
---------- ----- - -- ---- --------------·-
IBM DATABASE 2 Version 2

SQL Reference

Release 2

SC26-4380-1

SECOND EDITION (SEPTEMBER 1989)

This edition replaces and makes obsolete the previous edition, SC26-4380-0. Also replaced and obsolete is
the associated technical newsletter, SN26-8224.

This edition applies to Release 2 of IBM DATABASE 2 Version 2, Program Number 5665-DB2, and to any
subsequent releases until otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of Changes" in the first section of this
publication. Specific changes are indicated by a vertical bar to the left of the change. A vertical bar to the
left of a figure caption indicates that the figure has changed. Editorial changes that have no technical
significance are not noted.

Changes are made periodically to this publication; before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/370, 30xx, 4300, and 9370 Processors
Bibliography, GC20-0001, for the editions that are applicable and current.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. If you request publications from the address given below, your order will be delayed
because publications are not stocked there.

A Reader's Comment Form is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation; Department J57, P. 0. Box 49023, San Jose, California,
U.S.A. 95161-9023. IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1983, 1989. All rights reserved.

Contents

Chapter 1. Introduction .
Statement of Purpose

Trademarks and Service Marks . 2
About This Book . 2

Who This Book Is For . 2
How This Book is Organized . 2
How to Use This Book . 3

How to Use the DB2 Library . 3
Summary of Changes to DB2 . 5

Release 2 . 5
Release 1 6

Summary of Changes to This Book . 7
Release 2 . 7
Release 1 . 7

How to Read the Syntax Diagrams . 8
DB2 and Systems Application Architecture 10

Chapter 2. Concepts . 11
Static SQL ... 11
Dynamic SQL ... 11
Tables ... 11
Indexes ... 12
Views .. 12
Catalog ... 12
Locking and Recovery 13
Authorization and Privileges 14
Storage Structures . 14
Distributed Data . 15

Distributed Data Management 15
Terminology: "Local" and "Remote" 15
Allowable SOL Statements 15
DB2 Authority for Remote Access . 15
Committing and Rolling Back Changes 15
Additional Restrictions . 16

Chapter 3. Language Elements . 17
Characters . 17
Tokens ... 17
Identifiers ... 18

SQL Identifiers . 18
Location Identifiers . 19
Host Identifiers .. 19

Naming Conventions .. 19
Aliases and Synonyms 21
Authorization IDs .. 22

Authorization IDs and Bind 22
Authorization IDs and Dynamic SQL 23
Authorization IDs and Remote Execution . 24

Data Types . 25
Character Strings .. 25
Graphic Strings ... 27
Numbers .. 27

Contents iii

iv DB2 SOL Reference

Date/Time Values .. 28
Basic Operations .. 31

Numeric Assignments 32
String Assignments 33
Date/Time Assignments 34
Numeric Comparisons 34
String Comparisons 35
Date/Time Comparisons 35

Constants ... 36
Integer Constants .. 36
Floating-Point Constants 36
Decimal Constants 36
Character String Constants 36
Graphic String Constants 37

Alternative Syntax . 37
Decimal Point Representation 37
String Delimiters ... 38
The Character Set Option 39
The Mixed Data Option 39
The Date and Time Options 39
Standard SQL Language . 39
The NOFOR Option: FOR UPDATE OF 40

Special Registers .. 41
USER .. 41
CURRENT DATE ... 41
CURRENT SQLID .. 42
CURRENT TIME ... 42
CURRENT TIMESTAMP 42
CURRENT TIMEZONE 43

Column Names .. 43
Qualified Column Names 43

Host Variables .. 46
Host Structures in PL/I, C, and COBOL 48

Expressions . 49
Without Operators . 50
With the Concatenation Operator . 50
With Arithmetic Operators . 51
Two Integer Operands 51
Integer and Decimal Operands 51
Two Decimal Operands 52
Decimal Arithmetic in SQL 52
Floating-Point Operands . 52
Date/Time Operands 53
Date/Time Arithmetic in SQL 53
Precedence of Operations 56

Predicates ... 57
Basic Predicate ... 58
Quantified Predicate 58
BETWEEN Predicate . 59
NULL Predicate . 59
LIKE Predicate .. 59
EXISTS Predicate .. 61
IN Predicate . 61

Search Conditions . 62

Chapter 4. Functions . 65
Column Functions .. 65

AVG ... 66
COUNT ... 66
MAX ... 67
MIN ... 67
SUM ... 68

Scalar Functions ... 68
CHAR ... 69
DATE .. 70
DAY ... 70
DAYS .. 71
DECIMAL . · ... 71
DIGITS ... 72
FLOAT .. 72
HEX ... 73
HOUR .. 73
INTEGER .. " . 7 4
LENGTH · 74
MICROSECOND ... 75
MINUTE ... 75
MONTH ... 76
SECOND .. 76
SUBSTR .. 76
TIME · " 77
TIMESTAMP .. 78
VALUE ... 79
VARGRAPHIC ... 80
YEAR .. 80

Chapter 5. Queries . 83
subselect .. 83

select-clause . 84
from-clause . 87
where-clause . 87
group-by-clause ... 88
having-clause ... 88
Use of Views: Special Criteria . 89

fullselect .. 91
select-statement . 93

order-by-clause . 93
update-clause ... 94

Chapter 6. Statements . 95
How SOL Statements Are Invoked 97
ALTER INDEX .. 100
ALTER STOGROUP . 106
ALTER TABLE ... 108
ALTER TABLESPACE 115
BEGIN DECLARE SECTION 122
CLOSE .. 123
COMMENT ON . 124
COMMIT ... 126
CREA TE ALIAS . 127
CREATE DATABASE . 129

Contents V

Vi 082 SOL Reference

CREATE INDEX . 131
CREATE STOGROUP . 140
CREATE SYNONYM . 142
CREATE TABLE . 144
CREATE TABLESPACE 154
CREATE VIEW ... 161
DECLARE CURSOR . 165
DECLARE STATEMENT 168
DECLARE TABLE ... 169
DELETE ... 172
DESCRIBE . 176
DROP ... 179
END DECLARE SECTION . 183
EXECUTE .. 184
EXECUTE IMMEDIATE 186
EXPLAIN . 188
FETCH .. 192
GRANT .. 194
GRANT (DATABASE PRIVILEGES) 196
GRANT (PLAN PRIVILEGES) . 198
GRANT (SYSTEM PRIVILEGES) . 199
GRANT (TABLE or VIEW PRIVILEGES) 201
GRANT (USE PRIVILEGES) . 203
INCLUDE · . 205
INSERT .. 207
LABEL ON . 211
LOCK TABLE .. 213
OPEN ... 215
PREPARE .. 218
REVOKE ... -221
REVOKE (DATABASE PRIVILEGES) 224
REVOKE (PLAN PRIVILEGES) . 227
REVOKE (SYSTEM PRIVILEGES) . 229
REVOKE (TABLE or VIEW PRIVILEGES) . 231
REVOKE (USE PRIVILEGES) . 233
ROLLBACK , . 235
SELECT INTO . 236
SET CURRENT SOLID . 238
UPDATE -.................. 240
WHENEVER . 245

Appendix A. SQL Limits . 247

Appendix B. SQLCA and SQLDA 249
SQL Communication Area (SQLCA) . 249
SQL Descriptor Area (SQLDA) . 252

Appendix C. 082 Catalog Tables . 257
SYSIBM.SYSCOLAUTH Table . 259
SYSIBM.SYSCOLUMNS Table . 260
SYSIBM.SYSCOPY Table . 262
SYSIBM.SYSDATABASE Table 263
SYSIBM.SYSDBAUTH Table 264
SYSIBM.SYSDBRM Table . 266
SYSIBM.SYSFIELDS Table . 267
SYSIBM.SYSFOREIGNKEYS Table . 268

SYSIBM.SYSINDEXES Table . 269
SYSIBM.SYSINDEXPART Table . 271
SYSIBM.SYSKEYS Table . 272
SYSIBM.SYSLINKS Table . 273
SYSIBM.SYSPLAN Table 274
SYSIBM.SYSPLANAUTH Table 275
SYSIBM.SYSPLANDEP Table . 276
SYSIBM.SYSRELS Table . 277
SYSIBM.SYSRESAUTH Table . 278
SYSIBM.SYSSTMT Table . 279
SYSIBM.SYSSTOGROUP Table . 280
SYSIBM.SYSSYNONYMS Table . 281
SYSIBM.SYSTABAUTH Table . 282
SYSIBM.SYSTABLEPART Table 284
SYSIBM.SYSTABLES Table 285
SYSIBM.SYSTABLESPACE Table 287
SYSIBM.SYSUSERAUTH Table . 288
SYSIBM.SYSVIEWDEP Table
SYSIBM.SYSVIEWS Table

290
291

SYSIBM.SYSVL TREE Table . 292
SYSIBM.SYSVOLUMES Table . 293
SYSIBM.SYSVTREE Table . 294

Appendix D. The Communications Database . 295
SYSIBM.SYSLOCATIONS Table 295
SYSIBM.SYSLUMODES Table . 295
SYSIBM.SYSLUNAMES Table . 296
SYSIBM.SYSMODESELECT Table . 296
SYSIBM.SYSUSERNAMES Table . 297

Appendix E. SQL Reserved Words . 299

Glossary . 301

Bibliography .. 307

Index 309

Contents Vii

Chapter 1. Introduction

Statement of Purpose

Interface

DB2 includes a number of programming interfaces, some intended for general use
and some that are product sensitive. We define those terms as follows:

General-Use Programming Interface

General-use programming interfaces are provided to allow you to write programs
that use the services of IBM DATABASE 2 .

.____ ______ End of General-Use Programming Interface ______ __....

Product-Sensitive Programming Interface

Installation exits and other product-sensitive interfaces are provided to allow you
to perform tasks such as product tailoring, monitoring, modification, or diagnosis.
They are dependent on the detailed design or implementation of the product. Such
interfaces should be used only for those specialized purposes. Because of their
dependencies on detailed design and implementation, it is to be expected that
programs written to such interfaces may need to be changed in order to run with
new porduct releases or versions, or as a result of maintenance .

.__ _____ End of Product-Sensitive Programming Interface _____ ____,

A definitive description of each interface is included in an appropriate place in the
DB2 library, as shown in the table that follows. (All book titles begin with IBM
DATABASE 2 Version 2.)

Type Description is in ...

Structured Query Language (SOL}, general use SQL Reference
including SQLCA and SQLDA

Call attachment facility general use Application Programming and SQL
Guide

SOL return codes product-sen~itive Messages and Codes

Interfaces to user-written exit routines product-sensitive Administration Guide

Instrumentation facility interface (IFI} product-sensitive Administration Guide

Commands used with IFI product-sensitive Command and Utility Reference

DB2 catalog product-sensitive SQL Reference

DSNHDECP load module product-sensitive DSNDDECP mapping macro

ROI parameter list product-sensitive DSNXRDI mapping macro

This book is intended to help you to write programs that include SOL statements. It
contains a general-use programming interface, which allows you to write programs
that use the services of DB2.

Chapter 1. Introduction 1

However, this book also provides information on the 082 catalog, which is a
product-sensitive programming interface; that information is explicitly identified
where it occurs.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.

Any references to an IBM licensed program or other IBM product in this publication
is not intended to state or imply that only IBM's program or other product may be
used. Any functionally equivalent program may be used instead.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

Trademarks and Service Marks
The following term, used in the DB2 library, is a registered trademark or service
mark of the IBM Corporation in the United States or other countries:

IBM

The following terms, used in the DB2 library, have been adopted by the IBM
Corporation as trademarks or service marks in the United States or other
countries:

DB2
DFSMS
MVS/DFP
MVS/ESA

MVS/XA
QBE
QMF
SAA

SOLIDS
System/370
3090

About This Book
This book serves as a reference for the DB2 Structured Query Language (SOL).

Who This Book Is For
This book is intended as a reference book for end users, application programmers,
system and database administrators, and for persons involved in error detection
and diagnosis. Those who use it should already be acquainted with SOL: the book
is not an introduction to the subject. For an introduction, read Section 2 of
Application Programming and SQL Guide.

How This Book is Organized

2 DB2 SQL Reference

This book has the following sections:

Chapter 1, "Introduction" on page 1 identifies the purpose, the audience, and
the use of the book.

Chapter 2, "Concepts" on page 11 discusses the basic concepts of relational
databases and SOL.

Chapter 3, "Language Elements'·' on page 17 describes the basic syntax of
SQL and the language elements that are common to many SOL statements.

Chapter 4, "Functions" on page 65 contains syntax diagrams, semantic
descriptions, rules, and usage examples of SOL column and scalar functions.

Chapter 5, "Queries" on page 83 describes the various forms of a query,
which is a component of various SQL statements.

Chapter 6, "Statements" on page 95 contains syntax diagrams, semantic
descriptions, rules, and examples of all SQL statements.

The appendixes contain information about SQL limits, SQLCA, SQLDA, catalog
tables, the communications database, and SQL reserved words.

How to Use This Book
When you first use this book, consider reading Chapters 2 through 5 sequentially.
Chapters 2 through 4 supply the conceptual framework for D82 SOL, along with its
elements and vocabulary. Chapter 5 covers the core of SOL-the select statement,
through which users retrieve relational data.

The rest of the book is designed for the quick location of answers to specific SQL
questions. Suppose, for example, that you need to know what authority you need
to use the UPDATE statement on some table. Then you would look up this
statement in Chapter 6, in which these statements are alphabetized, and you would
find the information you need under Authorization.

How to Use the DB2 Library
The most rewarding task associated with a database management system is
asking questions of it and getting answers, the task we call end use. But other
tasks are also necessary-defining the parameters of the system, putting the data
in place, and so on. We group the tasks associated with 082 into the following
major categories:

End use: End users want to issue SQL statements to retrieve data. Possibly they
also insert, update, or delete data, still by means of SOL statements. They may
need an elementary introduction to SOL, detailed instructions for using SPUFI, and
an alphabetized reference to the types of SQl- statements. Those are found in
Application Programming and SQL Guide and this book.

The same users may issue SQL statements through QMF or some other program,
and the library for that program may provide all the instruction or reference
material they need. For a list of titles in the OMF library, see the bibliography at
the end of this book.

Application Programming: Some users access D82 without knowing it, using
programs that contain SOL statements. D82 application programmers write those
programs. Since they write SOL statements, they need Application Programming
and SQL Guide and this book, just as end users do.

They also need .instructions on many other topics; how to transfer data between
D82 and a host program-written in COBOL, c, or FORTRAN, for example; how to
prepare to compile a program that embeds SOL statements; how to process data
from two systems simultaneously, say 082 and IMS or D82 and CICS. The material
you need for writing a host program containing SQL is in Application Programming
and SQL Guide. And for those handling errors, we also recommend Messages and
Codes.

Chapter 1. Introduction 3

4 082 SQL Reference

System and Database Administration: Administration covers almost everything
else. Administration Guide (Volumes 1, 2 and 3) divides those tasks among the
following sections:

• Section 2 (Volume 1) of Administration Guide deals with defining the 082
system, estimating storage needs, and running the jobs that install the 082
program.

• Section 3 (Volume 1) of Administration Guide explains how to connect several
082 subsystems for communication using distributed data.

• Section 4 (Volume 2) of Administration Guide discusses the decisions that must
be made when designing a database and tells how to bring the design into
being by creating 082 objects, loading data, and adjusting to changes.

• Section 5 (Volume 2) of Administration Guide describes ways of controlling
access to the 082 system and to data within 082, to audit aspects of 082 usage,
and to answer other security and auditing concerns.

• Section 6 (Volume 2) of Administration Guide describes the steps in normal
day-to-day operation and discusses the steps one should take to prepare for
recovery in the event of some failure.

• Section 7 (Volume 3) of Administration Guide explains how to monitor the
performance of the 082 system and its parts. It also lists things that can be
done to make some parts run faster.

In addition, the appendixes in Administration Guide contain valuable information
on 082 sample tables, National Language Support (NLS), writing exit routines, and
interpreting 082 trace output. The information previously in the separate book IBM
DAT ABASE 2 Version 2 Instrumentation Facility Interface is now an appendix.

If you are involved with 082 only to install the system, design the database, or plan
operational procedures, Administration Guide may be all you need. If you afso
intend to carry out your own plans by creating 082 objects, granting privileges,
running utility jobs, and so on, then you also need:

• This book, which describes the SQL statements you use to create, alter, and
drop objects and grant and revoke privileges

• Command and Utility Reference, which explains how to run commands and
utilities

• Messages and Codes.

Diagnosis: A diagnostician detects and describes errors in the 082 program. He
or she may also recommend or apply a remedy. The documentation needed for
the task is in Diagnosis Guide and Reference and Messages and Codes.

Titles of books in the 082 library begin with IBM DATABASE 2 Version 2. However,
references from one 082 book to another are shortened and do not include the
product title. Instead, they point directly to the section that holds the information.
For a complete list of books in the 082 library, and the sections in each book, see
the back cover of this book.

Summary of Changes to DB2

Release 2
Version 2 Release 2 offers distributed database support. A 082 user or application
program connected to one 082 subsystem can access data stored at another D82
subsystem.

082 distributed database supports all of the function available in Version 2 Release
1, plus the following new features:

• Authorization is done at the system where the tables reside. For example, a
user at Branch 1 wanting to access data at Branch 2 must be authorized at
Branch 2 to do this. The DB2 system at Branch 2 identifies the Branch 1 user
by an authorization identifier. If the Branch 1 user wants to select data from a
Branch 2 table, authority to do so must be granted at Branch 2.

• Auditing of data is done at the site where the tables reside. So, if a user at
Branch 1 is authorized to perform queries on Branch 2 tables, the work done
on those tables is audited at Branch 2.

• DB2 Governor is extended to provide a system to control the amount of
resources used by remote users. When a user from Branch 1 attempts to run
queries on Branch 2 tables, the queries can be terminated by Branch 2 if the
time limit is exceeded.

• Data Manipulation SOL statements are supported among 082 systems. You
can update, insert and delete data at different sites if your connection is
through TSO or the call attachment facility (CAF). You can select data at
different sites if your connection is through TSO, CAF, IMS, or CICS. Data
definition SOL statements - GRANT, REVOKE, CREATE, DROP, and ALTER - are
supported at the system where the tables reside.

Remote Update Capabilities are provided for a single site per commit
scope with TSO and CAF. An authorized user at Branch 1 can update,
insert, or delete data at Branch 2 if TSO or CAF is used. However, an
update at any site, remote or local, must be committed before additional
updates at a different site may be performed.

This remote update capability is provided for 082 users connected through
TSO or CAF only. Users connected through IMS or CICS may not perform
remote updates; however, they may update local data and they may select
data from any site.
Remote Query Capabilities are provided for multiple sites per commit
scope. SELECT statements may be made to the local and to multiple
remote sites without committing data after each one. However, each
SELECT statement must reference only one 082 system. All D82 users,
connected through TSO, CAF, IMS or CICS, have this remote query
cap a bi I ity.

• Portability of applications and data is easy between 082 systems. Because of
the three-part naming convention available with 082 Version 2 Release 2, the
end user or application program can point directly to data at a specific
location. In addition, by defining alias table names, you can access data that
frequently moves from one site to another.

• Install, Migration, and Fall Back are similar to past releases of 082. However,
a new option, the distributed data facility, must be selected at install or
migration in order to use 082 data in a distributed environment. In addition, a
communications database must be created at install or migration so that 082

systems can communicate with each other through VTAM. If the
communications database is not created at install or migration, it can be

Chapter 1. Introduction 5

Release 1

6 082 SQL Reference

created by an authorized user after 082 is operational. The distributed data
facility cannot be started until the communications database has been created.
Migration to 082 Version 2 Release 2 is supported only from 082 Version 2
Release 1 and from 082 Version 1 Release 3. Fall back is supported from 082
Version 2 Release 2 to 082 Version 2 Release 1 and to 082 Version 1 Release
3. You may only fall back to the release from which you migrated.

Version 2 Release 1 offers all of the functions available with Version 1, plus: ·

• Referential Integrity, which provides the ability to have 082 ensure that
references from one table to another are valid. You can define referential
constraints which are automatically enforced on the tables to which they apply.

• Performance enhancements that significantly improve transaction, query, data
definition, and utility response time. Not only is response time improved, but
the amount of machine resource used by 082 is reduced, freeing it for other
purposes.

• MVS/ESA support enhancements which allow MVS/ESA customers to take
advantage of improvements in performance and recovery for multiple address
space operations. These improvements provide greater efficiency in hardware
resource use from which 082 directly benefits.

• Application development and tuning flexibility enhancements. Before loading
data, you do not need to create indexes as often as you did in past releases of
082. If and when additional indexes are needed, they can be created more
quickly and they are well-organized.

• Authorization control that is more flexible. A user can be represented not only
by a single (primary) authorization identifier, but also by one or more
secondary identifiers, which can serve as group identifiers. This is helpful
when using a security system like RACF. Users can also create objects to be
owned by their secondary identifiers.

• Audit trace that allows you to determine who has accessed data stored in 082
tables. The trace can record events of several types, such as unauthorized
access attempts, write accesses, and read accesses.

• Resource limit facility, or governor, to control the amount of resources used
when certain SQL queries are run. The governor terminates dynamic queries
that exceed a predetermined time limit.

• Recovery of data enhancements. The RECOVER utility allows multiple table
spaces and partitions to be recovered at the same time.

• Recovery point in time, with the addition of the QUIESCE utility. This allows you
to establish a point at which a list of table spaces is consistent.

• LOAD utility enhancements in detecting and processing unique index
violations. When the LOAD utility detects duplicate values for unique indexes,
duplicate data is not loaded.

• Segmented table spaces, which provide performance advantages for storing
more than one table in a single table space.

• Alter storage attributes ability. You can reassign table spaces, index spaces,
and partitions to different storage groups or to user-managed data sets.

• DFHSM (Data Facility Hierarchical Storage Manager) support enhancements.
You can perform synchronous automatic recall controlled by a time value you
set.

• DL/I batch support. This programming enhancement allows you to access IMS
data and 082 data in the IMS batch environment.

• National Language Support to display 0821 help and task panels in Kanji.
• Serviceability improvements to decrease service costs and problem resolution

time.
• A subset of American National Standards Institute (ANSI) SQL support.

Throughout this book, the term MVS is used to represent both MVS/Enterprise
Systems Architecture (MVS/ESA) and MVS/Extended Architecture (MVS/XA). When it
is necessary to make a technical distinction between the two environments, the
specific term is used. CICS is used to represent both CICS/OS/VS and CICS/MVS;
IMS is used to represent both IMS/VS and IMS/ESA; C and C language are used to

. represent the C/370 programming language.

Summary of Changes to This Book

Release 2

Release 1

Listed below are changes to the current edition of the book and to the previous
edition.

Many changes have been made to the current edition of the book to reflect the
enhancements of 082 Version 2 Release 2. Chief among them are the following:

Distributed Data Changes: The fact that processes operating under one 082
subsystem can access data managed at another has produced many small
changes throughout the book, plus the following major ones:

• The addition of a general description of the topic
("Distributed Data" on page 15).

• Changes to the descriptions of the special registers
("Special Registers" on page 41).

• The addition of a description of the communications database
(Appendix D, "The Communications Database" on page 295).

Aliases: These afford a way of referring to tables and views managed at other
(remote) 082 subsystems. Among the alias-related changes are:

• The addition of descriptions for the CREATE ALIAS and DROP ALIAS statements.

• Changes in the description of various 082 catalog tables to accommodate alias
information. (Appendix C, "082 Catalog Tables").

New Precompiler Options: These are the NOFOR and STDSQL options. When used,
they align the syntax rules for embedded SQL statements more closely with the
rules for American National Standards Institute (ANSI) SQL.
("Standard SOL Language" on page 39 and "The NOFOR Option: FOR UPDATE
OF" on page 40).

Index Key Statistics: The catalog table SYSl8M.SYSFIELDS, once used exclusively
for field procedures, now contains statistical information for index keys as well.
(Appendix C, "082 Catalog Tables").

Major changes to the previous edition include the following:

• Chapter 5, "Queries" on page 83 was added to the book. Queries-the subject
of that chapter-are fundamental to the use of SQL. Through them, data can be
retrieved from relational databases. The information in this chapter was
originally in a section entitled SELECT, in Chapter 6, "Statements."

• The section "SELECT INTO" on page 236 replaced the section titled SELECT.
The replacement confines its discussion to the SELECT INTO statement.

Chapter 1. Introduction 7

• The authorization enhancements introduced in 082 Version 2 Release 1 are
reflected in many areas of the book. Most affected are the authorization
discussions in the descriptions of the SOL statements. In addition, a
description of the SET CURRENT SOLID statement was added to the book.

How to Read the Syntax Diagrams

8 082 SOL Reference

Throughout this book, syntax is described using the structure defined as follows:

• Read the syntax diagrams from left to right and top to bottom, following the
path of the line.

The..,..._ symbol indicates the beginning of a statement.

The---+ symbol indicates that the statement syntax is continued on the next
line.

The.,,___ symbol indicates that a statement is continued from the previous line.

The__...... symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the
.,,___symbol and end with the---+ symbol.

• Required items appear on the horizontal line (the main path) .

....._STATEMENT---requ ired item----------.......

• Optional items appear below the main path .

....._STATEMENT-~,.--------~----------•~•

l_optional ite~

• If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the main
path .

..,..._STATEMENT---i==required choicel~
required choice2

If choosing none of the .items is an option, the entire stack appears below the
main path .

....._STATEMENT-~----------.---------.,•~4

L_optional choicel_J
L_optional choice2_J

• An arrow returning to the left, above the main line, indicates an item that can
be repeated. In this case, repeated items must be separated by one or more
blanks.

~
..,._STATEMENT--repea table i te,mm___. ___________

If the repeat arrow contains a comma, you must separate repeated items with
a comma.

~
..,._STATEMENT--repeatab le i temm--_._ _________ __.,.,,.~

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items or repeat a single choice.

• Statements appear in uppercase (for example, CREATE TABLE).

• Keywords also appear in uppercase (for example, FROM). They must be spelled
exactly as shown. Variables appear in lowercase (for example, column-name).
They represent user-supplied names or values.

• A default parameter appears in boldface and is underscored. If you don't
supply it in the statement, you will get the same result as if you had included it.

..,._STATEMENT-~-----------------~ ~
Le LA us E 1-....-----.~

t=~~
Defaults can be indicated only in the case of fixed default values. Variable
default values are explained in the description of the statement. A case in
point is the BUFFERPOOL parameter of the CREATE TABLESPACE statement.
When this is omitted, the buffer pool used is the default for the corresponding
database, and this was determined by the statement that created the database.

• If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Chapter 1. Introduction 9

Sometimes a single variable represents a set of several parameters. For example;
in the following diagram, the variable parameter-block can be replaced by any of
the interpretations of the diagram that is headed parameter-block:

~sTATEMENT---i==CLAUSEl =:J
pa rameter--b lock ·

parameter-block

..
L

PARMl
PARM2·~-,....L~PARM3_____J

PARM4_J

Example: STATEMENT CLAUSE!
or STATEMENT PARMl
or STATEMENT PARM2 PARM4

..

082 and Systems Application Architecture

10 082 SQL Reference

System Application Architecture (SAA) is a definition - a set of software interfaces,
conventions and protocols that provide a framework for designing and developing
applications with cross-system consistency.

Systems Application Architecture:

• Defines a common programming Interface that you can use to develop
applications that can be integrated with each other and transported to run in
multiple SAA environments

• Defines common communications support that you can use to connect
applications, systems, networks, and devices

• Defines a common_'!ser access that you can use to achieve consistency in
panel layout and user interaction techniques

• Offers some common applications written by IBM.

The SAA database interface is SQL. However, SAA SOL and 082 SQL are not
identical. SAA SQL is a subset of 082 SOL You should consult SAA CPI Database
Reference if you intend to develop applications that fully adhere to the definition of
SAA SOL

Chapter 2. Concepts

Static SQL

Dynamic SQL

Tables

Structured Query Language (SOL) is the language used to access data in a
relational database. SOL is unlike many programming and data languages
because you do not have to code a sequence of instructions explaining how to
access the data. SOL allows you to select data by using a single statement
directed to DB2. It is the function of DB2 to access and to maintain the data.

SOL provides full data definition and data manipulation capabilities. You can use it
to define objects such as indexes, tables, and views. You can also retrieve, insert,
update, and delete data, and control access authorization to data.

The SOL statements can be:

• Embedded inside application programs written in other languages, such as C,
COBOL, FORTRAN, Assembler, and PL/I.

This is called static SOL. The SOL statements are present in the program at
the time it is precompiled.

• Typed in from a terminal or built by a program.

This is termed interactive or dynamic SOL. The SOL statements are not
provided to 082 until the program runs.

SOL programmers can write source programs containing static SOL statements.
Before a program containing static SOL statements is compiled, the OB2
precompiler flags the SOL statements as comments and includes the code
necessary to invoke DB2. Then the compiler can process the program. The
precompiler also checks the syntax of the SOL statements.

Application program preparation requires several steps including precompilation
and compilation. For more on these steps, see Section 3 of Application
Programming and SQL Guide.

A capability for processing SOL statements entered from a terminal is part of the
architecture of OB2. You can write programs that read SOL statements from
terminals; in this sense, the process is similar to the SOL-handling processes used
by DB2's interactive facilities. Dynamic SOL allows you to create your own query
programs, tailored to your users and designed for your specific needs.

A relational database is a set of tables. Tables are logical structures maintained
by OB2. Tables are made up of columns and rows. There is no inherent order of
the rows within a table. At the intersection of every column and row is a specific
data item called a value. A column is a set of values of the same type. A row is a
sequence of values such that the nth value is a value of the nth column of the table.

Chapter 2. Concepts 11

Indexes

Views

Catalog

12 082 SQL Reference

A base table is created with the CREATE TABLE statement and is used to hold
persistent user data. A result table is a set of rows that 082 selects or generates
from one or more base tables.

An index is an ordered set of pointers to rows of a base table. Each index is based
on the values of data in one or more table columns. An index is an object that is
separate from the data in the table. When you request an index 082 builds this
structure and maintains it automatically.

Indexes are used by 082 to:

• Improve performance. In most cases, access to data is faster than without an
index.

• Ensure uniqueness. A table with a unique index cannot have rows with
identical keys. (A key is a column, or an ordered collection of columns, on
which the index is created.)

Views provide an alternative way of looking at the data in one or more tables.

Like tables, views have rows and columns with no inherent order of rows. You
specify view names in the FROM clause of the SELECT statement just as you
specify table names. You can create views and authorize their use by users who
use them like tables. However, certain operations are not valid on views.

A table has a storage representation, but a view does not. When a view is created,
its definition is stored in the catalog. No data is stored and, therefore, no index can
be created for a view. However, an index created for a table on which a view is
based may improve the performance of operations on the view.

Views may be used to:

• Control access to a table. Access to a view of a table can be granted on the
view without granting access to the table itself. The view could show only
portions of data in the table, thereby screening out sensitive data.

• Make data easier to use. For example, a view could show summary data for a
given table, combine two or more tables in meaningful ways, or show only
rows that are pertinent to the process using the view.

The database manager maintains a set of tables containing information about the
data the manager controls. These tables are collectively known as the catalog.
The catalog tables contain information about 082 objects such as tables, views,
and indexes.

Tables in the catalog are like any other database tables. If you have authorization,
you can use SQL statements to look at data in the catalog tables in the same way
you retrieve data from any other table in the system. The database manager
ensures that the catalog contains accurate descriptions of the databases at all
times.

Note: In this book, the terms "the catalog" and "the local catalog" are reserved
for the DB2 catalog that your local DB2 subsystem maintains. DB2 catalogs
maintained by other 082 subsystems are known as "remote catalogs," and the
catalogs maintained by AMS (Access Method Services) are known as ICF catalogs.

For further information about the 082 catalog, see Appendix C, "DB2 Catalog
Tables" on page 257.

Locking and Recovery
DB2 provides locking and recovery facilities for the databases that it controls. An
important aspect of these facilities are the commit and rollback operations
described below. The interface used by an SOL program to explicitly specify these
operations depends on the environment. If the environment can include
recoverable resources other than DB2 databases, the SOL COMMIT and
ROLLBACK statements cannot be used. Thus these statements cannot be used in
an IMS or CICS environment.

In every environment, an SOL program executes as part of a process. The word
'process' is a general term for a unit that is dependent on the environment, but
which has the same basic properties in every environment. A process involves the
execution of one or more programs and is the unit to which resources and locks
are allocated. Different processes may involve the execution of different programs
or different executions of the same program. The means of initiating and
terminating a process are dependent on the environment.

Multiple processes may request access to the same data at the same time. The
mechanism used to maintain integrity under such conditions is called locking. For
example, locks are used to prevent two processes from updating the same row at
the same time.

An important aspect of locking is that DB2 implicitly acquires locks on behalf of
processes such that the uncommitted changes of any process can only be
perceived by that process. All locks acquired on behalf of a process are implicitly
released when it terminates, but locks can also be released sooner at the explicit
request of the process. This operation is called commit.

082 also provides a means by which the uncommitted changes of a process can be
backed out. This is done in the event of a failure of the process or a deadlock
situation, and can also be done at the explicit request of the process. This
operation is called rollback.

A unit of recovery is a recoverable sequence of operations within a process. At
any time, a process is a single unit of recovery, but the life of a process may
involve many units of recovery as a result of commit or rollback operations.

A unit of recovery is initiated by the initiation of a process or by the termination of
a previous unit of recovery. A unit of recovery is terminated by a commit
operation, a rollback operation, or the termination of a process. A commit or
rollback operation only affects the results of operations executed within the unit of
recovery that it terminates. Uncommitted database changes made in a unit of
recovery cannot be perceived by other processes and can be backed out.
Committed database changes can be perceived by other processes and cannot be
backed out.

Chapter 2. Concepts 13

1·
I

A unit of recovery is sometimes called a logical unit of work. This reflects the
assumption that the initiation and termination of a unit of recovery are points of
consistency. For example, a banking transaction might involve the transfer of
funds from account A to account B. The amount is subtracted from A and then
added to B. After subtracting, the data is inconsistent. It is consistent again only
after the amount is added to B. When both steps are complete, the commit
operation can be used to terminate the unit of recovery and make the changes
available to other processes. If a failure occurs before the unit of recovery is
terminated, the uncommitted changes are backed out to restore the consistent
state that (presumably) existed when the unit of recovery was initiated.

Authorization and Privileges
Before it can execute a specific SOL statement, a process must have appropriate
082 authority. A process derives this authority from its authorization IDs These
supply the needed authority in the following ways:

• By their ownership of objects referred to in the statement
• By their possession of various DB2 authorities and privileges.

For more on 082 authority and its relationship to authorization IDs, see
"Authorization IDs" on page 22:

Authority requirements vary with the type of statement. Requirements for a given
type of statement are discussed in the description of that statement type in Chapter
6, under Authorization.

082 authorization plays a key role in establishing security and integrity for a 082
subsystem. For details on this role, see Section 5 (Volume 2) of Administration
Guide. 082 authority is distributed by executing SQL GRANT and REVOKE
statements. For a description of these statements, and of the authorities and
privileges that can be granted and revoked, see Chapter 6, "Statements" on
page 95.

Storage Structures

14 082 SQL Reference

DB2 storage structures are managed by Access Method Services (AMS). Related
082 objects include:

• table spaces, in which one or more tables, or a portion of a single table, are
kept.

• index spaces, which contain indexes for the 082 subsystem's tables.

• databases, from each of which a set of table spaces and indexes are managed.

• Storage groups, which list the DASO volumes that designated table spaces and
index spaces can use.

For more on 082 structures, see Section 4 (Volume 2) of Administration Guide.

Distributed Data
DB2 allows a group of DB2 subsystems to have access to each other's relational
data. For example, a process connected to one subsystem could, with appropriate
DB2 authority, retrieve data from a table at another subsystem, or insert new rows.
The data at all the subsystems of a group is known as the distributed data for that
group.

Distributed Data Management
The DB2 subsystems are part of a VTAM network. Managing this network for DB2
is the distributed data facility (DDF). For each participating subsystem, the DDF
obtains needed information from the subsystem's communication database (COB).
For more on the COB, see Appendix D, "The Communications Database" on
page 295.

Terminology: "Local" and "Remote"
From the viewpoint of a process, the subsystem to which it is connected is the local
subsystem. The rest are remote subsystems. "Local" and "remote" are also
applied to DB2 objects. A local table, for instance, is managed by the local
subsystem. A remote view is defined at a remote subsystem and is recorded in
that subsystem's catalog.

Allowable SQL Statements
Access to remote objects is restricted to tables and views. With appropriate DB2
authority, a transaction can use static and dynamic SOL statements that retrieve,
delete, ~nd insert rows, update columns, and commit or rollback changes against
remote objects. SOL statements of other types cannot refer to remote DB2 objects.
A process cannot, for example, create remote objects or alter their structures, nor
can it grant or revoke privileges that apply to remote subsystems.

DB2 Authority for Remote Access
DB2 authority to access a remote object must be recorded in the catalog of the
subsystem that manages the object. All privileges in this catalog are for objects
local to that subsystem. Only a process connected to this subsystem can execute
the pertinent SOL GRANT statement.

The record for a privilege for a given authorizatior;l ID does not identify a DB2
subsystem. As a result, a privilege afforded a given authorization ID applies to any
process operating with this authorization ID, regardless of its local subsystem.

Committing and Rolling Back Changes
All changes within a unit of recovery must be to objects managed by a single DB2
subsystem: Before a process can make changes for another subsystem, it must
commit or roll back the changes it has made for the current subsystem. This rule
applies to local changes as well as remote ones, with the following important
implications:

• No changes can be made to remote objects until any local changes have been
rolled back or committed.

• A number of SOL statements are restricted to changes to the local subsystem.
None of these statements will execute if there are uncommitted changes to
remote objects. The following are statements of this kind:

Chapter 2. Concepts 15

All CREATE, DROP, and ALTER statements, which create or delete local
objects or alter their structures

The COMMENT ON and LABEL ON statements, which record information in
the local catalog about tables, views, aliases, and columns.

The GRANT and REVOKE statements, which record grants and revocations
of DB2 privileges in the local catalog.

Additional Restrictions

16 082 SQL Reference

Additional restrictions for statements that refer to remote objects are as follows:

• Processes connected to CICS or IMS cannot execute INSERT, UPDATE, or
DELETE statements.

• All objects referenced in a single statement must be managed at the same
subsystem. This precludes, for example, referring to both remote and local
objects in the same SOL statement.

• Strings transmitted from one DB2 subsystem to another are not translated.
This fact should be taken into account if the two subsystems have different
internal representations for characters. For example, a language-dependent
character at a French-Canadian subsystem may have a different representation
at a Brazilian subsystem, or may have no representation at all. Under these or
similar conditions, it is possible, for example, for one subsystem to introduce
inaccurate or incoherent character data into tables at another subsystem. And
it is possible to retrieve data from these tables that won't display properly on
local terminals.

Before you modify data at a remote subsystem, be sure to understand the
differences between your character representations and theirs. Then avoid, if
possible, the use of any characters that have different representations at the
two subsystems.

Chapter 3. Language Elements

Characters

Tokens

This chapter defines the basic syntax of SOL and language elements that are
common to many SOL statements. Although examples are shown and most terms
are defined before they are used, this chapter is not a tutorial. It is intended for
those who require a definition of the following language elements:

• "Characters"
• "Tokens"
• "Identifiers" on page 18
• "Naming Conventions" on page 19
• "Authorization IDs" on page 22
• "Data Types" on page 25
• "Basic Operations" on page 31
• "Constants" on page 36
• "Special Registers" on page 41
• "Column Names" on page 43
• "Host Variables" on page 46
• "Expressions" on page 49
• "Predicates" on page 57
• "Search Conditions" on page 62.

The basic symbols of the language are EBCDIC characters. Characters are
classified as letters, digits, or special characters. A letter is any one of the
uppercase characters A through Z plus the three characters reserved as alphabetic
extenders for national languages (#, @, and$ in the United States). A digit is any
one of the characters O through 9. A special character is any character other than
a letter or a digit.

The language may also include double-byte characters. If mixed data is not in
effect, double-byte characters are only recognized in graphic string constants. If
mixed data is in effect, double-byte characters are also recognized within
character string constants and delimited identifiers. In SOL application programs,
any use of double-byte characters must be contained within a single line. Thus a
graphic string constant cannot be continued from one line to the next and, if mixed
data is in effect, a character string constant and delimited identifier can be
continued from one line to the next only if the break occurs between single-byte
characters. -This restriction also applies to the use of double-byte characters within
tokens of the host language.

The basic syntactical units of the language are called tokens. A token consists of
one or more characters, excluding blanks and characters within a string constant
or delimited identifier. (These terms are defined later.)

Tokens are classified as ordinary or delimiter tokens:

• An ordinary token is a numeric constant, an ordinary identifier, a host
identifier, or a keyword.

Chapter 3. Language Elements 17

Spaces

• A delimiter token is a string constant, a delimited identifier, an operator
symbol, or any of the special characters shown in the syntax diagrams. A
question mark is also a delimiter token when it serves as a parameter marker,
as explained under "PREPARE" on page 218.

A space is a sequence of one or more blank characters. Tokens, other than string
constants and delimited identifiers, must not include a space. Any token may be
followed by a space. Every ordinary token must be followed by a delimiter token or
a space. If the syntax does not allow an ordinary token to be followed by a
delimiter token, that ordinary token must be followed by a space.

Uppercase and Lowercase

Identifiers

SQL Identifiers

18 082 SOL Reference

Any token may include lowercase letters, but a lowercase letter in an ordinary
token is folded to uppercase, unless the SQL statement is embedded in a C
program or the CHARACTER SET installation option is set to KATAKANA when the
statement is parsed. Delimiter tokens are never folded to uppercase. Thus, the
statement:

select* from DSN8220.EMP where lastname = 'Smith';

is equivalent, after folding, to:

SELECT* FROM DSN8220.EMP WHERE LASTNAME = 'Smith';

An identifier is a token that is used to form a name. An identifier in an SQL
statement is an SQL identifier, a location identifier, or a host identifier.

There are two types of SQL identifiers: ordinary identifiers and delimited
identifiers.

• An ordinary identifier is a letter followed by zero or more characters, each of
which is a letter, a digit, or the underscore character. An ordinary identifier
must not be identical to a reserved word. (For a list of reserved words, see
Appendix E, "SQL Reserved Words" on page 299.)

If the CHARACTER SET option is set to KATAKANA when a statement is
parsed, an ordinary identifier may include Katakana characters.

• A delimited identifier is a sequence of one or more characters enclosed within
SOL escape characters. A delimited identifier can be used when the sequence
of characters doesn't qualify as an ordinary identifier. Such a sequence, for
example, could be an SOL reserved word, or it could begin with a number.
Two consecutive escape characters are used to represent one escape
character within the delimited identifier. The escape character is the quotation
mark (11

) except for:

Dynamic SQL when the SQL STRING DELIMITER installation option is set
to the quotation mark. Here the SQL escape character is the apostrophe
(I).

COBOL application programs. A COBOL precompiler option specifies
whether the escape character is the quotation mark (11

) or the apostrophe
(I).

Examples: WEEKLYSAL WEEKLY_SAL "WEEKLY SAL 11 $500

SOL identifiers are also classified according to their maximum length. A long
identifier has a maximum length of 18 bytes. A short identifier has a maximum
length of 8 bytes. These limits do not include the escape characters of a delimited
identifier.

Restrictions on what can appear in an ordinary identifier were discussed at the
start of this section. They apply to both long and short ordinary identifiers. In
contrast, any character can appear within a long delimited identifier. This is also
true for a short delimited identifier, with an additional restriction: A short delimited
identifier cannot begin with an underscore or a number. For delimited identifiers
of either type, periods, leading blanks and trailing blanks should be avoided.

Location Identifiers

Host Identifiers

A location identifier is like an SOL identifier except as follows:

• The maximum length is 16 bytes.

• The ordinary form must not include alphabetic extenders, lowercase letters, or
Katakana characters.

• The characters allowed in the delimited form are the same as those allowed in
the ordinary form.

A host-identifier is a name declared in the host program. The rules for forming/~/
host-idef?tifier are the rules of the host language. However, a host-identifier must
not include DBCS characters.

Naming Conventions
The rules for forming a name depend on the type of the object designated by the
name. The syntax diagrams use different terms for different types of names. The
following list defines these terms.

alias-name A qualified or unqualified name that designates an alias,
table, or view. An alias-name designates an alias when it is
preceded by the keyword ALIAS, as in CREATE ALIAS,
DROP ALIAS, COMMENT ON ALIAS, and LABEL ON ALIAS.
In all other contexts, an alias-name designates a table or
view. For example, COMMENT ON ALIAS A specifies a
comment about the alias A, whereas COMMENT ON TABLE
A specifies a comment about the table or view designated
by A.

The table or view designated by an alias can be local or
remote, and the alias-name can be used wherever the
table-name or view-name can be used to reference the table
or view in an SOL statement. The rules for forming an
alias-name are the same as those for forming a table-name
or view-name, as explained below. A fully qualified
alias-name can refer to a remote alias, but the table or view
that the remote alias represents must then be local to the"
082 subsystem at which the remote alias is defined.

Chapter 3. Language Elements 19

20 082 SQL Reference

authorization-name A short identifier that designates a set of privileges. It may
also designate a user or group of users, but this property is
not controlled by D82.

catalog-name A short identifier that designates an ICF catalog.

column-name A qualified or unqualified name that designates a column of
a table or view. The unqualified form of a column name is a
long identifier. The qualified form is a qualifier followed by
a period and a long identifier. The qualifier is a table name,
a view name, a synonym, an alias, or a correlation name.

constraint-name A short identifier that designates a referential constraint on
a table.

correlation-name A long identifier that designates a table, a view, or
individual rows of a table or view.

cursor-name A long identifier that designates an SQL cursor.

database-name A short identifier that designates a database.

descriptor-name A host-identifier that designates an SQL descriptor area
(SQLDA). The host identifier may be preceded by a colon.

host-variable A sequence of tokens that designates a host variable. A
host-variable includes at least one host-identifier, as
explained in "Host Variables" on page 46.

index-name A qualified or unqualified name that designates an index.
The unqualified form of an index-name is a long identifier.
An unqualified index-name in an SQL statement is implicitly
qualified by the authorization ID of that statement. The
qualified form is a short identifier followed by a period and a
long identifier.

location-name A location identifier that designates a D82 subsystem.

plan-name A short identifier that designates an application plan.

program-name A short identifier that designates an exit routine.

statement-name A long identifier that designates a prepared SQL statement.

stogroup-name A short identifier that designates a storage group.

synonym A long identifier that designates a synonym, a local table, or
a local view. A synonym designates a synonym when it is
preceded by the keyword SYNONYM, as in CREATE
SYNONYM and DROP SYNONYM. In all other contexts, a
synonym designates a local table or view and can be used
wherever the name of a table or view can be used in an SQL
statement. A qualified name is never interpreted as a
synonym.

table-name A qualified or unqualified name that designates a table. A
fully qualified table-name is a three-part name. The first
part is a location-name that designates the D82 subsystem
at which the table is stored. The second part is the
authorization ID that designates the owner of the table. The
third part is a long identifier. A period must be specified
between each of the parts.

tablespace-name

view-name

Aliases and Synonyms

A two-part table-name is implicitly qualified by the
location-name of the local D82 subsystem. A period must
be specified between the two parts. A one-part or
unqualified table-name is a long identifier with two implicit
qualifiers. The first implicit qualifier is the location-name of
the local D82 subsystem. The second is an authorization ID.
In a static SOL statement, the authorization ID is the owner
of the plan. In a dynamic SOL statement, the authorization
ID is the SOL authorization ID.

A short identifier that designates a table space of an
identified database. If a database is not identified, a
tablespace-name designates a table space of database
DSND804.

A qualified or unqualified name that designates a view. A
fully qualified view-name is a three-part name. The first part
is a location-name that designates the D82 subsystem at
which the view definition is stored. The second part is the
authorization ID that designates the owner of the view. The
third part is a long identifier. A period must be specified
between each of the parts.

A two-part view-name is implicitly qualified by the
location-name of the local DB2 subsystem. A period must
be specified between the two parts. A one-part or
unqualified view-name is a long identifier with two implicit
qualifiers. The first implicit qualifier is the location-name of
the local D82 subsystem. The second is an an authorization
ID. In a static SOL statement, the authorization ID is the
owner of the plan. In a dynamic SOL statement, the
authorization ID is the SOL authorization ID.

A table or view can be referenced in an SOL statement by its name, by an alias
that has been defined for its name, or by a synonym that has been defined for its
name. Thus, aliases and synonyms can be thought of as alternate names for
tables and views.

The option of referencing a table or view by an alias or a synonym is not explictly
shown in the syntax diagrams or mentioned in the description of SOL statements.
Nevertheless, an alias or a synonym can be used wherever a table or view can be
referenced in an SOL statement, with two exceptions: an alias cannot be used in
CREATE ALIAS and a synonym cannot be used in CREATE SYNONYM. If an alias
is used in CREATE SYNONYM, it must designate a local table or view, and the
synonym is defined on the name of that table or view. If a synonym is used in
CREATE ALIAS, the alias is defined on the name of the local table or view
designated by the synonym.

The effect of using an alias or a synonym in an SOL statement is that of text
substitution. For example, if A is an alias for table O.T, one of the steps involved in
the preparation of SELECT * FROM A is the replacement of 1 A 1 by 1 O.T 1

•

Likewise, if Sis a synonym for O.T, one of the steps involved in the preparation of
SELECT* FROM S is the replacement of 1 S 1 by 1 O.T •.

Chapter 3. Language Elements 21

The differences between aliases and synonyms are as follows:

• SYSADM authority or the CREATE ALIAS privilege is required to define an
alias. No authorization is required to define a synonym.

• An alias can be defined on the name of a local or remote table or view. A
synonym can only be defined on the name of a local table or view.

• An alias can be defined on an undefined name. A synonym can only be
defined on the name of an existing table or view.

• Dropping a table or view has no effect on its aliases. But dropping a table or
view does drop its synonyms.

• An alias is a quaUfied name that can be used by any authorization ID. A
synonym is an unqualified name that can only be used by the authorization ID
that created it.

• An alias defined at one DB2 subsystem can be used at another DB2 subsystem.
A synonym can only be used at the DB2 subsystem where it is defined.

• When an alias is used, an error occurs if the name that it designates is
undefined or is the name of a local alias. (Note, however, that the name can
designate a remote alias if that alias represents a table or view at the same
remote location.) When a synonym is used, this error cannot occur.

Authorization IDs
An authorization ID is a character string that designates a set of privileges. It may

also designate a user or a group of users, but this property is not controlled by
DB2.

Authorization IDs are used by DB2 to provide:

• authorization checking of SOL statements, and
• implicit qualifiers for the names of local tables, views, aliases, and indexes.

Whenever a connection is established between DB2 and a process, DB2 obtains an
authorization ID and passes it to the authorization exit. The list of one or more
authorization IDs returned by the exit are used as the authorization IDs of the
process.

Every process has exactly one primary authorization ID. Any other authorization
IDs of a process are secondary authorization IDs. The use of the primary and
secondary authorization IDs depends on whether the process creates a plan or
uses a plan.

Authorization IDs and Bind

22 082 SQL Reference

A process that creates a plan is called a bind process. The connection with DB2 is
the result of the execution of a BIND or REBIND command. Both commands allow
for the specification of the authorization ID of the owner of the plan. The specified
authorization ID must be one of the authorization IDs of the process. The default
owner for BIND is the primary authorization ID. The default owner for REBIND is
the previous owner of the plan (ownership is unchanged if an owner is not
explicitly specified).

The ID that is specified as owner must be one of the authorization IDs of the
process, unless one of the authorization IDs of the process has SYSADM authority.
In this case, the owner can be set to any value.

For static SQL statements that refer to local objects, it is the authorization ID of the
owner of the plan that is used for authorization checking and implicit qualification.
The plan owner must have all appropriate privileges as well as the authority to
issue the BIND subcommand.

For static SQL statements that refer to remote objects, authorization checking is
deferred until run time. For more information on this, see "Authorization IDs and
Remote Execution" on page 24.

If a plan is bound with VALIDATE(BIND), all local objects referred to in the SQL
statements of the plan, and all privileges required for these statements, must exist
at bind time. If any of these objects or privileges does not exist, the bind operation
is unsuccessful. This does not, however, apply to remote objects. For these,
existence and authority checking is deferred until run time.

If a plan is bound with VALIDATE(RUN), authorization checking is still performed at
bind time, but referenced objects and required privileges need not exist at this
time. If any privilege required for a statement does not exist at bind time, an
authorization check is performed whenever the statement is first executed within a
unit of recovery and all privileges required for the statement must exist at that
time. If any privilege does not exist, execution of the statement is unsuccessful.
Note that when the authorization check is performed at execute time, it is
performed against the plan owner, not the executor. For the effect of this option on
cursors, .see "DECLARE CURSOR" on page 165.

Authorization IDs and Dynamic SQL
The discussion below applies to dynamic SQL statements that refer to local
objects. For those that refer to remote objects, see "Authorization IDs and Remote
Execution" on page 24.

A process that uses a plan is called an application process. As described below,
the authorization IDs of an application process are used for dynamic SQL
statements in much the same way that the authorization IDs of a bind process are
used for static SQL statements. The authorization ID that is analogous to the
authorization ID of the owner of the plan is called the SQL authorization ID.

At any time, the SQL authorization ID of a process is the value of CURRENT SQLID.
This is an SQL special register that can be initialized by the authorization exit. If it
is not initialized by the exit, its initial value is the primary authorization ID of the
process. The value of CURRENT SQLID can be changed by the execution of a SET
CURRENT SQLID statement. Unless some authorization ID of the process has
SYSADM authority, the new value is constrained to be one of the authorization IDs
of the process. Thus CURRENT SQLID usually contains either the primary
authorization ID of the process or one of its secondary authorization IDs.

When an SQL statement is dynamically prepared, the SQL authorization ID is used
as the implicit qualifier for all tables, views, and indexes. If the prepared
statement is other than a CREATE, GRANT, or REVOKE statement, each privilege
required for the statement can be a privilege that is designated by any
authorization ID of the process. Thus the privilege set that applies to these

Chapter 3. Language Elements 23

statements is the union of the privileges designated by each authorization ID of the
process. This is called composite privileges.

If the dynamic SQL statement is a CREATE, GRANT, or REVOKE statement, the
only authorization ID that is used for authorization checking is the SQL
authorization ID. Thus each privilege required for the statement must be a
privilege that is designated by that single authorization ID. As explained in the
description of CREATE INDEX, CREATE TABLE, and CREATE VIEW, another
authorization ID may be used when a qualified name is specified in these
statements. However, this exception is not the same as composite privileges.

Authorization IDs and Remote Execution

Examples

24 082 SQL Reference

In an SQL statement that refers to a remote object, every referenced object must
be remote and managed by the same remote subsystem. For execution, this
statement is sent to the remote subsystem, along with two authorization IDs for the
process. One of these is the primary authorization ID. The other is the owner of
the application plan. The first is used for authority checking when the statement to
be executed is dynamic. The second is used when this statement is static.

Before either authorization ID is used, it may be translated once or twice: once at
the local subsystem before it is sent, and once by the remote subsystem after it is
received. Suppose, for example, that a statement to be executed dynamically at a
remote subsystem has JONES as its primary authorization ID. Then, before it is
sent, JONES could be translated to, say, SJJONES. And, after it is received,
SJJONES could be translated to USERCLX. The authorization ID to be used for
authority checking is therefore USERCLX.

The authorization check is conducted against the system catalog for the remote
subsystem. No other system catalog is involved. The requisite authority must
come froni GRANT statements executed by a process connected to the remote
subsystem.

Controlling the translation of authorization IDs are tables in the remote and local
communications databases. These are part of the security mechanism that DB2
provides for remotely executed SQL. The database is described in Appendix D,
"The Communications Database" on page 295. The security mechanism is
discussed in Section 5 (Volume 2) of Administration Guide.

Please note that the security mechanism could reject a remotely executed
statement, regardless of the DB2 authorities recorded in the remote system
catalog. For example, "come from" processing at a given subsystem could reject
all SQL statements that originate at a specific subsystem if their authority-checking
authorization IDs do not appear in a certain table of the receiving subsystem's
communication database (COB).

An authorization-name specified in an SQL statement should not be confused with
an authorization ID of a process. For example, assume that SMITH is your TSO
log-on and that you execute the following statement interactively:

GRANT SELECT ON TDEPT TO KEENE;

Also assume that your site has not replaced the default connection authorization
exit and that you have not executed a SET CURRENT SOLID statement. Thus,
when the GRANT statement is prepared and executed by SPUFI, the SQL

Data Types

authorization ID of the process is SMITH. KEENE is an authorization-name
specified in the GRANT statement.

Authorization to execute the GRANT statement is checked against SMITH and
SMITH is the implicit qualifier of TDEPT. The authorization rule is that the privilege
set designated by SMITH must include the SELECT privilege with the GRANT
option on SMITH.TDEPT. There is no check involving KEENE.

Here are two examples of names that could represent a table, view, index, or alias:
NAMEl SMITH.NAME!

If SMITH is the implicit qualifier for a statement that contains NAME1, NAME1
identifies the same object as SMITH.NAME1. If the implicit qualifier is other than
SMITH, NAME1 and SMITH.NAME1 identify different objects.

The smallest unit of data that can be manipulated in SQL is called a value. How
values are interpreted depends on the data type of their source. The sources of
values are constants, columns, host variables, functions, expressions, and special
registers.

The basic data types are character string, graphic string, binary integer,
floating-point, decimal, date, time, and timestamp. Character and graphic strings
are further classified as fixed-length or varying-length, and varying-length strings
are classified as short or long. Floating-point values are further classified as
single precision and double precision, while integers are further classified as small
integer and large integer.

All data types include the null value. The null value is a special value that is
distinct from all nonnull values and thereby denotes the absence of a (nonnull)
value.

Character Strings
A character string is a sequence of bytes. The length of the string is the number of
bytes in the sequence. If the length is zero, the value is called the empty string.
This value should not be confused with the null value.

Fixed-Length Strings
All values of a fixed-length string column have the same length, which is
determined by the length attribute of the column. The length attribute must be
between 1 and 254 inclusive. Therefore every fixed-length string column is a short
string column.

Varying-Length Strings
All values of a varying-length string column have the same maximum length, which
is determined by the length attribute of the column. If the length attribute is greater
than 254, the column is a long string column. Long string columns cannot be
referenced in:

• A function other than SUBSTR or LENGTH
• A GROUP BY clause
• An ORDER BY clause
• A CREATE INDEX statement
• A SELECT DISTINCT statement

Chapter 3. Language Elements 25

String Variables

• A subselect of a UNION without the all keyword
• A predicate other than LIKE

Fixed-length string variables can be defined in all host languages. (In C they are
limited to a length of 1.) Varying-length string variables can be defined in all host
languages except FORTRAN. In assembler, C, and COBOL, they are simulated as
described in Section 3 of Application Programming and SOL Guide. In C they may
also be represented in the form of null-terminated strings. String variables with
values longer than 254 bytes are subject to the same restrictions as long string
columns.

Mixed Data in Character Strings

26 082 SQL Reference

Character strings may contain sequences of double-byte characters, each
sequence preceded by a "shift-out" character and followed by a "shift-in"
character. A string containing one or more such sequences is called "mixed." The
principal use of mixed data is to represent national language texts.

SQL does not recognize subclasses of double-byte characters, and does not assign
any specific meaning to particular double-byte codes. However, if you choose to
use mixed data, then two single-byte EBCDIC codes are given special meanings:

• X 'OE', the "shift-out" character, is used to mark the beginning of a sequence of
double-byte codes.

• X'OF', the "shift-in" character, is used to mark the end of a sequence of
double-byte codes.

In order for DB2 to recognize double-byte characters in a mixed string, three
conditions must be present:

1. For dynamically prepared SQL statements, the MIXED DATA install option must
have the value YES.

2. For static SQt statements, the GRAPHIC/NOGRAPHIC precompiler option must
have been specified as GRAPHIC. If neither GRAPHIC nor NOGRAPHIC is
specified, the installation option serves as default.

3. Within the string, the double-byte characters must be enclosed between paired
shift-out and shift-in characters.

The pairing is detected as the string is read from left to right. The code X' OE'
is interpreted as a shift-out character if X' OF' occurs later; otherwise it is
invalid. The first X'OF' following the X'OE' is the paired shift-in character.

There must be an even number of bytes between the paired characters, and
each pair of bytes is considered to be a double-byte character. There may be
more than one set of paired shift-out and shift-in characters in the string.

If these conditions are present, we say that 'mixed data is in effect'.

The length of a mixed string is its total number of bytes, counting two bytes for
each double-byte character and one byte for each shift-out or shift-in character.

Mixed Data in.Delimited Identifiers

Graphic Strings

Numbers

Small Integer

Large Integer

A long delimited identifier may also contain sequences of double-byte characters.
Each sequence must begin with the single-byte shift-out character, and end with
the single-byte shift-in character. The shift-out and shift-in characters are
considered part of the identifier.

A graphic string is any sequence of double-byte characters (and does not include
shift-out or shift-in characters). The length of the string is the number of its
characters. Like character strings, graphic strings may be empty.

All values of a fixed-length graphic column have the same length, given by the
length attribute of the column. The length attribute cannot be greater than 127.
Therefore every fixed-length graphic string column is a short string column.

All values of a varying-length graphic column have the same maximum length,
given by the length attribute of the column. If that is greater than 127, the column
is a long string column. Long graphic-string columns are subject to the same
limitations that apply to long character-string columns. Graphic variables with
values longer than 127 characters are subject to the same restrictions as long
string columns. In all cases, the length control field of a varying length graphic
string indicates the number of characters, not bytes.

Graphic variables can be defined only in COBOL, PL/I, and assembler.

The numeric data types are binary integer, floating-point, and decimal. Binary
integer includes small integer and large integer. Floating-point includes single
precision and double precision.

All numbers have a sign and a precision. When a number in a column is zero, its
sign is positive. The precision of binary integers and decimal numbers is the total
number of binary or decimal digits excluding the sign. The precision of
floating-point numbers is either single or double, referring to the number of
hexadecimal digits in the fraction.

Binary integer and floating-point variables can be defined in all host languages.
Decimal variables can be defined in all host languages except C and FORTRAN. In
COBOL, decimal numbers may be represented in the packed decimal format used
for columns or in the format denoted by DISPLAY SIGN LEADING SEPARATE.

A small integer is a System/370 binary integer with a precision of 15 bits. The
range of small integers is -32768 to 32767.

A large integer is a System/370 binary integer with a precision of 31 bits. The
range of large integers is -2147483648 to +2147483647.

Chapter 3. Language Elements 27

Single Precision Floating-Point
A single precision floating-point number is a System/370 short (32 bits)
floating-point number. The range of magnitude is approximately 5.4E-79 to
7.2E +75.

Double Precision Floating-Point

Decimal

A double precision floating-point number is 64 bits long. The range of magnitude is
approximately 5.4E-79 to 7.2E + 75.

A decimal value is a System/370 packed decimal number with an implicit decimal
point. The position of the decimal point is determined by the precision and the
scale of the number. The scale, which is the number of digits in the fractional part
of the number, cannot be negative or greater than the precision. The maximum
precision is 15 digits.

All values of a decimal column have the same precision and scale. The range of a
decimal variable or the numbers in a decimal column is -n to +n, where the
absolute value of n is the largest number that can be represented with the
applicable precision and scale. The maximum range is -999999999999999 to
+ 999999999999999.

Date/Time Values

Date

The date/time data types are described below. Although date/time values can be
used in certain arithmetic and string operations and are compatible with certain
strings, they are neither strings nor numbers. However, strings can represent
date/time values; see "String Representations of Date/Time Values" on page 29.

A date is a three part value (year, month, and day) designating a point in time
under the Gregorian calendar, which is assumed to have been in effect from the
year 1 A.D.1 The range of the year part is 0001 to 9999. The range of the month part
is 1 to 12. The range of the day part is 1 to x, where x depends on the month.

The internal representation of a date is a string of four bytes. Each byte consists of
two packed decimal digits. The first two bytes represent the year, the third byte the
month, and the last byte the day.

The length of a DATE column as described in the catalog is four bytes,
representing the internal length. The length of a DATE column as described in the
SQLDA is ten bytes, unless your site specified a date installation exit when DB2
was installed. (The exit is discussed in an appendix of Administration Guide.) In
this case, the string format of a date may be up to 254 bytes in length. Accordingly,
DCLGEN defines fixed-length string variables for DATE columns with the length
specified by the LOCAL DATE LENGTH install option, or a length of ten bytes if the
install option was not specified.

1 Note that historical dates may not follow the Gregorian calendar. Dates between 1582-10-04 and 1582-10-15 are
accepted as valid dates although they never existed in the Gregorian calendar.

28 082 SQL Reference

Time

Timestamp

A time is a three part value (hour, minute, and second) designating a time of day
under a 24 hour clock. The range of the hour part is 0 to 24, while the range of the
other parts is 0 to 59. If the hour is 24, the minute and second specifications will
both be zero.

The internal representation of a time is a string of three bytes. Each byte is two
packed decimal digits. The first byte represents the hour, the second byte the
minute, and the last byte the second.

The length of a TIME column as described in the catalog is three bytes,
representing the internal length. The length of a TIME column as described in the
SQLDA is eight bytes, unless your site specified a time installation exit when D82
was installed. (The exit is discussed in an appendix of Administration Guide.) In
this case, the string format of a time may be up to 254 bytes in length. Accordingly,
DCLGEN defines fixed-length string variables for TIME columns with the length
specified by the LOCAL TIME LENGTH install option, or a length of eight bytes if
the install option was not specified.

A timestamp is a seven part value (year, month, day, hour, minute, second, and
microsecond) that designates a date and time as defined above, except that the
time includes a fractional specification of microseconds.

The internal representation of a timestamp is a string of ten bytes, each of which
consists of two packed decimal digits. The first four bytes represent the date, the
next three bytes the time, and the last three bytes the microseconds.

The length of a TIMESTAMP column as described in the catalog is ten bytes,
representing the internal length. The length of a TIMESTAMP column as described
in the SQLDA is twenty-six bytes. DCLGEN therefore defines twenty-six byte
fixed-length string variables for TIMESTAMP columns.

String Representations of Date/Time Values
Values whose data types are DATE, TIME, or TIMESTAMP are represented in an
internal form that is transparent to the user of SOL. Dates, times, and timestamps
can, however, also be represented by character strings, and these representations
directly concern the user of SOL because there are no special SOL constants for
date/time values and no host variables with a data type of date, time, or
timestamp.

For retrieval, date/time values must be assigned to character string variables.
When a date or time is assigned to a variable, the string format is determined by a
precompiler or installation option. When a string representation of a date/time
value is used in other operations, it is converted to a date/time value. However,
this can only be done if the string representation is recognized by D82 or an exit
provided by the site and the other operand is a compatible date/time value. An
input string representation of a date or time value with LOCAL specified can be any
D82 short character string. The sections that follow describe the string formats
that are recognized by DB2.

Date Strings: A string representation of a date is a character string that starts with
a digit and has a length of at least eight characters. Trailing blanks may be
included. Leading zeros may be omitted from the month and day portions.

Chapter 3. Language Elements 29

30 082 SQL Reference

Valid string formats for dates are listed in Table 1 on page 30. Each format is
identified by name, and includes an associated abbreviation (for use by the CHAR
function) and an example of its use. For a site-defined date string format, the
format and length must have been specified when 082 was installed. They cannot
be listed here.

Table 1. Formats for String Representations of Dates

Format Name Abbreviation Date Format Example

International Standards ISO yyyy-mm-dd 1987-10-12
Organization

IBM USA standard USA mm/dd/yyyy 10/12/1987

IBM European standard EUR dd.mm.yyyy 12.10.1987

Japanese Industrial Standard JIS yyyy-mm-dd 1987-10-12
Christian Era

Site-defined LOCAL Any -
site-defined
form

Time Strings: A string representation of a time is a character string that starts
with a digit, and has a length of at least four characters. Trailing blanks may be
included; a leading zero may be omitted from the hour part of the time, and
seconds may be omitted entirely. If you choose to omit seconds, an implicit
specification of zero seconds is assumed. Thus 13.30 is equivalent to 13.30.00.

Valid string formats for times are listed in Table 2. Each format is identified by
name, and includes an associated abbreviation (for use by the CHAR function) and
an example of its use. In the case of a site-defined time string format, the format
and length must have been specified when OB2 was installed. They cannot be
I isted here.

Table 2. Formats for String Representations of Times

Format Name Abbreviation Time Format Example

International Standards ISO hh.mm.ss 13.30.05
Organization

IBM USA standard USA hh:mm AM 1:30 PM
or PM

IBM European standard EUR hh.mm.ss 13.30.05

Japanese Industrial Standard JIS hh:mm:ss 13:30:05
Christian Era

Site-defined LOCAL Any -
site-defined
form

In the case of the 'IBM USA standard' time string format, the minutes specification
may be omitted, indicating an implicit specification of 00 minutes. Thus 1 PM is
equivalent to 1 :00 PM. In the IBM USA standard, the letters A, M, and P may be
lowercase.

In the USA time format, the hour must not be greater than 12 and cannot be O
except for the special case of 00:00 AM. Using the ISO format of the 24 hour clock,
the correspondence between the USA format and the 24 hour clock is as follows:

12:01 AM through 12:59 AM corresponds to 00.01.00 through 00.59.00.

01 :00 AM through 11 :59 AM corresponds to 01.00.00 through 11.59.00.

12:00 PM (noon) through 11 :59 PM corresponds to 12.00.00 through 23.59.00.

12:00 AM (midnight} corresponds to 24.00.00 and 00:00 AM (midnight)
corresponds to 00.00.00.

Timestamp Strings: A string representation of a timestamp is a character string
that starts with a digit, and has a length of at least sixteen characters. The
complete string representation of a timestamp has the form
yyyy-mm-dd-hh.mm.ss.nnnnnn. Trailing blanks may be included. Leading zeros
may be omitted from the month, day, and hour part of the timestamp, and
microseconds may be truncated or entirely omitted. If you choose to omit any digit
of the microseconds portion, an implicit specification of zero is assumed. Thus,
1987-3-2-8.30.00 is equivalent to 1987-03-02-08.30.00.000000.

Restrictions on the Use of LOCAL Date/Time Formats
When an SQL statement refers to a remote object, the following rules apply to the
character string representation of dates and times.

The use of LOCAL in the CHAR function specifies the local format in effect at the
remote DB2 subsystem. Otherwise, the character string representation of dates
and times is limited to the standard formats. An error occurs if any local format is
used in an input string. When a date or time is assigned to a host variable, the
format used is determined by the option in effect at the local DB2 subsystem. If
this format is LOCAL, ISO is used instead.

Basic Operations
The basic operations of SQL are assignment and comparison. Assignment
operations are performed during the execution of INSERT, UPDATE, FETCH, and
SELECT INTO statements. Comparison operations are performed during the
execution of statements that include predicates and other language elements such
as MAX, MIN, DISTINCT, GROUP BY, and ORDER BY.

The basic rule for both operations is that numbers and strings are not compatible.
Thus, numbers and strings cannot be compared, numbers cannot be assigned to
string columns or variables, and strings cannot be assigned to numeric columns or
variables. Also, character and graphic strings are not compatible. However, all
character strings are compatible, all graphic strings are compatible, and all
numbers are compatible. Compatibility with a column that has a field procedure is
determined by the data type of the column, which applies to the decoded form of its
values.

Dates, times, and timestamps are not compatible. Date/time values can be
assigned to character string columns and variables. A valid string representation
of a date can be assigned to a date column or compared with a date. A valid string
representation of a time can be assigned to a time column or compared with a
time. A valid string representation of a timestamp can be assigned to a timestamp
column or compared with a timestamp.

Chapter 3. Language Elements 31

A basic rule for assignment operations is that a null value cannot be assigned to a
column that cannot contain null values, nor to a host variable that does not have an
associated indicator variable. (See "Host Variables" on page 46 for a discussion
of indicator variables.)

Numeric Assignments
The basic rule for numeric assignments is that the whole part of decimal or integer
number is never truncated. If necessary, the fractional part of a decimal number is
truncated.

Decimal or Integer to Floating-Point
Floating-point numbers are approximations of real numbers. Hence, when a
decimal or integer number is assigned to a floating-point column or variable, the
result may not be identical to the original number.

Because of the added length of double precision floating-point numbers (64 bits
rather than the 32 bits of a single precision value), the approximation will be more
accurate if the receiving column or variable is defined as double precision rather
than single precision. Accuracy is lost if the precision of the target is less than that
of the assigned value, as would be the case if a number greater than 16,777,216
were assigned to a single precision floating-point column.

Floating-Point or Decimal to Integer

Decimal to Decimal

Integer to Decimal

When a floating-point or decimal number is assigned to an integer column or
variable, the fractional part of the number is lost.

When a decimal number is assigned to a decimal column or variable, the number
is converted, if necessary, to the precision and the scale of the target. The
necessary number of leading zeros is appended or eliminated, and, in the
fractional part of the number, the necessary number of trailing zeros is appended,
or the necessary number of trailing digits is eliminated.

When an integer is assigned to a decimal column or variable, the number is
converted first to a temporary decimal number and then, if necessary, to the
precision and scale of the target. The precision and scale of the temporary
decimal number is 5,0 for a small integer, or 11,0 for a large integer.

Floating-Point to Floating-Point
When a single precision floating-point number is assigned to a double precision
floating-point column or variable, the single precision data is padded with eight
hex zeros.

When a double precision floating-point number is assigned to a single precision
floating-point column or variable, the double precision data is conve~ted and
rounded up on the seventh hex digit.

Floating-Point to Decimal

32 082 SOL Reference

When a single precision floating-point number is converted to decimal, the number
is first converted to a temporary decimal number of precision 6 by rounding on the
seventh decimal digit. Nine zeros are then appended to the number to bring the
precision to 15. Because of the rounding involved, a number less than 0.5*10-6 is
reduced to 0.

To COBOL Integers

When a double precision floating-point number is converted to decimal, the
number is first converted to a temporary decimal number of precision 15, and then,
if necessary, truncated to the precision and scale of the target. In this conversion,
the number is rounded (using floating-point arithmetic) to a precision of 15 decimal
digits. As a result, a number less than 0.5*10-1s is reduced to 0. If the decimal
representation requires more than 15 digits to the left of the decimal point, an error
is reported. Otherwise, the scale is given the largest possible value that allows the
whole part of the number to be represented without loss of significance.

The example that follows shows the effect of rounding a double precision
floating-point number to create the temporary decimal number:

The floating-point number

in decimal notation is:

Rounding adds 5
in the 16th position

and truncates the result to

.123456789098765E-05

.00000123456789098765
+5

.00000123456789148765

.000001234567891

Assignment to COBOL binary integers is performed as if the NOTRUNC compiler
option were specified. Thus the assigned value is not necessarily within the range
of values specified by the PICTURE clause.

String Assignments
The basic rule for string assignments is that the length of a string assigned to a
column must not be greater than the length attribute of the column. (Trailing
blanks are included in the length of the string.)

When a string is assigned to a fixed-length string column or variable and the length
of the string is less than the length attribute of the target, the string is padded on
the right with the necessary number of EBCDIC or double-byte blanks.

When a string of length n is assigned to a varying-length string variable with a
maximum length greater than n, the characters after the nth character of the
variable are undefined and may or may not be set to blanks.

When a string is assigned to a variable and the string is longer t~an the length
attribute of the variable, the string is truncated on the right by the necessary
number of characters. When this occurs, the value 'W' is assigned to the
SQLWARN1 field of the SQLCA. When a string is assigned to a column and the
string is longer than the length attribute of that column, an error occurs. For a
description of the SQLCA, see "SQL Communication Area (SQLCA)" on page 249.

If mixed data is in effect, special truncation rules apply when a string is assigned to
a host variable that is not long enough to hold the shift-in character that ends the
double-byte sequence. To prevent loss of the shift-in character, one additional
character may be cut from the end of the string; then a shift-in character' is
appended before the assignment is made. In the truncated result, there is always
an even number of bytes (and hence an integral number of double-byte characters)
between each shift-out character and its matching shift-in character.

Chapter 3. Language Elements 33

Date/Time Assignments
The basic rule for date/time assignments is that a DATE, TIME, or TIMESTAMP
value may only be assigned to a column with a matching data type (whether DATE,
TIME, or TIMESTAMP), or to a fixed- or varying-length character string variable or
column for which no field procedure has been defined.

When a date/time value is assigned to a character string variable or column,
conversion to a string representation is automatic. Leading zeros are not omitted
from any part of the date, time, or timestamp. The required length of the target will
vary depending on the format of the string representation. If the length of the
target is greater than required, it will be padded on the right with blanks. If the
length of the target is less than required, the result will depend on the type of
date/time value involved, and on the type of target.

If the target is a column, truncation is not allowed. The length must be 10 for a
date, 8 for a time, and 26 for a timestamp.

When the target is a host variable, the following rules apply:

For a DATE: If the variable is less than 10 bytes, an error will occur.

For a TIME: If the USA format is used, the length of the variable must not be
less than 8; in other formats the length must not be less than 5.

If ISO or JIS formats are used, and if the length of the host variable is less than
8, the seconds part of the time is omitted from the result and assigned to the
indicator variable, if provided. The SQLWARN1 field of the SQLCA is set to
indicate the omission.

For a TIMESTAMP: If the host variable is less than 19 bytes, an error occurs.
If the length is less than 26, but greater than or equal to nineteen bytes, trailing
digits of the microseconds part of the value are omitted.

For further information on string lengths for date/time values, see "Date/Time
Values" on page 28.

Numeric Comparisons

34 082 SQL Reference

Numbers are compared algebraically; that is, with regard to sign. -2, for example,
is less than + 1, even though 2 is greater than 1.

If one number is an integer and the other is decimal, the comparison is made with
a temporary copy of the integer, which has been converted to decimal.

When decimal numbers with different scales are compared, the comparison is
made with a temporary copy of one of the numbers that has been extended with
trailing zeros so that its fractional part has the same number of digits as the other
number.

If one number is floating-point and the other is integer or decimal, the comparison
is made with a temporary copy of the other number which has been converted to
double precision floating-point. Similarly, if one number is single precision
floating-point and one is double precision floating-point, the cor:nparison is made
with a temporary copy of the single precision floating-point number that has been
converted to double precision. An exception to these rules is this: If one number
is single precision floating-point and the other is a floating point constant, the
former is compared to a single precision floating-point number derived from the
constant.

Two floating-point numbers are equal only if the bit configurations of their
normalized forms are identical.

String Comparisons
The comparison of two strings is determined by the comparison of the
corresponding bytes of each string. If the strings do not have the same length, the
comparison is made with a temporary copy of the shorter string that has been
padded on the right with blanks so that it has the same length as the other string.

Two strings are equal if they are both empty or if all corresponding bytes are
equal. Varying-length strings that differ only in the number of trailing blanks are
considered equal. If two strings are not equal, their relationship (that is, which has
the greater value) is determined by the comparison of the first pair of unequal
bytes from the left end of the strings. This comparison is made according to the
EBCDIC collating sequence.

As just stated, two varying-length strings with different lengths are equal if they
differ only in the number of trailing blanks. In operations that select one value
from a collection of such values, the value selected is arbitrary. The operations
that may involve such an arbitrary selection are DISTINCT, MAX, MIN, and
references to a grouping column. See the description of GROUP BY for further
information about the arbitrary selection involved in references to a grouping
column.

With Field Procedures
If a column with a field procedure is compared with the value of a variable or a
constant, the variable or constant is encoded by the field procedure before the
comparison is made.

If a column with a field procedure is compared with another column, that column
must have the same field procedure. The comparison is performed on the encoded
form of the values in the columns. If the encoded values are numeric, their data
types must be identical; if they are strings, their data types must be compatible.

If two encoded strings of different lengths are compared, the shorter is temporarily
padded with blanks so that it has the same length as the other string.

Date/Time Comparisons
A DATE, TIME, or TIMESTAMP value may be compared either with another value
of the same data type or with a string representation of that data type. All
comparisons are chronological, which means the farther a point in time is from
January 1, 0001, the greater the value of that point in time.

Comparisons involving TIME values and string representations of time values
always include seconds. If the string representation omits seconds, zero seconds
is implied.

Comparisons involving TIMESTAMP values are chronological without regard to
representations that might be considered equivalent. Thus, the following predicate
is true:

TIMESTAMP(1 1985-02-23-00.00.00 1
) > 1 1985-02-22-24.00.00 1

Chapter 3. Language Elements 35

Constants
A constant (sometimes called a literal) specifies a value. Constants are classified
as string constants or numeric constants. Numeric constants are further classified
as integer; floating-point, or decimal. String constants are classified as character
or graphic.

All constants have the attribute NOT NULL. A negative sign in a numeric constant
with a value of zero is ignored.

Integer Constants
An integer constant specifies an integer as a signed or unsigned number of at most
10 digits that does not include a decimal point. The data type of an integer
constant is large integer, and its value must be within the range of a large integer.

Examples: 64 -15 +100 32767 720176

In syntax diagrams the term 'integer' is used for an integer constant that must not
include a sign.

Floating-Point Constants
A floating-point constant specifies a floating-point number as two numbers
separated by an E. The first number may include a sign and a decimal point; the
second number may include a sign but not a decimal point. The value of the
constant is the product of the first number and the power of 10 specified by the
second number; it must be within the range of floating-point numbers. The number
of characters in the constant must not exceed 30. Excluding leading zeros, the
number of digits in the first number must not exceed 17 and the number of digits in
the second must not exceed 2. The data type of a floating-point constant is double
precision floating-point.

Examples: 15El 2.E5 2.2E-1 ~5.E+2

Decimal Constants
A decimal constant specifies a decimal number as a signed or unsigned number
that includes a decimal point and at most 15 digits. The precision is the total
number of digits (including leading and trailing zeros); the scale is the number of
digits to the right of the decimal point (including trailing zeros).

Examples: 25.5 1000. -15. +37589.3333333333

Character String Constants

36 082 SOL Reference

A character string constant specifies a varying-length character string. There are
two forms of character string constant:

• A sequence of characters that starts and ends with a string cjelimiter (either an
apostrophe(') or a quotation mark("), depending on the host language you are
using and the character chosen by your site at the time 082 was installed).
This form of string constant specifies the character string contained between
the string delimiters. The length of the character string must not be greater
than 254. Two consecutive string delimiters are used to represent one string
delimiter within the character string.

• An X followed by a sequence of characters that starts and ends with a string
delimiter. The characters between the string delimiters must be an even
number of hexadecimal digits. The number of hexadecimal digits must not
exceed 254. A hexadecimal digit is a digit or any of the letters A through F
(upper or lower case). Under the conventions of hexadecimal notation, each
pair of hexadecimal digits represents a character. This form of string constant
allows you to specify characters that do not have a keyboard representation.

Examples:
1 12/14/1985 1

1 32 1

1 DON 1 1 T CHANGE'
11

X1 FFFF 1

Graphic String Constants
A graphic string constant specifies a varying-length graphic string. There are two
forms of graphic string constants: one for statements embedded in PL/I, and one
for all other statements, including those prepared dynamically, and those
embedded in COBOL or assembler programs. In the description below of these
two forms, the string of asterisks(*****) is the actual string, consisting of 0 to 124
double-byte characters, while < and > represent shift-out and shift-in characters,
respectively. The character G and the string delimiter (here represented by the
apostrophe (1)) are required in the positions indicated.

The forms of graphic string constants are:

• In PL/I source programs: < 1 ***** 1 G >
1 is the double-byte string delimiter X 1 427D 1

• To use that character within the
double-byte character sequence, it must be doubled. Also G is the double-byte
character X 1 42C7 1

•

• In all other contexts: G 1 < **** > 1 where the delimiter (1) is the EBCDIC string
delimiter, X 1 7D 1

•

The precompiler recognizes graphic string constants only in COBOL, PL/I, and
assembler.

Alternative Syntax
A number of installation and precompiler options influence the way SQL
statements can be composed. Options that apply to static statements may not
apply to dynamic statements, and vice versa. These options are discussed below.

Decimal Point Representation
Decimal points in SQL statements are represented with either periods or commas.
Three options control the requisite representation:

• An installation option whose value can be comma (,) or period (.). In the
explanation below, this is termed "the install option."

• COMMA and PERIOD, which are mutually exclusive DB2 precompiler options
for OS/VS COBOL and VS COBOL II.

These options relate as follows to individual SQL statements:

Chapter 3. Language Elements 37

String Delimiters

38 082 SOL Reference

• In a COBOL program, the DB2 precompiler option COMMA or PERIOD
determines the decimal point representation for every static SQL statement. If
neither option is specified, the value of the install option at precompilation time
determines the representation.

• In all programs, the value of the install option at the time a dynamic statement
is prepared determines the decimal representation for that statement.

• In non-COBOL programs, the decimal representation for static SQL statements
is always the period.

For remotely executed statements, the applicable option is the local one. For
example, for a dynamically prepared statement, the local value of the install
option, not the value at the remote subsystem, determines the decimal point
representation.

If the comma is the decimal point, the following rules apply:

• A comma that is intended as a separator of numeric constants in a SELECT
clause or a VALUES clause must be followed by a space.

• In any context, a comma intended as a decimal point must not be followed by a
space.

Thus, to specify a decimal constant without a fractional part, the trailing comma
must be followed by a nonblank character. The nonblank character may be a
separator comma, as in:

VALUES(9999999999,, 111)

If VALUES(9999999999, 111) were specified, an error would occur because
9999999999 would be interpreted as an integer constant, and this value is not within
the range of integers. This error can be avoided in all contexts by enclosing the
decimal constant within parentheses, as in:

SELECT A FROM B WHERE A < (9999999999,)

APOST and QUOTE are mutually exclusive DB2 precompiler options for OS/VS
COBOL and VS COBOL II. Their meanings are exactly what they are for the
COBOL compilers: APOST designates the apostrophe (1 } as the string delimiter in
COBOL statements. QUOTE designates this delimiter as the quotation mark (11

).

Please note that neither option applies to SQL syntax, and neither should be
confused with the APOSTSQL and QUOTESQL options about to be described.

APOSTSQL and QUOTESQL are mutually exclusive DB2 precompiler options for
OS/VS COBOL and VS COBOL II. They determine what should be used for string
delimiters and escape characters in static SQL statements. APOSTSQL designates
the apostrophe (1) as the string delimiter, and the quotation mark as the escape
character. QUOTESQL designates the opposite. If neither of these options is
specified for a COBOL precompilation, the SQL string delimiter installation option
supplies a default.

For static SQL statements in non-COBOL programs, usage is fixed: the string
delimiter is the apostrophe, and the escape character is the quotation mark.
Usage for dynamically prepared statements is determined by the SQL string
delimiter installation option. This is true for all source languages, not just COBOL.

The Character Set Option
This is an installation option that specifies whether ordinary identifiers can contain
Katakana characters. There are no corresponding precompiler options. The
option applies equally to static and dynamic statements. For a remotely executed
statement, the local option is in effect, not the one at the remote subsystem.

The Mixed Data Option
This installation option specifies whether character strings can contain DBCS
characters. A corresponding precompiler option (GRAPHIC or NOGRAPHIC) exists
for every host language supported except C.

The option affects the parsing of SQL character string constants, the execution of
the LIKE predicate, and the assignment of character strings to host variables when
truncation is needed. It can also affect concatenation, as explained in "With the
Concatenation Operator" on page 50. The installation option applies to dynamic
statements, the precompiler option to static statements. An option value that
applies to a statement with local references also applies to any statement with
remote references. An exception is the LIKE predicate, for which the installation
option at the remote subsystem applies.

The Date and Time Options
These two options affect the formatting of date/time strings. For each there is an
installation option and DB2 precompiler options.

The formatting of date/time strings is described in "String Representations of
Date/Tim.e Values" on page 29. Unlike the options previously described, an option
value in effect for a statement that references local objects may not be in effect for
a statement that references remote objects. This is addressed under "Restrictions
on the Use of LOCAL Date/Time Formats" on page 31.

Standard SQL Language
ISO-ANS SQL, described in ANSI X3.135-1986, differs from DB2 SOL in some of its
syntax rules. The STDSQL option for the DB2 precompiler addresses some of
these differences:

• STDSQL(NO) designates the regular 082 syntax rules.

• STDSQL(86) aligns the syntax rules more closely with those of ISO-ANS SOL.

The STDSQL installation option supplies the default if neither STDSQL(NO) nor
STDSQL(86) is specified for a precompilation. With STDSQL(86) in effect, the
syntax rules are as follows:

Declaring Host Variables: All host variable declarations must lie between pairs of
BEGIN DECLARE SECTION and END DECLARE SECTION statements:

BEGIN DECLARE SECTION
one or more host variable declarations

END DECLARE SECTION

Separate pairs of these statements can bracket separate sets of host variable
·declarations.

Chapter 3. Language Elements 39

Declaration for SQLCODE: SQLCODE cannot be part of any structure, including
the one for SQLCA. It is up to the programmer, not DB2, to make the declaration,
which defines SQLCODE as a full-word integer. The declaration can appear
wherever variable declarations normally occur. For PL/I, an acceptable
declaration could look like this:

DECLARE SQLCODE BIN FIXED(31);

SQLCODE cannot be declared within a list of variables with a common set of
attributes. In a PL/I program, for example, the declaration below is invalid:

DECLARE (SQLCODE, ABC) BIN FIXED(31); /* INVALID DECLARATION*/

Definitions for SQLCA: SQLCA cannot be defined, either by coding its definition
manually or by using the statement INCLUDE SQLCA. The DB2 precompiler will
add the appropriate definition. In this definition, a variable named SQLCADE
occupies the position held by SQLCODE when STDSQL(86) is not in effect. Hence,
when an SQL statement is executed, the return code is stored in SQLCAOE.
Precompiler-generated code then copies the value of SQLCAOE into the variable
SQLCODE, whose declaration was discussed above.

If the precompiler encounters an INCLUDE SOLCA statement, it ignores it and
issues a warning message. But the precompiler does not recognize hand-coded
definitions. Hence, a hand-coded definition produces a compile-time conflict with
the precompiler-generated definition. A similar conflict arises if a definition of
SQLCAOE, other than the one generated by the OB2 precompiler, appears in the
program.

Note that in FORTRAN programs; variables named SQLCOO and SQLCAO play the
roles described above for SQLCOOE and SQLCADE;

Column Functions Containing DISTINCT: DB2 SQL allows an operand of an
arithmetic operator to be a column function containing the reserved word
DISTINCT. ISO-ANS SQL, on the other hand, does not allow this. With SQLST0(86)
in effect, the precompiler allows this type of construct but issues a warning
message whenever one is encountered.

The NOFOR Option: FO.R UPDATE OF

40 082 SQL Reference

The NOFOR precompiler option concerns the use of the FOR UPDATE OF clause
when a cursor is declared for a static (embedded) query.

With NOFOR in effect, this clause is optional. When used, the clause restricts
updates to the columns designated within it, and it causes the acquisition of update
locks when the cursor is used to fetch a row. When not used, positioned updates
can be made to any columns that the program has DB2 authority to update. With
NOFOR not in effect, the clause is mandatory, and must identify every column
involved in a positioned update.

NOFOR is in effect for a precompilation if one or both of the following is true:

• The NOFOR option is specified.
• STDSQL(86) is in effect.

NOFOR is otherwise not in effect. With NOFOR not in effect, the OB2 precompiler
can still build DBRMs incrementally. But with NOFOR in effect, OBRMs must be
built entirely in virtual storage. Hence, use of NOFOR may increase the virtual
storage requirements for the OB2 precompiler. On the other hand, creating

DBRMs entirely in virtual storage may ease concurrency problems with DBRM
libraries.

Special Registers

USER

CURRENT DATE

A special register is a storage area that is defined for a process by DB2 and is
used to store information that can be referenced in SOL statements. For remotely
executed statements (those that reference remote objects), the meanings of certain
registers differ slightly from their meanings for locally executed statements. The
six special registers are as follows:

Note: A commit or rollback operation has no effect on special register values.

For locally executed statements, USER specifies the primary authorization ID of the
process. For remotely executed statements, it specifies the authorization ID
derived from the primary authorization ID through "translation." Translation is
described in Section 5 (Volume 2) of Administration Guide. If necessary, the
authorization ID is padded on the right with blanks so that the value of USER is
always a fixed-length character string of length 8.

Example:

SELECT * FROM SYSIBM.SYSTABLES
WHERE CREATOR = USER

The CURRENT DATE special register specifies the current date. For a locally
executed statement, this date is found as follows:

• A reading is taken from the local time-of-day clock at the time the statement is
executed.

• To this reading is added the hours, minutes, and seconds specified in the
TIMEZONE parameter of the local MVS system. (The TIMEZONE parameter is
in SYS1 .PARMLIB(CLOCKXX).) The date is then taken from the newly
calculated time.

For a remotely executed statement, the calculations are the same, but they are
based on the time-of-day clock and TIMEZONE parameter at the remote location.

When, in a single statement, CURRENT DATE is used more than once, or is used
with CURRENT TIME or CURRENT TIMESTAMP, all their values are based on a
common clock reading and TIMEZONE parameter value.

Example:

UPDATE DSN8220.PROJ SET PRSENDATE = CURRENT DATE
WHERE PROJNO = 1 MA2111 1

Chapter 3. Language Elements 41

CURRENT SQLID

CURRENT TIME

The CURRENT SOLID special register specifies the SOL authorization ID of the
process. If necessary, the authorization ID is padded on the right with blanks so
that the value of CURRENT SOLID is always a fixed length character string of
length eight.

CURRENT SOLID can be initialized by the authorization exit. If not, its initial value
is the primary authorization ID of the process. CURRENT SOLID is the only special
register that you can change. See "SET CURRENT SOLID" on page 238 for an
explanation of how to do this.

Note: A statement that r~fers to remote objects cannot contain an occurrence of
CURRENT SOLID.

The CURRENT TIME special register specifies the current time. For a locally
executed statement, this time is found as follows:

• A reading is taken from the local time-of-day clock at the time the statement is
executed.

• To this reading is added the hours, minutes, and seconds specified in the
TIMEZONE parameter of the local MVS system. (The TIMEZONE parameter is
in SYS1.PARMLIB(CLOCKXX).) The time is then taken from these calculations.

For a remotely executed statement, the calculations are the same, but they are
based on the time-of-day clock and TIMEZONE parameter at the remote location.

When, in a single statement, CURRENT TIME is used more than once, or is used
with CURRENT DATE or CURRENT TIMESTAMP, all their values are based on a
common clock reading and TIMEZONE parameter value.

CURRENT TIMESTAMP

42 082 SOL Reference

The CURRENT TIMESTAMP special register specifies the current timestamp. For a
locally executed statement, the timestamp is found-as follows:

• A reading is taken from the local time-of-day clock at the time the statement is
executed.

• To this reading is added the hours, minutes, and seconds specified in the
TIMEZONE parameter of the local MVS system. (The TIMEZONE parameter is
in SYS1.PARMLIB(CLOCKXX).) The timestamp is then taken from these
calculations.

For a remotely executed statement, the calculations are the same, but they are
based on the time-of-day clock and TIMEZONE parameter at the remote location.

When, in a single statement, CURRENT TIMESTAMP is used more than once, or is
used with CURRENT DATE or CURRENT TIME, all their values are based on a
common clock reading and TIMEZONE parameter value.

CURRENT TIMEZONE
The CURRENT TIMEZONE special register specifies, as a time duration, the value
of the MVS TIMEZONE parameter of SYS1 .PARMLIB(CLOCKXX) at the appropriate
subsystem: the local subsystem for a locally executed SQL statement; tht;) pertinent
remote subsystem for a remotely executed statement. The data type is
DECIMAL(6,0). The intended use of CURRENT TIMEZONE is to allow easy
conversion of the time kept at a subsystem into Greenwich Mean Time (GMT) by
subtracting CURRENT TIMEZONE from a local TIME value.

TIMEZONE must represent a time duration between -24 and 24 hours. Any values
outside of this range will cause an error when CURRENT TIMEZONE is referenced.
The seconds part of CURRENT TIMEZONE is always zero. Any seconds in
TIMEZONE are rounded to the nearest minute.

Column Names
The meaning of a column name depends on its context. A column name can be
used to:

• Declare the name of a column, as in a CREATE TABLE statement.

• Identify a column, as in a CREATE INDEX statement.

• Specify values of the column, as in the following contexts:

In a column function, a column name specifies all values of the column in
the group or intermediate result table to which the function is applied.
(Groups and intermediate result tables are explained under "SELECT
'INTO" on page 236.) For example, MAX(SALARY) applies the function
MAX to all values of the column SALARY in a group.

In a GROUP BY or ORDER BY clause, a column name specifies all values
in the intermediate result table to which the clause is applied. For
example, ORDER BY DEPT orders an intermediate result table by the
values of the column DEPT.

In an expression, a search condition, or a scalar function, a column name
specifies a value for each row or group to which the construct is applied"
For example, when the search condition CODE = 20 is applied to some
row, the value specified by the column name CODE is the value of the
column CODE in that row.

Qualified Column Names
A qualifier for a column name may be a table name, a view name, an alias name, a
synonym, or a correlation name.

Whether a column name may be qualified depends, like its meaning, on its context:

• In some forms of the COMMENT ON and LABEL ON statements, a column
name must be qualified. This is shown in the syntax diagrams.

• Where the column name specifies values of the column, it may be qualified at
the user's option.

• In all- other contexts, a column name must not be qualified. This rule will be
mentioned in the discussion of each statement to which it applies.

Chapter 3. Language Elements 43

Correlation Names

Where a qualifier is optional, it can serve two purposes. They are described under:

• "Column Name Qualifiers to Avoid Ambiguity"; and
• "Column Name Qualifiers in Correlated References" on page 45.

A correlation name can be defined in the FROM clause of a query and in the first
clause of an UPDATE or DELETE statement. For example, the clause FROM
X.MYTABLE Z establishes Z as a correlation name for X.MYTABLE.

With Z defined as a correlation name for X.MYTABLE, only Z should be used to
qualify a reference to a column of X.MYTABLE in that SELECT statement.

A correlation name is associated with a table or view only within the context in
which it is defined. Hence, the same correlation name can be defined for different
purposes in different statements, or in different clauses of the same statement.

As a qualifier, a correlation name can be used to avoid ambiguity or to establish a
correlated reference. It can also be used merely as a shorter name for a table or
view. In the example, 1 Z 1 might have been used merely to avoid having to enter
X.MYTABLE more than once.

Column Name Qualifiers to Avoid Ambiguity

44 082 SQL Reference

In the context of a function, a GROUP BY clause, ORDER BY clause, an expression,
or a search condition, a column name refers to values of a column in some table or
view. The tables and views that might contain the column are called the object
tables of the context. Two or more object tables might contain columns with the
same name; one reason for qualifying a column name is to designate the table
from which the column comes.

Table Designators: A qualifier that designates a specific object table is called a
table designator. The clause that identifies the object tables also establishes the
table designators for them. For example, the object tables of an expression in a
SELECT clause are named in the FROM clause that follows it, as in this partial
statement:

SELECT Z.CODE, Y.MYTABLE.CODE
FROM X.MYTABLE z, Y.MYTABLE
WHERE •••

This example illustrates how to establish table designators in the FROM clause:

1. A name that follows a table name, view name, alias, or synonym is both a
correlation name and a table designator. Thus, Z is a table designator, and
qualifies the first column name after SELECT.

2. A table name, view name, alias, or synonym that is not followed by a
correlation name is a table designator. Thus, Y.MYTABLE (a qualified table
name) is a table designator, and qualifies the second column name after
SELECT.

Avoiding undefined or ambiguous references: When a column name refers to
values of a column, exactly one object table must include a column with that name.
The following situations are considered errors:

• No object table contains a column with the specified name. The reference is
undefined.

• The column name is qualified by a table designator, but the table designated
does not include a column with the specified name. Again the reference is
undefined.

• The name is unqualified, and more than one object table includes a column
with that name. The reference is ambiguous.

Avoid ambiguous references by qualifying a column name with a uniquely defined
table designator. If the column is contained in several object tables with different
names, the table names can be used as designators.

Two or more object tables can be instances of the same table. In this case, distinct
correlation names must be used to unambiguously designate the particular
instances of the table.

In the following FROM clause, for example, X and Y are defined to refer,
respectively, to the first and second instances of the table EMP.

FROM DSN8228.EMP X, DSN8228.EMP Y

A situation to avoid: Do NOT write an example like this one:

SELECT MYTABLE.CODE
FROM MYTABLE, MYTABLE

In this instance, MYTABLE.CODE is ambiguous. 082 arbitrarily resolves such a
reference wherever it occurs, and not always in the same way. It does not produce
an error message. In the example, the ambiguity should be avoided by defining a
correlation name for each instance of MYTABLE.

Column Name Qualifiers in Correlated References
A subselect is a form of a query that may be used as a component of various SOL
statements. Refer to Chapter 5, "Queries" on page 83 for more information on
subselects. A subselect used within a search condition of any statement is called a
subquery.

A subquery may include search conditions of its own, and these search conditions
may, in turn, include subqueries. Thus an SOL statement may contain a hierarchy
of subqueries. Those elements of the hierarchy that contain subqueries are said to
be at a higher level than the subqueries they contain.

Every element of the hierarchy has a clause that establishes one or more table
designators. This is the FROM clause, except in the highest level of an UPDATE or
DELETE statement. A search condition of a subquery may reference not only
columns of the tables identified by the FROM clause of its own element of the
hierarchy, but also columns of tables identified at any level along the path: from its
own element to the highest level of the hierarchy. A reference to a column of a
table identified at a higher level is called a correlated reference.

An unqualified column name is never a correlated reference. A qualified column
name, Q.C, is a correlated reference if, and only if, these conditions are met:

1. Q.C is used in a search condition of a subquery.
2. Q does not designate a table used in the FROM clause of that subquery.
3. Q does designate a table used at some higher level.

Q.C refers to column C of the table or view at the level where Q is used as the
table designator of that table or view. Since the same table or view can be
identified at many levels, unique correlation names are recommended as table

Chapter 3. Language Elements 45

Host Variables

46 082 SOL Reference

designators. However, Q need not be a correlation name. If Q is used to designate
a table at more than one level, Q.C refers to the level that most directly contains
the subquery that includes Q.C.

The correlated reference Q.C identifies a value of C in a row or group of Q to which
two search conditions are being applied: condition 1 in the subquery, and
condition 2 at some higher level. If condition 2 is used in a WHERE clause, the
subquery is evaluated for each row to which condition 2 is applied. If condition 2 is
used in a HAVING clause, the subquery is evaluated for .each group to which
condition 2 is applied. (For another discussion of the evaluation of subqueries, see
the descriptions of the WHERE and HAVING clauses under Chapter 5, "Queries"
on page 83.)

For example, in the following statement, the correlated reference X.WORKDEPT (in
the last line) refers to the value of WORKDEPT in table DSN8220.EMP at the level of
the first FROM clause. (That clause establishes X as a correlation name for
DSN8220.EMP.) The statement lists employees who make less than the average
salary for their department.

SELECT EMPNO, LASTNAME, WORKDEPT
FROM DSN8220.EMP X
WHERE SALARY < (SELECT AVG(SALARY)

FROM DSN8220.EMP
WHERE WORKDEPT = X.WORKDEPT)

A host variable is a PL/I variable, C variable, FORTRAN variable, COBOL data
item, or Assembler language storage area that is referenced in an SQL statement.
Host variables are defined by statements of the host language, as described in
Section 3 of Application Programming and SQL Guide. Host variables cannot be
referenced in dynamic SQL statements.

In PL/I, C, and COBOL, host variables can be referenced in ways that do not apply
to FORTRAN and Assembler language. This is explained under "Host Structures in
PL/I, C, and COBOL" on page 48. The following applies to all host languages.

The term host-variable, as used in the syntax diagrams, shows a reference to a
host variable. A host-variable in the INTO clause of a FETCH or a SELECT INTO
statement identifies a host variable to which a value from a column of a row is
assigned. In all other contexts a host-variable specifies a value to be passed to
DB2 from the application program.

The general form of a host-variable reference is:

:Vl INDICATOR :V2

where V1 and V2 are the names of host variables. The word INDICATOR is
optional. It is not an SQL reserved word. The first colon is also optional. If it is
omitted, the word INDICATOR must also be omitted. Conditions under which the
first colon can be omitted are discussed later in this section.

The variable V1 is the main variable. Depending on the operation, it either
furnishes a value to DB2 or is furnished one. It could, for example, specify a
comparand in a WHERE clause or a replacement for a column value. Or it could
receive a column value when a row is fetched from a table.

The variable V2 is the indicator variable. A negative value for V2 designates a null
value for the variable V1. A negative value for the indicator variable designates a
null value.

For example, if :V1 :V2 is used to specify an insert or update value, and if V2 is
negative, the value specified is the null value. If V2 is not negative the value
specified is the value of V1.

Similarly, if :V1:V2 is specified in a FETCH or SELECT INTO statement, and if the
value returned is null, V1 is not changed, and V2 is set to a negative value, either
to -1 if the value selected was the null value, or to -2 if the null value was returned
because of numeric conversion errors or arithmetic expression errors met in the
SELECT list of an outer SELECT statement. If the value returned is not null, that
value is assigned to V1, and V2 is set to zero (unless the assignment to V1 requires
string truncation in which case V2 is set to the original length of the string). If an
assignment requires truncation of the seconds part of a time, V2 is set to the
number of seconds.

Another form of host-variable reference is:

:Vl

If this form is used, V1 has no indicator variable and hence cannot be assigned null
values. Thus this form should not be used in an INTO clause unless the
corresponding column cannot contain null values.

If a null value is returned, and you have not provided an indicator variable, a
negative value is returned in the SQLCODE field of the SQLCA. If your data is
truncated and there is no indicator variable, no error condition results, but a
warning indicator is set.

Chapter 3. Language Elements 47

A host variable can also be referenced without specifying the leading colon. The
colon is always required if the host identifier is identical to an SQL reserved word.
The colon can be omitted if the host identifier is not identical to a reserved word, or
if it is referenced in any of the fotlowing contexts:

• The INTO clause of a SELECT statement
• The FROM clause of a PREPARE statement
• The USING clause of an EXECUTE or OPEN statement
• The DESCRIPTOR clause of an EXECUTE, FETCH, or OPEN statement
• Following LIKE or NOT LIKE
• Following VALUES (in an INSERT statement)
• Following IN (in a SELECT statement)
• With indicator variables
• Qualified by a valid host structure.

Note: In a context in which either a host variable or column can be referenced, the
use of an unqualified name without a colon is interpreted by the precompiler as a
reference to a column. However, if a qualified name such as S.V is used and S is a
host structure that contains V, S.V is interpreted by the precompiler as a reference
to a host variable. Thus you should avoid declaring host structures with a name
that is the same as any possible qualifiers of a column-name specified in your
program.

In PL/I and C, an SQL statement that references host variables must be within the
scope of the declaration of those host variables. For host variables referenced in
the SELECT statement of a cursor, this rule applies to the OPEN statement rather
than to the DECLARE CURSOR statement.

Also note that a COBOL host variable beginning with a digit will be treated as a
number if it could be so interpreted. To prevent this, always precede the variable
with a colon. For example, in the following WHERE clause, the value of column
XYZ is compared to the current value of the host variable 123E1. Without the
identifying colon, the value of XYZ would be compared to the floating point
representation of 1230.

WHERE XYZ > :123El

Host Structures in PL/I, C, and COBOL

48 082 SQL Reference

A host structure is a PL/I structure, C structure, or COBOL group that is referenced
in an SQL statement. Host structures are defined by statements of the host
language, as explained in Section 3 of Application Programming and SQL Guide.
As used here, the term 11 host structure 11 does not include an SQLCA or SQLDA.

The form of a host structure reference is identical to the form of a host variable
reference. The reference :S1 :S2 is a host structure reference if S1 designates a
host structure. If S2 designates a host structure, it must be defined as a vector of
small integer variables. S1 is the main structure and S2 is its indicator structure.

A host structure may be referenced in any context where a list of host variables
may be referenced. A host structure reference is equivalent to a reference to each
of the host variables contained within the structure in the order which they are
defined in the host language structure declaration. The nth variable of the
indicator structure is the indicator variable for the nth variable of the main
structure.

In PL/I, for example, if V1, V2, and V3 are declared as variables within the structure
S1, the statement:

...

EXEC SQL FETCH CURSORl INTO :Sl;

is equivalent to:

EXEC SQL FETCH CURSORl INTO :Vl, :V2, :V3;

If the main structure has m more variables than the indicator structure, the last m
variables of the main structure do not have indicator variables. If the main
structure has m less variables than the indicator structure, the last m variables of
the indicator structure are ignored. These rules also apply if a reference to a host
structure includes an indicator variable or if a reference to a host variable includes
an indicator structure. If an indicator structure or variable is not specified, no
variable of the main structure has an indicator variable.

In addition to structure references, individual host variables or indicator variables
in PL/I, and COBOL may be referenced by qualified names. The qualified form is a
host identifier followed by a period and another host identifier. The first host
identifier must designate a structure, and the second host identifier must designate
a host variable within that structure.

If a host variable is referenced by a qualified name, the leading colon may always
be omitted. So, you should avoid declaring host structures with a name that is the
same as any possible qualifier of a column-name specified in your program.

The following diagram specifies the syntax of references to host variables and host
structures. When the first colon shown in the diagram is omitted, the word
INDICATOR must also be omitted .

------rc-----J--r- -..-c--------J--r--host-i dent if i ej
INDICATOR host-identifier.

Examples: :Vl :Sl.Vl Sl.Vl:V2 Sl.V2:S2.V4

A host variable in an expression must identify a host variable (not a structure)
described in the program according to the rules for declaring host variables.

Expressions
An expression specifies a value. The form of an expression is as follows:

Chapter 3. Language Elements 49

11
I

.--------- * ---11-------.
+

function-------.
(expression)---

-----.---....----constant----+-'-------------------+
+

labeled-duration

co l umn-name---­
host-va ri able
special-registe
labeled-duration

YEAR-----.
YEARS----1
ONTH-----i
ONTHS.-----i

DAY-----
funct ion DAYS------1
(expression) HOUR'------,i
constant------HOURS----------------------.........
column-name INUTE----
host-variable INUTES----

SECOND---­
SECONDS·--­
MICROSECOND-

I CROS ECONDS-

Without Operators
If no operators are used the result of the expression is the specified value.

Examples: SALARY :SALARY 'SALARY' MAX(SALARY)

With the Concatenation Operator

50 082 SOL Reference

If the concatenation operator (11) is used, the result of the expression is a string.
The operands of concatenation must be compatible strings. If both operands are
character strings, the sum of their lengths must not exceed 32,754; if both are
graphic strings, the sum of their lengths must not exceed 16,382.

If either operand can be null, the result can be null, and if either is null, the result
is the null value. Otherwise, the result consists of the first operand string followed
by the second. With mixed data this result will not have redundant shift codes "at
the seam." Thus, if the first operand is a string ending with a "shift-in" character
(X 1 OF•), while the second operand is a character string beginning with a "shift-out"
character (X •OE•), these two bytes are eliminated from the result.

The length of the result is the sum of the lengths of the operands, unless redundant
shift codes are eliminated, in which case the length is two less than the lengths of
the operands.

If both operands are fixed-length graphic strings, and the length of the result is less
than 128, the result is a fixed-length graphic string. Otherwise, the result is a
varying-length graphic string whose maximum length is the sum of the maximum
lengths of the operands, or 16,382, whichever is less. If the maximum length is
greater than 127, the result is subject to the restrictions that apply to long strings.

If both operands are fixed-length character strings, and the length of the result is
less than 255 (and mixed data is not in effect), the result is a fixed-length character
string. Otherwise, the result is a varying-length character string whose maximum
length is the sum of the maximum lengths of the operands, or 32,764, whichever is
less. If the maximum length is greater than 254, the result is subject to the
restrictions that apply to long strings.

If an operand is a string from a column with a field procedure, the operation
applies to the decoded form of the value; the result does not inherit the field
procedure.

Example: FIRSTNME 11' 1 11 LASTNAME

With Arithmetic Operators
If arithmetic operators are used, the result of the expression is a number derived
from the application of the operators to the values of the operands. If any operand
can be null, or the expression is used in an outer SELECT list, the result can be
null. If any operand has the null value, the result of the expression is the null
value. Arithmetic operators (except unary plus, which is meaningless) must not be
applied to character strings. For example, USER+ 2 is invalid. Multiplication and
division operators must not be applied to date/time values; these can only be
added and subtracted.

The prefix operator + (unary plus_) does not change its operand. The prefix
operator - (unary minus) reverses the sign of a nonzero operand; and if the data
type of A is small integer, then the data type of -A is large integer. The first
character of the token following a prefix operator must not be a plus or minus sign.

The infix operators +, -, *, and I specify addition, subtraction, multiplication, and
division,· respectively. The value of the second operand of division must not be
zero.

Two Integer Operands
If both operands of an arithmetic operator are integers, ~he operation is performed
in binary and the result is a large integer. Any remainder of division is lost. The
result of an integer arithmetic operation (including unary minus) must be within the
range of large integers.

Integer and Decimal Operands
If one operand is an integer and the other is decimal, the operation is performed in
decimal using a temporary copy of the integer which has been converted to a
decimal number with zero scale and precision as defined in the following table:

Chapter 3. Language Elements 51

Operand Precision of decimal copy

Column or variable: large integer 11

Column or variable: small integer 5

Constant: more than 5 digits (including same as the number of digits in
leading zeros) the constant

Constant: 5 digits or fewer 5

Two Decimal Operands
If both operands are decimal, the operation is perform~d in decimal. The resul_t of
any decimal arithmetic operation is a decimal number with a precision and scale
that are dependent on the operation and the precision and scale of the operands. If
the operation is addition or subtraction and the operands do not have the same
scale, the operation is performed with a temporary copy of one of the operands
that has been extended with trailing zeros so that its fractional part has the same
number of digits as the other operand.

The result of a decimal operation must not have a precision greater than 15. The
result of decimal addition, subtraction, and multiplication is derived from a
temporary result which may have a precision greater than 15. If the precision of
the temporary result is not greater than 15, the final result is the same as the
temporary result. If the precision of the temporary result is greater than 15, the
final result is derived from the temporary result by the elimination of leading zeros
so the final result has a precision of 15. An error occurs if the excess digits are not
zeros.

Decimal Arithmetic in SQL
The following formulas define the precision and scale of the result of decimal
operations in SQL. The symbols p ands denote the precision and scale of the first
operand and the symbols p' and s' denote the precision and scale of the second
operand.

The precision of the result of addition and subtraction is
min(15, max(p-s, p'-s')+max(s, s')+1) and the scale is max(s, s').

The precision of the result of multiplication is min(15, p + p') and the scale is
min(15, s+s').

The precision of the result of division is 15 and the scale is 15-p + s-s'. The scale
must not be negative. You can specify with an install option that the scale of the
result must never be less than 3.

Floating-Point Operands

52 082 SQL Reference

If either operand of an arithmetic operator is floating-point, the operation is
performed in floating-point, the operands having first been converted to double
precision floating-point numbers, if necessary. Thus, if any element of an
expression is a floating-point number, the result of the expression is a double
precision floating-point number.

An operation involving a floating-point number and an integer is performed with a
temporary copy of the integer which has been converted to double precision
floating-point. An operation involving a floating-point number and a decimal

number is performed with a temporary copy of the decimal number which has been
converted to double precision floating-point. The result of a floating-point
operation must be within the range of floating-point numbers.

Date/Time Operands

Durations

Date/time values can be incremented, decremented, and subtracted. The
discussions that follow clarify the process by which these operations are carried
out, and introduce the concept of durations.

A duration is a number representing an interval of time. The number may be a
constant, a column name, a host variable, a function, or an expression. There are
three types of durations:

Labeled Durations
A labeled duration represents a specific unit of time as expressed by a
number followed by one of the seven duration keywords: YEARS, MONTHS,
DAYS, HOURS, MINUTES, SECONDS, and MICROSECONDS.2 The number
specified is converted as if it were assigned to a DECIMAL(15,0) number. A
labeled duration can only be used as an operand of an arithmetic operator so
the.other operand is a value of data type DATE, TIME, or TIMESTAMP. Thus
the expression HIREDATE + 2 MONTHS + 14 DAYS is valid whereas the
expression HIREDATE + (2 MONTHS + 14 DAYS) is not. In both of these
expressions, the labeled durations are 2 MONTHS and 14 DAYS.

Date Duration
A date duration represents several years, months, and days, expressed as a
DECIMAL(8,0) number. To be properly interpreted, the number must have
the format yyyymmdd, where yyyy represents the number of years, mm the
number of months, and dd the number of days. The result of subtracting one
DATE value from another, as in the expression HIREDATE - BRTHDATE, is a
date duration.

Time Duration
A time duration represents several hours, minutes, and seconds, expressed
as a DECIMAL(6,0) number. To be properly interpreted, the number must
have the format hhmmss, where hh represents the number of hours, mm, the
number of minutes, and ss the number of seconds. The result of subtracting
one TIME value from another is a time duration.

Date/Time Arithmetic in SQL
The only arithmetic operations that can be performed on date/time values are
addition and subtraction. If a date/time value is the operand of addition, the other
operand must be a duration. The specific rules governing the use of the addition
operator with date/time values follow.

• If one operand is a date, the other operand must be a date duration or labeled
duration of years, months, or days.

• If one operand is a time, the other operand must be a time duration or a
labeled duration of hours, minutes, or seconds.

2 Note that the singular form of these keywords is also acceptable: YEAR, MONTH, DAY •. HOUR, MINUTE, SECOND,
and MICROSECOND.

Chapter 3. Language Elements 53

Date Arithmetic

54 082 SQL Reference

• If one operand is a timestamp, the other operand must be a duration. Any type
of duration is valid.

• Neither operand of the addition operator can be a parameter marker.

The rules for the use of the subtraction operator on date/time values are not the
same as those for addition because a date/time value cannot be subtracted from a
duration, and because the operation of subtracting two date/time values is not the
same as the operation of subtracting a duration from a date/time value. The
specific rules.governing the use of the subtraction operator with date/time values
follow.

• If the first operand is a date, the second operand must be a date, a date
duration, a string representation of a date, or a labeled duration of years,
months, or days.

• If the second operand is a date, the first operand must be a date, or a string
representation of a date.

• If the first operand is a time, the second operand must be a time, a time
duration, a string representation of a time, or a labeled duration of hours,
minutes, or seconds.

• If the second operand is a time, the first operand must be a time, or string
representation of a time.

• If the first operand is a timestamp, the second operand must be a duration.

• The second operand must not be a timestamp.

• Neither operand of the subtraction operator can be a parameter marker.

Dates can be subtracted, incremented, or decremented. The discussions that
follow will clarify how these operations are carried out.

Subtracting Dates: The result of subtracting one date (DATE2) from another
(DATE1) is a date duration that specifies the number of years, months, and days
between the two dates. The data type of the result is DECIMAL(8,0). If DATE1 is
greater than or equal to DATE2, DATE2 is subtracted from DATE1. If DATE1 is less
than DATE2, however, DATE1 is subtracted from DATE2, and the sign of the result
is made negative. The following procedural description clarifies the steps involved
in the operation RESULT= DATE1 - DATE2.

• If DAY(DATE2) < = DAY(DATE1)
then DAY(RESULT) = DAY(DATE1) - DAY(DATE2).

• If DAY(DATE2) > DAY(DATE1)
then DA Y(RESUL T) = N + DA Y(DATE1) - DA Y(DATE2)

where N = the last day of MONTH(DATE2).
MONTH(DATE2) is then incremented by 1.

• If MONTH(DATE2) < = MONTH(DATE1)
then MONTH(RESULT) = MONTH(DATE1) - MONTH(DATE2).

• If MONTH(DATE2) > MONTH(DATE1)
then MONTH(RESULT) = 12 + MONTH(DATE1) - MONTH(DATE2).
YEAR(DATE2) is then incremented by 1.

• YEAR(RESULT) = YEAR(DATE1) - YEAR(DATE2).

Time Arithmetic

For example, the result of DATE('3/15/2000')- '12/31/1999' is 215 (or, a duration of
O years, 2 months, and 15 days).

Incrementing and Decrementing Dates: The result of adding a duration to a date,
or of subtracting a duration from a date, is itself a date. (For the purposes of this
operation, a month denotes the equivalent of a calendar page. Adding months to a
date, then, is like turning the pages of a calendar, starting with the page on which
the date appears.) The result must fall between the dates January .1, 0001 and
December 31, 9999 inclusive. If a duration of years is added or subtracted, only the
year portion of the date is affected. The month is unchanged, as is the day unless
the result would be February 29 of a non-leap year. Here the day portion of the
result is set to 28, and the SQLWARN6 field of the SQLCA is set to 'W', indicating
that an end-of-month adjustment was made to correct an invalid date.

Similarly, if a duration of months is added or subtracted, only months and, if
necessary, years are affected. The day portion of the date is unchanged unless the
result would be invalid (September 31, for example). In this case the day is set to
the last day of the month, and the SQLWARN6 field of the SQLCA is set to 'W',
indicating the adjustment.

Adding or subtracting a duration of days will, of course, affect the day portion of the
date, and potentially the month and year.

Date durations, whether positive or negative, may also be added to and subtracted
from dates. The result is a date that has been incremented or decremented by the
specified number of years, months, and days, in this order. Thus, DATE1 + X,
where X is a positive DECIMAL(8,0) number, is equivalent to the expression

DATEl + YEAR(X) YEARS + MONTH(X) MONTHS + DAY(X) DAYS

If an end-of:..month adjustment is performed to correct an invalid date, the
SQLWARN6 field of the SQLCA is set to 'W'.

When adding durations to dates, it is assumed that adding one month to a given
date gives the same date one month later unless that date does not exist in the
later month. In that case, the date is.set to that of the last day of the later month.
For example, January 28 plus one month gives February 28; and one month added
to January 29, 30, or 31 results in either February 28 or, for a leap year, February
29. Note that if one or more months is added to a given date and then the same
number of months is subtracted from the result, the final date is not necessarily the
same as the original date.

Times can be subtracted, incremented, or decremented. The discussions that
follow will clarify how these operations are carried out.

Subtracting Times: The result of subtracting one time (TIME2) from another
(TIME1) is a time duration that specifies the number of hours, minutes, and
seconds between the two times. The data type of the result is DECIMAL(6,0). If
TIME1 is greater than or equal to TIME2, TIME2 is subtracted from TIME1. If TIME1
is less than TIME2, however, TIME1 is subtracted from TIME2, and the sign of the
result is made negative. The following procedural description clarifies the steps
involved in the operation RESULT = TIME1 - TIME2.

• If SECOND(TIME2) < = SECOND(TIME1)
then SECOND(RESULT) = SECOND(TIME1) - SECOND(TIME2).

Chapter 3. Language Elements 55

• If SECOND(TIME2) > SECOND(TIME1)
then SECOND(RESULT) = 60 + SECOND(TIME1) - SECOND(TIME2).
MINUTE(DATE2) is then incremented by 1.

• If MINUTE(TIME2) < = MINUTE(TIME1)
then MINUTE(RESUL T) = MINUTE(TIME1) - MINUTE(TIME2).

• If MINUTE(TIME2) > MINUTE(TIME1)
then MINUTE(RESULT) = 60 + MINUTE(TIME1) - MINUTE(TIME2).
HOUR(TIME2) is then incremented by 1.

• HOUR(RESULT) = HOUR(TIME1) - HOUR(TIME2).

For example, the result of TIME(' 11 :02:26 1
) -

1 00:32:56 1 is 2930 (a duration of O
hours, 29 minutes, and 30 seconds).

Incrementing and Decrementing Times: The result of adding a duration to a time,
or of subtracting a duration from a time, is itself a time. Any overflow or underflow
of hours is discarded, thereby ensuring that the result is always a time. If a
duration of hours is added or subtracted, only the hours portion of the time is
affected. The minutes and seconds are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if
necessary, hours are affected. The seconds portion of the time is unchanged.

Adding or subtracting a duration of seconds will affectthe seconds portion of the
time and may affect the minutes and hours.

Time durations, whether positive or negative, may also be added to and subtracted
from times. The result is a time that has been incremented or decremented by the
specified number of hours, minutes, and seconds, in that order. Thus, TIME1 + X,
where X is a positive DECIMAL(6,0) number, is equivalent to the expression

TIMEl + HOUR(X) HOURS + MINUTE(X) MINUTES + SECONDS(X) SECONDS

Timestamp Arithmetic
Timestamps can be incremented or decremented. The result of adding a duration
to a timestamp, or of subtracting a duration from a timestamp, is itself a
timestamp. Date and time arithmetic is performed as previously defined, except
that an overflow or underflow of hours is carried into the date part of the result,
which must be within the range of valid dates.

Precedence of Operations

56 082 SQL Reference

Expressions within parentheses are evaluated first. When the order of evaluation
is not specified by parentheses, prefix operators are applied before multiplication
and division, and multiplication and division are applied before addition and
subtraction. Operators at the same precedence level are applied from left to right.

Example: 1.10 * (SALARY + BONUS)

Predicates

expression

expression

A predicate specifies a condition that is "true," "false," or "unknown" about a
given row or group.

The general form of a predicate is as follows:

<>
>

-.>

<
..,<

>=
<=

----.....-expression-----.--------~-----+

1------,---(s ubse l ect)
SOME
ANY
ALL

-.------.--BETWEEN--express i on--AND--express ion
LNOT~

col umn-name--Is-.------.---NULL---------------4
LNOT_J

-E
special-registe

col umn-name,-.-----.....--LI KE host-vari ab l e----------1
LNOT__J string-constant

EXISTS-(subsel ect)--------------------1

express i on-L.-----,---.---IN---.,_..---(subse l ect)-----..----.......
NOT_J

+. '~ (~host-variable)
cconstant

special-registe
....__----oxpress ion------'

All values specified in a predicate must be compatible. A long string column must
not be referenced (except in a LIKE predicate), and the value of a host variable
must not be a string longer than 254 bytes. The value of a host variable must not
be null (that is, the variable may not have a negative indicator variable).

A view column referenced in a predicate must not be derived from a column·
function unless the predicate is part of a statement that meets certain special
criteria. These criteria are discussed under "Use of Views: Special Criteria" on
page 89.

Except for EXISTS, a subselect in a predicate must specify a single column.

Chapter 3. Language Elements 57

Basic Predicate
A basic predicate compares two values. The format of a basic predicate is:

• An expression followed by a comparison operator and another expression, or
• An expression followed by a comparison operator and a subselect (without

SOME, ANY or ALL). A subselect in a basic predicate must not return more
than one value.

If the value of either operand is null or the subselect returns no value, the result of
the predicate is unknown. Otherwise the result is either true or false.

For values x and y:

Predicate
x=y
x-.= Y

x<> Y
x<y
x>y
x>= Y
x<= Y
x-.< Y
x-.> Y

Examples:

Is True If and Only If ...
x is equal to y
x is not equal to y
x is not equal to y
x is less than y
x is greater than y
xis greater than or equal toy
xis less than or equal toy
xis not less than y
x is not greater than y

EMPNO = 1 528671 1

SALARY < 20000
PRSTAFF<>:VARl
SALARY > (SELECT AVG(SALARY) FROM DSN8220.EMP)

Quantified Predicate

58 082 SQL Reference

A quantified predicate compares a value with a collection of values. If the value of
the first operand is null, the result is unknown.

A quantified predicate has the same form as a basic predicate except that the
second operand is a subselect preceded by SOME, ANY, or ALL. The subselect
may return any number of values, whether null or not null.

When ALL is specified, the result of the predicate is true if the subselect returns no
values or if the specified relationship is true for every value returned by the
subselect. The result is false if the specified relationship is false for at least one
value returned by the subselect. The result is unknown if all values returned by the
subselect are null or if the specified relationship is true for all non-null values and
the subselect returns at least one null value.

When SOME or ANY is specified, the result of the predicate is true if the specified
relationship is true for at least one value returned by the subselect. The result is
false if the subselect returns no values or if the specified relationship is false for
every value returned by the subselect. The result is unknown if all values returned
by the subselect are null or if the specified relationship is false for all non-null
values and the subselect returns at least one null value.

Example: SALARY >= ALL(SELECT SALARY FROM DSN8220.EMP)

BETWEEN Predicate
The BETWEEN predicate compares a value with a range of values. The format of a
BETWEEN predicate is as follows:

.,___express i on---.L--_J---.--BETWEEN--express i on--AND--express ion-------­
NOT

NULL Predicate

The BETWEEN predicate:

valuel BETWEEN value2 AND value3

is equivalent to the search condition:
valuel >= value2 AND valuel <= value3

The BETWEEN predicate:

valuel NOT BETWEEN value2 AND value3

is equivalent to the search. condition:
NOT(valuel BETWEEN value2 AND value3); that is,
valuel < value2orvaluel > value3.

Example: SALARY BETWEEN 20000 AND 40000

The NULL predicate tests for null values. The format of the NULL predicate is as
follows:

.,___col umn-name--IS---.------NULL--------------------
LNOT_J

LIKE Predicate

The result of a NULL predicate cannot be unknown. If the value of the column is
null, the result is true. If the value is not null, the result is false. If NOT is
specified, the result is reversed.

The column-name must not identify a view column derived from an expression,
function, or constant, unless the predicate is part of a statement that meets certain
special criteria. These criteria are discussed under "Use of Views: Special
Criteria" on page 89.

Example: PHONENO IS NULL

The LIKE predicate searches for strings that have a certain pattern. The pattern is
specified by a string in which the underscore and percent sign have speciaJ
meanings. The format of the LIKE predicate is as follows:

-Especial-registej
.,___column-name--------LIKE host-variable---------------..

LNOT_J string-constant

Chapter 3. Language Elements 59

60 082 SOL Reference

The column-name must identify a string column.

It must not identify a view column derived from an expression, function, or
constant, unless the predicate is part of a statement that meets certain special
criteria. These criteria are discussed under "Use of Views: Special Criteria" on
page 89.

If a host variable is specified, it must identify a variable (not a structure) that is
described in the program under the rules for declaring string host variables; it
cannot have an indicator variable. For more on the use of host variables with
specific programming languages, see Section 3 of Application Programming and
SOL Guide.

The column may be a long string column, and may contain either character or
graphic data; the host variable, special register, or string constant must contain
data of the same type. If the column contains character data, the terms
1 character', 1 percent sign 1 , and 1 underscore• in the following discussion refer to
single-byte characters; if the column contains graphic data, those terms refer to
double-byte characters. The following description is intended for those who
require a rigorous definition. The description uses x to denote a value of the
column and y to denote the string specified by the second opercmd.

The stringy is interpreted as a sequence of the minimum number of substring
specifiers so each character of y is part of exactly one substring specifier. A
substring specifier is an underscore, a percent sign, or any nonempty sequence of
characters other than an underscore or a percent sign.

The result of the predicate is unknown if xis the null value. Otherwise, the result is
either true or false. The result is true if x and y are both empty strings or there
exists a partitioning of x into substrings such that:

• A substring of xis a sequence of zero or more contiguous characters and each
character of xis part of exactly one substring.

• If the nth substring specifier is an underscore, the nth substring of xis any
single character.

• If the nth substring specifier is a percent sign, the nth substring of xis any
sequence of zero or more characters.

• If the nth substring specifier is neither an underscore nor a percent sign, the
nth substring of xis equal to that substring specifier and has the same length
as that substring specifier.

• The number of substrings of xis the same as the number of substring
specifiers.

The predicate! NOT LIKE y is equivalent to the search condition NOT(.~ LIKE y).

With Mixed Data: if the column identified by column-name allows mixed data, the
column may contain double-byte characters, as may the host variable or string
constant. In that case the special characters in y are interpreted as follows:

• A single-byte underscore refers to one single-byte character; a double-byte
underscore refers to one double-byte character.

• A percent sign, either single-byte or double-byte, refers to any number of
characters of any type, either single-byte or double-byte.

With a Field Procedure
If the column has a field procedure, the procedure is invoked to decode the values
of the column, and the comparisons are made with the decoded values.

Examples: NAME LIKE 1 %SMITH% 1 STATUS LIKE 'N_'

The first example is true if 'SMITH' appears anywhere within NAME. The second
example is true if the value of STATUS has a length of two and the first character is
'N'.

EXISTS Predicate
The EXISTS predicate tests for the existence of certain rows. The format of the
EXISTS predicate is:

...,..___EXISTS--(subsel ect)--------------------------

J

IN Predicate

.,,.._____expression

The subselect does not return values, and the result of the predicate cannot be
unknown. The result is true only if the number of rows specified by the subselect is
not zero.

Example: EXISTS (SELECT * FROM TEMPL WHERE SALARY < 10000)

The IN predicate compares a value with a collection of values. The format of the IN
predicate is as follows:

IN (subselect) _...

LNOT=oJ
-p

i ' l >---(~host-variable J
constant !~
special-registe
expression

Each host variable specified must identify a structure or variable that is described
in the program under the rules for declaring host structures and variables. An
indicator variable must not be specified.

An IN predicate of the form:

expression IN expression

is equivalent to a basic predicate of the form:

expression = expression

An IN predicate of the form:

expression IN (subselect)

is equivalent to a quantified predicate of the form:

expression = ANY (subselect)

Chapter 3. Language Elements 61

In the other form of the IN predicate, the second operand is a collection of one or
more values specified by any combination of host variables, constants, or special
register. This form of the IN predicate is equivalent to the form specified above,
except that the second operand consists of the specified values rather than the
values returned by a subselect.

Example: DEPTNO IN ('001', 1 801', 1 C01')

Search Conditions

..

62 082 SOL Reference

A search condition specifies a condition that is "true," "false,'' or "unknown" about
a given row or group. When the condition is "true,'' the row or group qualifies for
the results. When the condition is "false" or "unknown," the row or group does not
qualify. The form of a search condition is as follows:

L~~~
Lpredicate ~

. (search-condition)

The result of a search condition is derived by application of the specified logical
operators (AND, OR, NOT) to the result of each specified predicate. If logical
operators are not specified, the result of the search condition is the result of the
specified predicate.

Examples: SALARY > 2000 NAME LI KE : VAR4 AVG(SALARY) < 30000

AND and OR are defined in Table 3, in which P and Q are any predicates:

Table 3. Truth Tables for AND and OR

p Q PANDQ PORQ

True True True True

True False False True

True Unknown Unknown True

False True False True

False False False False

False Unknown False Unknown

Unknown True Unknown True

Unknown False False Unknown

Unknown Unknown Unknown Unknown

NOT(true) is false, NOT(false) is true, and NOT(unknown) is unknown.

Search conditions within parentheses are evaluated first. If the order of evaluation
is not specified by parentheses, NOT is applied before AND, and AND is applied

before OR. The order in which operators at the same precedence level are
evaluated is undefined to allow for optimization of search conditions.

Example: MAJPROJ = 1 MA2100 1 AND (DEPTNO = 1 011 1 OR DEPTNO = 1 803 1
)

Chapter 3. Language Elements 63

Chapter 4. Functions

A function is an operation denoted by a function name followed by a pair of
.parentheses enclosing the specification of one or more operands. The operands of
functions are called arguments. Most functions have a single argument that is
specified by an expression. The result of a function is a single value derived by the
application of the function to 'the result of the expression.

Functions are classified as scalar functions or column functions. The argument of
a column function is a collection of values. An argument of a scalar function is a
single value. If multiple arguments are allowed, each argument is a single value.

In the syntax of SQL, the only use of the term "function" is in the definition of an
expression. Thus a function can be used only where an expression can be used.
Additional restrictions apply to the use of column functions as specified below and
in Chapter 5, "Queries" on page 83.

Column Functions
The following applies to all column functions, except for the COUNT(*) variation of
the COUNT function.

The argument of a column function is a collection of values derived from one or
more columns. The scope of the collection is a group or an intermediate result
table as explained in Chapter 5, "Queries" on page 83. For example, the result of
the following SELECT statement is the number of distinct values of JOBCODE for
employees in department D01:

SELECT COUNT(DISTINCT JOBCODE)
FROM DSN8220.EMP
WHERE WORKDEPT = 1 001 1

The keyword DISTINCT is not considered an argument of the function, but rather a
specification of an operation that is performed before the function is applied. The
operation, which is the elimination of duplicate values, is not performed if ALL is
specified, or if neither ALL nor DISTINCT are specified.

The DISTINCT operation can only be applied to values of a column. Thus,
column-name must not identify a view column derived from a constant or
expression unless the function is part of a statement that meets certain special
criteria. These are discussed in "Use of Views: Special Criteria" on page 89. If
DISTINCT is omitted, the values of the arguments are specified by an expression.
This expression must not include a column function, and must include at least one
column name, a requirement that is not satisfied by a reference to a view column
derived from a constant or expression without a corumn name, unless the function
is part of a statement that meets the same special criteria mentioned above. If a
column-name is a correlated reference (which is allowed in a subquery of a
HAVING clause) the expression must not in.elude operators.

The result of the COUNT function cannot be the null value. As specified in the
description of AVG, MAX, MIN, and SUM, the result is the null value when the
function is applied to an empty set. However, the result is also the null value when
the function is specified in an outer select-list, the argument is given by an

Chapter 4. Functions 65

AVG

a-rithmetic expression, and any evaluation of the expression causes an arithmetic
exception (such as division by zero).

If the argument values of a column function are strings from a column with a field
procedure, the function is applied to the encoded form of the values and the result
of MAX and MIN inherits the field procedure.

Following, in alphabetical order, is a definition of each of the column functions.

The AVG function returns the average of a collection of numbers. The form of the
function is:

.,__AVG-(___,.[____,L--~-..--express i oT l
DIS~~~CT-column-name

COUNT

The argument values must be numbers and their sum must be within the range of
the data type of the result.

The data type of the result is the same as the data type of the argument values,
except that the result is a large integer if the argument values are small integers,
and the result is double precision floating-point if the argument values are single
precision floating-point. If the data type of the argument values is decimal with
precision p and scales, the precision of the result is 15 and the scale is 15-p + s.
The result can be null.

The function is applied to the collection of values derived from the argument values
by the elimination of null values. If DISTINCT is specified, duplicate values are
also eliminated.

If this collection of values is empty, the result of the function is the null value.
Otherwise, the result is the average value of the collection. If the type of the result
is INTEGER, the fractional part of the average is lost.

Example: AVG(SALARY)

The COUNT function returns the number of rows or values in a collection of rows or
values. The form of the function is:

.,.___COUNT---,--(DISTINCT-column-name)
L(*)---------'

..

66 082 SQL Reference

The column-name must not identify a long string column. The result of the function
must be within the range of large integers and cannot be null.

MAX

The argument of COUNT(*) is a collection of rows. The result is the number of rows
in the collection.

The argument of COUNT(DISTINCT column-name) is a collection of values. The
function is applied to the collection of values derived from the argument values by
the elimination of null and duplicate values. The result is the number of values in
the collection.

Example: COUNT(DISTINCT JOBCODE)

The MAX function returns the maximum value in a collection of values. The form of
the function is:

.,._MAX-(___,.[___,L--~--.--express i onT)
DIS~~~CT-column-name

MIN

The argument values can be any values other than character strings whose
maximum length is greater than 254, or graphic strings whose maximum length is
greater than 127.

The data type and length attribute of the result are the same as the data type and
length attribute of the argument values. The result can be null.

The function is applied to the collection of values derived from the argument values
by the elimination of null values. If DISTINCT is specified, duplicate values are
also eliminated. If this collection is empty, the result of the function is the null
value. Otherwise, the result is the maximum value in the collection.

The specification of DISTINCT has no effect on the result and therefore is not
recommended.

Example: MAX(SALARY)

The MIN function returns the minimum value in a collection of values. The form of
the function is:

_., --mMJ N-(---r[-----.L--~--.--express i oT)
DIS~~~CT-column-name

The argument values can be any values other than character strings whose
maximum length is greater than 254, or graphic strings whose maximum length is
greater than 127.

Chapter 4. Functions 67

SUM

The data type and length attribute of the result are the same as the data type and
length attribute of the argument values. The result can be null.

The function is applied to the collection of values derived from the argument values
by the elimination of null values. If DISTINCT is specified, duplicate values are
also eliminated. If this collection is empty, the result of the function is the null
value. Otherwise, the result is the minimum value in the collection.

The specification of DISTINCT has no effect on the result and therefore is not
recommended.

Example: MIN (SALARY)

The SUM function returns the sum of a collection of numbers. The form of the
function is:

-----SUM-(--.[-...... L--.-J--.--expressionT)

DIS~~~CT-column-name

The argument values must be numbers and their sum must be within the range of
the data type of the result.

The data type of the result is the same as the data type of the argument values
except that the result is a large integer if the argument values are small integers
and double precision floating-point if the argument values are single precision
floating-point. If the data type of the argument values is decimal, the precision of
the result is 15 and the scale is the same as the scale of the argument values. The
result can be null.

The function is applied to the collection of values derived from the argument values
by the elimination of null values. If DISTINCT is specified, duplicate values are
also eliminated. If this collection is empty, the result of the function is the null
value. Otherwise, the result is the sum of the values in the collection.

Example: SUM(SALARY)

Scalar Functions

68 DB2 SQL Reference

A scalar function can be used wherever an expression can be used. The
restrictions on the use of column functions do not apply to scalar functions. For
example, the argument of a scalar function can be a function. However, the
restrictions that apply to the use of expressions and column functions also apply
when an expression or column function is used within a scalar function. For
example, the argument of a scalar function can be a column function only if a
column function is allowed in the context in which the scalar function is used.

The restrictions on the use of column functions do not apply to scalar functions
because a scalar function is applied to a single value rather than a collection of

CHAR

values. For example, the result of the following SELECT statement has as many
rows as there are employees in department D01:

SELECT EMPNO, LASTNAME, YEAR(CURRENT DATE - BRTHDATE)
FROM DSN8220.EMP
WHERE WORKDEPT = 1 001 1

If the argument of a scalar function is a string from a column with a field
procedure, the function applies to the decoded form of the value and the result of
the function does not inherit the field procedure.

Following in alphabetical order is the definition of each of the scalar functions.

The CHAR function returns a string representation of a date/time value. The form
of the function is:

111---CHAR-(expression---,.....------- ----------------------
,ISO
,USA
,EUR
,JIS
,LOCAL

The first argument must be a date, time, or timestamp. The second argument, if
applicable, is the name of a string format.

The result of the function is a fixed-length character string. If the first argument
can be null, the result can be null; if the first argument is null, the result is the null
value. The other rules depend on the data type of the first argument.

Note: When LOCAL is used with CHAR in a statement that refers to
remote objects, the formatting is controlled by the option in effect at the
remote subsystem, not the local subsystem.

If the first argument is a date:
Omission of the second argument is an implicit specification of the
string format specified either by the DATE precompiler option, or by the
DATE FORMAT install option. If LOCAL is implicitly or explicitly
specified, a date installation exit must be installed.

The result is the character str.ing representation of the date in the
format specified by the second argument. If LOCAL is specified, the
length of the result is the length specified by the LOCAL DATE install
option. Otherwise, the length of the result is 10.

If the first argument is a time:
Omission of the second argument is an implicit specification of the
string format specified by the TIME precompiler option, .if provided, or,
if not, by TIME FORMAT install option. If LOCAL is implicitly or
explicitly specified, a time installation exit must be installed.

The result is the character string representation of the time in the
format specified by the second argument. If LOCAL is specified, the

Chapter 4. Functions 69

.DATE

DAY

length of the result is the length specified by the LOCAL TIME install
option. Otherwise, the length of the result is 8.

If the first argument is a timestamp:
The second argument is not applicable and must not be specified. The
result is the character string representation of the timestamp. The
length of the result is 26.

Example: CHAR(HIREDATE,USA)

The DATE function returns a date from a value. The form of the function is:

The argument must be a timestamp, a date, a positive number less than 3,652,059,
a valid string representation of a date, or a character string of length 7.

If the argument is a character string of length 7, it must represent a valid date in
the form yyyynnn, where yyyy are digits denoting a year, and nnn are digits
between 901 and 366 denoting a day of that year.

· The result of the function is a date. If the argument can be null, the result can be
null; if the argument is null, the result is the null value. The other rules depend on
the data type of the argument:

If the argument is a timestamp:
The result is the date part of the timestamp.

If the argument is a date:
The result is that date.

If the argument is a number:
The result is the date that is n-1 days after January 1, 0001, where n is
the number that would occur if the INTEGER function were applied to
the argument.

If the argument Is a character string:
The result is the date represented by the character string.

Example: DATE (STRTDATE)

The DAY function ·returns the day part of a value. The form of the function is:

...-oAY--(expression)---------------------------•

70 082 SQL Reference

The argument must be a date, timestamp, or date duration.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

DAYS

DECIMAL

If the argument is a date or a timestamp, the result is the day part of the value,
which is an integer between 1 and 31.

If the argument is a date duration, the result is the day part of the value, which is
an integer between -99 and 99. A nonzero result has the same sign as the
argument.

Example: DAY(HIREDATE) 1

The DAYS function returns an integer representation of a date. The form of the
· function is:

The argument must be a date, a timestamp, or a valid string representation of a
date.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The result is 1 more than the number of days from January 1, 0001 to D, where D is
the date that would occur if the DATE function were applied to the argument.

Example: DAYS (CURRDATE) - DAYS (HIREDATE)

The DECIMAL function returns a decimal representation of a numeric value. The
form of the function is:

.,.._DECIMAL -(expression-.-----------.--- ---------------+
L,integet L ~

, intege~

The first argument must be a number. The second argument, if specified, must be
in the range of 1 to 15. The third argument, if specified, must be in the range of 0 to
p, where p is the second argument. Omission of the third argument is an implicit
specification of zero.

The default for the second argument depends on the data type of the first
argument:

• 15 for floating-point and decimal
• 11 for large integer
• 5 for small integer.

The result of the function is a decimal number with precision of p and scale of s,
where p ands are the second and third arguments. If the first argument can be
null, the result can be null; if the first argument is null, the result is the null value.

Chapter 4. Functions 71

DIGITS

The result is the same number that would occur if the first argument were assigned
to a decimal column or variable with a precision of p and a scale of s. An error
occurs if the number of significant decimal digits required to represent the whole
part of the number is greater than p-s.

Example: DECIMAL(AVG(SALARY) ,8,2)

The DIGITS function returns a character string representation of a number. The
form of the function is:

11--0IGITS--(express ion)--------------------------

FLOAT

The argument must be an integer or a decimal number.

The result of the function is a fixed-length character string. If the argument can be
null, the result can be null; if the argument is null, the result is the null value.

The result is a string of digits that represents the absolute value of the argument
without regard to its scale. Thus, the result does not include a sign or a decimal
point. The result includes any necessary leading zeros so that the length of the
string is:

• 5 if the argument is a small integer
• 10 if the argument is a large integer
• p if the argument is a decimal number with a precision of p.

Example: Suppose that COLUMNX has the data type DECIMAL(6,2). Then, if
COLUMNX has the value -6.28, DIGITS (COLUMNX) = '000628'

The FLOAT function returns a floating-point representation of a number. The form
of the function is:

11--FLOAT--(expression)--------------------------

72 082 SOL Reference

The argument must be a number.

The result of the function is a double precision floating-point number. If the
argument can be null, the result can be null; if the argument is null, the result is the
null value.

The result is the same number that would occur if the argument were assigned to a
double precision floating-point column or variable.

Example: FLOAT(ACSTAFF) /2

HEX

HOUR

The HEX function returns a hexadecimal representation of a value. The form of the
function is:

The argument can be any value other than long strings.

The result of the function is a character string. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The result is a string of hexadecimal digits, the first two represent the first byte of
the argument, the next two represent the second byte of the argument, and so
forth. If the argument is a date/time value, the result is the hexadecimal
representation of the internal form of the argument.

If the argument is not a graphic string, the length of the result is twice the defined
(maximum) length of the argument. If the argument is a graphic string, the length
of the result is four times the defined length of the argument.

If the argument is not a varying-length string, and the length of the result is less
than 255, the result is a fixed-length string. Otherwise, the result is a
varying-length string whose maximum length depends on the following
considerations.

• If the argument is not a varying-length string, the maximum length of the result
string is the same as the length of the result.

• If the argument is a varying-length character string, the maximum length of the
result string is twice the maximum length of the argument.

• If the argument is a varying-length graphic string, the maximum length of the
result string is four times the maximum length of the argument.

If the maximum length of the result is greater than 254, the result is subject to the
restrictions that apply to long strings.

Example: HEX(SYSIBM.SYSCOPY.START_RBA)

The HOUR function returns the hour part of a value. The form of the function is:

.,.__HOUR--(expression)--------------------------

The argument must be a time, timestamp, or time duration.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

If the argument is a time or a timestamp, the result is the hour part of the value,
which is an integer between 0 and 24.

Chapter 4. Functions 73

INTEGER

If the argument is a time duration, the result is the hour part of the value, which is
an integer between -99 and 99. A nonzero result has the same sign as the
argument.

Example: HOUR(ARRIVAL) BETWEEN 12 AND 24

The INTEGER function returns an integer representation of a number. The form of
the function is:

.,____INTEGER--(expression)--------------------------+

LENGTH

The argument must be a number.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The result is the same number that would occur if the argument were assigned to a
large integer column or variable. If the whole part of the argument is not within the
range of integers, an error occurs.

Example: INTEGER(SUM(EMPTIME)+.5)

The LENGTH function returns the length of a value. The form of the function is:

.,____LENGTH--(expressi on)--------------------------

7 4 082 SOL Reference

The argument can be any value.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The result is the length of the argument. The length does not include the null
indicator byte of column arguments that allow null values. The length of strings
includes blanks but does not include the length control field of varying-length
strings. The length of strings includes blanks. The length of a varying-length string
is the actual length, not the maximum length.

The length of a graphic string is the number of DBCS characters. The length of all
other values is the number of bytes used to represent the value:

• the length of the string for character strings
• 2 for small integer
• 4 tor large integer
• 4 for single precision floating-point
• 8 for double precision floating-point
• INTEGER(p/2) + 1 for decimal numbers with precision p.
• 4 for date

MICROSECOND

• 3 for time
• 1o for timestamp.

Example: SUBSTR(STRING,LENGTH(STRING)-:N)

The MICROSECOND function returns the microsecond part of a value. The form of
the function is:

I · MICROSECOND--(expression)

MINUTE.

The argument must be a timestamp.

The result of the function is a large integer representing the microsecond part of
the timestamp, which is an integer between O and 999999. If the argument can be
null, the result can be null; if the argument is null, the result is the null value.

Example: MICROSECOND(TSl) <> 0 AND SECOND(TSl) = SECOND(TS2)

The MINUTE function returns the minute part of a value. The form of the function
is:

~INUTE--(expressi on)--------------------------+

The argument must be a time, timestamp, or time duration.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

If the argument is a time or a timestamp, the result is the minute part of the value,
which is an integer between 0 and 59.

If the argument is a time duration, the result is the minute part of the value, which
is an integer between -99 and 99. A nonzero result has the same sign as the
argument.

Example: MINUTE(ARRIVAL) = 0

Chapter 4. Functions 75

MONTH
The' MONTH function returns the month part of a value. The form of the function is:

I • MONTH--(expression)

SECOND

The argument must be a date, timestamp, or date duration.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

If the argument is a date or a timestamp, the result is the month part of the value,
which is an integer between 1 and 12.

If the argument is a date duration, the result is the month part of the value, which is
an integer between -99 and 99. A nonzero result has the same sign as the
argument.

Example: MONTH(HIREDATE) < 4

The SECOND function returns the seconds part of a value. The form of the function
is:

.,._SECOND--(expressi on)-------------------------•

SUBSTR

The argument must be a time, timestamp, or time duration.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

If the argument is a time or timestamp, the result is the seconds part of the value,
which is an integer between O and 59.

If the argument is a time duration, the result is the seconds part of the value, which
is an integer between -99 and 99. A nonzero result has the same sign as the
argument.

Example: SECOND(TSl) = SECOND(TS2) AND MICROSECOND(TSl) <> 0

The SUBSTR function returns a substring of a string. The form of the function is:

.,._SUBSTR-(stri ng ,-start--..--------.-- -------------------­
L, l ength_J

76 082 SOL Reference

TIME

string
string denotes an expression that specifies the string from which the result is
derived. string must be a character string or a graphic string. If string is a
character string, the result of the function is a character string. If it is a graphic
string, the result of the function is a graphic string.

A substring of string is zero or more contiguous characters of string. If string is
a graphic string, a character is a DBCS character. If string is a character string,
a character is a byte . The SUBSTR function does not recognize mixed data, so
if string contains mixed data, the result may not be a well-formed mixed data
string.

start
start denotes an expression that specifies the position of the first character of
the result. It must be a positive binary integer that is not greater than the
length attribute of string. (The length attribute of a varying-length string is its
maximum length.)

length
length denotes an expression that specifies the length of the result. If specified,
length must be a binary integer in the range 0 ton, where n is the length
attribute of string - start + 1. It must not, however, be the integer constant 0.

If length is explicitly specified, string is effectively padded on the right with the
necessary number of blank characters so that the specified substring of string
always exists. The default for length is the number of characters from the
character specified by the start to the last character of string. However, if string
is a varying-length string with a length less than start, the default is zero and
the result is the empty string.

If length is explicitly specified by an integer constant less than 255, the result is
a fixed-length string. If length is not explicitly specified, but string is a
fixed-length string and start is an integer constant, the result is a fixed-length
string. In all other cases, the result is a varying-length string with a maximum
length that is the same as the length attribute of string. The result is subject to
the restrictions that apply to long strings if its maximum length exceeds 254.
These restrictions also apply if it is a graphic string whose maximum length
exceeds 127.

If string is a fixed-length string, omission of length is an implicit specification of
LENGTH(string) - start + 1. If string is a varying-length string, omission of length
is an implicit specification of zero or LENGTH(string) - start + 1, whichever is
greater. If any argument of the SUBSTR function can be null, the result can be null.
If any argument is null, the result is the null value.

Example: SUBSTR(FIRSTNAME, 1, 1)

The TIME function obtains a time from a value. The form of the fl,mction is:

..,___TIME--(expression)---------------------------.

The argument must be a timestamp, a time, or a valid string representation of a
time.

Chapter 4. Functions 77

TIMESTAMP

The result of the function is a time. If the argument can be null, the result can be
null; if the argument is null, the result is the null value. The other rules depend on
the data type of the argument:

If the argument is a timestamp:
The result is the time part of the timestamp.

If the argument is a time:
The result is that time.

If the argument is a character string:
The result is the time represented by the character string.

Example: TIME(TIMESTMP) > 1 5:00 1

The TIMESTAMP function obtains a timestamp from a value or a pair of values.
The form of the function is:

.,._TIMESTAMP-(expression1
-.---------..-- -----------------

L_,expression_J

78 082 SOL Reference

The rules for the arguments depend on whether the second argument is specified.

If only one argument is specified:
It must be a timestamp, a valid string representation of a timestamp, a
character string of length 8, or a character string of length 14.

A character string of length 8 is assumed to be a System/370 Store
Clock value.

A character string of length 14 must be a string of digits that represents
a valid date and time in the form yyyymmddhhmmss, where yyyy is the
year, mm is the month, dd is the day, hh is the hour, mm is the minute,
and ss is the seconds.

If both arguments are specified:
The first argument must be a date or a valid string representation of a
date and the second argument must be a time or a valid string
representation of a time.

The result of the function is a timestamp. If either argument can be null, the result
can be null; if either argument is null, the result is the null value.

If both arguments are specified, the result is a timestamp with the date specified by
the first argument and the time specified by the second argument. The
microsecond part of the timestamp is zero.

If only one argument is specified and it is a timestamp, the result is that timestamp.
If only one argument is specified and it is a character string, the result is the
timestamp represented by that character string. The timestamp represented by a
string of length 14 has a microsecond part of zero. The interpretation of a
character string as a Store Clock value will yield a timestamp with a year between
1900 to 2042 as described in IBM System/370 Principles of Operation.

VALUE

Example: TIMESTAMP(DATEFRNK, TIMEFRNK)

The VALUE function substitutes a value for the null value. The form of the function
is:

._VALUE--(express i onJ_ ,expressi onl)-------------------

The data types of the arguments must be compatible. Character strings are not
converted to date/time values. Therefore, if any argument is a date, all arguments
must be dates; if any argument is a time, all arguments must be times; if any
argument is a timestamp, all arguments must be timestamps; and if any argument
is a character string, all arguments must be character strings.

The arguments are evaluated in the order in which they are specified, and the
result of the function is equal to the first argument that is not null. The result can
be null only if all arguments can be null; the result is the null value only if all
arguments are null.

The result is defined as 1 equal to 1 an argument because that argument is
converted or extended, if necessary, to conform to the data type of the function.
The data type of the result is derived from the data types of the specified
arguments as follows:

Strings:
If any argument is a varying-length string, the result is a varying length
string whose maximum length is equal to the longest string that can
result from the application of the function. The result is subject to the
restrictions that apply to long strings if the arguments are character
strings, and the maximum length of the result is greater than 254, or if
the arguments are graphic strings and the maximum length of the result
is greater than 127.

If all arguments are fixed-length strings, the result is a fixed length
string whose length is equal to the longest string that can result from
the application of the function.

Date/time Values:

Numbers

If the arguments are dates, the result is a date. If the arguments are
times, the result is a time. If the arguments are timestamps, the result
is a timestamp.

If the arguments are numbers, the result is the numeric data type that
would occur if all arguments were part of a single arithmetic
expression. If that data type is decimal, it has precision of p and scale
of s so s is the largest result scale of any argum~nt, and p is the
minimum of 15 and s + n, where n is the largest integral part result of
any argument. Conversion errors are possible if s + n is greater than
15.

Example: SALARY + VALUE(COMMISSION,0)

Chapter 4. Functions 79

VARGRAPHIC
The VARGRAPHIC function obtains a graphic string representation of a character
string. The form of the function is:

,,___VARGRAPHIC--(expression)-----------------------

YEAR

The argument must be a character string. If varying-length, the maximum length
must not be greater than 254. If the string contains X'OE' or X'OF', they must be
properly paired under the rules for mixed data.

The result of the function is a varying-length graphic string. If the argument can be
null, the result can be null; if the argument is null, the result is the null value.

Regardless of whether the MIXED DATA install option is specified, the argument is
interpreted as a mixed data string. The result includes all DBCS characters of the
argument and the DBCS equivalent of all single-byte characters of the argument,
the first character of the result is the first logical character of the argument, the
second character of the result is the second logical character of the argument, and
so on. The result does not include X 1 OE 1 or X 1 OF 1

•

The DBCS equivalent of X' 40 1 is X '4040'. The DBCS equivalent of other
single-byte characters depends on the CHARACTER SET install option. If Katakana
is specified and X'nn' is a Katakana code point, its DBCS equivalent is X'43nn'. If
X'nn' is not a Katakana code point, its DBCS equivalent is X'42nn'. If
Alphanumeric is specified, the DBCS equivalent of every single-byte character
other than X 1 40 1 is X '42nn 1 •

The length of the result depends on the number of logical characters in the
argument. If the length or maximum length of the argument is n bytes, the
maximum length of the result is n (DBCS characters). If n is greater than 127, the
result is subject to the restrictions that apply to long strings.

Example: SUBSTR(VARGRAPHIC(MIXEDSTRING),:N)

The YEAR function obtains the year part of a value. The form of the function is:

,,___YEAR--(expression}--------------------------------------_.

80 082 SOL Reference

The argument must be a date, timestamp, or date duration.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

If the argument is a date or a timestamp, the result is the year part of the value,
which is an integer between 1 and 9999.

If the argument is a date duration, the result is the year part of the value, which is
an integer between -9999 and 9999. A nonzero result has the same sign as the
argument.

Example: YEAR(CURRDATE - BRTHDATE)

Chapter 4. Functions 81

Chapter 5. Queries

Authorization

subselect

A query specifies a result table or intermediate result table.

In a program, a query is a component of other SQL statements. The three forms of
a query described in this chapter are:

• The subselect,
• The fullselect, and
• The select-statement.

Note that there is another form of select, described under "SELECT INTO" on
page 236.

Note: Where the syntax outlined in these descriptions is specifically limited to a
column-name, (rather than to an expression), the column you identify must not be a
column of a view derived from an expression, function, or constant.

When a select-statement is dynamically prepared, the union of the privileges
designated by each authorization ID of the process must include at least one of the
following privileges for every table or view identified in the select-statement:

• Ownership of the table or view
• The SELECT privilege on the table or view
• DBADM authority for the database (tables only)
• SYSADM authority.

When any form of a query is used as a component of another statement, the
authorization rules that apply to the query are specified in the description of that
statement. For example, see the description of "CREATE VIEW" on page 161 for
the authorization rules that apply to the subselect component of CREATE VIEW.

.,.__se 1ect-c1ause-from-c1 ause-~-------.---.---------T--......------.....----•
l_where-clause_J l_group-by-clause_J l_having-clause_J

The subse/ect is a component of the fullselect, the CREATE VIEW statement, and
the INSERT statement. It is also a component of certain predicates which, in turn,
are components of a subselect. A subselect that is a component of another
subselect is called a subquery.

A subselect specifies a result table derived from the tables or views identified in
the FROM clause. The derivation can be described as a sequence of operations in
which the result of each operation is input for the next. (This is only a way of
describing the subselect. The method used to perform the derivation may be quite
different from this description.)

Chapter 5. Queries 83

select-clause

84 DB2 SQL Reference

The sequence of the (hypothetical) operations is:

1. FROM clause
2. WHERE clause
3. GROUP BY clause
4. HAVING clause
5. SELECT clause.

...---~~~~~·*~~~-------.

111>-SELECT-----~-- expressio~ }JJ­
'----+--table-nam3 ALL----1

DISTINCT view-name .*
correlation-nam

Produces a final result table by selecting only the columns indicated by the select
list from R, where R is the result of the previous operation. For example, if the
GROUP BY clause and HAVING clause are not specified, R is the result of the
WHERE clause.

ALL
Retains all rows of the final result table, and does. not eliminate redundant
duplicates. This is the default.

DISTINCT
Eliminates all but one of each set of duplicate rows of the final result table.
DISTINCT must not be used more than once in a subselect. This restriction
includes SELECT DISTINCT and the use of DISTINCT in a column function of
the select list or HAVING clause, but does not include subqueries of the
subselect.

Two rows are duplicates of one another only if each value in the first is equal
to the corresponding value of the second. (For determining duplicates, two null
values are considered equal.)

Select List Notation

*
Represents a list of names that identify the columns of table R. The first name
in the list identifies the first column of R, the second name identifies the
second column of R, and so on.

The list of names is established at bind time. Hence* does not identify ~ny
columns that have been added to a table after bind time.

expression
May be any expression of the type described in Chapter 3, but commonly the
expressions used include column names. Each column name used in the
select list must unambiguously identify a columh of R.

name.*
Represents a list of names that identify the columns of name. name must also
be used to designate a table or view in the FROM clause. The first name in the
list identifies the first column of the table or view, the second name in the list
identifies the second column of the table or view, and so on.

The list of names is established at bind time. Hence name.* does not identify
any columns that have been added to a table after bind time.

The number of columns in the result of SELECT is the same as the number of
expressions in the operational form of the select list (that is, the list established at
bind time), and may not exceed 300. The result of a subquery must be a single
column unless the subquery is used in the EXISTS predicate.

Limitation on Long String Columns: No column in the list may be a long string
column if:

• SELECT DISTINCT is used,
• the subselect is a subquery, or
• the subselect is an operand of UNION.

Applying the Select List: Some of the results of applying the select list to R
depend on whether or not GROUP BY or HAVING is used. Those results are
described separately.

If neither GROUP BY nor HAVING is used:

• The select list must not include any column functions, or it must be entirely a
list of column functions.

• If the select does not include column functions, then the select list is applied to
each row of Rand the result contains as many rows as there are rows in R.

• If the select list is a list of column functions, then R is the source of the
arguments of the functions and the result of applying the select list is one row.

If GROUP BY or HAVING is used:

• Each column-name in the select list must either identify a grouping column or
be specified within a column function.

• The select list is applied to each group of R, and the result contains as many
rows as there are groups in R. When the select list is applied to a group of R,
that group is the source of the arguments of the column functions in the select
list.

In either case the nth column of the result contains the values specified by applying
the nth expression in the operational form of the select list.

Null attributes of result columns: Result columns do not allow null values if they
are derived from:

• A scalar function or string expression that does not allow null values.
• A column that does not allow null values
• A constant
• The COUNT function
• A host variable that does not have an indicator variable.

Result columns allow null values if they are derived from:

• -Any column function but COUNT
• A column that allows null values
• An arithmetic expression in an outer select list
• An arithmetic expression that allows nulls
• A scalar function or string expression that allows null values
• A host variable that has an indicator variable.

Chapter 5. Queries 85

86 082 SOL Reference

Names of result columns: A result column derived from a column name acquires
the unqualified name of that column. All other result columns have no names.

Data types of result columns: Each column of the result of SELECT acquires a
data type from the expression from which it is derived.

When the The data type
expression Is ... of the result column Is ...

the name of any the same as the data type of the column, with the same
numeric column precision and scale for DECIMAL columns.

an integer INTEGER
constant

a decimal or the same as the data type of the constant, with the same
floating-point precision and scale for DECIMAL constants. For
constant floating-point constants, the data type is DOUBLE

PRECISION.

the name of any the same as the data type of the variable, with the same
numeric variable precision and scale for DECIMAL variables.

an arithmetic or the same as the data type of the result, with the same
string expression precision and scale for DECIMAL results as described

under "Expressions" on page 49.

any function (see Chapter 4 to determine the data type of the result.)

the name of any the same as the data type of the column, with the same
string column length attribute.

the name of any the same as the data type of the variable, with a length
string variable attribute equal to the length of the variable.

a character string VARCHAR(n)
constant of length
n

a graphic string VARGRAPHIC(n)
constant of length
n

the name of a the same as the data type of the column.
date/time column :~'

from-clause

where-clause

11---FRQM1----c-t~b 1 e-nam.:=J
view-name Lcorrelation-name~

Names a single table or view, or produces an intermediate result table. The
intermediate result table contains all possible combinations of the rows of the
named tables or views. Each row of the result is a row from the first table or view
concatenated with a row from the second table or view, concatenated in turn with a
row from the third, and so on. The number of rows in the result is the product of
the number of rows in all the named tables or views.

The list of names in the FROM clause must conform to these rules:

• A table-name or view-name must identify a table or view described in the
catalog of the 082 subsystem identified by the implicitly or explicitly specified
location-name. If more than one table-name or view-name is specified, each
location-name must identify the same 082 subsystem.

• If the FROM clause is in a subquery of a basic predicate, no view named may
use either GROUP BY or HAVING.

The FROM clause also defines the meaning of correlation names. A
correlation-name applies to the table or view named by the immediately preceding
table-name or view-name. If a correlation name is specified, then that correlation
name must be used elsewhere in the subselect statement to designate that table or
view. For rules governing the use of correlation names, see "Qualified Column
Names" on page 43.

Each correlation name specified in the same FROM clause must be unique and
must not be the same as a table name or view name specified in the clause. When
the same table name or view name is specified more than once in a FROM clause,
a correlation name must be specified after each occurrence of the replicated name.
If a correlation name is specified for a table or view, any qualified reference to a
column of that table or view in the subselect must use that correlation name.

11---WHERE--search-condi ti on1

Produces an intermediate result table by applying search-condition to each row of
R, where R is the result of the FROM clause. The result table contains the rows of
R for which the search condition is true.

search-condition describes a search condition that conforms to these rules:

• The condition is formed as described in Chapter 3.

Chapter 5. Queries 87

group-by-clause

having-clause

88 082 SQL Reference

• Each column-name in the search condition either unambiguously identifies a
column of R, or is a correlated reference. (A correlated reference is possible
only in a subquery.)

• The search condition does not include a column function unless the argument
of the function is a correlated reference to a group. (This is only possible in a
subquery of a HAVING clause.)

Any subquery in the search-condition is effectively executed for each row of Rand
the results used in the application of the search-condition to the given row of R. In
fact, a subquery with no correlated references is executed just once, whereas a
subquery with a correlated reference may have to be executed once for each row.

+·--=-i
111>--GROUP BY--co l umn-name-~~---------------~

Produces an intermediate result table by grouping the rows of R, where R is the
result of the previous clause.

column-name unambiguously names a column of R. It must not specify a long
string column. Each column named is called a grouping column. A grouping
column must not be a view column derived from an expression, function, or
constant, unless that column is part of a statement that meets certain special
criteria. These criteria are discussed under "Use of Views: Special Criteria" on
page 89.

The result of GROUP BY is a set of groups of rows. In each group of more than one
row, all values of each grouping column are equal; and all rows with the same set
of values of the grouping columns are in the same group. For grouping, all null
values within a grouping column are considered equal.

Because every row of a group contains the same value of any grouping column,
the name of a grouping column can be used in a search condition in a HAVING
clause or an expression in a SELECT clause: in each case, the reference specifies
only one value for each group. However, if the grouping column contains
varying-length strings with trailing blanks, the values in the group can differ in the
number of trailing blanks, and may not all have the same length. In that case, a
reference to the grouping column still specifies only one value for each group, but
the value for a group is chosen arbitrarily from the available set of values.

GROUP BY must not be used in a subquery of a basic predicate .

111>--HAVING--search-condition-----------__,,.----.

Produces an intermediate result table by applying search-condition to each group
of R where R is the result of the previous clause. If that clause is not GROUP BY,
all rows of Rare considered as one group. The result table contains those groups
of R for which the search condition is true.

The search-condition describes a search condition that conforms to these rules:

• The condition is formed as described in Chapter 3.

• Each column-name in the search-condition must:

Unambiguously identify a grouping column of R, or
Be a correlated reference, or
Be specified within a column function.3

A group of R to which the search condition is applied supplies the argument for
each function in the search condition, except for any function whose argument is a
correlated reference.

If the search condition contains a subq~ery, the subquery can be thought of as·
being executed each time the search condition is applied to a group of R, and the
results used in applying the search condition. In actuality, the subquery is
executed for each group only if it contains a correlated reference. For an
illustration of the difference, see examples 4 and 5 under "Examples of a
subselect" on page 90.

A correlated reference to a group of R must either identify a grouping column or be
contained within a function.

The HAVING clause must not be used in a subquery of a basic predicate.

Use of Views: Special Criteria
As indicated in the descriptions of predicates, column functions, and the subselect,
several restrictions on references to a column of a view do not apply in all cases.
The instances in which these restrictions may be relaxed are determined by the
language elements in the statement referring to the view and in the definition of the
view itself. Those language elements pertaining to the view are not necessarily
those of the referenced view, but also may be language elements that are used in a
view on which the referenced view is dependent. References to views in the
CREATE VIEW statement are included among the instances in which these
restrictions are relaxed.

These restrictions do not apply if:

• The view includes DISTINCT, GROUP BY, HAVING or column functions in its
SELECT list, and the subselect or embedded SELECT statement that
references the view includes GROUP BY, HAVING, a join, or column functions
in its SELECT list.

• The view includes DISTINCT, and the SELECT list of the subselect or
embedded SELECT statement that references the view does not include a
simple reference to every column of the view. That is, the SELECT list does
not reference some columns of the view, or it references some columns only in
an expression or scalar function.

s See Chapter 4, "Functions" on page 65 for restrictions that apply to the use of column functions.

Chapter 5. Queries 89

• The view includes DISTINCT and the subselect or embedded SELECT
statement that references the view includes DISTINCT.

Examples of a subselect

90 082 SQL Reference

Example 1: Show all rows of DSN8220.EMP

SELECT * FROM DSN8220.EMP

Example 2: Show the job code, maximum salary, and minimum salary for each
group of rows of DSN8220.EMP with the same job code, but only for groups with
more than one row and with a maximum salary greater than $50,000.

SELECT JOBCODE, MAX(SALARY), MIN(SALARY)
FROM DSN8220.EMP
GROUP BY JOBCODE
HAVING COUNT(*) > 1 AND MAX(SALARY) > 50000

Example 3: Show all rows of the Employee-to-Project-Activity table, for employees
in Department E11.

SELECT * FROM DSN8220.EMP.PROJA
WHERE EMPNO IN (SELECT EMPNO FROM DSN8220.EMP

WHERE WORKDEPT = 1 Ell 1
)

Note that if you had wanted to choose a specific format for the two date columns
returned by this example (EMSTDATE and EMENDATE), you could have coded the
example using the CHAR function. If, for example, you had wanted the USA format
for both columns, you might have coded the example like this:

SELECT EMPNO,PROJNO,ACTNO,EMPTIME,CHAR(EMSTDATE,USA),CHAR(EMENDATE,USA)
FROM DSN8220.EMP.PROJA

WHERE EMPNO IN (SELECT EMPNO FROM DSN8220.EMP
WHERE WORKDEPT = 1 Ell 1

);

For information on the date/time string formats, see "Scalar Functions" on
page 68.

Example 4: Show the department number and maximum departmental salary for
all departments whose maximum salary is less than the average salary for all
employees. (In this example, the subselect would be executed only once.)

SELECT WORKDEPT, MAX(SALARY)
FROM DSN8220.EMP
GROUP BY WORKDEPT
HAVING MAX(SALARY) < (SELECT AVG(SALARY)

FROM DSN8220.EMP)

Example 5: Show the department number and maximum departmental salary for
all departments whose maximum salary is less than the average salary for
employees in all other departments. (In contrast to example 4, the subquery in this
statement, containing a correlated reference, would need to be executed for each
group.)

SELECT WORKDEPT, MAX(SALARY)
FROM DSN8220.EMP Q
GROUP BY WORKDEPT
HAVING MAX(SALARY) < (SELECT AVG(SALARY)

FROM DSN8220.EMP
WHERE NOT WORKDEPT = Q.WORKDEPT)

fullselect

UNION ALL--~ F
UN ION

c=subselect ~
(full select)

A fullselect specifies a result table. If UNION is not used, the result of the fullselect
is the result of the specified subselect.

UNION or UNION ALL

Derives a result table by combining two other result tables (R1 and R2.). If
UNION ALL is specified, the result consists of all rows in R1 and R2. If UNION
is specified without the ALL option, the result is the set of all rows in either R1
or R2, with duplicate rows eliminated. In either case, however, each row of the
UNION table is either a row from R1 or a row from R2. The columns of the
result are not named.

Two rows are duplicates of one another only if each value in the first is equal to the
corresponding value of the second. (For determining duplicates, two null values
are considered equal.)

Note that the UNION ALL operation is associative, and that

(SELECT PROJNO FROM DSN8220.PROJ
UNION ALL
SELECT PROJNO FROM DSN8220.TPROJEC)
UNION ALL
SELECT PROJNO FROM DSN8220.EMPPROJA

will return the same results as

SELECT PROJNO FROM DSN8220.PROJ
UNION ALL
(SELECT PROJNO FROM DSN8220.TPROJEC
UNION ALL
SELECT PROJNO FROM DSN8220.EMPPROJA)

When you include the UNION ALL operator in the same SOL statement as a UNION
operator, however, the result of the operation depends on the order of evaluation.
Where there are no parentheses, evaluation is from left to right. Where
parentheses are included, the parenthesized subselect is evaluated first, followed,
from left to right, by the other components of the statement.

Rules for columns: R1 and R2 must have the same number of columns.

In the following explanations, let Column1 denote the nth column of R1, Co/umn2
the nth column of R2, and Column3 the nth column of the result of a UNION or
UNION ALL.

• String Columns: Column1 and Column2 must be strings of the same type,
either character or graphic. Co/umn3 will be a matching string. If UNION,
rather than UNION ALL, is involved, neither Column1 nor Co/umn2 can be a
long string column. If both Column1 and Column2 are fixed-length, Co/umn3

Chapter 5. Queries 91

wiU be fixed-length. Otherwise, Column3 will be varying-length. In either
case, the length attribute of Column3 will be the greater of the length attributes
of Column1 and Co/umn2.

• Numeric Columns: Column1 and Column2 must both be numeric. The
following rules govern the data type of Column3:

- If Column1 or Column2 is floating-point, then, regardless of the data type of
the other column, the result (Column3) is floating-point.

- If Column1 and Column2 are decimal, Column3 is decimal. If p and s are
the precision and scale of Column1, and p' and s' are the precision and
scale of Column2, the precision of Column3 is MAX(s,s 1)+MAX(p-s,p 1 -s 1

)

and the scale of Column3 is MAX(s,s 1
). The precision of Column3 must not

be greater than 15.
If Column1 or Column2 is decimal, and the other is integer, Column3 is
decimal. The integer is converted to decimal according to the rules for
integer-to-decimal conversion. The precision and scale of Column3 can be
calculated, using the formulas above. For p ands, use the precision and
scale of the decimal column. For p' and s', use the precision and scale of
the decimal representation of the integer column.
If Column1 and Column2 are large integer, Column3 is large integer.

- If Column1 or Column2 is large integer, and the other is small integer,
Column3 is large integer.

- If Column1 and Column2 are small integer, Column3 is small integer.

• Date/Time Columns: Column1 and Column2 must both be dates, both be times,
or both be timestamps. Column3 will have a matching data type.

In all cases, if Column1 and Column2 do not allow null values, Co/umn3 will not
allow null values. Otherwise, Column3 will permit null values. If the values of
Column1 or Column2 must be converted to conform to Column3, the conversion
operation is exactly the same as if the values were assigned to Column3. For
example, if Column1 is CHAR(10) and Column2 is CHAR(S), Column3 is CHAR(10)
and values of Column3 derived from Column2 are padded on the right with five
blanks.

Examples of a. fullselect

92 082 SOL Reference

Example 1: Show all the rows from DSN8220.EMP.

SELECT * FROM DSN8220.EMP

Example 2: List the employee numbers of all employees whose department
number begins with D (as determined from the employee table) OR who are
assigned to projects whose project number begins with AD (as determined from
the Employee-to-Project-Activity table).

SELECT EMPNO FROM DSN8220.EMP
WHERE WORKDEPT LIKE 1 0% 1

UNION
SELECT EMPNO FROM DSN8220.EMP.PROJA
WHERE PROJNO LIKE 1 AD% 1

select-statement

11+----fullselect ~ -.,..

1--order-by-clause
-c=-FOR FETCH ONLY-==r

1--update-clause
'--FOR FETCH ONLY

The select-statement is the form of a query that can be prepared and subsequently·
executed by the use of an OPEN statement. It can also be issued interactively, by
SPUFI, causing a result table to be displayed at your terminal. In either case, the
table specified by a select-statement is the result of the fullselect.

order-by-clause

..,__ORDER BY-~L-co l umn-name
integet

Puts the rows of the result table in order by the values of the columns you identify.
If you identify more than one column, the rows are ordered by the values of the first
column you identify, then by the values of the second column, and so on.

column-name
Must unambiguously identify a column of the result table. A long string column
must not be identified.

integer
Must be greater than O and not greater than the number of columns in the
result table. The integer n identifies the nth column of the result table.

A named column may be identified by an integer or a column-name. An
unnamed column must be identified by an integer. A column is unnamed if it is
derived from a constant, an expression, or a function. If the fullselect includes
a UNION operator, every column of the result table is unnamed.

ASC
Uses the values of the column in ascending order. This is the default.

DESC
Uses the values of the column in descending order.

Ordering is performed in accordance with the comparison rules described in
Chapter 3. The null value is higher than all other values. If your ordering
specification does not determine a complete ordering, rows with duplicate values
of the last identified column have an arbitrary order. If the ORDER BY clause is not
specified, the rows of the result table have an arbitrary order.

Chapter 5. Queries 93

update-clause

FOR FETCH ONLY

r-·--=-i
11---FOR UPDATE OF-column-name--------------..

Used when the cursor will be referred to in a positioned UPDATE statement.
Restricts the columns that can be updated to those specified in the column-name
list. These columns must belong to the table or view named in the FROM clause of
the fullselect. The column names must not be qualified.

An update clause is mandatory when a cursor is used for updates, with one
exception: Consider a query appearing explicitly in a DECLARE CURSOR
statement, and assume that its program is processed by the DB2 precompiler.
Then the query needs no update clause if one or both of the following options is in
effect for the precompilation: STDSQL(86) or NOFOR. For more on the subject, see
"The NOFOR Option: FOR UPDATE OF" on page 40.

When FOR UPDATE OF is used and the plan is bound with cursor stability, FETCH
operations referencing the cursor acquire U locks, rather than S locks. (For a
discussion of U locks and S locks, see Section 6 of System and Database
Administration Guide.)

The FOR UPDATE OF clause cannot be used if the result is read-only. Nor can it be
used in a statement containing FOR FETCH ONLY. For a discussion of read-only
result tables, see "DECLARE CURSOR" on page 165.

Indicates that the result table is read-only; that is, that its cursor will not be used
for positioned deletes or updates.

Some result tables may be read-only because their nature precludes the use of
delete or update operations. (Such tables may, for example, be based on
read-only views.) For all such tables, FOR FETCH ONLY is redundant. But for
result tables for which updates and deletes are possible, specifying FOR FETCH
ONLY may improve the performance of FETCH operations.

A read-only result table must not be referenced in an UPDATE or DELETE
statement. A violation of this rule is indicated by SQLCODE -510. The rule
embraces result tables that are read-only by their nature, and those for which FOR
FETCH ONLY is specified.

FOR FETCH ONLY cannot appear in a statement containing an update-clause.

Examples of a select-statement
Example 1: Select all the rows from DSN8220.EMP.

SELECT * FROM DSN8220.EMP

Example 2: Select all the rows from DSN8220.EMP in order by date of hiring.

SELECT * FROM DSN8220.EMP ORDER BY HIREDATE

94 082 SQL Reference

Chapter 6. Statements

This chapter contains syntax diagrams, semantic descriptions, rules, and examples
of the use of the SOL statements listed in the table below.

Table 4 (Page 1 of 2). SQL Statements

SQL Statement Function Refer to

ALTER INDEX Changes the description of an index. p. 100

ALTER STOGROUP Changes the description of a storage group. p. 106

ALTER TABLE Changes the description of a table. p. 108

ALTER TABLESPACE Changes the description of a table space. p. 115

BEGIN DECLARE Marks the beginning of a host variable p. 122
SECTION declaration section.

CLOSE Closes a cursor. p. 123

COMMENT ON Replaces or adds a comment to the description p. 124
of a table, view, alias, or column.

COMMIT Terminates a unit of recovery and commits the p. 126
database changes made by that unit of
recovery.

CREATE ALIAS Defines an alias. p. 127

CREATE DATABASE Defines a database. p. 129

CREATE INDEX Defines an index on a table. p. 131

CREATE STOGROUP Defines a storage group. p. 140

CREATE SYNONYM Defines an alternate name for a table or view. p. 142

CREA TE TABLE Defines a table. p. 144

CREATE Allocates and formats a table space.
I-

p. 154
TABLESPACE

CREATE VIEW Defines a view of one or more tables or views. p. 161

DECLARE CURSOR Defines an SOL cursor. p. 165

DECLARE Declares names used to identify prepared SQL p. 168
STATEMENT statements.

DECLARE TABLE Provides the programmer and the precompiler p. 169
with a description of a table or view.

DELETE Deletes one or more rows from a table. p.172

DESCRIBE Describes the result columns of a prepared p. 176
statement.

DROP Deletes an alias, database, index, storage p. 179
group, synonym, table, tablespace, or view.

END DECLARE Marks the end of a host variable declaration p. 183
SECTION section.

EXECUTE Executes a prepared SQL statement. p. 184

EXECUTE Prepares and executes an SQL statement. p. 186
IMMEDIATE

Chapter 6. Statements 95

Table 4 (Page 2 of 2). SOL Statements

SQL Statement Function Refer to

EXPLAIN Obtains information about how an SOL p. 188
statement would be executed.

FETCH Assigns values of a row to host variables. p. 192

GRANT(DATABASE Grants privileges on databases. p. 196
PRIVILEGES)

GRANT (PLAN Grants authority to bind or execute an p. 198
PRIVILEGES) application plan.

GRANT (SYSTEM Grants system privileges. p. 199
PRIVILEGES)

GRANT (TABLE or Grants privileges on a table or view. p. 201
VIEW PRIVILEGES)

GRANT (USE Grants authority to use specified buffer pools, p.203
PRIVILEGES) storage groups, or table spaces.

INCLUDE Inserts declarations into a source program. p.205

INSERT Inserts one or more rows into a table. p.207

LABEL ON Replaces or adds a label on the description of a p.211
table, view, alias, or column.

LOCK TABLE Locks a table in shared or exclusive mode. p.213

OPEN Opens a cursor. p. 215

PREPARE Prepares an SOL statement (with optional p.218
parameters) for execution.

REVOKE(DATABASE Revokes privileges on databases. p.224
PRIVILEGES)

REVOKE (PLAN Revokes authority to bind or execute an p.227
PRIVILEGES) application plan

REVOKE (SYSTEM Revokes system privileges. p.229
PRIVILEGES)

REVOKE (TABLE or Revokes privileges on a table or view. p.231
VIEW PRIVILEGES)

REVOKE(USE Revokes authority to use specified buffer pools, p.233
PRIVILEGES) storage groups, or table spaces.

ROLLBACK Terminates a unit of recovery and backs out the p.235
database changes made by that unit of
recovery.

SELECT INTO Specifies a result table of no more than one p. 236
row and assigns the values to host variables .

. SET CURRENT SOLID Changes the value of the SOL authorization ID. p. 238

UPDATE Updates the values of one or more columns in p.240
one or more rows of a table.

WHENEVER Defines actions to be taken on the basis of SOL p.245
return codes.

96 DB2 SOL Reference

How SQL Statements Are Invoked
The SOL statements described in this chapter are classified as executable or
nonexecutable. The 'Invocation 1 section in the description of each statement
indicates whether or not the statement is executable.

An executable statement can be invoked in three ways:

• Embedded in an application program
• Dynamically prepared and executed
• Issued interactively.

Depending on the statement, you can use some or all of these methods. The
'Invocation 1 section in the description of each statement tells you which methods
can be used.

A nonexecutable statement can only be embedded in an application program.

Besides the statements described in this chapter, there is one more SOL statement
construct: the select-statement, as described under "select-statement" on
page 93. It is not included in this chapter because it is used in a way different from
other statements. A select-statement can be invoked in three ways:

• Included in DECLARE CURSOR and implicitly executed by OPEN
• Dynamically prepared, referenced in DECLARE CURSOR, and implicitly

executed by OPEN
• Issued interactively.

The first two methods are called, respectively, the static and the dynamic
invocation of select-statement.

The different methods of invoking an SOL statement are discussed below in more
detail. For each method, the discussion includes: the mechanism of execution, the
interaction with host variables, and testing whether the execution was successful
or not.

Embedding a Statement in an Application Program
You may include SOL statements in a source program that will be submitted to the
precompiler. Such statements are said to be embedded in the program. An
embedded statement can be placed anywhere in the program where a host
language statement would be allowed. You must precede each embedded
statement with EXEC SOL.

Executable statements: An executable statement embedded in an application
program is executed every time a statement of the host language would be
executed if specified in the same place. (Thus, for example, a statement within a
loop is executed every time the loop is executed, and a statement within a
conditional construct is executed only when the condition is satisfied.)

An embedded statement may contain references to host variables. A host variable
referenced in this way may be used in two ways:

• As input (the current value of the host variable is used in the execution of the
statement).

• As output (the variable is assigned a new value as a result of executing the
statement).

Chapter 6. Statements 97

In particular, all references to host variables in expressions and predicates are
effectively replaced by current values of the variables, i.e., the variables are used
as input. The treatment of other references is described individually for each
statement.

The successful or unsuccessful execution of the statement is indicated by setting of
the SQLCODE field in SQLCA. You should therefore follow all executable
statements by a test of SOLCODE. Alternatively, you can use the WHENEVER
statement (which is itself nonexecutable) to change the flow of control immediately
after the execution of an embedded statement.

Nonexecutable statements: An embedded nonexecutable statement is processed
only by the precompiler. The precompiler reports any errors encountered in such­
statement. The statement is never executed, and acts as a no-operation if placed
among executable statements of the application program. You should not,
therefore, follow such statements by a test of the SOLCODE field in SOLCA.

Dynamic Preparation and Execution
Your application program may dynamically build an SOL statement in the form of a
character string placed in a host variable. In general, the statement is built from
some data available to the program (for example, obtained from a terminal). The
statement so constructed can be prepared for execution by means of the
(embedded) statement PREPARE, and executed by means of the (embedded)
statement EXECUTE. Alternatively, you can use the (embedded) statement
EXECUTE IMMEDIATE to prepare and execute a statement in one step.

A statement to be prepared must not contain references to host variables. It may
instead contain parameter markers. (See "PREPARE" on page 218 for rules
concerning the parameter markers.) When the prepared statement is executed, the
parameter markers are effectively replaced by current values of the host variables
specified in the EXECUTE statement. (See "EXECUTE" on page 184 for rules
concerning this replacement.) Note that, once prepared, a statement can be
executed several times, with different values of host variables.

The parameter markers are not allowed by EXECUTE IMMEDIATE.

The successful or unsuccessful execution of the statement is indicated by setting of
the SQLCODE field in SQLCA after the EXECUTE (or EXECUTE IMMEDIATE)
statement. You should check it as described above for embedded statements.

Static Invocation of a select-statement

98 082 SQL Reference

You may include a select-statement as a part of the (nonexecutable) statement
DECLARE CURSOR. Such a statement is executed every time you open the cursor
by means of the (embedded) statement OPEN. After the cursor is open, you can
retrieve the result table a row at a time by successive executions of the SOL
FETCH statement.

The select-statement used in this way may contain references to host variables.
These references are effectively replaced by the values that the variables have at
the moment of executing OPEN.

The successful or unsuccessful execution of select-statement is indicated by
setting of the SOLCODE field in SOLCA after the OPEN. You should check it as
described above for embedded statements.

Dynamic Invocation of a select-statement
Your application program may dynamically build a select-statement in the form of
a character string placed in a host variable. In general, the statement is built from
some data available to the program (for example, a query expressed in terms of
your application, obtained from a terminal). The statement so constructed may be
prepared for execution by means of the (embedded) statement PREPARE, and
referenced by a (nonexecutable) statement DECLARE CURSOR. The statement is
then executed every time you open the cursor by means of the (embedded)
statement OPEN. After the cursor is open, you can retrieve the result table a row
at a time by successive executions of the SQL FETCH statement.

The select-statement used in this way must not contain references to host
variables. It may instead contain parameter markers. (See "PREPARE" on
page 218 for rules concerning the parameter markers.) The parameter markers
are effectively replaced by the values of the host variables specified in the OPEN
statement. (See "OPEN" on page 215 for rules concerning this replacement.)

The successful or unsuccessful execution of select-statement is indicated by
setting of the SQLCODE field in SQLCA after the OPEN. You should check it as
described above for embedded statements.

Interactive Invocation
A capability for entering SQL statements from a terminal is part of the architecture
of the database management system. For this facility, 082 provides SPUFI. Other
products are also available. A statement entered in this way is said to be issued
interactively.

A statement issued interactively must not contain parameter markers or references
to host variables, since these make sense only in the context of an application
program. For the same reason, there is no SQLCA involved.

Chapter 6. Statements 99

ALTER INDEX

ALTER INDEX

Invocation

·The ALTER INDEX statement changes the description of a local index.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privilege set defined below must include one of the following:

• Ownership of the index
• Ownership of the table on which the index is defined
• DBADM authority for the database
• SYSADM authority.

If BUFFERPOOL or USING STOGROUP is specified, additional privileges may be
required as explained in the description of those clauses.

If the statement is embedded in a program, the privilege set is the privileges
designated by the authorization ID of the owner of the plan. If the statement is
dynamically prepared, the privilege set is the union of the privileges designated by
each authorization ID of the process.

~ALTER INDEX--i ndex-name,------------------------

-f
BP0

BUFFERPOOL BPI----------.
BP2

CLOSEL~ES

DSETPASS-password1----------1
PART-i nteger----------­
FREEPAGE-i nteger-----------1
PCTFREE-i nteger-----------1
USINGLVCAT-catalog-name

STOGROUP-stogroup-name
PRIQTY-integer-------------1
SECQTY-i nteger-----------1

ERASEL~ES

Syntax note: Use at least one of the keywords from the diagram above, but do not
use the same keyword more than once.

Description
index-name

100 082 SQL Reference

Is the name of the index to be altered. It must be a user-created index
described in the 082 catalog.

ALTER INDEX

BUFFERPOOL BPn
Names the buffer pool to be associated with the index. Use BPO, BP1, or BP2.
The buffer pool must be activated, and you must have SYSADM authority or the
USE privilege for the buffer pool. The change to the description of the index
has no effect until the next time its data sets are opened.

CLOSE
Specifies whether or not the data sets for the index are closed when the
number of processes using the index becomes zero.

YES
Closes the data sets.

NO
Does not close the data sets.

DSETPASS password
Specifies a password that is passed to VSAM when the data sets of the index
are used by DB2. password is a VSAM master level password in the form of a
short identifier. If the password is a delimited identifier, it may contain any
special characters acceptable to VSAM Access Method Services. The change
to the description of the index has no effect until the next time its data sets are
opened.

Changing the password for the index does not change the password that
protects its data sets. To change the data set password, use VSAM Access
Method Services.

Note: The password does not apply to the data sets managed by Storage
Management Subsystem. Data sets defined to SMS should be protected by
RACF or some similar external security system.

PART integer
Identifies a partition of the index. Thus, for an index that has n partitions, you
must specify an integer in the range 1 ton. You must not use this clause if the
index is not partitioned. You must use this clause if the index is partitioned
and you use the FREEPAGE, PCTFREE, USING, PRIQTY, SECQTY, or ERASE
clause. In this case the alterations specified by these clauses apply only to the
identified partition of the index.

FREEPAGE integer
Specifies how often to leave a page of free space when the index or partition is
loaded or reorganized. You must specify an integer in the range of Oto 255. If
you specify 0, no free pages are left as free space. Otherwise, one free page is
left after every n pages where n is the specified integer. The change to the
description of the index or partition has no effect until it is loaded or
reorganized.

PCTFREE integer
Specifies the amount of free space to leave in each nonleaf page and subpage
when the index or partition is loaded or reorganized.· You must specify an
integer in the range 0 to 99. The integer indicates a percentage of free space
that does not restrict the first entry in a nonleaf page or subpage. When
additional entries are placed in a nonleaf page, at least n% of the page is left
as free space, where n is the specified integer. When additional entries are
placed in a subpage, at least nlm% of the subpage is left as free space, where
mis the number of subpages in the leaf pages of the index. The change to the
description of the index or partition has no effect until it is loaded or
reorganized.

Chapter 6. Statements 101

ALTER INDEX

USING
Specifies whether a data set for the index or partition is user-managed or
082-managed. If the index is partitioned, USING applies to the data set for the
partition identified in the PART clause. If the index is not partitioned, USING
applies to every data set that may be used for the index. (An unpartitioned
index can have more than one data set if PRIQTY + 123 * SECQTY is at least 2
gigabytes.)

If you use the USING clause, the index must be in the stopped state when the
ALTER INDEX statement is executed. Successful execution of the statement
changes the description of the index but has no immediate effect on the index
or partition. The new description is applied when the index or partition is
recovered, reorganized, or extended to a new volume or data set. However, if
you change the catalog-name (explicitly by USING VCAT or implicitly by USING
STOGROUP), you must move the data while the index is in the stopped state as
explained under "Notes" on page 104.

VCAT catalog-name
Specifies a user-managed data set with a name that starts with the
specified catalog name. You must specify the catalog-name in the form of
a short identifier. Thus, you must specify an alias if the name of the ICF
catalog is longer than 8 characters. When the new description of the index
is applied, the ICF catalog must contain an entry for the data set
conforming to the 082 naming conventions.

STOGROUP stogroup-name
Specifies a 082-managed data set that resides on a volume of the
specified storage gr'oup. You must specify a stogroup-name described in
the 082 catalog and the privilege set must include SYSAOM authority or
the USE privilege for the storage group. When the new description of the
index is applied, the description of the storage group must include at least
one volume serial number, each volume serial number must identify a
volume that is accessible to MVS for dynamic allocation of the data set,
and all identified volumes must be of the same device type. Furthermore,
the ICF catalog used for the storage group must not contain an entry for the
data set and, if the ICF catalog is password protected, the description of
the storage group must include a valid password.

If you specify USING STOGROUP and the current data set for the index or
partition is 082-managed, omission of the PRIQTY clause is an implicit
specification of the current PRIQTY value, omission of the SECQTY clause
is an implicit specification of the current SECQTY value, and omission of
the ERASE clause is an implicit specification of the current ERASE rule.

If you specify USING STOGROUP and the current data set for the index or
partition is user-managed, omission of the PRIQTY clause is an implicit
specification of PRIQTY 12, omission of the SECQTY clause is an implicit
specification of SECQTY 12, and omission of the ERASE clause is an
implicit specification of ERASE NO.

PRIQTY integer
Specifies the primary space allocation for a data set of the index or partition.
This clause must not be specified for user-managed data sets. Thus, you may
specify this clause only if:

• You also specify USING STOGROUP, or

• You do not specify the USING clause and the data set for the index or
partition is 082-managed.

102 082 SQL Reference

ALTER INDEX

If you specify PRIQTY, the index must be in the stopped state when the ALTER
INDEX statement is executed. Successful execution of the statement changes
the description of the index, but has no immediate effect on the index or
partition. The new description is applied when the index or partition is
recovered, reorganized, or extended to a new volume or data set. However,
you may want to apply the new description before then by moving the data as
explained under "Notes" on page 104.

You specify the primary space allocation in kilobytes. You may specify any
integer, but 12 is used if the integer you specify is less than 12 and 4194304 is
used if the integer you specify is greater than 4194304.

D82 specifies the primary space allocation to VSAM as an integral number of
pages which is calculated by dividing the number of kilobytes by 4 and
rounding up to the next highest integer. VSAM then uses this number to
specify an integral number of tracks. Thus, the primary space allocation can
be greater than the number of kilobytes you specify.

SECQTY integer
Specifies the secondary space allocation for a data set of the index or partition.
This clause must not be specified for user-managed data sets. Thus, you may
specify this clause only if:

• You also specify USING STOGROUP, or

• You do not specify the USING clause and the data set for the index or
partition is D82-managed.

If you specify SECQTY, the index must be in the stopped state when the ALTER
INDEX statement is executed. Successful execution of the statement changes
the description of the index, but has no immediate effect on the index or
partition. The new description is applied when the index or partition is
recovered, reorganized, or extended to a new volume or data set. However,
you may want to apply the new description before then by moving the data as
explained under "Notes" on page 104 below.

You specify the secondary space allocation in kilobytes. You may specify any
integer, but 131068 is used if the integer you specify is greater than 131068. If
you specify 0, the data set cannot be extended. \
D82 specifies the secondary space allocation to VSAM as an integral number
of pages which is calculated by dividing the number of kilobytes by 4 and
rounding up to the next highest integer. VSAM then uses this number to
specify an integral number of tracks. Thus, the secondary space allocation can
be greater than the number of kilobytes you specify.

ERASE
Specifies whether the contents of a data set for the index or partition are
erased when the index is dropped. This clause must not be specified for
user-managed data sets. Thus, you may specify this clause only if:

• you also specify USING STOGROUP, or

• you do not specify the USING clause and the data set for the index or
partition is D82-managed.

If you specify ERASE, the index must be in the stopped state when the ALTER
INDEX statement is executed. Successful execution of the statement changes
the description of the index, but has no immediate effect on the index or
partition. The new description is applied when the index or partition is
recovered, reorganized, or extended to a new volume or data set. However,

Chapter 6. Statements 103 .

ALTER INDEX

Notes

Examples

you may want to apply the new description before then by moving the data as
explained under nNotes" on page 104.

YES
Erases the contents of the data set when the index is dropped.

NO
Does not erase the contents of the data set.

The ALTER INDEX statement cannot be executed while a DB2 utility has control of
the index or its associated table space.

To change FREEPAGE, PCTFREE, USING, PRIQTY, SECQTY, or ERASE for more
than one partition, you must use separate ALTER INDEX statements.

USING, PRIQTY, SECQTY, and ERASE specify the storage attributes of an index or
partition. Changing these attributes requires changes to the description of the
index and movement of the data. The ALTER statement only changes the
description of the index. Movement of the data is a user responsibility which can
be accomplished by the use of RECOVER, REORG, DSN1COPY, or a non-DB2
facility such as DFP/DFDSS.

Changing the storage attributes of an index or partition involves the use of a STOP
DATABASE command, an ALTER INDEX statement, and a START DATABASE
command, in that order .. The usual procedure involves movement of the data while
the index is in the stopped state, but this is necessary only if the catalog-names
changed which is the case if the purpose of the procedure is to move the data to a
different device. If the purpose is only to change the space allocation parameters
or erase rule, the data need not be moved before the index is restarted. In this
case, the alterations will take effect when the index or partition is subsequently
recovered or reorganized.

If the ca.talog-name is explicitly or implicitly changed by the ALTER, the data must
be moved while the index is in the stopped state. If DSN1COPY or a non-D~2
facility is used, the move can be done either before or after the ALTER statement is
executed. For example, DFP/DFDSS can be used to move the data and change the
high level qualifier of the data set name before the ALTER statement is executed.

Any facility can be used to move the data while the index is in the stopped state if
the catalog-name has not been changed. If RECOVER or REORG is used, the
ALTER statement must be executed first and then the index started for utility use
only. If another facility is used, the sequence is irrelevant, but the user is
responsible for ensuring that the name of the data set conforms to the DB2 naming
conventions when the index is restarted.

Example 1: Alter the index DSN8220.XEMP1. CLOSE NO indicates that DB2 is not
to close the data sets supporting the index when there are no current users of the
index.

ALTER INDEX DSN8220.XEMP1
CLOSE NO;

104 082 SQL Reference

ALTER INDEX

Example 2: Alter the index DSN8220.XPROJ1. BP1 is the buffer pool to be
associated with the index. OSESAME is the password that is passed to VSAM
when the data sets are used by 082.

ALTER INDEX DSN8220.XPROJ1
BUFFERPOOL BPl
DSETPASS OSESAME;

Chapter 6. Statements 105

ALTER STOGROUP

ALTER STOGROUP

Invocation

Authorization

The ALTER STOGROUP statement changes the description of a local storage
group.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

The privilege set defined below must include one of the following:

• Ownership of the storage group
• SYSADM authority.

If the statement is embedded in a program, the privilege set is the privileges
designated by the authorization ID of the owner of the plan. If the statement is
dynamically prepared, the privilege set is the union of the privileges designated by
each authorization ID of the process .

.,.___ALTER STOGROUP--stogroup-name·----------------------

==-------i-PASSWORD-password1------,_......l __________________,. ...

r'l
~ADD VOLUMES-(--vol-id)______,

r,i
'-REMOVE VOLUMES-(--vol-id)-'

Description

Syntax note: Use at least one of the keywords PASSWORD, ADD VOLUMES, and
REMOVE VOLUMES, but do not use the same keyword more than once.

stogroup-name
Is the name of the storage group to be altered. It must be a storage group
described in the D82 catalog.

PASSWORD password
Gives a password that is passed to VSAM when D82 accesses the ICF catalog.
password is a VSAM master level password in the form of a short. identifier. If
the password is a delimited identifier, it may contain any special characters
acceptable to VSAM Access Method Services. You can set the password that
protects the catalog through VSAM Access Method Services.

ADD VOLUMES (vol-id)
Adds volumes to the storage group. vol-id is the volume serial number of one
or more storage volumes to be added. It may have a maximum of 6 characters
and is specified as an identifier or a string constant.

You cannot add a volume that is already in the storage group unless you also
remove it with REMOVE.

106 082 SQL Reference

Notes

Examples

ALTER STOGROUP

REMOVE VOLUMES (vol-id)
Removes volumes from the storage group. vol-id is the volume serial number
of one or more storage volumes to be removed. Each vol-id must identify a
volume that is in the storage group.

Removing a volume from a storage group does not affect existing data, but a
volume that has been removed will not be used again when the storage group
is used to allocate storage for tablespaces or indexspaces.

If the storage group altered contains temporary file database (DSNDB07) data sets,
the database must be stopped and restarted for the affects of the ALTER to be
recognized. Issue the command -STOP DAT ABASE(DSNDB07), followed by
-START DATABASE(DSNDB07).

For ADD VOLUMES: When the storage group is used, an error occurs if all
volumes are not of the same device type or if any volume is not available to MVS
for dynamic allocation of data sets.

When a storage group is used to extend a data set, the volumes must have the
same device type as the volumes used when the data set was defined.

There is no specific limit on the number of volumes that can be defined for a
storage group. However, the maximum number of volumes used for allocation is
133. Therefore, do not add volumes such that the number of volumes defined for
the storage group exceeds 133.

082 acts solely as a conduit for the specified volumes. As such, it passes the list
of volumes to DFP for initial dataset definitions and for dataset extensions. All
valid volume serial parameters, acceptable to DFP (AMS and VSAM), are
acceptable in this statement.

Example 1: Alter storage group DSN8G220. OSESAME is the password that is
used to access the ICF catalog. DSNV04,DSNV05 are the volumes to be added.

ALTER STOGROUP DSN8G220
PASSWORD OSESAME
ADD VOLUMES (DSNV04,DSNV05);

Example 2: Alter storage group DSN8G220. DSNV04,DSNV05 are the volumes to
be removed.

ALTER STOGROUP DSN8G220
REMOVE VOLUMES (DSNV04,DSNV05);

Chapter 6. Statements 107·

ALTER TABLE

ALTER TABLE

Invocation

The ALTER TABLE statement changes the description of a local table.

This statement can be embedded in an application or issued interactively. It is an
executable statement that can be dynamically prepared.

Authorization
The privilege set must include at least one of the following:

• The ALTER privilege on the table
• Ownership of the table
• DBADM authority for the database
• SYSADM authority.

If FOREIGN KEY, DROP FOREIGN KEY, or DROP PRIMARY KEY is specified, an
additional privilege may be required. More detail about this can be found in the
description of the appropriate clauses.

If the statem~nt is embedded in a program, the privilege set is the privileges
designated by the authorization ID of the owner of the plan. If the statement is
dynamically :Prepared, the privilege set is the union of the privileges designated by
each authorization ID of the process .

.,._ALTER TABLE--tabl e-name------------------------...

---..--ADD-column-definition----------,_....._------------­
VALIDPROC--i--program-name

LNULL-----'

AUDIT~ONE
HANG ES

ALL----'

+'~
..-..----..--PRIMARY KEY-(--col umn-name_L)

ADD
referent i a 1-constra i nt-------------1
DROP PRIMARY KEY-------------i
DROP FOREIGN KEY-constraint-nam-------

108 082 SQL Reference

ALTER TABLE

column-definition

.,._co 1 umn-name--data-type,-.---------.--------------------..11
L__FOR BIT DATA_J

... ... --

1-flELDPROC-program-name--......------------1

+-'I
'-(--constantj_)---1

'-NOT NULL WITH DEFAULT------------'

referential-constraint

••----.------FOREIGN KEY---.-------~-(-r--colum::l)------.
c=Aoo=J c=constraint-name~

.,._REFERENCES--tab 1 e-name-.---------------------------•

~N DELETEtRESTRIC~T
CASCADE
SET NULL

Description

Syntax note: Use at least one of the keywords from the diagram above, but do not
use the same keyword more than once.

table-name
Is the name of the table you want to change. It must be a table described in the
catalog and must not be a view or a catalog table. Although a three-part name
can be used, the identified table must be local.

ADD
Adds a column to the table. All values of the column in existing rows are its
default value and the column is the 1 last 1 column of the table. That is, if
initially there are n columns, the added column is column n + 1. The value of n
cannot be greater than 299.

The columns cannot be added if the increase in the total byte count of the
columns exceeds the maximum row size. The maximum row size for the table
is six less than the maximum record size shown under "Notes" on page 151.

column-definition

column-name
Is the name of the column you want to add to the table. Do not use the
name of an existing column of the table. Do not qualify column-name.

data-type
Is one of the data types listed under "CREATE TABLE" on page 144.

FOR BIT DATA
Specifies the contents of the column are to be treated as bit (binary) data
for exchange with other systems. This option only applies to CHAR,
VARCHAR, and LONG VARCHAR columns. If this option is not present, the
character column is assumed to contain EBCDIC characters.

Chapter 6. Statements 109

ALTER TABLE

FIELDPROC program-name
Names a field procedure for the column. The procedure named
program-name is provided by your installation. You may use a field
procedure only with a short string column. You may not use a field
procedure and NOT NULL WITH DEFAULT for the same column.

If you omit FIELDPROC, the column has no field procedure.

constant
Is a parameter passed to the field procedure when the ALTER TABLE
statement invokes it. A parameter list is optional; the number of
parameters and the data type of each are determined by the field
procedure. The maximum length of the parameter list is 254 bytes,
including commas but excluding insignificant blanks and the delimiting
parentheses.

NOT NULL WITH DEFAULT
Prevents the column from containing null values, and allows a default
value other than the null value. The default value used depends on the
data type of the column, as follows:

Data type

Numeric

Fixed-length string

Varying-length string

Date

Time

Timestamp

Default value

0

blanks

a string of length 0

For exi~ting rows, a date corresponding to 1
January 0001. For added rows, the current
date.

For existing rows, a time corresponding to 0
hours, 0 minutes, and 0 seconds. For added
rows, the current time.

For existing rows, a date corresponding to 1
January 0001, and a time corresponding to 0
hours, 0 minutes, 0 seconds, and zero
microseconds. For added rows, the current
timestamp.

VALIDPROC

1'10 082 SQL Reference

Names a validation procedure for the table or inhibits the execution of an
existing validation procedure.

program-name
Names a validation routine for the table. The program, which must be
provided by your site, is invoked during the execution of LOAD, INSERT,
UPDATE, and DELETE operations on the table. The program receives a
row and returns a value that indicates whether the operation should
proceed for that row. A typical use is to impose constraints on the values
of rows.

A table may have only one validation procedure at a time. If you name a
new procedure, any existing procedure is no longer used. The new
procedure is not used to validate existing rows of the table; it is only used
for rows that are loade~, inserted, updated, or deleted after execution of
the ALTER TABLE statement.

I

ALTER TABLE

NULL
Inhibits execution of any validation procedure.

AUDIT
Alters the auditing attribute of the table.

NONE
Specifies that no auditing is to be done when the table is accessed.

CHANGES

ALL

Specifies that auditing is to be done when the table is accessed during the
first INSERT, UPDATE, or DELETE operation performed by each unit of
recovery. However, the auditing is done only if the appropriate trace class
is active. For information about trace classes, see Section 6 (Volume 2) of
Administration Guide.

Specifies that auditing is to be done when the table is accessed during the
first operation of any kind performed by each unit of recovery of a utility or
application process. However, the auditing is done only if the appropriate
trace class is active and the access is performed through the data manager
(COPY, RECOVER, REPAIR, and the stand-alone utilities do not use the
data manager.).

PRIMARY KEY (column-name)
Defines a primary key composed of the identified columns. Each column-name
must identify a column of the table, and the same column must not be
identified more than once. The number of identified columns must not exceed
16 and the sum of their length attributes must not exceed 254. The table must
not have a primary key and the identified columns must be defined as NOT
NULL or NOT NULL WITH DEFAULT.

The table-name must have a unique index with a key that is identical to the
primary key. The keys are identical only if they have the same number of
columns and the nth column-name of one is the same as the nth column-name
of the other.

The identified columns are defined as the primary key of the table and all plans
that reference the table are invalidated. The description of the index is
changed to indicate that it is a primary index. If the table has more than one
unique index with a key that is identical to the primary key, the selection of the
primary index is arbitrary.

referential-constraint

FOREIGN KEY (column-name) REFERENCES table-name
Specifies a referential constraint with the specified constraint-name. A
name is generated if a constraint-name is not specified. The generated
name is derived from the name of the first column of the foreign key in the
same way that the name of an implicitly created table space is derived
from the name of a table except that the scope of uniqueness of a
constraint-name is the table. If a constraint-name is specified, it must not
be the same as the name of an existing referential constraint on the table.

Let T1 denote the object table of the ALTER TABLE statement.

The foreign key of the referential constraint is composed of the identified
columns. Each name in the list of column names must identify a column of
T1 and the same column must not be identified more than once. The
number of identified columns must not exceed 16 and the sum of their
length attributes must not exceed 254 minus the number of columns that

Chapter 6. Statements 111

ALTER TABLE

112 082 SQL Reference

allow null values. If the specified list of column names is identical to a list
of column names of an existing referential constraint on T1, the table
identified in the FOREIGN KEY clause must not be the parent table of that
referential constraint.

The table specified in a FOREIGN KEY clause must identify a table that is
described in the catalog, but must not identify a catalog table. Let T2
denote the identified table (T1 and T2 may be the same table).

T2 must have a primary index and the privilege set must include the
ALTER privilege on T2.

The specified foreign key must have the same number of columns as the
primary key of T2 and, except for their names, default values, and null
attributes, the description of the nth column of the foreign key must be
identical to the description of the nth column of that primary key. If a
column of the foreign key has a field procedure, the corresponding column
of the primary key must have the same field procedure and an identical
field description.

The table space that contains T1 must be available to DB2. If T1 is
populated, its table space is placed in the CHECK PENDING state. A table
in a segmented table space is populated if the table is not empty. A table
in an unsegmented table space is considered populated if the table space
has ever contained any records.

The referential constraint specified by the FOREIGN KEY clause defines a
relationship in which T2 is the parent and T1 is the dependent. A
description of the referential constraint is recorded in the catalog.

The delete rule of the relationship is determined by the ON DELETE clause.
If T1 and T2 are the same table, CASCADE must be specified. SET NULL
must not be specified unless some column of the foreign key allows null
values. Also, SET NULL must not be specified if any nullable column of the
foreign key is a column of the key of a partitioned index. Omission of the
clause is an implicit specification of ON DELETE RESTRICT.

The delete rule applies when a row of T2 is the object of a DELETE or
propagated delete operation and that row has dependents in T1. Let p
denote such a row of T2.

• If RESTRICT is specified, an error occurs and no rows are deleted.
• If CASCADE is specified, the delete operation is propagated to the

dependents of p in T1.
• If SET NULL is specified, each nullable column of the foreign key of

each dependent of pin T1 is set to null.

A cycle involving two or more tables must not cause a table to be
delete-connected to itself. Thus, if the relationship would form a cycle:

• the referential constraint cannot be defined if each of the existing
relationships that would be part of the cycle have a delete rule of
CASCADE.

• CASCADE must not be specified if T2 is delete-connected to T1.

If T1 is delete-connected to T2 through multiple paths, those relationships
in which T1 is a dependent and which form all or part of those paths must
have the same delete rule and it must not be SET NULL. Thus, if T1 is a
dependent of T3 in a relationship with a delete rule of rand

• T2 and T3 are the same table, or

Notes

Examples

ALTER TABLE

• T2 is a descendant of T3 and the deletion of rows from T3 cascades to
T2,or

• T2 and T3 are both descendants of the same table and the deletion of
rows from that table cascades to both T2 and T3:

the referential constraint cannot be defined if r is SET NULL. If r is other
than SET NULL, the referential constraint can be defined, but the delete
rule that is implicitly or explicitly specified in the FOREIGN KEY clause
must be the same as r.

If T1 and T2 are the same table, all plans that reference the table are
. invalidated. If T2 and T1 are different tables and the specified delete rule
is CASCADE or SET NULL, all plans that reference T2 are invalidated and
all plans that reference a table from which deletes cascade to T2 are
invalidated.

DROP PRIMARY KEY
Drops the definition of the primary key and all referential constraints in which
the table is a parent. The table must have a primary key and the privilege set
must include the ALTER privilege on every dependent table of the table.

If the table has a primary index, its description is changed to indicate that it is
not a primary index.

DROP FOREIGN KEY constraint-name
Drops the referential constraint constraint-name. The constraint-name must
identify a referential constraint in which the table and the privilege set must
include the ALTER privilege on the parent table of that relationship.

The successful execution of an ALTER TABLE statement that includes the key word
AUDIT is audited if the appropriate trace class is active. When the audit attribute of
a table is changed, all plans that reference the table are invalidated.

The clauses of an ALTER TABLE statement are processed in the order in which
they are specified.

Adding a column to a table has no effect on existing views.

When using ALTER TABLE, you cannot:

• Use NOT NULL. (You may use NOT NULL WITH DEFAULT.)
• Add a column if an edit procedure exists for the table.
• Execute ALTER TABLE while a utility has control of the table space that

contains the table.

Any table that may be involved in a DELETE operation on table Tis said to be
delete-connected to T. Thus, a table is delete-connected to T if it is a dependent of
Tor it is a dependent of a table to which deletes from T cascade.

Example 1: Alter table DSN8220.DEPT. Add the column BLDG, which will contain
character data.

ALTER TABLE DSN8220.DEPT
ADD BLDG CHAR(3);

Chapter 6. Statements 113

ALTER TABLE

Example 2: Alter table DSN8220.EMP. DSN8EAEM is the validation routine that
will check inserted or updated values.

ALTER TABLE DSN8220.EMP
VALIDPROC DSN8EAEM;

Example 3: Alter table DSN8220.EMP. VALIDPROC NULL causes the validation
procedure to be disconnected from the table.

ALTER TABLE DSN8220.EMP
VALIDPROC NULL;

Example 4: Alter table DSN8220.DEPT. Establish the column ADMRDEPT as a
foreign key of the parent table DSN8220.DEPT, and ·make any de.lete rules that
apply to the parent table apply to ADMREDEPT as well.

ALTER TABLE DSN8220.DEPT
FOREIGN KEY(ADMRDEPT) REFERENCES DSN8220.DEPT ON DELETE CASCADE;

114 082 SOL· Reference

ALTER TABLESPACE

ALTER TABLESPACE

Invocation

The ALTER TABLESPACE statement changes the description of a local table space.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privilege set defined below must include at least one of the following:

• Ownership of the tablespace
• DBADM authority for its database
• SYSADM authority.

If BUFFERPOOL or USING STOGROUP is specified, additional privileges may be
required as explained in the description of those clauses.

If the statement is embedded in a program, the privilege set is the privileges
designated by the authorization ID of the owner of the plan. If the statement is
dynamically prepared, the privilege set is the union of the privileges designated by
each authorization ID of the process .

.,._ALTER TABLES PACE-----..-----------.--tab l es pace-name------------.
L__database-name.__J

-f
BP0

BUFFERPOOL BPl--+---------.
BP2

LOCKSIZE-E~~~E
TABLES PACE
TABLE--__,

CLOSE--r-YES
LNO

DSETPASS-pas sword----------1
PART-i ntegeV'------------f
FREEPAGE-i ntegeV'-----------1
PCTFREE-integer----------­
USINGLVCAT-catalog-name

STOGROUP-stogroup-nam
PRIQTY-intege~----------1

SECQTY-integer-------------1
ERASE--r-YES

LNO

Syntax note: Use at least one of the keywords from the diagram above, but do not
use the same keyword more than once.

Chapter 6. Statements 115

ALTER TABLESPACE

Description
database-name.tablespace-name

Identifies the table space to be altered. You must identify a table space
described in the DB2 catalog, but you must not identify a table space of the
catalog. Omission of database-name is an implicit specification of DSNDB04.

If you identify a table space of DSNDB07, the database must be in the stopped
state. If you identify a partitioned table space, you may have to use the PART
clause as explained below.

BUFFERPOOL BPn
Names the buffer pool to be associated with the table space. Use BPO, BP1, or
BP2. The buffer pool must be activated and and the privilege set must include
SYSADM authority or the USE privilege for the buffer pool. The change to the
description of the table space has no effect until the next time its data sets are
opened. Do not use BUFFERPOOL if the page size of the table space is 32K
bytes.

LOCKSIZE
Specifies the locking level for the table space. You must not use this clause for
a table space in DSNDB07.

ANY
Specifies that DB2 may use any locking level. In most cases, DB2 will use
page level locking. However, when the number of page locks acquired for
the table space exceeds the maximum number of locks allowed for a table
space (an installation parameter), the page locks are released and locking
is set at the next higher level. If the table space is segmented, the next
higher level is the table. If the table space is not segmented, the next
higher level is the table space.

PAGE
Specifies page level locking.

TABLESPACE
Specifies table space level locking.

TABLE
Specifies table level locking. You must not specify TABLE for an
unsegmented table space.

The change to the description of the table space has no effect on bound
statements in existing application plans. The change applies to application
plans that are created or rebound after the execution of the ALTER and to
dynamic SQL statements that are prepared after the execution of the ALTER.

CLOSE
Indicates whether to close the data sets supporting the table space when there
are no current users of the table space.

YES
Closes the data sets.

NO
Does not close the data sets.

DSETPASS password
Specifies the password that is passed to VSAM when the data sets of the table
space are used by DB2. You must specify a VSAM master level password in
the form of.a short identifier. Use a delimited identifier for a password that
contains any of the special characters acceptable to VSAM Access Method

116 DB2 SQL Reference

ALTER TABLESPACE

Services. The change to the description of the table space has no effect until
the next time its data sets are opened.

Changing the password for the table space does not change the password that
protects its data sets. To change the data set password, use VSAM Access
Method Services.

Note: The password does not apply to data sets managed by Storage
Management Subsystem. Data set defined to SMS should be protected by
RACF or some similar external security system.

~

PART integer
Identifies a partition of the table space. Thus, for a table space that has n
partitions, you must specify an integer in the range 1 ton. You must not use
this clause if the table space is not partitioned. You must use this clause if the
table space is partitioned and you use the FREEPAGE, PCTFREE, USING,
PRIQTY, SECQTY, or ERASE clause. In this case the alterations specified by
these clauses apply only to the identified partition of the table space.

FREEPAGE integer
Specifies how often to leave a page of free space when the table space is
loaded or reorganized. One free page is left after every integer pages; integer
may range from 0 to 255. FREEPAGE 0 leaves no free pages.

When you are dealing with segmented table spaces, the number of pages left
free must be less than the SEGSIZE value. If the number of pages to be left
free is greater than or equal to the SEGSIZE value, then the number of pages
will be adjusted downward to one less than the SEGSIZE value.

The change to the description of the table space or partition has no effect until
it is loaded or reorganized. Do not use this keyword with database DSNDB07.

PCTFREE integer
Specifies what percentage of each page to leave as free space when the table
space is loaded or reorganized. The first record on each page is loaded
without restriction. When additional records are loaded, at least integer % of
free space is left on each page. integer may range from 0 to 99.

The change to the description of the table space or partition has no effect until
it is loaded or reorganized. Do not use this keyword with database DSNDB07.

USING
Specifies whether a data set for the table space or partition is user-managed or
082-managed. If the table space is partitioned, USING applies to the data set
for the partition identified in the PART clause. If the table space is not
partitioned, USING applies to every data set that may be used for the table
space. (An unpartitioned table space can have more than one data set if
PRIQTY + 123 * SECQTY is at least 2 gigabytes.) You must not specify USING
for a table space in DSNDB07.

If you specify the USING clause, the table space must be in the stopped state
when the ALTER TABLESPACE statement is executed. Successful execution of
the statement changes the description of the table space, but has no immediate
effect on the table space or partition. The new description is applied when the
table space or partition is recovered, reorganized, or extended to a new
volume or data set. However, if you change the catalog-name (explicitly by
USING VCAT or implicitly by USING STOGROUP), you must move the data
while the table space is in the stopped state as explained under "Notes" on
page 120.

Chapter 6. Statements 117

ALTER TABLESPACE

VCAT catalog-name
Specifies a user-managed data set with a name that starts with
catalog-name. You must specify the catalog-name in the form of a short
identifier. Thus, you must specify an alias if the name of the ICF catalog is
longer than eight characters. When the new description of the table space
is applied, the ICF catalog must contain an entry for the data set
conforming to the 082 naming conventions.

STOGROUP stogroup-name
Specifies a 082-managed data set that resides on a volume of the
identified storage group. You must identify a storage group described in
the 082 catalog and the privilege set must include SYSADM authority or
the USE privilege for the storage group. When the new description of the
table space is applied, the description of the storage group must include at
least one volume serial number, each volume serial number must identify
a volume that is accessible to MVS for dynamic allocation of the data set,
and all identified volumes must be of the same device type. Furthermore,
the ICF catalog used for the storage group must not contain an entry for the
data set and, if the ICF catalog is password protected, the description of
the storage group must include a valid password.

If you specify USING STOGROUP and the current data set for the table
space or partition is 082-managed, omission of the PRIQTY clause is an
implicit specification of the current PRIQTY value, omission of the SECQTY
clause is an implicit specification of the current SECQTY value, and
omission of the ERASE clause is an implicit specification of the current
ERASE rule.

If you specify USING STOGROUP and the current data set for the table
space or partition is user-managed:

• Omission of the PRIQTY clause is an implicit specification of PRIQTY
12 for a table space with 4K pages and PRIQTY 96 for a table space
with 32K pages.

• Omission of the SECQTY clause is an implicit specification of SECQTY
12 for a table space with 4K pages and SECQTY 96 for a table space
with 32K pages.

• Omission of the ERASE clause is an implicit specification of ERASE
NO.

PRIQTY integer

118 082 SOL Reference

Specifies the primary space allocation for a data set of the table space or
partition. This clause must not be specified for user-managed data sets. Thus
you may specify this clause only if:

• you also specify USING STOGROUP, or

• you do not specify the USING clause and the data set for the table space or
partition is 082-managed.

If you specify PRIQTY, the table space must be in the stopped state when the
ALTER TA8LESPACE statement is executed. Successful execution of the
statement changes the description of the table space, but has no immediate
effect on the table space or partition. The new description is applied when the
table spac(:l or partition is recovered, reorganized, or extended to a new
volume or data set. However, you may want to apply the new description
before then by moving the data as explained under "Notes" on page 120.

ALTER TABLESPACE

You specify the primary space allocation in kilobytes. You may specify any
integer, but 4194304 is used if the integer you specify is greater than 4194304.
If you specify an integer less than 12 for a table space with a page size of 4K,
the number used is 12. If you specify an integer less than 96 for a table space
with a page size of 32K, the number used is 96.

082 specifies the primary space allocation to VSAM as an integral number of
4K pages. If the page size of the table space is 4K, this number is calculated
by dividing the number of kilobytes by 4 and rounding up to the next highest
integer. If the page size of the table space is 32K, this number is calculated by
dividing the number of kilobytes by 32 and rounding up to the next highest
integer. VSAM then uses this number to specify an integral number of tracks.
Thus the primary space allocation can be greater than the number of kilobytes
you specify.

SECQTY integer
Specifies the secondary space allocation for a data set of the table space or
partition. This clause must not be specified for user-managed data sets. You
may specify this clause only if:

• you also specify USING STOGROUP, or

• you do not specify the USING clause and the data set for the table space or
partition is 082-managed.

If you specify SECQTY, the table space must be in the stopped state when the
ALTER TA8LESPACE statement is executed. Successful execution of the
statement changes the description of the table space, but has no immediate
effect on the table space or partition. The new description is applied when the
table space or partition is recovered, reorganized, or extended to a new
volume or data set. However, you may want to apply the new description
before then by moving the data as explained under "Notes" on page 120.

You specify the secondary space allocation in kilobytes. You may specify any
integer but 131068 is used if the integer you specify is greater than 131068. If
you specify O the data set cannot be extended.

082 specifies the secondary space allocation to VSAM as an integral number
of 4K pages. If the page size of the table space is 4K, this number is calculated
by dividing the number of kilobytes by 4 and rounding up to the next highest
integer. If the page size of the table space is 32K, this number is calculated by
dividing the number of kilobytes by 32 and rounding up to the next highest
integer. VSAM then uses this number to specify an integral number of tracks.
Thus the secondary space allocation can be greater than the number of
kilobytes you specify.

ERASE
Specifies whether the contents of a data set for the table space or partition are
erased when the table space is dropped. This clause must not be specified for
user-managed data sets. You may specify this clause only if:

• you also specify USING STOGROUP, or

• you do not specify the USING clause and the data set for the table space or
partition is 082-managed.

If you specify ERASE, the table space must be in the stopped state when the
AL TEA T A8LESPACE statement is executed. Successful execution of the
statement changes the description of the table space but has no immediate
effect on the table space or partition. The new description is applied when the
table space or partition is recovered, reorganized, or extended to a new

Chapter 6. Statements 119

ALTER TABLESPACE

Notes

Examples

volume or data set. However, you may want to apply the new description
before then by moving the data as explained under "Notes" on page 120.

YES
Erases the contents of the data set when the table space is dropped.

NO
Does not erase the contents of the data set.

The ALTER TABLESPACE statement cannot be executed while a DS-2 utility has
control of the table space or the database is stopped.

To change FREEPAGE, PCTFREE, USING, PRIQTY, SECQTY, or ERASE for more
than one partition, you must use separate ALTER TABLESPACE statements.

USING, PRIQTY, SECQTY, and ERASE specify the storage attributes of a table
space or partition. Changing these attributes requires changes to the description
of the table space and movement of the data. The ALTER statement only changes
the description of the table space. Movement of the data is a user responsibility
which can be accomplished by the use of RECOVER, REORG, DSN1COPY, or a
non-DB2 facility such as DFP/DFDSS.

Changing the storage attributes of a table space or partition involves the use of a
STOP DATABASE command, an ALTER TABLESPACE statement, and a START
DATABASE command, in that order. The usual procedure involves movement of
the data while the table space is in the stopped state, but this is necessary only if
the catalog-name is changed which is the case if the purpose of the procedure to to
move the data to a different device. If the purpose is only to change the space
allocation parameters or erase rule, the data does not have to be moved before the
table space is restarted. In this case, the alterations will take effect when the table
space or partition is subsequently recovered or reorganized.

If the catalog-name is implicitly or explicitly changed by the ALTER, the data must
be moved while the table space is in the stopped state. If DSN1COPY or a non-DB2
facility is used, the move can be done either before or after the ALTER statemenfis
executed. For example, DFP/DFDSS can be used to move the data and change the
high level qualifier of the data set name before the ALTER statement is executed.

Any facility can be used to move the data while the·table space is in the stopped
state if the catalog-name has not been changed. If RECOVER or REORG is used,
the ALTER statement must be executed first and then the table space started for
utility use only. If another facility is used, the sequence is irrelevant, but the user
is responsible for ensuring that the name of the data set conforms to the DB2
naming conventions when the table space is restarted.

Example 1: Alter table space DSN8S22E in database DSN8D22A. CLOSE NO
means that the data sets of the table space are not to be closed when there are no
current users of the table space. OSESAME is the password that is passed to
VSAM when the data sets are used by DB2.

ALTER TABLESPACE DSN8D22A.DSN8S22E
CLOSE NO
DSETPASS OSESAME;

120 082 SOL Reference

ALTER TABLESPACE

Example 2: Alter table space DSN8S22D in database DSN8022A. BP2 is the buffer
pool associated with the table space. PAGE is the level at which locking is to take
place.

ALTER TABLESPACE DSN8D22A.DSN8S22D
BUFFERPOOL BP2
LOCKSIZE PAGE;

Chapter 6. Statements 121

BEGIN DECLARE SECTION

BEGIN DECLARE SECTION

Invocation

Authorization

The BEGIN DECLARE SECTION statement marks the beginning of a host variable
declare section.

This statement can only be embedded in an application program. It is not an
executable statement.

None required.

11+--BEGIN DECLARE SECTION----'------------------------.,.

Description

Notes

Example

The BEGIN DECLARE SECTION statement may be coded in the application
program wherever variable declarations, can appear in accordance with the rules
of the host language. It is used to indicate the beginning of a host variable
declaration section. A host variable section ends with an END DECLARE SECTION
statement, described on page 183.

The following rules are enforced by the precompiler only if the host language is C
or the STDSQL(86) precompiler option is specified:

• A variable referenced in an SOL statement must be declared within a host
variable declaration section of the source program.

• BEGIN DECLARE SECTION and END DECLARE SECTION statements must be
paired and must not be nested.

Host variable declaration sections are only required if the STDSQL(86) option is
specified or the host language is C. However, declare sections may be specified
for any host language so that the source program can conform to the SAA
definition of SQL. If declare sections are used, but not required, variables declared
outside a declare section should not have the same name as variables declared
within a declare section.

EXEC SQL BEGIN DECLARE SECTION;

(host variable declarations)

EXEC SQL END DECLARE SECTION;

122 082 SOL Reference

CLOSE

Invocation

Authorization

CLOSE

The CLOSE statement closes a cursor. If a temporary table was created when the
cursor was opened, that table is destroyed.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

See "DECLARE CURSOR" on page 165 for the authorization required to use a
cursor.

~cLOSE--cursor-name,---------------------------

Description

Notes

Example

cursor-name
Identifies the cursor to be closed. The cursor-name must identify a declared
cursor as explained in the DECLARE CURSOR statement. When the CLOSE
statement is executed, the cursor must be in the open state.

The open cursors of an application process are implicitly closed at the termination
of a unit of recovery. However, explicitly closing cursors as soon as possible can
improve performance. CLOSE is not a commit or rollback operation.

A cursor is used to fetch one row at a time into the program variables DNUM,
DNAME, and MNUM. Finally, the cursor is closed. If the cursor is reopened, it is
again located at the beginning of the rows to be fetched.

EXEC SQL DECLARE Cl CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8220.DEPT
WHERE ADMRDEPT = 1 A00 1

END-EXEC.

EXEC SQL OPEN Cl END-EXEC.

EXEC SQL FETCH Cl INTO :DNUM, :DNAME, :MNUM END-EXEC.

IF SQLCODE = 100
PERFORM DATA-NOT-FOUND

ELSE
PERFORM GET-REST-OF-DEPT
UNTIL SQLCODE IS NOT EQUAL TO ZERO.

EXEC SQL CLOSE Cl END-EXEC.

GET-REST-OF-DEPT.
EXEC SQL FETCH Cl INTO :DNUM, :DNAME, :MNUM END-EXEC.

Chapter 6. Statements 123

COMMENT ON

COMMENT ON

Invocation

Authorization

The COMMENT ON statement adds or replaces comments in the local 082 catalog
descriptions of tables, views, aliases, or columns.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

The privilege set defined below must include at least one of the following:

• Ownership of the table, view, or alias
• DBADM authority for its database (tables only) ·
• SYSADM authority.

If the statement is embedded in a program, the privilege set is the privileges
designated by the authorization ID of the owner of the plan. If the statement is
dynamically prepared, the privilege set is the union of the privileges designated by
each authorization ID of the process.

TABLELt~ble-name---.,.--------.---IS--string-constant---....-------­

v1ew-name

ALIAS--alias-name---------1

COLUMNLtable-name.column-name
view-name.column-nam

Description

i . . l
t~ble-nam:=r-(--column-name-IS-string-constant)--.......
view-name

TABLE
Indicates that you want to comment on a table or view.

table-name or view-name

ALIAS

Must identify a table or view described in the local catalog. The comment
is placed in the REMARKS column of the SYSIBM.SYSTAB,LES catalog
table for the row that describes the table or view.

Indicates that you.want to comment on an alias.

I alias-name
I Must identify an alias described in the local catalog. The comment is
I placed in the REMARKS column of the SYSIBM.SYSTABLES catalog table
I for the row that describes the alias.

124 082 SOL Reference

Examples

COMMENT ON

COLUMN

IS

Indicates that you want to comment on a column.

table-name.column-name or view-name.column-name
Is the name of the column, qualified by the name of the table or view in
which it appears. The column must be described in the local catalog. The
comment is placed into the REMARKS column of the
SYSIBM.SYSCOLUMNS catalog table, for the row that describes the
column.

To comment on more than one column In a table or view, do not use TABLE or
COLUMN. Give the table or view name and then, in parentheses, a list of this
form:

column-name IS string-constant,
column-name IS string-constant,

The column names must not be qualified, each name must identify a column of
the specified table or view, an·d that table or view must be described in the
catalog.

Introduces the comment you want to make.

string-constant
Can be any SOL character string constant of up to 254 characters.

Enter a comment on table DSN8220.EMP.

COMMENT ON TABLE DSN8220.EMP
IS 'REFLECTS lST QTR 81 REORG'

Example 2: Enter a comment on view DSN8220.VDEPT.

COMMENT ON TABLE DSN8220.VDEPT
IS 'VIEW OF TABLE DSN8220.DEPT'

Example 3: Enter a comment on the DEPTNO column of table DSN8220.DEPT.

COMMENT ON COLUMN DSN8220.DEPT.DEPTNO
IS 'DEPARTMENT ID - UNIQUE'

Example 4: Enter comments on two columns in table DSN8220.DEPT.

COMMENT ON DSN8220.DEPT
(MGRNO IS 'EMPLOYEE NUMBER OF DEPARTMENT MANAGER',
ADMRDEPT IS 'DEPARTMENT NUMBER OF ADMINISTERING DEPARTMENT')

Chapter 6. Statements 125

COMMIT

COMMIT

Invocation

Authorization

The COMMIT statement terminates a unit of recovery and commits the database
changes that were made by that unit of recovery.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. It cannot be used
in the IMS or CICS environment.

None required.

11+--COMMIT L . ~
WORK

Description

Notes

Example

The unit of recovery in which the statement is executed is terminated and a
new unit of recovery is initiated for the process. All changes made by AL TEA,
COMMENT ON, CREATE, DELETE, DROP, EXPLAIN, GRANT, INSERT, LABEL
ON, REVOKE, and UPDATE statements executed during the unit of recovery
are committed.

All locks implicitly acquired during the unit of recovery are released. See
"LOCK TABLE" on page 213 for an explanation of the duration of explicitly
acquired locks.

All cursors that were opened during the unit of recovery are closed. All
statements that were prepared during the unit of recovery are destroyed and
any cursors associated with the prepared statements are invalidated.

COMMIT WORK has the same effect as COMMIT.

COMMIT WORK, rather than COMMIT, should be used to conform to the SAA
definition of SQL. However, neither form of the statement can be used in the IMS
or CICS environment. To execute a commit operation in these environments, SQL
programs must use the call prescribed by their transaction manager. The effect of
these commit operations on DB2 data is the same as that of the SQL COMMIT
statement.

In all DB2 environments, the normal termination of a process is an implicit commit
operation.

Commit all DB2 database changes made since the unit of recovery was initiated.

COMMIT WORK;

126 082 SQL Reference

CREATE ALIAS

Invocation

Authorization

CREATE ALIAS

The CREATE ALIAS statement defines an alias for a table or view.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

The privilege set defined below must include at least one of the following:

• The CREATEALIAS privilege
• SYSADM authority.

If the statement is embedded in a program, the privilege set is the privileges
designated by the authorization ID of the owner of the plan. If the specified
alias-name includes an authorization-name qualifier that is not the same as this
authorization ID, the privilege set must include SYSADM authority.

If the statement is dynamically prepared, the privilege set is the privileges
designated by the SOL authorization ID of the process. However, if the specified
alias-name includes an authorization-name qualifier that is not the same as this
authorization ID, the following rules apply:

• Any authorization-name qualifier is valid if the privilege set includes SYSADM
authority.

• If the privilege set does not include SYSADM authority, the authorization-name
qualifier is valid only if it is the same as one of the authorization IDs of the
process, and the privilege set designated by that authorization ID includes the
CREATEALIAS privilege. This is an exception to the rule that the privilege set
is the privileges designated by the SOL authorization ID .

.,._CREATE ALIAS--a 1ias-name--FOR---.-c-·t~b1 e-nam:=J
view-name

.....

Description
alias-name

Is the name of the alias. The name supplied, including the implicit or explicit
qualifiers, must not identify a table, view, alias, or synonym already desribed
in the catalog.

If qualified, the name can be a two-part or three-part: name. If it is a three-part
name, the first qualifier must be the location-name of the local DB2 subsystem.
In either case, the authorization ID that qualifies the name is the owner of the
alias.

If the alias name is unqualified and the statement is embedded in a program,
the owner of the plan is the owner of the alias. If the alias name is unqualified
and the statement is dynamically prepared, the SOL authorization ID is the
owner of the alias. The owner has the privilege to drop the alias.

Chapter 6. Statements 127

CREATE ALIAS

Notes

Example

FOR table-name or view-name
Identifies the taple or view for which the alias is defined. The table or view
may be local, remote, or non-existent. The table-name or view-name must not
be the same as the alias-name or the name of an alias described in the
catalog.

If an alias is defined for a remote table or view, the existence of the table or view is
not verified. A warning occurs if an alias is defined for a local table or view that
does not exist.

Create an alias for a remote catalog table:

CREATE ALIAS LATABLES FOR DB2USCALABOA5281.SYSIBM.SYSTABLES

128 DB2 SQL Reference

CREATE DATABASE

CREATE DATABASE

Invocation

Authorization

The CREATE DATABASE statement defines a local database in which table spaces
and index spaces may later be created.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

The privilege set defined below must include at least one of the following:

• The CREATEDBA privilege
• The CREATEDBC privilege
• SYSADM authority.

If the statement is embedded in a program, the privilege set is the privileges
designated by the authorization ID of the owner of the plan. If the statement is
dynamically prepared, the privilege set is the privileges designated by the SOL
authorization ID of the process.

See the Notes below for the authorization effect of a successful CREATE
DATABASE statement.

11+-CREATE DATABASE--database-namo--------------------_..,.

..
~STOGROUP~stogroup-name:==J

..

..

~UFFERPOOL ~:~
tBP32K

....

Description
database-name

Names the database. The name you supply must not be the name of a
database already described in the DB2 catalog, nor can it start with DSNDB.

STOGROUP stogroup-name
Names the storage group that will be used, as required, as a default storage
group to support DASO space requirements for table spaces and indexes
within the database.

The default is SYSDEFL T.

BUFFERPOOL BPn
Names the buffer pool to be used, as required, as a default buffer pool for table
spaces and indexes within the database. Use BPO, BP1, BP2, or BP32K.

BP32K applies only to table spaces. If BP32K is specified, the default buffer
pool for indexes in the database is BPO.

The default is BPO.

Chapter 6. Statements 129

CREATE DATABASE

Notes

Examples

If the statement is embedded in an application program, the owner of the plan is
the owner of the database. If the statement is dynamically prepared, the SOL
authorization ID of the process is the owner of the database.

If the owner of the database has the CREATEDBA privilege, the owner acquires
DBADM authority for the database.

If the owner of the database has the CREATEDBC privilege, but not the
CREATEDBA privilege, the owner acquires DBCTRL authority for the database. In
this case, no authorization ID has DBADM authority for the database unti I it is
granted by an authorization ID with SYSADM authority.

Example 1: Create database DSN8D22P. DSN8G220 is the default storage group
to be used for table spaces and indexes in the database. BP2 is the default buffer
pool to be used for table spaces and indexes in the database.

CREATE DATABASE DSN8D22P
STOGROUP DSN8G220
BUFFERPOOL BP2;

Example 2: Create database DSN8TEMP. Use the DB2 default storage group and
buffer pool.

CREATE DATABASE DSN8TEMP;

130 082 SQL Reference

CREATE INDEX

CREATE INDEX

Invocation

Authorization

The CREATE INDEX statement creates an index on a local table.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

The privilege set must include at least one of the following:

• The 'NDEX privilege on the table
• Ownership of the table
• DBADM authority for the database
• SYSADM authority.

If BUFFERPOOL or USING STOGROUP is specified, additional privileges may be
required as explained in the description of those clauses.

If the statement is embedded in a program, the privilege set is the privileges
designated by the authorization ID of the owner of the plan. If the specified index
name includes a qualifier that is not the same as this authorization ID, the privilege
set must include SYSADM authority, DBADM authority for the database, or
DBCTRL authority for the database.

If the statement is dynamically prepared, the privilege set is the privileges
designated by the SQL authorization ID of the process. However, if the specified
index name includes a qualifier that is not the same as this authorization ID, the
following rules apply:

• Any qualifier is valid if the privilege set includes SYSADM authority, DBADM
authority for the database, or DBCTRL authority for the database.

• If the privilege set does not include any of these authorities, the qualifier is
valid only if it is the same as one of the authorization IDs of the process and
the privilege set designated by that authorization ID includes the INDEX
privilege on the identified table. This is an exception to the rule that the
privilege set is the privileges designated by the SOL authorization ID.

Chapter 6. Statements 131

CREATE INDEX

11+-CREATE----c---~---INDEX--i ndex-name-ON--tab le-name--------...
UNIQUE

i 'g-.,._(--column-name)----------------------
ASC
DESC

..
Lusing-block~ Lfree-block~

..

Le LUSTER ---'T"'""-----+--...._)l L(~PART integer VALUES~(~~~)

..

SUBPAG ES_f~_.,.__.
~16

using-block

-E
BP·

BUFFERPOOL BPI
BP2

using-block
free-block

....

.,._USING,-------------------------------~

~VCAT~catalog-nam

STOGROUP-s togroup-name,----.--------r--'-----'

free-block

..
LFREEPAGE-intege~

132 082 SOL Reference

PRIQTY-intege
SECQTY-intege
ERASE---r-tL

LYES

LPCTFREE-intege~
..

Description

CREATE INDEX

UNIQUE
Prevents the table from containing two or more rows with the same value of
the index key. The constraint is enforced when rows of the table are updated
or new rows are inserted.

The constraint is also checked during the execution of the CREATE INDEX
statement. If the table already contains rows with duplicate key values, the
index is not created.

When UNIQUE is used, null values are treated as any other values. For
example, if the key is a single column that may contain null values, that column
may contain no more than one null value.

If the definition of the identified table is incomplete because it does not have a
primary index, the creation of the index completes the definition of the table if
UNIQUE is specified and the index key is identical to the primary key.

A primary key and and index key are identical only if they have the same
columns in the same order. The description of an index that completes the
definition of a table indicates that it is a primary index.

INDEX index-name
Names the index. The name you supply, including the implicit or explicit
qualifier, must not identify an index already described in the catalog.

If the data sets for the index are defined by D82, the index name is used to
derive a unique name for the index space that is created for the index. If the
data sets for the index are not defined by D82, the name of the index space is
the same as the second (or only) part of the index-name. If this identifier
consists of more than 8 characters, only the first 8 characters are used as the
name of the index space. The name of the index space must not be the same
as the name of an index space or table space of the database that contains the
identified table.

If the index name is qualified, the qualifier is the owner of the index. If the
index name is unqualified and the statement is embedded in a program, the
owner of the plan is the owner of the index. If the index name is unqualified
and the statement is dynamically prepared, the SQL authorization ID is the
owner of the index. The owner has the privilege of altering and dropping the
index.

ON table-name
Names the table on which you want the index to be created. The table-name
musf name a base table (not a view) described in the catalog. It must not
name a catalog table. Although a three-part name may be used, the table must
be local.

The table space that contains the named table must be available to D82 so that
its data sets can be opened.

· column-name
Names a column that is to be part of the index key.

Each column-name identifies a column of the table. Do not specify more than
16 columns, or the same column more than once. Do not qualify the
column-name. For a partitioned index, do not identify a nullable column of a
foreign key that has a delete rule of SET NULL.

The sum of the length attributes of the columns must not be greater than m-n,
where:

Chapter 6. Statements 133

CREATE INDEX

• n is the number of.columns that may contain null values;

• m depends on whether the index is partitioned, on the number of
subpages, and on whether UNIQUE is used, according to the following
table:

Partitioned SU BP AGES UNIQUE m

No <8 - 254

No 8 Yes 241

No 8 No 238

No 16 Yes 114

No 16 No 111

Yes - - 40

ASC
Puts the index entries in ascending order by the column. This is the
default.

DESC
Puts the index entries in descending order by the column.

using-block

4 1 gigabyte is 230 bytes.

134 082 SOL Reference

The components of the USING clause are discussed below, first for
unpartitioned indexes and then for partitioned indexes. If you omit USING, the
default storage group of the database must exist.

USING Clause for Unpartitioned Indexes

For unpartitioned indexes, the USING clause indicates whether the data sets
for the index are defined by you or by 082. If 082 is to define the data sets,
the clause also gives space allocation parameters and an erase rule.

If you omit USING, 082 defines the data sets in the default storage group of the
database, using implicit specifications of PRIQTY 3, SECQTY 3, and ERASE NO.

VCAT catalog-name
Defines the data sets for the index.

The ICF catalog named by catalog-name must already contain an entry for
the first data set of the index, conforming to the 082 naming convention for
data sets. If the name of the ICF catalog is longer than 8 characters, you
must use an alias.

STOGROUP stogroup-name
Defines the data sets for the index~ using space from the named storage
group. If PRIQTY + 123 * SECQTY is 2 gigabytes4 or greater, more than
one data set may eventually be used, but only the first is defined during
execution of this statement.

stogroup-name must name a storage group described in the catalog, and
SYSADM authority, or the USE privilege for that storage group, is required.

CREATE INDEX

The description of the storage group must include at least one volume
serial number. Each volume serial number must identify a volume that is
accessible to MVS for dynamic allocation of the data set, and all identified
volumes must be of the same device type.

The ICF catalog used for the storage group must NOT contain an entry for
the first data set of the index. If the ICF catalog is password protected, the
description of the storage group must include a valid password.

PRIQTY integer
Indicates the minimum primary space allocation for the D82-defined
data sets. integer is a number of kilobytes not greater than 4194304.
That maximum is used if you specify any larger value.

D82 asks VSAM for an integral number, 3 or more, of pages. (Two
pages of the primary space are used by D82 for purposes other than
storing index entries.) The actual number of pages requested is given
by these rules:

• If you do not use PRIQTY, the number is 3.

• If you do use PRIQTY, the number is integer/4 roynded up to the
next highest integer, but not less than 3.

The amount of space allocated is usually greater than that requested.
D82 requests a number of records, which VSAM changes to a request
for tracks. To more closely estimate the actual amount, see a
description of the DEFINE CLUSTER command in one of the VSAM
Access Method Services publications.

Syntax note: Do not use PRIQTY more than once in the same
using-block.

SECQTY integer
Indicates the minimum secondary space allocation for the D82-defined
data sets. integer is a number of kilobytes not greater than 131068.
The maximum is used if you specify any larger value.

D82 requests from VSAM a number of pages given by these rules:

• If you do not use SECQTY, the number is 3.

• If integer is 0, no secondary space allocation is used.

• If you do use SECQTY, the number is integer/4 rounded up to the
next highest integer, but not more than 32767.

The amount of space allocated is usually greater than that requested.
D82 requests a number of records, which VSAM changes to a request
for tracks. To more closely estimate the actual amount, see a
description of the DEFINE CLUSTER command in one of the VSAM
Access Method Services publications.

Syntax note: Do not use SECQTY more than once in the same
using-block.

ERASE
Specifies whether the D82-defined data sets are to be erased (filled
with O's) when the index is dropped.

NO
Does not erase the data sets. This is the default.

Chapter 6. Statements 135

CREATE INDEX

YES
Erases the data sets.

Syntax note: Do not use ERASE more than once in the same
using-block.

USING Clause for Partitioned Indexes:

If the index is partitioned, there is a USING clause for each partition, either one
you give explicitly or one provided, by default. Except as explained below, the
meaning of the clause and the rules that apply to it are the same as for an
unpartitioned index.

The USING clause that governs a particular partition is the first of these
choices that can be found:

• A USING clause in the PART clause for the partition

• A USING clause that is not in any PART clause

• A default USING STOGROUP clause that specifies the default storage
group for the database

Do not use more than one using-block in any PART clause.

VCAT catalog-name
Defines the data sets for the index.

If n is the number of the partition, the ICF catalog named by catalog-name
must already contain an entry for the nth data set of the index, conforming
to the D82 naming convention for data sets.

STOGROUP stogroup-name
If USING STOGROUP is used, explicitly or by default, for a partition n, D82
defines the data set for the partition during the execution of the CREATE
INDEX statement, using space from the named storage group. The ICF
catalog used for the storage group must NOT contain an entry for the nth
data set of the index.

If you omit PRIQTY, SECQTY, or ERASE from a USING STOGROUP clause
for some partition, their values are given by the next USING STOGROUP
clause that governs that partition: either a USING clause that is not in any
PART clause, or a default USING clause.

free-block

136 082 SOL Reference

fREEPAGE integer
Specifies how often to leave a page of free space when index entries are
created by a load operation or the index is reorganized. One free pag~ is
left after every integer pages; integer may range from 0 to 255.

The default is FREEPAGE 0, leaving no free pages.

Do not use FREEPAGE more than once in any free-block.

PCTFREE integer
Specifies what percentage of each page to leave as free space when index
en.tries are created by a load operation or the index is reorganized.
integer may range from O to 99.

The first entry in a subpage or nonleaf page is loaded without restriction.
When additional entries are loaded, at least n % of free space is left on
each nonleaf page, and at least nlm on each subpage (where n is the value
of integer and m is the number of subpages).

CREATE INDEX

The default is PCTFREE 10.

Do not use PCTFREE more than once in any free-block.

If the Index Is partitioned, the values of FREEPAGE and PCTFREE for a
particular partition are given by the first of these choices that applies:

• The values of FREEPAGE and PCTFREE given in the PART clause for
that partition. (Do not use more than one free-block in any PART
clause.)

• The values given in a free-block that is not in any PART clause.

• The default values FREEPAGE 0 and PCTFREE 10.

CLUSTER
Makes the index a cluster index. Do not use CLUSTER if the table already has
a cluster index. If you do not use CLUSTER, the index is not a cluster index.

PART integer
A PART clause tells what is the highest value of the index key in one
partition of a partitioned index. In this context, 1 highest 1 means 1 highest
in the sorting sequences of the index columns 1 • In a column defined as
ascending (ASC), 1 highest 1 and 1 lowest 1 have their usual meanings. In a
column defined as descending (DESC), the lowest actual value is •highest'
in the sorting sequence.

If you use CLUSTER, and the table is contained in a partitioned table
space, you must use exactly one PART clause for ~ach partition. If there
are p partitions, the value of integer must range from 1 through p.

If you do not use CLUSTER, the index is not a cluster index; do not use the
PART clause.

VALUES (constant, ... , constant)
You must use at least one constant after VALUES in each PART clause.
You may use as many as there are columns in the key. The concatenation
of all the constants is the highest value of the key in the corresponding
partition of the index.

The use of the constants to define key values is subject to these rules:

• The first constant corresponds to the first column of the key, the
second constant to the second column, and so on. Each constant must
have the same data type as its corresponding column.

• The precision and scale of a decimal constant must not be greater than
the precision and scale of its corresponding column.

• If a string constant is longer or shorter than required by the length
attribute of its column, the constant is either truncated or padded on
the right to the required length. If the column is ascending, the
padding character is X 1 FF•; if the column is descending, the padding
character is X • 00 •.

• Using fewer constants than there are columns in the key has the same
effect as using the highest possible values for all omitted columns.

• The highest value of the key in any partition must be lower than the
highest value of the key in the next partition.

• The highest value of the key in the last partition is always the highest
possible value of the key, no matter which constants you use after
VALUES.

Chapter 6. Statements 137

CREATE INDEX

Notes

Syntax note: After the list of values you may use a using-block, a
free-block, or both. But do not use more than one using-block or more than
one free-block in any PART clause.

SUBPAGES integer
Gives the number of subpages for each physical page. (The subpage is the
unit of index locking.) Use 1, 2, 4, 8, or 16. The default is 4.

BUFFERPOOL BPn
Names the buffer pool to be associated with the index. Use BPO, BP1, or BP2.
The buffer pool must be activated, and SYSADM authority, or the USE privilege
for the buffer pool, is required.

The default is the default buffer pool o·f the database (BPO if the default is
BP32K).

CLOSE
Indicates whether to close the data sets supporting the index when there are
no current users of the index.

YES
Closes the data sets. This is the default.

NO
Does not close the data sets.

DSETPASS password
Gives a password that is passed to VSAM when the data sets are used by DB2.
password is a VSAM master level password in the form of a short, ordinary
identifier. If the password is a delimited identifier, it may contain any special
characters acceptable to VSAM Access Method Services. If DSETPASS is
omitted, a password is not passed to VSAM.

If you use a storage group, password is the password that protects the data
sets as wel I as the password that is passed to VSAM when the data sets are
used by DB2. If you don't use a storage group, you define the password that
protects the data sets through VSAM access method services.

If the index occupies more than one data set, all of its data sets that are
password-protected must have the same password.

Note: The password does not apply to data sets managed by Storage
Management Subsystem. Data set defined to SMS should be protected by
RACF or some similar external security system.

The CREATE INDEX statement cannot be executed while a DB2 utility has control
of the table space that contains the identified table.

If the named table already contains data, CREATE INDEX creates the index entries
for it. If the table does not yet contain data, CREATE INDEX creates a description
of the index; the index entries are created when data is inserted into the table.

There are no restrictions on the use of ASC or DESC for the columns of a primary
key or foreign key. An index on a foreign key does not have to have the same
ascending and descending attributes as the index of the corresponding primary
key.

Two DB2 subsystems can be cataloged on the same ICF catalog. But two DB2
subsystems must not share the same ICF catalog alias because this is the only
parameter that makes the data set unique. Take care to ensure that the VCAT

138 082 SOL Reference

Examples

CREATE INDEX

names specified for a user-defined data set will identify a data set unique to this
082 subsystem.

Example 1: Create a unique index, named XOEPT1, on table OSN8220.0EPT.
Index entries are to be in ascending order by the single column OEPTNO. 082 is to
define the data sets for the index, using storage group OSN8G220; the data sets
need not be erased if the index is dropped.

Use 8 subpages for each physical page, and associates the index with buffer pool
8P1. The data sets can be closed when no one is using the index. The VSAM
password for the data sets is "OSESAME".

CREATE UNIQUE INDEX DSN8220.XDEPT1
ON DSN8220.DEPT

(DEPTNO ASC)
USING STOGROUP DSN8G220

ERASE NO
SUBPAGES 8
BUFFERPOOL BPl
CLOSE YES
DSETPASS OSESAME;

Example 2: Create an index named XEMP2 on table EMP in database OSN8220 ..
Put the entries in ascending order by column EMPNO. Let 082 define the data sets
for the index.

The index is to be a cluster index. 082 will define the data sets for each partition
using storage group OSN8G220. The primary space allocation is 36 kilobytes. If
the index is dropped, the data sets need not be erased.

There are to be 4 partitions, with index entries divided among them as follow:

Partition 1: entries up to H99.
Partition 2: 100 to P99
Partition 3: QOO to Z99
Partition 4: entries above Z99.

Use 8 subpages for each physical page, and associate the index with bufferpool
8P1. The data sets can be closed when no one is using the index. The VSAM
password for the data sets is 'OSESAME 1

•

CREATE INDEX DSN8220.XEMP2
ON DSN8220.EMP

(EMPNO ASC)
USING STOGROUP DSN8G220

PRIQTY 36
ERASE NO

SUBPAGE$ 8
CLUSTER

(PART 1 VALUES('H99'),
PART 2 VALUES('P99'),
PART 3 VALUES('Z99'),
PART 4 VALUES('999'))

BUFFERPOOL BPl
CLOSE YES
DSETPASS OSESAME;

Chapter 6. Statements 139

CREATE STOGROUP

CREATE STOGROUP

Invocation

Authorization

The CREATE STOGROUP statement creates a local storage group. Storage from
the identified volumes may subsequently be allocated for table spaces and index
spaces.

This statement can be embedded in an application program or issued interactiv~ly.
It is an executable statement that can be dynamically prepared.

The privilege set defined below must include at least one of the following:

• the CREATESG privilege
• SYSADM authority.

If the statement is embedded in a program, the privilege set is the privileges
designated by the authorization ID of the owner of the plan. If the statement is
dynamically prepared, the privilege set is the privileges designated by the SOL
authorization ID of the process.

r·=i_
.,.._CREATE STOGROUP--stogroup-name--VOLUMES-(--vol-id)---------....

..,.__VCAT--cata log-name L _J
PASSWORD-password

....

Description
stogroup-name

Is the name you want to assigr;i to this storage group. You must not name a
storage group already described in the 082 catalog.

VOLUMES (vol-id)
Gives the volume serial number of one or more OS/VS storage volumes. A
vol-id is a maximum of 6 characters specified as an identifier or a string
constant. The same volume serial number must not appear more than once.

VCAT catalog-name
Gives the name or alias of an ICF catalog. If the name of the ICF catalog is
longer than 8 characters, you must use an alias.

PASSWORD password
Gives a VSAM control or master level password in the form of a short
identifier. If the password is a delimited identifier, it may contain any special
characters acceptable to VSAM access method services. The password will be
used to access the ICF catalog. The password that protects the catalog must
be established by the installation by use of VSAM Access Method Services. If
this clause is not specified, no password will be used by 082 to access the ICF
catalog.

140 082 SQL Reference

Notes

Example

CREATE STOGROUP

When the storage group is used, an error occurs if the volumes are not of the same
device type or are not available to MVS for dynamic allocation of data sets.

There is no specific limit on the number of volumes that can be defined for a
storage group. However, the maximum number of volumes used for allocation is
133. Thus there is no point in creating a storage group with more than 133
volumes.

If the statement is embedded in a program, the owner of the plan is the owner of
the storage group. If the statement is dynamically prepared, the SOL authorization
ID is the owner of the storage group. The owner has the privilege of altering and
dropping the storage group.

082 acts solely as a conduit for the specified volumes. As such, it passes the list
of volumes to DFP for initial dataset definitions and for dataset extensions. All
valid volume serial parameters, acceptable to DFP (AMS and VSAM), are
acceptable in this statement.

Create storage group, DSN8G220, of volumes ABC005 and DEF008. DSNCAT is the
ICF catalog name, and OSESAME is the VSAM password.

CREATE STOGROUP DSN8G220
VOLUMES (ABC005,DEF008)
VCAT DSNCAT
PASSWORD OSESAME;

Chapter 6. Statements 141

CREATE SYNONYM

CREATE SYNONYM

Invocation

Authorization

The CREATE SYNONYM statement defines a synonym for a table or view.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

None required.

11+-CREATE SYNONYM--synonym--FOR--authorization-name.Lt~ble-nam:J
view-name

Description

Notes

synonym
Is the synonym for the table or view. It must be an SOL identifier that is not
identical to a synonym owned by the authorization ID of the statement. Nor can
it be identical to the unqualified name of a table, view, or alias that this
authorization ID owns. If the statement is embedded in a program, the
authorization ID of the statement is the owner of the plan. If the statement is
dynamically prepared, the authorization ID is the SOL authorization ID.

FOR
Identifies the object to which the synonym will apply. The name must consist
of exactly two parts and must denote a local table, view, or alias already
described in the catalog. If it denotes a table or view, the object identified is
this table or view. If it denotes an alias, the alias must represent a local table
or view, and the object identified is then this local table or view.

If the statement is embedded in a program, the owner of the plan is the owner of
the synonym. If the statement is dynamically prepared, the SOL authorization ID is
the owner of the synonym. Only the owner has the privilege of dropping the
synonym. Furthermore, the synonym is only defined for its owner. However, in
cases where the statement is dynamically prepared, users with SYSADM authority
can create synonyms for other users. This can be done by changing the value of
the CURRENT SOLID special register before issuing the CREATE SYNONYM
statement. See "SET CURRENT SOLID" on page 238 for details on changing the
value of the CURRENT SOLID special register.

If an alias is used to denote the table or view, the name of that table or view, not
the alias, is recorded in the catalog as the definition of the synonym. This severs
the connection between synonym and alias: Even i1 the alias were dropped and
redefined, the synonym would still be in effect and would designate the original
table or view.

142 082 SOL Reference

Example
Define an alternative name, DEPT, for table DSN8220.DEPT.

CREATE SYNONYM DEPT
FOR DSN822B.DEPT;

CREATE SYNONYM

Chapter 6. Statements .143

CREATE TABLE

CREATE TABLE

Invocation

Authorization

The CREATE TABLE statement defines a local table. The definition must include
its name and the names and attributes of its columns. The definition may also
include other attributes of the table, such as its primary key and tablespace.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

The privilege set defined below must include at least one of the following:

• The CREATETAB privilege for the database that is implicitly or explicitly
specified by the IN clause

• DBADM, DBCTRL, or DBMAINT authority for the database
• SYSADM authority.

If IN, LIKE or FOREIGN KEY is specified, additional privileges may be required as
explained in the description of those clauses.

If the statement is embedded in a program, the privilege set is the privileges
designated by the authorization ID of the owner of the plan. If the specified table
name includes a qualifier that is not the same as this authorization ID, the privilege
set must include SYSADM authority, DBADM authority for the database, or
DBCTRL ·authority for the database.

If the statement is dynamically prepared, the privilege set is the privileges
designated by the SOL authorization ID of the process. However, if the specified
table name includes a qualifier that is not the same as this authorization ID, the
following rules apply:

• Any qualifier is valid if the privilege set includes SYSADM authority, DBADM
authority for the database, or DBCTRL authority for the database.

• If the privilege set does not include any of these authorities, the qualifier is
valid only if it is the same as one of the authorization IDs of the process and
the privilege set designated by that authorization ID includes all privileges
needed to create the table. This is an exception to the rule that the privilege
set is the privileges designated by the SOL authorization ID.

144 082 SQL Reference

CREATE TABLE

.,._CREATE TABLE--tabl e-name,----------------------_...

..

..

..

~

PRIMARY~KEY~(~~n-na~)~
referenti a 1-constrai nt------­

LIKE--c:=t~bl e-name
view-name

t!N L =:J tablespace-namel
database-name.

IN DATABASE---database-name

LEDITPROC--program-name~

LAUDIT~ONE ~
HANGESI

ALL-----'

LvALIDPROC--program-name~

column-definition

..

..

.. 4

~col~~~--datM~-------_J~--~----_J~~L-------~~·111

LFOR BIT DATA NOT NULL fieldproc-blockl
NOT NULL WITH DEFAULT------'

fleldproc-block

~F1Ew~--p~ra~~-L--------J~-------------••

cJ:::li
referential-constraint

---FOREIGN KEY-....--------....--(E~n-naml)------------....
Lconstraint-name_J

.,__REFERENCES--tabl e-name L g=-i
ON DELETEt=RESTRICT

CASCADE
SET NULL

..

Chapter 6. Statements 145

CREATE TABLE

Description
table-name

Is the name of the table. The name supplied, including the implicit or explicit
qualifiers, must not identify a table, view, alias, or synonym already described
in the catalog.

If qualified, the name can be a two-part or three-part name. If it is a three-part
name, the first qualifier must be the location-name of the local DB2 subsystem.
In either case, the authorization ID that qualifies the name is the table's owner.

If the table name is unqualified and the statement is embedded in a program,
the owner of the plan is the owner of the table. If the table name is unqualified
and the statement is dynamically prepared, the SOL authorization ID is the
owner of the table. The owner has all table privileges on the table (SELECT,
UPDATE, and so on), and the authority to drop the table. All the owner's table
privileges are grantable.

column-definition

column-name
Is the name of a column of the table. Do not qualify column-name and do
not use the same name for more than one column of the table.

data-type
Is one of the types in the following list. Use:

INTEGER or INT
For a large integer.

SMALLINT
For a small integer.

FLOAT(integer)
For a floating-point number. If the integer is between 1 and 21
inclusive, the format is that of single precision floating-point. If the
integer is between 22 and 53 inclusive, the format is that of double
precision floating-point.

You may also specify:

REAL
DOUBLE PRECISION
FLOAT

for single precision floating-point
for double precision floating-point
for double precision floating-point

DECIMAL(integer,integer) or DEC(integer,integer)
For a decimal number. The first integer is the precision of the number;
that is, the total number of digits; it may range from 1 to 15. The
second integer is the scale of the number; that is, the number of digits
to the right of the decimal p~int; it may range from Oto the precision.
You may also specify:

DECIMAL(integer)
DECIMAL

NUMERIC(integer, integer)

for DECIMAL(integer,0)
for DECIMAL(5,0)

NUMERIC is an alternate name for DECIMAL: Anywhere that DECIMAL
can appear, NUMERIC can replace it. For example, NUMERIC(8) is
equivalent to DECIMAL(8). Unlike DECIMAL, however, NUMERIC has
no allowable abbreviation.

146 082 SQL Reference

CREATE TABLE

CHARACTER(integer) or CHAR(integer)
For a fixed-length character string of length integer, which may range
from 1 to 254. If the length specification is omitted, a length of 1
character is assumed.

VARCHAR(integer)
For a varying-length character string of maximum length integer, which
may range from 1 to the maximum row size. An integer greater than
254 defines a long string column.

LONG VARCHAR
For a varying-length character string whose maximum length is
determined by the amount of space available in a page. For
information on how to calculate the maximum length, see "Notes" on
page 151. If the maximum length is greater than 254, the column is a
long string column.

GRAPHIC (integer)
For a fixed-length graphic string of length integer, which may range
from 1 to 127. If the length specification is omitted, a length of 1
character is assumed.

VARGRAPHIC (integer)
For a varying-length graphic string of maximum length integer, which
must range from 1 to n/2, where n is the maximum row size. An
integer longer than 127 defines a long string column.

LONG VARGRAPHIC
For a varying-length graphic string whose maximum length is
determined by the amount of space available in a page. For
information on how to calculate the maximum length, see "Notes" on
page 151.

If the maximum length is greater than 127, the column is a long string
column.

DATE
For a date.

TIME
For a time.

TIMESTAMP
For a timestamp.

FOR BIT DATA
Specifies that the contents of the column are to be treated as bit (binary)
data for exchange with other systems. This option only applies to CHAR,
VARCHAR, and LONG VARCHAR columns. If this option is not present, the
character column is assumed to contain EBCDIC characters.

NOT NULL
Prevents the column from containing null values.

Chapter 6. Statements 147

CREATE TABLE

NOT NULL WITH DEFAULT
Prevents the column from containing null values, and allows a default
value other than the null value. The default value used depends on the
data type of the column, as follows:

Data type
Numeric
Fixed-length string
Varying-length string
Date
Time
Timestamp

Default value
0
blanks
a string of length O
the current date
the current time
the current timestamp

If you use neither NOT NULL nor NOT NULL WITH DEFAULT, the column
may contain null values, and its default value is the null value.

fieldproc-block

FIELDPROC program-name
Identifies program-name as the field procedure exit routine for the
column. Writing a field procedure exit routine is described in an
appendix of Administration Guide. Field procedures can only be used
for short string columns. They cannot be used for columns with the
NOT NULL WITH DEFAULT attribute.

A field procedure receives a single string value, and may transform
that value (encode it) in any way. Also, it receives an encoded value
and must decode it back to the original string value. A field procedure
might typically be used to alter the sorting sequence of values entered
in a column.

constant
Is a parameter passed to the field procedure when the CREATE .
TABLE statement invokes it. A parameter list is optional; the
number of parameters and the data type of each are determined by
the field procedure. The maximum length of the parameter list is
254 bytes, including commas but excluding insignificant blanks and
the delimiting parentheses.

If you omit FIELDPROC, the column has no field procedure.

PRIMARY KEY (column-name)
Defines a primary key composed of the identified columns. The clause must
not be specified more than once and the identified columns must be defined as
NOT NULL or NOT NULL WITH DEFAULT. Each column-name must identify a
column of the table and the same column must not be identified more than
once. The number of identified columns must not exceed 16 and the sum of
their length attributes must not exceed 254.

The description of the table as recorded in the catalog includes the primary key
and an indication that the definition of the table is incon:iplete until its primary
index is created.

referentlat.:.constraint

FOREIGN KEY (column-name) REFERENCES table-name
Each specification of the FOREIGN KEY clause defines a referential
constraint with the specified name. A name is generated if
constraint-name is not specified. The generated .name is derived from the
name of the first column of the foreign key in the same way that the name
of an implicitly created table space is derived from the name of a table

148 082 SQL Reference

CREATE TABLE

except that the scope of uniqueness of constraint-name is the table. If
constraint-name is specified, it must not be the same as the name of a
referential constraint that was established by a previously specified
FOREIGN KEY clause of the CREATE TABLE statement.

The foreign key of the referential constraint is composed of the identified
columns. Each name in the column list must identify a column of the table
and the same column must not be identified more than once. The number
of identified columns must not exceed 16, and the sum of their length
attributes must not exceed 254 minus the number of columns that allow
null values. If the same list of column names is specified in more than one
FOREIGN KEY clause, those clauses must not identify the same table.

The table-name specified in a FOREIGN KEY clause must identify a table
that is described in the catalog, but must not identify a catalog table. In the
following discussion, let T2 denote an identified table and let T1 denote the
table being created (T1 and T2 cannot be the same table.).

T2 must have a primary index and the privilege set must include the
ALTER privilege on T2.

The specified foreign key must have the same number of columns as the
primary key of T2 and, except for their names, default values, and null
attributes, the description of the nth column of the foreign key must be
identical to the description of the nth column of that primary key. If a
column of the foreign key has a field procedure, the corresponding column
of the primary key must have the same field procedure and an identical
field description.

The referential constraint specified by a FOREIGN KEY clause defines a
relationship in which T2 is the parent and T1 is the dependent. A
description of the referential constraint is recorded in the catalog.

The delete rule of the relationship is determined by the ON DELETE clause.
SET NULL must not be specified unless some column of the foreign key
allows null values. Omission of the clause is an implicit specification of
ON DELETE RESTRICT.

The delete rule applies when a row of T2 is the object of a DELETE or
propagated delete operation and that row has dependents in T1. Let p
denote such a row of T2.

• If RESTRICT is specified, an error occurs and no rows are deleted.

• If CASCADE is specified, the delete operation is propagated to the
dependents of pin T1.

• If SET NULL is specified, each nullable column of the foreign key of
each dependent of pin T1 is set to null.

Let T3 denote a table identified in another FOREIGN KEY plause (if any) of
the CREATE TABLE statement. The delete rules of the relationships
involving T2 and T3 must be the same and must not be SET NULL if:

• T2 and T3 are the same table

• T2 is a descendant of T3 and the deletion of rows from T3 cascades to
T2

• T2 and T3 are both descendants of the same table and the deletion of
rows from that table cascades to both T2 and T3.

Chapter 6. Statements 149

CREATE TABLE

LIKE table-name or view-name
Specifies that the columns of the table have exactly the same name and
description as the columns of the identified table or view. The name specified
after LIKE must identify a table or view described in the catalog and the
privilege set must implicitly or explicitly include the SELECT privilege on the
identified table or view.

The use of LIKE is an implicit definition of n columns, where n is the number of
columns in the identified table or view. The implicit definition includes all
attributes of then columns as they are described in SYSCOLUMNS. If a
column of the identified table has a field procedure, the corresponding column
of the new table has the same field procedure and the field description, but the
field procedure is not invoked during the execution of the CREATE TABLE
statement. If a view is identified, no column has a field procedure because the
catalog description of view columns do not include field procedures.

The implicit definition does not include any other attributes of the identified
table or view. Thus, the new table does not have a primary or foreign key. The
table is created in the table space implicitly or explicitly specified by the IN
clause, and it has an edit or validation procedure only if the EDITPROC or
VALIDPROC clauses are specified.

IN database-name.tablespace-name or IN DATABASE database-name
Names the database and table space in which the table is created. Both forms
are optional; the default is IN DATABASE DSNDB04.

You may name a database (with database-name), a table space (with
tablespace-name), or both. If you name a database, it must be described in the
DB2 catalog, and must not be DSNDB06 or DSNDB07.

If you use IN DATABASE, either explicitly or by default, a table space is
implicitly created in database-name. The name of the table space is derived
from the table name. Its other attributes are those it would have if it were
created by a CREATE TABLESPACE statement with all optional clauses
omitted.

If you name a table space, it must not be one that was created implicitly, nor be
a partitioned table space that already contains a table. If you name a
partitioned table space, you cannot load or use the table until its partitioned
index is created.

If you name both a database and a table space, the table space must belong to
the database you name. If you name only a table space, it must belong to
database DSNDB04.

To create a table space implicitly, the privilege set must have SYSADM
authority; DBADM, DBCTRL, or DBMAINT authority for the database; or the
CREATETS privilege for the database. You must also have the use privilege
for the database's default buffer pool and default storage group. If you name a
table space, you must have SYSADM authority, DBADM authority for the
database, or the USE privilege for the table space.

EDITPROC program-name
Names an edit routine for the table. The program, which must be provided by
your site, is invoked during the execution of LOAD, INSERT, UPDATE, and all
row retrieval operations on the table.

An edit routine receives an entire table row, and may transform that row in any
way. Also, it receives a transformed row and must change it back to its
original form. A typical use is to compress the storage representation of rows
to save space on DASO.

150 082 SQL Reference

Notes

CREATE TABLE

For information on writing an EDITPROC exit routine, see Appendixes of
Administration Guide.

If you omit EDITPROC, the table has no edit procedure.

VALIDPROC program-name
Names a validation routine for the table. The program, which must be
provided by your site, is invoked during the execution of LOAD, INSERT,
UPDATE and DELETE operations on the table. The program receives a row
and returns a value that indicates whether the operation should proceed for
that row. A typical use is to impose constraints on the values of rows.

For more information on writing a VALIDPROC exit routine, see Appendixes of
Administration Guide.

If you omit VALIDPROC, the table has no validation procedure.

AUDIT
Identifies the types of access to this table that will cause auditing to be
performed.

NONE
Specifies that no auditing is to be done when this table is accessed. AUDIT
NONE is the default.

CHANGES

ALL

Specifies that auditing is to be done when the table is accessed during the
first INSERT, UPDATE, or DELETE operation performed by each unit of
recovery. However, the auditing is done only if the appropriate trace class
is active. For information about trace classes, see Section 6 (Volume 2) of
Administration Guide.

Specifies that auditing is to be done when the table is accessed during the
first operation of any kind performed by each unit of recovery of a utility or
application process. However, the auditing is done only if the appropriate
trace class is active and the access is performed through the data
manager. (COPY, RECOVER, REPAIR, and the stand-alone utilities do not
use the data manager.)

While a utility is running: You cannot use CREATE TABLE while a DB2 utility has
control of the table space implicitly or explicitly specified by the IN clause.

Maximum record size: The 1 maximum record size 1 of a table depends onthe
page size of the table space, and whether the EDITPROC clause is specified, as
shown in the following table. The page size of the table space is the size of its
buffer. This in turn is determined by the BUFFERPOOL clause that was explicitly or
implicitly specified when the tablespace was created.

Maximum Record Size, in bytes:

Page Size Page Size
EDITPROC = 4K = 32K

NO 4056 32714

YES 4046 32704

Chapter 6. Statements 151

CREATE TABLE

Byte counts: The sum of the byte counts of the columns must not exceed the
maximum row size of the table. The maximum row size is eight less than the
maximum record size.

The list that follows gives the byte counts of columns by data type, for columns that
do not allow null values. For a column that allows null values the byte count is one
more than shown in the list.

Data type Byte count

INTEGER 4

SMALLINT 2

FLOAT(n) If n is between 1 and 21, the byte count is 4. If n is
between 22 and 53, the byte count is 8.

DECIMAL INTEGER(p/2) + 1, where p is the precision.

CHAR(n) n

VARCHAR(n) n+2

LONG VARCHAR See "Byte Count of a LONG column," below.

GRAPHIC(n) 2n

VARGRAPHIC(n) 2n+2

LONG VARGRAPHIC See "Byte Count of a LONG column."

DATE 4

TIME 3

TIMESTAMP 10

Byte Count of a LONG column: To calculate the count, let:

m be the maximum row size (6 less than the maximum record size).

i be the sum of the byte counts of all columns in the table that are not LONG
VARCHAR or LONG VARGRAPHIC.

j be the number of LONG VARCHAR and LONG VARGRAPHIC columns in the
table.

k be the number of LONG VARCHAR and LONG VARGRAPHIC columns that
allow nulls.

The count is 2*(1NTEGER((INTEGER((m-i-k)'/j))/2))

Length of a LONG column: To find the character count,

1. Find the byte count from "Byte Count of a LONG column." Add one if the
column allows null values.

2. Subtract 2.
3. If the data type is LONG VARGRAPHIC, divide the result by 2. If the result is

not an i"nteger, drop the fractional part.

The successful execution of a CREATE TABLE statement is audited if the statement
includes AUDIT CHANGES or AUDIT ALL.

152 082 SOL Reference

Examples

CREATE TABLE

Example 1: Create DSN8220.DEPT. DEPTNO, DEPTNAME, MGRNO, and
ADMRDEPT are column names. CHAR means the column will contain character
data. NOT NULL means that the column cannot contain a null value. VARCHAR
means the column will contain varying-length character data. DEPTNO is the name
of the column that comprises the primary key. The table is to be in database
DSN8022A and table space DSN8S22D.

CREATE TABLE DSN8220.DEPT
(DEPTNO CHAR(3) NOT NULL,

DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6),
ADMRDEPT CHAR(3) NOT NULL,
PRIMARY KEY(DEPTNO))

IN DSN8D22A.DSN8S22D;

Example 2: Create DSN8220.PROJ. PROJNO, PROJNAME, DEPTNO, RESPEMP,
PRSTAFF, PRSTDATE, PRENDATE, and MAJPROJ are column names. CHAR
means the column will contain character data. DECIMAL means the column will
contain packed decimal data. 5,2 means the following: 5 indicates the number of
decima.I digits, and 2 indicates the number of digits to the right of the decimal
point. NOT NULL means that the column cannot contain a null value. VARCHAR
means the column will contain varying-length character data. DSNBEAPR is the
name of the validation procedure for the table. The table is in an implicitly created
table space of database DSN8D22A.

CREATE TABLE DSN8220.PROJ
(PROJNO CHAR(6) NOT NULL,

PROJNAME VARCHAR(24) NOT NULL,
DEPTNO CHAR(3) NOT NULL,
RESPEMP CHAR(6) NOT NULL,
PRSTAFF DECIMAL(5,2)
PRSTDATE DATE
PRENDATE DATE
MAJPROJ CHAR(6)

IN DATABASE DSN8D22A
VALIDPROC DSNBEAPR;

' NOT NULL)

Chapter 6. Statements 153

CREATETABLESPACE

CREATE TABLESPACE
The CREATE TABLESPACE statement defines a simple, segmented, or partitioned
tablespace in a local database.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privilege set defined below must include at least one of the following:

• The CREATETS privilege for the database.
• DBADM, DBCTRL, or DBMAINT authority for the database.
• SYSADM authority.

If BUFFERPOOL or USING is specified, additional privileges may be required as
explained in the description of those clauses.

If the statement is embedded in a program, the privilege set is the privileges
designated by the authorization ID of the owner of the plan. If the statement is
dynamically prepared, the privilege set is the privileges designated by the SQL
authorization ID of the process .

...-cREATE TABLESPACE--tablespace-name L ~
IN database-name

..

..

..

..

Lusing-block~ Lfree-block~

BUFFERPOOL-E~:~--­
BP2
BP32K

LOCKSIZE-E::~E---­
TABLESPACE
TABLE--__,

c==DSETPASS~password~

c==SEGSIZE~integer:=J

154 082 SOL Reference

..

..

..

.....

CREATETABLESPACE

using-block

LVCAT--cata log-name

STOGROUP-s togroup-name,--..,.----------.--'----'

free-block

PRIQTY-intege
SECQTY-intege
ERASE-,-tL

LYES

c=FREEPAGE-integer==J
..

Description
tablespace-name

Is the name you want to give the table space. It must not be the name of a
tablespace or indexspace already in the database implicitly or explicitly
specified by the IN clause.

IN database-name
Names the database in which you want to create the table space.
database-name must name a database described in the D82 catalog, and must
not be DSND806. If DSND807 is named, it must be in the stopped state. The
default is DSNDB04.

using-block

The components of the USING clause are discussed below, first for
unpartitioned table spaces and then for partitioned table spaces. If you omit
USING, the default storage group of the database must exist.

USING Clause for Unpartitioned Table Spaces:

For unpartitioned table spaces, the USING clause tells whether the data set for
the table space is defined by you or by D82. If D82 is to define the data set,
the clause also gives space allocation parameters and an erase rule.

Default: If you omit USING, D82 defines the data sets in the default storage
group of the database, using implicit specifications of PRIQTY 3, SECQTY 3,
and ERASE NO.

VCAT catalog-name
Defines the data sets for the table space.

The ICF catalog named by catalog-name must alreaqy contain an entry for
the first data set of the table space, conforming to the D82 naming
convention for data sets. If the name of the ICF catalog is longer than 8
characters you must use an alias.

Chapter 6. Statements 155

CREATETABLESPACE

156 082 SQL Re.ference

STOGROUP stogroup-name
Lets D82 define the data sets for the table space using space from the
named storage group. If PRIQTY + 123 * SECQTY is 2 gigabytes or
greater, more than one data set may eventually be used; only the firstdata
set is defined during execution of this statement.

stogroup-name must name a storage group described in the local catalog,
and SYSADM authority, or the USE privilege on that storage group, is
required.

The description of the storage group must include at least one volume
serial number. Each volume serial number must identify a volume that is
accessible to MVS for dynamic allocation of the data set, and all identified
volumes must be of the same device type.

The ICF catalog used for the storage group must NOT contain an entry for
the first data set of the table space. If the ICF catalog is password
protected, the description of the storage group must include a valid
password.

PRIQTY integer
Gives the primary space allocation for the D82-defined data sets.
integer is a number of kilobytes not greater than 4194304. That
maximum is used if you specify any larger value. Note that the amount
of storage space specified by integer must be available on the first
volume.

D82 asks VSAM for an integral number, 3 or more, of pages. (Two
pages of the primary space are used by D82 for purposes other than
storing user data.) The actual number of pages requested is given by
these rules:

• If you do not use PRIQTY, the number is 3.

• If you do use PRIQTY, and if the page size of the table is:

4K bytes, then the number is integer/4 rounded up to the next
highest integer, but not less than 3.

32K bytes, then the number is integer/32 rounded up to the
next highest integer, but not less than 3.

The amount of space allocated is usually greater than that requested.
D82 requests a number of records, which VSAM changes to a request
for tracks. To more closely estimate the actual amount, see a
description of the DEFINE CLUSTER command in one of the VSAM
Access Method Services publications.

Syntax note: Do not use PRIQTY more than once in the same
using-block.

SECQTY integer
Gives the secondary space allocation for the D82-defined data sets.
integer is a number of kilobytes not greater than 131068. That
maximum is used if you specify any larger value. If integer is 0, no
secondary space allocation is used for the data sets.

D82 asks VSAM for a number of pages, this number being determined
by the following rules:

• If you do not use SECQTY, the number is 3.

• If you do use SECQTY, and if the page size of the table is:

CREATETABLESPACE

4K bytes, then the number is integer/4 rounded up to the next
highest integer, but not more than 32767.

32K bytes, then the number is integer/32 rounded up to the
next highest integer, but not more than 4096.

The amount of space allocated is usually greater than that requested.
D82 requests a number of records, which VSAM changes to a request
for tracks. To more closely estimate the actual amount, see a
description of the DEFINE CLUSTER command in one of the VSAM
Access Method Services publications.

Syntax note: Do not use SECQTY more than once in the same
using-block.

ERASE
Indicates whether the D82-defined data sets are to be erased (filled
with O's) when the table space is dropped.

NO
Does not erase the data sets. This is the default.

YES
Erases the data sets.

Syntax note: Do not use ERASE more than once in the same
using-block.

USING Clause for Partitioned Table Spaces:

If the table space is partitioned, there is a USING clause for each partition,
either one you give explicitly or one provided by default. Except as explained
below, the meaning of the clause and the rules that apply to it are the same as
for an unpartitioned table space. ·

The USING clause for a particular partition is the first of these choices that can
be found:

• A USING clause in the PART clause for the partition

• A USING clause that is not in any PART clause

• A default USING STOGROUP clause that specifies the default storage
group for the database

VCAT catalog-name
Lets you define the data sets for the table space.

If n is the number of the partition, the ICF catalog named by catalog-name
must already contain an entry for the nth data set of the table space,
conforming to the D82 naming convention for data sets.

STOGROUP stogroup-name
If USING STOGROUP is used, explicitly or by default, for a partition n, D82
defines the data set for the partition during the execution of the CREATE
TA8LESPACE statement, using space from the named storage group. The
ICF catalog used for the storage group must NOT contain an entry for the
nth data set of the table space.

If you omit PRIQTY, SECQTY, or ERASE from a USING STOGROUP clause
for some partition, their values are given by the next USING STOGROUP
clause that governs that partition.

Chapter 6. Statements 157 .

CREATETABLESPACE

free-block

FREEPAGE integer
Specifies how often to leave a page of free space when the table space or
partition is loaded or reorganized. You must specify an integer in the
range 0 to 255. If you specify 0, no pages are left as free space.
Otherwise, one free page is left after every n pages, where n is the
specified integer. However, if the table space is segmented and the
integer you specify is not less than the segment size, n is one less than the
segment size.

Do not use FREEPAGE more than once in any free-block. You must not use
FREEPAGE for a table space in DSNDB07.

The default is FREEPAGE 0, leaving no free pages.

PCTFREE integer
Indicates what percentage of each page to leave as free space when the
table is loaded or reorganized. integer may range from 0 to 99. The first
record on each page is loaded without restriction. When additional records
are loaded, at least integer% of free space is left on each page.

The default is PCTFREE 5. Do not use this keyword with database
DSNDB07.

Do not use PCTFREE more than once in any free-block.

If the table space is partitioned, the values of FREEPAGE and PCTFREE for
a particular partition are given by the first of these choices that applies:

• The values of FREEPAGE and PCTFREE given in the PART clause for
that partition

• The values given in a free-block that is not in any PART clause

• The default values FREEPAGE 0 and PCTFREE 5

NUMPARTS integer

s 1 gigabyte is 230 bytes.

158 082 SQL Reference

Partitions the table space. Do not use this keyword with database DSNDB07.

integer is the number of partitions, and may range from 1 to 64 inclusive. The
maximum partition size is determined by the number of partitions as shown in
the following table.

Number of
Partitions
1 to 16
17 to 32
33 to 64

Maximum Size
in Gigabytess
4
2

The partition size shown is not necessarily the actual number of bytes used or
allocated for any one partition; it is the largest number that can be logically
addressed. Each partition occupies one data set.

Default: If you omit NUMPARTS the table space is not partitioned and initially
occupies one data set.

CREATETABLESPACE

PART integer
Specifies to which partition the following using-block or free-block applies.
integer may range from 1 to the number of partitions given by NUMPARTS.

You may code the PART clause (and any using-block or free-block that follows
it) as many times as needed. If you use the same partition number more than
once, only the last specification for that partition is used.

BUFFERPOOL BPn
Names the buffer pool to be associated with the table space. Use BPO, BP1,
BP2, or BP32K. The buffer pool must be activated, and SYSADM authority, or
the USE privilege on the buffer pool, is required.

This clause also sets the page size of the table space. If you use BP32K the
page size is 32K bytes; otherwise it is 4K bytes.

The default is the default buffer pool of the database.

LOCK SIZE
Specifies the locking level for the table space. You must not use this clause for
a table space in DSNDB07.

ANY
Specifies that DB2 may use any locking level. In most cases DB2 will use
page level locking. However, when the number of page locks acquired for
the table space exceeds the maximum number of locks allowed for a table
space (an installation parameter), the page locks are released and locking
is set at the next higher level. If the table space is segmented, the next
higher level is the table. If the table space is not segmented, the next
higher level is the table space. This is the default.

PAGE
Specifies page level locking.

TABLESPACE
Specifies table space level locking.

TABLE
Specifies table level locking. You must not specify TABLE for an
unsegmented table space.

CLOSE
Indicates whether to close the data sets supporting the table space when there
are no current users of the table space.

YES
Closes the data sets. This is the default.

NO
Does not close the data sets.

DSETPASS password
Specifies a password that is passed to VSAM when the data sets are used by
082. password is a VSAM master level password in the form of a short
identifier. If the password is a delimited identifier, it may contain any special
characters acceptable to VSAM Access Method Services. If DSETPASS is
omitted, a password is not passed to VSAM.

If you use a storage group, password is the password that protects the data
sets as wel I as the password that is passed to VSAM when the data sets are
used by DB2. If you don't use a storage group, you define the password that
protects the data sets through VSAM Access Method Services.

Chapter 6. Statements 159

CREATETABLESPACE

Notes

Example

If the table space occupies more than one data set, all its data sets that are
password protected must have the same password.

Note: The password does not apply to data sets managed by Storage
Management Subsystem. Data sets defined to SMS should be protected by
RACF or some similar external security system.

SEGSIZE integer
Indicates that the table space is to be segmented. integer specifies how many
pages are to be assigned to each segment. If the SEGSIZE clause is not
provided, the table space will not be segmented. integer must be a multiple of
4 such that 4 s integer s 64.

Note that a segmented table space may not be partitioned and cannot be
created in the database DSND807.

In order to create a table space in temporary file database DSNDB07, you must first
issue the -STOP DATABASE(DSNDB07) command. Following your CREATE, issue
-START DATABASE(DSND807). This process will make the new temporary table
space you have created available for use by 082.

Two 082 subsystems can be cataloged on the ICF catalog. But two DB2
subsystems must not share the same ICF catalog alias because this is the only
parameter that makes the data set names unique. Take care to ensure that the
VCAT name specified for a user-defined data set will identify a data set unique to
this 082 subsystem.

Create table space DSN8S22D in database DSN8D22A. Let 082 define the data
sets, using storage group DSN8G220. The primary space allocation is 52 kilobytes;
the secondary, 20 kilobytes. The data sets need not be erased if the table space is
dropped.

Locking on tables in the space is to take place at the page level. Associate the
table space with buffer pool 8P1. The data sets can be closed when no one is
using the table space. The VSAM password for the data sets is • OSESAME 1

•

CREATE TABLESPACE DSN8S22D
IN DSN8D22A
USING STOGROUP DSN8G220

PRIQTY 52
SECQTY 20
ERASE NO

LOCKSIZE PAGE
BUFFERPOOL BPl
CLOSE YES
DSETPASS OSESAME;

160 082 SQL Reference

CREATE VIEW

Invocation

Authorization

CREATE VIEW

The CREATE VIEW statement creates a view on one or more local tables or views.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

For every table or view identified in the subselect, the privilege set defined below
must include at least one of the following:

• The SELECT privilege on the table or view
• Ownership of the table or view
• DBADM authority for the database (tables only)
• SYSADM authority.

Authority requirements depend in part on the choice of the view's owner. For
information on how to designate the owner, see view-name under Description.

If the statement is embedded in a program, the privilege set is the privileges
designated by the authoriation ID of the owner of the plan:

• If this privilege set includes SYSADM authority, the owner of the view can be
any authorization ID. With no errors in the statement, the view will be created,
even if the owner has no privileges at all on the tables and views identified in
the view's subselect.

• If the privilege set lacks SYSADM authority, the owner of the view must be the
owner of the application plan.

If the statement is dynamically prepared, the following rules apply:

• If the SQL authorization ID of the process has SYSADM authority, the owner of
the view can be any authorization ID. With no errors in the statement, the view
will be created, even if the owner has no privileges at all on the tables and
views identified in the view's subselect.

• If the SQL authorization ID of the process lacks SYSADM authority, only the
primary and secondary authorization IDs of the process can own the view. In
this case, the privilege set is the privileges designated by the authorization ID
selected for own'ership .

.,.__CREATE VIEW--view-name-.------------.---------------•

L(_r:::iJ
-------As--subselect-.---------~---------------------•

L_WITH CHECK OPTION__J

Chapter 6. Statements 161

CREATE VIEW

Description
view-name

Is the name of the view. The name supplied, including the implicit or explicit
qualifiers, must not identify a table, view, alias, or synonym already described
in the catalog.

If qualified, the name can be a two-part or three-part name. If it is a three-part
name, the first qualifier must be the location-name of the local D82 subsystem.
In either case, the authorization ID that qualifies the name is the view's owner.

If the view name is unqualified and the statement is embedded in a program,
the owner of the plan is the owner of the view. If the view name is unqualified
and the statement is dynamically prepared, the SOL authorization ID is the
owner of the view. The owner always acquires the SELECT privilege on the
view and the authority to drop the view. The SELECT privilege is grantable
only if the owner has the grantable SELECT privilege on every table or view
identified in the first FROM clause of the SELECT statement of the view.

The owner may also acquire the INSERT, UPDATE, and DELETE privileges on a
view. For this to be possible, the view must not be "read only," in which case
a single table or view is identified in the first FROM clause of the subselect. If
the owner has one of the above three privileges on this table or view, the
owner acquires that privilege on the new view. The privilege is grantable only
if the privilege from which it is derived is also grantable.

Note that with appropriate D82 authority, a process can create views for those
who have no authority to create the views themselves. The owner of such a
view has the SELECT privilege on the view, without the GRANT option, and
with no other authority on the view.

column-name
Is the name of a column in the view. If you specify a list of column names, it
must consist of as many names as there are columns in the result table of the
subselect. Each name must be unique and unqualified. If you do not specify a
list of column names, the columns of the view inherit the names of the columns
of the result table of the subselect.

You must specify a list of column names if the result table of the subselect has
duplicate column names or an unnamed column (a column derived from a
constant, function, or expression).

AS subselect
Defines the view. At any time, the view consists of the rows that would result if
the subselect were executed.

subselect must not reference host variables or remote objects . For an
explanation of subselect, see Chapter 5, "Queries" on page 83.

WITH CHECK OPTION
Indicates all inserts and updates against the view are to be checked against
the view definition (the search condition of the WHERE clause) and rejected if
the inserted or updated row does not conform to that definition. If the view
does not have a WHERE clause, WITH CHECK OPTION is ignored.

If the view is read-only (see Notes below), or if the SELECT statement includes
a subselect, this clause must not be specified. If the view definition is such that
updates to some columns are allowed, but inserts into the view are not
allowed, then WITH CHECK OPTION applies only to updates.

162 DB2 SOL Reference

Notes

CREATE VIEW

If the clause is omitted, inserts and updates are not checked against the view
definition. If the view is dependent on other views, checking is performed
according to the following rules:

• If this view, and the views on which it is dependent, use WITH CHECK
OPTION, all inserts and updates to this view will be checked against the
definitions of both this view, and the views on which it is dependent.

• If this view uses WITH CHECK OPTION, but none of the views on which it is
dependent do so, all inserts and updates to this view will be checked
against the definition of this view only.

• If this view does not use WITH CHECK OPTION, but the views on which it is
dependent do use it, all inserts and updates to this view will be checked
only against the definitions of the views on which it is dependent.

• If no view uses WITH CHECK OPTION, no checking is performed.

Read-only views: A view is read-only if its definition involves any of the following:

• The first FROM clause identifies more than one table or view
• The keyword DISTINCT in the first SELECT clause
• A GROUP BY clause in the outer subselect
• A HAVING clause in the outer subselect
• A column function in the first SELECT clause
• A subquery such that the base object of the SELECT statement, and of the

subquery, is the same table
• The first FROM clause identifies a read-only view
• The first FROM clause identifies a catalog table with no updateable columns.

A read-only view cannot be the object of an INSERT, UPDATE, or DELETE
statement. A view that includes GROUP BY or HAVING cannot be referenced in a
subquery of a basic predicate.

A view cannot map to more than 16 base table instances.

Testing a view definition: You can test the semantics of your view definition by
executing SELECT* FROM view-name.

The two forms of a view definition: Both the source and the operational form of a
view definition are stored in the DB2 catalog. The two forms are not necessarily
equivalent because the operational form reflects the state that exists when the
view is created. For example, consider the following statement:

CREATE VIEW V AS SELECT * FROM S;

In this example, S is a synonym for A.T which is a table with columns C1, C2, and
C3. The operational form of the view definition is equivalent to:

SELECT Cl, C2, C3 FROM A.T;

The addition of columns to A.T and the dropping of Shave no effect on the
operational form of the view definition. Thus, if columns are added to A.Tor S is
redefined, the source form of the view definition can be misleading.

Chapter 6. Statements 163

CREATE VIEW

Example
Create the view DSN8220.VPROJRE1. PROJNO, PROJNAME, PROJDEP,
RESPEMP, EMPNO, FIRSTNME, MIDINIT, and LASTNAME are column names. The
view is a join of tables DSN8220.PROJ and DSN8220.EMP, where a value in the
RESPEMP column is equal to a value in the EMPNO column.

CREATE VIEW DSN8220.VPROJRE1
(PROJNO,PROJNAME,PROJDEP,RESPEMP,
FIRSTNME,MIDINIT,LASTNAME)

AS SELECT ALL
PROJNO,PROJNAME,DEPTNO,EMPNO,
FIRSTNME,MIDINIT,LASTNAME
FROM DSN8220.PROJ, DSN8220.EMP
WHERE RESPEMP = EMPNO

Note: A column named in the WHERE, GROUP BY, or HAVING clause need not be
part of the view. In the example, for instance, the WHERE clause refers to the
colmun EMPNO, which is contained in one of the base tables but is not part of the
view.

164 082 SQL Referen.ce

DECLARE CURSOR

DECLARE CURSOR

Invocation

Authorization

The DECLARE CURSOR statement defines a cursor.

This statement can only be embedded in an application program. It is not an
executable statement.

For each table or view identified in the SELECT statement of the cursor, the
privilege set must include at least one of the following:

• The SELECT privilege
• Ownership of the object
• DBADM authority for the corresponding database (tables only)
• SYSADM authority.

The SELECT statement of the cursor is either:

• The prepared select-statement identified by the statement-name, or
• The specified select-statement.

If statement-name is specified:

• For local execution, the privilege set is the union of the privileges designated
by each authorization ID of the process. For remote execution, the privilege
set consists of all the privileges recorded in the remote subsystem's catalog
for an authorization ID derived from the primary authorization ID of the
process. The derivation process, known as "translation," is discussed in
Section 5 (Volume 2) of Administration Guide.

• The authorization check is performed when the SELECT statement is prepared.

• The cursor cannot be opened unless the SELECT statement is successfully
prepared.

If select-statement is specified:

• For local execution, the privilege set consists of the privileges designated by
the authorization ID of the owner of the plan. For remote execution, the
privilege set consists of all the privileges recorded in the remote subsystem's
catalog for an authorization ID derived from the authorization ID of the owner
of the plan. The derivation process, known as "translation," is discussed in
Section 5 (Volume 2) of Administration Guide.

• If the plan is bound with VALIDATE(BIND), the authorization check is performed
at bind time and the bind is unsuccessful if any required privilege does not
exist.

• If the plan is bound with VALIDATE(RUN), an authorization check is performed
at bind time, but all required privileges need not exist at that time. If all
privileges exist at bind time, no authorization checking is performed when the
cursor is opened. If any privilege does not exist at bind time, an authorization
check is performed the first time the cursor is opened within a unit of recovery.
The OPEN is unsuccessful if any required privilege does not exist.

Chapter 6. Statements 165

DECLARE CURSOR

.,._DECLARE--cursor-name--CURSOR FOR---------------------.

.. c=select-statement
statement-name

Description
A cursor with the specified name is defined. The name must not be the same as
the name of another cursor declared in your source program.

A cursor in the open state designates a result table and a position relative to the
rows of that table. The table is the result table specified by the SELECT statement
of the cursor.

The result table is read-only if:

• The SELECT statement includes:

- The keyword DISTINCT in the first SELECT clause
A UNION or UNION ALL operator
A column function in the first SELECT clause
A GROUP BY or HAVING clause in the outer SELECT statement
An ORDER BY clause
A subquery such that the base object of the SELECT statement and of the
subquery is the same table

- The FOR FETCH ONLY clause .

• The first FROM clause of the SELECT statement identifies:

More than one table or view
A read-only view.

Specifying the SELECT Statement: The select-statement must not include
parameter markers, but may include references to host variables. The
declarations of the host variables must precede the DECLARE CURSOR statement
in the source program. See "select-statement" on page 93 for an explanation of
select statement.

Naming the SELECT Statement: If a statement-name is specified, the SELECT
statement of the cursor is the prepared SELECT statement identified by the
statement-name when the cursor is opened.6

For an explanation of prepared SELECT statements, see "PREPARE" on page 218.

a The PREPARE statement used to create the prepared select-statement must precede the DECLARE CURSOR
statement in your source program.

166 082 SQL Reference

Notes

Example

DECLARE CURSOR

In COBOL and FORTRAN source programs, the DECLARE CURSOR statement must
precede all statements that explicitly reference the cursor by name. This rule does
not necessarily apply to the other host languages because the precompiler
provides a two-pass option for these languages. The rule does apply to the other
host languages if the two-pass option is not used.

The scope of cursor-name is the source program in which it is defined; that is, the
program submitted to the precompiler. Thus, you can only reference a cursor by
statements that are precompiled with the cursor declaration. For example, a
COBOL program called from another program cannot use a cursor that was
opened by the calling program. Furthermore, a cursor defined in a FORTRAN
subprogram can only be referenced in that subprogram.

The DECLARE CURSOR statement associates the cursor name C1 with the results
of the SELECT.

EXEC SQL DECLARE Cl CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8220.DEPT
WHERE ADMRDEPT = 'A00'
END-EXEC.

Chapter 6. Statements 167

DECLARE STATEMENT

DECLARE STATEMENT

Invocation

Authorization

The DECLARE STATEMENT statement is used for program documentation. It
declares names that are used to identify prepared SOL statements.

This statement can only be embedded in an application program. It is not an
executable statement.

None required.

~ '---i
M--DECLARE--statement-namej_STATEMENT------------------

Description

Example

statement-name STATEMENT
Lists one or more names that are used in your program to identify prepared
SOL statements.

This example shows the use of the DECLARE STATEMENT statement in a PL/I
program.

EXEC SQL DECLARE OBJECT_STATEMENT STATEMENT;

(SOURCE_STATEMENT is "SELECT DEPTNO, DEPTNAME,
MGRNO FROM DSN8220.DEPT WHERE ADMRDEPT = 1 A00 111

EXEC SQL INCLUDE SQLDA;
EXEC SQL DECLARE Cl CURSOR FOR OBJECT_STATEMENT;

EXEC SQL PREPARE OBJECT_STATEMENT FROM SOURCE_STATEMENT;
EXEC SQL DESCRIBE OBJECT_STATEMENT INTO SQLDA;

(Examine SQLDA)

EXEC SQL OPEN Cl;

DO WHILE (SQLCODE = 0);
EXEC SQL FETCH Cl USING DESCRIPTOR SQLDA;

(Print results)

END;

EXEC SQL CLOSE Cl;

168 082 SOL Reference

DECLARE TABLE

DECLARE TABLE

Invocation

Authorization

The DECLARE TABLE statement is used for program documentation. It also
provides the precompiler with information used to check your embedded SOL
statements.

Note: DCLGEN can be used to generate table declarations for tables and views,
either local or remote. For a given table or view, DCLGEN obtains the information
from the appropriate system catalog. For more on DCLGEN, see Command and
Utility Reference.

This statement can only be embedded in an application program. It is not an
executable statement.

None required.

11+--DECLARELt~ble-nam~---TABLE------------------­

v1ew-name

i
----(--col umn-name--data-type-__,..----------__,..__.__ ----------

L__NOT NULL _J

Description

L__NOT NULL WITH DEFAULT_J

table-name or view-name
Is the name of the table or view you want to document. If the same name is
used in a CREATE TABLE statement in your program, the description of the
table in the CREATE TABLE statement and the DECLARE TABLE statement
must be identical.

column-name
Is the name of a column of the table or view.

The precompiler uses these names to check for consistency of names within
your SOL statements. It also uses the data type to check for consistency of
types within your SOL statements.

data-type
Is one of the types in the following list. Use:

INTEGER For a large integer. You may also use INT.

SM ALLI NT
For a small integer.

Chapter 6. Statements 169

DECLARE TABLE

FLOAT(integer)
For a floating-point number, the integer specifying the format. If the
integer is between 1 and 21 inclusive, the format is that of single
precision floating-point. If the integer is between 22 and 53
inclusive, the format is that of double precision floating-point. You
may also specify:

FLOAT
REAL
DOUBLE PRECISION

for double precision floating-point
for single precision floating-point
for double precision floating-point

DECIMAL(integer,integer) or DEC(integer,integer)
For a decimal number. The first integer is the precision of the
number, that is, the total number of digits; it may range from 1 to 15.
The second integer is the scale of the number, that is, the number
of digits to the right of the decimal point; it may range from Oto the
precision. You may also specify:

DECIMAL(integer)
DECIMAL

for DECIMAL(integer,O)
for DECIMAL(5,0)

CHARACTER(integer) or CHAR(integer)
For a fixed-length character string of length integer, which may
range from 1 to 254. If the length specification is omitted, a length
of 1 character is assumed.

VARCHAR(integer)
For a varying-length character string of maximum length integer,
which may range from 1 to 32767.

LONG VARCHAR

DATE

TIME

For a varying-length character string whose maximum length is
determined by 082.

For a date.

For a time.

TIM EST AMP
For a timestamp.

GRAPHIC (integer)
For a fixed-length string of double-byte characters, of length
integer, which may range from 1 to 127. If the length specification
is omitted, a length of 1 character is assumed.

VARGRAPHIC (integer)
For a varying-length string of double-byte characters, of maximum
length integer, which may range from 1 to 16383.

LONG VARGRAPHIC

NOT NULL

For a varying-length string of double-byte characters whose
maximum length is determined by 082.

Is used for a column that does not allow null values, and does not provide a
default value.

NOT NULL WITH DEFAULT
Is used for a column that does not allow null values, but provides a default
value.

170 082 SQL Reference

Notes

Example

DECLARE TABLE

If an error occurs during the processing of the DECLARE TABLE statement, a
warning message is issued, and the precompiler continues processing your source
program.

Declare the sample employee table, DSN8220.EMP.

EXEC SQL DECLARE DSN8220.EMP TABLE
(EMPNO CHAR(6) NOT NULL,

FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(l) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3) NOT NULL,
PHONENO CHAR(4)
HIREDATE DATE
JOBCODE DECIMAL(3)
EDUCLVL SMALLINT
SEX CHAR(l)
BRTHDATE DATE
SALARY DECIMAL(8,2));

Chapter 6. Statements 171

DELETE

DELETE

Invocation

Authorization

The DELETE statement deletes rows from a table or view. Deleting a row from a
view deletes the row from the table on which the view is based.

The forms of this statement are:

• The searched DELETE, which is used to delete one or more rows (optionally
determined by a search condition).

• The positioned DELETE, which is used to delete exactly one row, as
determined by the current position of a cursor.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

When a table is identified, the privilege set must include at least one of the
following:

• The DELETE privilege on the table
• Ownership of the table
• DBADM authority on the database containing the table
• SYSADM authority.

When a view is identified, the privilege set must include at least one of the
following:

• The DELETE privilege on the view
• SYSADM authority.

Note that the owner of a view, unlike the owner of a table, might not have DELETE
authority on the view (or may have DELETE authority without being able to grant it
to others). Indeed, the nature of the view itself may preclude its use for DELETE.
For more on all this, see the discussion of authority under "CREATE VIEW" on
page 161.

For local execution of the statement: If the statement is embedded in a program,
the privilege set is the privileges designated by the authorization ID of the owner of
the plan. If the statement is dynamically prepared, the privilege set is the union of
the privileges designated by each authorization ID of the process.

For remote execution of the statement: The privilege set consists of all those
privileges recorded in the remote subsystem's catalog for a certain authorization
ID. For a statement embedded in a program, this authorization ID is derived from
the one that owns the plan. For a dynamically prepared statement, it is derived
from the primary authorization ID of the process. The derived authorization ID
may, of course, be equal to the original.

The derivation, known as "translation," is described in Section 5 (Volume 2) of
Administration Guide. Controlling the procedure are the SYSIBM.SYSUSERNAMES
tables in the local and remote communication databases. For a description of
commmunication databases, see Appendix D, "The Communications Database" on
page 295.

172 082 SQL Reference

DELETE

Searched DELETE

c==correlation-name.-J
..

..
c==WHERE~search-condition=m]

.. ..

Positioned DELETE

.,.____DELETE FRO~t~ble-name
view-name

.,.___WHERE CURRENT OF--cursor-name-----------------------

Description
FROM table-name or view-name

Names the table or view from which you want to delete. The table-name or
view-name must identify a table or view described in the catalog of the DB2
subsystem identified by the implicitly or explicitly specified location-name. But
it must not identify a catalog table, a view of a catalog table, or a read-only
view. (For an explanation of read-only views, see "CREATE VIEW" on
page 161.)

The referenced table or view can be remote. But it must be local if the process
is attached to DB2 through the CICS or IMS/VS attachment facilities.

correlation-name
May be used within the search-condition to designate the table or view. (For
an explanation of correlation-name, see Chapter 3.)

WHERE
Specifies a condition that selects the rows to be deleted. You can omit the
clause, give a search condition, or name a cursor. If you omit the clause, all
rows of the table or view are deleted.

search-condition
Is any search condition as described in Chapter 3. Each column-name in
the search condition, other than in a subquery, must name a column of the
table or view. The search condition must not include a subquery such that
the base object of both the DELETE and of the subquery is the same table.

The search-condition is applied to each row of the table or view and the
deleted rows are those for which the result of the search-condition is true.

If the search condition contains a subquery, the subquery can be thought of
as being executed each time the search condition is applied to a row, and
the results used in applying the search condition. In actuality, the
subquery is exec_uted for each row only if it contains a correlated reference
to a column of the table or view.

Let T2 denote the object table of a DELETE statement and let T1 denote a
table that is referenced in the FROM clause of a subquery of that
statement. T1 must not be a dependent of T2 in a relationship with a delete
rule of CASCADE or SET NULL. Furthermore, T1 must not be a dependent

Chapter 6. Statements 173

DELETE

Notes

of T3 in a relationship with a delete rule of CASCADE or SET NULLif
deletes of T2 cascade to T3.

CURRENT OF cursor-name
Identifies the cursor to be used in the delete operation. The cursor-name
must identify a declared cursor as explained in the Notes for the DECLARE
CURSOR statement. If the DELETE statement is embedded in a program,
the DECLARE CURSOR statement must include a select-statement rather
than a statement-name.

The table or view named must also be named in the FROM clause of the
SELECT statement of the cursor, and the result table of the cursor must not
be read-only. (For an explanation of read-only result tables, see
"DECLARE CURSOR" on page 165.)

When the DELETE statement is executed, the cursor must be positioned on
a row: that row is the one deleted. After the deletion, the cursor is
positioned before the next row of its result table. An immediate FETCH will
return the next row. If there is no next row, the cursor is positioned after
the last row.

If the object table is self-referencing, WHERE CURRENT OF must not be
specified.

If the object table of the delete operation is a parent table, the rows selected for
deletion must not have any dependents in a relationship with a delete rule of
RESTRICT and the delete operation must not cascade to descendent rows that are
dependents in a relationship with a delete rule of RESTRICT. If the delete
operation is not prevented by a RESTRICT delete rule, the selected rows are
deleted and:

• The nullable columns of the foreign keys of any rows that are their dependents
in a relationship with a delete rule of SET NULL are set to the null value

• Any rows that are their dependents in a relationship with a delete rule of
CASCADE are also deleted and these rules apply, in turn, to those rows.

If an error occurs during the execution of any delete operation, no rows are
deleted. If an error occurs during the execution of a cursor-controlled delete, the
position of the cursor is unchanged. However, it is possible for an error to make
the position of the cursor invalid, in which case the cursor is closed. It is also
possible for a delete operation to cause a rollback, in which case the cursor is
closed.

Unless appropriate locks already exist, one or more exclusive locks are acquired
by the execution of a successful delete operation. Until the locks are released,
they may prevent other processes from performing operations on the table.

If WHERE search-condition is omitted and the table from which the rows are
deleted is contained in a segmented tablespace, SQLERRD(3) is set to -1.
Otherwise, SQLERRD(3) is set to the number of deleted rows. However, this
number does not include any rows that were deleted as a result of a CASCADE
delete rule.

17 4 082 SQL Reference

Examples

DELETE

Example 1: From the table DSN8220.EMP delete the row on which the cursor C1 is
positioned.

DELETE FROM DSN8220.EMP WHERE CURRENT OF Cl;

Example 2: From the table DSN8220.EMP, delete all rows for departments E11 and
021.

DELETE FROM DSN8220.EMP
WHERE WORKDEPT = 'Ell'
OR WORKDEPT = 1 D21 1

Chapter 6. Statements 175

DESCRIBE

DESCRIBE

Invocation

Authorization

The DESCRIBE statement obtains information about a prepared statement. For an
explanation of prepared statements, see "PREPARE" on page 218.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

None required. See "PREPARE" on page 218 for the authorization required to
create a prepared statement.

..,.__DESCRIBE--statement-name--INTO--descriptor-name,-.------------.....--......

Description

f
NAMES

USING LABELS
ANY _
BOTH

statement-name
Names the statement about which you want to obtain information. When the
DESCRIBE statement is executed, the name must identify a prepared
statement.

INTO descriptor-name
Names an SOL descriptor area (SOLDA). These areas are described in detail
in Appendix B, "SOLCA and SOLDA" on page 249. When the host application
is written in C, descriptor-name must be a pointer variable with pointer
notation (for example, *sqlptr). When the DESCRIBE statement is executed,
values are assigned to the variables of the SOLDA as follows:

Fleld Information Entered

SOLDAID I SOLDA I

SOLDABC 16 + SOLN*44

SOL VAR

If USING(BOTH) is used, and SOLN is not large enough for both
column names and labels, SOLD is set to twice the number of
columns.

If the value of SOLD is 0, or greater than the value of SOLN, no values
are assigned to occurrences of SOLVAR.

If the value is n, where n is greater than 0 but less than or equal to
the value of SOLN, values are assigned to the first n occurrences of
SOLVAR so that the first occurrence of SOLVAR contains a
description of the first column of the result table, the second
occurrence of SOLVAR contains a description of the second column
of the result table, and so on. The description of a column consists of
the values assigned to SOLTYPE, SOLLEN, and SOLNAME.

If USING(BOTH) is used, the first n occurrences of SOLVAR contain
column names (where they exist). The second n occurrences contain

176 082 SOL Reference

DESCRIBE

column labels (where they exist), but SQL TYPE and SQLLEN are not
used. Occurrence n + 1 contains the label of column 1; occurrence
n + 2, the label of column 2; and so on.

SQLTYPE A code showing the data type of the column and whether or not it can
contain null values.

Value Data Type Nulls

384/385 date no/yes

388/389 time no/yes

392/393 timestamp no/yes

448/449 varying-length character string no/yes

452/453 fixed-length character string no/yes

456/457 long character string no/yes

464/465 varying-length graphic string no/yes

468/469 fixed-length graphic string no/yes

472/473 long graphic string no/yes

480/481 floating-point no/yes

484/485 decimal no/yes

496/497 large integer no/yes

500/501 small integer no/yes

SQLLEN A value depending on the data type of the columns, as follows:

Data Type

any string

FLOAT

INTEGER

SMALLINT

DECIMAL(p,s)

DATE

TIME

TIM EST AMP

Value

the length attribute of the column; that is, the
maximum number of characters in a value
(either EBCDIC or double-byte)

4 for single precision; 8 for double precision.

4

2

pin byte 1; sin byte 2.

10

8

26

SQLNAME The unqualified name or label of the column, depending on the value
of USING (NAMES, LABELS, ANY, or BOTH). A string of length 0 if
the appropriate name or label does not exist.

USING
Indicates what value to assign to each SQLNAME variable in the SQLDA. If the
requested value does not exist, SQLNAME is set to a length of 0.

NAMES
Assigns the name of the column. This is the default.

Chapter 6. Statements 177

DESCRIBE

Notes

Example

LABELS
Assigns the label of the column. (Column labels are defined by the LABEL
ON statement.)

ANY
Assigns the column label, and if the column has no label, the column
name.

BOTH
Assigns both the label and name of the column. In this case, two
occurrences of SOLVAR per column will be needed to accommodate the
additional information. To specify this expansion of the SOLVAR array, set
SOLN to 2*n on the PREPARE statement (where n is the number of
columns in the result table). Then, on any later FETCH statement, set
SOLN ton. The first n occurrences of SOLVAR for each of the columns in
the result table contain the column names. The second n occurrences
contain the column labels.

Information about a prepared statement can also be obtained by using the INTO
clause of the PREPARE statement.

Before the DESCRIBE or PREPARE INTO statement is executed, the value of SOLN
must be set to indicate how many occurrences of SOLVAR are provided in the
SOLDA. To obtain the description of the columns of the result table of a prepared
SELECT statement, the number of occurrences of SOLVAR must not be less than
the number of columns.

If USING BOTH is specified and SOLN is less than 2*SOLD, then SOLD is set to 2 *
(number of columns). If USING BOTH is specified and SOLN is greater than or
equal to 2*SOLD, then SOLD is set to the number of columns.

Because the maximum number of columns is 300, a simple technique is to provide
an SOLDA with 300 occurrences of SOLVAR. However, such an SOLDA will occupy
13216 bytes, and most of this space will not be needed for most prepared
statements. Thus you might want to consider another technique, such as the
following:

Execute a DESCRIBE or PREPARE INTO statement with an SOLDA that has no
occurrences of SOLVAR. If SOLD is greater than zero, use the value to allocate
an SOLDA with the necessary number of occurrences of SOLVAR and then
execute a DESCRIBE statement using that SOLDA.

This PL/I example uses the technique described above. SOURCE is a
varying-length string variable and SHORTDA is an SOLDA with no occurrences of
SOL VAR.

EXEC SQL INCLUDE SQLDA;

(Read an SOL statement into SOURCE)

EXEC SQL PREPARE OBJSTATE INTO :SHORTDA
FROM :SOURCE;

(Check for successful execution. If the value of SOLD is greater than 0, the source
statement was SELECT; use the value of SOLD to .allocate and initialize SOLDA.)

EXEC SQL DESCRIBE OBJSTATE INTO :SQLDA;

178 082 SQL Reference

DROP

Invocation

Authorization

~DROP

DROP

The DROP statement deletes a local object. Any objects that are directly or
indirectly dependent on that object are also deleted. Whenever an object is
deleted, its description is deleted from the 082 catalog, and any application plans
that reference the object are invalidated.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

To drop a table, tablespace, or index, the privilege set defined below must include
at least one of the following:

• Ownership of the object
• DBADM authority ·
• SYSADM authority.

To drop an alias, storage group, or view, the privilege set defined below must
include at least one of the following:

• Ownership of the object
· • SYSADM authority.

To drop a database, the privilege set defined below must include at least one of the
following:

• The DROP privilege on the database
• DBCTRL authority for the database
• DBADM authority for the database
• SYSADM authority.

If the statement is embedded in a program, the privilege set is the privileges
designated by the authorization ID of the owner of the plan. If the statement is
dynamically prepared, the privilege set is the union of the privileges designated by
each authorization ID of the process.

To drop a synonym, ownership is required as explained below under SYNONYM.

ALIAS-a 1 i as-name---------------.
DATABASE-database-name------------1
INDEX-i ndex-name·-------------­
STOGROUP-stogroup-name-----------~------------e~

SYNONYM-synonymrn-----------------1
TABLE-tab 1 e-name·---------------1
TABLESPACE c= tablespace-name-

database-name.__J
VIEW-view-name---------------

Chapter 6. Statements 179

DROP

Description
ALIAS alias-name

Identifies the alias you want to drop. The alias specified must be described in
the catalog. Dropping an alias has no effect on any view or synonym that was
defined using the alias.

DATABASE database-name
Dropping a database drops all table spaces, tables, and indexes in the
database.

The database-name must identify a database described in the catalog, other
than DSNDB04 and DSNDB06. If DSNDB07 is named, it must be in the stopped·
state.

INDEX index-name
Identifies an unpartitioned and user-created index described in the catalog. A
partitioned index can only be dropped by dropping its associated table space.

Dropping an index always drops the index space. If you drop an index, you
must issue a COMMIT before attempting to reuse its name.

If a primary index is dropped, the definition of its table is changed to
incomplete.

STOGROUP stogroup-name
Identifies the storage group you want to drop. The stogroup-name must be a
storage group that is described in the catalog, but not one that is used by any
table space or index space. You may drop the default storage group of a
database; for the effect, see "Notes" on page 181.

Note: SYSDEFL T must not be identified.

SYNONYM synonym
For synonym, specify the synonym you want to drop. In a static DROP
SYNONYM statement, the name must identify a synonym that is owned by the
owner of the plan. In a dynamic DROP SYNONYM statement, the name must
identify a synonym that is owned by the SOL authorization ID.

An authorization ID with SYSADM privileges can drop synonyms on behalf of
other users by changing the value of the CURRENT SOLID special register.

Dropping a synonym has no effect on any view or alias that was defined using
the synonym.

TABLE table-name
Identifies a table you want to drop. The table specified must be described in
the catalog and cannot be a catalog table or a table in a partitioned table
space. Although a three-part name may be specified, the table must be local.
The table is deleted from the database. All synonyms, indexes, and views
defined on the table, all privileges granted on the table, and all referential
constraints in which it is a parent or dependent are also dropped. If the table
space for the table was implicitly created, it is also dropped.

A table in a partitioned table space can only be dropped by dropping the table
space.

TABLESPACE
The combination of the database-name and tablespace-name must identify a
table space described in the catalog, other than a table space of DSNDB06.

180 082 SOL Reference

Notes

DROP

database-name
Identifies the database that contains the table space you want to drop. The
default is DSNDB04.

tablespace-name
Identifies the table space you want to drop. All tables contained in the
table space and all objects dependent on these tables will also be dropped.

If you drop a table space, you must issue a COMMIT before attempting to
reuse its name.

VIEW view-name
Identifies the view you want to drop. The view specified must be described in
the catalog. Although a three-part name may be specified, the view must be
local. The definition of the view is deleted from the catalog. The definition of
any view that is directly or indirectly dependent on that view is also deleted.
Whenever the definition of a view is deleted from the catalog, all privileges on
that view are also deleted.

DROP is subject to these restrictions:

• DROP DATABASE cannot be performed while a DB2 utility has control of any
part of the database.

• DROP INDEX cannot be performed while a DB2 utility has control of the index
or its associated table space.

• DROP TABLE cannot be performed while a DB2 utility has control of the table
space that contains the table.

• DROP TABLESPACE cannot be performed while a DB2 utility has control of the
table space.

Dropping a parent table: DROP is not DELETE and therefore does not involve
delete rules.

Dropping a default storage group: If you drop the default storage group of a
database, it ceases to exist. Until you create another storage group with the same
name, you must use USING when creating a table space or index in the database.

Dropping a temporary table space: In order to drop a tablespace in temporary file
database DSNDBOi, you must first issue the -STOP DATABASE(DSNDB07)
command. Following your DROP, issue -START DATABASE(DSNDB07). This
process will remove the temporary table space you dropped from the pool of table
spaces available to DB2.

Dropping resource limit facility (governor) indexes, tables, and table spaces:
While the RLST is active, you cannot issue a DROP DATABASE, DROP INDEX,
DROP TABLE, or DROP TABLESPACE statement for an object associated with the
active RLST.

Dropping an object in the communications database: You cannot drop an object in
the communications database while the distributed data facility (DDF) is active.

Dropping an alias: Dropping a table or view does not drop its aliases. To drop an
alias, use the DROP ALIAS statement.

Chapter 6. Statements 181

Examples
Example 1: Drop table DSN8220.DEPT.

DROP TABLE DSN8220.DEPT

Example 2: Drop table space DSN8S22D in database DSN8D22A.

DROP TABLESPACE DSN8D22A.DSN8S22D

Example 3: Drop the view VDEPT.

DROP VIEW VDEPT

,182 082 SQL Reference

END DECLARE SECTION

END DECLARE SECTION

Invocation

Authorization

The END DECLARE SECTION statement marks the end of a host variable declare
section.

This statement can only be embedded in an application program. It is not an
executable statement.

None required.

11+--END DECLARE SECTION1--------------------------1M1

Description

Notes

Example

The END DECLARE SECTION statement may be coded in the application program
wherever declarations can appear in accordance with the rules of the host
language. It is used to indicate the end of a host variable declaration section. A
host variable section starts with a BEGIN DECLARE SECTION statement described
on page 122.

The following rules are enforced by the precompiler only if the host language is C
or the STDSQL(86) precompiler option is specified:

• A variable referenced in an SQL statement must be declared within a host
variable declaration section of the source program.

• BEGIN DECLARE SECTION and END DECLARE SECTION statements must be
paired and must not be nested.

Host variable declaration sections are only required if the STDSQL(86) option is
specified or the host language is C. However, declare sections may be specified
for any host language so that the source program can conform to the SAA
definition of SQL. If declare sections are used, but not required, variables declared
outside a declare section should not have the same name as variables declared
within a declare section.

EXEC SQL BEGIN DECLARE SECTION;

(host variable declarations)

EXEC SQL END DECLARE SECTION;

Chapter 6, Statements 183

EXECUTE

EXECUTE

Invocation

Authorization

The EXECUTE statement executes a prepared SOL statement.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

See "PREPARE" on page 218 for the authorization required to create a prepared
statement.

11+-EXECUTE--statement-name-------------------------+

..

~SING C:ariable I d
USING DESCRIPTOR--descriptor-name

Description
statement-name

. Identifies the prepared statement to be executed. statement-name must
identify a statement that was previously prepared within the unit of recovery
and the prepared statement must not be a SELECT statement.

USING
Introduces a list of host variables whose values are substituted for the
parameter markers (question marks) in the prepared statement. (For an
explanation of parameter markers, see "PREPARE" on page 218.) If the
prepared statement includes parameter markers, you must use USING. USING
is ignored if there are no parameter markers.

host-variable
Identifies a structure or variable that is described in the program in
accordance with the rules for declaring host structures and variables.
When the statement is executed, a reference to a structure has been
replaced by a reference to each of its variables. The number of variables
must be the same as the number of-parameter markers in the prepared
statemerit. The nth variable corresponds to the nth parameter marker in
the prepared statement.

DESCRIPTOR descriptor-name
Identifies an SOLDA that must contain a valid description of host variables;
The number of variables, as indicated by SOLD, must be the same as the
number of parameter markers in the prepared statement and the length of
the SOLDA, as indicated by SOLDABC, must be sufficient to describe that
number of variables. The nth variable described by the SOLDA
corresponds to the nth parameter marker in the prepared statement.

If the host application is written in C, then descriptor-name must be a
pointer with pointer notation (for example, *sqlprt). (For a description of an
SOLDA, see "SOL Descriptor Area (SOLDA)" on page 252.)

184 082 SOL Reference

Notes

Example

EXECUTE

Before the prepared statement is executed, each parameter marker is effectively
replaced by the value of its corresponding host variable. The following rules apply
to these parameter values:

• If the parameter marker appears in the place of an insert or update value, the
parameter value is the insert or update value and must therefore be
compatible with the column to which it is assigned as specified in the
description of the INSERT and UPDATE statements. Any conversion of the
value is performed in accordance with the assignment rules described in
Chapter 3.

• If the parameter marker appears as the operand of a unary minus, the
parameter value must be a number. If it is not a double precision floating
number, it is converted to double precision floating point before the operation
is performed.

• If the parameter marker appears as the operand of an infix arithmetic operator,
the parameter value must be a number. If the data type, precision, and scale
of the parameter value is not the same as the data type, precision, and scale of
the other operand of the arithmetic operator, the parameter value is converted
to the data type, precision, and scale of that operand before the operation is
performed.

• If the parameter marker appears in a predicate, the parameter value must be
compatible with the other operand of that predicate. If the parameter value is a
string, it must not be longer than the other operand. If the parameter value is a
number that does not have the same data type, precision, and scale as the
other operand, the parameter value is converted to the data type, precision,
and scale of that operand before the operation is performed. In the case of the
BETWEEN predicate, the 1 other operand 1 is the first operand that is specified
solely as a column-name. If no operand of BETWEEN is specified solely as a
column-name, the 'other operand' is the closest operand (in left to right order)
that is not specified with a parameter marker. In the case of the IN predicate,
the 'other operand' is the closest operand (in left to right order) that is not
specified with a parameter marker.

In this example, an INSERT statement with parameter markers is prepared and
executed. S1 is a structure that corresponds to the format of DSN8220.DEPT.

EXEC SQL PREPARE DEPT INSERT FROM
'INSERT INTO DSN822S.DEPT VALUES(?,?,?,?)';

(Check for successful execution and read values into Sl)

EXEC SQL EXECUTE DEPT_INSERT USING Sl;

Chapter 6. Statements 185

EXECUTE IMMEDIATE

EXECUTE IMMEDIATE

Invocation

Authorization

The EXECUTE IMMEDIATE statement:

• Prepares an executable form of an SOL statement from a character string form
of the statement.

• Executes the SOL statement.

• Destroys the executable form.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

The authorization rules are those defined for the dynamic preparation of the SOL
statement specified by EXECUTE IMMEDIATE. For example, see "INSERT" on
page 207 for the authorization rules that apply when an INSERT statement is
executed using EXECUTE IMMEDIATE .

.,..____EXECUTE IMMEDIATE---r--string-expression
Lhost-vari able,--....

...

Description

Notes

string-expression
A string-expression is any PL/I expression that yields a character string.

host-variable
For languages other than PL/I, host-variable must be specified. It must identify
a host variable that is described in the program in accordance with the rules
for declaring character string variables. In Assembler language, C, and
COBOL, the host variable must be a varying-length string variable. In C, it
must not be a null-terminated string.

The value of the identified host variable or the specified string-expression is called
the statement string.

The statement string must be one of the following SOL statements: ALTE_R,
COMMENT ON, COMMIT, CREATE, DELETE, DROP, EXPLAIN, GRANT, INSERT,
LABEL ON, LOCK TABLE, REVOKE, ROLLBACK, SET, or UPDATE.

The statement string must not include parameter markers or references to host
variables, must not begin with EXEC SOL, and must not terminate with END-EXEC
or a semicolon.

The Resource Limit Facility (Governor) may stop execution of a prepared SOL
statement if the statement is taking too much CPU time to finish. When this
happens an error occurs. The application that issued the statement is not
terminated; it is allowed to issue another SOL statement.

186 082 SQL Reference

Example

EXECUTE IMMEDIATE

When an EXECUTE IMMEDIATE statement is executed, the specified statement
string is parsed and checked for errors. If the SOL statement is invalid, it is not
executed and the error condition that prevents its execution is reported in the
SQLCA. If the SOL statement is valid, but an error occurs during its execution, that
error condition is reported in the SOLCA.

If the same SOL statement is to be executed more than once, it is more efficient to
use the PREPARE and EXECUTE statements rather than the EXECUTE IMMEDIATE
statement.

In this PL/I example, the EXECUTE IMMEDIATE statement is used to execute a
DELETE statement in which the rows to be deleted are determined by a
search-condition specified by the value of PREDS.

EXEC SQL EXECUTE IMMEDIATE 'DELETE FROM DSN8220.DEPT
WHERE' I I PREDS;

Chapter 6. Statements 187

EXPLAIN

EXPLAIN

Invocation

Authorization

The EXPLAIN statement obtains access path selection information about a SELECT,
INSERT, UPDATE, or DELETE statement. The information is placed in a
user-supplied table.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

The authorization rules are those defined for the SQL statement specified in the
EXPLAIN statement. For example, see the description of the DELETE statement for
the authorization rules that apply when a DELETE statement is specified in an
EXPLAIN statement.

If the EXPLAIN statement is embedded in a program, the authorization rules that
apply are those defined for embedding the specified SQL statement in a program.
In addition, the authorization ID of the owner of the plan must also be the owner of
a table named PLAN_ TABLE.

If the EXPLAIN statement is dynamically prepared, the authorization rules that
apply are those defined for dynamically preparing the specified SQL statement. In
addition, the SQL authorization ID of the process must also be the owner of a table
named PLAN_ TABLE .

.,.._____EXPLAIN--,---PLA~

~ALL c=SET QUERYNQ=~integer--=i
..,._FOR--explainable-sql-statement---------------------......

Description
PLAN

ALL

Inserts one row in 'userid.PLAN_TABLE' for each step used in executing
explainable-sq/-statement Not included are the steps for enforcing referential
constraints. The table is described under "Output" on page 189.

Has the same effect as PLAN.

SET QUERYNO == integer
Associates integer with explainable-sql-statement. The column QUE RYNO is
given the value integer in every row inserted in userid.PLAN_TABLE by the
EXPLAIN statement.

FOR explainable-sq/-statement
Identifies the SQL statement that is to be explained. explainable-sq/-statement
may be any SQL statement that begins with SELECT, DELETE, INSERT, or
UPDATE. The statement must refer to local DB2 objects only.

explainable-sql-statement cannot be a statement-name or a host-variable. If
you want to use EXPLAIN to get information about dynamic SQL statements,
you must prepare the entire EXPLAIN statement dynamically.

188 082 SOL Reference

Output

EXPLAIN

Output from EXPLAIN is one or more rows of data inserted in the table
userid.PLAN_TABLE. The table must have been created by or for the user of the
EXPLAIN statement before that statement is executed. For information on using
the table, see Section 7 (Volume 3) of Administration Guide. The table is described
below.

PLAN_ TABLE: To create PLAN_ TABLE, execute this SQL statement:

CREATE TABLE PLAN TABLE
(QUERYNO - INTEGER
QBLOCKNO SMALL INT
APPLNAME CHAR(8)
PROGNAME CHAR(8)
PLANNO SMALL INT
METHOD SMALL INT
CREATOR CHAR(8)
TNAME CHAR(18)
TABNO SMALL INT
ACCESSTYPE CHAR(2)
MATCHCOLS SMALLINT
ACCESSCREATOR CHAR(8)
ACCESSNAME CHAR(18)
INDEXONLY CHAR(l)
SORTN UNIQ CHAR(l)
SORTN=JOIN CHAR(l)
SORTN ORDERBY CHAR(l)
SORTN-GROUPBY CHAR(l)
SORTC-UNIQ CHAR(l)
SORTC=JOIN CHAR(l)
SORTC ORDERBY CHAR(l)
SORTC-GROUPBY CHAR(l)
TSLOCKMODE CHAR(3)
TIMESTAMP CHAR(16)
REMARKS VARCHAR(254)
PRE FETCH CHAR(l)
COLUMN_FN_EVAL CHAR(l)
MIXOPSEQ SMALLINT

IN database-name.tablespace-name;

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT)

where database-name.tablespace-name names a database and table space you
have authorization to use.

The list of columns up through REMARKS is a required minimum. Be certain to
define the columns in the order shown. The last three columns are optional. You
can either include all three of them, or none of them at all. You cannot include
additional columns in the table definition.

The following table explains the columns in PLAN_ TABLE.

Chapter 6. Statements 189

I

I
I
I

-1

I

EXPLAIN

Table 5 (Page 1 of 2). Columns in PLAN_ TABLE. The results of the EXPLAIN statement are stored here.

Column Name Description

QUE RYNO A number that identifies the EXPLAIN statement. You can specify a number with the SET
QUERYNO clause; otherwise, DB2 will assign one.

QBLOCKNO A number that identifies the query or subquery for the row. The number reflects the
query's order of appearance in the EXPLAIN statement.

APPLNAME For an EXPLAIN statement embedded in an application program, the name of the
application plan. For a dynamic EXPLAIN statement, blank.

PROGNAME For an EXPLAIN statement embedded in an application program, the name of the
program; otherwise, blank.

PLAN NO A number identifying the step of the plan in which the subquery in QBLOCKNO was
processed. This column indicates the order in which the steps of the plan were
executed.

METHOD A number (0, 1, 2, or 3) that indicates the join method used for this step of the plan:

0 First table accessed (PLANNO = 1).

1 Nested loop join. For each row of the present composite table, matching rows
of a new table are found and joined.

2 Merge scan join. The present composite table and another table are scanned in
the order of the join column, and matching rows are joined.

3 Additional sorts needed by ORDER BY, GROUP BY, SELECT DISTINCT or a
quantified predicate. This step does not access a new table.

CREATOR Creator of the new table accessed in this step; if METHOD is 3, blank.

TNAME Name of the new table accessed in this step; if METHOD is 3, blank.

TABNO A number that identifies the FROM-clause table reference for the row. The number
reflects the position of the reference in the EXPLAIN statement. 0 if METHOD is 3.

ACCESSTYPE Method of accessing the new table:

I By an index (identified in ACCESSCREATOR and ACCESSNAME).
11 One-fetch index scan.
N Index scan when predicate contains IN keyword.
R By sequential scan of its pages.
M By a multiple index scan; followed by MX, Ml, or MU
MX By a multiple index scan on the index named in ACCESSNAME
Ml By an intersection of multiple indexes
MU By a union of multiple indexes

blank Either:

By the first index created on the table (that is, by QBLOCKNO 1 of an INSERT
~tatement); or

By UPDATE and DELETE statements that use WHERE CURRENT OF cursor;
those are accessed by the cursors.

MATCHCOLS For ACCESSTYPE I, 11, N, or MX, the number of index keys used in an index scan;
otherwise, 0.

ACCESSCREATOR For ACCESSTYPE I, 11, N, or MX, the creator of the index; otherwise, blank.

ACCESSNAME For ACCESSTYPE I, 11, N, or MX, the name of the index; otherwise, blank.

INDEXONLY . Whether access to an index alone is sufficient to satisfy the request, or whether data too
must be accessed.
Y = Yes; N = No.

SORTN_UNIQ Whether a sort is performed on the new table to remove duplicate rows.
Y = Yes; N = No.

190 DB2 SOL Reference

Table 5 (Page 2 of .. 2).

Column Name

SORTN_JOIN

SORTN_ORDERBY

SORTN_GROUPBY

SORTC_UNIQ

SORTC_JOIN

SORTC _ ORDERBY

SORTC _ GROUPBY

TSLOCKMODE

TIMESTAMP

REMARKS

PRE FETCH

COLUMN_FN_EVAL

MIXOPSEQ

Example

EXPLAIN

Columns in PLAN_ TABLE. The results of the EXPLAIN statement are stored here.

Description

Whether a sort is performed on the new table if METHOD is 2.
Y = Yes; N = No.

Whether an ORDER BY clause results in a sort on the new table.
Y = Yes; N = No.

Whether a GROUP BY clause results in a sort on the new table.
Y = Yes; N = No.

Whether a sort is performed on the composite table to remove duplicate rows.
Y = Yes; N = No.

Whether a sort is performed on the composite table if METHOD is 2.
Y = Yes; N = No.

Whether an ORDER BY clause or a quantified predicate results in a sort on the
composite table.
Y =Yes; N = No.

Whether a GROUP BY clause results in a sort on the composite table.
Y = Yes; N = No.

The lock mode of the table space that contains the new table.
IS = intent share; IX = intent exclusive; S = share; X = exclusive.

The time at which the EXPLAIN statement was processed.

A field into which you can insert any character string of 254 or fewer characters.

A character that indicates whether data pages were read in advance by PREFETCH.
S = pure sequential PREFETCH; L = PREFETCH through a page list; blank = unknown
or no prefetch.

A character that indicates when an SOL column function was evaluated.
R = at data retrieval time; S = at sort time; blank = either at data manipulation time or
unknown.

A number that indicates the sequence of steps in a multiple index operation.

1, 2, ... n For the steps of the multiple index procedure
(ACCESSTYPE is MX, Ml, or MU)

0 For any other rows (ACCESSTYPE is I, 11, M, N, R, or blank)

Find information about an SOL statement:

EXPLAIN PLAN SET QUERYNO = 1
FOR SELECT X.ACTNO, X.PROJNO, X.EMPNO, Y.JOBCODE, Y.EDUCLVL

FROM DSN82.EMPPROJACT X, DSN82.EMP Y
WHERE X.EMPNO = Y.EMPNO

AND X.EMPTIME > .5
AND (Y.JOBCODE >= 58 OR Y.EDUCLVL >= 18)

ORDER BY X.ACTNO, X.PROJNO

Chapter 6. Statements 191

FETCH

FETCH

Invocation

Authorization

The FETCH statement positions a cursor on the next row of its result table and
assigns the values of that row to host variables.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

See "DECLARE CURSOR" on page 165 for an explanation of the authorization
required to use a cursor.

11+--FETCH--cursor-name--c:::: INTa--lhost-vari ab l e,--1...l ____ ~----.----------•• 4

USING DESCRIPTOR~descriptor-name

Description
cursor-name

Identifies the cursor to be used in the fetch operation. The cursor-name must
identify a declared cursor as explained in the Notes for the DECLARE CURSOR
statement. When the FETCH statement is executed, the cursor must be in the
open state.

If the cursor is currently positioned on or after the last row of its result table,
the SQLCODE field of the SQLCA is set to + 100, the cursor is positioned "after
the last row," and values are not assigned to host variables.

If the cursor is currently positioned before a row, the cursor is positioned on
that row and values are assigned to host variables as specified by INTO or
USING.

If the cursor is currently positioned on a row other than the last row, the cursor
is positioned on the next row and values of that row are assigned to host
variables as specified by INTO or USING.

INTO host-variable
If INTO is used, each occurrence of host-variable must identify a structure or
variable that is described in your program in accordance with the rules for
declaring host structures and variables. In the operational form of INTO, a
reference to a structure has been replaced by a reference to each of its
variables. If the number of variables is less than the number of values, the
variable 1W 1 is assigned to SQLWARN3.

USING DESCRIPTOR descriptor-name
Identifies an SQLDAthat contains a valid description of zero or more host
variables. The length of the SQLDA, as indicated by SQLDABC, must be
sufficient to describe the number of variables indicated by SOLD. The first
value of a row corresponds to the first variable described by the SQLDA, the
second value corresponds to the second variable, etc. When the host
application is written in C, descriptor-name must be a pointer variable with
pointer notation (for example, *sqlptr).

192 082 SQL Reference

Notes

Example

FETCH

The data type of a host variable must be compatible with its corresponding value.
If the value is numeric, the variable must have the capacity to represent the whole
part of the value. For a date/time value, the variable must be a character string
variable of a minimum length as defined in "String Representations of Date/Time
Values" on page 29. If the value is null, an indicator variable must be specified.

Assignments are made in sequence through the list. Each assignment to a
variable is made according to the rules described in Chapter 3, "Language
Elements" on page 17. If the number of variables is less than the number of
values in the row, the SQLWARN3 field of the SQLDA is set to 'W'.

If an error occurs as the result of an arithmetic expression in the SELECT list of an
outer SELECT statement (division by zero, or overflow) or a numeric conversion
error occurs, the result is the null value. As in any other case of a null value, an
indicator variable must be provided and the main variable is unchanged. In this
case, however, the indicator variable is set to -2. Processing of the statement
continues as if the error had not occurred. (However, this error causes a positive
SQLCODE.) If you do not provide an indicator variable, a negative value is
returned in the SQLCODE field of the SQLCA. Processing of the statement
terminates when the error is encountered. No value is assigned to the host
variable or to later variables, though any values that have already been assigned
to variables remain assigned.

If an error occurs during the execution of a fetch operation, the position of the
cursor and the result of any subsequent fetch are unpredictable. It is possible for
an error to occur that makes the position of the cursor invalid, in which case the
cursor is closed.

An open cursor can be positioned before a row, on a row, or after the last row. If a
cursor is on a row, that row is called the current row of the cursor. A cursor
referenced in an UPDATE or DELETE statement must be positioned on a row. A
cursor can be on a row only as a result of a FETCH statement.

The FETCH statement fetches the results of the SELECT statement into the
program variables DNUM, DNAME, and MNUM. When no more rows remain to be
fetched, the 'notfound' condition is returned.

EXEC SQL DECLARE Cl CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO FROM DSN8220.DEPT
WHERE ADMRDEPT = 'A00';

EXEC SQL OPEN Cl;

DO WHILE (SQLCODE = 0);
EXEC SQL FETCH Cl INTO :DNUM, :DNAME, :MNUM;

END;

EXEC SQL CLOSE Cl;

Chapter 6. Statements 193

GRANT

GRANT

Invocation

The GRANT statement grants privileges to authorization IDs. There is a separate
form of the statement for each of these classes of privilege:

• Database
• Plan
• System
• Table
• Use.

The applicable objects are always local.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. If the
authorization mechanism was not activated when the DB2 subsystem was
installed, an error condition occurs.

Authorization
The privilege set defined below must include the GRANT option for every privilege
specified in the statement. The GRANT option may have been explicitly granted
when the privilege was granted or it may be inherent in another privilege.

The GRANT option for any privilege is inherent in SYSADM authority. Except for
views, the GRANT option for privileges on a table is also inherent in DBADM
authority for its database, provided DBADM authority was acquired with the
GRANT option. See "CREATE VIEW" on page 161 for a description of rules that
apply to views.

If the statement is embedded in a program, the privilege set is the privileges
designated by the authorization ID of the owner of the plan. If the statement is
dynamically prepared, the privilege set is the privileges designated by the SOL
authorization ID of the process .

.,._GRANT--authorization-specification~-------------------+

i
~To----i==authorization-name m=J

CPUBLIC-------~-1
PUBLIC AT ALL _LOCATIONS

c=WITH GRANT OPTION~
...

Description
authorization-specification

TO

194 082 SOL Reference

Names one or more privileges in one of the formats described on the following
pages.

Specifies to whom the privileges are granted.

Notes

GRANT

authorization-name
Lists one or more authorization IDs. You cannot use the ID of the GRANT
statement itself. (You cannot grant privileges to yourself.)

PUBLIC
Grants the privileges to all users at the local subsystem.

PUBLIC AT ALL LOCATIONS
Grants the privileges to all users in the network. Applies to table
privilege$ only, excluding ALTER and INDEX.

WITH GRANT OPTION
Allows the named users to grant the privileges to others. Granting an
administrative authority with this option allows the user to specifically grant
any privilege belonging to that authority. If you omit WITH GRANT OPTION, the
named users cannot grant the privileges to others unless they have that
authority from some other source.

GRANT authority cannot be passed to PUBLIC or to PUBLIC AT ALL
LOCATIONS. When WITH GRANT OPTION is used with either of these, a
warning is issued, and the designated privileges are granted, but without
GRANT authority.

For more on DB2 privileges, read Section 5 (Volume 2) of Administration Guide.

The result of executing a GRANT statement is recorded as one or more "grants" in
the local catalog. A grant is the granting of a specific privilege by a specific
grantor to a specific grantee. The grantor for a given GRANT statement is the
authorization ID for the privilege set; that is, the ~QL authorization ID of the
process or the authorization ID of the plan's owner. As recorded in the catalog, the
grantee is either an authorization ID, "PUBLIC," or "PUBLIC*," where PUBLIC*
denotes PUBLIC AT ALL LOCATIONS.

Multiple grants are recorded for a statement in which more than one privilege is
specified for authorization-specification or more than one grantee is specified after
the keyword TO. If, for some reason, one of the grants is in error, execution of the
statement is stopped and all its grants are canceled.

Different grantors may grant the same privilege to a single grantee. The grantee
retains this privilege as long as one or more of these grants are recorded in the
catalog. The grantee also retains the privilege if some grant is record.ad of another
privilege that implies the original privilege. Privileges that imply other privileges
are also termed "authorities." Grants are removed from the catalog by executing
SOL REVOKE statements.

Chapter 6. Statements 195

GRANT

GRANT (DATABASE PRIVILEGES)
This form of the GRANT statement grants privileges on databases.

DBAD--­
DBCTRL
DBMAINT
CREATETAB
CREAT.ETS
DISPLAYDB r
DROP'--- t

~RANT---IMAGCOPY-........ --10N DATABASE--database-name---------------.,
LOA•i----
RECOVERDB
REOR•.;---
REPAIR
STARTDB
STATS---
STOPDB

.,._ TO--L-authori zat ion-name
PUBLIC----__, c=WITH GRANT OPTIONo=J

Description
Each keyword listed grants the privilege described, but only as it applies to or
within the databases named in the statement.

DBADM
Grants the database administrator authority.

DBCTRL
Grants the database control authority.

DB MAI NT
Grants the database maintenance authority.

CREATETAB
Grants the privilege to create new tables.

CREATETS
Grants the privilege to create new table spaces.

DISPLAYDB
Grants the privilege to issue the -DISPLAY DATABASE command.

DROP
Grants the privilege to drop the designated databases.

IMAGCOPY
Grants the privilege to run the COPY, MERGECOPY, and QUIESCE utilities
against table spaces of the specified databases, and to run the MODIFY utility
to delete records from the SYSIBM.SYSCOPY catalog table and the
SYSIBM.SYSGRNG directory table.

196 082 SOL-Reference

Examples

GRANT

LOAD
Grants the privilege to use the LOAD utility to load tables.

RECOVERDB
Grants the privilege to use the RECOVER and REPORT utilities to recover table
spaces and indexes. Note, however, that only someone with Install SYSADM
authority can can use the RECOVER utility against the catalog and the
directory.

REORG
Grants the privilege to use the REORG utility to reorganize table spaces and
indexes.

REPAIR
Grants the privilege to use the REPAIR and DIAGNOSE utilities. Note,
however, that only someone with Install SYSADM authority can use the
REPAIR utility against the catalog and directory.

STARTDB
Grants the privilege to issue the -START DATABASE command.

STATS
Grants the privilege to use the RUNSTATS utility to update statistics, and the
CHECK utility to test whether indexes are consistent with the data they index.,
Note, however, that only someone with Install SYSADM or Install SYSOPR
authority can use the CHECK utility on the catalog and directory.

STOPDB
Grants the privilege to issue the -STOP DATABASE command.

ON DATABASE database-name

TO

Lists one or more databases on which privileges are to be granted. For each
designated database, the grantor must have all the specified privileges with
the GRANT option. Each database must be described in the catalog. Privleges
cannot be granted on database DSNDB01, which is not described in the
catalog.

Refer to "GRANT" on page 194 for a description of the TO clause.

Example 1: Grant drop privileges on database DSN8D22A to user PEREZ.

GRANT DROP
ON DATABASE DSN8D22A
TO PEREZ;

Example 2: Grant repair privileges on database DSN8D22A to all local users.

GRANT REPAIR
ON DATABASE DSN8D22A
TO PUBLIC;

Example 3: Grant authority to create new tables and load tables in database
DSN8D22A, to users WALKER, PIANKA, and YOSHIMURA, and give them grant
privileges.

GRANT CREATETAB,LOAD
ON DATABASE DSN8022A
TO WALKER,PIANKA,YOSHIMURA
WITH GRANT OPTION;

Chapter 6. Statements 197

GRANT

GRANT (PLAN PRIVILEGES)
This form of the GRANT statement grants privileges on application plans.

11+-GRANT-i""T""L-BIN~~ ON PLAN-+-pla;:l,-L------------"----..... ·EXEC~

.,..____ TO--L-authori zat ion-name
PUBLIC-------' c=WITH GRANT OPTION=:J

Description

Examples

BIND
Grants the privilege to use the BIND, REBIND, and FREE subcommands
against the application plans named. (The authority to create new plans using
BIND ADD is a system privilege.)

EXECUTE
Grants the privilege to run programs that use the application plans named.

ON PLAN plan-name

TO

Lists one or more application plans for which you are granting privileges. For
each plan you name, you must have all specified privileges with the GRANT
option.

Refer to "GRANT" on page 194 for a description of the TO clause.

Example 1: Grant authority to bind plan DSN81P22 to user JONES.

GRANT BIND ON PLAN DSN8IP22 TO JONES;

Example 2: Grant authority to bind and execute plan DSN8CP22 to all local users.

GRANT BIND,EXECUTE ON PLAN DSN8CP22 TO PUBLIC;

Example 3: Grant authority to execute plan DSN8CP22 to users ADAMSON and
BROWN with grant option.

GRANT EXECUTE ON PLAN OSN8CP22 TO ADAMSON,BROWN WITH GRANT OPTION;

198 082 SQL Reference

GRANT

GRANT (SYSTEM PRIVILEGES)
This form of the GRANT statement grants system privileges.

' BINDAD 1----.

BSDS---­
CREATEALIAS
CREATEDBA
CREATEDBC
CREATESG

.,._GRANT-- DISPLAY---+-...___ ____________________ __..,.

ONITORl
ONITOR2

RECOVER--­
STOPALL----1
STOSPACE
SYSADm-----1
SYSOPR--­
TRACE--___,

.,._TO--L-authorization-name
PUBLIC------' t==WITH GRANT OPTION==1

....

Description
BIN DADD

Grants the privilege to create application plans by using the BIND
subcommand with the ADD option.

BSDS
Grants the privilege to issue the -RECOVER BSDS command.

CREATEALIAS
Grants the privilege to use the CREATE ALIAS statement.

CREATEDBA
Grants the privilege to create new databases and acquire DBADM authority
over those databases.

CREATEDBC
Grants the privilege to create new databases and acquire DBCTRL authority
over those databases.

CREATESG
Grants the privilege to create new storage groups.

DISPLAY
Grants the privilege to do the following:

• Use the -DISPLAY THREAD command for information o·n active threads
within DB2

• Use the -DISPLAY DATABASE command for the status of all databases.
• Use the -DISPLAY LOCATION and -DISPLAY TRACE commands.

Chapter 6. Statements 199 ·

GRANT

Examples

MONITOR1
Grants the privilege to obtain IFC data classified as serviceability data,
statistics, accounting, and other performance data that does not contain
potentially secure data.

MONITOR2
Grants the privilege to obtain IFC data classified as containing potentially
sensitive data such as SQL statement text and audit data. (Having MONITOR2
privilege also includes having MONITOR1 privileges.)

RECOVER
Grants the privilege to issue the -RECOVER INDOUBT command.

STOP ALL
Grants the privilege to issue the -STOP 082 command.

STOSPACE
Grants the privilege to use the STOSPACE utility.

SVSADM

Grants all 082 privileges except for a few reserved for Install SYSADM
authority. The privileges the user possesses are all grantable, including the
SYSADM authority itself. The privlieges the user lacks restrict what the user
can do with the directory and the catalog. Using WITH GRANT OPTION when
granting SYSADM is redundant but valid. For more on SYSADM authority, see
Section 5 (Volume 2) of Administration Guide.

SVSOPR
Grants the privilege to have system operator authority.

TRACE

TO

Grants the privilege to issue the -MODIFY TRACE, -START TRACE, and -STOP
TRACE commands.

Refer to "GRANT" on page 194 for a description of the TO clause.

WITH GRANT OPTION
If you grant the SYSADM system privilege, WITH GRANT OPTION is valid but
unnecessciry. It is unnecessary because whoever is granted SYSADM
authority has that authority, and all the privileges it implies, with the GRANT

·option.

Example 1: Grant DISPLAY privileges to user LUTZ.

GRANT DISPLAY
TO LUTZ;

Example 2: Grant BSDS and RECOVER privileges to users PARKER and
SETRIGHT, WITH GRANT OPTION.

GRANT BSDS,RECOVER
TO PARKER,SETRIGHT
WITH GRANT OPTION;

Example 3: Grant TRACE privileges to all local users.

GRANT TRACE
TO PUBLIC;

200 082 SOL Refere.nce

GRANT

GRANT (TABLE or VIEW PRIVILEGES)
This form of the GRANT statement grants privileges on table and views.

~RANT ALL------...--------~------------

PRIVILEGES

'----.--ALTER----------.,........__,
DELETE--------­
INDEX---------­
INSERT----------4
SELECT--------­
UPDATE----------4

r-·=i
UPDATE-(--col umn-name)

~N LTABLE~ Lt~ble-nam.:::=J
v1ew-name

i
.,_____Ttauthorization-name =J

PUBLIC
PUBLIC AT ALL LOCATIONS

LwITH GRANT OPTION~
...

Description
ALL or ALL PRIVILEGES

Grants all table or view privileges for which you have GRANT authority, for the
table or view named in the ON clause. Does not include ALTER or INDEX for a
grant to PUBLIC AT ALL LOCATIONS.

If you do not use ALL, you must use one or more of the keywords in the
following list. For each keyword that you use, you must have GRANT authority
for that privilege on every table or view identified in the ON clause.

ALTER
Grants the privilege to use the ALTER TABLE statement. ALTER cannot be
granted to PUBLIC AT ALL LOCATIONS. It cannot be used if the $tatement
identifies a view.

DELETE
Grants the privilege to use the DELETE statement.

INDEX
Grants the privilege to use the CREATE INDEX statement. INDEX cannot be
granted to PUBLIC AT ALL LOCATIONS. Nor can it be used if the statement
identifies a view.

INSERT
Grants the privilege to use the INSERT statement.

Chapter 6. Statements 201

GRANT

Examples

SELECT
Grants the privilege to use the SELECT statement.

UPDATE
Grants the privilege to use the UPDATE statement.

UPDATE (column-name)
Grants the privilege to use the UPDATE statement to update only the columns
named. Each column-name must be the unqualified name of a column of every
table or view identified in the ON clause. The UPDATE privilege on a column
cannot be granted with the GRANT option. If UPDATE column-name and WITH
GRANT OPTION are used together, the statement is executed, but a warning is
issued and the UPDATE privilege on the columns is granted without GRANT
authority.

ON or ON TABLE

TO

Names the tables or views on which you are granting the privileges. The list
may be a list of table names or view names, or a combination of the two.

If you use GRANT ALL, then for each named table or view, the current SOL
authorization ID must have at least one privilege with the GRANT option.

Refer to "GRANT" on page 194 for a description of the TO clause.'

Example 1: Grant SELECT privileges on table DSN8220.EMP to user PULASKI.

GRANT SELECT
ON DSN8220.EMP
TO PULASKI

Example 2: Grant UPDATE privileges on columns EMPNO and WORKDEPT in
table DSN8220.EMP to all local users.

GRANT UPDATE (EMPNO,WORKDEPT)
ON TABLE DSN8220.EMP
TO PUBLIC

Example 3: Grant all privileges on table DSN8220.EMP to users KWAN and
THOMPSON, WITH GRANT OPTION.

GRANT ALL
ON TABLE DSN8220.EMP
TO KWAN,THOMPSON
WITH GRANT OPTION;

Example 4: Grant the SELECT and UPDATE privileges on the table
JONES.DSNNETUSE to every user in the network.

GRANT SELECT, UPDATE
ON TABLE JONES.DSNNETUSE
TO PUBLIC AT ALL LOCATIONS

Please note that even with this grant, some network users may have no access to
the table at all, or to any other object at the table's subsystem. Controlling access
to the subsystem involves the communications databases at the subsystems in the
network. Communications databases are described in Appendix D, "The
Communications Database" on page 295. Controlling access is described in
Section 5 (Volume 2) of Administration Guide.

202 082 SOL Reference

GRANT

GRANT (USE PRIVILEGES)

.+--GRANT USE OF

This form of the GRANT statement grants authority to use particular buffer pools,
storage groups, or table spaces.

~
BUFFERPOOL BP2· _ _.,.__._ _________ _

BP32K

i
STOGROUP--stogroup-name-------------1-----~

i
TABLESPACE----r----------...-tab l es pace-name

Ldatabase-name._J

..._ TO--L-authori zat ion-name
PUBLIC------' ~WITH GRANT OPTIONm=J

....

Description
You can grant privileges for only one type of object with each statement. Thus, you
can grant the use of several table spaces with one statement, but not the use of a
table space and a storage group. For each object you name, you must have the
USE privilege with GRANT authority.

BUFFERPOOL BPn
Grants the USE privilege on one or more buffer pools. The USE privilege for a
buffer pool allows a user to name that buffer pool in a CREATE INDEX,
CREATE TABLESPACE, ALTER INDEX, or ALTER TABLESPACE statement.

STOGROUP stogroup-name
Grants the USE privilege on one or more storage groups. The USE privilege
for a storage group allows a user to name that storage group in a CREATE
INDEX, CREATE TABLESPACE, ALTER INDEX, or ALTER TABLESPACE
statement.

TABLESPACE database-name.tablespace-name

TO

Grants the USE privilege on one or more table spaces. The USE privilege for a
table space allows a user to name that table space in a CREATE TABLE
statement. The default for database-name is DSNDB04.

Refer to "GRANT" on page 194 for a description of the TO clause.

Chapter 6. Statements 203

GRANT

Examples
Example 1: Grant authority to use buffer pools BP1 and BP2 to user MARINO.

GRANT USE OF BUFFERPOOL BP1,BP2
TO MARINO;

Example 2: Grant to all local users the authority to use table space DSN8S22D in
database DSN8D22A.

GRANT USE OF TABLESPACE
DSN8D22A.DSN8S22D
TO PUBLIC;

204 082' SQJ_ Reference

INCLUDE

Invocation

Authorization

INCLUDE

The INCLUDE statement inserts declarations or code into a source program.

This statement can only be embedded in an application program. It is not an
executable statement.

None required.

-EQLCA ~ 11+----INCLUDE QLDA~~~-1--~~~~~~~~~~~~~~~~~~~~~~~~~4

ember-nam

Description

Notes

SQLCA
Indicates the description of an SQL Communication Area (SQLCA) is to be
included. INCLUDE SQLCA must not be specified more than once in the same
program. For a description of the SQLCA, see "SQL Communication Area
(SQLCA)" on page 249.

In COBOL, INCLUDE SQLCA must be specified in the WORKING STORAGE
section.

SQLDA
Indicates the description of an SQL Descriptor Area (SQLDA) is to be included.
It must not be specified in a FORTRAN or COBOL program. For a description
of the SQLDA, see "SQL Descriptor Area (SQLDA)" on page 252.

member-name
Names a member of the partitioned data set to be the library input when your
program is precompiled. It must be a short, ordinary identifier.

The member may contain any host language source statements and any SQL
statements other than an INCLUDE statement. In COBOL, INCLUDE
member-name must not be specified in other than the Data Division or the
Procedure Division.

When your program is precompiled, the INCLUDE statement is replaced by source
statements. Thus the INCLUDE statement should be specified at a point in your
program such that the resulting source statements are acceptable' to the compiler.

The INCLUDE statement cannot refer to source statements that themselves contain
INCLUDE statements.

The declarations that are generated by DCLGEN can be used in an application
program by specifying the same member in the INCLUDE statement as in the
DCLGEN LIBRARY parameter.

Chapter 6. Statements 205

INCLUDE

Example
Include an SQLCA in a program:

EXEC SQL INCLUDE SQLCA;

206 082 SQL Reference

INSERT

Invocation

Authorization

INSERT

The INSERT statement inserts rows into a local or remote table or view. Inserting
a row into a view inserts the row into the table on which the view is based.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authority requirements depend on whether or not a view is used for the insertion:

If a view is not used, the privilege set defined below must include at least one of
the following:

• The INSERT privilege on the table
• Ownership of the table
• DBADM authority on the database containing the table
• SYSADM authority.

If a view is used, the privilege set must contain at least one of the following:

• The INSERT privilege on the view
• SYSADM authority.

Note that the owner of a view, unlike the owner of a table, might not have INSERT
authority on the view (or may have INSERT authority without being able to grant it
to others). Indeed, the nature of the view itself may preclude its use for INSERT.
For more on all this, see the discussion of authority under "CREATE VIEW" on
page 161.

Note also that if a subselect is specified, the privilege set must include authority to
execute the subselect. This implies that the privilege set must also include the
SELECT privilege on every table and view identified in the subselect. The privilege
may have been explicitly granted or may be inherent in another privilege. The
SELECT privilege on a table or view is inherent in SYSADM authority and
ownership of the table or view. The SELECT privilege on a table is also inherent in
DBADM authority for its database.

For local execution of the statement: If the statement is embedded in a program,
the privilege set is the privileges designated by the authorization ID of the owner of
the plan. If the statement is dynamically prepared, the privilege set is the union of
the privileges designated by each authorization ID of the process.

For remote execution of the statement: The privilege set consists of all those
privileges recorded in the remote subsystem's catalog for a certain authorization
ID. For a statement embedded in a program, this authorization ID is derived from
the one that owns the plan. For a dynamically prepared statement, it is derived
from the primary authorization ID of the process. The derived authorization ID
may, of course, be equal to the original.

The derivation, known as "translation," is described in Section 5 (Volume 2) of
Administration Guide. Controlling the procedure are the SYSIBM.SYSUSERNAMES
tables·in the local and remote communication databases. For a description of
commmunication databases, see Appendix D, "The Communications Database" on
page 295.

Chapter 6. Statements 207

INSERT

.,.____INSERT INT~t~ble-nam=--i

[_c::iJ
•

view-name

i ' l
~VALUES~(~constant) _.._

-..-

host-vari abl c-

NULL
special-registe

subselect

Description
INTO table-name or view-name

Names the table or view into which an insertion is to be made. The table or
view must be described in the catalog of the OB2 subsystem identified by the
implicitly or explicitly specified location-name. But it must not be a catalog·
table or any of the following types of view:

• A read-only view (for a description, see "CREATE VIEW" on page 161)

• A view of a catalog table

• A view with a column that is derived from a constant, function, or
expression

• A view with two columns derived from the same column of the underlying
table.

The referenced table or view can be remote. But it must be local if the process
is attached to OB2 through the CICS or IMS/VS attachment facilities.

column-name
Lists the names of one or more columns for which you provide insert values.
You may name the columns in any order. Each must belong to the table or
view named, and you may not name the same column more than once. The
column names must not be qualified.

If you omit the column list, you are implicitly using a list of all the columns in
the order they exist in the table or view.

The implicit column list is established at bind time. Hence an INSERT
statement embedded in an application program does not use any columns that
might have been added to the table or view after bind time.

VALUES
Introduces one row of values to be inserted. The values of the row are the
values.of the keywords, constants, or host variables specified in the clause.
NULL specifies the null value.

Each host variable you name must be a structure or variable that is described
in your program in accordance with the rules for declaring host structures and
variables. In the operational form of the statement, a reference to a structure
has been replaced by a reference to each of its variables.

208 082 SQL Reference

Insert Rules

INSERT

The number of values in the VALUES clause must equal the number of names
in the column list. The first value is inserted in the first column in the list, the
second value in the second column, and so on.

For an explanation of constant and host-variable, see Chapter 3. For a
description of special-register, see "Special Registers" on page 41.

subselect
Inserts the rows of the result table of a subselect. There may be one, more
than one, or none. If there is none, SQLCODE is set to + 100.

(For an explanation of subselect, see Chapter 5, "Queries" on page 83.)

The base object of the INSERT, and the base object of the subselect, or any
subquery of the subselect, must not be the same table.

The number of columns in the result table must equal the number of names in
the column list. The value of the first column of the result is inserted in the first
column in the list, the second value in the second column, and so on.

If an INSERT statement has a subselect and the object table is self-referencing,
the subselect must not return more than one row.

Insert values must satisfy the following rules. If they do not, or if any other errors
occur during the execution of the INSERT statement, no rows are inserted.

• Default values: The value inserted in any column that is not in the column list
is the default value of the column. Columns without a default value must be
included in the column list. Similarly, if you insert into a view, the default
value is inserted into any column of the base table that is not included in the
view. Hence all columns of the base table that are not in the view must have
default values.

• Length: If the insert value of a column is a number, the column must be a
numeric column with the capacity to represent the integral part of the number.
If the insert value of a column is a string, the column must either be a string
column with a length attribute at least as great as the length of the string, or a
date/time column if the string represents a date, time, or timestamp.

• Assignment: Insert values are assigned to columns in accordance with the
assignment rules described in Chapter 3.

• Validity: If the table named, or the base table of the view named, has one or
more unique indexes, each row inserted into the table must conform to the
constraints imposed by those indexes. If either table has a field or validation
procedure, each row inserted must conform to the constraints imposed by
those procedures.

If you name a view whose definition includes WITH CHECK OPTION, each row
inserted into the view must conform to the definition of the view. If the view
you name is dependent on other views whose definitions include WITH CHECK
OPTION, the inserted rows must also conform to the definitions of those views.
For an explanation of the rules governing this situation, see "CREATE VIEW"
on page 161.

• Referential Integrity: Each non-null insert value of a foreign key must be equal
to some value of the primary key of the parent table in the relationship.

Chapter 6. Statements 209

INSERT

Notes

Examples

If you name a view whose definition does not include WITH CHECK OPTION, rows
can be inserted that do not conform to the definition of the view. Those rows
cannot appear in the view but are inserted into the base table of the view.

After execution of an INSERT statement that is embedded within a program, the
value of the third variable of the SQLERRD portion of the SQLCA indicates the
number of rows that were inserted.

Unless appropriate locks already exist, one or more exclusive locks are acquired
at the execution of a successful INSERT statement. Until the locks are released, an
inserted row can only be accessed by the application process that performed the
insert.

Example 1: Insert values into table DSN8220.EMP.

INSERT INTO DSN8220.EMP
VALUES (1 000205 1

,
1 MARY 1

,
1T1

,
1 SMITH 1

,
1 011 1

,
1 2866 1

,

108-10-1981',42,16, 1 F1
,

105-22-1956 1 ,16345)

Example 2: Load the temporary table SMITH.TEMPEMPL with data from table
DSN8220.EMP.

INSERT INTO SMITH.TEMPEMPL
SELECT *
FROM DSN8220.EMP

Example 3: Load the temporary table SMITH.TEMPEMPL with data from
Department 011 from DSN8220.EMP.

INSERT INTO SMITH.TEMPEMPL
SELECT *
FROM DSN8220.EMP
WHERE WORKDEPT= 1 Dll 1

210 082 SOL Reference

LABEL ON

Invocation

Authorization

LABEL ON

The LABEL ON statement adds or replaces labels in the local catalog descriptions
of tables, views, aliases, or columns.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

The privilege set defined below must include at least one of the following:

• Ownership of the table, view, or alias
• DBADM authority for its database (for tables only)
• SYSADM authority.

If the statement is embedded in a program, the privilege set is the privileges
designated by the authorization ID of the owner of the plan. If the statement is
dynamically prepared, the privilege set is the union of the privileges designated by
each authorization ID of the process.

TABLELt~ble-name IS-string-constant
view-name

ALIAS-alias-name--------
COLUMN----r--tab le-name. column-name

L-view-name.column-name

Description

t~ble-nam::::::r--(__!__column-name--IS~string-constant~)
view-name

TABLE
Indicates that the label is for a table or a view.

table-name or view-name
Must identify a table or view described in the local catalog. The label is
placed into the LABEL column of the SYSIBM.SYSTABLES catalog table for
the row that describes the table or view.

ALIAS
Indicates that the label is for an alias.

alias-name
Must identify an alias described in the local catalog. The label is placed in
the LABEL column of the SYSIBM.SYSTABLES catalog table for the row
that describes the alias.

COLUMN
Indicates that the label is for a column.

Chapter 6. Statements 211

LABEL ON

Examples

\

IS

table-name.column-name or view-name.column-name
Is the name of the column, qualified by the name of the table or view in
which it appears. The column named must be described in the local
catalog. The label is placed in the LABEL column of the
SYSIBM.SYSCOLUMNS catalog table in the row that describes the column.

To define a label for more than one column in a table or view, do not use
TABLE or COLUMN. Give the table or view name and then, in parentheses, a
list of this form:

column-name IS string-constant,
column-name IS string-constant,

The column names must not be qualified, each name must identify a column of
the specified table or view, and that table or view must be described in the
catalog.

Introduces the label you want to provide.

string-constant
Can be any SQL character string constant of up to 30 bytes in length.

Example 1: Enter a label on the DEPTNO column of table DSN8220.DEPT.

LABEL ON COLUMN DSN8220.DEPT.DEPTNO
IS 'DEPARTMENT NUMBER 1

Example 2: Enter labels on two columns in table DSN8220.DEPT.

LABEL ON DSN8220.DEPT
(MGRNO IS 1 MANAGER 11 S EMPLOYEE NUMBER',

ADMRDEPT IS 'ADMINISTERING DEPARTMENT')

212 082 SOL Reference

LOCK TABLE

Invocation

A1Jthorization

LOCK TABLE

The LOCK TABLE statement acquires a shared or exclusive lock on a local table or
tablespace. The lock is not acquired if the process already holds an appropriate
lock.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

The privilege set defined below must include at least one of the following:

• The SELECT privilege on the identified table
• Ownership of the table
• DBADM authority for the database
• SYSADM authority.

If the statement is embedded in a program, the privilege set is the privileges
designated by the authorization ID of the owner of the plan. If the statement is
dynamically prepared, the privilege set is the union of the privileges designated by
each authorization ID of the process.

11+--LOCK TABLE-tabl e-name--IN-r-SHARE--_J-r----MMODE------------......
LEXCLUSIVE

Description
table-name

Names the table to be locked. The table must be a base table described in the
catalog, but not a catalog table. The object named must be a table, not a view.
The table must be local.

IN SHARE MODE
Acquires a shared lock for the application process. Until the lock is released, it
prevents concurrent processes from executing insert, update, or delete
operations on the table.

IN EXCLUSIVE MODE
Acquires an exclusive lock for the application process. Until the lock is
released, it prevents concurrent processes from executing any operations on
the table.

If the table is contained in an unsegmented table space, all tables in the table
space are locked. If the table is contained in a segmented table space, only the
identified table is locked.

The lock is acquired when the LOCK TABLE statement is executed. If the program
contains embedded SQL statements (other than LOCK TABLE) that reference any
table in the table space, and the plan was bound with RELEASE(DEALLOCATE),

Chapter 6. Statements . 213

LOCK TABLE

Example

the lock is not released until the process terminates.7 In all other cases the lock is
released by the next commit or rollback operation. If LOCK TABLE is executed
using SPUFI, the lock is released by the next implicit or explicit commit or rollback
operation. Thus LOCK TABLE should not be used if the SPUFI autocommit option
is in effect.

Obtain a lock on the table space containing table DSN8220.EMP. Do not allow
other programs either to read or update the table.

LOCK TABLE DSN8220.EMP IN EXCLUSIVE MODE

1 However, if the plan is bound with RELEASE(DEALLOCATE) and ACQUIRE(USE), and if none of the other
embedded SOL statements is executed, the lock is released by the next commit or rollback operation.

214 082 SQL Reference

OPEN

Invocation

Authorization

OPEN

The OPEN statement opens a cursor so that it can be used to fetch rows from its
result table.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

See "DECLARE CURSOR" on page 165 for the authorization required to use a
cursor .

..,.___OPEN~-cursor-name,~~~~~~~~~~~~~~~~--.-~~~~~~~~~~ ~•

~USING~i host-v:riable \ d

Description

USING DESCRIPTOR~descriptor-name

cursor-name
Identifies the cursor to be opened. The cursor-name must identify a declared
cursor as explained in the Notes for the DECLARE CURSOR statement. When
the OPEN statement is executed, the cursor must be in the closed state.

The SELECT statement associated with the cursor is either:

• The select-statement specified in the DECLARE CURSOR statement, or

• The prepared select-statement identified by the statement-name specified
in the DECLARE CURSOR statement. If the identified SELECT statement
has not been successfully prepared, the cursor cannot be successfully
opened.

The result table of the cursor is derived by evaluating the SELECT statement.
The evaluation uses the current values of any special registers specified in the
SELECT statement and the current values of any host variables specified in the
SELECT statement or the USING clause of the OPEN statement. The rows of
the result table may be derived during the execution of the OPEN statement,
and a temporary table created to hold them; or they may be derived during the
execution of subsequent FETCH statements. In either case, the cursor is
placed in the open state and positioned before the first row of its result table.
If the table is empty the state of the cursor is effectively "after the last row". A
value of 100 for SQLCODE (empty result table) is returned on the first fetch
rather than the open.

USING
Introduces a list of host variables whose values are substituted for the
parameter markers (question marks) of a prepared statement. (For an
explanation of parameter markers, see "PREPARE" on page 218.) If the
DECLARE CURSOR statement names a prepared statement that includes­
parameter markers, you must use USING. If the prepared statement does not
include parameter markers, USING is ignored.

Chapter 6. Statements 215

OPEN

host-variable
Identifies a structure or variable that is described in the program in
accordance with the rules for declaring host structures and variables.
When the statement is executed, a reference to a structure has been
replaced by a reference to each of its variables. The number of variables
must be the same as the number of parameter markers in the prepared
statement. The nth variable corresponds to the nth parameter marker in
the prepared statement.

DESCRIPTOR descriptor-name
Identifies an SQLDA that contains a valid description of host variables.
The number of variables, as indicated by SOLD, must be the same as the
number of parameter markers in the prepared statement and the length of
the SQLDA, as indicated by SQLDABC, must be sufficient to describe that
number of variables. The nth variable described by the SQLDA
corresponds to the nth parameter marker in the prepared statement. (For
a description of an SQLDA, see Appendix B, "SQLCA and SQLDA" on
page 249.) When the host application is written in C, descriptor-name
must be a pointer variable with pointer notation (for example, *sqlptr).

When the SELECT statement of the cursor is evaluated, each parameter marker is
effectively replaced by the value of its corresponding host variable. The following
rules apply to these parameter values:

• If the parameter marker appears as the operand of a unary minus, the
parameter value must be a number. If it is not a double precision floating
number, it is converted to double precision floating point before the operation
is performed.

• If the parameter marker appears as the operand of an infix operator, the
parameter value must be a number. If the data type, precision, and scale of
the parameter value is not the same as the data type, precision, and scale of
the other operand of the arithmetic operator, the parameter value is converted
to the data type, precision, and scale of that operand before the operation is
performed.

• If the parameter marker appears in a predicate, the parameter value must be
compatible with the other operand of that predicate. If the parameter value is a
string, it must not be longer than the other operand. If the parameter value is a
number that does not have the same data type, precision, and scale as the
other operand, the parameter value is converted to the data type, precision,
and scale of that operand before the operation is performed. In the case of the
BETWEEN predicate, the 'other operand' is the first operand that is specified
solely as a column-name. If no operand of BETWEEN is specified solely as a
column-name, the 'other operand' is the closest operand (in left to right order)
that is not specified with a parameter marker. In the case of the IN predicate,
the 'other operand' is the closest operand (in left to right'order) that is not
specified with a parameter marker.

The USING clause is intended for a prepared SELECT statement that contains
parameter markers. However, it can also be used when the SELECT statement of
the cursor is part of the DECLARE CURSOR statement. In this case the OPEN
statement is executed as if each host variable in the SELECT statement were a
parameter marker. Thus the effect is to override the host variables in the SELECT
statement of the cursor with the host variables specified in the USING clause.

-216 082 SQL Reference

Notes

Example

OPEN

Closed state of cursors: All cursors in a program are in the closed state when:

• The program is initiated
• A new unit of recovery is initiated for the process in which the program

executes.

A cursor can also be in the closed state because:

• A CLOSE statement was executed.
• An error was detected that made the position of the cursor unpredictable.

To retrieve rows from the result table of a cursor, you must execute a FETCH
statement when the cursor is open. The only way to change the state of a cursor
from closed to open is to execute an OPEN statement.

Effect of temporary tables: If the result table of a cursor is not read-only, its rows
are derived during the execution of subsequent FETCH statements. The same
method may be used for a read-only result table. However, if a result table is
read-only, DB2 may choose to use the temporary table method instead. With this
method the entire result table is transferred to a temporary database during the
execution of the OPEN statement. When a temporary table is used, the results of a
program can differ in these two ways:

• An error can occur during OPEN that would otherwise not occur until some
later FETCH statement.

• INSERT, UPDATE, and DELETE statements executed while the cursor is open
cannot affect the result table.

Conversely, if a temporary table is not used, INSERT, UPDATE, and DELETE
statements executed while the cursor is open can affect the result table if issued
from the same program. Section 4 of Application Programming and SQL Guide
describes how locking can be used to control the effect of INSERT, UPDATE, and
DELETE operations executed by concurrent units of work. Your result table can
also be affected by operations executed by your own unit of recovery, and the
effect of such operations is not always predictable. For example, if cursor C is
positioned on a row of its result table defined as SELECT* FROM T, and you insert
a row into T, the effect of that insert on the result table is not predictable because
its rows are not ordered. Thus a subsequent FETCH C may or may not retrieve the
new row of T.

The OPEN statement places the cursor at the beginning of the rows to be fetched.

EXEC SQL DECLARE Cl CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO FROM DSN8220.DEPT
WHERE ADMRDEPT = 'A00';

EXEC SQL OPEN Cl;

DO WHILE (SQLCODE = 0);
EXEC SQL FETCH Cl INTO :DNUM, :DNAME, :MNUM;

END;

EXEC SQL CLOSE Cl;

Chapter 6. Statements 217

PREPARE

PREPARE

Invocation

Authorization

The PREPARE statement is used by application programs to dynamically prepare
an SOL statement for execution. The PREPARE statement creates an executable
SOL statement, called a prepared statement, from a character string form of the
statement, called a statement string. The prepared statement is a named object
that can be referred to only within the unit of recovery in which it is created.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

The authorization rules are those defined for the dynamic preparation of the SQL
statement specified by the PREPARE statement. For example, see Chapter 5,
"Queries" on page 83 for the authorization rules that apply when a SELECT
statement is prepared.

11+-PREPARE-statement-name-.-----------------------.-----
INTO-descriptor-name-.------------.-___.

-f
NAMES

USING LABELS
ANY
BOTH

~FROM--,--string-expression

Lhost-variable----"

Description
statement-name

Names the prepared statement. If the name identifies an existing prepared
statement, that prepared statement is destroyed. The name must not identify a
prepared statement that is the SELECT statement of an open cursor.

INTO
If you use INTO, and the PREPARE statement is successfully executed,
information about the prepared statement is placed in the SQLDA specified by
the descriptor-name. Thus the PREPARE statement:

EXEC SQL PREPARE Sl INTO SQLDA FROM Vl;

is equivalent to:

EXEC SQL PREPARE Sl FROM Vl;
EXEC SQL DESCRIBE Sl INTO SQLDA;

See "DESCRIBE" on page 176 for an explanation of the information that is
placed in the SQLDA.

descriptor-name
Is SQLDA or the name of an SQLDA. When the host application is written
in C, descriptor-name must be a pointer variable with pointer notation (for
example, *sqlptr).

218 082 SQL Reference

Notes

PREPARE

USING

FROM

Indicates what value to assign to each SQLNAME variable in the SQLDA
when INTO is used. If the requested value does not exist, SQLNAME is set
to length 0.

NAMES
Assigns the name of the column. This is the default.

LABELS
Assigns the label of the column. (Column labels are defined by the
LABEL ON statement.)

ANY
Assigns the column label, and, if the colµmn has no label, the column
name.

BOTH
Assigns both the label and name of the column. In this case, two
occurrences of SQLVAR per column will be needed to accommodate
the additional information. To specify this expansion of the SQLVAR
array, set SQLN to 2*n on the PREPARE statement (where n is the
number of columns in the result table). Then, on any later FETCH
statement, set SQLN ton. The first n occurrences of SQLVAR for each
of the columns in the result table contain the column names. The
second n occurrences contain the column labels.

Introduces the statement string. The statement string is the value of the
specified string-expression or the identified host-variable.

string-expression
Is any PL/I expression that yields a character string. In all other host
languages you must use host variable.

host-variable
Must identify a host variable that is described in the program in
accordance with the rules for declaring character string variables. In C,
COBOL and Assembler language, the host variable must be a
varying-length string variable.

Rules for statement strings: The statement string must be one of the following
SQL statements: ALTER, COMMENT ON, COMMIT, CREATE, DELETE, DROP,
EXPLAIN, GRANT, INSERT, LABEL ON, LOCK TABLE, REVOKE, ROLLBACK, SET,
UPDATE, or a select-statement.

The statement string must not:

• Begin with EXEC SQL and end with a statement terminator
• Include references to host variables
• Include comments.

Parameter markers: Although a statement string cannot include references to host
variables, it may include parameter markers; those can be replaced by the values
of host variables when the prepared statement is executed. A parameter marker is
a question mark (?) that appears where a host variable could ·appear if the
statement string were a static SQL statement. For an explanation of how
parameter markers are replaced by values, see "OPEN" on page 215 and
"EXECUTE" on page 184.

Chapter 6. Statements 219

PREPARE

Example

Rules for parameter markers:

• Parameter markers must not appear:

In a select list (SELECT ? is invalid)

As an operand of the concatenation operator

As both operands of a single arithmetic or comparison operator (WHERE?
= ? is invalid)

As an operand in a date/time arithmetic expression

In a SET statement

• At least one of the operands of the BETWEEN or IN predicates must not be a
parameter marker.

• An argument of a scalar function cannot be specified solely as a parameter
marker. However, if a scalar function is used in other than a SELECT list, and
it has an argument that can be specified as an arithmetic expression, a
parameter marker can be included in that expression, provided that it is the
operand of an arithmetic operator and that the other operand is a number.

• In other than a SELECT list, a parameter marker may be the operand of a
unary minus. For example, WHERE C = -? .

When a PREPARE statement is executed, the statement string is parsed and
checked for errors. If the statement string is invalid, a prepared statement is not
created and the error condition that prevents its creation is reported in the SQLCA.

Prepared statements can be referred to in the following kinds of statements, with
the restrictions shown:

In •••
DESCRIBE
DECLARE CURSOR
EXECUTE

The prepared statement •••
has no restrictions
must be SELECT
must not be SELECT

A prepared statement can be executed many times. Indeed, if a prepared
statement is not executed more than once and does not contain parameter
markers, it is more efficient to use the EXECUTE IMMEDIATE statement rather than
the PREPARE and EXECUTE statements.

All prepared statements created by a unit Qf recovery are destroyed when the unit
of recovery is terminated.

In this example an INSERT statement with parameter markers is prepared and
executed. S1 is a structure that corresponds to the format of DSN8220.DEPT.

EXEC SQL PREPARE DEPT INSERT FROM
'INSERT INTO DSN8220.DEPT VALUES(?,?,?,?) 1

;

(Check for successful execution and read values into Sl)

EXEC SQL EXECUTE DEPT_INSERT USING Sl;

220 082 SQL Reference

REVOKE

Invocation

Authorization

REVOKE

The REVOKE statement revokes privileges from authorization IDs. There is a
separate form of the statement for each of these classes of privilege:

• Database
• Plan
• System
• Table
• Use.

The applicable objects are always local.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. If the
authorization mechanism was not activated when the DB2 subsystem was
installed, an error condition occurs.

If the BY clause is not specified, the privilege set defined below must have been
used to grant at least one of the specified privileges to every authorization-name
specified in the FROM clause (including PUBLIC, if specified). If the BY clause is
specified, the privilege set must include SYSADM authority.

If the statement is embedded in a program, the privilege set is the privileges
designated by the authorization ID of the owner of the plan. If the statement is
dynamically prepared, the privilege set is the privileges designated by the SQL
authorization ID of the process .

..-REVOKE--authori zati on-speci fi cation1

+ .,._____FROtauthorization-nam
PUBLIC-·------­
PUBLIC AT ALL LOCATIONS +

Description

ev---.L_--authorization-nam
ALL---------'

authorization-specification
Names one or more privileges, in one of the formats described on the following
pages. The same privilege must not be specified more than once.

FROM
Specifies from whom the privileges are revoked.

authorization-name
Lists one or more authorization IDs. Do not use the same authorization ID
more than once.

You cannot use the ID of the REVOKE statement itself. (You cannot revoke
privileges from yourself.)

Chapter 6. Statements 221

REVOKE

Notes

BY

PUBLIC
Revokes a grant of privileges to PUBLIC.

PUBLIC AT ALL LOCATIONS
Revokes a grant of privileges to PUBLIC ALL AT LOCATIONS.

Lists others (grantors) who have granted privileges. REVOKE with BY revokes
each named privilege that was explicitly granted to some named user by one
of the named grantors. Only an authorization ID with SYSADM authority can
use BY, even if the authorization ID names only itself in the BY clause.

If you omit BY, you must have granted each designated privilege to each of the
designated users. More precisely, each privilege must have been granted to
each user by a GRANT statement whose authorization ID is also the
authorization ID of your REVOKE statement. Each of these grants is then
revoked.

authorization-name

ALL

Lists one or more authorization IDs of users who were the grantors of the
privileges named. Do not use the same authorization ID more than once.
Each grantor listed must have explicitly granted some named privilege to
all named users.

Revokes each named privilege from all named users who were explicitly
granted the privilege, regardless of who granted it.

Cascade Revoke: Revoking a privilege from a user may also cause that privilege
to be revoked from other users. When Steve revokes privilege P from Randy,
privilege P' is revoked from Claire if P' is exclusively dependent on Steve. P' is
exclusively dependent on P if all of the following are true:

• P and P 1 are the same privilege.

• Randy granted that privilege to Claire.

• The grant could not have been made if Steve had not granted the privilege to
Randy.

• Randy does not have install SYSADM authority.

Thus, when Steve revokes the privilege from Randy, that privilege is not revoked
from Claire if, atthe time that Randy granted it to Claire, Randy also held that
privilege with the GRANT option from some other source, or had install SYSADM
authority.

If the privilege is revoked from Claire the above rules apply, in turn, to grants that
were made by Claire to any other users. The rules·also apply to the implicit grants
that are made as a result of a CREATE VIEW statement.

See Section 4 of System and Database Administration Guide for another example
that describes cascading revokes.

Revoking a SELECT or SYSADM privilege that was exercised to create a view
causes the view to be dropped. Revoking any privilege that was exercised to
create a plan invalidates the plan.

222 082 SOL Reference

Multiple grants: If you granted the same privilege to the same user more than
once, revoking that privilege from that user nullifies all those grants. It does not
nullify any grant of that privilege made by others.

Privileges belonging to an authority: You can revoke an administrative authority,
but you cannot separately revoke the specific privileges inherent in that
administrative authority.

Chapter 6. Statements 223

I
I

REVOKE

REVOKE (DAT ABASE PRIVll-l;GES)
This form of the REVOKE statement revokes database privileges.

DBAD--­
DBCTRL
DBMAINT
CREATETAB
CREATETS
DISPLAYDB f
DROP---t •

~REVOKE---IMAGCOPY--+--'--QN DATABASE--database-name-----------11
LOAD---t
RECOVERDB
REORG,------1
REPAIR
STARTDB
STATS------1
STOPDB

111----FRmm-4--L.---.authori zat ion-name
PUBLIC--------"

Description

BY 1 authorization-nam
L--ALL--------~

Each keyword listed revokes the privilege described, but only as it applies to or
within the databases named in the statement. The same keyword must not be
specified more than once.

DBADM
Revokes the database administrator authority.

DBCTRL
Revokes the database control authority.

DB MAI NT
Revokes the database maintenance authority.

CREATETAB
Revokes the privilege to create new tables.

CREATETS
Revokes the privilege to create new table spaces.

DISPLAYDB
Revokes the privilege to issue the -DISPLAY DATABASE command.

DROP
Revokes the privilege to drop the specified databases.

224 082 SOL Reference

Examples

REVOKE

IMAGCOPY
Revokes the privilege to run the COPY, MERGECOPY, and QUIESCE utilities
against table spaces of the specified databases, and to run the MODIFY utility
to delete records from the SYSIBM.SYSCOPY catalog table and the
SYSIBM.SYSGRNG directory table.

LOAD
Revokes the privilege to use the LOAD utility to load tables.

RECOVERDB
Revokes the privilege to use the RECOVER and REPORT utilities to recover
table spaces and indexes.

REORG
Revokes the privilege to use the REORG utility to reorganize table spaces and
indexes.

REPAIR
Revokes the privilege to use the REPAIR and DIAGNOSE utilities.

STARTDB
Revokes the privilege to issue the -START DATABASE command.

STATS
Revokes the privilege to use the RUNSTATS utility to update statistics, and the
CHECK utility to test whether indexes are consistent with the data they index.

STOPDB
Revokes the privilege to issue the -STOP DATABASE command.

ON DATABASE database-name
Lists one or more databases on which you are revoking the privileges. For
each database you identify, you (or the indicated grantors) must have granted
at least one of the specified privileges on that database to all identified users
(including PUBLIC, if specified). A database must not be identified more than
once.

FROM
Refer to "REVOKE" on page 221 for a description of the FROM clause.

BY
Refer to "REVOKE" on page 221 for a description of the BY clause.

Example 1: Revoke drop privileges on database DSN8D22A from user PEREZ.

REVOKE DROP
ON DATABASE DSN8D22A
FROM PEREZ;

Example 2: Revoke repair privileges on database DSN8D22A from all local users.
(Grants to specific users will not be affected.) ·

REVOKE REPAIR
ON DATABASE DSN8D22A
FROM PUBLIC;

Chapter 6. Statements 225

REVOKE

Example 3: Revoke authority to create new tables and load tables in database
DSN8D22A from users WALKER, PIANKA, and YOSHIMURA.

REVOKE CREATETAB,LOAD
ON DATABASE DSN8022A
FROM WALKER,PIANKA,YOSHIMURA;

226 082 SOL Reference

REVOKE

REVOKE (PLAN PRIVILEGES)
This form of the REVOKE statement revokes authority to bind or execute an
application plan. Application plans are discussed in Command and Utility
Reference.

--REVOKE i LBIN~~ ON PLAN ~~::J__.__ ____________ ...
EXEC~

..,_FROM

Description

Examples

+ 1 ~authorization-name~J~~~~~~~~~~~~~~~~~~~~~-·-~

PUBLIC---___. + , l
'-BY-L_--authori zat i on-name~__,..J~

ALL--------'

BIND
Revokes the privilege to use the BIND, REBIND, and FREE subcommands
against the application plans named. BIND must not be specified more than
once.

EXECUTE
Revokes the privilege to run programs that use the named application plans.
EXECUTE must not be specified more than once.

ON PLAN plan-name
Lists one or more application plans on which you are revoking privileges. For
each plan that you identify, you (or the indicated grantors) must have granted
at least one of the specified privileges on that plan to all identified users
(including PUBLIC, if specified). The same plan must not be specified more
than once.

FROM
Refer to "REVOKE" on page 221 for a description of the FROM clause.

BY
Refer to "REVOKE" on page 221 for a description of the BY clause.

Example 1: Revoke authority to bind plan DSN8CP22 from user JONES.

REVOKE BIND
ON PLAN DSN8CP22
FROM JONES;

Example 2: Revoke authority previously granted to all local users to bind and
execute plan DSN81P22. (Grants to specific users will not be affected.)

REVOKE BIND,EXECUTE
ON PLAN DSN8IP22
FROM PUBLIC;

Chapter 6. Statements 227

REVOKE

Example 3: Revoke authority to execute plan DSN8CP22 from users ADAMSON
and BROWN .

. REVOKE EXECUTE
ON PLAN OSN8CP22
FROM AOAMSON,BROWN;

228 082 SQL Reference

REVOKE

REVOKE (SYSTEM PRIVILEGES)

....

This form of the REVOKE statement revokes system privileges.

INDAD•---
SDS---
REATEALIAS
REATEDBA
REATEDBC
REATES·---
ISPLAY-­

REVOKE---+--M1QNITORl--+--'----------------------•
ONITOR2
ECOVE--­

STOPALL----1
STOSPACE
SYSADM-----1
SYSOPw--­
TRACE---

.,__FROM.,_._L.--a,uthori zat i on-na
PUBLIC------

Description

Y L_authori zat i on-na
ALL-------

Each keyword listed revokes the privilege described. The same keyword must not
be specified more than once.

BIN DADD
Revokes the privilege to create application plans using the BIND subcommand
with the ADD option.

BSDS
Revokes the privilege to issue the -RECOVER BSDS command.

CREATEALIAS
Revokes the privilege to use the CREA TE ALIAS statement.

CREATEDBA
Revokes the privilege to create new databases and acquire DBADM authority
over those databases.

CREATEDBC
Revokes the privilege to create new databases and acquire DBCTRL authority
over those databases.

CREATESG
Revokes the privilege to create new storage groups.

Chapter 6. Statements 229

REVOKE

Examples

DISPLAY
Revokes the privilege to do the following:

• Use the -DISPLAY THREAD command for information on active threads
within DB2

• Use the -DISPLAY DATABASE command for the status of all databases.
• Use the -DISPLAY LOCATION and -DISPLAY TRACE commands.

MONITOR1
Revokes the privilege to obtain IFC data classified as serviceability data,
statistics, accounting, and other performance data that does not contain
potentially secure data.

MONITOR2
Revokes the privilege to obtain IFC data classified as containing potentially
sensitive data such as SQL statement text and audit data. (Having MONITOR2
privilege also implies having MONITOR1 privileges.)

RECOVER
Revokes the privilege to issue the -RECOVER INDOUBT command.

STOP ALL
Revokes the privilege to use the -STOP DB2 command.

STOSPACE
Revokes the privilege to use the STOSPACE utility.

SYSADM
Revokes the privilege to have system administrator authority.

SYSOPR
Revokes the privilege to have system operator authority.

TRACE
Revokes the privilege to use the -MODIFY TRACE, -START TRACE, and -STOP
TRACE commands.

FROM
Refer to "REVOKE" on page 221 for a description of the FROM clause.

BY
Refer to "REVOKE" on page 221 for a description of the BY clause.

Example 1: Revoke DISPLAY privileges from user LUTZ.

REVOKE DISPLAY
FROM LUTZ;

Example 2: Revoke BSDS and RECOVER privileges from users PARKER and
SETRIGHT.

REVOKE BSDS,RECOVER
FROM PARKER,SETRIGHT;

Example 3: Revoke TRACE privileges previously granted to all local users.
(Grants to specific users will not be affected.)

REVOKE TRACE
FROM PUBLIC;

230 082 SOL Reference

REVOKE

REVOKE (TABLE or VIEW PRIVILEGES)
This form of the REVOKE statement revokes privileges on one or more tables or
views.

PRIVILEGES

'----ALTER-----'-----'
DELETE-----1
INDEX----1
INSERT-----1
SELECT-----1
UPDATE---'

.,._ON---.-----.----.....-L-t~b l e-name1
LTABLE_J v1ew-name___J

i
.,._FROtauthorization-name

PUBLIC--------i
PUBLIC AT ALL LOCATIONS

ALL or ALL PRIVILEGES

BY L_authorization-name
ALL---------'

Revokes all privileges held by an authorization-name for the specified tables
or views.

If you do not use ALL, you must use one or more of the keywords listed below.
Each keyword revokes the privilege described, but only as it applies to the
tables or views named in the ON clause. The same keyword must not be
specified more than once.

ALTER
Revokes the privilege to use the ALTER statement. AL TEA cannot be revoked
from PUBLIC AT ALL LOCATIONS.

DELETE
Revokes the privilege to use the DELETE statement.

INDEX
Revokes the privilege to use the CREATE INDEX statement. INDEX cannot be
revoked from PUBLIC AT ALL LOCATIONS.

INSERT
Revokes the privilege to use the INSERT statement.

SELECT
Revokes the privilege to use the SELECT statement. A view is dropped when
the SELECT privilege that was used to create it is revoked.

Chapter 6. Statements 231

REVOKE

Notes

Examples

UPDATE
Revokes the privilege to use the UPDATE statement. Note that a list of column
names may be used only with GRANT, not with REVOKE.

ON or ON TABLE
Names one or more tables or views on which you are revoking the privileges.
The list may consist of table names, view names, or a combination of the two.
A table or view must not be identified more than once.

If BY is not specified, the authorization ID of the REVOKE statement must have
been used to grant at least. one of the designated privileges on each of the
designated tables and views. '(No single privilege need be granted on all
tables and views.) If BY is specified, each designated grantor must satisfy the
above requirement. In this case, the authorization ID of the statement need not
satisfy the requirement unless it is one of the designated grantors.

FROM
Refer to "REVOKE" on page 221 for a description of the FROM clause.

BY
Refer to "REVOKE" on page 221 for a description of the BY clause.

When a REVOKE statement revokes multiple grants, the grants are revoked, one at
a time, in an undefined order. If, for some reason, a revocation is in error, the
execution of the statement is stopped, and all the revoked grants are restored.
Such an error will certainly occur if a table or view is specified twice after the
keyword ON. One could also occur when a table and a view based on the table are
both specified after ON. The error would occur if revoking some grant for the table
causes the view to be dropped before all grants have been revoked for the view.

Example 1: Revoke SELECT privileges on table DSN8220.EMP from user
PULASKI.

REVOKE SELECT
ON TABLE DSN8220.EMP
FROM PULASKI

Example 2: Revoke update privileges on table DSN8220.EMP, previously granted
to all local users. Note that grants to specific users are not affected.

REVOKE UPDATE
ON TABLE DSN8220.EMP
FROM PUBLIC

Example 3: Revoke all privileges on table DSN8220.EMP, from users KWAN and
THOMPSON.

REVOKE ALL
ON TABLE DSN8220~EMP
FROM KWAN,THOMPSON

232 082 SQL Reference

REVOKE

REVOKE (USE PRIVILEGES)

..,.____REVOKE USE OF

This form of the REVOKE statement revokes authority to use particular buffer
pools, storage groups, or table spaces.

+--' STOGROUP--stogroup-name--'-------------1------+

TABLESPACE--------------tab 1 es pace-name
Ldatabase-name.__J

.,__FROfM-4 --L..-authori zat ion-name
PUBLIC-------'

Description

BY 1 authorization-name
L--ALL--------'

You can revoke privileges for only one type of object with each statement. Thus
you may revoke the use of several table spaces with one statement, but not the use
of a table space and a storage group. The same object must not be specified more
than once.

For each object you name, you (or the indicated grantors) must have granted the
USE privilege on that object to all identified users (including PUBLIC, if specified).

BUFFERPOOL BPn
Revokes the USE privilege on one or more buffer pools. The USE privilege for
a buffer poo' allows a user to name that buffer pool in a CREATE INDEX,
CREATE TABLESPACE, ALTER INDEX, or ALTER TABLESPACE statement.

STOGROUP stogroup-name
Revokes the USE privilege on one or more storage groups. The USE privilege
for a storage group allows a user to name that storage group in a CREATE
INDEX, CREATE TABLESPACE, ALTER INDEX, or ALTER TABLESPACE
statement.

TABLESPACE database-name.tablespace-name
Revokes the USE privilege on one or more table spaces. The USE privilege for
a table space allows a user to name that table space in a CREATE TABLE
statement. The default for database-name is DSNDB04.

FROM
Refer to "REVOKE" on page 221 for a description of the FROM clause.

Chapter 6. Statements 233

REVOKE

Examples

BY
Refer to "REVOKE" on page 221 for a description of the BY clause.

Example 1: Revoke authority to use buffer pool BP2 from user MARINO.

REVOKE USE OF BUFFERPOOL BP2
FROM MARINO;

Example 2: Revoke a grant of the USE privilege on the table space DSN8S22D in
the database DSN8022A. The grant is to PUBLIC, that is, to everyone at the local
DB2 subsystem. (Grants to specific users will not be affected.)

REVOKE USE OF TABLESPACE DSN8D22A.DSN8S22D
FROM PUBLIC;

234 092 SQL Reference

ROLLBACK

Invocation

Authorization

Description

Notes

Example

ROLLBACK

The ROLLBACK statement is used to terminate a unit of recovery and back out the
database changes that were made by that unit of recovery.

This statement can be embedded in an application program or it can be issued
interactively. It is an executable statement that can be dynamically prepared. It
cannot be used in the IMS or CICS environment.

None required.

The unit of recovery in which the ROLLBACK statement is executed is terminated
and a new unit of recovery is initiated. All changes made by ALTER, COMMENT
ON, CREATE, DELETE, DROP, EXPLAIN, GRANT, INSERT, LABEL ON, REVOKE,
and UPDATE statements executed during the unit of recovery are backed out.

All locks implicitly acquired during the unit of recovery are released. (See the
description of the LOCK TABLE statement for an explanation of the duration of
those locks.) All cursors opened during the unit of recovery are closed. All
statements prepared during the unit of recovery are destroyed, and any cursors
associated with the prepared statements are invalidated.

ROLLBACK WORK has the same effect as ROLLBACK.

ROLLBACK WORK, rather than ROLLBACK, should be used to conform to the SAA
definition of SQL. However, neither form of the statement can be used in the IMS
or CICS environment. To execute a rollback operation in these environments, SQL
programs must use the call prescribed by their transaction manager. The effect of
these rollback operations on DB2 data is the same as that of the ROLLBACK
statement. '

In all DB2 environments, the abnormal termination of a process is an implicit
rollback operation.

Rollback all DB2 database changes made since the unit of recovery was initiated.

ROLLBACK WORK;

Chapter 6. Statements 235

SELECT INTO

1
SELECT INTO

Invocation

Authorization

The SELECT INTO statement produces a result table consisting of at most one row,
and assigns the values in that row to host variables. If the table is empty, the
statement assigns + 100 to SQLCODE and does not assign values to the host
variables. The tables or views identified in the statement can be local or remote.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

The privileges held by the authorization ID of the owner of the plan must include at
least one of the following for every table and view identified in the statement:

• The SELECT privilege on the table or view
• Ownership of the table or view
• DBADM authority for the database (tables only)
• SYSADM authority.

+ '--i
..,.__select-clause--INTO--host-variable_L__from-clause,-.---------.-----•1t

L__where-clause_J

Description
See Chapter 5, "Queries" on page 83 for a description of the select-clause,
from-clause, and where-clause.

The from-clause must not identify a view that includes a group-by-clause or a
having-clause.

INTO
Introduces a list of host variables.

host variable
Names a structure or variable that is described in the program under the
rules for declaring host structures and variables. A reference to a
structure is replaced by a reference to each of its variables before the
statement is executed.

The first value in the result row is assigned to the first variable in the list,
the second value to the second variable, and so on., If the number of host
variables is less than the number of column values, the value 1W 1 is
assigned to the SQLWARN3 field of the SQLCA. (See "SOL Communication
Area (SQLCA)" on page 249.)

The data type of a variable must be compatible with the value assigned to
it. If the value is numeric, the variable must have the capacity to represent
the integral part of the value. For a date/time value, the variable must be a
character string variable of a minimum length as defined in Chapter 3. Lf
the value is null, an indicator variable must be specified.

236 082 SQL ·Reference

Examples

SELECT INTO

Each assignment to a variable is made according to the rules described in
Chapter 3. Assignments are made in sequence through the list.

If an error occurs as the result of an arithmetic expression in the SELECT
list of a SELECT INTO statement (division by zero, or overflow) or a
numeric conversion error occurs, the result is the null value. As in any
other case of a null value, an indicator variable must be provided and the
main variable is unchanged. In this case, however, the indicator variable
is set to -2. Processing of the statement continues as if the error had not
occurred. (However, this error causes a positive SQLCODE.) If you do not
provide an indicator variable, a negative value is returned in the SQLCODE
field of the SQLCA. Processing of the statement terminates when the error
is encountered.

If an error occurs, no value is assigned to the host variable or to later
variables, though any values that have already been assigned to variables
remain assigned.

If an error occurs because the result table has more than one row, values
are assigned to all host variables, but the row that is the source of the
values is undefined and not predictable.

Example 1: Put the maximum salary in DSN8220.EMP into the host variable
MAXSALARY.

EXEC SQL SELECT MAX(SALARY)
INTO :MAXSALRY
FROM DSN8220.EMP;

Example 2: Put the row for employee 528671, from DSN8220.EMP, into the host
structure EMPREC.

EXEC SQL SELECT * INTO :EMPREC
FROM DSN8220.EMP
WHERE EMPNO = '528671'

END-EXEC.

Chapter 6. Statements 237

SET CURRENT SQLID

SET CURRENT SQLID

Invocation

Authorization

The SET CURRENT SOLID statement changes the value of the SOL authorization
ID.

The statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

If any of the authorization IDs of the process has SYSADM authority, CURRENT
SOLID can be set to any value. Otherwise the specified value must be equal to one
of the authorization IDs of the process.

11+--SET CURRENT SQ LID= stri ng-constant_J-:-+-------------------t .. ~,. -f
USER

host-variable::__j

Description

Notes

The value of CURRENT SOLID is replaced by the value of USER, string-constant, or
host-variable. The value specified by a string-constant or host-variable must be a
character string that is not longer than 8 bytes. If the length of the value is less
than 8, it is padded on the right with blanks so that it is a string of 8 bytes. Unless
some authorization ID of the process has SYSADM authority, the value must be
equal to one of the authorization IDs of the process.

The SOL authorization ID is:

• The authorization ID used for authorization checking on dynamically prepared
CREATE, GRANT, and REVOKE SOL statements.

• The owner of a tablespace, database, storage group, or synonym created by a
dynamically issued CREATE statement

• The implicit qualifier of all table, view, alias, and index names specified in
dynamic SOL statements.

The initital value of the SOL authorization ID is established during connection or
signon processing. The value specified in the SET CURRENT SOLID is the SOL
authorization ID until one of the following events occurs:

• The SOL authorization ID is changed by the execution of a new SET CURRENT
SQLID statement

• A SIGNON or reSIGNON request is received from a CICS transaction subtask or
an IMS independent region

• The DB2 connection is terminated.

238 082 SQL Reference

SET CURRENT SQLID

Example
Set the CURRENT SOLID to the primary authorization ID.

SET CURRENT SQLID=USER;

Chapter 6. Statements · 239

UPDATE

UPDATE

Invocation

Authorization

The UPDATE statement updates the values of specified columns in rows of a local
or remote table or view. Updating a row of a view updates a row of its base table.

The forms of this statement are:

• The searched UPDATE form is used to update one or more rows (optionally
determined by a search condition).

• The positioned UPDATE form is used to update exactly one row (as determined
by the current position of a cursor).

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authority requirements depend on whether or not a view is used for the update:

If a view is not used, the privilege set defined below must include at least one of
the following:

• The UPDATE privilege on the table
• Ownersl)ip of the table
• DBADM authority on the database containing the table
• SYSADM authority.

If a view is used, the privilege set must contain at least one of the following:

• The UPDATE privilege on the view
• SYSADM authority.

Note that the owner of a view, unlike the owner of a table, might not have UPDATE
authority on the view (or may have UPDATE authority without being able to grant it
to others). Indeed, the nature of the view itself may preclude its use for UPDATE.
For more on all this, see the discussion of authority under "CREATE VIEW" on
page 161.

For local execution of the statement: If the statement is embedded in a program,
the privilege set is the privileges designated by the authorization ID of the owner of
the plan. If the statement is dynamically prepared, the privilege set is the union of
the privileges designated by each authorization ID of the process.

For remote execution of the statement: The privilege set consists of all those
privileges recorded in the remote subsystem's catalog for a certain authorization
ID. For a statement embedded in a program, this authorization ID is derived from
the one that owns the plan. For a dynamically prepared statement, it is derived
from the primary authorization ID of the process. The derived authorization ID
may, of course, be equal to the original.

The derivation, known as "translation, ... is described in Section 5 (Volume 2) of
Administration Guide. Controlling the procedure are the SYSIBM.SYSUSERNAMES
tables in the local and remote communication databases. For a description of
commmunication databases, see Appendix D, "The Communications Database" on
page 295.

240 082 SQL Reference

UPDATE

Searched UPDATE

~correlation-name==i

+ ,...__SET--co 1 umn-name=--r-express ion •
LNULL-----'

• ~WHERE-search-condition==i
. ..

Positioned UPDATE

~uPDATELt~ble-name~
v1ew-name---1

•

+ ----sET--co 1 umn-name=--r-express ion •
LNULL------1

----WHERE CURRENT OF-cursor-nam10-----------------------~

Description
table-name or view-name

Is the name of the table or view to be updated. The name must identify a table
or view described in the catalog, of the OB2 subsystem identified by the
implicitly or explicitly specified location-name. But it must not identify a
read-only view. A catalog table or a view of a catalog table may be identified if
every column identified in the SET clause is an updatable column. If a column
of a catalog table is updatable, then its description under Appendix C, "OB2
Catalog Tables" on page 257 will indicate that the column can be updated.

The referenced table or view can be remote. But it must be local if the process
is attached to OB2 through the CICS or IMS/VS attachment facilities.

correlation-name

SET

May be used within search-condition to designate the table or view. (For an
explanation of correlation-name, see "Correlation Names" on page 44.)

Introduces a list of column names and values. The column names must not be
qualified, and a column must not be specified more than once. The columns
named must be present in the table or view to be updated.

column-name
Identifies a column to be updated. The column-name must identify a
column of the specified table or view, but must not identify a view column
derived from a scalar function, constant, or expression. It must not identify

Chapter 6. Statements 241

UPDATE

a column that is part of the key of a partitioned index or a view column that
is derived from any part of the key of a partitioned index.

For a positioned update, allowable column names may be further restricted
to those in a certain list. This list appears in the FOR UPDATE OF clause
of the select statement for the associated cursor. If the select statement is
dynamically prepared, the FOR UPDATE OF clause must always be
present. Otherwise, the clause may be omitted under the conditions
described in "The NOFOR Option: FOR UPDATE OF" on page 40.

expressi<'Jn or NULL
Indicates the new value of the column. The expression is any expression
of the type described in Chapter 3. It must not include a column function.
NULL specifies the null value.

A column-name in an expression must name a column of the named table
or view. For each row that is updated, the value of the column in the
expression is the value of the column in the row before the row is updated.

WHERE

242 082 SOL Reference

Introduces a condition that indicates what rows are updated. You can omit the
clause, give a search condition, or name a cursor. If you omit the clause, all
rows of the table or view are updated.

search-condition
Is any search condition as described in Chapter 3. Each column-name in
the search condition, other than in a subquery, must name a column of the
table or view. The search condition must not include a subquery so the
base object of both the UPDATE and the subquery is the same table.

The search-condition is applied to each row of the table or view and the
updated rows are those for which the result of the search-condition is true.
If a column to be updated is part of a primary key, the number of rows
selected for update must not be greater than one.

If the search condition contains a subquery, the subquery can be thought of
as being executed each time the search condition is applied to a row, and
the results used in applying the search condition. In actuality, a subquery
with no correlated references is executed just once, whereas a subquery
with a correlated reference may have to be executed once for each row.

CURRENT OF cursor-name
Identifies the cursor to be used in the update operation. The cursor-name
must identify a declared cursor as explained in "DECLARE CURSOR" on
page 165.

If the UPDATE statement is embedded in a program, the DECLARE
CURSOR statement must include a select-statement rather than a
statement-name.

The table or view named must also be named in the FROM clause of the
SELECT statement of the cursor, and the result table of the cursor must not
be read-only. (For an explanation of read-only result tables, see
"DECLARE CURSOR" on page 165.)

When the UPDATE statement is executed, the cursor must be positioned on
a row; that row is updated.

If a column to be updated is part of a primary key, WHERE CURRENT OF
must not be used.

Notes

UPDATE

The successful or unsuccessful execution of a cursor-controlled update operation
does not change the position of the cursor. However, it is possible for an error to
make the position of the cursor invalid, in which case the cursor is closed. It is
also possible for an update operation to cause a rollback, in which case the cursor
is closed.

Update values are assigned to columns under the assignment rules described in
Chapter 3.

If the update
value is ... Then the column must ...

The null value Allow null values.

A number Be a numeric column with the capacity to represent the
integral part of the number.

A character string Be a character string column with a length attribute that is not
less than the length of the string. The column may also be a
DATE, TIME, or TIMESTAMP column, in which case the update
value must be a valid character string representation of a date,
time, or timestamp, respectively.

A graphic string Be a graphic string column with a length attribute that is not
less than the length of the string.

A date/time value Be a DATE, TIME, or TIMESTAMP column with the same date
type or a character string column of an appropriate length as
specified in Chapter 3

The updated row must conform to any constraints imposed on the table (or on the
base table of the view) by any:

• Unique index on an updated column
• Validation procedure
• Field procedure on an updated column.

The value of a primary key in a parent row must not be changed. A non-null
update value of a foreign key must be equal to some value of the primary key of the
parent table of the relationship.

If a view is used that is not defined using WITH CHECK OPTION, rows can be
changed so that they no longer conform to the definition of the view. Such rows
are updated in the base table of the view and no longer appear in the view.

If a vi~w is used that is defined using WITH CHECK OPTION, an updated row must
conform to the definition of the view. If the view you name is dependent on other
views whose definitions include WITH CHECK OPTION, the updated rows must also
conform to the definitions of those views. For an explanation of the rules
governing this situation, see "CREATE VIEW" on page 161.

A view column derived from the same column as another column of the view can
be updated, but both columns cannot be updated in the same UPDATE statement.

.If an update value violates any constraints, or if any other error occurs during the
execution of the UPDATE statement, no rows are updated. The order which
multiple rows are updated is undefined.

Chapter 6. Statements 243

UPDATE

Examples

When an UPDATE statement completes execution, the value of SQLERRD(3) in the
SQLCA is the number of rows updated. (For a description of the SQLCA, see "SOL
Communication Area (SQLCA)" on page 249.)

Unless appropriate locks already exist, one or more exclusive locks are acquired
by the execution of a successful UPDATE statement. Until the locks are released,
the updated row can only be accessed by the application process that performed
the update.

The following examples refer to the sample table DSN8220.EMP. Each row in this
table represents an employee of a fictional enterprise.

Example 1: Change employee 000190's telephone number to 3565 in
DSN8220.EMP.

UPDATE DSN8220.EMP
SET PHONEN0= 1 3565 1

WHERE EMPN0= 1 000190 1

Example 2: Give each member of department D11 a 100-dollar raise.

UPDATE DSN8220.EMP
SET SALARY = SALARY + 100
WHERE WORKDEPT = 1 Dll 1

Example 3: Employee 000250 is going on a leave of absence. Set the salary to
null.

UPDATE DSN8220.EMP
SET SALARY = NULL
WHERE EMPN0= 1 000250 1

Example 4: Double the salary of the employee represented by the row on which
the cursor C1 is positioned.

UPDATE DSN8220.EMP SET SALARY = 2 * SALARY WHERE CURRENT OF Cl;

244 082 ·SOL Reference

WHENEVER

Invocation

Authorization

WHENEVER

The WHENEVER statement specifies the host language statement to be executed
when a specified exception condition occurs.

This statement can only be embedded in an application program. It is not an
executable statement.

None required.

-ENOT FOUN3-t=
~WHENEVER SQLERROR CONTINUE ~

SQLWARNING GOTO---,--host-label
GO TO_J

....

Description

Notes

The NOT FOUND, SQLERROR, or SQLWARNING clause is used to identify the type
of exception condition.

NOT FOUND
Identifies any condition that results in an SQL return code of + 100.

SQLERROR
Identifies any condition that results in a negative SQL return code.

SQLWARNING
Identifies any condition that results in a warning condition (SQLWARNO is 'W'),
or that results in a positive SQL return code other than + 100.

The CONTINUE or GO TO clause is used to specify what is to happen when the
identified type of exception condition exists.

CONTINUE
Specifies the next sequential statement of the source program.

GOTO or GO TO host-label
Specifies the statement identified by host-label. For host-label, substitute a
single token, optionally preceded by a colon. The form of the token depends
on the host language. In COBOL, for example, it can be a section-name or an
unqualified paragraph-name.

There are three types of WHENEVER statements:

WHENEVER NOT FOUND
WHENEVER SQLERROR
WHENEVER SQLWARNING

Every executable SQL statement in a program is within the scope of one implicit or
explicit WHENEVER statement of each type. The scope of a WHENEVER statement
is related to the listing sequence of the statements in the program, not their
execution sequence.

Chapter 6. Statements 245

WHENEVER

Example

An SQL statement is within the scope of the last WHENEVER statement of each
type that is specified before that SQL statement in the source program. If a
WHENEVER statement of some type is not specified before an SQL statement, that
SQL statement is within the scope of an implicit WHENEVER statement of that type
in which CONTINUE is specified.

If an error is produced, go to HANDLERR. If a warning code is produced, continue
with the normal flow of the program. If no results are found, go to ENDDATA.

EXEC SQL WHENEVER SQLERROR GOTO HANDLERR END-EXEC.
EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC.
EXEC SQL WHENEVER NOT FOUND GO TO ENDDATA END-EXEC.

·· 246 082 SOL Reference

Appendix.A. SQL Limits

The table below describes limits imposed by SOL

Table 6 (Page 1 of 2). SQL Limits

ITEM SQL LIMIT

Longest synonym, correlation-name, or 18
name of a column, table, view, alias, or
index.

Longest authorization-name or name of a 8
plan, database, table space, storage group,
or referential constraint.

Maximum number of columns in a table or 300 or fewer
view (the value depends on the complexity of
the CREATE VIEW statement)

Maximum row and record sizes for a table. See "Notes'~ on page 151.

Maximum size of a VARCHAR or for 4K pages, 4046
VARGRAPHIC column, in bytes for 32K pages, 32704

Largest INTEGER value 2147483647

Smallest INTEGER value -2147483648

Largest SMALLINT value 32767

Smallest SMALLINT value -32768

Largest FLOAT value Approximately 7.2 x101s

Smallest FLOAT value Approximately -7.2 x1075

Smallest positive FLOAT value Approximately 5.4 x 10-79

Largest negative FLOAT value Approximately -5.4 x10-79

Largest DECIMAL value 999999999999999

Smallest DECIMAL value -999999999999999

Smallest DATE value (shown in ISO format) 0001-01-01

Largest DATE value (shown in ISO format) 9999-12-31

Smallest TIME value (shown in ISO format) 00.00.00

Largest TIME value (shown in ISO format) 24.00.00

Smallest TIMESTAMP value 0001-01-01-00.00. 00.000000

Largest TIMESTAMP value 9999-12-31-24.00.00.000000

Maximum number of table names in an SOL 15 or fewer, depending on
statement. (In a complex SELECT, the the SOL statement.
number of tables that can be joined may be
significantly less.)

Maximum total length of host and indicator 32767 bytes
variables pointed to in an SOLDA

Appendix A. SQL Limits 247

Table 6 (Page 2 of 2). SQL Limits

ITEM SQL LIMIT

Longest host variable used for insert or 32704 bytes
update

Longest SQL statement 32765 bytes

Maximum number of elements in a select list 300

Maximum number of base tables in a view 16

Maximum number of predicates in a WHERE 300
or HAVING clause

Maximum total length of columns in a 4000
GROUP BY clause

Maximum total length of columns in an 4000
ORDER BY clause

Maximum length of a string concatenation 32754 SBCS characters
16382 DBCS characters

Maximum number of columns in an index 16
key

Longest index key for a non-partitioned table 254 less the number of
space, in bytes key columns that allow

nulls

Longest index key for a partitioned table 40 less the number of key
space, in bytes columns that allow nulls

Maximum number of partitions in a 64
partitioned table space

Maximum size of a partition, in gigabytes · 4 for 1 to 16 partitions
2 for 17 to 32 partitions
1 for 33 to 64 partitions

Maximum number of volume IDs 'in a storage 133
group

The limit for items hot mentioned above is system storage. Examples of such
items are most host variables in a source program, most indexes on a table, and
most host variables, tokens, or functions in an SQL statement.

248 062 SOL Reference

Appendix B. SQLCA and SQLDA

SQL Communication Area (SQLCA)
An SOLCA is a structure or collection of variables that is updated after each SOL
statement executes. A program that contains executable SOL statements must
provide exactly one SOLCA. In all host languages, the SOL INCLUDE statement
can be us~d to provide the declaration of the SOLCA.

In COBOL and assembler: the name of the storage area must be SOLCA.

In PL/I and C: the name of the structure must be SOLCA. Every executable SOL
statement must be within the scope of its declaration.

In FORTRAN: the name of the COMMON area for the INTEGER variables of the
SOLCA must be SOLCA 1; the name of the COMMON area for the CHARACTER
variables must be SOLCA2.

Description of Fields
The names in the following table are those provided by the SOL INCLUDE
statement. For the most part, COBOL, C, PL/I, and assembler use the same
names, and FORTRAN names are different. However there is one instance where
C, PL/I, and assembler names differ from COBOL.

Table 7 (Page 1 of 2). Fields of SQLCA

Assembler,
COBOL, or c FORTRAN Data Purpose
PL/I Name Name Name Type

SQLCAID sqlcaid Not used. CHAR(8) An "eye catcher" for storage dumps, containing
'SOLCA'.

SQLCABC sqlcabc Not used. INTEGER Contains the length of the SOLCA: 136.

SOL CODE sqlcode SQLCOD INTEGER Contains the SOL return code. (See note 2)
(See note 1)

Code Means
0 Successful execution (though there may

have been warning messages).
positive Successful execution, but with an exception

condition.
negative Error condition.

SQLERRML sqlerrml SQLTXL SMALLINT Length indicator for SQLERRMC, in the range O through
(See note 2.) 70. 0 means that the value of SQLERRMC is not

pertinent.

SOLE RR MC sqlerrmc SQLTXT VARCHAR Contains one or more tokens, separated by X' FF' , that
(See note 3) (70) are substituted for variables in the descriptions of error

conditions. (See note 2.)

SOLER RP sqlerrp SOLE RP CHAR(8) Provides a product signature and, in the case of an error,
diagnostic information such as the name of the module
that detected the error. In all cases, the first three
characters are 'DSN' for 082.

SQLERRD(1) sqlerrd[1] SQLERRD(1) INTEGER Contains a Relational Data System error code.

SQLERRD(2) sqlerrd[2] SQLERRD(2) INTEGER Contains a Data Manager error code.

Appendix B. SQLCA and SQLDA 249

Table 7 (Page 2 of 2). Fields of SQLCA

Assembler,
COBOL, or c FORTRAN Data Purpose
PL/I Name Name Name Type

SQLERRD(3) sqlerrd[3] SQLERRD(3) INTEGER Contains the number of rows affected after INSERT,
UPDATE, and DELETE (but not rows deleted as a result of
CASCADE delete). Set to -1 for a mass delete from a
table in a segmented table space.

SQLERRD(4) sqlerrd[4] SQLERRD(4) INTEGER Contains timerons, a short floating point value that
indicates a rough relative estimate of resources
required. It does not reflect an estimate of the time
required. When. preparing a dynamically defined SOL
statement, you can use this field as an indicator of the
relative cost of the prepared SQL statement. For a
particular statement, this number may vary with changes
to the statistics in the catalog. It is also subject to
change between releases of DB2.

SQLERRD(5) sqlerrd[5] SQLERRD(5) INTEGER Contains the position or column of a syntax error for a
PREPARE, or EXECUTE IMMEDIATE statement.

SQLERRD(6) sqlerrd[6] SQLERRD(6) INTEGER Contains a Buffer Manager error code.

SQLWARNO sqlwarnO SQLWARN(O) CHAR(1) Blank if all other indicators are blank; contains "W" if at
least one other indicator contains "W."

SQLWARN1 sqlwarn1 SQLWRN(1) CHAR(1) Contains "W" if the value of a string column was
truncated when assigned-to a host variable.

SQLWARN2 sqlwarn2 SQLWRN(2) CHAR(1) Contains "W" if null values were eliminated from the
argument of a column function; not necessarily set to 'W'
for the MIN function because its results are not
dependent on the elimination of null values.

SQLWARN3 sqlwarn3 SQLWRN(3) CHAR(1) Contains "W" if the number of columns is larger than the
number of host variables.

SQLWARN4 sqlwarn4 SQLWRN(4) CHAR(1) Contains "W" if a prepared UPDATE or DELETE
statement does not include a WHERE clause.

SQLWARN5 sqlwarn5 SQLWRN(5) CHAR(1) Contains "W" if the SQL statement was not executed
because it is an SOLIDS statement that is not valid in
DB2.

SQLWARN6 sqlwarn6 SQLWRN(6) CHAR(1) Contains "W" if an adjustment was made to a DATE or
TIMESTAMP value to correct an invalid date resulting
from an arithmetic operation.

SQLWARN7 sqlwarn7 SQLWRN(7) CHAR(1) Reserved for future use.

SQLEXT sqlext Not CHAR(8) Reserved for future use.
applicable

Notes to Table 7:

250 DB2 SOL Reference

1. With the precompiler option STDSQL(86) in effect, SQLCODE is replaced by
SQLCADE in SQLCA. For more on this, see "Standard SQL Language" on
page 39.

2. For the specific meanings of SOL return codes, see Section 2 of Messages and
Codes. For the specific meaning of variables in error messages, see Section 3
of Messages and Codes.

3. In COBOL, SQLERRM includes SQLERRML and SQLERRMC. In PL/I and C, the
varying-length string SQLERRM is equivalent to SQLERRML prefixed to
SQLERRMC. In assembler, the storage area SQLERRM is equivalent to
SQLERRML and SQLERRMC.

The Included SQLCA
The description of the SQLCA that is given by INCLUDE SQLCA is shown for each
of the host languages.

In assembler:

SQLCA DS
SQLCAID DS
SQLCABC DS
SQLCODE DS
SQLERRM DS
'SQLERRP DS
SQLERRD DS
SQLWARN DS
SQLWARN0 DS
SQLWARNl DS
SQLWARN2 DS
SQLWARN3 DS
SQLWARN4 DS
SQLWARN5 DS
SQLWARN6 DS
SQLWARN7 DS
SQLEXT DS

In PL/I:

DCL 1 SQLCA,

0F
CL8
F
F
H,CL70
CL8
6F
0c
c
c
c
c
c
c
c
c
CL8

2 SQLCAID
2 SQLCABC
2 SQLCODE
2 SQLERRM
2 SQLERRP
2 SQLERRD(6)
2 SQLWARN,

3 SQLWARN0
3 SQLWARNl
3 SQLWARN2
3 SQLWARN3
3 SQLWARN4
3 SQLWARN5
3 SQLWARN6
3 SQLWARN7

2 SQLEXT .

In FORTRAN:

*

ID
BYTE COUNT
RETURN CODE
ERR MSG PARMS
IMPL-DEPENDENT

WARNING FLAGS
IF ANY
IF ANY
IF ANY
IF ANY
IF ANY
IF ANY
IF ANY
IF ANY

CHAR(8),
BIN FIXED(31),
BIN FIXED(31),
CHAR(70) VAR,
CHAR(8),
BIN FIXED(31),

CHAR(l),
CHAR(l),
CHAR(l),
CHAR(l),
CHAR(l),
CHAR(l),
CHAR(l),
CHAR(l),
CHAR(8);

* THE SQL COMMUNICATIONS AREA
*

INTEGER SQLCOD,
C SQLERR(6),
C SQLTXL*2

COMMON /SQLCAl/SQLCOD, SQLERR,SQLTXL
CHARACTER SQLERP*8,

C SQLWRN(0:7)*1,
C SQLTXT*70,
C SQLEXT*8

COMMON /SQLCA2/SQLERP,SQLWRN,SQLTXT,SQLEXT
*

In COBOL:

01 SQLCA.
05 SQLCAID
05 SQLCABC
05 SQLCODE
05 SQLERRM.

49 SQLERRML
49 SQLERRMC

05 SQLERRP
05 SQLERRD

05 SQLWARN.
10 SQLWARN0
10 SQLWARNl
10 SQLWARN2
10 SQLWARN3
10 SQLWARN4
10 SQLWARN5
10 SQLWARN6
10 SQLWARN7

05 SQLEXT

In C:

#ifndef SQLCODE
struct sqlca
{

PIC X(8).
PIC S9(9) COMPUTATIONAL.
PIC S9(9) COMPUTATIONAL.

PIC S9(4) COMPUTATIONAL.
PIC X(70).
PIC X(8).
OCCURS 6 TIMES
PIC S9(9) COMPUTATIONAL.

PIC X(l).
PIC X(l).
PIC X(l).
PIC X(l).
PIC X(l).
PIC X(l).
PIC X(l).
PIC X(l).
PIC X(8).

unsigned char
long

sq lea id [8];
sqlcabc;
sqlcode;
sqlerrml;
sqlerrmc[70];
sqlerrp[8];
sql errd [6];
sqlwarn [8];
sqlext[8];

long
short
unsigned char
unsigned char
long
unsigned char
unsigned char

};
#define SQLCODE
#define SQLWARN0
#define SQLWARNl
#define SQLWARN2
#define SQLWARN3
#define SQLWARN4
#define SQLWARN5
#define SQLWARN6
#define SQLWARN7
#endif
struct sqlca sqlca;

sqlca.sqlcode
sq lea. sqlwarn [0]
sqlca. sqlwarn [1]
sqlca.sqlwarn[2]
sq lea. sqlwarn [3]
sql ca. sqlwarn [4]
sqlca.sqlwarn[5]
sq lea. sqlwarn [6]
sqlca.sqlwarn[7]

Appendix B. SQLCA and SQLDA 251

SQL Descriptor Area (SQLDA)
An SQLDA is a collection of variables that is required for execution of the SQL
DESCRIBE statement, and may optionally be used by the PREPARE, OPEN, FETCH,
and EXECUTE statements. An SQLDA is used for dynamic SQL; it can be used in a
DESCRIBE statement, modified with the addresses of host variables, and then
reused in a FETCH statement. Section 2 of Application Programming and SQL
Guide discusses ways to use the SQLDA.

The meaning of the information in an SQLDA depends on its use. In DESCRIBE
and PREPARE, an SQLDA provides information to an application program about a
prepared statement. In OPEN, EXECUTE, and FETCH, an SQLDA provides
information to DB2 about host variables.

Description of Fields

Table 8.

PL/I
Name

SQLDAID

SQLDABC

SQLN

SOLD

The source language description of an SQLDA is different for PL/I, C and
Assembler. The following description is based on the PL/I structure provided by
the SQL INCLUDE statement.

An SQLDA consists of four variables followed by an arbitrary number of
occurrences of a sequence of five variables collectively named SQLVAR. In OPEN,
FETCH, and EXECUTE, each occurrence of SQLVAR describes a host variable. In
DESCRIBE and PREPARE, they describe columns of a result table.

Fields of SQLDA

Data Usage in Usage In FETCH,
Type DESCRIBE and PREPARE OPEN, or EXECUTE

CHAR(8) An "eye catcher" for storage dumps, Not used.
containing 'SQLDA '.

INTEGER Length of the SQLDA, equal to Same.
SQLN*44 + 16.

SMALLINT Total number of occurrences of Same.
SQLVAR.

SMALLINT The number of columns described by The number of host variables described by
occurrences of SQLVAR. occurrences of SQLVAR.

252 082 SQL Reference

Fields in an Occurrence of SQLVAR

Table 9. Fields in SQLVAR

Data Usage in Usage in FETCH,
Name Type DESCRIBE and PREPARE OPEN, and EXECUTE

SQLTYPE SM ALLI NT Tells the data type of the column and whether or not it Tells the data type of the
allows null values. For a description of the type codes, host variable and whether
see SQLTYPE on page 177 an indicator variable is

provided. For a
description of the type
codes, see "Values of
SOL TYPE" on page 254.

SQLLEN SMALLINT Defines the external length of a value from the column, Same, for host variable.
as follows:

Data Type Content
Character Length attribute in bytes
Graphic Length attribute in double-byte

characters
Decimal byte 1 = precision;

byte 2 = scale
Float 4 (bytes) for single precision

8 for double precision
Small int 2 (bytes)
Integer 4 (bytes)
Date 10 (bytes) or LOCAL value
Time 8 (bytes) or LOCAL value
Timestamp 26 (bytes)

SQLDATA pointer Undefined Contains the address of
the host variable.

SQLIND pointer Undefined Contains the address of an
associated indicator
variable, if there is one;
otherwise, not used.

SQLNAME VAR CHAR (30) Contains the name or label of the column, or a string of Not used.
length zero if the name or label does not exist.

Appendix B. SQLCA and SQLDA 253

Values of SQLTYPE
The table below lists allowable values of the SQLTYPE field of an SQLDA, and their
meanings for FETCH, OPEN, and EXECUTE. See "DESCRIBE" on page 176 for a
table that applies to the DESCRIBE statement. There are two values for each data
type. The first value means that an indicator variable is not provided. The second
value means an indicator variable is provided.

Value Data Type Indicator
Variable

384/385 fixed-length character string no/yes

388/389 fixed-length character string no/yes

392/393 fixed-length character string no/yes

448/449 varying-length character string no/yes

452/453 fixed-length character string no/yes

456/457 long character string no/yes

460/461 varying-length, optionally null no/yes
terminated, character string (C)

464/465 varying-length graphic string no/yes

468/469 fixed-length graphic string no/yes

472/473 long graphic string no/yes

480/481 floating-point no/yes

484/485 decimal no/yes

496/497 large integer no/yes

500/501 small integer no/yes

504/505 COBOL DISPLAY SIGN LEADING no/yes
SEPARATE

Note: On DESCRIBE, the type codes 384/385, 388/389, and 392/393 denote date,
time, and timestamp, respectively. Host variables do not have date/time data
types, so character string variables must be used to retrieve date/time values.
Thus, when the SQLDA describes host variables, these type codes denote
fixed-length character string variables.

254 082 SQL Reference

The Included SQLDA

In assembler:

SQLDA DSECT
SQLDAID OS CL8
SQLDABC OS F
SQLN OS H
SQLD OS H
SQLVAR OS 0F
SQLVARN DSECT
SQLTYPE OS H
SQLLEN OS 0H
SQLPRCSN OS X
SQLSCALE OS X
SQLDATA OS A
SQLIND OS A
SQLNAME OS H,CL30

The description of the SQLDA that is given by INCLUDE SQLDA is shown for C,
assembler and PL/I. Though you can use an SQLDA in VS COBOL II, the INCLUDE
statement does not provide the code; you must provide it, as shown in an appendix
of Application Programming and SQL Guide.

In PL/I:

DCL 1 SQLDA BASED(SQLDAPTR),
2 SQLDAID CHAR(8),
2 SQLDABC BIN FIXED(31),
2 SQLN BIN FIXED,
2 SQLD BIN FIXED,
2 SQLVAR (SQLSIZE REF(SQLN)),

3 SQLTYPE BIN FIXED,
3 SQLLEN BIN FIXED,
3 SQLDATA PTR,
3 SQLIND PTR,
3 SQLNAME CHAR(30) VAR;

DCL SQLSIZE BIN FIXED;
DCL SQLDAPTR PTR;

In C, INCLUDE SQLDA specifies:

#ifndef SQLDASIZE
struct sqlda
{

};

unsigned char sqldaid[8];
long sqldabc;
short sqln;
short sqld;
struct sqlvar
{

short sqltype;
short sqllen;
unsigned char *sqldata;
short *sqlind;
struct sqlname
{

short length;
unsigned char data[30];

} sqlname;
} sqlvar[l];

#define SQLDASIZE(n) (sizeof(struct sqlda)+(n-l)*sizeof(struct sqlvar))
#endif

Appendix B. SQLCA and SQLDA 255

Appendix C. 082 Catalog Tables

This appendix is intended to help you to use the 082 catalog. That interface is
product-sensitive, as defined in "Statement of Purpose" on page 1.

082 maintains a set of tables called the 082 catalog (database DSND806). The
catalog tables describe such things as table spaces, tables, columns, indexes,
privileges, and application plans. Data in the catalog tables is available to
authorized users of 082 through normal SOL query facilities; however, the catalog
is primarily intended for use by 082, and is therefore subject to change.

The catalog tables are updated by 082 during normal operations in response to
SQL data definition statements, SQL control statements, and certain commands
and utilities. All columns of the catalog tables are defined as NOT NULL or NOT
NULL WITH DEFAULT. For details about the record headers and column offsets,
see Section 6 of Diagnosis Guide and Reference.

Links in the DB2 Catalog
The catalog contains objects called links.

A link connects a parent table to a child table. A row in the child table may be
linked to only one row in the parent table, and the information recorded in the child
row is dependent on the existence of the information in the parent row. On the
other hand, a parent row may be linked to more than one child row.

For example, SYSl8M.SYSDATA8ASE records the existence of databases. It is
linked to SYSl8M.SYSD8AUTH, which records the privileges users hold over
databases. The information in SYSD8AUTH is dependent on the information in
SYSDATA8ASE (no one can have a privilege on a database that does not exist);
and a record in SYSD8AUTH is linked to only one record in SYSDATA8ASE, though
a record in SYSDATA8ASE may be linked to many records in SYSD8AUTH. Hence
SYSDATA8ASE is the parent and SYSD8AUTH is the child.

A table can be both a parent and a child. For example, SYSTA8LES is a child of
SYSTA8LESPACE and a parent of SYSCOLUMNS.

Table Spaces and Indexes
The table below shows to what table spaces the catalog tables are assigned, and
what indexes they have. The pages that follow describe the columns in each table
arranged alphabetically by table name.

Appendix C. 082 Catalog Tables 257

TABLE SPACE TABLE SYSIBM •••• Refer to INDEX INDEX FIELDS
DSNDB06 •••• page SYSIBM ••••

SYSCO PY SYSCO PY 262 DSNUCH01 DBNAME.TSNAME.START_RBA
262 DSNUCX01 DSNAME

SYSDBASE SYSCOLAUTH 259
SYSCOLUMNS 260 DSNDCX01 TBCREATOR.TBNAME.NAME
SYSFIELDS 267
SYSFOREIGNKEYS 268
SYSINDEXES 269 DSNDXX01 CREATOR.NAME

DSNDXX02 DBNAME.INDEXSPACE
SYSINDEXPART 271
SYSKEYS 272
SYSLINKS 273

SYSRELS 277 DSNDLX01 REFTBCREATOR. REFTBNAME
SYSSYNONYMS 281 DSNDYX01 CREATOR.NAME
SYSTABAUTH 282 DSNATX01 GRANT OR

DSNATX02 GRANTEE.TCREATOR.TTNAME.
GRANTEETYPE.UPDATECOLS.
AL TERAUTH.DELETEAUTH.
INDEXAUTH.INSERTAUTH.
SELECTAUTH.UPDATEAUTH

SYSTABLEPART 284
SYSTABLES 285 DSNDTX01 CREATOR.NAME
SYSTABLESPACE 287 DSNDSX01 DBNAME.NAME

SYSDBAUT SYSDATABASE 263 DSNDDH01 NAME
SYSDBAUTH 264 DSNADH01 GRANTEE.NAME

DSNADX01 GRANTOR.NAME

SYSGPAUT SYSRESAUTH 278 DSNAGH01 GRANTEE.QUALIFIER.
NAME.OPBTYPE

DSNAGX01 GRANTOR.QUALIFIER.
NAME.OPBTYPE

SYSGROUP SYSSTOGROUP 280 DSNSSH01 NAME
SYSVOLUMES 293

SYSPLAN SYSDBRM 266
SYSPLAN 274 DSNPPH01 NAME
SYSPLANAUTH 275 DSNAPH01 GRANTEE.NAME.EXECUTEAUTH

DSNAPX01 GRANTOR
SYSPLANDEP 276 DSNGGX01 BCREATOR.BNAME.BTYPE
SYSSTMT 279

SYSUSER SYSUSERAUTH 288 DSNAUH01 GRANTEE
DSNAUX02 GRANTOR

SYSVIEWS SYSVIEWDEP 290 DSNGGX02 BCREATOR. BNAME. BTYPE
SYSVIEWS 291
SYSVLTREE 292
SYSVTREE 294 DSNVTH01 CREATOR.NAME

258 082 SQL Reference

SYSIBM.SYSCOLAUTH Table

Column Name

GRANTOR

GRANTEE

GRANTEETYPE

CREATOR

TNAME

TIMESTAMP

DATEGRANTED

TIMEGRANTED

COLNAME

IBMREQD

The SYSIBM.SYSCOLAUTH table records the UPDATE privileges held by users on
individual columns of a table or view.

Data Type Description

CHAR(8) Authorization ID of the user who granted the privileges. Could also be
PUBLIC or PUBLIC followed by an asterisk.a

CHAR(B) Authorization ID of the user who holds the privilege or the name of an
application plan that uses the privilege. PUBLIC for a grant to PUBLIC.
PUBLIC followed by an asterisk for a grant to PUBLIC AT ALL LOCATIONS.

CHAR(1) Meaning:
blank GRANTEE is an authorization ID
p GRANTEE is an application plan

CHAR(B) The authorization ID of the owner of the table or view on which the update
privilege is held.

VARCHAR(18) The name of the table or view.

CHAR(12) Time at which the privilege was granted (internal timestamp format).

CHAR(6) Date the privilege was granted, in the form yymmdd.

CHAR(8) Time the privilege was granted, in the form hhmmssth.

VARCHAR(18) Name of the column to which the UPDATE privilege applies.

CHAR(1) Whether the row came from the basic machine readable material (MAM)
tape:
N no
y yes

a PUBLIC followed by an asterisk (PUBLIC*) denotes PUBLIC AT ALL LOCATIONS. For conditions under which
GRANTOR can be PUBLIC or PUBLIC*, see Section 5 (Volume 2) of Administration Guide.

Appendix C. DB2 Catalog Tables 259

SYSIBM.SYSCOLUMNS Table

Column Name

NAME

TBNAME

TBCREATOR

COL NO

COL TYPE

LENGTH

SCALE

NULLS

COL CARD

HIGH2KEY

LOW2KEY

The SYSIBM.SYSCOLUMNS table contains one row for every column of each table
and view.

Data Type Description

VARCHAR(18) Name of the column.

VARCHAR(18) Name of the table or view which contains the column.

CHAR(8) Authorization ID of the owner of the table or view that contains the column.

SMALLINT Numerical place of the column in the table or view; for example 4 (out of 10).

CHAR(8) Type of column:

INTEGER large integer
SM ALLI NT small integer
FLOAT floating-point
CHAR fixed-length character string
VARCHAR varying-length character string
LONGVAR varying-length character string
DECIMAL decimal
GRAPHIC fixed-length graphic string
VARG varying-length graphic string
LONGVARG varying-length graphic string
DATE date
TIME time
TIMESTMP timestamp

SMALLINT The length attribute of the column; or, in the case of a decimal column, its
precision. The number does not include the internal prefixes used to record
actual length and null state where applicable.

INTEGER 4
SMALLINT 2
FLOAT 4 or 8
CHAR length of string
VARCHAR maximum length of string
LONGVAR maximum length of string
DECIMAL precision of number
GRAPHIC number of DBCS characters
VARG maximum number of DBCS characters
LONGVARG maximum number of DBCS characters
DATE 4
TIME 3
TIMESTMP 10

SM ALLI NT Scale of decimal data.
Zero if not a decimal column.

CHAR(1) Whether the column can contain null values:
N no
y yes

INTEGER Number of distinct values in the column. For non-indexed columns, the
value is estimated using a probabilistic counting method. -1 if statistics have
not been gathered. This is an updateable column.

CHAR(8) Second highest value of the column. Blank if statistics have not been
gathered. If the key has a non-character data type, the data may not be
printable. This is an updateable column.

CHAR(8) Second lowest value of the column. Blank if statistics have not been
gathered. If the key has a non-character data type, the data may not be
printable. This is an updateable column.

260 082 SQL Reference

Column Name Data Type Description

UPDATES CHAR(1) Whether the column can be updated:

N no
y yes

(The value is N only if the column is part of the key of a partitioned index or
is derived from a function or expression. Thus the value can be Y for
columns of a read-only view. N also applies to catalog columns that are not
updateable.)

IBMREQD CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes

REMARKS VARCHAR(254) A character string provided by the user with the COMMENT ON statement.

DEFAULT CHAR(1) Whether the column has a default value (null or nonnull):
N no
y yes

KEY SEQ SMALLINT The column's numerical position within the table's primary key. 0 if it is not
part of a primary key.

FOREIGN KEY CHAR(1) Contains B if the column contains bit data. All other values indicate that the
column does not contain bit data. This is an updateable column.

FLDPROC CHAR(1) Whether the column has a field procedure:
N no
y yes
This field is blank for views.

LABEL VARCHAR(30) The column label as given by a LABEL ON statement; otherwise it is an
empty string.

Appendix C. 082 Catalog Tables 261

SYSIBM.SYSCOPY Table
The SYSIBM.SYSCOPY table contains information needed for recovery.

Column Name Data Type Description

DBNAME CHAR(8) Name of the database.

TS NAME CHAR(8) Name of the table space.

DSNUM INTEGER Data set number within the table space. For partitioned table spaces, this
corresponds to partition number.

ICTYPE CHA~(1) Operation type:

F full image copy
I incremental image copy
p partial recovery point
Q QUIESCE
R LOAD REPLACE LOG(YES)
w REORG LOG(NO)
x REORG LOG(YES)
y LOAD LOG(NO)
z LOAD LOG(YES)

ICDATE CHAR(6) Date of the entry in the form yymmdd.

START_RBA CHAR(6) A 48-bit positive integer containing the relative byte location of a point in the
D82 recovery log. The indicated point is: . For ICTYPE I or F, the starting point for all updates since the image copy

was taken . For ICTYPE P, the point after the log-apply phase of point-in-time
recovery . For ICTYPE Q, the point after all data sets have been successfully
quiesced . For other values of ICTYPE, the end of the log before the start of the
RELOAD phase of the LOAD or REORG utility.

FILESEQNO INTEGER Tape file sequence number of the copy.

DEVTYPE CHAR(8) Device type the copy is on.

18MREQD CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes

DSNAME CHAR(44) The name of the data set.

ICTIME CHAR(6) The time at which this row was inserted, in the form hhmmss. The insertion
takes place after the completion of the operation that the row represents.
ICTIME is blank for any row which was migrated from Version 1 Release 1
D82.

SHRLEVEL CHAR(1) SHRLEVEL parameter on COPY (for ICTYPE For I only):
c change
R reference
blank does not describe an image copy or was migrated from Version 1

Release 1.

DSVOLSER VARCHAR(1784) The volume serial numbers of the data set. A list of 6-byte numbers
separated by commas.

TIMESTAMP TIMESTAMP The date and time when the row was inse.rted. This is the date and time
recorded in ICDATE and ICTIME. The use of TIMESTAMP is recommended
over that of ICDATE and ICTIME, because the latter two columns may be
deleted in subsequent D82 releases.

262 082 SQL Reference

SYSIBM.SYSDATABASE Table

Column Name

NAME

CREATOR

STGROUP

BPOOL

DBID

IBMREQD

CREATEDBY

The SYSIBM.SYSDATABASE table contains one row for each database, except for
database DSNDB01.

Data Type Description

CHAR(8) Database name.

CHAR(8) Authorization ID of the owner of the database.

CHAR(8) Name of the default storage group of the database; blank for a system
database.

CHAR(8) Name of the default buffer pool of the database; blank for a system
database.

SMALLINT Internal identifier of the database.

CHAR(1) Whether the row came from the basic machine-readable material (MAM)
tape:
N no
y yes

CHAR(8) Primary authorization ID of the user who created the database.

Appendix C. 082 Catalog Tables 263

SYSIBM.SYSDBAUTH Table
The SYSIBM.SYSDBAUTH table records the privileges held by users over
databases.

Column Name Data Type Description

GRANT OR CHAR(8) Authorization ID of the user who granted the privileges.

GRANTEE CHAR(8) Authorization ID of the user who holds the privileges, or the name of
an application plan that uses the privileges.

NAME CHAR(8) Database name.

TIMESTAMP CHAR(12) Time at which the privileges were granted (internal timestamp format).

DATEGRANTED CHAR(6) Date the privileges were granted; in the form yymmdd.

TIMEGRANTED CHAR(8) Time the privileges were granted; in the form hhmmssth.

GRANTEETYPE CHAR(1) Meaning:
blank GRANTEE is an authorization ID
p GRANTEE is an application plan

AUTHHOWGOT CHAR(1) Authorization level of the user from whom the privileges were
received. Note: This is the authorization level used by the
authorization subcomponent. It is not necessarily the highest
authorization level of the grantor.
blank not applicable
c DBCTL
D DBADM
M DBM Al NT
s SYSADM

CREATETABAUTH CHAR(1) Whether the GRANTEE can create tables within the database:
blank privilege is not held
G privilege held with the GRANT option
y privilege is held without the GRANT option

CREATETSAUTH CHAR(1) Whether the GRANTEE can create table spaces within the database:
blank privilege is not held
G privilege held with the GRANT option
y privilege is held without the GRANT option

DBADMAUTH CHAR(1) Whether the GRANTEE has DBADM authority over the database:
blank privilege is not held
G privilege held with the GRANT option
y privilege is held without the GRANT option

DBCTRLAUTH CHAR(1) Whether the GRANTEE has DBCTRL authority over the database:
blank privilege is not held
G privilege held with the GRANT option
y privilege is held without the GRANT option

DBMAINTAUTH CHAR(1) Whether the GRANTEE has DBMAINT authority over the database:
blank privilege is not held
G privilege held with the GRANT option
y privilege is held without the GRANT option

DISPLAYDBAUTH CHAR(1) Whether the GRANTEE can issue the DISPLAY command for the
database:
blank privilege is not held
G privilege held with the GRANT option
y privilege is held without the GRANT option

DROPAUTH CHAR(1) Whether the GRANTEE can drop the database:
blank privilege is not held
G privilege held with the GRANT option
y privilege is held without the GRANT option

IMAGCOPYAUTH CHAR(1) Whether the GRANTEE can use the COPY, MERGECOPY, MODIFY, and
QUIESCE utilities on the database:
blank privilege is not held
G privilege held with the GRANT option
y privilege is held without the GRANT option

264 082 SQL Reference

Column Name Data Type Description

LOADAUTH CHAR(1) Whether the GRANTEE can use the LOAD utility to load tables in the
database:
blank privilege is not held
G privilege held with the GRANT option
y privilege is held without the GRANT option

REORGAUTH CHAR(1) Whether the GRANTEE can use the REORG utility to reorganize table
spaces and indexes in the database:
blank privilege is not held
G privilege held with the GRANT option
y privilege is held without the GRANT option

RECOVERDBAUTH CHAR(1) Whether the GRANTEE can use the RECOVER and REPORT utilities on
table spaces of the database:
blank privilege is not held
G privilege held with the GRANT option
y privilege is held without the GRANT option

RE PAI RAUTH CHAR(1) Whether the GRANTEE can use the DIAGNOSE and REPAIR utilities on
table spaces and indexes in the database:
blank privilege is not held
G privilege held with the GRANT option
y privilege is held without the GRANT option

STARTDBAUTH CHAR(1) Whether the GRANTEE can use the START command against the
database:
blank privilege is not held
G privilege held with the GRANT option
y privilege is held without the GRANT option

STATSAUTH CHAR(1) Whether the GRANTEE can use the CHECK and RUNSTATS utilities
against the database:
blank privilege is not held
G privilege held with the GRANT option
y privilege is held without the GRANT option

STOPAUTH CHAR(1) Whether the GRANTEE can issue the STOP command against the
database:
blank privilege is not held
G privilege held with the GRANT option
y privilege is held without the GRANT option

IBMREQD CHAR(1) Whether the row came from the basic machine-readable material
(MRM) tape:
N no
y yes

Appendix C. 082 Catalog Tables 265

SYSIBM.SYSDBRM Table
The SYSIBM.SYSDBRM table contains one row for each DBRM (database request
module) of each application plan.

Column Name Data Type Description

NAME CHAR(8) Name of the DBRM.

TIMESTAMP CHAR(8) Time of precompilation in internal format.

PDSNAME CHAR(44) Name of the partitioned data set of which the DBRM is a member.

PL NAME CHAR(8) Name of the application plan of which this DBRM is a part.

PLCREATOR CHAR(8) Authorization ID of the owner of the application plan.

PRECOMPTIME CHAR(8) Time of precompilation in the form hhmmssth.

PRECOMPDATE CHAR(6) Date of precompilation in the form yymmdd.

QUOTE CHAR(1) Whether the SOL escape character is the apostrophe or the quotation mark:
N apostrophe
y quotation mark

COMMA CHAR(1) Whether the decimal point is the period or the comma:
N period
y comma

HOSTLANG CHAR(1) The host language used:
B assembler language
c COBOL
D c
F FORTRAN
p PL/I
2 VS COBOL II

IBMREQD CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes

CHAR SET CHAR(1) Indicates the character set in use when the program was precompiled:
K Katakana
A Alphanumeric

MIXED CHAR(1) Indicates if the MIXED option was in effect when the program was
precompiled:
N no
y yes

266 DB2 SOL Reference

SYSIBM.SYSFIELDS Table

Column Name

TBCREATOR

TBNAME

COL NO

NAME

FLDTYPE

LENGTH

SCALE

FLDPROC

WORKAREA

IBMREQD

EXITPARML

PARM LIST

EXITPARM

The SYSIBM.SYSFIELDS table contains one row for every column that has a field
procedure. It may also contain up to ten additional rows for every column that
serves as the first column in an index key. The additional rows, which contain
statistics, may be added when the index is scanned by the RUNSTATS utility. The
column for the added rows need not have a field procedure.

Data Type Description

CHAR(8) Authorization ID of the owner of the table that contains the column.

VARCHAR(18) Name of the table that contains the column.

SMALLINT Numerical place of this column in the table.

VARCHAR(18) Name of the column.

CHAR(8) Data type of the encoded values in the field.

INTEGER large integer
SMALLINT small integer
FLOAT floating-point
CHAR fixed-length character string
VARCHAR varying-length character string
DECIMAL decimal
GRAPHIC fixed-length graphic string
VARG varying-length graphic string

SMALLINT The length attribute of the field; or, for a decimal field, its precision. The
number does not include the internal prefixes that may be used to record
actual length and null state.

INTEGER 4
SM ALLI NT 2
FLOAT 8
CHAR length of string
VARCHAR maximum length of string
DECIMAL precision of number
GRAPHIC number of DBCS characters
VARG maximum number of DBCS characters

SMALLINT Scale if FLDTYPE is DECIMAL; otherwise, 0.

CHAR(8) For a row describing a field procedure, the name of the procedure. Blank
for a statistical row.

SMALLINT For a row describing a field procedure, the size, in bytes, of the work area
required for the encoding and decoding of the procedure. 0 for a statistical
row.

CHAR(1) Whether the row came from the basic machine-readable material (MAM)
tape:
N no
y yes

SMALLINT For a row describing a field procedure, the length of the field procedure
parameter value block. For a statistical row, the percentage of times, times
100 that the column has the value contained in EXITPARM.

VARCHAR(254) For a row describing a field procedure, the parameter list following
FIELDPROC in the statement that created the column, with nonsignificant
blanks removed. For a statistical row, a string of length zero.

VARCHAR(1530) For a row describing a field procedure, the parameter value block of the
field procedure (the control block passed to the field procedure when it is
invoked). For a statistical row, the column value whose frequency appears
in EXITPARML.

Appendix C. DB2 Catalog Tables 267

SYSIBM.SYSFOREIGNKEYS Table

Column Name

CREATOR

TBNAME

RELNAME

COLNAME

COL NO

COL SEQ

IBMREQD

The SYSIBM.SYSFOREIGNKEYS table contains one row for every column of every
foreign key.

Data Type Description

CHAR(B) Authorization ID of the owner of the table that contains the column.

VARCHAR(18) Name of the table that contains the column.

CHAR(B) Constraint name for the constraint for which the column is part of the foreign
key.

VARCHAR(18) Name of the column.

SMALLINT Numerical place of the column in its table.

SMALLINT Numerical place of the column in the foreign key.

CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
y yes
N no

268 082 SQL Reference

SYSIBM.SYSINDEXES Table
The SYSIBM.SYSINDEXES table contains one row for every index.

Column Name Data Type Description

NAME VARCHAR(18) Name of the index.

CREATOR CHAR(S) Authorization ID of the owner of the index.

TB NAME VARCHAR(18) Name of the table on which the index is defined.

TBCREATOR CHAR(S) Authorization ID of the owner of the table.

UNIQUERULE CHAR(1) Whether the index is unique:
D no (duplicates are allowed)
u yes
p primary index (unique)

COL COUNT SMALLINT The number of columns in the key.

CLUSTERING CHAR(1) Whether CLUSTER was specified when the index was created:
N no
y yes

CLUSTERED CHAR(1) Whether the table is actually clustered by the index:
N no: 95% or fewer of the rows are in clustering order.
y yes: More than 95% of the rows are in clustering order.
The entry can be changed by the RUNSTATS utility.

DBID SMALLINT Internal identifier of the database.

0810 SMALLINT Internal identifier of the index fan set descriptor.

ISOBID SMALLINT Internal identifier of the index page set descriptor.

DBNAME CHAR(S) Name of the database that contains the index.

INDEXSPACE CHAR(8) Name of the index space.

FIRSTKEYCARD INTEGER Number of distinct values of the first key column. -1 before statistics are
gathered. This is an updateable column.

FULLKEYCARD INTEGER Number of distinct values of the key. -1 before statistics are gathered. This
is an updateable column.

NLEAF INTEGER Number of active leaf pages in the index. -1 before statistics are gathered.
This is an updateable column.

NLEVELS SMALLINT Number of levels in the index tree. If the index is partitioned, it is the
number of levels in the index tree. -1 before statistics are gathered. This is
an updateable column.

SPOOL CHAR(S) Name of the buffer pool used for the index.

PGSIZE SM AL LINT Size of subpages in the index: 256, 512, 1024, 2048, or 4096

ERASERULE CHAR(1) Whether the data sets are erased when dropped. The value is meaningless
if the index is partitioned.
N no
y yes

DSETPASS CHAR(8) The password for the data sets of the index.

CLOSE RULE CHAR(1) Whether the data sets are closed when the index is not in use:
N no
y yes

SPACE INTEGER Number of kilobytes of DASO storage allocated to the index, as determined
by the last execution of the STOSPACE utility. The value is 0 if the index is
not related to a storage group, or if STOSPACE has not been run. If the
index space is partitioned, and different storage groups have been specified,
this is the number of kilobytes of DASO storage allocated to the partition as
determined by the last execution of the STOSPACE utility.

IBMREQD CHAR(1) Whether the row came from the basic machine-readable material (MAM)
tape:
N no
y yes
c V2R1 dependency indicator; not from MRM tape.

Appendix C. 082 Catalog Tables 269

Column Name Data Type Description

CLUSTERRATIO SMALLINT Percentage of rows that are in clustering order. 0 before statistics are
gathered. This column is updateable.

CREATEDBY CHAR(8) Primary authorization ID of the user who created the index.

270 082 SQL Reference

SYSIBM.SYSINDEXPART Table

Column Name

PARTITION

IXNAME

IXCREATOR

PQTY

SQTY

STORTYPE

STORNAME

VCATNAME

CARD

FAROFFPOS

LEAFDIST

NEAROFFPOS

IBMREQD

LIMIT KEY

FREE PAGE

PCTFREE

The SYSIBM.SYSINDEXPART table contains one row for each unpartitioned index
and one row for each partition of a partitioned index.

Data Type Description

SMALLINT Partition number; 0 if index is not partitioned.

VARCHAR(18) Name of the index.

CHAR(B) Authorization ID of the owner of the index.

INTEGER Primary space allocation in units of 4K-byte storage blocks. Zero if a
storage group is not used.

SMALLINT Secondary space allocation in units of 4K-byte storage blocks. Zero if a
storage group is not used.

CHAR(1) Type of storage allocation:
E explicit and STORNAME names a ICF catalog
I implicit and STORNAME names a storage group

CHAR(B) Name of storage group or ICF catalog used for space allocation.

CHAR(B) Name of ICF catalog used for space allocation.

INTEGER Number of rows referenced by the index or partition. -1 if statistics not
gathered.

INTEGER Number of referenced rows far from optimal position because of an insert
into a full page. -1 if statistics not gathered.

INTEGER 100 times the average number of pages between successive leaf pages of
the index. -1 if statistics not gathered.

INTEGER Number of referenced rows near, but not at optimal position, because of an
insert into a full page.

CHAR(1) Whether the row came from the basic machine-readable material (MAM)
tape:
N no
y yes

VARCHAR(512) The limit key of the partition in an internal format. 0 if the index is not
partitioned.

SM ALLI NT The number of pages that are loaded before a page is left as free space.

SMALLINT The percentage of each subpage or non leaf page that is left as free space.

Appendix C. 082 Catalog Tables 271

SYSIBM.SYSKEYS Table
The SYSIBM.SYSKEYS table contains one row for each column of an index key.

Column Name Data Type Description

IXNAME VARCHAR(18) Name of the index.

IXCREATOR CHAR(8) Authorization ID of the owner of the index.

COL NAME VARCHAR(18) Name of the column of the key.

COL NO SMALLINT Numerical p9sition of the column in the row; for example 4 (out of 10).

COLSEQ SM AL LINT Numerical position of the column in the key; for example 4 (out of 10).

ORDERING CHAR(1) Order of the column in the key:
A ascending
D descending

IBMREQD CHAR(1) ~hether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes

272 082 SOL Reference

SYSIBM.SYSLINKS Table
The SYSIBM.SYSLINKS table contains one row for every link in the 082 catalog.

Column Name Data Type Description

CREATOR CHAR(8) Authorization ID of the owner of the child table of the link.

TBNAME VARCHAR(18) Name of the child table in the link.

LINKNAME CHAR(8) Name of the link.

PARENTNAME VARCHAR(18) Name of the parent table in the link.

PARENTCREATOR CHAR(8) Authorization ID of the owner of the parent table of the link.

CHILDSEQ SMALLINT Cluster order of the child table within its parent table.

DBNAME CHAR(8) Name of the database containing the link.

DBID SM ALLI NT Internal DB2 identifier of the database.

OBID SMALLINT Internal DB2 identifier of the link.

COL COUNT SM ALLI NT Number of columns in the ordering key for the link. 0 if there is no
ordering key.

INSERTRULE CHAR(1) Type of insert rule for the link:
F FIRST
L LAST
0 ONE
u UNIQUE

IBMREQD CHAR(1) Whether the row came from the basic machine-readable material
(MRM) tape:
N no
y yes

Appendix C. 082 Catalog Tables 273

SYSIBM.SYSPLAN Table
The SYSIBM.SYSPLAN table contains one row for each application plan.

Column Name Data Type Description

NAME CHAR(S) Name of the application plan.

CREATOR CHAR(S) Authorization ID of the owner of the application plan.

BINDDATE CHAR(6) Date on which the most recent BIND or REBIND was performed in the form
yymmdd.

VALIDATE CHAR(1) Whether validity checking can be deferred until run time:
B all checking must be performed during BIND
R checking is deferred if tables, views, or privileges do not exist at bind

time

ISOLATION CHAR(1) The isolation level:
R repeatable read
s cursor stability

VALID CHAR(1) Whether the application plan is valid (whether it can be run without
rebinding):
N no
y yes
A table or table space has been altered, but no rebinding is needed.

OPERATIVE CHAR(1) Whether the application plan can be allocated:
N no; an explicit BIND or REBIND is required before the plan can be

allocated
y yes

BINDTIME CHAR(8) Time of the BIND in the form hhmmssth.

PLSIZE INTEGER Size of the base sections of the plan, in bytes. Used by DB2 to allocate
storage for the control structure.

IBMREQD CHAR(1) Whether the row came from the basic machine-readable material (MAM)
tape:
N no
y yes
B V1R3 dependency indicator; not from MRM tape
c V2R1 dependency indicator; not from MRM tape
D V2R2 dependency indicator; not from MAM tape

AVGSIZE INTEGER Average size, in bytes, of those sections9 of the plan that contain DML
statements processed at bind time.

ACQUIRE CHAR(1) When resources are acquired:
A at allocation
u at first use

RELEASE CHAR(1) When resources are released:
c at commit
D at deallocation

EX REFERENCE CHAR(1) Not used. All values are N.

EXSTRUCTURE CHAR(1) Not used. All values are N.

EX COST CHAR(1) Not used. All values are N.

EX PLAN CHAR(1) Whether the plan was bound with EXPLAIN YES:
N no
y yes

EXPREDICATE CHAR(1) Not used. All values are N.

BOUNDBY CHAR(8) The primary authorization ID of the binder of the plan.

9 Plans are divided into sections. The base section of the plan must be in the EDM pool during the entire time the
application program is executing. Other sections of the plan, corresponding roughly to sets of related SOL
statements, are brought into the pool as needed.

27 4 082 SOL Reference

SYSIBM.SYSPLANAUTH Table

Column Name

GRANTOR

GRANTEE

NAME

TIMESTAMP

DATEGRANTED

Tl MEG RANTED

GRANTEETYPE

AUTHHOWGOT

BINDAUTH

EXECUTEAUTH

IBMREQD

The SYSIBM.SYSPLANAUTH table records the privileges held by users over
application plans.

Data Type Description

CHAR(8) Authorization ID of the user who granted the privileges.

CHAR(8) Authorization ID of the user who holds the privileges, or name of a plan that
uses the privileges.

CHAR(8) Name of the application plan on which the privileges are held.

CHAR(12) Time at which the privileges were granted (internal timestamp format).

CHAR(6) Date the privileges were granted; in the form yymmdd.

CHAR(8) Time the privileges were granted; in the form hhmmssth.

CHAR(1) Meaning:
blank GRANTEE is an authorization ID
p GRANTEE is an application plan

CHAR(1) Authorization level of the user from whom the privileges were received.
Note: This is the authorization level used by the authorization
subcomponent. It is not necessarily the highest authorization level of the
grantor.
blank not applicable
c DBCTL
D DBADM
M DBMAINT
s SYSADM

CHAR(1) Whether the GRANTEE can use the BIND, REBIND, or FREE commands
against the plan:
blank privilege is not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

CHAR(1) Whether the GRANTEE can run programs that use the application plan:
blank prtvilege is not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes

Appendix C. 082 Catalog Tables 275

SYSIBM.SYSPLANDEP Table

Column Name

BNAME

BCREATOR

BTYPE

DNA ME

IBMREQD

The SYSIBM.SYSPLANDEP table records the dependencies of plans on tables,
views, aliases, synonyms, table spaces, and indexes.

Data Type Description

VARCHAR(18) Name of an object the plan is dependent on.

CHAR(8) If BNAME is a table space, its database. Otherwise, the authorization ID of
the owner of BNAME.

CHAR(1) Type of object BNAME:
A alias
I index
R table space
s synonym
T table
v view

CHAR(8) Name of the plan.

CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes

276 082 SOL Reference

SYSIBM.SYSRELS Table
The SYSIBM.SYSRELS table contains one row for every referential constraint.

Column Name Data Type Description

CREATOR CHAR(8) Authorization ID of the owner of the dependent table of the referential
constraint.

TB NAME VARCHAR(18) Name of the dependent table of the referential constraint.

RELNAME CHAR(8) Constraint name

REFTBNAME VARCHAR(18) Name of the parent table of the referential constraint

REFTBCREATOR CHAR(8) Authorization ID of the owner of the parent table.

COLCOUNT SM ALLI NT Number of columns in the foreign key.

DELETERULE CHAR(1) Type of delete rule for the referential constraint.
c CASCADE
R RESTRICT
N SET NULL

IBMREOD CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes

RELOBID1 SM ALLI NT Internal identifier of the constraint with respect to the database that contains
the parent table.

RELOBID2 SMALLINT Internal identifier of the constraint with respect to the database that contains
the dependent table.

TIMESTAMP TIMESTAMP The date and time the constraint was defined. If the constraint is between
catalog tables, the value is 1985-04-01-00.00.00.000000.

Appendix C. 082 Catalog Tables 277

SYSIBM.SYSRESAUTH Table

Column Name

GRANTOR

GRANTEE

QUALIFIER

NAME

GRANTEETYPE

AUTHHOWGOT

OBTYPE

TIMESTAMP

DATEGRANTED

TIMEGRANTED

USEAUTH

IBMREQD

The SYSIBM.SYSRESAUTH table records the privileges held by users over buffer
pools, storage groups, and table spaces.

Data Type Description

CHAR(8) Authorization ID of the user who granted the privilege.

CHAR(8) Authorization ID of the user who holds the privilege, or name of an
application plan that uses the privilege.

CHAR(8) This column contains blanks if the row describes a privilege over a buffer
pool or storage group. It contains the qualifier of the table space name (the
database name), if the row describes a privilege over a table space.

CHAR(8) Name of the storage group, table space, or buffer pool.

CHAR(1) Meaning:
blank GRANTEE is an authorization ID
p GRANTEE is an application plan

CHAR(1) Authorization level of the user from whom the privileges were received.
Note: This is the authorization level used by the authorization
subcomponent. It is not necessarily the highest authorization level of the
grantor.
blank not applicable
c DBCTL
D DBADM
M DBMAINT
s SYSADM

CHAR(1) Object type:
B buffer pool
s storage group
R table space

CHAR(12) Time at which the privilege was granted (internal timestamp format).

CHAR(6) Date the privilege was granted; in the form yymmdd.

CHAR(8) Time the privilege was granted; in the form hhmmssth.

CHAR(1) Whethe·r the privilege is held with the GRANT option:
G the privilege is held with the GRANT option
y the privilege is held without the GRANT option

CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes

278 082 SOL Reference

SYSIBM.SYSSTMT Table

Column Name

NAME

PLNAME

PLCREATOR

SEO NO

STMTNO

SECTNO

IBMREOD

TEXT

The SYSIBM.SYSSTMT table contains one or more rows for each SOL statement of
each DBRM.

Data Type Description

CHAR(B) Name of the DBRM.

CHAR(B) Name of the application plan.

CHAR(B) Authorization ID of the owner of the application plan.

SM AL LINT The sequence number of this row; the first portion of the SOL text is stored
on row one and successive rows have increasing values for SEONO.

SMALLINT Statement number of the SOL statement in the source program.

SMALLINT The section number of the section within the DBRM identified in the NAME
column.

CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes

VARCHAR(254) The text or portion of the text of the SOL statement.

Appendix C. 082 Catalog Tables 279

SYSIBM.SYSSTOGROUP Table
The SYSIBM.SYSSTOGROUP table contains one row for each storage group.

Column Name Data Type Description

NAME CHAR(8) Name of the storage group.

CREATOR CHAR(8) Authorization ID of the owner of the storage group.

VCATNAME CHAR(8) Name of the ICF catalog.

VPASSWORD CHAR(8) Password for the ICF catalog.

SPACE INTEGER Number of kilobytes of DASO storage allocated to the storage group as
determined by the last execution of the STOSPACE utility.

SPCDATE CHAR(5) Date when the SPACE column was last updated, in the form yyddd.

IBMREQD CHAR{1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes

CREATEDBY CHAR{8) Primary authorization ID of the user who created the storage group.

280 082 SOL Reference

SYSIBM.SYSSYNONYMS Table

Column Name

NAME

CREATOR

TB NAME

TBCREATOR

IBMREQD

CREATEDBY

The SYSIBM.SYSSYNONYMS table contains one row for each synonym of a table
or view.

Data Type Description

VARCHAR(18) Synonym for the table or view.

CHAR(8) Authorization ID of the owner of the synonym.

VARCHAR(18) Name of the table or view.

CHAR(8) Authorization ID of the owner of the table or view.

CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes

CHAR(8) Primary authorization ID of the user who created the synonym.

Appendix C. 082 Catalog Tables 281

SYSIBM.SYSTABAUTH Table

Column Name

GRANTOR

GRANTEE

GRANTEETYPE

DBNAME

SCREATOR

STNAME

TCREATOR

TTNAME

AUTHHOWGOT

TIMESTAMP

DATEGRANTED

TIMEGRANTED

UPDATECOLS

ALTERAUTH

DELETEAUTH

The SYSIBM.SYSTABAUTH table records the privileges held by users on tables
and views.

Data Type Description

CHAR(8) Authorization ID of the user who granted the privileges. Could also be
PUBLIC, or PUBLIC followed by an asterisk.10

CHAR(8) Authorization ID of the user who holds the privileges or the name of a plan
that uses the privileges. PUBLIC for a grant to PUBLIC. PUBLIC followed by
an asterisk for a grant to PUBLIC AT ALL LOCATIONS.

CHAR(1) Meaning:
blank GRANTEE is an authorization ID
p GRANTEE is an application plan

CHAR(8) If the privileges were received from a user with DBADM, DBCTRL, or
DBMAINT authority, DBNAME is the name of the database on which the
GRANTOR has that authority. Otherwise, DBNAME is blank.

CHAR(8) If the row of SYSIBM.SYSTABAUTH was created as a result of a CREATE
VIEW statement, SCREATOR is the authorization ID of the owner of a table or
view referenced in the CREATE VIEW statement. Otherwise, SCREATOR is
the same as TCREATOR.

VARCHAR(18) If the row of SYSIBM.SYSTABAUTH was created as a result of a CREATE
VIEW statement, STNAME is the name of a table or view referenced in the
CREATE VIEW statement. Otherwise, STNAME is the same as TTNAME.

CHAR(8) Authorization ID of the owner of the table or view.

VARCHAR(18) Name of the table or view.

CHAR(1) Authorization level of the user from whom the privileges were received.
Note: This is the authorization level used by the authorization
subcomponent. It is not necessarily the highest authorization level of the
grantor.
blank not applicable
s SYSADM
D DBADM
c DBCTL
M DBMAINT

CHAR(12) Time at which the privileges were granted (internal timestamp format).

CHAR(6) Date the privileges were granted, in the form yymmdd.

CHAR(8) Time the privileges were granted, in the form hhmmssth.

CHAR(1) The value of this column is blank if the value of UPDATEAUTH applies
uniformly to all columns of the table or view. The value is an asterisk(*) if
the value of UPDATEAUTH applies to some columns but not to others. In this
case, rows will exist in SYSIBM.SYSCOLAUTH with matching timestamps
which list the columns on which update privileges have been granted.

CHAR(1) Whether the GRANTEE can alter the table:
blank privilege not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

CHAR(1) Whether the GRANTEE can delete rows from the table or view:
blank not applicable, or privilege not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

10 PUBLIC followed by an asterisk (PUBLIC*) denotes PUBLIC AT ALL LOCATIONS. For conditions under which
GRANTOR can be PUBLIC or PUBLIC" see Section 5 (Volume 2) of Administration Guide.

282 DB2 SQL Reference

Column Name Data Type Description

INDEXAUTH CHAR(1) Whether the GRANTEE can create indexes on the table:
blank not applicable, or privilege not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

INSERTAUTH CHAR(1) Whether the GRANTEE can insert rows into the table or view:
blank privilege not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

SELECTAUTH CHAR(1) Whether the GRANTEE can select rows from the table or view:
blank privilege not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

UPDATEAUTH CHAR(1) Whether the GRANTEE can update rows of the table or view:
blank privilege not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

IBMREQD CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes

GRANTEELOCATION CHAR(16) Not used.

Appendix C. DB2 Catalog Tables 283

SYSIBM.SYSTABLEPART Table

Column Name

PARTITION

TSNAME

DBNAME

IXNAME

IXCREATOR

POTY

SQTY

STORTYPE

STORNAME

VCATNAME

CARD

FARINDREF

NEARINDREF

PERCACTIVE

PERCDROP

IBMREQD

LIMITKEY

FREEPAGE

PCTFREE

CHECKFLAG

CHECKRID

The SYSIBM.SYSTABLEPART table contains one row for each unpartitioned table
space and one row for each partition of a partitioned table space.

Data Type Description

SMALLINT Partition number; 0 if table space is not partitioned.

CHAR(8) Name of the table space.

CHAR(8) Name of the database containing the table space.

VARCHAR(18) Name of the partitioned index. This column is blank if the table space is not
partitioned.

CHAR(8) Authorization ID of the owner of the index. This column is blank if the table
space is not partitioned.

INTEGER Primary space allocation in units of 4K-byte storage blocks. The value of
this column is 0 if a storage group is not used.

SMALLINT Secondary space allocation in units of 4K-byte blocks. The value of this
column is 0 if a storage group is not used.

CHAR(1) Type of storage allocation:
E explicit (storage group not used)
I implicit (storage group used)

CHAR(8) Name of storage group used for space allocation. Blank if storage group not
used.

CHAR(8) Name of ICF catalog used for space allocation.

INTEGER Number of rows in the table space or partition. -1 if statistics not gathered.

INTEGER Number of rows that have been relocated far from their original page. -1 if
statistics not gathered.

INTEGER Number of rows that have been relocated near their original page. -1 if
statistics not gathered.

SMALLINT Percentage of space occupied by rows of data from active tables. -1 if
statistics not gathered.

SMALLINT Percentage of space occupied by rows of dropped tables. -1 if statistics
have not been gathered. 0 for segmented table spaces.

CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes

VARCHAR(512) The limit key of the partition in an external format. 0 if the table space is not
partitioned.

SMALLINT The number of pages loaded before a page is left as free space.

SM ALLI NT The percentage of each page left as free space.

CHAR(1) c The table space partition is in CHECK PENDING mode and
there are rows that may violate referential constraints.

blank Blank if the table space is not a partition or does not contain
rows that may violate referential constraints.

CHAR(4) CHECKRID is blank if the table or partition is not in a check pending state
(the CHECKFLAG is blank) or if the table space is not partitioned.
Otherwise, it is the RID of the first row of the table space partition that may
violate referential constraints or the value is X'OOOOOOOO' indicating that any
row may violate referential constraints.

284 082 SQL Reference

SYSIBM.SYSTABLES Table
The SYSIBM.SYSTABLES table contains one row for each table, view, or alias.

Column Name Data Type Description

NAME VARCHAR(18) Name of the table, view, or alias.

CREATOR CHAR(8) Authorization ID of the owner of the table, view, or alias.

TYPE CHAR(1) Type of object:

A alias
T table
v view

DB NAME CHAR(8) For a table, or a view of tables, the name of the database that contains the
table space named in TSNAME. For an alias, or a view of a view, the value
is DSNDB06.

TSNAME CHAR(8) For a table, or a view of one table, the name of the table space that contains
the table. For a view of more than one table, the name of a table space that
contains one of the tables. For a view of a view, the value is SYSVIEWS. For
an alias, it is SYSDBAUT.

DBID SMALLINT Internal identifier of the database; 0 if the row describes a view or alias.

OBID SMALLINT Internal identifier of the table; 0 if the row describes a view or alias.

COL COUNT SM ALLI NT Number of columns in the table or view. 0 if the row describes an alias.

EDPROC CHAR(8) Name of the edit procedure; blank if the row describes a view or alias or a
table without an edit procedure.

VALPROC CHAR(8) Name of the validation procedure; blank if the row describes a view or alias
or a table without a validation procedure.

CLUSTERTYPE CHAR(1) Not used; all values are blank.

CLUSTER RID INTEGER Not used; all values are 0.

CARD INTEGER Total number of rows in the table. -1 if statistics not gathered or the row
describes a view or alias. This is an updateable column.

NPAGES INTEGER Total number of pages on which rows of the table appear. -1 if statistics not
gathered or the row describes a view or alias. This is an updateable
column.

PCTPAGES SM AL LINT Percentage of total pages of the table space that contain rows of the table. If
the table space is segmented, the percentage of total pages in the set of
segments assigned to the table. -1 if statistics not gathered or the row
describes a view or alias. This is an updateable column.

IBMREQD CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes
B V1R3 dependency indicator; not from MRM tape
c V2R1 dependency indicator; not from MRM tape
D V2R2 dependency indicator; not from MRM tape

REMARKS VARCHAR(254) A character string provided by the user with the COMMENT statement.

PARENTS SMALLINT The number of relationships in which the table is a dependent. O if the row
describes a view or alias.

CHILDREN SMALLINT The number of relationships in which the table is a parent. 0 if the row
describes a view or alias.

KEYCOLUMNS SMALLINT The number of columns in the table's primary key. O if the row describes a
view or alias.

Appendix C. 082 Catalog Tables 285

Column Name Data Type Description

RECLENGTH SMALLINT The maximum length of any record in the table. Length is 8+N+L, where: . The number 8 accounts for the header (6 bytes) and the id map entry (2
bytes). . N is 10 if the table has an edit procedure, or 0 otherwise . . L is the sum of the maximum column lengths. In determining a column's
maximum length, add a byte for the null indicator if the column allows
nulls. Add 2 bytes for its length indicator if the column has a
varying-length data type (for example, VARCHAR). For more on column
lengths, see "Data Types" on page 25.

The value is 0 if the row describes a view or alias.

For maximum row and record sizes, see "Notes" on page 151.

STATUS CHAR(1) I The table's definition is incomplete because it lacks a primary
index.

x The table has a primary index.
blank Table has no primary key, or is a catalog table, or the row

describes a view or alias.

KEY OB ID SMALLINT Internal DB2 identifier of the index that enforces uniqueness of the table's
primary key; 0 if not applicable.

LABEL VARCHAR(30) The label as given by a LABEL ON statement; otherwise an empty string.

CHECKFLAG CHAR(1) c The table space containing the table is in CHECK PENDING
mode and there are rows in the table that may violate
referential constraints.

blank The table contains no rows that violate referential constraints,
or the row describes a view or alias.

CHECKRID CHAR(4) Blank if the table is not in a check pending state (the CHECKFLAG is blank),
if the table space is partitioned, or if the row describes a view or alias.
Otherwise, it is the RID of the first row of the table that may violate
referential constraints or the value is X'OOOOOOOO' indicating that any row
may violate referential constraints.

AUDITING CHAR(1) Value of the audit option:

A AUDIT ALL
c AUDIT CHANGE
blank AUDIT NONE

CREATEDBY CHAR(8) Primary authorization ID of the user who created the table, view, or alias.

LOCATION CHAR(16) Blank for a table or view, and for an alias defined on a local object .
Location name of the object for an alias defined on a remote object.

TBCREATOR CHAR(8) For an alias, the authorization ID of the owner of the referenced table or
view; blank otherwise.

TBNAME VARCHAR(18) For an alias; the name for the referenced table or view; blank otherwise.

286 082 SQL Reference

SYSIBM.SYSTABLESPACE Table
The SYSIBM.SYSTABLESPACE table contains one row for each table space.

Column Name Data Type Description

NAME CHAR(8) Name of the table space.

CREATOR CHAR(8) Authorization ID of the owner of the table space.

DBNAME CHAR(8) Name of the database containing the table space.

DBID SM ALLI NT Internal identifier of the database which contains the table space.

0810 SM ALLI NT Internal identifier of the table space file descriptor.

PSID SM ALLI NT Internal identifier of the table space page set descriptor.

BPOOL CHAR(8) Name of the buffer pool used for the table space.

PARTITION SMALLINT Number of partitions of the table space; 0 if the table space is not
partitioned.

LOCKRULE CHAR(1) Lock size of the table space:
A any
p page
s table space
T table

PGSIZE SM ALLI NT Size of pages in the table space in kilobytes.

ERASERULE CHAR(1) Whether the data sets are to be erased when drdpped. The value is
meaningless if the table space is partitioned.
N no erase
y erase

STATUS CHAR(1) Availability status of the table space:
A available
c definition is incomplete because no partitioned index has been created
p table space is in CHECK PENDING mode
s table space is in CHECK PENDING mode with the scope less than the

entire table space.
T definition is incomplete because no table has been created

IMPLICIT CHAR(1) Whether the table space was created implicitly:
y yes
N no

NT ABLES SMALLINT Number of tables defined in the table space.

NACTIVE INTEGER Number of active pages in the table space. O if statistics are not gathered.

DSETPASS CHAR(8) The password for the data sets of the table space.

CLOSERULE CHAR(1) Whether the data sets are to be closed when the table space is not in use:
y yes
N no

SPACE INTEGER Number of kilobytes of DASO storage allocated to the table space, as
determined by the last execution of the STOSPACE utility. 0 if the table
space is not related to a storage group. If the table space is partitioned, and
different storage groups have been specified, this is the number of kilobytes
of DASO storage allocated to the partition as determined by the last
execution of the STOSPACE utility.

IBMREQD CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes
c V2R1 dependency indicator; not from MRM tape

ROOTNAME VARCHAR(18) For catalog use only.

ROOTCREATOR CHAR(8) For catalog use only.

SEGSIZE SMALLINT The number of pages in each segment of a segmented table space. Zero if
the table space is not segmented.

CREATEDBY CHAR(8) Primary authorization ID of the user who created the table space.

Appendix C. 082 Catalog Tables 287

SYSIBM.SYSUSERAUTH Table
The SYSIBM.SYSUSERAUTH table records the system privileges held by users.

Column Name Data Type Description

GRANTOR CHAR(8) Authorization ID of the user who granted the privileges.

GRANTEE CHAR(8) Authorization ID of the user who holds the privileges, or the name of a
plan that uses the privileges.

TIMESTAMP CHAR(12) Time at which the privileges were granted (internal timestamp format).

DATEGRANTED CHAR(6) Date the privileges were granted; in the form yymmdd.

TIMEGRANTED CHAR(8) Time the privileges were granted; in the form hhmmssth.

GRANTEETYPE CHAR(1) Meaning:
blank GRANTEE is an authorization ID
p GRANTEE is an application plan

AUTHHOWGOT CHAR(1) Authorization level of the user from whom the privileges were received.
Note: This is the authorization level used by the authorization
subcomponent. It is not necessarily the highest authorization level of the
grantor.
blank not applicable
s SYSADM
D DBADM
c DBCTL
M DBMAINT

ALTERBPAUTH CHAR(1) Not used.

BINDADDAUTH CHAR(1) Whether the GRANTEE can use the BIND command with the ADD option:
blank privilege is not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

BSDSAUTH CHAR(1) Whether the GRANTEE can issue the -RECOVER BSDS command:
blank privilege is not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

CREATEDBAAUTH CHAR(1) Whether the GRANTEE can create databases and automatically receive
DBADM authority over the new databases:
blank privilege is not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

CREATEDBCAUTH CHAR(1) Whether the GRANTEE can create new databases and automatically
receive DBCTRL authority over the new databases:
blank privilege is not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

CREATESGAUTH CHAR(1) Whether the GRANTEE can create new storage groups:
blank privilege is not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

DISPLAY AUTH CHAR(1) Whether the GRANTEE can use the -DISPLAY commands:
blank privilege is not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

RECOVERAUTH CHAR(1) Whether the GRANTEE can use the -RECOVER INDOUBT command:
blank privilege is not held
G privilege is held with the GRANT option
y privilege is held withoutthe GRANT option

STOPALLAUTH CHAR(1) Whether the GRANTEE can use the DB2 -STOP command:
blank privilege is not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

288 082 SQL Reference

Column Name Data Type Description

STOSPACEAUTH CHAR(1) Whether the GRANTEE can use the STOSPACE utility:
blank privilege is not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

SYSADMAUTH CHAR(1) Whether the GRANTEE has system administration authority:
blank privilege is not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

SYSOPRAUTH CHAR(1) Whether the GRANTEE has system operator authority:
blank privilege is not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

TRACEAUTH CHAR(1) Whether the GRANTEE can issue the -START TRACE and -STOP TRACE
commands:
blank privilege is not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

IBMREQD CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes

MON1AUTH CHAR(1) Whether the GRANTEE can obtain IFC serviceability data.
blank privilege is not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

MON2AUTH CHAR(1) Whether the GRANTEE can obtain IFC data.
blank privilege is not held
G privilege is held with the GRANT option
y privilege is held without the GRANT option

CREATEALIASAUTH CHAR(8) Whether the GRANTEE can execute the CREATE ALIAS statement.

blank privilege not held
G privilege held with the GRANT option
y privilege held without the GRANT option

Appendix C. 082 Catalog Tables 289

SYSIBM.SYSVIEWDEP Table

Column Name

BNAME

BCREATOR

BTYPE

DNAME

DCREATOR

IBMREQD

The SYSIBM.SYSVIEWDEP table records the dependencies of views on tables and
other views.

Data Type Description

VARCHAR(18) Name of a table or view on which the view is dependent.

CHAR(8) Authorization ID of the owner of BNAME.

CHAR(1) Type of object BNAME:
T table
v view

VARCHAR(18) Name of the view.

CHAR(8) Authorization ID of the owner of the view.

CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes

290 082 SOL Reference

SYSIBM.SYSVIEWS Table
The SYSIBM.SYSVIEWS table contains one or more rows for each view.

Column Name Data Type Description

NAME VARCHAR(18) Name of the view.

CREATOR CHAR(8) Authorization ID of the owner of the view.

SEO NO SMALLINT Sequence number of this row; the first portion of the view is on row one and
successive rows have increasing values of SEQNO.

CHECK CHAR(1) Whether the CHECK option was specified in the CREATE VIEW statement:
N no
y yes
Note: The value will be N if the view has no WHERE clause.

IBMREQD CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes
B V1 R3 dependency indicator; not from MRM tape
c V2R1 dependency indicator; not from MRM tape.
D V2R2 dependency indicator; not from MRM tape.

TEXT VARCHAR(254) The text or portion of the text of the CREATE VIEW statement.

Appendix C. 082 Catalog Tables 291

SYSIBM.SYSVL TREE Table

Column Name

IBMREQD

VTREE

The SYSIBM.SYSVLTREE table contains a row for each view whose parse tree
could not be totally contained in the table SYSIBM.SYSVTREE. The row contains
the remainder of the parse tree.

Data Type Description

CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes

VARCHAR(4000) The remaining part of the parse tree of a view.

292 DB2 SOL Reference

SYSIBM.SYSVOLUMES Table

Column Name

SGNAME

SGCREATOR

VOLID

IBMREQD

The SYSIBM.SYSVOLUMES table contains one row for each volume of each
storage group.

Data Type Description

CHAR(8) The name of the storage group.

CHAR(8) Authorization ID of the owner of the storage group.

CHAR(6) The serial number of the volume.

CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes

Appendix c. 082 Catalog Tables 293

SYSIBM.SYSVTREE Table

Column Name

NAME

CREATOR

TOTLEN

IBMREQD

VTREE

The SYSIBM.SYSVTREE table contains a row for each view. Each row contains the
parse tree of the view. If the parse tree is longer than 4000 bytes, the rest of the
parse tree is saved in the SYSIBM.SYSVL TREE table.

Data Type Description

V ARCHAR(18) Name of the view.

CHAR(8) Authorization ID of the owner of the view.

INTEGER Total length of the parse tree.

CHAR(1) Whether the row came from the basic machine-readable material (MRM)
tape:
N no
y yes
B V1 R3 dependency indicator; not from MRM tape
c V2R1 dependency indicator; not from MRM tape.
D V2R2 dependency indicator; not from MRM tape.

VAR CHAR(4000) Parse tree or portion of the parse tree of the view.

294 082 SOL Reference

Appendix D. The Communications Database

The Communications Data Base (COB) contains several tables that hold
information about your connections with remote DB2 subsystems. DB2
administration is responsible for the COB. This appendix describes the columns of
five different tables.

SYSIBM.SYSLOCATIONS Table

Column Name

LOCATION

LOCTYPE

LINKNAME

LINKATTR

Every DB2 subsystem has a location name and an associated VT AM LUNAME. The
SYSIBM.LOCATIONS table shows this association and contains a row for every
DB2 subsystem.

Data Type Description

CHAR(16) Unique network location name for 082 subsystem.

CHAR(1) Reserved and must be blank.

CHAR(8) LUNAME for the same 082 subsystem.

V ARCHAR(64) Reserved and must be a string of length zero.

SYSIBM.SYSLUMODES Table

Column Name

LUNAME

MODENAME

CONVLIMIT

AUTO

Each row of this table provides VTAM with conversation limits for a specific
combination of LUNAME and MODENAME. This table is accessed only at DDF
startup for negotiation of session limits with a remote DB2 for a specific node. This
negotiation is called Change-Number-of-Sessions (CNOS) processing.

Data Type Description

CHAR(8) LUNAME of the remote 082 subsystem. All LUNAMES defined in this table
must also be defined in SYSLUNAMES.

CHAR(8) Name of a logon mode description in the VTAM logon mode table.

SMALLINT Maximum number of active conversations between the local and remote 082
subsystems for this mode. Used to override the number in the DSESLIM
parameter of the VTAM APPL definition statement for this mode.

CHAR(1) When CNOS processing and preallocation of sessions will be initiated:

blank Default: deferred until the first needed reference to the LUNAME via
this MODENAME.

N Deferred until the first needed reference to the LUNAME via this
MODENAME.

y Initiated at DDF startup.

Appendix D. The Communications Database 295

SYSIBM.SYSLUNAMES Table

Column Name

LU NAME

SYSMODENAME

USERSECURITY

ENCRYPTPSWDS

MO DESELECT

USERNAMES

The SYSIBM.SYSLUNAMES table lists the characteristics associated with an
LUNAME that denotes a remote subsystem that you can send an SQL query to.
Each row in this table represents a separate subsystem.

Data Type Description

CHAR(8) LUNAME of the remote subsystem. LUNAMES of all remote subsystems
must appear in this table if they are to be allowed to communicate with the
local subsystem.

CHAR(8) Mode used to establish intersystem conversations.

CHAR(1) Security acceptance option for attach requests:

c Conversation: all conversations received must contain an AUTHID and
password.

A Already verified: a conversation received may contain either an
AUTHID and password, or an AUTHID with no password. If a password
is supplied, it will be passed to RACF for password validation.

CHAR(1) Whether passwords are encrypted:

y Yes: For outbound requests, the encrypted password is extracted from
RACF and sent to the remote subsystem. For inbound requests,
received passwords are treated as encrypted.

N No.

CHAR(1) Whether to use the SYSMODESELECT table:

blank Uses default mode IBMDB2LM.
N Uses default mode IBMDB2LM.
y Searches SYSMODESELECT for appropriate mode name.

CHAR(1) Level of "come from" checking and ID translation required:

blank No translation occurs.
0 Outbound request: subject to ID translation.
I Inbound request: subject to ID translation and "come from"

checking.
B Both requirements, 0 and I, must be met.

SYSIBM.SYSMODESELECT Table

Column Name

AUTHID

PLAN NAME

LU NAME

MODENAME

The SYSIBM.SYSMODESELECT table associates authorization IDs and/or
application plans with modes.

Data Type Description

CHAR(8) Authorization ID of the request for data from another subsystem. Blank, the
default, indicates that the specified MODENAME is to apply to all
authorization IDs.

CHAR(8) Plan name associated with the request tor data from another subsystem.
Blank, the default, indicates that the specified MODENAME is to apply to all
plan names.

CHAR(8) LUNAME to which the specific MODENAME applies.

CHAR(8) Name of the logon mode in the VTAM logon mode table. Used when
creating a conversation supporting the request for data from another
subsystem. If blank, default mode (IBMDB2LM) will be used.

296 082 SQL Reference

SYSIBM.SYSUSERNAMES Table

Column Name

TYPE

AUTHID

LUNAME

NEWAUTHID

PASSWORD

The SYSIBM.SYSUSERNAMES table is used to carry out an ID translation and/or a
"come from" check.

Data Type Description

CHAR(1) How the row is to be used:

0 Outbound.
I Inbound and "come from" checking.

CHAR(8) Authorization ID to be translated. Applies to any authorization ID if blank.

CHAR(8) LUNAME of a remote subsystem. Identifies the sending and receiving
subsystems. If blank, the new AUTHID applies for all otherwise undefined
subsystems.

CHAR(8) Translated value. A blank specifies no translation.

CHAR(8) Password to accompany an outbound request, if passwords are not
encrypted. If passwords are encrypted, the column is not used.

Appendix o. The Communications Database 297

Appendix E. SQL Reserved Words

11 COBOL only

The following words are reserved words in SQL. They may not be used as ordinary
identifiers in forming names. They may be used as delimited identifiers by
enclosing them between double quotation marks.

ADD EDITPROC KEY TABLE
ALL END-EXEc11 TABLESPACE
ALTER ERASE LIKE TO
AND EXECUTE LOCKSIZE
ANY EXISTS UNION
AS NOT UPDATE
AUDIT FIELDPROC NULL USER

FOR NUMPARTS USING
BETWEEN FROM
BUFFERPOOL OF VALIDPROC
BY GO ON VALUES

GOTO OR VCAT
CLUSTER GRANT ORDER VIEW
COLUMN GROUP VOLUMES
COUNT PART
CURRENT HAVING PLAN WHERE
CURSOR PRIQTY WITH

IMMEDIATE PRIVILEGES
DATABASE IN
DELETE INDEX SECQTY
DESCRIPTOR INSERT SELECT
DISTINCT INTO SET
DROP IS SOME

STOGROUP
SYNONYM

The Systems Application Architecture definition of SQL has additional reserved
words. These additional reserved words are not enforced by DB2, but we suggest
that you do not use them as ordinary identifiers in names that will have a
continuing use. See SAA CPI Database Reference, SC26-4348, for a list of these
words.

Appendix E. SQL Reserved Words 299

•

Glossary

access path. The path used to get to data specified in
SOL statements. An access path can involve either an
index, a sequential search or a combination of both.

alias. (1)A locally defined name that can be used in
SOL statements to refer to a table or view in the same
or a remote DB2 subsystem. (2)An alternate name for a
member of a partitioned data set.

application. A program or set of programs that
performs a task; for example, a payroll application.

application plan. The control structure produced
during the bind process and used by the database
manager to process SOL statements encountered
during application execution.

application-embedded SQL. SOL statements coded
within an application program.

attachment facility. An interface between 082 and
TSO, IMS/VS, CICS, or batch address spaces. An
attachment facility allows application programs to
access 082.

authorization ID. A string that designates a set of
privileges. It may represent an individual, an
organizational group, or a function, but 082 does not
determine this representation.

autocommil. A SPUFI option that commits the effects
of SOL statements automatically if they are
successfully executed.

bind. The process by which the output from the
precompiler is converted to a usable control structure
called an application plan. This process is the one
during which access paths to the data are selected and
some authorization checking is performed.

automatic bind. Binding done automatically
(without a user issuing a BIND command) when an
application program is being run and the bound
application plan has been invalidated.

dynamic bind. Binding done dynamically (as the
SOL statements are entered) when SOL statements
are entered through dynamic SOL.

incremental bind. Binding of an SOL statement is
done during the execution of an application process
because the statement could not be bound during
the bind process and VALIDATE(RUN) was
specified.

static bind. The process by which the output from
the precompiler is converted to a usable control
structure called an application plan. This process
is the one during which .access paths to the data

are selected and some authorization checking Is
performed.

buffer pool. Main storage reserved to satisfy the
buffering requirements for one or more tables or
indexes.

catalog. A collection of tables that contain
descriptions of objects such as tables, views, and
indexes.

COB. communications database.

character string. A sequence of bytes representing bit
data, single-byte characters, or a mixture of single and
double-byte characters.

checkpoint. A point at which OB2 records internal
status information on the OB2 log. This log is used in
the recovery process should OB2 abnormally
terminate.

clause. In SOL, a distinct part of a statement, such as
a SELECT clause or a WHERE clause.

clustering Index. An index that determines how rows
are physically ordered in a table space.

column. The vertical component ~f a table. A column
has a name and a particular data type (for example,
character, decimal, or integer).

column function. An SOL operation that derives its
result from a collection of values across one or more
rows in a table.

commit. The process that allows data, changed by one
application or user, to be referenced by other
applications or users. When a COMMIT occurs, locks
are freed so that other applications can reference the
just-committed data. When data has been committed, a
new commit point is established.

communications database (COB). A new system
database that contains tables (SYSLOCATIONS,
SYSLUMOOES, SYSLUNAMES, SYSMOOESELECT,
SYSUSERNAMES) used to establish conversations with
remote DB2 subsystems.

comparison operator. A symbol (such as =, >, <)
used to specify a relationship between two values.

concurrency. The shared use of resources by multiple
interactive users or application processes at the same
time.

correlated subquery. A subquery (part of a WHERE or
HAVING clause) applied to a row or group of rows of

Glossary 301

the table or view named in the' outer sub-SELECT
statement.

correlation name. An identifier that designates a table,
a view, or individual rows of a table or view within a
single SOL statement. It can be defined in any FROM
clause, or in the first clause of an UPDATE or DELETE
statement.

cursor. A named control structure used by an
application program to point to a row of interest within
some ordered set of rows. The cursor is used to
retrieve rows from the set, possibly making updates or
deletions. ·

cursor stablllty. The isolation level that provides
maximum concurrency. With cursor stability, a unit of
work holds locks only on its uncommitted changes and
the current row of each of its cursors.

database. A collection of table spaces and index
spaces.

database administrator (DBA). An individual
responsible for the design, development, operation,
safeguarding, maintenance, and use of a database.

database request module (DBRM). A data set member
created by the DB2 precompiler that contains
information about SOL statements. DBRMs are used in
the bind process.

data type. An attribute of columns, literals, and host
variables.

date. A three-part value that designates a day, month,
and year.

date duration. A decimal integer that represents a
number of years, months, and days.

date/time value. A value of the data type DATE, TIME,
or TIMESTAMP.

DBA. database-administrator

DBCS. double-byte character set

DBID. database identifier

DBRM. database request module

DB2 catalog. DB2-maintained tables that contain
descriptions, of DB2 objects such as tables, views, and
indexes.

DB2 Interactive (DB21). The DB2 facility that provides
for the execution of SOL statements, DB2 (operator)
commands, programmer commands, and utility
invocation.

DB21. DATABASE 2 Interactive.

302 DB2 SOL Reference

•

DCLGEN. declarations generator.

DDF. distributed data facility.

declarations generator (DCLGEN). A subcomponent of
DB2 that generates SOL table declarations and COBOL,
C, or PL/I data structure declarations that conform to
the table. The declarations are generated from 082
system catalog information. OCLGEN is also a DSN
subcommand.

default value. A predetermined value, attribute, or
option that is assumed when no other is explicitly
specified.

dependent. An object (row, table, or table space) is a
dependent if it has at least one parent. The object is
also said to be a dependent (row, table, or table space)
of its parent. See parent row, parent table, parent table
space ..

distributed data facility (DDF). A facility of 082, new in
Version 2 Release 2, that can be started and stopped by
command in order to provide connections to remote
subsystems.

double-byte character set (DBCS). A set of characters
in which each character is represented by two bytes.
Languages such as Japanese, Chinese, and Korean,
which contain more symbols than can be represented
by 256 code points, require double- byte character sets.
Since each character requires two bytes, entering,
displaying, and printing OBCS characters requires
hardware and supporting software which are 08CS
capable.

duration. A number that represents an interval of time.
See labeled duration, date duration, and time duration.

dynamic SQL. SOL statements that are prepared and
executed within a program while the program is
executing. In dynamic SOL, the SOL source is
contained in host language variables rather than being
coded into the application program. The SOL
statement might change several times during the
program's execution.

EBCDIC. extended binary coded decimal interchange
code.

embedded SQL. SOL statements that are embedded
within an application program and are prepared during
the program preparation process before the program is
executed. After it is prepared, the statement itself does
not change (although values of host variables specified
within the statement might change).

escape character. The symbol used to enclose an SOL
delimited identifier. The escape character is the
quotation mark("), except in COBOL applications,

where the symbol (either a quotation mark or an
apostrophe) may be assigned by the user.

EUR. IBM European Standards

expression. An operand or a collection of operators
and operands that yields a single value.

field procedure. A user-written routine designed to
receive a single value and transform (encode or
decode) it in any way the user may specify.

fixed-length string. A character or graphic string
whose length is specified and cannot be changed.

function. A scalar function or column function. Same
as built-in function.

graphic string. A sequence of OBCS characters.

host language. Any programming language in which
you can embed SOL statements.

host program. A program written in a host language
that contains embedded SOL statements.

host structure. In an application program, a structure
referenced by embedded SOL statements.

host variable. In an application program, a variable
referenced by embedded SOL statements.

image copy. An exact reproduction of all or part of a
table space. 082 provides utility programs to make full
image copies (to copy the entire table space) or
incremental image copies (to copy only those pages
that have been modified since the last image copy).

IMS/VS. Information Management System/Virtual
Storage.

index. A set of pointers that are logically ordered by
the values of a key. Indexes provide quick access to
data and can enforce uniqueness on the rows in a
table.

Index key. The set of columns in a table used to
determine the order of index entries.

Index space. A page set used to store the entries of
one index.

Indicator variable. A variable used to represent the
null value in an application program. If the value for
the selected column is null, a negative value is placed
in the indicator variable.

ISO. International Standards Organization.

Isolation level. The degree to which a unit of work is
Isolated from the updating operations of other units of
work. See also cursor stability and repeatable read.

JIS. Japanese Industrial Standard.

join. A relational operation that allows retrieval of
data from two or more tables based on matching
column values.

K. Kilobyte (1024 bytes).

labeled duration. A number that represents a duration
of years, months, days, hours, minutes, seconds, or
microseconds.

local. Refers to any object maintained by the local
082 subsystem. A local table, for example, is a table
maintained by the local 082 subsystem.

locking. The process which ensures integrity of data.
Locking prevents concurrent users from accessing
inconsistent data.

long string. A string whose actual length, or a
varying-length string whose maximum length, is
greater than 254 bytes or 127 double-byte characters.

mixed data string. A character string that may contain
both single-byte and double- byte characters.

null. A special value that indicates the absence of
information.

OBID. data object identifier.

object. Anything that can be created or manipulated
with SOL - that is, databases, table spaces, tables,
views, or indexes.

page. A unit of storage within a table space (4K or
32K) or index space (4K). In a table space, a page
contains one or more rows of a table.

partitioned data set (PDS). A data set in direct access
storage that is divided into partitions, called members,
each of which can contain a program, part of a
program, or data. Synonymous with program library.

partitioned table space. A table space subdivided into
parts (based upon index key range), each of which may
be processed by utilities independently.

plan. See application plan.

plan name. The name of an application plan.

precompilation. A processing of application programs
containing SOL statements that takes place before
compilation. SOL statements are replaced with
statements that will be recognized by the host language
compiler. Output from this precompilation includes
source code that can be submitted to the compiler and
the database request module (OBRM) that is input to
the bind process.

Glossary 303

predicate. An element of a search condition that
expresses or implies a comparison operation.

prepared SQL statement. A named object that is the
executable form of an SOL statement that has been
processed by the PREPARE statement.

primary key. A unique, nonnull key that is part of the
definition of a table. A table cannot be defined as a
parent unless it has a primary key.

privilege. A capability given to a user by the execution
of a GRANT statement.

process. A general term for a unit that depends on the
environment but has the same basic properties in
every environment. A process involves the execution
of one or more programs, and is the unit to which
resources and locks are allocated. The execution of an
SQL statement is always associated with some
process.

RACF. OS/VS2 MVS Resource Access Control Facility

RSA. relative byte address.

recovery. The process of rebuilding databases after a
system failure.

referential Integrity. The enforcement of referential
constraints on LOAD, INSERT, UPDATE, and DELETE
operations.

relative byte address (RSA). The offset of a data
record or control interval from the beginning of the
storage space allocated to the data set or file to which
it belongs.

remote. Refers to any object maintained by a remote
DB2 subsystem; that is, by a DB2 subsystem other than
the local one. A remote view, for instance, is a view
maintained by a remote DB2 subsystem.

repeatable read. The isolation level that provides
maximum protection from other executing application
programs. When a program executes with repeatable
read protection, rows referenced by the program
cannot be changed by other programs until the
program reaches a commit point.

resource limit facility (RLF). A portion of DB2 code that
prevents dynamic SQL queries from exceeding
specified time limits.

result table. The set of rows selected for use by an
application program. The application uses a cursor to
retrieve the rows one by one into a host structure or a
set of host variables.

rollback. Initiates the abort process.

304 DB2 SOL Reference

row. The horizontal component of a table. A row
consists of a sequence of values, one for each column
of the table.

scalar function. An SQL operation that produces a
single value from another value and is expressed as a
function name followed by a list of arguments enclosed
in parentheses.

search condition. A criterion for selecting rows from a
table. A search condition consists of one or more
predicates.

short string. A string whose actual length, or a
varying-length string whose maximum length, is 254
bytes (127 double-byte characters) or less.

SMS. Storage Management Subsystem

SMF. system management facility.

special register. A storage area that is defined for a
process by DB2 an~ is used to store information that
can be referenced in SQL statements.

SPUFI. SQL Processor Using File Input. A facility of
the TSO attachment subcomponent that enables the
DB21 user to execute SOL statements without
embedding them in an application program.

SQL. Structured Query Language. A language that
can be used within host programming languages or
interactively to access data and to control access to
resources.

SQL authorization ID. The authorization ID that is used
as the implicit qualifier of table, view, and index names
in dynamic SQL statements. The SQL authorization ID;
along with the other authorization IDs of a process, is
used for authorization checking of dynamic SQL
statements. It also serves a special role for CREATE,
GRANT, and REVOKE statements.

SQL Communication Area (SQLCA). A structure used
to provide an application program with information
about the execution of its SOL statements.

SQL Descriptor Area (SQLDA). A structure that
describes either input or output variables used in the
execution of manipulative SOL statements.

SQL escape character. See escape character.

SQL string delimiter. A symbol used to enclose an
SQL string constant. The SQL string delimiter is the
apostrophe(') except in COBOL applications, in which
case the symbol (either an apostrophe or a quotation
mark) may be assigned by the user.

SQL/DS. SOL/Data System.

SQLCA. SOL communication area.

SQLDA. SOL descriptor area.

SQL ID. Short for SOL authorization ID.

SSI. MVS subsystem interface.

static SQL. See embedded SOL

storage group. A named set of DASO volumes on
which 082 data can be stored.

string. A character or graphic string.

subquery. A SELECT statement within the WHERE or
HAVING clause of another SOL statement. A nested
SOL statement.

subselect. That form of the SELECT statement that
does not include ORDER BY or UNION operators.

synonym. A user's alternative name for a table or
view.

system administrator. The person having the second
highest level of authority within 082. System
administrators make decisions about how 082 is to be
used and implement those decisions by choosing
system parameters. They monitor the system and
change its characteristics to meet changing
requirements and new data processing goals.

table. A named data object consisting of a specific
number of columns and some number of unordered
rows.

table space. A page set used to store the records of
one or more tables.

thread. The 082 structure that describes an
application's connection, traces its progress, provides
resource function processing capability, and delimits
its accessibility to 082 resources and services. Most
082 functions execute under a thread structure.

time. A three-part value that designates a time of day
in hours, minutes, and seconds.

time duration. A decimal integer that represents a
number of hours, minutes, and seconds.

tlmestamp. A seven-part value that consists of a date
and time expressed in years, months, days, hours,
minutes, seconds, and microseconds.

trace. A 082 tool that allows the user to monitor and
collect 082 monitoring, auditing, performance,
accounting, statistics, and serviceability (global) data.

TSO. Time Sharing Option. A subsystem of MVS.

UNION. An SOL operation that combines the results of
two subselects. UNION is often used to merge lists of
values obtained from several tables.

unique Index. An index which ensures that no identical
key values are stored in a table.

unit of recovery (UR). A recoverable sequence of
operations within a process. At any time, a process is
a single unit of recovery, but the life of a process may
involve many units of recovery as a result of commit or
rollback operations.

UT. utility-only access.

value. Smallest unit of data manipulated in SOL.

varying-length string. A character or graphic string
whose length is not fixed, but variable within set limits.

view. An alternative representation of data from one
or more tables. A view can include all or some of the
columns contained in the table or tables on which it is
defined.

VSAM. Virtual Storage Access Method.

Glossary 305

Bibliography

IBM DAT ABASE 2 Version 2 Release 2 Library

• General Information, GC26-4373-1

• Administration Guide, SC26-4374-1

Planning and Installing DB2
Communicating with Other Subsystems
Designing a Database
Security and Auditing
Operation and Recovery
Performance Monitoring and Tuning

• Application Programming and SQL Guide, SC26-4377-1

Using Interactive SOL
Coding SOL in your Application Program
Executing and Testing Your Application
Programming for Special Purpose Interfaces

• SQL Reference, SC26-4380-1

Concepts
Language Elements
Functions
Queries
Statements

• Command and Utility Reference, SC26-4378-1

- Commands
- Utilities

• Reference Summary, SX26-3771-1

- SOL Reference Summary
- Command and Utility Reference Summary

• Messages and Codes, SC26-4379-1

SOL Return Codes
DB2 Messages
DB2 Codes
IRLM Messages and Codes

• Diagnosis Guide and Reference, LY27-9536-1

Functional Descriptions
Keyword Descriptions
Diagnostic Aids and Techniques
Data Management
Physical Formats and Diagrams
Data Areas
Trace Messages and Codes

• Licensed Program Specifications, GC26-4375-1

• Program Directory

Bibliography 307

Other References

308 082 SQL Reference

• APL2 Programming: Using Structured Query Language (SQL), SH20-9217

• AS/400 SQL Reference, SC21-9608

• CICS!MVS Application Programming Primer, SC33-0139

• CICSIMVS Facilities and Planning Guide, SC33-0504

• CICSIMVS Installation Guide, SC33-0506

• CICS!OSIVS Facilities and Planning Guide, SC33-0202

• GIGS/OS/VS: Installation and Operations Guide, SC33-0071

• GIGS/VS Application Programmer's Reference Manual (Command Level), SC33-0241

• Distributed Data Library: Concepts of Distributed Data, SC26-4417

• IBM BASIC Programming Guide, SC26-4027

• IBM OS/2 EE Database Manager SQL Reference, T90X-7945

• IMS/VS Version 2 Application Programming, SC26-4178

• IMS/VS Version 2 Installation Guide, SC26-4172

• IMS/VS Version 2 System Definition Reference Manual, SC26-4216

• IMS/VS Version 2 Utilities Reference, SC26-4173

• Introduction to Distributed Relational Data, GG24-3200

• /SPF Version 2 for MVS Dialog Management Services, SC34-4021

• /SPF/PDF Version 2 for MVS Reference, SC34-4024

• /SPF and /SPF/PDF Version 2 for MVS General Information, GC34-4041

• MVSIESA System Programming Library: Application Development Guide, GC28-1852

• MVSIESA System Programming Library: Application Development-- 31-Bit
Addressing, GC28-1820

• MVS!ESA System Programming Library: Application Development Macro Reference,
GC28-1857

• MVSIXA System Programming Library: 31-Bit Addressing, GC28-1158

• MVSI XA System Programming Library: Supervisor Services and Macro Instructions,
GC28-1154

• OS/VS Message Library: VS2 TSO Terminal Messages, GD23-0264

• OS/VS Message Library: VS2 TSO Terminal Messages, GC38-1046

• OSIVS2 TSO Command Language Reference, GC28-0646

• OS!VS2 TSO Terminal User 1 s Guide, GC28-0645

• Query Management Facility: Advanced User's Guide, SC26-4343

• Query Management Facility: Learner's Guide, SC26-4231

• Systems Application Architecture: An Overview, GC26-4341

• SAA Writing Applications: A Design Guide, SC26-4362

• SAA Common Programming Interface Database Reference, SC26-4348

• SQL!Data System SQL Reference, TH09-8067

• TSO Extensions CLISTs: Implementation and Reference, SC28-1304

• TSO Extensions Terminal Messages, GC28-1310

Index

A
ACQUIRE

column of SYSPLAN catalog table 274
ADD clause

ALTER TABLE statement 109
ADD VOLUMES clause

ALTER STOGROUP statement 106
alias 21

creating 127
ALIAS clause

COMMENT ON statement 124
CREA TE ALIAS statement 127
DROP statement 180
LABEL ON statement 211

alias-name 19
ALL

in AUDIT clause of ALTER TABLE statement 111
in AUDIT clause of CREATE TABLE statement 151
in quantified predicate 58

ALL clause
EXPLAIN statement 188
of subselect 84
REVOKE statement 222

ALL PRIVILEGES clause
GRANT statement 201
REVOKE statement 231

alphabetic extender
basic symbol 17
location identifiers, using in 19

ALTER clause
GRANT statement 201
REVOKE statement 231

ALTER INDEX statement 100
ALTER STOGROUP statement 106-107
ALTER TABLE statement 108-114
ALTER TABLESPACE statement 115-121
ALTERAUTH

column of SYSTABAUTH catalog table 282
ALTERBPAUTH

column of SYSUSERAUTH catalog table 288
ambiguous reference 44
AND truth table 62
ANY

in quantified predicate 58
in USING clause of DESCRIBE statement 178

ANY clause
PREPARE statement 219

application program
SQLCA communicates 249
uses SQLDA 252

arithmetic operators 51
AS clause

CREATE VIEW statement 162

ASC clause
CREATE INDEX statement 134
of select-statement 93

Assembler application
host variable 186
INCLUDE SQLCA 251
INCLUDE SQLDA 255
varying-length string variables in 26

Assembler application program
host variable in 46, 186

assignment
date/time values 34
numbers 32-33
strings 33

asterisk (*)
in COUNT 67
in subselect 84

AUDIT clause
ALTER TABLE statement 111
CREATE TABLE statement 151

AUTHHOWGOT
column of SYSDBAUTH catalog table 264
column of SYSPLANAUTH catalog table 275
column of SYSRESAUTH catalog table 278
column of SYSTABAUTH catalog table 282
column of SYSUSERAUTH catalog table 288

authorization 14
authorization ID

description 22
resultin.g from errors 237

authorization-name 20
AVG function 66
AVGSIZE

column of SYSPLAN catalog table 274

B
base table 12
basic operations in SOL 31
basic predicate 58
BCREATOR

column of SYSPLANDEP catalog table 276
column of SYSVIEWDEP catalog table 290

BEGIN DECLARE SECTION statement 122
BETWEEN predicate 59
BIND clause

GRANT statement 198
BIND clause

REVOKE statement 227
BINDADD clause

GRANT statement 199
REVOKE statement 229

BINDADDAUTH
column of SYSUSERAUTH catalog table 288

Index 309

BINDAUTH
column of SYSPLANAUTH catalog table 275

BINDDATE
column of SYSPLAN catalog table 274

BINDTIME
column of SYSPLAN catalog table 274

BIT data
FOR BIT DATA 147

BNAME
column of SYSPLANDEP catalog table 276
column of SYSVIEWDEP catalog table 290

BOTH
in USING clause of DESCRIBE statement 178

BOTH clause
PREPARE statement 219

BPOOL
column of SYSDATABASE catalog table 263
column of SYSINDEXES catalog table 269
column of SYSTABLESPACE catalog table 287

BSDS (bootstrap data set) clause
GRANT statement 199
REVOKE statement 229

BSDSAUTH
column of SYSUSERAUTH catalog table 288

BTYPE
colum·n of SYSPLANDEP catalog table 276
column of SYSVIEWDEP catalog table 290

BUFFERPOOL clause
ALTER INDEX statement 101
ALTER TABLESPACE statement 116
CREATE DATABASE statement 129
CREATE INDEX statement 138
CREATE TABLESPACE statement 159
GRANT statement 203
REVOKE statement 233

built-in function
See function

BY clause
REVOKE statement 222

c
C application

varying-length string variables in 26
C application program

host variable in 46, 186
CARD

column of SYSINDEXPART catalog table 271
column of SYSTABLEPART catalog table 284
column of SYSTABLES catalog table 285

CASCADE delete rule 112, 149
catalog 12
catalog tables

SYSCOLAUTH 259
SYSCOLUMNS 260
SYSCOPY .. 262
SYSDA TA BASE 263
SYSDBAUTH 264

310 DB2 SQL Reference

catalog tables (continued)
SYSDBRM 266
SYSFIELDS 267
SYSFOREIGNKEYS 268
SYSINDEXES 269
SYSINDEXPART 271
SYSKEYS 272
SYSLINKS 273
SYSPLAN 274
SYSPLANAUTH 275
SYSPLANDEP 276
SYSRELS 277
SYSRESAUTH 278
SYSSTMT 279
SYSSTOGROUP 280
SYSSYNONYMS 281
SYST ABAUTH 282
SYSTABLEPART 284
SYSTABLES 285
SYSTABLESPACE 287
SYSUSERAUTH 288
SYSVIEWDEP 290
SYSVIEWS 291
SYSVL TREE 292
SYSVOLUMES 293
SYSVTREE 294

catalog-name 20, 102, 155, 157
CHANGES

in AUDIT clause of ALTER TABLE statement 111
CHANGES clause

in AUDIT clause of CREATE TABLE statement 151
CHAR

data type 25
function 69

CHARACTER data type
furCREATETABLE 147
for DECLARE TABLE 170

CHARACTER SET option
folding to uppercase 18
ordinary tokens 18

character set precompiler option 39
character string

assignment 33
comparison 35
constants 36
description 25
empty 25

characters 17
CHECK

column of SYSVIEWS catalog table 291
CHECK clause

CREA TE VIEW statement 162
CHECKFLAG

column of SYSTABLEPART catalog table 284
CHECKRID

column of SYSTABLEPARTcatalog table 284
child table 257

CHILDREN
column of SYSTABLES catalog table 285

CHILDSEQ
column of SYSLINKS catalog table 273

CLOSE clause
ALTER INDEX statement 101
AL TEA T ABLESPACE statement 116
CREATE INDEX statement 138
CREATE TABLESPACE statement 159

CLOSE statement 123
closed state of cursor 217
CLOSE RULE

column of SYSINDEXES catalog table 269
column of SYSTABLESPACE catalog table 287

CLUSTER clause
CREA TE INDEX statement 137

CLUSTERED
column of SYSINDEXES catalog table 269

CLUSTERING
column of SYSINDEXES catalog table 269

CLUSTERRID
column of SYSTABLES catalog table 285

CLUSTERTYPE
column of SYSTABLES catalog table 285

COBOL application
escape character 18
host variable 48
INCLUDE SQLCA 251
varying-length string variables in 26

COBOL application program
host variable in 46, 186

COL CARD
column of SYSCOLUMNS catalog table 260

COL COUNT
column of SYSINDEXES catalog table 269
column of SYSLINKS catalog table 273
column of SYSRELS catalog table 277
column of SYSTABLES catalog table 285

COLNAME
column of SYSCOLAUTH catalog table 259
column of SYSFOREIGNKEYS catalog table 268
column of SYSKEYS catalog table 272

COL NO
column of SY.SCOLUMNS catalog table 260
column of SYSFIELDS catalog table 267
column of SYSFOREIGNKEYS catalog table 268
column of SYSKEYS catalog table 272

colon
used with host variable in SQL 48

:::olon (:)
See- host variable

COLSEQ
column of SYSFOREIGNKEYS catalog table 268
column of SYSKEYS catalog table 272

COL TYPE
column of SYSCOLUMNS catalog table 260

column
names in a result 85

column (continued)
rules 91

COLUMN clause
COMMENT ON statement 125
LABEL ON statement 211

column function
See function

column name 43
column-name 20
COMMA

column of SYSDBRM catalog table 266
comment

in catalog table 124
COMMENT ON statement 124-125

column name qualification 43
commit

definition 13
COMMIT statement 126
communications database 295
comparison

compatibility rules 31
date/time values 35
numbers 34
strings 35

compatibility
data types 31
rules 31

concatenation operator 50
concurrency

with LOCK TABLE statement 213
constants

character string 36
decimal 36
floating-point 36
graphic string 37
hexadecimal 36
integer 36

constraint-name 20
CONTINUE clause

WHENEVER statement 245
conversion of numbers

errors 237
scale and precision 32

correlated reference 45, 88
correlation-name

defining 44
description 20
FROM clause

of subselect 87
qualifying a column name 44

COUNT
COUNT function 66
CREATE ALIAS statement 127-128
CREATE DATABASE statement 129-130
CREATE INDEX.statement 131-139
CREATE STOGROUP statement 140-141
CREATE SYNONYM statement 142-143

Index 311

CREATE TABLE statement 144-153
CREA TE T ABLESPACE statement 154-160
CREATE VIEW statement 12, 161-164
CREA TEALIAS clause

GRANT statement 199
REVOKE statement 229

CREA TEDBA clause
GRANT statement 199
REVOKE statement 229

CREATEDBAAUTH
column of SYSUSERAUTH catalog table 288

CREATEDBC clause
GRANT statement 199
REVOKE statement 229

CREATEDBCAUTH
column of SYSUSERAUTH catalog table 288

CREATESG clause
GRANT statement 199
REVOKE statement 229

CREATESGAUTH
column of SYSUSERAUTH catalog table 288

CREA TETAB clause
GRANT statement 196
REVOKE statement 224

CREATETABAUTH
column of SYSDBAUTH catalog table 264

CREA TETS cl a use
GRANT statement 196
REVOKE statement 224

CREATETSAUTH
column of SYSDBAUTH catalog table 264

CREATOR
column of SYSCOLAUTH catalog table 259
column of SYSDATABASE catalog table 263
column of SYSFOREIGNKEYS catalog table 268
column of SYSINDEXES catalog table 269
column of SYSLINKS catalog table 273
column of SYSPLAN catalog table 274
column of SYSRELS catalog table 277
column of SYSSTOGROUP catalog table 280
column of SYSSYNONYMS catalog table 281
column of SYSTABLES catalog table 285
column of SYSTABLESPACE catalog table 287
column of SYSVIEWS catalog table 291
column of SYSVTREE catalog table 294

CURRENT DATE special register 41
CURRENT TIME special register 42
CURRENT TIMESTAMP special register 42
CURRENT TIMEZONE special register 43
cursor

See also DECLARE CURSOR statement
See also?
active set 215
closed by error

FETCH .193
UPDATE 242

closed state 217
closing 123

312 DB2 SOL Reference

cursor (continued)
current row 193
defining 165
moving position 192
positions for open 193
preparing 215

cursor-name 20

D
data type

character string 25
date/time 28
description 25
graphic string 27
numeric 27
result columns 86

database
creating 129
dropping 180
DSNDB04 21

DATABASE clause
CREA TE DAT ABASE statement 129
DROP statement 180
GRANT statement 197
REVOKE statement 225

database-name 20, 155
date

arithmetic 54
duration 53
strings 29

DA TE data type
for CREATE TABLE 147
forDECLARETABLE 170

DATE function 70
date precompiler option 39
DATEGRANTED

column of SYSCOLAUTH catalog table 259
column of SYSDBAUTH catalog table 264
column of SYSPLANAUTH catalog table 275
column of SYSRESAUTH catalog table 278
column of SYSTABAUTH catalog table 282
column of SYSUSERAUTH catalog table 288

date/time
arithmetic 53-56
data types

description 28
string representation 29

format
EUR, ISO, JIS, LOCAL, USA 30
setting via the CHAR function 69

date/time format 30
DAY function 70
DA VS function 71
DBADM clause

GRANT statement 196
REVOKE statement 224

DBADMAUTH
column of SYSDBAUTH catalog table 264

DBCTRL clause
GRANT statement 196
REVOKE statement 224

DBCTRLAUTH
column of SYSDBAUTH catalog table 264

DBID
column of SYSDATABASE catalog table 263
column of SYSINDEXES catalog table 269
column of SYSLINKS catalog table 273
column of SYSTABLES catalog table 285
column of SYSTABLESPACE catalog table 287

DBMAINT clause
GRANT statement 196
REVOKE statement 224

DBMAINTAUTH
column of SYSDBAUTH catalog table 264

DBNAME
column of SYSCOPY catalog table 262
column of SYSINDEXES catalog table 269
column of SYSLINKS catalog table 273
column of SYSTABAUTH catalog table 282
column of SYSTABLEPART catalog table 284
column of SYSTABLES catalog table 285
column of SYSTABLESPACE catalog table 287

DB2 keywords, reserved 299
DB2 precompiler

checks name and type in SQL statements 169
DECLARE TABLE - 169
use of INCLUDE statements 205

DCREATOR
column of SYSVIEWDEP catalog table 290

decimal
arithmetic 52
constants 36
data type 28
numbers 28

DECIMAL data type
for CREATE TABLE 146
for DECLARE TABLE 170

DECIMAL function 71
decimal point precompiler option 37
declaration

inserting into a program 205
DECLARE

BEGIN DECLARE SECTION statement 122
END DECLARE SECTION statement 183

DECLARE CURSOR statement 165-167
DECLARE STATEMENT statement 168
DECLARE TABLE statement 169-171
DEFAULT

column of SYSCOLUMNS catalog table 261
DELETE clause

GRANT statement 201
REVOKE statement 231

DELETE statement 172-175

DELETEAUTH
column of SYSTABAUTH catalog table 282

DELETE RULE
column of SYSRELS catalog table 277

deleting SOL objects 179
delimited identifier in SQL 18
DESC clause

CREATE INDEX statement 134
of select-statement 93

DESCRIBE statement 176-178
SQLDABC variable 176
SQLDAID variable 176
SQLLEN variable 177
SQLNAME variable 177
SQLTYPE variable 177
SQLVAR variable 176

DESCRIPTOR
descriptor-name 20
DEVTYPE

column of SYSCOPY catalog table 262
DIGITS function 72
DISPLAY clause

GRANT statement 199
REVOKE statement 230

DISPLA YAUTH
column of SYSUSERAUTH catalog table 288

DISPLA YOB clause
GRANT statement 196
REVOKE statement 224

DISPLA YDBAUTH
column of SYSDBAUTH catalog table 264

DISTINCT clause
of subselect 84

DISTINCT keyword
AVG function 66
column function 65
COUNT function 66
MAX function 67
MIN function 67
SUM function 68

DNAME
column of SYSPLANDEP catalog table 276
column of SYSVIEWDEP catalog table 290

DOUBLE PRECISION data type
~rCREATETABLE 146

double precision floating-point 28
double-byte character

in character strings 26
in delimited identifiers 27
in LABEL ON 212
in LIKE predicates 60
in strings 27
truncated during assignment 33

DROP clause
GRANT statement 196
REVOKE statement 224

DROP FOREIGN KEY clause
ALTER TABLE statement 113

Index 313

DROP PRIMARY KEY clause
ALTER TABLE statement . 113

DROP statement 179-182
DROPAUTH

column of SYSDBAUTH catalog table 264
DSETPASS

column of SYSINDEXES catalog table 269
column of SYSTABLESPACE catalog table 287

DSETPASS clause
ALTER INDEX statement 101
ALTER TABLESPACE statement 116
CREATE INDEX statement 138
CREATE TABLESPACE statement 159

DSNAME
column of SYSCOPY catalog table 262

DSNUM
colurhn of SYSCOPY catalog table 262

DSVOLSER
column of SYSCOPY catalog table 262

duplicate rows with UNION 91
duration

date 53
labeled 53
time 53

dynamic select 99
dynamic SQL

defined 97
description 11
execution

E

EXECUTE IMMEDIATE statement 186
EXECUTE statement 184

obtaining statement information with
DESCRIBE 176

preparation and execution 98
PREPARE statement 218
SQLDA used 252

edit routine
named by CREATE TABLE 150
specified by EDITPROC option 150

EDITPROC clause
CREATE TABLE statement 150

EDPROC
column of SYSTABLES catalog table 285

empty character string 25
END DECLARE SECTION statement 183
ERASE

USING STOGROUP clause
CREATE INDEX statement 135
CREATE TABLESPACE statement 157

ERASE clause
ALTER INDEX statement 103

ERASERULE
column of SYSINDEXES catalog table 269
column of SYSTABLESPACE catalog table 287

314 DB2 SQL Reference

error
closes cursor 217
during FETCH 193
during UPDATE 242
in arithmetic expression 237
in numeric conversion 237

escape character in SQL
delimited identifier 18

EUR
See date/time format

evaluation order 56
EXCLUSIVE

IN EXCLUSIVE MODE clause
LOCK TABLE statement 213

EX COST
column of SYSPLAN catalog table 274

executable statement 97
EXECUTE clause

GRANT statement 198
REVOKE statement 227

EXECUTE IMMEDIATE statement 186-187
EXECUTE statement 184-185
EXECUTEAUTH

column of SYSPLANAUTH catalog table 275
executing

ALTER INDEX, limitation 104
EXISTS predicate 61
exit routine 110

See a/so edit routine
named by CREATE TABLE 150, 151

EXITPARM
column of SYSFIELDS catalog table 267

EXITPARML
column of SYSFIELDS catalog table 267

EXPLAIN statement 188-191
EX PLAN

column of SYSPLAN catalog table 274
EXPREDICATE

column of SYSPLAN catalog table 274
expression

date/time operands 53
decimal operands 51, 52
floating-point operands 52
in subselect 84
integer operands 51
precedence of operation 56
with arithmetic operators 51
with concatenation operator 50
without operators 50

EXREFERENCE
column of SYSPLAN catalog table 274

EXSTRUCTURE
column of SYSPLAN catalog table 274

F
FARINDREF

column of SYSTABLEPART cataJog table 284

FAROFFPOS
column of SYSINDEXPART catalog table 271

FETCH statement 192-193
field procedure

comparisons 35
named by CREATE TABLE 148
with LIKE predicates 61

FIELDPROC clause
ALTER TABLE statement 110
CREATE TABLE statement 148

FILESEQNO
column of SYSCOPY catalog table 262

FIRSTKEYCARD
column of SYSINDEXES catalog table 269

FLDPROC
column of SYSCOLUMNS catalog table 261
column of SYSFIELDS catalog table 267

FLDTYPE
column of SYSFIELDS catalog table 267

FLOAT data type 146
for CREATE TABLE 146
for DECLARE TABLE 170

FLOAT function 72
floating-point

constants 36
numbers 28

FOR BIT DA TA clause
ALTER TABLE statement 109
CREATE TABLE statement 147

FOR clause
CREA TE ALIAS statement 128
CREATE SYNONYM statement 142
EXPLAIN statement 188

FOR FETCH ONLY clause
of select-statement 94

FOR UPDATE OF
NOFOR 40

FOR UPDATE OF clause
of select-statement 94
prohibited in views 163

FOREIGN KEY clause
ALTER TABLE statement 111
CREATE TABLE statement 148

FOREIGN KEY
column of SYSCOLUMNS catalog table 261

. FORTRAN application
INCLUDE SQLCA 251
varying-length string variables not allowed 26

FORTRAN application program
See also application program
host variable in 46

free space
in indexes 136
in table spaces 117

free-block 158
FREEPAGE

column of SYSINDEXPART catalog table 271
column of SYSTABLEPART catalog table 284

FREEPAGE (continued)
option on ALTER T ABLESPACE statement 117

FREEPAGE clause
ALTER INDEX statement 101
CREATE INDEX statement 136
CREATE TABLESPACE statement 158

FROM clause
DELETE statement 173
of subselect 87
PREPARE statement 219
REVOKE statement 221

FULLKEYCARD
column of SYSINDEXES catalog table 269

fullselect 91
function 65, 68

G

column 65
AVG 66
COUNT 66
MAX 67
MIN 67
SUM 68

description 65
nesting 68
scalar 68

CHAR 69
DATE 70
DAY 70
DAYS 71
DECIMAL 71
DIGITS 72
FLOAT 72
HEX 73
HOUR 73
INTEGER 74
LENGTH 74
MICROSECOND 75
MINUTE 75
MONTH 76
SECOND 76
SUBSTR 76
TIME 77
TIMESTAMP 78
VALUE 79
VARGRAPHIC 80
YEAR 80

GO TO clause
WHENEVER statement 245

GRANT
DATABASE PRIVILEGES 196-197
PLAN PRIVILEGES 198
SQL statement 194-195
SYSTEM PRIVILEGES 199-200
TABLE PRIVILEGES 201-202
USE PRIVILEGES 203~204

VIEW PRIVILEGES 201-202

.Index 315

GRANT OPTION clause
GRANT statement 195

GRANTEE
column of SYSCOLAUTH catalog table 259
column of SYSDBAUTH catalog table 264
cqlumn of SYSPLANAUTH catalog table 275
column of SYSRESAUTH catalog table 278
column of SYSTABAUTH catalog table 282
column of SYSUSERAUTH catalog table 288

GRANTEETYPE
column of SYSCOLAUTH catalog table 259
column of SYSDBAUTH catalog ti:tble 264
column of SYSPLANAUTH catalog table 275
column of SYSRESAUTH catalog table 278
column of SYSTABAUTH catalog table 282
column of SYSUSERAUTH catalog table 288

GRANTOR
column of SYSCOLAUTH catalog table 259
column of SYSDBAUTH catalog table 264
column of SYSPLANAUTH catalog table 275
column of SYSRESAUTH catalog table 278
column of SYSTABAUTH catalog table 282
column of SYSUSERAUTH catalog table 288

GRAPHIC data type
for CREATE TABLE 147
for DECLARE TABLE 170

graphic string
constants 37
description 27

GROUP BY clause
cannot join view using 163
of subselect 88
results with subselect 85

group-by-clause 88
grouping column 88

H
HAVING clause

ofsubselect 89
results with subselect 85

HEX function 73
hexadeci mat constants 36
HIGH2KEY

column of SYSCOLUMNS catalog table 260
host structure

description 48
host variable

description 20, 46
EXECUTE IMMEDIATE statement 186
FETCH statement 192
PREPARE statement 219
SELECT 236
substitution for parameter markers 184

host-identifier
in host variable 20

host-label 245

316 DB2 SOL Reference

HOSTLANG
column of SYSDBRM catalog table 266

HOUR function 73

I
IBMREQD

column of SYSCOLAUTH catalog table 259
column of SYSCOLUMNS catalog table 261
column of SYSCOPY catalog table 262
column of SYSDATABASE catalog table 263
column of SYSDBAUTH catalog table 265
column of SYSDBRM catalog table 266
column of SYSFIELDS catalog table 267
column of SYSFOREIGNKEYS catalog table 268
column of SYSINDEXES catalog table 269
column of SYSINDEXPART catalog table 271
column of SYSKEYS catalog table 272
column of SYSLINKS catalog table 273
column of SYSPLAN catalog table 27 4
column of SYSPLANAUTH catalog table 275
column of SYSPLANDEP catalog table 276
column of SYSRELS catalog table 277
column of SYSRESAUTH catalog table 278
column of SYSSTMT catalog table 279
column of SYSSTOGROUP catalog table 280
column of SYSSYNONYMS catalog table 281
column of SYSTABAUTH catalog table 283
column of SYSTABLEPART catalog table 284
column of SYSTABLES catalog table 285
column of SYSTABLESPACE catalog table 287
column of SYSUSERAUTH catalog table 289
column of SYSVIEWDEP catalog table 290
column of SYSVIEWS catalog table 291
column of SYSVL TREE catalog table 292
column of SYSVOLUMES catalog table 293
column of SYSVTREE catalog table 294

ICDATE
column of SYSCOPY catalog table 262

ICF
catalog

identifier 20
in SYSIBM.SYSINDEXPART 271
in SYSIBM.SYSSTOGROUP 280
in SYSIBM.SYSTABLEPART 284

ICTIME
column of SYSCOPY catalog table 262

ICTYPE
column of SYSCOPY catalog table 262

identifiers in SOL
description 18
ordinary 18

IMAGCOPYAUTH
column of SYSDBAUTH catalog table 264

IMAGECOPY clause
GRANT statement 196
REVOKE statement 225

IMMEDIATE
EXECUTE IMMEDIATE statement 186-187

IMPLICIT
column of SYSTABLESPACE catalog table 287

implicitly created table space 150
IN clause

CREATE TABLE statement 150
CREATE TABLESPACE statement 155

IN EXCLUSIVE MODE clause
LOCK TABLE statement 213

IN predicate 61
IN SHARE MODE clause

LOCK TABLE statement 213
INCLUDE statement 205-206

INCLUDE
for assembler 251

SQLCA 251
for C 251
for COBOL 251
for FORTRAN 251

SQLDA
for assembler 255
for C 255
for PL/I 251, 255

index 12
altering 100
dropping 180

INDEX clause
ALTER INDEX 100
CREATE INDEX statement 131, 133
DROP statement 180
GRANT statement 201
REVOKE statement 231

index-name 20, 100
INDEXAUTH

column of SYSTABAUTH catalog table 283
INDEXSPACE

column of SYSINDEXES catalog table 269
indicator

structure 49
variable 47, 186

infix operators 51
INSERT clause

GRANT statement 201
REVOKE statement 231

INSERT statement 207-210
INSERTAUTH

column of SYSTABAUTH catalog table 283
INSERTRULE

column of SYSLINKS catalog table 273
integer 101, 102, 103
integer constants 36
INTEGER data type 27, 146

for DECLARE TABLE 169
INTEGER function 74
interactive entry of SQL statements 99
INTO clause

DESCRIBE statement 176

INTO clause (continued)
FETCH statement 192
INSERT statement 208
PREPARE statement 218
SELECT INTO statement 236

IS clause
COMMENT ON statement 125
LABEL ON statement 212

ISO
See date/time format

ISOBID
column of SYSINDEXES catalog table 269

ISOLATION
column of SYSPLAN catalog table 274

IXCREATOR
column of SYSINDEXPART catalog table 271
column of SYSKEYS catalog table 272
column of SYSTABLEPART catalog table 284

IXNAME
column of SYSINDEXPART catalog table 271
column of SYSKEYS catalog table 272
column of SYSTABLEPART catalog table 284

J
JIS

See date/time format

K
KATAKANA value for CHARACTER SET

ordina·ry tokens 18
KEYCOLUMNS

column of SYSTABLES catalog table 285
KEY OB ID

column of SYSTABLES catalog table 286
KEYSEQ

column of SYSCOLUMNS catalog table 261
keywords, reserved 299

L
LABEL

column of SYSCOLUMNS catalog table 261
column of SYSTABLES catalog table 286
in catalog tables 211

LABEL ON
password

in ALTER INDEX 101
LABEL ON statement 211-212
labeled duration 53
LABELS

in USING clause of DESCRIBE statement 178
LABELS clause

PREPARE statement 219
large integers 27
LEAF DIST

column of SYSINDEXPART catalog table 271

Index 317

LENGTH
column of SYSCOLUMNS catalog table 260
column of SYSFIELDS catalog table 267

length attribute of column 25
LENGTH function 7 4
LIKE clause

CREATE TABLE statement 150
LIKE predicate 59
LIMITKEY

column of SYSINDEXPART catalog table 271
column of SYSTABLEPART catalog table 284

limits '
in SOL 247

link 257
LINKNAME

column of SYSLINKS catalog table 273
literals 36
LOAD clause

GRANT statement 197
REVOKE statement 225

LOADAUTH
column of SYSDBAUTH catalog table 265

LOCAL
See date/time format

location-name 20
LOCK TABLE statement 213-214
locking

description 13
during UPDATE 242
LOCK TABLE statement 213
table spaces 213
with ALTER TABLESPACE 116

LOCKRULE
column of SYSTABLESPACE catalog table 287

LOCKSIZE clause
ALTER TABLESPACE statement 116
CREATE TABLESPACE statement 159

logical operator 62
logical unit of work 14
logical unit of work (LUW)

ROLLBACK 235
terminating destroys prepared statements 220
terminating LUW 235

long identifier in SOL 19
long string

column limitations 85
columns 25

LONG VARCHAR data type 147
for DECLARE TABLE 170

LONG VARGRAPHIC data type 147
for DECLARE TABLE 170

LOW2KEY
column of SYSCOLUMNS catalog table 260

M
MAX function 67

318 DB2 SOL Reference

message
from precompiler processing of DECLARE

TABLE 171
MICROSECOND function 75
MIN function 67
MINUTE function 75
mixed data

in character strings 26
in LIKE predicates 60
in string assignments 33
using 26
when it is in effect 26

mixed data precompiler option 39
MODE

IN EXCLUSIVE MODE clause
LOCK TABLE statement 213

IN SHARE MODE clause
LOCK TABLE statement 213

MONITOR1 clause
GRANT statement 200
REVOKE statement 230

MONITOR2 clause
GRANT statement 200
REVOKE statement 230

MONTH function 76

N
NA CTI VE

column of SYSTABLESPACE catalog table 287
name

column of SYSCOLUMNS catalog table 260
column of SYSDATABASE catalog table 263
column of SYSDBAUTH catalog table 264
column of SYSDBRM catalog table 266
column of SYSFIELDS catalog table 267
column of SYSINDEXES catalog table 269
column of SYSPLAN catalog table 274
column of SYSPLANAUTH catalog table 275
column of SYSRESAUTH catalog table 278
column of SYSSTMT catalog table 279
column of SYSSTOGROUP catalog table 280
column of SYSSYNONYMS catalog table 281
column of SYSTABLES catalog table 285
column of SYSTABLESPACE catalog table 287
column of SYSVIEWS catalog table 291
column of SYSVTREE catalog table 294
for SOL statements 168
in subselect 84

NAMES
in USING clause of DESCRIBE statement 177

NAMES clause
PREPARE statement 219

naming conventions in SOL 19
NEARINDREF

column of SYSTABLEPART catalog table 284
NEAROFFPOS

column of SYSINDEXPART catalog table 271

NLEAF
column of SYSINDEXES catalog table 269

NLEVELS
column of SYSINDEXES catalog table 269

NOFOR precompiler option 40
NONE

in AUDIT clause of AL TEA TABLE statement 111
NONE clause

in AUDIT clause of CREATE TABLE statement 151
nonexecutable statement 97, 98
NOT FOUND clause

WHENEVER statement 245
NOT NULL clause

CREATE TABLE statement 147
NOT NULL WITH DEFAULT clause

AL TEA TABLE statement 110
·CREATE TABLE statement 148

NP AGES
column of SYSTABLES catalog table 285

NT ABLES
column of SYSTABLESPACE catalog table 287

NULL
in CREATE TABLE 147
in VALIDPROC clause of AL TEA TABLE

statement 111
predicate 59

null value
in duplicate rows 84

null value in SQL
assigned to host variable 236
assignment 32
defined 25
in grouping columns 88
in result columns 85
specified by indicator variable 47

NULLS
column of SYSCOLUMNS catalog table 260

numbers 27
numeric

assignments 32
comparisons 34
conversion errors 237
data types . 27

NUMERIC data type
~rCREATETABLE 146

NUMPARTS clause
CREATE TABLESPACE statement 158

0
OBID

column of SYSINDEXES catalog table 269
column of SYSLINKS catalog table 273
column of SYSTABLES catalog table 285
column of SYSTABLESPACE catalog table 287

object table 44
OBTYPE

column of SYSRESAUTH catalog table 278

ON clause
CREATE INDEX statement 133

ON TABLE clause
GRANT statement 202
REVOKE statement 232

open state of cursor 193
OPEN statement 215-217
operands

date/time 53
decimal 51, 52
floating-point 52
integer 51

operation
assignment 31-34
comparison 34-35
description 31

OPERATIVE
column of SYSPLAN catalog table 274

operators
arithmetic 51

OPTION clause
CREATE VIEW statement 162

OR truth table 62
ORDER BY clause

of select-statement 93
prohibited in views 163

order of evaluation 56
order-by-clause 93
ORDERING

column of SYSKEYS catalog table 272
ordinary identifier in SQL 18

p
parameter marker 184

in EXECUTE statement 184
in OPEN statement 216
in PREPARE statement 219
rules 219

parent table 257
PARENTCREATOR

column of SYSLINKS catalog table 273
parentheses

with UNION 91
PARENTNAME

column of SYSLINKS catalog table 273
PARENTS

column of SYSTABLES catalog table 285
PARM LIST

column of SYSFIELDS catalog table 267
PART

CLUSTER clause
CREATE INDEX statement 137

NUMPARTS clause
CREATE T ABLESPACE statement 159

option ALTER TABLESPACE statement 117
PART clause

ALTER INDEX statement 101

Index' 319

PARTITION
column of SYSINDEXPART catalog table 271
column of SYSTABLEPART catalog table 284
column of SYSTABLESPACE catalog table 287

password 101
PASSWORD clause

ALTER STOGROUP statement 106
CREATE STOGROUP statement 140

PCTFREE
column of SYSINDEXPART catalog table 271
column of SYSTABLEPART catalog table 284
option on AL TEA TABLESPACE statement 117

PCTFREE clause
ALTER INDEX statement 101
CREATE INDEX statement 136
CREATE TABLESPACE statement 158

PCTPAGES
column of SYSTABLES catalog table 285

PDSNAME
column of SYSDBRM catalog table 266

PERCACTIVE
column of SYSTABLEPART catalog table 284

PE RC DROP
column of SYSTABLEPART catalog table 284

PGSIZE
column of SYSINDEXES catalog table 269
column of SYSTABLESPACE catalog table 287

PLAN clause
EXPLAIN statement 188
GRANT statement 198
REVOKE statement 227

plan-name 20
PLAN_TABLE and EXPLAIN statement 189
PLCREATOR

column of SYSDBRM catalog table 266
column of SYSSTMT catalog table 279

PLNAME
column of SYSDBRM catalog table 266
column of SYSSTMT catalog table 279

PLSIZE
column of SYSPLAN catalog table 274

PL/I application
host variable 48
INCLUDE SQLCA 251
INCLUDE SQLDA 255
varying-length string variables 26

PL/I application program
host variable in 46

PQTY
column of SYSINDEXPART catalog table 271
column of SYSTABLEPART catalog table 284

precedence
level 56
operation 56

precision of data
in DECLARE TABLE 170

PRECOMDATE
column of SYSDBRM catalog table 266

320 ' DB2 SOL Reference

precompiler
character set option 39
date option 39
decimal point option 37
escape character option for COBOL 18
mixed data option 39
NOFOR option 40
STDSQL option 39
string delimiters option 38
time option 39

PRECOMPTIME
column of SYSDBRM catalog table 266

predicate
basic 58
BETWEEN 59
description 57
EXISTS 61
IN 61
LIKE 59
NULL 59
quantified 58

prefix operator 51
PREPARE statement 218-220
prepared SOL statement

dynamically prepared by PREPARE 218-220
executing 184-185
identifying by DECLARE 168
obtaining information by INTO with PREPARE 178
obtaining information with DESCRIBE 176
SQLDA provides information about 252

PRIMARY KEY clause
AL TEA TABLE statement 111
CREATE TABLE statement 148

PRIQTY
USING STOGROUP clause

CREATE INDEX statement 135
CREATE TABLESPACE statement 156

PRIQTY clause
ALTER INDEX statement 102
ALTER TABLESPACE statement 118

privilege 231
program-name 20
PSID

column of SYSTABLESPACE catalog table 287
PUBLIC AT ALL LOCATIONS clause

GRANT statement 195
REVOKE statement 222

PUBLIC clause

Q

GRANT statement 195
REVOKE statement 222

qualification of column names 44
QUALIFIER

column of SYSRESAUTH catalog table 278
quantified predicate 58

query 83-94
question mark (?)

See parameter marker
QUOTE

column of SYSDBRM catalog table 266

R
read-only

table 166
view 163

REAL data type
furCREATETABLE 146

RECLENGTH
column of SYSTABLES catalog table 286

RECOVER clause
GRANT statement 200
REVOKE statement 230

RE COVE RAUTH
column of SYSUSERAUTH catalog table 288

RECOVERDB clause
GRANT statement 197
REVOKE statement 225

RECOVERDBAUTH
column of SYSDBAUTH catalog table 265

recovery
description 13

REFTBCREA TOR
column of SYSRELS catalog table 277

REFTBNAME
column of SYSRELS catalog table 277

RELEASE
column of SYSPLAN catalog table 274

RELNAME
column of SYSFOREIGNKEYS catalog table 268
column of SYSRELS catalog table 277

REMARKS
column of SYSCOLUMNS catalog table 261
column of SYSTABLES catalog table 285

REMOVE VOLUMES clause
ALTER STOGROUP statement 107

REORG clause
GRANT statement 197
REVOKE statement 225

REORGAUTH
column of SYSDBAUTH catalog table 265

REPAIR clause
GRANT statement 197
REVOKE statement 225

REPAIRAUTH
column of SYSDBAUTH catalog table 265

reserved keywords 299
RESTRICT delete rule 112, 149
result columns of subselect 86
REVOKE

DATABASE PRIVILEGES 224-226
PLAN PRIVILEGES 227-228
SQL statement 221-223

REVOKE (continued)
SYSTEM PRIVILEGES 229-230
TABLE PRIVILEGES 231--232
USE PRIVILEGES 233-234
VIEW PRIVILEGES 231-232

rollback
definition 13

ROLLBACK statement 235
ROOTCREATOR

column of SYSTABLESPACE catalog table 287
ROOTNAME

column of SYSTABLESPACE catalog table 287
row

deleting 172
inserting 207

rules
names in SQL 19

s
SAA (Systems Application Architecture) 10
scalar function

See function
SCALE

column of SYSCOLUMNS catalog table 260
column of SYSFIELDS catalog table 267

scale of data
comparisons in SQL 34
conversion of numbers in SQL 32
in DECLARE TABLE 170
in results of arithmetic operations 52
in SQL 28
in SYSIBM.SYSCOLUMNS 260

SCREATOR
column of SYSTABAUTH catalog table 282

search condition
description 62
order of evaluation 62
with DELETE 173
with HAVING 89
with UPDATE 242
with WHERE 87

SECOND function 76
SECQTY

USING STOGROUP clause
CREATE INDEX statement 135
CREATE TABLESPACE statement 156

SECQTY clause
ALTER INDEX statement 103
ALTER TABLESPACE statement 119

SECTNO
column of SYSSTMT catalog table 279

SEGSIZE clause
CREA TE T ABLESPACE statement 160

SELECT clause
as syntax component 84
GRANT statement 202
REVOKE statement 231

Index 321

SELECT INTO statement 236-237
select list

application 85
maximum number of elements and functions 248
notation 84

SELECT statement
fullselect 91
select-statement 93
subselect 83

SELECTAUTH
column of SYSTABAUTH catalog table 283

SEQNO
column of SYSSTMT catalog table 279
column of SYSVIEWS catalog table 291

SET clause
UPDATE statement 241

SET CURRENT SOLID statement 238-239
SET NULL delete rule 112, 149
SET QUERYNO clause

EXPLAIN statement 188
SGCREATOR

column of SYSVOLUMES catalog table 293
SGNAME

column of SYSVOLUMES catalog table 293
SHARE

IN SHARE MODE clause
LOCK TABLE statement 213

shift-in character
in LABEL ON 212
in SQL character strings 26
not truncated by assignments 33

shift-out character
in LABEL ON 212
in SQL character strings 26

short identifier in SQL 19
short string columns 25
SHRLEVEL

column of SYSCOPY catalog table 262
single precision floating-point 28
single row select 236
single-byte character

in LIKE predicates 60
small integers 27
SMALLINT data type 146
~rDECLARETABLE 169

SOME
in quantified predicate 58

SPACE
column of SYSINDEXES catalog table 269
column of SYSSTOGROUP catalog table 280
column of SYSTABLESPACE catalog table 287

SPCDATE
column ofSYSSTOGROUP catalog table 280

special register 41
CURRENT DATE 41, 42
CURRENT TIME 42
CURRENT TIMESTAMP 42
CURRENT TIMEZONE 43

322 DB2 SQL Reference

special register (continued)
USER 41

SQL keywords, reserved 299
SQL statement

ALTER INDEX 100-105
ALTER STOGROUP 106-107
ALTER TABLE 108-114
ALTER TABLESPACE 115-121
BEGIN DECLARE SECTION 122
checking 169
CLOSE 123
COMM ENT ON 124-125
COMMIT 126
CONTINUE 245
CREA TE ALIAS 127-128
CREATE DATABASE 129-130
CREATE INDEX 131-139
CREATE STOGROUP 140-141
CREATE SYNONYM 142-143
CREATE TABLE 144-153
CREATE TABLESPACE 154-160
CREATE VIEW 161-164
DECLARE CURSOR 165-167
DECLARE STATEMENT 168
DECLARE TABLE 169-171
DELETE 172-175
DESCRIBE 176-178
DROP 179-182
END DECLARE SECTION 183
EXECUTE 184-185
EXECUTE IMMEDIATE 186-187
EXPLAIN 188-191
FETCH 192-193
FOR 188
GRANT 194-195
GRANT (DATABASE PRIVILEGES) 196-197
GRANT (PLAN PRIVILEGES) 198
GRANT (SYSTEM PRIVILEGES) 199
GRANT (TABLE PRIVILEGES) 201-202
GRANT (USE PRIVILEGES) 203-204
GRANT (VIEW PRIVILEGES) 201-202
IMAGECOPY 196
INCLUDE 205-206

SQLCA 251
SQLDA 255

INSERT 207-210
LABEL ON 211-212
LOCK TABLE 213-214
names for 168
OPEN 215
PREPARE 218-220
REVOKE 221-223, 234
REVOKE (DATABASE PRIVILEGES) 224-226
REVOKE (PLAN PRIVILEGES) 227-228
REVOKE (SYSTEM PRIVILEGES) 229-230
REVOKE (TABLE PRIVILEGES) 231-232
REVOKE (USE PRIVILEGES) 2~3-234

REVOKE (VIEW PRIVILEGES) 231-232

SOL statement (continued)
ROLLBACK 235
SELECT INTO 236-237
SET CURRENT SOLID 238-239
TRACE 200
UPDATE 240-244
WHENEVER 245-246
(SYSTEM PRIVILEGES) 200

SOL (Structured Query Language)
assignment operation 31
basic operations 31
character strings 25
characters 17
comparison operation 31
constants 36
data types 25
dates and ti mes 28
escape character 18
graphic strings 27
identifiers 18
limits 247
naming conventions 19
null value 25
numbers 27
shift-out and shift-in characters 26
tokens 17
value 25
variable names used 19

SOLCA (SOL communication area)
contents 249
entry changed by UPDATE 242

SQLCA (SQL communication area) clause
INCLUDE statement 205

SQLCABC field of SQLCA 249
SQLCAID field of SQLCA 249
SQLCODE field of SQLCA 249
SOLD field of SQLDA 252
SQLDA {SOL descriptor area)

contents 252
SQLDA {SOL descriptor area) clause

INCLUDE statement 205
SQLDABC field in SOLDA 176
SQLDABC field of SQLDA 252
SQLDAID field i·n SQLDA 176
SQLDAID field of SQLDA 252
SQLDAT A field of SQLDA 253
SQLERRD{n) field of SQLCA 249
SQLERRMC field of SQLCA 249
SQLERRML field of SQLCA 249
SQLERROR clause

WHENEVER statement 245
SQLERRP field of SQLCA 249
SQLEXT fied of SQLCA 250
SOUND field of SQLDA 253
SQLLEN field in SQLDA 177
SQLLEN field of SQLDA 253
SQLN field of SQLDA 252

SQLNAME field in SQLDA 177
SQLNAME field of SQLDA 253
SOL TYPE field in SQLDA 177
SOL TYPE field of SQLDA 253

values 254
SQLVAR field in SQLDA 176
SQLWARNING clause

WHENEVER statement 245
SQLWARNn field of SQLCA 250
SQTY

column of SYSINDEXPART catalog table 271
column of SYSTABLEPART catalog table 284

Standard SOL Language 39
ST ARTDB clause

GRANT statement 197
REVOKE statement 225

STARTDBAUTH
column of SYSDBAUTH catalog table 265

START_RBA
column of SYSCOPY catalog table 262

STATEMENT clause
DECLARE STATEMENT 168

statement-name 20
static select 98
static SOL 11, 97
STATS clause

GRANT statement 197
REVOKE statement 225

STATSAUTH
column of SYSDBAUTH catalog table 265

STATUS
column of SYSTABLES catalog table 286
column of SYSTABLESPACE catalog table 287

STDSQL precompiler option 39
STGROUP

column of SYSDATABASE catalog table 263
STMTNO

column of SYSSTMT catalog table 279
STNAME

column of SYSTABAUTH catalog table 282
STOGROUP

USING clause
ALTER INDEX statement 102
CREATE INDEX statement 134, 136
CREATE TABLESPACE statement 156, 157

STOGROUP clause
ALTER STOGROUP statement 106
CREATE DATABASE statement 129
CREATE STOGROUP statement 140
DROP statement 180
GRANT statement 203
REVOKE statement 233

stogroup-name 20, 102, 156, 157
STOPALL clause

GRANT statement 200
REVOKE statement 230

STOPALLAUTH
column of SYSUSERAUTH catalog table 288

Index 323

STOPAUTH
column of SYSDBAUTH catalog table 265

STOPDB clause
GRANT statement 197
REVOKE statement 225

storage group
changing definition 106
defining 140
dropping 180

storage structures 14
STORNAME

column of SYSINDEXPART catalog table 271
column of SYSTABLEPART catalog table 284

STORTYPE
column of SYSINDEXPART catalog table 271
column of SYSTABLEPART catalog table 284

STOSPACE clause
GRANT statement 200
REVOKE statement 230

STOSPACEAUTH
column of SYSUSERAUTH catalog table 289

string
columns 25
comparison 35
constant

character 36
graphic 37
hexadecimal 36

variable
fixed-length 26
varying-length 26

string delimiters option 38
SUBPAGES clause

CREATE INDEX statement 138
subquery 45

in HAVING clause 89
in WHERE clause 88

subselect 83
in CREATE VIEW statement 83
used in CREATE VIEW statement 162
used in INSERT statement 209

SUBSJR function 76
SUM function 68
synonym 21

defining 142
description 20
dropping 180
qualifying a column name 44

SYNONYM clause
CREA TE SYNONYM statement 142
DROP statement 180

syntax diagrams
description 8

SYSADM clause
GRANT statement 200
REVOKE statement 230

SYSADMAUTH
column of SYSUSERAUTH catalog table 289

324 DB2 SOL Reference

SYSIBM.SYSTABLEPART catalog table 284
SYSIBM.SYSTABLES catalog table 285
SYSIBM.SYSTABLESPACE catalog table 287
SYSIBM.SYSUSERAUTH catalog table 288
SYSIBM.SYSVIEWDEP catalog table 290
SYSIBM.SYSVIEWS catalog table 291
SYSIBM.SYSVL TREE catalog table 292
SYSIBM.SYSVOLUMES catalog table 293
SYSIBM.SYSVTREE catalog table 294
SYSOPR clause

GRANT statement 200
REVOKE statement 230

SYSOPRAUTH
column of SYSUSERAUTH catalog table 289

Systems Application Architecture (SAA) 10

T
table

changing definition 108
creating 144
definition 11
designator 44
dropping 180
temporary 217

TABLE clause
COMMENT ON statement 124
DECLARE TABLE statement 169
DROP statement 180
LABEL ON statement 211

table space
changing format 115
creating 154
dropping 180
implicitly created 150
locking 213

table-name
description 20
in ALTER TABLE statement 109
in CREATE TABLE statement 146
qualifying a column name 44

TABLESPACE clause
ALTER TABLESPACE statement 115
CREATE TABLESPACE statement 154
DROP statement 180
GRANT statement 203
REVOKE statement 233

tablespace-name 21, 155
TBCREATOR

column of SYSCOLUMNS catalog table 260
column of SYSFIELDS catalog table' 267
column of SYSINDEXES catalog table 269
column of SYSSYNONYMS catalog table 281

TB NAME
column of SYSCOLUMNS catalog table 260
column of SYSFIELDS catalog table 267
column of SYSFOREIGNKEYS catalog table 268
column of SYSINDEXES catalog table 269

TBNAME (continued)
column of SYSLINKS catalog table 273
column of SYSRELS catalog table 277
column of SYSSYNONYMS catalog table 281

TCREATOR
column of SYST ABAUTH catalog table 282

temporary tables in OPEN 217
terminating

logical unit of work (LUW) 235
unit of recovery 126

TEXT
column of SYSSTMT catalog table 279
column of SYSVIEWS catalog table 291

time
arithmetic . 55
duration 53
strings 30

time data type 29, 147
for DECLARE TABLE 170

TIME function 77
time precompiler option 39
TIMEGRANTED

column of SYSCOLAUTH catalog table 259
column of SYSDBAUTH catalog table 264
column of SYSPLANAUTH catalog table 275
column of SYSRESAUTH catalog table 278
column of SYSTABAUTH catalog table 282
column of SYSUSERAUTH catalog table 288

timestamp
arithmetic 56
column of SYSCOLAUTH catalog table 259
column of SYSDBAUTH catalog table 264
column of SYSDBRM catalog table 266
column of SYSPLANAUTH catalog table 275
column of SYSRESAUTH catalog table 278
column of SYSTABAUTH catalog table 282
column of SYSUSERAUTH catalog table 288
strings 31

timestamp data type 29, 147
for DECLARE TABLE 170

TIMESTAMP function 78
TNAME

column of SYSCOLAUTH catalog table 259
TO clause

GRANT statement 195
tokens in SOL 17-18
TOTLEN

column of SYSVTREE catalog table 294
TRACE clause

GRANT statement 200
REVOKE statement 230

TRACEAUTH
column of SYSUSERAUTH catalog table 289

truncation of numbers 32
truth table 62
truth valued logic 62
TSNAME

column of SYSCOPY catalog table 262

TSNAME (continued)
column of SYSTABLEPART catalog table 284
column of SYSTABLES catalog table 285

TTNAME
column of SYSTABAUTH catalog table 282

TYPE
column of SYSTABLES catalog table 285

u
unary

minus 51
plus 51

undefined reference 44
UNION ALL clause

of fullselect 91
UNION clause

of fullselect 91
with duplicate rows 91

UNIQUE clause
CREATE INDEX statement 133

UNIQUERULE
column of SYSINDEXES catalog table 269

unit of recovery
COMMIT 126
definition 13
destroying prepared statements 220
initiating closes cursors 217 ·
referring to prepared statements 218
ROLLBACK 235
terminating

COMMIT 126
UPDATE clause

GRANT statement 202
LABEL ON 211
REVOKE statement 232

UPDATE statement 240-244
update-clause 94
UPDATEAUTH

column of SYSTABAUTH catalog table 283
UPDATECOLS

column of SYSTABAUTH catalog table 282
UPDATES

column of SYSCOLUMNS catalog table 261
USA

See date/time format
USEAUTH

column of SYSRESAUTH catalog table 278
USER 41
USING

option on ALTER TABLESPACE statement 117
USING clause

ALTER INDEX statement 102
AL TEA TABLESPACE statement 117
CREATE INDEX statement 134, 136
CREATE TABLESPACE statement 155, 157
DESCRIBE statement 177
EXECUTE statement 184

Index 325

USING clause (continued)
OPEN statement 215
PREPARE statement 219

USING DESCRIPTOR 184
USING DESCRIPTOR clause

EXECUTE statement 184
FETCH statement 192
OPEN statement 216

USING VCAT
option on ALTER TABLESPACE statement 118

using-block 155

v
VALID

column of SYSPLAN catalog ta~le 274
VALIDATE

column of SYSPLAN catalog table 274
validation routine 110

named by CREATE TABLE 151
specified by VALIDPROC option 151

VALIDPROC clause
AL TEA TABLE statement 110
CREATE TABLE statement 151

VALPROC
column of SYSTABLES catalog table 285

VALUE function 79
value in SOL 25
VALUES

CLUSTER clause
CREATE INDEX statement 137

VALUES clause
INSERT statement 208

VARCHARd~afype 147
for DECLARE TABLE 170

VARGRAPHIC data type 147
for DECLARE TABLE 170

VARGRAPHIC function 80
VCAT

USING clause 118
AL TEA INDEX statement 102
ALTER TABLESPACE statement 118
CREATE INDEX statement 134, 136
CREATE TABLESPACE statement 155, 157

VCAT clause
CREATE STOGROUP statement 140

VCATNAME
column of SYSINDEXPART catalog table 271
column of SYSSTOGROUP catalog table 280
column of SYSTABLEPART catalog table 284

view
See also?
creating 161
description 12
dropping 181
read-only 163

VIEW clause
CREA TE VIEW statement 161

326 DB2 SOL Reference

VIEW clause (continued)
DROP statement 181

view-name
description 21
qualifying a column name 44

VOLID
column of SYSVOLUMES catalog table 293

VOLUMES clause
CREATE STOGROUP statement 140

VPASSWORD
column of SYSSTOGROUP catalog table 280

VSAM
catalog

in CREATE INDEX 136
PASSWORD

in ALTER STOGROUP 106
in CREATE INDEX 138

VT REE
column of SYSVLTREE catalog table 292
column of SYSVTREE catalog table 294

w
WHENEVER statement 245-246
WHERE clause

DELETE statement 173
of subselect 87
UPDATE statement 242

WHERE CURRENT OF clause
DELETE statement 17 4
UPDATE statement 242

WITH CHECK OPTION clause
CREA TE VIEW statement 162

WITH GRANT OPTION clause
GRANT statement 195

WORK
in COMMIT statement 126
in ROLLBACK statement 235

WORKAREA
column of SYSFIELDS catalog table 267

y
YEAR function 80

Special Characters
* (asterisk)

in subselect 84
? (question mark)

See parameter marker
: (colon)

See host variable

,g
c:.a
~.~
.9-:5
:l­
o- 0
Q) Q)

C\ (/I

E.S
t'. Q)
0 0.
(/I 0
I_...,

::: "O
0 Q)

EE
o E :g.s,
~ ~

...,.i:::.
::>....,

0 ~
:5 0

·~ ~
U1:.+J
E'iii
Q) c:
:0 ~ e1
o. e
Q) ::>
(/I (/I
::>(/I
0 Q)

() ~

§ ~
() ::>

~~
a. 0
0 Q)

Cil a:
Q)
0
z

IBM DATABASE 2 Version 2
SOL Reference

SC26-4380-1

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM systems.
You may use this form to communicate your comments about this publication, its organization, or subject matter, with the under­
standing that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you. Your comments will be sent to the author's department for whatever review and action, if any, are deemed appro­
priate.

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not stocked at
the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for assistance In using
your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Comments (please include specific chapter and page references) :

If you want a reply, please complete the following information:

Thank you for your cooperation. No postage is necessary if mailed il'.I the U.S.A. (Elsewhere, an IBM office or representative will be
happy to forward your comments or you may mail them directly to the address in the Edition Notice on the back of the title page.)

SC26-4380-1

Reader's Comment Form

Fold and tape Please do not staple

I I I
BUSINESS REPLY MAIL
FIRST CLASS MAIL . PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department J57
P .0. Box 49023
San Jose, CA 95161-9945

11.1 ••• 1.1 11.11 111.1 .. 1.1 ... 1 .. 1.1.1 111

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

• r • • • • • • ••• • • • • • • •• • •••••••• • • • •• • • •• • ••••••• • • • • • • • • • •• • • •••• • • • • • • • ·······I
Fold and tape

--------- - ---- - -- - ---- - ------- -----·-

Please do not staple Fold and tape I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

