GC33-5371-4
File No. $370-34 -

- DOS/VS
Systems System Management Guide

Release 31

TIBIME

Fifth Edition (March, 1975)

This is a major revision of, and obsoletes, GC33-5371-3. it includes changes reflécting
support for POWER/VS and VTAM. Changes or additions to the text orillustrations
are indicated by a vertical line to the left of the change.

This edition applies to Version 5, Release 31 of the IBM Disk Operating System/Virtual
Storage, DOS/VS, and to all subsequent versions and releases until otherwise indicated
in new editions or Technical Newsletters. Changes are continually made to the
information herein; before using this publication in connection with operation of IBM
systems, consult the latest Virtual Storage Supplement (to /BM System/360 and
System/370 - Bibliography), GC20-0001, for the editions that are applicable and current.

Note: For the availability dates of features and programming support described in this
manual, please contact your IBM representative or the IBM branch office serving your
locality.

~ Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving youir locality.

A form for readers’ comments is provided at the back of this publicatibn. If the form
has been removed, comments may be addressed to IBM Laboratory, Publications
Department, P.O. Box 24, Uithoorn, The Netherlands. Comments bécome the property
of IBM. ‘

“© Copyright International Business Machines Corporation 1972, 1973, 1974, 1975

———

THIS MANUAL. . .

- is a guide to the IBM Disk Operating System/Virtual Storage
(DOS/VS). The system in its entirety is discussed on a conceptual and
functional level. System management refers not only to the way DOS/VS is
organized, but also to the way ‘the user can efficiently manage the system
facilities at his disposal. This manual, therefore, does more than describe
the functions and interaction of the system control and system service
programs that constitute DOS/VS. It also describes how you -- as a
systems planner, systems programmer, applications. programmer, or operator
-- can use DOS/ VS to your best advantage:

Before you begin readlng this manual, you should be famlllar with the .
information contained in the Introduction to DOS/VS, GC33-5370.

This book is not a gmde to data management; instead, a separate manual is-

provided for this purpose, called the DOS/VS Data Management Guide,
GC33-5372.

A manual that complements both the DOS/VS System Management Guide
and the DOS/VS Data Management Guide is also available at this time to

‘meet your installation’s plannmg requirements. It is called DOS/ VS

Supervisor and I/O Macros, GC33-5373.

After reading the above mentioned manuals, you should be able to turn
directly to the DOS/VS lrbrary of reference manuals in order to work- with _
your operating system. A reference manual is organized so that you can
easily retrieve specific information on the formats of the control statements,,
macro instructions, labels, and messages, which you deal with daily.

This manual is divided into three parts:

Part I: The Organization of DOS/VS provides conceptual, descnptlve, and
planning information. Part I contains three: chapters. The first chapter
introduces the concepts of several of the. main topics discussed
throughout this part-of the manual.- The second chapter summarizes the
standard and optional features of DOS/VS. The third chapter includes
planning information for system generation.

Part II: Using the System provides the. mformatron on how to use the
system. Part Il contains five chapters, which consist of guidance:
information on using the IPL, job control, ‘linkage editor, hbranan, and
POWER/VS programs.

Part III: Designing Progams provides guidance in designing programs to be

run under DOS/VS: Part Il contains three chapters, which discuss how .
- to design a program for éxecution in virtudl mode, how to use the
facilities of the supervisor, and how to use the multitasking macros.

For reference purposes the orgamzatlon of the system resrdence disk file

'(SYSRES) is shown in Appendix A.

The following IBM manuals are referred to in the text of this manual:

‘Introduction to DOS/VS.. i eiiiiiiiiiuioi.... GC33-5370
DOS/VS Data Management Guide GC33-53_7"2.
DOS/VS Supervisor and 1/0 Macros GC33-5373
DOS/VS Tape Labelso...cou... e .- GC33-5374
DOS/VS DASD Labels -0..o..... eeeein...... GC33-5375
'DOS/VS System Control Statements e GC33-5376
'DOS/VS System Generation - . . NNE TR ... GC33-5377
DOS/VS Operating Procedures GC33-5378
DOS/VS Messages e o i GC33-5379
DOS/VS Sérviceability Aids and Debugging Procedures GC33-5380
DOS/VS System Utilities I SRR GC33-5381 -
1401/1440/1460 DOS/VS Emulator on System/370 GC33-5384
1410/7010 DOS/VS Emulator on System/370°: GC33-5385'
Model 20 DOS/VS Emulator on System/370 GC33-5388
. Guide to the DOS/VS Assembler PR ... GC33-4024
‘DOS/VS VTAM System Programmer’s Guide GC27-6957
* 1BM System/370 Principles of Operation e . GA22-7000
DOS/VS Supervisor Logic e e P SY3378551
DOS/VS Librarian Logic"................... » SY33-8557

| pos/vs pOWER/VS Logic e eiiiiii.... . SY33-8570

Table of Contents

Part I: The Orgamzatlon of DOS/VS
Chapter 1: Understandmg the System PSS :

s

oo oo xnruhwwwi=L

e N
Multiprogramming00 . 0oL e e I de |l
Partitions P e 1
" - Storage Protection0 0 0., e e e e N R |
Partition Priorities P S R S |
. Executing a Program in Any Partmon FE |
“Dévice Considerationsvsoenunnn.. e it 1
VlrtualStorage............,...‘ P e e e 1
Real and Virtual Partitions 0 ittt 1
The Shared Virtual Aréa’ oo vt vt ee i eeennns S |
Executing Programs in Real and in Vlrlual Mode R |
PagePool. i i i e PR R R
Advantages of Virtual. Storage T '. S RSP
Multltaskmg............. i e e e P I
Two Types of Multitasking ..-.............. e [e R
POWER/VS, .. it el eid i vinnnnan P
Implementation of POWER/VS el e 111
Tnput - T PN P e 113
_Reader Routine%w......... e e LLL13
' Intermediate Storage = R A TTUMI TN [1.13
Execution Processors, e PP S I &
- Writer Routines e e e e 1.13
Operator Communications Routme e [P N I N k)
Some Basic Terminology : . ..:.%. S e A 1.14
“Advantages of POWER/VS 0000 0vun.. e e ...114
POWER/VS Remote Job Entry (POWER/VS RJE) B N . L15
Input at the Terminal e e e e 1.15
Output at the Terminal R S e N)
. MESSABES "l o vt ittt e e e ek et e e L. 116
_Chapter 2: Summary of DOS/VS Features 2.1
Standard. Features of DOS/VS%. L .. 2.0
Optional Featurgs of DOS/YS ; fet et et ettt 2.1
DOS/VS in Various CPUs" e e e e F e e 2.2
Chapter 3: Planning the System el e P N |
"System Generation Procedure *. . .,, . S 3.1
Tailoring the Supervisor e e et N .33
) Sterage Management Options - e e eeeee .. 33
Defining the Size of Virtual Storage” “......... e e 34
Defining the Number of Partitions- e 3.7
Defining the Size of Partitions el 3.7
Defining Partition Priorities e el e, 3.9
Defining the Page DataSet i 3.10
Fixing Pages in Real Storage e e A 8 (1]
Improving the Paging Mechanism e e 3.0t
. Virtual Storage Access Method S SN]
Multiple-Partition Options0.. FOPR, e e 3.12
~ Relocating Loader ~. Ve N el 3002
"POWER/VS v e e e e e N k2
Multitasking e b et e e e 3.13
Wait Multiple Option AN e e 313
Library Options e e e e e e i o304
Private Core Image lerarles e e e 3.14
Extended Suppori for the Procedure leraly PR 3.14
Second Level Directory for Core Image leranes et 3.14
Teleprocessing S 3.15
BTAM . oo o e e T e N 315
v QTAM i e R, PR R T
| CVTAM L DR L 306
. ASCIl o e e Y 3.16
Job Accounting e e e e T P PRI X I
Timer Servicesovvn ... RN T 2317
Time-of-Day Clock e e e eei...3.18
Interval Timer-- et uinnn . J R 8 | -3
" Console Buffering "~ e e e e e 3.19
Independent Directory Read-in Area e e e e e e . ..3.19
User Exit Routines e e e e e eeae e 3.19
Interval Timer Exito 0 e e e ., 320
Program Check Exit-: e e coaal321

Abnormal Termination EXit % .. vm e eenennnnn e 013,21

Operator Communicafions Exit ooy et 03221
Page Fault Handling Overlap Exit -.0.. . e eae e e e e e 3.22
Disk or Diskette Options S TSP . 2.
System Files on Disk or Diskette R P 3.22
‘DASD File Protection R S e e sh. . 0323
Track Hold Option il N PSP 3.23
Seek Separation " e P Seeiaa e e 23.24
Rotational Position Sensing F P P 3.
Block Multiplexer Channel Supporl P 3.27-
/O Options il it ittt et et .3.28
Defining the Number of CCW Translallon Buffers P e 3.28
Bypassing System CCW Translation: Vs e .03.28
Channel Queve e e e e, 3.29
ErrorQueueiiitienennann e ..3.30
Reliability/ Availability/Serviceability e e e e e 3.30.
Recovery Management Support0 i e e .3.30
OLTEP S e e e O 331,
Problem Determination Aids e 0332
Defining the System/370 Configuration e e 3.32.
Central Processing Unit he e ratan 3.32
1/0 Devices N e 3.32
Emulators e e e Le...333
Standard Job Control Setlmgs e P T 3.34
End of Supervisor0t P e e 3.34
Generating POWER/VS e e e e .3.35
Virtual and Real Storage Requirements e e e. 335
Intermediate Storage Requirements e e e i 3.37
Size of the Data File and Queue File e e s e e 3.37
Accountfile e e, e 3.40
Input Options e S P .3.41
Source Library Inclusion BN e e 3.4
User Exit Routine e hraea s e e 3.41
Processing Options e e e b 3.41
Assigning Default Priorities Wy 3.42
Limiting Output e e e e ..3.42
Logging Job Names and Numbers e L0342
Providing Forms Control vviin.., 342
Output Options e e e e e e X /2
Separating Jobs i r ettt 3.43
Segmenting Qutput L e e e e .3.43
Remote Job Entry Supportc..c.iiiiiiiiiiii.., e 3.43
Planning the Libraries Yeee e e L..3.44
Purpose and Contents of the L|brar|es e e i e S .3.44
The Core Image Libraryttt i teaavanns 3.44
The Relocatable Library e i e ,..3.44
The Source Statement Library% R X
The Prcedure LIBTaryoovun oo oo eenns3.45
Private Libraries N S P 3.46
Choosing the Libraries for an Installation e et ...3.46
Relocatable and Source Statement Libraries eeesied 3.46
Procedure Library: N 3.47
Private Libraries B e e . .3.47
Determining the Location of the lerarles3.48
Planning the Size and Contents of the Libraries P 3.52
Part II: Using the System v
Chapter 4: Starting the System 4.1
Initial Program Loading (IPL) vaLy N 4.1
Establishing the Communications Device for IPL e 4.2
Changing 1/0 Device ASSINMENLSo v vttt es i ienesnteeenannns 4.2
Adding Devices e e e 4.3
Deleting Devices et i e ittt e e e 4.3
- Setting System Values i e 43
Assigning the VSAM Master Catalog. '0lueueunnnnnnnnn 4.4
- fnitiating Page Data Set Handling e e e 4.4
Automatic Functionsof IPL, .. 44
Building the SDL and Loading the SVA0 4.5
Creating the System Recorder File e 4.6
Creating the Hard Copy File for Models 115and 125 47
Security Checking after IPL it e 4.8
Entering RDEData e e 4.8
Chapter 5: Controlling Jobs e e 5.1
DefiningalJob e e N 5.2
Setting up Job Streams L L L e 5.2

Summary of Job Control Statements and Commands53

JOBStatement S

5.3

End-of-Job (/ &) Slatement N e 5.4°
PAUSE Statement/Command B X
DATE Statement e, f e et 5.5
" Using Cataloged Procedures e e N .. 5.5
.~ Retrieving Cataloged Procedures: - e P 3.
Modifying Cataloged Procedures RN e .. 5.6
Several Job Steps in One Procedure: B . 8 .
Modifying Multistep Procedures without SYSIPT Data P 5.10
Use of Cataloged Procedures by the Operator ,.......... e AR
Relating Files to Your Programi .,o vt vneiierisnonsennssionnnns L .52
Symbolic I/O Assignment cieiii i e ..5.12
Logical Units and Symbolic Device Names e .5.15
SYSIPT Data in Cataloged Procedures e i e 5.|6
Programmer Logical Units . ./, . v vi e e inn i cnnn .. e 5.17
Types of Device - Assngnments e e AR A ¥}
Device Assignments in a Multlprogrammmg Syslem [N |
Partition-Related Cataloged Procedures e e e es.5.20
Device Assignments’ Requin‘ed for an Assembly Ve 5.20
Files on Diskette DeviCes i .. tiiurnerurenenneeroaseas V. .5.22
Example for Submitting Label Informatlon v e...523
" Files on Direct Access Devices 0 .c.ouuu.. s .523
Examples for Submitting Label Information ...,............... L..5.25
Files on Magnetic Tapeiccu.. N .5.26
Controlling Magnetic Tape Operatlon e e s 5.27
Conirolling Printed Output, v £
Editing and Storing Label Informationi...cuvuunn e e 5.29
- Types of Label Information - ..., e resrarcansenae 5.29
Summary of Job Control Statemeénts and. Commands531
ASSGN Statement/Command ~ e ettt e 5.31
RESET Statement/Command e ceee..5.32
LISTIO Statement/Command e N ,.5.33
DVCDN Commiand iiiiusennnnns ee...5.33
DVCUP.Command S P, 2 x
DLBL Statement ettt e e e 5.33
EXTENT Statement Cee e i ssaceneeses e e 5.33
TLBL Statementc....... P 5.33
-MTC Statement/Command S 5.33
LFCB Command S e e e 5.33
LUCB Command et e e .. .5.33
Executmg APrOgram . . i i et e i et e e 5.33
Assembling, Link-Editing, and Executing a Program e e 5.34
Executing Cataloged Programs 0uu.. e ieee.. 537
Preparing Programs for EXecution - iie et ieennunninaanss 5.40
Defining Options for Progirarh Execution L X 1]
Communicating with Problem Programs viaJob Control. 5.41
Controlling Jobs in a Multiprogramming Systemo ..., .5.41
i Reserving Storage for VSAM i 5.42
Reserving Storage for RPS e AL X 7]
Teleprocessing Balancing N PR 5.43
Restarting a Program from a Checkpoint -.......... D e 5.43
Executing in Virtual or Real Mode F 5.44
Programs That Must Run in-‘VirtuaI Modeciiiiuivnnnnn 5.45
Programs That .Must Run in Real Mode .:...... Peeee e A X 5
- Summary of Job Control Statements and Commands L y...5.46
EXEC Statement/Command g rreer et 5.46
OPTION Statement P ceieeereae..v.5.46
RSTRT Statement e i e e et e 5.47
UPSI Statement e re e eaenee T X 1 &
Checking and Altering Job Control Sla(ements oo .5.47
System Files on Tape, Disk, or Diskette: e 5.47
System Fileson Tape @uvnererenennnnnesnns e ...548
System Fileson Disk LS. X]
System Files on Diskette g [5.51
Interrupting Job Streams on Disk, Dlskette, orTdpe 5.52
Record Formatsof System Files che . s.5.53
Chapter 6: Linking Programs e 6l
Structure of a Program Srersaeeni i i e s Sl - 6.1
Source Modules ittt e P .. 6.2
Object Modules et e g es e e e e 6.3
Program Phases O XY |
Relocatable Phases [I
Self-Relocating Phases e e e et et e e 6.4
Non-Relocatable Phases T 6.5
The Three Basic Applications of the Linkage Edltor N 6.5
Cataloging Phases into the Core Image Library e e e re e . 6.5

Link-editand Executecvvuierennns P s 6.6

Assemble (or Compile), Link-edit anvdvE'xecute e I 6.7

" Processing Requirements , A 6.8
_.Symibolic Units Required - e e i et 6.9
Preparing Input for the Linkage Editor,00 vivennn.. 6.9
Assigning a Name to a Program Phase T +..6.10
Defining a Load Address foraPhase6.10
Aligning a Phase on a Page Boundary e P 6.11
Link-editing for Execution at Any Address:. et e e 6.11
Link-editing for Inclusion in the.Shared Virtual Area 6.12
Link-editing for Execution in a Virtual Partition e v . 4613
Link-editing for Execution in a Real Partition e e 6.14
Link-editing for Execution at an Absolute Address". i .6.14
Using Self-Relocating Programs v e ... 6014
Building Phases from Object Modules c0uteunnn. 6.14

Including Modules from SYSIPT e e 6.15
Including Modules from the Relocatable lerary 6.15
Including Parts of Modules from SYSLNK e e 6.15
Using.the AUTOLINK Feature e e renaeas eere e 6.15
. Suppressmg the AUTOLINK Feature vueuunva. 6.16
Reserving Storage for Labels 0. 6.17
Specifying- Linkage Editor Aids for Problem Determination or Prevention6.17
Clearing the Unused Portion of the Core Image Library6.17
Obtaining a Storage Map 0. it iirnneneninnnn. .. .6.18
Terminating an Erroneous Job e et e e e e 6.18
Designing an Overlay Programcccouuun.. e 6.18
Organizing Control Sections in an Overlay Tree Structure 6.18

Relating Control Sections to Phases e 6.19
Using FETCH and LOAD Macros e vei..,6.20
Summary of Control Statements Related to Lmk—edltmg 6.21
' Job Control Statements it ie i R 6.21
Linkage Editor Control Statements T 6.22
- Examples of Linkage Edifor Applications it6.24
Catalog to Core Image Library Example e e e 6.24
Catalog to Private Core Image Library Example e e 6.26
Link-edit and Execute Example e e ..6.28
Compile andl Execute Example N 6.30
Chapter' 7: Using the Libraries T S A

How the System Acgesses the Libraries v, 7.1
The DIreclories . ..o v vt v ittt ittt et er e L. 1.2
Naming Elements in the Libraries e e, e e 7.2
Storing and Accessing Elemenls inthe Libraries 7.5
Working with the Libraries 00t iunernneennn. I K
Processing Requirementscvttii iy, 1.7
Maintaining the Libraries i i, 1.7
Cataloging el T 7.8
Deleting "...... e e e e e e e YA ki
Condensing e e e e e e et e 7.16
Reallocating e i et e aretear et ae et 7.17
Renaming 0.0, e 7.20
Updating the Source Statement Library e 7.21
Copying and Reorganizing the Libraries [N S 7.21
Creating a New System Residence e e 7.22
Transferring Elements between Libraries 7.23
Using the Service Functions of the Librarian e 7.25
Displaying the Directories i innnrenn 7.25
Displaying and Punching the Contents of the Libraries e 7.26
Preparing Edited Macros for Update 7.27
"Creating and Working with Private Lnbranes71.28

Creating Private Librariesttt iiniinrnenineens 7.28
© Creating Private Core Image Libraries 7.30
Using Private Libraries0ttt 7.32
Using Private Core Image Libraries e e et e 7.33
Chapter 8: Using POWER/VS 8.1
Starting POWER/VS i e vea. 80
Dummy Assignments, e e 8.2
Changing Priorities of Partitions e 8.2
Using POWER/VS Statements and Commands 82
" Job Attributes e e e e 8.5
Spooling a 3540 Diskette File i e el ee i et a e 8.6
The 3540 as a SYSINfile e e 8.6
The3540asa DataFile - Y)
Using POWER/VSRIEouuniiniilonennn. PR 8.9
RIELine Statest iuiiiiiii it i ineeanannans 8.9

Shutdown Procedurescoiun .. e, ,.8.10

Part III: DesngnmgPrograms

Chapter 9: Designing Programs for Virtual- Mode Execution 9.1
Programming Hints for Reducing Page Faults " 91
General Hints for Reducmg the Working Set, 9.1
Data and Constants‘in Assembler Language Programs e 9.3
Using Virtual Storage Macros vn ettt inrinenesonnenenennnnnns 9.4
lemgPagesteaIStorage..................t 9.4
Determining the Execution'Mode of a Program A 9.6
“Releasing Pagescuiiittnit i e e, 9.6
Forcing Page-out P A X
. 'Advancing Page-in S 9.6
Balancing Teleprocessing e ey 9.6
Codmg for the Shared Virtual Area e e e e 9.7
Coding Conventions for POWER/VS User Exit Routines 9.9
“Chapter 10: Using the Facilities and Options of the Supervisor .10.1
Direct Linkage between Programs “ &ot ilnnnnnneneneneennann. 10.1
Interlanguage Communicationsttt inrvtenenennsan 10.1
User Program Switch Indicators (UPSD) 10l1
Timing Features 0., e e e ~.10.2 -
Using the Time-of-Day Clockoovervrn... SN e 10.2
Interval Timer ,ttt i it v it ettt i se i i e e aae e 10.3
Waiting for a Time Interval to Elapse0 .0 oviniinennan 10.4
Getting the Unexpired Time -. e e e e, e 10.4
Linkages to User Exit Routines«........ e e 10.5
Interval Timer User Exit Routine ..:.......... e PP 10.5
Multitasking Considerations i o vl 10.7
Abnormal Termination User Exit Routine vei....10.8
. Program Check User Exit Routine e e nasen e S 10.8
* _ Operator Communications User Exit Vio.... 109
Writing an IPL User Exit Routine ey e ee .. 109
Writing a Job Control User Exit Routine e 10.12
Checkpointing Facility e et e et e e 1015
Choosing a Checkpoint SN e 10.16
Timing the Entry to.the Checkpoint Routine 10.16
Saving-Data for Restart.0ttt nosiinonnnnss 10.18
Restarting a Checkpointed Program o, ... 10.18
Job Accounting Interface Feature - e 10.19
Basic Job Accounting Information i o 0o, 10.19
1/0 Accounting Information P O 10.19
Save Area for the User's Routine et e e e 10.21
User's Area for LIOCS Label Processingcuvenininna. 10.21
Programming Considerations P N R 10.21
ReGIStEr USABE . . oo vt voe oy ie e e e inneennnasin, 10.21
Tailoring the Program ., il 10.21
POWER/VS Job Accounting PPN e e e ... 1024
‘User Account Information e e e e 10.24
Storage Dump Facility i i e P 10.31

Appendix A: System Layout on Disk At
Glossary a2

List of Figures

Chaptei 1: Understanding the Syétem

Figure 7.8

The Five Partitions,¢000..:. B, e I.

Figure 1.1 3
Figure 1.2 Assigning Different Physical Devices to the Same Loglcal Units 1.4
Figure 1.3 Interrelationship of Real and Virtual Storage, Real and Vlrtual
Address Area i e e e e 1.5
Figure 1.4 Four Programs Being Paged PRI e e el L7
Figure 1.5 A System With and Without Real Partitions 1.9
Figure 1.6 POWER/VS Data Flow i inineneanns 1.12
Chapter 3: Planning the System —
Figure 3.1 Insufficient Specification of RSIZE 3.5
Figure 3.2 Specification of RSIZE Larger Than the Size of Real Storage 3.5
Figure 3.3 Location of the Shared Virtual Area0.vuu... 3.6
Figure 3.4 Default Partition Priorities 0. i, 3.9
Figure 3.5 User Program Running in Virtual Storage without RPS Support3.26
Figure 3.6 User Program Running in Virtual Storage using RPS Versions
) of Logic Module and Channel Program3.27
Figure 3.7 Location of RPS Version of Logic Modules [N e 0327
Figure 3.8 POWER/VS Partition Allocations, 3.36
Figure 3.9. Intermediate Storaget iiinininnnn., 3.38
 Figure 3.10 The Relative Location of the Four System Libraries”3.49
Figure 3.11 Alternative Locations of the Libraries e 3.‘50
Figure 3.12 Example of Library Organization e e . 0..3.51
Chapter 4: Starting the System
Figure 4.1 Example of Creation of the Shared Virtual Area :
.) and of the SYSREC File' e et e 4.7
Chapter 5: Controlling Jobs .
Figure 5.1 Example of Modifying a Three-Step Procedure 5.1
Figure 5.2 'Example of Symbolic 1/0 Assignments et e 5.13
Figure 5.3 Possible Device Assignments Set at Supervisor Generation 5.19
Figure 5.4 Device Assignments Required for an Assembly5.21
Figure 5.5 Storing Label Information in the Label Information Cylinder 5.30
Figure 5.6 Summary of Label Option Functions I 5.31 -
Figure 5.7 Job Control Statements to Assemble, Link-Edit, and Execute
caPrograminOnelJob e 5.34 '
Figure 5.8 Submitting Input Dataon SYSIPT 5.35
Figure 5.9 System Operation of an Assemble, Link-Edit, and Execute Job5.36
Figure 5.10 Preparing the Loading of Tempor.mly and Permanently Storcd
) Programs e i it e e 5.39
Figure 5.11 Example of a RESTART Job e 5.44
Figure 5.12 Creation of SYSIN on Tapeottt ittt en e 5.48 -
Figure 5.13 Processing System Input and Output Files on DISk 5.50
Figure 5.14 Interrupting a Job Streamon Disk. PP 5.52
Chapter 6: Linking Programs
Figure 6.1 Stages of Program Development 6.2
Figure 6.2 A Job Stream (o Catalog a Program into the Core Image Library ... 6.6
Figure 6.3 A Job Stream to Link-Edit a Program for Immediate Execution 6.7
Figure 6.4 A Job Stream 1o Assemble, Link-Edit, and Execute 6.8
Figure 6.5 Overlay Tree Structure i i 6.19
Figure 6.6 Link-Editing an Overlay Program T 6.20
Chapter 7: Using the Libraries
Figure 7.1 Organization of the Diréctorieson SYSRES 7:3
Figure 7.2 Naming Multiphase Programs vt en. 7.4
Figure 7.3 Summary of Librarian Programs and Their Functions 7.6
Figure 7.4 Assembling and Cataloging to the Relocatable Library in the Same
L 7.9
Figure 7.5 Example of Deleting and Condensing 7.15
Figure 7.6 When Can Coridense Be Performed 7.17
Figure 7.7 Symbolic Unit Names and Filenames Required to Create Private
Libraries it e i e e e e e 7.29

Possible Assignments of Private Librarics in a Multlprogrammmg
SyStem L e e e e e e, 7.33

Chapter 8: Using POWER/VS

Figure 8.1 Examples of the Use of POWER/VS JECL e e 8.4
Figure 8.2 Transition between RJE Line States 8.9

~ Chapter 9: Designing Programs for Virtual Mode Execution
- Figure 9.1 PFIX and PFREE Example c0iiviunnn. 9.5
Figure 9.2 Example of Conventions for SVA Codmg 9.8

Chapter 10: Using the Facilities and Options of the Supervnsor
Figure 10.1 Setting and Testing UPSI it 10.2
Figure 10.2 Method for Accurate Measurement of a Real Time Interval 10.3

Figure 10.3- Skeleton Example of a Program in which a 30-second Interval Must
Elapse before Special Processing is Perfformed 10.4

Figure 10.4 Example of Using the Interval Timer for Taking a Checkpolnt Every
i Half-hour i i i i i e i 10.6
Figure 10.5 Skeleton Example of Multitask Linkage to a Common IT Exit
Routine it ... 107
Figure 10.6 Skeleton Example of a Routine for Processing a Program Check Caused
by Zero Division P o 10.8
Figure 10.7 IPL User Exit Example it iinnennnnnn 10.10
Figure 10.8 Job Control User Exit Example eere 1013
Figure 10.9 Skeleton Example of a Routine for Checkpom(mg a Program on

Operator Commandt i ennnnenvnnas 10.17

Figure 10.10 Example of Job Control Statements for Restartmg a Checkpointed
Job from Checkpoint 111110.18
Figure 10.11 Job Accounting Table it ruennn . 10.20
Figure 10.12 Job Accounting Routine Example 10.22
Figure 10.13 POWER/VS Line Account Record P N 10.25
Figure 10.14 POWER/VS Reader Account Record 10.26
Figure 10.15 POWER/VS List Account Record e 10.27
Figure 10.16 POWER/VS Punch Account Record 10.28
Figure 10.17 POWER/VS Execution Account Record 10.29
Figure 10.18 POWER/VS Cancel Codesccuiieuienennnnnn 10.30

Figure 10.19 Example Routine to Insert User Information . -
in POWER/VS Execution Account Records 10.31
Appendix A: System Layout on Disk

Figure 11.1 System Residence Organization T 1.2

3('

Part I: The Organization of DOS/VS

Part I introduces DOS/VS. DOS/VS is a complex combination of programs
that interact with user programs running on a System/370 central
processing unit. The main features of DOS/VS, what the supervisor does
for you, and how you tailor the system are presented in this part in three

" chapters: '

. Chapter 1: Understanding the -System presents all readers with a
description of the key features of DOS/VS, in particular the concepts of
- multiprogramthing, virtual storage, multit_asking, and POWER/VS.

. Chapte} 2: Summary of DOS/VS Features lists the standér_d and optional
features of DOS/VS. ' :

Chapter 3: Planning the System is of particular interest to system
“programmers. This chapter includes four topics: system generation,
~-supervisor generation, POWER/VS generation, and planning the libraries.

Chapter 1: Understanding the System

Multiprogramming

This chapter introduces and describes the major concepts of DOS/VS.
After reading this information, you will have gained an understanding of the
principles on which DOS/VS operates. You will also be familiar w1th many

of the terms that are used throughout the manual.

The main topics described in this chapter are:
» Muitiprogramming

» Virtual storage

"« Multitasking

« POWER/VS.

Multiprogramming is a technique that allows the concurrent execution of
more than one program in a single computer system. Multiprogramming
balances the difference between the speed of the central processing unit
(CPU) and the relatively slower speed of the 1/0 devices, and thereby
improves the overall throughput of the system.

When a single executing program requests an 1/O operation, it may not
be able to continue with any useful processing until the 1/0 request has
been satisfied. During this time, the CPU stands idle. With multi-
programming the CPU is used more efficiently. When one program stops
processing, the CPU is put at the disposal of another program.

A program is said to be in control of the system when its instructions
are being executed by the CPU. A progr&m can voluntarily yield control of
the CPU, or control can be withdrawn from it.

Programs that share the use of the CPU in multiprogramming do not
have an equal claim on the CPU. Instead, one program is given a greater
priority than another.

When a program must wait for a given event to occur before it can
continue processing, it yields control of the CPU. The supervisor then
passes control to a program of lower priority. Conversely, the supervisor
withdraws control from a program whenever a program with higher priority
is ready to resume processing. This generally happens when the 1/0O
operation for which the program has been waiting is now completed.

Multiprogramming, therefore, allows the /O operations of one program
to be overlapped by the processing of other programs. When a program has
to wait for the complétion of an 1/O operation, the supervisor sets the
program in the wait state and selects another program for execution on the
basis of its priority and readiness to run. This process is called task
selection. ' .

Chapter I: Understanding the System 1.1

Partitions

Efficient use of the system relates not only to the degree of CPU
activity but also, {0 Storage management. During system generation, storage
may, be allocated to partitions to accommodate the programs that will be
executed in them. At times, only a portion of the partition is used by the
program being €xecuted. Some programs require a large partition. DOS/VS
can automatically balance the storage demands made by programs by '
making processor storage not being used by one program available to a

program in another partition as required.

This storage management, which was not present in earlier versions of
DOS, is not inherent to multiprogramming, but is implemented by certain
virtual storage functions. It is described in more detail in the section Virtual
Storage, later in this chapter.

DOS/VS can support up to five separate partitions in each of which a
problem program can be executed. Thus, up to five problem programs can
be executed concurrently within the system. The actual number of partitions
in a particular configuration is a supervisor generation option, and as such is
described in the section Tailoring the Supervisor in Chapter 3: Planning
the System.

Each program gets the priority associated with the partition in which it
is executed. Priorities are assigned to partitions during supervisor
generation, but may be altered by an operator command during processing
to accelerate the execution of a particular program. ’

The five partitions are made-up of one background partition (BG) and
up to four foreground partitions (F1, F2, F3, and F4) as shown in
Figure 1.1.

The background partition differs from the foregroﬁnd partitions in the
following respects: ,

¢ The background partition is automatically activated by IPL. A
foreground partition must be activated via the BATCH or START
operator command. (The BATCH and START operator commands are
discussed in detail in DOS/VS. Operating Procedures.)

* .« Certain IBM-supplied programs can only be éxecuted in the

background. These programs are OLTEP (which is discussed in
Tailoring the Supervisor), the librarian program CORGZ, and the
reallocation function of the librarian program MAINT (which are
described in Using the Libraries).

« To link-edit in a foreground partition; a private core image library must
be fssigned to that partition. To link-edit in the background partition,
“no private core image library need be assigned.

1.2. DOS/VS System Management Guide

Storage Protection

Partition Priorities

Background
, Foreground-4

Storage
available . Foreground-3 .
to problem
programs

Foi'egrou nd-2

Foreground-1 /

L

Figure 1.1. The Five Partitions

Storage protection, which is standard on all System/370 models, ensures
that the instructions and data of one program in a given partition do not
interfere with those of another program -in another partition.

During supervisor generation, priorities are established for each partition

.defined in the:system. The default priorities are (from low to high): BG,

F4, F3, F2, F1.

During proceséing the operator can display the partition'priorities and
change them dynamically by issuing the PRTY command. This can be used

to accelerate the execution of a given program. However, the priorities

should be reset- to the installation standards as soon as possible to handle
the normal flow of jobs through the system. Changing priorities in the

" middle of a job stream should be used with special care if POWER/VS or

teleprocessing, which normally run in a high-priority partition, are active in
the system., (Refer to POWER/VS later in this chapter.)

Executing a Program in Any Partition

When the relocating loader is generated in the system, most programs can
be executed in any partition. Provided that a program being link-edited
does not have an origin specified as an absolute address, the program
produced for inclusion in the core image Iibrary is relocatable. -

A relocatable program can be executed in any partition that is large
enough to accommodate it. B

Chaptér I: Understanding the System 1.3

Device Considerations

The relocating loader, as a supervisor generation option; is described in
the section Tailoring the Supervisor in Chapter 3: Planning the System.

Generally, the same physical I/0O device (or extent of a direct access
device) may not be used concurrently by programs being executed in
different partitions. The exceptions to this are:

« The device or extents assigned to the system logical units SYSRES,
SYSREC, SYSLOG, SYSVIS, and SYSCAT. These devices (extents) are
considered to belong to the system as a whole, rather than to individual
partitions. (A brief description of these system logical units is contained
in the section Symbolic 1/0 . Assignment in Chapter 5: Controlling
Jobs.)

o A private core image library (a disk extent assigned to SYSCLB), which
can be shared for read-only operations (that is, if no link-edit function
is being performed).

« A file on a direct access device can be accessed across partitions,
providing it is not being created simultaneously by programs in more
than one partition (see the Track Hold Option in Chapter 3: Planning
the System for information on protection when updating a file
concurrently by separate tasks).

All system and programmer logical units are available to each partition and
can be used concurrently by any number of partitions. The only restriction
is that, except for the system logical units mentiored above as being
shareable, a different physical device or extent must be assigned to each
logical unit in each partition.

If, for example, you wish to link-edit programs in different partitions
concurrently, different physical devices or extents (except for SYSRES and
SYSLOG) must be assigned for each partition to all logical units nsed by -
the linkage editor program. Figure 1.2 shows how devices may be assigned
in order to link-edit in two partitions concurrently.

Logical Unit F1 Partition BG Partition
SYSIN X181 X'00C’
SYSLST X'182' X‘00E’
SYSLOG X'01F X'01F
SYSLNK X'131" X132
SYS001 X131 X132
SYSCLB X130 -
SYSRES X130 X130

Figure 1.2. Assigning Different Physical Devices to. the Same Logical Units

In this case, the output on SYSLST in F1 is written on a tape. A listing
of this output can be obtained by printing the tape after the job is
completed. If POWER/VS is used, the listing could be automatically
obtained whenever a printer becomes available. (Refer ‘to the section
POWER/VS later in this chapter.)

1.4 DOS/VS System Management Guide

Virtual Storage

Through a combination of System/370 hardware design and. programming .
support, DOS/VS has an address space, called virtual ‘storage, that can
extend to the maximum allowed by the system’s addressing scheme, which
is 16,777,216 bytes (16M bytes). ‘

Virtual storage consists of two distinct, areas; the real and the virtual
address area.

Virtual Storage Real Storage
' oK
Real
Address
Area
1
Virtual
Address
Area Real Storage: storage
physically present in
the CPU.
Up to 16M

Figure 1.3. Interrelationship of Real and Virtual Storage, Real and Virtual
Address Area :

Figure 1.3 shows that the area of virtual storage where the virtual
addresses match the real addresses is called the real address area, and the
area that begins at the end of the real address area and extends to the end
of virtual storage is called the virtual address area. Addresses in this area
have no direct equivalent to addresses in real storage.

How much of the maximum address space will be used in a particular
system depends on a number of factors: the size of the computer’s real

_ storage, the amount of disk storage available, the number of partitions, their

size, and the characteristics of the installation’s programs and operating
environment.

Chapter [: Understanding the System 1.5

_ Both the real address area and the virtual address area are available for
use when writing your programs, but not both together for a single
program. Some of your programs can be considered to be loaded into the
virtual address area, and others into the real address area. Of course, each
instruction of a program must be in real storage at the moment it is

‘ executed, and so must the data it manipulates. The other instructions and
data of a program loaded into the virtual address area need not be in real
storage at that same moment; they can reside on auxiliary storage until
needed. The file used for this purpose is called the page data set. This
makes it possible to execute programs that are larger than any real
partition, or even real storage.

Some programs can be loaded into a special area, called the shared -
virtual area, where they remain until requested by any partition. The shared
virtual area is located in the virtual address area and, therefore, is
represented on the page data set.

It would be inefficient, however, to bring every instruction and its
associated data into real storage individually. Programs in virtual storage are
manipulated in sections called pages, the size of a page in DOS/VS is 2K
bytes. Real storage is divided into 2K byte sections; these are called page
frames. Page frames accommodate pages of a program dunng execution.
This is illustrated in Figure 1.4.

When a program is loaded from the core image library into virtual
storage, all its pages-are brought into page frames. If there are not enough
page frames available to contain all the pages of a program being loaded
into the virtual address area, the system moves the contents of some page

. frames to a disk extent called the page data set. The remaining pages “of -
the program can then be loaded.

During execution of the program, whenever a required instruction or
some data is not present in real storage, execution is interrupted by a
so-called page fault. The system must then bring the requested page into
real storage.

For programs loaded into the virtual address area, pages can be placed
into any available page frame during execution. Since the system does not
anticipate where in real storage a page will be loaded, the virtual addresses
must be translated into real addresses when required for execution. The
address translation is performed by a combination of the System/370

'Dynamic Address Translation (DAT) facility and DOS/VS..

' 1.6 DOS/VS System Management Guide

prl

Virtusl
Address

Real Storage

Figure 1.4.

‘use phases in the shared virtual area (SVA).

Four Programs Being Paged

Assignment of page frames is done by the supervisor which works
toward keeping the most frequently-used pages of each program in real.

- storage. - :

. Any or all of the four programs being paged may also concurrently

Chapter |: Understanding the System 1.7

Real and Virtual Partitions

During system generation, the number of partitions (from one to five) is
defined for the system. A certain amount of address space must be
associated with (allocated to) each_partition. Each partition in which a
program is to be loaded for execution is required to have address space in
the virtual address area; this space is called a virfual- partition. Each
partition may also have address space in the real address area; this-space is
called a real partition. Because the job control program (which is necessary
to start the execution of each problem program) requires a virtual partition
for its execution, a real partition always has a corresponding virtual
partition.

Figure 1.5 assumes that all five partitions have been defined in the
system. On the left is a system without real partitions; on the right is a
system with real partitions. It is unlikely that you will have allocated all five
real partitions, but they are illustrated here to show their relative position in
storage. '

The Shared Virtual Area

In multiprogramming systems, a system directory list and certain
frequently-used pregrams can be loaded into the shared virtual area (SVA),
which is located in the highest address space in the virtual address area.
Such programs (or parts of programs), which are relocatable and
reenterable, are available for concurrent use by programs running in virtual
or real mode. Programs in the SVA are always executed in virtual mode in
the page pool.

‘Executing Programs in Real and in Virtual Mode

Programs can be executed in two modes:

o Virtual Mode: the program’s addresses refer to addresses in the virtual
address area, and the program executes in the page pool; the precise
locations a page occupies are not known until it is needed for
execution. Paging can take place.

¢ Real Mode: the program’s addresses refer to addresses in the real
address area and the program executes in a contiguous, defined block
of real storage: the real partition. No paging takes place.

For either mode, sufficient address space must be allocated to the partition
to accommodate the program to be executed. Sufficient page frames must
be available in the main page pool to execute programs from the shared
virtual area.

Under DOS/VS certain programs - such as those with critical time
dependencies - may have to run in real mode. The DOS/VS supervisor also
always runs in real mode.

1.8 DOS/VS System Management Guide

Virtual Storage) . Real Storage Virtual Storage Real Storage

p
Supervisor Supervisor * Supervisor - Supervisor
s . being
used
by
 Real real
Address < mode
o programs
L
BG-V
not being used, because
F4.v corresponding real
partitions are used
Virtual
Address Fav
Area being used by
virtual mode
< programs
F2v ' - F2v
F1.V — F1-v
l¢—— being used by
relocatable, reenterable
SVA re)
L SVA programs

Figure 1.5. A System With and Without Real Partitions

In both systems the heavily shaded parts of real storage arc not allocated
to any particular partition. These parts are called the page pool, which
(in the system on the right) is augmented by the address space of the
real partitions that are not being used (lightly shaded).

When a real partition is being used, the address space in the
corresponding virtual partition cannot be used.

Programs in the shared virtual arca (SVA) can be shared
concurrently by programs running in either virtual or real mode. The
programs from the SVA are exccuted in the page pool.

Real partitions are used not only for programs running in real mode,
but also for programs running in virtual mode that fix a set- of instructions
or data (using the PFIX macro, which is discussed in more detail under
Fixing Pages in Real Storage in the section Tailoring the Supervisor in
Chapter 3: Planning the System). Such pages of a virtual-mode program
are fixed in page frames of the real partition that corresponds with the
virtual partition in which the program is running.

Chapter 1: Understanding the System 1.9

Page Pool

As shown above in Figure 1.5, the real storage not allocated to any real
partition (or occupied by the supervisor) is always available for paging
activities. It forms the main page pool.. Other page frames may also belong
to the page pool:

« When not occupied by a program running in real mode, the area
~_allocated to a real partition is available to virtual-mode programs.

¢ When a program running in real mode does not require the entire real
partition, the unused part of the real partition may be made available to
the page pool by specifying the required amount of storage in the SIZE
operand of the EXEC job control statement for the teal-mode program.

Advéntages of Virtual Storage

Multitésking

Two Types of Multitasking

In summary, executing programs in virtual storage has two main advantages:

+ It allows execution of programs that are larger than the available real
partition, or even larger than real storage. .

« The real storage available is better utilized: programs running in a
virtual partition are not confined to a particular area of real storage, but
may use all available page frames.

Partition and system performance requirements should be considered as you
relate these advantages to your particular installation.

At the beginning of this chapter, we defined multiprogramming as the
ability to execute more than one program concurrently in Separate partitions
within a single computer system. Multitasking can be regarded as an
extension of multiprogramming in that it provides the ability to execute
more than one program concurrently in a single partition. In simple terms,
therefore, multitasking can be regarded as multiprogramming within a
partition. :

- Multitasking presupposes the existence of the multiprogramming
facilities in the supervisor (in particular, the task selection routines).
Multitasking is, therefore, possible only in a multiple-partition environment.
As a supervisor generation option, multitasking is described in the section
Tailoring the Supervisor in Chapter 3: Planning the System.

Some installations using former versions of DOS, employed multitasking
to run more than three programs in a three-partition system. The additional
two partitions that DOS/VS provides may serve the same purpose. You

“should note that running programs concurrently in separate partitions is

usually easier than running programs concurrently in the same partition.

Programs (or parts of a program) that are executed concurrently in a given
partition are called tasks. A distinction is drawn between the main task in a
partition and one or more subtasks in the same partition. The main task is

1.10 DOS/VS System Management Guide

| POWER/VS

that program (or program part) initiated by job control. The subtasks are
those programs (or program parts) initiated by the main task through the
use of the ATTACH macro instruction. To use the multitasking facilities of

’ DO_S/ VS it is nécessary to code the main task in the assembler language.

The subtasks execnted in a. given partition may be: (1) logically
independent, or (2) logically dependent.

In the first case, the main task monitors the execution of the subtasks,
treating them as independent programs. Such subtasks may be coded in any
programming language. This type of multitasking is sometimes called multi-
programming within a partition. It is a suitable téechnique, for example, by
which to execute more than five programs concurrently.

In the second case, both the main task and the subtasks are program
routines that are logically part of the same program. Thus, the tasks can
communicate with one another. In this case the subtasks are likely to be
coded in assembler language to allow the use of the task intercommuni-
cation macros. They can share code (in particular, an access method or

‘subroutines), provided that. it is of a read-only nature (that is, that.the code

or subroutines are not modified during execution). This technique is
complex and can best be understood after studying the first type of
multitasking.

v

"There is always a large discrepancy between the spéed of the CPU and the

speeds of card or diskette readers, card punches, and printers. This
discrepancy causes these devices to have an unfavorable effect on the
overall duration of jobs. Spooling (Simultaneous Peripheral Operations On
Line). reduces CPU dependency on mechanical equipment by using faster
disk devices or magnetic tape units as intermediate storage.

The POWER/VS program performs spooling of unit record data in
DOS/VS. All card or diskette input to a program is read and stored on
disk in blocked format before the program is executed. Any attempt to
read from a unit record device during program execution Is intercepted by
the spooling program that satisfies the request from the data on)
intermediate storage. Similarly, card and printer output is accumulated and
punched or printed after the program has completed execution.

Implémentation of POWER/VS

POWER/VS is a program that provides spooling services for up to four
partitions. It resides in a virtual partition with a priority higher than that of
the partitions it controls. Although POWER/VS runs in virtual mode, it
supports programs running in real or virtual mode.

Figure 1.6 shows the data flow through POWER/VS. The paragraphs
that follow discuss the steps depicted in Figure 1.6.

Chapter 1: Unders(anding the System 1.11

DISKETTE

""1;;;:0;: CARD
CONSOLE INPUT
7 _ INPUT .
OPERATOR
READER
COMMUNICATIONS L _ _ _ _ :
Rt B NG
1
I
]
1
|
»l
1 INTERME-)
: DIATE
' STORAGE
| ;
1
1
A oy I
' 3
g
' .
)
\ EXECUTION .
e —————-— PROCESSOR
| > TASK @
|
)
1.
!
]
]
]
]
]
! INTERME-
' DIATE .
. STORAGE @
i |
i
]
]
'
]
!
o
. N
WRITER
bemem - P Task @

LISTED
OUTPUT

Figure

1.12 DOS/VS System Management Guide

L J

PUNCHED
ouTPUT

1.6. POWER/VS Data Flow

Input

Reader Tisk‘

Intermediate Storage

Execution Processors

Writer Tasks

vOper‘:ator Communications Task

‘POWER/ VS intercepts unit-record input (1) (card or diskette) destined for

each-partition it supports. This input is delimited by the DOS/VS job

- control language either alone or in combination with the POWER/VS job

entry control language (JECL). By adding JECL statements to the normal
DOS/VS job stream, you indicate to POWER/VS that special handlmg is

- required for particular DOS/ VS jobs or jOb steps.

A reader task (2) reads ém"d or diskette input and places it into disk
intermediate 'storage. Depending on the JECL options selected, execution is
scheduled directly, or must be scheduled by the operator, or will proceed -
according to the job’s priority.

By enterin_g'a command on the console, the operator can initiate as
many reader tasks as he has physical readers available.

Intermediate storage (3) contains the queue file, data file, and (optional)
account file. The three files may be on the same physxcal unit or on
separate units.

The execution read. task (4) retrieves data records. from intermediate storage
and presents them to the user partition where they are executed. The '
execution writer tasks intercept the output from the user partition and
transfer it to intermediate storage:

There is one execution processor for each partition supported by
POWER/VS. The execution processor is the generic name for the execution
read, execution list, and execution punch tasks. The execution read tasks -
are initiated by an operator command at partition start-up. The execution
list and execution punch tasks (collectlvely called execution writer ‘tasks) are
automatically initiated by the execution read tasks when required for a
specific user job. ‘

The writer tasks (5) print and punch data (6) from intermediate storage.
The operator initiates these tasks by entering a command on the console,

The operator communications task (7) handles all the communications
between POWER/VS and the console operator. It is always present and’
active in POWER/ VS,

Chapter I: Understanding the System 1.13

Some IBas:c Terminology

Advantages of POWER/VS

The input stream provided by the user to. POWER/ VS is broken up mto a
series of discrete jobs, each with its own identifying name, assigned by the
user; and sequence number, assigned by POWER/VS at the time the job

enters the system.

Each input job is represented by records in direct access storage, which
together make up a read queue entry. List and punch output is similarly
described by groups of records called list queue entries and punch queue
entries, respectively.

A read queue entry is created for each input job read by a reader task
and is retained within the system at least until that job has successfully
completed execution. '

A list queue entry is created for each output list segment produced by
an execution list task and js retained within the system until the output it
desc ribes has been completely processed by a list task.

A punch queue entry is created for each output punch segmeni
produced by an execution punch task and is retained within the system until
the output it describes has been completely processed by a punch task.

A summary of POWER/VS control infor_mation is maintained in a
master record. The master record is the first record of the POWER/VS
queue file, and provides the system with a warm start capability.

Depending on the workioad, POWER/VS may increase system throughput
in the following ways: '

« Since list writer and punch writer tasks are essentially dtsk-to-prmt and
disk-to-punch utilities, - the determining factor in print and punch output
is the speed of the output devices. This feature increases device
utilization since all the output is already available in queues when
printing and punching starts, and devices do not wait for process-bound
operations during job execution. Because the CPU dependency on unit
record equipment is removed, all 1/0O for batch partitions is performed
at disk or tape speed.

+« POWER/VS requires less 1/O equipment than basic multiprogramming,
For example, one card reader, punch, printer and disk drive can ’
perform all the 1/0 operations required for four partitions running
under POWER/VS. Basic multiprogramming requires one card reader,
one punch, and one printer per partition.

« Since reader and writer tasks may be initiated by the operator and are
not necessary for partition operation, a fail soft condition exists. For
example, if the printer becomes unavailable, job stream execution can
continue with the. SYSLST data being collected in the print queue.
When the printer becomes available, the operator can start a print
writer task and printing commences for all jobs in the print queue
without loss of output or CPU time.

1.14 DOS/VS . System Mané\gement Guide

‘ POWER/ VS Remote Job Entry (POWER/VS RJE)

Input at the Terminal

Output at the Terminal

POWER/ VS RJE offers an efficient and convenient method of submitting
jobs via a remote terminal. Terminals are usually separated from the central
system by a distance sufficient to require leased or dialed up lines to
accomplish communications, but the system may also include terminals
attached to the system by local lines. Regardless of location, however all
supported termmals are classified as remote.

The POWER/VS RIJE tasks interface with the input and output queues
in the same manner as local reader and writer tasks. ‘As a result, the
execution processors handle remotely submltted jobs in the same way as
locally submitted jobs.

After a job has been executed, its-output may be returned the terminal
or to the central installation.

After the SIGNON procedure at the terminal, which can only be done after.
the line is started at the central system jobs may.be submrtted from the
terminal.

~ Additional JECL parameters allow you.to direct output of the job entry
to a remote terminal or to a local unit record device. The terminal

. commands, which are necessary to control the RJE terminal operation, are

also entered from the reader at the terminal. A detailed description of the
terminal commands i is given in DOS/VS Operating Procedures.

The ability to accept input automatically from remote terminals greatly
increases the need for strong system discipline. For example, if a remote]

‘job requiring data files at the central installation is to be submitted, the

volumes containing the data files should be available for prompt mounting;
and if a remote job needs to use tape units in a particular partition, these
units should not already be assigned to another partition. Otherw1se, the
system flow can be upset or even interrupted. - '

Two kinds of output are received at the terminal: job output and messages.
Job output at the terminal allows a number of options which are specified
in JECL statements and terminal commands:

o The outpﬁt may- be directed to another terminal.
. lnput and output can utilize different terminals.

« The output is held at the central station until the terminal user requests
it.

. " Output may be dlrected to unit record devices at the central

installation.

« The remote user has a page restart capability that provides forward or
backward page spacing for a printed’]ob allowing the user to print or
skip selected portions of a job.

Chaplcr' I: Understanding the Sysiem 1.15

Examples of JECL statements are given in the section Using POWER/VS
Statements and Commands in Chapter 8: Using POWER/VS.

Messages

Messages received at a terminal include résponses to input from the
terminal, diagnostic messages, and broadcast messages. These messages
appear on the printer between job output.

Messages destined for all users are only displayed on request. They
appear at the terminal as response to a DISPLAY command. Detailed
specifications for messages are given in DOS/VS Messages.

1.16 'DOS/VS System Management Guide

.Chapter 2: Summary of DOS/VS Features

Standard Features of DOS/VS
’ These features are automatically included during system generation:

¢ Support for one virtual storage of user¥spec_ified size (up to 16M
bytes). : : -

. Ba'tched-job mode of job initiation in a single-partition environment.
« Execution of programs in real mode and virtual mode.
. Symboiic 1/0 device assignment.
« Cataloged procedures.
e Storage protection.
« SAM, DAM, and ISAM. ‘
« Command chaining for 1/0 retry‘operations.
e Tape. érror_ statistics.
 Selector channel support.

« Display operator console support (for the Model 125 Video Displayv
Keyboard Console).

'« Machine check analysis and recording (MCAR), channel check handler
(CCH), and recovery management.support recorder routines (RMSR).

e« OLTEP (optidnal on Model 125, can’be omitted for other models).
-« Job control.

+ Linkage editor.

o Librarian.

o ~ Assembler. ‘

o System utilities (including Disk Volume Fast Copy). N

.+ System debugging aids (SDAIDS).

Optional Features of DOS/VS

These features must be requested during system generation or added after
the generation has been performed:

. Mhltiprogramming (from two to five partitions, with standard BJF -
- scheduling).

- o . Specification of partition dispatching priority.
« Multitasking (up to a maximum of 15 tasks).

« POWER/VS. ,
« Teleprocessing support (BTAM, QTAM, and VTAM).
o VSAM. ’

¢ Wait multiple support.

Chapter 2: Summary of DOS/VS Features 2.1 ¥

+ Magnetic ink character reader and optical character reader support.
« Page fault handling overlap.

« Support for PFIX/PFREE macros.

« Support for GETVIS/FREEVIS macros.

+ Support for RELPAG/PAGEIN/FCEPGOUT macros.
s Integrated emulators.

« Time-of-day clock support.

e Multiple timer support.

« Job accounting interface.

« Relocating loader.

« Private core image libraries.

« External interruptions.

+ Abnormal termination exit.

+ Console buffering.

e Track hold.

« DASD file protection.

« Rotational Position Sensing (RPS).

* Seek separation.

e Channel switching for magnetic tapes.

o Burst mode operation on the byte multiplexer channel.
« Error volume analysis for magnetic tapes.

« Reliability data extractor.

« Problem determination aids (PDAIDS).

« ASCII support for tapes.

« System input and system ’output files on disk (SYSFIL dption).
« Independent directory read-in area.

DOS/VS in Various CPUs

This section shows, by way of a series of examples, how real and virtual
storage could typically be employed by DOS/VS running in CPUs with
different amounts of real storage. The real storage requirements of the
supervisors and of the main DOS/VS features are indicated, as are the
types of jobs that are processed in the partitions. In each of the examples,
the real storage available to the main page pool can be obtained by
subtracting the amount of real storage allocated to the supervisor and the
real partitions from the CPU size. In all cases, the figures given are
approximations. '

All systems have an SVA that contains a system directory list.
However the illustrations do not explicitly show the SVA unless it must be
larger than the minimum size; as for example for RPS or VSAM.

2.2 DOS/VS System Management Guide

96K CPU

Storage (K bytes)
Real Virtuai
Supervisor 40 :
BG 10 64
F3 10| 64
F2 10 64
F1 10 64
B 80

- Notes:
« Batch processing operation.
« One "hot" partition for urgent, unscheduled jobs.

The system described above might by typical of a DOS/VS user who
formerly operated a Model 20 with programs that did not require large
amounts of storage. '

~

144K CPU
Storage (K bytes)
Real Virtual
Supervisor "~ 42
BG)) (V] 512
F3 0 256
F2 : 0 256
F1 24 152
’ ‘ 66
Notes:

« 'POWER/VS in F1.
« VSAM in BG

192K CPU
' Storage (K bytes) ,
Real Virtual
"'| Supervisor : 62
BG ’ ' 0 192
F4 : 0 192
F3 0 192
F2 : 24 152
F1 - 80 192
SVA : 270
126
Notes:

« POWER/VSinF2 '
« CICS/VS (an IBM program product; Customer Information Control
System/Virtual Storage) in F1

» VSAM in SVA

Chapter 2: Summary of DOS/VS Features 2.3

240K CPU

. Storage (K bytes) |
DAYTIME
Real Virtual

Supervisor 58
|8BG - 421, 88
F3 0 88
F2 12 288
F1 60 672

172

Notes:

¢ Two batch partitions (BG and F3)
« SDAIDS partition (F2)

« CICS/VS in F1

Storage (K bytes)
NIGHTTIME
Real Virtual .

Supervisor 58
BG 50 608
F3 0 88
F2 0 288
F1 24 152

132

Notes:

o One batch partition (using PFIX/PFREE macros) in EG
« POWER/VS in F1

e Two batch partitions (not using PFIX/PFREE macros) in BG

2.4 DOS/VS System Management Guide

384K CPU

Storage (K bytes)
DAYTIME .
Real Virtual
Supervisor 54
BG 14 722
F3 28 228
F2 66 228
F1 48 176
SVA 100
210

Notes:

POWER/VS RIE in F1
CICS/VS in F2

Two batch partitions
RPS code in SVA

. Storage (K bytes)
NIGHTTIME g
Real Virtual
Supervisor 54
BG 36 500
F4 72 228
F3 36 228
F2 36 228
F1 36 164
SVA 100 |
270

Notes:

POWER/VS in F1
CICS/VS in F4

VSAM and Access Method Services in BG

Three batch partitions
RPS code in SVA

Chapter 2: Summary of DOS/VS Features 2.5

Chapter 3: Planning the System

From the DOS/VS system that IBM distributes the system programmer can
tailor a system to meet the day-to-day requirements of a particular
" installation. The system is delivered with a supervisor that consists of a
- limited number of functions, which are necessary to generate the desired
system.

After a brief description of the system generation proéeduré in general,
‘this chapter describes in greater detail the three major considerations during
system generation, namely:- -

" e - Tailoring the supervisor (addmg functxons to those of the basxc
supervnsor)

« Generating POWER/VS, if POWER/ VS as distributed in the core
_image library is not suitable to installation requirements.

« Planning the librariés (planning the contents, the location and size of
the libralfies).

Because of the nature of this information, this chapter primarily addresses
system programmers, who are responsible for planning the system. The twc
sections, Tailoring. the - Supervisor and Generating POWER/VS, however,
may be of interest to all DOS/VS users who wish to become more
acquainted with these components of the system.

System Generation Procedure

Proper and detailed planning is essential to efficient system generation and .
. minimizes the need to modify the system after it is generated. You mdy
want to contact your IBM marketing representative to set up a system
generation planning meeting. IBM field engineering would also attend the
meeting to discuss the procedure to install the SCP (systems control
programming). Generating a system includes:- :

« . Planning the options and estimating the approximate size. of the :
supervisor.: This entails selecting from the programming services
provided by IBM, those options you wish to include in the supervisof,
and estimating the cost of these services in terms of bytes of storage.

« Planning the contents, organization, and size of the system and
(optionally) private libraries. This entails distributing the storage space
availabie (on the disk packs) between the libraries desired for
day-to-day use. The major points you must consider. are:

a. the size of the system core image library and, other system and
private libraries

b. workfile space nééded to assemble the supervisor and to link-edit
and catalog the components selected to the system core lmage
library

c. standard assignments for workfiles needed for everyday operation.

Chapter 3: Planning the System 3.1

You work with the IBM-supplied distribution medium, which is compose
of four libraries: ‘ :

The system source statement library contains macro definitions for
various system components and services. Included are macro definitions
from which you choose desired parameters in order to assemble your new
supervisor. For your convenience, the source statement library also contains
sample programs (sublibrary Z) and system generation job streams
(sublibrary Z), which are illustrated in DOS/VS System Generation.

The system relocatable library contains assembled IBM programs and
assembled macros from the source statement library. For example, logical
I0CS, which performs input and output operations for IBM programs and
your programs. '

The system procedure library initially contains procedures useful for
generating DOS/VS and loading the SVA.

The system core image library contains all programs that are ready for
execution.

The specific contents of these libraries vary from release to release and
are identified in the Program Directory, which accompanies the system
distribution medium.

Using the elements of these libraries, you

« Generate the supervisor by coding a set of supervisor generation
macros, which define the system configuration and the services you
wish the supervisor to contain. (These are described in detail in the
section Tailoring the Supervisor which follows.)

» Generate POWER/VS, if desired, by coding a set of POWER/VS
generation macros, which define its configuration and optional services.
(These are described in detail in the section Generating. POWER/VS.)

+ Delete from the libraries any components you do not require and then
condense to free library space. '

« Assemble (or compile) ahd/ or link-edit programs - both your own and
IBM’s - and catalog them into the appropriate libraries.

After determining what elements are to be contained in the system libraries,
you may wish to retain additional elements in private libraries and therefore
you may want to create private core image, relocatable, or sourcc statement
libraries. These choices are discussed in the section Planning the Libraries.

The system libraries, together with certain system work areas, constitute
the system residence file (SYSRES), which is one extent of a direct access
storage volume. The SYSRES file is described in Appendix A: System
Layout on Disk. :

After establishing your SYSRES file, you should copy it onto tape or
disk for backup purposes. The copy/restore system utility or the Disk-
Volume Fast Copy utility, which are provided for this purpose, are
described in DOS/VS System Ultilities.

For complete details on how to perform a system generation procedure
refer to DOS/VS System Generation.

3.2 DOS/VS System l\Vlanagement Guide

Tailoring the Supervisor

This section describes the optional and required parameters that you select
for the generation of the supervisor. The parameters are included in the
following supervisor generation macros:

ALLOC IOTAB
ALLOCR PIOCS
ASSGN SEND

CONFG STDIC
DPD ‘ SUPVR
DVCGEN - VSTAB

FOPT

The parameters of these macros are discussed in a topical sequence, such
that related options are presented together regardless of the macros in
which they are contained. For the exact formats of these macrés, refer to
DOS/VS System Generation.

This section discusses the advantages or necessity of specifying the
support for the various features in the supervisor.

In tailoring your supervisor to the requirements of your installation, you

can take into consideration future plans to add hardware (main storage, I/0
devices, and so on) or other functions that require supervisor options by
including their requirements in your supervisor generation macros. This will
allow you to upgrade your installation without having to regenerate your

~supervisor and being inconvenienced by a larger supervisor. You may also
want to include in the libraries modules or components that will be required
by planned future configuration or functional upgrades. The storage cost of
additional supervisor options may be estimated by consulting the supervisor
storage requirements in Module 1 of DOS/VS System Generqn'on.

|

Storage Management Options -

This section describes those supervisor optlons that relate to virtual and real
‘storage. These include defining: v

« The size of virtual storage (virtual address area, real addreps area,
and the shared virtual area)

The number and size of partitions, and their priorities
The page data set (SYSVIS)

The ability to fix pages in real storage

The virtual storage access method (VSAM).

Chapter 3: Planning the System 3.3

Defining the Size of Virtual Storage-

The size of virtual storage must be defined. Virtual storage is composed of

. the virtual address area and the real address area, and the size of each must
be separately specified. You specnfy the size of the virtual and real address
areas in the VSIZE and RSIZE operands of ‘the- VSTAB macro.

Defining the Size of the Real Address Area. Normally, you selec:t a value for
. RSIZE that coincidés with the amount of real storage in your CPU model.
If, however, you anticipate that your system may also be used on a CPU -
with larger real storage, you should select the value for RSIZE such that ihe
end of your-real address.area coincides with the end of real storage of the
larger CPU. Otherwise, some real storage remains unused when using the
“larger CPU. This is illustrated in Figure 3.1. Specifying a value for RSIZE
that is larger than the size of your current real storage (see Figure 3.2)
causes the start address. of the virtual address area to be higher than the
end address- of real storage. In other words some virtual storage remains
unused.

Defining the Size of the Virtual Address Area. The value you specify for
VSIZE is equal to the sum.of the sizes of the virtual partitions and the size
of the shared virtual area. Therefore, you must know these sizes before you
can specify VSIZE. For selecting the size of the individual partitions, see
Defining the Size of Virtual Partitions, later in this section. For selecting
. the size of the shared vnrtual area, see Defmmg the Size of the Shared
* Virtual Area.

The value specnfled for VSIZE cannot be changed wnthout a new
supervisor generation.

The maximum size of virtual storage is 16M (16,777 ,216) lbytes i
Because the real address area is part of virtual storage, the maximum value
you can specify for VSIZE is 16M mmus the size of the real address area
(RSIZE) _ g

In g smgle—partntnon system, the value you specnfy for VSIZE must be
equal to or'greater than 64K bytes (the minimuin virtual background
partition) plus the size specified for the shared virtual atea.

The value you specify for VSIZE is used by the system to detefmine
the size of the page data set. Refer to Defining the Page Data Set later.
in this section.

3.4 DOS/VS System Management Guide

Real
f > Address 1
Area

Virtual 4
Storage

RSIZE

Virtual
Address
Area

\ RSIZE

Used
Real
Storage

r Real
Storage

Real
[Storage

Addressable
part of the
real address
area

Virtual

Storage {

Virtual
Address
Area

F’igm-e 3.2. Specification of RSIZE, Larger Than the Size of Real Storage

Chapter 3: Planning the System: 3.5

Defining the Size of the Shared Virtual Area. The shared virtual area (SVA)
can contain any program that is reenterable and relocatable. Such programs
can be used concurrently by more than one partition. Having phases
resident in the SVA, avoids frequent fetches; the phases can be loaded into
the SVA when first cataloged into the system core image library.

As illustrated in Figure 3.3, the SVA is located in the high address
space of the virtual address area. The SVA contains a system directory list
(SDL.), which provides fast retricval of frequently used phases that are
resident in the SVA or in the system core image library. Having SDL
entries avoids searching the core image directory for each FETCH or
LOAD request. The SDL and the SVA always reflect the current status of
the equivalent information in the system core image directory and fibrary.

In general, it is better to have VSAM run in the SVA. Approximately
270K is needed to run VSAM in the SVA.

SUPERVISOR
. RSIZE
Virtual
Storage
VSIZE
| SYSTEM DIRECTORY LIST _|
RESIDENT, REENTERABLE SVA
| _RELOCATABLE PHASES _ _
SYSTEM GETVIS AREA

Figure 3.3.. Location of the Shared Virtual Area

Note that the VSIZE specification includes the SVA specification.

You specify the size of the shared virtual area and its GETVIS area in
the SVA parameter of the VSTAB macro. If the supervisor supports RPS
(rotational position sensing), 100K bytes are required for it in the SVA.
Either all or part of the RPS code will be loaded into the system GETVIS
area (a part of the SVA). If RPS is not preloaded, then 100K is required in

3.6 DOS/VS System Management Guide

the system GETVIS area. If RPS is preloaded, then 12K is required in the
system GETVIS area and 88K must be available for RPS in the SVA.

The SVA must be large enough to accommodate the system directory
list and the programs loaded there, but it cannot be smaller than 64K. The

- size of the SVA that you specify during supervisor generation can be

overridden by issuing SET SVA immediately after IPL. This command is
discussed in, the section Building the SDL and Loading the SVA in
Chapter 4: Starting the System. '

Defining the Number of Partitions

Defining the Size of Partitions

In the NPARTS parameter of the SUPVR macro you define the maximum
number of partitions for your system.

In selecting the appropriate number of partitions for your particular
installation, you should consider the type of processing you require. For
example, assume you want to run concurrently the following types of
programs:

+ Test cases (assemble/compile, link-edit, and execute)

« Daily application programs

« POWER/VS

+ Teleprocessing application program.

For this case, you should generate a system with three to five partitions;
depending on the volume of application program processing. If your system

includes VTAM, at least two partitions must be specified: one for VTAM
and one for VTAM application programs.

Because you cannot alter the NPARTS specification unless you
regenerate the supervisor, it may be advantageous to specify more partitions
than you see an immediate need for.

Note: For VTAM and QTAM at least two partitions must be specified.

“If you generate a multiple-partition system, you may explicitly define the

size of each partition (except the virtual background partition). In a
single-partition system the size of the virtual partition is implied by the
specification of the VSIZE parameter minus the size of the shared virtual
area, and the size of the real partition is implied by the specification of the
RSIZE parameter minus the supervisor size.

The size of a partition is defined by specifying the amount of storage
you wish to allocate to it. The ALLOC macro is used to allocate storage to
virtual partitions; the ALLOCR macro is used to allocate storage to real
partitions. Specification of ALLOC and ALLOCR macros during - .
supervisor generation is optional since operator commands to allocate real
and virtual storage are provided in DOS/VS. The size of both virtual and
real partitions is specified as a.multiple of 2K bytes.

Chapter 3: Planning the System 3.7

Defining the Size of Virtual Partitions. Only the size of the virtual -
foreground partitions is explicitly defined (via the ALLOC macro). The
virtual address area not allocated to any of the virtual foreground partitions
“and not allocated to the SVA is automatically allocated to the virtual
background partition. At least 64K bytes must be left for the virtual
background partition.

Fhe size of an active virtual foreground partition must be at least 64K
bytes. If a virtual foreground partition is defined but need not be used for a
while (see Defining the Number of Partitions above), its size can be set
to OK, either by the ALLOC macro during system generation, or by the"
ALLOC command during actual operation. When -using RPS, leave ’
approximately 6K available for the partmon GETVIS area, required by RPS
for control blocks.

You specify the size of each virtual foreground partition by means. of
~ the ALLOC macro. The system then calculates the difference between the
VSIZE specified minus the SVA value and the ALLOC value to determine
the size of the virtual background partition. If this difference is less than
64K or if you omit the ALLOC macro during supervisor generation, all of
virtual storage except the shared virtual area is allocated to the virtual
background partition and the size of each virtual foreground partition
defined in NPARTS is set to zero.

‘During certain periods of processing, the oberator can modify the size
of the individual virtual partitions by using the ALLOC command. Details
on the ALLOC command are given in DOS/VS Operating Procedures.

Defining the Size of Real Partitions. Potentially, for each virtual partition
defined in the system a corresponding real partition can be allocated.. A real
partition consists-of a contiguous set of addresses in the real address area.

Real partitions need only be allocated to enable the following:

« Program execution in real mode
o Use of the PFIX/ PFREE macros.

When a real partition is used for running a real mode program, or, for fixing
~ pages of a virtual mode program, (for example, POWER/VS), the page
pool is reduced by the number of page frames required.

Because reducing the page pool in turn may reduce total system
throughput, the use of real partitions should be carefully considered. When
a program is running in real mode, the real storage allocated to its partition
is taken from the page pool.

} For each of the above cases, the virtual partition that corresponds to

_ the real partition must be allocated (64K bytes minimum). This is because
the initiation of either virtual-mode or real-mode programs is performed by
the job control program, which itself runs in virtual mode. Thus, for
example, the virtual F1 partition must be allocated at least 64K bytes if the
real F1 partltlon is to be used.

When a program running in virtual mode issues a- PFIX maéro, the
pages are fixed within the corresponding real partition. This ensures that
other real partitions are available for other programs that run in real mode
or that fix pages in real storage.

3.8 DOS/VS System Management Guide

-

Defining Partition Priorities

To allocate a real partition, specify the partition identifier and its size-in -
the ALLOCR macro. Each real partition you fequire must be specified

~explicitly; the allocation of the real background. partition is not calculated
by the system. Note, however, that ALLOCR must not be specified for a

Single-partition system. -

A real partition may be as small as 2K bytes: the size of a given real '
partition is determined either by the largest program you must run in real
mode, or by the maximum number of pages a virtual-mode program may fix.

The allocation of réal partitions cannot exceed the size of the real

address area (specified in the RSIZE parameter) minus the supervisor area.

The minimum size of the main page pool is:

« 18K bytes minus the size of the smallest real partition, if .fhe‘smallest
real partition is 14K. bytes or less and PFIX=NO was specified. If
multitasking is specified (AP=YES), a further 2K bytes are required.

« 18K bytes if PFIX=YES, plus a further 2K bytes if AP=YES.-
o 18K bytes if phases from the SVA are to be executed.

The system ensures (for single as well as multipartition systems) that this
minimum, in which pages cannot be fixed, remains. The supervisor
indicates, by means of return codes in register 15, whether or not a PFIX
macro has been executed successfully. For an example of the use of PFIX
and PFREE macros and the supervisor return codes, refer to the section
Fixing Pages in Real Storage. ‘

A priority is associated with each partition in a multiprogramming system. If

_you do not specify priorities during system generation, the supervisor will

establish default priorites. These default priorities (from low to high) are
shown in Figure 3.4.

NPARTS=2 PRTY=(BG,F1} -
NPARTS=3 PRTY=(BG,F2,F1).
NPARTS=4 PRTY=(BG,F3,F2,F1)
NPARTS=5 PRTY=(BG,F4,F3,F2F1)

Figure 3.4. Default Partition Priorities

In most cases, thiere will be no need to select another priority sequence;
however, the PRTY parameter in the FOPT macro is provided for this
purpose. In the PRTY parameter you can specify the partition identifiers in
any desired sequence, and thus select another priority sequence.

The operator can display and modify the priorities established during -
supervisor generation at any time during processing with the PRTY
command. He may want to do this in order to accelerate the execution of a
given job.

Chapter 3 Planning the System 3.9

Defining the Page Data Set

~

Fixing Pages in Real Storage

The page data set, a sequentially organized set of records on a direct access
device, is required in DOS/VS to accommodate pages of programs that are

. being executed in virtual mode that have been paged out. There are as

many 2K records on the page data set as there are 2K pages in the virtual
address area. The size of the page data set, therefore, depends on the size
of the virtual address area. .

The page data set can reside on any disk device that is supported by
DOS/VS as a system residence device.

You can define the page data set in the DPD macro, in which you can
specify the channel and unit number of the device and the lower limit
address of the extent. The upper limit address is calculated by the system
according to the VSIZE parameter specified in the VSTAB macro. If you
correctly specify the DPD macro, an MNOTE is issued in the supervisor
assembly listing that indicates the required number of tracks for all different
types of devices supported as a page data set. ’

You may also specify a volume serial number, which will be checked
when the page data set is opened.

If you omit the DPD macro, or some of its parameters, during
supervisor generation, or the information you specify is erroneous, you must
define the page data set during IPL via the DPD command. (This command
is discussed in the section Initiating Page Data Set Handling in Chapter
4: Starting the System.) The information specified in the DPD command
overrides the information supplied during supervisor generation until the
next IPL. '

A program that runs in virtual mode is executed in page frames- of the page

“pool. When a page frame is required by a virtual-mode program and all are

currently occupied, one of the-occupied page frames will be freed, if
necessary by paging its contents out onto thé page data set.

Some programs that run in virtual mode contain code (such as 1/0 »
appendages) that must be in real storage when needed and therefore cannot
tolerate paging. The pages containing such code can be fixed temporarily
via the PFIX macro instruction, and freed immediately after use via the
PFREE macro instruction. POWER/VS is an example of an IBM-supplied
program that uses PFIX/PFREE macros.

When pages of a program running in a given virtual partition are fixed

- in response to the PFIX macro, they are fixed in the corresponding real

partition. Therefore, the use of the PFIX macro requires that a real
partition be allocated sufficient storage to accommodate the pages to be
fixed at any given time. If a PFIX macro is issued when a real partition is
not allocated enough storage, the pages are not fixed, and a completion
code indicating this is returned to the program.

3.10° DOS/VS System Management Guide

Improving the Paging Mechanism

Virtual Storage Access Method

If you anticipate the need for the PFIX/PFREE macro instructions in
any of your virtual-mode programs, specify PFIX=YES in the FOPT macro
during supervisor generation. '

Fixing pages in real storage means that in a multiprogramming
environment fewer page frames are available to other programs running in
virtual mode, potentially degrading total system performance. Consider this
effect carefully before enabling the use of the PFIX macro. Examples of
the use of the PFIX/PFREE macros are provided in Chapter 9: Designing
Programs for Virtual-Mode Execution.

The page handling of virtual mode programs is controlled by the page
management routines of the supervisor. You can, however, influence the
paging mechanism in order to reduce the number of page faults, to -
minimize the page 1/0 activity, and to control the page traffic within a
specific partition. You can do this by means of three macros: RELPAG,
FCEPGOUT, and PAGEIN. '

RELPAG (Release Page). With this macro you inform the page
management routines that the contents of one or more pages is no longer
required and need not be saved on the page data set when the page frames
occupied by these pages are claimed for use by other pages. This saves
unnecessary page 1/0. '

FCEPGOUT (Force Page-out). With this macro you inform the page
management routines that one or more pages will not be needed until a
later stage of processing, and that they should be given highest page-out
priority. This prevents page-out of other pages which might be needed again
immediately after being written out. ’

PAGEIN. With this macro you request one or more pages to be paged in in
advance, so that page faults can be avoided when the specified pages are
needed in real storage. If the specified pages are already in real storage
when the macro is issued, they are given lowest yriérity for page-out.

If you anticipate the use of one or more of the above macros in any of

‘your virtual mode programs, specify PAGEIN=n in the SUPVR macro

during supervisor generation. This will generate support for the three
macros. The value of n must be 1 or greater. It specifies the number of
page-in requests that can be queued if more than one PAGEIN macro is
issued concurrently in the system.

The virtual storage access method (VSAM) can be used for direct or
sequential processing of fixed and variable-length records (including
spanned records) on direct access storage devices. A significant feature of
VSAM is data portability. VSAM files can be processed by DOS/VS,
08/VS1, and OS/VS2.

VSAM requires a special file, the VSAM master catalog, which contains
information on file and disk characteristics. In addition, VSAM supports

Chapter 3: Planning the. System 3.11

any number of user catalogs for alternative use. The VSAM master catalog
resides on a disk extént that is contained on the logical unit SYSCAT.
Catalogs are defined and maintained by the Access Méthod Services and
-used by OPEN and CLOSE. For complete information on VSAM, refer to
DOS/VS Data Management Guide and DOS/VS Supervisor and I1/0
Macros.

Support for VSAM is generated in the supervisor by specifying -
VSAM=YES in the FOPT macro. Most VSAM phases can be loaded into
“the shared virtual area. For details refer to the section Defining the Size
of the Shared Virtual Area.

Muitiple-Partition Options

There are certain options that can be specified during supervisor generation
that are particularly designed for a multlprogrammmg environment. The
options described in this section are:

Relocating loader
POWER/VS
Multitasking
Wait multiple.

Relocating Loader

The linkage editor can produce relocatable phases. A relocatable phase
contains relocation information, which is used by the relocating loader if
necessary to load the phase into any partition.

In a system supporting the relocating loader, it i$ no longer necessary

e to write an assembler-language self-relocating program,-if yon want the
program to be executable in any partition. The high-level language
programmer can thus obtain the advantages of self-relocating programs,

e to link-edit again if the size of the supervisor or the boundaries of the
partitions change after a program has been cataloged into the core
image library.

¢ to maintain multiple copies of individual programs in a core image
library.

The relocating loader is also advantageous to the operator, who can execute
a relocatable phase in any available partition large enough to contain it.

You can include the relocating loader in the supervisor by specifying
RELLDR=YES in the FOPT macro. OLTEP and VSAM require a -
supervisor containing the relocating loader. Therefore, if you specify
OLTEP=YES, RETAIN=YES, or VSAM=YES, the relocating loader is

fr automatically included in your supervisor.

3.12 DOS/VS System Management Guide

POWER/VS

Multitasking

Wait Multiple Option

When the supervisor contains the relocating loader and if the phase
origin is not an absolute address, the linkage editor automatically produces
a relocatable phase. You can suppress this by specifying ACTION NOREL
at link-edit time.

Note: A supervisor generated without the relocating loader can still load
relocatable phases. No relocation is performed, however, and the phase is

loaded at the link-edited origin.

Relocating loader applications are discussed in the section Link-editing
for Execution at Any Address in Chapter 6: Linking . Programs.

POWER/VS provides spooling services for up to four partitions and resides
in a partition with a higher priority than that of the partitions it controls.
Although POWER/VS runs in virtual mode, it supports programs running
in virtual or real mode.

Specifying POWER=YES in the SUPVR macro sets up the necessary
linkages in the supervisor which are used when POWER/VS is active. The
version of POWER/VS distributed in the core image library will suit the
needs of many users; however, if you have special requirements, you can
assemble the POWER/VS generation macros, which are distributed in the
source statement library. Refer to Generating POWER/VS later in this
chapter. .

Multitasking provides the ability to execute more than one task concurrently

- in a single partition. Because multitasking presupposes the

multiprogramming facilities (for instance, task selection) multitasking is only
available in a multiple-partition system.

A program engaged in mulititasking consists of one main task, which
initiates (attaches) a number of subtasks. The maximum number of subtasks
depends on the number of partitions specified in the NPARTS parameter,
as shown below. These subtasks may reside together in one partition or
they may be distributed among the various partitions.

NPARTS Specified Maximum Number of Subtasks

2 13
3 12
4 1
5 10

To generate multitasking support (also known as asynchronous processing)
in the supervisor, you specify AP=YES in the SUPVR macro.

The wait multiple option allows a task to wait on more than one event. The
task regains control on the completion of any one of the events on which it
was waiting. '

Chapter 3: Planning the System 3.13

Library Options

Private Core Image Libraries

You can generate support for private core image libraries, for special
applications in the procedure library, and for adequate table space to
achieve better fetching performance. These options are described below. No
supervisor generation options apply to the relocatable library or to the
source statement library. For full details on the type of library for your
installation, refer to the section Planning the Libraries.

Private core image libraries (PCIL) have the same format as and are
supplementary to the system core image library.

To include support for private core image libraries in the supervisor,
specify PCIL=YES in the FOPT macro. For more information on the
creation, organization, and maintenance of private core image libraries, turn
to Chapter 7: Using the Libraries. Refer also to the section Second
Level Directory for the Core Image Library.

Extended Support'for the Procedure Library

Second Level Directory for Core

Normally, cataloged procedures can consist of job control statements
and/or linkage editor control statements. However, with the extended
support, cataloged procedures can also consist of data that is to be read
from SYSIPT. Such data, for instance, may be utility control statements to
be processed by a utility program.

To include the extended support for the procedure library, specify the
SYSFIL parameter in the FOPT macro, which is discussed in the section
System Files on Disk in this chapter.

More information on the procedure library is contained in the section
Planning the Libraries.

Image Libraries

The directory entries for phases in the core image library are sorted by
phase name in alphameric sequence. The entries are organized in 256-byte
blocks, where the highest phase name in each block serves as the key. The
highest key on each track of the core image directory is stored in a second
level directory (SLD) in the supervisor. To help ensure good performance
when a phase is fetched, the number of entries in the SLD should not be
less than the number of tracks used for the core image directory.

Specify the SLD parameter in the FOPT macro if you intend to use
more than five tracks for the core image directory entries. Similarly, if
private core image libraries are used in the system, specify the PSLD
parameter in the FOPT macro. Note that the default value for PSLD is
zero, compared to five for the SLD parameter.

3.14 DOS/VS System Management Guide

Teleprocessing

BTAM

QTAM

DOS/VS provides facilities for teleprocessing, the interchange of data
between an application in the system and terminals connected by
telecommunications lines. These facilities provide the ability to define
teleprocessing lines during supervisor generation and to specify one or more
access methods for input/output services between an application and
terminals.

Teleprocessing devices (terminals) are normally attached to the CPU *
through transmission control units or communications controllers. In some
cases there is a direct local attachment. The control unit must be specified
in a DVCGEN macro.

The access methods, defined in the TP parameter of the SUPVR macro
instruction, are:

e BTAM (the Basic Telecommunications Access Method)
« QTAM (the Queued Telecommunications Access Method)
. VTAM (the Virtual Telecommunications Access Method).

Except when BTAM is specified for a single-partition system, support for
any of these access methods automatically includes support for TP
balancing (teleprocessing balancing).

For detailed information on generating and using a teleprocessing access
method, refer to the appropriate teleprocessing publications. Teleprocessing
users should also pay particular attention to the section I/0O Options later
in this chapter and the section Balancing Teleprocessing in Chapter 9:
Designing Programs for Virtual-Mode FExecution.

BTAM provides READ, WRITE, and CONTROL macro instructions to
control input/output. A WAIT macro instruction is used to synchronize
I/O with application program processing. . ‘

Applications using BTAM can execute in either virtual or real mode.
Users of previous DOS releases must reassemble and catalog BTMOD. If
BTMOD and the application program were assembled together, the
application program must also be reassembled and re-link edited. To
execute BTAM in virtual mode;, PFIX=YES must be specified in the FOPT
macro.

QTAM provides a way to write one or several application programs using
GET and PUT macro instructions to request input/output from a Message
Control Program (MCP). This MCP, which you generate using QTAM
macro instructions, frees the application (called a Message Processing
Program) from I/O processing details required by a BTAM application.

The QTAM MCP and its applications can execute only in real mode.
Users of previous DOS releases must reassemble the QTAM MCP. .

Chapter 3: Planning the System 3.15

VTAM

ASCH

~ When support for QTAM is generated in the supervisor, BTAM is also
supported.

QTAM requires a special disk extent for messages and, in some cases,
the interval timer. For more information, see the QTAM MCP publication.

VTAM directs transmission of data between application programs and local
or remote terminals, and controls the terminals in a telecommunications
network. Because VTAM operates with the IBM 3704 and 3705
Communications Controllers, communications lines and communications
controllers need not be considered in coding application programs.

Basic services performed by VTAM include:

« Establishing, terminating, and controlling access between application
programs and terminals.

« Moving data between application programs and terminals.

« Permitting application programs to share communications lines,
communications controllers, and terminals.

VTAM requires that multitasking support be specified during supervisor
generaiion. Other options automatically generated when VTAM is specified
include:

« Support for the use of the STXIT macro instructions (all options) by
problem programs.

» Storage management support for the GETVIS and FREEVIS macro
instructions.

« Use of the PFIX and PFREE macro instructions for fixing and freeing
pages.

» Inclusion of the relocating loader.

« Support for the time-of-day clock.

« Sopport for the mhltiple wait function.

+ Support for the use of the EXCP macro instruction with the REAL
parameter. ' o

Both real and virtual storage must be allocated for the partition in which
VTAM is to run. For information on caiculating storage requirements for
the VTAM partition and for the application program partition, refer to -
DOS/VS System Generation. Other installation details are contained in the -
DOS/VS VTAM System Programmer’s Guide. '

¥

In addition to processing EBCDIC files, DOS/VS can process magnetic
tape files written in ASCH (American National Standard Code for
Information Interchange), a 128-character, 7-bit code. The high-order bit in
the System/370 8-bit environment is zero. ASCII tape files may be either
unlabeled or labeled according to the specifications of the American
National Standards Institute, Inc., (ANSI).

3.16 DOS/VS System Management Guide

‘Job Accounting

Timer Services

* 1/0 time. NG user translation tables or instructions are required.

ASCII tape files may be proéessed in any partition. Because internal
processing of ASCII files is performed in EBCDIC, the data is tragslated at

Input files contammg ASCI data are translated to EBCDIC as soon as
the record is read into the I/O area. Output files described as ASCII are
translated from EBCDIC to ASCII just prior to writing the record.

If your system is required to process ASCII files, specify ASCII=YES
in the SUPVR macro. This generates the two translation tables needed for
the conversion from ASCII to EBCDIC and from EBCDIC to ASCII, in

' the supervisor.

The job accodnting interface facility provides job and job step information
that can be used for charging system use, supervnsmg system operation,
planning new appllcatlons, etc.

When this option is selected (JA=YES in the FOPT macro), job
accounting tables are built in the supervisor to accumulate accounting
information. One DOS/VS job accounting table is maintained per partition.
The format of these tables is shown in Chapter 10: Using the Facilities
and Options of the Supervisor.

To utilize this information, you must write a routine to store or print
the desired portions of the table. This routine must be cataloged in the core
image library under the name $JOBACCT.

If the user 1/0 routine ($JOBACCT) is written using LIOCS with label
processing, the JALIOCS parameter of the FOPT macro must be specified’
in addition to the JA parameter. JALIOCS indicates that-a user save area
and a label area in the supervisor are to be reserved. The label area
replaces the one normally used by LIOCS label processing routines.

Information on how to write a job accounting routine can be found in
Chapter_ 10: Using the Facilities and Options of the Supervisor. .

It POWER/VS job accounting is desired, support for the job
accounting interface is required. Job accounting interface information and
POWER/VS job accounting information are combined in the POWER/VS
account file for each partition running under POWER/VS. No user-written
data collection routine is necessary. Refer to Account File in the section

Generating POWER/VS for more details.

Two distinct timer services are avallable to DOS/VS users:
o Time-of-day clock ‘
¢ Interval tlmer

Although both the iime-of-day clock and the interval timer are standard
hardware features of the System/370, the user of these features in

DOS/VS requires software support, for whlch supervisor generation

parameters are provided.

Chapter 3: Planhing the System 3.17

L ime-of -Day Clock

Interval Timer

The time-of-day (TOD) clock provides a consistent measure of elapsed time
suitable for time-of-day indication. You can use the TOD clock to
time-stamp programs. Regardless of whether or not DOS/VS programming
support for the TOD clock is included in the supervisor, programs can
inspect the contents of the TOD clock by means of a store clock (STCK)
instruction. For more information on the use of this instruction, refer to
IBM System/370 Principles of Operation.

To include support for the time-of-day clock in the supervisor, specify
TOD=YES in the FOPT macro. The time-of-day and the date are then
automatically included with each // JOB and / & job control statement
that is printed on SYSLST and/or SYSLOG.

The ZONE parameter in the FOPT macro is associated with the
TOD=YES specification. In the ZONE parameter you indicate the
difference between Greenwich Mean Time (GMT.) and local time in hours
and minutes. If the local time to be specified is GMT, the ZONE parameter
can be omitted.

During the IPL procedure, if IPL is performed from SYSLOG, a
message is printed on the operator console to inform the operator of the
statas of the date, clock, and zone. If necessary, the operator can correct
this information in the SET command.

The TOD clock support also enables programs to issue the GETIME
macro instruction, which causes the exact time-of-day to be stored in
general register 1. When a GETIME macro instruction is issued, the date
fields in the supervisor communications region are updated, if necessary. A
description of the use of the GETIME macro instruction is included in the
section Using the Time-of-Day Clock in Chapter 10: Using the
Facilities and Options of the Supervisor.

The interval timer can be used by programs (main tasks and/or subtasks)
that need to schedule certain processing on a time interval basis. If support
for the interval timer is included in the supervisor, and a problem program
is written with the appropriate macro instructions and routines, the interval
timer causes an external interrupt when the time limit established by the
program has elapsed.

To include support for the interval timer in the supervisor, specify the
IT parameter in the FOPT macro.

Seven problem program macro instructions relate to interval timer support.
These are described in other parts of this manual, as indicated below:

« The section User Exit Routines which follows describes the STXIT
and EXIT macros in general, and the section Interval Time Exit
describes their specific use in relation to the SETIME macro.

e Chapter 10: Using the Facilities and Options of the Supervisor
describes how to implement the SETIME, STXIT,.EXIT and TTIMER
macros.

3.18 DOS/VS System Management Guide

Console Buffering

Since there is only one console typewriter in the system and it is a relatively
slow device, the entire system can be held up while messages are being
issued to the operator. Console buffering support builds a queue of output
messages and returns control immediately to the partition requesting the
output. The messages are then written as soon as the console becomes
available.

Support for console buffering is indicated by the CBF=n parameter in
the FOPT macro-(where n is the number of 1/ O requests to be buffered.) A
At least one buffer should be. specified for each partition or task issuing .
messages so that buffers are available and the task can continue processing
while the message is being printed. Five per batched-job partition is '
recommended. The console buffering is not split per partition, but used by
the whole system.

Unless the immediate logging of messages to a hard-copy device is
desired, console buffering should not be specified for a Model 115 or 125
using the video display keyboard console as an operator communications
device. This device has its own buffer.

Independent Directory Read-in Area

User Exit Routines

If a phase must be loaded and the phase name is not found in the System
Directory List or Local Directory List, then the core image directory is
searched to find the location of the phase in the core image library.
Normally, the directory blocks are read into the physical transient area,
which is scanned for the required entry. If a system error recovery routine
is in progress, it resides in the same physical transient area. During this
time, the physical transient area cannot be.ised for directory blocks, or for
building the fetch channel programs. This effectively prevents any partition
of a higher priority from fetching or loading a program phase until error
recovery is complete.

By specifying IDRA=YES in the FOPT macro, an independent
directory read-in area is generated in the supervisor for holding directory
blocks and fetch.channel programs during a fetch or load routine.
IDRA=YES is available only in a multiple-partition system.

If required, the supervisor can permit user routines to gain control when
any of five types of events occurs:

o Interval Timer Interrupt (IT)

» Program Check Interrupt (PC)

¢ Abnormal Termination (AB)

e Operator Communication Interrupt (OC)
e Page Fault Handling Overlap (PHO)

Chapter 3: Planning the System '3.19

Both the supervisor and the problem program that contain the user routine
must have the proper code to establish an interface. The supervisor part of
this interface is specified during the system generation: the first four options
have parameters in the FOPT macro, the last option has a parameter in the
SUPVR macro.

The problem program that wants to utilize the options must contain
code to set up the interface. For the first four events, code can be
generated by the STXIT macro. For the last event, code is- generated by
the SETPFA macro. This code is assembled in the main line of a problem
program.

The first operand of the STXIT macro indicates the type of event to be
handled. It must have an equivalent in the supervisor. The second and third
operands indicate the addresses of the user routine and its save area. If the
second and third operands are missing, this means that an existing interface
has to be discontinued. Once the linkage has been established and one of
the events occurs, control is passed to the user routine, which takes
appropriate action and returns control to the supervisor, either directly or
via a termination macro. The direct return can be handled by including the
EXIT macro in the user routine for all event codes except abnormal
termination (AB). The job termination return can be handled by the
CANCEL, EOJ, JDUMP, or DUMP macro. One of these must be used for
the abnormal termination condition.

Short descriptions of the support for each of the five types of user exit
routines follow. For more details refer to Chapter 10: Using the
Fuacilities and Options of the Supervisor. For information on how
multitasking affects this support and what happens if multiple events
coincide, refer to the DOS/VS Supervisor and I/O Macros. Some
high-ievel languages offer similar facilities, for details of which see the
appropriate programmer’s guide.

Interval Timer Exit

Interval timer support is indicated by the IT=parameter of the FOPT
macro. If IT=YES is specified, all tasks in all partitions may refer to the
interval timer.

Example on how to use the Interval Timer: Suppose you want to take a
checkpoint on a job a certain time after it has started. Include the STXIT
and the SETIME macros in your program. The first macro will set up the
interface with.the supervisor; the second will help you include a time
interval. When that interval elapses, an interval tiper interrupt occurs -and
control is given to the user routine. Please note that the user routine need
not be entered immediately. For instance, if the user routine is in a
background partition, and a foreground partition is active, the user routine
will not be entered until the background partition becomes active. Chapter
- 10 contains coded examples of this option.

To find out the time remaining in an interval, a program can issue the
TTIMER macro instruction. The supervisor then loads this value in general
register 0. This macro can also be used to cancel the remaining time in the
interval.

3.20 DOS/VS System Management Guide

Program Check Exit '

If PC=YES is specified in the FOPT macro, programs can establish linkage -
from the supervisor to a user routine by executing a STXIT macro. If a
program check occurs within the program, the supervisor gives control to
the user routine instead of discontinuing the program. The user routine can
analyze the program check and choose to ignore, to correct, or to accept it.

"~ If the check is ignored, control can be ngen back to the supervisor by

Abnormal Termination Exit

Operator Communications Exit

executmg an EXIT PC macro.

In some cases it may be pos51ble to correct the error condition. For -

' example, if a data exception occurs on an add pack (AP) instruction, the

user routine can be written to correct the sign and arrange for the
instruction to be processed again. The user routine can request that

processing of the main line program continue via the EXIT macro.

In case the problem cannot be resolved, the;program check is accepted
as valid. The user routine can then terminate further processing of the

program by issuing a CANCEL, DUMP, JDUMP, or EOJ macro.

The ability to include a user routine to process program checks can be
especially advantageous when using LIOCS. In that case, I/O housekeeping
such as closing files and freeing tracks can be performed before termmatnon
of the job or task. :

If AB=YES is specified in the FOPT macro, any program can issue a
STXIT AB macro. This instruction allows a user routine to get control from
the supervisor before an abnormal end-of-job condition discontinues the
processing of the program. Since no EXIT macro is provided to continue
processing of the problem program, the termination macros (CANCEL,
DUMP, JDUMP, or EOJ) must be used to return control to the supervisor.

OC=YES in the FOPT macro supports the use of user routines for
handling external interrupts from the operator. This support is useful in a
number of applications, for example:

» A change in the environment is needed. A message is then issued by
the program. For example: MOUNT TAPE XXX on unit xxx and press
the interrupt key.

+ In teleprocessing, the OC exit allows the operator to start and stop
activities on certain lines or terminals, or to invoke diagnostic
procedures. In this case, program run books with explicit instructions
may be required to ensure understanding between programmer and
operator,

Chapter 3: Planning the System 3.21

The external interrupt that links to an OC user exit routine, can be caused
in the following ways:

o [If the program with the OC exit routine is being executed in the
background partition, the operator can press the interrupt key on the
~ system console. :

« If the program with the OC exit routine is being executed in a
foreground partition, the operator can press the request key ‘on the .
console typewriter. When the message READY FOR _
COMMUNICATIONS appears, he should reply MSG F1 (or give the
appropriate partition identifier).

Page Fault Handling Overlap Exit

If PHO=YES is specified in the SUPVR macro, a user routine can continue
processing during the time a page fault is being handled by the system, if
this page fault occurs in the same task and not in a supervisor routine
invoked by this task. This support is of interest only for programs executed
in a virtual partition that make use of user-developed subtasking rather than
IBM-supplied multitasking.

Such programs may issue the SETPFA macro instruction to establish
linkage from the page management routines in the supervisor to a user
routine, called the page fault appendage routine. The SETPFA macro
instruction is described in DOS/VS Supervisor and 1/0 Macros.

Disk or Diskette Options

Options are provided especially for some DASD devices or diskettes. These
are:

« System files on disk or diskette

« DASD file protection

« Track hold option

e Seek separation

« Rotational position sensing

« Block multiplexer channel support.

DOS/VS does not provide DASD file protection or track hold support for
the IBM 3540 Diskette.

System Fileson Disk or Diskette

The system logical units SYSRDR, SYSIPT, SYSLST, and SYSPCH are
normally assigned to card readers, printer, and card punches, respectively.

However, it may be useful to assign one of them to a disk or diskette
extent instead, for instance, when you want to catalog the output from a
language translator to the relocatable library. Instead of physically punching
cards and then reading them, the SYSPCH file should be assigned to disk
during the language translator run to receive the object module. For the
subsequent MAINT librarian job to perform the catalog function, SYSIPT
should then be assigned to the same disk extent as SYSPCH. The card
images will then be read from disk as if they were cards in a card reader.

3.22 DOS/VS System Management Guide

DASD File Protection

Track Hold Option

- Support for system files on disk or diskette is specified in the SYSFIL
parameter of the FOPT macro.

The SYSFIL option also implies extended support for the procedure
library. This means that cataloged procedures may contain in-line SYSIPT
data. The sets of control statements that can be cataloged into the
procedure library are, therefore, not limited to job control or linkage editor
control statements. (See also Extended - Support for the Procedure Library.)

For systems without magnetic tapes, the SYSFIL option is required in
order to apply IBM: programs and program maintenance, which, in this case,
must be distributed on disk packs in SYSIN format.

This feature is provided to prevent user programs, which include
user-written channel programs for writing onto DASD, from writing data
outside of the limits of the DASD file currently being accessed. This might
happen if, for example, a randomizing algorithm produces an unexpected
DASD address which is outside the file limits.

DASD file protection support is indicated in th¢ DASDFP parameter of
the FOPT macro. The parameters indicate that protection is given to
channels and device types. DASDFP should be provided for the entire
channel range, for instance, DASDFP=(1, 3, 3330).

DASDFP gives protection on the basis of programmer logical units. If
two files in the same partition are assigned to the same programmer logical
unit, the DASDFP option gives no protection.

Protection begins and ends on a disk cylinder boundary or a data cell
strip boundary. Files to be protected should, therefore, begin and end on
such boundaries. No protection is given to partially allocated cylinders or
strips.. .

If you are using physical IOCS, you must use the DTFPH macro to
define the file. The file must be opened using the OPEN or OPENR macro,
and each channel program must commence with a long seek xX07)
command, and contain no chained long seeks.

If you specify any DASDFP, the SYSRES file must reside on a
protected channel: otherwise, it will not be possible to IPL the system.’

DASDFP does not prevent file contention between partitions, or within
partitions if the same symbolic unit is used. Thus, more than one partition
may access the same file at the same time, and may even attempt to update
the same record simultaneously. The track hold option (TRKHLD) is
provided to solve this problem.

The track hold option is used to ensure that if a DASD track is being
modified by one task, no other task in the system can access that track
provided that they also use track hold. The facility is available for all ISAM
and ISAM interface program functions (except LOAD), all DAM functions,
all SAM work file functions and other SAM update functions. The facility is
a combination of supervisor (PIOCS) and LIOCS functions.

Chapter 3: Planning the System 3.23

Séek Separation

/

The track hold option- can be selected by specnfymg the TRKHLD ‘
parameter in the FOPT macro

If you write your Qwn “channel programs, each program must begin with
a long seek (X‘07') command. If multiple track search channel programs are
used, only the first track will be-held, which is not necessarily the track on
which the record is located.

Deadlock occurs if one task is waiting for a track held by a second task
and the second task is‘waiting.fo',r a track held by the first. This can easily
be prevented by establishing the ¢onvention that every task must be
programmed so that it will not hold more than one track at a time.
Deadlock may also occur if the maximum number of tracks demanded to be
held by all tasks combined exceeds the maximum specified in the TRKHLD
parameter.

A channel program for a DASD device usually consists of a number of
functions to perform the 1/O operation as follows:

1. A long seek to position the accéss arm over the required cylinder.
2. A search to find the required record on a track on that cylinder.

3. A transfer in channel to branch back to the search until the search is
completed successfully or unsuccessfully.

4. The actual read or write which transfers the data.

Since the channel is monopolized once the channel program has been
initiated, no other device on this channe! can be accessed until the data has
been transferred. This is inefficient, particularly since most of the time
utilized during the execution of a DASD channel program is taken up by
the long seek (1). With seek separation support, the supervisor handles this
by separating the long seek from the rest of its channel program and
initiating the seek command separately. The channel is then free while the
disk access arm is being moved and other devices on the channel and
control unit can be accessed.

Once the access arm has been positioned over the correct cylinder, the
rest of the entire channel program is executed. By performing this function
in the supervisor, contention is avoided between two tasks trying to move
the same disk access arm.

This does not apply to DASDs with disconnect command chaining

"(DCC) on block multiplexer channels running in block multiplex mode; in

such instances the seek separation function is handled by the channel.

Specifying SKSEP=YES in the FOPT macrlo‘ creates seck separation
support for each DASD device specmed ina DVCCEN macro at superv1sor
generation time. |

Specifying SKSEP=n indicates the number of DASDs to be supported

. and must not be less than the number of DASDs you specify in DVCGEN

macros. Specifying n adds flexibility to your installation by allowing for
expansion: seek separation support then also applies to the DASDs added at
IPL time.

'3.24 DOS/VS Systelﬁ Management Guide

Rotational Position Sensing

Rotational Position Sensing (RPS) is a standard feature on IBM 3330/3333

-and an optional feature on IBM 3340 disk storage devices. It provides the
- . ability to overlap positioning operations on one device with service requests

for other devices on a block multiplexer channel (or its equivalent on Model

-3115/3125 CPUs).

Better channel utilization can increase systeni throughput, especially in
large multiprogramming systems with heavy concurrent 1/Q activity,

- Because a selector channel is monopolized once a channel program has

been initiated, no other device on this channel can be accessed . until the
data has been transferred. With block multlplexer ‘channels and the RPS
feature of DASD devices, however, the device can disconnect from the
channel during positioning operations. The channel is then available for
other requests so that other devices on the channel can be accessed.

Overlap of positioning to a record on. a track requires adding RPS
CCWs to the direct access storage device channel programs. DOS/VS

system control and service programs that support RPS create these CCWs

at execution time provided that the supervisor is generated with RPS YES
and that the direct access storage device has the feature. -

RPS support for DOS/VS is provided in all access methods which

. support RPS DASD devices and in the DOS/VS system control and service

programs where the implementation benefits total system performance.

. Implementation of RPS support in DOS/VS utilizes virtual storage to

enable you to use RPS without recompiling or relink-editing your problem
programs. The partition GETVIS area is usgd to generate an extension to
the DTF, and the shared virtual area is used to hold the RPS version of the
logic modules. Since this implementation requires a partition GETVIS area,
programs executing in real mode do not have RPS support for DASD
LIOCS functions. If you have specified RPS=YES in the FOPT macro at
supervisor generation time, all programs using DASD LIOCS should define
a GETVIS area within the partition to enable the access methods to
construct RPS channel programs. '

The effective use of RPS depends on each channel program’s ability to

free that channel so that it can service requests for other devices. Programs

using DOS/VS DASD LIOCS access methods will have RPS channel
programs constructed by the access method provided a GETVIS area is
defined in the partition (by using the SIZE parameter of the EXEC job
control statement) and that sufficient virtual storage is available in the SVA
for loading RPS versions of the logic modules. Programs using PIOCS for
DASD access have to be recoded to include Set Sector CCWs and to
establish arguments for the CCWs. If this is not done, these programs will
destroy the effectiveness of RPS by monopolizing the channel.

Specification of RPS=YES forces generation of block multiplexer
channel support, which is a prerequisite for RPS support. Block multiplexer
channel support can be specified separately by specifying BLKMPX=YES
in the PIOCS macro instruction. If RPS=YES is specified in the FOPT
macro instruction, there is no need to specify seek-separation support

- (SKSEP=YES) if only the 3330 and 3340 DASD types are attached.

SKSEP=YES can, however, be specified for direct access storage devices
that do not have the feature (for example; 2314/ 2319).

»

Chapter 3: Planning the System 3.25

For a more effective use of RPS, you should preload frequently used
logic modules into the SVA during IPL, by specifying them in your System
Directory List (SDL). You may determine frequently used modules by using
the Fetch/Load Trace facility of PDAIDS. When using Checkpoint/Restart,
modules used must be preloaded. Each access method, that is, SAM (for

l DASD), DAM, ISAM, and VSAM has RPS versions of the logic modules
associated with it. These modules reside in the core image library and are
not assembled or link-edited with the user’s program. They are loaded
either during [PL or dynamically as needed when the file is opened.

_ Figure 3.5 shows the organization of a user’s program running in virtual
storage without RPS support.

Figure 3.6 shows how, with RPS support, this organization will be
modified at OPEN time to put the DTF extension in the partition GETVIS
~ area. The pointers to the RPS version of the logic module and channel
program will be put into the DTF while the non-RPS logic module and
channel program addresses will be saved in the DTF extension. The DTF
extension will be freed and the pointers restored at CLOSE time.

Figure 3.7 shows that the RPS version of the logic modules can be
either in the SVA or in the SVA GETVIS area, or in some combination of
both.

USER PROGRAM

DTF

NON-RPS CCW STRING 4
NON-RPS LOGIC MODULE ‘

NON-RPS CHANNEL PROGRAM

NON-RPS
LOGIC MODULE

VIRTUAL STORAGE

R ol e A P I I

GETVIS
AREA

|

Figure 3.5. User Program Running in Virtual Storage without RPS Support

3.26 DOS/VS System Management Guide

VIRTUAL STORAGE

USER PROGRAM

DTF

RPS CCWSTRING
RPS LOGIC MODULE |

fes s e o - - - - - -

NON-RPS CHANNEL PROGRAM
(not used)

NON-RPS

LOGIC MODULE
(not used by RPS DTF
but available to other DTF)

NON-RPS CCW STRING
NON-RPS LOGIC MODULE

DTF EXTENSION

". RPS CHANNEL PROGRAM 4
IRk ikt |

X \ X

Figure 3.6. User Program Running in Virtual Storage using RPS Versions of
Logic Module and Channel Program

GETVIS
AREA

T
R
< RPS VERSION OF LOGI> MODULES
2 LOADED AT IPL . ‘
P b Ry 7
o \-Ptr---et
E < !
w
w e .
odg
RPS VERSION OF LOGIC MODULES
LOADED DYNAMICALLY

Figure 3.7. Location of RPS Version of Logic Modules
}

- Block Multiplexer Channel Support

Block multiplexer channel support is useful in'configurations‘ with 3330 and
3340 DASD devices that are attached to block multiplexer channels. To

‘obtain block multiplexer support, specify BLKMPX=YES in the PIOCS

macro during supervisor generation.

In a DASD configuration that consists only of 3330 and 3340 devices -
with RPS capability, there is no need to request seek separation sapport
since the block multiplexer support provides channel overlap during seeks in
a more efficient way. Furthermore, the code generated by a specification of

Chapter 3: Planning the System 3.27

1/0 Options

SKSEP=YES is bypassed if BLKMPX=YES is specified. You cc

block multiplexing if you are planning to use the 2311 or 2314
compatibility features and your CPU is a Model 115 or Model 125. 1t ,
CPU is a Model 135, block multiplexer support may be specificd. This
support will be inoperative for files being handled by the Emulator, but it
will work properly for files being addressed.in native mode.

Defining the Number of CCW Translation Buffers

Because all addresses associated with instructions and data are virtual, they
are translated to real addresses before they are actually used. All addresses
except those in channel programs are translated by the DAT facility:
channel programs are translated by DOS/VS. Translated channel programs
are kept in special buffers within the supervisor area.

You specify the number of channel program translation buffers in the
BUFSIZE operand of the VSTAB macro.

The number you select for the CCW translation buffers generally
depends on the number of channel queue entries and on the number of
CCWs in the channel program. If the number of buffers is too small,
overall performance degradation will occur because tasks are put into the
wait state until buffer space is available. If a single 1/0 request needs more
than the entire buffer space, the requesting task is canceled. On the other
hand, too large a value for BUFSIZE wastes storage.

As a rule of thumb, three buffers are needed for each concurrent virtual
mode 1/0 request. If you expect that most of the 1/0 requests will be
made from virtual-mode programs, the number of buffers specified in the
BUFSIZE operand should be three times the number of entries in the
channel queue. If you expect to do much 1/0 from real-mode programs, the
number of buffers should be reduced proportionally. If ISAM is the
predominant access method, about 20% more buffers should be specified.
If RPS is specified, about 209 more buffers should also be specified. At
least 40 additional buffers should be specified when VSAM is used. If

teleprocessing terminals are supported under BTAM, read the description of

the BUFSIZE parameter of the VSTAB macro in DOS/VS System
Generation.

Bypassing System CCW Translation

In most instances, double buffering techniques and an increase in block size
can significantly reduce the system overhead associated with channel
program translation. However, in extreme cases, you may wish to perform
your own translation of channel! programs and thereby avoid system CCW
translation overhead. Programs that might require this are EXCP programs -
that have very high start 1/0 rates and that repeatedly use the same
channel programs.

3.28 DOS/VS System Management Guide

Channel ngue

" By specifying ECPREAL=YES during supervisor generation you obtain
support that assists in the translation of channel programs. This support
allows you to use the VIRTAD and REALAD macros as well as the REAL
parameter of the EXCP macro. You must obtain real storage by means of
the PFIX 'macro and then translate the channel program. The CCB must
have the REAL. operand. For detailed mformatnon see DOS/VS. Supervisor

~and 1/0 Macros.

The channel queue (CHANQ) is used by the supervisor to schedule I/O

operations. An entry is made in the channel queue whenever a request is
made for an I/O operation and the entry remains until the operation has
completed. Thus, at any point in time, the queue will consist of entries for

. 1/0 operations in progress and 1/0 operations waiting for initiation.

Whenever an 1/0 event completes, the queue is examined cychcally to see
if another entry exists for the channel and if so, the operation is initiated.

The number of channel queue entries to be reserved in the supervisor

. can be specified in the CHANQ parameter of the IOTAB macro.

The number of occupied entries in the channel queue depends on the
actnvnty in the system. No accurate formulas for determining the optlmum

size can be given though.

" The thing te bear in mind is that specifying too small a channel quehe

- will cause performance degradation, too large a CHANQ value will waste

storage space (8 bytes per entry).

Real-mode tasks or programs that request an 1/0 operation when the
channel queue is full will be set to reissue the request until an entry

. becomes free. Virtual-mode tasks or programs that request an 1/0

operation when the channel queue is full will be set in the wait state until
an entry becomes free. ’

To avoid performance degradation it is better initially to specify ample

‘channel queue space, and reduce the allotted space. later, if desired. The

rule-of-thumb to be. followed is:

'« At least one queue entry should be available for each /0 request that

can be issued concurrently.

e = Specify one entry for the SYSRES file and one for the page data set
(SYSVIS).

« - Specify one entry for each task or partition in the system.
e Specify one entry for each console buffer in the system.

o .. If multiple volume files are used on the system, specnfy one -entry for’
~ . each file bemg accessed at the same time.

'« Add two entries per tape drive.

« One entry should be specified for each teleprocessing line that could
solicit input. If IBM 2260 local or 3270 local video display units are to
be supported by BTAM one CHANQ entry should be- specified for
each display.

« Add five entries to the total-for contingencies.

Chapter 3: Planning the System 3.29

Error Queue

‘When the systein has been generated, run the brdgrams that make the
_ heaviest use ‘of logical 1/O units in the system. If a multiple-partition

system, run as many programs as represent the heaviest work load; in
particular, run any teleprocessing programs. Then, before the next IPL, |
obtain a dump of the channel queue (by using the DUMP command or the
standalone program generated by DUMPGEN). These are fully described in
DOS/VS Serviceability Aids and Debugging Procedures.

An analysis of the channel queue should show that entries near the
beginning of the table have been used, whereas those near the end are
unused. Although the unused entries are normally redundant, a few surplus
entries should be retained to allow for exceptional cases. If all the entries
have been unsed, then the channel queue was almost certainly too small, and

-a process of experimentation will show the correct size.

The error queue option is of value to installations employing large numbers
of 1/0 devices, for instance, teleprocessing systems. The ERRQ parameter

-allows you to specify the number of entries in the error queue within the

error recovery block of the supervisor. The normal default value is five
entries for a multiprogramming system, but in ERRQ you can specify up to
25. Each entry takes up 40 bytes.

Reliability/ Availability /Serviceability

Recovery Management Support

IBM provides software routines that analyse and record CPU, channel, and
device errors and attempt to recover from them. The data is stored on the
system recorder file (SYSREC). The information obtained from this file

* serves not only as an aid in diagnosing machine errors, but also helps IBM

customer engineers to increase reliability, availability and serviceability
(RAS) of your system.)

~If on-line recovery is impossible, the system may be placed in a hard
wait state. A message is then issued to the system operator to run either the
SEREP or EREP program to obtain the diagnostic data. The information

" covered here introduces RMS, OLTEP and PDAIDS. Since SDAIDS and

TOLTEP do not require supervisor generation macros, these topics are
covered in detail in DOS/VS Serviceability Aids and Debugging
Procedures, which contains extensive information about the various RAS
features discussed below

These routines, referred to as Recovery Management Support (RMS), are
standard for all System/370 models, except for the Models 115 and 125.
For these models, specify the RMS, MCH, or CHAN parameters to. obtain
the RMS support of your choice. For details on what is included in each of |
the parameters, please refer to DOS/VS System Generation. RMS has
several options that must be specified in addition during supervisor
generation if they are desired. These options involve the reliability data
extractor, and tape error statistics and error volume analysis.

3.30 DOS/VS System Management Guide

OLTEP

Reliability Data Extractor. If included with RMS in the supervisor, the
reliability data extractor (RDE) enables data about the IPL procedure to be
recorded on the system recorder file (SYSREC). This option requests the
operator, when he performs an IPL, to enter the reason for the IPL. This
data alerts IBM and installation management to recurring machine érrors or
other operational problems.

If RDE support is desired, specify"ERRLOG=RDE in the SUPVR
macro. More information on RDE is included in this manual in the section
Entering RDE Data in Chapter 4: Starting the System.

Tape Error Statistics. As a standard feature the DOS/VS system gathers
tape etror statistics. This information is stored in the system recorder file
(SYSREC). For tapes with standard labels the information is accumulated
and stored per volume. Whén error statistics are required to enable the
monitoring of nonstandard or unlabeled tapes, the TEBV parameter of the
FOPT macro gives you two options: the parameter can be specified. as IR -
(individual recording) or as CR (combined recording). IR refers to the
accumulation of error statistics between two consecutive OPENSs on the
same tape unit. CR refers to the accumulation of error statistics on the
same tape unit until a standard labeled tape is opened on that unit or until
a ROD-command is issued. When érror statistics are required to. monitor

. the IBM 2495 cartridge reader, the TEB parameter in the FOPT macro

must be specified.

Error Volume Analysis. This option of RMS enables you to specify the
number of temporary read/write errors that occur on a tape volume to be
specified before an informatory message is printed on SYSLOG. The
threshold value of temporary read/write errors is specified in the EVA
parameter of the FOPT macro.

The On-line Test Executive Program (OLTEP) gives the IBM customer
engineer the opportunity to test whether the I/O devices attached to the.:
CPU are in working order. OLTEP runs in real mode in the background
partition and can run concurrently with user jobs in other partitions.

OLTEP=YES is the defauit value'in the FOPT macro. If you do not
want support for OLTEP, specify OLTEP=NO.

The RETAIN function of OLTEP enables the IBM customer engineer

to execute OLTEP from a location remote from the CPU. The RETAIN

function is available only in the United States of America and'Canada,
RETAIN is provided only with Models 145, 155-I1, and 158 and requires.
that the 2955 Data Adapter.Unit be attached to the CPU.

To generate support for RETAIN in the supervnsor specn‘y
RETAIN=YES in the FOPT macro.

Chapter 3: Planning the System 3.31

Problem Determination Aids

¢ & o o o o

* Problem determination aids (PDAIDS) can be used to assist the

programmer in debugging his-program. Five trace routines and a dump
routine constitute the PDAIDS: '

Input/ Output trace

FETCH/LOAD trace

Generallz'ed supervisor call (SVC) trace
QTAM trace

VTAM trace

Transient dump.

Because these routines are executed within the supervisor, the PD
parameter in the FOPT macro must be specified. The PD parameter
reserves an area in the supervisor for the use of the trace routines.

Defining the System/370 Configuration

Central Processing Unit

1/0 Devices

During supervisor generation you' must specify various macros that relate to
the central processing unit, whether programs written for execution on
another system may be run on this model, the I/O devices instailed (or
planned to be installed), and other macros that indicate the standard job
control settings for the installation.

In the MODEL parameter of the CONFG macro, you must specify which

model of the System/370 line of central processing units is to be used. If

you plan to run your generated system. on more than one CPU model, you
should specify the larger model.

If you specify MODEL=115 or MODEL=125 in the CONFG macro,
support for the video-display keyboard console (DOC=125D) is always
included. If you specify a model number other than 115 or 125, DOC=NO
is the assumed default. For reasons of system portability, you may wish to
specify DOC=125D for larger models. On these models, if DOC=125D is
specified, the system will operate in 3210/3215 mode; whereas on the
Model 115 or 125, the system will operate in DOC mode.

The supervisor generation macros that relate to the I/O devices attached to
the CPU that are described below are: PIOCS, I0OTAB, and DVCGEN,

The PIOCS macro defines the configuration requirements to be
supported by I0OCS. The associated parameters involve the channel
switching, specific tape and disk device support; and the use of burst mode
devices on the byte multiplexer channel. No distinction is made between 7-

-and 9-track tapes.

3.32 DOS/VS System Management Guide

" Emulators

The IOTAB macro, in general, defines the area for the necessary devnce
tables for the system: The parameters involved refer to:

o . The number of programmer logical units for each partition defined by
~the NPARTS parameter in the SUPVR macro.

e The number of job information blocks for the system. (One is required
whenever a temporary assignment is made, see Chapter 5: Controlling
Jobs.” Extra JIBs are required if DASDFP is specified.)

e The number of DASD devices (2311, 2314, 2321, 3330, 3333, and
3340).

e The number of tape devices (2400-series; 3410, and 3420).
¢ - The number of TP devices.
¢ The estimated number of physical I/O devices.

The DVCGEN macro defines each physical input and output unit in terms.
of their channel and unit address, device type, whether channel is -
switchable, and (if applicable) their mode. One DVCGEN macro
instruction must be used for each unit on the system. Each individual drive
of a 2314/2319, 3333/3330, or 3340 needs a DVCGEN macro. The total
number of DVCGEN macros must not exceed the total number of devices
specified in the IODEV parameter of the IOTAB macro. Device generation
by the DVCGEN macro can be changed with ADD and/or DEL
commands at IPL. time. Refer to. the section Changing 1/0 Device
Assignments in Chapter 4: Starting the System.

Through emulation, a program can be run on a machine series other than
that for which it was designed. The emulator program, serving as the
interface between the user program and the DOS/VS supervisor, runs
together with the user program in the same partition, in either a »
single-partition or multiple-partition environment. In a multiple-partition
env1ronment several emulators can be executed concurrently. One
exception, however, is the Model 125, which cannot execute two
1400-series emulator jobs concurrently. Before both a Model 20 and a 14xx
emulator on a Model 125, RPQ SU002 is required.

Tape reading and writing on 1400-series machines can operate with odd
or even parity checking. To make use of mixed-parity tape processing under
1400-series emulation, you must specify EU=YES inthe SUPVR macro. If
you do not use mixed-parity tape processing, you need not specify EU=YES

Prior to executing emulator jobs, you must generate the emulator
program and catalog it into the core image library. This can be done when
the system is generated or at a later time.

Further information on the emulator programs is contamed in the following
publlcatlons

o 1401/1440/1460 DOS/VS Emulator on System/370.

« 1410/7010 DOS/VS Emulator on System/370.

e Model 20 DOS/VS Emulator on System/370.

Chapter 3: Planning the System 3.33

Standard Job Control Settings

End of Supervisor

/

" Each time a programmer submits a job to be executed, he includes job

control statemerits that define the beginning and end of his job and all the

_physical or logical requirements or options associated with the job. If

certain job control settings are agreed upon within an installation and made
standard durmg supervisor generation, the programmer need not provide a
lengthy OPTION job control statement for each job submitted, If a given
job requires different settings from those that are standard, the // OPTION
card can be used to override the standard settings for the duratlon of that
job.

The job control settings that can be defined as standard include:
whether a dump is desired if an abnormal termination occurs, whether
language translators are to list source module diagnostics or to produce an

- object deck, and whether a symbolic cross-reference list is desired from the

assembler or. ANS COBOL, etc.

These job control settings are specified in individual parameters of the
STDJC macro.

Another macro that deals with standard job control settings is ASSGN.
This macro establishes standard job control associations between symbohc
device names and physical 1/0 devices. If multiple assignments within one
job stream are made for a single logical unit, only the last assignment for
that logical unit is valid: the rest are ignored. These standard assignments
can be overridden for the duration of a job via the // ASSGN job control

" statement or for the duration until the next IPL via the ASSGN job control

command (no //).

Standard assignments may be established for all programmer logical
units and all of the system logical units, except the following: SYSRES |
(which is established during the IPL procedure), SYSVIS (which is
established via the DPD macro during supervisor generation or the DPD

_command during IPL), SYSIN, SYSOUT, and SYSCLB (the latter three

during job control execution).

These standard assignments are supplemented in the system by

' cataloging disk and tape labels to the various system and partition standard

label tracks. This relieves the programmer of having to supply this label
information for regular jobs such as compilations and linkage editor
functions. (Refer to Chapter 5: Controlling Jobs for the details on how
this is done.)

The last macro instruction supplied during supervisor generation must be
the SEND macro, which may indicate the address of the end of the
supervisor (or more accurately, the requested starting address of the real
storage to be used by problem programs).

Regardless of your particular supervisor configuration, the SEND
address can be calculated internally. If you have previously assembled a
DOS supervisor (previous to DOS/VS), you may still of course calculate
the size of the supervisor and round the value up to the nearest 2048 bytes

3.34 DQS/VS System Management Guide

(2K). However, keep in mind that storage protection is a standard feature
on all mode;ls of the'System/ 370, and theréfore:

o The SEND address is always a multipie of 2K bytes.

‘s The address you specify in the SEND macro is compared with the
actual size of your generated supervisor, so that the calculated address
- never overlaps any part. of the supervisor.

« If no address is specified in the SEND macro, the default is the lowest
address possible (that is, the minimum space to contain the generated
supervisor plus 1, and rounded up to_the nearest 2K bytes, if
necessary). : '

| Generating POWER/VS

POWER/VS allows you to make more efficient use of the CPU and unit
record 1/0 devices. The POWER/VS code distributed in the core image
library is ready to run, but you should evaluate its options for your
installation. If you need to tailor it, you generate your own version(s) of
POWER/VS from the POWER/VS macros, which are provided in the -
source statement library. The three macros for this purpose are:

POWER

PLINE

PRMT »
If you warnt RJE (remote job entry) support, you need to assemble the
PLINE and PRMT macros in addition to the POWER macro. If you do not
-require RJE, the POWER macro is sufficient.

Virtual and Real Stdrrage Requirements

- Because POWER/VS uses PFIX and PFREE macro instructions, not only
is a virtual partition needed but also the corresponding real partition. Figure
3.8 illustrates the POWER/VS partition; and shows the following three
areas:

« Permanent area - contains the POWER/VS nucleus and control tables.
Because this code does not tolerate paging, it is fixed at POWER/VS
initialization and remains fixed until POWER/VS is terminated.

« Fixable area - contains data buffers and dynamic control blocks: pages
that will be fixed in the corresponding real partition and freed again
when the task becomes inoperative.

« Pageable area - contains POWER/VS pages that can be freed when
other partitions require additional real storage. ‘

When the DOS/VS super\)isor is generated, POWER/VS storage
requirements must be taken into account. .

The virtual partition must at least be large enough to contain the
permanent area, the fixable area, and the pageable area: The minimum size
of the pageable area is 128K bytes.

The size of the real partition that POWER/VS needs is based on the
size of the permanent area, which is always 6K bytes, plus the size of the
fixable area, which is variable (minimum 4K bytes). It varies according to

Chapter 3: Planning the System_ 3.35

| ‘the DBLK parametgr specification, the number of reader/ writer tasks and
execution processors in the system, and the number of active RJE (remote
job entry) lines.. Formulas for determmmg the size of the real partition are

- found m DOS/VS System Generation.

* Allocating a real partition that is too small can cause performance
degradation. However, allocating a real partition that is larger than required
will'not cause system performance degradation because page frames not .

" being used by POWER/VS are made available to the page pool. The
POWER/VS status report tells you, the maximum number of Ppages fixed at .
. any one time.

SUPERVISOR

BGR

Real address
area
F2R | [wsize)

oo - e - > - e > -

POWER/VS FIR. |
(ALLOCR) FIR

MAIN PAGE POOL

J\

BGV -

Fav

F3Vv

area

(VSIZE)

Virtual address
F2v }

PERMANENT AREA

o - e e e - e eeee - - -

POWER/VS F1V FIXABLE AREA

(ALLOC) - - e ccrcc e~ - o ww -

PAGEABLE AREA

SVA
J

Figure 3.8. POWER/VS Parﬁﬁon Allocations

In this'example, POWER/VS resides i in the foreground-one (FI)
partition. Both Fl-virtual and Fl-real must be allocated.

3.36 DOS/VS System Management Guide

Intermediate Storage Requirements

Size of the Data File and Queue

Intermediate storage in POWER/VS ‘is on disk (or tape, for output oniy)

.and contains the queue file, data file, and (optional) account file. These -

three files may be on the same physical unit or on separate units. Different
devices types may be used for each file. The interaction between the
POWER/VS tasks and intermediate storage is illustrated in Figure 3.9.

In general, it is best at first to assign more intermediate -storage than
you think you will need. Then use the POWER/VS status report to
determine how to reduce the storage allocations. From the status report you
can see how much disk space was used and unused in each session.

File

The data file, which is made up of track groups, and the queue file, which
is primarily made up of queue records, are directly related. Each track
group has a corresponding queue record. The size of the data file is defined
by the total number of track groups, which in turn is limited by the number
of records in the queue file.

In estimating the size of the data file and queue file, ybu should
consider the following: '

« The maximum number of POWER/VS jobs in the system at any one
time

e The largest volume of i/O fqr any job

« Whether output segmentation is used.

Chapter 3: Planning the System 3.37

DISKETTE

INPUT

CARD
INPUT

EXECUTION
PROCESSOR
TASKS

Y

READER
TASKS

v

- OUTPUT

QUEUE FILE
1SYS001)
WRITER
DATA FILE
(SYS002-006) > TASKS
<1
ACCOUNT FILE
(SYS000)
PACCOUNT TASKS
———————en
{ '
! CARD"® '
! H
|

Figure 3.9. - Intermediate Sterage

Intermediate storage is divided into three files: the queue file, the data
file, and the account file (optional). Each file may be on a different disk
unit. Intermediate storage for output can also be on tape (not shown in
figure). Information is maintained in each of these files by the

* Obtained by rerouting

1JAFILE to punch queus.

e
PUNCHED

LISTED
OUTPUT

—

POWER/VS reader, execution, and writer tasks.

3.38 DOS/VS System Management Guide

For the data file extents, estimate separately the total number of
input/output card images and the total number of line images spooled to
disk in a typical 8-hour shift. Choose a file size large enough to hold half
this amount of data. This should prevent POWER/VS from running out of
file space. File extents can be respecified if they prove to be too large or
too small (check the status report). '

The queue file should be large enough to support the entire data file;
that is, there should be one queue record for each track group in the data
file. It is good practice to allocate six additional queue file records for"
internal POWER/VS usage. ’

You must supply the DLBL and EXTENT information for the queue
file and the data file. For the queue file the file name is IJQFILE and the -
symbolic unit is SYS001. IJDFILE is the file name for the data file, which
may be on up to five extents (SYS002 - SYS006). If more than one volume
is used for the data file, all volumes must be of the same device type. Each
EXTENT for the data file must start and end on a cylinder boundary.

Thére are two parameters relating to the data file and indirectly to the
queue file that you can specify during POWER/VS generation: the block
size of the data file records (DBLK) and the number of track groups
(TRACKGP).

Block Size of the Data File. The size of the physical records written to the
data file is determined by the DBLK parameter. This also influences the
size of the data buffers required for each POWER/VS task. If not explicitly
specified by the user, the system chooses a default block size, which suits
the characteristics of the disk device assigned to the data file. The default
values for each device are sho:xn below:

. | Default Data Block | Approx. # cards | Approx. # lines per
Device Type Size per block * block **
2314/2319 920 1 7
3330/3333 952 12 7

3340 808 10 6

** Based on 132 print positions bper line.

* POWER/VS suppresses trailiﬁg blanks so the figures shown are the worst case.

If you specify a value other than the default, it is possible to achieve
better performance. In general, the smaller the DBLK is, the less real
storage is required to run a given number of tasks. Conversely, the larger
the DBLK is, the more real storage is required; however, more efficient use
is made of intermediate storage because the larger the block size, the more
spool records per track. The more records in a block, the fewer the disk
I/O operations to perform. If the data buffer size, which increases by
32-byte increments, is larger than 986 bytes, only one data buffer will fit
into a storage page. The largest buffer size is 2008 bytes, which is one data
buffer per page with its control information:

Determiningv the Number of Track Groups. After you know your DBLK size,
you can determine the track group size. You know how many blocks per .
cylinder of DASD and approximately how many records in each block.

Chapter 3: Planning the System 3.39

Account File

If the track group size is small (the smallest is'1), then one queue
record is needed for each track of the data file. This results in a larger
queue file and an overhead in queue record management, but best utilizes
the disk space available in the data file. If the track group size is large (the"

" largest number would be that equal to the number of tracks per cylinder),

then fewer queue records (one per cylinder) are needed. However, because
there can be only one POWER/VS job for each track group, disk space is
wasted on the data file whenever a job does not fill a track group.

If you do not specify a track group size, the system will try to use all of
the data file. The system calculates the number of tracks within the extents
provided by the data file. It then determines the number of 152-byte
records it can write within the queue file. From these two figures it
determines the number of track groups to allocate, by calculating the
smallest value possible for TRACKGP, which utilizes the largest amount of
the data file.

At POWER/VS initialization time if the TRACKGP you specify
conflicts with the EXTENT information for the data file, the system
changes the TRACKGP value. You are informed of the new TRACKGP
value in a message. '

If the DOS/VS supervisor was generated with job accounting interface
support, then you can meaningfully specify the ACCOUNT parameter in
the POWER macro. This generates job accounting support within
POWER/VS that accumulates job accounting interface information and
POWER/VS job accounting information. No user-written data collection.
routine is necessary. POWER/VS automatically collects all accounting
information and writes it onto the account file on disk. You can process this
file directly or issue a PACCOUNT command to store the informiation on
another medium for processing at a later date. ¢ :

You must supply the DLBL and EXTENT information for the account
file and ensure that this is included in the label information cylinder on
SYSRES. Use the file name 1JJAFILE and the symbolic unit number
SYS000 for the DLBL and EXTENT cards, respectively. If a user disk file -

" (SD type only) or a standard labeled tape file will be used to save account

information, the label information cylinder must also include these
definitions.

To estimate the size of the account file, you should consider that each

" POWER/VS job can create at least one reader, one list, and one punch

account record. In addition, each DOS/VS job step within a POWER/VS
job creates one execution account record. The folldwing list shows)
approximately’ how many POWER/VS jobs can be handled by one cylinder
of the account file: ‘

2314 110 jobs
3330 170 jobs
3340 - 60 jobs

These estimates are based on an average of 5 account records per
POWER/VS job.

3.40 DOS/VS System Management Guide

Input Options

Source Library Inclusion

User Exit Routine

Processing Options

When the account file becomes 80% full, a Waming n-essage.is issued.
The file should then be saved or deleted using the PACCOUNT command.

Note: If the account file fills completely, the operator is notified and any
task requiring space in the account file is put in the wait state untjl
space becomes available.

Refer to POWER/VS Job Accounting in. Chapter ' 10: Using the
Facilities and Options of the Supervisor for the format and contents of
the account file.

In POWER/ VS the options that are related to input are:.
e Source library inclusion

e User exit routine.

By using the SLI statement in a POWER/VS job stream, you can include .
information (books) from a private or system source statement library. In
the SUBLIB parameter as POWER/VS is being generated, you can specify
the sublibrary that is to be searched if no sublibrary is specified in the SLI .
statement.)

Support for a user exit during the POWER/ VS reader routine is generated

if the name of the user exit routine is specified in the RDREXIT parameter.
Such a routine might be used, for example, to verify private passwords or
accounting information. Your routines must be relocatable (or
self-relocating) and reenterable. It should not perform any operation that
might cause a wait condition in the POWER/VS partition.

‘When POWER/ VS is initiated, your routine is loaded into the¢ .
POWER/VS partition. The POWER/VS reader routine gives control to the
user routine each time a DOS/VS JCL or POWER/VS JECL statement is
read. Your routine must return control to the POWER/VS reader routine.
The programming and register conventions are described in Chapter 9:
Designing Programs for Virtual-Mode Executions.

In POWER/VS the options that are related to processing are:
e Assigning default priorities

e Limiting output

» Logging job names and numbers

« Providing forms control.

]

Chapter 3: Planning the System 3.41

Assigning Default Priorities

As each job is entered for processing, it is assigned a certain priority within
its class. This simplifies the scheduling of high-priority jobs. The priority is
normally specified in the * $$ JOB statement. If it is not specified,
POWER/VS assumes the default priority in the PRI parameter.

Limiting Output

Bécause POWER/VS spools unit record output on intermediate storage, the
operator cannot check the amount of output being stored. If a’loop occurs,
for example, the output could be excessive. The STDLINE and STDCARD
parameters should therefore be used to restrict the output to a standard
number of printed lines or punched cards. When either of these limits is
exceeded, an informative message is issued to the operator. He can. choose
to ignore the message or terminate the job. The STDLINE parameter can
be overridden for a particular job by specifying it in the LST statement.
The STDCARD parameter can be overridderi for a partncular job by
specifying it in the PUN statement.

Logging Job Names and Numbers

Each job name as specified in the * $$ JOB statement together with the
job number POWER/ VS assigned to it, the partition identification, user
information, and (for RJE) remote identification, is displayed in a message
on SYSLOG if the JLOG parameter is not specified as NO. The message is
displayed at the time at which the job starts execution. JLOG is not
necessary if unique job names are always used or if there is always one
DOS/VS job for each POWER/VS job.

Providing Forms Control

Because output is transferred to intermediate storage and the program that -
generates the output is no longer present when the output is prodiced,
POWER/VS keeps track of the current print line of the output being
intercepted. The LTAB parameter contains a description of the forms
coentrol tape or forms control buffer of the printers. This enables
POWER/VS to calculate the next line on a page, even in case of skip
operations. Based on this information, POWER /VS simulates channel 9 and
channel 12 occurrences to allow the program to format end-of-page output
correctly. The physical printer that is used to print the output must,
however, have a forms control tape or buffer content that matches the
LTAB specification. The LTAB specification. can be overridden for the
duration of one job by means of the LTAB parameter in the LST
statement.

Output Options

In POWER/VS the options that are related to output are:
e Job separation

« Output segmentation.

3.42 DOS/VS System Management Guide

Separating Jobs

Segmenting OQuiput

Remote Job Entry Support

You can specify job separation in the JSEP parameter for both print and
punch output. This specification can be overridden at execution time for a
particular job by specifying the JSEP operand in the LST or PUN
statement. '

Job separation for print output means that.up to nine separator pages
are to be inserted before each job’s output. Separator pages contain
information about the job that follows. Each separator page is printed with
10 lines (120 characters in length). Each line contains the job name, job
number, user information, date, and time. The last or only segment of
output will have the word /last printed on it:

Job separation for punch output (except for the 5425, which is handied
differently) means that before the job’s punched-output two cards
containing 12-11-0-8-9 punches (in all columns) and one card containing
the POWER/VS jobname (to be read from the back of the card) are added
and that behind the job’s punched output two blank cards are added. This
occurs if 1, 2,.or 3 is specified. If 4 is specified, one additional 12-11-0-8-9
card is punched; if 5 is specified, two additional 12-11-0-8-9 cards are
punched, and so on up to nine. For the 5425 from one to nine cards are
added before the job’s output containing the POWER/VS jobname (12
times per card). ’

Note: Stacker selection is ignored if job separation is requested. The
default stacker for the given device is used instead. '

Turnaround time for jobs with extensive printed or punched output can be
improved by segmenting the output. This means that each part of the
output becomes available, it can be printed or punched even though the
entire job may not be finished executing. In the RBS (records before
segmentation) parameter you specify the number of pages and- cards that
can be processed before an output writer is started. The RBS parameter is
only ased when spooling to disk intermediate storage. This parameter can
be overridden for a particular job by means of the RBS parameter in the
LST or PUN statement. \ '

If you want POWER/VS to support RJE (remote job entry), you must
specify two macro instructions in addition to the POWER macro. In the
PLINE macro you specify the hardware characteritics of each RIJE line. In
the PRMT macro you specify the characteristics of each RJE user.

_Chapter 3: Planning the System 3.43

Planning the Libraries

The components of the. DOS/VS system are shipped in four system
libraries: the core. image library, the relocatable library, the source
statement library, and the procedure library. Most programs and procedures
developed and used by your installation” will also be stored in these libraries.
In addition to the system libraries, DOS/VS supports private libraries which
you can. use to enther substitute for or supplement the corresponding system

libraries.

Planning the size, contents, and location of these libraries according to
the needs of your installation is an essential part of the system generation
procedure. Such detailed planning will ensure that:- ‘

« No disk space is wasted by components not required in your
installation.

o The libraries are large enough.tb allow for futuré additions.

o The libraries are accessed by the system with maximum efficiency.

. Following a brief description of the purpose and contents of the individual

libraries, this section discusses the three major considerations involved in
tailoring the. libraries to the needs of your installation. These considerations
are:

1. Which libraries are required.

2. How many disk drives are available and where on these devices should
the individual libraries be placed.

3. How large should each of the libraries be and what should they contain.

Note that this section is intended to give only general guidance for planning
the libraries. More details are contained in DOS/VS System Generation.
How to change the size of a library, how to insert elements into or delete
elements from a library, and how to create private libraries is described in
Chapter 7: Using the Libraries.

Purpose and Contents of the Libraries

_ The Core Image Library

The Relocatable Library

The following is a brief summary of the purpose and contents of the
DOS/VS system and private libraries.

The core image library contains system and user programs ready for -
execution. Each program phase must Qrst be placed in a core image library
by the linkage editor program. (The structure of a program in the core
image library is described in Chapter 6: Linking Programs.)

The relocatable library contains object modules in relocatable form. These
object modules are the output of the language translator programs
(assemblers and compilers).

3.44 DOS/VS System Management Guide

The Source Statement Library

The Procedure Library

L3

The purpose of the relocatable library is to allow you to maintain
frequently-used object modules in the library and combine them with other
modules without requiring recompilation. The modules from the relocatable
library must be processed by the linkage editor and stored in the core image
library before they can be executed.

The elements in the source statement library are called books. A book is
either a sequence of source statements or a macro definition.

"You can catalog into the source statement library sets of source
statements that are used by more than one¢ program, and then include these
statements in your source program by specifying a COPY (assembler and
COBOL) or %INCLUDE (PL/I) statement.

The macro definitions in the source statement library include those
macros supplied by IBM as well as any others which you have written and
cataloged yourself. When you issue a macro instruction in your program,
the corresponding macro definition is retrieved from the source statement
library and included in your program according to the parameters you
specified.

Each book in the source statement library is classified as belonging to a
specific sublibrary; for example, an assembler, a PL/I, or a COBOL
sublibrary. Sublibraries are identified by a one-letter prefix added to the
book name. Letters A through I and the letter Z are reserved for
sublibraries containing system components. You can use the letters J
through Y, the digits O through 9, and the special characters $, &, and #,
to define your own sublibraries.

Classifying books by a sublibrary prefix allows a program, for example
written in COBOL, to have the same name as a program written in
assembler language, or for two COBOL programs to have the same name.
A book is defined to belong to a certain sublibrary at the time it is
cataloged into the source statement library. '

Frequently-used sets of control statements-can be cataloged into the
procedure library. The elements of the procedure library, called cataloged
procedures, can consist of job contro! statements and/or SYSIPT data. If
extended procedure support was included during supérvisor generation (by
specifying the SYSFIL option) you can also catalog procedures containing
data that is to be read from SYSIPT under control of the
device-independent sequential IOCS, by your program or by IBM-supplied
service programs and language translators. SYSIPT in-line data can be, for
example, the control statements processed by the librarian or the
sort/merge program. Cataloged procedures are retrieved from the procedure
library by a special form of the EXEC job control statement.

~ Chapter 3: Planning the System 345

Private Libraries

Private libraries can be defined for the core image, relocatable, and source
statement libraries. The procedure library is supported as a system library
only. You can use private libraries to either replace or supplement the
corresponding system libraries.

Private core image libraries (PCIL) have the same format as and are
supplementary to the system core image library. A private core image
library can be used:

+ During maintenance or development of operational programs. You can
catalog the copy of the program that you are altering to a PCIL. with
the same name as the operational version in the system core image
library.

« To preserve security of operational programs, they may be cataloged
into PCIL which is controlled exclusively by the operations department.

« In a multiple-partition system, allocation of PCILs on separate volumes
can relieve disk arm contention on the SYSRES volume.

« If the linkage editor is to be used in a foreground partition. In that case
a PCIL must be exclusively assigned to that partition.

A private core image library is created by the librarian program CORGZ
and is not located on the system residence (SYSRES) extent. The private
core image library extent (associated with the logical name SYSCLB) can
reside on any disk volume that is supported by DOS/VS. Multiple private
core image libraries can reside on one volume or they can be created on
separate volumes. They can be created on the same volume as SYSRES, but
this is not recommended unless the access level is low. SYSCLB can only
be assigned permanently (not temporarily) and is not acceptable as a
standard assignment during supervisor generation.

Choosing the Libraries for an Installation

In an operational DOS/VS system all system components (supervisor, job
control program, linkage editor, etc.) as well as all -executable user programs
must reside in the core image library. Therefore, a system core image
library must be present in every DOS/VS installation. Which of the other
libraries you need depends largely on the type and amount of work to be
done and the resources available at your installation. The following
discussion of the advantages and possible applications of the individual
libraries is intended to assist you in selecting a set of libraries that will help.
guarantee optimum performance of your system.

Relocatable and Source Statement Libraries

Although these libraries are optional, few installations can operate
efficiently without them. If, for example, you work with a PL/1 compiler
and you need to have the PL/I resident library routines on-line at all times,
these routines must be in the relocatable library. (The only -- and very
inefficient -- alternative would be to include the physical card decks for
such modules in-line with the linkage editor input.) Similarly, when you

3.46 DOS/VS SystemManagement Guide

Procedure Library

assemble programs.that use IBM-supplied macros the corresponding macro
definitions must be present in the source statement library.

The same advantages as those gained by having IBM-supplied modules
in a library can of course be obtained if you store your own object modules
or source statement books in a relocatable or source statement library. The
more information you have on-line in a library the less card handling is
required and the more efficient your system will operate. Because the disk
space available to the libraries is limited, you may prefer to reduce the
contents of the relocatable and source statement libraries to a minimum to

- allow for sufficient space for the core image library. if additional disk drives

are available, the space problem can be solved by creating private libraries
(see Private Libraries, later in this section.)

In most data processing installations there are a number of programs that
are frequently executed. An inventory control program, for instance, may
have to be run daily or weekly. Or a payroll program may have to be
executed weekly or monthly. These programs are probably used for a long
period of time without being changed.

For each of these programs, the operator usually keeps one or more
fixed sets of job control statements that were prepared, tested, and handed
to him by the programmer when the program was first run. For example,
for programs processing grandfather-father-son files the operator would
always have at least three different sets of job control statements. The
same would be true for inventory control programs doing sequential
processing for stock status reports at-one time and random file processing
for real-time inquiry or for stock maintenance of high turn-over
merchandise at another time.

Depending on the file, the device it is stored on, the type of file
processing required, etc., the operator selects -- from the box or drawer in
which he keeps his decks of control statements -- the set he needs for a
particular job, places it into the hopper, and starts the reader.

This card handling, which often includes the replacement of defective
cards, consumes operator and machine time and easily leads to errors.
DOS/VS allows you to replace the sets of control statements and the box
or drawer in which they are kept by cataloged procedures and the-
procedure library, respectively.

A cataloged procedure is exactly the same as what is described above
as a fixed set of job control statements. But the individual procedures are
no longer collected by the operator and selected manually for use; instead,
they are cataloged in card image format in the procedure library, from
where they can be retrieved through a special form of the EXEC job
control statement or operator command. Cataloged procedures can be
modified as they are retrieved from the library. :

Refer to Chapter 7: Using the Libraries for information on how to
create and maintain (catalog, deléte, etc.) a procedure library. The use of
cataloged procedures (retrieving and modifying) is discussed in Chapter 5:
Controlling Jobs.

Chapter 3: Planning the System 3.47

Private Libraries

You can establish private relocatable or source statement libraries either to
supplement or to replace the system libraries on the SYSRES file, thereby
extending the space available to the system core image library. Conversely,
you can reduce the size of the system core image library by cataloging
selected programs in a private core image library.

Private libraries arc also useful in a testing environment where you can
keep working copies of your programs intact on a system library while you’
test modifications of the same programs on a private library. Private
libraries can thus add a great deal of flexibility to your system.

You may define as many private core image, relocatable, and source
statement libraries as desired, each serving a particular purpose. For
instance, having a separate core image library for each partition, each on a’
separate disk drive, would reduce the disk arm movements on the SYSRES
volume, which means faster access to the libraries. Be careful, however, not
to have too many private libraries in your installation because of the
additional maintenarnce required. Also, if each programmer were allowed to
have his own private library, the total time spent by the operator in
mounting and dismounting disks might exceed the execution time of the
program. '

To be able to use a private core image library the PCIL option must
have been specified when the supervisor was generated. The PCIL. option,
and other special considerations concerning the planning of private core
image libraries are discussed minder Tailoring the Supervisor, earlier in this
chapter. '

Determining the Location of the Libraries

Having decided which libraries you want in your system, you must
determine where on the available devices these libraries are to be placed.
All system libraries misst reside in the SYSRES extent of the system disk
pack in a predefined sequence (see Figure 3.10). Although it is theoretically
possible to have private libraries on the system pack (outside the SYSRES
extent), this is not recommended because it involves increased movement of
the disk arm.

3.48 DOS/VS System Management Guide

Note: For details on the first tracks of
SYSRES, the label information cylin-
der, the user area, and the VTOC, refer
to Appendix A: System Layout on Disk.

Core Image Library

Rélocatable Library

Source Staternent Library

Procedure Library ~e= end of SYSRES extent

Label Information

Figure 3.10. The Relative Location of the Four System Libraries

The directory area for each library is not shown in the.figure. By
definition, all system libraries reside on the system residence file (SYSRES).
If you have additional disk drives, you can define private core image,
‘relocatable, and/or source statement libraries on the extra volumes. Private
relocatable and private source statement library volumes must be of the
same type as the SYSRES pack. Private core image libraries can be on any
disk device type supported by DOS/VS. The system relocatable and system
source statement libraries can be removed from SYSRES and established as
private libraries; the system core image library, however, must always be
present on SYSRES. It can be supplemented but not replaced by a private
_core image library. The procedure library is supported only as a system
library; you cannot create a private procedure library.

Figure 3.11 shows two examples of how you can organize the libraries
in a system with three disk drives. Any other combination of libraries on
the available devices in possible.

The examples in Figure 3.11 are to demonstrate that you can distribute
your private libraries among the available devices as desired. A more
practical example of how. you can organize your libraries is given in Figure
3.12. The example assumes a system with three disk drives, but it is also-
applicatable if you have only two or more than three drives. The
organization of the libraries in this example. is especially useful when you
need large amounts of data on-line during execution.

Chapter 3: Planning the System 3.49

apingD judwodSeuR N WISAS SA /SO 0S°’€

QY]) JO SUOPEIO] dANBWRNY ‘f[°¢ dmByy

saue

Core Image Library

Procedure Library

Label Information

Private
Relocatable Library

Private Source
Statement Library

If a private relocatable library and a private source statement library are to rep/ace the corresponding system iibrary, the core image library
directly precedes the procedure library. These private libraries can also be used to supplement the system relocatable and source statement
libraries, in which case the SYSRES file would appear exactly as shown in Figure 3.6,

Core Image Library

Procedure Library

Private Core
Image Library

Label Information

Private
Relocatable Library

Private Source

Statement Library .

A private core image library can only be used to supplement the system core image Itbrary which must always be present on SYSRES.
Several private libraries may reside on the same disk as illustrated.

SYSRLB

SYSSLB

@ Compiling — Assembling — Link-Editing

Drive X‘190’ Drive X191’ . Drive X'192"

CiL 4 N PCIL /
Data ! 7

~— s

The system core image library (CIL) contains only those programs required for execution-time
processing. The compilers, assemblers, and the linkage editor are kept in the private core
image library (PCIL). .

@ Processing

Drive X190’ Drive X191 Drive X192’

For execution-time processing, the private libraries are no longer required and can be replaced
by a data volume. Thus, maximum possible space is allowed for processing data.

s o s s e et e s — — — — - — - ——— - — e - Y W A G e S e o G S NS R S - o

CIL. = system core image library

PL = procedure library

PCIL = private core image library

PRL = private relocatable library !

PSSL = private source statement library

Figure 3.12. Example of Library Organization

Chapter 3: Planning the System 3.51

Planning the Size and Contents of the Libraries

When planning the libraries for an operational system, you must decide on
their precise contents and size for daily use. Although you can change the
size of your system libraries at any time after system generation {(by means .
of the librarian program), you should try to anticipate future space
requirements and, if possible, provide this space. Such detailed planning can
eliminate the need for a complete reorganization of the libraries which
would be necessary if the extension of a library results in an overflow on
the disk pack. Careful planning of the private libraries will save you
additional work because you cannot redefine the extents of a private library
once it has been created. To change the size of a private library you must
create a new private library and copy the contents of the old library into it.
Consider the following factors before deciding on the contents and size of
the libraries:

« The average size of .a program in your installation.
e The number of programs you want on-line.

« The amount of space available.

The core image library, for example, is the library in which you will keep
most of your programs. (Otherwise, each program must be submitted to the
linkage editor and placed in the core image library temporarily before it can
be executed.) Therefore, ensure that your core image library is large enough
to accommodate all programs that must be resident and on line; this
includes your own programs as well as IBM-supplied components.

- Special considerations apply when you work with an on-line private core
image library:

e Program phases starting with $ could be in a private core image library,
but it is more efficient to keep them in the system core image library.
When a $ phase is required, the system first searches the system core
image library and, if it does not find the phase, it then searches the
assigned private core.image library.

« For all other phases (not beginning with $), first the private and then
the system core image library is searched; thus, if you work with a
private core image library, search time is reduced for these phases
cataloged in the private core image library.

To plan the contents and size of the relocatable library, determine which of
the IBM-supplied modules can be deleted and how much space you need to
store your own object modules on-line. For any modules you wish to retain
in relocatable form, you can copy them onto a backup disk and delete them
from the operational pack. '

With one disk drive you may prefer to maintain only enough free space
in the relocatable library of the operational pack to contain the modules for
the largest component in the system. This small relocatable library permits
temporary insertion of any component in relocatable form. This component
can then be immediately link-edited into the core image library and deleted
from the relocatable library.

3.52 DOS/VS System Management Guide

Similar considerations apply for the source statement library. Determine
which of the IBM-supplied components you need on-line, which should be
transferred to a backup volume for future extensnons of your system, and
which can be deleted entirely.

If you intend to use a procedure library, you shouLd allocate sufficient
_space for it on the SYSRES file during system generation. In estimating the
“amount of space requlred consider the number of job control statements

and SYSIPT data records (source modules, utility control statements, etc.)
. _you expect to store in the procedure library. The procedure library is small,
__ normally in the range of three to five cylinders.

_ After you have determined the space requirements for your libraries in
terms of number and size of programs, you must define and allocate the
amount of disk space needed to accommodate these programs. A set of
formulas is available to calculate the number of tracks and cylinders-
required for each library. These formulas are contained in DOS/VS
"System Generation. Refer to Chapter 7: Using the Libraries for.
information on how disk space is allocated to a library.

The contents of the libraries are identified in Attachment 1 of the
Memorandum to Users. The storage requirements (sizes) for these
components dnd macro definitions are identified in the section for each
component. :

Chapter 3: Planning the System 3.53

Part II: Using the System

This section is'provided especially for applications programmers and’
operators. It is a guide to the day-to-day usc of the system. The chapters it
contains are: ’

Chapter 4: Starting the System describes how the operator performs the
initial program ‘load (IPL) procedure. It also describes how to create the file
required for recording error information.

Chabter 5: Controlling Jobs describes_‘how the applicatidns programmer or
operator supplies input to the job control program, which controls the
execution of a job. '

Chapter 6: Linking Programs describes how the applications programmer
prepares input to the linkage editor program, which links the modules
produced by language translators and produces executable programs that
are placed in the core image library. ‘

Chapter 7: Using the Libraries provides applications programmers and
operators with the information on how to alter, copy, and inspect the
contents of the libraries. It also describes how ta allocate space to the
libraries and how to create private libraries.

Chapter 8: Using POWER/VS addresses the applications programmer
who submits jobs for entry into a DOS/VS system running under
POWER/VS, and the operator who is working with a system with
POWER/VS of POWER/VS RIJE.

'Chapter 4: Starting the System |

" Before a job can be entered into the system for execution, the supervisor -

~ must be read into the supervisor area of real storage and the job control
program must be loaded into the virtual background partition. To do this,
the operator starts the system by following the initial program load (IPL)
procedure.

‘ This chapter describes the use of the IPL. commands. The exact
formats of these commands are contained in DOS/VS. System Control
Stateménts, and DOS/VS Operating Procedures. This chapter also provides
a summary of the automatic functions of IPL; descriptions of how to
modify the shared virtual area, and how to create the system recorder file
(SYSREC) and the hard copy file for the Model 115 or 125; a section on
the optional user exit routine for security checking after IPL; and a section
on entering information on SYSREC if the reliability data extractor (RDE)
optron was generated in the supervrsor

" You must’ perform the IPL procedure each time you have to:

e Load a new supervisor (for normal system start-up, for different
supetrvisor options, or to recover from a system malfunction. For the last,
refer to BOS/VS Serviceability Aids and Debugging Procedures).

o . Change the channel and unit assignment of the system residence
(SYSRES), the VSAM master catalog (SYSCAT), or the page data set
(SYSVIS) due to hardware problems with the channel or disk drive.

« Modify the shared virtual area (to change allocation or to create the
system directory list).

e Create SYSREC (for the first time or because the file was damaged).

o Replace SYSRES or SYSVIS because of a hardware problem with the '
pack. ,

¢ Add devices to or delete them from the system confrguratron
¢ Set or change the time- of—day clock value.

« Set or change the system’s time zone value (if TOD;YES was specified
_ in the FOPT macro during supervisor generation).

Initial Program Loadlng (IPL)

To mvoke the IPL routines, you place the system residence disk pack ona
drive, set the address of that drive in the load unit switches, and press

" LOAD (on the video display/keyboard console, type in the address on the
“drive and press ENTER). This causes the first record on track 0 to.be read
into storage bytes 0-23. The information read in consists of an IPL PSW
(program status word) and two CCWs (channel command words), which in
turn cause the reading and loading of the IPL routines.

Next, the system enters the wait state. At this time, you must indicate
which device is to be used to communicate the name of the desired
supervisor to the system.

Chapter 4: Starting the System 4.1

« If you wish to use the default supervisor ($$A$SUP1), simply press the
external interrupt key.

« If you wish to use the console to specify the supervisor name, press the
request key, await the message requesting the supervisor name, and
then type the name. (On the video display/keyboard console, you can
press either the enter key, the request key, or the cancel key.)

« If you wish to use the card reader to specify the name, ready the card
' reader. The name of the supervisor must be punchéd into the first eight
columns of a card. Start the reader, and, when the card containing the
name has becn read, stop the reader.

Operating in the supervisor state, IPL reads the supervisor nucleus into low .
real storage from the core image library. If an unrecoverable error is sensed
while reading the supervisor nucleus, the hard wait status is entered and an
error code is set in the first four bytes of real storage. The IPL procedure
must then be restarted. For more information on wait states and error
codes, refer to the DOS/VS Serviceability Aids and Debugging
Procedures.

After successfully reading-in the supervisor nucleus, IPL assigns the
current physical unit address of the system residence disk pack to the
SYSRES file (in response to your dialing this address in the load unit
switches).

Establishing the Communications Device for IPL

Next, the IPL routine places the central processing unit in the wait state
(with all interrupts enabled). At this time you must indicate which device is
to be used to communicate the IPL. commands to the system. The specific
manual operation you must perform depends on the device desired:

o If you wish to use the console (SYSLOG), press the request key on the
console. (On the video display/keyboard console, you can either press
the enter key, the request key, or the cancel key.)

o If you wish to use a card reader that was not assigned as SYSRDR in
the ASSGN macro during supervisor generation, ready this card reader.
IPL then assigns the SYSRDR file to this device for the duration of this
procedure.

« If you wish to use thé card reader that is assigned as SYSRDR, press
the interrupt key. (This card reader must have been readied before you
pressed LOAD to invoke the IPL routines as described above.)

o If you wish to use the card reader that was used to read in the name of
the supervisor, start the reader and the IPL commands are read.

When you submit IPL commands, enter them via the selected
communications device.

Changing I/O Device Assignments
If the physical addresses of any 1/0O devices are different from those

established by DVCGEN macros during supervisor generation, you have to
change the system configuration. (To determine which devices are

4.2 DOS/VS System Management Guide

Adding Devices

Deleting Devices

Setting System Values

supported in the system configuration, check the supervisor assembly
listing.) You can change the configuration by adding or deleting devices.
IPL changes the physiéal unit configuration accordingly. The modified
system configuration remains in effect until the next IPL.

If you want to change any symbolic unit assignments (except SYSRES,
SYSCAT, and SYSVIS), you must use ASSGN statements or commands.
These are processed by job control as described in the section Symbolic
I/0 Assignment in Chapter 5: Controlling Jobs.

Use the ADD command to include an 1/0O device and physical unit address
that were not included in the system configuration during supervisor
generation. The following requirements should be kept in mind:

¢ You can add a device only if sufficient device table space was provnded
. via the IOTAB macro during supervisor generation.

« If you add a tape cartridge unit, there must be enough space for an
associated Tape Error Block (TEB) if TEBs were specified during
_supervisor generation.

« If DASD file protection was generated in the supervisor and you add a
DASD, the DASD must conform to the channel range and DASD types
specified in the DASDFP parameter..

o If the seek separatnon option was generated in the supervisor and you '
add a DASD, the system must be able to accommodate an additional
seek address block (SAB).

“If any of these requirements is not satisfied, you will get an appropriate
* error message. You must then provide space in the control blocks for the

additional device by:
o re-assembling the supervisor or

. deleting unnecessary devices of the type you want to add. You must
then re-issue the ADD command

Use -the DEL command to drop -an I/O device from the existing system
configuration. Because all references to the device are removed, any

" subsequent ASSGN job control statement that refers to a deleted device

will not.be accepted. If you perform the IPL procedure from a card reader,
you must use a DEL command to delete any consoles that are not online
but were defined in a DVCGEN macro. (This is not necessary for other
devices that are not online.)

The SET command is required because it indicates to'[PL that the ADD !
and DEL commands (if any) are to be checked. The channel and unit
assignment for SYSRES is also checked at this time.

Chapter 4:'Slarting the System 4.3

. You can use the SET command to set the system date in the
communications region, the time-of-day clock, and the system time zone. If
- you specify a time-of-day clock setting, you must depress the time-of-day
clock switch to the "enable set" position at the exact time specified in the
SET command. : ' ’

Assxgmng the VSAM Master Catalog

If VSAM is to be used, the CAT command may be used.during IPL to
assign the VSAM master catalog to the SYSCAT file. This is only necessary
if you wish to override the SYSCAT assignment made during system
generation, or if you failed to assign SYSCAT - during system generation.
The CAT command (if used) must be submitted after the SET command -
and before the DPD command (described below). In the CAT command,
you indicate the channel and unit number to be assocnated wnth the
SYSCAT file.

Iniﬁatiing Page Data Set Handling

You must follow the SET command: (or the CAT command) by the DPD

~ commiand to indicate that IPL is to handle the page data set, which is
necessary for the virtual address area. The DPD command is required, with
or without operands. If submitted without operands, IPL will use the
information specified in the DPD macro during supervisor generation to
perform page data set handling.. This includes opening the page data set,

- checking its extent limits, and creating label information in the volume table .
of contents (VTOC). IPL assigns the symbolic name SYSVIS to the page
dala set.

The operands of the DPD command indicate whether the page data set
is to be formatted, its location, extent, and (optional) volume identification.
Because formatting the page data set is time-consuming, you should only
request it if the pack was damaged. The first time you use the page data
set, it will be formatted automatically. '

The page data set can reside on any DASD supported by DOS/VS as a
system residence device. To help ensure better performance, the page data
set should not reside on a pack that is subject to heavy 1/0 requests.-

Automatic Functions of IPL

IPL performs the following operations automatically:

. Sets storage protection keys to coincide with the partition aliocations
determined during supervisor. generation.

o Checks that the CPU model specnfled during supervisor generation is
 the same as the model being used.

« Informs the operator about the status of the time-of-day clock.

o Checks that all DASDs included in the configuration conform to the
channel range and DASD types specified in the DASDFP parameter (if
specified during supervisor generation).

4.4 DOS/VS System Management Guide

e Checks thét 3340 disk storage devices that are on line contain data
modules of a size as described by the pertinent PUB and, if they do
not, updates the PUB accordingly.

. Unassngns any DASD assngnments for devices that are not ready at this
_ time (so as to prevent the error recovery routines from trying to
~ establish error recording statlstlcs for these devnces)

+ Fetches the buffer loader transients to load the printer-control buffers -
of the 3‘203 3211, or 5203 printers if one or more of these printers is
attached to the system. '

 Builds an address list in the supérvisor for all RAS transients cataloged-
in the system core image library. (The first RAS transient is also loaded
during IPL.)

After IPL, completes these operations, the system loader loads the job
control program into the virtual background partition and places the system
in the problem program state. The message READY FOR COMMUNI-
CATIONS appears on the console immediately after IPL is complete unless
a ‘warm start copy of the SVA is found (in which case the message appears
directly thereafter).

Building the SDL and Loading the SVA

After IPL when job control is first invoked, it will attempt to find a warm
start copy-of- the shared virtual area (SVA). If a warm start copy is found,
you can either accept it or reject it. You should reject it if you want to
reallocate the SVA, load other phases into the SVA and system dlrectory
list (SDL), or add phase names to the SDL..

If the warm start copy is rejected or not available, you can change (if
desired) the allocation of the SVA specified during supervisor generatlon by
" specifying the SET SVA job. control command.

Next, you must specnfy SET SDL=CREATE, which enables job control
‘to build the system directory list and to load the SVA. (Note: The
procedure library initially contains suggested statements for loading the”
system directory list.) Immediately following these statements, enter the
phase names: to be included in the system directory list via SYSRDR or
'SYSLOG (depending on the device from which job control is reading).
These statements can be entered via the IPL communications- device. Figure
4.1 illustrates such a job stream.

These statements can also be entered via a cataloged procedure. The
procedure library, as distributed with the system, contains two procedures .
‘for loading the SVA, for which refer to DOS/VS System - Generation. You
“can also create your own procedure to load your own phases into the SVA.
Execute this procedure immediately after IPL.

‘Chaplcr‘ 4: Starting the System 4.5

- The phases need not-be currently cataloged in the core image library,
and, if they are not, the system issues a message on SYSLST (or SYSLOG
if SYSLST is not available). If you subsequently catalog a phase into the
system core image library under a name listed as uncataloged, the entry in
the SDL is activated. In this case, if the phase is also identified in the SDL
as eligible for the SVA, it is loaded there immediately after it has been
link-edited. Thus, under the circumstances described above, you do not,
have to re-IPL when you want to load additional phases in the SVA.

Creating the System Recorder File

The DOS/VS Recovery Management Support Recorder (RMSR) requires a
disk extent on which to record statistical information about machine errors
and environmental information. This disk extent is called the system
recorder file and is identified by the symbolic name SYSREC. The
SYSREC file must be created before job control encounters the first JOB
card following an IPL procedure Usually, you create the SYSREC file only
after the first IPL (not after each IPL). If the SYSREC file has been
damaged, however, you must re-IPL and re-create SYSREC. .

The SYSREC file requires a minimum of ten tracks (not including an
alternate track) and cannot be a split cylinder file. You must define
SYSREC as an extent of a permanently online disk device that DOS/VS
supports as a system residence device.

~The SYSREC file label information must be included in the standard
label portion of the label cylinder on the SYSRES file. You must, therefore,
submit the // OPTION STDLABEL statement when creating the SYSREC
file. (Since the label information you submit is written at the beginning of
the standard label track, which overwrites the information that was present
there, you must resubmit all the necessary information. A more detanled
descnptnon of preparing standard label information is contained in
- Chapter 5: Controlling Jobs.) '

Figure 4.1 illustrates a job stream to create the system recorder file.
The IPL commands are included in the figure to emphasize the proper
placement of the statements that create the SYSREC file. Do not include a
// JOB statement until you have supplied all the information applicable to
SYSREC. This is because the SYSREC file is opened when the first
// JOB statement is encountered. Note that the file name [JSYSRC is
required in the DLBL job control statement. '

4.6 DOS/VS System Management Guide

0130) DATE=../. ./.. ,CLOCK=. ./. ./. .
0110A GIVE IPL comnou. COMMANDS -

DEL . > If different from information
::TD R ! T supplied during supervisor generat.on
CAT — —-—39 If VSAM catalog has not been assigned
DPD . ’ during SYSGEN, or if SYSGEN
01201 DOS/VS IPL COMPLETE assignment must be changed.
:g 1T00A WARM START COPY OF SVA FOUND . o '

ol

B8G 1100A READY FOR COMMUNICATIONS
BG SET SVA (270K, 0K)

BG SET SDL= CREATE

BG $$BOPEN

BG sMAINmR.SVA :

BG ASSGN SYSREC, X'190' ——— ' - > if different from mformatlon
BG SET RF-CREATE “supplied during supervisor generation
BG // OPTION STDLABEL . Submit with the rest of :
BG // DLBL IJSYSRC, ‘DOS.SYSTEM.RMSR. FILE' the STDLABEL statements.
BG / / EXTENT SYSREG, | ., 170043 : :

/*- ’
BG //JOB FIRST -

Continue with normal job stream.

v Figure 4.1. Example of Creation of the Shared Virtual Area and the
‘ SYSREC File '

The bold characters in this figure represent responses from. the systém.

When the system is to be shut down, :you should issue the Record On .
'Demand (ROD). command to ensure that no statistical data is lost. The
ROD command is not valid for recording teleprocessing statistical data. .
_Refer to the appropriate teleprocessing guides for more information.

To obtain a listing of the SYSREC file, run the EREP program as
described in DOS/VS' Serviceability Aids and Debugging Procedures.
During execution of the EREP program, recordmg on SYSREC is
' suppressed

Creating the Hard Copy File for Models 115 and 125 -

On a Model 115 or 125 with.the video display/keyboard console, all
messages displayed on the screen and all information typed in by the
operator are.saved in a file on the device ‘assigned to SYSREC. This file is
called the hard copy file because you can obtain printed coples of the file *
whenever required.

You must create the hard copy file after the first IPL procedure and
before you subml_t the first // JOB statement to the job control program.

The control statements and commands needed to create the hard copy .
file are the same as those shown in Figure 4. 1 for the SYSREC file with
the exception that you specify HC=CREATE in the SET command, and
the filename IJSYSCN in the DLBL job control statement. More
_ information about creating and printing the hard copy file is given in
- DOS/VS Operatmg Procedures.

. Chapter 4: Starting the System' 4.7

Security Checking after IP.L

In the larger DOS/VS systems it is often desirable to perform certain
secunty checks at the end of an IPL procedure. It may, for instance, be
important to know who performed the procedure, whether the right system
pack was mounted, and whether the correct date was entered for the new
work session. Moréover, if you work with labeled data files it is important
that they bear the correct creation date, so as to guarantee that data files
are protected until their expiration date.

v After the IPL procedure has been completed, control can be passed to
a user routine (exit-name=$SYSOPEN) that checks system secunty and

- integrity. This routine is entered once after every IPL procedure. The -
DOS/VS distribution volume contains a dummy phase $SYSOPEN in the
system corg image library. If you do not use the facility it has no effect on

- your system. Conventions for writing this kind of user exit routine, together
with an example, are contained in the secsion Writing an IPL User Exit
Routine in Chapter 10: Using the Facilities and Options of the
Supervisor. '

Enteﬁing RDE Data

If the supervisor was generated to support the reliability data extractor
(RDE), the system will ask you to provide additional information about the
system when the first // JOB statement after IPL is processed. A message
(1L.90D IPL REASON CODE=) is issued on the device assigned to-
SYSLOG. You should respond with a reason code (two characters), which
indicates why the system was restarted. The system may have been started
as the beginning of 'normal operation or restarted because of a machine
error, a program error, an operator error, etc. Another message (11891
SUB-SYSTEM ID=) .is issued and you should respond with a code
identifying the device type or program type that failed. On the basis of
these replies job control wiil build a-record for SYSREC. :

Before shutting down at the end of the day (or processing period), you
must ensure that no environmental data is lost, by issuing the ROD
command. This command also causes the RDE end-of-day record to be
written on the disk assigned to SYSREC. To obtain a listing of this file, .
run the EREP program as described in DOS/VS Servzceabzhty Aids and
Debugging Procedures.

This information will be very valuable to your 6béra’ti‘ons management.
. By replying with the exact reason code that applies in each case, you are in
 fact ensuring a permanent record of the reason why you had to re-IPL.

Refer to the DOS/VS Operating Procedures, for more extensive
information on the RDE messages and the valid replies to them. DOS/VS
Messages also contains this information for use at the console, -

4.8 DOS/VS System Management Guide

Chapter 5: Controlling Jobs

" After the system has been successfully started by means of the IPL

program it is ready to accept input for execution.

The unit of work that is submitted to the system for execution is called

‘a job. A job, and the environment in which it is to run, must be defined to

the system through job control statements and commands. These job
control statements and commands are processed. by the job control
program. The job control program is invoked by the supervisor

« - after initial program loading, to process the first job after an IPL
procedure, or

Telat the normal or abnormal end of a job or:job step. .

The job control program runs in any virtual partition of at least 64K bytes.

- It performs its functions only between jobs and job steps, and, therefore, it

is not present in the partition while a problem program is being executed.

This chapter describes how to supply information to the job control
program to enable it to prepare a_job for execution. It shows how. to define
jobs and job steps, how to associate files on auxiliary storage with problem
programs and how (o execute programs in virtual or real mode. Moreover, it
describes how standard sets of job control statements, called cataloged
procedures, can be retrieved from the procedure library, and how cataloged

. statements can be modified.

After each job control statement is read, control can be given to a user
exit routine for examining and altering job control statements prior to their

- being processed by the system. For a description of this facility refer to the

section Checking and. Altering Job Control Statements later in this
chapter. . : o :

The differences between job control statements and commands are not
spelled out in detail because a clear-cut distinction is not required in the
context of this chapter. Whenever applicable, it is simply stated whether the -
function can be performed using statements, commands, or both. The
description of the job control statements and commands in this chapter is
limited to their use and functions; formats and characteristics of statements
and commands are detailed in DOS/VS System Control Statements.

The information in this chapter is intended for use by system
programmers, application_programmers, and system. operators.

Chapter. 5: Contl;olling Jobs 5.1

Defining a Job

Setti.ng Up Job Streams

Thc beginning and end of a job are defined by the JOB and / &
(end-of-job) statements:

// JOB' jobname
additional job cé’)ntré} statements and program input
/&
The program to be executed in a job. is invoked through the EXEC

statement. In the following example, the program PROGA is fetched from
the core image library and executed:

- // JOB. jobname

//]éJXEC PROGA

/e

One or more programs can be executed within a job; the execution of a

" single program is a job step. Therefore, each job can consnst of one or more

job steps. The following]ob comprises two job steps..

// JOB jobname

// EXEC PROGA
// EXEC PROGB

/&

You are free to includé as many job steps in a_ job_aé you wish. It is,
however, not advisable to execute, in one job, several programs that are
completely independent of one another. This is because, if one step

terminates abnormally, the job control program will ignore the remaining
job steps up to the next / & statement.

Thus, although perfectly in order, the programs following the oﬁe that

" failed will not be executed. A typical example of related job steps that
" should form a single job are assembling, link-editing, and executing a

program, where correct execution of one job step depends on successful
completion of the precedmg one.

The job control program provides automatic job-to-job transition. This
means that an unlimited number of jebg.can be submitted to the system in
one batch, and that job control processes one job after the other without .

5.2 DOS/VS System Management Guide

requiring intervention by the operator. The job or jobs submitted are

referred to as a job stream.

The operator can interrupt the processing of a job stream in any

 partition to make last-minute changes to one of the jobs or to squeeze in a

special rush job. He does this by pressing the request key on the operator
console and entering a PAUSE job control command. This causes
processing to halt at the end of the current job step, or, if the EOJ operand
is specified in the PAUSE command, at the end of the current job.

-~ When setting up a job stream for a partition, you should bear in mind
that all jobs will get the priority of that partition. The selection of the jobs

for a particular partition in a multiprogramming system can help to improve

the efficiency of your installation. For example, jobs which have a relatively

Jlow CPU usage and a relatively high rate of 1/0 activity, and which

therefore spend most of - their time waiting for the completjon of 1/0
operations, should run in a high priority partition. Conversely, CPU-bound
jobs should be in a partition with a lower priority. More information about
partition priorities is given in the section Multiprogramming in Chapter 1:
Understanding the System,

Summary of Job Control Statements and Commands

" JOB

The following describes the JOB, end-of-job (/ &), DATE, and PAUSE '

" statements/commands. The EXEC statement is discussed under .Executing

a Program, later in this chapter. The description of the statements will:
touch upon a number of subjects (for example, job control options, logical
unit: assignments, UPSI byte, label information cylinder, etc.), whlch will be

" discussed later in this chapter.

- The JOB statement indicates the beginning of control information for a job.
‘The specified job name is stored in the communications region of the

corresponding partition and is used by job accounting and to identify
listings produced during execution of the job.

The JOB statement 'may be omitted, in which case the job name

"NONAME is stored in the communications region. If the JOB statement is

present, it must contain a job name; otherwise, an error condition occurs.

. The JOB statement is always printed in positions 1 through 72 on .
SYSLST and SYSLOG. If the time-of-day clock is supported, the time of
day is also printed. The' JOB statement causes a skip to a new page before
printing is started on SYSLST. -

When a JOB statement is encountered, the job control program stores
the job name from the JOB statement into the communications region. If
the / & statement was omitted, the JOB statement will cause control to be
transferred to the end-of-job routine to simulate the / & statement. Refer
to the following section for the operations that are performed.

Chapter 5: Contro"ing Jobs 5.3

End of-Job (/ &) This statement is the last one for each job (not job step). It signals the end
of the input stream for the job. If SYSRDR and SYSIPT are assigned to
different devices, the / & statement should be present on both devices to
permit proper operation in case of an abnormal end of job.

“1If the / & statement is omitted, the next JOB statement will cause
_control to be transferred to the end- of—]ob routme to.simulate the / &
statement.

When a / & statement is encountered, the job control program performs
" such operations as the following:

+ .. Resets all job control options for the partition to standard, as established
at system generatron resets the LINK and CATAL options to zero.

« Resets all system and programimer loglcal unit assrgnments for the

" partition to the permanent assignment established by.job control
commands, or (if no permanent assngnments have been made) to the
standard assignment established during supervisor generation.

+ . Modifies the communications region as follows:)
1. Resets the date from the DATE statement to. the ¢ one specified in
the SET command during IPL, or (if the trme—of—day clock is
, supported) to the date currently valid. . :
2. Stores the job name NONAME.
3. Sets the user area and the UPSI byte to Zero.

. _Drsplays the EOJ message on SYSLST and SYSLOG with the time -and
duration of the job if the time- -of-day clock is supported.

» Lists all tape error.statistics (TEBs) for the IBM 2495 tape cartridge
" reader.

« Ensures that end-of-file has been reached on SYSIPT.

e Deletes the temporar’y labels in the label information cylinder on
SYSRES and restores the USRLABEL mode. (Seée Editing and

" Storing Label Information, later in this chapter.)

o« Checks whether the automatic condense limits of any of the libraries-
have been reached (if maintenance has been done in the job).

PAUSE The PAUSE statement or command can be used to allow for operator
intervention between jobs or job steps.

The PAUSE statement can be mcluded anywhere among the job
- control statements of a job stream. It becomes effective at the point where
‘it was inserted; processing is suspended in the affected partition, and the
operator console is unlocked for input. The PAUSE statement can. contain
instructions to the operator and is always listed on SYSLOG.

 The PAUSE statement may also be helpful when SYSIN is assigned to
a:5425 card reader (which does not have an end-of-file button). Place the
// PAUSE card after the last / & card; this will force control to be given
to the console-keyboard, which enables the console operator to control
subsequent system operatron

The PAUSE command may be entered either through the operator
console (after pressing the request key), or as a job control card; if entered

54 DOS/VS System Management Guide

DATE

through the console to the attention routine, the command must specify the
partition that is to pause (if the background partition is intended, however,
no operand is required). After encountering a PAUSE command, the system
passes control to the operator (through the console) the next time that the
job control program is fetched into the specified partition, that is, at the
end of the current job step (which may also be the end of the job). If the
PAUSE command that is entered through the console specifies the EOJ
operand, however, control will pass to the operator only at the end of the
current job, regardless of the number of steps needed to reach that point.

The DATE statement can be used to override the date specified in the SET
command during IPL. The new date is stored in the communications region
for the duration of one job only, unless it is overridden by another DATE
statement. - '

You can use the DATE statement, for example, when your program’s
output is to indicate yesterday’s date. The DATE statement can be
submitted with the rest of the job control statements.

Using Cataloged Procedures

This section describes how to retrieve a cataloged procedure from the
procedure library and how to modify the contents of a cataloged procedure.
How a procedure is cataloged in the procedure library is discussed in
Chapter 7: Using the Libraries.

Note: The procedure library should not be updated in a running
multiprogramming system.

Retrieving Cataloged Procedures

To retrieve a cataloged procedure from the procedure library you use the
PROC parameter in the EXEC job control statement specifying the name
of the cataloged procedure. Assume that a certain program called
PAYROLL uses the following job control statements (in addition to the
// JOB and / & statements):

// ASSGN SYS017,READER

// ASSGN SYS018, PUNCH

// ASSGN SYS019,PRINTER

// ASSGN SYS020,TAPE

// ASSGN SYS021,DISK,VOL=111111

// TLBL TAPFLE, 'FILE-IN'

// DLBL DSKFLE- 'FILE-OUT',99/365,SD

// EXTENT SYsS021t,111111,1,0,200,400

// EXEC PAYROLL.

Assume further that these control statements have been cataloged in the
procedure library under the name PAY. If the program PAYROLL is to be
executed, the programmer or operator would simply prepare the following
job control statements:

// JOB USER1

// EXEC PROC=PAY

/&

Chapter 5: Controlling Jobs 5.5

When the job control program starts reading the job control statements in »
the input stream on SYSRDR and finds the EXEC statement, it knows by
the operand PROC that a cataloged procedure is to be inserted. It takes the
name of the procedure to be used (PAY), retrieves the procedure with that
name from the proceduré library, and replaces the EXEC statement in the
input stream by the retrieved procedure. The individual statements that are -
inserted are then processed from the very beginning. The statement’

// EXEC PAYROLL-

causes the program PAYROLL to be loaded and given control. When
execution of PAYROLL is complete, the: job control program finds the / &
statement and performs end-of-job processing as usual. .

Note: The Iisting of job control statements on SYSLOG and/or SYSLST
“will show the message EOP PAY at the end of the inserted procedure.

Modifying Cataloged Procedures

The preceding example is the simplest case of the use of cataloged pfocedu—
res. It will work as long as the requirements of the program do not change.

It may happen, however, that some of the statements in a cataloged
procedure must be modified for a specific run of a program. For example,
the printer normally used (X‘00E’ in the preceding example) may be
temporarily unavailable so'that a different printer must be assigned. It does
not make much sense to delete the old version and to catalog the new one
because the old version will be needed as soon as the normal printer
becomes operational again.

Likewise, it may be necessary to add or remove certain statements to or
from a cataloged procedure for a specific run of a program. You may wish, for
example, to procéss a different copy of the file FILE-OUT (see the preceding
example). You must therefore temporarily suppress the corresponding DLBL
and EXTENT statements in the cataloged procedure and replace them by
statements that identify the file you want to process instead.

For cases like this DOS/VS permits

« temporarily modifying one or more statements in.a cataloged procedure
(thus, overriding what was present). '

"« temporarily suppressing (deleting) one or more statements in a
cataloged procedure. without modifying them.

« temporarily incorporating one or more additional statements at desired
locations in a cataloged procedure.

You can request temporary modification of statements in a cataloged
procedure by supplying the corresponding modifier statements in the input
stream. Normally, not all statements are to be modified.

You must therefore establish an exact correspondence between the
statement to be modified and the modifier statement by giving them the :
-same symbolic name. This symbolic name may have from one to:seven

5.6 DOS/VS System Management Guide

characters, and must be specmed in columns 73 through 79 of both
statements.

Note: An unnamed statement cannot be modified. To be able to madify
a single statement in a cataloged procedure, you should name each
statement when cataloging. Moreover, the modifier statements must be in
the sequence in which modification 'is to. be performed on the cataloged
statements. The JOB and /& statements cannot be used as modifier
statements.)

A single character in column 80 of the modlfler statement specifies
which function is to be performed:

- indicates that the statement is to be inserted after -the statement in the
cataloged procedure that ‘has the same name.

- indicates that the statement is to be inserted before the statement in
the cataloged procedure that has the same name.

D - indicates that the statement in the cataloged procedure that has the
same name is to be deleted. .

Any other character or a blank in column 80 of the modifier statement
indicates that the statement is to replace (override) the statement in the
cataloged procedure that has the same name.

In addition to naming the statements and indicating the function to be
_performed, you must inform the job control program that it has to carry out
a procedure modification. This is done

‘(l)_ by specifying an additional parameter (OV for overriding) in the EXEC
statement that calls the procedure, and

(2) by using the statement // OVEND to indicate the end of the modifier
statements.

The following examples show how you can temporarily modify a oataloged
procedure.

Assume that a cataloged procedure named PROCS for the program
PAYROLL contains the followmg statements:

73--79
// ASSGN SYS017,READER PAY0001
// ASSGN SYS018,PUNCH PAY0002
// ASSGN .SYS019, PRINTER PAY0003
// ASSGN SYS020,TAPE = - PAY0004
// BSSGN SYS021,DISK,VOL=111111 PAY0005
. // TLBL TAPFLE,'FILE-IN' PAY0006
// DLBL DSKFLE,'FILE-QUT' PAY0007
// EXTENT SYS021,111111,1,0,200,200 PAY0008
// EXEC PAYROLL PAY0009 "

Chapter 5: Controlling Jobs 5.7

Assume further that the prdgrammer wants to use tape unit X‘183" instead
of X‘181°. The input stream on SYSRDR in this case, would have to be as
follows:

73--79
// JOB USER
// EXEC PROC=PROCS5,0V
// ASS@GN SYS020,X' 183' - PAYOOO4
// OVEND
/&

The form of the EXEC statement in the input stream indicated that (1) the
- procedure PROCS is to be used and (2) this procedure is to be modified in
some way. The first three procedure statements are processed without
change. The procedure statement named PAY0004 is replaced by the
* corresponding statement in the input stream (a blank in column 80 specifies
overriding). ‘The remaining procedure statements are again processed
without change. :

As another example, assume that the program PAYROLL is to use the
file FILE-OUT]1 instead of FILE-OUT and that this file resides on two
extents of a disk pack that has the volume serial number 111112. The input
stream might then look as follows: .

73--79 80
// JOB USER ' :
//- EXEC PROC= PROCS ov

// DLBL DSKFLE, 'FILE-OUT'
// EXTENT SY5021 111112,1,0,100, 200 PAY0008
// EXTENT SYS021,111112,1,1,500,200 PAYOOO8A
// OVEND -) ‘

Processing would be as follows: The JOB statement and all procedure
statements up to the statement named PAY0006 are processed without ‘
modification. The procedure statements named PAY0007 and PAY0008 are
replaced by the corresponding statements in the input strearh (due to the
blank in column 80). The second EXTENT statement in the input stream
‘has the character A in column 80, which indicates that the statement is to
be inserted after the (replaced) statement named PAY0008. The procedure
statement named PAY0009 is again processed without modification.

The possibility of modification as described above makes the use of
cataloged procedures more flexible. Often, however, it is simpler and more
economical to have different procedures for the same program than to have
a single procedure and modify it.

Several Job Steps in one Procedure

A cataloged procedure may contain more than one EXEC statement, that
is, it may contain control statements for more than one job step (within the
same job). Bear in mind that as the number of job steps in a procedure
increases, so does the time required to re-execute the whole procedure after
an error occurs. A program written in assembler language, for instance,
requires ‘three job steps to assemble, link-edit, and execute the program. For

5.8 DOS/VS Systém Management Guide

e e e

the use of a cataloged procedure, your input stream for the entire job (on
SYSIN for _simplicity) would contain the following:

// JOB USER ' ’

// OPTION LINK |

// EXEC ASSEMBLY"

source deck of program to be assembled

J*

// EXEC LNKEDT

// EXEC

data for program to be executed

/* :

/&
If the OPTION statement and the three EXEC statements were cataloged
under the name ASDPROC, the input stream could be simplified to the
following (the shaded portions represent statements from the procedure
hbrary)

// JOB USER
‘%EXEC PROC=ASDP

m to be assembled

The same can-be done for any number of job steps that logically belong
together and are frequently executed. A stock control program STOCK, for
instance, may be run daily to compile statistics that can be used to prepare
the followmg lists:

1. An exception list that shows which items are low in stock. Required
daily.

" 2. A list that shows the turnover in currency for a certain item or group of

items. Required weekly.

3. " A list that shows the turnover in number of units for each item or
group of items. Required monthly.

4. An inventory list. Required semi-annuall_y.

To simplify processing, four procedures may have been cataloged:

STKPR1 - two job steps: the first to execute STOCK, the second to
prepare list 1.

STKPR2 - three job sfeps: the first two are the same as for STKPRI1, the
third to prepare list 2.

STKPR3 - four job steps: the first three the same as for STKPR2, the
fourth to prepare list 3.

STKPR4 - five job steps: the first four the same as for STKPR3, the fifth
to prepare list 4.

Which lists are printed after every run of STOCK then depends on what
cataloged procedure is used.

Chapter 5: Controlling Jobs 59

Modifying Multistep Procedures without SYSIPT Data

Multistep procedures may be modified. in the same way as the single-step
procedure described earlier. A number of conside ations, however, apply to
the ordering of the modification statements in the input stream when a
logical unit is assigned to the same physical unit as SYSRDR.

1. It is advisable to avoid using identical symbolic names for the
statements in the procedure.

2. The modifier statements must be in the same sequence as the
statements in the referenced procedure.

3. If one step of a procedure is unmodified, the first modifier statement
for the following step must be placed either before the data input for
the unmodified step or after the last modifier statement of the
preceding job step. If it is the first modifier statement in the input
stream, it must be placed immediately after the EXEC PROC
statement. ‘

4. If the last modifier statement overwrites an EXEC statement, the first
"~ modifier statement must be included after the data input for this step.

Figure 5.1 shows an example of modifying the second and third steps of a
three-step procedure. '

In the example given in Figure 5.1, it is assumed that SYSRDR and
SYSIPT are assigned to the same physical unit. The following notes apply
to the example: '

This is the first modifier statement. It refers to step 2.
8 This statement provides SYSIPT data for PSERV.
@ This modification ovverwrites the EXEC statement.
@ This statement provides SYSIPT data for DSERV.
@ This statement provides SYSIPT data for DSERV.

5.10 DOS/VS System Management Guide.

L\

SYSIN Input Stream'

. Procedure CATOl Containing JCL Only .

// JOB EXAMPLE

// EXEC PROC=CATO1,0V
// ASSGN SYSRLB,UA
 DSPLY CATOI

/*

// Asscu SYSSLB,UA
v// ~ EXEC DSERV,REAL
DSPLY CD;RD,SD -
R
ASSGN SYSCLB,UA
// OVEND
DSPLY CD,PD
/*
/&

Column 73-79

~ sTMT3

STMT4

' BTMTS

STMT6

Figure 5.1. Example of Modifying a Three-Step Procedure

Use of Cataloged Procedures by the Operator

' // EXEC PSERV

' ASSGN SYSCLB,X'130°'

// ASSGN SYSRLB,X'130'

// ASSGN SYSSLB,X'130' .
'// EXEC DSERV .

// ASSGN SYSSLB,UA

. // EXEC DSERV,REAL

/+

"’ Column 73-79

STMT1

STMT2
STMT3
STMT4

. STMTS’

STMT6

STMT7

All the previously described functions and advantages of cataloged _
procedures are also available to the operator. Of special importance in the
operator’s use of cataloged procedures is the starting of urgent jobs or’
long-running jobs like POWER/VS or teleprocessing.

Full details on the use of cataloged procedures by the operator are
given in DOS/VS . Operating Procedures. ‘ '

Chapter 5: Controlling Jobs 5.11

Relating Flles to your Program

Symbolic 1/0 Assignment

Programs always perform some kind of input/ output operatioh, that is they
process files on auxiliary storage devices. Before such files can be
processed, certain information about the files must be provided to the
system. This information includes:

« The generic device name and volume serial number or the physical
address of the 1/0 deyice on which each of the files resides. (Relating
a file to an actual 1/0 device is called symbolic /O assignment).

« For files on direct access storage devices (DASD), the exact location of
the file on the storage medium.

« For files on DASD, on diskettes, or on labeled magnetic tape, a
description of the file, called a label, which is-used for che<,k|ng and
protection purposes.

The above information, specified in job control statements, is stored in the
system by the job control program for use by the DOS/VS data
management routines. How this is done is described below. '

Whenever a processing program needs access to a file on auxiliary storage,
the system must be informed of the address of the 1/O device involved.
The program need not specify an actual device address, but only a symbolic
name which refers to a logical, rather than physical, unit. Before the
program is executed the logical unit must be associated with an actual
device. This is done by either the system, the programmer, or the operator,
by means of the ASSGN job control statement or command which specifies -
the symbolic name of the logical unit and one of the following:

» A general devicg class or specific device type, with or without volume
~ serial number.

« The physical address (channel and unit number) of the I/C device.
e A list of physical addresses.

« Another logical unit.

See Figure 5.2 for an illustration of some of these combinations.

5.12 DOS/VS System Management Guide

Processing Program

Job Control
// ASSGN

. ... Physical Device Address

1/0 Device

Figure 5.2. Example of Symbotic 1/0 Assignment (Part 1 of 2)

1. The logical unit specificd in the processing program (via a DTF or
CCB) is a print file referred to by the symbolic device name
SYSLST.

2. An ASSGN statement is used to associate SYSLST with the
physical address O0E ol a printer. This information is stored in the
system by job control and can be accessed when a program is
executed.

Chapter 5: Controlling Jobs 5.13

Processing Program

...Symbolic device name

Job Controi

(x"1

/ASSGN SYS002, ’ X 131°}

. List of
physical
devices

...Device type

1 { ASSGN\ SYS002, 3330, VOL=000001

/ ...Device class
rxsscm SYS002, TAPE

A

1/0 Devices

N\

| B | : \
000001 - ’
] : 131 132 281 @ ‘ 283 ,
/ If you use the DISK device class option,
3330 3330 3330

use volume serial numbers, and be sure
that they are unique.

Figure 5.2. Example of Symbolic I/O Assignment (Part 2 of 2)

If you use the DISK device class option, use volume serial numbers, and
be sure that they are unique.

5.14 DOS/VS System -Ma_nagerﬁent Guide

Logical Units and Symbolic Device Names

There are two types of logical units: system logical units, primarily used by
the system control and service programs, and programmer logical units, .
primarily used by the processing programs. The following list shows the
symbolic names that refer to a logical unit and the I/O devices that each
unit can represent. In the case of disk devices, the logical unit is not
assigned to the whole of the volume mounted on the device but only to part
of it, an extent. Refer to the section Files on Direct Access Devices for .
more information on disk files.

System Logical Units
SYSRDR Card reader, magnetic tape unit, disk device, or diskette used as

input unit for job control statements or commands.

- SYSIPT ~ Card reader, magnetic tape unit (single volume), disk device, or
diskette used as input unit for programs.

SYSPCH Card punch, magnetic. tape unit, disk device, or diskette used as
the unit for punched output.

SYSLST Printer, magnetic tape unit, disk device, or diskette used as the
unit for printed output.

SYSLOG Operator console used for communication between the System
and the operator and for logging job control statements.

SYSLNK Disk device used as input to the linkage editor.
SYSRES System residence extent on a disk pack.

SYSCLB Disk device used for a private core image library. |
SYSSLB Disk device used for a private source statement library.
SYSRLB Disk device used for a private relocatable library.
SYSUSE Used by the system for internal purposes.

SYSREC Disk device used to store error records collected by the

' recovery management support recorder (RMSR) function. For
the Models, 115 and 125, messages to or from the operator are
stored on another file on SYSREC so that a hard copy listing
of these messages can be produced.

SYSVIS Disk device used to hold the virtual storage page data set.
SYSCAT Disk device used to hold the VSAM master catalog.

Of these system logical units, user programs may also use SYSIPT and
SYSRDR for input, SYSLST and SYSPCH for output, and SYSLOG for
communication with the operator.

Two additional symbolic names, SYSIN and SYSOUT, are used under
certain conditions: :
SYSIN Can be used if you want to assign SYSRDR and SYSIPT to

the same card reader or magnetic tape unit. You cannot assign
SYSRDR and SYSIPT to the same disk or diskette extent, you
must instead assign SYSIN to that extent. :

Chapter 5: Controlling Jobs 5.15

SYSOUT Must be used if you want to assign SYSPCH and SYSLST to
the same magnetic tape unit. It cannot be used to assign
SYSPCH and SYSLST to disk or diskette because these two
units must refer to separate extents.

SYSIN and SYSOUT are valid only to job control and cannot be referenced
in a user program. Examples for the use of SYSIN and SYSOUT are given
in the section System Files on Tape, Disk, or Diskette later in this
chapter.

SYSIPT Data in Cataloged Procedures

.Procedures may additionally contain SYSIPT inline data, such as control
statements for system utility and service programs and source modules.

Note: This extended support requires a supervisor that was generated with
the SYSFIL option. ' :

SYSIPT inline data in procedures may also be any data that is
processed under control of the device independent IOCS used by your
program or IBM-supplied programs. Normally, though, you would not
catalog source programs or data for your problem programs in the
procedure library.

Including SYSIPT inline data in procedures is useful and convenient
mainly in the case of control information for system utility and service
programs. ‘

A job stream for an initialize disk utility run could, for instance, contain
the following control statements (the statements are shown in skeleton
“format only):
// ASSGN
// EXEC INTDK
// UID IR,C1,R=(0027003)
// VTOC STANDARD
VOoL111111
// END

If SYSRDR and SYSIPT were not combined and no cataloged procedure
was used, the job control statements would have to be placed on SYSRDR.
whereas the utility control statements would have to be placed on SYSIPT.
If, however, these control statements had been cataloed (for example, under
the name INITDK), only the following statements would be required on
SYSRDR:

// JOB NAME

// EXEC PROC=INITDK

/&

SYSIPT data can either be read from SYSIPT or be retrieved from the
procedure library. Combining the two possibilities in a (single-step or
multi-step) procedure is not permitted. Also, SYSIPT data read from the
procedure library cannot be modified. In a cataloged procedure with in-line
SYSIPT data, you should not delete or overwrite an EXEC statement that
gives control to a program that uses the SYSIPT data.

For multistep procedures, SYSIPT data must be read in all job steps
either from SYSIPT or from the procedure library. If the SYSIPT data for

5.16 DOS/VS System Management Guide

Programmer Logical Units

Types of Device Assignments

the first job step is read from SYSIPT, having SYSIPT data for any of the
following job steps in the procedure would lead to an error. Conversely, if
the SYSIPT data for the first job step is contained in the procedure, any
SYSIPT data for subsequent job steps must also be contained in the
procedure.

SYSOOO SYSmax: Any devices in the system used for user program
input/ output '

Note: The linkage editor uses S YS001 and the assembler uses SYS001,
SYS002, and SYS003. Some IBM language translators also use
SYS004 and DOS/VS system utilities use SYS005 (refer to the
appropriate programmer’s guides).

You can assign each of these programmer logical units to any of the
existing partitions without a prescribed sequence. The maximum number of
programmer logical units for the system (SYSmax) and for each partition as
well as the minimum per partition can be determined as follows:

+ The background partition requires a minimum of ten programmer
- logical units.

» Each foreground partition requires a minimum of five programmer
logical units.

« . The maximum number of programmer logical units that can be specified
- for the entire system (SYSmax) is a variable that can be calculated
using the formula:

255 - (number of partitions * 14)

o The maximuh‘l number of programmer logical units you can assign to a
specific partition is thus determined by the formula:

SYSmax - sum of all prbgrammer logical units assigned to all - '
other partitions. . -

As an example, assume that your system has five partitions. The total
number of programmer logical units that you can have would then be 185
(255-(5*14)=185). Assume further that 15 programmer logical units have
been assngned to the partition F1,'13 to F2, 19 to F3, and 11 to F4. The
maximum number of programmer logxcal umts for the background partition
would then be ‘

185 - (15 4 13 + 19 + 11) = 127

_Device assignments are either standard, permanent, or temporary,

depending on the time of the assignment and the type of ASSGN statement
or command used

Standard Device Assignments. Standard device assignments are established

during supervisor generation in the ASSGN macro. These assxgnments are
valid until the next supervisor generation.

Chapter 5: Controlling Jobs 5.17

Once the supervisor is loaded (that is, after [PL), modifications to the
existing standard assignments can be introduced. These assignments can be
_either permanent or temporary.

Permanent Device Assignments. A permanent assignment is set up between
jobs or job steps any time after IPL, by the ASSGN job control command
(no //) or the ASSGN job control statement with the PERM operand. It is
valid until the next IPL procedure unless superseded by another ASSGN
job control command. A permanent assignment can be changed for the
duration of a job or job step by a // ASSGN statement or by an ASSGN
command with the TEMP option. '

Temporary Device Assignments. A temporary assignment is established
either by a // ASSGN statement or by an ASSGN command with the
TEMP option. It is valid for a single job only, unless superseded by another
temporary or permanent assignment. Temporary assignments are reset to
standard or permanent by

o a /& or JOB statement, whichever occurs first, or by

« a RESET job control statement or command.

Restrictions: The type of device assignment is restricted undet certain
conditions:

1. If one of the system logical units SYSRDR, SYSIPT, SYSLST, or
* SYSPCH is assigned to a disk device or diskette the assignment must
be permanent or standard.

2. If SYSRDR and SYSIPT are to be assigned to the same disk device or
diskette SYSIN must instead be assigned and this assignment must be
permanent.

SYSOUT, if used, must always be permanent assignment.

SYSIN and SYSOUT cannot be specified in the ASSGN macro during
supervisor generation, that is, they cannot be standard assignments.

Device Assignments in a Multiprogramming System

During supervisor generation you can establish the standard assignments for
the system and programmer logical units for each partition. The same
logical unit can be defined for all partitions referring either to the same or
to different physical devices. Also, different logical units can refer to the
same physical device. This is illustrated in Figure 5.3.

5.18 DOS/VS System Management Guide

-@ 86| svsoos o - — X191

F2 SYS005 N —]l l x'192°

F1 . 8YS005 < X193

BG SYS005
F2 SYS005 X191’ v
F1| svsoos.
: BG|. svso0s
F2| . sysooe X191
i
F1 SYS007

Figure 5.3. Possible Device Assignments Set at Supervisor Generation

At any other time, however, it is not possible to share a physical device
(except DASD) between partitions. If the physical device in cases (2) and
(3) in Figure 5.3 is not DASD and, for example, no program is in the F2 '
partition when you want to initiate the F1 partition, you must. first unassign
this physical device in the background partition.

With direct access devices this problem does not exist because each ‘
extent of a disk or data cell can be thought of as a separate device. It is
not possible, however, to share a diskette between partitions.

* When assigning a DASD, it is advantageous to specify a volume serial
number in the EXTENT statement, espeCially for a scratch pack. ’

‘Chapter 5: Controlling Jobs 5.19

Partition-Related Cataloged Procedures

Cataloged procedures normally relate to one specifc partition.
Partition-related cataloged procedures, on the other hand allow you to
retrieve and execute a procedure with a single EXEC statement, regardless
of the partition in-which the job is being executed. One benefit of this
feature lies in the ease with which unscheduled jobs can be started. At
execution time, the system selects the proper procedure--including the
appropriate EXTENT and DLBL statements--based on the partition in .
which the job is to be executed.

To use the feature, you must first create separate sets of job control
statements that conform to the specific partitions in your system. Most
probably, the difference in these sets will be in the EXTENT and DLBL
statements, because of the different device and DASD space assignments

from partition to partition. Second, in order to distinguish between the
procedures and relate them to the appropriate partitions, the following
naming convention must be used for procedures to be placed in the library:

First character of name - §$

Second character - B for BG partition
- 1 for F1 partition
- 2 for F2 partition
- 3 for F3 partition
- 4 for F4 partition

Third-eighth characters any alphameric characters

In the EXEC statement used to start the job, however, the first two
cBaracters of the procedure name must be $$, with the remaining characters
identical to the cataloged name.

On reading the EXEC statement, the system replaces the second $ with
the identifier for the partition in which the job is to run. The procedure
with this name is then retrieved, read, and executed.

As an example of this process, assume that the statement // EXEC
PROC=$$PLG is used to start a job in the F1 partition. The system first
transforms $$PLG into $1PLG. The procedure named $1PLG is then
retrieved from the procedure library (out of series that might include
$BPLG, $1PLG, $2PLG, and $3PLG for a four-partition system).

Device Assignments Required for an Assembly

Figure 5.4 shows the logical units that must be assigned to assemble a
- program. Note that the ASSGN statements must always precede the EXEC
statement of the job step for which they are to be effective.

The device assignments for compilers are similar to the device
-assignments shown in this assembler example; any variations arc
documented in the applicable programmer’s guides.

5.20 DOS/VS System Management Guide

1/ ASSGN SYS001

’ ~
' -
1 [}
) PN :
, \ 1
-’
; 7
Only if the program is to S
be link-edited. _ .lem
Only if an object deck ____ #/ ASSGN SYSPCH,.... I
's dosirad. /] ASSGN SYS003.... jomm=—
7] ASSGN SYS002,... / [
-]

1
-
I

1

]

i

]
————d

71 ASSGN SYSLST,.... |
1/ ASSGN SYSIPT,....

-

SYSRDR

SOURCE
PROGRAM

Page - ~~‘

Data SYSIPT 'u---—"

Set)

]

[}

svsvis \ :

‘r - g

'l
-cPU €em
System SYSLST
Residence

SYSRES

SYSLOG .
1

’ 5) : .
[avor | les
H 1 files 1 \'_
=L : ,' S
Ss ' J 1 v svsoot
\Y] . '~‘.¢_-)I : SY5902 f
Y. See®wl- 7 svsood
’ D IP A
be'
SYSPCH - SYSLNK'
(Optional) . (Optional)

Figure 5.4. Device Assignments Required for an Assembly

2.

These assignments will usually be standard, established during
supervisor gengration. :

If SYSRDR and SYSIPT are assigned to the same device, the source
input must be placed after the // EXEC ASSEMBLY card.

Chapter 5: Controlling Jobs 5.21

- - Files on Diskette Devices

After you have informed the system, via the ASSGN statement or
command, on which physical device the file is to reside, you must supply
the following information to allow the creation and checking of diskette
labels:

1. A description of the characteristics of the file. You specify this in ihe
DLBL job control statement.

2. The volume(s) the file is contained on. You specify this in one or more
EXTENT job control statements.

The label information you supply in the DLBL job control statement may
include the following:

» Thc name of the file. This name must be identical to the corresponding
file name specified in your program. For programs written in assembler.
language, this would be the name of the DTF (Define The File).

« An identification of the file. This name is the one contained in the
volume table of contents (VTOC) on the diskette. It is associated with
the file' name via a DLBL statement for the duration of a specific job
or job step to make programs independent of physical files.

« The expiration date of the file.

« The type of access method used to process the file; always coded as
DU.

A diskette file can consist of a data area on one or more volumes; each
volume can contain only one data area for a particular file. For each of-
these data areas, called extents, you must supply the following information

on an EXTENT job control statement:.

e The symbolic name of the device on Wthl’l the volume containing the
file is mounted.

« The serial number of the volume.

» The type of extent; always.coded as 1.

In the following example, the program CREATE creates a diskette (DU)
file named SALES that is to be retained until the end of 1975. The file
comprises up to three diskettes. The diskettes have the volume serial
numbers 111111, 111112; and 111113, and are mounted on the drive
assigned to the symbolic device named SYS005.

// JOB EXAMPLE

// RASSGN SYS005,X'060"

// DLBL SALES, 'ANNUAL',75/365,DU

// EXTENT SYS005,111111,1

// EXTENT SYS005,111112,1
// EXTENT SYS005,111113,1
// EXEC CREATE

The job control program checks the DLBL and EXTENT statements for
correctness and stores the supplied information in the label cylinder on
SYSRES for the duration of the job (see the section Editing and Storing
Label Information, later in this chapter). '

5.22 DOS/VS System Management Guide

Example for Submitting Label Information

Here is an example of how to code the job control statements required to

“create or access the labels for a diskette:file. It is helpful if you are familiar
with the formats of the DLBL and EXTENT job control statements as
described in DOS/VS System Control 'Stqtementé. Detailed information on
the possible organizations and access methods for diskette files is given in
DOS/VS Data Management Guide. -

. Diskette Files. Assume that a program PROG 100 needs a diskette file.
The file consists of four extents; one extent is the diskette with serial
number 000020, one is diskette 000030, one is diskette 000040, and one is
diskette 000050 The followmg job stream shows the label statcments
required:.

// JOB SAMLABEL

// ASSGN SYS005,X' 060"
1 .// DLBL FILNAME, 'FILE ID' ,99/365,DU

// EXTENT SYSOOS 000020,1 -

// EXTENT SYSOOS,OOOQ30,‘T

// EXTENT SYS005,000040,1

, // EXTENT SYS005,000050;1

2 // EXEC PROG100 s

1 Only one DLBL statement is required. For éach extent, one EXTENT
statement must be supphed in the sequence in which the extents are
processed.

2 'Logical I0CS in PROG100 opens the first éxtent using the file name
- "and file ID in the DLBL statement, -and the logical unit and volume
serial number in the first EXTENT statement to locate the actual label
on the disk pack. After PROG100 has processed the first extent, logical
10CS, bgsed on the extent sequence number, opens the second extent.

Processing is identical for the third and fourth extents.

3. The /& statement causes the label information stored in the label.”
information cylinder to be cleared. Thus, if the next job requires the
same file, the label statements must be resubmitted (see Types of
Label Information, later in this chapter and Figure 5.6).

Files on Direéct Access Devices

After-you have informed the system, via the ASSGN job control statement or
command, which volume or physical device you want, you must supply the
following information to allow the creation and checking of DASD labels:

1. A description of the characteristics of the file. You specify this in the
DLBL job control statement.

2. The exact location ‘of the file on the storagé medium. You specify this
in one or more EXTENT job control statements.

3. For non-sequential DASD files the amount of storage in the partition to.
- be reserved for label processing. You specify this in the LBLTYP job -
control. statement. Since this information is nceded by the linkage
editor, the LBLTYP statement is discussed in Chapter 6: Linking
Programs.

Chapter 5: Controlling Jobs: 5.23

The tabel information you supply in the DLBL]ob control statement may
include the following:

« The name of the file. This name must be identical to the corresponding
file name specified in your program. For programs written in assembler
language this would be the name of the DTF (Define The File).

« An identification of the file which may include generation and version
numbers of the- file. This name is the one contained in the volume table
of contents (VTOC) on the storage device. It is associated with the file
name via a DLBL statement for the duration of a specific job or job
step to make programs independent of physical files.

+ The expiration date of the file.
« The type of access method used.to process the file.

e An indication of whether or not a data secured file is to be created.

A DASD file can consist of one or more data areas on one or more
volumes. For each of these data areas, called extents, you must supply the
following information on an EXTENT job control statement:

« The symbohc name of the device on which the volume containing the
filc extent is mounted.

« The serial number of this volume.

» The type of the extent. An indexed sequential file, for instance, can
consist of data areas, index areas, and overflow areas. For each of these
areas an extent must be defined, and its type (data index, or overflow)
must be specified.

« The sequence number of the extent within the file.

« The number of the track (relative to zero) on which the file extent
begins.

» The amount of space (in tracks) the file occupies.

In the following example, the program CREATE creates a sequential disk
(SD) file named SALES that is to be retained until the end of 1975. The
file comprises one extent of 190 tracks, starting on track number 1320. The
disk pack has the volume serial number 111111 and is mounted on the
drive assigned to the symbolic device name SYS005:

// JOB EXAMPLE

// BASSGN SYS005,DISK,VOL=111111

// DLBL SALES, 'ANNUAL SALES RECORDS',75/365,SD

// EXTENT SYS005,111111,1,0,1320,190

// EXEC CREATE

/&

The job control program checks the DLBL and EXTENT statements for
correctness and stores the supplied information in the label cylinder on
SYSRES for the duration of the job (see the section Editing and Storing
Label Information, later in this chapter).

5.24 DOS/VS System Management Guide

Examples for Submitting Label Information

'Here are a number of examples of how to code the job control statements
required to create or access the labels for the various types and
organizations of DASD files. It is helpful if you are familiar with the
formats of the DLBL and EXTENT job control statements as described in
DOS/VS System Control Statements. Detailed information on the possible
organizations and access methods for DASD files is given in DOS/VS
Data Management Guide.

Sequentially Organized Disk Files (Single Drive). Assume that a program
PROG100 needs a sequential disk file located on three different disk packs
that are to be mounted successively on the same device (SYS005). The file
, copsists of four extents: two on the pack with serial number 000020, one
on pack 000100, and one on pack 000006. The following job stream shows
- the label statements required: .
'// JOB SAMLABEL ‘
//. ASSGN SYS005,DISK,VOL=000020
1 // DLBL FILNAME, 'FILE ID',99/365,SD
// EXTENT SYS005,000020,1,0,1320,190
// EXTENT SYS005,000020,1,1,8,740
// EXTENT SYSQ05,000100,1,2,1275,64
// EXTENT SYS005,000006,8,3,50,636,6
.2 . // EXEC PROG100

"1 Only one DLBL. statement is required. For each extent one EXTENT
statement must be supplied in the sequence in which the extents are
processed. The last extent occupies a split cylinder to illustrate that this
is acceptable for sequential files. ’

2 Logical IOCS in PROG100 opens the first extent using the file name
- and file ID in the DLBL statement, and the logical unit and volume
serial number in the first EXTENT statement to locate the actual label
on the disk pack. After PROG100 has processed the first extent, logical
IOCS opens the second extent, based on the extent sequence number.

For the third extent, volume serial number 000100 is specified while
the volume currently mounted on SYS005 has the number 000020. The
OPEN routine of LIOCS notifies the operator of this discrepancy, and
the operator can mount the correct volume, at which time the OPEN
routine regains control.

'3 The /& statement causes the label information stored in the label
information cylinder to be cleared. Thus, if the next job requires the
same file, the label statements must be resubmitted (se¢ Types of
Label Information later in this chapter and Figure 5.6).

Chapter 5: Controlling Jobs 5.25

Files on Magnetic Tape

Sequentially Organized Disk Files (Mult,ii)le Drives). This example has the
same requirements as the preceding ’Single Drive’ example except that the
three volumes are mounted on three differert drives. The required. job
control statements are as follows:

// JOB SAMLABEL
// ASSGN SYS005,DISK,VOL=000020
// ASSGN SYS006;DISK,VOL=000100
// ASSGN SYS007,DISK,VOL=000006

1 // DLBL PILNAME,'FILE ID',99/365,SD
// EXTENT SYS005,000020,1,0,1320,190
// EXTENT SYS005,000020,1,1,8,740
// EXTENT SYS006,000100,1,2,1275,64
// EXTENT S$YS007,000006,8,3,50,636,6

2 // EXEC PROG100

1 Al label statements submitted are identical to the ’Single Drive’
example except for SYSnnn in the EXTENT statements.

2 Logical IOCS opens each extent jn the same way as described in the
"Single Drive’ example except that processing does not stop for removal
and mounting of packs, because enough devices are online to contain
the file. A combination of this and the ’Single Drive’ example could be
used to reduce handling time without excessively increasing the’ total
drive requirements. ‘

DA Files. The program PROG101 processes a direct access file consisting
of four extents contained on three disk packs. The three packs must be
ready at the same time. The following job shows the label statements

-required to process the file:

//. JOB DALABEL
// ASSGN SYS005,DISK,VOL=000065
// BASSGN SYS006,DISK,VOL=000025
// BSSGN SYS007,DISK,VOL=000002

1 // DLBL FILNAME,'FILE ID',99/365,DA
// EXTENT $YS005,000065,1,0,1320,190
// EXTENT SYS005,000065,1,1,80,740
// EXTENT SYS006,000025,1,2,50,906
// EXTENT SYS007,000002,1,3,1275,64
// EXEC PROG101

I The label statements follow the same pattern as for sequential files
(described in the preceding examples) except that (1) the DLBL
statement must specify DA to indicate direct access, and (2) split
cylinder mode cannot be used for direct access files.

Note: If program PROGI10I is an old-style DOS self-relocating progfam,

the // LBLTYP NSD(4) :statement must be included immediately
preceding the EXEC PROGI101 statement.

Files on magnetic tape can be processed with or without labels. For tape
files .with IBM standard labels, the label information must be submitted
through the TLBL job control statement. (A tape file can also have

5.26 DOS/VS System Management Guide

standérd-use,r.vor non-standard l_dbels;, for these labels no job control
statements are required. More information on-tape labels is given in
DOS/VS Data Management Guide.)

The staridard label information submitted in the TLBL statemient may
include the following:

« The name of the file. This name must be identical to the corresponding
~ filename (DTF_name) specified in your program.

« An identificatioh of the file.

« Creation date for input and expiration date (or retention period) for
output files. ' '

« The volume serial number of the tape reel that contains the file.

+ For files that extend over more than one volume, the sequence number
' ‘of the volume.

+ For volumes that contain more than one file, sequence number of the file.

« The version and modification number of the file.

When a program that processes tape files with standard labels is to be
link-edited, you must supply a LBLTYP-job control statement to define the -
amount of storage required in the partition for label processing (see also
Chapter 6: Linking Programs).

As with DASD files, the label information you supply in the TLBL job
“control statement is checked and stored in the label information cylinder on
SYSRES for further processing (see Editing and- Storing Label
Information later in this chapter).

Controlling Magnét_ic Tape Operation

The MTC job control statement or command controls certain magnetic tape
operations, for example, file positioning. Files on magnetic tape are almost
invariably processed sequentially. This means, for example, that if you have
five files on one tape reel and you want to process the last one, you have
to read four files before you can access the one you need. Since this is time
consuming, however, you can instruct the job control program to position

. the tape at any particular file.

‘The MTC job control statement dr command controls operations such
as:
« Spacing the tape backward or forward to the required file.
e Spacing the tapé backward or forward a specified number of records.
« Rewinding the tape to the beginning.

» Writing a tapemark to indicate the end of a file.

Chapter 5: Controlling Jobs 5.27

In the following example, program PROGA creates a labeled tape file
named RATES on tape volume 222222, Qt the end. of the first job step, an
MTC job control statement is used to rewind (REW) the tape to the
beginning so that the newly created file can be processed by PROGB.

.// JOB TAPE

// ASSGN SYS004,TAPE,VOL=222222
// TLBL RATES, 'MASTER',75/365,222222
// EXEC PROGA

// MTC SYS004,REW

// EXEC PROGB

Controlling Printed Output-

Most of the DOS/VS supported printers use a forms control buffer (FCB)
to control the length of forms skips. In addition, printers may be equipped
with the universal character set feature, which is controlled by a universal
character set buffer (UCB). Examples of printers equipped with these
buffers are the 3203 and 3211 printers.

The buffers of these printers must be loaded during, or immediately
after, IPL and they may have to be reloaded later between job steps or,
occasionally, while a job step using the printer is being executed.

The following methods for loading the buffers are available:
Teo load the FCB ' ’
« Automatic loading during IPL

+ Using the SYSBUFLD program between job steps or immediately after
IPL

+ Using the LFCB command
~ e Using the LFCB macro in the problem program
+ Using the FCB parameter in the POWER/VS * $$ LST statement.

To load the UCB

« Automatic loading during IPL (applies to 3203, 3211, and 5203U
printers)

o Using the SYSBUFLD program between job steps or immediately after
IPL

« Using the LUCB command
« Using the UCS command (only applies to a 1403 UCS printer).

The method of loading the buffers by using the SYSBUFLD program offers
the advantage that hardly any operator activity is involved; however,
‘loading the buffers by using the LFCB or LUCB command does not
require the operator to wait for a partition to finish processing.

When the contents of an FCB or a UCB are replaced by a new buffer
load, the system uses this new buffer load to control printed output until
the buffer is reloaded (or until the next IPL). None of the above methods ..
provides automatic resetting of the buffer load to the original contents. It
may be necessary to reset the buffer load to the original contents before

5.28 DOS/VS System Management Guide

taking a storage dump, to ensure that the dump is printed in the correct
format, without any part of it being left out,

Details on how to load the FCB‘and UCB are contained in DOS/VS
System Control Statements.

Editing and Storing Label Information

Types of Label Information

The job control program checks the DLBL, EXTENT, and TLBL
statements for correctness and stores the supplied label information in the
label information cylinder on SYSRES. When the program that processes
the file-is executed, the data management routines access the label data in
the label information cylinder.

1. to write the appropriate labels onto the storage volume, if the file is to
be created, or)

"2. if an existing file is to be processed, to check the contents of the label

infoi'mation cylinder against the label(s) of the file to ensure that the
correct volume is mounted, that no unexpired files are overwritten, etc.

Detniled information on labels and label procéssing is given in DOS/VS
Data Management Guide, DOS/VS DASD Labels,and DOS/VS Tape

Labels.

Label information can be stored in the label cyiinder either témporarily (for
the duration of one job) or permanently (until the next IPL). In addition,
label information can either be dedicated to a single partition or it can be

_accessed by all partitions.

The various types of label information are controlled by the following
three options of the OPTION job control statement:

USRLABEL

PARSTD

STDLABEL

causes all DASD, diskette, and tape label information to be

stored temporarily for one job. The label information is
accessible only by the partition in which it was submitted.
If no option is specified, or if the OPTION statement is
omitted, USRLABEL is assumed.

causes all DASD, diskette, and tape label information to be
stored permanently for all subsequent jobs. The label
information is accessible only by the partition in which it
was submitted. '

causes all DASD, diskette, and tape label information to be
stored permanently for all subsequent jobs. The label
information is accessible by all partitions but can only be
submitted in the background partition. This ensures that the
label information cylinder is not updated simultaneously by
two partitions.

Each type of label information is stored in a separate area
of the label information cylinder depending on the option
specified. This is illustrated in Figure 5.5.

Chapter 5: Controlling Jobs 5.29

The system searches the label information cylinder in the following
sequence: :

(1) user label information,
(2) partition label information, gnd_
(3) standard label informgtion.-

S et

/1 OPTION PARSTD

Label Information Cylinder

Temporary labels for BG-

Permanent labels for BG

Temporary labels for F3

Permanent labels for F3

Temporary labels for F1

Permanent labels for F1

Permanent labels for all partitions

Note: The layout of the label information cylinder
depends on the number of partitions defined in your

system. This example assumes that four partitions
are present.

// OPTION STDLABEL

Figure 5.5. Storing Label Information in the Label Information Cylinder

It is important to distinguish between (1) the period of time for which
the function of a label option is in effect and (2) the period of time for
which the label information is retained on the label information cylinder.

5.30 DOS/VS System Management Guide

For example, the label data submitted following an OPTION statement with

the PARSTD option is retained for all subsequent jobs until overwritten by
another PARSTD option, but the function of the PARSTD option is
canceled at the end of the job or job step in which it was specified. This is
shown more clearly in the summary of label options in Figure 5.6.

. s Type of label Lo
Dption information Option in effect until Label information retained For
USRLABEL2 temporary STDLABEL or PARSTD is for one job. The / &) the partition in which
specified. statement causes the the option was
temporary label area to be | specified.
cleared.S
PARSTD - permanent a) end of job step for all subsequent jobs until | the partition in which
) b) end of job i another PARSTD option is | the option was
c) USRLABEL or STDLABEL is {used.3 specified.
specified.
STDLABEL permanent a) end of job step for all subsequent jobs until | all partitions.4
i b) end of job another STDLABEL option i
c) USRLABEL or PARSTD is | is used.2
specified. . .

1 Search sequence is USRLABEL, PARSTD, and STDLABEL.
2 |f no option is given or if the OPTION statement ‘is omitted, USRLABEL is assumed.

3 Al label inforrnation submitted following a PARSTD or STDLABEL option is written at the beginning of the label area thus
destroying any previously stored information. Therefore, if you want to add label data for another file, all previously stored
label information that is to be kept must be resubmitted.

4 Label information stored with the STDLABEL option is available to all partitions but can only be submitted through
background programs.

5 Additional labe! information from a subsequent job step will overlay previous label information. .

Figure 5.6. Summary of Label Option Functions

Summary of Job Control Statements and Commands

ASSGN

The following summarizes the functions of those job control statements and °
commands needed to handle 1/0 devices and files, as discussed in the
preceding section. Also included are a number of commands that can be
used by the operator to manipulate 1/0 devices.

Note: The previous. forms of label information statements (DLAB, VOL,
XTENT, TPLAB) are still supported, except when you use 3330 or 3340
disk drives. However, when new statements are prepared, DLBL,
EXTENT, and TLBL should be used.

The ASSGN statement or command is used to connect a logical I/O unit to
a general device class, a gpecific device type, a physical device or a list of
physical devices, or another logical unit. An ASSGN ‘statement or command
can also be used:

e to specify a temporary or permanent assignment.

» to specify a volume serial number for a tape or disk.

e to specify that a disk is shareable.

e to unassign a logical unit to free it for assignment to another partition.

Chapter 5: Controlling Jobs 5.31

. to ignore the assignment of a logical unit, that is, program refc.rences to
the logical unit are ignored (useful in testing and certain rerun
. situations).

e to specify an alternate tape umt to be used when the capacity of the
original is reached.

The assignment routines check the operands of the ASSGN statement/
.command for the relationship between the physical device, the logical unit,
the type of assignment (permanent or temporary), etc. The following list
summarizes the most pertinent items to remember when making
assignments:

1. Assignments are effective only for the partition in which they are
issued.

2. Apart from the operator console, no physical device except DASD czn

“be assigned to more than one active partition at the same time.

3. All system input and output file assignments to disk or diskette must be
permanent.

4. SYSIN must be assigned if both SYSRDR and SYSIPT are to be
assigned to the same extent.

5. SYSOUT cannot be assigned to disk or diskette; it must be a
permanent assignment if assigned to tape.

6. SYSLNK must be assigned before issuing the LINK or CATAL option
in the OPTION statement; otherwise, the option is ignored and the
message 'PLEASE ASSIGN SYSLNK’ is issued to the operator.

7. If SYSRDR, SYSIPT, SYSLST, or SYSPCH is assigned to tape,
diskette, or disk when the system is generated, it will be unassigned by
IPL. Such assignments can be made effective only with the job control
ASSGN statement or command, because ASSGN also opens the file.

8. Before a tape unit is assigned to SYSLST, SYSPCH, or SYSOUT, all
previous assignments to this tape unit must be permanently unassigned.
This may be done by using a DVCDN command instead.

9. The assignment of SYSLOG cannot be clianged while a foreground
partition is active.

10. SYSRES, SYSCAT, and SYSVIS can never be assigned by an ASSGN
statement or command. An IPL is required to change these .
assignments.

RESET The RESET statement or command can be used to reset temporary
. assignments (o standard or permanent With one RESET statement or
command you can reset :
« all logical units, or
« all system logical units, or
« all programmer logical units, or
» one specific system or programmer logical unit.

The RESET statement is effective only for the partition in which it is
issued.

5.32 DOS/VS System Management Guide

LISTIO

DVCDN

DVCUP.

DLBL
EXTENT

TLBL

MTC
LFCB

 LUCB

Executing a Program

With the LISTIO statement or command you can obtain a listing of the
current status of all 1 / O assignments in your system.

The DVCDN (device down) command informs the system that a device is
no longer physically available for system operations.

When the device becormes available again for system operations a

"DVCUP (device up) command must be given before new assignments can

be made.

The DVCUP (device up) command informs the system that a device is
available for system operations after it has been down.

One DLBL statement is required for each DASD or diskette file to be
processed. This statement and its associated EXTENT statement(s) are
used for checking or creating DASD and diskette file labels.

© One extent statement must be supplied for each area (extent) of a DASD

file or each volume of a diskette file. The EXTENT statement(s) must

" follow the associated DLBL. statement.

For tape files with standard labels, a TLBL statement must be supplied for
checking or creating the standard label.

The MTC statement or command can be used to control magnetic tape
operation. For example, a tape can be rewound to the beginning or it can
be positioned to a certain file or record. .

The LFCB command causes the system to load the specified FCB image
from the core image library into the FCB of the printer for which the
command was issued.

The LUCB command causes the system io load the épecified UCB image
from the core image library into the UCB of the printer for which the
command was issued.

After you have properly defined the 1/0 requirements of your program to
the system you can instruct job control to prepare your program for
execution. How this is done and how the supplied information is processed
is described in the following section. ‘

Chapter 5:-Controlling Jobs 5.33

Assembling, Link-Editing, and Executing a Program

In DOS/VS, three processing stebs are necessary to obtain results from a
_problem program once the source program has been written:

1. Aséembly or compiling of the source program into an object module.
(Object modules are discussed in Chapter 6: Linking Programs.)

2. Link-editing of the object module to form an executable program phase
(see Chapter 6: Linking Programs).

3. Execution of the program phase.

Each of these steps is initiated by the job control program in response to an
EXEC job control statement. The EXEC statement must be the last of the
job control statements submitted for any one job step. Figure 5.7 shows an
example of the job control statements needed to assemble, link-edit, and
execute a source program.

// JOB EXECUTE
// OPTION LINK
// EXEC- ASSEMBLY
// LBLTYP

// EXEC LNKEDT
// EXEC

/&

1 To link-edit and execute a program in the samee\job, the LINK option
must be specified in the OPTION job control statement.

W =

2 The assembler is fetched from the core image library and stérts
execution.

3 The linkage editor is fetched from the core image library and starts
execution.

14 If an EXEC statement without a program.name is encountered, the
program last stored (if stored within the same job) in the core image
library by the linkage editor is fetched for execution (see also
Preparing Programs for Execution). '

Figure 5.7. Job Control Statements to Assemble, Link-edit, and Execute a
Program in one Job

If SYSRDR and SYSIPT are assigned to the same device, and yop wish
to submit data to your program via SYSIPT, the data cards must follow the
corresponding EXEC. job control statement. For example, the data
processed by the assembler is your source program which must follow the
// EXEC ASSEMBLY statement. The end of the input data submitted for
one program must be indicated by a /* (end-of-data) statement. The /*
statement is not processed by job control but is read by the processing
program. (Note: For an input file on an IBM 5424 MFCU, the /*
card must be followed by a blank card.) The placement of input data
and the /* statement is shown in Figure 5.8.

5.34 DOS/VS System Management Guide

// JOB INPUT
// OPTION LINK
// EXEC ASSEMBLY

source program

/%

// LBLTYP

// EXEC LNKEDT
// EXEC

input data for user program

/*
/8

Figure 5.8. Submitting Input Data on SYSIPT

How the job shown in Figure 5.8 is processed by the system is
illustrated in Figure 5.9. The inclusion of SYSIPT data in job streams in
the procedure library is described in the section SYSIPT Data in
Cataloged Procedures. 4

1 Job control reads the JOB statement and stores the job name in the
communications region in the supervisor. Other functions of the JOB
statement are described under Defining a Job, earlier in this chapter.

2 Job control reads the OPTION statement with the LINK option and
sets the LINK bit in the supervisor. This indicates

a) " to the assembler, that the assembled object module is to be written
onto SYSLNK,

b) to the linkage editor, that the executable program is to be stored in
the core image library only temporarily for execution in the same job.

3 - On encountering the // EXEC ASSEMBLY statement, job control
transfers control to the supervisor passing it the name of the assembler
program.

4 ' The supervisor loads the assembler into the partition, overlaying job
control.

5 The assembler reads the source program, assembles it, and stores the
object module on SYSLNK (not shown).

The assembler transfers control to the supervisor.
7 The supervisor loads job. control into storage, overlaying the assembler.

Job control reads the // EXEC LNKEDT statement and transfers
control to the supervisor, passing it the name of the linkage editor.

9 The supervisor loads the linkage editor into storage, overlaying job
control.

Chapter 5: Controlling Jobs 5.35

Input on SYSIN Any Partition Supervisor .' Core image Library

408 CONTROL -
/1308 INPUT : - @ — INPUT
// OPTION LINK o — LINK _ _/
/1 EX-EC ASSEMBLY - @ TS ASSEMBLY o . -
ASSEMBLER - ' ASSEMBLER
| -
source program § —————— ——-—o [LINK |
' 1T T ® JOB CONTROL
/o o ' J0B CONTROL e e :
1/ LBLTYP . ~ 7 TINK

/] EXEC LNKEDT —+— Q==

LNKEDT () ——
:) LINKAGE EDITOR

T EXECUTABLE USER
LINK [— J—
@—1= rrocram _

JOB CONTROL

JOB CONTROL

1/ EXEC ® .
: EXECUTABLE USER
| PROGRAM
input data 0
JOB CONTROL

/. . - JOBCONTROL‘ m
a 0 —

N

e Transfer of data

5> Transfer of control

o) Loading from core image library

Figure 5.9. System Operation of an Assemble, Link-Edit and Execute Job

10 The linkage editor reads the object module from SYSLNK and
link-edits it.

11 The linkage editor stores the executable program in the core image
library.

12 The linkage editor transfers control to the supervisor.
13 The supervisor loads job control into storage.
14 Job control reads an EXEC statement without a program name.

15 The program last stored in the core image library by the linkage editor
to be loaded and executed. (See also Preparing a Program for Execution).

5.36 DOS/VS System Management Guide

16 The user program is executed. It reads and -processes the data from
SYSIPT and at EOJ relinquishes control to the supervisor.

17 The supervisor loads job-control.

18 When job control reads they & statement, it cancels the LINK option
and replaces the jobname by NONAME in the communications region. -
‘Other functions of the / & -statement are described under Defining a Job,
earlier in- this chapter.

EXecuting Cataloged Programs

Programé can be cataloged permanently in the core image library after they -
have been assembled and link-edited. This saves assemblmg and lick-editing
thé program for every run.

Cataloging into the core image library is done by the linkage editor in
response to an OPTION job control statement with the CATAL option (see
Chapter 6: Linking Programs)

To execute a cataloged program you-use an EXEC job control
* statement specifying the name under which the program was cataloged (as
shown for the assembler-and linkage editor in the preceding example).

-For example, the following job executes a program that was cataloged
in the core image library under the name PROGA; data cards are submitted
on SYSIPT:

// JOB CAT

assignment and label
statements, if required

// EXEC PROGA .
input data

/5
iz

// OPTIONLINK Linkage Editor

@ Uses the information in the library descriptor entry of the core lmage
directory for cataloged phases to determine the first available block in
the core image library.

Stores the phase in the core image library.

@@

Updates-the library descriptor entry of the core image directory for
linked phases to indicate the first phase Tlink-edited in the job step (in
case of multiple phases).

Makes a directory entry in the core image dlrectory for linked phases,
msertmg this entry in alphamenc sequence (in case of multiple phases).

| 6

" Chapter 5: Coritrolling Jobs 5.37

7/EXEC Job Control

Uses the information in the library descriptor entry of the core image
directory for linked phases to check whlch phase was the first link-edited
and passes this information to the superv1sor, which loads this phase mto
the. partition. '

Note: The next phase link-edited (OPTION - LINK or OPTION CATAL)
‘into the core image library will overwrite the one just temporarily stored. -

/7 OPTION CATAL Linkage Editor ,
@ }Same as for OPTION LINK.

@

: Updates the library descriptor entry of the core image directory for
cataloged phases to indicate the first phase link-edited in the job step
(in case of multiple phases).

. Updates the library descriptor entry of the core image directory for
" cataloged phases to indicate the new address of the next available block
in the core image library.

Makes a directory entry in the core image directory for cataloged
phases, inserting this entry in alphameric sequence.

/ / EXEC NAME Job Control
Locates the corresponding entry in the core image directory for cataloged
phases and passes this information to the supervisor, which loads the phase
into the partition.

Note: If no phase name is specified in the EXEC card, job control uses
the information in the library descriptor entry of the core image directory
for cataloged phases to check which was .the first phase link-edited in -
this job step.

5.38 DOS/VS System Managément'Guide

SYSRES

SYSTEM DIRECTORY

DIRECTORY FOR
CATALOGED PHASES

DIRECTORY FOR
LINKED PHASES

CORE IMAGE LIBRARY

Figure 5.10. Preparing the Loading of Temporarily and Permanently Stored Programs

The core image directory comprises two directories: one for cataloged phases,” and one for linked phases. The
directory for linked phases begins at the first unused track of the core image directory.

Chapter 5: Controlling Jobs 5.39

Prepanng Programs for Execution

Before any program can be executed it must be stored in the core image
library by the linkage editor.' Programs are ‘stored either temporatily or .
permaneéntly, depending on the option speclﬁed in thé’ OPTION job control .

- statement:

« If the LINK option is specified, the progrum is stored temporarily for
- immediate execution, in the same job. This program will be overwritten
by the next program that is link-edited.

« If the CATAL option is specified, the program is stored permanently

" and can be executed any time after the catalog job. It can be deleted
only by the library maintenance program (see Chapter 7: Using the
Libraries), or by another program cataloged with the same name.

These two situations require different preparations for the loading of a
program into a partition Figure 5.10 shows the functions performed by the
linkage editor and the job control program to. load programs into storage.

Defining Options for Program Execution

In the preceding section, it was shown how the OPTION job conl trol
_statement can be used

« to specify the type of label 'information to be stored for a file
(USRLABEL, PARSTD, STDLABEL options), and

« to define whether a link-edited program is to be stored temporarily or
permanently in the core image library (LINK, CATAL options)

_There are a number of additional functrvns which you can mvokc, through
the OPTION job control statement. The most lmportant ones-are:

« To log all job control statements submitted to the system on SYSLST.
"~ This faciliates diagnosing the]Ob control statements in case of an error.
The optnon is LOG.

« To dump the contents of the registers, the supervisor area, and the
' current partition (real or virtual) on SYSLST in case of abnormal
program termination. This is useful for debuggmg The optlon is

DUMP.

-+ To cancel a job if-an I/O assignment cannot be performed. The option
+ is ACANCEL. (Note: If this option is suppressed control is passed to
the operator.)

-» To put an object deck on SYSPCH. The object module can ‘then be
combined with other object modules by the linkage editor to form one
executablée program, or it can be used as input to the library
maintenance program to catalog it into the relocatable library. The
option is DECK.

e To print various listings produced by the language translators on
SYSLST. These listings include object code, symbol table,
cross-reference, and error lists which are useful debugging aids during
the test period of a program. Among the possible ‘options are LIST
LISTX, SYMA, and XREF.

5.40 DOS/VS System.Management Guide

Each of these options can be suppressed by specifying the prefix NO (for
- example, NOLIST, NODUMP). A complete list of the avallable options is
given in DOS/ VS System Control Statements.

You can establish a standard set of these options during supervisor
generation by using the STDJC macro. Standard options are valid for all
jobs unless superseded by an OPTION job control statement. Options
speclfned in an OPTION statement remain in effect until (1) a contrary
option is read or (2) a JOB or / & statement is encountered which resets
the optlt;h to standard '

Communicating with. Prbblem Programs via Job Control

- Via job control a problem’ program can take a specific path of action
dependent on some external event. Such an instruction is given at job
control time by setting program switches in the communications region
which can be tested by the problem program at execution time.

 For example, an accounting program that prepares reports of daily,
weekly, and monthly accounts can be instructed through these program
switches when the weekly or monthly reports are due.

The program switches are set at job control time by the UPSI (user
program switch indicator) job control statement. The specific meaning
attached to each bit in the UPSI byte depends on the design of the problem
program. When a JOB or / & statement is encountered, the UPSI byte is
reset to zero:

"Controlling Jobs in a Multiprogramming System

After IPL, the job control program is always loaded autcmatically into the
virtual background partition. It is loaded into a foreground partition in
response to a BATCH or START command issued by the operator and

- specifying the required partition. (More information on the operator
commands that control partitions is given in DOS/VS Operating
Procedures.) -

A program is always loaded into the partition in which job control was
loaded (or in the corresponding real partition).

If the program is relocatable and the relocating loader is supported in
. the system, the program can run in any partition. If the program (or single
phase) is reenterable and resident in the shared virtual area, it can be
shared by programs in more than one partition.

" ‘The relocating loader and self-relocating programs are discussed in
Chapter 6: Linking Programs.)

Chapter 5: Controlling Jobs 5.41

Reserving Storage for VSAM

Reserving Storage for RPS

The VSAM modules can be loaded into the shared virtual area (SVA). The
SVA must be large enough to accommodate not only the VSAM modules.
The size of the SVA can be specified in the SVA parameter of the VSTAB
macro during supervisor generation. This specification can be overridden by
the SET SVA command issued immediately after IPL.

The method of overriding the SVA size after IPL is illustrated in
Building the SDL and Loading the SVA in Chapter 4: Starting the
System. The exact sizes necessary to accommodate VSAM can be found in
DOS/VS System Generation.

For programs using RPS (rotational position sensing), part of the virtual
partition in which the program is to be executed must be reserved to
accommodate the RPS DTF extensions. This is done by the SIZE parameter
of the EXEC job control statement. These DTF extensions vary in size
from a minimum of 256 bytes to a maximum of 512 bytes.

Example of a program requiring 75K:

// JOB WEEKLY

// }EZXEC WEEKEND, STZE=AUTO

/&

If the job WEEKLY runs in a virtual partition of 100K, the program

. WEEKEND will occupy 76K as calculated by the system, while the

remaining 24K are reserved as an additional storage pool, also available to

RPS support for DTF extensions.

The RPS versions of logic modules are loaded into and executed out of
the SVA. The SVA must be large enough to accommodate the RPS versions
of the logic modules and the GETVIS area of the SVA must have an
additional 2K for the LDL (local directory list) used by RPS. (The ‘
GETVIS area must have this 2K space even if all the RPS logic modules
are preloaded into the SVA.) The sizes of the SVA and of the GETVIS
work area can be specified in the SVA parameter of the VSTAB macro
during supervisor generation. This specification can be overridden by the
SET SVA command issued immediately after IPL.

The RPS versions of the logic modules are contained in the core image
library of the distribution medium. They can either be loaded into the SVA
at TPL time or loaded dynamically as needed into the GETVIS area in the
SVA at execution time. For a user who lpads frequently used RPS versions
of the logic modules into the SVA at IPL time, a typical specification might
be SVA=(88K,12K) for the SVA and GETVIS arca, respectively. While
this might be a typical value, it is not intended to be totally representative
of every RPS situation.

5.42 DOS/VS System Management Guide

~[f there is iﬁsuff_icient virtual storage in either the user area, fOf the
DTF extension, or in the GETVIS area of the SVA for the RPS vession of

“the' logic module, the file:will be opened without RPS support and

Teleprocessing 'Balancitig

processing will continue.

The use of teleprocessing and batch processing at the same time may
occasionally result in long or erratic-teleprocessing response times. This may
be especially true if you have overcommitted real storage, thus causing

. excessive paging. The teleprocessifig application may have to compete so

strongly for. real page frames (because of high processing activity in the
batch partitions) that response time increases substantially.

'Telepréceséing‘balancing improves response time. by trading off
teleprocessing response time against batch throughput. TP balancing tends
to reduce response times, or at least. to stablize them.

After IPL, TP balancing can be activated by the operator’s issuing the
TPBAL command, which specifies the number of batch partitions that can
tolerate delayed processing. These will be the lowest priority partitions. The
TPBAL command is also used to change or display the- current setting. For

more information, see the DOS/VS Operating Procedures.

'Restarting a]Program from a

Once activated, the TP balancing function can be’ invoked by using
TPIN/TPOUT macros. Réfer to Balancing Teleprocessing in Chapter 9:
Designing Programs for Virtual-Mode Execution for more details.

Checkpoint

- When you expect a program to "rur_i for an extended period of time, you can

make provisions for taking checkpoint records periodically during the run.
These records contain the status of the job and system at the time the
records were written. Thus, they provide a means of restarting at some
point rather than at the beginning of the. job if, for any reason, processing
is terminated before the normal end of the job.

Checkpoints are taken by means of a macro which you specify in your
source program. How this is done is described in Chapter 10: Using the

. “Facilities. and Options of the Supervisor. To restart a program from a

checkpoint the RSTRT. job control statement is used. The sequence of job
control ‘statements that must be-submitted to restart a program is as
follows:

1. A JOB statement specifying the jobname uscd when the checkpoints
were taken. ’

2. ASSGN statements, if necessary, to establish the 1/0 assignments for
the program that is to be restarted.

v 3. A RSTRT statement specifying

a) the symbolic name of the tape or disk device on which the
checkpoint records are stored,

b) the sequence number of the checkpoint record to be used for
© restart,

Chapter-5: Controlling Jobs 5.43

¢) for checkpoint records on disk, the filename. (DTF name) of the
checkpoint file. '

4. An end-of-job (/ &) statement.

Figure 5.11 shows the sequence of job control statements needed to restart
a checkpointed program that ended abnormally due to, for example, a
power failure. Following are the characteristics of the checkpointed program
that must be considered for restart: ‘

« The job name specified in the JOB statement was CHECKP; the same
name must be used for restart.

« The checkpoint records were written on magnetic tape; therefore, no
filename need be specified in the RSTRT statement. ‘

« The symbolic device name SYSO()s was used for the checkpoint file;
‘this name 'may be different for restart.

« The sequence number of the last checkpoint record written was 0013;
this or any previous checkpoint record can be used for restart. (The
-- sequence numbers are supplied by the checkpoint routine.)

// JOB CHECKP

// ASSGN SYS006,X'380"' CHKPT TAPE
// ASSGN ... '

// ASSGN ...

// RSTRT SYS006,0013

/& :

Figure 5.11. Example of a RESTART job

Additional restart considerations are given in Chapter 10: Using the
Facilities and. Options of the Supervisor..

Programs that reserve virtual storage with the SIZE operand of the
EXEC job control statement, and allocate this storage with the GETVIS
macro instruction, should checkpoint the full virtual partition to ensure a
valid restart. Programs using VSAM, the ISAM interface program, or
Access Method Services should checkpoint the full virtual partition. since
these programs use the reserved virtual storage. Programs using RPS
zsupport for SAM, DAM, ISAM, and VSAM must checkpoint the entire
virtual partition. In addition, any RPS [/O phases to be used by the

. checkpointing program must be preloaded into the SVA. (See Saving Data
for Restart in Chapter 10: Using the Facilities and Options of the
~Supervisor for -additional Checkpoint/Restart considerations.)

Executing in Virtual or Real Mode

All programs invoked for execution through an EXEC job control
statement are executed in virtual mode in the same virtual partition as the
job- control program. You can, however, force a program to run in real
mode, that is, the program is executed in a real partition and no paging is
performed. To run a program in real - mode, you must specify the REAL
operand in the EXEC statement. Example: '

5.44 DOS/VS Systemn Management Guide

/7 JOB NAME

// EXEC PROGR, REAL
/& -

If, for the above .example, job control runs in virtual partition F2, then
the program PROGA will be loaded and executed in real partition F2. This
requires that the real partition F2 be large enough to hold the entire
program PROGA. For all the considerations for enabling a program to run

. in a real partition see Chapter 6: Linking Programs.

If a program’ in real mode is smaller than its associated real partition
the unused portion of that partition, should be given to the page pool by
specifying the size of the program in the SIZE operand of the EXEC
statement. Example: '

// JOB- NAME

(

// EXEC PROGA, REAL SIZE=30K
/8

If the program PROGA which is 30K bytes long runs in a 50K real
partition, the remaining 20K bytes of that partition will be given to the
page pool

If you specify SIZE=AUTO job control automatically uses the
‘information in the core image directory entry to calculate the size of the
program to be loaded. If you specify SIZE=(AUTO,nK) job control adds

- nK bytes to the calculated length. This is especially useful for programs that
dynamical]y allocate storage during execution (such as compilers).

hunnmg programs in real mode implies temporarily forfemng a number
of page frames in the page pool, which may lead to degradation of system
throughput. Therefore, real mode execution should be used sparingly.

If phase names are present in the system directory list, a main page
pool of at least 4K bytes must be avdilable. If phases resident in the shared
virtual area are to be executed, a main page pool of-at least 16K must be
available.

With a few exceptions,-all IBM-supplied and user-written programs can
be executed under DQS/VS either in virtual or real mode. These exceptions
‘are listed in the following two sections.

Programs that Must Run in Virtual Mode
l Besides job control, which always runs in a virtual partition, POWER/VS

and all programs using VTAM, VSAM, the ISAM interface program,
Access Method Services, or RPS support must be executed in virtual mode.

Programs that Must Run in Real Mode

- The IBM-supplied programs OLTEP and the QTAM message control and
" message processing programs must be executed in real mode.

L

Chapter 5: Controlling Jobs 5.45

User-written progiams must be executed in real mode if they contain
channel programs for devices not supported by DOS/VS.
User-written programs must be executed in real mode or modified if »they .
. contain channel programs that are modified during command execution.
« contain I/O appendage routines causing page faults.

« contain MICR stacker selection routines or other time-dependent code
for execution of 1/0 requests.

Summary of Job Control Statements and Commands

EXEC

OPTION

The following summarizes the job control statements and commands
discussed in this section in relation to program execution.

The EXEC statement indicates that the end of control information for a
job step has been réached, and that execution of a program is to start. It is
the last job control statement processed before a job step is executed.

If the program to be executed has just been processed by the linkage
editor, the program name operand of the EXEC statement is blank,

To execute a program that is permanently cataloged in the core image
library, the EXEC statement must specify the name of the first or only
phase of that program.

All.programs invoked through an EXEC statement are executed in
virtual mode unless the operand REAL is specified. The SIZE parameter of
the EXEC job control statement defines the low-end portion of the
partition which will be used during the job step. When the REAL operand’
is used, SIZE should also be specified to release the remainder of the
partition to' the page pool. SIZE must be specified for virtual mode
programs that require the use.of the GETVIS macro to obtain additional
virtual storage during execution.)

In response to an EXEC statement with the REAL operand, job
control clears storage from the beginning to the end of the partition, a
FETCH is issued for the desired program, and control is given to its entry
point. When both REAL and SIZE are specified in the EXEC statement,
only the portion of the real partition defined by SIZE is cleared:

(During execution of a virtual-mode program, the page management
routine of the supervisor clears a page frame to zero if no page-in occurs
when this page frame is assigned to the program.) - ' '

The OPTION statement can be used to specify certain functions (options)
to be performed by the system when a program is executed. Most of these
functions pertain to the execution of the language processors.

A standard set of options can be established during system generation
by the STDJC macro. If these standard options satisfy the requirements of
your job, an OPTION statement is not needed. Exceptions are the options -
LINK, CATAL, PARSTD, and STDLABEL, which cannot be standard and
must, if desired, be specified in an OPTION statement.

5.46 DOS/VS System Management Guide

RSTRT The RSTRT statement is used to restart a program from<;Fcheckpoint.

UPSI The UPSI (user program switch indicator) statement ¢an be used to set
program switches in the communications region that can be tested by the
problem program. The switches (UPSI byte) are reset to zéro by a JOB or
/ & statement. '

Checking and Altering Job Control Statements

It is often desirable to exercise a certain measure of control on the initiation
of a job step. To this end a facility is provided which enables you to keep a
running check on how a job step is executed, thereby enhancing security,
serviceability, and reliability. After a job control statement has been read,
control can be passed to a user exit routine for the purpose of examining
and altering the statement prior to its being processed by the system.

The DOS/VS distribution volume contains a dummy phase $JOBEXIT
in the system core image library. If you do not use the Job-control-exit
facility, it has no effect-on your system. For more information on the
conventions for writing such a job control exit routine, together with an
example, refer to Writing a -Job Control User Exit Routine in Chapter
10: Using the Facilities and Options of the Supervisor.

System Files on Tape, Disk or Diskette

In the section Symbolic 1/0 Assignment, earlier in this chapter, it was
stated that a physical [/O device (except DASD) cannot be assigned to
more than one active partition at the same time. This means, for instance,
that in an installation with only one card reader the input job stream on
SYSRDR and SYSIPT for onc partition must-have been completely
processed by job control and unassigned for that partition before job
streams can be read by another partition. This also applies to the system
output on SYSLST and SYSPCH if only one printer and one card- punch
are available.

Since this situation can cause a considerable decrease of system
throughput, DOS/VS permits storing the input job streams and the system
output on a direct access device or, if enough tape units are available, on
magnetic tape. This allows several partitions simultaneously to read system
input from or to write system output to high-speed devices, thus increasing
system throughput and, due to reduced CPU wait time, improving the
overall performance.

The following section describes how to store system input and output
on high-speed devices and to read and process the job streams from these
devices.

The same improvements as those gained by having system files on
high-speed devices - but far more efficient and easier to use - can be
achieved by using an optional service program of DOS/VS: POWER/VS.
POWER/ VS stores the job streams on disk, transfers the jobs to the

Chapter 5: Controlling Jobs 5.47

System Files on Tape

- partitions for execution, and stores list and punch output on disk before it

is finally printed or punched. In short, everything described in this section is
done automatically by POWER/VS. Thus, if your installation works with
POWER/VS, the following paragraphs may not be of interest to you. Refer
to Chapter- 8: Using POWER/VS, to the section Generating POWER/VS
in Chapter 3: Planning the System, and to the section POWER/VS in
Chapter 1: Understanding ine System.

If the system input units SYSRDR and SYSIPT are assigned to the same
magnetic tape unit, they may (but need not) be referred to as SYSIN. If the
system output units SYSLST and SYSPCH are assigned to the same
magnetic tape they must be referred to as SYSOUT. The tapes may be
unlabeled or they may have standard labels. SYSIPT assigned to a magnetic
tape cannot be a multi-volume file.

To store the input stream on magnetic tape yoti must write your own
program that transfers the job stream to the tape. Assume, in the following
example, that you have written such a program and cataleged it in the core
image library under the name CDTOTP; the program CDTOTP uses
SYS004 to read the input job stream, and SYS005 for the tape onto which
the job stream is to be written; the end of input data for CDTOTP is
indicated by **. The example in Figure 5.12 shows how to use the program

" CDTOTP to create a combined system input file on tape.

// JOB BUILDIN
1 // ASSGN SYS004,X'00C'
2 // BSSGN SYS005,X'182'
3 // EXEC CDTOTP

// JOB A -

// JOB B job stream

/e
4 **
/&
1 SYS004 is assigned to the card reader from which CDTOTP reads the
" job stream.
2 SYS005 is assigned to the tape which is to reccive the job stream.

3 The CDTOTP program is executed and writes the job stream onto
. tape_ . B
4 ** signals end-of-data to CDTOTP

Figure 5.12. Creation of SYSIN on Tape

After completion of the job BUILDIN shown in Figure 5.12 you can
assign SYSIN to the tape containing the job stream; job control will then
read and process the jobs A and B from the tape just as it would have done
from the card reader.»

5.48 DOS/VS System Management Guide

System Files on Disk

" In the same way you can direct the system output on SYSLST and

.SYSPCH to go on magnetic tape and then use your own or an

. IBM-supplied program to print or punch the contents of the tape on the

_printer or card punch, respectively.

System files on disk can be used only if the SYSFIL parameter was

specified in the FOPT macro during supervisor generation. Systems without
tape units should speclfy the SYSFIL parameter to facilitatc system
maintenance.

If the system input units SYSRDR and SYSIPT are assigned to the
same disk exent, they must be referred to as SYSIN. Since the output units
SYSLST and SYSPCH have different record lengths, they must be assigned -
to separate disk extents; SYSOUT can therefore not be used if SYSLST
and SYSPCH are assigned to disk..

For system files on disk, you must provide the required label
information by means of DLBL and EXTENT job control statements. You
must use the following predefined filenames when reading system mput
from disk or writing system output on disk:

IJSYSIN for SYSRDR, SYSIPT, SYSIN
IJSYSPH for SYSPCH
TISYSLS for SYSLST

For example, the label information for. SYSIN assigned to a disk extent
could be submitted by the following job control statements:

// DLBL IJSYSIN, 'DISKINFILE':¢
// EXTENT SYSIN,DOSRES,1,0,1260,30

The assignment of a system file to a dlSk extent must always be
permanent (no //), and it must follow the DLBL and EXTENT statement.
Example:

// DLBL IJSYSIN DISKINFILE'

// EXTENT SYSIN,DOSRES, 1,0,1260,30
ASSGN SYSIN,X'131'

. After a system file on disk has been processed, it must be closed by a
CLOSE job control command (no //). The second (optional) operand of
the CLOSE command can be used to unassign a system logical unit or .
reassign it to another device. The following command closes the SYSIN file

“on disk and reassigns SYSIN to the card reader:

CLOSE SYSIN,X'0oOoC'

The CLOSE command can either be entered oﬁ SYSLOG by the operator
or it can be included at the end of the job stream on disk.

The example in Figure 5']3 shows the job control statements needed to . -

1. write a job stream on disk,

2. execute the job stream from disk and store ‘the print output on dlsk
~ and

3.. print the butput from disk on the printer.

Chapter 5: Controlling Jobs 5.49

The example assumes that you have written your own programs to write the
job stream on disk (CDTODISK) and to list on the printer the print output
stored on disk (DISKTOPR).

@ | /308 STORE
/1 ASSGN SYS001,X'00C’

/ / ASSGN SYS006,X'190'

/ / DLBL DASDOUT, ‘DASDOUTFILE’

/1 EXTENT SYS006,DOSRES, 1,0,1260,30
/ / EXEC CDTODISK

.
/13088

" JOB STREAM
% CLOSE SYSLST,X'00E’ li%EMcgEiD

. CLOSE SYSIN.X'00C"

LR

@ //DLBL 1JSYSLS,’OUTPR’
] //EXTENT SYSLST,PVRLSL,1,0,1970,20
ASSGN SYSLST; X191’

// DLBL 1JSYSIN,'DASDOUTFILE’ PRINT
// EXTENT SYSIN,DOSRES,1,0,1260,30 ouUTPUT
ASSGN SYSIN, X 190’

: @ /1 JOB PRINT

// ASSGN SYS001,X'191°
/ / ASSGN SYS002,X'00E’
// DLBL OUTPR

// EXTENT SYS001,PVRLSL,1,0,1970,20 : PRINTED
/ 1 EXEC DISKTOPR LISTING
/&

The program CDTODISK reads the following job stream from the card reader (SYS001) and stores it on disk (SYS006).
The end of the job stream is indicated to CDTODISK by **

@ SYSLST and SYSIN are switched to disk. Job control now reads the job stream from the disk on device X'190'.
The job stream is executed and the print output is stored on the disk on device X'191°. The CLOSE commands at
the end of the job strearmn will close the system files on disk and reassign them to the printer and card reader, resp.

@ The program DISKTOPR reads the print output from disk (SYS001) and lists it on the printer (SYS002).

Figure 5.13. Processing System Input and Output Files on Disk

5.50 DOS/VS System Management Guide

System Files on Diskette

System files on diskette can be used only if the SYSFIL parameter was

" specified in the FOPT macro during supervisor generation.

If the system input units SYSRDR and SYSIPT are assigned to ‘the
same diskette extent, they must ‘be referred to as SYSIN. Since the output
units SYSLST and SYSPCH have different ‘record lengths, they must be
assigned to separate diskette extents; SYSOUT can theréfore not be used if
SYSLST and SYSPCH are assigned to diskette.

For system files on diskette, you must provide the required label
information by means of DLBL and EXTENT job control statements. You
must use the following predefmed filenames when reading input fl:om
diskettes or writing system output on diskettes.

IJSYSIN FOR SYSRDR, SYSIPT, SYSIN

1JSYSPH for SYSPCH

IJISYSLS for SYSLST
For example, the labe! information: for SYSIN assigned to a diskette extent
could be submitted by the following job control statements:

// DLBL IJSYSIN, 'DISKETTE'
// EXTENT SYSIN,DSKETE,1

The assignment of a system file to a diskette extent must always be

permanent (no //), and it must follow the DLBL and EXTENT statement.

Example:

// DLBL IJSYSIN, 'DISKETTE'
// EXTENT SYSIN,DSKETE, 1
ASSGN SYSIN,X'060'

After a system file on diskette has been processed 1t must be closed by

~a CLOSE job control command (no //). The second (optional) operand of

the CLOSE command can be used to unassign a system logical unit or

-réassign it to another device. The following command closes the SYSIN file

on diskette and reassigns SYSIN to the card reader:

CLOSE SYSIN,X'00C'

The CLOSE command can either be entered on SYSLOG by tﬁe operator
or it.can be included at the end. of the job stream on diskette.

If SYSIPT is assigned to a 3540 diskette, a CLOSE command must be
issued prior to reading the / & . Multiple input data files can be read via
multiple job steps with one / & at the end of the job stream.

When job control encounters / & on SYSRDR during normal
operation, the standard assignment for SYSIPT becomes effective and
SYSIPT is checked for an end-of-file condition."If the standard assignments
for SYSRDR and SYSIPT are¢ not to the same device, SYSIPT is advanced -
to the next / & statement.

In the event of an abnormal termination, job control advances SYSRDR
and SYSIPT to the next /& and proceeds, only if a JOEstatement is -
provided.

Chapter 5: Controlliﬁg'.lob's 5.51

Interrupting Job Streams on Disk, Diskette, or Tape.

After a SYSIN or SYSRDR job stream has been prepared on tape, diskette,
or disk, it may be necessary to interrupt the normal schedule to execute a
special rush job. To do this, you press the request key on the operator
console and enter a PAUSE command with the EOJ operand causing the
corresponding partition to suspend processing at the end of the current job.
At this point you can make a temporary assignment for SYSIN to the card
reader to execute the rush job. At the end of this job, processing of the job
stream on disk, diskette, or tape will resume at the point of interruption.
This is illustrated in Figure 5.14. Starting an urgent job that uses a catalog
procedure by means of a single EXEC statement is discussed in the section
Partition-Related Cataloged Procedures.

Coard Reeder DOisk Extent Operator Console

_//DLBL LSYSIN, ...
/1 EXTENT SYSIN, . ..
ASSGN SYSIN,X'191" 117 > /1308 A

& @

/15088

Press request key and enter
PAUSE xx, EOJ
~ where xx is the nama of the partition

1/ ASSGN SYSIN,X'00C’

&
Lo\ . ’)
7 pa 04 (6> CLOSE SYSIN,X'00C
&
/1408 E
T

) @ SYSIN is assigned to disk and processing of the jobstream on disk begins.
@ White job B is being executed a PAUSE command is entered at the operator console.

At the end of job B control comes to the operator who can now enter a temporary assignment for
SYSIN to the card reader.

The job» RUSH is read and processed from the card reader. Note that the temporary assignment of
SYSIN is not reset by the / / JOB RUSH statement but is retained to end of the job.

The/& resets the temporary assig: of SYSIN to permanent (X'190') and the next
job in the stream on disk is read and executed.

o The CLLOSE command closes the system file on disk and reassigns SYSIN to the card reader to
process jobs D and E. :

Figure 5.14. Interrupting a Job Stream on Disk

5.52 DOS/VS System Management Guide

Record Formats of System Files

SYSLST records are 121 characters and SYSPCH records 81 characters in
length. From SYSRDR and SYSIPT, job control accepts either 80- or
81-character records: (For none of. these files can the records be blocked.)
You can use object modules written on tape, diskette, or disk as input to +
the linkage editor after the tape, diskette, or disk has been assigned to
SYSIPT.

The first character of the SYSLST and SYSPCH records is assumed to
be an ASA carriage control or stacker selection character. SYSIPT,
SYSRDR, SYSPCH, and SYSLST records assigned to DASD have no keys,
and record lengths are the same as stated above. ‘

Chapter 5: Controlling Jobs 5.53

_ Chapter 6: Linking Programs

Prior t‘0'execi.ltion in storage, all prograrﬁs.must be placeéﬂin the core image‘
library by the linkage editor. This chapter describes the role of the linkage

. editor ‘and how you can communicate with it through control statements.

The name linkage editor appropriately reflects the editing and the’

. linking operations that this program performs. The linkage editor prepares a

program for execution by editing the output of a language translator into
core image format. The linkage editor also combines separately assembled
or compiled program sections or subprograms (called object modules) into
phases. This process is referred to as linking.

A program can be link-edited and

« cataloged permanently,

X cataloged' permanently and executed immediately, or

o cataloged temporarily and ekecuted immediately.

When a program is cataloged permanently into the core image library, the
linkage editor is no longer required for that program*, because the

- supervisor can load it directly from the library in response to an EXEC job

control statement, or a FETCH or LOAD macro. On the other hand, if the
program is cataloged temporarily and executed immediately, the linkage
editor is required again the next time the program is to be run.

If a private core image library is assigned- to the partition in which the

. execution of the linkage editor occurs, the phases produced are entered into
_this private core image library. Otherwise (for the background partition),

Structure of a Program

the phases are entered into the system core image library. To execute the
linkage editor in a foreground partition, a private core image library must
be uniquely assigned to that partition. For more information on using private
libraries, refer to Chapter 7: Using the Libraries.

To understand the functions of the linkage editor, you must understand the
structure of a program during the various stages of its development.

Figure 6.1 summarizes the three sections that follow, which discuss source
modules, object modules, and program phases.

*If the partition boundaries change so that the cataloged program’s START and END
addresses no longer fall within the partition, the program must be link-edited again.
This restriction does not apply to relocatable programs loaded by the relocating loader.

Chapter 6: Linking Programs 6.1

SOURCE MODULE OBJECT MODULE
- Language Linkage
® " Translator @ Editor
BOOK
Source Statement Relocatable Core Image
Library Library Library
Figure 6.1. Stages of Program Development
A sel of source stalements, or source module (1), must be processed by a language translator, but can first be

cataloged as a book (2).into the source stateme
object module (3), which must be prbeessed by

§

t library. The output of the language translator is called an
he linkage editor, but can first be cataloged as a module (4)

into the relocatable library. The. output of the linkage editor is called a phase (5), which is cataloged into the
core image library temporarily or permanently, and can also be loaded into the shared virtual area. (A phase .
is cataloged temporarily if // OPTION LINK is specified; a phase is cataloged permancently if // OPTION
CATAL is specified.) At execution time, either the system loader loads a phase from the core image library
into the problem program partition, or (if appicable) the partition requesting the phase uses the copy available

in the shared virtual areca.

Source Modules

After planning the most logical approach to the problem you are to submit
to the computer, you write a set of source statements in a programming
language. Your set of source statements, called a source module, must be
processed by a language translator. The language translator assembles
source modules written in assembler language, or it compiles source
modules written in a high-level language (for instance, ANS COBOL,
FORTRAN, PL/1, or RPG II). The language translator transforms the
source}module into an object module, which is in machine language.

You can either submit your source module directly to the language
translator for processing, or you can catalog it into a sublibrary of the
source statement library for processing at a later time by the language
translator. (Refer to Chapter 7: Using the Libraries for g,undehnes on
how to catalog into the source statement library.)

6.2 ‘DOS/VS System Management Guide

Object Modules

A source module written in asspmbler consists of definitions for one or
more control sections (CSECTs). Source modules written in a high-level
language do not have this structure.

An object module, the output of a language translator, consists of the
dictionaries and text of one or more control sections. The dictionarics

~ ‘contain the information necessary for the linkage editor to modify portions

of the-text for relocaticn and to resolve cross-references between different
object modules. The text consists of the actual instructions and data fields
of the object module.

You can either submit your object module directly to the linkage editor
for processing, or catalog it into the relocatable library for later inclusion in
a linkage editor-job stream. (Refer to Chapter 7: Using the Libraries for

guidelines on how to catalog into the relocatable library.)

The language translator produces four types of cards for each object
module. An identifier field in columns 2-4 indicates the content of each
card. Column 1 contains a multipunch (12-2-9) that identifies the card as
being part of an object module (also referred to as a loader card). The four
types of cards are: ESD, TXT, RLD, and END. The contents of these
cards are summarized below. '

ESD (External Symbol Dictionary). This card contains all the symbols
defined in this module that are referred to by another module and all the

" symbols referred to by this module that are defined in another module.

There are six classifications of the ESD card, which are described in
DOS/VS System Control Statements.

TXT (Text). This card consists of the actual code of the object module. It

contains the assembled (or compiled) address of the instructions or data

included in the card, and the number of bytes contained in the card. It also
includes a reference to the control section where this text occurs. The
linkage editor uses this reference when applying a relocation factor. If
address constants are present, TXT information is modified as required by
RLD information.

'RLD (Relocation List Dictionary). The RLD cards identify. portions of the

text that must be modified if the program is subsequently relocated. They
provide information necessary to perform the relocation.

END (End of Module). The END card indicates the end of the module to
the linkage editor. The END card may supply a transfer address (where
execution is to begin). It may. also contain the control section length, which
was not previously specified in the ESD section definition or private code
(unnamed CSECT). ‘ ' ' '

If you want to change information in a TXT card, you can prepare a
REP card (user replace card) and submit it with your object module for
cataloging into the relocatable library or for linkage editor processing. ‘A
REP card-must be submitted between the TXT card it modifies and the
END card; otherwise, the TXT card is not modified. Usually, you place the
REP card(s) immediately before the END card.

Chapter 6: Linking Programs 6.3

For the exact formats of the ESD, TXT, RLD, REP, and END cards,
refér to DOS/VS System Control Statements.

Program Phases

The linkage cditor produces a program-phase from the object module(s)
you identify in linkage editor control statements. A phase is the smallest
functional unit (one or more control sections) that the system loader can
load into a partition in response to a single EXEC job control statement or
a FETCH or a LOAD macro instruction. '

In the PHASE control statement you can instruct the linkage editor to
produce one of three types of phases: rclocatable self-relocating, or
non-relocatable.

Relocatable Phases

The linkage editor can produce a relocatable phase for those phases with an
origin that is not an absolute address and that is not relative to a
non-refocatable phase. If the supervisor was generated to support the
relocating loader, a relocatable phase can be loaded into any partition for
execution.

For each relocatable phase the linkage editor prepares special relocation
information that the relocating loader uses to modify the text if necessary.
Relocation is not pcrformed if the program is.to be executed at the same
address for which it was link-edited.

For more information on relocatable phases, refer to the section
Link-editing for Execution at Any Address.

If a relocatable phase is also designed as a reenterable phase, it is
eligible to be loaded into the shared virtual area (SVA). Phases resident in
the SVA can be shared concurrently by programs running in either real or
virtual mode.

Self-Relocating Phases

Prior to the availability of the relocating loader in DOS/VS, users had to
write self-relocating programs in order to gain the advantages of
relocatability. If you have to perform maintenance on such a program, you
must write this program in assembler language according to the rules
described in DOS/VS Supervisor and 1/0 Macros. In the PHASE
control statement you indicate an origin of +0. The program must relocate
all its addresses at execution time to correspond with the addresses available
in the partition where the program is loaded.

_ You do not need to write a self-rclocating program if your supervisor
includes support for the relocating loader. (Refer to Relocatable Phases
above.)

6.4 DbS/VS System Management Guide

Non-Relocatable Phases

A non-relocatable phase is link-edited to be loaded at.a specific locatlon Co
(absolute address) in a partmon When you “request execution ofa)

‘non- relocatable phase in a given partition, the starting and ending addresses
“of the phase must Qe included within that partition. Otherwise, the job'is

canceled. With earlier versions of DOS, this necessitated the catalogmg of

multiple copies of a phase for use in different partitions.

The 'I‘hree Basic Applications of the Linkage Editor

The three basic applications of the linkage editor are referred to as:

1. cataloging phases into the core image library
2. link-edit and execute
3.. assemble (or compile), link-edit, and execute.

Tlge’ following sections include a discussion of the system flow during each

“of these applications.

Cataloging Phases into the Core Image Library

When you. have an operational program that you expect to use frequently,
you should catalog it into a core image library. You can do this in a single

job step, which is shown in Flgure 6.2.

When job control reads the CATAL operand. of the OPTION
statement, it sets a switch that causes the SYSLNK file to be opened. Job
control copies onto SYSLNK the linkage edifor control statements present
on SYSRDR, and INCLUDE signals job control to read any object modules
that are to be included from SYSIPT. If an ENTRY statement is not
encountered before the // EXEC LNKEDT statement, job control includes
one on SYSLNK. This signals termination of the input to the linkage
editor.

The linkage editor is then loaded into the partition where the job
stream was submitted, and uses SYS001 as a work file to process the input

found on SYSLNK. .

Because the CATAL opt1on was specified, the linkage editor places the
executable program permanently into a core image library. If a private core
image library is assigned to this partition, the program is cataloged there;
otherwise, (for the background partition) it is cataloged into the system
core image library. The library descriptor entry in the core image directory
for cataloged phases is updated.

If the phase is eligible for the shared virtual area and is indicated as SVA

_eligible in the system directory list, the phase is also loaded into the SVA.

Cataloging a Supervisor. Supervisors may also be cataloged permanently into-
the core image library as described above. Be sure, when doing this, to
specify a unique name (eight alphameric characters) for each supervisor.
Because the name of the supervisor must reside on the first cylinder of the
core image directory, give the name a low collating sequence (for example,
use $$ as the first two characters).

Chapter 6: Linking Programs 6.5

r /& ,
‘ f”*E"EC LNKEDT

SYSRDR

[// LBLTYP

(" ENTRY

/*
SYSIPT - (
/

r Object module

f INCLUDE

\ SYSRDR

(PHASE

l’ ACTION

[// OPTION CATAL

[/1 JOB CATALOG

Link-Edit and Execute

Figure‘ 6.2. A Job Stream to Catalog a Program into the Core Image
Library

The input to the linkage editor may consist of the linkage editor control
statements ACTION, PHASE, INCLUDE, and ENTRY submitted on
SYSRDR and object modules on SYSIPT. '

You do not always need to catalog a permanent copy of your program into
the core image library. For instance, you have modified parts of your
program and want to test these modifications with the entire program. In
this case, you can specify the LINK option, which requests that the linkage
editor place a temporary copy of the program into the core image library.
The INCLUDE statement signals job control to read the following input
from SYSIPT.

By specifying an EXEC statement without a program name operand
after the EXEC LNKEDT statement, the program just link-edited is loaded
for execution. The space temporarily occupied by this program in the core
image library is overwritten the next time a program is link-edited.

The shaded portions of Figure 6.3 illustrate how this job stream differs
from Figure 6.2.

6.6 DOS/VS System Management Guide

“SYSIPT

&

, 77 EXEC LNKEDT
I' //LBLTYP

rENTrw

SYSRDR

y

I Object module
l’ INC‘LUDE'
SYSRDR ‘ f PHASE |
I’ACTlON
S Er
- //JOB
Figure 6.3.

A Job Stream to Link-edit a Program for Immediate Execution

Thé // OPTION LINK card causes the linkage editor to place a-
temporary copy of the program into the core image library. INCLUDE
signals job control to read the program from SYSIPT. The // EXEC
card (without a program name operand) causes this same program to be
loaded for execution immediately thercafter.

The // OPTION CATAL card may also be used in this job stream.
In this case, the program that was cataloged (permanently) is executed
immediately.

Assemble (or Compile), Link-Edit, and Execute

You can also combine the job steps described above with a job step for =
assembly (or compilation) of your source program. This is especially useful
when you are developing a program. Figure 6.4 shows how your job stream
should be set up. The shaded portions of the figure illustrate how this job
stream differs from that shown in Figure 6.3. Linkage editor control
statements are not required when linking single-phase programs temporarily

. into the core image library. o ‘ '

Chapter 6: Linking Programs 6.7 -

You direct the language translator to write the object module directly
onto SYSLNK by specifying the LINK option at the beginning of the job.
“After the linkage editor, processes the input on SYSLNK, the same program

is loaded for execution. ‘

If errors occur in one job step causing an abnormal termination, the
remaining job steps are ignored. Other types of errors that-do not cause
termination of a job step remain throughout the entire job. If you do not
want to execute the program. when efrors occur during the link-edit step,
you can specify ACTION CANCEL after the // OPTION LINK.

f/&,.

SYSRDR (77 EXEC.

r// EXEC LNKEDT

l’ /1 LBLTYP

SYSIPT

SYSRDR

l’ /1 JOB TEST

Figure 6.4. A Job Stream to Assemble, Link-edit, and Execute

You can omit linkage editor control statements when you specify //
OPTION LINK. If you specify // OPTION CATAL, you must supply at
least one PHASE card with a phase name before // EXEC

ASSEMBLY.

Processing Requirements

In a system without private core image library support, the linkage editor
can be executed in the background partition only and places phases into thie
system core image library on SYSRES. In a multiple-partition system where
the supervisor supports private core image libraries, the linkage editor can
be executed in any partition. When the linkage editor is eéxecuted in a
foreground partition, a private core image library (SYSCLB) must be
uniquely assigned to that partition and phases are placed there. When the
linkage editor is executed in the background partition where no private, core

6.8 DOS/VS System Management Guide

image library is asmgned phases are placed into the system core image
library by default. :

The size of the partition in which the linkage editor is operating directly
influences the number of phases and ESD items that can be processed in
one job step. By referring to the specific formulas listed in DOS/VS
System Control Statements; you can determine if a particular combination
can be processed within a given partition.

Symbolic Units Required

‘The linkage editor requires .the following symbolic units:

SYSIPT Module input

SYSLST Programmer messages and listings (if SYSLST is not assigned
no map is printed and programmer messages appear on
SYSLOG)

: SYSLQGl Operator messages
SYSRDR Control statement input (via job control)
SYSLNK Input to the linkage editor
SYS001 Work file.

Note that SYSRDR and SYSIPT may contain input for the. lmkage editor.
This input is written on SYSLNK by job control.

If output from the linkage editor is'to be placed ina private core image
library, the following symbolic unit is required:

SYSCLB The private core image library may be assigned anywhere in the
job stream but must be before the // EXEC LNKEDT
statement.

If object modules from a private relocatable library are to be link-edited,
the symbolic unit SYSRLB must be assigned.

Preparing Input for the Linkage Editor

The input you prepare for the linkage editor consists of job control
statements, linkage editor control statements, and object modules. Job
control reads the job control statements and the linkage editor control
statements from the device assigned to SYSRDR and object modules from
SYSIPT. The linkage editor control statements and object modules are
copied onto the disk extent assigned to SYSLNK.

The linkage editor control statements direct the execution of the linkage
“editor. The four linkage editor control statements are: ACTION, ENTRY,
INCLUDE, and PHASE. Position 1 must be blank on linkage editor
control statements; no // is used. In all other respects their format is the
same as that for job control statements.

_ The job control statements that dlrectly influence the linkage edltor are:
OPTION CATAL, OPTION LINK; and LBLTYP.

Chapter 6: Linking Programs 6.9

A description of how to prepare these control statements is given on
the following pages. Here, the various operands of the control statements
are described under headings that indicate their function. In the section)
Summary. of Control Statements Related 1o Link-editing, these operands
are briefly described again under the control statements to. which they
pertain. :

Assigning a Name to a Program Phase

Each program phase you submit for link-editing should have a name, which
you specify in the PHASE statement. When a phase is cataloged in the
core image library, the phase name identifies that phase for subsequent
retrieval. In other words, the same phase name you supplied in the PHASE
statement when permanently cataloging the initial or only phase of a
program must be used as the operand in the EXEC job control statement
or in a FETCH or a LOAD macro instruction.

The first four characters of the phase name of a single-phase program
should be unique. Any phases with the same first four characters of their
phase name will be classified as a multiphase program. When a phase of a
multiphase program is fetched, the partition must be large enough to
contain the largest phase. '

You are not required to supply a phase name if you have specified the
LINK option. The linkage editor will construct a dummy ‘phase name - -
(PHASE***) and your program can still be executed. A program with a
dummy phase name canpot be permanently cataloged into a core image
library; that is, you must supply a phase name in the PHASE statement
when you specify the CATAL option. If the CATAL option is specified
and no phase card is supplied before the- first object module (or the phase
card is invalid), a dummy’ phase card is created (phase name PHASE***),
The link-edit job is canceled after a map has been printed (provided
SYSLST is assigned and ACTION NOMAP was not in effect).

Defining a Load Address for a Phase

At link-edit time you can spgcify where your program is to be loaded for
~ execution. You have several choices.

A phase can be link-edited t¢ be loaded and executed from:
a virtual partition
" a real partition

.

L]

« the shared virtual area

« an absolute address (either in a virtual or a real partition).

A phase can be link-edited as a

» relocatable phase
« self-relocating phase
« non-relocatable phase.

You define the load address for a phase in the origin operand of the
PHASE statement. (The load address can be changed by the system at

6.10 DOS/VS System Management Guide

execution time if the link-edited phase is relocatable and the relocating _
‘loader ‘is supported in the supervisor. This is described in the sections that
follow.) You can specify the origin in six different formats:

1. symbol [(phase)]{+ relocation] Specifies a load

2. *[£ relocation] address relative to
3. S [+ relocation] the beginning of a
4. ROOT virtual partition or

’ , to another phase.
5. +displacement Specifies an absolute
6. F+address. address. '

These specifications are described in DOS/VS System Control Statements.

Alignin’gal’hase:onaPageBoﬁndary

- For performance reasons it can be advantageous to load a phase on a page
boundary. If you specify the PBDY parameter in the PHASE statement, the
linkage editor will align the load point of the phase on the nearest page '
boundary (the next higher).

Link-editing for Execution at Any Address

If you want to ensure that your program can be loaded at any storage
address (except within the supervisor area), you can make use of the
relocating loader.

Phases produced by the linkage editor for loading by the relocatable
loader are called relocatable phases. If a relocatable phase is also
reenterable it can be specified for inclusion in the shared virtual area. (See
the section Link-editing for Inclusion in the Shared Virtual Area.)

Using the Relocating Loader. If your supervisor suppoits the relocating
loader (refer to this supervisor generation option in the section Tailoring
the Supervisor in Chapter 3: Planning the System), you do not need to
-write a self-relocating program to enable that program to execute in any -
real or virtual partition. The linkage editor will produce relocatable phases
whenever possible. The linkage editor determines whether a phase can be
‘made relocatable by inspecting the origin of the PHASE statement. If the
origin specified is in one of the following formats, the phase is eligible for
relocation: S

‘'« symbol [(phase)}[+’ relocatlon]
e * [+ relocation]

o S[+ relocation]

« ROOT

Note: The first format specifies a symbolic load origin. If the phase
referred to in_a symbolic origin is not relocatable, the referring phase
cannot be made relocatable. If a phase is relative to another phase
whose origin ‘is specified as an absolute address, none of the phases can
be made relocatable during this linkage editor execution.

Chapter 6: Linking Programs 6.11

) If the linkage editor determines that a phase is to be given the
relocatable format, it flags the core image directory entry for that phase, -
prints a message (relocatable) after the phase information in the linkage

_editor map (see Obtaining a Storage Map), and inserts the relocation
information behind the text of the phase in the core image library. This
relocation information consists of a set of pointers to address constants, the

- length of these address constants, and an indication as to- whether the
supervisor should add or subtract a relocation factor when loading the
phase into storage. '

If your supervisor does not contain the relocating loader, the linkage
editor can still produce a relocatable phase if you specify' ACTION REL
for a phase eligible for relocation. Such a supervisor, however, loads
relocatable phases into storage as link-edited without performing any
‘relocation.

If your supervisor contains the relocating loader and you do not want
the linkage editor to produce a relocatable phase for a particular program,
specify ACTION NOREL. '

The defaﬁlt action taken depends on whether or not the supervisor .
contains the relocating loader. If it does, ACTION REL is the default; -
otherwise, ACTION NOREL is the default.

The REL operand and a partition-identifier operand (described in the
section Link-editing for Execution in a Virtual Partition) are not
mutually exclusive. For instance, if a program is normally to be executed in
the virtual F1 partition, but not exclusively, specify ACTION F1,REL.
Whenever this program is to be executed in the virtual F1 partition,
relocation will not be necessary and the load time will be minimized.

Link-editing for Inclusion in the Shared Virtual Area

If a relocatable phase is also reenterable, it can be included in the shared
virtual area (SVA). Phases resident in the SVA can be shared concurrently by
more than one partition. It is advantageous to include frequently-used phases
in the SVA because these are then resident when requested for execution
(they are not reloaded from the core image library). All phases resident in the
SVA must also be cataloged in the system core image library.

To indicate that a phase should reside in the SVA, you must specify the
SVA operand in the PHASE statement when cataloging the phase. This
operand is ignored if the phase is not relocatable (see above); otherwise,
the SVA operand is accepted and the phase is said to be SVA-eligible.

The linkage editor cannot check whether a phase is reenterable;
however, a protection check can occur when executing a phase from the
SVA that is not reenterable, since the SVA is key zero storage. Since the
SDL is sorted prior to the loading of phases into the SVA, the packaging of
phases to be executed together should be done using the linkage editor.

6.12 DOS/VS System*Management Guide

L] . L] L]

Immediately after an SVA—eiigible phas_e'is cataloged into the system
core image library, it is loaded into the SVA if this phase is listed as
SVA-eligible in the system directory list (SDL). The SDL can be created

~only immediately after IPL; see the section Building the SDL and’
Loadmg the SVA in Chapter 4:. Starting the System.

Link-editing for Execution in'a Virtual Partition

Unléss otherwise specified in the PHASE statement, a program is .
link-edited to execute in the same virtual partition in which the linkage
editor function occurs. When the linkage editor is running in a real
partition, the program is hnk-edlted to execute in the corresponding vu'tual,

~ partition.

- By using ihe ACTION statement with one ofythe partitioh identifiers
(BG, F1, F2, F3, or F4), however, ybu specify the virtual partition in
which the program is to be executed. It is necessary to specify a partition

" identifier-only if the "run" partition differs from the partition in which the

linkage editor is being executed.

Use of the ACTION statement with a foreground partition identifier
requires that the virtual partition be allocated; if not, the action is ignored.

An ACTION statement with a partition identifier is effective only for
those: phases designated to'be loaded at an address relative to the beginning

" of a partition: that is, for those phases with a load address specification

(origin - ooperand in the PHASE statement) in any “of the following formats:

symbol [(phase)] [+ relocation]
*[+ relocation]

S [+ relocation]

ROOT.

These operands are described in more detail in DOS/VS System Control
Statements.

An example of the use of the ACTION F1 statement follows. Assume.
that three virtual partitions are allocated: background, foreground-two, and
foreground-one. If you are executing the linkage editor in the background,
the statement PHASE PROG1,S causes PROG1 to have its origin at the
beginning of the virtual background pamtnon (plus the BG save area and
the BG label area). The sequence

- ACTION F1

PHASE PROG1,S

causes PROG1 to have its origin at the beginning of the vu'tual
foreground-one partition (plus the length of the F1 save area and the F1,
label area. The length of the F1 label area is determined from the LBLTYP
statement, if any, supplled in the partition m which the linkage editor is

 running.)

. Chapter 6: Linking Programs 6.13

Link-editing for Execution in a Real Partition

If you specify an absolute address in the origin operand of the PHASE
statement, the phase is link-edited to b¢ loaded at this specific address. If

- you specrfy an origin that is not an absolute address, the phase is

link-edited to be loaded in the virtual partition where the linkage editor
function occurs, regardless of whether the linkage editor is running in real
or virtual mode.

To link—edit a program that will execute in a real partition, you can:

« Link-edit the program in such a way that it can be relocated to the real
partition _at the time the program is loaded. Relocatable programs are
loaded by the relocating loader in a real partition if you specify REAL
in the EXEC job control statement. (See the section Link-editing for
Execution at Any Address.)

. Write the program to be self-relocating if the supervisor does not
‘contain the relocating loader. (See the sectlon Using Self-Relocating
- Programs.)

« Link-edit the program with a PHASE statement that contains an -
absolute address within a real partition. (See the sectlon Link-editing
for Execution at an Absolute Address)

- Link-editing for Execution at an Absolute Address

- Using Self-Relocating Programs

If you specify an absolute address in the PHASE statement (other than
zero), your program can be loaded only at this address at execution time.
Not only must the address you specified be within the address range of

_your installation’s virtual storage, but also the entire program must be

included within the boundaries of the partition where you request the
execution. :

You should identify self-relocating programs by a PHASE statement with
an origin point of +0:

PHASE PROGA, +0

The linkage editor assumes that the program is loaded at location zero, and
computes all addresses accordingly. The job control EXEC function
recognizes a zero phase address and adjusts the origin address to -
compensate for the current partition boundary save area and label area. It
then gives control to the updated entry address of the phase. The
programming technique$ used in writing self-relocating programs, which are
always in assembler language, are described in DOS/VS Supervisor and

1/0 Macros.

‘ Blril«dirrg Phases from Object Modules

You indicate which object modules or parts of object modules are to be
included in a phase by specifying the INCLUDE statement. The format of
the INCLUDE statement indicates the location of the modules. The object

6.14 DOS/VS Sysiem Management Guide
i

modaules can €ither be on the card reader, tape unit, or disk device assigned
to SYSIPT, or in the relocatable library, or on the disk device assigned to
SYSLNK. The modules are extracted in the same order as the INCLUDE
statements are issued. ’ '

Including Modules from SYSIPT

If the object modules you want to include in a phase are on th& SYSIPT _
file, specify the INCLUDE statement without operands. Job control copies
the data from SYSIPT until it encounters end-of-data (/*).

Including Modules from the Relocatablev Library

You may want to include in a phase object modules or parts of an object
module that are cataloged in the relocatable library. To include an entire

"_module, specify the module name in the INCLUDE statement. To include
part of a module, specify the name of the module followed by the name of
the control section(s) in that module you wish included. -

Including Parts of Modules from SYSLNK .

You do not need an INCLUDE statement unless you want to change the

sequence of control sections or to extract certain control sections from an

object module. For either of these cases, specify the names of the control
~ sections in an INCLUDE statement.

Using the AUTOLINK Feature

For each phase the automatic library look-up feature (referred to as
AUTOLINK) collects any unresolved external references and attempts to
resolve them. An unresolved external reference is an ER item in the control
dictionary that has not been matched with an entry point. AUTOLINK
searches the private relocatable directory (if assigned). and then the system
rélocatable directory until a cataloged module with the same name as the.
‘unresolved external reference is found (or the end of the directory is
reached). If found, the module is included in the phase (autolinked). This
retrieved module must have an entry point matching the external reference
in order to resolve its address.

Chapter 6: Linking Programs 6.15

Studying the following examples may help you to understand how the
AUTOLINK feature works. '

Assume that the relocatable library contains the following:

Module Name Entry Names - External References
A A B, C
D A
|) B
F A, C
Examples:

In your linkage'edi‘tor input stream you specify INCLUDE D. A will be
autolinked (included with module D) because the external reference A is
also a module name in the relocatable library. '

If you specify INCLUDE E, then A will not be autolinked because¢ the
external reference B does not rélate to a module name. In this case, you
must also specify INCLUDE A, so that the external reference B can be
resolved. No autolink is required. '

If you specify INCLUDE D and INCLUDE E, then A will be autolinked
by module D and the external reference B in module E can then be
resolved.

If you specify INCLUDE F, then inodule A will be autolinked by the
reference to A, and the reference to C will also be resolved.

Suppressing the AUTOLINK Feature

You can suppress the AUTOLINK 'featu're in two ways:

« By specifying NOAUTO in a PHASE statement, AUTOLINK is
canceled for that phase only.

« By specifying NOAUTO in the ACTION statement, AUTOLINK is
canceled for this execution of the linkage editor. By writing a-weak
external reference (WXTRN), AUTOLINK is canceled for one symbol.

You can do this in assembler language by specifying for example:

DC A(LABEL)
WXTRN LABEL

or
DC V(LABEL)
WXTRN - LABEL

For more information, refer to the assembler language publications.

" . NOAUTO can be used to force a CSECT into a specific phase within

- an overlay structure. For example, four phases of a program have a V-type
‘address constant called PETE, but in the qverlay structure you want the
coding for PETE included only in the third phase.
PHASE’PROGA,*,NOAUTO

PHASE PROGB, * ,NOAUTO

PHASE PROGC, *

PHASE PROGD, *,NOAUTO

cause PETE to be included in PROGC only.

6.16 DOS/VS System Maﬁagemcni Guide

Reserving Storége for LaBels

'y

If your program uses standard tape files or nonsequential DASD files
(direct access, VSAM, mdexed sequential, or DTFPH with all packs
mounted); you must ensure that storage is reserved for the tape and disk
labels. These labels are brought into the label save area of the partition
containing your program when the file is opened.

You reserve a label save area by specifying the LBLTYP job control
statement. The amount of storage you specify to be reserved must be large
enough to contain all the labels of the file with the most extents processed
by the program. The operand specified in the LBLTYP statement for tape
files is different from that for DASD files. For their formats, refer to

- DOS/VS System Control Statements.

The LBLTYP statement is to be submitted immediately before the
// EXEC LNKEDT statement.. If your program is self-relocaiing, however,
submit the LBLTYP statement immediately before the // EXEC statement
for your program.

The LBLTYP statement is not required if only unlabeled tape files or
sequential DASD files are to be processed. For more information on file
organizations, refer to the DOS/VS Data Management ~Guide. For
information on file labeling, refer to DOS/VS DASD Labels, or DOS/VS
Tape Labels.

Specifying Linkage Editor Aids for Problem Determination or Prevention

“You can specify that the linkage editor aid you in avoiding certain problems

in your programs or determining what they are. The actions discussed below.
are CLEAR, MAP, and CANCEL, which may be specified as operands of
the ACTION statement.

Clearing the Unused Portion of the Core Image Library

If you used DS (défine storage) statements in your source module, it may B

'Obtaiining a Storage Map

be advantageous to fill these areas with binary zeros when the program is
link-edited. This eliminates the risk that residual data from a previously
linked program be loaded with your program at execution time. Such
irrelevant data might disrupt your program considerably. By specifying
CLEAR in the ACTION statement, you request that the unused portlon of
the core image library is to be setto binary zeros.

Because CLEAR is a ti_me-consuming function, you might want to use
DC statements instead of DS statements when designing future programs.

You can obtain a linkage editor storage map and a listing of linkage editor

error diagnostics, which assist you in determining the reasons for particular
errors in your program. If SYSLST is assigned, ACTION MAP is the

Chapler 6: Linking Programs- 6.17

default. You can specify ACTION NOMARP if you are not interested in this
service of the linkage editor.

The storage map contains such information as:
e The lowest and highest addresses that each phase octupies in the
partition for which it is link-edited. ‘
+ The starting disk address of the phase in the core image library.
"'« The names of all control sections and entry points, their load addresses
and relocation factors.
« The names of all external references that are unresolved.

« An indication whether the phase is relocatable, non-relocatable,
self-relocating, or SVA eligible. ’

The error diagnostics warn you, for example, if:
« The ROOT phase has been overlaid.
« A control section has a length of zero.

e An address constant could not be resolved.

A sample storage map, together with a description of how to interpret it, is
included in DOS/VS Serviceability Aids and Debugging Procedures.

Terminating an Erroneous Job

If errors are present in the input to the linkage editor, the output of the
linkage editor will most likely also be erroneous. If you specify CANCEL in
the ACTION statement, the entire job is terminated when the type of
errors represented by messages 21001 through 21701 occur. Refer to these
messages in DOS/VS Messages. .

" Designing an Overlay Program
The nature of virtual storage makes it unnecessary to write programs in
an overlay structure, because virtual partitions can be allocated to
accommodate very large programs. -

Organi;zing Control Sections in an Overlay Tree Structure

Overlay programs consist of control sections organized in an overlay tree
structure. A tree is a graphic representation that shows how phases use
storage at different times. An example of an overlay tree structure is shown
in Figure 6.5. This structure does not imply the order of execution,
although the root phase is normally the first to receive control.

6.18 DOS/VS System Management Guide

L

L]
‘A
H
|
-
Phase 2 ! Phase 7
{5000} -LB (6000)
P IS,
1€ -’u
' '
[I
Phase 3 ' Phase 4 ==
(50001 _i_ o (3000) iy : Phase
..... L~ 30001 K (8000)
T 4 ORI L4
: I(’;:;:);E = PhaseB .'L)
) 3000 1 '
:E ,.—...-J_G a . [!
4 1 ,l :
- L. =
1
" !
' iN
L... t--

Figure 6.5. Overlay Tree Structure

The letters A through N represent control sections, which. are organized
to form nine phases in one program. The root phasé resides in storage
during the entire execution of the program. The remaining phases can
overlay each other during execution. .

You must guarantee a partition size that is equal to the longest
combination of phases that can possibly reside in storage together,
namely, phases 1, 2, 4,'and 5, which total 21,000 bytes. If the program-
had not been organized in an overlay structure, it would have required
an address space of 46,000 bytés. 4

The manner in which control should pass between control sections is
discussed in the section Using- FETCH and LOAD -Macros.

Relating Control Sections to Phases

After having organized the control sections of your program into an overlay
tree structure, you must prepare a corresponding set of linkage editor

control stateménts. If you first want to dest the program, specify

// OPTION LINK. When you are satisfied that the overlay structure you
designed is a workable combination, specify // OPTION CATAL to .
catalog a permanent copy of the program in the core image library.

Link-edit your complete overlay, program in a single job step, and
conversely, do not include in this job step’any phases that are not related to
the overlay. Otherwise, the linkage editor may not be able to resolve
external references correctly. ‘

The PHASE and INCLUDE statements you prepare are critical to
ensure the overlay tree structure you designed. Figure 6.6 is an example of
the job stream that ensures the overlay tree structure shown in Figure 6.5.

Chapter 6: Linking Programs 6.19

PHASE
INCLUDE
PHASE
INCLUDE
PHASE
INCLUDE
PHASE
INCLUDE
PHASE
INCLUDE
PHASE
INCLUDE
PHASE
INCLUDE
PHASE
INCLUDE
PHASE
INCLUDE
INCLUDE

/*
// LBLTYP

/&

// JOB OVERLAY
1// OPTION CATAL -

PHASE1,ROOT

, (CSECTA, CSECTB)
PHASE?, * ‘

, (CSECTC, CSECTD)
PHASE3, *

, (CSECTE)
PHASE4, PHASE3

4 (CSECTF, CSECTG

.PHASES, * S

, (CSECTH)
PHASE6 , PHASES

, (CSECTI)
PHASE7, PHASE2

, (CSECTJ , CSECTK)
PHASES, *

, (CSECTL)
PHASE9, PHASES

, (CSECTM, CSECTN)

// EXEC LNKEDT

PHASE1 stays in storage during
execution of the entire program.
PHASE2 'is to be loaded

immediately behind. PHASE1.

Since PHASE3 needs PHASE2, PHASE3 is

-not allowed to overlay PHASE2.

PHASE4 will occupy the same
storage locations as PHASE3.
PHASES will be loaded
immediately behind PHASE4.
PHASE6 will be loaded at the
same -address as PHASE5.
PHASE7 will be laaded at ‘the
end of the root phase.
PHASE8 will be loaded at the
end of PHASE7. '

PHASE9 will overlay

PHASES.

(Object modules containing CSECTs A through N)

Figure 6.6. Link-editing an Overlay Program

Using FETCH and LOAD Macros

During execution, an dverlay program communicates with the supervisor to
request that a subsequent phase be brought into the partition. . You include
FETCH or LOAD macros within your.phases for this purpose.

Use a LOAD macro in a phase that is to remain in control after the
requested phase is brought into the partition. A phase loaded by the LOAD
macro is relocated (if necessary) so that the displacement between the start
of the partition and the beginning of the phase is the same as at link-edit
time. By using a LOAD macro with an explicit address, you can violate the
overlay tree structure you defined. When a relocatable phase is loaded, all

- address constants will be relocated with the same relocation factor as

computed for that phase. This means that address constants referring to
entry points in 6ther phases of this same relocatable program will be’

incorrect.

Use a FETCH macro if you want the requested phase to gain control

immediately after it is brought into the partition. If a phase loaded by the
. FETCH macro is relocatable, it will be relocated if necessary. You cannot

issne a FETCH macro for a self-relocating phase.

Parameters in FETCH and LOAD allow these macros to use the SDL
and to execute code from the SVA, thereby reducing fetching and loading
time. The benefits that stem from using the SDL apply to phases that are
uscd frequently throughout the day by many programs in an installation.
For a phase that is used heavily at one time only, however, it is preferable
to use the GENL macro rather than to include the phase in the SDL. The

6.20 DOS/VS System Management Guide

GENL macro places the directory entry of a phase in storage, where it can
be accessed rapidly by FETCH and LOAD for use by the program that
requires it.) ' '

DOS/VS Supervisor ‘and 1/0 Macros contains details on the format

- of the FETCH, LOAD and GENL macros.

Summary of Control Statements Related to Link-Editing

Job Control Statements

OPTION

The following sections summarize the linkage editor control statements and
the job control statements that are associated with a linkage editor run.
This summary is provided to make it easier for you when referencing the
formats of the statements in DOS/VS System Control Statements.

The job control statements that relate to a linkage editor job stream and -
that are summarized below are:

e // OPTION CATAL
LINK
e // LBLTYP

To make use of the linkage editor, you must specify either the LINK or
CATAL operands in the OPTION job control statement. These options set
switches in the supervisor that are tested when the linkage editor program is

" requested. Linkage editor control staternents are accepted only after one of

these options has been specified. S_YSLNK must be assigned; otherwise, the -
LINK and CATAL options are ignored (switches are not set).

By specifying the LINK option (// OPTION LINK), you indicate that
the output of the language translators is to be written on the SYSLNK file.
Because SYSLNK is the required input file for each linkage editor
operation, the CATAL option (// OPTION CATAL) also sets the LINK
switch. The differences between LINK and CATAL are describ&d below.

The CATAL option causes a phase to be entered permanently into the
core image library. The object module is link-edited-and placed in the first
available area of the core image library (immediately after the last cataloged
phase). An entry identifying the name of thé phase, load address, entry

-point, and starting disk address of the phase in the coreimage library is

then inserted in alphameric sequence in the core image directory for
cataloged phases. If the same phase name was previously cataloged, the new
directory entry replaces the old. A status report of the core image library -
and directory is then printed. '

The LINK option causes a phase to be entered temporarily in the core
image library in order to be executed immediately; that is, for an assemble,
link-edit, and execute operation, or a link-edit and execute operation. The
linkage editor prepares the phase just as described for the. CATAL option,
except that an entry in the core image directory is made for linked phases:
When you specify the EXEC statement without the program name operand

‘the phase i$ executed immediately. The space taken up by the phase in the

Chapier 6: Linking Programs 6.21

core image library is overwritten by the next phase cataloged or linked to
: the core image library. No status report is printed.

l.BLT'YP_ The LBLTYP job control statement reserves a label save area for tape
labels or DASD labels. You must specify the LBLTYP statement if your.
program uses standard tape files or nonsequential DASD files,

For a non-self-relocating program, you must submit the LBLTYP.
- statement immediately before the-// EXEC LNKEDT statement. For a -
self-relocating program, ycu must submit this card lmmedlately before the
// nXEC statement for the program.

‘Linkage Editor Control Statements
The linkage editor control statements that are summarized below are:

ACTION

- PHASE
INCLUDE
ENTRY.

ACTION ACTION statements, if used, must be the first statements in the linkage
editor input stream. An ACTION statement is effectlve only for this linkage
editor execution.

The ACTION statement can indicate that the lin_kage'editor do any or
all of the following

. Set the unused portion of the core lmage ‘Ilbrary to bmary Zeros
(CLEAR).

o Write a storage map and error diagnostics on SYSLST (MAP), or not
(NOMAP).

« Suppress the automatic library lookup feature for this entire linkage
editor run (NOAUTO).

o Terminate the job if errors are present in the lmkage editor mput
(CANCEL).

« Link-edit the program to run in a specnflc virtual partition (BG, F1, F2,
F3, or F4). '

+ Produce a relocatable program if possible (REL) or do not produce a
relocatable program (NOREL).

© 6.22 DOS/VS System Management Guide

PHASE

INCLUDE

ENTRY

_ The PHASE statement indicates the beginning of a phasev by providing the
- linkage editor with the phase name and the storage address (origin point)

where the phase is to be loaded. The origin point defines whether the phase
is to be relocatable, self-relocating, or non-relocatable. The PHASE
statement may also indicate that the automatic library lookup feature
(AUTOLINK) be canceled for this phase only, that the phase is considered
to be SVA eligible, or that the load point of the phase be aligned on -a ’page
boundary. : ' ‘

The first-(or only) object module in the input for the linkage editor
should include a PHASE statement before the first ESD item. A PHASE
statement must be supplied if you specify the CATAL option. A PHASE
statement is not required if you specify the LINK option.

The INCLUDE statement specifies that an object module is to be included
for link-editing. The format of the statement indicates where the object
module is located and whether all or parts of it are to be included. The
object module may be on SYSIPT or SYSLNK, or cataloged in the
relocatable library. ' "

The ENTRY statement signals the end of the input to the linkage editor. If
the entry point operand is used it also indicates a transfer address for the)
first phase (the name of a control section or label definition). In case of a

label definition, it must occur in an ENTRY source statement. '

Chapter 6: Linking Programs 6.23

Examples of Linkage Editor Applications
- The linkage editor examples on the following pages illustrate the use of and
relation between the control statements just discussed.. After studying these

examples, you should be able to set up a link-edit job for your own
purposes. '

Catalog to Core Image Library Example

// JOB CATALCIL

~* LINK EDIT AND CATALOG TO CORE IMAGE LIBRARY
* SINGLE PHASE, ELIGIBLE FOR LOADING INTO SHARED
* VIRTUAL AREA, MULTIPLE OBJECT MODULES, .
* MIXTURE OF CATALOGED AND UNCATALOGED OBJECT MODULES
‘¥ [ABELED TAPE FILES AND SEQUENTIAL DASD FILES TO
* BE PROCESSED) .
1 // ASSGN SYSLNK,X'190'
2 // . OPTION CATAL
3 PHASE PROGB, *,SVA
4 INCLUDE
Object deck
/*
INCLUDE SUBRX
INCLUDE SUBRY
INCLUDE
Relocatable object deck
/*
5 // EXEC LNKEDT
6 /& .

Explanation for Catalog to Core Image Library. This example illustrates the
cataloging of a single phase composed of multiple object modules. These
modules are located in the input stream and the relocatable library. Labeled
tape files and sequential DASD files are processed when the phase is
executed. The program is to be executed in a foreground partition. The
linkage editor run occurs in the virtual background partition.

Statement [: The SYSLNK assignment indicates the relationship of
ASSGN statements to the OPTION statement. ASSGN statements are not
required if they are standard assignments.

Statement 2: The OPTION CATAL statement sets the LINK switch, as
well as the CATAL switch. If SYSLNK is not assigned, the statement is
ignored. The linkage editor control statements are not accepted unless the
OPTION statement is processed. Link-editing and cataloging to the core
image library will occur.

Statement 3: Only one PHASE is constructed. It is cataloged to the core
image library and retricved by the name PROGB. Because there is only one
phase, the origin point * indicates that this phase originates at the starting' -
address of the virtual partition plus the length of the partition save area, the
label save area (if any), and the COMMON pool (if any). The SVA
operand indicates that the phase should -be considered SV A-eligible. If the
phase name PROGB is already entered as SVA-eligible in the system
“directory list, PROGB is loaded into the shared virtual area immediately

6.24° DOS/VS System Management Guide

after it is cataloged into the system core image library. (This could not
occur had PROGB been link-edited with OPTION LINK.)

Statement 4: Four modules make up this phase. The first and fast are not
. cataloged in the relocatable library; therefore the object decks must be on
SYSIPT, and €ach must be followed by the end-of-data record (/*).
SUBRX and SUBRY are cataloged previously to the relocatable library by
those names. Job control puts the uncataloged modules’ on SYSLNK in

_ place of their INCLUDE statements. Job control copies onto SYSLNK the
INCLUDE statements for the cataloged modules.

Srateme‘nt 5: The EXEC LNKEDT statement causes the system loader to
bring in the linkage editor program. SYSLNK now becomes input to the
linkage editor. It contains. the following:

PHASE PROGB,F+32768

First uncataloged relocatable deck
- INCLUDE 'SUBRX

INCLUDE SUBRY

Second uncataloged relocatable deck
ENTRY) ’

The modules are link-edited into one phase so that they occupy contiguous
addresses in the sequence in which they appear in the input stream. When
the linkage editing is completed, cataloging to the core image library occurs
because of the CATAL option.

The core image directory is checked to make sure theé new phase entry
fits. If not, the job is canceled. The directory for cataloged phases is
scanned for any match to a phase being cataloged. If there is a match, the
earlier directory entry is replaced by the new entry. The descriptor entry is
updated to reflect the changes. Job control is brought into the virtual
background partition. ‘

Sratement 6: Because the CATAL option was specified, a status report is
printed to reflect the usage and available space in the core image library.
(This does not occur in a LINK situation.) The /& resets the CATAL
option, that is, it turns off the LINK and CATAL switches.

The example can be modified to illustrate a catalog-and-execute
operation by inserting the following statements between the EXEC
LNKEDT and / & statements:

1. Any job control statements required for execution of PROGB.
2. A // EXEC statement
3. Any card reader input for PROGB.

_ Chapter 6: Linking Progranis 6.25

Catalog to Private Core Image Library Example

// JOB CATLCIIL
LINK EDIT AND CATALOG TO PRIVATE CORE IMAGE LIBRARY
LINKAGE EDITOR EXECUTING IN FOREGROUND
SINGLE PHASE, ALIGNED ON A PAGE BOUNDARY MULTIPLE
OBJECT MODULES, FOREGROUND PROGRAM
MIXTURE OF CATALOGED AND UNCATALOGED OBJECT MODULES .
LABELED TAPE FILES AND SEQUENTIAL DASD FILES TO
BE PROCESSED
ASSGN SYSCLB,X'130'
// BASSGN SYSLNK,X'190'
// OPTION CATAL

PHASE PROGR,S,PBDY

INCLUDE

object deck
/*

- INCLUDE SUBRX

INCLUDE SUBRY

INCLUDE

Relocatable object deck
Vi
// LBLTYP TAPE
// EXEC LNKEDT
/&

*OX X ¥ K ¥ ¥

(R VL N S R

[o <R o)}

Explanation for Catalog to Private Core Image Library. This example
illustrates the execution of the linkage editor in a foreground partition;
therefore the phase is cataloged to a private core image library. This
function is possible only in a system supporting multiple-partitions and
private core image library options. The phase being cataloged is the same as
that in the previous example where the linkage editor-was executed in the
background.

Statement 1: The assignment of a private library is accomplished by the
ASSGN SYSCLB command. The label for SYSCLB must be stored on
PARSTD or STDLABEL cylinder, or, if the DLBL and EXTENT
statements are included in the job stream, they must precede the ASSGN
SYSCLB command.

Statement 2: The SYSLNK assignment indicates the relationship of -
ASSGN statements to the OPTION statement. ASSGN statements are not
required if they are standard assignments.

Statement 3: The OPTION CATAL statement sets the LINK switches, as
well as a CATAL switch. If SYSLLNK is not assigned, the statement is
ignored. The linkage editor control statements are not accepted unless the
OPTION statement is processed. Linkage editing and cataloging to the
private core image library will occur.

Statement 4: Only one PHASE is constructed. It is cataloged to the private
core image library and retrieved by the name PROGB. An origin point of S
origins PROGB at the starting address of the foreground partition, plus the
length of the save area and the label save area (if any) and the COMMON
pool (if any). PBDY indicates that the load point of the phase is to be
aligned on a page boundary.

6.26 DOS/VS System Management Guide

Statement 5: Four modules make up this phase. The first and last are not
cataloged in the relocatable library; therefore, the object decks must be on
SYSIPT, and each must be followed by the end-of-data record (/*).
SUBRX and SUBRY are cataloged previously to the system relocatable
library by those names. Job control puts the ‘vhcataloged modules on
SYSLNK in place of their INCLUDE statements. Job control copies onto
SYSLNK the INCLUDE statements for the cataloged modules. '
Statement 6: The LBLTYP statement has the operand TAPE, rather than
NSD, because labeled tapes and sequential DASD files are processed when |
the phase is executed. 80 bytes are reserved ahead of the actual phase for
label information. LBLTYP NSD is also satisfactory because it generatés a
minimum of 104 bytes and tapes require only 80.

Statement 7: The EXEC LNKEDT statement causes the system'loader to
bring in the linkage editor program. SYSLNK now becomes input to the
linkage editor. It contains the following:

PHASE, PROGB, S

First uncataloged relocatable deck

INCLUDE SUBRX

INCLUDE SUBRY

Second uncataloged relocatable deck
ENTRY

The modules are link-edited so that they occupy contiguous areas in storage
in the sequence in which they appear in the input stream. When link-editing
is completed, cataloging to the private core image library occurs. because of
the CATAL option. The private core image directory is checked to make
sure the new phase entry fits. If not, the job is canceled. The directory is
scanned for-any match to a phase being cataloged. If a match is found, the
earlier phase directory entry is replaced. The system library descriptor
record is updated to reflect the changes. Job control is brought into this
virtual foreground partition.

Statement 8: Because CATAL was specified, a status report is printed to
reflect the usage and the available space in the private core image library-
and directory. (This does not occur in a LINK situation.) /& resets the
CATAL option, that is, it turns off the LINK and CATAL switches. ‘r ;

The example can be modified to illustrate a catalog-and-execute
operation by inserting the following statements between the EXEC
LNKEDT and / & statements:

1. Any jOb control statements required for execution of PROGB'
2. 'A // EXEC statement
3. Any card reader input for PROGB.

[
Chapter 6: Linking Programs . 6.27

Link-Edit and Execute Example

// JOB LINKEXEC
* LINK EDIT AND EXECUTE SINGLE PHASE, SINGLE OBJECT
* MODULE NOT CATALOGED, BACKGROUND PROGRAM
¥ NONSEQUENTTIAL DASD & LABELED TAPE FILES TO
¥ BE PROCESSED ’
// BSSGN SYSINK,X'190"'
// OPTION LINK
PHASE PROGA, *
INCLUDE
object deck

BN -

// LBLTYP NSD(2)
EXEC LNKEDT

[0%,]
~
~

7 Any job control statements required for execution
such as ASSGN or label statements

8 // EXEC
Input Data as required

* 1 TO CATALOG AND EXECUTE, CHANGE STATEMENT -2
TO // OPTION CATAL :

2 TG CATALOG ONLY, CHANGE STATEMENT 2. TO

// OPTION CATAL AND REMOVE ALL STATEMENTS
FOLLOWING LNKEDT EXCEPT /&

TO USE MODULE FROM RELOCATABLE LIBRARY,
CHANGE STATEMENT 4 TO INCLUDE MODULES AND
REMOVE ALL STATEMENTS UP TO // LBLTYP AND
IF PHASE CARD IS IN-RELOCATABLE LIBRARY,
ALSO REMOVE STATEMENT 3. ‘

* ¥ X K K ¥ K K ¥
w

Explanation for Link-edit and Execute. This example illustrates the basic
concept of link-editing and executing by using a single phase that is
constructed from a single object module contained in punched cards.
Labeled tape and nonsequential DASD files are to be processed when the
phase is executed. No more than two extents are used by any DASD file.

Statement 1: No assignments are necessary, because the system units
required for link-editing are in the assumed configuration. However, an
ASSGN for SYSLNK is included to illustrate its position relative to the
OPTION statement in case assignment is required.

Statement 2: The OPTION LINK statement sets switches to indicate a
link-edit-operation is to be performed. If SYSLNK has not been assigned,
the statement is ignored. Linkage editor control statements are not accepted
unless the OPTION statement is processed. Because optior: s LINK, not
CATAL, only link-editing is performed; permanent cataloging to the core
image library does not occur.

Statement 3: The PHASE statement is copied on SYSLNK because the
LINK switch is on. The first operand is checked; the following operands are
not examined until SYSLNK is used as input to the linkage editor program.

When the PHASE statement is processed by the linkage editor, only
one phase is constructed, because only one PHASE statement is submitted
for the entire run. The name of this phase is PROGA, as specified in the

6.28 DOS/VS System Management Guide

first operand. The second operand indicates the. origin point for the phase.
Because an * has been used, the phase begins in the next storage location
available, with forced doubleword alignment. Because this is the’ first and
only phase, it is located at the beginning of the virtual partition plus the
length of the save area and label area (reserved by LBLTYP) plus the
length of any area assigned to the COMMON pool (as designated by a CM
entry in the object module)

A displacement, either plus or minus, may be used with the *, such as
*+1024. This causes the origin point of the phase to be set relative to the *
by the amount of the displacement. This displacement can be expressed- as:

X‘hhhhhh’ -- | to 6 hexadecimal digits
dddddddd -- 1 to 8 decimal digits
nK -- where K = 1024.

*41024 uses the second formal and adds 1024 ‘bytes to the orlgm location. -
+1K or +X‘400’ gives the same result as.+1024.

Statement 4: The INCLUDE statement has no operands so the system
reads the records from SYSIPT and writes them on SYSLNK until SYSIPT
has an end-of-data (/*) record. The data on SYSIPT is expected to be the
object module in card image format that is used in this linkage editor
operation.

Statement - 5: The LBLTYP statement causes a computation of the number
-of bytes that are required for label data in the program to be link-edited. In
this example, 124 bytes are reserved (84 + [2x20]). The calculation is
saved by job control and passed on first to the linkage editor and later to
LIOCS.

Statement 6: On encountering the EXEC LNKEDT statement, job control
writes an ENTRY statement with no operand on SYSLNK and causes the -
system loader to bring in the linkage edntor program.

Using the data just placed on SYSLNK as input, the linkage edltor
develops executable code. The output is placed in the next available space
of the core image library (immediately after the last cataloged phase). This
is true regardless of whether the program is cataloged permanently
(OPTION CATAL) or temporarily (OPTION LINK). Cataloging
permanently causes the updating of the library descriptor entry in the core
image. directory to reflect a new ending point for the library. If OPTION
LINK is specified, however, the next program that is link-edited overlays it.
For this reason, a program_ that is cataloged temporarily is said to be placed
in the temporary area of the core image library. Such a program must be
link-edited each time it is used. No ACTION options are specified.
Therefore, in resolving the external references, the system makes use of the
AUTOLINK feature. Error diagnostics and a storage map are written on
SYSLST, assuming that SYSLST is assigned and ACTION NOMAP was'

“not specified.

Statement 7: Because the program is not cataloged, it must be executed
immediately. Any pertinent job control statements are entered at this point.

Statement 8: An EXEC statement with no program name operand
indicates that the phase to be executed was just link-edited. Therefore, no

"Chapter 6: Linking Programs 6.29

- search of the core image directory for linked phases is required, and the
system loader brings the program into storage from th¢ temporary area and
transfers control to its entry point. Because the automatic ENTRY
statement is in effect for this example, the entry point is either the address
specified in the END record, or the phase load address if the END address
is omitted. '

This example can be modified to illustrate the following:

1. Catalog and execute. To cause this phase to be cataloged permanently,
change the OPTION (statement 2) from LINK to CATAL.

2. Catalog only. To catalog only, change the OPTION (statement 2)
from LINK to CATAL and remove all statements following the EXEC
LNKEDT (statement 6) up to the / & statement.

3. Include object module from relocatable library. The name of the
object module in the relocatable library must be added to the
INCLUDE statement. If the name is RELOCA, the statement becomes
INCLUDE RELOCA. The relocatable object deck and /* statement
are removed. This form of the INCLUDE statement is written on
SYSLNK when it is read by job control- The linkage editor refrieves
the object module when it encounters the INCLUDE statement because
it uses SYSLNK for input.

Compile and Execute Example

// JOB COMPEXEC .
COMPILE OR ASSEMBLE, LINK EDIT AND EXECUTE R
-SINGLE PHASE, MULTIPLE OBJECT MODULES, BACKGROUND
PROGRAM SEQUENCIAL .DASD FILES TO BE PROCESSED
INPUT TO LINKAGE EDITOR FROM LANGUAGE. TRANSLATOR,
* RELOCATABLE LIBRARY AND SYSIPT
//- ASSGN SYSLNK,X'190'
// OPTION LINK

PHASE PROGA,S
// EXEC FCOBOL

COBOL source statements

* % % %

FNERY R

%
* INCLUDE SUBRX

5 INCLUDE
object module

6 ENTRY BEGINI
// EXEC LNKEDT o
7 Any job control statements required for PROGA
execution .
// EXEC .
Any input data reguired for PROGA execution
/*

/&

Explanation for Compile.and Execute. The language translators provide the
option of placing their output on SYSLNK. Because the linkage editor uses
SYSLNK for input, a program can be assembled or compiled, link-edited
and executed. This operation is illustrated by this example.

All three sources of object module input to the linkage editor are used:
SYSIPT, the relocatable library, and the output from a language translator.
It is assumed that the phase is executed in the background partition, and
that only sequential DASD files or unlabeled tape files are processed. .

6.30 DOS/VS System Management Guide

Statement 1: The SYSLNK éssignn'ient is given to illustrate the relationship
_of ASSGN statements to the OPTION statement. ASSGN statements are
not required if they are standard assignments.

. Statement 2: Because SYSLNK is assigned, the OPTION LINK statement
sets the link indicator switches.

Statement 3: The PHASE statement must always precede the relocatable
modules to which it applies; therefore, it is written on SYSLNK first for
later use by the linkage editor. S is the origin point, that is, the phase

_ originates with the first doubleword at the end of the supervisor plus the
length of the partition save area plus the length of the area assigned to the
COMMON pool (if any). This gives the same effect as * gives for a single
phase or the first phase. As with the *, the S may be ‘used with a relocation
factor, for example, S+1024. The factor must always be positive, because a
negative factor could cause the origin point to overlay the supervisor.

Statement 4: The appropriate language translator is called (in this case,
CQBOL). The normal rules for compiling are followed; the source deck
must be on the unit assigned to SYSIPT and the /* defines the end of the
source data. Because the LINK switches are set, the output of the language
translator is written on SYSLNK. Except for PL/I, FORTRAN (F), ANS
or VS COBOL, and the assembler, the DECK option is ignored when
SYSLNK is used.

Statement 5: The INCLUDE SUBRX statement is written on SYSLNK.
The linkage editor retrieves the named module from the relocatable library.
Because the operand is blank, the next INCLUDE statement signifies that
the relocatable module is on SYSIPT. The data'on SYSIPT is copied on
SYSLNK until the /* statement.

Statement 6: The ENTRY statement is written on SYSLNK as the last
linkage editor control statement. The symbol BEGIN1 must be the name of
a CSECT or a label definition (which occurs in an ENTRY source
statement) ‘defined in the first or only phase. The address of BEGIN1
‘becomes: the transfer address for the first or only phase of the program.
The ENTRY 'is used to provide a specific entry point rather than to use the
point specified in the END record or the load address of the phase.

Statement 7: No LBLTYP statement'is required, because only sequential
DASD files are to be processed. The rest of the statements follow the same
- pattern as discussed in the Link-Edit and Execute example. The input from .
SYSLNK to the linkage editor is: '

PHASE PROGA,S

Relocatable module produced by COBOL compilation
INCLUDE SUBRX

Relocatable module from SYSIPT

ENTRY BEGIN1

If certain types of cerrors are detected during compilation of a source
program, the LINK option i.'s suppressed. Under these circumstances the
EXEC LNKEDT and EXEC statements are ignored in this example. This
LINK option suppression should be kept in mind if a series of programs is
to be compiled and cataloged as a single job. Failure of one job step would
cause failure of all succeeding steps. Remember that an OPTION LINK
cannot be given if OPTION CATAL is in effect. The message '
STATEMENT OUT OF SEQUENCE results. Therefore, the CATAL
switch must remain on, and link-editing only cannot be performed.

Chapter 6: Linking Programs 6.3 1

Chapter 7: Using the Libraries -

After you have planned the size, contents, and location of the libraries (see
" Chapter 3: Planning the- System), you need to know how to allocate space
- to a library, how to create private libraries and how to alter, copy, and
.inspect the contents of the libraries. All these functions are performed by a
group of library processing programs, collectively referred to as the '
librarian.

This chapter describes how you can use the librarian to manage the
system and private libraries in your installation. The chapter is divided into
three major sections:

» The first section looks at the libraries from a system point of view, that
is, it shows how the system stores or retrieves elements into or from the
libraries. Although knowledge of this internal processing is not essential
for working with the libraries, it contributes to a better understanding
of the librarian functions.

« The second section introduces the three functional components of the
librarian (maintenance; copy/reorganize, and service) and gives a
detailed description of their applications to the individual libraries.

» The third section describes the creation and use of private libraries.

The information in this chapter is useful for programmers and perhaps also
for operators.

How the System Accesses the Libraries A

DOS/VS supports four types of libraries. Their purpose and contents are
described in Chapter 3: Planning the System and are summarized here:

« Core image library -- contains the output from the linkage editor
(executable program phases). :

e Relocatable library -- contains the output of a language translator
(object modules) which is used as input to the linkage editor.

e Source statement library -- contains books (source language
statements, macro definitions, and pre-edited macro definitions) used as
input to a language translator.

e Procedure library -- contains collections of frequently-used control
statements (cataloged procedures). These cataloged procedures can
include job control and linkage editor control statements and (if the
SYSFIL option was specified during supervisor generation) inline
SYSIPT data. '

The following describes how these libraries are accessed by the system
when a maintenance function for one of the libraries is requested.

Chapter 7: Using the Libraries 7.1

The Directories

Associated with each library is a directory that occupies the first track(s)
allocated to the library. For each element in a library, the corresponding
directory contains a unique entry describing the element. A directory entry
contains such information as name, disk address, size, load address (core
image library only), and version number (relocatable, source statement, and
procedure libraries only) of the elentent. These directory entnes are used by
the system to locate and retrieve elements from a library.

% The begin addresses of the individual system library directories are
stored in a separate directory, the system directory. For the core image
library, the first entry of the core image directory (library descriptor entry)
contains such information as the address of the next available record, the
number of active and deleted blocks, and the amount of space allocated to
the library. For the other libraries, this information is contained in the: first
five entries of their own directories.

A core image library normally contains a large number of program
phases. Thus, searching for a specific phase can become rather time
consuming. To reduce the search time, the phases in the core image library
are entered in the corc image directory in alphameric sequence. The. highest
phase name on each track of the core image directory is listed in the second
level directory contained in the supervisor. If the phase cataloged is eligible
for-the shared virtual area (SVA) (that is, its phase name is already entered
with the SVA operand in the system direcfory list, and it was cataloged in
the core:image library with the SVA operand), the phase is loaded into the
SVA. When requested for execution, such a phase is always available in
virtual storage.

The organization of the directories on SYSRES is shown in Figure 7.1.
A more detailed description of the complete SYSRES organization is given
in Appendix A: System Layout on Disk.

Naming Elements in the Libraries

The choice of a phase name has a bearing on retrieval efficiency and the
subsequent use of the librarian programs. In general, you should not catalog
a phase with the same name as a phase already residing in the core image
library. When you do, the earlier phase-name entry is deleted from the core
image -directory (and, if applicable, the system directory list) and cannot be
accessed again.

Job control scans the directory of the appropriate library for all phases
starting with the same four characters as the program name specified in the
EXEC statement. The highest storage address of these phases is stored in
the communication region of the partition. All phases just link-edited will
be taken if no program name is specified in the EXEC statement.

Phase names may only be formed from the chafacters 0-9, A-Z, /, #, %,
and @. Otherwise, the phase card is invalid.

7.2° DOS/VS System Management Guide

System Directory

Core Image Directory ' Cataloged Phases

Linked Phases

Core Image Library .

Relocatable Directory

Relocatable Library

Source Statement Directory

Source Statement Library

Procedure Directory

Procedure Library

| «g— End of SYSRES
extent

Figure 7.1. Organization of the Directories on SYSRES

There is one other restriction when choosing a phase name. The
linkage editor interprets the phase name "ALL" as invalid because this
would subsequently be misinterpreted by the librarian programs. (This
applies to the control statements DELETC ALL and COPYC ALL.)

-In choosing a name for any multiphase program, make sure that the
first four characters differ from those of other multiphase program names.
Such unique names simplify the procedures of deleting, displaying,
punching, . merging, and copying the entire program. Figure 7.2 summarizes
the above recommendations. '

Chapter 7: Using the Libraries 7.3

Different names should be given to each
multiphase program; each phase of a
multiphase program should be named
with the same first four characters. This
implifies library maintenance.

Prog1 Prog2 y Prog3
ABCD1 ANN11 WXYZ1
ABCD2 - ANN12 WXYZ2
ABCD3 ANN13 v WXYZ3
ABCD4 ANN14 .

ANN15
WXYZn

Simplified library maintenance means, for example, that one
simple control statement deletes all phases of Prog1:

(DELETC ABCD.ALL

1f the programs had been named:

Prog1 Prog2 Prog3
ABCD1 ABCDS ABCD10
ABCD2 ABCD6 ABCD11 -
ABCD3 ABCD7 ABCD12
ABCD4 ABCDS8 .

ABCD9
ABbDn

the statement required to delete Prog1 would be:
(DELETC ABCD1, ABCD2, ABCD3, ABCD4

Figure 7.2. Naming Multiphase Programs

7.4 DOS/VS System Management Guide

Certain special naming considerations apply depgnding on the library in
which an element is stored:

« Core Image Library. The names of some IBM programs in the core .
image library begin with $; the IBM programs are normally stored in
the system core image library where they can be retrieved faster.
User-program names should not begin with $, because this is
specifically reserved for certain IBM programs, and user programs

.-should be placed in a private core image library if fast retricval is
‘desired. The reason for this is that the system searches the system core

" image directory first.for phase names beginning with $ and the private

" library directory first for other phase names, provided a private hbrary
is assigned to the partition in question.

o Relocatable Library. User-written modules should not use names
beginning with 1 since this is used as the first letter of the names of
IBM-supplied modules.

o Source Statement Library. Initial letters A, B, C, D, E, F, G, H, 1, and
Z refer to sublibraries reserved for IBM components, and you should
avoid as far as possible cataloging into one of these reserved
sublibraries. If you have an earlier version of DOS with books
cataloged in one of the sublibraries reserved under DOS/VS, you can
easily transfer them by using the librarian rename function.

« Procedure Library. Names for procedures cataloged in the procedure
library can consist of any combination of alphanumeric characters. The
naming convention to follow when creating partition- related cataloged
procedures is gnven in Chapter. 5: Controlling. Jobs.

Change levels can be appended to names of elements in the -relocatable,

source statement, and procedure libraries to help you keep track of the

current versions of your programs. The change level is specified in the

catalog control statement, and the procedure is described in detail later in
" this chapter under Cataloging. ‘

Storing and Accessing Elements in the Libraries

Whenever an element is to be stored (cataloged) in one of the libraries, the
system: :

« obtains the address of the library directory from the system directory

1

» determines the locations in the directory and the library where the '
_ directory entry and the element should be placed.

« places the element into the library and creates a new directory entry;
searches for duplicate entries and, if found, deletes the earlier entry.

_If a phase is added to the core image library, the applicable mformatlon in
the library descriptor entry is updated. If the phase is eligible for the shared
virtual area and is indicated as SVA-eligible in the system directory list, the
phase is also loaded into the SVA. The second level directory is updated, if
necessary. ‘ '

In general, the library elements and their respective directory entries
appear in the order in which they were cataloged. For the core image
library, however, the directory entries are sorted in alphameric sequénce.

~ Chapter 7: Using the Libraries 7.5

Source statements cataloged in the source statement library are stored
in compressed form, that is, all blanks are eliminated. When a source
statement book is retrieved, the statements are expanded to their original
80-character format. Control statements in the procedure library are not
compressed but are stored in card image format.

To access an element in a library, the system searches the
corresponding directory if it contains an entry with the name of the
requested element.

Working with the Libraries

This section describes how you can manage and control your libraries with
the use of the librarian programs. The librarian programs fall into three -
functional groups: maintenance, copy/reorganize, and service. The functions
are applicable both to the system and private libraries. Figure 7.3 is a
summary of the librarian programs and their functions.

GROUP PROGRAM FUNCTIONS
NAME
Maintenance | MAINT Catalog
Delete
Condense
- Reallocate*
Rename
Update
Copy/ CORGZ Create a new system pack.
reorganize

Create private libraries.

Transfer elements between any two libraries of the

same type.
Service DSERV Display the contents of the library directories.
CSERV Display, punch, or display and punch the.contents
RSERV of the Core image, Relocatable, Source statement,
SSERV or Procedure library.
PSERV
ESERV Display, update the contents of the assembler

sublibrary {in source statement format).

* Reallocate cannot be used for private libraries.

Figﬁre 7.3. Summary of Librarian Programs and Their Functions

7.6 DOS/VS System Management Guide

Processing Requirements

Maintaining the Libraries

kL=

You invoke the individual functions of the librarian programs by means
of librarian control statements. The use of these control statements is
described and demonstrated by examples in the following section. Their
formats are contained in DOS/VS System Control Statements.

Note 1: If the extended support for the procedure library (SYSFIL) was
selected during supervisor generation, the librarian control statements can
be -cataloged into the procedure library. This excludes maintenance

Sfunctions for the procedure library itself and reallocation of library sizes.

Note 2: If a cataloged procedure is used to start POWER/VS no
maintenance functions can be performed on the procedure library as long
as POWER/VS is active.

No special considerations apply to executing the librarian programs in a
virtual partition. If you wish to run a librarian program other than MAINT,
CORGZ, or DSERYV in either a real partition or a large virtual partition,
specify AUTC in the SIZE parameter of the EXEC job control statement.
Since MAINT, GORGZ, and DSERV dynamically allocate storage during
execution, the SIZE=AUTO specification should not be used for these
programs; SIZE=64K should be specified instead.

The CORGZ program and the reallocation function of the MAINT
program must always be executed in the background partition (real or
virtual). The MAINT, CSERYV, and DSERYV programs are self-relocating so
that they can be executed in any partition. The ESERV, PSERV, RSERV,
and SSERV programs run only in the virtual background partition, unless
they were link-edited to be relocatable and loaded by the relocating loader.

When you execute MAINT in a foreground partition, a private core
image library must be uniquely assigned to that partition. The maintenance
functions then apply only to this private core image library. Neither the
system libraries nor the private relocatable or source statement libraries can
be accessed by MAINT executing in the foreground. '

The maintenance functions of the librarian will probably be the ones most
frequently used in daily operation. They include:’

Cataloging elements to the libraries

Deleting elements from the libraries

Condensing the libraries (or establishing limits for automatic condense)
Allocating space to the libraries ' :
Renaming elements of the libraries

Updating books in the source statement library.

The maintenance program is invoked by the job control statement:
/7 EXEC MAINT

The functions to be performed are specified in libratian control statements
which must follow the EXEC MAINT statement on SYSIPT. (If SYSIPT is
assigned to a tape unit, it must be a single file and a single volume.) Any

Chapter 7: Usiﬁg the Librarjes 7.7

Cataloging

combination of the maintenance functions can be performed in a single run.
A sample maintenance job in skeleton form is shown below:

// JOB ANYMAINT
‘assignments, if necessary

// éXEC MAINT

libiafian control statements

/.*
/&

When the / *is processed after completion of the maintenance run, a status
report of the library just updated is printed on SYSLST.

‘The symbolic unit assignments requires for the individual maintenance
functions are described in DOS/VS System Control Statements. The
examples in this chapter assume that all necessary assignments are
established as standard assignments.

The catalog function adds a module to a relocatable library, a book to a
source statement library, or a procedure to the procedure library. You
cannot use the catalog function of the librarian to add a phase to the core
image library; this is-done by the linkage editor (see Chapter 6: Linking
Programs).

_The catalog control statements specify the name of the element to be cata-

loged and, optionally, a change level number. The control statements are:

Relocatable library CATALR
Source statement library CATALS
Procedure library CATALP

Elements added to a library by cataloging can be removed by dcleting (see
Deleting, later in this section). Under certain circumstances the catalog
function itself implies a delete function. For instance, if a module to be
cataloged has the same name as a module already existing in the relocatable
library, the existing module is antomatically deleted and the new module is
cataloged. No warning message is issued. The same is true for a book in the
source statement library and a procedure in the procedure library.

When you add to the contents of a library, watch the status of the system
directory,; which is printed at the end of the catalog run. If the libraries are
becoming full, you may wish to condense them or allocate more space to
them. (Condensing and allocating are described later in this section.)

Cataloeging to the Relocatable Library. To catalog an object module to the
relocatable library you must submit the object deck on SYSIPT following
the CATALR control statement. The following job catalogs two object

7.8 DOS/VS System Management Guide

modules, named MOD1 and MOD2, to the relocatable library; the object
decks were produced by language transiators in previous jobs:

// JOB CATREL
// EXEC MAINT
CATALR. MOD1

‘object deck for MOD1
CATALR MOD2

object deck for MOD2

/%
/&

You can also compile or assemble a program and catalog the resulting
“object module in the relocatable library in the same job, without obtaining a
‘card deck of the object module. In this case, you assign SYSPCH, which
receives the output of the language translator, to a disk or tape and then
use the object module on disk or tape as input to the MAINT program. An |
example using a magnetic tape for SYSPCH is shown in Figure 7.4. To
assign SYSPCH to a disk, the- SYSFIL. option must have been specified
during supervisor generation, and you must supply the necessary DLBL and
EXTENT job control statements (see also System Files on Tape, Disk,

or Diskette in Chapter 5: Controlling Jobs). .

// JOB CATREL

// OPTION DECK

// ASSGN SYSPCH,x'180"'
2 CATALR MODULE1

3 // EXEC ASSEMBLY

source module

/*

4 // MTC WTM,SYSPCH,2

5 // MTC REW,SYSPCH

6 // RESET SYSPCH

7 // ASSGN SYSIPT,X' 180'

8 . // EXEC MAINT"
/&

1 A magnetic tape dwnu is assigned (o0 SYSPCH (o receive (hc, dssunbler output.

2 The CATALR stau.mcnl is copied onto SYSPCH.

3 The assembler processes the source module and wnlt.s the object module onto
SYSPCH following the CATALR statement.

4 Tapemarks are written on SYSPCH to indicate the end of the object module.

5 The tape is rewound to its load point,

6 The tape is unassigned as SYSPCH.

7 The tape is assigned 1o SYSIPT (o serve as lnpu(for the MAINT program.

8 MAINT reads the object module from the lde and catalogs it in the relocatable

ibravy.

Figure 7.4. Assemblmg and Catalogmg to the Relocatable lerary in the
Same Job

Chapter 7: Using the Lit;‘r_aliies 7.9

All modules in the relocatable hbrary that have the first three characters
of the module name in common are considered to belong to one program.
This simplifies the control statements to delete, display, punch, merge, and
copy an entire program. The names of IBM-supplied modules in the

“relocatable library begin with the letter I, which should therefore tie
considered reserved so that you can readily distinguish your modul\es from
- IBM’s.

Cataloging to the Source Statement Library. To add a book to the source.

* statement library you use the CATALS statement specifying the name of the
book and the sublibrary to which it belongs. A sublibrary is defined by an
alphameric character preceding the bookname. For example, the statement

CATALS P.NEWBOOK

adds the book NEWBOOK to sublibrary P. Note that the sublibraries in the.
range from A to I, and Z are reserved for IBM components.

‘A -- is the assembler copy sublibrary. It contains books of assembler
source code and source macro definitions.

B -~ is the VTAM network definition sublibrary.

D -- s the alternate copy sublibrary. It contains non-edited macros and

copy books for programs that are to be executed in a teleprocessing
network control unit.

E - s the a‘ssemblej’ macro sublibrary. It contains 'IBM-supplied and
user-written macro definitions in an edited (partially processed)
~ format.
F -- s the alternate macro sublibrary. IBM uses it to distribute editéd

macros for use by programs that are to be executed in a .
teleprocessing network control unit.

'C -~ is the COBOL sublibrary. -
Z -- contains sample programs supplied by IBM.

“The rest of the reserved characters (G, H, I). will be used by IBM for
future additions to the source statement library. You should avoid, wherever
possible, cataloging to one of the reserved sublibraries. If you must catalog
to a sublibrary that is reserved for IBM components, ensure that you do not
use duplicate names. You can obtain a listing of the contents of each
sublibrary by means of the SSERV librarian program (see Using the
Service- Functions of the Librarian later in this chapter). You can obtain
a listing of the book names’ within each sublibrary by means of the DSERV
librarian program.

Users of previous versions of DOS, who have books in a sublibrary
which is reserved under DOS/VS can easily transfer this sublibrary from
the IBM range to the user range by means of the librarian rename
function (see Renaming, later in this section).

Edited macro definitions that-are to be cataloged in the assembler
sublibrary must be preceded by a MACRO statement and followed by a
MEND statement. Example:

7.10. DOS/VS System Management Guide

// JOB CATMAC

// EXEC MAINT
CATALS E. MBOOK
"MACRO :

edited macro definition statements

MEND
/*
/&

Books other than macro definitions that are to be cataloged must be
preceded and followed by BKEND-statements. Examples

//- JOB CATBOOK

// EXEC MAINT

CATALS P.SBOOK *
BKEND

B

source statements

BKEND
Vi
/&

The BKEND statement can have optional operands specifying that a -
sequence check or a card count be performed on the statements to be
cataloged, or that the book to be cataloged is in compressed format. If you
desire these functions when you catalog a macro definition, BKEND
statements can be included in addition to the MACRO and MEND
statements.

Cataloging to the Procedure Library. To catalog a procedure in the
procedure library you submit a CATALP statement specifying the
procedure name. Procedure names can consist of any combination of
alphanumeric characters. The control statements to be cataloged follow the:
CATALP statement; they can be job control or linkage editor control
statements or both. The end of the control statements to be cataloged must
be indicated by /+.

Each control statement cataloged in the procedure library should have a
unique identity. This identity is required if you want to be able to modify
the job stream at execution time. Therefore, when cataloging, identify each
control statement in columns 73-79 (blanks:may be embedded). Refer also
to the section Modifying Cataloged Procedures in Chapter 5: Controlling
Jobs.

The following job catalogs the procedure PROCA in the procedure hbrary

~// JOB CATPROC
// EXEC MAINT
CATALP PROCA

control statements to be cataloged

/+ END OF PROCEDURE
/%
/&

Chapter 7: Using the Librarics 7.4ll

If your supervisor was generated with the SYSFIL option, you can also
include inline SYSIPT data in the cataloged procedure. The presence of
SYSIPT data must be indicated to the MAINT program by the DATA
parameter of the CATALP statement. In addition, you must indicate the
end of the procedure by a special delimiter; the /* statement cannot be
used for this purpose because it signals the end of the SYSIPT data. The
end-of-procedure delimiter can consist of any two characters except /*,

/ &, and //; the delimiter must not contain a blank or a comma. You must
define the end-of-procedure delimiter in the EOP parameter of the
‘CATALP statement. The following example catalogs a procedure consisting
of. control statements and SYSIPT data; the characters /$ are used as '
end-of-procedure delimiter.

//- JOB CATPROC
. // EXEC MAINT .
. CATALP PROCA,EOP=/$,DATA=YES

conérol statements
éYSIPT data

v/* éND OF SYSIPT DATA

éonérol statements

/$ END OF PROCEDURE
/* .
/&

The system assumes the default delimiter /+; this means that if you use /4
as end-of-procedure delimiter, you can omit the EOP parameter.

The following restrictions apply when you catalog procedures to the
procedure library:

1. A cataloged procedure cannot contain control statements or SYSIPT
data for more than one job. :

2. If the cataloged control statements include the JOB statement you must
not have a JOB statement when you retrieve the procedure through: the
EXEC statement.

3. A cataloged procedure must not include any of the'follqwing control
statements because they are not accepted when the procedure is
processed:

// BSSGN SYSRDR,X'cuu'
// RESET SYS
// RESET ALL
. // RESET SYSRDR
- // CLOSE SYSRDR,X'cuu'
// ASSGN SYSIPT,X'cuu' only if SYSIPT data
// RESET SYSIPT is included
// CLOSE SYSIPT,X'cuu'
/&

7.12 DOS/VS System Management Guide

Deleting

4. Cataloged procedures cannet be nested, that is, a cataloged procedure
cannot contain an EXEC statement that invokes another cataloged
procedure. :

Refer-to Chapter 5: Controlling Jobs for a detailed description of how to
retrieve cataloged procedures from the procedure library and how to modify
cataloged control statements using the overwrite facility.

Assigning Change Levels. When you catalog an element in one of the
libraries, you can assign a change level to the element, which will enable
you to keep track of the current version of your programs. The change
level is specified in the catalog control statement by a version and a
modification number. The following statement catalogs version 1,
modification 3, of module MOD1 in the relocatable library:

CATALR MOD1,1.3

Change levels are stored in the directory entry for the eiement and can be
displayed by the librarian service program DSERV. A change level is not
used by the system for identification purposes, that is, a change level is not
sufficient to allow two elements having the same name to coexist in a
library.

For the source statement library only, you can request verification of
the change level before a-book is updated. This can prevent an accidental
updating of the wrong version of a book in a particular sublibrary. Specify
the character C in the CATALS statement to request change level
verification. Example:

CATALS M.BOOK1,1.1,C

To update the book you must supply the current change level of the book

_in the update control statement. This change level is thén checked against

the change level in the directory entry and, if they match, the book is
updated and its change level is increased by one to refloctathe new status of
the book. If you want to overwrite the version and modification numbers of
a book, supply the new change level information in the END statement of
the update function. If change level verification is requested for a particular
book, the letter C will appear in the column headed LEV CHK (level
check) in the DSERYV listing. -

You can delete an unwanted element from a library either by cataloging a
new element with the same name or by means of the delete functxon of the
librarian, using the following control statements:

Core image library DELETC
Relocatable library DELETR
Source statement library . . .- . . . DELETS
Procedure 11brary “ « « o« +» « « « . DELETP

To delete individual elements from the libraries, you must specify each
clement name in full in the delete control statement. If a group of elements
is to be deleted, however, you can simplify the specification of the control
statement provided that the recommended naming conventions were used
when the elements were cataloged.

Chapter 7: Using the Libraries 7.13

2. You can delete all modt'llesAin the relocatable library that have the first
~ three characters in common by specifying these three characters in one
delete control statement.

3. Similarly, you can delete an entire subllbrary from the source statement
library by specifying the sublibrary name.

‘Sinc_e no special naming conventions apply to the procedure library, each
cataloged procedure to be deleted must be individually specified.

You can also use the delete function to remove all elements of a
relocatable library, source statement library, procedure library, or private
core image library. In this case, the system directory information is updated
to show that all blocks of the library in question are available for cataloging
programs; no condense operation is required. You cannot delete the entire
system core image library, but only individual phases or programs.

The following job deletes (1) all phases starting with PHAS from the
core image library, (2) modules MOD1 and MOD2 from the relocatable
library, (3) sublibrary P from the source statement library, and (4) all the
elements of the procedure library:

// JOB DELETE
// EXEC MAINT
- DELETC PHAS.ALL
DELETR MOD1,MOD2
DELETS.P.ALL
DELETP ALL
/*
/&
When you request the deletion of a library element, the name of the
element is removed from the corresponding directory entry. The system is
then no longer able to recognize the element although it is still physically
present in the library. The area taken up by such an element can be
referred to as unavailable free space. To make such space available again
for cataloging programs, use the condense function. The delete and
" condense functions are illustrated ‘in Figure 7.5.

When a phase is deleted from the core image library, it is also flagged
as not present in the system directory list (if applicable). The shared virtual
area cannot be condensed; it must be recreated. See Building the SDL
and Loading the SVA in Chapter 4: Starting the System.)

7.14‘ DOS/VS System Management. Guide

Assume that phases A, B, and C are cataloged in the
core image library (c.i.l.). Each core image directory
(c.i.d.) entry, which refers to one of these phases,
points to the beginning disk address of the phase.

c.i.d.
c.il.
First area available
for cataloging
- If phase B is no longer desired in the core image
library, specify (DELETC B|, which deletes the
name B from the directory. '
c.id.
c.i.l
First area available This becomes unavailable
for cataloging free space — unavailable

because no other program

can be cataloged into
this area.

To make full use of the core image library, eliminate
the unavailable free spaces by specifying

CONDS CL].

First area available
for cataloging

Figufe 7.5. Example of Deleting and Condensing

Chaplter 7: Using the Libraries

7.15

When you delete an element from a library, the spacesoccupied by the
‘defeted’ element -- referred to as unavailable free space -- is unavailable
for cataloging new ¢lements (see- Figure 7.4). To make this space available

for cataloging, you use’the condense function of the MAINT program.

. To condense any of the libraries you use the CONDY control statement -
specifying which of the libraries is (are) to be condensed. The following job

- condenses the core image, relocatable, and source statement librarics after
~ the deletion of elements from the libraries:

// JOB DELCOND
// EXEC MAINT -
DELETC PHAS1,PHASS5, PROGA
DELETR MOD.ALL
- DELETS P.ALL
DELETP ALL
CONDS CL,RL,SL
/*
/&
Note that you need not condense a library -- in the above example, the
procedure library -- if that library is deleted entirely.

_The reallocation function of the MAINT program automatically causes

“the libraries to be condensed. Refer t°the section Reallocating. .

If a condense operation is interrupted by a hardware error or by

" operator intervention before the next statement is read, the library being

condeénsed is unusable and must be reconstructéd. Note that the condense
program shows all the symptoms of a looping programs, but should never
be canceled by the operator. '

Autematic Condense. You can also specify that the condense functicn be
performed automatically each time the number of available blocks in a
library drops below a specified minimum, referred to as the condense limit. -
Automatic condense is requested by the CONDL control statement
indicating the library or libraries to be condensed and the condense limit(s).
Example: :

// JOB AUTOCOND

// EXEC MAINT

CONDL CL=10
/*.
/&

The CONDL statement in the above example indicates that the core image

library is to be condensed automatically whenever the number of available

blocks in the library becomes less than ten. (The block size of the core
image library is 1024 bytes.)

The condense limit specified should always be less than the number of
blocks allocated to the library; otherwise, a condense is performed after
each maintenance function. The MAINT program stores the condense limits
in the system directory, which can be displayed by the service program
DSERYV, and which is automatically displayed at the end of each librarian
maintenance job. A message printed on the console informs the operator
when the system performs an automatic condense.

7.16 . DOS/VS System Management Guide

When Condense Can Be Performed. While the condense function is being
executed, the library directories do not represent the actual status of the
library. Thus, if a program in any partition were to attempt to use the
library in any way, the results would be unpredictable. For this reason,
various controls are providéd to minimize the chances of unpredictable
results: -

« The system core image library and either the system or private
relocatable and source statement libraries can only be condensed from
the background partition, and then only if there are no active
foreground partitions. If the automatic condense limit is reached when
there are active foreground partitions, the conderise operation will not
be carried out. - '

* A private core image library may be condensed iw any partition,
provided it is exclusively assigned to that partition.

» - The procedure library can be condensed from any partition unless it is
being accessed by the job control program in another partition or a

procedure is being executed. Thus, a job stream to condense the
procedure library cannot be cataloged. ‘

Note for POWER/VS users: Even though POWER/ VS may not be doing

any work, if it is resident in a partition, the partition is considered to
be active.

A summary of when condense can be performed is shown in Figure 7.6.

~ Core Image

Relocatable Source Statement

Procedure (system)

‘ Syétem " Private System -

System -, Private Private
CONDS Yes if FG | Yes if issued | Yes if FG is inactive. ’ Yes if not being
is inactive. | from the only accessed by job
- | partition to control or if a]
which the procedure is not being
PCIL is executed.
assigned.
automatic | Yes if FG | Yes if the Yeé if FG is inactive. ‘Yes if not being
condense | is inactive. | PCIL is accessed by job
assigned to - control or if a
only one. procedure is not being
partition. executed.
Figure 7.6.. When Can Condense Be Performed?

Reallocating

The CONDL cohtml“ statement (which sets the automatic condense limits) can be submitted with the
MAINT program at any time: however, the automatic condense is performed only under the above
circumstances. ’

You can use the reallocation function of the MAINT program to

« increase the size of a library for further additions

» decrease the size of a library, for example, to provide space.for

expanding other libraries

Chapter 7: Using the Libraries 7.17

« eliminate a library if it-is replaced by a private library or'is no longer
required

o reestablish a library after it has been climinated.

Each library that is reallocated is automatically condensed. You can
reallocate any combination of the system libraries on SYSRES within a
single run, You cannot reallocate private libraries. To change the track and
¢ylinder allocation of a private library, you must create a new private
library using the CORGZ program (see Creating Private Libraries. later in
this chapter). If a private library is assigned and you attempt to reallocate -
the corresponding system library, a message is issued and the job is
canceled. ‘

The reallocation function of the MAINT program must always be
executed in the background partition and all foreground partitions must be
inactive. This ensures that no program can access any library during
reallocation; ‘otherwise, the results would be most unreliable because the
final addresses may not have been established and (similar to the condense
function) because the directory entries do not reflect the actual status of
the libraries until end-of-job.

You invoke the reallocation function through the ALLOC control
‘statement. In the operand field you specify the libraries to be reallocated,
the number of cylinders to be allotted to each library, and the number of
tracks to be reserved for the library directory. The ALLOC statement can
be submitted together with any other maintenance control statements.

Changing the Size of the Libraries. When you increase the size of one ,
library, you must consider the space remaining for the libraries that follow.
The ending cylinder address of the last library cannot exceed

197 for 2314 or 2319

401 for 3330 or 3333 \

347 for 3340 with 3348 data module Model 35
695 for 3340 with 3348 data module Model 70.

If not enough space is available for the following libraries, you must reduce
one or more of these libraries to compensate for the increase.

Assume, for example, that the SYSRES library space on a 2314 was
allocated during system generation as-

ALLOC CL=90(5),RL=40(2),SL=60(3),PL=6(5)

"An attempt to reallocate only the core image library to 120 cylinders would
fail, because cylinder 199 would be exceeded. To avoid this, you can reduce
the combined sizes of the relocatable and source statement libraries by 28
cylinders. In this case, the ALLOC statement should read:

ALLOC CL=120(7),RL=30(2),SL=42(3),PL=6(5)

When you alter the size of the SYSRES file by reallocating libraries, you
must define the new SYSRES extent by means of DLBL and EXTENT job
control statements. The new SYSRES extent must begin with cylinder 0,
track 1, and end with the last track of the label cylinder. The ALLOC
statement starts calculating from cylinder 0, track 0. This means that

7.18 DOS/VS System Management Guide

EXTENT information for the SYSRES file is one cylinder (label cylinder):
larger than the total number of cylinders specified in the ALLOC -
statement.

The following example shows the job control statements required to
reallocate the system libraries as discussed above when the SYSRES device'
type is 2314/2319: ‘ '

// JOB REORG
// OPTION STDLABEL
// DLBL IJSYSRS,'DOS/VS SYSTEM RESIDENCE',99/365
// EXTENT SYSRES,111111,1,0,0001,3979 . '
// EXEC MAINT :
ALLOC CL=120(7),RL=30(2),SL=42(3),PL=6(5)
/¥
/&

Note that-the filename specified in the DLBL statement for the SYSRES
~ file must always be IJSYSRS. The new label information for the SYSRES
file is stored in the volume table of contents (VTOC) of the SYSRES pack.

No special considerations apply for reducing the size of a library except
that you must also-.supply the necessary label information for the new
SYSRES extent. Reducing a library does niot cause any gaps, that is, the
libraries following the ene that was reduced are 'moved-up’ to close the -
gap.

Eliminating Libraries. If you have created a private relocatable or source
statement library containing all the modules or books that you require from
the correspondin’g system library, you can use the reallocation function to

- eliminate that system library. You do. this by setting the track and cylinder
indications in the ALLOC statement to zero. This is only effective,
however, if all the directory entries have first been cleared by the DELETS
or DELETR control statéments.

Similarly, you can eliminate the pracedure library if it contains no
active elements and you are sure that you do not want to use cataloged
procedures.

The following job eliminates the system relocatable library. The
example assumes that the libraries were allocated with CL=80(5),
‘RL=40(2), SL=30(3), PL=10(5). (SYSRES device type assumed to be
2314/2319.)

// JOB ELIMNT A
¢/ DLBL IJSYSRS, 'DOS/VS SYSTEM RESIDENCE',99/365

// EXTENT SYSRES,111111,1,0,0001,3219

// EXEC MAINT
’ DELETR ALL . -

. ALLOC RL=0(0),CL=120(7),SL=30(3),PL= 'I‘.O(5)

/% ’

/&)

You cannot eliminate the system core image library because it is required
for system operation. If you inadvertently specify a zero allocation for the
system core image library, the job is canceled.

Once eliminated, the relocatable, source statement, or procedure library
can be added again to the SYSRES file. The same considerations apply to .
adding a library as to increasing the size of a library. Using the reallocation

Chapter 7: Using the Libraries -7.19

Renaming

“function to add a library does not include adding the actual elements of the
library, Once a hbrary exists you can add elements either by cataloging or
by merging from a private library or another SYSRES. (The merge function
is (lescnbed in Copying and Reorganizing the Libraries, later in this
chapter.)

" “To change a naine;of a cataloged phase, module, book, or procedure, use

the rename function. In a control statement unique to each type of library,
you supply the existing name and the name to which you want to change it.
If the new name is identical to a name already cataloged in the library, an .
error message is issued. You must then select a different name and resubmit
the job.

When you name a phase in the system core image library that is also
listed in the system directory list, the phase name is changed in both
directories.

After a valid rename control statement is processed, the system
recognizes only the new name. The version and modification level (change
level) is not changed by the rename function. '

Each type of library has a unique rename control statement:

Core image ‘library RENAMC
Relocatable library RENAMR
Source statement library RENAMS
Procedure library RENAMP

‘The rename function can be used to establish naming conventions. All
phases in the core image library that have the first four characters in
common are considered to i)elong to one program. All modules in the
relocatable library that have the first three characters-in common are
considered to belong to one program. Since the names of 1BM-supplied
relocatable modules begin with the letter 1, it is advantageous to avoid this
first character when naming user modules. Similarly, you should avoid the
use of the first characters A-I and Z when renaming sublibraries in the
source statement library. These prefixes are reserved for IBM-supplied
components. Names for procedures cataloged in the procedure library can
consist of any combination of alphanumeric characters.

Renaming a member of a library can be advantageous in a testing
environment. For instance, after making changes to your source deck,
rename the previous version residing in the library and catalog the new

" source under the original name. This assures you of backup until your new

program is in working order, at which time you can delete the old
(renamed) version(s).

Updating the Source Statement Library

The update function applies only to a source statement library. This
function revises one or more source statements within a particular book. By
using update you can make minor changes to a book, without having to
catalog an entire, new book.

7.20 DOS/VS System Management Guide

Besides adding, deleting, or replacing a certain number of source
statements within a book, the update function allows you to:

« resequence statements within a book _

« revise a change level (version and modification) of a-book

+ add or remove the requirement for change level verification

e . copy an entire book and rename the old book (for backup purposes).

The UPDATE control statement identifies the update function. This
statement may also be followed by one or more of these additional
statements as required:

ADD -- To add source statements
DEL -- To delete source $tatements
REP -- To replace source statements.

The END statement indicates the end of updates to the particular book
specified in the UPDATE control statement.

If the requirement for change level verification was specified in the
CATALS control statement when a book was cataloged, the version and:
modification level must be specified in the UPDATE coritrol statement that
refers to this book. This change level must agree with the current change
level in the directory entry for that book. (Check the DSERYV listing for the
current change level and/or requirement for change level verification.- For
more information on the DSERV program, refer to the section Displaying
the Directories.) This requirement prevents you from inadvertently updating
the wrong version and modification level of a particular book. Regardless of
whether or not the requirement is in effect, the version and modification

* level are incremented by one after each update. If a version and
modification level is specified in the END statement, this ovemdes the
_current change level. :

Copvmg and Reorganizing the Libraries

The copy/ reorgamze program of the librarian is an important tool for
establishing and organizing your libraries during system generation or any
time -thereafter. The copy/reorganize program performs the following
functions:

» Creates a new system residence (SYSRES) -

« Transfers elements between any two existing libraries of the same type
+ Creates private libraries.

The first two points are described in this section. The creation-of private

libraries is discussed in Creating and Working with Private Libraries,
later in this chapter.

The copy/ reorganize pfogram can only be executed in the background
partitian.. It is invoked by-the statement

//. EXEC CORGZ

When /* is processed after completion of the CORGZ program, 3
status report of the library just updated is printed on SYSLST.

Chapter 7: Using the Libraries 7.21

You cannot have unlike device types for input and cutput. -

The functions to be performed by the CORGZ program are specified in
a set of librarian control statements, which will be introduced in the course
- of the following discussions.‘

Creating a New System Residence

- When' system generation is completed, you will want a backup' SYSRES,
which can save you regenerating the system from your distribution medium
if the operational pack is inadvertently destroyed. This backup SYSRES is
.usually kept on tape, but may also be kept on a disk of the same device
type as the original SYSRES. If the backup SYSRES is to be on disk, use
the CORGZ program with the ALLOC and a COPY control statements to
define the new SYSRES file and copy the entire contents of the original
SYSRES file.onto it. '

; You can also copy the SYSRES file selectively; that is, the new system
residence .will contain only part of the original SYSRES. This may be useful
in an'installation that uses certain components only during specific
processing periods. For instance, if teleprocessing and support for five
partitions is required only during the prime shift, a different system
configuration (for instance, no teleprocessing and three partitions) could. be
used during the second shift. Therefore, you could copy onto a new
SYSRES file only those components required for the second shift and add-
any additional components needed to that SYSRES. In this case, you must
assemble a new supervisor and catalog it into the new SYSRES file. The
effect is a smaller supervisor and smaller libraries on both system residence
packs which means faster access to library elements and, thus, improved
overall system performance.

When you create a new system residence, SYS002 must be assigned to
the device on which the new SYSRES pack resides. In addition, you must
define the extents of the new SYSRES file by means of DLBL and
EXTENT job control statements. The filename in the DLBL statement
must be IJSYSRS. The lower extent must be cylinder zero, track one, and
the upper extent must include the label information cylinder. The
infformation to be copied from the original to the new SYSRES is specified
in one or more of the following COPY: control statements:

COPY ALL to copy the entire system residence file. Note that you can
use this form of the COPY statement only if all four
system libraries are allocated on the original SYSRES file;
otherwise, you must use a combination of the following
COPY statements.

COPYC to copy one or more elements, one or more
COPYR groups of elements, or all elements of the
COPYS Core image, Relocatable, Source statement
COPYP or Procedure library.

The following job creates a backup SYSRES file on disk drive X‘131°. The
example assumes that the original SYSRES file does not contain a
procedure library:

7.22 DOS/VS System Management Guide

// JOB BACKUP
// ASSGN. 5YS002,X'131"'
// DLBL IJSYSRS, 'DOS/VS SYSRES BACKUP',99/365,SD
// EXTENT SYS002,111111,1,0,0001,2219
// ‘EXEC CORGZ))
ALLOC CL=50(5),RL=30(5),SL=30(5),PL=0(0)
COPYC ALL
COPYR 'ALL
, COPYS ALL
/*
/&
For each CORGZ run an ALLOC control statement is required, preceding
any COPY statements. If you wish to exclude an entire library from being
copied, specify a ‘zero’ allocation (for example, RL.=0(0)).

Assume that you have a SYSRES file that contains all four system
libraries and you want to create a second SYSRES file containing only
selected information from the core image library and the entire relocatable
library. The following job creates this new SYSRES file (device type
2314/2319 assumed):

// JOB SYSRES

// ASSGN SYS002,X'1371"'

// DLBL IJSYSRS, 'DOS/VS SYSRES I1',99/365,SD

// EXTENT SYS002,111111,1,0,0001, 1619

/7 EXEC CORGZ

ALLOC CL=50(5),RL=30(5),SL=0(0),PL=0(0)
COPYC PHAS'.ALL,PROG.ALL,ABCD.ALL
COPYR ALL

/¥

/&

Note that ali components essential to a minimum system are copied
automatically by the CORGZ program. These components are:

» Supervisor

o Initial program loader (IPL)

. Ail logical and physical transients

+ Job control

« Linkage editor

« Partition and system standard labels (cataloged with the PARSTD and
STDLABEL options) from the label information cylinder.

Thus, if you execute the CORGZ program, without any COPY statements,
‘the above components will be copied automatically onto the new SYSRES
file. '

Transferring Elements between Libraries

If you work with more than one system residence pack or private library,
you may want to transfer elements from one library to another. Instead of
punching the elements into cards and re-cataloging them, you can usc the
CORGZ program with a MERGE statement to transfer the clements. This
is especially useful for system generation when a new version of the system
is installed; you can then copy the library elements directly from the old
version to the new one. (For -backup purposes you should of course have a
duplicate of the library to which clements are transferred.)

Chapler 7: Using the Libraries 7.23

-You use the MERGE control statement to define the characteristics of
the libraries to be merged and the direction of transfer between the
libraries. The operands of the MERGE .control statement are:

RES -- For the system libraries on the system residence file

NRS -- For the system libraries on a modified or duplicate system residence
file
PRV -- For any private libraries.

For example, the statement MERGE RES,PRYV indicates to the CORGZ
program that elements are to be transferred from one or more libraries on
the system residence file to the corresponding private libraries. The type of
library involved and the elements to be transferred are specified in COPY
statements immediately following the MERGE statement. (The COPY
statements are the same as those described in the preceding section
Copying and Reorganizing the Libraries.)

You must define the extents of the libraries involved in a merge
operation by DLBL and EXTENT job control statements. The filenames to
be used and the necessary symbolic unit assignments are described in detail
in DOS/VS System Control Slatements. '

The job in the following example adds the contents of the core image
library on a duplicate SYSRES file (NRS) to the elements in a private core
image library (PRV). Any elements with duplicate names (supervisor, job
control, etc.)-are deleted from the receiving library.)

// JOB NRSPRV
// ASSGN SYS002,X'130'
. ASSGN SYSCLB,X'131!
// DLBL IJSYSRS,'DOS/VS SYSRES 11',99/365,SD
// EXTENT SYSOOZ,111111,1,0001,2519v .
// DLBL 1JSYSCL,'PRIVATE CIL',99/365,SD
// EXTENT SYSCLB,222222,1,0,1600,200
// EXEC CORGZ
MERGE NRS, PRV
. COPYC ALL
/%
/&
Note that, when the CORGZ program performs a merge operation, it does
not automatically copy the basic system components as it does when a new
system residence is created (see preceding section). You must specify
COPYC ALL to transfer the entire. core image library or COPY ALL to
transfer the entire SYSRES extent. Moreover, when the merge function is
being performed, you cannot reallocate the libraries with.an ALL.LOC
statement.

7.24 DOS/VS System Management Guide

Using the Service Functions

of the Librarian

. The service functions of the librarian enable you

Displaying the Directories

+ to obtain reports on the contents of your libraries by displaying-the
directories on SYSLST

. t,o‘prin't and/or punch the contents of your libraries on SYSLST or
SYSPCH in order to transfer the library elements to a different location
or to correct them

« to prepare macro definitions in the assembler macro (E) sublibrary for
"~ update.

The directories are displayed by the DSERV program. Edited macros in the
E-sublibrary can be de-edited for update by the ESERV. program. To print
or punch the contents of the libraries, a separate program is available for
each type of library:

CSERV -- Core image library
RSERV -- Relocatable library ,
SSERV -- Source statement library
PSERV -- Procedure library

If you use private libraries, the service functions apply only to the private

libraries assigned. Private libraries must be unassigned before the

corresponding system libraries can be accessed by the service programs.

Using the directory service program (DSERYV) you can obtain a listing of
the following directories:

o Core image directory, or the directory entry of 4 specific phase or
group of phases (transients, for instance) in the core 1mage library -
together with their change, level if present

« Relocatable dlrectory

¢ Source statement directory

« Procedure directory

« System directory. This directory is alwéys listed before any of ihe

directories is printed. This information is called a status report. \

Depending on the control statement used, the directories can be displayed
in one of two formats:

« An alphamerically sorted hstmg of the directory entries (DSPLYS
control statement)

« A listing of the entries in the order in which they appear in the
directory (DSPLY control statement).)

Note: The entries in the core image dzrectory are always dzsplayed in
alphameric sequence.

Within a single job step yqu can obtain multiple displays of the same
directory, either sorted or unsorted, by supplying a separate control !
statement for each desired display. Similarly, any number of directories can

Chapter 7: Using the Libraries 7.25

be displayed within one job step, depending on the operands in the control
statement. The following job will produce a sorted listing of all transients
($-phases) and unsorted listings of the relocatable and source statement
libraries:
// JOB DISPDIR
// EXEC DSERV
DSPLYS TD
DSPLY RD,SD
/*
/&

If you specify // EXEC DSERV without any control statements, a status
report of all libraries present on SYSRES and all private libraries assigned
(if any) is printed on SYSLST.

Displaying and Punching the Contents of the Libraries

You can use the library service programs to obtain a listing and/or card
deck of elements in a library. There is a unique service program for each
library: ’

CSERV -- Core image library
RSERV -- Relocatable library
SSERV -- Source statement library
PSERV -- Procedure library.

You request the library service functions by means of three control
statements which are used for all four library service programs. These
control statements are:

DSPLY -- To print the elements of a library
PUNCH -- To punch the elements of a library
DSPCH -- To print and punch the elements of a library.

Each of these statements can specify one or more individual elements, one
or more groups of elements, or all elements of a library to be printed or
punched. The following job prints the entire sublibrary P and punches
phases PHAS1 and PHAS3 of the core image library:

"// JOB LIBSERV
// EXEC SSERV
DSPLY P.ALL
/*
// EXEC CSERV
PUNCH PHAS1,PHAS3
/*
/&
The punched output (either in cards, on tape or disk) of any service
program can be used as input for recataloging into the type of library from
which it was extracted. Except for the CSERV punched output, the service
programs automatically punch a CATALR, CATALS, or CATALP
statement immediately preceding each element, and a /* statement -
immediately following the last element (/+ in case of the procedure
library). Such card decks can therefore be submitted with a // EXEC
MAINT statement for recataloging.

7.26 DOS/VS System Management Guide

‘ Punched output of the CSERV program is suitable for input to tﬁe
linkage editor for recataloging to the core image library. The control
statement stream would be as follows:

// JOB RECATAL
// OPTION CATAL
INCLUDE

/*
// EXEC LNKEDT
/&

Phases punched from the core image library are relocatable if ACTION
REL was active when the phases were originally cataloged. If relocatable
phases are recataloged, their origin is at an address relative to the end of
the supervisor (S+displacement). If nonrelocatable phases are recataloged,
their origin is at the same absolute address as when they were ongmally
link-edited. »

Phases originally cataloged with the SVA operand are punched and
- displayed with this indication.

_ Printed output from any of the service programs is useful for debugging
purposes. For instance, after determining an error from a dump or source

- listing, you implement a change to the RSERV object deck by inserting the
appropriate REP card(s) directly before the END card and run the MAINT.
program to recatalog the object module; then to verify that the REP card
was correct, execute the RSERV program to obtain a listing. An SSERV
listing may be necessary before a single statement update can be
performed; after locating the statement in error in the listing, submit an
UPDATE maintenance run to implement the change in the source statement
library,

_Preparing Edited Macros for Update

The assembler uses two sublibraries of the source statement library: the
macro sublibrary (sublibrary E) and the copy sublibrary (sublibrary A). All
macro definitions in the assembler macro (E) sublibrary have been ‘
preprocessed by the assembler; they are said to be edited. An edited macro
definition cannot be directly updated; instead, the source macro, either in a
card deck or in the copy (A) sublibrary is updated. After the changed
macro has been tested and debugged, it must be edited again before it can
be recataloged in the macro sublibrary.

If the macro to be updated is not available in source format, you can
use the ESERV program to convert the edited macro back to source
format: this is called de-editing. If the output of the ESERV program is to
be used directly as input to the assembler, you can specify the GENEND
control statement to cause the END card and a /* card to be included after
the last macro. If the output is to be cataloged directly into the copy (A)
sublibrary, you can specify the GENCATALS control statement. This
causes a CATALS card to be generated before each macro in the run and a
/* card after the last macro. If neither the GENEND nor the
GENCATALS control statement is specified after the // EXEC ESERV
statement, GENCATALS is assumed.

‘Chapter 7: Using the Libraries 7.27

The remainder of the control statements that you submit to the ESERV
program are the same as for the other librarian service programs: DSPLY,
PUNCH, and DSPCH. The following job de-edits the macro named MACT:

// JOB DEEDIT

// EXEC ESERV
GENEND
PUNCH E.MAC1

/*

/&

The output of the above job is the macro MACT1 in source format on
SYSPCH. An END card and a /* card is included after the macro. You can
now update the macro, edit it, and catalog it back into the E sublibrary of
the source statement library. '

You can de-edit and update a macro in a single run by submitting the
necessary update control statements. The following job de-edits and updates
the macro MAC2. The result will be the updated macro in source format
on SYSPCH and a listing of the updated macro on SYSLST:

// JOB” EDTUPDTE
// EXEC ESERV
GENCATALS
. DSPCH E.MAC2

update control statements

/*
/&

The update function of the librarian is described in Updating the Source
Statement Library, earlier in this chapter. Detailed information on editing,
de-cditing, and updating macro definitions is given in Guide to the
DOS/VS Assembler.

Creating and Working with Private Libraries

Private libraries are created and maintained by the system librarian
programs. All librarian functions are performed in the same manner for
private libraries as for system libraries. The reallocate (ALLOC) function is
the only one not available to private libraries. To change the extents of a
private library you must create a new private library and copy the contents
of the old library into it.

The following sections describe how to create private libraries and what
you must consider when you use private libraries.
Creating Privaté Libraries
You can create private libraries either during system generation or at any

time thereafter. Private libraries can reside on the SYSRES pack (outside
the SYSRES extent) or on separate disk packs which (except for a private

7.28 DOS/VS System Management Guide

core image library) must be of the same device type as the SYSRES pack:
- You can define any number of private core image, relocatable, and source
. statement library; private procedure libraries are not supported

You create private libraries with the CORGZ hbranan program ‘The
creatlon of an operational private library involves two stages:

1. Defining the extents of the library by means of a NEWVOL (new
volume) control statement.

2. Transferring information to the library from an existing library by
- means of COPY and/or MERGE control statements.

You can execute the two stages either in one job step by one invocation of
‘the CORGZ program or in separate job steps. '

To define the device on which a private library is to be created and the
disk extents occupied by the library, you must supply a set of ASSGN,
DLBL, and EXTENT job control statements specifying predetermined
symbolic unit names and filenames (see Figure 7.7).

Private Library Symbolic Unit Name'| Filename
Core image SYS003 , IJSYSPC
Relocatable SYSRLB 1JSYSRL
Source statement SYSSLB 1JSYSSL

Figure 7.7. Symbelic Unit Names and Filenames Required to Create Private"
‘Libraries

You can store the label information submitted by DLBL and EXTENT
statements either temporarily (option USRLABEL) or permanently (option
. PARSTD or STDLABEL). Temporary labels must be resubmitted with

every job that accesses the corresponding library;- permanent labels are valid
- for all subsequent jobs.

' Note: If you catalog permanent labels wn‘h the STDLABEL option you must
resubmit all existing standard labels; otherwise, they are lost (see also Types of
Label Information in Chapter 5: Controlling Jobs),

The following example shows the job control and librarian control
statements necessary to define the extents of a private relocatable and a
private source statement library. The NEWVOL control statement indicates
the type of library to be created-and the number of cylinders (tracks) to be
allocated to each library (directory).

// JOB DEFINE

// ASSGN SYSRLB,X'191"

// ASSGN SYSSLB,X'192'

// DLBL IJSYSRL, 'DOS/VS PRIVATE RL',;99/365,SD

»// EXTENT SYSRLB,111111,1,0,20,800 ' :

// DLBL IJSYSSL, 'DOS/VS .PRIVATE SSL',99/365,SD

// EXTENT .SYSSLB,222222,1,0,500,600

// EXEC CORGZ

NEWVOL RL=40(5),SL=30(5)

/*

/&

After you have defined the extents of the private libraries you can either
use the merge function of the CORGZ program: to-transfer elements from /
existing libraries or the catalog function of the MAINT program to store

- new elements.

Chapter 7: Using the Libraries 7.29

To create a private library and at the same time copy information into
it from the corresponding system library, you submit a COPY statement
following the NEWVOL statement. To transfer information from an’
existing private library, a MERGE statement must precede the COPY
statement. The following job creates a private relocatable library and copies’
into it the contents of the system relocatable library and of an existing
private relocatable library:

// JOB CREATE
// ASSGN SYSRLB,X'191!
// ASSGN SYS001,X'192'
// DLBL IJSYSRL, 'NEW PRIVATE RL',99/365,SD
// EXTENT SYSRLB,111111,1,0,1700,1200)
// DLBL IJSYSPR,'OLD PRIVATE RL',99/365,SD
// EXTENT SYSOO1 222222,1,0,700, 400
// EXEC CORGZ
NEWVOL RL=60(8)
COPYR ALL
MERGE PRV, PRV
COPYR ALL
/*
/&

Note: To merge from a private relocatable library, you must assign
SYS001 to the device containing the library and specify the filename
JJSYSPR in the DLBL statement. The logical unit assignments and
filenames required for the various merge operations are described in
DOS/VS System Control Statements.

Creating Private Core Image Libraries

The organization of a private core image library is the same as the system
core image library. A private core image library, however, may start on any
track. The space requirements must be entered in the NEWVOL. statement.

For example, on a 2314 device, the statement NEWVOL CL=14(5)
creates a directory of five tracks and a library of 14 cylinders. To create
this private core image library on a 2314 device starting at relative track
number 120, you submit the following control statements:

// JOB PCIL

// ASSGN SYS003,X'191"'

// DLBL I1JSYSPC, 'DOS/VS PRIVATE CL',99/365,SD

// EXTENT SYs003,111111,1,0,0120,280

// EXEC CORGZ

NEWVOL CL=14(5)

In the above example, the core image directory resides on cylinder 6 (tracks
0-4), and the private core image library on cylinders 6-19.

If you desire to start a private core image library in the same relative
location as the $ystem core image library (that is, the library directory
starting at cylinder O track 2), the relative track specification in the
EXTENT statement must be 0002. The EXTENT statement in the
preceding example then reads

// EXTENT SYsS003,111111,1,0,0002,280

7.30 DOS/VS System Management Guide

Using Private Libraries

To access the private libraries, you must assign the following symbolic unit
names to the device(s) containing the libraries‘:

SYSCLB -- Private core image library
SYSRLB -- Private relocatable library
SYSSLB: -- Private source library

Note that the symbolic unit name required to create a private core image
library is SYS003; for private relocatable and source statement libraries,
however, the symbolic unit names are the same for creation and subsequent
access.

You can assign private relocatable libraries and private source statement
libraries either temporarily or permanently by an ASSGN command or
statement; you can assign private core image libraries only by an ASSGN

~command (that is, permanently). You cannot establish standard assignments

for private core image libraries with the ASSGN macro during supervisor

generation.

Unless you have cataloged standard labels for your private libraries, you
must submit label statements with every job that accesses the libraries. The
filenames and file identifications in the DLBL statements must be identical
to those specified when the libraries were created (except for a private core
image library, where the filename IJSYSPC is used for creation, and
1JSYSCL is used thereafter).

A private library ‘must be unassigned if maintenance and service
functions are to be performed on the corresponding system library. The
librarian programs assume that the private library is intended whenever
assigned. So if, by mistake, your private relocatable library is assigned when
you request changes in the system relocatable library, these changes will be
perfdrmed on the private relocatable library and reconstruction of this
library may be necessary, depending on the nature of the changes. The only
system service programs that can access the system libraries when SYSRLB
and SYSSLB are assigned are the linkage editor, the CORGZ librarian
program, and the reallocate function of the MAINT librarian program. If,
however, private libraries are assigned but the packs on which they reside
have not been mounted, MAINT will be canceled.

You can have an unlimited number of private libraries in your system;
however, no more than one private core image, one private relocatable, and
one private source statement library can be assigned at one time to the
same partition. You can also assign a private library to more than one
partition, but if you want to update a private library, it must be assigned to

one partition only (see Figure 7.8).

If you have more than one private library of the same type, each must
be distinguished by a unique file identification in the DLBL statement for
the library.

Chapter 7: Using the Libraries 7.31

Using Private Core Image Libraries

Private core image libraries provide an efficient multiprogramming
environment. The linkage editor can be executed not only in the
background but also in a foreground partition to which a private core image
library is assigned. You can then link-edit a program in any given partition
to be executed in the same or in a different partition. If the linkage editor is
executed in more than one partition at the same time, you must assign a
separate SYSLLNK and SYS001 file for each of these partitions.

A separate private core image library can be defined for each partition.
Such a private core image library is then said to be dedicated -to a given
partition. Separate versions of the same non-self-relocating program may be
link-edited for execution in each partition. This is not necessary, however,
for relocatable phases, when the system includes support for the relocating
loader.

If you work with the relocating loader, private core image libraries are
nevertheless useful to hold special-purpose programs. This allows, for
instance, a new version of a program to be tested while the original version
remains in working order on the system core image library.

A private core image library should not be assigned to more than one
partition at the same time if the linkage. editor is being executed in one of
these partitions. If this occurs, the linkage editor issues a message and
terminates abnormally. ‘

Output from the linkage editor is, therefore, placed in a private core
image library only if it is uniquely assigned to the partition where the
linkage editor is executed. When fetching or loading a phase, the system
first searches the private core image library, if assigned, and if the phase is
not found, the search is continued in the system core image library. For
phases starting with $, first the system and then the assigned private gore
image library is searched. '

7.32 DOS/VS System Management Guide

wt

READ/WRITE

READ ONLY

Supervisor

BG

SYscLB

SYSSLB

Fa

SYSCLB
SYSRLB

F3

SYSCLB
SYSRLB
SYSSLB

F2

SYSCLB
SYSRLB
SYSstB

F1

Figure 7.8. Possible Assignments of Private Libraries in a Multiprogramming

System

If a private library'is assigned to more than one partition, the library

cannot be updated.

Chapter 7: Using the Libraries 7.33

Chapter 8: Using POWER/VS

‘Starting POWER/VS

- This chapter addresses operators who work with a systém that uses

POWER/VS and programmers wh‘ose programs. run in a partition controlled
by POWER/VS.

Background information on POWER/VS is given in Chapter 1:
Understanding the. System. How to generate POWER/VS is discussed in "
Chapter 3: Planning the System.

The disk pack(s) used for the POWER/VS files (queue file, data file, and
the optional account file) should be mounted and the unit record devices to
be used by POWER/VS should be unassigned. The POWER/VS partition
can then be started (just as for any other problem program). When
POWER/VS is initiated, care must be taken that the partitions to be
supported by POWER/VS are of lower priority than the POWER/VS

. partition and that they do-not contain executing programs. Once initiated,

POWER/VS works as an extension of DOS/VS because it services 1,0
requests directed to the DOS/VS supervisor.

All assignments for POWER/VS files must be made before the
// EXEC card for the POWER/VS program. For each assignment, DLBL
and EXTENT information must be provided for the label information
cylinder. If the account file is to be saved on a disk file or standard labeled
tape, the'label information cylinder must also include these definitions.:

POWER/VS.can be started by entering commands directly on the
operator console or by following the AUTOSTART procedure. The
AUTOSTART procedure involves preparing start-up commands on cards
(or on tape or disk) and submittiilg this information as SYSIPT data.
AUTOSTART is particularly suited to the frequent or regular initiation of a
POWER/VS environment where the device addresses, tasks, spooled
partitions, and RJE lines remain the same. AUTOSTART also reduces
operator involvement. ’

The start-up procedures (with and without the AUTOSTART
procedure) are described step-by-step in DOS/VS Operating Procedures.
The steps include the following:

« Formatting POWER/VS queues (if you want to use the information
already accumulated, you should not format queues. This is called
_warm start).

o Starting POWER/VS tasks.

« Starting POWER/VS controlled partitions (any of those partitions of
lower priority than the POWER/VS partition).

« Specifying the devices to be spooled in each controlled partition. (One
reader, and up to eight printers and punches can be spooled for each
partition.) :

Chapter 8: Using POWER/VS 8.1

Dummy Assignments .

POWER/VS intercepts [/O requests addressed to specific physical devices,
regardless of the symbolic units that are assigned to these physical devices.
If 1/0 requests are intercepted by POWER/VS, the assignment for the
physical unit is in fact a dummy assignment, because the physical device is
not used by the problem program. With POWER/VS you can assign logical
units in different partitions to the same physical unit record device. Such -
assignments are regarded as dummy assignments, since the assigned physical
device is not used by all the partitions in which it is assigned. Dummy
devices, however, are not required, except for multifunction card devices.
Multiple printers/punches and the use of reader only/writer only partitions
will normally require dummy devices.

Each ASSGN statement/command in a POWER/VS controlled
partition is checked by job control to determine if I/O requests for the
specified logical unit are to be intercepted by POWER/VS. If requests for a
certain. physical unit are to be intercepted by POWER/VS, job control will
not check for conflicting I/O assignments. As a result, multiple assignments
are permitted from different partitions to the same unit record device, as
long as no more than one of these assignments implies physical ownership
of the device.

Changing Priorities of Partitions

If you want to charnige the priorities of the partitions while POWER/VS is
active, your must realize that the DOS/VS PRTY command is rejected if
an attempt is made to give one of the partitions supported by POWER/VS
a higher priority than the partition POWER/VS resides in, because the
POWER/VS partition must always have a higher priority than the partitions

it supports.

POWER/VS initialization is canceled if the priorities of the partitions
conflict with the POWER/VS requirements.

Using POWER/VS Statements and Commands

POWER/VS job entry control language (JECL) is used by.the programmer
to delimit POWER/VS jobs and to specify special job requirements.
Specifically, JECL can be used to control the attributes of .quene entries, to
load forms control buffer and universal character set images, and to insert
source statement library data into the input stream. JECL supplements the
DOS/VS job control language; the job control statements required for
normal DOS/VS operation are also required when POWER/VS is used.

There are also POWER/VS operator commands for both the central
operator and the RJE terminal operator. The types of commands are:

e Task management commands. Allow the operator to initiate and
terminate POWER/VS tasks.

« Queue management commands. Allow the operator to display and
modify the contents of POWER/VS queues.

« Miscellaneous commands. Allow the operator to perform such operations
as forms set-up and saving of the account file.

8.2 DOS/VS System Management Guide

e Terminal control commands. Allow the terminal operator to start or
terminate an RJE session. .

JECL and the operator commands are described in detail in both DoSs/vsS
System Control Statements and DOS/VS Operating Procedures. You may
want to refer to one of, these manuals while studymg the examples of JECL

in Figure 8. L.

Chapter 8: Using POWER/VS 8.3

POWER/VS DOS/VS Comments
Job Number Job Stream

1/ JOB ONE
*

- DOS/VS Job
// EXEC JOEBSTEPA s

@—>, * with no JCL changes

/8
// 308 TWO
*
// EXEC JOBSTEPE

A No * $$ JOB/EOJ required
* $$ PUN CLASS=X + for LST or PUN statements.
/7 EXEC JOBSTEPC -
*
/6

// JOB THREE

* $$ Jo8 THIRD
*
>

@-— 7/ EXEC JOESTEPD Optional POWER/VS JECL
*
/68
* $$ g0y
* $$ J0p FCRTH
3 /7 J0B FOUR
* N .
No * $3 EOJ required, if
// EXEC JCEBSTEPE ’
@-—v . Y POWER/VS job is followed
(/1 EXEC JOBSTEPF / by * $3 JOB statement.
*
/8

* $8 CTL CLASS=B
* $$ J0B FIFTH
7/ J0B FIVE -

*
<:5>"§ 1/ EXEC JCBSTEPG
E

/¢

* 38 j0B SIXTH
/7 408 SIX

.

#7 Default CLASS changed to B.

No * $$ EOJ required.

// EXEC JOBSTEPH
*

A
// JOB SEVEN

Multiple DOS/VS jobs
in one POWER/VS job.

(*$3 JOB and * $38 EOJ

* are both required for this.)

// EXEC JOBSTEPI
*

/8
* $3 JOB SEVENTH
) 7/ J0B EIGHT

*
// EXEC JOBSTEPJ
*

Multiple POWER/VS jobs
for one DOS/VS job.

*

/6

* $$ EQJ

* $8 CTL CLASS=A
//7 J0OB NINE

*
"{ // EXEC JCBSTEPL
*

/7 JOB TEN
* $8 LST FNC=8X1l
*

// EXEC JOBSTEPM

— *
* $3 LST JSEP=2,RB5=100

// EXEC JOBSTEPN
*

/8

* $$ JOB EIGHTH
*
% // EXEC JCGESTEPK
-

¢ Default CLASS reset to A.

POWER/VS will generate
the missing /&.)

Multiple LST outputs per job.
(2nd report is segmented.)

Figure 8.1. ‘Examples of the Use of POWER/VS JECL

8.4 DOS/VS System Management Guide

Job Attributes

The attributes of a queue entry determine how it will be processed. The
major types of attributes are: disposition, class, priority, output
segmentation, output limitation, and output destination.

« Disposition. Disposition determines how POWER/VS will route and
schedule the associated input or output queue entry. Disposition can be
specified in the * $$ LST or * $$ PUN statement: The possible input
disposition attributes are: -

D Process and delete. The queue entry is automatically scheduled for
processing by POWER/VS in accordance with its class and priority
_attributes. After processing, the entry is deleted and associated data

- space is freed.

H Hold. The queue enfry remains in the queue; it is not executed or
written to a unit record device by POWER/VS until the operator
releases it using the PRELEASE command or until he changes the
disposition attribute to D or K by means of the PALTER
command. When the PRELEASE command is used, the queue
entry, after it is processed, is deleted from the queue and associated
data space is freed.

K Process and keep. The queue entry is automatically scheduled for
processing by POWER/VS in accordance with its class and priority
attributes. On completion, the queue entry is not deleted from the
queue, and the disposition of the entry is changed. to L.

L Leave in queue. The queue entry remains in the queue; it will not
be processed by POWER/VS until the operator releases it using
the PRELEASE command or until he changes the disposition

-attribute to D or K by means of the PALTER command. When the
PRELEASE comment is used, the queue entiy, after it is processed,
returns to the leave state.

- Three additional dispositions apply:only to output:

I Return output to input queue. This option should be used only for
jobs producing punch output in executable format, including job
control statements.

N Output without spooling. Output is not intercepted but is
immediately printed or. punched.

T Spool to tape. Tape intermediate storage is used.

D,H,K,]I, and L are valid only when output is spooled to disk. N and T
are mvahd when output is to be printed at a terminal.

o Class. Class is a desxgnatnon given to each job in a group of jobs that
use a common set of system resources. These common resources might
include: a partition size requirement, a high partition dispatching
priority, special printer forms, character set buffer, or card stock.

Each job has a class attribute for execution and another for output.
Input class is specified by an alphabetic character, A through Z, or by a
number, O through 4. When specified as'a number, input class is
partition dependent; 0 to 4 correspond with partitions BG to F4,
respectively. Output class is specified by an alphabetic character, A
through Z. Input and output classes are completely independent of each
other.

Chapter 8: Using POWER/VS 8.5

When a partition is started, one to four classes are selected for
“execution in that partition. Classes are prioritized in the same order
they are specified.

» Priority. Besides the priority determined by its class, each job is also
assigned a scheduling priority within its class. Priority is specified as a
digit from. 0 to 9. Nine is the highest pnor:ty If the priority is not
specified, a default is assigned as defined in-the PRI parameter during
POWER/VS generation. Within each input or output queue, queue
entries are selected for processing on a first-in, first-out, basis within
priority, within class.

» Output segmentation. List or punch output from user programs can be
broken into segments. Printing or punching can then begin before ‘
execution of the program is completed; that is, after the first segment
has been spooled. Segmentation can be implemented in one of three

~ways: (1) count-driven segmentation, as specified in the RBS parameter
during POWER/VS generation, (2) data-driven segmentation, as
specified in the RBS parameter in the LST or PUN statements, or (3)
program-driven segmentation, as forced by the LFCB macro
instruction.

+ Output limitation. A limit can be placed on the number of list or punch
records (STDLINE or STDCARD parameter in the POWER macro or
. RBM parameter in the LST or PUN statement) that POWER/VS
accepts from a specific job. When this limit is reached (for example,
1000 lines have been printed), a warning message is given to the
operator. By setting a limit on the output, for example you can stop a
program from looping forever.

e Output destination. List and punch output can be routed to any terminal
or to the central location by using the remote-id in the LST and PUN
statements.

Spooling a 3540 Diskette File

The 3540 as a SYSIN File

POWER/VS supports two modes of input processing for 3540 Diskett files. In
SYSIN mode input from a card reader and a 3540 can be combined into a
single sequential input stream on the spool disk (method 1), It is also possible
to read the complete input stream from a 3540 file (method 2). In either case,
multivolume files are supported. In Data mode input from a 3540 is written
on the spool file exactly as read. JCL and/or JECL statements must be
entered via a card reader.

For 3540 SYSIN files, a reader task will read either 80 or 81 character
records from diskette and put 80 character records onto the spool disk. The
size of the records to be read is obtained from the HDR1 label on the file
and must be 80 or 81 bytes. Only the last 80 bytes will be copied to the
POWER/VS data file.

If an * $§$ RDR statement is read from the diskette, POWER/VS issues
a message (1Q90I INVALID * $$ RDR STATEMENT) and flushes to the
next POWER/VS job on the diskette file currently being processed.

8.6 DOS/VS System Management Guide

The 3540 as a Data File

The SYSIN records can be read only by a user program that is reading
from a card reader that was specified at partition start-up as a unit record
device to be spooled. Because DTFDU cannot be assigned to a card reader,
DTFDU cannot be used to access these files.

For data files, a reader task can read records of from 1 to 128 characters.
These records are not examined for control statements and are written on
the spool file exactly as read: The data records cannot be read by programs
accéssing a card reader. They can only be read by a user program that is
reading from the physical unit specified on the * $$ RDR statement. This
logical unit must be assigned, to a 3540. Either DTFDU or DTFDI can be
used to access these files.

Method 1

» The * $$ RDR statement causes a POWER/VS task to insert information

from a 3540 file into the input being read from the card reader. You do not
need to submit other JECL statements for a job containing a RDR
statement. This statement is ignored in a writer-only partition.

Example 1: The job control statements are in the card reader, data is on

the 3540. The operator-enters a PSTART command for the card reader

(X’00C’) and input class A: N
PSTART RDR,00C,A,00B

This command informs POWER/VS to start a reader task at address
X’00C’ with the ability to read from a 3540 at address X'00B’ also. Both
input devices belong to the reader task and cannot be used physically by
any other partition or POWER/VS task until the reader task terminates.
The following cards are in the card réader (X'00C’):

// JOB EX1

// ASSGN SYS008,X'00B'

// DLBL FILE,'FILE-ID',,DU

// EXTENT SYS008

// EXEC PROG

* $$ RDR 0OOB,'FILE-ID',2

/%

/& o

The SYS008 specification in the // EXTENT statement is not required if
the symbolic unit was assembled into the DTFDU.

The RDR statement causes the reader task to suspend card reading to
read up to two 3540’s of the data file named FILE-ID. Records on the
3540 may be from 1 to 128 bytes long and will not be examined for
control statements by either the reader. task or the execution processor.
When the end of FILE-ID is reached, card reading is resumed.

During the execution of the user program, not all of the FILE-ID
records spooled by the reader task may be read. To prevent the remainder
of the records from being passed to job control as SYSIN data (once the *

'$$ RDR statement is reached), any request to the card input spool device

will cause POWER/VS to skip records until the end of the FILE-ID file.

Chapter 8: Using POWER/VS 8.7

Example 2: Some job control statements are in the card reader, additional
job control statements and data are on a 3540 diskette. The operator enters
a PSTART command for the card reader (xX’00C’) and input class A:
PSTART RDR,00C,A,00B

This command causes the reader task to insert 3540 data from X’00B’ into
- the input stream on the spool disk when an * $$ RDR statement is
encountered in the card input stream. The following cards are in the card
reader: .

©// JOB EX1

/8
* $$ RDR,'TESTJOB'
»// JOB EX2

The * $$ RDR statement causes the reader task to suspend card reading
and read one diskette of a SYSIN file named TESTJOB from the 3540
specified in the PSTART command (X’00B’). When the programs are

. executing, they must read from the reader spool device, not from a 3540.
The TESTJOB file could contain the following statements, for example:

// JOB ASSEM
// EXEC ASSEMBLY

source code
/&

Method 2

Example: Job control statements and data are both on one 3540 SYSIN
file. The operator enters a PSTART command to start a reader task ona
3540 diskette (X’00B’):

PSTART RDR,X'00B',B,'FILE-ID',31
Up to 31 diskettes of the file called FILE-ID will be read. Reading stops
after 31 diskettes or after reading a diskette that does not have a
continuation indicator in its label. One 3540 file may contain many
DOS/VS jobs and/or POWER/VS jobs. Jobs with no class specification in
their * $$ JOB card, or for which no CTL statement is in effect are put
into input class B.

At program execution time, the records will only be passed to programs
reading from a card reader that has been specified as the reader spool
device at partition start-up time. ‘

8.8 . DDS/VS System Management Guide

Using POWER/VS RJE

For POWER/VS Remote Job Entry operation you need to have generated
POWER/VS with the characteristics of each line for the IBM 2770, IBM
2780, or IBM 3780 terminal and with the characteristics of each RJE user.
Refer to DOS/VS System Generation for further detais.

RIJE lines are normally started at the same time as POWER/VS
start-up. The remote terminal operator uses the SIGNON command to
make the connection between his terminal and the central system,

The system can be protected against unauthorized access through the
use of the password in the SIGNON command. This password must match
the password set on the line by the central operator. If no password was
specified by the central operator when he started the line, the default
password, if defined during POWER/VS generation, is set on the line. Only
if neither password is set on the line can the remote operator sign on
without specifying the password operand in the SIGNON command.

RJE Line States

A description of the various RJE line states may be helpful to you in
understanding POWER/VS RJE operation. The states reflect the
appearance an RJE line may give to the central system. A specific line is
only in one state at a time. The transition between states is controlled by
the remote terminal through various terminal commands sent to the central
system or by the central operator commands. See Figure 8.2.

Operator Tarminal
\ Command Command
\ PSTART SIGNON \
NOT- NOT- ‘ PROCESSING
SUPPORTED INITIATED STATE
STATE STATE

SIGNOFF

* PSTOP .

Figure 8.2. Transition Jbetween RJE Line States

When one of the commands representing a valid change of state is received,
operation proceeds in the new state until another valid change occurs.
Invalid requests are not serviced and an error message is returned to the
terminal that made the request.

After startup procedures have been completed at the central system,
POWER/ VS RIJE is ready to service the remote terminals.

Chapter 8: Using POWER/VS 8.9

Shutdown Procedures

Not-Supported State

During POWER/VS generation, no PLINE macro was defined for this line.
The PLINE macro defines the hardware characteristics of an RJE line, that
is, the transmission control unit. One PLINE macro must be specified per
line. If the PLINE macro was not specified, this means that this line address
is not known to POWER/VS RIJE.

Not-Initiated State ‘
An RIJE line is in the not-initiated state when it has not been started by a

" PSTART command. POWER/VS RIJE only accepts a PSTART command

from the central operator. The PSTART command causes the terminal to
reach the inactive state, that is, interrupts from this line will be handled.

Inactive State ,

Inactive RJE lines are logically attached to POWER/ VS RIE. In this state
the central system is conditioned to receive a SIGNON command, which
identifies the terminal to the central system and places the line in the
processing state, or to receive from the central operator a PSTOP
command, which places the line in the not-initiated state. If an invalid
SIGNON command is sent from an inactive terminal, it is rejected, and an

.error message is returned to the terminal.

Processing State

The processing state which is reached by the SIGNON command, indicates
that a user wants to access POWER/VS RIJE, and defines the beginning of
a user session. Queue entries and terminal commands are acceptable input
from the terminal. In addition, the central system transmits messages and
user output. '

Normal shutdown procedures are initiated when POWER/VS is no longer
required at the end of a day or when jobs that may not execute under
POWER/VS have to be run. The PEND command causes all active
POWER/VS tasks to complete processing their current queue entries and
then stop. POWER/VS controlled partitions are released as soon as the job
corresponding to the current input entry is terminated. After all supported
partitions are released and all reader/writer tasks have stopped, the
POWER/VS partition is released, and the system is restored for normal
DOS/VS operation.

Emergency shutdown procedures are initiated when an error requires an
immediate halt. In this case, use the KILL option of the PEND command.
All POWER/VS activity will be stopped immediately, and the POWER/VS
partition can be dumped optionally.

The POWER/VS partition cannot be canceled by using the standard
DOS/VS CANCEL command as long as POWER/VS is active.

8.10 DOSYVS System Managemeni Guide

Part III: l)besighing Programs

This section addresses the system programimer and application prograinmer.
It gives some programming considerations for designing virtual-mode -
programs and shows how to use many of the macros and special features of
DOS/VS. This section consists of two chapters:

Chapter 9: Designing Programs for Virtual-Mode ' Execution provides
considerations for designing programs and using the macros: especially
provided for the virtual-mode environment. This chapter also describes how
to code for the shared virtual area and the programming conventions for a -
POWER/VS user exit routine. '

Chapter 10: Using the Facilities and Options of the Supervisor
describes how user programs can communicate with one another and with
the supervisor. This chapter discusses how programs can take advantage of
user exit routines, the time-of-day clock support, cancel and checkpoint

| services, job accounting interface and POWER/VS job accounting.

et

Chapter 9: Designing Programs for Virtual-Mode Execution ,

This chapter addresses system programmers and application programmers
who are concerned with designing programs for the DOS/VS environment. -
This chapter contains information that may improve the efficiency of those
programs that exceed the amount of real storage available to them at any
one time. It is recommended ‘that these techniques be considered as new
programs -are written and as old programs are revised. The chapter also
contains information on the use of certain assembler language macro
instructions that are provided especially for virtual storage. Programming
conventions for the shared virtual area and a POWER/VS user exit routine
“are also discussed.

ngiamming Hints for Reducing Page Faults

It is desirable to spend some extra programming effort to tune virtual-mode
programs that are used frequently or fhat require long periods of processing
time so that they will cause fewer page faults during execution. Page faults
generally occur when the size of the virtual-mode program exceeds the
number of page frames available to it during execution. Efforts to reduce
the number of page faults occuring in a program generally center around
efforts to reduce the-size of the working set of the program. The term
working set is one that recurs often in discussions of virtual storage
systems.

The working set of a program is the minimum number of pages (not
specific pages) which must be in real storage in order for a program to
_execute efficiently. In other words, the working set of a program is the
minimum number of page frames that the program requires for efficient
execution. The supervisor_determines which specific pages should be in real
storage at any particular time.

What does execute - efficiently mean? Essentially, this means that a
program will not execute appreciably slower than if the entire program were
in real storage during its entire execution.

Although the following section does not tell you how to determine the
size of the working set, it does provide techniques for reducing its size.

General Hints for Reducing the Working Set

You should especially try to reduce the size of the working set of programs
that you use frequently or that execute for long periods of time. Your
programming efforts are more worthwhile for such programs than for
relatively short and less frequently-used programs.

There are three general rules to keep in mind when working to reduce
the working set. The first is locality of reference, that is, instructions and
data used together should be in storage near each other. Second is
minimum real storage. In other words, the amount of real storage

Chapter 9: Designing Programs for Virtual-Mode Execution 9.1

5

necessary for a program to do something should be kept as low as possible,
- Third is validity of reference, that is, references should be made only to.
data whlch will actually be used.

The chief means of achlevmg locallty of reference is to make executlon
sequential whenever possible, by avoiding excessive branching.

A program that executes sequentially normally requires a partition ’
larger than the same prograin when it does not execute sequentially. For
- example, the functions of a section of code repeat themselves several times -
- throughout the Jlogic of your program. You are tempted to write this code
once and branch to it whenever necessary, but branching violates the
principle of locality of reference. Branching may 'c‘ause more page faults the
- program incurs than would coding the routine in line each time it is used.
Also, it is easier for someone else to follow the logic of a program which is
written to execute sequentially. :

Locality of reference can be achleved only to a limited extent by
. programs written in a high-level language.

Elements in arrays in FORTRAN or PL/1 can be referred to in the
order in which they appear in storage. In FORTRAN, for example, arrays
are ordered by columns. The elements of the array DIMENSION (2,2,2)
are arranged as follows in contiguous virtual storage locations:

(1,1,1)
2,1,1)
(1,2,1)
(2,2,1)
(1,1,2)
(2,1,2)
(1,2,2)
(2,2,2)

For array structurqs of other compllers refer to the appropnate
programming language reference manuals.

A routine which processes all thé elements of such an array should
refer to them in this order. If only certain elements of an array are
processed, the elements should be arranged in the order in which they are
to be processed. If arranging an array in a certain manner causes it to be
processed advantageously one time, but disadvantageously another time,
you should consider writing two arrays, even at the cost of additional
virtual storage.

9.2 DOS/VS System Management Guide

Another good practice to help reduce paging is to not initialize variables
until just before they are to be used. For example in PL/1 instead of the
following:

DCL A FIXED INIT (10);

DO B=1 TO 100;
A=A+B;
END;

use:

DCL' A FIXED;

A=10;

DO B=1 TO 100
A=A+B;

END;

In the first method of coding, PL/I initializes the autematic variable at the -
beginning of execution. The second method of coding does not require the
page containing A to be in real storage until just before A is used.

An important help in reducing the amount of real storage needed for
execution is to remove coding which is used for errors or other unusual
occurrences. If, for example, the main routine contains code for conditions
that only occur 5% of the time, by removing this error code and making it
into a separate section of code you can reduce the amount of real storage
necessary for 95% of the processmg

Frequently-used subroutines should be loaded near each other. Because
of their frequent use, these routines tend to be in real storage almost
continuously. If they are scattered over severdl pages, each of these pages
will need to be in real storage most of the time, thus increasing the size of
the working set. By loading these routines near each other, you reduce the

- -number of pages required in real storage at any one time.

Subroutines should. be designed to do as much processing as possible
-whenever they are called. It is better to duplicate some code from the
calling routine in the called routine in order to avoid switching back and .
forth between routines. One technique for accomplishing this is to have the
calling program pass several parameters to the subroutine each time 2 call is
made, rather than passing one parameter at a time and making several calls.

Data and Constants in Assembler Language Programs -

You should keep frequently used data and constants near each other in.
storage, and near the instructions which use them. This contrasts with the
traditional practice of having one area at the end of the program reserved -
for all the data areas and constants. By the same token, seldomly used data
should be separated from the frequently used data and placed with the -

. routines which use it. '

Avoid, if possible, using chains which must be searched each time a
data item is required. If chains are unavoidable they should be kept in a
- compact area of storage. This may result in some wasted storage but will be
better than searches of large areas of storage.

Chapter-9: Designing Programs for Virtual-Mode Execution 9.3

You should try to keep code that can be modified and code that cannot
be modified in separate sections of a large program. This will reduce page
traffic by reducing the number of pages that are changed. Also, try to
prevent 1/0 buffers from crossing page boundaries unnecessarily. Check
the assembler listing and the linkage editor map to determine where 2K
boundaries occur in your programs.

Us'iﬂng Virtual Storage Macros

The macros designed for use by virtual-mode programs, which are discussed
in this section, perform the following services:

« influence the paging mechanism in order to reduce the number of page
faults, to minimize the page 1/0 activity, and to control the page traffic
within a specific partition.

« fix pages in real storage (PFIX macro) and later free the same pages
for normal paging (PFREE macro).

¢ determine the mode of execution of a program (RUNMODE macro).

In order to use thesc macros you must be programming in assembler
language or, if your program is written in a high-level language, you must
write an assembler subroutine to accommodate them. Refer to DOS/VS
Supervisor and 1/0O Macros for a complete description of the formats of
these macros.

Fixing Pages in Real Storage

In DOS/VS parts of virtual-mode programs must be in real storage only at
certain times. These parts include not only the instructions and data being
processed at any one moment by the CPU, but also data areas for use by
channel programs. Instructions and data are always in real storage when
being used. Because of the nature of 1/0 operations, the data areas for
these operations could be paged out during the 1/0 operation if something
were not done to kéep them in real storage during the entire operation. The
DOS/VS supervisor fixes 1/0 areas in real storage for the duration of the
I/Q operation.

There arc other parts of a program, however, which cannot tolerate
paging, and these parts are not necessarily kept in storage by the system.
For instance, 1/0 appendages and programs that control time-dependent
1/0O operations cannot tolerate paging. A familiar example of the latter is a
MICR (Magnetic Ink Character Reader) stacker select routine. If a page
fault were to occur during the execution of one of these programs, the
results would be unpredictable. A page f ault in one of these programs can
be avoided by fixing the affected pages in real storage (using the PFIX
macro). : :

The supervisor fixes pages for 1/0 operations temporarily anywhere in
the page pool. The pages that you fix by the PFIX macro, however, are
fixed in the storage allocated to the corresponding real partition. Only as
many pages may be fixed by a program at any one time as there are page -
frames in the corresponding real partition. This is.done to prevent a loop in
one program from fixing all the pages in the system, and to enable other
programs to issue a PFIX macro concurrently.

9.4 DQS/VS System Management Guide

The PFIX macro fixes the pages in real storage, regardless of whether
these pages are stored iri contiguous page frames or not. The supervisor
keeps a count of the number of times a page has been fixed without being
freed. A page that is fixed more than once without having been freed (via
the PFREE macro) is not brought in a second time and given another page
frame. Instead, the counter for that page is just increased by one and the
page remains in the same page frame. If more than 255 PFIX requests were
issued for the same page (without having issued PFREE requests in the
meantime), the issuing task is canceled.

The PFREE macro does not directly free a page for paging out, but
each time it is issued, the counter of fixes is reduced by one. As soon as
the counter for a page reaches zero, the page can be paged out. At the end
of a job step, all pages that have been fixed during the job step are freed.
The PFREE macro should Be used as soon as possible to make the page
frames available to all programs running in virtual mode.

Figure 9.1 is an example using the PFIX and PFREE macros. After the
execution of a PFIX macro, a return code is glven in register 15. The
meamngs of the return codes are:

0 -
4 -

8-
12 -

The pages were flxe_d successfully.

You requested more page frames than can be contained in a real
partition of the size you are working in.

Insufficient - free page frames were available. -

You specified invalid addresses in your macros.

Note in the example how the return code can be used to establish a branch
to parts of the program that handle these specific conditions.

PFIX

FIXER ARTN,ARTNEND+2 FIX ARTN IN STORAGE
B ¥+4(15) BRANCH ACCORDING TO RETURN CODE
B HERE CONTINUE TIF OK '
B NOPAGES GO TO CANCEL IF PART TOO SMALL
B CWAIT GO TO WAIT UNTIL PAGES FREED
HERE BAL 14 ,ARTN GO TO ARTN
PFREE ARTN,ARTNEND+2 FREE ROUTINE AFTER EXEFUTION
ARTN (time dependent processing which cannot be :
paged out during execution)
ARTNEND BR R14 RETURN
NOPAGES LA R1,0PCCB -
:) EXCP (1)' WRITE MESSAGE TO OPERATOR
WAIT (1) WAIT FOR COMPLETION
CANCL CANCEL ALL ’
WAIT (routine to free other pages)
END EOJ o
OPCCB CCB SYSLOG,OPCCW
OPCCW CCW X'09', MSG X'20',61
MSG- DC CL32' AM CANCELING PLEASE ENLARGE REAL"
' DC CL29'PARTITION AND RESTART THE JOB' _
Figure 9.1. PFIX and PFREE Example

A Chapter 9: Designing Programs for Virtual-Mode Exccution’ 9.5

=R

Determining the Execution Mode of a Program

Releasing Pages

Forcing Page-out

Advancing Page-in

Balancing Teleprocessing

You may have a program that must do different processing depending upon
what its execution mode is. It may be impractical to have two separate .=
programs cataloged in the core image library, one program for real mode
and another program for virtual mode. The RUNMODE macro can be issued
during the execution of the program to inquire which mode of execution is

" being used. A return code is issued to the program in register 1.

; With the RELPAG macfo,-you inform the page management routines that '

the contents of one or more pages is no longer required and need not be
saved on the page data set. Thus, page frames occupied by these released
pages can be claimed for use by other pages, and page I/0 activity is
reduced. '

The FCEPGOUT macro is used to inform the page management routines
that one or more pages will not be needed until a later stage of processing.
The pages are given the highest page-out priority, wjith the result that other
pages, which may be needed immediately, are kept in storage. Except when
the RELPAG macro is in operation, the contents of any pages written out

- are saved.

The PAGEIN macro allows you to request that one or more pages be paged
in in advance, in order to avoid page faults when the specified pages are
needed in real storage. If the specified pages are already in real storage
when the macro is issued, they are given the lowest priority for page-out.

The TPIN macro signals the DOS/VS supervisor that an immediate demand -

for system resources is to be made by the teleprocessing application, for
instance, when a message has arrived. After processing is completed,

“-TPOUT informs DOS/VS that the teleprocessing application has no further
" processing to do for the time being, and that the system resources that were

exclusively used for teleprocessing should be released. Failure to issue the
TPOUT macro can cause serious performance degradation in baich
proccssing. '

It is not recommended that you use TPIN/TPOUT macros in -your
teleprocessing application programs. Use them instead in the
telecommunications access methods and data base/data communication

_interface programs such as the IBM program product CICS/VS. The latter;

when running under DOS/VS, supports the TPIN/TPOUT interface with
the supervisor. Refer to DOS/VS Supervisor and I/O Macros for further
details. :

9.6 DOS/VS System Management Guide

Coding for the Shared Virtual Area

Besides accommodating the system directory list (SDL), and perhaps the
VSAM phases with their associated GETVIS work area, the shared virtual
area (SVA) contains phases that can be used concurrently by more than
one partition. The SVA phases must bé fully reenterable and relocatable;
code that modifies itself will cause a protection check when executed from
the SVA. This section presents some advice on coding phases to use SVA
facilities and suggests some standards for base-register usage.

The basic assumptions for coding an SVA phase are:

o The reenterable code must not modify any storage within its own
storage area.

« The phase can modify registers only if it saves and restores them for
each user.

e A user-specified work area (within the calling partition) must be
provided for storing registers and for any storage modifications.

Suggested register conventions:

o Use register 12 as the base register in both the main routine and the
reenterable code.

« Use register 13 as base for the working storage area. It is the
responsibility of the main routine to provide addressability to the work
area by loading register 13; the réenterable routine must not modify
register 13. The easiest way to address the working storage area in the
reenterable code is by a DSECT that defines the fields of the work area

-and a USING DSECTNAME,13. In this way symbolic addressing can
be used.

¢« Use CALL, SAVE, and RETURN macros. Since register 13 is the base
' register, SAVE.(14,12) and RETURN (14,12) result. Use register
notation for CALL, for example, CALL (15) Before issuing the
CALL, load register 15 with the transfer address. Register 14 will
aiways contain the return address. The standard is thus established of
register 15 for calling and register 14 for returning.

» Switches, and other areas that may be modified, can be placed in the
working storage area using base register 13.

Figure 9.2 illustrates the suggested conventions: MASTER is the main
routine, SLAVE is the SVA phase con_tain‘ed in the SDL.

Chapter 9: Designing Proérams‘ for Virlual-Mode Execution 9.7

MASTER. ~ CSECT
BALR BASE,0
USING *,BASE

LA 13, SAVE _ ,
LOAD SLAVE, WORKAREA+1 CANCELS IF. SLAVE NOT IN CIL
LR 15,1 ‘

CALL ~(15),(SWITCH,TECB,FIELDA,FIELDB,WORKAREA)

EOJ.

SAVE . Ds 9D
WORKAREA DS 6D
SWITCH' DC XL1'00"
TECB DS CL4
FIELDA DS CL15
FIELDB DS ‘CL11
END .
SLAVE CSECT
SAVE (14,12)

BALR BASE, O
USING *,BASE
USING WORKAREA,6

LM 2,6,0(1)
MVC 0(15,4),DATA1
MVC 0(11,5),DATA2
CLI 0(2),X'FF'
BE _EXIT o
SETIME 3,(3) SETIME ALTERS THE TECB
WAIT (3)
EXIT" X1 0(2),X'FF'
RETURN (14,12)
| DATA1 .DC ~ CL15'THIS IS FIELDA'
DATA2 DC €L11'TH®S IS FIELDB'
LTORG
‘| WORKAREA DSECT
FIELDC DS 3D
FIELDD DS 3D
END

Figure 9.2. Example of Conventions for SVA Coding

9.8 DOS/VS System Management Guide

Coding Conventions for POWER/ VS User Exit Routines

POWER/VS can be generated to suppoit a user exit during the reader
routine (refer to Input Opnons in the section Generating POWER/VS in
Chapter 3: -Planning the System). In addition to being relocatable and
reenterable, your routine. must conform to certain other programming
.conventions.

Avoid altering the cor)tents of registers‘ 10, 11, 12, or 13; these
registers .are used by POWER/VS. Register 11 points to the task control
block and can be used to identify the task.

~ When POWER/VS is started, the routine specified in the RDREXIT
parameter of the POWER macro is loaded into the POWER/VS partition. -
-The user exit routine receives ¢ontrol via a BALR 14,15 after each
DOS/VS job control statement or POWER/VS job entry control statement.
The address of the statement is passed in register 0 and the length of the
statement is passed in register 1. Your routine must return control to the
POWER/VS reader routine by issuing a BR 14 instruction. Between entry
and exit from your routihe, no operation may be performed that might -
cause a wait condltron for the POWER/ VS partition..

When returning to the POWER/ Vs reader task, a return code must be
supphed in register 15. The return codes have the following meamng

Return Code Meaning

X000 o Normal; the current statement w1ll be processed by
k POWER/VS.
X'04 Delete; the current statement will be rgnored by POWER/VS;

the next statement will be read.

X'08 - Insert; the new statement provided by the user will be
processed by POWER/VS and the original statement will be
returned to the user aftér processing the inserted statemeént.
The address of the statement to be inserted must be passed in
register 0 and its length in register 1. Any number of
statements may be inserted.

xXoC’ Flush the DOS/VS job.
X110 Flush the POWER/VS job. (Do not use this return code for
: the first statement of the POWER/VS job.)

Any number of statements can be insertéd. The original statement is
presented again after each inserted statement has. been processed. When all
the insertions have been made, a return code of X’00’ or X’04’ is placed in
register. 15 to accept or delete the original statement.

If ACCOUNT=YES was specified during POWER/VS generation, the
field number of records read in the reader account record will include the
records added or deleted through the user exit routine.

Chapter 9: Designing Programs for Virtual-Mode Exccution 9.9

RN

Chapter 10: Using the Facilities and Options of the Supervisor

DOS/VS provides a variety of standard and optional services for programs
to communicate with each other, with the system, and with the operator,
The most prominent of these are: . .

Direct linkage between programs
Timing features

Linkages to user exit routines .
Checkpointing facility .
Job accounting interface feature
POWER/VS job accounting
Storage dump facility

e & @ & o o o

Judicious use of these services enhances the benefits to be obtained from
computer operations.

Direct Linkage between Programs

Any user.phase or routine can communicate with another phase or routine
-in the same partition by direct linkage, and, in multitasking (asynchronous
processing), the main. task and subtasks within a partition can communicate
with each other. o :

For efficient virtual mode processing under DOS/VS with
multiprogramming support, a modular program structure is recommended.
Ideally, within a module the instructions should be sequential.

Sequential execution of instructions moderates paging activity necessary
for the programs to proceed and thus promotes system throughput.

Interlanguage Communications

Every programming language provides for communicating and passing
control between modules written in the same language or in Assembler
language. Communication is also possible between any modules written in
languages that use compatible linkage conventions. Transferring data
between high-level languages is usually difficult, however, because of
differences in data formats and storage allocations.

The PL/1 optimizing compiler (an IBM program product) proVides for
communication between programs written in PL/1 and others written in
COBOL or FORTRAN.

User Program Switch Indicators (UPSI)

A user program switch in the partition communication region of the
supervisor can be used to execute a special routine in a program, or to
cause a module to call another module for special processing. A typical
application enables a program that regularly processes certain standard data
to do some special processing periodically. The special processing routine
can be entered by using a program switch that is set by the UPSI job
control statement as illustrated by the assembler language example in Figure
10.1.

Chapter 10: Using the Facilities and Options of the Supervisor 10.1

Timing Features

// UPSI: 00000001 SET SWITCH

COMRG - GET COMRG ADDRESS INTO REG 1

™ 23(R1),X'FF' TEST UPSI FOR ANY BIT SET ON
BNO SPECIAL IF NO BIT ON NORMAL PROCESSING
SPECIAL

Figure 10.1. Setting and Testing UPSI

Note that the UPSI job control statement is included only when special
processing is required. For optimal processing efficiency, the type of routine
entered at the label SPECIAL depends on the amount of special processing
and on what options the system supports. It could be the special processing
routine directly or it could be a routine to load and enter a new phase or,
in multitasking, a routine to attach a subtask.

Also, in this example, without the UPSI job control statement the
special routine will never be entered because the UPSI byte is set to all
zeros when a JOB or / & statement is encountered, but the special routine
will always be entered when any UPSI bit is set to 1 by an UPSI
statement.)

DOS/VS provides two unrelated optional timing features, both of which use
hardware facilities that are standard in any System/370 CPU:

1. The time-of-day (TOD) clock is used to determine the current time.

2. The interval timer (IT) which enables a time interval in seconds to be
preset so that a program can be notified when the time interval has
expired.

Using the Time of Day Clock

The time-of-day (TOD) clock is a standard high-resolution System/370
hardware facility. Any program executing under DOS/VS can obtain the
time of day. Two methods are available, the first of which requires the
optional supervisor support for the GETIME macro (TOD=YES specified
in the FOPT macro at system generation time). The methods are:

1. Issue a GETIME macro. This returns the time of day in hours, minutes,
and seconds, or as a binary integer value in seconds, or as a binary integer
in units of 1/300 seconds, depending on the optional operand specified.
For details of this method, refer to DOS/VS Supervisor and 1/0
Macros.

10.2 DOS/VS System Management Guide

Interval Timer

2. Issue a STCK instruction. This stores the high-resolution time of day
value at a specified address in the program’s partition. A very accurate
real-time -interval measurement is facilitated by issuing this instruction
at the beginning and again at the end of a routine with all pages of the
routine (including the STCK instructions), and all pages containing
referenced addresses, being previously fixed in real storage. Any
interrupt that occurs during an interval is included in the measurement.

Figure 10.2 illustrates fhe use of the STCK instruction and a typical routine

~ to calculate the time interval.

BCTR R2,0 . SUBTRACT ONE
SUBLEFT S R2,START SUBTRACT LEFT-HAND HALVES
' .7 SRDL R2,12 SHIFT TO GET MICROSECONDS

STCK START STORE THE STARTING TIME
BEGIN (ljkoutine to be timed) . ‘ :

STCK FINISH STORE THE FINISHING TIME

BR R14 : © RETURN TO NORMAL PROCESSING
* TIMER ROUTINE ‘
TIME LM R2,R3,FINISH GET FINISHING TIME

SL’ R3,START+4 . SUBTRACT RIGHT-HAND HALVES
BC °~ 3,SUBLEFT ' - BRANCH IF CARRY

STM. 'R2,R3,TIMEINT SAVE THE TIME INTERVAL

END EOJ
[START. . DS -
FINISH DS
TIMEINT DS

Yoo

END

Figure 10.2. Method for Accurate Measurement of a Real Time Interval

Interval timer support may be generated optionally for all programs
(including subtasks if multitasking is supported) in all partitions.

Any program (or task) can set a real time interval, in seconds, by
issuing a SETIME macro. Expiration of the specified interval causes an
external interrupt. The maximum valid interval is 55918 seconds (15 hours,
31 minutes, and 58 seconds). When the interrupt occurs, the program that
issued the SETIME macro may continue processing, another task may be

‘given ‘control if it was waiting on the same event and has higher priority,.or

a special user routine may be entered if linkage has been established by a
STXIT (IT) macro. If no task is waiting on the event and no linkage has
been established, the interrupt is ignored. '

Chapter 10: Using the Facilities and Options of the Supervisor 10.3

Waiting for a Time Interval to Elapse.

Getting the Unexpired Time

When processing is dependent on the expiration of a time interval, a WAIT
macro, will suspend processing until the interval set by a SETIME macro
has elapsed.

The SETIME macro passes to the supervisor the name of the timer
event control block (TECB) to be posted when the specified interval has
elapsed. The WAIT macro specifies the same TECB and passes control to
the supervisor which, in a multiprogramming environment, allows a task in
another partition to execute in the meantime. When the timer interrupt
occurs, the event bit in the TECB is turned on and any task that has issued
a WAIT macro specifying this same TECB is made ready to proceed; if
more than one task, then the task having the highest priority is dispatched.
Figure 10.3 illustrates a program that waits for a time interval to expire.

START O
TECB1 TECB
STIMER SETIME 30,TECB1 START 30 SECOND INTERVAL

(normal processing not time-dependent)

WAIT TECB1 WAIT FOR TIMER END-
(time—'depér_ldent processing) '

éND
Figure 10.3. Skeleton Exampie of a Program in which a 30-second Interval
Must Elapse before Special Processing is Performed

After a SETIME macro has been issued, any program or task executing in
the same partition can obtain the unexpended part of the interval by issuing
a TTIMER macro. This macro returns the residual number of seconds
without disturbing the interval timer function:

If the TTIMER macro includes the operand CANCEL, a previouély
issued SETIME macro is canceled.

10.4 DOS/VS System Management Guide

Linkages to User Exit Routines*.

Through the STXIT macro instruction, linkagé can be established to one or
- more user routines if the appropriate FOPT macro parameter was specified
to generate the. support in the supervisor.

" The first operand of a STXIT macro instruction informs the supervisor
where to store the special routine entry point address that is specified by
the second operand. When the specific condition arises, the supervisor
passes control by entering the routine at that address. The conditions,
STXIT macro first operands, and the special user—wmten routines entered,
are-shown in the following table: :

Condition STXIT Operand) User Routine
Interval Timer External IT . Interval Timer Exit !
Interrupt

Abnormal Termination of AB Abnormal Termination Exit

Problem Program

Program Check Interrupt PC Program Check Exit
Operator Communications ocC) O‘perator Communications Exit
Interrupt)

Interval Timer User Exit Routine

If special processing is required when a specified time interval has elapsed,
the STXIT IT macro can be used to establish linkage to-the appropriate
routine and subsequently, when this routine completes the special
processing, an EXIT macro to return to the next sequential msttuctlon in
the main routine.

Note: If the program issuing the STXIT IT macro is a VTAM
application program, the exit will not be-taken while VTAM is processing
any request on behalf of the application program. The exit will be taken
when VTAM has completed the program’s request.

Figure 10.4 shows the application of a STXIT IT macro o enter a
checkpoint routine every half hour during processing. Notice that in this
example the user’s interval timer exit routine need not be fixed in real -
storage; since there is no real-time dependency, the results cannot be
influenced by paging activity.

*The.1PL user exit and the job control user exit are described separately later in this
chapter.

Chapter 10: Using the Facilitics and Options of the Supervisor 10.5

TIMECHK “START 0
STXIT IT,TIMINTR,TIMSA SET UP LINK TO TIMER RTN
MVI STATSW,X'80" SET SW FIRST TIME THROUGH
SETIME 1800 . TAKE CHCKPNTS EVERY 30 MIN

PROCESS (perform normal proceséing)

CLI STATSW,X'40" CHECK FOR TIMER INTERRUPT
BNE PROCESS IF NOT CONT PROCESSING
B - CHKPTR IF SO TAKE CHECKPOINT
* TIMER INTERRUPT ROUTINE . ‘
TIMINTR MVI STATSW,X'40' SHOW INTERRUPT
EXIT" IT RETURN TO INTERRUPTED PNT

* CHECKPOINT ROUTINE i :
CHKPTR (do necessary processing before taking checkpnt)

CHKPT .SYS001,RSTRTR, ,, ,DSKFLE TAKE CHECKPOINT

LTR RO, RO CHECK IF CHECKPOINT OK
BE ERROR GO TO ERROR RTN IF NOT
ST RO, CHKPTNR PUT CHKPT NUMBER IN MSG
LA R1,MSG1 GET ADDRESS OF RIGHT MSG
STCM R1,7,0PCCW+1 PUT MSG ADDR IN CCW

LA R1,0PCCB MESSAGE CCB

EXCP - (1) : WRITE MESSAGE TO OPERATOR
WAIT (1) WAIT FOR COMPLETION

MVI STATSW,X'80" RESET CHECKPOINT SWITCH
SETIME 1800 RESET TIMER . A

B PROCESS RESUME PROCESSING

* RESTART ROUTINE
RSTRTR STXIT IT,TIMINTR,TIMSA < RESTORE TIMER INTERR LINK
SETIME 1800) SET TIMER

(restore everything saved in checkpoint)

B PROCESS START PROCESSING

* MESSAGE ROUTINE FOR INVALID CHECKPOINT

ERROR LA R1,MSG2 GET ADDRESS OF ERR MSG
"STCM R1,7,0PCCW+1 PUT MSG ADDR IN CCW
LA . R1,0PCCB LOAD MESSAGE CCB
EXCP (1) WRITE MESSAGE TO OPERATOR
WAIT (1) WAIT FOR COMPLETION
CANCEL ALL CANCEL PROGRAM

END EOJ

-Figure 10.4. Example of Using the Interval Timer for Taking a Checkpoint Every
Half-hour (Part 1 of 2)

"~ 10.6 -DOS/VS System Management Guide

[

* CONSTANTS
TIMSA DS
OPCCB CCB
OPCCW. CCW .

MSG1 DC
CHKPTNR DS
DC
MSG2 DC
STATSW DS
END

9D

SYSLOG, OPCCW
X'09',MSG1,X'20',80
CL16'CHECKPOINT NR'

F

CL60'HAS BEEN TAKEN'
CL80'CHECKPOINT FAILED JOB IS CANCELED'

X

Figure 10.4. Example of Using the Interval Timer for Taking a Checkpoint Evefy
Half-hour (Part 2 of 2)

Multitasking Considerations

When the supervisor includes interval timer support, the main task and/or

any subtask in a partition may issue a SETIME macro. Each may also issue

a STXIT macro to establish linkage to a common user routine provided that
the routine is reenterable and that each task has its own unique save area.
Figure 10.5 illustrates this principle. '

MAINTASK START O .
STXIT IT,STRTER,MTSKSA .
SETIME 300 MAIN TASK TIMER TO 5 MINS
ATTACH SUBTASK1,SAVE=SAV1

ATTACH SUBTASKZ2,SAVE=SAV2

* IT USER EXIT ROUTINE

STRTER - (reenterable routine)
EXIT IT

SUBTASK1 STXIT IT,STRTER,STSK1SA USE SAME EXIT ROUTINE
SETTIME 400 SET TIME INTERVAL
DETACH

SUBTASK2 STXIT IT,STRTER,STSK2SA USE SAME EXIT ROUTINE
SETIME 500 SET TIME INTERVAL
TTIMER CANCEL CNCL INTRVL THIS TSK ONLY
DETACH

MTSKSA DS 9D

STSK1SA DS 9D

STSK2SA DS 9D

SAV1 DS 9D

SAV2 DS 9D

Figure 10.5. Skeleton Example of Multitask Linkage to a Common IT Exit Routine

Chapter.10: Using the Facilities and Options of the Supervisor 10.7

Abnormal Termination User Exit Routine

The STXIT AB macro establishes linkage to a user routine that is entered

- whenever the issuing program is to be terminated for any reason other than

a normal end-of-job. The routine entered may do any necessary
housekeeping such as closing LIOCS files and writing messages before the
job step ends, but cannot attempt recovery from the causative error. It
should end by issuing a CANCEL, DETACH, DUMP, JDUMP, or EOJ
macro. »

Program Check User Exit Routine

“The linkage established by the STXIT PC macro instruction provides entry

to a user routine for handling any program check interrupt that is not
caused by a page fault (page or segment translation exception or a
translation specification exception). The routine can analyze the interrupt
status information and the contents of the general registers stored in the
user’s save area.

If an error condition caused the interrupt, this can be corrected or
ignored (depending on the severity of the error) and control returned to the
interrupted program, or termination of the program may be requested.

Note: As with the interval timer exit, the program check exit is not
taken if the program check occurs while VTAM is processing a VIAM
request issued by the program. When VTAM has completed processing the
request, the exit will be taken.

DIVTEST CSECT

. 5
STXIT PC,PCRTN,PCSAV SET UP, PROGRAM 'CHECK LINK

IM R2,R3,DIVIDEND LOAD FOR DIVIDING
D R2,DIVISOR DIVIDE

* USER'S PROGRAM CHECK ROUTINE

PCRTN SR R5,R5 CLEAR REGISTER 5
CL R5,DIVISOR CHECK FOR ZERO DIVISOR
BNE CANCELR IF- NOT CLEAR FILES & CNCL
(special recovery routine)
: EXIT ' PC RETURN TO. NORMAL PROC
CANCELR PDUMP PCSAV,PCSAV+71 DUMP SAVE AREA

(close files and do other housekeeping)

CANCEL ALL

Figure 10.6. Skeleton Example of a Routine for Processing a Program Check

Caused by Zero Division

10.8 DOS/VS System Management Guide

Supervisor support for entering a user’s program check routine is useful
when it is known that one or more programs may be checked by -processing
errors that are insignificant to the results or can easily be corrected. Figure
10.6 shows a routine for recovering from a program check caused by
attempting to divide by zero. In this example, any other causative errors
result in the user save area being dumped before the job is terminated.

Operator Communications User Exit

A direct communications link between the operator and a program can be
established by issuing a STXIT OC macro instruction. In a multitasking
environment, the STXIT OC macro instruction may be issued only by the
main task in any partition. The operator procedure to initiate
communication depends, however, on whether the program executes in the
background or in a foreground partition.

For a program in the background partition, the operator initiates
communication by pressing the external interrupt key. This activates the
attention task which sets the linkage to the user’s operator communications
routine. This routine is then entered instead of returning to the program
that issued the STXIT OC macro instruction.

For a program in a foreground partition, the operator presses the
request key. This initiates an I/O interrupt. In reply to the attention routine
. statement READY FOR COMMUNICATIONS, the operator enters MSG
followed by the partition code (F1, F2, F3, or F4) which sets the linkage to
the user’s operator communications routine. This routine is then entered
instead of returning to the program that issued the STXIT OC macro
instruction, :

The operator communications routine may perform any special
processing, a' typical application being the taking of a checkpoint record in a
program that has to be canceled in order to start a high-priority job that
has just been handed in; the checkpointed program can then be restarted
later on.

Writing an IPL User Exit Routine

Before you actually start coding your $SYSOPEN routine, take account of
any system requirements that should be met at the time the routine is to be
executed. For instance, labeled files that are to be opened need device
assignments and label information in the specific label area. Any routines
called by your routine must be present in a core image library and, if they
are contained in a private library, assignments for this library must also
have been made prior to IPL..

Moreover, the following conventions must be followed:
« Register 15 is to contain the entry point of the routine.
« Register 14 is to be loaded with the return address to job control.

o The format of the phase card must be as follows:
PHASE $SYSOPEN, +[,NOAUTO]

« The phase is to be self-relocating.

Chapter 10: Using the Facilities and Options of the Supervisor 10.9

.Use EXCP macros to perform all I/O operations within your routine; any
use of LIOCS or of a DTFPH will destroy the job control program. After
IPL job control executes the exit routine as an overlay phase. In your exit
routine you can issue SVCs and perform 1/0 operations in user-written
$$B-transient routines. While the routine is being executed job control is
unable to read any JCL statements. Therefore, if you issue an OPEN to a
labeiled device, make sure that labels are present in the standard label area,
the partition label area, or the user label area. Likewise, assignments for the.
specific physical devices must have been made. Code your routine as an
overlay of an existing program phase. A slot of 4K bytes is reserved for the
exit routine.

Figine 10.7 illustrates a user-written routine that can be entered once
each time the IPL procedure is performed.

ISEQ 73,80 : \
IPLEXIT START O .
USING *,R15 SET BASE

BEGIN ST R14 ,RETURN SAVE RETURN ADDRESS
L R1,20 GET COMRE@. ADDRESS

MvVC SYSDATE(2),79(R1) = GET DAY

MvC SYSDATE+3(2),81(R1) GET MONTH

MVC SYSDATE+6(2),83(R1) GET YEAR ,

MVC SYSDATE+9(3),85(R1) GET CURRENT DAY OF YEAR

LA R1,LOGCCB GET LOGCCB ADDRESS

LA RO, LOGCCW GET LOGCCW ADDRESS

ST RO, LOGCCB+8 AND STORE IT IN CCB
INQUIRYD LA R8,SYSCODE - GET SYSTEM DATE ADDRESS

ST R8, LOGCCW AND STORE IT IN CCW

MVI LOGCCW+7,X"11! SET LENGTH

BAL. R14,0UTLOG WRITE MESSAGE

LA - RO,PARM - LOAD PARAMETER REGISTER

LA R1, PHASNAME LOAD PHASE NAME

svC 2 OPEN ACCOUNTING)

L R14 ,RETURN LOAD RETURN- ADDRESS

BR R14 - RETURN TO CALLER

DC OF'0' ALIGNMENT

Figure 10.7. IPL User Exit Example (Part 1 of 2)

10.10 DOS/VS System Management Guide

| PARM 'DC

C'OPEN'
DC X'80000000"
PHASNAME DC . C'$$BACSEE'

OUTLOG ST R14,0UTSAVE
MVI LOGCCW, X' 09"

sve 0
T™ 2(R1),x'80"'
BO *4+6
svC 7
MVC MSGAREA, BLANKS
L R14,0UTSAVE
BR R14
{OUTSAVE DC F'0'
INLOG ST R14,INSAVE
INLOG1 MVI LOGCCW,X'0A'
svC 0
T™ 2(R1),X'80"'
BO *46
sVC 7 o
™ LOGCCB+4,X'01"
BNZ INLOG1
oc MSGAREA, BLANKS
L R14,INSAVE
. “BR R14
INSAVE DC CF'0

LOGCCB CCB SYSLOG, LOGCCW
* SUPVR LOMMN MACROS - CCB - 5

LOGCCB DC XL2'0"'
DC- XL2'0"'
DC XL2'0"'
DC. AL1(0)
DC AL1(4)
DC XL1'0"'
DC AL3(LOGCCW)
DC B'00000000"
DC AL3(0)
LOGCCW CCW X'00',*,X'20',
RETURN DC F'0’
MSGAREA DC CL60"' '
SYSCODE DC C'DATE="
SYSDATE DC cLi2' . . /
BLANKS DC CcLeO' '
RO EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
IRS EQU 5
R6 EQU 6
R7 EQU 7
RS EQU 8
R9 EQU 9
R10 - EQU 10
R11 EQU . 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 © EQU 15

END BEGIN

SET ID.

PHASE NAME

SAVE RETURN ADDRESS
SET WRITE COMMAND
EXCP

COMPLETE?

YES

WAIT

CLEAR MESSAGE AREA
LOAD RETURN ADDRESS
RETURN TO CALLER
RETURN ADDRESS

SAVE RETURN ADDRESS
SET READ COMMAND
EXCP

COMPLETE?

YES

WAIT

WAS MESSAGE CANCELED?
YES READ AGAIN
CONVERT TO UPPER CASE
LOAD RETURN ADDRESS
RETURN TO CALLER
RETURN ADDRESS

745-SC-SUP - REL. 28 0
‘RESIDUAL COUNT
COMMUNICATIONS BYTES
CSW STATUS BYTES
LOGICAL UNIT CLASS
LOGICAL UNIT

CCW ADDRESS
STATUS BYTE
CSW CCW ADDRESS

0

Figure 10.7.

~ Chapter 10: Using the Facilities and Options of the Supervisor

IPL User Exit Example (Part 2 of 2)-

10.11

Writing a Job Control User Exit Routine

In your routine you are free to modify the parameters of the job control
statement and to add comments. You must not, however, modify the
operation field of the statement. For example, // EXEC IBM can be
modified to // EXEC USER; the operation field (EXEC) cannot be
modified. In your exit routine, do not perform any 1/O operations, do not
issue any SVCs or request the system to cancel the job step. The phase
card must be in the following format:

PHASE $JOBEXIT,S[,NOAUTO],SVA[,PBDY]

You must provide job control with a return code. If the return code
register contains a value of zero the statement is processed by job control.
If the register contains a value other than zero, the statement is treated as
comments and is not processed.

Your routine must be coded reenterable, SVA eligible, and must reside
in the SVA. Control is passed to it only if the following conditions are met:
If message

1I00A READY FOR COMMUNICATIONS
is displayed, enter
set sdl=create

$JOBEXIT, SVA

/¥

or, if message

1I00A WARM START COPY OF SVA FOUND

is displayed, depress end-of-block. Phase $JOBEXIT is contained in the
warm start copy.

Phase $JOBEXIT is executed with a storage protection key of zero.
The code is shared between partitions.

When your routine is entered, the following registers are preloaded:

Register Number: Contents of Register:
0 System ldentification Characters ‘SDOS’
1 Address- of Partition Communication Region
2 Address of System Communication Region
3 Job Control Vector Table*
4 Address of Buffer into which job control statement is
loaded
14 Return Address to Job Control
15 Entry Point to $JOBEXIT; at completion of the routine it

contains the return code for Job Control.

Before taking the exit to your routine, job control saves the contents of all
general-purpose registers. These registers will be restored when job control
regains control. Prior to returning, your routine must store a return code
-value into register 15:

a zero value - requests job control to continue processing the
current statement as normal.

10.12 DOS/VS System Management Guide

a non-zero value - recjuests job'control to process the statement as if it
' were a comment, that is, to ignore it effectively.

The vector table shows which job control statement will be processed.

by job control. You must not modify its contents. Use it for purposes of
comparison only. The size of the buffer into which the job control
statement is loaded (left-justified) is 121 bytes, the first 71 bytes of which
are printed on the console printer. The full length of 121 bytes is printed
on the printer assigned to SYSLST. The / & and End-of-job statements are

not displayed. In the buffer,

bytes 11 through 71 may be modified. After

the return code has been set, control is passed back to job control.

* Vector Table Layout
Operation field

7 bytes (Name of job control statement)

Condition switches | 1 byte
Branch displacement 1 byte
Phase ID. 1 byte
Total 10 bytes

Do not attempt to modify the table or modify thé,operation field in the

buffer.

Figure 10.8 illustrates a job control user exit routine.

* JOB CONTROL G, CHECK THE JOB CARD
JOBCTLG BAL R8,JOBCLEAR

JOBNAMEM MVC + PARTNAME ,0(R6)

JOBEXIT START O
START BALR R15,0

USING *,R15 USE BASE

USING VECTORTB,R3 USE VECTOR TABLE BASE

USING PARTABLE,RS USE PART. RELATED TABLE

LH R6,CPIK(R1) GET PIK OF PARTITION

LA R5,JOBPIKOO GET ADDR. OF JOB INFORMATION FIELD

LA R5,0(R6,R5) INCREMENT TO CORRECT POSITION

CLC NAMEJOB, VECTOP IS IT A JOB CARD?

BE JOBCTLG YES

CLC NAMEEXEC , VECTOP IS IT AN EXEC CARD?

BE JOBCTLE YES

CLC NAMEEOJ , VECTOP IS IT END OF JOB?

BE ENDOFJOB _ YES

CLC NAMEOPTI , VECTOP TEST IF OPTION ENTRY

BE OPTION YES

CLC NAMEDATE, VECTOP IS IT A DATE CARD?

BE DATE YES
SVARETRN XR R15,R15 SET RETURN CODE

" BR R14 RETURN TO CALLER

AND THE /& CARD
CLEAR PARTITION RELATED FLAGS

LA R8,8 LOAD COUNT REG. FOR JOBNAME

LA R6,7(R4) LOCATE JOBNAME

CLI 0(R6),X'40" TEST IF JOBNAME CORRECT ALIGNED
BE JOBNMALG NO

GET JOBNAME

Figure 10.8. Job Control User Exit Example (Part 1 of 3)

Chapter 10: Using the Facilities and Opiions of the Supervisor 10.13

= U
-

JOBNAME CLI
BE
LA
BCT

JOBCLEAR MV]
XC
BR

ENDOFJOB CLC
BNE
BAL
B

SAVENAME MVC
B

JOBNMALG LA

JOBNMBLK CLI
BNE
LA
-BCT
LA
B

JOBNMDGT BCTR

LA
B

JOBNMEND LA
LA
CLI

BE
JOBACF CLI
BE

LA
_ BCT
JOBACFER OI
. MVC

B

CHECKACF LTR
BZ

BCTR

STC
BLANKOUT MVC
SETACF . OI
B
JOBCTLE EQU
OPTION * EQU
DATE EQU

1(R6),X"40"
JOBNMEND
R6, 1(R6)
RS, JOBNAME
SVARETRN

O(R5),X'00"
PARTNAME , PARTNAME
R8

NAMEEOJ, O(R4)
SAVENAMF;
R8,JOBCLEAR
SVARETRN
PARTNAME, 24(R1)
SVARETRN

R8, 20
O0(R6),X'40"
JOBNMDGT

R6, 1(R6)
R8,JOBNMBLK
R8,8

JOBNAMEM

R6,0

RS8,8

JOBNAMEM

R8,48
R6,2(R6)
0(R6),X"40"'
JOBACFER
1(R6),%X"40"
CHECKACF
R6, 1(R6.)
R8,JOBACF
O(RS5),X'40"
68(3,R4),=C"ACF"'
SVARETRN

R8,R8
SETACF

RS, 0

RS, BLANKOUT+1
2(0,R6),1(R6)
0(R5),X'01"
SVARETRN

E3

*

*

¥ OTHER ROUTINES EXECUTED

SVAEXIT LA

BR
NAMEJOB DC
NAMEEXEC DC
NAMEEOJ DC

| NAMEDATE DC

R15,4

R14
CL4'JOB'
CL4, 'EXEC'
CL4' /88"
C'DATE'

TEST IF END OF JOBNAME

YES :
INCREMENT TO NEXT NAME DIGIT
RETRY

RETURN TO SVA EXIT

RESET FLAG CORRECT JOB CARD
CLEAR JOBNAME
RETURN TO CALLER

IS IT REALLY END OF JOB?

SAVE JOBNAME

RESET PARTITION RELATED FLAGS
RETURN TO SVA EXIT

SAVE JOBNAME

" RETURN TO SVA EXIT

LOAD MAXIMUM SEARCH COUNT

TEST IF BLANK BEFORE JOBNAME

NO

INCREMENT TO NEXT POSITION
RETRY

SET JOBNAME MAX COUNT

CHECK JOBNAME

DECREMENT TO CONTINUE SEARCHING
SET JOBNAME MAX COUNT

CHECK JOBNAME

LOAD COUNT FOR ACF. FIELD
INCREMENT TO ACF. START POS.
TEST IF ACCOUNTING FIELD CORRECT

"NO - :

TEST IF END OF ACF. FIELD

YES

INCREMENT TO NEXT ACF. FIELD. POS.
RETRY

SET INVALID ACF. FIELD

MARK ERROR ACF. FIELD

RETURN TO SVA EXIT

TEST IF END

YES

DECREMENT BY ONE
MODIFY BLANK FIELD
BLANK THE REST

SET JOB CARD CORRECT
RETURN TO SVA ‘EXIT

SET ERROR RETURN CODE
RETURN TO CALLER

Figure 10.8.

10.14 DOS/VS System Management Guide

Job Control User Exit Example (Part 2 of 3)

NAMEOPTI DC CL6' OPTION'

LTORG
=C'ACF'

. DC OF'0"’ -

JOBPIKOO DC 4F'Q" DUMMY :

JOBPIK10 DC 4F' Q" JOB INFORMATION FIELD
| JoBPIK20 DC 4F'0Q' -JOB INFORMATION FIELD
JOBPIK30 DC 4F'0" JOB INFORMATION FIELD
JOBPTIK40 DC 4F'0Q" JOB INFORMATION FIELD
JOBPIK50 DC 4F'0’ ‘ JOB' INFORMATION FIELD
SAVEVECT DC XL10'00"

END ‘DC X'00000000"

¥ FUNCTION OF SENIOR- BYTES JOBPIKXX

* X'80' JOB CARD ALIGNMENT ERROR JOBNAME
* X'40' JOB CARD - ALIGNMENT ERROR ACF. FIELD
* X'01' EXEC CARD INDICATOR JOB GARD CORRECT
CPIK EQU 46 ADDR. OF PIK IN COMMUNICATIONREGION
RO EQU 0 ' o '
R1 EQU 1
R2 EQU 2
R3 EQU 3
2 EQU n
R5 EQU 5
R6 EQU 6
R7 EQU 7
RS EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 1
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15 ,
- VECTORTB DSECT JCL PHASE VECTOR TABLE
VECTOP DS CL7 OPERATION FIELD .
VECTCD - DS CLA1. CONDITION SWITCHES .
VECTBRDP DS CL1 'BRANCH VECTOR DISPLACEMENT
VECTPHID DS CL1 PHASE ID. LETTER
PARTABLE DSECT
PARTFLAG DS CL1 PARTITION FLAG
PARTVIS DS ' CL3. . PARTITION GETVIS AREA
PARTRES DS cL4 " RESERVED -

PARTNAME DS . CL8 PARTITION JOBNAME
END START -

Figure 10.8. Job Control User Exit Example (Part 3 of 3)

Checkpointing Facility

The progress of a program that performs considerable processing in one job
step should be protected against destruction in case the program is
canceled. DOS/VS provides support for taking up to 9999 checkpoint
records in a'job. Through this: facility, information can be preserved at
_regular intervals and in sufficient quantity to allow restarting a program at
an intermediate point. ' '

Chapter 10: Using the Facilities and Options of the Supervisor 10.15

The CHKPT macro stores the checkpoint record on a magnetic tape or
, disk. For full details regarding the use and restrictions of this macro, refer
to DOS/VS Supervisor and I/0 Macros. . '

The RSTRT job control statement restarts the program froin the last or
any specified checkpoint taken before cancelation. For full details on using
this statement, see DOS/VS System Control Statements. o

Choosing a Checkpoint

The most important criterion for a checkpoint decision is a minimum of
necessary housekeeping before the checkpoint record can be taken. The
poésibility of an error occurring either in the checkpoint routine or at restart
is then also minimal. Checkpoints cannot be taken by a subtask or by.a
main task with subtasks attached. Therefore, when multitasking, checkpoints
should be aveided where a number of subtasks must first be detached.

A successful checkpoint record taken immediately after opening files
indicates that processing can safely proceed. If such a checkpoint record is
invalid, however, then the program should be canceled.

Other checkpoint records may be taken at logical breaks in data, such
as at the end of a reel of magnetic tape.

Timing the Entry to the Checkpoint Routine

Having decided where a program can conveniently be checkpointed, it may
be useful to enter the checkpoint routine only if a certain time interval has
elapsed since the previous checkpoint record was taken.

By issuing a SETIME macro after a STXIT IT macro has established
linkage to a user routine that sets a switch and returns, the main program
can test this switch and then branch to the checkpoint routine or continue
processing according to whether the switch is set or not. An example of this
technique can be found in Figure 10.4.

By issuing a STXIT OC macro instruction, it is also possible to have
checkpoint records taken at convenient points on command from the
operator. This method is illustrated by Figure 10.9.

10.16 DOS/VS System Management Guide

CHKPTRTN CSECT : . -
STXIT OC,0CMSG,OCSAV SET UP LINKAGE FOR OC MSG

MVI SW1,X'40!' - SET CHECKPOINT SWITCH
OPENR = (RDISKOUT),(RCHKPTF) OPEN FILES
BAL RLINK,CHECKPT TAKE TEST CHECKPOINT

START (normal processing)
CLI SWI,X'40‘ SEE IF OPER HAS SENT MSG
BE START : CONTINUE IF NOT

* THE FOLLOWING IS THE CHECKPOINT ROUTINE ENTERED ON
* A SIGNAL FROM THE OPERATOR
STD F0,REGO SAVE FLOATING POINT REGS
STD F2,REG2
STD F4 ,REG4
STD ‘F6,REG6

"CHKPT SYS011,(RSTRTR),,,,(RCKPTF) TAKE CHKPTS
LTR RO,RO TEST IF SUCCESSFUL
BZ " CANCEL CANCEL IF NOT
MVI SW1,X'40! - RESET CHECKPOINT SWITCH
B START : RETURN TO NORMAI PROCESSING
(equates) : ,
OCMSG MVI "SW1,X'80! SET CHECKPOINT SWITCH
EXIT ocC RETURN TO POINT OF INTERR
CHECKPT CHKPT SYS011,(RSTRTR),,,,(RCHKPTF) -
LTR RO,RO) SEE IF CHECKPNT SUCCESSFUL
BNZ O(RIANK) RETURN IF TAKEN
CANCEL CANCEL ALL) CANCEL IF CHECKPOINT FAILED
STRTR STXIT OC,0CMSG,0OCSAV RESTORE LINKAGE ,
LD F0,REGO ' RESTORE FLOATING POINT REGS
1D F2,REG2
LD F4 ,REG4
LD F6,REG6
B START RESTART PROGRAM
| END EOJ .)
REGO DS D
REG2 DS D
REG4 DS D
REG6 DS D
OCSAV DS 9D
SW1 DS X
(equates)
end

Figure 10.9. Skeieton Example of a Routine for Checkpointing. a Program on
Operator Command

Chapter 10: Using the Facilities and Options of the Supervisorb 10.17

Saving Data for Restart

Besides the information stored by the CHKPT macro, certain data must
usually be saved by the user’s checkpoint routine in order to facilitate a
successful restart. This may include the contents of floating point registers,
any linkage that was established by a STXIT or a SETPFA macro, the
interval value for a SETIME macro, and the program mask in the problem
program PSW,

For the repositioning of 1/0 files so that they point to the next record
to be read or written, refer to DOS/VS Supervisor and 1/0 Macros.

Restarting a Checkpointed Program

A checkpointed program can be restarted only in the same partition. The
virtual partition (or real partition if a real mode program) must start at the
same location as when the program was checkpointed and its end address
must not be lower than at that time unless a lower end address was
specified in the CHKPT macro instruction. Unless the user resets all
linkages to SVA phases himself, the contents and location of the modules in
the SVA when restarting must also be the same as when the program was
checkpointed. The SDL need not be identical.

_ If any pages of a virtual mode program were fixed when the checkpoint

record was taken, then the real partition must also start at the same

location and its end address must be at least as high as at that time. The
pages that were fixed are refixed by the supervisor when the program is
restarted. '

The appropriate job control statements for restarting a checkpointed
program on disk are illustrated in Figure 10.10.

// RASSGN

// ASSGN .
// RSTRT S

// JOB CHECKPOINT (the JOBNAME mustibe_the same ‘as before)
// BASSGN ..

YS001, 1111, CHKPTF

(all ASSGNs must be renewed)
(new assignments may be made)

Figure 10.10. Example of Job Control Statements for ReMng a Checkpointed Job from

Checkpoint 1111

10.18 DOS/VS Syste Management Guide

Job Accounting Interface Feature

A DOS/VS supervisor generation option provides job accounting interface

. support for all partitions in the system. At the end of each job step or job,

accounting information is accumulated in a table for that partition and can
be processed by a user routine, which must be either relocatable or
self-relocating. This user routine can extract data for such purposes as
charging system usage, supervising system operation, or for planning new
applications or changing the system configuration.

Since- the processing-of the information is an overhead element, the user
routine should be efficient and avoid unnecessary reduction or reformatting
of data. - '

If your system also supports POWER/VS job accounting, you do not
need such a user routine. Refer to POWER/VS. Job Accounting in this

_chapter for more details.

Basic Job Accounting l'nform‘ation :

1/0 Accounting Information

When support is generated for basic job accounting, the supervisor includes
for each partition in the system a job accounting table comprising fourteen
fields. At the end of each-job step and job, information is stored as shown
in Figure 10.11, fields 1 to 14 inclusive.

Job accounting automatically includes support for the interval timer.

Additional suppbrt can be provided at system generation time to include the

" number of SIO (Start I/0) instructions issued per device for each job step

and job. The job accounting table for each partition is thz=n extended to
contain the additionat fields 15 and 16 shown in Figure 10.11.

SIO accounting is performed for the number of devices specified to be

~ supported by the feature for each partition. The maximum is 255 and has

no relation to the number of devices specified for the system. If more
devices are accessed than the number specified, SIOs on the excess devices
will not be counted.

.Chapter 10: Using the Facilities and Options of the Supervisor l0.19

3 Contents

é IS
1 07 8 | Job Name. 8-byte character string taken from
: JOB card.
2 823 16 | User Infor ion. 16 ch s of information
taken from the JOB card.
3 | 2428 2 | Partition ID. BG, F4,F3, F2, or F1.
4 26 1 Cance! Code.
b5 27 1 Type of Record. S = job step; L = last step of job.
6 28-35 8 Date. mm/dd/yy or dd/mm/yy depending on
supservisor option. i
7 | 3839 4 | Job Step Start Time, OhhmmssF, where h hours, -
m minutes, s seconds, F is a sign {in packed 10 Normal EOJ
decimal format). 17 Program Request. Same as 23 but causes dump
because subtasks wore attached when maintask
-8 | 4043 4 Job'Step Stop_ Tim.o. Zaros except in last record, which issued CANCE L macro.
: | has job stop time (in same format as start time). 18 Efiminates cancel message when main‘ask issues
9 | 4447 Reserved. DUMP macro with subtasks attached.
10 48-56 8 Phase Name. 8-byte character string taken from the 19 1/0 aperator option.
EXEC card. 1A /O error,
11 65-69 4 [Real Mode Processing:) 18 Channel failure.
High storage address of partition, If the SIZE parameter 1iCc CANCEL ALL macro issued.
isused in the EXEC statement, this field reflects the 10 Maintask termination.
value of the parameter. .
Virtusl Mode Processing: 1E Unknown ENQ requestor.
Simulated high storage address. Calculated by multiplying |. 1F CPU failure.
the number of pages referenced in the partition by 2K and 20 Program check.
adding the result to the start address of the virtual partition 21 1llegal SVC.
12 €063 4 $PU Time|. 4 bi::rv bytes given in 300ths of a second. 22 Phase not found.
ime is calcuiated from exit of the user-written routine 23 P
called during job control to next entry of the routine. 24 orogvam r-equcm. .
Time used by the user-written cutput routine is charged ‘ - Operator intervention)
to overhead of the next record. 25 Invalid address or insufficient core allocation
i3 6467 4 [Overhead Time. 4 binary bytes given in 300ths of a second) to partition. '
Includes time taken by functions that cannot be charged 26 SYSxxx nat assigned {unassigned LUB code).
readily to one partition (such as att?nti?n r‘o\'nine and 27 Undefined logical unit {invalid LUB code in
Jerror recovery). System overhead time is divided by the cCB)
of active batch partitions and recorded in each N)
ing table. 28 QTAM cancel in progress.
- 30 Read past / & on SYSRDR or SYSIPT.
14 |68 4 | All Bound Time. 4 binary bytes in 300ths of a past / & on -
. ! L 3 31 1/0. error queue overfiow (error queue overflow
sacond. This is the time the system is in the wait CHANQ ilable for ERP)
state divided by the number of partitions running. orno entry available for :
- 32 invalid DASD address (disk).
16 |72 S10 Tables. Variable mm.\ber of ?Yt”.' Six bytes 33 No long seek (disk).
are '“'""dF'f" each device ‘p“"f"d n the JA 34 1/0 error during fetch (irrecoverable 1/ errdr
paremater. First two by(es~ are X’'Ocuu’, next io'ur during fetch of non-$ phase).
are hax count of S1Os for job step. Unused entries .
. spra, X 35 Job control open failure.
contain X'10’followed by five bytes of zeros. a L $BEOJ
Stacker select commands for MICR devices are 0 oad § . | '
not counted. Error recovery SIOs are not charged to 80 Cancel occurred in Logical Transient Area (LTA).
the Job.Accounting Tabte. Devices are added to the FF Unrecagnized cancel code, ar, if the system is
. table as they are used. placed in the wait state and no further
e 1 |Overflow. Normally X20". Set 10 X'30" if more processing is done by the terminator, supervisor
devices are used than set by the JA parameter at catalog failure.
|system generation time.
Note: The difference between Start and Stop times will not necessarily equal the sum of CPU, All Bound, and Overhead

times. All Bound and Overhead times will vary, depending on the number of active partitions and the type of
partition activity. CPU time is accurate for each partition, but it may not be reproducible. That is, the same
job being executed under different system conditions (varying number of active partitions, logical transient
availability, etc.) may show differences in CPU time.

Figure 10.11. Job Accounting Table

10.20 DOS/VS System Management Guide

Save Area for the User’s Routine

The address of a save area that can be used for any desired purpose by the
user’s routine is passed in general register 13. This save area is 16 bytes
long unless a greater length (up to 1024 bytes), to save DTF information
for LIOCS, was specified at system generation time. '

User’s Area for LIOCS Label Proééssing

Programming Considerations

Register Usage

Taildring the Program

If the user’s routine uses LIOCS for processing such items as standard tape
labels, DTFDA, or DTFPH with MOUNTED=ALL, then an alternative
label area must be specified at system generation time. The length of this
label area should normally be the number of bytes that would be allocated
by a given parameter of the LBLTYP statement. For information on

determining the number of bytes, see DOS/VS System Control Statements.

The user program to process the information entered by the supervisor in
the Job Accounting Table must be cataloged in a core image library with
the name $JOBACCT. If the supervisor supports relocating load, then the
user program must be relocatable, otherwise it must be self-relocating in a
multiprogramming environment.

For efficiency, an overlay structure should be 'avoided and the length of
the program should preferably not exceed one core image library block. '

If the job accounting program is canceled as the result of an error
condition, the current information cannot be retrieved. Nor can the program
be called -again until after the IPL procedure has been repeated. An
abnormal termination exit routine is therefore recommended to pass a
message to the operator.

Important data for the user’s job accounting routine are passed in the
following general registers:

12 Base address for $JOBACCT

15 "Address of the job accounting table
11 Length of the job accounting table
13 Address of the.user save area

14 Return address to job control

_If $JOBACCT uses LIOCS, the contents of general registers 14 and 15

must be saved (also registers 0 and 1 if necessary) because LIOCS 'use}s
these registers. :

- The requirements of the pfogram may be simply to record the accounting

information as part of the SYSLST output for each job step or job, or it

may be to accumulate information to be used for equitably allocating .the
~ costs of a computing center. ™ '

Chapter 10: Using the Facilities and Options of the Supervisor 10.21 -

If data is to be written out on a disk or tape, the save area can be used
for communicating between job steps. Such information as the disk address
for the next record or an indication that tape labels have been successfully
processed or even the DTF used to control the output, may be stored i in

the save area.

Figure 10.12 illustrates a]ob accounting program that writes records to '

disk without addmonal processing.

JAACT CSECT
USING *,R12
USING JASAVE,R13
LA RO, JABROUT
LA R1,JABSAVE
STXIT AB,(0),;(1)
T™ JASTATSW,X'CO’
BO JARET
BM JAOPEN

JOB ACCT .SAVE AREA
AB ROUTINE

AB SAVE AREA

SET ABNRML TERM EXIT
TEST. STATUS ~

DISK AREA FULL

SAVE AREA INITIALIZED

* PERFORM LABEL PROCESSING AND INITIALIZE. SAVE AREA

* RELOCATE CCWS

DPENR. JADTF

MvVC JACCB,JADTF

MVC JASEEK,JADTF+58
MVI JAR,X'01"’

MVC JAHIGH,JADTF+54

MVC ~ JASKCCW(32),JAMODCCW
LA R10,JASEEK

STCM R10,7,JASKCCW+1

LA R10,JASRCH

STCM R10,7,JASRCCW+1

LA R10,JASRCCW

STCM R10,7,JATIC+1

LA R10,JASKCCW

STCM R10,7,JACCB+9

MVI JASTATSW,X'80'

OPEN FILE (see Note)
MOVE CCB TO SAVE. AREA
EXTENT LOWER LIMIT
FIRST RECORD

HIGH EXTENT LIMIT

PUT MOD CCWS IN SVE AREA
SEEK ADDRESS

PUT ADDRESS IN CCW -
SEARCH ADDRESS

PUT ADDRESS IN CCW
SEARCH CCW ADDRESS

PUT ADDRESS- IN CCW
CHANNEL PROGRAM ADDR
PUT ADDRESS IN CCB

IND SAVE AREA INIT

* WRITE JOB ACCOUNTING TABLE TO DISK

JAOPEN STCM R15,7,JADATA+1
: . LA R1,JACCB
EXCP (1)
WAIT (1)
* UPDATE SEEK ADDRESS
TR JAR, JARECTAB
CLI JAR,X'01'
BNE JARET
TR JAHEAD+1(1) ,JAHDTAB
CLI JAHEAD+1,X'00"'
BNE JAHTST
LH R10,JACYL
LA R10,1(R10)
STH R10,JACYL
JAHTST CLC JAHIGH,JASRCH
BH JARET
LA R1,JACCBL
LA R2,JAMSG1
STCM R2,7,9(R1)
.LA- R3,JAERRI
STCM R3,7,1(R2)

PUT ADDR OF TBL IN CCW
POINT TO CCB

WRITE DATA

WAIT FOR COMPLETION

RECORD

NEW TRACK

NO

HEAD

NEW CYLINDER

NO

CYLINDER ADDRESS
INCREMENT BY ONE |
REPLACE IN SEEK ADDR
BEYOND UPPER LIMIT
NO

CONSOLE CCB

ERROR MESSAGE

PUT ADDRESS IN CCB
DATA ADDRESS

PLACE IN CCW

Note: If the supervisor does not support relocating load, the self-relocating form of the OPEN macro
(OPENR) should be used in a multiprogramming environment; otherwise OPEN may be used instead.

Figure 10.12. Job Accounting Routine Example (Part 1 of 2)

10.22 DOS/VS System Managemeﬁ(Guide

EXCP (1) INFORM OPERATOR

WAIT (1) WAIT FOR COMPLETION

oI JASTATSW,X'40' INDICATE DISK FULL
JARET STXIT AB RESET EXIT LINKAGE

BR R14 RETURN TO SUPERVISOR
JABROUT BALR RT0,0 BASE REGISTER

USING *,R10 ESTABL ADDRESSABILITY

LA R1,JACCBL CONSOLE CCB

LA R2,JAMSG2 ERROR MESSAGE

STCM R2,7,9(R1) PUT ADDRESS IN CCB

LA R3,JAERR2 DATA ADDRESS

STCM R3,7,1(R2) PLACE IN CCW

EXCP (1) INFORM OPERATOR

WAIT (1) WAIT FOR COMPLETION

EOJ

JAMODCCW CCW X'07',*,X'60',6
CCW X'31',%,X'60',5
CCW X'08',*%,X'00',1
CCW X'05',*,X'20',246
JACCBL CCB SYSLOG,*
JADTF DTFPH TYPEFLE=INPUT, MEANS CHECK LABELS *
DEVICE=2314, *
MOUNTED=SINGLE
ORG JADTF
DC X'00000B0O" - SET CCB OPTION BITS

JAMSG1 CCW X'09',JAERR1,X'20"',L'JAERR]1
JAMSG2 CCwW X'09',JAERR2,X"'20',L"'JAERR2
JAERR1 DC C'JOB ACCOUNTING DISK FULL'
JAERR?2 DC C'JOB ACCOUNTING ROUTINE CANCELED'
JARECTAB DC X'0002030405060708090A0BOCODOEOF101112131401"
'JAHDTAB DC X'0102030405060708090A0BOCODOEOF1011121300"
JABSAVE DS 9D
LTORG USED IF LITERALS. ARE PRESENT
JASAVE DSECT
JASTATSW DS X

JASEEK Ds 0XL6 SEEK ADDRESS BBCCHH
JABB DS XL2 BB
JASRCH Ds OXL5 SEARCH ADDRESS CCHHR
JACYL Ds - XL2 cC
JAHEAD Ds XL2 HH
JAR Ds X R :
JACCB DS XL16 COMMAND CONTROL BLOCK
JAHIGH DS XL4 HIGH EXTENT LIMIT

i DS XL4

JASKCCW CCW X'07' ,JASEEK,X'60',6 SEEK CCW
JASRCCW CCW X'31',JASRCH,X'60',5 SEARCH CCW-
JATIC CCW X'08',JASRCCW,X'00',1 TIC CCW

JADATA CCW X'05',*,X'20"',246 WRITE DATA ASSUMING 29
* SIO DEVICES TRACED
' ‘CSECT
JABROUTE . EQU * YOUR AB ROUTINE
(equates)
END

Note: The DSECT labeled JASAVE through DATA defines the layout of the Job Accounting user
"save area, which resides within the supervisor. The address of this area is passed, in register 13,
to “your Job Accounting phase. When generating your supervisor you must specify the desired
length of this save area by substituting a value for s, the first operand of the JALIOCS
parameter of the FOPT macro. If the operand is omitted or if JALIOCS=NO is specified the

length of the user save area is set to 16 bytes by default.

Figure 10.12. Job Accounting Routine Ex#mple (Part 2 of 2)

Chapter 10: Using the Facilities and Options of the Supervisor 10.23

POWER/VS Job Accounting

USer Account Information

This section assumes that the prerequisites for POWER/VS job accounting
support are satisfied. If these are unfamiliar to your, refer to Account File
in the section Generating POWER/VS in Chapter 3: Planmng the
System.

For each partition running under its control, POWER/VS automatically
collects all job accounting information (both from its own sources and from

‘the job accounting table in the supervisor). Job accounting information is

collected for each job step and stored in chronological order on the
POWER/VS account file (SYS000). If this file is full when a POWER/VS
task wants to write another account record, the task is placed in the wait
state until the operator issues a PACCOUNT command to delete the file or
save it on another medium (tape, disk, or punched cards). You then sort or
summarize this information to suit your own requirements. The account file
is a sequentidl disk file with variable-length unblocked records.

Summarized below are the five types of records on the account file:

« Liné account record (one for each RJE user session). Includes user
identity; SIGNON/SIGNOFF times; and the number of transmlssmns,
timeouts, and line errors.

* Reader account record (one for each read queue entry). Includes job .
identity, start/stop time of the read function, and number of input
records.

+ ' List account record (one for each list queue entry). Includes job
identity, start/stop time of the list function, number of output records,
and number of printed pages.

« Punch account record (one for each punch queue entry). Jncludes job
identity, start/stop time of the punch function, and number of output
records.

« = Execution record (one for each job step). Includes job identity and all
information provided by the DOS/VS job accounting interface.

The format of the logical records is shown in Figures 10.13 through 10.17.
Figure 10.18 clarifies the POWER/ VS cancel codes that appear in several
of the account records.

- The last field in the execution account record is?provided for user account

information. If you want special information (such as the CPU ID or mode
of execution) in each execution account record, you need to write a
relocatable phase $SJOBACCT that uses the PUTACCT macro. This macro
is described in DOS/VS Supervisor and I/0 Macros.

Unless you require the PUTACCT macro, you do not need. to catalog a
$JOBACCT routine for POWER/VS. However, to obtain job accounting
interface information for a partition not running under POWER/VS, the
$JOBACCT routine as described under Job Accounting Interface Feature

- is required. For this case, you may want to modify your $JOBACCT

routine to check if account information from this partition is to be

10.24 DOS/VS System Management Guide

processed by POWER/VS. For this purpose you can test the byte labeled
POWFLG] in the partition communication region. If bit 0 of this byte if
on, POWER/VS will process account information from this partition. The:
DOS/VS Serviceability Aids and Debugging Procedures contains more
information on the communication region. '

A coding example showing the use of this test and the PUTACCT
macro in a $JOBACCT routine. is shown in Figure 10.19.

Bytes | Description F

Date in format épeéiﬁed at DOS/ VS Supervisor Generation

00-07 | (mm/dd/yy or dd/mm/yy) @
08-11 | SIGNON time (OHHMMSSF; F=sign) . p
12-15 | SIGNOFF time (OHHMMSSF; F=sign) - p
16-31 |16 bytes user information from the SIGNON command ’ a
32-39 | Line password _ ‘ | a

40.-.41 Resen/éd

42" |Record identifier (T) ' ‘ | oa

Cancel code:

X'01" SIGNON/SIGNOFF card read
43 X'02’' Line stopped by central operator b
X'04" SIGNOFF forced due to excessive idle time

X'08" SIGNOFF forced due to irrecoverable 1/0 error ;
a4 Reserved S

45-47 Line address

»50—51 Total number of transmissions

b
48-49 | Remote identifier v b
b
b

52-53 | Total number of timeouts

54-55 Total number of line errors - b

Note: In this Sfigure the last column (F) indicates the format of each field in the record:

a = alphameric
b = - binary
p = packed decimal

Figure 10.13. POWER/VS Line Account Record

A line account record 'is written when each RJE user session is
terminated.

Chapter 10: Using the Facilities and Options of the Supervisor 10.25

10.26 DOS/VS System Management Guide

Bytes | Description F
00-07 Dete in format specified at DOS/VS Supervisor Generation a
{mm/dd/yy or dd/mm/yy)

08-11 Start time of read (OHHMMSSF; F=sign) p

12-1% Stop time of read (OHHMMSSF; F=sign)) p

16-31 16 bytes user information from * $$ JOB or // JOB card a

32-39 POWER/VS jobname from * $$ JOB or // JOB card a

40-41 Jobnumber assigned by POWER/VS b

42 Record identifier (R) a
43 | POWER/VS cancel code (see Figure 10.18) b
a4 Raserved »

45-47 Reader device address ' b

48 FROM remote-id b
49 |TO remote-id (copied from FROM remote-id) b
50 Input class ‘ a
51 Input priority number a

£2-55 Number of records read (including records added or deleted by a - b

user reader exit routine)

56-57 Number of tracks for input storage b
Neote: In this figure the last column (F) indicates the format of each field in the record:
a = alphameric
b = binary
p = packed decimal
Figure 10.14. POWER/VS Reader Account Record

A reader account record is created for each reader queue entry. Whether
or not the entry has actually been placed in the queue file is indicated by
the POWER/VS cancel code.

This record is written after the corresponding reader queue entry is
processed by the read task. Reader account records are not created for a
writer-only partition.

Bytes Description , F
00-07 Date in format specified at DOS/VS System Generation ' a
{mm/dd/yy or dd/mm/yy)
08-11 Start time of list ((HHMMSSF; F=sign) p
12-15 Stop time of list (OHHMMSSF; F=sign) ‘ p
16-31 16 bytbs user information from * $$ JOB or // JOB card a
32—39’ POWER/VS jobname from * $$ JOB or // JOB card a
40-41 | Jobnumber assigned by.' POWER/VS b
42 Record identifer (L) a
43 POWER/VS cancel code (see Figure 10.18) b
a4 Resewgd
45-47 Printer device address b
48 FROM remote-id b
49 TO remote-id b
50 Printed output class a
51 Printed output priority number a
52-55 Number of lines printed ! b
56-57 Number of t'racks for output storage {Only for spooling to disk. b
When spooling to tape, field is zero.)
58. Job subnumber assigned by POWER-/VS b
59 Number of printed copies (If more than one, the statistics‘are totals b
for all copies.)
60-63 Print forms identification a
64-67 ‘I;l;g;:ber of extra records printed due to PRESTART, PSETUP, or . b
68-69 Number of pages printed (skips to channel 1) b
. 70-71 ‘ng:)ber of extra pages printed due to PRESTAﬁT, PSETUP, or b

Note: In this figure the last column (F) indicates the format of each field in the record:

a
b

4

alphameric .

binary

packed decimal

Figure 10.15. POWER/VS List Account Record

A list account record is created for each list queue entry created by the

" _execution list task. One record is written after each list queue entry is

printed. -

Chapter 10: Using the Facilitics and Options of the Supervisor 10.27

. Bytes | Description - - -) F
00-07 Date in format specified at DOS/VS Supervisor Generation ' a
: | {mm/dd/yy or dd/mm/yy)) :
08-11. | Start time of punch ((HHMMSSF; F=sign))
12-15 - | Stop time of punch ((HHMMSSF; F=sign) 1 p
16-31 16 bytes user information from * $$ JOB or // JOB card | a
\ B
32-39 POWER/VS jobname from * $$ JOB or // JOB card . a
40-41 Jobnumber assigned by POWER/VS b
42 Record identifier (P) : a
43 POWER/VS cancel code (see' Figure 10.18) b
44 Reserved v
45-47 Punch device address b
48 FROM remote-id b
49 | TO remote-id . b
50 Punched output class a‘
51 Punched output priority number . a
52-55. | Number of records punched ’ b
56-57 Number of tracks for output storage (Only for spooling to disk. b
When spooling to tape, field is zero.)
58 Job subnumber assigned by POWER/VS b
59 Number of punched copies (If more than one, the statistics are b
totals for all copies.)
60-63 Punch forms identification a
64-67 Number of extra records due to PRESTART or JSEP b
Note: In this figure the last column (F) indicates the format of each field in the record:
a = alphameric '
b = binary
p = packed decimal
Figure 10.16. POWER/VS Punch Account Record
A punch account record is created for each punch queue entry created
by the execution punch task. One record is written after the punch
queue entry is punched.

10.28 DOS/VS System Management Guide

Bytes Description ‘) . ‘ ' F..
00-07 Date of ‘execution in format specified at DOS/VS Supervisor a
Generation {(mm/dd/yy or dd/mm/yy) : i
08-11 Start time of job step (OHHMMSSF: F=sign)) p »
12-16 | Stop time of job step (0HHMMSSF: F=sign) 1 p
16-31 . | 16 bytes user»info}mation from * $$ JOB card v a
32-39 | POWER/VS jobname (or AUTONAME) | e
40-41 Jobnumer assigned by POWER/VS . b
42 Récord identifier (E) . ‘) a
43 | POWER/VS cancel code (see Figure 10.18) : b
44-47 Reserved
48 FROM remote-id B - ' b
49 TO remote-id b
60 | Class a
51 Priority b
52-55 Nuﬁber of lines spooled b
56-59 Number of cards spooled b
60-61 Ndmber of pages spoole& b
62-63 Length of DO‘S/ VS SI0 accounting table b
64-65 Length of total account record b
66-71 Reserved ‘ ‘

72-79 DOS/VS jobname from // JOB card a
80-95 | 16 bytes user information from // JOB card) a
Note: In this figure the Iasl‘ column (F) indicates the format of each field in the record:

a = alphameric
b = binary
p = - packed decimal

Figure 1@.17. POWER/VS Execution Account Record (Part 1 of 2)

One execution account record is created for each DOS/VS job step. It
contains information passed to the account file by the DOS/VS job
accounting interface, plus information produced by the POWER/VS
accounting routine.’If the job or job step is canceled before completion,
statistics reflect processing up to that time. . '

Chapter 10: Using the Facilities and Options of the Super\)is'or' 10.29

Bytes Description

Qverflow byte: normally X'20’, but X'30' if more devices are used

within a partition than specified by DOS/VS Supervisor Generation.

96-97 Partition 1D in EBCDIC format . a
98 20S/VS cancel code b
99 Type of record: S=joB step, L=last step a

100-103 .| Reserved)
104-111 | Phasename; taken from // EXEC card a
112-11% | End address of active program phase, from COMREG b
116-119 | CPU time elapsed in a job step; counted in 300th of a second b
. System overhead time divided among running partitions, {in 300th
120-123 b
of a second)
12 4_'127 All-bound time; system wait state time divided among running b
partitions, in 300th of a second
SI0 tables, containing the number of 1/0Os POWER/VS has
128 intercepted for spooling purposes. 6 bytes for each device specified b
. by DOS/VS Supervisor Generation options, as follows: 2 bytes for
device address (Ocuu), 4 bytes for count of SIOs in current job
step. b

User account information as specified in PUTACCT macro

Note: In this figure the last column (F) indicates the format of each field in the record:

10.30 DOS/VS System Management Guide

a = alphameric

b = binary

P = packed decimal

Figure 10.17. POWER/VS Execution Account Record (Part 2 of 2)

Cancel Code Condition

X'10' Normal end of POWER/VS job or task (Note 1)
X'30" PSTOP has been issued (Note 2)
X'40° PFLUSH has been issued
X 60° POWER/VS job has been flushed via RDREXIT
xX'70 Canceled due to |/0 error

Notes: o

1. Although no abnormal POWER/VS termination occurred, the DOS/VS jobs
associated with the queue eniry could have been canceled via DOS/VS.

2. The PSTOP cancel code is not stored in an account record if the EOJ option
was specified in the PSTOP command.

Figure 10.18. POWER/VS Cancel Codes

EXIT .

ADAC
R1
RO
RE

CMRG

POWFLG1

-]
COMRG GET PARTITION COMREG
USING CMRG,R1 DECLARE ADDRESSABILITY
TM = POWFLG1,X'80' ACCOUNT SUPPORT FOR THIS PARTITION
BNO EXIT BRANCH TF NOT
LA R1,ADAC ADDRESS ADDITIONAL INFO
La RO, L'ADAC LENGTH ADDITIONAL INFO
PUTACCT (R1),(RO) PASS INFO TO POWER/VS
DS OH . . .
BR RE RETURN TO $JOBCTLN
DC' C'ADDITIONAL ACCOUNT INFORMATION'
EQU 1 REGISTER 1
EQU. 0 - REGISTER 0
EQU 14 REGISTER 14
DSECT
DS CL164
EQU ¥
END

Storage Dump Facility

Figure 10.19. Example Routine to Insert User Information in POWER/VS Execution

Account Records

When used, this routine must be included in the $JOBACCT routine,

Whenever a program is to be terminated by the system for any reason other
than a normal end-of-job condition, and especially after a program check
interrupt, a printout of all or part of the storage area occupied or uscd by
the program at that moment is a useful aid for tracing the cause. Facilities
for obtaining such a printout are provided by most high-level languages and
are described in the various language manuals. For guidance on reading and
interpreting the printout, see DOS/VS Serviceability Aids and Debugging
.Procedures.

The DOS/VS supervisor supports several macro instructions that dump
the contents of real or virtual partitions to SYSLST, which may be assigned
to a printer, a disk, or a tape unit. These macro instructions, details of
which are given in DOS/VS. Supervisor and 1/0 Macros, may be used,
for example, at the end of a user’s routine for handling an abnormal
termination condition.

The following is a summary of the functions of supervisor macros that

* provide storage dumps:

DUMP

The DUMP macro instruction dumps, in hexadecimal format, the contents
of the supervisor arca, the entire real or virtual partition of the issuing
program, and all the general registers. The job step is always terminated if |
multitasking is not supported; with multitasking, the job step is terminated

Chapter 10: Using the Facilities and Options of the Supervisor 10.31

if the macro is issued by the main task but if issued by a subtask then only "
that subtask is detached.

JDUMP ~ * This macro instruction causes the same areas to be dumped as for a DUMP
macro, but terminates the entire job. '

PDUMP A PDUMP miacro instruction furnishes a dynamic hexadecimal dump of the.
general registers and of the virtual or real storage area between the
addresses specified by two operands. After execution of this macro
instruction, processing continues at the next sequential instruction.

A PDUMP macro instruction may therefore be issued several times in a
program to provide dumps of selected storage fields for examination at
different stages of the program’s execution.

10.32 DOS/VS System Management Guide

LY
A

Appendix A: System J Layout on Disk

IPL

System Volume Label

User Volume Label

System Directory

Figure 11.1 illustrates how DOS/VS is organized on the system residence
volume, which is called SYSRES. The device itself can be any IBM DASD
device except a' 2321 data cell, or'a 2311 disk. The organization of
SYSRES is as follows:

This area contains the initial program load (IPL) bootstrap program, which
causes the IPL retrieval program to be read from SYSRES ‘and loaded into
real storage. '

The volume label {VOLI1 label) contains the address of the volume table of
contents (VTOC) established when the pack was initialized. (The DOS/VS
system utility program Initialize Disk is provided for this purpose). The
VTOC can be located on any cylinder outside of the SYSRES file.

The user volume label area is provided for any additional standard volume
labels (VOL2-VOLS labels). This area can extend from record 4 through
the end of track 0.

This area contains the system (master) directory. Record 1 contains the
starting address of the core image directory and the address of the label

" information cylinder. Records 2, 3, and 4 contain the starting addresses- of

the relocatable directory, source statement directory, and procedure
directory, respectively. Record 5 contains the IPL retrieval program, which
reads the supervisor from the core image library into real storage.

Appendix A: Systern Layout on Disk 11.1

/

/
Starting Disk Address Number _ .
Component of Tracks g:%e?"'e‘i
BB cc HH R (Alloc.) =0ptiona
IPL Bootstrap Record 1 ($$A$IPL1) 00 00 00 1 R
IPL Bootstrap Record 2 ($$AS$IPLA) 00 00 00 2 . R
System Volume Label 00 00 00 3 R
User Volume Label 00 00 00 4 (o]
Record 1 00 00 01 1 R
System Record 2 00 00 01 2 R
Directory Record 3 00 00 01 3 1 R
Record 4 00 00 - 01 4 R
IPL Retrieval Program ($$A$IPL2) 00 00 01 - 5 R
g‘i’rr:ct'g'rsge Cataloged phases
Linked Phase 00 00 02 * R
End of CI Directory
.Core Image Library 00 1 * R
X | v
End of CI Library
Relocatable Directory 00 1 * (o}
Z+1 l 00
End of RL Directory
Relocatable Library 00 1 * 0
X l Y+1
End of RL Library :
Source Statement Directory 00 1 * (0]
- Z+1 l 00
End of SS Directory
Source Statement Library 00 1 * (o}
x | ve
End of SS Library
Procedure Directory 00 1 * (0]
) Z+1 I 00
End of P Directory
Procedure Library 00 1 * o
X I Y+1
. . __End of P Library 2314/2319:20
lL.abel Information Cylinder 00 741] 00 1 33307333319 R

* Allocation Dependent on User Requirements
X=Ending CC of the Preceding Directory
Y=Ending HH of the Preceding Directory
Z=Ending CC of the Preceding Library

Figure 11.1. System Residence Organization

Core Image Directory

This directory consists of two or more tracks, depending on the allocation
specified by the user. The directory is in two parts: the first is the directory
of cataloged phases; the second is the directory of linked phases.

Each directory entry describes one phase in the core image library and
contains much information as the phasé name, loading address, number of
blocks, type of phase, entry point, starting disk address in the core image

11.2 DOS/VS System Management Guide

IPL

System Volume Label

User Volume Label

System Directory

\
hS

Appendix A: System Layout on Disk

Figure 11.1 illustrates how DOS/VS is organized on the system residence
volume, which is called SYSRES. The device itself can be any IBM DASD

- device except a 2321 data cell, or'a 2311 disk. The organization of
- SYSRES is as follows:

This area contains the initialvprogram load (IPL) bootstrap program, which
causes the IPL retrieval program to be read from SYSRES and loaded into
real storage.

The volume label (VOL1 label) contains the address of the volume table of
contents (VTOC) established when the pack was initialized. (The DOS/VS
system utility program Initialize Disk is provided for this purpose). The
VTOC can be located on any cylinder outside of the SYSRES file.

The user volume label area is provided for any additional standard volume
labels (VOL2-VOLS labels). This area can extend from record 4 through
the end of track 0.

This area contains the system (master) directory. Record 1 contains the
starting address of the core image directory and the address of the label

" information cylinder. Records 2, 3, and 4 contain the starting addresses: of

the relocatable directory, source statement directory, and procedure
directory, respectively. Record 5 contains the IPL retrieval program, which
reads the supervisor from the core image library into real storage.

Appendix A: System Layout on Disk 11.1

Starting Disk Address Number)
) R=Required
Component of Tracks — Onti
BB cc HH [R (Alloc.) 0=0ptional
IPL Bootstrap Record 1 ($$ASIPL1) 00 00 00 1 R
IPL Bootstrap Record 2 ($$ASIPLA) 00 00 00 2 . R
System Volume Label 00 00 00 3 R
User Volume Label - 00 00 00 4 0
- Record 1 00 00 01 1 R
System Record 2 00 00 01 2 R
Directory Record 3 00 00 01 3 1 R
Record 4 00 00 01 4 R
IPL Retrieval Program ($$A$IPL2) 00 00 01 5 R
g?:c,:g‘:ge Cataloged phases
Linked Phase 00 00 02 * R
End of Cl Directory
-Core Image Library 00 1 * R
X I Y+1
) End of Ci Library
Relocatable Directory 00 1 * (0]
Z+1 [00
End of RL Directory
Relocatable Library 00 - 1 * (0]
X l Y+1
End of RL Library
Source Statement Directory | 00 1 * (0]
Z4+1] 00
End of SS Directory
Source Statement Library 00 1 * 0
X] Y41
End of SS Library -
Procedure Directory 00 1 - 0
Z+1 T 00
End of P Directory
Procedure Library 00 1 o 0
: X T Y+1 :
- End of P Library 2314/2319:20
Label Information Cylinder 00 1 £ : R
v z¢1 | 00 3330/3333:19

* Allocation Dependent on User Requirements
X=Ending CC of the Preceding Directory
Y=Ending HH of the Preceding Directory
Z=Ending CC of the Preceding Library

Figure 11.1. System Residence Organization

Core Image Diréctory

This directory consists of two or more tracks, depending on the allocation
specified by the user. The directory is in two parts: the first is the directory
of cataloged phases; the second is the directory of linked phases.

Each directory entry describes one phase in the core image library and
contains much information as the phasé name, loading address, number of
blocks, type of phase, entry point, starting disk address in the core image

11.2 DOS/VS System Management Guide

Core Image Library

Relocatable Directory

Relocatable Library

library, and the number of text bytes in the last block. The entries are

sorted in alphameric sequence.
' 4

The first entry in the directory is called the library descriptor entry.
This contains such information as the number of directory tracks, library
cylinders, active phases, directory blocks available, and library blocks
available.

Thereafter, the entries have a leﬂgth varying from 14 bytes to 34 bytes
(depending on the specifications in the PHASE statement). Entries are

grouped in blocks of 256 bytes, plus an 8-byte key for the highest phase

name in the block. The number of blocks per track for the 2314/2319,
3330/3333, and 3340 is 15, 26, and 16, respectively. As the size of an
entry can vary from 14 to 34 bytes, one block can have a maximum of 18
entries. The maximum number of entries per track again depends on the
device.

The core image library consists of one or more complete cylinders,
depending on the allocation specified by the user. Each block is 1024
bytes. For the 2314/2319, each track contains six blocks. For the
3333/3330 each track contains eleven blocks. For the 3340, each track
contains seven blocks. The number of phases and the size of each program
dictates the number of cylinders that must be allocated. Each program
starts with a new block. :

This directory consists of one or more tracks, depending on the allocation

specified by the user. It contains two types of information:

1. System directory information for the relocatable directory and library.
This information occupies the first five entries of the first record in the
relocatable directory.

2. An entry that describes each module (the output of a complete
language translator run) in the relocatable library and contains: the
module name, total number of text-record blocks required to contain
this module, starting disk address of the first text-record of this module,
and change level identification.

The relocatable library consists of one or more complete cylinders,
depending -on the allocation specified by the user. The number of modules
and the size of each module to be contained in this library dictate the
number of ‘tracks that must be allocated. Each allocated track contains 17
blocks (2314/2319 and 3340), or 28 blocks (3333/3330), and each block
has a fixed length of 322 bytes. Each module starts with a new block but
not necessarily a new track.

Appendix A: System Layout on Disk 11.3

Source Statement Directory

Source Statement Library

Procedure Directory

Procedure Library

Label Information Cylinder

This directory consists of one or more tracks, depending on the allocation
specified by the user. It contains two types of information:

1. System directory information for the source statement directory and
library. This information occupies the first five entries of the first
record in the source statement directory.

2. An entry that describes each book (a sequence of source language
statements in a compressed card image format, accessed by a single
name) in the source. statement library and contains: a sublibrary prefix,
the book name, starting disk address of the first block of this book,
total number of blocks required to contain this book .in the source
statement library, and change level information.

The source statement library consists of one or more complete cylinders,
depending on the allocation specified by the user. The number of blocks
and the size of each book to be contained in this library dictates the
number of tracks that must be allocated. Each track contains 27 blocks
(2314/2319) or 44 blocks (3333/3330) or 26 blocks (3340). Each block
has a fixed length of 160 bytes. Each book starts with a new block but not
necessarily on a new track. ‘

This directory consists of one or more tracks depending on the allocation
specified by the user. It contains two types of information:

1. System directory information for the procedure directory and procedure
library. This information occupies the first five entries of the first
record in the procedure library.

2. An entry that describes each procedure (a set of control statements in
card image format) cataloged in the procedure library and contains: the
name of the procedure, the starting disk address of the procedure, the
number of blocks occupied in the procedure library, and a version and
modification level. ’

The blocksize of the directory is 160 bytes, and the length of each
entry is 16 bytes.

The procedure library consists of one or more complete cylinders,
depending on the allocation specified by the user. Each procedure consists
of one or more consecutive 80-byte blocks, containing control statements
(one card image per block).

The label information cylinder contains standard, partition standard, and
user label information for background and foreground partitions. This area
is allocated 19 tracks on the 3333/3330, 12 tracks on the 3340, or 20

11.4 DOS/VS System Management Guide

Volume Table Of Contents

Alternate SYSRES Layout

tracks on the 2314/2319. Job coﬁtrol stores label information found in job
control statements here. The label information cylinder is the last cylinder

* on the SYSRES file.

The LSERV program ‘can be executed to print the label information
cylinder out on SYSLST. Secured data files are not listed. Information on

" the LSERV program can be found in DOS/ VS Serviceability Aids and

Debugging Procedures

Following the label information cylinder, the use of the remaining areas on
the disk pack is left to the user’s discretion. However, the volume table of
contents (VTOC) must be contained on the same physical disk pack as the
S&SRES file. (A VTOC is required on every disk pack, and is created by
the Initialize Disk utility.) The VTOC is most frequently the last cylinder
before the alternate track area for SYSRES. For work packs, standard
location is cylinder 0, track 0, record 4 to the end of cylinder 0. The
location and length of the VTOC are determined when the pack is
initialized. (The DOS/VS system utility program, Initialize Disk, is provided
for this purpose.) The DOS/VS system utility program VTOC Display can
be used to obtain a formatted listing of the VTOC. (Refer to DOS/VS
System Ulilities.)

The VTOC is a file.describing the Orgahization of the disk pack. It
contains the VTOC identifier (format 4 label) that contains the starting and

- ending addressés of the VTOC, a format 5 label that is not used by

DOS/VS, and format 1, 2, and 3 labels that identify and describe all files
on the pack. More specific information on label formats is contamed in the
DOS/ VS’ DASD Labels.

In Figure 12.1 the relocatable library, the source statement library, and the
procedure library are shown as optional areas of the SYSRES file, because
these libraries are not essential for system operation. If desired, the
relocatable and source statement libraries can be defined as private
libraries; a private library for the procedure library is not supported. A
private core image library can also be defined, but the system core image
library must always be included on the SYSRES file. Planning information
concerning private libraries is contained in the section Planning the
Libraries in Chapter 3: Planning the System.

Appendix A: System Layout on Disk 11.5

Glossary

This glossary defines the terms proper to this manual. If you do not find the term you are
looking for, refer to the IBM Data Processing Glossary, GC20-1699.

IBM is grateful to the American National Standards Institute (ANSI) for permission to
reprint its definitions from the American National Standard Vocabulary for Information
Processing (Copyright © 1970 by American National Standards Institute, Incorporated),
which was prepared by Subcommlttee X3K5 on Terminology and Glossary of American
National Standards Committee X3. American National Standard Definitions are marked
with an asterisk (*). '

access method: A technique for moving data between virtual storage and
input/output devices.

access method services: A multifunction service program that defines
VSAM files and allocates space for them, converts indexed-sequential files
to key-sequenced files with indexes, modifies file attributes in the catalog,
reorganizes files, facilitates data portability between operating systems,
creates backup copies of files and indexes, helps make inaccessible files
accessible, and lists the records of the files and catalogs.

address: (1) An identification, as represented by a name, label, or number,

- for a register, location in storage, or any other data source or destination

such as the location of a station in a communication network. (2) Loosely,
any part of an instruction that specifies the location of an operand for the
instruction.

' address translation: The process of changing the address of an item of

data or an instruction from its virtual 2ddress to its real storage address.

.See also dynamic address translation.

» alternate track: One of a number of tracks set aside on a disk pack for use

as alternatives to any defective tracks found elsewhere on the disk pack.

application program: A program written by a user that applies to his own
work.

assembler language: A source language that includes symbolic machine
language statements in which there is a one-to-one correspondence. with the
instruction formats and data formats of the computer.

attach: (1) To create a task and present it to the supervisor. (2) A macro
instruction that causes the control program to create a new task and
indicates the entry' point in the program to be given control when the new
task becomes active.

auxiliary storage: Data storage other than real storage; for example,
storage on magnetic tape or disk. Synonymous with external storage,

. secondary storage.

blocking: Combining two -or more logical records into one block.

blocking factor: The number of logical records combined into one

- physical record or block.

book: A group of source statements written in any of the languages
supported by DOS/VS and stored in a source statement library.

Glossary 12.1

ad

buffer: An area of storage that is temporarily reserved for use in
performing an input/output operation, into which data is read or from
which data is written. Synonymous with 1/0 area.

byte: A sequence of eight adjacent binary digits that are operated upon as
a unit and that constitute the smallest addressable unit of the system.

card punch: A device to record information in cards by punching holes in
~ the cards to represent letters, digits, and special characters.

.card reader: A device which senses and translates into machine oode the
holes in punched cards.

catalog. To enter a phase, module, book, or procedure into one of the
system or private libraries.

-central processing unit: A unit of a computer that includes the circuits
controlling the interpretation and execution of instructions. Abbreviated:
CPU. .

channel: (1) * A path along which signals can be sent, for example, data
channel, output channel. (2) A" hardware device that connects the CPU and
real storage with the /0 control units. '

channel program translation: In a copy of a channel program,
. replacement, by software, of virtual addresses with real addresses.

compile: To prepare a machine language program from a computer
‘program written in a high-level language by making use of the overall logic
structure of the program, or generating more than one machine instruction
for each symbolic statement, or both, as well as performing the function of
~an assembler.

compiler: A program that translates high-level languctge statements into
machine langnage mstructlons

conflguratmnn The group of machmes, devices, etc., which make up a data
processing system.

control area: A group of control intervals used as a unit for formatting a
file before adding records to it. Also, in a key-sequenced file, the set of
control intervals covered by an index record; used by VSAM for
distributing free space and for placing a low-level index adjacent to its data.

control interval: A fixed-length aréa_t of auxiliary storage space in which
VSAM stores records and distributes free space, also, in a key-sequenced
file, the set of records pointed to by an entry in the index record. It is the
unit of information transmitted to or from auxiliary storage by, VSAM,
independent of blocksize.

control program: A program that is designed to schedule and supervise
the performance of data processing work by a computing system.

control registers: A set of registers used for operating system control of
relocation, priority interruption, program event recording, error recovery,
and masking operations.

control section: That part of a program specified by the programmer to
be a relocatable unit.

12.2 DOS/VS System Management Guide

control unit: A device that controls the reading, wntmg, or display of data
at one or more input/output devices.

core image library: A library of phases that have been produced as
output from link-editing. The phases-in the core image library are in a
format that is executable either directly or after processing by the relocating
loader in the supervisor.

CPU busy time: The amount of time devoted by the central processing
unit to the execution of instructions..

data file: A collection of related data records organized in a specific
manner. For example, a payroll file (one record for each employee,
showing his rate of pay, deductions, etc.; or an inventory item, showing the
cost, selling price, number in stock, etc.). See also file.

data integrity: See integrity. -

data management: A major function of DOS/VS that involves
organizing, storing, locating, retrieving, and maintaining data.

data security: See security.

' deb|6cking: The action of making the first and each subsequent logical
record of a block available for processing one record at a time.

default value: The choice among exclusive alternatives made by the
system when no explicit choice is specified by the user.

deletion of an 1/0 Device: Removal of the I/O unit from thé supervisor
configuration tables.

diagnostic routine: A program that facilitates computer maintenance by
detection and isolation of malfunctions or mistakes.

dial-up terminal: A terminal on a switched teleprocessing line.

direct access: (1) Retrieval or storage of data by a reference to its
-location on a volume, other than relative to the previously retrieved or
stored data. (2) * Pertaining to the process of obtaining data from, or
placing data into, storage where the time required for such access is
independent of the location of the data most recently obtained or placed in
storage. (3) * Pertaining to a storage device in which the access time is
effectively independent of the location of the data. Synonymous with
random access.

direct organization: Direct file organization implies that for. purposes of
storage and retrieval there is a direct refationship between the contents of
the records and their addresses on disk storage.

directory: An index that is used by the system control and service
programs to locate one or more sequential blocks of program information
that are stored on direct access storage.

diskette: A flexible, magnetic-oxide coated disk, permanently enclosed in a
semirigid plastic jacket approximately eight inches square. During data
processing operations, the disk turns freely within the jacket. It is capable
of storing 1898 128-character data records.

Glossary 12.3

disk pack: A direct access storage volume containing magnetic disks on
which data is stored. Disk packs are mounted on a disk storage drive, such
as the IBM 3330 Disk Storage Drive. '

distributed free space: Space reserved within the control intervals of a
key-sequenced file for inserting new records into the file in key sequence;
also, whole control intervals reserved in a control area for the same
purpose.

dump: (1) To copy the contents of all or part of virtual storage. ?2) Tile
data resulting from the process as in (1).

dynamic address translation (DAT): ('1‘) The change of a virtual stofage
address to an address in real storage during execution of an instruction. (2)
A hardware function that performs the translation.

entry sequence: The order in which data records are physically arranged
in auxiliary storage, without respect to their contents (contrast with key
sequence).

entry-sequenced file: A VSAM file whose records are loaded without
respect to their contents, and whose relative byte addresses cannot change,
Records are retrieved and stored by addressed access, and new records are
added to the end of the file.

error messige: The communication that an error has been detected.

error recovary procedures: Procedures designed to help isolate, and,
‘when possible, to recover from errors in equipment. The procedures are
often used in conjunction with programs that record the statistics of
machine malfunctions. '

extent: A continuous space on a direct access storage device, occupied by
or reserved for a-particular file.

* file: A collection of related records treated as a unit. For example, one line
of an invoice may form an item, a complete invoice may form a record, the
complete set of such records may form a file, the collection of inventory
control files may form a library, and the libraries used by an organization
are known as its data bank.

fixed page: A page in real storage that is not to be paged out.

hard copy: A printed copy of machine output in a visually readable form,
for example, printed reports, listings, documents, and summaries.

hard wait state: In general, a wait state is the condition of a CPU when
all operations are suspended. System recovery from a hard wait state
requires that the user performs a new IPL (initial program load) procedure.

* hardware: Physical equipment, as opposed to the computer program or
method of use, for example, mechanical, magnetic, electrical, or electronic
devices. Contrast with software.

* idle time: That part of available time during which the hardware is not
being used.

index: (1) * An ordered reference list of the contents of a file or
document, together with keys or reference notations for identification or
location of those contents. (2) A table used to locate the records of an
indexed sequential file. .

12.4 DOS/VS System Management Guide

indexed-sequential organization: The records of an indexed sequential
file are arranged in logical sequence by key. Indexes to these keys permit
direct access to individual records. All or part of the flle can be processed
sequentially.

Initial Program Load (IPL): The intialization procedure that causes
DOS/VS to commence operation.

‘integrity: Preservation of data or programs for their intended purpose.

interface: A shared boundary. An interface might be a hardware
component to link two devices or it might be a portion of storage or
. registers accessed by two or more ‘computer programs.

1/0: An abbreviation for input/output.

ISAM interface program: A set of routines that allow a processing
program coded to use ISAM to gain access to a VSAM key-sequenced file
with an index.

job: (1) * A specified group of tasks prescribed as a unit-of work for a

computer. By extension, a job usually includes all necessary computer

programs, linkages, files, and instructions to the operating system. (2) A

collection of related problem programs, identified in the input stream by a
. JOB statement followed by one or more EXEC statements.

job accounting interface: A function that accumulates,‘for each job step,
accounting information that can be used for charging usage of the system,
planning new applications, and supervising system operation more efficiently.

job control: A program that is called into a virtual partition to prepare each
job or job step to be run. Some of its functions are to assign 1/0 devices to
certain symbolic names, set switches for program use, log (or print) job
control statements, and fetch the first program phase of each job step.

job (JOB) statement: The job control statement that identifies the
beginning of a job. It contains the name of the job.

job step: The execution of a single procéssing program.
-K: 1024,

key: One or more characters associated within an item of data that are
used to identify it or control its use.

key sequence: The collating sequence of data records, determined by the
value of the key field in each of the data ‘records. May be the same as, or
different from, the entry sequence of the records.

key-sequenced flle A file whose records are loaded in key sequence and
controlled by an index. Records are retrieved and stored by keyed access or
by addressed access, and new records are inserted in the file in key
sequence by means of distributed free space. Relative byte addresses of
records can change.

label: identification record for a taipe, diskette, or disk file.

label information cylinder: Under DOS/VS, a cylinder of the system
" residence file that stores label information read from job control statements
or commands. Synonymous with label cylinder.

Glossary 12.5

language translator: A general term for any assembler, compiler, or other
routine that accepts statements in one language and procedures equivalent
statements in another language.

leased facility: A circuit of the public telephone network made available
for the exclusive use of one subscriber.

librarian: The set of programs that maintains, services, and organizes the
system and private libraries.

library: A collection of files or programs, each element of which has a
unique name, that are related by some common characteristics. For
example, all phases in the core image library have been processed by the
linkage editor.

linkage editor: A processing program that prepares the output of language
translators for execution. It combines separately produced object modules;
resolves symbolic cross references among them, and generates-overlay
structure on request; and produces executable code (a phase) that is ready
to be fetched or loaded into virtual storage.

load: (1) * In pr‘)'gramming, to enter instructions or data into storage or
‘working registers. (2) In DOS/VS, to bring a program phase from a core
"image library into virtual storage-for execution.

main page pool: The set of all page frames in real storage not assigned to
the supervisor or one of the real partitions.

message: See error message, operator message.

microprogramming: A method of working of the CPU in which each
complete instruction starts the execution of a sequence of instructions,
called microinstructions, which are generally at a more elementary level.

multiprogramming system: A system that controls more than one
program simultaneously by interleaving their execution.

multitasking: The concurrent execution of one main task and one or more
subtasks in the same partition.

object code: Output from a compiler or assembler which is suitable for
processing by the linkage editor to produce executable machine code.

* object module: A module that is the output of an assembler or compiler
and is input 10 a linkage editor.

object program: A fully compiled or assembled program. Contrast with
source program.

* online: (1) Pertaining to equipment or devices under control of the central
processing unit. (2) Pertaining to a user’s ability to interact with a computer.

operand: (1) * That which is operated upon. An operand is usually
identified by an address part of an instruction. (2) Information entered with
a command name to define the data on which a comrnand processor
operates and to control the execution of the command processor.

operator command: A statement to the control program, issued via a
console device, which causes the control program to provide requested
information, alter normal operations, initiate new operations, or terminate
existing operations.

12.6 DOS/VS System Management Guide

operator message: A message from the operating system or a problem
program directing the operator to perform a specific function, such as
mounting a tape reel, or informing him of specific conditions within the
system, such_as an error condition.

overflow: (1) That portion of the result of an operation that exceeds the
capacity of the intended unit of storage. (2) -Pertaining to the generation of
overflow as in (1).

overlay: n. (1) One of the segments, which consists of one or more

- phases, of a program that is so structured that not all of the segments need
be in virtual storage at any one time. v. (2) The process of replacing a
previously retrieved program segment in virtual storage by another segment.

page: (1) In DOS/VS, a 2K block of instructioris, data or both. (2) To
transfer instructions, data, or both between real storage and the page data set.

. page data set: An extent in auxiliary storage, in which pages are stored.

page fault: A program check interruption that occurs when a page that is
marked not in real storage is referred to by an active page. Synonymous
with page translation exception.

page fixing: Marking a page as nonpageable so that it remains in real
storage.

page frame: A 2K block of re’al'storagq that can contain a page.

page in: The process of transferring a page from the page data set to real
storage .

page out: The process of transferring a page from real storage to the page
data set.

page pool: The set of all page frames that may contain pages of programs
in virtual mode.

paging: The process -of transferring pages between real storage and the
page data set.

parameter: A variable that is given a constant value for a spec1f1c purpose
or process.

peripheral equipment: A term used to refer to card devices, magnetic
tape and disk devices, diskettes, printers, and other equipment bearing a
similar relation to the CPU.

phase The smallest complete unit that can be referred to in the core
image hbrary

POWER: Priority Output Writers, Execution Processors and Input Readers.
printer: A device that expresses coded characters as hard copy.

pnorlty A rank assigned to a partition that determmes its precedence in
‘receiving CPU time.

prlvate library: A user-owned library that is separate and distinct from the
system library.

private second level directory: The private second level directory is a
table located in the supervisor containing the highest phase names found on
the corresponding directory tracks of the private core image library.

- problem determination aid: A program that traces a specified event
when it occurs during the operation of a program. Abbreviated PDAID.

’

Glossary 12.7

problem program: Any program that is executed when the central
processing unit is in the problem state; that is, any program that does not
contain privileged instructions. This includes IBM-distributed programs, such
as language translators and service programs, as well as programs written by
a user.

processing program: (1) A general term for any program that is not a
control program. (2) Synonymous with problem program.

processor storage: The general purpose storage of a computer. Processo
storage can be accessed directly by.the operating registers. Synonymous
with real storage. .

queue: (1) A waiting fine or list formed by items in a system waiting for
service; for example, tasks to be performed or messages to be transmitted
in message switching system. (2) To arrange in, or form, a queue.

random processing: The treatment of data without respect to its location
in auxiliary storage, and in an arbitrary sequence governed by the input
against which it is to be processed. ‘

real address; The address of a location in real storage.

real address area: In DOS/VS, the area of virtual storage where virtual
addresses are equal to real addresses. ‘

real mode: In DOS/VS, the mode of a program that cannot be paged.

real partition; In DOS/VS, a division of the real ‘addreSS area of virtual
storage that may be allocated for programs that are not to be paged, or
virtual programs that contain pages that are to be fixed.

real storage: The storage of a System/370 computing system from which
the central processing unit can directly obtain instructions and data, and to
which it can directly return results. Synonymous with processor storage.

reenterabla: The attribute of a load module that allows the same copy of
the load module to be used concurrently by two or more tasks.

relocatable: The attribute of a set of code whose address constants can be
modified to compensate for a change in origin.

relocatable library: A library of relocatable object modules and IOCS .
modules required by various compilers. It allows the user to keep frequently
used modules available for combination with other modules without
recompilation. ‘

restore: To return a data file created previously by a copy operation from
cards, disk or magnetic tape to disk storage.

rotational position sensing (RPS): A standard feature of IBM
3330/3333 and an optional feature of IBM 3340 disk storage devices. It permits these
devices to disconnect from a block multiplexer channel (or its equivalent on Model
. 3115/3125 CPUs) during rotational positioning operations, thereby allowing the
l channel to service other devices.

* routine: An ordered set of instructions that may have some general or
frequent use.

secondary storage: Same as auxiliary storage.

12.8 DOS/VS System Management Guide

second level directory: A table located in the supervisor containing the
highest phase names found on the correspondmg directory tracks of the
system core image library.

security: Prevention of access to or use of data or programs without
authorization.

sequential organization: Records of a sequential file are arranged in the-
order in which they will be processed.

service program: A program that assists in the use of a computing
system, without contributing directly to the control of the system or the
production of results.

~shared virtual area: An area located in the highest addresses of virtual
storage. It can contain a system directory list of highly used phases, resident
programs that can be shared between partitions, and an area for system
GETVIS support

- softwarae: A set of programs concerned w1th the operation of the
hardware in a data processing system.

source: The statements written by the programmer in any programming
language with the exception of actual machine language :

source program: A computer program wrltten in a source language.
Contrast with object program.

source statement library: A collection of books (such as macro
definitions) cataloged in the system by the librarian program.

spanned records: Records of varying length that may be longer than the
currently used blocksize, and which may therefore be written in one or
more continuous blocks, A spanned record may. occupy more than 1 track
of a disk device.

stand-alone dump: A program that displays the contents of the registers
and part of the real address area and that runs mdependently and is not -
controlled by DOS/VS.

standard label: A flxed-format ndentnﬁcatnon record for a tape dlskette, or
disk file. Standard labels can be written and processed by DOS/VS.

storage protection: An arrangement for preventing access to storage.

supervisor: A component of the control program. It consists of routines to
control the functions of program loading, machine interruptions, external
interruptions, operator communications and physical IOCS requests and.
interruptions. The supervisor alone operates in the privileged (supervisor)
state. It coexists in real storage with problem programs.

switched line: A communication line in which the connection between the
computer.and a remote station is estabhshed by dialing. Synonymous wnth
dial line. .

system directory list: A list containing dlréctory entries of highly used
phases and of all phases resident in the shared virtual area. ThlS list is
placed in the shared virtual area.

Glossary 129

system residence device: The direct access device on which the system
residence volume is locaved.

system residence volume: The volume on which the basic system and
all related supervisor code is located. :

‘task: A unit of work for the central processing unit from the standpoint of
the control program. :

teleprocessing: The processing of data that is received from or sent to
remote locations by way of telecommunication lines.

terminal: (1) * A point in a system or communication network at which
data can either enter or leave. (2) Any device capable of sending and
receiving information over a communication channel.

throughput: The total volume of work performed by a computing system
over a given period of time.

track: The portion of a moving storage medium, such as a drum, tape,
diskette, or disk, that is accessible to a given reading head position.

transient area: An area of real storage used for temporary storage of
transient routines.

UCS: Universal character set.
unit record: A card containing one complete record; a punched card.

universal character set: A printer feature that permits the use of a
variety of character arrays. Abbreviated UCS.

unrecoverable error: A hardware error which cannot be recovered from
by the normal retry procedures.

user label: An identification record for a tape or disk file; the format and
contents are defined by the user, who must also write the necessary
processing routines.

utility program: A problem program designed to perform a routine task,
such as transcribing data from one storage device to another.

virtual address: An address that refers to virtual storage and must,
. therefore, be translated into a real storage address when it is used.

virtual address area: In DOS/VS, the area of virtual storage whose
addresses are greater than the highest address of the real address area.

virtual mode: In DOS/VS, the mode of execution of a program which
may be paged.

virtual 'parti,tion: In DOS/VS, a division of ‘the virtual address area of
virtual storage that is allocated for programs that may be paged.

virtual storage: Addressable space that appears to the user as real storage,
from which instructions and data are mapped into real storage locations.
The size of virtual storage is limited by the addressing scheme of the
computing system and by the capacity of the page data set, rather than by
the actual number of real storage locations.

12.10 DOS/VS System Management Guide

virtual storage access method (VSAM): VSAM is an access method
for direct or sequential processing of fixed and variable length records on
direct access devices. The records in a VSAM file can be organized either
in logical sequence by a key field (key sequence) or in the physical
sequence in which they are written on the file (entry-sequence). A key
sequenced file has an index, an entry-sequenced file does not.

virtual telecommunications access method (VTAM): VTAM is an access method
that supports communication between application programs and terminals in a
telecommunications network. '

volume: (1) That portion of a single unit of storage media which is
accessible to a single read/write mechanism, for example, a drum, a
diskette, a disk pack, or part of a disk storage module. (2) A recording
medium that is mounted and dismounted as a unir, for example, a reel ‘of
magnetic tape, a disk pack, a diskette, or a data czll

volume table of contents: A table on a direr: access volume atr. dlskette
that describes each file on the volume. Abbreviated VTOC.

VSAM access method sefvices: A multifunction utility program that
.defines VSAM files and allocates space for-them, converts indexed
sequential files to key-sequenced files with indexes, facilitates data
portability between operating systems, creates backup copies of files and
indexes, helps to make inaccessible files accessible, and lists file and catalog
entries.

VSAM catalog: A key-sequenced file, with an index, containing extensive
file and volume information that VSAM requires to locate files, to allocate
and deallocate storage space, to verify the authorization of a program or
operator to gain access.to a file, and to accumulate usage statistics for files.

VTOC: See volume table of contents.

- work file: A file on an auxiliary storage medium reserved for intermediate
results during execution of the program.

working set: The set of a user’s pages of a virtual-mode program that
must be in real storage in order to avoid excessive paging.

Glossar)" 12.11

Index

$ phases 7.32
/+ statement 7.11
/ & statement 5.2,54

A

abnormal termination, user-exit routine
support 3.21
access method services 3.12,5.44
ACANCEL option 5.40
ACCOUNT 340
account file, POWER/VS 3.40 .
ACTION statement 6.12
CLEAR option 6.22
MAP optiori 6.22
REL option 6.12
ADD command - 4.3
ADD statement 7.21
ALLOC macro 3.7
ALLOC statement
for CORGZ program ~ 7.22
for library reallocation 7.18
ALLOCR macro 3.7
American National Standards Instltute
(ANSI) 3.16
ASCII, supervisor generation considerations
assemble and execute 6.7
assembler copy library 7.10
assembler language program . 9.3
assembler macro library 7.10, 7.27
ASSGN macro 3.34,5.17
ASSGN statement/command 5.12,5.17, 5.31
asynchronous processing (see also
multitasking) 3.13
AUTOLINK feature 6.15
suppressing 6.16
automatic condense 7.16
AUTOSTART procedure (POWER/VS} 8.1

B

BATCH command 5.41
BKEND statement 7.11
BLKMPX operand in FOPT macro 3.27
block multiplexer channel support 327
books, naming conventions ~ 7.10 ‘
BTAM

supervisor generation consnderatlons 3.15
BTMOD 3.15
buffers, CCW translation = 3 28
BUFSIZE operand 3.28

3.16

building SDL. 4.5

c

CANCEL (linkage editor option) 6.22
CAT command 4.4
CATAL option 5.37,6.5,621
cataloged procedures 5.5
modifying 5.6
partition-related 5.20
retrieving 5.5
"SYSIPT data 5.16 -
use by operator 5.11
cataloging to core image library 6.1
permanently 6.1
temporarily - 6.1
cataloging 7.8
a supervisor 6.5
naming conventions for books 7.10
naming conventions for modules 7.10
naming conventions for phases 6.10
to core image library 6.5
to procedure library - 7.11
to relocatable library 7.8 '
to source statement library 7.10
CATALP statement 7.11
CATALR statement 7.8
CATALS statement 7.10
CCW transiation buffers 3.28
central processing unit 3.32
change levels-- 7.13
channel programs 3.28
channel queue -3.29
checkpoint 543
example of use 10.17
restarting from 5.43,10.18
CHKPT macro
use of 10.16 .
choosing the libraries for an installation 3.46
CLEAR 6.17,6.22
clearing a partition 5.46
clearing unused portion of core image
library 6.17,6.22
CLOSE command - 549, 5.51
COBOL sublibrary 7.10

- coding techniques 9.1

condensing 7.16
automatically 7.16
restriction for POWER/VS users 7.17
when performed ™ 7.17
CONDL statement 7.16
CONDS statement 7.16
CONFG macro 3.3
MODEL operand -3.32
console buffering 3.19
control sections (CSECT) 6.18

Index 13.1

controlling jobs 5.1
. controlling printed output. 5.28
copy (A) sublibrary 7.27
COPY statement 7.22,7.2>
core image library 6.1, 11.3
clearing the unused portion of 6.22
contents of 3.44
directory 11.2
- renaming phases in 7.20
CORGZ program 7.21,7.29
creating private core image libraries 7.30
creating private libraries 7.28
creating the shared virtual area 4.5
‘CSECT 6.18
CSERV program 7.25

D

DASD file protection 3.23

DASD files 5.23

DAT facility 1.6, 3.28

data file POWER/VS) '3.37

DATE statement 5.5

DBLK 3.39

de-editing assembler macros 7.27
defining partition priorities 3.9
defining the number of partitions 3.7, 2.3
defining the page data set 3.10.
defining the size of partitions 3.7, 2.3

entries in 7.2

procedure library 114
relocatable library 11.3
second level -3.14, 7.2 i
source statement library 11.4
system 7.2, 11.1

disk and diskette options - 3.22

block multiplexer channel support 3.27
DASD file protection 3.23
rotational position sensing 3,25
system files on disk 3.22
system files on diskette 3.22
- track hold facility 3.23
diskette files 5.22

" displaying the content$ of the libraries 7.26

displaying the directories 7.25
distribution medium 3.2
DLAB 5.31
DLBL statement 5.22,5.33
DPD command 4.4
DPD macro 3.10 .
DSERYV program 7.25
DSPCH statement - 7.26
DSPLY statement 7.25, 7.26
DSPLYS statemenf 7.25
dummy devices 3.33,8.2
dump facilities 10.31

DUMP macro 10.31

JDUMP macro 10.32

defining the size of the real address area 3.4, 2.3

defining the size of the shared virtual area 3.6

defining the size of the virtual address area 3.4,
23

. defining the size of virtual storage 3.4, 2.3

defining the System/370

PDUMP macro 10.32
DUMP macro
use of 10.31
DVCDN command 5.33
DVCGEN macro 3.3,3.32
X . DVCUP command 5.33
legnﬁg; 1'3a2tlon 3.32 dynamic address translation (DAT) 1.6,3.28

I/0 devices 3.32 E
DEL command 4.3 ,
DEL statement 7.21 edited macros, preparing for update 7.27
deleting 7.13 emulators 3.33 '
example 7.14 END card 6.3
relation to condensing 7.14 end of supervisor 334
designing programs for virtual-mode end-of-day (EOD) record 48
execution 9.1 ' end-of-job statement 5.2,5.4
determing the location of the libraries - 3.48 end-of-procedure statement 7.11
" device assignments 5.17 ENTRY statement 6.23

in a multiprogramming environment 5.18 ER item 6.15
permanent 5,18 EREP 3.30,4.7
required for an assembler ~5.20 error queue 3.30
standard 5.17 ESD card 6.3

ESERV program 7.27
EVA (error volume analysis) 3.31
EXEC statement 5.2,544
PROC operand 5.5
REAL operand 5.44
SIZE operand 5.44

temporary 5.18
device considerations 1.4
directories, displaying the contents of 7.25
directory entry 7.2
directory 7.2
core image library 11.3

13.2 DOS/VS System Management Guide

executing a program 5.33
preparation for 5.40
executing cataloged programs 5.37
exits 3.19, 10.5
" -abnormal termination 3.21,10.8
interval timer 3.20, 10.5
IPL 4.8,109
job control 5.46, 10.12
operator communications 3.21
page fault handling overlap 3.22°
POWER/VS 9.9 '
program check 3.20, 10.8
EXTENT statement 5.21, 5.33
external references, resolution of 6.15

F

FCB (see forms control buffer)
FCEPGOUT macro - 3.11, 9.6
FETCH macro
use of 6.20-
file information 5.12
fixing pages 1.9,3.10,94
FOPT macro 3.3
" ABoperand 3.19,3.21
BLKMPX operand 3.27
CBF operand 3.19
DASDFP operand 3.23
DOC operand 3.32
ECPREAL operand 3.29
EVA operand 3.31
IDRA operand 3.19
IT operand 3.19,3.20
JA operand 3.17
JALIOCS operand 3.17
OC operand 3.19,3.21
PC operand 3.19,3.21
PCIL operand 3.14
PD operand 3.32
PFIX operand 3.10
PRTY operand 3.9
RELLDR operand - 3.12
RETAIN operand 3.31
SKSEP operand = 3.24
SLD operand 3.14
SYSFIL operand. 3.14,3.23
TEB operand 3.31
TEBV operand 3.31
TOD operand 3.18
‘TRKHLD operand 3.24
ZONE operand 3.18
forms control buffer (FCB) 4.5
FORTRAN 9.2

G

GENCATALS statement 7.27
GENEND statement 7.27
generating POWER/VS 3.35
GENL macro 6.20
GETIME macro

- support for = 3.18

use of * 10.2
GETVIS area 3.6,5.42
GETVIS macro 5.44.
glossary = 12.1

H
hard copy file for Models 115 and 125 4.7

I

I/0 devices, supervisor generation'
considerations 3.32 '
INCLUDE statement 6.14, 6.25
independent directory read-in area 3.19
initial program load (IPL) 4.1
ADD command 4.3
adding devices 4.3
assigning the VSAM catalog 4.4
automatic functions of 4.4
bootstrap records 11.1
CAT command 4.4
communications device 4.2
DEL command 4.3
deleting devices 4.3
DPD command 4.4
exit after 109
page data set handling 4.4
SET command 4.3
user exit 10.9
initialize disk utility 11.1, 11.5

.. interlanguage communications 10.1

intermediate storage requirements
(POWER/VS) 3.37
interval timer - 3.18
example of use 10.3
supervisor generation considerations 3.18
user exit routine support 3.20
1/0 options 3.28
CCW translation buffers 3.28
channel queue 329 .
console buffering -~ 3.19
independent directory read-in area 3.19
seek separation 3.24
IOTAB macro 3.3,3.29
CHANQ operand 3.29
IPL (see also initial program load) 4.1

lndex 133

ISAM 328
ISAM interface program 5.44

J
" JDUMP macro
use of 10.32
JLOG 342
job 5.1 !
job accounting. 10.19
example 10.22
POWER/YS 3.40, 10.24
" register usage = 10.21
supervisor genération considerations 3.17
table 10.20
job control 5.1
job control exit in the SVA 547
job entry control language (J ECL) 8.2,84
job name - 5.3
JOB statement 5.2,5.3
., jobstep 5.2
job stream 5.2
JSEP 343
K
KILL option 8.10

L

label information 5.23,5.26
cylinder 5.4,5.29,114
editing 5.29
for DA files 5.26
for diskette files - 5.23
for magnetic tape files 5.26
. for sequentially-organized disk files 5.26
PARSTD 5.29
STDLABEL - 5.29
storing 5.29
USRLABEL 5.29
label save area 6.17
labels, reserving storage for 6.17
language translator 6.2
LBLTYP statement 5.23,5.27,6.17,6. 22
LFCB command 5.28,5.39
librarian programs 7.6 .
copy/reorganize (CORGZ) 7.21
- CSERV 17.25
DSERV 1.25
ESERV 17.27
maintenance (MAINT) 7.7
names of 7.2
processing requirements 7.7
PSERV 7.25
requirements 7.7
RSERV 17.25

13.4 DOS/VS System Management ‘Guide

service functions 7.25
SSERV 7.25
summary of functions 7.6 .
libraries
changing the size of 7.18
creating private 7.28
displaying the contents of 7.26
eliminating . 7.19
how accessed by the system 7.1
punching the contents of 7.26
transferring elements between 7.23
using the 7.1
library directories 7.2
library options 3.14
private core image libraries ~ 3.14
procedure library (extended support) 3.14
LINK option 5.36, 6.6, 6.21
link-edit and execute 6.6
link-editing 6.1
linkage editor control statements 6.9
ACTION 6.22
ENTRY 6.23°
INCLUDE 6.23
PHASE 6.23
linkage editor examples 6.24
cataloging to core image library 6.24
catalog to private core image library 6.26
compile and execute 6.30
link-edit and execute 6.28
linkage editor 6.1
applications 6.5
examples 6.24
processing requirements 6.8
storage map 6.17
symbolic units required 6.9

linking programs 6.1

LIOCS label processing 10.21
LISTIO statement/command 5.33

LOAD macro

use of 6.20
loading the FCB 5.28
loading the UCB 5.38
locality of reference. 9.1
LSERV program 11.5
LUCB command 5.28,5.33
LTAB 342

M

MACRO statement 7.10
magnetic tape files 5.26

main task 1.10

MAP 6.17

MERGE statement 7.24, 7.29
MICR stacker select routines 5.46

minimum real storage. 9.1
mode of execution 1.8
determining the 9.6
real - 1.8,5.44
virtual 1.8,544
Models 115 and 125 4.7

hard copy file of video display console 4.7

supervisor generation considerations 3.32
modules, naming conventions 7.10
MTC statement/command 5.27,5.33
multiple-partition options 3.12 .
multitasking 3.13
POWER/VS 3.13
relocating loader 3.12
wait multiple 3.13
multiprogramming 1.1
multitasking '
concepts of 1.10
supervisor generation considerations 3.13

N
naming conventions
for phases 6.10
for books 7.10
- for modules 7.10
NEWVOL statement 7.29, 7.30
NOAUTO - 6.16 '
NOMAP 6.18
nonrelocatable phases 6.5
recataloging ~ 7.27
" NPARTS parameter 3.7

O

object module 6.3

OLTEP 3.31,5.45

operator communications, user exit routine
support 3.21

OPTION statement 5.29,5.35,5.46
CATAL option 6.21
LINK option 6.21

OVEND statement 5.7

overlay structure 6.18
control sections 6.18
relating control sections to phases 6.19
use of FETCH and LOAD macros 6.20

P

page 1.6

page boundaries 9.4

page data set 1.6
defining the 3.10
formatting of 4.4
label information for 4.4
location of 4.4
opening of 4.4

page fault 1.6
reducing occurrence 9.1
user exit routine support 3.22
page fault handling overlap (PHO) 3.19, 3.22
page fixing 3.10, 9.4
page frame 1.6
page pool 1.10
PAGEIN macro 3.11, 9.6
PAGEIN operand of SUPVR macro 3.11
PARSTD 5.29

“partitions 1.2

differences between 1.2
number of 3.7
priorities of 1.3, 3.9
real 1.8
size of 3.7
size of real 3.8
size of virtual- 3.8
virtual 1.8
PAUSE statement/command 5.3, 5.4,5.52
PBDY parameter in PHASE statement 6.11
PDAIDS 3.30, 3.32
PDUMP macro
use of 10.32
PFIX macro
supervisor generation considerations 3.10
phases 6.4
defining load addresses for = 6.10
link-editing to execute in a real partition 6.14
link-editing to execute in a virtual
partition 6.13
link-editing to execute in any partition 6.11
naming conventions 6.10 :
non-relocatable 6.5
reenterable 1.8, 3.6, 9.6
relocatable 64,6.11,9.6
self-relocating 6.4, 6.14
PHO 3.19,3.22
PIOCS macro 3.3,3.32
PL/1 9.3
planning the libraries 3.44
planning the size and contents of the
libraries 3.52
planning the system 3.1
PLINE macro 3.35
POWER macro 3.35
POWER/VS RJE 343,89
terminal states 8.9
POWER/VS 1.11
AUTOSTART 8.1
concepts 1.11
dummy devices 3.33,8.2
generation considerations 3.35
initiation of 8.1
job accounting 3.40, 10.24
partition priorities 8.2

Index 13.5

reader exit 9.9
RIJE concepts (see also POWER/VS RJE) 1.15
segmentation 8.6
shutdown procedures 8.10
start up 8.1
summary of advantages 1.14
supervisor generation considerations 3.13
preparing edited macros for update 7.27
priorities 1.3
of partitions 3.9
PRI 342
private core image libraries 6.1
creating 7.30
organization of 7.30
support for 3.14
private libraries 3.46,3.48
assignments in MPS system 7.33
creating 7.28
creating private core image 7.30
filenames used for creating 7.29
search sequence 7.32
symbolic unit names for creating 7.31
using 7.31
PRMT macro ~3.35
problem determination aids 3.30, 3.32
procedure library 3.45
cataloging to 7.11
contents of 3.45
directory 11.4
extended support for 3.14
modifying procedures in 5.6
renaming procedures in 7.20
retrieving procedures from 5.5
program check, user exit routine support 3.21
program execution . 5.33
program phases 6.4
nonrelocatable 6.5
reenterable 1.8, 3.6, 9.6
relocatable 64,9.6
self-relocating 6.4

program
stages of development 6.1
design 9.1

structure of 6.1
programmer logical units 5.17
maximum number of 5.17
PRTY command 3.9,8.2
PRTY parameter 3.9
PSERY program 7 25
PUNCH statement 7.26
punching the contents of the libraries 7.26

Q

QTAM, supervisor generation considerations
queue entry (POWER/VS) 3.39
queue file (POWER/VS) 3.37

13.6 1DOS/VS System Management Guide

R -
RAS transients 4.5
RAS 330

On-Line Test Executive Program
(OLTEP) 3.31
Problem Determination Aids (PDAIDS) 3.32
Recovery Management Support (RMS) 330"
RDREXIT 9.9
RDE data entry 4.8
reader exit (POWER/VS) 9.9
real address area 1.5
defining the size of 3.4
real mode 1.8
real mode execution 5.44
programs requiring 545

REAL operand 5.46

real partitions 1.8
priority of 3.9
size of 3.8

real storage 1.5

reallocating 7.18"

record on demand (ROD) command 47,48

recovery management support (RMS) 3.30

recovery management support recorder
(RMSR) 46

reenterable phases 1.8, 3.6, 9.6

reliability data extractor (RDE) 48
support for 3.31

relocatable library 3.44
cataloging to 7.8
contents of 3.44
directory 11.3
renaming modules in 7.20

relocatable phases 64,6.11,9.6
recataloging 7.27

relocating loader 1.3,5.41 :
supervisor generation considerations 3.12
use of 6.11

RELPAG macro 3.11,9.6

renaming library elements 7.20

REP card 6.3

REP statement 7.21

RESET statement/command 5.32

restarting from a checkpoint 5.43,10.15

RETAIN 3.31

RLD card 6.3

RMS 330

RMSR 4.6

ROD command 4.7,4.8

rotational position sensing (RPS) 3.25
reserving storage for 5.42
supervisor support for 3.6

RSERV program 7.25

RSIZE operand 3.4

RSTRT statement 543, 5.47

RUNMODE macro 9.6

S

sample programs 7.10
SDAIDs 3.30

SDL (system directory list) 2.2,3.6,4.5

second-level directory 3.14, 7.2
seek separation 3.24
self-relocating programs 5.41,6.14
SEND macro 3.34

SEREP 3.30

service functions of librarian programs 7.25

SET command 4.4
SETIME macro, use of 10.3
SETPFA macro 3.22
SET SDL command 4.5
SET SVA command 4.5
shared virtual area 1.8, 3.6
coding for 9.6
creating 4.5
link-editing for 6.12
SIZE operand 5.44
SLD operand in FOPT macro 3.14
SLI 341
source module 6.2
source statement library 3.45
assembler macro sublibrary 7.27
cataloging to 7.10
contents of 3.45-
copy (A) sublibrary 7.27
directory 11.4 :
renaming books in 7.20
SSERV program 7.25
standard assignments 3.34
standard job control settings - 3.34
START command 5.41
starting the system 4.1
STCK instruction 10.3
STDCARD 339
STDJC macro 3.3,3.34
STDILABEL 5.29
STDLINE 3.39
storage management options 3.3
storage protection 1.3
storing of keys 4.4
STXIT macro, use of 10.3
SUBLIB parameter 3.41
sublibraries 7.10
assembler macro (E) 7.27
copy (A) 17.27
naming conventions 7.10
subroutines 9.3
subtasks 1.10
maximum number of 3.13
supervisor cataloging 6.5

supervisor generation 3.3
supervisor selection 4.1
SUPVR macro . 3.3
~ AP operand '3.13
ASCII operand 3.16
ERRLOG operand -3.31
EU operand 3.33
NPARTS operand 3.7
PAGEIN operand 3.11
PHO operand .3.22
POWER operand 3.13
TP operand 3.15
SV A parameter in VSTAB macro 3.6
symbolic I/O assignment 5.12
SYSCAT 44,5.15
SYSCLB 5.15
SYSFIL option 3.14,3.23,5.49,7.12
SYSIN 5.15
SYSIPT 5.15
SYSIPT data, cataloging in procedure library 7.12
SYSLNK 5.15
SYSLOG 5.15
SYSLST 5.15
SYSOUT 5.16
SYSPCH 5.15
SYSRDR 5.15
SYSREC (see also system recorder file) 4.6,5.15
SYSRES 5.15
creating a new 7.22
layout 11.2
SYSSLB 5.15
system directory
list (SDL) 3.6, 4.5
listing of- 7.25
contents of 11.1
location of 11.1
status report of 7.8
system files on disk 5.49
supervisor support for 3.23
system files 5.47
on disk 549
on diskette 5.51
on tape 548
system generation procedure 3.1
system layout on disk 11.1
system logical units 5.15
SYSCAT 44,5.15
SYSCLB 5.15
SYSIPT 5.15
SYSLNK 5.15
SYSLOG 5.15
SYSLST 5.15
SYSPCH 5.15
JYSRDR 5.15

Index 13.7

SYSREC 4.5,5.15

SYSRES 5.15
SYSRLB 5.15
SYSSLB 5.15

SYSUSE 5.15
. SYSVIS 44,5.15
system recorder file 4.6
creation of 4.6
label information for 4.6
supervisor support for 3.31
system residence
organization of 11.1
creating a new 7.22
system volume label 11.1
SYSUSE 5.15
SYSVIS 5.15
assigning 4.4
defining 3.9

T

tailoring POWER/VS 3.35
tailoning the supervisor 3.3
tape error statistics 3.31
task

maintask 1.10

subtask 1.10
teleprocessing 3.15

BTAM 3.15
QTAM 3.15
VTAM 3.16

teleprocessing balancing 3.15
operator considerations 5.43
TPBAL command 5.43
TPIN/TPOUT macros 9.6

terminal states (POWER/VS RJE) 8.9

time-of-day clock 3.18,5.3
status 4.4

supervisor generation considerations 3.18

use of 10.2
timer services 3.17

interval timer. 3.18
~ time-of-day clock 3.18
TLBL statement 5.26,5.33
TOLTEP 3.30
TPLAB 5.31
trace routines 3.31
track hold 14

supervisor support for 3.23
TRACKGP 3.40
transfer address 6.23
transferring elements between libraries 7.24

13.8 DOS/VS System Management Guide

TRKHLD 3.23

TTIMER macro 3.20, 104
TXT card 6.3

typical DOS/VS systems 2.2

U

unavailable free space 7.16
UPDATE statement = 7.22 .
updating edited macros 7.27

updating the source statement library 7.20

UPSI statement = 541, 5.47
use of 10.1
user exit routines 3.19,10.5
abnormal termination 3.21,10.8
interval timer 3.20, 10.5
IPL "4.8,109
job control 5.47,10.12
operator communications 3.21,10.9
page fault handling overlap - 3.22
program check 3.21.10.8
user program switch
indicator (UPSI) 5.41,5.47,10.1
user volume label 11.1
using POWER/VS 8.1
using private core image libraries 7.32
using private libraries 7.31
using the facilities and options of the
supervisor 10.1 '
using the libraries = 7.1
USRLABEL 5.29
utility programs
initialize disk 11.1,11.5
VTOC display 11.5

A/

validity of reference 9.2
video display/keyboard console 4.7
virtual address area 1.5
defining the size of 3.4
virtual mode 1.8
virtual mode execution 5.44
programs requiring 5.45
virtual partitions 1.8
priority of 3.9
size of 3.8
virtual storage access method (VSAM)
reserving storage 5.42
support for 3.12
virtual storage macros 9.4
PFIX 3.10,94
PFREE ' 3.10, 9.5
RUNMODE 9.6

311

virtual storage 1.5
defining the size of 3.4
GETVIS area 3.6
macros 9.4
real address area 3.4
shared virtual area 1.8, 3.6
summary of advantages 1.10
virtual address area 3.4
virtual telecommunications access
méthod (VTAM) 2.1,3.16
number of partitions 3.7
‘supervisor generation considerations 3.16
with interval timer exit 10.5 ‘
with program check exit 10.8
sublibrary 7.10
VoL 531
volume table of contents 11.5
VSAM '3.6,5.44
access method services (AMS)
catalog 4.4
reserving storage for 542
syupervisor generation considerations 3.11
VSIZE operand 3.4 ‘

3.11,5.44

YVSTAB macro 3.3
BUFSIZE operand 3.28
RSIZE operand 3.4
SVA operand 3.6
VSIZE operand 3.4

' VTAM 2.1,3.16

sublibrary 7.10

number of partitions 3.7

supervisor generation considerations 3.16
with interval timer exit 10.5

with program check exit 10.8

VTOC 11.5 .
VTOC display utility 11.5
W

wait multiple facility 3.13
working set 9.1

X
XTENT 5.31

3203, 3211, 5203 printers 4.5
5424 MFCU 534

Index 13.9

GC33-5371-4

1IBIM

Inle.rnational Business Machines Corporation
Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
{11.5.A. only)

1BM World Trade Corporation

321 United Nations Plaza, New York, New York 10017
{intarnationsl)

) 8ping juawabeuely wialsAg SA/SOA

e se s

sesstecsesenesccessonae

eetsenssvsonsssccee

leeesee

DOS/VS System Management Guide READER'S

GC33-5371-4- COMMENT
FORM

This sheet is for comments and suggestions about this manual. We would appreciate your
views, favorable or unfavorable, in order to aid us in improving this publication. This form
will be sent directly to the author’s department. Please include your name and address if
you wish a reply. Contact your IBM branch office for answers to technical questions about
the system or when requesting additional publications. Thank you.

Your comments* and suggestions:

" ® We would cspecially sppreciate your comments on any of the following topics:

Clarity of the text Accuracy Index Hlustrations l Appearance Paper
Organization of the text Cross-references Tables Examples Printing Binding

GC33-5371-4

YOUR COMMENTS, PLEASE . ..

* This menual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this

form, together with your comments, will help us produce better publications for your use. Each

reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys-
tem should be directed to your IBM representative or to the IBM sales office serving your
locality. .

essecssscae D R N N N N N N N N R AR N AR A

m

old

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N. Y.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID 8Y ...

IBM Corporation
1133 Westchester Avenue
White Plains, N.Y. 10604

Attention: Department 813 U
IR R A N N N R N N N N N RN RN R R Y

Foid

IBINT

international Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 108604
(U.B.A. only)

IBM World Trade Corporation
821 Uniied Nations Plaza, New York, New York 10017
(intemetional)

ceen

T T T T T IR R RN

ves

3aNIT SIHL ONOTVY LND -

eesscessen

wabeue WANSAG GA/SOC

