
Program Product

Licensed Material - Property of IBM
LY12-5016-5

Data Language/I
Disk Operating System/
Virtual Storage
(DL/I DOS/VS)
Logic Manual

o BSOL, £r£
Program Number 5746-XX1

--- ------ ----- ---- - ---- - - ----------_.-

\
sixth Edition (June 1979)

This edition applies to Version 1, Release 5 (Version 1.5) of IBM I system/370 Data Language/I Disk Operating system/Virtual Storage (DL/I
DOS/VS), Program Number 5746-XX1. It supersedes LY12-5016-4 with
Technical Newsletter LN24-5614.

This edition, LY12-5016-5, is a major revision of LY12-5016-4.

Summary of Amendments

For a list of changes, see page 3. Changes and additions are indicated
by a vertical line to the left of the change.

PUblications are not stocked at the address given below; requests for
IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Programming Publications, Dept. G60, P •. O. Box 6, Endicott, NY,
U.S.A. 13760. IBM may use or distribute any of the information you
supply in any way it believes appropriate without incurring any
obligation whatsoever. You may, of course, continue to use the
information you supply.

© Copyright International Business Machines Corporation 1973, 1974,
1977, 1978, 1979

SUMMARY OF AMENDMENTS

DL/I Version 1.5

This version of DL/I provides system changes and functional enhancements
such as:

Field Level sensitivity

This function makes it possible for the user to specify only those
fields in the physical definition of a given segment that are to be
included in his application's view of that segment, while remaining
insensitive to the other fields in the segment.

Extended Logical Relationships

The restriction of only one logical relationship per logical path has
been removed. The user may now define as many logical relationships
as he needs to satisfy his requirements.

Unique segment support

It is possible for the user to specify that only one occurrence of a
particular segment type is allowed under a particular parent.

Selective Log print

It is possible for the user to selectively print data from the log,
using the log print utility, by specifying a DBD name, CICS task ID,
or relative block number.

DL/I FBA Device Support ICR

Technical Newsletter LN24-5614 documents the following from the FBA
device support Independent Component Release <ICR):

FBA Device Support

This support makes it possible for data bases and utility work files
to reside on Fixed Block Architecture devices.

DL/I Version 1.4

This version of DL/I provides system changes and functional enhancements
such as:

RPG II Support

Application programs written in RPG II can now access DL/I data bases
in a manner similar to programs written in COBOL, PL/I, and Assembler
language.

prefix Resolution Improvement

The prefix resolution utility now passes an actual maximum record
length, instead of a maximum possible record length, to the DOS/VS or
DOS sort/merge program.

Extended DL/I Call Interface

This support, along with CICS/VS high level language support,
eliminates the need for application programs to reference internal
CICS/VS control blocks. A new parameter has been added to the PCB

Licensed Material - Property of IBM iii

call to obtain the address of the DL/I User Interface Block. This
control block contains the information previously returned in the
TCA.

This enhancement is required for application programs written in RPG
II. It may also be used in programs written in"COBOL, PL/I, and
Assembler.

Intersystem Communication

CICS/VS intersystem communication support enables DL/I application
programs to access a data base that is resident on another CPU.

High Level Language Debugging for PL/I

This support for PL/I allows diagnostic information to be supplied by
both PL/I and DL/I. It is designed for only batch and MPS batch
execution of DL/I, and does not require any changes to the PL/I code.

Performance Improvements

Performance improvements have been made to image copy, the batch
partition controller, the HD unload utility, the log buffer and log
print utility, and program isolation.

DL/I Version 1. 3

This version of DL/I provides system changes and functional enhancements
such as: checkpoint capability with the new DL/I call function CHKP;
program isolation capability for online and MPS users as an optional
replacement for intent scheduling; the distributed free space feature to
improve performance of data bases with high insert activity; a log print
utility to enable the printing of log files; a disk logging facility for
the disk-only user; support for the IBM 3350 direct access storage; and
other servicability, performance, and fUnctional capabilities.

iv. Licensed Material - Property of IBM

PREFACE

This manual is t.o be used with the program listings for DL/I DOS/VS. It
discusses the internal operation of the DL/I system as an application
program under DOS/VS.. It is intended for use by persons involved in
program maintenance and by system programmers who are altering the
program design.

DL/I DOS/VS is a data management control system that assists the user in
creating, accessing, and maintaining large common data bases. In
conjunction with the Customer Information Control System (CICS/VS>, DL/I
DOS/VS can be used in an online teleprocessing environment.

Readers of this manual must be thoroughly familar with the use of
DOS/VS, and of CICS/VS, if DL/I DOS/VS is to be used in the online or
multiple partition support (MPS> environment.

Because DL/I DOS/VS is a functional subset of the IBM Information
Management system/Virtual Storage (IMS/VS>, some specific IMS or OS
terms are used in this manual. These terms are used to allow easy
reference to the documentation of the related systems.

This manual is divided into seven sections.

section 1: Introduction: summarizes DL/I DOS/VS g~v~ng general
information about the purpose of system control modules, DL/I facility
modules, MPS modules, and utility modules.

Section 2: Method of Operation: Contains HIPO diagrams that describe
the DL/I modules. The diagrams include cross-references to labels in
the progr am listings .•

section 3: program Organization: This section provides descriptive
information about the DL/I modules and major routines.

SECTION 4: Directory: Lists DL/I module, entry point, and control
section names with cross-references to Section 2 of this manual.

Section 5: Data Areas: Describes the data areas used by DL/I. Field
and flag names for each data area are also listed alphabetically.

Section 6: Diagnostic Aids: Gives information that may be helpful in
locating specific program listings.

Section 7: Appendixes: Contains information about L-LC/CC in DL/I, DBD
generation, PSB'generation and DL/I macros.

An index is also included.

Note: In this publication, the system and component name DOS/VS should
be read as DOS/VSE unless that name explicitly refers to DOS/VS release
34 or an earlier DOS/VS release ..

Related Publications

DL/I OOS/VS General Information Manual, GH20-1246
DL/I OOS/VS Application Program Reference Manual, SH12-5411
DL/I OOS/VS Utilities and Guide for the system programmer, SH12~5412
DL/I OOS/VS System Application/Design Guide, SH12-5413

Licensed Material - Property of IBM v

DL/I DOS/VS Messages and codes,SH12-5414
DL/I DOS/VS Guide for New Users, SH24-5001
DL/I DOS/VS Diagnostic Guide, SH24-5002

For DOS/VS messages and return codes:

\

DOS/VSE Messages, GC33-5379
DOS/VSE Macro User's Guide, GC24-5139
DOS/VSE Macro Reference, GC24-5140
Using VSE/VSAM Commands and Macros, SC24-5144
VSE/VSAM MeSsages and codes, SC24-5146

Users employing DL/I DOS/VS in an online environment should have access
to the following CICS/VS publications:

CICS/VS
CICS/VS
CICS/VS
CICS/VS ,

system Programmer's Reference Manual, SC33-0069
Application programmer's Reference Manual, SC33-0079
system Aeplication Design Guide, SC33-0068
system programmer's Guide (DOS/VS>, SC33-0070.

<

vi Licensed Material - Property of IBM

SECTION~. INTRODUCTION
DL/I Batch system • • .~ .•
DL/I Online Processor • _ • .•

CONTENTS

1-1
• 1-2

1-5
• • • • 1-6 DL/I Facility Modules •. _ • .• •

Multiple Partition Support (MPS) ••
DL/I Utilities.. • •• • ,. • • • .• •

. . •. • 1-9
.• • • • 1-9

SECTION 2. METHOD OF OPERATION • • • • • • • • • • • ••• • 2-1
Guide to Reading Method of Operation Diagrams • • • • • • 2-2
Visual Table of Contents for DL/I DOS/VS HI PO Charts. • • 2-3
Visual Table of Contents for DL/I Utility Modules HI PO Charts • 2-222

SECTION 3. PROGRAM ORGANIZATION.. . • • • • •
system Control Modules. • • ,. ,. • • • .• ,. • • .•

DLZRRCOO - Batch Initialization. • • • • ,. •
DLZRRC10 - Region Control primary Interface.

• • 3-1
• • • • 3-2

3-2

DLZRRAOO - User Parameter Analysis • • • • • • • • •
3-2
3-3
3-5
3-6
3-1
3-8

DLZPCCOO - Application Program Control • • • • • • •
DLZDBLMO - Application Control Blocks Load and Relocate.
DLZCPIOO ~ Batch Control program Initialization. • • • •
DLZLIOOO - Language Interface. • • • • •
DLZPRHBO - Batch program Request Handler
DLZABEND - STXIT ABEND • ,. • ,. ,.
DLZIWAIT - DL/I WAIT.. • ,. • • •

online DL/I Processor Modules • • .• •
DLZOLIOO - Online Initialization.
DLZODP - DL/I Task Scheduling. •
DLZPRHOO - Online Program Request Handler •••••
DLZODP01 - Task Termination.. • • ,. • • • • • • • •
DLZODP02 - DL/I Normal System Termination.
DLZODP03 - DL/I Abnormal System Termination.
DLZERMSG - DL/I Online Message Writer.
DLZOVSEX VSAM EXCP EXIT Processor.

DL/I Facility Modules • ,. • ,. • • ,. ,. .•
DLZDLAOO - Call Analyzer .• • • '. ,. '.
DLZDLOCO - Open/Close,. • • • • • • •
DLZDLDOO - Delete/Replace,. •
DLZDDLEO - Load/Insert .• ,. ,. • .•• •
DLZDXMTO - Index Maintenance
DLZDLROO - Retrieve. ,. • ,. ,.
DLZDHDSO - HD Space Management
DLZDBHOO - DB Buffer Handler •
DLZRDBLO - DB Logger ,. • • ,. •
DLZRDBL1 - CICS Journal Logger
DLZQUEFO - Queuing Facility. •
DLZCPY10 - Field Level Sensitivity Copy.

MPS Control Modules. • ,. • ,. ,. •• •
DLZMSTRO - start Transaction • '. •
DLZMPCOO - Master Partition Controller • • • • •
DLZBPCOO - Batch Partition controller ••••••
DLZMPIOO - MPS Batch ,. •• • • • •
DLZMSTPO - stop Transaction. • .• •

Data Base Recovery utilities,. • • • • • •• • • ,.
DLZBACKO - Batch Backout Interface
DLZRDBCO - DB Change Backout • • •
DLZURDBO - DB Data set Recovery. •
DLZUDMPO - DB Data set Image Dump.
DLZUCUMO - DB Change Accumulation.
DLZLOGPO - Log print utility • •

Data Base Reorganization Utilities. .• • • • ,..

3-8
.3-10
.3-11

• .3-12
• .3-12

• • • .3-15
.3-17
.3-19
.3-20
.3-20
.3-20

• .3-21
• .3-22

.3-22

.3-24

.3-25

.3-28

.3-30

.3-33

.3-35

.3-38

.3-49

.3-54

.3-56

.3-60
• .3-61

.3-61

.3-61

.3-62

.3-63

.3-61
• .3-68

.3-68

.3-69

.3-11

.3-73

.3-74

.3-16
• .3-18

Licensed Material - Property of IBM vii

DLZURULO - HS DB Unload. • • • • • • • •
DLZURRLO - HS DB Reload. • • • .
DLZURGUO - HD DB Unload. • • • ,. • • • •• • •
DLZURGLO - HD DB Reload. • '. • •• • • • • •

Application Control Blocks Creation and Maintenance •
DLZUACBO- ACB Creation and Maintenance. • . • •
DLZUSCHO - ACB Maintenance Binary Search/Insert. •
DLZLBLMO - ACB Generation Error Message Handler.
DLZDLBLO,DLZDLBL1,DLZDLBL2,DLZDLBL3 - ACB Builder.
DLZDPSBO - Utility PSB Builder • • • • •• • • •

Data Base Logical Relationship Utilities. •
DLZURPRO - prereorganization •
DLZURGSO - DB Scan • ,. • • • •
DLZDSEHO - Workfile Generator.. •
DLZURG10 - Prefix Resolution. •
DLZURGPO - Prefix Update • • •
DLZURGMO - DB Reorganization Message
DLZTPRTO - Trace Print Utility

SECTION 4. DIRECTORY.,.
system Control Modules,. • • • • •
DL/I Facility Modules • •. •• .
MPS Control Modules '. '. '. • • • •
Data Base Recovery Utilities,. • • .• •
Data Base Reorganization utilities. • .
ACB Utility • ,. • • • • • . . ••
DB Logical Relationship Utilities •
Diagnostic and Test Modules ,. • • •

SECTION 5. DATA AREAS. • •• '. • • • • • • • • • • •
The DL/I partition and Control Block Relationship.

The DL/I Batch Partition • • • • • • • • •
DL/I Control Block Relationship. • • • •

Data Management Block (DMB) ,. • • ,.
General structure,.

Program Specification Block (PSB) • ,. • • •
General structure. • ,. • ,. • • • ,. • •• ,. •

Buffer Pool Control Blocks.. • • " • • ••• •
General structure. • •• • • • • ••• • •

ACBXT - ACB Extension • '". • • • •
BFFR - Buffer Prefix.. • •• • • • • • .
BFPL - Buffer Pool Control Block Prefix

• .3-78
• • • .3-80
• • • .3- 81

" .3-82
• .3""" 84
• .3-84
• .3- 84
• .3-86
· .3-87
• .3-88
• .3-89

.3-89
• .3-90
• .3-91
• .3-94

.3-95

.3-96

.3-96

• • 4-1
• • 4-2
• • 4-3
• • 4-5

4-6
• • 4-7

• 4-8
• • 4-9
• .4-10

• • 5-1
· • 5-2
• • 5-2

• • • • 5-4
• • • ,. 5-7

• • 5-8
· . 5-9

• • • .5-10
• ••• 5-11

• .5-12
• .5-13

.5-16
• .5-19

CPAC - HDAM/HIDAM Variable Length Segment Compression/Expansion
Routine Interface Table. . • .5-22

DACS - HDAM Randomizing Routine Interface Table .5-24
DDIR - DMB Directory ••••• '. .5-25
DLZTWAB - Transaction Work Area .• 5-27
DMB - DMB Prefix. •• • • . • • • • ,. • .5-31
DPPCB - PCB Dope Vector Table • • • • • • ••• 5-33
DSG - Data Set Group.. • ,. . ,. • '. . • • • • • • • • • .5-36
FDB - Field Description Block • • • • • ,... • • • .5-38
FER - Field Exit Routine Interface List. .5-40
FERT - Field Exit Routine Table • • ••• 5-42
FSB - Field sensitivity Block . • • • . .5-43
JCB .:. Job Control Block '. • • . • • • • .5-46
LEV - Level Table Entry.. • • •• '.... .5-55
MPCPT - MPC Partition Table '" • • ,. • • • • • '. • .5- 59

MPC Partition Table Entry • .5~60
PCB - Program Communication Block • • • • .5-62
PDCA - Problem Determination Control Area. • • • • .5-63
PDIR - PSB Directory. • • • • • . •• • .5-64
PPST - PST Prefix. • .5-66
PSB - PSB Prefix. • • • • • . • • • • • • .5-69

viii Licensed Material - Property of IBM

PSDB - Physical Segment Description Block •
PSIL - PS~. Intent List. ,. • ,. • • • •
PST- Partition Specification Table
QWA - Queuing Facility Work Area
ROB - Resource Descriptor Block •
RIB - Remote Interface Block .•
RPCB - Remote PCB •• • ,. • • •
RPDIR - Remote PSB Directory. • • .• • •
RPST - Remote PST • .• • .• • • • • .• • •
RRD - Resource Request Descriptor •
SBIF - Subpool Informat.ion Table.
SCD - system Contents Directory •
SCDEXT - SCD Extension. • • ,. •
SOB - Segment Description Block ,.
SDBXP - SOB Expansion Block ,. .• • • • •
SEC - Secondary List. • • • .• .•
UIB - User Interface Block. ,. • • • • ,.
XMPRM - HDAM/HIDAM User secondary Index suppression

Routine Interface Table.
Re cord Layouts. • • .• • ,. • ,. ,. • • • •

SECTION 6. DIAGNOSTIC AIDS ,. '. • • • • • •
System Message/Module Cross Reference • •
DL/I Status Cod~S/Module Cross Reference. •

SECTION 7. APPENDIXES... •• • • ,. •

. ." .

APPENDIX A. LOW-LEVEL CODE/CONTINUITY CHECK IN DL/I.
Flow of Control. • .• •• • • • • .• •
Modification Aids • .. • ,. • • • • • • • • • •

External Names • ,. .-.. • • • • • • • .• " •
LLC/CC Execution Control Block (LECB) ••••••
Language Considerations. ,. ,. • • • .•
Save Areas • • • ,. • •
Register Usage • .• • ,. • ,.

HIPO Diagrams for LLC/CC,. • ,. •

APPENDIX B. DBD GENERATION. '. • • • .•
Description of DBD Generation •

DBDGEN Macro Calling sequence. '. • • • •
DBDGEN Macro - Global Symbol Cross Reference • •

DBDGEN Macro Descriptions • • • • • • • • • • • •
DATASET Macro.. • ,. • • • • •
DBD Macro. • •
DBDGEN Macro •
DLZALPHA Macro
DLZCAP Macro. '.
DLZCKDDN Macro
DLZDEVSI Macro
DLZHIERS Macro
DLZLRECL Macro
DLZSEGPT Macro ,.
DLZSETFL Macro
DLZXPARM Macro
DLZXTDBD Macro
FIELD Macro. •
FINISH Macro ,.

• ••• 5-71
• .5-75

.5-17

.5-90
' .• 5-92
• .5-93
• .5-95

• • • .5-96
• .5-97
• .5-98
• 5-100
• 5-102
• 5-111
• 5-114
• 5-119
• 5-121
• 5-127

' .. • 5-129
• 5-130

• • 6-1
• • 6-2

• • • .6-11

• • • • 7-1

• • 7-2
• • 7-2

• • • • 7-3
7-3

• • 7-4
• • 7-5
• • 7-6
• • 7-6

7-6

• .7-19
• .7-19
• .7-20
· .7-21

• '. • .7-24
• .7-24
• .7-24
• .7-24
• .7-24
• .7-24

.7-25
• .7-25
• .7-25
• .7-26
• .7-26
• .7-26
• .7-27
• .7-28
• .7-28
• .7-28

LCHILD Macro • .• .• ,. .' • • ,. • • .7-29
SEGM Macro '. • • • ,. •
XDFLD Macro. • " ,.

DBD Generation Control Block output - DBDGEN.

APPENDIX C. PSB GENERATION , ••

Licensed Material

• .7-29
• .7-29

.7-30

• .7-36

Property of IBM ix

1
I
I

Description of PSB Generation •
PSBGEN Macro Calling Sequence,.
PSBGEN Macro • Global Symbol Cross

PSBGEN Macro Descriptions •
DLZALPHA Macro •
DLZCKOPT Macro ,.
DLZPCBPD Macro ,.
PCB Macro.
PSBGEN Macro
SENFLD MACRO •
SENSEG Macro •
VIRFLD MACRO •

•

PSB Generation Control Block output •

APPENDIX D.
DLZBLDL •
DLZBLKLD,.
DLZDVCE ,.
DLZER •
DLZIPOST.
DLZIWAIT.
DLZTRCAL,.
DLZRPRM •
DLZMPCPT,.
DLZTWAB ,.
DLZXTAB ,.
DLZXCBl

DUI MACROS .•

•

Reference •

•

Macros Used to Create
DL/I Queuing Facility

DSECTs for DL/I System Control Blocks •
Macros,.

INDEX • • •

x Licensed Material - Pr~perty of IBM

• .7"'36
• 7-'):1
.7-37
.7-38
.7-38
.7-38
.7-38
.7-38
• 7-38
.7-38
.7-39
.7-39
.7-40

.7-42

.7-42

.7-43

.7-44

.7-46
.17-47

.7-47

.7-47

.7-47

.7·47

.7-47

.7-48
•• 7-48

.7-48

.7-48

Index-l

Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1-l.
1-2.
1-3.
2-l.
2-2.

2-3.
2-3.1
2-3.2
2-3.3
2-3.4
2-3.5
2-3.6
2-3.7
2-3.8
2-3.9
2-4.
2-4.1
2-4.2
2-5.
2-5.1
2-5.2
2-5.3
2-5.4
2-5.5

FIGURES

Elements of a DL/I DOS/VS Batch Partition. •
System Control ~acility Relationships. • • •
DL/I Facility Relationships. • • .• • • • • •
Guide to Reading Method of Operation Diagrams ••
Visual Table of Contents for

• • 1-3
1-4

• • 1-8
• • 2-2

DL/I DOS/VS HIPO Diagrams. • • • •
Batch Initialization (Overview) ••
Batch Initialization Entry,. •
Batch Partition Control. • • • •
Parameter Scan and Validation. •
Application program Control. • • •
utility Block Build Request Entry.
Application program Control Completion •
Block Loader and Relocator • • .• • • • •
Control program Initialization Completion. •
DL/I Control Card Analyze Routine ••
Batch Nucleus (Overview) • • • • •
Batch program Request Handler. • •
Partition ABEND Routine Entry .••
Online Initialization (overview) •
Online Initialization Start. •
PSB processing • • • • • • • • • •
DMB processing .' • • ,. • • • •
Control program Initialization •••• •
DMB Open Processing and Online Initialization

• • 2-3
2-4
2-5

• • • • 2-6
• 2-7

• • 2-8
• .2-10

• • • .2-11
• .2-12
• .2-17

• • • .2-20
• .2-21
• .2-22

• • • .2-23
• • • .2-25
• • • .2-26
• • • .2-27
• • • .2-28

• .2-31

Completion • • • • • • .• • • • • • 2 - 3 4
2-5.6 Module Load Routine. • • • • • .2-35
2-5.7 storage Acquisition Routine. • .2-36
2-5.8 storage Layout Control Routine •• 2-37
2-5.9 Buffer Allocation Routine. • • • • • ••• 2-38
2-5.10 Build Associated DMB Control Blocks ..2-40
2-5.11 PSB Initialization Routine. .• • • .• • • ••• 2-41
2-6. Online Nucleus (OVerview) •• ,. • •• • • , •.••• 2-43
2-6.1 DL/I pre-scheduling and PSB Scheduling Routines ••• 2-44
2-6.2 system Abnormal and Normal Termination. • .2-51
2-6.3 Task Termination Routine. •• • • .2-54
2-6.4 start-of-Task Record Writer •• ,. • .2-59
2-6.5 sync-Point Record Writer. • • • ••• 2-60
2-6.6 Online program Request Handler ,. • .2-62
2-6.7 Online Error Message Routine. • .2-63
2-6.8 Online WAIT Routine. • • • • • • .2-65
2-6. 9 VSAM Asynchronous Exit Processor .• • • • .•• • .2 - 6 6
2-6.10 Online PRH processing of Normal DL/I Calls. , •••• 2-67
2-6.11 Online PRH processing of scheduling, Termination,

and System Calls.... • • .2-69
2-6.12 PCB or PCBM scheduling. • • • • • • • • • • • .2-70
2-6.13 system Scheduling Call ••••••••••••••• 2-72
2-6.14 Suspend Task processing • •• • • • ,. • • • .2-76
2-6.15 Remote scheduling Call Interface Routine. • • .2-77
2-6.16 Remote Data Base Call Interface Routine • • • .2-78
2-6.17 Remote Termination Call Interface Routine. .2-79
2-7. DL/I Online System Termination • • • • • .2-80
2-8.. Call Analyzer. '. • • • • • .• • • • • ••• 2-81
2-8.1 Call Analyzer - Normal Function. .2-82
2-8.2 Call Analyzer - Validate SSAs. • • • .2-83
2-8.3 Call Analyzer - psuedo Function. • • ••• 2-85
2-9. Retrieve •.• " , ••• ,. • .• • .2-87
2-9.1 Retrieve - DLZLTW Routine,. , •• ,. • .2-89
2-9.2 Retrieve - DLZKDTE Routine ••• • .2--90

Licensed Material - Property of IBM xi

Figure 2-9.3 Retrieve - DLZPCHI< Routine .2-91
Figure 2-9.4 Retrieve - DLZTAG Routine. · · · · · · · .2-92
Figure 2-9.5 Retrieve - DLZSSA Routine. .2-93
Figure 2-9.6 Retrieve - DLZSKPG Routine · · ,. · .2-95
Figure 2-9.7 Retrieve - DLZGETS Routine · · · · .2-96
Figure 2-9.8 Retrieve - DLZLOGR Routine .2-97
Figure 2-9.9 Retrieve - DLZRETI Routine .2-98
Figure 2-9.10 Retrieve - DLZFLDO Subroutine ,. · 2-100
Figure 2-10. Load/Insert · · · · · 2-101
Figure 2-10.1 HSAM Load . · ,. '. · · · · · · · · · · 2-103
Figure 2-10.2 HISAM Load. · ,. · · '. · · · · · · 2-104
Figure 2-10.3 HISAM Root Insert · · · · · · 2-105
Figure 2-10,.4 HISAM Dependent Segment Insert. · · · · 2-107
Figure 2-10.5 NOTSC Routine ,. '. ,. '. ,. · · · · · · 2-108
Figure 2-10.6 HDAM/HIDAM Load · · · '. · · · · 2-110
Figure 2-10,.7 HDAM/HIDAM Not Load · · · 2-112
Figure 2-10.8 Not Load Ending Routine · · · · · · 2-114
Figure 2-10.9 Load Ending Routine · · · · · · 2-115
Figure 2-11,. Delete/Replace,. · ,. · ,. · · ,. '. · · · 2-116
Figure 2-11.1 Replace . ,. '. . ,. · · · · · · · · · · 2-117
Figure 2-11.2 Replace Data. . ,. · ,. · · · · '. · · 2-118
Figure 2-11.3 Replace Segment · · · · · · · · · · · 2-120
Figure 2-11. 4 HISAM Delete,. '. · · · · · · · · · 2-121
Figure 2-11. 5 HDAM/HIDAM Delete · · · '. · 2-122
Figure 2-11,.6 Delete segment,. '. · " · '. · · 2-123
Figure 2-12. Index Maintenance · · · · ,. · · 2-125
Figure 2-12,.1 Insert New Index Target Segment · · 2-126
Figure 2-12,.2 Delete Old Index Target Segment · · 2-127
Figure 2-12,.3 Replace Index Target Segment. · · 2-129
Figure 2-12.4 Insert FF-Keys,. · · '. · · · · 2-131
Figure 2-13,. HD Space Management · · · · 2-132
Figure 2-13,.1 Get Space

" · " " · ,. · · · · · · · · · 2-133
Figure 2-13.2 Free Space,. · " · '. · · ,. ,. '. · · · · 2-135
Figure 2-13.3 Modify Bit Map,. ,.

"
,. · · 2-136

Figure 2-13,.4 Backout Get Space · · · · · · · 2-137
Figure 2-13,.5 FBA support Device Characteristics Routine. '. · · 2-138
Figure 2-14. Open/Close,. · ,. '. · · ,. ,. · · · · · · · 2-139
Figure 2-14 .• 1 Open/Close DOCDCB Routine · · · · · · 2-140
Figure 2-15. DB Buffer Handler · '. · '. · '. · · ,. · · 2-141
Figure 2-15.1 Byte Locate/Block Locate. ,. '. · · · 2-143
Figure 2-15,.2 Byte Alter/Buffer Alter · · 2-144
Figure 2-15,.3 Get Buffer Space. · 2-145
Figure 2-15,.4 LOCATE Routine,. · ,. · · ,. '. · · · · 2-146
Figure 2-15.5 LOCATE Buffer Search. · ,. · 2-147
Figure 2-15,.6 LOCATE Buffer Write · ,. · · · · · 2-148
Figure 2-15.7 LOCATE New Block Processing · · ,. · 2-149
Figure 2-15 .• 8 LOCATE Read · ,. · · · · · ,. ,. '. · 2-150
Figure 2-15.9 Free Buffer Space ,. · ,. · · · ,. ,. '. · 2-151
Figure 2-15,.10 Purge Buffers (CHKP Function). · · 2-152
Figure 2-15,.11 Purge Buffers. · · ,. · · · · · · 2-154
Figure 2-15.12 Test ACB Routine · · · · · · · · 2-156
Figure 2-16. DB Logger (Overview). '. · · 2-157
Figure 2-16.1 Initialize Logger · · ,. · · · · · · · 2-158
Figure 2-16.2 Build Log Record,. · ,. · · · · · · · · · 2-159
Figure 2-16,.3 Asynchronous Log Subtask. · · · · · 2-161
Figure 2-16,.4 Move Log Record · · · · · · · · 2-162
Figure 2-16,.5 Write Log Information · · · · · 2-163
Figure 2-16.6 Close Log File. · '. '. · · · · · · · 2-164
Figure 2-16.7 Disk Errors '. '. · ,. · · · · · 2-165
Figure 2-17. CICS Journal Logger (Overview) • · · · · · 2-166
Figure 2-17.1 CICS BUILD Log Record · · '. · ,. · · · · 2-167
Figure 2-17 .• 2 CICS Move Log Record. ,. ,. · · · 2-169
Figure 2-17..3 CICS Move Prebuilt Log Record · · · · · · · · 2-170
Figure 2-17.4 CICS Log writing. · · · · · · · · · · 2-171 \
Figure 2-18 .• Start Transaction ,. · · · · · · · · · · 2-172

xii Licensed Material - Property of IBM

Figure 2-19. Master Partition Controller (Overview) • · 2-173
Figure 2-19,.1 MPC Task Initialization · · · ,. · · 2-174
Figure 2-19.2 MPC Define XECBs. · · · · · · · 2-175
Figure 2-19.3 MPC wait. ,. · ,. · · · · · · · 2-177
Figure 2-19.4 MPC start Processing,. · '. ,. · · · · · · · · 2-178
Figure 2-19,.5 MPC Stop Partition processing · · 2-181
Figure 2-19.6 MPC ABEND processing. · · · · · · · 2-183
Figure 2-19,.7 MPS Termination · · ,. · · · · · · · · ,. 2-184
Figure 2-19,.8 MPC Stop Transaction Processing · 2-186
Figure 2-19.9 MPC ABEND Exit Routine,. · · · · · 2-187
Figure 2-20,. Batch Partition Controller (OVerview) · 2-189
Figure 2-20.1 BPC Task Initialization. · ,. ,. · · 2-190
Figure 2-20.2 Issue Online DL/I Scheduling Call · 2-193
Figure 2-20,.3 wait on BPC and ABEND XECBs · · · ,. · · 2-195
Figure 2-20.4 Batch Request processing,. · · · · · 2-196
Figure 2-20,.5 BPC Termination · · · · · '. · · · · · · · 2-198
Figure 2-20.6 BPC ABEND Exit Routine. · · · ,. · · · · 2-200
Figure 2-21. MPS Batch (Overview). ,. · · · · · · 2-201
Figure 2-21.1 MPS Batch Initialization. · · · · · · · · 2-202
Figure 2-21. 2 MPS Batch Termination · · · · '. · · 2-205
Figure 2-21. 3 MPS Batch Program Request Handler · 2-206
Figure 2-21,.4 MPS Batch Message Writer. · · · '. · · 2-209
Figure 2-21.5 MPS Batch ABEND Handler · · · · 2-210
Figure 2-22,. stop Transaction. ,. ,. · · · · · · · 2-211
Figure 2-23. Queuing Facility (OVerview) · · 2-212
Figure 2-23.1 Process purge Requests. · ,. · 2-214
Figure 2-23.2 Process Dequeue Requests. · · · · · · · · · 2-215
Figure 2-23.3 Process Enqueue/Verify Requests · · 2-217
Figure 2-23.4 New Request Enqueue · ,. · · · ,. · · 2-219
Figure 2-23.5 Existing Resource Enqueue · · · · · 2-220
Figure 2-23.6 Re-enqueue,. · '. · · · · · · · · · 2-221
Figure 2-24. Visual Table of Contents for DL/I

utility Modules HIPO Diagrams · · · · · · 2-222
Figure 2-25. DB Data Set Image Dump. · '. · · · · · · · 2-223
Figure 2-26. DB Change Accumulation. · · · · · · · 2-224
Figure 2-26.1 Input Card Processor (DLZUCCTO) '. · 2-226
Figure 2-26.2 Write LOGOUT (DLZUC150) · · · · · · 2-227
Figure 2-26,.3 Sort Module (DLZUC350),. · · · · · · · · 2-228
Figure 2-26.4 Write Messages (DLZUCERO) · 2-229
Figure 2-27,. DB Data Set Recovery,. · '. '. ,. · · 2-230
Figure 2-27,.1 Control Statement Processor · · 2-232
Figure 2-28. DB Change Backout · ,. ,. · · · · · · 2-233
Figure 2-28.1 Process Log Record (DLZRDBCO) · · · · · 2-234
Figure 2-28,.2 Simple HISAM Backout (DLZRDBCO) · 2-235
Figure 2-28,.3 HISAM or INDEX Backout (DLZRDBCO) · · · 2-236
Figure 2-28.4 HD Backout (DLZRDBCO) '. · · 2-237
Figure 2-29. HS DB Unload. ,. · · · · · · '. · 2-238
Figure 2-30. HS DB Reload. ,. ,. ,. '. · 2-239
Figure 2-31. HD DB Unload. . · · ' . · · 2-240
Figure 2-32. HD DB Reload. ,. · · · · · · · 2-245
Figure 2-33. ACB Creation Utility overview • · · · · · 2-251
Figure 2-33,.1 Binary Search Insert Routine,. · · · '. ,. · 2-254
Figure 2-33.2 Block Builder Routine 1 · · ,. · 2-256
Figure 2-33,.3 Block Builder Routine 2 '. · · · 2-257
Figure 2-33.4 Block Builder BLDDMB Routine. · · · 2-258
Figure 2-33,.5 Block Builder BLDSDB Routine. · · · · · · 2-259
Figure 2-33.6 Block Builder Routine 3 '. · · · · 2-261
Figure 2-33,.7 Block Builder BLDSDB Routine. · · '. · · 2-263
Figure 2-33.8 Block Builder Routine 4 ,. · · · 2-264
Figure 2-33,.9 Acquire storage Routine · · · · · · · · 2-266
Figure 2-33,.10 Intent propagation Routine · · · · · · 2-267
Figure 2-33.11 Build PSIL Routine · 2-269
Figure 2-33.12 Write,DMBs · · · · · · 2-270
Figure 2-33,.13 Write PSB. · · · · · 2-272
Figure 2-33,.14 Build PSB. · '. · ,. · · 2-273

Licensed Material - property of IBM xiii

Figure 2-33.15 Message Writer ••••• , •• '. • • • • • •• 2-275
Figure 2-34,. Prereorganization Utility. • •• 2-276
Figure 2-35. DB Scan. , •• ,. • • • '. • • •• 2-280
Figure 2-36. Prefix Resolution • • • • • • • 2-288
Figure 2-36.1 SORT E15 (DLZX15S1) ••• ,. • • • 2-292
Figure 2-36.2 SORT E35 (DLZX35S1) • • • • • • • • 2-293
Figure 2-36,.3 SORT E15 (DLZX15S2) • • • • • 2-294
Figure 2-36,.4 SORT E35 (DLZX35S2) • • • • • • • 2-295
Figure 2-37,. Prefix Update Utility • •• • • •• •• 2-296
Figure 2-38. Workfile Generator. • • 2-297
Figure 2-38.1 Initialization, ••• ,. ,. • • • • • • 2-299
Figure 2-38.2 Open Workfile ,. • • • • • • • •• • • 2-300
Figure 2-38,.3 Find DTF. , •• ,.. • •• 2-301
Figure 2-38.4 Build LC Output • • • • • • • • • • • •• 2-302
Figure 2-39. Log Print Utility • • • • • • 2-303
Figure 2-39,.1 Control statement Processor (DLZLPCCO) 2-304
Figure 2-40,. Field Level Sensitivity Copy • • • • • 2-305
Figure 2-40.1 Field Level Sensitivity Insert • • • • • 2-306
Figure 2-40,.2 Field Level sensitivity Replace. • • • • •• 2-307
Figure 2-40.3 Field Level sensitivity segment Convert ••••• 2-308
Figure 2-41. Trace print Utility • '. • • • •• • • • • • • •• 2-309
Figure 3-1. Application Control Table (ACT) Format • • .3-13
Figure 3-2. Online Log Block Put Operation • .3-53
Figure 3-3. DL/I Log Record,. •• ,. • • • • • • ,. • • • • • .3-55
Figure 3-4. CICS Journal Record. ' ••• ,. • • • • • • • • • .3-55
Figure 3-5. Layout of a Journal Block ••• ,... • • • • • .3-55
Figure 3-6. Enqueue/Dequeue Control Block Relationships. • .3-58
Figure 3-7. HISAM Data Base with One Root Segment. • •• • .3-79
Figure 3-8. Input for HISAM Reorganization Unload Utiltiy. '. .3-79
Figure 3-9. HISAM Reorganization Unload Utility output • • • • .3-80
Figure 5-1. Map of Main Storage in the DL/I Batch Partition. • • 5-3
Figure 5-2. DL/I Control Block Relationships • • • . • 5-6
Figure 5-3. General structure of DMB • • • • • • •• • • 5-8
Figure 5-4. General structure of PSB ••• ,.. • • • • .5-10
Figure 5-5. General structure of DL/I Buffer pool

Control Blocks ••• _ • • • • • .5-12
Figure 7-1. structure of LLC/CC in DL/I. • • • • • • • • 7-3

xiv Licensed Material - Property of IBM

SECTION 1: INTRODUCTION

Data Language"I Disk Operating system/Virtual Storage (DL/I..DOS/VS.
hereafter referred to as DL/I) is a data management control system that
assists the user in creating, accessing. and maintaining large common
data bases.. In conjunction -with the Customer Information Control system
(CICS/OOS/vS), DL/I can be used in an online teleprocessing environment.
Also in conjunction with CICS/vS, DL/I provides a centralized data
facility, multiple partition support (MPS), which controls concurrent
access to data bases from multiple batch partitions .•

Section I summarizes and describes the following:

• DL/I Batch System

• DL/I Online Processor

• DL/I Facility Modules

• Multiple Partition support (MPS)

• DL/I Utilities

Licensed Material - Property of IBM 1-1

DIiI'I .BATCH SYSTEM

The DL/I batch system executes as an application program in a virtual
storage environment under DOS/vS.. The DOS/VS partition in which the
DIi/I batch system executes is composed of the elements shown in Figure
1-1.. These are:

• The system control facility
• The DL/I facility
• The DOS/VS VSAM and SAM data management modules
• The user application program

The major components of the DL/I system are the system control facility
and the DL/I facility. The system control facility receives control
from DOS/VS job control, initializes the DL/I batch system, and
interfaces between DL/I and the user application program. The DL/I
facility interfaces with the DOS/vS VSAM and SAM data management modules
when performing the data base call function requested by the user
application.

The system control facility is divided into four functional areas (see
Figure 1-2):

• Region control
• Application program control
• Language interface
• Program request handler.

Region control is responsible for a general group of housekeeping
functions common to various optional processing modes of the DL/I DOS/VS
partition (also called a region). These functions are:

• Initial interface with DOS/vS job management

• Analysis and validity checking of DL/I parameter information

• Loading the batch nucleus.

Application program control is entered from region control and performs
the following functions:

• Loading the DL/I application control blocks (PSB and DMBS) and
relocating the control block addresf:>es .•

• Creation of the PSB intent list and the DMB directory (DDIR) .•

• Acquiring and formatting storage for the buffer pool control blocks
and their related I/O buffers .•

• Loading the DL/I facility modules.

• Loading the application program and passing control to it.

The language interface provides communication between the application
program and the program request handler. This module is link-edited
with the application program and provides a common interface for DL/I
calls written in PL/I, COBOL, RPG II, or Assembler language.

1-2 Licensed Material - Property of IBM

DOS/VS

SYSTEM
CONTROL
FACILITY

USER
APPLICATION
PROGRAM

j

,

DLII FACILITY

f +

VSAM SAM

t
.1 J.~r:::::: I ~"":::o -.i

r< :;'iC :> ~ ~

:> ::::
SHSAM

HDAM SHISAM HISAM HIDAM LOG OR
HSAM

~ --......... -- -_'L:: .-- 1: ---- '\:.:

Figure 1-1. Elements of a DL/I DOS/VS Batch Partition

Licensed .Material - property of IBM 1-3

HDAM

SYSTEM
CONTROL
FACILITY

DOS/VS

~EGION

CONTROL

APPLICATION
PROGRAM
CONTROL

LANGUAGE
INTERFACE

PROGRAM
REQUEST
HANDLER

ct./1
FACIUTV

-

-.~-----------r------------~ I

VSAM

t

SHISAM HISAM HIDAM LOG

SAM

USER
APPLICATION
PROGRAM

A -
SHSAM)

'~

Figure 1-2,. System Control Faci1.ity Relationships

14 Licensed Material "Property of IBM

LOG

,

The program request handler receives the DL/I call from the user
application program via the language interface. It performs the
following functions:

• Checks validity and, if necessary, reformats the caller's parameter
lists and submits them to the DL/I facility.

• Accepts parameter lists from the DL/I facility and moves data to the
user's work area, if required.

• Returns control directly to the user application program.

See Section 3 for a detailed description of each of these modules.

DL7I ONLINE PROCESSOR

The DL/I system operating in a teleprocessing environment under CICS/VS
contains all the functional parts listed for the batch system, plus a
set of service routines called the DL/I online processor. These
routines establish a connection between DL/I and the CICS/VS-DL/I
interface.

In an online environment, the DL/I system executes within the CICS/VS
partition.. CICS/VS provides exit interfaces to DL/I for the following:

• DL/I system initialization during CICS/VS initialization..

• DL/I system termination during CICS/VS termination.

• DL/I user task scheduling of DL/I resources before an application
program accesses DL/I·.

• DL/I user task completion and return of DL/I resources after the
application program has issued a CICS/VS synchronization point
(SYNCPOINT) command or has completed DL/I processing .•

When the user application program issues a DL/I call, control passes to
the online language interface module and the program request handler.
The program request handler validates the call and passes it to the DL/I
facility,. The DL/I facility inVOkes CICS/vS services through the online
interface for such functions as transaction and storage management. On
completion of the DL/I call, the DL/I facility returns control to the
CICS/VS application program via the program request handler. The
program request handler also interfaces with CICS/VS for any functions
performed externally to DL/I.

Licensed Material - Property of IBM 1-5

DL71 FACIL~TY MODULES

The funct'ions of data base creation, access, maintenance, and
reorganization are accomplished by the DL/I facility (see Figure 1-3>­
The DUI call is passed from the system control facility to the DL/I
call analyzer, which is the focal point of the DL/I facility. The type
of call is analyzed (DL/I call, pseudo call, or internal call resulting
from a DL/I call), and control is passed to the appropriate action
module to process the call.

The action modules of the DL/I facility, together with their major
functions, are listed below:

• Open/Close Module

open DL/I data bases
Close DL/I data bases
Interface with data base logger to write data set open record to
log file

• Delete/Replace Module

Delete segment of DL/I data base in conjunction with buffer
handler
Replace segment of a DL/I data base in conjunction with buffer
handler
Interface with data base logger to record changes on log file
Interface with space management for HDAM and HIDAM data bases
Interface with index maintenance for data bases with indexes

• Load/Insert Module

Load segments into a DL/I data base in conjunction with the
buffer handler
Insert segments into a DL/I data base in conjunction with the
buffer handler
Interface with data base logger to record changes on log file
Interface with space management for HDAM and HIDAM data bases
Interface with index maintenance for data bases with indexes
Issue I/O for Simple HSAM and HSAM data bases

• Retrieve Module

Retrieve a segment of a DL/I data base in conjunction with the
buffer handler
Perform data base positioning for load/insert
Issue I/O for Simple HSAM and HSAM data bases

• Index Maintenance

Maintain any indexes for HDAM or HIDAM data bases in conjunction
with the buffer handler
Interface with data base logger to record changes on log file

• Space Management

Allocate and maintain free space on DASD in conjunction with the
buffer handler for storage of DL/I segments for HDAM and HIDAM
data bases
Interface with data base logger to record changes on log file

1-6 Licensed Material -Property of IBM

• Buffer Handler

For HDAM or HIDAM data base, satisfy requests for segments or
records from data currently available in the buffer pool
Issue I/O to VSAM for HDAM or HIDAM data base requests that
cannot be satisfied from the buffer pool
Issue I/O to VSAM for all Simple HISAM and HISAM data base
requests

• Data Base Logger

Record all data base modifications on the DL/I log tape using
DOS/VS SAM, or disk log using VSAM or CICS Journal

• Queuing Facility

Provide support for contention control at the segment and record
level.
provide deadlock detection and resolution.

FLS Copy Module

Provide user view/physical view conversion for field level
sensitivity.

see Section 3 for a detailed description of the modules,.

Licensed Material • Property of 'IBM 1-7

DOSIVS

r------- ------- -- ------- - - - - - - - ...,. --,
I I
I I
I SYSTEM CONTROL FACI LlTY USER APPLICATION I
I PROGRAM I
I I
I I
I-~---- --- --------- ------------ ---
I DL/I FACILITY
I
I DL/I CALL

ANALYZER
I
I t I
I , ,
I
I OPEN/CLOSE DELETE/

~
QUEUING f--+ LOAD/INSERT - RETRIEVE , REPLACE FACILITY ,

I t I

r
INDEX SPACE FIELD LEVEL

MAINTENANCE MANAGEMENT SENSITIVITY
COpy

t
DATA BASE BUFFER
LOGGER HANDLER

L __ - ----------- ---------- _' _ _______ ...J

VSAM SAM

t
1 1 1

r " """"'I ""
.....,

" ~ " ""
~ ~ ,.., ~ :-.. ,.., ~

........ ~

J LO~ .-' ~ SHSAM
HDAM SHISAM HISAM LOG HIDAM OR

HSAM -...... ~ ~,., ,.., ~ ,..,
(... l ..,.

Figure 1-3,. DL/I Facility Relationships

1-8 Licensed Material - Property of IBM

MULTIPLE PARTITION SUPPORT iMPS)

~l bas the capability to enable application programs executing in
different partitions to access the same data base concurrently. This
capability. multiple partition support (MPS), permits. for example,
online applications to issue inquiries to a data base while a batch
program updates it.

In addition, MPS enables multiple batch and online application programs
to access a data base concurrently instead of serially. MPS uses the
DL-/I resources and the multitasking facilities of DL/I and CICS/VS.

DLZI UTILITIES
<

The DL/I utility modules are categorized as follows:

• Application control blocks creation and maintenance: this utility
program is used to merge and expand into an internal format the
control blocks created by the DBD and PSB generation utilities. The
control blocks created by this utility are used by the DL/I system.

• Data base recovery: This is a set of utility programs employed to
reconstruct a data base,.

• Data base ~eocganizati~n:
to reorganize a data base.
access storage requirments
~ase access time.

this is a set of utility programs employed
Use of these programs reduces direct

by compacting data and thus reducing data

• -Data base logical relationship resolution: this is a set of utility
pr09rams employed to update pointer information when data bases
involved in logical relationships and/or secondary index
relationships are initially loaded or reorganized,.

Lic~nsed Material - Property ~f IBM 1-9

, '

1~10 'Licehsed Material - Property of IBM

SECTION 2: METHOD OF OPERATION

This section contains HIPO (Hierarchy, plus Input, process, Output)
diagrams.

The three areas of each HIPO diagram are, from left to right, the input
area, process area, and output area. Read the diagrams beginning with
the process area. This describes a function that is performed,. Arrows
leading from the input area show what, if any, input is used to perform
that function,. Arrows leading to the output area show what output, if
any, is produc~d.

At the bottom of each HIPO diagram is an area called "extended
descriptions". This area contains comments not included in the process
area of the diagram. For most items in the process area, extended
description items with the same numbers give details that cannot be
easily shown in diagram form or in the space allowed,.

various forms of arrows represent different usage conventions,. Also,
items are often boxed in to show that they are related to the same
function. Figure 2-1 shows the conventions used in the HIPO diagrams.

Figure 2-2 is a visual table of contents with figure numbers. The
figure numbers refer to the HIPO diagrams,.

Licensed Material - Property of ,IBM 2-1

Figure 2·1. Guide to Reeding Method-of Operation Diagrams

I DATA FLOW ARROwL

Come from somewhere

'" INPU');' ______ • ~ ~PROCESft ..Re' ... to item 1 only

Input within .. V
:::;',~~:~ 1$... "" TCA PST /-,r----.,.,(' 1. Function A.

Input within
this block is
for item 3

IITcADLil UPSTPREADI

II TCADLIPAI

VSAM
Parameters

~
~

2. Function B.

SCD ~===~ 3. Function C.
,.:R.:,:1 __ ., lSCDCSABA I
~~_-II

CSA

VSAM
ICSACDTA I

Parameters
RPL
Addrsll TCA

ITCASYAA I
CCB
Address

EXLOC
Address

I POINTER ARROW I

Input within
this block is
foritemS"

TCA

hCADLil I -

4. Function D.

1\-- ~ 5. Function E.

.. __________ 11 \.r DATA REFERENCE ARROW I

Extended Description Mod I ue Label Extended Description

1. More about function A,

2, More about function B.

2-2 Licensed Material - Property of IBM

OutPUt within
this block is
for item 2

OUTPUT---...

PPST SCD
IpPSTIND I r-IS~C:::D-CD-T-A""'I

TCA

ITCATCEA I

DLZRR,

Identifies
module name

• lCONTROL FLOW ARROW J

Go to somewhere

Module Label

(

Figure 2-2_ Visual Table of Contents for OL!I OOSNS HIPO Charts

DLiI DOS/VS

I I
System DLiI MPS DLiI Application
Control Facility Control Utility Support
Modules Modules Modules Modules Programs

1 I
DLZRRCOO DLZDLAOO DLZDHDSO DLZMSTRO Utility Low-Level
Batch Call HO Space Start Modules Codel
Initialization I- Analyzer l-I- Management I- Transaction Visual Table Continuity
(Overview) Of Contents Checking

2-3 2-8 2-13 2-18 2-24 (See Appendix Al

DLZBNUGO DLZOLROO o LZDLOCO DLZMPGOO
Batch Retrieve Open/Close Master
NUcleus

l- I-l- I-
Partition

(Overview) Controller
(Overview)

2-4 2-9 2-14 2-19

DLZOLIOO DLZDDLEO DLZDBHOO DLZBPGOO
Online Load! DB Buffer Batch
Initialization

~
Insert

I"-- Handler - Partition
(Overview) Controller

(Overview)
2-5 2-10 2-15 2-20

DLZODP DLZDLDOO DLZRDBLO DLZMPIOO
Online Delete! DB Logger MPS Batch
Nucleus ~ Replace I"-- (Overview) - (Overview)
(Overviewl

2-6 2-11 2-16 2-21

DLZSTPOO DLZDXMTO DLZRDBLI DLZMSTPO
DL/I Index GIGS Stop
Online

"'- Maintenance
~ - Journal - Transaction

System Logger
Termination (Overview)

2-7 2-12 2-17 2-22

DLZQUEFO DLZGPY10
Queuing Field Level
Facility Sensitivity
(Overview) COpy

2-23 2-40

Licensed Material - Property of IBM 2-3

Figure 2-3. Batch Initialization (Overview)
From DOS/VS

INPUT ------.. r- PROCESS -------------.

Extended Description

1.

2.

3.

4.

5.

6.

7.

8.

9.

.. ~

• 1. Enter batch initialization.
(See Figure 2-3.1)

2. Begin batch partition control.
(See Figure 2-3.2)

3. Parameter scan and validation.
(See Figure 2-3.3)

4. Begin application program control.
(See Figure 2-3.4)

5. Utility block build request handler.
(See Figure 2-3.5)

6. Complete application program control.
(See Figure 2-3.6)

7. Block loader and relocator_
(See Figure 2-3.7)

8. Complete control program initialization.
(See Figure 2-3.8)

9. DL/I control card analyze routine.
(See Figure 2-3.9)

Routine Label Extended Description

DLZRRCOO

DLZRRCIO

DLZRRAOO

DLZPCCOO
DLZPINIT

ULUPRHEF

DLZPCCOO

DLZPINIT

DLZCPIOO

NXTPORT

2-4 Licensed Material - Property of IBM

OUTPUT _____ -.

..
To DOS/VS

DLZRRCOO

Routine Label

Figure 2-3.1. Batch Initialization Entry
~ INPUT

From
• PROCESS ,",OUTPUT

Figure 2·3
Step 1

• R2

I .. I
I

!;;OMREG 1. Establish load address for the nucleus I
I module.

2. Read parameter information. SYSLST

cJ EJ 3. Reserve space for DLZBNUCO.

SYSLOG

0 Work Area

TO
1- -- ---I

SYSIPT Figure 2-3
Step 2

Fr0i;.

~ >CJ 4. Enter common SYSLOG
message routine.

•• To Caller

DLZRRCOO - Batch Initialization E.P. CSECT DLZRRCOO

Extended Description Routine Label Extended Description Routine Labe

I. DUBNUCO load address is set at DURRCOO DURRCOO
DURRCOO start + X'IOO'.

2. PARMGET

3. The reserved space allows loading
of DUBNUCO without overlaying
critical code in this module.

4. ERRORMSG

Licensed Material- Property of IBM 2-5

Figure 2-3.2. 'Batch Partition Control
!'"INPUT From ~ PROCESS ,.OUTPUT

Figur.2-3
Step 2

EJ • .OADTBl
DOSIVS
COMREG

'"
DLZDBHOO .••
DLZDLROO ...

EJ 1. Load directory entries of the >' DLZDLAOO ...

DOSIVS Core OL/I facility modules. DLZRDBLO ...
DLZDLDOO ...

I mage Library DLZDDLEO ...
DLZDHDSO ...
DLZDXMTO ...
DLZDLOCO ...
DLZDSEHO •..
DLZBNUCO ...

I ENDINIT I

LOADTBL DLiI Partition

I DLZBNUCO ... I X'100'

B
2. Load OLZBNUCO into the -> 5746-XX 1 COPYRIGHT

partition. (DLZBNUCOI

R2 DLZRRCOO vrnp (See Notel

c:=J (DLZRRCOOI

DOSIVS Core
Image Library

Bl R~ R9
IDLZBNUCO I ~-

.
ISCD I I

PST I ---~ 3. Set addressibility and
initialize the SCO and PST

DOSIVS that are in the nucleus module. COMREG B]3

I I I PSTSV1 I
SCD

SCDDATE

To SCDUPPER Figure 2-3
Step 3 SCDCOMRG

SCDERRMS

SCDSIND

DLZRR~1 0 - Batch Partition Control CSECT DLZRRCOO

Extended Description Routine Label Extended Description Routine Label

I. Th~ end address of phase DLZRRCOO DLZRRCIO DLZRRCIO
is obtained from the DOS/VS LOADNUC
COMREG and saved at ENDINIT.

Write message DLZOllI if a
required module is not found
in the DOS/VS core image library.

2. LOAD2

Note: DLZRRCOOvrnp is the module
identifier. Each DL/I module is
identified with its full eight-byte
module identifier in character
format followed with a four-byte
field identifying the module level.
The level format is vrnp; where 'v'
is the version, 'r' is the release, 'n'
is an additional identification digit,
and 'p' is the latest PTF number
that has been applied.

2-6 Licensed Material - Property of IBM

Figure 2·3.3. Parameter Scan and Validation
-INPUT

From "" PROCESS I"'0UTPUT

Figura 2-3
Stap3 ..

Workarea ~ ..
DLI •...•... · r-- - r- --- 1. Determine the parameter
ULU ••...•. identifier.
UDR •.•..•.

ULR •......

Work.ra. -- - - ~ 2. Exit if the first parameter is 1 ULU.DLZURPRO I ULU and the next parameter is
! ULU. DLZURGSOI a logical relationship utility.

1 ULU.DLZURGPO!
Skip to Step 5.

Workarea PST SCD

1············1 ;> 3. Scan parameters thru the number
PSTPCPGM IISCDBFPL I of DB buffer subpools parameter

if there is one. PSTPCPSB
!

PST r--- ~ 4. Pad the dbdname or psbname P"T

II :~~SIND I IlpSTPCPSB PSTPCPSB to eight characters.
PSTPCT1 ~

IIpSTPCT1
!

To
Figure 2-3
Step 4

Wnrkar •• > 5. Set up utility call interface.

I:::PCPGM I I DLZURPRO 1
L···· DLZURGSO I

I DLZURG~O I To ... S~CI;~I

I I SCDEREEN
Figure 2·3

SCD Step 4

I SCDEXTBA I

DLZRRC10 Batch Partition Control CSECT

Extended DescriPtion Routine Label Extended Description Routine Label

1. Write message DLZOlS! if the first DLZRRAOO DLZRRAOC utilities issue the DLZBLKLD
parameter is not DLI, ULU, UDR, macro specifying the utility
orULR. PSB and the BLDB call for each

2. Although the DB pre/11{ resolution CHKlST
data set used. The ACB utility
builds the utility PSBs they

utility is a logical relationship use.
utility, it is not processed with
the others because it executes
directly, not as an application
to DL/1.

3. Write message DLZOIS! if syntax SCANPARM
error occurs.

4. PSTPCPSB now contains the PARMPAD
dbdname from the ULU, UDR, or
ULR parameter card or the
psbname from the DLJ parameter
card. Insert a utility DBD
suffIX (U) or insert a PSB
suffIX (P).

S. No control blocks are loaded ULUSTART
for DLZURPRO, DLZURGSO, or
DLZURGPO during batch
initialization. These three

Licensed Material - Property of IBM 2-7

Figure 2·3.4. Application Program Control (Part 1 of 2)
_INPUT From '" PROCESS -OUTPUT

Figure 2·3
Step 4 .. ~

I ENDINIT
1. Perform the Load Blocks and SCD

DL/I Facility Module Routine . .;>!SCDDLIUP I
.of

DLZPINIT

TBALR-,r Block Loader
and Relocator

2·3.7
SDB PSIL

8M!l~I II SDBSENI I I PSILSEGD I - r-: ~ 2. Determine possibility to use I DMBVSFLG I II SDBNSDB I sequential get calls or to I define data base as direct. ACB

DMB I I ACBMACRl I

~
1..._ ~ 3. Determine possibility to use

sequential get calls for
secondary indexes.

SCpEXT

I PST

IS

I SCDAPSTR

1 PSTPCPGM > 4. Load Program.
DL/I Partition

STATLDLS .-1 LOAD Macro I Program I ~DOSIVS I··········· I (for directory entry)

Core
Image

• •
SCD Library LOAD Macro I SC.DSIND I

S~D 1--- ~ 5. Process ABEND linkage
SCDEXT

I SCDSIND I SCDEABEX
if indicated.

~ SCDEABSV

r-t SCDEPCEX
STIXIT AB Macro

SCDETRAN

·1-' STIXIT PC Macro SCDETRSV

SCD

I SCDABSAV I

DLZRRC10 - Batch Partition Control CSECT DLZRRCOO

Extended Descroption Routine Label Extended Description Routine Label

1. This module's end address is used DLZPCCOO DLZPCCOO
to initialize the beginning of
storage available for control
block bUilding.

2. LOOKDMBS

3. FINDISS

4. Write message D LZO 121 if CONTPCC
program is not found. LOAD5

5. UPS] card information has STXITAB
been moved to the SCD.

2-8 Licensed Material -Property of IBM

Figure 2-3.4. Application Program Control (Part 2 of 2)
",INPUT .. PROCESS ""OUTPUT

SCD DOSIVS I SCDPRHED > 6. Set linkage to program request COMREG

handler. => §
.... MVCOM Macro

e~lIfl SCD

I PDIRADDR IISCDEXTBA I
Bl

-- ~ 7. Pass control to application or I PSBLIST I
PST

I PSTPREAD I utility program. Bla .. I PCCOSAVE I
I ... BAL?'I

Application
ffsr Program I PPSTIND I

To
Figure 2-3
Step 6

DLZRRC10 - Batch Partition Control CSECT DLZRRCOO

Extend .. d RnlJtinp l~hPl Ext~n""tI Routine Label

6. linkage to DUPRHBO is done MVCOM
via MVCOM macro.

7. If utility program is a logical BALRUSER
relationship utility, set RI to
point to the PST before passing
control to the utility. Set RI
to point to the user PCB list
for all other programs.

Licensed Material -Property of IBM 2-9

Figure 2-3.5. Utility Block Build Request Entry
",INPUT

re 2-4.1
From
Figu
Step 2

•

I ULUCNTRL I- ..,.. -

I
:llOl;!
SCOOLIPS I

I- -
PST POIR

I PSTPR EAO II POI RAOOR I

. .
OLZRRC10 - Batch Partition Control CSECT

Extended Description

I. Control comes from the batch
program request handler (DLZBNUCO)
when a utility block build request
(BLOB) is detected.

2. If a block bulld error is indicated
in ULUCNTRL, X'OC' is set
in register 15 and control returns
to the utility program.

4.

• PROCESS

~

1. Restore registers saved during
initialization.

~ 2. Build the blocks. ... OLZPINIT

BALR Block Loader
and Relocator

2-3.7

~ 3. Establish addressability
to PCBs.

4. Return to caller.

Routine Label Extended Description

ULUPRHEP ULUPRHEP

ULUGOOO

ULUEXTZ

2-10 Licensed Material - Property of IBM

,.OUTPUT

eeSI I PPSTINO I
R1 I PSBLIST I ..

OLZRRCOO

Routine Label

Figure 2·3.6. Application Program Control Completion
",INPUT From ~PROCESS .. OUTPUT

Figure 2·3
Step 6

'-+ LOQ 1/0 AREA I J > ,. Write Log TERM Record. ~~o If' §] ~ t I
DLZRDBLO

seD BALR LOG WRITE

SCDREENT I Entry Point
LOGOUT

SCDDBLFW I ~
SCDDBLCL ~- -~-- Ii> 2. Force out last log record.

IJ
SCDCWRK I '

t BALR t SCDDBLOP 1 DLZRDBLO

I
FORCE WRITE
Entry Point

I
L_' ~ 3. Close the log. ,

t t DLZRDBLO

BALR CLOSE RTN
Entry Point

~"g 1-- ---:: ~ 4. Set up UNLD call to purge
I SCDDL!CT Rl PST

buffers and close DB. --- ---... IpST 1 1 PSTLIPRM 1

t BALR
t DLZDLAOO R13

Call !PSTSVI I
Analyzer

§!;Q . - --- ~ 5. Close tape workfile if open .
!

SCDDSEHO I ,

t t CLOSE Macro

SCC . - --..:: ~ 6. Return to DOS/VS .
I

SCDTRACE I .-

t I DLZTRCAL Macro

t EOJ Macro

~
DOS/vS

.. DLZRRC10 - Batch PartItIon Control CSECT DLZRRCOO

Extended Descriotion Routine Label Extended Descriotion Routine Label

1. TERM record ID=X'07'. DLZPCCOO BALRUSER

4. The UNLD call is bypassed if BYULUEND
the ULU return code in register
15 is not zero.

6. Issue macro DLZTRCAL DLZEOJ
TYPE=STOP. Trace
ID=X'FC'.

Licensed Material - Property of IBM 2-11

Figure 2·3.7. Block Loader and Relocator (Part 1 of 5)
~INPUT From Figure PROCESS -OUTPUT

2·3.4, Step 1
or 2·3.5,
Step 2

1. Bypass block loading if identifier
is ULU and entering here from
Application Program Control
(Figure 2·3.4, Step 1). Go to
Figure 2·3.8, Step 8, I RETRGSV I

PST

'EJ I PSTPCPSB

2. Load the PSB. SCD ..
SCD +-t I SCDDUUP I

I SCDOLIPS
LOAD Macro (Directory Entry)

I SCDDLIUP I DOSIVS +-t LOAD Macro OLII Partition
Core I PSB I STATLDLS
Image

I I
Library

..........

..fQlR PSB

PDIRSYM PSBXIOWK

POIRADDR PSBSEGWK

PDIRZWA PSBNOXWK

PDIRSILA PSBIOAWK

I
SCD PSIL

SCODLIUP II PSI LOMBN I 3. Initialize OMB directory. DDIR PSIL

I LDDIRSYM J I PSILDMBN I
II ODIRNUMBII PSILDIRN J

.~CD

SCODLIDM

SCDDLIDN

SCDDLIUP

PSB PDIR

PSB --) 4. Initialize and relocate PSBPST I PDIRCODEI >
PSBXPCB PSB pointers. PSBXPCB
PSBCODE PSBLIST
PSBLIST

DLZRRC10 - Batch Partition Control CSECT DLZRRCOO

Extended Description Routine Label Extended Description Routine Label

1. There are no blocks to load DLZPINIT DLZPINIT 3. The PSILs are scanned for DDIRBILD
for the logical relationship
utilities if this is the fust
call.

DMB names and a DDIR is
created for each unique DMB
encountered. The address of

The return address is saved
inRETRGSV.

the DDIR replaces the
respective DMBNAME in each
PSIL.

2. If the PcB is not found and DLZDBLMIJ 4. PCBRLUIP
the parameter identifier is
ULU for a logical relationship
utility; set a block load error
indicator and return to
Figure 2·3.5, Step 3.

Write message DLZOl21 if the
PSB is not found.

Write message D LZO 171 If the
PSB version/modification level
is incorrect.

2-12 Licensed Material - Property of IBM

I Figure 2·3.7. Block Loader and Relocator (Part 2 of 5)
• INPUT ~ PROCESS !'"OUTPUT

I!!OII r---- ~ 5. Relocate the PCB and JCB JCB I DBPCBJCB
PCB

-"" I DBPCBJCB I pointers. JCBLEVTB

JCBLEVND

JCBSDBl

JCBSDBND

SCD SDB -===
ISCDSIND2 I SDBORGN r---- ~ 6. Initialize all SOBs belonging DDIR SDB

to a particular JCB. I DDIRCODE I SDBF3 .> SDBF3
~

PST SDBPARA SDBPARA

IpSTPCTl I SDBDSGA SDBDSGA

SDBTARG 7. Test for the end of the PCBs in SDBTARG

SDBKEYFD the PSBLIST. If not the end, SDBKEYFD

SDBXPANS
return to Step 4.

SDBXPANS

SCD DDIR

U > 8. Load and relocate each OMB. .> I DDIRADDR I SCDDLIDM

SCDDLlDN +-+ LOAD Macro (Directory Entry)
SCDDLIUP SCD +-+ LOAD Macro I SCDDLIUP I DOS/VS
STATLDLS Core

I I Image
Library

OLiI Partition

.~ It I
II DMB I IDDIRSYM

> 9. Determine if buffer pool space .> DOIR DMB ACBXT PST

I DOIRCODE I DMBORG I required and set indicators.
I DMBRBASN II PSTWRKl I

IDMBPPRND I I PSTWRK3 I
ACBXT

lDMBCINV

IDMBLRECL

DLZRRC10 - Batch Partition Control CSECT DLZRRCOO

Extended DescriPtion Routine Label Extended DescriPtion Routine Label

I
5. DLZPINIT r<;BPLIB

6. The call sensitivity and data SDBRELO
base organization of the SDB

If the DMB is not found and
the parameter identifier is ULU
for a logical relationship utility,
set a block load error indicator

is checked to see if buffer pool and return to Figure 2·3.5,
space is required. An indicator Step 3.
in the DDIR is turned on if
space is required. 9. If buffer pool space is required, GETBUFRS

the size of each control interval
7. The pointer to the PSBLIST ~CBCK

is bumped to the next PCB
(rounded to the next multiple
of 512) is indicated in PSTWRKI

pointer entry and processing and PSTWRK2 for later allocation
returns to Step 4 if we are not of the buffer pool.
at the last PCB.

If the index PCB exists, return
to Step 5 and relocate it.

8. Write message D LZ0l2I if the ~9ADDMBS
DMB is not found. DMBLOADF

Write message DLZOl8I if the
DMB version/modification level
is incorrect.

Licensed Material - Property of IBM 2-13

Figure 2-3.7. Block Loader and Relocator (Part 3 of 5)
",INPUT • PROCESS ~OUTPUT

DMB D Lli Partition

IDMBORG I I Randomizer I IDMBDALGR I

=EJ ISCDDLIDM 10. Load Randomizing Module if
-'"

DMB DACS

ISCDDLIUP I organization is HOAM. :> IOMBDALGRII DMBDAEP I -
t t LOAD Macro (Directory Entry)

STATLDLS DOS/VS t t
SCD

I I IscDDL,UP I
Core LOAD Macro
Image
Library

DACS

IDMBDANMEI

DTF

DMB DDIR -==;'I >8 IDMBORG II DDIRADD~r ---:; 11. Adjust offsets in OMB to
I DDIRLEN 11 addresses for each valid OOIR.

At end of OOIRs, go to Step 15.

o Lli Partition
SCD ACBXT

~ I SCDDLIUP IIDMBINDO I ~ 12. Build VSAM Exit List, RPL, and I RPL
IDMBAcBNMI

r ;) ACBs. EXLST = "'" ,,,.,,, ... ACB

DMB

IDMBORG I GENCB BLK=EXLST Macro

t GENCB BLK=ACB Macro

ACBXT SCD

t OMBACBAO I SCOOLIUP I
OMBACBRP

DMBACBEX

STATLOLS sr.o

I II SCOOLIUP I
13. Relocate PSOBs and SEC list.

OLiI Partition

OMB
.. II I

II OMBLENTB I +--+ LOAD Macro (Directory Entry) [I Compression Routine I
II OMBSECTB 1 t t LOAD Macro

PSOB CPAC

PSOB IOMBFDBA I [DMBCPEP]
DMBFDBA LOMBSCTAB II DMBCPRES J
OMBVLDFG

DMBSCTAB
SCO

DMBLST
ISCDOLIUP I

- ..
DLZRRC10 Batch PartItIon Control CSECT DLZRRCOO

Extended Description Routine Label E ddD xten e escrlption R outine Label

10. Before loading the randomizer a DLZPINIT RANCKLUP 11. The DTF address constants are DMBOFFAJ
check is made with all currently
loaded randomizers. If one with
the same name as the one we are
loading is found, the entry point
is resolved and the actual load is

adjusted if access is HSAM or
simple HSAM.

12. If HISAM, two sets of control DLZBVBLD
blocks will be built.

bypassed.

Return to Step 8 until there are
no more DDiRs.

Write message DLZ012I if the ran-
domizing module is not found.

13. The segment compression routine PSDBROUT
for each PSDB is loaded (if it
hasn't already been loaded for a
previous PSDB).

Write message DLZ0121 if the
compression routine is not found.

,

\

2-14 Licensed Material - Property of· IBM

Figure 2-3.7. Block Loader and Relocator (Part 4 of 5)
",INPUT "" PROCESS ""OUTPUT

SCD DMB

SCDDLIDM IDMI;ISIZE I OL/I Partition

II I SCDDLIDN

SCDDLIUP STATLDLS II Index Exit Routine I

I·········· I
SEC 14. Process secondary I ist if SEC PSDB ...

IDMBLST I DMBSCDE present for each PSOB. DMBSFLG1

DMBSECDB ~ LOAD Macro (Directory Entry)
DMBSECDB

DMBXDSDB EJ
DMBXDSDB XMPRM

DMBXDSC ~ LOAD Macro DMBXITAD lDMBxMxEpj

DMBXITAD DMBXPSDB !IDMBXMRESI

DOSNS Return to Step 11.
XMPRM Core SCD

Jmage IS~DDLIUP I IDMBXMXNMI Library

IDMBXMRES

PDIR PSS

PDIRADDR I PS8L1ST I
PDIRCODE e"a .D.SG
PDIRSILA li!;;12

I ---=-~ 15. Connect data bases to PCBs. I DBPCBPRO II DSGDCBA I
Isci:IINDZ ..

IDSGDMBNOI

I~ I DBPCBJC-;- JCB

I JCBPRLEN I
DSG

DSGElMBNO PSIL

DSGDCBNO 1 PSI!-DIRN I
DSGINDG

JCB 50S -= SDB SDBXP

JCBSDB1 I SDBF3 SDBDDIR I SDBXPFDB I
"JCBSDBND I SDBPARA --- ~ 16. Connect SOBs to PSOBs. :> SDBNSDB

SDBDSGA SDBPSDB PSDB

SDBXP SDBKEYFD SDBKEYFD I DMBFSDB I
1 SDBXPFDB I SDBXFL

SDBXPANS

DSG SDBEND

I DSGDMBNOI
DMB

PSDB I DM!!QR~ I I DMBFSDB I I
.. DLZRRC10 - Batch PartItIon Control CSECT DLZRRCOO

E ddD xten e escrlPtlon R outlne Label E d De xten ed scriotlon R outlne L bel Lal

14. If a secondary list is present, DLZPINIT PROCSEC 15. If this is Reload Restart, PCBROUT
its code is tested and referenced the parameter ID is ULR.
DMBs are resolved to DDiR Bypass checking whether
pointers and placed in the list. the processing option should

be changed to load or not.
If an index user exit routine is
present it is loaded if it hasn't 16. CONSDBS
already been loaded for a
previous SEC.

Write message DLZ266I if there
is an invalid secondary list code.

Write message DLZOl2I if the
user exit routine is not found.

Write message DLZ263I if the
SEC makes an invalid DMB
reference.

Licensed Material - Property of IBM 2-15

Figure 2-3_7_ Block Loader and Relocator (Part 5 of 5)
I-INPUT

SOB SCO

SOBXFFSB SCOOLIUP I

SOBXFL SCOPOCA
I

SOBXFNB

SOBXPANS PSB Prefix ...:::
SDBXPSZ PSBCODE I

PSBFRTA I

FSB

FSBUVTYP FERT

FSBIVA FERTRTEP

FSBFERTA FERTNAME

FSBLEN FERTPRES

DLZRRC10 - Batch Partition Control CSECT

Extended Description

17. Includes FERT, FSB, and loading user
field exit rO\ltine<S.

.-

~ PROCESS

17_ Initialize field level sensitivity tables_

Routine Label Extended Description

2-16 Licensed Material - Property of IBM

-OUTPUT

FSB PDCA

IFSBIVA I IPDCAFERT I
IFSBFERTA J

FERT

SCD FERTRTEP

ISCOCPY10 I FERTRTLG

ISCDDLIUP I FERTPRES

• ~
To Figure
2-3 Step 8

OLZRRCOO

Routine Label

Figure 2-3.8. Control Program Initialization Completion (Part 1 of 3)
_INPUT m

ure 2·3

PliT

IpSTWRK3 I
SCO

SCOBFPL

Fro
Fig
SteI! ..

SCDDLIDN

BFPL SCDDLIUP I BFPLLEN I
--

SBIF

I SUBLEN I
SUBPOOLN I- --.

SCD

I SCDDBFPL I- --

BFPL ACBXT

'I BFPLSUBD II DMBRBASN I -
·1 BFPLSUIN I

DMB
PST Subpool

I PSTWRKI I
Directory

LpSTWRK3 ID
..

DLZRRC10 - Batch PartItIon Control CSECT

Extended DescriDtion

1.

2. Write message DUOO9I if number
of subpools specified in the paramo
eter statement are not equal to the
number ofHDBFR statements.

3.

4. This step determines the size of the
subpools. They are allocated, largest
first, until the specified number is
exhausted. Remaining DMBs requir·
ing subpools are assigned evenly
across all existing subpools. If you
specified more subpools than
necessary, an additional pool of
512 buffer size is allocated for
delete workspace.

The subpool sizes are sorted so that
the largest subpool appears fust in
the information table.

I"' PROCESS _OUTPUT

~
> 1. Acquire storage for the buffer

pool prefix and subpool informa·
SCD tion table. If subpools are not

>lscDDBFPL required, skip to Step 8.

~ 2. Analyze and interpret the
SCD

ISCDDBFPL J following parameters in the
ISCDDLIPS I DL/I parameter card:

HDBFR HSBFR TRACE ASLOG LOG PST

IpSTWRKl I
~ NXTPORT

DL/I Control e121B
Card Analyze

IPDIRCODE I Routine
2·3.9

BFPL

f> 3. Format the buffer pool prefix. BFPLID

BFPLROCD

BFPLPRAD

BFPLSUBD

~
SBIF

4. Store buffer sizes in subpool .. II SUBBFSIZ I
information table. II SUBBDMBCTI

PST

IlpSTWRKl I
IIpSTWRK3 I

DLZRRCOO

Routine Label Extended DescriDtion Routine

DUCPIOO DUCPIOO
BFRPRNT

BFPNDCLR
PRMSRET

BFPREADY

NODMMOV

Licensed Material - ~roperty of IBM

Label

2-17

Figure 2·3.8. Control Program Initialization Completion (Part 2 of 3)
!"INPUT ,. PROCESS • OUTPUT

BFPL SCD.

IBFPLSUBD IlsCDDLIDM I

IBFPLSUIN IlsCDDLlDN I --- ~ 5. Assign DMBs not previously
SBIF ~S;il!lT assigned to subpools by HDBFR SBIF

SUBBFHD IDMBRBASN I statements. IsuBDMBCT I DMB
Subpool

SUBBFS12 Directory

ACBXT D SUBDMBCT DDIR
IDMBRBASN I

IDDIRADDR ~ I

~
> 6. Print subpool allocation ·.>D statistics.

SYSLST

BFPL SBIF

IIsFPLPRAD IIsuBBFNo I --- ~ 7. Format buffer prefixes and SBIF SCD

IIBFPLSUIN JISUBBFS12 J
allocate I/O buffers. : IsuBuCPRE II SCDDLIUP I

i ISUBUCHAI I

SCD

I SCDDBFPL I BFFR

ILBFFRSW ~
I IBFFRADDR I

8. Bypass DL/I load processing if
they have once been loaded.
Skip to Step 13.

DLZRRC10 - Batch Partition COntrol CSECT DLZRRCOO

ExtendedPescription Routine Label Extended DescroPtlon Routme Label

5. Write message DLZ2621 if buffer GREATPRO
allocation error occurs.

6. SPSTAT

7. BFRINIT

8. DLZCPIOO DLiLOAD

2-18 Licensed Material - Property of IBM

I
J

Figure 2-3.8. Control Program Initialization Completion (Part 3 of 3)
~INPUT ~ PROCESS I"'0UTPUT

LOAOTBL

" OLZOBHOO Load Bach DL/I facility module
OL/I Partition ... 9. II. OLZOLROO ...

if required and not in SVA • DLZOLAOO ...
DLZRDBLO ... r

DL/I Facility DLZDLDOO ...
DLZDDLEO ... Modules

DLZDHDSO ...
DLZDXMTO ... SCD
DLZDLOCO ...

i ISCDDDBHO I DLZBNUCO ...
thru

SCD SCDDSEHO

I SCDOLIUP I

B
DOS/VS
Core Image Library

DLZCPY10 1\ -" DL/I Partition

EJ
10. Load FLS module if needed. I I . I DLZCPY10 Module I

I I

SCD
DOS/VS ISCDCPY10 I 90re Image Library

t..

EJ ITRACSAV

11. Load the trace module if needed.

" ~
.. DL-/I Partition

I
DLZTRCAL

DOS/VS
Trace Module

Core Image Ltbrary

SCD

SCD ---~ 12. Initialize DB logging.
I SCDDLIUP I

SCDDBLNT I

~
I SCDTRACE J

SCDSIND DLZRDBLO

SCDDBLOP LOG INIT
Entry Point

.SCD PDIR
II. 1 SCDREENT II PDIRSYM I 13 . Write log schedule record.

ISCDCWRK I
. r

~ DLZRDBLO

C1=J
Log 1/0
Area LOGWRITE

" Only
Entry Point

" II.
RETRGSV 14. Return to caller.

" LOGOUT

. . DLZRRC10 - Bateh Partition Control CSECT
...

DLZRRCOO

Extended Description Routine Label Extended Description Routine Label

9. NUCLODUC

11. Issue macro DLZTRCAL TYPE=ST AR LOAD9
following the load. Trace ID=X'FE'.

Write message DLZ0261 if initialization
fails.

12. Cancel if open error returned. NOLOMOD
Upon return, the entry points to
DLZRDBLO in the 'Data Base Change
Log Section' of the SCD (beginning
with the SCDREENT) are initialized.

13. The scheduled record m='08'.

14. Return is made to the instruction PCCORET
following the BALR to DLZPINIT.

Licensed Material - Property of IBM 2-19

Figure 2-3.9. DL/I Control Card Analyze Routine
-INPUT

m Fro
Figu
Step

re 2·3.8
2

Workarea SCD

I. IlsCDDLIDM I

rSCDDLlDN I •
ODIE!

I r DDIRNUMB J IsuBPoOLN I --
IIDDIRLEN I

ICNTHDMB I
SBIF

ISUBLEN I

SCD Workarea

: ISCDDLIDM II I
II SCDDLlDN I --

A(~RXT

DDIR rDMBACBAD I

IDDIRADDR IIDMBACBLN I

DMB

IDMBORG I

IDMBPPRLN I

Workarea

I·· .. ···· I B --

DOSIVS
Core
Image
Library

Workarea SCD

I········· IISCDSIND I T-
I
L_

Extended Description

I. The number of buffers/subpools
specified in the HDBFR statement
is set in .the SBIF. Write message
D120191 if the number is greater
thl(n 32 or less than 2. Default is 2.

The SUbPOOLN is incremented I
for every HDBFR statement. Each
DMB is assigned by placing the
relative subpool number (SUBPOOLN)
it is being assigned to in to a byte of
the DMB SUBP DlR which corre-
sponds to that DMB. The length in
bytes of the DMB SUBP DlR equals
the total number of DMBs. Write
message DLZOO8I if this DMB has
already been assigned a subpool.

CNTHDMB is a count of all the data
bases assigned by the user in the
HDBFR statements.

• PROCESS

..
"'

~ 1. Interpret the HDBFR statement.

~ 2. Interpret the HSBFR statement. =>

~ 3. Interpret the TRACE statement.
~ LOAD Macro (Directory Entry)

t;. 4. Interpret the ASLOG statement. TI\
~ 5. Interpret the LOG statemei

~ To Figure
2-3.8
Step 2

Routine Label Extended DescriDtion

NXTPORT NXTPORT Write message DLZ008I if a DMB
HDBFR name is invalid.

2. The user specified VSAM buffer
allocations are set in the ACB for
HISAM and INDEX DBDs.

Write message DLZ008I for an
invalid DMB reference. Write
message DLZOl9I if valid values
were not speCified.

3. Write message DLZOl2I if module
is not found.

4. Write message DLZOlsI if there
is a syntax error.

5. Write message DLZ078I if UPSI
card said no log.

Write message DLZ07sI if invalid
parameters.

2-20 Licensed Material - Property of IBM

I"0UTPUT

I SUBPOOLN II CNTHDMB I

SBIF
DMB ISUBBFND I Subpool

[SUBBFHD] Directory

I I

ACB ~
I ACBBUFNDI

I ACBBUFNI

SCD

IscDTRcNMllTRAcsAV I

SCD

I SCDDBLOP I

DLZRRCOO

Routine label

HSBFR

TRACE

ASLOG

LOG

Figure 2·4. Batch Nucleus (Overview)
INPUT ______ •

Extended Description

DLZIWAIT
Macro Call

3. The DLZIWAIT macro is used by
DLZRDBHOO, DLZDBH02 and
DLZRDBLO.

4. Alter the DLZBNUCO module is
loaded, SCDDBLNT contains the
entry point of this routine.

If, however, batch initialization
(DLZRRCOO) determines that the
DB logger is required, the entry
point of the log initialization
routine in DLZRDBLO is stored in
SCDDBLNT. The log initialization
routine changes SCDDBLNT once
more to point to the log writer
entry point.

With this routine, the DL/I
facility modules need not know
if logging is required or not.

PROCESS ------------....

1. Batch Program Request Handler
(See Figure 2·4.1)

2. Partition ABEND Routine Entry
(See Figure 2·4.2)

3. DL/I Batch Wait Routine

.. SVC7

4. Branch instruction used if
no logging.

Routine Label Extended Description

DLZIWAIT DLZIWAIT

DLZBRl4 DLZBRl4

Return To
Caller

Return To
Caller

OUTPUT _____ -.

LZ UCO

Routine Label

-
Licensed Material - Property of IBM 2-21

Figure 2-4.1. Batch Program Request Handler
"INPUT See Note -PROCESS -OUTPUT

• ~ R2 PST

PPST r I SCD I IpSTPCT2 I I PPSTCA I ---- 1. Establish SCD and PST addressability.
Rl

SCDEXT User
Determine if this is an utility block build

I PST I
ISCDEREEN I Parameter ---- 2.

list call. If it is. go to Figure 2-3.5. If it is not. R4

IBLDB ...•. I continue at Step 3. I I
SCD

PST
ISCDLOWER I User I PSTLlPRM I Parameter ---- ~ 3. Verify call list and store in PST. I ~CDUPPER List

I I

SCD

I SCDDLTCT I- ---- 4. Pass control to call analyzer to validate and R13

perform DL/I function. I PSTSVI I
BALR IDLZDLAOO I

...... Validate DLiI

Buffer II function
PST

User
PSTUSER L] 110 Area

5. If no errors are detected upon return from
PSTSEGL DLZDLAOO. move data to specified area. L] PSTSEG

PSTPCT2

~
Return to

PST SCD
Application
Program

II PSTABIND I SCDABEND I ---- 6. If an error has occurred upon return from
II PSTERCOD DLZDLAOO:

DLZRRCOO

~ Error Message
Writer

2-3.1

DLZABEND ... Abnormal
Termination

2-4.2

SCDCSECT - Batch Nucleus CSECT DLZBNUCO

Extended Description Routine Label Routine Label

Note: This routine receives control from count. Write message DLZ26 II if
the language interface module (DLZLlOOO) invalid parameter address_ Then exit to
linked with the application program. DLZABEND.

l. When control is passed to the program DLZPRHBO DLZPRHBO 4. MOVLUPBP
request handler, register I must poin t
to the user parameter list and register S. Write message DLZIOSI if a checkpoint
13 to the user save area. was taken.

During the first entry to DLZPRHBO,
the PL/I STXIT routine and savearea

6_ If a DL/I routine determined that DL/I PRHABEND
should be terminated, go to the

addresses from the PC option table are common error message routine to write
saved if the application program is
written in PL/!. DLZPRHBO also
sets/resets a switch (SCDLlPLl flag in

an error message using the message
number stored in PSTERCOD by the
DL/I routine.

SCD) on exit/entry to indicate whether
current execution is in DL/I code or
PL/I code_ This is done to enable high
level language debugging for PL/I to
give diagnostic information if a program
check occurs in PL/I code.

Reset PC exits if this is a PL/I applica-
tion.

2. I BYPLSTXT I

''<i
3. Write message DLZ260I if invalid list CNTLUP

2-22 Licensed Material - Property of IBM

Figure 2-4.2. Partition ABEND Routine Entry (Part 1 of 2)
-INPUT From Caller '" PRO.CESS ",OUTPUT

ISee Note)

I. ~ cP 1. Establish SCD address.
~,.n ,-1----: ~2. Force write and close data SCDDBLOP

base log if required. LOGOUT
SCDDBLFW

SCDDBLCL ... DLZADBLO

ForceWrita
BALA Entrv Point ... DLZADBLO

Close Routine
BALA Entry Point

'SCD - 1--- ~3. Close workfile if required.
SCD

;;> ISCDSIND2 I SCDDSEHO

'SCDSIND2

_ CLOSE Macro

I ABIND l-- --- ~ 4. Bypass unloading the buffers if
there was an error with the
buffer handler; skip to Step 9.

P'ST

>5.,lssue message DLZOO11. > .DLli p.,t;t;nn P:;TFNCTN

1 BALR ··DUI ABEND PSTRTCDE ... DLZRACOO SAVE AREA··

PSTOFFST Error Message
Writer 2-3.1

PliTBLKNM

~TBYTNM

PS[DATA

eaI ACBI"XT .
I PSTDSGA II DMBACBRP t ~ 6. Bypass unloading the buffers if

VSAM is active; skip to Step 9_
A!!!.

I"'X'23' I

SCDCSECT - Betch Nucleus CSECT DLZBNUCO

.Extended Description Routine Label Extended Description R Label outme

Note: The ABEND routine is invoked
by the DOS/VS supervisor if (\) there
is a program check or other ABEND
situation found by DOS/VS, (2) if
the job is being abnormally ended by
a DL/I routine that determines DL/I

the first entry to D LZPRHBO - see
Figure 2-4.4, Step 1.) After PL/I
completes diagnostic information,
processing returns to the modified
address in DLZABEND.

should be abnormally ended, or (3)
specifically by the buffer handler
when there is an error concerning
buffers.

3. If the HD reorganization reload module ABLOGCBP
(DLZURGLO) is running for either a
standard reload or a reload restart, close
the workfile generator file if it is open.

I. If there is a program check, DLZABEND DLZABEND DLZABEND 4. RELODCBP
checks the switch (SCDLIPLI flag in
SCD) set by DLZPRHBO to determine if
program check occurred in PL/I code.
If error occurred while in PL/I code
(SCDLIPLI= I), a return address is
modified and a branch is made to PL/I
STXIT PC routine. (The address of the
PL/I STXIT PC routine was saved during

Licensed Material'" property of IBM 2';'23

Figure 2-4_2. Partition ABEND Routine Entry (Part 2 of 21
",INPUT .. PROCESS rOUTPUT

SCD r--- ~ 7. Issue UNLD call.
I SCDDLICT I PST

>tpSTLIPRM J I BALRI DLZDLAOO

D Ltl Analyzer
.Module

8. Issue message DLZOO21.

IIALR ... DLZRRCOO

Error Message
Writer 2-3.1

SCD R4

I SCDSIND I 9. Load and execute the formatted PSTERCOD 'D
system dump program if required.

U6I1.121Ji
IDLZFSDPO · .. 1 GETVIS Macro SYSLST

EJ
..... L.DAD MACRO ... DLZFSDPO

Formatted
DOSNS System Dump
Core I mage Library Program

~ DLZTRCAL
TYPE=STOP Macro

... JDUMP Macro ...
To DOSNS

SCDCSECT - Batch Nucleus CSECT DLZBNUCO

Extended DescriDtion Routine label btended DescriDtion Routine label

7. ABUNID

9. The GETVIS macro is used to
acquire storlige fOr DlZFSDPO.

ABBYMSG

If there is not enough storage
avallable tdDlZFSDPO, only
JDUMP output is put to SYSLST.

2-24 Licensed Material -'Property of IBM

Figure 2·5. Online Initialization (Overview)

INPUT From ~ PROCESS --------------,
CICSIVS
Overlay
SUP.isor

Extended Description

1.

2.

3.

4.

5.

1. Online initialization start.
(See Figure 2·5.1)

2. PSB processing.
(See Figure 2·5.2)

3. OMB processing.
(See Figure 2·5.3)

4. Control program initialization.
(See Figure 2·5.4)

5. OMB open processing and online
initialization completion.
(See Figure 2·5.5)

Routine Label

DLZOLIOO

PSBLOADL

DDIRINIT

DLZCPIOO

DMBOPENA

To
CICSIVS
Overlay
Supervisor

OUTPUT ------.

CICSIVS
Partition

DLZDLlOOvrnp

DLZOLlOOvrnp is the module
identifier where 'v' is the version,
'r' is the release, 'n' is an additional
identification digit, and 'p' is the
latest PTF number that has been
applied.

DLZOLIOO

Routine Label

Licensed Material - Property of IBM 2-25

Figure 2-5.1. Online Initialization Start
,.1NPUT From .. PROCESS ~OUTPUT

Figure 2-6
Step 1

SIP CSA Ba I "I !C§al£aB I
SIPCSA I CSAOPF LA I --.-=: I SCO I
ENOSAVE ~ 1. Establish addressability to

IINITSZSV I .- CICSNS control blocks and SeD. LNGTHSAV CSAOPFL [INITUPSV 1
ICSADLI I

Rll

I !il~ I
R13 I NUCAD I

SIP I CSA I
IENDSAVE I

DOSNS
ILNGTHSAV COMREG DLZSCD CSAOPFL

~ SCDDATE I CSADLI I
SCD > 2. Initialize online nucleus. SCDIWAIT

ISCDPRHED I SCDERRMS

ISCDLSTAD I I t DOSNS

MVCOM Macro SCDCSABA COMREG

SCDSIND ~ CSA PPT SCDCWRK I

ICSAPPTBA I IpPTPI 1
IpPTTLR I ---t> 3. Initialize ACT. I

ACT PPT

SCD ACT I ACTIND I I PPTTLR I
ISCDACTRA I IACTNM I

I ACTPCNT I
PPST PST

PPSTECB PSTPREAD

SIP PST ---I> 4. Build temporary PST and PPST PPSTCA PSTSCDAD

ISIPCORE I IpSTLNGTH I used during initialization. PPSTID PSTSVl

t t PSTSV2
PPST

IpPSTLEN I
SIPCORE PSTSV3

I BALR CICSNS
GETMAIN Routine PSTSV4

PSTSV5

PSTSV6

PSTSV7

To
Figure 2-5
Step 2

- ... DLZOLIOO Online InitIalizatIon CSECT DLZOLIOO

Extended Description Routine Label Extended Description Routine Label

J. Module identifier (PLZO!-IOOvrnp).is DLZOL!OO ~LZOL!OO
defined here. . ..

SCDSIND is initialized with. bits 6 and 7 of
the UPSI switchfiom the COMREG. The

Upon entry from the CICS!VS Overlay
Supervisor, SIPBAR2 contains the
overlay entry point, and SIPBARI
contains the SIP common communications
area. The current storage allocation infor-
mation is saved in order to release storage
if DL/I initialization fails.

program request handler entry point is
moved to byte 16 of the COMREG and
temporary entry points are established for
the error message routine and the DL/I wait
r(,)utine. Also, SCDCWRK is initialized at
this time to point to the beginning of the
low end offree storage.

The DL/I systems contents directory is
located from the CSADL! field in the CSA
optional features list (CSAOPFL).

Write message DLZ031 I if program isola-
tion is being used and either CICS!VS
journalling is not being used or program
name DFHDBP (dynamic transaction
backout) is not in the PPT.

3. Indicators are set in the CICS!VS PPT mark- ACTLOOP
ing the program eligible for DL/I services.
They are set in the DL/I ACT entry indica-
ting the program was located in the PPT.

Write message DLZ0341 for each ACT pro-
gram not in the PPT. Write message
DLZOSlI if any ACT program is not in the
PPT.

Write message DLZOSOI if the nucleus is
not found;

Write message DLZ0641 if the nucleus is
an invalid version.

4. The PST and PPST are built directly after PSTPPST
the initialization overlay high storage ad-
dress. The save areas are chained and
SCDCWRK is updated to indicate the new
upward core allocation starting address. A

2. CSADL! is modified to point to the DL/I NUCFOUND dummy task ID of '01' is set in the PPST,
interface module address list, (DFHDL!AL
DSECT), which is a table of entry points
for the task initiation module and the task
and system termination routines.

Since a DL/I task with its associated PST is
not yet involved, a temporary PST is needed
to provide work space and save areas during
the execution of this module. (, "

2-26 Licensed Material ;"'Prope:tty of IBM

Figure 2-5_2. PSB Processing
~INPUT -PROCESS -OUTPUT

From
Figure 2-5
Step 2

SCD PDIR ~;=ul
I SCODLIPS II PDIRSYM

---...:: . I PDIROI'TC I 1. Load PSBs. > ...

~BALR I hNITSW I INITLODR

PSB Rl
Module Load
Routine

PSBVMID I I 2·5.6

PSBXIOWK PDIR =
PS6SEGWK > 2. Initialize PDI R. > PDIRADDR

PSBNDXWK PDIRPSBL

PSBIOAWK PDIRZWA

PSBCODE

PSB SCD

SOB I PSBLIST
I r---""::: • .. ISCDSIND I

SDBLEVEL 3. Check PCBs sensitivity. ...
JCB SDBORGN

I JCBSDBl SDBF3

I JCBSDBNd I SDBDSGA

DSG PCB

IDSGDMBN?I IDBPCBJCB I
PCB PCB

I DBPCBJCB I IpCBLST I .
r----~ DSG PSIL

DSGDMBNO IpSILLNGH I

DSGINDA PSILSEGD I
DSGDSGLN

DLZOLIOO Online Inltlallzatoon CSECT -

Extended Description

4. Move the PSI L and create the
segment intent list mask.

t
BALR t GETCORE

Storage Acquisition
Routine

2·5.7

Routine Label Extended Description

.J
To
Figure 2-5
Step 3

PSIL

IpSILNTNT I

I PDIR

IPDIRSILA I

PSIL

IpSILLNGH I

DLZOLIOO

Routine

I. The PDIR address is located in the SCD PSBLOADL PSBLOADL Write message DLZ043I if load
and each local PSB is loaded temporarily, sensitivity is detected. A PSB contains
directly behind the dummy PST. The a PCB with PROCOPT=L which is
PSIL entries that indicate the DMBs invalid online.
which may be used by this PSB are 4. The PSILs are moved from the
loaded along with the PSB. They are temporary position and as they are
appended in front of the PSB. If PSB moved, the size of each entry is
initialization is successful, it will be increased by the size of PSILSEGD
moved up prior to completion of to allow for the segment intent bits
initialization: . mask copy. For program isolation,
Write message DLZ044I if the PSB is non-exc\usive intent bits are translated
not found: to read-only to allow simultaneous

2. Write message DLZ0711 if the PSB is scheduling of update·sensitive segments.

not version/modification L I or later. All the DSGDMBNOs are adjusted to
show the new offset. Also, each

3. All the SDBs for each PCB in a PDIRNPCB PSILLNGH is adjusted to show each
PSBLIST are tested for correct new PSIL entry length as each entry
processings options. Indicators are set is moved.
in the corresponding PDIR entry, PSIL

Return is made to Step 1 to repeat entry, and the SCD to indicate intent.
The corresponding SIL entry is found this routine for PSB until there are

by using the offset value found in no more.

DSGDMBNO.

Write message DLZ042I if a PSB
accesses a HSAM DBD online.

PDIR

IPDIRCODE I

DSG

IDSGDMBNOI

L abe

IPDIRSMUV

PSBNXT

Licensed Material - Property of IBM 2-27

Figure 2-5.3. OMB Processing (Part 1 of 3)
",INPUT

From
I'" PROCESS r-0UTPUT

Figure 2·5
Step 3

SCD PDIR • IPDIRSILA I SCDDLIPS
PSIL DDIR

SCDDLIPN
IpSILDIRA IIDDIRCODE I 1-- -::: ~ 1. Initialize OMB directory.

SCDDLIDM PSIL

SCDDLlDN PSILDMBN I
PSILNTNT 1

SCD DDIR
CSA FCT

1 SCDDLIDM 1 I DDIRSYM I
ICSAFCTBA I I---~ 2. Build a ODiR if the OMB does FCTDSID

LSCDDLlDNJ [DDIRCODej
FCTDSOPN not have one. ... GETCORE PSIL

DDIR FCTDSTEL
I PSILDIRA I

IDDIRLEN I BALR Storage Acquisition
PSIL Routine

IpSILDMBN I
2-5_7

PDIR SCD

IlpDIROPTC SCDDLIPS

IlpDIRSILA SCQDLlPN 1-- -
=--

3. Store OMB number in 001 Rand P~IL. DDIR

SCDDLIDM
PSIL. I PSILDIRN IIDD,RNuMB I

PSIL
SCDDLIDN

IpSILDIRA I
DDIR

IDDIRNUMB I

SCD DDIR~ DDIR

"> 4. Load and relocate each OMB. >IDDIRADDA 1 ISCDDLIDM IIDDIRSYM

ISCDDLIDN .. INITLODR
IDDIRDMBL I

BALR Module Load
Routine

2-5_6 .. DMBLOADR
BALR Build Associated

DMB Control Blocks
2-5_10.

DLZOLIOO - Online Initialization CSECT DLZOLIOO

Extended DescriDtion Routine Label E ddD xten e escrlDtlon R outtne L bel a

1. The PSlts ale scanned for DMB names DDIRINIT DDIRINIT

- and a DDIR 1$ created for each unique DDIRFOND
DMB encountered. The address of the

Write message DIZ048I if the
randomizing module is not found.

DDIR replaces the respective dmbname
in each PSIL.

Write message DIZ0491 if no valid
DMBs are found.

2. Write message OIZ04S1 if no DDIRBLD
CICS/VS FCT.

Write message DIZ0461 if no FCT
entry existed matching the dbdname.

3. Write message DIZ0491 if no valid DDIRNUML
OMBs are found.

4. Write message DIZ047I if OMB not DMBLLUP
in library_

Write message DIZOnI if the DMB
is not version 1.1 orlater.

2-28 Licensed Material - Property of IBM

Figure 2·5.3. OMB Processing (Part 2 of 3)
• INPUT '" PROCESS -OUTPUT

DDIR ~
IDDIRSYM

IDDIRADDRJ

ACBXT

INUCAD

DMB ~
IIDMBORG I

5. Scan HSBFR entries in ACT. ">I DMBVSBFR I

HSBFR Entr~

IFFOO I

DDIR ill --- ~ 6. Adjust offsets in OMB to
I DDIRCD~ addresses for each valid OOIR.

I DDIRLEN I At end of OOIRs go to Figure
2·5, Step~.

SCD DMB

ISCDEXTBA I 10M BORG I ACBXT RPL

IDMBPPRND I --- ~ 7. Build VSAM RPL, Exit List, and ACBs . DMBACBAD D
ACBXT .. DMBACBRP ACB

lOMBuSBFR.1 SCDEXT
GETCORE 0 BALR Storage DMBACBEX

IDMBACBNM IISCDEVSEX
I

Acquisition
Routine EXLST

2-5.7 D .. GENCB BLK=RPL Macro .. GENCB BLK=EXLST Macro .. GENCB BLK=ACB Macro

.. DLZOLIOO - Onhne lnotlahzatlon CSECT DLZOLIOO

EJ(..tended Description Routine Label Extended DescriDtion Routine Label

5_ Write message DU029I if invalid DDIRINIT CHKHSB
DBDNAME in HSBFR statement.

The number of index buffers and
KSDS buffers in the HSBFR entry
is moved to the ACB extension. If
the organization is HISAM the number
of ESDS buffers is moved to the
second ACBXT. These values are
used in building the VSAM ACBs
(in Step 7).

6. DMBRLUP

7. If HISAM, two sets of control blocks DMBOFFAJ
will be built. ACBADLUP

Information obtained from HSBFR
statements is used for the GENCB
BLK=ACB BUFND=parameter and
BUFNI parameter. If none was
specified, the default of 3 index
buffers and 2 data buffers is used.

Licensed Material - Property of IBM 2-29

Figure 2-5.3. OMB Processing (Part 3 of 3)
_INPUT • PROCESS ",OUTPUT

DMB PSDB -=
IDMBLENTB DMBFDBA PSOB CPAC

.IDMBSECTB DMBVLDFG -~ 8. Relocate PSOBs and SEC list. ,IOMBFDBA I DMBCPEP I

DMBSCTAB INITLODR
IIDMBSCTAB I DMBCPRES I

CPAC DMBLST BALR Module Load

IDMBCPCSG I Routine
2-5.6

SEC .= DMB

DMBSCDE IDMBSIZE I
DMBSECDB

DMBSECLN SCD
t-

DMBSFLGI IlsCDDLIDM I

DMBXITAD IlsCDDLlDN I

PSDB SEC

-~
IDMBLST I DMBSECDB

9. Process Secondary List if
present for each PSOB. DMBXITAD

XMPRM DMBXDSDB ... INITLODR IDMBXMXEP I DMBXPSDB
DMBXDSDB BALR Module Load

IDMBXMRES I Routine
OMBXOSC 2-5.6

I~ IDDIRLEN
Return to Step 6.

XMPRM

!oMBXMXNM

bMBXMRES

.. DLZOLIOO - Onhne Initialization CSECT DLZOLIOO

E ddD xten e escnDtlOn RDutine Label Extended DescriDtion Routine Label

8. The segment compression modules DDIRINIT PSDBROUT
for each PSDB is loaded if present.

Write message DLZ073I if the
compression module is not found.

9. If a secondary list is present, its PROSEC
code is tested, and referenced
DMBs are resolved to DDIR pointers
and placed in the list.

If an index user exit routine is
present it is loaded.

Write message DLZ013I if the SEC
makes an invalid DMB reference.

Write message DLZ266I if there
is an invalid secondary code.

Write message DLZ074I if the
indexing module is not found.

2-30 Licensed Material • Property of IBM

Figure 2-5.4. Control Program Initialization (Part 1 of 3)
I-INPUT

m
ure 2·5

Fro
Fig
Stop ..

SCD' PDIA-=

ISCD(>LlPN PDIAADDA

ISCDDLIPS PDIAPSBL -
PDIAZWA

POI AOPTC

PSB U PSBXIOWK

PSBSEGWK I- -
PSBNDXWK

PSBIOAWK

I NUCAD ~- - -

...
DLZOLIOO - Onhn~ InltlahzatlOn CSECT

Extended Desc:riP,tion

1.

2. The address of the storage acquired
is used as the 'move-to' address in
Step 3.

3. Once the PSB is moved, its new
address is stored in the PDlR and
the old PSB address becomes the
new code upper boundary address
(upward core allocation starting
address), SCDCWRK.

4. Write message DLZ056I if PSB
fails to initialize.

6. If there is an SLC name at the
nucleus address +8, the SLCLOAD
routine loads the action modules.

Write message DLZ032A and termi·
nate DLtI initialization if CICStVS
journalling is to be used but there
is no system log entry (X'O!') in
the JCT.

• PROCESS -OUTPUT

1. Control program initialization
entry.

PSB
~

>~ 2. Acqu ire storage for PSB and
index work area GETCOAE

BALA Storage
Acquisition
Routine

2·5.7
POIA I PSB'

IPDIAADDA I PSBXIOWK

;. 3. Move PSB to perma,nent location. PSBSEGWK

SCD PSBNDXWK

4. Initialize PSB . ISCDCWAK I PSBIOAWK .. PSBAELO

BALA PSB Initialization
Routine

2-5.11

5. Return to Step 2 for each PDIR.

~ 6. Load action modules as SLC
says if requested SLCLOAD

BALA Storage Layout
Control Routine

2·5.8

DLZOLIOO

Routine Label Extended Descri~tion Routine _ Label

DlZCPIOO DlZCPIOO

PCCORET
PSBMLUP

PSBNWM

DLILOAD
NUCLDNJL

,
Licensed Material - Property of IBM

Figure 2-5.4. Control Program Initialization (Part 2 of 3)
_INPUT

PST SCD
~

IpSTWRK3 IISCDDBFA I

.. PROCESS rOUTPUT

- ~
SCD

7. Allocate buffers if required. >lscDDBFPL ... BUFALLOC
BALR Buffer Allocation

Routine
2-5.9

NUCLODTB SCD SCD
DLZDBHOO SCDDDBHO SCDDDBHO

DLZDLROO SCDSIND SCDDLIRE

I
DLZDLAOO

DLZRDBLO

DLZDLDOO

SCDDLICT

. ~ 8. If the number of DDIR entries does not > SCDDBLNT

equal O. then load Action Modules. , . SCDDLIDR

DLZDDLEO

DLZDHDSO
.... INITLODR SCDDLIIN

SCDDHDSO
BALR Module Load

DLZDXMTO Ro~tine SCDDXMTO
2·5.6

DLZDLOCO SCDDLICL

SCD
I-

I !lr.DDBlNT
~ 9. Initialize data base logging

R13 li"I2Ii~I I PSTSVI I ISCDELECB I if not suppressed.
SCDSIND

SCDEXTBA .. DLZRDBLO

BALR Logger
Initialization

or ... DLZRDBLI

BALR , CI~Ii/V:S Journal
Logger Initialization

If L2!lginp is SS'i(!ressed go
to Figure 2-5, !!I! 5 .

.. .
DLZOLIOO - Online InitIalizatIon CSECT DLZOLIOO

Extencled DescriDtion Rciutine Label Extended DescriDtion Routine Lo.hotl

7. If there is not a buffer pool prefIX DlZCPIOO BFRAWC
address in the SCD indicating the
buffers have already been allocated
and the· !lumber of subpools required
is not zero, go allocate the buffers.

8. If CICS/VS journaling is supported,
DlZRDBLO in the NUCWDTB is

DUWAD

replaced with DlZRDBLl.

- Any mooulesiready loaded by
SLCWAD will not be reloaded.

Write message DlZOSSI if a DL/I
facility JIlodule is not found.

9. SCDDBLNT is loaded with the entry NUCLODN~
point at the proper logger initialization
routine (DlZRDBLO or DlZRDBLl).
If logging was suppressed SCDDBLNT
will continue to point to a branch 14
for immediate return to caller.

2-32 Licensed Material - Property of IBM

Figure 2·5.4. Control Program Initialization (Part 3 of 3)

'" INPUT

SCDSIND SCDEXT

I SCDDBLCL I I SCDELECBI f-
I SCDDBLAS I
I SCDDBLSV I

DLZOLIOO - Online Initialization CSECT

Extended Description

10. Write message DLZ006I if the
asynchronous logger did not
successfully attach and go
close the log.

The address list for the
asynchronous portion of the
database logger and its save
area address are located in
the database log load module
just prior to the entry point.
If the attach fails, the
database log is closed and
the system continues without
log support

PROCESS--------------------------...

10. Attach the asynchronous logger
if the CICSNS journal logger
is being used.

••• '1 ATTACH Macro

If error: ...
BALR ~;';;;;;;';';;=;"""-I

Routine Label Extended Description

DLZCPIOO NUCWDN)

To
Figure 2·5
Step 5

OUTPUT------------~

DLZOLIOO

Routine Label

Licensed Material ...Property of IBM

Figure 2-5.5. OMS Open Processing and Online Initialization Completion
'" INPLJT - PROCESS

From
Figure 2-5
Step 5

SCD DDIR=. •
I LSCDDLIDM I DDIRCODE

IlsCDDLlDN I DDIRCOD2 1---- ~ 1. Determine if the OMS can be
DDIRLEN

opened.

SCD 2. Issue OPEN ALL call to DL/I
ISCDDLlCL I open/close. .. DLZDLOCO

BALR DL/I Open/Close
Module

DDIR

DDIRCODE

DDIRCOD2 1- -- ~ 3. Scan 001 R for successful
DDIRVSRT completion of open call.

IINITSW I CSA

CSAPLBA

CSAPUBA ;> 4. Write message DLZ0531 -
SIP DL/I Initialization Complete

IlslPPUT J
! I SIPOSUP I or

Write message DLZ0541 - DL/I

I CICSAVAK
I

Initialization Error Detected. .. SIPPUT

BALR Console Put
Routine

DLZOLIOO - Online Initialization CSECT

Extended DescriPtion Routine Label Extended Description

1_ If all PSBs are remote, do not attempt DMBOPENA DMBOPENA
OPEN_

2_ DMBSCNX

3. Write message DLZ0571 if an open DMBSCLP2
error occurred attempting to open a
DMB.

4_ During the course of initialization an EXITOVL
error can also cause a direct return to
CICS/VS with message DLZ0521 - Ini-
tialization Failed.

Licensed Material ~ Property of IBM

TO'"
CICS/VS
Overlay
Supervisor

~

-OUTPUT

CCIB
IDDIRCODE I
ISCD PST

SCDSIND2 II PSTFNCTN I
IpSTDSGA I

R13

IpSTSV1 I

DDIR SCD

> I DDIRCODE IIsCDSIND2 I

SCD

> SCDLOWER

SCDUPPER

SCDIWAIT

SCDERMMS

DLZOLIOO

Routine Label

Figure 2-5.6. Module Load Routine.
-INPUT From

,,"PROCESS ",OUTPUT

EJ
Call ..

IBLDLN I BLDlVSA

DOS/vS I ;> 1. Load Directory Entry. lpirectory DOS/VS Entry
Core Image

"LOADMacro Library

BLDLVSA

DOS/vS 1- -- ~ 2. If phase SVA resident go to
Load Step 5.
Indicator

IINITSW I BLDLVSA 3. Acquire storage for requested BLDLVSA
Number of phase; either A or B: Size of I Core Image .:>i Storage Requested
Library
Block. I Entrv Point
Number of - :> A. GETCORE
Byta.
Last Block BALR Storage Acquisition

Routine

2·5.7

SIP SCO "> B. Low Address space.
I ENDSAVE II SCDCWRK I

BLDLVSA

I Name I SCD CICS/vS

I Entry Point I ~CDCWRK I Partition
;> 4. Load phase.

DOS/vS B LOADMacro Loaded
COKilREG Pha ..

~
DO$/VS 5. Set phase entry point.
Core Image

"> Rl Library

I I
~
Caller ...

DLZOLIOO - Onione Inltlaiozatlon CSECT DLZOllOO

E ddD xten e ascription R outme Label E ddD xten e escrlPtlon R outme Label

1. Caller passes requested phase name INITLODR INITLODR 4. If lew address space is requested LODRLOD
in a work field BLDLN. The output by the caller SCDCWRK is used
of the load call is a DOS/VS as the load address. After the
directory entry at BLDLVSA. lead macr.o the end address .of the

module will be in the DOS/VS
2. BLDLFND COMREG. SCDCWRK is updated

with this end address t.o shew the
3. Amount of storage is deter· new low end .of free st.orage.

mined by:
5. The phase entry p.oint is passed LOOROK

Number of Ubrary Block back t.o the caller in register 1.
x 1024 + Number of Bytes
in Last Block.

INITSW indicates whether
caller wants low address space
.or CICS/VS to acquire the space.

B. Write message DUOS81 if
insufficient cere t.o initialize

i' DL/I.

Licensed Material - Property of IBM 2-35

Figure 2-5_7_ Storage Acquisition Routine
~INPUT From ~ PROCESS

cal~

"
ICOREADJ I SIPCOM "

SIPCORE > 1_ Align the storage requested to

R1 ENDSAVE specified alignment desired_

1---1 LNGTHSAV

(1
SIP

II SIPCORE I 2_ Acquire storage from CICSNS;
either low or upper storage.

SCD .. "
I!!!<DCWRIS 1 SIPCORE

.. BALR· CICSIVS SIP
Storage Routine

> 3. Return storage address in R1 R7

I tW&'/?~ R1 to caller.

...
DLZOLIOO - Onlln. lnotlallzatlon CSECT

Extended Description Routine Label Extended Description

1, If alignment is desired .the number GETCORE ~~TCOREA
of additional bytes needed to align ETCORE
is calculated and put in R7.

Register I is updated to show the
new total number of bytes required.

2. Write jIlessage DLZ0581 if insuffi- BYCRALGN
cient storage to initialize DL/1.

The SlCOPT flag byte (moved to
SIPCORE from a storage layout
control table entry) is used by
CICSNS GETMAIN routine_ If we
are dQing onr own alignment SLCOPT
is examined. to determine whether
low o~ high storage was desired by
the user.

3. The load point returned in RO by
Step 2 is adjusted by the additional
bytes in R7 to get the requested
alignment. This needs to be done
only if low storage was acquired.

Licensed Material - Property of ISM

r

...

TO~
Cilier

I"'OUTPUT

t" I I~I
CICSIVS Partition

either: J
.IRO

-SCDCWRK ""/U'hf"'11
or:

RO

1,
l

I~ ENDSAVE

R1

>1 1

DLZOLIOO

Routine Label

I
\

(

Figure 2·5.8. Storage Layout Control Routine
~ INPUT From • PROCESS I"0UTPUT

Figure
2-5.4
Step 6

....
SIP -y

,ISIPBLDL I NUCAD I r-l-- > 1. Build the storage layout control
, ISIPLDER I table. >SIP

I ISILISTID I
SIPBLDL

I BALR CICSIVS Build

I Routine

L_. ;.. 2. Load the table.

+-t SIPLDER
">IINITEND I

BALR CICSIVS Loade,
Routine

SLC PST

LSLCMODNMII PSTWRK3 I :> 3. Determine if the SLC entry is
>IOPTBFR ISLCOPT I for the buffer pool. I

~ BUFALLDC SCD
Buffer Allocation

SCDDDBHO I BLDLN I Routine

2·5.9 SCDDLIRE
SLC I LDSNSFD2 I SLCMODNM I NUCLOPTBI

SCDDLICT

SLCOPT 4. Load each module in the SLC SCDDBLNT

SLCOFS table and set the entry points SCDDLlDR SIP
in theSCD.

SLCLEN SCDDLIIN I SIPCORE I
~ INITLODR SCDDHDSO

Module Load SCDDXMTO
Routine

2·5.6 SCDDLlCL

SCDOUEFO

SCDOUEFW

SCDCPY10

SIP - -_.- ., 5. Update the online free storage
I ENDSAVE I beginning pointer. > SCD • I LNGTHSAVI IscDcWRK I

I
Figu,e 2-5.4
Step 7

...
DLZOLIOO - Onlone lnotlalozatlon CSECT DLZOLIOO

Extended Description Routine Label Extended Description Routine Label

I. SLCLOAD SLCLOAD 5. SLCXIT

2. Write message DLZ0301 if the loaded
SLC table does not begin with
DLZSLC.

The table is loaded directly after
module DLZOLIOO.

3. The user would have specified the SLCLUP
DLZSLC statement with SLCBUF
MODULE=BUFFER.

4. As each module in the SLC table SLCLUP
is loaded, the need to load flag is
turned off so that upon return to
Figure 2-5.4 these modules will not
be reloaded.

The SLCOPT for each module, as it
is loaded, is moved to SIPCORE for
use by the GETCORE routine.

-

Licensed Material - Property of IBM '2-37

Figure 2-5_9. Buffer Allocation Routine (Part 1 of 2)
• INPUT From I'" PROCESS ,,"OUTPUT

Figure 2-5.4
Step 7 or
Figure 2-5.B
Step 3

-" sep
IINUCAD I ISCDBFPL

.,
--- ~ 1. Determine how many subpools ~~I;!

(~BF~. ~~~r~ ~ the user wants. :>ISCDDBFPL I

SCD SBIF
ISCDDBFPL II SUBLEN I f--- ~ 2. Acquire aligned storage for buffer
ISCDDLlDN I pool prefix, subpool information

I tables, and subpool directory. I COREADJ SIP I SIPCORE I BFPL

IOTBFR II BFPLLEN 1 ~ GETCOREA
Storage Acquisition BALR
Routine

SCD BFPL ...
I SCDDBFA

, 3. Format the buffer pool prefix. BFPLID
R1 BFPLROCO

I I
BFPLSUBD

I NUCAD I BFPL

I BFPLSIUN I
SCD

II SCDDLIDM I DblR f-- - ~ 4. Move information from ACT into SBIF DMB Subpool
II SCDDLlDN I

.
the buffer pool tables. I SUBBFND '0 DDIRSYM

DDIRNUMB

IsuBPoOLN I DDIRCODZ

HDBFR Entrv

1··········· ... ··.·1

PST BFPL

II PSTWRK1 I I BFPLSUBD I ---: ~ 5. Store buffer sizes in the SBIF PST
II PSTWRK3 I subpool information tables.

......
PSTWRK1] BFPLSUIN It SUBBFSIZ J

Il SUBDMBCTJ pSTWRK31

ACBXT SCD
I DMBRBAStill SCDDBFPL I

DMB Subpool
Directory

DLZOLIOO - Online Initialization CSECT DLZOLIOO

Extended Descriotion Routine Label Extended Descriotion Routine I ~""I

I. Buffer allocation is done by this BUFALLOC BUFALLOC
subroutine. The required number
is set to the user specified total
in the DLI parameter if the user
number is smaller than required.

5. At this point the size of the subpools PRPEND
are determined. They are allocated,
largest first, until the specified number
is exhausted. Remaining DMBs
requiring sub pools are assigned evenly

Write message DLZ060I followed
by DLZ06lA if buffer pool
allocation is missing or invalid.

across all existing subpools. If the
user specified more sub pools than
necessary, an additional pool of 512
buffer size is allocated for' delete

2. BFPREADY
workspace.

4. Write message DLZ029I if there SCANHD
is an invalid DBDNAME in
HDBFR entry.

The subpool sizes are sorted so that SUBTSHFL
the largest sub pool appears first in the
subpool information table.

2-38 Licensed Material - Property of IBM

Figure 2-5.9. Buffer Allocation Routine (Part 2 of 2)
~INPUT ~PROCESS ",OUTPUT

BFPl DDIR ..::::;
II BFPLSUBD II DDIRADDR ,

II BFPLSUIN I §BIF easclusT

DMB --- ~ 6. Assign OMBs not yet assigned to . IsUBDMBCT II DMBRBASNI
S81F Subpool
SUBBFHD

L:J
subpools by HOBFR statements.

SUBBFSIZ
DMBSubpool
Directory

SUBDMBCT 7. Format buffer prefixes and
I I allocate I/O buffers.

SBIF SIP
SBIF I SUBUCPR E II SIPCOR E I

ISUBBFNO I --- ~ A. Get aligned core for the .
buffer prefixes. I r SUBUCHAI 1 --..

SCD ~ ..
ISCDDBFPL IIOPTBFR I GETCOREA

TBALR--r' Storage Acquisition ICOREADJ I
Routine

2·5.7
BFPL

I BFPLPRAD I

SBIF SIP

ISUBBFIltO I --- ~ ICOREADJ II SIPCORE I B. Get aligned core for the
IsuBBFsiz IIOPTBFR I buffers.

~

GETCOREA
TBALR-r' Storage Acquistion

Routine
2·5.7

A1 BFFR ;;==;u
I > C. Set buffer addresses in the [BFFRSW 1

buffer prefix. > I BFFAADDR ...

Figure 2·6.4
StepBor
Figure 2·5.8
Step 4

DLZOLIOO ~ Online Initialization CSECT DLZOLIOO

Extended DescriPtion Routine label Extanded Des"rintjon Routine Label

6. Assign DMBs by corresponding control BUFALLOC GREATPRO
interval sizes. Each OMB is assigned by
placing its DDIR position pointer into
the subpool directory.

It is possible to get message OLZ2621
if there is a buffer allocation logic
error.

7. The user specified number of buffers BFRINIT
is allocated per pool; default is 32.

A. ACCLOOP

B. BFFRFRMT

C. BFRSPLUP

Licensed Material _. Property of IBM 2-39

2·5.10. Build Associated DMB Control Blocks
-INPUT From ,",PROCESS !'"OUTPUT

Figure 2·5.3
Step 4

..
~Q OMS

r

ISCOOLIOM IIOMBORG

~ IOMBOALGR r- - 1. Load randomizing module if OMB PAC~
I organization is HDAM.

r
IOMBOALGR 110MB AEP

OACS

IOMBOANMEI t t INITLOOR

BALR Module Load
Routine

2·5.6

OOIR OMB

IOOIRCOOE I I OM BORG

IOMBPPRNO :> 2. Determine if buffer pool space ~CBXT PST
ACBXT is required and set indicators. IMBRBASN I LpSTWRKl J

LpSTWRK3 I OMBCINV r

OMBLRECL

OMBACBLN

To
Figure 2·5.3
Step 4

... OLZOLIOO - Onilne lnotlailzatlon CSECT OLZOLIOO

Extended Descriotion Routine Label Extended Descriotion Routine La"'"

I. Before loading the randomizer a DMBLOADR DMBLOADR
check is made with all currently loaded
randomizers. If one with the same
name as the one we are loading is
found, the entry point is resolved
and the actual load is bypassed.

If the randomizing module is not
found, the DDIR is updated to
show DMB initialization failed.

2. If buffer pool space is required,
the size of each control interval

GETBUFRS

rounded to the next multiple of
~12 is indicated in PSTWRKI for
IlIter allocation of the buffer pool.

2-40 J:;icensed Material -Prdperty of IBM

Figure 2-5.11. PSB Initialization Routine (Part 1 of 2)
~INPUT

F m
Fi ure 2-5.4

ro
9
e St p4

PDIR PSB

IPDIRADDR I PSBXPCB - -
PSBCODE

PSBLIST

PCB

DPCBJCB r --

JCB SDB -=
I JCBSDBl I SDBSYM

SDBPARA

SDBDSGA - --
SDBTARG

SDBKEYFD

SDBXFL

SDBXPANS

SDBEND

I PCBEND (80) I
;- -

PSB

I PSBXPCB I
.. DLZOLIOO - Onione Inltlaiozatlon CSECT

Extended Description

1.

2.

3.

4. The pointer to the PSBLIST is
bumped to the next PCB pointer
entry and processing returns to
Step 1 if we are not at the last
PCB. If the index PCB exists and
has not been relocated return to
Step 2.

• PROCESS ~OUTPUT

r

~ 1. Initialize and relocate PSB PSB
pointers. PSBXPCB

PSBLIST I

~ 2. Relocate the PCB and JCB
pointers. PCB JCB

IDBPCBJCB I JCBLEVTB

JCBLEVND

JCBSDBl

JCBSDBND

SOR

~ 3. Initialize all SOBs belonging ISDBPARA

> SDBDSGA to a particular JCB.
SDBTARG

SDBKEYFD

SDBXPANS

~ 4. Test for the end of the PCBs
in the PSBLIST.

If not the end, return to Step 1.

DLZOLIOO

Routine Label Extended Description Routone Label

PSBRELO PSBRELO
PCBRLLUP

PCBPLIP

~DBRELO

iNPCBCK

Licensed Material - Property of IBM 2-41

Figure 2-5.11. PSB I nitialization Routine (Part 2 of 2)

'" INPUT

PD/R PSB

PD/RADDR I PSBL/ST I
PD/RCODE

PD/ROPTC PCB ---.

PD/RS/LA IDBPCBJCB II'

PS/L JCB

, IpS/LD/RA I JCBPRLEN I

! IpS/LD/RN I

DSG -=~

DSGDMBNO ~
DSGDCBNO

DSG/NDA

SOB -=- SDBXP

SDBF3 ISDBXPFDB I
SDBNSDB

SDBPARA

SDBDSGA JCB

SDBKEYFD ~CBSDBl I
SDBXFL

SDBXPANS

SDBEND DSG

SDBXFNB ~SGDMBNOI
SDBXFFSB

PSB
DMB I IpSBCODE 1

IDMBLENTB
1 IpSBFRTA

FERT

IFERTNAME I

1 FERTPRES 1-

I-

I- -r
I
L..

..--
I
I
I
I
I

_-1

DLZOLIOO - Online Initialization CSECT

E xtended Descriotion

5. For each DSG belonging to a PCB,
the offset to the corresponding PSIL
is found by the offset in DSGDMBNO.
The DMB number at the corresponding
DMB to this PSIL is then moved to
DSGDMBNO. Thus, data bases
specifically used for this PCB are
colmected.

7. Return to Step 4 to process the
next PCB in the PSBLIST when
there are no more SDBs.

-PROCESS

~ 5. Connect data bases to PCBs.

-. 6. Connect SOBs to PSOBs.

- ~ 7. Chain Field Exit Routine (FER)

- entries and relocate FSB pointers
if PSB has field level sensitivity.

Routine Label Extended Description

PSBRELO PCBROUT

CONSDBS

2-42 Licensed Material - Property of IBM

",OUTPUT

DSG

;> IDSGDCBA I
IDSGDMBNO I

SOB SDBXP

SDBDDIR I SDBXPFDP I
SDBPSDB

SDBKEYFD

PDCA
I IPDCAFERT I

FSB

IFSBIVA I
To IFSBFERTA I
Figure 2-5.4 FERT Step 4

IFERTRTEP I

DLZOLIOO

Routine Label

Figure 2-6_ Online Nucleus (Overview)
INPUT ______ -. •

Extended DQscription

I.

2.

3.

4.

5.

6.

7.

8.

9.

10.

II.

12.

• PROCESS -------------.
-"

1_ DL/I pre-scheduling and PSB
scheduling routines.
(See Figure 2-6.1)

2. System abnormal and normal
termination routine.
(See Figure 2-6.2)

3. Task termination routine.
(See Figure 2-6.3)

4. Start-of-task record writer.
(See Figure 2-6.4)

5. Sync-point record writer.
(See Figure 2-6.5)

6. Online program request handler.
(See Figure 2-6.6)

7. Remote scheduling call interface.
(See Figure 2-6.15)

8. Remote data base call interface.
(See Figure 2-6.16)

9. Remote term call interface.
(See Figure 2-6.17)

10. Online error message routine.
(See Figure 2-6.7)

11. Online wait routine.
(See Figure 2-6.8)

12. VSAM asynchronous error processor.
(See Figure 2-6.9)

Routine Label Extended Description

DLZODPOO

DLZODP03
DLZODP02

DLZODPOI

DLZODP04

DLZODP05

DLZPRHOO

DLZISCOO

DLZISCOI

DLZISC02

DLZERMSG

DLZOWAIT

DLZOVSEX

OUTPUT----_ ~

DLZODP

Routine Label

Licensed Material - Property of IBM 2-43

Figure 2-6.1. OL!I Pre-scheduling and PSB Scheduling Routines (Part 1 of 7)
.. INPUT

F
PROCESS--------------------------.. OUTPUT------______ ~

SCD PPT

SCDMXTSK I PPTPI I
SCDCMXT

SCDACTBA ~

ACT

ACTNM

ACTPCNT

ACTBLEN

TCA

hCADLIl

SCD

SCDCMXT

SCDATSKC

SCDSIND

,PDIR _PSIL

-
I

F
2
1
2
8

rom Figure
-6.13 Step
or Figure

-6.12 Step

IPDIRSILA II PSILDIRA I I-

I PSILLNGH I
DDIR

I DDIRCODE I

DLZODP - P,escheduling and Scheduling CSECT

Extended Description

1. A. Nucleus identifier
(*DLZNUCXX*OI40) and
module identifier (DIZODPvrnp)
are defined here. The level format
is vrnp; where 'v' is the version,
'r' is the release, 'n' is an addi·
tional identification number, and
'p' is the latest PTF number that
has been applied.

This step checks the authoriza·
tion of the CICS aPlrlication
program to use D L I. If the
program name is not located in
the ACT an error indicator is
turned on in the TCA
(TCADLISE). If the ACT
search is successful the ACT
entry address is placed in the
system TCA and DL/I scheduling
initiated indicator (TCADLISI)
is turned on.

If trace is enabled an initial
scheduling trace entry with the
ID=X'FS', type ofrequest=X'DO',
is made showing the current and
absolute maximum task counters
and the PPT address.

OL!I Pre-scheduling Routine

1.

A. Locate task's application
control table entry.

To
CICS/vS
DFHPCP

PSB Scheduling Routine

B. If this is a system schedule
call. go to Step 7.

2. Suspend the task if at maximum
task.

~~T~A~S~K~SU~S~P--------~
Suspend Task

2-6.14

3. Scan the PSILs to determine if
any referenced DB is stopped.

Routine Label Extended Description

DIZODP DIZODP I. B. TCADLPAS indicates a system
DIZODPOO schedule call (pCB,SYSTEMDL).

3. Indicate a scheduling error and
return to caller if the DB is stopped.

4. There is a trace table area within this
module. Each entry is 2 bytes in
length and the last entry is the newest.

The PPST number of the acquired
PPST is put in the trace table at this
time along with an'S' to indicate a
scheduling entry.

2-44 Licensed Material - Property of IBM

SCD

SCDADSKC

SCDSIND

SCDTSKCT

System
TCA

I TCADLII

Routine Label

TASKSCHD
DLZSCHDL

CHKLOPI

Figure 2-6.1. DL/I Pre-scheduling and PSB Scheduling Routines (Part 2 of 7)
_INPUT [PROCESS -OUTPUT

PPST SCD > 4. Acquire free PST prefix and ~I;~ I§§ IpPSTCF IlscDPPsTs I update free PPST chain pointers. I SCDPPFF

ISCDPPFF I

PPST s·
I PP§TCB I

TCA SCD

I TCATCDP IISCDPPAF I --- ~ 5. Set PPST in active chain
ISCDPPSTS 1 according to task dispatching PPST SCD

PPST
I SCDPPAF I

PPSTCF
priority. PPSTCF

1 PPSTCB SCDPPAB
PPSTCB

PPSTTSKP
PPSTTSKP

Rll I Parame.er I f--- ~ 6. Indicate this is aMPS PPST List scheduling call if the function PPSTECB
call is PCBM.

PPSTIND

PDIR
PPSTTCA

·1 PDIRCODE System TCA
PPSTPDlR

, 1 PDIROPTC ITcAPcTA I

I TCADLII I System PPST
PPT I PPSTCA I I PPTPI I TCA --- ~ TCA

7. Acquire and initialize task TCADLII J
RPST ITCASYAA I PST storage.

PCADLIPA PST I RPSTLEN II TCASCSA I t t DFHSC TVPE=GETMAIN PSTPREAD
RIB

TCA PSTSCDAD I RIBLEN I II!;;AS!;;NI! I PSTPSB

PSTPCBGM

RPST PSTSVI

System TCA I I PSTSV2 I TCADLII I --- ~ 8. Return if this is a system
PSTSV3

PDIR RIB PSTSV4

I PDIROPTC I schedule call. I I PSTSV5

I PSTSV6
Set up remote scheduling call

PSTSV7
if PSB on remote system DLZISCOO

To Remote
Scheduling Figure 2-6.11
Interface S.ep 1

2-6.15

DLZODP - Pre-scheduling and Scheduling CSECT DLZODP

Extended Description Routine Label Extended DeSCription Routme Label

5. DLZODP TASKPPAC

6. Set bits in PPST (PPSTMPS and TASKPABV
PPSTMSDL) to indicate task is
an MPSjob.

The parameter list was initialized
by GETPSBN before calling this
resource schedulin!l; routine.

7. If PSB to be scheduled is on a remote TASKPSTG
system, acquire storage for RPST and
RIB also.

8. TCADLPAS indicates a system TASKPSTL
schedule call (PCB,SYSTEMDL).

PDIRREM indicates PSB is remote.

Licensed Material - Property of IBM 2-45

Figure 2-6_1_ DL/I Pre-scheduling and PSB Scheduling Routines (Part 3 of 7)
_INPUT • PROCESS I"0UTPUT

PDIR

I PDIRCODE r- - -~ 9. Determine if the PSB is in scheduling
PDIROPTC I

conflict with itself. Go to Step 31. S.CHDPDIR

I I
PDIR DDIR

IPDIRSILA IIDDIRCOD2 I
,...

PSIL -~ 10. Determine if one of the PSBs
IlpSILDIRA

IlpSILLNGH I

DMBs is held exclusively by
another PSB. Go to Step 29.

SCD PPST

SCDPPSTS PPSTCF

SCDPPAF PPSTIND r- .~ 11. Check intent against all tasks
SCDSIND PPSTPDIR suspended due to intent conflicts.

PPSTTSKP +-+ SCHDCKNT

BALR I "tent Check
Routine

PDIR SCD

IlpDIROPTC IlsCDDLIPS I

IlpDIRLEN I SCDDLIPN I

~ 12. Check intent against all SCHDPDIR

scheduled tasks. ;>I PDIR I +-+
I Address

SCHDCKNT

Intent Check BALR Routine

DLZODP - Pre·scheduling and Scheduling CSECT DLZODP

Extended Description Routine Label Extended Description Routine Label

9. If PSB is in use and is update DLZODP SCHDNTCK
sensitive or exclusive intent, go
to Step 32 and wait for this task.
If program isolation is active skip
checks for update sensitivity conflicts.

10. If any referenced DB is stopped, SCHDCKSI
return a scheduling error to caller.

II. Determine if one of the PSBs segments SCHDFCLP
is being updated by another PSB that
is waiting for intent and is at the same
or higher task dispatching priority.

The PDIR address of the task being
checked is passed to the intent
check routine at SCHDPDIR.

12. SCHDPACT

2-46 Licensed Material - Property of IBM

Figure 2-6_1. OL/I Pre-scheduling and PSB Scheduling Routines (Part 4 of 7)
• INPUT '" PROCESS ~OUTPUT

PDIR PPST .PPST SCD
IPDIRSILA I PPSTIND ~ 1---- ~ [~esn~!;;1 IlsCDSIND I 13. Schedule the PSB.
IPDIROPTC I SCDNTWC I

PSIL ~

I PSI LDIRA IIJ
DDIR

I PSI LNTNT I' DDIRCNT PDIR

DDIRCOD2 EDIROPTC I
- ~-- ~

PDIRPPST
PDIR 14. If not read only intent or update

I PDIROPTC I intent with program isolation
active, go to Step 21. PPST

IpPSTIND I
PDIR TCA

PDIRADDR ITCASCSA I -- ~ 15. Acquire storage for duplicate TCA

PDIRPSBL POI R, PSB, and work areas. ITCASCNB I
PDIRZWi>

..... DFHSC TVPE=GETMAIN PDIRLEN

> 16. Move POI R, PSB, and allocate PST PDIR
PDIR PSB work areas. IpsTPsB I I : II I

PSB

Work Areas

PSB

I PSBLIST ~ 1---- ~ 17. Relocate PCB pointer in the PSB

PSBLIST. IpsBL,sT I

PCB -=:;t JCB

I L DBPCBJC5 ,J'" JCBLEVTB

JCBLEVND --- ~ 18. Relocate PCB and JCB, and LEVTAB PCB

clear LEVT AB. II LEVTTR IIDBPCBJCB I JCBSDB1 II LEVF1
JCBSDBND

JCB

JCBLEVTB

JCBLEVND

JCBSDB1

JCBSDBND

JCBLEV1C

DLZODP - Pre-scheduling and Scheduling CSECT DLZODP

Extended Description Routine Label Extended Description Routine Label

13. The waiting-for-intent bit (PPSTSI) DLZODP SCHDESCD
is turned off it it is on and the wait
count is decremented (SCDNlWC).
Turn on DDIREXCL if the PSB
requires DB exclusive control.

Turn on the PSB scheduled flag
(pDIRSCHD).

14. If the PSB scheduled flag (pDIRSCHD)
is already on, It must be read only.

IS. Task suspend is possible because TASKDUPP
of unconditional CICS!VS GETMAIN.

17. SCHDDPL

18_ SCHDDPGO

Licensed Material - Property of IBM 2-q7

Figure 2-6.1. OL/I Pre-scheduling and PSB Scheduling Routines (Part 5 of 7)
~INPUT I'" PROCESS ",OUTPUT

JCB SDB -==; SDB

II JCNSDBl I SDBPARA I SDBNSDB

It JCBSDBND .1 SDBDSGA SDBPARA

SDBTFLG ---- ~ 19_ Relocate SOBs. SDBDSGA

SDBTARG SDBTARG

SDBKEYFD SDBKEYFD

SDBXPANS
20. Return to Step 17 for each PCB

SDBPOST

SDBEND SDBPOSC until there are no more.
SDBPOSN

SDBXPANS

PST PDIR

I PSTPREAD II PDIRADDR I PSB TCA

I PSBPST II TCAD LPCB I
PSB PCB ~

I PSBLIST "> 21. Connect user's PSB with the SDB PCB II DBPCB~
ISDBNSDB II DBPCBLKY I data base (OMB).

JCB
PSDB

-==;t JCBSDBl SDB I DMBFSDB I II SDBPSDB III JCBSDBND

JCBMKYL SDBEND ~
PSDB 22. Indicate task scheduling ... PPST System

I DMBFSDB I complete. I PPSTIND I TCA

I TCADLII I
SCD PDIR

-_.- ~ 23_ Bypass data base log write if
I SCDDBLOP II PDIRCODE I the data base log is not open

or this task is not update or
with exclusive intent. Go to
Step 27.

SCD

SCDSIND

SCDSIND2 > 24. Write open log record if CICSNS

SCDEXTBA
journaling is active and this is TCA

the first time logger is called. >ITCATCEA I SCDDBLWO

t ~ DFHKC TYPE=WAIT Macro
SCDEXT

ISCDESECB I BALR

t ~ DLZRDBLl

Open-Log
Record Write

DLZODP -Pre-scheduling and Scheduling CSECT DLZODP

Extended Description Routine Label Extended Description Routine Label

19. OLZOOP SCHOSOBL 23. The scheduling record is only created for

20. SCHOSOBN
tasks with update intent.

24. TSKLGNI
21. Each PCB is scanned and the SOBs TASKPSBI

(sensitive segment types for each
PCB) are placed in the SOB chain
of the appropriate PSOB. OMBFSOB
poiilts to the SOB of the first PCB
sensitive to this PSOB and SOBNSOB
points to a SOB within the next PCB
sensitive to the same PSOB.

Move maximum key length for use by
intersystem communication (ISC)
transformer in calculating size of local
copy of PCB.

22. Turn on scheduled indicator (PPSTA)
and turn off scheduling initiated
(TCADUTC).

TASKSCOM

2-48 Licensed Material - Property of IBM

Figure 2-6.1. OL/I Pre-scheduling and PSB Scheduling Routines (Part 6 of 7)
'" INPUT '" PROCESS ",OUTPUT

25. Write CICS/VS start·of-task
record.

I I DLZODP04

Write Start-of-Task
BALR Record

2·6.4

PPST SeD
Data Base

IpPSTID II SeDREENT I
LOGREC

LLBB

ISCDCWRK I ~
.. ---- 26. Log task scheduled. x'os' .

PDIR

I I PSBNAME
IPDIRSYM I DFHKC TYPE=WAIT

System PST 10
TCA

~ SCDEXT I TCAKCTTA I DLZRDBLO CICS TSKID

I SCDESECB I BALR Log Write Routine
2·16

or

DLRDBL1

Log Write Routine
2·17

PPST SCD

I PPSTIO II SCDNAVID I > 27. Set hashed 10 in the PST and
update ID use chain. .. PST SlOD

I II SCDNAVID I PSTTSKID

SCDEXT

I SCDEIDNX I 28. Return.

To
Figure 2-6,12
Step S

DI2IR

I DDIRPPST r- 1--- ~ 29. Get PPST of exclusive holder.

30. Go to Step 32.

DLZODP - Pre'scheduling and Scheduling CSECT DLZODP

E ddD xten e escflDtlon R outme Lal be Extended DeSCription Routme Label

25. DLZODP TASKLGNX

27, The hashed lD is used by space TASKEXIT
management to prevent freed space
from being reused before the task
terminates,

28. TASKEXTF

29. PSB is being used exclusively. SCHDWTCK

PPST address of holding task
is in DDIR,

Licensed Material - Property of IBM 2-49

Figure 2-6.1. DL/I Pre-scheduling and PSB Scheduling Routines (Part 7 of 7)
",INPUT .. PROCESS ",OUTPUT

SCHDPDIR PST

I IIpSTPREAD I

eIJIB
IPDIRADDR I

r :. 31. Get PPST of holding task.

PSB
IpSBPST I

PPST -
IpPSTIND I

~ 32. If scheduling conflict is not
with a multiple partition support
task, to Step 35.

33. Indicate DB not open and TCA System

scheduling error. ITCAFCTR I TCA
LTCADLTR I I TCADLiI I

SCD
34. Return to Step 28. ISCDSIND I

IscDNTwc I

35. Indicate task suspended due to
intent conflict.

PPST
IpPSTIND I

SCD
IlsCDSIND I
IlsCDNTWC I

36. Suspend the task. PPST
>lpPSTECB I

PPST t t DFHKC TVPE=SUSPEND

IpPSTECB l- i- - ~ 37. When task resumed, return to
Step 9.

DLZODP - Pre·schedullng and Scheduling CSECT DLZODP

Extended Description Routine Label Extended Description Routine Label

31. PSB is being used with update DLZODP SCHDWAIT
intent.

32. Skip slispension of task if scheduling SCHDMPS
conflict is with a MPS task (because
this situation could result in a long
delay).

33. If the holder is an MPS scheduled
task, a data base not open error
X'QC' is set in TCAFCTR and MPS
conflict reason code is set in
TCADLTR. Scheduling error indicator
TCADLISE is turned on.

35. Flag PPSTSI is turned on in PPST SCHDOWAT
and the wait counter is incremented.
The waiting indicator SCDTWFI is
turned on.

36. SCHDTKWT

2-50 Licensed Material - Property of IBM

Figure 2·6.2. System Abnormal and Normal Termination (Part 1 of 3)
",INPUT CICS/VS PROCESS ,..OUTPUT

DFHSRP

1. Enter for abnormal system ~ ABSWITCH
termination. I 'FO' I CICS/VS

D'HSTP

2. Enter for normal termination.
~~~s/Vs Go to Step 10 if this is the - rtltlon 

second time entering. J SCD 
... D LZODP02vrnp 

SCDDLIPS 

"> 3. Acquire a dummy PST (for SCDPPFF 

SCDSIND register save areas) to close 
--"Sl the data base log. Go to Step 

6 if log not active or if PSTPREAD 

journaling is active. PSTSCDAD 

~ PSTPSB 
DFHSC TYPE=GETMAIN 

PSTSVl 

PSTSV2 

PSTSV3 

SCD PSTSV4 

I SCDDBLFW ~- --- ~ 4. Force write of log buffers. 
PSTSV5 

PSTSV6 

~ DLZRDBLO PSTSV7 

Log Force 
Write 

SCD 

I SCDDBLCL t-- --- ~ 5. Close data base log. 

SCDDBLSV 

~ DLZRDBLO 

BALR Log Close 
Routine 

+-+ DETACH Macro 

DLZOOP02 - System Abnormal and Normal Termination CSECT DLZODP 

Extended Description Routine Label Extended Description Routine Label 

1. Entry is made from CICSjVS System DLZODP03 DLZODP03 
Reco.very Pro.gram o.n abno.rmal 
terminatio.n. 

Return is back to. DFHSRP. 

2. Ro.utine identifier (DLZODP02vrnp) DLZODP02 DLZODP02 
is defined here. Fo.r no.rmal termina· 
tio.n DFHSTP enters this ro.utine twice. 

3. Issue message DLZ0671 if there is STPRENTR 
insufficient sto.rage to. terminate 
DL/l. 

4. STPSVCHI 

Licensed Material - Property of IBM 2-51 



Figure 2·6.2. System Abnormal and Normal Termination (Part 2 of 3) 
_INPUT '" PROCESS ",OUTPUT 

SCD §X§"SlM I SCDDBMPS IIIJBNPART I --- ~ 6. Notify MPS batch programs of 
termination and delete XECBs. 

DLZXCBnO 

f-~ XECBTAB TYPE=DELETE I I XECB=DLZXCBnO 

f t XECBTAB TYPE=DELETE 
XECB=DLZXCBn2 

0 ... XECBTAB TYPE=CHECK 
XECB=DLZXCBnl 

IDLZXCBnl I .... XPOST XECB=DLZXCBnl 

7. Return to CICS/VS if normal 

::> ~Li:2S!;;!!nl 
I I 

termination. 

::> STPR ENTR 

"-
I'Fo' I 

DFHSTP 

ABSWITCH 

I'fo' I-- --- ~ 8. If abnormal termination, issue 
message 0 LZ0701 - Abnormal 
Termination Complete. 

TCA :> 9. Write formatted dump. "> I~8 
I TCAPCLA I t- 1 DFHPC TYPE=LOAD 

hCAPCPI I 

f t DLZFSDPO 

BALR Formatted System 
Dump Program 

CICSIVS 
DFHSRP 

DLZODP02 - System Abnormal and Normal TerminatIon CSECT DLZODP 

Extended DescriPtion Routine 1 ..... 1 I'vt~nrlArl Descriotion Routine Labool 

6. MPS batch programs may be active or DLZODP02 STPEXLOG 
waiting for online MPS processing and 
are therefore notified if CICS/VS 
terminates. Online XECBs defined for 
MPS are alsa deleted. The indicator 
SCDXECB at SCDDBMPS is on if any 
XECBS are defined by module 
DLZMPCOO 

The Start Partition XECBs 
(DLZXCBnO - where n is equal to the 
partition ID) for each partition are 
deleted first. Then the BPC XECBs 
(DLZXCBn2) for each partition are 
deleted. Finally ,locate each MPS 
Batch XECB (DLZXCBnl) and 
XPOSTthem. 

7. STPNOXCB 

8. ABTERM 

9. IsTPEXIT3 

2-52 Licensed Material - Property of IBM 



Figure 2-6.2. System Abnormal and Normal Termination (Part 3 of 3) 
-INPUT I'" PROCESS I"0UTPUT 

- --- ~ 10. Write message DLZ0631 - DL/I SCD 

LSCDPPAF J Normal Termination Entered. 

I SCDSIND2 I 

SCD "> 11. Acquire a dummy PST (for 

ISCDDLIPS I register save areas) to close .> PST 

ISCDPPFF I 
the data bases. 

PSTPREAD , I DFHSC TVPE=GETMAIN 
PSTSCDAD 

PSTPSB 

PSTSVI 

PSTSV2 

PSTSV3 

PSTSV4 

PSTSV5 

PSTSV6 

PSTSV7 

> 12. Close all data bases. PST SCD 

I SCDDLlCL I , t DLZDLOCO 
I PSTFNCTN I 

BALR Open/Close 

13. Write message DLZ0691 - DL!I 
Normal Termination Complete. 

CICSIVS 
DFHSTP 

DLZODP02 - System Abnormal and Normal Termination CSECT DLZODP 

Extended Description Routine Label Extended Description Routine Label 

10. Write message DlZ0681 - System 
Previously Abended, DL/I Abnormally 

DlZODP02 STPFLUSH 

Terminated - if the system abend 
indicator (SCDSYSAB) is on at this time. 

Write message DlZ0651 - Active DL/l 
Tasks - if a PPST is still active. 

II. Write message DlZ067I if there is STPBFFL 
insufficient core to terminate DL/I. 

12. Write message DlZ0661 if an error STPCLOSE 
occurred during close processing. 
Then load and execute dump module 
DlZFSDPO via DFHPC TYPE=LOAD 
and return to DFHSTP. 

Licensed Material -Property of IBM 2-53 



Figure 2-6.3. Task Termination Routine (Part 1 of 5) 
!"INPUT 

From Figure 
• PROCESS ~OUTPUT 

2-6.11 Step 
3 or CICS/VS 
DFHPCP 

1. Save program control program's Ri> R9 

base and return address. I Base II Return I 
~ t DLZOLT02 

TCA 
Issue TRACE Macro 

I TCADLII rr--- ;. 2. A. For System task termination SCD 

>1 I go to Step 17. SCDSIND2 

. 1!;1I - --- ~ B . For normal task termination 
I TCASYABI I go to Step 5. 

TCA -~-- ~ 3. For abnormal task termination 
I TCAPATR I call dump program. 

t t DLZFTDPO 

BALR Formatted Task 
Dump Program 

System 11"1 
TCA I ACTNM I 

hCADLil I > 4. Clean up XECBs if abending task 
ITCADLIPA 1 TWA is DLZBPCOO (Batch Partition " 

MPCPT DLZXCB01 

TWAMPSFG Controller). I II I MPCFL8Q ~E"B 

PST TWAMPCPT 

• t 
IpSTPREAD I 

XECBTAB TYPE"CHECK 
TWABPCID XECB"DLZXCBn1 

~~~;"~D1 
t t XPOST XECB"DLZXCBnl I I

PPST MPCPT

I PPSTIND I MPCDELIM I t XECBTAB TYPE"CHECK
MPCPID XECB"DLZXCBn2

DLZXCBn1 MPCSXECB

I XECB I MPCPTLN

• t XECBTAB TYPE"DELETE
XECB"DLZXCBn2

DLZXCBn~

I XECB 1

D LZODP01 Task Termmatlon Routme CSECT - DLZODP

E xtended Description Routine Label E xtended Descriotion Routine Label

I. Routine identifier (DLZODPOlvrnp) DLZODPOI DLZODPOI
is defined here. DLZTKTRM

DL/I system ABEND will be reduced
to task ABENDs. In case of DL/I

This is the entry point for CICS/VS
PCP termination exit indicator
(TCADLITE) is on and the task is about

system ABEND all DL/I tasks will be
abended by DL/1. For each task,
DLZFTDPO will be called.

to be detached. Also, if a TERM or T
call is detected by the program request
handler, an entry is made here to
unschedule the task.

DLZFTDPO uses the CICS dump macro
DFHDC, that dumps DL/I blocks on
the CICS dump data set. To get the
dump on printer, use offline CICS

If trace is enabled, a task termination
entry With a !D= X'F8'; type of request
=X'E3', is made showing why termina- DLZOLT02
tion was requested, and the DL/I status.

program DFHDUP.

4. If BPC (DLZBPCOO) is the terminating NODUMP
task, the POST bit in the Stop Parti·
tion XECB (DLZXCBOI) is set on to
signal MPC (DLZMPCOO) that BPC

2. A. The system interface active
indicator (SCDSY ACT) at
SCDSIND2 is turned off if this is
a system task (TCADLPAS is on).

abended. Note that the XPOST macro
is not needed because the XECB
(DLZXCBOI) was defined in this
same partition.

B. NOSYSTSK The partition ID (TW ABPCID) this
3. No formatted dump will be produced in DLZODP06

case of missing PST or insufficient stor-
age available. If SYS.DUMP=YES was
specified for the DOS/VS partition, an
!DUMP is taken instead of the formatted
dump.

terminating BPC was attached for is
used to locate MPS Batch XECB
(DLZXCBnl) via XECBTAB/CHECK
which is then posted (XPOST). The
BPC XECB (DLZXCBn2) is then
located and deleted.

2-54 Licensed Material - Property of IBM

Figure 2-6.3. Task Termination Routine (Part 2 of 5)
!II INPUT ~ PROCESS ,.OUTPUT

TCA
~ 5. A. If this task was suspended by DL/I,

, TCADLII ,- - --
go to Step 20.

B. If this task has no PST acquired, go
to free PPST only. Step 18.

PDIR
~ 6. If task scheduled to remote PSB, set up I PDIROPTC 1- ---

remote term call DLZISC02

Remote Term Call
Interface

2·6.17
TCA PDIR

I TCADLIPA 1 I PDIROPTC 1 PPST SCD

I PPSTIND I ISCDCDTA
,

>7. Issue TERM call to call analyzer to
PST SCD purge buffers. I PSTPREAD I 1 SCDDLICT I

..... DFHKCTYPE=WAIT

...
PST

lpSTSV2 J [PSTIQPRM DLZDLAOO
I PSTLlPRM

BALR Call Analyzer

PDIR SCDEXT 2·8

I PDIRSYM I I SCDESECB I PPST SCD

I PDIRCODE I >8. Write TERM log record on DL/I log Joo.
I PPSTIND I ISCDCDTA I

PST or CICS/VS journal.
v I PSTACCT 1 ~ DFHKC TYPE=WAIT

Data Base LOGREC

PPST LLBB

I PPSTID I ~
X'07'

DLZRDBLO
SCD PSBNAME

TCA SCDREENT BALR Log Write Routine PSTID
2·16

ITCAKCTTA I SCDCWRK TASK STAT

I TCASYAA I
or

CICS TSKID SCDDBLOP
DLZRDBLI

Log Write Routine
2·17

SCD DLiAL

I SCDLSTAD I I DLiTTEA I 9. Write a CICS/VS synchronization point
record if termination exit is present DLZODP05

BALR Write Sync Point Record
2·6.5

DLZODPOI - Task Termination Routine CSECT DLZODP

Extended Description Routine Label Extended Description Routine Label

5. DLZODPOI NORMTIRM

7. A wait may be done at this time for the
logger if it is not available.

8. The termination record is logged for CHKLOGGR
normal termination of update users
only.

9. TRMLGBY

Licensed Material - Property of IBM 2-55

Figure 2-6.3. Task Termination Routine (Part 3 of 5)
_INPUT • PROCESS r-0UTPUT

SCD SCDEXT

I SCDPPSTS SCDEIDST

I SCDEXTBA I SCDEIDNX

SCDEIDWK

t;. 10. Release hashed task identifier. ~CD SCDEXT

1:!;~LClCl'~ Illl!;~~I~lIIll I
PfoST

I PPSTCA I PST

I PSTTSKID I

PDIR nn.R
I PDIRSILA IIDD'RCNT I

DDIRCODE I
DDIR SCDEFECB

-~ 11. Update OMB use count and reset IlDDIRCNT II 'BO' I
PSIL OB exclusive control. I LDDIRCOD2 J

II PSILDIRA I SCDEXT

II PSILNTNT SCDEFECB I

SCD PPST ===- SCD

II SCDPPAF I PPSTCF I-
/I SCDSIND I PPSTIND

~ 12. Resume all tasks suspended due I SCDSIND I
J-,

to segment intent conflict,
PPSTTCA TCA DFHKC TVPE=RESUME

I TCARSTSK I
e~1B JCB

IPDIRADDR I I JCBSDB1 I
I JCBSDBND I

PSB l-
I PSBLIST I SOB -=

... PSDB SOB

~ -- I DMBFSDB II SDBNSDB I 13. Unchain SOBs from PSOBs. ---...

SDBNSDB
PDIR

SDBPSDB

PCB .~ SDBEND
I PDIRCODE I

II DBPCBJCB

PSDB

I DMBFSDB I

DLZODP01 - Task Termination Routine CSECT DLZODP

Extended Description Routine Label Extended Description Routine Label

10. The lowest active identifier is main- DLZODPOI TRMXTBY
tained in the SeD. DL/I Space Manage-
ment uses the low and high identifiers
to exclude free space belonging to
active tasks from reuse.

11. TRMDMBU

12. All tl!.sks suspended for intent are TRMPOLUP
resultled. At the next dispatch cycle
they will attempt to schedule.

13. TRMFRESD

2-56 Licensed.Material - Property of IBM

Figure 2·6.3. Task Termination Routine (Part 4 of 5)
I"INPUT • PROCESS ",OUTPUT

- --- ~ 14. Free storage if this is a
PDIR duplicate PSB. I PDIRCDDE I

~ DFHSC TVPE=FREEMAIN

SCD PST PPST SCD

II SCDPPSTS I I PSTPR EAD I > 15. Free DLtl task resources. PPSTCF SCDPPAF

I SCDPPFB I t t DFHKC TVPE=RESUME
PPSTCB SCDPPAB

PPSTIND SCDPPFF

PPSTTCA SCDPPFB

SCDDllS

rI'1
SCDSPCNT

SCD

I SCDDLIS I System f-o--- ~ 16. If any tasks are waiting for SCD T!;\A TCA

I TCADLIPA I CMAX, post the first one. I TCARSTSK I SCDATSKC

SCDDLIS

SCDSPCNT

SCDSIND

RO R9

I Base I I Return I 17. If task is DLZBPCOO and batch PRH
needs XPOSTing, XPOST DLZXCBn1. System TWA TCA I TWAEOJSW I
Return to caller. I TCADLII I

DlZXCBnl

I XECB I
To
CICSIVS
DFHPCP or
Figure 2-6.11
Step 3

SCD PPST

I SCDPPAF I I PPSTTCA I ---- ~ 18. Look for the PPST with this
tasks TCA address and when
found return to Step 15.

DlZODPOl - Task Termonatlon Routone CSECT DlZODP

E ddD xten e escr~p~ion Routine Label Extended Description Routine Label

14. For read only or update with DLZODPOI TRMPSBFR
program isolation. Duplicate
PSBs are identified by the PDIR
indicator PDIRDUPL.

15. This cleans up the terminating TRMFREPP
PPST, removes it from the active TRMFREPE
chain, and places it on the free chain.
It checks the suspend chain and
resumes a task suspended due to
MAXTASK.

The PPST number of the terminating
PPST is put in the internal trace table
along with a 'T' to indicate terminat·
ing entry. Upon resuming, the total
suspended count is decremented 1 and
the current maximum task indicator is
turned off if it was on (SCDCMTI).

17. Turn off DL/I scheduled (TCADLISD)
and DL/I termination required
(TCADLITE) indicators.

TRMEXIT

Issue message DLZ084I if XPOST fails.

18. TRMFREPO

Licensed Material - Property of IBM 2-57

Figure 2·6.3. Task Termination Routine (Part 5 of 5)
_INPUT !",PROCESS ,..OUTPUT

19. Issue a CICSIVS dump if the
PPST is not found and go to
Step 17 .

.. DFHOC TYPE=PARTIAL

SCD TCA

ISCDDLIS I ITCADLIPAI 1- ~ 20. Remove task from the suspend
chain and go to Step 17. SCD TCA

LSCDATSKcJ

II SCDSPCNT I
I TCADLIPAI

DLZODPOI - Task Termination Routine CSECT DLZODP

Extended Description Routine Label Extended Description Routine Label

19. DLZODP01 TRMPOABA

20. TRMSUSPA

.. ~

2-58 Licensed Material - Property of IBM

Figure 2-6.4. Start-of-Task Record Writer
_INPUT • PROCESS -OUTPUT

From Caller
Figure Registers
2-6.1

I ~ Step 25

BI~ B!l .. ICSA II Save area I
1. Save registers and establish

addressability to CSA and
R6 system TCA. I System TCA I

- 1--- ~ 2. I f Start-of -Task record is TCA

I TCAZLUWT I already logged, go to Step 5.

Rl1
3. Get journal control area.

i' IJCA Address I +--+ DFHJC TVPE=GETJCA

Rll

I JCA Address r- r-- ~ 4. Write Start-of-Task record. CICSIVS System Log

II CICSIVS Start-ol-Task
Record J

,
Caller
Registers > 5. Restore registers.

I III

RO

I Save area I
To
Figure
2-6.1
Step 26

DLZODP04 - Start-al·Task Record Writer DLZODP

Extended Description Routine Label Extended Description Routine Label

I. Routine identifier DLZODP04vrnp DLZODP04 DLZODP04
is defined here.

3. Acquire task's JCA and establish
JCA addressability.

4. Dummy record is written to system
log and CICS Start-of-Task indicator
is set in it to mark start-of-task on
system log.

5. Restore save area address in register DLXSCRET
13 and reload registers 14 through
12 from the save area.

Licensed Material ~ Property of IBM

Figure 2-6.S. Sync-Point Record Writer (Part 1 of 2)
• INPUT .. PROCESS !'"OUTPUT

From
Figure
2-6.3
Step 9
or From
OF PP

Caller

1. Save registers and establ ish .. I Re:isters

lli addressability to 'CSA and
system TCA.

Ell! R13

I Save area IICSA I TCA

I TCAZLUWT l-1-- - ~ 2. If caller was DFHSPP (CICSIVS
Sync-Point Program), go to
Step S.

CICS/vS System Log

I SYnc-Point Record I
3. Issue a sync point.

.... OFHSP TVPE=USER
TCA

I TCAZLUWT I
Caller
Resisters

I lli 4. Restore registers and return.
TCA

I TCAFCTR I
RO I TCAZLUWT I

I Save area I

R13
To I CSA I Figure
2-6.3
Step 10

S. Build a Deferred Work Element (OWE).
TCA

>1 T!<8li!<li8 I
4--+ OFHSC TVPE=GETMAIN

OLZOOP05 - Sync-Point Record Writer OLZOOP

Extended Description Routine Label Extended Descrintion Routine Label

1. Routine Identifier DLZODP05vrnp DLZODP05 DLZODP05
is defmed here.

2-60 Licensed Material - Property of IBM

Figure 2·6.5. Sync·Point Record Writer (Part 2 of 2)
~INPUT • PROCESS ,.OUTPUT

I
R10

DWEADDR I
TCA

I TCADWLBA I- --- ~ 6. Insert OWE at end of OWE chain. DWE @ End of Chain

I TCASCSA I I DWECHAN I

NEW DWE

DWESVMID

DWESTAT

DWESVMNA

DWERSAA

7. Return. > R14

I I DFHSPP Return I Address

,
,

To

: DFHSPP

From

DFL .. ~ R14

DFHSPP RS R10
Return > 8. Restore Task Termination II System I DWEADDRI Address

environment. TCA

R13 R9

I Save area II PSTADDR I

Caller
TCA

Registers I TCAFCTR I
I lli

PSTSVl + 12

9. Return. I DF HSPP Return
Address I

To
Figure
2-6.3
Step 10

DLZODP 5- n -P in e o Sy cot R cord Wroter UL£UUI'

Extended Description Routine Label Extended DescrlJ!tlon Routine Label ,
6. Store address of DWE entry point DLZODPOS' PLXDWECN

of DLZODPOS in DWE for deferred
processing by CICS/VS.

8. Set up registers and PST save area PLXTDWEN
to complete task termination and
then return to DFHSPP.

Licensed Material - Property of IBM 2-61

Figure 2-6_6. Online Program Request Handler
" INPUT From I" PROCESS

Application
Program

SCD R1 (see\;.

I SCDCSBAB 1 User Call I ~ List

CSA > 1. Establish addressability to SCD, CSA,
I CSACDTA 1 R13 and task TCA and acquire UIB storage

User Save I if required.
Area

.... DFHSC TYPE=GETMAIN

2. Indicate DL/I is active.

~ DFHICTYPE=ENTRY

TCA

TCADLII

...- TCADLIPA

TCADLUIB

ACT "",;. -..:: ~ 3. If scheduling call, validate parameters.
~ACTNM 1

SCD

ISCDLOWER I

SCDUPPER I

User Call list 1- 4. Determine if the call function is a

I PCB I scheduling, termination, or system

-.J call. If it is go to Step 7. I TERM 1----
I PCBM -] 5. Go to Figure 2-6.10 to process normal

I CMXT

'1
DL/I calls.

I STRT
6. Go to Step 8.

I STOP 1
I TSTR J 7. Go to Figure 2-6.11 to process I TSTP] scheduling, termination, or

IT J system calls.

IU'BFLAG1 1----- --- iii> 8. Call trace program.

DLZOLTOX
R8 SCD II Use~ Save II SCDCSABA I Issue DFHTRACE

macro Area

CSA ;- 9. Restore registers and return. I CSACDTA I
.... DFHICTYPE=EXIT

Callers
Registers TCA

I II TCAFCTR I

DLZPRHOO - Program Request Handler CSECT

Extended Description Routine Label Extended Description

Note: This routine receives control from 3.
the Language Interface Module

• OUTPUT

R8 R2 I User Save
Area

II SCD

R13

R11 I CSA l User Call
List J R12

>TCA

I TCASVMID 1

TCA

LTCADLUIB I

I TCASCSA I

TCA

I TCASVMID I
UIB

I UIBRCODE I

TO·

Application DLZODP
Program

Routine

ITCA

Label

ECIVAL

I

I

I

(DLZLIOOO) linked with the application 4. TESTFUNC
program.

I. Module identifier (DLZPRHOO vrnp) is DLZPRHOO DLZPRHOO
defined here. The level format is vrnp;
where 'v' is the version, 'r' is the release,
'n' is an additional identification
number, and 'p' is the latest PTF num-

8. UIBFLAG 1 bit setting determines
whether DLZOLTOO, DLZOLTOI,
or DLZOLT02 is called for
scheduling, data base or
termination call, respectively.

ber that has been applied. 9. If UIB is used, update UIBRCODE RETURN
from TCAFCTR.

2. OVERID3

Licensed Material - Property of IBM

Figure 2-6.7. Online Error Message Routine (Part 1 of 2)
~INPUT ,. PROCESS I"'0UTPUT

From
Caller

• Caller

~ I
R!Sis!eri

I SCD TCA

ISCDCSABA I I TCASYAA I ::> 1. Establish environment.
R12

eSA ITCA User Area I
ICSACDTA I R6

Isvstem TCA I
TCA

I TCAOLII r --- ~ 2. If this task has no PST go to
Step 4.

TCA PPST

ITCAOL'PA II PPSTINO I

PST ;> 3. Save the 'currently active' status
IpSTPREAO I and indicate this is no longer R9 PPST

the currently active OL/I task. E=:J I PPSTINO I
SCO

PST TOOA
ISCOCOTA I

I PSTER~OD I ERMSGAOT

ERMSGSVl 4. Acquire storage and construct > TOOA

ERMSGSV2 error message. ERMSGAPR

PARM liST ERMSGAOT

I I
....rOLZMMSGT

ERMSGSAV
I

I Message Text Construction I
5. Write m~ssage to TO destination TOOA ;>

I TOOAOBA I CSMT and system operator console. WTO

> I WTOOATA I

.. DFHWTO Macro

.. DFHTO TYPE=PUT

..... OFHSC TVPE=FREEMAIN

DLZERMSG - Online Error Message Routine OLZOOP

Extended Description Routine Label Extended Description Routine Label

1. Routine identifier (DLZERMSGvrnp) DLZERMSG DLZERMSG Since CICS/VS can schedule another
is defined here. The level format is DL/I task during a CICS/VS operation,
vrnp; where 'v' is the version, 'r' is (for example, I/O) PPSTACT is reset
the release, 'n' is an additional by DLZERMSG for the duration of
identification number, and 'p' is the the write because there can only be one
latest PTF number that has been task marked as 'currently active' by
applied. definition.

2. If there is no PST the message number 4. The GETMAIN output buffer is ERMSGETM
will be in the parameter list which is needed by CICS/VS transient data
pointed to by RI. services.

3. 'Currently active' has a special mean-
ing. There may be many DL/I tasks
active at this time. Therefore, DL/I

DLZMMSGT is used to construct text
for messages with message numbers
from 1- 255.

uses a bit (PPST ACT) in the PPST to
make it easy to spot (in a dump) the
single DL/I task that is currently

5. ERMSGPUT

processing non-scheduling DL/I caUs
(Non-scheduling caUs being caUs
handled by the call analyzer and other
DL/I action modules).

Tasks like the MPS Batch Partition
ControUer can have a PST and can caU
DLZERMSG while not being the
currently active task

Licensed Material - Property of IBM 2-63

Figure 2-6.7. Online Error Message Routine (Part 2 of 2)
_INPUT • PROCESS -OUTPUT

SCD SCDEXT

I I SCDEXTBA II SCDESECB I ;. 7. Wait for the logger if the

IlsCDDBLOP I log is open and busy. ~ ICe.
I I TCATCEA DFHKC TVPE=WAIT

Caller
Registers TCA

I II TCADLII I
> 8. Restore original environment. PPST SCD

PST I PPSTIND II SCDCDTA I I PSTPREAD I ..
To
Caller

i

~
,

DLZERMSG - Online Error Message Routine DLZODP

Extended Description Routine Label Extended Description Routine Label

6. Since control was lost during the
I/O another job may have activated

DUERMSG ERMSGERT

the logger. To assure serialization,
this routine must wait until the
logger is done.

1. Reset 'currently active' status to
the value it was on entry .

2-64 Licensed Material - Property of :rBM

Figure 2-6.8. Online Wait Routine
_INPUT

From
~ PROCESS I"0UTPUT

Caller
SCD TCA

I..
R13

ISCDCSABA I hCASYAA I ICSA I
Caller ..

I

Registers

I
,"SA R2 ,

kSACDTA II,ECB J R12 R3

> 1. Establish environment.
I

Address II TCA User J I ECB Area Address

R6 I System TCA I
TCA R3

ITCADLI' IIECB

I

:> 2. Indicate the non-scheduling I~8 ee~I Address task not 'currently active' I TCATCEA II PPSTIND I
and issue CICStvS I/O wait.

~Cll

.... DFHKC TYPE=WAIT I SCDCDTA I
SCD PST

ISCDEXTBA I IpSTCODE1 I
ISCDDBLOP I r---- i> 3. Wait for the logger if the log
SCDEXT is open and busy. > TCA

I ISCDESECB I I TCATCEA

.... DFHKC TYPE=WAIT

Return to Step 2.
SCD

ISCDSIND2 I- --- ~ 4. Check if OL/I abended

t - t DFHPC TYPE=ABEN D

TCA
Caller

ITCADLII I _ ... PPST SCD
Registers > 5. Restore original environment. I PPSTIND II SCDCDTA I

I I
To
Caller

DLZOWAIT - Online Wait Routine DLZODP

E d d D xten e escriptlon Routine Label Extended Description Routine Label

I. Routine identifier (D LZ OW AITvrnp) DLZOWAIT DLZOWAIT
is defined here. The level format is

DLZOWAIT because there can only
be one task marked as 'currently

vrnp; where 'v' is the version, 'r' is active' by definition.
the release, 'n' is an additional
identification number, and 'p' is the
latest PTF number that has been
applied.

3. Serialization of the logger resource is
another job of the online nucleus.
Since control was lost during the
wait, another job may have activated

2. A non-scheduling task is a task that OWATRECI<
does not issue the special scheduling
call (PCB,SYSTEMDL,password) to
schedule itself so that it may issue
system calls: CMXT, STRT, STOP,
TSTR, and TSTP.

the logger. To assure serialization, this
routine must wait until the logger is
done. Return is then made to Step 2
to recheck that this task's ECB is
posted and to reissue the wait again
if it isn't.

'Currently active' has a special meaning. 4. OWAITRET
There may be many DL/I tasks active
at this time. Therefore, DL/I uses a
bit (pPST ACT) in the PPST to make
it easy to spot (in a dump) the single
DL/I task that is currently processing
non-scheduling DL/I calls (non-

5. Reset non-scheduling task to OWAITCON
currently active status as it was
on entry.

scheduling calls being calls processed
by the call analyzer and other DL/I
action modules). Since CICS/VS can
schedule another DL/I task during a
CICS/VS operation (for example,
I/O) PPSTACT is turned off until
return is made to the caller of

Licensed Material - Property of IBM 2-65

Figure 2-6.9. VSAM Asyncronous Exit Processor
-INPUT

FromVSAM
• PROCESS I"0UTPUT

Module
IKOIOA

SCD Rl

IlsCDCSABA ~r I • R13
CSA VSAM I. ~ I I P::I-rameters
CSACDTA "> 1. Establish environment. RPL

R6
TCA Addre ..

ISY'temTCA I
ITCASYAA I CCB

Address RI,

EXLOC I TCA User Area I
Addre ..

TCA PST

TCADLII I I PSTPREAD I
TCADLIPA I "> 2. Indicate the non-scheduling task PPST SCD

VSAM not 'currently active' and issue I PPSTIND 1/ SCDCDTA I Parameters CICS/VS wait.

I CCB I TCA
Address .. DFHKC TYPE=WAIT I TCATCEA I

SCD SCDEXT

IlsCDEXTBA II SCDESECB I :> 3. Wait for the logger if the log
is open and busy.

IlsCDDBLOP I :>TCA

ITCATCEA I
...... DFHKC TYPE=WAIT

TCA

--7 TCADLII ~ 4. Return to VSAM.
PPST SCD

IpPSTIND IlsCDCDTA I

TO~M
Module
IKQIOA

DLZOVSEX - VSAM Asyncronous Exit Processor DLZODP

Extended DescriPtion Routine Label Extended Description ~ Label

1. Routine identifier (DLZOVSEXvrnp) DLZOVSEX DLZOVSEX
is defined here.

3. Since control was lost during the
wait another job may have activated

2. A non-scheduling task is a task that OWATSYS
does not issue the special scheduling

the logger. To assure serialization, this
routine must wait until the logger is
done.

call (PCB,SYSTEMDL,password) to
schedule itself so it may issue system 4. Reset non·scheduling task to OWATNLOC
calls: CMXT, STRT, STOP, TSTR, 'currently active' status as it was
and TSTP. 'Currently active' has a on entry.
special meaning. There may be many
DL/I tasks active at this time. Therefore,
DL/I uses a bit (pPST ACT) in the
PPST to make it easy to spot (in a
dump) the single DL/I task that is
currently using the call analyzer and
other DL/I action modules.

Since CICS/VS can schedule another
DL/I task during a CICS/VS operation
(for example, I/O) PPSTACT is turned
off until return is made to the caller of
DLZOVSEX because there can only be
one task marked as 'currently active'
by definition.

2-66 Licensed Material - Property of IBM

Figure 2-6.10. Online PRH Processing of Normal DL/I Calls (Part 1 of 2)
_INPUT • PROCESS ~OUTPUT

From Figure
2.6.6:'P 6 ..

TCA ,.
1 TCADLII 1
I TCADLIPA I 1. If caller not scheduled, set error and

go to Step 16.

SCD PST

I SCDLOWER I PSTPREAD I
·1 SCDUPPER 1 I PSTLIPRM 1 ---- II'- 2. Validate and move call parameter list ...

PPST to PST. ;> PST

I PPSTIND I I PSTLlPRM I

PST ,- ---- ~ 3. If task scheduled to remote PSB, set up I PSTRPSTA remote data base call. ;> PST

I PSTSVl I ... DLZISCOl

Remote Data Base
Call Interface

2·6.16

I
SCD SCDEXT

II SCDEXTBA ISCDESECB I ---- ~ 4. Wait for the logger if the log is open
I r SCDDBLOP and busy. I

.... DFHKC TVPE=WAIT

SCD PPST

PST SCD ISCDCDTA I I PPSTIND I
PSTPREAD ISCDDLICT I 5. Exit to DL/I Call Analyzer.

PST
PSTCODEl ... IpSTIQPRM I DLZDLAOO PSTLlPRM

PSTSVl BALR Call Analyzer
2-8

PST i- --" SCD PPST ---- ~ 6. Clear the active task indicators. ISCDCDTA I I PPSTIND
, I PSTREAD I v

I PSTCODEl I

SCD DLIAL 7. Write CICS!VS synchronization point
I SCDLSTAD I I DLITTEA I record if call is CHKP. If not, go to

Step 11.
PST I PSTPCT2 I DLZOOP05

BALR Task Term Sync
Point Return

2·6.5

DLZPRHOO - Program Request Handler CSECT DLZODP

Extended Description Routine Label Extended Description Routine Label

1. Set 08 in TCAOLTR if TCAOLISO, PROOLIC 5. At this point the system is switched EXIT ANAL
task scheduled indicator not on (there from the CICSjVS state to the OL/I
was not a previous PCB or PCBM call). state (standard register assignments).

2. Write message 0 LZ2601 if the EXPLST
parameter count is invalid.

The task TCA address is put in
SCDCOT A as the current dispatched
task TCA. Also, the current task

Write message DLZ26 \I if the
parameter address is invalid.

indicator (PPST ACT) is turned on.

3. Allow ISC mirror (OFHMIR) to use
IOAREA address=O.

Licensed Material - Property of IBM 2-67

Figure 2·6.10. Online PRH Processing of Normal DL/I Calls (Part 2 of 2)
~ INPUT '" PROCESS ",OUTPUT

SCD

ISCDDBMPS
I

- ~ 8. Dequeue task program isolation
resources if program isolation
active . .. DLZPUR Macro

9. Reset CHKP call indicator. ;> PST

I PSTPCT2· I
PPST

I P~STIND I - ~ 10. If the caller is an MPS task,
go to Step 15.

PST

IpSTABIND r ... ~ 11. If task or system abend
indicated, go to Step 13.

PST

PSTUSER - ~ 12. Move data to user's I/O area.
PSTSEGL

PSTSEG

Then go to Step 15. > User 1£0 Area

I I

PST SCD I PSTABIND II S9DERRMS I ...
I SCDCSABA I I ~ 13. Abend user if a task abend

indicated .

!::§A I CSACDTA I
... SCDERRMS

BALR Error Message
Routine

2-6.7 DFHPC TYPE~ABEND

PST - r-
IpSTABIND I I -- ~ 14. Write message DLZ0621 - DL/I

has been abnormally terminated ~SCD
- if a system abend indicated . ISCDSIND2 I OFHPC TYPE=ABEND

To , 15. Return.
Figure 2-6.6
Step 6

DLZPRHOO - Program Request Handler CSECT DLZODP

E ddD xten e escrlDtlon R outme Label Extended DescriDtion Routine Label

9. ENDCHKP

10. If the caller is not in theCICS/VS NOCHKP
DL/I partition (MPS caller -f
PPSTMPS), skip abend check
(DLZMPlOO will handle abend) and
skip move of data to user area
becaUlie you cannot move across
partition (DLZMPIOO will handle
data move),

11. If user's lOA REA address=O, skip PSTPCBI
moving of data.

13. If this is a task abend, a CICS/VS PRHABEND
abend is issued.

14. If this is a system abend (PSTSABND
on) the system abend indicator

PRHSYSAB

SCDSYSAB is set in the SCD and all
active DL/I tasks will abend at the
earliest opportunity.

2-68 Licensed Material - Property of IBM

Figure 2-6.11. Online PR H Processing of Schedule Termination, and System Calls
• INPUT • PROCESS ~OUTPUT

From Figure
2-6.6
step.

~

1. If function equals PCB or PCBM,
go to Figure 2-6.12 to schedule.

2. If function is not T or TERM
call, go to Step 7.

TCA SCD

I TCADLII I ISCDTKTRM I > 3. Call task termination to
unschedule the task

DLZTKTRM 1--'
BALR Task Termination

Routine
2-6.3 -

TCA

ITCADLII I --- ~ 4. Free PST storage if it was
TCADLIPA I acquired.

~ t DFHSC TVPE=FREEMAIN

TCA SCD

II TCAPCTA I ISCDACTBA I II TCADLII I 1----- ~ 5. Restore ACT pointer into task
TCA. > TCA

ACT I TCADLIPA I
PPT ACTNM 6. Go to Step 8.

I PPTPI I ACTPCNT

ACTBLEN 7. Go to Figure 2-6.13 to process
system calls.

8. Return.

To Figure
2-6.6
Step 9

DLZPRHDO - Program Request Handler CSECT DLZODP

Extended Description Routine Label Extended Description La""l

1. ~ESTFUNC

3. Set 07 in TCADLTR if TERM call ISUTERM
and a D L/I task termination is not
required (TCADLITE is not on).

4. FREEPST

5. The ACT table entries are searched to TRMACTLP
fmd the entry name with the program
name that is in the PPT entry. The
address of the ACT entry found is
stored into TCADLIPA. If an ACT
entry is not found and this is not a
system task (TCADLPAS) DFHPC
TYPE=ABEND macro is called with
abend code = DACT.

Licensed Material -Property of IBM 2-69

Figure 2-6.12. PCB or PCBM Scheduling (Part 1 of 2)
• INPUT From Figure - PROCESS -OUTPUT

2·6."

User Call List

Stepl. + .
IpCB,SYSTEMDL 1- ---' ~ 1. If this is a system scheduling

call, exit to Figure 2-6.13.

User Call List

I PCB,psbname I ---- ~ 2. If there is no PSB name, go
I PCBM, psbname I to Step 4.

SCD PDIR

II SCDDLIPS I PDIRSYM I ...
TCA 3. Scan PDIRs for PSB name until R3

! I SCDDLIPN I found, then go to Step 5 to I TCAPCLA I I PDIR I User begin scheduling. I TCADLPSB I Address TCA Call List

TCADLIPA I I TCADLII

TCADLPSB

SCD PDIR

I SCDDLIPS I I PDIRLEN I > 4. Find the first PDIR associated
TCA ACT with the application program ::> R3

I
I TCADLIPA I I ACTPPTR I name in the ACT. I PDIR I Address

PDIR ACT

PDIRADDR I ACTNM I 1--_"': ~ 5. Check for language conflicts. '> PSB .
PDIRCODE I ACTIND I ... I PSBCODE I
PDIROPTC

D LZPR HOO - Program Request Handler CSECT DLZODP

Extended Description Routine Label E ddD xten e escrlptlon R outone Lab I e

I I, Set 04 in TCADLTR if PL/I with no GETPSBN
count field.

5. If call function code is PCBM (MPS DFRSKCNT
scheduling) or program name is
DFHMIR (ISC mirror program),

2. Set 03 in TCADLTR if the task is PSBNODEF skip language conflict checks
currently scheduled (TCADLISD is
on).

because an assembler language
routine is issuing scheduling calls for
programs written in all supported

Set 02 in TCADLTR if the task is not languages.
a DL/I task (TCADLISI).

Set 04 in TCADLTR for language
Set 06 in the TCADLTR if the PSB conflict.
name is too long (PSBNAME has a
maximum of 7 characters with a blank
in 8th position) or if there is no name
specified.

3. Set 01 in TCADLTR if the PSB name is PSBEFOND
not in a PDIR.

If PSB name = '*\6', use default PSB
name.

4. The first PDIR pointer is determined DEFPSBSC
from the task's ACT entry and is used
to generate the PSB name,

2-70 Licensed Material - Property of IBM

Figure 2·6.12. PCB or PCBM Scheduling (Part 2 of 2)
~INPUT "'" PROCESS ",OUTPUT

ACT R3

II ACTPCNT I I I 1---: ~ 6. Verify that the found POI R for
II ACTPPTR t the PSB in the user call list

is in the task's ACT.

PDIR SCD 1--_"':: ~ 7. Call task scheduler. I PDIROPTC I I SCDA'SE I
t ~ DLZSCHDL

BALR Task Scheduler
Routine

2·6.1

TCA 8. Turn on scheduled indicator
~ TCA I TCADLUIB I and return if no errors.

I I TCADLII I L TCADLPCB I
UIB

I UIBPCBAL I
To Figure
2-6.6
StepB

TCA SCD

L:CADLII II SCDTKTRM I 9. Scheduling errors. TCA

TCAFCTR I TRMFREPP
TCADLTR

TCADLPCB
BALR PPST Free Routine

~!;15

To Figure
2-6.9
Step 4

DLZPRHOO - Program Request Handler CSECT DLZODP

Extended Description Routine Label Extended Description Routine Label

6. Set 06 in TCAJ5LTR if the PSB is DFRSPSBC
not in the task'9 ACT entry.

7. Set OS in TCADLTR if PCB failed DFRSPOK
to ini tialize.

8. Turn on TCADUSD to indicate the PRHRETN
task is scheduled.

If UIB is used, update UIBPCBAL with
PCB address list address.

9. For errors where the caller was already DFRSERRS
scheduled and no PST storage was
acquired, return directly to
Figure 2·6.6, Step 8.

Licensed Material - Property of IBM

Figure 2-6.13. System Scheduling Call (Part 1 of 4)
• INPUT ~PROCESS ~OUTPUT

SCD SCDEXT

SCDASE ISCDEPASS I
SCDSIND2 1---- ~ 1. If 'SYSTEMDL' call. schedule SCD TCA

I SCDSIND2 I I TCADLII I SCDEXTBA DSG system scheduling.

PST
I DSGDSGLN I PST PST

t ~ I PSTLNGTH I DLZSCHDL 1 PSTCODE1 1 I PSTPREAD I
BALR Scheduling Routine 1 PSTDSGA 'I

2-6.1 PPST

I PPSTCA I
Go to Figure 2-6.6. Step 8.

User Call List

I I
TCA PPST .. User Call List

1 TCADLII 1 IpPSTIND I > 2. If CMXT function. adjust CMXT.
I I

I TCALIPA SCD Go to Figure 2-6.6. Step 8. SCD PST

PST ISCDMXTSK I I SCDCMXT I PSTUSER

,I PSTPREAD 1 ISCDCMXT I PSTSEGL

II PSTLIPRM PSTSEG

PSTLlPRM

SCD TCA

I SCDTRACE I ITCADLlI 1 ---- ~ 3. If TSTR function. load the
ITCAPCLA I

requested trace module and issue
initialization call. ":> SCD

User Call List 1 SCDTRACE 1
I I I , I SCDTRCNMI DFHPC TYPE~LOAD

I~: DLZTRCAL TYPE~START

Go to Figure 2-6.6. Stee 8.

DLZPRHOO - Program Request Handler CSECT DLZODP

Extended Description Routine Label Extended Description Routine Label

1. A task requesting services through the PROCSYS Without MPS, data is moved to the
system calls must have been previously user callUst area for work space. With
scheduled by password with this MPS this would cause a storage pro-
special ,schedule PCB SYSTEMDL
call. If the password· does not match,

tection exception. To avoid this, an
area in the PST (PSTUPRM) (in the

the caller abends via DFHPC with code
DLPV.

CICS/VS DL/I partition) is used as a
work area. The MPS batch program
request handler (DlZMPIOO) then

Important indicators set are: moves the data from the PST into
the user call list.

SCDSYACT - system interface
active

TCADUTE - termination
If the new request is zero, negative, or
exceeds MAXTASK indicate an

required
TCADI..PAS - system task

invalid request error (set 08. in
TCAFCTR).

scheduled
TCADUSD - task scheduled 3. If task not scheduled for system IPROCTSTR

Exit is taken to scheduling routine to
calls (TCADLPAS not on) abend
viaDFHPC.

get a PST and initialized upon return.

PSTSCALL (system call in progress)
If tracing is already active set X'O I'
in TCAFCTR.

is set and return is made to caller.

2. The value passed by the user PROCMXT
If the load fails, set X'02' in TCAFCTR.

validated and moved to,the SCD. If GETMAIN fails during initialization,
set X'04' in TCAFCTR.

2-72 Licensed Material -,Property of :r~

Figure 2·6.13. System Scheduling Call (Part 2 of 4)
~ INPUT '" PROCESS I""0UTPUT

SCD TCA

SCDCSABA ITCADLII I
~ 4. If TSTP function, issue SCDTRACE ---

SCDTRCNM termination call to trace module
and free storage. ~ SCD

I SCDTRACE\

t t DLZTRCAL TYPE~STOP

~ DFHPC TYPE~DELETE
Go to Figure 2·6.6, Step 8.

TrA
~ 5. If STRT/STOP function, initialize ITCADDLII I- ---

DBD parameters by first verifying
the caller is scheduled.

PPST PST

I PPSTIND I IpSTPREAD I SYS

SYS
IpSTLlPRM I

SYSBEGIN

I SYSBEGIN I seD ... SYSFLGS
> 6. Locate DDIR entry.

ISCDDLIDM I PST

DDIR ISCDDLlDN I PSTUSER

II DDIRSYM PSTLlPRM

IIDDIRLEN

DDIR DMB

IIDDIRADDRI IDMBORG I --- ~ 7. Verify that the ACB is usable. SYS

II DDIRCOD2 IDMBPPRLN I SYSACB1

~ ~. TESTCB Macro
SYSACB2

ACBXT
SYSFLGS

II DMBACBADI

~' -$ TESTCB Macro II DMBACBLNI

DLZPRHOO - Program Request Handler CSECT DLZODP

Extended DescriPtion Routine label E d d D xten e escr~tlon R t' ou me L bel a

4. If task not scheduled for system PROCTSTP
calls (TCADLPAS not on) abend

7. The ACBs are checked for open/close PROCACB
status. The ACB address (2 if HISAM

via DFHPC. organization) and whether the ACB

If tracing not active, set X'Dl' in
is open or not is put into the user call
list (or if this is an MPS task, into the

TCAFCTR for invalid request. PST). Reference to fields within either
of these two areas is by the system call

5. If task not scheduled for system PROCINIT
calls (TCADLPAS not on) abend

parameter list DSECT (DLZSYSDS).

viaDFHPC. If the DDIR failed to initialize, set
X'02' in TCAFCTR.

6. The DMB name passed by the caller PROICON
is used to scan the DDIR. If TESTCB request fails, set X'03'

in TCAFCTR.
If this is not an MPS task, data (VSAM
return code and ACB address) is moved
into the user call list for the caller.
With MPS, a work area is used in the
PST (PSTLIPRM) to build the data
from the PST to the user call list.

If the DDIR is not found, set X'08'
in TCAFCTR to indicate an invalid
request.

Licensed Material - Property of IBM 2-73

Figure 2·6.13. System Scheduling Call (Part 3 of 4)
'" INPUT "" PROCESS ~OUTPUT

SCD PST

I SCDCSABA I IpSTDSGA I
1---- i> > DSG 8. Initialize the dummy OSG.

DDIR DMB I DSGDMBNoI
DDIRADDRI IDMBORG I DSGINDA
DDIRNUMBI 9. If STRT function, go to Step 14.

DDIR SYS 1---- ~ 10. For STOP function, check the I DDIRCODE I I SYSFLGS I validity of the call.

DDIR SYS

IDDIRCNT I ISYSCLECB I ~--- .. 11. Stop scheduling this OMB and

~I
wait for any users currently DDIR

SCDEXT 1\
SCD scheduled. DDIRCODE I I SCDEFECB I I SCDEXTBA I +-+ DFHKC TYPEoWAIT

PST DSG

PSTDSGA I DSGDMBNOI

PSTDMBNM

PSTSUBNM SCD > 12. Call OL/I Buffer Handler to

I SCDDDBHO I
mark buffers empty. ... ;> PST

PSTSV1

ISCDDBFPL I '~: :t PSTFNCNT
DLZDBHOO

PSTBLKNM

BALR Buffer Handler
BFPL Module PSTDMBNM

I BFPLSUBD I 2·15 PSTSUIN

I BFPLSUIN I PSTSUBNM
13. Go to Step 15.

DDIR SYS

I DDIRCODE I I SYSFLGS I ---~ 14. For STRT function, check ~ DDIR PST_I validity of call. I DDIRCODE I I PSTFNCTN I
SCD SCDEXT

I SCDEXTBA I I SCDESECB I ,..-- ~ 15. Wait for asynchronous logger

I SCDDBLOP
if open and active. DFHKC TYPEoWAIT

DLZPRHOO - Prograrn Request Handler CSE.CT DLZODP

Extended Description Routine Label Extended Description Routine Label

8. PROCOSG

10. If the ACB is not open, set X'OI' to PROCSTOP
indicate the STOP call is invalid.

12. Set X'04' in PSTFNCNT to indicate POTOBUFF
'mark buffers empty request to
buffer handler'.

The OMBnumber is used to index
into the subpool directory to get the
subpool number for this OMB. If there
is no subpool number, bypass calling
the buffer handler.

Set X'OI' in PSTFNCNT to indicate
'close OMB req uest' to open/close
module upon return from buffer
handler.

14. If this data base is not stopped or if PROCSTRT
the ACB is open, X'OI' in TCAFCTR
to indicate the STRT call is invalid. Set
X'09' in PSTFNCTN to indicate 'open
OMB request' to the open/close
module.

IS. "ROCOCR

2-74 Licensed Material - Property of IBM

Figure 2-6.13. System Scheduling Call (Part 4 of 4)
",INPUT • PROCESS ",OUTPUT

SCD PST

I SCDDLICL I IpSTSl(1 I > 16. Call Dl/I Open/Close Module. > SYS

DDIR I SYSVSRET I
IDOIRVSRT I ~ DLZDLOCO

BALR Open/Close
Module

2·14

SYS PST

SYSBEGIN IpSTLlPRM I 17. Return. > PST
SYSFLGS ~ I PSTSEGL I
SYSCLEAR I PSTSEG I

To
Figure
2-6.6
StepS

DLZPRHOO - Program Reque" Handler CSECT DLZODP

Extended Description Routine Label Extended Description Routine Label

16. The open/close module issues and
SVC2 and CICS/VS loses control for

BYSYSWAT

the duration of the call.

The VSAM return code in the DDIR
upon return from the buffer handler,
is moved to the user call list area (or
if this is an MPS task, into the PST)
which is mapped by DlZSYSDS -
the system call parameter list DSEeT.

17. If this is an MPS task, PSTSEGL and RETURNB
PSTSEG must be set up for MPS batch
PRH (DlZMPIOO) to move data from
PSTLIPRM to the user call list area.
PSTUSER already contains the address
of user call list area.

Licensed Material - Property of IBM 2-75

Figure 2-6_14. Suspend Task Processing
• INPUT ______ •

From Figure
2-6.1

step.

• PROCESS -----------... ~OUTPUT-------..

SCD TCA

I ITCATCDP I tr------,~> 1. Place task insuspend chain
. .. according to task dispatch I SCDDLIS SCD ,..T;.:C;:.A.:...-_--.

_ ___ ..IJo.~ ISCDDLIS I ITCADLIPA I

DLZODP - Task and Resource Scheduling CSECT

Extended DescriPtion

I

2. Turn on task suspended by DL/I
indicator (TCADLIST).

3. Task has been resumed by DL/I
task termination (DlZODPOI).

Turn off the task suspend indicator
(TCADLIST) and attempt to
schedule again.

priority.
--.-----.-.(ISCDSPCNT I

__ -L ____ ~~ TCA

2. Suspend the task.] r"" >r"IT-C-AD-L-I-1 --'1
~ t DFHKC TVPE=SUSPEND

3. Resume processing and attempt
to schedule the task again.

Routine Label

TASKSUSP

SUSPONE

Extended Descriotion

To Figure
2-6.1
Step 2

DLZODP

Routine

2-76 Licensed Material - Property of IBM

Label

\

Figure 2-6.15. Remote Scheduling Call Interface Routine
• INPUT • PROCESS ~ OUTPUT

From
Figure ..-2-6.1

PST RPST Step 8 RIB

I PSTRPSTA I I RPSTLEN I .. ~ I I - .,.
R3

-" ... RPST

I PDIR Entry Address I 1. Build parameter list for scheduling call. IRPSTISCI - RPSTISC4)

AIX'OO')

Rll A (Remote Interface Block)

I User Parameter Address I A (User Call Parameter List)

A IPDIR Entry of Remote
PSB)

2. If MPS application program issues PCB " call, set X'0809' in TCAFCTR. >TCA

Go to Step 5. I TCAFCTR I
l TCADLTR I

3. Set RIBPCBM flag if PCBM call. RIB

I RIBISC I
CSA

CSAOPFL I --....:: ~ 4. Call CICS/VS ISC module.
CSADISAC I

+--+DFHISP

BALR

RIB SCD

IRIBFCTR I SCDABEND

I RIBISCI I SCDABSAV 1--- - 5. If error, write message DLZ0331

SCDERRMS
indicating type of error in message code.

+--+
DLZERMSG

ani ine Error
BALR Message Routine

2-6.7

PST

I PSTSVI I > 6. Restore registers and return.
To
Figure
2-6.12
Step 9

o LZISCOO - Remote Scheduling Call Interface Routine DLZODP

Extended Description Routine Label Extended Description Routine Label

1. DLZISCOO

2. If CSADISAC=O (no DFHISP module ISCNOMOD
available), write message DLZ033I
indicating no ISC module found.

4. ISCBALR

5. Abend task after writing message if ISCRIBER
user call parameter list is invalid,
function string is invalid, or internal
error detected.

6. ISCRETOO

Licensed Material - Property of IBM 2-77

Figure 2-6.16. Remote Data Base Call Interface Routine
~ INPUT From Fig.

2·6.10
• PROCESS ~OUTPUT

Stel.i

PST RPST RIB

I PSTRPSTA II RPSTLEN I ---..:::
,.

RIBISCO ~ 1. Build parameter list for data base call.
Reset RIB fields. RIBISCI

R3

I PDIR Entry Address I RIBFCTR

RIBDLTR

Rll

I
RPST (RPSTISCl-4) I User Call Parameter List
A (X'04') Address

A (Remote Interface Block)

A (User Call Parameter List)

A (PDIR Entry of Remote
PCB)

RIB ,
~ 2. Compute PCB index.

, RIBPCBAL ,-- ---; :> RIB

I RIBINDEX I
CSA

CSAOPFLA
3. Call CICS/VS ISC module. - ----;

CSADISAC

RIB
..... DFHISP

RIBISCI BALR

RIBINDEX -- ---' ~ 4. If invalid call type, return PCB status ;. PCB

RIBPCBAL
..

code' AD'. Go to Step 6. I DBPCBSTC ,

RIB SCD ---...::: ~ 5. If error, write message DLZ0331 II RIBFCTR I SCDABEND ".
indicating type of error in message code. > PST

II RIBISCI I SCDABSAV IpsTERDTl

SCDERRMS ~ DLZERMSG IF'STSV2 J
BALR Online Error

Message Routine
2·6.7

PST ;. 6. Restore registers and return. I PSTSVl I ...
To
Figure
2·6.6
Step 9

DLZISC01 - Remote Data Base Call Interface Routine DLZODP

Extended Description Routine Label Extended Description Routine Label

I. DLZISCOI

2. The PCB address specified by the user ISCINDEX
is tpe address of a local copy of the
real PCB in the remote system. It
must be converted to a PCB index to
identify the corresponding PCB in the
remote system.

If PCB index cannot successfully be ISCNONDX
computed, write message DLZ4761
and abend task.

3. ISCBALRI

4. ISCFUNC

5. Abend task after writing message if ISCRIBCI
user call parameter list is invalid, link
with remote system is out of service,
or an internal error was detected.

6. ISCRETOI

2-78 Licensed Material - Property of IBM

Figure 2-6.17. Remote Termination Call Interface Routine

INPUT ------..

PST

JpSTRPSTA I
I--

RPST

I RPSTLEN I

rom
igure

F
F
2
S
-6.3
tep6 -

.. PROCESS

- : -; 1. Build parameter list for Term call.

--:; 110 2. Set sync point flag if sync point need
not be done by ISC module.

-.-:: II> 3. Call CICS!VS ISC module .

..... DFHISP

BALR

4. Restore registers and return.

DLZISC02 - Rembte Termination Call Interface Routine

Extended DescriPtion Routine Label Extended Description

I. DLZISC02

3. ISCBALR2

pooOUTPUT

:> RPST (RPSTISC 1-2)

IA (X'OS') I
r A (Remote I "torlace Block) I

:> RIB

IRIBISCO I

....
To
Figure
2-6.3
Step 16

DLZODP

Routine Label

Licensed Material - Property of IBM 2-79

Figure 2·7. DL!I Online System Termination

~ INPUT PROCESS -------------..

CSA CSAOPFL

I '",0"," I ~
DUAL

I"""" 1

1. Locate entry poi'nt of DL!I
termination.

2. Call DL/I termination.

DlZODP02

BALR DL/I System
Termination

3. Return to CICSNS system
termination program via
DFHPC TVPE=RETURN.

DLZSTPOO - DLiI Online System Termination CSECT

Extended Description Routine Label Extended Description

I. Control is gained from CICS/VS DLZSTPOO DLZSTPOO
System Termination Program (STP)
because of DLZSTPOOs presence in
the program list table (DFHPLT).

2-80 Licensed Material - Propertyo£ IBM

To
CICSIVS
STP

OUTPUT ________ •

DLZSTPOO

Routine label

4
i :~

Figure 2-8. Call Analyzer

~ INPUT ------. • PROCESS I'" OUTPUT

R1

IpST-ADDR I
IpSTIQPRM I

R13

CJ

m Caller Fro
(See Notel -

1-- - ~

Parameter -- -- - I- - -;.
List

Function

PCB-ADDR

110 AREA

SSA.

DLZDLAOO - Call

Extended Description

Note: DLZDLAOO is called from the
program request handler (DLZBNUCO-
DLZPRHBO) in a batch system, from
(DLZODP-DLZPRHOO) in an online
system, or if at termination, it is called
from either the application program
control (DLZRRCOO-DLZPCCOO) or
from online task termination
(DLZODP-DLZODPOl). It is also
called from DLZDXMTO.

2. The function (fIrst parameter in list)
is encoded. If no valid function is
found, 'AD' status is returned.

Normal functions are GU, GN, GHN,
GHU, GNP, GHNP, DLET, REPL,
ISRT, ASRT, and CHKP.

Pseudo functions are GSCD, UNLD,
and TERM.

1. Save registers and initialize. R13 PSTSEG

I I PSTSEGL

100000000 I

2. Encode function:

A. Normal Function -

Figure 2·8.1.

B. Pseudo function -

Figure 2-8.3.

3. Update JCB trace and PCB JCB R13

segment name, level and key- c:::J CJ length. Restore registers.
PCB

c::J
Return to
Caller

DLZDLAOO

Routine Label Extended Description Routine Label

Licensed Material - Property of IBM 2-81

I

Figure 2-S.1. Call Analyzer - Normal Function
-INPUT

PST SDB

I II
FDB PSB

I II

JCB SCD

I II

JCB

I JCBLVT

F
2

-
I

I

I

I-

Fig. rom
·8 st

L.
--

--

--

DLZDLAOO - Call

Extended Description

I. If no valid PCB address is provided,
abend code '476' is returned. The
JCB and PCB are updated and the
second part of the level tables
cleared.

2. If no I/O area is provided, 'AB'
status code is returned.

3A. If log is not active, return to caIler
with 'XH' status code in the PCB.
The function caIl is ignored.

• PROCESS ,.OUTPUT

" l> 1. Validate PCB address. Update PCB

JCB and level table. I
JCB

2. Find user's I/O area. I

~ 3. CHKP Function:

A. If log not active, return
to caller.

B. Unload Routine:

Figure 2-S.3.

4. Validate SSAs:

Figure 2-S.2.

5. Perform key checking for loading.

6. Validate sensitivity.

7. Check length for variable length
segments.

:> S. Call D LZD LOCO to open data sets.
A. If at least one segment has field

level sensitivity, call DLZCPY10
(Figure 2-40).

Return to
9. Call proper action module Figure 2--8

(DLZDLROO, DLZDDLEO, or DLZDLDOO). Step 3

DLZDLAOO

Routine Label E ddD xten e escrlptlon Routine

TESTPCB 7. For variable length segments, 2·byte
VALIDCK2 field in the user I/O area is compared
DBPCBFND to the maximum length and to the
GETJCB key+ keyoffset. If it is greater or

smaller, 'VI' status is returned.

8. When the data base that the PCB
references is not open, DLZDLOCO
is called to open all data bases
related to this PCB.

A. If field level sensitivity indicator is

3B. Purge all buffers. pLZDLAOl DLBUNLD
set, exit is made to DLZCPYIO to
map the user view to the physical
view. Only done ifISRT, REPL, or

4. AIl SSAs in the caIl are checked. SDBLOOP Retrieve (called on behalf ofISRT)
SDBLOOPI action modules will be executed.

5. Key checking is done for load mode LDCHCK
and the last SSA of an ISRT call.
For PROCOPT=LS and for HISAM,
the root key is compared to the
previously loaded root. Status code
'LB' indicates invalid sequence.

9. For GET calls, DLZDLROO is called.
For DLET/REPL calls, DLZDLDOO
is called. For ISRT / ASRT calls in
load mode, DLZDDLEO is called
for all segments except for HIDAM
root, where DLZDLROO is called ..
For ISRT not load mode,

6. Sensitivity checking is done for NOTLOAD7
ISRT, DLET, and REPL calls. FSTDATAL
Violations return' AM'. Extra ISREPL

DLZDLROO is called for all
segments except HISAM root,
where DLZDDLEO is called.

checking is done for DLET and TSTISRTS
REPL calls, if successful GH call
was executed before 'DJ'status.

2-82 Licensed Material - Property of IBM

PST

II I
LEVTAB

II I

Label

DOVLTST

ANYSEN

ACTION

Figure 2-8.2. Call Analyzer - Validate SSAs (Part 1 of 2)
I" INPUT Fro m Figure I'" PROCESS .. OUTPUT

SOB

~

SOB

I SOBXFL

Level Table

LEV LEV

LEVNUPC

~--

2·8.

~
I

\
r--j
I
J

--.1

Level Tab'"

SOBPARA
-- -.., --,

I
LEVF1 I
SOBPHYSC I

L_-)

OLZOLAOO - Call

Extended Description

I. When the segment named specified in
the SSA cannot be found in the SDB,
'AC' status is returned.

A. Flag SDBFLS is on in field SDBXFL
if SDB has field level sensitivity.
Flag JCBFLS is set on in field
JCBLVT to indicate at least one
segment in call has field level
sensitivity.

2. When a hierarchy error is detected, an
'AC' status is returned.

3. The levels corresponding to gaps in the
SSAs are filled with data from the
previous call. For loading, no parent
level may be empty. 'LD' status is
returned.

4. Extra checks are made for DLET and
REPL calls. When no GH call was
previously made for this SDB, a 'DJ'
status is returned.

1. Find SOB corresponding to SSA.

A. If SOB has field level sensitivity. JCB

set indicator in JCB. I JCBLVT I

2. Find corresponding level table.

" 3. Fill pseudo entries for gaps in roJ Level Table

SSAs.]J LEVNUSOB

LEVNUPC

LEVF3

4. Fill level table with data from LEVMEMBR
SOB.

" 5. Validate command code. Level Table

I LEVF4 I
6. For qualified SSAs:

Figure 2-8.2 (Part 2 of 2)

.....
Return to
F igu re 2·8.1
Step 5

OLZOLAOO

Routine Label Extended Description Routine

SDBLOOP 5. Valid command codes are C, D, F, L, N,
Q, T, and X. The status code for invalid
command code is 'AJ'. For D call and

SSASDBEQ
no path sensitivity, the status code is
'AM'.

GETLEV
RIGHTLEV

Label

NOTDORR

Licensed Material - Property of IBM 2-83

Figure 2-8.2. Call Analyzer - Validate SSAs (Part 2 of 2)
• INPUT From Figure • PROCESS ~OUTPUT

2-8.2. (Part 1
Of21iP6

PSOB POS --.....; T For qualified SSAs. Level Table

I II I ~ A. If SOB indicator set for field level

If
ILEVF3 I r--:; sensitivity, find FSB corresponding L LEVMEMBR J Sec. Lists I~ to SSA.

I I I B. Find FOB corresponding to SSA.
I Level Table

C. Encode operator. ;> I LEVMEMBR I
SOS I v

ISOSXFL 1- J O. Load Mode: compare key in SSA to ---- key-feedback. •
SOS .I
I I Return to

caller I SOSXPANS I L..-

FSS

I I

OLZOLAOO - Call OLZOLAOO

Extended Description Routine label Extended Description Routine label

1. For errors in qualification, format 'AJ'
status is returned.

A. Flag SDBFLS is on in field SDBXFL if
SDB has field level sensitivity. If an
FSB is not found, or if the FSB is not
marked as an allowable field, status
code 'AK' is returned in PCB.

B. Valid field \lames are any normal field NXTBOOL
of the segment, the XDFLD name
(if the secondary processing sequence

PDBEQUAL

is used). Far a cjlncatenated segment
field, names of the logical child and the
destination 'Parea.t are valid. 'AK'
status for invalid!field name. 'AC'
status if (CK or (SX is used.

C. Invalid opetator returns status code CODES
'AJ' ROHIT

D. If qualified SSAs are specified for
loading, the key has to correspond to
the key-feedback area, otherwise 'LD'
status code is returned.

2-84 Licensed Material ~ Property of IBM

Figure 2·8.3. Call Analyzer - Pseudo Function (Part 1 of 2)
INPUT ______

Parameter
List

function

1/0 area

Fig. From
2-85 '1 2B

From
2·8.1

-

Figure
Step 3B

•

• PROCESS

~ 1. For a GSCD call, provide address
of PST and SCD.

P5TPSB -~ 2. For an UNLD, TERM, or CHKP call,

PDIRADDR

PSBLl5T

PSBCODE

R13 -

DLZD LAO 1 - Gall

Extended Description

I. Input to the GSCD call is function
and I/O area address. DLZDLAOI puts
the SCD and PST addresses in
PSTBLKNM.Program request handler
moves it to the I/O area.

2: The TERM call is issued in online to
end a task. The UNLD call is issued in
batch to end the batch program.

A. If the UNLD call is made for load
mode, DLZDDLEO is called to
write the last records for HSAM
and HISAM. For HISAM and
index data bases, a record is
written with FF keys.

B. Flags and pointers are cleared
so that the PSB can be used by
another task. If program isolation
is active, clear all enqueue indio
cators in all level table entries.

C. All user buffers are written to
the data base now. RSTBLKNM,
DMBNM, and ACBNM are
cleared. PSTPGUSR flag of
PSTFNCTN is set.

process all PCBs in PSB and:

A. Call DLZDDLEO for load.

B. Clear flags and pointers.

C. Call DLZDBHOO to purge
buffers.

D. For a CHKP call, go to Step 4.

E. For an UNDL call, DLZDLOCO is
called to close data bases in
system (PSTOCALL).

~ 3. Restore registers.

Routine Label

PSEUDOCA

DLBUNLD
UNLDLOOP

• Return to
Caller

Extended Description

3. If an error occurs during the purge
of the buffers, an 'XD' status code
is returned in the PCB.

..OUTPUT

PSTBLKNM PSTUSER

lSCD addr J 1110 area I
I PSTADDR I

PSTDBPCB

DBPCBLEV

> JCBLEVIC

LEVTTR

LEVFl

JCBNOSAM

DLZDLAOO

Routine Label

Licensed Material - Property of IBM 2-85

Figure 2-8.3. Call Analyzer - Pseudo Function (Part 2 of 2)
INPUT ______ -.

PST

I PSTPSB

PSIL

Ips, LDIRA

DDIR

IDDIRCODE

SCD

ISCDDBLOP

PST

I PSTUSER

PDIR

I PDIRSYM

• PROCESS

. ,.
4. For a CHKP call, get

address of DDIR and
number of entries.

,. A. If error occurred during
buffer purge, go to
Step 4H.

~ B. If log is CICS journal,
go to Step 4E.

-~ C. Build the log checkpoint
record.

~OUTPUT

;> SCD

I SCDCWRK

.. ~ D . Get address of DL!I Logger.

.L ... DLZRDBLO

"iiAiJ'i'" DB Logger
2-16

PST

E. Set checkpoint indicator. "> I PSTPCT2

I
F. Set PCB status code. "> PCB

IJ rv I DBPCBSTC

G. Return to Step 3.

H. Set PCB error status code.

I. Return to Step 3.

DLZDLAOI - Call DLZDLAOO

Extended Description Routine Label Extended D escription R outme

4. A. All DDIR entries are scanned to DDIRCHK F. Status code of 'blanks' is set
see if an error occurred (bit in the PCB indicating successful
DDIRNOSE X'04' in byte completion of the CHKP call.
DDIRCODE set on) during purge
of the buffers. H. Status code of 'XD' is returned

in the PCB indicating an error
B. If the log is the CICS journal, DDIRCHKI occurred during checkpoint

checkpoint record is not written, processing.
but a CICS synch point is.

D. The DL/I Logger is entered
twice; 1st to move the check-
point record to its buffer, and
2nd to force-write the check-
point record.

E. On return from the logger, the BYPASSCK
checkpoint indicator (bit
PSTCHKP X'04' in byte
PSTPCT2 is set on) to notify
the program request handler to
issue the checkpoint message.

2-86 Licensed Material - Property of IBM

I

I

I

L b I a e

DDIRER

" t

'{

Figure 2-9. Retrieve (part 1 of 2)

~ INPUT ~PROCESS------------------------~
.. OUTPUT ______ ...

F
A

OB/PSB I-
Descrip. Position

T - ~ 1. If unqualified call, go to step 3. Other-

I wise, go to Figure 2-9.1 to try to use
PSBOB LEV previous position.
SOB SOB ,
FOB

OMBSEC

OSG

OBPCB

OSG

Status

L, - ~2. If GU with unqualified root, go to
Figure 2-9.4 to determine start key for
searching. Otherwise, go to Figure 2-9.5

OMB Info.
Prefix

JCB
Prefix

JCB
Prefix SOB

I to analyze qualified calls and continue I at step 5.

t.EV I
Call Info.

LEV

JCB

r - ~3. If not a GN, go to step 4. Otherwise, do

I unqualified GN call analysis and continue
at step 5.

Prefix

L -I;M. Get first DB segment.

OLZOLROO Retrieve Module

Extended Description Routine label Extended Description

l. I/O information: LTWSSA 2.

• The Position block includes RBA of 3.
segment (HD) or lrec (HS), RBA of
previous and next positions (HD),
offset to segment from begin !rec
(HS), concatenated key, level, block
number (HSAM), and block number
and RAP number of current RAP
(HDAM). RAP = root anchor point.

• The DB/PSB Description block
includes segment and data set
descriptions, data base specifications,
sensitivity, and HDAM randomizing
facility.

• The Status Information block includes
prior status codes, segment status,
and (for output) pseudo abends
(801 and 800).

• The Call Information block includes
SSA and call type.

• Processing starts with initialization.
Level of previous call stored in
LASTLEV.

]

,...--,) New Status
Posit. Info.

ElEl
l' "r 'C .,.

OLZOLROO

Routine label

XLTFINDR

MTNOSSA
NOSSA

Licensed Material - Property of IBM 2-87

Figure 2-9_ Retrieve (Part 2 of 2)
-INPUT -PROCESS

OB/PSB I- - ~ 5. For ISRT calls:
Descrip. Position

PSBOB LEV A. Determine positioning
SOB SOB and move segment to user.

FOB OBPCB

OMBSEC OSG

OSG
Status

OMB Info.
Prefix

JCB

B. Call DLZGETS (Fig 2-9_7)
to make retrieved data

Prefix
JCB

available to user.
Prefix

SOB

LEV
Call
Info.

LEV 6. Exit.
JCB
Prefix

OLZOLROO - Retrieve Module

Extended Description Routine Label Extended Description

5. OUSSA is called, if necessary, to find RETURNIE
insert pt'sition for key. Control is then NOTEOO
passed to DUISRT to prepare position
information in the SOB for INSERT.
Return is to OUGETS (Figure 2-9.6).

PSTSEG is address of data, PSTSEGL
gives its length.

For IRST .aIls DUGETS does only
housekeeping tno data moving).
OUGETS will pass control to
OLZRETN and OUOLRI to exit.

ARETURNp

For a segment with logical relationship,
OLZGETS will call OULOGR for
data move/insert positioning.

6. If caIl type is GET, go to Analyzer.
If it is ISRT, go to Load/Insert.

2-88 Licensed Material - property of IBM

~OUTPUT

> SOB

position
for insert,
SUBPOSC,
SUBPOSN

> PST

LpSTSEG

I PSTSEGL

.-
To Analyzer
or Load
Insert

OLZOLROO

Routine

J
I

Label

,..
(~.
~

Figure 2-9_1. Retrieve - DLZLTW Routine INPUT ______ •

From
2-9 s

Fig.

11

LEV

position,
call
info.

OLZOLROO - Retrieve Module

Extended Description

1. KEEPIT=l indicates: try to use

---:

previous position. KEEPIT=O indicates:
DLZL1W has been left. Other values
have special meanings. (Entry point
when R15 = 0.)

2. DLZKDTE is invoked via DLZSSA which
is called by return to DLZDLRO and
back to DLZL1W. Logically, this is part
of DLZL1W as indicated by KEEPIT=l.

Qualified SSA test: After entering
several roUtines, return to DLZL1W
entry L1WSSACA, L1WSSAF, or
L1WSSAG.

Lowest level found valid is stored in
JCBLEVIC.

3. Set code for exit: Entry UNQLA in
DLZSSA for GU or ISRT, entry
SSAEVALH for GN.

DLZPCHK loads buffer location of
previous segment into register 6 (except
for HD or GN calls) and, for HD, loads
avaiIable SUBPOSN positions.

'" PROCESS I"'0UTPUT

1. Set KEEPIT=1.

LEV ~ 2. Check previous call's hierarchical :>
path against SSA's. Loop through I I
levels. Check segment type, and for
qualified SSA, check key feedback area JCB
(Figure 2-9.21. !JCBLEVIC I

3. If path is accepted, locate previous R6 SOB
segment (Figure 2-9.31, set KEEPIT=O, c=J ! SOBPOSN I and go to step 6.

4. If discrepancy at root level, set
KEEPIT=O and go to step 6.

R6
5. If discrepancy at lower level, set I KEEPIT=O and go to step 6.

JI~ SOB
If GN call, position to previous I SOBPOSN
segment.

6. Exit.

To Fig. 2·9
Step 2

OLZOLROO

Routine· Label

L1WSSA

L1WSSAQ

L1WSSACA

Extended Description

5. Set exit code for entry SSAEV ALL in
DLZSSA.

Routine

I

Licensed Material -Property of IBM

I

Label

2-89

Figure 2-9.2. Retrieve -.DlZKDTE Routine
,. INPUT '" PROCESS _OUTPUT

F rom Iler

General Segment r-
Info. Info.

~ SOB

LEV OMB

FOB

- ~ 1. Find FOB for SSA field. If
found, continue with step 2.
If not found, set status code > PCB

AK (error in call) and return.

~
2. If KEEPIT=1, use key feedback .> LEV

area to test against field ILEVF2 I value in SSA. Otherwise use
segment_

Field Segment I-
Value Data

I ~~;SSA II R6 I
Rei.
Operator

- ~ 3. If necessary turn on lEVSTOP. .> R15

I I I
L_ ~ 4. Test segment or key feedback

area for acceptance.

I R15= II LEVMEMBR

• To Caller

OLZOLROO - Retrieve Module OLZOLROO

Extended Description Routine Label Extended Description Routine Label

1. KDTESTI
KDTESTK

2. Iflogical relationship, build coDcate- DlZKDTL KDTESTER
Dated segment. If variable length, DlZVLRT
build data.

3. If qualification is on key, relational KDTESTHA
operator is greater than or equal to,
and key is less than or equal to, SSA.

4. If accepted, RlS=O, otherwise, KDTESTE
RlS=4.

2-90· Licensed Material - Property of IBM

Figure 2-9.3. Retrieve - OLZPCHK Routine

INPUT -------. From ."or "" PROCESS ""OUTPUT

I 50S LEV I
1&,,------11 &..-1 -----I

~

- ~ 1. If GN call, HO:

I Move SOBPOSC to CURTTR and go > JCB

to step 3. ICURTTR I
I

T

I
L_ ~ 2. Position to segment:

LEV

I LEVTTR
~ A. Interface to Buffer Handler,

R6 - >
PSTBYLCT. segment in

buffor

B. Find SOB from segment code.

C. Get pointers from segment. ;> SOB

3. Exit
SOBPOSP

SOBPOSC

SOBPOSN

To Callor

OLZOLROO - Rotrleve Modulo OLZOLROO

Extended Description Routine Label Extended Descri ption Routine Label

2. For HSAM, more than I PCB: restore POSCHKA
position.
For HISAM: take care of control POSCHKA2
interval splits.

B. If not found (segment not
sensitive), turn on LEVDLET and
go to step 3.

C. For HS, relational record number
and offset to SDBPOSC. SDBPOSN
already posted by DLZSETL.

For HD, post twin pointers. DLZPSTN

Clear dependent positions
(SUBPOSP, SDBPOSC, and

DLZPSTA

SDBPOSN). For HD, post child
pointers.

For HD logical relation with DLZAPST
inverted structure, post child
pointers. Subroutine called by
DLZPSTA.

Clear SDBPOSP, SDBPOSC, DLZPOSA
and SDBPOSN in preceding sibling
SDBs unless multi-processing.

Licensed Material - Property of IBM 2-91

Figure 2-9.4. Retrieve - DLZTAG Routine
F Fig. ",INPUT
2

rom
-9S 12

Segment - -& Field
Info. LEV

OMB I SSA I PSOBS
Info

FOBS PCB

I Key FBA I

OLZOLROO - Retrieve Module

Extended Description

1. Set code PSTSTLEQ for DlZSETL.
Set exit code for entry SSAEV AL
in OlZSSA.

2. Set code PSTSTLBG for DlZSETL.
Set exit code for entry SSAEV AL or
SSAEV ALM in DlZSSA.

For GN, set exit code for entry
SSAEV ALM in DlZSSA.

3. DlZSETL branches to subroutines
according to DB organization. R6
points to segment in buffer pool.

• PROCESS

~ 1. If qualification is on key
and operator is greater than
or equal to SSA, position on
key required.

2. For GN, go to step 4, otherwise,
position on start of DB.

3. Interface to Buffer Handler
and HSAM I/O OLZOBHOO

DB Buffer
Handler

2·15

4. Exit.

Routine Label Extended Description

MlWISSA

NOLL

KPURTC

2-92 Licensed Material - Property of IBM

p"OUTPUT

"> RS

I I

• To Fig 2·9
Stop 3

OLZOLROO

Routine Label

Figure 2-9.5. Retrieve - DLZSSA Routine (Part 1 of 2)
~INPUT Fr om Iler

-PROCESS -OUTPUT

First Part Start r-
of LEV Level

Position R4-

- ~ 1. If SSA is unqualified, go to
step 4.

& status level
conditions where
set by search
RETRIEVE will
in pre- start
viousor

2. Go to DLZKDTE routine (Fig
2-9.2) to check acceptability
of a segment.

current
call

3. If segment is not accepted,

Second Part
go to step 9.

of LEV II SSA description

I
set !>v
ANALYZER

4. Update level table. => First Part
of LEV

5. Go to next lower level.
Description
of last
acceptable
segment
including its

6. If level is not qualified, hierarchical

go to step 10. path

7. Go to DLZSKPG routine (Fig
2-9.6) to skip segments.

8. Go to step 1.

DLZDLROO - Retneve Module DLZDLROO

Extended Description Routine Label Extended Description Routine Label

6. Prepare input (segment type, etc.) DlZSKPG SKIPGENS
before entering the central
DlZSKPG routine.

2-93

Figure 2-9.5. Retrieve - OLZSSA Routine (Part 2 of 2)
~ INPUT PROCESS ------------....

First part
of LEV

Position and
status
conditions
.. t by RETRIEVE
in previous
or currant call

DLZDLROO - DLZSSA Routine

Extended Description

9. Segment is not acceptable.

A. If LEVCONT is on and not
at root level, go to Step 9E.

B. If LEVCONT is on and at root
level, go to Step 90.

C. If current level is root,
exit to subroutine OLZGER.

Otherwise, back up one level
and return to Step 9A.

O. Get next root segment .

... DLZSETL

Interface to
buffer handler
and HSAM 1/0

E. Go to routine OLZSKPG (Fig
2-9.6) to skip to next segment
of same type under present
root.

F. Return to Step 1.

10. Exit.

Routine Label Extended Description

2-94 Licensed Material - Property of IBM

Return to
Callar

OUTPUT _________

DLZDLROO

Routine Label

Figure 2·9.6 Retrieve - DLZSKPG Routine
",INPUT F om r caller

•
R15 f- -I Option code I

SDB R6

SDBORGN iluffer
location

SDBPOSC of old

SDBPOSN
segment

JCB

II JCBCODE.
bit
JCBRDREQ

DLZDLROO - R.trie~ Module

Extended Description

I- -

I. Option is 'Skip til Next Segment' if RI5
is positive. If Rl5 is negative, the option
is 'Skip to Specified Segment'.

2. If JCBLVT = X'02', require segment
code, segment level in physical DB, and
parentage level.

3. For JCBRDREQ off, current segment
is examined first. .

DlZSKPS calls general skip routine
DlZSKPE, which calls specific skip
routines:

For HS, DlZSKPD.

For HD using SUBPOSN, DlZSTLA.

In some cases (HS, skip to first child of
current segment), DlZSKPD is called
directly from DLZSKPS.

4. End of ESDS chain reached for HISAM.

,.PROCESS I"0UTPUT

~ 1. If 'Skip to Next' option, go to step 3.

2. Prepare control input. ;;> JCB

I JCBLVT

~3. Skip to next segment.

4. If skip failed, go to step S.

5. If 'Skip to Next' option, test if segment is
sensitive.

If not sensitive, go to step 3.

6. If 'Skip to Next Segment' option, test
segment level and segment code.

If accepted, go to step S.

7. If position still before segment searched,
go to step 3. Otherwise, indicate failure.

S. Exit.

...
Return to
caller

DLZDLROO

Routine Label Extended Description Routine

7. If segment code of segment found is not
larger than that required.

SKIPGENS

SKIPGEN

I

Licensed Material -Property of IBM

Label

2-95

Figure 2·9.7. Retrieve - DlZGETS Routine
• INPUT from Figure ~ PROCESS ~OUTPUT

2.Stt

,. Turn on lEVDATA. Turn on " LEV

lEVHElD if Get Hold call. • I LEVF1 I
" " LEV 2. Save lowest level number. JCB V r I LEV LEV I I KEEPIT+2 I ,

3. If logical relationship, call OMB - --T--'
I I I I DlZlOGR (Fig. 2·9.8) to build

I
concatenated segment.

I
L .~ 4. If variable length segment, -J

build/expand segment.

SOB

----1 I SOBFLS I - 5. If field level sensitivity specified,
call DlZFlDO to build user view. JJ " W

OMB Data 6. Move segment to I/O area and give PST I/O Area r segment location and length. •

D IOMBBOL I segment in II PSTSEG I
buffer pool II PSTSEGL J

7. Do final housekeeping.

8. Exit. • ~
Analyzer or
Load/Insert

/

OLZOLROO - Retrieve Module OLZLOROO

Extended Description Routine Label Extended Description Routine Label

6. If batch, only one task active, or no
field level sensitivity specified, and if
segment is fIXed length and not involved
in logical relationship, segment data is
not moved (left in buffer pool). The
same is true for Insert calls.

For a path call (*D command), data has
already been moved in DLZUPDT and
is not move-<l here.

Address of I/O grea is PSBIOAWK.

7. For Insert calls, return is to Load/Insert.

2-96 Licensed Material -Propertyof IBM

Figure 2-9.8. Retrieve - DLZLOGR Routine
'" INPUT PROCESS -OUTPUT

From Caller

..
~ 1. For ISRT call go to step 6.

PSOB SOB ---
I II I

2. Move logical child. I logical child > PSBIOAWK data in buffer I
work area

3. If not a variable length segment, for concat.
segment

go to step 5. data

4. Expand segment.

5. Move destination parent
data.

PSOB 1--- ~ 6. Call DLZRETI (Fig 2-9.9) to

I I SOB lof
..

insert positioning for logical
logical child.
child)

I I
7. Exit.

To Caller

OLZOLROO - Retneve Module OLZOLROO

Extended Description Routine Label Extended DeSCription Routme Label

1. Destination parent concatenated key
and logical child data.

nUYENT

6. Destination parent exists. Position
segment on alternate twin chain.

Licensed Material -:Property. of IBM 2-97

Figure 2-9.9. Retrieve - DLZRETI Routine (Part 1 of 2)
",INPUT "" PROCESS ,,"OUTPUT

From Caller

---- ~ 1. Retrieve destination parent > LEV PSBIOAWK
SOB (of ILEVUSEOF I using concatenated key. I Destination I logical parent data child)

I I

PSBIOAWK

logical
child data
including
concaten.
key

oMB -- ---' ~ 2. If virtual logical child, go
I ,,"u,,·. to step 4.
secondary
lists

3. Find pointer number and go to
step 5.

4. Get pointer numbers.

5. Get pointers from destination (
destination parent.
parent in
buffer

6. If no key and rule 'FIRST',
go to exit, step 8.

oLZoLROO - Retrieve Module oLZDLROO

Extended Description Routine Label Extended Description Routine Label

1. LEVUSEOF indicates offset of key for
this level in concatenated key.

Destination parent data is stored DlZRETK
behind concatenated key and logical
child.

2. For virtual logical child (insert through
logical path), positioning on physical
twin chain is required.

3. Find logical twin pointer number. iRETISRTF
Find logical child first and last pointers
in logical parent. Find FOB for key of
logical child, if present.

4. Find physical twin pointer number. RETISRTR
Find physical child first and last
pointers in parent. Find FOB for key
of virtual logical child, if present.

Logical twin key is moved to key OlZUPOL
feedback area.

2-98 Licensed Material - Property of IBM

Figure 2·9.9. Retrieve - DLZRETI Routine (Part 2 of 2)

INPUT ------. "" PROCESS -OUTPUT

7. Follow alternate twin chain
until key (if presentjlarger
than key of inserted segment,
or to end of chain. Go to
exit, step 8.

Special case: matching key
found in chain:

A. Key unique: If segment de·
leted logically, go to
exit, step 8. Otherwise,
set status code 'II', and
go to exit, step 8. "> DBPCB

IDBPCBSTC I
B. Key not unique: If rule is

'FIRST', go to exit, step 8.
Otherwise, follow twin
chain until larger key is
found or to the end of
chain.

8. Exit.

Return to
Calle,

DLZDLROO - Retrieve Module DLZDLROO

Extended Descriptton Routine Label Extended Description Routine Label

7. Alternate means: Logical twin chain RETISRTL
if entering from physical path,
physical if er\tering from logical path.

If sequence field is in destination RETIVK
parent concat.enated key (possible
only for virtuallogicaJ child), the
virtual area (physical parent,
concatenated key, and logical child
data) is built in PSBIOA WK, calling
routines DLZYSTC and DLZMOV A.
As an indication, the first byte of
PSTWRKT5 is set to X'FF'

A. For logically: deleted segment,
turn on bit JCBDEFDL in
field JCBCODE.

Licensed Material - Property of IBM 2-99

Figure 2·9.10. Retrieve - DLZFLDO Subroutine

INPUT PROCESS -------_-----..

SOB

ISOBTARG r - -
PSOB

I OMBVLOFG I-- - - -
FER

flLZOLROO - Retrieve Module

Extended Description

I. FER is located at address in PSBNDXWK.

2. The concatenated segment has been built
in PSBIOAWK and the user's view must be
constructed in another area ~PSBXIOWK).
For path calls (*D command , the user's
view wiD be moved back to PSBIOAWK
after conversion to the user's view.

3. Fields may be defmed that are outside the
physical segment, so they must be
defaulted so conversion errors do not
occur. If such fields do exist, the segment
is moved to PSBXIOWK and the defaults
provided.

4. If a conversion error is detected, an
immediate exit to the Call Analyzer is
taken.

1. Initialize field exit routine interface list.

2. If concatenated segment, update FER.

3. If segment is variable length, update FER.

4. Call DLZCPY10.

5. Exit.

Routine Label Extended Description

FLDCSEG

FLDVAR ..

FLDERR

2-100 Licensed Material - Property of IBM

Return to
caller

OUTPUT __________ ..

FER

FER

IFERPPSA

I/OAr ..

OLZOLROO

Routine Label

Figure 2-10. Load/Insert (Part 1 of 2)

'" INPUT

DUI Ctrl User 1/0
Blocks Area

F Caller
I

rom
See Note) ..

r- -
I

'" PROCESS • OUTPUT

~ 1. Initialize. DUI Clrl DUI
Blocks Buffer

1 1D 'C
Dr L_ • 2. Call subroutine depending on §D data base and 'PROCOPT':

DLZDDLEO - Load Insert Module

Extended Description

Note: DLZDDLEO is called from
DLZDLAOO (Call Analyzer) or from
DLZDLROO (Retrieve Module).

.

Routine

.. HSAMLOAD

HSAM Load
2·10.1 DFSDHILO

HISAM Load
2·10.2 .. HIISRTRO

HISAM Root
Insert

2·10.3 HIISRTR

HISAM Depen·
dent Segment
Insert

2·10.4 DFSDHDLO

HDAM/HIDAM
Load

2·10.6

DLZDDLEO

Label Extended Descl!I!tlon Routme Label

Licensed Material - Property of IBM 2-101

Figure 2-10. Load/Insert (part 2 of 2)
INPUT ______ -.

Extended Description

Note: DLZDDLEO is called from
DLZDLAOO (Call Analyzer) or
from D LZD LROO (Retrieve
Module).

PROCESS-------______ ..

2. (con't)

3.

4. Return

Routil'le

.... DFSDNXTO

Not Load End­
ing Routine
2-10_8

... HIISNXLV

Label

Load Ending
Routine
2-10_9

Extended Description

2-102 Licensed Material - Property of IBM

Return to
Caller (See
Note)

OUTPUT----___ ~

Routine Label

Figure 2·10.1. HSAM Load
,.INPUT ~ PROCESS ,,"OUTPUT

From Fig.

2.,OilP2

1-- ;> IJCBHSADD --- 1. On first entry, initialize DTF
ilLOOBLOCK I DTF and I/O buffer address. ! II LODLRECL I

2. Issue locate mode 'PUT' when I LODBLOCK I~ record is full.

I LODBLOCK I > 3. Move segment to I/O area 110 Buffer

and update tables . I I
... \ DFSDLlMS I

I LODBLOCK leU 4. For UN LD call, issue last
'PUT ..

To Fig 2·10
Step 3

DLZDDLEO - HSAM Load DLZDDLEO

Extended Description Routine Label Extended Description Routine Label

1. OLZOLOCO stores the I/O area address HSAMFRST
in the JCB. It is updated with every
'PUT'

The record size is taken from the OTF
and the error exit address in the OTF
is updated

Licensed Material - Property of IBM 2-103

Figure 2-10_2. HISAM Load
",INPUT

JCB

JCBPRESF

LODBLOCK SDB

LODOFFSE I I
LODLRECL

PSDB JCB

II DMBPRSZ LODBLOCK

II DMBDL LODOFFSET

LODLRECL

JCB -
LODBLOCK

LODOFFSET

LODLRECL

DLZDDLEO - HISAM Loed

Extended Description

Fig. r PROCESS

;"2

From
2-10

1.
- ~ A. Root segments:

Write previous KSDS record
and get buf~er for new one.

l- -.~ B. Dependent segments:

If no more space in ESDS,
write previous ESDS and
get buffer for new one.

2. Move segment to buffer

.... 1 DFSDLlMS I

- ~ 3. UNLD call:

Write previous KSDS and ESDS
record. Write new KSDS record
with root key of 'FF's.

]

To Fig 2-10
Step 4

Routine Label Extended Description

,.OUTPUT

:> JCB

LODBLOCK

LODOFFSET

LODLRECL

DLZDDLEO

Routine

1.
imSIMPLS A. Record length, buffer address, WRITEOLD

2. The segment is moved, the PCB key

and offset into buffer is stored
fed back, and the level table updated.

in the JeB and passed from call
to call.

When a call for a new root seg-
ment is made, the buffer handler
(DlZDBHOO) is called to write
the previous KSDS record and
to eet buffer space for the new
one.

B. If there is space left hi the ESDS NEWRBA jNEEDOSAM
records, continue with step 2.
Otherwise, the RBA of the next
ESDS record is calculated, the
pointer of the current ESDS
record updated, and the buffer
handler called to write the ESDS.
Another call to DlZDBHOO is
made to get buffer space for a
new ESDS record.

ABEND 855 is given if VSAM rATERROR
returns an RBA different from
the calculated one.

2-104 Licensed Material - Property of IBM

Labe I

Figure 2-10.3. HISAM Root Insert (Part 1 of 2)
" INPUT From Fig. ~ PROCESS .. OUTPUT

2-10 Step 2 ..
PST :> 1. Call OLZOBHOO to get segment IpSTDATA II~SDS

IpSTUSER I
with key EO or HI. Record

IpSTBYTNM J
PSTDATA :> 2. If key of returned segment is

~DB LEVTAB
IACB I

EO, update SOB and level I II I I Extension I
table. If it is not EO, go to
step 7.

3. Return II status when segmenit ~ DBPCB

was not deleted. I I
To Fig 2-10
Step 4

Otherwise, log old segment . .. DLZRDBLO

DB Logger
2-16

lID Area :> 4. Move segment and update PCB I KSDS I
PCB

D and level table. Record I I

--I I
LEVTAB

DFSDLlMS I I

5. Indicate only one segment in
record and log new record.

DLZDDLEO - HISAM Root Insert DLZDDLEO

Extended Description Routine Label Extended Description Routine Label

I. The buffer handler is called with lJOTOFUNC HIISRTRO
'PSTSTLEQ' to get a segment with
key equal or higher than the one to
be inserted.

2. If the key returned is higher, ISISOIS
processing continues with step 7.

3. When the delete flag is not on in the
segment returned, status code 'II' is
returned to the caller.

The data base log module is called to ISSDELET
log the old KSDS record.

4. The new root segment is moved to the
KSDS record. The PCB key feedback
area and level table are updated.

5. The pointer to the ESDS record is
cleared and '00' moved to the KSDS
record behind the root segment. The
data base log module is called to log
the new KSDS record.

Licensed Material - Property of IBM 2-105

Figure 2·10.3. HISAM Root Insert (Part 2 of 2)
~INPUT - PROCESS -OUTPUT

6. Write record block.

r PSTFNCTN 1 :> 7. Call DLZDBHOO to get buffer ;>PSTOATA
space for KSDS record. I I I PSTBYTNM I

I/O Area .> 8. Move segment, update PCB and .> Buffer

I I level table. I I
.... 'OFSOLIMS I

9. LOG THE NEW RECORD.

10. Call DLZDBHOO to write the
new KSDS record.

11. Update tables. SOB LEVTAB

CJ CJ
To Fig 2·10
Step 3

OLZOOLEO - HISAM Root Insert OLZOOLEO

Extended Description Routine Label Extended Description Routine label

6. The buffer handler is called to write GOTOFUNC
the KSDS record back (PSTBFALT).

7. The buffer handler is called GOTOFUNC ISNOTEQ
(PSTGBSPC) to get buffer space
for one KSDS record.

10. PSTPUTKY is used to write the new GOTOFUNC ISSIMPLl
KSDS record.

2-106 Licensed Material - Property of IBM.

Figure 2-10.4. HISAM Dependent Segment Insert
'" INPUT _____

Fig. From
2-10 ';P2

• PROCESS

ISDBPOSC I'

ISDBPOSN I

-~ 1. Log old record.

Buffer DMB

c=JCJ
--~ 2. Compute length of shift data

and check rest of records for
valid segment codes.

1--

3. Move shift data and new seg-
ment.

Figure 2-10.5.

4. Log record DLZADBLO

DB Logger
2-16

5. Correct position of other
users of same data base.

6. Write one, two, or three
records.

DLZDDLEO - HISAM Dependent Segment Insert

Extended Descriptiorl Routine Label Extended DescnDtlon

I. DLZDLROO has located within a KSDS HIlSRTR
or ESDS record, where the new segment
has to be inserted. The old record is
logged from insert point on to the right.

2. The record is inspected from the insert HAVELREC
point to the right. The segment code COMPSHFT
is checked and the length of the remain- ABEND86I
ing segments is added to give the
'shift data'.

4. Log the old record from insert point DLZDLBLO LOGLEVCO
to the right.

5. SDBs and level tables of other PCBs INSADJUS
that are positioned in the same record
are updated to show the shifted position
of the segments.

6. DLZDBHOO is called to write back the GOTOFUNC KNNDONEX
old record and to write one or two new
ESDS records.

-OUTPUT

PSTBYTNM

;;. PSTWRKTI

PSTWRKT5

.> I ABEND I 'B61 ,

SOB LEVTAB

I II I

TOF!2-H
Step 3

DLZDDLEO

Routme Label

Licensed Material - Property of IBM 2-101

Figure 2-10.5. NOTSC Routine (Part 1 of 2)
'" INPUT F Fig.

OMB I PSTUSER I I I
I

IIOAre.

I

4 2·
rom
10.

top 5 3

•
l- -

I
I
I
L_

DLZOOLEO ~ HISAM Dependent Segment Insert

extended Descriotion

1. When both the new segment and the
shift data fit in the old record, the
shift data is moved right by segment
length. The segment is moved to the
record and the PCB and level table are
updated.

2. A new ESDS record has to be built.

2-108

'" PROCESS

~ 1. Segment and shift data fit in
old record:

A. Move 'shift data' right.

B. Move segment to buffer and
update tables.

~ 2. Segment fits in old record
but not shift data

A. Calculate RBA of new ESDS
record.

B. Get buffer space for one
ESDS record.

C. Chain old and new record
and log chain.

D. Move 'shift data' to new
ESDS record.

E. Log new record.

F. Move segment to old record.

RoUtine Label Extended Description

DFSDLIMS OVERLAPL

~:NESDS SEGTOOLD
r:;i GCHAIN
",OMMOVE
LOGNEWOS
iDFSDLIMS

~
,

",OUTPUT

,:;>i old record I

I old record I
I new record I

OLZOOLEO

Routine La bel

'. ,

Figure 2-10.5. NOrSC Routine (Part 2 of 2)
INPUT ------'1 ~ PROCESS -OUTPUT

OMS

c:::J
I/O Area

D
I old record I - ~ 3. Move segment and 'shift data'

to new ESDS.

A. Calculate RBA of new ESDS I new record{s) I
record.

B. Get buffer space for new
ESDS record.

C. Chain the two records and
log the chain.

D. Move segment to new record
and update records.

E. Move 'shift data' to new
record. If it does not fit,
repeat step 3 A, B, and C.

F. Log one or two new ESDS
records.

"'1 OLZRDSLO 1
I DB Logger I

2-16

TOF!-10.4
Step 4

OLZOOLEO - HISAM Dependent Segment Insert DLZDDLEO

Extended Description Routine Label Extended Description Routine Label

3. Neither segment or 'shift GETNESDS SEGTONEW
data' fit in the old record. IDGCHAIN SHIFTOO
A new record has to be DFSDLIMS SHIFTOS2

I
built. If it does not have COMMOVE IDGLEVCO
room for the segment and IDGNEWm
'shift data', another new NEWRBA
ESDS record has to be built. GOTOFUNC
The records are chained and
logged_

Liaen$~d Mat<erial - Property of IBM ~-109

Figure 2·10.6. HDAM/HIDAM Load (Part 1 of 2)
_INPUT From Fig. • PROCESS ~OUTPUT

2.10S~2

3> OMB -- --- 1. Get real length of segment. 2.PST

I I IpSTWRK05 I VLOSEG

Deal with
Variable
length segment

SOB ::. 2. Simulate retrieve positioning. >SOB

I I I I
PST --1--- - ?

IpSTWRKl I 3. If segment is present, replace ;> PST

it. Otherwise, get space for PSTOATA
segment.

PSTOFFST ... OLZOHOSO
PSTWRKI

HO Space
Management

2·13

4. Update anchor point in HIDAM
and log change.

SOB 1/0 Area

I SOBPOSC II I 1/0 Area JCB

I ICJ ;> 5. Move segment to buffer and LEVTAB

update tables. I I OBPCB
SOB I I FOB CJ "'loFSOLIMS

1 I I

OLZOOLEO - HOAM/HIOAM Load DLZDOLEO

Extended DescriDtion Routine Label Extended DescriDtion Routine Label

1. The subroutine VLDSEG takes the VLDSEG DFSDHDLO
length from the PSDB for fixed
length segments and from the user's
I/O area for variable length segments.
The compaction exit routine is called,
if it exists.

ABEND '863' is given when the com· ABEND863
paction routine changes the sequence
field.

2. For HIDAM root segments, DIZDLROO i
did the positioning. For other segments,
it is done here.

3. Space management is called to get TOSPACE GETSPACE
space for the segment. If the segment SPACEOUT
was deleted in one path only, i.e. it
was not removed by DIZDLDOO, the
segment is replaced with the new data.

4. HIDAM root segments without PTB SPACEOK
pointers are chained off the anchor
point in chronological sequence.

5. Move segment to buffer, update PCB
key feedback, and update level table.

DFSDLIMS ANCHOROK

2-110 Licensed Material - Property of IBM

Figure 2·10.6. HDAM/HIDAM Load (Part 2 of 2)

INPUT ------""

PSDB

CJ
SDB

CJ

DLZDDLEO - HDAM/HIDAM Load

Extended Description

r
I
I

1
I
I
L-

6. The prefix of the segment is updated:
physical twin pointers, physical parent
pointer, logical parent pointer, and
logical twin pointers.

7. The data base log rilOdule is called to
log the inserted segment.

8. Call space management (DLZDHDSO)
to update the prefix of physical twins,
logical twins, physical parents, and
logical parents. Update anchor point
for HDAM root segments and call the
data base log module to log all changes.

-

-

• PROCESS -OUTPUT

~ 6. Update prefix.

7. Log inserted segment.
Buffer .. DLZRDBLO >0

DB Logger
2-16

~ 8. Update prefixes of parents and
twins. Update HIDAM root
anchor points and log the
changes.

To Fig 2-10
Step 3

DLZDDLEO

Routine Label Extended Description Routine Label

MYPREOK

TOSPACE UPBlTMAP
UPPARENT BITMAPOK
UPPREFIX mDANCOR

Licensed Material - ~roperty of XBM 2-111

Figure 2-10.7. HDAM/HIDAM Not Load (Part 1 of 2)
• INPUT -PROCESS ~OUTPUT

From Fig.
2-10.P 2

(See Note)

OMB -- --.- - ~ 1. Get real length of segment. .> PST

I I I PSTWRK051 VLOSEG

Process Vari-
able Length
Segment

;:. 2. If segment is present, replace PST -- --- .> PST

I PSTWRK1 I it. Otherwise, get space for PSTOATA
segment.

PSTOFFST OLZOHOSO PSTWRK1

HO Space
Management

2-13

3. Update anchor point in HIDAM
and log change.

I/O Area JCB Buffer SOB

I I I I I I I SOBPOSC I
> 4. Move segment to buffer and

update tables. LEVTAB
SOB I LEVTTR I FOB I I OBPCB

I I I I

OLZOOLEO - HOAM/HIOAM Not Load OLZOOLEO

E xten dedO escrl.ptlon R outme La be I E ddO xten e escriptlon R outme Label

Note: When this entry is used, DlZDLROO DFSDHDIO
had done the positioning.

2. Space management (DlZDHDSO) is TBSPACE GETSPACE
called to get space for the segment. If SPACEOUT
the segment was deleted in one path POSTPST
only, i.e. it was not removed by SPACEOK
DlZDLDOO, the segment is replaced
with the new data.

3. HIDAM rOQt segments without PTB SPACEOK
pointers are chained off the anchor
point in chronological sequence.

4. Move segment to buffer, update PCB DFSDLIMS ANCHORm
feedback and the level table.

.-

2-112 Licensed Material ~ Property Of: IBM

Figure 2·10.7. HDAM/HIDAM Not Load (Part 2 of 2)
INPUT ______ _

.. PROCESS ,..OUTPUT

r - ~ 5. Update prefix.

PSDB
I

c:=J I
SDB I- ~

6. Log inserted segment.
Buffer ~ I I DLZRDBLO

c=:J I
DB Logger

2·16

I
L - ~ 7. Update prefixes of parents

and twins. Update HIDAM root
anchor point and log the
changes.

• To Fig 2·10
Step 3

DLZDDLEO - HDAM/HIDAM Not Load DLZDDLEO

Extended Description Routine Label Extended Description Routine Label

5. The prefix of the segment is updated:
physical twin pointers, physical
parent pointer, logical parent pointer,
and logical twin pointers.

6. The data base log module is called to MYPREOK
log the inserted segment.

7. Call space management (DLZDHDSO) TOSPACE UPBITMAP
to update the bitmap if required: UPPARENT BITMAPOK
update prefix of physical twins, UPPREFIX HDDANCOF
logical twins, physical parents, and
logical parents. Update anchor point
for HDAM root segments, call the
data base log module to log all changes.

Licensed Material - Property of IBM 2-113

Figure 2-10.8. Not Load Ending Routine
~ INPUT ______ • ~ PROCESS

I OMBFLAG 1--

I SOBFLAG 1-
LEVTAB SOB

1 II
PSOB Sec List

I II
I PSTUSER

Fig.
Step 3 .:

From
2·10

--

--

-- -

~

~

~

LEVTAB - --.- -;;~

1

OLZOOLEO - DFSOXNTO Ending Routine for Not Load

1. Call DLZDXMTO if segment is
indexed.

2. If segment was LP, insert LC
now.

3. For LC segments:

Replace data of LP if it was
not inserted before.

4. For PATH ISRT, insert next
segment.

5. Clean up and return.

Extended Description Routine Label Extended Description

I. Index Maintenance is called to build
the primary or secondary index for
an index source segment.

2. If the ISRT call was for a concatenated iNXTLEVIS
segment, the destination parent was
inserted first (if it did not exist before
the ISRT call). The next step is to
insert the logical child segment. The
insert process is repeated from Fig·
ure 2·10 step 2.

3. Ifthe ISRT rule of the destination
parent is virtual and this segment
existed already, then the data of the
destination parent is replaced.
DUDXMTO is called to replace the
index if the destination parent is an
index source segment.

4 .. If there are more segments to be NOLPAREN
inserted in a PATH, then point to the
next segment in the I/O area and
continue with Figure 2·10 step 2.

2-114 Licensed Material - Property of IBM

-OUTPUT

>1 LP-5EGMENT 1

.> I PSTUSER I

PSTSEG R15

1 00000000 II 00000000 I
• PSTSEGL

To Fig 2·10 100000000 I Step 4

OLZOOLEO

Routine Label

Figure 2·10.9. Load Ending Routine
""INPUT

F Fig.
2

rom
-10 iiP3

"" PROCESS

I DMBOFLG II
SDB r- -~ 1. Write work data set for LC

I and LP segments.

PSDB
2. Build index for index source

statement. I I

~ - 3. Load next segment for PATH
ISRT.

LEVTAB I PSTUSER I l-
I I

4. Call DLZDXMTO for UNLD call.

5. Clean up and return.

DLZDDLEO - HIISNXLV Ending Routine Load Mode

Extended Descr!i>tion Routine Label Extended Description

1_ If the segment just loaded was a CALLERN
logical child or a logical parent CALLWORI
segment, DLZDSEHO is called to
write the work data set. If opening
of the work data set fails due to
'ASSGN SYSOI3,IGN' and the segment
was an LP, processing continues. On
any other open failure, 'ABEND 864
is given_

2. If the segment is an index source NOLOAD
segment, DLZDXMTO is called. It NCALLNDX
writes the work data set or writes the
index pointer segment directly.

3. For PATH ISRT, the pointer to the NOINDEX2
I/O area is updated and processing
continues with Figure 2·10 step 2.

4. DLZDXMTO is called to inspect all
PSDBs of the DMB for index source
segments and builds an FF key index
pointer record for it.

.. OUTPUT

I PSlWRK1 I

I DBPCBLKY I

"> I PSTUSER I

- PSTSEG R15

I 00000000 II 00000000 I -. PSTSEGL

I 00000000 I To Fig 2-10
Step 4

DLZDDLEO

Routine Label

Licensed Material - Property of IBM 2-115

Figure 2-11_ Delete/Replace
I" INPUT '" PROCESS ",OUTPUT

From Fig.

2-8 .• .
User
I/O Area OBPCB ~ 1. I nitialize addresses.

I I' DBPCBKFD I

JCBPRESF --I-- - ~ 2. If call is REPL,
I I ... REPLACE

Process
Replace

2·11.1

3. If call is DLET and data base
is HISAM ... DLETE

Process H I SAM
Delete

2·11.4

4. If call is DLET and data base
is HDAM or HIDAM .. DELTHD

Process H D/H I D
Delete

2-11.5

5. Return to DLZDLZOO with R15

return code in register 15. > I Rtn code I

• To Figure
2-8.1

DLZDLDOO - DLET/REPL Module DLZDLDOO

Extended Description Routine Label Extended Descroptlon Routine Label

I. The segment to be deleted or replaced DLZDLDOO DELREPEP
is identified by the contents of
JCBLEVIC. Position is established by
DLZDLROO in the previous call.

2. REPLACE

3. DELETE

5. If a user error occurred, DBPCBSTC RETURN
has return code. If abend, PSTERCDI
has abend code and registers are saved
at SCDABSAV + 8.

2-116 Licensed Material - Property of IBM

Figure 2·11.1. Replace

'" INPUT ~ PROCESS !"OUTPUT

From Fig.
2-11 step 2

(REPLACEI

1. Ensure that key field has
not been changed.

PSTUSER UDLENGTH
PSTUSER I II length I I A !lID Areal I DMBDL

A (segment)

CJ ;> 2. Set address, length, and UDOFFSET DBDFFSET
LEVUSEOF offset of segment.

Iloffset in offset I I I user area in 110
Buffer

ALTKYADJ

~
adjust-

PSTUSER Buffer ~-- 3. Ensure data changed and key ment for

I I§ alternate
field not cnanged. key

segment 4. If segment is an LC,

A. Ensure LC can be replaced.

PSTUSER I f data changed: B .
. (A !I/O Areal I

Buffer DDREPL ;>

I user segment I Replace LP] 2-11.2 user segment

'--~ 5. Replace segment.

DOREPL

Replace
segment

2-11.2

6. If another level to replace,
go to step 1. Return when
done. ..

To Fig 2-11
Step 3

DLZDLDOO - DLET/REPL Module DLZDLDOO

Extended Description Routine Label Extended Description Routine Label

I. REPCKOI 4. (con't)

2. PSTUSER will have new value if path b) If replace rule is physical, RX
call had been made. The length is taken status. If logical, no change and
from the first two bytes of the I/O blank status. If virtual, the kev
area if segment is variable length. of the LP cannot be changed

(DA status). The segment can
3. Additional logic is needed if segment CHKRLP be replaced.

is variable length or if PROCSEQ is CHKREPLI
specified. B. REPPAROI

4. A. The following check is made
for the LC:

CHKREPFF 5. This replaces normal segment or LC. IREPFINAL

6. If path call, see if another segment LEVDONE
Neither the physical nor logical
key fields can be changed (DA

in hierarchy can be replaced.

status).

The following checks are made for CHKRLPOI
the destination parent:

a) If data didn't change, no replace.

Licensed Material ~ Property of IBM 2-117

Figure 2-11.2. Replace Data (Part 1 of 2)
,"INPUT • PROCESS -OUTPUT

From Fig.
2-11.1

(DOREPL)

1. Do PI queuing if necessary.

DMBFLAG

I I
1-' 1---- ~ 2. If segment has secondary

Buffer indicies and is not marked I delete byte I physically deleted:

A. Go build work area for Delete Work Area

index maintenance. I I
B. Call DLZDXMTO.

t t DLZDXMTO

Index Main-
tenance

2-12

DMBCBSTC --- r--- » C. If blank or N E status,

I I continue.

DMBVLDFG ---- 1--- ~ 3. If segment is variable length:

I I
t ~ REPVLS

Replace
variable

2-11.3

_
Buffer > 4. Log old data in buffer. PSTWRKI

~
If ode. data I t t length

DLZRDBLO

Physical replace
code 51

2·16.2

DLZDLDOO - DLET/REPL Module DLZDLDOO

Extended Description Routine Label Extended Descroptlon Routme Label

2. Index Maintenance needs the actual DOREPL09
concatenated key of this segment.
If return code is NE, we still continue
processing because index is now set
as per new data. Work area is freed.

3. DOREPLIO

4. DBLPHYR+DBLPHYRO is set in
first byte of PSTWRK 1.

2-118 Licensed Material - Property of IBM

Figure 2-11.2. Replace Data (part 2 of 2)
I" INPUT • PROCESS ,.OUTPUT

=>5. Move new data to buffer. User I/O => Buffer

I new data I

I-~'I
6. Log new data DLZRDBLO

Physical
replace code 50

2·16.2

7. Mark buffer altered. => PSTFNCTN

I PSTBFALT I
~I DLZDBHOO I

BFALT label J
2-15

8. Return

Ret!to
Fig 2-11.1

OLZDLDOO - OLET/REPL Module OLZOLOOO

Extended Description Routine Label Extended Description Routine Label

5. The address of the user's I/O
area is in PSTUSER.

6. DBl1'HYR is set in PSTWRKI DOREPL92
with the length of the segment. REPL18

Licensed Material - Property of IBM 2-119

Figure 2-11.3. Replace Segment
• INPUT !II PROCESS • OUTPUT

From Fig.
2·11.2
Step 3

(REPVLS)

Buffer .- --- l> 1. Compress new data if required. I Delete byte I
2. If data separated from prefix,

replace separated data and go
to step 4.

~ ~ REPVLS50

Replace
separated
data

Bufter PSTUSER

~IA<" __ ')I - r-'-
> 3. If new length is GT old > Buffer

length and GT minimum, sepa-
segment

rate data from prefix and go
prefix

Inew data I to step 6.

~ ~ REPVLS30
new data

Separate data
from prefix

~ 4. If length is equal to old Buffer

length, or if both are lE
minimum, replace old data and prefix
go to step 6.

new data

~ ~ REPVLS20

Replace
old data

5. If new length is l Told
length, replace old data.

..
To Fig 2·11.2

r Step 7

DLZDLDOO - DLET/REPL Module DLZDLDOO

Extended Description Routine Label Extended DeSCription Routme Label

2. When the data is previously separated DLZDLDRO REPVLSOI
and the new data length is less than
the old length, an attempt is made to
relocate the new data adjacent to the
prefix.

3 When the old segme)1t size is not large REPVLS03
enough for the new segment, the data
is separated from the prefix. A poin ter
overlays the first four b)'tes of the old
data and will be used to tmd the new.

S When the new data will fit in the old REPVLSIO
location, it is moved over the old data
with any excess bytes being freed.

All changes to the data base have ~EPVLS38
been logged.

2-120 Licensed Material - Property of IBM

Figure 2·11.4. HISAM Delete
I" INPUT ------. ~PROCESS------------------------..

(DLETE)

:::===~ ... J» ·1. Get segment to be deleted.

....

~ DLZDBHOO

DB Buffer
Handler

2·15

OM BORG ---

IDMBSHIS I --- ... ~ 2. If data base is simple HISAM,

DLZDLDOO - DLET/REPL Module

Extended Description

1.

2. The entire segment to be erased is
logged.

3. Only the segment code and delete
byte are logged.

A. Indicate physical delete
for Logger.

B. Indicate PST erase for
Buffer Handler.

3. If data base is HISAM,

A. Set proper delete bits.

B. Indicate logical delete
for Logger.

C. Indicate PSTBFAL T for
Buffer Handler.

4. Log the change.

t t DLZRDBLO
DB Logger

2·16

5. Update the data base.

Routine

~ DLZDBHOO

Label

DELTO!

SHISAM

DELT4!
LOGDLT

DB Buffer
Handler

2·15

Extended Description

To Fig 2·11
Step 5

_OUTPUT ________ ..

> PSTWRKI

!DBLPHYD !

I:ength of
segment

I

"'> PSTFNCTN

hI!iBe.li5 I
...

> Buffer Pool
~ I I

PSTWRKI

>
IDBLLGDLT I
!Iength of 2 J

> PSTFNCTN

'I IpSTBFALT I
I
> Q

LOGOUT

DLZDLDOO

Routine Label

Licensed Material - Property of IBM 2-121

Figure 2-11.5. HDAM/HIDAM Delete
~INPUT ~ PROCESS ,,"OUTPUT

From Fig.
2-11 Step 4

(OELTHO)

PSOBs -- I---''':::~ 1. Scan PSCBs looking for LC

R
.-

or LP.

A. If starting segment is an
LC retrieved from logical
path, mark him LD, is pos-
sible.

B. Ensure no violations of
the physical delete rule.

Delete

2. Build work area for path. > Work Area

I I
Buffer > 3. Read and process all segments

§ from top to bottom. Determine
how to delete LC or LP.

..
4. At bottom, > Buffer

I I , t REOBOTM

Delete
segment(s)

2-11.6

5. Return

To Fig 2-11
Step 5

OLZOLOOO - OLET/REPL Module OLZOLOOO

Ext nd dO' t- n e e escrlp '0 R t-ou me L bel a Extended Descriotion Routine Label

I. A. LC will be marked logically DLZDLDOO DELTHD
deleted (LD) if delete rule = ILCDLT
physical or logical and segment
not PD (physically deleted)_

B. A logical parent can have no DELT09
active logical children. An LC PHYSCAN
must not be accessable by his
logical path.

2. This is needed to remember where ~~LTHA
we are. during scan of data base and EWOMB
to build concatenated keys.

3. LCF and LCL pointers in logical REQSCAN2
parents, and LTF and LTB pointers SCANDMB
in logical children, will be updated REQDOWN
now.

4. Segments may be marked deleted or REQBOTM
physically removed.

S. All work sets are freed. ENDLTSCN

2-122 Licensed Material - Property of IBM

Figure 2-11_6. Delete Segment (Part 1 of 2)
~INPUT • PROCESS p"'0UTPUT

From Fig.
2-11.5 step.

-"
• (REQBOTM)

DMBFLAG --- ~ 1. If segment is an ISS; delete PSTFNCTN

I I index pointer. IpSTXMDLT I

t ~ DLZDXMTO

Index Main-
tenance

2-12

Delete
PSDBs Work Area 2. If segment cannot be removed, Buffer

§ I I mark PO, log, and go to step
6. Delete

byte

3. Change all pointers to this
segment DLZRDBLO

DB Logger
2-16

4. Mark position changes in SOBs. > SDB

SDBPOSP

]DBPOSC

ISDBPOSN

5. Free segment's space. > PSTFNCTN

IpSTFRSPC I DLZDHDSO

HD Space
Management

2-13

DLZDLDOO - DLETIREPL Module DLZDLDOO

Extended DescriPtion Routine Label Extended Descriotion Routone Label

I. If the index source segment (ISS) has DLZDLDDO REQBOI
been marked physically deleted (PD),
no index maintenance is performed.
Delete processing continues with
blank or 'NE' status from DLZDXMTO.

2. A segment will not be physically REQB02
removed if still required because
of a logical relationship. Note that
the delete work area and DL/I blocks
(primary PSDBs) are used as input
to every step.

3. If segment is an LC or LP, the logical DLZDLDDO FREESPCE
relationship pointers (LC, LP, and DLZDLDAO FRSPCOO
LT) have already been changed.

4. The current position (SDBPOSC) is DLZDLDAO PRSPC05
marked 'lost' in this caller's PCB. If MARKSDB
any other PCB has position on this
segment, the position should be
changed to bypass this segment.

5. DLZDHDSO makes the log calls for DLZDLDAO FRSPC05G
the physical delete.

Licensed Material • Property of IBM 2-123

Figure 2-11_6_ Delete Segment (part 2 of 2)

INPUT ,. PROCESS -------------..

DLZDLDOO - DLET/REPL Module

Extended Description

6. Next segment is physical
twins, sibling, or parent.

7. At end, a final log call is
made to DLZRDBLO which
signifies delete is finally
accomplished.

6_ .If starting segment is not yet
deleted, get next segment and
process it_

7_ Return

Routine Label Extended Description

DLZDLDOO BOTMIB

DLZDLDOO ENDLTSCN

2-124 Licensed Material - Property of IBM

To Fig 2-11.5
Step 3

..
To Fig 2·11
Step 5

OUTPUT--------__ ..

DLZDLDOO

Routine Label

Figure 2·12. Index Maintenance
~INPUT ~ PROCESS .. OUTPUT

From Caller

PST

Iseeiel

PSTDBPCB

PSTIOPRM

PSTUSER > 1. Save registers and PST fields. ;> Work area
PSTDSGA - I I
PSTBYTNM

JCBPRESF
r-- ~ 2. Analyze function.
I

PST _..J A. If ISRT/ASRT, insert new
PSTFNCTN index pointer segment.

PSTWRK1 t ~ LiNSERT

I nsert New Index
Target Segment

2·12.1

B. If DLET, delete old index
pointer segment.

M LDELETE

Delete Old Index
Target Segment

2·12.2

C. If REPL, replace index
pointer segment.

t· ~- LREPL

Replace Index
Target Segment

2-12_3

D. If UNLD, insert FF·key.

M LUNLDAD

I n5ert F F -keys PST
2-12.4

PSTIOPRM

PSTUSER

3. Restore registers and PST. > PSTDSGA

PSTBYTNM

PSTDBPCB

DLZDXMTO -Index Maintenance Return to Caller OLZOXMTO

d d Exten e Descriotion Routine Label Extended Descriotion Routine Label

Note: DLZDXMTO is called from 2. (can't)
DLZDDLEO or DLZDLDOO.

C. Construct all old and new index LREPL
2. When called from DLZDDLEO, the pointer segments that can be can·

function is ISRT, ASRT, UNLD, or structed from that index source
REPL. When called from DLZDLDOO, segment. Depending on the data
the function is REPL or DLET. changed and the status of sup·
PSTWRKI contains the PSDB address pression, delete old index pointer
of the index source segment for DLET segment, or insert new index
or the LSDB address of the index source pointer segment, or delete old
segment. and insert new index pointer

segment, or replace -data of index
A. Construct and insert all index LINSERT pointer segment.

pointer segments for this index
source segment that should not D. If DLBL card is provided, write LUNLOAD
be suppressed. index pointer segment with all

FF -keys for all index data bases
B. Construct and delete all old LDELETE to belonging to this PCB.

index pointer segments existing
for this index source segment.

Licensed Material - Property of IBM 2 125

Figure 2-12.1. Insert New Index Target Segment
~INPUT

From Caller
• PROCESS ~OUTPUT

• ~~

r

1. Find secondary lists and length > Work area

of index pointer segment. See note I I
OMB Work area

I I I I >
SOB See note

I I 2. Construct index pointer segment.

3. If index pointer segment is
su ppressed, go to step 1 and
take the next secondary list.
Otherwise, build temporary
blocks.

4. If initial load, put index
pointer segment.

5. If Not Load mode, call DLZDLAOO
to insert index pointer segment.

~ t· OLZDLAOO

Call Analyzer
2~8

6. If last secondary list, return.
Otherwise, go to step 1 and
take next secondary list.

Return to
Caller

OLZOXMTO - Index Maintenance OLZOXMTO

E ddD xten e escrlpt.on Routine L abel E ddD xten e escrlot.on R out me L b I a e

Note: The input control blocks are used 3. (con't)
in all process steps. The output work area
is modified in all process steps. Build temporary blocks: LBLDCTLB

• SDB
I. Find SEC LISTs and PSDBs of index LBLDWKA • Segment name=sequence field name

source segment, index target segment, of index pointer segment
and index pointer segment and save • Update Index Maintenance JCB
their address in work area. Decide if and DSG.
primary or secondary has to be built.
Find length of index pointer segment, 4. If DLBL cards are provided, write LLOAD
sequence field, segment length, and index pointer segment to index data LWORKDS
protected data length. base and call DLZDLOCO to open LCALLBH

index data base if not open yet. Other- DLZDLOCO
2. For primary indexes, move HIDAM LBLDXNS wise, write index pointer segment to

root sequence field from user I/O LGRBACK workfile and call DLZDSEHO to open
area to work area. For secondary LNULSUP the workfile.
indexes, construct SRCH, SUBSEQ, LCALLBH
and DDATA fields. 5. Prepare DL/I call list to call LINXNS

DLZDLAOO with an *X call. DLZDLAOO
3. When the index entry has to be

suppressed due to SRCH equal to 6. When the last secondary list is
NULLVALUE or due to exit routine reached, exit is to LRETURN. On
return code, the index pointer segment error in secondary lists, exit is to
is not inserted. LABND772 (abend code 772).

2-126 Licensed Material - Property of IBM

Figure 2·12.2. Delete Old Index Target Segment (Part 1 of 2)
• INPUT "" PROCESS -OUTPUT

From
Figure 2-12
Step 2B

~~

OMB Work Area Work Area .Lt,. F;"d ~OO"d.", Urn ood I,,,,,,, I I I I I I
See note

of index pointer segment.
:>

SOB See note

I I 2. Construct index pointer segment.

3. If old index pointer segment is
suppressed, go to step 1 and
take the next secondary list.
Otherwise, build temporary
blocks.

4. Call DLZDBHOO to read old
index pointer segment.

t t OLZDBHOO

DB Buffer
Handler

2~15

5. Change delete flag and zero
pointer in index pointer seg·
ment.

6. Call Logger to log index
pointer segment changes.

+-+ OLZRDBLO

DB Logger
2·16

DLZOXMTO - Index Maintenance o LZOXMTO

E ddD xten e escriDtion Routine La bel E d 0 xten ed eSCriotlon R outlne L b I a e

Note: The input control blocks are used 3. (con't)
in all process steps. The output work area
is modified in all process steps. Build temporary blocks: LBLDCTLB

• SOB
1. Find SEC LISTs and PSDBs of index LBLDWKA • Segment name=sequence field name

source segment, index target segment, of index pointer segment
and index pointer segment and save • Update Index Maintenance JCB
their address in work area. Decide if and DSG.
primary or secondary has to be built.
Find length of index pointer segment, 4. The Buffer Handler is called (PSTSTLEQ LGOXNS
sequence field, segment length, and to find the old index pointer segment. LDOXNS
protected data length. If it is not found, or it is already

deleted, or the pointer or key are not
2. For primary indexes, move HIDAM LBLDXNS correct, an NE status code is returned

root sequence field from user I/O LGRBACK to the caller.
area to work area. For secondary LNULSUP
indexes, construct SRCH, SUBSEQ, LCALLBH 5. Delete flag is set to CO.
and DDATA fields.

6. Chain maintenance and logical delete DLZRDBLO
3. When the old index entry has to be calls are made to data base module.

suppressed due to SRCH equal to
NULLV ALUE or due to exit routine
return code, the index pointer segment
is not inserted.

Licensed Material - Property of IBM 2-121

Figure 2-12.2. Delete Old Index Target Segment (Part 2 of 2)
INPUT PROCESS -------------...

DLZOXMTO - kldex Maintenance

Extended Description

7. The Buffer Handler is called
(PSTBFALT) to write the
changed index pointer segment
back.

8. When the last secondary list is
reached, exit is to LRETURN.
On error in secondary lists,
exit is to LABND772 (abend
code 772).

7. Call DLZDBHOO to write back the
changed index pointer segment .

... DLZDBHOO
DB Buffer
Handler

2-15

8. If last secondary list, return.
Otherwise, go to step 1 and
take next secondary list.

Routine Label Extended Description

DLZRDBLO

2-128 Licensed Material - Property of IBM

To Fig 2-12
Step 2B

OUTPUT _________ -.

DLZDXMTO

Routine Label

Figure 2-12.3. Replace Index Target Segment (Part 1 of 2)
"INPUT From I'" PROCESS -OUTPUT

Figure 2·12
Step:.

~

1. Find secondary lists and length OMB Work area :> Work area

CJ I I of index pointer segment. See Note I I
SOB See note

c=J 2. For primary index, continue with
step 1. Otherwise, construct old
index pointer segment.

3. Construct new index pointer
segment.

4. Replace index pointer segment:

A. If old and new index pointer
segment are suppressed, go to
step 1 and take next second-
ary list.

B. If old index pointer segment
was suppressed, insert new
index pointer segment.

C. If old and new index pointer
segment were not suppressed
and SRCH and SUBSEQ fields
not changed, replace index
pointer segment.

D. If the old and new index
pointer segment were not
suppressed and SRCH and
SUBSEQ fields were changed,
delete old index pointer seg-
ment and insert new index
pointer segment.

OLZOXMTO - Index Maintenance OLZOXMTO

Extended Description Routine label Extended Description Routine label

Note: The input control blocks are
used in all process steps. The output
work area is modified in all process

4. Replacing of the index pointer
is done in different ways,
depending on suppression of

steps. old and new index pointer

I. Find SECUSTs and PSDBs of LBLDWKA
segment.

index source segment, index A. When both old and new index
target segment, and index pointer segments are suppressed,
pointer segment and save their no action takes place.
address in work area. Decide
if primary or secondary has B. Continue with .insert sub· LINXNS
to be built. Find length of routine
index pointer segment, sequence
field, segment length, and pro· C. DLZDBHOO is called to read LGOXNS
tected data length. the old index pointer segment.

On errors, NE is returned. The
LROXNS

2. Construct old index pointer seg· LBLDXNS
ment from SRCH, SUBSEQ, and LGRBACK

data base log module is called
to log the old index pointer

DDATA fields. LNULSUP segment, and after the change of
LCALLBH the DDATA fields, the new index

pointer segment. DLZDBHOO is
called again to write the index

3. Construct new index pointer LBLDXNS
segment from SRCH, SUBSEQ, LGRBACK

pointer segment back
(pSTBFALn·

and DDATA fields. LNULSUP
LCALLBH D. LGOXNS

LDOXNS
LINXNS

Licensed Material - Prop.erty of IBM 2-129

Figure 2-12_3_ Replace Index Target Segment (part 2 of 2)

INPUT '" PROCESS -------------..

DLZDXMTO'-- Index Maintenance

Extended Description

5. When the last secondary list is
reached, exit is to LRETURN.
On error in secondary lists,
exit is to LABND772 (abend
code 772).

4. (con't)

E. If the old index pointer
segment was not suppressed,
but the new one was, delete
the old index pointer segment.

5. If last secondary list, return.
Otherwise, go to step 1 and
take next secondary list.

Routine Label Extended Description

2-130 Licensed Material - Property of IBM

To Fig 2-12
Step 2C

OUTPUT------____ ..

DLZDXMTO

Routine Label

Figure 2-12.4_ Insert FF-Keys
'" INPUT .. PROCESS ,.OUTPUT

From Fig.
2·12 Step
20.

OMB Work area 1. Loop through all PSOBs to Work area

c=J I I find index source segment. I I See Note
SOB See Note

c=J 2. Find length and key length of
index pointer segment.

3. Move FF-key to index pointer
segment.

4. Build temporary blocks.

5. Write the index pointer segment
to the data base or to the work-
file.

6_ If last PSOB, return. Otherwise,
go to step 1 and get next PSOB.

To Fig 2·12
Step 3

DLZOXMTO Index Maintenance OLZOXMTO

Extended Description Routine Label Extended Description Routine Label

Note The input control blocks are used
in all process steps. The output work

4. Build temporary blocks: LBLDCTLB

area is !Ilodified in all process steps. • SDB

\. DLZDDLEO passes the LSDB
address of the root segment with

• segment name = sequence
field name of index

an UNLD call. The DDIR
address is used and all PSDBs

pointer segment

in that DMB are inspected if all
index exists.

• update index maintenance
JCB and DSG.

2. Find length of index pointer LBLDWKA
segment and its key length:.
Decide if primary or second-
ary index has to be built.

5. Write index pointer segment to LLOAD
index data base if DLBL cards LWORKD5
are provided. Call DLZDLOCO LCALLBH
to open index data base if not DLZLOCO

3. Move FFs in the length of the LBLDXNS
yet open.

index pointer segment sequence
field to the index pointer
segment.

Licensed Material - Property of IBM 2-131

Figure 2-13_ HD Space Management
~ INPUT ~PROCESS po OUTPUT

'~~
> DSG PST > 1. Initialize work fields in PST

I DSGDMBNOII PSTWRKI I the PST. PSTDMBNM

PSTACBNM

USPCE

DMB --1--- ~ 2. Test for FBA. UMAX

IDMBFBA I - A. If yes, go to Figure 2-13.5.

PST --- - -- ~ 3. Determine function requested.
I PSTFNCTN I

A. If Get Space, go to Figure 2-13.1.

B. If Get Space Close to Root
Anchor Point, go to Figure
2-13.1.

C. If Free Space, go to Figure 2-13.2.

D. If Modify the Bit Map, go to
Figure 2-13.3.

E. If Backout Get Space, go to
Figure 2-13.4.

F. If Backout Free Space, go to
Figure 2-13.2.

G. If Backout Modify Bit Map, go to
Figure 2-13.3.

4. Exit.

Return to
caller

DLZDHDSO - Space Manager DLZDHDSO

Extended Description Routine Label Extended Descriotion Routine Label

I. PSTWRK I contains the length of the 3. (can't)
space to be obtained or freed.

C. Free space that has been allocated. DLZFRSPC
2. A. If the device is FBA, the device DLZDCIOO for the specified segment in a

characteristics must be obtained data base CI. The caller passes the
and the number of Cis per track address of the involved segment's
and Cis per cylinder calculated. PSDB in R5.

3. A. Get space in a data base CI for DLZGGSPC D. Turn on or off the bit in the Bit DLZDHDSO F1XBTMP
the specified segment as close as Map representing the specified CI
possible to a specified base RBA. of a data base. The caller specifies
The caller passes the address of the CI number in PSTBLKNM.
the involved segment's PSDB in
R5 and the base RBA in E. Backs out a previously processed DLZDHDSO
PSTBYTNM. 'Get Space' call.

I
B. Get space in a data base CI for DLZGGSPC F. Backs out a previously processed DLZFRSPC

the specified segment as close as 'Free Space' call.
possible to a root anchor point.
The caller passes the address of G. Backs out a previously processed DLZDHDSO FIXBTMP
the involved segment's PSDB in 'Modify Bit Map' call.
R5 and the CI number/RAP
number (in the format BBBR)
of the involved root anchor
point in PSTBYTNM.

2-132 Licensed Material - Property of IBM

Figure 2·13.1. Get Space (Part 1 of 2)

INPUT ------.
Figure From

2·13 Step 3

PST

I PSTBYTNM

Data Base CI

FSE

FSE

CI number 1

Bit Map

Buffer
Prefixes

CI 'number 1

Bit Map

DLZDHDSO - Space Manager

Extended Description

-

_.-

-

Note: F or the functions 'Get Space' and
'Get Space Close to RAP', the following
csects are used:

Main routine: DLZDHDSO

DLZDHDSO calls DLZGGSPC.

DLZGGSPC calls DLZRCHBK,
DLZLLCLC, DLZRRHPL, DLZRRHMP,
DLZMNLCT, and DLZMMUDT.

DLZRRHPL calls DLZRCHBK.

DLZRRHMP calls DLZRCHBK.

2. If distributed free space has been
specified, a check is made if this block
is to be left free. If nat;-a check is
made to see if a percentage of this
block is to be left free. If so, this
percentage is added to the space
requested.

To determine if enough space is
available in a CI, the FSE's in this
CI are checked. If there is more than
one FSE in a CI, the free space with
the largest of the following values
that will not cause a Bit Map change
is taken:

"" PROCESS r-0UTPUT

(See Notel

~ 1. Get the CI into the buffer > DLfI Buffer
pool that is pointed to by I I the base RBA.

~ ~ DLZDBHOO

DB Buffer
Handler

2·15

~ 2. Determine if enough space is
PST

available in this CI. If I PSTBYNM I there is enough, store RBA of
space and, if necessary. update
t~e Bit Map. el number 1

I Bit Mae I
3. If no space is found, go to

step 5.

~ 4. Locate another data base CI,
get it into the buffer pool,
and go to step 2 for the
following:

• A CI that is on the same
track that is in the buffer
pool.

• A CI that is on the same
cylinder that is in the
buffer pool.

• A Cion the same track that
has a 1·bit in the Bit Map.

DLZDHDSO

Routine Label Extended Description Routine Label

2. (can't)

• the size itself
• the size+minimum segment length

• the size+2.
A Bit Map Change is necessary if the
data base CI cannot accomodate the
maximum size segment because the
available space has been used. The
Bit Map update is performed by
DLZMMUDT.

4. The calculation of the Cl numbers
for a given range is done by routine
DLZLLCLC.

Searching through the buffer prefixes
is done by routine DLZRRHPL.

Searching through the Bit Map is done
by routine DLZRRHMP.

,

Licensed Material - Property of IBM 2-133

Figure 2-13.1. Get Space (Part 2 of 2)
INPUT ______ -.

DLZDHDSO - Space Manager

Extended Description

5. A re tum code of X'OC' will be re turned
to the caller.

","PROCESS

• A CI in the same cylinder
that has a 1-bit in the Bit
Map.

• A CI being within the delta
cylinders that is in the
buffer pool.

• A CI being within the delta
cylinders that has a 1-bit
in the Bit Map.

• The next available CI at
the end of the data base.

5. If no space is found, store
the error code.

6. Exit.

Routine Label Extended Description

2-134 Licensed Material - Property of IBM

I"'0UTPUT

> PST

IpSTRTCDE I

To Figure
2·13 Step 4

DLZDHDSO

Routine Label

Figure 2-13.2. Free Space
_INPUT

From Figure
2·13 Step 3

PST

IPSTIIUFFA I
APSTOFFST I -- ---
~PSTBLKNM I

DL/I Buffer

I Data Base CI I r-
I

I
DLII Buffer -- -~-

I Data Base CI I

CI number 1

I Bit Map I

DLZDH DSO - Space Manager

Extended Description

Note: For the functions 'Free Space'
and 'Backout Free Space', the
following csects are used:

Main routine: DLZDHDSO

DLZDHDSO calls DLZFRSPO

DLZFRSPO calls DLZMMLCT
and DLZMMUDT.

1. The scan will be finished when a FSE
with a higher offset than the one in
PSTOFFST is reached, or, when the
end of the FSE chain is reached.

2. The purpose of this check is to fmd
out whether there will be a contig.
uous piece of free space after process·
ing the current Free Space call ..

6. A Bit Map change is necessary if the
data base CI can accomodate the
maximum size segment after process·

• PROCESS -OUTPUT

(See Note)

~ 1. Scan through the chain of FSEs in the
specified data base CI to find the FSE
which applies.

~ 2. Check if there is more free space on the
right and/or left side of the segment to
be freed.

DL/I Buffer
~ 3. Build a new FSE and/or change existing

FSE(s).
:> IData Base CI I

4. Log the change of the data base CI. - Q "'>

+--+ IDLZRDBLO

Log Tape

I

DB Logger
2·16

5. Issue BFAL T call to the Buffer Handler.

+--+ DLZDBHOO

DB Buffer
Handler
2·15

-> 6. If necessary. update the Bit Map. > CI number 1

I Bit Map I
7. Exit.

To Figure
2·13 Step 4

DLZDHDSO

Routine Label Extended Description Routine Label

6. (con't)

ing the Free Space call. In this case,
the appropriate bit in the Bit Map
has to be turned on. The Bit Map
update is performed by routine
DLZMMUDT.

Licensed Material - Property of .IBM 2-135

Figure.2-13.3. Modify Bit Map
I" INPUT ,. PROCESS .. OUTPUT

From Figure
2-13 Step 3 ..,. (See Notel

ACB Ext. PST > 1. Getthe CI number ofthe Bit ""> PST

I DMBLRECL II PSTBLKNM I Map that applies_ I PSTBLKNM I
I UBTMPOfS I

2. Locate this CI in the buffer
pool DLZDBHOO

DB Buffer
Handler

2·15

-
DUI El,uffer > 3. Apply the change to the Bit DUI Buffer

I Bit Map I Map. I Bit Map I
-

PST
> 4. Log the change of the Bit Map.

Q I PSTWRK1-4 I DLZRDBLO

DB Logger Log Tape
2·16

Buffer > 5. Mark the buffer containing - Buffer
Prefix the Bit Map as altered. Prefix

r==:J I I DLZDBHOO

DB Buffer
Handler

2·15

To Figure
2-13 Step 4

DLZDHDSO - Space Manager DLZDHDSO

E ddD xten e escrlption Routine Label Extended Description Routine Label

Note: For functions 'Fix Bit Map' and
'Backout Fix BitMap', the following
csects are used:

Main Routine: DLZDHDSO

DLZDHDSO calls DLZMMLCT and
DLZMMUDT.

1. This step is performed by routine
DLZMMLCT.

2. A 'Byte Locate' call is issued. DLZDBHOO

3. The update of the Bit Map is performed
by routine DLZMMUDT.

5. A 'Buffer Alter' call is issued. DLZDBHOO

2-136 Licensed Material ... property of IBM

Figure 2·13.4. Backout Get Space
• INPUT '" PROCESS ",OUTPUT

From Figure
2-13 Step 3

PST
(See Note)

WSTBUFFA J ~-- ~ 1. Scan through the FSEs of the :> AOFF

IpSTOFI1ST I
given CI and find the FSE I I that applies.

I
DLII Buffer

I -""
2. If the previously freed space > PST

cannot be found, store error I PSTRTCDE I code and go to step 9.

PST -- f---- ~ 3. If the previously freed space
IpSTOFFST J is not in the middle of a freed

IAOFF I
area, go to step 5.

ilL/I Buffer

-~o
> 4. Create a dummy FSE.

JJ
;>

DL/I Buffer

I I I I

> 5. Change the FSE(s) to reflect "--,
the aquisition of the space.

6. Prepare the information for "> PST
logging the data base change. I PSTWRKl-4 I

Buffer > 7. Mark the buffer as altered. "> Buffer
Prefix

~ ~
Prefix

I I DLZDBHOO I I
DB Buffer
Handler

2-15

> 8. Update the Bit Map if necessary. > CI number 1 C~number 1

I BitMap I I Bit Mal! I
9. Exit. -"

To Figure
r 2-13 Step 4

DLZDHDSO - Space Maneger DLZDHDSO

E d d D xten e escrlDtlDn RDutine Label Extended DescriptiDn Routine Label

Note: This function backs out a Free
Space call processed previously. The

8. A Bit Map update is necessary if the
data base CI cannot accomodate the

following csects are used: maximum length segment after backing

Main routine: DLZDHDSO
out the previously processed Free
Space call. The Bit Map update is

DLZDHDSO calls DLZRCHBK_
performed by routine DLZMMUDT.

2. PSTOFFST contains the offset to the
part of the data base CI which was
freed during the Free Space call to be
backed out.

3. A return code of X'OC' is stored in
PSTRTCDE.

7. A 'Buffer Alter' call is issued to the DLZDBHOO
Buffer Handler.

Licensed Material - property of IBM 2-137

Figure 2-13.5. FBA Support Device Characteristics Routine
"INPUT From Figure

~PROCESS -OUTPUT
2-13 Step 2 • ..

AMO

> \ Issue SHOWCAT to obtain volume
PST

IAMOOSN :> !-PSTSWKAR I v serial number of data base •

PST ..I PST

1 PSTVLSR > 2. Issue GETVCE to obtain device >! PSTSWKAR I character istics.

3. Is device FBA?

4. If no, issue message D LZ831 I and
end task.

OMB
JOo..

5. If yes, calculate Cis per track and IOMBCICYL 1
Cis per cylinder. 1 OMBCITRK -I

OMB

6. Calculate scan value. ! OMBACBOL I

7. Exit.

• To Figure
2-13 Step 3

OLZOHOSO - Space Manager OLZOHOSO

Extended Description Routine Label Extended Description Routine Label

(

2-138 Licensed Material - Property of IBM

Figure 2·14. Open/Close
INPUT ____ ---.

PSTFNCTN -T-
I I

I
I
I
I
~-
I
I
I
I
I

~-
I
I
I
I
L_

DLZDLOCO - Open/Close

E ddD xten e eSCriptlon

1. This function is used by the utilities
DLZRDBCO and DLZURGPO. It is
also used by DLZDLAOO when the
first data base call to a not open data
base is issued (batch only). For
PROCOPT=L, only one data base is
opened. For all other processing
options, all related data bases are
opened as well (index data bases and
logically related data bases).

2. DLZDLROO uses this function for
positioning a HSAM data base at the
start point. It is also used by
DLZURDBO. It opens only one ACB,
i.e. for HISAM only KSDS or ESDS.

3. DLZDLDOO uses this function when it
fmds a logically related data base that
is not opened (this can happen because
of delete sensitivity propagation).

Note: For each of the following
steps, DOCDCB (Figure 2·14.11
is called.

1. If PSTFNCTN = PSTOCPCB,
loop through all SOBs and
secondary lists to find all
ACBs to be opened.

2. If PSTFNCTN = PSTOCOCB,

]
open this one ACB.

3. If PSTFNCTN = PSTOCOSG,

]] process all ACBs in OSG.

4. If PSTFNCTN = PSTOCOMB or
PSTOCALL, process all ACBs
in one OMB or all ACBs in all
OMBs.

Routtne Label

PCENTRY AROUND
PSROUT
DOCDCB

ACBENTRY
DOCDCB

DGENTRY
DOCDCB

ddD Exten e escriptlon

Return to
Caller

4. PSTOCALL + PSTOCOPN ;

DLZOLIOO uses this call to open all
data bases in the system eligible for
initial opening (online only).

PSTOCALL + PSTOCCLS ;

This call is used to close all ACBs in
the DL/I system (e.g. DLZDLAOO).

PSTOCDMB;

This call is used by DLZOLIOO for
deferred opening (online). It is also
used by DLZDXMTO and by data
base utilities. It opens/closes one
ACB (two ACBs for HISAM).

OUTPUT-----____ -.

ACB
Extension

IDMBOFLGS

JCB

IJCBORGN

DDIR

IDDIRCODE

DLZDLOCO

R outtne Lab I e

DEN TRY
DROUTINE
DOCDCB

Licensed Material - Property of IBM 2-139

Figure 2-14.1. Open/Close DOCDCB Routine
INPUT _______ -. ~~10: Fig

• ~PROCESS rOUTPUT.

Rll

IACBEXT :1
. --:: ~ 1. Issue DOS OPEN. '> ACBEXT

IDMBFLGS I
2. Issue 'MODCB' to update the

exit list.

3. Issue 'SHOWCB' and compare
DMB entries to VSAM define
entries.

4. For an empty ESDS file, write
control record.

5. Log the open record.

6. For HISAM KSDS, go back to
Step 1 to open ESDS.

7. Call compression routine, if
necessary.

• Return to
Fig 2-14

DLZDLOCO - Open/Close DLZDLOCO

Extended Description Routine Label Extended Description Routine Label

1. This part is called from all ~te ps of DOCDCB DOCOPEN
Figure 2-14 for opening. If the data
base is open, return immediately.
Immediate return is also done when the

4. The first control interval is written DOC FIRST NOTHIDAM
(for HISAM, as many records as fill
one CI). It contains DL/I control
information. For HD, the ACB is

call is PSTOCALL and initial opening
is not planned. Unsuccessful opens

closed and opened again to simulate
'NOT LOAD' to VSAM.

have return error code in PST and flag
in lCB. 'DLZ0201' is issued. 7. All PSDBs are inspected to determine DOCVARI

if a compaction routine with 'INIT'
2. The exit list is updated with the DOCMOD specified exists.

address of the error handling routines
of DLZDBHOO.

3. Control interval size, relative key DOCSHOW
position, and key length of DMB is
compared to VSAM catalog entries.
MISMATCH: DLZ025I, DLZ0271,
and DLZ0281.

For HISAM, the number of logical
records in VSAM catalog has to be
zero for PROCOPT=L. For HD, the
high used RBA is inspected. Message
'DLZ0231' is issued for conflicts.

2-140 Licensed Material - Property of IBM

Figure 2·15. DB Buffer Handler (Part 1 of 2)
• INPUT

PST

From
Caller

P'" PROCESS ------------..

..... DLZDBHOO:

I PSTFNCTN 1-- - - . .: I What function is requested? -
Flag Name ~ 1. For HDAM or HIDAM:

PSTBYLCT 02 A. Byte locate.
(See Figure 2·15.1, Step 1)

PSTBKLCT 01 B. Block locate.
(See Figure 2· 1 5. 1, Step 4)

PSTBYALT 06 C. Byte alter.
(See Figure 2·15.2, Step 1)

PSTBFALT 05 D. Mark buffer as altered.
(See Figure 2·15.2, Step 3)

PSTGBSPC 03 E. Get buffer space.
(See Figure 2·15.3)

PSTFBSPC 04 F. Free buffer space.
(See Figure 2· 15.9)

PSTBFMPT 04 G. Mark buffer as empty.
(See Figure 2· 15.9)

PSTPGUSR 07 H. Purge buffers.
(See Figure 2·15.10)

DLZDBHOO - Buffer Handler CSECT

Extended Description Routine Label Extended Description

1.

A. Locate relative byte number. DLZDBHOO BYLCT

B. Locate relative block number. DLZDBHOO BKLCT

C. Locate a relative byte number DLZDBHOO BYALT
and rtlark buffer altered.

D. Mark ft buffer containing
data as altered.

DLZDBHOO BFALT

E. DLZDBHOO GBSPC

F. DLZDBH03 MRKEMPT

G. DLZDBH03 MRKEMPT

H. Purge all buffers altered by DLZDBH03 PGUSRI
a task.

OUTPUT ________ ..

DLZDBHOO

Routine Label

Licensed Material - Property of IBM 2-141

Figure 2·15 . . DB Buffer Handler (Part 2 of 2)
rolNPUT

PST

I PSTFNCTN I

Flag Name ~

PSTBYLCT 02

PSTSTLEQ 09

PSTSTLBG OC

PSTWRITE OB

PSTPUTKY 00

PSTMSPUT OE

PSTBFALT 05

PSTGETNX OB

PSTERASE OA

OLZOBHOO - Buffer Handler CSECT

Extended Description

2.

A. Read a record by RBA from
a KSDS or ESDS.

B. Get a record by root key from
a KSDS.

C. Read the record containing
the first root segment in a
KSDS.

D.

E.

F.

G.

H.

I.

-PROCESS------------------------.

2. For HIDAM index, Simple HISAM,
or HISAM (ESDS or KSDS).

A. Read a record.

B. SETL equal.

C. SETL begin.

D. Write a new record to
HISAM ESDS.

E. Insert a record by key into
a HISAM KSDS.

F. Insert record(s) sequentially
into a HISAM KSDS.

G. Write a record by RBA to a
KSDS or ESDS.

H. Read the next record in a
KSDS.

I. Erase a record from a KSDS.

3. Exit

Routine Label Extended Description

DUDBH02 HSREAD

DUDBH02 STLEQ

DUDBH02 STLBG

DUDBH02 LOWRITE

DUDBH02 PUTKY

DUDBH02 MSPUT

DUDBH02 HSWRITE

DUDBH02 GETNX

DUDBH02 HSWRITE

2-142 Licensed Material - Property of IBM

Ralto
Cell.r

OUTPUT ______ ...

DLZOBHOO

Routine Label

\

Figure 2-15.1. Byte Locate/Block Locllte
INPUT PROCESS -------------,.

PST

I PSTBYTNM I

PST

I PSTBLKNM I

DLZDBHOO - Buffer Handler CSECT

Extended Description

From
Figure 2-15
Step 1 B

L The relative byte number for the
control interval is retrieved from
PSTBYTNM.

5. The same as in Step I except that
a control interval number is passed
in PSTBLKNM.

BYLCT:

1. Convert the given RBA to a VSAM
control interval (CII number and
an offset within the control
interval.

2. Locate the buffer address.

3. Go to Step 6.

BKLCT:

LOCATE Routine
2·15.4

4. Locate the buffer address.

LOCATE Routine
2·15.4

5. Convert the CI number to a RBA.

6. Exit.

Routine Label Extended Description

DLZDBHOO CONYER

To
Figure 2-15
Step 3

OUTPUT--------__ ..

PST

IpSTBYTNM

DLZDBHOO

Routine Label

Licensed Material - Property of IBM 2-143

Figure 2·15.2. Byte Alter/Buffer Alter

INPUT --------. From
Figure 2·15
Step 1 C

PST

IpSTBYTNM

PPST

IpPSTID

DLZDBHOO - Buffer Handler CSECT

Extended Description

From
Figure 2-15
Step 1 D

I. Byte alter is a combination of byte
locate (Figure 2· 15.1, Steps I ·3) and
buffer alter (Figure 2·1 S.2, Steps 3
and 4).

3. The bit that is turned on is in the
2·byte field BFFRUSID. The 16 bits
correspond from right to left to the
user ID indicated in the PPST. If a
user ID higher than 16 is assigned,
two or more users share the same
bit.

PROCESS -------------..

BYALT:

1. Convert the RBA to a block
number and an offset.

2. Locate the buffer address.

BFALT:

LOCATE Routine
2·15.4

3. Turn on the bit in the buffer
prefix to indicate that the
buffer was modified or altered
by this user.

4. Exit.

Routine Label Extended Description

DLZDBHOO MARKALT

2-144 Licensed Material - Property of IBM

To
Figure 2·15
Step 3

OUTPUT-------__ ~

BFFR

BFFRUSID I

DLZDBHOO

Routine Label

Figure 2-15_3. Get Buffer Space
• INPUT "" PROCESS -OUTPUT

From
Figure 2-15
Step1E

GBSPC:

PST SBIF f---- ~ 1. Get the address of the selected I PSTBYTNM I I I buffer subpool.

BFFRs ----:: ~ 2. Search the buffer prefixes of

t t the subpool to find a buffer
that can be used.

3. If a reusable buffer cannot be
found, wait until one becomes
available.

~ t DLZOWAIT

Online Wait Routine
2-6.B

BFPL 4. Move the control interval \.D

I BFPLRQCT I into the buffer prefix. > BFFR

IBFFRCIID I
BFFR ---- P> 5~ I f the buffer is busy, wait I I for it.

~ t DLZOWAIT

Online Wait Routine
2-6.B

Buffer Pool > 6. Write the buffer if necessary. " >EJ Control Blocks

I I Data Base

BFFR 7. Mark buffer 'non-reusable'. > BFFR

I I I 8. Put the address and the size
I

of the buffer into the PST. > PST

IpSTDATA I

9. Exit.
IpSTBYTNM I

To
Figure 2-15
Step 3

DLZDBHOO - Buffer Handler CSECT DLZDBHOO

extenBed Description Routine Label Extended Description Routine Label

1. The subpool information table (SBIF)
is used to find a buffer subpool with
buffers that contain the least number
of bytes needed for this space
request.

2. Buffers that are marked non-reusable
or are permanent write error buffers
cannot be used.

. ..

Licensed Material - Property of IBM 2-145

Figure 2-15.4. LOCATE Routine
INPUT ______ ..

PST DMB

L-I _----'I I~_
BFFRs

f

r-
I
I
I
I

--/-­
I
I
I
I
I
I
L_

EJ,---.L
Data Ba ..

DLZDBHOO - Buffer Handler

Extended Descriotion

LOCATE:

1. Search buffer prefixes for the
requested block.

t LOCATE Buffer Search
2-15.5

2. Check if the predecessor in the
write chain is in the buffer
pool. Write buffer if necessary.

t t LOCATE Buffer Write
2-15.6

3. If the block is new, put the
buffer on the write chain and
mark it as altered.

t t LOCATE New Block
Processing

2-15.7

4. If the block is not new, read
the block into the buffer.

5. Exit.

Routine Label

t LOCATE Read
2-15.B

Extended Descriotion

2-146 Licensed Material - Property of IBM

To
Figure 2-15.1
or 2-15.2

OUTPUTw.--__ -.

Data Ba,e

BFFRs

Buffer Pool
Control Bloc k

DLZDBHOO

Routine Label

Figura 2-15.5. LOCATE Buffer Search
-INPUT

.BFEBs PST

PSTBLKNM

PSTACBNM

PSTDMBNM

BFFAs SBIF

! lluS8 Chain I

f r

OLZOBHOO - Buffer Handler CSECT

Extended Description

F
F
S

~

r­
I

---I
I L_

2. Put the buffer prefIX address into
PSTBUFF A and the buffer address
into PSTDATA.

4. A buffer can be used if:

• It is oot marked
non-reusable.

• It is not a permanent
write error buffer.

• It is not currently
enqueued for a pending CI.

LOCATE:

1. Search the buffer prefixes for
the requested data base CI
(Control Interval).

A. If the CI is not found, go
to Step 4.

B. If the CI is found as pending
in the buffer pool, ENO on
this CI. After control is
returned, go. back to Step 1.

C. If the CI is found in the
buffer pool and is not busy,
go to Step 2.

D. If the CI is found in the
buffer pool and is busy, ENO
on this CI. After control is
returned, go back to Step 1.

2. Pass the buffer to the requestor.

3. Exit.
• ••••.• ~IA.turn to

Caller

4. Search the use chain from top
bottom for a buffer that can
be used.

5. If no buffer is available, ENO
on the pending CI of the buffer
on the bottom of the use chain.
After control is returned, go
back to Step 4.

6. Exit.

Routine Label Extended Description

To
Figure 2-15.4
Step 2

OUTPUT

OLZDBHOO

Routine Label

Licen$edMaterial - property of IBM

Figure 2-15.6. LOCATE Buffer Write
,.INPUT p" PROCESS'

From
Figure 2·15.
Step 2

PST

T BUFFOUNO:

PSTBLKNM > 1. Move the CI identifier into the

PSTACBNM
buffer prefix of the buffer
that is to be used.

PSTDMBNM

DMB
~ 2. If the CI being processed is not

I DMBRLBL~
---" new, go to Step 5.

§J
---.:: 3. If the predecessor in the write

, chain can be found in the buffer

L 1 pool, go to Step 5.

f r 4. I f there is a sequence error,
exit.

I
BfFRs

~ 5. If the buffer is busy, ENQ on 1 1 r-
--; this buffer.

T r L_ ~ 6. If the buffer does not need to
be written, go to Step 8.

auffer Pool 7. Write the buffer.
Control Block

I I
8. Take the buffer over.

9. Exit. •
DLZDBHOO - Buffer Handler CSECT

Extended Description Routine Label Extended Description

L Moving the CI identifier means
enqueuing on the pending CI.

2. This check is made to ensure that
the CIs of the data base get initialized
in sequence.

4. X'04' is stored in PSTRTCDE.

5. A buffer is busy if:

• It is being read into.
• It is being written.
• It is waiting for its

predecessor in the write
chain to be written.

8. 'Taking over' a buffer consists of:

• Moving the CI identifier from
BFFRNPST to BFFRPST.

• Turning off BFFRPNNQ and
turning on BFFREXNQ in
BFFRSW,

• Putting the buffer at the
top of the use chain.

• Clearing the buffer (with
zeros).

2--148 Licensed Material - Property of IBM

.. OUTPUT

I

BFFR

I I

PST

IpSTRTCDE I
Return to
Caller

EJ
Data Base

~ BFFR
SBIF II I I I Use Chain

:t
Figure 2·15.4
Step 3

DLZDBHOO

Routine Label

Figure 2·15.7. LOCATE New Block Processing
• INPUT ~ PROCESS ,,"OUTPUT

From
Figure 2·15.4

Step I.
~ TESTNEW1:

BFFRs "--,- ~ 1. Search buffer pool for the

~ t I predecessor in the write chain.

I If it is found, go to Step 3.

I 2. If the predecessor cannot be

I found, go to system ABEND.

I ... I DLZABEND

Abend 845

I 2·4.2

I
~- ~ 3. If the predecessor is not being
I written, go to Step 5.

I 4. Enqueue the predecessor that is
I being written.
L_ ~ 5. If the predecessor is not a

permanent write error buffer,
go to Step 7.

6. Mark the current buffer as a
permanent write error buffer.
Then go to Step 9.

TI
--,.. > BFFR

I I 7. Put the buffer on the bottom
of the write chain.

I I
PPST 8. Mark the buffer as altered.

I PPSTID I 9. Put the buffer prefix address
and the buffer address into the
PST. > PST

I PSTBUFFA I
10. Exit. I PSTDATA I

To
Figure 2-15.4
Step 5

DLZDBHOO - Buffer Handler CSECT DLZDBHOO

Extended Description Routine Label Extended Description Routine Label

4. The purpose for enqueuing the
predecessor is to wait for completion
of the writing. This is necessary to
frod out if the buffer is a permanent
error buffer.

,

Licensed Material - Property of IBM 2-149

Figure 2·15.S. LOCATE Read
,.INPUT .. PROCESS .. OUTPUT

From
Figure 2·15.4
Step 4

EJ Li+ ''''''0'
Data Base "> 1. Read the requested CI from the

data base. > ~~~ft~~i~~~Ck
I I ,

RPL ----I> 2. If no read error occurred, go

I RPLFDBK I - to Step 4.
(VSAM)

3. If an I/O error occurred, put
return code X'OS' (PSTIOERR)
in PSTRTCDE. Then exit. > PST

• IpSTRTCDE I

Return to -.,.
Caller

4. Put the buffer prefix address
and the buffer address into the
PST. > PST

rpSTBUFFA 1
rpSTDATA 1

5. Exit.

To I-
Figure 2·15.4
Step 5

DLZDBHOO - Buffer Handler CSECT DLZDBHOO

Extended Description Routine Label Extended Description Routine Label

2-150 Licensed Material - Property of IBM

Figure 2·15.9. Free Buffer Space
"INPUT om Fr

Fig
St.
an

ure 2-15
ps IF

dlG

PST BFPL

PSTBLKNM -I BFPLSUBD I
PSTDMBNM

PSTACBNM
DMB ,
Subpool

BFFRs Directory

~ 11 I

r
r-
I

BFFR

I I I , L_

--I

DLZDBH03 - Buffer Handler CSECT

Extended Description

I. The DMB subpool directory and the
DMB number in PSTDMBNM are
used to find the buffer subpool that
applies to the call.

2. The caller can have the buffer
handler free:

• Only one buffer. (PSTDMBNM,
PSTACBNM, and PSTBLKNM
,eO).

• All buffers of a data set.
(PSTDMBNM and PST ACBNM
,eO; PSTBLKNM = 0).

• All buffers of a data base.
(pSTDMBNM = DMB number of
the data base; PSTACBNM and
PSTBLKNM = 0).

• PROCESS • OUTPUT

....
"T MRKEMPT:

l> 1. Get the first buffer prefix in
the subpool that applies to the
call.

i> 2. If PST fields PSTDMBNM, PSTACBNM,
and PSTBLKNM do not match BFFR
fields BFFRDMB, BFFRDCB, and
BFFRCIID, go to Step 4.

> 3. If the PST fields match the
BFFR fields:

A. Mark the buffer as empty . > BFFR

I I B. Issue RELPAG macro.

C. Put the buffer on the bottom
of the use chain. > SBIF

I I
4. If th is is not the last buffer

prefix, get the next one and
go back to Step 2.

To
Figure 2-15
Step :l

DLZDBHOO

Routine Label Extended Description Routine Label

Licensed Material - Property of IBM 2-151

Figure 2·15.10. Purge Buffers (CHKP Function) (Part 1 of 2)
,.INPUT

F
PROCESS--------------------------...

F
S

~ PGUSR:

PST PCB

I PSTD~PCB IIOBPCBJCB I

JCB --
I JCBPRESF I

PST POIR

I PSTPSB II POIRSILA I

PSIL

I PSILOIRA I

OOIR - f-

I OOIRAOOR I

OMB -
IOMBORG I
ACBXT --
IOMBACBRP I

RPL l-
I RPLACB I

(VSAM)

OMB - l-
IOMBORG I

OLZOBH03 - Buffer Handler CSECT

Extended Description

2. Field JCBPRESF in the JCB is checked
for encoded checkpoint function
(FUNCCHKP X'85'). If function is not
CHKP, go purge the DL/I buffers.

5. If data base organization is not SHlSAM
(field DMBORG; bitDMBSHIS X'O!' not
set on), or HISAM (bit DMBISAMI
X'02' not set on), or an index data base
(bit DMBNDEX X'08' not set on) go
update to next PSIL entry.

9. VSAM ENDREQs are issued for every
SHISAM, HISAM, and index data base
to ensure that the VSAM buffers are
written to the data base.

1. Get address of the JCB.

2. If function is not CHKP, go to Step 19.

3. Get address of DDIR entry.

4. Get address of DIVIB prefix.

5. If data base organization is not SHISAM,
HISAM, or index data base, go to Step 17.

6. Get the RPL address.

7. If no request were made on this RPL,
go to Step 11.

8. Go test if ACB busy.

TESTACB

'Test ACB Routine
2-15.12

9. Issue VSAM ENDREG for this RPL.

Routine Label Extended Description

2-152 Licensed Material - Property of IBM

OUTPUT __________ ..

OLZOBHOO

Routine Label

Figure 2·15.10. Purge Buffers (CHKP Function) (Part 2 of 2)
'" INPUT

ACBXT -
IOMBACBRP I

RPL I-
IRPLACB I
(VSAM)

PSIL -
IpSILLNGH I
PSIL -
IpSILOIRA I

OLZOBH03 - Buffer Handler CSECT

Extended Description

II. If the entry is for HISAM, update to the
next ACB extension. For HISAM,
ENDREQs must be issued for both the
KSDS and ESDS.

18. Continue scan of the PSB intent list until
all have been processed. When processing
is completed, go purge the DL/I buffers.

PROCESS -------------..

10. Post OMB ECB complete.

11. If HISAM data base, update to next
ACB extension.

12. Get the RPL address.

13. If no request were made on this RPL,
go to Step 17.

14. Go test if ACB busy.

Test ACB Routine
2·15.12

15. Issue VSAM ENOREG for this RPL.

16. Post OMB ECB complete.

17. Update to next PSB intent list entry.

18. If not end of PSB intent list, return
to Step 3.

19. Go to normal purge.

Routine Label Extended Description

To Figure
2·15.11

OUTPUT--_____ •

OLZOBHOO

Routine Label

Licensed Material - Property·· of IBM 2-153

Figure 2-15.11. Purge Buffers (Part 1 of 2)
~INPUT

BFFB!

~ t
PPST BFFRs

IpPSTID I B
BFFR PST

I I PSTDMBNM

PSTACBNM

PSTBLKNM

BFFRs

t f

o LZDBH03 - Buffer Handler CSECT

• PROCESS

F
F

rom
igu
·15

re
2 .10

~ --,.

- -..:::: ..

t- -....:"" ..

,-
I

~
I
1-- ~
I
I

I
(-- ~
I
I
L_ ~

PGUSRI :

1. Get the first of all buffer
prefixes.

2. If the buffer was not altered
by this specific user, go to
Step 11.

3. If the identifiers are not
equal, go to Step 11.

4. If the buffer is not
non-reusable, go to Step 6.

5. Mark the buffer empty, issue
RELPAG macro, and put the buffer
on the bottom of the use chain.
Then go to Step 11.

6. I f the buffer is not a
permanent write error buffer,
go to Step 10.

7. Delete this user from the user
mask field in the buffer prefix.

~OUTPUT

BFFR

I I

p > BFFR

I I

DLZDBHOO

Extended Description Routine label Extended Description Routine

I. This routine scans all buffer prefIxes. 7. Before the bit in BFFRUSID, which

3. The caller may select a certain data
base, a certain data set, or certain
buffers to be purged. The choice is

corresponds to the user identifier (in
the PPST) of the current task, is turned
off, a check is made whether any tasks
are active that would share the bit with

indicated by putting the number of
the desired item into PSTDMBNM,
PST ACBNM, or PSTBLKNM. Zeroes

the current task. (Refer to the notes in
the Figure for routine BFALT.)

in these fields indicate that purging of
all components of the item on the next
higher level is desired. This module
checks the contents of the above
mentioned PST fields against the con-
tents of fields BFFRDMB, BFFRACB,
and BFFRCIID in the buffer prefIx.

4. Buffers that are non-reusable are freed
during a purge call.

6. Permanent write error buffers are not
freed until all tasks, which either
aile red the buffer, or might be
mterested in it because they use the
data base, have terminated.

. ..

2-154 Licensed Material - Property of IBM

SBIF

luse Chain I

L b I a e

Figure 2-15.11. Purge Buffers (Part 2 of 2)
_INPUT

BFFA PSB 1----

I I PCB

JCB

DSG

Buffer Pool
Control Block

Data Base
Control
Interval {Cil

DLZDBH03 - Buffer Handler CSECT

Extended Description

8. A task is a potential user of a buffer
if at least one of the DSGs in the
PSB has the same DMB and ACB as
in fields BFFRDMB and BFFRACB
of the buffer prefix.

.. PROCESS

~ 8. If BFFRUSID is now zero, or if
there are no more potential
users for this buffer:

A. Mark the buffer empty.

B. Issue RELPAG macro.

C. Put the buffer on the bottom
of the use chain.

9. Go to Step 11.

> 10. Write buffer to Disk.

11. If this is not the last buffer
prefix, get the next one and
return to Step 2.

12. Exit.

Routine Label Extended DescriptIOn

_OUTPUT

BFFA SBIF

I I I Use Chain I

~EJ
Data Base

To
Figure 2·15
Step 3

DLZDBHOO

Routine Label

Licensed Material - Property of IBM 2-155

Figure 2·15.12. Test ACB Routine
INPUT ______ -.

A1

A7

ACBXT

PST

I PSTPAEAD

A2

AO

A2

DLZDBH03 - Buff~r Handler CSECT

Extended Description

3. Byte 2 of DMB ECB set to X'SO'

4. Bit PSTIWAIT in field PSTCLRWT in
PST set on.

6. Bit PPSTBF in field PPSTIND in PPST
set on.

7. DLZIWAIT macro issued.

S. Bit PPSTBF in field PPSTIND in PPST
set off.

9.

10. X'80' in byte 2 of DMBECB turned off.

1. Save RPL address.

2. Get PST address.

3. If OMB ECB not busy. go to Step 9.

4. Indicate wait was necessary.

5. Get PPST address.

6. Indicate enqueued by buffer handler.

7. Issue wait.

8. Reset enqueued by buffer handler
indicator.

9. Restore RPL address.

Indicate OMB ECB is busy.

11. Return to caller.

Routine Label Extended Description

TESTACB

NOWAIT

2-156 Licensed Material - Property of IBM

To Figure
2·15.10
Step 9 or 15

OUTPUT---___ •

AO

A1

A2

PST

IpSTCLAWT

A3

PPST

PPST

IpPSTIND

A1

ACBXT

IDMBECB

DLZDBHOO

Routine Label

Figure 2-16. DB Logger (Overview)
INPUT ______ From

~PROCESS-----------------------~ OUTPUT---___ ~
Calle •

DLZRDBLO - DB Logger CSECT

Extended Description

1.

2.

3.

4.

5.

6.

7.

Note: The three different functions
of the logger are associated with the
three different entry points into it:
• DLZIDBLO (Step 2)
• LOGWR (Step 4)
• WRIAHEAD (Step 5)

1_ Initialize logger. (See Figure 2-16.1)

2. Build a log record and move it to
the log I/O area. (See Figure 2-16.2)

3. Give control to asynchronous log
subtask (online only). (See Figure
2-16.3)

4. Move a log record (which has been
built by another module) to the log
I/O area. (See Figure 2-16.4)

5. Write log information physically to
tape. (See Figure 2-16.5)

6. Close the log file. (See Figure 2-16.6)

7. Check for disk errors. (See Figure
2-16.7)

Routine Label Extended Description

DLZRDBLO DLZRDBLO

DLZIDBLO

ONLINT
ONLLOGW

LOGWR

WRIAHEAD

LOGCLOSE

PUTERROR

• Return to
Caller

To -.
DLZBNUCO
ABEND
Routine.

DLZRDBLO

Routine

Licensed Material - Property of IBM

Label

2-157

Figure 2-16.1. Initialize Logger
INPUT _______ • From

Figu
Step

re 2·16

*.

DLZRDBLO - DB Logger CSECT

Extended Description

I. The entry point to the logger module
initially points to the initialization
routine. After initialization it con·
tains the entry pOint of DLZIDBLO
All of the entry points to the various
logger routines are in the SCD after
initialization.

2. If tape logging is specified, the DTF
is opened.

If disk logging is specified, the ACB
is opened and tested if successful.

3. Message QIZ0201 is issued if an
open error occurred with disk
logging.

Message DLZ077I is issued if the
log was opened successfully with
disk logging.

'" PROCESS

1. Initialize entry points in
SCD.

2. Open the log file and if =rJ successful turn open bit
on in SCD.

3. Issue error message if open
failed and disk logging was
specified.

4. Restore registers.

To • Figure 2·16

Routine Label Extended Description

DLZRDBLO

2-158 Licensed Material - Property of IBM

,.OUTPUT

..,;> SCD

I I

DLZRDBLO

Routine Label

Figure 2-16.2. Build Log Record (Part 1 of 2)
~ INPUT ,. PROCESS ,.OUTPUT

From
Figure 2-16,

Ste.

F

JCB
1. Build the log record:

IJCBPRESF 1- ---: ~ A. Detect the kind of log call.

r-:: I> B. Move header information
PST DSG into work area,

I I I PSTBYTNM DSGDCBA 1---':: I> C. Move data into workarea.

]
PSTBLKIllM DSGINDA I -
PSTDATA r-: I> 0, I f all data does not fit L-> PSTOFFST DSGDMBNO into log record, move as
PSTWRK~ DSGACBNO I much data as possible. ;---0.1 1
PSTWRK40 I

DMB _J 2. Move date and time into Log Work Area

I I log record.
DCBLRECL

DMBDL

DUI or VSAM DMBPRS2
BUFFER

SCD

\SCDCWRKL I

I I > 3. Move log record to I/O area: >
I 1 LOG WORK

AREA If log record does not I/O Area

fit into I/O area, do Step
4, Otherwise, go to Step 5.

DLZRDBLO - DB Logger CSECT DLZRDBLO

Extended Description Routine Label Extended Description Routine Label

I. Depending on the kind of log record DLZRDBLO DLZIDBLO
being processed, the logger will build
one of the following type oflog record:

• Physical insert record
• Physical replace record
• Physical delete record
• Logical delete record
• Pointer maintenance record.

The maximum logical record size
for a log record is 512 bytes. The
blocks are undefined with a maximum
of 1024 bytes.

Licensed Material - Property of IBM 2-159

Figure 2-16.2. Build Log ReGord (Part 2 of 2)
• INPUT _____ I PROCESS

I I "&"'_--"> 4. Write the contents of the
.... I-'O-A-re-a-....I 1/0 area to tape or disk.

A. If logging is being done in
a batch environment,
issue the PUT macro
immediately.

B. If logging is being done in
an online environment,
pass control to:

"I I
• • Asynchronous

Log Subtask
2-16.3

"--------'

5. Check for disk errors
if disk logging. See
Figure 2-16.7.

SCD----'1A"> 6. If the log request is associated
I I with a buffer, move the

SCDLOCOU number of the last written
log block from SCDLOCOU
into the buffer prefix. _-.-___ -1> BFFR

I BFFRLocd

DLZRDBLO - DB Logger CSECT

Extended Description

4 B. In an online environment, the
PUT macro is issued from the
Asynchronous Log Subtask in
order to avoid losing tasks when
EOV is encountered on the log
tape.

6. The purpose for keeping the number
of the last written log block in the
SeD and in the BFFR is to enable
DLZDBHOO to determine if a log
record has to be written out before
an update is applied to a data base.

7. There will be more data to be logged
if all data did not fit into the log
record. See Step 1 D.

7. If more data is to be logged,
return to Step 1 C_
Otherwise;

Routine Label Extended Description

2-160 Licensed Material - Property of IBM

To
Figure 2-16

DLZRDBLO

Routine Label

Figure 2-16.3. Asynchronous Log Subtask
~ INPUT ~ PROCESS I"'0UTPUT

From
Figure 2-16.2,

SlePI.

~
SCD

ISCDESECB I > 1, Lock the SYSTEM ECB. > SCD

ISCDESECB I
PRIVATE ECB

I PRIVECB I > 2. Turn off posted PRIVATE ECB, > PRIVATE ECB

SCD
IPRIVECB I

...J
ISCDELECB I 3. Post the LOG I/O ECB, > SCD

ISCDELECB I

PRIVATE ECB ,
I PRIVECB I r----~ 4. Issue IWAIT on PRIVATE ECB.

Log I/O Area

I Q I 5. Issue PUT. >
PRIVATE ECB

TAPE LOG

IPRIVECB I ;> 6. Post the PRIVATE ECB. > PRIVATE ECB

IPRIVECB I
SCD

\SCDELECB I > 7, Turn off posted LOG I/O ECB. > SCD

ISCDELECB I
8. Go into wait again on

LOG I/O ECB.
SCD

I SCDESECB I > 9. Post the SYSTEM ECB. SCD

ISCDESECB I

TO.
Figure 2-16.2,
Step 5

DLZRDBLO - DB Logger CSECT DLZRDBLO

Extended Description Routine Label E d d De xten e sCriptIOn R outon. L b I a e

Steps 1,2,3,4, and 9 are performed DLZRDBLO ONLINT The Asynchronous Log Sub task is
within CSECT DLZRDBLO. waiting on this ECB and when it gets

posted, DOSjVS will mark this sub-
Steps 5, 6, 7, and 8 are performed DLZRDBLO ONLLOGWF task as dispatchable.
within the Asynchronous Log Writer
Subtask. 4. IW AIT will have the effect that the

1. The SYSTEM ECB is used for commu-
nication between DLZRDBLO and
DLZODP. It is locked in order to

DL/I 'main task' will be put into wail.
The Asynchronous Log Sub task can
then be started by DOSjVS.

prevent any other task from entering
the logger while the I/O is going on.

2. The PRIVATE ECB is used for commu-
nication about the completion of I/O
between the Asynchronous Log Subtask

a and DLZRDBLO.

3. The LOG I/O ECB is used for commu-
nication about the need to issue a
PUT macro between DLZRDBLO and
the Asynchronous Log Subtask.

Licensed Material - Property of IBM 2-161

Figure 2-16.4. Move Log Record
-INPUT ~ PROCESS -OUTPUT

From
Figure 2·16.
Step 4

(See Notel

LOG
RECORD

I DLENGTH I ---- --- ~ 1. If the log record fits into
the space currently

LOG I/O available in the LOG I/O
AREA AREA, go to Step 4. I CURSIZE

I

LOG I/O
AREA

I I 2. Write the current contents

0", EJ of the LOG I/O AREA to the
log tape or disk.

3. Check for disk errors if
disk logging.
(See Figure 2-16.3.)

LOG 'WORK
AREA > 4. Move the log record to

I LOG RECORDI the LOG I/O AREA. > LOG I/O AREA

I I

To
Figure 2·16

DLZRDBLO - DB Logger CSECT DLZRDBLO

Extended Description Routine Label Extended DescriPtion Routine Label

Note: This function is used DLZRDBLO LOGWR

• Open log records (ID X'2F')

• Scheduling records (10 X'OB')
• Termination records (ID X'OT)
• Checkpoint records (10 X'41')

2-162 Licensed Material - Property of IBM

Figure 2·16.5; Write Log Information
-INPUT From • PROCESS ",OUTPUT

Figure 2·16,
Stop 5

•
Log 110 ArA

I 1. Issue PUT macro to write current
contents of the log I/O area to the Q EJ log tape or disk. or

2. Check for disk errors if disk logging.
(See Figure 2·16.7)

To
Figure 2-16

DLZRDBLO - DB Logger CSECT DLZRDBLO

Extended Description Routine Label Extended Description Routine Label

L This function is used by DLZRDBLO WRIAHEA[
DLZDBHOO, when log
information associated
with a data base update
has not been written to
tape at the time the data
base update was being
done_

Licensed Material - Property of IBM 2-163

Figure 2-16.6. Close Log File
INPUT ___ ---... OUTPUT_---.--__ -.

1. Reset open bit in SCD. §"!2
SCD 2. If tape logging, close tape I

DTF. DTFMT

RPL
3. If disk logging, close ACB (LOGOUT)

,.. and test for close errors.
ACB

4. If close errors, issue (LOGACB)
error message.

5. Restore registers.

To
Figure 2·16

DLZRDBLO - DB Logger CSECT oOLZRDBLO

Extended Description Routine Label Extended Description Routine Label

1. Either the tape or disk log file is DLZIDBLO LOG CLOSE
closed in this subroutine.

This subroutine is used by DLZODP,
DLZRDBLO, DLZRRCOO, and
DLZBNUCO.

4. Message D LZ021I is issued.

2-164 Licensed Material -Property of IBM

Figure 2·16.7. Disk Errors
INPUT ______ •

RPL

SCD

DLZRDBLO - DB Logger CSECT

Extended Description

I. The log file is closed so that the
operator could dump the file
(optional) before continuing.

2. Checks to see if the user specified
PAUSE on the DL/I control
parameter.

3. Message DLZ076I is issued.

4. Message DLZ077I is issued.

5. Message DLZ0791 is issued.

6. If the reply is 'GO', a check is made
to determine if I or 2 disk files are
being used for logging. If there are 2
files, the second fIle is opened and
control is returned to the PUT routine.

Message D LZ004 I is issued.

1. Perform close log file routine.

2. If full extent, check if
PAUSE is indicated.

Close Log File
2·16.6

3. If PAUSE is indicated, issue
message and wait for reply.

4. If reply is 'cancel' issue
message.

5. If reply is 'go', open next file,
issue file used message, and
continue.

6. If an I/O error occurs, issue
message.

Routine Label Extended Description

DLZIDBLO LOGCLOSE

DLZRDBLO PUTERROR

To
DLZBNUCO
ABEND
Routine
(Figure 2·4.2)

OUTPUT ___________ ~

ACB

(LOGACB)

DLZRDBLO

Routine Label

Licensed Material - Property of IBM 2-165

Figure 2·17. CICS Journal Logger (Overview)

INPUT ------. From

Call.

~ PROCESS __ ----------....

Note: The four different functions
of the logger are associated with
four different entry points into it:
• DLZIDBLO (Step 2)
• OPLOG (Step 3)
• WRITEEXT (Step 4)
• WRIAHEAD (Step 5)

1. Initialize the logger.

2. Build a log record and move it
to the CICS journaling buffer.
(See Figure 2·17.1)

3. Build open log record(s) and
move to CICS journaling buffer.
(See Figure 2·17.2)

4. Move a log record which has been
built by another module to the
CICS journaling buffer.
(See Figure 2·17.3)

5. Write journal information physically
to tape.
(See Figure 2·17.4)

OLZROBL1 - DB Logger with CICS Journaling CSECT.

Extended Description Routine Label Extended Description

1. Move all of the entry points DLZRDBLI DLZRDBLO
to the logger into the SeD.

2. DLZRDBLO

3. OPLOG

4. WRITEEXT

5. WRIAHEAD

2-166 Licensed Material - Property of IBM

Ret"!'to
Caller

OUTPUT-------__ ..

OLZROBL1

Routine Label

Figure 2-17.1. CICS Build Log Record (Part 1 of 2)
-INPUT • PROCESS ~OUTPUT

From
Figure 2-17

PST JCB

step.

~

PSTBYTNM IJCBPRESF I .
PSTBLKNM

PST DATA DSG

PSTOFFST I I --- ~ 1. Build the log record. ;> LOG WORK AREA
PSTWRKl-4 I I

I

~G~F~~ VSAMI

I

DMB

I

LOG WORK
AREA > 2. Issue DFHJC TYPE=(WRITE,DL/I)

I I to get the log record moved
;> CICS JOURNAL to the CICS journal buffer.

BUFFER

3. If physical I/O is not necessary, I I
go to Step 10.

SCD

ISCDESECB I > 4. Lock SYSTEM ECB. > SCD

I SCDESECB I
5. Issue DFHJC TYPE=WRITE

again.

6. If no I/O error occurred,
go to Step 8.

7. Log I/O error - system
ABEND.

" ~DLZBNUCO J ABEND Routine
2-4.2

DLZRDBLI - DB Logger with CICS Journaling CSECT DLZRDBLI

Extended Description Routine Label Extended Description Routine Label

I. DLZRDBLI DLZRDBLO

4. The SYSTEM ECB is locked in order IONEC!
to prevent any other task from entering
the logger while the I/O is going on.

Licensed Material - Property of IBM 2-167

Figure 2-17.1. CICS Build Log Record (Part 2 of 2)
!" INPUT ~ PROCESS fOUTPUT

JCT
Jo.

8. Get the new number of the last SCD

IJCTBLKNM written journal block from the ~ ISCDLOCOU I
JCT.

9. Post the SYSTEM ECB.

10. If the log request was not
associated with a buffer, go
to Step 12_

SCD 11. Store the block number of
ISCDLOCOU the last journal buffer written BFFR

to tape into the buffer prefix. > IBFFRLOCO I
12. If the data to be logged did

not fit into one log record,
retu rn to Step 1.

To
Figure 2-17

DLZRDBLl - DB Logger with CICS Journaling CSECT DLZRDBLl

Extended Description Routine Label Extended Description Routine Label

8. The purpose for keeping the DLZRDBLI GETECN
CICS event control number
is to enable DLZRBHOO to
determine if a log buffer has
to be written before an update
is applied to a data base.

2-168 Licensed Material - Property of IBM

Figure 2-17_2_ CICS Move Log Record
,.INPUT

DDIR

re2-17.3
From
Figu
tep S I.

.

I'" PROCESS

•
ISee Note)

~I I -,--- ~
I .

1. Locate the first DDIR entry.

DMB

r---t> 2. If the data base was not

I
opened, go to Step 5.

10MB I
!DMBACBXT!

t-- I> 3. Build the open log record

I for the data base referenced
by this DDIR entry.

I
I 4. Move open log record to

I CICS journaling buffer.

L_ ~ 5. If this is not the last
DDIR entry, get the next
001 R entry and return to
Step 2.

DLZRDBL1 - DB Logger with CICS Journaling CSECT

Exten ded Description Routine Label Extended Descrintion

Note: Since the CICS journal tape is not
yet open at DL/I initialization, the open

DLZRDBLI OPLOG

log record(s) are built and moved before
the first scheduling call is logged.

2. A data base might not have been
opened because of the OPEN=
DEFERRED option or because
of an open errQr.

4. See Figure 2-17.1, Steps 4-9.

I

.. OUTPUT

> LOG WORK AREA

I I

To
Figure 2-17

DLZRDBL1

Routine

Licensed Material - Property of IBM

Label

2-169

Figure 2·17.3. CICS Move Prebuilt Log Record
,. INPUT

From
• PROCESS -OUTPUT

Figure 2-17.
Step 4

• (See Notel

LOG WORK AREA 1. Get the prebuilt log record

I and move it to the CICS CICS

journal buffer. > JOURNAL BUFFER

I I

TO.
Figure 2·17

DLZRDBL 1 - DB Logger with CICS Journaling CSECT DLZRDBLI

Extended Description Routine Label Extended Description Routine Label

Note: This function applies to DLZRDBLl WRITE EXT
scheduling and termination
records built by the scheduling
termination routine.

I. See Figure 2·17.1, Steps 4-9.

2-170 Licensed Material - Property of IBM

Figure 2·17.4. CICS Log Writing
I" INPUT .. PROCESS ,.OUTPUT

From
Figure 2·17

SCD

St~i.
~ (SooNotol

ISCDLOCOU I > 1. Store the block number of
the block that is going to be
written in the JCA (Journal
Control Block). > JCA

IJCAECN· I
SCD

ISCDESECB I > 2. Lock the SYSTEM ECB. > SCD

CICS
ISCDESECB I

JOURNAL BUFFER

I I :> 3. Issue DFHJC TYPE=(WAIT,DL/I)
to get current contents of
CICS journal buffer written >0 to tape.

JCT

IJCTBLKNM I
> 4. Get the block number of the LOG TAPE

last written journal
block from the JCT
(Journal Control Table). > SCD

ISCDLOCOU I
SCD

ISCDESECB I > 5. Post the SYSTEM ECB. > SCD

ISCDESECB I

To
Figure 2·17

DLZRDBL1 - DB Logger with CICS Journahng CSECT DLZRDBLI

Extended Description Routine Label Extended Description Routine label

Note: This function is used by DlZDBHOO DlZRDBLl WRIAHEAD
when log information associated with a
data base update was not written to tape
when the data base update was being
done.

1. Refer to note for Step 8 of
Figure 2·17.1.

2. Refer to note for Step 4 of
Figure 2·17.1.

Licensed Material - Property of IBM 2-171

Figure 2-18. Start Transaction
.. INPUT

CSA CSAOP~LA

I Cs!\OPFLAlrCSAOL~ I

DLlDLIAL .
DLlTTRM

DLlSTRM

DLiNUC

OUI Nucleus

SCD

I SCDDBMPsl SCD I Address

m
S/VS

Fro
CIC
DF

i.
,

--,.

.. PROCESS

L....
r""

II> 1. Check if DL!I nucleus loaded.

~ 2. Check if MPS already active.

TCA -....::~ 3. Attach master partition I TCAKCRC I controller.

.... DFHKC TYPE~ATTACH
COND~YES
TRANS I D~SCDB

4. Return.

... DFHPC TYPE~RETURN

DLZMSTRO - MPS Start Transaction CSECT

E d dO xten e escrlptlon R Qutlne L abel Extended Descriotion
0

I. Module identifier (DLZMSTRO) is
defined here.

DLZMSTRO joLZMSTRO

Write message DLZ0971 if nucleus not
loaded or not active and go to Step 4.

2. Write message DLZ I 011 if flag
SCDXECB indicates MPS XECBs
already defined and go to Step 4.

3. Write message DLZ083I if attach
fails with a return code in TCAKCRC
and go to Step 4.

4. !RETURN

2-172 Licensed Material - Property of IBM

.. OUTPUT

CICS/VS > Dispatch Chain

..-

MPC

DLZMPCOO

To
CICS/VS
DFHPCP

DLZMSTRO

Routine Label

Figure 2·19. Master Partition Controller (Overview)
INPUT - PROCESS --------------'1

From

Extended-Description

1.

2.

3.

4.

5.

6.

7.

8.

9.

CICSIVS
DFHPCP -

From
CICSIVS

•

1. Initialize MPC task.
(See Figure 2·19.1).

2. Defined required XECBs for
cross partition control.
(See Figure 2·19.2)

3. WAITM on Start BPC, Stop
Partition, ABEND, and Stop
Transaction XECBs.
(See Figure 2·19.3)

4. If Start Partition XECB posted,
attach BPC task.
(See Figure 2·19.4)

5. If Stop Partition XECB posted,
process stop partition req uests.
(See Figure 2·19.5)

6. If ABEND XECB posted, the BPC
attach failed, process the ABEND
condition.
(See Figure 2·19.6)

7. If Stop Transaction posted,
terminate MPS.
(See Figure 2·19.7)

8. Terminate MPC task.
(See Figure 2·19.8)

9. MPC ABEND exit routine.
(See Figure 2-19.9)

Routine Label Extended Description

DLZMPCOO
MPCSTART

MPCDEFIN

MPCWAIT

MPCSTRP

MPCSTOP

MPCABNP

MPCSTRN

MPCEXIT

MPCABEXT

..
To
CICSIVS
DFHPCP

To'"
CICSIVS
DFHPCP

OUTPUT--------____ •

DLZMPCOO

Routine Label

Licensed Material - Property of IBM 2-113

Figure 2-19.1. MPC Task Initialization
",INPUT ~ PROCESS ,..OUTPUT

From
Figure 2-19
Step 1

CSA

I CSAOPFLA I DL/I
Interface
List

r---''':: CSAOPFL
DLZNUCxx J ~ 1. Establish SCDaddressability. > SCDADDR

I CSADU I Address
I I

(DLiI
Nucleus

I~CD Address I

SYSCOM -----= IIJBNPART I ~ 2. Get number of partitions defined
during system generation (SYSGEN)
and adjust the partition

R3 PARTIDTB
identification table. I II I

Transaction
Work Area

IIMPCPT

I
I > 3. Get address of the MPC SCD

I Partition Table. > IscDMPCPT I

Transaction
Work Area

IIMPCECBLT
II > 4. Get address of CICS/VS WAITM
I ECB list.

To
Figure 2-19
Step 2

DLZMPCOO - Master Partition Controller CSECT DLZMPCOO

Extended Description Routine Label Extended Description Routine Label

I. Module identifier (DLZMPCOO vrnp) is PLZMPCOO DLZMPCOO
defined here. MPCSTART

MPC is attached by the MPS start
transaction (DLZMSTRO) via CICS/VS.
Ignore request if DL/I is not defined
to CICS/VS or the nucleus is not loaded.

2. The number of partitions is saved in R3
to be used later when defining
XECBTAB entries for partitions. The
PARTIDTB table is used for MPC
messages.

Write message DLZ088I followed by
DLZ094I if only one partition was
defined during SYSGEN.

In all steps where a message is issued:
• RI is set up with the applicable

message parameter list.
• Control is passed to the MPC

•
message writer at MPCMSGRT.
BALR to the DL/I online message
module, DLZERMSG, to write the
message.

3. The transaction work area is a logical
extension of the TCA.

2-174 Licensed Material - Property of IBM

I

Figure 2-19.2. MPC Define XECBs (Part 1 of 2)
'" INPUT

SCD COMREG

I SCDCOMRG\cl X'84' I
BGCOMREG

I X'2E' I
R3 MPCPT

I I I MPCPTLN I
R2 DLZXCBnO

I I B
DLZXCBn3

B
R15

I

DLZXCBOO

I

I

-
I

m Figure Fro
2-19 Step 2

_OOJ
I

-~ I

-..,

..
DLZMPCOO - Master Parlltlon Controller CSECT

PROCESS

1. Define a start partition XECB and
ABEND XECB for each partition
defined during system generation
(SYSGEN). +--+ XECBTAB TVPE=DEFINE

XECB=DLZXCBnO
ACCESS=XWAIT

+--+ XECBTAB TVPE=DEFINE
XECB=DLZXCBn3
ACCESS=XWAIT

2. If error return on DEFINE:

A. Issue message DLZ0821.

B. Delete any XECBs defined.

C. Go to Figure 2-19, Step 8,
to terminate MCP.

3. Define stop transaction XECB. +--+ XECBTAB TVPE=DEFINE
XECB=DLZXCBOO
ACCESS=XPOST

~OUTPUT

~ XECBTAB Transaction
Entries Work Area

V I I MPCPT

DLZXCBnO MPCFLAG

MPCPID

MPCPT MPCAXECB

Entry
Address MPCECBLT

I I

to. XECBTAB Transaction
Entry Work Area

V

I II MPCECBLT I

DLZMPCOO

Extended Description Routine Label Extended Description Routine .Label

1. The XECBTABjDEFINE macro is DLZMPCOO MPCDEFIN
issued to initialize the XECBTAB table XECBSTR If'four partitions are defined:
with entries representing a partition XECBABN
with a unique name. DLZXCBnO is the
XECB name to start a batch partition

R3=4 DLZXCB40 is identical to F4FO;Fl PIK

R3;3 DLZXCB30 is identical to F3FO;F2 PIK
controller for a specific partition. R3;2 DLZXCB20 is identical to F2FO;F3 PIK
DLZXCBn3 is the XECB name for
handling an ABEND situation for a R3;1 DLZXCBIO is identical to FIFO;BG PIK

specific partition. The n varies and
represen ts the 1 st character of the
partition identification key (PIK) in
character form.

XECBTAB is a table in the supervisor
containing the name and address of all
XECBs defined. XT ABD is the DSECT
representing an XECBTAB entry.

R3 being the number of partitions
defined during SYSGEN lends itself
to this application of naming an XECB
for a partition.

The CICSjVS WAITM ECB list
(MPCECBLT) is initialized with fullword
pointers to the partition start XECBs.

For example:
3. DLZXCBOO is the XECB name to stop XECBFNO

the MPS transaction. The two stop
If two partitions are defined:

R3;2 DLZXCB20 is identical to F2FO;Fl PIK

XECBs are defined as XPOST so that
they can be posted during abnormal
system termination. The CICS W AITM

R3;1 DLZXCBIO is identical to F1FO;BG PIK ECB list is initialized with the STOP

- XECB pointers.

Licensed Material - Property of IBM 2-175

I

I

Figure 2·19.2. MPC Define XECBs (Part 2 of 2)
.. INPUT ~PROCESS-------------------------'

4. If error return on DEFINE:

A. Issue message DLZ0821.

B. Delete any XECBs defined.

C. Go to Figure 2·19, Step 8,
to terminate MPC.

DLZXCBOI -~ 5. Define Stop Partition XECB.

I I
.... XECBTAB TypE~DEFINE

XECB~DLZXCBOI
ACCESS~XPOST

6. If error return on DEFINE,
go to step 4.

DLZXCBOI MPCPT

I I I MPCPTLN I
.-1> 7. Store Stop Partition XECB

DLZMPCOO - Master Partition Controller CSECT

Extended Description

5. DLZXCBOI is the XECB name to stop
a partition:

7.

8. Turn on SCDXECB at SCDDBMPS and
issue message DLZ0931 to indicate
MPS started.

9. MPCABEXT routine is within this
module (see Figure 2·19.9).

address in each created MPCPT
entry.

8. Indicate MPS active.

9. Set ABEND exit routine for
Master Partition Controller.

t1 •• t. DFHPC TYPE~SETXIT
• , ROUTlNE~MPCABEXT

~--------------------~
Routine Label Extended Description

XECBDFNI

MPCUPLST

2-176 Licensed Material - Property of IBM

To
Figure
2·19,
Step 3

~ OUTPUT ______ _

I
XECBTAB
Entry

Transaction
Work Area

I

Transaction
Work Area

MPCECBLT

I

MPCPT ~
I IMPCSXECB

DLZMPCOO

Routine Label

I

Figure 2·19.3. MPCWait
I" INPUT ~ PROCESS ",OUTPUT

From
Figure 2~ 19
Step 3

TCA SYSTCA
...

1. Establish special task dispatch ---~ DCA
I TCASYAA I ITCADCAA I .- status for MPC. I DCAFLGl I

Transaction TCA (MPCECBLT
Work Area > 2. Issue a wait on ECB list. ITCATCEA

CICSIVS .1 WAITM

MPCPT l " DFHKC TVPE=WAIT
ECB LIST

I I DCI=LlST

MPCECBLT

ICICSIVS

I
WAITM
ECB LIST

DLZXCBnO ~
XECB MPCECBLT I----~

3. When control returns, scan the
- XECBs for one that is posted.

"'".",., ~
A (MPCPT Entry)

DLZXCBnO 4. Return to step 2 if no XECBs
XECB are posted.
A (Start Rtn)

A (MPCPT Entry)

: .
I----~ 5. Determine what action is to be DLZXCBOO

II XECB I taken for the first XECB found

II A (Stop Transact Rtn) I posted. > DLZ ...

DLZXCBOl ~
II XECB I
II A (Stop Partition Rtn) I

DLZXCBn3
To .. II XECB Figure 2~19

II A (ABEND Rtn) Step 4, 5,
6, or 7

DLZMPCOO - Master Partition Controller CSECT DLZMPCOO

Extended Deacription Routine Label E ddD xten e eSCrtptlon R t' ou me Lbl a e

I. Turn on the DCAAPURG flag in the DLZMPCOO MPCWAIT
DCAFLG 1 byte of the DCA for this

DLZXCBn3
• DLZMPIOO- BPC attach

task. When on CICS/VS task control failure.
will not count this task as part of
AMXT nor Will it take the short wait
interval if tins is the only waiting task
in the CICSjVS system.

5. Before going to the appropriate routine, MPCECBOK
the post bit in the XECB is turned off.

2. Note that the ABEND XECB
(DLZXCBn3) pointer is placed in the
ECB list only when the BPC attach
is unsuccessful.

3. The XECBs are posted on the following MPCECBCK
conditions:

DLZXCBnO
• DLZMPIOO - activate BPC for

a specific partition.

DLZXCBOO
• DLZMSTPO - terminate MPS.

DLZXCBOI
• DLZBPCOO - normal batch EOJ;

error conditions in BPC or batch
partitions.

• DLZODPOI - ABEND.

Licensed Material - Property of IBM 2-171

Figure 2-19.4 MPC Start Processing (Part 1 of 3)
I'" INPUT

From
"" PROCESS I"'0UTPUT

Figure 2-19
Step 4

R7 •
eno

~, MPCPT Entry DLZXCBn3

1-- -- ~ 1. Initialize for Start Partition processing. MPCFLAG I XECB I
MPCRC1

MPCRC2
A(MPCPT Entry)

MPCPT Entry

I MPCAXECB I lJf > 2. Check if BPC is still active for this R14

partition. IA(XECBTABI I

MPCPT Entry
R1 ~ XECBTABTYPE"CHECK
IA(DLZXCBn2) I I MPCID I XECB" DLZXCBn2

" > 3. If no error on check:
R15

I I A. Set reactivate BPC indicator. MPCPT Entry

.I I MPCFLAG I
> B. Turn on BPC ABEND XECB POST DLZXCBn3

R6 I XECB I I t ABEND XECB I bit.

C. Return to MPC WAIT routine. • -
TO;!:

-'"
2-19 Step 3

RS 4. Set MPCPT entry for BPC. :. TCA

I I

v I TCAKCFA I
5. Attach Batch Partition Controller

(DLZBPCOO) .

..... DFHKCTYPE"ATTACH
TRANSID"CSDC
COND"YES

TCA I---~ 6. If BPC attach is successful, go to Step 13. I TCAKCRC I /

DLZMPCOO - Master Partition Controller CSECT DLZMPCOO

Extended Description Routine Label Extended Description Routine Label

I. This routine is entered from the MPC MPCSTRP
Wait Routine when a Start Partition
XECB (DLZXCBnO) is posted (XPOST)
by DL/I MPS Batch Module (DLZMPIOO)

Register 7 contains the address of the
XECB posted.

2. The XECBT AB/CHECK macro is used to XECBBPC
determine if a BPC is still active for this
partition.

3. A zero return code from
XECBTAB/CHECK macro in RIS
indicates an active BPC.

A. Bit MPCREBPC in field MPCFLAG
is turned on.

B. R6 contains a pointer to BPC
ABEND XECB (DLZXCBn3). Note
that the XPOST macro is not needed
to turn on the POST bit because the
BPC ABEND XECB (DLZXCBn3) is
defined by MPC.

6. A 'X31' in TCAKCRC indicates an
A TT ACH failure.

2-178 Licensed Material - Property of IBM

Figure 2-19.4. MPC Start Processing (Part 2 of 3)
'" INPUT f PROCESS ~OUTPUT

MPCPT
Entry > 7. Locate MPS Batch XECB if one R14

I MPCPID I exists for this special -'"
I A (XECBTABI I

partition.

t t
R1

XECBTAB TVPE=CHECK I A (DLZXCBn1) I XECB=DLZXCBn1

R15 MPCPT

I I --- ~ 8. If error return on CHECK: " Entry I MPCFLAG I
A.lssue message DLZ0821.

B. Indicate Partition Inactive.

C. Go to step 13.

9. Set BPC ATTACH failed.
MPCPT
Entry

I MPCFLAG I
MPCECBLT

MPCPT

I,m"" I
Entry MPCECBLT

I MPCAXECB I I I 10. Move ABEND XECB address to the
end of the CICS/VS WAITM ECB
list.

11. Notify MPS Batch (DLZMPIOO) of R14
" DLZXCBn1 I A (XECBTAB) I BPC ATTACH failure. I XECB I

R1 XPOST XECB=DLZXCBn1

I A (D LZXCBn1) I

o LZMPCOO - Master Partition Controller CSECT DLZMPCOO

Extended Description Routine Label Extended Description Routine Label

7. The XECBTAB/CHECK macro is XECBCHK
issued to obtain the address (in
register 14) of Batch Initialization's
XECBTAB entry for the specific
partition.

8. B. The partition active flag, MPCPACT,
at MPCFLAG is turned off.

9. The BPC ATTACH failed flag, MPCCHKOK
MPCERR, is turned on.

10. The CICS!VS W AITM ECB list is MPCXPOST
updated to include a pointer to the
ABEND XECB pointer to provide
recovery.

Licensed Material - Property of IBM 2-179

Figure 2-19.4. MPC Start Processing (Part 3 of 3)
INPUT ______ ...

R15

o LZMPCOO - Master Partition Controller CSECT

Extended Description

12. B. The flags MPCP ACT and
MPCERR are turned off.

-

~ PROCESS

12. If error return on XPOST:
~

A. Issue message DLZ0841.

B. Set partition inactive and
clear error indicator.

C. Remove ABEND XECB pointer
from CICSIVS WAITM ECB
list.

13. Return to MPC Wait routine.

Routine Label Extended Description

2-180 Licensed Material - Property of IBM

_rOUTPUT

MPCPT

Entry MPCECBLT

I MPCFLAG I
I FFFFFFFF I

TO·
Figure
2·19
Step 3

DLZMPCOO

Routine Label

Figure 2-19.5. MPC Stop Partition Processing (Part 1 of 2)
'" INPUT From

Figure 2·19
Step.

1--_":: MPCPT -Entry
" I MPCFLAG I

I MPCPTLN I

MPCFLAG

I MPCREBPC I

MPCPT
Entry,

IMPCPID I

R15

I I

Rl

I I

MPCPT
Entry f----

IMPCFLAG I
MPCPT
Entry DLZXCBnO

IMPCBID I I I
MPCPT
Entry DLZXCBn3

I MPCPID I I I

o LZMPCOO - Master Partition Controller CSECT

Extended Description

1. This routine is entered from the MPC
Wait routine, when a Sto~ Partition XECB
(DLZXCBOI) is posted (XPOST) by
DL/I MPS Batch Partition Controller
(DLZBPCOO) or Task Tennination
(DLZODPOI).

A scan is done on every entry in the
partition table to avoid losing a stop
partition request on a double post.

3. Bit MPCREBPC in field MPCFLAG not on.

4. Bit MPCREBPC in field MPCFLAG
turned off.

• PROCESS ~OUTPUT

II..

~

~ 1. Scan MPCPT for an entry with stop
partition request. At end of MPCPT,
go to step 14.

2. Set partition inactive and clear stop
.. MPCPT

;> Entry
partition request.

IMPCFLAG I
3. If BPC is not to be reactivated

go to step 9.

J. ;> MPCFLAG

4. Reset reactivate BPC indicator. 1 IMPCREBPC I
J ;> 5. Check if start XECB is still

defined. ;> R14
IA(XECBTAB I

• l XECBTAB TVPE=CHECK Rl
XECB=DLZXCBnO

IA (DLZXCBnOII

> 6. If error on check, return to
MPC WAIT routine.

To!e
2·19 Step 3

7. Turn on start XECB POST bit. .. i> DLZXCBnO ..
IXECB I

8. Return to MCP WAIT routine.

J
To Figure
2-19 Step 3

~ 9. If stop transaction (MPS) requested
also, continue; otherwise, return to
step 1 to check next MPCPT entry.

> 10. Delete Start Partition XECB.

• l XECBTAB TVPE=DELETE
XECB=DLZXCBnO

>11. Delete ABEND XECB.

t '.' XECBTAB TVPE=DELETE ..,. XECB=DLZXCBn3

DLZMPCOO

Routine label Extended Description Routine

MPCSTOP 5. The XECBTAB/CHECK macro is issued
to determine if the start XECB
(DLZXCBnO) is still defined.

7. RI contains pointer to the start XECB
(DLZXCBnO). The XPOST macro is not
needed to tum on the POST bit because
the start XECB (DLZXCBnO) is defmed
by MCP.

10. If error return on DELETE, issue message
DLZ0821.

II. If error return on DELETE, issue message
DLZ082I.

Licensed Material - Property of IBM

Label

XECBSTRC

XECBDELS

XECBDELA

2-181

Figure 2-19.5. MPC Stop Partition Processing (Part 2 of 2)
INPUT ~~----.

MPCPT
Entry --

/MPCFLAGI

MPCPT
Entry

/MPCFLAGI

-

-

DLZMPCOO - Master Partition Controller CSECT

Extended Description

15. Flag MPCPACT in MPCFLAT
indicates whether the partition
is active or inactive.

'" PROCESS

12. Set XECBs deleted for this
partition.

13. Return to step 1 to check next
MPCPT entry.

~ 14. If stop transaction (MPS) has
not been requested, go to
step 16.

~ 15. If all the partitions are
inactive, go to Figure 2-19,
Step 8 to terminate MPC.

16. Return to MPC Wait routine.

Routine Label Extended Description

2-182 Licensed Material - Prop~rty of IBM

JOUTPUT

MPCPT
Entry

/MPCFLAG I

• 0
Figure 2-19
Step 3

DLZMPCOO

Routine Label

Figure 2·19.6. MPC ABEND Processing
,. INPUT

R7
MPCPT

I,~,,~, I
Entry

IMPCAXECB I

0
MPCECBLT R7

Fr om
gur
ep

Fi e 2·19
St 6

•
--

t- PROCESS .. OUTPUT

r
1. Locate MPC Partition Table entry to

~ which this ABEND XECB belongs.

2. Set partition inactive and clear error MPCPT
indicator. Entry

I MPCFLAG I

--~ 3. Remove ABEND XECB pointer from > MPCECBLT

CICS!VS WAITM ECB list. I I B I I I-

4. Return to MPC Wait routine

To
Figure 2-19
Step 3

DLZMPCOO - Master Partition Controller CSECT DLZMPCOO

Extended Description Routine Label Extended Description Routine Label

1. This routine is entered from the MPC MPCABNP
Wait routine when an ABEND XECB
(DLZXCBn3) is posted (XPOST) by
DL/I MPS Batch Initialization Module
(DLZMPlOO) on a BPC ATTACH
Failure.

Register 7 contains the address of the
XECB posted.

2. Flags MPCPACT and MPCERR are
turned off.

Licensed Material - Property of IBM 2-183

Figure 2-19.7. MPS Termination (Part 1 of 2)
~ INPUT --.... ---.. r- PROCESS ------------....

,..OUTPUT _____

From

o LZXCBOO

~L~
I I ___ ~ 1. Delete stop transaction (MPS) XECB.

~t ••• t XECBTAB TYPE=DELETE
• , XECB=DLZXCBOO

2. Set stop transaction (MPS) request
in MPCPT entry. At end of MPCPT,
go to Step 8.

:::;:::===:::....... MPCPT '" Entry

MPCPT

MPCPT
Entry

IMPCFLAG I __ --= ~ 3. If this partition is active, return to
• Step 2 to process next MPCPT entry.

Entry DLZXCBnO h-----..4'> 4. Delete Start Partition XECB.
I MPCPID I I I

41 ••• XECBTAB TYPE=DELETE
• XECB=DLZXCBnO

MPCPT
Entry DLZXCBn3 ---""> 5. Delete ABEND XECB.

I MPCPID I I I 1 •• """. • .J XECBTAB TYPE=DELETE
~ XECB=DLZXCBn3

DLZMPCOO Master Partition Controller CSECT

Extended Description

1. This routine is entered from the MPC
Wait routine when the Stop Transaction
(MPS) XECB (DLZXCBOO) is posted
by DL/I Stop Transaction Task
(DLZMSTPO).

If error return on DELETE, issue
message DLZ0821.

2. Flag MPCTSTP is tumed on.

3. The Start/ ABEND XECBs are ,deleted
for inactive partitions (flag MPCP ACT
off) unless they have already been
deleted (flag MPCXECB on).

4. If error return on DELETE, issue
message DLZ0821.

5. If error return on DELETE, issue
message DLZ082I.

6. Flag MPCXECB is turned on.

7.

6. Set XECBs deleted for this partition.

7. Return to Step 2 to check next MPCPT
entry.

Routine Label Extended Description

MPCSTRN

MPCSXCK

XECBSDEL

XECBADEL

,MPCSTRN3

~PCDELUP

2-184 Licensed Material - Property of IBM

_~ ___ ~'> ~:;:T

I MPCFLAG I

DLZMPCOO

Routine Label

Figure 2-19.7. MPS Termination (Part 2 of 2)
_INPUT • PROCESS ",OUTPUT

MPCPT Entry - f- - ..:: 8. Scan MPCPT entries for an active
I MPCFLAG ~

,;
partition_ Go to Step 10 if no

I , active partition is found.

9. If an active partition is found:
R14

IA(XECBTABI I
MPCPT Entry > A. Check if XECB for batch partition R1
, MPCPID I still defined.

IA(DLZXCBnll I
.... XECBTAB TYPE=CHECK

XECB=DLZXCBn1
~

R15 > B. If batch partition still active,
I I go to Step 9F.

C. Set cancel BPC indicator in MPCPT. > MPCFLAG1

IMPCCNBPC I
R6 > D. Turn on BPC ABEND XECB DLZXCBn3

IXECB I I I " POST bit.
~

E. Go to Step 9G.

F. Issue message DLZ0861.

G. Return to MPC Wait routine -....... ..
To
Figure 2-19

10. Go to MPC Termination. S 'p 3 -.......
To .-

Figure 2-19
Step 8

D LZMPCOO - Master Partition Controller CSECT DLZMPCOO

Extended Description Routine Label Extended Description Routine Label

8. A partition is active if MPCPACT is on. MPCDELCP
MPCSXEND

9. A. The XECBTAB!CHECK macro is XECBATCH
is issued to determine if the batch
partition is still defined.

C_ Bit MPCCNBPC in field MPCFLAG 1
in the MPCPT is set on.

D. R6 contains pointer to the BPC
ABEND XECB (DLZXCBn3). The
XPOST macro is not needed to turn
on the ~ST bit because the
ABEND XECB is defined by MPC.

Licensed Material - Property of IBM 2-185

Figure 2·19.8. MPC Stop Transaction Processing
INPUT ______ .,

m Fro
Call er

•
DLZXCBOI

,-

DLZMPCOO - Master Partition Controller CSECT

Extended Description

I. This routine is entered when MPS is
to be terminated normally or
abnormally.

2. If error return on DELETE, issue
message DLZ082I.

3. Flag SCDXECB at SCDDBMPS is
turned off and message DLZ094I
is issued to indicate MPS stopped.

4.

~ PROCESS

..

..
1. Locate Stop Partition XECB.

1-- -I' XECBTAB TYPE~CHECK
....,. XECB~DLZXCBOI

~ 2. Delete Stop Partition XECB.

t---.:I: XECBTAB TYPE=DELETE
XECB=DLZXCBOI

3. Indicate MPS inactive.

4. Return to CICS/VS.

(DFHPC TYPE=RETURN)

Routine label Extended Description

MPCEXIT

CICSRTN

2-186 Licensed Material - Property of IBM

• OUTPUT

" > SCD

ISCDDBMPS I

TO.J.
CICS!VS
DFHPCP

DLZMPCOO

Routine Label

Figure 2·19.9. MPC ABEND Exit Routine (Part 1 of 2)
-INPUT -PROCESS !'"OUTPUT

From
CICSNS

~_''''' MPS _, ... ;> SCD

DLZXCBOO DLZXCB01 \SCDDBMPS I > 2. Delete Start Transaction (MPS) and
I I \ I Stop Transaction XECBs. , I XECBTAB TVPE=DELETE

XECB=DLZXCBOO

I I XECBTAB TVPE=DELETE
XECB=DLZXCB01

MPCPT
Entry > 3. For each MPCPT entry, delete Start

IMPCPID lli and ABEND XECBs.
I I , I XECBTAB TVPE=CHECK
DLZXCBnO DLZXCBn3 XECB=DLZXCBn2

I I I I ~ , XECBTAB TVPE=DELETE
"'Y XECB=DLZXCBn3

MPCPT
Entry > 4. Locate this partition's BPC XECB. ;> R1

~PCPID I I I
I I XECBTAB TVPE=CHECK

XECB=D LZXCBn2

R1

8XCBn2
I> 5. Turn on the BPC XECB post bit. ~---: ;> DLZXCBn2

\ XECB I
I

XECB I 6. Return to Step 3 to get next MPCPT
entry. At end of entries, continue to
next step.

DLZMPCOO - Master Partition Controller CSECT DLZMPCOO

Extended Description Routine Label Extended Description Routine Label

1. This routine is entered from CICS/VS ~PCABEXT
if an ABEND occurs in MPC. linkage
was established through DFHPC
TYPE=SETXIT in Figure 2·19.2.

Flag SCDXECB at SCDDBMPS is
turned off to show MPS as inactive.

3. DLETWOP

4. CHKXECB

5. Note that the XPOST macro is not
needed to turn on the POST bit because
BPC XECB (DLZXCBn2) is defmed in
the same partition as this module.
DUXCBn2 is defined by DUBPCOO .

....

Licensed Material - Property of IBM 2-181

Figure 2-19.9. MPC ABEND Exit Routine (Part 2 of 2)
~INPUT .. PROCESS

OUTPUT __________ .. ~

TCA > 7. Set information for message
DLZ1041 and issue it.

TCAPCAC

TCAPCPSW
8. Return to CICSNS.

(DFHPC TYPE=ABEND)
ABCODE=DMPC

To
CICS/V S .

DLZMPCOO - Masfer Partition Controller CSECT DLZMPCOO

Extended Description Routine Label Extended Description Routine Label

7. MSG104

8. DMPC ABEND code defines MPC
failure for CICS/VS dump !D.

2-188 Licensed Material - Property of IBM

Figure 2-20. Batch Partition Controller (Overview)
INPUT From .·PROCESS -------------..

Extended Description

1.

2.

3.

4.

S.

6.

CICSIVS
DFHPCP - --.

From
CICSIVS -

1. Initialize BPC task.
(See Figure 2-20.1)

2. Issue online DL/I ~cheduling call
on behalf of the batch partition.
(See Figure 2-20.2)

3. Wait on BPC and ABEND XECBs.
(See Figure 2-20.3)

4. If BPC XECB posted, process
batch request.
(See Figure 2-20.4)

5. If ABEND XECB posted, terminate
BPC.
(See Figure 2-20.5)

6. BPC abend exit routine.
(See Figure 2-20_6)

Routine Label Extended Description

DLZBPCOO DLZBPCOO
BPCSTART

BPCSCHCK

BPCWAIT

BPCCALL

BPCEXIT

BPCABND

TO.
CICSIVS
DFHPCP

OUTPUT-----____ -..

DLZBPCOO

Routine Label

Licensed Mater.ial - Property· of IBM 2-189

Figure 2·20.1. BPC Task Initialization (Part 1 of 3)
-INPUT • PROCESS I"0UTPUT

From
Figure 2·20

step.

..

..
SYSCOM ---- !> 1. Get number of partitions defined

IIJBNPART I during SYSGEN and adjust
TWA partition identifier for BPC

messages. ~ I TWAPIDTB 1\
CSA

DL/I
I I

ICSAOPFLA I Interface
List

DLZNUCxx I
CSAOPFL Address

ISCAOLI I
DL/I > 2. Set MPCPT address and the TWA

TCA Nucleus specific MPCPT entry the BPC
\SCD I ITCAFCAAA I was attached for in the TWABPC
~dress transaction work area. > IITWAMPCPT I

SCD ITWAMPCE I

ISCDMPCPT I

3. Set the partition active. MPCPT I MPCPT r --- ~ ~ Entry

Entry IMPCFLAG I
Address

MPCPT 4. Save the partition 10. ~

Entry TWA

I MPCPID I ITWABPCID I
5. Locate the MPS batch XECB. -"

TWA R1 R14

I TWABPCID I DLZXCBn1 \ XECBTAB I t , Address Entry
XECBTAB TYPE=CHECK ddress

XECB=DLZXCBn1

..
DLZBPCOO - Batch Partition Controller CSECT DLZBPCOO

Extended Description Routine Label Extended Description Routine Label

1. Module identifier (DLZBPCOO vrnp) is DLZBPCOO PLZBPCOO
defined here. BPCSTART

The Batch Partition Controller (BPC) is
attached by DLZMPCOO when a start
request has been made by a partition.

On entry, R12 contains address of TCA
and R13 contains address of CSA.

DLZXCBn 1 = XECB name for MPS
batch partition, where n is the parti-
tiim ID based on key of partition.

DLZXCBn2 = XECB name for a BPC
for a specific partition (n).

DLZXCBn3 = XECB name for handling
an abend condition for a specific
partition (n).

2. BPCCONT

3. Flag MPCPACT in MPCFLAG indicates
this partition is active.

S. XECBTAB TYPE=CHECK macro is prnCBCHK
used to obtain the address of MPS
batch XECB.

2-190 Licensed Material - Property of IBM

Figure 2·20.1. BPC Task Initialization (Part 2 of 3)
",INPUT '" PROCESS -OUTPUT

R15 - ---=:~ 6. If error return on CHECK:
I I < A. Issue message DLZ0821. r -:: ~

...J
B . Set abnormal termination condition.

R1 R13 C. Go to Figure 2·20.5, Step 3, to
ITWAMSG II TWABPCSV I terminate BPC. TWA

-" TWAWLIST 7. Save DLZXCBn1 XECB name and
IfTWAXCBN1 XECBTAB entry pointer.
ILTWAN1PTR

TWA

8. Set BPCs CICS!VS WAITM ECB list TWAWLIST
with BPCs (DLZXCBn2) XECB address

TWAXCB2 TWA and the delimiter.

TWABPC TWAWLIST

I TWABPCID II TWAXCBN21 > 9. Define BPC XECB. TWAXCBDL

.... XECBTAB TYPE~DEFINE
XECB=DLZXCBn2
ACCESS=XWAIT

R15 . - --- 10. If error return on DEFINE:

-Lrf ;> MPCPT Entry

I I ...: A. Issue message DLZ0821. I MPCFLAG I r
B. Set error indicator.

R1
R13 t ...J

C. Notify batch partition of the error I I TWAMSG II TWABPCSV I condition. > DLZXCBn1

I I
.... XPOST XECB=DLZXCBn1

D. Wait on ABEND XECB.

MPCPT Entry
.... DFHKCTYPE=WAIT

Ie MPCAX ECB 1 ~

> E. When control returns, clear ABEND
DLZXCBn3 ~ XECB. > DLZXCBn3

"I 1 F. Set abnormal termination condition.
I XECB I

G. Go to Figure 2·20.5, Step 3 to
terminate BPC.

DLZBPCOO - Batch Partition Controller CSECT DLZBPCOO

Extended Description Routine Label Extended Description Routine Label

9. BPC XECB (DLZXCBn2) is defined for XECBDFN
cross partition communication with MPS
Batch Initialization (DLZMINIT), MPS
Batch Program Request Handler
(DLZMPRH), and MPS Batch
Termination (DLZMTERM).

10.
A. Flag MPCERR indicates an error BPCDFERR

condition.

C. The POST bit X'SO' in the XECB is
turned off.

Licensed Material - Property of IBM 2-191

Figure 2-20_1. BPC Task Initialization CSECT (Part 3 of 3)
-INPUT fPROCESS ~OUTPUT

TWA
MPCPT .> 11. Set BPCs CICSNS WAITM ECB
Entrv list with ABEND XECB address. TWAWLIST

IMPcAxEcB I TWAXCB2

TWAXCB3

, TWAXCBDL

12. Set abend exit routine for Batch
Partition Controller DFHPC TVPE=SETXIT

ROUTlNE=BPCABND

13. Continue processing.

To
Figure 2·20
Step 2

DLZBPCOO - Batch PartitIon Controlle, CSECT DLZBPCOO

Extended Description Routine Label Extended Description Routine Label

12. The BPCABND routine (see
Figure 2-20.6) is within
this module.

2-192 Licensed Material - Property of IBM

Figure 2-20.2. Issue Online DL/I Scheduling Call (Part 1 of 2)
,.INPUT ,. PROCESS I"0UTPUT

From
Figure 2·20 step.

SCHDPRMC I XCBl
,. TWA

SCHDFUNC I I XCB1PSB I 1. Get parameter count, function call, TWASCHDC

and PSB name for DL/I call parameter ;:. TWAPARMC

list. TWACALL

TWAPSBN
Rl R13

rlTWASCHDC I i 1---- ~ 2. Issue DL/I scheduling call.

• BALR t TWA DLZLIOOO BPC Register

TWASCHDC
Save Area Language

~TWABPcsvI Interface
TWAPARMC

TWACALL

TWAPSBN

MPCPT
Entry

3. If ABEND XECB is posted:
CMPCAXECB I f---- II>

A. Set abnormal termination DLZXCBni!

I condition.
IXECB

B. Clear the POST flag of ABEND
XECB.

C. Go to Figure 2-20, Step 5,
to terminate BPC. •

TCA

TCAFCTR I~--- ~ 4. If error return on scheduling
TCADLTR I call, set error indicators and Jo MPCPT

error codes. ;> Entry

MPCFLAG

MPCRCI

MPCRC2

DLZBPCOO - Batch Partition Controller CSECT DLZBPCOO

Extended Description Routine Label Extended Description Routine Label

1. Macro DLZXCBI defines a DSECT
that represents the format of the
fields after the MPS Batch XECB
(DLZXCBnl) used here as a
parameter list by BPC.

Addressability to DlZXCBnl was
obtained by the XECBTAB
TYPE=CHECK macro in Figure
2·20.1, Step ~.

4. Flag MPCERR at MPCFLAG is turned BPCSCHCK
on.

Licensed Material - Property of IBM 2-193

Figure 2·20.2. Issue Online DL/I Scheduling Call (Part 2 of 2)
I"INPUT

R12 --
I I

Rl R14

It TWAXCBNll I TWAN1PTR I

R15 --
I I

Rl R13

It TWAMSG IltTWABPcsvl

-

-
r
I

-.J

..
D LZBPCOO - Batch PartItIon Controller CSECT

Extended Description

6.

PROCESS----------------__ --------..

5. Save the TCA address for MPS
Batch (DLZMPIOO).

6. Notify Batch Partition that
DL/I scheduling call has been
completed.

.. XPOST XECB=DLZXCBnl

7. If error return on XPOST:

A. Issue message DLZ0841.

B. Go to Figure 2·20, Step 5,
to terminate BPC.

8. Continue processing.

Routine Label Extended Description

BPCSCHDK

2-194 Licensed Material - Property of IBM

To
Figure 2-20
Step 3

MPCPT
Entrv

I MPCTCA I

DLZXCBnl

IXECB

DLZBPCOO

Routine Label

Figure 2-20.3. Wait 011 BPC and ABEND XECBs
-INPUT

TWA

'-
TWAWLIST

§
GSA OPFL

I CSAOPFLA I riCSADLI I
SCD

I SCDDBMPS I DLiI
Interface

~_List

I+X'2C' I
[DLII

Nucleus

I~CD Address I

DLZXCBn2

IXECB I
DLZXCBn3

IXECB I

-

m Fro
Fig
St.

ure 2·20

i
--

--

--

--

DLZBPCOO - Batch Partition Controller CSECT

Extended Description

1. The XECBs are posted for the
following conditions:

DLZXCBn2

• Process call on behalf of batch
partition.

• EOJ has been encountered in batch
partition.

DLZXCBn3

• An ABEND condition has been
encountered in the batch
partition.

2. Flag SCDXECB is tested in
SCDDBMPS.

• PROCESS ~OUTPUT

..
TCA

~ 1. Issue WAITM on BPC and ABEND

l[l"'" XECB.

t t TWA
DFHKC TYPE=WAIT

TWAWLIST

TWAXCB2

TWAXCB3

TWAXCBDL

~ 2. When control returns, check if
MPS still active. If not active,
exit to Figure 2·20.6, Step 3. ..

~ 3. If BPC XECB posted, exit to
Figure 2·20, Step 4.

..
~ 4. If ABEND XECB posted:

A. Set abnormal termination
condition.

B. Clear post bit in XECB. DLZXCBn3

C. Go to Figure 2·20, Step 5 to
IXECB I ..

terminate BPC.

5. Return to Step 1.

DLZBPCOO

Routine Label Extended Descriotlon Routine

BPCWAIT

Licensed Material - Property of IBM

J

Label

2-195

Figure 2·20.4. Batch Re'quest Processing (Part 1 of 2)
-INPUT .. PROCESS I"'0UTPUT

From
Figure 2-20
Step 4

TWA

TWAWLIST
1. Clear POST bit .in BPC XECB.

LJ XCBl

-.;....-.: IXCB1FLAG I I> 2. If batch partition at EOJ go
to Step 10.

SYSTCA

ITCADLII I --:...- > 3. If a PST is not available go
to Step 5.

System ,---_ ... > 4. Indicate MPS task. TCA PST PST PPST

hCADLIPA 'lpSTPREAD
., I PSTPCT2 I I PPSTIND I

,

~--- !> 5. Get address of call parameter
Rl

XCBl

I IXCB1CNT I list.
rl XCB1CNT

Address

XCBl

R13 Rl

I TWABPCSV I i ~~J,~~.NT I L..- XCB1CNT

> 6. Issue OL/I Call.
XCBl

t t DLZLIOO

'+
BALR Language Interface

iXCB1CNT MQduie

DLZBPCOO - Batch Partition Controller CSECT DLZBPCOO

Extended Descriotion Routine Label Exttmded Descriotioll Routine Label

1_ This routine is entered from BPC 6. Entry point in the language interface BPCDLICD
WAIT routine when the BPC XECB module will be ASMTDLI or
(DlZXCBn2) is posted by the batch
program request handler.

PLITDLI, depending on whether the
user program is assembler or PL/I.

RIO points to the .call parameter list
in the MPS Batch partition.

2. Macro DlZXCBl defines a DSECT
representing the format of the MPS
batch XECB and following fields
used for communication between the
batch and online partitions.

The End-of-lob flag is set by
DlZMPIOO termination routine in
the field following the XECB.

3. Flag TCADLIPS indicates a PST is
available.

4. Flag PPSTMPS in PPSTIND indicates
this is an MPS task.

5. BPCNOPST

2-196 L~censed Material - Property of IBM

Figure 2-20.4. Batch Request Processing (Part 2 of 2)
",INPUT ,. PROCESS -OUTPUT

R1 R14

I TWAXCBN1 IITWAN1 PTR I - ~ 7. Notify batch partition that the
DL/I call has been completed.

"XPOST XECB=DLZXCBn1

"> DLZXCBn1

IXECB I

R15 -- I-
I I

- ~ 8. If error return on XPOST:

- ~ A. Issue message DLZ0841.

R1 R13 I-
ITWAMSG IITWABPCSV I

B. Go to Figure 2-20. Step 5 to -~ terminate BPC.· ;

9. Return to Figure 2-20. Step 3 for BPC WAIT. - I'"

10. Notify MPS Batch Partition that
EOJ processing has completed. "> DLZXCBn1

IXECB I

Tol
Figure 2·20
Step 5

DLZBPCOO - Batch Partition Controller CSECT DLZBPCOO

Extended Description Routine Label Extended Description Routine Label

10. BPCEOJ

Licensed Material - Property of IBM 2-197

Figure 2-20.5. BPC Termination (Part 1 of 2)
_INPUT From • PROCESS' -OUTPUT

Figure 2-20
Sts;.; ..

r

DLZXCBn2 > 1. Delete BPC XECB.

I I 1 • XECBTAB XECB=DELETE
TVPE=DLZXCBn2

R15 ---~ ~ 2. If error return on DELETE:

I I -
--- ~A. Issue message DLZ0821.

Rl R13 B. Set abnormal termination
ITWAMSG

I
ITWABPCSV

I
condition.

MPCFLAG1

I MPCCNBPC I > 3. If BPC cancel indicator is not set,
go to Step 6.

4. Reset cancel BPC indicator. MPCFLAGl

I MPCCNBPC I
5. Go to Step 8.

MPCFLAG

IMPCREBPC I :> 6. If BPC for this partition to be
reactivated, go to Step 8.

Rl R13

ITWAMSG I ITWABPCSV I --- ~ 7. Issue message DLZ1031.

CSA DLiI

ICSAOPFLA I Interface
List

~
SCD ---- ~ 8. If MPC abended, go to Step 14.

ISCDDBMPS I
DL/I 9. Set partition stop indicator.

MPCPT
OPFL Nucleus Entry

ICSADLI I I MPCFLAG I I~CO I Address I MPCADBPC I

MPCPT
Entry ;:>10. Turn on stop partition XECB DLZXCBOl

IMPCSXECB I 1 post bit. I XECB I

DLZBPCOO - Batch Partition Controller CSECT DLZBPCOO

Extended Description Routine Label Extended Description Routine

I. This routine is entered on normal BPCEXIT
or abnormal termination of BPC,

3_ Bit MPCCNBPC is set by MPC when it
determines that the batch partition no
longer is active (i.e. 'cancel' replied to
an access method message in batch
partition). See 'Note'.

6. Bit MPCREBPC is set by MPC when it BPCEXIT2
determines that a BPC is still active for
a partition and an MPS job is initiated
for that same partition. See 'Note'.

Note: The test in Step 3 and 6 are
done to suppress output of message
DLZI031.

7. BPCEXITI

8. Flag SCDXECB at SCDDBMPS
indicates if MPS is active or not.

9. Flag MPCPSTP in ~PCFLAG is the stop
partition indicator for DLZMPCOO.

2-198 Licensed Material - Property of IBM

10. Note that the XPOST macro is not used
to turn on the POST bit since the XECP
was defined (DEFINED) in this partition
(by DLZMPCOO).

Label

Figure 2·20.5. BPC Termination (Part 2 of 2)

INPUT ------... • PROCESS • OUTPUT

11. If abnormal termination go to
Step 13.

12. Return to CICS!VS .

.. DFHPC TYPE=RETURN

TO"
CICSIVS
DFHPCP

13. Set BPC abnormal termination
completed indicator. TWA

ITWAMPSFGI

14. Return to CICS!VS - ABEND .

.. DFHPC TYPE=ABEND
ABCODE=DBPC

CANCEL=YES

TO.
CICSIVS
DFHPCP

DLZBPCOO - Batch Partition Controller CSECT DLZBPCOO

Extended Description Routine Label Extended Description Routine Label

11. CICSRTN

13. Flag TW ABPCOK indicates BPC BPCABEND
ABEND processing was
successful.

14. DBPC ABEND code defines BPC
failure for CICS/VS dump ID.

Licensed Material - Property of IBM 2-199

Figure 2·20.6. BPC ABEND Exit Routine
~INPUT • PROCESS -OUTPUT

From
Figure 2-20 -i+

TCA

I TCAPCAC J ;> 1. Initialize message DLZ1041

ITCAPCPSW I
and issue it.

TWA > 2. Get this task's MPCPT entry. > RS

ITWABPCID I I I

TWA

ITWABPCIO I > 3. Delete this task's BPC XECB .

I
DLZXCBn2

I XECBTAB TVPE=DELETE
XECB=DLZXCBn2

'I Rl R14 ~
...

ITWAXCBNl J ITWAN1PTR I ---- 4. XPOST the MPS Batch XECB. > DLZXCBnl

I I t :t XPOST XECB=DLZXCBnl

5. Go terminate BPC abnormally.

To
Figure 2-20.5
Step 3

OLZBPCOO - Bat~h Partition Controller CSECT DLZBPCOO

Extended Description Routine Label Extended Description Routme Label

1. This routin.e is entered from CICS!VS BPCABND
if an abend occurs in the Batch
Partition Controller Module
(DLZBPCOO).

3_ MPCABENC

2-200 Licensed Material - Property of IBM

Figure 2-21. MPS Batch (Overview)

INPUT ------.

Extended Description

I..

2.

3.

4.

5.

From
DOS~S

From
Application
Program

•

~PROCESS------------------------_.

1. MPS Batch Initialization.
(See Figure 2-21.1)

2. MPS Batch Termination.
(See Figure 2-21.2)

3. MPS Batch Program Request
Handler.
(See Figure 2-21.3)

4. MPS Batch Message Writer.
(See Figure 2-21.4)

5. MPS Batch ABEND Handler.
(See Figure 2-21.5)

Routine Label Extended Description

DLZMPIOO PLZMINIT

PLZMTERM

iDLZMPRH

PLZMMSG

iDLZMABND

To _"" DOS/VS

Application
Program

OUTPUT------______ •

DLZMPIOO

Routine Label

Licensed Material - Property of IBM 2-201

Figure 2-21.1. MPS Batch Initialization (Part 1 of 3)

• INPUT • PROCESS -OUTPUT
From
Figure 2-21
Step 1

COMRG --+ B rmwGJ
or > 1. Read parameter statement and check for Er (I

validity.
SYSIPT

..
.... COMRG Macro

IOAREA

t I OPEN Macro I I
~ I GET Macro

~ I PUT Macro

IOAREA -l-- F> 2. If data is valid go to Step 5.
I OU, progname, psbname I L_ ~ 3. If data is invalid, let operator reenter -"

parameters. > IOAREA

.... PUTMacro I I

IOAREA GETMaCro

I CANCEL I
or r---- p> 4_ Return to Step 1 to recheck data or cancel.

loll ·1
..... CANCEL Macro

PROGNAME PSBNAME

IOAREA 5. Save progname and psbname. I II I I DLI,progname,psbname I

PROGNAME B I I 7. Load Application program. > USERPROG

DOSIVS
..... LOAD TXT=NO Macro I I

Core Image
Library

.... LOADMacro

DLZMPIOO - MPS Batch CSECT DLZMPIOO

Extended Description Routine Label Extended Description Routine Label

1. If UPSI byte bit 0 is on, input is from DLZMPIOO DUMINIT
SYSLOG. Send message DLZOIOA to CHECKIN
have operator enter information.

If UPSI byte bit 0 is off, input is from
SYSIPT.

Write message DU014A if end of file
on SYSIPT.

3. Write message DUOS7 A if data PARMERR
invalid.

4. Read operator reply to decide if more GETCONS3
parameters provided or if job cancelled.

5. CHECKOK

7. If program not found, write message LOADAP
DLZ012I and cancel job.

2-202 Licensed Material - Property of IBM

Figure 2-21.1. MPS Batch Initialization (Part 2 of 3)

""INPUT
I

rPROCESS -OUTPUT

BG COMREG > 8. Get partition identifier and modify XECB

~
names in all uses of XECBT AB macro by DLZXCBn3

this initialization routine. DLZXCBnl

- DLZXCBn2

DLZXCBnO

!> 9. Check if MPS is active.
.... Rl R14 DLZXCBnO ---

I I I I XECBTAB TVPE=CHECK

DLZXCBnO IXECBTAB

I

Address Entry
Address XECB=DLZXCBnO

..
R14 DLZXCBn3 r---- !> 10. Locate ABEND XECB

I I t I
XECBTAB

XECBTABTVPE=CHECK Entry
XECB=DLZXCBn3 Address

11. Define MPS Batch XECB for this -'"
R14

partition.

CDLZXCBnl

I
t I XECBTAB TVPE=DEFINE

XECB=DLZXCBnl
ACCESS=XWAIT XECB

PSBNAME Address

PROGNAME Address

Etc.

I ABNDAB I I ABNDPC I AB Option

> 12. Set up program check and ABEND Table
ABSAVEAR PCSAVEAR

I II I handling routines. > PC Option

t I STXITAB
Table

t I STXIT PC

13. Wake up Master Partition
Controller. DLZXCBnO

t I XPOST XECB=DLZXCBnO
I XECB I

14. Wait until BPC started.

t I XWAIT XECB=DLZXCBnl

DLZMPIOO - MPS Batch CSECT DLZMPIOO

Extended Description Routine Label Extended Description Routine Label

8. The XECB names referenced in the
XECBTAB macros used by MPS batch

II. (Cont'd)

initialization routine are modified Following MPS batch XECB (DLZXCBnl)
based on the partition that this MPS
batch job is in.

are parameter fields used in communicat-
ing with the online partition. Macro
DLZXCBI contains the DSECT which

The value of the PIK in BG COMREG describes this XECB and following fields.
always reflects the currently active
partition's PIK. Because this job is
currently active as it is checking the
BG PIK, it will be the PIK of the

112. Save address of PC option table for I
DLZMPRH (Figure 2-21.3, Step I).

partition where this job is. 13. Notify the online partition (DLZMPCOO
specifically) that an MPS batch job is ready

XPOSTl

9. If a start batch XECB (DLZXCBnO) to execute and write batch started message
is not found for this MPS batch job
Partition (n), write message DLZ089I

DLZ081I if XPOST successful.

and cancel. When found, the If XPOST unsuccessful, delete MPS batch
XECBTAB/CHECK macro returns in XECB (DLZXCBnl), write message
RI the XECB address and in RI4 the DLZ084I, and cancel.
XECB table entry_

10. Write message DLZ089I if the ABEND XECBCHK3
14. Wait is made for DLZBPCOO to post the XWAITl

MPS batch XECB (DLZXCBnl) to notify
XECB for this partition is not found. us it is initialized and has completed a

DL/I scheduling call for us.
II. Write message DLZ082I if DEFINE XECBDEFI

is not successful.

Licensed Material - Property of IBM 2-203

Figure 2-21_1_ MPS Batch Initialization (Part 3 of 3)
~ INPUT ______ •

R15

DLZXCBnO
XECB I

'" PROCESS ~-----------...

-- - ~ 15. If error return on XWAIT:

A. Write message DLZ0841.

B. Go to Figure 2-21, Step 5'for MPS
Batch ABEND Handler.

r~~;::;s Entrv Ih:===:::~> 16. Check if online partition successfully
~----.. initialized for MPS.

MPCPT Entrv
MPCFLAG

.MPCRC1 1 , XECBTAB TVPE=CHECK
T"'""''''' XECB=DLZXCBnO

MPCRC2

-OUTPUT----~ ..

-

COMREG RO :::===~ 17. Move program request handler

Ir:D~L-:Z:-::M:::-PR~H:-:-11 address to COMREG. -----''' >IX·10· I
M~ • • t-t MVCOM

--- i> 18. Locate BPC XECB.

... XECBTAB TVPE=CHECK

DLZXCBn2

I I
R14

IXECBTAB I
Entry
Address

MPCPT System
Entry TCA

XCB1 I MPCTCA I I TCADLISA

TCA PST

I TCASVAA I I PSTPSB

I
I

- --- ~ 19. Set up parameter list for application
program.

IXCB1FLAG I
-...L.----NU COBOL. RPG II.

PSB PDIR

I PSBLIST I I PDIRADDR I
I PDIRCODE I

DLZXCBnO

I I
- -- ~ 20. Check to be sure online partition is

still there.

......... XECBTAB TVPE=CHECK
,......, XECB=DLZXCBnO

USERPROG

I Entry Point I ..-----.4" 21. Exit to application program.

DLZMPIOO - MPS Batch CSECT

Extended Description

16. As the start partition XECBs are
defmed in DLZMPCOO, the corre-
sponding MPCPT entry is saved for
each following the XECB. If the XECB
is not at the same address. as earlier,
indicating there was a deletion and new

-..-t ._,' I Application
Program I

22. Go terminate.

Routine Label Extended Description

19. (con't).

FIgure 2-21
Step 2

If Cobol, RPG II, or Assembler - Rl
points to first PCBADDR.

The language indicator is set in the
parameter field following the MPS

or Assembler .e!:L!

c;~ ~c,_R~-B----'1
PCB
Address

DSA Size

DSA Start

R15 @ Entry
Point ~ SAV SER

DLZMPIOO

Routine Label

define, or it no longer exists, write
message DLZ082I and DLZ099I, then batch XECB (See DLZXCBl Macro).
ABEND.

20. If the start partition XECB is not,
Write message DLZ09SI and the return found, write message DLZ082I,
code if a scheduling error indicated. then ABEND.

Write message DLZ08SI if BPC could MVCOM 21. An application program runs as a
not be attached. subroutine of DLZMPIOO.

18. XECBCHK2

19. If PtfI - a three-word list is set up
wit pointers to PCB list, amount
of dynamic storage, and start of
dynamic storage area for PLf!.

2-204 Licensed Material - Property of IBM

Figure 2-21_2. MPS Batch Termination
INPUT ------.....

R15

DLZXCen1

I

R15

DLZXCBn1

re 2-21

L
From
Figu
Step

--

--

DLZMPIOO - MPS Batch CSECT

Extended Description

I. This routine is entered when the
application program completes.

If the application program is written in
PL/I code, the SCDLIPLI flag in the
SCD is reset to O.

Macro DLZXCBI defines a DSECT
representing the format of the MPS
batch XECB and following fields used
for communicating with the online
partition.

The end-of-job flag is set to tell
DLZBPCOO the batch partition is
at EOJ and the BPC XECB is poste d
to tell DLZBPCOO to stop.

3.

6.

... PROCESS ... OUTPUT

~. Notify online batch partition
controller for this partition XCB1 DLZXCBn2

to terminate. IIxcB1EcB II I
1--t XPOST XECB=DLZXCBn2

II XCB1 FLAG I

~ 2. If error return on XPOST:

A. Write message DLZ0901.

B. Go to Figure 2-21, Step 5, .
to ABEND.

!> 3. Wait for online BPC to terminate.

~-t XWAIT XECB=DLZXCBn1

p. 4. If error return on XWAIT:

A. Write message DLZ0901.

B. Go to Figure 2-21, Step 5, .
to ABEND.

!> 5. Delete MPS batch XECB.

t. , XECBTAB TYPE=DELETE
.,. XECB=DLZXCBn1

6. The end.

~EOJMaCrO

To
DOSIVS

DLZMPIOO

Routine Label Extended Description Routine Label

DLZMTERlv

p<'WAIT2

~OJ

Licensed Materia~ - Property of IBM 2-205

Figure 2-21.3. MPS Batch Program Request Handler (Part 1 of 3)

",INPUT • PROCESS I" OUTPUT
From
Application
Program

R13 Rl • SAVER13 R2

I Savearea Il ~~~ress J
I II ~~~ress I 1. Reset PC STXIT if first call from PL/1.

I ABNDPC I II PC Dption I Table
PCSAVEAR

I I
R2 C Call list I f- T- ~ 2. Ensure parameter list does not contain

Address more than 18 parameters.

Call List I
l I L_~ 3. Check if all user parameter list addresses .. which should be, are within batch

partition.

R2 rj Call List I Address

4. Move parameters to area following MPS
XCBl

Call list batch XECB (DLZXCBn1).
I I ./ XCB1CNT

XCB1PARM

5. Notify BPC a 0 L/I call is ready to be
processed. > DLZXCBn2

I I XPOST XECB=DLZXCBn2

DLZXCBnl .-r-- - ~ 6. Wait for BPC to complete processing
I I the call XWAIT XECB=DLZXCBnl

DLZMPIOO - MPS Batch CSECT DLZMPIOO

Extended Description Routine Label Extended Description Routine Label

L This routine is entered on each call to DLZMPRH 3. (cont'd)
DL/I made by the application program.

Write message DLZ0921 if there is a bad
During the first entry to DLZMPRH, the address and ABEND.
PL/I STXIT routine and savearea
addresses from the PC option table are 4. Macro DLZXCBI defines the DSECT
saved if the application program is
written inPL/l. DLZMPRH also
sets/resetS a switch (SCDLIPLI flag in
SCD) on eXit/entry to indicate whether

describing the DLZXCBnl XECB used
for communicating with the online
batch partition controller (DLZBPCOO).

current execution is in DL/I code or PL/I 5. If error return on XPOST, write message XPOSTO
code. This is done to enable high level
language Qebugging for PL/I to give

DLZ084I, then ABEND.

diagnostic information if a program
check occurs in PL/I code.

6. If error return on XW AIT, write message XWAITO
DLZ084I, then ABEND.

PL/I reissues STXIT PC when application
program starts. Therefore, DL/I must
reissue STXIT to get control after PL/I
issues its STXIT PC.

2. Write message DLZ091I if more than 18 COUNTLP
parameters.

3. Ensure call list and addresses it points to CHKMOVEI
are within batch partition (except for
PCB). If PL/I, ensure that pointers
pOinted to by pointers, are within the
batch partition.

2-206 Licensed Material - Property of IBM

Figure 2-21.3. MPS Batch Program Request Handler (Part 2 of 3)

~ INPUT • PROCESS -OUTPUT

DLZXCBnO

I XECB
MPCPT

~-- ~ 7. If an error occurred during online I Entry'

I MPCFLAG I processing, go to Step 14.

I MPCPT
Entry I

MPCPT System
Entry TCA

I MPCTCA II TCAFCTR I ~-- ~ 8. If error return code in TeA, go to Step 14.

TCA

I TCASYAA I

System - -- ~ 9. If no PST, go to Step 12. TCA I TCADLII I

System
~--- ~ 10. If a task or system ABEND, go to Step 14. TCA PST

I TCADLISA II PSTABIND I

PST PST

PSTUSER tPSTUSER I
PSTSEGL 11. Move data to user area.

;> User I/O Area ~ PSTSEG
...

I I
Retrieved
Segment

I I

DLZMPIOO - MPS Batch CSECT DLZMPIOO

Extended Description Routine Label Extended Description Routine Label

7. MPCERR flag indicates an error condi·
tion occurred during BPC processing.
Write message DLZI00I if on.

8. Write message DLZ1021 including the
return code if present.

9. The storage acquired indicator
TCADUPS is turned oil by online
nucleus DLZODP when the PST is
acquired.
Ifno PST, it just did a TERM call.

10. Write message DLZ0981 if PST con-
tains an error.

11. Write message DLZI00I if the data
addresses are invalid.

Licensed Material - Property of IBM 2-207

Figure 2-21.3. MPS Batch Program Request Handler (Part 3 of 3)
_INPUT '" PROCESS

DLZXCBnO - - --.....:::~ 12. Check if MPC is active.

I I •
..... XECBTAB TVPE=CHECK

XECB= DLZXCBnO

SAVER13

J
rRegister

:> 13. Return to application program.
Save Area

I I

14. Go to ABEND handler, Figure
2-21, Step 5.

DLZMPIOO - MPS Batch CSECT

Extended Description Routine Label Extended Description

12. If the START PARTITION XECB is NODATA
not at the same address as when the
batch job started indicating there was
a deletion and new define, or if it no
longer exists, write message DlZ082I
and go to Step 14.

2-208 Licensed Material - Property of IBM

• To
Applicati on
Program

OUTPUT __________ ..

DLZMPIOO

Routine Label

/
\

Figure 2-21.4. MPS Batch Message Writer
From

~ INPUT
Caller

ill .- PROCESS r-0UTPUT

Caller

I Mess"ge 10

0
1. Convert message number to 10 AREA Registers

printable decimal. I II I
---,.. 2. Find message text. "> 10AREA

I I
I DLZMMSGT I l Message Text

Module J
10AREA > 3. Put message to console and printer [::;J 8 I I unless caller indicates no message

should be written to one of them PUT CONSOLE PUT PRINTER

Caller
Registers

I I > 4. Clear output area and return. .> IOAREA

I I
TO.
Caller

DLZMPIOO - MPS Batch CSECT DLZMPIOO

Extended Description Routine Label Extended Description Routine Label

I. This routine is entered when a DLZMMSG
message is to be written to SYSLOG
and/or SYSLST.

2. The message module DLZMMSGT
includes all messages that can be
issued by MPS and is used in both
the batch and online partitions.

3. PUTCONS2

Licensed Material - Property of IBM 2-209

Figure 2·21.5. MPS Batch ABEND Handler
"" INPUT AB.ry ' ,. PROCESS {OUTPUT

1. Set AB entry indicator. :> FLAG

c=J
RO :> 2. Save ABEND code and go to

c=J Step 4. ABREASON

I I
pc.ry '

3. Set PC entry indicator. FLAG

4. If error occurred while in PL/I code, c=J
modify return address and branch to
PL!I STXIT PC routine.

All Other
Entries* • 5. Write error message DLZ0961.

6. Notify online an ABEND
condition exists. :> DLZXCBn 3

.. XPOST XECB=DLZXCBn3
I I

DLZXCBnl - - -- ~ 7. Delete this partition's MPS
I I batch XECB .

.. XECBTAB TVPE=DELETE
XECB=OLZXCBnl

FLAG UPS I 1--- ~ 8. Cancel if entered via AB or PC

I I I I
,

STXIT and dump not required.

__ CANCEL

9. Get a dump and end.

"'JDUMP

DLZMPIOO - MPS Batch CSECT DLZMPIOO

Extended Description Routine Label E ddD xten e escrlptlon R outme L b I a e

* There are three entries to 5. ABPC
this routine:

6. DLZMABNI:
I. AB STXIT

7. XPOST3
2. PC STXIT

9. JDUMP
3. The MPS Batch Initialization, MPS

Batch Termination, and MPS Program
- Request Handler routines (whenever

XPOST is qeedeQ to tell online that
batch completed unsuccessfully).

I. The AB output area is located in a ABNDAB
dump following the DC C 'AB SAVE'
characters.

The AB reason code is located in a
dump following the DC C 'AB
ABEND CODE'.

2. The PC output area is located in a ABNDPC
dump following the DC C 'PC SAVE'
characters.

4. The address of the PL/I STXIT PC
routine was saved during the first entry
to DUMPRH (see Figure 2·21.3, Step 1).
After PL/I completes diagnostic infor-
ination, processing returns to modified
address in DUMABND.

2-210 Licensed Material - Property of IBM

Figure 2-22. Stop Transaction
INPUT ______

m Fro
CIC
DF

SIVS
HPCP ..

--

DLZMSTPO - MPS Stop Transaction CSECT

E xtende d Descriotion

I. Module identifier (DlZMSTPO)
is defmed here.

Write message DlZ080J if
DlZXCBOO does not exist -
MPS not active - and go to
Step 3.

2, Note that the XPOST macro is
not needed to turn on the POST
bit because stop transaction
XECB (DlZXCBOO) is defined in
the same partition as this module.
DlZXCBOO is defined by
DlZMPCOO.

3.

'" PROCESS ~OUTPUT

1. Locate stop transaction (MPS)
XECB. > RI I DLZXCBOO I Address

..... XECBTAB TVPE=CHECK
XECB=DLZXCBOO

~ 2. Turn on POST bit in stop
DLZXCBOO

transaction (MPS) XECB. >1 I X'SO'

3. Return.

..... DFHPC TVPE=RETURN

To ..
CICSIVS
DFHPCP

DLZMSTPO

Routine Label .J;)ctended Descrmtion Routine Label

DlZMSTPO DlZMSTPO

RETURN

Licensed Material - Property of IBM 2-211

Figure 2-23_ Queuing Facility (Overview) (Part 1 of 2)
~ INPUT From

Cal iii. • PROCESS I"'OUTPUT

QENQDEQ (See Notel
PST QWA

1. Initialize registers and I PSTRTCDE II QWAFLG1 I
data fields.

R1-R15

I I
PST - ----~ 2. If requested function is I PSTFNCTN I . 'purge', exit to QPUR routine. .. QPUR

Process Purge
Requests

2·23.1

Upon return, go to Step 7.
R6 R7

First Half Second Half 3. Locate ROB, if any, for
If found: R2 of resource of resource given resource 10.

ID ID If no ROB located, go Compliment

to Step 7. of RDS
Address

PST r ;. 4. If requested function is I PSTFNCTN
-- If not found: R2

'dequeue', exit to QOEQ
Last Position routine. on Queue

QDEQ ... Process Dequeue
Requests

2·23.2

Upon return, go to Step 7 .

. . DLZQUEFO - Queuing FaCIlity CSECT DLZQUEFO

Extended Description Routine Label Extended Descriotion Routine I.hel

Note: QENQDEQ is the general purpose
entry point for requests to 'enqueue;
'dequeue', or 'verify' a resource, or to
'purge' all enqueues for a task.

/. Module identifier (DLZQUEFOvrnp) QENQDEQ
is defined here. The level format is
vrnp; where 'v' is the version, 'r' is
the release, 'n' is an additional
identification number, and 'p' is the
latest PTF number that has been
applied.

3. The proper queue head is first located QLOCRDB
by hashing the resource !D. That
queue is then searched for a RDB
with the same resource rD. If found,
its address is passed back compli-
mented. Otherwise, the address of
the last position on the queue is
returned. '

",,~

2-212 Licensed Material - Property of IBM

Figure 2-23. Queuing Facility (Overview) (Part 2 of 2)

INPUT ------.. • PROCESS ,. OUTPUT

-:;'" 5. If requested function is
'enqueue' or 'verify'
exit to QENQVER routine.

·PST

IpSTFNCTN ... QENQVER

Process
Enqueue/Verify
Requests

2-23.3

Upon return, go to Step 7.

- ~ 6. If the PSTFNCTN Field
contains an unrecognizable

PST

IpSTFNCTN

function code, terminate
the task DL/I ABEND

Routine.

7. Return. > R15

a - if normal exit

4 - if error resulting
in termination
occurred

To
Caller

DLZQUEFO - Queuing Facility CSECT DLZQUEFO

E ddD xten e eSCriptlon R outme l b I a e Extended DescriotlOn Routme label

6. Message DLZ2671 is issued.

7. This routine is used for common QRETURN
processing during exit for enqueue,
dequeue, verify, and purge request.

If processing is successful, a 0 return
code is set in R15. Otherwise, the
PST return code field (PSTRTCDE)
is checked for error return codes.
If present, the Rl5 return code is
set to 4 and the registers are saved
in the ABEND save area.

Licensed Material - Property of IBM 2-213

Figure 2-23.1. Process Purge Requests
• INPUT

From
I" PROCESS -OUTPUT

Figure 2-23
Step 2

RI • e QPUR (See Note)

> 1. Scan each RRD attached to
the PST RRD chain. For

I PSTRRDF I each RRD:
I PSTRRDL I

A. Unchain the RRD from
the PST forward chain
by storing the address
of the next RRD in the PST

'first' PST pointer. > IpSTRRDF I RRD

\RRDFLAG 1- --- ~ B. If the task is an owner of
the resource, the owner-
ship is released and new
owners, if any, are located
and promoted.

C. If the task is not an owner,
the RRD is unchained from
the RDB-RRD chain and its
space is retu rned to the free
block queue. Flag parameters
are then passed to any other
waiting task. PST

\PSTRTCDE I
2. When all RRDs on the chain have

been processed, the 'last RRD'
pointer is reset. Also, the number
of resources owned and the wait
chain pointer are both set to

PST zero.
IpSTRRDL I

3. Exit to QRETURN.
IPSTNDRO

I

PPST

To
IpPSTCW I

Figur. 2-23.
Step 7

DLZQUEFO - Queuing' Facility CSECT DLZQUEFO

E ddD xten e eSCrlDt.on Routine Label Extended DescriDtion Routine Label

Note: This routine is used to purge all
complete or outstanding enqueue requests
for a given task.

\. A. Th~ address of the next RRD QPUR
is saved because it would be
destroyed when the current
RRD is returned to the free
spale.

B. This routine is called to QRELRSC
relinquish ownership of a
resource by dequeuing the RRD
for the task. It is entered by
purge at entry point QDEQPUR
to avoid the unnecessary
overhead of unchaining the
RRD from the PST.

C. QPURI
QRETBLK
QPFLAGP

2. QPUR2

3_ QPURX

2-214 Licensed Material - Property of IBM

Figure 2-23.2. Process Dequeue Requests (Part 1 of 2)
INPUT ------....

e 2-23
From
Figur
Step 4

PST -
I PSTQLEV

RRD -
IRRDMAXL

DLZQUEFO - Queuing Facility CSECT

Extended Description

Note: This routine is used to process
a request to dequeue a resource.

1.

2. This routine is also used by 'verify'
processing to dequeue a resource
that was enqueued due to a required
wait.

3.

~ PROCESS ~OUTPUT

QDEQ (See Note)

1. If an ROB previously located
(Figure 2-23, Step 3), locate the :>
RRD. R3

I RRD Address

If no RRD exists, exit to
ORETRUN (Figure 2-23,
Step 7).

~ 2. Decrement by 1, the ownership
count for the specified RRD

level. :> I RRDNQRO I
or

~ 3. If the remaining ownership count
I RRDNQUP I

or

is not zero (or if it is zero, but I RRDNQEX I the level is not the maximum
for the RRD), pass any FLAG
parameters to the waiting tasks.
Then go to Step 6. :> PST

I PSTRTCDE I

DLZQUEFO

Routine Label Extended DescriDtion Routine

QLOCRRD

QDEQVER

~PEQVER2
PFLAGP

Licensed Material - Property of IBM

I

Label

2-215

Figure 2-23_2. Process Dequeue Requests (Part 2 of 21
!- INPUT !- PROCESS OUTPUT __________ ..

RRD 4. If any counts are left at
IRRDNOUP I lower levels:
IRRDNORO I

A. Lower current level of
ownership by task.

B. Promote any new owners
made eligible by the
decrease in level.

c. Go to step 6.

5. If no counts are left at any
level:

A. Release the resource.

B. Promote any new owners
made eligible by the
release.

6. Exit

TO" Figure 2 ·23
Step 4

Extended Description Routine Label Extended Description Routine Label

4. QDEQVER3
QDEQVER4
QDEQVER5
QPNDWCM

5. Entry point QDEQPUR in this QRELRSC
routine is used by 'purge'
processing to release a resource
already unchained from the
PST/RRD chain.

6. QDEQVERX
QRELRSCX
QDEQPURX

2-216 Licensed Material - Property .. 0£ IBM

Figure 2·23:3. Process Enqueue/Verify Requests (Part 1 of 2) INPUT ______

re 2·23
From
Figu
Step

L
-R2

DLZQUEFO - Queuing Facility CSECT

Extended Description

Note: This routine is used to process
enqueue and verify requests. It deter·
mines the type of enqueue (or verify)
and enters the proper routine for the
type. The possible types are:

• New resource enqueue - The enqueue
of a resource not currently enqueued.

• Existing resource enqueue - The
enqueue of a resource currently
enqueued, but not by this task.

• Re·enqueue - The enqueue of a
resource currently enqueued by
this task.

Processing of enqueue and verify
req uests is essentially the same. The
difference is that on the return from
verify processing, the user is not the
owner of the resource.

1.

2.

3.

I'" PROCESS -OUTPUT

~ QENQVER iSee Notel

~ 1. Check if ROB exists.
If ROB does not exist: QNRENQ

New Request
Enqueue

2·23.4

Upon return, go to Step 6.

2. If ROB does exist, call
QPFLAGP to pass any
flag parameters to
waiting tasks. > PST

I PSTRTCDE I
3. Locate RRO or position ..

on chain. R3

I I

4. If RRO exists: QREENQ

Existing Resource
Enqueue

2·23.5

Upon return, go to Step 6.

DLZQUEFO

Routine Label Extended Description Routine

QENQVER

QPFLAGP

QLOCRRD

Licensed Material - Property of IBM

Label

2-217

Figure 2-23.3. Process EnqueueNerify Requests (Part 2 of 2)

INPUT ------.

DLZQUEFO - Queuing Facility CSECT

Extended Description

6.

PROCESS ------------------.

5. If RRD does not exist:

6. Exit

Routine

QENQVERX

Label

QERENQ

Re-enqueue
2·23.6

Extended Description

2-218 Licensed Material - Property of IBM

To
Figure 2·23
StepS

OUTPUT _____ ~

DLZQUEFO

Routine Label

;I
I'

~

Figure 2-23.4. New Request Enqueue
INPUT -------.

PST

I PSTFNCTN

e 2-23.3
From
Figur
Step 1

--r -
I , ,
I
I
L_

DLZQUEFO - Queuing Facility CSECT

E ddD xten e escnptlon

Note: This routine is used to process
an enqueue (or verify) request for a
resource that has no current enqueues
outstanding.

2. A. R2 points to RDB chain
location. R3 points to RRD
chain head in RD B.

B.

c.
3.

• PROCESS ~OUTPUT

QNRENQ (See Note)

~ 1. If the function is 'verify',
processing is complete
at this point because the
resource is available. Go
to Step 3 to retu rn to
caller.

~ 2. If the function is 'enqueue':

A. Build and initialize an
RDB and chain it on the end of
the proper RDB queue.

R2 R3

B. Build and initialize a I II I
RRD and attach it to
both the RDB and PST
RRD chains. > R3

c. Define the task as a I 'New' RRD Address I
resource owner.

3. Exit.

To
Figure 2·23.3
Step 1.

DLZQUEFO

R outine Labe Extended Description Routme Label

QBLDRDB

QBLDRRD

QDASOWN

QNRENQX

Licensed Material - Property of IBM 2-219

Figure 2-23.5. Existing Resource Enqueue
'" INPUT

Fr
Fi
St

RRD PST -I RRDMAXL II PSTQLEV I

PST - -
I PSTFNCTN I

ROB PST l-

I RDBMAXL II PSTQLEV I
r PSTFNCTN I

DLZQUEFO - Queuing Facility CSECT

Extended Description

Note: This routine is used to process
an 'enqueue' or 'verify' for a resource
that is currently enqueued by the
requesting task.

PROCESS -------------....

QREENQ (S.e Notel

1. If the requested level is not
higher than the cu rrent
maximum for the task, the
resource is available. Therefore:

A. If the requested function is
'verify' go to Step 5.

B. Otherwise, increment ownership
count for the level by one.
Go to Step 5.

2. If the requested level is
compatible with the
current maximum for the
resource and if the
requested function is

A. 'Verify' - Go to Step 5.

B. 'Enqueue' - Define the task
as an owner at the new level
and go to Step 5.

3. Otherwise, do deadlock
detection and wait for
resource availability.

4. If function is 'verify', dequeue
the enqueued resource.

5. Exit.

Routine Label E ddD xten e eSCriptlon

To
Figure 2·23.3
Step 4

I. Online tasks are picked before
MPS tasks.

2. Within a class, the task with the

OUTPUT _________ ..

RRD

RRDNQRO

RRDNQUP

RRDNQEX

DLZQUEFO

R outme L bel a

2.
fewest resources curreritly enqueued

QREENQI is chosen.
QREENQ4

3. In the event of a tie, the choice
B. QREENQI is arbitrary.

QREENQ5

3. The task will be defmed as an owner QREENQ3
4. QREENQ3

QREENQ4
of the resource during 'dequeue' pro- QREENQ4 QDEQVER
cessing for other task. QWAIT

QDLKDTN 5. QREENQX
The QDLKDTN routine detects a
deadlock condition and resolves the
deadlock by picking and terminating
one of the tasks involved. The task
terminated is selected as follows:

2-220 Licensed Material ~ Property of IBM

Figure 2-23_6_ Re-enqueue
",INPUT

ROB PST

IRDBMAXL IlpSTQLEV I
IpSTFNCTN I

.. DLZQUEFO - Queuing Facility CSECT

Extended Description

Note: This routine is used to process an
'enqueue' or 'verify' request for a
resource that is currently enqueued, but
not by the requesting task.

\.

B. To build and chain RRD, call
QBLDRRD.

C. To make task a resource owner,
call QDASOWN.

2.

A. To build and chain RRD, call
QBLDRRD.

B. The task will be defined as an
owner of the resource, during
'dequeue' processing for other
tasks.

OUTPUT------______ ~

QERENQ ISee Notel

1. If resource is available
at requested level:

A. If function is 'verify',
go to Step 3.

B. Build RRD and chain to
RDB and PST.

C. Define the task as a
resource owner.

D. Go to Step 3.

2. If resource is not
available at requested
level.

A. Build RRD and chain to
RDB and PST.

B. Do deadlock detection
and wait for resource
availability.

C. If function is 'verify',
dequeue the enqueued
resource.

3_ Exit.

To
Figure 2-23

.. Step5
DLZQUEFO

Routine Label E ddD xten e eSCriptlon R outme

The QDLKDTN routine detects a
deadlock condition and resolves the
deadlock by picking and terminating
one of the tasks involved. The task
terminated is selected as follows:

QERENQ
1. Online tasks are picked before

QBLDRRD MPS tasks.

2. Within a class, the task with the
QDASOWN fewest resources currently enqueued

is chosen.

QERENQ2 3. In the event of a tie, the choice

jQBLDRRD

/g~AIT
QDLKDTN

is arbitrary.

C. g~RENQ3
PDEQVER

3. PERENQX

Licensed Maberial -Property of IBM

Label

2-221

Figure 2-24_ Visual Table of Contents for DL/I Utility Modules HIPO Charts

DL/I
Utility
Modules

I I
Data Base Data Base ACB Recovery Reorganization Utility Utilities Utilities

I I
DLZUDMPO DLZURULO DLZUACBO
DB Data set HS DB ACB Creation
Image Dump Unload (Overview)

2-25 2-29 2-33

I I
DLZUCUMO DLZURRLO
DB Change HS DB
Accumulation Reload

2-26 2-30 .

I I
DLZURDBO DLZURGUp
DB Data Set HDDB
Recovery Unload

2-27 2-31

I I
DLZBACKO DLZURGLO
DB Change HDDB
Back-Dut Reload

2-28 2-32

I
DLZLOGPO
Log Print

2-39

2-222 Licensed Material - Property of IBM

1- -
DB Logical
Relationship
Utilities

r-
DLZURPRO
Prereorgani·
zatian

2-34

I
DLZURGSO
DB Scan

2-35

I
DLZURG10
Prefix
Resolution

2-36

I
DLZURGPO
Prefix
Update

2-37

--,
J

DLZTPRTO
Trace Print
Utility

---,
I

DLZDSEHO
Worklile
Generator

2-41

2-38

Figure 2-25. DB Data Set Image Dump
'" INPUT

~oc'"
",OUTPUT

From
DDSIVS

DLZUDMPO:

1. Read control card and
rfontrol Card(s) J

SYSIPT

I DMB 1-- r---

G
Data Set
specified in
control card

DLZUDMPO - DB Data Set Image Dump Utility

Extended DeSCription

1. Read and validate control statement.
Write the following messages as needed:

DLZ302I - Column 1 not 0
DLZ303I - Column 2 not 1 or 2
DLZ304I - DBD name field not specified
DLZ307I - Input filename not specified
DLZ308I - Output filename not specified
DLZ309I - Error(s) found in control

statement
DLZ310l- Image of erroneous control

statement

2. DLZDVCE macro obtains data from
PUB. Device type may be tape or DASD.

4. The header record contains information
that allows the use of the image dump
file by the DB data set recovery utility.

validate contents.

2. Determine device type for
output file specified
and open file.

~ 3. Load DMB and obtain
physical attributes of
data set.

4. Write DL/I header to EJO output file.

L.......

r---"

SYS011
(SYS012)

5. Open input file and read
segments sequentially, add
a-byte prefix to identify the
segment, and block and
write the logical record
(prefix + segment) to the
output file.

~YSLST I 6. Write image dump messages. or

l SYSLOG

7. Return to Step 1 if there are Statistics

more input control cards. Report

To
DOSIVS

DLZUDMPO

Routme Label Extended DeSCription Routme Label

Licensed Material - Property of IBM 2-223

Figure 2-26_ DB Change Accumulation (Part 1 of 2)
• INPUT ~ PROCESS -OUTPUT

From .s/Vs

r

1_ Get time and date of this

CJ
execution.

> 2. Call Input Card Processor
(Figure 2-26.1) to read and

>srJ
Control Cards process control cards.

3. If no CUMOUT, but LOGOUT, call
Write Logout (Figure 2-26.2)
to write logout.

(-

~ ~~ I~,,~
> 4. If CUMOUT, loaded sort program

(SORT) will sort LOGINxx records
and call Write Logout (Fig 2-26.2)
and Sort Module (Fig 2-26.3). On
completion of sort, go to step 6. (optional)

(optional)

From Fig.
2-26.2.

Entry for error detected in . DLZUC150 (Write Logout).

5. Establish Addressability.

DLZUCUMO - Change Accumulation Utility DLZUCUMO

Extended Description Routine Label Extended Description Routine Label

I. Header line is printed on SYSLST. IMEDEC

2. Three returns as follows: READCD

• Error - issue error message. BADEND

• No accumulation output, call Write GOODEND
Logout (Fig 2-26.2). Then issue
successful run message.

• Accumulation output, call SORT. SORT

4. SORT is invoked by LOAD and ~ORT
BALR. At exit 35, Sort Module (Fig
2-26.3) is called.

5. This entry point is necessary because DLZERRTN
Write Logout, not knowing who called
(DB Change Accumulation or SORT),
must return to this module if an error
was detected.

2-224 Licensed Material - Property of IBM

Figure 2-26_ DB Change Accumulation (Part 2 of 2)

INPUT ------.

PROCFLAG __

~ PROCESS JOUTPUT

~ 6. Call Write Messages (Figure 2-26.4) CJ - >[/=3 to write completion message.

SYSLST SYSLOG

7. Exit.

I
Return to
DOS/vS

DLZUCUMO --Change Accumulation Utility DLZUCUMO

Extended Description Routine Label Extended Description Routine Label

6. May be OK message or error message CLOSE
from SORT, Write Logout, or Sort
Module. If PROCTERM X'O!' bit is
on in PROCFLAG, an error occured.

Licensed Material - Property of IBM 2-225

Figure 2·26.1. Input Card Processor (DLZUCCTOl
~INPUT

From Fig. '" PROCESS ",OUTPUT

2.26S1 2

0 > 1. Read control cards, validity
log Input check, and create Log Input

0 SYSIPT Specification Table.

2. Save appropriate control card CUMCONST

data. S
1 'r

3. Issue GETVIS for DB and

TIr
Date/Time Table, if required. DB Table Date/Time

EJ >1 I Table

I I ----- f7 4. Check for valid DMB in CI L
DMBfrom Prepare DB Table and Date/Time
Cil Table in alphabetical order.

5. Test for valid combination of
cards or no input (use default
valuesl.

6. Return to caller. ..
To Figure
2·26 Step 3

.. DlZUCUMO - Change AccumulatIon UtIlity DlZUCUMO

Extended Description Routine Label Extended Description Routine Label

I. Possible card types are: GETCARD 3. Tables are not required if * ALL was ~ETMAIN
specified. The number of entries in

• 'ID' specifies db number, max key each table is equal to the number of
length, number of sort, work, and
log "files.

data bases as specified on the ID control
card or default of 16.

• 'DBa' describes records to be 4. This information is filled from the DBa DDNUMCm
accumulated from input and and/or DBI card(s) if present.
wtitten, to CUMOUT.

• 'OBI' describes records to be
S. If any errors occur during steps 3,4,

of S, call Write Messages (Fig 2·26.4)
written to new log file. to write error messages and exit.

• 'LI' describes a log input file.

• Error card - call Write Message
(Fig 2·26.4) to write appropriate

ERROR

error message.

2. Data from control card(s) is saved in a
dsect residing in DIZUCUMO,
addressable by all modules in this
utility. The dsect name is DIZUCUMC.

2-226 Licensed Material - Property of IBM

Figure 2·26.2. Write Logout (DLZUC150)

• INPUT From Call.r "" PROCESS ","OUTPUT
(See Note)

•
Parameter
List

IA (record) I

I A (rtneade) I

~

DLZUCUMO - Change Accumulation Utility

Extended Description

Note: This program has two entry points:

• DLZUCI50 - from SORT.
Entered when SORT wants
another input record.

• DLZUEXI5 - from Figure 2·26,
step 3 (DLZUCUMO).

3. On EOF, the file is closed. If more input
specified, xx (LOGINxx) in the DTF
or ACB is incremented by I and the
next log file is opened.

4. Bypass '50' record for the following:

• * ALL and log date/tinte less than
purge date/time.

• dbname match and log date/time
less than purge date/tinte.

• No dbname match and *OTHER
not specified.

> 1. Establish addressability and save sort
parameter list address.

2. If initial entry, open LOGIN and
LOGOUT (if needed). Obtain work·
space via GETVIS.

;> 3. Read log records bypassing all but
'2F' and '50'.

4. The '50' record is bypassed under
certain conditions.

~ 5. Write the selected '50' record to > output log file.

6. Pass selected log records to SORT
module and return. ;> Log record

I 7. If any error occurs, exit to DLZUCUMO I
(Fig 2·26, step 5).

8. After all input records are processed,
return to caller.

• Return to
Caller

DLZUCUMO

Routine Label Extended Description Routine Label

4. (con't)

• No dbname match and log date/time
less than purge date/time.

5. Write log record for the following '50':

• * ALL on DBI card.

• Dbname match and dbname on DBI
card.

• No dbname match and *OTHER on
DBI card.

Licensed Material - Property of IBM 2-227

Figure 2-26.3. Sort Module (DLZUC350)

-INPUT From SORT ~ PROCESS .OUTPUT

•
Parameter Sorted log _~ 1. R,oo"" '0, ,"oo,d ''Om SORT. List record n 2. Initial entry processing as follows:
A (logree) H I
A (retneod)

A. Process '2F' record and obtain
workspace via GETVIS.

B. Determine device type for CUMIN
(if specified) and CUMOUT.

~ ~
3. Sorted log records are merged with > Sorted log > matching CUMIN records (if specified)

record

I I
and records written to CUMOUT.

4. When next log record needed, return :> Parameter

to SORT. List

.- A (retncod)

Return to
SORT

5. When all log records and CUMIN
records are depleted, return to SORT.

.-
Return to
SORT

DLZUCUMO - Change Accumulation Utility DLZUCUMO

Extended Description Routine Label Extended Description Routine Label

1. SORT returns at EOF with an indication DLZUEX35 3. (can't)
that no more records exist.

record and written to CUMOUT.
2. DLZDVCE macro obtains data from TSTEODDB

PUB. Device type may be TAPE or • If there is no matching log record,
DASD. the CUMIN record is written to

CUMOUT unchanged.
3. The following merging logic is used for

comparison of LOGIN and CUMIN to • If log records exist but no CUMIN,
create CUMOUT. the log records are accumulated by

data ID and written to CUMOUT.
• For every new DMB name (data set

ID), an accumulation header record 4. A 'delete' return code is given to SORT
is written either from the CUMIN so that SORT does not further process
record or created from the '2F' the current record. SORT will prepare
record. the next input record and enter this

program at step 1.
• Every CUMIN record is purge

checked by date/time as specified 5. Free all work areas and close CUMIN ENDJOB
by the user. The DB table as and CUM OUT.
modified by DLZUCl50 is used Indicate 'no return' to SORT. ENDSORT
for a specific DMB or the * ALL/
*OTHER purge date is used as
applicable.

• If a matching log record is found,
alllog records with the same data
ID will be merged with the COMIN

2-228 Licensed Material - Property of IBM

Figure 2-26.4. Write Messages (DLZUCERO)
• INPUT From Catler

• PROCESS ~OUTPUT

(See.te)

r

DLZCUMMO > 1. Obtain address of the messa~e csect

~
(DLZCUMMO) and output TF.

msg 2

1 msg n J
R2 - - --- ~ 2. If multi-part message and first time

I I through,

r- ~ A. Calculate address of message.

\
B. Set Register 2 to next print

position.
> R2

\ C. Go to step 5. \A(mSg) \

\

I
RI -- _L ~ 3. Calculate address of message if

I msg nurn I single part message.

4. Write output message. >D cJ
SYSLST SYSLOG

5. Exit.

...
Return to
Caller

DLZUCUMO> Change Accumulation Utility DLZUCUMO

Extended Description Routine Label Extended Description Routine Label

Note: This module can be called by
DLZUCUMO, DLZUCCTO,
DLZUClSO, or DLZUC3S0.

I. The address of the output DTF which INITSV
has already been opened, is found in
the CUMCONST table.

2. Multi-part message is indicated by TESTR2
negative R2.

3. Rl contains message number. MSGCOMM

4. Output can be to SYSLST or SYSLOG. MSGWRT

S. RETURN

Licensed Material - Property of. IBM 2-229

Figure 2-27_ DB Data Set Recovery (Part 1 of 2)
",INPUT ~ PROCESS

OUTPUT ____________ ..

From

PSB SCD

I II I

o LZRi:.

~
> 1_ Obtain DL/I control block

OMS PST
addressability via GSCD

I II I call.

r
:> 2. Read and process control

I cards.

SYSIPT +-+ DLZURCCO

Contro t Statement
Processor

2-27.1

3. Determine device type for
each input.

4. Open data set (open ACB
call).

t t DLZDLOCO

Required: Open/Close

EJO
2-14

5. If processing only log
records, go to Step 10.

DUMPIN

f--------
Optional: .> 6. Open input file(s) and

EJO
process DL/I header
information.

CUMIN

DLZURDBO - DB Data Set Recovery Utility DLZURDBO

Extended Description Routine Label Extended Descriotion Routine Label

2. There are. three returns:

• No errors - continue processing. GETDMB

• No input statements - terminate CLEANUP
processing.

• Error - issue error message and BADRUN
terminate processing

3. DLZDVCE Illacro obtains data from
PUB. Device type may be tape or ~

DASD.

6. DUMPIN file is mandatory and may

I
be output from DLZUDMPO or
DLZURULO.

CUMIN file is optional and is output
from DLZUCUMO.

2-230 Licensed Material - Property of IBM

Figure 2-27. DB Data Set Recovery (Part 2 of 2)
• INPUT '" PROCESS -OUTPUT

7. Read and merge data and EJ write records. ;>
r

4-+ DLZDBHOO Data Set

DB Buffer
Handler

2·15

8. Close input files.

9. If no log input is to be
processed, go to Step 13.

10. Open LOGIN file.

Os 11. Process all log records for EJ :>
th is data set.

~ LOGIN01 to LOGINxx DLZDBHOO Data Set

DB Buffer
Handler

2·15

12. Close LOGIN file.

13. Close Data set (close ACB
call).

4-+ DLZDLOCO

Open/Close
2·14

14. Exit.

To
DOStvS

DLZURDBO - DB Data Set Recovery Utility DLZURDBO

Extended Description Routine Label EJlte!lded D~scriDtion

7. Records are read from DUMPIN and SETFLOW
CUMIN via GET calls and are written
in ascending order (compare by key
if KSDS, and by RBA if ESDS). The
proper PSTFNCTN is supplied for
call of buffer handler.

9. LOGIN file is optional.

II. LOGINOI to LOGINxx files are PROCLOGS
processed sequentially.

Licensed Material - Property of ~BM 2-231

Figure 2·27.1. Control Statement Processor
- INPUT From • PROCESS -OUTPUT

Figure 2·27
Ste'li

(LI 1. Read control statements and

rs ~
check for validity.

2. Create log input specification Log Input

table. => Specification Table
SYSIPT

I I 3. Test for default tape log.

4. Return to DLZURDBO.

Tol.
Figure 2-17
Step 3

DLZURCCO - Control Statement Processor CSECT DLZURDBO

Extended Description Routine Label Extended Description Routine label

I. Possible card types are: DUURCCC GETCARD

's' ~ identifies data set
to be recovered.

'L!' ~ describes log input
file(s).

Write the following messages as needed:

DLZ302I . Column I not S
DLZ304I . DBD name not specified
DLZ307I . Input filename not specified
DLZ3IOI· Image of erroneous control

statement
DLZ342I· Invalid number of log files
DLZ372I· Invalid log buffer size

2. One entry in table describing file type,
logical unit, and buffer size for each
log file.

3. If no log file is specified, issue macro CLEANUP
DLZDVCE to see if SYSOI3 assigned
to tape.

2-232 Licensed Material - Property of IBM

Figure 2·2S. DB Change Backout

I" INPUT
From DLII .. PROCESS .. OUTPUT • ..

F Log Input

0
Specification

>1. Read control cards and create log input ':> Table

specification table. I I
SYSIPT

100 I- I-- - ~2. Obtain OUI control block addressability
via GSCO call. Open log input for read
backward.

~
>3. Read and deblock OUI log record. Only

(j
accept records for specified PSB.

4. Terminate processing if termination '07',

LOGIN01 to LOGINxx
scheduling 'OS', or checkpoint '41' record.

5. Bypass if '50' record and physical replace.

6. Process all other records for this PSB. ::- Log Record

I I ... DLZRDBCO

Process Log
Record

2·28.1

If no error occurred, go to step 3.

~D cJ 7. Write appropriate completion message.

S. Return to OUI to purge buffers and close SYSLST SYSLOG

Logout files and OMBs.

• Return to
DLZ8ACKO - Data Base Backout Utility DL/I DLZBACKO

Extended Description Routine Label Extended Description Routine Label

I. 'U' control cards describe one input
log file each.

2. Initialize PSTDBPCB, PSTDGU, and INIT
PSTDGN.

3. At end offile, go to step 7. READ
NXTLREC

4. CHKLOGT

5. CHKDPHYF

6. The log record is placed in a work area OK
(READAREA) whose address CALLBO
DLZRDBCO obtains via a V·con.

7. The input log file is closed. If another EOF
log file exists, it is opened and process· MSGGEN
ing continues with step 2. The message
texts are found in DLZBACMO csect.

Licensed Material - Property of IBM 2-233

Figure 2-28.1. Process Log Record (DLZRDBCO)

'" INPUT
From Fig. I'" PROCESS I'" OUTPUT
2-28 step 6 - ,.

r

1. Initialize dummy DSG and PST fields and Dummy DSG

open DMB if not open. DSGDMBNO

4-+ DLZDLOCO DSGINDA

Open/Close DSGDCBA

2-14 DSGDCBNO

PST

PSTDSGA
Buffer Pool >2. Read data base record containing segment

PSTACBNM

I segment I data to be changed.

+-+ DLZDBHOO

DB Buffer
Handler

2-15

3. If simple HISAM, go to Figure 2-28.2 to
back out log record.

4: If HISAM or INDEX, go to Figure 2-28.3
to back out log record.

5. If HD data base, go to Figure 2-28.4 to
back out log record.

6. Log data base change. c2J ;;>

4-+ DLZRDBLO

DB Logger
Logout

2-16

7. Write data base record. EJ ;;>

4-+ DLZDBHOO Data Base

DB Buffer
Handler

2-15

~
-- To Fig. 2-28

DLZBACKO - qata Base Backout UtIlity Step 6 DLZBACKO

Extended Description Routine Label Extended Description Routine Label

1. INIT

2. The following calls were made to the LOCDCB
buffer handler: CALLBFRH

A. If HISAM KSDS, issue PSTSTLEQ SETISAMC
call.

B. If HISAM ESDS, issue PSTBYLCT LOCBLK
call.

C. If HD ESDS, issue PSTBKLCT SETBLKLT
call.

6. Output log records contain the 'opposite' rALLLOG
function to wWch was on the input log. LOG

7. The return code is checked and appro-
priate action is taken depending on the

IwRITEBFR

call and return code.

2-234 Licensed Material - Property of IBM

Figure 2-28.2. Simple HISAM Backout (DLZRDBCO)

INPUT ------"

Log Record

1
3

From
2·28.
Step

Fig.

T

I
I

-

r--
I
I
I
I
I
I

• PROCESS

..

.
;. 1. No action and key found and log

record is physical delete or
key not found and log record is
physical replace or insert.

~ 2. If physical delete, get buffer
space and move old data, - DLZDBHOO

DB Buffer
Handler

2·15

and set buffer handler function
to add new key (PSTPUTKY).

t- - ~ 3. If physical insert, set buffer
handler function to erase key

I (PSTERASE).

I
'--- ~ 4. If physical replace, replace

data in buffer with old data.

DLZBACKO - Simple H ISAM Backout Utility

Extended Description Routine Label Extended Description

1. The address of the log record is input KEYNOTFD
to this routine. CKSHISAM

2. KEYNOTFD

3. CKSHISAM

4. CALLREP

-OUTPUT

> Buffer Pool

I new segment I

> Buffer Pool

I updated segment

To Fig. 2·28.1
Step 4

DLZBACKO

Routine

Licensed Material - Property of IBM

I

Label

2-235

Figure 2-28.3. HISAM or INDEX Backout (DLZRDBCO)
",INPUT

From Fig.
.. PROCESS ,",OUTPUT

2-2B.1.
step.

•
I'

Log Record -- --,-- ~ 1. If physical insert for KSDS, "> Buffer Pool

laid segment I I
mark segment in buffer logically I,changed

I deleted. delete byte

I
I
'---; ~ 2. Bypass physical insert for

ESDS. .

Log Record > 3. If physical replace, replace "> Buffer Pool data in buffer with old data_ I old segment I I changed I segment

Log Record --~-- ~ 4. If logical delete, reset delete ;> Buffer Pool

I old segment I code. IChanged 1 delete byte

To Fig 2-2B.1
Step 5

.. DLZBACKO ~ Data Base Backout Utility DLZBACKO

Extended Description Routine Label Extended Description Routine Label

1. If segment is an INDEX data base CHKUSERI
(primary or secondary), the pointer LOGDLET
to the index target segment is also SETPHYRP
zeroed.

2. Chain maintenance log records for CHKUSERI
KSDS effectively back out physical
insert to ESDS.

3. CKDICALL

4. CHKLGDLT

2-236 Licensed Material - Property of IBM

Figure 2-28.4. HD Backout (DLZRDBCO)
~ INPUT

From Fig.
I'" PROCESS ",OUTPUT

2-28.1.
steps.

~

"
Input Lo~ ,-. > 1. If chain maintenance record, "> Buffer Pool

Record move old chain pointer to

]] I updated I I I buffer. Make new log code = segment

physical replace.
Output Log

'----'
Record

> 2. If physical delete, make new I I r-- log code = physical insert.
Obtain this space again and
update PSEs . .. DLZDHDSO

HD Space
Management

2·13

"---' > 3. For physical replace, replace
_ L-..-.o ---.. data in buffer with old data.

To Fig 2·28.1
Step 6

..
DLZBACKO - Data Base Backout Utility DLZBACKO

Extended Description Routine Label Extended Description Routine Label

1. HKCHAIN

2. iNEXTFSE
iNOTINFS
LASTCOMP

3. iNOTINFS
~HKREPPC

Licensed Material - Property of IBM 2-237

Figure 2-29. HS DB Unload
.. INPUT From DOS!V .. PROCESS I'" OUTPUT

JCL.

c=J >
SYSIPT

L

DBD >
I SEGTABI
I LCHILD I

E] >

Data Base

DLZURULO - HISAM Reorganization Unload Utility

Extended Description

I. Read and validate control statement.
Write the following messages as needed:

DLZ302I ~Column I not R
DLZ303I - Column 2 not I or 2
DLZ304I - DBD name not specified
DLZ307I - Input fIlename not specified
DLZ308I - Output fIlename not specified
OLZ309I - Error(s) found in control

. statllment
DLZ3101 - Image of erroneous control

. statement

3. DLZDVC£ ma~ro obtains data from PUB.
Device tyl'e may be TAPE or DASO.

5. Issue GENCB for ACB, RPL, and EXLST.
Open KSDS and ESDS unless
ACCESS=SHISAM (KSDS only).

6. Processing as follows:

A. Read KSDS records in key sequence,
bypass if deleted. ESDS records
containing overflow dependent
segments are read by RBA.

B. Format work area like KSDS record
with new attributes.

..
-,.

1. Read control card and validate contents.

2. Initialize short segment and statistics
tables.

3. Determine device type for each output
file specified.

4. Load DBD and obtain physical character-
istics of data base as it will be reloaded.

5. Generate VSAM control blocks and open

cU data sets.

6. Read records in key sequence, remove ">
deleted segments, and write newly SYSOll
formatted KSDS and ESDS type records (SYS012)
to output.

7. Write statistics and close all files. "> 0
SYSLST

Return to
DOSiVSJCL

DLZURULO

Routine Label Extended Description Routine

6. (con't)

C. Move as many segments as will fit into
KSOS work area, bypassing deleted
segments. Calculate overflow RBA.
Write image of KSOS to output.

O. Format work area like ESOS record
with new attributes .

E. Move any dependent segments as will
fit into ESOS work area, bypassing
deleted segments. Calculate RBA for
next record, if required. Write image
of ESOS to output.

7. Statistics also written to SYSOII to be
used for comparative purposes during
reload. Processing will continue if addi-
tional input cards.

2-238 Licensed Material - Property of IBM

Label

Figure 2-30. HS DB Reload
• INPUT

F

:::~===:» 1. Read control card and validate
contents.

SYSIPT

SYSOll

DLZURRLO - HISAM Reorganization Reload Utility

Extended Description

I. Read and validate control statement.
Write the following messages as needed:

DLZ302I - Column 1 not L
DLZ307I - Input filename not specified
DLZ309I - Error(s) found in control

statement
DLZ31 OJ - Image of erroneous control

statement

2. DLZDVCE macro obtains data from
PUB. Device may be TAPE or DASD.

3. The first record on the input file
contains a statistics table initialized
to zero. Included is the segment code
and length for all segment types in the
data base.

4. Issue GENCB for ACB, RPL, and
EXLST. Open KSDS and ESDS unless
ACCESS=SHISAM (KSDS only).

5. KSDS image records written to KSDS
as key sequence records. ESDS image
records written to ESDS as address
sequence records.

2. Determine device type for input
file.

3. Initialize statistics table.

4. Generate VSAM control blocks
and open data set.

5. Read records from input and
write to data base.

6. Print comparative statistics.

Routine Label Extended Description

Return to
DOS!VS

~ OUTPUT---__ -.

SYSLST

DLZURRLO

Routine Label

Licensed Material - Property of IBM 2-239

Figure 2-31. HD DB Unload (Part 1 of 5)
• INPUT '" PROCESS -OUTPUT

From
Figure

"4
Caller

R1 ~A.£!!L
> 1. Obtain DL!I control block SCDADDR Registers

G(PCB)
addressability via GSCD call. I LA(sCD) JI I I A(GSCl..,

IlA(PST) J
A(SCDADDR) t

~ CALL Macro

I
PCBADDR

IASMTDLI I I I Lin kage to D L/I I

PSTADDR PST

I IlpSTPSB I
-_.- ~ 2. Establish addressibility. > PSBADDR

I I

PDIR

IPDIRADDR I ,EJ 3. OPEN the printer and print
the statistics report header.

t t OPEN Macro

t t PUT Macro

4. Determine device type for each INDA

output data set specified. ~I I
t ~ DLZDVCE FNAME"RESTART Macro

t t DLZDVCE FNAME"HDUNLD1 Macro PCBADDR

I I ~-~ DLZDVCE FNAME"HDUNLD2 Macro

PCB SDB JCB TABBUF

I JCBINDC L IDBPCBJCB I SDBSYM :> 5. Acquire storage for and
initialize statistics table.

SDBLEVEL

~ t STATSIZE
JCB SDBPHYCD

G ETV I S Macro
I I DLZUSTAT

I SDBTFLG IIJCBSDBND I I JCBORGN

DLZURGUO - HD Reorganization Unload CSECT DLZURGUO

Extended DescriPtion Routine Label Extended Description Routine l.h.1

I. Module identifier (DLZURGUOvrnp) is DLZURGUO DLZURGUO 5. Indicate to DL/I Retrieve that HD MAINI
defined here. BEGIN UNLOAD is running by setting the

indicator (JCBHDULD) at
The GSCD call returns the SCD address JCBINDC.
+ X'60' and the PST address in the call
parameter I/O area (SCDADDR). Macro DLZUSTAT contains the DSECT

The PCB address is passed to this
defining the format of a statistics table
entry.

module in Rl and stored at PCBADDR
for later use. The table contains the segment code

3. PUTHEAU
and length for all segment types in the
data base.

4. If restarting, set the restart in process PUBCHKl
indicator on at INDA.

If HDUNLDI is IGN or UA, write
DLZ3111 followed by DLZ347I, and
then terminate.

If HDUNLD2 is IGN or UA, write
DLZ345I and continue processing.

2-240 Licensed Material - Property of IBM

Figure 2-31_ HD DB Unload (Part 2 of 5)
~ INPUT - PROCESS ~OUTPUT

SDB PSDB -=
ISDBADDR I DMBPRSZ 1--- ~ 6. Acquire storage for a buffer AVRGREC RECADDR

I 1 A (record) J
DMBBDL to hold the unload record with

(DLZURGUF

DDIR DMBFLAG
the largest segment.

r

I DDIRADDR I DMBLST ~ GETVIS Macro
DMBPLEN

I I
DMB

I DMBLENTB I SEC 7. Open output data set(s).
I DMBSECTB DMBSCDE

DMBSFLG +-t DMBSFD OPEN Macro

INDA -----1---- ~ 8. If not restarting, go to

I I step 13.

LJ :> 9. Ask operator for checkpoint LOGRESP
restart number. >1 1

~SYSLOG OPEN Macro PUT SYSLOG Macro GET SYS LOG Macro

:> 10. Copy records including

Q "~"" ~
checkpoint records to output

II RCHKPTID I until the checkpoint record to

ILRCHKNUM
start from is found. GET Macro

HDUNLD1 HDUNLD2
LOGRESP RESTART PUT Macro \.. I I

OLZURGUO - HD Reorganization Unload CSECT DLZURGUO

Extended Description Routine Label Extended DescriPtion Routine Label

6. Macro DLZURGUF contains the DSECT STATEND
defining the format of an unload record.

7. TESTSECD

8. SETOUT

9. Open the RESTART file and write RESTRTO
message DLZ318A to SYSLOG
requesting restart number and read
response.

10. Macro DLZCKPT contains the DSECT RESTRT2A
defining the format of a checkpoint
record.

Write message DLZ3151 if end-of-file
is reached on the restart data set
without finding the requested check-
point record.

Licensed Material - Property of IBM 2-241

Figure 2-31. HD DB Unload (Part 3 of 5)
-INPUT I PROCESS ~OUTPUT--..............

DLZCKPT RECADDR

RCKSEGNM I I
RCHKPOSC

RCHKEYLN PCBADDR

RCKEYVAL I I

GUCALST EJ
!-'-'A (G::.;U"') __ -I

A (PCB)

A IRECADDRI

A (SSM

Data Base

PCB

I DBPCBSTC I

I&----~;> 11. Get ready to position the
data base to the segment
identified in the requested
checkpoint record.

f- __ - ~ 12. Position the data base (GU call).

~ CALL Macro

,......,' ASMTDU
, Linkage to DL/I

GUCALST

--.-----w-> A (GU)

A (PCB)

I
I

A (RECADDR)

A (SSM

"AlUST D Z RGUF

DLZURGUF RECAODR
I-L---->, 13. Get ready for unqualified

GN calls.
A (GN) IIRGUHSDF I

I"A'-'(""PC""B-) --IIIRGUHDRLN I
IIOSEG II I

CALUST

AIGNI

A (PCB)

A (lOSEG) Data Base

PCB

I DBPCBSTC I

I PCB II SDB

I JCB II FDB

I LEV II PSDB

I PST II SEC

DLZURGUO - HD Reorganization Unload CSECT

ddD Exten e eSCriptlon

II. If the RBN is available in the check-
point record, the SSA will be
"segname*T (rbn)" (HDAM or
HIDAM).

If the RBN is not available, a qualified
key call is required. The GETVIS
macro is used to get a work area to
build the SSA for the call. The SSA
will be "segname*C (key)". Following
the call, the work area is freed.

12. Write the following messages as
needed:

DLZ301I - Open failure
DLZ3481 - Unexpected status

from return code
DLZ3491 - Input I/O error
DLZ3781 - Restart successful
DLZ3791 - Restart failed
DLZ380I - Segment not found

R

14. Issue GN for segments and
check return code. Go to
step 21 if end of input data.

..........a.. CALL Macro

,......., I ASMTDLI

I Linkage to DLiI

A (lOSEG)

I
I

15. Fill in the remaining fields
of the unload record. =:::===~» DLZURGUF

B
DLZURGUO

outine L b I a e Extended Description Routine

RESTRT4 13. IOSEG is the beginning of the variable
length data field following the DL/I
prefix information of the unload
record.

14. Write the following messages as
needed:

DLZ30Il - Open error
DLZ3481 - Unexpected return

code
DLZ3491 - I/O error

15. Write message DLZ4001 for a sequence
error.

2-242 Licensed Material - Property of IBM

Label

RECREATE

HDRFILL

, '

\l

Figure 2-31. HD DB Unload (Part 4 of 5)
.. INPUT I PROCESS JOUTPUT

DLZURGUF B L => 16. Update statistics table.

I I

DLZURGUF RECADDR (:

8 1 I :> 17. Write the unload record.

.... puTMacro

HDUNLDI
HDUNLD6

.....

o LZCKPT

DLZURGUF PCB :> 18. Build a checkpoint record 8 8 I DBPCBMKLi
if required. Otherwise,

lDBPCBKFDJ
retu rn to step 13.

o. ~
DLZCKPT RECADDR 19. Write a checkpoint record.

I I' I t t PUT Macro

HDUNLDI

20. Return to step 13. HDUNLD6

'"
21. Update the statistics for the

DLZUSTAT

I I last root segment.

22. Write the last block of ~
unload records .

..... PUTMacro
HDUNLDI
HDUNLD2

'-
DLZURGUO - HD ReorganizatIon Unload CSECT DLZURGUO

Extended Description Routine Label Extended Description Routine Label

16. SETDLEN
iuPSTATS

17. The records ate moved to the output ~RlTE3
block. When the block of records is
full, the block is WTitten.

18. Checkpoint records are written at the i!STCHK
first root segment after every 5000 ~HKPNT
segments.

19. Write message DlZ3811 every time ~HKPNT2
a checkpoint is taken.

21. EODINPUT
LASTROOT

Licensed Material - Property of IBM 2-243

Figure 2-31_ HO DB Unload {Part 5 of 51
po INPUT fPROCESS J~OUTPU:

TABBUF

I "> 23. Write statistics table record.

HDUNLDl
HDUNLD2

24. Close output files. \..

~ ~ CLOSE Macro CLOSE Macro

DLZUSTAT E:J I 25. Edit and print statistics ::-
I I report and volume information.

TABBUF RECADDR

I II I
---~ 26. Free table buffer and segment

STATSIZE AVRGREC buffer.
I II I

~ ~ FREEVIS Macro

t· ~ FREEVIS Macro

27. Close the printer CLOSE Macro

Caller > 28. Return to OL/I.
Registers

B To
Figure
2-3.4

DLZURGUO - HD Reorganization Unload CSECT DLZURGUO

Extended Description Routine Label Extended Description Routine Label

23. WRTTLST

24. CLOSE2

25. Write message DLZ3521 (no errors EDITSTAT
detected).

26. Write message DLZ3921 for STOPRUN
FREEVIS error.

27. STOPRUN2

28. NODUMP

Licensed Material - Property of IBM

Figure 2-32. HD DB Reload (Part 1 of 6)
• INPUT From • PROCESS ~OUTPUT

Figure
caller

2.3 .• PCBADDR registers
GSCDPARM R1 I II I

IAIPCB) I AIGSCD)

> 1. Obtain DL/I control block SCDADDR

addressability via GSCD call and
IAISCD) I A(SCDADDR) initialize.
IA(PST) I

2. Open the printer . .. OPEN Macro

3. Determine device type for input
file and open it DLZDVCE Macro

"SU
..... OPEN Macro

4. Read first record and check for I/O Buffer

a statistics table . ~Stat record

I GET Macro

I I

SCDADDR SCD -- ~ 5. If not restarting, go to step INDA

I II SCDSIND2 I 20. ;>I I

~c::J 6. Get checkpoint restart number RSTSAVE

from operator . I registers I .. PUT Macro LOGRESP
SYSLOG I I ... GET Macro

DLZURGLO - HD DB Reload DLZURGLO

Extended Description Routine Label Extended Description Routine Label

1. Module identifier (DLZURGLOvrnp) is DLZURGLO DLZURGLO 6. Write DLZ318A message to SYSLOG RSTMESSG
defined here. BEGIN requesting restart number and read

response.
The PCB address is passed to this
module in Rl by DLZRRCOO and The number of the last valid check·
stored at PCBADDR for later use. point record on the unloaded file

is found in console message DLZ381L
The GSCD call returns to the SCD Valid checkpoint numbers are decimal
address + X'60' and the PST address values between I and 9999.
in the call parameter I/O area
(SCDADDR).

3. Write DLZ311I if HDUNLDI is not PUBCHKA
aSSigned.

4. Issue DLZ389I if abnormal STATINIT
statistic table record.

5. If the HD DB Reload Utility Program
fails, the reload restart capability
allows you to restart from a check-
point record. Before submitting the
job for a reload restart, change the
parameter card from ULU to ULR.

Licensed Material - Property of IBM 2-245

Figure 2·32. HD DB Reload (Part 2 of 6)
",INPUT '" PROCESS -OUTPUT

~ "'"" I AGUSEGLV I

H UNLDl DI Zr.KPT
7. Locate requested checkpoint

record.
I RCHKNAMEI

... GETMacro
LOGRESP I RCHKNUM I

I I
DLZCKPT PCBADDR

RCKSEGNM I I > 8. Get ready to position the data
base to the segment identified GUCALST

RCHKEYLN in the requested checkpoint A (GU)
record. RCKEYVAL

A (PCB)

A (WRK1AREA)

A (SSA)
GUCALST

0 A(GU)
9. Position data base (GU call).

A (PCB)

A (WRK1AREA) CALLMacro

A (SSA)
I ASMTDLI I
I Linkage to DL/I I DATABASE

PCB

IDBPCBSTC I
GNLIST

A (GN) U A (PCB)
> 10. Find end of data (GN call). ;> R9

I I
A (WRK1AREA)

... CALLMacro

DATA BASE I ASMTDLI I
I Linkage to DLII I

PCB

IDBPCBSTC I -- - - - ~ 11. If the return code indicates
end of data, go to step 16.

DLZURGLO- HD WI Reload DLZURGLO

Extended DescriptiGn Routine Label E nd dO xte e escrlDtlon R outme Label

7. Write DLZ370I if the checkpoint RSTGETLP
requested is less than the first check·

10. Now that the data base is pOSitioned GNCALL
at the segment identified by the check·

point record encO¢lntered. point record, issue GN calls to the end
of the data base at the same time

Write DlZ315I if' checkpoint record
not found.

reading corresponding records from
the unloaded data base in order to

Write DLZ3811 checkpoint informa·
keep the two synchronized.

tion message A counter for GN calls (R9) is

8. The SSA for the GU call is 'segname*C RSTPOSIT
(key)', a qualified key call.

incremented by one for every GN
call following a root segment.

9. The return code is checked. CALUT
Write DLZ380I unable to position
DB if invalid return code.

Write DLZ380I unable to position
DB, checkpoint record not found.

'~

2-246 Licensed Material - Property of IBM

Figure 2-32. HD DB Reload (Part 3 of 6)
~INPUT '" PROCESS ",OUTPUT

PCB GUCALST

I DBPCBKFD~ --- ~ 12. If the segment returned is not
a root segment, skip to step 14.

SSA

I I

PCB

I DBPCBKFD I 13. Put the new root segment key in GUCALST R9

~I I the parameter list of the GU
call and return to step 10. o.

SSA

I I

0 14. Read corresponding record from >
unloaded data base.

HDUCLD1 GET Macro

DLZURGUF DLZCKPT

I RGUSEGLVII RCHKNAME I 1--- -~ 15. Return to step 10 to get the
next segment.

GUCALST EJ A(GU) > 16. Position data base to last root
A (WRK1AREA) segment (GU call).

A (SSAi DATA BASE
..... CALL Macro

I ASMTDLI I
I Lin kage to D L/I I

DLZURGLO - HD DB Reload DLZURGLO

Extended Description Routine Label Extended Description Routine Label

12. CHKKEY

13. Reset the counter for GN calls (R9)
to zero.

14. UNLDGET

15. If the record returned from the
unloaded data base is a checkpoint
record, return to step 14 to get the
next record in order to keep the
partially reloaded data base and
the input unloaded data base
synchronized.

Issue DlZ381l checkpoint informa-
tion message.

16. REPOSN

Licensed Material - Property of IBM 2-247

Figure 2·32. HD DB Reload (Part 4 of 6)
'" INPUT • PROCESS ~OUTPUT

GNLIST

A (GN)

EJ
> 17. Position data base to the last > SEGSAVE

segment (GN calls). A (PCB) I I
~ t CALL Mao,o A (WRK1AREA)

DATA BASE I ASMTDLI I
DLZURGUF I Linkage to DLiI I

I RGUSEGLV I R9

I I

18. If a work file is present, Q SCDADDR

I A (SCD) I copy partially created work
file into new.

t t
WORKFIL

SCD OPEN RSTF I LE Maoro

I SCDDSEHO I t t DLZDSEHO

EJ
Work file

DSEHADDS BALR generator

AOPENWRK

t t AWRKDSEH RSTFILE GET Macro

AWORKFIL PUT Macro

t t CLOSE Macro

PSTADDR RSTSAVE

I A (PST) II registers I
> 19. Reset processing options. PCB

PCBADDR PST I DBPCBPRO I I A (PCB) II PSTPCT1 I
JCB

PCB SDB I JCBSTOR3 I I DBPCBJCB II SDBPHYCD I
I SDBLEN 1 SDB

JCB I SDBF3 I II JCBSDB1 J
II JCBSDBND I

DLZURG LO - HD DB Reload DLZURGLO

E ddD xten e escriPtlOn R outlne L b I a e E d d 0 xten e escrtptlOn R outme L b I a e

17. Save the segment code of the last GNLOOP Save the address of the SDB for
segment. The number of GN calls insert processing if it is for the last
to make to get to the last segment segment found in JCBSTOR3.
is in R9.

18. If a work file (for logical relationships SETWKFIL
or secondary indices) was being RSTOPEN
created during the reload, the
partially created work file should be
submitted as input to the restarted
job assigned as SYSO 10 with a file
name of RSTFILE.

Write DlZ3761 invalid device
assignment.

19. Now that Reload Restart processing SETPROPT
is complete, set the processing
options to indicate that a load is in
process. Then resume processing as
usual.

If HISAM, set LS in the PCB.
Otherwise, set L.

Licensed Material ,... Property of IBM

Figure 2-32. HD DB Reload (Part 5 of 6)
I'" INPUT .. PROCESS ,..OUTPUT

~ 20. Read an unload record. If DLZURGUF
end of file, go to step 21. I I GET Macro

DLZURGUF

RGUSEGLV .> 21. Build SSA for segment . CALLIST

RGUSEGNM A (ASRT)

IOAREA A (PCB)

A IIOAREA)

A (SSA)

CALLIST

A (ASRT) EJ A (PCB). 22. Load segment (ASRT CALL).
A IIOAREA)

.... CALLMacro
A (SSAJ DATA BASE

I ASMTDLl I
I Linkage to DLiI I

23. Add the segment totals and
return to step 20.

DLZUSTAT DLZURGUF 0 I II RGUSEGLV I 24. Print comparative statistics
report if the record is the I RGUHSDF I
last statistics record. SYSLST

DLZCKPT

I I
INDA- - -- -_.- --- ~ 25. Close the input file. PCB

0 CLOSE Macro
I DBPCBPRO I

DLZURGLO - HD DB Reload DLZURGLO

E d xten ed DeseriDtion Routine Labe Extended DescriDtion Routine Label

20. GETLOOP

21. 10 AREA is the address of the data NOSTAT
portion of the unload record
DLZURGUF.

22. Write DLZ3011 OPEN error.

Write DLZ3191 10 error.

Write DLZ3481 invalid return code.

23. STATCOMP

24. LASTCOMP

25. Write DLZ3551 if reload is not okay, EOD
or DLZ3791 if checkpoint restart GOODRUN
is not okay.

Write DLZ3541 if reload is okay, or
DLZ3781 if checkpoint restart is okay.

If this was RESTART (ULR), reset
the processing option in the PCB
back to A.

Licensed Material - Property of IBM 2-249

Figure 2-32. HD DB Reload (Part 6 of 6)
,.INPUT ,. PROCESS

26. Close the printer .

.. CLOSE Macro

Caller
registers 27. Return to Dl/1.

c::::J •

DLZURG LO - HD DB Reload

Extended Description Routine Label Extended Description

26_ STOPRUN

27. NODUMP

,

2-250 Licensed Material - Property of IBM

Figure
2-3.4

OUTPUT------____ ..

DLZURGLO

Routine Label

Figure 2·33. ACB Creation Utility Overview (Part 1 of 3)
'" INPUT .. PROCESS -OUTPUT

From 000.,..
A7 Partition

SCD PPST ~ DLZUACBOvrnp I SCDPPSTS II PPSTIND I ---

B "> 1. Load batch nucleus and establish
A9 -- -

SCD and PST addressability. 5746·XXI §:]
...

CIL t ~ LOAD Macro

t ~ GETIME and
PST

COMAG Macros IpSTSCDAD I

t ~ OPEN Macro

2. Acquire and initialize the
AI psbname list control block.

~
...

t, .~ CALL Macro List

DLZUSCHO
entry length

OPENSACH entry
offset to

point
compare field

2·33.1
length of
compare field

E] > 3. Read build cards until EOF.

t ~ GET Macro

Build Cards

4. Syntax check the build cards. PST

IpSTCODEl I

BLDLCBAD -- ---- ~ 5. Add valid psbnames to the list

IA (list ctrl block) I control block. AI

~ ~ DLZUSCHO

I NSACH entry
BALA point 2·33.1 List

step 4 A !list ctrl blk) I
I A (psbnarne) I

DLZ,uACBO - Create ACB Utility Csect DLZUACBO

E xten dedD escrlPtlon R outme L bel a Extended Description Routine Label

1. Module identifier (DLZUACBOvrnp) is IoLZUACBO DLZUACBO
defined here. The level format is vrnp;

4. Write DLZ588I for an invalid
delimeter, label, opcode, block

where 'v' is the version, 'r' is the type, operand, continuation, or
release, 'n' is an additional identifica· invalid format. The output device
tion number, and 'p' is the latest is set at this time (SYSLINK or
PTF number that has been applied. SYSPCH).

The time and date are required for the
report heading to DLZUACBO

If OUT=LINK was specified in the
build card, SYSLNK is indicated in

messages and control statements that the PST.
are printed as this utility executes.

5. The psbnames from the PSB= MOVEIT
2. The parameter list for OPENSRCH INITSORT operand are passed one at a time

is passed in RI. to INSRCH.

OPENSRCH returns the address of the
list control block in RI, which is then

The parameter list for INSRCH is
passed in RI.

put in the parameter list for INSRCH.
Write DLZ905I if GETVIS error

Write DLZ905I if GETVIS error returned from INSRCH or DLZ571I
returned from OPENSRCH. warning message if a duplicate

3. ~W:ARD
psbname is found.

Licensed Material - Property of IBM 2-251

Figure 2-33. ACB Creation Utility Overview (Part 2 of 3)
",INPUT ,,"PROCESS _OUTPUT

PST ----- ~--. ~ 6. Check that SYSPCH or SYSLNK is
I PSTCODEl I

assigned and open the device.
1':<

'BLDLCBAD > 7. Set up to cycle the psbname > PST I A (List ctrl blk) I build list entries, getting
, IpSTPSB I psbnames to give to the Block

PST SCD
Builder.

I PSTSCDAD IlsCDDLIPS I

SCHCTLBK

I SCHFGRP I

SCHGROUP BLDDLTEN 8. Move a psbnamefrom abuild list > PDIR R1

L SCHGRPCT J I ENTRYNM I entry to the PDIR an'dgo to
IpDIRSYM II:§:!

I SCHENTRS I build and write blocks.

t ~ DLZDLBLO

BALR Block Builde,
Routine

2·33.2

BLDDLTEN
9. Write completion message.

IENTRYNM I I t DLZLBLMO

BALR Message .~ritBr
2·33.15

PST SCHGROUP - ---.. ~ 10. Return to step 8 for next
I PSTPSB IlsCHNGRP I build list entry until there

are no more psbnames.

DLZUACBO - Create ACB Utility Csect DLZUACBO

Extended Description Routine Label Extended DescriPtion Routine Label

6. CARDEOF
OPEN

8. PSTERCOD is examined to see if any BLDGROUP
errors were posted by the Block CALLBB
Builder. If not zero, issue message
DlZ587I to indicate the PSB will not
be built and go to step 10 to attempt
to build remaining blocks.

9. The completion message is normal
unless a non-zero return code
is found from DIZDLBLO.

Write DlZ5891 to indicate processing
has been completed for the PSB
specified.

10. NXTPSB

2-252 Licensed Material ,;.. Property of IBM

Figure 2-33. ACB Creation Utility Overview (Part 3 of 3)
INPUT ______

PST

I PSTPSB

PST

SCHGROUP

II SCHNGRP I

IpSTCOOEl

.. 0 LZUACBO - Create ACB Utility Cssct

Extended Description

10.

·11.

12.

"" PROCESS
·"i. ,",OUTPUT

~ 10. Return to step 8 for each build
list entry until there are no
more psbnames.

11. Free the psbname list control
Rl block. I A (List control blk)

t ~
<'.A Moo,n

o LZUSCHO

CLOSESCH entry
point

2-33.1
step 8

~ 12. Close files and exit.

t t CLOSE Macro

-.
Return to
DOV/VS

DLZUACBO

Routine Label Fxt~nrled Descriotion

NX'rPSB

BLDDONE

CLOSE

Li"censed Material: ...; Property of IBM

I

label

2-253

Figure 2·33.1. Binary Search Insert Routine (Part 1 of 2)
-INPUT • PROCESS ,,"OUTPUT

From
Fig. 2·33
Step 2

OPENSRCH Entry Point

SAVE -- -- ~ 1. Acquire storage for the list Caller

ISAVEBL I control block, including one Registers

I I group control block.

+-+ G ETVIS Macro SAVE

~List HSA

List entry length .. ENTLNGTH

offset to > 2. Initialize the list and group > COMPLOC
compare field control blocks, COMPLNG
engt 0 ENTBLKSZ compare field

NUMENT

ENTBLK ENCNTS

I ENTBLKBL I CHAINLOC

CHBACK

Caller > 3. Return to caller.
SAVE Registers R1 R15

I HSA I I I ISAVE II Return Code I , , Figur.2·33 From
Figure 2·33

Step 2

R1 Step 5

~List * ,,,,,"'"W ~'"' I A (SAVE) I
LA (psbnamelj SAVE

Caller

SAVE > 4. If the psbname already has a HSA Registers
build list, set R15=8, then Joo

I I ENTLNGTH ENTBLK LSA

COMPLOC I CHAIN I
go to step 7. ENTLOC

COMPLNG I ENTBLKBLJ

NUMENT

CHAINLOC

DLZUSCHO - Ace Maintenance Binary Search Insert Routine DLZUSCHO

Extended Description Routine Label Extended Description Routine Label

I. Module identifier is defined here. DLZUSCHO DLZUSCHO
Length acquired is X'80' bytes. One OPENSRCH
group control block will hold 16 build
list en tries.

2. Block now contains information
needed to build a group control
block. The first (or only) block is
obtained before the first actual insert.

3. The address of the created block is
returned to the caller.

Note: This routine is very generalized
and could be used for other purposes,
but it is only used by DLZUACBO to
build the psbname build list control
block.

4. Routine identifier (INSRCH ..) is INSRCH INSRCH
defined here. INSRTI

2-.254 Licensed Material - Property of IBM

Figure 2-33.1. Binary Search Insert Routine (Part 2 of 2)
• INPUT "" PROCESS I~OUTPUT

- r--- ~
J

ENTBLK SAVE 5. If no room for new build list INTBLK

I ENCNT II ENTBLKSZ I entry, issue GETVIS for a new ENCNT
Group

group control block, chaining it I
Control Blk

I CHAIN
to any previous blocks.

BKCHAIN GETVIS Macro
SAVE

ICHBACK I

ENTBLK SAVE > 6. Insert new entry in collating ENTBLK

I sequence. IENCNT I Group
BKCHAIN ENTLNGTH

0 ENTBLKBL I NUMENT

CHBACK SAVE

ENTLOC I NUMENT I I new entry
I

SAVE Caller > 7. Return to caller with return)R1 R15
IHSAI Resisters code in R15. IA (entry) II return code I I I

..
Figure 2-33 . Step 5

Figure 2-33
Step 11

CLOSESCH Entry Point

R1 - --- ~ 8. Free all group control blocks > Caller

I A Uist ctrl blk) I and then the list control block. Registers FREEVIS Macro I I

+-+ FREEVIS Macro

Caller > 9. Return to caller.
Registers

I I ~

Figure 2-33
r Step 11

Extended Description Routine Label Extended Description Routine Label

5_ There is enough room for 16 entries INSRCH ~OTFND
in a group control block.

6. MVDK

7. NOGO

8. Routine identifier (CLOSESCH) is CLOSESCH CLOSESCH
defmed here_ All group control blocks
can be found beginning from the list
control block_

Licensed Material - Property of IBM 2-255

Figure 2-33.2. Block Builder Routine 1
I" INPUT

From Figure
I" PROCESS I"OUTPUT

2'33iPB

PsB
~ 1. Acquire storage for PSB specified, > PsB

I I load, and convert it. I I
PDIR > 0 I 1

DDIR Temp

esB I I I PsBDBR.F 1-- --- ---;. 2. Build temporary OOIR entries for all DTABDMB
data bases directly identified in the PSB. I I

.... 0 PsB

I 1
FLsTAB

I 1'---- - ---:;;. 3. Calculate and acquire storage needed

PCB
for SOBs, etc.

I I -0
PsB

I 1- --- --- .. 4. Point to first PCB to be built.

PCB 5. Initialize PCB.
I I

-0 > PCB v-

I I
PsB

I PsBSGTAB 1-- -- --- ~6. Build SOBs for PCB. ,

-0 > sDB ..
I I

7. Loop to step 5 through all PCBs for PSB . • To Figure
2·33.3

DLZOLBLO - Block Builder Routine 1 DLZDLBLO

Extended Description Routine Label Extended Description Routine Label

I. PSBPASS

5. PSBPASSI
BLOpeB

6. Only those SOBs for segments directly PSBPASS3
referenced by SENFLOs are built at this
time. Generated SOBs will be built in
OLZOLBLI.

..

2-256 Licensed.Material - Property of IBM

Figure 2-33_3_ Block Builder Routine 2

'" INPUT From Figure
• PROCESS ~OUTPUT

2-33.2 • ..
.... ...

OUMOOIRB > 1. Get first temporary DDIR address.
I I
OOIR

I 1---- f-T-=: 2. If DMB already built for DDIR entry, go

I
to step 5.

L_ • 3. Load the DBD.
EXTOBO ~ OBO

I 1- ... --- - --:; ~

"'0
I I
OTABOMB

I I
PREFIX SEGTAB

I II I " > 4. Build the DMB.
FLOTAB LCHILO OMB

I II I BLOOMB I I
SORTAB INOEXTAB 2-33.4 PSOB

I II I I 1
COMPRESSION CSECT

~ 5. If any unprocessed SDBs exist for this

""
SEC

I I DDIR entry, process them. I 1
BLOSOB COMPRESSION CSECT ... I I

L....-.o 2-33.5
SOB SEGTAB FOB

I II I 6. If any DDIRs remain to be processed, get I I
SORTAB PSOB next and go to step 2. ACB

I II I I I
FOB OOIR OTF

I II I I I
EXTOBO SEC ~

I II I To Figure

~
> SOB

2-33.6 I I
OLZOLBL1 - Block Builder Routine 2 OLZOLBL1

Extended Description Routine Label Extended Description Routine Label

2. The DBD address is reset from the DMB DMBPASSI
Name Table.

3. Any DBDs referenced by this DBD are DMBPASS2
added to the dummy DDIR list.

4. A. If the DBD is for an index data base, DMBPASS3
the DDIR entry for the target data
base is located and processed first.

B. No DMB is built for logical DBDs.

5. A. SDBs pointing to VLC or logical DMBPASS8
segments are reset to point to the
physical segment PSDB.

B. All generated SDBs are built here.

6. If additional SDBs were chained to a DMBPASS9
prior DDIR during step 5, return to that
DDlR, and go to step 2.

Licensed Material - Property of IBM 2-257

Figure 2-33.4. Block Builder BLOOMB Routine
I"INPUT "" PROCESS

I
~OUTPUT

From Caller • ~ - ".
PREFIX SEGTAB ...

"
OMB

I II I 1. Get and initialize storage for OMB. >1 I ...
FLOTAB EXTOBO

-'0 I II I
OOIR

I I

PREFIX SEGTAB -" ...
I II I 2. Build PSOBs, FOBs, Secondary Lists, and OMB PSOB Compression CSECTs for each segment. v-

I II I FLOTAB LCHILO

I II I
-'I~" I FOB OOIR

I II I SORTAB INOEXTAB

1 II I SEC

COMPRESSION CSECT I I
I I COMPRESSION CSECT

1 I
OOIR FOB ...
I II I ;> 3. Process enqueued Secondary Lists; build SCKL PSOB ... segment concatenated key table; and
SEGTAB SCKL initialize subsequence source, or search I II I
I II I secondary lists. SEC

FLOTAB PSOB

-'0
I I

I II I
SEC INOEXTAB

I II I

OOIR ACB _
I II I > 4. Move in OTF(s) or ACB. OTF ACB Dh· OTF PSOB I II I
I II I OMB

OMB FDB 1 I
I II I

Return to
Caller

o LZO LB L 1 - Block Builder Routine 2 OLZOLBLI

Extended Description Routine Label Extended Description Routine Label

I. BLDDMB

2. Until the concatenated key table is built, BLDDMBI
all secondary lists are enqueued on the
DDIR and will be built during step 3.

3. BLDDMB4

2-258 Licensed Material - Property of IBM

Figure 2·33.5. Block Builder BLOSOB Routine (Part 1 of 2)
~INPUT From Caller - PROCESS _OUTPUT

.~ 1. If no more SOBs, return to caller. R6

I r----- -~

[
2. Find matching physical segment table

entry.

3. If segment has source, repoint SOB to A
506

C I I IISORTAB
OOIR ,I new PSOB. Go to step 1.

IJ
rt' I II I ~ E3 l-v t t

OOIR

I I
ISEGTAB SOB

I~~ ~ I II 4. If segment is a logical child, build ---v generated SOB chain.

IJ t ~ D
~ 5. If SOB is a generated SOB for a logical

parent or the target of an alternate
sequence index, and no generated parent
chain exists, build one.

t ~ 0
~ 6. Set ACB number, physical segment SOB

PSOB

"
code, key field length, PSOB address, I I I and next SOB to PSOB address.

I/'
PSOB

I I
Rl

I I

OLZOLBL 1 - Block Budder RoutIOe 2 OLZOLBL1

Extended Description Routine Extended Description Routine Label

2. Output message DlZ9121 if not BLDSDBI
f\lund.

3. If source is in another DBD, the SDB BLDSDB3
to be processed is the next one for
this DBD. Otherwise, process the
original with the new segment name.

4. If segment is a normal logical child, BLDSDB7
the logical,parent SDB is generated
and flagged to cause generation of
the parent chain when the LP is
processed. All generated SDBs are
chained to the DDIRs for the related
data bases.

S. BLDSDB8

6. BLDSDB9

Licensed Material - Property of IBM 2-259

Figure 2-33.5. Block Builder BLOSOB Routine (Part 2'01 2)
'" INPUT. . ,. PROCESS -------------.

~OUTPUT _________ -.

SOB

I

R1

r 7. If SOB is not the root for an alternate
~ sequence, go to step 1 l.

r;t 8. Generate SOB for index.

"~""~D
9. Generate SOB fQrtarget of index and

flag to indicate parent chain is to be
generated.

10. Go to step 1 and process SOB generated
in step 9.

11. If SOB is not for H I DAM root, go to
step 13.

12. Generate SOB for primary index.

I,-------,r - - - - - - - - -}
13. Point to next SOB·for OOlR, and go

to step 1.

OLZOLBL 1 - Block BUilder Routine 2

Extended.Description Routine Label Extended Description

7. BLDSDBF

11. BLDSDBG

13. BLDSDBI

2-260 Licensed Material - Property of IBM

SOB

SOB

=!====:J> 1<--_--'1
R6

1

SOB

R6

- ----- ~ <--I _--,I

OLZOLBL1

Routine Label

(

Figure 2-33.6. Block Builder Routine 3 (Part 1 of 2)
~ INPUT ___________ ...

~PROCESS-------------------------. .. OUTPUT-----.....

OOIR

I L-_----'1- - --

From Figure
2-33.3 • ..

....,
___ ~ 1. Calculate size of Intent List and

obtain space.

PCB ____ -.. ___ ...,...,..> 2. Process PCB.

Intent List

J
>1 1

PCB

oJ >1 I
SOB FSB ...
1 II
SOBXP

I I I ~
.-S-O-B----F-S-B----, uri 3. Process SOBs for PCB. B-L-O-S-OB----------,

L-I _---JI L-I _---ll ~
PSOB FOB 2-33.7 1 I

Intent List

I I
II-_----'I 1-\ _----'I
SEC 4. Check for valid hierarchical structure.

SOB

I I-_----'1----
FERT

FERT ____ -. ___ ~> 5. Relocate pointers in FERT tables. ____ -L _____ ... ~>~I ____ ~I

OOIR SOB

I II 1 PCB OCB

I

JCB PCB

I II I
1-.----_> 6. Get space and move PCB.

1,---------,11 L-_--,I

DLZDLBL2 - Block Builder Routine 3

Extended Description

I.

2.

3. The SDB expansion and FSBs for any
field level sensitivity are built here. The
parentage flags in the SDB are set, the
Intent List entry is built, and any
propagation is done. The index SDB, if
any, is initialized.

6. Space is allocated for the PCB, JCB, key
feedback area, DSG, and Level Table.

Routine Label

GTILIST

BLDPCB

BLDPCB4

BLDPCB5

OLZOLBL2

Extended Description Routine Label

Licensed Material - Property of IBM 2-261

Figure 2-33.6. Block Builder Routine 3 (Part 2 of 2) .
• INPUT ,. PROCESS ~rOUTpuT

7. Build Level Tables. LEV

0
I I JCB

I I

SOB OSG ~ -"

I II I > 8. Build DSGs and set key feedback pointers. OSG JCB

I II I FOB PSOB 0 I II I SOB

I I SEC

I I
9. Calculate maximum path length for PCB .

.... 0
10. If more PCBs, address next and go to

step 2. • -
~

Go to Figure
2-33.8

OLZOLBL2 - Block Builder Routine 3 OLZOLBL2

Extended Descri ption Routine Label Extended Description Routine Label

2-262 Licensed Material - Property of IBM

Figure 2·33.7. Block Builder BLOSOB Routine
",INPUT From Caller ,. PROCESS ,.OUTPUT

FSB FOB ~ I II I J\ 1. If segment is field sensitive, build SOB .A SOBXP

PSOB expansion and FSBs. r I I
I I

•

0 ~ ~ FSB

I I I SOB
PSOB I ~

I II I 2. Set SOB parentage flags.
1\

SOB
v

0 I I t ~ v

3. Calculate maximums for save area
sizes.

~ ~ 0
SOB OMB 4. Build intent list entry. Intent list

I II I
~

~ IINTPROP I

V

I I
PSOB OOIR I I II I

I 2·33.10

SEC

I I
.. ~

SOB FOB 5. Fill in any generated index SOB. I SOB
OOIR

II I II I v v

~ ~ 0 II I
PSOB

I I
SEC

I I
SOB

t\
I 6 . If any target SOBs, get first and go to • step 1.

Return to
Caller

OLZOLBL2 - Block Builder Routine 3 OLZOLBL2

Extended Description Routine Label Extended Description Routine Label

I. BLDSDB2

2. BLDSDB3

3. Maximums set are:
a. Maximum segment length in

either physical or user's view.
b. Maximum concatenated key

length.
c. Maximum concatenated segment

length.
d. Longest segment at this level and

path sensitive.

4. a. Output message DLZ9091 if INTENTL
PROCOPT changed.

b. All intent propagation is done
here.

5. Fill in the generated index SDB for BLDSDB4
HIDAM primary indexes or alternate
sequence.

Licensed Material - Property of IBM 2-263

Figure 2-33.B. Block Builder Routine 4 (Part 1 of 2)
I'" INPUT From Figure ~ PROCESS • OUTPUT

2~3~

PSB PCB 1. Build index maintenance PCB if required. PCB JCB

I II I v I II I
JCB PSB LEV

I I I II I
SOB oSG

I II I
2. Calculate sizes of work areas.

t..
PSB

v I I
L I\.

SOB SoBXP 3. Set SOB Expansion for alternate SoBXP

I II I v sequence. v I I
PSoB FOB ~ ~ 0 I II I
SEC

I I
PSoB oolR ~

4. Validate VLC L T sequence field

I II I location.

SEC

~ ~ ~ I I
5. Process and output OMBs.

~ ~
oolR2SC2

2~3.12

6. Process and output PSB.

~ ~
PSBMOV

2~3.13

7. Free PSB storage.

t ~ 0
oLZoLBL3 - Block BUilder Routln" 4 oLZoLBL3

Extended Description Routine Label Extended Description Routine Label

1. BLDEND

2. Index work area, Index I/O area, CALWAS
segment compression work area, and
I/O work area

S. DDIR2SC2

6. PSBMOV

7. FREEPSB

2-264 Licensed Material - Property of IBM

figure 2-33.S. Block Builder Routine 4 (Part 2 of 2)
INPUT ______

DTADMB

C==-t------ ----7

DLZDLBL3 - Block Builder Routine 4

Extended Description

8. Utility PSB is built for every HISAM,
HIDAM, HOAM, and secondary
index OMB just outputted.

9. The dmbname is moved to the
psbname location and a suffix 'u'
added. The no utility PSB required
indicator is turned on at OTABFLAG
so we don't try to build another
utility PSB for this OBO the next
time around. Return to Step 9 to
build the PSB. The output of
OLZOPSBO is like PSBGEN output.

II.

12. PSTERLOO = 0 if OK and non-zero
if not.

PROCESS-------------..

S. Search DMBNAME table for DMB that
needs a utility PSB. Go to Step 11 if
none.

9. Build utility PSB.

10. Go to PSBPASS in module DLZDLBLO
(Step 1., Figure 2-33.2) to process utility
PSB just built.

11. Free DBD storage.

12. Return.

Routine Label Extended Description

UTILPSB

FREEOBO

RETURN

To Figure
2-33 Step 9

OUTPUT ______ ~

DLZDLBL3

Routine Label

Licensed Material - property of IBM 2-265

!II INPUT ~ PROCESS ",OUTPUT

From Caller

• Rl

R2

-- --=: ~ b 1 Length 1- 1. Acquire storage . ..
.... GETVIS Macro

R1 ADDRC ADDRDBD

1 I :> 2. Chain storage acquired. I II I

3. Return to caller.

• To Caller

DLZDLBLO - Batch Control Block Builder CSECT DLZUACBO

E xten dedD escrlPtlon R outme L abe Extended Description Routine Label

I. Write message DLZ90SI if GETVIS GETSTOR
space is not available.

2. If this is a storage request for a DBD, GETSTORI
the storage is chained off at
ADDRDBD rather than ADDRe.

2-266 Licensed Material - Property of IBM

I Figure 2·33.10. Intent Propagation Routine (Part 1 of 2)
~INPUT .. PROCESS ,.OUTPUT

I

R6 SVBF3

ISDB II I

SDB

SDBF3

SDBDDIR

SDBPSDB

SDBTARG

PSDB SEC

II DMBFLAG I DMBSCDE I

II DMBLST I DMBSECND I

SVBF3

I \-

Fr am.
gure
33.7
ep 4

Fi
2·
St

I-

l-

-

I
I
I

-

-

I
I
L_

DLZDLBAO - Intent Propagation CSECT

Extended Description

1. This routine propagates intent to all
PSOBs related or dependent on the
PSOB for the entry SOB. Only SOBs
that are built directly from SENSEG
statements in the associated PSB are
passed to this routine.

For a process option (PROCOPT) of
G, the entry SOB and all targets are
set to exclusive. For E PROCOPT,
the entry SOB and its immediate
target are checked for key sensitivity.
If the SOB is data sensitive, the intent
is set to exclusive. Otherwise, no
intent is set.

2.

3.

4.

~ 1. Set read only or exclusive
Caller

SVBF3 Registers

intent for entry SOB. CJ I I ,
SETNT Build PSIL

BALR Routine
2-33.11

~ 2. Set update intent for entry SOB
and its target if either is
replace sensitive.

SETNT

Build PSIL
BALR Routine

2·33.11

~ 3. Check for necessary intent
propagation. Skip to Step 7
if entry SOB is not ISRT/OLET
sensitive.

~ 4. If ISRT sensitive, skip to
Step 6.

DLZUACBO

Routine Label Extended Description Routine-

INTPROP

SETREPL

PROPTYPE

UPTYPE

-.

Licensed Material - Property of IBM

~

Label

2-267

I Figure 2-33.10. I ntent Propagation Routine (Part 2 of 2)
'" INPUT • PROCESS

.rOUTPUT

SOB PSOB -,-; ~ 5. Process the entry PSDB and all
I"'"

;> LlMITAB

I II I necessary related and dependent I I
I PSDBs for D PROCOPT.

OOIR OMB

I II I I SETNT

SEC LlMITAB ~ Build PSIL

I II I I
Routine

2-33.11

I
L_ ~ 6. Process the entry PSDB and all

necessary related and dependent
PSDBs for I PROCOPT.

SETNT ... Build PSIL
Routine

BALR 2-33.11

Caller
Registers

I h, 7. Return to caller. ;> R15
I , I I ... FREEVIS Macro

To I
Figure
2-33.7
Step 4 I

\

OLZOLBAO - Intent Propagation CSECT OLZUACBO

Extended Description Routine Label Extended Description Routine Label

S. Any intent set will be update type. DLETPA
Storage is acquired for a limit table
and is constructed with PSDB

After processing the LIMITAB
entries built, the area is freed.

addresses. These addresses show
children of the entry PSDB, any

7. Set the retum code and make sure INTRETO
all the limit tables are freed.

necessary higher related PSDBs, any
index relationships, any logical
children, the logical parent, physical
parent, and physical pair of the entry
PSDB. After the table is constructed,
each entry is passed to SETNT to set
update intent and the table area is
freed. Exclusive intent is propagated
along with delete.

6. Any intent set will be update type. UPISRT
A limit table is constructed with UPCHKPP
addresses of those PSDBs that will
be passed to SETNT.

It is also determined if the entry SDB
can insert its logical parent or physical
parent as a result of a concatenated
segment definition. If it can, the
logical parent or physical parent is
processed in the same manner as the
entry PSDB. The physical pair is also
processed if one exists.

2~268 Licensed Material - Property of IBM

I Figure 2-33.11. Build PSI L Routine
~ INPUT

DDIR PSDB

I DDIRRESV II DMBSC I
ENQLSTA

I I

SVBF3 SDB

I II SDBPHYCD I
R1 R7

I 11 I

DLZDLBAO - Build PSIL CSECT

Extended Description'

1.

2.

e

1.

Fr
F'
2-

om
lQur
33,

I-

-

--:

I'" PROCESS ",OUTPUT

Caller
R1 Registers

,. 1. Calculate the address of the I II ~ beginning of the segment
, ,

descriptor bits in the intent R7

list area for this PSDB. I I

Intent List
~ 2. Set the requested sensitivity c=J for this PSDB.

3. Return to caller.

To
Figure
2-33,10

DLZUACBO

Routine Label Extended Description Routine Label

DLZDLBAO SETNT

ENQI

Licensed Material - Property of IBM

Figure 2·33.12. Write OMBs (Part 1 of 2)
I" INPUT !" PROCESS !"OUTPUT

From
Figure
2·33.8
Step 5

DDIR DMB • I DDIRADDR I DMBSIZE

DMBNREF -- ~ 1. Acquire storage for OMB and
external reference tables GETVIS Macro DDIR DMB

IDDIRADDt DMBLENTB DMB SEC

I DMBDALGR II DMBXITAD I
DMBSECTB

PSDB DMB

I DMBVLDFG I .:> 2. Convert addresses which PSDB

COMPRES· reference locations within OMB DMBFDBA

SEC
SiaN to offsets from OMB start.
CSECTs DMBSCTAB CaMP I DMBSCDE I DMBLST CSECTs

I DMBXITAD J I XMT I XMT
CSECTs CSECTs

SEC SEC DDIR .:> 3. Change OOIR addresses in the
'I DMBSCDE II DD'RDMBNI II DMB I DMBSECDB I secondary lists to relative OMB Reference

List
.lDMBSECDB J numbers as to where the OMB

entry is in the OMB reference
list.

PSDB

I DMBPSDBNI- -- ~ 4. Return to Step 2 to process the
next PSOB if there is one.

DDIR DMB DMB DMB

IDDIRADDR I PREFIX PREFIX I DMBNREF I
ACBEXT 5. Move old OMB to new OMB. ACBEXT

PSDBs PSDBs

FDBs FDBs

SEC LIST SEC LIST

CaMP
CSECTs --:: DMB - 6. If HSAM, include MTMOO or SOMOO

I I '" XMT DMBORG for linkedit. CSECTs

DLZUAMBO - Block Mover CSECT DLZUACBO

Extended Oesaription Routine Label E ddD xten e eSCrlptlon R outlne L b I a e

1. Process all DMBs referenced in DDIR DDIR2SC2 6. The names in the relocatable library DMBOUTI
entries uhless already built or of the required modules are
LOGICAL. DLZTAPE or DLZDISKI and

DLZDISKO.
Write message DLZ90SI for GETVIS
error.

2. The compression CSECTs and index DMBREL
maintenance CSECTs are moved to the
new DMB.

Write message DLZS70I for an invalid
SEC list code found in a DMB.

3. The reference list is the last part of 'SECREL
the DMB. If the DMB is not in the
list, it is added. Repeat this step for
each SEC.

4. PSDBREL2

S. Any addresses which do not fall within DMBOUT
the DMB are set to zero.

2-270 Licensed Material - Property of IBM

I Figure 2-33.12. Write DMBs {Part 2 of 2l.
,.INPUT .. PROCESS .. OUTPUT

DMB

c=J D
DDIR EJ I DDIRDMBN I ;> 7. Write DMB to SYSLNK or SYSPCH.

0 SYSLNK SYSPCH

DDIR

I DDIRQE I- f- --- ~ 8. Free the new DMB storage and
I DDIREND I return to Step 1 to process the

next DDI R if there is one FREEVIS Macro

9. Return to caller.

• To Figure
2-33.8
Step 5

DLZUAMBO - Block Mover CSECT DLZUACBO

Extended Descriotion Routine Label Extended Description Routine Label

7. The same subroutine is used for the DMBOUT3
PSB also.

8. Write message DLZ9261 for a
FREEVIS error.

Licensed Material - Property of IBM 2-271

Figure 2·33.13. Write PSB
,.INPUT ,. PROCESS ,. OUTPUT

ENQLSTA PSB Prefix From Figure

I PSIL I 2·33.8
Step 6

PSBXIOWK

PSBSEGWK

PSBPST ---:; ~ 1. Acquire storage for entire PSB.

PSBNOXWK

PSBIOAWK

.... GETVIS Macro

PSIL SOBs PSB

I.",_h, 2. Move pieces of PSB to acquired PSIL

storage. PSB Prefix

PCB OBPCB1

JCB JCB

OSGs SOBs OSGs

LEVTABs I generated I SOBXP

OBPCB2
SOBXP XMT PCB

I II I etc.

SOBXP

PSB Prefix XMT PCB

I I FERT

IV Area
PSB 3. Convert addresses which
PSIL -- reference locations within PSB
PSB Prefix

to offsets from the correspond-

OBPCB1
ing PCB.

JCB

~ 4. Write intent list/PSB to OSGs

>EJ[I LEVTAB
SYSLNK or SYSPCH.

SOBs

5. Free the new PSB storage.
SYSLNK SYSPCH

SOBXP

OBPCB2

etc. FREEVIS Macro

SOBXP

XMTPCB
6. Return to caller. To Figure

2·33.8
Step 6

OLZUAMBO - Block Mover CSECT OLZUACBO

Extended Description Routine Label Extended Description Routine Label

I. The size calculation formula is PSBMOV
PSBPST - PSBXIOWK - PSBSEGWK
- PSBNDXWK - PSBIOAWK + length
of PSIL.

'Write message DLZ9051 for GETVIS
error.

2. PCBMOV
SDBMOV
FSBMOV
FRlVMOV

3. FERTREL
PCBREL
DSGREL
SDBREL
FSBREL

4. PSBOUT

5. Write message DLZ9261 for
FREEVIS error.

2-272 Licensed Material - Property of IBM

I Figure 2-33.14. Build PSB (Part 1 of 2)
I"INPUT

R1 C A (LiSTI I

LIST

QAlOOOl I
I I

OBOGEN
Control
Block

§ I I

OBOGEN Contr<J1 Block

SEGTAB FLOTAB

SEGPARC IFLOFLAG

SEGLEVEL (FLOSZE

SEGFLOTB

I

I

Fr om
33.
ep

2- 8
St 9

Figure

•
- -

- -

OLZOPSBO - Utility PSB Generator CSECT

Extended Description

I'" PROCESS ~OUTPUT

~ 1. Establish addressability and
Caller

;> Registers
calculate the required PSBGEN I
size. , ,

~ 2. Using DBD, calculate required
key feedback length and add to
PSBGEN size.

LIST
3. Acquire PSBGEN storage.

IA lOBO I 1
.... GETVIS Macro IA IPSBI I

PSBGEN
Control
Block

D

OLZUACBO

Routine Label Extended Description Routine

I. Routine identifier DLZDPSBO vrnp is DLZDPSBO DLZDPSBO
defined here. A parameter list con- INIT
taining DBD address is passed in
Register I. The contents of this DBD
are used to create the utility PSB.

The PSBGEN size will be the fixed
size plus the number of segments
times the length of SENSEG entry.

It is possible to have an invalid access
method error to pass back to
DLZDLBLO.

2. The result will be stored in PSB SEGLOOP
Prefix. GETKEYSZ

3. The area is also cleared to zeros. USECURRI
Write message DLZ905I for GETVIS
error.

Licensed Material ... Property of IBM

tn

Label

2-273

I Figure 2·33.14. Build PSB (Part 2 of 2)
-INPUT '" PROCESS -OUTPUT

PSBGEN
DBDGEN Control Block ~ 4. Fill PSBGEN Prefix and PCB. PREFIX

PREFIX SEGTAB] DBPCB

I II I ~ 5. Fill SENSEG entries. SENSEGS

] DBREFTAB

~ 6. Move DBD name to DB Reference
Table.

Caller
Registers R1

I h, > 7. Return. ~A (LIST) I , R15 ,
LIST I return I A (DBD) I code

A (PSB) I • To Figure
2·33.8

. Step 9 I

DLZDPSBO - Utilitv PSB Generator CSECT DLZUACBO

Extended Dest;ription RoUtine Label Extended Description Routine Label

4. PROCOPT of 'A' is set in PCB for DLZDPSBO ~LRDONE
all DBDs except secondary index
where • LS' is set. The 'A' is changed
to the proper 'load' by batch initializa·
tion if necell$lry.

5. Same PROCOPT as in Note 4. iPsEGLOOP

6. In addition, no SORTAB is indicated. SETDBREF

7. The address of the built utility PSB ~TURN
is returned to the caller in the
parameter list.

2-214 Licensed Material - Property of IBM

I Figure 2·33.15. Message Writer
• INPUT From Caller r PROCESS ~OUTPUT . ~

Rl

I I

Caller --Registers

I ~ I
I

I DLZLBLMO - Message Writer CSECT

I
Extended Description

4. A subroutine in DLZUACBO
CSECT is called to do the actual
printing.

r

1.

2.

,----'I 3. rY

4.

~ 5.
v

Routine

This routine can be called by
DLZAUCBO.DLZLBLMO.
DLZUAMBO. or DLZDPSBO.

Caller

"
Registers

Find matching message 10. I h, v • •
MSG

Move message to output area.
"

I I

Also move all inserts to message I MSG/ .. MSG I if any. v

D Print message.
V

Return.
SYSLST

• To Caller

DLZUACBO

Label Extended Description Routine

Licensed Material - Property of IBM

Label

2-275

Figure 2-34. Prereorganization Utility (Part 1 of 4)
,. INPUT ,. PROCESS .. OUTPUT

From
Batch
Initialization
IFi9U.-3.4l

Caller
Rl > 1. Save contents of R1 in PSTADDR. PSTADDR Registers

I PST I I II I Address

2. Open printer and reader and
establish PST and SCD
addressability .

.... 0PENMacro

0-
"'GETIME Macro

--~ 3. Read control cards and ..
SYSIPT validate content. At end of

file go to Step 7 .

.-GETMaCro

tr~ I" f--- - ~

I 4. Convert the dbdname to a DMBNAME
DBR"dbdname dmbname. 1

DMBNAME > 5. Acquire list space if required LSTHD

I I and enter DMB in control list.

rDLZUCDSO +---t GETVIS Macro
LEFPTR

6. Return to Step 3 to process the
LENAME

next operand or control card. LECRNO

LELEN

LEFLGl

Control List

DLZURPRO - Prereorganization CSECT DLZURPRO

Extended Description Routine label Extended Description Routine label

I. Module identifier (DLZURPROvrnp) DLZURPRO ~LZURPRO 5. Control list entries contain DMB LSTINS
is defined here. HERE names of data base and user options

specified in control cards.
This utility executes as 'ULU' under
DL/I contra!. No blocks or buffers Macro DLZUCDSO contains the
have been loaded yet. Only the nucleu DSECT defining the format of a
exists. Batch initialization passes the control list entry.
PST address to the logical relationship
utilities rather than a PCB address. Write message DLZ9631 if an entry

already exists for a dmbname.
2. OPEN I

3. Control card contains identifier as iNXTCR
Write message DLZ9651 if the number
of control list entries exceeds the

DBIL= (initial load), DBR= maximum of 20.
(reorganize), OPTIONS=, and
dbdnames. In case of an input control Write message DLZ391 I if GETVIS
card format error, message DLZ9541 fails.
is prioted and job termioates.

4. DBIREC
DBRREC

2-276 Licensed Material - Property of IBM

Figure 2-34. Prereorganization Utility (Part 2 of 4)
",INPUT rPROCESS ",OUTPUT

o LZUCOSil '> 7. Continue to next step for each

ILEFPTR I
data base referred to in control POBN

ILENAME
I

list entry.
'>loMBname 1 Address

Control List At end of entries, go to Step 15.

PSTAOOR PST

I II PSTPSB I ",>,0 LI I Blocks > 8. Load utility PSB. and Buffers
POBN OLZBLKLS

I I I I BLOB I Address
OLZBLKLD Macro ASMTOLI

BLDL Function for

POIR Rl
Utility PSB

I POIRAODR I n~CBlIST
Address I

PCB > 9. Find the PCB representing this PRMPCBAO

II0BPCBOBo PSB data base. .:>I 1
IpsBLIsT I II0BPCBJCB

OBONAME

I I

JCB SOB

JCBSOBl SOBPSOB I
JCBSOBI\!O SOB LEN I --- ~ 10. Scan all segments in data base

for logical relationships (LR)
JCBORGN and continue for each found.

PSOB
At end, return to Step 7.

OMBFLAG I
OMBLST I

DLZURPRO - Prereorganization Utility OLZURPRO

Extended Description Routine Label Extended Description Routine Label

7. Write message DLZ9641 for no DBIL !DLZURPRO SCAN
or DBR control cards. SCAN10

Write message DLZ9761 if the I

dbdname specified is an index DBD.

8. The DLZBLKLD macro moves the BLDBLKS
dmbname to PST at PSTPCPSB and
sets utility suffix 'U' and calls DL(I
with the BLD B call function.

Write message DLZ956I for a data
base control block build failure or
if there is no PCB.

Rl is returned with the address of the
PSBLIST.

9. NEWDBLP

10. If a LP(LC exists for a segment, SCAN20
continue to the next step to look at
the secondary list entries for the
segment. Mter each SDB with a LR
has been processed return to Step 7
to process the next data base control
list entry.

Licensed Material - Property of IBM 2-277

Figure 2·34. Prereorganization Utility (Part 3 of 4)
I" INPUT ------. p" PROCESS -------------.

SEC ,_

DMBSCDE I
DMBSECLN I

SEC DDIR

DMBSCDE I DDIRADDR I

-.......::~ .. 11. Scan all SEC entries for logical
parent (LP) or logical child
(LC) entry and continue for each
found. At end, return to Step 10.

DMBSECDB
DMB

t-L---""'-\,;> 12. Find the PSDB and then the SEC
entry of the referenced segment
that points to this segment in
order to find the LC's LP or

DMBSECSC

PSDB

I DMBLST

SDB

I SDBDDIR

I DMBLENTB I

I

I

DLZUCDSO

LENAME

LESLPTR

LEFLGI

LEPSDBSG

Control List

the LP's LC.

13. Build a data base list entry
for the found LP or LC if it
exists in a data base not on the
OBI L= or DBR= card.

14. Build a segment list entry for
the segment and a secondary
list entry. Return to Step 11.

1-''--__ --'",> 15. Print and punch DBS cards if
requested by OPTIONS.

EJ--~--~ 16. Determine device type and open
the control data set .

.... DLZDVCE Macro

..... oPENMacro

Control
Data Set
ISYSOI2)

DLZURPRO - Prereorganlzatlon Utility

]

Extended Description Routine Label Extended Description

II. DLZURPRO SCAN50 15. DBS indicates data base must be
scanned using SCAN utility

12. The correct SEC is found by comparing SCAN60 (DLZURGSO).
the dbdname in the SEC to the
dbdname in the SDB. Write message DLZ9621 to list

segments scanned.
Each SEC for the segment is examined

"'OUTPUT ______ -.

DLZUCDSO

Data Base List
Entries

Segment List
Entries

Secondary List
Entries

Control List

SYS LST SYSPCH

DLZURPRO

Routine Label

SCNLST
NXTDB

to see if it is a lP or LC entry. 16. Write message DLZ9841 if there is an SCAN500
invalid device assignment for OPENCTL

Write message DLZ9651 if a SEC is SYSOI2.
not found with a matching dbdname.

13. Write message DLZ9851 for a limit SCANllO
check failure. SCAN 1 40

14., Segment entries contain segment
names involved in logical relationships
(LR).

Secondary list entries contain DMB
names which refer to logically
related data bases.

As control data set list entries are built,
each record is calculated to determine a
maximum record length. The largest size
is saved and put into field LESRTSZE
when the cont.rol data set is written
(Step 17).

2-218 Licensed Material - Property of IBM

Figure 2·34. Prereorganization Utility (Part 4 of 4)
I" INPUT P"' PROCESS ,..OUTPUT

LSTHD

C DLZUCDS~
>B Data Base 17. Write Control list to control

Ust Entries data set.
Segment List Control
Entries

... PUT Macro

Data Set
(SYS012)

Secondary
List Entries

Contro I List

18. Close control data set, printer,
reader, and punch CLOSE Macro

Caller 19. Return.
Registers

I I
To ..
Batch
Initialization
(Figure 2-3.4)

DLZURPRO - Prereorganization Utility DLZURPRO

Extended Description Routine Label Extended Descriotion Routine Label

17. !DlZURPRO SCLPS

18. Write message DlZ966! for a SCAN700
normal termination. TERM

19. GOODRET

Licensed Material - Property of IBM 2-279

Figure 2-35. DB SCAN (Part 1 of 8)
",INPUT '" PROCESS I'" OUTPUT

From
Figure

RI PST

2.3.4.

I A (PST) I I PSTSCDAD I PSTADDR

I I Calier

SCD
1. Establish addressability and Registers

open the printer reader, and I I I SCDDSEHO I ADSEHO console.

B ... OPEN Macro

AFINDDTF EJ ~ '2. Open Control Data Sit. ~--I I DLZDSEHO

BALR Check ASSGN and
Control fill DTF,
Data Set

.... OPEN Macro
CDSHD DBNAMEFC

EJ
I I I

3. Read all control records. .. db list ent .
GET Macro

segm list ent.
Control sec list ent. Data Set GETVIS Macro

Control Data Set

4. Close control data set .

... CLOSE Macro

;> 5. Read input control cards. r ...
I ... GET Macro

Scan Input Cards
(Optional)

DLZURGSO - DB SCAN CSECT DLZURGSO

Extended Description Routine Label Extended Description Routine Label

I. Module identifier is defined here. This DLZURGSO DLZURGSO 3. (con't)
utility executes as 'ULU' under DL/I OPEN!
control. No blocks or buffers have Write DLZ3911 for a GETVIS
been loaded yet. Only the nucleus failure.
exists. Batch Initialization passes the
PST address to the logical relationship Write DLZ957I for no control data
utilities rather than a PCB address. set or, if the ID is not 'CONTROL
The DLZDSEHO prefix contains DATA SET'.
addresses to routines within
DLZDSEHO. The routines are used 4. CDSEOPB
by this utility. The addresses are
moved to a constant area beginning 5. Input on 'DBS=' card is used to NXTCR
at ADSEHO. modify Control Data Set in core.

'RSTRT=' and/or 'CHKPT=' specify
2. The 'PINDDTP' subroutine of PROCCTL checkpoint/restart capabilities.

DLZDSEHO is used to check that OPEN 'ABEND' card used for testing.
SYSO 12 is properly assigned to a disk
and to fill the correct device type Write DLZ9541 for a control card
in DTP. format error.

Write DLZ9841 if the control file is
not assigned to a disk.

3. The Control Data Set is moved from
the I/O area to storage acquired by
GETVIS for further processing.

2-280 Licensed Material Property of IBM

Figure 2-35. DB SCAN (Part 2 of 8)

~ INPUT I'" PROCESS [OUTPUT

DLZUCDSO -- --- ---7 a. For DBS=, set up list entry scan. >DLZUCDSO

LENAME I LEFLGl I
LESLPTR

b. For RSTRT=, set up to perform
LEFLGl ::> RSTRTVC RSTRTN

restart. I I I I Control

Data Set

c. For CHKPT=, set up to perform ;> CHKPTINC
checkpoint.

I I

AOPENWRK

~
~ 6. Open work data set. '--- > AWORKFIL

I I I I
....... DLZDSEHO

BALR Open WORKFI L

7. If not restarting, go to step 14.

(,-
~ 8. Open Restart file.

AFINDDTF Q~ f- --

I I
RESTART ... DLZDSEHO
(etional)

Check ASSGN
BALR ~nd fill DTF

.. OPEN Macro

-

>~ RSTRTN t: 9. Copy records to output file (including
c=:J g~ART

checkpoint records) until the check-
point record to restart from is fou nd.

CHPT Record

(etionall

"GETMacro

I I
"PUTMacro

DLZURGSO - DB SCAN CSECT DLZURGSO

Extended Description Routine Label Extended Description Routine Label

a. OBSREC

b. RSTRTREC

c. CHKPTRC

6. Write OLZ9841 for unknown or ignored SCAN
device type.

7. SCAN 10

9. Restart records are copied from the RSTRT40
previous WORKFIL until the specified
checkpoint record is found. An SSA
is set to do qualified GU on last
segment to reestablish position.

Licensed Material - Property of IBM 2:-281

Figure 2-35. DB SCAN (Part 3 of 8)
• INPUT • PROCESS -OUTPUT

10. Get ready to position the data PRMLST PDBN
CKPT Record base to the segment identified Count CJ I I in the requested checkpoint > GU

record.
A (PCB) PSEGN

c:=J
A (SSA)

SSA

0

DO ~ 11. Copy the checkpoint continua-
tion record to the work file. > ""~";O ~ ~ Record GET Macro

I I RESTART
WORKFIL

(optional) ~ ~ PUT Macro l
"-

> 12. Locate the data base I ist entry DBNAMEFC
PDBN DLZUCD50 I I D I I and segment list entry in the

Control Data Set to restart
Control processing from.
Data Set CHKORGS

PSEGN I I CJ 13. Close Restart file.

~ ~ CLOSE Macro

DBNAMEFC - --- ~ 14. Get a data base list entry and '>CURDBPTR

I I continue to step 15 for each I I one found.
After all list entries have

CURDBPTR been processed, go to step 34.
I I

DLZURGSO - DB SCAN CSECT DLZURGSO

Extended Description Routine Label Extended Description Routine Label

10. The SSA built is a qualified key RSTRTSO
call - 'segname *C (key)' to be used
in the call at step 11.

II. A continuation checkpoint record
contains the key value which is
moved to the SSA for a qualified
key call.

12. RSTRT62

13. Write DlZ9751 Restart complete. RSTRT70

14. Write DlZ9661 for normal program NXTDBP
termination if there are no more NXTDB
DB list entries to process.

I.j

~

2-282 Licensed Mat~rial - Property of IBM

Figure 2-35. DB SCAN (Part 4 of 8)
_INPUT '" PROCESS I"0UTPUT

DLZUCDSO -- 1--- ~ 15. Determine if this data base is
ILEFLGI I to be scanned. Return to step

14 if not.

> 16. Load Utility PSB.
>1 DLZUCDSO PSTADDR

1 I LENAME II I t t DLZBLKLD Macro

G
DLiI Blocks

ASMTDLI and Buffers
DLZBLKLS BLOB function I A (BLDB) I for utility PSB

DOS CIL

PST PDBN .---- ~ 17. Find the PCB representing this > PRMPCBAD

I PSTPSB II I data base. I I
t t CALL Macro

PDIR PCB I ASMTDLI I
I PDIRADDR II DBPCBDBD I UNLD I

PSB

I PSBDBOFF I
I PSBLIST I

18. Save PCB and JCB pointers.
PJCB CURSGPTR

PCB CURDBPTR CJ I I I DBPCBJCB II I Set up initial segment list
entry.

PRMLST SSA

JCB DLZUCDSO

~
I segment I II JCBSDBI II LESLPTR I

II JCBSDBND I
CKPT Record

8J I I DBF3

DLZURGSO - DB SCAN CSECT DLZURGSO

Extended Description Routine Label Extended Description Routine Label

15. If DBS control cards were present, NXTDBA
only those data bases in the control
list that were on OBS cards are
scanned.

Write DLZ970I scan processing
started.

16. The DLZBLKLD macro moves the BLDBLKS
dmbname to PST at PSTPCPSB and
sets the utility suffix '4'. The 'BLOB'
call loads all blocks for the PSB
specified and allocates buffers.

Write DLZ956I for a data base control
block build failure.

17. If a PCB is not found, an UNLD is NEWOB
done to release the buffers before
the next BLDB call (return to step
16).

Licensed Material - Property of IBM 2-283

Figure 2·35. DB SCAN (Part 5 of 8)
I'" INPUT • PROCESS -OUTPUT

DLZUCDSO I I 11~~nt L

~ list entry I > 19. Locate the SOB and PSDB for DLZUCDSO

.ILEPSDB each segment list entry that
is to be scanned for this db ILELSDB I

JCB SOB entry.
II JCBSDB! II SDBSYM I
II JCBSDBN 0 II SDBPSDB I

CURSGPTR

I I
20. Get I/O areas.

M PRMLST 110 area
FREEVIS Macro I I

M GETVIS Macro
A (110 area)

PRMLST

~
Count

GU > 21. If restart. position the data PCB
base. IDBPCBFD I A (PCB)

A (110 area) +oj A (SSA) CALL Macro

I ASMTDLI
User DL/I GU Data Base(s)

22. Get a segment list entry. SSA PRMLST
CURSGPTR DLZUCDSO build a parm list for its I segname I I I LEFPTR Count

segment type and continue to GU
LENAME next step. At the end of

entries. go to step 14.
A (PCB)

CHKORGS LEPSDB

I I LELSDB
A (110 area)

A (SSA)

PSDB

I DMBLST I

DLZURGSO - DB SCAN CSECT DLZURGSO

Extended Description Routine Label Extended Description Routine Label

19. The Control Data Set entries are NXTSEG
modified to save SOB and PSDB
addresses.

Write DLZ9691 if an SOB is not
found fo(the segment in the segment
list entry.

20. The size is the longest needed for SETUP
this data base. Any previous I/O LENSEG
area is freed.

21. Position is by a qualified key call. CRST

22. The first segment list entry will PROC
either be the initial entry for the
db or the segment list entry to
restart from.

Write DLZ9711 Scan processing
completed for this DB if no more
segment entries .

. c

2-284 Licensed Material - property of IBM

Figure 2·35. DB SCAN (Part 6 of 8)
,.INPUT ,.. PROCESS ",OUTPUT

PRMLST

Count

@ 23. Issue a GN for segname.
GN

I/O Area

~ ~
I segment I

A (PCBI CALL Macro

A (I/O area) ASMTDLI

A (SSA) GN sagname
toOL/I

User OL/I
Data Bases

PCB '------ ~-- ~ 24. If there are no more occurrances
I DBPCBSTC I of this segment type, go to PST

step 22.
PSTFNCTN

JCB PSTAOOR PSTOSGA I JCBLEV1C II I PSTBYTNM

LEV SOB --,- ~ 25. Get buffer address of segment.
I LEVTTR IlsDBDSGA I t ~, I OLZDBHOO

PST
I PSTOATA I
I sao BALR PSTBYLCT

I SCOOOBHO I
prefix +
segment (in
buffer)

PSDB PST

IOMBPTR II PSTDATA I

" Parm List (R3) > 26. Fill in parameter list for

I DLZDSEHO. CTR I SEGM in
buffer LFTptr

LTB ptr

lP ptr

A (lPCK)

A (COSREC)

ATEST Parm List
27. Go write WORKFIL record.

c:J (R3) PST

%J t ~ I DLZDSEHO
IpSIWRK11

CTR I PSOEl LFTptr BALR

I DMBLSTl LTB ptr
save
registers

LP ptr I I
A (LPCK)

A (CDSREC)

DLZURGSO - DB SCAN CSECT OLZURGSO

E xten ded De scription R outine Label Extended DescriDtion Routine Label

23. Every occurrance in the data base of IPROC20 26. (con't)
the LC or LP segment type to be
scanned is read and a workfile record Test routine in DLZDSEHO will
created for it. determine the output records required

by scanning the SEC list.
24. If the return code is 'GB', indicating

EOF for this segment type, return 27. Registers are saved and then restored TESTRT
to process next segrnent list entry. upon return.

25. Scan must have the prefix information trEST
to give to DLZDSEHO. trESTRSTA

Write DLZ9521 for an error return
code from DLZDSEHO.

Write DLZ9581 for a buffer handler
error return.

26. In addition, Rll has the address of LPOFFR
WORKFIL DTF, Rl has the PST
address, and PSTWRKI has the
'FUNCIHPS' and SDB address.

Licensed Material - Property of IBM 2-285

Figure 2-35. DB SCAN (Part 7 of 8)
I"INPUT

CHKPTINC CHKPTLOC - ---
I II I
PRMPCBAD PCB

I IIDBPCBDBD I

I DBPCBSFD J

Checkpoint
Record

I I
AWRKDSEH PCB

I II DBPCBMKL I

I DBPCBKFD I
Checkpoint
Record

I I
Continuation
Checkpoint
Record

I I

DLZURGSO - DB SCAN CSECT

Extended Description

28. A checkpoint record is written after
every 'n' work file records. 'n' is
specified on the CHKPT input card.

29. Note that the checkpoint record is
built with zeros where the RBN
number would be (CHKPTSUB).
This forces an *C call (qualification
by eoncatenated key) instead of
*T(retrieve by direct address)
during restart processing. Retrieve
by direct address would be used if
working with mSAM data sets.

30.

31.

32. Message DLZ967I is written to the
console giving the current check·
point record number for later
reference.

33.

,. PROCESS

~28. Perform checkpoint operation if
required. Otherwise, skip to step 33.

>29. Build checkpoint record.

30. Write checkpoint record to
WORKFIL.

~ ~ PUT Macro

>31. Build the continuation checkpoint
record.

>32. Write continuation checkpoint
record to WORKFIL.

~ t PUT Macro

t t TRUNC Macro

33. Return to step 23 to get next occurrance
of this segment type.

Routine label Extended Description

CHKPT

CHKPT18

CHKPT19

CHKPT22

CHKPT24

TLISTD

2-286 Licensed Material - Property of IBM

rOUTPUT

.> CHKPTLOC

I I

Checkpoint
Record

X'SO'

CHKPTN

CHKPTSVC

CHKPTSVD

CHKPTSVE

>008
Checkpoint
Record

X'SO·

length of record

CHKPTN

key length

key

.. '>.00

DLZURGSO

Routine label

Figure 2-35. DB SCAN (Part 8 of 8)
.. INPUT .. PROCESS OUTPUT ____________ ~

~
34. Dump if non-zero error code Card Control

(optionall and ABEND was on a control
RTCD card.

c:::J ~ ~ PDUMP Macro

35. Close all files.

~ ~ CLOSE Macro

Caller
Registers > 36. Return.

I I
DLZRRC 00
2-3.4

DLZURGSO - DB SCAN CSECT DLZURGSO

Extended Description Routine Label Extended Description Routine Label

34. TERM

36. Indicate to batch initialization that Return
UNLD is not necessary (R15 = 4) if
this utility is terminating before any
blocks were loaded or if there was a
control block build failure.

Licensed Material - Property of IBM 2-287

Figure 2-36. Prefix Resolution (Part 1 of 4)

• INPUT ~ PROCESS -OUTPUT

From
DOSIVS

1. Establish base addressability.
R12 RS

~ ~ OPEN Macro I II I

~ ~ COMRG and
GETIME Macros

0 > 2. Read control card and close SYSIPT. ;> CNTLCARD

~ I I SYSIPT ~ GET Macro
Card 1/0 Area

~ ~ CLOSE Macro

~ 3. Determine device type and open the
CONTROL data set.

~ ~ DLZDVCE Macro

~ ~ OPEN Macro

CDSHD DBNAMEFC

'---' I II I lJ-- 4. Read all control records.

~ t GET Macro EJ CO OL

~ ~ GETVIS Macro
Data Set

CONTROL
5. Close the CONTROL data set. Data Set , ~ CLOSE Macro

DLZURG10 - Prefix Resolution CSECT DLZURG10

Extended Description Routine Label Extended Description Routine Label

I. Module identifier (DLZURGlOvrnp) DLZURGIO DLZURGIO 5. CDSEOF
is defined here. CDSEOFA

The time and date are acquired and
message DLZ9681 is printed at this
time to indicate the beginning of
execution for DLZURG 10.

2. Write message DLZ9541 for an input
control card format error.

3. Write message DLZ9841 for an invalid CDSIN
device assignment for the file. OPENCTL

4. Write message DLZ9571 if there is no
control data set or if the ID is not
"CONTROL DATA SET".

Write message DLZ391I for a GETVIS
failure.

The maximum record length calculated
by the prereorganization utility is
obtained from field LESRTSZE and
passed to SORT.

, :
,,~

2-288 Licensed Material - Property of IBM

Figure 2-36. Prefix Resolution (Part 2 of 4)

_INPUT • PROCESS ,.OUTPUT

Q EJ --- ~ 6. Determine device type and open first
input workfile and output files.

WRKINnn
INDXWRK

t t INTRMED
DLZDVCE Macro

t , OPEN Macro CNTLCARD

~
Card 1/0 Area

U Q
INDXWRK

U Q > 7. Load and execute SORT/MERGE. >

t ,
U WRKINnn LOAD Macro Q t t l SORT/MERGE J INTRMED

Rl
BALR I I

I A (Parm lisd I 8. Close secondary index data set if it was

~u
opened.

+-+ CLOSE Macro

DOS/VS 9. If no logical relationships, go to Step 14.
Core
Image
Library

DLZURG 1 0 - Prefix Resolution CSECT DLZURG10

Extended Description Routine Label Extended Description Routine Label

6. The secondary or logical data sets may OPENRTl
or may not be opened depending on the OPIND
user option on the input control card . OPENLR .

7. Write message DLZ982I if the return SORTl
code from SORT is not zero and go
to Step IS.

Sort is by (13, 255, A,S, I, A). Exits
EI5 and E35 are described in Figures
2-36.1 and 2-36.2.

8. If there was no data put to the second- SORTllB
ary index data set, put a dummy record
before closing.

9. SORTllF

Licensed Material - Property of IBM 2-289

Figure 2·36. Prefix Resolution (Part 3 of 4)
,.INPUT .. PROCESS ,.OUTPUT

0 EJ
1-1- -- ~ 10. Close intermediate file and

determine device type and open
for input.

INTRMED
.... CLOSE Macro

.. DLZDVCE Macro

.... OPEN Macro

0 U
I-t- --~ 11. Determine device type and open

logical relationship output
data set.

WORKFIL DLZDVCE Macro

... OPEN Macro

Rl

I A (Parm List! I 12. Load and execute SORT/MERGE.

EJ 0 PAR LST2 LOAD Macro

B DOSIVS
.. lsORT/MERGE I SYS011 WORKFIL

Core
Image BALR r 1 Library

OS
INTRMED

B-- D --- ;.. 13. Print statistics and message
summary if requested.

CONTROL
.. PUT Macro SYSLST

Data Set

DLZURG10 - Prefix Resolution CSECT DLZURG10

Extended Description Routine Label Extended Description Routine Label

10. SORT1lD
OPENRT2

II. OPENWLR

12. Sort is by (29, ~6, A 5, I, A). Exits
EI5 and E35 ar~ described in Figures
2·36.3 and 2·36.4.

Write message DLZ9821 if the return SORT2
code from SORT is not zero and go
to Step IS.

13. Control data set contains options as SUMM
specified in DLZURPRO. STATFLG

2-290 Licensed Material - Property of IBM

Figure 2·36. Prefix Resolution (Part 4 of 4)
• INPUT ______ ..

'" PROCESS p"'0UTPUT

CNTLCARD RTCD c::J 1...1 __ --'

Card I/O
Area 'D -:: ~ 14. Dump if error code is 16 or

8 and DUMP was specified on
the control card.

--

SYSLST

.... PDUMP Macro

15. Close the printer .

.-. CLOSE Macro

16. Close INTERMED and WORKFIL if
required .

.. CLOSE Macro

17. Return

EOJ Macro ..
To DOS/VS

DLZURG10 - Prefix Resolution CSECT DLZURG10

Extended Description Routine Label Extended Description Routine Label

14. Write message DLZ966! for normal STATENO
program termination. CLOSRT2A

IS. CLOSRT2B

17. CLOSRT2D

Licensed Material - Property of IBM 2-291

Figure 2-36_1_ SORT E15 (DLZX15S1)
~ INPUT

From
I"" PROCESS I"!€lUTPUT

SORTI

Q EJ
MER.

PARMADDR

1. Read workfile records and pass I ADD I
WRKINnn to SORT/MERGE.

"'sAVEMacro

"'GETMaCro

...... RETURN Macro

CNTLCARD I CNTLlFC ,- --~ 2. At end-of-file, close workfile
and open next one, if any, and

Card 1/0
retu rn to Step 1;

Area

..... CLOSE Macro

.... oPENMacro

PARMADDR

3. When no more workfiles, indicate I END I
end to SORT/MERGE.

• To
SORTI
MERGE

DLZX15S1 - SORT E15 CSECT DLZURG10

Extended Description Routine Label Extended Description Routine Label

I. Record length is changed to the maximum IDLZXI5S1 DLZXI5S1
record length calculated by the prereor- EXITl5S1
ganization utility (DLZURPRO) and
passed to SORT by the prefix resolution
utility (DLZURG 1 0). Original record
length is saved in last 2 bytes of LRECL
field.

Indicate ADD to SORT/MERGE after
each GET.

2. CNTLIFCis the number of input workfile WRKEOFI
specified on the utility control card. INXTFILE

2-292 Licensed Material - Property of IBM

Figure 2-36.2. SORT E35 (DLZX35S1)
.. INPUT From

.. PROCESS ,. OUTPUT

SORTI

MER.
INRECAD PARMADDR

R1 I r A (record) 11 I A (Parm List) I
I~DLZURWF1 ~,--. r-v

1. Establish address to record
Parm Ust passed by SORT/MERGE. I I I A (record) I

"sAvEMacro

~ 2_ If the record address is zero,

§e
go to Step 7.

3. Process record depending on >- DLZURWF3

record type. I I
(~
lCONTROL

Data Set 4. If logical relationships, Q EJ write to intermediate file.

"puTMacro INTERMED

5. If secondary indexing, write

Q EJ to SI output file.

"puTMacro INDXWRK

6. Indicate DEL to SORT/MERGE.

JJ~
PARMADDR C: A (Parm List) I

RETURN Macro Parm List

l A (record) J
7. Indicate END to SORT/MERGE. [A (DEL) or A (END) I

• RTCD

c=J To
SORTI
MERGE

DLZX35S1 -- SORT 635 CSECT DLZURG10

Extended Description Routine Label Extended Description Routine Label

1. SORT/MERGE passes one record at a DLZX35S1 DLZX35S1 6. SORT/MERGE gets another record and RETSORTI
time to this exit. The record is repre- EXIT35S1 reenters this exit at Step I.
sented by the macro DLZURWFI which
contains the DSECT defining the 7. ENDSORTI
format. The original record length is
restored before processing.

3. Macro DLZURWF3 contains the ESTTYPE
DSECT defining the format of the
output logical record and later used as
input for DLZURGPO.

Possible errors are:

DLZ955I -- Invalid input record.
DLZ977I -- Duplicate record for LP.
DLZ978I -- Caution -- no LC for LP.
DLZ979I -- No LP found for LC.
DLZ980I -- No LC found for LT.
DLZ989I -- Multiple LC/LP with no LT

pointer specified.

4. This file used as input for second STATRIZ
SORT/MERGE. OUTPRVIA

5. This is final output for secondary TYPE04RT
index relationships.

Licensed Material - Property of IBM 2-293

Figure 2-36.3. SORT E15 (DLZX15S2)
_INPUT

From .. PROCESS r"' OUTPUT
SORTI

MER.

PARMADDR

tI A (Parm List) J

Q EJ (parm List
1. Get records from intermediate

file and pass to SORT/MERGE.
LA (record) J

INTERMED SAVE Macro LA (ADD) J GET Macro

PARMADDR

A A (Parm List) I

~~arm List
2. At end-of-file, indicate end

to SORT/MERGE.

§ ..
To
SORTI
MERGE

DLZX15S2 - SORT E15 CSECT DLZURG10

Extended Description Routine Label Extended Description Routine Label

I. This file was written during first sort. DI.ZXI5S2 DI.ZXI5S2
EXlTl5S2

2. MEDEOFI

2-294 Licensed Material - Property of IBM

Figure 2-36.4. SORT E35 (DLZX35S2)
",INPUT I'" PROCESS • OUTPUT

From
SORTI

MERi
Rl

I A (Parm List) I PARMADDR INRECAD

I II A (record) I
...---.. :-v' 1. Establish address to record DLZURWF3 Parm List passed by SORT/MERGE. I A (record) I I I ... SAVEMacro

~ 2. If the record address is zero,
DLZURWF3 go to Step 6.

§ 3. Process record depending on
~I

Work Area

record type. I
4. Write to LR output file. a EJ ... PUT Macro

WORKFIL

5. Indicate DEL to SORT/MERGE. IJe- PARMADDR

I A (Parm List) I
RETURN Macro Parm List

6. Indicate END to SORT/MERGE. I A (record) I
I A (DEL) or A (END) I .. RTCD

C=:J
To
SORTI
MERGE

D LZX35S2 - SORT E35 CSECT DLZURG10

Extended Description Routine Label Extended Description Routine Label

I. SORT/MERGE passes one record at a DLZX35S2 DLZX35S2
time to this exit. EXIT35S2

3. Possible errors are: TP30RT

DLZ955I - Invalid input record.

DLZ980I - No LC found for LT.

DLZ981I - Duplicate record for LT.

4. This file used as input for the prefix
update utility (DLZURGPO).

5. SORT/MERGE gets another record and RETSORT2
reenters this exit at Step I.

6. ENDSORT2

Licensed Material - Property of IBM 2-295

Figure 2-37. Prefix Update Utility
I" INPUT

Fromi/l
• PROCESS -OUTPUT

...

CJ
r

> 1., Read control card.

SYSIPT
2. Determine device type and open

cUcU
input files.

> 3. Read input record.

SYSOll .sYS014
4. If not already loaded, load data

base control blocks.

EJ EJ 5. Process input record. >
Data Base

Data Base

6. At EOF, close a" files.

Return to
DL/I

DLZURGPO - Prefix Update Facility DLZURGPO

Extended Description Routine Label Extended Description Routine Label

I. OPEN!

2. DLZDVCE macro obtains data from OPENINP
PUB. Device type may be TAPE or
DASD.

4. DLZBLKLD macro is used to load DB BLDBLKS
blocks dynamically.

5. TYPE 0 and TYPE! records (LC/LP) TYPEO
are processed by buffer handler calls. TYPE!
TYPE 4 records (SI) are processed by
DL/I INSERT/UPDATE calls.

2-296 Licensed Material - Property of IBM

Figure 2-38. Workfile Generator (Part 1 of 2)
F I" I~PUT

rom
.. PROCESS I'" OUTPUT DLZDDLEO

Figure 2-10

"
•
1. Perform initialization (Figure

From 2-38.1.).
DLZURGSO

Parameter Fig. 2-35
List (R31

CTR
~

2. If DLZURGSO is caller,
LTF ptr "> "> ILa area A. Initialize dummy reload I.;TB ptr I I prefix header with par-
Ll' ptr ameters.
A (Ipekl "> PSTUSER

A (cds reel B. Store its address. I A (I/O area) I

DMBSCDE -- -_.-;; ~ 3. If end of secondary list, go

I I to step 7.

D 8
f--- ~ 4. Match control data set entry

with LC or LP secondary list
entry.

Control
Data Set '1: :r ".---" > 5. If LP segment,

----- WORKFIL

A. Build Type 00 record. "> Record

DMB PSTUSER T I I I II A (I/O area) I B. Put to WORKFIL.

] '110 area

-
DBPCBKFD - C. Go to step 3.

I) I segment I

QJ '---' 6. Go to Figure 2-38.4 to process "> ---., LC segment.

WORKFIL

DLZDSEHO - Workfile Generator DLZDSEHO

E d xten ed Description Routine Label Extended Descriotion Routine Label

I. This primary entry point is used by ioLZDSEHO INIT
Load/Insert when a data base is being
initially loaded or reloaded. There are
7 fullwords of addresses immediately
preceding this entry point used by
modules that interface with
DLZDSEHO. A logical parent or
logical child record is input to this
module.

2. This is the primary entry point for the TEST
scan utility.

3. This routine must be re-entered when TLISTEND
the input segment is an LP because
it could have more than one LC type.

4. TESTC

5. Description of WORKFIL record can DLZDSEHO LPI
be found in DLZURWFI dsect.

6. CHILD

Licensed Material - Property of IBM 2-297

Figure 2·38. Workfile Generator (Part 2 of 2)
INPUT ------'1 I" PROCESS _OUTPUT

7. Exit with return code. :> R15

I I

• Return to
Caller

DlZDSEHO - Worklile Generator DlZDSEHO

Extended Description Routine Label Extended DescroptlOn Routine Label

7. If any error occured, call DL/I error RETURN
message module to write DLZOO7I
J!;lessage on console with return code.

2-298 Licensed Material - Property of IBM

Figure 2-38.1. Initialization
• INPUT From Fig. I"' PROCESS ",OUTPUT

2-38 1 ..
r

R1 PSTWRK1 r---- ~ 1. Establish addressability for

I I I A (SOB) I DL!I tables needed.

Q:J 2. If WORKFIL is not open, go to ;>
Figure 2-38.2 to open it.

WDRKFIL

EJ > 3. Open Control Data Set and read EJ ">
all records.

Control Control
Data Set Data Set

4. Close Control Data Set.

...
To Fig 2·38
Step 2

DLZDSEHO - Workfile Generator DLZDSEHO

Extended Description Routine label Extended Description Routine label

1. The secondary list entries for the input DLZDSEHO INIT
segment are the primary source of
information from the DL/I blocks.

2. The address of the DTP is found in
the address list at the beginning of
DLZDSEHO. If it is 0, this workfile
must be opened.

3. This open is done only once. The LPLCA
'PINDDTP' routine is used to
determine the correct DTP. If more
than one record exists on the CDS,
a GETVIS is done to hold the entire
file in storage at one time.

Licensed Material - Property ,of IBM 2"'"299

Figure 2-38.2. Open Workfile
~INPUT Fro Caller r PROCESS m

eoN (S i') ..
r

R"13 R14
f-

I A (regsave) II A (return) I
- ~ 1. Establish addressability.

R15 2. Set up input for FINDDTF.

II addr of :1 OPENWORK

3. Get DTF address (Figllre 2-38.3).

R15 -- r-
IA (DTF) I - ~ 4. Open DTF for WORKFIL.

5. Save DTF address.

6. Exit to R14 + 4.

DLZDSEHO - Workfile Generator

Extended Description Routine Label Extended Description

Note: This routine is called by DLZDSEHO
DLZDXMTO, and DLZURGSO.

1. OPENWORK PPENWORK

3. If control is returned to address in
R14, an error occurred. R14 + 4 is
the normal return.

4. R15 has address of correct DTF as
returned by FINDDTF.

5. When the WORKFIL is open, the
address is saved in the address list in
the beginning of DLZDSEHO csect.

6. If an error was detected, control is PPENEXIT
returned to the address in R14.
Normal return is RI4 + 4.

2-300 Licensed Material - Property of IBM

~OUTPUT

RO

ISYS#13 I
R2 R3 It (disk
DTF)

II A {tape DTF) I

EJ Q
WORKFIL SYS013

;;> Entr~ Point - 4

IA (DTF) I

~
Return to
Caller

DLZDSEHO

Routine Label

Figure 2·38.3. Find DTF
_INPUT From Caller • PROCESS -OUTPUT (seeie)

--"
r

RO -- --- ~ 1. Issue DLZDVCE macro.
1

Pub entr)::

I I system I number

;> 2. If a tape, set R15 to tape > R15
R3 I A (tape DTF) I I I DTF address.
A (tape DTF)

R2 ";> 3. If a disk,

I A (disk DTF) I DTF A. Modify DTF >1 I I
B. Set R 15 to disk DTF address. > R15

I A (disk DTF) I
4. If other than tape or disk,

go to step 6.

5. Exit to R14 + 4.

Return to
Caller

6. If IGN, set R 15 to zero. > R15

I I
7. Exit to R14. ...

Return to
Caller

DLZDSEHO --Workfile Generator DLZDSEHO

d Exten ed Description Routine Label Extended Descrlotlon RoutlOe Label

Note: This subroutine is called by
OPENWORK, DLZDSEHO, and
DLZURGSO. DLZDVCE macro finds
PUB entry for given programmer logical
unit and the device ty pe byte is use d to
determine further processing.

\. OPENWORK FINDDTF

2. 2400,3410, and 3420 are supported. FINDTFO

3. 2314,3330,3333, 3340A & Bare FINDTFI
supported. FINDTF2

5. Normal return. FINDEXIT

6. This allows DLZDXMTO to build FINDERRX
secondary entries.

7. This is the error exit. FINDERRU

Licensed Material - Property of IBM 2-301

Figur\l 2-38.4. Build LC Output
-INPUT 4°C"" _OUTPUT

From Fig.
2·38 Step 6 ,

PSTUSER ~ > 1. Build type 10 record and .;>
WORKFIL I A % area) I write it to WORKFIL. Record

I type 10 I
OMB

I I '---'
,.-. 2. If L TF pointers and non-unique WORKFIL

sequence field, build and write Record
08PCBKFO type 20 record. I type 20 I I I

U ~ 3. If L TB pointers and non-unique :> WORKFIL
sequence field, build and write Record
type 30 record. I type 30 I Control

Data Set

To Fig 2-38
Step 7

OLZOSEHO - Workfile Generator OLZOSEHO

Extended Description Routine Label Extended DeSCription Routine Label

I. CHILD
LCI

2. LCI20A

3. LCI30B

2-302 Licensed Material - Property of IBM

Figure 2-39. Log Print Utility
_INPUT From ,. PROCESS ~OUTPUT

DOSIVS

I.t
1. Read and process control cards.

DLZLPCCO

.-+ Control Statement
Processor 2w39.1

If any errors detected by DLZLPCCO,
go to Step 9.

2. Open output log if requested.

3. Determine log device type and

d!@
open log file.

~
4. Read log records, deblock, and

D determine record type.

LDGINOl to LOGINnn 5. Print log records. ;
SYSLST

I\, 0 6. Write log records to tape if requested.
v

LOGOUT

7. Close input log file. If more files,
return to Step 3.

8. Close output log if requested. EJ 9_ Print informational statistics "-
and error messages, if any.)

anE;;]

SYSLOG

TO·
DOSIVS

DLZLOGPO - Log Print CSECT DLZLOGPO

Extended Description Routine Label Extended Description Routine Label

1. Register I points to log print common DLZLOGPO GETCARD
area.

2. Output log requested by 'COpy' on CARDEOF
'LO'statement.

3. DLZDVCE macro obtains data from LOGOPEN
PUB (physical unit block) and modifies
DTF. If VSAM log, ACB is modified
manually.

4. Valid DL/I record types are: GETLOG

o Data base record (X'50' and X'51')
o Open record (X'2F')
o Scheduling record (X'OS')
o Termination record (X'OT)
o Checkpoint record (X'41')

5. Records are printed in either keyword PRINT
or dump format.

6. Log records are written to tape as read. GETREC

7. nn of LOGINnn is incremented by 1 LOGEOF
if more files.

S. Output log is closed when log record
in error is encountered.

Licensed Material - Property of IBM 2-303

Figure 2·39.'. Control Statement Processor (DLZLPCCO)
.. ,NPUT

From Figure
.. PROCESS .. OUTPUT

B
2'39~

LS

LO 1. Read control statements.

SYSIPT

2. Validate control statements and save :> Log Print Common Area

information in log print common area. -y

I I

3. Return to DLZLOGPO. - 10........

• To Figure
2·39 Step 1

DLZLOGPO - Log Print CSECT DLZLOGPO

Extended Description Routine label Extended Description Routine label

I. Possible card types are: DLZLPCCO GETCARD

'LO' - describes print options,
'LS' - describes additional selective

print options,

'u' - describes input log files.

2. Flag ERROROCC in LOGPFLG I is set if LOOOO
any errors are detected. UOOO

LSOOO

3. If no input statements received, print CARDEOF
default message DLZ416I.

2-304 Licensed Material - Property of IBM

Figure 2-40. Field Level Sensitivity Copy
~ INPUT From Figure I" PROCESS ,.OUTPUT

PSTUSER 2-B.l Step BA

I A (User Segment) I ~ PSBIOAWK 1. Get addresses of user segment(s) and
IA (Output I/O Area) I output I/O area.

v

• 2. Calculate segment offset in output I/O LEVUSEOF

area for this level. II
I I

PSDB
~ 3. If segment at this level is not FLS, move

I I as is from user I/O area to output I/O
v area.

4. If segment at this level is FLS and call
is ISRT, perform insert processing.

r ISRT 1 +--+ I Perform insert I processing 2-40.1

5. If segment at this level is FLS and call
is REPL, perform replace processing. +--+' REPL

,
Perform replace 1 f I processing 2-40.2

6. If another level to process, go to step 2. PSTUSER

Otherwise, point PSTUSER to output I A (Output I/O Area I V I/O area and return.

• Return to
Caller

DLZCPY10 FIeld Level Sensitivity Copy ~ DLZCPY10

Extended Description Routine Label Extended Description Routine Label

I. PSTUSER points to user's view of DLZCPYlO DLZCPYlO
segment(s). PSBIOAWK points to
I/O area to contain physical view of
segment(s).

2. LEV USE OF will be changed from LEVLOOP
offset in user I/O area to offset in
output I/O area.

3. Length of segment to be moved LEVOOO
must be determined. If variable
length segment, length is in first two
bytes of segment, otherwise in PSDB.
If concatenated segment, logical child
and destination parent lengths must
be added.

6. NEXTLEV

Licensed Material - Property of IBM 2-305

Figure 2-40_1. Field Level Sensitivity Insert

'" INPUT -------. From Figure p" PROCESS ---------------.

,~ L:. 1. lleW<m;~ ph"k.1 I,."h of ~''"'"' PSDB

I I
SDB Exp

I I

DLZCPY10 - FielQ Level Sensitivity Copy

Extended Description

v
to be inserted.

2. Clear segment to binary zeros.

3. Scan FOB chain and, if segment is a logical
child, the SEC chain to locate all fields for
the segment. Move default value to output
I/O area for each non-key field.

4. If concatenated segment, scan destination
parent FOB chain to locate its fields. Move
default value to output I/O area for each
non-key field.

5. Call DLZSEGCV.
,----------, +-+ I DLZSEGCV I

~ I Segment convert Routine I
I 2-40.3

If conversion error, return status code
to user.

6. Return

Routine Label Extended Description

1. If variable lengtl). segment, use insert DLZCPYIO ISRT

2.

3.

4.

length in SDB expan~on block.
Otherwise use le)lgth in PSDB.
If concatenated.segment, logical
child and destination parent lengths
must be added.

5. Possible status codes are KA, KB, KC,
andKD.

ISRTlOO

ISRTl05

ISRTl80

SEGCV

2-306 Licensed Material - Property of IBM

" v ..
Return to

Figure 2-8.1
Step 9

T:!:re
2-40 Step 6

. - OUTPUT----_

DBPCBSTC

I status code I

DLZCPY10

Routine Label

Figure 2-40.2. Field Level Sensitivity Replace
I" INPUT From Figure I'" PROCESS _OUTPUT

Buffer

240~

1. Read segment to be replaced I old segment I -- IV' DlZDBHOO

M Buffer Handler
2-15

and move to output I/O area.

~
2. It concatenated segment, read

destination parent segment.

+-+ DlZDBHOO

Buffer Handler
2-15

3. Call DLZSEGCV.

+-+ DlZSEGCV

Segment convert Routine
240.3

If conversion error, return status "
DBPCBSTC

code to user. -Y I status code I
4. If REPLACE=NO op';oo ""';n - :rIJ

FSB chain and compare new field
to old field. If field modified, return

,,,,,,, 00"" to """. ~

Return to
Figure 2-8.1
Step 9

5. Re~urn.

To Figure
240 Step 6

DlZCPY10 - Field level Sensitivity Copy DlZCPY10

Extended Description Routine Label Extended Description Routine Label

l. DLZCPY10 REPL

3. Possible status codes are KA, KB, KC, SEGCV
alld KD.

4. Status f!:ode KE is returned. REPL135

Licensed Material - Property of IBM 2-307

Figure 2-40.3. Field Level Sensitivity Segment Convert
~ INPUT From Caller • PROCESS -OUTPUT

See note .

~
...

1. The SOB is used to locate the SOB

I I . expansion block and the first FSB.

SDB

I I
FSB _A 2. If SSA call, compare SSA field name to
I I FSB field name. If no match, go to • step 7.

FER

"
3. Initialize FER fields and set to and

I I from parameters.

4. If to and from types different, convert
field to desired format.

5. Move field to destination.

6. Call user field exit routine, if any.

~ I user field exit routine

If error indicated in FER, return error
"

FERPCSC

code to caller. I error code I
7. If another FSB to process, go to step 2.

Otherwise, return to caller.

... ~
Return to
Caller

OLZSEGCV - Field Level Sensitivity Segment Convert DLZSEGCV

Extended Description Routine label Extended Description Routine label

Note: OLZSEGCV is called by
OLZCPY10 and OLZOLROO.

I. DLZSEGCV OLZSEGCV

2. DLZDLROO makes SSA call to FSBLOOP
convert SSA user field to physical
view. Only this field and its
subfields will be converted.

3. FSBOIO

4. CONVERT

5. MOVE

6 . Possible error codes are A, B, C, USEREXIT
• ndO.

7. NEXTFSB

2-308 Licensed Material - Property of IBH

Figure 2-41. Trace Print Utility

I" INPUT I'" PROCESS I"'0UTPUT
From

DOiS
I .. SYSLST

SYSIN,.,. 1. Open reader, printer, and console log.

>D (I :> 2. Read and validate control statement
if present.

3. Close reader.

4. Acquire storage for input buffers.

5. Check trace input device type, modify SYSLST

0 G
DTF, and open it. >D >- 6. Read trace input. 1P TAPEIN DISKIN

7. Format and print trace output.

L==JCl -'"
8. Close all files and issue any statistical

or error messages.
SYSLST SYSLOG

1
Return to
DOSIVS

DLZTPRTO - Trace Print Utility DLZTPRTO

Extended Description Routine Label Extended Description Routine Label

2. Reads TI statement if present and prints DLZTPRTO READCARD
card image on SYSLST. If any other
type statement is present, it is also
printed, but no further processing of it
takes place.

4. Storage is acquired for two input buffers. GETSTOR

5. The DLZDVCE macro is used to CKDEV
validate the trace input device, and
modify the tape or disk DTF.

6. The unformatted trace records are read GETENTRY
from the trace input file until EOF is
returned.

7. The trace entries are formatted and PRTRACE
printed one at a time until all entries in
the record are processed. Control is then
passed to step 6 for the next record.

Licensed Material - Property of IBM 2-309

2-310 Licensed Material - Property of IBM

SECTION 3: PROGRAM ORGANIZATION

This section contains descriptions of the DL/I modules and their major
routines. !

Licensed Material - Property of IBM 3-1

SYSTEM CONTROL MODULES

DLZRRCOO - BATCH INITIALIZA'IION

The responsibilities of this module are to:

• Establish base register addressability.

• Read required PARM information from SYSIPT or SYSLOG based on the
UPSI byte setting.

• Determine load address for batch nucleus module (DLZBNUCO).

• Provide a DL/I message subroutine (ERRORMSG).

• Branch to region control interface (DLZRRC10).

Entry Interface - DLZRRCOO

DLZRRCOO receives control from DOS/VS job control

Exit Interface

DLRRCOO passes control through branch to region control interface
(DLZRRC10) •

Register Contents

R7 Address of ERRORMSG
RiO Entry point address of DLZRRC10

}ntry Interface - ERRORMSG

ERRORMSG receives control through BALR from DL/I modules

Register Contents

Rl PST address or parameter list address
R13 Save area address
R14 Return address
R15 Entry point address (DLZERRMS)

Exit Interface - Calling Module

Passes control through branch on register 14

DLZRRC10 - REGION CONTROL PRIMARY INTERFACE

This routine receives control from the DL/I initialization routine and
serves as the primary interface for all DL/I program executions. Its
responsibilities are:

• Save input parameters

• Load batch nucleus module (DLZBNUCO)

• Establish SCD and PST addressability

3-2 Licensed Material - Property of IBM

• Invoke parameter analysis (DLZRRAOO)

• Eranch to application program control module (DLZPCCOO)

Entr2 Interface - CLZRRC10

Receives control through branch from DLZRRCOO

Register contents

R7 Address of ERRORMSG

RIO Entry paint address

Exit Interface - Parameter Analysis

Passes control through fall through to DLZRRAOO

Reqister contents:

R2 Address of SCD

R9 Address of PST

Rl3 Save area address

DLZRRAOO - USER PARAMETER ANALYSIS

This routine checks the positional parameters for valid length and
contents when first entered. Invalid parameters cause DL/I to issue an
error message and abnormally end. There is an entry at NXTPORT (just
before buffers are to be allocated) to check keyword parameters. Errors
cause DL/I to issue an error message and abnormally end.

Licensed Material - Property of IBM 3-3

Layout and Description of PARM Field

r---, \ \
I xxx,aaaaaaaa,bbbbbbb,ccc,keyword operands \
\ \
\---\ xxx PARM identifier in columns 1-3.
t

aaaaaaaa

bl:bbbbb

ccc

keyword

DLI
UDR

ULU

ULR

= Data base program to be execqted.
= Data base recovery utility to be

executed.
= Data base reorganization or logical

relationship resolution program to be
executed.

= HD reorganization reload utility to
be restarted from checkpoint record.

One- to eight-character name of the
application program to be executed.

One- to seven-character name of the program
specification block (PSB) as specified in
the PSB generation.

If PARM is UDR, ULU,
seven-character name
description (DBD) as
generation.

or ULR, one- to
of the data base
specified in the DBD

Number of data base buffer sub-pools
required for job execution.

HDBFR, HSBFR, ASLOG, LOG, and TRACE

l
\
I
\
\
\
\
\
\
\
\

\ operands \ L ______ - __________________________ - _________________________ J

Entry Interface

Receives control from DLZRRC10

Entry Register Cpntents

• W'hen
R2
R9
R13

entered at DLZRRAOO:
Pointer to SCD (not used)
PST address
Save area address (not used)

• When entered at NXTPORT:
R6 Pointer to first subpool information table
R8 SCD address

Exit Interface

• From DLZRRAOe entry: Passes control by fall through to
DLZPCCOO

• From NXTPORT entry: Passes control by branch to PRMSRET

Exit Register Contents:

• From
R2
R9
R13

DLZRRAOO entry:
SCD address
PST address
Save address

3-4 Licensed Material - property of IBM

• From
R2
R6
R9
R13

NXTPORT entry:
SCD address
Pointer to last subpool information table
PST address
Save area address

DLZPCCOO - APPLICATION PROGRAM CONTROL

This routine is used only in the batch regions, It performs some
functions analogous to those performed by the CICS scheduler in the
online contrel program. It is responsible for the following functions:

• Initializing the storage management routine

• Invoking the application control blocks loader/relocator (DLZPINIT)

• Invoking the control program initialization routine

• Loading the application program

• Initializing the PL/I region (if PL/I)

• Invoking the application program

• Issuing an unload call in behalf of the applica'~ion program upon
termination

• writing the application program termination record on the DLII log

• Closing the DL/I log.

Data Areas Used

PST
SeD
r::r::IR
DMB
sr::B
PSIL

Entry Interface

Receives control by fall through from DLZRRAOO

Entry Register Contents

R2 SCD address
R9 PST address
R13 Save area address

Exit Interface

• Passes control through BAL to DLZPINIT (entry pOint in DLZDBLMO)

• Passes control through BAL to application program

• Passes control through BAL to call analyzer (DLZDLAOO)

• Passes control through BAL to data base logger DLZRDBLO)

• Passes control to DOS/VS supervisor by issuing an SVC 14 normal
EOJ supervisor call.

Licensed Material -Property of IBM 3-5

Exit Register contents

• From exit to DLZPINIT:

R2 SCD address
R9 PST address
R14 Return address

• From exit to application program:

Rl Address of PCB address list
R13 Save area address
R14 Return address
R15 Entry point

• From exit to DLZDLAOO:

Rl PST address
R13 Save area address
R14 Return address
R15 Entry address of call analyzer

(obtained from SCD at label SCDDLICT)

• From exit to DLZRDBLO:

Rl PST address
R13 Save area address
R14 Return address
R15 Entry point of log write-only routine

(obtained from seD at label SCDREENT) or,
Entry point of force write routine
(obtained from SCD at label SCDDBLFW) or,
Entry paint of logger close routine
(obtained from SCD at label SCDDBLCL)

DLZDELMO - APPLICATION CONTROL ELOCKS LOAD AND RELOCATE

This routine performs the functions of loading and relocating DL/I
application control blocks. Once the blocks are loaded and offsets
resolved to actual addresses, the SDBs in the PCBs are connected to the
appropriate PSDBs in the DMEs. The JCB data sets in the data base are
connected to the appropriate ACEs in the DMBs, and control is returned
to the calling routine.

For "OLl' execution, the PSE name extracted from the PARM card is moved
to the PSB directory and the PSE is loaded. The address of the PSB
segment intent list and the PSB are stored in the PSB directory. The
index work area (if required) is allocated and addresses are resolved.
Next the intent list is scanned and the DMB directory is constructed
from it. The DMB directory entries are scanned and the DMBLOADR
subroutine (see below) is called to load and relocate the DMBs in the
directory. Upon completion, the SDBs are connected to their
corresponding PSDEs, the JCB DSGs are connected to their ACBs, and
return is made to the caller.

For the following utilities there is no PSB name in the parameter
information:

DLZURPRO - Data base prereorganization
DLZURGSO - Data base scan
DLZURGPO - Data base prefix update

3-6 Licensed Material - Property of IBM

These utilities perform dynamic block loading using the OLZBLKLO macro.

The DMBLOADR subroutine performs the loading and relocation of OMBs.
The DMB directory is accessed and the OMB name extracted from it. A
load is issued fOr the OMB and, if HDAM, the randomizing module
extracted from the OMB is loaded. Next, the OMB directory entry is
updated with a buffer size indication. For HO, this value is the
control interval size of the data set; for HISAM, it is the logical
record size. Then all offsets are relocated to addresses, and control
is passed to DLZCPIOO.

Entry Register Contents:

R2 SCD address
R9 PST address
R13 Address of one of a set of pre chained save areas
R14 Return address

Exit Register Contents

Same as entry register contents

DLZCPIOO - EATCH CONTROL PROGRAM INITIALIZATION

This routine receives control from the application control blocks load
and relocate routine and completes the intialization of the OL/I batch
system. It is responsible for:

• Allocation of the buffer pool
• Formatting the buffer pool prefix, one or more subpool prefixes, and

the buffer prefixes
• Loading all required DL/I action modules
• Initializing the SCD
• Opening the DL/I log
• writing the application program scheduling record 'on the OL/I log

Entry ,Interface - DLZCPIOO

Receives control by fall through from routine DLZOBLMO.

Entry Register Contents:

R2 SCD address
R9 PST address
R13 Save area address

Exit Interface

Returns to .DLZPCCOO

Exit Register Contents

R9 PST address
R2 SCD address
R14 Return address

Licensed Material - Property of IBM 3-7

DLZLIOOO - LANGUAGE INTERFACE

The language interface provides communication between the application
program and the program request handler. A copy of this module is l~nk
edited with user application programs.

The language interface has responsibility for:

• storing the user's registers in the save area provided.

• providing a specific entry for Assembler, COBOL, RPG II, and PL/I
application prog~ams.

• Locating" the entry point of the program request handler.

• Passing control to the program request handler

Entry Interface - DLZLIOOO

Receives control through branch from application program

Entry Register Contents:
: I

Rl Call parameter list of implicit or explicit format
R13 Save area address
R14 Return address
R15 Entry point

Exit Interface

Passes control to program request handler through branch from DLZLIOOO

Exit,Register Contents:

RO
Rl
R2-14
R15

Language identifier code
Parameter list
As entered from application program
Entry point of program request handler

DLZPRHBO - FROGRAM REQUEST HANDLER

The interface between the application program and the DL/I batch or
control program is managed by the program request handler routine
(DLZPRHBO) in module DLZBNUCO. It accepts parameters passed to it by
the language interface module (DLZLIOOO), validates them, and passes a
parameter list to the call analyzer.

The program request handler accepts three call list formats: implicit
direct, explicit direct, and explicit indirect. COBOL and Assembler­
language programs may use either the implicit direct or explicit direct
call list formats. Since special provisions are made for PL/I in
handling the explicit indirect call list, it may be used only by PL/I
language programs.

The first parameter (argument 0) of the DL/I CALL determines whether the
list is explicit or implicit. If the argument contains the address of
the parameter count (count of the number of arguments that follow), this

3-8 Licensed Material - Property of IB~

list is an explicit list. If the argument contains the address of the
DL/I CALL function, this list is an implicit list.

The responsibilities of this routine are t.o:

• Verify parameter list addresses aligned and within the dynamic area
of the machine

• Reformat explicit parameter lists to implicit prior to submission

• Reset PL/I STXIT PC processing

• Provide caller's parameter list to the call analyzer

• Return data to application program work areas

• Maintain PL/I variable-length character string dope vector

• Identify abnormal termination condition

• Return directly to application program

• Write checkpoint message if checkpoint issued

Data Areas Used

PPST
PST
SCD

Entry Interface

Receives control through branch from language interface (DLZLIOOO)

Entry ReqisterContent~

RO

Rl

R13

R14

R15

Language indicator (zero if COBOL or Assembler; nonzero if
FL/I)

Parameter list address (in application program format)

Save area address

Return (to application program)

Entry point address

Exit Interfaces

•
•

•

•
Exit

•

Passes control through branch

Passes control through branch

Passes control through branch

Passes control through branch

Register Contents
(

From exit to DLZDLAOO:

Rl
R13
R14

PST address
Save area address
Return address

to call analyzer (DLZDLAOO)

to error message writer (ERRORMSG)

to abend processor (DLZABEND)

to application program

Licensed Material - Property of IBM 3-9

R15 Entry pOint of call analyzer (obtained from SCD)
at label SCDDLICT)

• From exit to ERRORMSG:

R1 PST address
R13 Save area address (PSTSV1)
R14 Return address
R15 Entry.point of error message writer

(obtained from SCD at label SCDERRMS)

• From exit to DLZABEND:

R15 entry pOint to DLZABEND
• From exit to application program:

R2 -
R12

R14

Restored to contents upon entry from application
program to language interface module (DLZLIOOO)

Application program return address

DLZABEND - STXIT ABEND

Abnormal terminations invoked through the DOS/VS STXIT or terminations
requested by DL/I action modules are handled by DLZABEND.
Responsibilities are as follows:

• Close the DL/I log.

• Issue an UNLD call to write the last records for Simple HSAM, HSAM,
Simple HISAM and HISAM or write all buffers altered by the user. The
UNLD call also closes the data base.

• If a dump is requested, write a formatted dump of DL/I control
blocks.

• Cancel the partition.

Entry Interfaces

• Receives control through DOS/VS STXIT PC interface or STXIT AB
interface

• Recevies control through branch from program request handler
(DLZPRHBO)

• Receives control through branch from DL/I action modules (including a
special entry from the buffer handler)

Exit Interfaces

• Passes control through branch to data base logger (DLZRDBLO)

• Passes control through branch to call analyzer (DLZDLAOO)

• Passes control through SVC 6 (CANCEL) or SVC 2 ($$BJDUMP) to DOS/VS

Exit Register contents

• From exit to DLZRDBLO:

3-10 Licensed Material - property of IBM

R1 PS~ address
R13 Save area address (PSTSV1)
R14 Return address
R15 Entry pOint of logger force write routine (obtained from

SCD at label SCDDBLEW) or,
Entry point of logger close routine (obtained from SCD at
label SCDDBLCL)

• From exit to DLZDLAOO:

R1 PST address
R13 Save area address
R14 Return address
R15 Entry address of call analyzer (obtained from SCD at

label SCDDLICT)

DLZIWAIT - DL/I IWAIT

This module receives control when a DL/I action module requires DOS/VS
wa it linkage.

Entry Interfape

Receives control through BALR from a DL/I action module

Entry R~gister Contents:

R2 Address of event control block
R14 Return address of caller
R15 Entry point of DLZIWAIT

Exit Interface

• Passes control through SVC 7 (WAIT) to DOS/VS.

• Passes control through branch on register 14 to the calling program.

Licensed Material - Property of IBM 3-11

ONLINE DL/I PROCESSOR MODULES

Eefore attempting to use the information concerning DL/I processor
modules, you should be familiar with the Customer Information Control
system/Virtual storage (CICS/VS). References to the prerequisite
publications are contained in the preface to this manual.

The online DL/I processor modules DLZOLIOO and DLZODP provide services
in a CICS/VS-DL/I environment as follows:

a. DL/I system initialization
b. DL/I user task scheduling
c. Processing DL/I calls (online program request handler)
d. DL/I user task completion
ee DL/I normal system termination
fQ DL/I abnormal system termination
90 DL/I online message writer
h. DL/I-VSAM-CICS synchronization via VSAM 'EXCP' Exit.

DLZOLIOO - ONLINE INITIALIZATION

In order to process DL/I applications in an online environment, a DL/I
online nucleus must first be generated. The DL/I online nucleus
generation procedure is described in EbL! DOS/VS Utilities and ~ for
~ System programmer. The result of the procedure described in the
publication is a DL/l online nucleus CSECT.

The generated nucleus, which is link-edited into a DOS/VS core image
library, consists of a system contents directory (SCD), a ta~le of
partition specifications table prefixes (PPST), a PSB directory entry
for each PSE specified, a remote PSB directory entry for each remote PSB
specified, and an application control table (ACT).

The application control table (ACT) is used by DL/I online at CICS
initialization to verify and load all PSBS and DMBs that can be
referenced online. The ACT is used during scheduling to determine
whether an online transaction is to use DL/I. It is also used by DL/I
default scheduling to acquire a PSB to use with a DL/I application
program if none was explicitly specified.

The ACT is produced from parameters specified in the following DLZACT
macro instructions:

DLZACT TYPE=INITIAL
DLZACT TYPE=CONFIG
DLZACT TYFE=PROGRAM
DLZACT TYPE=RPSB
DLZACT TYPE=BUFFER
DLZACT TYPE=FINAL

Each ACT program entry is generated from the DLZACT TYPE=PROGRAM
statement. These statements define to DL/I which application programs
can use DL/I online. They also define which PSB names can be used by
each of the application programs. There is one ACT program for each
DLZACT TYPE=PROGRAM statement used to generate the online nucleus. See
the format of the application control table (ACT) in Figure 3-1.

3-12 Licensed Material - property of IBM

Generated from:
DLZACT TYPE"'PROGRAM

Generated from:
DLZACT TYPE=BUFFER

cb--I• A.
Is

B. 12 C. 1 bytes

A. Buffer pool information address or 0
B. Storage layout control table name or 0
C. Number of HD DBDs in HDBFR operand

Program entry '1'

I-Is--...:::.D:-. -----fI~~·I~~· -+I~~~' I- -. K=l bytes

D. ACTNM ACT program entry name

E. ACTIND Entry indicator byte:
X'SO' Program is a DL/1 program
X'40' Program name not in CICS PPT
X'20' ABEND option bit
X'02' Program is deferred-scheduled

F. ACTPCNT Count of PDIR (PSB) pointers for this program

G. ACTPPTR PDIR pointer(s). ACTPCNT indicates how many pointers
are included here before the start of the next ACT entry.

Program entry 'n'

A maximum of 4095 DLZACT TYPE"'PROGRAM statements and a
maximum of 4095 unique entries (an entry consisting of program name
and one PSBNAME) may occur in one ACT generation.

14 H. I bytes

H. Delimiter (FF FF FF FF) indicating end of program entries

~ HDBFR entry (subpool'1') . L--12 I. Is J,

I. Length of entry

J. DBD name

K. Number of buffers
HDBFR entry (subpool 'n')

J.
12 K. I bytes

1--1 -1--1 ------41··· 1--1 ---+----1
HSBF R entry (DBD #1)

12 L. Is· M.

L. FF 00

M. DBD name

N. Number of index buffers

O. Number of KSDS buffers

P. Number of ESDS buffers

HSBFR entry (DBD #n)

I I
1-14--0=:....-.--41 bytes

O. Delimiter (FF FF FF FF)

Figure 3-1. Application Control Table (ACT) Format

Licensed Material - Property of IBM 3-13

DL/I initialization is performed during CICS/VS initialization just
after loading the CICS/VS nucleus. The DL/I online nucleus module has
been loaded by CICS/VS in the same manner as a CICS/VS nucleus module,
and its address is placed in the CICS/VS CSA optional features list.

Nucleus and Table Initialization

DL/I verifies the presence of the online nucleus by checking the ~ICS/vS
optional features list DL/I entry for a non-zero value. Once verified,
the program request handler entry pOint is moved to the DOS/VS COMREG
using the MVCOM macro. Next, the application control table (ACT) is
located and an indicator is set in each corresponding PPT entry for all
application programs which will use DL/I.. Each PSB name in the ACT is
eight characters in length.

Next the PSE segment intent list is built. This is accomplished by
loading each PSB defined in the ACT .. except those' defined as remote
PSBs, in ascending address space in the low end of the partition and
moving the intent list, which is appended to the front of the PSB, to an
entry in the PSB segment intent list table. The length of the PSB plus
the length of the index work area, if required, are used to calculate
how much storage to reserve. The segment int~nt list is overlaid during
this process because its information is redundant. The PSB directory
entry for each PSB is initialized with the address of the intent list,
the PSB's storage address, and the amount of storage required.

The DMB directory is constructed. One DMB directory entry is created
for each unique data base (DMB) defined in the PSB intent list entries.
DMB names are eight characters in length and consist of the DBD
generation name extended to seven characters by at-signs (~) if
necessary. The eighth character is D. At this time, a validity check
is performed to ensure that all required DMBS, defined by the PSB intent
list, have been defined in the CICS/VS file control table (FCT). If any
are missing, a message is written on the system console and the operator
is given the option to continue or cancel. If initialization is to
continue, PSBs which require the omitted OMB(s} are flagged to indicate
this condition. Application programs which use these PSBs are not
scheduled.

Initialization continues with the loading of all DMBs specified in the
DMB directory. As each OMB is loaded, the corresponding entry in the
DMB directory is initialized. A test is then made for HDAM and the
defined randomizing routine is loaded. As the OMBs are loaded, they are
initialized. After all DMBs have been loaded and initialized, the size
of the buffer pool is determined. The size of the pool is based on a
user-supplied parameter which defines the number of subpools, the
control interval size of each VSAM data set, and the HDBFR subparameter,
which tells how many buffers will be in a subpool .•

After the peol size is determined, the required address space is
reserved. ~hen the buffer pool prefix in the online nucleus is
initialized. Next the subpool prefixes are created and initialized.
There are 2-32 prefixes for each subpool.

Load Action Modules

Upon completion of initialization of the buffer pool and prefixes, the
DL/I action modules are loaded. As the modules are loaded, their
corresponding entry points are moved to the SCD. The modules are loaded

3-14 Licensed Material - Property of IBM

in the following standard sequence if not otherwise specified by a
storage layout control table:

DLZDBHOO
DLZDLROO
DLZDLAOO
DLZRDBLO
DLZDLDOO
DLZCDLEO
DLZDHDSO
DLZDXMTO
DLZDLOCO
DLZQUEFO
DLZQUEFW

Initialize PSBs

Buffer handler
Retrieve
Call analyzer
Data base logger
Delete/Replace
Load/Insert
Space management
Index maintenance
Open/Close
Program lsolation ENQ/DEQ module
Program Isolation ENQ/DEQ work area

Upon completion of the loading of the action modules, initialization
moves the specified PSBs using information stored in the PSB directory
entries. After each PSB is moved, it is initialized and its
corresponding PSB directory entry filled in.

Attach Logger

If data base logging has been specified by the user, the logger I/O
module is initialized and attached. If the log module fails to attach,
the data base log is closed and no logging takes place.

Open Data Bases

The final step of initialization is the opening of the data bases. The
DMB directory is scanned for DMB's that failed during initialization and
the open initial attribute is reset for any found. Next the data bases
are opened via an 'open all' call to the DL/I Open/Close module. All
modules indicating open initial in the DDIR are opened by Open/Close at
this time.

Upon completion of the open processing, the IWAIT routine address is
restored and control is returned to CICS initialization.

DLZODP - DL/I TASK SCHEpULING

DL/I task scheduling is initiated when a task receives control on a
Transfer Control (XCTL). The CICS/VS program Control Program (PCP)
examines the DL/I user bit in the CICS/VS PPT entry. If the bit is set
and the task is not already scheduled, CICS/VS branches to DL/I
prescheduling routine, DLZODPOO. An indicator is set in the CICS/VS
task control area (TCA) and control is returned to the CICS/VS PCP.

DL/I task scheduling is also comprised of the following subroutines:

• PST initialization
• PSB intent scheduling
• PSB initialization
• Scheduling

The caller provides the name of the PSB to be scheduled or optionally if
the caller omits the PSB name in the call list, the first PSB name
encountered in this program"s ACT entry is provided as default. This

Licensed Material - Property of IBM 3-15

subroutine determines whether DL/I can support another task and creates
an entry in the PST prefix area fQr this task.

The SCD maximum task indicator is tested. If it is on, the task cannot
be scheduled, the SCD suspended task counter is incre~ented by one, and
an indicator is turned on in the SCD. A CICS/VS SUSPEND macro is issued
to suspend thi,s task.

If the SCD maximum task indicator is off, an available PST prefix entry
is located and initialized for this task. The DL/I task accumulator is
incremented by one and a test is made to determine whether the number of
DL/I tasks now equals the maximum allowed. If yes, the SCD maximum task
indicator is set. Next the SCD current maximum task indicator is
tested.. If on, the task cannot be scheduled immediately, and the
subroutine issues a CICS/VS SUSPEND macro to suspend the task. The SCD
current maximum task indicator is set if the scheduling of the task
causes the current maximum task value to be reached. Control is passed
to the PST initialization subroutine if the PSB resides on the same
systew. If a remote PSB is to be scheduled, control is passed to the
remote scheduling subroutine which transfers the request to the remote
syste~.

PST Initialization

PST storage is acquired from CICS/VS storage Management and the storage
address is saved in the assigned PST prefix. PST initialization
consists of formatting the save area chains and storing the address of
the assigned PST prefix. Control is passed to the PSB intent scheduling
subroutine.

PSB Intent scheduling

This subroutine determines the segment intent of the PSB being scheduled
and ensures that no more than one task is scheduled to update the same
segment type(s)in the same data base unless program isolation is
active_ For retrieve sensitive only PSBs or update sensitive PSBs with
program isolation active, a duplicate PSB is created if a prior task was
scheduled with the same PSB. If the task cannot be scheduled, a CICS/VS
SUSPEND is issued.to suspend the task. If not in use, but retrieve
sensitive only, the in-use indicator is set and control is passed to PSB
initialization. If neither of the above is true, the PSB segment intent
list entry must be scanned. If program isolation is not active and the
PSB is not retrieve only sensitive, the PSB segment intent list entry
must be scanned.

The segment intent list for this PSB is located from the PSB directory
entry. This list defines all segments in the data base(s) used by this
PSB and also defines the PSB'S sensitivity to them. The segment intent
list entry is compared to the segment intent list entries of all
scheduled PSBSo If no intent conflict is detected, the PSB
initialization subroutine is called. otherwise a CICS/VS SUSPEND is
issued for the task. Upon completion of a successful segment intent
scan, the'PSB initialization subroutine is called.

If it is necessary to provide duplicate copy(s) of PSBS, this routine
acquires storage for the copy and moves the original copy to it.
Addresses in the duplicate are adjusted correspondingly and a duplicate
PSB directory entry is created. The level table(s) are then reset and
control passed to the PSB initialization subroutine.

3-16 Licensed Material - Property of IBM

PSB Initialization

PSB initialization consists of inserting the SDBS in the PSB into the
SDB chain. The PSB is located from its PSB directory entry, and the
address of the PCB address list is stored in the CICS TCA. Each PCB is
located and the JCB pOinter is used to obtain the address of the start
of the SDBs for that PCB (JCBSDB1). Each JCB is accessed and the SDB
chain pointers in the SDB and the PSDB in the DMB are updated. This
process continues for all SDBs defined in the PSB.

The address of the assigned PST is obtained from the PST prefix and
stored in the PSB. Using this address, the PSB directory entry address
is stored in the PST. The "DL/I is scheduled" indicator in the PST
prefix is set. If the PSB indicates the user is update sensitive, a
call is made to the DL/I data base logger module (DLZRDBLO) to write an
application program scheduling record (X'OS'). Control is then returned
to the calling routine.

Scheduling

A DL/I call initiates scheduling. The function code is 'PCB' and the
call contains the name of the PSB to be executed. The call is passed to
the online program request handler via the language interface module and
a scbeduling validity check is made. If the call is valid, the
parameter list is checked for a User Interface Block (UIB) pointer
parameter. If specified, a UIB will be used instead of the CICS/VS TCA
for returning return code and PCB address list information to the
application program. Next, the task scheduling subroutine is called to
schedule the PSB. Upon completion, control is returned to the
application program through the program request handler and the language
interface,. If. the call is invalid, a two byte error return code is
stored in the UIB or CICS/VS TCA and control is returned directly to the
application programo

If the 'PCB' call is made to schedule the system interface, the password
is tested against the user generated one in the nucleus and the
interface is tested for availability. A PST and dummy DSG are acquired
for the caller, the. task is marked as a system task, and control is
returned to the user.

DLZPRHOO - ONLINE PROGRAM REQUEST HANDLER
(

DL/I online calls are made in the same format as batch calls except that
CALLDLI is used instead of CALL for Assembler language. The user issues
a call instruction, passing parameters in the call list, and provides a
register save area address in register 13. Communication of the results
of the call is also identical to the batch system. It should be noted
that although the format of the call instruction for online is the same
as in batch, storage used by DL/I to process the call (i.e., register
save area, all data items in the call list, I/O area) must be acquired
from CICS/VS dynamic storage due to the re-enterability requirements of
application programs which run under CICS/vS.

Language Interface Module

Although the language interface is not part of module DLZODP, it is
involved in call processing. The language interface module is link­
edited to each application program via the call instruction. The module
has two entry points~ one for Assembler, COBOL, and RPG II: and the
other for PL/I. The first function performed at either entry point is

Licensed Material - Property of IBM 3-17

to save the user's registers. Then a language indicator is set, the
entry paint to the program request handler is acquired from the DOS/VS
COMREG, and a branch is taken to the program request handler.

Program Reg~est Handler

This routine is responsible for communication to and from the DL/I
action modules and the user. It establishes the necessary table
addressability for the action modules, and formats and validity checks
the call list~ It also moves the requested data to the user's I/O area
and returns control to the application program.

upon entry, if' it is a scheduling call, the scheduling subroutine is
entered. If not, address ability to the PST is established and the
language indicator is set in the LIPARMS section of the PST. Next the
user's call list is inspected to determine whether it is in the proper
format. If not, the list is converted to the implicit direct format in
an area provided in the PST. The address of the list is stored in,the
PST. Then the call list is checked to ensure that all addresses are
valid. If valid, and if the PSE is on the same system, the call is
passed to the call analyzer. Otherwise, if the PSB is on a remote
system, control is passed to the remote data base call subroutine which
transfers the call to the remote system. If the call is invalid, a
return code is inserted in the UIB or TCA and control is returned to the
user.

The DL/I action modules process the call and return control to the
program request handler through the call analyzer. A test is made to
determine whether a pseudo-ABEND condition exists. If it does, a
CICS/VS task ABEND macro is issued with an ABEND code indicating the
reason. If an ABEND is not required, a test is made to determine
whether the call requires data to be moved back to the user. The data
is moved to the user's I/O area if required. The user's registers saved
by the language interface are restored and control passed back to the
calling a~plication program.

processing of the system calls 'CMXT', 'STRT', 'STOP', 'TSTR', and
DTSTP' is accomplished in the program request handler code. If these
~unct~ons are identified in the call list a direct branch is taken to
the a~propriate routine.

IWAIT Routine

The IwAIT routine is entered from the DL/I buffer handler (DLZDBHOO) or
from other modules whenever an I/O wait or resource enqueue wait must be
issued. The following processing occurs:

• Registers 14 through 12 and 13 are saved.

• Registers 12 and 13 are initialized with the CICS/VS CSA and
currently dispatched TCA.

• A CICS/vS WAIT to CICS/VS Task Control Management is issued.

• Upon return, registers 14 through 12 and 13 are restored.

• Return is to the calling module via register 14.

3-18 Licensed Material - property of IBM

DLZODP01 - ~ASK TERMINATION

DL/I task termination is entered by the CICS/VS PCP when a user's task
scheduled by DL/I returns through CICS/VS Program Management, issues a
CICS/VS sync pOint, or when the application program issues a DL/I 'TERM'
call. This routine is responsible for purging any buffers altered by
this task, calling the data base logger to write the application program
termination record (X'07"), releasing any system resources owned by this
task, and resuming tasks which were marked as not scheduled.

~ask ~errr.ination

Task termin~tion first determines whether this task was scheduled to use
a remote PSB. If it was, control is given to the remote termination
call subroutine. This subroutine issues a CICS/VS sync point call which
causes DL/I programs processing calls on behalf of the local application
program to be terminated. Next, task termination determines whether
this task was assigned a PST prefix. If not, this task must have been
stall-purged ty CICS/VS and was originally suspended by the task
scheduling module. In this case the suspended count accumulator is
decremented and the taskOs TCA removed from the DL/I suspended task
chain. Control is then returned to CICS/VS Program Management. If the
task terminates abnormally, its DL/I control blocks are dumped by DFHDC.

If this task was assigned a PST prefix, a test is made tO'determine
whether the task was scheduled. If not, the task was stall-purged by
CICS/VS. This meanS this task was suspended by a CICS/VS storage
Management attempt to acquire either PST or PSB storage. If it was due
to PS~ storage acquisition, the assigned PST prefix is cleared and put
back on the free chain and the system resource allocation routine is
entered. If it was due to PSB storage acquisition, the PSB directory
entry is cleared, PST storage is freed, and the PST prefix is inserted
in the free chain. Control is then passed to the system resource
allocation routine.

If the task was scheduled and active, normal task termination proceeds.
First a DL/I internal 'TERM' call is issued to the call analyzer.
(DLZCLAOO). This call causes the analyzer to reset the level table(s)
in the PSB. If update sensitive, the buffer handler <DLZDBHOO) is
called to write out all buffers altered by this task. Next the PSB
directory entry is tested for update sensitivity. If indicated, the
data base logger (DLZRDBLO) is called to write the application program
termination record (X'07°). If the task had update sensitivity, the PST
prefixes are scanned and any waiting for scheduling because of segment
intent conflict are 'RESUMED'.

Next the PSB directory entry is released. For update sensitivity PSBs,
this involves resetting the "user scheduled" indicator. For retrieve
only, a test is made to determine whether this was a duplicate PSB. If
so, the storage acquired for the PSB is freed and the duplicate PSB
directory entry is cleared. Control passes to the system resource
allocation routine.

If the system call interface is active the DDIR entries for the
terminating PSB are checked for the waiting for close indicator. If the
indicator is on and the use count of the DMB is now zero, the system
task is resumed.

System Resource Allocation

~his routine is responsible for determining whether any tasks are
waiting to l:e scheduled and, if so, for taking the proper action to

Licensed Material - property of IBM 3-19

cause therr. to be scheduled. First the DL/I suspended task counter is
tested. If nonzero. the first task on the DL/I suspend chain is located
and a CICS/VS RESUME macro is issued. The suspend chain is then updated
by removing the task's TCA from it, the suspended task counter is
decremented, and, if zero, the maximum task indicator is reset. Next
the CL/I task counter is decremented. If the task count is less than
the current maximum task value, the current maximum task indicator is
reset and PST prefixes which were 'WAITING' due to this condition are
'POSTED' complete. Control is then returned to the CICS/VS PCP.

DLZODP02 - DL/I NORMAL SYSTEM TERMINATION

The following processing occurs prior to CICS/VS termination.

• CL/I system termination (DLZODP02) is entered from the DL/I linkage
module DLZSTPOO, as specified in the CICS/VS pre-termination
processing list section of the program list table (PLT).

• The DL/I log DTF is located and a DOS/VS CLOSE is issued for the DL/I
log.

• CL/I system termination is re-entered by CICS/VS System Termination
Prograrr.

• A DL/I CLOSE call is issued to the DL/I Open/Close module (DLZDLOCO)
to close all data sets for all DMBs in the system.

• Return is made to the CICS/VS via the DL/I linkage module.

DLZODP03 - DL/I ABNORMAL SYST~M TERMINATION

The CL/I abnormal system termination routine is entered from CICS/VS
when the DL/I partition is to be terminated abnormally. The following
processing occurs:

• The DL/I log DTF is located and a DOS/VS CLOSE is issued for the DL/I
log.

• The DL/I control blocks are dumped.

• Return is made to the calling CICS/VS program.

CLZERMSG - DL/I ONLINE MESSAGE WRITER
(

The following processing occurs:

• The DL/I error code is extracted from the active PST or from a
parameter list pOinted to by register 1.

• CICS/VS storage is acquired,.
• The appropriate DL/I message is created and logged to the destination

CSMT via CICfj/VS Transient Data Management and to the operator's
console.

• Return is made to the calling routine.

3-20 Licensed Material - property of IBM

If CICS/VS storage cannot te acquired or an error occurs while writing
to transient data, an indicator is placed in the TCA and return is made
to the calling routine.

DLZOVSEX - VSAM EXCP EXIT PROCESSOR

The EXCP exit processor receives control directly from VSAM after each
SVC 0 resulting from a GET or PUT call from the buffer handler. DL/I
checks the ECE for completion of the I/O request. If the request is
incomplete the CICS/VS environment is re-established and a CICS/VS task
control wait is issued in behalf of the current task. If the ECB was
previously posted or the event completion has caused the task to be
removed from the wait condition, control is returned directly to VSAM
via register 14.

Licensed Material - Property of IBM 3-21

DL/I FACILITY MODULES

DLZBLAOO - CALL ANALYZER

The call analyzer module is used .for initiation of all data base calls.
Under normal circumstances, it receives control 'from the DL/I online
program request handler (DLZPRHOO) in the CICS-DL/I region or from the
batch application program request handler fDLZPRHBO). It receives
control from application program control (DLZPCCOO) at termination of a
DL~I batch partition or online task termination (DLZODP01) in a CICS­
DL/I region.

For internal DL/I calls to update an index data base, this module
(DLZCLAOO) receives control from the index maintenance module
(DLZCXMTO) •

The call types handled by the call analyzer module can be divided into
two groups: (1) normal data base calls, and (2) special control calls,
which are sometimes referred to as ~pseudo' calls. The special calls
are GSCD. get SCD address; TERM, write all buffers altered by that user;
and UNLD, write last records for simple HSAM, HSAM, simple HISAM, and
HISAM load or write all HDAM and HIDAMdata base buffers altered by that
user and close all data sets in the system.

The primary responsibilities of the call analyzer are:

• 'lest the first parameter in the call list for a valid four-character
function and encode this into a one-byte function code.

• 'lest the second parameter in the call list for a valid PCB address
and store the PCE address in the PST.

• Store the third parameter in the call list in the PST. This is the
user's I/O area address.

• Verify the format of all segment search arguments (SSAs) in the call
list and fill in the corresponding level table entry for the SSA in
the call.

• Do required checking based on call type and SSAs.

• Test for ·field level sensitivity when pr6cessing SSAs and set on bit
if present. Call DLZCPY10 to map user's view to physical view if
necessary.

• Do sequence checking when loading a data base.

• Pass control to the proper action module to process the call.

If a data base call requires the VSAM control blocks or SAM DTF
representing the files within a data base to be opened, the analyzer
call'S upon the DL/I open/close module (DLZDLOCO) to perform the data
management open fOr aJ:! files which may be needed for that PCB. The
DL/I open/:close module is called when the UNLD call is received to close
allDL/1, data bases opened in the batch partition.

I During normal processing of the SSAj' when an "$D~ has been located for
. the segment, a test or th.e SDB will be made to deter~ine if field level

i sensitivity has been specifieQ (bit SDBFSB set on in field SDBXFL). . If
it has, an indicato~ will be set j,n the. JCB, Signifying that 'at least

3-22 Licensed Mat.erial .. pr,operty of 1IlM

I

one segment has field level sensitivity (bit JCBFLS set on in field
JCBLVT> •

When processing a qualified SSA, a check is made to determine if field
level sensitivity has been specified for the segment. If it has, the
FSB chain is scanned to see if the field name exists. If the field name
does not exist or if the FSB is not flagged as an allowable field, a
return code of 'AK' (invalid field name in call) is stored in the PCB
and return is made to the caller.

If the field name is found and it is an allowable field, then
qualification is set in the level table based on information in the FSB
(qualification on data or key).

When the Call Analyzer determines that at least one segment has field
level sensitivity, it will no longer do the processing to determine the
offset of the segment in the user's I/O area (entry in LEVUSEOF will not
be initialized by the Call Analyzer).

prior to calling the insert, replace, or retrieve (only if called on
behalf of insert) action modules, if the field level sensitivity
indicator has been set in the JCB,the Call Analyzer will exit to
DLZCPY10 to map the user's view to the physical view. At this pOint,the
field level sensitivity indicator in the JCB will be reset. Any error
passcack from DLZCPY10 will be detected and exit will be taken to the
Program Request Handler.

The field level sensitivity indicator will also be reset if an error is
detected while processing the SSAs.

control Elocks - DLZDLAOO

PST
PDIR
PSB
DDIR
DMB
PCE
JCE
Level table
SIlB
FDE
FSE

Register Contents

Rl =
R13 =
R14 =
R15 =

PS'I address
Save area address
Return address
Entry pOint address

Interfaces - DLZDLAOO

Recei vescontrol from DLZPCCO 0, DLZODPOO, and DLZPRHB'O.

passes control to DLZDLROO, DLZDLOO·O, DLZDDLEO (ilL/I act10n modules):

These mOdules need no'\: save the analyzer's registers. Tbeycan. return
to the analyzer's entry pOint plus an offset stored in the SeD.

Call to DLZDLOCO - DLI'I open/close:

Licensed Material - ~opert.y of IBM 3-23

PSTFNCTN has open function
PSTDBPCB has address of the PCB

Call to DLZDBHOO - buffer handler:

PSTFNCTN is PSTPGUSR (X'07')

Call to DLZCPY10 ~ field level sensitivity copy

DLZDLOCO - OPEN/CLOSE MODULE

The function of module DLZDLOCO is to open and close the DL/I data bases
in either the CICS online control region or the batch partition. DOS/VS
open/close macros are used to open and close data sets. DLZDLOCO
opens/closes VSAM ACBs for all data base organizations besides HSAM and
simple HSAM, where DTFs are used. For simplicity the term ACB is used
in the following description where ACB or DTF would be correct. For a
HISAM data base with all functions, except for PSTOCDCB, both the KSDS
and ESDS are opened/closed.

The PSTFNCTN byte in the PST determineS the type of operation to be
performed by DLZDLOCO.

• PSTOCDCE (X'10') - Only one ACB is opened/closed. It is located by
DSG address (PSTDSGA).

• PSTOCPCE (X·02 ') - For PROCOPT = L or LS one data base is opened.

For PRO COPT * L or LS:

All SDBs of that PCB are scanned and all referenced data bases are
opened, that is, index data bases and logically related data bases
are opened/closed with this call.

• PSTOCDSG (X" 40'·) - One or two CHISAM) data bases are opened/closed.

The ACB is located by DSG address (PSTDSGA).

• PSTOCALL (X·04")

For open:

All ACEs specified for initial opening are opened (CICS online
cOntrol region only)

For close:

All ACEs in the system are closed.

• PSTOCDMB (X·Ol·) - The ACBs of one DMB are opened/closed. The DMB
directory address is passed in register 2.

DLZDLOCO compares the following values specified in DBD generation with
the VSAM catalog entries for a data base:

• Control interval size

• Key length (KSDS)

• Relative key position (KSDS)

3-24 Licensed Material - Property of IBM

• Highest RBA used in the data base based on the PROCOPT. For example,
PROCOPT=L requires an empty data base (high RBA=O), while a data base
must contain data if PROCOPT*L (high RBA>O).

For HISAM, HIDAM, and HDAM data bases. the first control interval of the
VSAM ESDS is reserved for the DL/I control record. DLZDLOCO maintains
this record.

• If PRCCOPT=L or LS, space is acquired for one control interval and
the DL/I control record is constructed. The buffer handler
(DLZDBHOO) is called to write the DL/I control record.

An open record, code X'2F', is written to the log file whenever a data
base is opened. If the open call is successful, bit zero (JCBOPEN) of
the JCBORGN byte equals one (PCB call); and bit zero (PSTOCBAD) of the
PSTFNCTN byte equals zero.

All PSDBs of a DMB are scanned for variable length segments with the
edit/compression routine. All edit/compression routines that have
'INI~' specified are called after "open" and before "close"

Register Contents
Rl PST address
R2
R13 -
R14 -
R15 -

DDIR address if it is a close DMB call
Save area address
Return address
Entry point address

Control Blocks - DLZDLOCO

• DL/I control record - DLZRECO

• PSTFNCTN field of the PST:

ill ~ Meaning

1 1 Process DSG
2 1 Open for load
3 1 Process specific ACB
4 0 Close call

1 Open call
5 1 Open/close all DMBs
6 1 Open/close a PCB
7 1 Open/close a DMB

DLZDLDOO -DELETE/REPLACE

Thi~ mOdule performs the logical actions involved in replacing or
deleting segments in a DL/I data base for all organizations, except HSAM
(which has no delete or replace).

The replace function checks to ensure that the key field of the segment
was not inadvertently altered and that the replace rules were not
violated. If the segment to be replaced is indexed, this module
interfaces with the DL/I index maintenance module (DLZDXMTO).

Licensed Material - Property of IBM 3-25

The first check made upon entry is a key check of the contents of the
PCB key feedback area to the key of the segment in the user's I/O area.
If there are any changes. a 'DA' status c.ode results. Next the segment
is retrieved and the sequence fields are checked for any changes. If
any changes occurred, a "DA' status code again results. Then the
remainder of the data is checked for changes. If there were no changes,
a blank status code is returned. If there were changes, the data is
replaced.

If the segment to be replaced is in an HDAM or HIDAM data base and the
segment is variable length, the segment and its prefix may be separated.
The separation of data is determined by the min-byte value of DBDGEN and
the current size of the segment. Also in this regard, if the segment
was previously separated from its prefix prior to a replace call, the
replace will attempt to rejoin data and prefix.

The delete function for a HISAM data base reads the segment to be
deleted. If the organization is simple HISAM, the buffer handler is
called to issue a VSAM ERASE. Otherwise, the segment is deleted by
setting the HISAM segment delete bit. In addition, if this is the root
segment, the record delete bit is also set.

The delete function for HDAM or HIDAM data bases includes a check to
ensure that delete rules stated for the DMB will not be violated: If
logically related segments with a physical delete rule exist in the data
base within the physical hierarchy starting with the segment to be
deleted, a scan is made of all the segments to ensure that they include
no segment which has not been logically deleted.

A scan of the data base from the pOint of deletion is performed. During
this scan, each segment is accessed twice: once on the way 'down', and
again on the way ·up". While scanning 'down', any segment in a logical
relationship is·inspected to determine its eligibility for deletion and
to terminate as many logical relationships as possible. In some cases
(for example, the last logica,l child for a logical parent which has
already been deleted through its physical path), the deletion of all, or
a portion of, the logically related data base record is required. In
this case, the delete action is expanded to perform the total delete
function (except for' the checking) for the new data base record. Then
the scan of the original data base record is continued at the point of
exit.

When scanning 'up", an interface with index maintenance (DLZDXMTO) is
made if the segment is indexed. Physical pointers are adjusted to
bypass any removable segments (HDAM or HIDAM segments which are no
longer required) whose space is released by interfacing with the space
management module, DLZDHpSO. For nonremovable segments (segments
required to remain because of existing logical relationships), a logical
delete bit is set to indicate the status of the segment.

A work area is obtained from the DL/I buffer pool to maintain the
concatenated key and position of segments in the data base record(s)
being scanned during delete or for ca~ls to index maintenance during
replace.

Delete/Replace Work Space Acquisition and the Work Space Prefix

DLZDLDOO acquires space to build work area(s) from DLZDBHOO (buffer
handler) via a PSTGBSPC call. The calculated minimum size required is
indicated in PSTBYTNM. If the space is available, the buffer handler
returns the address of the selected buffer in PSTDATA and its size in
PSTWRI<1.

3-26 Licensed Material - property of IBM

The first section of the work space contains a prefix whose format and
contents are described in Section 5. Immediately following is the work
area containing information concerning the segment to be deleted (or the
index source segment to be replaced), its physical data base (HIDAM or
HDAM), and other segments in that data base record.

If a second work area is needed because of logically related segments
and the space remaining in the current work space is large enough, the
next work area will be allocated in the same work space (buffer)
immediately following the previous work area. Forward and backward
chains are maintained. If the remaining space is not large enough,
another buffer is obtained from the buffer handler and chained to and
from the previous work space.

Except in the case of an error condition, work areas are freed in the
reverse order in which they were allocated. When the work area freed
was the first one in the work space, the buffer is freed via a PSTFBSPC
call to the buffer handler.

Segment Delete Codes

Segment delete codes utilized in the second byte of the prefix of each
DL/I segment:

1 •••
. 1 ..
.. 1.
••• 1

Xa ...

This segroent has been deleted (HISAM only).
This data base record has been deleted (HISAM only) •
~his segment has been processed by delete •
This variable-length segment has its data separated
from the prefix.
Reserved

• let .,
e"" 10
... . 1

1111 1111

This segment is no longer required by its physical parent •
This segment is no longer required by its logical parent.
~his segment has been removed from its logical twin chain •
~his segment contains the separated data of a variable­
length segment.

Interfaces - DLZDLDOO

This module interfaces with the following modules:

DLZDEHOO
DLZDHDSO
I:LZRDELO
I:LZD:XM~O
DLZQUEFO

Control Elocks - DLZDLDOO

• Delete workspace prefix

• Delete work area.

Register Contents at Entry

Licensed Material • Property of IBM 3-27

Rl Contains the address of the PST
R13 paints to the current save area
R14 Contains the DL/I analyze call function

module (DFSDLAOO) return point
R15 Contains the module entry point

Register Contents at Exit

Rl Contains the PST address
R13 POints to the current save area
R14 Contains the DL/I analyze call function

module (DFSDLAOO) return pOint
R15 contains a return code (0)

Register Contents on ABEND - in the SCD ABEND Save. Area
<

Rl
R2
R3
R4
R5
R6/R10
Rll -
R12 -
R13 -
R14/R15

PST address
SCD.addJ;"ess
SDE adClress
DMB address
PSDB address
Work registers
Ease - (subroutine
Ease (main CSECT)
Current save area
- Work registers

DLZDDLEO - LOAD/INSERT MODULE

CSECT)

The function of DLZDDLEO is to load HDAM, HIDAM, Simple HISAM. HISAM,
Simple HSAM, and HSAM data bases (in batch only) and insert segments
into HDAM, HII:AM. Simple HISAM. and HISAM data bases.

DLZDDLEO is entered from the DL/I call analyzer (DLZDLAOO) on load
requests for HIDAM. Simple HISAM. HISAM. HSAM. and Simple HSAM segments.
HDAM dependen·t segments, and insert requests for Simple HISAM and HISAM
roots. It is also entered from the retrieve module (DLZDLROO) on load
requests for HDAM root segments. and insert requests for HDAM. HIDAM,
and HISAM dependent segments.

The module performs the following functions=

A. HDAM/HIDAM load/insert -

1 Normal segment:

• Positioning:
HDAM roots.
positioning.

retrieve positions for inserting and loading of
For all other loading, DLZDDLEO simulates retrieve

• Space for new segment is acquired using tne space management
module. DLZDHDSO.

• The segment is moved from the user' s I/O area to the buffer .•

• Prefix pOinters are updated.

• Actual write is performed by the buffer handler using VSAM.

• Prefix painters of twins and parents are updated,.

3-28 Licensed Material - Property of IBM

• The data base logger (DLZRDBLO) is called to write the new
segment and the updated prefixes.

• If the segment is an index source segment, index maintenance
(DLZDXMTO) is called.

• Exit is to the call analyzer.

2. Concatenated segment:

• If the destination parent already exists, and the insert rule is
physical or logical: same as normal segment.

• If the destination parent exists and the insert rule is virtual:
the logical child segment is inserted as for a normal segment,
data of destination parent are replaced afterwards.

• If the destination parent does not exist and the rule is not
physical, the destination parent is inserted as for a normal
segment; afterwards the logical child is inserted as a normal
segment.

E~ HISAM and simple HISAM load-

• Main storage for a logical record for key sequenced data set
(KSDS) and for entry sequenced data set (ESDS) is acquired from
the cuffer handler.

• The root and all dependent segments that fit into one logical
record are written to the KSDS, using the buffer handler. The
remaining dependent segments are moved to one or more records of
the ESr.:S.

• Pointers to those records are inserted.

C~ HISAM and simple HISAM root insert

• A key equal to or greater than the request is made to the buffer
handler. If the key exists and the delete bit is flagged
(HISAM), the space is reused; otherwise a II status code is
returned. If the key does not exist, main storage is acquired
from the buffer handler and the new record is built and then
inserted by VSAM through the buffer handler.

• Old (if deleted) and new recerds are logged.

D. HISAM dependent segment insert

• If the segment fits into the record fer which retrieve (DLZDLROO)
has pesitioned, it is inserted by shifting the segments beyond
the insert pOint to. the right. If the segment does not fit into
the recerd, a new ESDS record is built. The segment and shifted
data are inserted into the new recerd. If the shifted data does
net fit into. the recerd, a secend new ESDS record is created.

• peinters to. the new records are created.

• Old and new records are logged.

Ee HSAM and simple HSAM lead

• The IIO areas allocated by batch initialization are used to move
the segments from the user area. PUT locate is executed,
whenever one IIO area is filled.

Licensed Material - Property of IBM 3-29

Blocks and Tables - DLZDDLEO

PST
DDIR
DMB
PCB
JCB
Level table
SDB
FDE
SCD

Registers ~n Entry and to All Called Modu1e~

Rl = PST

Interfaces - DLZDDLEO

This module calls tqe following modules:

DLZRDBLO
DLZDEHCO
DLZDHDSO
DLZDXMTO
DLZQUEFO

- Data base logger
- Buffer handler
- Space management
- Index maintenance
- Queuing Facility

status Codes - DLZDDLE9

II
AC
IX
LB

OLZDXMTO - INDEX MAINTENANCE

The function of this module is to load - insert - delete the index
pointer segment of a HIDAM data base and to load - insert - delete -
replace the index pOinter segment for secondary indexes of a HDAM or
HIDAM data base ..

Abbreviations used throughout the module are:

ISS Index source segment
XDS Index target segment (indexed segment)
XNS Index pointer segment (indexing segment)

The following major functions are performed:

ALL CALLS

• Save PST information in XMAINT work area

LOAD
INSERT

• Build index pointer segment in work area

For primary. indexes - take key from user I/O area. For secondary
indexes - construct segment from SRCH, SUBSEQ and DDATA fields. For
/CR fields use PCB-key feedback area or read parents of ISS using
SDEPOSC or PP pointers.. Call user suppression routine, if needed.

3-30 Licensed Material - Property of IBM

• Euild tenporary blpck~ SDB, JCB, DSG

INSER'I

• Euild call list and SSA

• Call analyzer

• Take next index relationship of this ISS

LOAD

• Open data base, if necessary, or work data set

• Call buffer handler to write index record or write work data set for
secondary index

• 'I'ake next index relationship of this ISS

UNLC

• Write FF-key record to all index data bases belonging to this data
base

DLE'I

• Call buffer handler to get old ISS

• Construct the old index pOinter segment

• For /CK fields take CONCAT key from DLET work area

• Call user exit routine, to check for suppression

• Euild temporary blocks

• Log POINTER CHANGE and DEL. BYTE CHANGE

• Call buffer handler to change index

• Take next index entry

REPL

• First part = CLET
• Second part = ISRT

ALL CALLS

• Restore PS'I
• Return to calling module

Entries:

Receives control from DLZDDLEO (load/insert) and DLZDLDOO
(delete/replace)

Register Contents

R1
R14
R15

PSTWRK1

=
=
=

PS'I address
Return address
Start address

LSDB of ISS for ISRT, ASTR, REPL calls
LSDB of ROOT for UNLD CALL

Licensed Material - Property of IBM 3-31

PSTFNCTN
PSDB of
"AO'
'Al'
"A2'

ISS for CLFT call
Delete
Replace
Insert
Unload

PSTBY'INM
• A3'
RBA of index source segment

Interface to called modules:

1. CLZDLAOO (analyzer)
Called for insert, not load mode

PSTIQPRM pOints to internal call list
Segment name*X(keyvalue) is used as SSA

2. CLZDEHOO (buffer handler)

3~

PSTFNC'IN: PSTMSPUT load HIDAM index
PSTBYLCT get index target segment again
PSTSTLEQ get index pOinter segment
PS'IPUTKY index of HIDAM data base
PS'IBFALT update index of HIDAM data base

PSTBYTNM: RBA of segment
or Pointer to key to be inserted

CLZDLOCO (open/close)

R2: Addres,s of DDIR
PSTFNCTN: PSTOCOPN + PSTOCLD + PSTOCDMB

PSTOCOPN + PSTOCDMB
PSTOCCLS + PSTOCDMB

4u CLZRDBLO (logger)

PSTWRK1: DBLLGDLT logical delete
DBLNDXC + DELCMC XMAINT chain maintenance

PSTWRK2: Old segment cod~ and old delete byte
Old RBA pOinter

PSTOFFST: Offset to new segment code
Offset to new RBA pOinter

PSTBY'INM: RBA of record

50 DLZDSEHO (work data set module)

Is called at entry pOint - 12 to open work file.
Return is to BALR if open not successful,
to BALR + 4 if open successful.

6.. DLZQUEFO (queueing facility)
called to do any program isolation queueing necessary

Exits:

Eack to calling module.

Control Blocks - DLZDXMTO

• Index work area - DLZXMTWA

• SSA for the XMAINT call to the analyzer.

3-32 Licensed Material - property of IBM

t,'

'<l

DLZDLROO - RE'lRIEVE

The DL/I retrieve module is responsible for retrieval of all segments,
independent of physical data base organization. When an application
program requests the retrieval of a segment, this module (DLZDLROO)
gains control from the DL/I call analyzer, DLZDLAOO. The analyzer has
validity-checked the parameters in the application program's retrieval
request. The analyzer has also placed this parameter information for
retrieval in the DL/Icontrol blocks.

Based upon this information, the retrieve module calls the DL/I buffer
handler module. DLZDBHOO, which controls physical I/O operations, to
read the clock containing the desired segment. Once the desired block
exists in the data base buffer pool, its presence is made known to the
retrieve module.

It is the responsibility of the retrieve module to "deblock" segments
within the clock. Once the desired segment is located, the retrieve
module places the location and length of the segment in the PST control
block associated with the application making the retrieve request and
returns to the DL/I call analyzer. Once a particular segment within a
data case is retrieved for a particular application program, "position"
is established within the data base for the application program. This
"position" is subsequently used to move sequentially through the data
base if the application program issues GN and GNP calls.

If the block containing the segment to be retrieved already exists in
the data base buffer pool, the request from the retrieve module to the
buffer handler results only in the address of the desired data being
returned to the retrieve module. No physical I/O is performed. In the
case of HISAM, if a retrieve request involves inspection of several
segments within a record, the retrieve module requests only the first of
these froIT the buffer handler and finds the remaining segments itself,
utilizing position information. POSitioning information for each
application program and each data base is maintained in the DL/I control
blocks which are an extension of the PCB (that is, JCE, LEVVTAB, and
LSDB) •

In addition to servicing all data base retrieval requests, the retrieve
module performs "positioning" functions for all segment insertion. In
this case, the retrieve module receives control from the DL/I call
analyzer module on an insert call. Prior to the insertion of a new
segment occurrence, DL/I must insure that the segment does not already
exist in the data base. It is the responsibility of the retrieve module
to retrieve the block where the segment to be inserted may already
exist,. If the segment does not already exist in the data base, the
block retrieved is normally used for segment insertion. Once the
desired physical block is retrieved and positioning for segment
insertion within the block is established, control is passed to the DL/I
load/insert module, DLZDDLEO. If the data base organization is Simple
HSAM or HSAM, the retrieve module performs the I/O (Get/put) rather than
calling the buffer handler.

HIDAM root retrieval by key (qualified GU, GN), results in two buffer
handling requests. The first retrieves the index segment as any HISAM
root. The second uses the RBA of the HIDAM root in the index segment to
get the corresponding root segment. The position of the index segment
is saved in a special SDB.

Retrieval of segments addressed by secondary indexes is performed in the
same manner, as far as possible, as the retrieval of a HIDAM primary
root segment. (The SDBs are generated so that the index looks like a
primary index and the index target segment like a HIDAM primary root.)
The most important differences are:

Licensed Material - Property of IBM 3-33

• The layout of tqe index pOinter segment is user dependent and is
different from that of a primary index.

• The sequence field of a secondary index is not necessarily part of
the target segment and may be in a dependent segment.

Variable length segments are handled by the routine VLRT which provides
an exit to a user routine to handle any necessary data expansion after
calling the normal buffer handler interface (SETL).

Retrieval of logically related segments requires special handling. The
retrieved segment (the concatenated segment) consists of the logical
child (that is the concatenated key and the intersection data) and the
physical or logical parent (destination parent). Since the SDBs always
reflect the user's view of the data base, the same program logic is used
whether the segment to be concatenated to the logical child .is a
physical or a logical parent. The concatenated key of the destination
parent i~ constructed using the physical or the logical parent pOinter
of the logical child and the physical parent pointer of the destination
parent. For ISRT calls the concatenated key in front of the input data
is used to position on the destination parent. All positions on the
physical path to the destination parent and on the twin chain of the
destination parent are maintained .•

Command Codes Affecting Retrieval

D The segment data is moved when the level table is updated and
not at return to the analyzer.

L The segment skip routine is employed to skip to the last
occurrence.

T The RBA specified in the SSA is moved to the next position
pointer location in the appropriate SDB and an unqualified GN
is performed.

F For a GN (GNP) cail, the same logic is employed to retr~eve
the first occurrence as for a GU call.

Module Layout - DLZDLROO

This module consists of 60 subroutines, a main entry routine (DLZDLRO),
a main exit routine (DLZDLR1), and a general linkage and maintenance
support routine (DLZRLNRD), e~ch of which is preceded by a description
in the form input ~ processing - output. The subroutines are linked
using macro DLZRLNR and the following macros (refer to the comments in
the DLZRLNR source program listing):

DLZRHDR -

DLZRTLR -

DLZRCLL -

DLZREXT -

First macro of a subroutine; generates DSECTs, EQU,
and module identification.

Last macro of a subroutine.

Generates code to transfer control to a
subroutine using ~LZRLNR.

Generates code to return control to a calling
subroutine using DLZRLNR.

The module is supplied as eight files. The first seven, DLZDLRAO to
DLZDLRGO, contain the subroutines and the eighth, DLZDLNRD, contains the
linkage and maintenance support routine that is generated using the

3-34 Licensed Material - Property of IBM

macro DLZRLNK. The second file, DLZDLRAO, also contains the routines
DLZDLRO and DLZDLR1. The distribution of the subroutines within the
CSECTs contained in the files DLZDLRAO to DLZDLRGO is arbitrary and can
be changed at will, necessitating only that the affected CSECTs be
reassembled.

Maintenance Support - DLZD~

The module DLZRLNKD contains facilities to dynamically dump control
1::locks and I/O buffer sections. The extent and frequency of the dumping
is controlled by DLZRLNK macro parameters or control fields in the PST
as descri1::ed in the DLZRLNK source program listing.

Interfaces - DLZDLROO

This module interfaces with the following modules:

DLZDDLEO
DLZDBHOO
DLZQUEFO

- Load/insert
- Buffer handler
- Queuing Facility

Register Contents on Entry and Return
RO - SCD
Rl = PST
R2 = PCB

Register Contents During Execution

RO =
Rl =
R2 =
R3 =
R4 =
R5 =
R6 =
R7 =
R8
R9 =
Rll=
R12=
R13=
R14=
R15=

Work
Work
PCB
JCB
LEVTAB
SDB
Segment address
PST
DSG part of JCB
Byte or record location of SEGM in data 1::ase
Base register for linkage routine DLZRLNKD
Base register
Save area
Work
Work

DLZDHDSO - HD SPACE MANAGEMENT

Module DLZDHDSO allocates and maintains free space on direct access
storage devices for storage of DL/I segments in the hierarchical direct
organizations (HDAM and HIDAM). This space is managed through the use
of free space elements (FSEs) in each block of each data set of a data
base and a 1::it map. The bit map describes blocks that have at least one
FSE which can contain the largest segment in the data set. There is one
bi t Irap per data set consisting of one or more blocks distributed
equidistant over the data set.

Licensed Material - Property of IBM 3-35

Module DLZDHDSO consists of CSECTs which perform the following
functions:

DLZDHDOO

DLZGGSPO

DLZFRSPO

DLZRCHBO

DLZRRHPO

DLZRRHMO

DLZLMCLO

DLZMPLCO

DLZMMUDO

DLZDCIOO

contains the entry point for the combined module. It saves
registers, initializes the work words in the PST, and
branches to the appropriate module.

consists of a 'driver' for all subfunctions that may be
invoked to find space. It uses one byte of the work space to
control invocation. This CSECT also controls formatting for
HDAM when the root anchor point is beyond the current end of
the data set and formatting of new bit map blocks, if
necessary.

returns to free space the space occupied by a segment being
deleted. It logs the deletion of the segment and updates the
tit ~ap if required.

searches the block passed to it for an FSE that satisfies the
current request. If none is found, control returns to the
calling module. If the request can be satisfied, the return
is directly to the invoker of DLZDHDSO.

searches the DL/I buffer pool for a block in the,range passed
to it. If one is found, module DLZRCHBO is called to search
it~ If the block is rejected, the search continues to the
end of the pool, and control is returned to DLZGGSPO. To
avoid changing the position of buffers on the buffer pool use
chain, online and batch are treated differently. In a batch
environment, the buffer to be searched is passed to DLZRCHBO
and may be used without being requested from the buffer
handler. In a DL/I online environment, the buffer is passed
to DLZRCHBO. If the request can be satisfied from it, the
tuffer is then requested from DLZDBHOO and again passed to
DLZRCHBO for actual alteration.

searches the bit map for a bit that is a one and is also in
the specified range.. If one is found, its corresponding
tlock number is returned to DLZGTSPO. If all bits are zero,
PS~NOSPC is returned to DLZGGSPO. The map search functions
include creation and formatting of new bit map blocks, if
necessaryo To further proximity of space for related
segments, whenever possible, the search within a given range
is done from the center to the outer ends of that range in
both directions at the same time.

calculates search limits for DLZGGSPO. A switch is used to
determine the appropriate limit - track, control area, delta
control areas. The limits of the previous scan are used to
break the range into two subranges. This prevents the re­
requesting of blocks that were rejected during earlier scans.

determines the block number for the bit map block appropriate
to the block number passed to it. It also determines the
relative bit position in the bit map block of the block
number passed to it.

turns the appropriate bit ON or OFF according to the entry
point -involved. The log is also called to reflect the
change.

tests to see if the device containing the data base is
actually an FBA device if it was specified as such, and, if
it is, calculates the CIs per track and per cylinder and the

3-36 Licensed Material - property of IBM

scan value in cylinders equivalent to the number of FBA
blocks specified during DBD generation. These values are
stored in the DMB for later use.

Interfaces - CLZOHDSO

The following modules are called by DLZDHDSO:

DLZDBHOO - Buffer handler
DLZRDBLO - Data base logger

calling seguenfe

R1 PST address
PSTDSGA DSG address for appropriate file (all calls)
PSTFNCTN

PSTGTSPC 01 Get space
PSTFRSPC 02 Free space
PSTBTMPF 03 Turn off bit in bit map
PSTGTRAP Oq Get space close to root anchor

pOint
PSTREN RBN of segment to get space close to - PSTGTSPC

RBN of segment to be deleted - PSTFRSPC
EBER - PSTGTRAP
where BBE = relative block number,
R = root anchor point number

PSTBLKNM Block number whose bit is to be turned off -
PSTBTMPF

R5 DMEPSCB Address of PSDB of subject segment
R1q Return point
R15 Entry point - DLZDHDSO

On Return

PSTRTCDE

R15

PSTRTCDE

- PSTCALOK

- PSTBTMPF

- 0
- q
- PSTGTDS
- PSTNOSPC

- PSTIOERR
PSTNPLSP

Space obtained; REN is in PSTRBN
- PSTGTSPC, PSTGTRAP
Space freed - PSTFRSPC
Space obtained. After insert, call
DLZDHDSO to adjust bit map .•
For above return codes.
Error has occurred; check PSTRTCDE
The RBN to get close to does not exist
DLZDHDSO could not find space in data
set - PSTGTSPC, PSTGTRAP
See DLZDBHO.O
See DLZDBHOO

Licensed Material - Property of IBM 3~37

DLZDBHOO - DB EUFFER.HANDLER

The primary functions of module DLZDBHOO are:

10 To satisfy requests for buffer space for the processing of the data
blocks of HD data bases. For Simple HISAM and HISAM data bases and
for the index of HIDAM data bases, the VSAM buffer management is
used.

2n To issue I/O requests to VSAM whenever data must be read or written.
lhus, the buffer handler provides an interface between the DL/I
action modules and VSAM data sets.

3D whenever possible, to satisfy requests for data base segments and or
records from data currently available in its buffer pool without
issuing an I/O request. For this purpose, data is retained in the
pool as,long as possible. Various features such as use chains and
alteration flags are employed so that a centralized buffer
management is facilitated for concurrent use by all application
programs.

The buffer handler satisfies the following requests as indicated by
PSTFNCTN:

10 For processing HDAM, HIDAM, or HISAM ESDS:

3-38

Symbol
Func,tian

PSTEYLCT

PSTBKLCT

Hex
Function

02

01

Description

If the request is issued for an HDAM or
HIDAM data base, the buffer handler
retrieves the control interval whose
relative byte number is stored in
PSTBYTNM,. The relative byte number in
PSTBYTNM is first converted to a VSAM
control interval number and an offset
within the control interval.

If this control interval is not in the
buffer pool, buffer space is obtained in
the buffer pool, the buffer which will be
used is written, and the control interval
is read into this buffer by a VSAM get
call.

I,f the requested control interval is
already in the buffer pool, no read is
done and the address of the buffer
containing this control interval is
passed back to the caller.

If the request is issued for a HISAM ESDS
data base, the buffer handler only issues
the proper VSAM call for retrieving the
record identified by the RBA which has
been passed to the buffer handler in
PSTBYTNM.

The same as PSTBYLCT for an BDAM or BIDAM
data base except that a VSAM control
interval number is passed to the buffer
handler in PSTBLKNM.

Licensed Material - property of IBM

PSTBYALT

PSTBFALT

PSTGESPC

PSTFESPC

PS'IPGUSR

,PSTEFMPT

PSTWRITE

2. For processing

(a) Accessed

iSymtol
"Function
PSTEYLCT

PSTBFALT

PSTERASE

(b) Accessed

Symtol

06

05

03

04

07

,,04

08

HIDAM index,

by VSAM REA

Hex
Function

02

05

OA

by kEfY

A locate relative byte number (refer to
PSTBYLCT) is done first and then the
buffer which contains the control
interval is marked as altered by this
specific user.

If the request has been issued for an
HDAM or HIDAM data base, the buffer whose
prefix address is stored in PST BUFFA is
marked altered.

If, however, the request applies to a
HISAM ESDS, the proper VSAM call is
issued to write the record immediately.

A buffer with the length specified in
PSTBYTNM (possibly rounded to the next
multiple of 512 bytes) is provided to the
caller.

A buffer identified by a DMB number, ACB
number, and control interval number in
PSTDMBNM, PSTACBNM, and PSTBLKNM is
freed, that is, it is marked empty and
put on the bottom of the use chain.

All the buffers which have been modified
by a specific user are written. All
nonreusable buffers held by this user are
marked empty and put to the bottom of the
use chain. The bit representing this
user is turned off in the user mask of
all permanent write error blocks.

If the purge request is on behalf of a
CHKP function-call, all DMBs are scanned
for index data bases and ENDREQs are
issued to ensure that all VSAM buffers
are written to the data bases.

All buffers of one data base or certain
buffers of a data base are marked empty
and put on the bottom of the use chain.

A logical record is added to a HlSAM
ESDS.

Simple HISAM or HISAM KSDS:

Description
Retrieve the VSAM KSDS record by the RBA
which is in PSTBYTNM.

Write the VSAM KSDS record by theRBA
which is in PSTBYTNM.

Delete the VSAM KSDS record identified by
the RBA which is in PSTBYTNM.

Licensed Material - property of IBM 3-39

Function
PS'IS'ILEQ

PSTGE'INX

PSTS'ILEG

PS'IPUTKY

PSTMSPUT

Function
09

OB

OC

OD

OE

Description
Retrieve the VSAM KSDS record whose key
is equal to or greater than the key whose
address is stored in PSTBYTNM.

Retrieve the next sequential VSAM KSDS
record.

Retrieve the first VSAM KSDS record in a
data base.

Insert a record by key directly into a
VSAM KSDS.

Insert a record which is in ascending key
order into a VSAM KSDS.

The buffers which are used for satisfying these requests are provided by
VSAM buffer management. The buffer handler provides VSAM control blocks
(ACE, EXLST, and RPL) to VSAM data management when issuing the required
VSAM action macro,

The module DLZDEHOO consists of three CSECTs:

I:LZDBHOO

DLZDBH02

DLZDBH03

Contains the code for the functions
• PSTBYLCT
• PSTBKLCT
• PSTBYALT
• PSTBFALT
• PSTGBSPC
• Maintenance of write chain and use chain

Contains the
• PSTSTLEQ
• PSTGETNX
• PSTSTLBG
• PSTPUTKY

code for the
PSTMSPUT
PSTERASE
PSTWRITE

functions

Additionally, this CSECT contains the code required for
preparing and issuing of VSAM calls and for proceSSing
feedback information by VSAM.

Contains code for the functions
• PSTFBSPC
• PSTBFMPT
• PSTPGUSR

In addition, this CSECT contains the subroutines for providing an
enqueue/dequeue function.

Write chain

The new control intervals of a HIDAM or HDAM data base are chained
together on a write chain in ascending order of their control interval
numbers. If one of the buffers on the write chain has to be written,
all buffers on the chain are written.

There is a write chain for every data base. It is maintained by storing
the prefix numbers of the prefixes of the next higher and the next lower
buffers in bytes 18 and 19 of the prefix. A bit switch in byte 7 of the
prefix (X'80') is on if a buffer is on a write chain.

use. Chain

3-40 Licensed Material - Property of IBM

All buffers are chained together in the order of their usage. This use
chain is physically separated from the buffer prefixes and consists of
one-byte elements containing relative numbers of prefixes. The order of
the buffers on the use chain is indicated by the physical order of these
use chain elements.

There is one use chain area per subpool. Each use chain area has a
maximum of 32 entries. The maintenance of the use chain involves
putting a use chain element on the bottom or on the top of the use chain
as follows. The contents of the use chain element which is to be moved
are saved. Then all use chain elements located behind the element to be
put on top, or located before the element to be put on the bottom, are
moved to the address which is one byte lower than the load eddress (or
one byte higher if an element is placed at the bottom). The saved
element is then stored at the top or the bottom of the chain.

ENQ/DEQ subroutines

Since transactions in an online environment may be processed in multi­
thread mode, the buffer handler may have to synchronize and/or delay
requests for buffers and/or buffer space. This is accomplished in two
subroutines which perform ENQ/DEQ type functions and an interlock check.
The following fields are used by the ENQ/DEQ routine:

Function ~ Control block

ENQ/DEQ existing control EFFRPST Buffer prefix
interval (CI) ID PPSTEXCI PST prefix

ENQ/DEQ pending CI ID EFFRNPST Buffer prefix
PPSTPECI PST prefix
PPSTCHAI PST prefix

ENQ/DEQ subpool SUBNQFI Subpool information table
SUBNQLA Subpocl information table
PPSTSUPO PST prefix

ENQ/DEQ rratrix BFPLPSIL Buffer pool prefix
EFPLFSIF Buffer pool prefix
EFPLPSIL Buffer pool prefix
PPSTMATR PST prefix

For interlock detection, the ENQ/DEQ routines use the contents of
the following buffer pool prefix fields:

EFPLINMA
BFPLINW1
EFPLINW2

interlock detection matrix
work areas

The ENQ/DEQ routines use the following fields in the buffer pool
prefix as work space:

BFPLNQW1
EFFLNQW2

Normally, the resources to be enqueued are the existing contents of a
buffer (existing CI ID) or planned contents of a buffer (pending ClIO).
Under certain circumstances, other resources may be enqueued.

Enqueuing of a resource consists of the following steps.

If the resource is available:

Licensed Material .. Property of IBM 3-41

1. Store the PST ID into a field of the resource reserved for this
purpose (that is, BFFRPST, EFFRNPST, SUBNQF1, BFLPSIF).

2. Store the resource ID (for example, the buffer number) into a field
in the PS~ reserved for this purpose (that is, PPSTEXCI, PPSTPECI,
PPSTSUPC, PPSTMATR).

3. Indicate successful ENQ with a return code of 4 and return to
caller.

If the resource is not available:

1. Find a position for the current PST in the interlock detection
matrix.

2. Indicate by an appropriate entry that this PST is waiting and for
which task.

3. Check whether this waiting would cause an interlock.

4. If no interlock possible:

a. Chain with appropriate chain fields the current PST behind the
last PST already waiting for this resource.

b. Return with a return code of 8 to indicate that a wait condition
exists.

5. If an interlock would occur if the current PST were to attempt to
wait on this resource:

a. Remove the entry made in 2 above from the interlock detection
matrix.

b. Indicate with a return code of 12 that an interlock would
occur and return.

Dequeuing of a resource consists of the following steps.

1. Remove the resource ID from the appropriate field in the current PST .•

2. Remove the PST ID from the appropriate field in the resource.

3u If the PS~ chain fields indicate that no other PST was waiting on
this resource, return to caller.

4. If another PST was waiting on this resource:

a. Move the waiting PST ID into the resource and remove the
corresponding wait indication from the interlock detection
matrix.

b. post the waiting PSTs and unchain the current PST.

c. If, because of 4.a, certain rows and columns in the interlock
detection matrix are fr.ee now, make these available for use by
other PSTs and post those (see description of action taken on
pseudo-interlock conditions).

d. Return to caller.

For performance reasons, resources contain, in addition to the owning
PST's ID, the ID of the last PST in the wait chain for this resource.
These IDs are also maintained by the ENQ/DEQ routines.

3-42 Licensed Material - Property of IBM

The interlock detection matrix consists of a pair of eight-bit matrices.
The first bit matrix indicates for up to eight PSTs which PST is waiting
on which other PST. Rows and columns are dynamically allocated to PSTs
as required. A one-bit in the appropriate row and column indicates a
wait condition. ~he second bit matrix is the transpose of the first.
An imrr.inent interlock is detected by some simple logical operations
executed against those two matrices. In the event that eight PSTs are
occupying this matr.ix when further PSTs request service involving a wait
condition, a code of 16, indicating pseudo-interlock, is returned and no
enqueuing takes place.

The following types of ENQ requests may occur:

ENQ existing CI 10 When a task either wants to write a buffer or wants
to get posted when reading into or w!iting a buffer
is finished.

ENQ pending CI 10 When a task wants to reuse a buffer in the buffer
pool or when a task wants to get posted when the
creation of a pending (i.e., new) CI is finiShed.

ENQ subpeol When there is currently no buffer prefix in a subpool
allowing a pending CI 10.

ENQ watrix When a task wants to ENQ on a resource currently held
by another task and no free row/column in the
interlock detection matrix is available.

The following action is taken by the main routine of the buffer handler
on a return cede (RC) indicating nonsuccessful ENQ.

Condition
wait

Interlock

Pseudo

RC
"8

12

16

Issue
ISSUe IWAIT macro.

Dequeue all resources held by this PST and retry
the current DL/I request.

Dequeue all resources held by this PST
enqueue on interlock detection matrix.
causes a wait condition. Issue IWAIT.
post, dequeue matrix and retry current
request.

and
This
Upon

DL/I

Licensed Mat.erial - Property of IBM 3-43

control Elocks - DLZDBHOO

PS~

PPST
DDIR
DME
DSG
SCD
EFPL
EFFR
SElF

Interfaces- tLZDEHOO

DLZDEHOO uses the PST for communication from and to the calling modules
and for work spaceo The DSG is used to obtain the DMB number and ACB
number of the data set which applies during a request.. The address of
the buffer fool prefix is obtained from the SCD. The address of the
buffer prefix area is obtained from the buffer pool prefix. VSAM is
invoked for all I/O.

In order to make sure that writing of log information is always ahead of
updating a data base, the buffer handler may branch to a specific entry
point of DLZRDBLO or DLZRDBL1. (Refer to the description in the
paragraph about DLZRDBLO and DLZRDBL1.)

DLZDEHOO issues the RELPAG macro for buffers that are marked empty.

Licensed Material - property of IBM

Buffer Handler Functions and Required Fields

The following chart illustrates which fields must be supplied to the
buffer handler (input) for each specific function and which fields are
filled in by the buffer handler (output) on completion of the function.

1u Function used to access a HIDAM or HDAM data base

Input
Function

Field

PSTBYLCT PSTBYTNM

PSTBKLCT PSTBLKNl"l

PSTBYALT

PSTBFALT PSTBUFFA

PSTGBSPC PSTBYTNM

PSTFBSPC/PSTBFMPT PSTDMBNM
PSTACBNM
PSTBLKNM

PSTPGUSR PSTOMBNM
PSTACBNM
PSTBLKNM
PPSTIO

Contents

Relative byte
number of desired
segment

RBA of desired
segment

See PSTBYLCT

Address of buffer
prefix which is to
be marked altered

Number of desired
bytes

OMB
ACB
Control interval RBA

Allor part of
buffer identifier
may be passed.

OMB
ACB
Control interval RBA
User identifier

Any or all of these
may be passed.

Outp ut

Field

PSTOATA

PSTOFFST

PSTOATA

PSTDATA

Contents

Core
address of
desired
seg ment

Offset of
segment
from
beginning
of control
interval

Core address
of desired
segment

See PSTBYLCT

Address of
I,rovided
buffer

Licensed Matertal - Property of IBM 3-QS

~ Functions used to access a BISAM ESDS

Input output
Function

Field contents Field contents

PSTBYLCT PSTBYTNM RBA of the logical PSTDATA Address of the
recotd to be read record wi thin

the buffer

PSTBFALT PSTBYTNM RBA of the logical
record to be written

PSTWRITE PSTDATA Address of work area PSTBLKNM RBA of the record
containing the logical added to the ESDS
record as calculated by

VSAM
PSTBUFFA Prefix address

3~ Functions used to access a KSDS by key (Simple HISAM, HISAM or BIDAM
index)

Input output
Function

Field contents Field contents

PSTSTLEQ PSTBYTNM Address of the field PSTBYTNl'l RBA of the logical.
which contains search record retrieved
argument P!;,TDATA Core address of

record

PSTSTLBG PSTBYTNM RBA of the logical
record retrieved

PSTDATA Core addreSs of
record

PSTGETNX PSTBYTNM RBA of the logical
record retrieved

PSTDATA Core address of
record

PSTPUTKY PSTDATA Address of work area
containing the logical
record

PETBUFFA Prefix address

PSTMSPUT PSTDATA Address of work area
containing the logical
record

PSTBUFFA Prefix address

3-46 Licensed Material - Property of IBM

40 Functions used to access a KSDS by RBA (HISAM or HIDAM index)

Input
Function

Output

Field Contents Field Contents

PSTBYLCT PSTBYTNM RBA of the logical PSTDATA Address of the
record to be retrieved record within the

buffer

PSTBFALT PSTBYTNM RBA of the logical
record to be written

PSTDATA Address of the record
within the buffer

PSTERASE PSTBYTNM RBA of the logical
record to be erased

Callinq sequence

RO - SCD address
Rl - PST address
R14 - Return address to caller
R15 - Address of DLZDBHOO

Fields Required (Independent of Function)

PSTFNC'IN

PSTDSGA

PS'IELKNM

PSTDMBNM

PS'IACBNM

PSTEYTNM

PS'IEUFFA

DSGDMENO

DSGDCBNO

On Return

R15 0
4

Hexadecimal code for desired function

Address of associated DSG needed for: PSTBYLCT,
PS'IBKLCT, PS'IBYALT

Identification of desired block needed for:
PSTBKLCT, PSTBFALT, PSTFBSPC

Number of associated DMB needed for: PSTBKLCT,
PSTBFALT, PSTFBSPC, PSTGBSPC

NUIl'ber of associated ACB needed for: PSTBKLCT,
PS'IBFALT, PS'IFBSPC, PSTGBSPC

PS'IBYLCT/PS'IEYALT - relative byte address of desired
segment - relative record number
of HISAM ESDS (high-order byte =
X'SO')

PSTGBSPC - fullword size of requested space

Address of buffer prefix for block to be marked
"altered' - PSTBFALT

DMB number of the referenced data base

ACE number of the referenced data set

Request satisfied
Warning or error condition

Licensed Material - Property of IBM 3-47

Fields Returned (Independent of Function)

3-48

PSTOFFST Offset from PSTDATA back to first byte of block

PSTDMENM DMB numl::er

PSTACENM ACB numl::er

PSTDA'!'A Address of first byte of requested segment, record,
or space

PS'IEUFFA Address of buffer prefix

PS'INUMRO Number of reads done during this call

PS'INUMWT Number of writes done during this call

PSTCLRWT

PSTR'ICCE

Return

Bit 0
1-8

Code Hex
Function Function

PS'ICLOK 00

PS'IGTDS 04

PS'IIOERR 08

PS'INCSPC OC

PS'IEDCAL 10

PS'INOTFD 14

PS'INWBLK 18

PS'INPLSP 1C

PSTWROSI 20

'Ihis caller waited during request
Reserved

Description

No error occurred during this request.

Record, CI, or segment requested is more
than one CI beyond the end of the data
set - returned on PSTBKLCT, PS'IEYLCT,
PSTBYALT

Requested CI, record, or segment could
not be read successfully on a PSTEKLCT,
PSTBYLCT, or PSTBYALT call or could not
be written successfully on a PSTPUTKY,
PS'I'MSPUT, PSTWRITE, or PSTBFALT call.

An out of space condition occurred on the
data set DASD while processing this
request.

'Ihe byte at PSTFNCTN is not a valid
function or the DMB/ACB/ELKID in the PST
do not match corresponding fields pointed
to in PSTBUFFA for a PSTEFALT call.

A PSTSTLEQ call has been issued for a
record whose key is higher than the
highest key in the data set.

The requested CI, record, or segment will
go in the CI, one greater than the
current end of the data set. Space has
been allocated in the pool to hold the
new CI,. The address is at PSTDATA.

The pool does not contain enough space to
satisfy the request.

A request (GBSPC) was issued for a buffer
size which exceeds the highest buffer
size handled by any subpool.

Licensed Material - Property of IBM

'\j

PSTENDDA

PSTBYEND

PSTEOD

PS'IINLD

DLZRDBLU - DB LOGGER

24

28

2C

34

The end of data set has been reached on a
PSTGETNX call.

A request h~s been issued with a key or
RBA higher than the highest key or RBA in
the data set.

End of data set has been reached on a
request by DLZDLOCO.

Invalid request during data set loading.

The data base logger module logs the modifications made to a data base.
These data base log records are written to the system log. This module
is invoked by several of the DL/I modules associated with data base
modifications.

The logging of data base modifications, additions, and deletions is done
on a physical basis to facilitate a quick recovery procedure. Only
calls that actually cause a change to be made to a data base are logged.
Two sets of information are ~ogged for each modification - a before set
and an after set.

The before information is that required by the data base back out
utility. It is used to back out a partially completed update series and
to restore a data base to some prior pOint in time.

The after information is that required by the data base recovery
routines to restore the data base from a previous backup copy.

There are five basic types of data base log records .•

1. POINTER maintenance record
When a segment is deleted or inserted and it causes a change in any
of the ~ointers in other segments, each pointer is logged separately
as a POINTER maintenance record. A POINTER maintenance record is
indicated by bits 1, 2, and 3 of the DLOGFLG2 field of the log
record being set to zero.

20 PHYSICAL INSERT record
When a segment is physically added to the data base, a PHYSICAL
INSERT record is written. This type of record is indicated by a one
in bit 1 of the DLOGFLG2 field.

3. PHYSICAL DELETE record
When a segment is physically removed from the data base, a PHYSICAL
DELETE record is written. This type of record is indicated by a one
in bit 2 of the DLOGFLG2 field.

4. PHYSICAL REPLACE record
When a segment in a data base is modified, a PHYSICAL REPLACE record
is written. This type of record is indicated by a one in bit 3 of
the DLOGFLG2 field.

5. LOGICAL DELETE record
When a DLET call is issued but the segment is not PhYsically removed
from the data base, a LCGICAL DELETE record is written. Only the
segment code and delete bytes are logged. A logical delete record
is indicated by bits 1 and 2 of the DLOGFLG2 field being set to a
one.

Licensed Material - Property of IBM 3-49

In addition to data base log records, the data base logger module also
uses:

• Application program termination records

• Application program scheduling records

• File open records

• Checkpoint records

The layout for these records is shown in Section S of this manual.

Record types 1, 2, 3, and S contain the before and after information in
the same record and have a log code of X'SO'. Type 4 requires two
records. The after record has a log code of X'SO'; the before record
has a log code of X·S1'. Additionally. if a physical insert reuses
space of a deleted record, log records X'SO· and X'Sl' are written.

¢

If the change is an insert or a delete, the before and after are part of
the same record. On an insert, the new segment, including the prefix,
is logged as the change data. On a delete, the old segment and prefix
are the change data. In HD, both insert and delete cause changes to the
free space elements (FSEs) within a block. The new FSEs and their
offsets are logged following the change data and a count of the changes
is placed in bits 4 through 7 of the DLOGFLG1 field.

The information needed to create the log record is retrieved from the
various D1./I blocks. A small amount of additional information is passed
as parameters from the DL/I action modules.

The data base log tape format is undefined records (UNDEF). The block
size is 1024 bytes. Maximum record length is S12 bytes. If a segment
cannot be logged into one record, it is internally spanned over two or
more log records. The first record is logged with a data length
adjusted to match the data it contains. The offset for the second
record is incremented by the length of the first, and the second is
written as a separate segment. The adjusting of data length and offset
continues until the entire segment is written.

The data base disk log uses VSAM with a CI size of 1024. The user
buffer facility is used to ensure that the log records are written
immediately. The disk log record format is compatible with the tape log
record.

Control Elo£ks - DLZRDBLO

• Cata base log record

• Application program termination record

• Application program scheduling record

• File open record.

Register Contents

R1
R13 -
R14 -
R1S -

PST address
Save area
Return address
Entry point address.

3-50 Licensed Material - property of IBM

High-order byte of PSTWRKl field in PST.:

a
1-3

PSTWRKl -

1
000
001
010
100
110
111
1
o
1
1
1
1-1

Definition

Index maintenance call
Chain maintenance call
Physical replace
Physical delete
Physical insert
Logical delete
Reserved
Last change for this user call
One FSE (physical delete or insert)
Two FSEs
Old copy of physical replace
New block log call
No data - end of user call

Physical SDB address (except new block call)
Data length (low halfword) if new block call

PSTWRK2, PSTWRK3, PSTWRK4 - Old data on pointer maintenance and
logical delete calls. FSE data on physical insert and
delete calls.

Before a data base block is updated (that is, before the buffer handler
issues the put for an updated block), the associated log information is
first written to the log tape or disk in the following manner.

After issuing a put to write a log block to the log tape or disk, the
log module updates the count of written log blocks in the field
SCDLOCOU.

When the log module processes a log call, in which a data base buffer is
involved, the current count of written log records is stored from
SCDLOCOU into byte 7 of the buffer prefix in the case of HD, or into the
field DMBACELC in the ACB extension in the case of HISAM and HIDAM
index.

Before issuing any put for updating a data base block, the buffer
handler compares the value stored in the buffer prefix (HD) or in the
ACB extension (HISAM, HIDAM INDEX) with the current value in SCDLOCOU.
If the two values ar~ unequal, the log information associated with the
data base update has already been written out. If the two values,
however, are equal, the buffer handler branches to entry point WRIAHEAD
of CLZRDBLO to force the current contents of the log I/O area to be
written out irrmediately. If, however, asynchronous logging was
requested by the user, the count comparison is bypassed, that is, no
"write ahead" logging takes place.

Logging in the Online System

In the online system the put for the log blocks is issued in a separate,
asynchronous subtask, which is attached at system initialization time.
This subtask is a separate CSECT within the log module DLZRDBLO.

The purpose for this is to avoid losing tasks when the end of volume
condition is encountered on the log tape.

Licensed Material - Property of IBM 3-51

The communication between the asynchronous log subtask, the logger, and
the DL/I online nucleus (DLZODP) is achieved by using three ECBs as
follows:

1. Systerr ECE (SCDESECB. in SCD extension), which is used for the
communication between the log module (DLZRDBLO) and DLZODPOO.

2. Log I/O ECB (SCDELECB, in the.SCD extension), which is used for the
communication between the log module and the asynchronous log
subtask.

3Q private ECB (fullword in the log subtask CSECT), which is used for
the communication between the asynchronous log subtask anq the log
module during the end of the I/O operation that was initiated by the
log subtask.

Figure 3-2 shows the events which take place when a PUT for a log block
becomes necessary in an online environment.

3-52 Licensed Material - Property of IBM

""
I.Q

Logger Asynchronous Log Subtask

DLZRDBLO ONLLOGWR (CSECT Name)
c::
11
m
w
I

I'.) .
0
::l
::l 1 Waiting

1. Lock System ECB ~ System ECB on Log I/O ECB
m
t"'
0

I.Q 2. Unpost Priv. ECB I
~

IJj
0
0

3. Post Log I/O ECB r.~~.~.~.~ .. :.:.:««2. 1t=--<.·.·.~.~~.~6* Log 1/0 ECB K
:>;'

t"' I-d c::
0 rT
m
::l 0
en 'tl
m m
0.. t1

III
:s: rT
III
rT 0
(J) ::l
t1

4. IWAIT on Priv. ECB

L .. Priv. ECB 5. Prepare PUT
~

~ 6. Issue PUT
'~~
~

III
~ .•.• ~:~ .-iI' •• ~:Ym «-:--~ •••••••• 7. Post Priv. ECB

....

I-d 8. Unpost Log I/O ECB
t1
0
'tl
(J)
t1
rT
'<
0
HI

H
tIl
:s:

·"1
Wait on
Log I/O ECB

w
I

10. Post System ECB 1O:;:i! ,... .. :.:-:~:«.:;:;~ ••• :«~;:;sss:;~ System ECB

I
..

VI
W

The relationship between all modules involved in the asynchronous log
writing is as follows:

r---------~---.--,
IDLZODPOO JDLZOLIOO IDLZRDELO 10NLLOGWR I
I PRH I I I I
I Schedule Rout I I I I
I TERMIN.Rout I I I I
I MESSAGE Rout I I I I
I IWAIT Rout I I I I
I EXePAD Rout I I I I

r---~----~---------------------1 I 1 Checks system I 1 When PUT has to I
I IEeE, if LOG I Ibe issued, I
I I suttask is I ,unpost system I
, I active: I I EeE I
ISystem 11 Before a I I I
IEeB ,call is pro-I I 1
I cessed I' I
I (PRH bran~ I I I
I ches to I t I
I analyzer) I I I
I 2 When a log I IAfter log sub- I
I request willi Itask is I
I te issued I I finished, 'post I
I 3 Eefore I I system EeE I
I tranching I I ,
I back into a I I I
I task after I 1 I
I control was I I 1
1 given up I 1 I I
1----------·':._---... --------1
ILog 1 IAttach asyn- ,When PUT has IWaiting on log 1
11/0 EeEI Ichronous log Ito be issued, 11/0 EeE I
I I 1 subtask 'post log I/O I I
1 I I I EeE, get log IAfter put is I
I I 1 I subtask startedlfinished, un- I
I I I , Ipost log I/O I
I I I I IEeE I
1------------------------_ _---------------------------------------1 I Private I I IWhE:!n put has tolAfter put, I
lEeB I Ilbe issued, locklposts private I
I I I Iprivate EeE IEeB I
I I I I (I/O is active) I I
I I I IIWAI'!' on I I
I I I Iprivate EeE I I 1.-_____________________ ... ____ ,.. ______________________________________ J

DLZRDEL1 - eICSJOURNALLOGGER

Logging in the online system can 'also be done by using the journaling
feature of . eles. That means the DL/·I log information as described about
module DLZRDBLO will 96 On t.hesame fi.le as anyeleS journal
information.

This is possible because eIes uses different journal record IDs than
DL/I (DL/I u,se,s X'07', X'OS', X'2F', X'·SO',X'Sl"). AnyDL/I utility
Which uses a journal tape wiUcheck the record ID and .processonly
those records, 'whi<ibhave record IDS usedl,}y :OL/I.

The general.structllre of DLiI logrec.ords, eles journal redoros anderes
journal block's isshbwn in Fig1q:es 3-3, 3-4, and 3";S, respect·iV'ely. I",

CONTINUED ACCORDING TO DSECT

Figure 3-3. DL/I Log Record

SYSTEM PREFIX

LL I bb I ~DEC'I ...

USER JOURNALLED
PREFIX DATA

o 2 4

Figure 3-4. crcs Journal Record

LL , bb I CICSIVS LABEL RECORD I ANY COMBINATION

OF CICSIVS JOURNAL RECORDS AND

DL/I LOG RECORDS

Figure 3-5. Layout of a Journal Block

If the user requests logging byCICS journaling (UPSIbits 6 and 7 = 0),
DLZOLIOO loads module DLZRDBLl instead of the standard log module
DLZRCELO. ~his module provides the following services:

• Build and write open records for each data base that has been opened.
DFHJC ~YPE=WRI~E is issued to CICS.

• Build and write log records on request by the action modules. DFHJC
~YPE=WRI~E is issued.

• write log records built by the sched/term. routine. DFHJC TYPE=WRITE
is issued.

• Initiate a physical put to the journal tape on request of the buffer
handler. DFHJC TYPE=WAI~ is issued.

Before a journal call is issued to CICS, DLZRDBLl checks if the task
which is going to write a journal record already owns a JCA. If it does
not, a GET JCA call is issued prior to issuing the DFHJC call.

Since DLZRDELl is not reentrant, no task can be allowed to enter this
module while log I/O is being processed.

DLZRDBLl unposts an ECB (SCDESECB) prior to any physical 1/0. In
various parts of DLZODP this ECB is checked, and, if it is locked, a
CICS wait is issued before control is passed to any action module.

When log information is written by using ctcs journaling, 'the writing of
log inforn:ation is always ahead of updating the associated data base

Licensed Material - Property of laM 3-55

blocks. The scheme used is the same as with standard logging, the only
difference being that the value for the number of written journal blocks
(ClCS ECN) is not manipulated by the log module but is taken out of the
JCT.

Control Blocks Addressed

• Cata base log record

• A~plication program termination record

• Application program scheduling record

• File open record

DLZQUEFO - QUEUING FACILITY

The DL/I queuing facility module provides resource contention control
exclusively for the requirements of program isolation (PI).

program isolation supports resource contention control at the segment
level (fer HCAM/HICAM data bases) and at the record level (for HISAM
data base). Module DLZQUEFO provides the control through
enqueue/dequeue mechanisms using a unique 7-byte resource identifier:

Bytes 1-4

Bytes 5-6

Byte 7

a relative byte address (RBA) associated with the
resource

the DMB number

the ACB number

The RBAs used are:

For segment level resources - RBA of the segment

For record level resources - RBA+1 of the root segment

For variable length segments where data separation has occurred, the
segment is considered a single entity with an ID based on the RBA of the
prefix.

The queuing facility module will automatically update the RBA portion of
the resource ID in the event of a VSAM CI or CA split (HISAM only>. The
module also contains a deadlock detection routine and will resolve the
deadlock by terminating one of the tasks involved.

Three basic control blocks are used to accomplish the enqueue/dequeue
function:

1. PST/PPST - used to identify the task.

2. RDB

3ft RRD

used to describe a particular resource.

used to describe a particular task's request (either
satisfied or pending) for a resource.

As shown in Figure 3-6, the RDBS are chained together, both forward and
backward, to ene of several queue heads located in the QWA (queuing
facility work area). Note that the queue heads have only a forward
pointer. The proper queue head is determined by hashing the resource ID
and using the results as an index to the table of queue headers.

3-56 Licensed Material - property of IBM

There is one RDB for each resource, no matter how many tasks (maximum of
255) have enqueued it,. The RRBS are forward and backward chained on two
queues, one from the RDB and one from the PST for the requesting task.
There is one RRD for each resource a task has or is requesting.

on entry to module DLZQUEFO. register 1 contains the PST address and
register 15 contains the entry pOint address (high-order byte contains
'FLAG' if specified). The function requested (enqueue, dequeue, verify,

.or purge) is contained in the PSTFNCTN field of the PST. If the
requested function is enqueue, dequeue, or verify, the PSTQLEV and
PSTWRR2 fields also are initialized in the PST. These fields contain
the queue request level (read-only, update, or exclusive) and the
address of the resource ID, respectively. see AppendixD for the macros
used to request a specific function.

Enqueue and verify function are essentially the same and are, therefore,
processed 1:y the same routines. The only difference between them is
that the user is not the owner of the resource at the return from a
verify request. .

Three conditions can be present for the processing of the enqueue and
verify function:

10 ~he resource is not currently enqueued (no RDB exists) and is
therefore, available. In this case, if the requested function is
enqueue, the user is queued as owning the resource and control is
returned to the caller. If the requested function is verify,
processing is complete.

2. ~he resource is currently enqueued, but is available at the
requested level. In this case, the user is queued as an owner at
that level and control is returned to the caller.

3. ~he resource is not available. In this case the user is queued as
waiting for the resource, deadlock detection is performed, and a
CICS SUSPEND is issued pending the availability of the resource.

~hen the wait is satisfied and if the request was for an enqueue,
control is returned to the user. If, however, the request was for a
verify, the user is first dequeued (see dequeue function) as owner
of the specified level before he is given control.

Dequeue function processing first determines if the resource is
currently owned by the requestor. If it is not, the request is ignored.
If it is, the enqueue count at the specified level is decremented. If
all levels are now zero, task ownership is relinquished, and any waiting
tasks that may now own the resource are promoted. If FLAG was
specified, it is set for all waiting tasks.

If the enqueue count goes to zero and it was the highest level, but
lower levels still exist, the ownership level is lowered and any waiting
tasks that may now own the resource are promoted.

Purge function processing searches the chain of RRDs queued off the
specified PST for a task and unconditionally relinquishes ownership for
all resources encountered. Any waiting tasks that may now own the
resource are promoted.

on return from module DLZQUEFO, return codes are set in register 15 and
in the PSTRTCDE in the PST.

Licensed Material - Property of IBM 3-57

ml1 QH2

t 1

4 RDB1 RDB2 4 RDB3

t

PST1 RRD1 RRD3 ~

PST2 RRD2 RRD4

f-

t f

Figure 3-6. Enqueue/Dequeue Control Block Relationships

3-58 Licensed Material - property of ~BM

The following table identifies the mainline routines and the functional
subroutines of the queuing facility module:

Mainline Routine~

Routine

QENQDEQ
QRETURN
QENQVER

QNRENQ
QERENQ
QREENQ

QDEQ
QDEQVER
QRELRSC

QPUR
DLZJRNAD

Function

Common Entry Logic
Common Exit Logic
Enqueue/Verify Mainline

New Resource Enqueue/verify
Existing Resource Enqueue/Verify
Re-enqueue or Verify of Resource Already Owned

Dequeue Mainline
Dequeue Specific RRD
Relinquish Ownership of Resource

Dequeue all Resource for a Task
update Routine for RBA on CI or CA Split

Functional Subroutines

Routine

QLOCRDB
QLOCRRD
QBLtRCB
QBLDRRD
QUCFRDB
QDASOWN
QWAI'I
QLOCNPO
QPNOWCM
QPFLAGP
QDLKCTN
QDLKRSV
QGE'IELK
QRE'IELK

Data Areas Used

SCD
PPST
PS'l
RDE
RRD
Q~A

Entry Points ,

F',lnction

Locate RDB or Position on Chain
Locate RRD or Position on Chain
Build, Initialize, and Chain RDB
Build, Initialize, and Chain RRD
Unchain and Free RDB
Define Task as Owner of Resource
wait for Ownership of Resource
Locate New Prime Owner
Promote New Owners, Do Wait Chain Updates
Pass Flag Parameters To waiting Tasks
Detect and Resolve Deadlocks
Resolve Deadlocks
Get 24-Byte Elock from Free Chain
Return 24-Byte Block from Free Chain

QENQDEQ - General entry point for request to enqueue, dequeue, or
verify a resource, or to purge enqueues for a task.

DLZJRNAD - Entry point to update the RBA portion of any resource IDs as
required due to data movement during a VSAM CI or CA split
(HISAM only).

Licensed Material - property of IBM 3-59

DLZCPY10 - FIELD LEVEL SENSITIVITY COpy

DLZCPY10 has two entry points: DLZCPY10 and DLZSEGCV.

The function of DLZCPY10 is to map the user view of a segment into its
physical' view for DL/I ISRT and REPL calls, in support of field level
sensitivity. On a path call, DLZCPY10 maps the segment at each level of
the path. If a level in the path is not field sensitive, the segment at
that level is moved without modification. DLZCPY10 is invoked by Call
Analyzer (DLZDLAOO).

The function of DLZSEGCV is to convert a segment from either the
physical view to the user view, or the user view to the physical view.
DLZSEGCV is invoked by DLZCPY10 to convert ISRT and REPL calls from user
view to physical view. DLZSEGCV is invoked by Retrieve (DLZDLROO) to
convert Get calls from physical view to user view. DLZSEGCV is also
invoked by Retrieve to convert SSA values from user view to physical
view.

Interfaces - DLZCPY10

This module interfaces with the following module:

DLZDBHOO

Register Contents at Entry

Rl =
R5 =
R13 =
R14 =
R15 =

PST address (DLZCPY10)
FER address (DLZSEGCV)
SDB address (DLZSEGCV)
Save area address
Return address
Entry point address (DLZCPY10)
Addr(DLZCPY10)+4 - (DLZSEGCV)

control Blocks - DLZCPY10

SDB
SDB Exp .•
FSB
FER
FERT
PST
SCD
PCIR

PSB
PCB
JCB
LEV
PSDB
FDB
SEC
DDIR

3-60 Licensed Material - Property of IBM

;.

~

MPS CONTROL MODULES

DLZMSTRO - START MPS TRANSACTION

~his module is invoked by the user via a specific transaction code
(CSDA) to start multiple partition support (MPS). The responsibilities
of this module are to:

• Check if the DLI'I nucleus is loaded .•

• Check if MPS is already active.

• Attach the master partition controller (DLZMPCOO).

control Blocks Addressed

CSA-Common System Area (CICS/VS)
SCD-Systerr Contents Directory

Register Contents

R13 Contains CSA address

DLZMPCOO - MASTER PARTITION CON~ROLLER (MPC)

The master partition controller (MPC) is attached by the start
transaction module (DLZMSTRO).

The functions performed by the master partition controller are:

• Initialize the MPC partition table (DLZMPCPT).

• Define all XECEs required for cross partition communication.

• Process all start batch partition controller (BPC) requests and
attach a EPC for a specific batch partition.

• Process all stop partition requests.

• Process the abend condition if the batch partition controller attach
fails.

• Process the stop transaction request to terminate MPS.

• Return control to CICS/VS after all activity is completed.

Control Elocks Addressed

MPCPT
SYSCOM
CSA
SCD
MPCECELT
COMREG
TCA

,

MPCPartition Table
system Communication Region
Corrmon System Area (CICS/VS)
System Contents Directory
CICS ECB POinter List
partition Communications Region
Task Control Area

Register Contents

Rl2 Contains TCA address (at entry)

Licensed Material - property of IBM 3-61

Rl3 Contains CSA address (at entry)

MaCros Used

DFHKC
DFHKC
DFHKC
XECETAB
XECETAB
XECBTAB
XPOST

TYPE='WAIT
TYPE=ATTACH
TYPE=RETURN

TYPE=CHECK
TYPE=DEFINE
TYPE=DELETE

DLZBPCOO - BATCH PARTITION CONTROLLER (BPC)

The batch partition controller (BPC) is attached by the master partition
controller (MPC) when a start request has been made by a batch
partition. The functions performed by the batch partition controller
are:

• Define XECE for cross partition con:munic..<tion with the MPS batch
initialization (DLZMINIT), MPS batch program request handler
(DLZMPRH), and MPS batch termination (DLZMTERM).

• Issue the DL/I scheduling callan behalf of the batch partition.

• Process all DL/I calls on behalf of the batch partition.

• Process ABEND conditions occurring in the batch partition.

• Return control to CICS/VS for normal and abnormal conditions

This module must be link-edited with the language interface module,
DLZLIOOO.

Control Blocks Addressed

MPCPT
TCA
TWA
PST
PPST
DLZXCEl

MPC Partition Table
Transaction Control Area
Transaction 'Work Area
Partition Specification Table
prefix PST
DL/I Parameter List

Register contents

Rl2 Contains TCA address (at entry)
Rl3 Contains CSA address (at entry)

MaCros Used

DFHKC TYPE='WAIT
DFHKC TYPE=ATTACH
DFHKC TYPE=RETURN
XECBTAB· TYPE=CHECK
XECBTAB TYPE=DEFINE
XECETAB TYPE=DELETE
XPOST

3-62 Licensed Material - Property of IBM

DLZMPIOO - MPS BATCH

The MPS batch module is made up of the following five routines:
1. MPS Batch Initialization (DLZMINIT)
2. MPS Batch Termination (DLZM'IERM)
3. MPS Batch prog~am Request Handler (DLZMPRH)
q. MPS Batch Abend (DLZMABND)
5a MPS Batch Message Writer (DLZMMSG)

A separate description for each routine is given in the following text.

MPS Batch Initialization - DLZMINIT

This is one of five routines that make up module DLZMPIOO to support the
batch part of MPS.

DLZMINIT reads the input parameter statement and checks it for validity.
It then loads the user's program. Then it determines what to use as a
partition identifier by checking the PIR in the BG COMREG. This value,
modified and made printable, is put into each XECBTAB macro issued.

After saving the program name and PSB name for use by online, an XECB,
DLZXCBnl, is defined in the batch partition for communicating with the
online partition. The online partition XECB (DLZXCBnO, with n being the
identifier) is XPOSTed. This lets the online partition know that there
is an MPS batch job ready to run in this batch partition.

When the online partition completes its initialization, the batch
routine sets up STXIT routines, finishes other initialization
activities, and goes to the user program.

DLZMINIT is entered by DOS/VS job control at the start of the job.

Control Blocks Addressed

MPCP'I
TCA
PST
COMREG
XCBl
DTFs for
STXI'I AB
S'l'XIT PC
XECBs

MPC Partition Table
Transaction Control Area
Partition Specification Table
Communication Region
XECB DLZXCBnl and data following it
SYSLST, SYSLOG, and SYSIPT
Savearea
Savearea
DLZXCBnO. DLZXCBn2, DLZXCBn3

Reqister Contents (at Entry to other Routines

• User Progra1l'
Rl PCB list if not PL/li or a pointer to a list containing

the following if PL/I:
address of PCB list
address of loca.tion containing size of dynamic storage
address of start of dynamic storage

Rl3 Save area
Rlq Return address
Rl5 Entry address

• Message Writer (DLZMMSG)
Rl4 Return Address

• ABEND Routine (DLZMABND)
No special register values

Licensed Material -Property of IBM 3-63

MaCros Used

XECETAB
XECETAB
XECETAB
XPOST
XWAIT
OPEN
CLOSE
GET
PUT
CANCEL
STXIT PC
STXIT AS
MVCOM
COMRG
LOAD

TYPE= DEFINE
TYPE= DELETE
TYPE= CHECR

MPS Batch Termination - DLZMTERM ,

This is one of five routines that make up module DLZMPIOO to support the
batch part of MPS.

The MPS batch termination routine is entered when the user program
finishes. It tells the online partition to do termination activity,
deletes its own XECB, and ends the job.

Control Blocks Addressed

XCBI XECB DLZXCBnl and the data following it

Register Contents

Registers have the same values at entry as when MPS batch initialization
(DLZMINIT) completed.

Macros Used ,

XPOST
XWAIT
EOJ
XECBTAB TYPE=DELETE

MPS Batch Program Reguest Handler -DLZMPRH

This is one of five routines that make up module DLZMPIOO to support the
batch part of MPS.

The MPS batch program request handler routine is entered on each call to
DL/I made by the user program. The user call list is validated and set
up for the online partition to use. Then the online partition is
notified .by an XPOST of XECE DLZXCBN2. When the call is complete, data
is moved to the user·s I/O area.

Control Blocks Addressed

MPCPT
TCA
PST
XCBl

3-64

MPC partition Table
Transaction Control Area
Partition Specification Table
XECE DLZXCBl

Licensed Material - Property of IBM

Register Contents

• At entry:
RO If=l, PL/I; if=O, not PL/I and value is ignored
Rl If PL/I, pOints to list of pointers to parameters;

if not PL/I, pOints to list of parameters
R13 Save area
R14 Return address
R15 Entry address

• Message Writer (DLZMMSG)
R14 Return address

MacrOs Used

STXI'I PC
XPOST
XWAI'I
XECETAB TYPE=CHECK

MPS Batch ABEND - DLZMABND

This is one of five routines that make up mOdule DLZMPIOO to support the
batch part of MPS.

'Ihe MPS batch abend routine has three entries:

1. PC S'IXI'I
2. AB STXI'I
3. Other MPS batch routines that cause abnormal termination.

The first two each identify which way the abend routine was entered.
They then send an error massage. Then the third entry joins them as the
online partition is notified. All entries delete the batch XECB and
cancel or dump.

When an abnormal termination situation has occurred, DLZMABND is entered
by:

• DLZMINIT
• DLZMTERM
• DLZMPRH

Control Elock Addressed

STXI'I AB Save area
STXIT PC Save area

Register Contents

• At entry
No special values except base registers initialized

• Message Writer (DLZMMSG)
R14 Return address

JDUMP If dump requested
CANCEL If no dump requested

Licensed Material - Property of IBM 3-65

Entry POints

STXI'I AB
STXIT PC
XPOS'I Entry

If abnormal end entered by DOS/VS
1.f program check determined by DOS/VS
Other abnormal end when BPC must be notified

Macros Used

XPOST
XECBTAB TYPE=CELETE
JDUMP
CANCEL

MPS Batch Message Writer - DLZMMSG

This is one of five routines that make up module DLZMPIOO to support the
batch part of MPS.

The MPS batch message
MPS catch partition.
parameter is always a
if any, are as needed

writer routine handles all messages issued by the
At entry, a parameter list is set up. ~he first
pointer to the message number. Other parameters,
for the message.

When a message is to be written to SYSLOG and/or SYSLST, the DLZMMSG
routine is entered by:

• CIZMINIT
• DLZMTERM
• I:LZMPRH
• DLZMABND

Control Blocks Addressed

DTFs for SYSLCG and SYSLST

Register COAtents

• At entry:
R14 Return address
Base registers already initialized

• At entry to message table (DLZMMSGT):

~

RI points to parameter list
R4 Base register for DLZMMSGT
R5 Address of where message is to be placed
R7 Length of message set up before calling DLZMMSGT;

after call, R7 has total message length
R9 Points to PST (for checkpoint message DLZ105I)
R10 Second base register for DLZMMSGT

To calling routine via branch register 14

Macros Used

PUT

Licensed Material - property of IBM

DLZMS'IPO - STOP MPS TRANSAC'IION

This module is invoked when a user wants to stop MPS. The user inputs a
specific transaction code (CSPD) defined to initiate the stop
transaction processing.. The module then notifies (XPOST) the particular
XECB that causes the MPC to end the MPS environment.

After the XPOST, the MPC allows batch jobs already executing to
complete, but will not allow any new ones to start.

This transaction should be started before CICS/VS non-immediate shutdown
is initiated.

Macros Used

XECBTAB TYPE=CHECK

Licensed Material - Property of IBM 3-67

DATA EASE RECCVERY UTILITIES

DLZEACKO - EA~CH BACKOUT·IN~ERFACE

The batch backout interface module reads and validates any 'LI' control
statements from SYSIPT. A log input specification table describing each
log file to be processed is created. The module then reads the OL/I log
files and passes the data base log records to the data base backout
module (DLZRDECO) for processing.

By reading the log files in a backward mode, this module is able to
prbcess the data base records in reverse sequence without using an
intermediate work data set. When a block is read in, it is searched and
the sequence field located at the end of each logical record is replaced
by the length of that logical record. With the length thus in the back
of a record as well as in the front, it is deblocked and spanned.

The interface process includes the following record types:

X'07' - Application program termination record
X'OS" - Application program scheduling record
X· 41" - Checkpoint record
X'50" - Data base log record
X·51" - Data base log record

The batch backout utility is executed under DL/I control as an
application program. Processing of module DLZBACKO is as follows:

1. Control is received from DL/I initialization and the PSB name is
obtained from the parameter data.

2. ~he log file is opened to be read backward.

3. The log file is read backward and records bypassed until the first
data base log record for the PSB is obtained.

4e An ap~lication program termination record (X'07') for the PSB
indicates no backout necessary, the message "BACKOUT COMPLETE" is
issued atSYSLOG, the log is closed, and the job is terminated .•

5. Data ~ase log records (X'50' and X'51') are passed to module
DLZRDBCO to be processed against the appropriate data base.
processing terminates when an application program scheduling record
or a checkpoint record is read, the message "BACKOUT COMPLETE" is
issued at SYSLOG, the log is closed, and the job is terminated,.

If end of file is reached on the log (i.e •• the header record is read),
it is closed. If more log files are to be processed, the above process
is repeated starting at step 2. Multiple log files must be processed in
reverse order of their creation. When all log files 'are processed, a
"BACKOUT CCMPLETE" message is issued and the job step is terminated.
The job is terminated by returning control to DL/I which purges all
buffers, closes all OMBS, and closes the output log file.

~e9ister contents on Entry

3-68

R1 =
R13 =
R14 =

PSB list address
Save area
Return

Licensed Material - Property of IBM

(

\

R15 = Entry pOint

control Blocks - DLZBACKO

Application program scheduling record
Application program termination record
Checkpoint record
Data base log record
DMB
PDIR
PSB
PST
SCD

External Modules Called

DLZRDBCO - Called to interface with DL/I and perform backout.

Record and Message Formats - DLZBACKO

All messages are sent to the SYSLOG and SYSLST devices. The messages
are contained in module DLZBACMO.

DLZRDBCO - DB CHANGE BACKOUT

This module receives control from DLZBACKO with a log record to process.
It calls open/close (DLZDLOCO) to open the DMB specified in the record
unless the data base is already open. The buffer handler (DLZDBHOO) is
called to retrieve the KSDS or ESDS block as indicated by the key or the
ESDS relative blocknu~ber or relative byte address.

The data in the buffer is replaced with the 'old' information in the
log, thereby nullifying the offending programs update. In the case of
HD, when a physical delete or insert record is processed, space
management (DLZDHDSO) is called to update the free space elements and
bit map, if necessary and to build the input data for the data base
logger. DLZRDBLO is called to record the changes made to the data base.

The buffer handler is then called again to mark that buffer altered and
control is returned to DLZBACKO.

Register contents and Control Blocks on Entry

Rl
R13
R14
R15

PSTSCDAD
ADDRLOG
PSTDGU &

PST address
= Save area
= Return
= Entry pOint
= SCD address
= Address of data base
PSTDGN must be zero on

control Blocks - DLZRDBCO

Data base log record
DOIR
DMB
DSG
PCB
PDIR

log record within DLZBACKO
initial entry

Licensed Material - Property of IBM 3-69

PSB
PST
SCD

External Modules Called

DLZDBHOO Called to read a data base record and to mark the
buffer altered

DLZDHDSO Called to free or reserve space in an HDAM or
HIDAM record

DLZDLCCO
DLZRDELO

Called to open data base
Called to log backout modifications to data base

Interface ~ith External Modules

All modules expect R14 + R15 to contain return address + module
entry point address.

DLZDLOCO

R1 = address of PST
R2 = address of DDIR entry for DME to be opened

PSTDSGA
PSTFNCTN
SCDCWRK

= address of DSG to open
= PSTOCDMB + PSTOCOPN
= address of normal log record work area

DLZDEHOO

Rl = address of PST

PSTELKNM = RBN if HD ESDS
PSTACENC = 1
PSTDMENC = 1
PSTBYTNM = REA if HISAM ESDS or address of key if KSDS
PSTFNCTN = desired function

DLZDHDSO

Rl = address of PST
R5 = address of PSDE of segment

PSTOFFS~ = offset to segment from beginning of block
PSTCODEl = indicates backout in control (for logger)
PSTFNCTN = PSTFRSPC + X'SO' (to shoW backout in control)

DLZRDELO

RO = SCD address
Rl = PST address

PSTCODEl
PSTDATA
SCDCWRK

= PSTINTNT + PSTSCHEDto indicate backout calling
= address of data in buffer
= address of backout log work area containing the

control information for this log record

Register Contents on Exit

All registers are restored with the exception of register 15 which
contains a return code. If this code is non-zero, DLZBACKO will print
and type the appropriate error message.

3-70 Licensed Material - Property of IEM

Error Codes and Handling - DLZRDBCO

All error codes are passed to DLZBACKO in register 15.

DLZURDBO - DB DATA SET RECOVERY

The data base data set recovery utility module DLZURDBO is executed
under DL~I control as an application program. Control is passed to
DLZURDBO from DL~I initialization. This module is comprised of two
independent but logically related functions. The first consists of an
image dump and a change accumulation processor. The PCB address is
saved, and a GSCD call is issued to obtain the PST address. Control is
passed to DLZURCCO to read and process control statements from SYSIPT.
From information saved by DLZURCCO, a DMB is loaded from the Core Image
Library ~o obtain the physical characteristics of the data set to be
recovered. rhe DL~I open~close routine (DLZDLOCO) is called to open
the output ACE and the input file is opened. Then the program enters a
dump~cum data merge routine. This routine selects a dump record, merges
any accumulated changes from the cum data set, and a call is made to the
buffer handler (DLZDBHOO) to write the new record to the output data
set,. Upon completion, a partial or completely recovered data set may
exist. If no additional changes are to be applied through log files,
the program calls the DL/I open/close routine (DLZDLOCO) to close the
output ACE and terminates.

If additional changes are to be applied from log files, the program
enters the second function. This routine openS the logs, scans the log
to find a record that applies to this data set, and merges the data from
the log to the data set record. Upon completion, the routine does post­
processing and a recovered data set then exists.

The operation of this routine depends on certain DL/I functions to
process the logs. The log is scanned for a matching data base/data set
name record. When one is encountered, the record ID, either a key of a
KSDS record or a relative block number of an ESDS record is saved, and a
call is made to the buffer handler (DLZDEHOO) requesting that the record
be retrieved. Upon successful return, the log record data is merged
with the returned record, and a call is made to the buffer handler
requesting that the record be marked as altered to cause rewriting. The
records from the log are thus processed until an end of file is
encountered on the log input. At this time, a call is made to the
buffer handler requesting that all altered buffers be purged, that is,
that all records that have been altered be rewritten. The program then
calls the DL/I open/close routine (DLZDLOCO) to close the output ACB,
and the program terminates.

Blocks and r'ables - DLZURDBO

This module utilizes certain DL/I blocks, including the PST, DSG, DMB,
DMB directory, SDB, PCB, JCB, and SCD. Additionally, several record
formats are used as follows:

1. HISAM reorganization header and data records. See HISAM
reorganization unload (module DLZURULO) for details.

2. Data base image dump header and data records. See data base data
set image copy module (DLZUDMPO) for details.

3G Accumulated change CUM header and data records. See change
accumulation module (DLZUCUMO) for details.

Licensed Material - Property of IBM 3-71

4G Cata base change log records.

Normal Entry Points

The only entry point to this module is DLZURDBO.

Register Cn Entry

Ri = pointer to fullword containing address of PCB

Registers On Exit

All registers are restored to entry conditions.

Modules Called by DLZURDBO

The recovery control statement processor (DLZURCCO) is called to read
and validate any input control statements.

Ri = pOinter to recovery common area

The DL/I open routine (DLZDLOCO) is called to open a specific ACB.

Ri = pOinter to PST

The DL/I buffer handler (DLZDBHOO) is called to retrieve and write a
specific record, mark a buffer altered, and purge (rewrite) all altered
buffers.

Ri = pOinter to PST

The DL/I close routine (DLZDLOCO) is called to close a specific VSAM
ACB.

Ri = pOinter to PST

Error Codes and Handling - DLZURDBO

All codes are in the form of messages. The module DLZRDBMO contains all
error messages issued by the Data Base Data Set Recovery utility.

DLZURCCO - Recovery Control Statement Processor

This module reads and validates the input control statements from
SYSIPT. The'S' control state~ent describes the data base to be
recovered. The 'LI' control statements describe the log files to be
processed. Information from these statements is saved in the recovery
common area for use by DLZURDBO.

NOrmal Entry Point

The only entry point to this module is DLZURCCO.

Registers on Entry

Ri = pointer to recovery cornmon area.

3-72 Licensed Material - property of IBM

Registers on Exit

All registers are restored to entry conditions except R15, which
contains a return code (see below).

Error Codes and Handling

Messages are issued to SYSLST and SYSLOG for any invalid control
staterrents. On return to DLZURDBO, R15 is set as follows:

R15 = 0 - No errors
R15 = 4 - No input control statements
R15 = 8 - Input control statement error

DLZUDMPO - DB DATA SET IMAGE DUMP

The data base data set image copy utility module DLZUDMPO is executed as
a standard DOS/VS application program and creates a backup copy of a
specific d.ata base data set. Input may be either a KSDS (HISAM, Simple
HISAM, or HIDAM INDEX) or an ESDS (HISAM, HIDAM, or HDAM). The output
is used as input to the data base data set recovery utility. processing
is as follows:

10 A control card is read from SYSIPT and preliminary validity checking
is performed on various fields. The input card defines the data
base/file to be dumped, the dump output symbolic filenames, and the
number of output copies to be created.

2. '!'he device type is determined for each output file specified and the
file(s) are opened.

3. The DMB is loaded frqm a core image library to obtain the physical
characteristics of the data base file to be dumped.

4., A header record is written to the output file. This record contains
information necessary to allow the use of the image dump file by the
data base data set recovery utility,.

5. The input file is opened.

60 Input segments are read sequentially, an 8-byte prefix is added to
identify the segment, and the logical record (prefix + segment) is
blocked and written to the output file .•

7. After all segments have been copied (EOF), the input and output
files are closed.

8. Output statistics for the file are written to SYSLST.

9. processing continues from step 1 until there are no more input cards,
at which time the program terminates.

Control Elocks,- DLZUDMPO

• r:UItp record prefix

• r:ump header record.

Licensed Material - property of IBM 3-73

Error Codes and Handling - DLZUDMPO

All error cedes are in the form of messages to SYSLST and SYSLOG.. All
the messages used by the DB Data Set Image Dump Utility are contained in
module DLZDMPMO; a read-only CSECT.

DLZUCUMO - DB CHANGE.ACCUMUL~TION UTILITY

The data base change accumulation utility module DLZUCUMO is executed as
a standard DOS,rVS application program. DLZUCUMO controls the overall
operation of the Data Base Change Accumulation utility. First. the
control card processor module (DLZUCCTO) is called to read the input
stream. Upon its return, the PROCFLAG switch is tested. If records are
to be passed to sort, the sort parameter list is formatted, including a
sort Exit 15 (DLZUC150) and the sort Exit 35 EDLZUC350). The sort
program is then loaded. and this module (DLZUCUMO) waits for it to
terminate.. Upon termination, a completion code is tested and
appropriat'e messages are provided as output. If records are not to be
sorted, that is, no DBO type control cards were read, the module calls
the Exit 1.5 module (DLZUC150) to create the new log file. If error are
encountered by any of the four processing modules, control is passed to
the common error routine DLZUCERO.

Control Blocks - DLZUCUMO

• Data base name tab~e, containing the data base names and the address
of the date/time table for this entry.

• Data/time table

• Accumulation header record

• Accumulation record

Normal Entry point

The main entry point to this module is DLZUCUMO. DLZERRTN is an entry
pOint used ty DLZUC150 on any error condition.

Entry Conditions

This is the main module which controls the overall operation of the Data
Base Change Accumulation Utility program.

Control information is passed from module to module by means of an
externally referenced table contained in DLZUCUMO.

DLZUCERO - Common Error Routine

This module is the common error routine. Control maybe passed tO,it
from any of the four processing modules. It addresses a message from
the message module (DLZCUMMO), depending on parameters passed to it, and
prints a message to the SYSLSTand SYSLOG devices. If the passed
parameters indicate a multi-part message, it does not write the message
on the first entry. Instead, it passes the last-used position in the
output buffer back to the caller to allow the caller to insert special
data in the messages. On the second entry to this routine, the message

3~74 Lice'nsed Material - propertyo£ IBM

is written. All messages issued by the DB Change Accumulation Utility
are contained in module DLZCUMMO. It is a read-only module.

Normal Entry Point

The only entry to this module is DLZUCERO.

Entry Conditions

This module is entered to output all error messages.

Register Contents on Entry

R1 contains a message number. R2 is negative if this is a multi-part
message. (R2 points to last byte of message on second entry of multi­
part IT:essage,,)

Register Contents on Exit

All registers are restored to entry conditions except R2, which points
to last byte of message on first entry return of multi-part message.

DLZUCCTO - Control Card Processor

This module is the control card processor. It reads the control card
i~put stream, checks the cards for validity, and constructs the data
base name table and the date/time table if data base names are supplied.
It also constructs the log input specification table describing the
input log file(s).

Normal Entry Point

The only entry to this module is DLZUCCTO.

Entry Conditions

This nodule is entered to process the control card input stream.

Register Contents on Exit

All registers are restored to entry conditions.

DLZUC150 - Sort Exit 15

This 1T:0dule is the sort Exit 15 routine. It reads the log input
records, checks the purge date if applicable, and determines .the
disposition of the record~ If the record matches an entry in the data
base name table, the date/time table is searched and the appropriate
purge date and time are compared. If the record is before the purge
date, the program returns to read another record. If the record is not
purged, the routing is determined from the table and written either to
sort or to the new log. A table of DMB names and purge dates is .
prepared for Exit 35.

Licensed Material - Property of IBM 3-75

Normal Entry Point

This module is entered at DLZUEX15 if no records are to be accumulated,
and at DLZUC150 by sort.

Entry Conditions

This Il'odule is entered to read input logs and disperse records to new
log or sort. Rl contains the address of the parameter list from sort or
a dummy list if control was received from DLZUCUMO.

Register Contents on Exit

All registers are restored.

DLZUC350 - Sort Exit 35

This IT,odule is the sort Exit 35 routine. It receives all records from
sort. If an old accumulated data set is supplied, a record is read from
the data set and a record is retrieved from sort. The data base name
and file identification of the records are compared. All input cum
records are purge-checked according to the date/time, if any, specified
on DBO card(s). If the old cum input is low, it is written to the new
cum data set. If the records are equal, the data from the sort record
is merged to the old cum record, unless purged, and another record is
obtained from sort. This sequence continues until an unequal condition
is detected, at which pOint the record is written to the new cum data
set. If the old cum is high, records from sort are combined and written
to the new cum data set until the compare condition changes. This
process continues until both,the sort and the old cum records are
exhausted.

Normal Entry Point

This module is entered at DLZUEX35 by sort.

Register Contents on Entry

Register 1 contains the address of the sort Exit 35 parameter list.

Entry Conditions

This module is entered by sort to dispose of all sorted records.

Register Contents on Exit

All registers are restored to entry conditions, with the sort parameter
list updated as needed,.

DLZLOGPO - LOG PRINT UTILITY

The log print utility module <DLZLOGPO) is executed as a standard DOS/VS
application program and prints the contents of DL/I log files. Input
log files may be either tape or disk. optionally, the utility can
create an output log tape suitable as input to the backout utility
module (DLZEACKO). processing of the log print utility is as follows:

3-76 Licensed Material - property of IBM

1. Module DLZLPCCO is called to process input control statements.

2. If requested, the output log tape file is opened.

3. The DLZDVCE macro is issued to determine the log device type, and
the log file is opened.

4. The log records are read and deblocked, and the record types are
checked to see if valid DL/I record.

5. The log records are printed to SYSLST in either keyword format or
dump format.

6. If requested, log records are written to output log tape.

7. The input log file is closed. If more input log files were
specified, processing continues from Step 3.

8. If requested, the output log file is closed.

9.. Informational statistics are written to SYSLST and the program
terminates.

Error Codes and Handling

All error codes are in the form of messages written to SYSLST and
SYSLOG. All the messages used by the log print utility are contained in
mOdule DLZLGPMO.

DLZLPCCO - Log print Control Statement Processor

This module is called by DLZLOGPO to read and process input control
statements. The control statements are read from SYSIPT and validity
checking is performed. Valid control statement types are: 'LO', 'LS',
and "LI'. Information fro~ the control statements is saved in the log
print contron area.

Normal Entry Point

This module is entered at DLZLPCCO by DLZLOGPO.

Register Contents on Entry

Register 1 pOints to the log print COlfmon area.
Register 9 pOints to the next available print line buffer.

Entry Conditions

This module is entered by DLZLOGPO to read and process input control
statelfents.

Register Contents on Exit

All registers are restored to entry conditions except register 9, which
is updated to point to the next available print line buffer.

Error Codes and Handling

All error codes are in the form of messages written to SYSLST and
SYSLOG. All the messages used by the log print utility are contained in
module DLZLGPMO.

Licensed Material - Property of IBM 3-77

DATA BASE REORGANIZATION UTILITIES

DLZURULO - HS DB UNLOAD

The BISAM reorganization unload module DLZURULO is executed as a
standard DOS/VS aFplication program. A control card specifying the data
base name, data set name, and output symbolic unit name is read. The
DBD specified is loaded, and a short segment table is constructed. This
table consists of the first eight bytes of each segment table entry in
the DBD. This includes, among other things, the segment physical code
and the segment length. The size of the prefix, as described for each
segment type, is added to the segment length and entered in the table.
This length is later used to move the segment from the input area to the
output area.

Next, the input and output data sets are opened. A header record
containing information about the data base data sets is constructed, and
a statistics record is written. The first KSDS record is then read and
th.e root segment is checked to determine whether the deleted flag is on
(no prefix if Simple HISAM),. If it is on, the total segment chain for
that root is ignored, and the next root is processed. If the root is
not deleted, it is moved to the output area, and the first dependent
segment, if present, is processed. If the dependent segment is not
deleted, it is moved to the output area, and the next segment is
processed. This continues until the complete dependent segment chain
for this root, including any overflow dependent segments on the ESDS,
have been processed. If the segment is deleted, each succeeding segment
that is, a child of the deleted segment is also deleted. The first
segment that is not a child of the deleted segment causes the normal
segment processing to be resumed,. The last record written is a
statistics record which includes information needed for audit trail.
The output data set now contains the reorganized KSDS and ESDS logical
records in Fhysical sequential format (only KSDS if Simple HISAM). An
image of the KSDS record containing a root segment and dependent segment
is followed by images of the ESDS recort;is containing overflow dependent
segments for the root segment. A chain pointer in the KSDS contains the
correct relative byte address of the next ESDS record containing
overflow deFendent segments. If more than one ESDS record is needed to
contain overflow dependent segments, they follow in sequence and chain
pointers are maintained in the records.

Error message handling is accomplished in the following manner: When a
routine within module DLZURULO requires an error message to be
generated, a number is loaded into Rl,. This number corresponds to a
message in the message CSECT (DLZRULMO). The routine then branches to a
common routine which outputs the message. The number passed in Rl is
multiplied by q and added to the start of the message CSECT (DLZRULMO).
At that offset, a fullwOrd containing the length of the message and the
offset to the start of message text is obtained. These values are used
to move the message to an output buffer. DLZRULMO is a read-only module
containing all error messages isSUed by module DLZURULO.

Control Blocks - DLZURULO

• Short segment table
• Output,datarecord
• Output header record
• Statistics record.

3-7'8 Licensed Material '- Property of IBM

Er-ror Codes and Handling - DLZURULO

All error codes are in the form of error messages.

Sample Description of HISAM Reorganized Format

As sume a HISAM data base which consists of a s.ingle root segment and
dependent segments in the hierarchical format shown in Figure 3-7.

ROOT
SEGMENT

I I I

SEGA SEGD SEGG

I I I I

SEGE SEG H
SEGB SEGC

1 I
SEG F SEG I

I

SEGJ

Figure 3-7. HISAM Data Base with One Root Segment

The input for the HISAM Reorganization Unload Utility appears as shown
in Figure 3-8.

KSDS RECORD

ROOT SEGMENT

SEG H

SEGA
(DELETED)

SEG E

SEG I

SEG B
(CHILD OF A)

SEG F
(DELETED)

SEGJ
(DELETED)

SEG.C
(CHILD OF A)

SEGG

FREE SPACE

Figure 3-8. Input for HISAM Reorganization Unload Utility

Licensed Material - Property of IBM 3-79

Given this input, the HISAM Reorganization Unload utility provides the
output shown in Figure 3-9.

HEADER RECORD

INFORMATION ABOUT DATA BASE

STATISTICS RECORD

TOTSEGVALUE = 0

ROOT SEGMENT SEG D SEG E SEG G

DATA RECORD 2 (ESDS)

I 0 I SEG H I SEG I I 0 I FREE SPACE

UNLOADED STATISTICS RECORD

TOTSEG=NUMBER OF SEGMENTS UNLOADED FOR SEGMENT LEVEL

Figure 3-9. HISAM Reorganization Unload Utility output

~: A second ESDS record is unnecessary because space occupied by
deleted segments is reclaimed.

DLZURRLO - HS DB RELOAD

The HISAM reorganization reload module DLZURRLO is executed as a
standard DOS/VS application program and is used to reload a reorganized
HISAM data base data set group. The input to the program consists of a
reorganized dump of the key sequenced data set (KSDS) and entry
sequenced data set (ESDS) created by the HISAM Reorganization Unload
Utility program. Processing is as follows:

1. A control card, which contains the filename of the input file
containing the HISAM data base to be reloaded, is read. The input
file is opened and the header record is read.

2. 'Ihe output KSDS and ESDS ACBs are generated using the. information
contained in the header record and the KSDS and ESDS are opened
(only KSDS if Simple HISAM).

30 The statistics record is read and the statistics table initialized.

40 Records .are read sequentially from the input file. These records
are images of KSDS and ESDS records.

5., KSDS records are written to the output KSDS using VSAM keyed
sequential (mass) insert.

60 ESDS logical records are written to the output ESDS using VSAM
addressed sequential insert.

70 After all data records have been processed, the last input
statistics record is read, and a statistics report is printed,
comparing segments unloaded/reloaded.

8_ The files are closed.

3-80 Licensed Material - Property of .IBM

'~

All error messages issued by the HS DB reload utility are contained in
module DLZRRLMO. It is a read-only module.

Control Blocks - DLZURRLO

• Header record
• Input data record

DLZURGUO - HD DB UNLOAD

The· HD reorganizaticm unload module DLZURGUO is executed under control
of theDL/I system as an application program and is used to unload a
data base by issuing DL/I calls. One or two files may be created and
output may l:e to tape or DASD.. The module contains two processing modes
- "normal" and "restart".

Normal processing, after module DLZURGUO receives control from DLlI, is
as follo~s:

lv The PCB address is saved and a GSCD call is issued to obtain the PST
address. The PST allo~s the program to access the DL/I control
l:locks needed to construct the prefix portion of the output record.
This prefix, as described belo~, is used by the HD Reorganization
Reload Utility.

2. The numl:er of outputs (one or t~o) and output device type (tape or
DASD) are determined.

3. storage is obtained for the statistics table.

4. Each output file is opened.

5. The statistics tables, ~hich have been initialized for all data base
segment types, are ~ritten to the output filets).

6.. A Get Next (GN) call is issued for the first (or succeeding)
segment.

7.. The statistics table for the segment type is updated.

8.. The segment is combined with the segment prefix to form an output
logical record. The output logical records are blocked and ~ritten.

9.. Whenever a checkpoint interval is reached (first root segment after
5000 segments have been processed), a checkpoint record is ~ritten
to the output file. The current statistics are part of the
checkpOint record. To insure the checkpoint record is physically
~ritten, a dummy checkpoint is also ~ritten to output. Additionally
a message containing the ID of the checkpOint record is written to
SYSLCG.

10. proceSSing continues at step 6 until end of file is encountered.

11. At end of file, the statistics table totals are written, the output
file (s) is closed, and the program returns control to DL/I .•

Restart proceSSing, after module DLZURGUO receives control from DL/I, is
as follo~s:

1d Steps 1 - 4 of "normal processing" are performed.

Licensed Material - Property of IBM 3-81

2.. The restart (REST~RT) input file is opened. This is either the
outputl (HDUNLD1) or output2 (HDUNLD2) file from the previously
terminated job execution.

3.. A message is issued to SYSLOG requesting the checkpoint record
number (ID) at which to restart. The number is validated.

4.. All records, including the requested checkpoint record, of the
RESTART file are copied to the output file(s).

5m A Get unique (GU) call is issued for the checkpointed root segment
to estaclish positioning_ If the RBA is available for the root
segment, it is placed in the SSA with an internal ".T" command code;
otherwise the segment's key is placed in the SSA and an internal
".C" (key retrieve) corrmand code call is issued. The statistics
table is initialized with the checkpointed statistics record.

6.. steps 6 - 11 of "normal processing" are performed.

Control Blocks - DLZURGUO

• Output record containing segment prefix

• SSA for GU call by RBA

• SSA for GU call by key

• Output table record

• Checkpoint record.

Interfaces - CLZURGUO

~his module interfaces with DL/I through the DL/I language interface
module DLZLIOOO at entry point ASMTDLI.

Error Codes and Handling - DLZURGUO

All errors are indicated by error messages. All messages issued by the
HD DE unload utility are contained in module DLZRGUMO. It is a read­
only module.

DLZURGLO - HD DB RELOAD

The HC reorganization reload utility (DLZURGLO) is loaded under DL/I
control as an application program. It reloads a data base under control
of DL/I. Input to the module consists of a sequential dump data set of
logical records created by the HD reorganization unload utility
(DLZURGUO). A logical record consists of a segment prefix and a
segment.

During the reload, a message is issued each time a checkpoint record is
encountered (approximately every 5000 segments). This lJIeSsage is the
same in content and format as that issued during unload when the
checkpoint rec.ord was created, and identifies the checkpoint by number.
If the reload facility fails, a restart capability called 'Reload
Restart' allows restarting from a checkpoint record.

After module DLZURGLO receives control from DL/I initialization,
processing is as follows:

3;..82 Licensed Material - Property of. IBM

1. ~he PCE address is saved, and a GSCD call is issued to obtain the
PST address.

2. ~he input device type is determined and the data set is opened.

3a If restarting, obtain checkpoint restart number from operator and
locate checkpoint record. The data base is then positioned (GU
call) and the end of data is found (GN calls).

4ft An input record is read (segment>, and a DL/I call list is
constructed.

5a A DL/I Insert (ASRT) call is issued for the segment.

6.. After all segments have been processed, the last statistics table
record is read and a comparative statistics report is written.

7., ~he input data set is closed, and the program returns control to
DL/I.

Elocks and Tables

Input record

Interfaces - DLZURGLO

~his module interfaces with the DL/I routines through the DL/I language
interface module DLZLIOOO at entry pOint ASMTDLI.

Error Codes and Handling - DLZURGLO

All error conditions are indicated by error messages. All messages
issued by the HD DE reload utility are contained in module DLZRGLMO. It
is a read-only module.

Licensed Material - Property of IBM 3-83

APPLICATION CONTROL BLOCKS CREA'IION AND MAINTENANCE

DLZUACBO - ACE CREATION AND MAINTENANCE

'Ihe application control blocks creation and maintenance utility creates
the internal control blocks required by the DL/I application program.
Using the PSB and DBDs as input, this utility creates DL/I internal
format control blocks as output. These output control blocks must be
link edited into the DOS/VS Core Image Library, either private or
system, as specified by the uSer. These blocks contain information
about the data bases and the programs which use them. They describe
some device and media characteristics, the stored data structures, and
the logical data structures as seen by both the system and application
programs. 'Ihe program accepts control card input to determine what
functions are required.

The logic flow is as follows: 'Ihe control card input stream is
processed and each card is syntax-checked. A sorted list of requested
blocks is built in main storage. Each PSB name specified on the control
card is inserted into the list.

Each name on the constructed build list is then passed to the
application control blocks builder module DLZDLBLO to have blocks
constructed. Addresses are relocated relative to zero and the completed
blocks are written to a SYSPCH or SYSLNK data set.

Blocks and Tables - DLZUACBO

Program coritrol parameter block
PST
SCD
PDIR

Interfaces - DLZUACBO

This module interfaces with the following modules:

DLZUSCHO - Called to create and search sorted PSB lists
DLZLBLMO - Called to format prebuilt messages
DLZDLBLO - Called to build and output control blocks for a PSB

Register Contents

RO-Rl
R2-R8
R9
Rl0-Rll
R13
R14-R15

= FARM registers
= Work registers
= Pointer to PST
= Work registers
= pointer to save area and primary base register
= operating system linkage registers

DLZUSCHO - ACB MAINTENANCE BINARY SEARCH/INSERT

The function of module DLZUSCHO is to create and search sorted lists in
dynamic (GETVIS) storage using the binary search technique. Any number
of lists may be created simultaneously (subject only to the limit of

3-84 Licensed Material - Property of IBM

available storage). A list entry may be any length from 1 to 256 bytes.
The key or sequence field may also be from 1 to 256 bytes in length and
may be located anywhere in the list entry. The only restriction on keys
is that they must consist of a single contiguous string of bytes within
the list entry.

The number of entries in any list is limited only by available storage.
However, since this routine physically moves data in storage to make
room for new entries, it becomes less efficient as the number of entries
increases. For large numbers of items, it might be best to consider
sorting the entries in the conventional fashion.

This module is called by DLZUACEO to build and maintain the list of PSBs
to be precessed.

operation

I.

II.

III.

The following interface is used to initiate a new list:

L 15,=VCOLZUSCHO)
LA 1,PARMS
BALR 14,15

where PARMS is a 3-word list whose contents
are as follows:

~ord 1 = length of the list entry
~ord 2 = offset from the beginning of the list

entry to the key/sequence field
~ord 3 = length of the key/sequence field

on return. register 1 contains the location of the new
list control block. (This location must be submitted to
the search routine on all subsequent search or insert
calls for this list.)

The follOWing interface is used to insert an entry into
a list:

L 15,=V (INSRCH)
LA 1,INPARMS
BALR 14,15

where INPARMS is the location of a two-word
lis~ whose contents are:

~ord 1 = address of the list control block
~ord 2 = address of the list entry to be

inserted

On return from INSRCH, register 15 contains zero if the
entry was successfully inserted, and register 1 contains
the location at which the insert was made.

If the entry was not inserted (because a duplicate was
found), register 15 contains 8, and register 1 contains
the location of the duplicate entry.

The follOWing interfac~ is used to locate an entry in a
list created by INSRCH:

L 15,=VCLOCSRCH)
LA 1.LCCPARMS
BALR 14,15

Licensed Material - property of IBM 3·85

IV.

where LCCPARMS is the location of a two-word list
whose contents are:

Word 1 = address of the list control block
Word 2 = address of the search argument (key>

On return from LCCSRCH, register 15 contains zero if an
entry containing the search argument in its key field was
found, and register 1 contains the location of this
entry.

If no entry was found, Register 15 contains 4 and
register 1 remains as it was on entry to LOCSRCH.

The following interface is used to delete all storage
obtained by CPENSRCH and INSRCH for a given list:

L 15.=V(CLOSESCH)
L 1,LOCPARMS
BALR 14,15

where LOCPARMS contains the location of the list control
block for the list to be deleted.

control Blocks - DLZUSCHO

• List control block

• sorted list block.

programming Note

If some number of entries have been placed ina list through repeated
calls to INSRCH, they can be retrieved in sorted order by locating the
first block by way of CHAINLOC and all subsequent blocks by way of their
CHAIN fields. The entries are in order (low to high logical sequence)
with·the lowest entry in block 1 entry 1, next in block 1 entry 2, etc.,
with the highest 'entry located in the last-used slot in the last block.

DLZLl3tMO - .. ACB Generation Error Message H.andler

This module is used to contain, select. and format error messages for
the ACB generation facility. Gi'Ven a message number in register one,
the 'Riodu'lewill select the matching message and., format it by Ins.erting
an arbitrary number of additional 'character strings addressed by
$pecified registers. The'PRTMSG'routine in module DLZOACBO is called
to print the message. Control isret.urile'El to the 'caller.

Regi.ster, COhtentS.,ODEntry DLZLl3tMO

Rl - Message nurober
R13 ..., Sa~ area
.Rlll - Returnactdr:ess
R15 - Sbtry pOint

Ad'Qitionall~, 'al'ly regist&r:s are passed that have been defined to Contain
pointers to charact:et"striAgs to be inserted into the message. These
are g~he'rally(but not alway'S) registers '5" ' ... and . ..,.

3-86 Licensed Material property Of IBM

External Routines Called - DLZLELMO

PRTMSG - Entry point to the print routine in module DLZUACBO.

DLZDLELO, DLZ~LBL1, DLZDLBL2, DLZDLBL3 - ACB BUILDER

These four modules are jointly responsible for building all the control
blocks for a given PSB and its associated DBDs, and for outputting them
to either SYSPCH or SYSLNK in a format that allows LINKing them into the
DOS/VS core image library.

The first module, DLZDLBLO, loads the specified PSB and builds the PCBs
and SDBs for segments identified via SENSEG statements at PSBGEN time.
It then passes control to mOdule DLZDLBL1.

Module DLZDLBLl loads the DBDs for all referenced data bases and builds
the associated DMBs (for all but logical DBDs). It then processes the
SDBs associated with each DED, copying any required information from the
physical definitions and building any required generated SDBS. Control
is given to module DLZDLBL2 when all DBDs have been processed.

Module DLZDLBL2 finishes the processing of the SDBs. It acquires and
builds the intent list, including propagation of intent, and initializes
any field level sensitivity control blocks required. The PCB is moved
to its proper location and the JCB, level table, and DSGS are built .•
Control is passed to module DLZDLBL3.

The last module, DLZDLBL3, builds the index maintenance PCB if one is
required. performs some additional clean-up, and packages and outputs
the DMBs and the PSB to either SYSLNK or SYSPCH. If a utility PSB is
required, module DLZDPSBO is called to build it, and module DLZDLBLO is
ie-called at entry PSBPASS to initialize it.

Interfaces - ~LZDLBLO - DLZDLBL3

These modules interface with t~e following modules:

DLZDPSEO
DLZLELMO

Called to build a utility PSB
Called to format and write error mesSage

Register Contents on Entry

Rl
R13 -
R14 -
:R15 -

PST address
Save area address
Return ·address
En~ry pOint address

Register Contents on Exit

All registers are restored. The returl'lcode appears in PS'l'ERCOD ot the
PST.

PSTERCCD ~ 0 Valid return
PS'l'ERCOD * 0 Errod encountered

Licensed Material • property of IBM 3-87

DLZDPSBO - UTILITY PSB BUILDER ,

This ~odule is called by the application control blocks builder module
(DLZDLBLO) to dynamically construct a special utility PSB from a
specific DBD. The created PSB is in PSBGEN format. A GETVIS is issued
to obtain storage necessary to create the PSB. The created PSB is
sens~tive to all segments for the data base.

Register Content on Entry

Rl
R13 -
Rlq -
R15 -

Address of parameter list
Save area address
Return address of DLZDLBLQ
Entry point

The parameter list consists of a DBD address and a PSB address.

Registers on Exit

All registers are restored except R15 which contains a return code
passed to DLZDLELO.

3-88

R15 = 0
R15 ~ 0

Valid return
Errors encountered

Licensed Material - property of IBM

(
\

DATA BASE LOGICAL RELATIONSHIP UTILITIES ,

DLZURPRO - PREREORGANIZATICN

The purpose of this module is to examine input control cards provided by
the user, and, based upon the information contained in DL/I control
blocks, to generate a control data set for use by other programs
concerned with the resolution of logical and index relationships.

'I'he input control cards for this program indicate the names of data
bases that a user wishes to initially load or to reorganize. The
control blocks for each segment of each data base listed on an input
control card are examined. For each logical relationship in which a
segment participates. a prefix resolution check is performed. This
check consists of generating a bit map reflecting the prefix fields
involved in the logical relationship, and then checking the bit map
against a table that indicates the fields which must be resolved for the
types of data bases in which the logical parent and the logical child
reside. For purposes of ~he prefix resolution check, the type of data
base is considered to mean an initially loaded data base, a reorganized
data base, or another data base (not reorganized or loaded, but
logically related to a data base that is reorganized or loaded). If the
bit map and the table entry match yields a nonzero value, prefix fields
must be resolved in either or both the logical parent and logical child .•

If prefix fields must be resolved, a control list entry is built for the
logical parent and/or the logical child, This control list entry
indicates the fields to be resolved, the work data set record format
options to use, etc. As control data set list entries are built, each
record is calculated to determine a maximum record length. The largest
size is saved and put into field LESRTSZE when the control data set is
written. The prefix resolution utility (DLZURG10) reads this value and
passes it to SORT.

After generating the control list, the data bases to be scanned, loaded,
or reorganized are listed. The scan list is punched if requested. The
control list is then written to the control data set.

Control Elocks - DLZURPRO

• Control file consisting of one or more records, each with a pOinter
to the next block of contcol file and an area containing one or more
contrcl list entries.

• List entry.

• Secondary list entry.

Interfaces - DLZURPRO

'Ihe interface with the reorganization message module (DLZURGMO) is
through the tables provided in that module. See the description of that
module for table format.

The interface with batch initialization to load the required blocks
dynamically is accomplished with the DLZBLKLD macro.

Error Codes and Handl~n9 - DLZURPRO

Licensed Material - Property of IBM 3-89

This program audits all input control cards and verifies the consistency
of DL/I control blocks. Any errors encountered cause one or more
messages to be generated. Refer to ~ ROS/VS Messages and ~ for
details.

DLZURGSO - DB SCAN

This module searches one or more data bases for all segments that are
involved in logical relationships. For each such segment, DLZURGSO
generates one or more output records, depending upon the relationships
in which that segment is involved. The output work data set of this
program serves as one of the inputs to the prefix resolution utility.

This program scans data bases as ind~cated either by scan control cards
or by the control data set generated by the prereorganization program.
If scan control cards are present, they are checked for consistency with
the DL/I control blocks. Data base scanning is done by segment type for
HDAM and HIDAM data bases. If scan control cards are provided for
segments in an HDAM or a HIDAM data base, work data set records are
generated only for those segments listed on scan control cards.

After the segments are read into core, control is passed to the work
data set generator module (DLZDSEHO). DLZDSEHO generates any necessary
output work data set records based upon information contained in the
control data set. It then returns control to this program (DLZURGSO).

Interfaces - DLZURGSO

Module OLZURGSO interfaces with the reorganization message module
(DLZURGMO) through the tables provided in that module. See the
description of that module for table format.

The interface with the work data set generator module (DLZDSEHO) is as
described in the documentation for that module.

The interface with the buffer handler module (DLZDBHOO) is as described
in the documentation for that module. The buffer handler module is used
to directly access records in a data base.

The interface with batch initialization to load the required blocks
needed for processing is accomplished with the DLZBLKLD macro.

Error Codes and Handling - DLZURGSO

This program audits all input control cards and verifies the consistency
of DL/I control blocks with the control data set. Any errors
encountered cause on~ or more messages to be generated. Refer to QfL!
DOS/VS Messages and ~.

ABENDs - DLZURGSO

If an input card is read with "ABEND" in columns
will be taken if an error condition is detected.
done on a rerun of this utility if an APAR is to
an error return code.

3-90 Licensed Material - property of IBM

1-5, a dump (PDUMP)
This should always be

be submitted because of

DLZDSEHO - WORKFILE GENERATOR

This module generates the work file records that are required to resolve
logical and/or index relationships after one or more data bases have
been initially loaded or reorganized. This Frogram is used by the HD
reload (DLZURGLO) and scan (DLZURGSO) utility programs provided by DL/I
DOS/VS. It is also called automatically by internal DL/I modules
(DLZDDLEO and DLZDXMTO) when a data base is initially loaded by a user­
written program.

The general operation of this program consists of creating one or more
work file records for each segment that is initially loaded, reloaded,
or scanned, if that segment is involved in at least one logical or index
relationship. The work file records reflect the new location of each
segment and, if the data base is being reloaded, its old location. Each
work file record also contains related information tha.t indicates the
data bases and segments involved in the logical or index relationship
described by the record, their old pOinter values, etc.

This program generates all work file records that are used as input by
the data base prefix resolution module (DLZURGIO). The format of each
outppt record generated by this program (DLZDSEHO) is as described for
input of the data base prefix resolution module (DLZURG10).

This module contains a CSECT which is also used by scan (DLZURGSO) and
index. maintenance (DLZDXMTO) to open the work file DTF. Within this
routine is a subroutine (FINDDTF) which is also used by scan to
deterrrine'the correct DTF (disk or tape) to use for a given file
depending on the assignment for it.

DLZtSEHO is loaded by batch initialization when the PROCOPT is 'load' or
when ED reload or scan are to be executed. The primary entry point
address is found in SCtDSEHO. The DL/I termination routine will close
the work data set.

Interfaces - DLZDSEHO

The first seven fullwords of the CSECT contain information to be used by
the modules which interface with DLZDSEHO. These words concern the work
data set and entry pOints or addresses needed by scan (DLZURGSO).

Iaspl. from
Entry Point
DLZDSEHO

-28

-24

-20

-16

-12

-8

-4

Contents

Base address of this mOdule

Address of LPLCSV - information needed by scan

Address of TEST - entry pOint when called by scan

Address of FINDDTF - a subroutine used by scan

Address of OPENWORK - entry point of routine
to open WORKFIL file

Address of work area available to build output
record

Address of opened work file DTF.
If this field is zero, the file is not open.

Licensed Material - Property of IBM 3-91

- When invoked during initial data base load or during data base
reorganization, the following interface is used:

Entry POint

DLZBEGIN (Address found in SCDDSEHO)

Register c,ontents

PST Rl
R13 -
R14 ...

Save area

R15 -
Return address
Entry point address

Control Blocks

JCBPRESF
PS'IWRRl

~

Operation type (FUNCASRT or FUNCISRT)
SDB address

Return to calling program with a return code in register 15. The values
are:

o (X'O') = successful completion

4 (X-4') = WORRFIL could not be opened (IGN was specified).
This is not an error condition if the user does not

'wish t.O create a work file.

8 (X'S') = sort field size exceeded

12 (X·C') = GETVIS error occurred

16 (X~10') = Invalid DL/I control bloeks

20 (X'14-) = Length of PCB key feedback area is zero

24 (X-1S') = I/O error occurred on WORKFILor CONTROL data set.

2S (X'·lC·) = CONTROL or WORKFIL data set could not be opened
(i~valid or unassigned device)

- When the O,PENWORR routine is called by scan (DLZURGSO) or index
maintenance (.DLZD~TO), the following interface is used:

Entry POint

OPEN$iCRK

Register Contents

R13 -
R14 -
R15 -

Caller's save area address
Return address
'Entry point address.

Licensed Material - property of IBM

All registers are restored to entry condition. Return is made to the
address in R14 plus the displacement 0 if an unknown or invalid device
is specified or 4 if ~ORKFIL is successfully opened.

• ~hen invoked during a data base scan, the following interface is
used:

Entry Point

TEST

Register' Contents

R3
RS
R6
R1
R9
Rl0 -
Rll -
R12 -
R13 -
Ris -

Location for prefix parameter list area for segment just read
secondary list entry
PSDB
SDE
PCE
PST
Location Of DTF for work data set (must be open)
Ease address for DLZDSEHO
Save area for use by DLZDSEHO
Entry point TEST

Control Elocks

PSTWRI<1 Eyte 0
Byte 1-3

Operation type (FUNCIHPS)
SDB address

Return to calling program with return code in register 15 as for entry
pOint DLZBEGIN.

• ~hen the FINDDTF routine is invoked by scan, the following interface
is used:

Entry POint

FINDDTF

Register Contents

RO
R2
R3
R13 -
RU -
R1S -

System logical unit number in hex
Address qf disk DTF
Address of tape DTF (or 0, if not an option)
Caller-s save area address
Return address
Entry point of FINCDTF

Licensed Material - Property of IBM 3-93

Register 15 - address of chosen DTF

All other registers are restored to entry conditions. Return is made to
the address in R14 plus the displacement 0 if an unknown or invalid
device specified or 4 if successful completion. When error return to
R14+0 is made. R15 is zero if IGN was specified, or nonzero otherwise.

DLZURG10 - PREFIX RESOLUTION
<

This roodule accumulates the information generated on work data sets
during the load and/or reorganization of one or more data bases. It
produces an output data set that contains the prefix information needed
to complete the logical and/or index relationships defined for the data
base(s).

Operation of this program centers around at least one and possibly two,
phases of the DOS Sort/Merge program execution. In the first phase, the
Sort/Merge program is attached by this program. All work data set
records generated during data base initial load, reorganization, or scan
are input to the sort program. All input records are sorted such that
all work data set records associated with a given occurrence of a
logical parent follow the work data set record describing that logical
parent. Cn exit from the first phase sort, this program has available
the information needed to resolve the logical parent pOinters that
reside in logical children, the counter field and logical child pointers
in the logical parent, and the logical twin pOinters in the logical
child (if a sequence field is carried in the work data set record). Any
unnecessary records are dropped before entering the second sort phase.
The second phase of this program is not executed if only index
relationships need to be resolved.

In the second phase of this program, the Sort/Merge program is again
attached. In this sort execution, the output records from phase one are
sorted according to data base name and physical location within data
base of each segment that must be updated by the prefix update program.
On exit from the second phase sort, any remaining logical twin pOinters
are resolved, and further accumulation of logical parent counter fields
is performed. Any records not actually necessary to update a data base
are dropped at this time.

This program uses the control data set generated by the
prereorganization program to govern its general operation. That is, the
lists in the control data set indicate prefix fields to be resolved,
etc. The pre-reorganization utility also calculates the maximum record
length for SORT records and stores the size in the control data set
(LESRTSZE). The prefix resolution utility reads this value and passes
it to SORT.

Control Elocks - DLZURG10

• Input work file record - DLZURWFl

• Output work file record - DLZURWF3

3-94 Licensed Material - property of IEM

Error Codes and Handling - DLZURG10

This program audits all input work data set records for consistency and
for correspondence with the control list provided with the control data
set. Any errors encountered cause one or more messages to be generated.
Refer to the ~ DOS/VS Messages ~ ~

DLZURGPO - PREFIX UPDAT~

~his module reads the input work data set provided by the data base
prefix resolution module. reads the data base segment indicated by each
record of the input work data set. and applies the prefix changes
indicated by the work data set record to the segment read into main
storage.

The input work data set is sorted in data base and segment physical
location order by the data base prefix resolution module (DFSURG10) to
afford most efficient update of each data base by this module. The
format of each input record read by this program is as described for
output of the data base prefix resolution module .•

One or more input work data set records may be present for each segment
that participates in logical or index relationships. The records are
successively applied to the prefix of each segment affected. and the
updated seg~ent is written to its storage device. The prefix fields
updated by this program include the logical parent. logical twin, and
logical child pointer fields. and the counter fields associated with
logical parents.

Interfaces - DLZURGPO

The interface with the reorganization message module (DLZURGMO) is
through the tables provided in that module. see the description of that
module for table format.

The interface with the language interface module (DLZLIOOO) is as
described in the documentation for that module. The DL/I "ISRTft and
ftGHU" calls are issued by this program.

The interface with the buffer handler module (DLZDBHOO) is as described
in the documentation for that module. The buffer handler mo~ule is used
to directly access records in a data base.

~he interface with batch initialization to load the required blocks
dynamically is accomplished with the DLZBLKLD macro.

ErrOr Codes and Handling - DLZURGPO

This program audits all input work data set records for consistency with
data base control blocks. checks all data base update operations, and
checks input control card information. Any errors encountered cause one
or more messages to be generated. Refer to the DL/I DOS/VS Messages and
.£Q.ill. -----

Licensed Material - Property of IBM 3-95

DLZURGMO - DB REORGANIZAT~ON MESSAGE

This module contains messages used by the following utilities:
preorganization (DLZURPRO), scan (DLZURGSO), prefix resolution
(DLZURG10), and prefix update (CLZURGPO). The module consists of the
two tables defined below.

Control EloSks - CLZURGMO

1. Message Length and Offset Table

One q-byte table entry exists for each message. Each q-byte entry
contains the message length and offset.

2. Message Table

One variable-length entry is present for each message. Each entry
contains the text of the message. The length is found in the
message length and offset table.

Interfaces - CLZURGMO

This module contains messages that are used by the following modules:

DLZURPRO
CLZURGSO
DLZURG10
DLZURGPO

(prereorganization)
(scan)
(prefix resolution)
(prefix update)

TRACE PRINT UTILITY

DLZTPRTO - TRACE PRINT UTILITY

The Trace Print utility is. used to format and print trace entries
previously ~ritten to a tape or disk by the CICS/VS extra partition
dataset facility. The format of the output records on SYSLST is the
same as those written directly to SYSLST by the Trace Facility. Trace
Print utility processing is as follows:

1. The utility opens the reader (SYSIN), printer (SYSLST), and console
log (SYSLOO).

2. A read is issued to SYSIN,.looking for a TI statement. If present,
the fields on the statement are validated and saved. Further reads
are issued to SYSIN until EOF is returned. All statements. read from
SYSIN are recorded on SYSLST .•

3. ~hen End-of-File is reached on SYSIN, the reader is closed.

q. A GETVIS is issued to acquire sufficient storage for two trace input
buffers. The buffer size will either.be the default of 32767 bytes,
or the size specified on the TI statement.

5. The device assigned for trace input is then checked by the DLZDVCE
macro routine. If the device is a valid tape or disk, the
corresponding DTF is modified and the file opened for input.

6. Trace records are then read from the input file until End-of-File is
returned.

3-96 Licensed Material - property of IEM

7. Trace entries are processed from the input buffer one at a time
until all of the entries in the record are printed. When the last
entry of the record is processed, control is returned to the read
routine.

8. Any errors detected will be written t? SYSLST and/or SYSLOG. If no
errors are detected, a message indicating successful completion is
written.

Licensed Material - property of IBM 3-97

3-98 Licensed Material - Property of IBM

SECTION 4: DIRECTORY

This table gives the following information for all DL/I DOS/VS modules:

• CORE IMAGE LIBRARY

'Ihe narr,e of the DL/I DOS/VS phase residing in the core image library.

• CSECT(S)/ENTRY POINT(S)

'Ihe CSEC'Is that corr.prise each PHASE. Any indented name under a CSECT
is an entry pOint within that CSECT. If the indented name is
preceded by 1.1, it designates a routine within the CSECT and may, or
may not, appear on the link-edit map. Unreferenced entry pOints have
been crritted.

• RELOCA'IAELE LIBRARY

'Ihe narr.e(s) of the module(s) in the relocatable library which are
needed fer linkage editing .•

• SCURCE LIBRARY

'Ihe narre(s) of the module(s) in the source statement library.. For
each rrodule, source code listings are available on microfiche (under
the module name).

• CORE ID

'Ihe core ID for the applicable modules. 'Ihis is located near the
beginning address of each module and is usually followed by the
version, release, level, and latest PTF number applied.

• SUPPLEMENTARY INFORMATION

'Ihe entry SVA means that the module concerned is eligible to be
loaded into the shared virtual area (SVA). Any other entry in this
column is the entry pOint name that must be present on the END card
when assembling this module, for example, END DLZBEGIN.

• FIGURE REFERENCE

'Ihe figure number that is shown after the module name refers to the
figure number of the module"s HIPO diagram in Section 2 of this
manual.

Licensed Material - Property of IBM 4-1

CORE
IMAGE
LIBRARY

CSECTCS)/
ENTRY
FOINTCS)

SYSTEM CONTROL MODULES

RELO
LIBRARY

SOURCE
LIBRARY

** Eatch Initialization ** (See Figure 2-3)

DLZRRCOO DLZRRCOO
*ERRORMSG
DLZMMSGT
I:LZRDR
I:LZCONSL
DLZRRC10
*DLZRRAOO
*DLZPCCOO
*DLZDBLMO
*LOADDMBS
*PCEROUT
*DLZCPIOO
*DMELOADR

DLZRRCOO DLZRRCOO

DLZMMSGT DLZMMSGT

** Eatch Nucleus ** (See Figure 2-4)

DLZENUCO SCI:CSECT
SCDSTART

*DLZIWAIT
*DLZPRHBO
*DLZABEND

DLZBNUCO DLZBNUCO

** Online Initialization** (See Figure 2-5)

DFHSIDL DLZOLIOO
·DLZCPIOO

DLZOLIOO DLZOLIOO

.*Online Nucleus** (See Figure 2-6)

DLZNUCxx DLZODPOO
I:LZODPOl
DLZODP02
DLZODP03
DLZODP04
I:LZODPQ5
I:LZOPD06
DLZOPD07
I:LZPRHOQ
DLZCL'IOO
DLZCLTOl
DLZOLT02
DLZISCOO
DLZISCOl
DLZISC02
DLZOWAIT
DLZERMSG
DLZOVSEX

Note: xx is the result

DLZODP DLZODP

of ACT generation.

CORE
ID

DLZRRCOO

DLZBNUCO

DLZOLIOO

DLZNUCxx
DLZODPOl
DLZODP02

DLZODP04
DLZODP05

DLZPRHOO
DLZOLTOO

DLZISCOO

DLZOWAIT
DLZERMSG
DLZOVSEX

** DL/I Online System Termination.* (See Figure 2-7)

DLZSTPOO DLZSTPOO DLZSTPOO DLZSTPOO

4-2 Licensed Material - Property of IBM

SUPPL
INF

DLZRRCST

DLZODP

CORE CSECT(S)/
IMAGE ENTRY RELO SOURCE CORE SUPPL
LIBRARY, POINT(S) LIBRARY LIBRARY ID INF
------- -------- ------- -------
DL/I FACILITY MODULES

** Call Analyzer ** (See Figure 2-8)

DLZDLAOO DLZDLAOO DLZDLAOO DLZDLAOO DLZDLAOO SVA
DLZEPDLA

DLZDLAOl DLZDLAOl DLZDLAOl DLZDLAOl SVA

** Retrieve ** (See Figure 2-9)

DLZDLROO DLZDLROO DLZDLRAO DLZDLRAO DLZDLRAO SVA
DLZDLR10
DLZRETNO
DLZEODCO
DLZGERCO
DLZGERO
DLZGETSO

DLZCLRPO DLZDLRBO DLZDLRBO DLZDLRBO
DLZWIPEO
DLZMOVAO
DLZMOVBO
DLZDELTO
DLZPSDBO
DLZHUNTO
DLZSETLO
DLZBHO
DLZSSDBO
DLZNOOPO
DLZCONCO

DLZSSAO DLZDLRCO DLZDLRCO DLZDLRCO
DLZTAGO
DLZLTWO
DLZNOSSO

DLZHIDAO DLZDLREO DLZDLREO DLZDLREO
DLZHDAM0
DLZHISAO
DLZSTLAO
DLZSTLGO
DLZUPDTO
DLZKDTEO
DLZPCHKO

DLZISRTO DLZDLRFO DLZDLRFO DLZDLRFO
DLZVLRTO
DLZAREJO
DLZVLCHO
DLZXDFTO
DLZHSAMO
DLZALTSO

DLZLOGRO DLZDLRDO DLZDLRDO DLZDLRDO
DLZRETKO
DLZRETIO
DLZKDRKO
DLZKDTLO
DLZUPDCO
DLZUPDLO

(DLZDLROO) DLZAPSTO
DLZYENTO
DLZYSTCO
DLZYENDO
DLZDEQO

Licensed Material - Property of IBM 4-3

CORE
IMAGE
LIBRARY

CSECT (S)/
EN'IRY
POINT(S)

DLZPOSTO
DLZSKPGO
DLZSKPSO
DLZSKPDO
DLZSKPEO

DLZRLNKD

RELO
LIBRARY

DLZDLRGO

DLZRLNKD

SOURCE
LIBRARY

DLZDLRGO

DLZRLNKD

** Load/Insert ** (See Figure 2-10)

DLZDDLEO DLZDDLEO
HDROUTIN
HSROUTIN

DLZDDLEO DLZDDLEO

** Delete/Replace ** (See Figure 2-11)

DLZDLDOO DLZDLDOO

DLZDLDSO
DLZDLDDO
DLZDLDAO
DLZDLDRO

DLZDLDOO DLZDLDOO

** Index Maintenance ** (See Figure 2-12)

DLZDXMTO DLZDXMTO DLZDXMTO DLZDXMTO

** HD Space Management ** (See Figure 2-13)

DLZDHDSO DLZDHDSO
DLZGGSPC

DLZRRTRN
DLZFRSPC
DLZLLCLC
DLZMMLCT
DLZRRHPL
DLZRCHBK

DLZRCBK2
DLZMMUDT

DLZMMOFF
DLZMMON

DLZRRHMP
DFSRL030
*SNAPDCB
*SNPSW
*SNPCNT
DLZDCIOO

DLZDHDSO
DLZGGSPO

DLZFRSPO
DLZLLCLO
DLZMMLCO
DLZRCHPO
DLZRCHBO

DLZMMUDO

DLZRRHMO
DLZDHDSO

DLZDCIOO

** Open/Close ** (See Figure 2-14)

DLZDLOCO DLZDLOCO DLZDLOCO

DLZDHDSO
DLZGGSPO

DLZFRSPO
DLZLLCLO
DLZMMLCO
DLZRCHPO
DLZRCHBO

DLZMMUDO

DLZRRHMO
DLZDHDOO

DLZDCIOO

DLZDLOCO

** DB Buffer Handler ** (See Figure 2-15)

DLZDBHOO DLZDBHOO
DLZEBHOO

*MAINROUT
ROULINK

*PREPENQ
*PREPDEQ
*ABEXIT
*BO'ITOUSE

DLZDBHOO DLZDBHOO

4-4 Licensed Material - Property of IBM

CORE
ID

DLZDLRGO

DLZRLNKD

DLZDDLEO

DLZDLDOO

DLZDXMTO

DLZDHDSO

DLZDLOCO

DLZDBHOO

SUPPL
INF

SVA

SVA
DELREPEP

SVA

SVA

SVA
DLZEBHOO

.. ~

CORE
IMAGE
LIBRARY

CSECT(S)/
ENTRY
POINT(S)

*ALLDEQ
*BFFERREL
*RETURN
DLZDBH02
*WRITE
*READ
*HSREAD
*HSWRITE
*LOWRITE
*PUTKY
*MSPUT
*STLEQ
*STLBG
*GETNX

DETIOERR
*TSTPST1
DLZDBH03
*ENQ
*DEQ
*CONVADNR
*MRKEMPT
*PGUSR
*CONVNARD

RELO
LIBRARY

DLZDBH02

DLZDBH03

** DB Logger ** (See Figure 2-16)

DLZRDBLO DLZRDBLO
DLZHBLO
IOFILA1
LOGOUT
LSCDADDR

IJFUZZZN
IJFUZZZZ
IJ2N0017

ONLLOGWR
(DLZRDBLO) SAVE

PRIVEGB

DLZRDBLO

IJFUZZZN

DLZRDBLO

SOURCE
LIBRARY

DLZDBH02

DLZDBH03

DLZRDBLO

DLZRDBLO

** CICS Journal Logger"* (see Figure 2-17)

DLZRDBL1 DLZRDBL1
DLZRDBLO

DLZRDBL1 DLZRDBL1

** Queuing Facility ** (See Figure 2-23)

DLZQUEFO
DLZQUEFW

DLZQUEFO
DLZQUEFW

DLZQUEFO
DLZQUEFW

DLZQUEFO
DLZQUEFW

CORE
ID

DLZDBH02

DLZBFH03

DLZRDBLO

DLZRDBL1

DLZQUEFO
DLZQUEFW

** Field Level Sensitivity Copy ** (See Figure 2-40)

DLZCPYlO DLZCPYlO
DLZSEGCV

MPS CONTROL NODULES

DLZCPY10 DLZCPY10

** start Transaction ** (See Figure 2-18)

DLZMSTRO DLZMSTRO DLZMSTRO DLZMSTRO

DLZCPY10
DLZSEGCV

DLZMSTRO

SUPPL
INF

DLZRDBLO

DLZRDBL1

DLZQUEFO

SVA

Licensed Material - Property of IBM 4-5

CORE CSECT(S)/
IMAGE ENTRY RELO SOURCE CORE SUPPL
LIBRARY POINT(S) LIBRARY LIBRARY ID INF
------- -------- ------- -------
•• Master Partition Controller •• (See Figure 2-19)

DLZMPCOO DLZMPCOO DLZMpCOO DLZMPCOO DLZMPCOO

•• Batch Partition Centroller •• (See Figure 2-20)

DLZBPCOO DLZBPCOO DLZBPCOO DLZBPCOO DLZBPCOO

•• MPS Batch •• (See Figure 2-21)

DLZMPIOO DLZMPIOO DLZMPIOO DLZMPIOO DLZMPIOO DLZMINIT
·DLZMPRH

DLZMINI'l'
.DLZM'l'ERM
·DLZMMSG
·DLZMABND
DLZCONSL
DLZDIMOD
DLZMMSGT DLZMMSGT DLZMMSGT

•• Stop Transaction •• (See Figure 2-22)

DLZMS'l'PO DLZMSTPO DLZMSTPO DLZMSTPO DLZMSTPO

DATA BASE RECOVERY UTILITIES

•• DB Data Set Image Dump •• (See Figure 2-25)

DLZUDMPO DLZUDMPO DLZUDMPO DLZUDMPO DLZUDMPO
IJ2M0101 DLZUDMPO DLZUDMPO
DLZDMPMO DLZDMPMO DLZDMPMO
IJJFCBZD IJJFCBZD
IJFSZZWN IJFSZZWN

IJFVZZWN
IJGQOCZZ IJGQOCZZ

IJGVOCZZ

•• DB Change Accumulation •• (see Figure 2-26)

DLZUCUMO DLZUCUMO DLZUCUMO DLZUCUMO DLZUCUMO
DLZERRTN
DLZUSPRL
DLZWORR#
DLZPRNT
DLZSLOG
DLZUCONS

DLZUCCTO DLZUCCTO DLZUCCTO DLZUCCTO
DLZUC150 DLZUC150 DLZUC150 DLZUC150

DLZUEX15
DLZUC350 DLZUC350 DLZUC350 DLZUC350

DLZUEX35
DLZUCERO DLZUCERO DLZUCERO DLZUCERO
DLZCUMMO DLZCUMMO DLZCUMMO
IJFSZZWN IJFSZZWN

IJFVZZWZ
IJFSZZWZ

IJGQICZZ IJGQICZZ
IJGQIZZZ

4-6 Licensed Material - Property of IBM

I

I

CORE CSECT(S)I'
IMAGE ENTRY RELO SOURCE
LIBRARY POINT(S) LIBRARY LIBRAAY
------ ----~--- ------- -------

IJGQOCZZ IJGQOCZZ
IJGQOZZZ

IJJFCBZD IJJFCBZD
IJJFCIZD

IJ2MOO14 DLZUCUMO DLZUCUMO
IJFUZZZZ IJFUZZZZ
IJGUIZZZ I.;JGUIZZZ

•• DB Data Set Recovery •• (See Figure 2-27)

DLZURDBO DLZURDBO DLZURDBO DLZURDBO
DLZURCCO DLZURCCO DLZURCCO
DLZLIOOO DLZLIOOO DLZLIOOO

Cl!LTDLI
DLZRDBMO DLZRDBMO DLZRDBMO
IJJFCBID IJJFCBID

IJJFCBZD
IJJFCIID

IJFSZZiiiN IJFSZZWN
IJFVZZiiiN

IJ2MOO38 DLZURDBO DLZURBDO
IJFUZZZN IJFUZZZN
IJGUICZZ IJGUICZZ
IJGQICZZ IJGQICZZ
IJGVICZZ

•• DB Change Eackout •• (See Figure 2-28)

DLZBACKO DLZBACKO DLZBACKO DLZBACKO
READAREA

IJ2MOO33
DLZRDBCO DLZRDBCO DLZRDBCO
CLZBACM0 DLZBACMO DLZBACMO
DLZLI.OOO DLZLIOOO DLZLIOOO

ASMTDLI
IJFUBZZZ IJFUBZZZ
IJJFCBZD IJJFCBZD

IJJFCIZD

•• Log Print utility •• (See Figure 2-39)

DLZLOGPO DLZLOGPO DLZLOGPO DLZLOGPO
DLZLGPCN
CLZLGPMT
DLZLPCCO DLZLPCCO DLZLPCCO
DLZLGPMO DLZLGPMO DLZLGPMO
IJJFCBID· IJJFCBID

IJJFCIID
IJFUZZZN IJFUZZZN
IJGUICZZ IJGUICZZ

DATA BASE REORGANIZATION UTILITIES

•• HS DB Unload.. (See Figure 2-29)

DLZURULO DLZURULO
DLZRULMO
IJJFCBZD

DLZURULO
DLZRULMO
IJJFCBZD

DLZURULO
DLZRULMO

CORE SUPPL
ID INF

DLZURDBO DLZURDBO
DLZURCCO DL ZURCC 0
DLZLIOOO

DLZBACKO

DLZRDBCO

DLZLIOOO

DLZLOGPO

DLZURULO

Licensed Material - Property of IBM 4-7

CORE CSECT(S)I'
IMAGE EN'IRY RELO SOURCE CORE SUPPL
LIBRARY POINT(S) LIBRARY LIBRARY ID INF
------- -------- ------- -------

IJFVZZWN IJFVZZWN
IJGQOCZZ IJGQOCZZ

IJGVOCZZ

** HS DB Reload ** (See Figure 2-30)

DLZURRLO DLZURRLO DLZURRLO DLZURRLO DLZURRLO
DLZRRLMO DLZRRLMO DLZRRLMO
IJJFCEZD IJJFCBZD
IJGQICZZ IJGQICZZ

IJGVICZZ
IJFVZZWN IJFVZZWN

IJFVZZWZ

** HD DB Unload ** (See Figure 2-31>

DLZURGUO DLZURGUO DLZURGUO DLZURGUO DLZURGUO
DLZCONSL
DLZLIOOO DLZLIOOO DLZLIOOO DLZLIOOO

CBLTDLI
DLZRGUMO DLZRGUMO DLZRGUMO
IJJFCBZD IJJFCBZD
IJFUZZZN IJFUZZZN
Io1GUOCZZ IJGUOCZZ
IJGUICZZ IJGUICZZ

** HD DB Reload ** (See Figure 2-32)

DLZURGLO DLZURGLO DLZURGLO DLZURGLO DLZURGLO
DLZLIOOO DLZLIOOO DLZLIOOO DLZLIOOO

CBLTDLI
DLZRGLMO DLZRGLMO DLZRGLM0
IJJFCBZD IJJFCBZD
IJGQICZZ IJGQICZZ

IJGVICZZ
IJFSZZiiN IJFSZZWN

IJFVZZZN

ACB UTILITY

•• ACB Creation •• (See Figure 2-33)

DLZUACBO DLZUACBO DLZUACBO DLZUACBO DLZUACBO
PRTMSG

DLZDLBLO DLZDLBLO DLZDLBLO DLZDLBLO
PSBPASS

DLZDLBL4
DLZDLBLl DLZDLBLl DLZPLBLl DLZDLBLl
DLZDLBL2 DLZDLBL2 DLZDLBL2 DLZDLBL2
DLZDLBL3 DLZDLBL3 DLZDLBL3 DLZDLBL3

FREESTOR
IJSYSLN
PCHDTF

DLZLBLMO DLZLBLMO DLZLBLMO DLZLBLMO
DLZUSCHO DLZUSCHO DLZUSCHO DLZUSCBO

INSRCH , CLOSESCH "j

DLZDPSBO DLZDPSBO DLZDPSBO DLZDPSBO ~
IJJCPD1N IJJCPD1N

4-8 Licensed Material - Property of IBM

CORE CSECT(S)/
IMAGE EN'IRY RELO SOURCE CORE SUPPL
LIBRARY POINT(S) LIBRARY LIBRARY 10 INF
------- -------- ------- -------

IJJFCBZD IJJFCBZD
IJJFCIZD

DB LOGICAL RELATIONSHIP UTILITIES

** Prereorganization ** (See Figure 2-34)

DLZURPRO DLZURPRO DLZURPRO DLZURPRO DLZURPRO
DLZLIOOO DLZLIOOO DLZLIOOO DLZLIOOO

ASMTDLI
DLZURGMO DLZURGMO DLZURGMO
IJJFCBZD IJJFCBZD
IJGFOCZZ IJGFOCZZ

** DB Scan ** (See Figure 2-35)

DLZURGSO J::LZURGSO DLZURGSO DLZURGSO DLZURGSO
DLZCONSL
DLZURGMO DLZURGMO DLZURGMO
DLZLIOOO DLZLIOOO DLZLIOOO DLZLIOOO

ASMTDLI
IJJFCBZD IJJFCBZD

IJJFCIZD
IJFSZZWN IJFSZZWN

IJFVZZZN
IJGQICZZ IJGQICZZ

IJGVICZZ
IJGFICZZ IJGFICZZ

** Prefix Resolution ** (See Figure 2-36)

DLZURG10 DLZURG10 DLZURG10 DLZURG10 DLZURG10
DLZURGMO DLZURGMO DLZURGMO
IJJFCBZD IJJFCBZD

IJJFCIZD
IJGFICZZ IJGFICZZ
IJGQICZZ IJGQICZZ

IJGVICZZ
IJFSZZWN IJFSZZWN

IJFVZZZN
IJFVZZWN

IJFFZZZN IJFFZZZN
IJGQOCZZ IJGQOCZZ

IJGVOCZZ
DLZX15S1 DLZURG10 DLZURG10
DLZX15S2
DLZX35S1
DLZX35S2

** Prefix Update ** (See Figure 2-37)

DLZURGPO DLZURGPO DLZURGPO DLZURGPO DLZURGPO
DLZURGMO DLZURGMO DLZURGMO
DLZLIOOO DLZLIOOO DLZLIOOO DLZLIOOO

ASMTDLI
CELTDLI

IJJFCBZD IJJFCBZD
IJJFCIZD

Licensed Material - Property of IBM 4-9

CORE CSECT(S)/
IMAGE ENTRY RELO SOURCE CORE SUPPL
LIBRARY POINT(S) LIBRARY LIBRARY ID INF
------- -------- ------- -------

IJFSZZWN IJFSZZWN
IJFVZZZN

(DLZURGPO) IJGQICZZ IJGQICZZ
IJGVICZZ

** Work File Generator ** (See Figure 2-38)

DLZDSEHO DLZDSEHO DLZDSEHO DLZDSEHO DLZDSEHO DLZBEGIN
DLZBEGIN

OPENWORK
IJFSZZWN IJFSZZWN

IJFVZZWN
IJGFICZZ IJGFICZZ
IJGQOCZZ IJGQOCZZ '" IJGVOCZZ

DIAGNOSTIC AND TEST MODULES

.. System Fcrmatted Dump ..

DLZFSDPO DLZFSDPO DLZFSDPO DLZFSDPO DLZFSDPO
DLZTRPRO

.. DL/I Tracing Facility **

user DLZTRACE user DLZTRACE DLZTRACE
chosen chosen

DLZTRPRO DLZTRPRO DLZTRPRO DLZTRPRO
IJJFCBIC IJJFCBIC

*. DUI Test Program - Batch **

DLZDLTXX DLITCBL DLZDLTXX DLZDLTXX DLZDLTXX
DLZSNAP
DLZLIOOO DLZLIOOO DLZLIOOO DLZLIOOO

CELTDLI
IJGFIZZZ IJGFIZZZ
IJJFCBID IJJFCBID

IJJFCIID

** DL/I Test Program - Online **

DLZDLTXY DLITCBL DLZDLTXY DLZDLTXY DLZDLTXY
DLZSNAP
DLZLIOOO DLZLIOOO DLZLIOOO DLZLIOOO

CELTDLI
IJGFIZZZ IJGFIZZZ
IJJFCBID IJJFCBID

IJJFCIID

** Online Task Formatted Dump **
DLZFTDPO DLZFTDPO DLZFTDPO DLZFTDPO DLZFTDPO

** Trace Print Utility ** (see figure 2-41)

DLZTPRTO DLZTPRTO DLZTPRTO DLZTPRTO DLZTPRTO q
DLZTPRMO DLZTPRMO DLZTPRMO

4-10 Licensed Material - Property of IBM

CORE CSECT(S)/
IMAGE EN'IRY RELO SOURCE CORE SUPPL
LIBRARY POINT(S) LIBRARY LIBRARY 10 INF -- .. ---- -------- ------- -------

IJJFCEIC
IJJFCIZO IJJFCIZO
IJFVZZZZ IJFVZZZZ
IJGVIEZZ IJGVIEZZ
IJ2MOO21 IJ2MOO21

Licensed Material - Property of IBM 4-11

4-12 Licensed Material - Property of IBM

SECTION 5: DATA AREAS

This section describes the major data areas used by DL/I DOS/VS. The
description of each data area generally includes:

• Its DSECT name.

• The symbolic names of the fields and flags.

• The displacement of each field, in both decimal and hexadecimal.

• The length of each field.

• An alphabetic listing of all field and flag names (flags are
indicated by asterisks).

• The hexadecimal code of each flag.

The data areas are documented in alphabetical order as listed in the
contents of this publication.

This section also describes the DL/I partition in a batch environment
and illustrates the relationship of the DL/I control blocks. In
addition, the description and general structure is given for the data
management block (DMB), the program specification block (PSB), and the
DL/I buffer pool control blocks.

Licensed Material - Property of IBM 5-1

THE tL/~ PARTITION AND CONTROL BLOCK RELATIONSHIP

The following text describes the DL/I partition in a batch environment
and illustrates the relationship of the DL/I control blocks described in
this section.

THE DL/I BATCH PARTIT~ON

Figure 5-1 is a map of main storage in the DL/I DOS/VS batch partition.
Storage is allocated from the bottom or lowest storage address to the
top or highest storage address of the partition. The eight areas in the
DL/I batch partition are as follows:

• Area 1 contains the DL/I nucleus. The SeD is the first control block
in the nucleus and contains the DL/I copyright information. This
block also contains the entry pOint address for every module in the
tL/I system. The PST prefix, PST, and PSB directory (PDIR) are in
this area. There is one entry in the PSB directory (PDIR).

• Area 2 contains the DL/I program request handler, DLZPRHBO, which is
loaded during DL/I initialization. It is part of the batch nucleus
module (DLZENUCO).

• Area 3 contains the PSB intent list, PSB, and one DMB directory
(DDIR) for each DMB referenced by the PSB. The DMB directory is
created dynamically during DL/I initialization.

• Area 4 contains DMBs loaded from the DOS/VS Core lroage Library by the
tL/I Batch Initialization module. Randomizing modules are loaded
after the DMBs for HDAM. They are followed by VSAM control blocks,
index management modules if secondary indexes are used, and by
segment compression modules if variable length segments are used.

• Area 5 contains the D~/I buffer pool control blocks. These blocks
are created dynamiGally. There are one buffer pool prefix, one
subpoOl information table for each subpool specified, one DMB subpool
directory entry for each DMB, and 2-32 buffer prefixes for each
subpool specified.

• Area 6 contains the DL/I I/O buffers which comprise the buffer pool.
There are 2-32 buffers for each subpocl specified. Each subpool is
aligned on a 2K page boundary.

• Area 7 contains the DL/I action modules and the user trace module if
requested.

• Area 8 contains the user batch application program.

5-2 Licensed Material - property of IBM

HIGH STORAGE
LOCATION AREA

• Jl~---------------------D-L-/I-B-A-T-C-H-A--PP-L-I-CA-T--IO-N--PR-O--G-R-A-M---------------------,]l---s-

'r- .. ~

PAGE BOUNDARY .. ----
TRACE MODULE - (USER NAMED)

SPACE MANAGEMENT - DLZDHDSO
OPEN/CLOSE - DLZDLOCO

LOAD/INSERT - DLZDDLEO INDEX MAINTENANCE - DLZDXMTO

DELETE/REPLACE - DLZDLDOO

7

CALL ANALYZER - DLZDLAOO DATA BASE LOGGER - DLZRDBLO

DL/I RETRIEVE - DLZDLROO

COMMON BUFFER HANDLER - DLZDBHOO

BUFFER POOL (NOTE) 6

PAGE BOUNDARY ... ---
BUFFER POOL CONTROL BLOCKS (NOTE) 5 .. ---

PAGE BOUNDARY VSAM CONTROL BLOCKS, INDEX MANAGEMENT MODULES,
AND SEGMENT COMPRESSION MODULES

4

DMB POOL AND RANDOMIZING MODULES

PSB INTENT LIST AND PSB DMB DIRECTORY (NOTE) 3

--

APPLICATION PROGRAM REQUEST HANDLER - DLZPRHBO 2

"'" DL/I NUCLEUS - DLZBNUCO
SCD - PST PREFIX - PST - PSB DIRECTORY

1

LOW STORAGE
LOCATION DLZRRCOO - PARTLY OVER LAID BY DLZBNUCO ..

~ ~ NOTE: BLOCKS DYNAMICALLY CREATED OR FORMATTED

Figure 5-1. Map of Main Storage in the DL/I Batch Partition

Licensed Material - Property of IBM 5-3

DL/I CONTROL ELOCK RELATIONSHIP

The purpose of this section is to show the relationships of the various
DL/I control blocks and provide a means by which the user can quickly
find his way to these control blocks. The following discussion
references Figure 5-2.

The SCD is the major control block in the DL/I system. It is located at
the beginning of the DL/I nucleus. The SCD contains DL/I copyright
information, entry point addresses of the DL/I logic module, and
pOinters to the following DL/I 'control blocks:

• The buffer pool prefix, which is the first block of the buffer pool
control tlocks.

• The first PSB directory from which the first PSB and PSB intent list
may be obtained. In a batch system, there is only one PSB directory.

• The first DMB directory. There is one DMB directory for each DMB
referenced by the PCBs.

• The first PST prefix from which the first PST may be obtained. There
is only one PST prefix in a batch system.

The PST, including the PST prefix, functionally relates the control
blocks for DL/I and represents the batch or CICS/DOS/VS - DL/I online
task being served by DL/I. The PST is the dispatching block and is the
only parameter passed when calling another module. The address of the
PST is contained in the PST prefix. The following pOinters are
available in the PST:

• Caller's (user program) parameter list

• SCD

• PSB directory for the task

• PCE currently being accessed

• I/O buffer to be used for the data base call (used by the buffer
handler)

• Subpool information table assigned to the data base (used by the
buffer handler)

• Buffer prefix which points to the I/O buffer containing the segment
for the call (used by the buffer handler)

There is one PSE directory entry and one PSB for each program that may
be accessed by DL/I. In a CICS/DOS/VS - DL/I online environment, the
maximum is 255: in batch, there can be only one. The PSB directory
contains address pointers to the PSB and the PSB intent list.

The PSB intent list is a variable-length control block and contains an
entry for each DMB referenced by the PSB. Each entry contains the
address of the DMB .•

Th~ PSB contains prefix information and one or more PCBs. For each PCB
there is a JCE, which is made up of the following: JCB prefix, level
table, and one or more SDBs.. The PCB pOints to the JCB. The JCB
contains working storage for the program's use of that data base and
points to the level table. The JCB also points to the SDB for the root
segment and the VSAM ACB for the data base (KSDS ACB if HISAM). The
level table contains working storage for DL/I to store its positioning

5-q Licensed Material - Property of IBM

data for each level of the data base. The level table points to the
current level SDB.

The SDB describes the user's logical use of the sensitive segment.
There is one SDB for each segment to which the user is sensitive. Each
SDB points to the corresponding PSDB in the DMB.

The DMB directory contains the address of the DMB. Each DMB contains a
prefix, one ACB extension for each data set in the DMB (two if HISAM),
one PSDB for each physical segment type, and one FDB for each field
defined for a segment. In addition, there is one direct algorithm
communication table (DMBDACS) if HDAM is used, and secondary list
entries if HIDAM or HDAM with index or original relationships is used.

The DMB pref~x contains:

• A two-byte relative offset to the first PSDB

• A two-byte relative offset to the end of the last PSDB+l, which is
either the first secondary list entry (HIDAM) or the first FDB

• A four-byte pointer to DMBDACS if HDAM

The ACB extension contains information about the data set as well as an
address pointer to the VSAM ACB and RPL for the data set,.

Each PSDB contains:

• A pointer to the first FDB for the segment

• A pOinter to the SDB for the active PCB which is sensitive to this
segment type. If more than one PCB is sensitive to this segment
type, the address of the SDB for the next PCB is contained in the
active PSDE.

The DMBDACS contains the address of the user's randomizing routine: most
of the secondary list entries point to the DMB directory for the
described index Or logically related data base.

The following items may be obtained from the buffer pool prefix:

• The first subpool information table (immediately following the buffer
pool prefix)

• An address pointer to the first buffer prefix

• An address pOinter to the first DMB subpool directory entry

The buffer prefix contains an address pointer to the I/O buffer which it
references.

Licensed Material- Property of IBM 5-5

r.-----------------I NUCLEUS ------------------------~

I
I
I

OMB

Note4
Note 8

SCD I

ACT Entries

SCDDBLNT Buffer Pool

~ggg~~~wr_--------------------_T~----------------------~~C~o~n~t~ro~I~B~IO~C~ks~
SCOOLIPS

.-r--------'~~----------------_r--_1SCOOLIOM

ACB (VSAMI

OMBOACS
(HOAMI

OMBOAEP

OMBCPAC
(HOI

OMBXMPRM
(HOI

OMBPSOB,

DMBSEC
(HIDAMI

I DMBXNSUP I

Tape or DASD
I/O Module

SCOPPSTS I-----..,..--~,.....;.=.:..;,;=
SCOEXTBA

r---------_.J
PST

PSTPREAO
PSTIQPRM
PSTPSB
PSTOBPCB
PSTFNCTN
PSTOATA
PSTSUIN

SubpooJ
Information

Tablen

PSTBUFFA '"=::t=======:::;-l PSTBFUSE I-

PSB

PCB

OBPCBPRO
OBPCBJCB

JCB

JCBTRACE
JCBSOB'
JCBLEVTB

Level Table

LEVSOB

Field 'Exit
FSB, Routine Table

IFSBFERTAl- Entry,

T FSBn T

DMB SP DIR

OMB SP DIR

DMB SP DIR

Notes:

1. PCB shows the processing option from PSBGEN and
segment name feedback.

2. JCBTRACE functions and return codes.

3. Pointer to·STXtTAB save area.

4, Pointer of DMS log module.

S. Pointer to User Parameter List.

6. PSTFNCTN and PSTRTCDE give the internal function
and return code resulting from a call.

7. Pointer to requested data.

8. Address of queuing facility work area.

Figure 5-2. BL/I Control Block Relationships

5-6 Licensed Material • property of IBM

DATA MANAGEMENT BLOCK - DMB

A skeleton OME is created during DBD generation (DBDGEN) as part of the
DBD. The DMB consists primarily of a description of each segment
contained in the data base and information concerning the physical data
base description. This is contained in ACB extensions or, in the case
of HSAM, in OTFs. The DBD is loaded into storage by the DL/I
application control blocks creation and maintenance utility, which
builds the DMB from the DBD created by DBDGEN. The DMB is then
cataloged and link edited into a core image library.. The DMB is moved
to its execution-time location in the DMB pool by the application
control blocks load and relocate module (DLZDBLMO).

The OMB consists of the following sections:

• A prefix section containing primarily offsets to subsections of the
DME:

• An ACB extension. For an HISAM organizaton, there is a pair of ACB
extensions for each data base: a KSDS ACB and an ESDS ACB. If the
data base contains only root segments, only the KSDS ACB extension is
created. The ACBS are generated only when the blocks are loaded for
execution by DLZOBLMO from the information in the ACB extensions.

• A DTF extension if SBSAM or HSAM for input and output file.

• A direct algorithm communication table if BDAM.

• A compression section for eachcompressable segment.

• An index maintenance parameter section for each secondary exit
routine.

• A physical segment description block.

• A secondary list to describe indexed fields or logical relationships.

• Field description blocks describing each field in each segment.

• A tape or DASD I/O module if SHSAM or HSAM. This module is included
by the ACB utility.

GENERAL S!RUC!URE

The general structure of the DMB is shown in Figure 5~3.

DMB PREFIX

DSECT Name: DMB

ACB EXTENSION

DSECT Name: DMBACBXT
------- --------- - - - - ---

DTF EXTENSION

DSECT Name: DMBDTFXT

DIRECT ALGORITHM COMMUNICATION TABLE

DSECT Name: DMBDACS

COMPRESSION SECTION

DSECT Name: DMBCPAC

INDEX MAINTENANCE PARAMETERS

DSECT Name: DMBXMPRM

PHYSICAL SEGMENT DESCRIPTION BLOCK

DSECT Name: DMBPSDB

SECONDARY LIST

DSECT Name: DMBSEC

FIELD DESCRIPTION BLOCK

DSECT Name: FOB

Tape or DASD I/O Module

Figure 5-3. General structure of DMB

5-8 Licensed Material - Property of IBM

}

I
}
}
}
}
}
}

Each DMB section is shown as a separate data
area in Section 5 of this PLM, For the data
area layout, see:

DMB - DMB Prefix

ACB - ACB Extension

DACS HDAM Randomizing Routine
Interface Table

HDAM/HIDAM Variable Length
CPAC - Segment Compression/Expansion

Routine

HDAM/HIDAM User Secondary
XMPRM - Index Suppression Routine

Interface Table

PSDB Physical Segment Desc(iption
Block

SEC - Secondary List

FOB - Field Description Block

PROGRAM SPECIFICATION BLOCK - PSB

A PSE must be created for every user program which will run under DL/I
control. The PSB is created in ·skeleton· format (principally PCBs
only) by PSEGEN. The PSB must be cataloged and link edited into the
Core Image Library. The ·PSB is loaded into main storage by the DL/I
Application Control Blocks creation and Maintenance Utility program and
expanded and completed by this utility. The expansion is performed by
segment definition in the DED representing the associated data base.
The expanded PSB is link edited into the Core Image Library. The PSB is
moved to its execution-time location in the PSB pool by the application
control blocks load and relocate module (DLZDBLMO). In expanded final
format, the PSB consists of the following parts in the order specified:

1. PSB prefix - of which the most important part is the variable-length
FSB list: the address list of the PCBs in the PSB,. A dope vector
table fcllows the PSB prefix for PL/I programs.

2. A variable number of data base PCBs. For each data base PCB there
is a JCE (job control block) consisting of the following parts:

• JCB I?refix

• DSG (data set group) table. This table contains entries
describing the data bases specifically used for this PCB. There
are entries for all logically connected data bases, all primary
HIDAM indexes, and a secondary index if used as the proceSSing
sequence.

• Level table. This table provides memory of the last DL/I CALL.

• SDE (segment description block). This block contains an entry
for each segment to which the user has declared himself sensitive
in the PCE. The SDB entry describes the sensitive segment.

• Work area for index maintenance, variable-length segment support,
or miscellaneous function. These are allocated only when
required (if any user PCE directly or indirectly refers to an
index data base).

• PSE work areas: of variable length depending on the requirements
of the PCBs.

Licensed Material - Property of IBM 5-9

GENERAL S~RUCTURE

~he general structure of the PSE is shown in Figure 5-4.

One Data
Base PCB

Additiona
Data Base
PCBs

/

I{

PSB PREFIX

DSECT Name: PSB

PCB DOPE VECTOR TABLE

DSECT Name: DPPCB

DATA BASE PCB

DSECT Name: DBPCB

JCB PREFIX

DSECT Name: JCB

DSG TABLE

DSECT Name: DSG

LEVEL TABLE

DSECT Name: LEV

SOB

DSECT Name: SOB
-

•
• REPEATED AS SHOWN ABOVE •
INDEX MAINTENANCE WORK AREA

DSECT Name: XWORKARA

PCB WORK AREA

Figure 5-4. General Structure of PSB.

JJicenseo Material - Property of IBM

}
}
}
}
}
}
}

}

Each PSB section is shown as a
separate data area in Section 5 of
th is PLM. For the data area layout, _:
PSB - PSB Prefix

DPPCB - PCB Dope
Vector Table

Program
PCB - Communication

Block

Job
JCB - Control

Block

DSG Data Set 1,e,
Group includes

. DSG, rv

'

and
LEV _ Level Table SDB

Entry

Segment
SDB - Description

Block .

Index Maintenance Work Area

DL/I EUFFER peOL CONTROL BLOCKS

The DL/I tuffer pool control blocks provide the control information to
manage the entire buffer pool for the DL/I task. The buffer pool
control tlocks are as follows:

• Euffer pool Control Block Prefix - This control block contains the
statistics and other control information for the entire buffer pool.

• Sutpool Information Table - !his control block contains information
for a specific subpool, including the size of the buffers in the
subpool. !here is one subpool information table for each subpool
allocated.

• DMB sutpool Directory - This control block contains a one-byte
subpool number relative to zero for each HDAM or HIDAM data base
allocated o The DMB sequence number is used as an offset into the DMB
directory and allows a DMB to be identified with a specific subpool.

• Buffer prefix Control Block - This control block contains key
information about the contents of a specific buffer in a subpool.
There is one buffer prefix control block for each buffer. Each
subpool contains 2-32 buffers.

Licensed Material - Property of IBM 5-11

GENERAL S~RUC~URE

The general structure of the DL/I buffer pool control blocks is shown in
Figure 5-5.

BUFFER POOL CONTROL BLOCK PREFIX

DSECT Name: BFPL

SUBPOOL INFORMATION TABLE

DSECT Name: SUBINFTA

• • •
DMB SUBPOOL DIRECTORY

• • •
BUFFER PREFIX

DSECT Name: BFFRDS

• • •
I/O BUFFERS

(2-32 per subpool)

Each buffer pool control block is shown as a
separate data area in Section 5 of this PLM.
For the data area layout, see:

} BFPL - Buffer Pool Control Block Prefix

I "" -'o"'""""'"m.',. To",

Figure 5-5. General structure of DL/I Buffer Pool Control Blocks

5-12 Licensed Material - Property of IBM

ACBXT - ACB EXTENSION

DSECT Name: DMBACBXT

~he ACB extension is described as part of the general structure and
description of the data management block (DMB). The information in
ACBX~ is repeated for each data set in the DMB.

ALPEABETIC LIST OF FIELD/FLAG NAMES

Field/Flag Offset Flag
Name Dec(Hex) Code (Hex)

DMBACBAD 0(00)
DMBACBAP 7(07)
DMBACBDL 6(06)
DMBACBEX 6S(44)
DMBACBLC 56 (38)
DMEACBLN SO(50)
DMBACBMN 10(OA)
DMEACBMX 8(08)
DMBACBND 80(50}
DMEACBNM 60(3C)
DMBACBRP 52(34}
DMEACBS~ 0(00)
DMBACLNO 60(3C)

*DMEBESDS 46(2E) 40
DMBBFACT 44(2C}
DMECICYL 28(lC)
DMECINV 4(04}

*DMECISPL 35(23) 80
DMBCITRK 30(lE)
DME:C~FIN 0(00) (See DTF extension at end of ACBXT)
DMBD~FOT 4(04) (See DTF extension at end of ACBXT)
DMEECB 12(OC)
DMBFBASN 72(48)

*DMEFEA 46(2E) 20
DMBFRSPC 58 (3A)
DMEFRSPl 59(3B}
DMBHIBLK 16(10)
DMEHIRBA 36 (24)
DMBINDO 46(2E)

*DMEIGNOR 34 (22) 40
*DMEKEY 46(2E) 80

DMEKEYLE 31<1F}
DMBLRECL 42(2A)

*DMENUSE 34 (22) 20
DMEOFLGS 34(22)

*DMEOPEN 34(22) 10
*DMEPSEQ 35(23) 10
*DMEPUTKY 34(22} 08

DMERBASN 20(14)
DMERKP 32(20)
DMERLBLK 24(18)
DMESPLCT 4S(30}
DMEVSBFR 40(28)
DMEVSFLG 35(23}

*DMEwCHK 46(2E) 08

Licensed Material - Property of IBM 5-13

RECCRe LAYOUT - ACEXT

Offset
Dec(Hex)

0(00)

0(00)

4(04)

6(06)

7(07)

8(08)

10 (OM

12(OC)

16 (10)

20(14)

24 (t8)

28 (tC)

30 (tE)

31(lF)

32(20)

34 (22)

35(23)

Field/Flpg Flag
Length Name Code(Hex)

4

4

2

1

1

2

2

4

4

4

4

2

1

1

2

1

1

OMBACBST

DMBACBAD

DMBCINV

DMBACBDL

DMBACBAP

DMBACBMX

DMBACBMN

DMBECB

DMBHIBLK

DMBRBASN

DMBRLBLK

DMBCICYL

DMBCITRK

DMBKEYLE

DMBRKP

DMBOFLGS
DMBIGNOR

DMBNUSE

DMBOPEN
DMBPUTKY

DMBVSFLG
DMBCISPL

40

20

10
08

80

5-14 Licensed Material - Property of IBM

Meaning

Start of ACB extension

Address of corresponding ACB

Control interval size

Delta cylinders to scan

Number of root anchor points
per control interval (HDAM)

Length of the largest segment
in data set

Length of the smallest
segment in data set

VSAM ACB event control block
(ECB) used by buffer handler
(OLZDBHOO)

Highest control interval RBA

RBA of last logical record
assigned (HISAM) or relative
block number of last control
interval assigned (HD).
During batch initialization
the high-order byte is the
buffer size (control interval
size/512) indicator

Relative block number of last
control interval written (HO)

Number of control intervals
per cylinder

Number of control intervals
per track

Key length of KSDS

Relative key position

Open flags
IGN was specified for
workfile on load
ACB does not have resolved
secondary index entries~
workfile must be used
The corresponding ACB is open
Simulate not load mode to
VSAM

Flags
Control interval split
occurred

Offset
Dec(Hex)

36 (24)

40 (28)

42(2A)

Illl (2C)

116 (2E)

47 (2F)

48(30)

52(34)

56 (38)

58 (3A)

59 (3E)

60(3C)

68(44)

72 (1l8)

74 (1lA)

80(50)

Field/Flag Flag
Lenqth Name Code (Hex)

2

2

2

1

1

Il

4

2

1

1

4

2

DMBPSEQ

DMBHIRBA

DMBVSBFR

DMBLRECL

DMBBFACT

DMBINDO
DMBWCHK
DMBFBA

DMBBESDS
DMBKEY

DMBSPLCT

DMBACBRP

DMBACBLC

DMBFRSPC

DMBFRSP1

DMBACBNM
DMBACLNO

DMBACBEX

DMBFBASN

DMBACBND
DBMACBLN

10

08
20

110
80

Meaninq

Sequential processing is
possible for this KSDS

Highest RBA in present range
of extents (HIDAM ESDS only)

Number of buffers to be used

Logical record length

Blocking factor

Permanent indicators
write check option
FEA device suport

Blocked ESDS
Data set contains keys
(Simple HISAM and SHISAM)

Reserved

control interval split count

Address of RPL for this ACB

Log count (HISAM only)

Distributed free space
parameter

Second free space parameter

Data set name as in ACB
Length of version 1.0

Address of exit list for this
ACB

FBA sean value

Reserved

End of ACB extension
Length of ACB extension
(DMBACBND rrinus DMBACBST)

Note: HSAM DMEs have the following DTF extension.

DSECT Name: DMBDTFXT

0(00) 4 DMBDTFIN

4(01l) 4 DMBDTFOT

Address of HSAM input DTF

Address of HSAM output DTF

Licensed Material - Property of IBM 5-15

BFFR - BUFFER PREFIX

DSEC'! Name: BFFRDS

The tuffer prefix is described as part of the general structure and
description of the DL/I buffer pool control blocks. There is one buffer
prefix for each buffer allocated.

ALPHABETIC LIST OF FIELD/FLAG N&~ES

Field/Flag Offset Flag
Name Dec (Hex) code (Hex)

BFFRADDR 12(OC)
BFFRCIID 0(00)
BFFRCIRE 0(00)
BFFRDCB 6(06)
BFFRDMB 4(04)

*BFFREXNQ 7(07) 02
BFFRHOLE 30(lE)

*BFFRLAST 27(lB) 01
BFFRLEN 32(20)

*BFFRLOCI< 27(lB) 40
BFFRLOCU 10(OA)

*BFFRMT 7(07) 10
BFFRNACE 26 {lA)
BFFRNCII 20(14)
BFFRNCID 20(14)
BFFRNDME 24(lS)

*BFFRNORU 27(lB) SO
BFFRNPSF 2S(lC)
BFFRNPSL 29 (1D)
BFFRNPST 2S(lC)

*BFFRPNNQ 7(07) 01
*BFFRPREI: 7(0"?) OS

BFFRPST S(OS)
BFFRPSTF S(OS)
BFFRPSTL 9(09)

*BFFRREAD 7(07) 20
*BFFRRREL 27(lB) OS

BFFRSW 7(07)
BFFRSW1 27(lB)
BFFRUSCT 12(OC)
BFFRUSID 16(10)
BFFRWCBW 19(13)
BFFRwCFw lS(12)

*BFFRWCH 7(07) SO
*BFFRwERR 7(07) 04
*BFFRWRT 7(07) 40

5-16 Licensed Material - Property of IBM

RECORD LAYOUT - BFFR

Offset
Dec(Hex)

O{OO)

0(00)

4(04)

6(06)

7(07)

S(OS)

S(OS)

9(09)

10(OA)

12(OC)

12(OC)

16(10)

is (12)

19 (13)

20 (14)

20 (14)

24(lS)

26(lA)

Field/Flag Flag
Length Name Code (Hex)

7

4

2

1

1

2

1

1

2

1

4

2

1

1

7

4

2

1

BFFRCIID

EFFRCIRE

BFFRDMB

EFFRDCB

BFFRSW
BFFRWCH
BFFRWRT
BFFRREAD
BFFRMT
BFFRPRED

BFFRWERR

BFFREXNQ
BFFRPNNQ

BFFRPST

BFFRPSTF

BFFRPSTL

BFFRLOCU

BFFRUSCT

BFFRADDR

BFFRUSID

BFFRWCFW

BFFRWCBW

BFFRNCID

BFFRNCII

BFFRNDMB

BFFRNACB

SO
40
20
10
OS

04

02
01

Meaning

Control Interval identifier

Control Interval RBA

DMB Number

ACB Number

Flags
Buffer on write chain
Buffer being written
Buffer being read
Buffer empty
Buffer waiting for
predecessor being written
Buffer has permanent write
error
Existing CI ID enqueued
Pending CI ID enqueued

PST prefix numbers for
enqueue/dequeue

PST prafix number of the
controlling task

PST prefix number of the last
task in the chain of waiting
tasks

Log count

Use count

Address of buffer

ID of the users who altered
this buffer

Next lower buffer on the
write chain

Next higher buffer on the
write chain

New control interval
identifier

New control interval REA

New DMB number

New ACB number

Licensed Material - property of IBM 5-17

Offset Field/Flag Flag
Dec (Hex) Le~th Name Code (Hex) Meaning

27 US) 1 BFFRSWl Flags
BFFRNORU 80 Buffer is not reusable
BFFRLOCK 40 Buffer locked by logger
BFFRREL 08 Buffer is released
BFFRLAST 01 Last buffer prefix for this

subpool

28 (tC) 2 BFFRNPST PST prefix numbers for
enqueue/dequeue

28 (lC) 1 BFFRNPSF PST prefix number of task
which enqueued on new CI ID
and is first in the chain

29UD) 1 BFFRNPSL PST prefix number of task
which enqueued on new CI ID
and is last in the chain

30 (tE) 2 EFFRHO;LE. Length of largest space
available in the buffer

32(20) BFFRLEN Length of buffer prefix

5-18 Licensed Material - Property of IBM

BFPL - BUFFER POOL CONTROL BLOCK PREFIX

DSECT Name: DLZBFPL

The BFPL is described as part of the general structure and description
of DL/I buffer pool control blocks. There is one buffer pool control
block prefix that contains information for the entire buffer pool.

ALPHIIB~TIC LIST OF FIELD/FLAG NIIMES

Field/Flag Offset Flag
Name Dec (Hex) Code (Hex)

BFPLIILTR 28(lC)
BFPLBK~T 36(24)
BFPLCHBK 48(30)
BFPLCH~'I 44(2C)
BFPLCOU'I 62 (3E)

*BFPLEXCI 64(40) 00
BFPLID 0(00)
BFPLIGET 56(38)
BFP!.INCC 96(60)
BFPLINMII 72(48)
BFPLINPL 20(14)
BFPLINRO 88(58)
BFPLI~l 88(58)
BFPLIN~2 104(68)
BFPLISTL 52(34)
BFPLLEN HO(8C)
BFPLNQ~l 61H40)
BFPLNQ~2 68(44)
BFPLN~BK 40(28)
BFPLOS~T 32(20)

*BFPLPECI 64(40) 04
BFPLPRAD 128(80)
BFPLPSIF 124(7C)
BFPLPSIL 125 (7D)
BFPLPSI1 120(78)
BFPLRDCT 24(18)
BFP!.ROCO 63(3F)
BFPLRQCT 16 (10)
BFPLSUBD 132(84)
BFPLSUIN 136(88)

*BFPLSUPO 64(40) 08
*BFPLS~OO 68(44) 00
*BFPLSW80 68(44) 80
BFPL~ERR 60 (3C)
BFPL~ERT 61<3D)

Licensed Material -Property of IBM 5-19

RECORD LAYOUT - BFPL

Offset
Cec(Hex)

0(00)

4(04)

16(10)

20(14)

24 (18)

28(lC)

32(20)

36 (24)

40(28)

44(2C)

48(30)

52 (34)

56 (38)

60 DC)

6U3C)

62(3E)

63(3F)

64(40)

Field/Flag Flag
Length Name Code (Hex)

4

12

4

4

4

4

4

4

4

4

4

4

4

1

1

1

1

4

BFPL10

BFPLRQCT

BFPL1NPL

BFPLRDCT

BFPLALTR

BFPLOSWT

BFPLBKWT

BFPLNWBK

BFPLCHWT

BFPLCHBK

BFPL1STL

BFPL1GET

BFPLWERR

BFPLWERT

BFPLCOUT

BFPLROCO

BFPLNQWl

BFPLEXC1
BFPLPEC1
BFPLSUPO

00
04
08

5-20 Licensed Material - property ,of IBM

Meaning

Buffer pool control block 10
(EFPL)

Reserved

Number of requests received
by the buffer handler

Number of requests satisfied
from buffer pool

Number of read requests
issued

Number of buffer alter
requests received

Number of writes issued

Number of blocks written

Number of new blocks created
in pool

Number of chained writes
issued

Number of blocks written on
write chain

Number of retrieves by key
calls

~umber of GN calls received

Number of permanent write
error buffers in pool

Largest number of write error
buffers ever in pool

Number of rows/columns in
matrix currently in use

Mask showing available
rows/columns in matrix

ENQ/DEQ work area 1. Byte 0
indicates the following:
ENQ/OEQ existing CI code
ENQ/DEQ pending C1 code
ENQ/DEQ subpool code
Bytes 1-3 contain a painter
to the PST prefix numbers of
the first and last task
waiting for the resource

Offset
Dec(Hex)

68(44)

72 (48)

88 (58)

88(58)

96(60)

104 (68)

120 (78)

124(7CY

125 (7D)

126 (7E)

128 (80)

132 (84)

136 (8S)

140(SC)

Field/Flag Flag
Length Name Code (Hex)

4 BFPLNQW2

16

16

S

8

16

4

1

1

2

4

4

4

BFPLSWOO 00
BFPLSW80 80

BFPLINMA

BFPLINW1

EFPLINRO

BFPLINCO

EFPLINW2

EFPLPSIl

BFPLPSIF

BFPLPSIL

BFPLPRAD

BFPLSU.aD

BFPLSUIN

BFPLLEN

Meaning

ENQ/DEQ workarea 2
Mask to turn off wait switch
Task waiting for matrix space

Interlock detection matrix

Interlock detection workarea
1

Interlock detection workarea
2

Pointer to the PST prefix
numbers of the first and last
task waiting for matrix space

PST prefix number of the
first task waiting for matrix
space

PST prefix number of the last
task waiting for matrix space

Reserved

Beginning address of the
buffer prefix area

Beginniny address of the DMB
subpool directory

Beginning of the subpool
information table entries

Length of the buffer pool
control block prefix

Licensed Material - Property o~ IBM 5-21

CPAC - HDAM/HIPAM VARIABL~ LENGTH SEGMENT COMPRESSION/EXPANSION ROUTINE
INTERFACE TABLE (

DSECT Name: DMBCPAC

This table is described as part of the general structure and description
of the data management block (DMB). There is one entry for each
compressitle segment in the DMB.

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag Offset Flag
liJame Dec (Hex) Code (Hex)

DMBCPCNM 0(00)
DMBCPCSG S(OS)
DMBCPEP 16(10)
DMBCPFLG 20 (14)

*DMBCPKEY 20 (14) 02
DMBCPLNG 26 (lA)

*DMBCPNIT 20(14) 01
DMBCPRES 2S(lC)

*DMBCPSEQ 20 (14) OS
DMBCPSGL 24(lS)
DMBCPSQF 21(15)
DMECPSQL 22(16)

*DMBCPVLR 20(14) 04

5-22 Licensed Material - Property of IBM

RECORD LAYOUT - CPAC

Offset
Dec(Hex)

0(00)

8(08)

16 (10)

20(14)

21 (15)

22 (16)

24 (18)

26(lA)

28 (tC)

Field/Flag Flag
Length Name Code (Hex)

8

4

4

1

1

2

2

2

4

DMBCPCNM

DMBCPCSG

DMBCPEP

DMBCPFLG
DMBCPSEQ

DMBCPVLR
DMBCPKEY

DMBCPNIT

DMBCPSQF

DMBCPSQL

DMBCP'3GL

DMBCPLNG

DMBCPRES

08

04
02

01

Meaning

Segment Name

Compression routine name

Entry point of compression
routine

Flag byte
segment has a sequence field
defined
Segment is variable length
segment has key compression
option
Initialization and
termination processing
required

Length of key field minus 1

Offset to sequence field

Maximum segment length

Total length of CSECT - fixed
lengths, constants, plus user
data

Reserved for i,tialization

Licensed Material - Property of IBM 5-23

DACS - HDAM RANDOMIZING ROUTINE INTERFACE TAELE

DSEC'I Narr,e: DMBDACS

The HeAM randomizing routine interface table is described as part of the
general structure and description of the data management block (DMB).

ALPHAEETIC LIST OF FIELD/FLAG NAMES

Flag Field/Flag
Name

Offset
Dec (Hex) Code (Heg

DMBDAELK
DMBDAEYC
DMBDAEYM
DMBDACP
DMBDAEP
DMBCAKL
DMBDANME
DMBDARAP
DMBDASZE

16 (10)
24(18)
20(14)
28 (1C)
9(09)
8(08)
0(00)
14(OE)
12(OC)

RECORD LAYOUT - DACS

Offset Field/Flag
Dec (Hex) Length Name

0(00) 8 DMEDANME

8(08) 1 DMEDAKL

9(09) 3 DMBDAEP

12 (OC) 2 DMBDASZE

14 (On 2 DMBDARAP

16 (10) 4 DMBDABLK

20 (14) 4 DMBDABYM

24 (18) DMBDABYC

28 (1C) 4 DMBDACP

Flag
Code (Hex)

5-24 Licensed Material - Property of IBM

Meaning

Name of address conversion
algorithm load module

Root Key length minus 1

Entry point to conversion
module

Size of this DSECT

Number of root anchor
pOinters per block

Number of highest block
directly addressable

Maximum number of bytes per
root before overflow outside
of directly addressable area

Current number of bytes
consecutively inserted or
loaded under root

Result of last address
conversion

,1
,t,i~:

:~

DDIR - DMB DIRECTORY

DSECT Name: CLZCOIR

The OMB directory contains an entry for every OMS (data management
tlock) that can be accessed under OL/I control. The DMB directory is
part of the OL/I nucleus and is created during DL/I system definiti~n
for online processing. The start address of the directory (SCODLIDM)
and entry length (SCO~LIDL) are contained in the system contents
directory (SCD).

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag Offset Fleig
Name Oec(Hex) Code (Hex)

DOIRADDR 8(08)
*DDIRBAD 19(13) 01

DOIRCNT 12(OC)
DOIRCODE 18 (12)
DOIRCOD2 19 (13)
DDIROMBL 13(OD)

*DOIREXCL 19 (13) 10
*OOIREXSO 19(13) 08
*OOIRGRP 19 (13) 02
*DOIRHSAM 19(13) 20
*DOIRINOP 18(12) 20
*OOIRKBRQ 18 (12) 10

ODIRLEN 24(18)
*DOIRNDBM 19 (13) 80
*ODIRNOUP 18(12) 01
*OOIRNOSC 18(12) 04
*ODIRNRAN 19 (13) 40

ODIRNUMB 16 (10)
*OOIROPEN 18 (12) 40
DDIRPPST 21(15)

*ODIRSECL 18(12) 80
OOIRSYM 0(00)
OOIRVSRT 20 (14)

*OOIRWAIT 18(12) 08
*OOIR1GRP 19 (13) 04

Licen~ed Material - Property" of IBM 5-25

RECORD LAYOUT - CDIR

Offset
Cec(Bex)

0(00)

0(00) ,

8(08)

12(OC)

13(OC)

16(10)

18 (12)

19 (13)

20 (14)

21 (15)

24 (18)

Field/Flag Flag
Lenqth Name CodeCHex)

o

8

4

1

3

2

1

1

1

3

DDIR

CDIRSYM

DDIRADDR

DDIRCNT

DDIRDMBL

DDIRNUMB

DDIRCODE
DDIRSECL
DDIROPEN
DDIRINOP

DDIRKBRQ

DDIRWAI'I

DDIRNOSC

DDIRNOUP

DDIRCOD2
DDIRNDBM
DDIRNRAN

DDIRHSAM
DDIREXCL

DDIREXSD

DDIR1GRP
DDIRGRP
DDIRBAD

DDIRVSRT

DDIRPPST

DDIRLEN

80
110
20

10

08

Oil

01

80
110

20
10

08

Oil
02
01

5-26 Licensed Material - property of IBM

Meaninq

Label to establish entry
address

DMB. name - converted from
DMBNAME supplied during
DBDGEN

DMB address

Number of users scheduled to
this DMB

Storage required for this DMB

DMB number of this DMB

DMB code
Sec~ity locked
At least one ACB is opened
DMB to be opened during
online initialization or
during start call
Buffer pool space required
for this KSDS
System task waiting for zero
DDIRCNT
Do not schedule this DMB
because it is stopped
Do not schedule updates

DMB code byte 2
DMB not p~esent in library
Requested randomizing module
not present in library
This DMB for HSAM
This DMB being used
exclusively
Exclusive control required
for scheduling
DMB first in shared index
DMB belongs to shared index
DMB initialization failed

R15 VSAM return code

PPST address if DMB is used
exclusively

Length of one DDIR entry

DLZTWAB - TRANSACTION WORK AREA

DSECT Name: DLZTWA

The DLZTWA macro provides the mapping for the batch partition
controller's transaction work area. The information is used for
communication with:

• DL/I task termination
• CICS/VS
• Batch partition
• Sheduling MPS batch jobs
• Online message module

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag
Name

TWAEEND
TWAEPC
TWAEPCID

*TWAECOK
TWAEPCSV
TWA CALL
TWACCND

*TWAEOJSw
TWAMPCE
TWAMPCPT
TWAMPSFG
TWAMPSID
TWAMSG
TWAMSGID
TWAMSGNO
TWAMSGOl
TWAMSG02
TWAMSG03
TWAMSG04
TWAN1PTR
TWAPARMC
TWAPIDTE
TWAPSBDL
TWAPSBN
TWAPSBNM
TWAPSW
TWAPTEND
TWAPTIDF
TWARCODE
TWASCHDC
TWAWLIST
TWAXCBDL
TWAXCBNl
TWAXCBN2
TWAXCB2
TWAXCB3
TWAXNAME

Offset
Dec(Hex)

202 (CA)
0(00)
4 (04)
0(00)
76(4C)
40(28)
192(CO}
0(00)
5 (05)
1(01)
0(00)
180(B4)
148(94)
152(98)
148(94)
156(9C)
160 (AO)
164(A4)
168(A8)
32(20)
36(24)
56 (38)
55 (37)
44(2C)
48 (30)
172 (AC)
68(44)
58 (3A)
190(BE)
36(24)
8(08)
16(10)
24(18)
20 (14)
8(08)
12(OC)
182(B6)

Flag
Code (Hex)

80

40

Licensed Material -Property of IBM 5-27

RECORD LAYOUT - DLZTWAB

Offset
Dec (Hex)

Field/Flag Flag
Length Name Code (Hex) Meaning

***THE FOLLOWING FIELDS ARE USED FOR COMMUNICATING WITH THE DL/I TASK
TERMINATION ROUTINE***

0(00)

0(00)

1(01)

4(04)

5(05)

o

1

3

1

3

.. *THE FOLLOWING
LIST, DELIMITER,

8(08) 0

8(08) 4

12(OC) 4

16 (10) 4

20(14) 4

***THE FOLLOWING
PARTITION" *

24 (18) 8

32(20) 4

TWABPC

TWAMPSFG
TWABPCOK 80

TWAEOJSW 40

TWAMPCPT

TWABPCID

TWAMPCE

IS THE BATCH PARTITION
AND XECB***

TWAWLIST

TWAXCB2

TWAXCB3

TWAXCBDL

TWAXCBN2

Start of TWABPC

BPC flag byte:
BPC abnormal termination
processing completed
EOJ processing reached for
MPS batch partition

Address of MPC partition
table

Batch partition identifier
(F1,F2, •••)

Address of specific MPC
partition table entry

CONTROLLER'S CICS/VS WAITM

Start of TWAWLIST

Pointer to BPC's XECB
(DLZXCBn2)

Pointer to ABEND XECB
(DLZXCBn3)

ECB list delimiter
('FFFFFFFF')

XECB for BPC

ECB

FIELDS ARE USED FOR COMMUNICATION WITH THE BATCH

TWAXCBN1

TWAN1PTR

XECB name for batch
initialization (DLZXCBn1)

XECBTAB table entry address
for batch!. initialization's
XECB (DLZKCBn1)

***THE FOLLOWING FIELDS ARE USEr: FOR THE BATCH PARTITION CONTROLLER'S
DL/I SCHEDULING CALL PARAMETER LIST AND THE PSBNAME TO BE;SCHEDULED*"

36(24) 0 TWASCHDC Start of TWASCHDC

36(24) 4 TWAPARMC Pointer to parameter count

40 (28) 4 T'WACALL Pointer to call function

44(2C) 4 TWAPSBN Pointer to PSB name

48(30) 7 TWAPSBNM PSB name (PSENAME)

5-28 Licensed Material - Property of IEM

" i,'J

!,~

Field/Flag Flag Offset
Dec (Hex) Length Name, Code (Hex) Meaning

55(37) 1 TWAPSBDL PSB name delimiter

***THE FOLLOWING TABLE CONTAINS THE PARTITION IDENTIFIERS USED TO
IDENTIFY THE E~TCH PARTITION ASSOCIATED WITH MESSAGES DLZ082I, DLZ084I,
AND DLZ103IU*

56 (38) 20 TWAPIDTB Start of TWAPIOTB

56(38) 2 Unnamed Background partition ID (BG)

S8(3A) 2 TWAPTIOF Foreground partition 10 (F6)

60(3C) 2 Unnamed Foreground partition 10 (FS)

62(3E) 2 Unnamed Foreground partition ID (F4)

64(40) 2 Unnamed Foreground partition ID (F3)

66 (42) 2 Unnamed Foreground partition ID (F2)

68(44) 2 TWAPTEND Foreground partition ID (F1)

70(46) 2 Unnamed **Reserved**

72 (48) 2 Unnamed **Reserved**

74(4A) 2 Unnamed **Reserved**

***BATCH PARTITION CONTROLLER REGISTER SAVE AREA**.

76(4C) 72 TWAEPCSV

***THE FOLLOWING ARE THE PARAMETER
MESSAGE FILLERS PASSED TO THE DL/I
ALL EPC MESSAGES**.

148(94) o TWAMSG

1.48 (94) 4 TWAMSGNO

152(98) 4 TWAMSGID

156 (9C) 4 TWAMSG01

160(AQ) 4 TWAMSG02

BPC register save area (18
fullwords)

LIST POINTERS, PARAMETERS, ANO
ONLINE MESSAGE MODULE (DLZERMSG) FOR

Start of TWAMSG

Message number pointer for
all BPC messages

Partition ID pointer (for
messages DLZ082I, DLZ084I,
and OLZ103I>

BPC module ID pOinter (for
message OLZ104I)

Module name pointer (for
messages DLZ0821 and DLZ084I)

Termination condition pointer
and delimiter (for message
DLZ103I>

CICS ABEND code pOinter and
delimiter (for message
OLZ104I>

XECBTAB TYPE= pointer (for
messages DLZ082I and DLZ084I)

Licensed Material - Property of IBM 5-29

Offset Field'Flag Flag
Dec(Hex) Lengtll Name , Code (Hex) Meaning

PSW pOinter and delimiter
(for message DLZ104I)

164 (A4) TWAMSG03 XECBTAB XECB=XECBname pointer
(for messages DLZ0821 and
DLZ084I>

168(AS) 4 TWAMSG04 Return code pointer and
delimiter (for messages
DLZ0821 and DLZ084I)

172 (AC) 8 TWAPSW Program interrupt PSW

180(B4) 2 TWAMPSID Batch partitiion ID

182(B6) 8 TWAXNAME XECBTAB XECB=XECBname
(DLZXCBnn)

190 (BE) 2 TWARCODE Return code

192 (CO) 10 TWACOND BPC termination condition
(abnormally or normally)

202 (CA> 4 TWABEND CICS ABEND completion code
(ASRA)

5-30 Licensed Material - property of IBM

DMB - OMB PREFIX

DSECT Nallle: OMB

The DMB prefix is describ~d as part of the general structure and
description of the data management block (OMB).

ALPBAI!ETIC LIST OF FIELD/FLAG NAMES

Field/Flag
Name

OMBDALGR
*OMI!HD
*OMBHI
*DMBHSAM
*OMBISAM1

DMI!LCDCE
OMBLENTB

*DMBNDEX
OMBNREF
OMBORG
OMBPOATA
OMBPPRLN
OMBPPRNO
OMBSECTB

*OMBSHIS
OMBSIZE

*OMBSSAM
*OMI!V11

Offset
Dec (Hex) ,

12(OC)
6(06)
6(06)
6(06)
6(06)
7(07)
2(02)
6(06)
1.2 (OC)
6(06)
.8(08)
16 nO)
16(10)
4(04)
6(06)
0(00)
6(06)
0(00)

Flag
Code (Hex)

06
07
05
02

08

01

04
80

Licensed Material ,..:Property of IBM 5-31

RECORD LAYbUT - DMB

Offset
Dec (Hex)

0'(00)

2(02)

4(04)

6(06)

7(07)

S(08)

10(OA)

12(OC)

12(OC)

16(10)

16 (10)

Field/Flag Flag
Length, Name- Code (Hex)

2 DMESIZE

2

2

1

1

2

2

1

4

DM'BVll SO

DMBLENTB

DMBSEeTB

DMBORG
DMBSHIS
DMBISAMl
DMBSSAM
DMBHSAM
DMBHD
DMBHI
DMBNDEX

DMBLDDCB

DMBPDATA

DMBNREF

DMBDALGR

DMBP.PRND

DMBPPRLN

01
02
04
05
06
07
OS

5-32 Licensed Mat,~i,l - property of IBM

Meaning

DMB size
DL/I version 1.1 or later

Offset from DMB to first PSDB
(DMBPSDB)

Offset from DMB to end of
PSDBs + 1

DMB organization
Simple HISAM
HISAM
Simple HSAM
HSAM
HDAM
HIDAM
Index data base

ACB number (minus 1) of
sequential data set used to
write index records on data
base load

Length of system data in
index data base (protected)

Reserved

Number of entries in external
reference table

Address of direct algorithm
communication table if HDAM
(DMBDACS); LRECL number if
HSAM

End + 1 of DMB prefix. This
is also the address of the
first ACB extension
(DMBACBXT)

Length of DMB prefix
(DMBPPRND minus DMB)

DPPCB - PCB DOPE VECTOR TABLE

DSECi Name: DPPCB

The PCB dope vector table is described as part of the general structure
and description of the program specification block (PSB).

ALPHAEETIC LIST OF FIELD/FLAG NAMES

Field/Flag
Name

DPPCBDBD
DPPCBJCE
DPPCBKFD
DPPCBLEV
DPPCBLKY
DPPCEPRO
DPPCBSFD
DPPCESTC
DPPCPNSS

Offset
Dec (Hex)

0(00)
32(20)
52(34)
stOS)
44(2C)
2S(lS)
36(24)
16(10)
4S(30)

Flag
Code (Hex)

Licensed Material - Property of IBM 5-33

RECORD LAYOUT - DPPCB

Offset
Dec(Hex)

0(00·)

4(04)

6(06)

8(08)

12(OC)

14 (On

16 (10)

20 (14)

22 (16)

24 (18)

28 (1C)

30 (lE)

Length Field Name

4 DPPCBDBD

2 Maximum Length

2 Current length

4 DPPCBLEV

2 Maximum length

2 Current Length

4 DPPCBSTC

2 Maximum length

2 Current Length

4 DPPCBPRO

2 Maximum length

2 Current Length

Licensed Material -

Meaning

The address of the location that
contains DBPCBDBD

Maximum length: Halfword binary
number which specifies number of
storage units allocated for the
string; byte count if character,
bit count if bit

Current length: Halfword binary
number which specifies the number
of storage units, within the
maximum length, currently
occupied by the string

The address of the location that
contains DBPCBLEV

Maximum length: Halfword binary
number which specifies number of
storage units allocated for the
string; byte count if character,
bit count if bit

Current length: Halfword binary
number which specifies the number
of storage units, within the
maximum length, currently
occupied by the string

The address of the location that
contains DBPCBSTC

Maximum length: Halfword binary
number which specifies number of
storage units allocated for the
string; byte count if character,
bit count if bit

Current length: Halfword binary
number which specifies the number
of storage units, within the
maximum length~ currently
occupied by the string

The address of the location that
contains DBPCBPRO

Maximum length: Halfword binary
number which specifies number of
storage units allocated for the
string; byte count if character,
bit count if bit

Current length: Halfword binary
number which specifies the number
of storage units, within the
maximum length, currently
occupied by the string

of IBM

A
1,

I,

'~

Offset
Dec (Hex)

32(20)

36(24)

40 (28)

42(2A)

44 (2C)

48(30)

52(34)

56(38)

58(3A)

Length Field Name

4 DPPCBJCB

4 DPPCBSFD

2 Maximum length

2 Current Length

4 DPPCBLKY

4 DPPCPNSS

4 DPPCBKFD

2 Maximum length

2 Current Length

Meaning

The address of the location that
contains DBPCBJCB

The address of the location that
contains DBPCBSFD

Maximum length: Halfword binary
number which specifies number of
storage units allocated for the
string; byte count if character,
bit count if bit

Current length: Halfword binary
number which specifies the number
of storage units, within the
maximum length, currently
occupied by the string

The address of the location that
contains DBPCBLKY

The address of the location that
contains DBPCBNSS

The address of the location that
contains DBPCBKFD

Maximum length: Halfword binary
number which specifies number of
storage units allocated for the
string; byte count if character,
bit count if bit

Current length: Halfword binary
number which specifies the number
of storage units, within the
maximum length, currently
occupied by the string

Licensed Material - Property of IBM 5-35

DSG - DATA SET GROUP

DSECT Name: DSG

The DSG is described as part of the general structure and description of
the program specification block (PSB).

Note: with the exception of the first three characters of each
field/flag name <nSG instead of JCB) the layout of the data set group is
identical to the layout of the 'DSG Section' of the job control block
(JCB) •

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag Offset Flag
Name Dec(Hex) Code (Hex)

*DSGBLDEL 15(OF) 80
DSGBOFF 12(OC)

*DSGCOMMD 16(10) 02
*DSGCONST 15(OF) 20
*DSGDATX 16(10) 40

DSGDCBA 0(00)
DSGDCBNO 6(06)
DSGDMBNO 4(04)
DSG DSGLN 28 (lC)

*DSGDSOHD 7(07) 20
*DSGDSOHI 7(07) 10
*DSGDSOHS 7(07) 02
*DSGDSOH1 7(07) 04
*DSGDSOLS 7(07) 80
*DSGDSORI 7(07) 44
*DSGDSOUP 7(07) 01
*DSGDUPS 15(OF) 08
*DSGHDULD 15(OF) 40

DSGHSADD 8(08)
*DSGHSWLR 15(OF) 01

DSGINDA 7(07)
DSGINDB 14(OE)
DSGINDC 15(OF)
DSGINDG 16(10)
DSGLROOT 24 (18)
DSGNOSAM 20 (14)

*DSGPADKY 15(OF) 10
*DSGPREM 16(10) 80
*DSGRETD 16 (10) 04
*DSGVL 16(10) 08
*DSGXP 16(10) 10

5-36 Licensed Material - property of IBM

RECORD LAYOUT - DSG

Offset
Dec(Hex)

0(00)

4(04)

6(06)

7(07)

8(08)

14(OC)

14 (OE)

15 (OF)

16 (10)

17 (11)

20(14}

24(18)

2S(lC)

Field/Flag Flag
Length Name Code (Hex)

4

2

1

1

4

2

1

1

1

3

4

4

DSGDCBA

DSGDMBNO

DSGDCBNO

DSG1NDA
DSGDSOLS
DSGDSORI

DSGDSOHD
DSGDSOH1
DSGDSOHl

DSGDSOHS

DSGDSOUP

DSGHSADD

DSGBOFF

DSG1NDB

DSGINDC
DSGBLDEL
DSGHDULD
DSGCONST

DSGPADKY

DSGDUPS

DSGHSWLR

DSG1NDG

DSGPREM

DSGDATX
DSGXP

DSGVL

DSGRETD
DSGCOMMD

DSGNOSAM

DSGLROOT

DSGDSGLN

SO
44

20
10
04

02

01

SO
40
20

10

OS

01

SO

40
10

OS

04
02

Meaning

Address of the ACB extension
for this data set (KSDS ACB
extension if H1SAM)

DMB number for this DSG

ACB number of ACB in DMB
(KSDS ACB number if HISAM)

JCB indicators
This is last DSG in JCB
Data set group is root in
index
Data set group is HDAM
Data set group is HIDAM
Data set group is HISAM or
Simple H1SAM
Data set group is HSAM or
simple HSAM
Data set group is SHSAM or
SHISAM

HSAM I/O area after open

HSAM block size

(Not used in DL/I DOS/VS)

JCB indicators
Delete/replace DSG
HD unload is running
Index data set contains
constant
Search argument not equal to
key length
Nonunique secondary index
keys
HSAM wrong length record

DSG indicators - retrieve's
variable length flags
segment prefix moved to work
area
segment completely expanded
Force complete segment
expansion
The variable length routine
has been entered for segment
Data return call
Path return call

Reserved

Retrieve's HSAM 1D

RBA of current root

Length of each DSG section of
JCB

Licensed Material - property of IBM 5-37

FDB - FIELD DESCRIPTION BLOCK

DSECT Name: FDB

The field description block (FDB) is described as part of the general
structure and description of the data management block (DMB).

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag Offset Flag
Name Dec (Hex) Code (Hex)

*FDBCHAR 10(OA) 03
FDBDCENF 10(OA)
FDBEND 12(OC) (See XDFLD fields)

*FDBEQOK 10(OA) 20
FDBFLENG 11 (OB)

*FDBFP 10(OA) 04
*FDBHEX 10(OA) 01
*FDBKEY 10(OA) 40
*FDBLAST 10(OA) 80

FDBLEN l1(OB) (See DFLD fields)
FDBOFFCK 8(08) (See /CK fields)
FDBOFFST 8(08)

*FDBPACK 10(OA) 02
*FDBSPEC 10(OA) 10

FDBSYMBL 0(00)
FDBSYSLN 10(OA) (See /CK fields
FDBSYSNM 0(00) (See '(CK fields)

*FDBTYPE 10(OA) 07
*FDBXDCON 10(OA) 08 (See XDFLD fields)
*FDBXDEQ 10 COA) 01 (See XDFLD fields)

FDBXD,FLG 10(OA) (See XDFLD fields)
FDBXDLEN 12(OC) (See XDFLD fields)

*FDBXDLST 10(OA) 80 (See XDFLD fields)
FDBXDNM 0(00) (See XDFLD fields)
FDBXDSEC 8(08) (See XDFLD fields)

*FDBXDSPC 10(OA) 10
*FDBXDSSQ 10(OA) 04 (See XDFLD fields)
*FDBXDSSS 10(OA) 20
*FDBXDSYM 10(OA) 40
*FDBZC 10(OA) 07

5-38 Licensed Material - Property of IBM

RECORD LAYOUT - FDB

Field/Flag Flag Offset
Dec (Hex) Length Name Code (Hex)

O(OO} S

S(OS} 2

10(OA} 1

11 (OB) 1

FDBSYMBL

FDBOFFST

FDBDCENF
FDBLAST
FDBKEY

FDBEQOK

FDBSPEC

FDBTYPE
FDBZD
FDBFP
FDBPACK
FDBHEX
FDBCHAR

FDBFLENG

SO
40

20

10

07
07
04
02
01
03

Meaning

Symbolic name

Field offset from segment
beginning

Flags
Last FOB for this segment
This is segment" s sequence
field
Duplicate sequence fields
allowed
special FOB (XDFLD, /CK, or
/SK)
Field format bits
Field is zoned decimal
Field is floating point
Field is packed decimal
Field is hexadecimal
Field is character

Executable field length

~his describes the /CK system-related field

0(00 3 FDBSYSNM

3(03} 5

S(OS) 2 FDBOFFCK

10 (OA) 2 FDBSYSLN

This describes the XDFLD

O(OO}

S(OS)

10 (OA)

11(OE}

12(OC)

12(OC}

S

2

1

1

FDBXDNM

FDBXDSEC

FOBXOFLG
FDBXDLST
FDBXOSYM
FDBXDSSS

FDBXDSPC
FDBXDCON
FDBXDSSQ
FDBXDEQ

FDBXDLEN

FDBEND

FOB LEN

SO
40
20

10
OS
04
01

Constant '/CK'

Remainder of field name

Offset from beginning of
concatenated key

Bits 0-3 = X'OOOl"; Bits 4-15
= length minus 1

FOB Name

Offset to secondary list for
this index

Flags
Last FOB
Pointer is symbolic
Pointer is contained in
SOURCE/SUBSEQ data
Special FOB
Constant present
SUBSEQ present
Index segment same as index
source segment

Length of search field

End of FOB entry

Length of FOB entry (FDBENO
minus FDBSYMBL)

Licensed Material - Property of IBM 5-39

FER - FIELD EXIT ROUTINE INTERFACE LIST

DSECT Name: FER

The FER (Field Exit Routine Interface List) is used to pass information
to the named user-written exit routine whenever a designated field is to
be processed.

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag Offset Code
Name Dec (Hex) (Char)

FERPCSC 2(02)
*FERPCSCT 2(02} B
*FERPCSFE 2(02) C
*FERPCSNT 2(02) A
*FERPCSOK 2(02)
*FERPCSTC 2(02) D

FERPEC O(OO}
FERPFNCT 1(01)
FERPFSBA 2S(lC}

*FERPGET 0(00) G
*FERPINS 1(Ol} I

FERPLEN SO(50)
FERPPFA 12(OC)
FERPPFL 10(OA)
FERPPSA 4(04)

*FERPPUT 0(00) P
*FERPREP H01} R
*FERPRET 1(01) G
*FERPSSA 1(01) S

FERPUFA 24(lS)
FERPUFL 22(16)
FERPUSA 16 (10)
FERPUWA 32(20)

*FERPXDF 1(01) X

5-40 Licensed Material --property of IBM

RECORD LAYOUT - FER

Offset Field/Flag Code
Dec(Hex) Length Name (Char) Meaning

0(00) 1 FERPEC Entry code
FERPGET G Get function
FERPPUT P Put function

1(01) 1 FERPFNCT Function code
FERPRET G Retrieve segment conversion
FERPINS I Insert
FERPREP R Replace
FERPSSA S Retrieve SSA conversion
FERPXDF X Retrieve SSA conversion

for XDFLD

2(02) 1 FERPCSC Conversion status code
FERPCSOK OK
FERPCSNT A Numeric truncation error
FERPCSCT B Character truncation error
FERPCSFE C Format error
FERPCSTC D Type conflict

3(03) 1 **Reserved**

4(04) 4 FERPPSA Physical segment address (if
variable length, points to
two byte length field)

8(08) 2 **Reserved**

10(OA) 2 FERPPFL Physical field length (zero
if virtual field)

12(OC) 4 FERPPFA Physical field address (zero
if virtual field)

16(10) 4 FERPUSA User segment address

20(14) 2 **Reserved**

22(16) 2 FERPUFL User field length

24 (18) II FERPUFA User field address

28 (lC) II FERPFSBA FSB address

32 (20) 48 FERPUWA User work area

80(50) 0 FERPLEN Length of field exit routine
interface list

Licensed Material - Property of IBM 5-41

'FERT - FIELD EXIT ROUTINE TABLE

DSECT Name: FERT

The FERT (Field Exit Routine Table) is used to hold information about a
user-written exit routine.

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag Offset Flag
Name Dec (Hex) Code (Hex)

*FERTDUMP 20(14) 80
FERTFLAG 20(14)
FERTLEN 24(18)
FERTNAME 0(00)
FERTPRES 16(10)
FERTRTEP 8(08)
FE RTRTLG 12(OC)

RECORD LAYOUT - FERT

Offset Field/Flag Flag
Dec(Hex) Length Name Code (Hex) Meaning

0(00) 8 FERTNAME Module name

8(08) 4 FERTRTEP Module entry point

12(OC) 4 FERTRTLG Module length

16(10) 4 FERTPRES Pointer to next FERT entry

20 (14) 1 FERTFLAG

FERTDUMP 80 Control block dumped

21(15) 3 **Reserved**

24(18) 0 FERTLEN Length of field exit routine
table

5-42 Licensed Material - property of IBM

~SB - FIELD SENSITIVITY BLOCK

DSECT Name: FSB

The FSB (Field Sensitivity Block) is used to hold information about a
field which has been defined with a SENFLD statement during PSBGEN.

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag
Name

FSBCHAIN
*FSBCHAR
*FSBCR
*FSBDPF
*FSBEQOK

FSBFDBP
*FSBFER

FSBFERTA
FSEFLAG
FSBFLDNM

*FSBFP
*FSBHEX
*FSBIV

FSBIVA
*FSBKEY
*FSBLAST

FSBLEN
*FSBNR
*FSBOVF
*FSBPACK

FSBPCHA
FSBPHYAD
FSBPVLEN
FSBPVLOC
FSBPVTYP

*FSBSSA
*FSETYPE
*FSBUCHAR
*FSEUFP
*FSEUHEX
*FSBUPACK

FSBUVLEN
FSBUVLOC
FSBUVTYP

*FSBUZD
*FSBVF
*FSBZD

Offset
Dec(Hex)

2S(lC)
10(OA)
1UOB)
10(OA)
10(OA)
0(00)
16 (10)
24(lS)
11(OB)
0(00)
10(OA)
10(OA)
16(10)
20(14)
10(OA)
10(OA)
32(20)
16(10)
1UOB)
10(OA)
4(04)
6 (06)
12(OC)
8(08)
10(OA)
11(OB)
10(OA)
16(10)
16(10)
16 (10)
16(10)
lS(12)
14(OE)
16(10)
16(10)
16(10)
10(OA)

Flag
Code (Hex)

03
20
10
20

20

04
01
40

40
SO

08
40
02

80
07
03
04
01
02

07
10
07

Licensed Material - property of IBM 5-43

RECORD LAYOUT - FSB

Offset
Dec(Hex)

0(00)

0(00)

4 (04)

6(06)

8(08)

10 (OA)

11 (OB)

12 (OC)

14 (OE)

16 (10)

17(11)

18 (12)

Field/Flag Flag
Length Name Code (Hex)

8

4

2

2

2

1

1

2

2

1

1

2

FSBFLDNM

FSBFDBP

FSBPCHA

FSBPHYAD

FSBPVLOC

FSBPVTYP
FSBLAST
FSBKEY
FSBEQOK
FSBDPF

FSBTYPE
FSBZD
FSBFP

FSBCHAR
FSBPACK

FSBHEX

FSBFLAG
FSBSSA
FSBOVF
FSBCR

FSBPVLEN

FSBUVLOC

FSBUVTYP
FSBIV
FSBFER
FSBVF
FSBNR
FSBUZD

FSBUFP

FSBUCHAR

FSBUPACK

FSBUHEX

FSBUVLEN

80
40
20
10

07
07
04

03
02

01

80
40
20

40
20
10
08
07

04

03

02

01

5-44 Licensed Material - .Property of IBM

Meaning

Field name

FDB address (ACBGEN only)

Physical view chain pOinter
(ACBGEN only)

Field physical adjustment
factor (ACBGEN only)

Displacement in physical
segment

Physical field type
Last FSB
Sequence field
Duplicate sequence allowed
Field is in destination
parent
Field format bits
Field format is zoned decimal
Field format is floating
point
Field format is character
Field format is packed
decimal
Field format is binary

Flags
Field may be used in an SSA
Field has subfields
Conversion required

Physical field length
(executable)

Field displacement in user's
view

User's field type
Initial value specified
Field exit routine specified
Field is virtual
Replace prohibited
User field format is zoned
decimal
User field format is floating
pOint
User field format is
character
User field format is packed
decimal
user field format is binary

Reserve<i

User's field length
(executable)

Offset Field/Flag Flag
Dec (Hex) Length Name Code (Hex) Meaning

20(14) 4 FSBIVA Pointer to specified initial
value

24(18) 4 FSBFERTA Field exit routine table
entry address

28(lC) 4 FSBCHAIN Chain painter for ACBGEN

32(20) 0 FSBLEN Length of FSB entry

Licensed Material - Property of IBM 5-45

JCB - JOB CONTROL,BLOCK

DSECT Name: JCB

The JCB is described as part of the general structure and description of the
program specification block (PSE).

ALPHABETIC LIST OF FIELDAFLAG NAMES

Field/Flag
Name

*JCBAI.LEX
*JCEELDEL

JCBBOFF
JCBCODE

*JCBCOMMD
*JCBCONST
*JCBDATX

JCBDCBA
JCBDCBNO

*JCBDEFDL
*JCEDLET

JCEDMBNO
*JCBDOPI

JCBDSGLN
*JCBDSOHD
*JCBDSOHI
*JCBDSOHS
*JCEDSOH1
*JCBDSOLS
*JCBDSORI
*JCBDSOUP
*JCBDUPS
*JCBFLS
*JCBHDULD

JCBHSADD
*JCBHSWLR

JCBINDA
JCBINDB
JCBINDC
JCBINDG

*JCBISRT
*JCBI<EYX

JCBLEVND
JCBLEVTE
JCBLEV1C
JCBLROOT
JCBLVC
JCBLVT
JCBMI<YL

*JCEMLPOS
*JCBNODEQ

JCBNOSAM
*JCBNTFD
*JCEOPEN
*JCBORGHD
*JCBORGHI
*JCBORGHS

Offset
Dec (Hex)

64(40)
179{B3)
176(BO)
60(3C)
lS0(B4)
179CB3)
lS0(B4)
164(A4)
170(AA)
60(3C)
14S(94)
16S(AS)
64(40)
lSS(BC)
171 (AB)
171<AB)
171<AB)
171<AB)
17l<AB)
171 (AB)
171<AB)
179(B3)
64(40)
179(B3)
172(AC)
179(B3)
171<AB)
17S(B2)
179(B3)
lS0(B4)
14S(94)
lS0(B4)
4(04
0(00)
32(20)
lSS(BC)
65(41)
64(40)
3S(26)
60(3C)
14S(94)
lS4(BS)
14S(94)
61(3D)
61(3D)
61 (3D)
61 (3D)

Flag
Code (Hex)

04
SO

02
20
40

40
02

OS

20
10
02
04
SO
44
01
OS
01
40

01

01
20

OS
SO

OS
SO
20
10
02

5-46 Licensed Material ~ Property of IBM

Field/Flag Offset Flag
Name Oec(Hex) Code (Hex)

*JCBORGH1 61 (30) 04
JCBORGN 61 (30)

*JCBORGRI 61(30) 44
*JCBCRGSH 61(30) 05
*JCBORGSS 61(30) 01
*JCBPAOKY 179(B3) 10

JCBPC 66(42)
*JCBPCHK 148(94) 20
JCBPOP 67(43)

*JCEPPENQ 148(94) 10
*JCBPREM 180(B4) 80

JCBPRESF 63(3F)
JCBPREVF 30(lE)
JCBPREVR 31(lF)
JCBPRLEN 188(BC)

*JCBRAP 148(94) 40
*JCBROREQ 60(3C) 01

JCERES1 40(28)
JCBRES2 44(2C)
JCBRES3 48(30)
JCERES4 52 (34)
JCBRESS 56(38)

*JCBRETO 180(B4) 04
*JCBRETOL 60(3C) 20
*JCBRTIST 60(3C) 02

JCBRWKF 62(3E)
JCBSOBNO 12(OC)
JCESDB1 8(08)

*JCBSGRET 60(3C) 04
JCBSIZE 36(24)

*JCBSKPG 148(94) 04
JCBSTOR1 68(44)
JCBSTOR2 72 (48)
JCBSTOR3 76(4C)
JCBSTOR4 80(SO)
JCBSTOR5 84(S4)
JCBSTOR6 88 (58)
JCBSTOR7 92(5C)
JCBSTOR8 96(60)

*JCBSWAP 179(B3) 01
*JCBTAREX 60(3C) 10
*JCBTARPR 60(3C) 80

JCBTRACE 16(10)
*JCBVL 180(B4) 08

JCBWKRO 100(64)
JCBWKR1 104(68)
JCBWKR2 108(6C)
JCBWKR3 112 (70)
JCBWRK4 116(74)
JCBWKRS 120 (78)
JCBWKR6 124(7C)
JCBWKR7 128(80)
JCBWKR8 132(84)
JCBWKR9 136(88)
JCBWKR10 140(8C)
JCBWKRll 144(90)
JCBWKR12 148(94)
JCBWKR13 152(98)
JCBWKR14 lS6(9C)
JCBWKR15 160(AQ)
JCBWK12A 148(94)
JCBWK12B 149(9S)

Licensed Material - property of IBM S-47

Field'(Flag
Name

*JCBXP

Offset
Dec(Hex)

180(B4)

Flag
Code (Hex)

10

5~48 Licensed Material ~ Property of IBM

RECORD LAYOUT - JCB

Offset Field/Flag Flag
Dec(Hex) Length Name Code (Hex) Meaning

0(00) 4 JCBLEVTB Address of level table

4(04) 4 JCBLEVND Address of end of level table
+ 1

S(OS) 4 JCBSDBl Address of first SDB entry
(roots)

12(OC) 4 JCBSDBND Address of end of SDBs + 1

16 (10) 14 JCBTRACE Prior 7 functions followed
return code

DL/I FUNCTION CODES

The following calls require a PCB and will be traced in JCBTRACE. Any
call not requiring a PCB is not put in the trace table. However, the
function code appears in JCBPREVF or JCBPREVR..

Name Code(Hex) Meaning

FUNCGU
FUNCGHU
FUNCGN
FUNCHHN
FUNCGNP
FUNCGHNP
FUNCDRTY
FUNCREPL
FUNCDLET
FUNCISTY
FUNCISRT
FUNCASRT

01
01
03
03
04
04
20
21
22
40
41
42

'GU' Get Unique
"GHU' Get Hold Unique
'~GN' Get Next
'GHN' Get Hold Next
"GNP' Get Next Within Parent
"GHNP' Get Hold Next Within Parent
Delete/Replace
nREPL' Replace
"DLET" Delete
"ISRT" Insert
Insert
DL/I Utility Insert

The following codes must have a PCB

FUNCCHKP
FUNCPCBM

S5
90

GCHKp· checkpoint
PCB Call for MPS

The following codes do not require a PCB

FUNCUNLD
FUNCGSCD
FUNCTERM

AO
Al
A3

DL/I FUNCTION TYPES

FUNCGNTY
FUNCGUTY
FUNCPATY
FUNCHOTY

30 (iE)

31C1F)

1

1

SO
40
20
OS

'. UNLD~ Unload Call
"GSCD'· Get SCD Call
"TERM" Termination Call

Get Next Type
Get Unique Type
Parent Type
Hold Type

JCBPREVF

JCBPREVR

Prior function

Prior return code (right
byte)

by

Licensed Material - Property of IBM 5-49

Offset
Dec(Hex)

32(20)

36(24)

38 (26)

40 (28)

44 (2C)

48 (30)

52(34)

56 (38)

60 (3C)

Field/Flag Flag
Length Name Code(Hex)

2

2

1

JCBLEV1C

JCBSIZE

JCBMKYL

JCBRESl

JCBRES2

JCBRES3

JCBRES4

JCBRES5

JCBCODE

JCBTARPR 80

JCBDEFDL 40

JCBRETDL 20

JCBTAREX 10

5-50 Licensed Material - Property of IBM

Meaning

Address of first level table
entry in call; Address of
lowest level table entry
succesfully processed by
retrieve

PCB plus JCB size

Maximum length of key
feedback area

Call characteristics set by
call analyzer
JCBRESl =
X'80'
X'40'
X· 20'
X"lO'
X" OS'
X·04'

JCBRESl
X'04'
X'02"
X'Ol'

No SSAs
Qualified SSAs
Unqualified SSAs
Multiple. SSAS
Multiple unqualified SSAs
Qualified SSA after an
unqualified SSA
Last SSA qualified

+ 1 =
Call has C command code
Call has T command code
JCBLEV1C has been filled
on this call

JCBRESl + 2 =
X'80" Any level qualified on

data
X"40· Any level had D command

code
X"20· Qualified SSA follows

D cOINl\and code

JCBRESl
X" 80"
X'40"

X·Ol"

+ 3 =
Field is not in sublist
Qualification field is
in logical parent
This set has a key field

Action modules work area

Action Modules work area

Action Modules work area

Action modules work area

Inter-module communications
switch
DLZPOST update twin pointers
only
Re-insert of a deleted
segment
Return deleted segment for HD
unload
Reposition for GN (no SSA)
with multiple positioning

(

Offset
Dec (Hex)

61(3D)

62(3E)

63(3F)

64 (40)

65(41)

66 (42)

67(43)

68(44)

72 (48)

76(4C)

80(50)

Field/Flag Flag
Length Name Code (Hex)

1

1

1

1

1

1

1

4

4

4

4

JCBMLPOS

JCBSGRET

JCBRTIS'I

JCBRDREQ

JCBORGN

JCBOPEN

JCBORGRI
JCBORGHD
JCBORGHI
JCBORGSH
JCBORGH1
JCBORGHS
JCBORGSS

JCBRWKF

JCBPRESF

JCBLVT

JCBDOPI

JCBALLEX

JCBFLS

JCBLVC

JCBPC

JCBPOP

JCBSTOR1

JCBSTOR2

JCBSTOR3

JCBSTOR4

08

04

02

01

80

44
20
10
05
04
02
01

08

04

01

Meaning

Retrieve keeping multiple
positions
Used in positioning after not
found
Retrieve positioning for
insert
DLZSKPG start at next
occurence of segment

Open switch and composite
organization of all SDBs in
the JCB
Open done for all data sets
in the JCB
Organization is root of index
Organization is HDAM
organization is HIDAM
Organization is simple HISAM
Organization is HISAM
Organization is HSAM
Organization is simple HSAM

Retrieve's working function

Present coded function (see
DL/I Function Codes)

switches used i,n accessing
segments via DLZSKPG routine
program isolation is to be
done for associated PCB
All sensitive segments have
exclusive intent
At least one segment has
field level sensitivity (used
by call analyzer)

Level of segment being
searched for by retrieve

Physical code of segment
being searched for by
retrieve

Parent level for within
parent calls

Insert's use across I/O or
calls

Insert's use across I/O or
calls

Insert's use across I/O or
calls

Address of last segment read
- referenced by label BEGBUF
in retrieve

Licensed Material - Property of IBM 5-51

Offset Field/Flag Flag
Dec(Hex) Length Name Code (Hex) Meaning

84 (S4) 4 JCBSTORS Current segment RBA
referenced by label CURTTR in
retrieve

88 (S8) 4 JCBSTOR6 Retrieve's use across I/O or
calls

92(SC) 4 JCBSTOR1 Contains switches for
positive check phase -
referenced by label KEEPIT in
retrieve

96 (60) 4 JCBSTOR8 Work area for retrieve

100(64) 4 JCBWKRO Action modules work area

104(68) 4 JCBWKRl Action modules work area

108(6C) 4 JCBWKR2 Action modules work area

112 (10) 4 JCBWKR3 Action modules work area

116 (14) 4 JCBWKR4 Action modules work area

120 (18) 4 JCBWKRS Action modules work area

124 (1C) 4 JCBWKR6 Action modules work area

128(80) 4 JCBWKR1 Action modules work area

132 (84) 4 JCBWKR8 Action modules work area

136(88) 4 JCBWKR9 Action modules work area

140(8C) 4 JCBWKR10 Action modules work area

144 (90) 4 JCBWKRll Action modules work area

148(94) 4 JCBWKR12 Action modules work area

148 (94) 4 JCBWK12A Program isolation switches
(retrieve only)

JCBNODEQ 80 No dequeue processing: all
level table entries empty
after CHKP, TERM, etc.

JCBRAP 40 Root anchor pointer enqueued
(HDAM only)

JCBPCHK 20 DLZPCHK calling DLZPOST
(enqueue not required)

JCBPPENQ 10 DLZKDTL enqueued on physical
parent searching on data
field

JCBNTFD 08 DLZPCHK processing not found
condition

JCBSKPG 04 DLZDEQ should release all
outstanding enqueues

JCBDLET 02 ENQ/DEQ required in DLZPCHK
due to delete

JCBISRT 01 Indicates DLZHIDA or DLZHDAM
is accessing destination
parent during a logical child
insert

5-52 Licensed Material - Property of IBM

Offset
Dec (Hex)

149 (95)

152 (9S)

156 (9C)

160(AO)

Field/Flag Flag
Length Name Code (Hex)

3 JCBWK12B

4 JCBWKR13

4 JCBWKR14

4 JCBWKR15

start of each DSG section of JCB

164 (A4)

16StAS)

170tAA)

17UAB)

172tAC)

176tBO)

17StB2)

179 (B3)

lS0tB4)

4

2

1

1

4

2

1

1

1

JCBDCBA

JCBDMBNO

JCBDCBNO

JCBINDA
JCBDSOLS
JCBDSORI

JCBDSOHD
JCBDSOHI
JCBDSOH1

JCBDSOHS

JCBDSOUP

JCBHSADD

JCBBOFF

JCBINDB

JCBINDC
JCBBLDEL

JCBHDULD
JCBCONST

JCBPADKY

JCBDUPS

JCBHSWLR

JCBINDG

JCBPREM

JCBDATX
JCBXP

JCBVL

JCBRETD
JCBCOMMD

SO
44

20
10
04

02

01

so

40
20

10

OS

01

SO

40
10

OS

04
02

Meaning

Action modules work area

Action modules work area

Action modules work area

Action modules work area

Address of the ACB extension
for this data set (KSDS ACB
extension if HISAM)

DMB number for this DSG

ACB number of ACB in DMB
(KSDS ACB number if HISAM)

JCB Indicators
This last DSG in JCB
Data set group is root in
index
Data set group is HDAM
Data set group is HIDAM
Data set group is HISAM or
simple HISAM
Data set group is HSAM or
simple HSAM
Data set group is SHSAM or
SHISAM

HSAM I/O area after open

HSAM block size

(Not used in DL/I DOS/VS)

JCB indicators
This DSG belongs to
delete/replace
HD unload is running
Index data set contains
constant
Search argument not equal to
key length
Non-unique secondary index
keys
HSAM wrong length record

JCB indicators - retrieve
variable length flags
Segment prefix moved to work
area
Segment completely expanded
Force complete segment
expansion
The variable length routine
has been entered for segment
Data return call
Path return call

Licensed Material - property of IBM 5-53

Offset Field/Flag Flag
Dec(Hex) Length Name Code(Hex) Meaning

18UB5) 3 **Reserved**

184 (B8) 4 JCBNOSAM Retrieve HSAM's ID

188 (BC) 4 JCBLROOT RBA of Cl,lrrent root
JCBPRLEN Length of JCB prefix
JCBDSGLN Length of each DSG section of

JCB

5-54 Licensed Material - Property of IBM

LEV - LEVEL TABLE ENTRY
(

DSECT Name: LEV

The level table entry is described as part of the general structure and
description of the program specification block (PSB),.

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag Offset Flag
Name Dec (Hex) Code (Hex)

*LEVCDB 13(OD) SO
*LEVCOMMC lS(12) 40
*LEVCOMMD 19 (13) 04
*LEVCOMMF 19(13) 20
*LEVCOMML 19 (13) 10
*LEVCOMMN 19(13) 02
*LEVCOMMQ 19 (13) 01
*LEVCOMMT lS(12) SO
*LEVCOMMX lS (12) 20
*LEVCONT 13(OD) OS
*LEVCATA 12(OC) OS
*LEVDATA1 17(11) 04
*LEVDLET 12(OC) SO
*LEVEMPTY 12(OC) 40

LEVEND 36 (24)
*LEVEOD 13(OD) 20
LEVF1 12(OC)
LEVF2 13(OD)
LEVF3 17(11)
LEVF4 lS(12)
LEVF5 19 (13)

*LEVHELD 12(OC) 20
*LEVHIER 12(OC) 10
*LEVISRT 17(11) SO
*LEVI<EY1 17(11) 02
*LEVLAST 12(OC) 01

LEVLEN 36(24)
LEVLEV 0(00)

*LEVLSW 13(OD) 02
*LEVMEMAC 20 (14) OS
*LEVMEMAS 20(14) 02

LEVMEMBR 20(14)
*LEVMEMEQ 20(14) SO
*LEVMEMGT 20(14) 20
*LEVMEMI<Y 20(14) 04
*LEVMEMLT 20(14) 40
*LEVMEMNE 20 (14) 10
*LEVMEMPL 20(14) 01
*LEVNDB 13(OD) 01
*LEVNFPOS 13(OD) 40

LEVNUPC 16(10)
LEVNUSDB 2S(lC)
LEVPC 1(01)

*LEVPFRST 12(OC) 02
*LEVPLAST 12(OC) 04
*LEVPSUDO 17(11) OS

LEVSDB S(OS)

Licensed Material - Property of IBM 5-55

Field/Flag Offset Flag
Name Dec(Hex) Code (Hex)

LEVSEGOF 2(02)
LEVSSA 32(20)

*LEVSTOP 13(OD) 04
LEV'ITR 4(04)
LEVUSEOF 14(OE)

5-56 Licensed Material - property of IBM

RECORD LAYOUT - LEV

Offset
Dec(Hex)

0(00)

1(01)

Field/Flag Flag
Length Name code (Hex)

1 LEVLEV

1 LEV PC

Meaning

Level number

Current segment physical code

Note: This portion of the level table, once set by retrieve/insert, is
never cleared to zeros: it is only changed as needed.

2 (02)

4(04)

S(OS)

12 (OC)

13(OD)

14 (OE)

2

4

4

1

1

2

LEVSEGOF

LEVTTR

LEVSDB

LEVFl
LEVDLET

LEVEMPTY
LEVHELD

LEVHIER

LEVDATA

LEVPLAST

LEVPFRST

LEVLAST

LEVF2
LEVCDB

LEVNFPOS

LEVEOD
LEVCONT

LEVSTOP

LEVLSW
LEVNDB

LEVUSEOF

so

40
20

10

os

04

02

01

so

40

20
OS

04

02
01

segment's physical code
offset from start of record
(relative offset to segment
from start of buffer)

Relative byte address

SDB entry address for
current segment physical code
in this entry

Flags
Segment at this level newly
deleted
This level table entry empty
Segment at this level in hold
status
Segment at this level in
hierarchic path (HISAM only)
Segment at this level moved
to user
Segment is last of type for
parent
Segment is first of type for
parent
This is the last level table
for PCB

Flags
Verify enques required in
data base of current segment
Level has not found position
for higher level
EOD flag
The SSA at this level allows
retrieve to obtain the next
sequential segment
Used to determine the setting
of LEVCONT by retrieve
Used by retrieve
verify enques required in
destination parents data base

Offset of segment in user I/O
area (PSTUSER)

Note: Fields LEVNUPC through LEVSSA describe the SSA set by the call
analyzer for this entry.

16(10) 1 LEVNUPC Physical code of requested
segment

Licensed Material - Property of IBM 5-57

Offset
Dec (Hex)

17 (11)

18 (12)

19 (1~)

20(14)

21 (15)

28 (lC)

32(20)

36(24)

36(24)

Field/Flag Flag
Length Name Code (Hex)

1 LEVF3
LEVISRT 80

LEVPSUDO 08

LEVDATA1 04
LEVKEYl 02

1 LEVF4
LEVCOMMT 80

LEVCOMMC 40

LEVCOMMX 20

1 LEVF5
LEVCOMMF 20

LEVCOMML 10

LEVCOMMD 04

LEVCOMMN 02

LEVCOMMQ 01

1 LEVMEMBR

7

4

4

LEVMEMEQ 80
LEVMEMLT 40
LEVMEMGT 20
LEVMEMNE 10

LEVMEMAC 08

LEVMEMKY 04
LEVMEMAS 02
LEVMEMPL 01

LEV NUS DB

LEVSSA

LEVEND

LEVLEN

5-58 Licensed Material - Property of IBM

Meaning

Flags
Inserting at this level (set
by retrieve)
This is a pseudo SSA filling
gap
SSA qualified on data field
SSA qualified on key field

Flags
T command code - retrieve by
direct address
C command code qualifier is
concatenated key
X command code - index
maintenance internal call

Flags
F command code - get first of
segment type
L command code - get last of
segment type
D command code - transfer
data this level
N command code ~ do not
replace this level
Q command code - enqueue
segment at this level read
only

Switch for each member
Operator has = sign
Operator has < sign
Operator has > sign
Operator is not equal
(LEVMEMGT + LEVMEMLT)
This member in use -
(unqualified in only bit)
Qualification is on key field
See meaning for X'Ol'
LEVMEMAS + LEVMEMPL = right
parenthesis present (always
on for DL/I DOS/VS)

Reserved

SSAs SDB address

SSAs left parenthesis
position address

End of level table entry

Length of level table entry
(LEVEND minus LEVLEV)

I

MPCPT - MPC PARTITION TABLE

The Master Partition controller (MPC) partition table is used to pass
control information when processing batch partition application programs
under multiple partition support (MPS). The MPC partition table resides
in the transaction work area. There is one entry for every partition
sysgened.

Field Name

MPCPARTB

MPCECBLT

Length
(bytes)

200

4 (per
entry)

Description

Contains one 28 byte entry (see MPC
Partition Table entry) for each partition
defined during system generation. The last
entry is delimited by a full-word of X'FF',.

This is the CICS WAITM ECB list.
It contains one entry for each:

• DLZXCBOO (Stop Transaction XECB)
to stop MPS

• DLZXCBOl (Stop Partition XECB) -
by BPC when it stops

• DLZXCBnO (Start partition XECB)
defined by MPS. Used by batch
initialization to notify MPC to
EPC

• DLZXCBn3(ABEND XECB) - Used for
handling

- used

posted

start the

ABEND

Note: n is the partition indicator. It can
be 1 through 7.

The last entry is delimited by a fullword of
X'FF' •

Licensed Material - Property of IBM 5-59

MPC PARTITION TABLE ENTRY

DSECT Name: MPCPT

There is one MPC partition table entry for every partition defined
during system generation.

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag
Name

*MPCADEF
MPCAXECB

*MPCCNBPC
MPCDELIM

*MPCERR
MPCFLAG
MPCFLAG1

*MPCPACT
MPCPID

*MPCPSTP
MPCPTLN
MPCRC1
MPCRC2

*MPCREBPC
*MPCSDEF

MPCSXECB
MPCTCA

*MPCTSTP
*MPCXECB

Offset
Dec (Hex)

0(00)
12(OC)
20(14)
0(00)
0(00)
0(00)
20(14)
0(00)
3(03)
0(00)
2S (lC)
1(01)
2(02)
0(00)
0(00)
S(OS)
4(04)
0(00)
0(00)

Flag
Code (Hex)

02

SO

40

SO

10

01
04

20
OS

5-60 Licensed Material - Prop~rty of IBM

RECORD LAYOUT - MPC

Offset
Dec (Hex)

0(00)

0(00)

1(01)

2(02)

3(03)

4(04)

S(OS)

12 (OC)

16(10)

20 (14)

21(15)

24 (lS)

2S(lC)

Field/Flag Flag
Length Name Code(Hex)

o

1

1

1

1

4

4

4

4

1

3

4

MPCDELIM

MPCFLAG
MPCPACT
MPCERR

MPCTSTP
MPCPSTP
MPCXECB

MPCSDEF
MPCADEF
MPCREBPC

MPCRCl

MPCRC2

MPCPID

MPCTCA

MPCSXECB

MPCAXECB

Unnamed

MPCFLAG1
MPCCNBPC

Unnamed

Unnamed

MPCPTLN

SO
40

20
10
OS

04
02
01

SO

Meaning

MPCPT delimiter field

MPC activity flags
Partition active indicator
Error condition encountered
on DL/I scheduling call, or
BPC attach failure
stop transaction indicator
stop partition indicator
XECBs deleted for this
partition
Start XECB defined
ABEND XECB defined
Reschedule BPC

Error return code from
TCAFCTR

Error return code from
TCADLTR

Partition identifier (Fl,
F2, •••)

Address of TCA

Address of stop partition
XECB (DLZXCB01)

Address of partition ABEND
XECB (DLZXCBn3)

Reserved

MPC activity flags
Cancel BPC at stop
transaction when MPS batch
partition is not active.

Reserved

Reserved

Length of partition table
entry

Licensed Material - Property of IBM 5-61

PCB - PROGRAM COMMUNICATION BLOCK

DSECT Name: DEPCB

The data management PCB (progr~m communication block) is described as
part of the general structure and description of the program
specification block (PSB).

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag Offset Flag
Name Dec(Hex) Code (Hex)

DBPCBDBD 0(00)
DBPCBJCB 16(10)
DBPCBKFD 36(24)
DBPCBLEV 8(08)
DBPCBLKY 28 (lC)
DBPCBMKL 28(1C)
DBPCBNSS 32(20)
DBPCEPRO 12(OC)
DBPCBSFD 20(14)
DBPCBSTC 19(OA)

*DBPCBTKW 16(10) 80

RECORD LAYOUT - PCB

Offset Field/Flag Flag
Dec(Hex) Length Name Code (Hex) Meaning

0(00) 8 DBPCBDBD DBD Name

8(08) 2 DBPCBLEV Level feedback

10(OA) 2 DBPCBSTC status codes

12(OC) 4 DBPCBPRO DL/I processing options

16(10) 4 DBPCBJCB JCB address
DBPCBTKW 80 Another task waiting for

resource owned by this task

20(14) 8 DBPCBSFD Segment name feedback

28(1C) 4 DBPCBLKY Maximum length of key
feedback area

28 (tC) 4 DBPCBMKL Current length of key
feedback area

32(20) 4 DBPCBNSS Number of sensitive segments
in the PCB

36 (24) Var DBPCBKFD Key feedback area

5-62 ~icensed Material - property of IBM

~ , .~
I
.. ~

PDCA - PROBLEM DETERMINATION CONTROL AREA

DSECT Name: PDCA

The PDCA (problem Determinatfon Control Area) is used to hold
miscellaneous data used in problem determination.

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag
Name

PDCACPAC
PDCAFERT
PDCAFLAG
PDCAMSG

*PDCASTOP
PDCAXPRM

Offset
Dec(Hex)

0(00)
8(08)
12(OC)
13(00)
12(OC)
4(04)

RECORD LAYOUT - PDCA

Offset Field/Flag
Dec(Hex) Length Name

0(00) 4 PDCACPAC

4(04) 4 PDCAXPRM

8(08) 4 PDCAFERT

12(OC) 1 PDCAFLAG
PDCASTOP

13 (00) 3 PDCAMSG

16 (OF) 16

Flag
Cod~(Helf)

Flag
Code (Hex) Meaning

Variable length segment
compression routine list
pointer

secondary index suppression
routine list pointer

Field exit routine list

PDCA flag byte
80 Stop saving messages

ABEND code

Reserved

Licensed Material - Property of IBM 5-63

PDIR - PSB DIRECTORY ,

DSECT Name: DLZPDIR

The PSB directory contains an entry for every PSB (program specification
block) that may run under DL/I control. The PSB directory is part of
the DL/I nucleus and is created during DL/I system definition for online
processing. The start address of the PSB directory (SCDDLIPS) and the
entry length (SCDDLIPL)are contained in the SCD (system contents
directory) •

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag Offset Flag
Name Dec(Hex) Code (Hex)

PDIRADDR 8(08)
*PDIRBAD 19(13) 01
*PDIRBPLI 19 (13) 08

PDIRCODE 18(12)
*PDIRDELT 18 (12) 02
*PDIRDUPL 18(12) 10
*PDIREM 19 (13) 20

PDIREMOT 24 (18)
*PDIREXC 18 (12) 40

PDIRLEN 28(lC)
*PDIRNOSC 19 (13) 80
*PDIRNTNT 19 (13) 10

PDIROPTC 19 (13)
*PDIRPLI 18 (12) 20

PDIRPSBL 12(OC)
*PDIRSCHD 19(13) 40

PDIRSILA 20(14)
PDIRSYM (0(00)

*PDIRTFAL 18(12) 01
*PDIRUPD 18 (12) 80
*PDIRZWA 16(10)

5-64 Licensed Material - Property of IBM

RECORD LAYOUT - PDIR

Offset
DecOiex)

0(00)

0(00)

S (OS)

12(OC)

16 (10)

lS (12)

19 (13)

20 (14)

24 (lS)

2S (lC)

Field/Flag Flag
Length Name Code (Hex)

o

S

4

4

2

1

1

4

4

PDIR

PDIRSYM

PDIRADDR

PDIRPSBL

PDIRZWA

PDIRCODE
PDIRUPD
PDIREXC

PDIRPLI
PDIRDUPL
PDIRDELT
PDIRTFAL

PDIROPTC
PDIRNOSC
PDIRSCHD
PDIRREM
PDIRNTNT

PDIRBPLI
PDIRBAD

PDIRSILA

PDIREMOT

PDIRLEN

SO
40

20
10
02
01

SO
40
20
10

OS
01

Meaning

Label used to establish
address

PSB execution name -
converted from name supplied
during PSBGEN

PSB address (contains 0 for
remote PSB)

Storage required for PSB

Storage required for index
workarea

PSB code byte
This PSB is update sensitive
This PSB requires DMB
exclusive control
This PSB for PL/I
This PSB is duplicate
This PSB is delete sensitive
PSDB-SDB chaining error
detected during online task
termination

PSB scheduling codes
'Do not schedule this PSB
This PSB is scheduled
This PSB is remote
This PSB is waiting for
intent
DFHTBP using PL/I PSB
PSB initialization failed

Address of PSB segment intent
list

Address of RPDIR entry for
this remote PSB

PSB directory entry length

Licensed Material - Property of IBM 5-65

PPST - PST PREFIX

DSECT Name: DLZPPST

The PST prefix contains data required for user task scheduling in a
CICS/VS online environment •. It also contains a section used by buffer
handler for enqueue/dequeue information and another section used for
online segment intent scheduling. The PST prefix is logically part of
the PST (partition specification table). However, in order to operate
more efficiently in a virtual storage environment, all PST prefixes (one
for batch) are organized so that they are physically located in one
contiguous area.

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag Offset Flag
Name Dec(Hex) Code (Hex)

*PPSTA 4(04) 01
*PPS'IACT 4(04) 04
*PPSTBF 4(04) 10

PPSTCA 5 (05)
PPSTCB 1(01)
PPSTCF 0(00)
PPSTCHAI 2S(lC)
PPSTCW 3(03)
PPSTECB 2(02)
PPSTEND 32(20)
PPSTEXCI 12(OC)
PPSTID S(OS)
PPSTIND 4 (04)

*PPSTIO 4 (04) SO
PPSTLEN 32(20) (See segment intent scheduling section)
PPSTMATR 24 (lS)

*PPSTMPS 4(04) OS
*PPSTMSDL 4(04) 02

PPSTPECI 16(10)
PPSTPDIR 12(OC) (See segment intent scheduling section)

*PPSTSI 4(04) 40
PPSTSUPO 20(14)

*PPSTTC U(04) 2Q
PPSTTC 9(09)
PPSTTSKP 16(10) (See segment intent scheduling secion)

5-66 Licensed Material - property of IBM

\~

RECORD LAYOUT - PPST

Offset
Det:(Hex)

0(00)

H01)

2(02)

3(03)

4(04)

5(05)

S (OS)

9(09)

Field/Flag
Length Name

1

1

1

1

1

3

1

3

PPSTCF

PPSTCB

PPSTECB

PPSTCW

PPSTIND

PPSTIO
PPSTSI

PPSTTC

PPSTBF

PPSTMPS
PPSTACT
PPSTMSDL
PPSTA

PPSTCA

PPSTID

PPSTTCA

Flag
Code (Hex)

SO
40

20

10

OS
04
02
01

Meaning

Prefix chain forward pointer

Prefix chain backward painter

POST/WAIT byte of PST ECB

PST prefix program isolation
wait chain

Task schedule and dispatch
indicators
waiting for I/O
Cannot schedule due to
segment intent conflict
Cannot schedule - task count
limit exceeded
Tas~ enqueued by buffer
handler
Indicates MPS task
This is current task
Scheduled by BPC
Task is scheduled

Address of PST

Task ID

Task TCA address

This section used by buffer handler for enqueue/dequeue

12 (OC) PPSTEXCI

16(10) PPSTPECI

20 (14) PPSTSUPO

24 (lS) PPSTMATR

Enqueue/dequeue pOinters for
existing control interval:
Byte 0-1 = buffer number
Byte 2-3 = PPST number of

task next in
chain

Enqueue/dequeue pointers for
pending control interval:
Byte 0-1 = buffer number
Byte 2-3 = PPST number of

task next in
chain

Enqueue/dequeue painter for
subpool space:
Byte 0-1 = subpool number
Byte 2-3 = PPST number of

next task in
chain

Enqueue/dequeue pointers for
interlock detection matrix
space:
Byte 0-1 =
Byte 2-3 =

X' 00'
PPST number of
next task in
chain

Licensed Material - Property of IBM 5-67

Offset
Dec(Hex)

28(1C)

32(20)

Field/Flag Flag
Length Name Code (Hex)

4 PPSTCHAI

PPSTEND

Meaning

Enqueue/dequeue pending
control interval chain field
pointers:
Byte 0-1 =
Byte 2-3 =

buffer number
PPST number of
next task in
chain

End of prefix DSECT

***This section used to online segment intent scheduling**

12(OC)

16(10)

32 (20)

32(20)

5-68

4 PPSTPOIR

1 PPSTTSKP

1

PPSTLEN

Licensed Material - property of IBM

Task PDIR entry address

Task dispatching priority

Reset to end of prefix DSECT

Length of PST prefix

I

PSB - PSB Prefix

DSECT Naroe: PSB

The PSB prefix is described as part of the general structure and
description of the program specification block (PSB)

ALPHABETIC LIST OF FIELO~FLAG NAMES

Field/Flag
Name

PSBCOOE
PSBOBOFF

*PSBFLS
PSBFRTA
PSBIOASZ
PSBIOAWK
PSBINOEX
PSBLIST
PSBNDXWK

*PSBPLI
PSBPST
PSBSEGWK
PSBSIZE
PSBTPOFF
PSBVMIO

*PSBVll
PSBXIOWK
PSBXPCB

Offset
Dec (Hex)

29(10)
311(22)
29(10)
0(00)
1(01)
18(211)
28(lC)
36(24)
20(14)
29 (10)
12(OC)
8(08)
30(lE)
32(20)
0(00)
0(00)
4(011)
16(10)

Flag
Code (Hex)

01

10

01

Licensed Material • Property of IBM 5-69

RECORD LAYOUT - PSB

Offset
Dec (Hex)

0(00)

0.(00)

1(01)

4(04)

S(OS)

12(OC)

16 (10)

20(14)

24 (1S)

2S(lC)

29 (lD)

30 (1E)

32(20)

34 (22)

36 (24)

Field/Flag Flag
Length Name Code (Hex)

1 PSBVMID

4

3

4

4

4

4

4

4

1

1

2

2

2

Var

PSBVll 01

PSBFRTA

PSBIOASZ

PSBXIOWK

PSBSEGWK

PSBPST

PSBXPCB

PSBNDXWK

PSBIOAWK

PSBINDEX

PSBCODE
PSBPLI 10
PSBFLS 01

PSBSIZE

PSBTPOFF

PSBDBOFF

PSBLIST

5-70 Licensed Material • property of IBM

Meaning

DOS DL/I version ID
Version 1.1 or later

Field exit routine address.
If no entries in table, low
order 3 bytes = 0 (used only
during initialization)

Size of the PSB I/O work area
whose address is in PSBIOAWK.
This field contains a 16-bit
logical number.

Address of index I/O work
area or user's version of a
segment built by retrieve

Address of variable length
segment work area

PST address if PSB is
scheduled or active

Address of index PCB

Address of index maintenance
work area or pointer to the
field exit parameter list

Address of I/O work area

(Not used in DL/I DOS/VS)

PSB flags
PL/I is source language
PSB contains field sensitive
segment

PSB size

(Not used in DL/I DOS/VS)

Offset from the PSBLIST to
first DB PCB

Beginning of PCB list. Note:
this field is a list of
fullword pointers containing
PCB addresses. Last PCB
address word has byte 0, bit
o = 1. List may contain a
maximum of 64 addresses. For
PL/I programs these pOinters
are to the dope Vector Tables
in which the first word is a
pointer to the associated
PCB.

PSDB - PHYSICAL SEGMENT DESCRIPTION BLOCK
>

DSECT Name: DMBPSDB

The PSDB is described as part of the general structure and description
of the data management block (DMB)

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag
Name

DMBCKL
*DMBCPT
*DMBCPTIT
*DMBCPTKY
*DMCCTR

DMBDCB
DMBDL
DMBDLT

*DMBDRL
*DMBDRP
*DMBDRV
*DMBEX

DMBFDBA
DMBFLAG
DMBFSDB

*DMBIFST
*DMBIHERE
*DMBILST
*DMBIRL
*DMBIRP
*DMBIRV

DMBISRT
*DMBLCEX

DMBLEV
*DMBLP
*DMBLPEX

DMBLST
*DMBLTBK
*DMBLTFD
*DMBNXEX
*DMBPI

DMBPLEM
*DMBPP

DMBPPBK
DMBPPFD
DMBPRSZ
DMBPSC
DMBPSDBN

*DMBPTBK
*DMBPTFD

DMBPTR
*DMBRRL
*DMBRRP
*DMBRRV

DMBSC
DMBSCTAB
DMBSGMN

Offset
Dec (Hex)

111 (OE)
~II (1S)
211(lS)
211 (1S)
7(07)
6(06)
10(OA)
13(OD)
13(OD)
13(OD)
13(OD)
16(10)
16 (10)
32(20)
20 (111)
12(OC)
12(OC)
12(OC)
12(OC)
12(OC)
12(OC)
12(OC)
32(20)
2(02)
7(07)
32(20)
32(20)
7(07)
7(07)
32{20)
211 (1S)
36(24)
7(07)
5(05)
1I{01l)
S(OS)
1(01)
36(24)
7(07)
7(07)
7(07)
13(OD)
13(OD)
13(OD)
0(00)
25(19)
2S(lC)

Flag
code (Hex) , .

04
01
02
SO

03
02
01
SO

10
30
20
03
02
01

20

02
40

Oil
OS
10
SO

10

20
110

OC
OS
04

Licensed Material - property of IBM 5-71

Field/Flag Offset Flag
Name Dec (Hex) Code (Hex)

DMBSGMX 30(lE)
*DMBUP 16(10) 40

DMBUSE 16(10)
DMBVLDFG 24(18)

*DMBVLS 24(18) 04
*DMBXDES 32(20) 04

DMBXNULL 3(03)
*DMBXPROT 12(OC) 80

5-72 License6Material'" Property of I.BM

RECORD LAYOUT - PSDB

Offset
Dec (Hex)

0(00)

1(01)

2 (02)

3(03)

4(04)

5(05)

6(06)

7(07)

8(08)

19 (OA)

12(OC)

13 (OD)

Field/Flag Flag
Length Name Code (Hex)

1 DMBSC

1

1

1

1

1

1

1

2

2

1

DMBPSC

DMBLEV

DMBXNULL

DMBPPFD

DMBPPBK

DMBDCB

DMBPTR
DMBCTR
DMBPTFD

DMBPTBK

DMBPP

DMBLTFD

DMBLTBK

DMBLP

DMBPRSZ

DMBDL

DMBISRT
DMBXPROT

DMBIHERE

DMBILST

DMBIFST

DMBIRL
DMBIRP
DMBIRV

DMBDLT
DMBRRL
DMBRRP
DMBRRV
DMBDRL
DMBDRP
DMBDRV

01

80
40

20

10

08

04

02

80

30

20

10

03
02
01.

OC
08
04
03
02
01

Meaning

Segment code
Root segment code

Parent's segment code

segment level

(Not used in DL/I DOS/VS)

pointer number in parent to
first occurrence of segment
for parent

pointer number in parent to
last occurrence of segment
for parent

ACB number

Prefix flags
Counter present
Segment has physical twin
forward pointer
Segment has physical twin
backward pointer
segment has physical parent
pointer
segment has logical twin
forward pointer
Segment has logical twin
backward pointer
Segment has logical parent
pointer

prefix length of segment

Data length of segment

Insert rules
System data in index is
protected
If nQ key field, insert at
current position
If no key field .. , insert after
existing segment
If no key field, insert
before existing segment
Insert rule is logical
Insert rule is physical
Insert rule is virtual

Delete/replace rules
Replace rule is logical
Replace rule is physical
Replace rule is virtual
Delete rule is logical
Delete rule is physical
Delete rule is virtual

Licensed Material - Property of I 13M 5-73

Offset
Dec (Hex)

14(OE)

16(10)

16 (10)

20 (14)

24(18)

25(19)

2S(lC)

30(lE)

32 (20)

32(20)

36(24)

36 (24)

Field/Flag Flag
Length Name Code (Hex)

2

1

4

4

1

3

2

2

1

4

DMBCKL

DMBUSE
DMBEX
DMBUP

DMBFDBA

DMBFSDB

DMBVLDFG
DMBPI

DMBCPT

DMBVLS
DMBCPTKY

DMBCPTIT

DMBSCTAB

DMBSGMN

DMBSGMX

DMBFLAG
DMBLPEX

DMBLCEX

DMBNXEX
DMBXDEX

DMBLST

DMBPSDBN

DMBPLEM

SO
40

so
OS

04
02

01

40

20

10
04

5-74 Licensed Material - property of IBM

,Meaning

concatenated key length of
parent of this segment

Code Byte
This PSDB in use exclusively
This PSDB in use for update.
Bits 2-7 contain a count of
read-only users

Address of FDBs for this
segment

Address of first SDB for
this segment

Variable length data flag
Program isolation should be
done for this segment
Segment has compression
routine
Segment is variable length
Compression routine has key
expand routine
Compression routine has
intialization processing

Address of segment compaction
table

If variable length segment:
minimum length of segment

If variable length segment:
maximum length of segment

Secondary list flag
A logical parent exists
(segment is a logical child)
One or more logical children
exists (segment is a logical
parent)
One or more indexes exist
An indexed segment exists

Address of secondary list for
this segment

End of one PSDB entry

Length of each PSDB entry
(DMBPSDBN minus DMBSC)

PSIL - PSB INTENT LIST

DSECT Name; DLZPSIL

The PSB intent list is pOinted to from the PSB directory and is a list
of all the DMBS which may be used by that PSB (program).

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag Offset Flag
Name Dec (Hex) Code (Hex)

*PSILBFRI 8(08) 20
*PSILDBEX 8(08) 80
*PSILDBUP 8(08) 40

PSILCIRA 0(00)
PSILDIRN 4(04)
PSILDMBN 0(00)
PSILLNGH 9(09)
PSILNTNT 8(08)
PSILSEGD 10(OA)

Licensed Material - Property of IBM 5-15

RECORD LAYOUT - PSIL

Offset
Dec(Hex)

0(00)

0(00)

4(04)

6(06)

8(08)

9(09)

10 (OA)

BIT

SEGMENT

Field/Flag Flag
Length Name Code (Hex)

8

4

2

2

1

1

Var

o I 1

4

PSILDMBN

PSILDIRA

PSILDIRN

PSILNTNT

PSILDBEX

PSILDBUP

PSILBFRI

PSILLNGH

PSILSEGD

BYTE 1

2 I 3 4 I
3 2

80

40

20

5 6 I 7 o I
1 8

5-76 Licensed Material - property of IBM

Meaning

DMB name for this list entry
- overlaid during
initialization

Address of DMB directory
entry - resolved during
initialization

DMB number of this DMB

Reserved

Segment intent descriptor
byte
PSB contains a PCB which
requires exclusive control
for this DMB
PSB contains a PCB which is
update sensitive
Buffer pool space required
for this KSDS

Length of this entry in list

Segment intent bits. Two
bits are used for each
segment in the DMB and
represent the PSB's
sensitivity to each PSDB.

Their meanings are:
Bit Meaning
00 PSB not sensitive to segment
01 PSB read only sensitive
10 PSB update sensitive
11 PSB requests exclusive con­

trol (HISAM root insert)

The bits are allocated to
segments in the following
manner:

BYTE 2

1 2 I 3 41 5 61 7

7 6 5

The second part of the
segment intent bits is a
mask. It is constructed from
the segment intent bits of
the first part. Part 2 has
the same length as part 1.

PST - PARTITION SPECIFICATION TABLE

DSECT Name: DLZPST

One partition specification table (PST) exists for each task in an
online or batch processing partition. All DL/I resources allocated to
the task can be located through the PST. The PST also contains pointers
to the task I/O area and any segments currently associated with the
task.

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag Offset Flag
Name Dec(Hex) Code (Hex)

*DBLCMC 436 <1B4) 00
*DBLFSE1 436(lB4) 00
*DBLFSE2 436(lB4) 04
*DBLLASTC 436(lB4) 08
*DBLLGDLT 436(lB4) 60
*DBLNDXC 436(lB4) 80
*DBLNEWBL 436(lB4) 01
*DBLNTCR 436(lB4) 10
*DBLOOPS "36(lB4) OA
*DBLPHYD 436 ClB4) 20
*DBLPHYI "36(lB4) "0
*DBLPHYR 436(lB4) 10
*DBLPHYRO 436(lB4) 02

PSTABIND 12(048)
PSTACBNM 146(092)
PSTACCT 92(05C)

*PSTBATCH 46"(lDO) 80
*PSTBDCAL 133(085) 10
*PSTEFALT 132 (08") 05
*PSTBFMPT 132(084) 04

PSTBFUSE 160(OAQ)
*PSTBKLCT 132(084) 01

PSTBLKNM 140(08C)
~PSTB'IMPF 132(084) 03
*PSTETMPF 133(085) 03

PSTBUFFA 156(09C)
*PSTBYALT 132(084) 06
*PSTBYEND 133(085) 28
*PSTBYLCT 132(084) 02

PSTBYTNM 148(094)
*PSTCALI 465 (1Dl) 02
*PS'ICANLI 483{lE3) 40
*PSTCHKP 465(lD1) 04
*PS'ICLOK 133(085) 00

PSTCLRWT 254(OFE)
PS'ICNVB 415(lDB)
PSTCODE1 68(044)
PSTCPLN 180(OB4)
PSTCTGFL 220(ODC)
PSTCTGL1 244(OF4)
PSTCTGL2 241(OF7)
PSTCTGNM 180(OB4)
PSTCTGPL 180(OB4)
PSTCTGRT 248(OF8)

Licensed Material - Property of IBM 5~17

Field/Flag Offset Flag
Name Dec (Hex) Code (Hex)

PSTCTGWK 244(OF4)
PSTCURWA 340(154)
PSTCWKLN 248(OF8)
PSTJ:ATA 152(098)
PSTDBPCD 128(080)
PSTDDLET 120(078)
PSTDGHN 108(06C)
PSTDGHNP 112(070)
PSTDGHU 104(068)
PSTDGN 96(060)
PSTDGNP 100(064)
PSTDGU 92(05C)
PSTDISRT 116(074)
PSTDLIWA 44(02C)
PSTDLIWB 48(030)
PSTDLIWC 52(034)
PSTDLIWD 56(038)
PSTDLIWE 60(03C)
PSTDLIWF 64(040)
PSTDLIWO 4(004)
PSTDLIW1 8(008)
PSTDLIW2 12(00C)
PSTDLIW3 16(010)
PSTDLIW4 20(014)
PSTDLIW5 24(018)
PSTDLIW6 28(01C)
PSTDLIW7 32(020)
PSTDLIW8 36(024)
PSTDLIW9 40(028)
PSTDLROM 348(15C)
PS'IDLTWA 344(158)
PSTDMBNM 144(090)
PSTDREPL 124(07C)
PSTDSGA 136(088)

*PSTDUMPI 483 ClE3) 80
*PSTENDDA 133(085) 24
*PSTEOD 133(085) 2C
*PSTERASE 132(084) OA

PSTERCD1 466ClD2)
PSTERCD2 467(lD3)
PSTERCOD 466(lD2)
PSTERDT1 468 ClD4)
PSTERDT2 475(lDB)
PSTERIND 483 (lE3)

*PSTERMSP 72(048) 80
*PSTEXPAD 254(OFE) 40
*PSTFBSPC 132 (084) 04

PSTFNCTN 132(084)
*PSTFRBLK 133(085) 30
*PSTFRSPC 132 (084) 02
*PSTGBSPC 132(084) 03
*PSTGETNX 132(084) OB
*PSTGTDS 133(085) 04
*PSTGTRAP 132(084) 04
*PSTGTSPC 132(084) 01

PSTGVPL 232(OE8)
PSTGVWKL 232 (OE8)

*PSTHISMR 464 ClDO) 10
*PSTINLD 133(085) 34
*PSTINTNT 68(044) 40 A

*PSTIOERR 133(085) 08 (~
PSTIQPRM 72(048)

5-78 Licensed Material - property of IBM

Field/Flag Offset Flag
Name Dec (Hex) Code (Hex)

*PSTIWAIT 254(OFE) 80
PSTLIPRM 484(lE4)

*PSTLODU 464(lDO) 40
*PSTLODUH 464(lDO) 20

PSTLOGQ 436(lB4)
PSTLOGWA 432(lBO)
PSTMI 76(04C)
PSTMROCO 117 (OB1>

*PSTMSPUT 132 (084) OE
*PSTNOERR 176(OBO) 40

PSTNORO 564(234)
*PSTNOSPC 1'33(085) OC
*PSTNOTFD 133 (085) 14
*PSTNPLSP 133(085) 1C

PSTNUMRO 252(OFC)
PSTNUMWT 253 (OFD>

*PSTNWBLK 133(085) 18
*PSTOCALL 132(084) 04
*PSTOCBAD 132(084) 80
*PSTOCCLS 132(084) 00
*PSTOCDCB 132(084) 10
*PSTOCDMB 132(084) 01
*PSTOCDSG 132(084) 40
*PSTOCLD 132(084) 20
*PSTOCOPN 132(084) 08
*PSTOCPCB 132(084) 02

PSTOFFST 134(086)
*PSTOLTW 68(044) 04

PSTPCPGM 448(lCO)
PSTPCPSB 456 (lCS)
PSTPCT1 464(lDO)
PSTPCT2 465 (lD1>

*PSTPGUSR 132(084) 07
*PSTPIPIU 133(085) 80
*PSTPISIU 133(085) 40
*PSTPLI 465(lD1) 01

PSTPLIPR 556(22C)
PSTPOSEL 176(OBO)
PSTPREAD 00(00)
PSTPREAR 168(OA8)

*PSTPRVWT 68(044) 08
PSTPSB 88(058)

*PSTPUTKY 132(084) OD
*PSTQDEQ 132(084) 08
*PSTQENQ 132 (084) 08
*PSTQLEO 570 (238) 00

PSTQLEV 570(238)
*PSTQLEXC 570 (238) 08
*PSTQLUPD 570(238) 04
*PSTQPUR 132(084) OC
*PSTQRBDC 133(085) 08
*PSTQRDDL 133(085) 04
*PSTQRNSE 133(085) 10
*PSTQROOP 133(085) 02
*PSTQRWR 133(085) 01
*PSTQVER 132(084) 04

PSTRBAL 202(OCA)
*PSTRDERR 133(085) 08

PSTRETRE 220(ODC)
PSTRPSTA 578(240)
PSTRRDF 570(238)
PSTRRDL 578(240)

Licensed Material - Property of IBM 5-79

Field/Flag Offset Flag
Name Dec (Hex) Code (Hex) ,

PSTRTCDE 133(085)
*PSTSABND 72(048) 20

PSTSAVRE 160(OB4)
*PSTSCALL 68(044) 80

PS'l'SCDAD 68(04(J)
*PSTSCHED 68(044) 10

PSTSDATA 202(OCA)
PSTSEG 84(054)
PS'ISEGL 80(050)
PSTSPL 208 (ODO)

*PSTSTLBG 132(084) OC
*PSTSTLEQ 132(084) 09

PSTSUBNM 172 (OAC)
PSTSUIN 164(0A4)
PSTSV1 592(250)
PSTSV2 664(298)
PSTSV3 736 (2EO)
PSTSV4 808(328)
PS'ISV5 880(370)
PSTSV6 952 <3B8)
PSTSV7 1024(400)
PSTSWI 174(OAE)
PSTSwKAR 180(OB4)
PSTSWKL 202(OCA)

*PS'ITABND 72(048) 10
PSTTSKID 256(100)

*PSTUDR 464(lDO) 04
*PS'l'ULU 464 <1DO) 02

PSTUSER 76(04C)
*PS'l'USM 464(lDO) 01
*PSTUST 464(lDO) 08

PSTVLSR 246(OF6)
PSTVSL 202(OCA)

*PSTWRITE 132(084) 08
PSTWRKD1 312(138)
PS'l'WRKD2 316(13C)
PS'l'WRKD3 320(140)
PSTWRKD4 324(144)
PS'l'WRKD5 328 (148)
PSTWRKD6 332(14C)
PSTvvRKD7 336(150)
PSTWRKTl 292 (124)
PSTWRKT2 296(128)
PSTWRKT3 300(12C)
PSTvvRKT4 304 (130)
PSTvvRKT5 308(134)
PSTvvRK1 276 (114)
PSTWRK1 436(lB4)
PSTvvRK2 280 (118)
PSTWRK3 284 (l1C)
PSTvvRK4 288(120)

*PSTWROSI 133(085) 20
*PSTXCONM 465 (101) 80
*PSTXMOLT 132(084) AD
*PSTXMISR 132(084) A2
*PSTXMRPL 132(084) A1
*PSTXMUNL 132(084) A3
*PSTXPRTM 465(101) 40

PSTXPSV1 260(104)
PSTXPSV2 264(108)

~ ,',r
PSTXPSV3 268(10C) \~

5-80 Licensed Material - Property of IBM

RECORD LAYOUT - PST

Offset
Dec (Hex)

0(000)

CH004)

(OOS)

12(00C)

16 (010)

20(014)

24 (OlS)

2S(01C)

32(020)

36 (024)

40 (02S)

44 (02C)

4S (030)

52(034)

56 (03S)

60 (03C)

64 (040)

Field/Flag Flag
Length Name Code (Hex)

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

PSTPREAD

PSTDLIWO

PSTDLIWl

PSTDLIW2

PSTDLIW3

PSTDLIW4

PSTDLIW5

PSTDLIW6

PSTDLIW7

PSTDLIWS

PSTDLIW9

PSTDLIWA

PSTDLIWB

PSTDLIWC

PSTDLIWD

PSTDLIWE

PSTDLIWF

USER CALL PROCESSING SECTION

6S (044)

6S(044)

72 (04S)

72 (04S)

76 (04C)

1

4

4

4

4

PSTCODEl
PSTSCALL
PSTINTNT

PSTSCHED
PSTPRVWT

PSTOLTW

PSTSCDAD

PSTABIND
PSTERMSP
PSTSABND
PSTTABND

PSTIQPRM

PSTMI

so
40

10
OS

04

SO
20
10

Meaning

Address of this PST prefix

Action modules work area HD
unload (DLZURGUO) return
address for retrieve

Action modules work area

Action modules work area

Action modules work area

Action modules work area

Action modules work area

Action modules work area

Action modules work area

Action modules work area

Action modules work area

Action modules work area

Action modules work area

Action modules work area

Action modules work area

Action modules work area

Action modules work area

PST for system call
Cannot schedule, intent not
satisfied
OK to complete scheduling
Logger private wait indicator

Another task waiting for
resource owned by this task.
Note: If PSTINTNT and
PSTSCHED are both set, DL/I
backout is in control.

Address of SCD

Task/system ABEND indicator
PUT error message indicator
System ABEND indicator bit
Task ABEND indicator bit

Address of caller's parameter
list

Return segment indicator

Licensed Material - Property of IBM 5-81

Offset Field/Flag Flag
Dec (Hex) Length Name Code (Hex) Meaning

76 (04C) 4 PSTUSER Address of user's I/O area

80 (050) 4 PSTSEGL Retrieved segment length

84(054) 4 PSTSEG Retrieved segment address

88 (058) 4 PSTPSB PDIR entry address

USER TASK STATISTICS

92(05C) 4 PSTACCT

92(05C) 4 PSTDGU Number of GU calls issued

96(060) 4 PSTDGN Number of GN calls issued

100 (064) 4 PSTDGNP Number of GNP calls issued

104(068) 4 PSTDGHU Number of GHU calls issued

108(06C) 4 PSTDGHN Number of GHN calls issued

112 (070) 4 PSTDGHNP Number of GHNP calls issued

116 (074) 4 PSTDISRT Number of ISRT calls issued

120(078) 4 PSTDDLET Number of DLET calls issued

124(07C) 4 PSTDREPL Number of REPL calls issued

ACTION MODULES SECTION

128(080) 4 PSTDBPCB Address of current PCB

132(084) 1 PSTFNCTN Function codes

EQUATES FOR BUFFER HANDLER FUNCTION CODES

PSTBKLCT 01 Locate relative block number
PSTBYLCT 02 If HD, locate relative byte

number. If HISAM or HIDAM
INDEX, read a record by RBA
from a KSDS. If HISAM, read
a record by RBA from an ESDS.

PSTGBSPC 03 Get buffer space
PSTFBSPC 04 Free buffer space
PSTBFMPT 04 Mark buffers enpty
PSTBFALT 05 If HD, mark a buffer

containing data altered. If
HISAM or HIDAM INDEX, write a
record by RBA to a KSDS. If
HISAM, write a record by RBA
to an ESDS

PSTBYALT 06 Locate a relative byte number
and mark buffer altered

PSTPGUSR 07 Purge all buffers altered by
a task

PSTWRITE 08 write a new record to HISAM
ESDs

PSTSTLEQ 09 Read a record by key from a
KSDS '~

PSTERASE OA Erase a record in a KSDS

5-82 Licensed Material - Property of IBM

Offset Field/Flag Flag
Dec(Hex) Length Name Code (Hex) Meaning

PSTGETNX OB

PSTSTLBG OC

PS'IPUTKY OD

PSTMSPUT OE

EQUATES FOR OPEN/CLOSE FUNCTION CODES

PSTOCDMB 01

PSTOCPCB 02

PSTOCALL Oq
PSTOCCLS 00
PSTOCOPN 08
PSTOCDCB 10

PSTOCLD 20
PSTOCDSG qO
PSTOCBAD 80

Read the next record in a
KSDS
Read the record containing
the first root in a KSDS
Insert a record by key into a
KSDS
Insert record(s) sequentially
into a KSDS

Close DMB. Address of DMB in
R2
Close PCB. Address of PCB in
R2
Close all DMBs
Close call. Bit q = 0
Open call. Bit q = 1
Open/close the DMB in
PSTDCBNM. DSG address in
PSTDSGA
Open for load
Open the DSG in PSTDSGA
Open unsuccessful

EQUATES FOR SPACE MANAGEMENT FUNCTION CODES

***EQUATES FOR

***EQUATES FOR

133 (085) 1

PSTGTSPC

PSTFRSPC

PSTBTMPF
PSTGTRAP

80
01

02

03
Oq

INDEX MAINTENANCE FUNCTION

PSTXMDLT AO

PSTXMRPL Ai

PSTXMISR A2

PSTXMUNL A3

PROGRAM ISOLATION FUNCTION

PSTQENQ
PSTQVER
PSTQDEQ
PSTQPUR

PSTRTCDE

00
Oq
08
OC

Backout in control
Get space for segment. R5
contains pOinter to PSDB
Free space for segment. R5
contains pOinter to PSDB
Do bit map update
Get space close to RAP in
PSTBYTNM

CODES***

Perform index maintenance
segment to be deleted
Perform index maintenance
segment to be replaced
perform index maintenance
segment to be inserted
perform index maintenance
segment to be unloaded

CODES***

for

for

for

for

Enqueue (Queueing facility)
Verify (Queueing facility)
Dequeue (Queueing facility)
Purge (Queueing facility)

Return codes

EQUATES FOR BUFFER HANDLER RETURN CODES

PSTCLOK
PSTGTDS

PSTIOERR

00
Oq

08

No error occurred
RBN is beyond the end of the
data set
I/O error

Licensed Material - Property of IBM 5-83

Offset Field/Flag Flag
Dec(Hex) Lenqth Name Code (Hex)

PSTRDERR 08
PSTNOSPC OC
PSTBDCAL 10
PSTNOTFD 14

PSTNWBLK 18

PSTNPLSP 1C

PSTWROSI 20

PSTENDDA 24

PSTBYEND 28

PSTEOD 2C

PSTINLD 34

SPACE MANAGEMENT RETURN CODES

PSTFRBLK 30

PSTBTMPF 03

Meaninq

Permanent read error
No space for adds
Illegal call
No record found (retrieve by
key)
New block was created in the
buffer pool
Insufficient space in the
buffer pool
size of requested buffer
exceeds the size of buffers
in any sub pool
End of data set. No record
returned
Key or RBA higher than the
highest key or RBA in the
data set
End of data set reached on a
request issued by open
Invalid request during data
set loading

Block not used due to
distributed free space
parameter
Bit map update required

EQUATES FOR PROGRAM ISOLATION RETURN CODES

134(086)

136(088)

140 (08C)

144(090)

146(092)

147(093)

148 (094)

152(098)

156(09C)

2

4

4

2

1

1

4

4

4

PSTQRWR
PSTQROOP
PSTQRDDL
PSTQRBDC
PSTQRNSE

P$TPISIU
PSTPIPIU

PSTOFFST

PSTDSGA

PSTBLKNM

PSTDMBNM

PSTACBNM

PSTBYTNM

PSTDATA

PST BUFFA

01
02
04
08
10

40
80

5-84 Licensed Material - Property of IBM

wait was required
Other owners present
Terminated due to deadlock
Terminated due to bad call
Terminated. Insufficient
storage
Secondary index updated
Primary index updated

Offset to PSTDATA from start
of buffer

Address of DSG portion of the
JCB

Relative block number

DMB number

ACE number

Reserved

REA or relative record
number. High order byte
contains X' 80;' if request is
for HISAM ESDS

Address of requested data

Address of buffer prefix

Offset
Dec(Hex)

Field/Flag Flag
Length Name Code (Hex) Meaning

••• BUFFER HANDLER AND SPACE MANAGEMENT SECTION •••

160 (OAO)

164 (0A4)

16S (OAS)

172 (OAC)

174 (OAE)

176 (OBO)

177 (OBl)

17S(OB2)

lS0(OB4)

4

4

4

2

2

1

1

2

40

PSTBFUSE

PSTSUIN

PSTPREAR

PSTSUBNM

PSTSWI

PSTPOSEL

PST NO ERR

PSTMROCO

PSTSAVRE

OS
04
SO
02

FF

40

Address of the buffer prefix
to be used

Address of the subpool
information table to be used

Beginning address of the
buffer prefix area for the
subpool information table
used

subpool number used during
this call

work space
HD write in progress
CI in overflow area full
HISAM ESDS is being processed
Request made to the buffer
handler by space management
Purge buffer request
completed

Count for position of use
chain element
No error message

Number of the row/column in
the interlock detection
matrix currently used by this
task

•• Reserved ••

Work area used by buffer
handler when processing a
request

••• THIS AREA IS USED BY DLZDCIOO FOR SHOWCAT AND GETVCE FOR FBA
SUPPORT···

lSQ(OB4) 40 PSTSWKAR

202(OCA) PSTSDATA

PSTRBAL

PSTVSL

PSTSWKL

246 (OF6) PSTVLSR

20S(ODO) PSTSPL

232(OE8) PSTGVPL

SHOWCAT work area used by
Space Management DLZGGSPO and
Open/Close DLZDLOCO

Location of needed data
returned by SHOWCAT
RBA data length (equated to
4)
Volume serial number length
(equated to 6)
Length of SHOWCAT work area
(equated to 64)

Volume serial number save
area

SHOWCAT parameter list

GETVCE parameter list

Licensed Material - Property of IBM 5-85

Field/Flag Flag Offset
Dec(Hex) Length Name code (Hex) Meaning

PSTGVWKL Length of GE'l'VCE work area
(equated to 52)

••• THE FOLLOWING FIELDS ARE USED BY DL/I OPEN/CLOSE (DLZDLOCO) AND SPACE
MANAGEMENT (DLZDHDSO) FOR VSAM CATALOG PARAMETER LIST WHEN PROCESSING AN
OUT-OF-SPACE CONDITION FOR HIDAM DATA BASE."

180(OB4) 40 PSTCTGPL

PSTCPLN

PSTCTGNM

220 (ODC) 32 PSTRETRE

Area used as the VSAM catalog
parameter list (CTGPL) by
DLZGGSPO and DLZDLOCO to do
locate
Length of CTGPL block
(equated to 40)
Number of CTGFL entries
(equated to tl

Buffer handler subroutine
linkage register {R14) save
area when procssing a request

."THE FOLLOWING FIELDS ARE USED BY OPEN/CLOSE (DLZDLOCO) AND SPACE
MANAGEMENT (DLZDHDSO) FOR VSAM FIELD PARAMETER LIST WHEN PROCESSING AN
OUT-OF-SPACE CONDITION FOR HIDAM DATA BASE •••

220 (ODC)

244 (OF4)

~44 (OF4)

247 (OF7)

248 (OF8)

24

8

3

1

4

PSTCTGFL

PSTCTGWK

PSTCTGL1

PSTCTGL2

PSTCTGRT

PSTCWKLN

•• *BUFFE& HANDLERSTATISTICS*.*

252 (OFC)'

, ,. '{

253 (OFD)

254 (OFE)

255 (OFF)

256(100)

1

1

1

1

4

PSTNUMRO

PSTNUMWT

PSTCLRWT
PSTIWAIT

PSTTSKID

80

Area used as the VSAM field
parameter list (CTGFL) by
DLZGGSPO and DLZDLOCO to do
locate

VSAM ~atalog work area

Catalog work area length 1

Catalog work area length 2

VSAM catalog return area for
HI-RBA
Length of catalog work area
(equated to 8)

NUmber of blocks read on this
call

Number of writes issued on
this call

Buffer handler switch
IWAIT issued during this call

Reserved

Hashed task 10. High-order
byte, binary date. Low-order
three bytes, assigned in
ascending sequence

***THE FOLLOWING FIELDS ARE USED AS SAVE AREAS SO THAT THE DMB ECB CAN
BE POSTED IF THE TASK IS~ANCELED WHILE WAITING FOR I/O COMPLETION.**

260 ~104) 4 PSTXPSV1 User VSAM save area address

5-.86 Licensed Material - property of IBM

Offset
Dec (Hex)

264(108)

268 (10C)

272 (110)

Field/Flag Flag
Length Name Code (Hex)

PSTXPSV2

PSTXPSV3

PST WORK AREAS

276 (114)

280 (118)

284 (11C)

288 (120)

292(124)

·296 (128)

300 (12C)

304(130)

308 (134)

4

4

PSTWRKl

PSTWRK2

PSTWRK3

PSTWRK4

PSTWRKTl

PSTWRKT2

PSTWRKT3

PSTWRKT4

PSTWRKT5

Meaning

EXCPAD return address

EXCPAD parameter list address

Reserved

f PSTWRKn are work words for

buffer handler (DLZDBHOO) l and data base logger.

PSTWRKn is work space

preserved across calls

to the buffer handler.

***THE HIGH-ORDER BYTE OF PSTWRKT4 IS USED TO PASS THE FOLLOWING
FUNCTION CODES TO INOEX MAINTENANCE***

312 (138) 4 PSTWRKDl

316 <13C) 4 PSTWRKD2

320(140) 4 PSTWRKD3

324(144) 4. PSTWRKD4

328(148) 4 PSTWRKD5

332 (14C) 4 PSTWRKD6

336 (150) 4 PSTWRKD7

340 (154) 4 PSTCURWA

344 (158) 4 PSTDLTWA

348 (15C) 84 PSTDLROM

DATA BASE LOG SECTION

432 (1BO) 4 PSTLOGWA

04
03
02
01

Reinsert index
Secondary indexes only
Primary indexes only
Both primary and secondary
indexes

PSTWRKDn is work space for

use by DELETE/REPLACE,

RETRIEVE, and LOAD/INSERT.

Current delete work area

First delete work area
address

Save and maintenance work
area for retrieve

Work area address for log O/P

Licensed Material - Property of IBM 5-87

Offset
Dec(Hex)

436(lB4)

Field/Flag
Length Name

4 PSTLOGQ

Flag
coq.e(Helf'

DATA BASE LOG USE OF PSTWRK1

PSTWRK1

DATA BASE LOG FUNCTION CODES

DBLNDXC SO
DBLCMC 00

DBLNTCR 70
DBLLGDLT 60
DBLPHYI 40
DBLPHYD 20
DBLPHYR 10
DBLOOPS OA
DBLLASTC OS
DBLFSE1 06

DBLFSE2 04
DBLPHYRO 02
DBLNEWBL 01

Meaning

Address of reuse queue QCB in
pool

Physical SDB address. If new
block, low-order 2 bytes are
call count. High-order byte
used for function code

Index maintenance ca~l
Bits 1-3 = 0, chain
maintenance call
Counter maintenance
Delete byte maintenance
Insert
Physical delete
Replace
No data. End of user call
Last change for user call
Bit 5 = 0, one FSE (if bits 1
or 2 on)
Two FSEs (if bits 1 or 2 on)
Qld copy of a replace
New block log call

***DATA BASE LOG USE OF PSTWRK2 - PSTWRK4"*

Chain maintenance - Old copy of chain pointer ~4 bytes).
Insert/Delete - Offset and new FSEs (6 or 12 bytes)

440 (lBS) S **Reserved**

PARTITION/TASK INFORMATION

448 (lCO) S PSTPCPGM Application program name. If
batch UDR, ULR,or ULU: DBD
name

456(lCS) S PSTPCPSB PSB name

464(lDO) 1 PSTPCTl PartitiOn/task option
PSTBATCH 80 PST is in batch partition
PSTLODU 40 Load utility
PSTLODUH 20 Load HDAM DB
PSTBISMR 10 HISAM data base recovery in

process
PSTUST 08 Statistics utility
PSTUDR 04 Data base recovery utility
PSTULU 02 Data base load/unload utility
PSTUSM 01 Security maintenance utility

465 (lD1) 1 PSTPCT2 program options/information
overlaid on every call to the
batch program request handler

PSTXCONM 80 Exclude console message
PSTXPRTM 40 Exclude printer message
PSTCHKP 04 User checkpoint call

successful
PSTCALI 02 User"s call list is implicit

5-88 Licensed Material - property of IBM

~

~

Field/Flag Flag Offset
DeC(Hex) Length Name C.ode (Hex)

466(lD2)

466(lD2)

467 (lD3)

468 (lD4)

475 (lOB)

475 (lDB)

483(lE3)

484(lE4)

556(22C)

564 (234)

570(238)

570 (238)

574(23C)

578 (240)

590(244)

1

1

1

7

6

6

1

72

8

6

o

4

4

4

12

PSTPLI

PSTERCOD

PSTERCDl

PSTERCD2

PSTERDTl

PSTCNVB

PSTERDT2

PSTERIND
PSTDUMPI

PSTCANLI

PSTLIPRM

PSTPLIPR

PSTNORO

PSTQLEV
PSTQLEO
PSTQLUPD
PSTQLEXC

PSTRRDF

PSTRRDL

PSTRPSTA

REGISTER SAVE AREA

592(250)

664(298)

136(2EO)

808 (328)

880 (370)

952(3B8)

72

72

12

72

72

72

1024 (400) 72

PSTSVl

PSTSV2

PSTSV3

PSTSV4

PSTSV5

PSTSV6

PSTSV1

01

80

40

00
04
08

Meaning

User program is PL/I

Error message codes

Error message code byte one

Error message code byte two

Error message data for ACB or
DTF name

Doubleword for HD randomizing
module

Variable error message data

Error routine indicator
Issue dump after error
message put
Issue cancel after error
message put

Area to build user parameter
list and register save area
for MPS start and stop calls

PL/I region STXIT processor

Number of owned resources

Queue request level
Read only level
Update level
Exclusive level

Pointer to first RRD

Pointer to last RRD

Remote PST (RPST) address.
Contains 0 if not scheduled
to a remote PSB.

Reserved

PSTSVl through PSTSV7 are
seven register save areas
required for processing
DL/I user calls. The
convention used in storing
registers in these save
areas is to begin with
R14 and end with R12~
that is, R14, R15, RO, Rl,
R2, R3, R4, R5, R6, R7,
R8, R9, RiO, Rl1, and R12.

Licensed Material - Property of IBM 5-89

QWA - QUEUING FACILITY WORK AREA
(

DSECT Name: DLZQWA

The QWA contains information used by the queuing facility module to
build control blocks and. RDB queue headers. It also contains
information used to locate the proper RDB for a particular resource ID.

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag Offset Flag
Name Dec(Hex) Code (Hex)

QWACPP 16(10)
*QWADDDF 20(14) 01

QWAFLG1 20(14)
QWAFLG2 21(15)
QWAFLG3 22 (16)
QWAFLG4 23(17)
QWAFPP 12(OC)
QWAHMLT 32(20)
QWANOQH 28 (lC)

*QWANPOF 20(14) 02
QWARDBQH 36(24)
QWAWFD 24(18)

5-90 Licensed Material - Property of IBM

RECORD LAYOUT - QWA

Offset Field/Flag Flag
Dec (Hex) Length Name Code (Hex) Meaning

0(00) 14 Module ID

14(OE) 4 QWAFPP First page pOinter for free
block management

18(12) 4 QWACPP Current page pointer for free
block management

22(16) 1 QWAFLGl First flag byte
QWADDDF 01 Do deadlock detection
QWANPOF 02 New prime owner exists.

23 (17) 1 QWAFLG2 Second flag byte

24 (18) 1 QWAFLG3 Third flag byte

25 (19) 1 QWAFLG4 Fourth flag byte

26 (lA) 4 QWAWFD Work field 1

30 (1E) 4 QWANOQH Number of queue heads

34 (22) 4 QWAHMLT Hashing Multiplier

38(26) 4 QWARDBQH RDB chain queue headers(one
FW/entry)

Licensed Material - Property of IBM 5-91

I

RDB - RESOURCE DESCRIPTOR BLOCK

DSECT Name: DLZRDB

The RDB (Resource Descriptor Block) is used to describe a resource for
which enqueues are outstanding.. In addition, it acts as an anchor for
the chains of RRDS (Resource Request Descriptors) that describe the
current queue requests for the resource.

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag
Name

RDBLEN
RDBMAXL
RDBNOWN
RDBPOID
RDBRDBB
RDBRDBF
RDBRID
RDBRRDF
RDBRRDL
RDBUOID

RECORD LAYOUT - RDB

Offset
Dec (Hex) Length

0(00) 1

0(00) 4

4(04) 1

4(04) 4

8(08) 1

8(08) 4

12(OC) 1

12(OC) 4

16110) 7

23(17) 1

24 (18)

Offset
Dec (Hex)

24 (18)
8(08)
12(OC)
0(00)
4(04)
0(00)
16(10)
8(08)
12(OC)
4(04)

Field/Flag
Name

RDBPOID

RDBRDBF

RDBUOID

RDBRDBB

RDBMAXL

RDBRRDF

RDBNOWN

RDBRRDL

RDBRID

RDBLEN

Flag

Flag
Code (Hex)

Code (Hex) Meaning

primary owner PST prefix
number

RDB forward chain pointer

Update owner PST prefix
number

RDB backward chain pOinter

Maximum level of current
owners

Pointer to first RRD

Current number of owners

Pointer to last RRD

Resource ID

Reserved

Length of RDB

5-92 Licensed Material - Property of IBM

~

~ ..

RIB - REMOTE INTERFACE BLOCK

DSECT Name: DLZRIB

This DSECT describes remote interface block fields. The RIB is used by
DL/I for CICS/VS intersystem communication (ISC) support. It defines
fields passed between CICS/VS and DL/I.

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag Offset Flag
Name Dec (Hex) Code (Hex)

*RIBBUFAL 18(12) 40
*RIBCALL 20(14) 40

RIBCHAIN 4(04}
RIBDLTR 22(16)
RIBFCTR 21 (15)

*RIBFUNC 20(14} 80
RIBINDEX 16(10)
RIBIOAWK 8(08)
RIBISC 18(12)
RIBISCI 20(14}
RIBISCO 19(13)
RIBLEN 24(18}

*RIBLNKA 20(14) 20
*RIBLNKSH 20 (l4) 10

RIBPCBAL 0(00)
*RIBPCBM 18 (12) 80
RIBRSET 23(17}

*RIESYNC 19(13} 80
RIBUPPER 12(OC)

Licensed Material - Property of IBM 5-93

RECORD LAYOUT - RIB

Offset Field/Flag Flag
Dec(Hex) Length Name Code (Hex) Meaning

0(00) 0 RIB start of RIB DSECT,. This
control block follows
immediately after the RPST.

0(00) 4 RIBPCBAL Local PCB address list.

4(04) 4 RIBCHAIN Remote PSB storage chain.

8(08) 4 RIBIOAWK Local PSB I/O work area.

12(OC) 4 RIB UPPER Highest address of caller
partition.

16 (10) 2 RIBINDEX PCB index number.

18(12) 1 RIBISC ISC scheduling duration
flags:

RIBPCBM 80 PCBM scheduling call issued.
RIEBUFAL 40 RIBIOAWK buffer allocated.

19(13) 1 RIBISCO ISC outbound flags:
RIBSYNC 80 Synchronization pOint issued.

20(14) 1 RIBISCI ISC inbound flags:
RIBFUNC 80 Function string invalid.
RIBCALL 40 User call parameter list

invalid.
RIBLNKNA 20 Link does not exist.
RIBLNKSH 10 Link is out of service.

21 (15) 1 RIBFCTR ISC response code.

22(16) 1 RIBDLTR Additional response
information.

23 (17) 0 RIBRSET Length of function dependent
flags.

23 (17) 1 Unnamed **Reserved**

24 (18) RIBLEN Length of RIB .•

5-94 Licensed Material .., Property of IBM

I

RPCB - RE~OTE PCB

DSECT Name: DLZRPCB

This DSECT describes remote FCB fields. The RPCB is an extension of PCB
local storage used by DLII for CICS/VS intersystem communication (ISC)
support. RPCBs exist only while a task is scheduled for a data base
that is located on some other system. In this case, the address of the
RPCB is located four bytes ahead of the PCB.

RECORD LAYOUT - RPCB

Offset Field/Flag Flag
Dec(Hex) Length Name Code (Hex) Meaning

0(00) 0 RPCB Start of RPCB DSECT.

0(00) 4 RPCBMIOS Maximum PCB I/O area si7;e.

4(04) 4 RPCBSEGL Length of last retrieve.

8(08) 1 RPCBFLAG Flag byte:
RPCBPATH 80 Previous get hold path call.

9(09) 3 Unnamed *'*Reserved**

12(OC) RPCBLEN Length of RPCB.

Licensed Material - property of IBM 5-95

RPDIR - REMOTE PSB DIRECTORY ,

DSECT Name: DLZRPDIR

This DSECT describes remote PSB directory fields. The RPDIR is an
extension of the PDIR. It contains PSB information used by DL/I for
CICS/VS intersystem communication (ISC) support.

RECORD LAYOUT - RPDIR

Offset Fieldn'lag Flag
DeC(Hex) Length Name Code (Hex) ,

0(00) 0 RPDIR

O(00) 4 RPDIRSYS

4(04) 8 RPDIRPSB

12(OC) RPDIRLEN

5-96 Licensed Material - Property of IBM

Meaning

Start of RPDIR DSECT

System name on which remote
PSB is defined.

Name of PSB to use on remote
system.

Length of RPDIR

RPST - R~MOTE PST

DSECT Name: DLZRPST

This DSECT describes remote PST fields.. The RPST is an extension of
task local storage used by DLZODP for CICS/vS intersystem communication
<rSC) support.

RECORD LAYOUT - RPST

Offset Field/Flag Flag
Dec (Hex) Length Name Code 1Hex) Meaning

0(00) 0 RPST Start of RPST DSECT.

0(00) 4 RPSTISC1 ISC parameter 1.

4(04) 4 RPSTISC2 ISC parameter 2.

8(08) 4 RPSTISC3 ISC parameter 3.

12(OC) 4 RPSTISC4 ISC parameter 4.

16 (10) 4 RPSTISC5 ISC parameter 5 .•

20(14) 4 RPSTISC6 ISC parameter 6.

24(18) 1 RPSTATUS Flag byte.

25(19) 3 RPSTACTA Program's ACT entry address.

28(lC) RPSTLEN Length of RPST.

Licensed Material - Property of IBM 5-97

RRD -RESOURCE REQUEST DESCRIPTOR

DSECT Name: DLZRRD

The RRD (Resource Request Descriptor) is used to maintain a record of
all the requests and their current status by one task for a particular
resource.

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field.lFlag Offset Flag
Name Dec (Hex) Cod~(Hex)

RRDFLAG 16 (10)
RRDLEN 18(24)
RRDMAXL 12(OC)
RRDNQEX 8(08)
RRDNQRO 0(00)
RRDNQUP 4(04)

*RRDOWNF 16(10) 01
*RRDPOWNF 16 (10) 04
RRDPSTP 16 (10)
RRDPSTQB 4(04)
RRDPSTQF 0(00)
RRDRDBP 20 (14)
RRDRDBQB 12(OC)
RRDRDBQF 8(08)

*RRDWAITF 16(10) 02

5-98 Licensed Material - property of IBM

RECORD LAYOUT - RRD

Field/Flag Flag Offset
Dec(Bex) Length Name Code (Bex)

0(00)

0(00)

4(04)

4(04)

8(08)

8(08)

12 (OC)

12(OC)

16(10)

16 (10)

20 (14)

24(18)

1

4

1

4

1

4

1

4

1

4

4

4

RRDNQRO

RRDPSTQF

RRDNQUP

RRDPSTQB

RRDNQEX

RRDRDBQF

RRDMAXL

RRDRDBQB

RRDFLAG
RRDOWNF
RRDWAITF
RRDPOWNF

RRDRDBP

RRDPSTP

RRDLEN

01
02
04

Meaning

Number of read-only
ownerships for task

PST queue forward pOinter:
next RRD for task

Number of exclusive (update)
ownerships for task

PST queue backward pointer:
prior RRD for task

Number of exclusive
ownerships for task

RDB queue forward pointer:
next RRD for resource

Current maximum ownership
level for resource by task

RDB queue baCkward pointer:
prior RRD for resource

Flag byte
PST owns resource
PST is waiting for resource
PST is prime owner of
resource

RDB address for resource

PST address for task

Lerigth of RRD

Licensed Material.property of IBM 5-99

SBIF - SUBPOOL INFORMATION TABLE

DSECT Name: SUBINFTA

The subpool infor~ation table is described as part of the general
structure and description of DL/I buffer pool control blocks. There is
one subpool information table for each subpool allocated.

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag Offset Flag
Name Dec (Hex) Code (Hex)

SUBBFHD 3(03)
SUEBFNO 2(02)
SUBBFSIZ 44(2C)
SUBDMBCT 45(2D)

*SUBFRSV 3(03) 80
SUBLEN 46(2E)
SUBNQFI 0(00)
SUBNQLA 1(01)
SUBUCHAI 8(08)
SUBUCPRE 4(04)
SUBUCSUF 40(28)

5-100 Licensed Material - property of IBM

... ~

RECORD LAYOUT - SBIF

Offset Field/Flag Flag
Dec (Hex) Length Name Code (Hex) Meaning

0(00) 1 SUBNQFI PST prefix number of first
task in chain for enqueue
subpool

H01) 1 SUBNQLA PST prefix number of last
task in chain for enqueue
subpool

2(02) 1 SUBBFNO Number of buffers in this
subpool

3(03) 1 SUBBFHD HDBFR indicator
SUBFRSV SO DMB assigned to this subpool

by HDBFR parameter

4(04) 4 SUBUCPRE Accumulated number of buffers
in preceeding subpools

S(OS) 32 SUBUCHAI Buffer use chain

40(2S) 4 SUBUCSUF (Not used in DL/I DOS/VS)

44(2C) 1 SUBBFSIZ Size of the buffers in this
subpool:

X'Ol' = 512 bytes
X'02' = 1024 bytes
X'03" = 1536 bytes
X'04' = 204S bytes
X"05'" = 2560 bytes
X'06" = 3012 bytes
X'07" = 3584 bytes
X'OS' :; 4096 bytes

45(2D) 1 SUBDMBCT Number of DMBs assigned

46 (2E) 0 SUBLEN Length of subpool information
table

Licensed Material - Property of IBM 5-101

SCD - SYSTEM CONTENTS DIRECTORY

DSECT Name: DLZSCD

The DL/I SCD (System Contents Directory) is produced during DL/I system
definition for online CICS/VS-DL/I. The SCD is preassembled as part of
the DL./I nucleus in the batch DL/I system. The SCD contains major entry
pointers for all DL/I facilities.

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag Offset Flag
Name Dec (Hex) Code {ilex)

CPYRITE 0(00)
SCD 96(60)
SCDABEND 200(C8)
SCDAESAV 288 (120)
SCDACTBA 264(108)
SCDASE 196(C4)
SCDATSKC 106(6A)
SCDEFPL 216 (08)
SCDBKWRK 352(160)
SCDCDTA 268(10C)
SCDCMTCT 384(180)

*SCDCMTI 284(11C) 40
SCDCMXT 104(68)
SCDCOMRG 124 (7C)
SCDCPYlO 180(B4)
SCDCSABA 276 (114)
SCDCWRK 336(150)
SCDCWRKL 340 (154)
SCDDATE 98(62)

*SCDDBASL 346 (15A) 02
SCDDBFA 217(D9)
SCDDBFPL 216 (08)
SCDDBLAS 324(144)

*SCDDELCJ 346 (15A) 20
SCDDBLCL 320(140)

*SCDDBLD2 346(15A) 10
SCDDBLFW 316(13C)
SCDDBMPS 304 (130)
SCDDBLNT 148(94)

*SCDDBLO 346(15A) 80
SCDDBLOP 346(15A)

*SCDDBLOR 346(15A) 40
*SCDDBLSP 346(15A) 08

SCDDELSV 328(148)
*SCDDBLTD 346(15A) 20

SCDDBLWO 332(14C)
SCDDDBHO 136(88)

*SCDDELT 284 (11C) 20
SCDDHDSO 160(AQ)

*SCDDLARE 144(90) 28
SCDDLICL 168(A8)
SCDDLICT 144(90)
SCDDLIDL 232(E8)
SCDDLIDM 228(E4)
SCDDLIDN 234(EA)

5-102 Licensed Material ~ Property of IBM

(J

"
.. ~

Field/Flag Offset Flag
Name Dec (Hex) Code (Hex)

SCDDLIDR 152(98)
SCDDLIIN 156(9C)
SCDDLIM 97 (61)
SCDDLIPL 224(EO)
SCDDLIPN 22H-E2)
SCDDLIPS 220(DC)
SCDDLIRE HO(8C)
SCDDLIS 272 (110)
SCDDLIUP 276 (114)
SCDDLIV 96(60)
SCDDLOCT 380(17C)
SCDDSEHO 172(AC)
SCDDXMTO 164(A4)
SCDERRMS 192(CO)
SCDEXTBA 300(12C)
SCDFLPC 244(F4)

*SCDFLSAV 244(F4) 40
*SCDHLRE 284 (l1C) OS

SCDlwAIT 18S(BC)
*SCDLIPLI 244(F4) 80

SCDLNGTH 392(188)
SCDLOCOU 348 (15C)
SCDLO'WER 108(6C)
SCDLC'WID 120 (78)
SCDLSTAD 292 (124)
SCDMPCPT 296(128)

*SCDMTI 284(l1C) 80
SCDMXTSK 102(66)

*SCDNABND 284(l1C) 01
SCDNAVID 116(74)

*SCDNDMP 284(l1C) 04
*SCDN.JNL 284 (l1C) 01
*SCDNLOGI 284(l1C) 02

SCDNT'WC 286 (l1E)
SCDPDUP 388(184)

*SCDPI 304(130) 40
SCDPPAB 248(F8)
SCDPPAF 244(F4)
SCDPPFB 256(100)
SCDPPFF 252(FC)
SCDPPSTL 240(FO)
SCDPPSTN 242(F2)
SCDPPSTS 236(EC)
SCDPRHED 132(84)
SCDPSTLN 260(104)

*SCDQF.JRN 172 (AC) 08
*SCDQFSDC 172 (AC) 04

SCDQUEFW 176(BO)
SCDQUEFO 172 (AC)
SCDREENT 312 (138)

*SCDRELOD 285(l1D) 08
SCDREPLN 344(158)

*SCDRLABN 285 (l1D) 04
*SCDRLRST 285 (l1D) 10
*SCDRPSB 304(130) 20

SCDSEQ 342(156)
SCDSIND 284 (l1C)
SCDSIND2 285(11D)

*SCDSOPLG Z85(l1D) 01
SCDSPCNT 282 (11A)

*SCDSYACT 285 (l1D) 40
*SCDSYINT 285(l1D) 02

Licensed Material - Property of IBM 5-103

Field/Flag Offset Flag
Name Dec (Hex) Code (Hex)

*SCDSYSAB 285 (110) 80
*SCDSYWAT 285(110) 20
*SCDTAMOD 368(170) 40
*SCDTBHCL 368(170) 02
*SCDTCPOS 368(170) 10
*SCDTINDX 368(170) 01

SCDTI<CNT 280(118)
SCDTI<TRM 204(CC)

*SCDTOLBH 369(171) 80
*SCDTPITR 369 (171) 40

SCDTRACE 356(164)
SCDTRCNM 360(168)

*SCDTRETR 368(170) 20
SCDTRFL1 368(170)
SCDTRFL2 369(171)
SCDTSI<CR 372(174)

*SCDTUSER 368(170) 80
*SCDTVSAM 368(170) 04
*SCOTWFI 284(l1C) 08
*SCDUPD 284C11C) 10

SCOUPPER 112 (70)
SCDUSAVE 244(F4)
SCDWAIT 262(106)

*SCDXECB 304(130) 80

Licens-eq Material - property of J;aM

RECORD LAYOUT - SCD

Off~et
Dec(Hex) Length

0(00) 96

96(60) 0

Field/Flag
Name

CPYRITE

SCD

Flag
Code (Hex) Meaning

Reserved for copyright
information

Start of addressable SCD

SYSTEM CONFIGURATION SECTION

96(60) 1 SCDDLIV

97 (61) 1 SCDDLIM

9S (62) 4 SCDDATE

102(66) 2 SCDMXTSK

104 (6S) 2 SCDCMXT

106 (6A) 2 SCDATSKC

lOS (6C) 4 SCDLOWER

112(70) 4 SCDUPPER

116 (74) 4 SCDNAVID

120 (78) 4 SCDLOWID

124 (7C) 4 SCDCOMRG

12S(SO) 4

***ACTION MODULE ENTRY POINT

132 (84) 4 SCDPRHED

136 (SS) 4 SCCDDBHO

140 (SC) 4 SCDDLIRE

144 (90) 4 SCDDLICT

SCDDLARE

148 (94) 4 SCDDBLNT

ADDRESSES***

DL/I version number

DL/I release level

System date - Julian

DL/I minimum task count -
online

DL/I current maximum task -
online

Active DL/I task counter
online

partition lower boundary:
address pOinter to
addressable part of the SCD
(batch only)

partition upper boundary
address

Next available task ID

Lowest task ID

COMREG address

Reserved

Entry pOint of program
request handler:
Batch == DLZPRHBO
Online = DLZPR~OO

Entry pOint of buffer handler
(DLZDBHOO)

Entry point of retrieve
(DLZDLROO)

Entry point of call analyzer
(DLZDLAOO)
Offset to entry point on
return to call analyzer

Entry point of data base 109
module (DLZRDBLO) ::: entry

Licensed Material - Property of IBM 5-105

Offset
Dec (Hex)

152 (98)

156 (9C)

160 (AO)

164 (A4)

168(A8)

172 (AC)

172(AC)

176 (BO)

180 (B4)

184 (B8)

188 (BC)

192 (CO)

196 (C4)

200 (C8)

204 (CC)

208 (DO)

5-106

Field/Flag Flag
Length Name Code (Hex)

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

8

SCDDLID2

SCDDLIIN

SCDDHDSO

SCDDXMTO

SCDDLICL

SCDDSEHO

SCDQUEFO

SCDQFSDC

SCDQFJRN

SCDQUEFW

SCDCPY10

SCDIWAIT

SCDERRMS

SCDASE

SCDABEND

SCDTKTRM

04

08

Meaning

paint of log initialization
until after initialization

Entry paint of delete/replace
(DLZDLDOO)

Entry point of load/insert
for retrieve (DLZDDLEO)

Entry paint of space
management (DLZDHDSO)

Entry paint of index
maintenance (DLZDXMTO)

Entry paint of open/close
CDLZDLOCO)

Entry paint of routine to
create work files for batch
only (DLZDSEHO)

Entry paint of
enqueue/dequeue module for
program isolation - online
only (DLZQUEFO)
Displacement to SCD address
field in DLZQUEFO
Displacement to JRNAD exit
address field in DLZQUEFO

Enqueue/dequeue work area

Entry point for field level
sensitivity expansion routine
CDLZCPYlO)

Reserved

Entry point of IWAIT routine:
Eatch = DLZIWAIT
Online = DLZOWAIT

Entry paint of error message
routine:
Batch = ERRORMSG
Online = DLZERMSG

Entry point of online
schedule and termination
(DLZSCHDL)

Entry paint of DL/I ABEND
routine:

Batch = DLZABEND
Online = DLZABNDO

Entry paint of online task
termination for program
request handler (DLZTKTRM)

Reserved

Licensed Material - Property of IBM

Offset
Dec (Hex) Length

Field/Flag
Name

Flag
Code(Hex) Meaninc,I

SYSTEM CONTROL BLOCK SECTION

216 (oS)

216(DS)

217(D9)

220 (eC)

224 (EO)

226(E2)

22S(E4)

232(ES)

234(EA)

236(EC)

240 (FO)

242 (F2)

244 (F4)

244(F4)

244(F4)

24 S (F8)

252 (FC)

256(100)

260 (104)

o

1

3

4

2

2

4

2

2

4

2

2

4

4

1

4

4

4

2

SCDDBFPL

SCDBFllL

SCDDBFA

SCDDLIPS

SCDDLIPL

SCDDLIPN

SCDDLIDM

SCDDLIDL

SCDDLIDN

SCDPPSTS

SCDPPSTL

SCDPPSTN

SCDPPAF

SCDUSAVE

SCDFLPC

SCDLIPLI

SCDFLSAV

SCDPPAB

SCDPPFF

SCDPPFB

SCDPSTLN

80

40

Label for buffer handler

Number of buffer subpools

Address of buffer pool
control block prefix
(OLZBFPL)

Address of PSB directory
(DLZPDIR)

Length of PDIR entries

Number of PDIR entries

Address of DMB directory
(DLZDDIR)

Length of DDIR entries

Number of DDIR entries

Address of PST prefix entries
(DLZPPST)

Length of PPST entries

Number of PPST entries

Online forward PST prefix
active pointer

used for MPS or batch.
contains address of user
savearea where DL/I registers
are saved.

Flag byte (used for MPS or
batch) :
o = currently executing in

Dt/I code (or in a user
program that is not
written in PL/I).

1 = currently executing in
PL.tI code.

o = User savearea used for
STXIT pc.

1 = DL/I savearea used for
STXIT pc.

Online backward PST prefix
active pointer

Online forward PST prefix
free pointer (DLZPPSTF)

Online backward PST prefix
free pointer (DLZPPSTE)

Length of PST

Licensed Material - Property of IBM 5-107

Offset
Dec(Hex)

262(106)

264(108)

268(10C)

272(110)

276 (114)

276 (114)

280 (118)

282 (l1A)

284 (l1C)

285 (l1D)

286 (l1E)

288 (120)

5-108

Field/Flag Flag
Length Name Code (Hex)

2

4

4

4

4

4

2

2

1

1

2

4

SCDWAIT

SCDACTBA

SCDCDTA

SCDDLIS

SCDDLIUP

SCDCSABA

SCDTKCNT

SCDSPCNT

SCDSIND
SCDMTI
SCDCMTI

SCI:DELT

SCDUPD

SCDTWFI

SCDHLRE

SCDNDMP
SCDNLOGI

SCDNABND

SCDNJNL

SCDSIND2
SCDSYSAE
SCDSYACT
SCDSYWAT
SCDRLRST
SCDRELOD
SCDRLABN

SCDSYINT
SCDSOPLG

SCDNTWC

SCDABSAV

80
40

20

10

08

08

04
02

01

01

80
40
20
10
08
04

02
01

Meaning

Number of tasks waiting for
CMAX

Address of online application
program control table
(DLZACTBA)

Address of current online
dispatched task's TCA

Address of first online task
suspended

Address of batch DL/I upper
boundary

Address of online CICS CSA

count of DL/I tasks assigned
PPST

Count of suspended tasks due
to maximum task

system indicator
DL/I Maximum task indicator
DL/I current maximum task
indicator
Online indicator for PSB has
delete sensitivity
Online indicator for PSB has
update sensitivity
Task waiting for segment
intent
High level language reentry
indicator STXIT
No dump at ABEND
No data base logging to be
done
Batch - no STXIT ABEND to be
issued
Online - no CICS journal in
use

system flags
System ABEND online
System task active
System task waiting
HD reload/restart
HD reload utility
HD reload or reload/restart
ABEND is in process
Initialization bit
Open records written to CICS
journal

segment intent wait counter

POinter to pseudo ABEND save
area (DLZABSAV)

Licensed Material - property of IBM

Offset
Dec (Hex)

292(124)

296(128)

300 (12C)

304(130)

305 (131)

306 (132)

308(134)

Field/Flag Flag
Length Name Code (Hex)

4

4

4

1

1

2

4

SCDLSTAD

SCDMPCPT

SCDEXTBA

SCDDBMPS
SCDXECB
SCDPI
SCDRPSB

80
40
20

DATA EASE CHANGE LOG SECTION

312 (13S)

316 (13C)

320 (140)

324 (144)

32S(148)

332(14C)

336 (150)

340(154)

342(156)

344 (158)

346 (15A)

347(15B)

34S(15C)

350(15E)

352 (160)

4

4

4

4

4

4

4

2

2

2

1

1

2

2

4

SCDREENT

SCDDBLFW

SCDDBLCL

SCDDBLAS

SCDDBLSV

SCDDBLWO

SCDCWRK

SCDCWRKL

SCDSEQ

SCDREPLN

SCDDBLOP
SCDDBLO
SCDDBLOR
SCDDBLTD
SCDDBLD2
SCDDBLSP
SCDDBLCJ·
SCDDBASL

SCDLOCOU

SCDBKWRK

SO
40
20
10
OS
04
02

Meaning

Address of CICS interface
address list (DLZDLIAL)

Address of MPC partition
table

Pointer to SCD extension

Flag Byte
XECBs defined by MPC
program isolation active.
Remote PSB defined.

Reserved

Reserved

Reserved

Entry paint of log write only

Entry point of log force
write

Entry point of log close
routine

Entry point of asynchronous
log

Entry point of log save area

Entry paint of write log open
record

Address of DB log work area

Length of DB log work area

DB log sequence number

Length of DB log prefix

Data base log option byte
DB log is open
DE log open required
Disk logging used
Two disk extents used
Pause before extent switch
CICS journal in use
DB asynchronous log required

Reserved

Current log count

Reserved

Backout log workarea pointer.

Licensed Material - Property of IBM 5-109

Offset Field/Flag Flag
Dec (Hex) Length Name Code(Hex) Meaning

TRACE SECTION

356(164) 4 SCDTRACE Entry pOint of trace module
if present

360 (168) 8 SCDTRCNM Name of trace module

368(170) 1 SCDTRFLl Trace option byte 1
SCDTUSER 80 User call interface
SCDTAMOD 40 Action module trace
SCDTRETR 20 Retrieve (for GET calls)
SCDTCPOS 10 Current position information
SCDTVSAM 04 VSAM interface
SCDTBHCL 02 Buffer handler interface
SCDTINDX 01 Requests to index maintenance

369 (171) 1 SCDTRFL2 Trace option byte 2
SCDTOLBH 80 Online trace
SCDTPITR 40 Program isolation trace

370 (172) 2 **Reserved** ,
STATISTICS SECTION (Online only)

372(174) 8 SCDTSKCT Total number of PSB
scheduling calls

380 (17C) 4 SCDDLOCT Program isolation deadlock
occurrence count

384 (180) 4 SCDCMTCT Number of times at current
maximum task

388 (184) 4 SCDPDUP Number of duplicate PSBs
created

392 (188) SCDLNGTH Length of SCD

5-110 Licensed Material - Property of IBM

SCDEXT - SCC EXTENSION

DSECT Name: SCDEXTDS

The SCD extension is generated in the same manner as the SCD (system
contents directory) and is a logical extension of it.

ALPHAEETIC LIST OF FIELD/FLAG NAMES

Field/Flag Offset Flag
Name Dec~Hex) Code (Hex)

SCDAPSTR 24(lS) Batch usage
SCDEABEX 4(04) Batch usage
SCDEABSV S(OS) Batch usage
SCDEFECB S(OS) Online usage
SCDEIDNX 24 (18) Online usage
SCDEIDST 20 (14) Online usage
SCDEIDWK 2S(lC) Online usage
SCDELECB 0(00) Online usage
SCDEMSGT 32(20) Online usage
SCDEPASS 16(10) Online usage
SCDEPCEX 12(OC) Batch usage
SCDEREEN 0(00) Batch usage
SCDESECB 4(04) Online usage
SCDETRAN 16(10) Batch usage
SCDETRSV 20(14) Batch usage
SCDETRTB 36(24) Online usage and batch usage
SCDE'IRTE 40(2S) Online usage and batch usage
SCDETRTS 44(2C) Online usage and batch usage
SCDEVSEX 12(OC) Online usage
SCDEXLEN 52(34) Online usage

Licensed Material - Property of IBM 5-111

RECORD LAYOUT - SCDEXT

Offset Field/Flag Flag
Dec(Hex) Length Name Code (Hex) Meaning

Online Usage of the SCD Extension

0(00) 4 SCDELECB Logger I/O ECB

4(04) 4 SCDESECB System enqueue ECB

8(08) 4 SCDEFECB System function call ECB

12(OC) 4 SCDEVSEX Address of VSAM EXCP exit
(DLZOVSEX)

16 (10) 4 SCDEPASS Address of system password
(DLZPASS)

20(14) 4 SCDEIDST Address of first PPST ID
assigned (DLZIDLST)

24 (18) 4 SCDEIDNX Address of last active PPST
ID CDLZIDLST)

28<1C) 4 SCDEIDWK Address of PPST search table
(DLZIDWRK)

32(20) 4 SCDEMSGT Address of online message
module (DLZMMSGT)

36 (24) 4 SCDETRTB Current entry in incore table

40 (28) 4 SCDETRTE End address +1 of trace table

44(2C) ". SCDETRTS Start address of trace table

48(30) ". **Reserved**

52 (34) SCDEXLEN Length of SCD extension

Batch Usage of SCD Extension

0(00) 4 SCDEREEN Address of utility block call
entry point

4(04) 4 SCDEABEX Address of STXIT ABEND
routine (DLZAABND)

8(08) " SCDEABSV Address of STXIT ABEND save
area

12(OC) 4 SCDEPCEX Address of STXIT PC routine
(DLZPABND)

16(10) 4 SCDETRAN Address of ABTERM transient
area

20 (14) 4 SCDETRSV Address of transient save
area

24 (18) 4 SCDAPSTR Application program start Ii
address

.~

5-112 Licensed Material - property of IBM

Offset Field/Flag Flag
J;Jec(Hex) Length Name Code (Hex) Meaning

28(lC) 8 (Not used in batch)

36(24) 4 SCDETRTB Current entry in incore table

40(28) 4 SCDETRTE End address +1 of trace table

44(2C) 4 SCDETRTS Start address of trace table

48 (30) 4 **Reserved**

Licensed Material - property of IBM 5-113

SDB - SEGMENT DESCRIPTION BLOCK

DSECT Name: SDB

The segment description block (SDB) is described as part of the general
structure and description of the program specification block (PSB).

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag Offset Flag
Name Dec (Hex) Code (Hex)

*SDBALTSC 11(0B) 20
*SDBALTSQ l1(OB) 40
*SDBCISP 11 (OB) 04
*SDBCTR 37 (25) 80
*SDBDCHG l1(OB) 01

SDBDDIR 12(OC)
*SDBDPAR 11(0B) 10

SDBDSGA 28(lC)
SDBEND 60 (3C)

*SDBFLS 56 (38) 02
SDBF3 10(OA)
SDEF4 11(0B)

*SDBGEN 32(20) 10
SDBKEYFD 40(28)
SDBKEYLN 24(18)

*SDELCH 11(0B) 01
SDBLEN 60(3C)
SDBLEVEL 8(08)

*SDBLP 37(25) 02
*SDBLTPK 37(25) 04
*SDBLTFD 31 (25) 08

SDBLTN 0(00)
SDBLTP 0(00)
SDBNSDB 16(10)

*SDBORGHD 9 (Q9) 20
*SDBORGHI 9(09) 10
*SDBORGHS 9(09) 02
*SDBORGH1 9(09) 04

SDBORGN 9(09)
*SDBORGRI 9(09) 44
*SDBORGSH 9(09) 05
*SDBORGSS 9(09) 01

SDBPARA 24(18)
SDBPCB 39(27)
SDBPCF 38(26)

*SDBPCTSP 32(20) 40
SDBPHYCD 12(OC)
SDBPOSC 48(30)

*SDBPOSL 11(0B) 02
SDBPOSN 52 (34)
SDBPOSP 44(2C)

*SDBPP 37(25) 10
*SDBPPST 32(20) 80
*SDBPPTSP 32(20) CO

SDBPSDB 20(14)
*SDBPTB 37(25) 20

SDBPTDS 37 (25)

5-114 Licensed Material - Property of IBM

i'l

~

Field/Flag Offset Flag
Name Dec (Hex) Code (Hex)

*SDBPTF 37 (25) 40
SDBPTNO 36(24)

*SDBSEND 10(OA) 10
*SDBSENG 10(OA) 80
*SDBSENI 10(OA) 40
*SDBSENK 10(OA) 08
*SDBSENL 10(OA) 01
*SDBSENP 10(OA) 04
*SDBSENR 10fOA) 20
*SDBSENX 10(OA) 02
*SDBSLC 32(20) 02
*SDBSLP 32(20) 01
*SDBSNX 32(20) 04
*SDBSPP 32(20) 08

SDBSYM 0(00)
SDBTARG 33(21)
SDBTFLG 32(20)
SDBXFFSB 16(10) (See SDBXP block at end of SDB)
SDBXFISL 6(06) (See SDBXP block at end of SDB)
SDBXFL 56 (38)
SDBXFLAG 12(OC) (See SDBXP block at end of SDB)
SDBXFLEN 16(10) (See SDBXP block at end of SDB)
SDBXFLN 2(02) (see SDBXP block at end df SDB)
SDBXFNB 1(01) (See SDBXP block at end of SDB)

*SDBXFNR 12(OC) 80 (See SDBXP block at end of SDB)
SDBXFSBP 8(08) (See SDBXP block at end of SDB)
SDBXFUSL 4(04) (See SDBXP block at end of SDB)
SDBXPANS 56(38)
SDBXPASF 16 (10) (See SDBXP block at end of SDB)
SDBXPEND 20(14) (See SDBXP block at end of SDB)
SDBXPFDB 0(00) (See SDBXP block at end of SDB)

*SDBXPFS 0(00) 02 (See SDBXP block at end of SDB)
SDBXPMSK 4(04) (See SDBXP block at end of SDB)

*SDBXPRES 56(38) 01
*SDBXPSI 0(00) 01 (See SDBXP block at end of SDB)

SDBXPSZ 20(14) (See SDBXP block at end of SDB)
SDBXPTYP 0(00) (See SDBXP block at end of SDB)
SDBXSQLN 14(OE) (See SDBXP block at end of SDB)
SDBXSQOF 12(OC) (See SDBXP block at end of SDB)
SDBXWMSK 8(08) (See SDBXP block at end of SDB)

Licensed Material - Property of IBM 5-115

RECORD LAYOUT - SDB

Field/Flag Flag Offset
DeC (Hex) Length Name Code(Hex)

0(00)

0(00)

0(00)

8(08)

9(09)

10 (OA)

11 (OB)

12(OC)

12(OC)

16 (10)

20(14)

8

4

4

1

1

1

1

1

4

4

4

SDBSYM

SDBLTP

SDBLTN

SDBLEVEL

SDBORGN

SDBORGRI
SDBORGHD

SDBORGHI

SDBORGSH

SDBORGH1

SDBORGHS

SDBORGSS

SDBF3
SDBSENG
SDBSENI
SDBSENR
SDBSEND
SDBSENK
SDBSENP
SDBSENX
SDBSENL

SDBF4
SDBALTSQ

SDBALTSC

SDBDPAR

SDBCISP

SDBPOSL
SDBLCH
SDBDCHG

SDBPHYCD

SDBDDIR

SDBNSDB

SDBPSDB

44
20

10

05

04

02

01

80
40
20
10
08
04
02
01

40

20

10

04

02
01
01

Meaning

segment symbolic name

Prior segment on logical twin
chain

Next segment on logical twin
chain

Level of this segment
(logical)

organization of data base
containing segment
This segment is root of index
This segment is in a HDA~
organization
This segment is in a HIDAM
organization
This segment is in a simple
HISAM organization
This segment is in a HISAM
organization
This segment is in an HSAM
organization
This segment is in a simple
HSAM organization

Call sensitivity
sensitivity is read only
sensitivity is insert
sensitivity is replace
sensitivity is delete
Sensitivity is key only
Sensitivity is path only
Sensitivity is exclusive
sensitivity is load

Code byte
Secondary index is main
processing sequence
Secondary index search fields
require conversion
Field is in destination
parent
Control interval split
occurred in HISAM KSDS
position lost
Field is in logical child
Temporary switch for replace:
data changed

Segment code

DMB directory address

Next SDB for this PSDB

Address of PSDB

5-116 Licensed Material - Property of IBM

Offset
pec(Hex)

24 (18)

24 (18)

28 (lC)

32 (20)

Field/Flag Flag
Length Name Code (Hex) Meaning

1

4

4

1

SDBKEYLN

SDBPARA

SDBDSGA

SDBTFLG
SDBPPTSP CO

SDBPPSP 80

SDBPCTSP 40

SDBGEN 10
SDBSPP 08

SDBSNX 04

SDBSLC 02
SDBSLP 01

Executable key length of key
field

Parent SDB (address of PCB
for root SDB) or address of
prior SDB on 'SDBTARG' chain
for generated SDBs (SDBGEN on
in SDBTFLG)

Address of data set group
section of JCB for data set
containing segment

Logical relationship code
Segment is physical parent of
target of SDBPARA
Segment is physical parent of
SDBPARA
Segment is physical child of
target of SDBPARA
This SDB is a generated SDB
Segment is a virtual logical
child
Segment is retrieved via
index
(See bit flag 0001 0010)
Segment is a logical child

SDBTFLG Bit Flags

1xxO xxxx

x1xO xxxx

10xO xxxx

11xO xxxx

01xO xxxx

Inverted structure - The segment
logically above this one is below it in
the physical data base hierarchy. The
segment logically above this one is
represented by the SDB pointed to in
SDBPARA. If SDBPARA points to a SDB for
a logical child, this segment could be
physically above either the logical child
or its destination parent. A generated
SDB pOinted to by SDBTARG in the logical
child's SDB represents the destination
parent.

Logical relation - The segment
represented by the SDB pointed to by
SDBPARA is a logical child and this
segment is either the physical parent or
a physical child of its destination
parent.

This segment is the physical parent of
the segment represented by the SDB
identified as SDBPARA.

The segment represented by the SDB
pointed to in SDBPARA is a logical child
and this segment is the physical parent
of its destination parent (SDBTARG).

The segment represented by the SDB
pointed to in SDBPARA is a logical child

Licensed Material - Property of IBM 5-117

Offset
Dec (Hex)

33(21)

36(24)

37 (25)

38 (26)

39 (27)

40 (28)

5-118

Field/Flag
Lenqth Name

3

1

1

1

1

4

xxxO lxxx

xxxO xxxl

xxxl xxxx

0001 0010

0001 0110

SDBTARG

SDBPTNO

SDBPTDS
SDBCTR

SDBPTF

SDBPTB

SDBPP

SDBLTFD

SDBLTBK

SDBLP

SDBPCF

SDBPCB

SDBKEYFD

Flag
Code (Hex) Meaning

and this segment is a physical child of
its destination parent.

This segment is the logical child in a
virtual logical child concatenated
segment and SDBTARG pOint to the logical
child's physical parent.

This segment is the logical child in a
normal concatenated segment and SDBTARG
points to the logical parent.

SDB is a generated SDB.

SDB is a generated SDB for an index. If
SDBTARG is non-zero, it points to the
generated SDB for the index target.

SOB is a generated SDB for a HIDAM root
segment. SDBTARG points to the SOB for
the primary index segment.

80

40

20

10

08

04

02

Address of the logically
related segments SDB

Pointer number of first
physical pointer

Physical pointer flag
This logical parent segment
has a counter
This segment has a physical
twin forward pointer
This segment has a physical
twin backward pointer
This segment has a physical
parent pOinter
This segment has a logical
twin forward pOinter
This segment has a logical
twin backward pOinter
This segment has a logical
parent pointer

Pointer number in parent to
first occurrence of this
segment type

pointer number in parent to
last occurrence of this
segment type

The address within DBPCBKFD
for key this segment. In
generated SOB for logical
destination parent:
Byte 0 = physical segment

code of logical
child

Bytes 1-3 = logical child's
PSOB address

Licensed Material - Property of IBM

,

Field/Flag Flag ,Offset
Oec(Hex) Length Name Code (Hex)

44 (2C)

48 (30)

52(34)

56 (38)

56 (38)

60 (3C)

60(3C)

4

4

4

1

SOBPOSP

SOBPOSC

SOBPOSN

SOBXFL
SOBXPRES

SOBFLS

SOBXPANS

SOBENO

SOBLEN

SOB EXPANSION BLOCK

OSECT Name: SOBXP

01

02

Meaning

In generated SOB for physical
destination parent:
Byte 0 = Physical segment

code of virtual
logical child

Bytes 1-3 = virtual logical
child's PSOB
address

previous position

Current position. X'80' in
high-order byte = position
lost, in conjunction with
SOBPOSL in SOBF4

Next position (current
position in generated SOBs)

SOB expansion flag
SOB expansion for secondary
index processing sequence is
present. (Secondary index is
main processing sequence.)
segment has field level
sensitivity

SOB expansion address

End of SOB entry

Length of each SOB (SOBENO
minus SOBSYM)

This block is present if indicated in SOB~ see field SOBXFL, flag
SOBXPRES.

0(00) 1 SOBXPTYP SOB expansion type
SOBXPSI 01 SDB expansion 1.S for

secondary index
SOBXPFS 02 SOB expansion is for field

sensitivity

0(00) 3 SOBXPFOB Address of secondary index
sequence field FOB

4(04)- 4 SOBXPMSK Mask of XOFLO FOBs allowed in
SSAs

8(08) 4 SOBXWMSK Work area reserved for
open/close

Licensed Material - Property of IBM 5-119

Offset
Dec: (Hex)

12(OC)

14 (OE)

16 (10)

20(14)

20(14)

Field/Flag Flag
Length Name Code (Hex)

2 SDBXSQOF

2 SDBXSQLN

4 SDBXPASF

SDBXPEND

SDBXPSZ

Meaning

Offset from DBPCBKFD to
SUBSEQ area (0 if area not
present)

Length of SUBSEQ field(s)
minus 1

Alternate sequence FSB
pointer

End of SDB expansion block
entry

Length of one SDB expansion
block entry (SDBXPEND minus
SDBXP)

••• SDB EXPANSION BLOCK FOR FIELD SENSITIVITY •••

1(01)

2 (02)

4(04)

6(06)

8(08)

12(OC)

13(OD)

16(10)

16 (10)

16 (10)

5-120

1

2

2

2

4

1

3

o

o

o

SDBXFNB

SDBXFLN

SDBXFUSL

SDBXFISL

SDBXFSBP

SDBXFLAG
SDBXFNR

SDBXFEND

SDBXFLEN

SDBXFFSB

80

Number of FSBS

Length of expansion block

Length of segment in user's
view

Insert length of segment

ACBGEN - first FSB address

Flags
At least one NOREPL rule

·.Reserved ••

End of SDB expansion block
entry

Length of one SDB expansion
block

Start of first FSB

Licensed Material - Property of IBM

SEC - SECONDARY LIST

OSECT Name: DMBSEC

The secondary list is described as part of the general structure and
description of the OMB. The labels in SEC vary with the type of
secondary index entry. See the field description listed by code type in
the record layout.

ALPHABETIC LIST OF FIELO/FLAG NAMES

Field/Flag Offset Flag
Nante Dec (Hex) Code (Hex)

*OMBEXIT H01) 02 (See Code 40)
*OMBEXLOD 1(01) 04 (See Code 40)
*OMBEXTRN 0(00) 40

OMBFOFLG 1(01) (See Code 04)
OMBFDOFF 6(06) (See Code 04)

*OMBFDONE 1(01) 10 (see Code 04)
*OMBFDUSE H01) 01 (See Code 04)
*OMBINOXO 0(00) 44

OMBIPSOB 8(08) (See Code 64)
OMBISSOF 2(02) (See Code 64)
OMBISSSC 8(08) (See Code 64)
OMBNBYTE 4(04) (see Code 40)

*OMBNXISS 0(00) 60
*OMBNXXDS 0(00) 64

OMBSCOE 0(00)
OMBSECOB 4(04) (See Code 01)
OMBSECLN 16(10) (See Code 64)
OMBSECNO 16(10) (See Code 64)
OMBSECNM 8(08) (See Code 01)
OMBSECSC 4(04) (See Code 01)
OMBSFCEN 12(OC) (See Code 08)
OMBSFO 2(02) (See Code 01)
OMBSFLEN 13(00) (See Code 08)
OMBSFLG 1(01) (See Code 01)
OMBSFLGl 1(01) (See Code #0)
OMBSFNAM 2(02) (See Code 08)
OMBSFOFF 10(OA) (See Code 08)
OMBSFPSC 1(01) (See Code 08)
OMBSKYLN 1(01) (See Code 60)

*OMBSLC 0(00) 02
*OMBSLCF 0(00) 08

OMBSLCFL 2(02) (See Code 02)
OMBSLCIR 1(01) (See Code 02)

*OMBSLP O~OO) 01
*OMBSNO o 00) 80
*OMBSNULL 1(01) 01 (See Code 40)

OMESOFF 2(02) (See Code 44)
*OMBSOURC O{OO) 20
*OMBSRCH 0(00) 04
*OMBSUBSQ 0(00) 24
*OMBSYMNl 1(01) 04 (See Code 04)

OMBSYMOF 14(OE) (See Code 44)
*OMBSYMl 1(01) 08 (See Code 04)
*OMBSYSFD 1(01) 02 (See Code 04)
*OMBVKY 1(01) C'V'. (See Code 01)

Licensed Material - property of IBM 5-121

Field/Flag Offset Flag
Name Dec (Hex) Code (Hex)

*DMBXDCON 12(OC) 08 (See Code 44)
*DMBXDEQ 12(OC) 01 (See Code 44)

DMBXDFLG 12(OC) (See Code 44)
*DMBXDLST 12(OC) 80 (See Code 44)

DMBXDPAD 13(OD) (See Code 44)
DMBXDSC 8(08) (See Code 44)
DMBXDSDB 4(04) (See Code 44)

*DMBXDSPC 12(OC) 10 (See Code 44)
DMBXDSSC 4(04) (See Code 44)

*DMBXDSSQ 12(OC) 04 (See Code 44)
*DMBXDSSS 12(OC) 20 (See Code 44)
*DMBXDSYM 12(OC) 40 (See Code 44)

DMBXITAD 4(04) (See Code 40)
DMBXNSDB 4(04) (See Code 60)
DMBXNSSC 4(04) (See Code 60)
DMBXPSDB 8(08) (see Code 44)
DMBXSOFF 14(OE) (See Code 08)

5-122 Licensed Material - property of IBM

RECORD LAYOUT - SEC

Offset Field/Flag
Dec(Hex) Length Name

0(00) 1 DMBSCDE
DMBSLP

DMBSLC

DMBSRCH

DMBSLCF

DMBSOURC

DMBSUBSQ

DMBEXTRN

DMBINDXD

DMBNXISS

DMBNXXDS

DMBSND

Flag
Code (Hex)

01

02

04

08

20

24

40

44

60

64

80

Meaning

Code byte
secondary list describes a
logical parent
Secondary list describes a
logical child
Secondary list describes
index search field(s)
secondary list describes
logical twin sequence field
Secondary list describes
index DDATA field(s)
Secondary list describes
index SUBSEQ field(s)
Secondary list describes
index user exit routine
secondary list describes
index target segment as seen
from index pointer segment
Secondary list describes
index relationship as seen
from index source segment
secondary list describes
index relationship as seen
from index target segment.
This list is not present if
ISS=TARGET
Last entry in secondary list

THE FOLLOWING FIELDS ARE LISTED BY CODE TYPE

CODE 01 - DESCRIBES LOGICAL PARENT

1(01)

2(02)

4(04)

4(04)

8(08)

1

2

1

4

8

DMBSFLG
DMBVKY

DMBSFD

DMBSECSC

DMBSECDB

DM~SECNM

C·V·

***CODE 02 - DESCRIBES LOGICAL CHILD**.

1(01) 1 DMBSLCIR

2(02) 2 DMBSLCFL

Remaining fields are same as Code 01.

Key of logical parent is
virtual

Logical parent key length

Segment code of referenced
segment

DDIR address of referenced
data base

Segment name of referenced
segment

Logical twin sequence insert
rule

Number of first and last
logical child pointers in
logical parent prefix

Licensed Material - Property of IBM 5-123

Offset
Dec (Hex)

Field/Flag Flag
Length .Name Code (Hex) Meaning

CODE 04 - DESCRIBES INDEX SEARCH FIELDS

1(01) 5 DMBFDFLG

DMBSYMl

DMBSYMNl

DMBSYSFD

DMBFDUSE
DMBFDONE

6(06) 10 DMBFDOFF

08

04

02

01
10

Five l-byte flags associated
with the following FDB
offsets
First part of symbolic
pOinter
Not first part of symbolic
pOinter (middle or last)
This slot for system-related
field
This slot in use
This entry processed by block
builder

Offset to FDB from. ,first FDB
of ISS if this slot· is in
use,. Otherwise, zero~

CODE 08 - DESCRIBES LOGICAL TWIN SEQUENCE FIELD

1(01) 1 DMBSFPSC Virtual'logical child
physical segment code

2(02) 8 DMBSFNAM FDB field name

10(OA) 2 DMBSFOFF Offset to field in segment

12(OC) 1 DMBSFCEN Code byte (same as FDBDCENF
in FDB)

13(OD) 1 DMBSFLEN Executable field length

14 (OE) 2 DMBXSOFF Offset to field in indexed
segment

CODE 20 - DESCRIBES DDATA FIELD

Same fields as code 04

CODE 24 - DESCRIBES SUBSEQ FIELD

Same fields as Code 04

CODE 40 - DESCRIBES INDEX EXIT ROUTINE

1(01) 1 DMBSFLGl Flag byte
DMBSNULL 01 Null field present
DMBEXIT 02 Exit routine present
DMBEXLOD 04 Exit routine has been loaded

2 (02) 2 ***Reserved***

4(04) 4 DMBNBYTE If index field equals this
byte, bypass indexing

4(04) 4 DMBXITAD Address of index maintenance
parameter CSECT

8 (08) 8 ***Reserved***

5-124 Licensed Material - Property of IBM

Offset
Dec(Hex)

Field/Flag Flag
Length Name Code (Hex) Meaning

CODE 44 - DESCRIBES INDEX TARGET SEGMENT

1(01)

2 (02)

4(04)

4(04)

8(08)

8(08)

12(OC)

13(OD)

14 (OE)

1

2

4

4

4

4

1

1

2

DMBSKYLN

DMBSOFF

DMBXDSSC

DMBXDSDB

DMBXDSC

DMBXPSDB

DMBXDFLG
DMBXDLST
DMBXDSYM
DMBXDSSS

DMBXDSPC

DMBXDCON
DMBXDSSQ
DMBXDSOR
DMBXDEQ

DMBXDPAD

DMBSYMOF

80
40
20

10

08
04
02
01

CODE 60 - DESCRIBES INDEX FROM ISS

1(01)

4(04)

4(04)

3

1

4

DMBXNSSC

DMBXNSDB

Remaining fields same as Code 44

Executable length of key

Offset to PSDB address
pOinter of index target
segment

Segment code of index target
segment

DDIR address of index target
segment

Segment code of index target
segment

PSDB address of index target
segment

Code byte fram associated FDB
Last FDB in list
Index pointer is symbolic
Pointer contained in
source/subseq data
Special FDB for secondary
index
Constant present
SUBSEQ present

XDS=ISS

Padding constant

Offset to symbolic pointer
indexing segment

Same as code 44

Segment code of index pointer
segment

DDIR address of index

CODE 64 - DESCRIBES INDEX FROM INDEX TARGET

1(01)

2(02)

4(04)

8(08)

8(08)

1

2

4

1

4

DMBISSOF

DMBISSSC

DMBIPSDB

Same as code 44

Offset to Code 60 from start
of ISS secondary list

Same as code 60

Segment code of index source
segment

PSDB address of index source
segment

Licensed Material - Property of IBM 5-125

Offset Field/Flag Flag
Dec(Hex) Length Name Code (Hex) Meaning

12(OC) 1 Same as code 44

16 (10) DMBSECND End of each secondary list
entry

16 (10) DMBSECLN Length of each secondary list
entry

5-126 Licensed Material ~ Property of IBM

I
I

UIB - USER INTERFACE BLOCK

DSECT Name: DLIUIB

The user section of this control block is used by extended DL/I call
interface support (along with CICS/VS high-level language support).
This section contains scheduling and system call status information
returned to the user. (Prior to Vers ion 1 .• 4, this information was
returned to the user in the TeA.) A system section of the UIB follows
the user section. It is used by DL/I as task-local storage. Unlike PST
storage, UIB storage is not released at scheduling termination.

RECORD LAYOUT - UIB (USER SECTION)

Offset Field/Flag Flag
DeC (Hex) Length Name Code (Hex) Meaning

0(00) 0 UIB Start of UIB DSECT.

0(00) 4 UIBPCBAL PCB address list.

4(04) 0 UIBRCODE DL/I return codes.

4(04) 1 UIBFCTR Return code.

5(05) 1 UIBDLTR Additional information.

6(06) 2 Unnamed **Reserved**

8(08) UIBLEN Length of UIB (for Assembler
language only).

Licensed Material - Property of IBM 5-127

RECORD LAYOUT - UIB (SYSTEM SECTION)

Offset Field/Flag Flag
Dec(Hex) Length Name Code (Hex) Meaning

8(08) 64 UIBREGSV Register save area.

72 (48) 8 UIBPSB PCB name on scheduling call.

80(50) 4 UIBFUNC Call function type.

84 (54) 1 UIBFLAG1 UIB Flag.

UIBSCHD 01 SCheduling call.

UIBDB 02 Data base call.

UIBTERM 04 Term call.

UIBREMOT 80 PSB on remote system.

85 (55) 1 UIBFLAG2 UIB flag,.

88(58) UIBSLEN Length of user and system
UIB

5-128 Licensed Material- property of IBM

XMPRM - HDAM/HIDMo! USER SECONDARY INDEX SUPPRESSION ROU'IINE INTERFACE
TABLE

DSECT Name: DMBXMPRM

This table is described as part of the general structure and description
of the data management block (DMB).

ALPHABETIC LIST OF FIELD/FLAG NAMES

Field/Flag
Name

DMBXMPLN
DMBXMRES
DMBXMSGN
DMBXMXDN
DMBXMXEP
DMBXMXNM

RECORD LAYOUT

Offset
Dec(Hex)

28 (lC)
32(20)
0(00)
8(08)
24(18)
16(10)

- XMPRM

Flag
Code (Hex)

Offset Field/Flag Flag
Dec(Hex) Length Name Code (Hex) Meaning

0(00) 8 DMBXMSGN Name of indexed segment

8(08) 8 DMBXMXDN Name of XDFLD

16 (10) 8 DMBXMXNM Name of user exit routine

24 (18) 4 DMBXMXEP Entry point of user exit
routine

28(lC) 2 DMBXMPLN Length of index maintenance
parameters

30 (1E) 2 ***Reserved***

32(20) 4 DMBXMRES Reserved for initialization

Licensed Material - Property of IBM 5-129

RECORD LAYOUTS

The rest of this section provides layouts and field descriptions for the
following records:

Accumulation Header Record
Accumulation Record
Application program Scheduling Record
Application Program Termination Record
Checkpoint Log Record
Checkpoint Record
Control Data Set
Data Base Log Record
Data Record (Input)
Data Record (Output)
Date/Time Table
Delete Work Area
Delete Work Space prefix
DL/l Control Record
Dump Header Record
Dump Record Prefix
File Open Record
Header Record (Input)
Header Record (Output)
Index Maintenance Work Area
List Control Block
Output Record Containing Segment Prefix
Output Table Record
Short Segment Table
Sorted List Block
SSA for GU Call by Key
SSA for GU Call by RBA
SSA for the XMAINT Call to the Analyzer
Statistics Record
Work File 1
Work File 3

5-130 Licensed Material - Property of IBM

ACCUMULATION HEADER RECORD

This record is used by modules DLZUC350 and DLZURDBO.

o

2

4

5

o

2

4

5

6 6

8 8

9 9

C 12

10 16

18 24

20 32

21 33

24 36

28 40

2A 42

HLENGTH

HSPACE

HCODE

HFLG

HLRECL

HORG

HPURDATE

HPURTIME

HDDNAME

HDBNAME

HDSID

HDATE

HTIME

HSEQ

HBLKSIZE

ACCUMULATION RECORD

2

2

1

1

2

1

3

4

8

8

1

3

4

2

2

Description

Length of cum header record

Zeros

Header record ID X'OO'

Type of data set and organization
Bit 5=0 ESDS data set

=1 KSDS data set
6=0 HS data set
=1 HD data set

Record length

Prefix organization code

Purge date for data base data set

Purge time for data base data set

Data set symbolic filename

Data base name

Data set ID

Run date - YYDDDF

Run time - HHMMSSOF

Zeros

Block size

This record is used by modules DLZUC350 and DLZURDBO.

o

2

4

5

o

2

4

5

6 6

8 8

10 16

CLENGTH

CSPACE

CCODE

CFLG

CIDLN

CDBNAME

CDSID

2

2

1

1

2

8

1

Description

Length of cum record

Zeros

X'50' record identifier

Type
Bit
5=0

=1
6=0

=1

of data set
Meaning
ESDS
KSDS
.HS file
HD file

and organization

Length of CDATAID field

Data base name

Data set ID

Licensed Material - Property of IBM 5-131

11 17

14 20

18 24

lA 26

lC 28

CDATE

CTIME

CSEQ

CCOUNT

CDATAID
CDATAOL

CDATASEG

3

4

2

2

Var
var

Var

Date - YYDDDF

Time - HHMMSSQF

Sequence number

Number of data elements of CDATA

KSDS prime key or ESDS RBN
One or more 4 byte data elements:
bytes 0-1 - offset into data set record
bytes 2-3 - length of corresponding

C DATA SEG
One or more segment data entries to
be moved into data set record.

APPLICATION PROGRAM SCHEDULING RECORD

This record is used by modules DLZRDBLO, DLZRDBL1, DLZLOGPO, and
DLZBACKO .•

o 0 LENGTH

2 2 SPACE

4 4 LOG FLAG

5 5 SCHDCODE

8 8 PSBNAME

E 14 CICSID

2

1

1

8

3

Description

Length of record

Binary zero

Record type code - X'08'

Task ID

PSB name

packed CICS Transaction ID
(online only)

APPLICATION PROGRAM TERMINATION RECORD

This record is used by modules DLZRDBLO, DLZRDBL1, DLZLOGPO, and
DLZBACKO.

o 0

2 2

4 4

5 5

D 13

E 14

36 54

5-132

PLENGTH

PSPACE

ALLOGFLG

ALPSBNAM

ALID

TSKSTAT

CICSID

2

2

1

8

1

40

3

Description

Halfword binary length of logical record

Halfword reserved for system use
(binary zero)

Identifies this logical record as
application program termination
recordi value is X'07'

PSB name

TASK ID

10 fullwords of Accounting from PSTACCT
(online only)

Packed CICS transaction I .• D.
(online only)

Licensed Material - Property of IBM

CHEC~POINT LOG RECORD

Checkpoint log records are used to restart a job near its point of
failure. The records are created and written on the DL/I log (if data
base logging is active) if requested by the user via checkpoint calls
(CHKP). Each log record contains a user-supplied unique checkpoint
identification passed with the CH~P call.

In case of a job failure in a batch environment, the backout utility can
be run to backout data base changes occurring since the last checkpoint
record was written. For MPS and/or online tasks with CICS/VS dynamic
transaction backout active, backout is performed automatically to the
last checkpoint when a task fails .•

Hex~ ~ !ill DescriEtion

0 0 CHKPLEN 2 Length of log record

2 2 CH~PSPC 2 Blanks/zeros

q q CH~PCODE 1 Log record 10

Flaq Name Hex Code Meaninq .
CHKPLRID ql checkpoint Log record ID

5 5 CHKPPSB 8 Checkpoint PSB name

D 13 CHKPID 8 user checkpoint ID

15 21 CHKPRLEN Length of checkpoint log record

CHECKPOINT RECORD

This DSECT (RCHKREC) defines the format of the checkpoint records within
the unloaded data base for HD reorganization unload/reload utilities.

Hex Dec -..-- --
o

1

7

B

C

12

13

19

lA

o

1

7

11

12

18

19

25

26

RCHKPTID

RCHKNA~E

RCHKNUM

RCHKVOLl

RCHKVOL2

RCKSEGNM

1

6

q

1

6

1

6

1

8

Description

Identifies checkpoint record:
Always X'OO'

Constant for checkpoint record:
Alway.s C· CHKPNT'

Chec~point number: 1-9999 (decimal)

Comma, for ~essage to SYSLOG and SYSLST

If tape, file serial
number of output volume one at
checkpoint time. If DASD - ******.
Comma, for message to SYSLOG and SYSLST

If tape, file serial
number of output volume two at
checkpoint time.. If DASD - ******.
Comma, for message to SYSLOG and SYSLST

Segment name of root segment in process
at checkpoint time

Licensed Material - Property of IBM 5-133

22 34

26 38

28 40

2C 44

2D 45

2E 46

llA 282

126 294

12A 298

12E 302

~: .
•

4

RCHKRECL 2

RCHKPOSC 4

RCHKPTNR 1

RCHKEYLN 1

RCKEYVAL 236

Reserved 12

RCHKSEG 4

RCHKROOT 4

RCHKREND Var

Reserved for future use

Length of I/O area needed for GU call
at restart time

RBN of current record, if HD organization

Number of checkpoint records
(lor 2)

Key length of current segment, if
HISAM

segment sequence field value, if
HISAM

Reserved

Total number of segments unloaded

Total number of root segments unloaded

statistics table

Dummy checkpoint record does not contain statistics table.

Checkpoint message written to SYSLOG and SYSLST consists of
message prefix DLZ3811 followed by bytes 1 ~ 34 of the
checkpoint record.

CONTROL DATA SET

Macro DLZUCDSO contains the DSECT defining format of a control list
entry. One or more list entries may be contained in the control list.
The control list may spread over one or more control list blocks.

Control Information and Identifier

o

2

4

18

19

1A

5-134

~ Y:!
o LECELCNT 2

2 LELSTLOC 2

4 LECDSID 20

24 LEFLG4 1

FLAG Name Hex

LESTAT 80
LESUMM 40

25 Unnamed 1

26 LESRTSZE 2

Code

Description ,

Number of 1600 byte records in
control data set

Displacement to next entry

Identifier: I CONTROL DATA SET I

Flag byte 4:

Meaning

statistics to be provided
Give summary for message DLZ9781

Reserved

Maximum work file record length used
as SORT size parameter by prefix
resolution utility (DLZURG10) .•

Licensed Material - property of IBM

Data Base List Entry

o

4

C

10

12

13

o

4

12

16

18

19

LEFPTR

LENAME

LESLPTR

LECRNO

LELEN

LEFLGl

4

8

4

2

1

1

Description

List entry forward pointer (to
next list element at same level)

DBD name.

List entry sublist pointer (to list
at next lower level)

Input control card number

Length of list entry

Flag byte 1:

Flag Name __ ~H~e:x=-~C~o~d~e~ __ ~M~e~a~n~i~n~g

LEF1S0PT
LEFlSMET

LEF1S
LEF1R
LEFlI

segment List Entry

o o

4 4

C 12

10 16

12 18

13 19

14 20

18 24

LEFPTR

LENAME

LESLPTR

LECRNO

LELEN

LEFLGl

Flag Name

LEF1S0PT
LEF1SMET

LEF1S
LEF1R
LEFlI

LEPSDB

LELSDB

Secondary List Entry

o o LEFPTR 4

80
40

02
01
00

4

8

4

2

1

1

User specified scan method option
If bit 1=0 use SEQ scan method
If bit 1=1 use SEG scan method
Data base is scanned
Data base is reorganized
Data base is initially loaded

Description

List entry forward pointer (to
next list element at same level)

Logical parent segment name.

List entry sublist pointer (to list
at next lower level)

Input control card number

Length of list entry

Flag byte 1:

Hex Code Meaning

80
40

02
01
00

4

4

User specified scan method option
If bit 1=0 use SEQ scan method
If bit 1=1 use SEG scan method
Data base is scanned
Data base is reorganized
Data base is initially loaded

PSDB for segment entry

LSDB for segment entry

Description

List entry forward pOinter (to next list
element at same lavel)

Licensed Material - Property of IBM 5-135

4 4

C 12

E 14

F 15

10 16

12 18

13 19

14 20

15 21

17 23

LENAME

LEFDLP

LEFLG3

8

2

1

Flag Name

LET23
LELCSQ
LENLC

LELPCK
LELPOA

Unnamed

LEFDLC

LELEN

LEFLG1

1

2

1

1

Flag Name

LEF1S0PT
LEF1SMET

LEF1S
LEF1R
LEFlI

LELCSC

LEFLG2

1

1

Flag Name

LECTR
LELCF
LELCL
LELP
LELTF
LELTB
LECUS

Unnamed 2

DATA BASE LOG RECORD

Referenced data base name.

Length of logical parent concatenated key.

Flag byte 3:

Hex Code Meaning

80
40
20

02
01

Use type 20/30 records.
Use logical child sequence field.
No logical child found for logical
parent.
Use logical parent concatenated key.
Use logical parent old address.

Reserved

Position of logical
child pOinters in prefix

Length of list entry

Flag byte 1:

Hex Code Meaning

80
40

02
01
00

User specified scan mehtod option
If bit 1=0 use SEQ scan method
If bit 1=1 use SEG scan method
Data base is scanned
Data base is reorganized
Data base is initially loaded

Logical child's segment code

Flage byte 2:

Hex Code Meaning

80 Update counter
40 Update logical child forward pointer
20 Update logical child last pOinter
10 Update logical parent pointer
08 Update logical twin forward pOinter
04 Update logical twin backward pointer
02 Counter used this logical child

Reserved

This record is used by modules DLZRDBLO. DLZRDBL1. DLZBACKO. DLZLOGPO.
DLZURDBO, DLZUC150. and DLZUC350.

~~ ~ #n Description

0 0 DLENGTH 2 Length of record

2 2 DSPACE 2 Zero

4 4 DLOGCODE 1 Log record ID
X'50' = Data base log record
X'51' = Old copy of a replaced segment

5-136 Licensed Material - Property of IBM

1:

5 5

6 6

7 7

8 8

A 10

C 12

E 14

10 16

18 24

20 32

21 33

24 36

28 40

2A 42

DLOGFLG1

DLOGFLG2

DLOGFLG3

D1DLN

DOFF SET

I:DATALN

DeCODE

DPGMNAME

DDBDNAME

DDSID

DDATE

DTIME

DSEQ

I:DATAID

1

1

1

2

2

2

2

8

8

1

3

4

2

Var

Bits
0-3
4-7

Eits
O=r
1-3=001

=010
=100
=110
=000
=111

4=1
5=0
=1

6=0
=1

7=1

Bits
0=1
1=1
2=1
3&4=00

5
6=1
7=1

=01

=10

Task ID
Count of FSE records present

Index maintenance record
Physical replace
Physical delete
Physical insert
Logical delete
POINTER maintenance record
Counter Maintenance
Last record of a change group
ESDS data set
ESDS data set
HS organization
HD organization
New block call

REPL call
DLET call
1SRT call
Modification by control region
Modification by message or batch
message program
Modification by batch program
Reserved
First log record of a segment
Last log record of a segment

Length of DDATAID field

Data offset from beginning of block

Length of DDATA field

DL/1 completion code

PSB name

Data base name from the DMB

File identification within the DMB

Date - YYDDDF

Time - HHMMSSOF

Sequence stamp

ESDS - KSDS prime key
ESDS - Relative block number

POINTER maintenance record (DDATALN is set to H'4')

DDATA 4 New pointer value

4 Old pointer value

Licensed Material - Property of IBM 5-137

LOGICAL DELETE record (DDATALN is set to H'2')

DDATA 2 Segment code and new delete byte

2 Segment code and old delete byte

PHYSICAL INSERT record (DDATALN is set to segment length)

DDATA v*
DFSEOFF 2

DFSE 4

New segment data

Offset to FSE

New FSE value
If more than one FSE changes, DFSEOFF and
DFSE are repeated for each additional one.

PHYSICAL DELE~E record (DDATALN. is set to segment length)

DDATA v*
DFSEOFF 2

DFSE 4

Old segment data

Offset to FSE

New FSE value
If more than one FSE changes, DFSEOFF and
DFSE are repeated for each additional one.

PHYSICAL REPLACE record (DDATALN is set to segment length)

DDATA v* Old segment data - DLOGCODE = X'51'

New segment data - DLQGCODE = X' 50'

v* = varies with segment length

DCOUNTER The last four bytes of every log record contain the
log record sequence number. Numbers are incremented
by one. The sequence number of the first record is
one.

DATA RECORD (INPUT)

This record is used as input to module DLZURRLO.

o o

4 4

5 5

8 8

5-138

~

Unnamed

DSIDIN

Unnamed

Unnamed

1

3

Var

Description

ESDS RBA identifier~
unused if KSDS

Character I if KSDS~ 0 if ESDS

Reserved

KSDS or ESDS physical record image. The
first four bytes contain the VSAM
relative byte address (RBA) of the next
ESDS record containing overflow dependent
segments for the root segment. The RBA
is zero if no (more) ESDS records follow.
The last byte of the data record contains
a special physical code X'O'. If the

Licensed Material - property of IBM

DATA RECORD (OUTPUT)

data base contains only HISAM root
segments and ACCESS=SHISAM, the physical
code and RBA do not exist •.

This output record is used by module DLZURUPO.

~~ ~

0 0 CONTOUT

4 4 DSIDOUT

5 5 BLNKDOUT

6 6 DSRECLN

8 8 DATA

DATE/TIME TABLE

Ln

4

1

1

2

Var

Description

ESDS RBA identifier~ unused
if KSDS

Character I if KSDS~ 0 if ESDS

(Not used)

Record size + prefix length

KSDS or ESDS physical record image. The
first four bytes contain the VSAM
relative byte address (RBA) of the next
ESDS record containing overflow dependent
segments for the root segment. The RBA
is zero if no (more) ESDS records follow.
The last byte of the data record contains
a special physical code X'O'. If the
data base contains only HISAM root
segments and ACCESS=SHISAM, the physical
code and RBA do not exist.

This record is used by modules DLZUCCTO and DLZUC150,.

o o TABFLAGl 1

1 1 TABFLAG2 1

2 2 TAEFLAG3 1

3 3 TABFLAG4 1

4 4 TABFLAG5 4

8 8 TAEFLAG6 8

DELETE WCRK AREA

Descri~tion

Blank. Used as table delimiter

Contains a 0 or 1 to denote routing
for the data base in this table

Contains
Name
TABF3N
TABF3DT

flags as
Bit
-0-

1

follows:
Meaning
Record to LOGOUT if 1
Purge date specified

Reserved for future use

Reserved for future use

Contains date/time, if specified

This record is used by module DLZDLDOO.

o o DLTRSCID 7

Description

Resource 1D for PI queuing
(must be first in WKA)

Licensed Material - Property of IBM

o

4

4

4

4

8

C

10

10

14

18

1C

20

22

24

28

2C

30

34

36

38

38

3C

40

44

5-140

o

4

4

4

8

12

16

16

20

24

28

32

34

36

40

44

48

52

54

56

56

60

64

68

DLTRSCRB

DLTCHN

DLTPWAID

DLTRSCID

DLTDMBNO

Unnamed

DLTWANXT

DLTWASW

Flag Name
DLTWSBEG
DLTERFLG
DLTLRFLG

DLTVRFLG
DLTSCFLG
DLTIMFLG

DLTWAPRI

DLTDMB

DLTSPSDB

DLTLPSDB

DLTSLEV

DLTTEMPH

DLTESECL

DLTEDMB

DLTEPSDB

DLTERBN

DLTLPKOF

DLTWASZ

DLTMID

DLTPLT

DLTCLT

DLTNLT

DLTTEMP1

4

8

4

3

2

4

4

1

Hex Code
01
02
04

08
10
20

4

4

4

4

2

2

4

4

4

2

2

36

4

4

4

4

REA portion of resource ID

Chain (prior content PSTWRKDl-2)

ID of current work area; DMB
number, ACB number, and work
area sequence number

DMB/ACB number part of resource ID

DMB number

Prior scan exit address (PSTWRKD2)

Address of next WKA

switch

Meaning
First work area in work space
R-O record flag required
R-O record flag required
due to LP LC counter update
Verifies are required
Pre-scan was done
Index maintenance was done

Address of prior WKA

DMB address of this WKA

Scan start PSDB

Scan end PSDB

Level at which scan started

Half word temporary save area

secondary list address
causing exit

Exit DMB address

Prior DMB's PSDB (exit point)

Exit RBN

Offset from DLTWA to
concatenated key

Length of this work area

'Middle' of WKA

Save area f-or prior L/C
on twin chain

Save area for current L/C
on twin chain

Save area for next L/C
on twin chain

Working register save area (R6)

Licensed Material - Property of IBM

48

4C

50

54

54

54

58

5C

64

88

72

76

80

84

84

84

88

92

100

136

DLTTEMP2

DLTTEMP3

DLTTEMP4

DLTLEVEL

DLTRFLG

Flag Name
DLTSVPP
DLTSVPC
DLTLDO
DLTKEYSW
DL'ITEFLG

DLTPSDB

DLTRBN

DLTLEVLN

DLTMIDLN

DLTWALN

DELETE WORK SPACE PREFIX

4

4

4

8

1

Hex Code
01
02
03
04
08

4

"
8

36

92

Working register save area (R7)

working register save area (R8)

Working register save area (R9)

Level information beginning

Flag byte

Meaning
Save segment and parents
Save segment and physical children
Logical delete only
Key stored for this level
Temporary lock enqueue was done

Current PSDB this level

RBN of segment this level

Length of level information entry

Length of last half work area

Length of basic delete work area

This record is used by module DLZDLDOO.

o

4

8

C

10

14

o

4

8

12

16

14

DLTBLKNM

DLTBUFFA

DLTNXTWS

DLTPRIWS

DLTSIZWS

DL/I CONTROL RECORD

4

4

4

4

4

4

Description

Block number of buffer (from
PSTBLKNM)

Address of buffer prefix
(from PSTBUFFA)

Address of next work space

Address of prior work space

Usable size of this space

Reserved

This record is used by module DLZDLOCO.

o o RECDATCR

3 3 RECTIMCR

8 8 RECDATRE

B 11 RECTIMRE

10 16 RECDATER

3

5

3

5

3

Description

Creation date - YYDDDF

Creation time - HHMMSSTHOF

Recovery date - YYDDDF

Recovery time - HHMMSSTHOF

Reserved

Licensed Material - Property of IBM 5-141

13

18

1C

1E

22

24

28

2C

2D

19

24

28

31

34

36

40

44

45

RECTIMER

RECNXRBA

RECDOS

RECVERS

RECPTF

RECLKSDS

RECLESDS

RECORGAN

DUMP HEADER RECORD

5

4

3

3

2

4

4

1

Var

Reserved

Not used

DL/I component code (DLZ)

Version and release level

PTF number

KSDS record length (HISAM only)

ESDS record length

Data base organization

~
RECHDAM
RECHIDAM
RECHISAM

Character
D
I
S

Meaning
HDAM
HIDAM
HISAM

Reserved to end of control interval

This record is used by modules DLZUDMPO and DLZURDBO.

o 0

1 1

2 2

4 4

C 12

14 20

18 24

1C 28

24 36

26 38

28 40

2A 42

2C 44

5-142

DHSAMCTL

DUMPID

DCENOOUT

DUMPDBDN

DIDDNOUT

DDATEOUT

DTIMEOUT

DODDNOUT

DIBLKOUT

DIRECOUT

DOELKOUT

DORECOUT

DKEYLEN

1

1

2

8

8

4

4

8

2

2

2

2

2

Descril?tion

Reserved for future use

Character D

Reserved for future use

Name of the DMB devised from the Data
Base Description (DBD)

contains the name of the key sequenced
data set if this is ~ump of a KSDS
data set

Julian date in packed decimal - OOYYDDDF

Time in packed decimal - HHMMSSOF

Contains the name of the entry sequenced
data set if this is dump of an ESDS
data set

Contains KSDS control interval size if
this is dump of KSDS data set

Contains KSDS record length if
dump of KSDS data set

Contains ESDS control interval size if
this is dump of ESDS data set

Contains ESDS record length if
dump of ESDS

Contains KSDS key length if

Licensed Material - Property of IBM

2E 46 DKEYPOS

30 48 DDEDORG

DUMP RECORD PREFIX

2

1

dump of KSDS

Contains KSDS relative key
positive if dump of KSDS

Data set organization code

This record is used by module DLZUDMPO.

Description

o o COUNTOUT ESDS RBA identifier; record count if KSDS

4 4 DSIDOUT 1 Character I if KSDS; 0 if ESDS

5 5 Reserved 1 Reserved for future use

6 6 DSRECLN 2 Record size + prefix length

8 8 DATA Var Physical record image

FILE OPEN RECORD

This record is used by modules DLZRDBLO, DLZRDBL1, DLZLOGPO, DLZUC150,
and DLZUC350.

o 0

2 2

4 4

5 5

7 7

10 16

18 24

20 32

21 33

24 36

28 40

DLENGTH

DSPACE1

DLOGCODE

DLOGFLG1

DSPACE2

DPGMNAME

DDBDNAME

CDSID

DDATE

DTIME

DCOUNT2F

HEADER RECORD (INPUT)

2

2

1

2

9

8

8

1

3

4

4

Description

Length of record

Binary zero

Record type code - X'2F'

Data set organization
X'OO' = ESDS
X·04' = KSDS

Binary zero

Data set filename (ACB)

DMB name

DSGACBNO (2 if HISAM
ESDSI otherwise 1)

Binary zero

Binary zero

Log record sequence number

This record is used as input for module DLZURRLO.

Description

o o Unnamed 1 X" FF'· header/statistic record identifier

Licensed Material - Property of IBM 5-143

1 1

2 2

4 4

C 12

14 20

18 24

lC 28

24 36

26 38

28 40

2A 42

2C 44

2D 45

2E 46

IDIN

RECLNOUT

DBDNAME

DDNAMEI

Unnamed

Unnamed

DDNAMEO

BLKSIZEI

LRECLI

ELKSIZEO

LRECLO

Unnamed

KEYLENGI

KEYPOSI

HEADER RECORD (OUTPUT)

1

2

8

8

4

4

8

2

2

2

2

1

1

2

Character R

Size of output record, including
prefix

Name of the DMB derived from the
Data Base Description (DBD)

Name of key sequenced data
set (KSDS)

Julian date in packed decimal-OOYYDDDF

Time in packed decimal-HHMMSSOF

Name of entry sequenced data set (ESDS)

KSDS record length * number of
records/control interval

KSDS record length

ESDS record length * number of
records/control interval

ESDS record length

0; (Not used)

KSDS key length

KSDS relative key position

This record is used by module DLZURULO.

o 0

1 1

2 2

4 4

C 12

14 20

18 24

lC 28

24 36

26 38

28 40

5-144

HSAMCTRL

IDOUT

RECLNOUT

DBDOUT

IDDNOUT

DATEOUT

TIMEOUT

ODDNOUT

IBLKSOUT

ILRECOUT

OBLKSOUT

1

1

2

8

8

4

4

8

2

2

2

Description

X"FF" header/statistic record identifier

Character R

Size of output record, including prefix

Name of the DMB derived from the Data
Base Description (DBD)

Name of key sequenced data set (KSDS)

Julian date in packed decimal-OOYYDDDF

Time in packed decimal-HHMMSSOF

Name of entry sequenced data set (ESDS)

KSDS record length * number of
records/contro! interval

KSDS record length

ESDS record !ength * number of
records/contro! interval

Licensed Materia! ~ Property of IBM

2A 42

2C 44

2E 46

OLRECOUT

IKEYLENG

IKEYFOS

2

2

2

INDEX MAINTENANCE WORK AREA

ESDS record length

KSDS key length

KSDS relative key position

This record is used by module DLZDMXTO.

o

8

C

10

14

18

1C

20

24

28

28

2C

30

30

34

38

3C

40

44

48

4C

50

o

4

8

12

16

20

24

28

32

36

40

40

44

48

52

56

60

64

68

72

76

80

XSAVDSGA

XSAVPCB

XSAVUSER

XSAVIQPR

XPHYSPP

XWORKPCB

XWORKSAA

XWORKFNC

XDPSDBAD

XDSECLST

XDRID

XDRBAPTR

XDDMBACB

XNRID

XNRBAPTR

XNDMBACB

XSPSDBAD

XSSECLST

XSRBAPTR

XNPSDBAD

XDSDBAD

XSSDBAD

XPROT

4

4

4

4

4

4

4

4

4

4

8

4

4

8

4

4

4

4

4

4

4

4

2

Description

save location for caller's DSG

Save location for caller's PCB

Save location for caller's I/O area

For caller's call list address

save location for physical
parent pointer.

Save location for XMAINTs PCB

Address of SSA built by DLZDXMTO

XMAINTs function code for call

Address of PSDB of indexed segment

secondary list of indexed segment

Indexed segment ID for enqueue

RBA of indexed segment

DMB and ACB numbers of
indexed segment

Indexing segment ID for enqueue

RBA of indexing segment

DMB and ACB numbers of
indexing segment

PSDB of index source segment

secondary list of index source
segment

RBA of index source segment

Address of PSDB of indexing
segment

Index target segment SDB address

Index source segment SDB address

Length of protected data

Licensed Material - Property of IBM 5-145

52 82 XRPREFIX 2 Record prefix length

54 84 XSPREFIX 2 Segment prefix length

56 86 XNSEGLEN 2 Length of indexing segment

58 88 XNKEYLEN 2 Sequence field length of index
pOinter segment

5C 92 STACKl 4 Return address for first level
subroutine

60 96 STACK2 4 Return address for second level
-subroutine

64 100 STACK3 4 Return address for third level
subroutine

68 104 XSAVSTC 1 Save status code

69 105 1 *Reserved*

6A 106 XCALLFUN 1 Call attributes byte

Flag Hex
Name Code Meaning
ISLOAD 80 Load mode
ISASRT 40 ASRT call
ISDLET 20 DLET call
ISISRT 10 ISRT call
ISREPL 08 Function is replace
ISUNLD 02 UNLD call

6B 107 XTSWITl 1 Temporary switch

Flag Hex
Name Code Meaning
XNOSUPR 80 No suppression for

this index
XOLDSUPR 40 Old segment was

suppressed
XPTRONLY 20 PTR to XDS only, no

CON CAT key
XISPRIM 10 A primary index

was found
XNULLFLD 01 Null value

suppression
XEXITRT 02 Exit routine for

suppression
XDATACHN 04 XNS changed in a

replace call

6E 110 XWORKPUT 2 Begin of record for load

(The rest of this record starts on a fullword boundary)

70 112 XWORKUSR 0 XMAINTs I/O area for call

70 112 XWORKDUM 2 Reserved

72 114 XWORKSEG 0 Start of segment

(

5-1#6 Licensed Material - Property of IBM

72

73

74

78

114

115

116

120

XWORKCD 1

XWORKDEL 1

XWORKPTR 4

XWORKKEY VAR

Segment code

Flag
Name
XNSEGC01

Hex
Code
01

Meaning
Segment code of
indexing segement

Delete byte in indexing segment

pointer in indexing segment

Area for key in indexing segment

(The SSA for the XMAINT call to the analyzer is created behind the key)

LIST CONTROL ELOCK

This record is used by module DLZUSCHO.

1C 28 ENTLNGTH

1E 30 COMPLOC

20 32 COMPLNG

22 34 NUMENT

24 36 CHAINLOC

28 40 CHBACK

Ln Description

2 The length, in bytes L of each entry
in the list

2 The offset from the beginning of
each entry to the key field

2 The length of the key field

2 The current number of entries in
the list

4 The location of the first of a chain of
core blocks containing sorted list entries

4 'Ihe location of the last block in the
chain

2C 44 ENTBLKSZ 4 The size of each core block used for list
entries (includes the chaining fields).

This value is calculated as follows: ENTBLKSZ = 16*ENTLNGTH+8

30 48 LASTLO.
LASTHI,
LASTMD,
ENTLOC

12 Work areas used by INSRCH and
LOCSRCH

OUTPUT RECORD CONTAINING SEGMENT PREFIX

This DSECT (IOAREA) defines the format of the unloaded data base records
used by the Hr reorganization unload/reload utilities.

o o RGUSEGLV 1

1 1 RGUHSDF 1

2 2 RGUHDRLN 2

4 4 RGUSEGLN 2

Description

Segment code for this segment

HSAM delete flag; always X'80'
to denote HD Reorganization Unload
Utility

Length of header portion of record

Length of data portion of record

Licensed Material - Property of IBM 5-147

6

E

F

13

17

lB

1F

23

6

14

15

19

23

27

31

35

RGUSEGNM

RGUSEGDF

RGUPFCTR

IO'IWFOR

IOTWBACl(

IOPAR

IOOLD

IOSEG

OUTPUT TABLE RECORD

S

1

4

4

4

4

4

Var

Segment name

Delete flag of segment

Counter field of prefix

Logical twin forward pointer

Logical twin backward pointer

Logical parent pointer

Old location of record

variable-length data field

This DSECT (DLZUSTAT) defines the format of the statistics table within
the unloaded data base for HD reorganization unload/reload utilities.

o

1

2

4

o

1

2

4

RGUSEGLV

RGUHSDF

RGUBDRLN

RGUSEGLN

1

1

2

Var

Field Description of RGUSEGLN

o

8

C

1C

20

24

25

26

I 26

2S

o

S

12

16

20

24

2S

32

36

37

38

3S

40

SEGNAME

SMIMCBLD

SAIMCHLD

WI<IMCBLD

SMSBCBLD

SASBCBLD

Wl(SBCBLD

TSEGTYPE

SEGLEVEL

SEGPBYCD

TABLEND

TSEGLEN

STATABSZ

8

4

4

4

4

4

4

4

1

1

2

2

De~cription

Always X· 00 •

X·SO· for first table record and
checkpoint table record

X·90· for last table record

Length

A table containing one entry for
each segment type.

DescriEtion

segment name

Maximum immediate children

Average immediate children

Working entry for above

Maximum subordinate children

Average subordinate children

Working entry for above

Total segments for this type

Segment level

Segment physical code

Table end indicator (X· SO·)

Segment length including prefix

Length of each table entry

5-148 Licensed Material - Property of IBM

SHORT SEG~ENT TABLE

This record is used by module

Hex Dec Name ~ --- --
0 0 SEG~DSNO 1

1 1 SEGMCODE 1

2 2 PARSEGCD 1

3 3 SEGMLEVL 1

4 4 Unnamed 2

6 6 SEGMLENG 2

SORTED LIST BLOCK

This record is used by module

o o ENCNT 1

1 1 CHAIN 3

4 4 BKCHAIN 4

8 8 ENTRIES Var

SSA FOR GU CALL BY KEY

This record is used by module

DLZURULO.

Description

Data set number (not used by DLZURULO)

Physical segment code

Physical code of this segment's parent

Segment hierarchical level

Number of logical children and fields
(not used by DLZURULO)

Segment length, including prefix

DLZUSCHO.

Descrietion

The count minus one of the current number
of entries in this block (currently, the
maximum value for count is 16)

The location of the next sorted list
block in the chain. In the last block,
this field contains binary zeros.

The location of the preceding sorted list
block in the chain. In the first block
on the chain, this field contains the
location of the CHAINLOC fiel1 in the
list control block.

Up to 16 full entries in sorted order.

DLZURGUO.

All blocks are the same size
regardless of the number of
entries contained. Unused space
at the end of a block is not
zeroed. ---

Hex ~ ~ 1.!! Descrietion

0 0 KEYSEGNM 8 Name of segment to be retrieved

8 8 KEYCODE 2 '·C' - command code

A 10 KLEFTPAR 1 ' (, - left parenthesis

B 11 KEY 1-236 key to be retrieved

KRITEPAR 2 ') , - right parenthesis

Licensed Material - Property of IBM 5-149

SSA FOR GU CALL BY RBA

This record is used by module DLZURGUO.

Hex Dec ~ Y! Desc:t;~~tion

0 0 RBASEGNM 8 Name of segment to be retrieved

8 8 RBACODE 2 "*T' - command code

A 10 RLEFTPAR 1 . (, - left parenthesis

B 11 RBA 4 RBA to be retrieved

F 15 RRITEPAR 1 .) , - right parenthesis

SSA FOR THE XMAINT CALL TO THE ANALYZER

This record is used by module DLZDXMTO .•

~ Dec ~ Ln DescriEtion

0 0 XSEGNAME 8 Name of index pOinter segment

8 8 XCOMMCOD 2 '*X' - command code

A 10 XLEFTPAR 1 .. (, - left parenthesis

B 11 XKEYVALU VAR Key value followed by right
parenthesis ') ,

STATISTICS RECORD

This record is used by modules DLZURULO and DLZURRLO.

~~ ~ Y! l?escriEtHm

0 0 Unnamed 1 X'FF' header/statistics record identifier

1 1 Unnamed 1 Character S

2 2 Unnamed 2 Number of segment types in data set
group (16 bytes per segment type)

4 4 Unnamed 8 Name of theDMB derived from the DBD

C 12 Unnamed 8 KSDS filename

14 20 Unnamed 8 ESDS filename

lC 28 Unnamed Var A 16-byte table entry for each
segment type in the data base

DESCRIPTION OF VARIABLE LENGTH LAST FIELD OF STATISTICS RECORD WHEN USED
AS OUTPUT FOR DLZURULO .•

Hex Dec -- --.-

o

8

5-150

o

8

SEGNAME

TSEGTYPE

8

4

DescriEtion

Segment name

Total number of segments unloaded

Licensed Material - Property of IBM

C 12

D 13

E 14

SEGLEV

SEGPCD

TSEGLN

DESCRIPTICN OF VARIABLE
AS INPUT FOR DLZURRLO .•

~ ~ ~

0 0 SEGNAME

8 8 TOTSEG

C 12 SEGLEV

D 13 SEGPCD

E 14 SEGLN

'WORK FILE 1

1

1

2

Segment level

segment physical code

Segment length, including prefix

LENGTH LAST FIELD OF STATISTICS RECORD 'WHEN USED

!1! Descrietion

8 Segment name

4 Total number of segments unloaded

1 Segment level

1 Segment physical code

2 Segment length, including prefix

This record is used as the input file for DLZURG10 .•

~ ~ ~

0 0 ALENGTH

2 2 ASPACE

4 4 ALTYPE

!1!

2

2

1

Descrietion

Length of work file 1 record

Two bytes of zeros

Type of input record

Flag Hex
Name Code Meaning
ATYPEOO 00 'Iype 00 record
ATYPE01 01 Type 01 record
ATYPE02 02 Type 02 record
ATYPE03 03 Type 03 record
ATYPE10 10 Type 10 record
ATYPE20 20 Type 20 record
ATYPE30 30 Type 30 record
ATYPE40 40 Type 40 record

Record
Use

10

20

30

Generated once for each use
of a segment as a logical
parent
Generated once for each use
of a segment as a logical
child.
Generated when a segment used
as a logical child contains
logical twin forward pointers
and when the logical twin
chain cannot be resolved by
using the logical child's
sequence field.
Generated when a segment used
as a logical child contains
logical twin backward
pointers and when the logical

Licensed Material - Property of IBM 5-151

twin chain cannot be resolved
by using the logical child's
sequence field.

40 Generated once for each time
a segment is indexed

5 5 ALFLAG1 1 Flag 1

Flag Hex
Name Code Meaning
AL1LOAD 80 set to 1 if ISRT;

set to 0 if ASRT
AL1SEQ 40 Set to 1 if

sequence field is
present

ALl SCAN 20 Set to 1 if
record produced
by scan program
(DLZURGSO)

AL1LPCK 10 set to 1 if
logical parent
concatenated key
is prsent

AL1SQUN 08 Sequence field is
unique

AL1SEQA 04 Set to 1 if root
sequence field is
present

AL1CONST 02 Constant present
in key

AL1SYMB 01 For type 40
record; pOinter
is symbolic

AL1T23 01 Set to 1 if
logical twin
pOinters are to
be resolved by
type 20 and 30
records

6 6 ALFLAG2 1 Executable length of sequence field,
if present

7 7 ALFLAG3 1 Executable length of indexed field,
if present, or executable length of
logical parent concatenated key, if
present

8 8 ALEVTTR 4 Value of LEVTTR after BYLCT

C 12 ALPDBNAM 8 Data base of logical parent

14 20 ALPSEQ 1 Segment code of logical parent

15 21 ALPCKEY 4 Logical parent's concatenated key

15 21 ALPOADDR 4 Logical parent's old address

19 25 ALCDBNAM 8 Data base of logical child

21 33 ALCSEG 1 Segment code of logical child

FOR TYPE 00 AND 01 RECORDS

5-152 Licensed Material - Property of IBM

22

26

27

29

2D

34

38

39

41

45

ALCFL

ALT0001

ALPLSGOF

ALCCTR

ALPDCB

(TYPE 01 RECORD ENDS HERE)

2E 46 ALPSEQA

FOR TYPE 02 RECORDS

22 34 ALCOAD

26 38 ALT02

1

2

1

1

1

Old value of logical child first or
logical child last pOinter

X'OO' or X'Ol'

Value of logical parent's LEVSEGOF
after BYLCT

Old value of counter field

DCB NUMBER FOR LP

Sequence field and length for root of
segment

Logical child old address

X'02'

FOR TYPE 10, 20, AND 30 RECORDS

22

23

23

27

28

29

34

35

35

39

40

41

ALFIL

ALCSEQ

ALCM

ALT123

ALCDCB

ALCSEQA

FOR TYPE 40 RECORDS

8

C

14

14

15

15

8

12

20

20

21

21

AILCOA

AIDBNAM

AIFLDVAL

AISC

AISEQ

AISEGN

1

1

1

1

8

1

1

1

8

X' FFD

Logical child sequence field

If LC has LT pOinters and a non­
unique sequence field and is being
reloaded, ALCM contains the
following:
For Type 10 - LC's old address
For Type 20 - LC's old LT forward
pointer
For Type 30 - LC's old LT backward
pointer
Otherwise, ALCM contains the value of
LEVSEGOF, with high order bit set to
one

X·10·, or X'20', or X'30'

DCB number for LC

Sequence field and length for root of
segment

Logical child old address

Index ,data base name

Indexed field value (variable length)

Index segment's segment code

Index segment's sequence code (if
second level and present)

Index segment's name (For level 2
index segments)

Licensed Material - property of IBM 5-153

15 21 AIFLDN

1D 29 AISDBN

25 37 AISSC

26 38 AILCNA

2A 42 AIDATA

8

8

1

4

1

Indexed field name (For level 1 index
segments)

Indexed segment's data base name

Indexed segment's segment code

Logical child new address

Indexed segment data (for source
fields)

FOR TYPE 40 RECORD USED AS SSA AND I/O AREA

9

11

14

14

21

22

25

29

9

17

20

20

33

34

37

41

WORK FILE 3

AISSFN

AISSAID

AISFLDV

AISSEQ

AXSC

AXDDIR

AXLCNA

AXDATA

8

3

1

1

1

3

4

1

Index segment name or field name

SSA ID and command code

Indexed segment's indexed field value
(variable length)

Index segment's sequence field value
(variable length)

Segment code of indexed segment

DDIR address of indexed data base

Logical child new address

Index source data

This record is the output file from DLZURG10 and is used as the input
file for DLZURGPO.

o

2

4

5

5-154

o

2

4

5

Name

CLENGTH 2

CSPACE 2

CTYPE 1

CFLAG1 1

Description

Length of work file record

Zeros

Work file record type

Flag
Name
CTYPEO
CTYPEOl
CTYPE1
CTYPE2
CTYPE3
CTYPE4

Hex
Code
00
01
10
20
30
40

Origin of record

Flag
Name
CFltOAD

CF1SCAN
CFILPCK

Hex
Code
80

20
10

Meaning
'Iype 00 record
'Iype 01 record
'Iype 10 record
'Iype 20 record
'Iype 30 record
'Iype 40 record

Meaning
Flag on-initial load;
Flag off-reorganization
Record produced by scan
Logical parent con­
catenated key if present

Licensed Material - Property of IBM

CF1SEQA 04 Set to 1 if root
sequence field present

CF1TOF 02 set to 1 if matching
type 10 record found

CF1T23 01 Set to 1 if logical
twin pOinter is to
be resolved by type
20 and 30 records

FIELDS IN TYPE 0 RECORD

6 6 CLCDBNO 8 Logical child data base name

E 14 CLCSEGNO 1 Logical child segment code

F 15 CLPSEGNO 1 Logical parent segment code

10 16 CLCFRST 4 Logical child first pointer

14 20 CLCDLST 4 Logical child last counter

18 24 CLCDCNT 4 Logical child delta counter

1C 28 CLPDBNO 8 Logical parent data base name

FIELDS IN TYPE 1 RECORD

6 6 CLPDBN1 8 Logical parent data base name

E 14 CLPSEGNl 1 Logical parent segment code

F 15 CLCSEGNl 1 Logical child segment code

10 16 CLTFWD 4 Logical twin forward pointer

14 20 CLTBKWD 4 Logical twin backward pointer

18 24 CLPNWAD1 4 Logical parent new address

lC 28 CLCCBNl 8 Logical child data base name

24 36 CCCB 1 DCB number

25 37 CFIL 1

26 38 CLEVTTR 4 Contents of LEVTTR after BYLCT

2A 42 CLEVSGOF 2 contents of LEVSEGOF after BYLCT
(high order bit of CLEVSGOF is
set to 1 if segment is not in HD)

2C 44 CLCCNT 4 Old value of counter field

30 48 CLSEQ 1 Root sequence field

Licensed Material - Property of IBM 5-155

5-156 Licensed Material - Property of IBM

SECTION 6: DIAGNOSTIC AIDS

This section contains two tables that cross-reference DL/I messages and
DL/I status codes with the module(s) that originate them.

Additional diagnostic information can be found in the DL/I DOS/VS
Diagnostic Guide, SH24-5002.

Licensed Material - Property of IBM 6-1

SYSTEM MESSAGE/MODULE CROSS REFERENCE
i <

This table cross-references message numbers (in numeric order) with the
moduleCs) that can cause that message to be issued.. In addition, if the
message is described in the module HIPO diagram in Section 2, the HIPO
figure number is also shown. The modules are described in Section 3 of
this publication. The messages are described in Chapter 1 ofnDL/I
DOS/VS Messages and Codes".

Message I Figure
Number I Module Number

I
-------------------------.--------------------------------------

I
DLZOOlI I DLZBNUCO 2-4.2
DLZOO21 I DLZBNUCO 2-4.2
DLZOO3I I DLZDDLEO
DLZOO4I I DLZDBHOO

I DLZRDBLO 2-16.7
DLZOO5I I DLZDBHOO
DLZOO6I I DLZOLIOO 2-5.4
DLZOO7I I DLZDSEHO 2-38

I DLZDXMTO
DLZOO8I I DLZRRCOO 2-3.9
DLZOO9I , DLZRRCOO 2-3.8
DLZ010A I DLZRRCOO

I DLZMPIOO 2-21.1
DLZOllI DLZRRCOO 2-3 .. 2
DLZ012I DLZMPIOO 2-21.1

DLZRRCOO 2-3.4, 2-3.7, 2-3.9
DLZ013I DLZOLIOO 2-5.3
DLZ014A DLZRRCOO

DLZMPIOO 2-21.1
DLZ015I DLZRRCOO 2-3.3, 2-3.9
DLZ016I DLZDLOCO
DLZOl7I DLZRRCOO 2-3.7
DLZ018I DLZRRCOO 2-3.7
DLZ019I DLZRRCOO 2-3.9
DLZ020I ElLZDLOCO 2-14.1

DLZRDBLO 2-16.1
DLZ021I DLZDLOCO

DLZRDBLO 2-16.6
DLZ022I DLZDLOCO
DLZ023I DLZDLOCO 2-14.1
DLZ024I DLZDLOCO
DLZ0251 DLZDLOCO 2-14.1
DLZ026I DLZRRCOO 2-3.8
DLZ027I DLZDLOCO 2-14.1
DLZ028I DLZDLOCO 2-14.1
DLZ029I DLZOLIOO 2-5.3, 2-5 .• 9
DLZ030A DLZOLIOO 2-5.8
DLZ031I DLZOLIOO 2-5.1
DLZ,O.32A DLZOLIOO 2-5.4

DLZRDBL1
DLZ033I DLZODP 2-6.15, 2-6.16
DLZ034I DL'ZOLIOO 2-5~1
DLZ040A DLZOLIOO
DLZ041I DLZOI.IOO
DLZ042I DLZOLIOO 2-5.2
DLZ043I DLZOLIOO 2-502
DLZ044I DLZOLIOO 2-5.2
DLZ045I DLZOLIOO 2-5.3
DLZ046I DLZOLIOO 2-5.3

6-2 Licensed Material - property of IBM

"' 11
.• ~

Message
Number Module

Figure
Number

--
DLZ047I DLZOLIOO 2-5.3
DLZ0481 DLZOLIOO 2-5.3
DLZ0491 DLZOLIOO 2-5 .. 3
DLZ050I DLZOLIOO 2-5.1
DLZ051I DLZOLIOO 2-5.1
DLZ052I DLZOLIOO 2-5.5
DLZ053I DLZOLIOO 2-5.5
DLZ0541 DLZOLIOO 2-5.5
DLZ0551 DLZOLIOO 2-5.4
DLZ056I DLZOLIOO 2-5.4
DLZ057I DLZOLIOO 2-5.5
DLZ0581 DLZOLIOO 2-5.6, 2-5.7
DLZ0601 DLZOLIOO 2-5.9
DLZ061A DLZOLIOO 2-5.9
DLZ062I DLZODP 2-6 .. 10
DLZOEi31 DLZODP 2-6.2
DLZ064I DLZOLIOO 2-501
DLZ0651 DLZODP 2-6.2
DLZ066I DLZODP 2-602
DLZ067I DLZODP 2-6.2
DLZ0681 DLZODP 2-6 .. 2
DLZ069I DLZODP 2-6.2
DLZ0701 DLZODP 2-6.2
DLZ0711 DLZOLIOO 2--5.2
DLZ0721 DLZOLIOO 2-503
DLZ0731 DLZOLIOO 2-503
DLZ0741 DLZOLIOO 2-5.3
DLZ0751 DLZRRCOO 2-3.9
DLZ076A DLZRDBLO 2-16.7.
DLZ077I DLZRDBLO 2-16.1, 2-16.7
DLZ078I DLZRRCOO 2-3.9
DLZ0791 DLZRDBLO 2-16.7
DLZ0801 DLZMSTPO 2-22
DLZ081I DLZMPIOO 2-21.1
DLZ082I DLZBPCOO 2-20.1, 2-20.5

DLZMPCOO 2-19.2, 2-19.4, 2-19.5, 2-19.7, 2-19.8
DLZMPIOO 2-21.1, 2-21.3

DLZ0831 DLZMSTRO 2-18
DLZ084I DLZEPCOO 2-20.2, 2-24.4

DLZMPCOO 2-19 .. 4
DLZMPIOO 2-21.1, 2-21. 3
DLZODP01 2-6.3

DLZ0851 DLZMPIOO 2-21.1
DLZ0861 DLZMPCOO 2-19.7
DLZ087A DLZMPIOO 2-21.1
DLZ0881 DLZMPCOO 2-19.1
DLZ0891 DLZMPIOO 2-21.1
DLZ0901 DLZMPIOO 2-21.2
DLZ091I DLZMPIOO 2-21.3
DLZ0921 DLZMP!OO 2-21.3
DLZ093I DLZMPCOO 2-19.2
DLZ0941 DLZMPCOO 2-19.1, 2-19.8
DLZ095I DLZMPIOO 2-21.1
DLZ0961 DLZMPIOO 2-21.5
DLZ097I DLZMSTRO 2-18
DLZ098I DLZMPIOO 2-21.3
DLZ099I DLZMPIOO 2-21.1
DLZ1001 DLZMPIOO 2-21.3
DLZ101I DLZMSTRO 2-18
DLZ1021 DLZMPIOO 2-21.3

Licensed Material - property of· IBM 6-3

Message Figure
Numl::er Module Number

---------~~--------------~--------------------------------------

DLZ103I DLZEPCOO 2-20.5
DLZ104I DLZMPCOO 2-19.9

DLZBPCOO 2.,.20u6
DLZ1:05I DLZRRCOO

DLZENUCO 2-4.1
DLZMPIOO

DLZ106I DLZQUEFO
DLZ108I DLZQUEFO
DLZ120I DLZTRACE
DLZ2601 DLZBNUCO 2-4.1

DLZODP 2-6.10
DLZ261I DLZBNUCO 2-4.1

DLZODP 2-6 .. 10
DLZ262I DLZRRCOO 2-3.8

DLZOqOO 2-5.9
DLZ263I DLZRRCOO 2-3,,7
DLZ264I DLZRDBL1
DLZ266I DLZRRCOO 2-3.7

DLZOLIOO 2-5.3
DLZ2671 DLZQUEFO 2-23
DLZ268I DLZDDLEO
DLZ301I DLZUDMPO

DLZURDBO
DLZURGLO 2-32
DLZURGUO 2-31
DLZURRLO
DLZUC350
DLZURULO

DLZ302I DLZUDMPO 2-25
DLZURULO 2-29
DLZURRLO 2-30
DLZURCCO 2-27 .. 1

DLZ303I Df.ZUDMPO 2-25
DLZURULO 2-29

DLZ304I DLZUDMPO 2-25
DLZURULO 2-29
DLZURCCO 2-27.1

DLZ305I DLZtlDMPO
DLZURDBO
DLZURULO

DLZ306I DLZURULO
DLZURDBO
DLZUDMPO

DLZ307I DLZURULO 2-29
DLZUDMPO 2-25
DLZURRLO 2-30
DLZURCCO 2-27.1

DLZ308I DLZUDMPO 2-25
DLZURULO 2-29

DLZ309I DLZUDMPO 2-25
DLZURULO 2-29
DLZURRLO 2-30
DLZRDBLO

DLZ310I DLZUDMPO 2-25
DLZURULO 2-29
DLZURRLO 2-30
DLZRDBLO
DLZURCCO 2-27.1

DLZ311I DLZURRLO
DLZURGUO 2-31 .. ' l

6-4 Licensed Material - property of IBM

Message
Number Module

Figure
Number

--
DLZURGLO 2-32
DLZLOGPO
DLZTPRTO

DLZ3121 DLZURDBO
DLZ3131 DLZURDBO
DLZ3141 DLZURDBO
DLZ3151 DL~URGUO 2-31

DL~URGLO 2-32
DLZ3161 DL~URDBO

DLZUDMPO
DLZ317I DLZURDBO
DLZ318A DLZURGUO 2-31

DLZURGLO 2-32
DLZ3191 DLZURULO

DLZURGUO
DLZUDMPO
DLZpRGLO 2-32
DLZURDBO
DLZURRLO

DLZ3201 DLZURULO
DLZURGUO
DLZUDMPO

DLZ3211 DLZURULO
DLZUDMPO
DLZURRLO

DLZ3221 DLZURDBO
DLZ3231 DLZURDBO
DLZ3241 DLZURDBO
DLZ3251 DLZURDBO
DLZ3261 DLZURDBO
DLZ327I DLZURDBO
DLZ3281 DLZURDBO
DLZ3301 DLZURDBO
DLZ331I DLZURDBO
DLZ332I DLZURDBO
DLZ3331 DLZURDBO
DLZ3341 DLZURDBO
DLZ3.351 DLZURDBO
DLZ3361 DLZURDBO
DLZ337I DLZURDBO
DLZ3381 DLZURDBO
DLZ3391 DLZURDBO
DLZ3401 DLZURDBO
DLZ341I DLZURDBO
DLZ3421 DLZBACKO

DLZLPCCO
DLZURCCO 2-2701
DLZUCCTO

DLZ3431 DLZURDBO
DLZ3451 DLZURGUO 2-31

DLZUDMPO
DLZURULO

DLZ3461 DLZURGUO
DLZ347I DLZURGUO 2-31
DLZ3481 DLZURGUO 2-31

DLZURGLO 2-32
DLZ3491 DLZURGUO 2-31
DLZ3501 DLZUDMPO
DLZ351I DLZUDMPO
DLZ3521 DLZURGUO 2-31

Licensed Material - Property of IBM 6-5

Message I I Figure
Number I Module I Number

I I --.------------------.
I I

DLZ353I I DLZURRLO I
DLZ354I I DLZURGLO I 2-32
DLZ355I I DLZURGLO I 2~32

DLZ356I I DLZURRLO I
DLZ357I I DLZURULO I

I DLZUDMPO I
DLZ358I I DLZURULO t
DLZ360I I DLZUCCTO I
DLZ361I I DLZUCCTO I
DLZ3621 I DLZUCCTO
DLZ363I DLZUCCTO
DLZ364I DLZUCCTO
DLZ365I DLZUCCTO
DLZ366I DLZUCCTO
DLZ367I DLZUCCTO
DLZ369I DLZUCCTO

DLZUC150
DLZ370I DLZURGLO 2-32
DLZ371I DLZUC150

r DLZ372I DLZURCCO 2-27.1
DLZLPCCO
DLZBA~KO
DLZUCCTO

DLZ373I DLZUC350
DLZ374I DLZUC150

DLZUC350
DLZ375I DLZUC350
DLZ376I DLZURGLO 2-32
DLZ377I DLZURGUO
DLZ378I DLZURGUO 2-31

DLZURGLO 2-32
DLZ379I DLZURGUO 2-31

DLZURGLO 2-32
DLZ380I DLZURGUO 2-31

DLZURGLO 2-32
DLZ381I DLZURGUO 2-31

DLZURGLO 2-32
DLZ382I DLZURULO
DLZ383I DLZURULO
DLZ384I DLZUCUMO
DLZ385I DLZUCUMO
DLZ387I DLZURGLO
DLZ389I DLZURGLO 2-32

DLZURRLO
DLZ390I DLZUC150

DLZLOGPO
DLZ391I DLZUDMPO

DLZURDBO
DLZURULO
DLZURRLO
DLZBACKO
DLZUC150
DLZUC350
DLZURPRO 2-34
DLZURGSO 2-35
DLZURGIO 2-36
DLZURGPO
DLZUCCTO

(1 DLZTPRTO ~ DLZ392I DLZURULO

6-6 Licensed Material - property of IBM

Message Figure
Number Module Number

--
DLZURGUO 2-31
DLZURRLO

DLZ393I DLZURRLO
DLZ394I DLZURRLO

DLZURDBO
DLZ395I DLZBACl(O
DLZ396I DLZRDBCO
DLZ397I DLZRDBCO
DLZ398I DLZRDBCO
DLZ399I DLZRDBCO
DLZ400I DLZURGUO 2-31
DLZ401I DLZBACl(O

DLZLPCCO
DLZUCCTO

DLZ402I DLZBACl(O
DLZURDBO
DLZUC150

DLZ404I DLZBACl(O
DLZLOGPO
DLZURDBO
DLZUC150

DLZ405I DLZBACl(O
DLZLOGPO
DLZURDBO
DLZUC150

DLZ406I DLZBACl(O
DLZLOGPO
DLZURDBO
DLZUC150

DLZ407I DLZLPCCO
DLZTPRTO
DLZURCCO

DLZ408I DLZLPCCO
DLZ409I DLZLPCCO
DLZ410I DLZLPCCO
DLZ411I DLZLPCCO
DLZ412I DLZLPCCO
DLZ413I DLZLPCCO
DLZ414I DLZLPCCO

DLZURCCO
DLZTPRTO

DLZ415I DLZLPCCO
DLZURCCO

DLZ416I DLZLPCCO 2-39.1
DLZ417I DLZLOGPO
DLZ418I DLZLOGPO
DLZ419I DLZ~OGPO
DLZ420I DLZLOGPO
DLZ421I DLZLO~PO
DLZ422I DLZLOGPO
DLZ423I DLZLOGPO
DLZ424I DLZLOGPO
DLZ425I DLZLOGPO
DLZ426I DLZLPCCO
DLZ427I DLZLOGPO
DLZ428I DLZLOGPO
DLZ429I DLZLOGPO
DLZ430I DLZLPCCO
DLZ431I DLZLPCCO
DLZ432I DLZLPCCO

Licensed Material - Property. of IBM 6-7

Message I Figure
Numl::er I Module Number

I
-------------------------------.-----------~--------------------

I
DLZ433I I DLZLPCCO
DLZ434I J DLZLPCCO
DLZ440I I DLZTPRTO
DLZ441I I DLZTPRTO
DLZ442I I DLZTPRTO
DLZ443I I DLZTPRTO
DLZ444I I DLZTPRTO
DLZ445I I DLZTPRTO
DLZ476I I I", DLZDLAOO
DLZ570I I DLZDLBL3
DLZ571I DLZUACBO 2-33
DLZ572I DLZDLBLO

DLZDLBLl
DLZ573I DLZDLBLO

DLZDLBLl
DLZ583I DLZUACBO
DLZ584I DLZUACBO
DLZ585I DLZUACBO
DLZ587I DLZUACBO 2-33
DLZ5881 DLZUACBO 2-33
DLZ589I DLZUACBO 2-33
DLZ772I DLZDXMTO
DLZ796I DLZDLDOO
DLZ797I DLZDDLEO
DLZ798I DLZDLRGO

DLZDLRDO
DLZ799I DL~DLDOO

DLZCPY10
DLZ800I DLZDLROO
DLZ801I DLZDLROO
DLZ802I DLZDLDOO
DLZ803I DLZDLDOO
DLZ804I DLZDLDOO
DLZ806I DLZDLDOO

DLZCPYlO
DLZ807I DLZDLDOO
DLZ808I DLZDLDOO
DLZ830I DLZDHDOO

DLZGGSPO
DLZ831I DLZDHDSO 2-13.5
DLZ841I DLZDBHOO
DLZ844I DLZDBH02
DLZ845I DLZDBHOO
DLZ847I DLZDBHOO
DLZ848I DLZDBHOO
DLZ850I DLZDDLEO
DLZ855I DLZDDLEO
DLZ860I DLZDDLEO

DLZDXMTO
DLZ861I DLZDDLEO
DLZ862I DLZDDLEO
DLZ863I DLZDDLEO
DLZ864I DLZDDLEO
DLZ868I DLZDXMTO
DLZ888I DLZBACRO
DLZ894I DLZBACRO

DLZLOGPO
DLZURDBO A

i':

DLZUC150
~ DLZ901I DLZDLBL2

6-8 Licensed Material - property of IBM

Message
Number Module

Figure
Number

DLZ902I
DLZ903I
DLZ904I
DLZ905I

DLZ906I
DLZ907I
DLZ90SI
DLZ909I
DLZ910I

DLZ911I
DLZ912I
DLZ913I
DLZ914I
DLZ915I
DLZ916I
DLZ917I
DLZ91SI
DLZ919I
DLZ920I
DLZ92lI
DLZ922I
DLZ923I
DLZ924I
DLZ925I
DLZ926I

DLZ927I
DLZ92S1
DLZ929I

DLZ931I
DLZ9321
DLZ933I
CLZ934I
DLZ935I
DLZ936I
DLZ937I
DLZ93SI
DLZ939I
DLZ940I
DLZ941I
DLZ942I
DLZ943I
DLZ9441
DLZ945I
DLZ946I
DLZ947I
DLZ94SI
DLZ949I
DLZ9521

DLZ953I
DLZ9541

DLZDLBL2
DLZDLBL2
DLZDLELO
DLZDLBLO
DLZDLBLl
DLZDLBL2
DLZDLBL3
DLZDLBLO
DLZDLBL3
DLZDLBL3
DLZDLBL2
DLZDLBLO
DLZDLBLl
DLZDLBL2
DLZDLBLl
DLZDLBLl
DLZDLBL2
DLZDLBLl
DLZDLBLl
DLZDLBLl
DLZDLBL2
DLZDLBL2
DLZDLBLl
DLZDLBLO
DLZDLBLl
DLZDLBLl
DLZDLBLl
DLZDLBLl
DLZDLBLO
DLZDLBLl
DLZDLBL2
DLZDLBL3
DLZDLBLl
DLZDLBLl
DLZDLBLO
DLZDLBLl
DLZDLBLl
DLZDLBLl
DLZDLBL3
DLZDLBL2
DLZDLBL2
DLZDLBLl
DLZDLBLl
DLZDLBL2
DLZDLBLl
DLZDLBL2
DLZDLBL2
DLZDLBL2
DLZDLBL2
DLZDLBL2
CLZDLELO
DLZDLBL2
DLZDLBL2
DLZDLBL2
DLZDLBL2
DLZURPRO
DLZURGSO
DLZURGPO
DLZURPRO
DLZURGSO

2-35

2-34
2-35

Licensed Material - Property of IBM 6-9

Message
Number Module

I
I
I

Figure
Number

~---

DLZ955I

DLZ956I

DLZ957I

DLZ958I

DLZ959I

DLZ960I
DLZ961I

DLZ962I
DLZ963I
DLZ964I
DLZ965I
DLZ966I

DLZ967I
DLZ968I

DLZ969I
DLZ970I
DLZ971I
DLZ972I
DLZ973I
DLZ974I
DLZ975I
DLZ976I
DLZ977I
DLZ978I
DLZ979I
DLZ9801
DLZ981I
DLZ982I

DLZ983I
DLZ984I

DLZ985I
DLZ989I
DLZ990I

DLZ991I

DLZURGIO
DLZURGPO
DLZURGIO
DLZURGPO
DLZURPRO
DLZURGSO
DLZURGPO
DLZURGSO
DLZURGIO
DLZURGSO
Di.ZURGPO
DLZURGSO
DLZURGPO
DLZURGPO
DLZURPRO
DLZURGSO
DLZURGIO
DLZURPRO
DLZURPRO
DLZURPRO
DLZURPRO
DLZURPRO
DLZURGSO
DLZURGIO
DLZURGPO
DLZURGSO
DLZURGSO
DLZURPRO
DLZURGIO
DLZURGPO
DLZURGSO
DLZURGSO
DLZURGSO
DLZURGSO
DLZURGSO
DLZURGSO
DLZURGSO
DLZURPRO
DLZURGIO
DLZURGIO
DLZURGIO
DLZQRGIO
DLZURGIO
DLZURGIO
DLZURGPO
DLZURGPO
DLZURPRO
DLZURGSO
DLZURGIO
DLZURPRO
DLZURGIO
DLZURG$O
DLZURGPO
DLZURGIO
DLZURPRO

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

2-36

2-36.2, 2-36.4

2-34
2-35

2-35
2-36
2-35

2-34
2-34
2-34
2-34
2-34
2-35
2-36

2-36

2-35
2-35
2-35

2-35
2-34
2-3602
2-36.2
2-36.2
2-36.2,
2-36q4
2-36

2-34
2-35
2-36
2-34
2-3602

2-36.4

6-10 Licensed Material - property of IBM

DL/I STATUS CODES/MODULE CROSS REFERENCE

This table cross-references DL/I status codes (in alphabetic order) with
the module(s) that can cause that status code to be set. The modules
are described in section 3 of this publication. The status codes are
described in Chapter 6 of ftDL/I DOS/VS Messages and Codes ft •

status Code Module

AE DLZDLAOO
AC DLZDLAOO
AD DLZDLAOO, DLZODP
AH DLZDLAOO
AI pLZD:t.AOO, DLZDLDOO
AJ DLZDLAOO
AK DLZDLAOO, DLZDLROO
AM DLZDLAOO, DLZDLDOO
AO DLZDLDOO, DLZDLROO, DLZDDLEO, DLZCPY10
CA DLZCPY10
CB DLZCPY10
CC DLZCPY10
CD DLZCPY10
CE DLZCPY10
DA DLZDLDOO
DJ DLZDLAOO
OX DLZDLDOO
GA DLZDLROO
GE DLZDLROO
GE DLZDLROO
GK DLZDLROO
GP DLZDLROO
II DLZDLROO, DLZDDLEO
IX DLZDDLEO
KA DLZCPY10
KB DLZCPY10
KC DLZCPY10
KD DLZCPY10
KE DLZCPY10
LB DLZDLAOO, DLZDDLEO
LC DLZDLAOO
LI': DLZDLAOO
LE DLZDLAOO
NA DLZDXMTO
NE DLZDXMTO
NI D:t.ZDXMTO
NO DLZDXMTO
RX DLZDLDOO
V1 DLZDLAOO
XI': DLZDLA01
XH DLZDLAOO

Licensed Material - Property of IBM 6-11

6-12 Licensed Material "Property of IEM

SECTION 7: APPENDIXES

This section consists of the following appendixes:

Appendix A: Low-Level Code/Continuity Checking in DL/I .•

Appendix B: DBD Generation.

Appendix C: PSB Generation.

Appendix D: DL/I Macros

LicensM Material - property of IBM 7-1

APPENDIX A: LOW-LEVEL,CODE/CONTINUITY CHECK IN DL/I

FLOW OF CON'IROL

Low Level Code/Continuity Check (LLC/CC) in DL/I is used as a subroutine
of a user-written application program that runs under DOS/VS. Control
passes to and from the subroutine using standard calls.

LLC/CC in DL/I is a single control section (CSECT) which is structured
into seven modules (see Figure 7-1). The entry modules 000 for update
and 001 for initial generation of low-level codes have multiple entry
points for call statements issued by the user-written application
program, that is. a separate entry point for each source language that
is supported. All mOdules have only a single exit pOint, all lower
level modules 002 through 006 are only entered at one pOint.

All modules assemble and issue DL/I calls. The entry pOint for DL/I
depends on the source language that is identified by the entry point
into LLC/CC in DL/I. The language bits in the LLC/CC execution control
block (LECB) identify the source language of the application program.
If an unexpected status code of DL/I is reported in the appropriate PCB,
the error bits in the LECB are turned on, and control is routed back
direc.tly to the entry modules 000 or 001.

LLC/CC in DL/I consists of the following modules:

• Module 000 is the entry module for maintenance of low level codes.
It passes control to module 002 for execution.

• Module 001 is the entry module for initial generation of low level
codes. It passes control to module 002 for execution.

• Module 002 is the common mainline control module. It follows down a
hierarchical path of a product structure. For actual explosion,
control is passed to module 003. If a particular hierarchical path
is exhausted, module 004 is executed to process a parallel path on
the same hierarchical level. If all parts on the same level are
processed, module 005 steps up one level to identify a parallel path
on the higher level. If the original starting level is reached, the
complete structure is processed, and control is returned to module
000 or 001. Module 002 also detects loops and executes continuity
check recovery in module 006.

• Module 003 explodes a particular part into all its canponents .•
Control is passed from and to module 002.

• Module 004 removes the part which has previously been processed from
the hierarchical path thus opening a new hierarchical path via the
next parent part on the same level. Control is passed from and to
module 002.

• Module 005 steps up one level and removes the higher level part from
the hierarchical path to open another path. Control is passed from
and to module 002. If module 002 is not able to follow a new path on
this level, module 005 may be executed repetitively.

• Module 006 handles restoring of old low-level codes if a continuity
check is detected. Control is passed to and from module 002.

7-2 Licensed Material - property of IBM

For a more detailed description, see the relevent HIPO charts at the end
of Appendix A.

I
003

Entry points
DLZNNCA
DLZNNCC
DLZNNCP

Explosion of a Part

000
Maintenance of
Low Level Codes

I

I
004
Next parent on
same Level

Entry points
DLZNNGA
DLZNNGC
DLZNNGP

I
002
Vertical Explosion
Control

I

Figure 7-1 structure of LLC/CC in DL/I

MODIFICATION AIDS

EXTERNAL NAMES

001
Initial Generation
of Low Level Codes

I

I
005
Next parent on
higher Level

I
006
Continuity Error
Handler

LLC/CC in DL/I uses external names in the directories and libraries of
DOS/VS. The following table presents a list of all external names which
are used. The user should obtain a DSERV listing to avoid duplicate
names.

r-~--, 1 1 SSL 1 RL 1 1
1 1---1 1
IType of program I 1 I Directory I Entry I CIL 1
1 . A. books 1 E. books 1 entries I pOints 1 1
\i;;~~~i~~-~;~~;;-,~~;;;------J;~;;;--~--,~~;;;;---~~;;~~;-,-----------\
1 1 1 1 IDLZNNCC* 1 1
1 I I I IDLZNNCP* I I
I 1 1 1 IDLZNNEC* 1 1
I I 1 1 \DLZNNGA* 1 1
1 I 1 I IDLZNNGC* 1 1
1 1 1 1 IDLZNNGP* 1 I
1 Initialization IDLZNNICT IDLZNNICT 1 I IDLZNNICT 1
Iprogram for the 1 1 1 1 1 1
Icontrol data base 1 1 1 1 1 1 L-_______________________________ --------------------------________________ J

* May be modified by the user during customization.

Licensed Material - Property of IBM 7-3

LLC/CC EXECUTION CONTROL BLOCK (LECB)

The LECB of LLC/CC in DL/I is the focal pOint for all information
related to actual operation of the execution program. It consists of 16
bytes which are subdivided into 4 fullwords. An entry pOint DLZNNEC is
provided so that an application program may access the contents of the
LECB.

The LECB contains the following information:

1. Identification portion (fullword 0):
Bytes 0 through 3: C'LECB'=X'D3CSC3C2'
This identifier facilitates location of the LECB in a main storage
dump.

2. Execution control portion (fullword 1):
Byte 4:

• Bits 0 through 3: Run type bits
Bit 0 and bit 1: Reserved
Bit 2: 1 if IG run
Bit 3: 1 ifU run

• Bits 4 through 7: Not used

Byte 5:

• Bits 0 through 3: Language bits
Bit 0: Reserved
Bit 1: 1 if Assembler
Bit 2: 1 if COBOL
Bit 3: 1 if PL/I

• Bits 4 through 7: Not used

Byte 6: Status byte

• Bits 0 through 3: completion bits (mutually exclusive)
Bit 0: 1 if not completed, abnormal condition

encountered
Bit 1: 1 if component requires no change (U run only)
Bit 2: 1 if part is already processed (IG run only)
Bit 3: 1 if part has no components

(IG run only, and only if bit 2 is off)

Besides its function as an indicator, bit 3 also
serves to transfer information whether a parti­
cular part in an explosion sequence has component
parts. Bit 3 is turned off in module 002 before
entering module 003. If no component parts
are found during the execution of module 003,
the bit is turned on. Upon return to module
002, the bit is tested to decide whether
mOdule 004 must be called.

• Bits 4 through 7: Error bits, extending completion bit O.
A single error bit does not reflect a particular error
condition, therefore, the hexadecimal representation of
the total bit pattern in the status byte· has to be analyzed .•

X'80'
X' 81"
X'" 84-
X· 85'
X" 87 6

Parent part not found
Component part not found (U run only)
continuity check for parent part
Continuity check for any component part
Input parameter in error

7-4 Licensed Material - property of IBM

3.

X'" BB" Unexpected DL/I status code for parts data base
X"'BA" Unexpected DUI status code for control data base
X"BC" Both error conditions X'B4' and x'BB'
X· BD"' Both error conditions X'BS' and X'BB'
X· BE' Eoth error conditions X'B4' and X'SA'
X· SF" Both error conditions X'SS' and X'BA'

Byte 7: Not used

Parameter list portion (fullword 2):

Bytes B through 11: Address constant pointing to the parameter list
which has been previously submitted to DUI by LLC/CC in DL/I.
contents is defined hexadecimal zeros prior to the first run through
LLC/CC in DL/I. The address constant is not affected by insertion
of locators if the application program is written in PL/I.

4. PCB save area portion (fullword 3):

Bytes 12 through 15: Address constant pointing to a 64-byte save
area for a PCB. This save area is initialized to blanks (X' 40') ,
however, in case of an unexpected DL/I status code, the related PCB
is saved into this save area. The PCB is stored left justified. If
the length of the PCB exceeds 64 bytes, the exceeding data is
truncated.

The contents of the status bytes is externally represented by the return
codes of LLC/CC in DL~I.

IG stands for "initial generation of low level codes", U stands for
"update of low level codes".

The LECB is located at the very end of the code of LLC/CC in DL/I.
Therefore, the last byte of LLC/CC in DL/I may be addressed DLZNNEC+1S.

LANGUAGE CONSIDERATIONS

During PSB generation, the source language of application programs using
DL/I facilities is defined in the PSBGEN statements. while COBOL is
handled like Assembler, the PCB has a different layout if PL/I is
specified. Therefore, LLc/ee in DL/I has to use different entry pOints
into DL/I depending on the source language of the invoking user-written
application program.

The entry routines of the execution program of LLe/ee in DL/I offer
different entry points. The x identifies initial generation mode (G) or
update mode (e). Six different entry points are available for transfer
of control:

• DLZNNxA and DLZNNxe are the entry points for application programs
written in Assembler or COBOL, respectively. No special processing
is required.

• DLZNNxP are the entry points for application programs written in the
PL/I optimizer language. Upon entry, the address constants in the
parameter list pOinting to the locators of the parameters transmitted
are reflaced by the addresses which are stored in the respective
locators.

FOr each source language, the appropriate language bit in the LLe/cc
execution control block (LECB) is set upon entry.

Licensed Material - Property of IBM 7-5

When a DL/I call is issued, the language bits are tested to specify the
right entry pOint in DL/I: ASMTDLI, CBLTDLI, or PLITDLI,. If the source
language is PL/I, the parameter list is encoded to transfer address
constants pointing to locators rather than pointing directly to the
parameters.

SAVE AREAS

LLC/CC in DL/I contains a set of save areas which facilitate tracing
main storage dumps. The most important save areas are:

• Standard save area, addressed by register 13. Symbolic name is SAVE.

• Return addresses for subroutines, that is, contents of register 14.
Symbolic names are CALLSV, PARMJUSV, INSRSAVE, SETUPSV, M002SV
through M006SV. Save areas M002SV through M006SV are reset to
hexadecimal zeros when the respective modules M002 through M006 are
left again.

• Save area for the contents of register 1 when entering LLC/CC in
DL/I, that is, address of the parameter list submitted from the
application program. Symbolic name is R1SAVE.

• Save area for the leftmost 240 bytes of a PCB if an unexpected DL/I
status code is encountered. Symbolic name is PCBSAVE. The address
of PCBSAVE is also available in fullword 3 of the LECB.

REGISTER USAGE

RO:
R1:

R2:

R5:
R6:
R7 :
R8:
R9:
R12:
R13:
R14:
R15:

Work register
Work register, address of parameter
lists during parameter transfer
Address of parameter list when preparing
parameter transfer
Work r~gister
Address of PCB for parts data base
Address of PCB for control data base
Base register
Second base register
Reserved
Address of register save area
standard return address
Standard linkage register

HIPO DIAGRAMS FOR LLC/CC

The following HIPO diagrams describe the seven modules (000-006) of LLC.

7-6 Licensed Material ~ Property of IBM

Input. Processinq r-----------] [::::.:::: ::;:: ':::~::::;-I
! 111~sp~_ 'I=-II---:::=:=~)I [~ Obtain and ad1ust input

I ICTL.-PCB I I data.

I IPAR~RT-! I I
I L~~~P. ~~~l I

.-___ . _1 __________ .1\ [Oil Read parent. and co.panent
I \ ------------, I --J

:) I part. if not found, go to

I>-----.~I II

PARTS DB

I

I

I ___________________ .1

000 - IHINTF.NANCE OF LOW - LEVEL CODES

I[~

!

I

step 9.

I neteJlent the LlC of the ------------'\ -------------, /
parent part by 1 to obtain I

the initial LLC. Set

actual LLC to initial LLC.

if the actual LLC is not

hiqher than the LlC of the

component part, no

processinq is required and

control is passed to step

9.

II [041 Inset:'t root segment LLCTL -l------r--....... \
I
II .:::.:J with key = X to start the ---------- r--'/

control data base. I
! [~ Insert dependent seqments ========!J
I in to the can trol da ta base I
I for pat:ent part and for I component part. I

l _______________________ J

CHART: DUNN
PAGE 1 OF 2

output

CONTROL DB

~-----------------------------BIPOIUT 1 .. 1 Oiagraa - 3 .. 1.1-01

r--------------------------------------i------------------------lr--~-----------------'
, Notes , Routinel label I Ref \ I Notes Rout1ne Label Ref

11-=--------------------------1----- \ ------1-----11 \ -------------------------------- ----- ------- ----
I (011 The callinq application proqram, 'DLZNNCA ! II
: 1._-' Ilses three different entry \ lDLZNNCC

! ;:~;~s A f::r:::::l~::t COBOL or! !OLZNNCP I II

III' consistinq of {) pointers III I ,I, III
identifies b fieldS, 4 of them

t containinq input data, 2 of them I I
I expectinq out put data. I \

\ ! ! ! II
I (~ :::p::~:~n:~ ~~~e~\:h:n \ !PARTBEXpl 1,1

:::::::R f::q:::~~D:i::R:::;: III ,i !
control with a key composed of

::::n:e:::t p~:s i:::r:::. o~h:he II 'I 1\
continuity check itself is

jf:~~1~::~~:j::~:~2~::: I I II
:~ ,::'.::,,~: ::": .:::.::. ". I I I II

I __ J_ll ____________ :::::::~.~
HIPO!lT 1.1 D109''. - 3.1.1-01 000 - UIITBllIC! OP LOW - LEVEL CODES

Licensed Material - Property of IBM 7-7

Input

,
!
I ,
I , ,

----I
,

L ________________ _

000 - fllJAINTEHANCE OF LOW - LEVEL COOES

processing r---------1
! [061 Replace the old LLC ~n the----------'\ , --' -----------, /
I, component part by tbe I

actual LLC. ,
I [~ Execute LLC/CC in Di/I.

I
I[~

I
I f09l
L--'

Return to calling

application prograll.

CHART: DLZNI
PAGE .: OF' 2

Output

/ ,
['._--_.j! , /

PARTS DB

(')

l'·-----·jJ , /

CONTROL DB

OUTPUT

r--, ,..---------------------------------------, , , , , II . ,

I_::~_S ____________________ 1 ~:~::,-~~~-,_~_II i~~::.-------------------- _~=I~:~~- ~~
f09l Return information 1.5 obtained \ IDLZNNEC I II f
L--I frolll the status bits of the LECE I I I 'I

and fro. the internal loop key ,\ i I 1'1' !'
field. I t

\ , I "
I I I II

, I ! I II
I I I I II
! I I \ II

I I I I II
I I I I II
III ! I I I

' I ! I \ I i
it: ! I ! !

I I I

I II I I
O~O:-:O:----:ft:-:Ac:I:::ITENANCE OF LON _ LEVEL-C-O-D-E-S--------------' L-- ---- HIPOftA,T 1.1 Diagr •• - 3.1.1-02

7-8 Licensed Material ~ Property of IBM

4

''''
~

CHART: tLZHN
PAGE 1 OP 2

Input processinq Output
r-------------------------------'--------------------------1 r-Thi:-~le is-:::::::-~:::_::-'I

I I application progra. via CALL.

~~~----,-L-------','tr01l Obtain and adjust input I 
, FA RTS PCB 1----------./1 --' 1-_____ I data. ICTL-pCB I I 
;;AR-T ----I I I 
'-_____ J I I 

• ____ • __ I _____ .I,lro21 Read part. If not found, 

{I ') -1--------'/1 L--I qo to step 9. 

['. ______ .;;1 I t 
I I IrOll Test the LLC of the part. -----------', 

I IL--.J If it is not 0, qo to stef--\----------,I 

, I 8,. Else set initial and 
I I 

1----------",lrOil'J :::U::r:L:st:e:~ed whEther jl 

, ----------,11 L_ 
) I I it has cOlllponent parts. If 

1\ II I I 1,. ______ .//1 II II no components are found, I 
control is passed to step I 

! I 9. ! I 

II I, [~ Insert root segment LLCTL ---------r--" 
1111 I,ll ::"::J with key = X to start the --,1------- 'I -,/ 

control data base. I I I I 
I 1 [~ Insert a segment PAB'I'EEXF :~::::::::!J 
I I with key composed of 
I I 
I I 

PARTS DB 

, 
PARTS DB 

{ ') 

1'·-----·;;1 , 
CONTROL DB 

packed zeros, i.e., actual 
, I 
I , 

I I 
LLC plus part key. 

I I 
I I 

\ ! 
I I , I 

I I I ___________________ 1 L _______________________ J _______________ J 
001 - INITIAL GENERATION OF LOW - LEVEL CODES HIPOIHT 1.1 Diagram - 3.1.2-01 

r~::::s ~~~~~~~~~~~~~~!-RO:~::~~:~~~II~~:;--1~~::~~~~~~~~~~~~~~~~~~~~~~ Bo~::!I~:~:~~~-I~~~--l 
Ir-, . .. I I II 
11011 The call1nq appll.cat10n proqram I IDLZNNGA I \ I I 
'L_-' I I 
t has three entry points for I ,DLZNNGC I \' I II I 

Assembler, COBOL or PL/I. A ! IIDLZNNGP I II 
paralleter list consistinq of 

pointers identifies 5 fields, 3 I I I II I 
of them containinq input data, 2 \ t I J J , , 

of tbem expectinq output data. I I I II I I I 
I I I t I I I I II I I I 

I ~ A bit is set in the LECB t.o I ILE'CBSNOC I ! I I 
I ~:~~=:~e that no co.ponent part I I I II I ! I 
\ I I I II I I I I II I 
I \1 I I II I 
I \ ! I !! \ 

!'I I I I 'I I I I I I I 
! ! I I Ii I 

1

:1: I I II Il' 
I ! ! I L 
I ! I I II 
! I ! ! II '------__________________ ----' L ______________________________ _ 
001 - INITIAL GENERATION OF LOW - .LEVEL CODES HIPDIUT 1.1 Diagraa - 3.1.2-01 

Licensed Material - Property of IBM 7-9 



Input ,----------------------1 
I I 
I I 
I I 

I \ 
I I 
I II 

I I 
I I 
I I 
I I 
I I 

I I 
I I 
I I 
I I 
I I 
II I 
I I 

! I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
II I 
I I 

I I 
I I 
I I 
I I 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

I I 
I I 
I I 
I I 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I L ______________________________ ~ 

001 - INITIA.L GENERATION OF LOW - LEVFL CODES 

CHART: tLZlfN 
PAGE ~ OF 2 

Processinq output 

["------------------------------1 

I r01i Rxecute LLC/CC in DL/I. , 
f L_...J J 

! <~t::1~)f~~~=============-~ I I IVERTICAL EXPLOSIONI I 
I l~~:~~~ ______ ~:~::J \ 

r-------------------------------

I (~~J Remove all control J=======::::> 
I information from the I 

\ control data base 1::)' i 
I deleting the root segmEnt I 

/ \ : ) 

/'._---_.// , / 

I LLCTL with key = X! I 
I I 

CONTROL DB 

!r~ ..! I Oql Set up l."etUI."D ~nformatlon.-------------'\ 
I L_.J ------------, I ! Return to calling II 

application proqram. 

I I 
I I 
I ! 
I I 
! I 
\ I 
I I 

I I 
! I 
\ I 

\ I l __________________________ J 

I 

I 
l __________________________ _ 

HIPOl'UT 1.1 Diagram - 3.1.2-02 

I-------------------------------'-----~--,-----'-----l r-------------------------------'---r-------I----l 
I r~: et ::-in f::::::-::-:::~::_--l-::~~:: ! ~~~;~~~ 1\; -:~ \ \ -~:~::----------------------------I ~::~:: I-~:~:~-- I ~~-
1l.--.1 I I II I 
I from the status bits of the LEeB I I I I' 
I and from the l.oternal loop key \ I 'I III ! 
I held. I I I 
I I I 

I I I II I 

I I I II II 
I I I II 
I I I II 
I I I II I 

I I I II I 
I I I II I 
I I I !! ! 
! I I II \ 

I I II I 
I I !l' ! I I I 

I I II 
I I II I 
ill! II 

I I II I 
I I II jl 

I l II 
I I II 
I I II 
\ I d 

I I !! 
I I ! ! II t. __________________________________ ~ L __________________________________________ _ 

001 - INITIAL GENERATION OF LOii' - LEVIn CODES ~ HIPOI!AT 1.1 Diagra. - 3.1.2-02 

7-10 Licensed Material - Property of IBM 



Input processinq Output 

CHART: CLZNN 
PAGE 'OF 3 

l~-------------------------1------------------1 r---------------------] 
\ " I ~:----.-~~----,,\[ii11 The aetu.l lov-level code ! 
, ',~.:~~~-\--, '1------,/11 ~ \ IINITIAL I I I I is used to identify the I 

III '---/. __ ----' __ ., :-~I-_J'II ! next part to be Frocesse~·1 
A seqlllent PARTBEXP is read 

t with key equal or cJ1:eater 

" f, /)1 ' 1 to LLC plus hell: zeros. I 

I I,·------·~ 1'1 11[;;;-]02 If 's I 
.:::J no seqment PABTBEXP .... 

CONTROL DB ! ',found. the actual LLC is ! 
exhausted. cont ['01 is I I I \ I passed to module COS. I 

I I 
I I I L--J '\ r---------------, 
\ \ \~~/,~:..-----------I I 
I I ,NEXT PARENT ON j 
, I I HIGHER LEVEL. 
, \ l _________ ~:~~:~, 

III:, III [-~-31 ! .. upon return from 005, the 

actual LLC is tested. If 

I' ,'it is hiqher than the I 
initial LLC, control is 

: I passed to step 1, else I 
\ \ proeessinq is co. fIe ted I 

\ I and control is (:assed to I 
\ 'step 8. I 
I' I 
I' I 

" , 
" , \ I I I I I 
'I , 
\ \ I 

I I ' 
L ______________________ l L ____________________ J 

I 
t ________________________ ____ 

002 - VF.RTICAL EXPLOSION CONTROL HIPO"AT 1.1 Diaqraa - 3.1.3-01 

,.------------------------------------"1 r---------------- -----"1 

I ~~:------------------I..::~~: I-~~~- !-~~II-::~:----------------------------I~:~: I~:~:~-- ~~ 
'I [~ vertical explosion control is! ',PARTBEXP" ,III ! I 

perforlled by means of PARTBEXP 

1\1 seq.ents. Each ti.e a nev )1 ',I \1 ,II' , I' 
component part is encountered 

: with a low-level code which I' I I 'II I 
I needs replacement, a PARTBEXP I, I 1 
: seqment - key = LLC + part key - \ I I III 
II' is created. IIben qoinq down a /' I' , "I, \ 

product-structure tree, this I ' 
I , ' I , 

I ~:::t~:i~~C~~e~n c~~~~nent part I I I : I 
" ! I ' 'I 
\
'1 to be~ome a parent part Within" I I 1.1' 

the "['ecursive process of 

e"J:plosion.. Explosion proceeds on , '" 
\ a mo basis. I I I ! I 
l rm nurinq pre'" ious explosions, no' I I 'I 
/ L_-' component part vas found \, II I reqoirinq the replacement of its \ \ ! ,\ 
I current low-level code, or no I \ I \, 

: co.ponent part vas found at all. I I 1 I, 
" Therefore, no seq.ent PARTBEXP J I, \ 'I 

vas inserted. 1 I 
I I" I [§ The initial low-level code was I! I! 
I established either in aodule 000 , I I I 
I or in .odule 001, resp. 1J 
L _________________________ J ___ 1___ I L__________ _ ______ _ 
002 - VERTICAL EXPLOSION CONTROL HIPOftAT 1.1 Diagra. - 3.1.3-01 

Licensed Material - Property of IBM 7-11 



Input Processinq Output 

CHART: rLZNN 
PAGE L OP J 

1-----------------------------1 r---------------------------1 r----------------------------I ' " I I I I I 
, " 'I I 'I I, 
I J----------"lro41 If a seqment ,s found. -~---------"I F~~--::J I :/ ') -,------,/ I t.--' read the root seqment of -,------------"'1/ 1 t.~~~_ 

, I . ------. II I ,the part. I , "I' 'I I I I 

:,: PARTS DB I II I,: [~l Increment the actual LLC :~,:=::::=::~),' JL;_iC_~_TUAL-::J-
by 1 to post into the 

, " 'I I " components of the nEW,' 
I I I part. I , I' , 
I I 1',061 Perform continuity check J-------1--,>i 
I I t._-.J ----------, --, I '1 andqotostep9.1fth€ I 11 I 
: \ \ check fails, ['estor€ old I II I 
: I I LLCstatusin006. I '" 

I I I I L_'" r-----------------' I II I 
I I I \ ~~ /, ~~------------I I II 'I I I I m~gMECOVERY, I l ,--" 
I I I L _______ ~:~:~:~J I ---'II 
I I I I, 
I I I r~ Upon return from 006, I I 
II , I t. control is passed to step 

I I I 12. I I I I I 
I' , 

I I ! I I I I' 
I I I I 
" I I I I I' 
I I I I 
" I I I I I I I I 
I I I 
" I 

II I ! 

\ I 

CONTROL DB 

OUTPUT DATA 

E~~~~==1 
I EBROR INFO, L _____ -' 

I 

I , 
I 

I 
~ __________________________ J L ___________________________ J ____________________________ J 
002 - VERTICAL EXPLOSION CONTROL HIPOl1AT 1 .. 1 Diagt"aJl - 3 .. 1.3-02 

[~~"O ;,;;;~;:;;;::_:-;=::=:=::~:::::~~;;r:;:;::il:I:~:::::::::::::::::::::::~~:"::~~::r:-~l 
I t. __ pe['formed usinq the seqment type' I I I I 1 I 

I :;R::~::~n:a::p~:::d: :e:o::::t I I I ! I II ! I 
I is insert~d which only consists I I ! I \ I I 

of Ute part key preceded by 2 I I \ ( \ f I I 

bytes hexa ze['os. If a pa['t I I I II \ I I 
occurs twice in a particular, I , II I I 
hierarchical path. DL/I will I I ,I II 'I I I 
reiect the request for insertion I I I \ \ I I I 
because a seqment wit.h same key I , I II ! I 
is aI['eady existinq. LLC/CC in \ i I I! \ 
DL/I tests this condition and t , I' I: I I I 
siqnals continuity check. I I II I 

Insertion is Pt"ocessed here. 

However if in updatinq mode, 

LLCICC in IlL/I inserts a 

PARTBP.XP seqaent of this type 

) I I II I ' I 
, , I II I I , I , , 

I I / /1 I 
for t.he part identified by PARM J II 'II II III 
already in 000, step 5. 

/ / I II 
I I I II 
I I , I) I I I / 
\ I / II 

\ I / /' 
I I rI 

I I I I II 1 
/ \ I I 'I / I I I / 
I I \ / II I I L-______________________________________________________________ Jl _____________________________________________________________ __ 
002 -, VERTICAL EXPLOSION CONTROL HIPOPUT 1.1 Diagral - 3 .. 1.3-02 

7-12 Licensed Material - Property of IBM 



Input 

I 

I 

I , 

I 

_____________________________ J 
002 - VPRTICAL 'FXPLOSICN CONTROL 

1Jrocessinq 

r----------------------------

I I [~ If th~ continuity ChECk 

I did not indicate a loop, 

the actual pact will be 

ex ploded into i t5 

compenent parts. 

IL-.-J, r-------------, 
('~~~/)l~~--------------J EXPLOSION or A 

PART 
3.1.l.1 --------------

[~~J Upon return froll OOJ, a 

test is made to detect 

I whether the actual (:a['t 

all. If components vere I b

haaSCkhatcdC sOte·Pponle.nt parts at 

found, control is passed 

I flOl .lse. oo~ is e.ployed. 

IL~ 

I / ,-;;, ') [004---------------] 
\ r-, / NiiT-;ArnT-oi----

SAME LEVEL 
3. l.l. 2 

------------------'r-" , I L~..!J Upon return, qo to step 1. 

, 
II [~ Go back to higber level 

module 000 or 001 

L ________ J 

output 

CHART: CLUI 
PAGE 3 or 3 

L~ _________ _ 
HIPOMAT 1.1 Diagra. - 3.1.3-03 

r------------------------------------------------------------' .----------------------------------------------------

1-::::------------------t'-~:~~: t'-~:~-'-~~-II-:::::---------------------- ~:utin: ~:~~- ~~ 
1.09l A switch in tbe LF.CB is used to L!C8SNOC 
IL~" I I ' \ transfer information whether a : 

I part has component parts. The! I 
\ switch is turned off before 
I 

" 
ent.erinq 003, L e., it is 

assumed that the part has , 
! 
I 
I 
I 
I 

I 

I 

I 

components. Upon return froID. 

003, the st.atus of this switch 

is tested. If the switch is on, 

003 bas indicated that the part 

does not have components. 

I ~ ___________________ _ 
002 - VERTICAL ElPLOSION CONTROL HIPOftlT 1.1 D1ogr .. - - 3.1.3-03 

Licensed Material - property of IBM 7-13 



Input Processing r---------------l r-----------------

!I: .----. 1 ________ ~ J [011 Read the first or .ext 

, i~~) -'----------'/I-..:J component seqment of the 

I I . ------011 I actual part. If not found, I \ / processing is completed 

I .------" ! 1 dnd control is passed to 

II; :::TS DB ! _ step 6. 

I r:-----,---------·"ro21 compare actual LLC and LLC 
IACTUAL I---------'/I'-.:J 
'"-_____ J I I in the component. If the . 

'I I actual Ltc is not higher, 

no further processing is 

required and control is 

I I [~ ::::e:h:a::d t:L:t:: ~~e 
I I ::::::::' '" .. ",""m. 

1 ____________ --J \ 

--------------, I 

I I[~ Replace the old .LtC of the------------.-J\ 

I I component by the actual , I LLC. 

I I 

--------------, / 

I I 
I ! 
I I I 

L ______________ J L ___________________ _ 
00 1 - EXPLOSION OP 1 PART 

Output 

eH AUT; tLZlf1f 
PAGE 1 Of 2 

---------------------------

,/---'\ 

/' ·------·~I 
, I 

CONTROL DB 

/ , 
I'. -----. ~l 

, I 

PARTS DB 

r--------------------------------------, r--------------------------------------------
I_~~: ________________ I' ~:tine _~~:~_' _~_'I ~::: _________________________ ~OUtiDe ~~bel_ Ref 

,roil If the no-coaponent-found L FCBSNOC , ,--' 
I L!CBSHOC condition vas raised 

when retrievinq tbe first 

seq.ent, a switch indicates to 

002 that the actual part does 

not ~ve aoy component parts at 

all and another part has to be 

select'"ed for explosion. 

003 - BlPLOSIOII OP 1 PUT 

7-14 Licensed Material ~ Property of IBM 

HlPOBl'f 1.1 Diagraa --r:;~1 



CHART: rLZHfi 
PAGE ~ OF 2 

Input output 
I--------------------------------~ ~~~~~----------------------l r------------------------, 
1 1 
1 1 
1 1 
1 1 
1 1 
I 1 
I 1 

, I 
I 

I 

I 
I 

I 
I 

r-, I 
l~ Insert a seq.eDt PAR'rBEXP ------------' \ 

wi th key co. posed of ------------, II 
actual LLC plus PARTKEY of I 
the component. Go back to \ I 

t step 1. I 
![~~ Go back to module CC2. 

I 

I 
I 
I 
I 

I 

I 
I 
1 
1 1 

II 1 

1 
I I 
1 1 

CONTROL 08 

_______________ 1 

003 - EXPLOSION OFAPART------~ 
L _______________________________ J 

HlPOPUT 1.1 Diagram - 3.1 .. 3:1=0'2 

f-~otf!S -----------------------,-----,----,------' ,.--------------------------------------
I I Rou tine I label I Ref II Notes I . '----------1 , __________________________________ 1 ________ 1 ______ 1 II Routue\ Label I Ref \ I I --1------11-------------------------------------- -------- -------- ---

I 1 1 I 11 
I 1 lid \ 1 

I , , i II ! 
I 1 1 1 11 

I I I I II 
I i I I II ! 
I I I I II I 
I I 1 1 11 
I I I 1 11 

11 I I 1 II l 
II I I 1 11 
I 1 1 1 II 
I I 1 1 11 \ 
1 1 1 1 11 
I 1 1 1 11 I 
I I I I II 
\ I I I 1/ 1 
\ I I I ,II 
11 \ \ I I 
\ I I I II 
I I I ! II 
I I I I II 

! ! ! ! II 
I I I 11 1/ 
I I 1 I 11 

l I I I !I! 
I 1 I 1 I I I 1 
1 1 1 I i ! I I II L__________________ 1 I I II 
003 - EXPLOSION OP A p~--------------------~ L-__ ------------------

Licensed Material - Property of IBM 7-15 



CHA.RT: [LZN~ 
PAGE 1 OF 1 

Input Prccessinq Out put 
'1'-------------------------------,,' ,------------------------------1 

\ ! I I 
I I I I 
, PAFT, 1,.--, 1 
I ,.---------, _____________ --J \ 11011 RBmove thl-> dctudl part 1 

t ~:~~~:--_j-I--------'/I L __ J torm the hierarchical I 
I I I I 
I I I pa tho I 

II !! r--, I 
I "I \ ===:===:==~)ll~:J DC!lete seqment PARTBEXP I 
II 1\ 1)1 \ I with key composed of hex I 
I ".------01/1 /1 I, zeros and the kEY of thE I 
I act ual part. 
I ,I I 
, CONTROL DB I / I 
II " / I LLC \ ~~~iiA~==F~=========~)![~~ Demment actual LtC by 1.=~============~>1 f'AcTuAr:----l L ______ J 

, \! I I 
II I I I 

\ -~----------J\lr041 Remove the first seqIr.Ent I 
I {I \) -,---------,1\ L __ J PARTEEXP with key::; actual I 
I I' /1 I I I 
I I II , I LLC + hl?x zeros sinc~ it I \ 0,' ------./ I I has been completely I 

/1 II I I ex noded. I 
I CONTROL DB : I 

I I I "--:::-1 I 
I I 11051 Retlull to module 002. I 
II / ,.-~ I 
I I I 

/ I I I 
I I I I 
I I I I 
I I I I 
I I I I 
I I I I 

\ / I I 
\ I I I 

\ I I I 
I I I / 
I I I I 
I I I I 

I I I I l. _______________________________ J L ________________________________ J 

I I 

L _________________ J 
004 - Nf,XT PARENT ON SAIH I.EVF;L HIPOMAT 1.1 Diagram - 3 .. 1 .. 3.2-01 

,----------------------------------I-----~--I-------I------1 f----------------------------------T---~-r-------r-----l 

! -:~::----------------------------I-:::~~:' -~:~:~-! -::~--! ! -~:~::--------------------------------l-:::~~:: I ~:~:~--I-:~--
I joil A part may occur multiple times I I I III I I I Il __ ..J I I I I within a product-structure tree. I I I : I I 
III However. it must not pccur twice I, III !I I111 ! I I 

within a hiararchical path. 

Therefore, if a hierarchical all t I I I \ I 
path is left or is mod ified, I : I \, I I 
P'RTRRXP seqments for conHnuitv III 1111 I 1111I1 I ! ! 
check. related to branches which 

have become obsolete will be I I I I! I I ! 

removed. I I I II I I 

I I I I II I I I 
11041 WhPD returninq t.o step 1 in I 1 I II I I t 
II·--J II II III! module 002, the next part on the I 
: same level will be read. Step I I tIl 
II: " nOD" \ I II / ~ neutralizes step 4 in 1 

) 002. 1 I I! I 

:1: I! I I I I 
II I I I I I I 

! I I! 
I I I I 
I I I I I I I 

! I I II 
l ! I I II • _____________________________________________ J '-__________________________________________________ _ 
004 - NEXT PARENT ON SAME LEVEL HIPOIUT 1.1 Diagrall - 3 .. 1.3 .. 2-01 

7-16 Licensed Material - Property of IBM 



Input Processinq r-----------------l r--------------------l 

I ;~~-----11----------"II[Ol'l Decrement the actual LLC _t __________ -', 
, l~~~~~ __ ___' --1--------'1 -- by 1. --1------------' I 

1
:1: , :1r;::::=:::~)1[~] n .. lete ne first seq.ent :::::::::=::~) { ) III PARTBEXP identified ty a 

" II I I -------0/1 I key composed of the actual \ ,/ I LLC and of hex ZEros. 

I': /1 CONTROL DB I III 
, Lf~~-------l--]I I ! L~:~~ ___ ' _,_:1 
I I I I --.-------... ,'[o'il Delete the seqment 
I :1 ')-,1 f------'/I --, PAR'rDEXP identified ty a 

\ 1>-----.;1 \\ IIII II 
\' 

CONTROL DB I Ij I 
\ r::-----,--J Ifii41 Return to .odule CO,. 
II IPART KEY 1----' IL--' 

L _____ J I I 

\ I I 
! I I 
I I I 
I I I 

I' !! \ \ 

I ! I I t _____________________ , L ___________________________ l 

key composed of hEX zeros 

and the part key retrieVEd 

in ste): 2. 

005 - NEXT PARENT ON HIGHER LEVEL 

Output 

CHART: tUMR 
PAGE 1 or 1 

~:::~:;;;-; :;~:.::-:::-.::-:-~~~I-~:;-~,:~lr-~:~-:=::::::::::::::::::::::-~-:-:~ -:;:;::~~1 
I hiqher, i.e.~ nUlRericallv low(>[ I I 

level. 

\ I I I 
I , I 
II r-0-2'1 I I A part .ay occur multiple times 

I'I'L-' I ! \ within a product-structuIp. tree. 

I, Hovfliver, it lIust not occur twicp. 'I I I 
within a hierarchical path. 

I
I Therefore. if a hierarcbical 1 I ,I 

path is left or is .odified, all 

P1RTBF:XP seqllants fer continuity I check related to branches which I l 
1111 have becolle obsolete .. ill he ,I I 

relloved. 

~ rOJI Since this hierarchical path is \1 
IL_.I 

II exhausted, the conttol seqaent I 
for explosion is deleted. 

! I 
\ I I 

I I 
I I I !\ l _____________ ~~L 
005 - RBI'!' PARnT OB HIGHER LEVEL 

Licensed Material - Property of IBM 7-17 



Input Prccessinq r---------------l r---------------
! I I 

I .-----. -~-----.,l[~ Rea,l sequentially all I (------)T--------'/I UmASTR segments. 

\ CON;;~~-~B ! I 
I /----., :===:=:=~) ~ I I 1[--' Restore all LLCs of Farts -----------'\ 

I : I I 
1\ II I I .------.1 I 

I 'I I I 

--~---------, / 
referenced by an OPIlllJASTR I 
seqllent to its oriqinal 

value. 

! PARTS DB I I 

I I I rOll Retun to module 002. 

I I I L--I 

\ I 

I I I 
I I I 
I I I 
I I I 
I " 

I L__ _ ____ J l ________________________ J 
006 - CONTIROITY BRROR HARDLER 

r I Notes 

I--

I 

I 

I 

CHART: £LUR 
PAGE 1 OP 1 

outP~ ________________________ _ 

/---., 

I'. ------. ~\ 
, I 

PARTS DB 

O·~O~6---C~0~R~T~IH~O~I~T~Y-E~a~RO~R:~HA~'~D-LB~R-
_______ ._~ __ _J 

---------------Iii POBA T1.'"1iiiagu;-:-l:1:J.iHi 1 

7-18 Licensed Material - Property of IBM 



APPENDIX E: DED GENERATION 

DESCRIPTICN OF DED_GENERATION 

DBD generation is composed of a set of DL/I macro instructions, the 
execution of whicQ creates the user-specified data base description 
(DBD) and places it in the DOS/VS source statement library. The 
following macro instructions represent DED generation: 

Macro Instruction 
Name 

DBD 

DATASET 

SEGM 

LCHILD 

XDFLD 

FIELD 

DBDGEN 

FINISH 

Purpose 

Allows the DL/I user to define the name of 
the DBD and the data base organization 

Allows the DL/I user to define names for data 
sets representing a data base, the device 
type used for storage of the data base, the 
logical record length, and the blocking 
factor for the physical records in the data 
s~ts representing the data base 

Allows the user to specify a DL/I segment, 
its parent segment, the segment length, the 
segment name, and segment prefix information 

Allows the user to define an index 
relationship or a logical relationship in 
which a segment will participate. 

Allows the user to define secondary indexing 
relationships. 

Allows the DL/I user to specify a data field 
or key field for a segment. The field 
definition includes the related segment field 
name, field start position in segment, field 
length, and field type .• 

Causes the segments, fields, and data sets 
defined in the SEGM, FIELD, and DATASET macro 
instructions to be generated into an object 
module. 

Checks whether a DBDGEN statement was 
present. 

The DBD generation macros utilize a universal set of globals. The COpy 
book for these globals is in the DOS/VS Source statement Library and is 
named DLZDBGLB. 

Licensed Material - Property of IBM 7-19 



DBDGEN MACRO CALLING SEQUENCE 

r--------------------------------------------------, 
I I I I 
I External I I I 
I Macro I Inner 1 I Inner 2 I 

DBD 

DATASET 

SEGM 

XDFLD 

LCHILD 

FIELD 

DBDGEN 

FINISH 

1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

DLZALPHA 

DLZALPHA 
DLZCKDDN 
DLZDEVSI 

DLZALPHPI, 
DLZSOURS 

DLZXPARM 
DLZSEGPT 
DLZHIERS 
DLZXTDBD 
DLZSETFL 

DLZALPHA 

DLZADPJiA 
DLZXTDBD 
DLZSEGPT 

DLZSEGPT 
DLZLRECL 
DLZSOURS 

DLZXTDBD 
DLZCAP 
(See Note) 

DLZXPARM 
DLZALPHA 
DLZXTDBD 

DLZSEGPT 

DLZXPARM 
DLZALPHA 
DLZXTDBD 

I , L-________________ .,... ___________________________ ~ ": 

NOte: Not called if device is FBA. 

7-20 Licensed Material - Property of IBM 



DBDGEN MACRO - GLOBAL SYMBOL CROSS REFERENCE 

GLOBAL SYMBOLS <I: 
..... X 
w Z Q,. Q,. 
III W ...J <I: 
<I: C!l <I: u ..... 0 0 N N 

NAME TYPE SIZE <I: til til ...J ...J 
0 0 0 0 0 

ACC C U U R 

ALIAS B 

BLK A 10 U 

CAPCYL A R U 

CAPTRK A R U 

CDNBR A U U 

CSB B R 

DBD B R U R 

DBDERR B S S U 

DBDTERM B R 

DBN C S R 

DBNAME C 255 R 

DO A 

DONS C 255 

DEV C 10 U R 

DEVADR1 C S R 

DEVADR2 C S R 

DNBR A U R 

DSC A 10 R 

DSLKL A 10 R 

DSLSL A 10 R 

DSSKL A 10 R 

DSSSL A 10 R 

DS1 C 10 S R 

DS2 C 10 S 

ERROR B 

EXTDB A R 

EXTDBN A R 

F@ A 

FBABLK A 10 S R 

FBFF A S R 

FD@ A 

FF A R 

FLOCH A 1020 R 

FLDLG A 1020 R 

FLDNM C 1020 R 

FLDS# A 1020 R 

FLDSEN C 1020 R 

FLDSQ B 1020 R 

FLDST A 1020 R 

FLDTY A 1020 R 

FSPF A S R 

GENCHK B S 

HDAM B S U R 

HOB A S S R 

MACROS 

Z III ...J ..... ...J III :E 
0 iii a: u Q,. u. a: a: 
0 > w w C!l ..... ~ <I: 
~ w - a: w w 0 Q,. 

u 0 X ...J III III III X 
N N N N N N N N 
...J ...J ...J ...J ...J ...J ...J ...J 
0 0 0 0 0 0 0 0 

R 

U 

S S S S S U 

U 

U 

U 

R 

R 

R U 

U 

R 

R S 

R 

R 

R 

R 

R 

0 
til 
0 
..... 0 :z: 
X !!! N ...J 

w Z ...J -0 u. U. 

R 

R 

R 

S U R 

R 

R 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

S 

U 

S 

R 

R 

0 
...J :E 
X C!l 
U w 
...J III 

R R 

R U 

U 

U 

R R 

S U 

R U 

R 

U 

R 

R R 

S 

S 

R 

R 

R 

0 
...J 
u. 
0 
X 

R 

S 

R 

U 

U 

U 

S 

u 
U 

S 

R 

A = algebraic 

B = binary 

C = character 

R = reference 

S = set 

U '" reference/set 

Licensed Material - Property of IBM 7-21 



DBDGEN MACRO - GLOBAL SYMBOL CROSS REFERENCE (cont'd) 

MACROS 

GLOBAL SYMBOLS « z 
CI) ...I I- ...I CI) :E e 

l- X e iii a:: u a.. L\, a:: a:: III 
w Z a.. a.. e > w w 0 I- :::> « e 
CI) w ...I « ~ w a:: w w 0 a.. l-« 0 « u u e X ...I CI) CI) CI) x x 
l- e e N N N N N N N N N N N 

NAME TYPE SIZE « III III ...I ...I ...I ...I ...I ...I ...I ...I ...I ...I ...I 
e e e e e e e e e e e e e e 

HDORG B U U R R R 

HDRBN A S S R 

HIDAM B S U R 

HIORG B U U R R 

HISAM B U U R 

HSAM B S R 

HSEQ A 16 U 

HSORG B U U R R R 

IB A 255 U 

INDLCHD B R 

INDX B U U R R R 

LCDS# A 255 R 

LCFLG A 255 R 

LCLP# A 255 R 

LCNM C 255 R 

LCPS C 255 R 

LCXD A R 

LEV A R 

LOGICAL B U U R R 

LP B R 

MAXCHLD A S 

MAXDMAN A R S 

MAXFLDS A S R 

MAXSEGS A S 

NSTRT A 

OBLK A 10 S U 

OBLKSZ A 16 U S 

OLRECL A 16 U S 

OREC A 10 U R R 

ORG A U R 

OVF C 10 S R R 

PBLKSZ A 16 U S 

PLiST C 100 R R S 

PLlSTK A 100 R S 

PLRECL A 16 U S 

PNBR A R U 

QUITB B R R S R 

RAPS A U S R 

REC A 10 U R R 

RMN C S S R 

ROOT B R R 

RTKEY A R 

S A R R R R R R 

S#FLD A 255 R 

S#LC A 255 R 

7-22 Licensed Material - Property of IBM 

e 
e X ...I 

~ ...I X w z - U 
L\, L\, ...I 

R R 

R R 

R 

R 

S 

S 

R R 

S 

S 

S 

S 

S 

U 

R 

R 

R 

R 

U 

R 

R R 

S 

R R 

U 

U 

:E 
0 
w 
CI) 

R 

R 

S 

R 

S 

S 

S 

S 

R 

U 

U 

R 

U 

R 

R 

S 

S 

U 

R 

U 

R 

U 

U 

U 

e 
...I 
L\, 

e 
X 

R 

R 

U 

R 

R 

R 

R 

R 

A = algebraic 

B = binary 

C = character 

R = reference 

S = set 

U = reference/set 



DBDGEN MACRO - GLOBAL SYMBOL CROSS REFERENCE (cont'd) 

GLOBAL SYMBOLS « 
I- :J: w Z Q.Q. 
III w ..1« « CI « u 
l- e e NN « III III ..1..1 

TYPE SIZE NAME e e e e e 

S#PC A 255 R 

SCK A 255 

SCN A 10 S R 

SCRN C ·255 R 

SOL A 255 R 

SOS# A 255 R 

S01 A 255 R 

S02 A 255 

S03 A 255 

SFFLO A 255 R 

SFLC A 255 R 

SFLG1 A 255 R 

SFLG2 A 255 R 

SFLG3 A 255 R 

SHISAM B U U R 

SHSAM B S U 

SI C 255 R 

SLC A R 

SLO A S 

SLEV A 255 R 

SLFLO A 

SLSEQ A 

SLU A 

SMINOL A 255 R 

SN C 255 R 

SP# A 255 R 

SPL A 255 R 

SPPP B 255 

SPRO B 255 R 

SS C 255 

SSX B 

SVLFLG A 255 R 

TRK A 10 R 

TRK2 A 10 

TRK3 A 10 

TRK4 A 10 

VLC B 

VV B 

XOFLG A 255 R 

MACROS 

z 
iii III ..I t:: ..I III :E e a: u II.. a: a: 

e > w w CI I- ;:) « 
~ w a: w w 0 Q. 
u e :J: ..I III ~ III X 
N N N N N N N 
..I ..I ..I ..I ..I ..I ..I ..I 
e e e e e e e e 

R R 

R R 

U 

R 

U 

U 

U 

R 

R 

U 

R 

R R R 

R 

R R U 

U 

U 

S R R 

S R 

S R 

S R 

R 

U 

R 

e 
III 
e e l- e :J: ..I x !!? N ..I :J: 
..I W Z U ii: e II.. ..I 

U 

U 

U 

U 

S 

U 

U 

U 

R 

R R R 

R 

U 

U 

U 

R 

R 

R 

:E 
CI 
w 
III 

U 

U 

S 

S 

S 

S 

U 

U 

R 

U 

U 

U 

S 

S 

S 

U 

S 

U 

U 

S 

U 

U 

U 

e 
..I 
II.. 
e 
x 

S 

S 

S 

R 

R 

R 

U 

U 

R 

U 

S 

A = algebraic 

B = binary 

C = character 

R = reference 

S = set 

U = reference/set 

Licensed Material - Property of IBM 1-23 



DBDGEN MACRO DESCRIPTIONS 

DATASET MACRO 

This is an external macro through which data set/data set group 
information is specified by the user. 

DBD MACRO 

This is an external macro through which DBD control information is 
specified by the user. 

DBDGEN MACRO 

This macro terminates the DBD specification process. If the error 
switch, DEDERR, is not set, the control block generation phase is 
entered to create the required block entries. 

DLZALPHA MACRO 

r--------------------'-----------------------------, 
I I I I 
I I I AN I 
I I DLZALPHA I AN1 ,FIELD=,CHAR= I 
I I I ALL I 
I I I I L _________________________ - ________________________ J 

This macro tests a specific character position (represented by the CHAR= 
operand) or all character positions in a specific field (represented by 
the FIELD= operand) to determine if the character is one of the 39 
alphameric characters (A through Z, #, $, ~, and 0 through 9). The 
value range of CHAR is 1 to 255. The default value is 1. The global 
symbol QUITE is set in the following cases: 

• If the positional parameter is not AN; AN1, or ALL and the character 
is not alphabetic (A through Z, #, $, ~). 

• If the positional parameter is AN and any chracter is not alphameric 
(A through Z, #, $, ~, or 0 through 9). 

• If the positional parameter is AN1 and the first character tested is 
not alphameric (A through Z, #, $, ~, or 0 through 9). 

• If the positional parameter is ALL and the first character tested is 
not alphabetic (A through Z, #, $, a). 

DLZCAP MACRO 

r----~----------~-----------------------------------, 
I I I I 
I I DLZCAP I DEVICE, BLOCKSIZ I 
I I I I L _________________________________________________ J 

This macro is called by DBDGEN to calculate the block capacity per track 
and cylinder provided the blocks do not have keys,. These numbers are 
required to generate some entries within the DTFSD (HSAM) and ACB­
extension. The capacities are returned using global arithmetic 
variables (GBLA). Input values are: 

7-24 Licensed Material - property of IBM 



I 

DEVICE: 
BLOCRSIZ: 

2314. 3330. 3333. 3340 
in bytes (key length = 0) 

Output (GBLA) and MNOTE: 
CAPTRR: number of blocks per track (GBLA) 
CAPCYL: number of blocks per cylinder (GBLA) 
MNOTE: DMAN150 if invalid device 
MNOTE: Corement containing $CAPTRR and $CAPCYL if calculation 

was successful 

DLZCRDDN MACRO 

,---------------------------------------------------, 
I I I I 
I I DLZCRDDN I FILENAME I 
I I I I L ______________________________ ~--------------_____ J 

This macro checks the validity of filenames specified by the user and 
verifies that the specified filenames are not duplicated. 

The operand is: 

FILENAME 

is the one- to seven-character filename to be checked. 

DLZDEVSI MACRO 

r----------------------------------------~----------, 
I I 
I DLZDEVSI I DEVICE 

I I I I L ___________ ~ _______________________________________ J 

This macro is called by the DATASET macro to set device capacity values 
for the specified device type. The device value specified in the DEVICE 
operand of the DATASET statement is passed to this macro. 

DLZHIERS MACRO 

r---------------------------------------------------, 
I I I 
I I DLZHIERS PC.PPC.PLEV I 
I I I I L _____________________________ ~ _____________ ~~--___ J 

This macro is called by the SEGM macro to validate the hierarchical 
sequence of segment specifications. The macro maintains a 16-entry 
table (HSEQ) containing the lowest allowable PC at every level. 

The operands are: 

PC 

specifies segment physical (or sequence) code 

PPC 

specifies parent physical code 

Licensed Material - Property of IBM 7-25 



PLEV 

specifies parent level 

An error message is produced if any of ~he following conditions exists: 

• PC * 1 and PLEV = 0 

• PLEV > 14 or PPC > PC 

• value of PPC * value of HSEQ table entry represented by PLEV 

DLZLRECL MACRO 

r----------------------------------------~-----~----, 
I 
I 

I I I I 

I 
I DLZLRECL NUMBER 

L ___________ ~----___________________________________ J 

where NUMBER = 1 

This macro is called by DBDGEN to calculate LRECL and BLKSIZE values for 
the file number specified in the operand field of the macro call. 

DLZSEGPT MACRO 

r---------------------------------------------------, 
I I I \ I 
I I DLZSEGPT I NUMBER I 
I I I I L _____________________________ ~ _____________________ J 

where NUMBER = 1 

I This macro is called by SEGM, LCHILD, and DBDGEN to maintain the globals 
DSLSL and DSSSL, which contain the sizes of the largest and smallest 
segments in a data set, respectively. This macro produces error 
messages SEGM330, SEGM340, and SEGM350 if the segment referenced by the 
operand value violates those rules. 

DLZSETFL MACRO 

r---------------------------------------------------, 
I I I I 
I I DLZSETFL I PN,RULES= I 
~ I I I L ____ ~ ______________________________________________ J 

This macro processes the POINTER or PTR operand of the SEGM macro and 
sets the &SFLG1(&S) and &SFLG2(&S) globals to reflect the entered value. 
The &SFLG1(&S) and &SFLG2(&S) globals set by this macro comprise bytes 0 
and 1 of the 4-byte flags field of the SEGTAB entry for this segment. 

This macro is not entered if the DLZXPARM macro encountered an error 
while generating the &PLIST matrix, or if the SEGM macro detected an 
error in the POINTER or PTR parameter list .• 

7-26 Licensed Material - Property of IBM 



Messages: 

An error message is produced and processing is terminated if: 

• An invalid keyword is encountered in the parameter list, or 

• The RULES operand is omitted or invalid 

Flag Byte 1 (&SFLG1(&S» is set as follows: 

Bit 1 - CTR 
2 - TWIN 
3 - TWINBWD 
4 - PARNT 
5 - LTWIN 
6 - LTWINBWD 
7 - LPARNT 
8 - NOTWIN 

If TWINBWD and/or LTWINBWD is specified, 
Bit 2 and/or Bit 5 is set on, ~n 
addition to Bit 3 and/or Bit 6, 
respectively. 

Flag Byte 2 (&SFLG2(&S» is set as follows: 

Bits 1 & 2 Indicate segment insert rule, where: 

10 - Physical 
01 - Virtual 
11 - Logical (Default) 

Bits 3 & 4 Indicate delete rule and set same as insert. (Default 
value is LOGICAL). 

Bits 5 & 6 

Bits 7 & 8 

Indicate replace rule and set same as insert. (Default 
value is VIRTUAL). 

Indicate physical location of inserts for nonsequenced 
segments, where: 

10 - First 
01 - Last (Default value) 
11 - Here 

The operands are: 

PN 

specifies the parent segment number 

RULES= 

specifies the RULES= operand as specified on the SEGM statement 

DLZXPARM MACRO 

r---------------------------------------------------, 
I I I I 
I ~ DLZXPARM I PARM=,NBR= I 
I I I I 
L _______ ~------------------______ -------------------J 

When used this macro extracts parameters from a sublist and stores them 
in a global matrix (PLIST). Null values in the parameter list are 
stored as null values in the PLIST matrix. 

Licensed Material - property of IBM 7-27 



The operands are: 

PARM= 

NER= 

specifies the input parameter list values 

specifies the maximum number of operand values to be 
allowed in each subparameter 

DLZXTDBD MACRO 

r---------------------------------------------------, I I I I 
I I DLZXTDBD I DB,CODE I 
I I I I L-__________________________________________________ J 

This macro builds an external data base reference table. It is called 
by SEGM, LCHILD, and DBDGEN. 

The operands are: 

DB 

CODE 

FIELD MACRO 

specifies a data base name or segment name 

specifies the value SEGM or is omitted. 

If the value SEGM is specified in the CODE operand, the 
segment name (SN) is searched to locate the value 
specified in the DB operand~ when found, the symbol 
EXTDBN is set to contain an 01 in byte 0, and bytes 1, 2, 
and 3 contain an offset into SEGTAB. If the segment is 
not found, an MNOTE error message is produced. 

If the CODE operand is omitted, the external data base 
reference table (DBNAME) is searched for the DB entry, 
and, if found, the symbol EXTDBN is set to contain the 
position of the found entry. If the DB value is not 
found, the value is added to the table and EXTDBN is set 
to that entry. 

This is an external macrO used to define fields within a segment .• 

FINISH MACRO 

This is an external macro used to check whether a DBDGEN statement is 
supplied. 

7-28 Licensed Material - Property of IBM 



LCHILD MACRO 

This is an external macro used to define index or logical relationships 
for HIDAM and HDAM. 

SEGM MACRO 

This is an external macro used to define data base segments. 

XDFLD MACRO 

This is an external macro used to define in connection with the LCHILD 
statement secondary index relationships for HIDAM and HDAM. 

Licensed Material - property of IBM 7-29 



DBD GENERATION CONTROL BLOCK OUTPUT - DBDGEN 

The data base description block (DBD) is the result of each data base 
generation. 

• DIAGRAM OF DBDGEN CONTROL BLOCK OUTPUT 

GENERAL S~RUC~URE: 

r-----------------------------------------------, 1 DIRECTORY 1 
1 1 
1-----------------------------------------------1 
1 PREFIX I 
I I 
1-----------------------------------------------1 1 DMANTAB 1 
1 1 
1-----------------------------------------------1 ACE EXTENSION (SAME AS DMB) 
1 (If HSAM Or SSAM, DTFs) 
1 
1-----------------------------------------------1 SEGTAB 
1 
1-----------------------------------------------1 FLDTAB 
I 
1-----------------------------------------------1 EXTDBD 
1 
1-----------------------------------------------1 LCHILD 
I 
1-----------------------------------------------1 
1 SORTAB 
1 
1-----------------------------------------------1 INDXTAB 
1 
I--------~--------------------------------------
1 DACT 
1 (Same as DMB) 
1 
1-----------------------------------------------1 COMPRESSION EXIT CSECTS 
1 (same as DMB) 
1 
1-----------------------------------------------1 1 INDEX EXIT CSECTS 1 
1 (same as DMB) 1 
I 1 L _______________________________________________ J 

7-30 Licensed Material - property of IBM 



1. DIRECTORY LAYOUT 

Hex~ ~ k!! DescriEtion 

0 0 AMODLEV 1 Release level (X'OO'=1.0, 
X'll"=l.l) 

1 1 APREFIX 3 Address of PREFIX 

4 4 ASEGTAB 4 Address of SEGTAB 

8 8 AFLDTAB 4 Address of FLDTAB 

C 12 ALCHILD 4 Address of LCHILD 

10 16 AEXTDBD 4 Address of EXTDBD 

14 20 ASORTAB 4 Address of SORTAB 

18 24 ARMVTAB 4 Address of DMBDACS 

1C 28 AINDXTAB 4 Address of INDXTAB 

20 32 ADSGCB 4 Address of ACB extension 

20 PREFIX LAYOUT 

~ Dec Name k!! DescriEtion 

0 0 PREDBDNM 8 DBD name 

8 8 PRENOLEV 2 Number of levels in data base 

A 10 PRENOSEG 2 Number of segments 

C 12 PREACCES 1 Organization 

~ EQU Meaning 

PRES HIS X'Ol' Simple HISAM 
PREISAM1 X' 02' HISAM 
PRES SAM X· 04" Simple HS~ 
PREHSAM X'05'" HSAM 
PREHD X'06 41 HDAM 
PREHI X'07- HIDAM 
PRENDEX X·08'" INDEX 

D 13 PRENODSG 1 Number of data sets 

E 14 PRENODBD 2 Number of externally referenced data bases 

10 16 PRERNDM 8 Randomizing algorithm name 

18 24 PRENOLCH 2 Number of logical children 

1A 26 PREAP 2 Number of root anchor points 

1C 28 DBDPFRBN 4 Maximum relative block number (HD) 

20 32 DBCPFBYT 4 Maximum bytes in prime area (HD) 

Licensed Material - Property of IBM 7-31 



3. DMANTAB LAYOUT 

o 0 PRECDl 

8 8 PREDEVl 

C 12 PREID 

D 13 PRENSGA 

E 14 PRE DELTA 

10 16 PRELSL 

12 18 PRESSL 

14 20 PRELKL 

16 22 PRESKL 

18 24 PRELRECL 

lA 26 PREBLKSZ 

lC 28 PREOLREC 

lE 30 PREOBLKS 

20 32 PRECD2 

4. ACB EXTENSION 

8 

4 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

8 

See "ACB Extension - ACBXT". 

5. SEGTAB LAYOUT 

Description 

Input or prime filename 

Device type 

Data set group ID 

Number of segments in data set 

Delta scan cylinders (HD) 

Length of longest segment plus prefix 

Length of shortest segment plus prefix 

Length of longest key 

Length of shortest key 

Prime/input record length 

prime/input block size (control interval) 

ESDS/output record length 

ESDS/output block size (control interval) 

ESDS/output filename 

One of these tables exists for each segment. 

o 0 SEGDSNO 1 

1 1 SEGPHYCD 1 

2 2 SEGPARPC 1 

3 3 SEGLEVEL 1 

4 4 SEGNOLCH 1 

5 5 SEGNOFLD 1 

6 6 SEGl.ENG 2 

8 8 SEGFREQ 4 

C 12 SEGSEGNM 8 

Description 

Segment data set number 

Segment code 

Parent segment code 

Segment level 

Number of logical children 

Number of fields 

Segment data length (maximum length 
if variable length segment) 

Reserved 

Segment name 

7-32 Licen'sed Material - prop'E!rty of IBM 



14 20 .SEGFLG1 1 Prefix pointer flag 

EQU Meaninsz 

X'SO' Counter 
X'40' Physical twin forward 
X"20' Physical twin backward 
X'·10· Physical parent 
X·D OS' Logical twin forward 
X'04' Logical twin backward 
X·D 02" Logical parent 
X'D 01' Hierarchical 

15 21 SEGFLG2 1 Segment update rules 

EQU Meaning 

Insert rule 
X'· CO" Logical 
X~ SO· Physical 
X'· 40" virtual 

Delete rule 
X'D30· Logical 
X'· 20" Physical 
X"10" Virtual 

Replace rule 
X'"0C· Logical 
X"OSP Physical 
X"04" Virtual 

Physical location of inserts, when 
no key field 

X'03' Here (current position) 
x., 02' First 
X'v 01'· Last 

16 22 SEGFLG3 1 

X"OSD Parent has backward pointers to 
this segment 

17 23 SEGFLG4 1 Number of physical children pointed 
to directly by this segment 

lS 24 SEGLCHLD 4 Offset to first LCHILD entry 

1C 2S DBDSSN 2 Number of source segments 

1E 30 DBDSSOFF 2 Offset to first source segment 

20 32 SEGFLDTB 4 Offset to first FLDTAB 

24 36 DBDSPFSZ 2 Segment prefix siz,e 

26 3S SEGLENGV 2 Minimum segment length 
(0 if fixed length) 

2S 40 Reserved 4 Reserved 

Licensed Material - property of IBM 7-33 



2C 44 SEGPACOP 

2D 45 SEGPACRT 

6. FLDTAE LAYOUT 

o 0 

8 8 

A 

B 

C 

14 

10 

11 

12 

20 

FLJ:NAME 

FLDSTART 

FLDFLA~ 

FLDLEN 

FLDSNAME 

FLDSEGTB 

7. EXTDED LAYOUT 

o 0 EXTDENM 

8 8 EXTRSVD 

8. LCHDTAE LAYOUT 

o 0 LCHSEGNM 

8 a LCHCODE 

1 

3 

a 

2 

1 

1 

a 

4 

a 

1 

VL-Compression options 

Meaning 

SEGCPRT X'OS' Segment has compression 
routine 

SEGTYPVL 
SEGPACIT 

X'OW" 
X· 01' 

segment is variable length 
Initialization exit 
requested for compression 
routine 

Address of compression table 

Description 

Field name 

start position offset 

Meaning 

x·ao· 
X'40" 
X" 20' 
X" 10· 

Last field for a SEGTAB 
Sequence field 
Multiple sequence fields 
special FDB 
Field type 

X" 01· 
X" 02· 
X" 03" 
X· 04" 

Hexadecimal 
Packed 
Character 
Floating point 

Field length 

Source field name 

Pointer to SEGTAB entry 

Description 

8 Externally referenced data base name 

4 Reserved 

Description 

Segment name 

Bit Meaning 

0=0 
0=1 

LCHEDBD address is a EXTDBD entry 
LCHEDBD address is a SEGTAB entry 

7-34 Licensed Material - property of IBM 



9 9 LCHEDBD 

C 12 LCHFLAG 

D 13 LCHIBYTE 

E 14 LCHPRDSG 

10 16 LCHFLDNM 

9. SORTAB LAYOUT 

o 0 DBDSORNM 

S S DBDSSFLG 

9 9 DBDSSDBO 

10. INDXTAE 

1 

2 

8 

8 

1 

3 

3 

1 

1-7 Reserved 

Offset to EXTDBD or SEGTAB entry 

X'· SO· 
X· 40'· 
X"20· 
X"'10'" 
X'· OS" 
X"04" 
X'· 02-
X·01" 

Meanin9 

Last entry for a SEGTAB 
Reserved 
INDEX entry 
Reserved 
LP definition 
INDEX pointer 
SNGL pOinter 
DBLE pointer 

Reserved 

Offset to paired segment 

Indexed field name 

Description 

Source segment name 

Source segment flag - reserved 

Offset to data base entry 

See "Secondary List- SEC <Codes 64, 44, 40, 24, 20, 04)". 

11. DACT 

See "Direct Algorithm Communication Table - DACT". 

12.0 COMPRESSION EXIT CSECTS 

See "compression CSECT - CPAC". 

Licensed Material - Property of IBM 7-35 



APPENDIX C: PSB GENERATION 

DESCRIPTION ,OF PSB GENERATION 

PSBgeneration is composed of a set of DL/I macro 
instructions, the execution of which creates the user-specified 
program specification block (PSB). 
The following macro instructions represent PSB generation: 

Macro Instruction 
Name 

PCB 

SENSEG 

PSBGEN 

SENFLD 

VIRFLD 

Purpose 

Allows the DL/I user to define a program 
communication block (PCB), one or more of which 
exist within a single PSB. A PCE must exist for 
each data base. with which the associated 
application program PSB intends to interact. 

The PCB macro saves the type of PCB, associated 
data base name, the intended processing options 
on that data base, and the maximum key length 
within the data base. One or more PCB macros can 
be used in a single PSB generation. The limit is 
20 PCB macros per PSB generation. 

The SENSEG macro instruction allows the DL/I user 
to specify a segment within a data base to which 
the application program associated with this PSB 
is sensitive. Up to 255 SENSEG macros may follow 
a PCB macro. 

The PSBGEN macro allows the user to specify the 
associated application program language and the 
name of the PSB control block to be generated,. 
The PSBGEN macro is the generating macro for the 
entire PSB control block and its internal PCB 
control blocks. 

The SENFLD macro gives the DL/I user the ability 
to specify segment sensitivity on a field level. 
Up to 255 fields within a segment, and 4095 
fields within a PSB may be specified .• 

The VIRFLD macro gives the DL/I user the 
capability of defining fields in the user's view 
of a segment that do not exist in the physical 
view. In conjunction with the SENFLD macro, up 
to 255 fields per segment, and 4095 fields per 
PSB may be specified. 

7-36 Licensed Material - Property of IEM 



PSBGEN MACRO CALLING SEQUENCE 

I 
External I 
Macro Inner t Inner 2 I 

-------------------~--------------------------------
1 

PCB DLZCKOPT I 
DLZALPHA I 

I 
SENSEG DLZCKOPT I 

I 
PSBGEN DLZPCBPD I 

PSBGEN MACRO - GLOBAL SYMBOL CROSS 
REFERENCE 

MACROS 

GLOBAL SYMBOLS <I: ~ C 
:I: CI.. CI.. 
CI.. a CD z c 
..I lI! U W ..I 
<I: U CI.. CJ u-
N N N CD CD Z 

NAME TYPE SIZE ..I ..I ..I U en w 
C C C CI.. CI.. en 

DBNAME C 255 U R 

E B S S U S 

EXTDB A U R 

FERTNA A 4095 R U 

FERTNM C 4095 R U 

FSLNGT A 4095 R U 

FSNAME C 4095 R U 

FSRTNA A 4095 R S 

FSSTRT A 4095 R U 

FSTYPE A 4095 R U 

FSVALU A 4095 R 

NFER A R U 

NFLD A R U 

P A R U R U 

PIO B "255 U 

PK A 255 S R 

PN C 255 U R 

PO C 255 S S R 

PPI B 255 S S R 

PS B 255 S R 

PSEQ C 255 S R 

PSS A 255 S R 

QUITB B S R R 

S A R R R U 

S#FLD A R U 

SEG B S 

CJ 
W 
en z 
w 
en 

S 

R 

U 

R 

U 

U 

U 

SFF A R S 

SN 

SP 

SPC 

SPO 

SS 

A = algebraic 

B = binary 

C = character 

C 

A 

A 

C 

A 

500 

500 

500 
500 

255 

R = reference 

S = set 

S 

U = reference/set 

R U 

R S 

R S 

R S 

R R U U 

I 

C 
..I 
U-
a: 
:; 

S 

U 

U 

U 

U 

S 

U 

U 

S 

U 

U 

U 

R 

U 

U 

R 

U 

Licensed Material - Property of IBM 7-37 



PSBGEN MACRC DESCRIPTIONS 

DLZALPHA MACRO 

A description of the DLZALPHA macro appears in Appendix B. 

DLZCKOPT MACRO 

r-------------~~------------------------------------l 
I I I I 
I I DLZCKOPT I OPT,M I 
I I I I L_.-________________________________________________ J 

This macro is called by the PCB macro or SENSEG macro to validate the 
PROCOPT operand. The macro generates either the PCB or the SENSEG 
'PROCOPT OPERAND IS INVALID' error message. Global symbol PO or SPO is 
set to contain the processing option. 

The operands are: 

OPT 

M 

DLZPCBPD MACRO 

specifies the PROCOPT operand as entered 
on the PCB or SENSEG statement 

is PCB or SENSEG message number 

This is an inner macro called by the PSBGEN macro.. It generates the 
PL/I dope vector table if LANG=PL/I is specified in the PSBGEN 
statement. 

PCB MACRO 

This is an external macro used to define a DB PCB. 

PSBGEN MACRO 

This is an external macro used to terminate PSB specifications, and, if 
no errors have been encountered, to cause the generation of the PSB 
control blocks. 

SENFLD MACRO 

This is an external macro used to specify sensitive fields within a 
sensitive segment .• 

Licensed Material - property of IBM 



SENSEG MACRO 

This is an external macro used to specify sensitive segments in a data 
base PCB. 

VIRFLD MACRO 

This is an external macro used to specify fields that exist in the 
user' s view of a sensitive segment, but not in the physical view .• 

Licensed Material - Property of IBM 7-39 



PSB ~ENERATION CONTROL BLOCK OUTPUT - PSBGEN 

1. PSB - PREFIX 

o 0 

4 4 

8 8 

C 12 

10 16 

14 20 

20 32 

21 33 

22 34 

24 36 

26 38 

28 40 

2. DB PCB 

Ln 

4 

4 

4 

4 

4 

12 

1 

1 

2 

2 

2 

Var 

Ln 

Description 

Address of SEGTAB 

Address of SORTAB 

Address of DBREFTAB 

Reserved 

PST address (prefix size) 

Reserved 

Reserved 

PSE code 

PSB prefix size 

Reserved 

Offset to first DB PCE address 

Address of PCB(s) (one 4-byte address for each 
PCB) 

Description 

PL/I dope vectors precede PCB if LANG=PL/I 

o 0 

8 8 

A 10 

C 12 

10 16 

14 20 

1C 28 

1D 29 

20 32 

22 34 

24 36 

7-40 

8 Data base name 

2 Level feedback 

2 Status code 

4 Processing options 

4 JCB address 

8 Segment name feedback 

1 Position 

3 Key feedback length 

2 Number of sensitive segments 

2 Offset to first SENSEG 

Var Key feedback area 

Licensed Material - Property of IBM 



3. SEGTAE EN'!RY 

.llil~ ~ Ln 

0 0 8 

8 8 4 

C 12 1 

D 13 3 

10 16 2 

12 18 2 

40 SORTAE EN'!RY 

~~ Ln 

0 0 8 

8 8 1 

9 9 3 

5G DBREFTAB ENTRY 

~~ Ln 

0 0 12 

C 12 4 

6. FLS TABLE 

~ Dec Ln 

0 0 4 

4 4 4 

8 8 4 

C 12 4 

10 16 4 

14 20 4 

70 FSB LIS'! ENTRY 

Hex Dec Ln 

0 0 1 

1 1 3 

Decription 

segment name 

processing options 

Flag 

PCB address 

Offset to parent segment 

Offset to FSB list 

Description 

Segment name 

Flag 

Offset to data base entry 

Description 

Data base name 

Reserved 

Description 

FSB list address 

FSB table address 

Field exit routine table address 

Field exit routine table length 

Initial value table address 

Initial value table length 

Description 

Number of FSBs for segment 

Address of first FSB for segment 

Licensed Material - property of IBM 7-41 



APPENDIX D: DL/I MACROS 

This section describes the executable processing macros that standardize 
some processing routines and DSECTS and lists the macros that provide 
the DSECTs. 

DLZBLDL 

This macro is used to search the core image libraries to determine if a 
specified load module is present. optionally, if the phase is present, 
the length of it is calculated for the caller. The DOS/vS LOAD macro 
(TXT=NO) is used to obtain the directory entry information. 

OPERANDS 

The descriptions and valid parameters for the two keyword operands are 
as follows: 

• PHASE The name of the phase in the core image library .• 

=(reg) 

='name' 

= label 

The register specified in parenthesis must pOint to the 
a-byte name (padded with blanks if necessary). 

The actual phase name may be specified enclosed in single 
quotes. 

This is the label of an a-byte field containing the phase 
name with any necessary blanks. 

Register 1 is the default which must be loaded with the address of 
the name. 

• LENGTH Specified if the caller desires the actual length of the 
load module to be calculated by this macro. 

=(reg) 

= label 

The register specified in parenthesis will contain the 
length in binary of the load module as indicated in the 
directory entry. Register 15 is invalid. 

This is the label of a fullword in the calling program 
which will contain the length of the found phase on exit. 

If LENGTH is omitted, no length will be calculated. 

EXIT CONDITIONS 

R15 o The phase was found and the length, if requested, has been 
returned. 

R15 = 4 The phase was not found. 

7-42 Licensed Material - Property of IBM 



Registers 0 and 1 are destroyed unless specified for the length 
register. All other registers are unchanged. 

DLZBLKLD 

This macro is used by some DOS/VS DL/I utility programs to request the 
initialization module to load all control blocks needed to process a 
specified utility PSB. A utility PSB is built by the application 
control block creation and maintenance utility for every user DBD except 
a primary HIDAM index, logical, or HSAM" 

The utilities which use this special function have 'ULU' in the first 
three bytes of the parameter card. When batch initialization determines 
(by utility name - either DLZURPRO, DLZURGSO, or DLZURGPO) that the 
DLZBLKLD macro will be used, it does not load any control blocks. The 
action mOdules and PST and SCD are loaded, however. When the utility 
first receives control, register 1 contains the address of the PST. 

OPERAND 

When the utility reaches the point where blocks are needed, the DLZBLKLD 
macro is executed: 

DLZBLKLD 
{(reg)] 

DMB= [label] 

The DMB operand indicates the address of the 8-byte DMB name for which 
blocks are required. Either the register number (reg) or the label of 
the field may be specified to indicate the address. If this operand is 
omitted, register 1 is assumed to contain the address of the DMB name. 

The expansion replaces the ending "D" of the DMB name with a 'U". A 
CALL is made to ASMTDLI with the parameter list as follows: 

FUNC 

DC A(FUNC) 
DS CL8 

DC C"ELDB' 

Address of function 
The name of the utility PSB 

Function 

EXIT CONDITIONS 

After execution of this DLZBLKLD macro, register 15 contains a return 
code: 

R15 = 0 

R15 :f. 0 

The blocks were loaded successfully. Register 1 contains the 
address of the list of PCB addresses. 

The blocks were not loaded successfully. Register 1 contains 
the address of the name of the block which could not be 
loaded .• 

Any previously loaded blocks have been overloaded and new buffer pools 
have been allocatedo 

Licensed Material - property of IBM 7-43 



When the utility program returns to the language interface at end-of­
job, a return code is expected in register 15,. If register 15 is 0, 
normal unload processing will occur. If register 15 is non-zero, no 
UNLD call will be made. This return is used when no blocks have been 
successfully loaded. 

DLZDVCE 

The DLZDVCE macro is available. for the utilities to: 

- Determine whether a logical unit is assigned or not. 

- Determine if it is assigned to disk or tape. 

- Modify the corresponding DTF. 

The format of the macro is as follows: 

DLZDVCE [MF={EIRILIC}] [,{listnamel (r)}) 
[,DISKDTF={dtfname11 (r)}) 
[,MODIFY={NOIYES}] 
[,TAPEDTF={dtfname21 (r)}) 
[,FNAME={filenamel (r)}) 
[,RECFM={FIXUNBIVARUNBIUNDEFIFIXBLKIVARBLK}] 
[,DEVADDR={SYsnnnl (r)}) 
[,DTFADDR={fieldnamel (r)}J 
[,LNAME=listname) 
[,EOXTNT=routinename] 

The operands have the following meaning: 

MF specifies the type of code to be generated by this expansion. 
This allows for multiple invocations of the function without 
generating multiple copies of the code itself. . 

E generates the mainline code and, unless 'listname' is 
specified, a parameter list .• 

~ Only one execute form of the macro is allowed for 
one single assembly. One, however, is required. If 
encountered more than once, it will be reset to R for all 
macros but the first one. 

The entry point of the mainline routine is always 
DLZDTENT. This will be used by all calls generated by R 
type macros,. 

R A series of instructions to invoke the main routine, and, 
unless 'listname' is also specified, a parameter list 
will be generated. DLZDTENT is used as branch address to 
the main routine. 

listname specifies a parameter list to be used with this 
execution or invocation,. The list must be defined in the 
program with an MF=L macro or using the LNAME operand in 
an MF=E or MF=R macro. Listname is only valid with E or 
R. If listname is specified, any other operands 
specified will permanently override the corresponding 
parameters in the list.. Not specifying an operand, 
however, will not clear the corresponding field in the 
list. ---

Licensed Material - property of IBM 



DISKDTF 

TAPEDTF 

MODIFY 

FNAME 

Register notation may be used, in which case the register 
must contain the address of the list. 

L Only a parameter list but no code will be generated. 
Either the label field or the LNAME parameter (or both) 
can be used to assign a name to the list which can be 
referred to by any E of R form.. 

Register notation in the operands of an L form macro is 
not allowed, except for the DTFADDR operand .• 

C causes a check to be performed on all parameter lists 
generated during this assembly. All references to a 
single list are totaled and the presence of all required 
operands is checked.. An error summary is printed. This 
form of the macro should be used as the last occurrence 
of DLZDVCE in any single assembly. 

Note that passing this check error-free does not 
necessarily guarantee error-free execution, since the 
check cannot foresee the sequence in which the various 
DLZDVCE invocations are executed. 

If the MF operand is omitted or invalid, it will default to E 
in the first macro encountered, and R in all other 
occurrences. 

specifies the name of the disk DTF to be modified if the 
logical unit is assigned to a disk device. If register 
notation is used, the register must contain the address of 
the DTF. 

Specifying DISKDTF=O or a register containing zero will 
nullify the parameter. 

If this operand is not present at execution time (after any 
overriding), the routine will consider assignment to a disk 
device as invalid. 

specifies the name of the tape DTF to be modified if the 
logical unit has been assigned to a tape device. If register 
notation is used, the register must contain the address of 
the DTF. 

Specifying TAPEDTF=O or a register containing zero will 
nullify the parameter. 

If this operand is not present at execution time (after any 
overriding), the routine will consider an assignment to tape 
as invalid. 

If MF=E or R without listname was specified, either DISKDTF 
or TAPEDTF or both must be specified. 

specifies whether or not the selected DTF is to be modified 
accordingly or not. MODIFY=YES is the default. If MODIFY=NO 
was specified, and a valid device type was found, register 15 
will have a negative return code, indicating that no 
modification has been done. 

specifies the filename to be moved into the appropriate DTF. 
If not present at execution time, the DTF field is not 
changed. For register notation, the register must pOint to a 
seven-byte field containing the file name. 

Licensed Material - Property of IBM 7-45 



RECFM 

DEVADDR 

DLZER .,...--

specifying a register pointing to a hex zero string will 
nullify the parameter. 

specifies the record format of the file. One of the values 
shown must be specified. Omission or invalid specification 
defaults to VARBLK. 

specifies the logical unit number to be tested. It must be 
in the form SYSnnn. where nnn is 000 to 243. or in register 
notation. in which case the register must contain the unit 
number as a bin"ary number in the same range. 

~his parameter is required if MF=E or R without listname was 
specified. 

This macro is used in module DLZLBLMO to specify a message.. Code is 
also generated to support selection by message ide 

OPERANDS 

DLZER ID=nnn.TEXT=textl.LAST=NO] 
[ YES] 

1D = one to three digit message number ('NNN' in 'DLZNNN1'). 

TEXT message text. Text is a string of parameters enclosed in left 
and right parentheses. Each parameter is either a character 
string enclosed in quotes; or a set of two values. the first 
indicating a length to be reserved for a field to be dynamically 
inserted, and the second the register that will contain the 
address of the field to be inserted (not ~egister Rl or R1S). 

LAST 

(The message number is generated by the macro and need not be 
included in the text.) 

TEXT={'THIS IS '.3.RS.' AN EXAMPLE '.8,R4) 

'YES' indic.ates that no further messages exist. This is a 
special message. The contents of the specified register will be 
converted to BCD and stored in the field for each insert field. 

This macro also generates the code to select and format a message .• 
Preceding the first call of DLZER, code must be supplied to establish 
addressability and equates must be supplied for 'Rl' and 'R14'~ 

INPUT: 

'Rl' should contain the message code in binary format. 
"R14" must contain the address of the routine to process a message once 
it has been located and formatted. 

OUTPUT: 

'"Rl' will contain a pOinter to a two byte field containing the length of 
the message. The message directly follows this two byte field. The 
message is formatted as: 

ODLZNNN1 TEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXT 

7-46 Licensed Material - property of IEM 



DLZIPOST 

This macro is used by DL/I to post ECBs in an online environment. 

There are no operands,. Register 2 must contain the address of the ECB 
to be posted. Bit 0 of byte 2 is set on. 

DLZIWAIT 

This macro is used by DL/I to communicate with an IWAIT routine 
(DLZIWAI~) to wait until an ECB is unposted. 

There are no operands. The PST must be addressable and register 2 must 
contain the address of the ECB that is to be waited for. The caller 
must have provided a USING SCD,15. Registers 14 and 15 are used to 
branch to the DLZIWAIT routine. 

DLZTRCAL 

This macro is used by action mo~ules to invoke the tracing facility. 
Refer to DL/I DOS/VS Diagnostic Guide for a description of this macro. 

DLZTRPRM 

This macro is called by the DLZTRACE macro to parse parameter lists.. It 
is similar to the DLZXPARM macro of DBDGEN (see "DLZXPARM Macro" in 
Chapter 6). In addition to the interface described for DLZXPARM, the 
length of each parameter list member is passed to the caller in the GBLA 
fields $PLEN(25). 

DLZMPCPT 

The master partition controller (MCP) partition table is used to pass 
control information when processing batch partition application programs 
under MPS (Multiple partition Support). The MPC partition table resides 
in the transaction work area. There is one entry for every partition 
defined during system generation, except for the partition where the MPC 
re,sides. 

DLZTWAB 

This macro provides the mapping for the BPC batch partition control 
information for the DL/I task termination routine under MPS (Multiple 
Partition support). This information resides in the BPC's task 
transaction work area .• 

Licensed Material - Property of IBM 7-47 



This macro provides the mapping for the XECBTAB macro DEFINE, DELETE, 
and CHECK oftions under MPS (Multiple Partition Support). 

DLZXCBl 

This macro maps the DLZXCBnl and the data that follows it.. It is used 
to check data under MPS (Multiple partition Support). 

MACROS USED TO CREATE DSECTS FOR DL/I.SYSTEM CONTROL BLOCKS 

The following macros are used to generat.e DSECTS for the DL/I control 
blocks: 

DLZBFFR 
DLZBFPL 
DLZDDIR 
DLZIDLI 
DLZPDIR 
DLZPPST 
DLZPSIL 
DLZPST 
DLZSCD. 

Macros used only by utilities to generate DSECTs: 

DLZCKPT 
DI.ZDTF 
DLZIDBD 
DI.ZRECO 
DLZUCHDR 
DLZUCOLD 
DLZUCREC 
DLZUCUMC 
DLZUDHDR 
DLZURGUF 
DLZURHDR 
DLZUSTAT 
DLZTRENT. 

Miscellaneous macros: 

DLZDLIST 
DLZDLP 
DLZHDSO 
DLZIDUMP 
DLZQUATE 
DLZSEIF 
DI.ZUMSG 
DLZWA 
DLZXM'l'WA 

Creates parameter list for DLZIDUMP macro 
Log record DSECTs and declarations 
Work area for DLZDHDSO 
IPCS dump hook macro 
Register equates 
Work area for DLZDBHOO 
Messages for utilities 
Work area used by DLZDLDOO 
Work area used by DLZDXMTO. 

DL/I QUEUING FACILITY MACROS 

Four macros are available to request processing of a specific function 
by the queuing facility module (DLZQUEFO). The functions that can be 
requested and the macros that can be used are: 

7-48 Licensed Material - Property of IBM 



Function Requestea 
Enqueue 

Macro Used 
DLZENQ 
DLZVER 
DLZDEQ 
DLZPUR 

Verify 
Dequeue 
Purge 

The functions are described in Section 3 of this manual. The format of 
each macrO and the description of the operands is as follows: 

Formats 

DLZENQ [PST=rl][,LEV={ROIUPDIEXC}][,ID=r2][,FLAG=x'hh'] 

DLZVER [PST=rl] [,LEV={ROIUPDIEXC}] [,ID=r2] [,FLAG=x'hh'] 

DLZDEQ [PST=rl][,LEV={ROIUPDIEXC}][,ID=r2][,FLAG=x'hh'] 

DLZPUR {PST=rl] [,FLAG=x'hh'] 

operands 

PST=rl 

specifies the symbolic (or absolute> name of a register 
containing the address of the PST.. It this operand is omitted, 
register one is assumed. 

LEV={ROIUPDIEXC} 

ID=r2 

specifies the level involved: RO = read only, UPD = update, and 
EXC = exclusive. If omitted, it is assumed the PSTQLEV field in 
the PST is set with the proper code. 

specifies the symbolic (or absolute> name of a register 
containing the address of the seven byte field containing the 
resource ID. If omitted, it is assumed the address is stored in 
the PS~WRK2 field in the PST. 

FLAG=x'hh' 

specifies the byte value that is 'OR'ed into the return code for 
those tasks currently waiting for the resource. 

Licensed Material - Property of IBM 7-49 



Licensed Material - Property of IBM 



ICB creation and maintenance (see DLZUACBO) 
~CB extension 5-13 
ICBXT - ACB extension 5-13 
lccumulation header record 
lccumulation record 5-131 

5-131 

\CT (application control table) 
'lpplication 

control blocks load and 
relocate (DLZBLMO) 3-6 

3-13 

control table (ACT) 3-13 
program control (DLZPCCOO) 
program scheduling record 
program termination record 

3-5 
5-132 

5-132 

backout utility (see DLZBACKO) 
batch 

initialization (see DLZRRCOO) 
partition 5-2 
partition controller (see DLZBPCOO) 
system 1-2 

BFFR (buffer prefix) 5-16 
BFPL (buffer pool control 

block prefix) 5-19 
BPC (see DLZBPCOO) 
buffer 

handler (see DLZDBHOO) 
prefix (BFFR) 5-16 
pool control blocks 5-11 
pool control block prefix (BFPL) 5-19 

call analyzer (see DLZDLAOO) 
checkpoint log record 5-133 
checkpoint record 5-133 
CICS journal logger (see DLZRDBL1) 
control block relationship 5-4 
control data set list entries 5-134 
control program initialization 

(DLZCPIOO) 3-7 
compression/expansion table (CPAC) 5-22 
CPAC (compression/expansion table) 5-22 

DACS (HDAM randomizing table) 5-24 
data 

areas 5-1 
base description block (DBD) 7-30 
base log record 5-136 
management block (DMB) 5-7 
record (input) 5-138 
record (output) 5-139 
set group (DSG) 5-36 

date/time table 5-139 
DB buffer handler (see DLZDBHOO) 
DB logger (see DLZRDBLO) 
DBD (data base description block) 7-30 
DBD generation 7-19 
DBDGEN macro descriptions 7-24 
DDIR (DMB directory) 5-25 
delete/replace (see DLZDLDOO) 
delete work area 5-139 
delete work space prefix 5-141 

diagnostic aids 6-1 
DLZABEND - STXIT ABEND 3-10 
DLZBACKO - batch backout interface 

desc~iption 3-68 
directory 4-7 
HD backout 2-237 
HIPO (overview) 2-233 
HISAM or INDEX backout 2-236 
process log record 2-234 
simple HISAM backout 2-235 

DLZBNUCO - batch nucleus 
directory 4-2 
HI PO (overview) 2-21 
program request handler 2-22 
partition ABEND 2-23 

DLZBPCOO - batch partition controller 
ABEND exit routine 2-200 
batch request processing 2-196 
BPC wait and ABEND XECBs 2-195 
description 3-62 
directory 4-6 
HIPO (overview) 2-189 
online scheduling call 2-193 
task initialization 2-190 
termination 2-198 

DLZCPIOO - control program 
initialization 3-7 

DLZCPY10 - field level sensitivity 
copy 3-60 

DLZDBHOO - DB buffer handler 
byte alter/buffer alter 2-144 
byte locate/block locate 2-143 
description 3-38 
directory 4-4 
free buffer space 2-151 
get buffer space 2-14'5 
HIPO (overview) 2-141 
LOCATE buffer search 2-147 
LOCATE buffer write 2-148 
LOCATE new block processing 2-149 
LOCATE read 2-150 
LOCATE routine 2-146 
purge buffers 2-154 

INDEX 

purge buffers (CHKP function) 2-152 
DLZDBLMO - control block load 

and relocate 3-6 
DLZDDLEO - load/insert 

description 3-28 
directory 4-4 
HDAM/HIDAM not load 2-112 
HDAM/HIDAM load 2-110 
HIPO (overview) 2-101 
HISAM dependent segment 

insert 2-107 
HISAM load 2-104 
HISAM root insert 2-105 
HSAM load 2-103 
load ending routine 2-115 
not load ending routine 2-114 
NOTSC routine 2-108 

DLZDHDSO - HD space management 
backout get space 2-137 
description 3-35 

Licensed Material - Property of IBM INDEX-1 



directory 4-4 
free space 2-135 
get space 2-133 
HI PO (overview) 2-132 
modify bit map 2-136 

DLZDLAOO - call analyzer 
description 3-22 
directory 4-3 
HIPO (overview) 2-81 
normal function 2-82 
pseudo function 2-85 
validate SSAs 2-83 

DLZDLBLO - ACB builder 3-87 
DLZDLBL1 - ACB builder 3-87 
DLZDLBL2 - ACB builder 3-87 
DLZDLBL3 - ACB builder 3-87 
DLZDLDOO - delete/replace 

delete segment 2-123 
description 3-25 
directory 4-4 
HIPO (overview) 2-116 
HISAM delete 2-121 
replace 2-11 7 
replace data 2-118 
replace segment 2-120 

DLZDLOCO - open/close 
description 3-24 
directory 4-4 
DOCDCB routine 2-140 
HIPO diagram 2-139 

DLZDLROO - retrieve 
description 3-33 
directory 4-3 
DLZFLPO subroutine 2-100 
DLZGETS routine 2-96 
DLZKDTE routine 2-90 
DLZLOGR routine 2-97 
DLZLTW routine 2-89 
DLZPCHK routine 2-91 
DLZRETI routine 2-98 
DLZSKPG routine 2-95 
DLZSSA routine 2-93 
DLZTAG routine 2-92 
HIPO diagram 2-87 

DLZDPSBO - utility PSB builder 
DLZDSEHO - workfile generator 

build LC output 2-302 
description 3-91 
directory 4-10 
find DTF 2-301 
HIPO (overview) 2-297 
initialization 2-299 
open workfile 2-300 

DLZDXMTO - index maintenance 
delete old index target segment 
description 3-30 
directory 4-4 
HIPO (overview) 2-125 
insert FF-keys 2-131 

3-88 

2-127 

insert new index target segment 2-126 
replace index target segment 2-129 

DLZERMSG - online message writer 3-20 
DLZIWAIT - DL/I IWAIT 3-11 
DLZLBLMO - ACB generation error message 
handler 3-86 

DLZLIOOO - language interface 
DLZLOGPO - log print utility 

description 3-76 

3-8 

INDEX-2 Licensed Material - Property of IBM 

directory 4-7 
HIPO diagram 2-303 

DLZLPCCO - control statement processor 
description 3-77 
HIPO diagram 2-304 

DLZMABND - MPS batch ABEND 3-65 
DLZMINIT - MPS batch intialization 3-63 
DLZMMSG - MPS batch message writer 3-66 
DLZMPCOO - master partition controller 

ABEND exit routine 2-187 
ABEND processing 2-183 
define XECBs 2-175 
description 3-61 
directory 4-6 
HI PO (overview) 2-173 
MPC wait 2-177 
MPS termination 2-184 
start processing 2-178 
stop partition processing 2-181 
stop transaction processing 2-186 
task initialization 2-174 

DLZMPIOO - MPS batch 
'ABEND handler 2-210 
description 3-63 
directory 4-6 
HIPO (overview) 2-201 
initialization 2-202 
message writer 2-209 
program request handler 2-206 
termination 2-205 

DLZMPRH - MPS batch program 
request handler 3-64 

DLZMSTPO - stop transaction 
description 3-67 
directory 4-6 
HIPO diagram 2-211 

DLZMSTRO - start transaction 
description 3-61 
directory 4-5 
HIPO diagram 2-172 

DLZMTERM - MPS batch termination 3-64 
DLZODP - online nucleus 

abnormal and normal termination 2-51 
description 3-15 
directory 4-2 
error message routine 2-63 
HIPO (overview) 2-43 
normal calls 2-67 
PCB or PCBM scheduling 2-70 
pre-scheduling and PSB scheduling 2-44 
program request handler 2-62 
scheduling/termination/system calls 2-69 
start-ot-task record writer 2-59 
suspend task 2-76 
sync-point record writer 2-60 
system scheduling call 2-72 
task termination 2-54 
VSAM asynchronous exit processor 2-66 
wait routine 2-65 

DLZODP01 - task termination 3-19 
DLZODP02 - normal system termination 3-20 
DLZODP03 - abnormal system 

termination 3-20 
DLZOLIOO - online initialization 

build DMB control blocks 2-40 
buffer allocation 2-38 ( 
control program initialization 2-31 . 
description 3-12 ' 



directory 4-2 
DMB open 2-34 
DMB processing 2-28 
HIPO (overview) 2-25 
initialization start 2-26 
module load 2-35 
PSB initialization 2-41 
PSB processing 2-21 
storage acquisition 2-36 
storage layout control 2-31 

~ZOVSEX - VSAM EXCP exit processor 3-21 
lLZPCCOO - application program control 3-5 
lLZPRHBO - program request handler 3-8 
lLZPRHOO - online program request 

handler 3-11 
lLZQUEFO - queuing facility 

dequeue requests 2-215 
description 3-56 
directory 4-5 
enqueue/verify requests 2-211 
existing resource enqueue 2-220 
HIPO (overview) 2-212 
new request enqueue 2-219 
purge requests 2-214 
re-enqueue 2-221 

lLZRDBCO - DB change backout 3-69 
lLZRDBLO - DB logger 

asynchronous log subtask 2-161 
build log record 2-159 
close "log file 2-164 
description 3-49 
directory 4-5 
disk errors 2-165 
HIPO (overview) 2-151 
initialize logger 2-158 
move log record 2-162 

. write log information 2-163 
~ZRDBL1 - CICS journal logger 

build log record 2-161 
description 3-54 
directory 4-5 
HIPO (overview) 2-166 
log writing 2-171 
move log record 2-169 
move prebuilt record 2-110 

~ZRRAOO - user parameter analysis 3-3 
lLZRRCOO - batch initialization 

application program control 2-8,2-11 
block loader and relocator 2-12 
control card analyze 2-20 
description 3-2 
di'rectory 4-2 
HIPO (overview) 2-4 
initialization completion 2-11 
initialization entry 2-5 
parameter scan and validation 2-1 
partition control 2-6 
utility block build request 2-10 

~ZRRC10 - region control primary 
interface 3-2 

~ZSTPOO - online system termination 
directory 4-2 
HIPO diagram 2-80 

lLZTPRTO - Trace Print Utility 
description 3-96 
HIPO diagram 2-309 

JLZTWAB· transaction work area 5-21 

DLZUACBO - ACB creation utility 
acquire storage 2-266 
binary search insert 2-254 
block builder 2-256 
build PSB 2-213 
build PSIL 2-269 
description 3-84 
directory 4-8 
HIPO (overview) 2-251 
intent propogation 2-261 
message writer 2-215 
write DMBs 2-210 
write PSB 2-212 

DLZUCCTO - control card processor 
DLZUCERO - common error routine 

3-15 
3-14 

DLZUCUMO - DB change accumulation 
description 3-14 
directory 4-6 
HIPO (overview) 2-224 
input card processor (DLZUCCTO) 
sort module (DLZUC350) 2-228 
write logout (DLZUC150) 2-221 
write messages (DLZUCERO) 2-229 

2-226 

DLZUC150 - sort exit 15 3-75 
DLZUC350 - sort exit 35 3-16 
DLZUDMPO - DB data set image dump 

description 3-13 
directory 4-6 
HIPO diagram 2-223 

DLZURCCO - recovery control statement 
processor 3-12 

DLZURDBO - DB data set recovery 
control statement processor 
description 3-11 
directory 4-1 
HIPO diagram 2-230 

DLZURGLO - HD DB reload 
description 3-82 
directory 4-8 
HIPO diagram 2-245 

2-232 

DLZURGMO - DB reorganization message 
DLZURGPO - prefix update 

description 3-95 
directory 4-9 
HIPO diagram 2-296 

DLZURPRO - prereorganization 
description 3-89 
directory 4-9 
HIPO diagram 2-276 

DLZURGSO - DB scan 
description 3-90 
directory 4-9 
HIPO diagram 2-280 

DLZURGUO - ED DB unload 
description 3-81 
directory 4-8 
HIPO diagram 2-240 

DLZURG10 - prefix resolution 
description 3-94 
directory 4-9 
HIPO diagram 2-288 
sort E15 (DLZX15S1) 
sort E15 (DLZX15S2) 
sort E35 (DLZX35S1) 
sort E35 (DLZX35S2) 

DLZURRLO - HS DB reload 
description 3-80 

2-292 
2-294 

"2-293 
2-295 

3-96 

Licensed Material - Property Q·f IBM. INDEX-3 



directory 4-8 
HIPO diagram 2-239 

DLZURULO - HS DB unload 
description 3-18 
directory 4-1 
HIPO diagram 2-238 

DLZUSCHO - ACB binary search/insert 3-84 
DMB (data management block) 5-1 
DMB directory (DDIR) 5-25 
DMB prefix (DMB) 5-31 
DPPCB (PCB dope vector table) 5-33 
DSECT 

BFFRDS 5-16 
DEPCB 5-62 
DLZBFPL 5-19 
DLZDDIR 5-25 
DLZPDIR 5-64 
DLZPPST 5-66 
DLZPSIL 5-15 
DLZPST 5-11 
DLZQWA 5-90 
DLZRDB 5-92 
DLZRRD 5-98 
DLZSCD 5-102 
DLZTWA 5-21 
DMB 5-31 
DMBACBXT 5-13 
DMBCPAC 5-22 
DMBDACS 5-24 
DMBDTFXT 5-15 
DMBPSDB 5-11 
DMESEC 5-121 
DMBXMPRM 5-129 
DPPCB 5-33 
DSG 5-36 
FDB 5-38 
JCB 5-46 
LEV 5-55 
MPCPT 5-60 
PSB 5-69 
SCDEXTDS 5-111 
SDB 5-114 
SDBXP 5-119 
SUBINFTA 5-100 

DSG (data set group) 5-36 
DTF extension 5-15 
dump header record 5-142 
dump record prefix 5-143 

facility modules 
descriptions 3-22 
directory 4-3 
HIPOs 2-81 
introduction 1-6 

FDB (field description block) 5-38 
FER (field exit routine interface 
list) 5-40 

FERT (field exit routine table) 5-42 
file open record 5-143 
field level sensitivity 3-22. 3-60 
FSB (field sensitivity block.) 5-43 
function codf;!r;; !)~49 
function types 5-49 

general structure 
DMB 5-8 

INDEX-4 Licensed Material - Property of IBM 

PSB 5-10 
buffer pool control block 5-12 
DBD 1-30 

HDAM randomizing table (DACS) 5-24 
HD DB reload (see DLZURGLO) 
HD DB unload (see DLZURGUO) 
HD space management (see DLZDHDSO) 
header record (input) 5-143 
header record (output) 5-144 
HIPO diagrams 2-1 
HS DB reload (see DLZURRLO) 
HS DB unload (see DLZURULO) 

index maintenance module (see DLZDXMTO) 
index maintenance work area 5-145 
introduction 1-1 
image dump utility (see DLZUDMPO) 

JCB (job control block) 5-46 

language interface (DLZLIOOO) 3-8 
LEV (level table entry) 5-55 
level table entry (LEV) 5-55 
list control block 5-141 
LLC/CC 1-2 

HIPO diagrams 1-1 
load/insert (see DLZDDLEO) 
log print utility (see DLZLOGPO) 
logger (see DLZRDBLO) 
logical relationship utilities 

description 3-89 
directory 4-9 
HIPOs 2-216 
introduction 1-9 

low-level code/continuity check 1-2 

macro descriptions 
DBDGEN 1-24 
PSBGEN 1-38 

macros 1-42 
master partition controller (see DLZMPCOO) 
message/module cross reference table 6-2 
method of operation 2-1 
MPC (see DLZMPCOO) 
MPC partition table entry . 5-60 
MPCPT (MPC partition table) 5-59 
MPS batch (see DLZMPIOO) 

ABEND (DLZMABND) 3-65 
initialization (DLZMINIT) 3-63 
message writer (DLZMMSG) 3-66 
program request handler (DLZMPRH) 3-64 
termination (DLZMTERM) 3-64 

MPS (multiple partition support) 
description 3-61 
directory 4-5 
BIPOs 2-113 
introduction 1-9 

multiple partition support (see MPS) 

online initialj,.zation (see DLZOLIQO) 
open/close (see DLZDLOCO) 

( 



lline processor 
introduction 1-5 
description 3-12 

ltput record with segment prefix 
ltput table record 5-148 

!\.RM field 3-4 
artition specification table (PST) 
CB dope vector table (DPPCB) 5-33 

5-147 

5-77 

CB (program communication block) 5-62 
DCA (problem determination 

control area) 5-63 
DIR (PSB directory) 5-64 
~ysical segment description 

block (PSDB) 5-71 
refix resolution (see DLZURG10) 
refix update (see DLZURGPO) 
rereorganization (see DLZURPRO) 
rogram communication block (PCB) 
rogram request handler (DLZPRHBO) 
rogram speCification block (PSB) 
SB directory (PDIR) 5-64 

5-62 
3-8 

5-9 

5-75 
SB generation 7-36 
'SB intent list (PSIL) 
'SB prefix (PSB) 5-69 
'SB (program specification block) 
'SBGEN macro descriptions 7-36 
~DB (physical segment description 

5-9 

block) 5-71 
IPST (PST prefix) 5-66 
ISIL (PSB intent list) 5-75 
1ST (partition specification table) 
1ST prefix (PPST) 5-66 

5-77 

~euing facility (see DLZQUEFO) 
~euing facility work area (QWA) 5-90 
~WA (queuing facility work area) 5-90 

~B (resource descriptor block) 5-92 
,ecord layouts 5-130 
,ecovery utilities 

descriptions 3-68 
. dir ectory 4-6 
BIPOs 2-223 
introduction 1-9 

region control primary interface 
(DLZRRC10) 3-2 

remote interface block (RIB) 5-93 
remote partition specification table 

(RPST) 5-97 
remote program communication block 

(RPCB) 5-95 
remote program specification block 

directory (RPDIR) 5-96 
reorganization u~ilities 

descriptions 3-78 
directory 4-7 
BIPOs 2-238 
introduction 1-9 

resource descriptor block (RDB) 5-92 
resource request descriptor (RRD) 5-98 
retrieve (see DLZDLROO) 
RIB (remote interface block) 5-93 
RPCB (remote program communication 

block) 5-95 

RPDIR (remote program specification 
block directory) 5-96 

RPST (remote partition specification 
table) 5-97 

RRD (resource request descriptor) 5-98 

SBIF (subpool information table) 5-100 
scan (see DLZURGSO) 
SCD extension (SCDEXT) 5-111 
SCD (system contents directory) 5-102 
SCDEXT (SCD extension) 5-111 
scheduling record 5-132 
SDB expansion block 5-119 
SDB (segment description block) 5-114 
SEC (secondary list) 5-121 
secondary index suppression table 

(XMPRM) 5-129 
secondary list entry 5-135 
secondary list (SEC) 5-121 
segment description block (SDB) 5-114 
short segKent table 5-149 
sorted list block 5-149 
space management (see DLZDHDSO) 
SSA for GU call by key 5-149 
SSA for GU call BY RBA 5-150 
SSA for XMAINT call to the 

analyzer 5-150 
start transaction (see DLZMSTRO) 
statistics record 5-150 
status codes/module cross 

reference table 6-11 
stop transaction (see DLZMSTPO) 
STXIT ABEND (DLZABEND) 3-10 
subpool information table (SBIF) 5-100 
system contents directory (SCD) 5-102 
system control modules 

description 3-2 
directory 4-2 
BIPOs 2-4 

tables 
message/module cross reference 6-2 
status codes/module cross 

reference 6-11 
termination record 5-132 

UIB (user information block) 5-127 
utilities 

description 3-68 
directory 4-6 
BIPOs 2-222 
introduction 1-9 

user interface block (UIB) 5-127 
user parameter analysis (DLZRRAOO) 3-3 
visual table of contents 2-3, 2-222 

work file 1 5-151 
work file 3 5-154 
workfile generator (see DLZDSEHO)· 

XMPRM (secondary index suppression 
table) 5-129 

Licensed Material - Property of IBM INDEX-5 



L Y12-5016-5 

------- --- ----- ~ ---- - - -------,..-
-~-.-® 
International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N. Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N. Y., U. s. A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N. Y., U. s. A. 10601 

c 
c 
~ 
< 
IJ 
r 
c 

<C 

C': 

:;;: 
0: 
:I 
C 
OJ 

r 
-< 
I\.: 
6-
c .... 
OJ 
U, 



DL/I DOS/VS Logic Manual 
LYl2-50l6-5 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. This form may be used to communicate 
your views about this publication. They will be sent to the author's department for 
whatever review and action, if any, is deemed appropriate. Comments may be written 
in your own language; use of English is not required. 

IBM may use or distribute any of the information you supply in any way it believes 
appropriate without incurring any obligation whatever. You may, of course, continue 
to use the information you supply. 

Note: Copies of IBM publications are not stocked at the location to which this form is 
addressed. Please direct any requests for copies of publications, or for assistance in using 
your IBM system, to your IBM representative or to the IBM branch office serving your 
locality. 

• Does the publication meet your needs? 

• Did you find the material: 

Easy to read and understand? 

Organized for convenient use? 

Complete? 

Well illustrated? 

Written for your technical level? 

• What is your occupation? 

• How do you use this publication: 

As an introduction to the subject? 

For advanced knowledge of the subject? 

To learn about operating procedures? 

Your comments: 

Yes 

o 

o 
o 
o 
o 
o 

o 
o 
o 

No 

o 

o 
o 
o 
o 
o 

As an instructor in class? 

As a student in class? 

As a reference manual? 

If you would like a reply, please supply your name and address on the reverse side of this 
form. 

Thank you for your cooperation. No postage stamp necessary if mailed-in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments.) 

o 
o 
o 

READER'S 
COMMENT 
FORM 



LY12-5016-5 

Reader's Comment Form 

Fold and Tape Please Do Not Staple 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 10 ENDICOTT, N.Y. U.S.A. 

Fold 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Department G60 
P. O. Box 6 
Endicott, New York 13760 

If you would like a reply, please print: 

I I II I 

Fold and Tape 

NO POSTAGE 
NECESSARY 

IF MAILED IN THE 
UNITED STATES 

Fold 

Your Name _______________________________________________ ___ 

Company Name _______________ Department _____ _ 

Street Address ____________________ _ 

a~----------------------------------------
State ____________ Zip Code _____ _ 

IBM Branch Office serving you __________________ __ ------- ---- ~--- -. ---- ---------_ .. ----- _.-
® 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue. White Plains. N. Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant. Route 9. North Tarrytown. N_ Y .• U. S. A_ 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue. White Plains. N. Y •• U. S. A. 10601 

r 
-< 
N 
0, 
o .... 
Ol 
0, 


