

Program Product

GH20-1246-4

Data Language/l
Disk Operating Systeml
Virtual Storage
(DL/I DOS/VS)
Generallnfonnation

Program Number 5746-XX1

Data Language/I Disk Operating System/Virtual Storage (DL/I
DOS/VS) is a data management control system developed to
assist the user in implementing data base processing
applications. It provides data organization methods that are
conducive to the creation of, access to, and maintenance of
large common data bases. DL/I DOS/VS permits the
evolutionary expansion of data processing applications from a
batch-only environment to a teleprocessing environment such
as the Customer Information Control System DOS/VS
(CICS/VS).

This manual includes a general description of the system and
its various facilities and programs, listings of typical minimum
configurations, and sample applications.

Fifth Edition (March 1977)

This edition applies to Version I, Release 2 (Version 1.2) and Version I, Release 3
(Version 1.3) of IBM System/370 Data Language/I Disk Operating System/Virtual
Storage (DL/I DOS/VS) Program Number 5746-XXI and to all subsequent versions
and modifications until otherwise indicated in new editions or Technical Newsletters.
It supersedes GH20-1246-2 with Technical Newsletter GN20-9490, and GH20-1246-3.
Changes are continually made to the information herein; any such changes will be
reported in subsequent revisions or Technical Newsletters.

The information in this manual that applies to DL/I DOS/VS Version 1.3 is for
planning purposes only until it is available.

Changes or additions to the text and illustrations are indicated by a vertical line to the
left of the change.

This publication has been photocomposed through ATMS (an IBM Program Product)
and TERMTEXT /Format (an IBM Installed User Program). For information regard­
ing those programs, contact your IBM representative or the IBM branch office in your
locality.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Programming Publications,
Dept. G60, P.O. Box 6, Endicott, New York 13760. Comments become the property
of IBM.

© Copyright International Business Machines Corporation 1974,1977

Preface

DL/I DOS!VS (Data Language/I Disk Operating
System/Virtual Storage) is a data base manage­
ment control system that improves an installation's
ability to implement and maintain batch processing
applications. DL/I DOS!VS permits the writing of
data independent applications and provides pro­
gram and data base integrity. The DL/I DOS/VS
system supports application programs written in
COBOL, PL/I, and Assembler language. DL/I
DOS/VS executes as an application program under
DOS/VS.

DL/I DOS!VS permits concurrent scheduling of
multiple programs requesting DL/I DOS!VS ser­
vices, thereby allowing access by more than one
user to the same or different data bases at the
same time. Application programs may utilize this
concept in conjunction with CICS!VS (Customer
Information Control System/Virtual Storage) to
access DL/I DOS/VS data bases in a teleprocessing
environment.

This publication is a general description of the
DL/I DOS/VS (or DL/I) control system. It provides
an overview of the system and its various facilities
and programs, listings of typical and minimum
configurations, and discussions of sample applica­
tions. The manual is intended primarily for cus­
tomer executives, system administrators, system
analysts, system programmers, and application
programmers. The following IBM publications pro­
vide a more detailed description of DL/I DOS!VS:

DL/ I DOS /VS Application Programming Refer­
ence Manual, SH12-S411

DL/I DOS/VS Utilities and Guide for the Sys­
tem Programmer, SH12-S412

DL/ I DOS/VS System/Application Design Guide,
SH12-S413

DL/I DOS/VS Operator's Reference Manual and
Messages and Codes, SH12-S414

DL/ I DOS/VS Logic Manual, LY12-S016

References are made in this publication to the
Customer Information Control System/Virtual
Storage. More information about CICS/VS can be.
found in the Customer Information Control
System/Virtual Storage (CICS/VS) General In­
formation manual, GC33,.00S2 for Version 1
Release 2.0, or GC33-0066 for Version 1 Release
3.0.

Because of the special nature of DL/I DOS/VS

as a functional subset of IBM'S Information Man­
agement System (IMS/VS), some IMS or OS specific
terms are retained in DL/I DOS/VS documentation.
These terms are used for ease of reference to cor­
responding IBM documentation and to facilitate
subsequent upgrading to an upward-compatible
IBM system.

All further references in this manual to DL/I

DOS!VS are shortened to DL/1.

Preface 3

DL/I DOS/VS Enhancements

DL/I Version 1.2
This revision of DL/I provides the following func­
tional enhancements:

Multiple Partition Support (MPS)
This capability enables application programs exe­
cuting in different partitions to access the same
data base concurrently. For example, online appli­
cations can now issue inquiries to a data base
while a batch program updates it.

Although two programs cannot both update the
same data base segment type concurrently, one or
more programs can retrieve from it while another
program updates the segment type.

Note: The above limitation does not apply to DL/I Ver­
sion 1.3. See "Program Isolation" in the section, "DL/I
Version 1.3 Enhancements."

The addition of MPS enables multiple batch and
online application programs to access a data base
concurrently instead of serially. MPS uses the DL/I
resources and multitasking facilities of DL/I and
CICS!VS. CICS!VS therefore, is a prerequisite for running
MPS.

MPS follows normal DL/I online conventions.

Reload Restart
This facility is added to the HD Reload Utility. If
a job is cancelled or fails, this facility enables you
to restart the reloading of a data base without
going back to the beginning. While running the
HD Data Base Reorganization Unload Utility, a
checkpoint record is written to the unloaded data
base after approximately every 5000 segments.

These checkpoint records can be used to restart
the reloading of the data base

During the normal reloading process, the check­
point records are ignored except for a console
message containing the checkpoint number. This
message is printed each time a checkpoint is en­
countered. When a job is canceled or fails, the
system operator should:

1. Run the Access Method Services Utility, exe­
cuting the VERIFY command for each data
base being referenced during the reload.

2. Resubmit the job with a unique parameter
card, identifying the job as a restart of the
Reload Utility.

3. Supply the last checkpoint number when
prompted by the Reload Utility.

DL/I Version 1.3
This revision of DL/I provides system changes and
functional enhancements that enable the user to
achieve greater useability, more functional capabil­
ity, improved performance in certain areas, and
greater reliability, availability, and serviceability
(RAS). The changes and enhancements made to
DL/I in Version 1.3 and how they apply to these
areas are shown in the following table.

Note: The information in this manual that applies to DL/I
DOS/VS Version 1.3 is for planning purposes only until it
is available.

Change/Enhancement Useability Functional Capabilities Performance Improvements RAS

Checkpoint X X

Program Isolation X X

Distributed Free Space X X

Serviceability Aids X

Performance Repack X

Utilities Operational Cleanup X X X

Sample Problem X

Disk Logging X* X X

*Applies only to the disk-only user.

4 DL/I DOS/VS General Information

The various line items in the table are described
below in general terms and in an overview fashion
to enable you to determine if and how they might
fit into your DL/I system as you tailor your system
to meet your installation's requirements. More
detailed information can be found in the DL/I
publications listed in the Preface as those publica­
tions become available for Version 1.3.

Checkpoint
Checkpoint aids the restarting of a job by allowing
the user to request checkpoint records to be writ­
ten on the DL/I log. In case of a job failure in a
batch environment, the user can run the backout
utility, which will backout to the most recently
written checkpoint record. For multiple partition
support and/or online tasks with CICS!VS dynamic
transaction backout active, backout is performed
automatically to the last checkpoint in case of fail­
ure.

Checkpointing is accomplished with a new DL/I
call function, CHKP. The checkpoint call can be
issued at appropriate times in a program as deter­
mined by the user. Programs, therefore, can be
designed to issue checkpoint calls at any point the
user determines a job should be restarted in the
event there is a failure. Checkpoint processing
generally reduces the time required to rerun a job
with a long execution time, which was interrupted
because of a failure.

Program Isolation
Program Isolation is an optional replacement for
intent scheduling and consists of two functional
areas -- contention management and deadlock
avoidance. This feature provides a performance
improvement by reducing the resource contention
in a DL/I - CICS/VS environment from the segment
type to that of the specific segment, thereby en­
hancing online response times. Program Isolation,
at the segment level, supports only HDAM/HIDAM
data bases. At the data base record level, Program
Isolation supports only HISAM.

Contention management supplies the support
for the avoidance of conflicts in data usage by
making contenders for a resource wait until the
resource is available and rescheduling them when
it is.

Deadlock avoidance recognizes and remedies
the case where two or more tasks are interlocked
on the resources for which they are waiting.

Data integrity is enhanced because read-only
intent on segments no longer allows a task to read
data that may be backed out later because of a
failure in another transaction.

Distributed Free Space
This feature is designed to improve performance
for data bases where high-insert activity is antici­
pated. Distributed Free Space, which increases the
probability that related segments will reside in
close physical proximity, is available only for
HDAM and HIDAM data bases.

During generation of the Data Base Descrip­
tions (DBD), you can specify the amount of free
space to be reserved at the initial loading or the
reloading of the data base. This space can be
specified in terms of blocks or percentage of space
within the blocks. This is accomplished with a
new free space (FRSPC) parameter in the DATASET
statement.

Performance improvements are achieved when
retrievals from and updates to the data base are
made. The close proximity of related segments
also reduces the need for the number of reorgani­
zations of the data base because Distributed Free
Space diminishes the number of unrelated seg­
ments at the end of the data base.

Serviceability Aids
A new tool is provided to help the user to recover
from a system failure. The tool, Log Print Utility,
enables you to print the contents of the log files.
This utility can be invoked when an abnormal ter­
mination or a system failure occurs.

The utility runs under DOS!VS and, therefore, it
does not issue any DL/I calls. The logs to be
printed are identified through the DOS!VS job con­
trol language and input control statements.

The information contained in the logs selected
for printing includes the log record 10, the task 10

of the log record, the PSBname, the DMBname, the
type of call, the record type, and the data in the
record.

DL/I DOS/VS Enhancements 5

Performance Repack
The performance repack is internal to DL/I and,
therefore, is transparent to the user. The repack is
designed to improve performance by reducing
working set requirements, thereby reducing paging
activity, and by reducing path lengths through
heavily used code.

Utilities Operational Improvements
Improvements have been made to certain utility
operations to provide added function or to provide
additional protection of the user's data bases.
These improvements, evident at utility execution
times, are described below.

Multilfile Log Tape Support

Multifile support enables the user to more effi­
ciently use the installation's tape data capacity by
allowing many log files to be written on a single
volume instead of requiring a single volume for
each batch job. This minimizes the number of
tape volumes required and reduces operator inter­
vention for mounting log tapes.

Multifile log tape support requires the normal
DOS!VS tape handling procedures and the DOS/VS
job control language.

Multivolume Log Tape Support
The data base recovery utilities are modified to
handle multivolume log files. Multivolume log tape
support requires the normal DOS/VS tape handling
procedures and the DOS!VS job control language.

Unload Sequence Checking
This feature enhances data base integrity by per­
forming a sequence check during an HD unload to
alert the user to an incorrectly sequenced data
base. The addition of the sequence check feature
to HD unload allows the user to detect sequence
errors early and to make the necessary corrections
before the data base is reloaded and reorganized.

6 DL/I DOS/VS General Information

Abnormal Termination vs. Messages

This feature is designed to provide improved sys­
tem response to error conditions by abnormally
terminating a job instead of just a job step, there­
by ensuring greater data protection. A data base
can be damaged when a job terminates normally
or just a job step is terminated after an error con­
dition is detected, but an error message is over­
looked. New actions associated with some utility
messages have been incorporated to prevent this
problem.

Sample Problem
A new sample problem is provided to demonstrate
the use of secondary indexes and logical relation­
ships to the user. The sample problem contains
data bases and transactions as they might be re­
quired for online order entry, and inquiry in the
retail distribution industry.

Disk Logging
Disk logging provides a DL/I logging facility for
the disk-only user. It also provides an alternative
for the tape and disk user. This function enables
the disk-only user to take advantage of the re­
covery and backout features of DL/I that use the
log to enhance the integrity of the data base.

VSAM is the access method for disk logging to
the DL/I log file while SAM is the access method
used for the CICS!VS journal.

The log records written to disk are compatible
with the tape log records.

Contents

I
OL/I DOS/VS Enhancements .. 4
DL/I Version 1.2 .. 4
DL/I Version 1.3 .. 4

Chapter 1. Introduction .. II
Why Data Bases? ... II
What Is a Data Base? .. 12
What Does a Data Base Provide 13
How is the DL!I Data Base Implemented 13

Chapter 2. General Description of DL/I 14
DL!I Batch System .. 14

Initialization Module ... 14
Language Interface Module 15
Program Request Handler 15
D L/I Facility .. 15

DL/I Online Processor ... 16
I Multiple Partition Support (MPS) 17

Utility Programs and Procedures 17
Program Specification Block (PSB) Generation 17
Data Base Description (DBD) Generation 18
Application Control Blocks Creation and Maintenance Utility 18
Data Base Reorganization Unload and Reload 18
Data Base Recovery ... 18

Application Support Program 19
Low-Level Code and Continuity Check 19

Chapter 3. DL/I System Concepts 20
DL/I Data Base Structure ... 20
Hierarchical Data Structure .. 20

Definitions .. 23
Logical Data Structures/Physical Data Structures 23
Sequence Fields and Access Paths 24
Data Base Definition .. 24
DL/I, the Application Program Interface 25
Logical Relationships .. 29
Data Base User Interface .. 32
Data Base Organization and Access Methods 33
Segment Definition and Format 35
Interrelated Data Base Records 36
Indexed and Indexing Data Base Records 36

I Data Base Administration ... 37
Online Processing Capability 37

Chapter 4. User Installation Requirements 40
User Installation Responsibilities 40
User Schedule .. 40

Chapter S. Performance .. 41
Test Environment ... 41
Performance Measurements .. 41

HDAM .. 41
HIDAM .. 42
HISAM .. 42

Chapter 6. Machine Configurations 44
Minimum DL/1 Configuration 44
Typical DL/I Configuration .. 45
Typical DL/I Real Storage Requirements 45

Chapter 7. Programming Requirements 47

Chapter 8. Sample Applications . 48
Manufacturing Industry ... 48
Financial Industry ... 51
Medical Industry .. 54
Process Industry .. 56

Contents 7

Figures

Appendix A. Comparison to IMS/VS and DL/I-Entry DOS/VS 60

Index .. 61

Figure I-I.
Figure 1-2.
Figure 2-1.
Figure 2-2.
Figure 3- I.
Figure 3-2.
Figure 3-3.
Figure 3-4.

Figure 3-5.
Figure 3-6.

Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 3-10.

Figure 3-1 I.

Figure 3-12.
Figure 3-13.
Figure 3-14.

Figure 3-15.

Figure 3-16.

Figure 3-17.

Figure 3-18.

Figure 3-19.
Figure 3-20.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 6-1.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.

Figure 8-5.
Figure 8-6.
Figure 8-7.

Figure 8-8.
Figure 8-9.

Figure 8-10.

Figure 8-1 I.
Figure 8-12.

Figure 8-13.
Figure 8-14.

Figure 8-15.
Figure 8-16.
Figure 8-17.

Application data integration -- Data base concepts 12
Hierarchical data base concept 13
DL/I batch system 16
DL/I - CICS/VS data communication system 17
Sample payroll application 20
DL/I logical data base structure thierarchical data structure) 21
Logical data structure -- The programmer's view• 22
Segment types and their relationships in a hierarchical
data structure 23
Physical data structure 24
DL/I is the intermediary between the application program and the
master file ... 25
DL/I simplifies file expansion 26
The application program's PSB defines program processing options . 26
DL/I provides device independence. To change your files to a new
disk device, simply change the DBD and use the DL/I utility
programs to load the new disk. 27
In DL/I, large complex application programs used to process the
data of four or five interrelated files are not needed. 28
The application programmer need not be concerned with the
complexity of a data base. 28
Job incentive system as included in the Employee data base. 29
Skills Inventory data base 29
Through the capability of logical relationships, DL/I automatically
maintains the relationship between the Employee data base and
the Skills Inventory data base. 30
The logical relationship between two data bases is seen as one
logical data structure. 30
The same logical relationship developed for the logical data
structure in Figure 3-15 can be used to design different logical data
structures for other applications. 31
Secondary indexing allows the application programmer to work
with a data base structure that is best suited to the particular needs
of the application 32
Hierarchical sequential physical storage of the logical data
structure for a Skills Inventory data base. 34
Hierarchical direct physical storage of Figure 3-18 logical structure .35
Relationship between physical data base records (two data bases) .. 36
DL/I execution for HDAM data base in paging environment 42
DL/I execution for HIDAM data base in paging environment 42
DL/I execution for HISAM data base in paging environment 43
Typical configuration-DL/I system 45
Logical data structure for part data base 48
Three interrelated physical data base records for three parts 49
Logical data structure for usage of part I of Figure 8-2 49
Logical data structure for component part definition of part 2
of Figure 8-2 .. 49
Logical data structure for part inventory status 49
Logical data structure for part purchase order 49
Physical data base records with pointer segment-target segment
concept for part purchase orders 50
Two logical data base structures showing fabrication operations ... 50
Pointer segment-target segment concept showing elimination
of data redundancy 50
Physical data base records under pointer segment-target segment
concept ... 51
Physical data bases under HIDAM and HDAM 51
Logical data structure of a customer information
record-financial 52
Data structure with pointer segment-target segment relationship .. 52
Logical data base structures showing customer
information specifications 52
Physical data base records and logical interrelationships 53
Logical data structures showing properties and trust information ... 53
Logical data structure with pointer segment-target segment
relationship .. 53

8 DL/I DOS/VS General Information

Figure 8-18. Logical data base structures with intersection data 53
Figure 8-19. Physical data base records and logical relationships 54
Figure 8-20. Data bases stored using HIDAM 54
Figure 8-21. Medical data base record root segment-patient master segment ... 54
Figure 8-22. Logical data structure with one dependent segment 55
Figure 8-23. Adding second dependent segment (diagnosis segment)

to medical data base record root segment 55
Figure 8-24. Logical data structure of medical data base record or data base 55
Figure 8-25. Logical data structure for stock item data base 56
Figure 8-26. Logical data structure for customer master data base 57
Figure 8-27. Logical data structure for open order data base 57
Figure 8-28. Physical data bases under HISAM, HDAM, and HIDAM 58
Figure 8-29. Logical data structure for mill order planning 58
Figure 8-30. Logical data structure for plant facility 58
Figure 8-31. Logical data structure for mill order plan and plant facility

using pointer-target concept (Figures 8"29 and 8-30) 59
Figure 8-32. Physical data base records and logical relationships-mill

order plan and plant facility 59

Contents 9

10 DL/I DOS/VS General Information

Most corporations eventually reach the stage
where their data processing departments imple­
ment several stand-alone applications (for example
payroll and stock control). These applications
provide information service mainly at the opera­
tional levels. Each application is designed with its
own dedicated files of data which bear little or no

. relation, in format or content, to the files designed
for other applications.

As new applications are added to provide more
information for management as well as operational
levels (for example market research or financial
planning), they too are designed as stand-alone
applications with dedicated files. Also online ac­
cess to the files means that the terminals are usu­
ally dedicated and that a terminal control code is
written into each user program.

As data becomes an increasingly vital corporate
resource, users are establishing standards for their
files. They are designing compatible programs that
allow one complete cycle of processing to do all
file updates and to generate all the new reports
needed by several levels of users.

Although such integrated application subsystems
often bring rewards in terms of hardware utiliza­
tion and job efficiency, they become much more
complex, and program maintenance costs tend to
climb.

Corporations are now evaluating computer sys­
tems, not only with regard to programming sys­
tems and hardware, but also in relation to the in­
formation needs of the total corporate environ­
ment. Demands for programming applications that.
interrogate and maintain large centralized informa­
tion files are increasing. Along with this has
evolved a concept that, on the surface at least, is
fairly simple: take the individual dedicated files
and put them together in one place, where they
will be accessable to all present applications.
Then, as new applications are designed, the new
data can be added and linked to the existing data.
This is known as the data base concept.

The concept of the data base cuts the close
association between the application program and
its files. This makes it possible, and desirable, to
remove the responsibilities for common file man­
agement functions from the individual application
programmer, and to package them together as a
function of data base management.

Chapter 1. Introduction

The DL/I data base provides many features that
facilitate implementation, change, and expansion
of such applications and information files. DL/I
helps to reduce data processing costs by:

• Reducing application program maintenance.

• Reducing application programmer time re­
quired to implement new applications, espe­
cially teleprocessing applications.

• Reducing the cost of converting to new hard­
ware.

• Reducing the number of programs and/or
data files required to implement applications.

• Reducing the number of files in which data is
repeated.

The DL/I data base is designed to meet the
needs of most corporations and institutions. Ap­
plications that might lend themselves to DL/I in­
clude:

• payroll and personnel

• manufacturing bill of material

• inventory control

• accounts receivable

• hospital records

• student records

• petroleum well records

• demand deposit accounts systems

Using DL/I, your programming staff can design
applications to interface with the information files
from remote terminals (using a CICS/VS interface),
or in the more conventional batch mode, or in
combination.

In addition, the ability to respond to frequent
and anticipated high-volume information requests
makes DL/I a powerful tool for the data processing
user.

Why Data Bases?
In a non-data-base environment, data files are

usually designed to serve individual applications,
such as inventory control, payroll, accounts receiv­
able, purchasing, etc. Each data file is specifically

Chapter I. Introduction 11

designed for its own application and stored sepa­
rately on tape or disk. Quite often, the data files
of different applications contain common data
elements. This redundant data causes an extra
problem because it becomes very difficult to keep
the data consistent.

Furthermore, while modifying existing applica­
tions and/or adding new applications, your pro­
gramming staff has to face some of the following
situations:

• Duplicate data exists on multiple files with
different formats for different applications.

As data applications become more and more
complex, users need to interrelate more and
more data. One method is through multiple
files. However, using multiple files compli­
cates program design and debugging proce­
dures. So instead, many users try to simplify
their problems by creating new files which
are really extracts from existing files with
some additional data added. This creates
data redundancy and introduces the problem
of maintaining the same element of data on
several files. If one copy of the data
changes, all other copies of the data must
also be changed. Operations control must be
very tight in order to keep current informa­
tion in the hands of the data processing
users.

• Programmers spend a significant amount of
time updating existing application programs
to handle changes to record layouts or I/O
device characteristics. Often, program func­
tion is not affected by these changes.

• Changing applications make it desirable to
move data files from one storage device to
another (tape or disk), or from one access
method (sequential) to another (direct).

• Programmer productivity is hindered by a
limited knowledge of specific device charac­
teristics or specific access methods.

• Batch applications have to be expanded to
teleprocessing applications.

In short, every time a new series of applications
is planned, your programmers have to evaluate the
impact of record changes on existing programs. As
a result, application programs are often in an al­
most perpetual state of change, adding appreciably
to the overall cost of data processing.

12 DL/I DOS/VS General Information

The solution is to organize your data in a way
that eliminates redundancy and to provide a me­
thod for handling the data that can readily adapt
to changes without impacting your present pro­
grams. The most practical way to do this is to
remove the physical characteristics of the data
from the program, thus making the program
independent of the data it uses. The data base
provides this independence by removing the direct
association between the application program and
the physical storage of data.

What Is a Data Base?
A data base is a concept that provides for the in­
tegration, sharing, and control of common data.
As an example, a company may first integrate the
data for a parts application with the data for a
purchase orders application (Figure 1-1). Later,
data for order 'processing and accounts receivable
may also be integrated. The data and the pro­
grams of already implemented applications need
not change when the data of later applications are
integrated.

PART DATA

Figure I-I. Application data integration - Data base
concepts

This is because, using the data base concept,
data is stored in a hierarchical manner; that is, the
most significant data resides on hierarchically
higher levels while less significant but related data
(dependent data) appears on subordinate levels.
Through the use of a concept called data
sensitivity, each application program views only

that data in the structure which it uses, and ac­
cesses that data through a common symbolic link­
age provided by the data management portion of
the data base system. For example, in Figure 1-2,
assume that one application requires name and
address information, and a second requires name
and payroll information. The applications share
their common data (name), but only the first ac­
cesses address and only the second accesses pay­
roll. To each application, data used by other ap­
plications, other than common data, does not exist.
This collection of interrelated data elements, proc­
essable by one or more applications, is called a
data base.

Address'

Figure 1-2. Hierarchical data base concept

What Does a Data Base Provide?
A data base provides flexibility of data organiza­
tion. By removing the direct association between
the application program and the physical storage
of data, the data base concept allows the addition
of data to an existing data base without modifica­
tion of existing programs. This is called data
independence.

The advantages of the data base are:

• Control of data redundancy and reduction of
duplicate data maintenance.

• Consistency through the use of the same data
by all groups in the company.

• Application program independence from
physical storage organizations and access me­
thods.

• Reduction in overall application costs.

• Data designs usable for batch and online
processing.

• A system-provided focal point for the control
of data.

How is tbe DL/I Data Base Imple­
mented?
To build a data base operation, your programming
staff reviews the data requirements of all applica­
tions, then defines the data base or data bases that
serve those applications. To create a data base,
the user defines to DL/I a common data structure
and format that serve the applications. This defi­
nition is called a data base description (DBD). One
DBD is required for each data base. The second
definition required is the program specification
block (PSB). The PSB defines to DL/I for each
application program the data bases to be used, the
data used within each data base, and the opera­
tions allowed on each data base. One PSB is re­
quired for each application program. However, the
same PSB could be used by many application pro­
grams.

Both of these control blocks, the DBD and the
PSB, are used to link the application data in the
data bases to the application program using the
data. Through DL/I's use of the DBD and PSB,
application programmers can write their programs
without regard to the physical structure of data.
See "DL/I Data Base Structure" in Chapter 3 for
a more detailed description of the DBD, PSB, and
the hierarchical structure of the DL/I data base.

Chapter 1. Introduction 13

Chapter 2. General Description of DL/I

DL/I is a data management control system that
executes as an application program in a virtual
storage environment under the Disk Operating
System/Virtual Storage (DOS/VS) on System/370.
It is a general-purpose data management system
that satisfies the diverse data base processing re­
quirements of many companies. It simplifies your
task of creating and maintaining large common
data bases to be accessed by batch processing ap­
plications. Future DL/I functions may be added
without affecting existing functions. DL/I also
allows growth to teleprocessing applications
through interface with CICS/VS.

DL/I allows application programs to be indepen­
dant of access methods, physical storage organiza­
tions, and the characteristics of the devices on
which the application data is stored. This inde­
pendence is provided by a common symbolic pro­
gram linkage and by data base descriptions exter­
nal to the application program.

Much of the data used by a company has many
interrelationships that can cause significant redun­
dant storage of data when conventional organiza­
tions and access methods are used. The storage
organizations and access methods of DL/I make it
possible to integrate data and control the amount
of data redundancy. Data can be processed in
more than one sequ·ence. All data need not be
placed in a single common base. DL/I allows you
to physically store the data in more than one data
base while maintaining centralized control over all
the data.

The concept of data sensitivity allows you to
control the use of the data base for each applica­
tion program. Each program can be limited to
(that is, be sensitive to) a predetermined subset of
the data. In addition, any application program can
be restricted to specified types of data base re­
quests made against sensitive data.

The DL/I system provides data base processing
capabilities for System/370 DOS/VS users similar
to those used on large systems. It serves two ap­
plication areas: batch processing and online proc­
essing in conjunction with data communications.

In batch processing, data base transactions re­
quested by applications are accumulated and then
processed periodically against a data base. Be­
cause of this elapsed time, data in the data base is
not always current. The use of batch processing

14 DL/I DOS/VS General Information

should depend on how current your information
must be, viewed in relation to the costs of other
methods of processing data.

For data communication applications, DL/I pro­
vides an online processor with an interface to
CICS/VS and employs existing user options and
exits provided by CICS/VS, which is a transaction­
oriented terminal management system. This type
of system, as opposed to a batch system, responds
to each transaction as it is requested. This method
eliminates the elapsed time inherent in batch proc­
essing systems and allows you to maintain current
data for your applications.

For a complete description of the CICS/VS sys­
tem, refer to the CICS/VS General Information
Manual, as listed in the Preface.

DL/I Batch System
The DL/I batch system (see Figure 2-1) contains
the following functional parts:

• An initialization module

• A language interface module

• A program request handler

• The DL/I facility

Initialization Module
The initialization module allows you to input par­
ameters to DL/I by two different methods:

• Through the normal system input device
(SYSIPT)

• Through the system console (SYSLOG)

This module (step 1 in Figure 2-1) formats the
parameters· to the form used by DL/I and analyzes
the parameters to determine:

• the program name

• whether the program is a utility or a DL/I
batch program

• the program specification block name

• the amount of main storage required for the
data base buffers

• whether asynchronous logging is wanted

• whether the log file is on a disk

• what trace facility, if any, is desired

The initialization module then loads the rest of the
DL/I system, the user's application program, and
the control blocks required to run the application
program. It also formats the data base buffer pool
and passes a pointer to the formatted parameter
list stored within DL/I to the application program.
Control is then passed from the initialization mo­
dule to the application program at its program
entry point (step 2).

Language Inter/ace Module
The language interface module, which must be link
edited with each application program, is entered
when a data call is issued by an application pro­
gram. The three programming languages supported
by DL/I are COBOL, PL/I, and Assembler language.
The language interface module identifies the lan­
guage used for the call, translates the call to a
common DL/I format and passes the call to the
program request handler (step 3).

Program Request Handler
The program request handler accepts the format­
ted application program call from the language
interface module, validates it, and passes it to the
DL/I facility (step 4). Upon completion of the
requested service by the DL/I facility, the program
request handler passes data, if any, to the applica­
tion program work area, then returns control to
the application program (step 9).

DL/ I Facility
The DL/I facility is the data management portion
of the DL/I system. Through this facility, the ap­
plication program inserts, retrieves, deletes, or
replaces the data in the data bases used by the
application program (steps 5 through 8). As these
operations are performed, the DL!I facility per­
forms all the data maintenance tasks required on
the data bases. Optionally, all changes to the data
base can be recorded on the DL!I system log. The
Virtual Storage Access Method (VSAM) performs
data management services using these DL/I access
methods:

• Simple Hierarchical Indexed Sequential Ac­
cess Method (Simple HISAM)

• Hierarchical Indexed Sequential Access Me­
thod (HISAM)

• Hierarchical Indexed Direct Access Method
(HIDAM)

• Hierarchical Direct Access Method (HDAM)

The Sequential Access Method (SAM) performs
data management services for data bases using
these access methods:

• Simple Hierarchical Sequential Access Me­
thod (Simple HSAM)

• Hierarchical Sequential Access Method
(HSAM)

For a description of the above mentioned DL/I
access methods, refer to "Data Base Organization
and Access Methods" in Chapter 3.

Chapter 2. General Description of DL/I 15

DL/I Facility
r------
I
I
I
I
I
I
I
I
I
I

r-----
I

L ____ _

DOSNS Nucleus

Application Program for
DL/I Data Base Processing

Language Intarface

1f3\
Control Facility I \V

,0
I
I
I
I
1
I

Program Request Handler r- ___ .I

-----,

Hierarchical Direct
Modules for HIDAM and HDAM

-l- - - - - - - - 1-0- - -
'" 0 ~

... '- - ~L....-_v--.--~M------,I

------,
I
I
I
I
I
I
I
I
I
I
I

___ J

o L __ _ ___ .I 0

Figure 2-1. DL/I batch system

DL/I Online Processor
The DL/I system operating in a teleprocessing en­
vironment under CICS/VS contains all the function­
al parts listed for the batch system, plus a set of
service routines called the DL/I online processor.
These routines establish a connection between

DL/I and the CICS/VS - DL/I interface.

16 DL/I DOS/VS General Information

In an online environment (see Figure 2-2), the
DL/I system executes within the CICS/VS partition.
CICS/VS provides exit interfaces to DL/I for the
following:

• DL/I system initialization during CICS/VS

initialization (step O.

• DL/I system termination during CICS!VS ter­
mination (step 12).

• DL/I user task scheduling of DL/I resources
before an application program accesses DL/I
(step 3).

• DL/I user task completion and return of DL/I
resources after the application program has
completed DL/I processing (step 11).

I
I
I
I
I
I
II
In
It
Ie
I r
If
la

CICS Ic
Ie
I

Facility :

I
I
I
L

CICS/VS Partition

Online Dl/l Processor
r-----------,

Dl/l System
Initialization - ----
Termination

User Task
Scheduling

Completion

Program
Request
Handler

DLII

Facility

SAM
or

VSAM

Data Bases

Figure 2-2. DL/I - CICS/VS data communication system

When the user application program issues a
DL/I call, control passes to the online language
interface module (step 5) and the program request
handler. The program request handler validates
the call and passes it to the DL/I facility (step 6).

The DL/I facility invokes CICS!VS services through
the online interface for such functions as transac­
tion and storage management. On completion of
the DL/I call, the DL/I facility returns control to
the CICS!VS application program via the program
request handler (step 7). The program request
handler also interfaces with CICS!VS for any func­
tions performed external to DL/I.

Multiple Partition Support (MPS)
DL/I has the capability to enable application pro­
grams executing in different partitions to access
the same data base concurrently. This capability,
multiple partition support (MPS), permits, for ex­
ample, online applications to issue inquiries to a
data base while a batch program updates it.

Although two programs cannot both update the
same data base segment type concurrently, one or
more programs can retrieve from it while another
program updates the segment type.

Note: The above limitation does not apply to DL/I Ver­
sion 1.3. See "Program Isolation" in the section, "DL/!
Version 1.3 Enhancements."

The addition of MPS enables multiple batch and
online application programs to access a data base
concurrently instead of serially. MPS uses the DL/I

resources and the multitasking facilities of DL/I

and CICS/VS. CICS/VS therefore, is a prerequisite
for running MPS. MPS follows normal DL/I online
conventions.

Note: MPS does not invalidate the restrictions that nor­
mally apply to DOS DASD sharing between CPUs.

Utility Programs and Procedures
The following utility support programs and proce­
dures are provided with DL/I.

Program Specification Block (PSB)
Generation
The program specification block generation proce­
dure creates the control blocks that define to DL/I

the data bases used, the data within each data
base, and the operations allowed on each data
base by a particular application program.

Chapter 2. General Description of DL/I 17

Data Base Description (DBD) Genera­
tion
The data base description generation procedure
creates the control blocks that define to DL/I for
each data base the data base name, its data struc­
ture, its data format, and the DL/I access method
used.

Application Control Blocks Creation
and Maintenance Utility
Before the program and data base descriptions
created by the PSB and DBD generation procedures
can be used, they must be merged and expanded
to an internal format. Instruction execution and
direct access wait time is minimized by prebuilding
the required application control blocks by means
of the application control blocks creation and
maintenance utility. Then, when an application
program is to be run, its control blocks are read in
directly (if they are not already in main storage),
and control is passed to the application program.

Data Base Reorganization Unload and
Reload
When the data in a data base is updated, the phys­
ical structure of the data may change, increasing
access time. Also the space occupied by obsolete
data is not in all cases reclaimed and reused. The
data base reorganization unload and reload utilities
may be used to unload, reorganize, then reload
simple HISAM, HISAM, HIDAM, and HDAM data
bases to eliminate these problems.

In addition, the HO Reorganization Reload Util­
ity also provides a reload restart facility. If a job
is canceled or fails, this facility enables you to
restart the reloading of a data base without going
back to the beginning. While running the HO Data
Base Reorganization Unload Utility, a checkpoint
record is written to the unloaded data base after
approximately every 5000 segments. These check­
point records can be used to restart the reloading
of the data base.

During the normal reloading process, the check­
point records are ignored except for a console
message containing the checkpoint number. This
message is printed each time a checkpoint is en­
countered. When a job is canceled or fails, the
system operator should:

1. Run the Access Method Services Utility, exe­
cuting the VERIFY command for each data
base being referenced during the reload.

18 OL/I OOS/VS General Information

2. Resubmit the job with a unique parameter
card, identifying the job as a restart of the
Reload Utility.

3. Supply the last checkpoint number when
prompted by the Reload Utility.

Data Base Recovery
The data base recovery system comprises five utili­
ty programs and is designed to provide a rapid,
accurate, and easy-to-employ means of restoring
the contents of a physical data base after destruc­
tion.

.Oata Base Data Set Image Copy Utility

The data base data set image copy to utility dumps
individual files of a data base to tape or disk in a
format suitable for use by the data base data set
recovery utility.

Data Base Change Accumulation Utility

The data base change accumulation utility sorts
records from the data base log tape and combines
all records that update the same segment. The
result is a sequential file that contains a condensed
description of all changes to the data bases.

Data Base Data Set Recovery Utility

The data base data set recovery utility reconstructs
individual files of a data base by first obtaining
from the data base image copy file an image of the
file at a time at which it is known to be valid and
then merging the accumulated application data
from the data base change accumulation utility.
Finally, any DL/I system log tapes that were not
included in the accumulated change input are ap­
plied until the file contains the desired data.

Data Base Backout Utility

The data· base backout utility reads the OL/I sys­
tem log tape backward and removes (backs out)
changes made to the data base from the point at
which the DL/I system abnormally terminated to

I the most recently written checkpoint (Version
1.3), or to the point at which the program started
processing. After backout, the status of the data
base is the same as if the job or transaction were
never executed. This utility also creates a log tape
that reflects the backed out changes.

L

Log Print Utility (Version 1.3)
The log print utility enables you to print the con­
tents of the log files. This utility can be invoked
when an abnormal termination or system failure
occurs.

The information contained in the logs selected
for printing includes the log record ID, the task ID
of the log record, the PSBname, the DMBname, the
type of call, the record type, and the data in the
record. After backout, the status of the data base
is the same as if the job or transaction were never
executed.

Application Support Program

Low-Level Code and Continuity Check
DL/I includes an application support program to
initially generate and update the 'low-level code'.
This code specifies hierarchical levels within a
structure of root segments connected to each other

by logical relationships. This function facilitates
processing bills of material in a manufacturing
environment and is known in this industry as
'low-level code'. Low-level coding is completed by
a continuity check that prevents an item from be­
ing contained in its own structure.

Techniques of low-level coding are also useful
to solve many non-manufacturing problems in cas­
es where the problems can be expressed as net­
works or as directed graphs.

The support program is a callable subroutine
that becomes a part of a user-written application
program.

More information about low-level code and
continuity check can be found in the publication,
IBM System/370 Low-Level Code/Continuity
Check in Data Language/I DOS/VS, Program
Reference and Operations Manual, SH20-9046.

Chapter 2. General Description of DL/I 19

Chapter 3. DL/I System Concepts

While a general description of DL/I has been giv­
en, there are numerous technical considerations
that require additional discussion. This chapter
discusses those considerations that are of particu­
lar interest to personnel responsible for planning
the use of DL/I.

DL/I operates as an application program in vir­
tual storage under DOS/VS. DL/I consists of the
control facility and the data base processing por­
tion of the system, referred to earlier as the DL/I
facility. The DL/I system also provides the inter­
faces necessary to permit DL/I to operate as part
of the CICS/VS teleprocessing environment.

DL/I Data Base Structure
The DL/I data base concept allows user's data and
programs to be independent from the access me­
thods and storage organizations chosen by the
data base administrator. The function of the data
base administrator is to provide a single source for
data and program requirements.

Note: The duties of the data base administrator are de­
fined later in this chapter.

The application program interface to the data in
the data base is a common symbolic language.
The application program is unaware of the particu­
lar storage organization, storage device, and access
method chosen for any data base. Nor is the pro­
gram aware of any pointers that might be used in
the physical storage organization.

One way to illustrate the structure of a DL/I
data base is to take a look at a typical program­
ming application and compare the methods used to
handle it (that is, data base vs. non-data-base).
Figure 3-1 shows a sequentially organized employ­
ee master file on disk storage. This file, containing
information about each employee, is used to proc­
ess a payroll application of 30 programs.

Its contents are typical. The control informa­
tion includes employee number, name, department,
and date hired. The address can be up to four
lines. Payroll information includes salary and
year-to-date tax data, with provisions made for
five deductions.

I In a non-data-base DOS/VS installation, each of

\
the 30 programs accessing that file contains a de­
scription of its physical attributes, and a descrip-

I tion of the data within the record. In the DL/I

20 DL/I DOS/VS General Information

-- ,
\

-- Employee Master File Record

Employee

Employee Number
Employee Name
Department
Date Hired

Address

line 1
line 2
line 3
line 4

Salary

Gross Salary
Salary Class
Auth. Date

Bytes

6
30

2
6

25
25
25
25

6
3
6

Taxes

FIT
FICA
State
Local

Deductions

(allow 5)
Type 2
Amt. 5
Bal. 5

Bytes

6
5
5
5

Total 12x5= 60

Total = 240

Figure 3-1. Sample payroll application

\
\

DOS/VS installation, the data is defined independ­
ently of your application programs, thus providing
the basis for data independence. The section,
"Data Base Definition," in this chapter explains
this concept in detail.

Hierarchical Data Structure
In the DL/I data base structure, data is represented
as a hierarchical organizational structure, where
certain information in a data base is related to
other subordinate types of information in a hier­
archical manner. This hierarchical data structure is
called a logical data structure.

Application programs written to use DL/I deal
with logical data structures. Logical refers to the
manner in which the application program sees the
data. A logical data structure is always a hierarch­
ical structure of data elements called segments.
Programs written to process logical data structures
can be independent of the physical data structure.
Physical refers to the manner in which data is
stored on a tape or a direct access device. An
application program in DL/I never deals directly
with a physical data structure. Most data process-

ing information, regardless of industry, can be
viewed as a logical data structure. Figure 3-2
shows the employee data base as it could be de­
scribed in DL/I.

I
Salary

(15 Bytes)

I
I

FIT 6
Taxes FICA 5

(21 Bytes) State 5
Local 5

Employee
(44 Bytes)

I

Gross 6
Class 3
Date 6

Employee No . 6
me 30

2
6

Employee Na
Department
Date Hired

I
Address

(25 Bytes)

I

One 25-Byte
address line

Deductions
Ty pe 2
Am t. 5

5
(12 Bytes)

Bal.

Figure 3-2. DL/I logical data base structure (hierarchical
data structure)

Segments

Each box shown in Figure 3-2 is known in DL/I

terms as a segment. In this case, the structure de­
picts five different types of segments (Employee,
Salary, Address, Taxes, and Deductions). Each
segment consists of one or more data fields. The
Employee segment, for example, has the employee
number, name, department number, and date of
hire. In this example, the Employee segment con­
tains the identifying information for the data
structure (name and number), and it is called the
root segment. There is only one root segment in a
data hierarchy. All others are dependent seg­
ments. The Salary and Address segments relate to
the Employee segment, and depend on the Em­
ployee segment for their full meaning (Whose sala­
ry? Whose address?).

Each type of segment can vary in length
(Employee is 44 bytes, Salary is 15 bytes, etc.),
and segments of the same type may also vary in
length. In this example all segments of a specific
type in the data base, such as Employee, are the
same length. Figure 3-2 shows one of the four
occurrences of the address segment; one 25-byte
segment for each line of the address.

There can also be many levels of dependency.
For example, the Tax and Deduction segments are
subordinate to and depend on the Salary segment.
The Salary segment, in turn, depends on Employ­
ee, the root segment.

Segment Relationships
The basic building element of a hierarchical data
structure is the parent/child relationship between
segments of data. In Figure 3-3, the root segment
(Employee) is also the parent of all the segments
(that is, Salary and Address) that depend on it.
The dependent segments, Salary and Address, are
called children of the parent segment (Employee).

The same relationship exists down the structure
(Salary is the parent of Taxes and Deductions;
Taxes and Deductions are children of Salary).

Each occurrence (or instance) of a parent
segment has associated with it any number of (0,
1, 2, ...) occurrences of a child segment type.
Note the distinction between a segment type (the
kind of segment), and the segment occurrence (the
segment and its particular contents and location).
In Figure 3-3, the parent segment, Employee, has
four occurrences of the child segment type, Ad­
dress. Each child segment type has associated with
it 1 occurrence of a parent segment.

As shown in Figure 3-3, a parent (Employee)
can have several child segment types (Salary and
Address). Also, a child segment (Salary) can at
the same time, be a parent segment, that is, have
children itself (Taxes and Deductions). The seg­
ment with no parent (Employee), the one at the
top, is called the root segment.

All the parent/ child occurrences for a given
root segment are grouped together to form a
DL/ I data base record. In this example, altho~gh
the logical data structure contains 5 segment types,
the logical data base record actually contains 8
segments because of the multiple occurrences of
the address segment. Data base records for a giv­
en logical data structure may vary in size accord­
ing to the number of occurrences of a given seg­
ment. The collection of all these like-data-base­
records is a DL/ I data base.

Since each dependent segment in the hierarchy
has only one parent (immediate superior segment)
the hierarchical data structure is sometimes called
a tree structure. Each branch of the tree is called
a hierarchical path. A hierarchical path to a seg­
ment contains all consecutive segments from the
top of the structure down to that segment.

DL/I allows a wide variety of hierarchical data
structures. The maximum number of different
segment types is 255 per hierarchical data struc­
ture. A maximum of 15 segments levels can be
defined in a hierarchical data structure. There is
no restriction on the number of occurrences of

Chapter 3. DL/I System Concepts 21

each segment type, except as imposed by the
physical access method limits of your DOS!VS sys­
tem.

Segment Sensitivity

The significance of the hierarchical structure is
iniportant to application programmers. In DL/I,

they no longer see a physical record. They see a
series of segments in a parent/child relationship.
They request segments of data, rather than physi-
cal records. The concept of segment sensitivity
allows a program to be restricted to seeing only
those segments of information that are relevent to
the processing being performed. For example, an
application program could be written to see only
the Employee and Address segments of the data
base record shown in Figure 3-2. The program
need not be aware of the existence of the Salary
segment and its children.

Basic Segment Types in a Hierarchical Data Struc­
ture

The following describes the several segment types
and their interrelations within a hierarchical data
structure. Refer to Figure 3-4:

Level 1

Level 2

Level 3

I

Salary
(Child of Employee)

(Parent of taxes
and deductions)

Employee

I

I
Taxes

(Child of Salary)
Deductions

(Child of Salary)

Figure 3-3. Logical data structure -- The programmer's view

22 DL/I DOS/VS General Information

The segment on top of the structure is the
root segment. Each root segment normally
has a key field (also called the sequence
field) which serves as the unique identifier of
that root segment, and as such, of that par­
ticular data base record. The key field in this
case is the employee name.

A dependent segment relies on some higher
level segment for its full meaning and identi­
fication.

• A parent/child relationship exists between a
segment and its immediate dependents.

• Different occurrences of a particular segment
type under the same parent are called twins.

Root Segment

;.
One occurrence per data base record.
This is also the parent segment for the
logical data structure.

I 4

I 3

I 2

1 1-

Address 1-
(Child of Employee) -

Dependent Segments

0- n occurrences for
each segment type per
parent occurrence.

This logical data structure contains 3 segment levels.
The maximum number of segment levels allowed in DL/I is 15.

This structure also contains 5 segment types (Employee. Salary.
Address. Taxes. and Deductions). DL/I allows a maximum of

255 segment types in a logical data structure.

ACCESS PATH
for Deduction 2

Selary

Employee 1

Address n

... PARENT of Salary

.,. and Address Segments

All segments below are
DEPENDENTS of
Employee 1

Address

L._,;_,~===~:!... __ CHILDREN of
Employee 1

Taxes TWINS, children of
.L------.J,. _.1 __ the same parent
~ and the same

segment type.
CHILDREN of Salary

Deductions
LOGICAL
DATA
STRUCTURE

Figure 3-4. Segment types and their relationships in a
hierarchical data structure

Definitions
Based on the previous discussion of the structure
of the DL/I data base, following definitions apply:

• Segment. A data element containing one or
more logically related data fields. A segment
is the basic data element that interfaces be­
tween the application program and DL/I and
upon which the user defines sensitivity. A
segment may be fixed length or, under cer­
tain conditions, variable length.

• Sensitivity. A means by which the user de­
fines which subset of the data within the data
base can be accessed by an application pro­
gram and what operations may be made
against that subset of the data base. This
defines a logical view of a data base.

• Logical data base record. A set of hierarchi­
cally related segments of one or more seg­
ment types. Each segment type may have a
unique length and format. As viewed by the
application program, the logical data base
record is always a hierarchical tree structure
of segments.

• Logical data base. The major unit of data
storage under DL/I - a set of logical data
base records stored in the DL/I organization
and for anyone of the DL/I access methods.

Logical Data Structures/Physical Data
Structures
Application programs written to use DL/I deal with
logical data structures. This refers to the manner
in which the application programs sees or views
the data. A DL/I logical data structure consists of
one or more hierarchical data structures(s}. Pro­
grams written to process these data structures can
be independent of the physical data structure.
Physical refers to the manner in which the data is
stored on a direct access storage device or tape. A
DL/I application program never deals directly with
a physical data structure.

The data described by the DL/I data base struc­
ture in Figure 3-2 is physically stored as shown in
Figure 3-5. Employee, the root segment, points to
its children (Salary and Address). Salary also
points to its children (Taxes and Deductions). The
multiple occurrences of segments are also linked.
It is through these pointers that DL/I retrieves
segments of data. The application programmer,
however, need not be aware of the physical stor­
age.

Physical storage is accomplished through the
use of two unique DL/I storage organizations: hi­
erarchical sequential and hierarchical direct. Six
DL/I access methods -- simple HSAM, HSAM, sim­
ple HISAM, HISAM, HIDAM, and HDAM, as well as
a multiple indexing facility for HIDAM and HDAM

-- are provided to allow access to these organiza­
tions.

These storage organizations and access methods
are discussed under "Data Base Organization and

Chapter 3. DL/I System Concepts 23

Access Methods" in this chapter. The application
program interface with these organization types
and access methods is totally symbolic.

Figure 3-5. Physical data structure

Sequence Fields and Access Paths
To identify and to provide access to a particular
data base record and its segments, DL/I uses
sequence fields. Each segment normally has one
of its fields denoted as the sequence field. Howev­
er, not every segment type need have a sequence
field defined. Particularly important is the se­
quence field for the root segment, since it serves
as the identification for the data base record. Nor­
mally, DL/I provides a fast, direct access path to
the root segment of the data base record based on
this sequence field. This direct access is extended
to lower level segments if the sequence fields of
the segments along the hierarchical path are speci­
fied too.

Note: The sequence field is often referred to as the key
field, or simply, key.

Figure 3-4 shows as a shaded line, an example
of an access path. It must always start with the
root segment. This is the access path as used by
DL/I. The application program, however, can di­
rectly request a particular Deduction segment of a
given Salary of a given Employee in one DL/I re­
quest, by specifying a sequence field for all three
segment levels.

Data Base Definition
The entire hierarchical structure (names of seg­
ments, sizes of segments, hierarchy) as well as its
physical attributes (the fact that it is on disk, or­
ganized sequentially, blocked 5) is kept in two
tables external to the programs in the DL/I system
itself. These tables are created and maintained by
a specific individual in your installation called the
data base administrator.

Note: See "Data Base Administration" in this chapter for
more information about the data base administrator.

24 DL/I DOS/YS General Information

Because both tables are created and maintained
independently of your application program(s), they
provide the basis for data independence.

DBD (Data Base Description)

The first table is called the DBD (data base de­
scription). It describes most of the file characteris­
tics you must put into every non-data base
DOS/VS program. Each DBD is created from state­
ments you provide. The statements define the
hierarchical data structure and physical organiza­
tion of the data base. These statements are assem­
bled as the data base description generation proce­
dure.

The DBD contains a description of the contents
of the data base, the names of the segments, their
hierarchical relationship, and the physical organi­
zation and characteristics of the file. You can
think of the DBD as the master description of ev­
erything that is in the data base.

The DBD provides DL/I with the mapping from
the application data structure of the data base
used in the application program to the physical
organization of the data used by DOS!VS. The
data structure can be remapped into a different
physical organization without application program
modification. Other application data can also be
added to this data base and not require a change
to the original application programs. The concept
of the DBD reduces application program mainte­
nance caused by changes in the data requirements
of the application. The three types of DBDS are:

• The physical DBD, which provides the defi­
nition of a single hierarchical structure. It
can be used, in this form, by application pro­
grams. If logical relationships exist, the phys­
ical DBD contains a definition of these rela­
tionships with the other hierarchical struc­
ture. These relationships can be within the
same DBD or with another DBD. Multiple
logical relationships can exist within a single
physical DBD.

• The logical DBD, which provides the rede­
finition of two or more related hierarchical
structures into a new hierarchical structure.
These hierarchical structures can be from the
same or different DBDs. The logical DBD
relies on the logical relationships that were
defined in the physical DBD(S).

Note: More information on logical relationships is includ­
ed in this chapter under the heading, "Logical
Relationsh ips".

• The secondary index DBD, which allows the
definition of a secondary access path into a
physical or. logical DBD.

Note: Secondary indexing is described later in this chapter.

The process of generating a DBD is called data
base description generation DBDGEN).

PSB (Program Specification Block)
The other table is called the PSB (program specifi­
cation block). The PSB defines the application
data structure for each application program. It is
created from statements you provide for each of
your application programs. The PSB defines which
segments of the data base a specific program re­
quires (the application data structure required by
that application program). A PSB contains one or
more PCBs (program communication blocks), one
for each hierarchical data structure the program
intends to use. Each PCB defines the hierarchical
(sub)structure the program sees from the physical
or logical data base. It specifies for each segment
the kind of access allowed by the program (read
only, update, insert, load, and delete). There is at
least one PSB for every program that uses the
data; more than one program may use the same
PSB. You can think of the PSB as describing the
logical data needed for the program (usually a
subset of the entire data base). The process of
generating a PSB is called program specification
block generation PSBGEN).

DL/I Control Blocks
Before the program and data base descriptions
created by the PSB and DBD generation procedures
can be used, they must be merged and expanded
to an internal format.

DL/I provides a utility that creates a DMB (data
management control block) for each related DBD
CSECT and an expanded PSB for each related PSB
CSECT. When DL/I is initialized, the DMBs and
PSBs for the applications program are loaded into
storage and control is passed to the application
program.

DL/I, the A.pplication Program
Interface
Figure 3-6 shows that at execution time, DL/I uses
the combination of the DBD describing the file,
and the PSB describing the data needs of a specific
program to satisfy the requests of the application
programs. DL/I acts as an intermediary between
the application program and the data itself.

DL/I

Payroll Program 4 f-
r--+- PSB4

Ipayrol Program 3 l-
f----

PSB 3)I

I Payrol Program 2
DBD -- Employee

PSB 2
Master

Payrol Program 1 PSB 1

Figure 3-6. DL/I is the intermediary between the applica­
tion program and the master file.

When a program needs a segment of information,
it issues instructions to DL/I using a standard re­
quest format. DL/I, using the PSB and DMB, inter­
prets the request. When necessary, DL/I issues the
appropriate I/O command to obtain data from the
data base and return the requested segment to the
program.

Some benefits of this concept for typical situa­
tions that might arise in your installation are:

File expansion. Assume the personnel depart­
ment wants to maintain information on the mili­
tary service of each active employee. This inform­
ation must be added to the existing master record
for each employee, because the original design of
the record did not include this data.

In our example of a non-data base DOS/VS en­
vironment, this would require modification to the
record description in each of the 30 payroll pro­
grams, and a recompilation and retest of each pro­
gram.

However, with DL/I, the military information
can simply be added as additional segments to the
employee data base without affecting existing pay­
roll programs at all (Figure 3-7). The payroll pro­
grams continue to be supplied with the segments
they need and are not aware of the expansion of
the data base. Thus, DL/I reduces the mainte­
nance impact of record changes in your installation
and simplifies the expansion of files.

Chapter 3. DL/I System Concepts 25

r----------,

Rank
Branch

L...----,...-----J Length

Rank
Military Dates
History Location

, ~ The Military Info~~a~~i:: 1
L..-___ ...l segments are added with- I
New deductions are out affecting existing I
added as additional programs. I
occurrences of the L ___________ J
deduction segment
type.

Figure 3-7. DL/I simplifies file expansion

Elimination of variable length records. Suppose
the payroll department finds that it needs to allow
more than five deductions for one employee.
Again in our example of a non-data-base DOS/VS

environment, you have to expand the size of each
employee's record to allow more deductions, or
you have to change the record format to variable
length. Either way requires that you modify, re­
compile, and retest the applic'ation programs.

With DL/I, no application program changes are
necessary. The new deductions are added to the
employee data base as additional occurrences of
the deduction segment type (Figure 3-7). The
application program simply processes the Deduc­
tion segments until there aren't any more. This
leaves the variability open-ended, and simplifies
the programming associated with this variability.

DL/I, therefore, reduces the complex systems
design and programming that exist today because
variable length records are no longer required.

Data security. With DL/I, confidential informa­
tion in the data base can be restricted to only the
programs that require it. The segments that a spe­
cific application program is permitted to access are
defined in the PSB, external to the program itself.
If the segment is not named in a program's PSB, it
cannot be requested. This allows centralized con­
trol over who can access which portion of the data
base. This concept is called segment sensitivity.
Each application program is sensitive to only the
segments it needs.

26 DL/I DOS/VS General Information

In addition to restricting application programs
to the segments they can access, the processing
options of each application program can also be
restricted. This prevents erroneous destruction of
the data base by improper updating. The updating
can be limited to a program or two, and the re­
maining programs may be permitted only to re­
trieve information. As you can see in Figure 3-8,
the programs PSB defines which functions it is
permitted to perform on the data base. Programs
2 and 5 may update the data base: all others may
only retrieve information.

Because DL/I allows your installation to control
who can access segments, and what processing
they are permitted to do, your data base is pro­
tected against erroneous updating, and confidential
data is restricted to those with a need to know.

DL/I

Program 1

Program 2

Program 3 PSB DBD
Employee

......,:.~~ Data
Base

Program 4

Program 5

Figure 3-8. The application program's PSB defines pro­
gram processing options. In this example, pro­
grams 2 and 5 have update capabilities.

Device independence. Suppose your installation
wants to change to a new disk device. For exam­
ple, a new disk becomes available that has the
capacity to greatly expand your capability to main­
tain data online. Since several files in your instal­
lation have a need for online availability, you de­
cide to convert to these new disks.

In the non-data-base environment, this conver­
sion will again probably require a modification,
recompilation, and retest of every program using
the data just to describe the new device and
change blocking factors.

With OL/I, since the physical characteristics of
the data base are maintained external to the appli­
cation programs in the DBO, all programs are
shielded from these changes and become device­
independent. Changes from one disk device to
another, or changes to the way data is physically
stored, do not affect the application program. Fig­
ure 3-9 illustrates that with DL/I, all changes re­
quired for new device support are made through
the use of DL/I utility programs and alterations to
the DBD.

OL/I

.....

Old File

Old OBO

J
l OL/I Utility I

1
"
....... ~

New OBD

New File

..... ,.".

Figure 3-9. DL/I provides device independence. To
change your files to a new disk device, simply
change the DBO and use the DL/I utility pro­
grams to load the new disk.

In addition to changing the physical device, you
can change access methods as well. Assume the
payroll programs were originally written for batch­
only operations, using sequential access methods.
However, a need develops to inquire randomly
into this data base, and this requires a change in
access methods.

This change can be made in DL/I in the same
way as changing a device. Simply alter the DBD
and use the DL/I utility programs to unload and
reload the file. The application programs will not
be aware that the access method has changed.

By providing this device independence, DL/I

gives you the added flexibility to take advantage
of new I/O devices without impacting your existing
program investment. You can also change access
methods to suit the processing needs of the appli­
cation.

Reduced data redundancy. What if your installa­
tion wants to develop a new system involving job
incentives for manufacturing employees? In the

non-data-base environment you must either merge
the new information required in the existing em­
ployee master file (and force a modification of all
programs using it), or you must create another file.
You already know the problems involved in ex­
panding the file, so let's look at the alternative.
You decide to construct a separate file for the job
incentives system, using pertinent control informa­
tion from the employee master file. This is prob­
ably a better alternative than changing a lot of
application programs. The problems arise, howev­
er, as changes, additions, and deletions occur. You
now have two files to be updated with the possi­
bility of developing inconsistent data (one file is
not updated, while the other one is). Tight con­
trols must be instituted in data maintenance, and
you will probably have a time lag between up­
dates. Some changes may not reach both files.

With DL/I, you no longer need to create sepa­
rate files. The file may be expanded as your needs
grow. The important benefit of this approach is
that once a change is made to a data base record,
it is effective for all programs using the data base.
By providing one data source for all programs,
DL/I assists you in reducing or eliminating data
redundacy and keeping data consistent.

Increased programmer productivity. Your instal­
lation probably has at least one application
(similar to Figure 3-10) where it was necessary to
create four or five interrelated files and a large
complex program to handle the interactions neces­
sary to manipulate them.

With OL/I, this is no longer necessary. You can
simply expand the data base to allow a wider
range of information processing to be accom­
plished. Figure 3-11 shows that no matter how
complex the data base may become, to application
programmers it remains a simple, logical series of
segments, because they are dealing with only that
portion of the full data base needed for the appli­
cation. Very few application programmers see a
data base this large. They actually see only the
portion of the data base they need for their partic­
ular application.

Data base coding is standardized and simplified
because application programmers no longer have
to spend time describing the data and the environ­
ment to the operating system as in the non-data­
base DOS/YS environment.

Chapter 3. DL/I System Concepts 27

Application Program

ISAM

Employee
Master
File

ISAM

Employee
Incentive
File

SEQ

Personnel
File

SEQ

Employee
Education
File

ISAM

Employee
Purchase
File

Figure 3-10. In OL/I, large complex application programs
used to process the data of four or five inter­
related files are not needed.

The application programmer need not be cOI~ce'rnEld about the complexity of a data base

Very few application programmers see a data base this large - Some see only this -

Figure 3-11. The application programmer need not be concerned with the complexity of a data base.

28 OL/I OOS/VS General Information

L

Logical Relationships
In addition to the basic DL/I facilities discussed so
far, DL/I provides a facility for HDAM and HID AM

data bases to interrelate segments from different
hierarchies. For example, suppose that one of the
requirements of the job incentives system de­
scribed previously is to get information on the
skills of employees (including a description of each
skill), and job-standards data. This portion of our
employee data base example is shown in Figure
3-12. Let's also assume that another application,
Skills Inventory, also exists whose data base is as
shown in Figure 3-13. As you can see in Figure
3-13, the data that is needed by the Job Incentive
System is contained in three segments of the Skill
data base: Skill, Description, and Standards. But
how do you get it?

Employee

Incentive

Skill

Figure 3-12. Job incentive system as included in the Em­
ployee data base

One way might be to copy the Skill data into
the record of each employee who has that skill.

Skill

Description Standards

Figure 3-13. Skills Inventory data base

This does away with the need to interrelate the
Employee and Skill data bases, but it creates re­
dundant data. For example, several employees
could have the same skill, and this data would be
repeated over and over again.

Another approach might be to replace the Skill
segment in the Employee data base with a pointer
segment that directly addresses the Skill seg-
ment. Let's call this segment, Skill Number. Now
when the information is needed, the programmer
accesses the Skill data base using the pointer in
the Skill Number segment. Under this arrange­
ment, the Skill Number segment is called the
pointer segment and the Skill segment is called the
target segment. Of course the data in the two data
bases and the relationship between the two must
be kept up to date.

With DL/I, the programmer doesn't have to
worry about maintaining this relationship. This is
because, once the logical connections between
segments have been specified (in the DBD), DL/I

maintains the relationship between the two data
bases automatically. This capability, known as
logical relationship,s provides direct pointers as
shown in Figure 3-14. As changes are made to the
data bases, the pointers are automatically updated.
The logical relationship between the two data ba­
ses is actually viewed by the programmer as one
logical data structure as shown in Figure 3-15. So,
when a programmer asks for a Skill segment for an
employee, DL/I retrieves the right segment from
the Skill data base and the application programmer
doesn't even have to be aware that this data base
exists.

Because the pointer-target segment relationship
shown in Figure 3-14 is in one direction, this is
called a unidirectional logical relationship.

Chapter 3. DL/I System Concepts 29

Employee

Incentive

Pointer
Segment

Direct Pointer
relationship
maintained by DLII

Skill # Description

Skill
Target
Segment

Standards

Figure 3-14. Through the capability of logical relationships, DL/I automatically maintains the relationship between the
Employee data base and the Skills Inventory data base.

-----------------------1 r Programmer's View I Physical Storage

Employee

Incentive

Intersection
Data

Skill
Number

I
Target I
Data I

Skill
Data

I
I
I
I
I

Description Standards
I
I
I

DLII

"---4 Employee
Data Base

L __________________________ ~

Figure 3-15. The logical relationship between two data bases is seen as one logical data structure.

Bidirectional logical relationships are also possi­
ble in DL/I. Suppose you wanted to analyze the
performance of employees who shared a specific
skill? By allowing the target segment (Skill) of
Figure 3-14 to point backwards through the point­
er segment (Skill Number), you can use the same
logical relationship to give you a second different

30 DL/I DOS/YS General Information

logical data structure as shown in Figure 3-16.
Note that the Employee segment - Skill segment
relationship, as shown in Figure 3-15, has now
been inverted to allow access to a specific Skill
segment, and from there, reaching all employee
names related to that skill. This is called an
inverted data structure.

r - - I,;~se-;i;; - - - ;o;a;m::s Vie; - - - - - - - - - -,
Data I Physical Storage

Skill

Incentive Description

Employee

Standards

I
I
I
I
I
I
I
I

I
I

DUI

Skills
Data Base

L __________________________ ~

Figure 3-16. The same logical relationship developed for the logical data structure in Figure 3-15 can be used to design
different logical data structures for other applications.

This feature gives you flexibility in application
design, because you can look at data in a way that
is natural and logical to the application program
regardless of where the data actually resides.

Intersection Data

In addition to having a pointer, a pointer segment
may also contain user data. For example, the user
data in the Skill Number segment of Figure 3-14 is
a specific identifier for the target segment (Skill).
However, it could have been data describing when
the employee was last called upon to use that skill,
or simply the name of the skill. This data, which
is unique to the relationship between a specific
pointer segment and a target segment is called
intersection data.

Because of the pointer-target segment relation­
ship, the Skill segment of Figure 3-15 may be
thought of as the concatenation of the intersection
data in the pointer segment (Skill Number) and
the data in the target segment (Skill). This is
shown in Figure 3-15 as the contents of the Skill
segment for that logical data structure.

The data content of the pointer and target seg­
ments may be retrieved and modified independent­
ly, or the pointer-target segment relationship may
be retrieved and modified as one concatenated
segment.

Figure 3-16 shows that for an inverted data
structure, the intersection data in the pointer seg­
ment (Skill Number) is concatenated with the data
in the Incentive segment.

Secondary Index Data Bases

As shown in Figure 3-17, another feature of DL/I

is the ability to access an HDAM or HIDAM data
base through secondary indexes.

For example, suppose it isn't enough to access
the Employee data base by employee number
alone? Suppose you also had to access it by name
(for alphabetic retrieval), or by department (for a
budget application)?

With DL/I you simply specify the fields to be
indexed. These indexes are then created and
maintained by DL/I. The application programmer
need not be aware of them.

Secondary indexing allows application program­
mers to work with data base structures that are
simplest and easiest for their particular needs. The
result is increased productivity in coding and test­
ing new programs.

Chapter 3. DL/I System Concepts 31

Employee

Employ ee #
Name
Dept.#_--.

Secondary Indexes

~
Name Employee # (Smith)

Figure 3-17. Secondary indexing allows the application programmer to work with a data base structure that is best suited to
the particular needs of the application.

Additional Definitions

In addition to the definitions given previously, the
following definitions apply within the DL/I envi­
ronment:

• Logical data structure. A set of hierarchically
related segments that serve as a prototype of
a logical data base record. Only the segment
types and not the number of occurrences of
each segment type are illustrated.

• Logical data base record. A family of related
segments described in the logical data struc­
ture but containing all related occurrences of
each segment type. A logical data base re­
cord may exist as contiguous sets of seg­
ments within related physical blocks. In this
case, the logical data base record is repre­
sented as one physical data base record. Al­
ternatively, the logical data base record may
be composed of segments from several physi­
cal data base records. The relationships be­
tween the physical data base records that
represent the logical data base records are

32 DL/I DOS/VS General Information

accomplished by direct address techniques
and indexes.

Data Base User Interface
A common symbolic program linkage and data
base description allow the application program to
request DL/I to:

• Retrieve a unique segment (GET UNIQUE)

• Retrieve the next sequential segment (GET
NEXT)

• Retrieve the next sequential segment within
the same parent (GET NEXT WITHIN

PARENT)

• Replace the data in an existing segment
(REPLACE)

• Delete the data in an existing segment
(DELETE)

• Insert a new segment (INSERT).

..

L

The common symbolic program linkage handles
the following languages: COBOL, PL/I, and Assem­
bler language. The external data base desc~iptions
describe the logical data structure and physical
data organization of the data base to DL/I. Using
these techniques, it is possible to physically reor­
ganize established data bases in a timely manner
without modification to application programs.

In the COBOL language, the common symbolic
program linkage enables use of the CALL verb to
perform the input/output functions listed above.
Application programs written in PL/I or Assembler
language use similar statements to reference DL/I.

Because of this approach to data reference,
input/ output operations and associated system
control blocks are not compiled into the applica­
tion program. This prevents dependence upon
currently available access methods and physical
storage organizations.

Each data base description is created from user­
provided statements that define the logical data
structure and physical organization of each data
base. These statements are input to a procedure
of DL/I, the result of which is the creation and
storage of a data base description. This data base
description provides DL/I with a "mapping" from
the logical structure of the data base used in the
application program to the physical organization of
the data used by DOS!VS data management. Other
application data can be added to this data base
without necessitating changes to application pro­
grams that use the data. The concept of the data
base description reduces application program
maintenance caused by changes in the data re­
quirements of the application.

Data Base Organization and Access
Methods
DL/I supports two basic physical storage organiza­
tions. The first organization, hierarchical sequential
(HS), provides the basis for both the hierarchical
sequential access method (HSAM) and the hierarch­
ical indexed sequential access method (HISAM).

Two additional access methods are provided for
HS organized data bases. They are called simple
hierarchical sequential access method (simple
HSAM) and simple hierarchical indexed sequential
access method (simple HISAM). The primary dif­
ference between. these access methods and the two
previously mentioned is that the simple HISAM and
simple HSAM data bases must be defined as con­
taining only root segments. The user may define,
during DBD generation, any DOS!VS SAM fixed

length record file as a simple HSAM data base and
any VSAM fixed length record key sequenced file
(KSDS) as a simple HISAM data base whether or
not the file was loaded by a DL/I application.

The second organization, hierarchical direct
(HD), provides the basis for two more accessing
techniques. The hierarchical direct organization is
made available through the hierarchical direct ac­
cess method (HDAM) and the hierarchical indexed
direct access method (HIDAM). HDAM uses an
addressing algorithm for direct access support of
the hierarchical direct organization. An algorithm
must be supplied by the user installation for each
HDAM application. DL/I provides three sample
randomizing routines that the user may reference
when writing algorithms. (See the publication
DL/ I DOS/VS Utilities and Guide for the Sys­
tem Programmer.) HIDAM is an indexed access
support of the hierarchical direct organization.

To allow faster and/or differently sequenced
access, for HIDAM or HDAM data bases, one or
more additional index data bases can be affiliated
with a data base. These secondary indexes may be
based on the values of any field and/or field com­
bination in most segment types of the referenced
data base. They may also carry system-controlled
replications of data from that data base as well as
user-controlled information.

Secondary index data bases have a hierarchical
sequential structure (root segment only) and are
comparable to a HISAM data base. Apart from
serving as alternate access paths to a data base,
they may be processed as data bases themselves.
In the hierarchical direct organization, segments
can be of variable length.

The primary differences between the hierarchi­
cal direct and the hierarchical sequential organiza­
tions are the manner by which segments are relat­
ed and the techniques of data access. Segments in
the hierarchical sequential organization that repre­
sent one data base record (that is, a physical hier­
archical tree structure) are related by being physi­
cally adjacent. This requires that segments which
represent one data base record be contained in a
variable number of storage blocks unique to that
data base record. Figure 3-18 shows the hierarchi­
cal sequential physical storage of the logical data
structure for a Skills Inventory Data Base.

Physical blocks (a variable number) required to
contain a particular data base record are related
either by physical juxtaposition (HSAM) or by di­
rect address relationships (HISAM).

Chapter 3. DL/I System Concepts 33

Skill

(Artist)

(Smith)

Name

(Adams)

Experience Education Experience Education Education

Figure 3-18. Hierarchical sequential physical storage of the logical data structure for a Skills Inventory data base.

Simple HSAM and HSAM are used for sequential
storage and access on tape or direct access stor­
age. The DOS/VS Sequential Access Method (SAM)
provides the data management services.

Simple HISAM and HISAM are used for indexed
sequential access to the hierarchical sequential
organization. The DOS!VS Virtual Storage Access
Method (V SAM) provides the data management
services. A HISAM data base is comprised of one
VSAM key sequenced file (KSDS) and one entry
sequenced file (ESDS). Each data base record
starts with a root segment and is stored in a VSAM
key sequenced file (KSDS). As many dependent
segments of that root segment as can be accom­
modated are placed in the KSDS physical record.
If required, additional space is obtained from the
VSAM entry sequenced file (ESDS), and overflow
dependent segments for that root segment are
stored in one or more ESDS physical records. Di~

rect addresses relate the KSDS physical record and

34 DL/I DOS/VS General Information

all ESDS physical records for one HISAM data base
record. A simple HISAM data base contains only
root segments stored in one VSAM key sequenced
file (KSDS).

Segments in the hierarchical direct organization
that represent one data base record (that is, a
physical hierar~hical tree structure) are stored in
one or more physical blocks. However, all seg­
ments in that data base record, rather than physi­
cal blocks containing the data base record, are
related by direct addresses. Each segment in a
data base record relates to segments of the same
type as well as to adjacent segment types through
direct addressing. Physical blocks that contain
segments of a data base record are not related by
direct addressing.

Figure 3-19 represents the segment direct ad­
dress relationships in the physical storage of the
logical structure from Figure 3-18 when the hier-

archical direct organization is used. Within a data
base record, occurrences of a particular segment
type are related by direct addressing to other oc­
currences of the same segment type (physical
twins) under a given parent. In addition, the seg­
ment type immediately above (physical parent)
and the first and last occurrence of each segment
type immediately subordinate (physical children)
are related by direct addressing.

Figure 3-\9. Hierarchical direct physical storage of Figure
3-\8 logical structure

In the hierarchical direct organization, the space
requirement for each segment is increased from
that required in the hierarchical sequential organi­
zation. This space is required to accommodate
direct addresses. However, the following advan­
tages are gained:

• More rapid direct access to segments within a
data base record.

• The ability to share space in a direct access
storage block across multiple data base re­
cords. One physical block may contain seg­
ments from different data base records. This
may result in considerable saving in data
base storage space.

• The ability to reuse space occupied by delet­
ed segments through the maintenance of
free-space addresses.

• The possibility, through user provided exit
routines, to edit or compress segments before
they are physically stored in the data base,
and to reconstruct or expand them after re­
trieval from the data base. This feature can
save additional direct access space and/or
increase data security.

HDAM is used for algorithmic addressability to
records in the hierarchical direct organization.
VSAM provides the data management services for
HDAM.

HIDAM is used for indexed access to the hier­
archical direct organization. VSAM provides the
data management services for HIDAM. The index
for HIDAM represents a key sequenced file (KSDS)

and is referred to by DL/I as a HIDAM INDEX data
base. Each KSDS logical record in the HIDAM

INDEX contains the key of a root segment and a
direct address .pointer to the root segment. The
root segment and all dependent segments of a data
base record are placed in physical blocks in the
HID AM data base. Because the data base for index
storage is separated from the data base for seg­
ment or physical data base record storage, reor­
ganization of the index separate from data is faci­
litated.

Segment Definition and Format
The foregoing discussion has introduced some of
the concepts used in the physical storage of data.
In both storage organizations discussed, the term
"data base record" is used. The data base record
is represented as a simple hierarchical tree struc­
ture of related segments. The hierarchical tree
structure represents one sort sequence of seg­
ments. This chapter has explained how logical
data base records are constructed from one or
more physical data bases. This is how other sort
sequences of segments are obtained. The forego­
ing discussion also indicated that segments in the
hierarchical direct organization are related by di­
rect addresses. With the exception of two special
cases, each segment, independent of data base
organization, is composed of two parts - the prefix
and the data. The prefix contains:

• Segment type

• Segment deletion indicator

• Direct addresses that establish intersegment
relationships.

The format of the prefix for any segment type
is unique. It is determined by the data base organ­
ization and segment interrelationships. The seg­
ment format, which includes both prefix and data
portions, is specified in the data base description.
The use of the segment prefix is controlled entirely
by DL/I. An application program need not be con­
cerned about the presence or the format of the
segment prefix as only the data portion of a seg­
ment is passed between an application program

Chapter 3. DL/I System Concepts 35

and DL/I. The data portion of a segment is com­
posed of one or more user-supplied data fields.
One of these fields may control the physical se­
quence of occurrences of that segment type.

The two exceptions mentioned above occur with
simple HSAM and simple HISAM data bases, which
consist of root segments only. In these cases, the
root segments contain only data and no prefix is
present. HSAM and HISAM data bases of this sim­
ple structure appear like conventional fixed
blocked data files. Therefore, it is possible to treat
conventional fixed blocked data files as simple
data bases with no intervening load operations.
These data files may have been created by
non-DL/I programs and can still be read by these
programs, while DL/I calls may be used to access
and process these files as DL/I data bases.

Interrelated Data Base Records
Even though logical data base records can be de­
scribed in the form of simple hierarchical trees,
their physical representation may be considerably
more complex. A logical data base record might
be composed of segments from only one physical
data base record. Alternatively, a logical data base
record might be composed of segments from se­
veral physical data base records. These physical
data base records could be contained in one data
base or in multiple data bases. Here the term data
base means a family of physical data base records
in which all have a common hierarchical segment
structure.

Figure 3-20 indicates the relationships that can
be established between physical data base records
in two different data bases. These relationships
are again described through the parent-child-twin
terminology. However, the relationships are con­
sidered logical rather than physical. For the name
segment of Adams, the logical child segments are
the pointer segments under skill for artist and skill
for mechanical engineer. All pointer segments
under skill segments that point to the name seg­
ment for Adams are considered logical twins. The
name segment for Adams is considered the logical
parent for all pointer segments that point toit.

Since logical data base records are constructed
from one or more physical data base records and
their intersegment relationships, you should under­
stand the terms logical data base and physical data
base. A physical data base is composed of physi­
cal data bast(records. The logical data base is
composed of one or more physical data bases. The
physical data base records are interrelated by logi-

36 DL/I DOS/YS General Information

Last Logical Child

Figure 3-20. Relationship between physical data base
records (two data bases)

cal parent-child-twin and physical parent-child­
twin relationships.

Indexed and Indexing Data Base
Records
Primary indexing as used with HlSAM and HIDAM
is considered to be part of the physical storage
organization of a data base. Secondary indexing
of a HDAM or HlDAM data base is accomplished
by additional data bases, using a root-only struc­
ture comparable to a HISAM data base.

A secondary index data base record points to
the indexed segment through a direct address
pointer. The relation between an index and its
indexed data base is similar to what was earlier
described as a logical relationship between two
physical data bases; with the indexed segment be­
ing considered to be the target segment.

•

The data upon which a secondary index is
based, that is, the data which will comprise the
KSDS key in the index data base, may exist within
the indexed segment or in any segment which is
hierarchically below the indexed segment. This
data may come from several noncontiguous fields
within a segment, however, it must be unique;
optionally, system-maintained replications of other
fields within this segment as well as user­
controlled information can be carried as data in
the index data base.

User options and exit routines are provided to
suppress creation of an index record for any data
base record.

Data Base Administration
The centralization of data and control of access to
this data is essential to a data base management
system. One of the advantages of this centraliza­
tion is the availability of consistent data for more
than one application. This dictates a tighter con­
trol of that data and its usage. Responsibility for
an accurate implementation of control lies with the
data base administration function. Because the
actual implementation of this function is largely
dependent on a company's organization this dis­
cussion is limiteg to the general characteristics of
data base administration. Although the data base
administration function is usually performed by a
person called the data base administrator, quite
often this function is actually performed by a
group of individuals with experience in both appli­
cation and system programming. The duties of the
data base administrator are to:

• provide standards for and control the admin­
istration of the data bases and their use.

• provide guidance, review and approval of
data base design.

• determine the rules of access to the data ba­
ses and monitor their security.

• control the data base integrity and availabil­
ity, monitoring the necessary activities for
reorganization and back-up recovery.

• enforce procedures for accurate, complete,
and timely updates of the data bases.

• approve the operation of new programs with
existing production data bases, based on re­
sults of testing with test data bases.

Online Processing Capability
DL/I functions may be extended to the telecommu­
nication environment through an especially modi­
fied teleprocessing program. The following de­
scribes highlights of the Customer Information
Control System/Virtual Storage (CICS/VS), which
provides the interfaces necessary to permit DL/I to
operate in an online environment. For more de­
tailed information, see the CICS/VS General In­
formation Manual, listed in the Preface.

CICS/VS is a general-purpose data base/data
communication interface between DL/I DOS/VS
and user-written application programs (either
COBOL, PL/I, or Assembler language). The user is
given the facilities to generate a CICS/VS system
configuration applicable to his needs and to define
the environment in which the system is to execute.
User exits are provided for optional processing as
required for specific system operation. Also pro­
vided is a macro facility to communicate applica­
tion program service requests.

Functions necessary to support DL/I and those
required to support other standard terminal appli­
cations are provided by CICS/VS through the fol­
lowing management facilities:

Task Management: Provides the dynamic multi­
tasking facilities necessary for effective, concurrent
transaction processing. Functions associated with
this facility include priority scheduling, transaction
synchronization, and control of serially reusable
resources.

Storage Management: Controls main storage
allocated to CICS/VS. Storage acquisition, disposi­
tion, initialization, and request queuing are among
the services and functions performed by this com­
ponent of CICS/VS.

Progra.m Management: Provides a multipro­
gramming capability through dynamic program
management while offering a real-time program
fetch capability.

System Recovery Management: Intercepts pro­
gram interrupts and causes the individual CICS/VS
transaction in which the interrupt occurred to be
abended, rather than the whole of the CICS/VS
partition. This function also intercepts the DOS/VS
partition abends, permitting CICS/VS to terminate
in a controlled manner. With CICS/VS Version
1.3, this capability is extended to permit CICS/VS
to recover from such a partition abend and contin­
ue running normally.

Chapter 3. DL/I System Concepts 37

Time Management: Provides control of various
optional task fUnctions (system stall detection,
runaway task control, task synchronization, etc.)
based on specified intervals of time or time of day.

Dump Management: Provides a facility to assist
in analysis of programs and transactions undergo­
ing development or modification. Specified areas
of main storage are dumped onto a sequential data
set, either tape or disk, for subsequent offline for­
matting and printing using a CICS!VS utility pro­
gram.

Terminal Management: Provides polling accord­
ing to user-specified line traffic control as well as
user-requested reading and writing. This facility
supports automatic task initiation to process new
transactions. The testing of application programs
is accommodated by the simulation of terminals
through devices such as card readers, line printers,
tape units, and disk devices.

File Management: Provides a data base facility
using direct access and indexed sequential data
management. This function supports updates, ad­
ditions, random retrieval, and selective retrieval
(browsing) of logical data on the data base.
CICS!VS provides access to the DL/I facilities of
DL/I DOS!VS.

Transient Data Management: Provides the op­
tional queuing facility for the management of data
in transit to and from user-defined destinations.
This function has been included to facilitate mes­
sage switching, data collection, and logging.

Temporary Storage Management: Provides the
optional general-purpose "scratch pad" facility.
This facility is intended for video display paging,
broadcasting, data collection suspension, conserva­
tion of main storage, retention of control informa­
tion, etc.

In addition to the management functions de­
scribed, CICS!VS provides the following system
service programs:

Sign On/Sign Off: Provides terminal operator
identification (security).

Master Terminal Function: Provides dynamic
user control of the system. The master terminal
operator can change the status and values of par-

38 DL/I DOS/VS General Information

ameters used by CICS!VS and thereby alter the
operation of the system.

Supervisory Terminal Function: Provides a
terminal-oriented subset of the services available
to the master terminal operator to individuals de­
fined as having supervisory authorization. The
supervisory subset can be used at any terminal
signed on under a given supervisor's jurisdiction.

System Statistics: Provides the capability to
dynamically log system statistics.

Abnormal Condition: Intercepts abnormal con­
ditions (except those associated with a terminal)
not handled directly by the operating system.

Terminal Abnormal Condition: Intercepts termi­
nal abnormal conditions not handled directly by
the operating system.

System Termination: Allows the user to termi­
nate operation of CICS!VS by gathering summary
statistics, closing data sets, and returning control
to the operating system.

Trace: Provides a program debugging facility
that reflects the execution of CICS!VS macro in­
structions by CICS/VS management programs and
user-written application programs.

Dynamic Open/Close: Allows the user to dy­
namically OPEN/CLOSE his data sets during the
real-time execution of CICS/VS.

CICS!VS is a modular program with system gen­
eration capabilities. The user selects those mo­
dules which meet his unique requirements during
the system generation process. Some of the select­
ed modules are resident in main storage; others
are loaded into storage when required during exe­
cution of the user-written application program.
Communication between the user-written applica­
tion program and CICS!VS is through CICS!VS ma­
cro instructions.

Activity within the DL/I system is initiated by
data from a terminal on the system. All applica­
tion program requests for terminal and file read­
write are processed by DOS!VS through CICS!VS.
The DOS/VS supervisor and data management ser­
vices are used by CICS!VS when they are function­
ally applicable. Features are incorporated which
assist in the serviceability of components of the
system to provide maximum system availability.

CICS/VS operates as a single task within a parti­
tion and may operate in a dedicated or multipro­
gramming environment. The selection of the envi­
ronment is the user's responsibility, as is the selec-

tion of system options ~eyond those required for
the operation of CICS/VS.

Chapter 3. DL/I System Concepts 39

Chapter 4. User Installation Requirements

The DL/I system provides a generalized data
base / data processing program designed to enhance
the user's ability to implement data processing
applications. In order to ensure successful imple­
mentation of his programs with DL/I, certain re­
quirements are placed on the user. These fall into
two categories: user installation responsibilities
and a user schedule to plan for installation.

User Installation Responsibilities
The user must ensure that personnel are sufficient­
ly trained in DL/I operations.

User data bases must be designed and created.
A data base description (DBD) generation must be
performed for each data base.

The user must define how each application pro­
gram will access data bases and to which segments
each application program will be sensitive. This is
accomplished by program specification block (PSB)

generations.

User application programs must be written (or
modified) to access DL/I data bases using DL/I
calls. If segment edit/compression is planned,
appropriate exit routines must be written. In addi­
tion, if a user accesses data bases with HDAM, he
must provide a randomizing routine for his appli­
cation. The DL/I system provides three sample
randomizing routines to assist the user.

40 DL/I DOS/VS General Information

If the user plans CICS/VS online operations, he
must additionally tailor his operations for and gen­
erate a CICS!VS system. He must also train his
personnel in CICS/VS operations.

User Schedule
The user should provide adequate leadtime to pro­
vide for and implement the above tasks. Estimates
of the man months required to perform these tasks
are as follows:

Task Man Months

1. Train personnel

· Machine operations 1/4

· Application programming 1/2

· System programming 1

2. Design and generate data bases (DB D) 2

3. Define application program access (PSB)

4. Provide randomizing routine 1/4

In addition to the above, consideration should

I be given to the time required to write application
programs, and to processing in an online environ­
ment. If the user wishes to use CICS/VS, he should
allow an additional three man months to tailor his
system and train his personnel for CICS/VS opera­
tions.

The purpose of this chapter is to illustrate the ef­
fects of a paging environment upon the perfor­
mance of a DL/I DOS/VS application program. The
contents of this chapter are as follows:

• Description of the test environment and ap­
plication program.

• Performance measurements for HDAM,
HIDAM, and HISAM data bases.

Test Environment
The tests were executed on a System/370 Model
145 with 512K bytes of main storage and 2314
Direct Access Storage Facility.

• Four 2316 disk packs were used containing:

(1) SYSRES and

(2) Page data set on channell

(3) DL/I data bases and

(4) Core image library on channel 2

• The test data consisted of ten root segments
and 262 dependent segments and was loaded
for HDAM, HIDAM, and HISAM.

• VSAM control interval sizes were 512 bytes
for KSDS and 1024 bytes for the ESDS.

• The application program issued 1633 seg­
ment retrieval calls and 618 segment updates
against the data base.

• The application program was DOS/VS page
fixed (PFIX).

• The DL/I program was executed in the back­
ground partition v=v with varying real stor­
age allocation (ALLOCR=).

• A control program was executed in the fore­
ground 2 partition V=R for the remaining real
storage (512K - SUPV - BG = F2).

Performance Measurements
The objective of the tests was to show how per­
formance of a DL/I application will decrease as
real storage (number of pages) decreases. It must
be noted that the performance tests were conduct­
ed using a relatively small data base; no other par-

Chapter 5. Performance

tition was executing v=v; and the application pro­
gram used was designed for a specific environ­
ment. Changing anyone of the above could alter
the individual results significantly for the three
access methods. Therefore, the results of these
tests should not be used to compare the relative
merits of one access method against another.

Four tests were conducted for each access me­
thod with varying amounts of real storage allocat­
ed. Three elements had to be considered in calcu­
lating real storage allocation. They were:

1. The application program storage require­
ments

2. VSAM module and control block storage re­
quirements

3. DL/I module and control block storage re­
quirements.

Since the application program is a user responsi­
bility and represents a variable, the application
program used in the performance measurement
was DOS!Vs/PFIxed, and the number of pages
used by the application program is not included in
the following tables.

The secondary storage requirements for VSAM
may be in excess of 200K bytes (including control
blocks, buffers and utilities). However, less than
40% of this code is considered as main processing
code. As a basis for calculating the normal VSAM
storage requirements, seven pages were estimated
for VSAM modules plus one page for HIDAM' or
HDAM buffers (KSDS) or two pages for HISAM
buffers (KSDS + ESDS).

The final factor in calculating the number of
pages of real storage required for the partition was
the DL/I modules and control blocks. The storage
requirements varied for the access method and will
be discussed with the access method description.

HDAM
The performance measurements for HDAM are
illustrated in Figure 5-1. For the first test suffi­
cient main storage was allocated (200 pages) to
ensure no paging. In the next three tests the total
number of pages of real storage for VSAM and
DL/I were 50 pages, 38 pages and 30 pages, based
on the following:

Chapter 5. Performance 41

• VSAM = 7 pages. No storage allocated for
VSAM buffers since DL/I buffer pool was
used.

• DL/I = Total DL/I module and control blocks
storage requirements were 86K bytes (43
pages). Included in this amount is one 32K
byte buffer pool (32 1024 byte buffers). 43
pages (100%),31 pages (70%) and 23
pages (56%) were used.

Seconds

256

128 -- Total execution •
64

c::
N
x 32

"'" II .,
E 16 i= ~, _________ ,~ __ ~U~Pd=a~.~s ____ _

8 . Retrievals

4

25 30

I
38 40 50 =:j200
2 K pages of real storage

excluding application program

Figure 5-1. DL/I execution for HDAM data base in paging
environment.

HIDAM
The performance measurements for HIDAM are
illustrated in Figure 5-2. For the first test suffi­
cient main storage was allocated (200 pages) to
ensure no paging. In the next three tests the total
number of pages of real storage for VSAM and
DL/I were 52 pages, 39 pages and 30 pages, based
on the following:

• VSAM = 8 pages, one page of which was
allocated because three 512 byte buffers are
required by VSAM for the KSDS.

• DL/I = Total DL/I module and control blocks
storage requirements were 88K bytes (44
pages). Included in this amount is one 32K
byte buffer pool (32 1024 byte buffers). 44
pages (100%), 31 pages (70%) and 22
pages (50%) were used.

42 DL/I DOS/VS General Information

c::
N
x

"'" .,
E
i=

Seconds

256

~
128 Total execution

-
64

32
Updates

16

8 ~ Retrievals

4

25 30 39 45 50 52 ----..... ~ 200 I
1-1------- 2 K pages of real storage ------I.

Figure 5-2. DL/I execution for HID AM data base in pag­
ing environment.

HISAM
The performance measurements for HISAM is illus­
trated in Figure 5-3. For the first test sufficient
main storage was allocated (200 pages) to ensure
no paging. In the next three tests the total number
of pages of real storage for VSAM and DL/I were
36 pages, 30 pages and 28 pages, based on the
following:

• VSAM = 9 pages, two pages of which were
allocated because three 512 byte buffers are
required by VSAM for the KSDS, and two
1024 byte buffers are required for the ESDS.

• DL/I = Total DL/I module and control blocks
storage requirements were 82K bytes (41
pages). Included in this amount was one 32K
byte buffer pool (32 1024 byte buffers).
However, no more than three DL/I buffers
will ever be utilized (for insert call processing
only) since the buffer management function
is performed by VSAM for HISAM data bases.
Therefore, the total effective DL/I storage
requirements is S4K bytes (27 pages). 27
pages (100%), 21 pages (78%) and 19
pages (70%) were used.

..J

Seconds

512

256 '--I Total execution

128

~ ~ 64 Updates
c:

\
N
x 32
'It

II> Retrievals E 16 i= •

8

4

25 28 30 36 40
• 200 1 I 2 K pages of real storage

Figure 5-3. DL/I execution for HISAM data base in pag­
ing environment

Chapter 5. Performance 43

Chapter 6. Machine Configurations

Minimum DL/ I Configuration
The minimum requirements for executing DL/I
DOS/VS are outlined below. Two environments
are shown, a batch environment and an online
environment in conjunction with CICS!VS. In both
cases, a limited and a full set of DL/I functions are
considered to show the resulting difference for the
real storage requirements.

The estimates of real storage requirements are
derived from the size of the modules in the DL/I
system necessary to handle normal execution, that
is, modules handling exceptional conditions such as
errors or open/ close, have not been included.
Thus, if the specified real storage is available to
DL/I and if no exceptional condition arises, then
no paging will occur in the DL/I code. Of course,
as for every system executing in a virtual storage
environment, if performance is not critical, DL/I
can execute in less real storage. Also, a trade-off
may be considered between the available real stor­
age in a central processing unit model and its in­
struction rate. For example a System/370 Model

Units Permitted

125 may require less real storage than a
System/370 Model 115 to achieve the same per­
formance, since its internal speed can make up for
the additional paging overhead.

The minimum storage estimates provided here
are based on the following application profile:

• Two HISAM data bases

• One buffer subpool with three buffers of 512
bytes each

• VSAM Control Interval size of 512 bytes

• No use of advanced functions (secondary
indexing, logical relationships, variable length
segments)

For the online system, the profile includes:

• Two PSBs in use

• Two tasks running concurrently

System Function

Processing Unit Any System/370 supported by DOS/VS with a minimum real storage of 128K for a batch
system or l88K for an online system in conjunction with CICS/VS.

Minimum Real Storage
(Including VSAM)

Minimum Virtual Storage

System Console

Tape Units**

The practical minimum amount of real storage is:

Batch System

• Basic retrieve operations only

• All functions

60K

SOK

Online system (including minimum CICS/VS/VS requirements*)

• Retrieve operations only

• All Functions

Multiple Partition Support (MPS)

J30K

150-200K

The real storage requirements are the same for a system with MPS as they are for an online
system plus 4 to 10K for each active MPS batch partition.

Virtual storage must be:

Batch System

Online System

See DOS/VS.

512K

768K

At least two 9-track 2400 or 3400 series tape units and control.

* For further information about the storage and CICS/VS-supported terminals and features, see the CICS/VS General
Information manual, as listed in the Preface.

**Not required if disk logging is used (Version 1.3).

44 DL/I DOS/VS General Information

Units Permitted System Function

Direct Access For system libraries and working storage space, any devices supported by DOS/VS.
Minimum space for system use and maintenance:

Batch system (75 cylinders 2316 or equivalent)

Online system with CICS/VS/DOS/VS (150 cylinders 2316 or equivalent.)

For DL/I data base storage, within the capabilities and restrictions of DOS/VS support by
the virtual storage access method and sequential access method:

2314/2319 Direct Access Storage Facility

3330 Disk Storage

3340 Disk Storage.

Telecommunication
Facilities Available
with CICS!VS

Various terminals, terminal control units, and programmable
special features are supported by CICS/VS.

Typical DL/I Configuration
A typical configuration for DL/I DOS!VS includes:

System/370 3138 Processing Unit (512K)
with:

One block multiplexer channel with
integrated storage control

One multiplexer channel

One selector channel
One tape control

Four 9-track magnetic tape units

Four 3330 Disk Storage
One 3215 Console Printer-Keyboard

Modell

One 2821 Control Unit Model 5

One 2540 Card Read Punch
Two 1403 Printers Model Nt.

The organization of these components is shown
schematically in Figure 6-1.

Note: The maximum number of input/output devices,
including communication lines, that may be attached to the
system is in accord with the capabilities of DOS/VS.

Typical DL/I Real Storage
Requirements

Multiplexer
Channel

2821-5
Control
Unit

System/370
3138 Processing Unit

Block
Multiplexer
Channel

Intergrated
Storage
Control

Selector
Channel

r-- --~
3803
Tape
Control

Optional

L ..!..v!!:s~n ~.~ -.J
The following is an example of the real storage
requirements for a typical DL/I system that could
serve as a usable production system. The figures
are based on the following application profile:

Figure 6-1. Typical configuration-DL/I system

Chapter 6. Machine Configurations 45

• Five HDAM data bases

• One HIDAM data base

• Use of advanced functions

• Use of data base change logging

• One buffer subpool with 12 buffers of 2K
each

For the online system, the profile covers:

10 PSBs in use

5 tasks running concurrently

The real storage requirements are:

46 DL/I DOS/VS General Information

Real Storage The typical amount of real storage is:

Batch System

• Retrieve operations only lOOK

• All functions 140K

Online system (including typical
CICS/VS/VS requirements)

• Retrieve operations only 220K

• All functions 240-260K

Virtual Storage Virtual storage (including the real stor­
age) is:

Batch System

Online System

600K

IOOOK

For a l1,1ore detailed discussion on storage con­
siderations and how to calculate your own virtual
and real storage requirements, see DL/I DOS/VS
System/ Application Design Guide, listed in the
Preface.

Chapter 7. Programming Requirements

DL/I will execute exclusively on System/370 using
the Disk Operating System/Virtual Storage
(DOS/VS). DL!I is written in Assembler language
and uses the Virtual Storage Access Method
(VSAM) and Sequential Access Method (SAM) data
management facilities.

The following components of DOS/VS are re­
quired:

• Control and service programs
- IPL and buffer load, 5745-sC-IPL
- Supervisor, 5745-sc-suP
- Job control, 5745-SC-JCL
- Linkage editor, 5745-sC-LNK
- Librarian - maintenance & service,

5745-sC-LBR

• Assembler, 5745-sC-ASM

• Data management
- Sequential disk lOCS, 5745-sC-DSK
- Sequential tape lOCS, 5745-sC-TAP
- Virtual storage access method (VSAM),

5745-sv-VSM.

One of the following program products is re­
quired:

• DOS/VS Sort/Merge, 57 46-SM 1

• DOS Sort/Merge, 57 43-SM 1.

In addition to the above DOS/VS components,
the user may require the following:

• DOS/VS COBOL Compiler and Library,
5746-CBl or Library only, 5746-LM4

• Full ANS COBOL v3 Compiler, 5736-CB2,
and Full ANS COBOL Library, 5736-LM2

• ANS Subset COBOL, 5736-CBl

• ANS COBOL, 360N-CB-482/370N-CB-482

• PL!I Optimizing Compiler and Libraries,
5736-PL3

• PL/I Optimizing Compiler, 5736-pLl

• PL!1 Resident Library, 5736-LM4

• PL/I Transient Library, 5736-LM5.

• Customer Information Control
System/Virtual Storage (CICS/VS),
5746-xx3, Version 1.2, including an update
for module DFHTBP which is required if mul­
tiple partition support is to be implemented,
or CICS/VS Version 1.3 (required for DL!I
DOS/VS Version 1.3).

Chapter 7. Programming Requirements 47

Chapter 8. Sample Applications

This chapter presents several data base applica­
tions which are examples of the types of terminal
inquiry and update transactions that a user might
employ. In addition, the data base record struc­
tures and organizations necessary in providing
efficient inquiry and update processing are de­
scribed. Examples are taken from several indus­
tries, but these are by no means to be considered
all-inclusive. The reader may wish to work out
other examples from his own industry. The exam­
ples are described by considering:

• The information that a terminal operator
might want or that a report might contain

• The logical data structure necessary to supply
the desired information

• The most suitable data organization and ac­
cess methods

The OL/I data base concept allows for the cor­
rection of a data base, using the traditional man­
ner of system design printed above. However,
OL/I provides the ability to add new segment
types into existing data bases as well as the ability
to create new data bases with minimal impact to
the system user. This data base approach to sys­
tem design promotes evolutionary system develop­
ment.

Manufacturing Industry
The following list of questions represents typical
requests for information in the manufacturing in­
dustry:

What parts represent the component parts of an
assembly, and in what quantity is each component
part required?

Where is a given part used in the composition
of assemblies, and in what quantities is the part
used?

What is the inventory status of a part where
mUltiple inventory sites exist?

What open purchase orders exist for a given
part and who is the vendor supplying the part?

What work orders exist for a given part, and
what is the status of each work order?

What are all the open purchase orders and work
orders?

48 OL/I OOS/VS General Information

What operations are performed in the construc­
tion of a particular part, and at what work centers
are these performed?

What operations are performed at a particular
work center, and what parts are affected by these
operations?

The first two questions relate to the structure of
a product and can be asked for a particular part, a
substructure of a product composed of many parts,
or an entire product. One question is really the
inverse of the other. The logical data structure for
answering both questions is shown in Figure 8-1.

Part
Master
Segment

I
I I

Where - Component
Used Part Part
Segment Segment

Figure 8-1. Logical data structure for part data base

However, the where-used information for one
part master is the same as the component part
information of the part master where it is used.
Actually, the where-used information for one part
is redundant with the component part information
of its assemblies. The pointer segment-target
segment concept introduced in Chapter 3 can
therefore be employed as shown in Figure 8-2.
The functions of the where-used part segment and
the component part segment can be achieved by
one segment type. This segment type is called the
component part/where-used segment. A one-level
bill of material is produced by proceeding from a
part master to its component part/where-used
segments by physical child and physical twin rela­
tionships. One-level where-used information is
obtained by proceeding from a part master to
component part/where-used segments by logical
child-logical twin relationships.

(Targetl

Physical
Twins

Logical Child

(Pointer)

Part
Master
Segment

(2)

Segment

(Pointer)

Logical Parent

Part
Master
Segment

(3)

Segment

(Pointer'

Figure 8-2. Three interrelated physical data base records
for three parts

The part master segment 1 in Figure 8-2 repre­
sents a part that is used as a component for both
master segment 2 and part master segment 3. Fig­
ure 8-3 illustrates a simple hierarchical structure
and these relationships. The dependent segment of
Figure 8-3 represents the concatenation of data
from the pointer segment and target segment; the
data in the pointer segment is intersection data.

Part Master
Segment

(1)

LOgy
Inter

Child

1_

section Data

Target Data

Where-Used : Part Master
Segment I Segment

(2) I (2)

Where-Used I Part Master
Segment I Segment

(3) I (3)
I

Figure 8-3. Logical data structure for usage of part I of
Figure 8-2.

Part master segment 2 in Figure 8-2 represents
a part that is composed of the part described in
part master segment 1 in Figure 8-2 and, let us
assume, a part master segment 4. This relationship
of component part explosion can again be illustrat­
ed by means of a simple hierarchical tree. Notice
the concatenation of pointer and target segment
data in Figure 8-4. The physical existence of the
component part/where-used segment exists under
the part master for which it represents component
part data. Therefore, the relationship from the
part master 2 to its component part segments 1
and 4 is a physical parent-child relationship. The
relationship for part master 1 to its where-used

information in the combined component
part/where-used segment is by address chains.
This is a logical parent-child relationship.

Part Master
Segment

(2)

Physical
Child

Component Part l Part Master
Segment I Segment

I (1)
L

(1)

! Component Part I Part Master
Segment l Segment

(4) I (4)

Figure 8-4. Logical data structure for component part
definition of part 2 of Figure 8-2

The inventory status for a particular part could
be supplied by the data structure in Figure 8-5.

Part
Master
Segment

Physical
Child

Inventory
Status
Segment

Figure 8-5. Logical data structure for part inventory status

Each inventory status segment for a particular
part is a dependent segment under the part master
segment. Each represents the inventory for the
part at a particular location.

The open purchase orders and vendors assigned
for a particular part could be supplied by the data
structure in Figure 8-6.

Part
Master
Segment

Logical
Child

Purchase Order -
Line Item
Segment
I

Figure 8-6. Logical data structure for part purchase order

Chapter 8. Sample Applications 49

Each purchase order line item segment repre­
sents a line item in an open purchase order perti­
nent to this part. Of course, the inverse question
of what purchase orders have line items that affect
a given part might be asked. This problem is simi­
lar to the component part/where-used situation
and can again be solved· with the pointer
segment-target segment concept. Let us assume
part master segment X in Figure 8-7 has a line
item in two purchase orders, A and B.

r--+-

1st Logical Child

1 1
Logical Purchase

Part Master Parent Order Master
Segment Segment

(X) (A)

(Target)

~
I Physical

Parent-C hild

Physical
Twin '-- Purchase

Order Line

~
Item Segment
for part (X)

for part (V)

(P ointers)

Purchase
Order Master

Logical Segment

Twin (B) I Physical
Parent-C hild

Purchase
Order Line
Item Segment
for part (Z)

Logical Parent Purchase
Order Line
Item Segment

Last Logical Child for part (X)

(Pointers)

Figure 8-7. Physical data base records with pointer
segment-target segment concept for part pur­
chase orders

The next questions, regarding what operations
are performed in the fabrication of a part and
what operations performed at a given work center
affect a given part, again involve inverses. These
can be answered by the two logical data structures
in Figure 8-8.

50 DL/I DOS/VS General Information

Part Master
Segment ,
Operation : Work Center
Segment I Segment

I
I

Operation I Work Center
Segment I Segment

I

Work Center
Segment ,
Operation : Part Master
Segment I Segment

I

Operation : Part Master
Segment I Segment

-.1

Figure 8-8. Two logical data base structures showing fabri­
cation operations

Using the pointer segment-target segment con­
cept, Figure 8-9 illustrates how data redundancy is
removed. Let us assume that part master A has
operations 1, 2, and 3 performed in its fabrication
at work centers X, Y, and Z, respectively.

Part
Master
Segment

(A)

Physical
Parent- Child

Logical Child

Logical Parent

Work
Center
Segment

(X)

(Targetl

Work
Center
Segment

(V)

(Target)

Work
Center
Segment

(ZI

(Targetl

Figure 8-9. Pointer segment-target segment concept
showing elimination of data redundancy

The operation segment under other part mas­
ters, where the operation is performed at work
center Y, would be logical twins of the operation

segment 2 under part master A. By following the
logical child relationship from work center segment
y to operation segment 2, and then following the
logical twin relationship to related operation seg­
ments, the question of all parts affected by opera­
tions at a particular work center can be answered.

The following segment relationships can now be
formulated into physical and logical data bases.
Figure 8-10 illustrates the physical data base re­
cords.

Work Center Purchase Order
Data Base Data Base

Part Master Data Base

'-- ~ ~

Part
Master
Segment

Purchase
Order
Master
Segment

Work

I I
Component

Inventory Part/Where-
Used Status

Segment Segment

1
Purchase
Order
Line Item
Segment

Center
Segment

....

Operation
Segment

Figure 8-10. Physical data base records under pointer
segment-target segment concept

......

These three physical data bases are interrelated
by the pointer segment-target segment concept
as shown in Figure 8-11. The interrelationships as
well as the physical data base records allow logical
data base records to be described as indicated in
the foregoing discussions.

Let us assume that HIDAM is chosen for the
part master and work center structures. Also as­
sume that HDAM is chosen for the purchase order
structure. Figure 8-11 illustrates the physical data
bases. Logical relationships are accomplished by
direct address pointers.

Financial Industry
The following list of questions represents typical
requests for information in the banking environ­
ment:

What are all the accounts associated with a par­
ticular individual? This information might be de­
sired when a customer wants to make a deposit
but does not know his account number.

What is the status of loans outstanding to a
particular individual? This information might be
desired when a bank officer is asked to accept a
loan request from a customer.

Does the checking account of a known account
number contain a balance adequate to cash a
check?

What is the amount of money needed to payoff
the installment loan for a known loan account?

HIDAM
Part Master Index

Work Center Index

Part Master Data Base

Component
Part/Where -
Used
Segment

Direct
Address
Logical
Relationsh ip r----

HDAM

----,

Inventory
Status
Segment

Operation
Segment

Purchase Order Data Base

Purchase
Order
Master
Segment

Purchase
Order
Line Item
Segment

Direct
Address
Logical
Relationship I ---_ ...

Figure 8- 11. Physical data bases under HIDAM and
HDAM

Chapter 8. Sample Applications 5 I

What is the property held and what is the par
value for each property held in a trust account?

What trust accounts hold a particular property,
such as a particular stock? The additional question
might be asked: What is the quantity in shares
held of the stock in each trust account?

These questions and the subsequent data struc­
tures should stimulate the reader to consider other
questions and additional data elements and struc­
tures. Both query and update operations against
the data base are possible.

The first question, concerning all accounts asso­
ciated with a given individual, could be answered
with the logical data structure of a customer in­
formation record in Figure 8-12.

Customer
Information
Master
Segment

I I
Loan Demand Savings
Account Deposit Account
Number Account Number
Segment Number Segment

Segment

Figure 8-12. Logical data structure of a customer informa­
tion record-financial

A customer information master segment would
exist for each of the bank's customers and might
contain name, address, dates, codes, and a
customer-identifying key. The loan, demand de­
posit, and savings account number segments might
be keyed on account number and indicate account
type and relationship to individual customer.

The second question, concerning the outstand­
ing loans for an individual, can be answered with
the same data structure.

The answer to the third question, concerning
the current balance in demand deposit account,
can best be answered with a data structure organ­
ized by account number. However, we have al­
ready established a demand deposit account
(number) segment subordinate to customer in­
formation master segment in Figure 8-12. DL/I
gives the ability to enter the data base either by
customer name or account number. This may be
approached with the use of the pointer

52 DL/I DOS/VS General Information

segment-target segment capabilities. Figure 8-13
illustrates the necessary data structure.

(Targetl

Customer Demand
Information Deposit
Master -.. Master
Segment Segment

I
Demand
Deposit
Account

(Pointerl

Number
Segment

Figure 8-13. Data structure with pointer segment-target
segment relationship

Referring to Figure 8-13, the pointer
segment-demand deposit account number
segment-is subordinate to customer information
master segment. It contains only a pointer to the
applicable demand deposit master segment and the
data describing the relationship between the cus­
tomer and the account. The demand deposit mas­
ter segment with its dependent segments contains
most of the information about the account includ­
ing current balance. The backward relationship
from target segment to its associated pointer seg­
ments allows the specification of logical data base
structures illustrated in Figure 8-14.

Customer Information Demand Deposit
Master Segment Master Segment

Demand I Demand
Deposit Deposit
Account , Master

Demand I Customer
Deposit ,Information
Account Master

Number , Segment
Segment , Number , Segment

Segment I

Figure 8-14. Logical data base structures showing customer
information specifications

The demand deposit account number segment
(pointer) is limited in data content to data unique
to the relationship between a given customer and a
particular demand deposit master account. This
represents intersection data.

An example of the physical data base records
and the logical interrelationships obtainable is de­
picted in Figure 8-15.

Customer
Information
Master Segment
(Mr. John Doe)

.,..
~

'~"~....L ____ ..,
0" ,...

oS

~ C-us-t-om-er--.....,

~ Information
1i Master Segment
'6 (Mrs. John Doe)
o

...I

Loan Account

Demand Deposit Data Base

Installment Loan Data Base

Logical
Parent-Child

Number Segment ~""----""+-I
(C)

Loan
Master
Segment

(C)

Figure 8-\5. Physical data base recon;ls and logical interre­
lationships

The questions concerning the properties held in
a particular trust account and the trust accounts
holding a particular property can be answered with
the logical data structures illustrated in Figure 8-
16.

Trust
Account
Master
Segment

Property
Master
Segment

I I
Property
Master
Segment

Trust
Account
Master
Segment

Figure 8-\6. Logical data structures showing properties
and trust information

These two questions are answered with inverse
data structures and present a problem similar to
the customer information master-account master
data structures. In addition, there is probably the
requirement for intersection data, such as how
much (how many shares) of a particular property
is held in a particular trust account.

If we utilize the pointer segment-target seg­
ment concept, the logical data structures in Figure
8-16, can be defined as illustrated in Figure 8-17.

(Target)

Trust Property
Account
Master Master

Segment Segment

I
Property

(Pointer! Asset
Held
Segment

Figure 8-17. Logical data structure with pointer
segment-target segment relationship

The pointer segment-property asset held
segment-can contain the intersection data. The
logical data base structures that can now be de­
rived are shown in Figure 8-18.

Trust Account
Master Segment

I
Property
Asset
Held
Segment

: Property
Master

I Segment
I
I

Property
Asset
Held
Segment

Trust
Account
Master
Segment

Figure 8-\8. Logical data base structures with intersection
data

The physical data base records and the logical
relationships for the trust and property data struc­
tures are depicted in Figure 8-19.

Chapter 8. Sample Applications 53

c
'i
I­
iii
u

'8'
..I

Trust Data Base

Trust
Account
Master
Segment

INI

Physical
Parent-Child

Logical
Parent-Child Property

~ __ -+ ______ ~~~~ Master
Segment

IAI

Trust
Account
Master
Segment

IMI

ICI

Logical
Parent-Child

Property
Master
Segment

IBI

Property
Master
Segment

ICI

Figure 8-19, Physical data base records and logical rela­
tionships

Of course, additional segments can be added to
the logical data base structures above that do not
participate in pointer segment-target segment
relationships. Under the property asset held seg­
ment type might exist a lot segment type. The lot
segment might contain data pertinent to a particu­
lar buy or sell of the property, such as date of
trade, broker, how acquired, unit price, and total
value of trade, Dependent to the savings master
segment type might be segments that describe de­
posits and withdrawals on a savings account. De­
pendent to the property master segment type
might be segments that describe different property
types, such as stocks, bonds, notes, mortgages, and
contracts,

If H\DAM is used for storage of the customer
information and account data base, Figure 8-20
illustrates the data base organization and access
method,

54 DL/I DOS/YS General Information

HIDAM

KSDS

KSDS

Customer Information Data Base

ESDS

~-----,

• • I
I

~----~--~~~~~~~~ rl
o •

Account Master Data Base ~'I
2!..1 ,,' !I •
! •
;' .
01 ::.
5:1
::0' ~I
::q
g.
~.
ii'l

I

• I

• I ESDS ,- ______ .J

~

Trust Account Master Segment

Figure 8-20. Data bases stored using HIDAM

Medical Industry
In the medical environment, a typical use of DL/I

might be the storage of medical information about
patients in a hospital or clinic, Associated with
each patient is one data base record with the root
segment containing basic information about the
patient. This patient master segment may be
keyed on patient identification such as social secu­
rity number. In addition, it contains name, ad­
dress, age, birth date, sex, and race. (See Figure
8-21.)

Patient Master Segment

Figure 8-21. Medical data base record root
segment-patient master segment

For each visit to the hospital or clinic, a visit
segment might be appended as a dependent seg­
ment to the patient master segment, as shown in
Figure 8-22.

Figure 8-22. Logical data structure with one dependent
segment

The visit segment might contain the date and
purpose of the visit as well as the attending
physician's name. Information obtained during the
visit might cause the physician to make a diagnosis
of the patient's problem. It is possible to consider
a diagnosis segment dependent to the visit seg­
ment, as shown in Figure 8-23.

Figure 8-23. Adding second dependent segment (diagnosis
segment) to medical data base record root
segment

Certain visits might involve surgical operations
performed on a particular site of the human body.
The inclusion of site and surgery segments under
visit segment may be considered. An alternative
approach may be to consider the site segment di­
rectly dependent to the patient master segment
and the surgery segment dependent to the site
segment (see Figure 8-24).

Patient
Master
Segment

I
I I

Visit Site
Segment Segment

I I
Visit Surgery
Diagnosis Segment
Segment

I
I I

Specimen
Surgery
Diagnosis

Segment Segment

Figure 8-24. Logical data structure of medical data base
record or data base

The second approach is more effective if multi­
ple surgeries are performed on a site at different
visits. The relationship between a particular visit
and a particular surgery can be achieved through a
field in the visit segment relating to a particular
surgery.

It would be appropriate to consider specimen
and diagnosis segments under the surgery segment.
These would be pertinent to a particular surgery.

If the visit to a clinic or doctor does not involve
surgery but involves x-ray or radioactive treat­
ment, additional segment types may be considered
as dependent from the site segment. If a visit in­
volves only the application of, or prescription for,
a drug or medicine, a drug segment type might be
considered dependent to a visit segment.

Questions that might be asked of information
contained within a data base of the structure de­
picted in Figure 8-24 can be of a simple or com­
plex nature. The simple type of question to an­
swer would be a request for information about a
particular patient. The answers to questions of
this simple type are facilitated because the data
base is structured on patient identification se­
quence. Online terminal inquiry and update are
quite practical.

A complex question might involve listing pa­
tients or information about patients who received
a particular drug, contracted a particular disease,
or satisfy a combination of such query criteria.
The use of pointer-target segment relationships
can assist in answering these questions. Additional

Chapter 8. Sample Applications 55

tree structures can be created that interrelate with
the patient tree structure. These tree structures
could be associated with drugs, diseases, or other
search arguments.

Process Industry

Online Order Entry/Production Control System

A total order entry/production control system has
computer control of production from acceptance
of orders through manufacturing, shipment, and
delivery of the order. An implementation plan for
these applications can be developed from the func­
tional relationship that exist between these func­
tions. The plan allows for a logical growth pattern
through the implementation of online order entry,
in-process inventory control, and plant balancing.

One of the major requirements in the installa­
tion of such a large-scale system is the ability to
implement the individual program in modular in­
crements. Each increment should gradually in­
crease the functional scope of the system without
the necessity of reprogramming previously written
programs that utilize the same data base. The ex­
isting data bases should grow to service the new
and additional applications.

A good beginning for a total system is an online
order entry application that includes all of the
processing operations necessary to accept orders
from customers and provide the necessary follow­
up until the entire order has been shipped. The
initial phase of online order entry would include
acceptance of orders for stocked items. A follow­
ing expansion would place additional information
in the data bases that would permit acceptance of
orders for items that necessitated initiation of a
mill order to produce the item or items requested.
When this application is added, it is necessary to
add programs that check in-process inventory,
operation routing, and facility loading information.
It would also be necessary to create mill order
plan records. The organization of these required
records is shown in the examples.

In addition to the functions performed by the
online order entry, the in-process inventory con­
trol programs would provide basic material control
and order status. Plant balancing programs that
would balance long-range scheduling objectives
with short-range sequencing objectives in order to
optimize production in relation to customer orders
could subsequently be added to the application.

56 DL/I DOS/VS General Information

If the data bases illustrated and the programs
described were implemented, the following types
of questions could be answered on communication
terminals: What is the availability of a stocked
product requested by a customer? What ship date
can be promised for an item that requires manu­
facturing? What is the credit limit of a given cus­
tomer and what is the total amount of unpaid in­
voices? What is the status of an existing customer
order?

In addition, many changes to the information
contained in the data bases can be entered from
the communication terminals. This would include
the following types of transactions:

• Enter receipt of new stock

• Provide notification of low limits of
inventory

• Add new items to an existing order

• Change the quantity previously entered in a
customer order

Change the ship-to location of an existing
order

The following logical data structure (Figure
8-25) can be used as a base to install the de­
scribed applications, permit the entry of data as
listed, and answer the types of inquiries described.

Stock Item Master Segment

Stock Item Location Segment

Figure 8-25. Logical data structure for stock item data
base

Figure 8-25 illustrates a logical data structure in
which a stock item master segment exists in a data
base for each stocked item. Subordinate to a stock
item master segment, one or more stock item loca­
tion segments exist. These segments describe in­
ventory locations where a given quantity of the
stocked items exists and is available.

The question concerning the ability to fill an
order from stock can be answered with the data
structure in Figure 8-25 by making inquiries
against the described stock item records.

Customer Master Segment

Ship- To Location Segment

Customer Open Order Segment

Figure 8-26. Logical data structure for customer master
data base

The ability to do a credit check on a particular
customer requires availability of information on
each customer. Let us consider the logical data
structure in Figure 8-26. The customer master
segment is keyed upon a unique customer identifi­
er and contains information such as credit clear­
ance level, name and address, and total amount of
unpaid invoices. This segment provides the answer
to the credit check. In addition, this customer may
have one or more locations to which he wishes the
orders to be shipped. The ship-to location seg­
ments provide this information. The customer
open order segments indicate all open orders for a
particular customer and a particular location.
These segments provide the pointers to the details
of each open order. This open order data struc­
ture describing each open order, Figure 8-27, is
required in addition to the stock item and custom­
er information data structures.

Open Order Master Segment

Order Line Item Segment

Figure 8-27. Logical data structure for open order data
base

This logical data structure would contain an
open order master segment, which is keyed upon
order number. Subordinate to the open order mas­
ter segment are one or more segments describing
each line item in an order.

The open order master segment contains the
status of the order, the due date, the customer

name, and the customer's ship-to location for the
order. Using this logical data structure and the
stock item data structure previously discussed,
order status inquiries can be answered.

Since the customer master segment and ship-to
location segment data structure represents stable
data, the user may select the hierarchical sequen­
tial organization and HISAM.

The stock item data structure is more volatile
with the updating or inserting and deleting of
stock item location segments. The user may select
the hierarchical direct organization and HIDAM.

One of the reasons for this selection is reuse of
deleted segment space with a hierarchical direct
organization data base.

The open order data structure is quite volatile.
All segments associated with an order exist only
for the life of the order. If an order is modified,
one or more segments may be updated, inserted,
or deleted. In addition, frequent inquiry against
the structure may be required for determining or­
der status. Here the user may consider the hier­
archical direct organization and HDAM. Figure
8-28 depicts the three logical data structures
stored in the suggested organizations with the indi­
cated access techniques.

If this application is expanded to include in­
process inventory items as well as stocked items
for handling orders, the additional questions might
be asked:

What is the status of an open order that re­
quired initiation of a mill order to produce the
item?

What is the routing of operations performed in
the processing of a given product?

What is the workload on a given plant facility?
If a particular plant facility breakdown occurs, can
another facility be used to complete the order?

If a plant"facility breakdown occurs, what is the
effect on an order's status?

In addition to answering questions such as those
stated above, the following data structures can
allow for data base update processing to assure
maximum plant facility usage and minimal time
until customer order availability.

Figure 8-29 describes the mill order plan and
routing relationship. The mill order plan segment
is keyed on mill order item number and includes a
plan of manufacture and time schedule. The in-

Chapter 8. Sample Applications 57

HISAM Customer Master Data Base

HDAM Open Order Data Base

I .. ----.~I Line Item I Segment 2
L......;;_----IL.......;~---'

HIDAM Stock Item Data Base

Index D8t8

Track Index Track

Figure 8-28. Physical data bases under HISAM, HDAM,
and HIDAM

process inventory segment includes the status of a
mill order. Each operation routing segment to be
under an in-process inventory segment describes

58 DL/I DOS/VS General Information

an operation performed in the process of produc­
ing the mill order item and the facility at which
the operation is to be performed.

Mill Order Plan Segment

In-Process Inventory Segment

Operation Routing Segment

Figure 8-29. Logical data structure for mill order planning

Figure 8-30 describes plant facility segment,
operation routing segment, in-process inventory
segment, and mill order plan segment.

Plant Facility Segment

Operation Routing Segment

In-Process Inventory Segment

Mill Order Plan Segment

Figure 8-30. Logical data structure for plant facility

The plant facility segment is keyed on facility
number and may contain facility loading data, such
as total time scheduled, etc. The operation routing
segment contains the individual operations per­
formed on a given mill order item at that facility.
Figures 8-29 and 8-30 are actually inverse data
structures of each other and can be considered for
physical storage through the pointer
segment-target segment concept. Figure 8-31
restates Figures 8-29 and 8-30 using the
pointer-target concept.

\Target)

Plant Facility Segment

Figure 8-31. Logical data structure for mill order plan and
plant facility using pointer-target concept
(Figures 8-29 and 8-30)

Referring to Figure 8-32, consider the mill or­
ders A and B with operations performed at plant
facilities x and Y. Figure 8-29 depicts the physical
data base records and logical relationships.

In addition to these data structures, a relation­
ship must be stated from the open order data base
to the mill order plan segments. This can be
achieved with a new segment in the open order
data base indicating the pertinent mill order plan
segment.

,--Mill Order Data Ba/

Mill Order
Plan
Segment

(A)
Plant Facility

Data Base

l ~

........
In-Process
Inventory
Segment

Physical l
Parent-Child
Relationship

Plant

~
Facility

~
Segment

X

\9

Operation

~ ~ _(Routing Physical Segment
Twin 1
Relationship "'I

2~ A

q 3\, ~
Mill Order
Plan

.. Segment
c (B) .. 'j

I
c ... 'j

Ii ...

~ ~
Plant
Facility
Segment

y

........

.2 Ii
'" In-Process .~ 0 Inventory

Segment

I
Operation
Routing
Segment

1

I 2

I 3

Figure 8-32. Physical data base records and logical
relationships-mill order plan and plant
facility

........
./

..,.

Chapter 8. Sample Applications 59

Appendix A: Comparison to IMS/VS and DL/I-Entry DOS/VS

The following chart illustrates which major features of IMS/VS are also contained in the J
smaller, upward compatible systems DL/I-Entry DOS/VS and DL/I DOS/VS Versions 1.1,
1.2, and 1.3.

Feature E 1.1 1.2 1.3 IMS

Batch processing partition (region) x x x x x
Telecommunication facility

(Integrated) x
(CICS/VS Interface) x x x x x

Message scheduling facility x
Data base recovery facility x x x x
Checkpoint/restart facility (Checkpoint for DL/I) x x ,
Data base description (DBD) generation x x x x x
Program specification block (PSB) generation x x x x x
System generation (CICS/VS online only) x x x x
Preformatted control blocks x x x x
Multiple Partition Support x x x
Program Isolation x x

Data Base Support

Simple hierarchical sequential access method x x x x x
Hierarchical sequential access method (HSAM) x x x x x
Simple hierarchical indexed sequential access method x x x x x
Hierarchical indexed sequential access method (HISAM) x x x x x
Hierarchical direct access method (HDAM) x x x x x
Hierarchical indexed direct access method (HIDAM) x x x x

Data Management Support

VSAM x x x x x j ISAM x
OSAM x
BSAM x
QSAM x
SAM x x x x x

Application Program Language Support

PL/I x x x x x
COBOL/VS x x x x x
Assembler x x x x x

Data Base Structures and Processing

Physical data bases x x x x x
Logical data bases x x x x x
Fixed-length segments x x x x x
Variable-length segments x x x x
Data compression of segments x x x x
Twin pointing for HDAM and HIDAM x x x x
Hierarchical pointing for HDAM and HIDAM x
Secondary indexing x x x x x
Multiple segments in hierarchic path with a single caIl x x x x
Multiple data set groups x
Distributed free space for HDAM and HIDAM x x
Boolean logic in SSAs x
Command codes x x x x

60 DL/I DOS/VS General Information

abnormal termination vs. messages 6
access methods 33
access paths 24
additional definitions 32
administrator, data base 20, 24, 37
application control blocks creation and

maintenance utility 18
application program interface, DL/I 25
application program requests 32, 33
application support program 19

backout utility, data base 18
basic segment types in a hierarchical data
structure 22

batch system, DL/I 14
bidirectional logical relationships 30, 31

change accumulation utility, data base 18
checkpoint 5
child segment 21
CHKP 5
CICS/VS 37
contents 8
control blocks, DL/I 25
customer information control system/virtual

storage (see CICS/VS)

data base 11
backout utility 18
change accumulation utility 18
data set image copy utility 18
data set recovery utility 18
how is it implemented 13
recovery 18
reorganization 18
what does it provide 13
what is it 12
why 11, 12

data base administrator 20, 24, 37
data base definition 24
data base description (DBD) generation 18
data base description (see DBD)
data base description generation (DBDGEN) 24, 25
data base organization 33
data base organization and access methods 33
data base record 36
data base, related records in 36
data base reorganization unload and reload 18
data base structure, DL/I 20
data base user interface 32
data bases, secondary index 31
data bases, why 11, 12
data independence 13
data independence, basis for 20
data, intersection 31
data management block (see DMB)
data of a segment 35
data redundancy, reduced 27
data security 26
data sensitivity 12, 14
data structure, hierarchical 20
data structure, inverted 30
data structure, logical 20
data structure, physical 20
DATASET statement 5

FRSPC parameter 5
DBD (data base description) 13, 24

logical 24
physical 24

secondary index 25
DBD CSECT 25
DBDGEN (data base description generation) 25
definitions 23

logical data base 23
logical data base record 23, 32
logical data structure 32
segment 23
sensitivity 23

definitions, additional 32
DELETE call 32
dependent segment 22
device independence 26, 27
disk loggmg 4, 6
distributed free space 4, 5
DL/I batch system 14
DL/I call 32

DELETE 32
GET NEXT 32
GET NEXT WITHIN PARENT 32
GET UNIQUE 32
INSERT 32
REPLACE 32

DL/I control blocks 25
DL/I data base structure 20
DL/I facility 15
DL/I online processor 16, 17
DL/I system concepts 20
DL/I, the application program interface 25
DL/I utility programs 27
DL/I Version 1.2 enhancements 4
DL/I Version 1.3 enhancements 4
DL/I, the application program interface 25
DMB (data management block) 25
DMBname 19
dump management 38

elimination of variable length records 26
enhancements, DL/I Version 1.2 4
enhancements, DL/I Version 1.3 4
expansion, file 25

facility, DL/I 15
feature comparison 60
figures 8,9
file expansion 25
file management 38
financial industry, sample application 51
FRS PC parameter, DATASET statement 5

GET NEXT call 32
GET NEXT WITHIN PARENT call 32
GET UNIQUE call 32

HDAM 15
HDAM (see data base organization)
HDAM, performance measurements for 41
HIDAM 15
HIDAM (see data base organization)
HIDAM, performance measurements for 42
hierarchical data structure 20
hierarchical direct access method (see HDAM)
hierarchical indexed direct access method

(see HIDAM)
hierarchical indexed sequential access method

(see HISAM)
hierarchical path 21

Index

Index 61

hierarchical sequential access method (see HSAM)
hierarchical sequential data base organization 33
HISAM 15
HISAM (hierarchical indexed sequential access

method 33
HISAM (see data base organization)
HISAM, performance measurements for 42
how is the DL/I data base implemented 13
HS (hierarchical sequential) data base

organization 33
HSAM 15
HSAM (hierarchical sequential access method) 33
HSAM (see data base organization)

image copy utility, data set 18
increased programmer productivity 27
independence, device 26, 27
indexes, secondary 31
indexing

primary 36
secondary 36, 37

initialization module 14, 15
intent scheduling 5
interrelated data base records 36
intersection data 31
inverted data structure 30

key field 22, 24

language interface module 15
log print utility 5, 19
log tape support

multifile 6
multivolume 6

logging, disk 6
logical data base, definition 36
logical data base record 32
logical data base record, definition 32
logical data structure 20, 23, 32
logical data structure, definition 32
logical data structures/physical data structures 23
logical DBD 24
logical relationships 24, 29
logical relationships, bidirectional 30
logical relationships, unidirectional 30
low-level code and continuity check 19

machine configurations 44
management facilities

dump management 38
file management 38
system recovery management 37
program management 37
task management 37
temporary storage management 38
terminal management 38
time management 38
transient data management 38

manuf acturing industry, sample application 48
medical industry, sample application 54
minimum DL/I configuration 44
module

initialization 14, 15
language interface 15

multifile log tape support 5
multiple partition support 4, 17
multivolume log tape support 6

online processing capability 37, 38, 39
online processor, DL/I 16, (7

62 DL/I DOS/VS General Information

parent segment 21
parenti child relationship 21, 22
partition support, multiple 17
PCB (program communication block) 25
performance 41
performance repack 4,6
physical data base, definition of 36
physical data structure 20, 23
physical DBD 24
pointer segment 31
prefix of a segment 35
primary indexing 36
process industry, sample application 56
program communication block (see PCB)
program isolation 4, 5
program management 37
program request handler 15
program specification block (PSB) generation 17,25
program specification block (see PSB)
program specification block generation

(PSBGEN) 17, 25
programmer productivity, increased 27
programming requirements, DL/I 47
PSB (program specification block) 13, 25
PSB CSECT 25
PSBGEN (program specification block

generation) 17, 25

records, variable length 26
recovery, data base 18
recovery utility, data set 18
reduced data redundancy 27
relationships, segment 21
reload restart 4, 18
reload utility 18
reorganization unload utility 18
REPLACE call 32
root segment 21,22

sample applications
financial industry 51
manufacturing industry 48
medical industry 54
process industry 56

sample problem 4, 6
secondary index data bases 31
secondary index DBD 25
secondary indexes 31
secondary indexing 36
security, data 26
segment 21
segment, child 21
segment definition and format 35
segment, dependent 22
segment occurrence 21
segment, parent 21
segment, pointer 31
segment relationships 21
segment, root 21, 22
segment sensitivity 22, 26
segment, target 31
segment, twin 22
sensitivity, data 14
sensitivity, segment 22, 26
sequence checking, unload 6
sequence fields 24
sequence fields and access paths 24
serviceability aids 4, 5
simple hierarchical indexed sequential access method
(see simple HISAM)

simple hierarchical sequential access method
(see simple HSAM)

simple HISAM 15,33

..

simple HSAM 15,33
storage estimates 44
storage management 37
structure, tree 21
support program, application 19
SYSLOG 14
system concepts, DL/I 20
system recovery management 37
system service program sign on/sign off 38
system service programs

abnormal condition 38
dynamic open/close 38
master terminal function 38
supervisory terminal function 38
system statistics 38
system termination 38
terminal abnormal condition 38
trace 38

target segment 31
task management 37
teleprocessing, interfaces for 37
temporary storage management 38
terminal management 38
time management 38
transient data management 38
tree structure 21
twin segment 22
typical DL/I configuration 45
typical DL/I real storage requirements 45

unidirectional logical relationships 29
unload sequence checking 6
user installation requirements

responsibilities 40
scheduling 40

utilities operational cleanup 4
utilities operational improvements 6
utility

backout 18
data base change accumulation 18
data set image copy 18
data set recovery 18
log print 19
reload 18
reorganization unload 18

utility, log print 5, 19
utility programs and procedures 17
utility programs, DL/I 27

variable length records, elimination of 26
VERIFY command 4, 18
virtual storage access method (see VSAM)
VSAM (virtual storage access method) 6, 15

what does a data base provide 13
what is a data base 12
why data bases 11, 12

Index 63

GH20-1246-4

------- ---- --- ---- - -----_ ... ------_ .. -
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue. White Plains. N. Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant. Route 9. North Tarrytown. N. Y .• U. S. A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue. White Plains. N. Y .• U. S. A. 10601

0
r --
0

J 0 en --< en
(;)
(1)

::J
(1)
.....
~

::J -..
0
3
Q)
o·
::J

~
::J
(1)

c..
::J

C
en
l>
(;)
:::c
f\J
9
-'
f\J
.p-
m
.J:,.

DL/I DOS/VS
General Information
GH10-1146-4

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. This form may be used to communicate
your views about this publication. They will be sent to the author's department for
whatever review and action, if any, is deemed appropriate. Comments may be written
in your own language; use of English is not required.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted
information, in any form, for any and all purposes, without obligation of any kind to the
submitter. Your interest is appreciated.

Note: Copies of IBM publications are not stocked at the location to which this
form is addressed. Please direct any requests for copies of publications, or for assistance
in using your IBM system, to your IBM representative or to the IBM branch office
serving your locality.

• Does the publication meet your needs?

• Did you find the material:
Easy to read and understand?
Organized for convenient use?
Complete?
Well illustrated?
Written for your technical level?

• What is your occupation?

• How do you use this publication:
As an introduction to the subject?
For advanced knowledge of the subject?
To learn about operating procedures?

Your comments:

Yes

0

0
0
0
0
0

o
o
o

No

0

0
0
0
0
0

As an instructor in class?
As a student in class?
As a reference manual?

If you would like a reply, please supply your name and address on the reverse side of
this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an mM office or representative will be happy to forward your comments.)

o
o
o

READER'S
COMMENT
FORM

GH20·1246·4

Reader's Comment Form

FOld and tape Please Do Not Staple Fold and Tape .. "

Fold

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department G60
P. O. Box 6
Endicott, New York 13760

Fold

If you would like a reply, please print:

First Class
Permit 10
Endicott
New York

Your Name __ ______________ __________________________________ _

Company Name _______________ Department _____ _

Street Address ___________________ _
City __ _

State _____________ Zip Code ______ _

--..- -....... - -­
~ - -- IBM Branch Office serving you __________________ _

----.,-- - - - ------
-~-.-®
Int.rnational BUllness MlChines Corporation
Data Proceaing Division
1133 Wastchest.r Av.nu •• White Plainl. N. Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount PI nt. Rout. 9. North Tarrytown. N. Y., U. s. A. 10591

IBM World Trade Europ./Middle East/Africa Corporation
360 Hamilton Av.nu •• Whit. Plalnl. N. Y •• U. S. A. 10601

0
r --
0 .j 0
CJ) --<
CJ)

G)
(1)

:::J
(1)
II>

:::J -0
3
II> ... o·
:::J

"C
:::J ...
(1)

C.

:::J

C
en
~
G)
J:
I'.)

<;:>
I'.)
~

C?
~

