fields of an SSA
in RPG-like format. The Translator maps these fields
into the proper DL/1 format. For details see the follow-
ing definitions.

USSA Statement

For an unqualified SSA it is only necessary to specify
either the segment-name in quotes or a field containing
the segment name in factorl of the Calculation Specifi-
cations in a USSA statement.

The proper area is provided by the Translator, and
the segment will be moved into it with the required
blanks.

USSA statements for an unqualified SSA have the
following format in the Calculation Specifications:

Position Contents

1-5 see the publication, DOS/VS RPG II Language
6 C

7-8 blank | SR | Ln

9-17 blank

18-27 segment-name

28-32 USSA

33-55 blank

56-57 command code (optional)

58-59 blank

60-80 see the publication, DOS/VS RPG II Language

segment name: Either var-name containing the
name of a segment (up to 8 characters) or the name of
a segment in apostrophes.

command code: One or two command codes may be
specified. For a more detailed definition of command
codes, see “Calls With Command Codes”, later in this
chapter.

Chapter 4: Processing Data Bases (Batch Considerations) 4-13

QSSA Statement
A QSSA statement for a qualified SSA has the following
format:

Position Contents

1-5 see the publication, DOS/VS RPG Il Language
6 C

7-8 blank | SR | Ln

9-17 blank

18-27 segment-name

28-32 QSSA

3342 segment-field-name

4348 comparative-value

49-51 blank

52 blank

53 blank

54-55 relational-operator

56-57 command-code (optional)

58-59 blank

60-80 see the publication, DOS/VS RPG Il Language

segment name: Asabove with unqualified SSA.
segment-field-name: Name of the segment-field in
apostrophes or var-name containing name of the
segment-field (up to 8 characters). The length of the
field as defined in the DBD is specified by positions
49-51.

comparative-value: Var-name containing the value
against which the contents of the field referred to by
the segment-field-name are to be tested. The length of
the contents of var-name should correspond to that
defined in positions 49-51. This information is used to
generate the proper area. The length as specified must
correspond to the actual length of the field defined by
the segment field name in the DBD.

length: Length of the segment-field (in bytes) in the
DBD.

position 52: A blank entry indicates that the field is
alphameric. MOVEL is used to put the comparative
value into the generated SSA (possibly padded with
blanks to the right).

relational operator: The following relational opera-
tors may be used:

relational

operator meaning

EQ equal to

GE greater than or equal to
LE less than or equal to
GT greater than

LT less than

NE not equal to

command-code: One or two command codes may be
specified for each SsAa. For a more detailed definition,
see “Calls With Command Codes”, later in this chap-
ter.

4-14 DL/1 DOS/VS Guide For New Users

SSALIST-Option

It is possible to specify in an ELEM statement the name
of an sSA-list. This ELEM statement has the following
format:

Position Contents

1-§ see the publication, DOS/VS RPG I1 Language
6 C

7-8 blank | SR | Ln

9-17 blank

18-27 SSALIST

28-32 ELEM

33-42 name-of-SSA-list

43-52 blank

53-59 blank

60-80 see the publication, DOS/VS RPG II Language

The keyword SSALIST indicates that this statement
stands for a list of statements defined elsewhere in an
ELIST. The Translator will expand the SSALIST-option
by the list of SSAs defined in the ELIST. The indicator
in position 7-8 of the SSALIST option is appended to
each SSA. As default the indicator in position 7-8 of the
RQDLI statement is used.

name-of-SSA-list: This name refers to the name of
the ELIST defined in an ELIST statement.

ELIST-Command

The ELIST command defines the SSA list. The ELIST
command consists of an ELIST statement immediately
followed by one or more statements specifying SSAs.
The ELIST statement has the following format:

Position Contents

1-5 see the publication, DOS/VS RPG 11 Language
6 C

7-8 blank | SR | Ln

9-17 blank

18-27 name-of-SSA-list

28-32 ELIST

33-59 blank

60-80 see the publication, DOS/ VS RPG II Language

The statements specifying SSAs must be specified in
the proper hierarchical sequence. The format of the
statements is the same as that used to describe the SSA
directly in the RQDLI commands.

Restriction: The SSALIST-option must not be used in an ELIST
command. Optionally, a DB-file may be specified to access DL/I.

DB (Data Base) File Definition

Each data base an application program wants to access
may be defined in the File Description Sepcifications.
The File Description Specifications for such a DB-file
are only required if standard data transfer is intended
for that DB-file and/or if use is made of the possibility
of defining the PCB for a DB-file via a K-line in the File
Description Specifications.

The File Description Specification for a DB-file has
the following format:

Position Contents

1-5 see the publication, DOS/VS RPG II Language
6 F

7-14 file-name

15 I/1U|0

16 D | blank

17-18 blank

19 F | blank

20-23 blank

24-27 maximum-segment-length

28-39 blank

4046 DB

47-74 blank

75-80 see the publication, DOS/VS RPG 11 Language

file name: The file-name can be freely chosen; it is
the name by which the application refers to the data
base.

maximum-segment-length: This length specifies the
maximum length (in bytes) of the segments of the data
base which the application is going to access. This
length is used if no explicit FROM|INTO option is speci-
fied in an RQDLI command referencing the specific
DB-file. In this case the segment has to be defined as a
record in the Input or Output Specifications. If this
length is omitted, a length of 80 is assumed.

Notes:

e If position 19 is blank, it will default to F.
¢ OQutput Specifications for DB-files must be of type E (position
15=E), exception records.

Additionally, for each DB File Description Specifi-
cation, a continuation line may be specified which
defines the corresponding PCB. The continuation line
has the following format:

Position Contents

1-5 see the publication, DOS/VS RPG 11 Language
6 F

7-23 blank

24-27 pcb-key-length (optional)

28-50 blank

51-52 blank

53 K

54-59 PCB

60-65 PCBij

66-74 blank

75-80 see the publication, DOS/VS RPG II Language

PCBij: This defines the program communication
block (PCB) connected with the DB file. ij... establishes
the relationship to the ordering of the PCBs in the PSB.
ij defines this data base PCB as the element ij of the
ordered list of PCBs. This ordering is used when the
addressability of PCBs is established; ij may range be-
tween 01 and 99.

pcb-key-length: This integer specifies the length (less
than or equal to 256) of the field in the data structure
defining the PCB. If a K-line is specified, the Translator
automatically generates the definition of the data struc-
ture for the PCB and puts it into the Input Specifica-

tions, with the names of the fields qualified by ij. The
general format and the naming conventions can be
seen in Figure 4-3 in “PCB Mask”, in this chapter. If
the K-lines for several DB Files define the same PCBij
name, only the first causes the PCB data structure to be
generated. The others are ignored and a warning mes-
sage is issued. However, when these file names are
specified in RQDLI statements, this PCBij name is used
as the default value for the PCB option.

If no K-line is specified, it is the user’s responsibility
to define the proper PCB. For more detailed informa-
tion, see “PCB Mask”, in this chapter.

Note: With the automatic generation of the PCB data structure,
name clashes with user-defined field names may occur.

The user should never write into PCB fields.

Basic Data Base Processing
DL/I Positioning

To satisfy a call, DL/I relies on two sources of segment
identification:

e The established position in the data base as set by
the previous call against the PCB

® The segment search arguments as provided with
the call

The data base position is the knowledge by DL/1 of
the location of the last segment retrieved and all seg-
ments above it in the hierarchy. This position is main-
tained by DL/I as an extension of, and reflected in, the
PCB. When an application program has multiple PCBs
for a single data base, these positions are maintained
independently. For each PCB, the position is represent-
ed by the concatenated key of the hierarchical path
from the root segment down to the lowest level segment
accessed. It also includes the positions of non-keyed
segments.

If no current position exists in the data base, then
the assumed current position is the start of the data
base. This is the first physical data base record in the
data base. With HDAM this is not necessarily the root-
segment with the lowest key value.

Sample Environment
The phase 1 sample environment is used to exemplify
the basic DL/I calls presented in the following sections.

The data base used is the Inventory data base as shown
in Figure 4-7.

Chapter 4: Processing Data Bases (Batch Considerations) 4-15

INVENTORY
ITEM
(STPIITM)
SUBSTITUTE ITEM
YSI'EI'IgR/ONRD) ITEM LOCATION
(STCISUB) (STSILOC)

Figure 4-7. The Phase | Inventory Data Base

Retrieving Segments
There are three basic functions in retrieving a segment:

e Retrieve a specific segment: GU
* Retrieve the next segment in the hierarchy: GN

e Retrieve the next segment within parent in the
hierarchy: GNP

Get Unique Call (GU)

The get unique call, function code ‘GUbY’, retrieves one
segment in a hierarchical path. The segment retrieved
is identified by an SSA for each level in the hierarchical
path down to and including the requested segment.
Each ssa should contain at least the segment name.
The SsSA for the root segment should provide the root-
key value. Figure 4-8 shows an example of the get
unique call.

The main use of the GU call is to position your pro-
gram to a data base record to obtain (a path of)
segment(s). Typically, the GU call is used only once for
each data base record you wish to access. Additional
segments within the data base record are then retrieved
by means of get next or get next within parent calls (see
following section). The GU call can also be used for
retrieving a dependent segment, by adding SSAs to the
call. For example, if you add a second SSA which speci-
fies the item location, you would retrieve an ITEM
LOCATION segment below the identified item. If the
SSA did not provide an item location number, this
would be the first occurrence of the ITEM LOCATION
segment for this item.

77 GU-FUNC PICTURE XXXX VALUE 'GUbb'.
01 SSA001-GU-~-STPIITM.

02 SSA001-STQIINO PICTURE X(8).

02 SSAO001-END PICTURE X VALUE ')'.
01 TIOAREA PICTURE X(256).

02 SSAQ01-BEGIN PICTURE X(19) VALUE 'STPIITMb(STQIINOb=b".

MOVE ITEM-NUMBER TO SSA001-STQIINO.

CALL 'CBLTDLI' USING GU-FUNC,PCB-NAME, IOAREA,SSAQ001-GU-STPIITM.

STATUS CODES:

other: error situation

bb: requested INVENTORY ITEM segment has been moved to IOAREA
GE: segment not found; supplied item number not in data base

Figure 4-8. Basic Get Unique Call

Get Next Call (GN)

The get next call, function code ‘GNbb’, retrieves the
next segment in the hierarchy as defined in the PCB. To
determine the next segment, DL/I relies on the previ-
ously established position.

The unqualified get next call (Figure 4-9) using no
SSAs will, if repeated, return the segments in the data
base in hierarchical sequence. DL/I returns only those
segments that are defined as sensitive in the PCB for the
program issuing the call. If this call were issued after
the get unique call of Figure 4-8, it would retrieve the
first VENDOR segment for this INVENTORY ITEM (if one
exists). Subsequent calls will retrieve all other
VENDOR, SUBSTITUTE ITEM, and ITEM LOCATION seg-
ments for this INVENTORY ITEM. After this, the next

4-16 DL/1 DOS/VS Guide For New Users

INVENTORY ITEM segment is retrieved and its depend-
ent segments, etc., until the end of the data base is
reached. DL/I returns special status codes whenever a
different segment type at the same level or a higher
level is returned. No special status code is returned
when a different segment at a lower level is returned.
You can check for reaching a lower level segment type
using the segment level indicator in the PCB. Remem-
ber, only those segments to which your program is
sensitive via its PCB are available to your application
program.

Although the above unqualified GN call may be
efficient, especially for report programs, you should use
a qualified GN call whenever possible.

<

77 GN-FUNC PICTURE XXXX VALUE 'GNbb'.
01 IOAREA PICTURE X(256).

CALL 'CBLTDLI' USING GN-FUNC,PCB-NAME, IOAREA.

STATUS CODES:

bb: if a previous call retrieved an INVENTORY ITEM, then
a VENDOR segment will be retrieved.

GK: a segment is returned in IOAREA, but it is a different
type at the same level, for instance, a SUBSTITUTE
ITEM segment after the last VENDOR segment.

GA: segment returned in IOAREA, but it is of a higher level
than the last one, that is, a new INVENTORY ITEM segment

GB: end of data base reached, no segment retrieved

other: error situation

Figure 4-9. Unqualified Get Next Call

Qualified Get Next Call: The qualified GN call add a fully qualified SSA for the INVENTORY ITEM seg-
should at least identify the segment you want to re- ment. This would be the same as used in Figure 4-8.
trieve. In doing so, you will achieve a greater inde-

pendence towards possible data base structure changes Note: You could follow this call with the get next within parent call,

function code ‘GNP®’, with a qualified SSA. See the Application

in the future. If_you sgpply the segment name in the Programming Reference Manual for specific details about coding this

SSA, then you will retrieve all segments of that type call.

from all data base records with subsequent get next

calls (see figure 4-10). An example of a get next call with a fully qualified
Repetition of the qualified GN call (Figure 4-10) will SSA is shown in Figure 4-11. Because the fully quali-

retrieve all subsequent SUBSTITUTE ITEM segments of fied ssA always clearly identifies .the h?erarchlcal path

the data base until the end of the data base is reached. and the segment you want to retrieve, it should be used

To limit this to a specific INVENTORY ITEM, you could whenever possible.

77 GN-FUNC PICTURE XXXX VALUE 'GNbb'.
01 SSAQ02-GN-STCISUB PICTURE X(9) VALUE 'STCISUBbb'.
01 TIOAREA PICTURE X(256).

CALL 'CBLTDLI' USING GN-FUNC,PCB-NAME,IOAREA,SSA002-GN-STCISUB.

Note the use of the function code in the SSA name to help the
application programmer identify which SSA to use. SSAs for each
type of call for each segment in each data base should be
constructed once by the data base administration function and
placed in the source statement library so all programs using
that data base will use common names.

STATUS CODES:

bb: next SUBSTITUTE ITEM segment has been moved to IOAREA
GB: end of data base reached, no more SUBSTITUTE ITEM segments
other: error situation

Figure 4-10. Qualified Get Next Call

Chapter 4: Processing Data Bases (Batch Considerations) 4-17

77 GN-FUNC PICTURE XXXX VALUE 'GNbb'.
01 SSA001-GU-STPIITM.

02 SSA001-STQIINO PICTURE X(6).
02 SSAO001-END PICTURE X VALUE ')'.

01 TIOAREA PICTURE X(256).

02 SSAO01-BEGIN PICTURE X(19) VALUE 'STPIITMb(STQIINOb=b.

01 SSA002-GN-STCISUB PICTURE X(9) VALUE 'STCISUBbb'.

SSA002-GN-STCISUB.

CALL 'CBLTDLI' USING GN-FUNC,PCB-NAME,IOAREA,SSA001-GU-STPIITM,

STATUS CODES:
bb: next SUBSTITUTE ITEM segment is in IOAREA

or item number in SSA001 does not exist

other: error situation

GE: segment not found; no more substitute items for this item,

Figure 4-11. Get Next Call With Qualified SSA
Get Hold Calls

To change the contents of a segment in a data base
through a replace or delete call, the program must first
obtain the segment. It then changes the segment’s con-
tents and requests DL/! to replace the segment in the
data base or to delete it from the data base.

This is done by using the get hold calls. These func-
tion codes are like the standard get function, except the
letter ‘H’ immediately follows the letter ‘G’ in the code
(for example, GHU, GHN, GHNP). The get hold calls
function exactly as the corresponding get calls for the
user. For DL/1, they indicate a possible subsequent
replace or delete call.

After DL/1 has provided the requested segment to
the user, one or more fields, but not the sequence field,
in the segment may be changed.

After the user has changed or examined the segment
contents, he can call DL/1 to return the segment to, or
delete it from, the data base. If after issuing a get hold
call, the program determines that it is not necessary to
change or delete the retrieved segment, the program
may proceed with other processing, and the ‘hold’ will
be released by the next DL/I call against the same PCB.

4-18 DL/I DOS/VS Guide For New Users

Updating Segments

Segments can be updated by application programs and
returned to DL/!1 for restoring in the data base, with the
replace call, function code ‘REPL’. Two conditions must
be met:

e The segment must first be retrieved with a get
hold call (GHU, GHN, or GHNP); no intervening calls
are allowed referencing the same PCB.

¢ The sequence field of the segment cannot be
changed; this can only be done with combinations
of delete and insert calls for the segment and all its
dependents.

Figure 4-12 shows an example of a combination of a
GHU and REPL call. Notice that the replace call must
not specify an SSA for the segment to be replaced. If,
after retrieving a segment with a get hold call, the pro-
gram decides not to update the segment, it need not
issue a replace call. Instead the program can proceed
as if it were a normal call.

Note: Because there is very little performance difference between the
get and the get hold call, you should use the get hold call whenever
there is a reasonable chance that you will change the segment.

C

| 77 GHU-FUNC PICTURE XXXX VALUE 'GHUb'.
| 77 REPL-FUNC PICTURE XXXX VALUE 'REPL'.
01 SSA001-GU-STPIITM.

02 SSAO001-STQIINO PICTURE X(6).
02 SSAOO1-END PICTURE X VALUE ')'.

01 IOAREA PICTURE X(256).

02 SSAO01-BEGIN PICTURE X(19) VALUE 'STPIITMb(STQIINOb=bH".

01 SSA002-GN-STCISUB PICTURE X(9) VALUE 'STCISUBbb.

MOVE INVENTORY-ITEM-NO TO SSAO001-STQIINO.
SSA002-GN-STCISUB.

in the IOAREA by the program.

CALL 'CBLTDLI' USING GHU-FUNC,PCB-NAME, IOAREA,SSAQ001-GU-STPIITM,
The retrieved SUBSTITUTE ITEM segment can now be changed

CALL 'CBLTDLI' USING REPL-FUNC,PCB-NAME, IOAREA.

STATUS CODES (after REPL call):

other: error situation

bb: segment is replaced with contents in IOAREA

Figure 4-12. Basic REPL Call

Deleting Segments

To delete the occurrence of a segment from a data
base, the segment must first be obtained by issuing a
get hold call (GHU, GHN, or GHNP) through DL/I. Once
the segment has been acquired, the DLET call may be
issued.

No DL/I call that uses the same PCB must intervene
between the get hold call and the DLET call, or the
DLET call is rejected. Quite often a program may want
to process a segment prior to deleting it. This is permit-
ted as long as the processing does not involve a DL/1
call that refers to the same data base PCB used for the
get hold/delete calls. However, other PCBs may be
referred to between the get hold and delete calls.

DL/I is advised that a segment is to be deleted when
the user issues a call that has the function DLET. The
deletion of a parent, in effect, deletes all the segment
occurrences beneath that parent, whether or not the
application program is sensitive to those segments. If
the segment being deleted is a root segment, the whole
data base record is deleted. The segment to be deleted
must still be in the IOAREA of the delete call (with
which no SSA is used), and its sequence field must not
have been changed. Figure 4-13 gives an example of a
DLET call.

77 GHU-FUNC PICTURE XXXX VALUE 'GHUb'.
77 DLET-FUNC PICTURE XXXX VALUE 'DLET'.
01 SSA001-GU-STPIITM.

02 SSAO001-STQIINO PICTURE X(6).
02 SSA001-END PICTURE X VALUE ')'.

01 TIOAREA PICTURE X(256).

02 SSAO001-BEGIN PICTURE X(19) VALUE 'STPIITMb(STQIINOb=b"'.

01 SSA002-GN-STCISUB PICTURE X(9) VALUE 'STCISUBbb'.

SSA002-GN-STCISUB.

the IOAREA by the program

CALL 'CBLTDLI' USING GHU-FUNC,PCB-NAME,IOAREA,SSA001-GU-STPIITM,
The retrieved SUBSTITUTE ITEM segment can now be processed in

CALL 'CBLTDLI' USING DLET-FUNC,PCB-NAME, IOAREA.

STATUS CODES (after DLET call):

deleted.
other: error situation

bb: requested SUBSTITUTE ITEM segment is deleted from the
data base; all its dependents, if any, are also

Figure 4-13. Basic DLET Call

Chapter 4: Processing Data Bases (Batch Considerations) 4-19

Inserting Segments
Adding new segment occurrences to a data base is done
with the insert call, function code “ISRT’.

The DL/1 insert call is used for two distinct purposes:

* Load the segments during creation of a data base,
and

¢ Add new occurrences of an existing segment type
into an established data base.

The processing options field in the pCB indicates
whether the data base is being added to or loaded. The
format of the insert call is identical for either use.

When loading or inserting, the last SSA must specify
only the name of the segment being inserted. It should
specify only the segment name, not the sequence field.
Thus an unqualified SSA is always required.

Up to the level to be inserted, the SSA evaluation
and positioning for an insert call is exactly the same as

for a GU call. For the level to be inserted, the value of
the sequence field in the segment in the user 1/0 area is
used to establish the insert position. If no sequence
field is identified, then the segment is inserted
(assuming RULES=LAST) at the end of the physical twin
chain. If multiple non-unique keys are allowed, then
the segment is inserted after existing segments with the
same key value.

Figure 4-14 shows an example of an ISRT call. The
status codes in this example apply only to inserts after
the data base has been loaded. The status codes at
initial load time are discussed under the topic “Loading
A Basic Data Base” later in this chapter.

Note: There is no need to check the existence of a segment in the
data base with a preceding retrieve call. DL/I will do that at insert
time, and will notify you with an Il or GE status code. Checking
previous existence is only relevant if the segment has no sequence
field. However, if your application typically expects a segment to be
present in the data base, then you should check for its existence first.
If typically the segment does not exist, then insert first.

77 ISRT-FUNC PICTURE XXXX VALUE 'ISRT'.
01 SSA00-GU-STPIITM.

02 SSAQ00T-STQIINO PICTURE X(6).
02 SSAQ01-END PICTURE X VALUE ')'.

01 TIOAREA PICTURE X(256).

02 SSAQ0T-BEGIN PICTURE X(19) VALUE 'STPIITMb(STQIINOb=b'.

01 SSA002-GN-STCISUB PICTURE X(9) VALUE 'STCISUBbBb'.

MOVE INVENTORY-ITEM-NO TO SSA001-STQIINO.
MOVE SUBSTITUTE-ITEM TO IOAREA.

SSAQ002-GN—-STCISUB.

CALL 'CBLTDLI' USING ISRT-FUNC,PCB—-NAME, IOAREA,SSA001-GU-STPIITM,

STATUS CODES:

bb: new SUBSTITUTE ITEM segment is inserted in data base

II: segment to insert already exists in data base

GE: segment not found; the requested inventory item number
(i.e., the parent of the segment to be inserted) is not
in the data base.

other: error condition

Figure 4-14. Basic ISRT Call

4-20 DL/1 DOS/VS Guide For New Users

Calls With Command Codes

Both unqualified and qualified SSAs may contain one
or more optional command codes which specify func-
tional variations applicable to either the call function
or the segment qualification. Command codes in an
SSA are always prefixed by an asterisk (*), which im-
mediately follows the 8-byte segment name. Figure
4-15 illustrates this. Following are some important
command codes.

D Command Code

The ‘D’ command code is the one most widely used. It
requests DL/I to issue path calls. A path call enables a
hierarchical path of segments to be inserted or re-
trieved with one call. (A “path” was defined earlier as
the hierarchical sequence of segments, one per level,
leading from a segment at one level to a particular
segment at a lower level). The meaning of the ‘D’ com-
mand code is as follows:

e For retrieval calls, multiple segments in a hier-
archical path will be moved to the 1/0 area with a
single call. This type of call will subsequently be
referred to as a path call. The first through the last
segment retrieved are concatenated in the user’s

1/0 area. Intermediate SSAs may be present with
or without the ‘D’ command code. If without,
these segments are not moved to the user’s I/0
area. The segment named in the PCB segment
name feedback area is the lowest-level segment
retrieved, or the last level satisfied in the call in
case of a not-found condition. Higher-level seg-
ments associated with SSAs having the ‘D’ com-
mand code will have been placed in the user’s I/0
area even in the not-found case. The ‘D’ is not
necessary for the last SSA in the call, because the
segment that satisfies the last level is always
moved to the user’s I/0 area. A processing option
of ‘P must be specified in the PSBGEN for any seg-
ment type for which a command code of ‘D’ is
used.

¢ For insert calls, the ‘D’ command code designates
the first segment type in the path to be inserted.
The ssAs for lower-level segments in the path need
not have the ‘D’ command code set, that is, the ‘D’
command code is propagated to all specified
lower-level segments.

Figure 4-15 shows an example of a path call.

77 GU-FUNC PICTURE XXXX VALUE 'GUbb'.
01 SSA004-GUD-STPIITM.

02 SSA004-STQIINO PICTURE X(6).
02 SSAOO4-END PICTURE X VALUE ')'.

01 TIOAREA PICTURE X(256).

02 SSA004-BEGIN PICTURE X(21) VALUE 'STPIITMb*D(STQIINOb=b'.

01 SSA005-GN-STSILOC PICTURE X(9) VALUE 'STSILOCHb'.

CALL 'CBLTDLI' USING GU-FUNC,PCB-NAME, IOAREA,

SSA004-GUD-STPIITM,SSA005-GN-STSILOC.

STATUS CODES:

have been placed in IOAREA

other: error condition

bb: both segments (INVENTORY ITEM and ITEM LOCATION)

GE: segment not found; INVENTORY ITEM segment may be retrieved
in IOAREA; check segment name and level indicator in PCB.

Figure 4-15. Sample Path Retrieve Call

The correct use of the path call can provide a signifi-
cant performance advantage. You should use it when-
ever possible, even if the chance of the existence or the
need for the dependent segment(s) is relatively small.
If, for instance, you would need, in 10% or more of the
occurrences, the first dependent segment after you
inspect the parent, then it is generally advantageous to
use a path call to retrieve them both initially.

N Command Code

When a replace call follows a path retrieve call, it is
assumed that all segments previously retrieved with the
path call are being replaced. If any of the segments
have not been changed, and, therefore, need not be
replaced, the ‘N’ command code may be set at those
levels, telling DL/1 not to replace the segment at this
level of the path. The status codes returned are the
same as for a regular replace call.

Chapter 4: Processing Data Bases (Batch Considerations) 4-21

F Command Code

This command code allows you to back up to the first
occurrence of a segment under its parent. It has mean-
ing only for a get next call. A get unique call always
starts with the first occurrence. Command code ‘F' is
disregarded for the root segment.

L Command Code

This command code allows you to retrieve the last
occurrence of the segment type that satisfies the quali-
fication statement; or, if unqualified, to retrieve the last
occurrence of this segment type under its parent. If this
command code is used at the root level, it is disregard-
ed. When used with ISKRT calls, the command code
applies only to segments with a nonunique sequence
field and with RULES=(,FIRST) or RULES=({HERE), in
which case the rule is overridden.

Q Command Code

The ‘@ command code causes DL/I to lock the
segment(s) returned by the call to prevent modification
by another task.

It provides a facility which permits segments to be
enqueued (locked) when the application needs to ex-
amine a number of segments and at the same time,
prevent any of them from being modified while the
others are being examined. The application can obtain
the segments using the ‘Q’ command code and then
retrieve them again with the assurance that none of
them can be modified until the application terminates
or issues a checkpoint.

To provide IMS compatibility, the ‘@ command code
must be followed by the character ‘A’
Note: By definition, the ‘Q’ command is always followed by a one-

byte field. Therefore, the second byte after the ‘Q’ must contain
another command code, a left paren, or a blank.

The ‘@' command code will be ignored by DL/I un-
less the segment for which it was specified is actually
returned to the user (that is, used with *D or with the
lowest level SSA).

Data Base Positioning After a DL/I
Call

As stated before, the data base position is used by DL/1
to satisfy the next call against the PCB. The segment
level, segment name, and the key feedback areas of the
PCB are used to present the data base position to the
application program.

The following basic rules apply:

e If a get call is completely satisfied, current posi-
tion in the data base is reflected in the PCB key
feedback area.

4-22 DL/1 DOS/VS Guide For New Users

* A replace call does not change current position in
the data base.

* Data base position after a successful insert call is
immediately after the inserted segment.

* Data base position after return of an II status code
is immediately prior to the duplicate segment.
This positioning allows the duplicate segment to
be retrieved with a GN call.

¢ Data base position after a successful delete call is
immediately after all dependents of the deleted
segment. If no dependents existed, data base posi-
tion is immediately after the deleted segment.

e Data base position is unchanged by an unsuccess-
ful delete call.

* After a (partial) unsuccessful retrieve call, the PCB
reflects the lowest level segment which satisfied
the call. The segment name or the key feed back
length should be used to determine the length of
the relevant data in the key feedback area. Con-
tents of the key feedback area beyond the length
value must not be used, because the feedback area
is never cleared after previous calls. If the level-
one (root) SSA cannot be satisfied, the segment
name is cleared to blank, and the level and key
feedback length are set to 0.

In considering ‘current position in the data base’,
remember that DL/1 must first establish a starting posi-
tion to be used in satisfying the call. This starting posi-
tion is the current position in the data base for get next
calls, and is a unique position normally established by
the root ssa for get unique calls.

The following are clarifications of ‘current position
in the data base’ for special situations:

* If no current position exists in the data base, then
the assumed current position is the start of the
data base.

e If the end of the data base is encountered, then the
assumed current position to be used by the next
call is the start of the data base.

e Ifa get unique call is unsatisfied at the root level,
then the current position is such that the next seg-
ment retrieved is the first root segment with a key
value higher than the one specified for the unsuc-
cessful call. Two exception are: 1. When the end
of the data base is reached, and 2. For HDAM,
where it is the next segment in physical sequence.

You can always reestablish your data base position-
ing with a GU call specifying all the segment key values
in the hierarchical path. It is highly recommended that
you use a get unique call after each not found condi-
tion.

Using Multiple PCBs For One Data

Base

Whenever there is a need to maintain two or more
independent positions in one data base, you should use
different PCBs. This avoids the reissue of get unique
calls to switch forward and backward from one data
base record or hierarchical path to another. There are
no restrictions as to the call functions available in these
multiple PCBs. However, to avoid position confusion in
the application program, you should not apply changes
via two PCBs to the same hierarchical path. For sim-
plicity reasons, it is best to limit the updates to one PCB
unless this would cause additional calls.

COBOL Batch Program Structure

Figure 4-16 illustrates in outline form the fundamental
parts in the structure of a COBOL batch program which,
in this example is to retrieve data from a detail file to
update a master data base. The following explanation
relates to the reference numbers along the left side of
the figure.

1. A 77 level or 01 level working storage entry de-
fines each of the call functions used by the batch
program. Each picture clause is defined as 4 al-
phameric characters and has a value assigned for
each function (for example, ‘GUbY’). If the op-
tional count field were to be included in the call
statement, count values could be initialized for
each type of call. The COBOL copy function could
be used to include these standard descriptions
into the program.

2. A 9-byte area is set up to be used in the calls that
require an unqualified SSA. Before the call is is-
sued, a segment name is moved into this field. If a
call requires 2 or more unqualified SSAs, addi-
tional areas may be required.

3. An 0l level working storage entry defines each
SSA used by an application program.

A separate SSA structure is required for each seg-
ment type accessed by the program because the
key-value fields should be different. Once the
fields other than key-value are initialized, they
need not be altered.

4. A 01 level working storage entry defines the pro-
gram segment 1/0 area. This area can<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>