Systems

GC33-56373-2
File No. S370-30

DOS/VS
Supervisor and 1/0 Macros

Release 29

BV

Summary of Amendments

This edition reflects the availability of virtual storage enhancements and support of the
following new devices:

System/370 Model 115

3203 and 5203 Printers

3340 Disk Storage

3540 Diskette 1/0 Unit

3780 Data Communication Terminal
5425 Multifunction Card Unit

In addition, technical changes and editorial corrections have been made throughout the
book.

Changes in content are indicated by a vertical bar to the left of the change.

Third Edition (November 1973)
This is a major revision of, and obsoletes, GC33-5373-1.

This edition applies to Version 5, Release 29, of the IBM Disk Operating System,
DOS/VS, and all the subsequent versions and releases until otherwise indicated in new
editions or Technical Newsletters.

Changes are continually made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest /BM System/360 and
System /370 Bibliography, GA22-6822, for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

Comments may be addressed to IBM Laboratory, Programming Publication Dept.,
P.O.Box 210, 703 Boeblingen, Germany.

Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972, 1973

IS THIS THE RIGHT BOOK FOR YOU?

This book is intended as a reference for the pro-
grammer using DOS/VS macro instructions
(macros). Both the DOS/VS Input/Output Con-
trol System (IOCS) macros and the DOS/VS su-
pervisor macros are described. After a brief intro-
duction to the use of macros, and a chapter on
label processing, descriptions are given of the logi-
cal IOCS (LIOCS) macros for the access methods
SAM, DAM, ISAM, and VSAM. Then follow de-
scriptions of physical IOCS (PIOCS) macros, su-
pervisor macros, multitasking macros, and program
linkage macros.

Those familiar with DOS Versions 3 or 4 (up to
and including Release 27) may note that this book
is based on DOS Supervisor & I/0 Macros,
GC24-5037, as modified by TNL GN33-8689 and
by DOS Version 4, GC33-5007. This manual
includes information on the macro support for the
following DOS/VS features that were not part of
Release 27:

« VSAM macros

» virtual storage macros

« changes to the program loading macros
« modified and new interval timer macros
o modified and new dump macros

« macro usage for I/0 devices specific to Mod-
els 115 and 125 such as 5425 Multi-Function
Card Unit and the 5203 Printer

« macro usage for the IBM 3881 Optical Mark
Reader and the IBM 3886 Optical Character
Reader.

« macro usage for the IBM 3540 Diskette I/0
Unit

As this book is intended for reference only, you
should, before consulting it, be familiar with three
others which introduce macro concepts and give
important prerequisite information on macro us-
age:

Introduction to DOS/VS, GC33-5770

DOS/VS Data Management Guide,
GC33-5372

DOS/VS System Management Guide,
GC33-5371

In addition, you should be familiar with the device
manuals for those devices which you intend to use.

Systems publications related to this one are listed
below.

IBM System/370 Principles of Operation,
GA22-7000

0OS/VS and DOS/VS Assembler Language,
GC33-4010

Guide to DOS/VS Assembler, GC33-4024

DOS/VS System Control Statements,
G(C33-5376

DOS/VS DASD Labels, GC33-5375
DOS/VS Tape Labels, GC33-5374
DOS/VS System Generation, GC33-5377

DOS/VS Serviceability Aids and Debugging
Procedures, GC33-5380

Table of Contents

Is this the right book for you? 3

Part 1. Introduction

Macro Types and Their Usage 11
Macro Definitions 11
Source-Program Macros 11
Supervisor Macros 11
IOCSMacros 11
Macro Processing 12
DTF Declarative Macros 13
Processing with SAM 13
Processing with DAM 14
Processing with ISAM 14
Processing with PIOCS 14
Referencing the DTF Table 14
Symbolic Unit Address in the DTFxx Macro 14
Logic Module Generation Macros 16
Providing the Logic Modules 16
Keeping Modules Small 16
Subsetting/Supersetting 16
Interrelationship of the Macros 17
Module Names 17
Link-Editing Logical IOCS Programs 18
Program, DTF, and Logic Module Assembled
Together 18
Program, DTF, and Logic Module Assembled
Separately 18
Using the Relocatable Library 18
Self-Relocating Programs and IOCS 19
Macro Format 19
Cards for Declarative Macros 19
Notational Conventions 20
Register Usage 21
Label Processing 23
DASD Standard Labels 23
OPEN and OPENR Macro Processing 23
End-of-Volume Processing 23
End-of-File Processing 24
User Standard Labels 24
Diskette Labels 25
OPEN and OPENR Macro Processing 25
End-of-Volume Processing 25
End-of-File Processing 25
Tape Labels 26
Tape Output Files 26

Tape Input Files 28

Reading a Tape Backwards 29
Checking Standard Labels on Tape 29
Checking Nonstandard Labels on Tape 29
Unlabeled Input Files on Tape 30

Part 2. Sequential Access Method

Declarative Macros 34
DTFCD Macro 34
CDMOD Macroc0uu... 40
DTFCN Macro 42
DTFDI Macro0.... 44
DIMOD Macro0..... 47
DTFDR Macro 48
DRMOD Macro 51
DFR Macro 52
DLINT Macro 56

I DTFDU Macro 58
DUMODFx Macro 62
DTFMR Macro 63
MRMOD Macro 67
DTFMT Macro 67
MTMOD Macro 76
DTFOR Macro 78
ORMOD Macro 83
DTFPR Macro 84
PRMOD Macroc....... 88
DTFPT Macro 90
Paper Tape Processing Considerations 94
PTMOD Macro 96
DTFSD Macroc.c..cieee.. 98
SDMODxx Macro 105
DTFSR Macro 108
The DTFEN Card 117

Imperative Macros 124

Initialization Macros 124
OPEN and OPENR Macros 124
LBRET Macro0.c..... 127

Processing Macros 127
GET Macroc.ooecuwuni.. 128
PUT Macroc.coo.... 130
PUTR Macroc.c..... 136
RELSE Macro0..... 136
TRUNC Macro00... 137
CNTRL Macro0.ccuuun.. 137
CHNG Macro 144
ERET Macroccoocu.. 144

PRTOV Macro
READ Macro
CHECK Macro
WAIT Macro
DISEN Macro
LITE Macro
Optical Reader Macros-1287
GET Macro
CNTRL Macro
DSPLY Macro
READ Macro
RESCN Macro
RDLNE Macro
WAITF Macroc.....
Optical Character Reader Macros-3886 . . .
READ Macro
WAITF Macro
CNTRL Macro
SETDEV Macrocc.....
Work File Macros for Tape and Disk
READ Macro
WRITE Macro
CHECK Macro
NOTE Macro
POINTR Macro
POINTW Macro
POINTS Macro
Completion Macros
FEOV Macro
FEOVD Macro
CLOSE and CLOSER Macros

Part 3. Direct Access Method

Conceptsof DAM
Record Types
IOAREA Specification
Reference Methods
Creating a File or Adding Records
Data Area
Additional Information

Declarative Macros
DTFDA Macro
DAMOD Macro

Imperative Macros

Initialization Macros
OPEN and OPENR Macro
LBRET Macro

Processing Macros
READ Macro
WRITE Macro
WAITF Macro

CNTRL Macro 183
Completion Macros 184
CLOSE and CLOSER Macros 184
Part 4. Indexed Sequential Access Method
Concepts of ISAM 187
Record Types 187
Storage Areas [187
Organization of Records on DASD 187
Indexes 189
Addition of Records and
Overflow Areas 190
Programming Considerations 191
Example of an ISAM File 192
Declarative Macros 194
DTFIS Macro 194
ISMOD Macro 201
Imperative Macros 205
Initialization Macros 205
OPEN and OPENR Macros 205
Processing Macros 206
ERET Macro 206
Loading or Extending a File 207
WRITE Macro 207
ENDFL Macro 208
Adding Recordstoa File 208
WRITE Macro 208
Random Retrieval of Records 209
READ Macro 210
WRITE Macro 210
WAITF Macroc.oo... 210
Sequential Retrieval of Records 211
SETL Macro 211
GET Macrocc.iviu.. 212
ESETL Macro 213
Completion Macros 213
CLOSE and CLOSER Macros 213
Part 5. Virtual Storage Access Method
Concepts of VSAM 217
Types of Processing 217
Types of Macros 218
Control Block Generating Macros 220
ACB Macro 220
EXLST Macro 222
RPL Macro c...... 224

Examples of ACB, EXLST, and RPL
Macros

.....................

Control Block Manipulating Macros
GENCB Macro

...................
...................

Opening and Closing Files
OPEN Macro
CLOSE Macro
TCLOSE Macro

Requesting Access to Files
GET Macro

..............

ERASE Macro
ENDREQ Macro
Return Codes for Request Macros

........

Part 6. Physical IOCS

Concepts of Physical IOCS
Physical IOCS Macros
CCB Macro
EXCP Macro
WAIT Macro
DTFPH Macro
OPEN and OPENR Macros
LBRET Macro
FEOV Macro

Part 7. Supervisor, Multitasking, Program
Linkage

Supervisor Macros
Program Loading
FETCH Macro
GENL Macro
LOAD Macro
Virtual Storage
PFIX Macro

...................

....................

RELPAG Macro
FCEPGOUT Macro
PAGEIN Macro
RUNMODE Macro
SETPFA Macro

................

VIRTAD Macro 271
REALAD Macro 272
GETVIS Macro 272
FREEVIS Macro 272
Program Communication 273
COMRG Macro 274
MVCOM Macro 274
Releasing /O Units 274
RELEASEMacro 274
Time of Day Macro 275
GETIME Macro 275
Interval Timer and Exit Macros 275
Entering a Routine When Time
Elapses 276
SETIME Macro 276
TTIMER Macro 276
STXIT Macro0..... 276
EXIT Macro 280
Executing a Program at
GivenlIntervals 281
TECB Macroc.cuu..... 281
SETIME Macro 281
TTIMER Macro 281
WAIT Macro 281
WAITM Macro 282
DUMPMacroscovvviinn... 282
PDUMP Macro 282
DUMP Macro 282
JDUMP Macro 283
Cancel and EOY Macros 283
CANCEL Macro 283
EOJ Macro 283
Checkpointing a Program 283
CHKPT Macro 283
Checkpoint File 285
Repositioning I/O Files 285
DASD Operator Verification
Table 287
Multitasking Macros 288
Subtask Initiation and Normal
Termination Macros 288
ATTACH Macro 288
DETACH Macro 289
Resource Protection Macros 289
RCB Macro 289
ENQ Macro 290
DEQ Macro 290
Intertask Communication Macros 291
WAITM Macro 291
POST Macro 291
DASD Protection Macro 292
FREE Macroc.0.0u... 292
Shared Modules and Files 293

Program Linkage Macros 295

Linkage Registers 297
Save Areas 297
CALL Macroccuouo... 298
SAVE Macro 300
RETURN Macro 300
Appendix A: Control Character Codes 301
CTLCHR=ASA 301
CTLCHR=YES 301

Appendix B: Assembling Your Program,
DTFs, and Logic Modules 304

Appendix B.1: Assembling a Format Record
for the 3886 Optical Character

Reader 319
Document Example 319
Format Record Assembly Example 319

Appendix C: Reading, Writing, and
Checking with Nonstandard Labels 324

Appendix D: Writing Self-Relocating

Programs 326
Rules for Writing Self-Relocating Programs .. 326
Advantage of Self-Relocating Programs 328
Another Way--The Relocating Loader 328
Programming Techniques 328

Appendix E: MICR Document Buffer Format . 331

Appendix F: American National Standard

Code for Information Interchange (ASCII) ... 335
Appendix G: Page Fault Handling Overlap 339
Register Usage 339
Entry Linkage 339
Page Fault Queue 339

Processing at the Initiation of a Page Fault 340
Processing at the Completion
ofaPage Faul. 340

Appendix H: Operand Notation for VSAM GENCB,
MODCB, SHOWCB, and TESTCB Macros . . 341

GENCB Macro Operands 342
MODCB Macro Operands 343
SHOWCB Macro Operands 343
TESTCB Macro Operands 344

Appendix I: Parameter Lists for VSAM GENCB,
MODCB, SHOWCB, and TESTCB Macros .. 345

The GENCB Parameter List 346
The MODCB Parameter List 347
The SHOWCB Parameter List 348
The TESTCB Parameter List 349

Appendix J: Using ISAM Programs with
VSAMFiles 351

PART 1
INTRODUCTION

Macro Types and their Usage

Label Processing

MACRO TYPES AND THEIR USAGE

A macro is a single assembler language instruction
which generates a sequence of assembler language
instructions. The macros you code in your program
are called the source program macros. The assem-
bler uses what is called the macro definition to
generate the sequence of instructions requested by
the source program macro. Use of macros simpli-
fies the coding of programs and reduces the possi-
bility of programming errors.

Macro Definitions

A macro definition is a set of statements which
defines the name of, format of, and conditions for
generating a sequence of assembler language in-
structions from a single macro instruction. Macro
definitions are stored in the Macro Sublibrary of
the source statement library.

Source-Program Macros

Source-program macros are those you specify in
your program; they indicate to the assembler which
macro definition is to be called from the library.
With a source-program macro you specify operands
and parameters which the assembler uses, together
with the called macro definition, to determine what
assembler instructions to generate. There are two
different types of source-program macros: supervi-
sor macros and IOCS macros.

Supervisor Macros

These macros enable you to make use of functions
performed by the supervisor. The RUNMODE ma-
cro, for example, determines whether your program
is to run in virtual or real mode.

I0CS Macros

IOCS macros are divided into basic categories:
imperative IOCS macros and declarative IOCS
macros.

Imperative IOCS Macros
These macros identify what I/O operation you

want to perform. The GET macro, for example,
indicates that you want to obtain a record.

Declarative IOCS Macros

Declarative IOCS macros for all access methods
except VSAM are of two related types--DTFxx
macros and logic module generation (xxMOD)
macros. Declarative IOCS macros for VSAM are
the ACB, EXLST, and RPL macros. For further
details on DTF declarative macros see the section
on DTF Declarative Macros. The logic module
generation macros and VSAM declarative macros
are briefly discussed below and described in detail
later on.

Logic Module Generation Macros, Logic module
generation macros give information about the type
of logic module to be generated. The module is the
object code routine which will handle the condi-
tions you specify in the module generation macro.
For example, the CDMOD macro could generate a
module to handle card input on a 2540 (as shown
in the example in Appendix B).

VSAM Macros. The Virtual Storage Access Method
(VSAM) has a set of declarative macros different
from the DTFxx and logic module generation mac-
ros described above. VSAM declarative macros are
ACB, EXLST, and RPL.

The ACB macro produces an access method con-
trol block which connects your program to the file.
The access method control block contains informa-
tion about the kind of processing to be done, and
is usually specified only once in a program.

The EXLST macro produces an exit list containing
addresses of routines you supply to handle special
situations--such as an end-of-data routine, or a
routine to manage 170 buffers. This macro is also
usually specified only once in your program.

The RPL macro produces a request parameter list
containing such information as a buffer address
that is needed for execution of the VSAM impera-
tive macros.

VSAM has no logic module generation macros.
Standard VSAM modules are placed in the core
image library during system generation, and loaded
into your partition when a VSAM file is opened.
The possibility of coding your own modules with a

Part 1. Introduction 11

logic module generation macro, and of assembling
or link-editing modules with your program, does
not exist with VSAM.

Macro Processing

A direct relationship exists between the two basic
parts of the macro system--between the source-
program macros and the macro definitions--as de-
scribed above.

During assembly, the source-program macro speci-
fies which macro definition is to be called from the

IBM provides a number of tested macro definitions.
The macro instructions needed to use these defini-
tions are described in this manual. You can also
write your own macro definitions and include them
in the source statement library of your system. For
additional information on this subject, see OS/VS
and DOS/VS Assembler Language, GC33-4010.

The IBM-supplied macros, which are explained in
this book, are organized as follows:

Part 2. Sequential Access Method (SAM) LIOCS
macros.

. . . ; Part 3. Direct Access Method (DAM) LIOCS mac-
library. Figure 1-1 depicts schematically the source ros
program before and after inclusion of the macro '
expansion. This is accomplished by a selection and Part 4. Indexed Sequential Access Method (ISAM)
substitution process using the general information ’ LIOCS macros
in the macro definition and the specific information)
in the macro itself. The insertion consists of a mo- p Virtual S A Method (VSAM
dule, a table, or a small in-line routine and is called art 5. Lllgl(ljas torage Access Method ()
the macro expansion. macros.
. L Part 6. PIOCS macros.
After the insertion is made, the complete program
consists of both source program statements and Part 7. Supervisor macros
assembler language statements generated from the ’)
macro definition. In subsequent phases of the as- Multitasking macros.
sembly, the entire program is processed to produce
the machine-language program. Program Linkage macros.
SOURCE PROGRAM ASSEMBLER SOURCE PROGRAM
(Before) OPERATIONS (After)
(1 1
2 2
: (Locate Macro gourc:m
Definition S;ogr N .
Source . J— atements)
Program 15 Perform Indicated 15
Statements | 16 Macro ﬁ Selection and 16 Macro
17 Substitution
) Merge with —_—
L Source Program \ Macro -
\ Expansion .
17
Source :
Program
Statements
Figure 1-1 Schematic of macro processing

12 DOS/VS Supervisor & 1/0 Macros

DTF Declarative Macros

With all access methods except VSAM, whenever
you use logical IOCS imperative macros (such as
GET, PUT, READ, or WRITE) in your program to
control the input/output of records in a file, that
file must be defined by a declarative macro called a
DTF (Define The File). The DTF macro describes
the characteristics of the file, indicates the type of
processing for the file, and specifies the virtual
storage areas and routines to be used in processing
the file.

For example, if a GET is issued, the DTF macro
supplies such information as:

o Record type and length.

o Input device from which the record is to be
retrieved.

« Address of the area in storage where the record
is to be located for processing by your pro-
gram.

Device-oriented DTF macros are available for de-
fining files processed by LIOCS (Logical
Input/Output Control System). An additional DTF
macro is available for magnetic tape or DASD files

processed by PIOCS (Physical Input/Output Con-
trol System). Figure 1-2 contains an example of a
DTF source statement. For LIOCS operations, the
DTF macro used depends on the type of processing
that will be performed and upon the type of device
used. For detailed information on LIOCS and
PIOCS, please refer to the DOS/VS Data
Management Guide , GC33-5372.

The following is a list of DTFs available for the
various types of processing.

Processing with SAM

This applies to input/output with serial or diskette
devices, or with direct access devices when records
are processed sequentially. (ISAM and VSAM may
also be used with direct access devices when re-
cords are to be processed sequentially). The macros
used for SAM processing are listed by device name
in alphabetical order in Figure 1-3. For details ref-
er to Part 2 of this manual.

IBM
mocu Pl ACING: il PAGE oF
Irocammer oatt e NG TARD ELECTRO NUMBER
it 3 10 O 14 6 20 7’:“ 30 50 55 Commem 60 85 n 73 S 80)
L il I
olLlomlsv[r| | Iofr{emir f X
BL|ks|1 [z]E|=[4]o]o]. \ X
{ole[v]a]olo[r]=s]v]s]o[o]1]. ' x
E|O[F |AD|DR|=|E[O|FMIS[T|R . L X
fl1[Lals]Li=[s]T[d]. ! X
1loaREa[1]=|alR[E[AlOIN]E i Ix
EjR[Rjo|p [7]=|c|kjo|L[ols|L ! . X
H[o[R|V[N[Flo[=V[E]S]. il X
1/ola]r]ela]2]=lalreja]T W0 ; x
1iolr[ela]=[([3)]. [| X
Lia8lalp[o|r=ic [k jo|L|p/B[L]K!, ' x
RIE|a|D|=|Flo|r WA [RID[. B} ! X
|R[E[c]Flo]rIM[=[F]1 [x[8[L K ! . X
[Rle|c]s]1 |z[E]=]s]o]. | ; X
RIEW[1[w[D[=[u]n]L Jola[D: i | X
sielp|alsmiB|=|v]E[s|. i 1 M
T|vlpelF[Llel=]1[n]p[u]T ' X
L|R[E[RRi=|R[E|G]6] ;
.
1
)

Figure 1-2 Sample DTFMT macro

Part 1. Introduction 13

File to be processed on Macro
Card device DTFCD
Console printer-keyboard DTFCN
DASD sequential DTFSD
Device independent DTFDI
3540 Diskette 1/0 Unit DTFDU
Display operator console DTFCN
Magnetic reader (MICR) DTFMR
Magnetic tape DTFMT
Optical reader (excluding 3886) DTFOR
3886 Optical character reader DTFDR
Optical reader/sorter DTFMR
Paper tape reader DTFPT
Paper tape punch DTFPT
Printer DTFPR
Sequential DASD DTFSD
Serial type device (for compatibility DTFSR
only)

Figure 1-3 SAM declarative macros

Processing with DAM

Whenever a file on a direct access device is to be
processed by DAM, DTFDA must be used. For
details refer to Part 3 of this manual.

Processing with ISAM

Whenever a file on a direct access device is to be
organized or processed by ISAM, DTFIS must be
used. For details refer to Part 4 of this manual.

Processing with PIOCS

When PIOCS macros (EXCP, WAIT, etc.) are
used for a file, the DTFPH macro is required only
if standard labels are to be checked or written on a
file on a direct access device or magnetic tape, or if
the file on a direct access device is file-protected.
For details refer to Part 6 of this manual.

Referencing the DTF Table

A DTFxx macro generates a DTF table that con-
tains indicators and constants describing the file.
You can reference this table by using the symbol
filename+constant, or filenamex where x is a letter.
When referencing the DTF table, you must ensure
addressability through the use of an A-type con-
stant, or through reference to a base register.
Should you need to reference a DTF table in your

14 DOS/VS Supervisor & 1/0 Macros

program, you can obtain detailed information on
the layout of DTF tables in the LIOCS Program
Logical Manuals, SY33-8559, SY33-8560 and
SY33-8561.

Symbolic Unit Addresses in the DTFxx
Macro

In most of the DTF macros you can specify a sym-
bolic unit name in the DEVADDR operand. This
symbolic unit name is also used in the ASSGN job
control statement to assign an actual 1/0 device
address to the file. For files on diskettes or direct
access devices, the symbolic unit name is supplied
in the DEVADDR operand and/or with the
EXTENT job control statement (if both are pro-
vided the EXTENT specification overrides the
DEVADDR specification).

The symbolic unit name of a device is chosen from
a fixed set of symbolic names. Programs are writ-
ten considering only the device type (tape, card,
etc.). At execution time, the actual physical device
is determined and assigned to a given symbolic
unit. For instance, a program that processes tape
records can call the tape device SYS000. At execu-
tion time the operator (using ASSGN) assigns any
available tape drive to SYS000.

Figure 1-4 shows the relationship between the
source program, the DTF table, and the job control
I/O assignment.

Supervisor I/O
Tables (Job Con-
trol Initiated)
SYS000, cuu

Source Program DTF Table

GET FILEl FILE! DTFCD

Lt

DEVADDR=SY S000

Figure 1-4 Relationship between source program, DTF

table, and job control 1/0 assignment

The fixed set of symbolic names that can be used
with a DTF macro for a program in any partition is
the same and is represented by SYSxxx. Programs
in different partitions can reference the same logi-
cal unit providing different devices, or DASD ex-
tents, are assigned.

These symbolic units are divided into system logical
units and programmer logical units.

System Logical Units

SYSRDR

SYSIPT

SYSPCH

SYSLST

SYSLOG

SYSLNK

SYSVIS
SYSCAT

SYSCLB

SYSRLB

SYSUSE

SYSSLB

SYSREC

SYSIN

SYSOUT

Card reader, magnetic tape unit, disk
extent, or diskette extent primarily for
job control statements.

Card reader, magnetic tape unit, disk
extent, or diskette extent as the prima-
ry input unit for programs.

Card punch, magnetic tape unit, disk
extent, or diskette extent as the prima-
ry unit for punched output.

Printer, magnetic tape unit, disk extent,
or diskette extent as the primary unit
for printed output.

Console printer-keyboard or display
operator console for operator messages
and for logging job control statements.
Can also be assigned to a printer.

Disk extent as input to the linkage edi-
tor.

Disk extent for the page data set.
Disk extent for the VSAM catalog.

Disk extent for a private core image
library.

Disk extent for a private relocatable
library.

Disk extent used by the system for
internal purposes.

Disk extent for a private source state-
ment library.

Disk extent for error log records and
for the hard copy file of the display
operator console.

Can be used if you want to assign
SYSRDR and SYSIPT to the same card
reader or magnetic tape unit. Must be
used if you want to assign SYSRDR
and SYSIPT to the same disk extent.

Must be used if you want to assign
SYSPCH and SYSLST to the same
magnetic tape unit. Cannot be used to
assign SYSPCH and SYSLST to disk
because these two units must refer to
separate disk extents.

SYSIN and SYSOUT are valid only to
job control and cannot be referenced in
a user program. Examples for the use
of SYSIN and SYSOUT are given in
the section System Files on Tape or
Disk in the DOS/VS Systems Man-
agement Guide, GC33-5371.

Programmer Logical Units

SYSnnn SYSnnn represents all the other sym-
bolic units in the system. These units
vary from SYS000 to SYSmax, where
SYSmax represents the highest num-
bered programmer logical unit available
for the system:
SYSmax=255-NPART x 14
where NPART is the number of parti-
tions.

Each of these programmer logical units
can be assigned to any partition with-
out a prescribed sequence, except when
using DAM (see Note, below). For a
given partition, the maximum number
of programmer logical units is equal to
SYSmax minus the sum of all program-
mer logical units assigned to other par-
titions.

Note: For DAM the EXTENT job control state-
ments must be supplied in ascending order, and the
symbolic units for multivolume files must be as-
signed in consecutive order.

Each declarative macro requiring a symbolic unit to
be specified has a list of symbolic units that are
valid for that macro. In that list, SYSnnn represents
programmer logical units, while SYSxxx indicates
either a system or a programmer logical unit.

For files processed by either SAM or DAM, only
one symbolic unit may be assigned to all extents of
a file on one volume.

In physical I0CS, the symbolic unit name is speci-
fied in the CCB and in the DTFPH macros. In-
stead or additionally it is specified with the EX-
TENT job control statement. (If more than one of
these is used to provide the specification, an EX-
TENT specification overrides a DTFPH specifica-
tion, and a CCB specification overrides an EX-
TENT and/or a DTFPH specification.)

Figure 1-5 shows the relationship between the

source program and the job control I/O assign-
ment.

Part 1. Introduction 15

Source Program_r CCB Supervisor I/O Table
(Job Control Initiated)
EXCP ccbname SY Sxxx —L-—_> SYSxxx, cuu

Figure 1-5 Relatioship between source program and

job control 1/0 assignment

Logic Module Generation Macros

Each DTF except DTFCN DTFPH, and DTFSR
must link to an IOCS logic module. A logic module
is generated by a logic module generation
(xxMOD) macro. The modules provide the neces-
sary instructions to perform the input/output func-
tions required by your program. For example, the
module reads or writes data, tests for unusual
input/output conditions, blocks or deblocks records
if necessary, or places records in a work area. Most
imperative macros enter a logic module to perform
the necessary function.

Providing Logic Modules:

There are two ways of providing logic modules for
your DTFs:

1. Do not code the logic module generation macro
needed by your DTF(s). In this case, the stand-
ard logic modules needed for your installation
should have been assembled and cataloged (in
the relocatable library) at system generation
time. You can then autolink needed modules
from the relocatable library at link-edit time.

2. Code the logic module generation macro need-
ed by your DTF(s), assembling it either in-line
with your program or supplying it at link-edit
time.

Keeping Modules Small

Some of the module functions are provided on a
selective basis, according to the parameters speci-
fied in the xxMOD macro. If you code the
xxMOD macro yourself, you have the option of
selecting or omitting some of these functions ac-
cording to the requirements of your program. If, as
described above, you do not code the xxMOD ma-
cro yourself, IOCS will automatically select or omit

16 DOS/VS Supervisor & 1/0 Macros

the appropriate functions. In either case the omis-
sion of unneeded functions saves storage space for
a particular module.

Note: If you issue an imperative macro, such as
WRITE or PUT, to a module that does not contain
that function, an invalid supervisor call (SVC 50)
is generated, the job is terminated, and a message
is displayed.

Subsetting/Supersetting

Some modules may be subset modules to a superset
module. A superset module is one which performs
all the functions of its subset or component mo-
dules, avoiding duplication and thereby saving stor-
age space. The functions required by several similar
DTFs (that is, several DTFCDs, or several
DTFPRs, etc.) are thus available via a single
xxMOD macro, even if the DTFs have slightly dif-
ferent parameters. An example is shown in Figure
1-6.

Superset Module
Functions

Subset Module
Functions

Subset Module
Functions

Optional use of
CNTRL macro

Workarea and
I/0 arca proc-
essing

Support of print-
er overflow

Support of user-
specified error
actions

CNTRL macro
cannot be used

Workarea and
1/0O area proc-
essing

No printer over-
flow support

Support of user-
specified error
actions

Optional use of
CNTRL macro

I/O area proc-
essing only

Support of print-
er overflow

Support of user-
specified error
actions

Figure 1-6

Subset and superset module example

If you do not code the logic modules yourself,
IOCS will automatically perform all
subsetting/supersetting which is possible.

If you code the logic modules yourself,
subsetting/supersetting can be achieved by coding
a single xxMOD macro which contains all of the

functions needed by all of the DTFs which will use

that macro. In this case you may either:

« Not name the module and let IOCS name it for

you--that is, specify no name for the xxMOD

macro and also no MODNAME operands in
the DTFs; or

« Name the module--specifying a name for the
xxMOD macro and also specifying the same
name in the MODNAME operands of all of the
DTFs which will use that module.

Subsetting/supersetting cannot be performed if you
supply an xxMOD macro for each DTF of a given
device type. In this case:

« If you did not name the modules, the assembler
program will detect a double declaration error
condition, or

« If you did name the modules, they will be gen-

erated without any subsetting/supersetting.

Interrelationship of the Macros

Figure 1-7 shows the relationship between the pro-
gram, the DTF, and the logic module. Imperative
macros initiate the action to be performed by
branching to the logic module entry point generat-
ed in the DTF table. TAPE is the name of the file.
IJFFBCWZ is the name of the logic module.

required logic module, or you can specify that
name. Both methods are discussed below.

10CS Supplies the Name

In order to make use of this facility omit the
MODNAME operand from the DTF macro; the
IOCS macro will then generate a standard module
name as determined by the functions required by
the DTF.

Likewise, if you code your own module, the name
should be omitted from the name field, and IOCS
will generate a standard module name matching
that referenced in the DTF.

Standard module names used by IOCS are given
under Standard CDMOD Names, Standard DI-
MOD Names, etc., following the discussion of the
appropriate xxMOD macro.

IOCS Subset/Superset Names IOCS performs
subsetting/supersetting of modules with standard
module names by collecting the services required
by the DTFs and generating a single module with
different entry points corresponding to the standard
module names. If you are interested in seeing how
IOCS forms subset/superset names, charts showing
the name-building conventions are given through-
out the book for the various logic modules-- under
Subset /Superset CDMOD Names Subset/Superset
DIMOD Names, etc., following the discussion of
the appropriate module. The following is a model
for these charts:

< *
N Z 4+

N *

Program DTF Table Module
GET TAPE, WORK TAPE DTFMT |JFFBCWZ
IJFFBCWZ

Figure 1-7 Relationship between program, DTF and

logic module

Linkage between the program, DTF, and logic mo-
dule is accomplished by the assembler and the link-
age editor.

Module Names

As mentioned under Logic Module Generation
Macros, you can have I0CS provide a name for the

NE+NT+
NNZ -+ O+

+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

The letters indicate functions which can be per-
formed by the logic module (these are fixed for a
given module and are explained in the sections
Standard CDMOD Names, Standard DIMOD
Names, etc.). If a module name were composed of
letters from the top row exclusively, it could only
be a superset name; and names including letters
from the second or lower rows would then be sub-
set names to the top-row superset name. For ex-
ample, the module [JXWESZZ is a subset module
to superset module IIXWENZZ. IJXWEZZZ is an-

Part 1. Introduction 17

other subset module to superset module IJx-
WENZZ. Similarly, IIXWEZZZ is also a subset
module to superset module I[JXWESZZ.

An asterisk (*) over a column indicates that no
subsetting or supersetting is permitted, while a plus
(+) sign in a column indicates that both are per-
mitted. Two plus signs in a single column divide
that column into mutually exclusive sets. In this
example, C is not a superset of N, S, or Z, and
conversely, N, S, or Z is not a subset of C.

The vertical arrangement of letters within a column
is always in alphabetical order. If a column is divid-
ed by plus and/or asterisk signs into sets, then the

vertical arrangement of letters within each set of a

column is in alphabetical order.

You Supply the Name

Specify the name of the module in the MOD-
NAME operand of the DTF macro. A module with
this name must then be present in your program, or
be supplied to your program when it is link-edited.
Subsetting/supersetting will occur if one module
contains all of the functions needed by all of the
DTFs which will use the module (all must refer-
ence it by the same name).

Nothing is gained by giving your modules standard
IOCS names (see IOCS Supplies the Name,
above), for IOCS will supply the same name for
you if you let it name the modules. Should you
decide to name your modules, use names which are
meaningful to you in the context of your program.

Link-Editing Logical IOCS Programs

You have the option of assembling your DTFs, and
any logic modules which you code yourself, either
with your main program or separately for later
link-editing with the main program. These possibili-
ties are discussed below and are illustrated in
Appendix B.

Program, DTF, and Logic Module Assembled
Together

If you assemble DTFs and logic modules with the
main program, the linkage editor searches the input
stream and resolves the symbolic linkages between
tables and modules. This is accomplished by
external-reference information (V-type address
constants generated in DTF tables) and the control
section definition information (CSECT definitions

18 DOS/VS Supervisor & 1/0 Macros

in logic modules). Further information on linkage
editing can be found in the section Linkage Editor
of the DOS/VS System Control Statements,
GC33-5376.

Program, DTF, and Logic Module Assembled
Separately

Specify the operand SEPASMB=YES in the DTF
macro or xxMOD macro which is to be separately
assembled. For DTFs which are separately assem-
bled, there are some symbolic linkages which you
must define yourself in the form of EXTRN-
ENTRY symbols. See Appendix B for a full de-
scription of which symbolic linkages you must de-
fine yourself.

Supplying the SEPASMB=YES operand in a DTF
macro causes a CATALR card with the filename to
be punched ahead of the object deck and defines
the filename as an ENTRY point in the assembly.
Specifying the SEPASMB=YES operand in an
xxMOD macro causes a CATALR card with the
module name to be punched ahead of the object
deck and defines the module name as an ENTRY
point in the assembly. In either case, a START
card must not be used in a separate assembly.

Using the Relocatable Library

As stated earlier, considerable coding effort is
saved if logic modules are cataloged in the relocat-
able library. The same applies to DTFs. Using
DTFs cataloged in the relocatable library requires
that you take care in naming the DTFs--that is,
that you develop a set of standard names and then
use them both for your DTFs and in all references
your program makes to the DTFs. However, should
you decide to name modules yourself, instead of
letting IOCS do it, then you make sure that you
refer to precisely those modules in your DTFs by
using their exact names (see Module Names
above).

If, at system generation time, a standard set of
logic modules needed by your installation has been
generated, autolinking the appropriate modules to
your DTFs presents no problem. This is particularly
true if both the modules and DTF references to
them use standard module names.

Using logic modules which you named yourself--as
opposed to those named by IOCS--cataloged in the
relocatable library requires care. You should verify
that the desired modules have been cataloged in

the library by consulting a DSERYV listing of the
library. The linkage editor can perform an autolink
only if there is an exact match of module names
specified in the DTFs and the names of the mo-
dules themselves.

Self-Relocating Programs and 1I0CS

The Relocating Load feature, an option in supervi-
sor generation, makes it unnecessary for you to
write your own self-relocating programs. If, how-
ever, your supervisor does not have this feature
and you want to make IOCS imperative macros
(except VSAM macros) and supervisor macros self-
relocating you must do the following:

1. Use the OPENR and CLOSER macro.

2. Use register notation within all your imperative
macros (see Register Notation later in this
chapter).

Appendix D gives detailed instructions on writing
self-relocating programs.

Macro Format

Macros, like assembler statements, have a name

field, operation field, and operand field as shown
below. Comments can also be included as in as-

sembler statements.

The name field in a macro may contain a symbol-
ic name. Some macros require a name; for exam-
ple, CCB, TECB, DTFxx.

The operation field must contain the mnemonic
operation code of the macro.

The operands in the operand field must be written
in either positional, keyword, or mixed formats.

Positional Operands

In this format, the parameter values must be in the
exact order shown in the individual macro discus-
sion. Each operand, except the last, must be fol-
lowed by a comma, and no embedded blanks are
allowed. If an operand is to be omitted in the ma-
cro and following operands are included, a comma
must be inserted to indicate the omission. No com-
mas need to be included after the last operand.
Column 72 must contain a continuation punch (any

nonblank character) if the operands fill the operand
field and overflow onto another card.

For example, GET uses the positional format. A
GET for a file named CDFILE using WORK as a
work area is punched:

GET CDFILE,WORK

Keyword Operands

The exact parameters used are expressed as a key-
word value. An operand written in keyword format
has this form for example:

LABADDR=MYLABELS

where LABADDR is the keyword, MYLABELS is
the parameter, and LABADDR=MYLABELS is
the complete operand. The keyword operands in
the macro may appear in any order, and any that
are not required may be omitted. Different key-
word operands may be punched in the same card,
each followed by a comma except for the last ope-
rand of the macro. Or, they may be punched in
separate cards as in Figure 1-2.

Mixed Format

The operand list contains both positional and key-
word operands. The keyword operands can be writ-
ten in any order, but they must be written to the
right of any positional operands in the macro.

For additional information on coding macro state-
ments, see OS/VS and DOS/VS Assembler
Language, GC33-4010.

Cards for Declarative Macros

The operands of the DTFxx and the module gener-
ation macros can be punched in a set of cards in
the assembler format. Figure 1-2 shows an example
of the cards used for a DTFMT macro. The DTF
macros may be assembled in any order.

The first card is a header card, and the continua-
tion cards are detail cards. The header card is
punched with:

o The symbolic name of the file in the name
field. Programming Note. avoid using IJ as the
first two letters when defining symbols as they
may conflict with IOCS symbols beginning with
IJ. Avoid symbols that are identical to a filen-
ame plus a single character suffix because
IOCS generates symbols by concatenating the
filename with an additional character--for the

Part 1. Introduction 19

filename RECIN, for example, IOCS generates
the symbols RECINS, RECINL, etc.

In a DTF, the symbolic filename may be up to
seven characters long. This filename, if it is
required on any of the standard label job con-
trol statements, must be the same as that used
in the DTF header card.

For a module generation macro, the name may
or may not be specified. See Module Names,
above.

« The mnemonic operation code of the macro in
the operation field.

« Keyword operands in the operand field, if de-
sired.

+ A continuation punch in column 72, if a con-
tinuation card is necessary.

The detail cards follow the header card, and may
be arranged in any order. Each detail card is
punched, beginning in column 16, with one or
more keyword operands separated by commas. All
detail cards except the final one must be punched
with a comma immediately following the last ope-
rand and with a continuation punch in column 72.
Comments may be included if a space is left after
the comma following the last operand--or, for the
last detail card, if a space is left after the last ope-
rand.

Notational Conventions

The following conventions are used in this book to
illustrate the format of macros:

1. Uppercase letters and punctuation marks
(except as described in these conventions) rep-
resent information that must be coded exactly
as shown.

2. Lowercase letters and terms represent informa-
tion which you must supply. More specifically,
an n indicates a decimal number, an r indicates
a decimal register number, and an x indicates
an alphameric character.

3. Information contained within brackets [] repre-
sents an optional parameter that can be includ-
ed or omitted, depending on the requirements
of the program.

20 DOS/VS Supervisor & 1/0 Macros

4. Stacked options contained within brackets rep-
resent alternatives, one of which can be chosen
for example:

name A name-field symbol
label in this assembly, or
address an operand of an

EXTRN statement,
or * (the Location
counter).

5. An ellipsis (a series of three periods) indicates
that a variable number of items may be includ-
ed.

6. Stacked options contained within braces {}
represent alternatives, one of which must be
chosen. When the alternatives appear in a
string, they are separated by a vertical bar
(logical or)

7. filename Symbol appearing in the name field

of a DTF macro.

Self-defining value, such as 3,
X’04°, (15), B010’.

Absolute expression, as defined in
0OS/VS and DOS/VS Assembler
Language, GC33-4010.

Underlined elements represent an

B assumed value in the event a par-

C 5 ameter is omitted.
m

11. § name } Ordinary register notation. Any
(r) register except 0 or 1.

12.\ name Z Special register notation (ordinary
(0) register notation can be used).
name
(D 5

Register Notation
Certain operands can be specified in either of two
ways:

1. You may specify the operand directly and
produce code which cannot be executed in the
SVA because it is not reentrant.

2. You may load the address of the value into a
register before issuing the macro. This way the
macro is reentrant and will be executed in the
SVA. When using register notation, the register
should contain only the specific address and
high order bits should be set to O.

In the latter case, you must specify the register in
the macro. (The registers that can be used for this

purpose are discussed under Register Usage, be-
low.) This method is known as ordinary register
notation.

When the macro is assembled, instructions are gen-
erated to pass the information contained in the
specified register to IOCS or to the supervisor. For
example, if an operand is written as (8), and if the
corresponding parameter is to be passed to the
supervisor in register 0, the macro expansion con-
tains the instruction LR 0,8.

You can save both storage and execution time by
using what is known as special register notation. In
this method, the operand is expressed as either (0)
or (1). This notation is special for two reasons:

+ The use of registers 0 and 1 is not allowed
unless specifically designated.

« The designation must be made by the specific
three characters (0) or (1). When special regis-
ter notation is indicated by (0) or (1) in a ma-
cro, you can use ordinary register notation and

the macro expansion will contain an extra LR
instruction.

The format description for each macro shows
whether special register notation can be used, and
for which operands. The following example indi-
cates that the filename operand can be written as
(1) and the workname operand as (0):

_
— . K
filename (workname

GET { { ©

If either of these special register notations is used,
your program must load the designated parameter
register before executing of the macro expansion.

Ordinary register notation can also be used.

Register Usage

Registers for Special Use

General registers 0, 1, 13, 14, and 15 have special
uses, and are available to your program only under
certain conditions.

The following paragraphs describe the general uses
of these registers by IOCS, but the description is
not meant to be allinclusive. For more information
on subroutine linkage through registers, refer to the
Linkage Registers section of the Program Link-
age Macros chapter. In addition, special applica-

tions, such as a MICR stacker selection routine,
may require different registers.

Registers 0 and 1:

Logical IOCS macros, the supervisor macros, and
other IBM-supplied macros use these registers to
pass parameters. Therefore, these registers may be
used without restriction only for immediate compu-
tations. However, if you use these registers for
computations not completed before IOCS requires
them, you must save their contents and reload
them later when required.

Register 13:

Control program subroutines, including logical
IOCS, use this register as a pointer to a 72-byte,
doublewordaligned save area. When using the
CALL, SAVE, or RETURN macros, you can set
the address of the save area at the beginning of
each program phase, and leave it unchanged there-
after. However, when sharing a reentrant (read
only) logic module among tasks, each time that
module is entered by another task, register 13 must

contain the address of another 72-byte save area to
be used by that logic module.

Registers 14 and 15:

Logical IOCS uses these two registers for linkage.
Register 14 contains the return address (to the
program) from DTF routines, called programs, and
your subroutines. Register 15 contains the entry
point into these routines, and is used as a base
register by the QPEN, OPENR, CLOSE, CLOS-
ER, and certain DTF macros.

IOCS does not save the contents of these registers
before using them. If you use these registers, you
must either save their contents yourself (and reload
them later) or finish with them before IOCS uses
them.

Registers for Your Use

Registers 2-12 are available for general usage.
There are, however, a few restrictions.

The assembler instruction for translate and test
(TRT) makes special use of register 2. It is your
responsibility to save the contents of this register
before executing the TRT instruction if register 2
contains valuable information (such as pointers or
counters) for later use in your program. After the
TRT instruction has been executed, you can then
restore the contents of register 2.

Part 1. Introduction 21

If an ISMOD logic module precedes a USING
statement or follows your program, the use of reg-
isters 2-12 remains unrestricted even at assembly
time. However, if the ISMOD logic module lies
within the problem program, you should issue the
same USING statement (which was issued before
the logic module) directly following the logic mo-

22 DOS/VS Supervisor & 1/0 Macros

dule. This action is necessary because the ISMOD
logic module uses registers 1, 2, and 3 as base reg-
isters, and the ISMOD CORDATA logic module
uses registers 1, 2, 3, and 5 as base registers. Each
time either module is assembled, these registers are
dropped.

LABEL PROCESSING

This section provides the information you need on
order to process labels with the IOCS macros.
More detailed information about labeling conven-
tions and label processing considerations will be
found in the DOS/VS Data Management Guide,
GC33-5372, DOS/VS DASD Labels,
GC33-5375, and DOS/VS Tape Labels,
GC33-5374.

DASD Standard Labels

Labels are required when processing files on direct
access devices. Accordingly you must supply both a
DASD label (DLBL) job control statement for
each logical file to be processed, and one or more
extent (EXTENT) job control statements to allo-
cate one or more areas on a direct access device.
Also, when processing standard labels, a LBLTYP
job control statement is required to define virtual
storage needed at link-edit time for label processing
for files defined by DTFDA or DTFIS macros or
by a DTFPH macro with the MOUNTED=ALL
operand (more information will be found in
DOS/VS System Control Statements, GC33-
5376).

OPEN and OPENR Macro Processing

The OPEN and OPENR macros use the informa-
tion supplied in the DLBL and EXTENT job con-
trol statements as well as information from the
DTF for the file.

For input, the extent(s) for a file must either coin-
cide with, or be within, the existing extent(s) as
defined in the Volume Table of Contents (VTOC).
This is necessary input, IOCS opens only an exist-
ing file or a subset of an existing file. For output,
the file to be written cannot overlap existing unex-
pired files. IOCS does not destroy an unexpired
file without your explicit request, except when an
internal system file (IISYS) overlays an identical
system file. However, if OPEN (or OPENR) deter-
mines that the output file will overlay an existing
file that has expired, the macro OPEN (or
OPENR) deletes the expired label(s) from the
VTOC. This in effect removes the file from the
volume. In a multi-volume file, the file may be

removed from all the volumes that it occupies or
from only some of the volumes.

If OPEN (or OPENR) determines that an existing
file to be overlaid by the output file has not ex-
pired, the old file cannot be destroyed automatical-
ly. In this case, the following actions are possible.
For SAM, DAM, physical IOCS, or work file proc-
essing:

1. Delete the unexpired file, or
2. Terminate the job, or

3. Bypass the extent. That extent and any remain-
ing extents for that file are bypassed and the
job is terminated.

For ISAM processing:
1. Delete the unexpired file, or

2. Terminate the job.

Reopening a File

If further processing of a file which your program
has closed is required at some later time in the
program, the file must be reopened. When a file is
processed in sequential order, IOCS checks the
label(s) on the first volume and makes the first
extent available, the same as at the original OPEN
(or OPENR). When a file is processed by physical
I0OCS with the DTFPH operand
MOUNTED=SINGLE, IOCS opens the next ex-
tent specified by your EXTENT job control state-
ment. When a file is processed by DAM (defined
by the DTFDA macro), by ISAM (defined by the
DTFIS macro), or by physical IOCS with the
DTFPH operand MOUNTED=ALL specified, all
label processing is repeated and all extents are
again made available.

For more information on label processing see the

discussion of the OPEN (or OPENR) macro-under
the appropriate access method.

End-of-Volume Processing
During processing, IOCS recognizes an end-of-

volume condition when the extents on one volume
have been processed and an extent for another

Part 1. Introduction 23

volume is encountered. When this condition oc-
curs, IOCS branches to your LABADDR routine
(if provided) to write or pass individually each user
standard trailer label to be processed. After all
user standard trailer labels are processed, IOCS
processes the standard labels on the next volume
and branches to your LABADDR routine to proc-
ess user standard header labels. After the header
labels are processed, IOCS continues to process the
data.

End-of-File Processing

Output Files

When all records for a logical output file have been
written, the CLOSE (or CLOSER) macro must be
issued to perform normal end-of-file processing.
IOCS then branches to your LABADDR routine (if
provided) to write user trailer labels, and the file is
closed. If the end of the last extent specified for
the file is reached before the CLOSE (or CLOS-
ER) macro is issued, IOCS assumes an error condi-
tion.

Input Files

10CS determines an end-of-file condition for a
logical input file either by the ending address of the
last extent specified for the file in the EXTENT
job control statement, or by an end-of-file record
read from the file. For SAM processing with
DTFSD or DTFSR, IOCS branches to the EO-
FADDR routine upon an end-of-file condition. For
sequential processing with DTFIS, IOCS posts the
end-of-file condition in the field referred to as fi-
lenameC. You can then test this byte and take ac-
tion necessary to close your file. However, when
processing in random order you must determine the
end-of-file by checking filenameC (DTFIS) or
ERRBYTE (DTFDA).

User Standard Labels

If user standard labels are desired, you must supply
a LABADDR routine, unless processing with physi-
cal IOCS. SAM and DAM process both user head-
er and trailer standard labels. ISAM does not proc-
ess user standard labels. User labels cannot be cre-
ated for a file whose first extent is a split cylinder
extent. DAM writes a user trailer label only on the
first volume of a multi-volume file.

When the LABADDR routine is entered, IOCS
loads an alphabetic O, V, or F into the low-order

24 DOS/VS Supervisor & I/O Macros

byte of register 0. O indicates header labels, V
indicates trailer end-of-volume labels, and F indi-
cates end-of-file labels. Your LABADDR routine
can test this character to determine the labels to be
processed. IOCS also loads the address of an 80-
byte 10CS label area in register 1; this is the ad-
dress you use if checking labels, or from which you
move the label to your program’s label area if you
are modifying labels.

Within the LABADDR routine, you cannot issue a
macro that calls a transient routine (such as OPEN
(or OPENR), CLOSE (or CLOSER), DUMP,
CANCEL, and CHKPT). For multi-volume files,
the LABADDR routine should save registers 14
and 15 upon entry, and restore them before issuing
the LBRET macro to return to IOCS.

Writing User Standard Labels on Disk

When you specify LABADDR, OPEN (or
OPENR) reserves the first track of the first data
extent as a user label area. At least one user head-
er and trailer label must be written if the access
method is to process it. For DAM, when
TRLBL=YES is specified with LABADDR, trailer
labels are processed.

IOCS uses bytes 1-4 of the 80-byte label for the
label identification (for example: UxLy, where x =
HorTandy =1, 2, ..., 8). You can use the other
76 bytes as you wish. The maximum number of
user standard header or trailer labels is eight for
files on all DASDs except the 2321, and five for
files on the 2321. IOCS stores the label informa-
tion (UHLx or UTLx) that it generates in bytes
1-4 of the 10CS label area. You can test this in-
formation, in addition to registers O and 1, to de-
termine the type and number of the label. (The
label formats will be found in DOS/VS DASD
Labels, GC33-5375.)

In your area of virtaul storage, build either an 80-
byte label, leaving the first four bytes free, or sim-
ply a 76-byte label. For the 80-byte label, load the
address of the label area into register 0; for the
76-byte label, load the label area address minus
four into register 0. Then issue the LBRET macro.
When the label is moved into the IOCS area, IOCS
adds four to the address in register 0, thus only
moving the 76 bytes of user information into the
IOCS label area.

When the label is ready to be written, the LBRET
macro returns control to IOCS. If LBRET 2 is

used, OPEN (or OPENR) writes the label and re-
turns control to your label routine unless the maxi-

mum number of labels has been written. If LBRET
1 is used, the label set is considered complete and
no more labels can be created.

When IOCS receives control, the IOCS routines
move the label from the address you loaded into
register O into the IOCS label area. If the maxi-
mum number of labels has not been written, IOCS
increases the identification number by 1 and re-
turns to your label routine unless LBRET 1 was
used. If the maximum number of labels has been
created, IOCS automatically terminates building of
the label set.

Checking User Standard Labels on Disk

When a file on a DASD contains user standard
trailer and/or header labels, IOCS makes these
labels available one at a time if LABADDR is
specified in the DTF (see DASD Standard Labels,
above). If the labels are to be checked against in-
formation obtained from another input file, that file
must be opened ahead of the file on a DASD.

When your program has finished checking a label,
it can update it or leave it unmodified. If it is to be
updated, your program must move the label to an
area within the program before modifying it. After
the label is modified, the program must initialize
register 0 with the address of the modified label
before issuing the LBRET 3 macro. The program
then updates the appropriate label fields by issuing
the LBRET 3 macro. This causes the OPEN (or
OPENR) routine to rewrite that label and read the
next label. Register 1 points to the label in the
IOCS label area. If the label is to remain unmodi-
fied, you can issue a LBRET 2 macro so OPEN or
OPENR will read the next label. In either situation,
if the end-of-file record is encountered at the end
of the labels, OPEN (or OPENR) automatically
terminates the label checking.

If you wish to end label checking before all the
labels have been read, the LBRET 1 macro may be
issued.

Diskette Labels

Labels are required when processing files on disk-
ette I/O units. Accordingly you must supply a
DASD label (DLBL) job control statement for
each logical file to be processed, and one or more
extent (EXTENT) job control statements (more
information will be found in DOS/VS System
Control Statements , GC33-5376.

OPEN and OPENR Macro Processing

The OPEN or OPENR macro uses the information
supplied in the DLBL and EXTENT job control

statements, information from the DTF for the file,
and information from the file label on the diskette.

For input, extent limits are taken directly from the
file label in the VTOC on the diskette; extent lim-
its provided in the extent statement(s) are ignored.
Similarly for output files, the extent limits for the
file are determined by OPEN (or OPENR) from
available space on the diskette extent limits provid-
ed by the user are ignored. If the name of the out-
put file to be created is the same as that of an
unexpired or write-protected file already present on
the volume, OPEN (or OPENR) will cause the job
to be canceled. You will not be allowed to request
that a duplicate file (unexpired or write-protected)
be deleted. If the duplicate file has expired and is
not write-protected or if a duplicate file is not be-
ing created, OPEN (or OPENR) will allocate space
for the file, starting at the cylinder following the
end of the last unexpired or write-protected file on
the diskette. If expired and non-write-protected
files are overlapped by this allocation, their labels
are deleted from the VTOC.

End-of-Volume Processing

During processing, IOCS recognizes an end-of-
volume condition when end-of-extent is reached on
a volume and more extents are available. When
this occurs, IOCS processes the standard labels on
the next volume and continues to process the data.

End-of-File Processing

Output Files

When all records for an output logical file have
been written, the CLOSE (or CLOSER) macro
must be issued to perform normal end-of-file pro-
cedures. If the end of the last extent specified for
the file is reached before the CLOSE (or CLOS-
ER) macro is issued, IOCS assumes an error condi-
tion.

Input Files

IOCS determines an end-of-file for an input logical
file by the end-of-data address. This address is
specified in the file label in the VTOC of the last
diskette of the file (first diskette if this is not a

Part 1. Introduction 25

multi-volume file). IOCS branches to the
EOFADDR routine upon an end-of-file condition.

Tape Labels

Tape Output Files

For output on magnetic tape, OPEN (or OPENR),
CLOSE (or CLOSER), or an end-of-volume condi-
tion rewinds the tape as specified in the DTFSR or
DTFMT REWIND operand. No rewind can be
defined in the DTFPH macro, and tape positioning
depends on the labels to be processed and is your
responsibility.

If you write any user standard labels, a LABADDR
routine must be supplied. (For ASCII tape files, the
LABADDR routine may only be used to process
user standard labels.) Your LABADDR routine,
specified in the DTF, cannot issue a macro that
calls a transient routine. For example, OPEN (or
OPENR), CLOSE (or CLOSER), DUMP, CAN-
CEL, and CHKPT cannot be issued. Also when
processing multi-volume files, your label routine
must save and restore register 15 if any logical
IOCS macros other than LBRET are used. When
user standard labels are written they always follow
the standard labels on the tape.

When all records of a file are processed, CLOSE
(or CLOSER) can be issued to execute the end-of-
file (EOF) routines. These routines write any re-
cord or blocks of records that are not already writ-
ten. A partially filled record block is truncated;
that is, a short block is written on the tape. Fol-
lowing the last record, IOCS writes a tapemark, the
trailer labels, and two tapemarks, and executes the
rewind option. If no trailer labels are written, two
tapemarks are written and the rewind option is
executed. In either case, if no rewind is specified
and you have not specified any positioning, the
tape is positioned between the two tapemarks at
the end of the file.

If an end-of-volume (EOV) reflective marker is
sensed on an output tape before a CLOSE (or
CLOSER) is issued, logical IOCS prepares for clos-
ing the file by ensuring that all records are written
on the tape. If you issue another PUT, indicating
that more records are to be written on this output
file, EOV procedures are initiated. If you issue a
CLOSE (or CLLOSER), the EOF procedures are
initiated.

26 DOS/VS Supervisor & I/O Macros

Under certain conditions, an unfilled block of re-
cords may be written at an EOV or EOF condi-
tion, even though the file is defined as having
fixed-length blocked records. When this file is used
for input, logical IOCS recognizes and processes
this short block. You need not be concerned or
aware of the condition.

Label processing for the EOV condition resembles
that for the EOF condition, except that a standard
label is coded EOV instead of EOF. Also, only one
tapemark is written after the label set or after the
data for unlabeled files. In an ASCII file, two tape-
marks follow the EOV labels.

When IOCS detects the EOV condition, it switches
to an alternate unit as designated in an ASSGN job
control statement. If an alternate drive is not speci-
fied, the operator is requested to mount a new vol-
ume (on the same drive) or cancel the job. When
the operator mounts the volume, IOCS checks the
standard header labels and processing continues.

In some cases, you may need to force an end-of-
volume condition at a point other than the reflec-
tive marker. You may want to discontinue writing
the records on the present volume and continue on
another volume. This may be necessary because of
some major change in category of records or in
processing requirements. The FEOV (forced EOV)
macro is available for this function (see FEOV
Macro in the Imperative Macros section of the
Sequential Access Method Macros chapter).

Writing Standard Labels on Tape

When standard labels are written (DTFMT or
DTFSR FILABL=STD or DTFPH
TYPFLE=OUTPUT), you must supply the TLBL
job control statement for standard label informa-
tion. Also, when standard labels are processed, a
LBLTYP job control statement is required to de-
fine virtual storage needed at link-edit time for
label processing (more information will be found in
DOS/VS System Control Statements, GC33-
5376).

When an OPEN (or OPENR) macro is issued and
the tape is positioned at load point, the volume
(VOL1) label is checked. Whether at load point or
not, the old file header, if present, is read and
checked to make sure that the file on the tape is
no longer active and may be destroyed. If the file
is inactive or if a tapemark was read, the tape is
backspaced and the new file header (HDR1) label
is written with the information you supply in the

tape label statement. The volume label is not rew-
ritten, altered, or updated.

A comparison is made between the specified densi-
ty (800 or 1600 bpi) and the VOLI1 density of the
expired tape. If a discrepancy is found and the tape
is at load point, the volume label(s) is (are) rewrit-
ten according to the specified density.

If an output file begins in the middle of a reel, it is
your responsibility to properly position the tape
immediately past the tapemark for the preceding
file before issuing the OPEN (or OPENR) macro.
The MTC command can be used to do this. If the
tape is improperly positioned, IOCS issues an ap-
propriate message to the operator.

If user standard labels are written, the LABADDR
operand must be specified in the DTF (see Tape
Output Files, above). After writing the standard
label (header or trailer), IOCS loads register 0
(low-order byte) as follows:

O indicates header labels.
V indicates end-of-volume labels.
F indicates end-of-file labels.

Your LABADDR routine can test this character to
determine what labels should be written. IOCS also
loads the address of an 80-byte IOCS label area in
register 1; this is the address you use if checking
labels, or from which you move the label to your
program’s label area if you are modifying labels.

Note: For ASCH files, you process your standard
labels in EBCDIC.

A maximum of eight user standard header (UHL),
or trailer (UTL) labels can be written following the
standard header (HDR1), or trailer (EOV1 or
EOF1) labels. The user standard labels are 80
bytes long and are built entirely by you. Bytes 1-4
must contain the label identification (UxLy, where
x=H or T and y=1, 2, ..., 8); the other 76 bytes
can be used as desired.

For ASCII tape files, you can have any number of
user standard header or trailer labels. To comply
with the standards for an ASCII file, these labels
are identified by UHLa and UTLa, where a repre-
sents an ASCII character in the range 2/0 through
5/14, excluding 2/7 (apostrophe). The remaining
76 bytes can be used as desired. It is your respon-
sibility to ensure that labels contain UHLa and
UTLa in the first four bytes.

Note: When creating user header and trailer labels
for 7-track tapes, only unpacked data is valid in
the 76-byte data portion of the label.

You should build your labels in your area of virtual
storage, and load the address of the label into reg-
ister 0 before issuing the LBRET macro.

When the label is ready to be written, you issue
the LBRET macro, which returns control to IOCS.
If LBRET 2 is used, IOCS writes the label and
returns control to your label routine. If LBRET 1
is used, the label set is terminated and no more
labels can be created. When IOCS receives control,
IOCS writes the label on the magnetic tape and
either returns control (LBRET 2) or writes a tape-
mark (LBRET 1).

When a standard trailer label is written, IOCS ac-
cumulates the block count for the label when logi-
cal IOCS is used. However, if physical IOCS
(DTFPH) is used, your program must accumulate
the block count, if desired, and supply it to IOCS
for inclusion in the standard trailer label. For this,
the count (in binary form) must be moved to the
4-byte field within the DTF table named filena-
meB. For example, if the filename specified in the
DTFPH header name is DELTOUT, the block
count field is addressed by DELTOUTB.

If checkpoint records are interspersed among data
records on an output tape, the block count accu-
mulated by logical IOCS does not include a count
of the checkpoint records. Only data records are
counted. Similarly, if physical IOCS is used, your
program must omit checkpoint records and count
data records only.

After all trailer labels (including user labels, if any)
are written at end-of-volume or end-of-file, IOCS
initiates the EOF or EOV routines (see Tape Out-
put Files, above).

Writing Nonstandard Labels on Tape

To write nonstandard labels, you must specify
FILABL=NSTD and LABADDR=name. When
the file is opened, the tape must be positioned to
the first label that you wish to process. The MTC
job control statement can be used to skip the nec-
essary number of tapemarks or records to position
the file. You must also write your own channel
program and use physical IOCS macros to transfer
the labels from virtual storage onto tape. For an
example on reading, writing, and checking with
unstandard labels see Appendix C.

Part 1. Introduction 27

When a file is opened or closed, or when a volume
is finished, IOCS supplies the hexadecimal repre-
sentation (in the two low-order bytes of register 1)
of the symbolic unit currently in use. See bytes 6
and 7 of the CCB for these values (the format of
the CCB is given in the Physical I0CS Macros
chapter). IOCS also loads register 0 (low-order
byte) as follows:

O indicates header labels.
V indicates end-of-volume labels.
F indicates end-of-file labels.

Your LABADDR routine can then test this charac-
ter to determine the type of labels to be written.

In your LABADDR routine, physical IOCS macros
must be used to transfer labels from virtual storage
onto tape. For each label record, a CCB and CCW
must be established, and the EXCP macro must be
issued (see the Physical IOCS Macros chapter).
Other logical IOCS macros can be used for any
processing other than the transfer of the labels
from virtual storage to tape. Additional LA-
BADDR routine restrictions are discussed above.

After all labels are written, you return control to
IOCS by use of the LBRET 2 macro. IOCS proc-
essing after LBRET is executed, has been discussed
above.

Note: Nonstandard labels are not permitted with
ASCIL

Writing Unlabeled Files on Tape

If you use unlabeled files, you should specify
FILABL=NO and omit TPMARK=NO in the
DTF to improve the efficiency of your program.
Your file must be positioned properly with the
MTC job control statement, if necessary, and writ-
ing begins immediately. Other processing informa-
tion can be found under Tape Input Files, below.

For unlabeled ASCII files, TPMARK=NO is the
only valid entry. If the operand is omitted entirely,
TPMARK=NO is the default. Leading tapemarks
are not supported on unlabeled ASCII files. Special
error recovery procedures facilitate reading back-
wards.

Tape Input Files

For a magnetic tape input file, the macros OPEN
(or OPENR), CLOSE (or CLOSER), or an end-

28 DOS/VS Supervisor & I/0O Macros

of-volume condition cause the tape to be rewound
as specified by the DTFSR of DTFMT REWIND
parameter. No rewind can be defined in the
DTFPH macro. Tape positioning depends on the
labels to be processed and is your responsibility.

If any labels other than standard labels are to be
checked, a LABADDR routine must be supplied.
Your LABADDR routine, specified in the DTF,
cannot issue a macro that calls a transient routine.
This is the same as for the tape output files.

When an end-of-file condition occurs, IOCS
branches to your EOFADDR routine specified in
the DTF. Generally, you issue a CLOSE (or
CLOSER) in this routine to initiate a rewind oper-
ation for the tape (as specified by the DTF RE-
WIND operand), and deactivate the file. If CLOSE
(or CLOSER) is issued before the end of data is
reached, the rewind option is executed and the file
is deactivated without any subsequent label check-
ing.

When logical IOCS reads a tapemark on a tape
input file, either an end-of-file or end-of-volume
condition exists. This condition is determined by
IOCS or by yourself, depending on the type of
labels (if any) used for the file, and the appropriate
functions are performed.

IOCS can determine an end-of-volume condition
only when trailer labels have been checked (see
Checking Standard Labels on Tape or Checking
Nonstandard Labels on Tape, below). If labels are
not processed, your EOFADDR routine must proc-
ess the condition (see FEOV Macro). When IOCS
does detect the EOV condition, it switches to an
alternate unit as designated in an ASSGN job con-
trol statement. If an alternate drive is not specified,
a message to mount a new volume is issued. At this
time, the operator may also cancel the job. When
the operator mounts the volume, processing re-
sumes. If the input file is processed by physical
IOCS (DTFPH), you must issue an OPEN (or
OPENR) macro for the new volume. Then, IOCS
checks the header label(s) and processing contin-
ues.

In some cases, you may desire to force an ead-of-
volume condition at a point other than at the nor-
mal tapemark. You may want to discontinue read-
ing the records on the present volume and continue
reading records on the next volume. This may be
necessary because of some major change in record
category or in processing requirements. An FEOV
(forced end-of-volume) is available for such cases

(see FEOV Macro in the Imperative Macros sec-
tion of the Sequential Access Method Macros
chapter).

Reading a Tape Backwards

When reading backwards (READ=BACK), a la-
beled tape must be positioned so that the first re-
cord read, when OPEN (or OPENR) is executed,
is the tapemark physically following the trailer la-
bels. An unlabeled file must be positioned so that
the first record read, when OPEN (or OPENR) is
executed, is the tapemark physically following the
first logical data record to be read (the last record
written when the file was created). Although AS-
CII unlabeled tapes contain no leading tapemark,
special error recovery procedures allow these tapes
to be read backwards.

Label checking of standard and nonstandard labels
is similar. That is, IOCS still processes standard
labels, and your routine (if specified) still processes
user or nonstandard labels. The only difference is
that the volume label is not read immediately for
standard labels, the trailer labels are processed in
reverse order (relative to writing), and header la-
bels are processed at EOF time, also in reverse
order. If physical IOCS macros are used to read
records backwards, labels cannot be checked
(DTFPH must not be specified).

Because backwards reading is confined to one vol-
ume, an end-of-file condition always exists when
the header label is encountered. At end-of-file for
standard lables, IOCS checks only the block count
(which was stored from the trailer label) and then
branches to your EOFADDR routine. At EOF for
nonstandard labels, IOCS branches to your
LABADDR routine where the header label may be
checked. To check labels, you must evoke physical
IOCS macros to read the label(s). Your
LABADDR routine, specified in the DTF, cannot
issue a macro that calls a transient routine. For
example, OPEN (or OPENR), CLOSE (or CLOS-
ER), DUMP, CANCEL, and CHKPT cannot be
issued. Also, when processing multivolume files,
your label routine must save and restore register 15
if any logical IOCS macros other than LBRET are
used. When user standard labels are checked, the
ckecking is the same as that for standard labels.

Checking Standard Labels on Tape

When standard labels are to be checked (DTFMT
or DTFSR FILABL=STD or DTFPH

TYPFLE=INPUT), you must supply the TLBL job
control statement for standard label information.
Also, when processing standard labels, a LBLTYP
job control statement is required to define virtual
storage needed at link-edit time for label processing
(more information will be found in DOS/VS Sys-
tem Control Statements, GC33-5376).

When standard labeled files positioned at load
point are opened, IOCS requires that the first re-
cord be a volume (VOL1) label. The next label
could be any HDR1 label preceding the file. IOCS
locates the correct file header (HDR1) label by
checking the file sequence number.

After checking the standard label (if user standard
labels UHL1-UHLS8 or UTL1-UTLS8 are present
for EBCDIC files, or UHLa or UTLa for ASCII
files), IOCS enters the LABADDR routine and
enters an O, V, or F in the low-order byte of regis-
ter 0.

O indicates header labels.
V indicates end-of-volume labels.

F indicates end-of-file labels.

Your routine can test this character to determine
what labels should be checked. IOCS also loads
the address if an 80-byte IOCS label area in regis-
ter 1; this is the address you use if checking labels,
or from which you move the label to your
program’s label area if you are modifying labels.

After each label is checked, a LBRET 2 macro can
be issued for IOCS to read the next label. Howev-
er, if a tapemark is read instead, label checking is
terminated. If you wish to end label checking be-
fore all labels are read, you can issue a LBRET 1
macro. After all trailer labels are checked, IOCS
initiates EOV or EOF procedures (see Tape Input
Files, above).

Checking Nonstandard Labels on Tape

Any tape labels not conforming to the standard
label specifications are considered nonstandard. It
is your responsibility to check such labels if they
are present. The MTC job control statement can
be issued to skip the necessary number of tape-
marks or records to position the file. On input,
nonstandard labels may or may not be followed by
a tapemark. The following possible conditions can
thus be encountered:

Part 1. Introduction 29

1. One or more labels, followed by a tapemark,
are to be checked.

2. One or more labels, not followed by a tape-
mark, are to be checked.

3. One or more labels, followed by a tapemark,
are not to be checked.

4. One or more labels, not followed by a tape-
mark, are not to be checked.

For conditions 1 and 2, the DTFMT or DTFSR
operands FILABL=NSTD and LABADDR=name
must be specified. For condition 3, the operand
FILABL=NSTD must be specified. If LABADDR
is omitted, IOCS skips all labels, bypasses the tape-
mark, and positions the tape at the first data record
to be read. For condition 4, the entries
FILABL=NSTD and LABADDR=name must be
specified. In this case, IOCS cannot distinguish
labels from data records because there is no tape-
mark to indicate the end of the labels. Therefore,
you must read all labels--even though checking is
not desired--to position the tape at the first data
record.

Each time IOCS opens a file or reads a tapemark,
it supplies (in the low-order bytes of register 1) the
hexadecimal representation of the symbolic unit
currently used. These values are as shown in bytes
6 and 7 of the CCB. IOCS also loads an alphabet-
ic O into the low-order byte of register O when the
file is opened.

When your routine gains control, the tape is not
moved by OPEN (or OPENR). Physical IOCS

30 DOS/VS Supervisor & 1/0 Macros

macros must be used to transfer labels from tape to
virtual storage. Therefore, you must establish a
CCB and a CCW. The macro EXCP is used to
initiate the transfer. After all labels are checked,
you return control to OPEN (or OPENR) by use
of the LBRET 2 macro.

When I0CS reads a tapemark, it checks to deter-
mine if you have supplied a LABADDR routine. If
a LABADDR routine was supplied, IOCS exits to
the routine. Otherwise, IOCS skips the labels and
branches to the EOFADDR routine. In the LA-
BADDR routine, you must use physical IOCS mac-
ros to read your label(s). Furthermore, you must
determine the EOF and/or EOQOV condition and
indicate to IOCS which condition exists by loading
either EF (end-of-file) or EV (end-of-volume) into
the two low-order bytes of register 0. When this
information is passed to IOCS, it initiates the end-
of-file or end-of-volume procedures.

Unlabeled Input Files on Tape

The first record for unlabeled tapes
(FILABL=NOQO) may or may not contain a tape-
mark. Unlabeled tapes with ASCII contain no lead-
ing tapemark. If a tapemark is present, the next
record is considered to be the first data record. If
there is no tapemark, IOCS reads the first record,
determines that it is not a tapemark, and backspac-
es to the beginning of that record. The file can be
properly positioned by use of the MTC job control
statement. When the tapemark following the last
data record is read, IOCS branches to the end-of-
file address.

PART 2

SEQUENTIAL ACCESS METHOD

Declarative Macros

DTFxx Associated | Device Type
Macro Macros

DTFCD CDMOD Card

DTFCN - Console

DTFDI DIMOD Device Independent

DTFDR DRMOD 3886 Optical Character
DFR Reader
DLINT

DTFDU | DUMODFx | Diskette
DTFMR MRMOD Magnetic Reader
DTFMT MTMOD Magnetic Tape
DTFOR ORMOD Optical Reader
DTFPR PRMOD Printer

DTFPT PTMOD Paper Tape
DTFSD SDMODxx | Sequential DASD

DTFSR - Sequential Device

Imperative Macros

CHECK ERET OPENR RDLINE
CHNG FEOV POINTR READ
CLOSE FEOVR POINTS RELSE
CLOSER GET POINTW RESCN
CNTRL LBRET PRTOV SETDEV
DISEN NOTE PUT TRUNC
DSPLY OPEN PUTR WAITF
WRITE

Figure 2-1 summarizes the declarative and imperative macros which may be used
for SAM processing on a given 1/0 device.

sone O/ pue losiarddng SA/SOA 7§
1-Z 231y

Suissadoud VS 10j sonew O/

DECLARATIVE MACROS £ IMPERATIVE MACROS

INITALIZATION PROCESSING

S

)
S

& & S
& L f‘o % "‘é 4“9 £ ""o % S o@d‘d“\odg\ vo*’@o'féé (A Q° Pé@él\ 19@ & @é \?&@“i&' 3&5& (@4

S
S/

"‘4,

T
04<

Operotor Console X

287/1288
:apn{d Reader X

X3 X
3

x
x

1403/1443/3203/
3211/5203 Printer

1255/1259/
1419 Magnetic x
Choracter R eoder

1442/2501/ 2520/ 2540/ 2
2596/3504/3505/3525 5] X

M42/2520/2540/3525/
Punch X

x5
X 3

imwa (X

o
o
o
o

2311 Disk Unit

o Xao
x
x

o
o
o

2314/2319/3330/333Y/
3340 Disk Unit

X IX | X | X {Xsu
>

Xo| Xo
><\4 x‘l

232) Dato Call X

X | X [X | X
X Xal Xa| Xa| Xz X g Xa
Xz Xzl Xzl Xz
>
> ><o-><u-><on>< X sl XN
Xo
Xy
X of
Xo
>

X
X o
X
X o
Xo
Xo

2400~Seri
Mwlost:c ,ffps:zl?nl' X X

X | X [X | X

18

X |IX [X | X | X |x
X o
>
>
x

2671/1017 Poper
Tope Reader

1018 Paper Tape
Punch

1270/1275
Optical Reader/ x
Sorter

3881 Optical Mark

Recder X

3886 Optical Reader x

Diskette

%oum XX

x
><..>< X ><,.'><<.><~><a.><».><».><;><o.><»><u><u><~><~><

X > [5¢ [>¢ o] >¢ al>< n] ¢a] <ol <ol 5¢ o] 3¢l ¢ o] 3¢ < ol X Al ¢

Notes:

1. Use only with system logical units.

2. Recommended for compatibility use only.
3. Applies only if LABADDR is specified.
4, Always required for this file.

5. PUT rewrites an input DASD record if UPDATE is specified. GET and PUT cannot be
used with workfiles.

6. Work files for DASD and magnetic tape only.
7. Applies only to blocked input records.
8. Applies only to blocked output records.

9. Applies only when 2 selector channels and one or more 2-channel simultanous-read-
while-write tape control units are installed.

10. Journal tape processing only.
11. 1287/1288 document processing only.

12. PUT punches on input card with additional information if TYPEFLE=CMBND is
specified for the 1442, 2520, or 2540, or if FUNC=RP or RPW is specified for the
3525. PUT prints on the card for the 3525 with the print feature.

13. In the 2540, GET normally reads cards in the read feed. If TYPEFLE=CMBND is
specified, GET reads cards at the punch-feed-read station.

14. For the 1419 or 1275 with the Pocket Light Feature.

15. This macro cannot be used with DTFDI.

16. Applies only if ERREXT specified.

17. Required if two I/O areas.

18. Valid for 2671 only.

19. 3525 Card Punch with read feature.

20. 3525 Card Punch with print feature.

21. Not supported for 2501, 3505, or 3525, respectively.

22. Not supported for 2501 or 3505. PUT is supported for any device that has a punch.
23. Not supported by 2596.

Part 2. Sequential Access Method 33

DECLARATIVE MACROS

As stated earlier, there are two related types of
declarative macros: DTFxx macros and logic mo-
dule generation macros. In this section each type of
processing is divided by type of storage medium:
card, magnetic tape, DASD, etc. The DTFxx macro
used with the file is discussed first, and then
(where applicable) the corresponding logic module
generation macro.

As discussed earlier, you need not specify names
for your modules. IOCS will do this for you, mak-
ing use of subsetting/supersetting wherever it is
possible (see Module Names in The Macro
System chapter).

The sections on module-naming conventions fol-
lowing the discussions of the logic module genera-
tion macros are therefore provided only for those
who are interested in seeing how IOCS forms the
names for the modules.

DTFCD Macro

This macro defines a file for a card reader. However,
it should not be used to read SYSIPT data if the
program might be invoked by a catalogued proce-
dure. In this case, the DTFDI macro should be used.

Enter the symbolic name of the file (filename) in the
name field and DTFCD in the operation field. The
detail entries follow the DTFCD header card in any
order. Figure 2-3 lists the keyword operands con-
tained in the operand field.

ASOCFLE=filename

This operand is used together with the FUNC ope-
rand to define associated files for the 2560, 3525, or
5425. (For a description of associated files see the
DOS/VS Data Management Guide, GC33-5372.)
ASOCFLE specifies the filename of associated read,

34 DOS/VS Supervisor and I/O Macros

punch, or print files, and enables macro sequence
checking by the logic module of each associated file.
One filename is required per DTF for associated

\

files.

Figure 2-2 defines the filename specified by the
ASOCFLE operand for each of the associated

DTFs.
In ASOCFILE operand of ...
FUNC= | read DTFCD, | punch print DTFPR,
specify file- DFTCD, specify file-
name of specify file- name of
name of
RP punch read DTFCD
DTFCD
RW print DTFPR read DTFCD
PW print DTFPR | punch
DTFCD
RPW punch print DTFPR | read DTFCD
DTFCD
Figure 2-2 ASOCFLE operand usage

For example, if FUNC=PW is specified, specify the
filename of the print DTFPR in the ASOCFLE ope-
rand of the punch DTFCD, and specify the filename
of the punch DTFCD in the print DTFPR. Or if
FUNC=RPW is specified, specify the filename of
the punch DTFCD in the ASOCFLE operand of the
read DTFCD; specify the filename of the print
DTFPR in the punch DTFCD; and specify the filen-
ame of the read DTFCD in the print DTFPR.

p.35

Applies to
-
15
-
o)
ERR=A B
AEIE
=1 © | O
X X X DEVADDR = SYSxxx | Symbolic unit for reader-punch used for this file
_ Name of first 1/O area, or seperate input area if TYPEFLE=CMBND
X X X TOAREAL = xxxxoxxx and IOAREA?2 are specified.
X X ASOCFLE = XXXXXXX Name for FUNC=RP, RW, RPW, PW
Length of one I/0 area, in bytes. If omitted, 160 is assumed for a col-
X X X BLKSIZE = nnn umn binary on the 2560,3504,3505, or 3525; 96 is assumed for the 2596
or 5425, otherwise 80 is assumed.
X X X CONTROL = YES CNTRL macro used for this file. Omit CTLCHR for this file. Does not
apply to 2501.
X CRDERR = RETRY Retry if punching error is detected. Applies to 2520 and 2540 only.
(YES or ASA). Data records have control character. YES for S/370
X CTLCHR = xxx character set; ASA for American National Standards Institute character
set. Omit if TYPEFLE=CMBND. Omit CONTROL for this file.
(1442, 2501, 2520, 2540, 2560P, 25608, 2596, 3504, 3505, 3525, 5425P, or
X1 x| x DEVICE = nnna 54255). If omitted, 2540 is assumed.
X X EOFADDR = xxxxxxxx | Name of your end-of-file routine.
X X ERROPT = xxxXxx :)(nill;JORE, SKIP, or name. Applies to 2560, 3504, 3505, 3525 and 5425
X X FUNC = xxx R, P, W, I, RP, RW, RPW, PW. Applies to 2560, 3525, and 5425 only.
Name of second I/O area, or separate output area if
X X X IOAREA2 = xxxxXxx TYPEFLE=CMBND. Not allowed if FUNC=RP, RW, RPW, or PW.
Not allowed for output file if ERROPT=IGNORE.
_ Register number, if two 1/0 areas used and GET or PUT does not
X X IOREG = (nn) specify a work area. Omit WORKA.
(E or C) for 2560. (E, C, O, R, EO, ER, CO, CR) for 3504 and 3505. (E,
X X MODE = xx C, R, ER, CR) for 3535. If omitted, E is assumed.

M=Mandatory; O=Optional

Figure 2-3 DTFCD macro (part 1 of 2)

Part 2. Sequential Access Method 35

Applies to

Input
Output
Combined

MODNAME =
XXXXXXXX

>
>
b
o

Name of CDMOD logic module for this DTF. If omitted, IOCS gener-
ates standard name.

X O | OUBLKSZ = nn

Length of IOAREA?2 if TYPEFLE=CMBND. If OUBLKSZ omitted,
length specified by BLKSZ is assumed for IOAREA2.

X X X O | RDONLY = YES

Generates a read-only module. Requires a module save area for each
task using the module.

X X X O | RECFORM = xxxxxx

(FIXUNB, UNDEF, or VARUNB). If omitted, FIXUNB is assumed.
Input or combined files always FIXUNB.

X O | RECSIZE = (nn)

Register number if RECFORM=UNDEF. General registers 2-12, writ-
ten in parentheses.

X X X O | SEPASMB = YES

DTFCD is to be assembled separately.

X X O |SSELECT =n

(1 or 2) for 1442, 2520, 2596, 3504, or 3525. (1, 2, or 3) for 2540. (1, 2, 3,
4, or 5) for 2560. (1, 2, 3, or 4) for 5425. Stacker-select character.

X X X O | TYPEFLE = xxxxxx

(INPUT, OUTPUT, or CMBND) If omitted INPUT assumed. CMBND
may be specified for 1442N1, 2520B1, or 2540 punch-feed-read only.

X X X O | WORKA = YES

GET or PUT specifies work area. Omit IOREG. Not allowed for output
file if ERROPT=IGNORE.

M=Mandatory; O=Optional

Figure 2-3 DTFCD macro (part 2 of 2)

36 DOS/VS Supervisor and I/O Macros

BLKSIZE=n

Enter the length of the I/0 area (IOAREA1). If the
record format is variable or undefined, enter the
length of the largest record. If the operand FUNC=I

is specified for the 2560 or 3525, the length speci-
fied for BLKSIZE must be 80 data bytes if
CTLCHR=YES or ASA is not specified, or 81 if
CTLCHR=YES or ASA is specified.

For the 3881, the BLKSIZE operand must be suffi-
cient to contain:

« 6 bytes of record description information
« Mark read data

+ Binary coded decimal (BCD) mark read data if
the BCD feature is being used.

« 7 bytes of serial number and batch number data
if the serial number feature is being used.

The BLKSIZE operand for the 3881 cannot exceed
900. If a BLKSIZE greater than 900 is specified, the
BLKSIZE defaults to 900.

If the BLKSIZE operand is omitted, the length is
assumed to be 80, with the following exceptions:

« 160 is assumed for column binary mode on the
2560, 3505, or 3525.

« 96 is assumed for the 2596 or 5425.
« 900 is assumed for the 3881.

CONTROL=YES

This operand is specified if a CNTRL macro is to be
issued for a file. If this operand is specified,
CTLCHR must be omitted. The CNTRL macro
cannot be used for an input file with two I/O areas
(when the IOAREAZ2 operand is specified).

This operand must not be specified for an input file
used in association with a punch file (when the ope-
rand FUNC=RP or RPW is specified) on the 2560,
3525, or 5425; in this case, however, this operand
can be specified in the DTFCD for the associated
punch file.

CRDERR=RETRY

This operand applies to card output on the 2520 or
2540. It specifies the operation to be performed if an
error is detected. From this specification, IOCS gen-
erates a retry routine and a save area for the card
punch record.

If a punching error occurs, it is usually ignored and
operation continues. The error card is stacked in

stacker P1 (punch), while correct cards are stacked
in the stacker you select. If the CRDERR=RETRY
operand is included and an error condition occurs,
TIOCS also notifies the operator and then enters the
wait state. The operator can either terminate the job,
ignore the error, or instruct IOCS to repunch the
card.

CTLCHR={ASA | YES}

This operand is required if first-character control is
to be used on an output file. ASA denotes the
American National Standards Institute, Inc. charac-
ter set. YES denotes the System/370 character set.
Appendix A contains a complete list of codes. This
entry does not apply to combined files. If this ope-
rand is specified, CONTROL must be omitted.

LDEVADDR:{SYSIPT | SYSPCH | SYSRDR |
SYSnnn}
This operand specifies the symbolic unit to be asso-
ciated with a file. The symbolic unit represents an
actual I/O device address and is used in the ASSGN
job control statement to assign the actual I/0O device
address to the file.

SYSIPT, SYSPCH, or SYSRDR must not be speci-
fied:

« for the 2596
« for the 3881

o for 1442, 2520, or 2540 combined files
(TYPEFLE=CMBND)

o for 2560, 3525, or 5425 associated files
(FUNC=RP, RW, RPW, or PW)

« if the operand FUNC=I is specified

« if the MODE operand is specified with the C, O,
or R parameters.

DEVICE={2540 | 1442 | 2501 | 2520 | 2560P |
2560S | 2596 | 3504 | 3505 | 3525 |
5425P | 5425S | 3881}

This operand specifies the I/O device associated

with a file. The "P" and "S" included with the

""2560" and "'5425" parameters specify primary or

secondary input hoppers.

EOFADDR=name

This entry must be included for input and combined
files and specifies the symbolic name of your end-of-
file routine. IOCS automatically branches to this
routine on an end-of-file condition. In your routine
you can perform any operations required for the end

Part 2. Sequential Access Method 37

of the file (you generally issue a CLOSE instruction
for the file).

IOCS detects end-of-file conditions in the card read-
er by recognizing the characters /* punched in card
columns 1 and 2. If the system logical units SYSIPT
and SYSRDR are assigned to a 5425, IOCS requires
that the /* card, indicating end-of-file, be followed
by a blank card. An error condition results if cards
are allowed to run out without a /* trailer card (and
without a / & card if end-of-job).

ERROPT={IGNORE | SKIP | name}

This operand specifies the error exit option used for
an input or output file on a 2560, 3504, 3505, 3525,
or 5425. Either IGNORE, SKIP, or the symbolic
name of an error routine can be specified for input
files. Only IGNORE can be specified for output
files. This operand must be omitted when using 2560
or 5425 associated output files. The functions of
these parameters are described below.

IGNORE indicates that the error is to be ignored.
The address of the record in error is put in register 1
and made available for processing. For output files,
byte 3, bit 3 of the CCB is also set on (see Figure
6-1); you can check this bit and take the appropriate
action to recover from the error. Only one I/O area
and no work area is permitted for output files. When
IGNORE is specified for an input file associated
with a punch file (FUNC=RP or RPW) and an error
occurs, a PUT for the card in error must nevertheless
be given for the punch file.

SKIP indicates that the record in error is not to be
made available for processing. The next card is read
and processing continues.

If name is specified, IOCS branches to your routine
when an error occurs, where you may perform what-
ever actions you desire. Register 1 contains the ad-
dress of the record in error, and register 14 contains
the return address. GET macros must not be issued
in the error routine for cards in the same device (or
in the same card path for the 2560 or 5425). If the
file is an associated file, PUT macros must not be
issued in the error routine for cards in the same de-
vice (for the 2560 or 5425 this applies to cards in
either card path). If any other IOCS macros are is-
sued in the routine, register 14 must be saved. If the
operand RDONLY=YES is specified, register 13
must also be saved. At the end of your routine re-
turn to IOCS by branching to the address in register
14. If the input file is associated with an output file
(FUNC=RP, RPW,or RW), no punching or printing

38 DOS/VS Supervisor and 1/0 Macros

must be done for the card in error. IOCS continues
processing by reading the next card.

Note: When ERROPT is specified for an input file
and an error occurs, there is a danger that the /*
end-of-file card may be lost. This is because IOCS,
after taking the action for the card in error specified
by the ERROPT operand, returns to normal process-
ing by reading the next card which is assumed to be
a data card. If this card is in fact an end-of-file card,
the end-of-file condition cannot be recognized.

FUNC={R|P|I|RP|RW | RPW | PW}

This operand specifies the type of file to be proc-
essed by the 2560, 3525, or 5425. R indicates read,
P indicates punch, and W indicates print.

When FUNC=I is specified, the file will be both
punched and interpreted; no associated file is neces-
sary to achieve this. The information printed will be
the same as the information punched, in contrast to
FUNC=PW, where any relation between the in-
formation printed and the information punched is
determined by your program. When FUNC=I is
specified the file can have only one 1/0 area.

RP, RW, RPW, and PW are used, together with the
ASOCFLE operand, to specify associated files;
when one of these parameters is specified for one
file, it must also be specified for the associated
file(s). Associated files can each have only one I/O
area.

IOAREA1=name
This operand specifies the name of the input or out-
put area used for this file.

If issued for a combined file, this operand specifies
the input area. If IOAREA? is not specified, the
area specified in this operand is used for both input
and output.

IOAREA2=name

This operand specifies the name of a second 1/0
area. If the file is a combined file and the operand is
specified, the designated area is an output area.

If this operand is specified for the 3881, the IOREG
operand must also be specified.

This operand must not be specified if FUNC=I,
FUNC=RP, RPW, RW, or PW, or for output files if
ERROPT=IGNORE.

IOREG=(r)

If work areas are not used but two input or output
areas are, this operand specifies the register (2-12)
in which IOCS puts the address of the record. For
output files, IOCS puts the address where the user
can build a record. This operand cannot be used for
combined files.

This operand must be specified for the 3881 if the
IOAREAZ2 operand is specified.

MODE={E|C|O|R|EO|ER|CO| CR}

This operand specifies the mode used to process an
input or output file for a 2560, 3504, 3505, or 3525.
E indicates normal EBCDIC mode; C indicates col-
umn binary mode; O indicates optical mark read
(OMR) mode; R indicates read column eliminate
mode. E is also assumed if only O or R is specified.

For the 2560, only E and C are valid entries.

Valid entries for the 3504 and 3505 are E, C, O, R,
EO, ER, CO, and CR. Valid entries for the 3525 are
E, C, R, ER, and CR. If O or R is specified (with or
without E or C), a format descriptor card defining
the card columns to be read, or eliminated, must be
provided. See OMR considerations in the DOS/VS
Data Management Guide, GC33-5372, for instruc-
tions on how to write this card as well as on how to
code and process OMR data.

Only E is valid for SYSIPT, SYSPCH, or SYSRDR.
O and R (with or without E or C) cannot be speci-
fied for output files. E is assumed if the MODE ope-
rand is omitted.

MODNAME=name

This operand may be used to specify the name of the
logic module that will be used with the DTF table to
process the file. If the logic module is assembled
with the program, MODNAME must specify the
same name as the CDMOD macro.

If this operand is omitted, standard names are gener-
ated for calling the logic module. If two DTF macros
call for different functions that can be handled by a
single module, only one module is called.

OUBLKSZ=n

This operand is used in conjunction with IOAREA2,
but only for a combined file. Enter the maximum
number of characters to be transferred at one time.
If this entry is not included and IOAREAZ2 is speci-
fied, the same length as defined by BLKSIZE is as-
sumed.

RDONLY=YES

This operand is specified if the DTF is used with a
read-only module. Each time a read-only module is
entered, register 13 must contain the address of a
72-byte doubleword-aligned save area. Each task
should have its own uniquely defined save area.
Each time an imperative macro (except OPEN or
OPENR) is issued, register 13 must contain the ad-
dress of the save area associated with that task. The
fact that the save areas are unique for each task
makes the module reentrant (that is, capable of be-
ing used concurrently by several tasks). For more
information see Shared Modules and Files in the
Multitasking Macros chapter.

If an ERROPT routine issues I/O macros using the
same read-only module that caused control to pass
to the error routine, your program must provide an-
other save area. One save area is used for the nor-
mal I/0O operations, and the second for I/0 opera-
tions in the ERROPT routine. Before returning to
the module that entered the ERROPT routine, regis-
ter 13 must contain the save area address originally
specified for the task.

If this operand is omitted, the module generated is
not reenterable, and no save area is required.

RECFORM={FIXUNB | VARUNB | UNDEF}

This operand specifies the record format of the file:
fixed length, variable length, or undefined. If the
record format is FIXUNB, this operand may be
omitted. If TYPEFLE=INPUT,
TYPEFLE=CMBND, FUNC=I, or
DEVICE=3881, this operand must be FIXUNB.

RECSIZE=(r)

For undefined records, this operand specifies the
register (2-12) that contains the length of the output
record. You must load the length of each record into
the specified register before you issue the PUT
macro for the record.

SEPASMB=YES

Include this operand only if the DTFCD is assem-
bled separately. This causes a CATALR card with
the filename to be punched ahead of the object deck
and defines the filename as an ENTRY point in the
assembly. If the operand is omitted, the program
assumes that the DTF is being assembled with the
problem program and no CATALR card is punched.

SSELECT=n

This operand specifies the valid stacker-select char-
acter for a file. If this entry is not specified, cards are
selected into NR (normal read) or NP (normal

Part 2. Sequential Access Method 39

punch) stackers. For the 5425 cards are placed in
stacker 1 when the cards came from hopper 1 and
into stacker 5(4) when they came from hopper 2.
This operand must not be specified for combined
files or for the 3881. This operand must not be speci-
fied for 2560, 3525, or 5425 read files associated
with punch files (FUNC=RP or RPW); in this case
the SSELECT=n operand may be specified for the
associated output file. See the CNTRL Macro in
the Processing Macros section later in this chapter
for further information.

Note: When this operand is used with a device other
than a 1442 or 2596, the program ignores
CONTROL=YES with input files.

TYPEFLE={INPUT | OUTPUT | CMBND}

This operand specifies if a file is input, output, or
combined. A combined file can be specified for a
1442 or 2520 or for a 2540 with the punch-feed-
read feature. TYPEFLE=CMBND is applicable if
both GETs and PUTs are issued for the same card
file.

Only TYPEFLE=INPUT can be specified for the
3881. If TYPEFLE=OUTPUT or
TYPEFLE=CMBND is specified, the DTF defaults
to DEVICE=2540 and a non-executable CDMOD
logic module is produced. The MNOTE "Improper
device. 2540 assumed."" is then printed at assembly
time. If TYPEFLE=INPUT is omitted, INPUT is
assumed.

WORKA=YES

If 1/0 records are processed in work areas instead of
in the I/0 areas, specify this operand. You must set
up the work area in storage. The address of the work
area, or a general-purpose register which contains
the address, must be specified in each GET and PUT
macro.

If ERROPT=IGNORE is specified for an output file
or if DEVICE=3881, WORKA=YES must not be
specified.

CDMOD Macro

Listed here are the operands you can specify for
CDMOD. The first card contains CDMOD in the
operation field and may contain a module name in
the name field.

CONTROL=YES

Include this operand.if the CNTRL macro is used
with the module and its associated DTFs. The mo-

40 DOS/VS Supervisor and I/0 Macros

dule also processes files for which the CNTRL ma-
cro is not used.

If this operand is specified, the CTLCHR operand
must not be specified. This operand cannot be speci-
fied if IOAREAZ2 is used for an input file.

This operand must not be specified for an input file
used in association with a punch file (when the ope-
rand FUNC=RP or RPW is specified) on the 2560,
3525, or 5425, in this case, however, this operand
can be specified in the DTFCD and CDMOD for the
associated punch file.

CRDERR=RETRY

Include this operand if error retry routines for the
2540 and 2520 punch-equipment check are included
in the module. Whenever this operand is specified,
any DTF used with the module must also specify the
same operand. This operand does not apply to an
input or a combined file.

CTLCHR={ASA | YES}

Include this operand if first character stacker select
control is used. Any DTF to be used with this mo-
dule must have the same operand. If CTLCHR is
included, CONTROL must not be specified. This
operand does not apply to a combined file or to an
input file.

DEVICE={2540 | 1442 | 2501 | 2520 | 2560P |
2560S | 2596 | 3504 | 3505|3525 |
5425P | 5425S | 3881}
Include this operand to specify the 1/0 device used
by the module. The "P" and "'S" included with the
"2560" and "'5425" parameters specify primary or
secondary input hoppers; regardless of which is spec-
ified, however, the module generated will handle
DTFs specifying either hopper.

Any DTF to be used with this module must have the
same operand (except as just noted concerning the
"P" and "'S" specification for the 2560 or 5425).

FUNC={R|P|I|RP|RW | RPW | PW}

This operand specifies the type of file to be proc-
essed by the 2560, 3525, or 5425. Any DTF used
with the module must have the same operand. R
indicates read, P indicates punch, and W indicates
print.

When FUNC=I is specified, the file will be both
punched and interpreted; no associated file is neces-
sary to achieve this.

RP, RW, RPW, and PW specify associated files;
when one of these parameters is specified for one
file, it must also be specified for the associated
file(s). Associated files can have only one I1/0 area
each.

IOAREA2=YES

Include this operand if a second I/O area is used.
Any DTF used with the module must also include
the IOAREA?2 operand. This operand is not required
for combined files. This operand is not valid for
associated files.

RDONLY=YES

This operand causes a read-only module to be gener-
ated. Whenever this operand is specified, any DTF
used with the module must have the same operand.

RECFORM={FIXUNB | VARUNB | UNDEF}

This operand specifies the record format: fixed-
length, variable-length, or undefined. Any DTF used
with the module must have the same operand. If
TYPEFLE=INPUT, TYPEFLE=CMBND, or
FUNC=I, this operand must be FIXUNB. For the
3881, only RECFORM=FIXUNB is valid. If this
operand is omitted for the 3881,
RECFORM=FIXUNB is assumed.

SEPASMB=YES

Include this operand only if the module is assembled
separately. This causes a CATALR card with the
module name (standard or user-specified) to be
punched ahead of the object deck and defines the
module name as an ENTRY point in the assembly. If
the operand is omitted, the program assumes that the
DTF is being assembled with the problem program
and no CATALR card is punched.

TYPEFLE={INPUT | OUTPUT | CMBND}

This operand generates a module for either an input,
output, or combined file. Any DTF used with the
module must have the same operand. For the 3881,
only TYPEFLE=INPUT is valid. If
TYPEFLE=INPUT is omitted, INPUT is assumed.

WORKA=YES

This operand must be included if records are to be
processed in work areas instead of in I/O areas. Any
DTF used with the module must have the same ope-
rand. This operand is not valid for the 3881.

Standard CDMOD Names

Each name begins with a 3-character prefix (IJC)
and continues with a S-character field corresponding
to the options permitted in the generation of the

module.

CDMOD name = IJCabcde

a = F/RECFORM=FIXUNB (always for INPUT,
CMBND, or FUNC=1 files)
= V RECFORM=VARUNB
U RECFORM=UNDEF

b = A CTLCHR=ASA (not specified if CMBND)
Y~ CTLCHR=YES

CONTROL=YES

CTLCHR or CONTROL not specified

C

Z

¢ = B RDONLY=YES and TYPEFLE=CMBND
C TYPEFLE=CMBND
0)

H RDONLY=YES and TYPEFLE=INPUT
“”TYPEFLE=INPUt

N RDONLY=YES and TYPEFLE=OUTPUT
Z

Z

TYPEFLE=OUTPUT

“WORKA and IOAREA?2 not specified

W WORKA=YES

IOAREA2=YES

WORKA and IOAREA2

WORKA=YES not specified (CMBND file
only)

I
I

B

0 ~ DEVICE=2540, 3881

DEVICE=1442, 2596

DEVICE=2520

DEVICE=2501

DEVICE=2540 and CRDER
DEVICE=2520 and CRDERR
DEVICE=3505 or 3504

DEVICE=3525 and FUNC=R/P or omitted
DEVICE=2560 and FUNC=R/P or omitted
DEVICE=5425 and FUNC=R/P or omitted
DEVICE=3525 and FUNC=RP
DEVICE=3525 and FUNC=RW
DEVICE=3525 and FUNC=PW
DEVICE=3525 and FUNC=1I
DEVICE=3525 and FUNC=RPW
DEVICE=2560 and FUNC=RP
DEVICE=2560 and FUNC=RW
DEVICE=2560 and FUNC=PW
DEVICE=2560 and FUNC=I
DEVICE=2560 and FUNC=RPW
DEVICE=5425 and FUNC=RP
DEVICE=5425 and FUNC=RW
DEVICE=5425 and FUNC=PW
DEVICE=5425 and FUNC=I
DEVICE=5425 and FUNC=RPW

o
]

I
CZZU R " ZIQMOUAWEP»ORX®INUN W~

Subset/Superset CDMOD Names

The following chart shows the subsetting and super-
setting allowed for CDMOD names. All but one of
the parameters are exclusive (that is, do not allow

Part 2. Sequential Access Method 41

supersetting). A module name specifying C
(CONTROL) in the b location is a superset of a
module name specifying Z (no CONTROL or
CTLCHR). A module with the name I[JCFCIWO is a
superset of a module with the name IJCFZIWO. See
IOCS Subset/Superset Names in The Macro
System chapter.

* % x k %
IJCFABBD
VYCIAI
U+ HW2
CI2Z3
Z N 4
0 5
6
7
8
9
A
B
Cc
M
N
0
+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

DTFCN Macro

DTFCN defines an input or output file that is proc-
essed on a 3210 or 3215 console printer-keyboard,
or a display operator console. DTFCN provides
GET/PUT logic as well as PUTR logic for a file.
Enter the symbolic name of the file in the name field
and DTFCN in the operation field. The detail entries
follow the DTFCN header card in any order. Figure
2-4 lists the keyword operands contained in the ope-
rand field.

42 DOS/VS Supervisor and I/0 Macros

BLKSIZE=n

This operand specifies the length of the I/O area; if
the PUTR macro is used (TYPEFLE=CMBND is
specified), this operand specifies the length of the
output part of the I/O area. For the undefined re-
cord format, BLKSIZE must be as large as the larg-
est record to be processed. The length must not ex-
ceed 256 characters.

If the console buffering option is specified at system
generation time and the device is assigned to
SYSLOG, physical IOCS can increase throughput
for each actual output record not exceeding 80 char-
acters. This increase in throughput results from start-
ing the output I/O command and returning to the
program before output completion. Regardless of
whether or not output records are buffered (queued
on an I/O completion basis), they are always printed
or displayed in a first-in-first-out (FIFO) order.

DEVADDR={SYSLOG | SYSnnn}

This operand specifies the symbolic unit associated
with the file. In a multiprogramming environment,
DEVADDR=SYSLOG must be specified to obtain
Background (BG), Foreground 1 (F1), Foreground
2 (F2), Foreground 3(F3), or Foreground 4(F4)
prefixes for message identification.
DEVADDR=SYSLOG must be specified if
TYPEFLE=CMBND is specified.

INPSIZE=n
This operand specifies the length of the input part of
the I/0 area for PUTR macro usage.

IOAREA1=name

This operand specifies the name of the I/0O area
used by the file. For PUTR macro usage, the first
part of the I/O area is used for output, and the sec-
ond part is used for input. The lengths of these parts
are specified by the BLKSIZE and INPSIZE ope-
rands respectively. The I/0 area is not cleared be-
fore or after a message is printed, or when a message
is canceled and reentered on the console.

M | DEVADDR = SYSxxx

Symbolic unit for the console used for this file.

M | IOAREA1 = xXXXXXXX

Name of 1/0 area.

O | BLKSIZE = nnn

Length in bytes of I/0 area (for PUTR macro usage, length of
output part of I/0 area). If RECFORM=UNDEZF, max. is 256. If
omitted, 80 is assumed.

O | INPSIZE = nnn

Length in bytes for input part of 1/0 area for PUTR macro usage.

O | MODNAME = xxxxxxx

Logic module name for this DTF. If omitted, IOCS generates a
standard name.

The logic module is generated as part of the DTF.

O | RECFORM = xxxxxx

(FIXUNB or UNDEF). If omitted, FIXUNB is assumed.

O | RECSIZE = (nn)

Register number if RECFORM=UNDEF. General registers 2-12,
written in parentheses.

O | TYPEFLE = xxxxxx

(INPUT, OUTPUT, or CMBND). INPUT processes both input
and output. CMBND must be specified for PUTR macro usage. If

omitted, INPUT is assumed.

O | WORKA = YES

GET or PUT specifies work area.

M = Mandatory; O = Optional

Figure 2-4 DTFCN macro

MODNAME=name

This operand specifies the name of the logic module
generated by this DTFCN macro.

If this entry is omitted, standard module names are
generated for the logic module.

A module name must be given when two phases
(each containing a DTFCN macro) are link-edited
into the same program. Under such conditions, omis-
sion of this operand results in unresolved address
constants.

RECFORM={FIXUNB | UNDEF}

This operand specifies the record format of the file:
fixed length or undefined. FIXUNB must be speci-
fied if TYPEFLE=CMBND is specified. FIXUNB is
assumed if the RECFORM operand is omitted.

RECSIZE=(r)

For undefined records, this operand is required for
output files and is optional for input files. It specifies
a general register (2-12) that contains the length of
the record. On output, you must load the length of
each record into the designated register before you
issue a PUT macro. If specified for input files, IOCS
provides the length of the record transferred to stor-
age.

TYPEFLE={INPUT | OUTPUT | CMBND}

This operand specifies a file as input, output, or
combined. If INPUT is specified, code is generated
for both input and output files. If OUTPUT is speci-
fied, code is provided for output files only.

CMBND must be specified if you use the PUTR
macro. CMBND specifies that coding be generated
for both input and output files; in addition, coding is
generated to allow usage of the PUTR macro to
ensure that messages requiring operator action are

Part 2. Sequential Access Method 43
T

not deleted from the console. When CMBND is
specified, DEVADDR=SYSLOG must also be speci-
fied.

WORKA=YES

This operand indicates that a work area is used with
the file. A GET or PUT macro moves the record to
or from the work area. A PUTR macro moves the
record from and to the work area.

DTFDI Macro

The DTFDI macro provides device independence for
system logical units. If several DTFDI macros are
assembled within one program and all of them have
the same RDONLY condition, only one logic mo-
dule (DIMOD) is required. Therefore, DTFDI proc-
essing requires fewer parameters and less storage
than multiple LIOCS macros. It allows you to
change device assignments without reassembling the
logic module.

The DTFDI macro should always be used to read
SYSIPT data if the program migth be invoked by a
catalogued procedure.

The restrictions on DTFDI processing are:

e Only fixed unblocked records are supported.
¢ Only forward reading is allowed.

« In a multivolume diskette file, new volumes are
fed automatically.

o The last volume of a multivolume diskette output
file will be ejected automatically, but the last
volume of a multivolume diskette inpur file will
not.

« If DTFDI is used with diskettes, special records
(deleted or sequentially relocated records) on
input files are skipped and not passed to the
user.

« Rewind options are not provided.

« Combined file processing is not supported for
reader-punches.

« Reading of cards is restricted to the first 80
bytes per card.

« The CNTRL and PRTOV macros cannot be
used with this macro.

44 DOS/VS Supervisor and 1/0 Macros

o Reading, writing, or checking of standard or
user-standard labels for tape/disk is not support-
ed.

o If ASA control character code is used in a multi-
tasking environment and more than one DTF
uses the same module with RDONLY=YES,
overprinting may occur.

« If DTFDI is used with DASD or diskettes, FOPT
SYSFIL must have been specified at system gen-
eration time.

The symbolic name of the file should be entered in
the name field and DTFDI in the operation field.
The entries for the DTFDI macro are discussed here
and summarized in Figure 2-5.

DEVADDR={SYSIPT | SYSLST | SYSPCH |
SYSRDR}

This operand must specify the symbolic unit associat-

ed with this system file. Only the system names

shown above may be specified. The logical device

SYSLST must not be assigned to the 2560 or 5425.

EOFADDR=name

This operand must specify the name of your end-of-
file routine. It is required only if SYSIPT or
SYSRDR is specified.

IOCS branches to this routine when it detects an
end-of-file condition. In this routine, you can per-
form any operations necessary for the end-of-file
condition (you generally issue the CLOSE or CLOS-
ER macro).

IOCS detects the end-of-file condition by recogniz-
ing the characters /* in positions 1 and 2 of the re-
cord for cards, a tapemark for tape, and a filemark
for disk. If the system logical units SYSIPT and
SYSRDR are assigned to a 5425, IOCS requires that
the /* card, indicating end-of-file, be followed by a
blank card. An error condition results if the records
are allowed to run out without a /* card (and with-
out a / & card, if end-of-job). IOCS detects the
end-of-file condition on diskette units by recognizing
that end-of-data has been reached on the current
volume and that there are no more volumes availa-
ble.

DEVADDR = SYSxxx

(SYSIPT, SYSLST, SYSPCH, or SYSRDR). System logical unit.

IOAREA1 = xXXXXXXX

Name of first [/O area.

EOFADDR = xxxxxxxx

Name of your end-of-file routine.

ERROPT = xxXxXxXx

(IGNORE, SKIP, or name of your error routine). Prevents termi-
nation on errors.

IOAREA2 = XXXXXXXX

If two 1/0 areas are used, name of second area.

IOREG = (nn)

Register number. If omitted and 2 I/O areas are used, register 2 is
assumed. General registers 2-12, written in parentheses.

MODNAME = XxXXXXXXX

DIMOD name for this DTF. If omitted, IOCS generates a stand-
ard name.

RDONLY = YES

Generates a read-only module. Requires a module save area for
each task using the module.

RECSIZE = nnn

No. of chars. in record. Assumed values: 121(SYSLST),
81(SYSPCH), 80(otherwise).

SEPASMB = YES

DTFDI to be assembled separately.

O | WLRERR = xxxxxxxx

Name of your wrong length record routine.

M=Mandatory; O=Optional

Figure 2-5

DTFDI macro

ERROPT={IGNORE | SKIP [name}

This operand does not apply to output files. For
output files for most devices, the job is automatically
terminated after IOCS has attempted to retry writing
the record; for 2560 or 5425 output files, normal
error recovery procedures are followed. This ope-
rand does, however, apply to wrong-length records if
WLRERR is omitted. If both ERROPT and
WLRERR are omitted and wrong-length records
occur, IOCS ignores the error.

ERROPT

specifies the function to be performed
for an error block. If an error is detected
when reading a magnetic tape, a disk
pack, or a diskette volume, IOCS at-
tempts to recover from the error. If the
error is not corrected, the job is termi-
nated unless this operand is included to
specify other procedures to be taken.
The three specifications are described
below.

IGNORE

SKIP

name

indicates that the error condition is to be
ignored. The address of the error record
is made available to you for processing
(see CCB Macro in the chapter
Physical 10CS).

indicates that the error block is not to be
made available for processing. The next
record is read and processing continues.

indicates that IOCS is to branch to your
routine when an error occurs, where you
may perform whatever functions desired
or note the error condition. The address
of the error record is supplied in register
1. The contents of the IOREG register
may vary and should not be used for er-
ror records. Also, you must not issue
any GET instructions in your error rou-
tine. If you use any other IOCS macros,
you must save the contents of register

Part 2. Sequential Access Method 45

14. if RDONLY=YES is specified, you
must also save the contents of register
13. At the end of the error routine, re-
turn to IOCS by branching to the ad-
dress in register 14. The next record is
then made available for processing.

IOAREA1=name

This operand must specify the name of the input or
output area used with the file. The input and/or
output routines transfer records to or from this area.

If the DTFDI macro is used to define a printer file,
or a card file to be processed on a 2540, 2560, 3525,
or 5425, the first byte of the output area must con-
tain a control character.

IOAREA2=name

Two input or output areas can be aliotted for a file
to permit overlapped GET or PUT processing. If this
operand is included, it specifies the name of the sec-
ond I/O area.

IOREG={(r) | (2)}

When two 1/0 areas are used, this operand specifies
the general purpose register (2-12) that points to the
address of the next record. For input files, it points
to the logical record available for processing. For
output files, it points to the address of the area
where you can build a record. If omitted, and two
I/O areas are used, register 2 is assumed.

MODNAME=name

This operand may be used to specify the name of the
logic module used with the DTF table to process the
file. If the logic module (DIMOD) is assembled with
the program, the MODNAME parameter in this
DTF must specify the same name as the DIMOD
macro.

If this entry is omitted, standard names are generat-
ed for calling the logic module. If two different DTF
macros call for different functions that can be
handled by a single module, only one standard-
named module is called.

RDONLY=YES

This operand is specified if the DTF is to be used
with a read-only module. Each time a read-only mo-
dule is entered, register 13 must contain the address
of a 72-byte doubleword-aligned save area. Each
task should have its own uniquely defined save area,
and each time an imperative macro (except OPEN,
OPENR or LBRET) is issued, register 13 must con-
tain the address of the save area associated with that

46 DOS/VS Supervisor and 1/0 Macros

task. The fact that the save areas are unique for each
task makes the module reentrant (that is, capable of
being used concurrently by several tasks). For more
information see Shared Modules and Files in the
Multitasking Macros chapter.

If an ERROPT or WLRERR routine issues I/0
macros using the same read-only module that caused
control to pass to either error routine, the program
must provide another save area. One save area is
used for the initial I/O operations, and the second
for 1/0 operations in the ERROPT or WLRERR
routine. Before returning to the module that entered
the error routine, register 13 must be set to the save
area address originally specified for the task.

If the operand is omitted, the module generated is
not reenterable and no save area need be estab-
lished.

RECSIZE=n

This operand specifies the length of the record. For
input files (SYSIPT and SYSRDR), the maximum
allowable record size is 80 bytes. For output files,
RECSIZE must include one byte for control charac-
ters. The maximum length specification is 121 for
SYSLST and 81 for SYSPCH.

For printers and punches, DIMOD assumes a
System/370 control character if the character is not
a valid ASA character. The program checks ASA
control characters before System/370 control char-
acters. Therefore, if it is a valid ASA control charac-
ter (even though it may also be a System/370 con-
trol character), it is used as an ASA control charac-
ter. Otherwise, it is used as a System/370 control
character.

Control character codes are listed in Appendix A,
except for the following:

s 2520 stacker selection codes must be used for
the 1442.

e 2540 stacker selection 3 must not be used if
device independence is to be maintained.

If this operand is omitted, the following is assumed:

80 bytes for SYSIPT

80 bytes for SYSRDR.
81 bytes for SYSPCH.
121 bytes for SYSLST.

The use of assumed values for the RECSIZE ope-
| rand assures device independence. For disk and disk-

ette files, the assumed values are required to assure
device independence.

SEPASMB=YES

Include this operand only if the DTFDI is assembled
separately. This causes a CATALR card with the
filename to be punched ahead of the object deck and
defines the filename as an ENTRY point in the as-
sembly. If the operand is omitted, the program as-
sumes that the DTF is being assembled with the
problem program and no CATALR card is punched.

WLRERR=name

This entry applies only to input files on devices other
than diskette units. It specifies the name of your
routine to which IOCS branches if a wrong-length
record is read on a tape or disk device.

Because only fixed-length records are allowed, a
wrong-length record error condition results when the
length of the record read is not equal to that speci-
fied in the RECSIZE operand. If the length of the
record is less than that specified in the RECSIZE
operand, the first two bytes of the CCB (first 16
bytes of the DTF) contain the number of bytes left
to be read (residual count). If the length of the re-
cord to be read is larger than that specified in the
RECSIZE operand, the residual count is set to zero
and there is no way to compute its size. The number
of bytes transferred is equal to the value of the
RECSIZE operand, and the remainder of the record
is truncated.

The address of the record is supplied in register 1. In
your routine, you can perform any operation except
issuing another GET for this file. Also if you use any
other IOCS macros in your routine, you must save
the contents of register 14. If RDONLY=YES, you
must save the contents of register 13 as well.

At the end of the routine, you must return to IOCS
by branching to the address in register 14. When
control returns to your program, the next record is
made available. If this operand is omitted but a
wrong-length record is detected by IOCS, the action
depends on whether the ERROPT operand is includ-
ed.

» If the ERROPT operand is included, the wrong-
length error record is treated as an error record
and handled according to the ERROPT parame-
ter.

« If the ERROPT operand is omitted, IOCS ig-
nores wrong-length errors and the record is
made available to you. If, in addition to a wrong-

length record error, an irrecoverable parity error
occurs, the job is terminated.

DIMOD Macro

Listed here are the operands you can specify for
DIMOD. The header card contains DIMOD in the
operation field and may contain a module name in
the name field. If the module name is omitted, IOCS
generates a standard module name.

IOAREA2=YES

Include this operand if a second I/O area is needed.
A module with this operand can be used with
DTFDIs specifying either one or two I/O areas. If
the operand is omitted or is invalid, one I/O area is
assumed.

RDONLY=YES

This operand causes a read only module to be gener-
ated. Whenever this operand is specified, any DTF
used with the module must have the same operand.

SEPASMB=YES

Include this operand only if the module is assembled
separately. This causes a CATALR card with the
module name (standard or user-specified) to be
punched ahead of the object deck and defines the
module name as an ENTRY point in the assembly. If
the operand is omitted, the program assumes that the
DTF is being assembled with the problem program
and no CATALR card is punched.

TYPEFLE={OUTPUT | INPUT}

Include this operand to specify whether the module
is to process input or output files. If OUTPUT is
specified, the generated module can process both
input and output files.

Standard DIMOD Names

Each name begins with a 3-character prefix (1JJ)
followed by a 5-character field corresponding to the
options permitted in the generation of the module.
DIMOD name = IJJabcde

a =F
b =C
¢ = B TYPEFLE=OUTPUT(processes both input and

output)
=1 TYPEFLE=INPUT

d =1 IOAREA2=YES
Z IOAREA2=YES is not specified

e = C RDONLY=YES

Part 2. Sequential Access Method 47

= D RDONLY=YES is not specified

Subset/Superset DIMOD Names

The following diagram illustrates the subsetting and
supersetting allowed for DIMOD names. All of the
variable entries allow subsetting. A module name
specifying B is a superset of the mod ile specifying I;
for example, IIJFCBID is a superset of the module
IJJFCIID. See IOCS Subset/Superset Names in
The Macro System chapter.

t o+ o*
IJJFCBTIC
I1 20D

+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

DTFDR Macro

You must use the DTFDR macro to define each
3886 file in your program. This macro defines the
characteristics of the file, the format record to be

loaded into the 3886 when the file is opened, and
the storage areas and routines used. Enter the sym-

bolic name of the file in the name field and DTFDR

in the operation field.
The entries of the DTFDR Macro are discussed

here and illustrated in Figure 2-6.

Besides the DTFDR Macro, the following declara-
tive macros are required for a 3886 file:

DRMOD Generate the logic module to process
the file.

DFR Define attributes common to a group of
lines described in one format record.

DLINT Describes the individual line in the for-

mat record.

48 DOS/VS Supervisor and 1/0 Macros

DEVADDR=SYSnnn

Specifies the symbolic unit to be associated with the
logical file. The symbolic unit (SYSnnn) is associat-

ed with an actual I/O device through the job control
ASSGN statement.

FRNAME =phasename
Specifies the phase name of the format record to be
loaded when the file is opened.

FRSIZE=number

Specifies the number of bytes to be reserved in the
DTF expansion for format records. The number
must equal at least the size of the largest DFR macro
expansion and its associated DLINT macro expan-
sions, plus four. This size is printed in the ninth and
tenth bytes of the DFR macro expansion. For a de-
scription of these macro expansions, see DOS/VS
LIOCS Volume 2, SAM, SY33-8560.

If you use the SETDEV macro in your program to
change format records, you can reduce the library
retrieval time by specifying a size large enough to
contain all the frequently used format records. The
area should then be equal to the sum of the format
record sizes, plus four bytes for each format record.
When the SETDEV macro is issued, the format re-
cord is loaded into this area from the core image
library if it is not already present in the area.

EXITIND=name

Specifies the symbolic name of the one-byte area in
which the completion code is returned to the
COREXIT routine for error handling from an I/0
operation.

M | DEVADDR = SYSxxx Symbolic unit assigned to 3886 optical character reader.

M | FRNAME = xxxxxxxx Phase name of format record to be loaded upon file opening.

M | FRSIZE = nn Number of bytes to be reserved in DTF expansion for format
records.

M | EXITIND = xxxXxxxx Name of completion code return area.

M | IOAREA1 = xxxxXXxX Name of file input area.

M | HEADER = xxxxxxxx Name of area for header record from 3886.

M | EOFADDR = xxxxxxxx Address of your end-of-file routine.

M | COREXIT = xxxXXXxXx Name of your error condition routine.

O | DEVICE = 3886 If omitted, 3886 is assumed.

O | RDONLY = YES If DTF is to be used with read-only module.

0 | MODNAME = socomxx I;a:lrznfai)efslzgnMd(ZEieral’;)]ii.c module for this DTF. If omitted, IOCS

0 | BLKSIZE = nnn t?:z;ho?fé};?;:;z.ﬁe? IOREG1. If omitted, the maximum

O | SEPASMB =YES If DTFDR is to be assembled separately.

o | sETDEV = YES :i fi:;l?i\;r??zz tlls] is;légg.in your program to load a different

M=Mandatory; O=Optional
Figure 2-6 DTFDR macro operands

The meanings of the completion codes are:

Code Meaning

X’FO’ No errors occured. (This code should not be
present when the COREXIT routine re-
ceives control.)

X°’F1’ Line mark station timing mark check error.

X’F2’ Nonrecovery error (operator intervention is
required).

X’F3’ Incomplete scan.

X’F4’ Line mark station timing mark check and
equipment check.

X’F9’ Permanent error.

Note: If any of these errors occur while the file is
being opened, the COREXIT routine does not re-
ceive control and the job is canceled.

IOAREA1=name

Specifies the symbolic name of the input area to be
used for the file. The area must be as large as the
size specified in the BLKSIZE parameter. If
BLKSIZE is not specified, the input area must be
130 bytes.

HEADER=name
Specifies the symbolic name of the 20-byte area to
receive the header record from the 3886.

EOFADDR=name

Specifies the symbolic address of your end-of-file
routine. LIOCS branches to this routine whenever
end of file is detected on the 3886.

Part 2. Sequential Access Method 49

COREXIT=name

Provides the symbolic name of your error correction
routine. LIOCS branches to this routine whenever
an error is indicated in the EXITIND byte.

You can attempt to recover from various errors that
occur on the 3886 through the COREXIT routine
you provide. Your COREXIT routine receives con-
trol whenever one of the following conditions oc-

curs:

« Incomplete scan
« Line mark station timing mark check error
« Nonrecovery error

« Permanent error

Note: If any of these errors occur while the file is
being opened, the COREXIT routine does not re-
ceive control and the job is canceled.

Figure 2-7 describes normal functions for the
COREXIT routine for the various error conditions
and provides the exits that must be taken from the
COREXIT routine.

Error messages are provided to describe errors to the
operator during program execution.

Error Normal COREXIT Function Exit to

XF2 Eliminate the data that has been read from this docu- | Routine in your program to read the next document.
ment and prepare to read the next input document
(See Note 1).

X’F4 or Do whatever processing is necessary before the jobis | Your end-of-job routine.

X'F9 canceled. (See Note 1).

X'F1’ Do any processing that may be required. The docu- Branch to the address in register 14 to return to the
ment may have been read incorrectly; you may want instruction following the macro causing the error.
to delete all data records from the document (see Note
2).

X'F3 Rescan the line using another format record or using Branch to the address in register 14 to return to the

image processing and editing the record in your pro-
gram (see Note 2).

instruction following the macro causing the error.

Note 1: If in your COREXIT routine, you issue an 1/0 macro to the 3886 and an error occurs during that operation, control
is returned to the beginning of the COREXIT routine. You must take precautions in the COREXIT routine to prevent
looping in this situation. If no errors occur, control returns to the instruction following the I/O macro.

Note 2: If, in your COREXIT routine, you issue an I/0 macro to the 3886, control always returns to the instruction following
the macro. You should then check the completion code to determine the outcome of the operation.

Figure 2-7

COREXIT routine functions

50 DOS/VS Supervisor and 1/0 Macros

DEVICE=3886
Indicates that 3886 is the I/O device for this file. If

this parameter is omitted, 3886 is assumed.

RDONLY=YES

This operand is specified if the DTF is used with a
read-only module. Each time a read-only module is
entered, register 13 must contain the address of a
72-byte doubleword-aligned save area. Each DTF
should have its own uniquely defined save area.
Each time an imperative macro (except OPEN,
OPENR, LBRET, SETL, or SETFL) is issued using
a particular DTF, register 13 must contain the ad-
dress of the save area associated with that DTF. The
fact that the save areas are unique or different for
each task makes the module reentrant (that is, capa-
ble of being used concurrently by several tasks). For
more information see Shared Modules and Files in
the Multitasking Macros chapter.

If a COREXIT routine issues I/O macros using the
same read-only module that caused control to pass
to either error routine, your program must provide
another save area. One save area is used for the nor-
mal 1/0 operations, and the second for I/0 opera-
tions in the COREXIT routine. Before returning to
the module that entered the COREXIT routine,
register 13 must contain the save area address origi-
nally specified for that DTF.

If this operand is omitted, the module generated is
not reenterable, and no save area is required.

MODNAME=name

This operand may be used to specify the name of the
logic module used with the DTF table to process the
file. If the logic module (DRMOD) is assembled
with the program, the MODNAME parameter in this
DTF must specify the same name as the DRMOD
macro.

If this entry is omitted, standard names are generat-
ed for calling the logic module. If two different DTF
macros call for different functions that can be
handled by a single module, only one standard-
named module is called.

BLKSIZE=nnn

Specifies the length of the area named by the
IOAREA1 keyword. The length of the area must be
equal to the length of the longest record to be passed
from the 3886.

If this operand is omitted, the maximum length of
130 is assumed.

Note: DOS/VS LIOCS does not allow you to block
records read from the 3886.

SEPASMB=YES

Specifies the DTF is assembled separately. If this
operand is specified, a CATALR card with the file-
name is punched before the deck and defines the
filename as an entry point for the assembly.

SETDEV=YES

Specifies that the SETDEV macro is issued in your
program to load a different format record into the
3886.

DRMOD Macro

Listed here are the operands you can specify for
DRMOD. The first card contains DRMOD in the
operation field and may contain a module name in
the name field.

DEVICE=3886
Specifies that the 3886 is the input device. If this
parameter is omitted, the 3886 is assumed.

SEPASMB=YES

Must be specified if the I/O module is assembled
separately. This entry causes a CATALR card to be
punched preceding the module.

RDONLY=YES

This operand generates a read only module.
RDONLY=YES must be specified in the DTF. For
additional programming requirements concerning
this operand, see the DTFDR RDONLY operand.

SETDEV=YES

Is specified if the SETDEV macro may be used
when processing a file with this I/O module. If
SETDEV=YES is specified in the DRMOD macro
but not in the DTFDR macro, the SETDEV macro
cannot be used when processing that file.

Standard DRMOD Names

Each name consists of eight characters. They are:
IIMZxxDO0. The fifth and sixth characters are varia-
bles as follows:

« If SETDEV=YES is specified, the fifth charac-
ter is S; otherwise it is Z.

« If RDONLY=YES is specified, the sixth charac-
ter is R; otherwise it is Z.

Note: Subsetting/supersetting is allowed with the

Part 2. Sequential Access Method 51

SETDEV keyword, but not with the RDONLY key-
word.

DFR Macro

Two macros are provided for defining documents.
One, the DFR macro, defines attributes common to
a group of line types. The other, the DLINT macro,
defines specific attributes of an individual line type.
As many as 26 DLINT macros can be associated
with one DFR macro as long as the number of line
types plus the number of fields is less than or equal
to 53.

The DFR and associated DLINT macros are used in
one assembly to build a format record module. Only
one DFR with its associated DLINT macros may be
specified in each assembly, and the DFR must pre-
cede all DLINT macros in the assembly. The format
record must be link-edited into the core image li-
brary so that it can be loaded into the 3886 when
the file is to be processed. The format record defines
the types of lines to be read, the fields on the lines,
the editing functions to be used, and the format of
the data record to be passed to your program. For an
example of how to build a format record using DFR
and DLINT macros, see Appendix B.1:. Assembling
a Format Record for the 3886 Optical Character
Reader.

The format record is loaded into the 3886 during
program execution. The initial format record is load-

52 DOS/VS Supervisor and I/O Macros

ed when the file is opened and new format records
can be loaded using the SETDEV macro.

The DFR macro defines attributes common to a
group of line types described by one format record.
DLINT macros describe the individual lines. The
DFR macro is specified first and provides the fol-
lowing information for the format record:

o Default font

« Reject character

« Group and character erase symbol usage
» National symbol set option

« Edit characters

« Serial and batch number control

o National numeric hand print (NHP) character
set options

For more information on any of these topics, see the
discussion for the appropriate parameter.

The format of the DFR macro is shown in Figure
2-8. here are the operands you can specify for DFR.
The header card contains DFR in the operation field
and may contain a module in the name field. If the
module name is omitted, IOCS generates a standard
module name.

M | FONT = xxxx Default font for all codes described by format record.
_ Replacement character for any reject character in the data record

O | REJECT =x read by the 3886. If omitted, X'3F is assumed.

o0 | ERASE = YES Group ar.ld character erase symbols are to be recognized. If omit-
ted, NO is assumed.

0 | CHRSET =n Specifies recognizing character (see Figure2-9). If omitted, 0 is
assumed.

0 |EDCHAR = x, ...) Cha'lracters that may be delgted from any field that is read. If
omitted, no character deletion occurs.

o |BCH=n Batc}.l numbering is to be performed by 3886. If used, BCHSER is
invalid.

o0 | BCHSER =n Both t.>a.tch afld serial numbering are to be performed. If specified,
BCH is invalid.
European Numeric Hand Printing (ENHP) characters 1 and 7 are

O | NATNHP = YES used. If omitted, NO is assumed, indicating that Numeric Hand
Printing (NHP) character 1 + 7 are used.

M=Mandatory; O=Optional

Figure 2-8 DFR macro operands
OCR-A OCR-B
Numeric Numeric | Alphameric
Mode Alphameric Modes Mode Mode
Highspeed Mode 1 Hexa- Format
Printers or (Highspeed) | Mode 2 Highspeed Printers decimal | Record
Typewriters | Printer) (Typewriter) | or Typewriters Code Codes
$ $ $ $ $ 58 00
£ £ £ £ £ 58 01
¥ ¥ ¥ ¥ ¥ 5B 02
N N N 78
$ ha h $ $ 5B 03
R R R 5B
k K k 7B
/] g ? 7C 04
&] % U Note 58
A A A 7B
» n o 7C
0 0 FO 05

Note: In OCR-A font the U is coded as a zero and should be used only in
alphabetic fields.

Figure 2-9

Character set option list

Part 2. Sequential Access Method 53

FONT=code
Specifies the default font for all fields described by

the format record. The default font is used to read a
field unless another font is specified for an individual

field through the DLINT macro. This is the only
required operand in the DFR macro. The valid
codes and the fonts they represent are:

Code Font

NUMA Numeric OCR-A font

ANAL1 Alphameric OCR-A font (model)
ANA2 Alphameric OCR-A font (mode2)
NUMB Numeric OCR-B font (mode3)
ANBI1 Alphameric OCR-B font

NHP1 Numeric hand printing (normal mode)
NHP2 Numeric hand printing (verify mode)
GOTH Gothic font

MRKA Mark OCR-A font

MRKB Mark OCR-B font

For a description of these fonts, see IBM 3886
Optical Character Reader Component Description
and Operating Procedures, GA21-9147.

REJECT=character

Indicates the character that is to be substituted in the
data record for any reject character read by the de-
vice. If this parameter is omitted, X'3F’ is assumed.
Reject characters are characters that are not recog-
nizable by the device.

Note: This note applies to the keywords REJECT
and EDCHAR. Apostrophes enclosing the character
are optional for all characters except special charac-
ters used in macro operands. For a description of
these characters, see OS/VS and DOS/VS Assem-
bler Language, GC33-4010.

ERASE={YES | NO}

Specifies whether group and character erase symbols
are to be recognized as valid symbols. If this ope-
rand is not specified, NO is assumed. For more in-
formation on group and character erase symbols, see
IBM 3886 Optical Character Reader Component
Description and Operating Procedures, GA21-9147.

54 DOS/VS Supervisor and 1/0 Macros

CHRSET={0|1]2|3]4]|5}%

Specifies which one of the options shown in Figure
2-9 is to be used for recognizing characters. If this
operand is not entered, 0 is assumed.

EDCHAR=(x,...)

Specifies up to six characters that may be deleted
from any field that is read. The EDCHAR parameter
in the EDITn keyword in the DLINT macro controls
this function for individual fields. If this operand is
omitted, no character deletion is performed. See the
note under the REJECT parameter for characters
that must be specified in quotes. For example, to
specify the characters &, >, and), you would code
EDCHAR=(&’,>")").

BCH=i{1|2]3}

Indicates that batch numbering is to be performed
by the 3886. Specifying 1, 2, or 3 indicates that doc-
uments routed to a stacker are to be batch num-
bered. Specifying 1 indicates stacker A, 2 indicates
stacker B, 3 indicates both stackers. If this operand
is entered, the BCHSER operand is invalid. If nei-
ther BCH nor BCHSER are entered, no batch num-
bering is performed. This parameter is valid only if
the serial numbering feature is installed on the 3886.
For more information on batch numbering, see /BM
3886 Optical Character Reader Component De-
scription and Operating Procedures, GA21-9147.

BCHSER={1]|2 |3}

Indicates that both batch and serial numbering are to
be performed by the 3886. Specifying 1, 2, or 3
indicates that documents routed to a stacker are to
be batch and serial numbered. Specifying 1 indicates
stacker A, 2 indicates stacker B, 3 indicates both
stackers. If this operand is entered, the BCH ope-
rand is invalid. If this operand is omitted, batch and
serial numbering are not performed. This parameter
is valid only if the serial numbering feature is in-
stalled on the 3886. For more information on batch
and serial numbering, see IBM 3886 Optical
Character Reader Component Description and
Operating Procedures, GA21-9147.

NATNHP={YES | NO}

Specifies which of the numeric hand printing charac-
ter set options are used for the numbers 1 and 7.
YES indicates that the European Numeric Hand
Printing (ENHP) characters 1 and 7 are used; NO
indicates the Numeric Hand Printing (NHP) charac-
ters 1 and 7 are used. If this operand is not entered,
NO is assumed.

M |LFR = nn Line format record for this line.

M | LINBEG = nn Specifies beginning of a line.

Data record is to be in image mode. If omitted, NO (standard

O | IMAGE = YES mode) is assumed.

Indicates an area on the document line that is to be ignored by the

O | NOSCAN = (n,n) 3886

Describes a field in a line. n in the FLD keyword may be from 1
O | FLDn = (n,n,NCRIT,xxx) to 14, if specified, a corresponding EDITn keyword must follow
each FLDn keyword.

Specifies editing functions to be performed on the data by 3886.
O | EDITn = (xxxxxx,EDCHAR) | A corresponding FLDn keyword must precede each EDITn key-
word.

Indicates last DLINT macro for the format record. If omitted,

O | FREND = YES NO is assumed meaning that further DLINT macros follow.

M=Mandatory; O=optional

Figure 2-10 DLINT macro operands

Part 2. Sequential Access Method 55

DLINT Macro

The DLINT macro describes one line type in a for-
mat group and the individual fields in the line. As
many as 26 DLINT macros can be associated with
one DFR macro.

The DLINT macro provides line and field informa-
tion: Line information applies to the entire line; field
information describes each of the fields on the line.
Up to 14 fields can be scanned on each line.

The format of the DLINT macro is shown in Figure
2-10. Listed here are the operands you can specify
for DLINT. The header card contains DLINT in the
operation field and may contain a module field. If
the module name is omitted, IOCS generated a
standard module name.

Line Information Entries

LFR=number

This operand is required. It specifies, the line format
record number for the line. The decimal number
specified must be in the range of 0 through 63.

The line format record describes the format of one
type of line, the line format record number is used to
identify the line format record. This number is speci-
fied in the READ macro when you read a line of
data from a document.

LINBEG=number

This operand is required. It specifies the beginning
of a line. The beginning position is the number of
tenths of an inch from the left edge of the document
to the left boundary of the first field. The limiting
range of this position is 4 to 85.

IMAGE={YES | NO}

This operand specifies whether the data record
should be in standard mode (IMAGE=NO), or im-
age mode (IMAGE=YES). If this operand is not
specified, IMAGE=NO is assumed.

When the standard format is used (IMAGE=NO),
all parameters in the DLINT macro are valid. The
data read from the document line is edited as speci-
fied in the EDITn keywords, the fields in the data
record are created as specified in the FLDn key-
words, and the standard mode data record then con-
tains fixed-length fields of edited data.

The sequence of operations used to build the stand-
ard mode data record in the 3886 is:

56 DOS/VS Supervisor and I/O Macros

1. Recognition of all the characters in the record
takes place.

2. Reject characters are removed and the reject
code is substituted.

3. Edit characters (specified by the EDCHAR key-
word in the DFR macro) are removed from the
data (as specified by the EDITn keywords in the
DLINT macro).

4. Blanks are removed from the data as specified
by the EDITn keywords in the DLINT macro.

5. The length of the fields is checked against the
field length specified, the fields are left- or right-
justified and padded or truncated as specified in
the DLINT macro, and error indicators are set if
errors have been detected.

When the image mode is used IMAGE=YES), all
EDITn keywords and the field length parameter in
the FLDn keyword are invalid. The image mode
data record then contains 14 two-byte field length
entries followed by the data fields. Image mode is
provided to support exception application require-
ments where the standard fixed-field edited format
does not suffice. It is also applicable for error han-
dling purposes by rereading the same line.

The sequence of operations used to build the image
mode data record in the 3886 is:

1. Recognition of all the characters in the record
takes place.

2. Reject characters are removed and the reject
code is substituted.

3. Each field read and the field lengths are placed
in the data record.

NOSCAN=(field-end,...)

Specifies an area on the document line that is to be
ignored by the 3886. Field-end is a decimal number
indicating the number of tenths of an inch from the
left edge of the document to the right end of the
NOSCAN field. The field immediately to the left of
the NOSCAN field must end with an address delimi-
ter rather than a character delimiter.

Field Information Entries

FLDn=({address-delimiter | character-delimiter}
[,field-length][,§NCRIT | font-code |
NCRIT,font-code}])

Describes each of the fields in a line. The n suffix is

a number from 1 through 14 and the parameters are
the same for keywords FLD1 through FLLD14. The
following rules apply when specifying these key-
words:

« Fields may be described in any order in the
macro.

« Each EDITn parameter must follow its associat-
ed FLDn parameter.

« The n suffix need not be 1 for the first field in
the line; however, the n suffix must increase for
each field from left to right on the document
line.

address-delimiter is a decimal number that specifies
the number of tenths of an inch from the left edge of
the document to the right end of the field being de-
fined. The last field in a line must end with an ad-
dress delimiter.

character delimiter specifies the character that indi-
cates the end of a field. The character delimiter is
not considered part of the data; it is not included in
the data record nor used in determining the length of
the field.

Apostrophes enclosing the characters are optional
for all characters except 0-9, and the special charac-
ters used in macro operands. For these characters,
the apostrophes are required. For a description of
these characters, see OS/VS and DOS/VS As-
sembler Language, GC33-4010.

If a field ends with a character delimiter, the next
field must be read using a font from the same font
group. The font groups are:

« NPHI1, NPH2, GOTH

« ANAI1, ANA2, NUMA, MRKA
« NUMB, MRKB

+ ANBI1

field-length is a decimal number specifying the
length of the field in the edited record. The length
specified cannot be less than 1 or more than 127. If
IMAGE=NO is specified, this parameter is required;
if IMAGE=YES is specified, this parameter is inval-
id. The length specified in this parameter refers to
the length of the field after any EDITn options have
been performed. The sum of the field lengths for a
line cannot be greater than 130.

NCRIT indicates that this is not a critical field. If
this parameter is omitted, the field is assumed to be
critical.

font-code specifies a font for this field, different
from the font specified in the DFR macro. If this
parameter is not specified, the font specified in the
DFR macro is used for the field. For information
about the valid codes, see the DRF macro descrip-
tions.

EDITn=({code | EDCHAR | code, EDCHAR})
Describes the editing functions to be performed on
the data by the 3886.

The parameters are the same for keywords EDIT1
through EDIT14. There must be a FLDn keyword
corresponding with each EDITn keyword you
specify. If an EDITn keyword is specified, a code,
EDCHAR, or both must be specifiecd. When image
mode is used, the EDITn keywords are invalid.

When the editing functions are completed and the
field is greater than the specified length, the field is
truncated from the right and the wrong length field
indicator is set on in the header record. If only
blanks are truncated, the wrong length field indica-
tor is not set.

code specifies the blanks to be removed and the fill
characters to be added to the field, if any. The valid
codes and their meanings are:

Code Meaning

HLBLOF All high- and low-order blanks are re-
moved, the data is left justified, and the
field is padded with blanks on the right
(see Note).

ALBLOF All blanks are removed from the data, the
data is left-justified, and the field is pad-
ded with blanks on the right.

NOBLOF No blanks are removed, the data is left-
justified, and the field is padded on the
right with blanks.

HLBHIF All high- and low-order blanks are re-
moved, the data is right-justified, and the
field is padded to the left with EBCDIC
zeros (X’F0Q’) (see Note).

ALBHIF All blanks are removed, the data is right-

justified, and the field is padded with
EBCDIC zeros (X’F0’) on the left.

Part 2. Sequential Access Method 57

ALBNOF All blanks are removed; the data must be
equal in length to the field length speci-
fied. No padding is done.

Note: Two consecutive embedded blanks is the max-
imum number sent.

If the EDITn keyword is omitted or if EDITn is
specified and the code is omitted, ALBLOF is as-
sumed.

EDCHAR indicates that the characters specified in
the EDCHAR keyword of the DFR macro are to be
deleted from the field. If this parameter is omitted,
the characters are not deleted.

FREND={YES | NO}

Indicates whether this is the last DLINT macro for
the format record. NO indicates more DLINT mac-
ros follow; YES indicates this is the last one. If this

keyword is omitted, NO is assumed.

DTFDU Macro

The DTFDU macro defines sequential (consecutive)
processing for a file contained on a diskette. Note
that special records (deleted or sequential relocated
records) on an input file are skipped, and not passed
to the user. The DTFDU macro cannot be used
when a diskette file is to be processed under
POWER. In this case, use the DTFDI macro.

A DTFDU entry is included for each sequential in-
put or output diskette file processed in the program.
The DTFDU header entry and a series of detail en-
tries describe the file. Enter the symbolic name of
the file in the name field and DTFDU in the opera-
tion field. The detail entries follow the DTFDU
header card in any order. The entries for the
DTFDU macro are discussed here and are summa-
rized in Figure 2-11.

CMDCHN=nn

This operand is specified to indicate the number of
Read/Write CCWS to be command chained. Valid
entries are 1, 2, 13, or 26; 1 is assumed if this entry
is omitted. For each CCW specified by this operand,
one record is processed (for example, if
CMDCHN=13, 13 records are command chained
and are processed -- read or written -- as a group).
For entries of 2, 13, or 26, either the IOREG ope-
rand or the WORKA operand must be specified.

58 DOS/VS Supervisor and 1/O Macros

DEVADDR=SYSxxx

This operand specifies the symbolic unit (SYSxxx)
associated with the file if an extent statement speci-
fication is not provided. And EXTENT statement is
not required for single-volume input files. If an
EXTENT statement is provided, its specification
overrides any DEVADDR specification. SYSxxx
represents an actual I/O device address, and is used
in the ASSGN job control statement to assign the
actual I/0O device address to this file.

A list of symbolic units applying to DTFDU can be
found in the Symbolic Unit Addresses section of
The Macro System chapter.

DEVICE=3540

This operand specifies that the file to be processed is
on the 3540. If this parameter is unspecified, the
3540 is assumed.

EOFADDR=name

This operand specifies the symbolic name of your
end-of-file routine. IOCS automatically branches to
this routine on an end-of-file condition. You can
perform any operations required for the end-of-file
in this routine (you will generally issue the CLOSE
or CLOSER macro).

ERREXT=YES

This operand enables your ERROPT routine to re-
turn to DUMODFx with ERET macro. It also ena-
bles permanent errors to be indicated to your pro-
gram. For ERREXT facilities, the EROPT operand
must be specified. However, to take full advantage
of this option give the ERROPT=name operand.

ERROPT={IGNORE | SKIP | name}

Specify this operand if you don’t want a job to be
terminated when a permanent error cannot be cor-
rected in the diskette error routine. If attempts to
reread a chain of records are unsuccessful, the job is
terminated unless the ERROPT entry is included.
Either IGNORE, SKIP, or the name of an error rou-
tine can be specified. The functions of these parame-
ters are described below.

IGNORE The error condition is ignored. The
records are made available for proc-
essing. On output, the error condi-
tion is ignored and the records are

considered written correctly.

X EOFADDR = XXXXXXXX ONrilill;l)e of your end-of-file routine. (Required for input
X X IOAREA 1 =xxxxxxxx Name of first I/0 area
X X RECSIZE=nnn Length of one record in bytes
X % CMDCHN=nn Nurpber of read/write CCWs (records) to be command-
chained
_ Symbolic unit, required only when not provided on an
X X DEVADDR=5YSxxx EXTENT statement
X X DEVICE=3540 Must be 3540. If omitted, 3540 is assumed.
_ Indicates additional errors and ERET desired. Specify
X X ERREXT=YES ERROPT
X X ERROPT =xXXXXXXX IGNORE, or SKIP, or name of error routine
X X FEED=xxx YES means fe(?d at end-of-file. NO means no feed, YES
assumed if omitted.
X FILESEC=YES YES means create file secure.
X X IOAREA2=XXXXXXXX Name of second I/O area, if two areas are used.
X X IOREG=(nn) Reglster number. Omit WORKA. General register 2 to
12 in parentheses.
_ Name of DUMODFx logic module for this DTF. If
X X MODNAME=xxxxxxxx omitted, IOCS generates standard name.
Generates a read-only module. Requires a module save
X X RDONLY=YES area for each task using the module.
X X SEPASMB=YES DTFDU is to be assembled separately.
X X TYPEFLE=xxxxxx INPUT or OUTPUT. If omitted, INPUT is assumed.
X VOLSEQ=YES YES means OPEN is to check sequencing of multi-
volume files.
X X WORKA=YES GET or PUT specifies work area. Omit IOREG.
X WRTPROT=YES File wil'] be created with Write-Protect on (cannot be
overwritten).

M=Mandatory; O=Optional

Figure 2-11

DTFDU macro operands

Part 2. Sequential Access Method 59

SKIP No records in the error chain are
made available for processing. The
next chain of records is read from
the diskette, and processing contin-
ues with the first record of that
chain. On output, the SKIP option
is the same as the IGNORE option.

name I0CS branches to your error rou-
tine named by this parameter re-
gardless of whether or not
ERREXT=YES is specified. In this
routine you can process or make
note of the error condition as de-
sired.

IF ERREXT is not specified, register 1 contains the
address of the first record in the error chain. When
processing in the ERROPT routine, reference re-
cords in the error chain by referring to the address
supplied in register 1. The contents of the IOREG
register or work area are variable and should not be
used to process error records. Also, GET macros
must not be issued for records in the error chain. If
any other IOCS macros (excluding ERET if
ERREXT=YES) are used in this routine, the con-
tents of register 13 (with RDONLY) and 14 must be
saved and restored after their use. At the end of the
routine, return control to IOCS by branching to the
address in register 14. For a read error, IOCS skips
that error chain of records, and makes the first re-
cord of the next chain available for processing in the
main program.

If ERREXT is specified, register 1 contains the ad-
dress of a two part parameter list containing the
4-byte DTFDU address and the 4-byte address of
the first record in the error chain. Register 14 con-
tains the return address. Processing is similar to that
described above except for addressing the records in
error.

At the end of its processing, the routine returns to
LIOCS by issuing the ERET macro.

For an input file

« The program skips the error chain and reads the
next chain with an ERET SKIP.

e Or, ignores the error with an ERET IGNORE.

¢ Or, it makes another attempt to read the error
chain with an ERET RETRY.

For an output file

« The program ignores the error condition ERET
IGNORE or ERET SKIP.

o Or, attempts to write the error chain with an
ERET RETRY macro. Bad spot control records

60 DOS/VS Supervisor and 1/0 Macros

(1, 2, 13, or 26 records depending on the
CMDCHN Factor) are written at the current
diskette address, and the write chain is retried in
the next 1, 2, 13, or 26 (depending on the
CMDCHN factor) sectors on the disk.

Also, for an output file, the only acceptable par-
ameters are IGNORE or name.

The DTFDU error options are shown in figure 2-12.
The figure is divided into two parts: the lower part
lists the error conditions which you specify in the
DTF, and the upper part shows the action resulting
from these specifications when an error occurs.

FILESEC=YES

This operand applies to output only. On output it
causes OPEN or OPENR to set the security flag in
the file label. For subsequent input, the security flag
causes an operator message to be written. The oper-
ator must then reply in order to make the file availa-
ble to be read.

FEED={YES | NO}

If YES is specified for this operand, when end of file
is reached, the diskette being processed is fed to the
stacker and a new diskette is fed to the disk drive
(providing another diskette is still in the hopper). If
NO is specified, the diskette is left mounted for the
next job.

IOAREA1=name

This operand specifies the symbolic name of the I/0
area used by the file. IOCS either reads or writes
records using this area. Note that you should provide
an I/O area equal in size to the result obtained from
multiplying the RECSIZE entry by the CMDCHN
entry.

Control is passed
to your error routine
Error record is skipped
Desired
fu::;;i on 4 Error record is ig d

Error record is retried

The job is terminated —l

ERROPT = SKIP X
ERROPT = IGNORE X
ERROPT = name X X
Specifications 3 3
required ERROPT = name
in your ERET SKIP x X x
Ps
rogram ERROPT = name
ERET IGNORE X x
ERROPT = name
ERET RETRY X X
None
L X
1 Input files only
2 Output files only
Figure 2-12 DTFDU error options

IOAREA2 =name

If two I/0O areas are used by GET or PUT, this ope-
rand is specified. Note that you should provide an
I/0 area equal in size to the result obtained from
multiplying the RECSIZE entry by the CMDCHN
entry.

IOREG=(r)

This operand specifies the general purpose register
(2-12) in which IOCS puts the address of the logical
record that is available for processing. At OPEN or
OPENR time, for output files, [OCS puts the ad-
dress of the area where the user can build a record in
this register. The same register can be used for two
or more files in the same program, if desired. If this
is done, the problem program must store the address
supplied by IOCS for each record. If this operand is
specified, omit the WORKA operand.

This operand must be specified if the CMDCHN
factor is more than one for either input or output
and records are processed in one 1/0 area, or if two
1/0 areas are used and records are processed in both
I/0 areas.

MODNAME=name
This operand specifies the name of the logic module
which is to process the file. If the logic module is

assembled with the program, MODNAME must
specify the same name as the DUMODx macro. If
this entry is omitted, standard names are generated
for calling the logic module. If two DTF macros call
for different functions that can be handled by a sin-
gle module, only one module is called.

RDONLY=YES

This operand is specified if the DTF is used with a
read-only module. Each time a read-only module is
entered, register 13 must contain the address of a 72
byte double-word aligned save area. Each task
should have its own uniquely defined save area.
When an imperative macro (except OPEN, OPENR)
is issued, register 13 must contain the address of the
save area associated with the task. The fact that the
save areas are unique for each task makes the mo-
dule reentrant (that is, capable of being used concur-
rently by several tasks).

If an ERROPT routine issues I/O macros using the
same read-only module that caused control to pass
to the error routine, your problem program must
provide another save area. One save area is used for
the normal I/O operations, and the second for
input/output operations in the ERROPT routine.
Before returning to the module that entered the ER-
ROPT routine, register 13 must be set to the save
area address originally specified for that DTF. If this
operand is omitted, the module generated cannot be
reentered and no save area need be established.

RECSIZE=nnn
This operand specifies (in bytes) the length of each
record in the input/output area (1-128 bytes).

SEPASMB=YES

Include this operand only if the DTFDU is assem-
bled separately. This causes a CATALR card with
the filename to be punched ahead of the object deck
and defines the filename as an entry point in the
assembly. If the operand is omitted, the macro as-
sumes that the DTF is being assembled with the
problem program and no CATALR card is punched.

TYPEFLE={INPUT | OUTPUT}
This operand indicates whether the file is an input or
output file.

VOLSEQ=YES

This operand is only valid on input. If specified, it
causes OPEN or OPENR to ensure that the volume
sequence numbers (if specified) of a multi-volume

Part 2. Sequential Access Method 61

file are in ascending and sequential order. If the
volume sequence number of the first volume proc-
essed is blank, no volume sequence checking is done.

WORKA=YES

If 1/0 records are processed, or built, in work areas
instead of in the I/O areas, specify this operand.
You must set up the work area in storage. The ad-
dress of the work area, on a general register contain-
ing the address, must be specified in each GET or
PUT macro. For a GET or PUT macro, IOCS moves
the record to or from, the specified work area.

When this operand is specified, the IOREG operand
must be omitted.

WRTPROT=YES

This operand indicates that an output file will be
created with Write-Protect (meaning that the file
cannot be overwritten). For 3540 support, this has
no affect on subsequent input processing of the file.

DUMODFx Macro

Two categories of file characteristics are defined for
diskette unit module generation macros:

« DUMODFI - Diskette Unit MODule, Fixed
length records, Input file.

« DUMODFO - Diskette Unit MODule, Fixed
length records, Output file.

The macro operation and the keyword operands
define the characteristics of the module. The ope-
rands for the two macros are explained in the follow-
ing section.

DUMODFx Operands

A module name can be contained in the name field
of this macro. The macro operation is contained in
the operation field, either DUMODFI (for input) or
DUMODFO (for output). The operands are con-
tained in the operand field.

ERREXT=YES

Include this operand if permanent errors are re-
turned to a problem program ERROPT routine or if
the ERET macro is used with the DTF and module.
The ERROPT operand must be specified for this
module.

ERROPT=YES

This operand applies to both DUMODFx macros.
This operand is included if the module handles any
of the error options for an error chain. Logic is gen-

62 DOS/VS Supervisor and 1/0 Macros

erated to handle any of the three options (IGNORE,
SKIP, or name) regardless of which option is speci-
fied in the DTF. This module also processes any
DTF in which the ERROPT operand is not speci-
fied.

If this operand is not included, your program is can-
celed whenever a permanent error is encountered.

RDONLY=YES

This operand causes a read-only module to be gener-
ated. If this operand is specified, any DTF used with
this module must have the same operand.

SEPASMB=YES

Include this operand only if the logic module is as-
sembled separately. This causes a CATALR card
with the module name (standard or user-specified)
to be punched ahead of the object deck, and defines
the module name as an ENTRY point in the assem-
bly. If the operand is omitted, the program assumes
that the logic module is being assembled with the
problem program and no CATALR is punched.

Standard DUMOD Names

Each name begins with a 3-character prefix (IJN)
and continues with a 5-character field corresponding
to the options permitted in the generation of the
module, as shown below. DUMODFx name =
[JNabcde

a =D
b =1 DUMODFI
= O DUMODFO
¢ = C ERROPT=YES and ERREXT=YES
= E ERROPT=YES
= Z neither is specified
d =7
Y RDONLY=YES

@
]

Z RDONLY not specified

Subset/Superset DUMOD Names
The fellowing diagram illustrates the subsetting and
supersetting allowed for DUMOD names.

*

IJND

O - %
NI Q4+
N
N O*

+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

DTFMR Macro

DTFMR defines an input file processed on a 1255,
1259, or 1419 magnetic character reader, or a 1270
or 1275 optical character reader/sorter. Some gener-
al characteristics of such processing are discussed
below before the parameters of the DTFMR macro
are described.

Characteristic of Magnetic Ink Character Reader
(MICR) and Optical Reader/Sorter Processing
Important general characteristics of Magnetic Ink
Character Reader (MICR) and Optical
Reader/Sorter processing are given in the
DOS/VS Data Management Guide, GC33-5372.

In addition, examples of GET-PUT document proc-
essing and multiple 1419 operation (either all single
or dual) will be found in DOS/VS System
Generation, GC33-5377.

MICR Document Buffer

The MICR Document Buffer provides you with
processing status indicators and detected error indi-
cators. Before you can begin any MICR program-
ming, you must be aware of the purpose and format
of this buffer.

Figure 2-13 is a storage map of the document buffer.
The minimum number of document buffers you may
specify is 12, and the maximum number is 254. Be-
fore any data is read into the document buffer, logi-
cal IOCS sets the entire buffer, including the status
indicators, to binary zeros. The processing macro--
GET if your program uses one MICR device, or
READ if your program uses more than one MICR
device--then engages the device, and documents are
read into the 1/0 area until the MICR device is out
of documents, or until the I/O area is filled. The
external interrupt routine of the supervisor continu-
ally monitors the reading of data so that processing
of other document buffers is never disrupted. At the
completion of each read for a MICR document, the
external interrupt routine interrupts your program to
give control to your stacker selection routine which
then determines pocket selection for that document.

The MICR document buffer format is given in
Appendix E.

Stacker Selection Routine for MICR

Your stacker selection routine resides in your pro-
gram area and gains control of the system whenever
a document is ready to be stacker selected. This rou-
tine determines the pocket (stacker) selected to re-
ceive the document and whether batch numbering
update is to be performed (1419 only). The entry
point is specified in the DTFMR operand
EXTADDR=name. All registers are saved upon
exiting from, and restored upon returning to, your
program. The use of the general registers in this rou-
tine is as follows:

Register Comment

0-4,6,8-15 These registers are available to your
stacker selection routine for any pur-
pose. Because the program can be inter-
rupted at any time, the contents of these
registers are unpredictable.

5 When your stacker selection routine is
entered, this register contains the ad-
dress of the routine. Register 5 should
be utilized as the base register for the
routine.

7 This register always contains the address
of the first byte of the buffer for the
document being selected. Bytes 2 and 3
of the buffer (see Appendix E) indicate
the read status of the document.

Before entering your stacker selection routine, IOCS
aids in stacker selection by setting the entire docu-
ment buffer to binary zeros, reading the document
into the document data area, and posting informa-
tion in bytes 2 and 3. When the stacker selection
routine has determined which pocket to select the
document into, the actual stacker selection command
code for this pocket must be placed into byte 4 of
the document buffer pointed to by register 7. The
final destination of the document is indicated in byte
5 of the buffer. This indication is the same as byte 4
except in the case of a late stacker select, an auto-
selected document, a program malfunction, or a de-
vice malfunction. Any of these results in an I/O
error. The reject code X’CF’ indicating that the doc-
ument is placed in the reject pocket is placed in byte
5.

Part 2. Sequential Access Method 63

Wy

— Beginning of document buffer area (address specified in IOAREAT)

Byte 0-5 buffer status indicators (address specified in IOREG and in register 7 for your stacker selection routine)

Batch numbering updates
Error indicator for MICR device

——— Pocket you selected

Pocket document selected into

r—— Byte 6 - your additional work area

—— Byte xxx ~ document data area

Y

Your work area.

Length is specified in ADDAREA this area. Length is specified in RECSIZE.” |

Document records right-adjusted within

—_—
—_— e ——

I}

Maximum Length is 256 Bytes L

BB Indicates the normal condition (no errors - all fields read) when the document is being processed and the stacker selection is
complete to pocket 5 and batch numbering update was performed (1419 model 1 or 3).

Number of buffers is limited only by the amount of storage available (see BUFFERS operand).

Figure 2-13 MICR document buffer

The command codes to be used to select pockets

are:

Pocket

A

o}

X
]
WeoooNoOYT A WN-=O

ect

Code

X°AF’

X*BF°

X’ O0F°*
X*1F°
X*2F°
X*3F?
X’ 4F°
X’ 5F°
X*6F"*
X*7F?
X’8F°*
X*9F°
X°CF’

(1270, except

models 1 and 3, 1275,
and 1419 only)

(1275 and 1419

only)

(except 1270
models 1 and 3)

64 DOS/VS Supervisor and 1/0 Macros

An invalid code placed in byte 4 puts the document
into the reject pocket and posts bit 1 of byte 0 of the
buffer. Byte 0, bit 2 of the next buffer is posted.

Before returning to a 1419 external interrupt routine
via the EXIT macro with the MR operand (required

method), you can request a batch numbering update.
You can do this only within your 1419 stacker selec-
tion routine by turning on byte 1, bit 0 in the current
document buffer (OI 1(7), X’80’).

For the 1419 (dual address), you cannot obtain
batch numbering update on an auto-selected docu-
ment (byte 2, bit 6 on). Such requests are ignored
by the external interrupt routine.

Timings for Stacker Selection:

Because the MICR readers continuously feed docu-
ments while engaged, it is necessary to reinstruct the
readers within a certain time limit after a read com-
pletion is signaled by an external interrupt. This peri-
od is generally called minimum stacker selection
time. This available time depends on the reader

model, the length of documents being read, single or
dual address adapter (1419, 1275), and the fields to
be read on the 1419 or 1275 (dual address) only.
Refer to the appropriate MICR publications listed in
the latest SRL Newsletter for a more complete de-
scription of device timings.

Failure to reinstruct the 1255, 1259, 1270, 1275, or
1419 (single address adapter) within the allotted
time causes the document(s) processed after this
time to be auto-selected into the reject pocket (late
read condition). Failure to reinstruct the 1419 or
1275 (dual address adapter) within the allotted time
causes the document being processed to be auto-
selected into the reject pocket (late stacker-select
condition).

Programming Considerations for 1419 or 1275 Stack-
er Selection

The stacker selection routine operates in the pro-
gram state with the protection key of its program
and with I/O and external interruptions disabled. If
your stacker selection routine fails to return to the
supervisor (loops indefinitely), there is no possible
recovery. If such looping occurs, the system must be
re-IPLed to continue operation. It is therefore re-
commended that you thoroughly debug your stacker
selection routine in a dedicated environment.

In your stacker selection routine, no system macro
other than EXIT MR can be used. The routine runs
with an all zero program and system mask, but the
machine check interruption is enabled and a program
check cancels the program.

Note: Any modification of floating point registers
without saving and restoring them may cause errone-
ous processing by any concurrent program using
floating-point instructions.

When processing with the dual address adapter
(1419 or 1275), you have more time for your stack-
er selection routine. The only additional processing
you must do within the main line is to check byte 2,
bit 0, of the document buffer for stacker selection
errors.

Note: Batch numbering update is not performed with
the stacker selection of auto-selected documents,
and batch numbering is not available on the 1275
optical reader/sorter.

Checkpointing MICR Files

This topic is discussed in the section Notes for
DASD and MICR Files under CHKPT Macro in
the Supervisor Macros chapter.

DTFMR Operands

Enter the symbolic name of the file in the name field
and DTFMR in the operation field. The entries are
discussed here and illustrated in Figure 2-14.

ADDAREA=n

This operand must be included only if an additional
buffer work area is needed. The parameter n speci-
fies the number of additional bytes you desire in
each buffer. The sum of the ADDAREA and REC-
SIZE specifications must be less than or equal to
250. This area can be used as a work area and/or
output area and is reset to binary zeros when the
next GET or READ for a file is executed.

ADDRESS=DUAL

This operand must be included only if the 1419 or
1275 contains the dual address adapter. If the single
address adapter is used, this operand must be omit-
ted.

BUFFERS=1{25 | n}

This operand is included to specify the number of
buffers in the document buffer area. The limits for n
are 12 and 254. 25 is assumed if this operand is
omitted.

DEVADDR=SYSnnn

This operand specifies the symbolic unit to be asso-
ciated with the file. The symbolic unit represents an
actual I/O device address used in the ASSGN job
control statement to assign the actual 1/0 device
address to the file.

ERROPT=name

This operand may be included only if the CHECK
macro is used. The parameter name specifies the
name of the routine that the CHECK macro branch-
es to if any error condition is posted in byte 0, bits
2-4 (and bit 5, if no control address is specified in
the CHECK macro) of the buffer status indicators.
It is your responsibility to exit from this routine (see
the CHECK Macro in the Magnetic Reader
Macros section later in this chapter).

Part 2. Sequential Access Method 65

DEVADDR=SYSnnn

Symbolic unit assigned to the magnetic character reader.

IOAREA1 = XXXXXXXX

Name of the document buffer area.

ADDAREA=nnn

Additional document buffer area (ADDAREA+RECSIZE=250).
If omitted, no area is alloted.

ADDRESS=DUAL

Must be included only if the device is a 1419 or 1275 with a dual
address adapter.

BUFFERS=nnn

Specifies the number of buffers needed. If omitted, 25 is assumed.

ERROPT=xXXXXXXX

Name of your error routine. Required only if the CHECK macro
is used.

Name of your stacker selection routine. Required only if

O | EXTADDR=XXXXXXXX SORTMDE=ON.

O | IOREG=(nn)

Pointer register number. If omitted, register 2 is assumed. General
registers 2-12, written in parentheses.

O | MODNAME=xxxxxxxx .
dule is referenced.

Name of your I/0 module. Required only if a nonstandard mo-

O | RECSIZE=nnn

Specifies the maximum record length. If omitted, 80 is assumed.

O | SECADDR=SYSnnn

Specifies secondary symbolic unit assigned to (dual address) 1275
or 1419. Required only if LITE macro is used.

O | SEPASMB=YES should be omitted.

Required only if the DTF is assembled separately; otherwise it

O | SORTMDE=xxx

ON-1255/1259/1270 or program sort mode used; OFF-1419/1275
sort mode used. If omitted, ON is assumed.

M=Mandatory; O=Optional

Figure 2-14 DTFMR macro operands
EXTADDR=name

This operand specifies the name of your stacker se-
lection routine to which control is given when an
external interrupt is encountered while reading and
sorting the documents internally. The only case
when this operand may be omitted is when
SORTMDE=OFF is specified.

IOAREA1=name

This operand specifies the name of the document
buffer area used by the file. Figure 2-13 shows the
format of the document buffer area.

66 DOS/VS Supervisor and I/0 Macros

IOREG={(2) | (N}

This operand specifies the general-purpose register
(2-12) that the IOCS routines and your routines use
to indicate which individual document buffer is
available for processing. IOCS puts the address of
the current document buffer in the specified register
each time a GET or READ is issued. Register 2 is
assumed if this operand is omitted.

The same register may be specified in the IOREG
entry for two or more files in the same program, if
desired. In this case, your program may need to store
the address supplied by IOCS for each record.

MODNAME=name

This operand specifies the name of the logic module
MRMOD. If omitted, IOCS generates the standard
system module name.

RECSIZE={80 | n}

This operand specifies the actual length of the data
portion of the buffer. The record size specified must
be the size of the largest record processed. If this
operand is omitted, a record size of 80 is assumed.
The sum of the ADDAREA and RECSIZE specifica-
tions must be less than or equal to 250.

SECADDR=SYSnnn

This operand specifies the symbolic unit to be asso-
ciated with the secondary control unit address if the
1419 or 1275 with the dual address adapter and
LITE macro are iutilized. The operand should be
omitted if the pocket LITE macro is not being used.

SEPASMB=YES

Include this operand only if the DTFMR is assem-
bled separately. This causes a CATALR card with
the filename to be punched ahead of the object deck
and defines the filename as an ENTRY point in the
assembly. If the operand is omitted, the program
assumes that the DTF is being assembled with the
problem program and no CATALR card is punched.

SORTMDE={ON | OFF}

This operand specifies the method of sorting done
on the 1419. SORTMDE=ON indicates that the
program sort mode is being used. SORTMDE=OFF
indicates that sorting is under control of the magnet-
ic character reader. If the operand is omitted, the
program sort mode is assumed.

MRMOD Macro

The first card contains MRMOD in the operation
field and may contain a module name in the name
field. If a module name is omitted, the following
standard module name is generated by IOCS:

IJU;]S)EZZZZ

(S = single address adapter, and D = dual address
adapter). The operands you can specify for
MRMOD are listed below.

ADDRESS={SINGLE | DUAL}

Required only if the dual address adapter is utilized
for the 1419 or 1275. If omitted, the single address
adapter is assumed.

BUFFERS=nnn
A numeric value (nnn) equal to the corresponding
value specified in the DTFMR macro.

SEPASMB=YES
Include this operand only if the module is assembled
separately. This causes a CATALR card with the
module name (standard or user-specified) to be
punched ahead of the object deck and defines the
module name as an ENTRY point in the assembly. If
the operand is omitted, the program assumes that the
DTF is being assembled with the problem program
and no CATALR card is punched.

DTFMT Macro TR N

A DTFMT macro is included for each EBCDIC or
ASCII magnetic tape input or output file that is to
be processed. Enter the symbolic name of the file in
the name field and DTFMT in the operation field.
The detail entries follow the header card in any or-
der. The entries are discussed here and illustrated in
Figure 2-15.

ASCII=YES

This operand specifies that processing of ASCII
tapes is required. If this operand is omitted,
EBCDIC processing is assumed. ASCII=YES is not
permitted for work files.

BLKSIZE=n

Enter the length of the I/O area. If the record for-
mat is variable or undefined, enter the length of the
largest block of records. If a READ or WRITE ma-
cro specifies a length greater than n for work files,
the record to be read or written will be truncated to
fit in the I/0 area. The maximum block size is
32,767 bytes. The minimum size of physical tape
record (gap to gap) is 12 bytes. A record of eleven
bytes or less is treated as noise.

For output processing of spanned records, the mini-
mum physical record length is 18 bytes. If SPNBLK
or SPNUNB and TYPEFLE=OUTPUT are speci-
fied in the DTFMT and the BLKSIZE is invalid or
less than 18 bytes, a new MNOTE is generated and
BLKSIZE=18 is assumed.

Part 2. Sequential Access Method 67

Applies to

3
5|l &l o
AR
S0 | B
X X X BLKSIZE=nnnnn Length of one I/0 area in bytes (maximum = 32,767).
X X X DEVADDR=SYSxxx Symbolic unit for tape drive used for this file.
X X EOFADDR=xxxxxxxx Name of your end-of-file routine.
_ (NO, STD, or NSTD). If NSTD specified, include LA-
X X X FILABL=xxxx BADDR. If omitted, NO is assumed.
X X IOAREA1=XxXXXXXXX Name of first I/O area.
X X ASCII=YES ASCII file processing is required.
X X BUFOFF=nn Length of block prefix if ASCII=YES.
_ Checkpoint records are interspersed with input data re-
X CKPTREC=YES cords. IOCS bypasses checkpoint records.
X X X ERREXT=YES Additional errors and ERET are desired.
X X X ERROPT = XXXXXXXX (IGNORE, SKIP, or name of error routine). Prevents job
termination on error records.
X X X HDRINFO=YES Print header label information if FILABL=STD.
Register number. Use only if GET or PUT does not specify
X X IOREG=(nn) work area or if two I/0O areas are used. Omit WORKA.
General registers 2-12, written in parentheses.
_ Name of your label routine if FILABL=NSTD, or if
X X LABADDR=xxxxxxxx FILABL=STD and user-standard labels are processed.
_ Length check of physical records if ASCII=YES and
X LENCHK=YES BUFOFF=4.
X X - MODNAME = XXXXXXXX Name of MTMOD logic module for this DTF. If omitted,
IOCS generates standard name.
(YES or POINTS). YES if NOTE, POINTW, POINTR, or
X NOTEPNT =xxxxxx POINTS macro used. POINTS if only POINTS macro
used.

M=Mandatory; O=Optional

Figure 2-15

DTFMT macro operands (part 1 of 2)

68 DOS/VS Supervisor and 1/0 Macros

Applies to

Input
Output
Work

Generate read-only module. Requires a module save area

RDONLY=YES for each task using the module.

»
e
e
o

X X O | READ=xxXXXxXxX (FORWARD or BACK). If omitted, FORWARD assumed.

(FIXUNB, FIXBLK, VARUNB, VARBLK, SPNUNB,
X X X O | RECFORM=xxxxxx SPNBLK, or UNDEF). For work files use FIXUNB or
UNDEEF. If omitted, FIXINB is assumed.

If RECFORM=FIXBLK, no. of characters in record. If
RECFORM=UNDEEF, register number. Not required for
other records. General registers 2-12, written in parenthes-
es.

X X O [RECSIZE=nnnn

(UNLOAD or NORWD). Unload on CLOSE or end-of-

X X X O | REWIND=xxxxxx volume, or prevent rewinding. If omitted, rewind only.

X X X O | SEPASMB=YES DTFMT is to be assembled separately.

Prevent writing a tapemark ahead of data records if

X O | TRMARK=NO FILABL=NSTD or NO.

(INPUT, OUTPUT, or WORK). If omitted, INPUT is

X X X O | TYPEFLE=xxxxxx
assumed.

Register number, if RECFORM=VARBLK and records are
X O | VARBLD=(nn) build in the output area. General registers 2-12 are written
in parentheses.

X O | WLRERR=xxxxxxxX Name of wrong-length-record routine.

X X O | WORKA=YES GET or PUT specifies work area. Omit IOREG.

M = Mandatory; O = Optional

Figure 2-15 DTFMT macro operands (part 2 of 2)
For ASCII tapes, the BLKSIZE includes the length be included when ASCII=YES is specified. The
of any block prefix or padding characters present. If contents of this field are not passed on to you.

ASCII=YES and BLKSIZE is less than 18 bytes
(for fixed-length records only) or greater than 2048
bytes, an MNOTE is generated because this length
violates the limits specified by American National
Standards Institute, Inc.

BUFOFF=1{0 | n}

This operand indicates the length of the block prefix.
Enter the length of the block prefix if processing of
the block prefix is required. This operand can only

Part 2. Sequential Access Method 69

n can have the following values:

Value Condition

0-99 If TYPEFLE=INPUT

0 IF TYPEFLE=OUTPUT

4 If TYPEFLE=OUTPUT and

RECFORM=VARUNB or VARBLK. In
this case, the program automatically inserts
the physical record length in the block pre-
fix.

CKPTREC=YES

This operand is necessary if an input tape has check-
point records interspersed among the data records.
IOCS bypasses any checkpoint records encountered.
This operand must not be included when
ASCII=YES.

DEVADDR={SYSRDR | SYSIPT | SYSPCH |
SYSnnn | SYSLST}
This operand specifies the symbolic unit to be asso-
ciated with the file. An ASSGN job control state-
ment assigns an actual channel and unit number to
the unit. The ASSGN job control statement contains
the same symbolic name as DEVADDR. When
processing ASCII tapes, you must specify a pro-
grammer logical unit (SYSnnn).

EOFADDR=name

This operand specifies the name of your end-of-file
routine. IOCS automatically branches to this routine
on an end-of-file condition. This entry must be spec-
ified for input and work files.

In your routine, you can perform any operations
required for the end of file (generally you issue the
CLOSE instruction for the file). IOCS detects end-
of-file conditions in magnetic tape input by reading a
tapemark and EOF when standard labels are speci-
fied. If standard labels are not specified, IOCS as-
sumes an end-of-file condition when the tapemark is
read, if the unit is assigned to SYSRDR or SYSIPT
when a /* is read. You must determine, in your rou-
tine, that this actually is the end of the file.

ERREXT=YES

This operand enables your ERROPT or WLRERR
routine to return to MTMOD with the ERET (error
return) macro. It also enables unrecoverable 1/0O
errors occurring before data transfer takes place to
be indicated to your program. To take full advantage
of this option, the ERROPT=name operand must be
specified.

70 DOS/VS Supervisor & I/O Macros

ERROPT={IGNORE | SKIP | name}
This operand specifies functions to be performed
when an error block is encountered.

If a parity error is detected when a block of tape
records is read, the tape is backspaced and reread a
specified number of times before the tape block is
considered an error block. Output parity errors are
considered to be an error block if they exist after
I0CS attempts to forward erase and write the tape
output block a specified number of times.

If ERREXT=YES is specified on output, and
ERROPT=IGNORE or SKIP, the error will be ig-
nored.

If either FILABL=STD or CKPTREC, or both, is
specified, the error block is included in the block
count. After this the job is automatically terminated
unless this ERROPT entry is included to specify
other procedures to be followed in case of an error
condition. Either IGNORE, SKIP, or the symbolic
name of an error routine can be specified in this
card. The functions of these specifications are:

IGNORE The error condition is completely ig-
nored, and the records are made available
for processing.

When reading spanned records, the entire
spanned record or a block of spanned re-
cords is returned to the user rather than
just the one physical record in which the
error occurred. On output, the error is
ignored and the physical record contain-
ing the error is treated as a valid record.
The remainder, if any, of the spanned re-
cord segments are written, if possible.

SKIP No records in the error block are made
available for processing. The next block
is read from tape, and processing contin-
ues with the first record of that block.
The error block is included in the block
count.

When reading spanned records, the entire
spanned record or a block of spanned re-
cords is skipped rather than just one
physical record. On output, the error is
ignored and the physical record contain-
ing the error is treated as a valid record.
The remainder, if any, of the spanned re-
cord segments are written.

name IOCS branches to your error routine
named by this parameter regardless of

whether ERREXT=YES is specified. In
this routine, you process or make note of
the error condition as desired.

If ERREXT is not specified, register 1 contains the
address of the physical record in error. When span-
ned records are processed, register 1 contains the
address of the whole unblocked or blocked spanned
record. Register 14 contains the return address.
When processing in the ERROPT routine, refer the
error block, or records in the error block to the ad-
dress supplied in register 1. The contents of the
IOREG register or work area (if either is specified)
are variable and therefore should not be used for
error processing. Furthermore, your routine must not
issue any GET macros for records in the error block.
If any other IOCS macros (excluding ERET if
ERREXT=YES) are used in this routine, the con-
tents of registers 13 (with RDONLY) and 14 must
be saved and restored after their use. At the end of
the routine, return control to IOCS by branching to
the address in register 14. IOCS skips the physical
record in error and makes the next logical record
available for processing in the main program.

A sequence error may occur if LIOCS is searching
for a first segment of a logical spanned record and
fails to find it. If WLRERR or ERROPT=name was
specified, the error recovery procedure is the same
as for wrong-length record errors. If neither
WLRERR nor ERROPT=name was specified,
LIOCS ignores the sequence error and searches for
the next first segment.

If ERREXT is specified, register 1 contains the ad-
dress of a two-part parameter list containing the
4-byte DTFMT address and the 4-byte address of
the physical record in error, respectively.

Note: If ERREXT is not specified for an output file,
no code is generated and an MNOTE is issued. If an
error condition occurs, the job is canceled.

Register 14 contains the return address. Processing
is similar to that described for cases where ERREXT
is not specified, except for addressing the physical
record in error. The data transfer bit (byte 2, bit 2)
of the DTF should be tested to determine if a non-
data transfer error has occurred. If it is on, the phys-
ical record in error has not been read or written. If
the bit is off, data was transferred and the routine
must address the physical record in error to deter-
mine the action to be taken. At the end of its input
processing, the routine returns to LIOCS by issuing
the ERET macro. If any other IOCS macros are
used in this routine, the contents of register 13 (with

RDONLY) and register 14 must be saved and re-
stored after their use. At the end of the ERROPT
output routine, the program must consider the device
inoperative and must not attempt further processing
on it. Any subsequent attempt to return to MTMOD
results in job termination.

The ERET macro can specify one of two actions to
the MTMOD logic module. The error condition can
be ignored with an ERET IGNORE, or the physical
record in error can be skipped to process the next
physical record with an ERET SKIP. ERET RETRY
is invalid and results in job termination.

Figure 2-16 shows the DTFMT error options for
various combinations of error specifications and
€errors.

The job is automatically terminated if a parity error
still exists after IOCS attempts to write a tape output
block a specified number of times. This includes
erasing forward.

The ERROPT operand applies to wrong-length re-
cords if the WLRERR operand is not included. If
both ERROPT and WLRERR are omitted and
wrong-length records occur, IOCS assumes the I1G-
NORE option.

Note: For ASCII tapes, the pointer to the block in
error indicates the first logical record following the
block prefix.

FILABL={NO | STD | NSTD}

This operand specifies what type of labels are to be
processed. STD indicates standard labels, NO indi-
cates no labels, and NSTD indicates nonstandard
labels. You must furnish a routine to check or create
the nonstandard labels by using your own I/O area
and an EXCP macro to read or write the labels. The
entry point of this routine is the operand of LA-
BADDR.

The specification FILABL=NSTD is not permitted
for ASCII files (that is, when ASCII=YES). Labels
and tape data are assumed to be in the same mode.
HDRINFO=YES

This operand, if specified with FILABL=STD, caus-
es IOCS to print standard header label information
(fields 3-10) on SYSLOG each time a file with
standard labels is opened. It also prints the filename,
logical unit, and device address each time an end-of-
volume condition is detected. Both FILABL=STD
and HDRINFO=YES must be specified for header
label information to be printed.

Part 2. Sequential Access Method 71

IOAREA1=name

This operand specifies the name of the I/0 area.
When variable-length records are processed, the size
of the I/O area must include four bytes for the block
size. This operand does not apply to work files.

IOAREA2 =name

This operand specifies the name of a second I/0O
area. When variable-length records are processed,
the size of the I/O area must include four bytes for
the blocksize. This operand does not apply to work
files.

IOREG=(r)

This operand specifies the register in which IOCS
places the address of the logical record that is availa-
ble for processing if:

e two input or output areas are used.

« blocked input or output records are processed in
the I/0 area.

« variable unblocked records are read.

» undefined records are read backwards.

« neither BUFOFF=0 nor WORKA=YES is spec-
ified for ASCII files.

For output files, IOCS places in the specified register
the address of the area where you can build a record.
Any register (2-12) may be specified.

Note: This operand cannot be used if
WORKA=YES.

LABADDR=name

Enter the symbolic name of your routine to process
user-standard or nonstandard labels. See the Tape
Input Files section of the Label Processing chap-
ter.

For ASCII tapes, this operand may only be used for
writing and checking user standard labels which con-
form to American National Standards Institute, Inc.,
standards. You must process these labels in
EBCDIC. Nonstandard user labels are not permit-
ted.

72 DOS/VS Supervisor & 1/0O Macros

LENCHK=YES

This operand applies only to ASCII tape input if
BUFOFF=4 and RECFORM=VARUNB or
VARBLK. It must be included if the block length
(specified in the block prefix) is to be checked
against the physical record length. If an inequality is
detected, the action taken is the same as described
under the WLRERR operand, but the WLR bit
(byte 5, bit 1) in the DTF is not set.

MODNAME=name

This operand specifies the name of the logic module
used with the DTF table to process the file. If the
logic module is assembled with the program, MOD-
NAME must specify the same name as the MTMOD
macro. If this entry is omitted, standard names are
generated for calling the logic module. If two DTF
macros call for different functions that can be han-
dled by a single module, only one module is called.
For example, if one DTF specifies
READ=FORWARD and another specifies
READ=BACK, only one logic module capable of
handling both functions is called.

NOTEPNT={POINTS | YES}

If the parameter YES is specified, the NOTE,
POINTW, POINTR, or POINTS macros are issued
for a tape work file. If POINTS is specified, only
POINTS macros can be issued for tape work files.
The NOTEPNT operand must not be specified for
ASCII tape files because work files are not support-
ed.

TAPE Job is terminated
OUTPUT
—
(" [Control is passed to your
wrong length record routine
Wrong Error record is skipped
Lenght
E:;T_:d Error record is ignored
Desired L Job is terminated
Function TAPE
INPUT
-
Control passed to your
error option routine
Errors
other thon Error record is skipped
Wrong
Lenght Error record is ignored
Records
§ Job is terminated
N—
N————e
_lv | I A I I I
-
ERROPT = IGNORE X X
ERROPT = name XX X |X X
ERROPT = SKIP X X
WLRERR = name X X X
ERROPT = IGNORE, WLRERR = name x X X
ERROPT = name, WLRERR = name XX X1X
ERROPT = SKIP, WLRERR = nome X XX
WLRERR = name N
Specifications ERET IGNORE x X
required ERROPT = name
in your
Program ﬁ ERET RETRY X X
WLRERR = name
ERET SKIP X X X X
WLRERR = name
ERET IGNORE X X
WLRERR = name
ERET RETRY X X
WLRERR = name
ERET SKIP X x X
ERROPT =name, WLRERR = name
ERET IGNORE x X
ERROPT = name, WLRERR = name 1
ERET RETRY X J X
ERROPT = name, WLRERR = name
ERET SKIP X X X X
[None X X X
ERET Macro Options: DTF Parometers:
IGNORE ERROPT = name
RETRY ERROPT = IGNORE
SKIP ERROPT = SKIP
WLRERR = name
Figure 2-16 DTFMT error options

Part 2. Sequential Access Method 73

RDONLY=YES . .
This operand is specified if the DTF is used with a

read-only module. Each time a read-only module is
entered, register 13 must contain the address of a

72-byte doubleword-aligned save area. Each task
should have its own uniquely defined save area and
each time an imperative macro (except OPEN (or
OPENR) or LBRET) is issued, register 13 must
contain the address of the save area associated with
the task. The fact that the save areas are unique
for each task makes the module reentrant (that is,
capable of being used concurrently by several
tasks). For more information see Shared Modules
and Files in the Multitasking Macros chapter.

If an ERROPT or WLRERR routine issues I/0
macros which use the same read-only module that
caused control to pass to either error routine, your
program must provide another save area. One save
area is used for the normal I/O operations and the
second for I/O operations in the ERROPT or
WLRERR routine. Before returning to the module
that entered the error routine, register 13 must be
set to the save area address originally specified for
the task.

If the operand is omitted, the module generated is
not reenterable and no save area is required.

READ={FORWARD | BACK}

This operand specifies the direction in which the
tape is read. If READ=BACK is specified and a
wrong-length record smaller than the 1/0 area is
encountered, the record is read into the I/O area
right-justified.

RECFORM={FIXUNB | FIXBLK | VARUNB |
VARBLK | SPNBLK | SPNUNB |
UNDEF}

This operand specifies the type of EBCDIC or

ASCII records in the input or output file. Enter

one of the following parameters:

FIXUNB For fixed-length unblocked records
FIXBLK For fixed-length blocked records
VARUNB For variable-length unblocked records
VARBLK For variable-length blocked records
SPNBLK For spanned variable-length blocked
records (EBCDIC only)
SPNUNB For spanned variable-length un-
blocked records (EBCDIC only)
UNDEF For undefined records

74 DOS/VS Supervisor & 1/0 Macros

Work files may only use FIXUNB or UNDEF.

RECSIZE=in | (r)}

For fixed-length blocked records, this operand is
required. It specifies the number of characters in
each record.

When processing spanned records, you must specify
RECSIZE=(r) where r is a register that contains
the length of each record.

For undefined records, this entry is required for

~ output files and optional for input files. It specifies

a general register (2-12) that contains the length of
the record. On output, you must load the length of
each record into the register before you issue a
PUT macro. Spanned-record output requires a
minimum record length of 18 bytes. A physical
record less than 18 bytes is padded with binary
zeros to complete the 18-byte requirement. This
applies to both blocked and unblocked records. If
specified for input, IOCS provides the length of the
record transferred to virtual storage.

REWIND={UNLOAD | NORWD}

If this specification is not included, tapes are auto-
matically rewound to load point, but not unloaded,
on an OPEN (or OPENR) or CLOSE (or CLOS-
ER) macro or on an end-of-volume condition. If
other operations are desired for a tape input or
output file, specify:

UNLOAD to rewind the tape on an OPEN (or
OPENR) or to rewind and unload on
CLOSE (or CLOSER) or or end-of-
volume condition.

NORWD to prevent rewinding the tape at any

time. This option positions the
read/write head between the two
tapemarks on the end-of-file condi-
tion.

SEPASMB=YES

Include this operand only if the DTFMT is assem-
bled separately. This causes a CATALR card with
the filename to be punched ahead of the object
deck and defines the filename as an ENTRY point
in the assembly. If the operand is omitted, the pro-
gram assumes that the DTF is being assembled
with the problem program and no CATALR card is
punched.

TPMARK=NO
A tapemark is normally written for an output file if
nonstandard labels are specified (FILABL=NSTD).

If no tapemark is desired, this operand should be
specified. This operand is ignored if standard labels
are specified (FILABL=STD). For unlabeled tapes,
TPMARK=NO is the default.

TYPEFLE={INPUT | OUTPUT | WORK}

Use this operand to indicate whether the file is
used for input or output. If INPUT is specified, the
GET macro is used. If OUTPUT is specified, the
PUT macro is used. If WORK is specified, the
READ/WRITE, NOTE/POINT, and CHECK
macros are used. See Work File Macros for Tape
and Disk under the Processing Macros section of
the present chapter.

The specification of WORK in this operand is not
permitted for ASCII files.

VARBLD=(r)

This entry is required whenever variable-length
blocked records are built directly in the output area
(no work area specified). It specifies the number
(r) of a general-purpose register (2-12) that always
contains the length of the available space remaining
in the output area.

IOCS calculates the space still available in the out-
put area, and supplies it to you in the VARBLD
register after the PUT macro is issued for a
variable-length record. You can then compare the
length of the next variable-length record with the
available space to determine if the record will fit in
the remaining area. This check must be made be-
fore the record is built. If the record does not fit,
issue a TRUNC macro to transfer the completed
block of records to the tape. The current record is
then built as the first record of the next block.

WLRERR=name

This operand applies only to tape input files. It
specifies the name of your routine to receive con-
trol if a wrong-length record is read.

If ERREXT is not specified, the address of the
physical record in error is supplied by IOCS in
register 1. If ERREXT is specified, register 1 con-
tains the address of a two-part parameter list. The
first four bytes of the list are the DTF address and
the second four bytes are the address of the physi-
cal record in error. If the block read is less than
that specified in the BLKSIZE parameter, the first
two bytes of the DTF contain the number of bytes
left to be read (residual count). Therefore, the size
of the actual block is equal to the specified block
size minus the residual count. If the block to be
read is larger than that specified in the BLKSIZE

parameter, the residual count is zero, and there is
no way to compute the record size. The number of
bytes transferred is equal to that specified in the
BLKSIZE parameter, and the remainder of the
original block is truncated.

Your WLRERR routine can perform any process-
ing desired for wrong length records. However, it
must not issue GET macros to this file. If the rou-
tine issues any other IOCS macros (excluding
ERET if ERREXT=YES) the contents of registers
13 (with RDONLY) and 14 must be saved before
and restored after their use. At the end of the rou-
tine, either control is returned to IOCS by branch-
ing to the address in register 14, or (if ERREXT is
specified) the ERET IGNORE or SKIP option can
be taken.

When fixed-length unblocked records are specified
(RECFORM=FIXUNB), a wrong-length record
error condition is given when the length of the
record read is not equal to that specified in the
BLKSIZE parameter. For EBCDIC fixed-length
blocked records, record length is considered incor-
rect if the physical tape record (gap to gap) that is
read is not a multiple of the logical-record length
(specified in DTF RECSIZE), up to the maximum
length of the block (specified in DTFMT
BLKSIZE). This permits the reading of short
blocks of logical records without a wrong-length
record indication.

For EBCDIC variable-length records (blocked and
unblocked), the record length is considered incor-
rect if the length of the tape record is not the same
as the block length specified in the 4-byte block-
length field. The residual count can be obtained by
addressing the halfword at filename+98.

For ASCII variable-length records (blocked and
unblocked), a check on the physical record length
is performed if LENCHK=YES is specified. The
physical record length is considered incorrect if the
tape record is not the same as the block length
specified in the 4-byte block prefix. In this case,
the WLR bit (byte 5, bit 1) in the DTF table is set
off.

The WLRERR option is taken for undefined re-
cords if the record read is greater than the size
specified by the BLKSIZE parameter.

If the WLRERR entry is omitted but a wrong-

length record is detected by IOCS, one of the fol-
lowing conditions resuits:

Part 2. Sequential Access Method 75

« If the ERROPT entry is included for this file,
the wrong-length record is treated as an error
block, and handled according to your specifica-
tions for an error (IGNORE, SKIP, or name of
error routine).

o If the ERROPT entry is not included, IOCS
assumes the IGNORE option of ERROPT.

WORKA=YES

If I/0O records are processed in work areas instead
of in the I/O areas, specify this operand. You must
set up the work area in virtual storage. The address
of the work area, or a general-purpose register con-
taining the address, must be specified in each GET
or PUT. Omit IOREG if this operand is included.
WORKA=YES is required for spanned record
processing.

MTMOD Macro

Listed here are the operands you can specify for
MTMOD. The first card contains MTMOD in the
operation field and may contain a module name in
the name field.

ASCII=YES

Include the operand if processing ASCII input or
output files is required. This entry is not permitted
for work files. If omitted, EBCDIC file processing is
assumed.

CKPTREC=YES

Include this operand if input tapes processed by the
module contain checkpoint records interspersed
among the data records. The module also processes
tapes that do not have checkpoint records; that is,
those whose DTFs do not specify CKPTREC=YES.

This entry is not needed for work files, and is not
valid for