
GC33-5371-4
File No. 5370-34 .

DOS/VS

S~fstems System Management Guide .

Release 31

Fift:h Edition (March, t 975)

This is a major revision Qf, and obsoletes, GC33-5371-3. It includes changes reflecting
SUPlPort for POWER/VS and VT AM. Changes or additions to' the text or illustrations
are indicated by a vertical iine to the left of the change.

This edition ~pplies to Version 5, Release 31 of the 10M Disk Operating System/Virtual
Storage, DOS/VS, and to all subsequent versions and releases until otherw.ise indicated
in new editions or Technical Newsletters. Changes are cO[ltinually made to the
information herein; before usin'g this publication in connection with operation of IBM
systtems, consult the latest Virtual.Storage Supplement (to' IBM System/360 and
System/370 Bibliography), GC20-0001, for the editions that are applicable and current.

NOlte: For the availability dates of features and programming support described in this
manual, please contact your IBM representative or the IBM branch office serving your
locality.

Requests fo,r copies of IBM publications should be made to your HiM representative or
tothe IBM branch office serving your locality.

A 'form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Laboratory, Publications
De:partment, P.O. Box 24, Uithoorn, The Netherlands. Comments become the property
of IBM.

~ Copyright "n~ernational Business Machines Corporation 1972, 1973,1974.1975

TllllS MJ~AL •••

. . '. is a' guide to the IBM, Disk Operating System/Virtual Storage
(DOS/VS). The system in its entirety is discussed on a conceptual and
functional level. System management refers not only to the way DOS/VS is
organized, but also to the way :the user can efficiently manage the system
facilities at his disposal. This manual, therefore, does mor~ than describe
the functions and interaction of the system control and system service
programs that constitute DOS/VS. It also describes how you -- asa
systems planner, systems programmer, applications.' programmer, or operator
-- can use DOS/VS to you/best advantage: "

Before you begin reading this manual, you should be familiar with the
information contained in the Introduction to DOS/VS. GC33-5370.

This book is not a guide to data management; instead, a separate manual is,
provided for this purpose, called the DOS/VS Data Management Guide.
GC33-5372.

A manual that complements both the DOS I VS System Management Guide
and the DOS/VS Data, Maflagement Guide is also available at this time to
'nieet your installation's planning requirements. It is called DOS!VS
Supervisor and I/O Macros. GC33-5373.

After reading the ahove mentioned manu~ls, you should be able to turn
directly to the DOS/VS library of reference manuals in order to work- with ,
your operating system. A ~eference manual is organized so that you can <

easily retrieve specific information on the formats of the .control statem«?nts,
macro instructions, labels, and messages, which you deal with daily.

This manual is divided into three parts:

Part I: The Organization of DOS/VS' provides conceptual, descnptive, and
planning information. Part I contains three: chapters. The first chapter
introduces the concepts of sev~al of the. main' topics discussed '
throughout this part of the man9al.· The second chapter summarizes the
standard and optional features' of DOS!VS. The third chapter includes
planning information for system generation. "

Part II: Using the System provides the, information on how to use the
system. Part II contains five chapters, which consist of guidance­
information on ~sing_ the IPL, job 'c~ntrol, -linkage editor, librarian, and·
POWER/VS programs.

Part III: Designing Prognims provides. guidance in designing programs to be
run under DOS/VS~ Part III conta,ins three chapters, ~which discuss how

- to design a program for execution in virtual mode, how to use the _
facilities of the supervisor" and how to' use· the multitasking macros.

For reference purposes the organization of the system residence disk file
-(SYSRES) is shown in Appendix A.

The 'following IBM manuals, are-referred to in the, text <;>f this manual:

lntrQduction to DOS!VS ' ~. GC33-5370

D<:JS/VS Data Management Guide. , .. ~ GC33-5372

DOS/VSSupCrvisor and I/O Ma~r~~ : ' GC33-5373

DOS!VS Tape Labels .. . " ',' " GC33-5374

DOS/VS DASD Labels~ :." '," ~ GC33-5375

'DOS/VS S~stell) Control Statements " .. ' ~.. GC33~5376

DOS/VS System Generation; '.' " GC33 .. 5377

DOS/VS Operating Procedures ~ , .' , ~ ~ . , , GC33-5378

DOS!VS Messages; .. , '' . ~ " ~ GC33-5379

DOS!VS Serviceability Aids and DebuggingPtocedures " '.' GC33-5380

DOS/VS System Utilities ... ' '. GC33-5381

14()l/1440/14~0 DOS/VS Emulator on System/370.· GC33-5384

1410/7010 DOS/VS Emulator on System/370 " " ; GC33-5385'

Model 20 DOS/VSEmulator' on System/370 ' ~ GC33-5388

Guide to the DOS/VS Assembler. , ',' GC33~4024

,DOS/VS VTAM Systein Programmer's Guide ,~ , ,GC27-6957

, IBMSystem/370 Principles of Operation .. :; GA22-7000

DOS/VSSupervisor·Logic : .. ',' . SY33 i 8551

DOS/VS Librarian Logic ' .. ; '.' " ... ~ ' SY33-8557

I, DOS/YSPOWER/VS Logic ',' (. SY33:"8570

. Table of Contents

Part I:1be Organization of DOS/VS'
Chapter 1: Understanding'the Systent ... : .. ; 1.1
Muhiprogramming '.' . ' .. : . '; ; ' .. ' ... '.' 1.1

'Partitions ;.......................... 1.2.
Storage Protection ...•. .: ...•.......•. ~ ; : 1.3
Partition Priorities•........•...... ~ " 1.3
Executing a Program in Any Partiti.on ;................. 1.3

Device Considerations•.... 1.4
Virtual Storage ' ~ ' ~ '. 1.5

Real and Virtual Partitions : ; ...•... :...... 1.8
The Shared Virtual Area' ",'/,,' : , '. '_' . " 1.8

Executing Programs in Real and in Virtual MO<te 1.8
.. Page .Pool.. ' ' ~ . ':" '•.. ~ 1.10.-'

Advantages of Virtual·Storage >:•. ; 1.10
Ml:lltitasking " '.' ' ".' ~ .• 1.10

Two Types of Multitasking•. ! •••••••••••••••• 1.10
POWER/VS ... -.............. : ; : ... ; ... ':." '.' ..•...... , .•... ' .. 1.11

hnplenu!iitationof POW~R/VS ' ~ ~ 1.11
Input '.' ~ ~ : •..........•. : ~ ' .. '.' 1.13
Reader Routine :. ,' ' ..•....... ; .. ' ... ' ' .. 1.13
Intermediate Storage 1.13
Execution 'Processors' : ... ,' ' -' .. ' .. : .. 1.13

. Writer Routines .. ' ' ... ' ' ..• ' 1.13
Operator Communications Routine ' ' ~. : ~ " .. 1.13

Some BasiC Terminology.· :'•....... 1.14
Advantages of POWER/VS•... ' , , I. 14
POWER/VSRemote Job Entry (POWER/VS RJE> ' 1.15

Input at the Terminal 1.15
Output at the Terminal•................... 1.15

. Messages ,": ;" ' 1.16

Chapter 2: Summary of DOS/VS Features 2.1
Standard Features of. DOS/VS , :......................... 2.1
Optional Features of. DOS/YS ~ . . • 2.1
DOS/VS in VariQus CPUs' , 2.2

Chapter 3: Planning the System .. "' ~ '.' 3.1
. System Generation Proced\Jre ~, ; ;- , 3.1
Tailoring the Supervisor .. 3.3

Sterage Management Options,' : ..•................. , 3.3
Defining the Size' of Virtual Storage : "........ 3.4
Defining the Number of Partitions ' , 3.7
Defining the Si"ze" of Partitions ,,' .. ~ ·3.7
Defining Partition Priorities ,.~ 3.9
Defining the ,Page Data Set : 3.10
Fixing Pages in Real Storage .. , 3.10
ImprovingJhe Paging Mecha,nism 3.11
Virtual Storage Access Method ' " . .' .3.11

Multiple-Partition Options > 3.12
. Relocating Loader," ; ' , '.' .' 3.12
. POWER/VS , , .. .' .. " ' 3.13'

Multitasking , '.' , .. ; , : 3~ 13
Wait Multiple Option , 3; I J

Library Options " , ' .. -: . ,•.. : .. ". : .. 3.14
Pr~vate Core Image Libraries · : 3.14
Extended Support for the Procedure Library · 3. t4
Second Level Directory for.Corelmage lil;>raries•.......... 3.14

Teleprocessing : 3.·15
BTAM ... ' .. " ; : , ' ' .. 3.15
QTAM , ~." . , '.' 't' .' •••••••• ' •• '. ' .• 3.15
VTAM '.' ~ .. ' 3.16 I,

ASCII ~ ... , ;', .. ' ' 3.16
Job Accounting ' ' ... ' : , : .. ' ... 3.17
Tinier Services · · ;•.. 3.17

Time':of-Day Clock , ~ ' , 3.18
Interval Tim'er ., .. ' ~ . ' .. , .. ~ , .. '.' . ' ... ' .•.... 3.18

Console Buffering'•..... , , 3.19
Independent Directory Read-in Area ,.· 3.19
User Exit Routines ." ;•............................ 3.19

Interval Timer Exit•............................... ,3.,20
Program Check Exit '.' ... , ., , .. 3.21

AbnDrmal TermtnatiQn ~xit ':' ' ','• 3.21
OperatDr CDmmunicatiDns' Exit : ".". ' ... , ' ... 3.21
Page Fault Handling Overlap Exit ' .. ; '"•..•.... ,3.22

Disk Dr Diskette OptiDns " ' ' : .. '•. " .3.22
System Files 'On Disk Dr Diskette " ..•........... 3.22
DASD File PrDtectiDn ,., '.' " ~ .. ' ; ~ ... 3.23
Track HDld OptiDn i •••••••••••••• : 3.23
Seek Separatio.n ' ' " ' 3.24
RDtational PDsitiDn Sensing ". ' ; ... 3.25
Block Multiplexer Channel SuppOrt 3.27

I/O OptiDns ; : : :: '. :.3.28
Defining the Number 'Of CCW TranslatiDn Buffers ...•............ 3.28
lJypassing System CCW TtanshitiDn '.' .. 3.28
Channel Queue · · .• · 3.29
ErrDr Queue , ' '.' ' '.' .3.30

Reliability / Availability /Serviceability " ".' 3.30
RecDvery Management SuppDrt .. , 330
OLTEP1 ••••••••••••••••••••••••••• ', 3.3·1
PrDblem DeterminatiDn Aids ' ·•. 3.32

Defining the System/370 CDnfiguratiDn , " '.' ~ " ... 3.32
Central Processing Unit 3.32
I/O Deyices ... 3.32
EmulatDrs ;. ... ' 3.33
Standard JDb CDntrDI Settings ..• ; ; ' , 3.34

End 'Of SupervisDr ~ ; .. ; 3.34
Generating POWER/VS ... 3.35

Virtual and Real StDrage Requirements 3.35
Intermediate StDrage Requirements•........... ; 3.37

Size 'Of the Data File and Queue File ~•...... 3.37
AccDunt file ' ' '.' .. 3.40

Input OptiDns : 3.41
SDurce Ljbrary InclusiDn 3.41
User Exit RDutine ' ' 3.41

Processing OptiDns ... 3.41
Assigning Default PriDrities :.; , ...).42
Limiting Output .. ' ' ;· 3.42
LDgging JDb 'Names and Numbers 3.42
ProvidingFDrms CDntrDI ,' " ; ; .. " .3.42

Output OptiDns ... 3.42
Separating JDbs ... 3.43
Segmenting Output : : 3.43

RemDte JDb Entry SuppDrt : " 3.43
Planning the Libraries ;•.................. , 3.44

PurpDse and CDntents 'Of the Libraries : 3.44
The CDre Image Library 3.44
The ReiDcatable Library : 3.44
The SDurce Statement Library 3.45
The prf)'cedure Library : ...• 3.45
Private Libraries •............................. : 3.46

ChDDsing the Libraries fDr an InstallatiDn .•... ~ ' 3.46
ReiDcatable and SDurce Statement Libraries . ~ " . " 3.46
Procedure Library : .•.•..... ' . .' 3.47
Private Libraries " 3.47

Determining the LDcatiDn 'Of the Libraries : ~ .. 3.48
Planning the Size and CDntents 'Of the Libraries ' ; 3.52

Part D: Using the System
Chapter 4: Starting the System 4.1
Initial Program LDading (lPL) 4. I

Establishing the CDmmunicatiDns Device fDr IPL 4.2
Changing I/O Device Assignments•............... 4.2

Adding Devices ... 4.3
Deleting Devices : ' 4.3

Setting System Values .. 4.3
Assigning tile VSAM Master CatalDg , . 4.4
Initiating Page Data Set Handling 4.4
AutDmatic FunctiDns 'Of IPL 4.4

Building the SOL and LDading theSVA 4.5
Creatiug the System RecDrder File 4.6

r
Creating the Hard CDPY File fDr MDdeis 115 and 125 4.7
Security Che~king after IPL 4.8.
Entering ROE Data•........................... 4.8

Chapter 5: Controlling Jobs '. 5.1
Defining a JDb•............................ 5.2

Setting up JDb Streams 5.2
Summary 'Of JDb CDntrol Statements and CDmmands -.. 5.3

JOB'Statemc'nt .. , ..•...... ; ... , .•..... ~ .,' •......... '.' 5.3
End-of-Job (/ &) Statement.•.................. 5.4
PAUSE Statement/Command :. 5.4

. DATE StateJTIent •...... l ••••••••• ~ •.•• ' 5.5
Using Cataloged Procedures ~ ' .. ·5.5

- Retrieving Cataloged Procedures ..•.•....•..... ;................ 5:5
Modifying Cataloged Procedures ;•....•.•...... ,.:..... 5.6
Sev.eralJob Steps in One Procedure 5.8
Modifying Multistep Proc;edureS without SYSIP'T Data , 5.10
Use of <;:ataloged Procedures -by the Operator ... , .. ~•.......... 5.1 t

Relating Files to Your Program, .. :•...•..•........... 5.12
Symbolic I/O Assignment ,••.............. ' 5.12

LogiCal Units ancJ SymboliC Device N~mes•...•.... . 5.15
SYSIPTDatain CatalogedProcedures : ... ~.'•.... . 5.16
Programmer Logical Units .. .- : .- 5.17
Types of Device·Assignments ... ,•...........•...•. . 5.17
Device Assignments in a Multiprogramming System ; 5.18
Partiti.on-Related Catl,tloged Procedures 5.20
Diwice Assignments Requil'ed for an Assembly ... ~•..... 5.20

Files on Diskette DeviCes ..•. ;•..... S.2Z
Example for SubmitHrig Label' Information•....••.... 5.23

, Files' on Direct Access Devices .;- ' ..•. , .' . . 5;23
Examplesfor Submitting Labe.1 Information ..•.. ; '5.25

Files o,ll MagnetiC Tape · 5.26
Controlling MagnetiC Tape Operation 5.27

Controlling Printed Output ' ; .•. ; .. 5.28
Editing and Storing Label "nformation ~ 5.29

Types of Label Information•...........•.••...•.... . 5.29
Summary of Job Control Statements and. Commands ...•......•.•.... . 5.31

ASSGN Statement/Command ; 5.31
RESET Statement/Command•.•... 5.32
USTIO Statement/Command ' ;•.....•..... 5.33
DVCDN Command ;•.......•..... 5.33
DVCUPCommand : 5.33
DLBL Statemerit ,•..... 5.33
EXTENT Statement ~ 5.33
TLBL Statement ·•.................. 5.33

. MTC Statement/Command 5.33
LFCB Command · · .. · 5.33
LUCB Command · ...•............•............. 5.33

Execoting a Program , ',' , 5.33
Assembling, Link-Editing, and ~xecuting a Program 5.34
Executing Cataloged Programs•..... 5.37
Preparing Programs for Exeeution .: 5.40
Defining Options for Progra,rh Execution 5.40
CommuniCating with problem Programs via Job Control 5.41
Controlling Jobs in a Multiprogramming System '•. . 5.41

Reserving Storage for VSAM c.· • 5.42
Reserving Storage for RPS•.... 5.42
Tereprocessing Balancing .. ' ~ 5.43

Restarting a Prograrn from a Checkpoint ' ; 5.43
Executing in Virti,ial or Re~1 Mode ...•............. ; 5.44

Programs That Mu.st Run in Virtual Mode•.............. 5.45
Programs That. Must Run in Real Mode .; ; 5.45

Summary of Job Gontrol Statements and Commands I •• ~ , •••• ; • , ••••••• 5.46
EXEC Statement/Command ; 5.46
OPTION Statement ::: ~ , .. , .•..... 5.46
RSTRT Statement ' ' 5.47
UPSI Statement. ~ '. ; .' " ... 5.47'

Checking and Altering Job Control Statements ' .' ; .5.47
System Files on Tape, Disk. or Diskette : " 5.47

System Files on Tape ; 5.48
System Files on Disk :• ; 5.49
System Files on Diskette ' •.• 5.51
Interrupting Job Streams on Disk. Diskette. or T.ape 5.52
Record Formats of System Files , 5.53

.Chapter 6: Linking Programs 6.1
Structure of a Program .. 6.1

Source Modules ... 6.2
Object Modules•......... '.............. 6.3
Program Phases ,.. 6.4

Relocatable Phases : '. 6.4
Self-Relocating Phases ,....... 6.4
Non-Relocatable Phases 6.5

The Three Basic Applications of the Linkage Editor 6.5
Cataloging Phases into the Core Image Library '.. 6.5
Link-edit and Execute '.• . 6.6

Assemble (or Compile), Link-edit and Execute 6.7
, Processi.ng Requirement!; •........................• '.. 6.8

Symbolic Units Required , 6.9
Prepa.ring Input for the Linkage Editor,•.............. 6.9

Assigning a Name to a Program Phase , 1, , , , • , ,', , .6,10
Defining a Load. Address for a Phase ": ,, ,. , .. " 6.10

A1igning a Phase on a Page Bou'ridar'y , ... ,., ' 6.11.
Liilk-editing for Execution at Any Address " 6.11
Link-editing for Inclusion in the, Shared Virtual Area 6.12
Link-editing for Execution in a Virtual Partition•.... ' ... 6.13
Link-editing for Execution in a Real Partition ' 6~ 14
Link-editing for Execution at an Absolute Address ., ; ...•. ~6~ 14
Using Self-Relocating Programs 6.14

Building Phase!i from Object Modules " 6.14
Including Modules from SYSIPT•................. 6.15
Including' Modules from the Relocatable Library , 6.15
Including' Parts of Modules from SYSLNK•....... 6.15

Using.the AUTOLINK Feature' , 6.15
Suppressing the AUTOLINK Feature ' ... ' , " ,6.16

Reserving Storage for Labels ;•............... 6.17
Specifying' Linkage Editor Aids for Problem Determination' or Prevention . ',' .6.17

Cle3:rjl'!,g the Unused Portion of the Core Image Library 6.17
Obtaining a. Stora.ge Map '•.. 6.18
Terminating an Erroneous Job 6.18

Designing an Overlay Program ' .. , 6.18
Organizing Control Sections in an Overlay Tree Structure , .. 6.18
Relating Control Sections to Phases , ,., 6.19
Using FETCH and LOAD Macros o' •• ,6.20

Summary of Control Statements Related to Link-editing , 6.21
. Job Control. Statements , , , ,6.2 t

. Linkage Editor Contro1.Statements " ", 6.22
Examples of Linkage Editor Applications , · ... 6.24

Catalog to Core Image Libr~ry Example ... ,•.......... ' ,6,24
Catalog to Private Core Image Library Example .. , ,'; 6.26
Link-edit and Execute Example · ,•. ,•. 6,28
Compile and Execute Example , , ... , ,6.30

ChapteP7: Usiilg the Libraries , ,:.,"',.,' ,', , ~. 7.1
How the System Accesses the Libraries " .. ,"',.,,'.'.,"'.'.,'."'" 7, t

The Directorie.s , ... ,., ... ,.".,., , ' , .. , . , ..•... , , , 7.2
Naming Elements in the Libraries ., .. " .. , , , 7.2
Storing and Accessing Elements in the Libraries ', , 7.5

Working with the Libraries ,', ', ,' , .. ,., 7,6
Processing Requirements " ... ,.,." ,', , .. " .. 7.7
Maintaining the Libraries , 7.7

. ~:~::f;t~ . : : : :': : : : : : : : :.: : : ::.:':': :: : 7 ~i~
Condensing ... 1, ••••••••••••••••••••••••••••••••••••••• 7,16
Reallocating ' ' , 7.17
Renaming '" ' ' 7.20
Updating the Source Statement Library ' .. '.' , . ~ ~ 7.21

Copying and Reorganizing the Libraries 7.21
Creating a New System Residence 7.22
Transferring Elements between Libraries , 7.23

Using the Service Functions of the Librarian , ... 7.25
Displaying the Directories " '. , 7.25
Displaying and Punching tf;1e Contents of the Libraries 7.26
Preparing Edi.t~d Macros for Update•............ 7.27

. Creating and Working with Private Libraries 7.28
. Creating Private Libraries 7.28

Creating Private Core Image Libraries 7.30
Using Private Libraries ., 7.32

Using Private Core Image Libraries 7.33

Chapter 8: Using POWER/VS , 8.1

Starting POWER/VS•... 8. t·

Dummy Assignments '....... 8.2
Changing Priorities of Partitions ,...... 8.2
Using POWER/VS Statements' and Commands ... ,................... 8.2

Job Attributes ' 8.5
Spooling a 3540 Diskette File .. " , ,.......... 8.6

The 3540 as a SYSIN file , " 8.6
The 3540 as a Data File \ ; . , .. 8.7

\Jsing POWER/VS RJE : , ... 8.9
RJE Line States .. 8.9

Shutdown Procedures , ' 8. 10

Part m: Designing Programs ,
Chapter 9: Designing Programs for Virtual-MOde Execution 9.1
Programming Hints forReduci~g Page Faults '.......................... 9.1

General Hints for Reducing the Working Set 9.1
Data and Constants~in Assembler Language Programs 9.3

Using,Virtual Storage Macros•............................ 9.4
Fixing Pages in Real Storage : , . 9.4
Determining the Execution Mode of a Program / ~ . . 9.6

. Releasing Pages : ' ~ 9.6'
Forcing Page-out '.' ' . ',' ' ... ' ~ . . 9.6

. Advancing Page-in , ~ : ... ',' 9.6
, Balancing Teleprocessing 9.6
Coding for the Shared Virtual Area , 9.7
Coding Conventions forPOWER/VS User Exit Routines , ,•.. 9.9

, ,Chapter 10: Using the Facilities and Options of the Supervisor .10.1
Direct Linkage between Programs / , , . , ... , ,10.1

Interlanguage Communications ., , .. , .. ,.' , 10.1
Use~ Program Switch Indicators (UPSI) , .. , , , ... ,.,. ~ ,10.1

Tim'ing ,Features ' , '. , ... , , ,' .. 10,2 .
Using the Time-of-DIlY Clock .. , ... , · 10.2
Interval Timer ' ' 10.3

Waiting for' a Time Interval to Elapse•............ 10.4
Getting the Unexpired Time ~•... , , , 10.4

Linkages to User Exit Routines ,. ~ , , ,' .. ,•. , , 10.5 '
Interval Timer User Exit RoutIne .. ; , .. ~ • , 10.5

Multitasking Considerations , ...•.... ; .. ; 10.7
Abnormal Termination User Exit Routine " ~ 10.8
Program Check User Exit Routine '. ' ',' 10.8
Operator Communications User Exit ~ '. : 10.9

Writing an IPL User Exit Routine , 10.9
Writing a job COrltrol User Exit Routine : 10.12
Checkpointing Facility. ; 10.15

Choosing a Checkpoint 10.16
Timing the Entry to the Checkpoint Routine 10.16
Saving Data forRestart 10.18
Restarting a Checkpointed Program ' 10.18

job Accounting Interface Feature "•.......... 10.19
Basic job Accounting Information ... : ~ 10.19
I/O Accounting Information : 10.19
Save Area for the User's Routine ; 10.21
User's Area for LlOCS Label Pr~cessing 10.21
Programming Considerations•..................... 10.21

Register Usage•.... ~ :•... 10.21
Tailoririg the Program .•........... : , ~ ... 10.21

POWER/VS job Accounting ' , , . , 10.24
'User Account Information ' 10.24

Storage Dump Facility . " .. 10.31

~ppendix A: System Layout on Disk . . ' ,'~"11.1

Glossary , ' , '12.1

Index ' " : .. ' ... ' 13.1

Ust (]If Figures

Chapter 1: understanding the System
Figure 1.1 The Five Partitions, 1.3
Figure 1.2 Assigning Different Physical Devices to the Same Logical Units.... 1.4
Figure 1.3 Interrelationship of Real and Virtual Storage, Real and Virtua.l

Address Area ... 1.5
Figure 1.4 Four Programs Being Paged ',~ . '" 1.7
Figure 1.5 A System With and Without Real Partitions ~ 1.9
Figure 1.6 POWER/VS Data Flow ~ 1.12

Chapter 3: Planning the System
Figure 3.1 Insufficient Specification of RSIZE "....... 3.5
Figure 3.2 Specification of RSIZE Larger Than the Size of Real Storage 3.5
Figure 3.3 Location of the Shared Virtual Area 3.6
Figure 3.4 Default Partition Priorities , 3.9
Figure 3.5 User Program Running in Virtual Storage without RPS Support 3.26
Figure 3.6 User Program Running in Virtual Storage using RPS Versions

of Logic Module and Channel Program 3.27
Figure 3.7 Location of RPS Version of Logic Modules '.' 3.27
Figure 3.8 POWER/VS Partition Allocations , 3.36
Figure 3.9·. Intermediate Storage 3.38
Figure 3.10 The Relative Location of the Four System Libraries 3.49
Figure 3.1 t Alternative Locations of the Libraries 3.50
Figure 3.12 Example of Library Organization , 3.5 t
Chapter 4: Starting the System
Figure 4.1 Example of Creation of the Shared Virtual Area

, and of the SYSREC File , 4.7

Chapter 5: Controlling Jobs
Figure 5. t Example of Modifying a Three-Step Procedure 5.11
Figure 5.2 Example of Symbolic I/O Assignments 5.13
Figure 5.3 Possible Device Assignments Set at Supervisor Generation 5.19
Figure 5.4 Device Assignments Required for an Assembly ; ~ 5.21
Figure 5.5 Storing Label Information in the Label Information Cylinder 5.30
Figure 5.6 Summary of Label Option Functions 5.31
Figure 5.7 job Control Statements to Assemble. Link-Edit, and Execute

a Program in One job 5.34
Figure 5.8 Submitting Input Data on SYSIPT 5.35
Figure 5.9 System Operation of an Assemble. Link-Edit, and Execute job 5.36
Figure 5.10 Preparing the Loading of Temporarily and Permanently Stored

Programs '. ' ' 5.39
Figure 5.11 Example of a RESTART job 5.44
Figure 5.12 Creation of SYSIN on Tape 5.48
Figure 5.13 Processing System Input and Output Files on Disk 5.50
Figure 5.14 Interrupting a job Stream on Disk : 5.52

Chapter 6: Linking Programs
Figure 6.1 Stages of Program Development 6.2
Figure 6.2 A job Stream to Catalog a Program into the Core Image Library .,. 6.6
Figure 6.3 A job Stream to Link-Edit a Program for Immediate Execution 6.7
Figure 6.4 A job Stream 10 Assemble. Link-Edit. and Execute 6.8
Figure 6.5 Overlay Tree Structure 6.19
Figure 6.6 Link-Editing an Overlay Program , 6.20

Chapter 7: Using'the Libraries
Figure 7.1 Organization of the Directories on SYSRES ' 7;3
Figure 7.2 Naming Multiphase Programs 7.4
Figure 7.3 Summary of Librarian Programs a.nd Their Functions 7.6
Figure 7.4 Assembling and Cataloging to the Relocalllble Library in the Same

Figure 7.5
Figure 7.6
Figure 7.7

Figure 7.8

Job ~ 7.9
Example of Deleting and Condensing 7.15
When Can Conde'nse Be Performed 7. t 7
Symbolic Unit Names and Filenames Required to Create Private
Libraries .. 7.29
Possible Assignments of Private Libraries in a Multiprogramming
System · .. , 7.33

Chapter 8: Using POWER/VS
Figure 8.1 Examples of the Use of POWER/VS JECL 8.4
Figure 8.2 Transition between RJE Line States 8.9
Chapter 9: Designing Programs for Virtual-Mode Execution .

, Figure 9. I PFIX and PFREE. Example ~ .. 9.5
Figure 9.2 Example of Conventions for SV A Coding ~ 9.8
Chapter 10: Using the Facilities and Options of the Supervisor
Figure 10.1 Setting and Testing UPSI ; 10.2
Figure 10.2 Method for Accurate Measurement of a Real Time Interval 10.3
Figure 10.3 Skeleton Example of a Program in which a 30-second Interval Must

Elapse before Special Processing is Performed 10.4
Figure 10.4 Example of Using the Interval Timer for Taking a Checkpoint Every

Half-hour ; 10.6
Figure 10.5 Skeleton Example of Multitask Linkage to a Common IT Exit

Routine ... 10.7
Figure 10.6 Skeleton Example of a Routine for Processing a Program Check Caused

by Zero Division ,. if 10.8
Figure 10.7 IPL User Exit Example ; 10.10
Figure 10.8 Job Control User Exit Example 10.13
Figure 10.9 Skeleton Example of a Routine for Checkpointing a Program on

Operator Command' 10.17
Figure 10.10 Example of Job Control Statements for Restarting a Checkpointtyd

Job from Checkpoint 1111 .. ~ ; 10.18
Figure 10.11 Job Accounting Table 10.20
Figure 10.12 Job Accounting Routine Example , .. 10.22
Figure 10.13 POWER/VS Line Account Record 10.25
Figure 10.14 POWER/VS Reader, Account Record 10.26
Figure 10.15 POWER/VS List Account Record 10.27
Figure 10.16 POWER/VS Punch Account Record 10.28
Figure 10.17 POWER/VS Execution Account Record 10.29
Figure 10.18 POWER/VS Cancel Codes : 10.30
Figure 10.19 Example Routine to Insert User Information

in POWER/VS Execution Account Records 10.31
Appendix A: System Layout on 7Disk
Figure 11. I System Residence Organization 11.2

Pad I: The Organization of DOS/VS

Part I introduces DOS!VS. DOS/VS is a complex combination of programs
tbat interact with user programs running on a System/370 central
processing unit. The main' features of DOS/VS, what the supervisor does
for you"and how you tailor the system are pres~nted in this part in three,

, chapters:

Chapter J: Understanding the System presents all readers with a
descripiion of the key 'features of DOS/VS, in particular the concepts of
multiprogramiliing, virtual storage, rriultitasking,and POWER/VS.

Chapte~ 2.; Summary of DOS I VS Features lists the standard and optional
features of DOS/VS.

Chapter 3: Planning the System is of particular interest to system
programmers. This chapter includes four topics: system generation,
supervisor generatio~, POWER/VS generation, and planning the libraries.

Chllpter 1: On~erstanding the System

Multiprogr~lmming

This chapter introduces and describes the major concepts of DOS/VS.
After reading this information, you will have gained an understanding of the
principles on which DOS/VS operates. You will also be familiar with many
of the terms that are used throughout the manual.

The main topics described ·in this chapter are:

Multiprogramming

Virtual storage

Multitasking

• POWER/VS.

Multiprogramming is a technique that allows the concurrent execution of
more than one program in a single computer system. Multiprogramming
balances the difference between the speed of the central processing unit
(CPU) and the relatively slower speed of the I! 0 devices, and thereby
improves the overall throughput of the system.' .

When a. single ~xecuting program requests an 110 operation, it may not
be able to continue with any useful processing until the 110 request has
been satisfied. During this time, the CPU stands idle. With multi­
programming the CPU is used more efficiently. When one program stops
processing, the. CPU is- put at the disposal of another program.

A program is said to be in control of the system when its instructions
are being executed by the CPU. A progrllm can voluntarily yield control of
the CPU, or control can be withdrawn from it.

Programs that share the use of the CPU in multiprogramming do not
have an equal claim on the CPU. Instead, one program is given a greater
priority than another.

When a program must wait for a given event to occur before it can
continue processing, it yields control of the CPU. The supervisor then
passes control to a program of lower priority. Conversely, the supervisor
withdraws control from a program whenever a program with higher priority
is ready to resume processing. This generally happens when tqeI!O
operation for which th~ program has been waiting is now completed.

Multiprogramming, therefore, allows the I/O operations of one program
to be· overlapped by the processing of other programs. When a program has
to wait for the completion of an I/O operation, the supervisor sets the
program in the wait state and selects another program for execution on the
basis of its priority and readiness to run. This process is called task
selection.

Chapter I: Understanding the System 1.1

Partittions '

Efficient use of the system relates' not only to the degree of CPU
activity but also, to storage management. During s~stem genera~:ioi1, storage
Iilay, 'be allocated to partitions to accommodate the programs that will be '
executed in them. At times, only a portion of the partition is' used by the
program being executed. Some programs require a large partition. DOS/VS
can automatically balance the storage demands made by programs by
making processor storage not being used by one program available to a
program in another partition as required.

This storage management, which was not present in earlier versions of
DOS, is not inherent to multiprogrammil1g, but is implemented by certain
virtual storage function~. It is described in more detail in the section Virtual
Storage, ,later in this chapter.

DOS/VS can support up to five separate partitions in ,each of which a
problem program can be executed. Thus, up to five problem programs can
be executed concurrently within the system. The actual number of partitions
in a particular configuration is a supervisor generation option, and as such is
described in the section Tailoring the Superv~sor in Chapter 3,' Planning
the System.

Each program gets the ,priority associated with the partition in which it
is executed. Priorities are assigned to partitions' during supervisor
generation, but may be altered by an operator command during processing
to accelerate the execution of a particular program.

The five partitions are made up of one backgroundpartitioI1l (BG) and
up to four foreground partitions (FI, F2, F3, and F4) as shown in
Figure 1.1.

The background partition differs from the foreground partitions in the
following respects: '

The background partition is automatically activated by {PL. A
foreground partition must be activated via the BATCH or START
operator command. (The BATCH and START operator commands are
discussed in detail in DOS / VS Operating Procedures.)

,. Certain IBM-supplied programs can only be executed in the
background. These programs are OL TEP (which is discussed in
Tailoring the Supervisor), the librarian program CORGZ, and 'the

.reallocation function of the librarian program MAINT (which are
described in Using the Libraries). '

To link-edit in a foreground partition, a private core image library must
be ,ssigned to that partition. To link-edit in the background partition,

, no private core image library need be assigned.

1.2 DOS/VS Sys,tem Management Guide

Partition Priolrities

Storage
available
to problem
programs

Backgrou nci

Foreground-4

Foreground-3,

Foreground-2

Foreground-1

Figure 1.1. The Five Partitions

Storage protection, which is standard on all Sy§tem/370 models, ensures
that the instructions and data of one program in a given partition do not
interfere with those of a~other program in another partition.

During supervisor generation, priorities are established for each partition
defined in the system. The default priorities are (from low to high): BO,
F4, F3, ,F2, Fl.,

During processing the operator can display the partition priorities and
change them dynamically by issuing the PRTY command. This can be used
to accelerate the execution of a given program. However, the priorities
should be reset to the installation standards as soon as possible to handle
the normal flow of jobs through the system. Changing priorities in the
middle of a job stream should be used with special care if POWER/VS or
teleprocessing, which normally run in a high-priority partition, are active in
the system,(Refer to POWER/VS later in this chapter.)

Exe,euting a P1iogram in Any Partition

When the relocating loader is generated in the system, most programs can
be executed in any partition.' Provided that a program being link-edited
does not have an origin specified as an absolute address, the program
produced for inclusion in the core image library is relocatable.

A relocatable program can be executed in any partition that is large
enough to accommodate it. .

Chapter I: Understanding the System 1.3

J

Device Considerations

The relocating loader, as a supervisor generation option; is described in
the section Tailoring the Supervisor in Chapter 3: Planning the System.

Generally, the same physical I/O device (or extent of a'direct access
device) may not be used concurrently by programs being executed in
different. partitions. The exceptions to this are:

The device or 'extents assigned to the system logical units SYSRES,
SYSREC, SYSLOG, SYSVIS, and SYSCAT. These devices (extents) are
considered to belong to the system as a whole, rather than to individual
partitions. (A brief description of these system logical units is contained
in the section Symbolic I/O Assignment in Chapter 5: Controlling
Jobs.)

A private core image library (a disk extent assigned to SYSCLB), which
can be shared for read-only operations (that is, if no link-edit function
is being performed).

A file on a direct access device can be accessed. across partitions,
providing it is not being created simultaneously .. by programs in more
than one partition (see the Track Hold Option .n Chapter 3: Planning
the System for information on protection when updating a file
concurrently by separate tasks).

All system and programmer logical units are available to each partition and
can be used concurrently by ~ny number of partitions. The only restriction
is that, except. for the system logical units mentioned above as being
shareable., a different physical device or extent must be assigned to each
logical unit in each partition.

If, for example, you wish to link-edit programs in different partitions
concurrently, different p~ysical devices or extents (except for SYSRES and
SYSLOG) must be assigned for each partition to all logical units !Used by
the linkage editor program. Figure t.2 shows how devices may be assigned
in order to link-edit in two partitions concurrently.

logical Unit F1 Partition BG Partition

SYSIN X'181' X'OOC'
SYSLST X'182' X'OOE'
SYSLOG X'OlF X'OlF
SYSLNK X'131', X'132'
SYSOO1 X'131' X'132'
SYSCLB X'130' --
SYSRES X'130' X'130'

Figure 1.2. Assigning Different Physical Devices to the Same Logical Units

In this case, the output on SYSLST in Ft is written on a tap(~. A listing
of this output ~an be obtained by printing the tape after the job is
completed. If fOWER/VS is used, the listing could be automatically
obtained whe~ever a prin'ter becomes available. (Refer 'to the section
POWER/VS later in this chapter.)

1.4 DOS/VS System Mimagemenl Guide

ViJrtuai Storage

Through a combination of System/370 'hardware design and. programming.
support, DOS/VS has an address space, called virtual 'storage, that can
extend to the maximum allowed by the system's addressing scheme, which
is 16,777,216 bytes (16M bytes).

Virtual storage .consists of two distinct; areas; the real and the virtual
address area.

Virtual Storage Real Storage -----_._-----------..... ---------..
Real
Address
Area

OK

1----------+-------_ _------_ ...

Virtual
Address
Area

~ ______________ ~Up to 16M

Rul Storage: storage
physically present in
the CPU.

Figure t.3. Interrelationship of Real and Virtuat' Storage, Real and Virtual
Address Area .

Figure 1.3 shows that the area of virtufill storage where the virtual
addresses match the real addresses is ca]]ed the real address area, and the
area that begins at the end of the real address area 'and extends to the end
of virtual storage, is' called the virtual address area. Addresses in this area
have no direct equivalent to addresses in real storage.

How much of the maximum address space will be used in a particular
system depends on a number of factors: the size of the computer's real
storage, the amount of disk storage available, the number of partitions, their
size, and the characteristics of the installation's programs and operating
environment.

Chapter I: Understanding the System 1.5

Both the real address area and the virtual address area are a~'ailable for
use when writing your programs, but not both together for a single
program .. Some of your programs can be considered to be loaded into the
virtual address area, and others into the real address area. Of course, each
instruction of a program must be i~ real storage at· ~he moment it is
executed, and so must the data it manipulates. The other instructions .and
data of a program loaded into the virtual address area need not b.e in real
storage at that same moment; they can reside on auxilia.ry storage until
needed. The file used for this purpose is called the page data set. This
makes it possible to execute programs that are 'Iarger than any real
partition, or even real storage. ' ..

Some programs can be loaded into a special area, called the shared
virtual area, where they remain until requested by any partition. The shared
virtual area is located in the virtual address area and, therefore, is
represented on the page data set.

It' would be inefficient, however, to bring every instruction and its
associated data into real storage individuaUy .. Programs in virtual· storage are
manipulated in sections called pages; the size of a page in DOS/VS is 2K .
bytes. Real storage is divided into 2K byte sections; the~ are called page
frames. Page frames accommodate pages of aprogra"" during execution.
This is illustrated in Figure 1.4 ..

When a program is loaded from the core image library into virtual
storage, all nts pages' are brought into page frames. If there are not enough
page frames available to contain all the pages of a program being loaded
into the virtual address area, the system moves the contents of some page
frames to a disk extent called the page data set. The remaining pages' of
the program can then be loaded.

During execution, of the" program, whenever a required. instruction or
some data is not present in real storage, execution is interrupted by a
so-called page fault. The system must then bring the re4uested page into
real storage. .

For programs loaded into the virtual address area, pages can be placed
into any available page frame during execution. Since the system does not
anticipate where in real storage a page ~ilI be loaded, the virtual addresses
must be translated into real addresses when required for execution. The
address translation is performed by a combination of the Systern/310

. Dynamic Address Translation (OAT) facility and DOS/VS ..

1.6 DOS/VS System Management Guide

Virtual
Add.rn5
Are.

--

BG
Program

F3

F2
Program C

F1
Program

SVA

Page'Data
Set.

Figure 1.4. Four Programs Being Paged

R_' Storage

Assignment of page frames is do.ne by the superviso~ which works
toward keeping the most frequently-used pages of each program in real,

',storage., '

, Any or all of the four programs being paged may also concurrently
lise phases in the shared virtual area (SY A).

Chapter I: Understanding the System 1.7

Real and Virtual Partitions

The Shared Virtual Area

During system generation, the number of partitions (from one to five) is
defined for the system. A certain amount of address space must be
associated with (allocated to) each_ partition. Each partition in which a
program is to be loaded for execution is required to have addresS:- space in
the virtual address area; this space is called a vil'iual·, partition. Each
partition may also have address space in the re~l address area; thts'space is
called a real partition. Because the job control program (which :is necessary
to start the execution of each prbblem program) requires a virhlal partition
for its execution, a real partition always has a corresponding virtual
partition.

Figure 1.5 assumes that an five partitions have been defined in the
system. On the left is a system without real partitions; on the right is a
system with real partitions. It is unlikely that you will have allocated all five
real partitions, but they are illustrated here to show their relative position in
storage.

In multiprogramming systems, a system directory list and certain
frequently-used programs can be loaded into the shared virtual area (SVA),
which is located in the highest address space in the virtual address area.
Such programs (or parts of programs), which are relocatable and
reenterable, are available for concurrent use by programs running in virtual
or real mode. Programs in the SV A are always executed in virtual mode in
the page pool.

'Executing Programs in Real and in Virtual Mode

Programs can be executed in two modes:

Virtual Mode: the program's addresses refer to addresses in the virtual
address area, and the program executes in the page pool; the precise
locations a page occupies are not known until it is needed for
execution. Paging can take place.

Real Mode: the program's addresses refer to addresses in the real
address area and the program executes in a contiguous, defined block
of real storage: the real partition. No paging takes place.

For either mode, sufficient address space must be allocated to the partition
to accommodate the program to be executed. Sufficient page frames must
be available in the main page pool to execute programs from the shared
virtual area.

Under DOS/VS certain programs - such as those with critical time
dependencies - may have to run in real mode. The DOS/VS supervisor also
always runs in real mode.

1.8 DOS/VS System Management Guide

Real
Address
Area

VirtlJlal
Address
Area

r

..

Virtual Storage

Supervisor

8G-V

F4-V

F3-V

F2-V

Fl-V

SVA

Real Storage Virtual Storage

Supervisor

Real Storage

Supervisor

not being used, because
corresponding real
partitions are used

being
used
by
real
mode
programs

being' used by
virtual mode
programs

F2-V

Fl-V

SVA

being used by
. relocatable, reenterable

programs

FlgUl'e 1.5. A System With and Without Real Partitions

In both systems the heavily shaded parts of real storage are not allocated
to any particular partition. These parts are called the page pool. which
(in the system on the right) is augmented by the address space of the
real partitions that are not being used (lightly shaded) ..

When a real partition is being used, the address space in the
corresponding virtual partition cannot be used.

Programs in the shared virtual area (SVA) can be shared
concurrently by programs running in either virtual or real mode. The
programs from the SV A are executed in the page pool.

Real partitions are used not only for programs running in real mode,
but also for programs running in virtual mode that fix a set of instructions
or data (using the PFIX macro, which is discussed in more detail under
Fixing Pages in Real Storage in the section Tailoring the Supervisor in
Chapter 3: Planning the System). Such pages of a virtual-mode program
are fixed in page frames of the real partition that corresponds with the
virtual partition in which the program is running.

Chapter I: Understanding the System 1.9

Page Pool

As shown above in Figure 1.5, the real storage not allocated to any· real
partition (or occupied by the supervisor) is always available for paging
activities. It forms the main page pool .. Other page frames may also belong
to the page pool:

When not occupied by a program running in real mode, the area
"allocated to a real partition is available to virtual-mode programs.

When a pr~gram running in real mode does not require the entire real
partition, the unused part of . the real partition may be made available to
the page pool by specifying' the required amount of storage in the SIZE
operand of the EXEC job control statement for the teal-mode ·program.

Advantages of Virtual Storage

Multitasking

Two Types of Multitasking

In summary, executing programs in virtual storage has two main advantages:

It allows execution of programs that are larger than the available real
partition, or even larger than real storage.

The real storage available is better utilized: programs running in a
virtual partition are not confined . to a particular area of real storage, but
may use all available page frames.

Partition and system performance requirements should be considered as you
relate these advantages to your particular installation.

At the beginning of this chap!er, we defined multiprogramming as the
ability to. execute more than one program concurrently in separate partitions
within a single computer system. Multitasking can be regarded as an
extension of mulHprogramming in that it provides the ability to execute
more than one program concurrently in a singh! partition. In simple terms,
therefore, multitasking can be regarded as multiprogramming within a
partition.

Multitasking presupposes the existence of the multiprogramming
facilities in the supervisor tin particular, the task selection routines).
Multitasking is, therefore, possible only in a multiple-partitio.n environment.
As a supervisor generation option, multitasking is described in the: section
Tailoring the Supervisor in Chapter 3: Planning the System.

Some installations using former versions of DOS, employed multitasking
to run more than three programs in a three-partition system. The additional
two partitions that DOS/VS provides may serve the same purpose. You
should note that running programs concurrently in separate partitions is
usually ~asier than running programs concurrently in the same partition.

Programs (or parts of a program) that are executed concurrently iin a given
partition are called tasks. A distinction is drawn between the main task in a
partition and one or more. subtasks in the same partition. The mann task is

1.10 DOS/VS System Management Guide

that program (or program part) initiated by job control. -The subtasks are
tbose programs (or program parts) initiated by the main task through the
use of the A IT ACHmacro instruction. To use the multitasking facilities of
D~S/VS\it is necessary to code the main task in the assembler language.

The subtasks execJlted in a given partition may be: (1) logically
independent, or (2) logically dependent.

In the first c~se, the main task monitors the execution of the subtasks,
treating them as independent programs. Such subtasks may be coded in any
programming language. This type of multitasking is sometimes called multi­
programming w.ithih a partition. It is a suitable technique, for example, by
whichto execute more than five programs concurrently.

In the second case, both the main task and the subtasks are program
routines that are logically paCt of the same program. Thus, the tasks can
communicate with one another. In this case the subtasks are likely to be
c~ed in assembler language to allow the use of the task intercommuni­
cat~on macros. They can share code (in- particular, _an access method or
subroutines), provided that it is of a read-only nature (that is, that. the code
or, subroutines are not modified during execution). This technique is
complex and can best be understood after studying the first type of
mUltitasking.

There is always a large discrepancy between the speed of the CPU and the
speeds of card or diskette readers, card punches, and printers. This
discrepancy causes these devices to have an unfavorable effect on the
overall duration, of jobs. Spooling (Simultaneous Peripheral Operations On
Line) reduces CPU dependency on mechanical equipment by using faster -
disk d~vices or magnetic tape units as intermediate storage.

The POWER/VS -program performs spooling of unit record data in
DOS/VS. All card or diskette input to -a program is read and stored on
disk in blocked format before the program is executed. Any attempt to
read from a unit record device during program execution is intercepted by
the spooling program that satisfies the request from the data on
intermediate storage. Similarly, card and printer output is accumulated and
punched or prio,ted after the program has completed execution.

Implementation of POWER/VS

POWER/VS is a program that provides spooling services for up to four
partitions. It _ resides in a virtual partition with a priority higher than that of
the partitions it controls. Although POWER/VS runs in virtual mode, it
supports programs running in real or virtual mode.

Figure 1.6 shows the data flow through POWER/VS. The paragraphs
that follow discuss the steps depi~ted in Figure 1.6.

Chapter I: Understanding the System 1.11

0)

OPERATOR
COMMUNICATIONS
TASK

J
·1

I
I

DISKETTE

o
INPUT·

... ----------

L ________ _

LISTED
OUTPUT

READER'
TASI<;

INTERME·
DIATE
STORAGE

EXECUTION'
PROCESSOR
TASK

INTERME·
DIATE
STORAGE

WRITER'
TASK

CARD
INPUT

'0

o

PUNCHED
OUTPUT

Figure 1.6. POWER/VS Data Flow

t.12 DOS/VS System Management Guide

0)

Inpllt

Rea.der Task

Intermediate Storage

Exec:ution PrO(~essors

Writm' Tasks

Oper:lltor Com~llunications Task

POWER/VS intercepts unit-recordinput'(1) (card ordiskette) destined for
each 'partition it supports. This input is delimited by the DOS/VS job

. contr'ol language either alone or in combination with the POWER/VS job
entry control language (JECL). By adding JECL statements to the normal
DOS/VS job stream, you indicate to POWER/YS that special handling is
required for particular DOS/VS jobs or job steps.

A reader task (2) reads c~rd or diskett~ input and places it into disk
intermediate 'storage. Depending Qn the JECL options selected, execution is
scheduled directly, or must be scheduled· by the operator, or will proceed
according to the job's priority.

By entering a command on the console, the operator can initiate as
many reader tasks as he has physical readers available.

Intermediate storage (3) contains the queue file, data file, and (optional)
account file. The three files may be on the same physical unit.or on
separate units.

The execution read task (4.) retrieves data records, from intermediate storage
and presents them to the user partition where they are executed. The .
execution· writer tasks intercept the output from the user partition and
transfer. it· to intermediate storage;

There is one execution processor for each partition supported by
POWER/VS. The execution processor is the generic name for the execution
read, execution list, and execution punch tasks. The exe:cution read tasks
are initiated by an operator command at partition start-up. The execution
list and execution punch tasks (collectively called execution writer tasks) are
automatically initiated by the execution read tasks when required for a
specific user job. . .

The writer tasks (5) print and punch data (6) from intermediate storage.
The operator initiates· these tasks by entering a command on the console'.

The operator communications task (7) handles all the comm'unications
between POWER/VS and the console operator. It is always present and U

active in POWER/VS. .

Chaptcr i: Undcrstanding the System 1.13

SomeBasi~ Tenninology

Advantages of POWER/VS

The input stream provided by the user to .POWER/VS is broken up into a .
series of discrete jobs, each with its own identifying name, assigned by the
user,; and sequence number, assign~d by POWER/VS at'the time the job
enters the system.

Each input job is represented by records in direct accero;s storage, which
together make up a read queue entry. List and punch output is similarly
described by groups of records called list queue entries and punch queue
entries, respectively.

A read queue entry is created for each input job read by a. reader task
and is retained within the system at least until that job has successfully
completed execution. .

A list queue entry is created for each output list segment produced by
an execution Jist task and is retained within the system until the output it
des(:ribes has bee~ completely processed by'a list task. .

A punch queue entry 'is created for each output punch segment
produced by an execution punch task and is retained within the system until
the output ,it describes has been completely processed by a punch task.

A summary of POWER/VS control information is maintained in a
master record. The master record is the first· record of the POWER/VS
queue fHe,and provides the system with a warm start capability.

Depending on the workload" POWER/VS may increase system throughput
in the following ways: .

Since list writer' and punch writer tasks life essentially disk-to-print and
disk-to-punch utilities,· the determining factor in print and punch output
is the speed of the output devices. This feature increases device
utilization since all the output is already available in queues when
printing and punching starts, and devices do not wait for. process .. bound
operations during job execution. Because the CPU dependency on unit
record equipment is removed, all I/O for batch partitions is performed
at disk or tape speed.

POWER/VS requires less I/O equipment than basic multiprogramming.
For example, one card reader, punch, printer and disk drive Ican
perform all the I/O operations required for four partitions running
under POWER/VS. Basic multiprogramming requires one card reader,
one punch, and one printer per partition.

Since reader and writer tasks may be initiated by the operator and are
not necessary for' partition operation, a fail soft condition exists. For
example, if the printer becomes unavailable, job stream execution can
continue with the SYSLST data being collected in the print queu~.
When the printer' becomes available, the operator can start a print
writer task and printing commences for all jobs in the print queue
without loss of output or CPU time. .

1.14 DOS/VS System rvtan~gement Guide

I

. ,

PO\lVER/VS ~emoteJob Entry(POWER/VSRJE)

Input at the Telminal

Outp1llt at the Terminal

POWER!VS RJE, offers an efficient and convenient method of sUbmitting ,
jobs via a remote terminal. Terminals are usually separated from the central
system by a dista~ce' sufficient to require leased or dialed up lines to
accomplish communications, but the system may also include terminals
attached t~ the sys,tem by local lines. ~egardlessof location, however, all
supported terminals are' classified as remote. .

The POWER!VS RJE tasks interface, with the'inputand output queues
in' the same manner as local reader and writer tasks. As a result, the
execution processors handle remotely· submitted jobs in the saine way as
locally submitted jobs.

After a job h~s been executed, its output may be returned the terminal
or' to the central installation.

After the SIGNON procedure at the terminal, which can only be done after
the line is started at the central system, jobs may, be submitted from the '
terminal. '

. Additional JECL parameters allow you· to direct output of the job entry
to a remote terminal or to ~ local unit record device. The terminal
commands, which' are necessary to control the RJE terminal operation, are
also entered from the reader at the terminaL A detailed' description of the
terminal comma~ds i~ given in DOS / VS Operating Procedures.

The ability to accept input automatically from remote terminals greatly
increases the need for str<;>ng system discipline. For example, if a remote .
. job requiring data files at. the central installation is. to be submitted, the
volumes containing the data files should' be available for prompt. mounting;
and if a remote job needs to use tape units in a particular partition, these
units should not already be assigned to another partition. Otherwise, the
system flow can be upset or even interrupted.

Two kinds of output are received at the 'terminal: job output and messages.
Job output at the terminal allows a number of options which are specified
in JECL statements and terminal commands:

•

The output may- be directed to another terminal.

Input and output can utilize different terminals.

The output is held at the central station until the terminal' liser requests
it.

, Output may be directed to unit record devices at the central
installation~ .

The remote user has a page restart capability that provides forward or
backward page spacing for a printed job- allowing the user to print or
skip selected portions 'of a job. -

Chapter I: Understanding the System 1.15

MeSS8J!:es

Ex~mples of JECL statements are giv~n in the section Using POWER/VS
Statements and Commands in Chapter 8: Using POWER/VS.

Messages received at a terminal include· responses to input from the
terminal, diagnostic messages, and broadcast messages. These ml!ssages
appear on the printer between job output.

Messages destined for all users are only displayed on request. They
appear at the terminal as response to a DISPLAY command. Detailed
specifications for messages are given in DOS/VS Messages.

1.16 . DOS/VS System Management Guide

Ch~lpter 2: Summary of DOS/VS Features

Standard ,F'eatures of DOS/VS

These features are automatically included during sys~em generation:

• Support for one virtual storage of user-specified size. (up to 16M
bytes). . .

• Batched-iob mode of job initiation in a single-partition environment.

• Execution of programs in real mode and virtual mode.

• Symbolic 110 device assignment.

. Cataloged procedures.

• Storage protection.

• SAM, DAM, and ISAM.

• Command chaining for 110 retry operations.

• Tape, error, statistics.

• Selector channel support.

• Display operator console support (for the Model 125 Video Display
Keyboard· Console).

• Machine check analysis arid recording (MCAR), channel check handler
(CCH), and recovery management, support recorder routines (RMSR).

• OLTEP (optional on Model'12~, can 'be omitted for other models).

. • Job control.

• Linkage editor.

. • Librarian.

• Assembler.

• System utilities (including Disk Volume Fast Copy).

.• System debugging aids (SDAIDS).

Optional Features of DOS/VS

These features must be requested during system generation or added after
the generation has been performed:

•

•

I :
•

Multiprogramming (from two to five partitions, with standard BJF' ,
scheduling) .

Specification of partition dispatching priority.

Multitasking (up to a maximum of 15. tasks).

POWER/VS.

Teleprocessing support (BT AM, QT AM, and VT AM).

VSAM.

Wait multiple support.

Chapter 2: Summary of DOS/VS Features 2.1, . .'

• Magnetic ink· character reader and 9ptical character reader support.

• Page fault handling overlap.

• Support for PFIX/PFREE macros.

• Support for GETVIS/FREEVIS macros.

SUP'?<>rt for RELPAG/PAGEIN/FCEPGOUT macros.

~ Integrated emulators.

• Time-of-day clock support.

Multiple timer support.

Job accounting interface.

• Relocating loader.

Private core image libraries.

• External interruptions.

• Abnormal termination exit.

• Console buffering.

Track hold.

DASD file protection.

• Rotational Position Sensing (RPS).

Seek separation.

Channel switching for magnetic tapes.

• Burst mode operation on the byte multiplexer channel.

DOS/VS in VariousCPUs

Error volume analysis for magnetic tapes.

Reliability data extractor.

Problem determination aids (PDAIDS).

ASCII support for tapes.

System input and system output files on disk (SYSFIL option).

Independent directory read-in area.

This section shows, by way of a ,series of examples, how real and virtual
storage could typically be employed by DOS/VS running in CPUs with
different amounts of real storage. The real storage requirements of the
supervisors and of the main DOS/VS features are indicated; as are the
types of jobs that are processed in the partitions. In each of the examples,
the real storage available to the main page pool can· be obtained by
subtracting the amount of real· storage allocated to the supervisor aqd the
real partitions from the CPU size. In all cases, the figures given are
approximations.

AU systems have an SV A that contains a system directory list.
However the illustrations do not explicitly show the SV A unless it must be
larger than the minimum size, as for example for RPS or VSAM.

2.2 DOS/VS System Management Guide

96K CPU

Storage (K bytes)

~eal Virtual

Supervisor 40
BG 10 64
F3 10 64
F2 10 64
F1 10 64

80

Notes:

• Batch processing operation.

• One "hot" partition for IJfgent, unscheduled jobs.

The system described above might by typical of a DOS/VS user who
formerly operated a Model 20 with programs that did not require large
amounts of storage.

144K CPU

Supervisor
BG
F3
F2
F1

Notes:

• .' POWER/VS in FI

• VSAM in 80

192KCPU

Supervi~or
BG
,F4
F3
F2
F1
SVA

Notes:

• PO\VE8/VS in F2

Storage (K bytes)

Real Virtual --
42
0 612
0 256
0 256

24 152

66

Storage (K bytes)

Real Virtual

52
0 192
0 192
0 192

24 152
5,0 192

210

126

CICS/VS (an IBM program product; Customer Information Control
System/Virtual Storage) in FI

• VSAMin SVA

Chapter 2: Summary of DOS/VS Features 2.3

240K CPU

Storage (K bytes)
DAYTIME

Real Virtual

SuperVisor 58
BG 42 88
F3 0 88
F2 12 288
F1 60 672

172

Notes:

• Two batch partitions (BG and F3)

SDAIDS partition (F2)

• CICS/VS in Fl

.-
Storage (K bytes)

NIGHTTIME
Real Virtual

Supervisor 58
BG 50 608
F3 0 88
F2 0 288
F1 24 152

132

Notes:

• One batch partition (using PFIX/PFREE macros) in BG

POWER/VS in Fl

Two batch partitions (not using PFIX/PFREE macros) in BG

2.4 DOS/VS System Management Guide

\
I ..

384KCPU

DAYTIME

Supervisor
BG
F3
F2
F1
SVA

Notes:

POWER/VS RJE in Fl

• CICS/VS in F2

Two batch partitions

RPS code in SV A

NIGHTTIME

Supervisor
BG
F4
F3
F2
F1
SVA

Notes:

POWER/VS in Fl

• CICS/VS in F4

Storage (K bytes)

Real Virtual

54
14 722
28 228
66 228
48 176

100

210

Storage (K bytes)

Real Virtual

54
36 500
72 228
36 228
36 228
36 164

100

270

VSAM and Access Method Services in BG

Three batch partitions

RPS cod~ in SV A

Chapt.er 2: Summary of DOS/VS Features 2.5

(:hapter . 3: Planning the System

From the DOS/VS ,system that IBM distributes the system programmer can
tailor a system to' meet the 'day-to-day requirements of a particular
installation. The system is delivered with a supervisor that consists of a
limited number of functions, which are necessary to generate the desired
system.

After a brief description . of the' system generation procedure in general,
this chapter describes in greater detail the three major considerations during
system genenition, namely:, ,

• Tailoring the supelvisor (adding functions to those of the basic
supervisor)

Generating POWER/VS, if POWER/VS as distributed in the core
image library, is not suitable to installation requirements.

Planning the libraries (planning the contents, the location and size of
the libraries).

Because of the nature of this information, this chapter primarily addresses
system programmers, who are responsible for planning' the system. The twc
sections, Tailoring, the, Supervisor and Generating POWER/VS, however.
may be of interest to all DOS/VS users who wish to become more '
acquainted with these components of the, system.

System, Generation Procedure

Proper and detailed planning is essen.tial to efficient system generation and ,
,minimizes the need to modify the system after it is generated. You may
want to contact your IBM marketing representative to set up a system
generation planning meeting. IBM field engineering would also attend the
meeting to discuss the procedure to install the SCP (systems control
programming). Generating a system includes:

., Planning the options and estimating the approximate size, of the
supervisor. This entails selecting from the programming services
provided by IBM, those options you wish to include in the supervisot,
and estimating the cost of these services in terms ?f bytes of storage.,

• Planning the contents, organization, and size of the system and
(optionally) private libraries. This entails distributing the storage space
available (on the disk packs) between the libraries desired for
day-to-day use. The major points you must consider, are:

a. the size of the system core image library and, other system and
private libraries

b. workfile space ne¢ded to Clssemble the supervisor and to link-edit
and catalog the components selected to the system core image
library

c. standard assignments for workfiles needed for everyday operation.

Chapter 3: Planning the System 3.1

You work with themM-supplied distribution medium, which is composed
of four libraries:

The system source statement library contains macro definitions for
various'system components and services. Included are macro definitions
from which you choose desired parameters in order to assemble your new
supervisor. For your convenience, the source statement library, also contains
sample prQgJ'ams (sublibrary Z) and system generation job streams
(sublibrary Z), which are illustrated in DOS/VS System Generation.

The system relocatable library contains assembled IBM progr:ams and
assembled macros from the source statement ijbrary. For example, logical
IO~S, which performs input and output operations for IBM progr:ams and
your programs.

The system procedure library initially contains procedures use:ful for
generating OOS/VS and loading the SV A.

The system core image library contains all programs that are: ready for
execution.

The specific contents of these libraries vary from release to rdease and
are identified in the Program Directory. which accompanies the system
distribution medium.

Using the elements of these libraries, you

• Generate the supervisor by coding a set of supervisor generation
macros, which define the system configuration and the servictis you
wish the supervisor to contain. (These are described in detail in the
section Tailoring the Supervisor which 'follows.)

Generate POWER/VS, if desired, by coding a set of POWER/VS
generation macros, which define its configuration and optional services.
(These are described in detail in the section Generating, POWER / VS.)

Delete from the libraries any components you do not require and then
condense to, free library space.

• Assemble (or compile) and/or link-edit programs- both your own and
IBM's - and catalog them into the appropriate libraries.

After determining what elements are to be contained in the system libraries,
you may wish to retain add'itional elements in private libraries and therefore
you may want to create private core image, relocatable, or source: statement
libraries. These choices are discussed in the section 'Planning the Libraries.

The system libhiries, together with certain system work areas, constitute
the system residence file (SYSRES), which is one extent of a direct access
storage volume. The SYSRES file is described in Appendix A: System
Layout on Disk.

After establishing your SYSRES file, you should copy it onto tape or
disk for backup purposes. The copy /restore system utility or the Disk'
Volume Fast Copy utility, which are provided for this purpose, are
described in DOS/VS System Utilities.

For complete details on how to perform a system generation procedure
refer to DOS / VS System Generation.

3.2 DOS/VS System Management Guide

i'"

TaUoring tbe Su~rvisor

This section describes the optional and required parameters that you select
for the generation of the supervisor. The parameters are included in the
following supervisor generation macros:

ALLOC
ALLOCR
ASSGN
CONFG
DPD
DVCGEN
FOPT

IOTAB
PIOCS
SEND
SIDlC
SUPVR
VSTAB

The parameters of these macros are discussed in a topical sequence, such
that related options are presented together regardless of the macros. in
which they are contained. For the exact formats of these macros, refer to
DOS / VS System Generation.

This section discusses the advantages or necessity of specifying the
support for the various features in the supervisor.

In tailoring your supervisor to the requirements of your installation, you
can take into consideration future plans to add hardware (main storage, I/O
devices, and so on) or other functions that require supervisor options by
including their requirements in your supervisor generaiion macros. This will
allow you to upgrade your installation without having to regenerate your

. supervisor and being inconvenienced by a larger supervisor. You may also
want. to include in the libraries modules or components that will be required
by planned future configuration or functional upgrades. The storage cost of
additional supervisor options may be estimated by conSUlting the supervisor
storage requirements in Module 1 of DOS/VS System Generl!tion.

. I

Stor;age Man~,gement Options

This section describes those supervisor options that relate to virtual. and real
storage. These include defining: .

i

• The size of virtual storage (virtual address area, real addre~ area,
and the shared, virtual area) ,

• The number and size of partitions, and their prioriti~s
• The page data set (SYSVIS)
• The ability to fix pages in real storage
• The virtual storage access method (VSAM).

I

I
Chapter 3: Planning t~e System 3.3

!

Definling the Size of virtUal Storage-

The size of virtual storage must be defined. Virtual ~torage is composed of
the virtual address area arid the real address area, and the size of each must
be separately specified. You specify the size of the virtual and real address
areas in the VSIZE' arid RSIZE operands of -the· VST AB macro.

DerIDing tbeSize of the Real Address Area. Normally,you select a value for
RSIZE that coincides with the amount of real storage in your CPU model.
If, however ,you. anticipate that your system may also be used on a CPU
with larger real storage,. you should select the value' for RSIZE such that the'
end of your,real address area coincides with the end of real storage of the
larger CPU. Otherwise,. some real storage remains unused when using' the
larger CPU. nus is illustrated in Figure 3.1. Specifying a value for RSIZE
that is larger than the size of your current real storage, (see Figure 3.2)
cauSes the start address. of. the virtual address area to be· higher than the
end address- of teal storage. In other words, some. virtual storage remains
unused.

Dermingthe .Sizeof the Virtwal Address Area. The value you specify for'
VSIZE is equal to the sum of the sizes of ·tt.ie virtual partitions and the size .
of the shared virtu,al area. Therefore, you must know these sizes before you
can specify VSIZE. For selecting the size of the individual partitions, see
lJefining the. Size of Virtual Partitions, later in this section. For selecting
the size. of the shared virtual area, see Defining. the Size of the Shared
Virtual Area: .

The value specified for· VSIZE cannot be changed without a new
st.lpervisor generation.

The maximum size of virtual storage is 16M: (16,777,216) bytes.
Because the real.address area. is part of virtual storage, the maximum value
you can ,specify for VSIZE is 16M minus the, size of the real address area
(RSIZE)~ ,

In 'cj ~ingl~~partition system, the value; you specify for VSIZE must be
equal to origreater than 64K bytes (the minimumvirtual background'
partition) plus the size specified for the shared virtual,atea.

The value you specify for VSIZE is used by the system to determine
the size of the page data set. Refer to Defining the Page Data Set later,
in this section.

3.4 JDOS/VS System Management Guide

Virtual
Storage

VirtUal
,Storage

Real
Address
Area

.Virtual
Address
Area

RSIZE

Figure 3.1. Insufracient Specification of RSIZ.~

Addressable
part of the
real address
area

Virtual
Address
Area

. RSIZE

Used
Real
Storage

Real
Storage

Real
Storage

Flpl'e 3.2. Speciracation of RSIZI; Larger Than the Size o..f Real· Storage

Chapter 3: Planning the System 3.5

Defming the Size of the_ Shared Virtual Area. The shared virtual area (SVA)
can contain any program that is reenterable and relocatable. Such programs
can be used concurrently by more than one partition. Having phas(ls
resident in the SV A" avoids frequent fetches; th~ phases can be loaded into
the SVA when first cataloged into the system core image,library.

As illu;strated in Figure 3.3, the SVA is located in the high address
space of the virtual address area. The ,SV A contains a system directory list
(SDL), which provides fast retrieval of frequently used phases that are
resident in the /SVA or in the" system core image library. HavingSDL
entries avoids searching the core image directory for each FETCH or
LOAD request. The SOL and the SVA 'always refle,ct the current status of
the equivalent information in the system core image directory and !library. ;

In general, it is better to have VSAM run in the SV A. Approximately
270K is needed to run VSAM in the SV A.

Virtual
Storage

SUPERVISOR

SYSTEM 01 RECTORY LIST
I-- - -- ---- --_ _-

RESIDENT, REENTERABLE

RELOCATABLEPHASES 1----------- ----
SYSTEM GETVIS AREA

Fagure 3.3. - Location of the Shared Virtual Area

RSIZE

VSIZE

SVA

Note that the VSIZE specification includes the SVA specification.

You specify the size of the shared virtual area and its GETVIS area in
the SV A parameter of the VST AB macro. If the supervisor supports RPS
(rotational position sensing), lOOK bytes are required for it in the SVA.
Either all or part of the RPS code will be loaded into the system GETVIS
area (a part of the SVA). If RPS is not preloaded, then lOOK is re_quired in

3.6 DOS/VS System Management Guide

the system GETVIS area. If RPS is preloaded, then 12K is required,in tl1e
system GETVIS area and 88K mus~ be available for RPS. in the SV A.

The SV A Inust be large enough to accommodate the system directory
list and the programs loaded there, but it cannot be smaller than 64K. The
size of the SV A that you specify during supervisor generation can be '
overridden by issuing SET SV A imme~iately after IPL. This command is
discussed in. the section Building theSDL and Loading the SVA in
Chapter 4: Starting the System.

Definung the Number of Partitions

Derudng the SiiEe of Partitions

In the NP ARTS parameter of the SUPVRmacro you define the maximum
number of partitions for your system.

In selecting the appropriate number of partitions fo~ your particular
installation, you should consider the type of processing you require. ·For
exam~le, ,assume you want to run concurrently the following types of
programs:

Test cases (assemble/compile, link-edit, and execute)

Daily application programs

POWER/VS

• Teleprocessing application program.

For this case, you should generate a system with three to five partitions:
depending on the volume of application program processing. If your system
includes VT AM, at least two partitions must be specified: one for VT AM
and one for VT AM application programs.

Because you cannot alter the NPARTS specification unless you
regenerate the supervisor, it may be advantageous to specify more partitions
than you see an immediate need for.

Note: For VTAM and QTAM at least two partitions must be specified. >

If you generate a mUltiple-partition system, you may explicitly define the
size of each partition (t?xcept the virtual background partition). In a
single-partition system the size of the virtual partition is implied by the
specification of the VSIZE parameter minus the size of the shared virtual ,
area, and the size of the real partition is implied by the specification of the
RSIZE parameter minus the supervisor size.

The size of a partition is defined by specifying the amount of storage
you wish to aJIocate to it. The ALLOC macro is used to allocate storage to
virtual parti~ions; the ALLOCR macro is used to allocate storage to real
partitions. Specification of ALLOC and ALLOCR macros during,
supervisor generation is optional since operator commands to allocate real
and virtual storage are provided in DOS/VS. The size of both virtual and
real partitions is specified· as a, multiple of 2K bytes.

Chapter 3: Planning the System 3.7

Defining the Size of Virtual Partitions. Only the size of the virtual'
foreground partitions-is' eipliCitiy defined' (via the ALLOC macro). The
virt.ual address area -not allocated to any of the virtual foreground partitions
and not allocated to the SV A is automatically allocated to the virtual
background partition. At least 64K ,bytes must be left for the virtual
background partition.

The size of an active virtual foreground partition ~ust be ,at least 64K
bytes. If a -virtual foreground partition is defined but need ootbe used for a
while (see Defining the Num~r of Partitions above), its size can be set
to OK,either by the ALLOC macro during system generation, or by the'
ALLOC command _during actual operation. When using RPS,' leave '
ap,proximately 6K available for the partition GETVIS area1 required by RPS
for controt' blocks.

You specify the size of each virtual for~ground partition by means of
the ALLOC macro. The system then calculates the, difference between the
VSIZE speCified minus the SV A value and the ALLOC value to determine
the size of the virtual background partition. If this difference is less than
64K or if you omit the ALLOC macro during supervisor generation, all of
virtual storage except the shared virtual area is allocated to the virtual
background partition and the size of each virtual foreground partition
.defined in NPARTS is set to zero.

During certain periods of processing, the operator can modify the size
of the individual virtual partitions by using the ALLOC command. Details
on the ALLOC command are given in DOS / VS Operating Procedure~.

Denning the Size of Real Partitions. Potentially, for each virtual partition
'defiried in the system a corresponding real partition canre alloca1ted., A real,
partition consists -of a contiguous set of addresses in the real address area.

Real partitions need only be allocated to enable the following:

Program execution in real mode
Use of the PFIX/PFREE macros.

When a real p~I1ition is used for running a real mode program, 01: for fixing
pages of a virtual mode program,(for example, POWER/VS), the page
pool is reduced by the number of -page frames required. '

Because reducing the page pool in turn may reduce total system
throughput, the use of. real partitions should be carefully considered. When
a program is running in real mode, the real storage allocated to its oartition
is taken from the page pool.

For each of the- above cases, the virtual partition that corresponds to
the real partition must be allocated (64K bytes minimum). This is because
the initiation of either viitual-mode or real-mode programs is performed by
the job control program, which itself runs in virtual mode. Thus, for
example~ the virtual Fl partition must be allocated at least 64K bytes if the
real F 1 pariition is to be used.,

When a program running in virtual mode issues a PFIX ma~ro, the
pages are fixed within the corresponding real partition. This ensures that
other, real partitions are available for other programs that run in real mode
or that fix pages in real storage.

3.8 DOS/VS System Management Guide

, \

Defillung PartitliOn Priorities

.'

To allocate a real partition, specify the partition identifier and its size in
the ALLOCR macro. Each real partition. you require must be specified

. explicitly; the allocation of the real background partition is not calculated
by the system. Note, however, that ALLOCR must not be specified for a
single-partition system: .

A real partition may b~ .as small as .2K bytes: the size of a given real
partition is determined either by the largest program you must ru'n in real
mode, or by the maximum number of pages a virtual-mode program may fix.

The allocation of real partitions cannot exceed the size of the real
address area (specified in the RSIZE parameter) minus the supervisor area.

The minimuQI size of the main page pool is:

18K bytes minus the· size of the smallest real partition, if the smallest .
real partition is 14K bytes or less and PFIX=NO was specified~ If
mul~itasking is specified (AP= YES), a further 2K bytes . are required.

18K bytes if PFIX= YES, plus a further 2K bytes if AP= YES.

• 18K bytes if phases from the SV A are to be executed.

The system ensures (for single as well as multi partition systems) that this
minimum, in which pages cannot be fixed, ~emains. The supervisor
indicates, by means of return codes in register 15, whether or not a PFIX
macro has been executed successfully. Foran example of the use of PFIX
and PFREE macros and the supervisor return codes, r~fer to the section
Fixing Pages in Real Storage.

A priority is associated with each partition in a multiprogramming system. If
. you do not specify priorities during system' generation, the supervisor will
establish default priorites. These default priorities (from low to high) are
shown in Figure 3.4.

NPARTS=2
NPARTS=3
NPARTS=4
NPARTS=5

PRTY=(BG,Fl)
PRTY";'(BG,F2,Fl)
PRTY=(BG,F3,F2,Fl)
PRTY=(BG,F4,F3,F2;Fl)

FIgUre 3.4. Default Partition Priorities

In most cases, there will be no ne~d to select another priority sequence;
however, the PRTYparameter in the FOPT macro is provided for this
purpose. In the .PRTY parameter you can specify the partition identifiers in
any desired sequepce, and thus select another priority sequence:

The operator can display and modify the priorities established during'
supervisor generation at any time during processing with the .PRTY
command. He may want to do this in order -to accelerate the execution ofa
~ven job.

Chapter 3: PI~nning the System 3.9

Defining tbe Page Data Set

FIxing Pages in Real Storage

The page data set, a sequentially organized set of records on a direct access
device, is required in DOS/VS to accommOdate pages of programs that are.
being executed in virtual mode that have been paged out. There are as
many 2K. records on the page data set as there· are· 2K pages in the virtual
address area. The size of the page data set, therefore, depends on the size
of the virtual address area.

The page data set can reside on· any disk device that is supported by
DOS/VS as a system residence device.

You can define the page data set in the D1»D macro, in which you can
specify the channel and unit number of the device and the lower limit ... "
address of the extent. The upper limit address is calculated by the system
according to the VSIZE parameter specified in the VST AB macro. If you
correctly specify the DPD macro, an MNOTE is issued iri the supervisor
assembly listing that indicates the required number of tracks for all different
types of devices supported as a page data set.

You may also specify a volume serial number, which will be checked
when the page data set is opened.

If you omit the DPD macro, or some of its parameters, during
supervisor generation, or the· information you specify is erroneous, you must
define the page data set during IP~ via the DPD command:' (This command
is discussed'in the section Initiating Page Data Set Hand#ng in Chapter
4.~ Starting the System.) The information specified in the 'DPD command
overrides the information supplied during supervisor generation until the
next IPL.

A program that runs in virtual mode is executed in page frames of the page
. pool. When a page frame is required by' a virtual-mode program and all are
currently occupied, one of the· occupied page frames will be freed, if
necessary by paging its contents out onto the page data set.

Some programs that run in virtual mode contain code (such as I/O
appendages) that must be in real s.torage when needed and therefore cannot
tolerate paging. The pages containing such code can be fixed temporarily
via the PFIX macro instruction, and freed immediately after use via the
PFREE macro instruction. POWER/VS is an example of an IBM-supplied
program that usesPFIX/PFREE macros.

When pages of a prog.'am running in a given virtual partition are fixed
in response to the PFIX macro, they are fixed in the corresponding real
partition. Therefore, the use of the PFIX macro requires that a real
partition be allocated sufficie'nt storage to accommodate the pages to be
fixed at any given time. If a PFIX ma~ro is issued when a real partition is
not allocated enough storage, the pages are not fixed~ and a completion
code indicating this is returned to· the program.

3.10 DOS/VS System Management Guide

ImJlI'oving the Paging Mechanism .•

Virtual Storag1e Access Method

If you anticipate the need for the PFIX/PFREE macro instructions in
any of your virtual-mode programs, specify PFIX= YES in the FOPT macro
during supervisor generation.

Fixing pages in real storage means that in a multiprogramming
environment fewer page frames are available to other programs running in
virtual mode, potentially degrading total system performance. Consider this
effect carefully before enabling the use of the PFIX macro. Examples. of
the use of the PFIX/PFREE macros are provided in Chapter 9: Designing
Programs for Virtual-Mode Execution.

The page handling of virtual mode programs is controlled by the page
management routines of the supervisor. You can, however .. influence the
paging mechanism in order to reduce 'the number of page faults, to
minimize the page I/O activity, and to control the page traffic yvithin a
specific partition. You can do this by means of three macros: RELPAG,
FCEPGOUT, and PAGEIN.

RELPAG (Release Page). With this macro you inform the page
management routines that the contents of one or more pages is no longer
required and need not be saved on the page data set when the page frames
occupied by these pages are claimed for use by other pages. This saves
unnecessary page I/O. .

FCEPGOUT (Force Page-out). With this macro you inform the page
management routines that one or more pages will not be needed until a
later stage of processing, and that they should be given highest page-out
priority. This prevents page-out of other pages which might be needed again
immediately after being written out. .

PAGEIN. With this macro you request one or more pages to be paged in in
advance, so that page faults can be avoided when the specified pages are
needed in real storage. If the specified pages are already in real storage
when the macro is issued, they are given lowest priority for page-out.

If you anticip~te the use of. one or more of the above macros in any of
your virtual mode programs, specify PAGEIN=n in the SUPVR macro
during supervisor generation. This will generate support for the three
macros. The value of n must be 1 or greater. It specifies the number of
page-in requests that can be queued if more than one P AGEIN macro is
issued concurrently in the system.

The virtual storage access method (VSAM) can be used for direct or
sequential processing of fixed and variable-Itmgth recor9s (including
spanned records) on direct access storage devices. A significant feature of
VSAM is data portability. VSAM files can be processed by DOS/VS,
OS/VS 1, and OS/VS2.

VSAM requires a special file, the VSAM master catalog, which contains
information on file and disk characteristics. In addition, VSAM supports

Chapter 3: Planning the System 3.11

MultiJllle-Partition Options

any number of user catalogs for alternative use. The VSAM master catalog
resides on a disk extent that is contained on the logical unit SYSCAT.
Catalogs are defined and Dl-aintained by the Access Method Services and
used by OPEN and CLOSE. For complete information on VSAM, refer to
-DOS/VS Data Management Guide and DOS/VS Supervisor and I/O
Macros.

SuPPOrt for VSAM is generated in the supervisor by specifying
VSAM= YES in the FOPT macro. Most VSAMphase's can be loaded into

. the shared virtual area. For details refer to the section Defining .the Size
0/ the Shared Virtual Area.

There are certain options that can be specified during supervisor generation
that are p~r:t~cularly designed for a mUltiprogramming environment. The
options described in this section are:

Relocating loader
• POWER/VS
• Multitasking
• Wait multiple.

The linkage editor can produce relocatable phases. A relocatable phase
contains relocation information, which is used by the relocating 14)ader if
necessary to load the phase into any partition.

In a system supporting the relocating loader, it is no longer necessary

• to write an assembler-language self -relocating program, -if you want the
program to be executable in any partition. The high-level language'
programmer can thus obtain the advantages of self -relocating programs.

•. to link-edit again if the size of the supervisor or the boundaries of the
partitions change after a program has been cataloged into tht' core
image library.

• to maintain multiple copies of individual programs in a core image
library.

The relocating loader is also advantageous to the o~rator, who (!an execute
a relocatable phase in any available partition large enough to cOIlltain it.

You can include the relocating loader in the supervisor by specifying
RELLDR=YES in the FOPT macro. OLTEP and VSAM require a'
supervisor containing the relocating loader. Therefore, if you spe.cify
OLTEP=YES, RETAIN=YES, or VSAM=YES, the relocating loader is
automatically included in your supervisor.

3.12 DOS/VS System Management Guide

POWER/VS

MuJltitasking

Wait Multiple Option

When the supervisor contains the relocating loader and if the phase
origin is not an absolute address, the linkage editor automatically produces .
a relocatable phase. You can suppress this by specifying ACTION NOREL
at ·link-:edit time.

Note: A supervisor generated without the relocating loader can still load
relocatable phases. No relocation is performed, however, and the phase is
loaded at the link-edited origin.

Relocating loader applications are discussed in the section Link-editing
for Execution at Any Address in Chapter 6: Linking . Programs.

POWER/VS provides spooling services for up to four partitions and resides
in a partition with a higher priority than that of the partitions it controls.
Although POWER/VS runs in virtual mode, it supports programs running
in virtual or real mode.

Specifying POWER=YES in the SUPVR macro sets up the necessary
linkages in the supervisor which are used when POWER/VS is active. The
version of POWER/VS distributed in the core image library will suit the
needs of many users; however, if you have special requirements, you can
assemble the POWER/VS generation macros, which are distributed in the
source statement library. Refer to Generating POWER/VS later in this
chapter.

Multitaskirig provides the ability to execute more than one task concurrently
in a single partition. Because multitasking presupposes the
multiprogramming facilities (for instance, task selection) multitasking is only
available in a mUltiple-partition system.

A program engaged in multitasking consists of one main task, which
initiates (attaches) a number of subtasks. The maximum number of sub tasks
depends on the number of partitions specified in the NP ARTS parameter~
as shown below. These subtasks may reside together in one partition or
they may be distributed among the various partitions.

NPARTS Specified Maximum Number of Subtasks

2 13
3 12
4 11
5 10

To generate multitasking support (also known as asynchronous processing)
in the supervisor, you specify AP= YES in the SUPVR macro.

The wait multiple option allows a task to wait on more than one event. The
task regains control on the completion of anyone of the events on which it
was waiting.

Chapter 3: Planning the System 3.13

Library Options

Private Core Image Libraries

You can generate support for private core image libraries, for special
applications in the procedure library, and for adequate table space to
achieve better fetching performance. These options are described below. No
supervisor generation options apply to the relocatable library or to the
source statement library. For full details on the type of library fOJ!" your
installation, refe.r to the section Planning the Libraries.

Private core image libraries (PCIL) have the same format as and are
supplementary to the system core image library.

To include support for private core image libraries in the supervisor,
specify PCIL= YES in the FOPT macro. For more information on the
creation, organization, and maintenance of private core image libraries, turn
to Chapter 7: Using the Libraries. Refer also to the section Second
Level Directory for the Core Image Library.

Extend,~d Support for the Procedure Library

Normally, cataloged procedures can consist of job control statements
and/ or linkage editor control statements. However, with the extended
support, cataloged procedures can also consist of data that is to be read
from SYSIPT. Such data, for instance, may be utility control statements to
be processed by a utility program.

To include the extended support for the procedure library, specify the
SYSFIL parameter in the FOPT macro, which is discussed in the section
System Files on Disk in this chapter.

More information on· the procedure library is contained in the section
Planning the Libraries.

Second Level Directory for Core Image Libraries

The directory entries for phases in the core image library are sorted by
phase name in alphameric sequence. The entries are organized in 256-byte
blocks, where the highest phase name in each block serves as the key. The
highest key on each track of the core image directory is stored in a second
level directory (SLD) in the supervisor·. To he1.p ensure good pelformance
when a phase is fetched, the number of entries in the SLD should not be
less than the number of tracks used for the core image directory.

Specify the SLD parameter in the FOPT macro if you intend to use
more than five tracks for the core image directory entries. Similarly, if
private core image libraries are used in the system, specify the PSLD
patameter in the FOPT macro. Note that the default value for PSLD is
zero, compared to five for the SLD parameter.

3 .. 14 IDOS/VS System Management Guide

1releproce:ssing

. ,

BT'AM

QTAM

DOS/VS provides facilities for teleprocessing, the interchange of data
between an application in the system and terminals connected by
telecommunications lines. These facilities provide the ability to define
teleprocessing lines during supervisor generation and to specify one or more
access methods for input/output services between an application and
terminals .

Teleprocessing devices (terminals) are normally attached to the CPU '
through transmission control units or communications controllers. In some
cases there is a direct local attachment. The control unit must be specified
in a DVCGEN macro.

The access methods, defined in the TP parameter of the SUPVR macro
instruction, are:

BTAM (the Basic Telecommunications Access Method)

QTA~f (the Queued Telecommunications Access Method)

• VTAM (the Virtual Telecommunications Access Method).

Except when BT AM is specified for a single-partition system, support for
anyof these access methods automatically includes support for TP
balancing (teleprocessing balancing).

For detailed information on generating and using a teleprocessing access
method, refer to the appropriate teleprocessing ppblications. Teleprocessing
users sHould also pay partieular attention to the section I 10 Options later
in this chapter and the section Balancing Teleprocessing in Chapter 9:
Designing Programs for 'Virtual-Mode Execution.

BT AM provides READ, WRITE, and CONTROL macro instructions to
control input/output. A WAIT macro instruction is used to synchronize
110 with application program processing. ,

Applications using Bf AM can execute in either virtual or real mode~
Users of previous DOS releases must reassemble and catalog BTMOD.If
BTMOD and the application program were assembled together, the
application program must also be reassembled and re-link edited. To
execute BTAM in virtual mode; PFIX= YES must be specified in the FOPT
macro.

QT AM provides a way to write one or several application programs using
GET and PUT macro instructions to request inputloutput from a Message
Control Program (MCP). This MCP, which you generate using OTAM
macro instructions, frees the application (called a Message Processing
Program) from I/O processing details required by a BTAM application.

The OT AM MCP and its applications can execute only in real mode.
Users of previous DOS releases must reassembltt the QTAM MCP ..

Chapter 3: Planning the System 3.15

VTAM

ASCII

'''hen support for QTAM is generated in the supervisor,BTAM is also
supported:

QT AM requires a special disk extent for messages and, in some cases,
the interval timer. For more information, see the QT AM MCP publication.

VT AM directs transmission of data· between application programs and local
or remote terminals, and controls the terminals in a telecommunications
network. Because VTAM operates with the IBM 3704 and 3705
Communications Controllers, communications lines and communications
controllers need not be considered .incoding application programs.

Basic: services performed by VT AM include:

Establishing, terminating, and controlling access between application
programs and terminals.

J\1oving data between application programs and terminals.

Permitting application programs to share communications lines,
communications controllers, and terminals.

VT AM requires that multitasking support be specified during supervisor
generation. Other options automatically generated when VTAM is specified
include:

Support for the use of the STXIT macro instructions (all options) by
problem programs.

Storage management support for the GETVIS and FREEVIS macro
instructions.

Use of the PFIX and PFREE macro instructions for fixing and freeing
pages.

Inclusion of the relocating loader.

Support for the time-of -day clock.

Support for the multiple wait function.

• Support for the use of the EXCP macro instruction with the REAL
parameter.

Both real. and virtual storage must be allocated for the partition in which
VTAM is to run. For information on calculating storage requirements for
the VT AM partition and for the application program partition, refer to
DOS / VS System Generation. Other installation details are contained in the .
DOS / VS VI' AM System Programmer's Guide.

In addition to processing EBCDIC files, DOS/VS can procesS magnetic
tape files written in ASCII (American National Standard Code for
Information Interchange), a 128-character, 7-bit code. The high-order bit in
the System/370 8-bit environment is zero. ASCII tape files may be either
unlabeled or labeled according to the specifications of 'the American
National Standards Institute, Inc., (ANSI).

3.16 DOS/VS System Management Guide

. Job Accountting

ASCII tape files may be processed in any partition. Because internal
prOcessing of ASCII files is performed in EBCDIC, the data i~ translated at
I/O time. No user translation tables or instructions are required .. :

Input files containing ASCII data are translated to EBCDIC as soon as
the record is read into the I/O area. Output files described as ASCII are
translated from EBCDIC to ASCII just prior to writing the record.

If your system is required to process ASCII files, specify ASCII = YES
in the SUPVR macro. This· generates the two' translation tables. needed for
the·conversion from ASCII to EBCDIC and from EBCDIC to ASCII, in

. the supervisor .

The job accounting interface facility provides job and job step information
that can be used for charging system use, supervising system operation,
planning new applicatipns,. etc.

When this option is selected (JA= YES in the FOPT macro), job'
accounting tables are built in the supervisor to accumulate accounting
information. One OOS/VS job accounting ta15le is maintained per partition.
The format of these tables is shown in Chapter 10: Using the Facilities
and Options of the Supervisor.

To utilize this information, you must write a routine to store or print
the desired portions of the table. This routine must be cataloged in the core
image library under the name $JOBACCT.

If the user I/O routine ($JOBACCT) is'written using LIOCS with label
processing, the JALIOCS parameter of the FOPT macro must be specified
in addition to the JA parameter. JALIOCS indicates that'a user save area
and a label area in the supervisor are to be reserved. The label area
replaces the one normally used by LIOCS label processing routines.

Information on how to write a job accounting routine can be found in
Chapter, 10: Using the Facilities and Options of the Supervisor.

If POWER/VS job accounting is desired, support for the job
accounting interface is required. Job accounting interface information and
POWER/VS job accounting information are combined in the POWER/VS
account file for each partition running under POWER/VS. No user-written
data collection routine is necessary. Refer'to Account File in the section -
Generating POWER/VS for more details.

Two distinct timer services are available to DOS/VS users:

• Time-of -day clock
• Interval timer.

Although both the time-of-day clock and the interval timer are standard
hardware features of the System/370, the user of these features in
DOS/VS requires software support, for which supervisor generation
parameters are provided. .

Chapter 3: Planning the System 3.17

.imt£~··of -Day Clock

Interval Timer

The time-of -day (TOIl) clock provides a consistent measure of elapsed time
suitable for time-of-day indication. You can use'the TOO clock to ,
time-stamp programs. Regardless of whether or not OOS/VS programming
support for the TOO clock is included in the supervisor, programs can
inspect the contents of the TOO clock by means of a store clock (STCK)
instruction. For more information on the use of this instruction, refer to
IBM System/370 Principles of Operation.

To include support for the time-of -day clock in the supervisorll specify
TOD=YES in the FOPT macro. The time-of-day and the date are then
automatically included with each / / JOB and I & job control stat,ement
that is printed on SYSLST and/or SYSLOG.

The ZONE parameter in the FOPT macro is associated with the
TOD= YES specification. In the Z9NE parameter you indicate tht~
difference between Greenwich Mean Time (GMT.) and local time in hours
and minutes. If the local time to be specified is GMT, the ZONE parameter
can be omitted.

During the IPL procedure, if IPL is performed from SYSLOG, a
message is printed on the operator console to inform the operator of the
status of the date, clock, and zone. If necessary, the opera"tor can correct
this information in the SET command.

The TOD clock support also enables programs to issue the GETIME
macro instruction, which causes the exact time-of -day to be stored in
general register 1. When a GETIMI; macro instruction is issued, the date
fields in the supervisor communications region are updated, if necessary. A
description of the use of the GETIME macro instruction is includ1ed in the
section Using the Time-of-nay Clock in Chapter 10: Using tlu.~

Facilities and Options of the Supervisor.

Th{: interval timer can be used by programs (main tasks and/or subtasks)
that need to schedule certain processing on a time interval basis. If support
for the interval timer is included in the supervisor, and a problem program
is written with the appropriate macro instructions and routines, the interval
timer causes an external interrupt when the time limit established by the
program has elapsed.

To include support for the interval timer in the supervisor, specify the
IT parameter in the FOPT macro.

Seven problem program macro instructions relate to interval timer support.
These are described in other parts of this manual, as indicated below:

The section User Exit Routines which follows describes the STXIT
and EXIT macros in general, and the section Interval Time Exit
describes their specific use in relation to the SETIME macro.

Chapter 10: Using the Facilities and Options of the Supervisor
describes how to implement the SETIME, STXIT,_ EXIT and TTIMER
macros.

3.18 DOS/VS System Management Guide

Console Buff (!ring

Since there is only one ,console typewriter in the system and it is a relatively
slow device, the entire system can be held up while messages are being
issued to the operator. Console buffering support builds a queue of output
messages and returns control immediately to the partition requesting the­
output. The messages are then written as soon as the console becomes
available.

Support for console buffering is indicated by the CBF=n parameter in
the FOPT macro (where n is the number of I/O requests to be buffered.) '\
At least one buffer should be specified for each partition or task issuing ,
messages so that buffers are available and the task can contin\le processing
while the message is being printed. Five per batched-job partition is
recommended. The console buffering is not split per partition, but used by
the whole system.

Unless the immediate logging of messages to a hard-copy device is
desired, console buffering should not be specified for a Model 115 or 125
using the video display keyboard console as an operator communications
device. This device has its own buffer.

Inde,tendent Oirectory Read-in Area

User Exit Routines

If a phase must be loaded and the phase name is not found in the System
Directory List or Local Directory List, then the core image directory is
searched to find the location of the phase in the core image library.
Normally, the directory blocks are read into the physical transient area,
which is scanned for the required entry. If a system error recovery routine
is in progress, it resides in the same physical transient area. During this
time, the physical transient area cannot beAlsed for directory blocks, or for
building the fetch channel programs. This effectively prevents any partition
of a higher priority from fetching or loading a program phase until error
recovery is complete.

By specifying IDRA= YES in the FOPT macro, an independent
directory read-in area is generated in the supervisor for holding directory
blocks and fetch . channel programs during a fetch or load routine.
IDRA= YES is available only in a multiple-partition system.

If required, the supervisor can permit user routines to gain control when
any of five types of events occurs:

Interval Timer Interrupt (IT)
Program Check Interrupt (PC)
Abnormal Termination (AB)
Operator Communication Interrupt (OC)
Page Fault Handling Overlap (PHO)

Chapter 3: Planning the System' 3.19

Inltervall Timer Exit

Both the supervisor and the problem program that contain the user routine
must have the proper code to establish an interface. The supervisor part of
this interface is specified during the system generation: the first four options
have parameters in the FOPT macro, the last option has a parameter in the
SUPVR macro.

The problem program that wants to utilize the options must contain
code to set up the interface. For the-first four events, code can be
generated by the STXIT macro. For the last event, code is generated by
the SETPFA macro. This code is assembled in the mainline of a problem
program.

The first operand of the STXIT macro indicates the type of event to be
handled. It must have an equivalent in the supervisor. The second and third
operands indicate the addresses of the user routine and its save area. If the
second and third operands are missing, this means that an existing interface
has to be discontinued. Once the linkage has been established and one of
the events occurs, control is passed to the user routine, which takes
appropriate action and returns control to the supervisor, either directly or
via a termination macro. The direct return can be handled by induding the
EXIT macro in the user routine for all event codes except abnormal
teJmination (AB). The job termination return can be handled by the
CANCEL, EOJ, JDUMP, or DUMP macro. One of these must be used for
the abnormal termination condition.

Short descriptions of the support for each of the five types of user exit
routines follow. For more details refer to Chapter 10: Using the
Facilities and Options of the Supervisor. For information on how
muJtitasking affects this support and what happens if mUltiple events
coincide, refer to the DOS / VS Supervisor and I/O Macros. Some
high-level languages offer similar facilities, for details of which Sl!e the
appropriate programmer's guide.

Int.erval timer support is indicated by the IT=parameter of the FOPT
macro. If IT= YES is specified, all tasks in all partitions may refer to the
interval timer.

Example on how to use the Interval Timer: Suppose you want to take a
checkpoint on a job a certain time after it has started. Include the STXIT
and the SETIME macros in your program. The first macro will s,et up the
interface with the supervisor; the second will help you include a time
interval. When that interval elapses, an interval tipler interrupt· Olccurs and
control is given to the user routine. Please note that the user -routine need
not be entered immediately. For instance, if the user routine is in a
baekground partition, and a foreground partition is active, the user routine
will not be entered until the background partition becomes active. Chapter
10 contains coded examples of this option.

To find out the time remaining in an interval, a program can issue the
TTl MER macro instruction. The supervisor then loads this value in general
register O. This macro can also be used to cancel the ~~maining time in the
intl!rval.

3.20 OOS/VS System Management Guide

Program Check Exit

Abliionnal Termination Exit

Opt!rator Communications Exit

If ~=YES is specified in the FOPT macro, programs can establish linkage
from the supervisor to a user routine by executing a STXIT macro. If a
program check occurs within the program, the supervisor gives control to
the user routine instead of discontinuing the program. The user routine can
analyze the program check and choose to ignore, to dorrect, or to accept it.
If the check; is ignored, control can be given back to the supervisor by
executing an EXIT PC macro.

Ill! some eases it may be possible to correct the error condition. For
example, if a data exception occurs on an add pa9k (AP) instruction, the.
user routine can be written to correct the sign and' arrange for the
instruction to be processed again. The user routme can request that
processing of the main line. program continue via the EXIT macro.

In case the problem cannot be resolved, the i program check is accepted
as valid. The user routine can then terminate further processing of the
program by issuing a CANCEL, DUMP, JDUMP,!,r EOJ macro.

The ability to include a user routine' to process program, checks can be
especially advantageous when using LIOCS. In that case, I/O housekeeping
such as closing files and freeing tracks can be performed before termination
of the job or task.

If AB=YES is specified in the'FOPT macro, any program can issue a
STXIT AB macro. This instruction allows a user routine to get control from
the supervisor before an abnomtal end-of-job condition discontinues the
processing of the program. Since no EXIT macro is, provided to continue
processing of the problem program, the termination macros (CANCEL,
DUMP, JDUMP, or EOJ) must be used to return control to the supervisor.

OC= YES in the FOPT macro supports the use of user routines for
handling external interrupts from the operator. This support is useful in a
number of applications, for example:

A change in the environment is needed. A message is then issued by
the program. For example: MOUNT TAPE XXX on uriit xxx and press
the interrupt key.

• In teleprocessing, the OC exit allows the operator to start arid stop
activities on certain lines or terminals, or to invoke diagnostic
procedures. In this case, program run books with explicit instructions
may be required to ensure understanding between programmer and
operator.

Chapter 3: Planning the System 3.21

The exte.mal interrupt that links to an OC user eXit routine, can be caused

Page Faullt Handling Overlap Exit

Disk or Diskette Options

System Files'on Disk or Diskette

in the following ways: .

If the program with the OC exit routine is being executed' in the
background partition, the operator. can press the interrupt key on the
system console.

If the program with the OC exit routine is being executed in a
foreground partition, the operator can press the request key 'on the·
console typewriter. When the message READY FOR '
COMMUNICATIONS appears, he should reply MSG Fl (or give the
appropriate partition identifier).

If PHO-YES is specified in the SUPVR macro, a user routine can continue
processing during the time a page fault is bejng handled by the system, if
this page fault occurs in the same task and not io. a supervisor routine
invoked by this task. This support is of interest only for programs executed
in a virtual partition that make use of user-developed subtasking rather than
IBM-supplied multitasking.

Such programs may issue the SETPF A macro instruction to establish
linkage from the page management routines in the supervisor to a. user
routine, called the page fault appendage routine. The SETPFA macro .
instruction is described in DOS / VS Supervisor, and I/O Macros ..

Options are provided especially for some DASD devices or diskettes. These
are:

System files on disk or diskette
D ASD file protection
Track hold option
Seek separation
Rotational position sensing
Block multiplexer channel support.

DOS/VS does not provide DASD file protection or track hold support for
the IBM 3540 Diskette.

The system logical units SYSRDR, SYSIPT, SYSLST, and SYSPCH are
normally assigned to card readers, printer, and card .punches, respectively.

However, it may be useful to assign one of them. to a disk oJ' diskette
extent instead, for instance, when you want to catalog the output from a
language translator to the relocatable library. Instead of physically punching
cards and tpen reading them, the SYSPCH file should be assigned to disk
during the language translator run to receive the object module. For the
subsequent MAINT librarian job to perform the catalog function, SYSIPT
should then be assigned to the same disk extent as SYSPCH. The card
images will then be read from disk as if they were cards in a can! reader.

3.22 DOS/VS System Management Guide

DASJ) FOe Prottection

Track Hold Option

Support for system files on disk or diskette is specified in the 'SYSFIL
parameter of the FOPT macro.

The SYSFIL option also implies extended support for the procedure
library. This means that cataloged procedures may contain in-line SYSIPT
data. The sets of control statements that can be cataloged into the
procedure library are, therefore, not limited to job control.or linkage editor
control statements. (See also Extended Support for the Procedure Library.)

For systems without magnetic tapes, the SYSFIL option is, required in
order to apply IBM· programs and program maintenance, which, in this case,
must be distributed on disk packs in SYSIN format.

This feature is provided to prevent user programs, which include
user-written channel programs for writing onto DASD, from writing data
outside of the limits of the DASD file currently being accessed. This might
happen if, for example, a randomizing algorithm produces an unexpected
DASD address which· is outside the file limits.

DASD file protection support is indicated in the DASDFP parameter of
the FOPT macro. The parameters indicate that protection is given to
channels and device types. DASDFP should be provided for the entire
channel range, for instance, DASDFP=(1, 3, 3330).

DASDFP gives protection on the basis of programmer logical units. If
two files in the same partition are assigned to t4e. same programmer logical
unit, the DASDFP option gives no protection.

Protection begins and ends on a disk cylinder boundary or a data cell
strip boundary. Files to be protected sho"dd, therefore, begin' and end on
such boundaries. No protection is given to partially allocated cylinders or
strips ..

If you are using physical IOeS, you must use the DTFPH macro to
define the file. The file must be opened using the OPEN or OPENR macro,
and each channel program must commence with a long seek (X'07')
command, and contain no chained long seeks.

If you specify any DASDFP, the SYSRESfile must reside on a
protected channel: otherwise, it will not be possible to IPL the' system~

DASDFP does not prevent file contention between partitions, or within
partitions if the same symbolic unit is used. Thus, more than one partition
may access the same file at the same time, and may even attempt to update
the same record simultaneously. The track hold option (TRKHLD) is
provided to solve this problem.

The track hold option is used to ensure that if a DASD track is being
modified by one task, no other task in the system can access that track
provided that they also use track hold. The facility is available for all IS AM
and ISAM interface program functions (except LOAD), all DAM functions,
all SAM work file functions and other SAM update functions. The facility is
a combination of supervisor (PIOeS) and LloeS functions.

Chapter 3: Planning the System 3.23

Seek Separation

· The track hold option, can be selected by specifying'the TRKHLD
parameter in the FOPT mac~o.

If you write yourQllEn channel programs, each program must begin with
a long seek (X'07') command. If multiple track search channel programs are
used, only the first track will be· held, 'which is not necessarily the track on
which the record is located.

Deadlock occurs if one task is waiting for a track held by a second task
and the second task iswaiting,fo'r a track held by the first. This can easily
be prevented by establishing t~e -'c-6nvention that every task must be .
programmed so that it will not hold more than one track at a tnme.
Deadlock may also occur if the maximum number of tracks demanded to be
hel4.by all tasks combined exceeds the maximum specified in the TRKHLD
parameter.

A channel program for a DASD device usually consists of a number of
functions t.o perform the I/O operation as follows:

1. A long seek to position the accc!ss arm over the required cylinder.

2. A search to find the required record on a track on that cyiiinder.

3. A transfer in channel to branch back to the search until the search is
c0l:11pleted successfully or unsuccessfully.

4. The actual read or write which transfers the data.

Since the channel is monopolized onfe the channel program has been
initiated, no other device on this channel can be accessed' until the data has
been transferred. This is inefficient, particularly since most of the t,me
utilized during the executiqn ,of a DASD channel program is talken up by
the long seek (1). With seek separation support, the supervisor handles this
by separating the long seek from the rest of its channel program and
initiating the seek command separately. The channel is then free while the
disk access arm is being moved and other devices on the chanl1lel and
control unit can be accessed.

Once the access arm has been positioned over the correct c::ylinder, the
rest of the entire channel program is executed. By performing this function
in the supervisor, contention is avoided between two tasks trying to move
the same disk access arm~

This does not apply to DASDs with disconnect command chaining
(DeC) on block multiplexer channels running in block multipi<::x mode; in
such instances the seek separation function is handled by the channel.

Specifying SKSEP= YES in the FOPT macro creates seek separation
support for each DASD device specified in a DVCGEN macro at supervisor
generation time. .

Specifying SKSEP=n indicates the number of DASDs to be supported
and must not be less than the number of DASDs you specify in DVCGEN _
macros. Specifying n adds flexibility to your installation by allowing for
expansion: seek. separation support then also applies to the DASDs added at
IPL time.

3.24 DOS/YS System Management Guide

Rotll~tIonal PosiitiOD Sensing

Rotational Position Sensing (RPS) is a standard feature on IBM 3330/3333
,and an optional feature on IBM 3340 disk storage devices. It provides the
ability to overlap positioning operations on one device with service requests
for other devices on a block multiplexer channel (or its equival~nt on Model

,3115/3 12~ CPUs).

Better channel utilization can increase system throughput, especially in
large multiprograinming systems with heavy concurrent 1/ Q activity.
Because a selector channel is monopolized once a channel program has
been initiated, no other device, on this channel can be accessed, until the
data has been transferred. With block multiplexer channels and the RPS
feature of DASD devices, however, the device can disconnect from the
channel during positioning operations. The channel is then available for
other requests so that other devices on the channel can be accessed.

Overlap of positioning to a record, on a track requires adding RPS
CCWs to the direct access storage' device channel programs. DOS/VS
system control and service programs that support RPS create these eews
at execution time provided that the supervisor is generated . with RPS= YES
and that the direct access storage device has the feature.

RPS support for DOS/VSis provided in all access methods which
,support RPS DASD devices and in the DOS/VS system control and service
programs where the implementation benefits total system performance.

,Implementation of RPS support in DOS/VS util!~es virtual storage to
eitable you to use RPS without recompiling or relink-editing your problem
programs. The, partition GETVIS area is tised to generate an extension to
the DTF, and the shared virtual area is used to hold the RPS version of the
logic modules. Since this implementation requires a partition GETVIS area,
prograins executing in real mode do not have RPS support for DASD
LIOeS functions. If you have specified RPS= YES in the FOPT macro at
supervisor generation time, all programs using DASD LIOeS should define
a GETVIS area within the partition. to enable the access methods to
construct RPS channel programs.

The effective use of RPS depends on each channel program's ability to
free that channel so that it can service requests for other devices. Programs
using DOS/VS DASD LIOeS access methods will 'have RPS chann~l .
programs constructed by the access method provided a GETVIS area is
defined in the partition (by using the SIZE parameter of the EXEC job'
control statement) and that sufficient virtual storage is available in the SV A
for loading RPS versions of the iogic modules. Programs using Ploes for
DASD access have to be recoded to include Set Sector eews and to
establish arguments for the eews. If this is not done, these programs will
destroy the effectiveness of RPS by monopolizing the channel.

Specification of RPS= YES forces generation of block multiplexer
channel support, which is a prerequisite for RPS support. Block mUltiplexer
channel support can be specified separately by specifying BLKMPX= YES
in the Ploes macro instruction. If RPS= YES is specified in the FOPT
macro instruction, there is no need to specify seek-separation support
(SKSEP= YES) if only the 3330 and 3340 DASD types are attached.
SKSEP= YES can, however, be specified for direct access storage devices
that do not have the feature (for example; 2314/2319).

Chapter 3: Planning the System 3.25

For a'more effective use of RPS, you should preload frequently used
logic modules into the SV A during IPL, by specifying them in your System
Directory List (SDL). You may determine frequently used modules by using
the Fetch/Load Trace facility of PDAIDS. When using Checkpoint/Restart,
modules used must be preloaded. Each' access method, that is, SAM (for
DASD), DAM, ISAM, and VSAM has RPS versions ~f the logic modules
associated with it. These modules reside in the core image library and are
not assembled or link-:-edited with the user's program. They are loa.ded
either during (PL or dynamically as needed when the file is opened.

Figure 3.5 shows the organization' of a user's program running in virtual
storage without RPS support.

Figure 3.6 shows how, with RPS support, this organization will be
modified at OPEN time to put the DTF extension in the partition GETVIS
area.. The pointers to the RPS version of the logic module and channel
program will be put into the DTF while the non-RPS logic moduh~ and
channel program addresses will be saved in the DTF extension. The DTF
exte:nsion will be freed and the pointers restored at CLOSE time.

Figure 3.7 shows that the RPS version of the logic modules can be
either in the SV A or in the SV A GETVIS area, or in some combination of
both.

T
w

~
a:

~ ...
c(

~

USER PROGRAM

DTF

NON·RPS CCW STR I NG +
NON·RPS LOGIC MODULE.

1------ - --- -------
NON·RPS CHANNEL PROGRAM

a: > NON·RPS

1
LOGIC MODULE

~ ~ { -------------------------------------....
Figure 3.5. User Program Running in Virtual Storage without RPS Support

3.26 DOS/VS System Management Guide

USER PROGRAM

DTF

RPS CCW STRING +
RPS LOGIC MODULE 4

r--- _ - - ... - ---- -- ---
NON·RPS CHANNEL PROGRAM
(not US8CU

NON-RPS

LOGIC MODULE
(not us8d by RPS DTF
but available to other DiF)

\

FlgUl'e 3.6. User Program Running in Virtual St~e using RPS Vermons of
Logic Module and Channel Program

T r---1- __ m:---i
• r-- _ ..

« r-~;;VER;ION OF LOGII~ MODULES

~ l r- :O_~E:.o ~~ I.!:l:. ~ - - - - - - - - -

1
LDL~.----{ :

5e. -- -_. t •
~ ~ '-_ •• .!

~ ~ RPS VERSION OF LOGIC MODULES
LOADED DYNAMICALLY

Figure 3.7. Location of RPS Version of Logic Modules
I

. Bloc., Multiple:x:er Channel Support

Block multiplexer channel support is useful in configurations with 3330 and
3340 DASD devices that are attached to block multiplexer channels. To
obtain block multiplexer support, specify BLKMPX= YES in the Ploes
macro during supervisor generation.

In a DASDconfiguration that consists only of 3330 and 3340 devices
with RPS capability, there is no need to request seek separation support ,
since the block mul~iplexer support provides channel overlap during seeks 'in
a more efficient way. Furthermore, the code generated by a specification of

Chapter 3: Planning the System 3.27

1/0 Options

SKSEP= YES is bypassed if BLKMPX= YES is specified. You c,-
block multiplexing if you are planning to use the 2311 or 2314
compatibility features and your CPU is a Model 115 or Model 125. It J

CPU is a 'Model 135, block multiplexer support may be specifi4~d. This
support will be inoperative for files being handled by the Emul:ator, but it
will work properly for files being addressed. in native mode.

Oefiniing the Number of CCW Translation Buffers·

Because all addresses associated· with instructions and data are 'Virtual, they
are translated to real addresses before they are actually used. All addresses
except those in channel programs are translated by the OAT facility:
channel programs are translated by DOS/VS. Translated channlel programs
are kept in special buffers within the supervisor area.

You specify the number of channel program translation buffers in the
BUFSIZE operand of the VST AB macro.

The number you select for the CCW translation buffers generally
depends on the number of channel queue entries and on the number of
CCWs in the channel program. If the number of buffers is too small,
overall performance degradation will occur because tasks are put into the
wait state until buffer space is available. If a single I/O request needs more
than the' entire buffer space, the requesting. task is canceled. On the other
hand, too large a value for BUFSIZE wastes storage.

As a rule of thumb, three buffers are needed for each concurrent virtual
mode I/O request. If you expect that most of the I/O requests will be
made from virtual-mode programs, the number of buffers specified in the
BUFSIZE operand should be three times the number of entries in the
channel queue. If you expect to do much I/O from real-mode programs, the
number of buffers should be reduced proportionally. If ISAM is the
predominant access method, about 200/0 more buffers should be specified.
If RPS is specified, about 20% more buffers should also be specified. At
least 40 additional buffers should be specified when VSAM is u\;ed. If
teleprocessing terminals are supported under BT AM. read the dt,scription of
'the BUFSIZE parameter of the VSTAB macro in DOS/VS· System
Generation.

Bypassing System CCW Translation

In most instances, double buffering techniques and an increase in block size
can significantly reduce the system overhead associated with channel
program translation. However, in extreme cases, you may wish to perform
your own translation of channel programs and thereby avoid system CCW
translation overhead. Programs that might require this are EXCV. programs·
that have very high start I/O rates and that repeatedly use the same
channel programs.

3.28 DOS/VS System Management Guide

Channel' Queue

By specifying ECPREAL= YES during supervi~or generation you obtain
, support that assists in the tr~nslation of channel programs. This support

allows you to use the VIRT AD and REALAD macros as well as the REAL
parameter of the EXCPmacro. You must 'obtain real storage by means of
the PFIX'macro and then 'translate the channel program. The CCB must
have the REAL operand. For detailed information see DOS/VS Sup~rvisor
and ,]/0 Macros.

The channel queue (CHANQ) is used by the supervisor to schedule I/O
operations. An entry is made in the channel queue whenever a request is
made for an I/O operation ~nd the entry remain~ until the operation has
completed. Thus, at any pOint in time, the queue will consist of entries for

, I/O operations in progress and I/O operations waiting for initiation.
Whenever an II 0 event completes, the queue is examined cyclically to see
if another entry exists for the' channel, and if so,' the operation is initiated.

The number of channel queue entries to be reserved in the' supervisor
can be specified in the CHANQ parameter of the lOT AB macro.

The number of occupied entries in the channel queue depends on the
activity in the system. No ~ura,te formulas for determining the optimum
size can be given though.

The thing to bear in mind is that specifying too small a channel queue
, will cause performance degradation, too large a, CHANQ value will waste

storage space (8 bytes per entry).)

Real,.mode tasks or programs that request an I/O operation when the
channel queue is fuU wiD be set to reissue the request until an tfntry
becomes free. Virtual-mode tasks or programs that request an I/O
operation when the channel queue 'is full will, be set in the wait state until
an, entry becomes free.

To avoid performance degradation it is better initially to specifyampte
channel queue space, and reduce the allotted space later, if desired. The
rule-oj-thumb to be followed is:

At least one queue entry should be available for each I/O request that
can be issued concurrently.

Specify one entry for the SYSRES file and one for the page data set
(SYSVIS).

Specify one entry for each task or partition in the system.

Specify one entry for each console buffer in the system.

If multiple volume files are used on the system; specify one ·e~try for"
each file being accessed at the, same time.

• Add two entries per tape drive.

One entry should be specified for each teleprocessing line that could (
solicit input. If IBM 2260 local or 3270 local video display units are to
be supported by BT AM one CHANQ entry should be. specified for
each dispiay. '

Add five entries to the total,for contingencies.

Chapter 3: Planning the System 3.29

Error Queue

When the system has been generated, run the programs that make the
heaviest use of logical I/O units in the system. lfa: mUltiple-partition
system, run as many programs as represent the heaviest work load; in
particular, run any teleprocessing programs. Then, before the next IPL,
obtain a dump of the channet queue (by using the DUMP command or the
standalone program generated by DUMPGEN). These are fully described in
DOS/VS Serviceability Aids ,and Debugging Procedures.

An analysis of the channel queue should show that entries near the
beginning of the table have been used, whereas those near the e:nd are
unused. Although the unused 'entries are normally redundant, a few surplus
entries should be retained to' allow for exceptional cases. If aU the entries
have been used, then the channel queue was almost certainly too small, and
. a process of experimentation will show the' correct size.

The error queue option is of value to installations employing large numbers
of I/O devices, for inst~nce, teleprocessing systems. The ERRQ parameter

. allows you to specify the number of entries in the error queue within the
error recovery block of the supervisor. The normal default value is five
entries for a multiprogramming system,but in ERRQ you can specify up to
25. Each entry takes up 40 bytes.

Reliabilityl Availability/Serviceability

Recol'ery Management Support

IBM provides software routines th~t. an~lyse . and record CPU, channel, and
device errors and attempt to recover from them. The data is stored on the
system recorder file (SYSREC). The informatiojl obtained from this file
serves not only as an aid in diagnosing machine errors, but also helps IBM
customer engineers to increase reliability, availability and serviC(!ability
(RAS) of your system.

If on-line recovery is impossible, the' system may be placed in a hard
wait state .. .A message is then. issued to the system operator' to run either the
SEREP or EREP program to obtain the' diagnostic data. The' information
covered here introduces R~S, OL TEP and PDAIDS. Since SDAIDS and
TOL TEP do not require supervisor generation macros, these topics are
covered in d~tail in DOS/VS Serviceability Aids 'and Debugging
Procedures, which contains extensive information about the various RAS
features discussed below

These routines, referred to as Recovery Management Support (IRMS), are
standard for.all System/370 models, except for the Models 115 and 125.
For these models, specify the RMS, MCH, or CHAN parameters to obtain
the RMS support of your choice. For. details on 'what is included in each of
the parameters, please refer to DOS / VS System Generation. RMS has
several options that must be specified in addition during supervilsor
generation if tliey are desired. These options involve the reliability data
extractor, and tape error statistics and error volume' analysis.

3.30 DOS/VS System Management Guide

OLlrEP

Reliability Data Extractor. If included with RMS in the supervisor, the
reliability data extractor (RDE) enables data about the IPL procedure to be
recorded on the system recorder 'file (SYSREC). This option requests the
operator, when he performs an IPL, to enter the reason for the IPL. This
data alerts IBM and· inshillation management to recurring machine errors or
other operational ·problems.

If RDE support is desired, specify'ERRLOG=RDE in the SUPVR
macro. More information on RDE is included in this manual in the section
Entering RDE .Data in Chapter 4: Starting the System.

Tape Error Statistics. As a standard feature the DOS/VS system gathers
tape error statistics. This information is stored in the system recorder file
(SYSREC). For tapes' with standard labels the information is accumulated
and stored per volume. When error statistics are required to enable the
monitoring of nonstandard or unlabeled tapes, the TEBV parameter of the
FOPT macro gives you two options: the parameter can be specified as IR
(iridividual recording) or as CR (combined recording). IR refers to the
accumula,tion of error statistics between two consecutive OPENs on the
same tape unit. CR refers. to the accumulation of error statistics on the
same tape unit until a standard labeled tape is opened on that unit or until
a ROD-command is issued. When error statistics are required to monitor

, the IBM 2495 cartridge reader, the TEB parameter in the FOPT macro
must be specified.

Error Volume Analysis. This option of RMS enables you to specify the
number of temporary read/write errors that occur on a tape volume 'to be
specified before an infomlatory message is printed on SYSLOG. The
threshold value of temporary read/write errors is specified in the, EV A
parameter of the FOPT macro.

The On-line Test Executive Program (OLTEP) .gives the IBM customer
engineer the opportunity to test whether the I/O devices attached to the~
CPU are in working order. OLTEP runs in real mode in the background
partition and can run concurrently with user jobs in other partitions.

OLTEP=YES is the default value in the FOPT macro. If you do not
want support for OLTEP, specify OLTEP=NO.

The RETAIN function of OL TEP enables the IBM customer engineer
,to execute OLTEP from a loeation reP10te from the CPU. The RETAIN
function is available only in the United States of America and) Canada~
RETAIN is provided only with Models 145, 155-H, and 158 and requires.
that the 2955 Data Adapter Unit be attached to the CPU.

To generate support for RETAIN in the supervisor specify
RETAIN = YES in the FOPT macro. '

(:hapter 3: Planning the System }.31

Problem determination aids (PI>f'\IDS) can be used to assist the
programmer in debugging his, program. Five, trace routines 'and a dump
routine constitute the PDAIDS: " '

•
•
•
• '.
•

Input/ Output trace
FETCH/LOAD trace
Generalizeq ,supervisOr call (SVC) trace
QTAM trac.e
VTAM trace
TranSient dump.

Because these routines are executed within the supervisor, the PD
parameter tn the FOPT macro must be specified. The PD parameter
reserve~ an. area in the supervisOr for thtuse of the trace routines.

Defining ·the System/370 Configur~tion

Central Processing Unit

1/ 0 De:vices

During supervisor generation you: must specify various macros that relate to
the central processing unit, whether programs written for execution on
another system may be run on this model, the I/O devices instalh~d (or
planned to be installed), and other macros that indicate the standard job
control settings for the installation.

In the MODEL parameter of the CONFG macro, you must specify which
model of the System/370 line of central processing units is to be used. If
you plan to run your generated system. on more than one CPU model, you
should specify the larger model.

If you specify MODEL= 115 or MODEL= 125 in the CONFG. macro,
support for the video-display keyboard cOhsole (DOC=125D) is always
included. If you specify a model number other than 115 or 125, DOC=NO
is the assumed default. For reasons of system portat>ility, you may wish to
specify DOC= 125D for larger models. On these models, if DOC:= 125D is
specified, the system will operate in 3210/3215 mode; whereas on the
Model 115 or 125, the system will operate in DOC mode.

The supervisor generation macros that relate, to the I/O devices attached to
the CPU that are described below are: PIOCS, IOTAB, and DVCGEN~

The PIOCS macro defines the configuration requirements to be
supported by IOCS. The associated parameters involve the channel
switching, specific tape and disk device support; and the use of burst mode
devices on the byte multiplexer channel. No distinction is made between 7-
and 9-track tapes.

3.32 DOS/VS System Management Guide

EDltulators

The IOTAB macro, in general, defines the area for the necessary device
tables for the system; The parameters involved refer to:

• The number of programmer logical units for each partition defined by
the NPARTS parameter in the SUPVR macro.

• The number of job information blocks for the system. (One is required
whenever a temporary assignment is made, see Chapter 5: Controlling
Jobs. Extra JIBs are required if DASDFP is specified:)

The number of DASD devices (2311, 2314, 2321, 3330, 3333, and
3340).

• The number of tape devices (2400-series; 3410, and 3420).

• The number of TP devices.

The estimated number of physical I/O devices.

The DVCGEN macro defines each physical input and output unit in terms.
of their channel and unit address, device type, whether channel is
switchable., and (if applicable) their mode. One DVCGEN macro
instruction must be used for each unit on the system. Each individual drive
of a 2314/2319, 3333/3330, or 3340 needs a DVCGEN macro. The total
number of DVCGEN macros must not exceed the total number of devices
specified in the IODEV parameter of the lOT AB macro. Device generation
by the DVCGEN macro can be changed with ADD and/or DEL
commands at IPL time. Refer to. the section Changing J /0 Device
Assignments in Chapter' 4: Starting the System.

Through emulation, a program can be run on a machine series other than
that for which it was designed. The emulator program, serving as the
interface between the user program and the DOS/VS supervisor, runs
together with the user program in the same partition, in either a
single-partition or mUltiple-partition environment. In a mUltiple-partition
environment, several emulators can be executed concurrently. One
exception, however, is the Model 125, which cannot execute two
1400-series emulator jobs concurrently. Before both a Model 20 and a '14xx
emulator on a Model 125,RPQ SUOO2 is required.

Tape reading and writing on 1400-series machines can operate with odd
or even parity checking. To make use of mixed-parity tape processing under
1400-series emulation, you must specify EU = YES in the SUPVR macrQ. If
you do not use mixed-parity tape processing, you need not specify EU = YES.

Prior to executing emulator jobs, you must generate the emulator
program and catalog it into the core image library. This can be done when
the system is generated or at a later time.

Further information on the emulator programs' is contained in the following
pUblications:

1401/1440/1460 DOS/VS Emulator on System/370. '

1410/7010 DOS/VS Emulator on System/370.

• Model 20 DOS/VS Emulator on System/370.

Chapter 3: Planning the System 3.33

Standar'd Job, COntrol ~ttings,

End of Supervisor

,Each time a programmer submits a job to be e'xecuted, he includ~s job
control statements that defin~ the beginning and end of his job and all the
physical or logical requirements or options associated with the job. If
certain job control settings are agreed upon within an installation and made
standard during supervisor generation, the programmer need not provide a
lengthy OPTION job control statement for each job submitted, IIf a 'given
job requires different settings from those that are standard, the / / OPTION
card can be used to override the standard settings for the duration of that
job. .. "

The job con~rol settings that can be defined as standard include:
whether a dump is desired if an abnormal termination occurs, whether
language translators are to list source module diagnostics or tQ pJ'oduce an
object deck, and whether a symbolic cross-reference list is desired from the

.~ assembler Qr. ANS COBOL, etc.

These job ~ontrol settings are specified in individual parameters of the
STOJC macro.

Another macro that. deals with standard job control settings is A~SGN.
, This macro establishes standard job control associations between symbolic

device names and physical I/O devices. If multiple assignments within one
job stream are made for a single logical unit, only the ,last assignment for
that logical unit is valid: the rest are ignored. These standard assignments
can be overridden for the duration of a job via the / / ASSGN job control
statement or for the duration until the next IPL via the ASSGN job control
cori:tm~md (no / I).

Standard assignments may be established for all programmer logical
units and all of the system logical units, except the following: SYSRES
(which is established during the IPL procedure), SYSVIS (which is
established via the OPO macro during supervisor generation or the DPO
command during IPL), SYSIN, SYSOUT, and SYSCLB (the latter three

, during job control execution). ' .

These standard assignments are supplemented in the system by
cataloging disk and tape labels to the various system and partition' standard
label tracks. This relieves the programmer of having to, supply this label
information for regular jobs such as compilations and linkage editor
functions .. (Refer to Chapter 5: Controlling Jobs for the details on how
this is done.) ~

The last macro instruction supplied during supervisor generation must be
the SEND macro, which may indicate the address of the end of the
supervisor (or more accurateiy" the requested starting address of the real
storage to be used by problem programs).

Regardless of your particular supervisor configuration, the SEND
address can be calculated internally. If you have previously assembled a
DOS supervisor (previous to DOS/VS), you may still of course calculate
the size of the supervisor 4l11d round the value up to the nearest 2048 bytes

3.34 DPS/YS System Management Guide

(2K). However, keep in mind that storage protection is a standard feature,
on all models of the System/370, and therefore:

The SEND address is always a multiple of 2K bytes.

• The address you speeify in the SEND macro is compared with the
actual size of your generated supervisor" so that the calculated address
never overlaps any pan" of the supervisor.

.Generating :POWER/VS

If no address is specified in the SEND macro, the default is the lowest
addre~s possible (that is, the minimum space to contain the generated
supervisor plus 1, and rounded' up to, the nearest 2K bytes, if
necessary) .

J;>OWER/VS allows you to make more efficient use of the CPU and unit
record I/O devices. The POWER/VS code distributed in the core image
library is ready to run, but you should evaluate its options for your
installation. If you need to tailor it, you generate your own version(s) of
POWER/VS from the POWER/VS macros, which are provided in the '
sourc~ statement library. The three macros for this purpose are:

POWER
PLINE
PRMT

If you want RJE (remote job entry) support, you need to assemble the
PLINE and' PRMT macrqs in addition to the POWER macro. If you do not
require RJE, the POWER macro is sufficient.

Virtual and R,!al Sto~age Requirements

Because POWER/VS uses PFIX and PFREE macro instructions, not only
is a virtual partition needed but also the corresponding real partition. Figure
3.8 ,illustrates the POWER/VS' partition; and shows the following three
areas:

, Pennanent area .- contains the POWER/VS nucleus and control tables.
Because this code does not tolerate paging, it is fixed at POWER/VS
initialization and remains fixed until POWER!VS is terminated.

Fixable area - contains data buffers and dyriamic control blocks: pages
that will be fixed in the corresponding real partition and freed' again
when the task becomes inoperativ~.

Pageable area - contains Po'WER/VS pages that can be freed when
other partitions require additional real storage.

When the DOS/VS supervisor is generated, POW];i,~/VS storage
requirements must be taken into account. '

The virtual partition must at least be large enough to contain the
permanent area, the fixable area, and thepageable area; The minimum size,
of the pageable area is 128K bytes.

The size of the real partition that POWER/VS needs is based on the
size of the permanent area, which is always 6K bytes, plus the size of the
fixable area, which is variable (minimum 4K bytes). It varies according to

Chapter 3: Planning the Syste~, 3.35

'the DBLK paramet~t ~~c!!iC?at~on, the number of r~ader {writer tasks and
execution processors in the system,· and the number' of. active RJE (remote
job entry) lines. Formulas for determining the size of the' real partition are
found ,in DOS / VS System Generaiion.

t Allocating a real partition ihat is too small can cause performance
degradation. ""owever, allocating a real partition that is larger than required
will' not cause system· performance degradation because ,page frames not·

, being used by POWER/VS are made available to the page· pool. The
'-OWER/VS status report tells you, the maximum number of pages fixed at
anyone time. " ,. ,

POWERIVS F1R. {
(ALLOCR),

POWERIVS F1V {
CALLOC)

SUPERVISOR

BGR

------------,-- ---
F2R

D ___ - .. __ , ____ ---- ... -
F1R

---- -- - ---- --- --
MAIN PAGE POOL'

BGV

F4V

F3V

F2V

PERMANENT AREA
~--~-----~- --------FIXABLE AREA
~----~ --~----.-----.. --

PAGEABLE AREA
, '

SVA

Fagure 3.8. POWER/VS Partition Allocations

>

::

~

Real address
area
(RSIZIE)

Virtual address
area
(VSIZIE) ,

In this example, POWER!VS resides inthc foreground~onc: (PO
partition. Both PI-virtual and PI-real must be allocated.

3.36 DOS/VS System Management Guide

Int4~rmediate Storage Requir~ments

Intennediate storage in" POWER/VS is on disk (or tape, for output only)
"and contains the queue file, data file, and (optional) account file. These
three files may be on the same physical unit or on separate units. Different
devices types maybe used for each file. The interaction between the
POWER/VS tasks and int~rmediatestorage is illustrated in Figure 3.9.

In general, it is best at first to assign more intennediate ·storage than
you think you will need. Then use the POWER/VS status report to
detennine how to reduce the storage allocations. From the status report you
can see how much disk space was" used and unused in each session.

Size of the Data File and Queue File

The data file, which is made up of track groups, and the queue file~ which
is primarily made up of queue records, are directly related. Each track
group has a corresponding queue record. The size of the data file is defined
by the total number of track groups, which in turn is limited by the number
of records in the queue file.

In estimating the size of the data file and queue file, you should
consider the following:

• The maximum number of POWER/VS jobs in the system at anyone
time

• The largest volume of I/O for any job

• Whether output segmentation is used.

Chapter 3: Planning the System 3.37

DISKETTE

0 CARD
INPUT

INPUT

I
t

READER
TASKS

•• - - QUEUE FILE - ~
PUNCHED

~x I:CUTION
)CESSOR PRC

TA SKS

-
..... - -

---..--....
ISYSOO11

l' DATA FILE
(SYSOO2·0061 ..

" ACCOUNT FILE
ISVSOOOI

.... OUTPUT

- WRITER - TASKS { .. -- LISTED
OUTPUT

'-"

1 PACCOUNT TASKS 1

f;'

/

FIgUI".~ 3.9 .. Intermediate Storage

3.38 DOS/VS System Management Guide

~

8
--------,

(I
I CAROW I
I I

•
~-------

~
• Obtained bV rerouting

IJAFILE to punch queue.

Intermediate storage is divided into three files: the queue file, the data
file, and the account file (optional). Each file may be on a different disk
uhit. Intermediate storage for output can also be on tape (not shown in
figure). Information is maintained in each of these files by the
POWER/VS reader. execution, and writer tasks.

For the data file extents, estimate separately the total number of
input/ output card images and the total number of line images spooled to
disk in a typical 8-hour shift. Choose a file size large enough to hold half
this amount of data. This should prevent POWER/VS from running out of
file space. File extents can be respecified if they prove to be too large or
too small (check the status report).

The queue file should be large enough to support the entire data file;
that is, there should be one queue record for each track group in the data
file. It is good practice to allocate six additional queue file records for·
internal POWER/VS usage.

You must supply the DLBL and EXTENT information for the queue
file and the data file. For the queue file the file name isUQFILE and the
symbolic unit is SYSOOI. UDFILE is the file name for the data file: which
may be on up to five extents (SYSOO2 - SYSOO6). If more than one volume
is used for the data file, all volumes must be of the same device type. Each
EXTENT for the data file must start and end on a cylinder boundary.

There· are two parameters relating to the data file and indirectly to the
queue file that you can specify during POWER/VS generation: the block
size of the data file records (DBLK) and the number of track groups
(TRACKGP).

Block Size of the Data File. The size of the physical records written to the
data file is determined by the DBLK parameter. This also influences the .
size of the data buffers required for each POWER/VS task. If not explicitly
specified by the user, the system chooses a default bloc" size, which suits
the characteristics of the disk device assigned to the data file. The default
values for each device are sh()i~n below~

-.

Device Type Default Ds.ts Block Approx. fI. cerds Approx. fI. lines per
Size per block * block **

2314/2319 920 11 7
3330/3333 952 12 7

3340 808 10 6
L....-.

* POWER/VS suppresses trailing blanks so ·the figures shown are the worst case.

** Based on 132 print positions per line.

If you specify a value other than the default, it is possible to achieve
better performance. In general, the smaller the DBLK is, the less real
storage is required to run a given number of tasks. Conversely, the larger
the DBLK is, the more real storage is reqll;ired; however, more efficient use
is made of intermediate storage because the larger the block size, the more
spool records per track. The more records in a block, the fewer the disk
I/O operations to perform. If the data buffer size, which increases by
32-byte increments, is larger than 986 bytes, only one data buffer will fit
into a storag~ page. The largest buffer size is 2008 bytes, which is one data
buffer per page with its control information:

Determining the Nurnber of Track Groups. After you know your DBLK size,
you can determine the track group size. You know how many blocks per
cylinder of DASD and approximately how many records in each block.

Chapter 3: Planning the System 3.39

Account Fde

If the track group size is small (the smallest is ' 1), then one queue
record is needed for- each track of the data file. This results in a larger
queue file and an overhead in queue record management, but best utilizes
the disk space available in the data file. If the. track group siZe is large (the
largest number would be that equal to the number of tracks per cylinder),
then fewer queue records (one per cylinder) are needed. However, because
there can be only one POWER/VS job for each track group, disk -space is
wasted on the data file whenever a job does not fill a track group.

)f you do not specify a track group size, the system will try to use all of
the data file. The system calculates the number of tracks within the extents
provided by the data file. It then determines the number of 152-byte
records it can write within the queue file. From these two figures it
determines the number of track groups to allocate, by calculating the
smallest value possible for TRACKGP, which utilizes the largest amount of
the data file.

At POWER/VS initialization time if the TRACKGP you specify
conflicts with the EXTENT information for the data file, the system
changes the TRACKGP value. You are informed of the new TRACKGP
value in a message. '

If the DOS/VS supervisor was generated with job accounting inte.rface
support, then you can meaningfully specify the ACCOUNT parameter in
the POWER macro. This generates job accounting support within
POWER/VS that accumulates job accounting interface information and
POWER/VS job accounting information. No user-written data collection
routine isnecessary. POWER/VS automatically collects all accounting
information and writes it onto the account file on disk. You can process this
file directly or issue a PAC COUNT command to store the information on
another medium for processing at a later date. !

You must supply the DLBL and EXTENT information for the account
file and ensure that this is included in the label information cylinder on
SYSRES. Use the file name IJAFILE and the symbolic unit number
SYSOOO for the DLBL and EXTENT cards, respectively. If a user disk file
(SD type only) or a standard labeled tape file will be used to save account
information, the bibel information cylinder must also include these
definitions.

To estimate th~ size of the account file, you should consider that each
POWER/VS job can create at least one reader, one list, and one punch
account record. [n addition, each DOS/VS job step within a POWER/VS
job creates one execution account record. The following list shows
approximately' how many POWER/VS jobs can be handled by one cylinder
of the account file:

2314 110 jobs
3330 170 jobs
3340 60 jobs

These estimates are based on an average of 5 account records per
POWER/VS job.

3.40 DOS/VS System Management Guide

Inl)uf Options

Source Library Inclusion

UseJr Exit Routine

Proc'e~sing Oliltions

When th~account file becomes 80°;6 full, a warning nessageis issued.
The file should then be saved or deleted using the PACCOUNT command.

Note: If the account file fills completely, the operator is notified and any
task requiring space in the account file is put in the wait state unti~

space becomes available.

Refer to POWER/VS Job Accounting in Chapter' 10: Using the
Facilities and Options of the Supervisor for the format' and contents of
the account file.

In POWER/VS the options" that are related to input are:

• Source library inclusion

User exit routine.

By using the SLI statement in a POWER/VS job stream, you can include
information (books) from a private or system source statement library. In
the SUBLIB parameter as POWER/VS is being generated, you can specify
the sublibrary that is to be searched if no sublibrary is specified in the SLI .
statement.

Support for a user exit during' the POWER/VS reade,r routine is generated
if the name of the user exit routine is specified in the RDREXIT parameter.
Such a routine might be used, for example, to verify private passwords or
accounting information. Your routines must be relocatable (or
self-relocating) and reenterable. It should not perform any operation that
might cause a wait condition in the POWER/VS partition.

When POWER/VS is initiated, your routine is loaded into the
POWER!VS partition. The POWER/VS reader routine gives control to the
user routine each time a DOS/VS JCL or POWER/VS JECL statement is
read. Your routine must return control to the, POWER/VS reader routine.
The programming and register conventions are described in Chapter 9:
Designing Programs for Virtual;'Mode Executions.

In POWER/VS the options that are related to processing are:

Assigning default priorities

• Limiting output

Logging job names and numbers

Providing forms control.

Chapter 3: Planning the System 3.41

Assfp ... Default Priorities

Limiting Output

Logging Job Names and Numbers

Providing Forms Control

Output Options

As each job is entered for processing, it is assigned a certain priority within
its class. This simplifies the scheduling of high-priority jobs. The priority is
normally specified in the • $$ JOB statement. If it is not specified, ..
POWER/VS assumes die default priority in the PRlparameter.

Because POWER/VS spools unit record output on intermediate storage, the
operator Cannot check the amount of output being stored. If a . loop occurs,
for example, the· output could be excessive. The STDLINE and STDCARD
parameters should therefore be used to restrict the output to a standard
number of printed lines or punched cards. When either of these limits is
exce~ded, an informative message is issued to the operator. He can.choose
to igtiore the message or terminate the job. The STDLINE parameter can
be overridden for a particular job by specifying it in the LST statement.
The STDCARD parameter can be overridden for a particular job by
specifying it in the PUN statement.

Each job name as specified in the • $$ JOB statement together with the
job number POWER/VS assigned to it, the partition identification, user
information, and (for RJE) remote identification, is displayed in a message.
on SYSLOG if the JLOG parameter is not specified as NO. The message is
displayed at the· time at which the job starts execution. JLOG is not
necessary if unique job names are always used or if there is always one
OOS/VS job for each POWER/VS job.

Because output is transferred to intermediate storage and the program that
generates the output is no longer present when the output is produced,
POWER/VS keeps track of the current print line of the output being
intercepted. The L TAB parameter contains a description of the forms
control tape or forms control buffer of the printers. This enables
POWER/VS to calculate the next line on a page, even in case (]If skip
operations. Based on this information, POWER/VS simulates channel 9 and
channel 12 occurrences to allow the program to format end-of -page output
correctly. Tho physical printer that is used to print the output must,
however, have a forms control tape or buffer content that matches the
LT AB specification. The LT AB specification can be overridden for the
duration of one job· by means of the L TAB parameter in the LST
statement.

In POWER/VS the options that are related to output are:

Job separation

Output segmentation.

3.42 DOS/VS System Management Guide

Sep1arating Jobs

Segmenting Output

Remote Job Entry Support

You can specify job separation in the JSEP parameter for both print and
punch output. This specification can be overridden at execution time for a
parti<;ular job by specifying the JSEP operand in the LST or PUN
statement.

Job separation for print output means that.up to nine separator pages
are to be inserted before each job's output. Separator pages' contain
information about the job that follows. Each separator page is printed with
10 lines (120 characters in length). Each line contains the job name, job
number, user information, date, and time. The last or only segment of
output will have the word last printed on it.

Job separation for punch output (except for the 5425, which is handled
differently) means that before the job's punched-output two cards
containing 12-11-0-8-9 punches (in all columns) and one card -containing
the POWER/VS jobname (to be read from the back of the card) are added
and that behind the job's punched output two blank cards are added. This
occurs if 1, 2,or 3 is specified. If 4 is specified, one additional 12-11-0-8-9
card is punched; if 5 is specified, two additional 12-11-0-8-9 cards are
punched, and so on up to nine. For the 5425 from one to nine cards are
added before the job's output containing the POWER/VS jobname (12
times pe~ card).

Note: Stacker selection is ignored if job separation is requested. The
default stacker for the given device is used instead ..

Turnaround time for jobs with extensive printed or punched output can be
improved by segmenting the output. This means that each part of the
output becomes available, it can be printed or punched even though the
entire job may not be finished executing. In the' RBS (records before'
segmentation) parameter you specify the number of pages and· cards that
can be processed before an output writer is started. The RBS parameter is
onty- as~d when spooling to disk intermediate storage. This parameter can
be overridden for· a particular Job by means of the RBS parameter in the
LST or PUN statement.

If you want POWER/VS to support RJE (remote job entry), you must
specify two macro instructions in addition to the POWER macro. In the
PLINE macro you specify the hardware characteritics of each RJE line. In
the PRMT macro you specify the characteristics of each RJE user.

Chapter 3: Planning the System 3.43

Planning the Libraries

The components of the DOS/VS system are shipped in four system
libraries: the core image library,. the relocatable library, the' source
statement library, and the procedure library. Most programs an9 procedures
developed and used ~y your installation will also be' stored in thes<e libraries.
In addition to the system libraries, DOS/VS supports private libraries which
you. can use to either substitute for 'or supplement the corresponding system
libraries.

Planning the size, contents, and location of these libraries according to
the needs of your installation is an essential part of the system generation
procedure. Such detailed planning will ensure that:·

No disk space is wast~d by components not required in your
installation.

The libraries are large enough to allow for future additions.

• The libraries are accessed by the system with maximum efficiency.

Following a brief description of the .purpose and contents of the individual
libraries, this section discusses the three major considerations involved in
tailoring the. libraries to' the needs of your installation. These considerations
are:

1. Which libraries are required.

2. How many disk drives are available and where on these devices should
the individual libraries be placed.

3. How large should each of the libraries be and what should they contain.

Note that. this section is intended to give only general guidance for planning
the .libraries. More details are contained in DOS / VS System Generation.
How to change the size of a library, how to insert elements into or delete
elements from a library, and how to create private libraries is described in
Chapter 7: Using the Libraries.

Purpose and Contents of the· Libraries

lbe Core Imag~ Library

The Relocatable Library

The following is a brief summary of the purpose and contents of the
DOS/VS system and p~ivate libraries.

The core image library contains system and user programs ready for
execution. Each program phase must (irst be placed in a core image library
by the linkage editor program. (The structure of a program in the core
image library is described in . Chapter 6: Linking Programs.)

The relocatable library contains object modules in relocatable form. These
object modules are the output of the language translator programs
(assemblers and compilers).

3.44 DOS/VS System Management Guide

The Source Statement Library

The ·Procedur(~ Library

The purpose of the relocatable library is to allow you to maintain
frequently-used object modules in the library and combine them with other
modules without requiring recompilation. The modules from the relocatable
library must be processed by the linkage editor 'and stored in the core image
library before they can be executed.

The elements in the source statement library are called books. A bookfs
either a sequence of source statements or a macro definition.

You can catalog into the source statement library sets of source
statements that are used by more than one program, and then include these
statements in your source program by specifying a COPY (assembler and
COBOL) or %INCLUDE (PL/I) statement.

The macro definitions in the source statement library include· those
macros supplied by IBM as well as any others which you have written and
cataloged yourself. Whet} you issue a macro instruction in your program,
the corresponding macro definition is retrieved from the source statement
library and included in your program according to the parameters you
specified.

Each book in the source statement library is classified as belonging to a
specificsublibrary; for example, an assembler, a PL/I, or a COBOL .
sublibr3;ry. Sublibraries -are identified by a one-l~tJer prefix added to the
book name. Letters A through I and the letter Z are reserved for
sublibraries containing system components. You can use the letters J
through Y, the digits 0 through 9, and the special characters $, &, and #,
to define your own sublibraries.

Classifying books by a sublibrary prefix allows a program, for example
written in COBOL, to have the same name as a program written in
assembler language, or for two COBOL programs to have' the same name.
A book is defined to belong to a certain sublibrary at the time it is
cataloged into the source statement library.

Frequently-used sets of control statements -can be cataloged into the
procedure library. The elements of the procedure library, called cataloged
procedures, can consist of job control statements and/or SYSIPT data: If
extended procedure support was included during supervisor generation (by
specifying the SYSFIL option) you can also catalog procedures containing
data that is to be read from SYSIPT under control of the
device-independent sequential IOCS, by your program or by IBM-supplied
service programs and language translators. SYSIPT in-line data can be, for
example, the control statements processed by the librarian or the
sort/merge program. Cataloged procedures are retrieved from the procedure
library by a special form of the EXEC job control statement.

Chapter 3: Planning the System 3)1.5

Private Liblraries

Private libraries can be defined for the corc image, relocatable, and source
statement libraries. The procedure library is supported as a system library
only. You can use private libraries to either replace or supplement the
corresponding system libraries.

Private core image libraries (PCIL) have the same format as and are
supplementary to the system core image library. A private core image
library can be used:

During maintenance or development of operational programs. You can
catalog the copy of the program that you are altering to a PCIL with
the same name as the operational version in the system core image
library.

To preserve security of operational programs, they may be cataloged
into PCIL which is controlled exclusively by the operation~ department.

In a multiple-partition system, allocation of PCILs on separate volumes
can relieve disk arm contention on the SYSRES volume.

If the linkage editor is to be used in a foreground partition. In that case
a PCIL must be exclusively assigned to that partition.

A private core image library is created by the librarian program CORGZ
and is not located on the system residence (SYSRES) extent. The private
core image library extent (associated with the logical name SYSCLB) can
reside on any disk volume that is supported by DOS/VS. Multiple private
core image libraries can reside on one volume or they can be created on
separate volumes. They can be created on the same volume as SYSRES, but
this is not recommended unless the access level is low. SYSCLB can only
be assigned permanently (not temporarily) and is not acceptable as a
standard assignment during supervisor generation.

Choosing the Libraries for an Installation

In an operational DOS/VS system all system components (supervisor, job
control program, linkage editor. etc.) as well as all executable user programs
must reside in the core image library. Therefore, a system core image
library must be present in every DOS/VS installation. Which of the other
libraries you need depends largely on the type and amount of work to be
done and the resources available at your installation. The following
discussion of the advantages and possible applications of the individual
libraries is intended to assist you in selecting a set of libraries that will help,
guarantee optimum performance of your system.

Relocaolble and Source Statement Libraries

Although these libraries are optional, few installations can operate
efficiently without them. If, for example, you work with a PL/I eompiler
and you need to have thePL/I resident library routines on-line at all times,
these routines must be in the relocatable library. (The only -- and very
inefficient -- alternative would be to include the physical card decks for
such modules in-line with the linkage editor input.) Similarly, when you

3.46 DOS/VS System Management Guide

assemble programs, that use IBM-supplied macros the corresponding macro
definitions must be present in the source statement library.

The same advantages as those gained by having IBM-supplied modules
in a library can of course be obtained if you store your own object modules
or ,source statement books in a relocatable or source statement library. The
more information you have on-line in a library the less card handling is
required and the more efficient your system will operate. Because the disk
space available to the libraries is limited, you may prefer to reduce the
contents of the relocatable and source statement libraries to a minimum to
allow for sufficient space for the core image library. If additional disk drives
are available, the space problem can be solved by creating private libraries
(see Private Libraries, later in this section.)

In most data processing installations there are a number of programs that
are frequently executed. An inventory control program, for instance, may
have to be run daily or weekly. Or a payroll program may have to be
executed weekly or monthly. These programs are probably used for a long
period of time without being changed.

For each of these programs, the operator usually keeps one or more
fixed sets of job control statements that were prepared, tested, and handed
to him by the programmer when the program was first run. For example,
for programs processing grandfather-father-son files the operator would
always have at least three different sets of job control statements. The
same would be true for inventory control programs doing sequential
processing for stock status reports atone time and random file processing
for real-time inquiry or for stock maintenance of high turn-over
merchandise at another time.

Depending on the file, the device it is stored on, the type of file
processing required, etc., the operator selects -- from the box or drawer in
which he keeps his decks of control statements -- the set he needs for a
particular job, places it into the hopper, and starts the reader.,

This card handling, which often includes the replacement of defective
cards, consumes operator and machine time· and easily leads to errors.
DOS/VS allows you to replace the sets of control statements and the box
or drawer in which they are kept by cataloged procedures and the.
procedure library, respectively.·

A cataloged procedure is exactly the same as what is described above
as a fixed s~t of job control statements. But the individual procedures are
no longer collected· by the operator and selected manually for use; instead,
they are cataloged in card image format in the· procedure library, from
where they can be retrieved through a special form of the EXEC job
control statement or operator command. Cataloged procedures can be
modified as they are retrieved from the library.

Refer to Chapter 7.: Using the Libraries for information on how to
create and maintain (catalog, delete, etc.) a procedure library. The use of
cataloged procedures (retrieving and modifying) is discussed in Chapter 5:
Controlling Jobs.

Chapter 3: Planning the System 3.47

Private Ubraries

You can establish private relocatable or source statement libraries either to
supplement or to replace the system libraries on the SYSRES file, thereby
extending the space available to the system core image library. Conversely,
you can reduce the size of the system core image library by cataloging
selected programs in a private core image library.

Private libraries arc also useful in a testing environment where you can
keep working copies of your programs intact on a system library while you
test modifications of the same programs on a private library. Private
libraries canthus add a great deal of flexibility to your ~ystem.

You may define as many private core image, relocatable,· and source
statement libraries as desired, each serving a particular purpose. For
instance,having a separate core image library for each partiti~n, each on a'
separate disk drive, would reduce the disk arm movements on the SYSRES
volume, which means faster access to the libraries. Be careful, however, not
to have too many private libraries in your installation because of the
additional maintenance required. Also, if each programmer were allowed to
have his own private library, the total time spent by the operator in
mounting and dismounting disks might exceed the execution time of the
program.

To be able to use a private core image library the PCIL option must
have been specified when the supervisor was generated. ThePCIL option,
and other special considerations concerning the planning of private core
image libraries are discussed q,lnder Tailoring the Supervisor, earlier in this
chapter.

Determining the Location of the Libraries

Having ~ecided which libraries you want in your system, you must
determine where on the available devices these libraries are to be placed.
All system libraries must reside in the SYSRES extent of the system disk
pack in a predefined sequence (see Figure 3.10). Although it is theoretically
possible to have private libraries on the system pack (outside the SYSRES
extent), this is not recommended because it involves increased movement of
the disk arm.

3.48 DOS/YS System Management Guide

Note: For details on the first tracks of
SYSRES,the label information cylin­
der, the user area, and the VTOC, refer
to Appendix A: System Layout on Disk .

....... end ofSYSRES extent

Figure 3.10". The Relative Location of the Four System Libraries

The directory area for each library is not shown in the. figure. By
definition, all system libraries reside on the system residence file (SYSRES).
If you have additional disk drives, you can define private core image,
relocatable, &nd/ or source statement libraries on the extra volumes. Private
relocatable and private source statement library volume~ must be of the
same type as the SYSRES pack. Private core image libraries can be on any
disk device type supported by DOS/VS. The system relocatable and system
source statement libraries can be removed from SYSRES and" established as
private libraries; the system core image library, however, must always be
present on SYSRES. It can be supplemented but not replaced by a private

" core image library. The procedure library is supported only as a system
library; you cannot create a private procedure library.

Figure 3.11 shows two examples of how you can organize the libraries
ina system with three disk drives. Any other combination of libraries on
the available devices in possible.

The examples in Figure 3.11 are to demonstrate that you can distribute
your private libraries among the available devices as desired. A more
practical example of" how you can organize your libraries is given in Figure
3.12. The example assumes a system with three disk drives, but it is also
applicatable if you have only two or more than three drives. The
organization of the libraries in this example" is especially useful when you
need large amounts of data on-line during executiQn.

Chapter 3: Planning the System 3.49

w
VI
0

0
0
Vl
"-<
Vl
Vl
'<
~
r,

3
s:
~
::l
~

(/CI
(1l

3
r,

~
a
c:
0.:
(1l

~ t·
~

~ -:""
~
~ :;
a.
:;a'
~

t-
~
~ g.
= [IJ

=
;.
~

!:
~ ...
~
:::l.
~
[IJ

If a private relocatable library and a private source statement library are to rep/ace the corresponding system library, the core image library
directly precedes the procedure library. These private libraries can also be used to supplement the system relocatable and source statement
libraries, in which case the SYSRES file would appear exactly as shown in Figure 3.6.

A private core image library can only be used to supplement the system core image library. which must always be present on SYSRES.
Several private libraries may reside on the same disk as illustrated.

SYSRLB

I SYSSLB

Q) Compiling - Assembling - Link-Editing

Drive X~ 190' Drive X'191' , Drive X'192'

The system core image library (CI L) contains only those programs required for execution-time
processing. The compi.lers, assemblers, and the linkage editor are kept in the private core
image library (PCI L),

---------------------------------------~---------------

® Proces!iing

Drive X'190' Drive X'191' Drive X'192'

For execution-time processing, the private libraries are no longer required an9 can be replaced
by a data volume, Thus, maximum possible space is allowed for processing data.

Cil =
PL
PCIL =
PRL =
PSSL =

systl~m core image library
proc:edure library
privi3te core image library
private relocatable library
private source statement library

Figure 3.12. E}(ample of Library Organization

Chapter 3: Planning the System)..51

Plannillig the Size and Contents of the Libraries

When planning the libraries for an operational system, you must decide on
their precise contents and size for daily use. Although you can change the
size of your system libraries at any time after system generation (by means
of the librarian program), you should try to anticipate future space
requirements and, if possible, provide this space. Such detailed planning can
eliminate the need for a complete reorganization of the'libraries which
would be necessary if the extension of a library results in an overflow on
the disk pack. Careful planning of the private libraries 'will save you
additional work because you cannot redefine the extents of a private library
once it has been created. To change the size of a private library you must
create a new private library and copy the contents of the old library into it.
Consider the following factors befor~ deciding on the contents and size of
the libraries:

• The, average size of ,a program in your installation.

The number of programs you want on-line.

The amount of space available.

The core image library, for example, is the library in which you will keep
most of your programs. (Otherwise, each program must be submiltted to the
linkage editor and placed in the core image library temporarily before it can
be executed.) Therefore, ensure that your core image library is huge enough
to accommodate all programs that must be resident and on line; this
includes your own programs as well as IBM-supplied components.

Special considefations apply when you work with an on-line private core
image library:

Program phases starting with $ could be in a private core image library,
but it is more efficient to keep them in the system core image library.
When a $ phase is required, the system first searches the system core
image library and, if it does not find the phase, it then searches the
assigned private core, image library.

For all other phases (not beginning with $), first the private and then
the system core image library is searched; thus, if you work with a
private core image library, search time is reduced for these phases
cataloged in the private core image library.

To plan the contents and size of the relocatable library, determine which of
th{~ IBM-supplied modules can be deleted and how much space you need to
store your own objcct modules on-line. For any modules you wish to retain
in relocatable form, you can copy them onto a backup disk and delete them
from the operational pack.

With one disk drive you may prefer to maintain only enough free space
in the relocatable library of the operational pack to contain the modules for
tht~ largest component in the system. This small relocatable library permits
temporary insertion of any component in relocatable form. This component
can then be immediately link-edited into the core image library and deleted
from the relocatable library.

3.52 DOS/VS System Management Guide

Similar considerations apply for the source statement library. Determine
which of the IBM-supplied components'You need on-line, which should be
transferred to a backup volume for future extensions of your system, and
which can be deleted entirely.

If you intend to use a procedure library, youshouW allocate sufficient
. space for it on the SYSRES file during system generation. In estimating the
amount of space required, consider the number of job control statements
and SYSIPT data' records (source modules, utility control statementS, etc.)

.. you expect to store in the procedure library. The procedure library is sni'alI, .
normally .n the. range of three to five cylinders.

After you have determined the space requirements for your libraries in
term,s of number .and size of programs, you must define and allocate the
amount of disk space needed to accommodate these programs. A set of
formulas is available to calculate the number of tracks and cylinders·
required for each library. These. formulas are· contained in DOS / VS
System Generation. Refer to Chapter' 7: . Using the Libraries for
information on how disk sp~ce is allocated to a library ..

The contents of the libraries are identified in Attachment 1 of the
Me1tlorandum to Users. The storage requirements (sizes) for these
components and macro definitions are iden~ified in the section' for each
component.

Chapter 3: Planning the System 3.53

Part II: Using the System

This section is provided especially for, applications programmers and·
operators. It is ~ guide to the ~ay-to-day use of the System. The chapters it
contains are:

Chapter 4: Starting the System describes how the operator performs the
initial program load (lPL) procedure. It also describes how to create the file
required for recording error information.

Chapter 5: Controlling Jobs describes how the applications programmer or
operator supplies input to the job control program, which controls the
execution of a job.

Chapter 6: Linking Programs describes how the applications programmer
prepares input to the linkage editor program, which links the modules
produced by language translators and produces executable programs that
are placed in the core image library.

Chapter 7: Using the Libraries provides applications programmers and
operators with the information on how to alter, copy, and inspect the
contents of the libraries. It also describes how tQallocate space to the
libraries and how to create private libraries.

Chapter 8: Using POWER/VS addresses the applications programmer
who submits jobs for entry into a DOS/VS system running under
POWER/VS, and the operator who is working with a system with
POWER/VS ot POWER/VS RJE.

Chs,pter 4: Starting the System

Before a job can be entered into the system for execution, the supervisor
" must be read into the supervisor area of real storage and the job control

program must be loaded into the virtual background partition. To do this;
the operator starts the system by following the initial program load (IPL)
procedure.

This chapter describes the use of the IPL commands. The exact
formats of these commands are contained in DOS / VS System Control
Statements, and DOS/VS Operating Procedures. This chapter also provides
a summary of the automatic functions of IPL; descriptions of how to
modify the shared virtual area, and how to create the system recorder file
(SYSREC) and the hard copy file for the Model 115 or 125; a section on
the optional user exit routine for security checking after IPL; and a section
on entering· information on SYSREC if the reliability data extractor (RDE)
option was generated in the supervisor.

You must' perform the IPL procedure each time you have to:

Load a new supervisor (for normal system start-up, for different
supervisor options, or to recover from a system malfunction. For the last,
refer to fj'OS/VS Serviceability Aids and Debugging Procedures).

•. Change the channel and uni~ assignment of the system residence
(SYSRES), the VSAM master catalog (SYSCAT), or the page data set
(SYSVIS) due to hardware problems With the- channel or disk drive.

Modify the shared virtual area (to change allocation or to create the
system directory l~st).

Create SYSREC (for the first time or because the file was damaged).

Replace SYSRES orSYSVIS because of a hardware problem with the .
pack.

Add devices to or delete them from the system configuration.

• Set or change~ the time-of-day clock value.

Set or change the system's time zone value (if TOD=::: YES was specified
in the FOPT macro during supervisor generation).

Initblll Progr:llm Loading (IPL)

To invoke the IPL routines, you place the system residence disk pack on a
drive, se~ the address of that drive in the load unit switches, and· press
LOAD (on the video display/keyboard console, type in the address on the
drive and press ENTER). This causes the first record on track 0 to. be read
into storage bytes 0-23. The information read in consists of an IPL PSW
(program status word) and two CCWs (channel command words), which in
turn cause the reading and loading of the IPL routines.

Next, the system enters the wait state. At this time, you must indicate
which device is to be used to communicate the name of the desired
supervisor. to the system.

Chapter 4: Starting the System 4.1

If yQU wish to. use the default supervisQr ($$A$SUPl), simply press the
external interrupt key.

If yQU wish to. use the consQle to. specify the supervisor name, press the
request key, await the message requesting the supervisQr name, and
then type the nam~. (On the video. display /keybQard cQnsQle, yQU can
press either the enter key, the request key, or the cancel key.)

If yQU wish to. use the card reader to. specify the name, ready the card
reader. The name Qf the supervisQr must be punched into. the first eight
cQlumns Qf a card. Start the reader, and, when the card cQntaining the
name has been read, stQP the reader.

Operating in the supervisQr s.tate, IPL reads the supervisQr nucleus into. IQW
real stQrage from the CQre image library. If an unreeQverable error is sensed
while reading the supervisQr nucleus, the hard wait status is entered and an
error eQde is set in the first fQur bytes Qf real stQrage. The IPL procedure
must then be restarted. FQr mQre infQrmatiQn Qn wait states and error
cQdes, refer to. the DOS/VS Serviceability Aids and Debugging
Procedures.

After successfully reading in the supervisQr nucleus, IPL assigns the
current physical unit address Qf the system residence disk pack to. the
SYSRES file (in resPQnse to. yQur dialing this address in the IQad unit
switches).

Establlishing the Communications Device for IPL

Next, the IPL routine places the central processing unit in the wait state
(with all interrupts enabled). At this time yQU must indicate which device is
to. be used to. cQmmunicate the IPL cQmmands to. the system. The specific
manual QperatiQn yQU must l?erfQrm depends Qn the device desired:

If yQU wish to. use the cQnsQle (SYSLOG), press the request key Qn the
cQnsQle. (On the video. display /keybQard cQnsQle, yQU can(~ither press
the enter key, the request key, Qr the cancel key.)

If yQU wish to. use a card reader that was nQt assigned as SYSRDR in
the ASSGN macro during supervisQr generatiQn, ready this eard reader.
IPL then assigns the SYSRDR file to. this device for the duratiQn Qf this
procedure.

If yQU wish to. use the card reader that is assigned as SYSRlDR, press
the interrupt key. (This card reader must have been r~adied befQre yQu·
pressed LOAD to. invQke the IPL routines as described abQve.)

If yQU wish to. use the card reader that was used to. read in the name Qf
the supervisQr, start the reader and the IPL cQmmands are read.

When yQU submit IPL cQmmands, enter them via the selected
communicatiQns device.

Changing 110 Device Assignments

If the physical addresses Qf any I/O devices are different from thQse
established by DVCGEN macrQS during supervisor generatiQn, yQU have to.
change the system cQnfiguratiQn. (To. determine whiCh devices are

4.2 DOS/VS System Management Guide

Adding Devices:

Deleting De, Ices

Setting SysteDl Values

supported in the system configuration, check the supervisor assembly
listing.) You can change the configuration by adding or deleting devices.
IPL changes the physical unit configuration accordingly. The modified
system. configuration remains in effect until the next IFL.

If you want to change any symbolic .unit assignments (except SYSRES,
SYSCAT, and SYSVIS), you must use ASSGN statements or commands.
These are processed by job control as described in the section Symbolic
I/O Assignment in Chapter 5: Controlling Jobs.

Use .the ADD command to include an I/O deviCe and physical unit address
that were not included in the system configuration during supervisor
generation. The following requirements should be kept in mind: ,

• You can add a device only if sufficient device table, space was provided
via the lOT AB macro during supervisor generation.

If you add a tape cartridge unit, there must be enough space for an
associated Tape Error Block ,(TEB) if TEBs were specified during
supervisor generation.

If DASD file protection was generated in the superv,isor and you add a
DASD, the DASD must conform to the channel range and DASD types
specified in the DASDFP parameter.

If the seek separation 'option was generated in the supervisor and you
add aDASD, the system must be able to accommodate an additional
seek address block (SAB).

If any of these requirements is not satisfied, you will get an appropriate
error message. You, must then provide space in the control blocks for the
additiomil device by: '

'.
• re-assembling the supervisor, or

deleting unnecessary devices of the type you want to add. You must
then re-issue the ADD command.

Use, the DEL command to drop an I/O device from the existing system
configuration. Because all'references to the device are removed, any
subsequent ASSGN job control' statement that refers to a deleted device
will not be accepted. If you perform the IPL procedure from a card reader,
you must use a DEL command to delete any consoles that are not online
but were defined in a DVCGEN macro. (This is not necessary for other
devices that are not online.)

The SET command is required because it indicates to' [PL that the ADD "
and DEL commands (if any) are to be checked. The channel and unit
assignment for SYSRES is also checked at this time.

Chapter 4: Starting the System 4.3

. YOlt can use the SET command to set the system date in the
communications region, the time-of-day clock, and the system time zone. If
you specify a time-of-day clock setting, you must depress the time-of-day
clock switch to the "enable set" position at the exact timespecifiied in the
SET command.

Assigning the VSAM Master' Catalog

If VSAM is to be used, the CAT command may be used .. during I[PL to
assign the VSAM master catalog to the SYSCAT file. This is only necessary
if you wish to override the SYSCAT assignment made during system .
generation, or if you failed to assign SYSCA T during system generation.
The CAT command (if used) must be submitted after the SET command·
and before the DPD command (described 'below). In the CAT command,
you, indicate the channel and unit number to be associated with the
SYSCA T file. . .

Initiating Page Data Set Handling

AutoDllatic Functions of IPL

You must follow the SET command (or the CAT command) by the DPD .
command to indicate that IPL is to handle the page data set, whilch is

. necessary for the virtual address area. The DPt> command is reqliired, with
or without operands. If submitte~ without operands, (PL will use the'
information specified in the DPD macro during supervisor generation to
perform page data set handling. This includes opening the page data set,
checking its extent limits, and creating label information in the volume table
of contents (VTOC). IPL assigns t~e symbolic name SYSVIS to the page
data set.

The operands of the OPD command indicate whether the page dataset
is. to be formatted, its location, extent, and (optional) yolume identification.
Because formatting the page data set is time-consuming, you should only
request it if the pack waS damaged. The first time you use the page data
set, it will be formatted ~utomatically.

The page data set can reside on any DASD supported by DOS/VS as a
system residence device. To help ensure better performance, the page data
set should not reside on a pack that is subject to heavy I/O requests ..

IPL performs the following operations automatically:

Sets storage protection keys to coincide with the partition allocations
determined during supervisor. generation.

Checks that the CPU model specified during supervisor generation is
the same as the model being used. .

Informs the operator about the status of the time-of-day clock.

Checks that all OASDs included in the configuration conform to the
channel range and OASD types specified in the OASDFP parameter (if
specified during supervisor generation).

4.4 DOS/VS System Management Guide

Checks thatl340 disk ~torage devices that are on Hne contain data
modules of a size a~ described by the pertinent PUB and, if they do ,
not, updates the PUB accordingly.

Unassigns any OASI? assignments for devices that are ,not ready at this
time (so as to prevent the error recovery routines 'from trying to
establish error recording statistics for these devices).

Fetches the buffer loader transients to load, the printer-control buffers
of the 3203, 3211, or 5203 pr,inters if one or more of these printers is
attached to the system.

Builds an address list in the supervisor for all RAS transients cataloged'
in the system core image library. (The first RAS transient is also loaded
during IPL.)

After IPL completes these operations, the system loader loads the job
control program into t.he virtual background partition and places the system
in the problem program. state. The message READY FOR' COMMUNI­
CATIONS appears on the console immediately after IPL is complete unless
a warm start copy of the SV A is found (in which ca~e the message appears
directly thereafter).

BI~ilding tine SDL and Loading the SV A

After IPL when job control is first iilvoked,it will attempt to find a warm
start copy of the shared virtual area (SVA). If a warm start copy is found,
you can either accept it or reject it. You should reject it if you want to
reallocate the SV A, load other phases into the i SV A and' system directory
list (SOL), or add phase names to the SDL.

If the warm start copy is rejected or not available, you can change (if
desired) the allocation of the SV A specified duriilgsupervisor generation by
specifying the SET SV A job, control command.

Next, you must specify SET SDL=CREATE, which enables job control
to build the system directory list al)d to load the SVA. (Note: The
procedure library initially contains suggested statements for loading the·
system directory list.) Immediately following these statements, enter the
phase names, ~o be, included in the system directory list via SYSRDR or
'SYSLOG (depending on the device from which joh control is reading).
These statements can be entered via the iPL communications, device. Figure
4.1 illustrates such a job stream.,

These statements can also be entered via a 'cataloged procedure. The
procedure library, as distributed with the system, contains'two procedures,
for loading the SVA, for which refer to DOS/VS System Generation. You

, can, also create your own proceclure to load your own phases into the' SV j\.
Execute this procedure immediately after' IPL.

Chapter' 4: Starting the System ,4.5

The phases need not· be currently cataloged ill the core image library,
and, if they ate not, the system issues a message on SYSLST .(or SYSLOG
if SYSLST is not availab.le). If you subsequently catalog a phase into the
system core image library under a name listed as uncataloged~ the entry in
the SDL is activated. In this case, if. the phase is also identified in the SDL
as eligihle for the SV A, it is loaded there immediately after it has been
link-edfted. Thus; under the circumstances described ~bove, you do not.
have to re-IPL when you want to load additional phases' in theSVA.

Creating the System Recorder File

The: DOS/VS Recovery Management Support Recorder (RMSR) requires a
disk extent on which to record statistical information about machine errors
and environmental information. This disk extent is called the system
recorder file and is identified by the symbolic name SYSREC. The
SYSREC 'filemust be created before job control encounters the first JOB
card following an IPL procedure. Usually, you create the SYSREC file only
after the first IPL (not after each IPL). If the SYSREC file has been
damaged, however, you must re-IPL and te-create SYSREC ..

The SYSREC file requires a minimum of ten tracks (not including an
alternate track) and cannot be a split cylinder file. You must define
SYSRECas an extent of a permanently online disk device that DOS/VS
supports as a system residence device. .

The SYSREC file label information must be included in the 'standard
label portion of the label cylinder on the SYSRES file .. You mUSil, therefore,
submit the / / OPTION STDLABEL statement when creating the SYSREC
file. (Since the label information you submit is written at the beginning of
tht:: standard label track, which overwrites the information that was present
there, you must resubmit all the necessary information. A more detailed
description of preparing standard label information is contained in
Chapter 5: Controlling Jobs.) .

Figure 4.1 illu,strates a job stream to 'create the system recorder file.
The IPL commands are included in the figure to emphasize the proper
placement of the statements that create the SYSREC file. Do not include a
/ I JOB statement until you have supplied all the information applicable to
SYSREC. This is because the SYSREC· file is opened when the first
II JOB statement is encountered. Note that the file name IJSYSRC is
required in the DLBL job control statement.

4.6 ()OS/VS System Management Guide

01301 DATE= . • 1 •. 1 • . ,CLOCK= •. / . • 1 ..
Ol10A OIVE.IPL CONTROL COMMANDS .
DEL 1 _______ ---._-_-_.....;. __ · Ifdiff.r",i from information
ADD r supplied during supervisor generat:on
SET
CAT It If VSAMcatalog;'. not been .. igned
DPD during SYSGEN. or if SYSGEN
0120. DOSNS IPL COMPLETE .. ignment must be changed.
80 1TooA WARM START CoPy OF SVAFOUND
8O(rel . .
BG 1100A READY FOR COMMUNICATIONS
BG SET SVA (270K. OK)
BG SET SDL= CREATE
BGSSBOPEN
BG SMAINDIR,sVA
BG
BG
BO
BO/·
BGASSGN

aG ASSGN-SXSREC. X'190·------~-__II ·· If different from information
BG SET R F-CR EA TE . supplied during superviso'r generation
BG II OPTION $TDLABEL Submit with the rest of .
BG II DLBL IJSYSRC. 'DOS.$YSTEM;RMSR.FllE' the STDlABEl statements.
BG II EXTENT SYSREG,., .1700.43 .

I··
BG "JOB FIRST·

Continue with normal job st,..m.

Figure 4.1. Example of Creation of the. Shared VirtUal Area and the
SYSREC File

The bold characters iii this Hgure represent responses from the system.

When the .system is to be shut down,youshould issue the Record On
Demand (ROD) command to ensure that' no statistical data is lost. The
ROD command is not valid .for recording teleprocessing statistiCal ·data .

. Refer to the. appropriate teleprocessing g~ides for more information.

To obtain a listing of the SYSREC file, run the EREP program as
described in DOS / VS' Serviceability A idS and Debugging Procedures.
During execution of the EREP program, recording on SYSREC is
suppressed.

Cre~ating the Hard Copy File f()r Models 115 and 125

On a Model 115 or 125 with. the video display/keyboard console, all
messages displayed on the screel1 and all informat~on typed in by the
operator are. saved in a file on the device assigned to SYSREC. This file is
cal~ed the hard copy file because you can obtain printed copies of the file '
whenever required.

You muSt create the hard copy file after the first IPL procedure and
before you submit the first / / JOB statement to the job control program~

The control statements arid commands n~eded to creat~ tite hard copy
file are the same <;is those shown in Figure 4.1 for. the. SYSREC me' with
the exception that you specify HC::::CREATE in the SET command, and
'the filename IJSYSCN· in the· DLBL job control statement.' More
information .about creating and printing ttte hard copy file is given in
DOS /VS Operating Procedures. .

.. Chapter 4: Starling the System' 4.7

~ecurity Checking after IPL

EnterilngRDE Data

In the larger DOS/VS ~ystems it is often desirable to perform cert.ain
security checks at the end of an IPL procedure. It may" for instance, be
important to know who performed, the procedure, whether the right system
pack was mounted, and whether the correct date was entered for the new
work session. Moreover, if you work with labeled data files it is important
that they bear the correct creation date, so as to guarantee that d~ita files
are protected until their expiration date.

After the IPL procedure has been completed, control can be passed to
a user routine (exit-na~e=$SYSOPEN) that checks system security and
integrity. This routine is entered once after every IPL procedure: The
OOS/VS distribution volume contains a dummy phase $SYSOPEN in the
system core image library. If you do not use the facility it has no effect on

"

your system. Conventions for writing this kind of user exit routine, together

,

.. with an example, are contained in the secMon Writing an IPL User Exit
, Rorltinein Chapter 10: Using the Facilities and Options of the

Supervisor. ' .

If the supervisor was generated to support the reliability data extractor
(RDE), the system will ask you to provide additional information about the
system when the first / / JOB statement after IPL is processed. A message
(1L90D IPL REASON CODE=) iS,issued on the device assigned to
SYSLOG.You should respond with a reason code (two characters), which
indicates why the system was restarted. The system may have been started
as the beginning of 'normal operation or restarted because of a machine
error, a program error, an operator error, etc. Another message (11891
SUB-SYSTEM 10= lis issued an~ you should respond with a code
identifying the device type or program type that failed. On the basis of
these replies job control wm build a.recqrd for SYSREC.

Before shutting down at the end of the day (or processing period), you
must ensure' that no environmental data is lost, by issuing the ROD
command. This command also causes the RDE end-of -"day record to be
written on the disk assigned to SYSREC. To obtain a listing of this file, '
run the EREP program as described in DOS / VS 'Serviceability Aids and
Debugging Procedures.

This information will be very valuable to your operations qiamigement.
, ',By replying with the exact reason code that applies in each case" you are in

fact ensuring a petinanent record of the reason why you had to re-IPL. '

Refer to the DOS / VS Operating Procedures, for more extensive
information on the RDE messages and the valid repUes to them. DOS / VS
Messag~s also contains this information for use at the console,

4.8" IJtOS/VS System Management Guide

ChStpter'S: Controlling Jobs

After the system has been successfully started by means of the IPL
program it Js ready to ac;cept input -for execution.

The unit of work that is submiUed to the system for execution is' called
a job. A job~ and the environment in which· it is to run, must be defined to
the system through job control statements and commands. These job
control statements and commands ar~ processed by the job control
program. The job control program is invoked by the supervisor

after initial program loading. to process the first job after an IPL
procedure, or

• at the normal or abnormal. end of a job ot job step.

The job control program runs in any virtual partition of at least 64K bytes.
It performs its functions only between jobs and job steps, and,therefore, it
is not present in the partition while a problem program is being executed ..

This chapter describes how to supply information to the job control
program to enable it to 'prepare a job for execution. It shows how to define
jobs and job steps, how to associate files on auxiliary storage with problem
programs and how to execute programs in virtual or real inode. Moreover, it
describes how standard sets of job control statements, called cataloged
procedures, can be retrieved from the procedure library, and how cataloged·
statements can be modified.

After each job control statement is read, control can be given to a user
exit routine for examining and altering job control. statements prior to their

. being processed by the system. For a description of this facility refer to the
section Checking and Altering Job Control Statements later in this
chapter. .

The differences between job control statements and commands are not
spelled out in detail because a clear-cut distinction is not required in the
context of this chapter. Whenever applicable, it is simply stated whether the
function can be performed using statements, commands, or both. The
description of the job control statements and commands in this chapter is
limited to their use and functions; formats and characteristics of statements
and commands are detailed in DOS/VS,System Control Statements.

The information in this chapter is intended for use by system
programmers, application~programmers, and system operators.

Chapter. 5: Controlling Jobs 5.1

Defining a Job

Setti.ng up Job Streams

Th{! beginning and end of a job are defined by the JOB and / &
(end-of-job) statements:

II JOB' jobriame

additional job c6ntrol statements and program input
.,

1&

The program to be executed in a job is'invoked through the EXEC
statement. In the following example, the program PROGA is fetched from
the core image library and executed:

I I SOB, jobname

I I EXEC PROGA

'.
1&

One or more programs can be executed within ~ job; the exe:cutiop, of a
single program is a' job' step. Therefore, eacbjob can consist of one or more
job steps. The following job cQmprises two job steps. '

II JOB jobname

II EXEC PROGA

II EXEC PROGB

1&

You are free to include as 'many job steps in a job as you wish. It is,
however, not advisable to execute, in one job, several programs that are
completely independent of one another. This is because, if one sltep
terminates abqormaJly, the job control program will ignore the remaining
job steps up t~ the next I & statement.

Thus, although perfectly in order, the programs following th(! one that,
, . failed will not be executed. A typical example of related job steps that
, should form a single job are assembling, link-editing, and executing a

program, where correct execution of one job step depends on successful
completion of the preceding one.

The job control program provides automatic job-to-job transition. This
means that an unlimited number of jQ~.can be submitted to the system in
one batch, and that job control processes one job after the other without·,

5.2 DOS/VS System Management Guide

requiring intervention by the operator. The job or jobs submitted are
'referred to as a job stream.'

The operator can interrupt the processing of a job stream in' any
partition to make last-minute changes to one of the jobs or to squeeze in a
special rush job. He does this by pressing the request key on the operator
console and entering a PAUSE job control command. This causes
pra:essing to halt at the end of the' current job step, or, if the EOJ operand
is specified in the PAUSE command, at the end of the current job.

, ' When setting up a job stream for a partition,you should bear in mind
that all jobs will get the priority of that partition. The selection of the jobs
for a particular partition in a multiprogramming system can help to improve
the efficieQcy of your installation. For example, jobs which' have a relatively
.low CPU usage and a relatively high rate of I/O activity, and which
therefore spend. most of· their time waiting for the completjon of I/O
operations, should run in a high priority partition. Conversely, CPU-bound
jobs should be in a partition with a lower priority. More information about
partition priorities is given in, the section Multiprogramming in Chapter 1:
Understanding the System.

Summary of Job Control Statements and Commands

JOB

The following describ~s the' JOB, end-of-job (/ &), DATE, and PAUSE
statements/ commands. The EXEC statement is discussed under Executing
a Program, later tn this chapter. The description of the statements will,
touch upon a number of subjects (for example, job control options, logical
unit assignments, UPSI byte, label information cylinder, etc,), which will be

- discussed later in this chapter.

, The JOB statement indicates the beginning of control information for a job.
The specified job' name is stored in' the communications region of the
corresponding partition and is used by job accounting and to identify
listings produced during execution of the job.

The JOB statement may be omitted, in which case the job name
, NONAME is stored iii the communications region. If the JOB statement is
present, it must contain a job name~ otherwise, an· error condition occurs;

The JOB statement is always printed in positions 1 through 72 on
SYSLST and SYSLOG. If the time-of -day clock is supported, the. time of
day is also printed. The' JOB statement causes a skip to a new page before
printing is started on SYSLST.

When a JOB statement is encountered, the job control program stores
the job name' from the JOB statement into the communications region. If­
the / & statement was omitted, the JOB statement will cause control to be
'transferred to the end":of-job routine to simulate the / & statement. Refer
to the following section'for the operations that are performed.

Chapter 5: Controlling Jobs 5.3

. End-of-Job (/ &) this stat~ment is the last one· for each job (not job step). It signals tfieend
of the input stream for the job. If SYSRDR and SYSl'rT· are assigned to
different devices, the / & statement should be present on both devices to
permit proper operation in case of.-an abnormal· end.of jo~.

PAUSE

If the I & statement i~' omitted, the next JOB statement will cause
.. control to· be transferred· to th~ end-of -job routine to ,simulate . the / &.
statement.

When a .; & statement is· encountered, the job. control progr.am pedorms
such operations as the following: .

•. Resets all job control options for the partition to standard, as established
af system generation, resets the LINK and CA TAL options to zero.

Resets all system and: programmer logical unit assignments for" the
partition to· the permanent assignment established· by.job .control
comma~ds, or (if no permanent assignments have been made) to the
standard assignment established during· supervisor generation.

Modifies. the communications region· as follows:

1.. Resets the date from the DATE statement to the one specified in
the SET command during IPL, or (if the time-of-day dock ·is
supported) to the date currently valid.

2. Stores the job name NONAME.

3. Sets the user area and the UPSI byte to zero.

Displays ·the EO) message on SYSLST and SYSLOG with the time and
. duration of the job if the time-of-day clock is supported.

-Lists all tape eiTor. statistics (TEBs) for the IBM 2495 tapc~cartridge
reader.

•

Ensures that end-of-file has been reached on SYSIPT.

Deletes the t~mpora~ labels in the label information cylinder on
SYSRES and restores the USE-LABEL mode. (See Editing and
Storing Label In/ormation, later in ·this chapter.)

Checks. whether· the auto~atic condense limits of any of the libraries·
have been reached (if maintenance has been done in the job).

The PAUSE statetnentor .commandcan be used to allow for operator
intervention between jobs or job steps.

The PAUSE statement can be included anywhere among the job
. control statements of a job stream. It becomes effective at the point where

it was inserted; processing is suspended in the affected partition, ·and the
operator console is unlOCked for input. The PAUSE statement ,can. contain
~structiol)s to the Qperator and is always listed on SYSLOG.

The PAUSE statement may also be helpful when SYSIN is assigned to
a 5425 card reader (which does not have an end-of-file button). Place the
/ / PAUSE. card after the last / & card; this will force control to be given
to the console-keyboard, which enables the console operator to control
subsequent system operation.

The PAUSE command may be entered either through the operator
. console (after pressing the request key), or as a job control card; if entered

5.4· DOS!VS System Management Guide

.! I

DATE

through the console to the attention routine, the command must specify the
partition that is to pause (if the background partition is intended, however,
no operand is required). After encountering a PAUSE command, the system
passes control to the operator (through the console) the next time that the
job control program is fetched into the specified partition, that is, at the
end of the current job step (which may also be the end of the job). If the
PAUSE command that is entered through the console specifies the EOJ
operand, ,however, control will pass to the operator only at the end of the
current job, regardless of the number of steps needed to reach that point.

The DATE statement can be used to override the date specified in the SET
command during IPL. The new date is stored in the communications region
for the duration of one job only, unless it is overridden by another DATE
statement. '

You can use the DATE statement, for example, when your program's
output is to indicate yesterday'S date. The DATE statement can be
submitted with the rest of the job control statements.

Usjing Ca~aloged Procedures

This section describes how to retrieve a cataloged procedure from the
procedure library and how to modify the contents of a cataloged procedure.
How a procedure is cataloged in the procedure library is discussed in
Chapter 7: Using the Libraries.

Note: The procedure library should not be updated in a running
multiprogramming system.

Retlieving ClIltaloged Procedures

To retrieve a cataloged procedure from the procedure library you use the
PROC parameter in the EXEC job control statement specifying the name
of the cataloged procedure. Assume that a certain program called
PAYROLL uses tJte following job control statements (in addition to the
/ / JOB,and / & statements):

II ASSGN SYS017,READER
II ASSGN SYS018,PUNCH
II ASSGN SYS019,PRINTER
II ASSGN SYS020,TAPE
II ASSGN SYS021,DISK,VOL=111111
II TLBL TAPFLE, 'FILE-IN'
II DLBL DSKFLE 'FILE-OUT' ,99/365,SD
II EXTENT SYS021,111111,1,O,200,400
II EXEC PAYROLL,

Assume further that these control statements have been cataloged in the
procedure library under the name PAY. If the program PAYROLL is to be
execQted, the programmer' or operator would simply prepare the following
job control statements:

II JOB USER1
II EXEC, PROC=PAY
1&

Chapter 5: Controlling Jobs 5.5

When the. job control program starts reading the job cont(ol statements in
the input stream on SYSRDR and finds the EXEC statement, it knows by
the operand PROC that a cataloged procedure is to be inserted. It takes the
name of the procedure to be used (PAY), retrieves the procedure with that
name from the procedure library, and replaces the EXEC statement in the
input stream by the retrieved procedure. The individual statements that are'
inserted are then processed from the very beginning. '{he statemelit'

/ / E~EC PAYROLL·

causes the program PAYROLL to be loaded'and given control. When
execution of PAYROLL is complete, the· job control program finds the / &
statement and performs end-of-job processing as usual.

Note: The listing of job control statements on SYSLOG and/or SYSLST
will show the message EOP PA Y at the end of the inserted procedure.

Modifying Cataloged Procedures

The preceding example is the. simplest case of the use of cataloged procedu­
res. It will work as long as the requirements of the program do not change ..

It may happen, however ,that some of the statements in a cataloged
procedure must. be modified for a specific run of a program. For example,
the printer normally used (X'OOE' in the preceding example) may be
temporarily unavailable so'that a different printer must be assigned. It does
not make much s'ense to delete the old version and to catalog the new one
because the old version will be needed' as soon as the normal priUlter
becomes operational again.

Likewise, it may be necessary to add or reniove certain statements to or
from a cataloged procedure for a specific run of a program. You may wish, for
example, to proc~s a different copy of the file FILE-OUT (see tbe preceding
example). You must therefore temporarily suppress the corresponding DLBL
and EXTENT sta~ements in the cataloged procedure and replace them by
statements that identify the file you want to process instead.

For cases like. this DOS/VS permits

temporarily modifying one or more statements in. a cataloged procedure
(thus, overriding what was present).

• temporarily suppressing (deleting) one or more statements in a
cataloged procedure without modifying them.

temporarily incorporating one or mpre additional- statements at desired
locations in a cataloged procedure.

You can request temporary modification of statements in a cataloged
procedure by supplying the corresponding modifier statements in the input
stream. Normally, not all statements are to be modified.

You must therefore establish an exact correspondence between the
statement to be modified and the modifier statement by giving them the

. same symbolic name. This symbolic name may have from one to: seven

5.6 DOS/VS System Management Guide

characters, and must be specified in columns 73 through· 79 of both
statements.

Note: . An unnamed statement cannot be modified. To be able to modify
a single statement· in a cataloged procedure, you should name each
statement when cataloging. Moreover, the modifier statements must be in'
the sequence in which modification is to be performed on the cataloged
statements. The JOB and/ & statements cannot be used as modifier
statements.

A single character in column 80 of the modifier statement specifies
which function is to be performed:

A - indicates that the statement is to be inserted after· the statement in the
cataloged procedure that "has the same name.

B - indicates that tne statement is to be inserted before the statement in
the cataloged procedure that has the same name.

D - indicates that the statement in the cataloged procedure that has the
same name is to. be deleted.

Any other character or ~ blank in column 80 of the modifier statement
indicates that ~he statement is to replace (override) the statement in the
cataloged procedure that has the same na~e.

In addition to naming the statements and indicating the function to be
performed, you must inform the job control program that it has to carry out

. a procedure modification. This is done

(1). by specifying an additional parameter (OV for overriding) in the EXEC
statement that calls the procedure, and

(2) . by using the statement II OVEND to indicate the end of the modifier
statem~nts.

The following examples show how you can temporarily modify a cataloged
procedure.

Assume that a cataloged procedure named PROC5 for the program
PA YROLL contai~s the following'statements:

II ASSGN SYS017,READER
II ASSGN SYS018,PUNCH
II ASSGN SYS019,PRINTER
II ASSGN SYS020,TAPE
II ASSGN SYS021,DISK,VOL=111111
II TLBL TAPFLE,'FILE-IN'
II DLBL DSKFLE,'FILE-QUT'
II EXTENT SYS021,111111,1,O,200,200
II EXEC PAYROLL

73--79
PAYOOOl
PAY0002
PAY0003
PAY0004
PAYOOOS
PAY0006
PAY0007
PAY0008
PAY0009'

Chapter 5: Controlling Jobs 5.7

Assume further that the programmer wants to use tape unit X '183' instead
of ~'181 '. The input stream on SYSRDR, in this case, would have to be as
follows:

II JOB USER
II EXEC PROC=PROC5,OV
II ASS~N SYS020,X'1S3'
II OVEND
If,

73--79

,PAY0004

The form of the EXEC statement in the input stream' indicated that (1) the
'procedure PROC5 is to be used and (2) this procedure is to be modified in
some way. The first three procedure statements are processed without
change. The procedure statement named P A Y0004 is replaced by the
corresponding statement in the input stream (a blank in column 8'0 specifies
overriding). ~The remaining procedure statements are again processed
without change.

As another exa,mple, assume' that the program PAYROLL is to use the
file FILE~OUTI instead of FILE-OUT and that this file resides on two
extents of a disk pack that has the volume serial number 111112. The input
stream might then look as follows:

73--79 80
II JOB USER
1/ EXEC PROC=PROC5,OV
II DuBL DSKFLE, 'FILE-OUT'
II EXTENT SYS021,111112,1,O,100,200 PAYOOOS
II EXTENT SYS021,111112,1,1~500,200 PAYOOOSA
II OVEND
If,

Processing would be as follows: The JOB statement and all procedure
statements up to the statement named P A Y0006 are processed without
modification. The procedure statements named PA Y0007 and P A Y0008 are
replaced by the corresponding statements ,in the input stream (due to the
blank in column 80). The second EXTENT statement 'in the input stream
has the character A in column SO, which indicates that the statement is to
be inserted after the (replaced) statement named PA YOOOS. The: procedure
statement named P A Y0009 is again processed without modification.

The possibility of modification as described above makes, the use of
cataloged procedures more flexible. Often, however, i,t is simpler and more
economical to have different procedures for the same program than to have
a single procedure and modify it.

Several Job Steps in one Procedure

A cataloged procedure may contain more than one EXEC statement, that
is, it may contain control statements for more than one job step (within the
same job). Bear in mind that as the number of job steps in a procedure
increases, so does the time required to re-execute the whole procedure after
an error occurs. A program ytritten in assembler language, for instance,
requires 'three job steps to assemble, link-edit, and execute the program. For

5.8 IDOS/VS System Management Guide

the use of a cataloged'procedure, your input stream for the entire job (on
SYSIN for simplicity) would contain the following:

II JOB USER
II OPTION LINK
II EXEC ASSEMBLY'
source deck of program to be assembled
1*
II EXEC LNKEDT
II EXEC
data for program to be executed
1*
1&

If the OPTION statement and the three EXEC statements were cataloged
under the mime ASDPROC, the input stream could be simplified to the
following (the shaded portions represent statements from the procedure
library):

II

1*
1&

The same can· be done for any number of job steps that logically belong
'together and are frequently executed. A stock control program STOCK, for
instance, may be run daily to compile statistics that can be used to prepare
the following lists:

1. , An exception list that shows which items are low in stock. Required
daily .

. 2. A list that shows the turnover in currency for a certain item or group of
items. Required weekly.

3 .. A list that shows the turnover in number of units for each item or
group of items. Required monthly.

4. An inventory list. Required semi-annually.

To simplify processing, four procedures may have been cataloged:

STKPR1 - two job steps: the first to execute STOCK, the second to
prep'are list 1.

STKPR2 - three job steps: the first two are the same as for STKPR 1, the
third to prepare list 2.

STKPR3 - four job steps: the first three the same as for STKPR2, the
fourth to prepare list 3.

STKPR4 - five job steps: the first four the same as for STKPR3, the fifth
to prepare list 4.

Which lists are printed after every run of STOCK then depends on what
cataloged procedure is used.

Chapter 5: Controlling Jobs 5.9

Modifying Multistep Procedures' without SYSIPT Data

Multistep procedures may be modified. in the same way ~s the· single-step
procedure described earlier. A number of conside; ations, however, apply to
the ordering of the modification statements in the input stre~m when a
logical unit is assigned to the same physical unit as SYSROR.

1. [t is advisable to avoid using ,identical symbolic names for the
statements in the procedure.

2. The modifier statements must be in the same sequence as the
statements in the referenced procedure.

3. If one step of a procedure is unmodified, the first modifier statement
for the following step must be placed either before the data input for
the unmodified step or after the last modifier statement of the
preceding job step. If it· is the first· modifier statement in the input
stream,.i~ must be placed immediately after the EXEC PROC
statement. .

4. If the last modifier statement overwrites an EXEC statement, the first
moaifier statement must be included after the data input for this step.

Figure 5.1 shows an example of modifying the second and third steps of a
three-step procedure.

In the e~ample given in Figure 5.1, iUs assumed' that SYSRDR and
SYSIPT are assigned to the same physical unit. The following notes apply
to the example:

This is the first modifier statement. It refers to step 2.

This statement provides SYSIPT data for PSERV.

This modification overwrites the EXEC statement:

This statement provides SYSIPT data for DSERV.

This statement provides SYSIPT data for DSERV.

, 5.10 DOS/VS System Management Guide·

)
)

)
)

SYSIN Input Stream' Procedure CAT 0 1 Containinq JCL Only.

II JOB EXAMPLE .

II EXEC .PROC~CAT01,OV

II ASSGN SYSRLB;U~

DSPLY CATOl

1*

II ASSGN SY'SSLB,UA

I I EXEC DSE,RV, REAL

DSPLY CDt,RD,SD

1*

ASSGN SYSCLB,UA

II OVEND

1*

1&

OSPLY CI),PD

Column 73-79

1
STMT3

STMT4

STMTS

STMT6

II EXECPSERV

. ASSGN SYSCLB,X'130'

tt ASSGN SYSRLB,X'130'
II ASSGN SYSSLB,}('130'

II EXEC DSERV

II ASSGN SYSSLB,UA

. II EXEC DSERV,REAL

/+

F.-e 5.1. Example of, Modifying' a Three-Step Procedure

ColUmn 73-79

1
STMTl

STMT2
STMT3
STMT4

STMTS

STMT6

STMT7

Use (]If Cataloged Procedures by the Operator

All the previously described functions and advantages of cataloged
procedures are also available to the operator. Of special importance in the
operator's use of cataloged procedures is the starting of urgent jobs or'
long-running jobs like POWER/VS or teleprocessing.

Full details on the use of cataloged procedures by the operator are
given in DOS / VS Operating Procedures. .

Chapter 5: Controlling Jobs 5.11

Relating FiI~ to your Program

Symbolic I/O Assignment

Programs always perform some kind o~ input/output operation, that is they
process files on auxiliary storage devices. Before such files can be
processed, certain information about the files must be provided to the
system. This information includes:

The generic device name and volume serial number or the physical
address of the I/O device on which each of the files resides. (Relating
a file to an actual I/O device is called symbolic I/O assignment).

For files on direct access storage de,vices (DASD), the exa(;t location of
the file on the storage medium.

For files on DASD, on diskettes, or on labeled magnetic tape, a
description of the file, called a label, which is' used forche(;king and
protection purposes.

The above information, specified in job control statements, is stored in the
system by the job control program for use by the DOS/VS data
management routines. How this is done is described below.

Whenever a processing program needs access to a file on auxiliary storage,
the system must be informed of the address of the I/O device involved.
The program need not specify an actual device address, but only a symbolic
name which refers to a logical, rather than physical, unit. Before the
program is executed the logical unit must be associated with an actual
device. This is done by either the system, the programmer, or the operator,
by means of the ASSqN job control statement or command which specifies
the'symbolic name of the logical unit and one of the following:

A general devi~ class or specific device type, with or without volume
serial number.

The physical address (channel and unit number) of the I/Ci device.

A list of physical addresses.

Another logical unit.

Sett Figure 5.2 for an illustration of some of these combinations.

5.12 DOS/VS System Management Guide

Processing Program

Job Control

I/O Device

.... Symbolic Device Name

/ / ASSGN

.... Physical Device Address

Figure 5.2. Example of Symbolic I/O Assignment (Part 1 of 2)

I. The logical unit specified in the processing program (via a DTF or
CCB) is a print file referred to by the symbolic device name
SYSLST.

2. An ASSGN statement is used to associate SYSLST with the
physical address OOE of a printer. This information is stored in the
system by job control and can be accessed when a program is .
executed.

Chapter 5: Controlling Jobs 5.13

Procesllng Program

130

3330

Figllre5.2.

5.14 DOS/VS System Management Guide

000001

131 132

... Llst of
physical
devices

... Device type

... Symbolic device name

... Device class

TAPE

\
888

3330 3330

If you use the DISK device class option,
use volume serial numbers, and be sure
that they are unique.

Example of Symbolic I/O Assignment (Part 2 of 2)

If you usc 'the DISK device class option, usc volume serial numbers, and
be sure that they are unique.

Lo!~cal Units and Symbolic Device Names

There are two types of logical units: system logical units, primarily used by
the system control and service programs, and programmer logical units,
primarily used by. the processing programs. The following list shows the
symbolic names that refer to a logical unit and the I/O devices that each
un~t can represent. In the case of disk devices, the logical unit is not
assigned to the whole of the volume· mounted on the device but only to part
of it, an extent. Refer to the section Files on' Direct Access Devices for
more information on disk files.

System Logical Units

SYSROR Card reader, magnetic tape unit, disk device, or diskette used as
input unit for job control statements or commands.

SYSIPT Card reader, magnetic tape unit (single volume), disk device, or
diskette used as input unit for programs.

SYSPCH Card punch, magnetic tape unit, disk device, or diskette used as
the unit for punched output.

SYSLST Printer, magnetic tape unit, disk device, or diskette used as the
unit for printed output.

SYSLOG Operator console used for communication between the system
and the operator and for logging job control statements.

SYSLNK Disk device used as input to the linkage editor.

SYSRES System residence extent on a disk pack.

SYSCLB Disk device used for a private core image library.

SYSSLB Disk device used for a private source statement library.

SYSRLB Disk device used for a private relocatable library.

SYSUSE Used by the system for internal purposes.

SYSREC Disk device used to store error records collected by the
recovery management support recorder (RMSR) function: For
the Models, 115 and 125, messages to or from the operator are
stored on another file on SYSREC so that a hard copy listing
of these messages can be produced.

SYSVIS Disk device used to hold the virtual storage page data set.

SYSCA T Disk qevice used to hold the VSAM master catalog.

Of these system logical units, user programs may also use SYSIPT and
SYSRDR for input, SYSLST and SYSPCH for output, and SYSLOG for
communication with the operator.

Two additional symbolic names, SYSIN and SYSOUT, are used under
certain conditions:

SYSIN Can be used if you want to assign SYSRDR and SYSIPT to
the same card reader or magnetic tape unit. You cannot assign
SYSRDR and SYSIPT to the same disk or diskette extent, you
must instead assign SYSIN to that extent.

Chapter 5: Controlling Jobs 5.15

SYSOUT Must be used if you want to assign SYSPCH and SYSLST to
the same magnetic tape unit. It cannot be used to assign
SYSPCH and SYSLST to disk or diskette because these two
units must refer to separate extents.

SYSIN and SYSOUT are valid only to job control and cannot be referenced
in a user program. Examples for the use of SYSIN and SYSOUT are given
in the section System Files on Tape, Disk, or Diskette later in this
chapter.

SYSIP1'· Data iD Cataloged Procedures

. Procedures may additionally contain SYSIPT inline data, such as control
statements for system utility and service programs and source modules.

Note: This extended support requires a supervisor that was generated with
the SYSFIL option.

SYSIPT inline data in procedures may also be any data that is
processed under control of the device independent IOCS used by your
program or IBM-supplied programs. Normally, though, you would not
catalog source programs or data for your problem programs in the
procedure library.

Including SYSIPT inline data in procedures is useful and convenient
mainly in the case of control information for system utility and service
programs.

A lob stream for an initialize disk utility run could, for instance, contain
the following control statements (the statements are shown in skeleton

. format only):

II ASSGN
II EXEC lNTDK
II UlD lR,Cl,R=(0027003)
II VTOC STANDARD

VOL 111111
II END
1&

If SYSRDR and SYSIPT were not combined and no cataloged procedure
was· used, the job control statements would have to be placed on SYSRDR.
whereas the utility control statements would have to be placed on SYSIPT.
If, however, these control statements had been cataloed (for example, under
the name INITDK), only the following statements would be required on
SYSRDR:

II JOB NAME
II EXEC PROC=INlTDK
1& .

SYSIPT data can either be read from SYSIPT or be retrieved from the
procedure library. Combining the two possibilities in a (single-step or
multi-step) procedure is not permitted. Also, SYSIPT data read from the
procedure library cannot be modified. In a cataloged procedure with in-line
SYSIPT data, you should not delete or overwrite an EXEC statement that
gives control to a program that uses the SYSIPT data.

For multistep procedures, SYSIPT data must be read in all job steps
either from SYSIPT or from the proc~dure library. If the SYSIPT data for

5.16 DOS/VS System Management Guide

Pr~:rammer LGgical Units

Type:s of Devicce Assignments

the first job step is read from SYSIPT, having SYSIPT data for any of the
following job steps in the procedure would lead to an error. Conversely, if
the SYSIPT data for the first job step is contained in the procedure, any
SYSIPT data for subsequent job steps must also be contained in the
procedure.

SYSOOO - SYSmax: Any devices in the system used for user program
input/ output.

Note: The linkage editor uses SYSOOI and the assembler uses SYSOOl,
SYS002, and SYS003. Some IBM language translators also use
SYS004 and DOS/VS system utilities use SYS005 (refer to the
appropriate programmer's guides).

You can assign each of these programmer logical units to any of the
existing partitions without a prescribed sequence. The maximum number of
programmer logical units for the system (SYSmax) and for each partition as
well as the minimum per partition c~n be determined as follows:

The background partition requires a minimum of ten programmer
logical units.

Each foreground partition requires a minimum of five programmer
logical units. .

•. The maximum number of programmer logical- units that can be specified
for the entire system (SYSmax) is a variable that can be calculated
using the formula:

255 - (number of partitions * 14)

The maximum number Of programmer logical units you can assign to a
specific partition is thus determined by the formula:

SYSmax - sum of all programmer logical units assigned, to all
other partitions.

As an example, assume that your system has five partitions. The total
number of programmer logical units that you can have would then be 185
(255-(5*14)=185). As'sume further that 15 programmer logical units have

l .

been assigned to the partition Fl, '13 to F2, J 9 to F3,~and lito F4. The
maximum number of programmer logical. 4nits for the background partition
would then be

185 - (15 + 13 + 19 + 11) = 127

_ Device assignments are either standard, permanent, or temporary,
depending on the time of the assignment and the type of ASSGN statement
or 'command used:

Standard Device Assignments. Standard device assignments are established
during supervisor generation in the ASSGN macro. These assignments are
valid until the next supervisor generation.

Chapter 5: Controlling Jobs 5.17

·Once the supervisor is loaded (that is, after IPL), modifications to the
existing standard assignments can be introduced. These assignments can be

. either permanent.pr temporary.

Permanent Device Assignments. A permanent assignment is set up between
jobs or job steps any time after IPL by the ASSG N job control command
(no / /) or the ASSGN job control statement with the PERM op,erand. It is
valid until the next IPL procedure unless superseded by another ASSGN
job control command. A permanent assignment can be changed for the
duration of a job or job step by a / / ASSGN statement or by an ASSGN
command with the TEMP option.

Temporary Device Assignments. A temporary assignment is established
either by a / / ASSGN statement or by an ASSGN command with the
TEMP option. It is valid for a single job only, unless superseded by another
temporary or permanent assignment. Temporary assignments are reset to
staI:1dard or permanent by

a / & or JOB statement, whichever occurs first, or by

a RESET job control statement or command.

Restrictions: The type of device assignment is restricted under certain
conditions:

1. If one of the system logical units SYSRDR, SYSIPT, SYSLST, or
SYSPCH is assigned to a disk device or diskette the assignment must
be permanent or standard. .

2. If SYSRDR and SYSIPT ·are to be assigned to the same disk device or
diskette SYSIN must instead be assigned and this assignment must be
permane:nt.

3. SYSOUT, if used, must always be permanent assignment.

4. SYSIN and SYSOUT cannot be specified in the ASSGN macro during
supervisor generation, that is, they cannot be standard assignments.

Device Assignments in a Multiprogramming System

During supervisor generation you can establish the standard assignments for
th(: system and programmer logical units for each partition. The same
logical unit can be defined for all partitions referring either to thle same or
to different physical devices. Also, different logical units can refer to the
same physical device. This is illustrated in Figure 5.3.

5.18 DOS/VS System Management Guide

0 ,8GI SYSOO5 ~ ~B X'19l 1

F21 -I 'B SYSOO5 X'192'
:

..

Fl I ' SYSOO5 ~B X'193'

0
BG SYSOO5

F2 SYSOO5 X'19l'

Fl SYSOO5,

o
BG SYSOO5

F2 SYS006 X'19l'

F1 SYSOO7

Figure 5.3. Possible Device Assignments Set at Supervisor Generation

At any other time, however, it is, not, (>9ssible to share, a physical' device
(except DASD) between partitions; If the physical deviCe in cases (2) and
(3) in Figure 5.3 is not DASD and, for example, no program is in theF2
partition when you' want to initiate the Fl partition, you must first unassign
this physical device in the background partition.

With direct access deyices this problem does not exist because each
extent of a disk or data cell can ,be thought of as a separate device. It is
not possible, however, to share a diskette betwee~ partitions.

When assigning a DASD, it is advantageous to specify a volume serial
number in the EXTENT statement, 'espeaall~ for a scratch pack.

Chapter 5: Controlling Jobs 5.19

\

Partition-Related Cataloged Procedures

Cataloged procedures normally relate to one specifc partition.
Partition-related cataloged procedures, 'on the other hand allow you to
retrieve and execute a procedure with a single EXI?C statement, regardless
of the partition in-which the job is being executed. One benefit of this
feature lies in the ease with which unscheduled jobs can be started. At
execution time, the system selects the proper procedure--including the
appropriate EXTENT and DLBL statements..:-based on the partition in
which the job is to be executed.

To use the feature, you must first create separate sets of job control
statements that conform to the specific partitions in your system. Most
probably, the difference in these sets will be in the EXTENT and DLBL
statements, because of the different device and DASD space assignments

" from partition to partition. Second, in order to distinguishbetwe:en the
procedures and relate them to the appropriate partitions, the following
naming convention must be used for procedures to be placed in the library:

First character of name -
Second character

Third-"eighth characters -

$
B for BG partition
I for FI partition
2 for F2 partition
3 for F3 partition
4 forF4 partition
any alphameric characters

In the EXEC statement used" to start the job, however, the first two
ct\aracters of the procedure name must be $$, with the remaining characters
identical to the cataloged name. 0

On reading the EXEC statement, the system replaces the second $ with
the identifier for the partition in which the job is t~ run. The procedure
with this name 'is then retrieved, read, and executeq.

As an example of this process," assume that the statement / / EXEC
PROC=$$PLG is used to start a job in the FI partition. The system first
transforms $$PLG into $IPLG. The procedure named $IPLG is then
retrieved "from the procedure library (out of series that might include
$BPLG, $lPLG, $2PLG, and $3PLG for a four-partition system).

Device Assignments Required for an Assembly

Figure 5.4 shows the logical units that must be assigned to assemble a
" program. Note that the ASSGN statements must always precede the EXEC
statement of the job step for which they are to be effective.

The device assignments for "compilers are similar to the" device
"assignments shown in this assembler example; any variations arc
documented in the applicable programmer's guides.

5.20 DOS/VS System Management Guide

,,---.... ,
~ ... ---,.., I" I
I I

.... _..... I

,'\ ;
I \, .-_____ __. L-'

Only if the program is to
,

rat!.'-_ be link-edited.

Figure 5.4.

(Optional) (Optional)

,--
~' "',
,----"'1
I

, ... _L ...
, " I , " ,..------., .. -... ' , ,

.. '!.-

" .. --
t~~----,1
I I

" ... -.. , :
I '..,.

,....----... 'r---, ,
~--

SYSLST

SYSOO1

SYso02

SYSOO3

Device Assignments Required for an Assembly

I. These assignments will usually be standard. establi:shed during
supervisor generation.

2. If SYSRDR and SYSIPT are assigned to the same device, the source
input must be placed after the /1 EXEC ASSEMBLY card.

Chapter 5: Controlling Jobs 5.21

Files on][)isketteDevices

After you have informed the system, via the ASSGN statement or
command, on which physical device the file is to reside, you must supply
the following information to allow the creation and checking of diskette
hibels:

1. A description of the characteristics of the file. You specify this in the
DLBL job control statement.

2. The volume(s) the file is contained on. You specify this in one or more
EXTENT job control statements. '

The label information you supply in the DLBL job control statement may
include the following:

The name of the file. This name must be identical to the corresponding
file name specified in your program. For programs written in assembler
language, this would be the name of the DTF (Define The File).

An identification of the file. This name is the one contained in the
volume table of contents (VTOC) on the diskette. It is associated with
the file' name via a DLBL statement' for the duration of a specific job,
or job step to make pr,ograms independent of physical files.

The expiration date of the file.

The type of access method used to process the file; always coded as
DU.

A dis~ette file can consist of· a data area on one or more volumes; each
volume can contain only one data area for a particular file. For each of
these data areas, caned extents, you must supply the following information
on an EXTENT job control statement:

The symbolic name of the device on which the volume containing the
file is mounted.

The serial number of the volume.

The type of extent; always coded as 1.

In the following example, the program CREATE creates a diskette (DU)
file named SALES that is to be retained until the end of 1975. The file . .

comprises up to three diskettes. The diskettes have the volume serial
numbers 111111, 111112; and 111113, and are mounted on the drive
assigned to the symbolic device named SYSOOS.
I I JOB EX1\MP LE
II ASSGN SYS005,X'060'
II DLBL SALES~ 'ANNUAL' ,75/365,DU
II EXTENT SYS005,111111,1
II EXTENT SYS005,111112,1
II EXTENT SYS005,111113,1
II EXEC CREATE
If:,

The job control program checks the DLBL and EXTENT statements for
correctness and stores the supplied information in the label cylinder on
SYSRES for the duration of the job (see the section Editing and Storing
Label Information. later in this chapter).

S.22 DOS/VS System Management Guide

Example for Submitting Label Information

Here is an example of how to code the job control statements required to
create or access the labels for a diskette file. It is helpful if you are familiar
with the formats of the DLBL and EXTENT job control statements as
described in' DOS / VS System' Control 'St9tements. Detailed information on
the possible organizations ,and access methods for diskette files is given in
DOS/VS Data Management GUide.

Diskette Files. Assume that a program FROG 1 00 needs ,a diskette file-.
'The file consists of four extents; one extent is tAe diskette with serial
number 000020, one is diskette 000030, one is diskette 000040, and one is
diskette 000050. The following job stream shows the label statements
required:,

II JOB SAMLABEL
II ASSGN SYSOOS,X'060'
II DLBL FItNAME, 'FILE 10' ,99/365~DU
II EXTENT SYS005,000020.1 .'
1/ EXTENT SYS005,000030,f
II EXTENT SYS005 ,,000040, '1
II EXTENT SYS005,000050j1

2 II EXEC PROG100 '
3 If:.

Only one DLBL statement is required. For each extent, one EXTENT
statement must b.e. supplied In the sequence in which the extents ~lfe
processed. '

2 Logical IOCS in PRod 1 00 opens the first extent using the file name
and file' ID in the DLBL statement,and the logical unit and volume
serial number in the first EXTENT statement· to locate the actual label
on the disk pack. After PROG 1 00 has processed the first extent, logical
IOCS, b~sed on the extent sequence number, opens the sec.pnd exten\.

Processing is identical for the third and fourth extents:

3 The / & statement causes the label information stored in the label,
information cylinder to be cleared. Thus; if the next job requires the
same file, the label statements must be resubmitted (see, Types of
Label Information. later in this chapter and Figure 5.6).

Files on DireCil Access Devices

After you have informed the system, via the ASSGN job control statement or
command, which volume or physical device you want, you hlust supply the
following information to allow the creation and checking of DASDlabels:

1. A description of the characteristics of the file. You specify this in the
DLBL job control statement.

2. The exact location 'of the filc on the storage medium. You specify this
in' one or more EXTENT job control statements. '

3. For non-sequential DASD files the amount of storage in the partition to.
be reserved for label processing. You specify this in the LBLTYP jo~ ,
control statement. Since this information is needed by the linkage
editor, the LBLTYP statement is discussed in Chapter 6: Linking
Programs.

Chapter 5: Controlling Jobs, 5.23'

The label information you supply in the DLBL job control statement may
include the following:

The name of the file. This nal}1e must be identical to the corresponding
file name specified in your program. For programs written in assembler
language this would be the name of the DTF (Define The File).

An identification of the file which may include generation and version
numbers of the file. This name is the one contained in the volume table
of contents (VTOC) on the storage device. It is associated with the file
name via a DLBL statement for the duration of a specific job or job
step to make I?rograms independent of physical files.

The expiration date of the file.

The type of access method u~ed "to process the file.

An indication of whether or not a data secured file is to be created.

A DASD file can consist of one or more data areas on one or more
volumes. For each of these data areas, called extents, you mustslllpply the
following information on an EXTENT job control statement:

The symbolic name of the device on which the volume containing the
file extent is mounted.

The serial number of this volume.

The type of the extent. An indexed sequential file, for instance, can
consist of data areas, index areas, and overflow areas. For eac;h of these
areas an extent must be defined, and its type (data, index, or overflow)
must be specified.

The sequence number of the extent within the file.

The number of the track (relative to zero) on which the file extent
begins.

The amount of space (Ut tracks) the file occupies.

In the following example, the program CREATE creates a sequential disk
(SD) file named SALES that is to be retained until the end of 1975. The
file comprises one extent of 190 tracks, starting on track number 1320. The
disk pack has the volume serial number 111111 and is mounted on the
drive assigned to the symb.olic device name SYS005:

II JOB EXAMPLE
II ASSGN SYS005,DISK,VOL=111111
II DLBL SALES, 'ANNUAL SALES RECORDS' ,75/365,SD
II EXTENT SYSOOS,111111,1,O,1320,190
II EXEC CREATE
If.

The job control program checks the DLBL and EXTENT statements for
correctness and stores the supplied information in the label cylinder on
SYSRES for the duration of the job (see the section Editing (,lnd Storing
Label Information. later in this chapter).

5.24 DOS/YS System Management Guide

ExaDlples for Submitting Label Information

Here are a number of examples of how to code the job control statements
required to create or access the labels for the various types and
organizations of DASD files. it is helpful if you are familiar' with the
formats of the DLBL and EXTENT job control statements as described in
DOS / VS System Control Statements. Detailed information on the possible
organizations and access methods for DASD files is given in DOS / VS
Data Management Guide.

SequentiaUy Organized Disk Files (Single Drive). Assume that a program
PROG 1 00 needs a sequential disk file located on three different disk packs
that are to be mounted successively on the same device (SYS005). The file
consists of four extents: two on the pack with serial number 000020, one
ort pack 000100, and one on pack 000006. The following job stream shows
the label ,statements required: '

II JOB SAMLABEL
IL ASSGN SYS005,OISK,VOL=000020
II OLBL FILNAME, 'FILE 10',99/365,80
II EXTENT SYS005,000020,1,0,1320,190
II EXTENT SYS005,000020,1,l,8,740
I I EXTENT SYSQ05, 000100,1.,2, 1275,64
II EXTENT SYS005,000006,8,3,50,636,6

,2 II EXEC PROG100
3 1&

1 Only one DLBL statement is required. For each extent one EXTENT
statement must be supplied in the sequence jn which the extents are
processed. The last extent occupies a split cylinder to illustrate that this
is acceptable for sequential files.

2 Logical IOCS in PROG 1 00 opens the first extent using the file name
and file ID in the DLBL statement, and the logical unit and volume
serial number in the first EXTENT statement to locate the actual label
on the disk pack. After PROG 100 has processed the first extent, logical
IOCS opel)S the second extent, based on the extent sequence number.

For the third extent, volume serial number 000100 is specified while
the volume currently mounted on SYS005 has the number 000020. The
OPEN routine of LIOCS notifies the operator of this discrepancy, and
the operator can mORnt the correct volume, at which time the OPEN
routine regains control.

3 The / & statement causes the label information stored in the label
information cylinde'r to be cleared. Thus,if the next job requires the
same file, the label statements must be resubmitted (se<: Types of
Label Information later in this chapter and Figure 5.6).

Chapter 5: Controlling Jobs 5.25

Jfiles on Magnetic Tape

Seq~entially Organized Disk Files (Multiple Drives). This example has the
same requirements as the preceding 'Single Drive' example except'that the
three volumes are mounted on three differer.t drives. The required job
control statements are as follows:

II JOB SAMLABEL
II ASSGN SYS005,DISK,VOL=000020
II ASSGN SYS006;DISK,VOL=000100
II ASSGN SYS007,DISK,VOL=000006
II DLBL FILNAME, 'F~LE ID'~99/365,SD
II EXTENT SYS005,000020,l,O,1320,190
II EXTENT SYS005,000020,l,1,8,740
II EXTENT SYS006,000100,l,2,1275,64
II EXTENT SYS007,000006,8,3,50,636,6

2 II EXEC PROG 100
1&

All label statements subIQitted are identical to the 'Single Drive'
example except for SYSnnn in the EXTENT statements.

2 Logical IOCS opens each extent in the same way as described in the
'Single Drive' example except that processing does not stop for removal
and mounting of packs, because enough devices are online to contain
the file. A combination of this and the 'Single Drive' ~xample could be
used to reduce handling time without excessively increasing the total
drive requirements.

DA Files. The program PROG 1 0.1 processes a direct access file consisting
of four extents contained on three disk packs.' The three pack~ must be
ready at the same time. The follo'wing job shows the label statements
required to process the file: '

II JOB DALABEL
II ASSGN SYS005,DISK,VOL=000065
II ASSGN SYS006,DISK,VOL=000025
II ASSGN SYS007,DISK,VOL=000002
1/ DLBL FILNAME, 'FILE ID',99/365,DA
II EXTEN~ SYS005,000065,l,0,1320,190
II EXTENT SYS005;000065,l,l,80,740
II EXTENT SYS006,000025,l,2,90,906
II EXTENT SYS007,000002,l,3,1275,64
II EXEC PROG101
1&

The label statements follow the same pattern as for sequential files
(described in the preceding examples) except that (l) the DLBL
statement must specify DA to indicate direct access, and (2) split
cylinder mode cannot be used for direct access files.

Note: If program P R OG } or is an old-style DOS self-relocating program,
the / / LBLTYP NSD(4) 'statement must be included immediGrtely
preceding the EXEC PROG}O} statement.

Files on magnetic tape can be processed with or without labels .. For tape
files ,with [BM standard labels, the label information must be submitted
through the TLBL job control statement. (A tape file can also have

5.26 DOS/VS System Management Guide

standard-user, or non-standard labels;, for these ,labels no job control
statements are required.' More information o'n, tape labels is given in
DOS/VS, Data Management 'Guide.)

The staridard label information submitted in the TLBL statement may
include the following:

The name of the file. This name must be identical to the corresponding
filename (DTF name) specified in your program.

An identification of the file.

Creation date for input and expiration date (or retention period) for
output files.

The volume serial number of the tape reel that contains the file.

For files that extend over more than one volume, the sequence number
of the volume.

For volumes that contain more than one file, sequence number of the file.

The version and modification number of the file.

W~en a program that processes tape files with standard labels is to be
link-edited, you must supply a LBL TYP job control statement to define the'
amount of storage required in the partition for label processing (see also
Chapter 6: Linking Programs).

As with DASD files, the label information you supply in the TLBL job
control statement is checked and stored in the label information cylinder on
SYSRES for further processing (see Editing and- Storing Label
Information later in this chapter).

Controlling Ma,:netic Tape Operation

The MTC job control statement or command controls certain magnetic tape
operations, for example, file positioning. Files on magnetic tape are almost
invariably processed sequentially. This means, for example, that if '¥ou have
five' files on one tape reel and you want to process the last one, you have
to read four files before you can access the one you need. Since this is time
consuming, however, you can instruct the job control program to position
the tape at any particular file.

The MTC job control statement or command controls operations such
as:

Spacing the tape backward or forward, to the required file.

Spacing the tape backward or forward a specified number of records.

Rewinding the tape to the beginning.

Writing a tapemark to indicate the end of a file.

Chapter 5: Controlling Jobs 5.27

Controlling Printed Output

In the following example, program PROGA creates a labeled tape file
named RATES on tape volume 222222. 1}t the end of the first job step, an
MTC job control statement is used to rewind (REW) the tape to the
beginqing so that the newly created file can be processed by PROGB.

II JOB TAPE
II ASSGN SYS004,TAPE,VOL=222222
II TLBL RATES, 'MASTER' ,75/365,222222
/1 EXEC PROGA
II MTC SYS004,REW
II EXEC PROGB
1&

Most of the DOS/VS supported printers use a forms control" buffer (FCB)
to control the length of forms skips. In addition, printers may bf: equipped
with the universal character set feature, which is controlled by a universal
character set buffer (UCB). Examples of printers equipped with these
buffers are the 3203 and 3211 printers.

The buffers of these printers must be loaded during, or immediately
after, IPL and they may have to be reloaded'later between job steps or,
occasionally, while a j()b step using the printer is being executed ..

The following methods for loading the buffers are available:

To load the FCB

Automatic loading during [PL

Using the SYSBUFLD program between job steps or immediiately after
IPL

Using the LFCB command

Using the LFCB macro in the problem program

Using the FCB parameter in the POWER!VS * $$ LST staltement.

To load the UCB

Automatic loading during IPL (applies to 3203, 3211, and 5203U
printers)

Using the SYSBUFLD program between job steps or immediately after
IPL

Using the LUCB command

Using the UCS command (only applies to a 1403 UCS printer).

The method of loading the buffers by using the SYSBUFLD program offers
the advantage that hardly any operator activity is involved; however,
loading the buffers by using the LFCB or LUCB command does not
require the operator to wait for a partition to finish processing.

When the contents of an FCB or a UCB are replaced by a new buffer
load, the system uses this new buffer load to control printed output until
the buffer is reloaded (or until the next IPL). None of the above methods
provides automatic resetting of the buffer load to the.. original contents. It
may be necessary to reset the buffer load to the original contents before

5.28 DOS/VS System .Managemcnt Guide

taking a storage dump, to ensure that the dump is printed in the correct
format, without any part of it being left out.

Details on how to load the FCB and VCB are contained in DOS/VS
System Control Statements.

Editing and Stori~g Label Information

Type!i of Label Information

The job control program checks the DLBL, EXTENT, and TLBL
statements for correctness and stores the supplied label information in the
label information cylinder on SYSRES. When the program that processes
the file· is executed" the data management routioes access the label data in
the label information cylind~r.

t. to write the appropriate labels onto the storage volum'e, if the file is to
be created, or

2. if an existing file is to be processed, to check the contents of the label
information cylinder against the label(s) of the file to ensure that the
correct volume is mounted, that no unexpired files are overwritten, etc.

Def'liled information on labels and label processing is given in DOS/VS
Data Management Guide, DOS/VS DASD Labels, and DOS/VS Tape
Labels.

Label information can be stored in the label cylinder either temporarily (for
the duration of one job) or permanently (until the next IPL). In addition,
label information can either be dedicated· to a single partition or it can be

. accessed by all partitions;

The various types of label information are controlled by the following
three options of the OPTION job control statement:

VSRLABEL

PARSTD

STDLABEL

causes all DASD, diskette, and tape label information to be
stored temporarily for one job. The label information is
accessible only· by the partition in which it was submitted.
If no option is specified, or if the OPTION statement is
omitted, VSRLABEL is assumed.

causes all DASD, diskette, and tape label information to be
stored permanently for all subsequent jobs. The label
information is accessible only by the partition in which if
was submitted.

causes all DASD, diskette, and tape label information to be
stored permanently for all subsequent jobs. The label
information is accessible by all partitions but can only be
submitted in the background partition. This ensures that the
label information cylinder is not updated simultaneously by
two partitions.

Each type of label information is stored in a separate area
of the label information cylinder depending on the option
specified. This 'is illustrated" in Figure 5.5.

Chapter 5: Controlling Jobs· 5.29

The system searches the label information cylinder iri the following
sequence:

(1) user label information, ,
(2) partition label information, and
(:H standard label information:"

Label Information Cylinder

Temporary labels for BG

Permanent labels for BG

Temporary labels for F3

Permanent labels for F3

Temporary labels for F 1

Permanent labels for F 1

Permanent labels for all partitions

NOt9: The layout of the label information cylinder
depends on the number of partitions defined in your
system. This example assumes that four partitions
are present.

Figure 5.5. Storing Label Information in the Label Information Cylinder

It is important to distinguish between (1) the period of time for which
the function of a label option is in effect and -(2) the period of time for
which the label information is retained on the label information, cylinder.

5.30 IDOS/VS System Management Guide

Option l Type of label
information

USRLABEL2 temporary

PARSTD permanent

STDLABEL permanent

For example, the label data submitted following an OPTION statement with
the PARSTD option is retained for all subse.quent jobs until overwritten by
another P ARSTD option, but the function of the P ARSTD option is·
canceled at the end of the job or job step in which it was specified~ This is
shown more clearly in the'summary of label options in Figure 5.6.

Option in effect until Label information retained For

STDLABEL or PARSTD is for one job. The / & the partition in which
specified. statement causes the the option was

temporary label area to be specified.
cleared.5

a) end of job step fOr all subsequent jobs until the partition in which
b) end of job another PARSTD option is the option was
c) USRLABELor STDLABEL is used.3 specified.
specified.

a) end of job step for all subsequent jobs until all partitions.4

b) end of job another STDLABEL option
c) USRLABEL or PARSTD is is used.2

specified. ..

1 Seiarch'sequerlce is USRLABEL, PARSTD,' and STDLABEL.
2 If no option is given or if the OPTION statement is omitted, USRLABEL is assumed.
3 Alii label information submitted following a PARSTD or STDLABEL option is written at the beginning of the label area thus

de:stroying any previously stored information. Therefore, if you want to add label data for an~ther file, all previously stored
label information that is to be kept must be resubmitted.

4 Label information stored with the STDLABEL option is available to all partitions but can only be submitted through
balckground programs.

5 Aclditionallabul information from a subsequent job step will overlay previous label information.

Figure 5.6. Summary of Label Option Functions

Summary of ,Job Control Statements and Commands

ASSGN

The following summarizes the functions of those job control statements and
commands needed to handle I/O devices and files, as discussed in the
preceding section. Also included are a number of commands that can be
used by the operator to manipulate I/O devices.

Note: The previous forms of label information statements (DUB, VOL,
XTENT. TPLAB) are still supported. except when you use 33100; 3340
disk drives. However. when new statements are prepared, DLBL,
EXTENT. and TLBL ~hould be used.

The ASSGN statement or command is used to connect a logical I/O unit to
a general device class, a ~pecific device type, a physical device or a list of
physical devices, or another logical unit. An ASSGN . statement or command
can also be used:

• to specify a temporary or permanent. assignment.

to specify a volume serial number for a tape or disk.

to specify that a disk is shareable.

to un assign a logical unit to free it for assignment to another partition.

Chapter 5: Controlling Jobs 5.31

RESET

• to ignore the assignment of a logical unit, that is, program ref(~rences to
the 10,gicaJ unit are' ignored (useful in testing and certain rerun
situations).

to specify an alternate tape unit to be used when the capacity of the
original is reached.

The assignment routines check the operands of the ASSGN' statement!
command for the relationship between the physical device, tl1e logical unit,
the type of assignment (permanent or temporary), etc. The following list
summarizes the most pertinent items to remember when making,
assignments:

1. Assignments are effective only for the partition in which they are
issued.

2. Apart from the operator console, no physical device except DASD can
,,' be' assigned to more than one active partition at the same timl~.

3. All system input and outpu.t file assignments to disk or diskette must be
permanent.

4. SYSIN must be assigned if both SYSRDR and SYSIPT are to be
assigned to the same extent.

5. SYSOUT cannot be assigned to disk or diskette; it must be a
permanent assignment if assigned to tape.

6. SYSLNK must be assigned before issuing the LINt(: or CAT AL option
in the OPTION statement; otherwise, the option is ignored and the
~essage 'PLEASE ASSIGN SYSLNK' is issued to the operator.

7. If SYSRDR, SYSIPT, SYSLST, or SYSPCH is assigned to tape,
diskette, or disk when the system is generated, it will be unassigned by
IPL. Such assignments can be made effective only with the job control
ASSGN statement or command, because ASSGN also opens the file.

8. Before a tape unit is assigned to SYSLST, SYSPCH, or SYSOUT, all
previous assignments to this tape unit must be permanently unassigned.
This may be done by using a DVCDN command instead.

9. The assignment of SYSLOG cannot be changed while a foreground
partition is active.

10. SYSRES, SYSCAT, and SYSVIS can never be assigned by an ASSGN '
statement or command. An IPL is required to change these
assignments.

The RESET statement or command can be used' to reset temporary
assignments to standard or permanent. With one RESET statement or
command you can reset

all logical units, or

all system logical units, or

all programmer logical units, or

one, specific system or programmer logical unit.

The RESET statement is effective only for the partition in which it is
issued.

5.32 DOS/VS System Management Guide

LlSTIO

DVCDN

DVCUP

DlBl

EXTENT

TlBl

MTC

P=CB

lUCB

EXe<:uting a Program

With the LISTIO stateme~t or command you can obtain a listing of the
current status of all I/O assignments in your system. '

The DVCDN(device down) command informs the system that a device is
no longer physically available for system operations.

When the device becomes availablc again for system operations a
, DVCUP (device up) command must be given before new assignments can
bc made.

The DVCUP (device up) command informs the system that a device is
available for system operations after it has been down.

One DLBL statement is required for each DASD or diskette file to be
processed. This statement and its associatcd EXTENT statement(s) are
used for checking or creating DASD and diskette file labels.

One extent statement must be supplied for each area (extent) of a DASD
file or each volume of a diskette file. The EXTENT statement(s) must
follow the associated DLBL statement.

For tapc files with standard labels, a TLBL statement must be supplied for
checking or creating the standard label.

The MTC statement or command' canbc used to control magnetic tape
operation. For example, a tape can be rewound to the beginning or it can
be positioned to a certain file, or record.

The LFCB command causes the system to load the spccified FCB image
from the ,core image library into the FeB of the printer for which the
command was issued.

The LUCB command causes the system to load the specified UCB image
from the core image library into the VCB of the printer for which the
command was issued.

After you have properly defined the I/O requirements of your program to
the system you can instruct job control to prepare your program for
execution. How this is done and how the supplied information is proccssed
is described in the following section. '

Chapter 5:·Controlling Jobs 5.33

Assemblling, Link-Editing, and Executing a Program

In DOS/VS, three processing steps are necessary to obtain results from a
problem program once the source program has been written:

f. Assembly or compiling of the source program into an object module.
(Object modules are discussed in Chapter 6: Linking Programi)

2. Link-editing of the object module to form art executable program phase
(see Chapter 6: Linking Programs).

3. Execution of the program phase.

Each of these steps is initiated by the job control program in response to an
EXEC job control statement. The EXEC statement must be the last of the
job control statements submitted for anyone j9b step. Figure 5.7 shows an
example of the job control statements needed to assemble,link-edit, and·
execute a source progr~m.

II JOB EXECUTE
1 II OPTION LINK
2 II EXEC ASSEMBLY

II LBLTYP
3 II EXEC LNKEDT
4 II EXEC

1&
1 To link-edit and execute a program in the samtjob, theLINK option

must be specified in the OPTION job· control statement.

2 The assembler is fetched from the core image library and stQrts
execution.

3 The linkage editor is fetched from the Core image library and starts
execution.

4 If an EXEC statement without a program. name is encountered, the
program last stored (if stored within the same job) in the core image
library by the linkage editor is fetched for execution (see also
Preparing Programs for Execution).

Figure 5.7. Job Control Statements to Assemble, Link-edit, anel Execute a
Program in one Job

If SYSRDR and SYSIPT are assigned to the same device, and yO)l wish
to submit data to your program via SYSIPT, the data cards must follow the
corresp~nding EXEC. job control statement. For example, the data
processed by the assembler is your source program Which must follow the
/ / EXEC ASSEMBL Y statement. The end of the input data submitted for
one program must be indicated by a /* (end-of-data) statement. The /*
statement is riot processed by job control but is read by the processing
program. (Note: For an input file on an IBM 5424 MFCU, the /*
card must be followed by a blank card.) The placement of input data
and the /* statement is shown tn Figure 5.8.

5.34 DOS/VS System Management Guide

II JOB INPUT
II OPTION LINK
II EXEC ASSEMBLY

source program

1*
II LBLTYP
I I EXEC LNKEDcr
II EXEC

input data for user program

1*
1&

FlgUl'e 5.8. Submitting Input Data on SYSIPT

How the job shown in Figure 5.8 is processed by the system is .
illustrated in Figure 5.9. The inclusion of SYSIPT data in job streams in
the procedure library is gescribed in the section SYSIPT Data in
Cataloged Procedures. .

Job control reads the JOB statement and stores the job name in the
communications region in the supervisor. Other functions of the JOB
statement are described under Defining a Job, earlier in this chapter.

2 Job control reads the OPTION statement with the LINK option and
sets the LINK bit in the supervisor. This indicates

a) to the assembler, that the assembled object module is to be written
onto SYSLNK,

b) to the linkage editor, that the executable program is to be stored in
the core image library Oldy temporarily for execution in the same job.

3 On encountering the / / EXEC ASSEMBLY statement, job control
transfers control to the supervisor passing it the name of the assembler
program.

4 The supervisor loads the assembler into the partition, overlaying job
control.

5 The assembler reads the source program, assembles it, and stores the
object module on SYSLNK (not shown).

6 The assembler transfers control to the supervisor.

7 The supervisor loads job control into storage, overlaying the assembler.

8 Job control reads the / / E'iBC LNKEDT statement and transfers
control to the supervisor, passing it the name of the linkage editor.

9 The supervisor loads the linkage editor into storage, overlaying job
control.

Chapter 5: Controlling jobs 5.35

Input on SVSIN

)B INPUT IIJ(
I/O
liE

:PTION LINK
XEC ASSEMBL V

soun ~--}
I·
'II L
/IE

III

I~LTVP

XEC LNKEDT

:XEC

inp' It data

I·
1&

----.. Transfer 6f data

~ Transfer of control

Any Partition Supervisor . .

JOB CONTROL

! .~ INPUT 1
~ I LINK J

~, .. e" ••• . ~EMBLY

ASSEMBLER
""'" I INPUT I ~

.. • LINK

I ... e· .. :";.." -0- .,
I'"

.... JOB CONTROL ~ [INPUT]
[LINK I •... :. ~ .. ~ ... , .. .-................ o-~· .•. '. LNKEDT

I'"

LINK. EDITOR
""'" I INPUT I l-e, I LINK I

• I" .'

I'"
.... JOB CONTROL l [INPUT J

....... ' I LINK J
.............. ..:.:.: .. • 9.- ••••••••• ", -

USE R PROGRAM r-

~
~

INK

O.,·.w : > , "".w.w ~:.~

[INONAMEI ... JOB CONTROL

CD I I

Core Omage LibrarY

~
~. .~ .., [) ASSEMBLER

.~ i) JOB CONTROL

....

."

LINK,t,GE EDITOR

• EXECUTABLE USER
PROGRAM .-D JOB CONTROL

e---D EXECUTABLE USER
PROGRAM

• JOElI CONTROL

-::.::=:> Loading from core image library

Figure 5.9. System Operation of an Assemble, Link-Edit and E:xecute Job

10 The linkage editor reads the object module from 'SYSLNK and
link-edits it.

11 The linkage editor stores the executable program in the core image
library.

12 The linkage editor transfers control to the supervisor.

13 The supervisor loads job control into storage.

14 Job control reads an EXEC statement without a program name.

15 The program last stored in the core image library by the linkage editor
to be loaded and executed. (See also PrePflring a Program for Execution).

5.36 DOS/VS System Management Guide

16 The user program is executed. It reads and ,processes the data from
SYSIPT and at EOJ relinquishes control to the super.visor.

17 The supervisor loads job control.

18 When job control reads thed & statement, it cancels ,the LINK optiori
and replaces the jobriame by NONAME in the communications region. '
Other functions of the / & ,statement are described under Defining a Job"
earlier i.n '. this chapter.

Executing Cataloged Programs

Programs can be cataloged permanently in the core image library after they ,
have been assembled ~nd IiQk-edited. This saves assembling and liok-editiIig
the program for every run.

Cataloging into the core image library is done by the linkage editor in
response ~o an OPTION job control statement with the CATAL option (see
Chapter 6: Linking Programs).

To e,xecute a cataloged program you 'use an EXEC job control
statement specifying the. name under which. the program was· cataloged (as
shown for the assembler and linkage editor in the preceding example).

,For example, the following job executes a program that was cataloged
in the core image library under the name PROGA; data cards are submitted
on SYSIPT:

II JOB CAT

assignment and label
statements, if required

II EXEC PRbGA

input data

1* '
1&

, rl I OPTION LINK Linkage Editor
CD Uses the information in the library descriptor entry of the core image.

directory for·cataloged phases to determine the firs,t available .block in
the core image library~

Stores the phase in the core image library.

Updates· the library descriptor entry of the core image directory for
linked phases to indicate' the first phase link-edited in the job step (in
~ase of multiple phases).

, @ Makes a directory entry in the core image directoryf~r linked phases,
inserting this entry in alphameric sequence (in case of multiple phases).

, Chapter 5: Coritrolling Jobs 5.37

r'

/ EXEC. . Job Control

Uses the information in the library descriptor entry of· the core image
directory for linked phases to check. which phase was' the first link-edited
and passes thls information to the supervisor. which loads this 'phase into
the partition. .

Note: The next phase link-edited (OPTION LINK or OPTION CATAL)
into the core image library will overwrite the one just temporar'ily stored ..

7/ OPTION CATAL Linkage EtJitor

1'1 EXEC NAME

<D}same asfor OPTION LINK;

® . m. Updates ~he library descriptor entry of the core imag~ directory for
cataloged phases to indicate the first phase link-edited in the job step
(in case of multiple phases).

~ . Updates the library descriptor entry of the core image directory for
cataloged phases to indicate the new address of tb,e. next available block
in the core image library. m Makes a directory entry in the core image directory' for cataloged
phases, inserting this entry in alphameric sequence.

Job Control

Loeates the corresponding entry in the core image directory for cataloged
ph;lses and passes this information to the supervisor, which loads the phase
into the partition. .

Note: If no phase name is specified in the EXEC card. job control uses
the information in the library descriptor entry of the core image directory
for cataloged phases to check which was. the first phase link-edited in
this job step.

5.38 DOS/VS. System ManagementGuide

SYSRES

01 RECTORY FOR
CATALOGED PHASES

01 RECTORY FOR
LINKED PHASES

CORE IMAGE LIBRARY

Figure 5.10. F..-eparing the Loading of Temporarily and Pemanently Stored Programs

The core image directory compi'ises two directories: one for cataloged phases,- and one for linked phases. The
directory for linked phases begins at the first unused track of the core image directory.

Chapter 5: Controlling Jobs 5.39

,PreparillgProgr8lll$ for Execution

Before any program can beex~cuted it must be stored in the core image
library by the 'linkage editor.\ Programs ate 'stored either temporarily 'or
pemlanentiy, depending on the option specified' in the OPTION job control,
statement:

.If the LINK option is specified, the prograin is, stored temPOnl~ri1y for
immediate execution" in the same job. This program will be overwritten
by the next pro~am that is ljnk-edited.

• If the CAT AL 6ption is specified, th~ program is stored perm.anently
and can be executed anytime after the catalog job. It can be deleted
only by' the li~rary maintenance program (see Chapter 7:, Using the
Libraries). or by another program cataloged with the ,'same name.

These two situations require different preparations for the loading of a
program int~ a partition Figure 5.10 shows the functions performed by the
linkage editor and the, job control program to' load programs into storage.

Definiilg Options for Program Execution

In the preceding section. it was shown how the OPTION job control
, statement can be used

to specify the type of label information to be stored for a file
(USRLABEL. PARSTD, STDLABEL options)~ and

• to define whether a link-edited program is to ,be, stored temporarily or
permanently in the core image library (LINK, CAT AL options) .

. There are a number of additional functtg.ns which you can invo)ct~, through
the OPTION job control statement. The most important ~nes.care:: J

• 'To log all job control statements submitted to the system on SYSLST.
This faciliates diagnosing the job control statements in case df an error.
The option is LOG.

To dump the contents o~ the registers, the supervisor area, and the
~urrent partition (real or virtual) on SYSLST in case of abnormal
program. termination. This is useful for debugging. The option is
DUMP.

To cancel a job if an I/O assignment cannot be performed. 'fhe option
is ACANCEL. (Note: If this option is suppressed,control is passed to
,the operator.)-

To put an object deck on SYSPCH. The object module cailthen be
combined with other object modules by the 'linkage editor to form one,
executable program,' or it can be used as input to the library
maintenance program to catalog it into the relocatable library. The
option is DECK.

• To print various listings produced by the, language translators on
SYSLST. These listings include object code,' symbol table,
cross-reference, and error lists which are u~eful debugging aids during
the test period of a program. Among the possible-options are LIST,
LISTX. SYMA, and XREF.

5.40 DOS/VS System Management Guide

Each of these options can be suppressed by specifying the prefix NO, (for
, examplet NOLISTt NOOUMP). A complete list of the available options is

given in DOS / VS System Control Statements.

You can es~ablish a standard set of these options during supervisor
generation by using the STOJe macro. Standard options are valid for all
jobs ~nless superseded by an OPT'ION 'job control statement Options
specified in an OPTION statement remain in effect until (l) a contrary
option IS read or (2) a JOB or / & statement is encountered which resets
the optiOtt to standard.

Communicating with: Problem Programs via Job Control

Via job control a problem program can take a specific path of action
dependent on some external event. Such an instruction is given at job
control time by setting program switches in the communications region
which can be tested by the problem program- :at execution time.

Forexample t an accounting program that Rrepares repOrts of daily,
weekly, and monthly 'accounts can be instructed through these program
switches when the weekly or monthly reports are due.

The program switches are set at job control time by the UPSI (user
program switch indicator) job' control, statement. The specific meaning
attached to each bit in the UPS I byte depends on the design of the problem
prog~am. When a JOB' or / & statement is encountered t the UPSI byte is
reset to zero;

;Controlling Jobs, in a Multiprogramming System

, After IPL t the job control program is always loaded automatically- into the'
virtual background partition. It isl6aded into a foreground partition in
response to a BATCH or START command issued by the, ope'rator and
specifying the required partition. (More information on the operator
commands that control' partitions is given in DOS / VS Operating
Procedures.) ,

A program is 'always loaded in,to the partition in which job control was
loaded (orin the 'corresponding real partition).

If the program is reJocatable and the relocating loader is supported in
the system t the program can run in any partition. If the program (or single
phase) is reenterable and resident in the shared virtual area t it can be
shared' by programs in mor~ than one partition.

The, relocating loader andself-telocating programs are discussed in
Chapter 6~' Linking Programs.)

Chapter 5: Controlling Jobs 5.41

Reserving Storage for VSAM

Reserving Storage for RPS

The VSAM modules ean be loaded into the shared virtual area (SiVA). The
SV A must be large enough to accommodate not only the VSAM modules.
The size of the SV A can be specified in the SV A parameter of the VST AB
maero during supervisor generation. This specification can be overridden by
the SET SV A command issued immediately after IPL.

The method of overriding the SV A size after IPL is illustrated in
Building the SDL and Loading the SVA in Chapter 4: Starting the
System. The exact sizes necessary to accommodate VSAM can be found in
DOS / VS System Generation.

For programs. using RPS (rotational position sensing), part of the virtual
partition in which the program is to be executed must be reserved to
accommodate the RPS DTF. extensions. This is done by the SIZE parameter
of the EXEC job control statement. TheseDTF extensions vary in size
from a minimum of 256 bytes to a maximum of 512 bytes.

Example of a program requiring 75K:
II JOB WEEKLY

II EXEC WEEKEND,SIZE=AUTO
IE,

If the job WEEKLY runs in a virtual paitition of lOOK, the program
WEEKEND will occupy 76K as calculated by the system, while the
remaining 24K are reserved as an additional· storage pool, also available to
RPS support for DTF extensions.

The .RPS versions of logic modules are loaded into and executed out of
the SV A. The SV A must be large enough ,to accommodate the RPS versions
of the logic modules and the GETVIS area of the SVA mQst have an
additional 2K for the LDL (local directory list) used by RPS. (The ,
GETVIS area must have this 2K space even if all the RPS logic modules
are pre loaded into the SVA.) The size~ of the SVA and of the GETVIS
work area can be specified in the SV A parameter of the VST AB macro
during supervisor generation. This specification can be overridden by the
SET SV A command issued immediately after IPL.

1 he RPS versions of the logic modules are contained ,in the core image
library of the distribution medium. They can either be loaded into the SV A
at IPL time or loaded dynamically as needed into the GETVIS area in the
SVA at execution time. For a user who loads frequently used RPS versions
of the logic modules into the SV A at IPL time, a typical specification might
be SVA=(88K, 12K) for the SVA ,and GETVIS area, respectively. While
this might be a typical value, it is not intended to be totally representative
of every RPS situation.

5.42 DOS/VS System Management Guide

Tel,~processint~ ,Balancing

If there is insufficient virtual storage in either the user area, for the
DTF extension, or in the GETVIS area of the SV A for the RPS' version of
the'logic module, the ·fiIe ; will be opened without RPS support ·and
processing will continue.

The use of teleprocessing and batch processing at the same time may
occasionally .result in long or erratic,teleprocessing response ~imes. This may
be especially true if you have overcommitted real storage, thus causing
excessive paging. The teleprocessirig application may have to compete so
strongly for real page fram~s (because of high processing activity in the
batch· partitions) that response time increases substantially.

'TeleprocesGing ,balancing· improves· response time by trading off
teleprocessing response time against batch throughput. TP balancing tends
to reduce response times, or at l~ast· to stabliie them.

After IPL, TP balancing can. be activated by the' operator's issuing the
TPBALcommand. which specifies the number of batch partitions that can
tolerate delayed processing. These will ,be the lowest priority partitions. The
TPBAL commaQd is also. used to change or display the current setting. For
more information, see the DOS I VS Operating Procedures.

Once activated, the TP balancing function can be invoked by using
TPIN/TPOUT macros. Refer to Balancing Teleprocessing in Chapter 9:
Designing Programs for Virtual-Mode Execution for more details.

Resltarting a Program from· a Checkpoint

When you expect a program to >'run for an extended period of time, you can
make provisions for taking checkpoint re'cords periodically during the run.
Thesc records contain· the status 'of. the job and system at the time the
records were written. Thus, they provide a means of restarting at some
point rather than at the beginning of the job if, for any reason, processing
is terminat~d before the normal end of the job.

Checkpoints are taken by means of a macro which you specify in your
source program. How this is done is described in Chapter 10: Using the
Facilities and Options of the Supervisor. To restart a program from a
checkpoint the ,RSTRT. job control statement is used. The sequence of job
control' statements th~lt must be submitted to restart a program is as
follows:

1. A JOB statement specifying the jobname used when the checkpoints
were taken.

2. ASSGN statements, if nec~ssary, to establish the I/O assignments for
the program that is to be' restarted.

3. A RSTRT statement specifying

a) the symbolic name of the t~pe or disk device on which the
checkpoint records are stored,

b) the sequence number of the checkpoint record to be used for
restart,

Chapter, 5: Controlling J()bs 5.43

c) for checkpoint records on disk, the filename (DTF name) of the
checkpoint file.

4. An end-of-job (/ &) statement.

Figure 5.11 shows the sequence of job control statements needed. to restart
a checkpointed program that ended abnormally due to, for example, a
power failure. Following· are the characteristics of the check pointed program
that must be corisidered for restart:

• The job name specified in the JOB statement. was CHECKP~ the same
name must be used for restart.

• The checkpoint records were written on magnetic tape; therefore, no
filename need be specified in the RSTRT statement.

The symbolic device name SYS005 was· used for th~ checkpoint file;
'this name may be different for restart.

The sequence number of the last checkpoint· record written was 0013;
this or any previous checkpoint record can be used for restart. (The
sequence numbers are supplied by the' checkpoint routine.)

II JOB CHECKP
II ASSGN SYS006,X'380'
II ASSGN
II ASSGN
II RSTRTSYS006,0013
1&

CHKPT TAPE

Figure 5.1 t. Example of a REST ART job

Additional restart considerations are given in Chapter 10: Using the
Facilities and Options of the Supervisor.

Programs that reserve virtual storage with the SIZE operand of the
EXEC job control statement, and allocate this storage with the GETVIS
macro instruction, should checkpoint the full virtual partition to ensure a
valid restart. Programs using VSAM, the ISAMinterface program,or
Access Method Services should checkpoint the full virtual partition since
these programs use the reserved viitual storage. Programs using RPS

:;.support for SAM, DAM, 'ISAM, and VSAM must checkpoint the entire
virtual partition. In addition, any RPSI/O phases. to be used by the

. checkpointing program must be preloaded into the SVA .. (See Saving Data
for Restart in Chapter 10: Using the' Facilities and Options, of the
,Supervisor for additional Checkpoint/Restart considerations.)

ExeclIltin.gin Virtual or Real Mode

All programs invoked for execution through an EXEC job control
statement are executed· in virtual mode in· the. same virtual partition as the
job control program. You can, however, force a program to run in real
mode, that is, the program is executed' in a real partition and no paging is
performed. To ruri a program in real mode, you must specify the REAL
operand in the EXEC statement. Example:

5.44 DOS/VS System Management Guide

II JOB NAME

II EXEC PRoGA,REAL
1&

If, for the above ,example;, job control runs in virtual partition F2,1hen
the program PROGA will be loaded and executed in real partition F2. This
requires that th(f real partition F2 be large enough to hold the entire
program PROGA. For all the con,siderations for enabling a program to run
in a real par:tition see Chapter 6: Linking Programs.

If a program' in real mode is smaller th~lD its associated real' partition
the unused portion of that partition, should be given to the page pool by
specifying the size of the program in the SIZE operand of ' the EXEC
statement. Example: ' .

II JOB NAME

II EXEC PROGA,REAL,SIZE=30K
1&

If the program PROGA which is 30K bytes long funs in a 50K real
partition, the remaining 20K bytes of that partition will be given to the
page pool.

If you specify SIZE=AUTO job control automatically uses the
, information, in the core image directory entry to calculate the size of the
program to be loaded. If you,' specify SIZE= (AtrrO,nK) jop control adds
nK bytes to the calculated length. This is especially useful for programs that
dynamically allocate storage during execution (such ascontplIers).

k.unning programs in real mode implies temporarily forfeiting a number
bf page frames in the page pool, which may lead to degradation of system
throughput. Therefore, real mode execution should be used sparingly.

If phase names are present in the system directory list, a main page
pool of at least 4K bytes must be available. If phases resident in the shared
virtual area are to be executed, a main page pool of, at least 16K must be
available.

With a few exceptions,. all IBM-supplied 'and user-written programs can
be executed under DQS/VS either in virtual or real mode. These exceptions
~re listed in the following two sections.

Programs that Must Run in Virtual Mode

Besides job control, which always rUl)s in a virtual partition, POWER/VS
and all programs using VTAM', VSAM, the ISAM interface program, '
Access Method Services,' or RPS support must beex.ecuted in virtual mode.

ProgJrams that l~lISt Run in Real Mode

I· , . The IBM-supplied programs OL TEP and the OT AM message control and
, message processing programs must be execut.ed in real mode.

Chapter 5: Controlling Jobs 5.45

User-written programs must be executed in real mode if they contain
channel programs for devices not supported' by DOS/VS.

User-written programs must be executed in real mode or modified if they to

contain channel programs that are modified durin& command execution.

contain I/O appendage'routines causing page faults.

contain MICR stacker selection routines or other time-dependent cOde
for execution of I/O reqUests.

Summary of Job Control S~atements and Commands

EXEC

OPTION

The following summarizes the job control statements and commands
discussed in this section in relation to' program. execution.

The EXEC statement indicates that the end of control information for a
job step has been reached, arid that execution of a program is to start. It is
the last job control statement processed before a job step is execute.d.

If the program to be executed has just been processed by the linkage
editor, the program name operand of the EXEC statement is blank:

To execute a program that is permanently cataloged in the core image
library, the EXEC statement must specify the name of the first or only
phase of that program.

All.programs invoked through an EXEC statement are executed ~n
virtual mode unless the operand REAL is specifi~d. The SIZE parameter of
the EXEC job control statemen~ defines the low-end portion of the
partition which will be used during the job step. When the REAL operand j
is used, SIZE should also be specified to. release the remainder of the
partition to' the 'page pool. SIZE must be specified for virtual mode
programs that re.quire the use.of the GETVIS macro to obtain additional
virtual storage during execution.

In response to an EXEC statement with the REAL operand, job
control clears storage from the' beginning to the end of the partition, a
FETCH is issued for the desired program, and control is given to its entry
poin,t. When both REAL and SIZE are specified in the EXEC statement,
only the portion of the real partition defined by SIZE is cleared;

(During execution of a virtual-mode program, the page management
routine of the supervisor clears a page frame to zero if no page-'in occurs
when this page frame is assigned to the program.) . .

The OPTION statement can be used to specify certain functions (options)
to be performed by the system when a program is executed. Most of these
functions pertain' to the execution of. the language processors.

A standard set of options can be established during system generation
by the STDJC'macro. If these standard options satisfy the requirements of
your job, an OPTION statement is not needed. Exceptions are the options .
LINK, CAT AL, . P ARSTD, and STDLABEL, which cannot be standard and
must, if desired, be specified in an OPTION statement.

5.46 DOS/YS System Management Guide

RSTRT

UPSI

The RSTRT statement is' used to restart a program from, ..P'checkpoint.

The UPSI (user program switch indicator) statement can be ,\!sed to set
program switches in th~ communica'tions region that can be tested by the
problem program. The switches (UPSI byte) are reset to ~erQ by a JOB or
/ & statement.

Checking and Altering Job Control Statements

It is often desirable to exercise a certain measure of control on the initiation
of a job step. To this end a facility is provided, which enables you to keep a
running check on how a job step is executed, thereby enhancing security,
serviceability, and reliability. After a job co~1trol statement has been read,
control can be passed to a user exit routine for the purpose of examining
and altering the ~atement prior to its being processed by the system.

The DOS/VS distribution volume contains a dummy phase $JOBEXIT
in the system core image library. If you do not use the Job-control-exit
facility, it has no effect on your system. For more information on the
conventions for writing such a job control exit routine, together with an
example, refer to Writing a· Job Control User Exit Routine in Chapter
10: Using the Facilities and Options of the Supervisor.

SY~item Files on Tape, Disk or Diskette

In the section Symbolic 1/0 Assignment, earlier in this chapter, it was
stated that a physical I/O device (excep,t DASD) cannot be assigned to
more than one active partition at the same time. This means, for instance,
that in an installation with only one card reader the input job stream on
SYSRDR and SYSIPT for onc partition must have been completely
processed by job control and unassigned for that partition before job
streams can be read by another partition. This also applies to the system
output on SYSLST and SYSPCH if only' one printer and one card- punch
are available.

Since this situation can cause a considerable decrease of system
throughput, DOS/VS permits storing the ,it:Iput job streams and the syste~
output on a direct access device or, if enough tape units are available, on
magnetic tape. This allows several partitions simultaneously to read system
input from or to write system output to high-speed devices, thus increasing
system throughput and, due to reduced CPU wait time, improving the
overall performance.

The following section describes how to store system input and output.
on high-speed devices and to read and process the job streams from these
devices.

The same improvements as those gained by having system files on
high-speed devices - but far more efficient and easier to use..; can be
achieved by using an optional service program of DOS/VS: POWER/VS.
POWER/VS stores the job streams on disk, transfers the jobs to the

Chapter 5: Controlling Jobs 5.47

System Files on Tape

partitions for execution, ~nd stores list and punch output on disk Ibefore it
is finally printed or punched.]n short, everything described in this section is
done automatically by POWER/VS. Thus, if your installation works with
POWER/VS, 'the following paragraphs. may not be of interest to you. Refer
to Chapter 8: Using POWER/VS, to the section Generating POWER/VS
in Chapter 3: Planning . the System" and to the section PO WER / VS in
Chapter 1: Understanding lhe System.

If the system input units SYSRDR and SYSIPT are assigned to the same
magnetic tape unit, they may (but need not) be referred to as SYSIN. If the
system output units SYSLST and SYSPCH are assigned to the same
magnetic tape they must be referred to as SYSOUT. The tapes may be
unlabeled or they may have standard labels. SYSI~Tassigned to a magnetic
tape cannot be a multi-volume file.

To store the input stream on magnetic tape you must wt:ite your own
program that transfers the job stream to the tape. Assume, in the following
example, that you have written such a program and cataloged it in the core
image library under the name CDTOTP; the program CDTOTP lUses
SYSOO4 to read the input' job stream, and SYS005 for the tape onto' which
the job stream is to be, written; the end of input data for CDTOTP is
indicated by **. The examp'le in Figure 5.12 shows how to use the progra,n
CDTOTP to create a combined system input file on tape.

1
2
3

4

II JOB BUILDIN
II ASSGN SYSOD4,X'OOC'
II ASSGN S1S005,X'182'
II EXEC CDTOTP
II JOB A

1&
II JOB B job stream

1&
** 1&

SYS004is assigned to the card reader from which CDTOTP reads the
job stream.

2 SYSOOS is assi~ned to the tape which is to receive the job strea~.
3 The CDTOTP program is executec:t and writes the job stream onto

tape.
4 * * signals end-of -data to CDTOTP

.Figure'S.12. Creation of SYSIN on Tape

I

After completion of the job BU]LDIN shown in Figure 5.12 you can
assign SYSIN to the tape containing the job stream; job control will then
read and process the jobs A and B from the tape just as it would have done
from the card reader.>

5.48 DOS/VS System Management Guide

System Files on Disk

In the same way you can direct. the sy~tem output on SYSLST and
· SYSpci-J to go on magnetic tape and then use your own or an
IBM-supplied program to print or punch the contents of the tape on the

· printer or card punch, respectively.

Sy~tem files on disk can be used only if the SYSFIL parameter was
specified in the FOPT macro during supervisor generation. Systems without
tape units should specify the SYSFIL parameter to facilitate system
maintenance.

If the system input units SYSRDR and SYSIPT are assigned to the
same disk exent, they must be referred to as SYSIN. Since the output units
SYSLST and SYSPCH have differ~nt record lengths, they must be assigned
to separate disk . extents; SYSOUT can therefore not be Qsed if· SYSLST
and SYSPCH are assigned to disk.· .

For system files on disk, you must provide the required label
information by means of DLBL and EXTENT job control statements. You

) must use the following predefined filenames when reading system input
from disk or writing system output on disk:

IJSYSIN· for SYSRDR, SYSIPT, SYSIN
IJSYSPH for· SYSPCH
USYSLS for SYSLST

For example, the label information for SYSIN assigned to a disk extent
could be submitted by the following job control state~ents:

II DLBL IJSYSIN, 'DISKINFILE'~
II EXTENT SYSIN,riOSRES,1,O,1~60,30

The assignment of a system file to a disk extent must always be
permanent (no / I). and it must follow the DLBL and EXTENT statement.
Example:

II DLBL IJSYS~N~ 'DISKINFILE'
II EXTENTSYSIN,DOSRES,1,O,1260,30

ASSGN SYSiN,~'131'

After a 'system file on disk has been processed, it must be closed by a
CLOSE job control command (no / I). The second (optional) operand of
the CLOSE command can be used to unassign a system logical unit or .
reassign it to. another device. The following command closes the SYSIN. file

· on disk. and reassigns SYSIN to the card reader:

CLOSE SYSIN,X'OOC'

The CLOSE command can ei~her be entered on SYSLOG by the operator
or it can -be included at· the end of the job stream on disk.

The example in Figure 5.13 shows the job control statements needed to

1. write a job stream on disk,

2. execute the job stream from disk and store' the print output on disk,
and

3. print the ~utput from disk on the printer.

Chapter 5: Controlling Jobs 5.49

®

The' example assumes, that you have written your own programs to write the
job stream on disk (CDTODISK) and to list on the printer the !print output
stored on disk (DISKTOPR).

/ / JOB STORE
/ / ASSGN SYSOOt,X'OOC'
/ / ASSGN SYSOO6,X',l90'
1/ DLBl DASDOUT, 'DASDOUTFILE'
I / EXTENT SYS006,DOSR ES, 1 ,0, 1260,30
/ I EXEC CDTODISK

/ / JOB A

/a.
//JOB B

/&
CLOSE SYSLST,X'OOE'
CLOSE SYSIN,X'OOC' ,

••
/&

II DLBL IJSYSLS,'OUTPR'
II EXTENT SYSLST,PVRLSL, 1,0, 1970,20
ASSGN SYSLST~X'191'

II DLBL IJSYSIN,'DASDOUTFILE'
II EXTENT SYSIN,DOSRES,1,0,1260,30
ASSGN SYSIN,X'190'

II JOB PRINT
II ASSGN SYSOO1,X'191'
II ASSGN SYSOO2,X'00E'
II DLBL OUTPR
II EXTENT SYS001,PVRLSL, 1,0, 1970,20
II EXEC DISKTOPR
1&

.-------------.---.--------~

PRINTED
LISTING

The program CDTODISK reads the following job stream from the card reader (SYS001) and stores it on disk (SYSOO6).
The end of the job stream is indic:ated to CDTODISK by··

SYSLST and SYSIN are switched to disk. Job control now reads the job stream from the disk on device)('190'.
The job stream is executed and the print output is stored on the disk on device X'191'. The CLOSE commands at
the end of the job stream will close the system files on disk and reassign them to the printer and card reader, resp.

The program DISKTOPR reads the print output from disk (SYSOO1) and lists it on the printer (SYSOO2).

Figure. 5.13. Processing System Input and Output Files on Disk

5.50 DOS/VS System Management Guide

System Files on Diskette

System files on diskette can be used only if the SYSFIL parameter was
specified, in the FOPT macro duriqg supervisor generation.

If the system input units SYSRDR and SYSiPT are assigned to 'the
same diskette extent, they m,!st be referred to as SYSIN. Since the output
units SYSLST and SYSPCH have different'record lengths, they must be
assigned to separate diskette extents; SYSOUT can there 'fore not be used if
SYSLST and SYSPCH are a~signed to diskette.

For system files on diskette, you must provide the required la~1
information by means of, DLBL a!ld EXTENT job control statements. You
must use the following predefined filenames when reading input f(om
diskettes or writing system output' on diskettes. .,

IJSYSIN FOR SYSRDR, SYSIPT, SYSIN
IJSYSPH for SYSPCH
IJSYSLS for SYSLST

For· example, the label information, for SYSIN assigned to a diskette extent
could be submitted by the following job c~>ntrol statements:

II DLBL IJSYSIN,'DISKETTE'

1/ EXTENT SYSIN,DSKETE,l

The assignmen~' of a system file to a diskette extent must always be
permanent (no / I), and it must follow the DLBL and 'EXTENT statement.

Example:

IIDLBL IJSYSIN, 'DISKETTE'
II EXTENT SYS1NiDSKETE,1

ASSGN SYSIN,X'060'
After a system file on diske,tte has been ,processed, it must be dosed by

a CLOSE job control command (no / I). The second (optional) operand of
the CLOSE ,command can be used to un assign a system logical unit or
,reassign it to another device. The following command closes the SYSIN file
on diskette and reassigns SYSIN to the card reader:

CLOSE SYSIN,X'OOC'

The CLOSE command can either be entered on SYSLOG by the operator
or it can be included at the end of the job stream on diSkette.

If SYSIPT is assigned to a 3540 diskette, a: CLOSE command must be
issued prior'to reading the / & . Multiple input data files can be read via
multiple job steps ~ith one / & at- the end of the job stream.

When job control encounters / & on SYSRDR during normal
operation, the standard assignment for SYSIPT becomes effective and
SYSIPT i~ checked for an end··of-file condition.'If the standard assignments
for SYSRDR and SYSIPT are not to the same device, SYSIPT is advanced
to the next / & statement.

In the event of an abnormal termination, job control advancesSYSRDR
and SYSIPT to the next / & and 'proceeds" only if a JOWslatement is '
provided.

C"a'pter 5:ControJlingJobs5.51

Interrupting Job Streams o~ DiSk, Diskette, or Tape .

After a SYSIN or SYSRDR job stream has been prepared on tape, diskette,
or disk, it may be necessary to interrupt the normal schedule to (~xecute a
special rush job. To do this, you press the request key on the operator
console and enter a PAUSE c()mmand with the EOJ operand causing the
corresponding partition to suspend processing at the end of the current job.
At this point you can make a temporary assignment for SYSIN to the card
reader to execute the rush job. At the end of this job, processing of the job
stream on disk, diskette, or tape will resume at the point of interruption.
This is illustrated in Figure 5.14. Starting an urgent job that usei) a catalog
procedure I;>y means of a single EXEC statement is discussed in the section
Partition/Related Cataloged Procedures.

Card Reeder DilkExtent

II DLBL IJSYSIN,
II EXTENT SYSIN,--.......
ASSGN SYSIN,X'191' /I JOB A

1St
/I JOB B

I&.====:i

==~;======0=:.==:===
/I JOB C

I&.
I&.

. CLOSE SYSIN,X'OOC'

I&.

I/~~B
1St

...... --,

Q) SYSIN is assigned to disk and processing of the jobstream on disk begins.

Operator Console

®
Prell request key and enter
PAUSE xx, EOJ
where xx is the I'IIfM of the partition

II ASSGN SYSIN,X'QOC'

@ While job B is being executed a PAUSE command is en~ered at the Operator console.

fi'" At the end of job B control comes to the operator who can now enter a temporary assignment for
\V SYSIN to the card reader.

f4\ The job RUSH is read and processed from the card reeder. Note that the temporary assignment of
~ SYSIN is not reset by the II JOB RUSH statement but is retained to end of the job.

1'7\ Th~ I & statement resets the tempora~ assignment of SYSIN to permanent IX'190') and the next
\.!.I job in the stream on disk it r.d and executed.

f'i'\ T.he Cl.OSE command closas the system file on disk and reassigns SYSIN to the card reader to
\!I process jobs 0 and E. .

Figure 5.14. Interrupting a Job Stream on Disk

5.52 DOS/VS System Management Guide

Record I~ormats of System Files

SYSLST records are 121 characters and SYSPCH records 81 characters in
length. From SYSRDR and SYSIPT, job control accepts either 80- or
81-character records; (For none of these files can the records be blocked.)
You can use object modules written on tape, diskette, or disk .as input to !

the linkage editor after the tape, diskette, or disk has been assigned to
SYSIPT.

The first character of the SYSLST and SYSPCH. records is assumed to
be an ASAcarriage control or stacker selection character. SYSIPT,
SYSRDR, SYSPCH, and SYSLST records assigned to DASD have no keys,
and record lengths are the same. as stated above ..

Chapter 5: Controlling Jobs 5.53

Chapter ft: Linking Programs

Structure of a Program

PriQr to "execution in storage, all programs must be placed'in the core image
library" by the linkage editor. This' chapter describes the role of the linkage
editor and how you can communicate with it through control statements.

The name linkage editor appropriately reflects the editing and the"
linking operations that this program performs. The linkage editor prepares a
program for execution by editing the output of a language translator into
core image format. The linkage editor also combines separatety assembled
or compiled program sections or subprograms (called object modules) into
phases. This process is referred to as linking.

A program can be link-edited and

cataloged permanently,

cataloged" permanently and executed immediately; or

cataloged temporarily and executed immediately.

When a program is cataloged permanently into the core image library, the
I1nkage editor is no longer required for that program * , because the
supervisor can load it directly from the library in response to an EXEC job
control statement, or a FETCH or LOAD macro. On the other hand, if the
program is cataloged temporarily" and executed immediately, the linkage
editor is required again the next time the program is to be run.

If a private core image "library is assigned to the partition in which the
execution of the linkage editor occurs, the phases produced are entered into

" this private core image library. Otherwise (for the background partition),
the phases are entered into the system core image I,ibrary. To execute the
linkage editor in a foreground partition, a" private core image library must
be uniquely assigned to that" partition. For more information on using private
libraries, refer to Chapter 7: Using the Libraries.

To understand the functions of the linkag~ editor, you must understand the
structure of a program during the various stages of its development.
Figure 6.1 summarizes the three sections that follow, which discuss source
modules, object modules, and program phases.

*Ir the partition houndaries change so that the cataloged program's START and END"
addresses no longcr fall within the partition, the program Illllst he link-edited again.
This restriction docs not apply to rclocatablc programs loaded by the relocating loader.

Chapter 6: Linking Programs 6.1

Source St2ttement
Library

OBJECT MODULE

Relocatable
Library

" [Linkage -V _Editor __

Core Image
Library

Figure 6... Stages of Program Development

A sct of source statements. or source module (I). must he processed hy a language translator. hut can first he
cataloged as a hook (2).into the soun.:C' statelllept lihrary. The output of the language translator is called an
ohject module (3). which must he prlKessed hy'the linkage editor. hut can first he cataloged as a module (4)
into the relocatahle library. The. output of the linkage editor is called a phase (5). which is cataloged into the
core image library temporarily or permanently. and can also he loaded into the shared virtual area. (A phase
is cataloged temporarily if 1/ OPTION LINK is specified; a phase is cataloged permanently if /1 OPTION
CATAL is specified.) At execution time. either the system loader loads a phase from the core image Iihrary
into the prohlem program partition. or (if appicahlC) the partition requesting the phase uses the copy availahle
in the shared virtual area.

Source Modules

After planning the most logical approach to the probiem you are to submit
to the computer, you write a set of source statements in a programming
language. Your set of source statements, called a source module, must be
processed by a language translator. The language translator assembles
source modules written in assembler language, or it compiles source
modules written in a high-level language (for instance, ANS COBOL,
FORTRAN, PL/I. or RPG II). The language translator transforms the
source ~ module into an object module, which is in machine language.

You can either submit your source module directly to the language
translator for processing. or you can catalog it into a sublibrary of the
source statement library for processing at a later time by the language
translator. (Refer to Chapter 7: Using the Libraries for guidelines on
how to catalog into the source statement library.)

6.2 DOS/VS System Management Guide

ObjE~ct Modull~s

A source module written in assembler consists of definitions for one or
more control sections (CSECTs) ~ . Source . modules written in a high-level
language do not have this structure.

An object module, the output of a language translator, consists of the
dictionaries and· text of one or more control sections. The dictionaries
contain the information necessary for the linkage editor to modify portions
of the text for relocation and to resolve cross-references between different
object modules. The text consists of the actual instructions and data fields
of the object module.

You can either submit your object module directly to the linkage editor
for processing, or catalog it into the relocatable library fs>r later inclusion in
a linkage editor job stream. (Refer to Ch,apter 7: Using the Libraries for
guidelines on how to catalog into the relocatable library.)

The language translator produces four types of cards for each object
module. An identifier field in columns 2-4 indicates the content of each
card. Column 1 contains a mUltipunch (12-2-9) that identifies the card as
being part of an object module (also referred to as a loader card). The four
type.s of cards are: ESD, TXT, RLD, and END. The contents of these
cards are summarized below.

ESD (Ext~mal Symbol Dictionary). This card con.tains all the symbols
defined in this module that are referred to by another modUle and all the

. symbols referred to by this module that are defined in another module.
There are six classifications of the ESD card, which are described in
DOS/VS System Control Statements.

TXT (Text). This card consists of the actual code of the object module. It
contains the assembled (or compiled) address of the instructions or d~ta
included in the card, and the number of bytes contained in the card. It also
includes a reference to the control section· where this text occurs. The
linkage editor uses this reference when applying a relocation factor. If
address constants are present, TXT information is modified as required by
RLD information.

RLD (Relocation List Dictionary). The RLD cards identify. portions of the
text that must be modified if the program 'is subsequently relocated. They
provide information necessary to perform tpe relocation.

END (End of Module). The END card indicates the end of the module to
the linkage editor. The END card may supply a tra'itsfer address (where
execution is to begin). It may also contain the control section length, which
was not previously specified in the ESD section definition or private code
(unnamed CSECT).

If you want to change information in a TXT card, you can prepare a
REP card· (user replace card) and submit it with your object module for
cataloging into the relocatable library or for linkage editor processing. A
REP card-must be submitted between the TXT card it modifies and the
END card; otherwise, the TXT card is not modified. Usually, you place the
REP card(s) immediately before the END card.

Chapter 6: Linking Programs 6.3

Program. Phases

Relocatable Phases

Self-Relocating Phases

.For the exact formats of the ESn, TXT, RLD, REP, and END cards,
refer to DOS/VS System' Control Statements.

The linkage editor produces a program' phase from the object module(s)
you identify in linkage editor control statements. A phase is the smallest
functional unit (one or more control sections) that the system loader can
load into a partition in response to a single EXEC job control statemen't or
a FETCH or a LOAD macro instruction. .

In the Pl;IASE control statement you can instruct the linkage editor to
produce one of three types of phases: relocatable, self-relocating, or
non-relocatable.

The linkage editor can produce a. relocatable phase for those phases with an
origin that is not an absolute address and that is not relative to a
non-relocatable phase. If the supervisor was generated to support the
relocating loader, a relocatable phase can be loaded into any partition for
execution.

For each relocatable phase the link~ge editor prepares special relocation
inf ormation that thc relocating loader uses to modify the text if necessary.
Relocation is not performed if the program is to be executed at the same
address -for which it was link-edited.

For more information on relocatable phases, refer to the section
Link-editing for Execution at Any Address.

If a relocatable phase is also designed as a reenterable phase, it is
~ligible to be loaded into the shared virtual area (SY A). Phases resident in
the SY A can be shared concurrently by programs running in either real or
virtual mode.

Prior to the availability of the relocating loader in DOS/VS, users had to
write self-relocating programs in order to gain the advantages of
relocatability. If you have to perform maintenance 011 such a program, you
must write this program in assembler language according to the rules
described in DOS/ VS Supervisor and I/O Macros. In the PHASE
c(>ntrol statement you indicate an origin ~f +0. The program must relocate
all its addresses at execution time to correspond with the addresses available
in the partition where the program is loao('o. .

You do not need to write a self-relocating program if' your supervisor
includes support for the relocating loader. (Refer to Relocatable Phases
above.)

6.4 DOS/VS System Management Guide

A non-reloc,atable phase is link-edited to be loaded at. a specific iocation
(absolute address) in a partition. When you ~request execution of a
'non-relocatable phase in a given partition, the starting and ending addresses

, of the phase must Qe included within that partition. Otherwise, the job' is
" I ,

canceled. With ear~ierversions of DOS, this necessitated the c~taloging of'
mUltiple copies of a pbase for use' in different partitions.

r ,

Th(~ Three Basic Applications of the Linkage Editor

The three basic ap'plications of the linkage editor are referred' to as:

1. ,cataloging phases into the core image library
2. link-edit and execute
3., assemble (or compile), link-edit, and execute.

, T~e following sections include a discussion of the system flow during each
of these applications.

Catalioging Phases into the ,Core Image Library

When you have an operational program that you expect to use frequently,
you should catalog it into'a core image library. You cando this in a single
job step, which is shown in Figure 6.2. '

When job control reads the CAT AL operand of th~' OPTION
statement, it sets a switch that causes the SYSLNK file lobe opened. ,Job
control copies onto SYSLNK the linkage edil.Or control statements present
on SYSRDR, and INCLUDE signals job control to read any object modules
that are to be included from SYSIPT. If an ENTRY statement is not
encountered before the / / EXEC LNKEDT statement, job control includes
one on SYSLNK. This signals termination of the input to the linkage
editor.

The linkage editor is then loaded into the partition where the job
stream was submitted, and uses SYSOOl as a work file to process the input
found on SYSLNK. '

Because the CA TAL optjon was specified, the linkage editor places the
executable program permanently into a core image library. If a private core
image library is assigned to this partition;, the program is cataloged there;
otherwise, (for the background partition) it is cataloged into the syst~m
core image library. The library descriptor entry in the core image directory
for cataloged phases is updated.

If the phase is eligible for the shared virtual' area and is indicated as SV A
eligible in the system direc~ory list, the phase is also loaded into the SV A.

Cataloging a Supervisor. Supervisors may also be' cataloged permanently into.
the core image library as described above. Be sure, when doing this, to
specify a unique name (eight alphameric characters) for each supervisor.
Because the name of the supervi&or mU1?t reside on the first cylinder of the
core image directory, give the name a low collating sequence (for example,
use $$ as the first two characters).

Chapter 6: Linking Programs 6.S

1&

~ /I OPTION CATAL t----....

[JOB CATALOG

Link-Edit and Execute

Figure 6.2. A J9b Stream to Catalog a Program into the Core Im:ige
Library

The input to the linkage editor may consist of the linkage edntor control
statements ACTION. PHASE. INCLUDE. and ENTRY submitted on
SYSRDR and object modules on SYSIPT.

Yott do not always need to catalog a permanent copy of your program into
the core Image library. For instance, you have modified parts of your
program and want to test these modifications with the entire pro~~rarri. In
this case, you can specify the LINK option, which requests that the linkage
editor place a temporary copy of the program into the core image library.
The INCLUDE statement signals job control to read the following input
from SYSIPT.

By specifying an EXEC statement without a program name operand
after the EXEC LNKEDT statement, the· program just link-edited is loaded
for execution. The spa~e temporarily occupied by this program in the core
image library is overwritten the next time a program is link-edited.

The shaded portions of Figure 6.3 illustrate how this job stream differs
from Figure 6.2.

6.6 DOS/YS System Management Guide

· FIgure 6.3. A Job Stream to Link-edit a Program for Immediate Execution

The I I OPTION LINK card causes the linkage editor to place a
temporary copy of the program into the core image library. INCLUDE
signals job control to read the program from SYSIPT. The I I EXEC
card (without a program name operand) causes this same program to be
loaded for execution immediately thereafter.

The /1 OPTION CATAL card may also be used in this job stream.
In this case, the program that was cataloged (permanently) is executed
immediately.

Asse,mble (or Compile), Link-~dit, and Execute

You can also combine the job. steps described above with a job step for -
-assembly (or compilation) of your source program. This is especially useful
when you are developing a program. Figure 6.4 shows how your job stream
should be set up. The shaded portions of the figure illustrate how this job
stream differs from that shown in Figure 6.3. Linkage editor control
statements are not required when linking single-phase programs temporarily
into the core image library. .

Chapter 6: Linking Programs. 6.7

You direct the language' translator to write the object module ditectly
onto SYSLNK by specifying the LINK option at the beginning of tJte job.

-After the linkage editor, processes the input on SYSLNK, the same program
is loaded for execution.

If errors occur in one job step causing an abnormal termimition, the
remaining job steps are· ignored. Other types of er~ors that "CIo not cause
termination of a job step remain throughout the entire job. If you do not
want to execute the program when errors occur during the link-edit step,
you can specify ACTION CANCEL after the / / OPTION LINK.

FIgUre 6.4.. A J~ Stream to Assemble, Link-edit, and Execute

Processing Requirements

You can omit linkage editor control statements when. you'slPecify I I
OPTION LINK. If you specify /1 OPTIONCATAL, you must supply at
least one PHASE card with a phase name before I I EXEC
ASSEMBLY. .

In a system without private core image library support, the linkage editor'
ca,n be executed in the background partition only and places phases into the
system core image library on SYSRES. In a multiple-partition system where
the supervisor supports private core image libraries, the linkage leditor can
be executed in any partition. Whtm the linkage editor isexecQte:d in· a
foreground partition, a private coreimage library (SYSCLB) must be
uniquely assigned to that partition and phases are placed there. When the
linkage editor is executed in the background partition where. no private~ core

6.8 DOS/VS System Management Guide

Symbolic Ulllits Required '

image library is assigne<;i, phases are placed into the system core image
library by default.

The size of the· partition in which the linkage editor is operating directly
influences the number of phases and ESD items that can be processed in
one job step. By referring to the specific formulas listed in DOS / VS
System Control Statements; you can determine if a particular c'Ombination
can be processed within a given partition.

The linkage edit'Or requires .the f'OlIowing symbolic units:

.SYSIPT

SYSLST

'SYSLQG

SYSRDR

SYSLNK

SYSOOI

M'Odule input

Programmer messages and listings (if SYSLST is not assigned
no map is printed and programmer messages appear on
SYSLOG)

Operator messages

Control statement input (via job control)

Input to the linkage editor

Work file.

N'Ote tha~ SYSRDR and SYSIPT may contain input f'Oi' the linkage editor.
This input is written 'On SYSLNK by j'Ob control.

If output from the linkage editor is' to be placed in '8 private core image
library, the following symbolic unit is required:

SYSCLB The private core image library may be assigned anywhere in the
j'Ob stream. but must be bef'Ore the / / EXEC LNKEDT
statement.

If 'Object m'Odules from a private rel'Ocatable library are to be link-edited,
the symbolic unit SYSRLB must be assigned.

Preu)aring Input for the Linkage EditQr

The input y'OU prepare f'Or the linkage edit'Or consists 'Of job contr'Ol
statements, linkage editor c'Ontrol statements, and object m'Odules. J'Ob
c'Ontrol reads the j'Ob control statements and the linkage edit'Or control
statements from the device assigned to SYSRDR and object modules from
SYSIPT. The linkage edit'Or control statements and 'Object modules are
copied ont'O the disk extent assigned t'O SYSLNK. .

The linkage editor control statements direct the executi'On 'Of the linkage
. edit'Or. The four linkage editor control statements are: ACTION, ENTRY,
INCLUDE, and PHASE. Position 1 must be blank on linkage edit'Or
control statements; n'O / l is used. In all other" respects their format is the
same as that for job control statements.

The job control statements that directly influence the linkage editor are:
OPTION CATAL, OPTION LINK~ andLBLTYP.

Chapter 6: Linking Programs. 6.9

A description' of how to prepare these control statements is given on
the following pages.· Here, the various operands of tl1e control statements
are described under headings that indicate their function. In the section
Summary. of Control Statements Related to Link-editing. these operands
are briefly. described again under the control statements to. which they
pertain. .

Assigniltlg a Name to a Program Phase

Each program phase you submit for link-editing should have a name, which
you specify in the PHASE statement. When a phase is cataloged iln the
core image library, the phase name identifies that phase for subsequent
retrieval. .In other words, the same phase name you supplied in the PHASE
statement when permanently cataloging the initial or only phase of a
program must be used as the operand in the EXEC job control statement
or in a FETCH or a LOAD macro instruction.

The first four characters of the pha~e name of a single-phase program
should be unique. Any phases with the same first four characters of their
phase name will be classified as a multiphase program. When a phase of a
multiphase program is fetched, the partition must be large enough to
contain the largest phase.

You are not required' to supply a phase name if you. have specified the
LINK option. The linkage editor will construct a dummy phase name
(PHASE*") and your'program can still be executed. A program with a
dummy phase name canrot be permanently cataloged into a core image
library; that is, you must supply a phase name in the PHASE statement
when you specify the CAT AL option. If the CAT AL option is specified
and no phase card is supplied before the· first object module (or Ithe phase
card is invalid), a dummy' phase card is created (phase name PHASE***).
The link-edit job is canceled after a map has been printed (provided
SYSLST is assigned and ACTION NOMAP was not iri" effect).

Definitng a Load Address for a Phase

At link-edit time you can sWcify where your program is to be loaded for
execution. You have several choices.

A phase can be link-edited to be loaded and executed from:

a virtual partition
a real partition

• the shared virtual area
• an absolute address (either in a virtual or a real partition).

A phase can be link~edited as a

relo.catable phase
self -relocating phase

• . non-relocatable phase.

You define the load address for a phase in the origin operand of the
PHASE statement. (The load address can be changed by the system at

6.10 DOS/VS System Management Guide

execution time if the link-edited phase is relocatable and the relocating
loader is supported in the supervisor. This is described in the sections that
follow.) You can specify the origin in six different formats:

1. symbol [(phase)][± relocation] Specifies a lqad
2. ... [± relocation] address relative to
3. S [+ relocation] the beginning of a
4., ROOT virtual partition or

5: + displacement
6. F+address.

to another phase.
Specifies an absolute
address.

These specifications are described in DOS / VS System Control Statements.

Aligning a Phase! on a Page Boundary

For performance reasons it can be advantageous to load a phase on' a page
boundary. If you specify the PBDY parameter in the PHASE statement, the
linkage editor will align the load point of the ,phase on the nearest page
boundary (the next higher). '

Link-Iediting for Execution at Any Address

If you want to ensure that your' program can be loaded at any storage
address (except within the supervisor area), you can make use of the
relocating loader.

Phases produced by the linkage edftor'for loading by the relocatable
loader are called relocatable phases. If a relocatable' phase is, also '
reenterable it can be specified for inclusion in the shared virtual area. (See
the section Link-ed;ting for Inclusion in the Shared Virtual Area.)

Using the Relocating Loader. If your supervisor supports the relocating
loader (refer to this supervisor generation option in the section' Tailoring
the Supervisor in Chapter 3: Planning the System), you do not need to

'write a self -relocating program to enable that program to execute in any
real or virtual partition. The linkage editor will produce relocatable phases
whenever' possible. ,The linkage editor determines whether a phase can be
made relocatable by inspecting the origin of the PHASE statement. If the
origin specified is in one of the following formats, the phase is eligible for
relocation: . ,

• symbol [(phase)][±' relocation]
... [± relocation]
S '[+ relocation]
ROOT'

Note: The first format specifies a symbolic load origin. If the phase
referred to in a symbolic origin is not relocatable. the referring phase
cannot be made relocatabte. If a phase is' relative to another phase
whose, origin 'is specified as an absolute address, none of the phases can
be made relocatahle during, this linkage editor execution.

Chapter 6: ,Linking Programs 6.11

If the linkage editor determines that a phase is· to . be given the
relocatable format, it flags the coreintage directory entry· for that pha.-re,
prints a message (relocatable) after the phase information in the link~ge
editor map (see Obtaining a Storage Map), and inserts the relocation
information behind the text of the phase in the core image libralry. This
relocation information consists of a set of pointers ,to address constants, the

, length of these address constants, and an indication as to whether the
supervisor should add or subtract a relocation fa~tor when loading the
phase into storage.

If your supervisor dOes not contain the relocating loader, the linkage
editor can still produce a relocatable phase if you specify: ACTION REL
for a phase eligible for relocatipn. Such a supervisor, however, loads
relocatable p'~ases into storage as link-edited without performing any
, relocation.

If your supervisor contains the relocating loader and you do ,not want
the linkage editor to produce a relocatable phase for a particular program,
specify ACTION NOREL.

The default action taken depends on whether or hot the sUI.ervisor
contains the relocating loader. If it does, ACTION REL is the default;
otherwise, ACTION NOREL is the default. '

The REL operand and a partition-identifier operand (described in the
section Link-editing for Execution in a Virtual Partition) are not
mutually exclusive. For instance, if a program is normally to, be executed in
the virtual Fl partition, but Qot exclusively, specify ACTION Fl~REL.
Whenever this program is to be executed in the virtual Fl partiltion,,.
relocation will not be necessary 'and the load time will be minimized.

Link-4~ting for Inclusion ,in the Shared Virtual Area

If a relocatable phase is also reenterable, it can be included in the: shared
virtual area (SVA). Phases resident in the SVA can be shared concurrently by
more than one partition. It is advantageous to include· frequently-used phases
in the SV A because these are then resident when requested for execution
(they are not reloaded from the core image library). All phases re:sident in the
SV A must also be cataloged in the system core image library.

To i_ndicate that a phase should reside in the SVA, you must specify the
SV A operand in the PHASE statement when cataloging the phase. This
operand is ignored if the phase is not relocatable (see above); otherwise,
the SV A operand is acc~pted and the phase is said to be SVA-4!ligible.

The linkage editor cannot check whether a phase is reenterable;
however, a protection check can occur when executing a phase from the
SV A that is not reenterable, since the SV A is key zero storage. Since the
SDL is sorted prior to the loading of phases into the SV A, the packaging of
'phases to be executed together should be done using the linkage editor.

6.12 DOS/VS SystemtManagement Guide

, ,

Immediately after ~n SV A-eligible phase is catal9ged into the 'system
core image library ~ it is loaded into the SV A if this phase is listed as' ,
SV A-eligible, in the system: directory list (SDL). The SDL can be created
only immediately after IPL; see the section Building the SDL and'
Loading the SVA in Cnapter 4: Starting the System.

1JDk,..;.editing rOlr Execution ina Virtual Partition

Unless otherwise specified in the PHASE statement, a progriun is
link-edited to execute in the same virtual partitiQn in which the linkage
editor function occurs. When the linkage editor is running in a real ,
partition, the program is link-~dite/d to execute in the corresponding virtual
partition.

/ By using the ACTION statement with oneof\the partition identifiers
(BO, FI,F2, F3, orF:4),however, you specify the virtual partition in
which the program is to be executed. It is necessary to specify 'a partition,
identifier ,only if the "run" partition differs from the partition in which the
linkage editor is being executed.

Use of the ACTION statement with a foregr~und partition identifier
requires that the virtual partition be allocated; if not, the action is ignored.

An ACTION statement with' a partition identjfier is effective only for
those, phases designated to' be loaded at an address relative to the beginning
of a partition: that is, for those phases with a load address specification
(origin operand in the PHASE statement) in any of the following formats:

• symbol [(phase)] [± relocation)
• *[± relocation]
• S [+ relocation]
• ROOT.

These operands are described in more detail in DOS/VS System Control
Statements.

An example of the 'use of the ACTION FI statement follows. Assume,
that three virtual partitions are allocated: background, foreground-two, and
foreground-one. If you are executing the linkage editor in the background,
the statement PHA~E PROGI,S causes PROGI ,to have its origin at the
beginning of the virtual background partition (plus the BO save area and
the BG label area). The sequence

ACTION FI
.PHASE PROGI,S

causes PROGI to have its origin at the beginning of thevirtua'
foreground-one partition (plus the length of the FI save atea and the FI,
label area. The length of the FI label area is determined from the LBLTYP
statement, if any, supplied in the partition in which the linkage editor is

, runnIng.) ,

Chapter 6: Linking Programs 6.13

Link";editing for Exeeudoo in. a Real Partition

If you specify an absolute address in the origin operand. of the PHASE
statement, the phase is link-edited to be loaded at this specific address. If

. you specify an origin that is not an absolute address, the phase is
link-edited to be loaded in the virtual partition where the linkage editor
function occurs, regardless of whether the linkage editor is running in real
or virtual mode.

To link-edit a program that will ~xecute in a real partition, you can:

• Link-edit the· program in such a way that it can be relocated to the real
partition at the time the program is loaded. Relocatableprograms are
loaded by the relocating loader in a real partition if you spedfy REAL
in the EXEC job control statement. (See the section· Link-editing for
Execution at Any Address.)

Write the program to be self-relocating if the supervisor does not
contain the relocating loader. (See the section Using Self-Relocating
. Programs.)

Link-edit the program with a PHASE statement that contains an .
absolute address within a real partition. (See the section Link-editing
for Execution at an Absolute Ad!'ress.)

. Unk-e~diting for. Execudon at an Absolute Address

·Using Self-Relocadng Pr.-wns

If· you specify an absolute address in the PHASE statement (other than
zero), your program can be loaded only at this address at execution time.
Not only must the address you specified be within the address range of

. your installation's virtual storage, but also the entire program must pe
included within the boundaries of the paitition where you reque:st the
execution.

You should identify self -relocating programs by a PHASE statement with
an origin point of +0:

PHASE PROGA,+O

The linkage editor assumes that the program is loaded at location zero, and
computes all addresses accordingly J The iob control EXEC function
recognizes a zero phase address- and adjusts the origin address to
compensate for the current partition boundary save area and label· area. It
then gives control to the updated entry address of the phase. The
programming techniques used in writing self-relocating programs, which are
always in assembler language, are described in DOS / VS Supervisor and

. I/O Macros.

Bunding Phases from Object Modules

You indicate which object modules or parts of object modules are to be
included in a phase by specifying the INCLUDE statement. The format of
the INCLUDE statement indicates the location of the modules:. The object

6.14 DOS/VS System Management Guide
I

hlcluding Modules from SYSIPf

modules can either be on the card reader, tape unit, or disk device assigned
to SYSIPT, or in the relocatable library, or on the disk device assigned to
SYSLNK. The modules are extracted in the same order as the INCLUDE
statements are issued.

If the object modules you want to include in a phase are on tht SYSIPT
file, specify the INCLUDE statement without operands. lob control copies
the data from SYSIPT until it encounters end-of -data (/.).

Including Modules from the Relocatable Library

You may want to include in a phase object modules or parts of an object
module that are cataloged in the relocatabJe library. To include an entire
module, specify the module name in the INCLUDE statement. To include
part of a 'moduie, specify the name of the module followed by the name of
the control section(s) in that module you wish included.

Including Parts of Modules from SYSLNK

You do not need an INCLUDE statement unless you want to change the
sequence of control sections or to extract ~ertain control sections from an
object module. For either of these cases, specify the names of the control
sections in an INCLUDE statement.

Using the AUTO LINK Feature

For each 'phase the automatic library look-up feature (referred to as
AUTOLINK) collects any unresolved external references and attempts to
resolve them. An unresolved external reference is an ER item in the' control
. dictionary that has not been matched with an entry point. AUTOLINK
searches the private relocatable directory (if assigned). and then the system
relocatable directory until a cataloged module with the same name as the.
unresolved external reference is found (or the end of the directory is
reached). If found, the module is included in the phase (au~olinked). This
retrieved module must have an entry point matching the external reference
in order to resolve its a,ddress.

Chapter 6: Linking Programs 6.15

Studying the following examples may help you to understand how the
AUTOLINK feature works.

Assume that the relocatable library contains the following:

Module Name Entry Names 'External References
A A,B,C
D
E
F

Examples:

A
B
A,C

In your linkage editor input stream you specify INCLUDE D. A will be
autolinked(included with module D) because the external reference A is
also a module name in the relocatable library.

If you specify INCLUDE E, then A will not be autolinked because the
external reference B does not relate to a module name. In this case, you
must also specify ,INCLUDE A, so that the external reference 8, can be
resolved. No autolink is required. '

If you specify INCLUDE D and INCLUDE E, then A will be autolinked
by module D and the external reference B in module E can then be '
resolved.

If you specify INCLUDE F, then module A will be autolinked by the
reference to A, and the reference toC will' also be resolved.

SuppreS!iing the AUTOLINK Feature

You can sUppress the AUTOLINK feature i~ two ways:

By specifying NOAUTO in a PHASE statement, AUTOLINK is
canceled for that phase only.

• By specifying NOAUTO in the ACTION statement, AUTOLINK is
canceled for this execution of the linkage editor. By writing a weak
external referen'ce (WXTRN), AUTOLINK is canceled for one symbol.

You can do this in assembler language by specifying for example::

DC A(LABEL)
WXTRN LABEL

or

DC V(LABEL)
WXTRN LABEL

For more information, refer to the assembler language publications.

, NO AUTO can be used to force a CSECT into a, specific phase within
, an overlay structure. For example, four phases of a program have a V -type
address constant called PETE, but in the Qverlay structure 'you want the
coding for PETE included' only in the third phase.

PHASE'PROGA,*,NOAUTO
PHASE PROGB,*,NOAUTO
PHASE PROGC,* '
PHASE Pl{OGD,*,NOAUTO

cause PETE to be included in PROGC only.

6.16 DOS/VS System Ma~agement, Guide

Rei!ie"ing Storage for Labels

If your program uses standard tape files or nonsequential DASD files
(direct access, VSAM, indexed sequential, or DTFPH with all packs
rriounted); you must ensure that storage is reserved for the tape and disk·
labels. These labels are brought into the label save area of the partition
containing your program when the file is opened.

You reserve a label save· area by specifying the LBLTYP job control
statement The amount of storage you specify to be reserved must be large
enough to contain all the lab,els of the file with the most extents processed
by the program. The operand specified in the LBL TYP statement for tape
files is different from that for DASD file~. For their formats, refer to
DOS / VS System Control Statements.

The LBL TYP statement is fo be submitted immediately before the
/ / EXEC LNKEDT statement.. If your program is self-relocatiilg, ho'wever,
submit the LBL TYP statement immediately before the / / EXEC statement
for your program.

The LBL TYP statement is not required if only unlabeled tape files or
sequential DASD files are to be processed. For more informatioQ on file
organizations, refer to the DOS/VS Data Ma~agemeflt "'Guide. For
information on file labeling, refer to DOS/VS DASD Labels, or DOS/VS
Tape Labels.

Spedfying Ljinkage Editor Aids for Problem Determination or Prevention

. You can specify that the linkage editor aid you in avoiding certain problems·
in your programs or determining what they are. The actions discussed below
are CLEAR, MAP, and CANCEL, which may be specified as operands of
the ACTION statement.

Clealring the Ullused Portion of the Core Image· Li~ary

Obtailning a Storage Map

If you used DS (define storage) statements in your source module, it may
·be advantageous to fill these areas with binary zeros when the program is
link-edited. This eliminates the risk that residual data from a previously
linked program be loaded with your program at executiQn lime. Such
irrelevant data might disrupt your program considerably. By specifyfng
CLEAR in the ACTION statement, you request that the unused portion of
the core image library is to be set to binary ze~os.

Because CLEAR is a time-consuming function, you might want to use
DC statements instead of DS ·statements when designing future programs.

You can obtain a linkage editor storage map and a listing of linkage editor
error diagnostics, which assist you in determining the reasons for particular
errors in your program. If SYSLST is assigned, ACTION MAP is the

Chapter 6: Linking Programs- 6.17

Tennimlting an Erroneous Job

default. You can specify ACTION NOMAPifyou are not interested in this
service of the linkage editor. .

The storage map contains such information as:

•
•

The lowest and highest addresses that each phase occupies in the
partition for which it is link-edited.

The starting disk address of the phase in the core image library .

The names of ali control sections and entry points, their load addresses
and relocation factors.

The names of all external references that are unresolved.

An indication whether the phase is relocatable, non-relocatable,
self-relocating, or SVA eligible.

The error diagnostics warn you, for example, if:

The ROOT phase has been overlaid.

A control section has a length of zero.

An address constant could not be resolved.

A sample storage map, together with a description of how to interpret it, is
included in DOS/VS Serviceability Aids and Debugging Procedures.

If errors are present in the input to the linkage editor, the output of the
linkage editor will most likely also be erroneous. If you specify CANCEL in
the ACTION statement, the entire job is terminated when the tYlPe of
errors represented by messages 2 t 001 through 2 t 701 occur. Refer to these
messages in DOS/VS Messages ..

, Designing an Overlay Program

The nature of virtual storage makes it unnecessary to write programs in
an overlay structure, because virtual partitions can be allocated to
accommodate very large programs ..

Organil~ng Control Sections· in an Overlay Tree Structure

Overlay programs consist of control sections organized in an overlay tree
structure. A tree is a graphic representation that shows how phases use
storage at different times. An example of an overlay tree structure is shown
in Figure 6.5. This structure does not imply the order of execution,
although the root phase is normally the first to receive control.

f>. t 8 DOS/VS System Management Guide

Root
Pha,.l
(60001

• : A
I :--

Phase 2 : Pha .. 7
(~~ ________ 1.!!. ___ ~ ___ (~1

I C I J
I I

~- :
~=~ : =~ Phas.8:-~ Pha .. 9 ,. _____ ..1.e....;. __ (3000I ..i!< (80001

I Ph ... 5 ~F_ Pho .. 6':---- ---i
: (7OOOI.LG (30001 I LIM
IE ,..--- ---'. :.._ :
l I I I .. __ I I .-.. _- .

I
IH
I

L. .•

I
I
iN L __

Figure 6.S. Overlay Tree 'Structure

The letters A through N represent control sections. which arc organized
to form nine p.hases in one program. The root phase resides in storage '
during Ihe entire execution of the program. The remaining phases can
overlay each other during execution.

You must guarantee a partition size that is equal to the longest
combination of phases that can possibly reside in storage together.
namely. phases I. 2. 4,'and S. which total 21,000 bytes. If the program
had not been organized in an overlay structure • .it would have required
an address space of 46.000 bytes. /

The manner in which control should pass between control sections is
tliscussed in the section Using FETCH and LOAD Macros.

Relating Control Sections to PhaSes

After having organized the control sections of your program into an overlay
tree structure, you must prepare a corresponding set of linkage editor
control statements. If you first want to lest the program, specify
/ / OPTION LINK. When you are satisfied that the overlay structure you
designed is a work,able combination, specify / / OPTION CATAL to
catalog a permanent copy of the program in the core image library.

Link-edit your complete overlay, program in a single job step, and
conversely, do not include in this job step' any phases that are not related to
the overlay. Otherwise, the linkage editor may not be able to resolve
external references correctly. .

The PHASE and INCLUDE statements you prepare are critical to .
ensure the overlay tree structure you designed. Figure 6.6 is an example of
the job stream that ensures the overlay tree structure shown in Figure 6.5.

Chapter 6: Linking Programs 6.19

II JOB OVERLAY
II OPTION CATAL

1*

PHASE PHASE1,ROOT
INCLUDE , (CSEC!A,CSECTB)
PHASE PHASE~,*
INCLUDE , (CSECTC,CSECTD)
PHASE PHASE3,*
INCLUDE ,(CSECTE)
PHASE PHASE4,PHASE3
INCLUDE , (CSECTF,CSECTG)
PHASE· . PHASE5, *
INCLUDE ,(CSECTH)
PHASE PHASE6,PHASE5
INCLUDE ,(CSECTI)
PHASE PHASE7,PHASE2
INCLUDE , (CSECTJ,CSECTK)
~HASE PHASES,*'
INtLUDE ,(CSECTL)
PHASE PHASE9,PHASE8
iNCLUDE ,(CSECTM;CSECTN)
INCLUDE

~HASEl stays in storage during
execution'of the entire program.
PHASE2 ~s to be lo~ded
immediatelybehind.PHASE1.
Since PHASE3 needs PHASE2, PHASE) is

. not allowed to overlay PHASE2.
~HASE4 will occupy the same
storage locations as PHASE3.
PHASE5 will be loaded
immediately behind PHASE4.
PHASE6 will be loaded at the
same address as PHASE5.
PHASE7 will be la.aded at the
end of the root phase.
PHASE8 will be loaded at the
end of PHASE7.
PHASE9 will overlay
PHASE8.

(Object modules containing CSECTs A through N)

II LBLTYP
II EXEC LNKEDT
1&

Figure 6.6. Link-editing an Overlay Program

Using FI~TCH and LOAD Macros

During execution, an overlay program communicates with the supervisor to
request that a subsequent phase be brought into the partition. You include
FETCH or LOAD macros within your phases forthis purpose.

Use a LOAD macro in a phase that i~ to remain in control after the
requested phase is brought into the partition. A phase loaded by the LOAD
macro is relocated (if necessary) so that the displacement between the start
of the partition and the beginning of the phase is the same as at link-edit
time. By using a LOAD macro with an explicit address,youcan violate the
overlay tree structure you defined. When a re~ocatable phase is load~d, all
address constants will be relocated with the same relocation factor as
computed for that phase. This means that address constants referring to
entry. points in other phases of this sa~e relocatable program will be'
incorrect.

Use a FETCH macro if you want the requested phase to gain control
.immediately after it is brought into the partition. If a phase load(~d by the
FETCH macro is relocatable, it will be relocated if necessary. You cannot
issue a FETCH macro for a self-relocating phase. .

Parameters in FETCH and LOAD allow these macros to use the SDL
and to execute code from the SV A, thereby reducing fetching and loading
time. The benefits that stem from ~sing' the SOL apply to phases that are
used frequently throughout the day by many programs in an installation.
For a phase that is used heavily at one time only, however, it is preferable
to use the GENL macro rather than to include the phase in the SOL. The

6.20 DOS/VS System Management Guide

GENL macro plac~s the directory entry of a phase in stor~ge, where it can
~ accessed rapidly by FETCH and LOAD for \}se by the program that
requires it. ' ,

DOS/VS Supervisor 'and I/O Macros contains details on the format
of the FETCH, LOAD and GENL macros.

SUJlnmary of Control Statements ,Related to Link-Editing

Job Control Statements

OPTION

The following sections summarize the linkage editor control statements and
the job control statements that are associated with a linkage editor run.
This summary is provided to make it easier for you when referencing the
formats of the statements in, DOS/V$ System Control Statements.

The' job control statements that relate to a linkage editor job stream and
that are summarized below are: '

• II OPTION

• II LBLTYP

CATAL
LINK

To make use of the linkage editor,' you must specify either the LINK or
CAr AL operarids in the, OPTION job control statement. These options set
switches in the supervisor that are tested when, the linkage editor program is

, requested. Linkage' editor c()ntrol statements are accepted only after one of'
these options has been specified. SYSLNK must be assigned; otherwise, the
LINK and CAT AL options are ignored (switches are not set).

By specifying the LINK option (/ / OPTION LINK), you indicate that
the output of the language translators is to be written on the SYSLNK file.
Because SYSLNK is the required input file for each linkage' editor
operation, the CATALoption (/ / OPTION CAT ALl alsp sets th~ LINK
switch. The differences between LINK and CATAL are describt'd below.

The CAT AL option' causes a phase to be entered permanently into the
core image library. The object module is Iink-edited'and placed in the first
available area of the core image library (immediately after the last cataloged
phase). An entry identifying the name of the phase, load. address, entry
point, and starting disk address of the phase in the core -image library is
then inserted in alphameric sequence in the core image directory for
cataloged phases. If the, same phase name was previously cataloged, the new
directory entry replaces the old. A status report of the core image library ,
and directory is then, printed. ' , '

The LINK option causes a phase to be entered temporarily in the core
image library inorder to be executed immediately; that is, for an assemble,
link-edit, and execute' openltion, or a link-edit and execute operation. The
linkage editor prepares the phase just as described for the ,CAT AL option',
except that an entry in the core image directory is made for Iin{{ed phases ..
When you specify the EXEC state'ment ,~ithout the program name operand
th~ phase is executed immediately. The ,space taken up by the phase in' the

Chapter 6: Linking Programs 6.21

LBLlYP

core image library is overwritten by the next phase cataloged or linked to
the core image library. No status report is printed.

The LBL TYP job control statement reServes a label save area for tape
labels or DASD labels. You Rlust specify the. LBL TYP statement if your.
program uses standard tape files or nonsequential DASD files.

For a non-self-relocating program, you must submit the LBLTYP
, statement immediately before the· / / EXEC LNKEDT statement For a

self-relocating program, you must submit this card immediately before the
/ / EXEC statement for the program.

cLinklll~e Editor Control Statements

ACTION

The linkage .editor control state,ments that are summarized below are:

• ACTION
• PHASE

INCLUDE
ENTRY. '

ACTION statements, if used, must be the first statemFnts in the linkage
editor input stream. An ACTION statement is effective only for this linkage
editor execution.

The ACTION statement can indicate that the linkage editor do any or
all of the following:

• Set the unused portion of the core image 1ibrary to binary Z(~ros
(CLEAR).

• Write a storage map and error diagnostics on SYSLST (MAP), or not
(NOMAP).

• Suppress the automatic library lookup feature for this entire linkage
editor run (NOAUTO).

Terminate the job if errors are present in the linkage editor input
(CANCEL).

Link-edit the program to run in a specific virtual partition (BO, FI, F2,
F3, or F4) ..

. Produce a relocatable program if possible (REL)· or do not produce a
relocatable. program (NOREL).

6.22 DOS/VS System Management Guide

PHASE

INCLUDE

ENTRY

The PHASE statement indicates the beginning of a phase by providing the
linkage editor with the phase name ~nd the storage address (origin point)
where the phase is to be loaded. The origin point defines whether the phase
is to be relocatable, self-relocating,' or non-relocatable. The PHASE
statement may also indicate that the automatic library lookup feature
(AUTOLINK) be canceled for this phase only, that the phase is considered
to be SV A eligible, or that the load point of the phase be aligned ona page
boundary.

The first (or only) object module in the input for the linka.ge editor
should include a PHASE statement before the first ESD item. A PHASE
statement must be supplied if you specify the CATAL option. A PHASE
statement is not required if you specify the LINK option.

The INCLUDE statement specifies that af.1 object module is to be included
for link-editing. The format of the statement indicates where the object
module is located and whether all or parts of if are to be included. The
object module may be on SYSIPT or SYSLNK, or cataloged in the
:e!ocatable library. . ,

The ENTRY statement signals the end of the input to the linkage editor. If
the entry point operand is used it also indicates a transfer :;tddress for the
first phase (thename of a control section or label definition). In case of a
label definition, it must occur in an ENTR Y sou_r~e statement. '

Chapter 6: Linking Programs 6.23

Examples of Linkage Editor Applications

. The linkage editor examples on the fqllowing pages illustrate the use of and
relation between the control statements just discussed .. After studying these
ex~mples, you should be able to set up a link-edit job for your own
purposes.

Catalog to Core Image Library Example

II JOB CATALCIL
_* LINK EDIT AND CATALOG TO CORE IMAGE LIBRARY
* SINGLE PHASE, ELIGIBLE FOR LOADING INTO SHARED
* VIRTUAL AREA, MULTIPLE OBJECT MODULES,
* MIXTURE OF CATALOGED AND UNCATALOGED OBJECT MODULE~
* LABELED TAPE FILES AND SEQUENTIAL DASD FILES TO
* BE PROCESSED

1 II ASSGN SYSLNK,X'190'
2 II OPTION CATAL
3 PHASE PROGB,*,SVA
4 INCLUDE

1*

1*

Object deck

INCLUDE SUBRX
INCLUDE SUBRY
INCLUDE
RelocatabLe object deck

5 II EXEC LNKED~
6 If,

Explanation for CatalOg to Core Image Library. This example illustrates the
cataloging of a single phase composed of' multiple object modules. These
modules are located in the input stream and the relocmable library. Labeled
tape files and sequential DASD files' are processed when the phase: is
executed. The program is to be executed in a foreground partition. The
linkage editor run occurs in the virtual background partition.

Statement J: The SYSLNK assignment indicates the relationship of
ASSGN statements to the OPTION statement. ASSG-N statements are not
required if they are standard assignments.

Statement 2: The OPTION CATAL statement sets the LINK switch, as
well as the CATAL switch. If SYSLNK is not assigned, the statement is
ignored. The linkage editor control statements are not accepted _unless the
OPTION statement is processed. Link-editing and cataloging to the core
~mage library will occur.

Statement 3: Only one PHASE is constructed. It is cataloged to the core
image library and retrieved by the name PROGB. Because there is only on,e
phase, the origin point * indicates that this phase originates at th(~ starting
address of the virtual partition plus the length of the partition save area, the
label save area (if any), and the COMMON pOol (if any). The SV A
operand indicates that the phase should -be considered SV A-eligible. If the
phase name PROGB is already entered as SVA-eligible in the system

-directory list, PROGB is loaded into the shared virtual area imm(:diately

6.24 DOS/YS System Management Guide

after it is catalo.ged into.. the system co.re image library. (This co.uld· no.t
o.ccur had PROGB been link-edited with OPTION LINK.)

Statement 4: Fo.ur modules make up this phase. The first and last are no.t
catalo.ged in the relo.catable library; therefo.re the o.bject decks must be o.n
SYSIPT, and each must be fo.llo.wed by the end-o.f-data reco.rd (/*).
SUBRX and SUBR Yare catalo.ged previo.usly to. the relo.~atable library by
tho.se names. Jo.b co.ntrol puts the uncatalo.ged mo.dules' o.n SYSLNK in
place o.f their INCLUDE statements. Jo.b co.ntrol co.pies o.nto. SYSLNK the
INCLUDE statements fo.r the catalo.ged mo.dules.

Statement 5: The EXEC LNKEDT statement causes the system Io.ader to.
bring in the linkage edito.r pro.gram. SYSLNK no.w beco.mes· input to. the
linkage edito.r. It co.ntains the fo.llo.wing:

PHASE PROGB,F+32768
First uncataloged relocatable deck
INCLUDE SUBHX
INCLUDE SUBHY
Second uncataloged relocatable deck
ENTRY

The mo.dules are link-edited into. o.ne phase so. that they o.ccupy co.ntiguo.us
addresses in the sequence)n which they appear in the input stream. When
the linkage editing is completed, catalo.ging to. the core image library o.ccurs
because o.f the CAT AL o.ptio.n.

The co.re image directo.ry is checked to. make sure the new phase entry
fits. If no.t, the jo.b is canceled. The directo.ry fo.r catalo.ged phases is .
scanned fo.r any match to. a phase being catalo.ged. If there is a match, the
earlier directo.ry entry is replaced by the new entry. The descripto.r entry is
updated to. reflect the changes. Jo.b co.ntrol is brought into. the virtual
backgro.und partitio.n. .

Statement 6: Because the CAT AL o.ptio.n was specified, a status repo.rt is
printed to. reflect the usage and available space in the co.re image library.
(This do.es no.t o.ccur in a LINK situatio.n.) The / & resets the CATAL
o.ption, that is, it turns o.ff the LIN K and CAT AL switches.

The example can be mo.dified to. illustrate a catalo.g-and-execute
o.peratio.n by inserting the fo.llo.wing 'statements between the EXEC
LNKEDT and / & statements:

1. Any jo.b co.ntrol statements required fo.r execution of PROGB.

2. A!! EXEC ,statement

3. Any card reader input fo.r PROGB.

Chapter 6: Linking Progranis 6.25

Catalog to Private Core Image Library Example

II JOB CATLCIL
* LINK EDIT AND CATALOG TO PRIVATE CORE IMAGE LIBRARY
* LINKAGE EDITOR EXECUTING IN FOREGROUND
* SINGLE PHASE, ALIGNED ON A PAGE BOUNDARY MULTIPLE
* OBJECT MODULES, FOREGROUND PROGRAM
* MIXTURE OF CATALOGED AND UNCATALOGED OB~ECT MODULES .
* LABELED TAPE FILES AND SEQUENTIAL DASD FILES TO
* BE PROCESSED

1 ASSGN SYSCLB,X'130'
2 II ASSGN SYSLNK,X'190'
3 II OPTION CATAL
4 PHASE PROGB,S,PBDY
5 INCLUDE

1*

1*

object deck

INCLUDE SUBRX
INCLUDE SUBRY
INCLUDE
Relocatable object deck

6 II LBLTYP TAPE
7 II EXEC LNKEDT
8 If,

Explanation for Catalog to Private Core Image Library. This ex.ample
illustrates the execution of the linkage editor in a foreground partition;
therefore the phase is cataloged to a private core image library. This
function is possible only in a system supporting multiple-partitions and
private core image library options. The phase being cataloged is the same as
that in the previous example where the linkage editor· was executled in the
background.

Statement J: The assignment of a private library is accomplished by the
ASSGN SYSCLB command. The label for SYSCLB must be stored on
PARSTD or STDLABEL cylinder, or, if the DLBL and EXTENT
statements are included in the job stream, they must precede the ASSGN
SYSCLB command.

Statement 2: The SYSLNK assignment indicates the relationshiJ) of
ASSGN statements to the OPTION st~tement. ASSGN statements are not
required if they are ·standard assignments.

Statement 3: The OPTION CAT AL statement sets the LINK switches, as
well as a CAT AL switch. If SYSLNK is not assigned, the statement is
ignored. The linkage editor control statements are not accepted unless the
OPTION statement is processed. Linkage editing and cataloging to the
private core image library will occur.

Statement 4: Only one PHASE is constructed. It is cataloged to the private
core image library and retrieved by the name PROGB. An origin point of S
origins PROGB at the starting address of the foreground partition, plus the
length of the save area and the label save area (if any) and the COMMON
pool (if any). PBDY indicates that the load point of the phase is to be
aligned on a page boundary.

6.26 DOS/VS System Management Guide

Statement 5: Four modules make up this phase. The first and last are not
cataloged in the relocatable library; therefore, the object decks must be on
SYSIPT, andeach must be followed by the end-of-data record U*).
SUBRX and SUBR Yare cataloged previously to the system relocatable
library by those names. Job control puts the 'ut-Jcataloged modules on
SYSLNK in place of their INCLUDE statements. Job control copies onto
SYSLNK the INCLUDE statements for the cataloged modules.

Statement 6: The LBL TYP statement has the operand TAPE, rather than
NSD, because labeled tapes and sequential DASD files are pro~ssed when I

the phase is executed. 80 bytes are reserved ahead of the actual phase for
label information. LBL TYP NSD is also satisfactory because it generates a
minimum of 104 bytes and tapes require only 80 ..

Statement 7: The EXEC LNKEDT statement causes the system'loader to
bring in the linkage editor program. SYSLNK now 'becomes input to the
linkage editor. It contains the following:

PHASE,PROGB,S
First uncataloged relocatable deck
INCLUDE SUBRX
INCLUDE SUBRY
Second uncataloged relocatable deck
ENTRY

The modules are link-edit~d so that they occupy c·ontiguous areas in storage
in the sequence in which they appear in the input stream. When link-editing
is completed, cataloging to the private core image library occurs. because of
the CA TAL optio·n. The private core image directory i~ checked to make
sure the new phase entry fits. If not, the job is canceled. The directory is .
scanned for· any match to a phase being cataloged. If a match is found, the
earlier phase directory entry is replaced. The system library descriptor
record is updated to reflect the changes. Job control is brought into this
virtual foreground partition.

Statement 8: Because CATAL was specified, a status report is printed to
reflect the usage and the available space in the private core image library
and directory. (This does not occur in a LINK situation.) 1& resets the
CA T AL option, that is, it turns off the LINK and CAT AL switches.

The example can be modified to illustrate a catalog-and-execute
operation by inserting the following statements between the EXEC
LNKEDT and / & statements:

1. Any job control statements required for execution ~f PROGB i

2. A / / EXEC statement

3. Any card reader input for PROGB.

Chapter 6: Linking' Programs. 6.27

Link-Edit and Execute Example

II JOB LINKEXEC
* LINK EDIT AND EXECUTE SINGLE PHASE, SINGLE OBJECT
* MODULE NOT CATALOGED, BACKGROUND PROGRAM
* NONSEQUENTIAL DASD & LABELED TAPE FILES TO
* BE PROCESSED

1 II ASSGN SYSLNK,X'190'
2 II OPTION LINK
3 PHASE PROGA,*
4 INCLUDE

object deck
1*

5 II LBLTYP NSD(2)
6 II EXEC LNKEDT

7 Any job control statements required for execution
such as ASSGN or label statements

8 II EXEC

1*
1&

Input Data as required

* 1 TO CATALOG AND EXECUTE, CHANGE STATEMENT 2
* TO II OPTION CATAL .
* 2 'I'Q CATALOG ONLY, CHANGE STATEMENT 2 TO
* II OPTION CATAL AND REMOVE ALL STATEMENTS
* FOLLOWING LNKEDT EXCEPT 1&
* 3 TO USE MODULE FROM RELOCATABLE LIBRARY,
* CHANGE STATEMENT 4 TO INCLUDE MODULES AND
* REMOVE ALL STATEMENTS UP TO II LBLTYP AND
* IF PHASE CARD IS IN'RELOCATABLE LIBRARY,
* ALSO REMOVE STATEMENT 3.

Explanation for Link-edit and Execute. This example illustrates the basic
concept of link-editing and executing by using a single phase that is
constructed fFOm a single object module contained in punched cards.
Labeled tapc and nonsequential DASD files are to be processed when the
phase is executed. No more than two extents are used by any DASD file.

Statement I: No assignments are necessary, because the system units
required for link-editing are in the assumed configuration. However, ail
ASSGN for SYSLNK is included to illustrate its position relative to the
OPTION statement in case assignment is required.

Statement 2: The OPTION LINK statement sets switches to indicate a
link-edit operation is to be performed. If SYSLNK has not been assigned,
the statement is ignored. Linkage editor control sta!ements are not accepted
unless the OPTION statement is processed. Because optior. ;~ LINK, not
CAT AL, only link-editing is performed; permanent cataloging to the core
i"1age library does not occur.

Statement 3,' The PHASE statement is copied on SYSLNK be,cause the
LINK switch is on. The first operand is checked; the following operands are
not examined until SYSLNK is used as input to the linkage editor program.

When the PHASE statement is processed by the linkage editor, only
one phase is constructed, because only one PHASE statement is submitted
for the entire run. The name of this phase is PROGA, as specified in the

6.28 DOS/VS System Management Guide

first operand. The second operand indicates the origin point for the phase.
Because an ~ has been used, the phase begins in Jhe next storage location
available, wi'th forced doubleword alignment. Because this is the' first and
only phase, it is located at the beginning of the virtual partition plus the
length. of the save area and label area (reserved by LBL TYP) plus the
length of any area assigned to the COM~ON pool (as designated by a CM
entry in the object module).

A displacement, either plus or minus, may be used. with the *, such as
* + 1024. This causes the origin point of the phase to be set relative' to t~e *
by the amount of the displacement. This displacement can be expressed· as:

X'hhhhhh' -- I to 6 hexadecimal digits
dddddddd -- 1 to 8 decimal digits
nK -- where K = ·1024.

* +1 024 uSeS the second format and adds 1024 'bytes to the origin location.
+IK or +X'400'gives the same result as,+1024.

Statement, 4: . The INCLUDE statement has no operands so the system
reads the records from SYSIPT and writes them on SYSLNK until SYSIPT
has an end-or .. ,data (/*) record. The data on SYSIPT is expected to be the
object module in card image format that is, used in this linkage editor
operation.

Statement 5: The LBL TYP statement causes a computation of the number
of bytes that' are required for label data in the pro1Vam to be link-edited. In
this example, 124 bytes are reserved (84 + [2x2e]).,'The calculation is
saved by job control and passed on first to the linkage editor and later to
LIOCS. '

Statement 6: On encountering the EXEC LNKEDT statement, job control
writes an ENTRY statement with no operand on SYSLNK and causes the
system loader to bring in the linkage editor {lrogram.

Using the data just placed on SYSLNK as input, the linkage editor
develops executable code. The output is placed in the next available space
of the core image library (immediately after the last cataloged phase). This
is true regardless of whether the program is cataloged permanently
(OPTION CATAL) or temporarily (OPTION LINK). Cataloging
permanently causes the· updating of the . library descriptor entry in the core
image, directory to'reflect a new ending point for the library. If OPTION
LINK is specified, however, the next program that is link-edited overlays it.
For this 'reason, a program that is ca'taloged temporarily is said to be placed
in the temporary area of the core image library. Such a program must be
link-edited each time it is used. No ACTION options are specified.
Therefore, in resolving the external references, the system makes use of the
AUTOLINK feature. Error diagnostics and a storage map are written on
SYSLST, assuming that SYSLST is assigned and ACTION NOMAP was

, not specified.

Statement 7: Because the program is not cataloged, it must be executed
immediately. Ariy pertinent job control statements are entered at this point.

Statement 8: An EXEC statement with no program name operand
indicates that the phase to be executed was just link-edited. Therefore, no

'CharIer 6: Linking Programs 6.29

, search of the core image directory for linked phases is required, and the
system ,loader brings the program into storage from the temporary area and
transfers control to its entry point. Because the automatic ENTRY
statement is in effect for this example, the entry point is either the address
specified in the END record, or the phase load address if the END address
is omitted.

This example can be modified to illustrate the following:

1. Catalog and execute. To cause this 'phase to be cataloged permanently,
change the OPTION (statement 2) from LINK to CATAL.

2. Catalog only. To catalog only, change the OPTION (statement 2)
from LINK to CAT AL and remove all statements following the EXEC
LNKEDT (statement 6) up to the / & statement.

3. Include object module from relocatable library. The name of the
object module in the relocatable library must be added to the
INCLUDE statement. If the name is RELOCA, the statement becomes
INCLUDE RELOCA. The relocatable object deck and /* statement
are removed. This form of the INCLUDE statement is wriUen on
SYSLNK when it is read by job control.- The linkage editor re(rieves ,
the object module when it encounters the INCLUDE statement because
it uses SYSLNK for input.

Comp1ile and Execute Example

II JOB COMPEXEC
* COMPILE OR ASSEMBLE, LINK EDIT AND EXECUTE
* ·SINGLE PHASE, MULTIPLE OBJECT MODULES, BACKGROUND
* PROGRAM SEQUENCIAL DASD FILES TO BE PROCESSED
* INPUT TO LINKAGE EDITOR FROM LANGUAGE 'l'RANSLATOR,
* RELOCATABLE LIBRARY AND SYSIPT

1 II ASSGN SYSLNK,X'190'
2 I I OPTION, Ll NK
3 PHASE PROGA,S
4 II EXEC FCOBOL

COBOL source statements
, 1*

INCLUDE SUBRX
5 INCLUDE

object module
1*

6 ENTRY BE~IN1
II EXEC LNKEDT

7 Any job control s"tatements required for' PROGA
execution

II EXEC

/*
If,

Any input data required for Pru~A execution

Explanation for Compile and Execute. The language translators provide the
option of placing their output on SYSLNK. Because the linkage editor uses
SYSLNK for input, a program can be assembled or compiled, link-edited
and executed. This operation is illustrated by this example.

All three sources of object module input to the linkage editor are used:
SYSIPT, the relocatable' library, and the output from a language translator.
It is assumed that' the phase is executed in the background partition, and
that only sequential DASD files or unlabeled tape files are processed.

6.30 DOS/VS System Management Guide

Statement I: The SYSLNK assignment is given to illustrate the relationship
of ASSGN statements to the OPTION statement. ASSGN statements are
not required if they are standard assignments.

"Statement 2: Because SYSLNK is assigned, the OPTION LINK statement
sets the link indicator switches.

Statement 3: The PHASE statement mUSt always precede the relocatable
modules to which it applies; therefore, it is written on SYSLNK first for
later use by the linkage editor. S is the origin point, that is, the phase
originates with the first doubleword at the end" of" the supervisor plus the
length of the partition save area plus the length of the area assigned to the
COMMON pool (if any). This gives the same effect as * gives for a single
phase or the first phase. As with the *, the S may be 'used with a relocation
factor, for example, S+ 1024. The factor must always be positive, because a
negative factor could cause the origin point to overlay the supervisor.

Statement 4: The appropriate language translator is called (in this case,
CQBOL). The normal rules for compiling are followed; the source deck
must be on the unit assigned to SYSIPT and the /* defines the end of the
source data. Because the LINK switches are set, the output of the language
translator is written on SYSLNK. Except for PL/I, FORTRAN (F), ANS
or VS COBOL, and the assembler .. the DECK option is ignored when
SYSLNK is used.

Statement 5: The INCLUDE SUBRX statement is written on SYSLNK.
The linkage editor retrieves the named module from the relocatable library.
Because the operand is blank, the next INCLUDE statement signifies that
the relocatable module is on SYSI PT. The data 'on SYSI PT is copied on
SYSLNK until the /* statement.

Statement 6: The ENTRY statement is written on SYSLNK as the last
linkage editor control statement. The symbol BEGIN 1 must be the name of
a CSECT or a label ~efinition (which occurs in an ENTRY source
statemenOdefined in the first or only phase. The address of BEGIN1

, becomes" the transfer address for the first or only" phase of the program.
The ENTRY" is used to provide a specific entry point rather than to use the
point specified in the END record or the load address of the phase.

Statement 7: No LBL TYP statement' is required, because only sequential
DASD files are to be processed. The rest of the statements follow the same
pattern as discussed in the Link-Edit and Execute example. The input from,
SYSLNK to tht.~ "linkage editor is:

PHASE PROGA,S
Relocatablc module produced by COBOL compilation
INCLUDE SUBRX
Relocatable modble from SYSIPT
ENTRY BEGINl

If certaih types of errors are detected during compilation of a source
program, the LINK option is suppressed. Under these circumstances the
EXEC LNKEDT and EXEC statements are ignored in this example. This
LINK option suppression should be kept in mind if a series of programs is
to be compiled and cataloged as a single job. Failure of one job step would
cause failure of all succeeding steps. Remember that an OPTION LINK
cannot be given if OPTION CA TAL is in effect. The message
STATEMENT OUT OF SEQUENCE results. Therefore, the CATAL
switch must remain on, and link-editing only cannot be performed.

Chapler 6: Linking Programs ~.31

C.bapter ·l: Using the ubi-aries

After you have planned the size, contents, and location of the libraries (see
Chapter 3: Planning the System), you need to know how to allocate space

. to a library, how to create private libraries and how to alter, copy, and
. inspect the contents of the libraries. All these functions are performed by a
group of library processing programs, collectively referred to as the
librarian.

This chapter describes how you can use the librarian to manage the
system and private libraries in your installation. The chapter is divided into
three major sections:

• The first section looks at the libraries from a system point of view, that
is, it shows how the system stores or retrieves elements into or from the
libraries. Although knowledge of this internal processing is not essential
for working with the libraries, it contributes to a better understanding
of the librarian functions.

The second section introduces the three functional components of the
librarian (maintenance,' copy/reorganize, and service) and gives a
detailed description of their applications to the individual libraries.

The third section describes the creation and use of private libraries.

The information in, this chapter is useful for programmers and perhaps also
for operators.

How the System Accesses the Libraries

DOS/VS supports four types of libraries. Their purpose and contents are
described in Chapter 3: Planning the System and are summarized here:

Core image library -- contains the output from the linkage editor
(executable program phases).

Relocatable library -- contains the output of a language translator
(object modules) which is used as input to the linkage editor.

Source statement library -- contains books (source language
statements, macro definitions, and pre .. edited macro definitions) used as
input to a language translator.

Procedure library -- contains collections of frequently-used control
statements (cataloged procedures). These cataloged procedures can
include job control and linkage editor control statements and (if the
SYSFIL option was specified during supervisor generation) inline
SYSIPT data.

The following describes how these libraries are accessed by the system
when a maintenance function for one of the libraries is requested.

Chapter 7: Using the Lihraries 7.1

The Dire\~ries

Associated wkh each library is a directory that occupies the first track(s)
allocated to the library. For each element in a library, the corresponding
directory contains a unique entry describing the element. A directory entry
contains such information as name, disk address, size, load address (core
image library only), and version number (relocatable, ~ource statement, and
procedure libraries only) of the element. These directory entries am used by
the system to locate and retrieve elements from a library. '

~ ,The begin addresses of the individual system library directories are
stored in a separate directory, the system directory. For the core image
library, the first entry of the core image directory (library descriptor entry)
contains such information as the address of the next available record, the
number of active and deleted blocks, and the amount of space allocated to
the library. For the other libraries, this information is contained in the first
five entries of their own dir~ctories.

A core image library normally contains a large number of program
phases. Thu's, searching for a specific phase can become rather time
consuming. To reduce the search time, the phases in the, core image library
are entered in the corc image directory in alphameric seque,nce,. The highest
phase name on each track of the core image directory is listed in the second '
level directory contained in the supervisor. If the phase cataloged iis eligible
for the shared virtual area (SVA) (that is, its PQ~se name is already entered
with the SVA operand in the system directory list, and it was cataloged in
the core'image library with the SV A operand), the phase is loaded into the
SV A. When requested for ext?cution, such a phase is always avail~lble in
virtual storage.

The organization of the' directories on SYSRES is shown in Figure 7.1.,
A more detailed description of the complete SYSRES organization is given
in Appendix A:, System Layout on Disk.

Naminl~ Elements 'in the Libraries

The choice of a phase name has a bearing on retrieval efficiency and the
subsequent use of the librarian programs. In general, you should not catalog
a phase with the same name as a' phase already residing in the core image
library. When you do, the earlier phase-name entry is deleted from the core
image directory (and, if applicable, the system directory list) and cannot l>e
accessed again.

Job control scans the directory of the appropriate library for all phases
starting with the same four characters as the program name specified in the
EXEC statement. The highest storage address of these phases is stored iit
the communication region of the partition. All phases just link-edited will
be taken if no program name is specified in the EXEC statement.

Phase names may only be formed from the characters 0-9, A-Z, I, #, $,
and @. Otherwise, the phase card is invalid.

7.2 DOS/VS System Management Guide

Core Image Directory Cataloged Phases

Linked Phases

Core Image Library

Relocatable Directory

Relocatable Library

Source Statement Directory

Source Statement Library

Procedure Directory

Procedure Library

... End of SYSRES
extent

Figure 7. t. Organization of the Directories on· SYSRES

There is one other restriction when choosing a phase name. The
linkage editor interprets the phase name "ALL" as invalid because this
would subsequently be misinterpreted by the librarian programs. (This
applies to the control statements DELETC ALL and COPYC ALL.)

In choosing a name for any mUltiphase program, make sure that the
first four characters differ from those of other multi phase program names.
Such unique names simplify the procedures of deleting, displaying,
punching,. merging, and copying the entire program. Figure 7.2 summarizes
the above recommendations.

Chapter 7: Using the Libraries 7.3

Progl

ABCD1
ABCD2
ABCD3
ABCD4

Different names should be given to eacH
multiphase program; each phase of a
multiphase program should be named
with the same first four characters. This

Prog3

ANN11 WXYZ1
ANN12 WXYZ2
ANN13 WXYZ3
ANN14
ANN15

WXYZn

Simplified library maintenance means, for example, that one
simple control statement deletes all phases of Prog1:

(DELETC ABCD.ALL

I f the programs had been named:

Prog1 Prog2 Prog3

ABCD1 ABCD5 ABCD10
ABCD2 ABCD6 ABCD11
ABCD3 ABCD7 ABCD12
ABCD4 ABCD8

ABCD9

ABCDn

the statement required to delete Prog1 would be:

DELETC ABCD 1, ABCD2, ABCD3, ABCD4

Figure 7.2. Naming Multiphase Programs

7.4 DOS/VS System Management Guide

Certain special naming considerations apply de~nding on the . library in
which an element issfored:

· Core Image Library. The names of some IBM programs in the core .
image library begin with $; the IBM programs are normally stored in
the system core image library whe.re they can be retrieved faster.
User-program names should not begin with $, because this is
specifically reserved for certain IBM programs, and user programs

· should be placed in a private core image library if fast retrieval is
· desired. The reason for this is that the system sear~hes the system core
image directory first. for phase names beginning with $ and the private
library directory first for other phase names, provided a private library
is assigned to the p~rtition in question.

• Relocatable Library~ User-written modules should not use names
beginning with I since this is used as the. first letter of the names of
IBM-supplied modules.

Source Statement Library. Initial letters A, B, C, D, E, F, G, H, I, and
Z refer to sublibraries reserved for IBM· components, ~nd you should
avoid as far as possible cataloging into one of these reserved
sublibraries. If you have an earlier version of DOS with books
cataloged in one of the sublibraries reserved under DOS/VS, you can
easily transfer them by using the librarian rename function.

Procedure Library. Names for procedures cataloged in the procedure
library can consist of any combination of alphanumeric characters. The
naming convention to follow when .creating partition-related cataloged
procedures is given in Chapter 5: Controlling Jobs.

Change levels can be appended to names of elements in the· relocatable,
source statement, and procedure libraries to help you keep track of the
current versions' of your programs. The change level is specified in the
catalog control statement, and the procedure is described in detail later in

. this chapter under Cataloging.

Storing and Accessing Elements hi the Libraries

Whenever an element is to be s,tored (cataloged) in one of the libraries, the
system:

.• obtains the address of the library directory from the system directory

determines the locations in the directorY and the library where the
directory entry and. the element should be placed.

places the element into the library and creates a new directory entry;'
searches for duplicate entries and, if found, deletes the earlier entry.

If a phase is added "tQ the core image library, the applicable information in
the library descriptor entry is updated. If the phase is eligible for the shared
virtual area and is indicated as SV A-eligible in the system directory list, the
phase is also loaded into the SV A. The second level directory is updated,. if
necessary.

In. general, the library elements and their respective directory entries
appear in the order in .which they ~ere . cataloged. For the core image
library, however, the directory entries are sorted in 'alphameric sequence.

Chapter 7: Using the Libraries 7.5

Source statements cataloged in the source statement library are stored
in compressed form, that is, all blanks are eliminated. When a source
statement book is retrieved, the statements are expanded to their original
80··character format. Control statements in the procedure library are not
compressed but are stored in card image format.

To access an element in a library, the system searches the
-corresponding directory if it contains an entry with the name of the
requested element.

Working with the Ubraries

This section describes how you can manage and control your libraries with
the use of the librarian programs. The librarian programs fall into three
functional groups: maintenance, copy/reorganize, and service. The functions
are applicable both to the system and private libraries. Figure 7.3 is a
summary of the librarian programs and their functions.

GROUP PROGRAM FUNCTIONS
NAME

Maintenance MAINT Catalog
Delete
Condense

'"
Reallocate*
Rename
Update

Copy/ CORGZ Create a new system pack.
reorganize

Create private libraries.

Transfer elements between any two libraries of the
same type.

Service DSERV Display the contents of the library directories.

CSERV Display, punch, or display and punch the contents
RSERV of the Core image, Relocatable, Sourco' statement,
SSERV or Procedure library.
PSERV

ESERV Display, update the contents of the assembler
sublibrary (in source statement format).

* Reallocate cannot oe used for private libraries.

Figure 7.3. Summary of Librarian Programs and Their Functions,

7.6 DOS/VS System Management Guide

Processing Requiremel\ts

Maintaining 1:he Libraries

You invoke the individual functions of the librarian programs by means
of librarian control statements. The use of these control statements is
described and demonstrated by examples in the following section. Their
formats are contained in DOS / VS System Control Statements.

Note t: If the exten.ded support for the procedure library (SYSFIL) was
selected during supervisor generation, the librarian control statements can
be cataloged into the procedure library. This excludes maintenance
functions for the procedure library itself and reallocation of library sizes.

Note 2: If a cataloged procedure is used to start POWER/VS no
maintenance functions can be performed on the procedure library as long
as POWER/VS is active.'

No special considerations apply to executing the librarian programs in a
virtual partition. If you wish to run a librarian program other than MAl NT ,
CORGZ, or" DSERV in either a real partition or a large virtual partition,
specify AUro in the SIZE parameter of the EXEC job control statement.
SiJ}ce MAINT, -G:QRGZ, and DSERV dynamically allocate storage during
execution, the SIZE=AUTO specification should not be used for these
programs; SIZE=64K should be specified insie"ad.

The CORGZ program and the reallocation function of the MAINT
program must always be executed in the background partition (rea) or
virtual}. The MAINT, CSERV, and DSERV programs are self-relocating so
that they can be executed in any partition. The ESERV, PSERV, RSERV',
and SSERV programs run only in the virtual background partition, unless
they were link-edited to be relocatable ·and loaded by the relocating loader.

When you execute MAINT in a for~ground 'partition, a private core
image library must be uniquely assigned to that partition. The maintenance
functions then apply only to this private core image library. Neither the
system libraries nor the private relocatable or source statement libraries can
be accessed by MAINT executing in the foreground.

The maintenance functions of the librarian will probably be the ones most
freqqently used in d;;lily pperation. They include: .

1. Cataloging elements to the libraries
2. Deleting elements from the libraries
3. Condensing the libraries (or establishing limits for automatic condense)
4. Allocating space to the libraries .
5. Renaming elements of the libraries
6. Updating books in the source statement library.

The maintenance program is invoked by the job control 'statement:

1/ EXEC MAINT

The functions to be performed are specified· in libratian control statements
which must follow the EXEC MAINT statement on SYSIPT. (If SYSIPT is
assigned to a tape unit, it must be a single file and a single volume.) Any

Chapter 7: Using the Libr~l'jes 7.1

CatalOll~ng

combination of the maintenance functions can be performed in a single run.
A sample maintenance job in skeleton form is shown below:

II JOB ANYMAINT

. assignments, if necessary

II EXEC MAINT

librarian control statements

J*
1&

When the /* is processed after completion of the maintenance run, a status
report of the" library just updated is printed on SYSLST.

The symbolic unit assignments requires for the individual maintenance
functions' are described in DOS / VS System Control Statements. The
examples in this chapter assume that all necessary assignments are
established as standard assignments.

The catalog function adds a module to a relocatable library, a book to a
source statement library, or a procedure to the procedure library .. You
cannot use the catalog function of the librarian to add a phase to the core
image library; this is done by the linkage. editor (see Chapter 6: Linking
Programs) .

. The catalog control sratements specify the name of the element Ito be cata-
loged and, optionally, a ch()nge level number. The control statements are:

Relocatable library . . . CATALR
Source statement library CATALS
Procedure library CATALP

Elements added to a library by cataloging can be removed by deleting (see
Deleting. later in this section). Under certain circumstances the catalog
function itself implies a delete function. For instance, if a module to be
cataloged has the same name as a modQle already existing in the: relocatable
library, the existing module is automatically deleted and the new module is
cataloged. No warning message is issued. The same is true for a book in the.
source' statement library and a procedure in the procedure library.

When you add to the contents of a library, watch the status of the system
directory .. which is printed at the end of the catalog run. If the libraries are
becoming full, you may wish to condense them or allocate more space to
them. (Condensing and allocating are described later in this section.)

Cataloging to the Relocatable Library. To catalog an object module to the
relocatable library you must submit the ob.iect deck on SYSIPT following
the CAT ALR control statement. The following job catalogs two object

7:8 DOS/VS System Management Guide

modules, named MOD 1. and MOD2, to the relocatable library; the object
decks were produced by. language translators in previous jobs:

II JOB CATREL
II EXEC MAINT

CATALR MODl

'obj~ct deck for MODl

CATALR MOD2

obj~6t deck for MOD2

1*
1&

You can also compile or assemble a program and catalog the resulting
. object module in the relocatable library in the same job, wit~out obtaining a
card deck of the object module. In this case, you assign SYSPCH, which .
receives the· output of the language translator, to a disk or tape· and then
use the object module on disk or tape as input to the MAINT program. An
example using a magnetic tape for SYSPCI-I is shown in Figure 7.4. To
assign SYSPCH to a disk, .the SYSFIL option must have been specified
during supervisor generation, and you must supply the necessary DLBL and
EXTENT job· control statements (see also ,System Files on . Tape, Disk,
or Diskette in Chapter 5: Controlling Jobs). .

II JOB CATREL
II OPTION DECK

I II ASSGN SYSPCH,X'180'
2 CATALR MODULEl
3 II EXEC ASSEMBLY

source module

1*
4 /1 MTC WTM,SYSPCH,2
s II MTC REW,SYSPCH
6 II RESET SYSPCH
7 II ASSGN SYSIPT,X'180'
8 II EXEC MAINT'

1&
I \A magnetic tapc devic.c is assigncd to SYSPCH to ·rcceive the assembler output.
2 The CATALR statement is copied onto SYSPCH.
3 The assembler processes the source module and writes the object module onto

SYSPCH following the CAT ALR statement. .
4 Tapemarks are written on SYSPCH to indica.te the end of the object module.

S The tape is rewound to its load point.
6 The tape is unassigned as SYSPCH.
7 The tape is assigned to SYSIPT to Serve as input for the MAINT program.
S MAINT reads the object n~odule from the tape atld catalogs it in the rcJocatable

I~~~~r~.

Figure 7.4. Assembling and Cataloging to the Relocatable Library in the
Same Job

Chapter 7: Using the Libraries .7.9

All modules in the relocatable library that have the first'three I;;haracters
of the module name in common are considered to belong to one program.
This simplifies the control statements to, delete, display, punch, merge, and
copy an entire program. TJte names of IBM-supplied mqdules in the
reloG,atable library begin with the letter I, which' should therefore be
considered reserved so that you can readily distinguish your modulles from
IBM's.

Catal~ng to the Source Statement Library. To add a book to the source
, statement library you use the CAT ALS statement specifying the name of the

book and the sublibrary to which it belongs. A sublibrary is defined by an
alphameric character preceding, the bookname. For example, the'statement ,

CATALS P.NEWBOOK'

adds the book NEWBOOK to sublibrary P. Note that the sublibraries in the.
range from A to I, and Z are reserved for IBM components.

A is the assembler copy sublibrary. It contains books of assembler
source code and source macro definitions.

B is the VT AM network definition sublibrary.

D is the alternate ~opy sublibrary. It contaios non-edited macros and
copy books for programs that are to be executed in a teleprocessing
network control unit.

E is the assembler macro sublibrary. It contains IBM-supplied and
user-written macro definitions in an edited (partially processed)
format.

F is the alternate macro sublibrary. IBM uses' it to distribute edited
macros for use by programs that are to be executed in a
teleprocessing network control unit. '

C is the COBOL sublibrary.

Z contains sample programs supplied by IBM.

'The rest of the reserved characters (G, H~ I) will be used by IBM for
future additions to the source statement library. You should avoid, wherever
possible, cataloging to one of the reserved sublibraries. If you must catalog
to a' sublibrary that is reserved for IBM components" ensure that you do not
use duplicate names. You can obtain a listing of the contents of each
sub library by means of the SSERV librarian program (see Using the
Service Functions of' the Libradan later in this chapter). ,You can obtain
a listing of the book names' within each sublibrary by means of the DSERV
librarian program.

Users of, previous versions of DOS, who have books in a sublibrary
which is reserved under DOS/VS can easily transfer this sublibrary from
the IBM range to the user range by means of ~he librarian rename
function (see Renaming. later in this section).

Edited macro definitions that are to be cataloged in the ass4~mbler
sublibrary must be preceded' by a MACRO statement and followed by a
MEND statement. Example:

7.10. DOS/VS System Management Guide

I I JOB CATMAC
II EXEC MAINT

CATALS E.MBOOK
-MACRO

edited macro definition statements

1*
1& .

MEND

Books other than macro defiriitions that are to be cataloged inust be
preceded and followed by BKEND-statements. Examples:

II· JOB CATBOOK
-II EXEC MAINT

CATALS P. SBOOK '
BKEND

source statements

/*
/&

BKEND

The BKEND statement can have optional operands specifying that a .
sequence check or a card count be performed on the statements to be
cataloged, or that the book to. be cataloged is in compressed format. If you
desire these functions when you catalog a macro definition, BKEND
statements can be included in addition to the MACRO and MEND
statements.

CatalogiDg to the Procedure Library. To catalog a procedure in the
procedure library you submit a CAT ALP statement specifying the
procedure name. Procedure .. namescan consist of any combination of
alphanumeric characters. The control-statements to be cataloged follow the"
CAT ALP statement; they can be job control or linkage editor control '
statements or both. The end of the control statements to be cataloged must
be indicated by / +.

Each control statement cataloged in the procedure library should have a
unique identity. This identity is required if you want to be able to modify -
the job stream at execution time. Therefore, when cataloging, identify each
control statement in columns 73-79 (blanks\may be embedded): Refer also
to the section Modifying Cataloged Procedures in Chapter 5: Controlling
Jobs.

The following job catalogs the procedure PROCA in the procedure library:
/1 JOB CATPROC
/1 EXEC MAINT

CATALP PROCA

control statements to be cataloged

1+ END OF PROCEDURE
1*
1&

Chapter 7: Using the Libraries 7.11

I

If your supervisor was generated with the SYSFIL option, you ca.n also
include inline SYSIET data in the cataloged procedure. The presence of
SYSIPTdata must be indicated to the MAINT program by the DATA
parameter of the CAT ALP statement. In addition, you must indicate the
end of the procedure by a special deliiniter.; the:j * statement call1not be
used fo'r this purpose because it signals the end of the SYSIPT data. The
end-of-procedure delimiter can consist of any two charaoters except /*,
/ & , and. / /; the delimiter must not contain a blank or a conuila., You must
define the end-of-procedure delimiter in the EOP parameter of the

. CAT ALP statement. The following example catalogs a proce,,"ure: consisting
of. control statements and SYSIPT data; the characters /$ are used as .
end-of -procedure delimiter.

II JOB CATPROC
II EXEC MAINT

CATALP PROCA,EOP=I$,DATA=YES

control statements

SYSIPT data

1* END OF SYSIPT DATA

control statements

/$ END OFPROCEDUREr
1*
1&

The system assumes the default delimiter / +; this means that if you use / + .
as end-of-procedure delimiter, you· can omit the EOP parameter.

The following restrictions apply when .you catalog procedures to the'
procedure library:

,1. A cataloged procedure cannot contain control statements or SYSIPT
data for more than one job.

2. If the cataloged control statements include the JOB statement you must
not have a JOB statement when you retrieve the procedure through the
EXEC statement. .

3. A cataloged procedure must not include any of the' following control
statements because they are not accepted when the procedure: is
processed:
II ASSGN SYSRDR,X'cuu'
II RESET SYS
II RESE'rALL
II RESET 'SYSRDR
II CLOSE SYSRDR,X'cuu'
I I ASSGN SYSIPT, X I CUU' } only if SYSIPT data
I I RESET SYSIPT is included
II CLOSE SYSIPT,X'cuu'
1&

7.12 DOS/VS System Management Guide

Deleting

4. Cataloged procedures cannot be nested, that is, a cataloged procedure
cannot contain an EXEC statement that invokes another cataloged
procedure. .

Refer, to Chapter 5: Controlling Jobs for a detailed description of how to
retrieve cataloged procedures from the procedure library and how to modify
cataloged control statements using the overwrite facility.

Assigning Change Levels. When you catalog an element in one of the
libraries, you' can assign a change level to the element, which ,will enable
you to keep track of the current. version of your programs. The change
level is specified in the catalog control statement by a version and a
modification number. The following statement catalogs version 1,
modification 3, of module M,ODI in the relocatable library:

CATALR MOD1,1.3

Change levels are stored in the directpryentry for the eiement and can be
displayed ,by the librarian service program DSERV. A change level is·not
used by the system for identification purposes, that is, a change level is not
sufficient to allow two elt~ments having the same name to coexist in a
library.

For the SO\lrce statement library only, you can request verification of
the change level before a' book is' updated. This can prevent an accidental
updating of the wrong version of a book in a particular sublibrary. Specify
the character C in the CAT ALS statement to request change level
verification. Example:

CATALS M.BOOK1,1.1,C

To update the book you must supply the· current change level of the book
in the update control statement. This change level is then checked against
the change level in the directory entry and, if they match, the book is
updated and its change level is increased by one to rcfloo1'l-the new status of
the book. If you want to overwrite the version and modification numbers of
a book, supply the new change level information in the END statement of
the update function. If change level verification is requested for a particular
book, the letter C will appear in the column headed LEV CHK (le:vel
check) in the DSERV listing.

You can delete an unwanted element from a library either by cataloging a
new element with the same name or by means of the delete function of the
librarian. using the following control statements: '

Core image library
Relocatable library
Source statement library
Procedure library . . .

. DELETC
. " DELETR

DE LETS
DELETP

To delete individual elements from the libraries, you must specify (~ach
element name in full in the delete contr()l statement. If a group of elements
is to be deleted, however, you can simplify the specification of the control
statement provided that the recommended naming conventions we[,e used
when the elements were cataloged.

Chapter 7: Using the Libraries 7.13

2 .. You can delete all modules in the relocatable library that have the first
three characters in commori by specifying these three characters in one
delete control statement.

3. Similarly, you can delete an entire sublibrary from the source statement
. library by specifying the sublibiary name;

Since no special naming conventions apply to the procedure library, each
cataloged procedure to be deleted must bC individually specified.

Y 01J can also use the delete function to remove all elements of a
relocatable library, source statement library, procedure library, or private
core image library. In this case, the system directory information is updated
to' show that· all blocks of the library. in. question are available for cataloging
programs; no condense operation is required. You cannot delete: the entire
system core image library, but ~nly individual phases or programs.

The foliowing job deletes (1) all phases starting with PHAS from the
core image library, (2) modules MODl and MOD2 from the relocatable
library, (3) sublibrary P from the source statement library, and (4) all the
elements of the procedure library:

II JOB DELETE
II EXEC MAINT <

DELETC PHAS.ALL
DELETR MOD1, MOD2
DELETS P.ALL
DELETP ALL

1*
If:.

When you request the deletion of a library elemen~, the name of the
element is removed from the corresponding directory entry. The system is
then no longer able to, recognize the element although it is still !physically
present in the library. The area taken up by such an element can be
referred to as unavailable free space. To make such space available again
for cataloging programs, use the condense function. The delete :and
condense functions are iIIus-trated "in Figure 7.S.

When a phase is deleted from thecore image library, it is also flagged
as not present in the system directory list (if applicable). The shared virtual
area cannot be condensed; it must be recreated. See" Building the SDL
and Loading the SVA in Chapter 4: Starting the System.)

7.14 IDOS/VS System Management Guide

t1' Assume that phases A, a, and C are cataloged in the
\.!.I core image library (c.i.l.). Each core image directory

(e.i.d.) eo try, which refers to one of these phases,
points to the beginning disk address of the phase.

@2'f Phaseaisno longer desir~ in the core image

library, specify (DELETC aI, which deletes the

name a f~om the directory.

® To make full use of the core image. library, eliminate
the unavailable free spaces by specifying
(CONDSCLJ. .

First area available
for cataloging

First area available
for cataloging .

I c.i.d.

I c.".

c.i.1.

This becomes unavailable
free· space - unavailable
because no other program
can be C\Jtaloged into
this area.

First area available
for cataloging

Figure 7.5. Example of Deleting and Condensing

Chapter 7: Using the Libraries 7.15

When you delete an elef!lent from a library, the space-occupied by ahe
'deletec:i' element -- referred to as unavailable free space -- is unavailable
for cataloging new elements (see· Figure 7.4). To make this space available
for cataloging, you use""the condense function of the MAINr progrnm.

To condense ~ny of the libraries you use the CONn;; control statement
specifying which of the libraries is (are) .to ~ condensed. The following job

.' condenses the core image, relocatable~ and source statement librari(:s after
the deletion of elements from the libraries:

II. JOB DELCOND
II EXEC MAINT

1*
1&

DELETC PHAS1,PHAS5,PROGA
DELETR MOD.ALL
DELETS P.ALL
DELETP ALL
CONBS CL,RL,SL

Note that you need not condense a library -- in the above example:, "the
procedure library -- if that library is deleted entirely.

. .

. The reallocation function of the MAINT program automatIcally causes
the libraries to be' condensed. Refer" t6" the section Reallocating.

If a condense operation is interrupted by a hardware error or by
, operator intervention before the next statement is read, the. library being
condensed is unusable and must be reconstructed.· Note that the condense
program shows all· the symptoms 'of a looping programs, but should never
be canceled by the operator. .

Automatic Condense. You can also specify that the condense functien be
performed automatically each time the number of available blocks in a
library drops below a specified minimum, referred to as the condeillse limit
Automatic condense is reques'ted by the CONDL control statemel1lt
indicating the library or libraries to be condensed and the condense Jimit.(s).
Example:

/1 JOB AUTOCOND
II EXEC MAINT

C'ONDL CL= 10
1* ..
1&

The CONOL statement in the above example indicates that the core image
library is to be conde'nsed automatically whenever the number of available
blocks in the library 'becomes less than ten. (The block size of th(: core
image library is 1024 bytes.)

The condense limit specified should always be less than the. number of
blocks allocated to the library; otherwise, a condense is performed after
each maintenance function. The MAINT program stores the condense limits
in the system directory, which can be displayed by the service program
DSERV, and which is automatically displayed at the end of each librarian
maintenance job. A message printed on the console informs the operator
when the system performs an automatic condense.

7.16 DOS/VS System Management Guide

CONDS

automatic
ctmdense

When Condense Can Be Performed. While the condense function is being
executed, the library directories do not represent the actual status of the
library: Thus, if a program in any partition were to attempt to use the
library in any· way, the results would be unpredictable. For this reason,
various controls are provided to minimize the chances of unpredictable
results: .

The system· core image library. and either the system or private·
relocatable . and. source statement libraries can only be condensed from
the background partition, and then only if there are no active
foreground partitions. If the automatic condense limit is reached when
there are active foreground partitions, the condense operation will not
be carried out. .

• A private core tmage IibrSlry may be condensed iIJ any partition,
provided it is exclusively assigned to that partition.'

• The procedure library can be condensed from any partition unless it is
being accessed by the job control program in another partition or a
procedure is being executed. Thus, a job stream to condense the
procedure library cannot be cataloged.

Note for POWER!VS users: Even though POWER/VS may not be doing
any work. if it is resident in a partition" the partition is considered to
be active.

A summary of when condense can be performed is shown in Figure· 7.6.

Core Image Relocatable Source Statement Procedure (system)

System Private System I Private System' I Private

Yes ifFG Yes if issued Yes if FG is inactive. Yes if not being
is inactive. from the only accessed by job

partition to control or: if a
which the procedure is not being
PCIL is executed.
assigned.

Yes if FG Yes if the Yes if FG is inactive. 'Yes if not being
il~ inactive. PCIL is accessed by job

assigned to control or if a
only one procedure is not being
partition. executed.

F~,...e 7.6.' When Can Condense ;Be Performed?

Realllocating

The CONDL controi statement (which sets the automatic condense limits) can be submitted with the
MAINT program at any time: h()wevcr, the automatic condense is performed only under the .above
circumstances. '

You can use. the reallocation function of the MAINT program to

increase the size of a library for further 'additions

decrease the size of a library, for example, to provide $pacefor
expanding other libraries

Chapter 7: Using the Libraries 7.17

eliminate a library if it is replaced by a private library or'isno Ilonger
required

reestablish a library after it has been eliminated.

Each library that is reallocated is automatically condensed. You can
reallocate any combination of the system libraries on SYSRES within a
single run~ You cannot reallocate private libraries. To change the track and
cylinder allocation of a private library, you must create a new private

. library rising the CORGZ program (sec Creating Private Libraries" later in
this chapter). If a private library is assigned and you attempt to reallocate
the corresponding system library, a message is issued and the job is
canceled. .

The reallocation function of the MAINT program must always be
executed in the background partition and all foreground partitions must be
inactive. This ensures that no program CilO access any library during
reallocation; 'otherwise, the results would be most unreliable because the
final addresses may not have been established and (similar to the (;ondense
function) because the directory. entries do not reflect the actual status of
the libraries until end-of-job.

You invoke the reallocation· function through the ALLOC control
. statement. In the operand field you specify the libraries to· be reallocated,
the number of cylinders to be allotted to each library., ,and the· number of
tracks to be reserved for the library directory. The ALLOC statement can
be submitted together with any other maintenance control stateme:nts.

Changing the Size, of the Libraries. When you increase the size of one
library, you must consider the space remaining for the libraries that follow.
The ending 'cylinder address of the last library cannot exceed

197 for 2314 or 2319
401 for 3330 or 3333 \
347 for 3340 with 3348 data module Model 35
695 for 3340 with 3,348 data module Model 70.

If not enough space is available for the following libraries, you must reduce
one or more of these libraries to compensate for the increase.

Assume, for example, that the SYSRES library space on a 2314 was
allocated during system generation as· . ,

ALLOC CL=90(5) ,RL=40(2), SL=60(3), PL=6(5)

. An attempt to reallocate only the core image library to 120 cylinders would
fail, because cylinder 199 would be exceeded. To avoid this, you can reduce
the combined sizes of the relocatable and source statement libraries by 28
cylinders. In this case, the ALLOC statement should read:

ALLOC CL= 120(7), RL=30(2) , SL=42 (3) , PL=6(5)

When you alter the size or the SYSRES file by reallocating libraties, you
must define the new SYSRES extent by means of DLBL and EXTENT job
control statements. The new SYSRES extent must begin with cylinder 0,
track 1, and end with the last track of the label cylinder. The ALLOC
statement starts calculating from cylinder 0, track o. This means that

7.18 DOS/VS System Management Guide

EXTENT information for the SYSRES file is one cylinder (label cylinder)
larger than the total number of cylinders specified in the ALLOC
statement.

The following example shows the job control. statements required to
reallocate the system libraries as discussed above when the SYSRES device'
type is 2314/2319:

II JOB REORG
II OPTION STDLABEL
II DLBL IJSYSRS,'DOS!VS SYSTEM RESIDENCE' ,99/365
II EXTENT SYSRES,111111,1,O,boOl,3979
II EXEC MAINT

ALLOC CL=120(7),RL=30(2),SL=42(3),PL=6(5)
1*'
1&

Note that.the filename specified in the DLBL statement for the SYSRES
file must always be IJSYSRS. The new label information for the SYSRES
file is stored in the volume table of contents (VTOC) of the SYSRES pack.

No special considerations apply for reducing tile size of a libr~ry except
that you must also,supply the necessary label inform",tion for the new
SYSRESextent. Red,ucing a library does not cause any gaps, that is, the
libraries following the one that was reduced are 'moved· up' to close the
gap.

Eliminating Libr~ries. If you have created a private relocatable or source
statement library containing all the modules or books that you require from
the correspondiqg system library, you can use the reallocation function to
eliminate that system library. You do this by setting the track and cylinder
indications in the ALLOC statement to zero. This is only effective,
however, if all the directory entries have first been cleared by the DELBTS
or DELETR control statements.

Similarly, you can eliminate the procedure library if it contains no
active elements and you are sure that you do not want to use cataloged
~rocedures.

The following job eliminates the system relocatable library. The
example assumes that the libraries were allocated with CL=80(5),
RL=40(2), SL=30(3), PL= 10(5). (SYSRES device type assumed to be
2314/2319.)

1/ JOB ELIMNT
/1 DLBL IJSYSRS,'DOSjVS SYSTEM RESIDENCE',99/365
II EXTENT'SYSRES,111111,1,O,OOOl,3219
II EXEC MAINT

DELETR ALL
ALLOC RL=O(O), CL= 120(7), SL=30(3), PL= 10(5)

1*
1&

, ,

You cannot eliminate the system. core image library because it is required
for system operation. If you inadvertently specify a zero allocation for the
system core image library, the job is canceled.

Once eliminated,' the relodltable, source statement, or procedure library
can be added again to the SYSRES file. The same considerations apply to ,
adding a library as to increasing the size of a library. Using the reallocation

Chapter 7: Using the Lilmirics 7.19

Renaming

'function to add a l!~f~r¥ does not include adding theactu~l'elements of the
library, Once a: library exists you can add elements either by cataloging or
by merging from a private library or another SYSRES, (The merge function
is described in Copying and Reorganizing the Libraries, later in this
chapter,)

. 'To change a nartte:'of a cataloged phase, module; book,. or procedure, use
the rename function. In a control statement unique to each type of library,
you supply the existing name and the name to which you want to change it.
If the new name is identical to a name already cataloged in the library, an
error message is issued. You must then select a different name and resubmit
the job.

When you name a phase in the system core image library that is also
listed in the system directory list, the phase name is changed in both
directories.

After a valid rename' control statement is processed, the system
recognizes only the new name. The version 'and modification level (change
level) is not changed by the rename function.

Each type of library has a unique rename control statement:

Core image library ...
Relocatable library
Source statement library
Procedure library

RENAMC
. RENAMR

RENAMS
RENAMP

The rename function can be used to establish naming c<?nventiolJ1s. All
phases in the core image libniry that have the first four charactc:rs in
common are considered to belong to one program. All modules in the
relocatable library that have the first three characters· in commolJ1 are
considered to belong to one program. Since the names of IBM-supplied
relocatable modules begin with the letter I, it is advantageous to avoid this
first character when naming user modules. Similarly, you should avoid the
use of the first characters A-I and Z when renaming sublibraries in the
source statement library. These prefixes are reserved for IBM-supplied
components. Names for procedures cataloged in the procedure library can
consist of any combination of alph~lDumeric characters.

Renaming a member of a library can be advantageous in a testing
environment. For instance, after making changes to your source deck,
rename the previous version residing in the library and catalog the new

, source under the original name. This' assures you of backup until your new
program is in working order, at which time you can delete the old
(renamed) version(s).

Updating the Source Statement Library

The update function applies only to a source statement library. This
function revises one or more source statements within a particular book. By
using update you can make minor changes to a book, without having to
catalog an entire, new book.

7.20 DOS!VS System Management Guide

Besides adding, deleting, or replacing a certain number of source
statements within a book. the update function. allows you to:

• resequence statements within a book

• revise a change level (version and modification)- of a ·book

• add or remove the requirement for change level verification

• copy an entire book and rename the old book (for backup purposes).

The UPDATE control statement identifies the update function. This
, statement may also be followed by one or more of these additional

statements as required: .

ADD-- To add source statements
DEL -- To delete source statements
REP - - To replace source statements.

The END statement. indicates the end of updates to the particular boOk
specified in the UPDATE control statement.

If the requirement. for change level verification was specified in the
CAT ALS control statement when a book was cataloged, the version and
modificatipn level must be specified. in the UPDATE corftrol· statement that
refers to this book. This change level must agree with the current change
level in the directory entry for that book. (Check the DSERV listing for the
current change level and/or requirement for change level verification.· For
more inform~tion on the DSERV program. refer to the section Displaying
the Directories.) This requirement prevents' you from inadvertently updating
the wrong version and modification level of ~ particular book. Regardless of
whether or not the requirement is tn effect, the· version and modification
level are incremented by one after each update. If a version and
modification level is specified in the ENP statement, this overrides the

. current change level.

Copying and ·.lR~rganizing the Libraries

The copy/ reorganize program of the librarian is an imp'ortant tool for
establishing and organizing your libraries during system generation or any
time·thereafter. The copy/reorganize program performs the following.
functions:

Creates a new system residence (SYSRES)

transfers elements between any two existing libraries of the same type

• Creates private libraries.

The first two points 'are described in this section. The creation ·of private
libraries is . discussed in Creating and Working with Private Libraries.
later in !his chapter.

The copy/reorganize program can only be executed in the background
partitiQri .. It is invoked by the statement

/ / EXEC CORGZ'

When /* is processed after completion 'of the CORGZ program. a
status report of the library just updated is printed on SYSLST.

Chapter 7: Using the Libraries 7.21

You cannot have unlike device types for input and output.

The functions to be performed by the CORGZ program are specified in
a set of librarian control statements, which will be introduced in the course
of the following discussions.

Creatinf~ a New System Residence

. When' systeill generation is completed, you will want a backup'SYSRES,
which can save you regenerating the system from your distribution medium
if the oPerational pack is inadvertently destroyed. This backup SYSRES is

. usually kept on tape, but may also be kept on a disk of the same device
type as the original SYSRES. If the backup SYSRES is to be on disk, use.
the CORGZ program with the ALLOC and a COpy control statements to
define the new SYSRES file and c6py the entire contents of the original
SYSRES file. onto it.

You can also copy the SYSRES file selectively; that is, the new system
residence. will contain only part of the original SYSRES. This may be useful
in an' installation that uses certain components 'only during specific
processing periods. For instance, if teleprocessing and support fol' five
partitions is required only during the prime shift, a different system
configuration (for instance, no teleprocessing and three partitions) could be
used dudng the second shift. Therefore, you could copy onto a n,ew
SYSRES file only those components required for the second shift and add·
any additional components needed to that SYSRES. In this case, you must
ass~mble a new supervisor and catalog it into the new SYSRES file. The
effect is a smaller supervisor and smaller libraries on both system residence
packs which means faster access to library elements and, thus, improved
overall system performance.

When you create a new system residence, SYSOO2 must be assigned to
the device on which the new SYSRES pack resides. In addition, you must
define the extents of the new SYSRES file by means of DLBL allld
EXTENT job control statements. The filename in the DLBL statement
must be IJSYSRS. The lower extent must be cylinder zero, track one, and
the upper extent must include the label information cylinder. The
iriformation to be copied from the original. to the new SYSRES is specified
in 'one or mQre of the following COpy control statements:

COpy All

COPYC
COPYR
COPYS
COPYP

to copy the entire system residence file. Note that you can
use this form of the COpy statement only if all four
system libraries are allocated on the original SYSRES file;
otherwise, you must use a combination of the following
COPY statements.

to copy one or more elements, one or more

groups of elements, or all elements of the

Core image, Relocatable, Source statement

or Procedure library.

The'following job creates a backup SYSRES file on disk drive X't3t'. The
example assumes that the original SYSRES file does not contain a
. procedure library:

7.22 DOS/VS System M~nagementGuidc

II JOB BACKUP
II ASSGN SYS002,X'131'
II OLBL IJSYSRS,'OOS/vs SYSRES BACKUP' ,99/365,SO
II EXTENT SYS002,111111 ,1,0,0001,2219
II EXEC CORGZ

ALLOC CL=50(5),RL=30(5),SL=30(5),PL=0(0)
COPYC,ALL

1*
If:,

COPYR ALL,.
COPYS ALL

For each CORGZ run an ALLOC control statement is required, preceding
~my COpy statements. If you wish to exclude an entire library from being
copied, specify a 'zero' allocation (for example, RL=O(O».

Assume that you have a SYSRES file that contains all four system
libraries and you want to create a second SYSRES file containing only
selected information from the core image library and the entire relocatable
library. The following job creates this new' SYSRES file (device type
2314/2319 assumed):

II JOB SYSRES
II ASSGN SYS002,X~131'
II OLBL IJSYSRS, 'DOS)VS SYSRES II' ,99/365,SO
II EXTENT SYS002"t11111,1,O,OOOl,1619
II EXEC CORGZ

ALLOC CL=50(5),RL=30(5),SL=O(O),PL=O(O)
COPYC PHA&.ALL,PROG.ALL,ABCD~ALL

1* ,
If:,

COPYR ALL

Note that ali components essential to a minimum system are copied
automaticalJy by the CORGZ program. These components are:

Supervisor

Initial program loader (lPL)

All logical and physical transients

Job contF,01

Linkage editor

PC;lrtition and 'system standard labels (cataloged with the PARSTD and
STDLABEL options) from the label information cylinder.

Thus, if you execute the CORGZ program. without any COpy statements,
.the above components will be copied automatically onto the new SYSRES
file.

Transferring Elements between Libraries

If you work with more than one system residence pack or private library,
you may want to transfer elements from one library to another. Instead of
punching the elements into cards and re-cataloging them, you can use the
CORGZ program with a MERGE statement to transfer the elements. This
is especially useful for system generation when a new version of the system
is installed~ you can then copy the library elements directly from the old
version to the new onc. (For backup purposes you should of co.urse have a
duplicatc of the library to which elements are transferred.)

Chapter 7: Using the Libraries 7.23

· You use the MERGE control statement to define thecharactetistics of
the libraries to be merged and the direction of transfer between the
libraries. The operands of the MERGE control statement are:

RES -- For the system libraries on the system residence file

NRS -- For the system . libraries on a modified or duplicate system residence
file . .

PRV' -- For any private libraries.

For example, the statement MERGE RES,PRV indicates to the CORGZ
program that elements are to be transferred from one or more libraries on
the system residence file to the corresponding private libraries. Th(~ type of
Iibr~ry involved an<i the elements to be transferred are specified in COpy
statements immediately following the MERGE statement. (The COpy
statements are the same as those described in the preceding sectiorl
Copying and Reorgan;z;ng the Libraries.)

You must define. the extents of the libraries involved in a merge
operation' by DLBL and EXTENT job control statements. The file:names to
be used and the necessary symbolic unit assignments are described in detail
in DOS / VS System Control Statements. .

The job in the following example adds the contents 0" the core image
library on a duplicate SYSRES file (NRS) to the elements in a private core.
image li~rary (PRV). Any elements with duplicate names (supervisor, job
control, etc.) are deleted from the . receiving library.

II JOB NRSPRV
II ·ASSGN SYS002,X'130'

ASSGN SYSCLB,X'131'
II OLBL IJSYSRS,'OO~/VS SYSRES II' ,99/365,SO
II EXTENTSYS002,111111,1,Q001,2519
I I OLBL IJSYSCL, "PRIVATE ClL' ,99/365·;50
II EXTEN~ SYSCLB,222222,1,O,1600,200
II EXEC CORGZ

1*
IF:.

MERGE NRS,PRV
COPYC ALL

Note that, when the CORGZ program performs a merge operation, it does
not automatically copy the basic system components as it does when a. new
system residence is created (see preceding section). You must specify .
COPYC ALL to transfer the entire core image library or COPY ALL to
transfer the entire SYSRES extent. Moreover, when the merge function· i~
being performed, you cannot reaIJocate the libraries with. an ALLOC
statement.

7.24 DOS/VS System Management Guide

Using the' Service Functions of the Librarian

DiSllllaying the Directories

, , , The service f~nctions of the librarian enable you

to obtain reports on the contents of 'your libraries by displaying, the
directories on SYSLST '

• to print and/or punch the contents of your libraries on SYSLST or
SYSPCH 'in order to transfer the library elements to a different location
or to correct them

to prepare macro definitions in the assembler macro (E) sublibrary for
update.

The directories are displayed by· the DSERV program. Edited macros in the
E-sublibrary can be de-edited for update.by the ESERV program. To print
or punch the contents of the libraries, a separate program is available for
each type of library:

CSERV -- Core image library
RSERV -- Relocatablelibrary
SSERV -- Source statement library
PSERV -- Procedure library ,

If you use private libraries~ lhe service functions apply only to the private
libraries assigned. Private libraries must be unassigned before the
corresponding system libraries can be accessed by the service programs.

Using the directory service program (DSERV) you can obtain a listing of
the following directories:

Core image directory, or the directory entry of a specific phase or
group of phases (transients, for instance) in the core image library'
together with their change. level, if present

Relocatable directory

Source statement directory

Procedure directory

• System directory. This directory is always listed before any of the
directories is printed. This information. is called a status report. \

Depending on the control statement used, the directories can be displayed
I '

in one of two formats:

An alphamerical1y sorted listing of the directory entries (DSPL YS '
control statement)

I

• A listing of the entries in the order in which they appear in the
directory (DSPLY control statement).

Note: The entries in the core image directory are always displayed in
alphameric sequence.

Within a single job step yqu can obtain multiple displays of the same
directory, either sorted or unsorted, by supplying a separate control
statement for each desired display. Similarly, any number of directories can

Chapter 7: Using the Libraries 7.25

be displayed within one job step, depending on the operands in th(~ control
statement. The following job will produce a sorted listing of all transients
($-phases) and unsorted listings of the relocatable and source statement
libraries:

II JOB DISPDIR
II EXEC DSERV

DSPLYS TD
DSPLY RD,SD

/*
/&

If you specify / / EXEC DSERV without any control statements, a status
report of all libraries present on SYSRES and all private libraries assigned
(if any) is printed on SYSLST.

I

Displaying and Punching. tbe Contents of tbe UbI'aries

Y oucan use the library service programs to obtain a .listing and/or card
deck of elements in a library. There is a unique service program for each
library: .

CSERV -- Core image library
RSERV -- Relocatable library
SSERV -- Source statement library
PSERV -- Procedure library.

You request tAe library service functions by means of three control
statements which are used for all four library service programs. These
control'statements are:

DSPLY -- To print the elements of a library
PUNCH -- To punch the elements of a library
DSPCH -- To print and punch the elements of a library.

Each of these statements can specify one or more individual elements, one
or more groups of elements, or all elements of a library to be printed or
punched. The following job prints the entire sub library P and punches
phases PHASI and PHAS3 of the core image library:

·11 JOB LIBSERV
II EXEC SSERV

DSFLY P.ALL
1*
II EXEC CSERV

1*
1&

PUNCH PHAS1,PHAS3

The punched output (either in cards, on tape or disk) of any service
program can be used as input for recataloging into the type of library from
which it was extracted. Except for the. CSERV punched output, the service
programs automatically punch a CAT ALR, CAT ALS, or CAT ALP
statement immediately preceding each element, and a /* statement·
immediately following the last element (/ + in case of the procedure
library). Such card decks can therefore be submitted with a / / EXEC
MAINT statement for recataloging.

7.26 DOS/VS System -Management Guide

Punched output of the CSERV program is suitable for input to the
linkage editor fo~ recataloging to the ~ore image library. The control
statement stream would be as follows:

II JOB RECATAL
1/ OPTION CATAL

INCLUDE

1*
II EXEC LNKEDT
1&

Phases punched from the core image library are relocatable if ACTION
REL was active when the phases were originally cataloged. If relocatable
phases are recataloged, their origin is at an address relative to the end of
the supervisor (S+displacement). If nonrelocatable phases are recataloged,
their origin is at the same absolute address as when they were originally
link-edited.

Phases originally cataloged with the SV A operand are punched and
.. displayed with this indication.

Printed output from any of the service programs is useful for debugging
purposes. For instance, after determining an error from a dump or source
listing, you implement a change to the RSERV object deck by inserting the
appropriate REP card(s) directly before the END card and run the MAINT
program to recatalog the object module; then to verify that the REP card
was correct, execute the RSERV program to obtain a listing. An SSERV
listing may be necessary before a single statement update can be
performed; after I6cating the statement in error in the listing, submit an
UPDATE maintenance run to implement the change in the source statement
library,

. Prepllring Edited Macros for Update

The assembler uses· two sublibraries of the source statement library: the
macro sublibrary (sublibrary E) and the copy sublibrary (sublibrary A). All
macro definitions in the assembler macro (E) sublibrary have been
preprocessed by the assembler; they are said' to. be edited. An edited macro
definition cannot be directly updated; instead, the source macro, either in a
card deck or in the copy (A) sublibrary is updated. After the changed
macro has been tested and debugged, it must be edited· again before it can .
be recataloged in the macro sublibrary.

If the macro to be updated is not available in source format, you can
use the ESERV program to convert the edited macro back to source
format: this is called de~editing. If the output of the ESERV program is to
be used directly as input to the assembler, you can specify the GENEND
control statement to cause the END card and a /* card to be included after
the last macro .. If the output is to be cataloged directly into the copy (A)
sublibrary, you 'can specify the GENCATALS control statement. This
causes a CAT ALS card to be generated before each macro in the run and a
/* card after the last macro. If neither the GENEND nor the
GENCATALS control statement is specified after the / / EXEC ESERV
statement, GENCAT ALS is assumed.

Chapter 7: Using the Libraries 7.27

The remainder of the control statements that you submit to the ESERV
program are the same as for the other librarian service programs: DSPL Y,
PUNCH, and DSPCH. The following job de-edits the macro named MAC1:

II JOB DEEDIT
II EXEC ESERV

GENEND
PUNCH E.MACl

1*
1&

The output of the above job is the macro· MAC 1 in source format on
SYSPCH. An END card and a /* card is included after the macro. You can
now update the macro, edit it, and catalog it back into the E sublibrary of
the source statement library.

You can de-edit· and update a macro in a single run by submitting the
necessary update control statements. The following job de-edits and updates
the macro MAC2. The result will be the updated macro in source format
on SYSPCH and a listing of the updated macro on SYSLST:

II JOB~EDTUPDTE
II EXEC ESERV

GENCATALS

1*
1&

. DSPCH E. MAC2

update control statements

The update function of the librarian is described in Updating the Source
Statement Library, earlier in this chapter. D~tailed information on editing,
de-editing, and l!pdating macro definitions is given in Guide to the
DOS / VS Assembler.

Creating and Working with Private Libraries

Creating Private Libraries

Private libraries are created and maintained by the system librarian
programs. All librarian functions are performed in the same manner for
private libraries as for system libraries. The reallocate (ALLOC) function is
the only one not available to private libraries. To change the extents of a
private library you must create a new private library and copy tht~ contents
of the old library into it.

The following sections describe how to create private libraries and what
you must consider when you· use private libraries.

You can create private libraries either. during system generation or at any
time thereafter. Private l~braries can reside on the SYSRES pack (outside
the SYSRES extent) or on separate disk packs which (except for a private

7.28 DOS/YS System Management Guide

core image library) .must be of the same device type ·as the SYSRES pack.
You can define any number of private core image, relocat~ble, and source
statement library; private procedure libraries are not supported ..

You create private libraries with the CORGZ librarian program.TJ1e
c~eation of an operational private library involves tw.o stages:

1. Defining the extents of the library by means' of a NEWVOL (new
volume) control statement.

2. Transferring information to the library from an existing library by
. means of COpy and/or MERGE control statements.

You can execute the two stages either in one job step by one invocation of
the CORGZ program or in separate job steps.

To define the device on which a private library is to be created and the
disk extents occupied by the library, you must supply a set of ASSGN,
DLBL, and EXTENT job control statements specifying predeteimined
symbolic unit names and filenames (see Figure 7.7) .

..

Private Library Symbolic Unit Name Filename

Core image SYSOO3 IJSYSPC

Relocatable SYSRLB IJSYSRL

Source statement SYSSLB IJSYSSL

Figure 7.7. Symbolic Unit Names and Filenames Required to· Create Private·.
'Ubraries

You can store the label· information submitted by DLBL and EXTENT
statements either temporarily (option USRLABEL) or permanently (option
PARSTD or STDLABEL). Temporary labels must be resubmitted with
every job that accesses the corresponding library;· permanent labels are valid
for all subsequent jobs.

Note: I!you catalog permanent labels with the STDLABEL option you·m14st
resubmit ali existing ,standard labels; otherwise, they are lost (see also Types of
Label Information in Chapter 5: Controlling Jobs).

The following' example shows the job control and librarian control
statements necessary to define the extents of a private relocatable and a
private source statement library. The NEWVOL control statement indicates
the type of library to be created and the number of cylinders (track!,) to be
allocated to each library (directory).

II JOB DEFINE
II ASSGN SYSRLB,X'191,
II ASSGN SYSSLB,X'192'
I IDLBL IJSYSRL,' DOS/VS PRIVATE RL' ; 99/365, SD'
II EXTENT SYSRLB,111111,1,O,20,800
'II DLBL IJSYSSL,'DOS/VS ,PRIVA~E'SSL',99/365jSD
II EXTENTSYSSLB,222222,1,O,500,600
'II EXEC CORGZ

1*
IS

NEWVOL RL=40(5)~SL=30(5)

After you have defined the extents of the private libraries you can either
use the merge function of the CORGZ program to' transfer elements from
existing libraries or the catalog function of the MAINT program to store
new elements.

Chapter 7: Using the Libraries 7.29

To create a private library and at the same time copy information into
it from the corresponding system library, you submit a COpy statement
following the NEWVOL statement. To transfer information from an .
existing private library, a MERGE statement must precede the COpy
statement. The following job creates a private relocatable library and copies
into it the contents of the system relocatable library and of an existing
private relocatable library:

II JOB CREATE
II ASSGN SYSRLB,X'191'
II ASSGN SYS001,X'192'
II DLBL IJSYSRL, 'NEW PRIVATE RL' ,99/365,SD
II EXTENT SYSRLB,111111,1,O,1700,1200
II DLBL IJSYSPR, 'OLD PRIVATE RL' ,99/365,SD
II EXTENT SYS001,222222,1,O,700,400
II EXEC CORGZ .

1*
1&

NEWVOL RL=60(8)
COPYR ALL
MERGE PRV,PRV
COPYR ALL

Note: To merge from a private relocatable library, you must assign
S YSOO 1 to the device containing the library and specify the filename
IJSYSPR in the DLBL statement. The logical unit assignments and
filenames required for the various merge operations are described· in
DOS/VS System Control Statements.

Creamtg Private Core Image ,Libraries

The organization of a private core image library is the same as the system
core image library. A private core image library, however, may start on any
track. The space requirements must be entered in the NEWVOL statement.

For example, on a 2314 device, the statement NEWVOL CL= 14(5)
creates a directory of five tracks and a library of 14 cylinders. To create
this private c~re image library on a 2314 device starting at relative track
number 120, you submit the following ·control statements:

II JOB PCIL
II ASSGN SYS003,X'191'
II DLBL IJSYSPC,'DOS/VS PRiVATE CL',99/365,SD
II EXTENT SYS003,111111,1,O,0120,280
II EXEC CORGZ

1*
1&

NEWVOL CL=14(5)

In the above example, the core image directory resides on cylinder 6 (tracks
0·-4), and the private core image library on cylinders 6-19.

If you desire to start a private core image library in the same relative
location as the System core image library. (that is, the library directory
starting at cylinder 0 track 2), the relative track specification in the
EXTENT statement must be 0002. The EXTENT statement in the
preceding example then reads:

II EXTENT SYS003,111111,1,O,0002,280

7.30 DOS/YS System Management Guide

.. '

Using Prh'ate Libraries

To access the private libraries, you must assign the foJlowing symbolic unit
names to the device(s) containing the libraries:

SYSClB :-- Private core image library
SYSRlB -- Privaterelocatable library
SYSSLB -- Private source library

Note that the symbolic unit name required to create a private core image
library is SYSOO3; for private relocatable and source statement libraries,
however, the symbolic unit names are the same for creation and subsequent
access.

You can assign private relocatable libraries and private source statement
libraries either temporarily or permanently by an ASSG N command or
statement; you can assign private core image libraries only by an ASSGN
command (that is, permanently). You cannot establish standard assignments
for private core image libraries with'the ASSGN macro during supervisor
generation.

Unless you have cataloged standard labels for your private libraries, you
must submit label state merits with every job that accesses the libraries. The
filenames and file identifications in the DLBL statements must be identical
to those specified when the libraries were created (except for a private core
image library, where the filename IJSYSPC is used for creation, and
IJSYSCL is used thereafter).

A ,private library 'must be unassigned if maintenance and service
functions are to be performed on the corresponding system library. The
librarian programs assume that the private library is intended whenever
assigned. So if, by mistake, your private relocatable library is assigned when
you request changes in the system relocatable library, these changes will be
perfl1rmed on the private relocatable library and reconstruction of this
library may be necessary, depending on the nature of the changes. The only
system service programs that can access the system libraries when SYSRLB
and SYSSLB are assigned are the linkage editor, the CORGZ librarian
program, and the reallocate function of the MAINT librarian program. If,
however, private libraries are assigned but the packs on which they reside
have not been mounted, MAINT will be canceled.

You can have an unlimited Dumber of private libraries in your system;
however, no more than one private core image, one private relocatable, and
one private source statement library can be assigned at one time to the
same partition. You can also assign a private library to more than one
partition, but if you want to update a private library, it must be assigned to
one partition only (see Figure 7.8),

If you have more than one private library of the same type, each must
be distinguished by a unique file identification in the DLBL statement for
the library. .

Chapter 7: Using the Libraries 7.3]

Using Private Core Image Ubraries

Private core image libraries provide an efficient multiprogramming
~nvironment. The linkage editor can be executed not only in the
background but also in a foreground partition to which a private core image
library is assigned. You can then link-edit a program in any given partition
to be executed in the same or in a different partition. If the linkage editor is
executed in more than one partition at the same time. you must assign a
separate SYSLNK and SYSOOl file for each of these partitions.

A separate private core image library can be defined for each partition.
Such a private core image library is then said to be dedicated to ·a given
partition. Separate versions of the same non-self-relocating program may be
link··edited for execution in each partition. This is not necessary, however,
for relocatable phases. when the system includes support for the relocating
loader.

If you work with the relocating loader. private core image libraries are
nevertheless useful to hold special-purpose programs. This allows, for
instance. a new version of a program to be tested while the original version
remains in working order on the system core .image library..

A private core image library should' not be assigned' to more than one
partition at the sa.me time if the linkage. editor is being executed in one of
these partitions. If this occurs. the linkage editor issues a message and
terminates abnormally.

Output from the linkage editor is. therefore. placed in a private core
image library only if it is uniquely assigned to the partition where: the
linkage editor is executed. When fetching or loading a phase, the system
first searches the private core image library. if assigned, and if the phase is
not found, the search is continued in the system core image libra:ry. F()r
phases starting .with $, first the system and then the assigned . private ,ore
image library is searched.

7.32 DOS/VS System Management Guide

READIWRITE READ ONLY

Supervisor

B6

F4

F3

F2

F1 .

Figure 7.S. . Possible Assignments of Private Libraries in a Multiprogramming
System

If a private lihrary· is assigned to more than one partition. the lihrary
cannot he updated.

Chapter 7: Using (he Lihraries 7.33

/'

Chapter, 8::, Using POWER/VS

Starting' PC1WER/VS

, This chapter addresses operators who work with a system .that uses
POWER/VS and programmers whose programs run in a partition controlled
by POWER/VS. '

Background information on POWER/VS is given in Chapter ,}:
Understanding the, System. How to generate' POWER/VS is discussed in .
Chapter 3: Planning the System.

The disk pack(s) used for the POWER/VS files (queue file, data file, and
-the optional account file) should be' mounted and the unit record devices to
be used bi POWER/VS should be unassigned. The POWER/VS partition
ca.n then be started (just as for any other problem program). When
POWER/VS is initiated, care must be taken that the partitiuns to be
supported by POWER/VS are of lower priority than the POWER/VS

, partition and that they do, n'Ot contain executing programs. Once initiated,
POWER/VS works as an extension of DOS/VS because it serviccs I/O
requests directed to the DOS /VS supervisor.

All assignments for POWER/VS files must be made before the
/ / EXEC card for the POWER/VS program. For each assignment, DLBL
and EXTENT information must be provided for the label information
cylinder. If the account file is to be saved on a disk file or standard labeled
tape, the'label information cylinder must also include these definitions.

POWER/VS· can be started by entering commands directly on the
operator console or by following the AUTOSTART procedure. The
AUTOST ART procedure involves preparing start-up commands on cards
(or on tape or disk) and submitting this information as SYSIPT data.
AUTOSTART is particularly suited to the frequent or regular initiation of a·
POWER/VS environment where the device addresses, tasks, spooled
partitions, and RJE lines remain'the same. AUTOSTART also reduces
operator involvement.

The' start-up procedures (with and without the AUTOSTART
procedure) are described step-by-step in DOS / VS Operating Procedures.
The steps include the following:

Formatting POWER/VS queues (if you want to use the information
already accumulated, you should not format queues. This is called

, warm start).

Starting POWER/VS tasks.

Starting POWER/VS controlled partitions (any of those partitions of
lower priority than the POWER/VS partition)~

Specifying the devices to be spooled in each controlled partition. (One
reader, and up to eight printers and punches can be spooled for each
partition.)

Chapter 8: Using POWER/VS 8.1

Dmmny Assignments

POWER/VS intercepts I/O requests addressed to specific physic:al devices,
regardless of the symbolic units that are assigned to these physical devices.
If I/O requests are intercepted by POWER/VS, the assignment for the
physical uriit is in fact a dummy assignment, because the physical device is
not used by the problem program. With POWER/VS you can assign logical
units in different partitions to the same physical unit record device. Such
assignments are regarded as dummy assignments, sinc~ the assigned physical
device is not used by all the partitions in which it is assigned. Dummy
devices, however, are not required, except for multifunction card devices.
Multiple printers/punches and the use of reader only/writer only partitions
will normally require dummy devices.

Each ASSGN statement/command in a POWER/VS controlled
partition is checked by job control to determine if I/O requests for the
specified logical unit are to be intercepted by POWER.jVS. If rc:quests for a
certain, physical unit are to be intercepted by POWER/VS, job control will
not check for conflicting I/O assignments. As a result, mUltiple assignments
are permitted from different partitions to the same unit record device, as
long as no more than one of these assignments implies physical ownership
of the device.

Changing Priorities of Partitions

If you want to change the priorities of the partitions while POWER/VS is
active, your must realize that the DOS/VS PRTY command is rejected if
an atteinpt is made to give one of the partitions supported by POWER/VS
a higher priority than the partition POWER/VS resides in, because the
POWER/VS partition must always have a higher priority than the partitions
it supports.

POWER/VS initialization is canceled if the priorities of the partitions
conflict with the POWER/VS requirements.

Usil1lg POWER/VS Stat~ments and Commands

POWER/VS job entry control language (JECL) is used by the programmer
to delimit POWER/VS jobs and to specify special job requirements.
Specifically, JECL can be used. to control the attributes of ·queue entries, to
load forms control buffer and universal character set images, and to insert
source statement library data into the input stream. JECL supplements the
DOS/VS job control language; the job control statements required for
normal DOS/VS operation are also required when POWER/VS is used.

There are also POWER/VS operator commands for both the central
operator and the RJE terminal operator. The types of commands are:

8.2 DOS/VS System Management Guide

Task management commands. Allow the operator to initiate and
terminate POWER/VS tasks.

Queue management commands. Allow the operator to display and
modify the contents of POWER/VS queues.

Miscellaneous commands. Allow the operator to perform such operations
as forms set-up and saving of the account file.

• Tenuinal control commands. Allow the terminal operator to start or
terminate an RJE session.

JECL and the· operator commands are described in detail in both DOS / VS
System Control Statements and DOS/VS Operating Procedures. You may
want to refer to one ot these manuals while studying the examples of JECL
in Figure 8.1.

Chapter 8: Using POWER/VS 8.3

POWERIVS DOS/VS Comments
Job Number Job Stream

1/ JOB ONE

(0-=~
..

DOS/VS Job,
/I EXEC JOI!STEP-
• with no JCL changes.
1&

0-l 1/ JOB TWO
•
1/ EXEC JOI!STEPI!

No * $$ JOB/EOJ required •
• $$.PUN CL'SS-X for LST or PUN statements.
II EXEC JOeSTEPC
•
1&
• $$ JOB THIRD
1/ JOB THREE

0-" • II EXEC JOI!STEPD Optional POWER/VS JECL.

•
1&
• $$ EOJ

0-J
• $$ JOB FCIITH"
II JOB FOUR
• No * $$ EOJ required, if
1/ EXEC JCI!STEPE
• POWER/VS job is followed

(1/ EXEC JOBSTEPF by * $$ JOB statement.
•
1&
• $$ CTL CUSS-B Default CLASS changed to B.

0-~{
• $$ JOB FIFTH
1/ JOe FIV~ .
• No * $$ EO] required. II EXEC JCBSTEPG
•
It.
• $$ JOB SIXTH
/I JOB SIX
•
1/ EXEC JOeSTEPH Multiple DOS/VS jobs
• in one POWER/VS job.
1&
1/ JOB SEVEN (* $$ JOB and * $$ EOJ
• are both required for this.)
1/ EXEC JOeSTEPI
•
1&
• $$ JOB SEVENTH

0--
1/ JOB EIGHT
• II EXEC JOeSTEPJ
• Multiple POWER/VS jobs

0-{
• $$ JOB EIGHTH
• for one DOS/VS job.
II EXEC JOeSTEPK
•
1&
• $$ EOJ
• $$ CTL CUSS-" Default CLASS reset to A.

0-{
1/ JOB NINE
• .. POWER/VS will generate -.:t
II EXEC JCBSTEPL the missing / &.
•

e-l
1/ JOB TEN
• $$ LST FNC-SXll
• II EXEC JOeSTEPM Multiple LST outputs per job.
•
• $$ LST JSEP-2,R (2nd report is segmented.)
II EXEC JOeSTEPN
•
1&

Figure 8.1. "Examples of the Use of POWER/VS JECL

8.4 DOS/VS System Management Guide

Job Attributes '

The attributes of ~ queue entry determine how it will be processed. The
major types of attributes are: disposition, class, priority, output
segmentation, output limitation, and output destination.

Disposition. Disposition determines how POWER/VS will route and
schedule the associated input or output queue entry. Disposition can be'
specified in the * $$ LST or * $$ PUN statement The possible input
disposition attribute's are: . .
D Process and delete. The queue entry is automatically scheduled for

processing by POWER/VS in accordance with its class and priority
. attributes. After processing, the entry is deleted and associated data
space is freed.

H Hold. The queue eniry remains in the queue; it is not executed or
written to a unit record device by POWER/VS until the operator
releases it using the PRELEASE command or until he changes the
disposition attribute to 0 or K by means of the PALTER
command. When the PRELEASE command is used, the queue
entry, after it is processed, is deleted from the queue and associated
data space is freed.

K Process and keep. The queue entry is automatically scheduled for
processing by POWER/VS in accordance with its class and priority
attributes. On completion, the queue entry is not deleted from the
queue, and the dispositioh of the entry is changed to L.

L . Leave in queue. The queue entry r~mains in the queue; it will not
be processed by POWER/VS until the operator releases it using
the PRELEASE command or until he changes the disposition
attribute to 0 or K by means of the P ALTER command. When the
PRELEASE comment is used, the queue entry, after it is processed,
returns to the, leave state .

. Three additional dispositions apply only to output:

I Return output to input queue. This option should be used only for
jobs producing punch output in executable format, including job
control statements.

N Output without spooling. Output is not intercepted but is
immediately printed or punched.

T Spool to tape. Tape intermediate storage is used.

0, H, K, I, and L are valid only when output is spooled to disk. Nand T
are invalid when output is to be printed at a terminal.

• . Class. Class is a designation given to each job in a group of jobs that
use a common set of system resources. These common resources might,
include: a partition size requirement, a high partition dispatching
priority, special printer forms, character set buffer, or card stock.

Each job has a class attribute for execution and another for output.
Input class is specified by an' alphabetic character, A through Z, or by a
number, 0 through 4. When specified as' a number, input class is
partition dependent; 0 to 4 correspond with partitions BO to F4,
respectively. Output class is specified by an alphabetic character, A
through Z. Input and output classes are completely independent of each
other. "

Chapter 8: Using POWER/VS 8.S

When a partition is started. one to four c1asscis are selected for
. execution in that partition. Classes are prioritized in the same order
they are ~pecified.

Priority. Besides the priority determined by its class, each job is also
assigned a scheduling priority within its class. Priority is specified as a
digit from. 0 to 9 .. Nine is the highest priorilY~U the priority is not
specified, a default is assigned as defined iri~'the PRI parameter during
POWER/VS generation. Within each input or output queue, queue
entries are ~elected for processing on a first-in, first-out, basis within
priority, within class.

Output segmentation. List or puncR output from user programs can be
q~oken into segments. Printing or punching can then begin bdore
execution of the program is completed; that. is, after the first segment
has been spooled. Segmentation can be implemented in one of three
ways: (1) count-driven segmentation, as specified in the RBS parameter
during POWER/VS generation, (2) data-"driven segmentation, as
specified in the RBS parameter in the LST or PUN statements, or (3)
program-driven segmentation, as forced by the LFCB macro
instruction.

Output limitation. A limit Can be placed on the number of list or punch
records (STDLINE or STDCARD parameter in the POWER macro or

. RBM parameter in the LST or PUN statement) that POWER/VS
accepts from a specific job. When this limit is reached (for example,
1000 Jines have been printed), a warning message is given to the
operator. By setting a limit on the output, for example, you can stop a
program from looping forever.

Output destination. List and punch output can be routed to any terminal
or to the central location by using the remote-id in t'-'e LST and PUN
statements.

Spooling a 3540 Diskette FOe

The]540 as a SYSIN File

POWER/VS supports two modes of input processing for 3540 Diskette meso In
SYSIN mode input from a card reader and a 3540 can be combined into a
single sequential input stream on the spool disk (method 1) .. It is also possible
to read the complete input stream from a 3540 me (method 2). In either case,
multivolume mes are supported. In Data mode input from a 3540 is written
on the spool me exactly as read. JCL and/or JECL statements must be
entered via a card reader.

For 3540 SYSIN files, a reader task will read either 80 or 81 character
records from diskette and put 80 character records onto the spool disk. The
size of the records to be read is obtained from the HDR 1 label on the file
and must be 80 or 81 bytes. Only the last 80 bytes will be copied to the
POWER/VS data file. '

If an 01< $$ RDR statement is read from the diskette,' POWER/VS issues
a message (1 Q901 INVALiD 01< $$ RDR STATEMENT) and flushes to the
next POWER/VS job on the diskette file currently being processed.

8.6 DOS/VS System Management Guide

The 3540 ali a Data File

The SYSIN records can be read only by a user program that is reading
from a card reader that was specified at partition start-up as a unit record
device to be spooled. Because DTFDU cannot be assigned to a card reader,
DTFDU cannot be" used to access these files.

For data files,a reader task can read records of from 1 to 128 characters.
These records are not examined for control statements and are written on
the spool file exactly as read, The data records cannot be read by programs
accessing a card reader. They can only be read by a user program that is
reading from the physical unit specified on the * $$ RDR statement. This
logical unit must be assigned, to a 3540. Either DTFDU or DTFDI can be
llsed to access these files.

Method I

The * $$ RDR statement causes a POWER/VS task to insert information
from a 3540 file into the input being read from the card reader. You do not
need to submit other JECL statements for a job containing a RDR
statement. This statement is ignored in a writer-only partition.

Example 1,' The job control statements are in the card reader, data is on
the 3540. The operator· enters a PSTART command for the card reader
(X'OOC') and input class A: \.

PSTART RDR,OOC,A,OOB

This command informs POWER/VS to start a reader task at address
X'OOC' with the ability to read from a 3540 at address X'OOB' also. Both
input devices belong to the reader task and cannot be used physically by
any other partition or POWER/VS· task until the reader task terminates.
The following cards are in the card reader (X'OOC'):

II JOB EXl
II ASSGN SYS008,X'00B'
II DLBL FILE, 'FILE-ID' "DU
II EXTENT SYS008
II EXEC PROG
* $$ RDR OOB, 'FILE-ID',2
1*
IF:,
The SYSQ08 specification in the / / EXTENT statement is not required if
the symbolic unit was assembled into the DTFDU.

The RDR statement causes the reader task to suspend card reading to
read up to two 3540's of the data file named FILE-ID. Records on the
3540 may be from 1 to 128 bytes long and will not be examined for
control statements by either the reader task or the execution processor.
When. the end of FILE-ID is reached, card reading is resumed.

During the execution of the user program, not all of the FILE-ID
records spooled by the reader task may be read. To prevent the remainder
of the records from being passed to job control as SYSIN data (once the *
$$ RDR statement is reached), any request to the card input spool device
will cause POWER/VS to skip records until the end of the FILE-ID file.

Chapter 8: Using POWER/VS 8.7

Example 2: Some job control statements are i'n the card reader, :additional
job control statements and data are on a 3540 diskette. The· operator enters
a PSTART command for the card reader (X'OOC') and input .class A:

PSTART RDR,OOC,A,OOB

This command causes the reader tas'k to insert 3540 data from X'OOB' into
the input stream on the spool disk when an • $$ RDR statement is
encountered in the card input stream. The following cards are in the card
reader:

. I I JOB EX1

1&
* $$ RDR,'TESTJOB'
II JOB EX2 '

The • $$ RDR statement causes the reader task. to suspend card reading
and read,one diskette of a SYSIN file named TESTJOB from the 3540
specified in the PSTART command (X'OOB'). When the programs are
executing, they must read from the reader spool device, not from a 3540.
The TESTJOB file could contain the following statements, for example:

II JOB ASSEM
II EXEC ASSEMBLY

source code

1&

Method 2

Example: Job control statements and data are both on one 3540 SYSIN
file. The operator enters a PST ART command to start a reader task on a
3540 diskette (X'OOB'):

PSTART RPR,X'OOB',B,"FILE-ID',31

Up to 31 diskettes of the file called FILE-ID will be read. Reading stops
after 31 diskettes or after reading a diskette that does not have a
continuation indicator in its label. One 3540 file may contain many
DOS/VS jobs and! or POWER/VS jobs. Jobs with no class spedfication in
their ... $$ JOB card, or, for which no CTL statement is in effect are put
into input class B.

At program execution time, the records will only be passed to programs
reading from a card rt~ader that has. been specified as the reader spool
device at partition start-up time.

8.8 DOS/VS Syste<m Management Guide

. \

Using PO'WER/VS RJE

RJI: Line States

For POWER!VS Remote Job Entry operation you need to have generated
POWER/VS with the ch~racteristics of each line for the IBM 2770, IBM
2780, or IBM 3780 terminal arid with the characteristics of each RJE user.
Refer to DOS/VS System Generation for further details.

RJE lines are normally started at the same time as POWER/VS
start-up. The remote· terminal <>perator uses the SIGNON command to
make the connection between his terminal and the central system.

The system can be protected against unauthorized access through the
use of the password in the SIGNON command. This password must match
the password set on the line, by the central operator. If no password was
specified by the central operator when he started the line, the default
password, if defined during POWER/VS generation, is set on the line. Only
if neither password is ~et on the line can. the remote operator sign on
without specifying the password operand in the SIGNON command.

A description of the various RJE line states may be helpful to you in
understanding POWER/VS RJE operation. The states reflect the
appearance an RJE line may give to the central system. A specific line is
only in one state at a time. The transition ~etween states is controlled by
the remote terminal through. various terminal commands sent to the central
system or by the central operator commands. See Figure 8.2.

Figu~e 8.2. Transition .between RJE Line States

When one of the commands representing a valid change of state is received,
operation proceeds in the new state until another valid change occurs.
Invalid requests are· not serviced and an error message is returned to the
terminal that made the request.

After startup procedures have been completed at the central system,
POWER/VS RJE is ready to service the remote terminals.

Chapter 8: Using POWER/VS 8.9

Shutdown Procedures

Not-Supported State
During POWER/VS generation, no PLINE macro was defined for this line.
The PLINE macro defines the hardware characteristics of an RJE line, that
is, the transmission control unit. One P'LINE macro. must be specified per
line. If the PLINE macro was not specified, this means that this line address
is not known to POWER/VS RJE.

Not-Initiated State
An RJE line is in the not-initiated state when it has not been started by a
PST ART command.' POWER/VS RJE only accepts a PST ART command
from the central operator. The PST ART command causes the terminal to
reach the inactive state, that is, interrupts "from this line will be handled.

Inactive State
Inactive RJE lines are logically" attached to POWER/VS RJE. In this state
the central system is conditioned to receive a SIGN ON command, which
identifies the terminal to the central system and places the line in the
processing state, or to receive from the central operator a PSTOP
command, which places the line in the not-initiated state. If an invalid
SIGNON command is sent from an inactive terminal, it is rejected, and an
error message is returned to the terminal.

Processing State
The pro.cessing state which is reached by the SIGNON command, indicates
that a user wants to access POWER/VS RJE, and defines the beginning of
a user sessio.n. Queue entries and terminal commands are acceptable input
from the terminal. [n addition, the central system transmits messages and
user output.

Normal shutdown procedures are initiated when POWER/VS is no. longer
required at the end of a day or when jobs that may not execute under
POWER/VS have to be run. The PEND command causes all active "
POWER/VS tasks to co.mplete processing their current queue entries and
then stop. POWER/VS controlled partitions are released as SOOJll as the job
corresponding to the current input entry is terminated. After all supported
partitions are released and all reader/writer tasks have stopped, the
POWER/VS partition is released, and the system is restored for normal
DOS/VS operation.

Emergency shutdown procedures (lre initiated when an errol' requires an
immediate halt. In this case, use the KILL option of the PEND command.
All POWER/VS activity will be stopped immediately, and the POWER/VS
partition can be dumped o.ptionally.

The POWER/VS partition cannot be canceled by using the shtndard
DOS/VS CANCEL co.inmand as Io.ng as POWER/VS is active.

8.10 DOSiVS System Management Guide

Part m: D~esigning Programs

This section addresses the system programiner and application programmer.
It gives some programming considerations for designing virtual-mode·
programs and shows how to use many of the macros and special features of
DOS/VS. This section consists of two chapters:

Chapter 9: Designing Programs for Virtual-Mode· Execution provides
considerations for designing programs and using the Olacros· especially
provided for the virtual-mode environment. This chapter also describes how
to code for the shared virtual area and the programm~ng conventions for a
POWER/VS user exit routine. .

Chapter 10: Uving the Facilities and Options of the Supervisor
describes how user programs can communicate with one another and with
the supervisor. This chapter discusses how. programs can take advantage of
user exit routines, the time-of -day clock support, cancel and checkpoint
services, job accounting interface and POWER/VS job accounting.

Cb.apter 9:: Designing Programs for Virtual-Mode Execution

This chapte'r addresses system programmers and application programmers
who are concerned with designing programs for the DOS/VS environment. ,
This ch~pter contains information that may improve the efficiency of those
programs that exceed the amount of real storage available to them at any
one time. It is recommended 'that these techniques be considered as new
programs are written and as old programs are revised. The chapter also
Contains information on the use of certain asselIlbler language macro
instructions that are provided especially for virtual storage. Programming
conventions for the shared virtual area and a POWER/VS user exit routine
are also discussed.

Programming Hints for Reducing Page Faults

It is desirable to spend some extra programming effort to tune virtual-mode
programs that are used frequently or {hat require long periods of processing
time so that they will ca,use fewer page faults during execution. Page faults
generally occur when the size of the virtual-mode program exceeds the
number of page frames available to it during execution. Efforts to reduce
the number of page faults occuring in a program generally center around
efforts to reduce the -size of the working set of the program. The term
working set is one that recurs often'in discussions of virtual storage
systems.

The working set of a program is the minimum number of pages (not
specific pages) which must be in real storage in order for a program to

, execute efficiently. In other words, the working set of a 'program is the
minimum number of page frames that the program requires for efficient
execution. The supervisor_determines which specific pages should be in real
storage at any particular time.

What does execute' efficiently mean? Essentially, this means that a
program will not execute appreciably slower than if the entire prog~am were
in real storage during its' entire execution.

Although the following section does not tell you how to determine the
size of the working set, it does provide techniques for reducing its size.

Gen«~ral Hints for Reducing the Working Set

You should especially try to reduce the size of the working set of progratps
that you use frequently or that execute for long periods of time. Your
programming efforts are more, worthwhile for such programs than for
relatively short and less frequently-used programs.

There are three general rules to keep in mind when working to reduce
the working set. The first is locality of reference, that is, instructions and
data used together should be in storage riear each other. Second is
minimum real storage. In otiJer words, the amount of real storage

Chapter 9: Designing Programs for Virtual-Mode Execution 9.1

necess,ry for a program to do something should be kept as low as possible.
Third is . validity of reference, that is, referenc~s should be made only to.
data which will actually be used.

The chief means of achieving locality of reference is to make execution
sequential whenever possible, by avoiding excessive branching.

A program that executes sequentially normally requires a partition
larger than the same program when it does not execute sequentiallly. For

. example; the functions of a section of code' repeat themselves several times
. throughout the .logic of your program. You are tempted to write this code

once and branch to it whenever necessary, but branching violates ,the
principle of locality of reference. Branching may cause more pagc~ faults the
program incurs than would coding the routine in Ii'ne each time it is used.
Also, it is easier for someone else to fol,ow the logic of a program which is
written to execute sequentially.

Locality of reference can be achieved only to a limited 'extent by
programs written in a high-level language. .

Elements in arrays in FORTRAN or PL/t can be referred to in the
order in which they appear in storage.ln FORTRAN, for examplle, arrays
are ordered by columns. The elements of the array DIMENSION (2,2,2)
are arranged as follows in contiguous. virtual storage locations:.

(1,1,1)
(2,1,1)
(1,2,1)
(2,2,1)
(1,1,2)
(2,1,2)
(1,2,2)

. (2,2,2)

For array structur~ of other compilers, r~fer to the appropriate
programming language reference manuals.

A routine which processes all the clements of such an ~rray should
refer to them in this order. If only certain elements of an array are
processed, the elements should be arranged in the order in which they are
to be processed. If arranging an array in a certain manner causes. it to be
processed advantageously one time, but disadvantageously another time,
you should consider writing two arrays, even at the cost of additional
virtual storage.

9.2 DOS/VS System Management Guide

Another good practice to help reduce paging is to not initialize variables
until just before they. are to be used. For example in PL/I instead' of the
following:

use:

DCL A FIXED INIT (10);

DO B=l TO 100;
A=A+B;
END;.

DCL A FIXED;

A=10;
DO B=l TO 100;
A=A+B;
END;

In the first method of coding, PL/I initializes the. automatic variable at the
beginning of execution. The second method of coding does not reqnire the
page containing A to be in real storage until just before A is used. . .

An important help in reducing the· amount of real storage rreeded for
exe~ution is to remove coding· which is used for errors or other unusual
occurrences. If, for example, the main routine contains code for conditions
that orily occurS % of the time,. by removing this error code and making it
into a separate section of code you can reduce the amount of real storage .
necessary for 95% of the processing.

Frequently-used subroutines shoqld be loaded near each other. Because
of their frequent use, these routines tend to be in real storage almost
continuously. If they are· scattered over several pages, each of these pages
will need to be in real storage most of the ti~e, thus increasing the size of
the working set. By loading these routines near each other, you reduce the

. number of pages required in real storage at anyone time.

Subroutines should be designed to do as much processing as possible .
whenever they are called. It is better to duplicate some code from the
calling routine in the called routine in order to avoid switching back and
forth between routines. One technique for accomplishing this is to have the
calling program pass several parameters to' the subroutine each time a call is
made, rather than .passing· one parameter at a time and making several calls.

Data and Constants in Assembler Language Programs

You should keep frequently used data and constants near each other in.
storage, and near the instructions which use them. This contrasts with the
traditional practice of having one area at the end of the program reserved .
for all the data areas and constants. By the same token, seldomly used data
should be separated from the frequently used data and placed with the·
routines which use it. .

Avoid, if possibl.e·, using chains which must be searched each time a
data item is required. If chains are unavoidable they should be kept in .3

compact area of storage. This may result in some wasted storage but will be
better than searches of large areas' of storage.

Chapter 9: Designing Programs for Virtual-Mode Ex~cutjQn 9.3

\

You should try to keep code that can be modified and code that cannot
be modified in separate sections of a large program. This will reduce page
traffic by reducing the number of pages that are changed. Also, try to
prevent I/O buffers from crossing page boundaries unnecessarily. Check
the assembler listing and the linkage editor map to determine where 2K
boundaries occur in your programs.

Using Virtual Storage Macros

Fixing Pages in Real Storage

The macros designed for use by virtual-mode programs, which are discussed
in this section, perform the following services:

influence the paging mechanism in order to reduce the number of page
faults, to minimize the page I/O activity, and to control the page traffic
within a specific partition.

fix pages in real storage (PFIX macro) and later free the same pages
for normal paging (PFREE macro).

determine the mode of execution of a program (RUNMODE macro).

In order to use these macros you must be programming in assembler
language or, if your program is written in a high-level language, you must
write an a~sembler subroutine to accommodate them. Refer. to DOS / VS
Supervisor and I/O Macros for a complete description of the formats of
these macros. .

In DOS/VS parts of virtual-mode programs must be in real storage only at
certain times. These parts include not on1y the instructions and data being
processed at anyone moinent by the CPU, but also data areas for use by
channel programs. Instructions and data are always in real storage when
being used. Because of the nature of I/O operations, the data areas for
these operations could be paged out during the I/O operation if something
were not done to keep them in real storage during the entire operation. The
DOS/VS supervisor fixes I/O areas in real storage for the duration of the
1/ Q operation.

There are other parts of a program, however, which cannot tolerate
paging, and these parts are not necessarily kept in storage by the system.
For instance, I/O appendages and programs that control time-dependent
I/O operations cannot tolerate paging. A familiar example of the: latter is a
MICR (Magnetic Ink Character Reader) stacker select routine. If a page
fault were to occur during the execution of one of these programs, the
results would be unpredictable. A page fau~t in one of these programs can
be avoided by fixing the affected pages in real storage (using the PFIX
macro).

The supervisor fixes pages for I/O operations temporarily anywhere in
the page pool. The pages that you fix by the PFIX macro, however, are
fixed in the storage allocated to the corresponding real partition. Only as
many pages may be fixed by a program at anyone time as there are page
frames in the corresponding real partition. This is .done to prevent a loop in
one program from fixing all the pages in the system, and to enable other
programs to issue a PFIX macro concurrently.

9.4 DQS/VS System Management Guide

The PFIX macro fixes the pages in rea) storage, regardless of whether
these pages are stored iii contiguous page frames or not. The supervisor
keeps a count of the number of times a page has been fixed without being
freed. A page that is fixed more than once without having been freed (via
the PFREE macro) is not brought in a second time and given another page
frame. Instead, the counter for that page is just increased by one and the
page remains in the same page frame. If more than 255 PFIX requests were
issued for the same page (without having issued PFREE requests in the
meantime), the issuing task is cancded.

The PFREE macro does not directly free a page for paging out, but
each time it is issued, the counte'r of fixes is reduced by one. As soon as
the counter Jor a page reaches zero, the page can be paged out. At the end'
of a job step, all pages that have been fixed during the job step are freed.
The PFREE macro should DC used as soon as possible to make the page
frames available to all programs running in virtual mode.

Figure 9.1 is an example using the PFIX arid PFREE macros. After the
execution of a PFIX macro, a 'return code is given in register 15., The
meanings of the return codes are:

o - The pages were fixed successfully.

4 - You requested more page frames than can be contained in a real
partition of the size 'you are working in.

8 - Insufficienffree page frames were available. '

12 - You specified invalid· addresse~ in your macros.

Note in the example how the return cope can be used to establish a branch
to parts of the program that handle these specific conditions.

FIXER

HERE

ARTN

ARTNEND
NOPAGEq

CANCL
WAIT

END
OPCCB
OPCCW
MSG-

PFIX
B
B
B

''8

ARTN,ARTNEND+2 FIX ARTN IN STORAGE
*+4(15) BRANCH ACCORDING TO RETURN CODE
HERE CONTINUE IF OK
NOPAGES GO TO CANCEL IF PART TOO SMALL
W1\IT GO TO WAIT UNTIL PAGES FREED

BAL 14,ARTN GO TO ARTN
PFREE ARTN,ARTNEND+2 FREE ROUTINE AFTER EXECUTION

(time dependent processing which cannot be
paged out during execution)

BR
LA
EXCP
WAIT
CANCEL

R14 R:ETURN
R 1 ,OPCCB
(1) , WRITE MESSAGE TO OPERATOR
(1) WAIT FOR COMPLETION
ALL

(routine to free other pages)

EOJ
CCB
CCW
DC
DC

SYSLOG,OPCCW
X'09',MSG,X'20',~1
CL32 'AM CANCELING PLEASE ENLARGE REAL',
CL29' PAI~TITION AN'Q RESTART THE JOB' ~

Figure 9.1. PFIX and PFREE'Examplc

\ Chapter 9: Del;jgning Programs for Virtual-Mode Execution 9.5

Determining the Execution Mode of a Program

Releasing' Pages

Forcinl~ Page-out

Advancing Page-in

Balandng Teleprocessing

You may have a program that must do different processing'dependingupon
what its execution mode is. It may ,be itnpractical to have two separate '
programs cataloged in the core image library,' one program ,for real mode
and another program for virtual mode. The RUNMODE macro ~an be issued
during the execution of the program to inquire which mode of execution is
being used. A return code is issued to the program in register 1.

. With the RELPAG macro,. you inform the page management routines that
the contents of one or more pages is no longer required and need itot be
saved on the page data set. Thus, page frames occupied by these released
pages can be claimed for use by other pages, and page I/O activity is
reduced.

The FCEPGOUT macro is used to inform the page management routines
that one or more pages will not be needed until a later stage of processing.
The pages are given the highest page-out priority, with the result that other
pages, which may be needed immediately, are ~kept in storage. Except when
the RELPAG macro is in operation, the contents of any pages written out

, are saved.

The PAGEIN macro allows you to request that one or more pagl!S be paged
in in advance, in order to avoid page faults when the specified pages are
needed in real storage. If the specified pages are already in real storage
when the macro is issued, they are given the lowest priority for page-out.

The TPIN macro signals the DOS/VS supervisor that an immediate demand
for system resources is to be made by the teleprocessing application, for
instance, when a message has arrived. After processing is completed,

. ,TPOUT informs D9S/VS that the teleprocessing application has. no further
, proces~ing to do for the time being, and that the system resourc(~s that were
exclusively used for teleprocessing should be released. Failure to issue the
TI'OUT macro cari cause serious performance degradation in batch
processing.

It is not recommended that you use TPIN/TPOUT macros in 'your
teleprocessing application programs. Use them, instead in the
telecommunications access' methods and data base/data communication
interface programs such as the IBM program product CICS/VS. The latter,
when running under DOS/VS,supports the TPIN/TPOUT interface with
the supervisor. Refer to DOS/VS Supervisor and I/O Macros for further
details.

9.6 DOS/YS System Management Guide

Coding for the Shared Virtual Area

Besides accommodating the system directory list (SDL), and perhaps t~e
VSAM phases with their ~ssociated GETVIS work area, the shared virtual
area (SVA) contains phases that can be used concurrently by more than
one partition. The SVA phases must be fully reenterable and relocatable;
code that modifies itself win cause a protection check when executed from
the SV A. This section presents some advice on coding phases to use SV A
facilities and suggests some standards for base-register usage.

The basic assumptions for coding an SV A phase are:

The reenterable code must not modify any storage within its own
. .

storage area.

The phase can modify registers only if it ~aves and restores them for
each user.

A user-specified work area (within the calling partition) must be
provided for storing registers and for any storage modifications:

Suggested register conventions:

Use register 12 as the base register in both the main routine and the
reenterable code.

Use register 13 as base for the working storage area. It is the
responsibility of the main routine to provide addressability to the work
area by loading register 13; the reenterable routine must not modify
register 13. The easiest· way to address the working storage area in the
reenterable code is by a DSECT that defines the fields of the work area
and a USING DSECTNAME,13. In this way symbolic addressing can
be used.

Use CALL, SAVE, and RETURN macros. Since· register 13 is the base
register, SAVE.(14,12) and RETURN (14,12) result. Use register
notation for CALL, for example, CALL (I5) Before issuing the
CALL, load register 15 with the transfer address. Register 14 will
always contain the return address. The standard is thus established of
register .t 5 for calling and register ·14 for returning.

Switches, and other areas that may be modified, can be placed in the
working storage area using base register t 3.

Figure 9.2 illustrates the suggested conventions: MASTER is the main
routine, SLAVE is· the SV A phase contained in the SDL.

Chapter 9: Designing Programs f()r Virtual-~ode Execution 9.7

MASTER CSECT

SAVE
WOR-KAREA
SWITCH
TECB
FIELDA
FIELDB

SLAVE

EXIT"

" DATAl
DATA2

BALR
USING
LA
LOAD
LR
CALL

EOJ,
OS

DS
DC

DS
DS
DS
END

CSECT
SAVE
BALE
USING
USING
LM
MVC
MVC
CLI
BE
SETIME
WAIT

XI
RETURN

" DC
DC

L'l'ORG
WORKAREA DSECT
FIELDC DS
FI'ELDD DS

END

BASE,O
*,BASE
l3,SAVE
SLAVE,WORKAREA+1 CANCELS IF SLAVE NOT IN ClL
15,1
(15),(SWITCH,TECB,FIELDA,FIELDB,WORKAREA)

90
60
XL1 '00 I

CL4
CL15

-CL11

(14, '2)
BASE, 0
*,BASE
WORKAREA,6
2,6,0(1)
O(15,4),DATA1
O(11 ,5), DATA2
O(2), X ',FF'
EXIT
3, (3)
(3)

0(2),X'FF'
(14, 12)

SETIME ALTERS THE TECB

CL15 1 THIS IS FIELDA'
CL11'TH~S IS FIELDB'

3D
3D

Figure 9.2. Example of Conventions for SV A Coding

9.8 DOS/VS Sys.tem Management Guide

Coding Conventions for ~OWER/VS User Exit Routines.

POWER/VS can be generated to suppott a user exit during the reader'
routine (refer to Input Options in the, section Generating POWER/VS in
Chapter 3: Planning the System).In addition to being relocatable and
reentcrable, your routine must ,conform to certain ot~er programming
.conventions. .

Avoid altering the cOl~tents of registers I 10, 11, 12, or 13; these
registers are 'used by POWER!VS. Register 11 points to the task control
block and can be used to identify the task.

When POWER/VS is started, the ro~tine specified in the RDREXIT
parameter of the POWER macro is loaded into the POWER/VS partition.
The user exit routim; receive~fcontrol via a BALR 14,1.5 after each
DOS/VS job control statement or POWER/VS job entry control statement.
The address of. the statement is passed in ,register 0 and the length of the
statement is passed in register 1. Your routine must return control to the
POWER/VS reader routine by issuing a BR 14 instruction. Between entry
and exit from your routine, no ophation may be performed tQat might·
cause a wait condition for the POWER/VS partition.

When returning to the -POWER/VS reader Jask, a r~turncode must be
supplied in register is. The return codes ~ave the foJlowing meaning: I

Return Code Meaning

X'OO' N~rmal; the current statement 'Yill be processed by
POWER/VS.

"

X'04' Delete; the current statement will be ignored by POWER!VS;
the next statement will be re,ad.

X'OS' .

X'OC'

X'IO'

Insert; the new s~atement provided by' the user will be .
processed by POWER/VS and the odginal statement will be
returned to the user after processing the inse'rted stateinent.
The address of the statement to be inserted must be pas~ed in
register 0 and its length in register 1. Any number' of
statements' may be inserted.

Flush the DOS/VS job.

Flush the POWER;VS job. (1)0 not use this return code for
the first statement of the POWER/VS job.)

Any number of statements can be inserted. The original statement is
presented again after each inserted statement has, been processed. Wh~n all
the insertions have been made, a return code of X'OO' or X'04' is placed in
register. 15 to accept or delete the original statement.

If ACCOUNT=YES was specified during POWER/VS generation, the
field number of records read in the reader account record will include the
records added or deleted through the user exit routine.

Chapter 9: Designing Programs for Virtual-Mode Execution 9.9

Cba,pter 10: Using the Facilities and Options of the Supenisor

DOS/VS provides a variety of standard and optional services for programs
to communicate with each other, with the system, and with the operator.
The most prominent of these are: . .

Direct linkage between programs
Timing features
Linkages to user exit routines
Checkpointing facility
Job accounting interface feature
POWER/VS job accounting
Storage dump facility

Judicious use of these services enhances the benefits to be obtained from
computer operations.

Dirt~t Linkage between Programs

Any user. phase or routine can communicate with another phase or routine
in the same partition by direct linkage, and, in multitasking (asynchronous
processing), the main, task and subtasks within a partition can communicate
with each other;

For efficient virtual mode processing under DDS/VS with
multiprogramming support, a modular program structure is recommended.
Ideally, 'within a module the instructions should be sequential.

Sequential execution of instructions moderates paging activity necessary
for the programs to proceed and thus promotes system throughput.

Intedanguage Communications

Every programming language provides for communicating and passing
control between modules written in the same language or in Assembler
language. Communication is also possible between any modules written in
languages that use compatible linkage conventions. Transferring data
between high-level languages is usually difficult, however, because of
differences in data formats and storage allocations.

The PL/l optimizing compiler (an IBM program product) provides for
communication between. programs written in PL/l and others written in
COBOL or FORTRAN.

U§er Program Switc~ Indicators (UPSI)

A user program switch in the partition communication region of. the
supervisor can be u~ed to execute a special routine in a program, or to
cause a module to call another module for special processing. A typical
application enables a program that regularly processes certain standard data
to do some special processing pe.riodically. The special processing routine
can be entered by using a program switch that is set by the UPS I job
control statement as illustrated by the assemble,r language example in Figure
10.1.

Chapter 10: Using the Facilities and Options of the Supervisor 10.1

Timing Features

/ / UPSI-

COMRG
TM
BNO

SPECIAL

00000001 SET SWITCH

GET COMRG ADDRESS INTO REG 1
23(R 1), X' FF' TEST UPSI FOR ANY BIT SErr ON
SPECIAL IF NO BIT'ON NORMAL PROCESSING

-------~~---------------------------

FlgliII'e 10.1. Setting and Testing UPSI

Note. that the UPSI job control statement is included only when special
processing is required. For optimal processing efficiency, the type of routine
entered at the label SPECIAL depends on the amount of special processing
and on what options the system supports. It could be the special processing
routine directly or it could be a routine to load and enter a new phase or,
in multitasking, a routine to attach a subtask.

Also, in this· example, without the UPSI job control statement the
special routine will never be entered because the UPSI byte is set to all
zeros when a JOB or / & statement is encountered, but the special routine
will always be entered when any UPSI bit is set to 1 by an UPS!
statement.

DOS/VS provides two unrelated optional timing features, both olf which use
hardware facilities that are standard in any System/370 CPU:

1. The time-of-day (TOD) clock is used to determine the current time.

2. The interval timer (IT) which enables a time interval in seconds to be
preset so that a program can be notified when the time interval has
expired.

Using the Time of Day. Clock

The time-of-day (TOO) clock is a standard high-resolution System/370
hardware facility. Any program executing under DOS/VS can obtain the
time of day. Two methods are available, the first of which requires the
optional supervisor support for the GETIME macro (TOD= YES specified
in the FOPT macro at system generation time): The methods are:

1. Issue a GETIME macro. This returns the time of day in hours., minutes,
and seconds, or as a biliary integer value in seconds, or as a binary integer
in units of 1/300 seconds, depending on the optional operand specified.
For details of this method, refer to DOS/VS Supervisor and I/O
Macros.

10.2 DOS/VS System Management Guide

Intel'Val Timer

2. Issue a STCK instruction. This stores the high-resolution time of day
value at a specified address in the program's partition. A very accurate
real~time . interval measurement is facilitated by.issuing this instruction
at the beginning and again at the end of a routine with all pages of the
routine (including the STCK instructions), and all pages containing
referenced addresses, being previously fixed in real storage. Any
interrupt that occurs during an interval is included in the measurement.

Figure 10.2 illustrates the use of the STCK instruction and a' typical routine
to calculate the time interval.

STCK START STORE THE STARTING TIME
BEGIN (Routine to be timed)

1

STCK FINISH STORE THE FINISHING TIME
BR R14 RETllRN TO NORMAL PROCESSING

* TIMER ROUTINE
TIME LM R2,R3,FINISH GET FINISHING TIME

SL R3,START+4 S'UBTRACT RIGH'J;'-HAND HALVES
BC 3,$UBLEF'l' BRANCH IF CARRY
BCTR R2,O SUBTRACT ONE

SUBLEFT S R2,ST[\RT SUBTRACT LEFT-HAND HALVES
SRDL R2,12 SHIFT'TO ~ MICROSECONDS
STM R2,R3,TIMEIN~ SAVE THE TIME INTERVAL

END EOJ
'START DS D
FINISH DS D
TIMEINT DS D

END

Figure 10.2. Metbodfor Accurate Measurement of a Real Time Interval

Interval timer support may be generated optionally for all p~ograms
(including sub tasks if multitasking is supported) in all partitions.

Any program (or task) can set a real time interval, in seconds, by
issuing a SETIME macro. Expiration of the specified interval causes an
external interrupt. The maximum valid interval is 55918 seconds (1S' hours,
31 minutes, and 58 seconds). When the interrupt occurs, the program that
issued the SETIME macro may continue processing, another task may be

. given 'control if it was waiting on the same event and has higher priority"or
a special user routine may be' entered if linkage has been established by· a
STXIT (IT) macro. If no task is waiting on the event and no linkage has
been established, the interrupt is ignored.

Chapter 10: Using the Facilities and Options pf the Supervisor 10.3

Waiting JFor a Time Interval to Elapse.

Getting the Unexpired Time

Wh{m processing is dependent on the expiration of a time interval, aWAIT
macro. will suspend processing until the interval set by a SETIME macro
has elapsed.

The SETIME macro passes to the supervisor the name of the timer
event control block (TECB) to "be posted when the specified interval has
elapsed. The WAIT macro specifies the same TECB and passes control to
the supervisor which, in a multiprogramming environment, allows :a task in
another partition to execute in the meantime. When the timer interrupt
occurs, the event bit in the TECB is turned on and any task that has issued .
aWAIT macro specifying this same TECB is made ready to proc{~ed; if
more than one task, then the task having the highest priority is dispatched.
Figure 10.3 illustrates a program that waits for a time .interval to expire.

START 0

TEeB1 TEeB

STIMER SETIME 30,TEeB1 START 30 SECOND INTERVAL

(normal processing not time-dependent)

WAIT TECB1 WAIT FO~ TIMER END'

(time~dependent processing)

END ----_._------------------_._-----'

Figure t 0.3. Skeleton Example of a Program in which ~ 30-secOllld Interval
Must Elapse before Special Processing is Performed

After a SETIME macro has been issued, any program or task ex{~cuting in
the same partition can obtain the unexpended part of the interval by issuing
a 1TIMER macro. This macro returns the residual number of sec:onds
without disturbing the interval timer function;

If the 1TIMER macro includes the operand CANCEL, a previously
issued SETIME macro is canceled.

10.4 DOS/VS System Management Guide

Linl~ages to User Exit Routines·

Through the STXIT macro instruction, linkage can be established to one or
more user routines if the appropriate FOPT macro parameter was specified
to generate the support in the supervisor.

The first operand of a STXIT macro instruction informs the supervisor
where to store the special routine entry point address that is specified by
the second operand. When the specific condition arises, the supervisor
passes control by entering the routine at that address. The conditions,
STXIT macro first operands, and the special user-written routines entered,
are· shown in the following table:

Condition STXIT Operand User Routine

Interval Timer External IT Interval Timer Exit J

Interrupt

Abnormal Termination of AB Abnormal Termination Exit
Problem Program

Program Check Interrupt PC Program Check Exit

Operator Communications OC Operator Communications Exit
Interrupt

Intel'val Timer User Exit. Routine

If sp,ecial processing is required when a specified time interval has elapsed,
the STXIT IT macro can be used to establish linkage to the 'appropriate
routine and subsequently, when this routine completes the special
processing, an EXIT macro to return to the next sequential instruction in
the main routine.

Note: If the program issuing the STXIT IT macro is a VTAM
application program, the exit will not be, taken while VT AM is processing
any request on behalf of the application program. The exit will' be taken
when VT AM has completed the program's request.

Figure 10.4 shows' the application of a STXIT IT macro to enter a
checkpoint routine every half hour during processing. Notice· that in this
example the user's interval timer exit routine need not be fixed in real
storage; since there is no real-time dependency, the results cannot be
influenced by paging activity.

*The IPL USCI' exit and the job control lIser exit are described separately later in this
chapter.

Chapter 10: Using the Facilities and Options of the Supervisor 10.5

TIMECHKSTART 0
STXIT IT,TIMINTR,TIMSA
MVI STATSW,X'80'
SETIME 1800

SET UP LINK TO-TIMER RTN
SET SW FIRST TIME THROUGH

_ TAKE CHCKPNTS EVERY 30 MIN

PROCESS (perform normal proc~ssing)

CLI
BNE
B

STATSW,X'40'
PROCESS
CHKPTR

* TIMER INTERRVPT ROUTINE
TIMINTR MVI STATSW,X'40'

EXIT· IT

* CHECKPOINT ROUTINE

CHECK FOR TIMER INTERRUPT
IF NOT CONT PROCESSING
IF SO TAKE CHECKPOINT-

SHOW INTERRUPT
RETURN TO INTERRUPTED PNT

CHKPTR (do necessary process~ng be~ore taking checkpnt)

CHKPT_SYS001,RSTRTR""DS~FLE TAKE CHECKPOINT
LTR RO,RO CHECK IF CHECKPOINT OK
BE ERROR GO TO ERROR RTN IF NO'l'
ST RO,CHKPTNR PUT CHKPT NUMBER IN MSG
LA R 1 ,MSG 1 GET ADDRESS OF RIGHT MSG
STCM Rl,7,OPCCW+l PUT MSG AD DR IN CCW
LA Rl,OPCCB MESSAGE CCB
EXCP (1) WRITE MESSAGE TO OPERA.TOR
WAIT (1) WAIT FOR COMPLETION
MVI STATSW,X'80' RESET CHECKPOINT SWITCH
SETIME 1800 RESET TIMER
B PROCESS RESUME PROCESSING

* RESTART ROUTINE
RSTRTR STXIT IT,TIMINTR,TIMSA RESTORE TIMER INTERR LINK

SETIME 1800 SET TIMER

(restore everything s'aved in checkpoint)

B PROCESS

* MESSAGE ROUTINE FOR INVALID
ERROR LA Rl,MSG2

-STCM Rl,7,OPCCW+l
LA R 1 ,OPCeB
EXCP (1)
WAIT (1)
CANCEL ALL

END EOJ

START PROCESSING

CHECKPOINT
GET ADDRESS OF ERR MSG
PUT MSG ADDR IN CCW
LOAD MESSAGE CCB
WRITE MESSAGE TO OPERl\TOR
WAIT FOR COMPLETION
CANCEL PROGRAM

.Figure 10.4. Example of Using the Interval Timer for Taking a Checkpoint Every
Half-hour (Part 1 of 2)

10.6 DOS/VS System Management Guide

* CONSTANTS
TIMSA DS
OPCCB CCB
OPCCW CCW
MSGl DC
CHKPTNR DS

9D
SYSLOG,OPCCW
X'09',MSG1,X'20',80
CL16'CHECKPOINT NR'
F

DC
MSG2 DC
STATSW DS

END

CL60'HAS BEEN TAKEN'
CL80'CHECKPOINT FAILED JOB rs CANCELED'
X

Figure 10.4. Example of Using the Interval Timer for Taking a Checkpoint Every
Half-hour (Part 2 of 2)

Multitasking C'onsiderations

When the supervisor includes interval timer support, the main task and/or
any subtask In a partition may issue a SETIME macro. Each may also issu·e
a STXIT macro to establish linkage to a common user routine provided that·
the routine is reenterable and that each task has its own unique save area.
Figure 10.5 illustrates this principle.

MAINTASK START 0
STXIT IT,STRTER,MTSKSA .
SETIME 300 MAIN TASK TIMER TO 5 MINS
ATTACH SUBTASK1,SAVE=SAVl
ATTACH SUBTASK2,SAVE=SAV2

* IT USER EXIT ROUTINE
STRTER, (reenterable routine)

EXIT IT

SUBTASKl STXIT IT,STRTER,STSK1SA USE SAME EXIT ROUTINE
SETTIME 400 SET TIME INTERVAL

DETACH

SUBTASK2 STXIT IT,STRTER,STSK2SA USE SAME EXIT ROUTINE
SETIME 500 SET TIME INTERVAL

TTIMER CANCEL CNCL INTRVL THIS TSK ONLY

DETACH

MTSKSA DS 9D
STSK1SA DS 9D
STSK2SA DS 9D
SAVl DS 9D
SAV2 DS 9D

•• 'igure 10.S. Skeleton Example of Multitask Linkage to a Common IT Exit Routine

Chapter.lO: Using the Facilities and Options of the Supervisor 10.7

Abnomlal Termination User. Exit Routine

The STXIT AB macro establishes linkage to a user routine that is entered
whenever the issuing program is to be terminated for any reason other than
a normal end-of-job. The routine entered may do any necessary
housekeeping such as closing LIOCS files and writing messages before the
job step ends, but cannot attempt recovery from the causative error. It
should end by issuing a CANCEL, DETACH, DUMP, JDUMP, or EOJ
macro.

Program Check User Exit Routine

. The linkage established by the STXIT PC macro instruction provides entry
to a user routine for handling any program check interrupt that is not
caused by a page fault (page or segment translation exception or a
translation specification exception). The routine can analyze the interrupt
status information and the contents of the general registers stored in the
user's save area.

If an error condition caused the interrupt, this can be correct'ed or
ignored (depending on the severity of the error) ano control returned to· the
interrupted program, or termination of the program may be requested.

Note: As with the interval timer exit, the program check exit is not
taken if the program check occurs while VT AM is processing a VT AM
request issued by the program. When VT AM has completed processing the
request, the exit will be taken.

DIVTEST CSECT
STXIT PC,PCRTN,PCSAV

LM
D

R2,R3,DIVIDEND
R2,DIVISOR

* USER'S PROGRAM CHECK ROUTINE
PCRTN SR R5,R5

CL R5,DIVISOR
BNE CANCELR

,.
SET UP. PROGRAM CHECK LINK

LOAD FOR DIVIDING
DIVIDE

CLEAR REGISTER 5
CHECK FOR ZERO DIVISOR
IF' NOT CLEAR FILES & CNCL

(special recovery routine)

EXIT PC
CANCELR PDUMP PCSAV,PCSAV+71

RETURN TO NORMAL PROC
DUMP SAVE AREA

(close files and do other housekeeping)

CANCEL ALL

Figure 10.6. ,Skeleton Example of a Routine for Processing a Program (~heck
Caused by Zero Division

10.8 DOS/VS System Management Guide

Supervisor support for entering a user's program check routine is useful
when it is known that one or more programs may be checked by 'processing
errors that are insignifica'nt to the results or can easily be corrected. Figure
10.6 shows a routine for recovering from a program check caused by
attempting to divide by zero. In this example, any other causative errors
result in the user' save area being dumped before the job is terminated.

Op.~rator Communications User Exit

A direct communications link between the operator and a program can be
established by issuing a STXIT OC macro instruction. In a multitasking
environment, the STXIT OC inacro instruction may be issued only by the
main task in any partition. The operator procedure to initiate
communication depends, however, on whether the program executes in the
background or in a foreground partition.

For a program in the background partition, the operator initiates
communication by pressing the external interrupt key. This activates the
attention task which sets the linkage to the user's operator communications
routine. This routine is then entered instead of returning to the program
that issued the STXIT OC macro instruction.

For a program in a foreground par~ition, the operator presses the
request key. This initiates an I/O interrupt. In reply to the attention routine
statement READY FOR COMMUNICATIONS, the operator enters MSG
followed by the partition code (Fl, F2, F3, or F4) which sets the linkage to
the user's operator communications routine. This routine is then entered
instead' of returning to the program that issued the STXIT OC macro
instruction.

The operator communications routine may perform any special
processing, a typical application being the taking of a checkpoint record in a
program that has to be canceled in order to start a high-priority job that
has just been handed in; the checkpointed program can then be restarted
later on.

Writjing an IPL User Exit Routine

Before you actually start coding your $SYSOPEN routine, take ac~ount of
any system requirements that should be met at the time the routine is to be
executed. For instance, labeled files that are to be opened need device
assignments and label information in the specific label area. Any routines
called by your routine must be present in a core image library and, if they.
are contained in a private library, assignments for this library must also
have been made prior to IPL.

Moreover, the following conventions must be followed:

Register 15 is to contain the entry point of the routine.

Register 14 is to be loaded with the return address to job control. ,
The format of the phase card must be as follows:

PHASE $SYSOPEN,+[,NOAUTO]

The phase is to be self-relocating.

Chapter 10: Using the Facilities and Options of the Supervisor 10.9

IPLEXIT

BEGIN

INQUIRYD

Figure to.7.

ISEQ

Use .EXCP macros to perform all I/O operations within your routine; any
use of LIOCS or of a DTFPH will destroy the job control program. After
IPL job control executes the exit routine as an overlay phase. In your exit
routine you can issue SVCs and perform I/O operations in user-written
$$B-transient. routines. While the routine is being executed job control is
unable to read any JCL statements. Therefore, if you issue an OPEN to a
labelled device, make sure that labels are present in the standard label area,
the partition label area, or the user label area. Likewise, assignments for the.
specific physical devices must have been made. Code your routine as an
overlay of an existing program phase.' A slot of 4K bytes is reserved for the
exit routine.

Figure 10.7 illustrates a user-written routine that can be entelred once
each time the IPL procedure is performed.

73,80
START '0
USING *,R15 SET BASE
ST R14,RETURN SAVE RETUR!':l ADDRESS
L R 1,20 GET COMRE<J.· ADDRESS
MVC SYSDATE(2),79(R1) GET DAY
MVC SYSDATE+3(2),81(R1) GET MONTH
MVC SYSDATE+6(2),83(R1) GET YEAR
MVC SYSDATE+9(3),85(R1) GET CURRENT DAY OF YEAR
LA R1,LOGCCB GET LOGCCB ADDRESS
LA RO,LOGCCW GET LOGCCW ADDRESS
ST RO,LOGCCB+8 AND STORE IT IN CCB
LA R8,SYSCODE" GET SYSTEM DATE ADDRESS
ST R8,LOGCCW AND STORE IT IN CCW
MVI LOGCCW+7,X'11' SET LENGTH
BAL R14,OUTLOG WRITE MESSAGE
LA RO,PARM LOAD PARAMETER REGISTER
LA R 1 ,PHASNAME LOAD PHASE NAME
SVC 2 OPEN ACCOUNTING
L R14,RETURN LOAD RETURN ADDRESS
BR R14 . RETURN TO CALLER
DC OF'O' ALIGNMENT

IPL User Exit Example (Part 1 of 2)

10.10 DOS/VS System Management Guide

PARM DC C'OPEN' SET ID.
DC X'SOOOOOOO'

PHASNAME DC C'$$BACSEE' PHASE NAME
OUTLOG ST R14,OUTSAVE SAVE RETURN ADDRESS

MVI LOGCCW,X'09' SET WRITE COMMAND
SVC 0 EXCP
TM 2 (R 1), X ' SO ' COMPLETE?
BO *+6 YES
SVC 7 WAIT
MVC MSGAREA,BLANKS CLEAR MESSAGE AREA
L R14,OUTSAVE LOAD RETURN ADDRESS
BR R14 RETURN TO CALLER

,OUTSAVE DC F'O' RETURN ADDRESS

JNLOG ST R14,INSAVE SAVE RETURN ADDRESS
JNLOGl MVI L.oGCCW,X'OA' SET READ COMMAND

SVC 0 EXCP
TM 2 (R 1), X' SO' COMPLETE?
BO *+6 YES
SVC 7' WAIT
TM LOGCCB+L~ , X ' ci 1 ' WAS MESSAGE CANCELED?
BNZ INLOGl YES READ AGAIN
OC MSGAREA,BLANKS CONVERT TO UPPER CASE
L R14,INSAVE LOAD RETURN ADDRESS

'BR R14 RETURN TO CALLER
INSAVE DC F'O' RETURN ADDRESS
LOGCCB CCB SYSLOG,LOGCCW
* SUPVR COMMN MACROS - CCB - 5745-SC-SUP - REL. 2S.0
LOGCCB DC XL2'0' 'RESIDUAL COUNT

DC XL2'0' COMMUNICATIONS BYTES
DC XL2'0' CSW STATUS BYTES
DC. AL1(0) LOGICAL UNIT CLASS
DC ALl (4) LOGICAL UNIT
DC XL1'0'
DC AL3(LOGCCW) CCW ADDRESS
DC B'OOOOOOOO' STATUS BYTE
DC AL3(0) CSW CCW ADDRESS

LOGCCW CCW X' 00' " *, X' 20' ,0
RETURN DC F'O'
MSGAREA DC CL60' ,
SYSCODE DC C'DATE='
SYSDATE DC CL12' /
BLANKS DC CL60' ,
RO EQU 0
Rl EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
RS EQU S
R9 EQU 9
Rl0 EQU 10
R 11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

END BEGIN

Fitrure 10.7. IPL User Exit Example (Part 2 of 2) ,

Chapter 10: Using the Facilities and Options of the Supervisor 10.11

Writing a Job Control User Exit Routine

In your routine you are free to modify the parameters of the job control
statement and to add comments. You must not, however, modify the
operation field of the statement. For example, / / EXEC IBM can be
modified to / / EXEC USER; the operation field (EXEC) cannot be
modified. In your exit routine, do not perform any I/O operations, do not
issue any SVCs or request the system to cancel the job step. The phase
card must be in the following format:

PHASE $JOBEXIT,S[,NOAUTO] ,SVA[,PBDY)

You must provide job control with a return code. If the return code
register contains a value of zero the statement is processed by job control.
If the register contains a value other than zero, the statement is treated as
comments and is not processed.

Your routine must be coded reenterable, SV A eligible, and must reside
in the SVA. Control is passed to it only if the following conditions are met:

If message

lIOOA READY FOR COMMUNICATIONS

is displayed, enter
set sdl=create

$JOBEXIT,SVA

1*
or, if message

TIOOA WARM START COPY OF SVA FOUND

is displayed, depress'end-of-block. Phase $JOBEXIT is contained in the
warm start copy.

Phase $JOBEXIT is executed with a storage protection key of zero.
The code is shared between partitions.

When your routine is entered, the following registers are preloaded:

r
~~g~~~or~~~~~-;; -Ic~ntents ~~_~_e_g_is_te_r~ ____ , ___ . __ _

System Identification Char,acters 'SO~S'

Address- of Partition Communication Region

Address of System Communication Regio(l

3 Job Control Vector Table*

4 Address of Buffer into which job control statement is

14 Return Address to Job Control

15 Entry Point to $JOBEXIT; at completion of the routine it
contains the return code for Job ControL

~~ J
-----,----~ ---- -~-.---- .. -.".--.-..... ---~-~-.- ---------_ .. _. --- -.--.-------.---.-~-- .. _------

Before taking the exit to your routine, job control saves the contents of all
general-purpose registers. These registers will be restored when job control
regains control. Prior to returning, your routine must store a rt:~turn code
value into register 15:

a zero value -

10.12 DOS(VS System Management Guide

requests job control to continue processing the
current statement as normal.

I a non-zero value - requests job control to process the statement as if it
. were a comment, that is, to ignore it effectively.

JOBEXIT START
START BALR

USING
USING
USING
LH
LA
LA
CLC
BE
CLC
BE
CLC
BE
CLC
BE
CLC
BE

SVARETRN XR
BR

* JOB CONTROL
JOBCTLG BAL

LA
LA
CLI
BE

JOBNAMEM MVC

The vector table shows which job control statement will be processed.
by job control. YOli must not modify its contents. Use it for purposes of
comparison only. The size of the buffer into which the job control
statement is loaded (left-justified) is 121 bytes, the first 71 bytes of which
are printed on the console printer. The full length of 121 bytes is printed
on the printer assigned to SYSLST. The / & and End-of-job statements are
not displayed. In the buffer, bytes 11 through 71 may be modified. After
the return code has been set, control is passed back to job controL

'" Vector table Layout
Operation field
Condition' switches
Branch displacement
Phase ID.

7 bytes (Name of job control statement)
1 byte
1 byte
1 byte

Total 10 bytes
Do not attempt io modify the table or modify the . operation field in the
buffer.

Figure 10.8 ,illustrates a job control user exit routine.

o
R15,O
*,R15
VECTORTB,R3
PARTABLE,R5
R6,CPIK(Rl)
R5,JOBPIKOO
R5 , 0 (R6 , R5)
NAMEJOB,VECTOP
JOBCTLG
NAMEEXEC,VECTOP
JOBCTLE
NAMEEOJ,VECTOP
ENDOFJOB
NAMEOPTI,VECTOP
OPTION
NAMEDATE,VECTOP
DATE
R15,R15
R14

G, CHECK THE JOB
R8,JOBCLEAR
R8,8
R6, 7(R4)
O(R6),X'40'
JOBNMALG

, PARTNAME, 0 (R6)

CARD

USE BASE
USE VECTOR TABLE BASE
USE PART. RELATED TABLE
GET PIK OF PARTITION
GET ADDR. OF JOB INFORMATION FIELD
INCREMENT TO CORRECT POSITION
IS IT A JOB CARD?
YES
IS' r'T AN EXEC CARD?
.YES
IS IT END OF JOB?
YES
TEST IF OPTION ENTRY
YES
IS IT A DATE CARD?
YES
SET RETURN CODE
RErrURN TO CALLER
AND THE /& Cl\RD
CLEAR PARTITION RELATED FLAGS
LOAD COUNT REG. FOR JOBNAME
LOCATE JOBNAME
TEST IF JOBNAME CORRECT ALIGNED
NO
GET JOBNAME

F~.'ure 10.8. Job Control User Exit Example (Part 1 of 3)

Chapter 10: Using the Facilities and Options of the Supervisor 10.13

JOBNAME CLI
BE
LA
BCT
B

JOBCLEAR MVJ
XC
BR

ENDOFJOB CLC
BNE
BAL
B

SAVENAME MVC
B

JOBNMALG LA
JOBNMBLK CLI

BNE
LA

·BCT
LA
B

JOBNMDGT BCTR
LA
B

JOBNMEND LA
LA
CLI
BE

JOBACF CLI
BE
LA
BCT

JOBACFER 01
MVC
B

1 (' R6) , X '40 '.
JOBNMEND
R6, 1 (R6)
RS,JOBNAME
SVARETRN

0(R5),X'00'
PARTNAME,PARTNAME
RS

NAMEEOJ,O(R4)
SAVENAME
RS,JOBCLEAR
SVARETRN
PARTNAME, 24(R 1)
SVARETRN
RS,20
O(R6),X'40'
JOBNMDG'1'
R6, 1 (R6;'
RS,JOBNMBLK
RS/S
JOBNAMEl'-l
R6,0
RS,S
JOBNAMEH

RS,4S
R6 ~ 2(R6)
o (R6), X ~ 40 '
JOBACFER
1 (R6) , X ' 40 '
CHECKACF
R6; HR6.)
RS,JOBACF
o (R5) , X 140'
6S(3, R4), =C' ACF'
SVARETRN.

CHECKACF LTR RS,RS
BZ SETACF
BCTR RS,O
STC RS,BLANKOUT+l

BLANKOUT MVC 2(0,R6),1(R6)
SETACF 01 0(R5),X'01'

JOBCTLE
OPTION'
DATE
* OTHER
SVAEXIT

B SVARETRN
EQU *
EQU *
EQU *

ROUTINES EXECUTED
LA R15,4
BR R14

NAMEJOB .DC CL4'JOB'
NAMEEXEC DC CL4, 'EXEC'
NAMEEOJ DC CL4'/&&'
NAMEDATE DC C'DATE'

TEST IF END OF JOBNAME
YES
INCREMENT TO NEXT NAME DIGIT
RETRY
RETURN TO SVA EXIT

RESET FLAG CORRECT JOB CARD
CLEAR JOBNAME
RETURN TO CALLER

IS IT REALLY END OF JOB?
SAVE JOBNAME
RESET PARTITION RELA'l'ED FLAGS
RETURN TO SVA EXIT
SAVE JOBNAME
RETURN TO SVA EXIT
LOAD MAXIMUM SEARCH COUNT
TEST' IF BLANK BEFORE JOBNAME
NO
INCkEMENT TO NEXT' POSITION
RETRY
SET JOBNAME MAX COUNT
CHECK JOBNAME
DECREMENT TO CONTINUE SEARCHING
SET JOBNAME MAX COUNT
CHECK JOBNAME

LOAD COUNT FOR ACF. FIELD
INCREMENT TO ACF. START POS.
TEST IF ACCOUNTING FIELD CORRECT
NO
TEST IF END OF ACF. FIELD
YES
INCREMENT TO NEXT ACF. FIELD POS.
RETRY
SET INVALID ACF. FIELD
MARK ERROR ACF. FIELD
RETURN TO SVA EXIT

TEST IF END
YES
DECREMENT BY ONE
MODIFY BLANK FIELD
BLANK THE REST
SET JOB CARD CORRECT
RETURN TO SVA 'EXIT

SET ERROR RE,]~URN CODE
RETURN TO CALLER

Figure 10.8. Job Control User Exit Example (Part 2 of 3)

10.14 DOS/VS System Management Guide

NAMEOPTI DC CL6'OPTION'
LTORG

=C'~CF'

DC OF'O'
JOBPIKOO DC 4F'0' DUMMY
JOBPIK10 DC 4F'0' JOB INFORMATION FIELD
JOBPIK20 DC 4F'0' ·JOB INFORMATION FIELD
JOBPIK30 DC 4F'0' JOB INFORMATION FIELD
JOBPIK40 DC 4F'0' JOB INFORMATION FIELD
JOBPIK50 DC 4F'0' JOe'INFORMATION FIELD
SAVEVECT DC XL10'00'
END DC X'OOOOOOOO'

* FUNCTION OF SENIOR BYTES JOBPIKXX

* X.'BO' JOB CARD ALIGNMENT ERROR JOBNAME

* X'40' JOB CARD ALIGNMENT ERROR ACF. FIELD

* X' 01 ' EXEC CARD INDICATOR JOB CARD CORRECT

CPIK EQU 46 ADDR. OF PIK IN COMMUNICATIONREGION
RO EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
RB EQU B
R9 EQU 9
R10 EQU 10
R 11 EQU 1 1
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

VECTORTB DSECT JCL PHASE· VECTOR TABLE

VECTOP DS CL7 OPERATION FIELD
VECTCD DS CL1. CONDITION SWITCHES
VECTBRDP DS CLl BRANCH VECTOR DISPLACEMENT
VECTPHID DS CLl PHASE ID. LETTER

PARTABLE DSECT
PARTFLAG DS CLl I;>ARTITION FLAG
PARTVI$ DS ' CL3 PARTITION GETVIS AREA
PARTRES DS CL4 RESERVED·
PARTNAME DS . CLB PARTITION JOBNAME

END START

Fligure 10.8. Job Control User Exit E~ample (Part· 3 of 3)

Checkpointiing Facility

The progress of a program that performs considerable processing in one job
step should be protected against destruction incase the program is
canceled. DOS/VS provides support for taking up to 9999 cheCkpoint
records in a job. Through this facility, information can be preserved at
regular intervals and in sufficient quantity to allow restarting a program at
an intermediate point.

Chapter 10: Using the Facilities and Options of the Supervisor 10..15

Choosing a Checkpoint

The CHKPT macro stores the checkpoint record oil a magnetic tape or
, disk. For full details regarding the use and restrictions of this macro, refer

to DOS/VS Supervisor and I/O Macros.

The RSTRT job control statement restarts the program from the last or
any specified checkpoint taken before cancelation. For full details on using
this statement, see DOS / VS System Control Statements. .

The most important criterion for a checkpoint dec.ision is a minimum of
necessary housekeeping before the checkpoint record can be taken. The
poSsibility of an error occurring either in the checkpoinlt routine or at restart
is then also mInimal. Checkpoints cannot be taken by a subtask or by. a
main task with subtasks attached. Therefore, when multitasking, checkpoints
should be avoided where· a number of subtasks must first be detached.

A. successful checkpoint record taken immediately after opening files
indicates that processing can safely proceed. If such a (:heckpoint record is .
invalid, however, then the program should be canceled.

Other che(;kpoint recor4s may be taken at logical breaks in data, such
as at the end of a reel of magnetic tape.

Timing the Entry to the Checkpoint Routine

Having decided where a program can conveniently be I~heckpointed, it may
be useful to enter the checkpoint routine only if a certain time intervai has
elapsed since the previous checkpoint record was taken.

By issuing a SETIME macro after a STXIT IT malcro has established
linkage to a user routine that sets a switch and returns, the main program
can test this switch and then branch to the checkpoint routine or continue
processing acc:ording to whether the switch is set or not. An example of this
technique can be found in Figure 10.4.

By issuing a STXIT OC macro instruction, it is also possible to have
checkpoint records taken at convenient points on command from the
operator. This method is illustrated by Figure 10.9.

10.16 DOS/VS System Management Guide

CHKPTRTN CSECT
STXIT OC,OCMSG,OCSAV SET UP LINKAGE FOR OCMSG

START

MVI
OPENR
BAL

SW1,X'40' , SET CHECKPOINT SWITCH
(RDISKOUT),(RCHKPTF) OPEN FILES
RLINK,CHECKPT TAKE TEST CHECKPOINT

(normal processing)

CLI
BE

SW1,X'40'
STAR,]~

SEE IF OPER HAS SENT MSG
CONTINUE IF NOT

* THE FOLLOWING
* A SIGNAL FROM

STD
STD
STD
STD
CHKPT
L'rR

IS THE CHECKPOINT ROUTINE ENTERED ON
THE OPERATOR
FO,REGO SAVE FLOATING POINT REGS
F2,REG2
F4,REG4
F6,REG6
SYS011,(RSTRTR)",,(RCKPTF) TAKE CHKPTS
RO,RO TEST IF SUCCESSFUL

OCMSG

CHECKPT

CANCEL
STRTR

. END
REGO
REG2
REG4
REG·6
OCSAV
SWl

BZ . CANCEL CANCEL IF NOT
MVI SW1,X'40' RESET CHECKPOINT SWITCH
B START RETURN TO NORMAL PROCESSING

(equates)
MVISW1,X'BO' SET CHECKPOINT SWITCH
EXIT OC RETURN TO POINT OF INTERR
CHKPT SYS011,(RSTRTR)",,(RCHKPTF)
LTR RO,RO SEE IF CHECKPNT SUCCESSFUL
BNZ O(RLlNK) RETURN IF TAKEN
CANCEL ALL CANCEL IF CHECKPOINT FAILED
STXIT OC,OCMSG,OCSAV RESTORE LINKAGE
LD FO,REGO RESTORE FLOATING POINT REGS
LD. F2,REG2
LD F4,REG4
LD F6,REG6
B START RESTART PROGRAM
EOJ
DS D
DS D
DS D
DS D
DS 9D
DS X

(equates)

end

FlgUl"e 10.9. Skeleton Example of a Routine for Checkpointing.a Program on
Operator Command

Chapter 10: Using the Facilities and Options of the Supervisor 10.17

SavingUata'forRestart

Besides the inlformation stored by the CHKPT macro, certain data must
usually be sav(~d by the user's checkpoint routine in order to facilitate a
successful r.estart. This may include the contents of floating point registers,
any linkage that was· established by a STXIT or a SETPF A macro, the
interval value for a SETIME macro, and the program mask in the problem
program, PSW.

For the n:positioning of I/O files so that they point to the next rec-ord
~o be read or written, refer to DOS/VS Supervisor al'1d I/O Macros.

Restarting a Checkpointed Program

I I JOB'
II ASSG.N
II ASSGN
II ASSGN
II RSTRT

A checkpoint,ed program can be restarted only in the :;ame partition. The
virtual partition (or real partition if a real mode program) ~ust start at· the
same location as when the program was checkpointed and its end address
must not be lower than at that time unless a lower end address was
specified in .the CHKPT macro instruction. Unless the user'resets all
linkages to SV A phases himself, the contents and location of the modules in
the SVA whe:n restarting must also be the same as when the program was
checkpointed. The SDL need not be identical.

~ If any pages of a virtual mode program were fixed when the checkpoint
, record was taken, then the real partition must alsp start at the same
location and its end address must be at least as high as at that time. The
pages that wlere fixed are refixed by the supervisor when the program is
restarted.

The appropriate job control statements for restarting a checkpointed
program on disk are illustrated in Figure 10.10.

CHECKPOINT (the JOBNAME must· be the same'a.s before)
(all ASSGNs must be renewed)
(new assignments may be made)

SYS001,1111,CHKPTF

Figure 10.10. Example of Job Control Statements for Restarting a CllCckpointed Job from
Checkpoint I 1l I I

10.18 DOS/VS System Management Guide

Job ACCOUlIlting Interface Feature

A DOS/VS supervisor generation option provides job accounting interface
support for all partitions ip the system. At the end of each job step or job,
accounting information is accumulated in a table for that partition and can
be processed by a user" routine, which must be either relocatable or
self-relocating. This user" routine can extract"data for such purposes as
charging system usage, supervising system operation, or for planning new
applications or changing the system configuration.

Since the processing· of the information· is an overhead element, the user
routine should be efficient and avoid unnecessary reduction or reformatting
of data:

If yo~.1r system also supports POWER/VS job accounting, you do not
need such a user routine. Refer to PO WER / VS Job Accounting in this
chapter for more details~

Basic Job AClcounting Information

I/O Accounting Information

When support is generated for basic job accounting, the supervisor includes
for each partition in the system a job accounting table comprising fourteen
fields. At the end of each -job step and job, information is stored as shown
in Figure 10.11, fields 1 to 14 ~inclusive.

Job accounting automatically includes support for the interval timer.

Additional support can· be provided at system generation time. to include the
. number of SIO (Start I/O) instructions issued per device for eac~ job step

and job. The job accounting tab.le for each partition is th:!n extended to
contain the additional fields 15 and ·16 shown in Figure 10.11.

SIO accounting is performed .for the number of devices specified to be
supported by the feature for each partition. The maximum is 255 and'has
no relation to the number of 4evices specified for the system. If more
devices are accessed than the number specified, SIOs on the excess devices
will not be counted.

Chapter 10: Using the Facilities and Options of the Supervisor 10.19
L,

7 35-39

12 Ei().63

13 1~7

14 (18-71

16

6

4 Job Step Start Time. OhhmmslF, where It houts,
m minutes, s seconds, F il a lign Un packed
decimal formad.

4 Job Step Stop Tima. Zeros except in las1 record, which
has job stop time (in same format as Ita':1 time>.

4

B-byte character string 'takE'n from the

Time. 4 binary bytes given in 300ths of a
time taken by functions that cannot be charged
one tion (such as attention routine and

System overhead time is divided by the
active batch partitions and rec'Jrded in each
table.

All Bound Time. 4 binary bytes in 300ths of a
I8COnd. This il the time the SYltem is in 'the wait
Itate divided by the number of

510 Tables. Variable number of bytes. Si,x bytes
are reserved for each device specified in the JA
p.eneter. First two bytes are X'Ocuu', next four
are hex count of SIOs for job step. Unused entries
contain X'10'followed by five bytes of zeros.
Stacker select commands for MICR devil:es are
not counted. Error recovary SIOs are not charged to
the Job Accounting Table. Devices are ao:lded to the
table as they are used.

Overflow. Normally X'20'. Set to X'30' if more
dwices are used then set by the JA parameter at
SYltem generation time.

10
17

18

19
1A
1B
1C

Normal EOJ
Program Request. Same as 23 but causn dump
because subtasks wc.re attached when maintask
issued CANCE L macro.
Eliminates cancel message when main~ask issues
DUMP macro with :subtasks attached.
1/0 operator option.
1/0 error.
Channel failure.
CANCEL ALL macro issued.

1 D Maintask terminatil)n.
1E Unknown ENO requestor.
1F
20
21
22

CPU failure.
Program check.
IlIegaISVC.
Phase not found.

23 Program request.
24 Operator intervention
25 Invalid address or insufficient core allocation

to partition.
26
27

28
30
31

32
33
34

35
40
80
FF

SYSxxx not assignl~ (unassigned LUB codel.
Undefined logical unit (invalid LUB code in
CCBI.
OT AM cancel in progr8I5.
Read past I & on SYSRDR or SYSIPT.
1/0, error queue overflow (error queue overflow
or no CliANO entry available for ERPI.
Invalid DASD address (diskl.
No long seek (diskl.
1/0 error during fetch (irrecoverable 1/0 error
during fetch of nOI(\-$ phasel.
Job control open failure.
Loed $$BEOJ.
Cancel occurred in Logical Transient Area (LTAI.
Unrecognized cam:el code, or, if the sYltem is
placed in the wait state, and no further
processing is done by the terminator, supervisor
catalog failure.

Note: The difference between Start and Stop times will not necessarily equal the sum of CPU, All Bound, and Overhead
times, All Bound and Overhead times will vary, depending on the number of active partitions and tile type of
partition activity. CPU time is accurate for each partition, but it may not be reproducible. That is; the same
job being executed underdiff~rent system conditions (varying number of active partitions, logical transient
availability, etc.) may show differences in CPU time.

Figur(~ 10.11. Job Accounting Table

10.20 DOS/VS System Manageme~t Guide

Save Area for the User's Routine

The address of a save area that can be used for any desired purpose by the
user's routine is passed in general register 13. This save area is 16 bytes
long unless a greater length (up to 1024 bytes), to save DTF information
for LIOCS, was specified at system generation time.

User:s Area for LIOCS Label Processing

Programming Considerations

Regilster UsagE~

Tailoring the Program

If the user's routine uses LIOCS for processing such items as standard tape
labels, DTFDA, or DTFPH with MOUNTED=ALL,_ then an alternative
label area must be specified at system generation time. The length of this
label area should normally be. the number of bytes that would be allocated
by a given parameter of the LBLTYP statement. For information on
determining the number of bytes, see DOS/VS System C~ntrol Statements.

The user program to process the information entered by the supervisor in
the Job Accounting Table must be cataloged in a core image library with
the name $JOBACCT. If the supervisor supports relocating load, then the
user program must be relocatable, otherwise it must be self-relocating in a

• .•. I
multIprogrammmg environment.

For efficiency, an overlay structure shpuld be avoided and the length of
the program should preferably not exceed one core image library block.

If the job accounting program is canceled as the result of an error
condition, the current information cannot be retrieved. Nor can the program
be called again until after the IPL procedure has been repeated. An
abnormal termination exit routine is therefore recommended to pass a
message to the operator.

Important data for the user's job accounting routine are passed in the
following general registers:

12 Base address for $JOBACCT
15 Address of ~he job accounting table
11 Length of the job accounting table
13 Address of the,user save area
14 Return address to job control

If $JOBACCT uses LIOCS, the contents of general registers 14 and 15
must be saved (also registers 0 and 1 if necessary) because LIOCS uses
these registers.

The requirements of the program may be simply to record the accounting
inforination as part of the SYSLST output for each job step or job, or it
may be to accumulate information to be used for equitably allocating ..the

. costs of a computing center. '

Chapter 10: Using the Facilities and Options of the Supervisor 10.21

J~CT

If data is toO be written out on. a disk or tape, the save area can be used
for communicating between job steps. Such information as the disk address
for the next record or an indication that tape labels have been successfully
processed, or ~:ven the DTF used to control the output. may be stored in
the save' area.

Figure 10.12 illustrates a job accounting program that writes records td
disk without additional processing.

CSECT
USING *,R12
USING JASJWE,R13
LA RO ,.,::r ABROUT
LA R1,.JABSAVE
STXI T AB, (0) ~ (1)
TM JAS1~ATSW, X' CO'
BO JMET
BM JAOPEN

JOB ACCT SAVE AREA
AB ROUTINE
AB SAVE AREA
SET ABNRML TERM EXIT
TEST. STATUS -
DISK AREA FULL
SAVE AREA INl'rIALIZED

* PERFORM,LABEL PROCESSING AND
bPENR J Ari~rF

INITIALIZE SAVE AREA
OPEN FILE (see Note)
MOVE CCB TO SAVE AREA
EXTENT LOWER LIMIT
FIRST RECORD

MVC JACCB,JADTF
MVC JAS1~EK,JADTF+58

MVI JAR,X'01'
MVC JAHIGH,JADTF+54

* RELOCATE CCWS
MVC JASJ(CCW (32) ,J AMODCCW
LA R10,JASEEK
STCM R1d,7,JASKCCW+1

. LA R 1 0 , J"ASRCH
STCM R10,7,JASRCCW+1
LA R10,JASRCCW
STeM R10,7,JATIC+1
LA R10,JASKCCW
STCM R10,7,JACCB+9
MVI JASTATSW,X'80'

HIGH EXTENT LIMIT

PUT MODCCWS IN SVE AREA
SEEK ADDRESS
PUT ADDRESS IN CCW
SEARCH ADDRESS
PUT ADDRESS IN CCW
SEARCH CCW ADDRESS
PUT ADDRESS IN CCW
CHANNEL PROGRAM ADDR
PUT ADDRESS IN CCB
IND SAVE AREA, INIT

* WRITE JOB ACCOUNTING TABLE TO
JAOPEN STCM R15,7,JAD~TA+1

DISK

LA R1,JACCB
EXCP (1)
WAIT (1)

* l,JPDATE SEEK ADDRESS

JAHTST

TR JAR,JARECTAB
eLI JAR,X' 01'
BNE JARET
TR JABEAD+1 (1) ,'JAHDTAB
CLI JAHEAD+1 ,X' 00' .
BNE JAHTST
LH R10,JACYL
LA R10,1(R10)
STH R10,JACYL
CLC JAHIGH,J.ASRCH
BH JARET
LA R1 fJACCBL
LA R2"JAMSG1
STCM R2., 7 , 9(R1)
LA, R3 ,/ J AERR 1
STCM R3 .r 7 , 1 (R2)

PUT ADDR OF 'l'BL IN CCW
POINT TO CCB
WRITE DATA
WAIT FOR COMPLETION

RECORD
NEW TRACK
NO
HEAD
NEW CYLINDER
NO
CYLINDER ADDRESS
INCREMENT BY.ONE ,
REPLACE IN SEEK ADDR
BEYOND UPPER LIMIT
NO
CONSOLE CCB
ERROR MESSAGE
PUT ADDRESS IN CCB
DATA ADDRESS
PLACE IN CCW

Note: If the supervisor does not support relocating load. the self-relocating form of the OPEN macro
(OPENR) should be used il11 a multiprogramming environment; otherwise OPEN may be used instead.

YtgW'e t u. t 2. Job Accounting Routine Example (Part t of 2)

10.22 DOS!VS System Management Guide

JARET

JABROUT

JAMODCCW

JACCBL
JADTF

.JAMSG1
JAMSG2
JAERR1
JAERR2
JARECTAB
JAHDTAB
JABSAVE

JASAVE
.JASTATSW
JASEEK
~JABB

JASRCH
JACYL
JAHEAD
JAR
JACCB
JAHIGH

JASKCCW
JASRCCW
JATIC
JADATA

*

EXCP
WAIT
01
STXIT
BR
BALR
USING
LA
LA
STCM
LA
STCM
EXCP
WAIT
EOJ
CCW
CCW
CCW
CCW
CCB
DTFPH

ORG
DC
ORG
CCW
CCW
DC
DC
DC
DC
DS
LTORG
DSECT
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
CCW
CCW
CCW
CCW

CSECT
JABROUTE'~QU *

(1)
(1)_
JASTATSW,X'40'
AB
R14
RlO,O
*,R10
R1,JACCBL
R2,JAMSG2
R2, 7 ,9(R1)
R3,JAERR2
R3, 7,1 (R2)
(1)
(1)

X' 07 ' , * I X ' 60' ,,6
X'3l' ,*,X'60',5
X' 08' , * , X' 00' , 1
X'05' ,*,X'20' ,246
SYSLOG,*
TYPEFLE=INPUT,
DEVICE=2314,
MOUNTED=SINGLE
JADTF
X'OOOOOBOO'

INFORM OPERATOR
WAIT FOR COMPLETION
INDICATE DISK FULL
RESET EXIT LINKAGE
RETURN TO SUPERVISOR
BASE REGISTER
ESTj\BL ADDRESSABILITY
CONSOLE CCB
ERROR MESSAGE
PUT ADDRESS IN CCB
DATA ADDRESS
PLACE IN CCW
INFORM OPERATOR
WAIT FOR COMPLETION

MEANS CHECK LABELS *
*

SET CCB OPTION BITS

X'09' ,JAERR1,X'20' ,L'JAERR1
X'09',JAERR2,X'20',L'JAERR2
C'JOB ACCOUNTING DISK FULL'
C'JOB ACCOUNTING ROUTINE CANCELED'
X'0002030405060708090AOBOCODOEOF101112131401'
X'0102030405060708090AOBOCODOEOF1011121300'
9D
USED IF LITERALS ARE PRESENT

X
OXL6
XL2
OXL5
XL2
XL2
X
XL16
XL4
XL4
X'07'iJASEEK,X'6b',6
X'31' ,JASRCH,X'60',5
X'08' ,JASRCCW,X'00',1
X'05' ,*,X'20' ,246

SEEK ADDRESS BBCCHH
BB
SEARCH ADDRESS CCHHR
CC
HH
R
COMMAND CONTROL BLOCK
HIGH EXTENT LIMIT

SEEK CCW
SEARCH CCW
TIC CCW
WRITE DATA ASSUMING 29
SIO DEVICES TRACED

YOUR AB ROUTINE

~equates)

END

Note: The DSECT labeled JASAVE through DATA defines the layout of the Job Accounting user
'save area. which resides within the supervisor; The address oj this area is passed. in register 13.
to 'your Job Accounting phase. When generating your supervisor you must specify the desired
length of this save area ,by substituting a value for s. the first operand of the JALIOCS
parameter of the FOPT macro. If the operand is omitted or if JALlOCS=NO ;s specified the
length of the user save area is set 10 16 bytes by default.

Figure 10.12. Job Accounting Routine ~xample (Part 2 of 2)

Chapter 10: Using the Facilities and Options of the Supervisor 10.23

POWER/VS Job A.ccounting

USer Account Information

This section assumes that the prerequisites for POWER!VS job accounting
support are satisfied. If these are unfamiliar to your, refer to Account File
in the section Generating POWER/VS in Chapter 3: Planning the
System.

For each partition running under its control, ~O\VER/VS automatically
collects all job accounting information (both from its own sources and from
'the job accounting table in the supervisor). Job accounting' information is
collected for each job step and stored in chronological order on the
POWER/VS account file (SYSOOO). If this file is full when a POWER/VS
task wants to write another account record, the task is placed in the wait
state until the operator issues a P ACCOUNT comma:nd to delete the file or
save it on another medium (tape, disk, or punched cards). You then sort or
summarize this .information to suit your own requirements. The account file
is a sequenti~il disk file with variable-length unblocked records.

Summarized below are the five types of records on the account file:
" '

Line acct)unt record (one for each RJE user session). Includes user
identity; SIGNON/SIGNOFF times; and the number of transmissions,
timeouts" and line errors.

Reader account record (one for each read queue lentry). Includes job
identity, start/stop time of the read function, and number of input
records.

• 'List aCCCllunt record (one for each list queue entry). Includes job
identity, start! stop time of the list function, number of output records,
and number of printed pages.

Punch a(:~ount record (one for each punch queue entry). Jncludes job
identity, start! stop time of the punch function, and nurrlber of output
records.

Executi(),n record (one for each job step). Includ(~s job identity and all
information provided by the DOS!VS' job accou:nting interface.

The format of the logical records is shown in Figures 10. 13 through 10. 17.
Figure 10.18 clarifies the POWER!VS cancel codes that appear in several
of the account records.

The last field in the' execution account record is' provided for user account
information. If you want special information (such as the CPU ID or mode
of execution) in each execution account record, you need to write a
relocatable phase $JOBACCT that uses the PUT ACCT macro. This macro
is described in DOS / VS Supervisor and I/O Macros.

Unless :you require the PUTACCT macro, you do not need, to catalog a
$JOBACCT routine for POWER/VS. However, to obtain job accounting
interface information for a partition 'not running under POWER!VS, the
$JOBACCT routine as described under Job Accounting Interface Feature
is required. For this case, you may want to modify your $JOBACCT
routine to check if account information from this pa.rtition is to' be

10.24 DOS/VS System Management Guide

processed by POWER/VS. For this purpose you can test the byte labeled
POWFLG 1 in the partition communication region. If bit 0 of this byte if
on, POWER/VS will process account information from this partition. The
DOS/VS Serviceability Aids and Debugging Procedures contains more
information on the communication region.

A coding example showing the use of this test and the PUT ACCT
macro in a $JOBACCT routine is shown in Figure 10.19.

Bytes Description

00-07 Date in format specified at DOS/VS Supervisor Generation
(mm/dd/yy or dd/mm/yy)

08-11 SIGNON time (OHHMMSSF; F=sign)
-

12-15 SIGNOFF time (Ot1HMMSSF; F=sign)

16-31 16 bytes user information from the SIGNON command

32-39 Line password

40.,41 Reserved

42 Record identifier (T)
..

Cancel code:
X'Oi' SIGNON/SIGNOFF card read

43 X~02' line stopped by central operator
X'04' SIGNOFF .forced due to excessive idle time
X'OS' SIGNOFF forced due to irrecoverable l/O error.

44 Reserved

45-47 Line address

4S-49 Remote identifier

50-51 To~al number of transmissions

52-53 Total number of timeouts

54-55 Total number of line errors·

F

a

p

p

a

a

a

b

b

b

b

b

b

Note: In this figure the last column (F) indicates the format of each field in the record:

a alphameric
b binary
p packed decimal

Figure to.t3. POWER/VS Line Account Record

A line account record is written when each RJE user session is

terminated.

Chapter 10: Using the Facilities and Options of the Supervisor 10.25

-

Bytes O€lscription F
-

00-07 DCite in format specified at DOS/VS Supervisor Generation
a (mm/dd/yy or dd/mm/yy)

-

08-11 Start time oJ read (OHHMMSSF; F=sign) p

12-15 Stop time of read (OHHMMSSF; F=sign) p
-

16-31 1 €i bytes user information from * $$ JOB or / / JOB card a
-"

32-39 POWER/VS jobname from * $$ JOB or / / JOB Icard a

40-41 Jobnumber assigned by POWER/VS b
-

42 Rocord identifier (R) a
1---

43 POWER/VS cancel code (see Figure 10.18) b

44 RI:tserved

45-47 Reader device address b

48 FI~OM remote-id b
f-------- --

49 TO remote-id (copied from FROM remote-id) b
r----~--

50 Input class a

51 Input priority number a

52-55 Number of records read (including records added or deleted by a
b user reader exit routine)

56-57 Number of tracks for input storage b

~ote: In this figure the last column (F) indicates the format of each field in the record:

a alphameric
b binary
p packed decimal

Figure 10.14. POWER/VS Reader Account Record

10.26 DOS/YS System Management Guide

A reader account record is created for each reader queue entry. Whether
or not the entry has actually been placed in the queue file is indicated by
the POWER/YS cancel code.

This record is written after the corresponding reader queue entry is
processed by the read task. Reader account n!cords are not created for a
writer-only partition.

Bytes Description F

00-07 Date in format specified at DOS/VS System Generation
a (mm/dd/yy or dd/mm/yy)

08-11 Start time of list (OHHMMSSF;F=sign) p _.
12-15 Stop time of list (OHHMMSSF; F=sign) p

16-31 16 byths user information from * $$ JOB or / / JOB card a

32-39 POWER/VS jobname from * $$ JOB or / / JOB card a

40-41 Jobnumber assigned by POWER/VS b
-

42 Record identifer (L) a

43 POWER/VS cancel code (see Figure 10.18) b

44 Reserved

45-47 Printer device address b

48 FROM remote-id b

49 TO remote-id b
f----

50 Printed output class a

51 Printed output priority number a

52-55 Number of lines printed b

56-57
Number of tracks for output storage (Only for spooling to disk. b When spooling to tape, field is zero.)

58 Job subnumber assigned by POWER/VS b

59
Number of printed copies (If mo~e than one, the statistics are totals

b for all copies.)

60-63 Print forms identification a
-

6'1.-67 Number of extra records printed due to PRESTART,PSETUP, or
b JSEP

68-69 Number of pages printed (skips to channel 1) b
-

70-71
Number of extra pages printed due to PRESTART, PSETUP, or

b JSEP

Note: In this figure the last column (F) indicates the format of each field in the record:

a alphameric.
b binary
p packed decimal

Figure 10.15. POWER/VS List Account Record

A list account record is created for each list queue entry created by the
. execution list task. One· record is written after each list queue entry is

printed.

Chapter 10: Using the Facilities arid Options of the' Supervisor 10.2-7'

Bytes Description F

00-07 Date in format specified at DOS/VS Su
(mm/dd/yy or dd/mm/yy)

pervisor Generation
a

-

08-11. Start time of punch (OHHMMSSF; F-sig n) p

12-15 Stop time of punch (OHHMMSSF; F=sig n) p
-

16-31 16 bytes user information from * $$ JO B or / / .. lOB card a
- --------4---~

32-39 PtOWER/VS. jobname from * $$ JOB o(/ / JOB card a
-

40-41 Jobnumber assigned by POWER/VS b

42 Record identifier (P) a

43 POWER/VS cancel code (see Figure 10.1 8) b
-

44 Reserved
------~-

45-47 Punch device .address b
-

48 FROM remote-id b

49 TO remote-id b
-

50 Punched output class a
-

51 Punched output priority number a
f-------- f-

52-55. Number of records punched b
f------- f---

56-57 Number of tracks for output storage (Onl
When spooling to tape, field is zero.)

y for s~IOOIing to disk.
b

-

58 Job subnumber assigned by POWER/VS b
-

59 N umber of punched copies (If more than
totals for all copies.)

one, the· statistics are
b

60-63 Punch forms identification a

64-67 Number of extra records due to PREST A RT or J:SEP b

Note: In this figure the last column (F) indicates the format of each field in the record:

a alphameric
b binarv
p packe'd decimal

Figure 10.16,. POWER/VS PunCh Account Record

10.78 DOS!VS System Management Guide

A punch account record is created for each punch queue entry created
by the execution punch task. One record is written after the punch
queue entry is punched.

Bytes Description F.

00-07 Date of execution in format specified at DOS/VS Supervisor
a Generation (mm/dd/yy or dd/mm/yy)

08-11 Start time qf job step (OHHMMSSF: F=sign) p

12-15 Stop time of job step (OHHMMSSF: F=sign) p

16-31 16 bytes user information from * $$ JOB card a
.~--

32-39 POWER/VS jobname (or AUTONAME) a
f,---

40--41 Jobnumer assigned by POWER/VS b
f,-------

42 Record identifier (E) a

43 POWER/VS cancel code (see Figure 10.18) b

44-47 Reserve,j
f--------

48 FROM remote-id b
f-----

49 TO remote-id b

50 Class a
-.

51 Priority b

52-55 Number of lines spooled b

56-59 Number of carcis spooled b

60-61 Number of pages spooled b
\

62-63 Length of DOS/VS SIO accounting table b

64-65 Length of total account record b

66-71 Reserved

72-79 DQS/VS jobname from / / JOB card a
f----- 1----------

80-95 16 bytes user .. information from / / JOB card a

Note: In this figure the last column (F) indicates the format of each field in the record:

a alphameric
b binary
p packed decimal

Figure 10.17. POWER/VS Executi~1\ Account Record (Part 1 of 2)

One execution account record is created for each DOS/VS job step. It
contains information passed to the account file by the DOS/VS job
accounting interface, plus information produced by the POWER/VS
accounting routine.'lfthe job or job step is canceled before completion,
statistics reflect processing up to that time.

Chapter 10: Using the Facilities and Options of the Supervisor 10.29

Bytes

96-97

98

99

100-103

104-111

112-115

116-119

120-123

124-127

128

-

-_._._._-

-

----------~ "-,--- _._--

Description
--"------.-~.----~-

Partition 10 in EBCDIC format

DOS/VS cancel code
. ----------

Type of record: S=job step, L=last st ep

Reserved
--

Phasename; taken from / / EXEC car d

End address of active program phase , from COM REG

CPU time elapsed in a job step; coun ted in 300t h of a second

System overhead time divided among running pi Irtitions, (in 300th
of a second)

All-bound time; system wait state tim e divided a
partitions, in 300th of a second

SIO tables, containing the number of I/Os POW
bytes for ec
ptions, as fc
unt of SIOs

intercepted for spooling purposes_ 6
by DOS/VS Supervisor Generation 0

device address (Ocuu), 4 bytes for co
step.
Overflow byte: normally X'20', but X'
within a partition than specifi~d by 0

30' if more
OS/VS Su~

--.-~-~----".~~-- .-." . _.- -- -"- -'- -_ ----_ - .~ ---

User account information as specified in PUTAC

mong running

--

ER/VS has
Ich device specified
)lIows: 2 bytes for
; in current job

devices are used
)ervisor Generation.
~---------------

CT macro

F

a

b

a

a

b

b

b
--

b

b

b

Note: In this figure the last column (F) indicates the format of each field in the record:

a alphameric
b binary
p packe'd decimal

Figure 10.17. POWER/VS Execution Account Record (Part 2 of 2)

Cancel Code Condition
1----------- -----------------------.-

X'10' Normal end of 'POWER/VS jl:>b or task (Note 1)

X'30' PSTOP has been issued (NOlte 2)

X'40' PFLUSH has been issued

X'60' POWER/VS job has been flushed via RDREXIT

X'70' Canceled due to I/O error

Notes:
I. Although flO abnormal POWER/VS termination occurred. the DOS/VS jobs

associated with the queue entry could have been canceled via DOS/VS.

2. The PSTOP cancel code is not stored in an ac('ount record if the EOJ option
was specified in ihe PSTOP command.

Figure 10.18. POWER/VS Cancel Codes

10.30 DOS/VS System Management Guide

EXIT

ADAC
R1
RO'
RE

CMRG

COMRG
USING CMRG,R1
TM POWFLG 1 , X ' 80' '
BNO EXIT
LA R1,ADAC
LA RO',L'ADAC
PUTACCT (R1),(RO')
DS OH
BR RE

GET PARTITION COMREG
DECLARE ADDRESSABILITY
ACCOUNT SUPPORT FOR THIS PARTITION
BRANCH IF NOT
ADDRESS ADDITIONAL INFO
LENGTH ADDITIONAL INFO
PASS INFO TO POWER/VS

RErrURN TO $JOBCTLN

DC'
EQU
EQU
EQU

C'ADDITIONAL ACCOUNT INFORMATION'
1 REGIST5R 1
0' REGISTER a
14 REGISTER 14

DSECT
DS

POWFLG1 EQU
END

CL164

*

Figure 10.19. Example Routine to Insert User Information in POWER!VS Executi9n
Account Records

Stolrage Dump Facility

DUMP

When used. this routine must be included in the $JUBACCT routine.

Whenever a program is to be terminated by the system for any reason other
than a normal end-of-job condition, and especially after a program check
interrupt, a printout of all or part of the storage area occupied or ,used by
the program at that moment is a useful aid for tracing the cause. Facilities
for obtaining such a printout arc provided by most high-level languages and
are described in the various language manuals. For guidance on reading and
interpreting the printout, see DOS!VS Serviceability Aids and Debugging
,Procedures.

The DOS!VS supervisor supports several macro instructions that dump
the contents of real or virtual partitions to SYSLST, which may be assigned
to a printer, a disk, or a tape unit. These macro instructions, details of
which are given in DOS! VS Supervisor and I! 0 Macros, may be used,
for example, at the end of a user's routine for handling an abnormal
termination condition.

The {ollowing is a summary of the functions of supervisor macros that
provide storage dumps:

The DUMP macro instruction dumps, in hexadecimal format, the contents
of the supervisor arca, the entire real or virtual partition of the issuing
program, and all the general registers. The job step is always terminated if .
multitasking is not supported; with multitasking, the job step is terminated

Chapter 10: Using the Facilities and Options of the Supervisor 10.31

if the macro is issued by the main task but if issued by a subtask· then only"
that sub task is detached.

JDUMP • This macro instruction causes the same areas to be dumped as for a DUMP'
macro, but terminates the entire job.

PDUMP A PDUMP macro instruction fumishesa dynamic hexadecimal dump of the
general registers and of the virtual or real storage area between the
addresses specified by two operands. After execution of this macro
instruction, processing continues at the next sequential instruction.

,
\

A PDUMP mac,ro' instruction may therefore be is:sued several times in a
program to provide dumps of selected storage fields for examination at
different stages of the program's execution.

10.32 DOS/VS System Management Guide

A,tpendix A: System Layout on Disk

IPI.I

Sys.tem Volume Label

US(;lr Volum(~ Label

System Direc~tory

Figure 11.1 illustrates how DOS/VS is organized on the system residence
volume, which is called SYSRES. The device itself can be any IBM DASD
device except a 2321 data cell, or a 2311 disk. The organization of
SYSRES is as follows:

This area contains the initial program load (IPL) bootstrap program, which
causes the IPL retrieval program to be read from SYSRES· and loaded into
real storage.

The volume label (VOL 1 label) contains the address of the volume table of
contents (VTOC) established when the pack was initialized. (The DOS/VS
system utility program Initialize Disk is provided for this purpose). The
VTOC can be located on any cylinder outside of the SYSRES file.

The user volume label area is provided for any additional..standard volume
labels (VOL2-VOL8 labels). This area can extend from record 4 through
the end of track O.

This area contains the system (master) directory. Record 1 contains the
starting address of the core image directory and the address of the label

. information cylinder. Records 2, 3, and 4 contain the starting addresses' of
the relocatable directory, source statement directory, and procedure
directory, respectively. Record 5 contains the IPL retrieval program, which
reads the supervisor from the core image library into real storage.

Appendix A: System Layout on Disk 11.1

Component
BB -

I PL Bootstrap Record 1 ($$A$I PL 1) 00

IPL Bootstrap Record 2 ($$A$IPLA) 00 -
System Volume Label 00

User Volume Label 00

Record 1 00

System Record 2 00

Directory Record 3 00

Record 4 00

IPL Retrieval Program ($$A$IPL2) 00

Core Image Cataloged phases Directory

Linked Phase 00

Core Image Library 00

Relocatable Directory 00

Relocatable Library 00

Source Statement Directory 00

Source Statement Library 00

Procedure Directory 00

Procedure Library 00

Label Information Cylinder 00

* Allocation Dependent on User Requirements
X=Ending CC of the Preceding Directory
Y=Ending HH of the Preceding Directory
Z= Ending CC of the Preceding Library

Starting Disk Address

CC HH

00 00

00 00

00 00

00 00

00 01

00 01

00 01

00 01

00 01

00 02

End of CI Directory

X Y+1

End of CI Library

Z+l 00

End of RL Directory

X Y+1

End of RL Library

Z+l 00

End of SS Directory

X Y+1

End of SS Library

Z+1 00

End of P Directory

X Y+l

End of P Library

Z+l 00

Figure 11.1. System Residence Org,anization

Core Image Directory

R

1

2

3

4

1

2

3

4

5

1

1

1

1

1

1

1

1

I
I

Number
of Tracks

(Alloc.)

1

1·

*

*

*

...

...

~.

4.

~.

2314/~!319:20
3330/3333:19

R=Required
O=Optional

R

R

R

0

R

R

R

R

R

R

R

0

0

0

0

0

0

R

This'directory consists of two or more tracks, depending on the allocation
specified by the user. The directory is in two parts: the first is the directory
of cataloged phases; the second is the directory of linked phases.

Each directory entry describes one phase in the core image library and
contains much information as the phase name, loading address, number of
blocks, type of phase, entry point, starting disk address in the core image

11.2 DOS!YS System Management Guide

\
\

A]ppendix A: System Layout on Disk

Sy!item Volume Label

Us~~r Volum4~ Label

System Directory

Figure 11.1 illustrates how DOS/VS is organized on the system residence
volume, which is called SYSRES. The device itself can be any IBM DASD
device except a 2321 data cell, ora 2311 disk. The organization of
SYSRES is as follows:

This area contains the initial program load (lPL) bootstrap program, which
causes the IPL retrieval program to be read from SYSRESand loaded into
real storage.

The volume label (VOL 1 label) contains the address of the volume table of
contents (VTOC) established when the pack was initialized. (The DOS/VS
system utility program Initialize Disk is provided for this purpose). The
VTOC can be located on any cylinder outside of the SYSRES file.

The user volume label area is provided for any additional-standard volume
labels (VOL2-VOL8 labels). This area can extend from record 4 through
the end of track O.

This area contains the system (master) directory. Record 1 contains the
starting address of the core image directory and the address of the label

. information cylinder. Records 2, 3, and 4 contain the starting addresses' of
the relocatable directory, source statement directory, and procedure
directory, respectively. Record 5 contains the IPL retrieval program, which
reads the supervisor from the core image library into real storage.

Appendix A: System Layout on Disk 11.1

Component
BB

IPl Bootstrap Record 1 ($$A$IPl1) 00

I PL Bootstrap Record 2 ($$A$I PLA) 00

System Volume Label 00

User Volume Label 00

- Record 1 00

System Record 2 00

Directory Record 3 00

Record 4 00

IPL Retrieval Program ($$A$IPl2) 00

Core Image Cataloged phases Directory

linked Phase 00

Core Image library 00

Relocatable Directory 00

Relocatable library 00

Source Statement Directory 00

Source Statement Library 00

Procedure Directory 00

Procedure Library 00

label Information Cylinder 00

* Allocation Dependent on User Requirements
X=Ending CC of the Preceding Directory
V-Ending HH of the Preceding Directory
Z=Ending CC of the Preceding library

Starting Disk Address

CC HH

00 00

00 00

00 00

00 00

00 01

00 01

00 01

00 01

00 01

00 02

End of CI Directory

X Y+1

End of CI library

Z+1 00

End of Rl Directory

X Y+1

End of RL library

Z+1 00

End of SS Directory

X Y+1

End of SS Library

Z+1 00

End of P Directory

X Y+1

End of P library

Z+1 00

Figure 11.1. System Residence Organi7..ation

Core Image Directory

Number R=Required of Trac:ks
R (Allo(:.) O=Optional

1 R

2 R
1

3 R

4 0

1 R

2 R

3 1 R

4 R

5 R

* R

1 * R

1 * 0

1 * 0

1 * 0

1 * 0

1 t· 0

1 j~ 0

2314/~~319:20 1
3330/~1333:19 R

This· directory consists of two O(more tracks, depending on the allocation
specified by the user. The directory is in two parts: the first is the directory
of cataloged phases; the second is the directory of linked phases.

Each directory entry describes one phase in the core image library and
contains much information as the phase name, loading address, number of
blocks, type of phase, entry point, starting disk address in the core image

11.2 DOSjYSSystem Management Guide

Core Image Library

Relocatable Directory

Relo,:atable Library

library, and the numbcr of text bytes in the last block. The entries are
sorted in alphameric sequence.

The first entry in the directory is called the library de,:;;criptor entry.
This contains such information as the number of directory tracks, library
cylinders, active phases, directory blocks available, and library blocks
available.

Thereaftcr, the entries have a length varying from 14 bytes to 34 bytes
(depending on the specifications in the PHASE statement). Entries are
groupcd in blocks of 256 bytes, plus an 8-byte key for the highest phase
name in.the block. The number of blocks per track for the 2314/2319,
3330/3333, and 3340 is 15,26, and 16, respectively. As the size of an
entry can vary from 14 to 34 bytes, one block can have a maximum of 18
entries. The maximum number of entries per track again depends on the
device.

The core image library consists of one or more complete cylinders,
dependIng on the allocation specified by the user. Each block is 1024
bytes. For the 2314/2319,. each track contains six blocks. For the
3333/3330 each track contains eleven blocks. For the 3340, each track
contains seven blocks. The,number of phases and the size of each program
dictates the number of cylinders that must be allocated. Each program
starts with a new block.

This directory consists of one or more tracks, depending on the allocation
specified by the user. It contains two types of information:

1. System directory information for the relocatable directory and library.
This information occupies the first five entries of the first record in the
relocatable directory.

2. An entry that describes each module (the output of a complete
language translator run) in the relocatable library and contains: the
module name, total number of text-record blocks required to contain
this module, starting disk address of the first text~record of this module,
and change level identification.

The relocatable library consists of one or more complete cylinders,
depcnding ·on the allocaTIon specified by the user. The numper of modules
and thc size of each module to be contained in this library dictate the
number of tracks that must be allocated. Each allocated track contains 17
blocks (2314/2319 and 3340), or 28 blocks (3333/3330), and each block
has a fixed length of 322 bytes. Each module starts with a new block but
not necessarily a new track.

Appendix A: System Layout on Disk 11.3

Source: Statement Directory

Source Statement Library

Proct:!dure Directory

Procedure Library

Lab4~1 Information Cylinder

This directory consists of one or more, tracks, depending on the allocation
specified by lhe user. It contains two types of information:

I. System directory information for the source statement directory and
library. This information occupies the first five eliltries of the first
record in the source statement directory.

2. An entry that describes each book (a sequence of source language
statements in a compressed card image format, accessed by a single
name) in the source. statement library and contailtls: a sublibrary pr~fix,
the book name, starting disk address of the first block of this book,
total number of blocks required to contain this book.in the source
statement library, and change level information.

The source statement library consists of one or more complete cylinders,
depending on the allocation specified by the user. The number of blocks
and the size of each book to be contained in· this library dictates the
number of tracks that must be allocated. Each track contains 27 blocks
(2314/2319) or 44 blocks (3333/3330) or 26 blocks (3340). Each block
has a fixed fiength of 160 bytes. Each book starts with a new block but not
necessarily on a new track.

This directory consists of one or more tracks depending on the allocation
specified by the user. It contains two types of information:

1. System directory information for the procedure directory and procedure
library. This information occupies the first five entries of the first
record in the procedure library.

2. An entlry that describes each procedure (a set of control statements in
card image format) cataloged in the procedure library and contains: the
name of the procedure, the starting disk address of the procedure, the
number of blocks occupied in the procedure library, and a version and
modification level. .

The blocksize of the directory is 160 bytes, and the length of each
entry is 16 bytes.

The procedure library consists of one or more complete cylinders,
depending on the allocation specified by the user. Each procedure consists
of one or more consecutive' SO-byte blocks, containing control statements
(one card image per block).

The label iinformation cylinder contains standard, partition standard, and
user label information for background and foreground partitions. This area
is allocated 19 tracks on the 3333/3330, 12 tracks. on the 3340, or 20

11.4 DOS/VS System Management Guide

Volume Tablc~ Of Contents

Alternate SYSRES Layout

tracks on the 2314/2319. Job control stores label information found in job
control statements ~ere. The, label information cylinder is the last cylinder
on the SYSRES file.

The LSERV program 'can be executed to print the label information
cylinder out on SYSLST. Secured data files are not listed. Information on

, the LSERV program can be found in DOS/VS Serviceability Aids and'
Debugging Procedures. '

Following the label information cylinder, the use of,the remaining areas on
the disk pack is left to the user's discretion. However, the volume table of
cQntents (VTOe) must be contained on the same physical disk pack as the
~SRES file. (A \!Toe is required on every disk pack, and is created by
the Initialize Disk utility.) The VTOe is most frequently the last' cylinder
before the alternate track area for SYSRES. For work packs, standard
location is cylinder 0, track 0, record 4 to the end of cylinder 0. The
location and length of the VTOe are determined when the pack is
initialized. (The DOS/VS system utility program, Initialize Disk, is provided
for this purpose.)·The DOS/VS system utility program VTOe Display can
be used to obtain a formatted listing of the VTOC. (Refer to DOS/VS
System Utilities.)

The VTOC is a file, describing the organization of the disk pack. It
contains the VTOe identifier (format 4 label) that contains, the starting and

, ending' addresses'Of the VTOe, a format 5 label that is not used by
DOS/VS, and format 1, 2" and 3 labels that identify and describe all files
on the pack. More specific information on 'label formats is contained in the
DOS/VS DASD Labels.

In Figure 12.1 the relocatable library, the, source statement library, and the
procedure library are, shown as optional areas of the SYSRES file, because
these libraries are not essential for system operation. If desired, the
relocatable . and source statement libraries can be defined as private
libraries; a private library for the procedure library is not supported. A
private core, image library can also be defined, but the system core image
library must always be inCluded on the SYSRES, file. Planning information
concerning private libraries is contained in the section Planning the
Libraries in Chapter 3: Planning the System.

Appendix A: System Layout on Disk 11.5

,Glossary

'I This glossary defmes the terms proper to this manual. If you do not find the term you are
" looking for, refer to the IBMData Processing Glossary, GC20-1699.

*

IBM is grateful to the American National Standards Institute (ANSI) for permission to
reprint its definitions from the American, National Standard Vocabulary for Information
Processing (Copyright © 1970 by American National Standards J'1stitute, Incorporated),
which was prepared by Subcommittee X3K5 on Terminology and Glossary of American.:i

National Standards Committee' X3. American National Standard Definitions are marked
with an asterisk (*).

access method: A technique for moving data between virtual storage and
input/ output devices.

access method services: A multifunction service program that defines
VSAM files and allocates space for them, converts indexed-sequential files
to key-sequenced files with indexes, modifies file attributes in the catalog,
reorganizes files, facilitates data portability between operating systems,
creates backup copies of files and indexes, helps make inaccessible files
accessible, and lists the records of the files and catalogs.

address: (1) An identification, as represented by a name, label, or number,
for a register, location in storage, or any other data source or destination
such as the'location of a station in a communication network. (2) Loosely,
any part of an instruction that specifies the location of an operand for the
instruction.

address translation: The process of changing the address of an item of
data or an instruction from its virtual 2ddress to its real storage address.
See also dynamic address translation.

alternate track: One ofa number of tracks set aside on a disk pack for use
as alternatives to any defective tracks found elsewhere on the disk pack.

application program: A program written by a user that applies to his own
work.

assembler language: A soarce language that includes symbolic machine
language statements in which there is a one-to-one correspondence with the
instruction fQrmats and data formats of the computer.

attach: (1) To create a task and present it to the supervisor. (2) A macro
instruction that causes the control program to create a new task and
indicates the entry! point in the program to be given control wilen the new
task becomes active.

auxiliary storage: Datastorage other than real storage; for example,
storage on magnetic tape or disk. Synonymous with external storage,
secondary storage.

blocking: Combining two or 'more logical records into one block.

blocking factor: The number of logical records combined into one
physical record or block.

book: A group of source statements written in any of the languages,
supported by DOS/VS and stored' in a source statement library.

Glossary 12.1

buff~r: An area of storage that is temporarily reserved for use in
performing an inputloutput operation, into which data is read or from
which data is written. Synonymous with I/O area.

byte: A sequence of eight adjacent binary digits that are operated upon as
a unit and that constitute the smallest addressable unit of the system.

card punch: A device to record information in cards by punching holes in
the cards to represent letters, digits, and special characters.

-card reader: A device which senses and· translates into machine code the
holes in punched cards.

catalog: To e:nter a phase, module, book, or procedun~ into one of the
system or private libraries.

central procElssing unit: A unit of a computer· that i:ncludes the circuits
controlling the interpretation and execution of instructions. Abbreviated
CPU.

channel: (1) * A path along which signals can be senll, for example, data
channel, output channel. (2) A hardware device that connects the CPU and
real storage with the 110 control units ..

channel prouram translation: In a copy of a channel program~
replacement, by software, of virtual addresses with real addresses.

compile: To prepare a machine language program from a computer
program written in a high-level language by making use of the overall logic
structure of the program, or generating more than one machine instruction
for each symbolic statement, or both, as well as perfOJrming the function of
an assenibler.

compiler: A program that translates' high-level language statements into
machine language instructions.

configuration: The group of machines, d.evices, etc., which make up a data
processing system.

control areca: A group of control intervals used as a unit for formatting a
file before adding records to it. Also, in a key-sequenced file, the set of
control intervals covered by an index record; used by VSAM for
distributing free space and for placing a low-level index adjacent to its data.

controlintElrval: A' fixed-length are~ of auxiliary storage space in which
VSAM stores records and distributes'free space, also" in a key-sequenced
file, th,e set of records pointed to by an entry in the index record. It is the
unit of information transmitted to or from auxiliary storage by, VSAM,
independent of blocksize.

control program: A program that is designed to schedule and supervise
the performance of data processing work by a computing system.

control regli.sters: A set of registers used for operating system control of
relocation, priority interruption, program event recording, error recovery,
and masking operations. '

control sef::tion: That p'art of a program specified by the programmer to
be a relocatable unit.

12.2 DOS/VS System Management Guide

control unit: A device that controls the reading, writing, or display of data
at one or more input/output. devices.·

core image library: A library of phases that have been produced as
output from link-editing. The phases· in the core image library are in a
format that is executable either· directly or after processing by the relocating
loader in the supervisor.

CPU busy time: The amount of time devoted by the central processing
unit to the execution of instructions ..

data file: A collection of related data records organized in a specif~c
manner. For example, a payroll file (one record for each employee,
showing his rate of pay, deductions, etc., or an inventory item, showing the
cost, selling pric'e, number in stock, etc.). See also file.

data integrity: See integrity. ',-

data management: A major function of DOS/VS that involves
organizing, storing, locating, retrieving, and maintaining data.

data security: See security .

. deblocking: The action of making the first and each subsequent logical
record of a block available.for processing one record at a time.

default value: The choice among exclusive alternatives made by the
system when no explicit choice is specified by the user.

deletion pf an I/O Device: Removal of t~e I/O unit from thJ supervisbr
configuration tables.

diagnostic routine: A program that facilitates computer fuaintenance by
detection and isolation of malfunctions or mistakes.

dial-up terminal: A termi'nal on a switched teleprocessing line.

direct access: (1) Retrieval or storage of data by a reference to its
. location on a volume, other than relative to the previously retrieved or
stored data. (2) * Pertaining to the process of obtaining data from, or
placing data into, storage where the time required for such access is
independent of the location of the data most recently obtained or placed in
storage. (3) * Pertaining to a storage device in which the access time is
effectively independent of the location of the data. Synonymous with
random access.

direct organization: Direct file organization implies that for purposes of
storage and retrieval there is a direct re.Iationship between the contents of
the records and their addresses on disk storage.

directory: An index that is used by the system control and service
programs to locate lOne or more sequential blocks of program information
that are stored on direct access storage.

diskette: A flexible, magnetic-oxide coated disk, permanently enclosed in a
semirigid plastic jacket approximately eight inches square. During data
prQc.essing operations, the disk turns freely within the jacket. It is capable
of storing 1898 128-character data records.

Glossary 12.3

disk pack: A direct access storage volume containing magnetic disks on
which data is stored. Disk packs are mounted on a disk storage drive, such
as' the IBM 3330 Disk Storage Drive.

distributed 1free space: Space reserved within the control intervals of a
key-sequenced file for inserting ,new records into the file in key sequence;
also, whole control intervals reserved in a control area for the same
purpose.

dump: (1) To copy the contents of all or part of virtual storage. (2) The
data resulting from the process as in (1).

dynamic address translation '(OAT): (1) The change of a virtual storage
address to an address in real storage during execution of an instruction. (2)
A hardware function that performs the translation ..

entry sequG!nce: The order in which data records are physically arranged
in auxiliary sKorage, without respect to their contents (contrast with key
sequence):

entry-sequG,nced file: A VSAM file whose records are loaded without
respect to th(~ir contents, and whose relative byte addresses cannot change~
Records are retrieved and stored ,?y addressed access., and new records are
added to the end of the f~e.

error messuge: The ~ommunication that an error has been detected.

error reCOYIBry procedures: Procedures designed to help isolate, and,
when possible, to recover from errors in equipment. The procedures are
often .used in conjunction with programs that record Ithe statistics of
machine, malfunctions. .

extent: A continuous space on a direct access storage device, occupied by
or reserved for a particular file.

* file: A colleetion of related records treated' as a unit. For example, one line
of an invoict: may form an item, a complete invoice may form a record, the
complete set of such records may form a file, the collection of inventory
control files may form a library, and the libraries used by an organization
are known as its data bank.

*

*

fixed' page: A page in real storage that is not to be paged out.

hard copy: A printed copy of machine output in a visually. readable 'form,
for example, printed reports, listings, documents, and summaries: .

hard wait !ltate: In general, a wait state is the conditien of a CPU when
all operations' are suspended. System recovery from (l hard wait state
requires that. the user performs a new IPL (initial program load) procedure.

hardware: Physical equipment, as opposed to the computer program or
method of use, for example, mechanical, magnetic,. ellectrical, or electronic
devices. Contrast with software.

idle time: That part of available time during which the hardware is not
being used.

index:. (1) * An ordered reference list of the contents of a file or
document, together with. keys or reference notations for identification or
location of those contents. (2) A table used to locate the records of an
indexed sequential file.

12.4 IDOS/VS System Management Guide

*

*

*

indexed-sequential organization: The records of an indexed sequential
file are arranged in logical sequence· by key. Indexes to these keys permit
direct access to individual records. Allor part of the file can be processed
sequentially.

Initial Program Load (lPL): The intialization procedure that causes
DOS/VS to commence operation.

integrity: -Preservation of data or programs for thQir intended purpose.

interface: A shared boundary. An interface might be a hardware
component to link: two devices or it might be a portion of storage or
registers accessed by two or more 'computer programs.

I/O: An abbreviation for input/outpuL

'SAM interface program: A set of routines that .aJlow a processing
program coded to use ISAM to gain access to a VSAM key-sequenced file
with an index.

job: (1) * A specifi(!d group of tasks prescribed as a unit of work for a
computer. By extension, a job usually includes all necessary computer
programs, linkages, files, and instructions to the operating system. (2) A
collection of related problem programs, identified in the input stream by it

, JOB statement followed by one or more EXEC statements.

job acc:ounting interface: A function that accumulates, for each job step,
accounting information that can be used for charging usage of the system,
planning new applications, and supervising system operation more efficiently.

job control: A program that is called into a virtual partition to prepare each
job or job step to be run. Some of its functions are to assign I/O devices to
certain symbolic names, set switches for program use, log (or print) job
control statements, and fetch the first program phase of each job step.

job (JOB) stat~ment: The job control statement that identifies the
beginning ofa job. It contains the name of the job.

job step: The execution. of a single processing program.

K: 1024.

key: One or more characters associated within an item of data that are
used to identify it or control its use. .

key sequence: The collating sequence of data records, determined by the
value of the key field in each of the data' records. May be the same as, or
different from, the entry sequence of the records.

key-sequenced file: A file whose records are loaded in key sequence and
controlled by an index. Records are retrieved and stored by keyed access or
by addressed access, and new .records are inserted in the file in key
sequence by means of distributed free space: Relative byte addresses of
records can change.

label: identification record for a tape, diskette, or disk file.

label information cylinder: Under DOS/VS, a cylinder of the system
residence file that stores label information read from job control statements
or commands. Synonymous with label cylinder.

Glossary 12.5

*

*

language trilnslator: A general term for any assembler, compiler, or other
routine that accepts statements in one language and pmcedures equivalent
statements in another language.

leased facility: A circuit of the public telephone network made available
for the exclusive use of one subscriber.

librarian: The set of programs that maintains, services, and organizes the
system and plrivate libraries.

library: A collection of files or programs, each element of which has a
unique name, that are related by. some common charalcteristics. For
example, ~ll phases in the core image library. have been processed by the
linkage editor.

linkage editor: A processing program that prepares the output of language
translators for execution. It combines separately produced object modules;
resolves symbolic cross references among them, and generates'overlay
structure on request; and produces executable code (a. phase) that is ready
to be fetched or loaded into virtual storage.

load: (1) * lin p¥gramming, to enter instructions. or data into storage or
working registers. (2) In DOS/VS, to bring a program phase from a core

"image library into virtual, storage- for execution.

main page 1)001: The ~et of all page frames in real storage not assigned to
the supervisor or one of the real partitions.

message: See error message, operator message.

microprogr~lmming: A method of working of the CPU in which each
complete instruction· starts the execution of a sequenc,e of instructions,
called microinstructions, w~ich are generally at a mon~ elementary level.

multiprogramming system: A system that controls more than one
program simultaneously by interleaving their execution.

multitasking: The concurrent execution of one main ta.sk and oneor more
subtasks in the same partition.

object code: Output from a compiler or assembler which is suitable for
processing by the linkage editor to produce executable machine code.

object module: A module that is the output of an assembler or compiler
and is input t.o a linkage editor.

object program: A fully compiled or assembled program. Contrast with
source program.

online: (1) Pertaining to equipment or devices under control of the central
proces,sing unit. (2) Pertaining to a user's ability to interact with a computer.

operand: (1) • That which is operated upon. An opc;:rand is usually
identified by an address part of an instruction. (2) Information entered with
a command name to define the data on which a command processor
operates and to control the execution of the command processor.

operator command: A statement to the control program, issued via a
console devic:e, which causes the control program to provide requested
information, alter normal operations, initiate new opeirations, or terminate
existing operations.

12.6 DOS/VS System Management Guide

operator message: A message from the operating system or a problem
program directing the operator to perform a specific function, such as
mounting a tape reel, or informing him of specific conditions. within the
system, such, as an error condition.

overflow: (1) That portion of the result of an operation that exceeds the
capacity of the intended unit of storage. (2) ·Pertaining to the generation of
overflow as in (1).

overlay: n. (1) One of the segments,' which consists of one or more
phases, of a program that is so structured that not all of the segments need
be in virtual storage at anyone time. v. (2) The process of replacing a
previously retrieved program segment in virtual storage by another segment.

page: (1) In DOS!VS, a 2K block of instructions, data or both. (2) To
transfer instructions, data, or both between real storage and the page data set.

page data set: An extent in auxiliary storage, in which pages are stored.

page fault: A program check interruption that occurs when a page that is
marked not in real storage is referred to by an active page. Synonymous
with page translation exception.

page fixing: Marking a page as nonpageable so that it remains in real
storage.

page frame: A 2K block of rear storage that can contc:tin a page.

page in: The process of transferring a page from the page data set to real
storage.

page Qut: The process of transferring a page from real storage to the page
data set.

page pool: The set of all page frames that may contain pages of programs
in virtual mode.

paging: The process ·of transferring pages between real storage and the
page data set.

parameter: A variable that is given a constant value for a specific purpose
or process.

peripheral equipment: A term used to refer to card devices, magnetic
tape and disk devices, diskettes, printers, and other equipment bearing a
similar relation to the CPU.

phase: The smallest complete unit that can be referred to in the core
image library. .

POWER: Priority Output Writers, Execution Processors and Input Readers.

printer: A device that expresses coded characters as hard copy,

priority: A rank assigned to a partition that determines its precedence in
. receiving CPU time.

private library: A user-owned library that is separate and distinct from the
system library.

private second level directory: The private second level directory is a
table located in the supervisor containing the highest phase names found. on
the corresponding directory tracks of the private core image library.

problem determination aid: A program that traces a specified event
when it occurs during the operation of a program. Abbreviated PDAID.

Glossary 12.7

•

problem pr'ogram: Any program that is executed when .the central
processing unit is in the problem state; that is, any program that does not
contain privUleged instructions. This includes IBM-distributed programs, such
as language translators and service programs, as well as programs written by
a user.

processing program: (1) A general term for any program that is not a
control program. (2) Synonymous with problem pro~:ram.

processor storage: The general purpose storage of a computer. Processo I

storage can be accessed directly by. the operating rel:ljsters~ Synonymous
with real storage.

queue: (1) A waiting line or list formed by items in a system waiting for
service; for example, tasks to be perf~rmed or messages to be transmitted
in message switching system. (2) To arrange in, or form, a queue~

random pr,ocessing: The treatment of data without· respect to its location
in. auxiliary storage, and in an arbitrary sequence governed by the input
against whic:h it is to be processed.

real address; The address of a location in real storage.

real address area: In DQS/VS, the area of virtual storage where virtual
addresses are equal to real addresses. '

real mode: In DOS/VS, the mode of a program that cannot be paged.

real partition; In DOS/VS, a division of the real address area of virtual
storage that may be allocated for programs that are not to be paged, or
virtual progJrams that contain pages that are to be fixed.

real storage: The storage of a System/370 computing system from which
the central IJrocessing unit can directly obtain instruc;tions and data, and to
which it can directly return results. Synonymous with processor storage.

reenterabltlt: The attribute of a load module that allows the same copy of
the load module to be used cQncurrently by two or more tasks.

relocatablo: The attribute of a set of code whose address constants can be
modified to compensate for a change in origin.

relocatablo library: A library of relocatable object modules' and IOCS .
modules required by various compilers .. It allows the user to keep frequently
used modules' available for combination with other modules without'
recomp,ilation.

restore: To return a data file created previously by a copy operation from
cards, disk or magnetic tape to disk storage.

rotational position sensing (RPS): A standard fe:ature of IBM
3330/3333 and an optional feature of IBM 3340 disk sto:rage devices. It permits these
devices to di:sconnect from a block multiplexer channel (or its equivaleni on Model
3115/3125 CPUs) during rotational positioning operations, thereby allowing the
channel to sf:rvice other devices.

routine: AUl ordered set of instructions that may have some general or
frequent use.

secondary storage: Saine as auxiliary storage.

12.8 DOS!VS System Management Guide

second level directory: A table ~ocated in the supervisor containing the
highest phase names found on the corresponding directory tracks of the
system core image library.

security: Prevention of access to or use of data or programs without
authorization.

sequential organization: Records of a sequential file are arranged in the
order i~, which they will be processed.

service program: A program th~t assists in the use of a computing
system, without contributing directly to the control of the system or the
production of results.

. shared, virtual area:' An' area located in the highest addresses of virtual
storage. It can contain a system directory list of highly used phases, resident
programs that can be shared between partitions, and an area for system
GETVIS support.

software: A set of programs, concerned with the operation of the
hardware in a data processing system.

source: The statements written by the programmer·in any programming.
language with the exception of actual machine language.

• source program: A co~puter program written in a sourc~ language.
Contrast with object program.

source statement library: A collection of books (such as macro
definitions) cataloged in the system by the librarian program.

~panned records: Records of varying· length that may be longer than the
currently used blocksize, and which may therefore be written in one or
more continuous blocks.' A spanned record may occupy 'more than 1 track
of a disk device.

stand-alone dump: A program that displays the contents of the registers
and part of the real address area and that runs independently and is not
controlled by DOS/VS. " . '

standard label: A fixed-format identification record for a tape, diskette, or
disk file. Standard labels can be written and processed by DOS/VS.

storage protection: An arrangement for preventing access to storage.

supervisor: A component of the control program. It consists of routines to
control the functions of program loading, machine interruptions, external
interruptions, operator communications' and physical IOCS requests and
interruptions. The supervisor alone operates in the privileged (supervisor)
state. It coexists i"n real storage with problem programs.

switched line: A communication line in 'which the connection between the
computer. and a remote station is established by dialing. Synonymous with
dial line.

system directory list: A list containing directory entries of highly used
phases and of all phases resident in . the shared virtual area; This list is
placed in the shared' virtual area.

Glossary 12.9

system residence device: The direct access device on which the system
residence volume is located. "

system residence volume: The volume on which the! basic system and
all related supervisor code is located.)

task: A unit of work for the central processing unit from the standpoint of
"the control program.

teleprocessing: The processing of data that is receivtld from or sent to
remote locations by way of telecommunication lines.

terminal: (1) • A point in a system or communication network at which
data can either enter" or leave. (2) Any device capable of sending and
receiving infOimation over a communication channel.

throughput: The total volume of work performed by a computing system
over a given period of time.

track: The portion of a moving storage medium, such as a drum, tape,
diskette, or disk, that is accessible to a given reading head position.

transientarua: An area of real storage used for temporary storage of
transient routiines.

UCS: Universal character set.

unit record: A card containing one complete record; a punched card.

universal character set: A printer feature that pemlits the use of a
variety of ch~llracter arrays. Abbreviated ues.
unrecoverable error: A hardware error which cannot be recove~ed from
by the normal retry procedures.

user label: An identification record for a tape or disk file; the format and
contents are defined by the user, who must also write the necessary
processing routines.

utility progl'am: A problem program designed to pelform a routine task,
such as transcribing data from one storage device to another.

virtual address: An address that refers to virtual storage and must,
therefore, be translated into a real storage address when it is used.

virtual address a"rea: In DOS/VS, the area of virtual storage whose
addresses arf: greater than the highest address of the real address area.

virtual mode: In DOS/VS, the mode of execution of a program which
may be paged. "

virtual partition: In DOS/VS, a division of the virtual address area of
virtual. storage that is allocated for programs that may be paged.

virtual storage: Addressable space that appears to the user as real storage,
from which instructions and data are mapped into real storage locations.
The size of virtual storage is limited by the addressing scheme of the
computing system and by the capacity of the page d2Lta "set, rather than ·by
the actual number of real storage locations.

12.10 DOS/VS System Management G~ide

virtual storage access method (VSAM): VSAM is an access method
for direct" or sequential processing of fixed and variable length records on
direct access devices. The records in a VSAM file can be organized either
in logical sequence by a key field (key sequence) or in the pnysical
sequence in which they are written on the file '(entry-sequence). A key
"sequenced file has an index, an entry-sequenced file does not.

virtual telecommunications access method (VTAM): VTAM is an access method
that supports communication between application programs and terminals in a
telecommunications network.

volume: (1) That portion of a single unit of storage media which is
accessible to a single read/write mechanism, for example, a drum, a
diskette, a disk pack, or part of a disk storage module. (2) A recording
medium that is mounted and dismounted as a unif, for example, a reerof
magnetic tape, a disk pack, a diskette, or a data cell. "

volume table of contents: A table on a direr, access volume ot.diskette
that describes each file on the volume. Abbr"':"4'lated VTOC.

VSAM access method services: A multifunction utility program that
defines VSAM files and allocates space for them, converts indexed
sequential files to key,;,sequenced files with indexes, facilitates data
portability between operating systems, creates backup copies of files and
indexes, helps to make inaccessible files accessible, and Jists file and catalog
entries.

VSAM catalog: A key-sequenced file, with an index, containing extensive
file and volume" information that VSAM requires to locate files, to allocate
and deallocate storage space, to verify the authorization of a program or
operator to gain access" to a file, and to accumulate usage statistics for files.

VTOC: See volume table of contents.

work file: A file on an auxiliary storage medium reserved for intermediate
results during execution of the program.

working set: The set of a user's pages of a virtual-mode program that
must be in real storage in order to avoid excessive paging~

Glossary 12.11

Index

$ phases 7.32
/ + statement
/ & statement:

A

7.11
5.2,5.4

abnormal temlination, user' exit routine
sUlPport 3.21

acc(~ss methodl services 3.12,5.44
ACANCEL option 5.40
ACCOUNT 3.40
account file, POWER/VS 3.40,
ACTION statement' 6.12

CLEAR option 6.22
MAP optioni 6.22
REL option 6.12

ADJD comman.d, 4.3
ADJD statement 7.21
ALLOC macro 3.7
ALLOC statement

for CORGZ program 7.22
for library reallocation 7.18

ALLOCR ma(:ro 3.7
Amt:rican National Standards Institute

(ANSI) 3.16
ASCII, supervilsor generation considerations
assemble and execute 6.7
assembler copy library 7.10
assembler language program 9.3
assembler mac.ro library 7.10~ 7.27
ASSGN macro 3.34, 5.17
ASSGN statement/command 5.12,5.17,5.31
asynchronous processing (see also

multitasking) 3.13
AUTOLINK feature 6.15

sUlPpressing 6.16
automatic condense 7.16
AUTOSTART procedure (POWER/VS) 8.1

B
BATCH comm.and 5.41
BKEND statement 7.11
BLKMPXoperand in FOP! macro 3.27
block multiplexer channel support 327
books, naming conventions' 7.10
BTAM

supervisor generation considerations 3.15
BTMlOD 3.1S '
buffC:lfs, CCW Itranslation 3.28
BUFSIZE operand 3.28

3.16

buildingSDL 4.5

c
CANCEL (linkage editor option) 6.22
CAT command 4.4
CATAL option 5.37,6.5,621
cataloged procedures 55

modifying 5.6
partition-related 5.20
retrieving 5.5
SYSIPT data 5.16'
use by operator 5.11

cataloging to core image library 6.1
permanently 6.1
temporarily 6.1

cataloging 7.8
a supervisor 6.5
naming conventions for books 7.10
naming conventions for modules 7.10
naming conventioJls for phases 6.10
to core image library 6~5
to procedure library 7.11
to relocatable library 7.8
to source statement library ,7.10

CAT ALP statement 7.11
CAT ALR s'tatement 7.8
CATALS statement 7.10
CCW translation buffers 3.28
central processing unit 3.32
change levels 7.13
channel programs 3.28
channel queue '3.29
checkpoint 5.43

example of use 10.17
restarting from 5.43, 10.18

CHKPT macro
use of 10.16

choosing the libraries for an installation
CLEAR 6.17, 6.22
clearing a partition 5.46
clearing unused portion of core image

library 6.17, 6.22
CLOSE command 5.49, 5.51
COBOL sublibrary 7.10

, coding techniques 9.1
condensing 7.16

automatically 7.16
restriction for POWER/VS users 7.17
when performed' 7.17'

CONDL statement 7.16
CONDS statement 7.16
CONFG macro, 3.3

MODEL operand 3.32
console buffering 3.19
control sections (CSECT) 6.18

3.46

Index 13.1

controlling jobs 5.1
, controlling printed outpuL 5.28

copy (A) sublibrary 7.27
COpy statement 7.22, 7 .:~
core image library 6.1, 11.3

clearing the unused portion of 6.22
contents of 3.44
directclry 11.2
renamiing phases in 7.20

CORGZ program 7.21, 7.29
creating private core image libraries 7.30
creating private libraries 7.28
creating the shared virtual area 4.5
CSECT 6.18
CSERVprogram 7.25

D
DASD file protection 3.23
DASD files 5.23
DAT facility. 1.6,3.28
data fIle (POWER/VS) . 3.37

, DATE statement 5.S
DBLK 3.39
de-·editing assembler macros 7.27
defining partition priorities 3.9
defining the number of partitions 3.7,2.3
defining the page data set 3.10.
defining the size of partitions 3.7, 2.3
defining the size of the real address area 3.4, 2.3
defining the size of the shared virtual area 3.6
defining the size of the virtual address area 3.4,

2.3
defining the size of virtual storage 3.4, 2.3
defining the System/370

co:nfiguration 3.32
CPU 3.32
I/O devices 3.32

DEL command 4.3
DEL statement 7.21
deletin.;g 7.13

example 7.14
relatiion to condensing 7.14

designing programs for virtual-mode
exec\lltion 9.1 .

determing the location of the libraries 3.48
. device assignments 5.17

in "a multiprogramming environment 5.18
pemlanent 5.18
required for an assembler 5.20
standard 5.1 7
temporary 5.18

device considerations 1.4
directories, displaying the contents of 7.25
directory entry 7.2
directory 7.2

core image library 11.3

13.2 DOS/VS System Management Guide

entries in 7.2
procedure library 11.4
relocatable library 11.3
second level . 3.14, 7.2
source statement library 11.4
system 7.2, 11.1 .

disk and diskette options 3.22
block multiplexer channel support 3.27
DASD fIle protection 3.23
rotational position sensing 3}25
system files ,on disk 3.22
system fIles on diskette 3.22
track hold facility 3.23

diskette files 5~22
" displaying the contents of the libraries 7.26

displaying the directories 7.2:5
distribution medium 3.2
DLAB 5.31
DLBL statement 5.22, 5.33
DPD command 4.4
DPD macro 3.10
DSERV program 7.25
DSPCH statement 7.26
DSPL Y statement 7.25, 7 .2~5
DSPL YS statement 7.25
dummy devices 3.33,8.2
dump facilities 10.31

DUMP macro 10.31
JDUMP macro 10.32
PDUMP macro 10.32

DUMP macro
use of 10.31

DVCDN command 5.33
DVCGEN macro 3.3,3.32
DVCUP command 5.33
dynamic address translation (DAT) 1.6,3.28

E
edited macros, preparing for update 7.27
emulators 3.33
END card 6.3
end of supervisor 3.34
end-of-day (EOD) record 4.8
end-of-job statement 5.2,5.4
end-of -procedure statement 7.11
ENTRY statement 6.23
ER item 6.15
EREP 3.30,4.7
error queue 3.30
ESD card 6.3
ESERV program 7.27
EVA (error volume analysis) 3.31
EXEC statement 5.2, 5.44

PROC operand 5.5
REAL operand 5.44
SIZE operand 5.44

executing a program 5.33
pre:paration for 5.40

ex~cuting cataloged programs 5.37
exits 3.19, 10.5
. 'abnonnal termination 3.21,10.8

inte:rval timer 3.20, 10.5
IPL 4.8, 10.9
job control 5.46, 10.12
operator communications 3.21
pag'~ fault handling overlap 3.22
POWER/VS 9'.9
program check 3.20,10.8

EXTENT statement S.21,5.33
extemal references, resolution of 6.15

F
FCB (see forms control buffer)
FCE][lGOUT macro 3.11,9.6
FETCH macro

use of 6.20
file information 5.12
fixing pages 1.9, 3.10, 9.4
FOPT macro 3.3

AB operand 3.19,3.21
BLKMPX operand 3.27
CBF operand 3.19
DASDFP oper,and 3.23
DOC operand 3.32
EC1PREAL op€,rand 3.29
EVA operand 3.31
IDRA operand 3.19
IT operand 3.19,3.20
JA operand 3.17
JAlLIOCS operand 3.17
OC' operand 3.19,3.21
PC operand 3.19,3.21
PClL operand 3.14
PD operand 3.32
PFIX operand 3.10
PRTY operanid 3.9
RELLDR op€~rand 3.12
RETAIN operand 3.31
SKSEP operand 3.24
SLD operand 3.l4
SYSFIL operand 3.14, 3.23
fEB operand 3.31
TElBVoperand 3.31
TOD operand[3.18
·TRKHLD operand 3.24
ZONE operand 3.18

forms control buffer (FCB) 4.5
FORTRAN 9.2

G
GENCAT ALS statement 7.27
GENEND statement 7.27
generating POWER/VS 3.35
GENL macro 6.20
GETIME macro

support for 3.18
use of 10.2

GETVIS area 3.6,5.42
GETVIS macro 5.44·
glossary 12.1

H
hard copy file for Models 115 and 125 4.7

I
I/O devices, supervisor generation

considerations 3.32
INCLUDE statement 6.14,6.25
independent directory read-in area 3.19
initial program load (IPL) 4.1

ADD command 4.3
adding devices 4.3
assigning the VSAM catalog 4.4
automatic functions of 4.4
bootstrap records. 11.1
CAT command 4.4
communications device 4.2
DEL command 4.3
deleting devices ·4.3
DPD command 4.4
exit after 10.9
page data set. handling 4.4
SET command 4.3
user exit 10.9

initialize disk utility 11.1, 11.5
. interlanguage communications 10.1
intermediate storage requirements

(POWER/VS) 3.37
interval timer 3.18

example of use 10.3
supervisor generation considerations 3.18
user exit routine support 3.20

I/O options 3.28
CCW translation buffers 3.28
channel queue 3.29
console buffering 3.19
independent directory read-in area 3.19
seek separation 3.24

IOTAH macro 3.3,3.29
CHANQopenlnd 3.29

IPL (see also initial program load) 4.1

Index 13.3

ISAM 3.28
ISAM intedace program 5.44

J
, JDUM:P macro

use of 10.32
JLOG 3.42
job 5.1
job ac,counting 19.19

example 10.22
P.OWER/YS 3.40, 10.24
regi~;ter usage 10.21
supe:rvisor generation considerations 3.17
tabl(~ 10.20

j·ob control 5.1
job control exit in the SV A 5.47
job entry control.1anguage (JECL) 8.2, 8.4
job name ·5.3
JOB statement 5.2,5.3
job step 5.2
job stream 5.2
JSEP 3.43

K
KILL option 8.10

L
label information 5.23,5.26

cylinder 5.4,5.29, 11.4
editing 5.29
for DA files 5.26
for diskette fdes 5.23
for magnetic tape files 5.26
for sequentiaUy-organized disk files 5.26
PAlRSTD 5.29
STI)LABEL 5.29
stoling 5.29
USJRLABEL 5.29

label save area 6.17
labe15:, reserving storage for 6.17
language translator 6.2
LBLTYP statement 5.23,5.27,6.17,6.22
LFCB .command 5.28,5.39
librarian programs 7".6

cop'y/reorganize (CORGZ) 7.21
CSERV 7.25
DSERV 7.25
ES1BRV '7.27
maiintenance (MAINT) 7.7
names of 7.2
processing. requirements 7.7
PS]BRV 7.25'
requirements 7.7
RSBRV 1..25

·13.4 DOS/VS System Management Guide

service functions 7.25
SSERV 7.25
summary of functions 7.li

libraries
changing the size of 7.18
creating private 7.28
displaying the contents of 7.26
eliminating 7.19.
how accessed by the system 7.1
punching the contents of 7.26
transferring elements betw(~en 7.23
using the 1.1

library directories 7.2
library options 3;14

private core image librade~; 3.14
procedure library (extended support) 3.14

LINK option 5.36, 6.6, 6.~~1
link-edit and execute 6.6
link-editing 6.1
linkage editor control statements 6.9

ACTION 6.22
ENTRY 6.23
INCLUDE 6.23
PHASE 6.23

linkage editor examples . 6.24
cataloging to core image library 6.24
catalog to private core ima~ge library 6.26
compile and execute 6.30
link-edit and execute 6.28

linkage editor 6.1
applications 6.5
examples 6.24
processing requirements 6.8
storage map 6.17
symbolic units· required 6.9

Jinking programs 6.1
LIOCS label processing 10.21
LISTIO statement/ conunand 5.33
LOAD macro

use of 6.20
loading the FCB 5.28
loading the UCB 5.38
locality of reference 9.1
LSERV program 11.5
LUCB command 5.28,5.33
LTAB 3.42

M
MACRO statement 7.10
magnetic tape files 5.26
main task 1.10
MAP 6.17
MERGE statement 7.24, '7.29
MICR stacker select routine:s 5.46

minimum real storage 9.1
mode of e;cecution 1.8

d€,termining the 9.6 .
real . 1.8,5.,44
virtual 1.8, 5.44

Models 115 and 125 4.7
ha~rd copy file of video display console 4.7
supervisor gl!neratiori considerations 3.32

modules, naming conventions 7.10·
MTC· statement/command 5.27, 5.33
multiple':'partitilon options 3.12

mlilltitasking 3.13
POWER/VS 3.13
'rellocating loader 3.12
wait mUltiple: 3.13

multiprogramming 1.1
multitasking

concepts of 1.10
:...supervisor g(meration considerations 3.13

N
namilng converntions

fOJr phases 6.10
for books 7.10
for modules 7.10

NEVvV()L stat,ement 7.29, 7.30
NOAUT...Q 6.16
NOMAP6.1B
noitrelocatable phCises 6.5

rec:ataloging 7.27
NPARTS parameter 3.7

o
object module 6.3
OLTEP 3.31,5.45
operator communications, user exit routine

support 3.21
OPTION statement 5.29,5.35,5.46

CATAL option 6.21
LINK option 6.21

OVEND statement 5.7
overlay structure 6.18

p

control sections 6.18
relating control sections to phases 6.19
use: of FETCH and LOAD macros 6.20

page 1.6
page boundaries 9.4
page data set 1.6

defining the 3.10
formatting of 4.4
label information for 4.4
location of 4.4
opeming of 4.4

page fault 1.6
reducing occurrence 9.1
user exit routine support 3.22

page fault handling overlap (PHO) 3.19,3.22
page fixing 3.10, 9.4
page frame 1.6
page pool 1.10
PAGEIN macro 3.11, 9.6
PAGEIN operand of SUPVR macro 3.11
PARSTD 5.29
partitions 1.2

differences between 1.2
number of 3.7
priorities of 1.3, 3.9
real 1.8
size of 3.7
size of real 3.8,
size of virtual 3.8
virtual 1.8

PAUSE statement/command 5.3,5.4,5.52
PBDY parameter in PHASE statement 6.11
PDAIDS 3.30,3.32
PDUMP macro

use of 10.32
PFIX macro

supervisor generation considerations 3.10
phases 6.4

defining load addresses {or 6.10
link-editing to execute in a real partition 6.14
link-editing to execute in a virtual

partition 6.13
link-editing to execute in any partition 6.11
naming conventions 6.10
non-relocatable 6.5
reenterable 1.8, 3.6, 9.6
relocatable 6.4, 6.11,9.6-
self-relocating 6'.4,6.14

PHO 3.19,3.22
PIOCS macro 3.3,3.32
PL/I 9.3
planning the libr~~.es 3.44
planning the size and contents of the

libraries 3.52
planning the system 3.1
PLINE macro 3.35
POWER macro 3.35
POWER/VS RJE 3.43,8.9

ternainal states 8.9
POWER/VS 1.11

AUTOSTART 8.1
concepts 1.11
dummy devices 3.33,8.2
generation consid.erations 3.35
initiation of 8.1
job accounting 3.40, 10.24
partition priorities 8.2

Index 13.5

reader exit 9.9
RJE concepts (see also POWER/VS RJE) 1.15
segmentation 8.6
shutdown procedures 8.10
start up 8.1
summaJY of advantages 1.14
supervisor generation considerations 3.13

preparing edited macros for update 7.27
priorities 1.3

of partitions 3.9
PRl 3.42
private core image libraries 6.1

creating 7.30
organization of 7.30
support for 3.14

private libraries 3.46,3.48
assignments in MPS system 7.33
creating 7.28
creating private core image 7.30
filenames used for creating 7.29
search sequence 7.32
symbolic unit names for creating 7.31
using 7.31

PRMT macro 3.35
problem determination aids 3.3.0,3.32
procedure library 3.45

cataloging to 7.11
contents of 3.45
directory 11.4
extended support for 3.14
modifying procedures in 5.6
renaming procedures in 7.20
retrieving procedures from 5.5

program check,. user exit routine support 3.21
program execution 5.33
program phases 6.4

nonre:locatable 6.5
reentl~rable 1.8, 3.6, 9.6
relociltable 6.4, '9.6
self -r'elocating 6.4

program
stages of development 6.1
design 9.1
structure of 6.1

programmer logical units 5.17
maximum number of 5.17

PRTY command 3.9, 8.2
PRTY parameter 3.9
PSERV program 7 25
PUNCH statement 7.26
punching the contents of the libraries 7.26

Q
QTAM, supervisor generation considerations 3.15
queue entry (POWER/VS) 3.39
queue me (POWER/VS) 3.37

13.6 DOS/VS System Management Guide

R
RAS transients 4.5
RAS 3.30

On-Line Test Executive Program
(OLTEP) 3.31

Problem Determination Aids (PDAIDS) 3.32
Recovery Management Support (RMS) 3.3.0·

RDREXIT 9.9
RDE data entry 4.8
reader exit (POWER/VS) 9.9
real address area 1.5

defining the size of 3.4
real mode 1.8
real mode execution 5.44

programs requiring 5.45
REAL operand 5.46
real partitions l.M

priority of 3.9
size of 3.M

real storage 1. 5
reallocating 7.18·
record on demand (ROD) command
recovery management support (RMS)
recovery management support. recorder

(RMSR) 4.6
reenterable phases 1.8, 3.6!1 9.6
reliability data extractor (RDE) 4.8

support for 3.31
relocatable library 3.44

cataloging to 7.8
contents of 3.44
directory 11.3
renaming modules in 7.20

relocatable phases 6.4,6.11.,9.6
recataloging 7.27

relocating loader 1.3,5.41
supervisor generation considerations
use of 6.11

RELPAG macro 3.11,9.6
renaming library elements 7.20
REP card 6.3
REP statement 7.21

4·.7,4.8
3.30

3.12

RESET statement/command 5.32
restarting from a checkpoint: 5.43, 10.15
RETAIN 3.31
RLD card 6.3
RMS 3.3Q.
RMSR 4.6
ROD command 4.7,4.8
rotational position sensing (RPS) 3.25

reserving storage for 5.42
supervisor support for 3.6

RSERV program 7.25
RSIZE operand 3.4
RSTRT statement 5.43,5.47
RUN MODE macro 9.6

S
sample programs 7.10
SDAIDs 3.310
SDL (system directory list) 2.2,3.6,4.5
second-level directory 3.14, 7.2
seek separation 3.24
self.-relocating programs 5.41, 6.14
SEND macro 3.34
SER~EP 3.30
service functions of librarian programs 7.25
SET command 4.4'
SETIME macro, use of 10.3
SETPFA macro 3.22
SETSDL command 4.5
SET ,SV A command 4.5
shared virtual area 1.8, 3.6

coding for 9.6
creating 4.5
link-editing for 6.12

SIZE operand 5.44
SLD operand iln FOPT macro 3.14
SLI 3.41
source module 6.2
source statement library 3.45

assembler m:llcro sublibrary 7.27
cataloging to 7.10
contents of 3.45
copy (A) sublibrary 7.27
directory 11.4
renaming books in 7.20

SSERV program 7.25
standard assignments 3.34
standard job control settings 3.34
START command 5.41
startllng the system 4.1
STCK instruction 10.3
STDCARD 3.39
STDJC macro 3.3, 3.34
STDlLABEL 5.29
STDLINE 3.39
storage management options 3.3
storage protectiioll 1.3

storing of keys 4.4
STXIT macro, use of 10.3
SUBLIB parameter 3.41
sublibraries 7.10

assembler macro (E) 7.27
copy (A) 7.27
naming conv{mtions 7.10

subroutines 9.3
subtasks 1.1 0

maximum number of 3.13
supervisor cataloging 6.5

supervisor generation 3.3
supervisor selection 4.1
SUPVR macro 3.3

AP operand '3.13
ASCII operand 3.16
ERRLOG operand 3.31
EU operand 3.33
NPARTS operand 3.7
PAGEIN operand 3.11
PHO operand ,3.22
POWER operand 3.13
TP operand 3.15

SV A parameter in VST AB macro 3.6
symbolic I/O assignment 5.12
SYSCAT 4.4,5.15
SYSCLB 5.15
SYSFIL option ,3.14,3.23,5.49, 7.12
SYSIN 5.15
SYSIPT 5.15
SYSIPT data, cataloging in procedure library 7.12
SYSLNK 5.15
SYSLOG 5.15
SYSLST 5.15
SYSOUT 5.16
SYSPCH 5.15
SYSRDR 5.15
SYSREC (see also system recorder file) 4.6,5.15
SYSRES 5.15

creating a new 7.22
layout 11.2

SYSSLB 5.15
system directory

list (SDL) 3.6, 4.5
listing of 7.25
contents of 11. 1
location of 11.1
status report of 7.8

system files on disk 5.49
supervisor support for 3.23

system files 5 .47
on disk 5.49
on diskette 5.51
on tape 5.48

system generation procedure 3.1
system layout on disk 11.1
system logical units 5.1 5

SYSCAT 4.4,5.15
SYSCLB 5.15
SYSIPT 5.15
SYSLNK 5.15
SYSLOG 5.15
SYSLST 5.15
SYSPCH 5.15
;;YSRDR 5.15

Index 13.7

SYSREC 4.5,5.15
SYSRES 5.15
SYSRLB 5.15
SYSSLB 5.15
SYSUSE 5.15
SYSVIS 4.4,5.15

system recorder file 4.6
creatilon of 4.6
label information for 4.6
supervisor support for 3.31

system residence
organization of 11. 1
creating a new 7.22

system volume label 11.1
SYSUSE 5.15
SYSVIS 5.15

assigning 4.4
defining 3.9

T
tai1o~!1lg POWER/VS. 3.35
tailorlllg the sup~rvisor· 3.3
tape error statistics 3.31
task

main task 1.10
sub task 1.10

teleprocessing 3.15
BTAM 3.15
QTAM 3.15
VTAM 3.16

teleprocessing balancing 3.15
operator considerations 5.43
TPBAL command 5.43
TPIN/TPOUT macros 9.6

terminal states (POWER/VS RJE) 8.9
time-of-day clock 3.18,5.3

status 4.4
suptlrvisor generation considerations 3.18
use of 10.2

timer services 3.17
interval timer, 3.18
timt:-of-day clock 3.18

TLBL statement 5.26; 5.33
TOLTEP 3.30
TPLA]B 5.31
trace routines 3.31
track hold 1.4

supervisor support for 3.23
TRACKGP 3.40
transfer address 6.23
transferring elements between libraries 7.24

13.8 DOS/VS System Management Guide

TRKHLD 3.23
T'FIMER macro 3.20~ 10.4
TXT card 6.3
typical DOS/VS systems 2.2

u
unavailable free space 7.16
UPDATE statement 7.22
updating edited macros 7.27
updating the source statement library
UPSI statement 5.41,5.47

7.20

use of 10.1
user exit routines 3.19, 10.5

abnormal termination 3.21,10.8
interval timer 3.20, 10.5
IPL 4.8,10.9
job control 5.47,10.12
operator communications 3.21, 10.9
page fault handling overlap. 3.22
program check 3.21. 10.8

user program switch
indicator (UPSI) 5.41,5.47" 10.1

user volume label 11.1
using POWER/VS 8.1
using private core image libraries 7.32
using private libraries 7.31
using the facilities and· options of the

supervisor 10.1
using the libraries 7.1
USRLABEL 5.29
utility programs

initialize disk
VTOC display

v

11.1,11.5
11.5

validity of reference 9.2
video display/keyboard console 4.7
virtuar address area 1.5

defining the size of 3.4
virtual mode 1.8
virtual inode execution 5.44

programs requiring 5.45
virtual partitions 1.8

priority of 3.9
size of 3.8

virtual storage access method (VSAM)
reserving storage 5.42
support for 3.12

virtual storage macros 9.4
PFIX 3.10, 9.4
PFREE 3.10,9.5
RUNMODE 9.6

3.11

vilrtual storage 1.5
defining the size of 3.4
GETVIS a.rea 3.6
macros 9.4
lreal address area 3.4
sha.red virtual area 1.8, 3.6
summary of advantages 1.10
virtual address area 3.4

virtual telecommunications access
method (VTAM) 2.1,3.16

number of partitions 3.7
\.

. supervisor glmeration considerations
with interval timer exit 10.5
with program check exit . 10.8
sublibrary '7.10

VOL 5.31
volume table of contents 11.5
VSAM '3.6,5.44

3.16

access method services (AMS) 3.1 1,5.44
catalog 4,4
rl~serving storage for 5.42
slllpervisor generation considerations 3.11

VS]rZE operand· 3.4

"STAB macro 3.3
BUFSIZE operand 3.28
RSIZE operand 3.4
SVA operand 3.6
VSIZE operand 3.4

VTAM 2.1,3.16
sublibrary 7.10
number of partitions 3.7
supervisor generation' considerations
with interval timer exit 10.5
with program check exit 10.8

VTOe 11.5
VTOC display utility 11.5

w
wait mUltiple facility 3.13
wOl'kiJ.tg set 9.1'

X
XTENT 5.31

3203, 3211, 5203 printers 4.5
5424 MFCU 5.34'

3.16

Index 13.9

GC33-5371-4

Inkmatlonal Bualnen Machine. Corporation
Data Procet_lng Division
1133 Westcll'lester Avenue, WhHe Plains, New York 10804
(U.S.A. only",

'BM World 'rree CorporaUon
;121 United Nations Plaza, New York, New York 10017
(International)

o
o en
<: en
en
-<
~
CI)

3
s:
Q)

::l
Q)
to
CI)

3
CI)

::l
ro+

G":I
c
0:
(1)

l'

. ,.

.
, .

DOS/VS System Management Guide
GC33-5371-4 '

R'EADER'S
COMMENT
FORM

This sheet is for comments and suggestions about this manual. We would appreciate your
views, favorable or unfavorable, in order to, aid ,us in improving this publication. This form
will be sent directly to the author's department. Please include your name and address if
you wilsh a reply. Contact your IBM branch office for answers to technical questions about
the sy~:tem' or when requesting additional publications. Thank you.

Your comments· and suggestions:

• We would lelpeCilDy appreciate your comment. on any of the foDowina topics~

Clarity of tbe text
OrganizatiOllI of the tex,t

Accuracy
CroD-references

Index
Tables

mustrations
Examples

Appearance
Printing

Paper
Binding

GC33·5371·4

YOUR COMMENTS, PLEASE •••

1bis manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your answers to the questions on the back of this
(onn, togeth,er with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM. .

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys­
tem should·be directed to your IBM representative or to the IBM sales office serving your
lecality. .

Fold
Fold

("')

C
-I
l>
r
o
Z
o
-I
::r
en
r
Z
M1

........... ~ ..•.................. ~••••••..••••..•••...•.••••••..•..•.•.........•................................. :

BUSINESS R EPl Y MAil

NO POSTAGE STAMP N~CESSARY IF MAILED IN THE UNITED STATES

Attenttc:tn: Dttpartment 813 U

POSTAGE WILL BE PAID BY .•.

IBM COtrpciration
11 33 Wli!stchester Avenue
White Plains, N.Y. 10604

[

FIRST CLASS

PERMIT NO. 1359

. WHITE PLAINS. N. Y.

,~ •• II ••••••••••••••••••• ~ '! •••••••••••••••••••

Fold

International Bua Machin .. Corporation
Data Proca1"ng DIvI8lon
1133 WHlch r Avenue, Whll. Plalna, New York 1010-41
(U.s.A. onlr)

IBM Wot1d ThId. Corpor8llQn
121 UnIfed ~lIItIona Plaza, New York, New York 10017
(In IIo .. al) .

Fold

G,)
I::
a: crt

