

GH12-5115-1

Program Product
Data Language/I-Entry DOS/VS
(DL/I-Entry DOS/VS)

General Information Manual
Program Product 5746-XX7 (DOS/VS)

This book introduces DL/I-Entry DOS/VS to the executive,
system programmer, or application programmer and gives a
general picture of what DL/I-Entry is.

The DL/I-Entry data base system makes data handling easier
for application programs, and centralizes the data required by
more than one application program. Both batch programs
running under DOS/VS and online programs running under the
the Customer Information Control System/DOS/VS (CICS/VS)
can use DL/I-Entry.

This book explains the advantages of using data bases, gives a
general description of DL/I-Entry data bases and of how
application programs use them, and lists machine configuration
requirements. Examples are provided of using DL/I-Entry to
control the ordering and distribution of products, to produce a
bill of materials in a manufacturing application, and to provide
a complete system for order entry and production planning and
control in the process industry.

Prerequisite to understanding this book is some familiarity with
the use of computers to process data.

1C
ciu

Preface

This book introduces the Data Language/I-Entry DOS/VS (DL/I-Entry DOS/VS
or DL/I-Entry) data management control system. The book explains the
advantages o f using data bases, gives a general description o f DL/I-Entry data
bases and o f how application programs use them, and lists machine configuration
requirements. Examples are provided o f using DL/I-Entry in distribution, bill o f
materials, and process industry applications.

This book is intended for the executive, system programmer, or application
programmer. A more detailed description o f DL/I-Entry can be found in the
following publications.

• DL/I-Entry DOS/VS Application Programming Reference Manual, SH12-5415

• DL/I-Entry DOS/VS Design and Implementation Guide, SH12-5311

• DL/I-Entry DOS/VS Program Logic Manual, LY12-5017

I Second Edition (February 1976)

This is a major revision of, and obsoletes, GH12-5115-0 and Technical Newsletters
GN12-5049 and GN12-5055. Information on the hierarchical direct access method
(HDAM) has been added to the section “ Data Base Organization and Access Methods”
and at other points throughout the book. Changes or additions to the text and
illustrations are indicated by a vertical line to the left o f the change.

I This edition applies to version 2, modification level 0, o f Data Language/I-Entry DOS/VS
(DL/I-Entry DOS/VS), Program Product 5746-XX7, and to all subsequent versions and
modifications until otherwise indicated in new editions or Technical Newsletters. Changes
are periodically made to the information herein; any such changes will be reported in
subsequent revisions or Technical Newsletters.

Requests for copies o f IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form is provided at the back o f this publication for reader’s comments. I f the form
has been removed, comments may be addressed to IBM Program Product Center,
58 Schwertstrasse, D-7032 Sindelfingen, Germany. Comments become the property
o f IBM.

© Copyright International Business Machines Corporation 1974, 1975

Contents

INTRODUCTION... 1
GENERAL DESCRIPTION ... 2
What is a Data Base?... 2
Batch System... 3

DL/I-Entry Nucleus... 4
DL/I-Entry Language Interface 4
DL/I-Entry Processor....................................... 4

Online System ... 6
DL/I-Entry Language Interface 6
DL/I-Entry Processor....................................... 6

Utility Programs ... 8
Data Base Description Generation.......................... 8
Program Specification Block Generation.................... 8
Backup/Reload ... 8
Migration from VANDL-1 to DL/I-Entry...................... 8

SYSTEM CONCEPTS ... 9
Some Definitions... 9
Data Independence... 10
Data Structures 10
Logical Relationships 13

Logical Relationships Between Physical Data Bases 13
Secondary Indexing... 18
Low-Level Codes ... 19
Data Base User Interface..................................... 19
Data Base Organization and Access Methods.................. 20
Segment Definition and Format 21
Online Processing Capability................................. 21
USER RESPONSIBILITIES 22
PROGRAMMING SYSTEMS ... 24
SYSTEM REQUIREMENTS ... 25
Estimated Storage Requirements............................... 26
SAMPLE APPLICATIONS ... 27
Distribution Example..27

Product Data B a s e ..27
Supplier Index Data Base......................................28
Customer Index Data Base......................................28
Inquiries Using these Data Bases...........................28

Bill of Materials Example......................................30
Inquiries Using the Logical Data B a s e 31

Process Industry Example..34
Customer Data Base.. 35
Order Line Data Base....................................... 35
Product Data Bas e ... 35
Production Order Data Base................................. 36
Inquiries Using these Data Bases........................... 36

INDEX 39

Figures

Fig ure 1 .
Figure 2.
Fig ure 3.
Fig ure 4.
Figure 5.
Figure 6.
Fig ure 7.
Figure 8.
Figure 9.
Figure 10
Fig ure 1 1
Fig ure 12
Figure 13
Figure 14
Fig ure 15
Figure 16
Figure 17
Figure 18
Fig ure 19
Figure 20
Figure 21
Fig ure 22
Figure 23

Hierarchical Data Ease Concept 3
DL/I-Entry Eatch System...........................5
DL/I-Entry Online System 7
Traditional Record Layout........................ 11
Hierarchical Record Layout 11
Data Structure................................... 12
Data Base Record Structure (Derived from Figure 6) 13
Unidirectional Logical Relationship Between
Physical Data Bases. 14
Combined Data Structure Viewed from the SKILL
Segment... 15
Bidirectional Logical Relationship Between Physical
Data Bases....................................... 15
Combined Data Structure Viewed from the NAME
Segment... 16
Pairing Specific Segment Occurrences 17
Secondary Index Data Base.........................18
Secondary Index Data Base Example................ 19
Migration from VANDL-1 to DL/I-Entry 22
Installing DL/I-Entry at a New Installation. . . . 23
Distribution Data Bases........................... 27
Bill of Materials Data Structure and Item Physical
Data Base..30
Item Logical Data B a s e 31
Explosion Bill of Materials Example.............. 32
Implosion Bill of Materials Example.............. 33
Process Industry Physical Data Bases 34
Process Industry Logical Data Bases.............. 37

li

Introduction

Data Language/I-Entry DOS/VS (DL/I-Entry EOS/VS, hereafter referred to
as EL/I-Entry) is a data management control system developed to aid the
System/37C Model 115, 125, 135, or 145 user in implementing batch or
teleprocessing applications. Teleprocessing applications may be
implemented through the use of the Customer Information Control
System/DOS/VS (hereafter referred to as CICS/VS), which provides the
necessary interfaces to DL/I-Entry. EL/I-Entry runs as an application
program in a virtual storage environment under EOS/VS.
Today companies evaluate computer systems net only in regard to
programming systems and hardware but also in relation to the information
needs of the total corporate environment. Increasing demands are made
for applications that maintain and interrogate large centralized
information files. EL/I-Entry provides a number of features to aid in
establishing, changing, and expanding such applications and information
files.
DL/I-Entry may be used to advantage with such applications as payroll
and personnel, manufacturing bill of materials, inventory control,
accounts receivable, hospital records, student records, petroleum well
records, and demand deposit accounts systems. Using DL/I-Entry, a
company can design its applications to interface with information files
from remote terminals (using a CICS/VS interface), or to process
information in the more conventional batch mode, or to use a combination
of these methods.
These features of EL/I-Entry, together with its ability to respond to
freguent and anticipated high-volume information requests, make it a
powerful tool for the data processing user.

General Description

The DL/I-Fntry system makes data base processing capabilities similar to
these used cn large systems available to System/370 DOS/VS users. It is a general-purpose data management system that satisfies a wide range of
data base processing requirements. DL/I-Fntry simplifies the user's
task of creating and maintaining large common data bases, offers the
user data independence, and frees the user from considerations of access
methods and device characteristics.
DL/I-Entry can be used by batch-processing applications or by online
data communication applications.
In batch processing, single data base transactions requested by
applications are accumulated and then processed periodically against a
data base. Because of this elapsed time, data in the data base is net
always current. The use of batch processing should depend on how
current the user's information must be, viewed in relation to the costs
of other methods of processing data.
For data communication applications, DL/I-Fntry provides an online
processor, which utilizes an interface facility to CICS/VS. DL/I-Entry
employs existing user options and exits provided by CICS/VS. CICS/VS is
a transaction-oriented terminal management system. This type of system,
as opposed to a batch system, responds to each transaction as it is
requested. This eliminates the elapsed time inherent in batch
processing systems and allows the user to maintain current data for his
applications.
For a complete description of the CICS/VS system, refer to Customer
lui 211a t ion_ Con t r ol^Sys t e m/DO S/ V S_G en eral__I n f or ma t ion, GH2C-7C28.

What is a Data Base?

The traditional manner of organizing data used by application programs
is into data files. Each data file is physically structured to present
data in the physical sequence and format required by a particular
application program. When the same data is shared by several
applications, the data is duplicated on different data files so that it
can be presented to each application program in the physical sequence
and format required. This duplication uses additional storage space and
results in increased maintenance time and cost, since the same data has
to be maintained simultaneously in many locations.
The data management portion of the DL/I-Entry system uses data
organization methods that free data processing application programs from
their dependence cn the physical organization of data and from the need
to duplicate data. These undesirable attributes of data files have been
eliminated with DL/I-Entry through use of the data base.
A data base is defined as "a nonredundant collection of interrelated
data items prccessable by one or more applications."
All application data is stored in one or more data bases in a
hierarchical manner; that is, the most significant data resides on
hierarchically higher levels while less significant but related data
(dependent data) appears on subordinate levels (see Figure 1). Through
the use of a concept called "sensitivity," each application program
views only that data in the structure which it uses, and accesses that
data through DL/I-Entry calls. Assume that one application requires name

2

and address infcrmation, and a second
infcrmaticn• The applications share
the first accesses address, and only
each application, data used by other
data -- does not exist.

requires name and payroll
their common data (name), but only
the second accesses payroll. To
applications -- other than common

Figure 1. Hierarchical Data Base Concept

In practice, a system analyst or programmer reviews the data
requirements cf all applications, and then defines the data base or
bases that can best serve those applications. To create a data base,
the user defines to DL/I-Entry a common data structure and format that
serve his applications, and then loads his application data into that
structure. This definition is called a data base description (DBD); one
DEL is required for each data base. The second definition required is
the program specification block (FSB). The FSB defines to DL/I-Entry
for each application program the data bases used, the type of data used
within each data base, and the operations allowed on each data base.
One PSB is required for each application program. Both of these ccntrcl
blocks -- the DBD and the PSB -- are used to link the application data
in the data bases to the application program using the data. Through
DL/I-Entry's use of the DBD and PSB, application programmers can write
their pregrams without regard to the physical structure of data.

Batch System

The DL/I-Entry batch system (see Figure 2) contains the following
functional parts:
• DL/I-Entry nucleus
• DL/I-Entry lcw-level code/continuity check feature
• DL/I-Entry language interface
• DL/I-Entry processor
Each cf these parts is described below.

3

DL/I-ENTRÏ NUCLEUS
The EL/I-Entry nucleus is the controlling part of the DL/I-Entry system.
It receives ccntrcl from DOS/VS (step 1), initializes the LL/I-Entry
system (step 2), and then passes control to the user’s application
program (step 3). After the application program has finished processing
the data bases (steps 4 through 10), the data bases are disconnected
from the EL/I-Entry system (step 11) and control is then returned to
DOS/VS (step 12) .

I The DL/I-Entry lcw-level code/continuity check feature (step 4) can be
used by application programs written in COBOL, PL/I, and Assembler
language. In a manufacturing industry, lew-level codes placed in the
root segments cf a parts data base identify the components cr materials
which make up a finished product. If used, the routine is called from
the applicaticn program, and in turn issues DL/I-Entry calls like the
application program.

DL/I-ENTRÏ LANGUAGE INTERFACE
The DL/I-Entry language interface is entered when a call tc DL/I-Entry
is issued by an application program (step 5). The programming languages
supported are COBOL, PL/I, RPG II, and Assembler language. Each DL/I-
Entry call is translated to a common format and is then passed to the
DL/I-Entry processor (step 6) .

DL/I-ENTBÏ PROCESSOR
The EL/I-Entry processor is the data management portion of the DL/I-
Entry system. Through this facility, the user inserts, retrieves,
deletes, or replaces the data in the data bases used by his applicaticn
program (steps 7 through 10). As these operations are performed, the
DL/I-Entry processor performs all the data maintenance tasks reguired cn
the data bases.
Lcgical relatienships and secondary indexing are also handled by the
EL/I-Entry processor. Logical relationships are a method cf
establishing a logical connection between segments unrelated physically
-- the segments may be in different data base records or even in
different data bases. Secondary indexing, is a means of retrieving
records based cn information the records contain other than the key
originally used to store them.

I DL/I-Entry provides five access methods:
• Hierarchical sequential access method (HSAM)
• Simple hierarchical sequential access method (simple HSAM)
• Hierarchical indexed sequential access method (HISAM)
• Simple hierarchical indexed sequential access method (simple HISAM)

I • Hierarchical direct access method (HDAM).

The virtual storage access method (VSAM) performs data management
| services for data bases which use HISAM, simple HISAM, or HDAM. The
seguential access method (SAM) performs data management services for
data bases which use HSAM or simple HSAM. For a description of the
DL/I-Entry access methods, refer to "Data Base Organization and Access
Methods11 in the "System Concepts" section.

4

Figure 2 DL/I-Entry Batch System

5

Online System
The EL/I-Entry online system (see Figure 3) executes in an online
environment under the control of CICS/VS. Since it is possible under
CICS/VS for mere than one program to run at the same time, it is
possible for mere than one application program to simultaneously work
with the same EL/I-Entry data bases.
When a user reguest is entered at a terminal, CICS/VS activates and
deactivates the application program (step 1). The DL/I-Entry cnline
system contains the following functional parts:
• DL/I-Entry language interface
• DL/I-Entry processor.

EL/I-ENTRY LANGUAGE INTERFACE
The online EL/I-Entry language interface is entered when the application
program issues a data call (step 2). Language interfaces are provided
by the EL/I-Entry online system for COBOL, FL/I, and Assembler. Each
DL/I-Entry call is translated to a common format and is then passed to
the DL/I-Entry processor (step 3) .

DL/I-ENTRY PROCESSOR
The cnline DL/I-Entry processor functions essentially the same as in the
batch system. The processor performs all the tasks necessary to insert,
retrieve, delete, or replace data in the data bases used by the
application program (steps 5 through 10). The main differences of the
cnline processor from the batch processor are:
• A special call is accepted for initiation purposes of the DL/I-Entry

cnline system (step 4) .
• An enqueue/degueue module controls concurrent access requests to data

bases by different tasks (step 8) .
• The CICS/VS file control facility in conjunction with VSAM is used

for data base access.
• In deadlock situations, a special call is accepted to release all

data bases of a task (step 11).

6

TERMINAL

*7

TERMINAL

i
CICS/VS

DL/I-ENTRY
PROCESSOR

® r

HISAM/
SIMPLE HISAM
MODULE

®

®
1f

APPLICATION PROGRAM FOR
DATA BASE PROCESSING

©I
DL/I - ENTRY LANGUAGE
INTERFACE

i i.

I £)

12

®

INITIALIZATION ® ONLINE TERMINATION
MODULE INTERFACE MODULE

CALL
ANALYZER

LOGICAL
RELATIONSHIP
MODULE

REQUEST SECONDARY
iwncviMr;

HANDLER IIMUC AIIMVJ
MODULE

®

® ENQUEUE/
DEQUEUE
MODULE

©
l

HDAM
MODULE

ï ®
CICS/VS FILE CONTROL

10 (10

DATA
BASES

Figure 3 DL/I-Entry Online System

7

Utility Programs

Utility programs are provided with DL/I-Entry for generating data base
descriptions (DBDs) , for generating program specification blocks (PSBs),

I for producing backup copies of HISAM cr HDAM data bases and reloading
them, and for migrating from VANDL-1 to DL/I-Entry,

DATA BASE DESCRIPTION GENERATION
The LED generation utility creates the control blocks that define to
DL/I-Entry for each data base the data base name, its data structure,
its data format, and the DL/I-Entry access method used.

PROGRAM SPECIFICATION ELOCK GENERATION
The PSB generation utility creates the control blocks that define to
DL/I-Entry the data bases used, the type of data within each data base,
and the operations allowed on each data base by a particular application
program.

BACKUP/RELOAD

The HISAM backup utility unloads a HISAM data base into a sequential
I file. The HEAM backup utility unloads a HDAM data base into a
» seguential file. Both utilities also perform integrity checks on the
data base and provide statistics about the data base structure. The
seguential file can be kept for backup purposes, or it can be reloaded

| into a HISAM or HEAM data base using the reload utility. The reload
utility recrgani2es the data base which it reloads.

MIGRATION FROM VANDL-1 TO DL/I-ENTRY

Two migration utilities convert VANDL-1 (Vancouver Data Language One)
data bases to EL/I-Entry data bases. The first migration utility runs
as an application program under VANDL-1 and copies the VANEL-1 data base
onto a seguential file. The second migration utility, which runs as a
DL/I-Entry application program, loads the seguential file produced by
the first migration utility into a DL/I-Entry data base.

8

System Concepts

This section goes beyond the general description of DL/I-Entry already
given tc discuss a number of technical considerations in additional
detail. The information is of particular interest to persons
responsible fcr planning the use of DL/I-Entry.
DL/I-Entry provides application program independence from access
methods, physical storage organizations, and the characteristics of the
devices on which the data of the application is stored. This
independence is provided by a common symbolic program linkage and by
data base descriptions external tc the application program. Application
program maintenance should thus be substantially reduced. See "Data
Ease User Interface" later in this section.
EL/I-Entry eliminates redundant data while assisting in the integration
or sharing of common data. Most data has many interrelationships which
lead to significant redundancy of data storage when conventional
organizations and access methods are used. For example, manufacturing
and engineering data is also useful tc quality control. The storaye
organizations and access methods employed by EL/I-Entry facilitate data
integration with a minimum of data redundancy. However, if analysis of
a customer’s data shows that all the data cannot be placed in a single
common data base, DL/I-Entry allows the user the additional capability
of physically structuring the data over more than one data base. Eefore
DL/I-Entry, application programmers frequently were not able, nor did
they have the time, to integrate other data with their own to eliminate
redundancies without a major rewrite of the application programs
involved.
An important capability of DL/I-Entry that protects each application of
a multiapplicaticn data base is the concept of data sensitivity. When
making use of a DL/I-Entry data base, an application program may only
access data which is predefined as sensitive. Each application using
the data base can be sensitive to its unique subset of data. Where an
application has defined sensitivity tc a subset of the data within a
data base, modification and addition of ncnsensitive data do not affect
the processing capability of the application. In addition, any
application can be restricted as tc the types of data base operations
made upon its sensitive data.

Some Definitions

Here are seme useful DL/I-Entry definitions.
• Segment. A data element of fixed length, containing one or more

related data fields. A segment is the basic data element that
interfaces between the application program and DL/I-Entry, and Is the
unit in terms of which the sensitivity of the application program is
defined.

• Sensitivity. A means by which the user defines which subset of the
data segments within the data base can be accessed by his application
program and what operations (fcr instance, retrieve only) may be made
upon the subset of the data base. This defines a logical view cf a
data base.

9

• Data Ease record. A set of hierarchically related, fixed-1
segments cf cne or more segment types. As viewed by the ap
program, the data base record is always a hierarchical tree
of segments.

• Data base. The major unit of data storage under DL/I-Entry
of data base records stored in a DL/I-Entry organization an
cne of the EL/I-Entry access methods.

Nc attempt is made at this point to relate the data base recor
base to a physical storage organization or access method techn
Such ccnsideraticns are presented later in the section.

eng th
plication
structure

. A set
d fcr any

d or data
ique.

Data Independence

When processing traditional files instead of data bases, programs
usually deal with a whole record at a time. Any change to a record
structure involves changes to all the programs which use that record.
Often this is true even for programs which do not actually handle the
changed data. The programs are "data dependent.”
EL/I-Entry, however, offers "data independence." This is achieved in
twc ways. First, programs handle only a segment at a time, rather than
a whole record. This means that only changes to the information which a
program actually handles necessitate changes in the program.
Second, pregrams are only aware of those segments to which they are
sensitive. If a segment to which a program is not sensitive Is added tc
a data base, deleted from it, moved within it, or changed to contain
different data, nc changes are needed for that particular program.
In addition, EL/I-Entry frees the user's data and program from
considerations of access methods and organizations. The data base
organization fcr DL/I-Entry is hierarchical sequential or hierarchical
direct. To allow access to the hierarchical sequential organization,

method (simple HISAM) .

is totally symbolic.

are provided: the hier
r the simple hierarchic
e hierarchica1 indexed
hierarchical indexed se

ical direct crgani za tio
t access method (HDAM) .
are discussed under "D
later in this section

ization type through th
cat ion progra m is ty pic
access method, or devi

(Storage

Data Structures

Application programs written to use DL/I-Entry deal with data
structures. A data structure is always a hierarchical structure of
segments. Most data processing information, regardless cf industry, can
and should be viewed in a data structure. Personnel is chosen here for
explanatory purposes because it is a familiar type of application.
Additional examples are presented in the "Sample Applications" section.

10

U
l\

r&

U
I

The traditional manner of depicting data can be seen in Figure 4. This
figure describes the physical makeup cf the record as it might appear cn
tape or on a direct access storage device. Each of the three divisions
-- NAME, ADDRESS, and PAYROLL -- is called a field. These fields
usually contain more basic data elements. For example, one of the data
elements typically included in the PAYROLL field is rate cf pay. In
addition, the record might actually contain multiple ADDRESS and PAYROLL
fields for a single NAME. This is typical if address and payroll
history are desired.

NAME ADDRESS PAYROLL

Figure 4. Traditional Record Layout

This same data record appears in Figure 5 as a DL/I-Entry data
structure. The NAME, ADDRESS, and PAYROLL fields are now considered
egments cf information. Each segment of information is considered to
e made up of fields. Rate of pay would be a field within the PAYROLL
egmen t.

The data structure in Figure 5 represents a hierarchical relationship.
Data relationships described by this hierarchical picture have only one
segment at the first level in the hierarchy but may have multiple
segments at subordinate levels in the hierarchy (for example, multiple
ADDRESS and PAYROLL segments for one NAME segment). Since each
dependent segment in the hierarchy has only one parent or immediate
superior segment, the representation is sometimes called a tree
structure.
In Figure 5, the #NAME segment with its associated ADDRESS and PAYROLL
segments constitutes a data_base_record.

PERSONNEL DATA BASE

Figure 5. Hierarchical Record Layout

11

Through the concept of program sensitivity, DL/I-Entry allows a program
to be written in such a manner that it sees only those segments of
information that are relevant to the processing being performed. For
example, a payroll program could be written to see only the $ A ME and
PAYROLL segments of the data base record shown in Figure 5. The program
need not be aware of the existence of the ADDRESS segment.
The DL/I-Entry data base capabilities allow for handling hierarchically
related data structures of considerable variance. The maximum number of
segment types is limited to 63 per data base record. A maximum of 15
segment levels can be defined in a data base record.
Figure 6 represents an example of a data structure for a skill data
base. The structure consists of two segment types, SKILL and NAME. The
data structure shews that SKILL is the root_segment, or highest segment
in the hierarchy. The NAME segment is a dependent segment of SKILL. A
lindent_segment relies on seme higher level segment for its full

meaning or identification. Since the number of employees (NAME
segments) may vary from one skill classification (SKILL segment) to the
next, it is necessary for data base records to vary in size according to
the number of segments occurring in the hierarchy for the data
structure.

SKILL DATA BASE

Figure 6. Data Structure

Figure 7 shews a specific data base record from the data structure
described in Figure 6. The root segment contains the specific skill of
artist. There are multiple NAME segments. In this case, there are
three employees who have some capability as artists: Adams, Jones, and
Smith. Although the data base can be described as having two segment
types, this particular data base record consists of four segments
because of the multiple occurrences of the NAME segment.
The segment tjpes immediately above and below a given segment type are
called the yarent and child segment types, respectively. In Figure 7,
the SKILL segment for artist is the parent of three NAME segments. Each
NAME segment is a child segment of the SKILL segment. All occurrences
of a particular segment type within a data base record are called twin
segments. The three NAME segments for Jones, Smith, and Adams are twin
segmen ts.

12

SKILL DATA BASE

SKILL
(ARTIST)

NAME
(ADAMS)

NAME
(JONES)

NAME
(SMITH)

Figure 7. Eata Ease Record Structure (Derived from Figure 6)

Logical Relationships

Through the use of logical relationships, logical data structures may be
constructed fcr use by applications where the logical data structure
does not exist as a single physical data base record. A logical data
structure may be composed of segments from one or more physical data
base records connected by logical relationships. Logical relationships
between segments in different physical data base records allow fcr
separation of logical data structures from physical storage.
A logical relationship may exist between segments in one or more HISAM
data bases, one or more HDAM data bases, or a combination of HISAM and
HEAM data bases. Symbolic pointers are used to establish a logical
relationship.

LOGICAL RELATIONSHIPS BETWEEN PHYSICAL DATA EASES

Logical relationships serve as the means by which DL/I-Entry can store a
physical segment once and provide access to that data segment through
multiple paths, thus avoiding redundant data.
If a logical relationship as shown in Figure 8 is established from the
root segment SKILL in the skill data base to the root segment NAME in
the personnel data base, the two physical data bases are interrelated.
The logical relationship is actually constructed with the help of the
dependent segment REFERENCE NAME. Rather than duplicating the NAME
segment in both data bases, the skill data base now contains only a
reference to the NAME segment stored in the personnel data base.

13

SKILL DATA BASE PERSONNEL DATA BASE

Logical Child
Segment

Figure 8. Unidirectional Logical Relationship Between Physical Lata
Ba ses

The segment REFERENCE NAME providing the logical relationship path from
the SKILL segment to the NAME segment is called a logical child segment.
The segment NAME which is related to the logical child segment REFERENCE
NAME is called a logical_parent_segment. A logical parent segment must
always he a root segment. In this examplef the logical child segment
REFERENCE NAME has a logical parent segment NAME and a physical parent
segment SKILL.
The logical relationship path runs only in the direction from the
logical child segment towards the logical parent segment, and is called
a unidirectional logical relationship.
Several occurrences of the REFERENCE NAME segment under different SKILL
segments may relate to the same logical parent segment NAME. Each
REFERENCE NAME segment may provide data, called intersection data,
unigue to the relationship between a particular SKILL and NAME segment.
Having established a unidirectional logical relationship between the two
physical data bases, a new logical data structure can be defined as
shewn in Figure 9. Note that the REFERENCE NAME segment and NAME
segment are concatenated and presented to an application program as one
segment.
Using the logical relationship, data in both physical data bases can be
accessed and modified. For example, if the key field of a given SKILL
segment is known, the segments REFERENCE NAME-NAME, ADDRESS, and PAYROLL
can be examined.
All occurrences of REFERENCE NAME-NAME, ADDRESS, and PAYROLL segments
under a particular SKILL segment become a logical data base record. The
segments in this logical data base record may be accessed by an
application Rrcgram in the same manner as segments in a physical data
base record.
As shewn in Figure 8, the logical child segment REFERENCE NAME
establishes a unidirectional logical relationship path from the SKILL
segment to the NAME segment. If a logical relationship path also should

exist in the ether direction -- from the NAME segment to the SKILL
segment -- a second logical child segment must be introduced. In Figure
10 the dependent segment REFERENCE SKILL is used to construct the second
logical relationship.

SKILL/PERSONNEL LOGICAL DATA BASE

Figure 9. Combined Data Structure Viewed from the SKILL Segment

SKILL DATA BASE PERSONNEL DATA BASE

n ___________________ n
PAIRED ________

Figure 10. Bidirectional Logical Relationship Between Physical Data
Eases

15

tzi
rn

The logical relationship shown in Figure 1C is called a bidirectional
logical relationship, whereby the BEFEBENCE NAME and REFERENCE SKILL
segments are paired. Both logical child segments have a logical and a
physical parent -- for instance, BEFEBENCE SKILL has the physical parent
NAME and the logical parent SKILL.
The logical relationship shown in Figure 10 makes possible another
logical structure -- in addition to that which has already been shewn in
Figure 9. The new structure is that as viewed from the NAME segment,
shown in ligure 11. Here the BEFEBENCE SKILL and SKILL segments are
concatenated and presented to an application program as one segment.
For this example PAYROLL, not of interest, has been omitted.

PERSONNEL/SKILL LOGICAL DATA BASE

Figure 11. Combined Data Structure Viewed from the NAME Segment

Specific occurrences of BEFEBENCE NAME and BEFEBENCE SKILL are paired,
whereby they have the same intersection data. Figure 12 shews an
example of how a specific REFERENCE NAME occurrence for Jones is paired
with BEFEBENCE SKILL for artist.
DL/I-Entry is responsible for ensuring the maintenance of this paired
bidirectional logical relationship. If one direction of the
relationship is altered by segment insertion or deletion, EL/I-Entry
automatically maintains the other direction. For instance, if the
egment BEFEBENCE SKILL for artist in Figure 12 were deleted, BEFEBENCE
AME for Jones would automatically be deleted.

16

SKILL DATA BASE PERSONNEL DATA BASE

figure 12. Pairing

Some general rules
relationship are:
1. A logical child

physical parent
However, it may

Specific Segment Occurrences

regarding the segments which participate in a logical

segment must
-- therefore
exist at any

always have a logical parent and a
it cannot exist as a root segment,
dependent level in the physical hierarchy.

z A logical child segment can have only one logical parent and one
physical parent.

3 Only one logical child
tree-like hierarchical

segment is permitted in a given branch of the
data structure.

4. A logical child segment can have no dependent segments.
5. A logical parent segment must be a root segment.
6. A logical parent segment may have one or multiple logical child

segment types. Each logical child segment type depends on one
logical relationship.

7. Only cne logical relationship can be used to define a given branch of
the tree-like hierarchical logical data structure.

17

Secondary Indexing

Secondary indexing is a special way of retrieving data base records
| (BISAM and HDAM cnly). Instead of retrieving them based on the
sequential order of the key of the root segment, they are retrieved
based cn the sequential order of the secondary index.
Second ary inde xing is made pcssible by creating a new data hase calledthe index data base. For example, in Figure 13 the segment X (which
might be a particular job title) would be the index inter eqment cf
the index data base. It ccontains the data used to index the
index tar get seqment # NAME. The index target cegme nt must be the root
segment cf the indexed data base. The index_source__segment, DEPARTMENT,
is the source cf the search data from which a secondary index is
created. The index source segment may be a root or a dependent segment
(in the example it is a dependent segment). The secondary Index has the
sequential order of the search data values. An application program can
thus retrieve cccurrences of the index target segment based cn the
sequential order of information contained in the index source segment.

PERSONNEL DATA BASE INDEX DATA BASE

Index
Pointer
Segment

Figure 13. Secondary Index Data Base

For each occurrence of a DEPARTMENT segment, DL/I-Entry would
automatically maintain the index pointer segment in the index data base,
as shewn in Figure 14.
More than one secondary index can be based on the same index source
segment type, and the indexes may use search data which is different,
overlapping, or the same.
The ad
for in
segmen
second
re trie
to che

vantages offered by secondary indexi
stance, an application program which
ts within a single department. This
ary processing sequence of the index
ving each record in seguence from th
ck for the desired department number

ng can be seen
needs to retri
is done much f
data base rath

e original data

by consi dering ,
eve all NAME
aster using the
er than
tase in crder

18

PERSONNEL DATA BASE INDEX DATA BASE

NAME

Figure 14. Secondary Index Data Base Example

Low-Level Codes

In a manufacturing industry, low-level codes placed in the root segments
of a parts data base can be used to identify the components or materials

| which make up a finished product. DL/I-Entry offers a low-level
code/continuity check feature which batch application programs written
in COBOL, PL/I, or Assembler language can call to generate, check and
update such low-level codes. Programs which use the feature are upwards

I source program compatible with DL/I DOS/VS Version 1.1 and subsequent versions.

Data Base User Interface
Application programs (except those written in RPG II) request DL/I-Entry
services using a CALL statement. The DL/I-Entry CALL statement is
compatible with VANDL-1 and DL/I DOS/VS. The CALL statement can request
DL/I-Entry to:
• Retrieve a unique segment (GET UNIQUE).
• Retrieve the next sequential segment (GET NEXT).
• Retrieve the next sequential segment within an established parent

(GET NEXT WITHIN PARENT).
• Replace the data in an existing segment (REPLACE).
• Delete an existing segment (DELETE).
• Insert a new segment (INSERT).
The RPG
services
explicit

II programmer has two possibiliti
. First, he can control them "im
requests. With this approach he

es for requesting DL/I-Entry
plicitly," without making
can retrieve DL/I-Entry data

19

base records sequentially, and can update them or produce output to
other files. He cannot, however, process segments non-seguentially, or
add segments, or delete them.
Ey using "explicit" input and output, however, the RPG II programmer can
process a data base both sequentially and ncnsequentially, and can add
and delete segments as well as being able to retrieve and update them.He requests services using RPG II REAL and EXCPT statements. The LL/I-
Entry data bases are defined in his program as special files.
A common symbolic program linkage handles the COBOL, RPG II, PL/I, and
Assembler languages. The external data base description (LED) gives the
data structure and physical data organization of each data base to DL/I-
Entry. Using these techniques, it is possible to physically reorganize
established data bases in a timely manner without modifying application
programs. Input/output operations and associated system control blocks
are net compiled into the application programs.
Each LEE is created from user-provided statements which define the data
structure and physical organization of the data base. These statements
are read by the DL/I-Entry DBL generation utility, which creates and
stores the LEE. The DBL then provides LL/I-Entry with a "map" from the
structure of the data base used in the application program to the
physical organization of the data used by DCS/VS data management. Cther
application data can be added to this data base without necessitating
changes to the application programs which use the data. The concept of
the DBD reduces application program maintenance caused by changes in the
data requirements of the applications.

Data Base Organization and Access Methods

DL/I-Entry supports two basic physical storage organizations,
hi^l§ichical_sequential and hierarchical_direct. The hierarchical
sequential organization provides the basis for four access methods:

e

e
e

Hierarchical sequential access method (HSAM)
Simple hierarchical sequential access method (simple HSAM)
Hierarchical indexed sequential access method (HISAM)
Simple hierarchical indexed sequential access method (simple HISAM) .

Simple HSAM and simple HISAM process root-only data bases.
I .The hierarchical direct organization provides the basis for the
I hierarchical direct access method (HDAM).
Segments that represent one data_base_record (that is, a physical
hierarchical tree structure) are related either by physical
juxtaposition (HSAM or simple HSAM), by symbolic pointers (HISAM or
simple HISAM) , or by relative byte addresses (HDAM) .
HSAM and simple HSAM are used for sequential storage and access cn tape
or direct access storage devices. The LOS/VS sequential access method
(SAM) provides the data management services for these access methods.
HISAM and simple HISAM are used for indexed sequential access to the
hierarchical sequential organization. The EOS/VS virtual storage access
method (VSAM) provides the data management services. A HISAM or simple
HISAM data base comprises one VSAM key sequenced file. Each data base
record starts with a root segment contained in a VSAM record. As many
dependent segments of that root segment as can be accommodated are

20

I placed in the VSAM record (for HISAM only). Overflow dependent segments
I fcr that root segment are stored in additional VSAM records. Symbolic
pointers relate all physical records for one HISAM data base record.
HEAM is used for direct storage and access. The EOS/VS virtual storage
access method (VSAM) provides the data management services. The purpose
cf HDAM is tc give fast, random access to data. A HDAM data base
comprises a VSAM entry sequenced file split into a root addressable area
and an overflew area. The root addressable area contains the beginnings
(the root segme nts and some dependent segments) of data base records.
In a well designed data base this is the information most eften
processed. The overflow area contains the continuations (the remaining
dependent segments) of the data base records. This is the information
less often processed.
Logical relationships and secondary indexing are possible only with

I HISAM and HDAM.

Segment Definition and Format

The feregeing discussion has introduced some of the concepts used in the
physical storage of data. The term Mdata base record” was used. The
data base record is represented as a simple hierarchical tree structure
of related segments.
Each segment, regardless of the access method used, is composed cf two
parts -- the prefix and the data.

The format cf the prefix for any segment type is unique and is
determined by the data base organization. The use of the segment prefix
is controlled entirely by DL/I-Entry. An application program need not
be concerned about the presence or the format of the segment prefix.
The data portion cf a segment may optionally begin with a key field to
contrei the physical sequence of occurrences of that segment type. Only
the data portion of a segment is passed between an application program
and DL/I-Entrj.

Online Processing Capability

DL/I-Entry functions may be extended to an online environment through
CICS/VS. CICS/VS, a general-purpose data base/data communication
system, functions as an interface between DL/I-Entry and application
programs written in COBOL, PL/I, or Assembler language. CICS/VS makes
it possible fcr more than one application program to simultaneously work
with the same DL/I-Entry data bases.
In addition to serving as an interface with DL/I-Entry, CICS/VS offers
the application programmer a user exit facility for optional processing
routines, and macros for requesting CICS/VS services. For more
information about CICS/VS, refer to Customer_Information
£cnticl_Sjstem/pcS/VS_General_Infermation, GH20-7028.

21

User Responsibilities

Installation personnel must be adequately trained in using DL/I-Entry.
Training can take the form of classroom instruction or self-study using
the El/I-Entry documentation. In addition/ if the user intends to run
DL/I-Entry in an online environment/ the installation personnel must be
sufficiently trained in using CICS/VS.
The user must either have an existing VANDL-1 data base, or else have
collected data from which he wants to build a new DL/I-Entry data base.
The time reguired to convert an existing VANEL-1 data base to run on
EL/I-Entry is approximately one day per data base. Users not coming
from a VANDL-1 environment will require slightly more time to generate a
data base# since the input for DBD and PSB generation must be written
for the first time. Once this input is written/ however/ generation
should require less than one day per data base.
Application programs written for VANDL-1 require no conversion. Other
application programs require modification in order to use the DL/I-Entry
CALL statement and to follow EL/I-Entry conventions.
The steps a system programmer must perform in order to migrate from
VANEL-1 to EL/I-Entry are summarized in Figure 15. The steps the system
and application programming personnel of a new EL/I-Entry installation
must perform to install DL/I-Entry are summarized in Figure 16.

System Programmer

I- Read DL/I-Entry Design and Implementation Guide. SH12-5311.

2. Install DL/I-Entry system and run the sample problems.

3. Change old DBD input and generate a new DBD by using the DL/I-Entry
DBD generation utility.

4. Take old PSB input and generate a new PSB by using the DL/I-Entry
PSB generation utility.

5. Run DL/I-Entry migration utilities to transfer VANDL-1 data base into a
DL/I-Entry data base.

6. Production runs can now be made using the VANDL-1 application programs.

Figure 15. Migration from VANDL-1 to EL/I-Entry

System Programmer Application Programmer

1. Read DL/I-Entry Design and
Implementation Guide, SH12-5311.

1. Read DL/I-Entry Application
Programming Reference Manual,
SH12-5415.

2. Install DL/I-Entry system and
run the sample problems.

2. Obtain information from system
programmer about data base
structure.

3. Design data base and inform
application programmer about
data base structure.

3. Code, test and debug application
program (s).

4. Perform DBD and PSB generations. 4. Make production runs.

5. Create data base.

Figure 16 Installing DL/I-Entry at a New Installation

23

Programming Systems

EL/I-Fntry will run exclusively on the System/370 under ECS/VS. DL/I-
Entry is also supported under DOS/VS running under the control of
VM/37C. EL/I-Entry is written in Assembler language and uses the
virtual storage access method (VSAM) and seguential access method (SAM)
data management facilities. The following components of the DOS/VS SCP
(5745-010) are required:
• Ccntrcl and service programs

- Initial pregram loader
- Supervisor
- deb ccnticl
- Linkage editor
- Relocating leader
- Librarian

• Assembler
• Data management

- Seguential access method (SAM)
- Virtual storage access method (VSAM).

In addition to the above DOS/VS components, the user may reguire the
following:
• DOS/VS COBOL Compiler and Library, 5746-CE1.
• Full ANS COBOL V3 Compiler, 5736-CE2, and Full ANS COBOL Library,

| 5736-LM2.
• PL/I 0ptimi2ing Compiler, 5736-PL/I.
• PL/I Resident Library, 5736-LM4.
• PL/I Transient Library, 5736-LM5.
• RPG II Compiler, 5736-RG1.
For online execution of DL/I-Entry, the Customer Information Ccntrcl

| System/EOS/VS (CICS/VS), 5746-XX3, is required.

24

System Requirements

A minimum machine configuration for DL/I-Entry is outlined below. The
differing requirements for a EL/I-Entry batch system and fcr a DL/I-
Entry system having an online processing capability are identified.
System Euncticn Units
Processing Unit An IBM System/370 Model 115, 125, 135,

145, or 158. The DL/I-Entry batch system
requires 1CK bytes of real storage and
32K bytes of virtual storage fcr
execution. The DL/I-Entry online system
requires 12K bytes of real storage and
34K bytes cf virtual storage for
execution.

Direct Access Fcr system libraries and working storage
space: any direct access storage devices
supported by EOS/VS.
Minimum space for system use and
maintenance:
Batch System 20 cyl IEM 2316

Disk Pack or
equivalent

Online System 40 cyl IEM 2316
Disk Pack cr
equivalent

Fcr DL/I-Entxy data base storage, within
the capability and restricticns of DOS/VS
support by the virtual storage access
method and sequential access method:
IBM 2314/2319 Direct Access

Storage Facility
IBM 3330/3333 Disk Storage
IBM 3340 Direct Access

Storage Facility
Gther I/O One IBM 2560 Card Eeader/Punch

(or equivalent),
one IBM 3203 Printer (or equivalent), and
(required for online only) any terminal
supported by CICS/VS.

25

Estimated Storage Requirements

The following is an example of the storage requirements for a DL/I-Entry
batch application program which utilizes the basic LL/I-Entry functions
and accesses two HISAM or HDAW data bases. The total virtual storage
requirements are 9hK bytes. The total real storage requirements are 20 pages (4CK bytes). This is an estimate of the lowest number cf page
frames required for reasonable performance without "thrashing.”

r---I |Virtual
I I (bytes)
|EL/I-Entry code | 34K
I I
I I
I I
JEL/I-Entry werking storagel 2K
IEL/1-Entry control blocks | 2K
I I
|VSAM modules: |
Ireccid management | 28K
| (CPEK/CLCSE processing |
| 142K) i
| VSAM control blocks |
I---------------------------------
|VSAM buffers and | 8K
|DL/I-Entry I/O areas |
I I
I II---------------------------------
ISubtctal (execution mode) | 78K
lApplication program | 16K
ITotal (execution mode) | 94K

Beal | Comments
(pages)]

5 |Only 5 pages (10K) have
|heavy usage and therefore
|will always be in real
j storage.

1 | Approximately 1K for each
|HISAM or HEAM data base.
| Approximately 60% of VSAW

7 |is "once per job” code.
I
I

2 |2K for each VSAE data set.
2 |h buffers for each data

| base.
ICcntrol interval size is
| 1 02Q bytes (1K) .

18 | 18 pages = 36K bytes.
2 I

20 120 pages = 40K bytes.

26

Sample Applications

This section presents several data base application examples. Each
example shows the data base structures used for a specific application,
and the types cf inguiries which the data bases could be expected tc
handle. Although only three sample applications are given, these
samples are constructed in a general way, so that the technigues they
illustrate apply to a wide variety of other applications.

Distribution Example

A sample application of DL/I-Entry in distribution uses these three data
bases:
• Product data base
• Customer index data base
• Supplier index data base.
These data bases are shown in Figure 17. In the following text, the
individual fields which might be contained in the segments are
described.

SUPPLIER INDEX PRODUCT DATA BASE
DATA BASE

CUSTOMER
INDEX
DATA BASE

Figure 17. Eistribution Eata Bases

PFCEUCT EATA EASE

The product data base is made up of four segment types on two
hierarchical levels. The records are stored in ascending sequence based
ufcn the product number.
The product number is the key of the root segment, the PROEUCT segment.
In addition this segment contains:

27

• The product description,
• Overall sales information (such as sales values, sales periods,

statistics)•

The PURCHASE ORDER segment contains:

The supplier number followed by the order number, used together as
the segment key.
The amount on order and the cost.
The delivery date and address.
Confirmation status.

The INVENTORY segment contains:

• The quantity on hand and stock location (in periods).
• The quantity in production (in periods).
• The quantity on order (in periods), broken down into the quantity on

customer order and the quantity on purchase order.

The CUSTOMER ORDER segment contains:

• The customer number followed by the order number, used together as
the segment key.

• The amount on order and the cost.
• The delivery date and address.
• Confirmation status.

SUPPLIER INDEX DATA BASE
The supplier index data base is created and
It is made up of a single segment type, the
segment contains information to relate, to a
number, the corresponding product number (s).

maintained
SUPPLIER se
given su^p

by DL/I-Entry
gment. This
lier and orde r

CUSTOMER INDEX DATA BASE

The customer index data base is created and maintained by DL/I-Entry.
It is made up of a single segment type, the CUSTOMER segment. This
segment contains information to relate, to a given customer and order
number, the ccrresponding product number (s) .

28

I N Q U I R I E S U S I N G T H E S E D A T A B A S E S

Any application program accessing the product data base may use one of
three possible addressing schemes. That is, a particular PRODUCT
segment may be accessed using either:

1. The product number (key of the root segment).

2. The supplier number plus the order number of one of the PURCHASE
ORDER segments dependent on the PRODUCT segment.

3. The customer number plus the order number of one of the CUSTOMER
ORDER segments dependent on the PRODUCT segment.

For sequential processing, each of these addressing schemes defines a
different processing sequence for the product data base.

If the supplier index data base were used to provide the secondary
processing seguence for the product data base, all products ordered from
a particular supplier could be retrieved and updated for purchase
planning. The quantities ordered from the supplier, and the delivery
dates, could be determined and perhaps modified, and the purchase orders
could be checked.

Another type of processing which could be performed with the product
data base, based on th$ secondary processing seguence indicated by the
supplier index data base, would be to control purchase orders.
Production changes necessary because of late delivery could be
determined, as could the effect on customer orders for a particular
product.

Using the other index data base, the customer index data base, to
provide the secondary processing sequence for the product data base, the
list of products for a particular customer could be obtained or
modified, for use by sales or to aid in planning shipment.

In this way, a number of inquiries could be made using the Index data
bases. These inquiries will perform considerably faster than searching
the product data base following its primary sequence established by the
product number to select the desired information.

29

Bill of Materials Example

In manufacturing, a bill cf materials for an assembly can be prepared
when the component parts of each particular item of the assembly, and
the lccaticn where the parts are used in the item, are known. For a

| sample item A, Figure 18 shows what might be the data structure for the
bill cf materials. In addition, this figure shows the DL/I-Entry data
base which cculd represent the bill of materials.

BILL OF MATERIALS DATA STRUCTURE

A

B 1

1 2

ITEM DATA BASE

LC = Logical Child Segment
LP = Logical Parent Segment

| Figure 18. Eill of Materials Data Structure and Item Physical Data Base

The data base shewn, the item data base, X s made up of three segment
types on two hierarchical levels. The ITEM segment contains the item
number as segment key, the item name, and the item description. The
COMPONENT ITEM DEFERENCE segment contains only a key, the item number.
The WKERF-USEE REFERENCE segment also contains only a key, the item
number. The latter two segments are used to establish logical
relationships with the ITEM segment. They may optionally contain
intersection data, that is, data unique to the relation of a certain
occurrence cf these segments and the corresponding occurrence of the
ITEM segment.
The logical data base structure, which is derived from the data base

I shown in Figure 18 by using the logical relationships between the segments, is shown in Figure 19. This is the way an application program
would view the data.

3 C

ITEM LOGICAL DATA BASE

| Figure 19. Item Logical Data Ease

INQUIRIES USING THE LOGICAL DATA BASE

A cne-level till of materials (explosion) could be produced by proceding
from an ITEM segment to its COMPONENT ITEM REFERENCE segment, which is
logically related to the corresponding ITEM segment. By repeating this
step for each item in an assembly, a complete explosion bill of
materials for the entire assembly may be developed. An example is shown
in Figure 2C. In this example, letters are used to represent items
which can be further subdivided, while numbers are used to represent
items which cannot be further subdivided.

| In step 1 of Figure 20, ITEM segments B and 1 are found as components of
ITEM segment A, by means of the logical relationships from the COMPONENT
ITEM REFERENCE segments B and 1 to the ITEM segments B and 1,
respectively. And in step 2, ITEM segment B is then broken down into
its ITEM segments 1 and 2 also through logical relaticnships.
One-level where-used information (implosion) could be produced by
proceding from an ITEM segment, through its WHERE-USED REFERENCE
segments, to the logically related larger ITEM segments. The process is
similar to that for explosion, and is shown in Figure 21 for ITEM
segments 1 and 2 in the assembly of ITEM A
A and E of the assembly, and ITEM 2 is used in ITEM B.
further used in ITEM A.

ITEM 1 is used in both ITEM
ITEM B is

31

ITEM
(A)

ITEM NO. FOR A

STEP 1

COMPONENT
ITEM
REFERENCE (B)

ITEM NO. FOR B
COMPONENT
ITEM
REFERENCE (1)

ITEM NO. FOR 1

ITEM ITEM
(B) (1)

ITEM NO. FOR B ITEM NO. FOR 1

STEP 2

COMPONENT
ITEM
REFERENCE (1)

ITEM NO. FOR 1
COMPONENT
ITEM
REFERENCE (2)

ITEM NO. FOR 2

ITEM ITEM
(1) (2)

ITEM NO. FOR 1 ITEM NO. FOR 2

| Figure 20 Explosion Bill of Materials Example

32

ITEM ITEM
(1) (2)

ITEM NO. FOR 1 ITEM NO. FOR 2

STEP 1

WHERE-USED
REFERENCE
(B)

ITEM NO. FOR B

| F ig u r e 21 I m p l o s i o n B i l l o f M a t e r i a l s E x a m p l e

Process Industry Example

A sample application of DL/I-Entry in the process industry -- in a steel
mill -- uses these four data bases:
• Customer data base
• Order line data base
• Product data base
• Production order data base.
These data bases contain all the information necessary for order entry
applications, and for production planning and control applications. The

| data bases are shewn in Figure 22. In the following text, the
individual fields contained in the segments are described.

CUSTOMER ORDER LINE DATA BASE PRODUCT DATA BASE
DATA BASE

CUSTOMER

CUSTOMER NO.

DELIVERY
ADDRESS

ORDER LINE
REFERENCE

ORDER LINE NO.

V

LC

PRODUCTION
ORDER
REFERENCE

PROD. ORDER NO.

PRODUCTION ORDER DATA BASE

LP

— ►

PRODUCTION
ORDER

PROD. ORDER NO.

LC = Logical Child Segment
LP = Logical Parent Segment

IN - PROCESS
INVENTORY

OPERATIONS

OPERATION NO.

| Figure 22. Process Industry Physical Data Bases

CUSTOMER DATA EASE

The custcmer data base is made up cf three segment types cn three
hierarchical levels. The first segment, the CUSTCMER segment, contains:
• The custcmer number, used as the segment key.
• The customer name and address.
• Sales infcrmaticn (such as order values, invoice values, credit

limits).
The DELIVERY ADDRESS segment gives the address to which orders should be
shipped (net necessarily the same as the address contained in the
CUSTOMER segment), and a location code.
The ORDER LINE REFERENCE segment establishes
with the crdei line data base. This segment
line number, used as the segment key.

the logical relationship
contains cnly the order

ORDER LINE DATA BASE

The erder line data base is made up of three segment types cn twe
hierarchical levels. The first segment, the ORDER LINE segment,
ccntains:

The order line number, used as segment key.
Prcduct identification.
Quantities and values.
The delivery date.
Order line status, broken down into the guantity allocated from
stock, the guantity to be produced

The PRODUCTICN ORDER REFERENCE segmen
relationship with the production erde
cnly the prcducticn order number, use
The PRODUCT REFERENCE segment, ccntai
segment key, establishes the logical
base. The PRCDUCT REFERENCE segment
REFERENCE segment. The reason for th
responsible fer maintaining both segm

, and the planned production date.
t establishes the logical
r data base. This segment contain,
d as the segment key.
ning only the product number as
relaticnsh iF with the product data
is paired with the ORDER LINE
is is to make DL/I -Entryents in' the event one is changed.

PRODUCT DATA EASE

This data base contains three segment types cn two hierarchical levels.
The first segment, the PRODUCT segment, contains:
• The prcduct number, used as segment key.
• The product description.
• Overall sales information (such as sales values, sales periods,

statistics).
The ORDER LINE REFERENCE segment, containing only the order line number
as segment key, establishes the logical relationship with the order line
data base and is paired with the PRODUCT REFERENCE segment in that data
base.

35

The INVENTORY segment is not involved in a logical relationship. It
contains:
• The quantity on hand and stock location (in periods).
• The quantity in production (in periods).• The guantity cn order (in periods), broken down into the quantity cn

customer order and the quantity on purchase order.

PRODUCTION ORDER DATA EASE

The production order data base contains three segment types cn two
hierarchical levels. The main segment is the PRODUCTION ORDER segment;
it describes both planned and in-process production. The segment
contains:
• The product descripticn• The production begin and end da tes , with quantities• Material allocation informatie n• The checkpci n t plan.
The IN--PROCESS INVENTORY segment centains the up-to-date inventory at
varicu;E points in the processing sequence or at intermediate stores.
Occurrences of the OPERATIONS seg ment describe operations during
Picces;Eing. This segment contain s:
• The operaticn description• The operation duration• The set-up time• The operation status.

INQUIRIES USING THESE DATA BASES

The logical relationships established between the four physical data
| bases shown in Figure 22 make it possible to build three logical data
bases:
• Order entry data base
• Product control data base
• Production planning and control data base.

I These logical data bases, shown in Figure 23, present the
programmer with new hierarchical structures of informatio
from the structures contained in the physical data bases,
text describes the types of processing that might be done
logical data bases.

£li?^£_lHiry_Eata_Ease

The order entry data base is made up of the customer data
logically related order line data base. Since, however,
dependent segments of the order line data base are refere
defining other logical relaticnshps, they cannot be included in the
order entry data base.

application
n, different

The following
with the

base and the
the two
nee segments

36

ORDER ENTRY DATA BASE PRODUCT CONTROL DATA BASE

PRODUCTION PLANNING AND CONTROL DATA BASE

| Figure 23. Process Industry Logical Data Eases

37

The order entry data base could be
orders for a particular customer,
instance, shipment dates for order
changed, depending on their order
addresses, and quantities could be
order lines could be added.

used to inguire about the existing
and to modify these order s. For
lines couId be confirmed and possibly
line statuS • Cr deli ver y dates,
controlied. New custemers and new

Order processing would be
base, involving checking
controlling credit limits
obtained fcr preparing in

another
for valid
, and the
voices or

possibl
custom
like.
other

e applic
er numbe
Informa
document

ation
rs an
tion
s.

fcr this data
d addresses,
might also be

Pr ° due t_Contrcl_ Eat a__ Base
The product control data base is made up cf the product data base and
the lcgicallj related order line data base.
Excluded from the product control data base are the two dependent
segments cf the erder line data base, for they are reference segments
defining other logical relationships. One of these segments, the
PRODUCT REFERENCE segment, is nevertheless paired with the ORDER LINE

| REFERENCE segment, as shown in Figure 22. The reason for this is to
make DL/I-Entry responsible for maintaining both segments in the event
one is changed. For instance, if a new ORDER LINE REFERENCE segment
were added tc the product control data base, DL/I-Entry would add a
corresponding ORDER LINE segment in the order line data base and also
the apprepriate PRODUCT REFERENCE segment in the order line data base.
The product control data base could be used to evaluate and modify
production requirements. For instance, all order lines for a particular
product cculd be retrieved, to establish delivery dates and quantities.
Or decisions about production orders for a particular product could be
made, such as the quantities needed to fill customer orders cr the
production dates necessary to meet specified delivery dates.

^1 cducticn_ Plan ning[_and_Ccntrcl_Data_ Ease

The production planning and ccntrcl data base is made up of the order
line data base and the logically related production order and product
data bases.
Since the ORDER LINE REFERENCE segment of the product data base is a
logical child segment, it is excluded from the logical data base
structure. This segment is nevertheless paired with the PRODUCT

| REFERENCE segment, as shown in Figure 22, in order to make DL/I-Entry
responsible fcr maintaining both segments in the event that one is
changed.
The production planning and ccntrcl data base could be*used to:
• Insert new production orders related tc the appropriate order line,

cr update existing orders depending on decisions made during
production requirements evaluation.

• Check erder line status, production
inventory, operation dates.

order status, in-prccess

• Calculate the quantities net covered by allocated stock.
• Allocate available stock.
• Update inventories.

38

Index

Where more than one page reference is
given, the major reference is first

access methods
description of 20-21 list of 4,10
used by batch system 4,5 used by online system 6,7 Assembler language
batch interface 4,19-20
online interface 6,19-20

backup/reload utilities 8
batch system

description of 3-5 storage requirements 26,25 system requirements 24,25 bidirectional logical
relationships 15-16,17

bill of materials example 30-33

call statementcompatibility 19,22 functions performed by 19
online initiation 6 use by DL/I-Entry 2,4 child segment 12
(see also logical child segment)

CICS/VS (Customer Information Control System/DOS/VS)
description of 21
file control facility 6,7
interface with DL/I-Entrydetailed description of 6,7 general description of 1 ,2
programming systems requirement 24
training in 22 COBOL
batch interface 4,19-20
compilers supported 24 online interface 6,19-20

compa tibility
with DL/I DOS/VS 19 with VANDL-1 19,22,8 conversion from VANDL-1 22,8 customer data base 34,35

customer index data base 27,28-29 Customer Information Control System/DOS/VS (see CICS/VS)

data
base (see data base)
common 9 dependent 2,11 field 9,11
independence 10 intersection 14logical (see logical relationships) nonsensitive 9

organization (see data organization) record
DL/I-Entry (see data base record) traditional 11 red undant 9,13

segment (see segment) sensitivity
definition of 9
description of 2-3,10,12

shared 2,9
structure (see data organization)

data base
definition of 9
description (see DBD) description of 2-3
field 9,11

(see_also key field) hierarchical concept 2-3,11-12
index 18-19,27-29 interface 19-20 logical 13-17

(see_also logical relationships)
organization 2-3,11-12

(see_also hierarchical direct
organization; hierarchical
sequential organization) physical 13-14 record
definition of 10 example of 11
format of 20-21
logical 14 physical 14

secondary index 18-19,27-29
segment (see segment) structure 2-3,11-12

(see also hierarchical direct
organization; hierarchical sequential organization)VANDL-1 19,22,8

Data Language/I DOS/VS (DL/I DOS/VS) 19
Data Language/I-Entry DOS/VS
(see DL/I-Entry)

data organizationhierarchical direct 10,20,21
hierarchical sequential 10,20
traditional 2,11 with DL/I-Entry 2-3,11-12 DED (data base description)
description of 3,20 generation utility description of 8 use of 22,23

defini tionsof data bases (see DBD) of terms 9-10
DELETE call 19 dependent data 2,11

39

dependent segment
definition of 12 restriction with logical
relationships 17
storage with HDAM 21 storage with HISAM 20-21 direct access method (see HDAM) direct access storage devices 20-21,25

distribution example 27-29 DL/I DOS/VS (Data Language/I DOS/VS) 19
DL/I-Entry (Data Language/I-Entry DOS/VS)

access methods 20-21(see_also access methods)
applicability of 1
batch system structure 3-5
call statement 19

(see_also call statement)
data structure 2-3,11-12

(see also hierarchical direct
organization; hierarchical sequential organization)

description of
detailed 9-22
general 1-2examples of using (see examples)

installing 22-23
interface with CICS/VS 21 (see_also CICS/VS)
language interfacebatch system 3,4,5 online system 6,7
nucleus 3-4,5online system structure 6,7
processorbatch s y stem 3,4-5

online system 6,7
system structure

batch 3-5 online 6,7
DL/I-Entry DOS/VS (see DL/I-Entry)DOS/VS data management 20-21

entry sequenced file 21estimated storage requirements 26,25
e xamplesbill of materials 30-33

distribution 27-29 logical relationshipsbill of materials 30-33
personnel 13-17 process industry 35-38

personnel 13-17 process industry 34-38
secondary indexing 18-19,27-29

EXCPT RPG II statement 20 explicit RPG II processing 20
explosion bill of materials 31,32
external data base description (see DBD)

field 9,11(see_also key field)

GET NEXT call 19GET NEXT WITHIN PARENT call 19
GET UNIQUE call 19

HDAM (hierarchical direct access method) description of 20,21
logical relationships, use with 13,21 secondary indexing, use with 21
storage requirements 26 use by batch system 4,5
use by online system 7

hierarchical data structure(j=êê_also hierarchical direct
organization; hierarchical
sequential organization) description of 2-3,11-12
restriction concerning 17 hierarchical direct access method (see HDAM)

hierarchical direct organization 10,20,21
(see_also hierarchical data structure)

hierarchical indexed sequential access method (see HISAM)
hierarchical sequential access method (see HSAM)
hierarchical sequential organization 10,20

(JL§e_also hierarchical data structure) HISAM (hierarchical indexed sequential
access method)

description of 20-21,10 logical relationships, use with 13,21
secondary indexing, use with 21 storage requirements 26 use by batch system 4,5
use by online system 7

HS AM (hierarchical sequential access method) description of 20,10
use by batch system 4,5

I/O requirements 25 implicit RPG II processing 19-20
implosion bill of materials 31,33 independence, data 10
index data base 18-19,27-29 index pointer segment 18
index source segment 18,28 index target segment 18 indexing, secondary

description of 18-19,4
examples 18-19,27-29 restrictions 21,18

input/output requirements 25
INSERT call 19
installation personnel, responsibilities 22-23,8
installing DL/I-Entry 22-23,8 inte rface CICS/VS

detailed description of 6,7
general description of 1,2 data base 19-20 • language
batch system 3,4,5
online system 6,7 program 19-20 user 19-20

intersection data 14
item data base 30-33

40

key field
description of 21 with logical relationships 14 with secondary indexing 18

key sequenced file 20

language interfacebatch system 3,4,5
online system 6,7

languages(see_also Assembler language; COBOL;
PL/I; PPG II)
interface (see language interface) supported 4,6

levels, segment 12
logical child segment description of 14,16 restrictions 17
logical data base 13-17(see also logical relationships)
logical data structure (see logical
rela tionships)

logical parent segment description of 14,16
restrictions 17 logical relationships
bidirectional 15-16,17 description of 13-17,4
examplesbill of materials 30-33

personnel 13-17 process industry 35-38
paired bidirectional 15-16,17
restrictions 21,17
rules for 17,21 undirectional 14

low-level codes 19,3-4,5

migration from VANDL-1 22,8
migration utilities 8,22

nonsensitive data 9 nucleus, DL/I-Entry 3-4,5

online systemdetailed description of 6,7 general description of 1,2,21 system requirements 24,25
order entry applications 34 order entry data base 36-37,38
order line data base 34,35
organization, data (see data organization)

paired bidirectional logical
relationships 15-16,17 paired segments 15-16,17
parent segment 12,19(see_also logical parent segment;

physical parent segment)
personnel data base 11,13-19 personnel example 13-17 personnel, responsibilities 22-23,8
personnel/skill logical data base 15,16

physical data base 13-14
physical data organization 10,20,21 physical parent segment

description of 14,16 restrictions 17 PL/I
batch interface 4,19-20
compiler supported 24
online interface 6,19-20 pointer segment 18

prefix, segment 21
process industry example 34-38 processor, DL/I-Entry

batch system 3,4-5
online system 6,7

product control data base 37,38 product data base
in distribution example 27-29
in process industry example 34,35-36

production order data base 34,36 production planning and control
applications 34
production planning and control data base 37-38
program interface 19-20
program linkage 19-20,9 program sensitivity (see segment sensitivity)
program specification block (see PSB) programming languages

(see_also Assembler language; COBOL;PL/I; RPG II)
interface (see language interface) supported 4,6

programming systems requirements 24 PSB (program specification block)
description of 3
generation utility description of 8 use of 22,23

random access 21
READ RPG II statement 20record

DL/I-Entry (see data base record) traditional 11
redundant data 9,13
relationships, logical (see logical relationships) reload utility 8
REPLACE call 19 requirements

for logical relationships 17,21
for secondary indexing 21,18
machine configuration 25 programming system 24
storage 26,25
user 22-23,8responsibilities, user 22-23,8

root-only data base 20 root segment
data base consisting only of 20 definition of 12 restriction for logical relationships 14, 17
restriction for secondary indexing 18 RPG II 19-20,4

41

SAM (sequential access method)programming systems requirement 24
use by batch system 4,5 sample applications
bill of materials 30-33
distribution 27-29
logical relationships

bill of materials 30-33 personnel 13-17 process industry 35-38
process industry 34-38
secondary indexing 18-19,27-29 secondary indexing
description of 18-19,4
examples 18-19,27-29 restrictions 21,18 segment
child 12(see also logical child segment)
definition of 9
dependent 12

(see_also dependent segment)
description of 11,10 format 21
index pointer 18 index spurce 18,28 index target 18
levels, maximum number of 12
logical child (see logical child segment) paired 15-16,17 pa rent 12,19

(see_also logical parent segment; physical parent segment) prefix 21
root 12

(see_also root segment)
sensitivityand data independence 10

definition of 9 description of 2-3,10,12
twin 12 types

maximum number of 12 with logical relationships 17 sensitivity
and data independence 10
definition of 9 description of 2-3,10,12 sequential access method (see SAM)

shared data 2,9
simple hierarchical indexed sequential access method (see simple HISAM)

simple hierarchical sequential access
method (see simple HSAM)

simple HISAM (simple hierarchical indexed sequential access method)
description of 20-21,10 use by batch system 4,5 use by online system 7

simple HSAM (simple hierarchical sequential access method)
description of 20,10
use by batch system 4,5 skill data base 12-17

skill/personnel logical data base 15
source segment 18,28 special files, RPG II 20
storage devices, direct access 20-21,25 storage requirements 26,25 structure, data base 2-3,11-12 supplier index data base 27-29
symbolic program linkage 19-20,9 system, DL/I-Entry

(see also DL/I-Entry)
batch structure 3-5
concepts 9-22
online structure 6,7 system requirements
machine configuration 25
programming 24

target segment 18
teleprocessing (see CICS/VS; online system) traditional data organization 2,11
tree structure 11,17

(f?£fLJLL§o hierarchical data structure) twin segment 12

unidirectional logical relationships 14 user interface 19-20 user responsibilities 22-23,8
utility programs 8,22-23

VANDL-1 (Vancouver Data Language One) 19,22,8
VSAM (virtual storage access method) programming systems requirement 24 storage requirements 26

use by batch system 4,5,20-21
use by online system 6,20-21

42

READER'S COMMENT FORM

DL/I-Entry DOS/VS GH12-5115-1
General Information Manual

Please comment on the usefulness and readability of this publication, suggest additions and deletions, and
list specific errors and omissions (give page numbers). All comments and suggestions become the property
of IBM. If you wish a reply, be sure to include your name and address.

COMMENTS

THANK YOU FOR YOUR COOPERATION
PLEASE FOLD ON TWO LINES, STAPLE AND M AIL

GH12-5115-1

YOUR COMMENTS, PLEASE

Your comments on the other side of this form will help us improve future editions of this publication.
Each reply will be carefully reviewed by the persons and department responsible for writing and publishing
this material.

Please note that requests for copies of publications and for assistance in utilizing your IBM system should
be directed to your IBM representative or the IBM branch office serving your locality.

IBM Germany
Program Product Center
58 Schwertstrasse
D-7032 Sindelfingen
Federal Republic of Germany

IBM World Trade Corporation
821 United Nations Plaza
New York, New York 10017
U.S.A.

D
L/I-E

ntry D
O

S
/V

S
 G

eneral Inform
ation M

anual
Printed in D

enm
ark

G
H

12-5115-1

	S:\Temp\Scan\IMG_0147.pdf
	D:\Temp\Scan\IMG_0147.jpg

	S:\Temp\Scan\GH12-5115-1 Data Language I-Entry DOSVS 197602.pdf
	S:\Temp\Scan\IMG_0150.pdf
	D:\Temp\Scan\IMG_0150.jpg

