

IBH DATABASE 2 SQL Usage Guide

Document Humber GG24-1583-00

Per Groth, IBM Denmark

International Systems Center - Santa Teresa
San Jose, California

This publication was produced using the

IBM Document Composition Facility

(Program number 5748-XX9) and

the master was printed on the IBM 3800 Printing Subsystem

The information contained in this document has not been submitted
to any formal IBM test and is distributed on an "As Is" basis
wi thout any warranty either expressed or i mpl i ed. The use of thi s
information or the implementation of any of these techniques ;s a
customer responsibility and depends on the customer's ability to
evaluate and integrate them into the customer's operat i onal
environment. While each item may have been reviewed by IBM for
accuracy in a specific situation. there is no guarantee that the
same or similar results will be obtained elsewhere: Customers
attempting to adapt these techniques to their own environment do
so at their own risk.
In this document, any references made to an IBM licensed program
are not intended to state or imply that only IBM's 1 i censed
program may be used; any functionally equivalent program may be
used instead.
The products referenced in this document may not be available in
all countries.
Any performance data contained in this document was determined in
a controlled environment; and therefore. the results which may be
obtained in other operating environments may vary significantly.
Users of this document should verify the applicable data in their
specific environment.

First Edition (June 1983)

This edition applies to IBM DATABASE 2 (DB2) Release 1 (Program
Number 5740-XYR), Query Management Facility (QMF) Release 1
(5668-972). and Data Extract (DXT) Release 1 (5668-973).

Requests for copies should be made to the IBM branch office that
serves you.

Forms for reader's comments are prov i ded at the back of the
publication. If the forms have been removed, comments may be
addressed to:

IBM Corporation
International Systems Center - Santa Teresa
Department 471
P.O. Box 50020
San Jose, California 95150, U.S.A.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation
whatever. You may, of course. continue to use the information you
supply.

Copyright International Business Machines Corporation 1983.

i i IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

ACKNOWLEDGEMENT

This guide is the result of a residency conducted at the
International Systems Center - Santa Teresa.

We would like to acknowledge the excellent work done by the
author:

• Per Groth, IBM Denmark

Peter Backlund
Wes Dayton
Colin White

International Systems Center - Santa Teresa
June 1983

Acknowledgement iii
International Systems Center - Santa Teresa

--------- -- -

IBM DATABASE 2 SQl Usage Guida
International Systems Center - Santa Teresa

iv

PREFACE

This document:

• GG2ft-1583 lB" DATABASE 2 SQL Usage Guide

demonstrates the power of Structured Query language (SQl), a
data base management language which permits IBM DATABASE 2
(DB2) users to access and manipulate data in relational data
bases. The document is intended for DP Professionals who wish
to obtain a good functional knowledge of SQl. It covers SQl
by using a series of examples starting with the very basic and
becoming increasingly complex.

It is one in a series produced by the International Systems Center
- Santa Teresa. Other documents in th~ series are:

• GG2ft-1581 IB" DATABASE 2 Relat~onal Concepts

which describes the relational approach to data base systems
in general and to IBM DATABASE 2 in particular. The
relationship between IMS/VS Dl/I and DB2 applications is also
covered. The intended audience is DP Professionals who wish
to understand the relat i onal model of data and how it is
implemented in DB2.

• GG2ft-1582 IB" DATABASE 2 Concepts and Facil ities Guide

whi ch gi ves a functi onal overvi ew of the IBM DATABASE 2
relational data base management system. It is intended to be
read by all DP Professi onal s who wi sh to obta ina good
functional knowledge of the product.

Preface
International Systems Center - Santa Teresa

v

IBM DATABASE 2 SQl Usage Guide
International Systems Center - Santa Teresa

vi

CONTENTS

Chapter 1. Introduction 1

Part A: SQL Overview 3

Chapter 2. Data Hanipulation Language 5

Basic Queries using the SELECT Statement 5

Search Conditions in the WHERE-clause 6

Combining Search Conditions (AND, OR) 7

Search Condition Using BETWEEN 9

Search Condition Using IN 9

Search Condition Using LIKE 10

Search Condition Using NULL 10

Search Condition With Combined Predicates 10

Use of Built-In Functions ••.•••• 11

Ordering of Result Using ORDER BY 11

Advanced Queries Using the SELECT Statement 12

JOIN of Several Tables .••....••• 12

Joining Tables With Identical Column Names 13

Joining a Table To Itself 13

Using GROUP BY 14

Using Subselects Within a Query 14

Using Correlated Subselects 16

Testing for Existence 16

Union of SELECT Results 17

Use of Constants 17

The INSERT Statement 19

Simple INSERT of One Row 19

Selected INSERT of Multiple Rows 20

The UPDATE Statement 21

The DELETE Statement 21

Chapter 3. Data Definition Language 23

The CREATE Statement 26

Creating a New Table 26

Creating an Index 27

Creating a View On a Table 28

Creating a Synonym 29

The ALTER Statement 29

Alteri ng a Table 30

Altering an Index 30

The DROP Statement 31

The COMMENT ON statement 32

Chapter ~. Data control Language 33

The GRANT Statement 33

The REVOKE Statement 34

Contents vi i

International Systems Center - Santa Teresa

Part B: SQL Examples 35

Chapter 5. Data Environment 37

Organization 37

Projects 37

Base Table Structure 38

Organization Application Tables 39

Project Application Tables 40

DB2 Implementation of Sample Tables 42

Chapter 6. Data "anipulation - simple Queries 45

Output Format of Resulting Tables 45

Simple Select With Combined Conditions 46

Simple Select With Ordering 47

Simple Select With Grouping 48

Simple Select Using Grouping and Having 49

Simple Select Using Boolean Operators 50

Simple Select Using Expressions 51

Simple Select Using Built-In Functions 52

Simple Select Using a View 54

Simple Select Using LIKE 56

Chapter 7. Data "anipulation - Advanced Queries 57

Query With Subselect on Same Table 58

Selecting From Two Tables 60

Comparing Two Rows In the Same Table 61

Queries Combined With UNION 62

Query Testing For Existence 64

Query Testing For Non-Existence 65

Table Joined to Itself With Subselect 66

Correl~ted Subselect . . · 68

Combining Views and Unions 70

Subselect Returning Set of Values 72

. ·INSERT of a Single Row . . 73

INSERT of Rows From Existing Table 74

UPDATE of a Single Row 76

UPDATE of Multiple Rows 77

DelETE of a Single Row · . . . 78

DelETE of Multi pIe Rows 79

Chapter 8. Data Control Language - Examples 81

SQL Users in the Sample Company 81

Grant SELECT Authority On a Table 82

Grant SELECT Authority To PUBLIC 82

Grant UPDATE Authority On a Table 82

Grant UPDATE Authority On Columns 83

Grant INSERT and DELETE Authority On a Table 83

Grant INDEX and ALTER Authority On a Table 83

Grant Authority With GRANT Option 84

Grant Authority On Selected Rows 85

Grant Authority On Selected Rows and Columns 85

List Granted Authority From System Catalog Tables 86

Revoke SELECT Authority On a Table 89

Revoke SELECT Authority From PUBLIC . '. 89 ...

vi i i IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

-

Revoke Authority Granted With GRAHT OPTION 89

Revoke Authority With Cascading Effect 90

Chapter 9. Data Definition Language - Examples 91

The CREATE statement 91

The DROP Statement 105

The ALTER Statement 106

The COMMENT ON Statement 110

Part C: SQL Definition III

Appendix A. Data Manipulation Language syntax 113

The SELECT Statement 113

The INSERT Statement 116

The UPDATE Statement 118

The DELETE Statement 119

APpendix B. Data Control Language syntax 121

The GRANT Statement 121

The REVOKE Statement 123

Appendix C. Data Definition Language syntax 125

Appendix D. Sample Base Table Definition 127

Appendix E. Organization APplication Base Tables 129

Appendix F. project Application Base Tables 133

Contents
International Systems Center - Santa Teresa

ix

IBM DATABASE 2 SQl Usage Guide
International Systems Center - Santa Teresa

x

LIST OF ILLUSTRATIONS

Figure 1. Example of relationships between the DB2 objects 24

Figure 2. DDL operations 25

Figure 3. Relationship between the Sample Application DB2

objects . . • 43

Figure 4. CREATE STOGROUP statement 92

Figure 5. CREATE DATABASE Statement 93

Figure 6. CREATE TABLESPACE Statement - part 1 94

Figure 7. CREATE TABLESPACE Statement - part 2 95

Figure 8. CREATE TABLESPACE Statement - part 3 96

Figure 9. CREATE TABLE Statement - part 1 97

Figure 10. CREATE TABLE Statement - part 2 98

Figure 11. CREATE TABLE Statement - part 3 99

Figure 12. CREATE INDEX Statement - part 1 100

Figure 13. CREATE INDEX Statement - part 2 101

Figure 14. CREATE INDEX Statement - part 3 102

Figure 15. CREATE VIEW Statement 103

Figure 16. CREATE SYNONYM Statement 104

Figure 17. DROP statement ...• 105

Figure 18. ALTER STOGROUP Statement 106

Figure 19. ALTER TABLESPACE Statement 107

Figure 20. ALTER TABLE Statement 108

Figure 21. ALTER INDEX Statement 109

Figure 22. COMMENT ON Statement 110

Figure 23. SELECT Statement Syntax - Part 1 113

Figure 24. SELECT Statement Syntax - Part 2 114

Figure 25. SELECT Statement Syntax - Part 3 115

Figure 26. INSERT Statement Syntax - Part 1 116

Figure 27. INSERT statement Syntax - Part 2 117

Figure 28. UPDATE Statement Syntax 118

Figure 29. DELETE Statement Syntax 119

Figure 30. GRANT Statement Syntax 122

Figure 31. REVOKE Statement Syntax 123

Figure 32. Data Definition Language Syntax 126

Figure 33. Organization Application Tables Definition 127

Figure 34. Project Application Tables Definition 128

Figure 35. Department Base Table (DSN8.TDEPT) 129

Figure 36. Employee Base Table (DSN8.TEMPL) - Part 1 130

Figure 37. Employee Base Table (DSN8.TEMPL) - Part 2 131

Figure 38. Activity Type Base Table (DSN8.TACTYPE) 133

Figure 39. Project Base Table (DSN8.TPROJ) 134

Figure 40. Project-Activity Base Table (DSN8.TPROJAC) 135

Figure 41. Employee-Project-Activity Base Table

(DSN8.TEMPRAC) - Part 1 .•. •. 136

Figure 42. Employee-Project-Activity Base Table

(DSN8.TEMPRAC) - Part 2 ...•.. 137

List of Illustrations
International Systems Center - Santa Teresa

xi

xi i IBM DATABASE 2 SQl Usage Gui de
International Systems Center - Santa Teresa

CHAPTER 1. INTRODUCTION

."
I
I

structured Query Language (SQLl is a data base management
language which permits DB2 users to define, access, and
manipulate data stored in large data bases.

The purpose of this guide is to demonstrate the power of SQl. The
gui de wi 11 show that the SQL language is not only a query
language, but also a data mani pulati on language and a data
definition and authorization language.

SQl is based on the relat i onal model, where data is stored in
tables. Since most people are used to viewing data as tables, this
concept is very easy to learn and understand.

The SQl language is a hi gh level language, where the user
specifies what the result should be, not how the result should be
obta i ned. Thi s concept has a great impact on improved user
productivity, since the user, in a few statements, can specify how
a given problem should be solved.

The 	guide is divided into three parts:

• 	 Part A is an overvi ew of the SQL language. Thi s part wi 11
briefly describe the three language functions (e.g. data
manipulation, data definition, and data authorization
control).

• 	 Part B presents examples of using SQL. Examples are shown for
each area of SQL covered in part A. The first chapter of this
part describes a sample set of tables that will be used in the
examples that follow in subsequent chapters.

• 	 Part C consists of six appendixes. The first three appendixes
show the syntax of the various SQL statements. The last three
appendi xes are 1 i st i ngs of the sample tables used in the
guide.

It should be noted that the SQl covered in this guide is
restricted to that what can be entered using DB21 or QMF. The
special functions of the languagg designed to cater for imbedding
SQL in an application program are not covered.

It is assumed that the user is to some extent familiar with the
SQL language. Also note that this guide does not give a complete
coverage of SQl. For a more detailed description of the SQl
language, please refer to the IBM DATABASE 2 Reference.

Chapter 1. Introduction 1
International Systems Center - Santa Teresa

IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

2

PART A: SQl OVERVIEW

This part of the guide will give the reader an overview of the SQl
language. The overview is divided into three chapters:

• Chapter 2. Data Manipulation Language

This chapter describes how data in tables can be retrieved
using various search conditions. The first part of the
chapter shows basic queries, where we are selecting data from
one table. The second part of the chapter will familiarize the
reader with the advanced features of the SQl. Here we will see
how data can be derived from several tables, and how we can
insert new data, change existing datat and finally how data
can be deleted.

• Chapter 3. Data Definition Language

This chapter describes how tables and other DB2 "objects" can
be defined, changed, and deleted using the dynamic SQl data
definition language. The chapter will also give an overview
of the data types allowed in SQl.

• Chapter 4. Data Control Language

The last chapter in this part is an overview of the
authorization mechanism in DB2. We will see how table access
can be dynamically granted and revoked.

Part A: SQl Overview 3
International Systems Center - Santa Teresa

IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

4

CHAPTER 2. DATA HANIPULATION LANGUAGE

structured Query Language (SQL) is a query language that gives a
user access to data stored in DB2 tables. The data manipulation
part of the language enables the user to make queri es wi thout
changing the data in the tables, but it also allows the user to
modify existing data, to insert new data, and to delete data from
the tables. A DB2 table consists of zero or more rows, each row
consi st i ng of one or more columns.

Queries are handled with the SELECT statement, modifications with
the INSERT, UPDATE and DELETE statements. In thi s chapter we wi 11
discuss:

• 	 Basi c Queri es usi ng SELECT

• 	 Advanced Queries using SELECT

• 	 INSERT

• 	 UPDATE

• 	 DELETE

BASIC QUERIES USING THE SELECT STATEHENT

The purpose of a query is to retrieve information from DB2 tables.
The retrieval is made with a SELECT statement. The result of this
operation will always be a table consisting of the selected
columns and rows. The following must be specified in the SELECT
statement:

• 	 What data to retrieve, i.e. the field(s) that should be
returned as resul t of the SEL ECT .

• 	 The table(s) from which the data is to be retrieved.

Optionally the SELECT can specify:

• 	 The conditions which must be satisfied in order to retrieve
the data.

A SELECT statement may also be issued against a view. A view is
like a window through which the user can access a table, a part of
a table, or a combination of two or more tables. Views look like
real tables, but they do not contain data. Instead the data is
derived from the underlying table(s), on which the view is
defined.

Chapter 2. Data Manipulation Language
International Systems Center - Santa Teresa

5

,..

The basic form of the SELECT statement is:

SELECT the data you want (column name(s»
FROM some source (table name(s»

WHERE conditions which are to be met (if any)

The specified list of data you want can be simple column names; it
can be special built-in functions; or it can be arithmetic
expressions, like the sum of values from two columns.

Following is an example of a simple SELECT statement:

SELECT FIRSTNME, LASTNAME
FROM TEMPL

This statement will retrieve the names of all employees in the
TEMPL table l • Appendix E in this guide contains listings of the
employee and department tables. Appendix F contains listings of
four project related tables that will be used later in this guide.

Search Conditions in the WHERE-clause

Using the WHERE clause enables selection of only certain
employees as the next example shows.

SELECT FIRSTNME, LASTNAME
FROM TEMPL

WHERE WORKDEPT = '011'

Here only employees of department '011' will be selected.

The columns (fields) will be presented in the same order as they
are specified in the SELECT clause. A shorthand notation exists
whi ch wi 11 present all columns of a table or a vi ew. To use thi s,
the specification of columns is replaced by an 'lE' as in the
following example:

1 	 A table name can be prefixed by an authorization-id (or
user-i d). It is assumed that all tables in thi s gui de are
owned and accessed by the user, OSN8, therefore no prefix is
needed. If another user (not OSN8) is allowed to access any
of these tables, this user must specify the fully qualified
table name, e.g. DSN8.TEMPL.

6 IBM OATABASE 2 SQl Usage Guide
International Systems Center - Santa Teresa

i·....,

SELECT *
FROM TEMPL

WHERE WORKOEPT = '011'

The previous examples will return all rows which satisfy the given
WHERE clause (i f any). It is possi ble that several of the
selected rows will be identical (i.e. all the specified columns
have identical values>. To suppress presentation of identical
rows, one can use the DISTINCT keyword. Thi sis a posi ti onal
keyword which must immediately follow the SELECT verb. The
alternative to DISTINCT is AI.L which is the default value. The
following example shows the format:

SELECT DISTINCT lASTNAME
FROM TEMPL

WHERE LASTNAME = 'BROWN'

By using ALL (default) in the above example, the query will return
zero, one, or more rows where LASTNAME is' BROWN'. If DISTINCT is
specified, only zero or one row will be returned with LASTNAME
equal to 'BROWN'.

The following example will only eliminate duplicate rows having
both FIRSTNME and LASTNAME identical. This means that we might
retrieve several rows, where the last name is BROWN, but they will
all have different FIRSTNME values:

SELECT DISTINCT FIRSTNME, LASTHAME
FROM TEMPL

WHERE LASTNAME = 'BROWN'

In the preceding examples, the constants used in the WHERE clauses
have been character strings. When a character string is specified
in an SQL statement, it must be enclosed in quotes. When a numeric
constant is used, it is specified without quotes. For a
description of the data types allowed in SQl, please refer to
"Creating a New Table" on page 26.

Combining Search Conditions (AND, OR)

If a select is made on more than one condition, the conditions can
be combi ned by usi ng the AND and OR keywords. The followi ng
example shows a query, where we are selecti ng employees wi th a job
code of 56 from department 011:

Chapter 2. Data Manipulation language
International Systems Center - Santa Teresa

7

SELECT EMPNO. FIRSTNME. LASTNAME

FROM TEMPL

WHERE WORKDEPT = 'D11'

AND JOBCODE = 56

By using the AND keyword. the previous example will only select
those employees that meet both search conditions. The OR keyword
will return all rows where at least one of the specified
conditions are satisfied. However. if a row satisfies several
conditions, it will only be returned once. In the following
example. all employees from department D11 as well as all
employees having a job code of 56 will be selected:

SELECT EMPNO. FIRSTNME. LASTNAME

FROM TEMPL

WHERE WORKDEPT = 'D11'

OR JOBCODE = 56

Several conditions can be combined in the WHERE-clause. Each of
these conditions is called a predicate. You may have to use
parentheses in order to override precedence rules of operators.
This is shown in the following example. where we are selecting
employees who either work in department D11 or D21 and who have a
job code greater than 54 or an education level greater than 15:

SELECT EMPNO. FIRSTNME. LASTNAME

FROM TEMPL

WHERE (WORK DEPT = 'D11' OR WORKDEPT = 'D21')

AND (JOBCODE > 54 OR EDUCLVL > 15)

In the last example the greater-than (» comparison operator was
used in the search condition. SQL will allow the following
comparison operators to be used in a search condition:

= ~- > >= ~> < <= ~<

The special not-operator "~" can be used to negate a comparison as
shown. The NOT keyword can be used in a WHERE-clause as a normal
Boolean operator. In the following example we are selecting
employees who have a job code of 54 and who are working in any
department except department D11:

IBM DATABASE 2 SQL Usage GUt de
International Systems Center - Santa Teresa

8

SELECT FIRSTNME. LASTNAME. WORKDEPT. EDUCLVL
FROM TEMPL

WHERE JOBCODE = 54
AND NOT WORKOEPT = '011'

This statement could instead of the NOT keyword have used the -­
operator in the second search condition:

SELECT FIRSTNME. LASTNAME. WORKOEPT. EDUCLVL
FROM TEMPL

WHERE JOBCODE = 54
AND WORKDEPT -= 'D11'

Search Condition Using BETWEEN

The BETWEEN predicate can be used in a WHERE-clause together with
other expressi ons. BETWEEN can be preceded by NOT. You would
typically use BETWEEN when you want to select a field within a
range of values. In the next example we are selecting all
employees having an employee number between 000100 and 000230:

SELECT EMPHO, FIRSTHME, LASTNAME. WORKDEPT
FROM TEMPL

WHERE EMPNO BETWEEN '000100' AND '000230'

Note that employees with the numbers 000100 and 000230 will be
included in the result.

Search Condition using IN

Th~ IN predicate makes it possible to compare the contents of a
field with a list of values. The predicate is satisfied if the
field is equal to any of the constants in the list. If NOT IN is
specified, the predicate is satisfied if the field is not equal to
any of the listed items. In the following example all employees
with an education level of 16. 18, or 20 will be selected:

SELECT EMPNO. FIRSTNME, LASTNAME. EOUCLVL
FROM TEMPL

WHERE EDUCLVL IN (16. 18, 20)

Chapter 2. Oata Manipulation Language
International Systems Center - Santa Teresa

9

Search CDnditiDn Using LIKE

The LIKE predicate enables the user to search for character string
data which partially matches a specified string. In this string
the "7." character represents any string of zero or more
characters, the "" character represents exactly one single
character. NOT LIKE is a valid predicate. In the following example
we are selecting all employees having a last name starting with a
"PH and who are working in a department, where the first character
in the department number is "0" and the third character is "1":

SELECT EMPNO, FIRSTNME, LASTNAME, WORKDEPT
FROM TEMPL

WHERE LASTNAME LIKE 'P7.'
AND WORKDEPT LIKE '0_1'

Search Condition Using NULL

The NULL predicate provides a way for the user to explicitly look
for null values in the base table, or, if NOT NULL is used,
exclude null values from the query result. A null value is a
special value that indicates an absence of a value. A null value
cannot be used in a comparison, since null is not greater than,
smaller than, equal to, or not equal to any other value (including
another null value>. In the following example all rows containing
a null value in the JOBCODE column should be selected:

SELECT EMPNO, FIRSTNME, LASTNAME
FROM TEMPL

WHERE JOBCODE IS NULL

Search Condition with Combined Predicates

The predicates discussed above can be combined in any order in the
same WHERE-clause. The followi ng query example illustrates a
combination of the predicates explained so far:

SELECT LASTNAME, JOBCODE, EDUCLVL, SALARY, WORKDEPT
FROM TEMPL

WHERE (WORKDEPT = 'Dll' OR WORKDEPT = 'E21')
AND EDUCLVL IN (12, 14, 16, 18)
AND SALARY BETWEEN 15600 AND 23700
AND (LASTNAME NOT LIKE 'P7.' OR LASTNAME LIKE '7.S0N7.')
AND JOBCODE IS NOT NULL

10 IBM DATABASE 2 SQl Usage Gui de
International Systems Center - Santa Teresa

Use of Built-In Functions

Five built-in functions can be used in a SELECT-clause. These
functions are: AVG, MAX, MIN, SUM, and COUNT. The argument of a
built-in function may be a column name or an expression. An
expression is a combination of column names and or constants (e.g.
SALARY/12). If duplicate values should be eliminated when using
the COUNT built-in function, the column name must be preceded by
DISTINCT. COUNT may have a special format - COUNTC*> - which will
compute the number of rows satisfying the search condition. In
the following example the number of employees in department D11
will be counted. Further, the average, the maximum, the minimum,
and the total salary for department D11 wi 11 be calculated.
Finally, the number of different job codes in that department will
be counted:

SELECT COUNT(*>, 	 AVGCSALARY>, MAX(SALARY),
MIN(SALARY), SUM(SALARY),
COUNT(DISTINCT JOBCODE)

FROM TEMPL
WHERE WORKDEPT = 'Dl1'

ordering of Result Using ORDER BY

The result of a 	 SELECT statement will be presented in a system
determi ned order. By usi ng the ORDER BY-clause the user can
specify how the result should be ordered. The default ordering is
ascending CASC), but descending order can be specified (DESC)'
The user can request ordering on one or more items Ccolumns or
expressions> in 	 the SELECT-clause by specifying either a column
name or an integer number denoting an element in the result list.
In the following example we are selecting all employees in
departments AOO, 	 B01, COl, and DOl ordered on department number.
Within a department, the rows will be ordered in descending order
using the monthly salary (the 3rd column in the result) as the
secondary ordering criteria:

SEl ECT LASTNAME, WORKDEPT, SALARY / 12
FROM TEMPL

WHERE WORKDEPT = 'ADO' OR WORK DEPT = 'B01'
OR WORKDEPT = 'COl' OR WORKDEPT = '001'

ORDER BY WORKDEPT, 3 DESC

Chapter 2. Data Manipulation Language 11
International Systems Center - Santa Teresa

ADVANCED QUERIES USING THE SELECT STATEMENT

All queries discussed so far have been based on only one table,
which is specified in the FROM-clause of the query. In the
following examples we will combine data from several tables and
look into the advanced features of the SELECT statement.

The following features will briefly be covered:

• Join of Several Tables

• Use of Groupi ng

• Use of Subselects

• Correlation

• Testing for Existence

• Union of Results

• Constants

JOIN of Several Tables

In some cases the data that is needed ina query wi 11 not be
available in one table only. That means you will have to combine
data from two or more tables in order to get the data you need.
This process is called Joining. The JOIN feature of DB2 permits a
query to be wri tten agai nst the combi ned data in two or more
tables. All the tables participating in the join should be listed
in the FROM-clause (e.g. FROM TEMPL, TEMPRAC). Conceptually, DB2
forms all possible combinations of rows from the indicated
tables, and for each combination tests the condition in the
WHERE-clause. The WHERE-clause usually specifies some
relationship between the rows to be joined, e.g. their department
number values must match:

WHERE TEMPl.WORKDEPT = TDEPT.DEPTNO

A predicate such as this, which specifies some relationship
between two tables, is called a JOIN-condition.

The employee table we have been using in the previous examples
does not include the department name. If we would like to produce
a list containing all employee names, department numbers, and
department names, we will have to retrieve the department names
from the department table. This can be done by joining the two
tables, as the following example shows:

12 IBM DATABASE 2 SQl Usage Guide
International Systems Center - Santa Teresa

SELECT FIRSTNME, LASTNAME, WORKDEPT, DEPTNAME
FROM TEMPL. TDEPT

WHERE WORKDEPT = DEPTHO

If the WHERE-clause was omitted in the above example, DB2 would
return a result containing all possible combinations of rows from
the tables in the FROM-clause. This type of result is called a
"Cartesian Product". It does not normally produce a meaningful
result.

Joining Tables with Identical Column Names

If tables with identical column names are joined, you must qualify
the column names with the table names in the SELECT- and
WHERE-clauses. If the DEPTNO column in the department table
instead was named WORKDEPT, we would have to qualify this column
name, in order to do the same select as above:

SELECT FIRSTHME, LASTHAME, TDEPT.WORKDEPT, DEPTNAME
FROM TEMPL, TDEPT

WHERE TDEPT.WORKDEPT = TEMPL.WORKDEPT

Joining a Table To Itself

In some cases it will be necessary to join a table to itself.
Another way to view this process is to imagine two (or more)
"virtual" tables based on the same base table. The table-name is
repeated two or more times in the FROM-clause, indicating that the
join consists of combinations of two or more rows from the same
table. Since the table name will not be unique, each table name in
the FROM-clause must be given a unique label.

In the following example we are selecting pairs of employees, who
work in the same department, but have a difference in the job code
value of at least 5. Since the employee table is joined to itself,
we wi 11 apply the labels X and Y to the table name:

SELECT X.LASTNAME, X.JOBCODE,
Y.LASTNAME, Y.JOBCODE

FROM TEMPL X, TEMPL Y
WHERE X.WORKDEPT = Y.WORKDEPT

AND X.JOBCODE >= Y.JOBCODE + 5

Chapter 2. Data Manipulation Language
International Systems Center - Santa Teresa

13

Using GROUP BY

The GROUP BY-clause is used to divide the rows of a table into
groups having a matching value in one or more columns. One or
more of the built-in functions is then applied to these groups.
When the GROUP BY-clause is used in a SELECT statement, only one
row is returned for each group. It is therefore not possible ­
nor meaningful - to include column names not referenced in the
GROUP BY-clause in the select list. Not referenced column names
can be used in built-in functions only. In the following example,
the maximum, the minimum, and the average salary is computed for
all male employees in each department:

SELECT WORKDEPT, MAXCSALARY), MINCSALARY), AVGCSALARY)
FROM TEMPl

WHERE SEX = 'M'

GROUP BY WORKDEPT

The HAVING-clause is used to qualify the grouping. This clause
will filter groups so that conditions specified in the
HAVING-clause are met. Several group qualifying predicates,
connected by ANDs and ORs, may be specified. If the HAVING-clause
is used without a GROUP BY-clause, the whole table will be treated
as one group. Using the previous example, we will now only list
the departments having more than two male employees and only if
the maximum salary is more than twice the minimum salary:

SELECT WORKDEPT, MAX(SAlARY), MINCSALARY), AVGCSALARY)
FROM TEMPL

WHERE SEX = 'M'

GROUP BY WORKDEPT

HAVING COUNTC*) > 2
AND MAXCSALARY) > 2 * MIN(SALARY)

Using Subselects Within a Querv

The SELECT statement may refer to a value or a set of values which
will be derived from a subselect. A subselect may also have a
subselect. There is no limitation to the number of subselect
levels. A subselect will typically be part of the WHERE-clause.
but may also appear in the HAVING-clause. If the subselect
returns a single value. it can be used on the right side of the
compar i son operator in any predi cate in the WHERE- or
HAVING-clause. The subselect must have exactly one expression
that describes what is being selected. Let's look at an example.
where we are selecting all the female employees. who are younger
than the average employee Cboth female, and male):

14 IBM DATABASE 2 SQL Usage Gui de
International Systems Center - Santa Teresa

SELECT LASTNAME, FIRSTNME, BRTHDATE

FROM TEMPL

WHERE SEX = 'F'

AND BRTHDATE > C SELECT AVGCBRTHDATE)

FROM TEMPL)

Since the subselect will be execu~ed first, a comparison can be
made between the average birth date and the birth date found in
each row from the outer level query. Note that the subselect must
be enclosed in parentheses.

In the above example the subselect only returned ~ value. In the
followi ng examples the subselect mi ght return more than one
value. When more than one value can be returned, you must use the
ALL, ANY, or IN keyword in the outer level WHERE-clause.

The ALL and ANY keywords can be used in a comparison when the
subselect returns more than one value. If ALL is used in a
comparison, the condition is satisfied if the given expression is
true for all the values in the returned set. If ANY is used in a
comparison, the condition is satisfied if the given expression is
true for any of the values in the returned set. In the following
example we are selecting all the employees, who have been working
longer in the company than all the members of department COl, and
who are younger than any member of department E21:

SELECT EMPNO, LASTNAME, WORKDEPT

FROM TEMPL

WHERE HIREDATE < ALL C SELECT HIREDATE

FROM TEMPL

WHERE WORKDEPT = 'COl')

AND BRTHDATE > ANY C SEl ECT BRTHDATE

FROM TEMPL

WHERE WORKDEPT = 'E21')

Chapter 2. Data Manipulation Language
International Systems Center - Santa Teresa

15

If the subselect returns a set of values, the IN predicate can be
used in the WHERE-clause. In the following example we are
selecting all managers from the employee table. The manager
numbers are found in the department table:

SELECT EMPHO, LASTHAME, WORKDEPT
FROM TEMPL

WHERE EMPHO IH (SELECT MGRHO
FROM TDEPT

WHERE MGRHO -- ")

Using Correlated Subselects

In the previous examples, all the subselects have been executed
once and the resulting value(s) has been substituted into the
WHERE-clause. In some queries, howeve:--, it is necessary to
evaluate the subquery for each row in the outer-level query. This
type of query is called a "correlated subselect".

A correlated subselect is a subselect that is executed
repeatedly, once for each row returned by the outer-level select.
A query wi th a correlated subselect has the same format as an
ordinary outer query with a subselect. A "correlation name" is
appended to the table name in the FROM-clause and is used to
qualify a column name in the subselect with the outer-level table
name. This means that the subselect will be re-evaluated for each
row of the outer query, if the outer query has different values
for a given selected column name.

In the following example we are selecting employees having an
educati on level hi gher than the average for the department in
which the employee is working:

SELECT EMPHO, LASTHAME, WORK DEPT <------,
FROM TEMPL X I

WHERE EDUCLVL > (SELECT AVG(EDUCLVL) I
FROM TEMPL v

WHERE WORKDEPT = X.WORKDEPT)

The column name X.WORKDEPT in the inner-level SELECT will
correlate to the WORKDEPT field in the outer-level SELECT.

Testing for Existence

The EXISTS predi cate is used to test for the exi stence of a row or
rows satisfying some condition in a subselect. The EXISTS
predicate can be preceded by the NOT keyword. The predicate is
used to link a subselect to the outer-level query, but the

IBM DATABASE 2 SQL Usage Guide

International Systems Center - Santa Teresa

16

subselect wi 11 not return a value only a true or false
indicator. The true condition is set if the sUbselect returns one
or more rows. If the subselect does not return any rows, the false
indicator will be set. In the following example we will use a
correlated query in selecting all employees who are not managers
(i.e. the employee number should not be found in the department
table). The resulting list will be ordered on the last name:

SELECT EMPHO, LASTHAME, WORK DEPT
FROM

WHERE
TEMPL X
NOT EXISTS (SELECT *

FROM TDEPT
WHERE MGRNO = X.EMPNO)

ORDER BY LASTNAME

The subselect specifies that all columns should be selected (use
of the "*"). Since the subselect does not return values to the
outer-level query, but only a true or false indicator, any column
name(s) could have been specified instead.

Union of SELECT Results

The UNION operator is used to combine the results from two or more
outer-level queries. The outer level queries are first executed,
then the results are combined and duplicate rows are eliminated.
In order to be combined, the data types of corresponding items
selected by all the SELECT statements must be identical (i .e. have
the same defined attributes). If ordering is required, the ORDER
BY clause must be written after the last query in the UNION and
will apply to the entire result. Since the column names in the
outer level queries in most cases will be different, you must
specify a column number of the result and not a column name. In
the following example we will select the employee numbers of all
the employees having a senior level (i.e all managers and all
employees having a job code of 56 or more):

SELECT MGRNO
FROM TDEPT , , WHERE MGRNO -­

UNION
SELECT EMPNO

FROM TEMPL
WHERE JOB CODE >= 56
ORDER BY 1

Use of Constants

Chapter 2. Data Manipulation Language 17
International Systems Center - Santa Teresa

A constant is a fixed character string that can be included in the
select list, just like a column name. To specify a string
constant, you must enclose the character stri ng wi thi n si mple
quotes (e.g. 'Text String'>' When a constant is specified, the
result table will have a column containing the constant; this
column wi 11 have the VARCHAR attri bute (for data types and
attributes, please refer to "Creating a New Table" on page 26).

Constants are normally used in connection with the UNION operator
in order to add a descri pt i on to each row in each of the
outer-level queries. Constants in two or more SELECT statements ­
that are combined - must have the same length. Constants can only
be combined with columns defined as VARCHAR and the length of the
constant must be the same as the maxi mum length of the column
value.

In the following example we will do the same UNION as shown in the
previous sub-chapter, but we will now add a description to each
row:

SElECT MGRNO, 'MANAGER
FROM TDEPT

WHERE MGRNO ...="
UNION

SELECT EMPNO, 'SENIOR EMP. '
FROM TEMPL

WHERE JOBCODE >= 56
ORDER BY I

As the example shows, the constants in the SELECT statements both
have a length of 11 characters.

18 IBM DATABASE 2 SQl Usage Guide
International Systems Center - Santa Teresa

THE INSERT STATEMENT

The purpose of the INSERT statement is to add one or more rows to
a table. The data to be inserted can be specified directly in the
INSERT statement, or data can be retrieved from an existing table
by using a subselect statement.

The two basic forms of the INSERT statement are:

INSERT INTO the table (table name)
(list of column name(s»

VALUES (list of values)

INSERT INTO the table (table name)
(list of column name(s»

SELECT the data you want (column name(s»
FROM some source (table name(s»

..JiIJIIIIJ1' WHERE conditions which are to be met (if any)

sfmple INSERT of One Row

By using the first format of the INSERT statement, we will now add
a new row in the department table. Let's assume that Spi ffy
Computer Services Division has decided to establish a department
for testing. The department number is 041, the name is Systems
Test, James Walker has been appointed as manager, and the new
department will report to department 001. Since all columns in the
table are assigned a value, and since we are inserting columns in
correct order, we need not specify the list of column names:

INSERT INTO TDEPT
VALUES (' 041', 'SYSTEMS TEST',

'000190', '001')

If not all field values are known at INSERT time, you can either
specify in the list of column names only the columns that will
receive a value, or you can omit the list of column names, and
instead use the NULL keyword for fields not assigned a value.

Let's assume that the Systems Test department has hired two new
employees. At this time we only know the names, the work
department, the hire dates, and the- sex codes. The following
example will show the two ways of inserting a simple row in the
employee table as discussed in the previous paragraph:

Chapter 2. Data Manipulation Language 19
International Systems Center - Santa Teresa

INSERT INTO TEMPl
(EMPNO, FIRSTNME, MIDINIT, lASTNAME,

WORKDEPT, HIREDATE, SEX)
VALUES ('000410', 'HOWARD', , " 'JENSEN',

'041', 820308, 'M')

INSERT INTO TEMPl
VALUES ('000420', 'CAROLE', 'H', 'GORDON',

'041', NUll, 820312, NUll, NUll,
'F', NUll, NULL>

Note that both INSERT statements will insert NUll values in the
column names not assigned a value.

Selected INSERT of Multiple Rows

By using the second format of the INSERT statement, multiple rows
can be inserted by a si ngle INSERT statement. The subselect
statement may contain any of the features described previously,
except the UNION operator.

let's assume that we have created a special employee table for the
new Systems Test department. Thi stable is called EMPD41. The
following example shows how to insert the two employees and the
manager assigned to D41. The data will be derived from our current
employee and department table:

INSERT INTO EMP041
(EMPNO, FIRSTNME, MIOINIT, lASTNAME.

WORKDEPT, HIREDATE, SEX)
SElECT EMPNO, FIRSTNME, MIDINIT, lASTNAME,

WORKDEPT, HIREDATE, SEX
FROM TEMPl

WHERE EMPNO LIKE '0004'"
OR EMPNO IN (SELECT MGRNO .,J

FROM TDEPT
WHERE DEPTNO = 'D41 ')

IBM DATABASE 2 SQl Usage Guide
International Systems Center - Santa ieres8

20

THE UPDATE STATEHENT

The purpose of the UPDATE statement is to update the values of one
or more columns in one or more rows of a table. The rows to be
updated are chosen by the search condition, as described in the
SELECT section (see "Basic Queries using the SELECT Statement" on
page 5).

The basic form of the UPDATE statement is:

UPDATE the table (table name)
SET field name 1 = expression 1,

field name 2 = expression 2,
WHERE conditions which are to be met (if any)

If no search condition is specified, all rows in the named table
wi 11 be updated.

In the followi ng example, the job code and the salary wi 11 be
updated for the two new employees in department 041. Since the two
employees have the same job code and the same salary, we can
update the two rows in one UPDATE statement. In the same
statement, we will also change the hire dates to null values:

UPDATE TEMPL
SET JOBCODE = 52, SALARY = 18140,

HIREDATE = NULL
WHERE EMPNO = '000410'

OR EMPNO = '000420'

In the following example, all employees will be given a 7.5Y.
salary increase. Since this update is for all the rows in the
employee table, no search condition is needed:

UPDA TE TEMPL
SET SALARY = 1.075 * SALARY

THE DELETE STATEHENT

The purpose of the DELETE statement is to delete one or more rows
in a table. The rows to be deleted are chosen by the search
condition, as described in the SELECT section (see "Basic Queries
usi ng the SELECT Statement" on page 5).

Chapter 2. Data Manipulation Language 21
International Systems Center - Santa Teresa

The basic form of the DELETE statement is:

DELETE
FROM some source (table name)

WHERE conditions which are to be met (if any)

Since the smallest item that can be deleted by the DELETE
statement is a row, no column specifications can be given. If
only a column value ina row has to be "deleted", you should
change this value to NULL by means of the UPDATE statement.

In order to illustrate the use of the DELETE statement, let's
assume that Spiffy Computer Services Division decides to abandon
the idea of establishing a Systems Test department. The two new
employees are offered another job elsewhere in the parent
company, and wi 11 therefore be deleted in the Spi ffy Computer
Services Division employee table. The following example shows how
the DELETE operation is specified:

DEL ETE
FROM TEMPL

WHERE EMPNO = '000410'
OR EMPNO = '000420'

In the following example we are deleting department 041 in the
department table. We wi 11 use the employee numbers from our
speci al D41 table in order to fi nd the manager number for the
Systems Test department:

DEL ETE
FROM TDEPT

WHERE MGRNO IN (SELECT EMPNO
FROM EMPD41)

The purpose of thi s example is to illustrate that a DElETE
statement can have a subselect. Of course we could have specified
the WHERE-clause as: WHERE DEPT NO = 041

Finally, we will delete all rows in the special 041 employee
table. After this operation the table will be empty, but will
still exist:

DElETE
FROM EMPD41

22 IBM DATABASE 2 SQL Usage Gui de
International Systems Center - Santa Teresa

CHAPTER 3. DATA DEFINITION LANGUAGE

The Data Definition Language is used for data administration. SQL
has a set of statements that will allow the authorized user to
define, change, and delete objects such as tables, indexes, and
views. Through the use of data definition statements, data
administration can be performed dynamically while DB2 is
executing.

In thi s chapter, we wi 11 di scuss ho,,: objects are created (CREATE),
how we can alter existing object definitions (ALTER), how objects
can be dropped (DROP), and finally how an explanatory comment can
be added to the DB2 description of a table, view, or column
(COMMENT 01'0.

The following types of DB2 objects can be manipulated by the
authorized user:

• storage Group

• Data Base

• Tablespace

• Table

• Index

• View

• Synonym

A description of the the DB2 objects and the relationship between
them can be found in the IBM DATABASE 2 Data Base Planning and
Administration Guide. The following figure is an overview of the
relationship between Storage Group, Data Base, Table Space, Index
S~dce, Table, and Index in a 002 system. As the figure shows, the
table space T52 is a partitioned table space spanning two storage
groups. Each partition contains a portion of the T21 table. From
an operational point of view, the Data Base object is used to
start and stop access to tables.

Chapter 3. Data Definition language 23
International Systems Center - Santa Teresa

Storage Group SGI Storage Group SG2

"Data Base DB1"""'" "Data Base DB2"""'"

" Table Space TSI " " " Table Space TS2

" "
" " " "

/Table 111// " " /Table T21// "
////A/////// " " /Partition 1 " " ////1/////// " " " " " " "
1 Partition 1"" " "
[-----------------­" " " "
1" Index 1 Space 11 " " /Table T21// " " r--I " " /Partition 2 " " " "
" ////e/////// "

/Index I11// " " Partition 2 "
" " " ------------------ " " " " "
" " " /Table T21// " """""""""""" " /Partition 3 "

~ " "
" " Partition 3

"Storage Group SG3
/Table T21// "

"Data Base " /Partition 4 " DB3""""""""""'" " "
" Table Space TS3 " " " Partition 4 " " " "
"" /Table T31/ /Table 132/ " " """"""""""""" " /////////// ///////////" ////A////// //////A//// "
" " -I 1­" " 1 1 ""

"Data Base DB4""""""""1""""""""1"""""
e e

" "
" Indx Sp IS31 " Indx SP 1532 " " Table 5p T54 "
" " " " "

/Index// " /Index// " " /Table/// "
////131/ " ////132/ " " /////T41/ " "" " " "
" " " " " " "" " "
""""""""""""""""""" """""""""'"

Figure 1. Example of relationships between the DB2 objects

24 IBM DATABASE 2 SQL Usage Gui de
International Systems Center - Santa Teresa

The DB2 definition statements are CREATE, DROP and ALTER.
Figure 2 gives an overview of the Data Definition Language COOL)
statements that can be applied to the various DB2 objects.

OBJECT CREATE ALTER DROP

STOGROUP Y Y Y

DATABASE Y - Y

TABLESPACE Y Y Y

TABLE Y Y Y

INDEX Y Y Y

VIEW Y - Y

SYNONYM Y - Y

Figure 2. DOL operations

In the following description of the DOL statements, we will assume
that the SQL user is only given authority to issue DOL statements
against tables, indexes, views, and synonyms. The use of DOL
statements against storage groups, data bases, and table spaces
is covered in the IBM DATABASE 2 Data Base Planning and
Administration Guide.

Chapter 3. Data Definition Language 25
International Systems Center - Santa Teresa

THE 	 CREATE STATEMENT

The purpose of the CREATE statement is to create an object in DB2.
In order to issue the CREATE statement, the user must have the
proper authority. In the following we will assume that SYSADM2 has
granted the user authority to create tables, views. and indexes.

Creating a New Table

The CREATE TABLE statement creates a new table. The table name and
the column names plus their attributes must be specified.
Optionally. a table space name and data base name can be
specified.

The attributes for every column in the table must be specified in
the CREATE TABLE statement. These attributes can either specify
character data or numeric data:

CHARACTER DATA: The following two data types allow all EBCDIC
characters:

CHAR 	 Fixed length character string (max. 254 characters)
VARCHAR 	 Variable length character string (max. 32,674

characters>. The actual maxi mum depends on the page
size of the table space (which in turn depends on the
buffer pool speci fi ed). on whether an EDITPROC is
specified; and whether the 'HOT HULL' is specified.

HUMERIC DATA: The following four data types are for numeric data
only:

IHTEGER 	 Fullword integer numbers in the range -2,147.483,648 to
2,147.483,647

SMALLINT Halfword integer numbers in the range -32,768 to 32,767
FLOAT Double word floating point numbers with a size limit of

approximatively 10 75 •

DECIMAL Fi xed po i nt packed deci mal numbers wi th at most 15
digits (999,999,999,999,999).

When a CREATE TABLE statement is issued, you may specify the name
of a validation procedure. This routine will validate the values
before they are inserted. Similarly, you may specify the name of
an edit routine. The purpose of this routine is to compact,
al ter, or encrypt data after it is retri eved and before it is
stored.

2 	 SYSADM is a user-id of a user with total control over any DB2
resource. SYSADM can grant authority at different levels to
other users. This authority may later be changed or revoked by
SYSADM.

26 IBM DATABASE 2 SQL Usage Gui de
International Systems Center - Santa Teresa

In a previ ous example, we inserted rows ina new table - see
"Selected INSERT of Multiple Rows" on page 20. This table should
only hold information on the names of the employees, the work
departments, phone numbers, the hire dates, the sex codes, and the
salaries. let's suppose that all employee numbers must be in the
range of 401 to 499, for that purpose we will specify a validation
routine by the name of VAlIDD41. For security reasons we will
further encrypt the data using an edit routine named EDITD41. In
the followi ng example, the CREATE TABLE statement for the new
table, named EMPD41, is shown:

CREATE TABLE EMPD41
(EMPNO CHAR(6) NOT NUll ,

FIRSTNME VARCHAR(12) NOT NUll,
MIDIHIT CHAR(I) NOT HULL,
lASH-IAME VARCHAR(15) NOT NUll,
WORKDEPT CHAR(3) NOT NULL,
PHOHEHO CHAR(4),
HIREDATE DECIMAl(6) ,
SEX CHAR(I),
SALARY DECIMAL<8,2))

EDITPROC EDITD41
VALIDPROC VALIDD41

Note that the first five columns cannot contain null values. This
means that you must insert values in these columns. In the last
four columns a null value will be inserted, if no data is supplied
for the columns.

Creating an Index

The CREATE INDEX statement creates a new index. If you are
creating an index on one of your own tables, you need no special
authority. In order to create indexes on other tables, you must
have been granted INDEX authority.

In the following example, we are creating an index on the employee
number column in our new table EMPD41. Since all employees must
have different employee numbers, we will specify that the
contents of this column must be unique. Let's assume that this
index is the first to be specified for the given table. In that
case, the index will be a "clustered" index, i.e. the physical
sequence of rows is as much as possible ordered on the employee
number. If you have several indexes defined for a table, Q.M

index can be defi ned to be the clustered index (speci fy the
CLUSTER parameter as in the follo~ing example). As we normally
will list the table in ascending order, the ASC keyword is
specified after the EMPNO column name (since ascending order is
the default, the ASC keyword could have been left out).

Chapter 3. Data Definition language 27
International Systems Center - Santa Teresa

The PAGESIZE parameter specifies the locking granularity of the
index. The OSETPASS parameter specifies the VSAM password for the
index dataset:

CREATE UNIQUE INDEX XEMPD41
ON EMPD41

(EMPNO ASC)
CLUSTER
PAGESIZE .5 KB
DSETPASS OSN8

creating a View On a Table

The CREATE VIEW statement is used to defi ne a view on a base
table. A view is a "virtual" table that is derived from one or
more tables, or it may be derived from other views or combinations
of tables and views. A view does not contain data, but data will
be retrieved from the underlying base tables, when data
manipulation is performed.

One of the advantages of views is that subsets of tables can be
defined. It is possible to define subsets on rows, on columns and
on a combination of rows and columns. A view may include columns
which are not part of any underlying table. Such a column could be
the sum of values from two other columns, or it could be the
average value of a group of rows.

A base table can be updated through the use of a view, if the view
is a simple row and column subset of a single base table. When a
view is defined, a CHECK OPTION parameter can be specified. This
parameter will verify all updates made against the view. If a
view has defined a subset of rows, this parameter will restrict
you from making updates that would cause rows to 'disappear' from
the view.

The basic form of the CREATE VIEW statement is:

CREATE VIEW a view-name
(column names in view)

AS SELECT the data you want (column name(s»
FROM some source (table/view name(s»

WHERE certain conditions (if any) are to be met
[WITH CHECK OPTION]

In the following example we wi 11 define a simple view on the
employee table. This view will contain all the data for employees
working in a department, where the department number starts with
"0". By applying the CHECK OPTION, we can prevent any non
D-department data from being created, using the view:

28 IBM DATABASE 2 SQL Usage Gui de
International Systems Center - Santa Teresa

CREATE VIEW D_EMPLOYEES
AS SELECT *

FROM TEMPL
WHERE WORKDEPT LIKE 'DX'

WITH CHECK OPTION

In the following example we will create a view that can be used as
a telephone directory. Since this directory should contain the
department name, the view will use data from both the employee
table and the department table:

CREATE VIEW DIRECTORY
(LASTHAME, FIRSTNAME, INIT, PHONE,

DEPARTMENT, DEPTNAME)
AS SELECT ALL

LASTHAME, FIRSTNME, MIDINIT, PHONENO,
DEPTHO, DEPTNAME

FROM TEMPL, TDEPT
WHERE WORKDEPT = DEPTNO

Note that column names in a view do not have to be the same as in
the underlying tables.

creating a Synonym

The CREATE SYNONYM statement is used to define an alternate name
for a table or a view. A common use for this is to allow you to
refer to a table or view owned by another user without having to
enter the fully-qualified name.

Let's assume that a user has been granted select authority to the
department table and to the phone directory view. This user now
issues the following two CREATE SYNONYM statements:

CREATE SYNONYM DTABLE FOR DSN8.TDEPT

CREATE SYNONYM DIR FOR DS~8.DIRECTORY

THE ALTER STATEMENT

The purpose of the ALTER statement is to change a definition of a
DB2 object. In order to issue the ALTER statement, the user must
have the proper author i ty, unless the al terat ion is done on a
table or index created by the user, in which case no special
authority is needed. In the following we will assume that the
user is altering hi s own objects.

Chapter 3. Data Definition Language 29
International Systems Center - Santa Teresa

Altering a Table

The ALTER TABLE statement is used to add. a new column to an
existing base table. You must specify the name of the new column
and the data type of the column. The new column wi 11 always be the
"last" column in the table. When a new column is added, all
existing rows in the table will contain null values in the new
column.

When an ALTER TABLE statement is issued, you may specify the name
of a validation procedure. This routine could validate the values
in the new column, just before they are inserted. Rows existing
before the validation procedure was added are not validated.

We have previously created a table for department D41. This table
does not contain the job code column. Since we need information
about job codes, we will now add a JOBCODE column to EMPD41. In
order to verify the job codes of subsequent inserted rows, we will
use a new validation routine called VALIDJC; replacing VALIDD41.

ALTER TABLE 	 EMPD41
ADD JOBCODE DECIMAl(3)
VALIDPROC VALIDJC

Altering an 	 Index

The ALTER INDEX statement is used to change the description of an
index. The statement can be used to change the buffer pool name,
the close dataset option, or the password for the dataset.

In "Creating an Index" on page 27, an index on table EMPD41 was
created. The password for the dataset was specified to be DSHa.
Let's suppose that the VSAM password has been changed to ABCS. In
the following example we will change the password in the index
speC; f i cat ion:

IBM DATABASE 2 SQl Usage Guide
International Systems Center - Santa Teresa

30

ALTER INDEX 	 XEMPD4l
DSETPASS ABC8

THE DROP STATEMENT

The purpose of the DROP statement is to delete a DB2 object. All
objects that are dependent on the object being dropped are also
dropped. In order to issue the DROP statement, the user must have
the proper authority. In the following we will assume that SYSADM
has granted the user authority to drop tables, indexes, and views.
A given user may at any time drop DB2 objects created by that user
without any specific granted authority.

The basic form of the DROP statement is:

DROP
object object-name

In the followi ng example we wi 11 drop the index on department
table for department D4l. We will then drop the actual table (if
we had dropped the table fi rst, the index would be dropped
automatically). Next, we will drop the view we created on the
employee table, and finally we will drop the synonyms created on
the department table and on the phone directory view:

DROP INDEX XEMPD4l

DROP TABLE EMPD4l

DROP VIEW D_EMPLOYEES

"jt'

\..... 	 DROP SYNONYM DTABlE

DROP SYNONYM DIR

Chapter 3. Data Definition language 31
International Systems Center - Santa Teresa

THE COHHENT ON STATEHENT

The purpose of the COHHENT ON statement is to add an explanatory
comment to the description of a table, view, or column in the DB2
catalog tables. The maximum length of a comment is 254 characters.
To issue this statement you must be the creator of the table, or
you must have proper authority.

The basic form of the COHHENT ON statement is:

COMMENT ON TABLE table-name or view-name

IS 'text within quotes'

or

COMMENT ON COLUMN table-name. column-name

IS 'text within quotes'

In the following example we will add a description to the
department table and to the ADMRDEPT column in the same table:

COMMENT 	 ON TABLE TDEPT
IS 'This table contains all DP departments'

COMMENT ON COLUMN TDEPT.ADMRDEPT
IS 'Id of the department to which the DEPT NO

department is administratively reporting'

32 IBM DATABASE 2 SQl Usage Guida
International Systems Center - Santa Teresa

CHAPTER ~. DATA CONTROL LANGUAGE

One of the major goals of OB2 is to make it easy for individual
users to create and drop tables in the data base. The
authorization subsystem of OB2 is designed to support this
dynamic data base environment. It permits the individual user,
who creates a table, to selectively share the use of this table
with other users.

When a new table is created, its creator is automatically given
full privileges on the table complete with the GRANT OPTION on
each privilege. The creator of a table can grant these privileges,
or any combination of them, to other users wi th the GRANT
statement. When a pr i vii ege is granted to another user, the
GRANT OPTION (abi 1 i ty to make further grants of the privilege)
mayor may not be included. Once granted, a pri vi lege may be
"taken away" by the REVOKE statement. If a privilege is revoked
from user X, it is automatically revoked from all users to whom
user X granted it, unless they have another independent source for
the same privilege. For a detailed description of the security and
authorization mechanism in OB2, please refer to the IBM DATABASE 2
System Planning and Administration Guide.

THE GRANT STATEHENT

The purpose of the GRANT statement is to establ ish controlled
access to DB2 objects. A user i ssui ng a GRANT statement can
spec i fy the pr i v i leges that is granted to the other user(s). As an
example, a GRANT statement may specify SELECT on a table to user
JONES. Another GRANT statement can specify UPDATE to user SMITH,
even indicating which columns may be updated by SMITH. "Appendix
B. Data Control Language Syntax" on page 121 shows the format and
the capabilities of the GRANT statement.

Let's assume that the creator of table TEMPL would like to share
access to the table to user JONES. In this example, JONES is only
granted authority to read (SELECT) from the table:

GRANT SELECT

ON TABLE TEMPL

TO JONES

This statement will enable JONES to read all data in the table
TEMPL.

Chapter 4. Data Control Language 33
International Systems Center - Santa Teresa

The creator of the TEMPL table now decides to issue full
authorization to the user SMITH; he will even allow SMITH to grant
authorization to other users:

GRANT ALL PRIVILEGES
ON TABLE TEMPL
TO SMITH
WITH GRANT OPTION

THE REVOKE STATEHEHT

The purpose of the REVOKE statement is to "take away"
authorization that previously has been granted to other user(s).
When a user issues a REVOKE statement. the level of authorization
that should be revoked can be specified. If a user was granted
both SELECT and UPDATE authori zati on on a speci fi c table, the
owner of this table can revoke the UPDATE authorization,
permitting the user to do only SELECTs on the table. Figure 31 on
page 123 shows the format of the REVOKE statement.

The creator of the table TEMPL deci des that the two granted
authorizations made on the table should be revoked. The creator
will therefore issue the following REVOKE statements:

REVOKE SELECT

ON TABLE TEMPL

FROM JONES

REVOKE All

ON TABLE TEMPL

FROM SMITH

IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

34

PART B: SQL EXAHPLES

This part of the guide contains examples of simple and advanced
SQl queries. For quick reference, each example has a short heading
stating the subject that wi 11 be explained. The examples are
divided into five chapters:

• Chapter S. Data Environment

All sample queries are based on six sample tables. In this
chapter a sample company is described, and the relationships
between the data in the six tables are stated.

• Chapter 6. Data Hanipulation - Simple Queries

In this chapter we will exploit the power of the SQl language
and relational operations through simple queries all based on
one table.

Each example wi 11 consi sts of a stated problem, the SQl
statements to solve the problem, the SQl output, and finally a
short explanation.

• Chapter 7. Data Hanipulation - Advanced Queries

In this chapter we will use the advanced features of the SQl
language. We will also show how data can be added to a table,
how existing data can be changed, and how we can delete data.

Each example wi 11 consi sts of a stated problem, the SQl
statements to solve the problem, the SQl output, and finally a
short explanation.

• Chapter 8. Data Control Language - Examples

Thi s chapter wi 11 show how a table owner can gi ve access
authority to other users. The chapter describes the various
levels of authority that can be granted. Once given, the
authority can be revoked. This will also be illustrated in
thi s chapter.

• Chapter 9. Data Definition Language - Examples

The last chapter in this part contains examples of the data
definition language. The chapter contains examples showing
how DB2 objec~are created, altered, and dropped.

Part B: SQl Examples 35
International Systems Center - Santa Teresa

IBM DATABASE 2 SQL Usage Guida
International Systems Center - Santa Teresa

36

ORGANIZATION

PROJECTS

CHAPTER S. DATA ENVIRONMENT

The following chapters of this guide show queries and the
resulting output. All of these queries will be issued against a
set of tables that have been developed by Spiffy Computer Services
Division.

In order to better understand the data in the tables. let's
briefly look at Spiffy Computer Services Division's organization
and how projects are controlled in the company.

Spiffy Computer Services Division has. like most corporations. a
departmental structure. Each department reports to a hi ghar
level department. Usually. each department has a department
manager and a number of employees assi gned to the department.
However. in some cases there wi 11 be departments wi thout a
manager. e.g. when a manager is moved to another department. and
a new manager has not yet been appointed. Similarly. there can be
departments without employees.

All activities in the company belong to projects. At any time
Spiffy Computer Services Division has several concurrent active
projects. and in order to keep track of these projects a unique
identification is assigned to each project (project number). A
project may be divided into sub-projects. and a project may even
be one of several projects in a larger project. Usually a project
is assigned to a department. and likewise an employee is assigned
to a project as having project responsibility.

When a project is defi ned. start and end dates as well as
e!.i:imated average staffing (manpower) are estimated. If the
project consists of several activities. each activity will have
an estimated start and end date as well as an estimated manpower
consumption. Each of these activities are assigned an
identification (activity number>. It is possible for the same
activity to be associated with the same project more than once.
provided that there are unique start dates for each association.
In order to make a unique identification of an activity, it is
therefore in some cases necessary to use both the activity number
and the start date.

Employees are assigned to activities within a project. It should
be noted that the assignment is to the activity and not to the
specific activity estimate. Information maintained about
assignments consists of the starting and ending dates of the
assignment as well as the fraction of the employee's time to be

Chapter 5. Data Environment 37
International Systems Center - Santa Teresa

spent on this activity between the two dates. The same employee
may be assigned to the same activity within the same project more
than once. In order to make a unique identification of a
sub-activity, the start date must be used.

BASE TABLE STRUCTURE

In order to control the projects and the organ; zati on
information, Spiffy Computer Services Division has developed a
set of DB2 tables. logically, the tables can be divided into two
groups, one holding information about departments and employees
(Organization APplication), and one holding information about
projects, activities, and manpower allocation [Projecf
App1 i ca t i on) .

38 IBM DATABASE 2 SQL Usage Gui de
International Systems Center - Santa Teresa

Organization Application Tables

This set of tables consists of two base tables with rows having
the following contents:

• 	 Department Table (Table name: DSH8.TDEPT)

Department Identification (unique)

Department Hame

Department Manager Id

Department Id to Report to

• 	 Employee Table (Table name: DSH8.TEMPl)

Employee Serial Humber (unique)

Employee First Name

Employee Middle Initial

Employee last Hame

Employee Department Id

Employee Phone Number

Employee Hire Date

Employee Job Code

Employee Education level

Employee Sex Code

Employee Bi rth Date

Employee Salary

"Appendix D. Sample Base Table Definition" on page 127 shows the
format of the various fields (or columns) in the two base tables.
"Appendix E. Organization Application Base Tables" on page 129
shows a list of the contents of the two tables.

Chapter 5. Data Environment 39
International Systems Center - Santa Teresa

Project Application Tables

This set of tables consists of four base tables with rows having
the following contents:

• 	 Project Table (Tabla name: DSH8.TPROJ)

Project Identification (unique)

Project Hame

Department Id Associated With Projact

Id of Responsible Employee

Estimated Staffing Requirement

Estimated Project Start Date

Estimated Project End Date

Id of Major Project (if any)

• 	 Activity Type Table (Table name: DSH8.TACTYPE)

Activity Identification (unique)

Activity Keyword (unique)

Activity Description

• 	 Project/Activity Table CTable name: DSN8.TPROJAC)

Project Identification

Activity Identification

Estimated Staffing Requirement

Estimated Activity Start Date

Estimated Activity End Date

IBM DATABASE 2 SQl Usaga Guida
International System5 Center - Santa Teresa

40

• Employee/Project/Activity Table (Table name: DSN8.TEMPRAC)

Employee Identification

Project Identification

Activity Identification

Fraction of Time Allocated

Sub-activity Start Date

Sub-activity End Date

"Appendix D. Sample Base Table Definition" on page 127 shows the
format of the various fields (or columns) in the four base tables.
"Appendix F. Project Application Base Tables" on page 133 shows a
list of the content s of the four tabl es.

Chapter 5. Data Environment 41
International Systems Center - Santa Teresa

DBZ IMPLEMENTATION OF SAMPLE TABLES

Fi gure 3 on page 43 shows the physi cal i mplementat i on of the
sample tables in the DB2 data bases. After the creation of a
storage group (DSN8GOOO), the SYSADM has created two data bases,
one for organization and project application data (DSH8DAPP), and
one for programming application data (DSN8DPRG).

In the first mentioned data base two table spaces are created, one
table space for the department table (DSH8SDEP) and one for the
employee table (DSH8SEMP). This data base will also hold all the
project related tables, but table spaces for these tables will be
created dynamically. In the other data base only one table space
(DSN8SCOM) is created. This table space holds all the programming
related tables (these tables wi 11 not be referenced in thi s
guide). Finally, the figure shows that the organization tables
will use buffer pool BPI, the project tables will use buffer pool
BPO, and the programming tables will use buffer pool BP2.

42 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

DSN8GOOO

Storage Group

I
I

DSNaDAPp DSNaDPRG
Data Base for Data Base for
Org ./Proj . P!'ogramm;ng
Related Data Related Data

I
DSHaSDEP DSN8SEMP Dynam;cally Allocated Table Spaces DSNaSCOM,.' ~
Space for Space for Table Spaces for Project Related Tables

DSH8.TDEPT

Department

Base Table

DSH8.TEMPl

Employee

Base Table

DSH8. DSHa. DSHa. DSHa.
TPROJ TACTYPE TPROJAC TEMPRAC

Project Act; v; ty Project / Emp/Proj/
Type Act;v;ty Act;v;ty

Base Table Base Table Base Table Base Table

Program.
Related
Base
Tables

/'

'-' v v v v v v v

Bufferpool BPI Bufferpool BPO
Buffer

Pool
BP2

F;gure 3. Relat;onsh;p between the Sample Appl;cat;on DB2 objects

Chapter 5. Data Env;ronment 43
International Systems Center - Santa Teresa

44 IBM DATABASE 2 SQL Usage Guida
International Systems Center - Santa Teresa

.. "
OUTPUT FORMAT

CHAPTER 6. DATA MANIPULATION - SIMPLE QUERIES

In the preceding chapters we have discussed the format of the SQl
statements. In this and the following chapter we will exploit the
power of the SQl language and relat i onal operat ions through
various sample queries. This chapter will show simple queries,
e.g. the problems can be solved based on data from one table. The
following chapter will show queries that make use of the advanced
functions of the SQl language.

Each example includes a paragraph stating the problem we are going
to solve. The actual SQl statementcs) then follows. The thi rd
part of each sample query will show the resulting output. Finally,
each example will contain a short explanation of the SQl
statementCs) and the result .

OF RESULTING TABLES

Column Name: If a column name has been specified in the select
list, this name will be printed as the heading in the resulting
table. In the followi ng examples, such column headi ngs are
printed in capital letters.

If a column is the result of an expression (e.g. SALARY/12), or a
built-in function (e.g. AVG(EDUClVl», DB21 will return a blank
column name. However, in order to explain the result, these blank
headi ngs have been subst i tuted wi th shor~ explanat ions in the
examples. All substituted headings are printed in lower case
letters.

Calculated Values: The precision (number of decimal digits) and
scale (number of digits to the right of the decimal point> of
calculated values are dependent on the attributes of the
underlying data and the operation performed. In the following
examples we will do addition and subtraction on operands with
equal scales. We will see that the result will be presented with
the same scale. For a multiplication operation, the precision
will be the sum of the precisions of the operands (max. 15). The
scale will be the sum of the scales of the operands. The precision
of a division is always 15, and the scale will be 15 minus the
first operand's precision plus the first operands scale minus the
second operand's scale.

The result of the built-in functions will follow the rules stated
above. MAX, MIN, and SUM will present the result with the same
precIsIon and scale as the underlying data. COUNT will always
present the result as an integer value. AVG wi 11 present the
result with a precision of 15, where the scale will be 15 minus
the column's defined precision plus the column's defined scale.

Chapter 6. Data Manipulation - Simple Queries 45
International Systems Center - Santa Teresa

Combined Search Conditions

Simple Select with Combined Conditions

Problem:

Based on the employee table, we want a list of all the female
employees, who were hired after January 1, 1980. The list should
contain employee number, last and first names, and the date the
person was hired.

SQL statement:

SELECT EMPNO, LASTNAME, FIRSTNME, HIREDATE
FROM TEMPL

WHERE SEX = 'F'
AND HIREDATE > 800101

Result:

EMPNO LASTNAME FIRSTNME HIREDATE

000070 PULASKI EVA 800930.
000270 PEREZ MARIA 800930.

Comments;

This simple query uses two combined conditions. Since both
conditions must be met, they are combined through the use of the
AND keyword. The result shows that both selected employees are
female, and both were hired in September 1980.

IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

46

ordering

Simple Select With ordering

Problem:

Based on the employee table. we want to produce a list of last
names, salaries. and department numbers. The list should only
include employees earning more than $30,000 a year. The resulting
list should be ordered on department number in ascending order
(primary), and within each department on salary in descending
order (secondary).

SQL statement:

SELECT WORKDEPT, LASTNAME, SALARY
FROM TEMPL

WHERE SALARY> 30000

ORDER BY WORKDEPT. SALARY DESC

Result:

WORKDEPT LASTNAME SALARY

AOO HAAS 52750.00

AOO LUCCHESI 46500.00

B01 THOMPSON 41250.00

COl KWAN 38250.00

011 STERN 32250.00

021 PULASKI 36170.00

E01 GEYER 40175.00

comments:

As the result shows. all selected employees have salaries
exceeding $30,000. The rows are listed in department number order
(alphabetic), and, within each department. the rows are ordered
on salary. where the employee having the highest salary is listed
first.

Chapter 6. Data Manipulation - Simple Queries
International Systems Center - Santa Teresa

47

http:40175.00
http:36170.00
http:32250.00
http:38250.00
http:41250.00
http:46500.00
http:52750.00

Grouping

Simple Select with Grouping

Problem:

Produce a list showing the number of employees working in each
department. The list should further contain the calculated
average and total salary for each department. The resulting list
should be ordered on department number.

SQL statement:

SELECT WORKDEPT, COUHTC*), SUM(SALARY), AVGCSALARY)
FROM TEMPL

GROUP BY WORKDEPT

ORDER BY WORKDEPT

Result:

WORKOEPT count(*) sum(salary) avg(salary)

AOO 3 128500.00 42833.333333333
BOI 1 41250.00 41250.000000000
COl 3 90470.00 30156.666666666
011 9 222100.00 24677.777777777
D21 6 150920.00 25153.333333333
EOI 1 40175.00 40175.000000000
Ell 5 104990.00 20998.000000000
E21 4 95310.00 23827.500000000

comments:

The resulting table contains one row for each department. The
second column indicates the number of employees in each of these
departments. In the third column the sum of salaries within each
department is listed. Finally, this sum is divided by the number
of employees to express the average salary. Please note that the
column names written in lower case, are for information only, DB2
will return "blank" headings.

48 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

http:95310.00
http:104990.00
http:40175.00
http:150920.00
http:222100.00
http:90470.00
http:41250.00
http:128500.00

Having

simple Select using Grouping and Having

Problem:

Produce a list showi ng the average salary for each department.
The result should only include employees having a job code less
than 55, and all departments with fewer than 3 employees (with
jobcode less than 55) should be excluded from the resulting list.
Order the result by department number.

SQL statement:

SELECT WORKDEPT, AVG(SAlARY> , COUNTOO
FROM TEMPL

WHERE JOBCODE < 55
GROUP BY WORKDEPT

HAVING COUNTOO >= 3

ORDER BY WORKDEPT

Result:

WORKDEPT avg(salary) countOO

D11 21398.000000000 5
D21 19536.666666666 3
Ell 18810.000000000 4
E21 23313.333333333 3

comments:

The result shows a table, where rows have been eliminated in two
passes. First all rows having a value of 55 or more in the JOBCODE
column are filtered away. On the remaining rows, SQL will do a
grouping, and the groups with less than three rows will not be
represented in the resulting table.

This logical explanation does not necessarily reflect the actual
physical process in SQL.

Chapter 6. Data Manipulation - Simple Queries 49
International Systems Center - Santa Teresa

Boolean Operators

Simple Select Using Boolean Operators

Problem:

Issue a query that will select employees from the employee table
where the following conditions are met:

• 	 The employee must have been hired after August 1, 1974, but
before the end of 1979.

• 	 The jobcode must not be 54 or 56.
• 	 The salary must be less than 40,000.
• 	 The education level must be equal to or greater than 12.

For employees meeting these conditions, we will list the last
name, the salary, the education level, the job code, and the hire
date:

SQL 	 statement:

SELECT LASTNAME, SALARY, EDUCLVL, JOBCODE, HIREDATE
FROM TEMPL

WHERE (HIREDATE > 740801 AND HIREDATE <= 791231)
AND (JOBCODE -= 54 AND JOBCODE -= 56)
AND SALARY < 40000
AND EDUCLVL >= 12

Result:

LASTNAME SALARY EDUCLVL JOBCODE HIREDATE

KWAN 38250.00 20 060. 750405.
JONES 18270.00 17 052. 790411.
MARINO 28760.00 17 055. 791205.
JOHNSON 17250.00 16 052. 750911.
LEE 25370.00 14 055. 760223.

comments:

As can be seen from the resulting table, we have selected five
people who all have a hire date later than August 1, 1974, but
earlier than January 1, 1980. None of the selected people have a
jobcode of 54 or 56. Note that we used the AND keyword, when we
specified the two job codes not to be sel~cted, the reason is that
we were excludi n9 rows, 50 both predi cates should be true.
Finally, the result shows that all salaries are less than 40,000
and all education levels are greater than or ~qual to 12.

50 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

http:25370.00
http:17250.00
http:28760.00
http:18270.00
http:38250.00

Expressions

Simple Select Using Expressions

Problem:

The manager of the Personnel department has requested a list of
all employees in Spiffy Computer Services Division, who on
December 31, 1982 have been working more than 18 years in the
company. The list must, apart from the employee numbers and names,
include the number of years the selected employees have been
working. Further, the list should show the age of the employees
when they were hi red by Spi ffy Computer Servi ces Di vi si on. The
list should be ordered on the number of years employed:

SQL statement:

SELECT EMPNO, LASTNAME, (821231-HIREDATE)/10000,
(HIREDATE-BRTHDATE)/10000

FROM TEMPL
WHERE (821231 - HIREDATE)/10000 > 18
ORDER BY 3 DESC

Result:

EMPHO LASTNAME years employeed age when hired

000340 GOUHOT 35.072 20.99880000
000050 GEYER 33.041 23.99020000
000110 LUCCHESI 24.071 28.94110000
000120 O'CONNElL 19.002 21.01870000
000310 SETRIGHT 18.031 33.04910000

comments:

The SELECT statement shows that arithmetic operations can be
sj:leci fi ed both in the select 1 i st and in the WHERE-clause. By
subtracting two dates and dividing the result by 10,000, we will
obtain the difference expressed in years. In the WHERE-clause the
number of years employed is compared to 18, and only rows
satisfying this condition are selected. The ordering is done on
the thi rd column, and si nce thi s column is a result of an
expression, we must specify the column number, as opposed to name,
in the ORDER BY clause.

Note that the scales in the last two columns are different. The
reason is that the third column shows the subtraction between an
integer (821231) and a decimal (HIREDATE), compared to the fourth
column, where the subtract ion is between two deci mal numbers.
Please refer to "Output Format of Resulting Tables" on page 45.

Chapter 6. Data Manipulation - Simple Queries 51
International Systems Center - Santa Teresa

Built-In Functions

Simple Select Using Built-In Functions

Proble.. :

The manager of Administration Systems wants to know to what extent
five specific employees are involved in project activities that
both start and end during 1982. These five employees have employee
numbers 000230 through 000270. To get an indication of this
involvment, we will for each employee add the subactivity
durations multiplied by the fraction the employee is scheduled to
participate in each of the subactivities. This sum is then
compared to the total period (i .e. from first subactivity's start
date to last subactivity's end date):

SQL statement:

SELECT 	 EMPNO, MIN(EMSTDATE), MAX(EMENDATE),
SUM(EMPTIME * (EMENDATE - EMSTDATE»,
MAX(EMENDATE) - MIN(EMSTDATE)

FROM TEMPRAC
WHERE EMPNO IN ('000230','000240','000250',

'000260','000270')
AND EMSTDATE BETWEEN 820101 AND 821231
AND EMENDATE BETWEEN 820101 AND 821231

GROUP BY EMPNO

Result:

EMPNO start end calculated alloc. end-start

000230 820101. 821015. 914.00 914.
000240 820215. 820915. 700.00 700.
000250 820101. 821201. 907.00 1100.
000260 820101. 820701. 593.00 600.
000270 820101. 821015. 914.00 914.

comments:

As the SQl statement shows, we are only selecting employee numbers
between 000230 and 000270. For these employees we are only
selecting activities that both start and end during 1982.

The result shows that employee number 000230 is allocated to
activities between January 1st until October 15th. By subtracting
these two dates, we are assuming that the length of a month is 100
days, the subtraction will therefore result in 914 "days" (last
column). You should keep in mind that this artificial length of
period is only used to compare the allocation for each employee.

52 IBM DATABASE 2 SQl Usage Guide
International Systems Center - Santa Teresa

Built-In Functions

The compar i son is done aga i nst the fourth column. Thi 5 column
conta ins the calculated allocati on, where the same arti fi ci al
length of months are used. The fourth column shows that employee
number 000230 has a calculated allocation of 914 "days",
indicating that in the given period the employee is allocated
100Y..

The result further shows that employee number 000250 is allocated
907 "days" in the first 11 months of 1982, equivalent to 1100
"days". This indicates that the average allocation is in the area
of 82Y..

Chapter 6. Data Manipulation - Simple Queries 53
International Systems Center - Santa Teresa

Use of View

Simple Select using a View

Problem:

Based on the employee table, the manager of the planning
department wants to get ali st of all the employees havi ng a
jobcode of 52, 54, or 56. Since the planning department is not
the owner of the employee table, we will create a view on the
employee table under his user-id. This view should only include
the employee number, name, work department, and job code.

SQL statements:

CREATE VIEW EMPJOBCOOES
(EMPI, HAME, DEPT, JOBCD)

AS SELECT EMPNO, LASTNAME, WORKDEPT, JOBCODE
FROM D5H8.TEMPL

WHERE JOBCODE = 52
OR JOBCODE = 54
OR JOBCOOE = 56

SELECT *
FROM EMPJOBCODES

Result:

EMPI NAME DEPT JOBCD

000070 PULASKI 021 056.
000100 SPENSER E21 054.
000140 NICHOLLS COl 056.
000160 PIANKA 011 054.
000170 YOSHIMURA D11 054.
000210 JONES Dll 052.
000250 SMITH 021 052.
000260 JOHNSON D21 052.
000280 SCHNEIDER Ell 054.
000320 MEHTA E21 052.
000340 GOUNOT E21 054.

.J
"

54 IBM DATABASE 2 SQL Usage Guida
International Systems Center - Santa Teresa

Use of View

comments:

The created view only selects the four specified columns. As the
result shows, these columns are given new headings. If a
WHERE-clause was specified in the second SELECT statement, the
"new" column names defined in the view had to be used. Since the
user of the view is using a base table belonging to another user,
the FROM clause must specify the fully qualified table name. Since
the vi ew only should di splay rows wi th spec; fi c values in the
JOBCODE column, we are using the IN predicate in the WHERE clause.

The SELECT statement followi ng the CREATE statement speci fi es
that all (four) columns should be selected, using the short hand
notation "*". Since we are using a view, the FROM clause contains
a view name and not a table name.

Chapter 6. Data Manipulation - Simple Queries 55
International Systems Center - Santa Teresa

L

LIKE

Simple Select Using LIKE

Problem:

Based on the project table, a list should be produced showing all
the projects that have the text string "PROGRAM" somewhere in the
project name. In order to further limit the list to relevant
projects. only project numbers starti ng wi th "AD" or project
numbers having "21" as third and fourth character should be
selected. List project number, project name, and name of major
project, ordered by project number.

SQL statement:

SELECT PROJNO. PROJNAME, MAJPROJ
FROM TPROJ

WHERE PROJNAME LIKE '~PROGRAM~'

AND (PROJNO LIKE 'ADY.' OR PROJNO LIKE ' __21Y.'>
ORDER BY PROJNO

Result:

PROJNO PROJNAME MAJPROJ

AD3111 PAYROLL PROGRAMMING AD3110
AD3112 PERSONNEL PROGRAMMG AD311 0
AD3113 ACCOUNT.PROGRAMMING .40311 0
MA2110 W L PROGRAMMING MA2100
MA2111 W L PROGRAM DESIGN MA2110

comments:

The first LIKE predicate in the WHERE-clause will select all the
projects having the character string "PROGRAM" somewhere in the
project name. since the pattern is preceded and ended with a ,,~"

character. In the second LIKE predi cate we are look i ng at the
project number. We are here selecting all projects having a number
start i ng wi th the characters "AD" .QJ: hay i ng the "21" characters as
third and fourth characters. Since the "_" character represents
exactly one character, we can position the pattern.

IBM DATABASE 2 SQL Usage Guida
International Systems Center - Santa Teresa

56

CHAPTER 7. DATA MANIPULATION - ADVANCED QUERIES

The SQl language provides several features which enable complex
data base queries. Such queries will typically address several
tables, and possibly several imbedded selects in one SQl
statement. These features, which will be shown in this chapter,
may be used in combination with each other, but may also be used
wi th the simpler language features descri bed in the previ ous
chapter.

When a complex - or advanced - SQl query is presented to 082, OB2
automatically generates an algorithm for processing the query,
taking into account the various indexes which are available and
the physical clustering of data in the data base. Since this
process is completely transparent to the SQl user, it will not be
discussed in this guide. Even if we are dealing with advanced
queries, the SQl user only has to think about what to obtain as a
result, not how OB2 should produce the result.

Chapter 7. Data Manipulation - Advanced Queries
International Systems Center - Santa Teresa

57

Subselect on Same Table

Query ufth Subselect on Same Table

Problem:

Issue a query that will list all female employees, who earn more
than the average salary 1 n SPl ffy Computer Servl ces 01 vi S1 on
(both male and female employees). The resulting table must be
ordered on the last name in ascending order. We also want to see
the average salary for all employees:

SQL statements:

SELECT EMPNO, FIRSTNME, LASTNAME, SALARY
FROM TEMPL

WHERE SEX = 'F'
AND SALARY > C SELECT AVGCSALARY)

FROM TEMPL)
ORDER BY 3

SELECT AVGCSALARY) FROM TEMPL

Result:

EMPNO FIRSTNME LASTNAME SALARY

000010 CHRISTINE HAAS 52750.00
000090 EILEEN HENDERSON 29750.00
000030 SAllY KWAN 38250.00
000220 JENNIFER LUTZ 29840.00
000140 HEATHER NICHOllS 28420.00
000270 MARIA PEREZ 27380.00
000G70 EVA PULASKI 36170.00

avgCsalary)

27303.593750000

comments:

SQL will first do the subselect in order to calculate the average
salary for all employees. The result is then substituted in the
WHERE-clause of the outer-level query, and thi s query is then
executed. The ORDER BY clause specifies that the resulting table

58 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

http:36170.00
http:27380.00
http:28420.00
http:29840.00
http:38250.00
http:29750.00
http:52750.00

Subselect on Same Table

will be ordered on the third column, which is the LASTNAME column.
We could instead have specified ORDER BY LASTNAME.

The second SELECT statement shows that SQL is a true free form
language, the FROM-clause can be specified immediately after the
selected list on the same line.

The result shows that seven female employees earn more than the
the average salary.

Since the inner-level SELECT statement only returned ~ value,
the SELECT statement is specified directly in the WHERE-clause of
the outer-level query. The example "Subselect Returning Set of
Values" on page 72 shows how to deal with inner-level SELECTs that
return more than one value.

Chapter 7. Data Manipulation - Advanced Queries
International Systems Center - Santa Teresa

59

Joining Two Tables

selecting From Two Tables

Problem:

The secretary in the Support Services department wants a phone
directory for all the employees working in departments EOI, Ell,
and E21. This directory must list the last and first names, the
names of the departments, and the phone numbers. The resulting
list should be ordered on last name and first name!

SQL sta tement:

SELECT LASTNAME, FIRSTNME, DEPTNAME, PHONENO

FROM TEMPL, TDEPT

WHERE WORKDEPT = DEPTNO

AND WORKDEPT IN ('EOI', 'Ell', 'E21')

ORDER BY lASTNAME, FIRSTNME

Result:

LASTNAME FIRSTNME DEPTNAME PHONENO

GEYER JOHN SUPPORT SERVICES 6789
GOUNOT JASON SOFTWARE SUPPORT 5698
HENDERSON EILEEN OPERATIONS 5498
LEE WING SOFTWARE SUPPORT 2103
MEHTA RAMLAl SOFTWARE SUPPORT 9990
PARKER JOHN OPERATIONS 4502
SCHNEIDER ETHEL OPERATIONS 8997
SETRIGHT MAUDE OPERATIONS 3332
SMITH PHILIP OPERATIONS 2095
SPENSER THEODORE SOFTWARE SUPPORT 0972

comments:

The names and phone numbers can be derived from the employee table
(TEMPL). The department name, however, is not in that table and
has to be derived from the department table (TDEPT). The
FROM-clause specifies both tables. The join between the two
tables is done on the department number (WORKDEPT =DEPTNO), since
thi s column exi sts in both tables (di fferent names, but same
data). Conceptually. when a row from the employee table has been
selected sat i sfyi ng the IN predi cate in the WHERE-clause, SQL
will use the value in the WORKDEPT column to find a matching value
in the DEPTNO column in the department table. When the row is
found, the department name is taken from the DEPTNAME column in
that row.

IBM DATABASE 2 SQl Usage Guide
International Systems Center - Santa Teresa

60

comparing Two Rows

Compartng Two Rows In the Same Table

Problem:

Compare pairs of employees having the same job code. If one of the
employees in a pair was hired more than 9 years before the other,
but has a lower salary than the other, the names and salari es of
the two employees plus the difference in hire dates (in terms of
years) must be shown. List the result in descending order on the
difference in hire dates:

SQL statement:

SELECT EMPOLD.LASTNAME, EMPOLD.SALARY,
EMPNEW.LASTNAME, EMPNEW.SALARY,

(EMPNEW.HIREDATE-EMPOLD.HIREDATE)/10000
FROM TEMPL EMPOLD, TEMPL EMPNEW

WHERE EMPOLD.JOBCODE = EMPNEW.JOBCODE
AND EMPNEW.HIREDATE - EMPOLD.HIREDATE > 90000
AND EMPOLD.SALARY < EMPNEW.SALARY

ORDER BY 5 DESC

Result:

LASTNAME SALARY lASTNAME SAlARY years diff.

GOUNOT 23840.00 SPENSER 26150.00 33.01140000
GOUNOT 23840.00 YOSHIMURA 24680.00 31.04100000
GOUNOT 23840.00 SCHNEIDER 26250.00 19.98190000
BROWN 27740.00 MARINO 28760.00 13.09020000
QUINTANA 23800.00 PEREZ 27380.00 9.02020000

<---- EMPOlD ----> <---- EMPNEW ---->

comments:

This query shows how two rows in the same table can be compared by
joining copies of the same table. The two "virtual" tables have
given the arbitrary labels EMPOlD and EMPNEW in order to
distinguish between them. These qualifying labels must be used
when the columns are referenced in order to make the column names
unique.

In concept, SQl is selecting one row in the EMPOlD table. This
row is then compared to all the rows in the EMPNEW table. SQl will
then select the next row in the EMPOlD table and compare that row
to the rows in the EMPNEW table, and so on.

Chapter 7. Data Manipulation - Advanced Queries
International Systems Center - Santa Teresa

61

UNION and Literal

Queries Combined with UNION

Problem:

Produce a list containing department numbers, department names,
and manager names. If a department is wi thout a manager the
character string "** UNKNOWN **" should be written in the manager
name column. Present the result in department number order:

SQL statement:

SELECT DEPTNO, DEPTNAME, LASTNAME
FROM TDEPT, TEMPL

WHERE MGRNO = EMPNO
UNION
SELECT DEPTNO, DEPTNAME, '** UNKNOWN ** FROM TDEPT

WHERE MGRNO NOT IN (SEL ECT EMPNO
FROM TEMPL

ORDER BY I

Result:

DEPTNO DEPT NAME LASTNAME

ADO SPIFFY COMPUTER SERVICE DIV. HAAS
BOI PLANNING THOMPSON
COL INFORMATION CENTER KWAN
DOL DEVELOPMENT CENTER ** UNKNOWN ** D11 MANUFACTURING SYSTEMS STERN
D21 ADMINISTRATION SYSTEMS PULASKI
E01 SUPPORT SERVICES GEYER
Ell OPERATIONS HENDERSON
E21 SOFTWARE SUPPORT SPENSER

comments:

The UNION operator is used to combine the result of the two SELECT
statements. The first SELECT statement will find all the
departments in the department table, where the manager number
also can be found in the employee table.

The second SElECT statement wi 11 fi nd the departments in the
department table that have manager numbers not contained in the
employee table. Consequently, we can not provide a name for these
managers, and instead we will use a constant indicating that .the
name is unknown. Since the data types of correspondi ng items
selected by the two SELECT statements must be i dent i cal, the

62 IBM DATABASE 2 SQl Usage Gui de
International System9 Center - Santa Teresa

UNION and Literal

literal has been specified as exactly 15 characters matching the
definition of LASTNAME (VARCHAR(15».

Note that the ORDER BY clause must be wri tten after the last
SELECT statement in the union. and that only column numbers can be
specified in the clause.

Chapter 7. Data Manipulation - Advanced Queries
International Systems Center - Santa TerQ~~

63

EXISTS

Query Testing For Existence

Problem:

Find all activity types that have been defined in the
Project-Activity base table. Then list each activity type having
a defined staffing estimate of more than 1. The resulting table
should be ordered by activity number:

SQL statement:

SELECT ACTNO, ACTDESC
FROM TACTYPE TAC

WHERE EXISTS (SELECT *
FROM TPROJAC

WHERE ACSTAFF > 1
AND ACTNO = TAC.ACTNO)

ORDER BY 1

Result:

ACTNO

60
70
80

130

comments:

ACTDESC

DESCRIBE LOGIC
CODE PROGRAMS
TEST PROGRAMS
OPER COMPUTER SYS

This correlated query first selects 8 row in the TACTYPE table.
The activity number from the selected row
the inner-level query's WHERE-clause
inner-level query finds at least one row
true condition is set, which means that
the outer-level query is satisfied.

is then substituted into
CT AC. ACTNO)' If the

in the TPROJAC table, a
the EXISTS predicate in

Instead of using the EXISTS predicate, we could have solved the
stated problem with the following query by joining two tables:

SELECT
FROM

WHERE
AND

ORDER

DISTINCT TACTYPE.ACTNO, ACTDESC
TACTYPE, TPROJAC
ACSTAFF > 1
TACTYPE.ACTNO = TPROJAC.ACTNO
BY 1

64 IBM DATABASE 2 SQL Usage Gui de
International SYstems Center - Santa Teresa

NOT EXISTS

Qu~ry T~stfnq For Non-Exfst~nce

Problem:

Before a new project can be committed, the manager of the Planning
department wants to have a list of all the employees, who are not
currently assigned to any activity:

SQL statement:

SELECT EMPNO, LASTNAME, FIRSTNME
FROM TEMPl EMP

WHERE NOT EXISTS (SELECT *
FROM TEMPRAC

WHERE EMPNO = EMP.EMPHO)
ORDER BY 1

Result:

EMPHO LASTNAME FIRSTHME

000060 STERN IRVING
000120 0' CONNEll SEAN

comments:

In the outer-level query, SQL wi 11 retri eve an employee number
from the employee table (TEMPl). Thi s employee number is then
substituted into the WHERE-clause of the inner-level query
(correlated sub-query). If the inner-level query fi nds a row in
the Employee Project Activity base table, the given employee is
assigned to an activity, and should not be included ;n the the
resulting table. Since we are using the HOT EXISTS predicate,
only employee numbers not found in the correlated sub-query will
satisfy the WHERE-clause of the outer-level query.

Chapter 7. Data Manipulation - Advanced Queries
International Systems Center - Santa Teresa

65

Table Joined to Itself

Table Joined to Itself with Subselect

Problem:

Three people in Spiffy Computer Services Division have done an
outstanding job. The management has decided to give these three
employees a salary raise of 50~. After the salaries have been
updated in the employee table, we will select all the employees
(if any), who have a salary exceeding their respective manager's
salary:

SQL statements:

UPDATE TEMPL
SET SALARY = 1.5~SAlARY

WHERE EMPHO = '000200'
OR EMPNO = '000240'
OR EMPNO = '000320'

SELECT E.EMPNO, E.LASTNAME, E.SALARY,
M.LASTNAME, M.SALARY

FROM TEMPL E, TEMPL M
WHERE E.SALARY > M.SALARY

AND E.WORKDEPT = M.WORKDEPT
AND M.EMPNO IN

(SELECT MGRHO
FROM TDEPT)

Result:

EMPNO LASTHAME SALARY LASTHAME SALARY

000200 BROWN 41610.00 STERN 32250.00
000240 MARINO 43140.00 PULASKI 36170.00
000320 MEHTA 29925.00 SPENSER 26150.00

<---- Employee Data ----> <-- Manager Data --->

66 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

http:26150.00
http:29925.00
http:36170.00
http:43140.00
http:32250.00
http:41610.00

Table Joined to Itself

comments:

The salaries are updated using the UPDATE statement. For the three
specified employee numbers, SQl will multiply the current salary
fields with 1.5. thus increasing the salaries by 50~.

The SElECT statement joins the employee table to itself. The
reason is that we are comparing the salaries for two employees
working in the same department. The two "logical" tables are
assigned the identification labels E (employee) and M (manager).
Si nce the employees in the "M" table must be managers, we are
using a sub-select in the outer-level query. This sub-select will
retrieve all manager numbers from the department table and
through the IN predicate eliminate all non-managers in the "M"
table.

The result shows that only these three people to whom we just gave
the salary raise earn more than their managers.

This query assumes that the MGRNO (manager number) for a DEPTNO
(department number) in the TDEPT table agrees with the WORKDEPT
(work department number) for his/her EMPNO (employee number) in
the TEMPl table. It is also limited to non-manager employees and
their managers, and does not consider higher level managers and
thei r salari es.

Chapter 7. Data Manipulation - Advanced Queries
International Systems Center - Santa Teresa

67

Correlated Subselect

Correlated Subselect

Problem:

This problem is the same as outlined in "Table Joined to Itself
Wi th Subselect" on page 66, but we wi 11 now use a correlated
subselect to select all the employees (if any), who have a salary
exceeding their respective manager's salary:

SQL statement:

SELECT EMPNO, LASTNAME, SALARY, M.MGRNO
FROM TEMPL E, TDEPT M

WHERE WORKDEPT = DEPTNO
AND SALARY > (SELECT SALARY

FROM TEMPL
WHERE EMPNO = M.MGRNO)

Result:

EMPNO LASTNAME SALARY MGRNO

000200 BROWN 41610.00 000060
000240 MARINO 43140.00 000070
000320 MEHTA 29925.00 000100

Comments:

The salaries have been updated using the UPDATE statement from the
previous example.

The outer-level query will select an employee from the employee
table and that employee's manager from the department table. When
the work department number is equal to the department number in
the department table, the correlated subselect will be executed
to verify if the salary for the selected employee is greater than
the salary found in the subselect, where the employee number is
equal to the manager number in the given department. As written,
this query cannot list the names of the managers, since we are not
joining the employee table to itself, and consequently only the
employee information can be derived from the employee table. The
manager number is derived from the department table.

As expected, the result is the same as in the previous example.

~,

68 IBM DATABASE 2 SQl Usage Guide
International Systems Center - Santa Teresa

http:29925.00
http:43140.00
http:41610.00

Correlated Subselect

Alternatfve SELECT statement:

The following query will show a third way to solve the given
problem. This query uses nested subselects in two levels without
combined predicates in the WHERE-clauses. Because of the
construction of the query, only data from the employee table can
be 1 i sted in the output (i. e. the manager number will not be
listed) :

SQL statement:

SEl ECT EMPNO, lASTNAME, SALARY

FROM TEMPl E

WHERE E.SAlARY >

(SEl ECr SALARY

FROM TEMPL M

WHERE M.EMPHO
 =

(SEl ECT MGRNO
FROM TDEPT

WHERE DEPTNO = E. WORKDEPT))

Result:

EMPNO lASTNAME SALARY

000200 BROWN 41610.00

000240 MARINO 43140.00

000320 MEHTA 29925.00

Chapter 7. Data Manipulation - Advanced Queries
International Systems Center - Santa Teresa

69

http:29925.00
http:43140.00
http:41610.00

Views and Unions

combining Views and Unions

Problem:

The manager of Spiffy Computer Services Division has requested a
list of all the departments. This list must contain department
numbers, department names, manager numbers, and manager names.
Since this list will be requested frequently, it has been decided
that a view producing this list should be created. The name of the
view will be VDEPTMGR.

Using this view, we will now produce a list containing department
numbers, manager numbers, and manager names. The list should be a
combination of the following three situations:

1. 	 All departments having a manager, where the manager also
exists in the employee table.

2. 	 All departments not having a manager assigned yet. For these
departments, the manager name columns must show that no
manager has been assigned yet.

3. 	 All departments having a manager, but where the manager does
not exist in the employee table.

The 	combined list should be ordered by department number:

SQL 	 statements:

CREATE VIEW VDEPTMGR
(DEPTNO, DEPTNAME, MGRNO, FIRSTNME,

MIDINIT, LASTNAME)
AS SELECT DEPTNO, DEPTHAME, EMPNO, FIRSTHME,

MIDIHIT, LASTNAME
FROM TDEPT, TEMPL

WHERE MGRHO = EMPNO

..J
"1.

SELECT DEPTHO, MGRHO, M.FIRSTHME, M.LASTNAME
FROM VDEPTMGR M, TEMPL E

WHERE E.WORKDEPT = DEPTNO
UHION
SELECT DEPTNO, MGRNO, '* NO MANAGER', 'ASSIGNED YET * '

FROM TDEPT
WHERE MGRNO :: ,

UNION
SELECT DEPTNO, MGRNO, '* INVALID 'MANAGER NO. *'

FROM TDEPT M
WHERE MGRHO -= ,

AND NOT EXISTS (SELECT EMPNO FROM TEMPL
WHERE M.DEPTNO = WORKDEPT)

ORDER BY 1 ASC

Result:

70 IBM DATABASE 2 SQl Usage Guide
International Systems Center - Santa Teresa

Views and Unions

DEPTNO MGRNO FIRSTNME LASTNAME

AOO 000010 CHRISTINE HAAS

801 000020 MICHAel THOMPSON

COl 000030 SALLY KWAN

001 * NO MANAGER ASSIGNED YET *

011 000060 IRVING STERN

D2l 000070 EVA PULASKI

EOI 000050 JOHN GEYER

Ell 000090 EILEEN HENDERSON

E2l 000100 THEODORE SPENSER

comments:

The VDEPTMGR view joins the department table nDEPT) and the
employee table (TEMPL) on the column names MGRNO and EMPNO. The
result is a department table containing department information
and manager information.

The first SELECT statement will produce one row for each
department having a manager, where the manager also exists in the
employee table.

The second SELECT statement will produce a row for each department
not having a manager assigned. Instead of name values we are here
speci fyi ng constants. Note that the fi rst constant must have a
length of 12 characters to match FIRSTNME, the second constant
must be 15 characters to match LASTNAME.

The third SELECT statement will produce a row for each department
havi ng a manager, but where the manager does not exi st in the
employee table. The NOT EXISTS predicate in the WHERE-clause will
only select those department numbers (DEPTNO) in the department
table, where there is no match on the WORK DEPT column in the
employee table. Note that the use of the correlation variable M
in the sub-query limits the search to the department numbers
(DEPTNO) being considered in the outer-level SELECT. Without the
use of this correlation variable, the NOT EXISTS predicate would
always return a "false" indicator and consequently no rows would
qualify. The department table does not contain a row satisfying
this select statement.

Finally, the results of the three SELECT statements are combined,
using UNION, and the combined list is ordered in ascending order
on department number (column number one).

Chapter 7. Data Manipulation - Advanced Queries
International Systems Center - Santa Teresa

71

------------- ------------

ANY and ALL

Subselect Returning set of Values

Problem:

The Personnel department is currently doi ng an analysi s on
employee data. For this purpose, we will select all employees, who
have been working longer in the company than all the members of
department COl, and who are younger than any employee having a job
code greater than or equal to 44 and less than or equal to 50. The
result should include the employee number, name, work department
number, and department name:

SQL statement:

SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME
FROM TEMPL, TDEPT

WHERE HIREDATE < ALL (SELECT HIREDATE
FROM TEMPL

WHERE WORKDEPT = 'COl')
AND BRTHDATE > ANY (SELECT BRTHDATE

FROM TEMPL
WHERE JOBCODE BETWEEN 44 AND 50)

AND WORKDEPT = DEPT NO
ORDER BY WORKDEPT, LASTNAME

Result:

EMPNO LASTNAME WORKDEPT DEPT NAME

000120 O'CONNElL AOO SPIFFY COMPUTER SERVICE DIV.
000200 BROWN Dll MANUFACTURING SYSTEMS
000220 LUTZ Dll MANUFACTURING SYSTEMS
000250 SMITH D21 ADMINISTRATION SYSTEMS
000090 HENDERSON Ell OPERATIONS

comments:

The two subselects could both return a set of values (more than
one row). The two sets of values are substi tuted into the
WHERE-clause. The first part of the WHERE-clause in the
outer-level query is only satisfied, if the hire date of the
selected row is less than all the hi re dates in the subset.
Similarly, the second part of the WHERE-clause is only satisfied,
if the birth date value of the selected row is greater than any of
the values in the subset of birth dates. The third part of the
WHERE-clause is used to retrieve the name of the department from
the department table using a join.

72 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

INSERT Single Row

INSERT of a single Row

Problem:

Oepartmant 021 will be involved in new projects and has therefore
hi red two new employees. These two new employees have not yet
started working, so phone numbers and job codes are not known. We
will now insert the available data for the two employees, leaving
the unknown data as null values. After the INSERT operation, we
will list all employees in the D21 employee table, where the job
code has a null value:

SQL statements:

INSERT INTO TEMPLD21
(EMPI, LASTNAME, FIRSTNAME, SALARY)

VALUES ('000272','PETERSEN','LARRY',1838S)

INSERT INTO TEMPL021
VALUES ('000274','JOHNSON','ELISABETH',

NULL,NULL,18740)

SELECT *

FROM TEMPLD21

WHERE JOBCD IS NULL

Result:

EMPI LASTNAME FIRSTNAME PHONE JOBCD SALARY

000272 PETERSEN LARRY - - 18385.00
000274 JOHNSON ELISABETH - - 18740.00

comments:

The first INSERT statement uses a list of column names. Column
names not included in this list will receive a null value, when
the row is inserted. Note that the values list only has data items
for the specified column names. The second INSERT statement has no
list of column names. In this case, we must supply a data item for
each column in the defined table. Since we do not know the phone
number and job code, we have specified the data items as NULLs.

The SELECT statement will only list employees where the job code
is a null value. As the resulting table shows, null values are
presented as hyphens ("-").

Chapter 7. Data Manipulation - Advanced Queries
International Systems Center - Santa Teresa

73

http:18740.00
http:18385.00

..,J
'\

INSERT Multiple Rows

INSERT of Rows From Existing Table

Problem:

The manager of department D21 has decided to have a special
employee table created. This table should only contain data for
people work i ng in department D2l. Apart from employee numbers,
fi rst and last names, the table should contai n phone numbers,
jobcodes, and salaries. As first step, the system administrator
is requested to create a table named TEMPlD21. As second step all
employees working in D21 - except the manager - should be inserted
into the new table.
telephone directory
number, and telephone

Finally,
showing last
number:

we will
name,

produce
first n

a department
ame, employee

SQL statements:

CREATE TABLE DSN8.TEMPlD2l
(EMPI CHAR(6),

lASTNAME VARCHAR(15),
FIRSTNAME VARCHAR(12),
PHONE CHAR(4),
JOBCD DECIMAU3),
SALARY DECIMAU8,2))

INSERT INTO TEMPlD21
SELECT EMPNO, lASTNAME, FIRSTNME,

PHONENO, JOBCODE, SALARY
FROM TEMPl

WHERE WORKDEPT = 'D21'
AND EMPNO NOT IN (SELECT MGRNO

FROM TOEPT
WHERE DEPTNO = 'D21')

SELECT lASTNAME, FIRSTNAME, EMPI, PHONE
FROM TEMPlD21

ORDER BY 1, 2

74 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

INSERT Hult;ple Rows

Result:

LASTNAME FIRSTNAME EMPI PHONE

JEFFERSON JAMES 000230 2094

JOHNSON SYBIL 000260 8953

MARINO SALVATORE 000240 3780

PEREZ MARIA 000270 9001

SMITH DANIEL 000250 0961

comments:

The first SQL statement will create a table, where the columns
will have the specified attributes (for a discussion of data
types, please refer to "Creating a New Table" on page 26).

The second SQL statement is an INSERT statement with an imbedded
SELECT statement containing a subselect. The subselect will
select the manager's employee number. Thi s number is used to
prevent the outer-level select from including the manager's data.
The select list of the outer-level query only contains the columns
that should be inserted into the new D21 employee table. Note that
these names are the column names of source table (TEMPL).

The third SQL statement is a simple SELECT on the TEMPlD21 table
producing a telephone directory for department 021.

Chapter 7. Data Manipulation - Advanced Queries
International Systems Center - Santa Teresa

75

UPDATE single Row

UPDATE of a Single Row

Problem:

One of the newly hi red employees - larry Petersen - has now
started working in department D21. He has been assigned a
telephone number and a job code, and we will therefore update this
data in the D21 employee table. After the update, we will produce
a listing of all the D21 employees having valid job codes (i.e.
not null values):

SQL statements:

UPDATE TEMPlD21

SET PHONE = '4176',

JOBCD = 52
WHERE EMPI = '000272'

SElECT *
FROM TEMPlD21

WHERE JOBCD IS NOT NULL
ORDER BY EMPI

Result:

EMPI lASTNAME FIRSTNAME PHONE JOBCD SALARY

000230 JEFFERSON JAMES 2094 053. 22180.00
000240 MARINO SALVATORE 3780 055. 28760.00
000250 SMITH DANIEl 0961 052. 19180.00
000260 JOHNSON SYBIL 8953 052. 17250.00
000270 PEREZ MARIA 9001 055. 27380.00
000272 PETERSEN LARRY 4176 052. 18385.00

comments:

The UPDATE statement selects one row via the WHERE-clause. For
this row, the column values of PHONE and JOBCD will be set to the
specified values regardless of the previous contents.

76 IBM DATABASE 2 SQl Usage Guide
International SysteMs Center - Santa Teresa

http:18385.00
http:27380.00
http:17250.00
http:19180.00
http:28760.00
http:22180.00

UPDATE Hult;ple Rows

UPDATE of Hult;ple ROWs

Probl!!!m:

The manager of department 021 has decided to give all employees
with a job code of 55 a salary increase of 9Y.. A new job code
system has been adopted by Spi ffy Computer Servi ces Di vi si on.
This system is based on a three digit number, where the first
digit is a "2", and the last two digits are the previous job code
(e.g. 55). All jobcodes should be updated from Oxx to 2xx. After
the updating has been done, the manager wants a list showing the
names, job codes, and salari es for the employees havi ng a job code
of 255 (previously 55):

SQL statements:

UPDATE TEMPLD21
SET SALARY = SALARY + 0.09 * SALARY

WHERE JOBCD = 55

UPDATE TEMPLD21
SET JOBCD = JOBCD + 200

SELECT LASTNAME, FIRSTNAME, JOBCD, SALARY
FROM TEMPLD21

WHERE JOBCD = 255

Result:

LASTNAME FIRSTNAME JOBCD SALARY

PEREZ MARIA 255. 29844.20

MARINO SALVATORE 255. 31348.40

comments:

The first UPDATE statement will only select the rows where the job
code is 55. For these rows the SALARY values will be reset to the
computed value (i.e. 9~ is added to the "old" salary). All other
rows will not be affected. The second UPDATE statement does not
have a WHERE-clause, and consequently all rows in the table will
be updated. The result of the SELECT statement shows that two
employees have a jobcode of 255 (previously 55) and that these two
employees now have a salary that is 9Y. higher than shown in the
previous example.

Chapter 7. Data Manipulation - Advanced Queries 77
International Systems Center - Santa Teresa

http:31348.40
http:29844.20

DELETE Single Row

DELETE of a Single Row

Problem:

B~for~ th~ oth~r n~wly hir~d ~mploy~~ - Elisab~th Johnson - was
scheduled to start in departm~nt D2l, sh~ decided to accept a job
in another company. We will therefore delete her data from the D21
employee table. After the delete has taken place, we will produce
a new listing of all the employees in department D21, this list
should be ordered on employee number:

SQL statements:

DElETE
FROM TEMPLD21

WHERE LASTNAME = 'JOHNSON'
AND FIRSTNAME= 'ELISABETH'

SELECT *
FROM TEMPLD21

ORDER BY 1

Result:

EMPI LASTt-IAME FIRSTNAME PHONE JOBCD SALARY

000230 JEFFERSON JAMES 2094 253. 22180.00
000240 MARINO SALVATORE 3780 255. 31348.40
000250 SMITH DANIEL 0961 252. 19180.00
000260 JOHNSON SYBIL 8953 252. 17250.00
000270 PEREZ MARIA 9001 255. 29844.20
000272 PETERSEN LARRY 4176 252. 18385.00

comments:

The DELETE statement will select the row where the specified first
and last names match. When the row is found, it will be deleted
from the table. Note that a DELETE statement without a
WHERE-clause will delete all rows in the table.

The following SELECT statement lists all rows in the D21 employee
table (no WHERE-clause). As th~ result shows, the employee number
000274 is no longer in the table.

78 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

http:18385.00
http:29844.20
http:17250.00
http:19180.00
http:31348.40
http:22180.00

DELETE Mult;ple Rows

DELETE of Mult;ple Rows

Problem:

A new educat i on program has been started in Spi ffy Computer
Services Division. In the first phase of this program, all
employees with an education level of 15 are enrolled in a training
program lasting seven months. During this period the selected
employees will report to the education department. We will now
update the employee table for department D21, and delete
employees wi th an educat i on level of 15. After the delete has
taken place, we will print the names and employee numbers of those
remaining in the table:

SQL statements:

DELETE
FROM TEMPlD21

WHERE EMPI IN (SELECT EMPNO
FROM TEMPl

WHERE WORKDEPT = '021'
ANO EDUClVl = 15)

SELECT EMPI, lASTNAME, FIRSTNAME
FROM TEMPl021

ORDER BY EMPI

Result:

EMPI lASTNAME FIRSTNAME

000230 JEFFERSON JAMES
000240 MARINO SALVATORE
000260 JOHNSON SYBIL
000272 PETERSEN lARRY

comments:

The D21 employee table does not hold any information on education
levels. We have therefore issued a sub-query on the TEMPl table,
selecting all employee numbers from department 021, where
education level is 15. This list of numbers is substituted into
the WHERE-clause of the DEL ETE statement, and the appropr i ate
rows are deleteed from the D21 table. As the result of the SELECT
shows, two rows were deleted from the table.

Chapter 7. Data Manipulation - Advanced Queries
International Systems Center - Santa Teresa

79

~.

80 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

CHAPTER 8. DATA CONTROL LANGUAGE - EXAMPLES

In the preceding chapters. we have discussed how a user can define
DB2 objects using the SQL Data Definition Language. and how data
can be inserted and manipulated in these objects through the use
of the SQL Data Manipulation Language. In this chapter we will
discuss the security aspects of DB2 objects. We will. through
examples. show how users are authorized to access and modify data
in tables. how the user can give authorization to other users. so
tables can be shared between users. and how only partial
authorization can be issued. We will further show how
authorization. once given. can be "taken away" again.

For a complete description of the Data Control Language. please
refer to the IBM DATABASE 2 Reference and the IBM DATABASE 2
System Planning and Administration Guide.

SQL USERS IN THE SAMPLE COMPANY

The storage groups. data bases. and table spaces for the'
Organization Application Tables and the Project Application
Tables have been created by the system admi n i strator. In the
following examples we will assume that the user-id of the system
administrator is SYSADM. This user-id has full authorization to
all DB2 objects. We will further assume that several employees in
Spi ffy Computer Serv ices Di vi si on are usi ng SQL on a regular
basis. In each of the four departments (Dll. D2l. Ell. and E2l) a
user responsible for SQL has been appointed. Finally, two
employees in department D21 have each been assigned a SQL user-id.
Following is a list of valid user-id's:

• SYSADM - system administrator

/' • USERDII - user

~ • USERD21 - user

USERD2lA ­
USERD2lB ­

• USEREII - user

• USERE2l - user

responsible for SQL

responsible for SQL

Daniel Smith
Maria Perez

responsible for SQL

responsible for SQL

in department Dll

in department D21

in department Ell

in department E21

Chapter 8. Data Control Language - Examples
International Systems Center - Santa Teresa

81

Grant SELECT Authority On a Table

After loading the Project Application Tables, the system
administrator is going to GRANT SELECT authority to USERDll,
USERD21. USEREII. and USERE21. All four users are allowed to do
SELEC;s on all rows and all columns. but they are not allowed to
grant authority to other users. The system administrator will
therefore issue the following GRANT statement:

GRANT SELECT
ON TABLE 	 DSN8.TPROJ.

DSN8.TPROJAC.
DSH8.TEMPRAC.
DSH8.TACTYPE

TO USERDl1, USERD21, USEREl1, USERE21

The example shows that several tables (and/or vi ews) can be
specified in one GRANT statement. In the example we are assuming
that the tables were loaded by user DSH8, we must therefore use
the qualified table name. The example also shows that the same
authorization can be granted to several users in one statement.

Grant SELECT Authority To PUBLIC

The department table does not contain any sensitive information
and should be avai lable to all SQL users in Spi ffy Computer
Services Division. The following GRAHT statement will therefore
be issued:

GRANT SEl ECT
OH TABLE DSH8.TDEPT
TO PUBLIC

Instead of user-ides), PUBLIC can be specified. This indicates
that we are granting the specified privilege to all user-ids.

Grant UPDATE Authority On a Table

It has been decided that the Project base table will be maintained
by the SQL-responsible employee in department D21 (USERD21). The
system administrator will therefore issue a GRAHT statement
giving USERD21 full update capability on the Project table:

GRANT UPDATE
ON TABLE DSN8.TPROJ
TO USERD21

82 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

This stat~m~nt will ~nabl~ th~ us~r to update rows, but do~s not
permit th~ user to delete or insert rows.

Not~ that b~for~ any updates can tak~ plac~, SELECT authority on
the table must also b~ ~stablish~d. This is assumed to be done in
all th~ following ~xampl~s.

Grant UPDATE Authoritv On Columns

Th~ SQL-r~sponsibl~ us~rs in d~partm~nt Dll and Ell want to b~
able to QEdat~ th~ proj~ct start and ~nd dat~s in the
proj~ct-activity table (DSN8.TPROJAC). The syst~m administrator
wi 11 th~refore issue an updat~ authori ty on th~ ACSTDATE and
ACENDATE columns for USERDII and USERD21:

GRANT UPDATECACSTDATE, ACENDATE)
ON TABLE DSN8.TPROJAC
TO USERDll, USEREll

The GRANT statem~nt shows that the two specified users now can
updat~ the two mentioned columns, but not any other columns.

Grant INSERT and DELETE Authority On a Table

In "Grant UPDATE Authority On a Tabl~" on pag~ 82 th~ ~mploy~~
with us~r-id USERD21 was granted updat~ authority on the Proj~ct
tabl~. This ~mploy~~ now has a ne~d for ins~rting n~w rows and
deleting som~ ~xisting rows. It has th~r~for~ b~~n decid~d that
USERD21 also must hav~ INSERT and DELETE authority:

GRANT INSERT, DELETE
ON TABLE DSN8.TPROJ
TO USERD2l

This example shows that several privileges can be specified in one
GRANT stat~ment.

Grant INDEX and ALTER Authority On a Table

In order to be able to maintain the Project table, USERD21 must be
able to create indexes on the tabl~ and to add columns to the
table (use of ALTER), The system administrator will therefore
issue a GRAHT statement that will provide the specified
authority:

Chapter 8. Data Control Language - Examples
International Systems Center - Santa Teresa

83

GRANT INDEX, ALTER
ON TABLE DSN8.TPROJ
TO USERD21

After thi s GRANT statement has been issued, USERD21 can create
indexes and issue ALTER statements on the Project table (TPROJ).

Grant Authority with GRANT Option

The SQL-responsible person in department D21 (USERD21) wants to
be able to delegate some of the maintenance work on the Project
table to Dani el Smi th (user-i d: USERD21A). The system
administrator will therefore reissue a GRANT statement with
UPDATE privilege to USERD21, but this time with the GRANT OPTION:

GRANT UPDATE
ON TABLE DSN8.TPROJ
TO USERD21

WITH GRANT OPTION

The GRANT OPTION indicates that USERD21 now has the authority to
pass the UPDATE privilege on the Project table along to other
users, in this case to USERD21A.

Note that a statement that grants TO PUBLIC WITH GRANT OPTION is
not allowed in SQL. If such a statement is encountered by the
system, a warming message is issued and the GRANT is made without
GRANT OPTION.

USERD21 will now allow Daniel Smith (USERD21A) to make updates on
the PRSTAFF, PRSTDATE, and PRENDATE columns of the Project table.
We wi 11 assume that USERD21A and USERD21B already are granted
SELECT authority on the Project table. USERD21 will therefore
issue the following GRANT statement:

GRANT UPDATECPRSTAFF, PRSTDATE, PRENDATE)
ON TABLE DSN8.TPROJ
TO USERD21A

Note that thi s statement is issued by USERD21, and not by the
system admi ni strator. Dani el Smi th can only update the three
specified columns, and is not allowed to insert or delete rows.

let's assume that the last GRANT statement was also issued with
the GRANT OPTION. In that case, Daniel Smith would be able to
delegate UPDATE authority to another user, like Maria Perez

84 IBM DATABASE 2 SQl Usage Guide
International Systems Center - Santa Teresa

(USER021B). In the following example, Oaniel Smith grants update
authority on the PRSTAFF column of the Project table to USER021B:

GRAHT UPOATE(PRSTAFF)
OH TABLE OSHa.TPROJ
TO USER021B

Grant Authority On Selected Rows

The SQL-responsible person in department E21 (user-id: USERE21)
has been assigned to do a salary analysis. This analysis should
not include managers, and consequently, U5ERE21 should not be
allowed to "see" rows with manager information. Since we cannot
specify row values in a GRAHT statement, we will create a view on
the employee table, and then grant select authority using this
view. Using this technique we can grant authority on a field value
level. The system administrator will create the following view
whi ch wi 11 include all employees found in the department table
except managers:

CREATE VIEW SALARY
AS SELECT IE

FROM OSH8.TEMPL
WHERE EMPHO HOT IN (SELECT MGRHO

~ FROM OSHa.TOEPT)

After thi s vi ew has been created, the system admi ni strator can
issue a GRAHT statement that wi 11 allow USERE21 to select all
non-manager rows in the employee table:

GRAHT SELECT
ON SALARY
TO USERE21

Hote that the keyword TABLE in front of the table or view name can
be omi tted.

Grant Authority On Selected Rows and Columns

The SQL-responsible employee in department 011 has been assigned
to update i nformati on on employees in department 011 in the
Employee table. For the selected rows only the names, phone
numbers, job codes, and education levels should be possible to
update. The system administrator will create a view that will
select all rows having a work department value of 011:

Chapter a. Oata Control Language - Examples 85
International Systems Center - Santa Teresa

CREATE VIEW DEP_DII
AS SElECT *

FROM DSH8.TEMPL
WHERE WORKDEPT = 'DII'

Following this view creation, the system administrator issues a
GRANT statement that will allow USERDII to issue updates to the
specified columns in the DEP_DII view:

GRANT UPDATE(FIRSTNME, MIDINIT, LASTNAME,
PHONENO, JOBCODE, EDUCLVL)

ON DEP_DII
TO USERDll

List Granted Authority From system Catalog Tables

In order to verify the issued GRANT statements, the system
administrator will now do a SELECT on one of the system catalog
tables 3 • This system catalog table (SYSIBM.SYSTABAUTH) contains
information on SELECT and UPDATE authority on the table level. We
wi II now select all the rows, where the grantee column value
starts with the character string 'USERD' or 'USERE'. The
following SELECT statement is issued:

SELECT DISTINCT GRANTOR, GRANTEE, TTNAME,
SELECTAUTH, UPDATEAUTH

FROM SYSIBM.SYSTABAUTH
WHERE (GRANTEE LIKE 'USERDY.'

OR GRANTEE LIKE 'USEREY.')
AND TCREATOR = 'DSN8'

The result of this statement will be a list, showing who (GRANTOR)
gave authority to whom (GRANTEE) on given tables or views
(TTHAME). The last two columns will indicate if select authority
(SELECTAUTH) or update authority (UPDATEAUTH) was granted:

For a description of the System Catalog Tables, please refer

to the IBM DATABASE 2 Reference. '1>.

.,j

86 IBM DATABASE 2 SQL Usage Gu i de
International Systems Center - Santa Teresa

3

GRANTOR GRANTEE TTNAME SELECTAUTH UPDATEAUTH

SYSADM USERDll DEP_Dll Y
sysADM UsERDll TACTYPE Y
SYSADM USERDll TEMPRAC Y
SYSADM USERDll TPROJ Y
sysADM UsERDll TPROJAC Y
sYSADM USERDll TPROJAC Y
sYSADM UsERD21 TACTYPE Y
sysADM UsERD21 TEMPRAC Y
SYSADM USERD21 TPROJ
SysADM UsERD21 TPROJ Y
sysADM UsERD21 TPROJ Y
sYSADM USERD21 TPROJAC Y
SysADM USER Ell TACTYPE Y
sysADM UsEREll TEMPRAC Y
SYSADM USEREll TPROJ Y
SysADM UsEREll TPROJAC Y
sysADM UsEREll TPROJAC Y
SYSADM USERE21 SALARY Y
SYSADM USERE21 TACTYPE Y
sysADM UsERE21 TEMPRAC Y
SYSADM USERE21 TPROJ Y
SYSADM USERE21 TPROJAC Y
sysADM UsERD21 TPROJ G
UsERD21 USERD21A TPROJ G
USERD21A USERD21B TPROJ Y

The last three rows in the table show that the system
administrator (sYSADM) has granted UsERD21 update authority on
the TPROJ table with GRANT OPTION (G). USERD21 has then granted
USERD21A update authority on the same table also with GRANT OPTION
(G). Fi nally, UsERD21A has granted UsERD21B update authori ty
without GRANT OPTION (Y).
SYSIBM.SYSTABAUTH does not indicate which specific columns can be
updated. If all columns can be updated, UPDATECOLS of the
SYSTABAUTH table contains a blank. If only specific columns can
be updated, UPDATECOLS contains an '*' and detailed information
can be found in another system catalog table - SysIBM.sYSCOLAUTH.

We will now do a similar select on this system catalog table in
order to verify if the granted UPDATE authorities on the column
level were specified correctly.

The following SELECT statement was issued by the system
administrator:

t"

\.­
Chapter 8. Data Control Language - Examples

International Systems Center - Santa Teresa
87

SELECT DISTIHCT GRAHTOR, GRAHTEE, THAME, COLHAME
FROM SYSIBM.SYSCOLAUTH

WHERE (GRAHTEE LIKE 'USERDY.'
OR GRAHTEE LIKE 'USEREY.')

AHD CREATOR = 'DSHa'

The following result shows that the UPDATE authorities on the
indicated columns are in accordance with GRAHT statements issued
above:

GRAHTOR GRAHTEE THAME COLHAME

SYSADM USERDll DEP_Dll EDUCLVL

SYSADM USERDll DEP_Dll JOBCODE

SYSADM USERDll DEP_Dll PHOHEHO

SYSADM USERDll DEP_Dll LASTHAME

SYSADM USERDll DEP_Dll MIDIHIT

SYSADM USERDll DEP_Dll FIRSTHME

USERD21A USERD21B TPROJ PRSTAFF

USERD21 USERD21A TPROJ PREHDATE

USERD21 USERD21A TPROJ PRSTDATE

USERD21 USERD21A TPROJ PRSTAFF

SYSADM USEREll TPROJAC ACEHDATE

SYSADM USEREll TPROJAC ACSTDATE

SYSADM USERDll TPROJAC ACEHDATE

SYSADM USERDII TPROJAC ACSTDATE

Note: The SYSIBM.SYSCOLAUTH table records the UPDATE privileges

held by users on individual columns.

The SYSIBM.SYSTABAUTH table records all privileges held by users

on tables and vi ews.

88 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

Revoke SELECT Authority On a Table

In the example shown in "Grant SELECT Authority On a Table" on
page 82 the user-id USERE21 was granted SELECT authority on the
TEMPRAC and TPROJAC tables. This authorization is now no longer
needed, so it has been decided to REVOKE the authorization. The
system administrator will therefore issue the following REVOKE
statement:

REVOKE SELECT
ON DSN8.TEMPRAC, DSN8.TPROJAC

FROM USERD21

If the same authorization had to be revoked from several users, a
list of user-ids could have been specified.

Revoke SELECT Authority From PUBLIC

Let's assume that the system administrator previously had granted
SEl ECT authori ty to all users (PUBLIC) on the Project table
(TPROJ). We will now revoke this authorization by the following
statement:

REVOKE SELECT
ON DSH8.TPROJ

FROM PUBLIC

Revoke Authority Granted with GRANT OPTION

In "Grant Authority With GRANT Option" on page 84 the following
chain of UPDATE authorization on table TPROJ was issued:

SYSADM --> USERD21 --> USERD21A --> USERD21B

After an auditing of the authorization system catalog tables, the
manager of department D21 has decided that Maria Perez (USERD21B)
must not be able to do the update on the Project table (TPROJ),
granted by USERD21A. In order to revoke this authorization,
USERD21A could issue a REVOKE statement, but instead the system
administrator is requested to issue the necessary revoke
operation:

REVOKE UPDATE
ON DSH8.TPROJ

FROM USERD2lB
BY USERD21A

Chapter 8. Data Control Language - Examples
International Systems Center - Santa Teresa

89

Hote that the BY user-id clause only will revoke the authorization
granted by USERD21A. If Mari a Perez was granted update
authorization on the Project table by other users. these
authorizations wi 11 not be affected. Only the system
administrator can issue a REVOKE statement with a BY user-id
clause.

Revoke Authority with cascading Effect

Until now USERD21 has been responsible for maintaining the
Project table (TPROJ>' USERD21 has now been involved in a new
project. and the maintenance of the Project table has been taken
over by another employee. The system administrator will therefore
issue the following REVOKE statement:

REVOKE UPDATE
ON DSN8.TPROJ

FROM USERD21

The statement shown has a cascadi n9 effect on revok i ng
authorization. Daniel Smith (USERD2IA) was granted limited UPDATE
authority by USERD21. However, since USERD21's authorization is
revoked. USERD2IA's update authorization is automatically revoked
too. If USERD2lA has granted other users update authority on the
Project table, these authorizations would also automatically be
revoked.

IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

90

CHAPTER 9. DATA DEFINITION LANGUAGE - EXAMPLES

In the preyi ous chapters we assumed that storage groups, data
bases, table spaces, and tables already were defined. In this
chapter we will discuss the use of the SQl Data Definition
language. The discussion will be based on examples, where we will
create and do other definitions on the tables we used in the Data
Manipulation language and the Data Control language examples.

The Data Definition language consists of four statements:

• CREATE

• DROP

• ALTER

• COMMENT ON

Since SQl does not provide any output when an SQl Data Definition
Language statement is executed (except for an acknowledgement),
we will only show various statements and discuss the parameters
used.

For a detailed description of the Data Definition Language,
please refer to the IBM DATABASE 2 Reference.

THE CREATE STATEMENT

The following figures show the syntax of CREATE statements for the
various DB2 objects.

Chapter 9. Data Definition Language - Examples 91
Internatiohal Systems Center - Santa Teresa

The CREATE STOGROUP statement

Purpose: 	 The CREATE STOGROUP statement is used to define a set of
volumes controlled by a VSAM catalog. The storage group is
subsequently used to allocate DB2 table spaces and indexes.

Example 1: 	 Create a storage group named DSN8GOOO

CREATE STOGROUP DSN8GOOO
VOLUMES (DSNVOl) <---- device serial number(s)
VCAT DSNCAT <---- VSAM catalog alias name
PASSWORD DSNDEFPW <---- VSAM control level password

other s;gn;f;cant operands are:

• 	 There are no other operands

COllllllents:

• 	 All volumes in the group must be of the same device type

• 	 The same volume can be used in multiple storage groups

• 	 If no password is specified, DB2 will access the VSAM
catalog without a password

Figure 4. CREATE STOGROUP Statement

IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

92

The CREATE DATABASE statement

Purpose: 	 The CREATE DATABASE statement is used to define e
data base which will subsequently be used to collectively
describe a group of DB2 table spaces and indexes.

Example 1: 	 Create a data base named DSN8DAPP

CREATE DATABASE DSN8DAPP

STOGROUP DSN8GOOO <---- default storage group

BUFFERPOOL BPI <---- default buffer pool

other significant operands are:

• 	 There are no other operands

Comments:

• 	 If a subsequent tablespace or index definition does not
contain a buffer pool specification then the default buffer
pool specification will be used.

• 	 If a subsequent table definition does not contain a table­
space specification then a tablespace will automatically
be created in the default storage group defined in the
associated data base definition

Figure 5. CREATE DATABASE Statement

Chapter 9. Data Definition language - Examples
International Systems Center - Santa Teresa

93

The CREATE TABLESPACE statement

Purpose: The CREATE TABLESPACE statement is used to allocate a table
space which will subsequently contain DB2 tables.

Example 1: Create a table space named DSN8SDEP

CREATE TABLESPACE DSH8SDEP
IN DSN8DAPP <-- data base name
USIHG STOGROUP DSN8GOOO <-- use existing storage group

PRIQTY 24 <-- primary allocation in K bytes
SECQTY 8 <-- secondary alloc. in K bytes
ERASE NO <-- do not erase dropped data set

LOCKSIlE PAGE <-- locking on page level
BUFFERPOOl BPI <-- buffer pool for table space
CLOSE YES <-- close data set, if not in use
DSETPASS DSH8 <-- VSAM password

Figure 6. CREATE TABlESPACE Statement - part 1

"-'

IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

94

f
~ The CREATE TABLESPACE statement

Example 2: Create a partitioned table space named DSN8SEMP

CREATE TABlESPACE DSN8SEMP
IN DSN8DAPP
USING STOGROUP DSN8GOOO

PRIQTY 24
SECQTY 12
ERASE NO

NUMPARTS 4 <---­ number of partitions
(PART 1 <---­ partition number 1

USIHG STOGROUP DSN8GOOO
PRIQTY 12
SECQTY 4,

PART 3 <---­ partition number 3
USING STOGROUP DSN8GOOO

PRIQTY 12
SECQTY 4)

LOCKSIZE PAGE
BUFFERPOOL BPI
CLOSE YES
DSETPASS DSH8

Figure 7. CREATE TABLESPACE Statement - part 2

Chapter 9. Data Definition Language - Examples 95
International Systems Center - Santa Teresa

other significant operands are:

• veAT <---- reference VSAM catalog for space

comments:

• 	 The CREATE TABlESPACE statement allows you to allocate
and format a table space. A table space is a unit of data
storage used to contain one or more tables. The maximum
addressable range is 64 Gigabytes.

• 	 The primary space allocation (PRIQTY) is specified in
Kilobytes. The minimum (and default) specification is
12 Kilobytes. The secondary space allocation (SECQTY)
is also specified in Kilobytes. The minimum specification
is 4 Kilobytes, the default specification is 12 Kilobytes.

• 	 If a partitioned table space is requested, the HUMP ART
parameter specifies the number of partitions. This number
also implicitly determines the maximum partition size
(e.g. if the number of partitions is between 1 and 16, the
maximum partition size is 4 Gigabytes).

• 	 The PART parameter specifies the partition number to
which the following space specification applies. 0

Partitions for which you do not explicitly specify ~
a space allocation are assigned space as indicated by
the 	USING parameter that applies to the whole table
space.

Figure 8. CREATE TABlESPACE Statement - part 3

IBM DATABASE 2 SQl Usage Guide
International Systems Center - Santa Teresa

96

The CREATE TABLE statement

Purpose: The CREATE TABLE statement defines a DB2 table.
Table name and column names must be specified.
Attributes of the columns must also be specified.

Example 1: Create a TABLE named DSH8.TEMPL

CREATE TABLE DSH8.TEMPL
(EMPNO CHAR(6) <---­ unique column name

NOT HULL, <---­ null values not allowed
FIRSTHME VARCHAR(12) <---­ variable length character

NOT HULL, string
MIDINIT CHAR(1) <---­ fixed length character

NOT NULL, string
LASTNAME VARCHARCl5)

HOT NULL,
WORKDEPT CHAR(3)

NOT NULL,
PHOHENO CHAR(4)
HIREDATE DECIMAU6) <---­ packed decimal format
JOBCODE DECIMAU 3)
EDUCLVL SMALLINT <---­ 15 bit signed integer
SEX CHARCl)
BRTHDATE DECIMAU6)
SALARY DECIMAU8,2)

EDITPROC DSH8EAEl <---­ name of edit routine
IN DSN8DAPP.DSN8SEMP <---­ DB and tablespace names

Figure 9. CREATE TABLE Statement - part 1

Chapter 9. Data Definition language - Examples
International 5ystems Center - Santa Teresa

97

The CREATE TABLE statement

Example 2: Create a TABLE with the name DSN8.TPROJ

CREATE TABLE DSN8.TPROJ
(PROJNO CHAR(6)

NOT NULL,
PROJNAME VARCHAR(24)

NOT HULL,
DEPTNO CHAR(3)

HOT NULL,
RESPEMP CHAR(6)

NOT HUll ,
PRSTAFF DECIMAL<5,2),
PRSTDATE DECIMAL(6)
PREHDATE DECIMAL< 6)
MAJPROJ CHAR(6)

HOT HULl)
VALIDPROC DSN8EAVl <-- data validation routine
IN DATABASE DSN8DAPP <-- DB name (table space will

automaticallY be created)

Figure 10. CREATE TABLE Statement - part 2

IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

98

other significant operands are:

• 	 INTEGER <-­ 31 bit sign~d int~g~r

• 	 flOAT <-- 63 bit floating point numb~r

• 	 LONG VARCHAR <-- similar to VARCHAR

comments:

• 	 If a column is d~fin~d as DECIMAL, you can sp~cify th~
pr~cision and scal~. Th~ first specification (precision)
sp~cifi~s th~ numb~r of decimal digits to be stored, and
must be from I to 15. The second specification (scale)
is the number of digits to the right of the decimal point,
this number must be less than or equal to the precision.

• 	 If NOT NULL is specified, this column cannot contain
null values. An attempt to insert a null valu~ (or update
to a null value) will fail.

• 	 An edit routine can be used to compact, alter, or encrypt
data. The edit routine will be executed just after the
record is retrieved and just before it is stored.

• 	 A validation routine is used to validate data (e.g. the
routine may verify that a value falls within a specified
range). The routine is executed just before the row is
inserted or updated.

• 	 When the DATABASE parameter is used, a table space will
automaticallY be created. This table space will have the
default table space attributes.
The name of the table space will be derived from the

. table name.
'

• 	 In SQL/DS a column can be specified as LONG VARCHAR.
For compatibility reasons this specification can be used,
but DB2 will treat it as a VARCHAR column with an
internally determined length.
Note that this precludes future use of the ALTER statement ~ r against this table.

Figure 11. CREATE TABLE Statement - part 3

Chapter 9. Data Definition Language - Examples 99
International Systems Center - Santa Teresa

The CREATE INDEX statement

Purpose: The CREATE INDEX statement is used to create an index on
a DB2 table

Example 1: Create a unique index named DSN8.XEMPl

CREATE UNIQUE <-- column contains unique values
INDEX DSN8.XEMPl
ON DSNa.TEMPL <-­ name of base table

(EMPNO ASC) <-­ column name and ordering
USING 	 STOGROUP DSN8GOOO <-­ storage group to hold index

PRIQTY 12 <-­ primary allocation in K bytes
ERASE NO <-­ do not erase dropped dataset

SUBPAGES a <-­ number of 5ubpages
BUFFERPOOl BPO <-­ buffer pool for index
CLOSE YES <-- close dataset, if not in use
DSETPASS DSNa <-- VSAM password

Figure 12. CREATE INDEX Statement - part 1

100 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

The CREATE INDEX statement

Example 2: Create an index with the name DSN8.XDEPT

CREATE UNIQUE
INDEX DSN8.XDEPT
ON DSH8.TDEPT

(DEPTNO ASC)
USING STOGROUP DSN8GOOO

PRIQTY 24
ERASE NO

SUBPAGES 4
CLUSTER <---­ create clustered index

(PART 1 VAlUESC'A99'), <---­ key r~nges for partitions
PART 2 VALUESC'B99'),
PART 3 VALUESC'C99'),
PART 4 VAlUES('999'»

BUFFERPOOL BPI
CLOSE YES
DSETPASS DSNa

Figure 13. CREATE INDEX Statement - part 2

Chapter 9. Data Definition language - Examples 101
International Systems Center - Santa Teresa

other significant operands are:

• VCAT <---- reference VSAM catalog to get space

comments:

• 	 If UNIQUE is specified before any rows are inserted
into the table, uniqueness of keys is guaranteed. If it
is specified for a table containing rows with duplicate
keys, an error message will be issued, when the index is
built. If UNIQUE is not specified, duplicate key values
are allowed.

• 	 The primary space allocation (PRIQTY) is specified in
Kilobytes. The minimum (and default) specification is
12 Kilobytes. The secondary space allocation (SECQTY) is
also specified in Kilobytes. The minimum specification
is 4 Kilobytes, the default specification is 12 Kilobytes.

• 	 The CLUSTER parameter will result in a clustering index.
You cannot specify this parameter, if you already have
built another clustering index on the table.

• 	 The PART parameter specifies ranges for the partitions of
a partitioned table space. If the table space is partitioned,
you must specify this parameter, preceded by CLUSTER.

• 	 The VALUES parameter specifies the highest key value
to be stored in the partition.

Figure 14. CREATE INDEX Statement - part 3

102 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

~ 	 The CREATE VIEW statement

Purpose: 	 The CREATE VIEW statement is used to define the application
view of a DB2 table.

Example 1: 	 Create a view named DSH8.VPHOHE

CREATE VIEW 	 DSN8.VPHONE
(lASHIAME. 	 <---- column names in view

FIRSTNME.
MIDDLEIHITIAl.
PHONENUMBER,
EMPlOYEENUMBER,
DEPTNUMBER. 	 DEPTHAME)

AS SELECT 	 <---- underlying column(s)
LASTNAME.
FIRSTNME,
MIDINIT ,
PHONENO •
EMPNO,
DEPTNO, DEPTHAME

FROM DSN8.TEMPL,DSN8.TDEPT <---- base tables or views
WHERE WORKDEPT = DEPTNO <---- join condition

other significant operands are:

• 	 WITH CHECK OPTION <---- validates INSERTs and UPDATEs

Comments:

• 	 A view based on more than one table cannot be updated.
• A UNION 	 operator cannot be used in Q view definition.
• 	 A view cannot have more than 16 underlying base tables.
• 	 A view cannot be altered. If an udditional column has

to be added, the view must be redefined.

Figure 15. 	 CREATE VIEW Statement

Chapter 9. Data Definition Language - Examples 103
International Systems Center - Santa Teresa

The CREATE SYNONY" statement

Purpose: 	 The CREATE SYNONYM statement is used to define an alternate
name for a DB2 table or view.

Example 1: 	 Create a synonym named YPHONE

CREATE SYNONYM YPHONE <---- synonym (alternate) name
FOR DSN8.VPHONE <---- table or view name

other significant operands are:

• 	 There are no other operands

comments:

• 	 This statement allows you to refer to a table or view
owned by another user without having to enter the table's
or view's fully-qualified name.

• 	 No authorization is required to issue this statement.

Figure 16. 	 CREATE SYNONYM Statement

.J
'~

104 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

THE 	 DROP STATEMENT

The following figures show the syntax of DROP statements for the
various DB2 objects.

The DROP statement

Purpose: The DROP statement is used to drop DB2 objects.

Example 1: Drop the synonym named VPHONE

DROP SYNONYM VPHONE <---- drop synonym name

other significant operands are:

• 	 TABLE <---- drop a table

• 	 VIEW <---- drop a view

• 	 INDEX <---- drop an index

• 	 STOGROUP <---- drop a storage group

• 	 DATABASE <---- drop a data base

• 	 TABLESPACE <--- drop a table space

comments:

• 	 DROP will permanently remove the specified DB2
object and its description from the system catalog

• 	 All other DB2 objects (and their descriptions)
that are directly or indirectly dependent on the
object being dropped are also dropped

Figure 17. DROP Statement

Chapter 9. Data Definition language - Examples 105
International Systems Center - Santa Teresa

THE 	 ALTER STATEMENT

The following figures show the syntax of ALTER statements for the
various DB2 objects.

The ALTER STOGROUP statement

Purpose: 	 The ALTER STOGROUP is used to modify a previously defined

DB2 storage group.

Example 1: 	 Alter storage group DSH8GOOO to add a new volume to the group

ALTER STOGROUP DSH8GOOO
ADD VOLUMES (DSHV02) <---- add volume DSHV02 to storage

group DSH8GOOO

other sfgnfftcant operands are:

• 	 PASSWORD <---- VSAM password

• 	 REMOVE VOLUMES <---- Remove volume(s)

comments:

• 	 Removing a volume from a storage group will not
affect existing data

• 	 The password must be the VSAM control-level password
that will be used to protect the VSAM catalog.

Figura 18. 	 ALTER STOGROUP Statement

106 IBM DATABASE 	 2 SQL Usage Guide
International Systems Center - Santa Teresa

L The 	 ALTER TABLESPACE statement

Purpose: 	 The ALTER TABLESPACE statement is used to modify a previously
defined DB2 table space.

Example 1: 	 Alter the VSAM password for table space DSH8SEMP

ALTER TABLESPACE DSH8SEMP
DSETPASS DSN8A <---- change password for table

space DSH8SEMP

other significant operands are:

• 	 BUFFERPOOL <-- change buffer pool (BPO/BPlI'BP2)

• 	 lOCKSIZE <---- change locksize level

• 	 CLOSE <---- change close parameter

comments:

• 	 If lOCKSIZE is specified, a level of PAGE,
TABLESPACE, or ANY can be given

Figure 19. 	 ALTER TABlESPACE Statement

Chapter 9. Data Definition Language - Examples 107
International Systems Center - Santa Teresa

The ALTER TABLE statement

Purpose: 	 The ALTER TABLE statement is used to modify a previously
defined DB2 table.

Example 1: 	 Add a new column to table DSH8.TEMPL

ALTER TABLE DSH8.TEMPl
ADD ADDRESS VARCHAR(60) <---- add a column to a table

other significant operands are:

• 	 VALIDPROC <---- add or change a validation routine

comments:

• 	 When a column is added. all values of the column
are HULLs.

• 	 T.he added column wi 11 be the "last" column in the table

• 	 If a validation routine is added, only ~ rows
will be validated. Existing rows are not validated.

• 	 If VALIDPROC HULL is specified, the existing validation
routine is "disconnected" from the table.

Figura 20. 	 ALTER TABLE Statement

108 IBM DATABASE 2 SOL Usage Gui de
International Systems Center - Santa Teresa

The ALTER INDEX statement

Purpose: 	 The ALTER INDEX statement is used to modify a previously
defined DB2 index.

Example 1: 	 Alter the buffer pool associated with index DSN8.XEMPLI

ALTER INDEX DSH8.XEMPLI

BUFFERPOOL BP2 <---- change from BPO to BP2

other significant operands are:

• 	 DSETPASS <---- change VSAM password

• 	 CLOSE <---- change close parameter

comments:

• 	 This statement only changes the descriptors of an index.
If the index is not open, the changes take effect immediately
otherwise changes take effect next time the index is opened

Figure 21. 	 ALTER INDEX statement

Chapter 9. Data Definition Language - Examples 109
International Systems Center - Santa Teresa

THE COMMENT 	 ON STATEMENT

The following figures show the syntax and examples of COMMENT ON
statement.

The COMMENT ON statement

Purpose: 	 The COMMENT ON statement is used to add a comment to the
DB2 catalog tables.

Example 1: 	 Add a comment to the catalog for table OSN8.TEMPL

COMMENT ON TABLE OSH8.TEMPL
IS 'EMPLOYEE TABLE' <---- text string (max. 254 char.)

Other significant operands are:

• 	 COLUMN <---- column comment

Comments:

• 	 If TABLE is specified, the comment will be placed
in the REMARKS column of the SYSTABLES catalog table

• 	 If COLUMN is specified, the comment will be placed
in the REMARKS column of the SYSCOLUMHS catalog table

Figure 22. 	 COMMENT ON Statement

110 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

PART C: SQl DEFINITION

Thi s part of the gu ide consi sts of si x appendi xes showi ng the
syntax of the SQL language and listings of the sample tables.

The first three are syntax descriptions intended to describe SQL
as used in thi s document. Therefore they are not complete or
rigorous in definition, but are supplied as a summary of the
preceding chapters. A complete description of the syntax of the
entire SQL language can be found in IBM DATABASE 2 Reference.

• APpendix A. Data Hanipulation language syntax

In this appendix the syntax of the SELECT, INSERT, UPDATE, and
DELETE statements is shown.

• APpendix B. Data Control Language Syntax

Thi s appendi x shows the syntax of the GRANT and REVOKE
statements.

• APpendix C. Data Definition language syntax

This appendix is an overview of the syntax for the CREATE,
ALTER, DROP, and COMMENT ON statements.

The last three appendixes summarizes the Sample as used in this
document. A complete description can be found in IBM DATABASE 2
Sample Application Guide.

• APpendix D. Sample Base Table Definition

This appendix lists the table definitions of the Organization
Application tables and the Project Application tables.

• APpendix E. organization APplication Base Tables

This appendix lists the sample employee base table and the
sample department base table.

• APpendix F. project APplication Base Tables

This appendix lists the contents of the project base table,
the project activity base table, the employee project
activity base table, and the activity type base table.

Part C: SQL Definition 111
International Systems Center - Santa Teresa

112 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Sante Terese

APPENDIX A. DATA MANIPULATION LANGUAGE SYNTAX

THE 	 SELECT STATEMENT

The SELECT statement - part 1

Purpose: 	 Th~ SELECT statement returns one or more rows from a

specified table or tables. Only row(s) satisfying a given

search condition are returned.

Format: 	 SElECT

[ALL IDISTINCT]

select-listl*

FROM table-specification

[WHERE search-condition]

[GROUP BY column-name]

[HAVING search-condition]

[ORDER BY order-specification]

ALL IDISTINCT

• 	 ALL (which is the default value) returns all rows which
satisfy the search condition.

• 	 DISTINCT will eliminate duplicate rows (i .e. rows where
all specified column values are identical).

. .. 	cont i nue

Figure 23. SELECT Statement Syntax - Part 1

Appendix A. Data Manipulation Language Syntax 113
Tnternational Systems Center - Santa Teresa

The 	 SELECT statement - part 2

select-ltst

Specifies the data which should be retrieved.

The list is composed of one or more elements, where each

individual element call be:

• 	 A column name
• 	 A literal constant
• 	 A SQL function
• 	 An arithmetic expression combined from

any of the above elements

The 	order of the elements can be arbitrarily specified.

When the FROM-clause specifies more than one table (join)
and a column name thus becomes ambiguous, it is neccessary
to qualify the column name. This can be made either by
prefixing the column name with the table name
(table-name. column-name) or with a
correlation name (see FROM-clause).

The '*' ;s a shorthand notation used to specify the
selection of all column names in the table(s) specified in
the FROM clause. The order of the colums ;s based upon the
definition of the table(s). In the same way as column names
can be qualified (see above), the '*' can be qualified with a
table name (table-name.*) or a correlation name .

... continue

Figure 24. SELECT Statement Syntax - Part 2

114 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

The SELECT statement - part 3

FRO" table-specification

The FROM-clause specifies the DB2 table or tables from which
data is to be retrieved. If data is retrived from multiple
tables, all table names must be specified in the FROM-clause
separated by a ",n. If one table name is specified two or
more times in the same FROM-clause (indicating that the
table is being joined to itself), each table name must
be given a unique label so that column references
can be made unambiguous (e.g. FROM TABLE1 X, TABLE1 Y).

WHERE search-condition

The WHERE-clause contains a search condition (either simple
or compound) that is used to determine which rows will be
retrieved from the table(s). Several conditions can be
combined by AND'ing and OR'ing conditions.

GROUP BY column-name

The GROUP BY feature of DB2 permits a table to be divided
into groups of rows with matching values in one or more
columns. When using GROUP BY, SQL will only return one
result row for each group. A grouping query may have a
standard WHERE-clause which serves as a "filter", keeping
only those rows which satisfy the search condition.

HAYING search-condition

The HAVING feature of DB2 is used to apply a condition
to groups, causing SQL to return a result only for those
groups which satisfy the condition. The HAVING-clause must
be written after the GROUP BY-clause. The HAVING-clause
may contain one or more group-qualifying predicates,
connected by AND's and OR's.

ORDER BY order-specification

The ORDER BY-clause determines the order in which the query
result is presented. Ordering can either be ascending (default)
or descending. Ordering may be requested by one or more items
(column names or expressions) of the SELECT statement. These
items are specified either by column name or column number.

Figure 25. SELECT Statement Syntax - Part 3

Appendix A. Data Manipulation Language Syntax 115
International Systems Center - Santa Teresa

THE INSERT STATEMENT

The INSERT statement - part 1

Purpose:

The INSERT statement is used to insert a single row or
multiple rows into an existing table in the DB2 data base.
Two basic formats exist. Format 1 will add one new row to
the table specified.

Format 1: INSERT

INTO table-specification

[(column-name-list)]

VALUES (list-of-values)

INTO table-specification

Specifies the name of the table in which the data should
be added.

column-name-list

This list specifies the columns into which values are
inserted. All fields not included in the list will be
given a NULL value. If data is inserted in all columns
no list need to be specified.

VALUES

Values are specified in column order separated by commas. A
fixed length character type element will be padded with blanks
on the right. if the given length is less th.~~he defined length.
No padding is done to variable length character type elements.

Figure 26. INSERT Statement Syntax - Part 1

116 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

The INSERT statement - part 2

Purpose: 	 Format 2 of the INSERT statement is used to insert into
an p-xisting table rows which are selected or computed
from the DB2 data base by a SELECT statement.

Format 2: 	 INSERT

INTO table-specification

[(column-name-list)]

SELECT column-names

FROM table-specification
WHERE search-condition

INTO

Same as for Format 1.

column-name-list

Same as for Format 1.

SELECT column-names

This list 	specifies the names of the columns from which
data is retrieved. The number of column names in the list
must agree with the number of columns specified in the list
of column 	names in the INTO-clause.

FROM table-specification

The FROM-clause specifies the DB2 table or tables from
which data is being retrieved. Refer to the SELECT statement
for further explanation.

WHERE search-condition

The WHERE-clause contains a search condition, which will
determine 	the rows selected from the specified table(s).
Refer to the SELECT statement for further explanation.

Figure 27. INSERT Statement Syntax - Part 2

Appendix A. Data Manipulation Language Syntax 117
International Systems Center - Santa Teresa

THE UPDATE STATE"ENT

The UPDATE statement

Purpose:

The UPDATE statement is used to update the values of one
or more columns in one or more rows of a DB2 table.
The rows to be updated are chosen by the search condition.
If no search condition is given, all rows in the specified
table are updated.

Format: UPDATE table-specification

SET column-name-l = expression-l
[,column-name-2 = expression-2, •••]

[WHERE search-condition]

table-specification

Specifies the name of the table in which the data should
be updated.

SET

The SET-clause specifies one or more new column values.

These values can be constants, expressions or NUll.

An expression may contain constants, column names,

and the arithmetic operators +, -, M, and /.

WHERE search-condition

The WHERE-clause specifies the condition(s) that have to
be met in order to do the update operation. ror a detailed
explanation of the WHERE-clause, please refer to the SELECT
statement syntax description.

Figure 28. UPDATE Statement Syntax

118 IBM DATABASE 2 SQl Usage Guide
International Systems Center - Santa Teresa

THE DELETE STATEHENT

The DELETE statement

Purpose:

The DELETE statement is used to delete one or more rows in a
table. The rows to be deleted are chosen by the search condition.
If no search condition is given, all rows in the specified
table are deleted.

Format: DELETE

FROM table-specification

[WHERE search-condition)

FROH table-specification

Specifies the name of the table from which the data
should be deleted.

WHERE search-condition

The WHERE-clause specifies the condition(s) that have to
be met for a row to be deleted. For a detailed explanation
of the WHERE-clause, please refer to the SELECT
statement syntax description.

Figure 29. DELETE statement Syntax

Appendix A. Data Manipulation Language Syntax 119
International Systems Center - Santa Teresa

120 IBM DATABASE 2 SQl Usage Guide
International Systems Center - Santa Teresa

APPENDIX B. DATA CONTROL LANGUAGE SYNTAX

THE GRANT STATEMENT

The following figure shows the syntax of the GRANT statement for
various DB2 objects. It should be noted that there are four other
formats of the GRAHT statement. These formats are aimed at SYSADM,
DBADM, etc. For a complete description, please refer to the IBM
DATABASE 2 System Planning and Administration Guide.

('
\w,.

Appendix B. Data Control language Syntax 121
International Systems Center - Santa Teresa

The GRANT statement

purpose: 	 The GRANT statement is used to give authorization to other
users on various DB2 objects. Only the creator of an object,
a user given authorization with the GRANT OPTION, and a user
with SYSADM authorization can GRANT authorization.

GRANT 	 ALL [PRIVILEGES] <---- same as following list

privilege list:
[ALTER,] <---- table may be altered
[DELETE,] <---- rows may be deleted
[INDEX,] <---- INDEX may be created
[INSERT,] <---- rows may be inserted
[SELECT.] <---- rows may be selected
[UPDATE [(column-list)]] <---- Note 1.

ON [TABLE] table-name-list <---- Note 2.
TO auth-id-list I PUBLIC <---- Note 3.
[WITH GRAHT OPTIOH] <-- Note 4.

Note 1: 	 Column values within the specified tables may be UPDATEd. If a
a list of column names is given, then only specified columns may
be UPDATEd. If no list is specified. all columns may be updated.

Note 2: 	 The table-name-list is a list of table names or view names,
or a combination of the two.

Note 3: 	 A list of user ids can be specified if several users are granted
authorization. If the specific authorization is to be granted
to all users. PUBLIC can be specified.

Note ~: 	 The granted user can GRANT the specified access to other users.
The GRANT option is not allowed when granting to PUBLIC.

Figure 30. 	 GRANT Statement Syntax

122 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

THE REVOKE STATEMENT

The following figure shows the syntax of the REVOKE statement for
various DB2 objects. It should be noted that there are four other
formats of the REVOKE statement. These formats are aimed at
SYSADM, DBADM, etc. For a complete description, please refer to
the IBM DATABASE 2 System Planning and Administration Guide.

The REVOKE statement

Purpose: 	 The REVOKE statement is used to "take away" authorization
previously given through the GRANT statement. If authorization
has been GRANTed to a third user, this authorization will also
be REVOKEd.

REVOKE 	 ALL [PRIVILEGES] <---- same as following list

privilege list:
[ALTER,] <---- revoke
[DELETE,] <---- the indicated
[INDEX,] <---- privileges
[INSERT,] <-­
[SELECT,] <-­
[UPDATE] <-­

ON [TABLE] table-name-list <---- Note 1.
FROM auth- i d-li st I PUBLIC <-- Note 2.
[BY ALL I auth-id-list] <---- Note 3.

Note 1: 	 The table-name-list is a list of table names or view names,
or a combination of the two.

Note 2: 	 A list of user ids from which authorization is fttaken awayft.

Note 3: 	 The use of the BY clause is limited to those authorization
ids that hold the SYSADM authorization.

Figure 31. 	 REVOKE Statement Syntax

Appendix B. Data Control Language Syntax 123
International Systems Center - Santa Teresa

124 IBM DATABASE 2 SQl Usage Guide
International Systems Center - Santa Teresa

APPENDIX C. DATA DEFINITION LANGUAGE SYNTAX

The following figure shows the four Data Definition statements
and the DB2 objects that can be specified in these statements.

Since all the parameters of the Data Definition language have been
discussed previously ("Chapter 9. Data Definition Language ­
Examples" on page 91), we will not show the detailed syntax of the
definition statement in this appendix. A detailed description of
the four statements can be found in the IBM DATABASE 2 Reference.

Appendix C. Data Definition language Syntax 125
International Systems Center - Santa Teresa

The CREATE. DROP. ALTER. and COMMENT ON statement

The Data Definition statements of SQL provide facilities for
creating and dropping tables and indexes, for adding new
fields to existing tables, and for adding comments in the
catalog tables.

The following list will indicate the various DB2 objects
that can be created, altered, dropped, and commented on:

CREATE statement CREATE

STOGROUP <-- Create storage group
DATABASE <-- Create data base
TABLESPACE <-- Create table space
TABLE <-- Create base table
INDEX <-- Create index on table
VIEW <-- Create view on table
SYNONYM <-- Create synonym for table

ALTER statement ALTER

STOGROUP <-- Alter storage group
TABLESPACE <-- Alter table space
TABLE <-- Alter base table
INDEX <-- Alter index on table

DROP stateanent DROP

STOGROUP <-- Drop storage group
DATABASE <-- Drop data base
TABLESPACE <-- Drop table space
TABLE <-- Drop base table
INDEX <-- Drop index on table
VIEW <-- Drop view on table
SYNONYM <-- Drop synonym for table

COMMENT ON statement COMMENT ON

TABLE <-- Add comment in SYSTABLES table
COLUMN <-- Add comment in SYSCOLUMNS table

Figura 32. Data Definition Language Syntax

126 IBM DATABASE 2 SQL Usaga Guida
International Systems Center - Santa Teresa

APPENDIX D. SAHPLE BASE TABLE DEFINITION

This appendix lists the DB2 table definitions of the base tables.
The first part shows the definition of the Organization
Application tables. The second part shows the definition of the
Project Application tables.

Table Field Information

Name Hame Format Description

DSHa.TDEPT DEPT NO CHAR(3) Department Id (unique)
DEPTHAME VARCHAR(36) Department Name

Department MGRNO CHAR(6) Department Manager Id
Table ADMRDEPT CHAR(3) Department Id to Report to

DSN8.TEMPL EMPNO CHAR(6) Employee Serial Number (unique)
FIRSTNME VARCHARC12) Employee First Name

Employee MIDIHIT CHAR(l) Employee Middle Initial
Table LASTHAME VARCHAR(lS) Employee Last Hame

WORK DEPT CHAR(3) Employee Department Id
PHONENO CHAR(4) Employee Phone Humber
HIREDATE DECIMAL<6) Employee Hire Date
JOBCODE DECIMAL(3) Employee Job Code
EDUCLVL SMALLIHT Employee Education Level
SEX CHAR(1) Employee Sex Code
BRTHDATE DECIMAL<6) Employee Birth Date
SALARY DECIMAL< 8,2) Employee Salary

Figure 33. Organization Application Tables Definition

Appendix D. Sample Base Table Definition 127
International Systems Center - Santa Teresa

Table Field Information

Name Name Format Description

DSN8.TPROJ PROJNO CHAR(6) Project Identification (unique)
PROJNAME VARCHAR(24) Project Name

Project DEPTNO CHAR(3) Department Id Assoc. With Proj.
Table RESPEMP CHAR(6) Id of Responsible Employee

PRSTAFF DECIMAL<5,2) Estimated Staffing Requirement
PRSTDATE DECIMAL(6) Estimated Project Start Date
PRENDATE DECIMAl(6) Estimated Project End Date
MAJPROJ CHAR(6) Id of Major Project (i f any)

DSN8.TACTYPE ACTNO SMAlLINT Activity Identification (unique)
Activity ACTKWD CHAR(6) Acti vi ty Keyword (unique)
Type Table ACTDESC VARCHAR(20) Activity Description

DSN8.TPROJAC PROJNO CHAR(6) Project Identification
Project ACTNO SMAlLIHT Activity Identification
Acti vi ty ACSTAFF DECIMAL<5,2) Estimated Staffing Requirement
Estimates ACSTDATE DECIMAl(6) Estimated Act i vi ty Start Date
Table ACENDATE DECIMAL(6) Estimated Activity End Date

DSN8.TEMPRAC EMPNO CHAR(6) Employee Identification
PROJNO CHAR(6) Project Identification

Employee ACTNO SMAlLINT Activity Identification
Project EMPTIME DECIMAL<5,2) Fraction of Emp. Time Allocated
Acti vi ty EMSTDATE DECIMAL(6) Sub-activity Start Date
Table EMENDATE DECIMAL(6) Sub-activity End Date

Figure 34, Project Application Tables Definition

128 IBM DATABASE 2 SQL Usage Gui de
International Systems Center - Santa Teresa

APPENDIX E. ORGANIZATION APPLICATION BASE TABLES

This appendix lists the contents of the two organization
application base tables.

DEPTNO DEPTNAME MGRNO ADMRDEPT

AOO SPIFFY COMPUTER SERVICE DIV. 000010
BOI PLANNING 000020 ADO
COl INFORMATION CENTER 000030 AOO
001 DEVELOPMENT CENTER ADO
EOI SUPPORT SERVICES 000050 AOO
011 MANUFACTURING SYSTEMS 000060 001
021 ADMINISTRATION SYSTEMS 000070 DOl
Ell OPERATIONS 000090 EOI
E2l SOFTWARE SUPPORT 000100 EOI

Figure 35. Department Base Table (DSN8.TDEPT)

Appendix E. Organization Application Base Tables 129
International Systems Center - Santa Teresa

EMPNO FIRSTNME MIDINIT LASTNAME WORK.DEPT PHONENO

000010 CHRISTINE I HAAS AOO 3978
000020 MICHAEl L THOMPSON B01 3476
000030 SAllY A KWAN COl 4738
000050 JOfiN B GEYER E01 6789
000060 IRVING F STERN 011 6423
000070 EVA 0 PULASKI 021 7831
000090 Ell EEN W HENOERSON Ell 5498
000100 THEODORE Q SPENSER E21 0972
000110 VINCENZO G LUCCHESI AOO 3490
000120 SEAN O'CONNELL AOO 2167
000130 DOLORES M QUINTANA COl 4578
000140 HEATHER A NICHOllS COl 1793
000150 BRUCE ADAMSON 011 4510
000160 ElISABETH R PIANKA 011 3782
000170 MASATOSHI J YOSHIMURA 011 2890
000180 MARILYN S SCOUTTEN 011 1682
000190 JAMES H WALKER D11 2986
000200 DAVIO BROWN 011 4501
000210 WILLIAM T JONES 011 0942
000220 JENNIFER K LUTZ D11 0672
000230 JAMES J JEFFERSON 021 2094
000240 SALVATORE M MARINO 021 3780
000250 DANIEl S SMITH 021 0961
000260 SYBIL V JOHNSON 021 8953
000270 MARIA L PEREZ 021 9001
000280 ETHEl R SCHNEIDER Ell 8997
000290 JOHN R PARKER Ell 4502
000300 PHILIP X SMITH Ell 2095
000310 MAUDE F SETRIGHT Ell 3332
000320 RAMLAL V MEHTA E21 9990
000330 WING LEE E21 2103
000340 JASON R GOUNOT E21 5698

... continue

Figure 36. Employee Base Table (OSN8.TEMPL) - Part 1

130 IBM DATABASE 2 SQl Usage Guide
International Systems Center - Santa Teresa

HIREDATE JOBCODE EDUCLVL SEX BRTHDATE SALARY

6!)0101. 066. 18 F 330814. 52750.00
731010. 061. 18 M 480202. 41250.00
750405. 060. 20 F 410511. 38250.00
490817. 058. 16 M 250915. 40175.00
730914. 055. 16 M 450707. 32250.00
800930. 056. 16 F 530526. 36170.00
700815. 055. 16 F 410515. 29750.00
800619. 054. 14 M 561218. 26150.00
580516. 058. 19 M 2911 05. 46500.00
631205. 058. 14 M 421018. 29250.00
710728. 055. 16 F 250915. 23800.00
761215. 056. 18 F 460119. 28420.00
720212. 055. 16 M 470517. 25280.00
771011. 054. 17 F 550412. 22250.00
780915. 054. 16 M 510105. 24680.00
730707. 053. 17 F 490221. 21340.00
740726. 053. 16 M 520625. 20450.00
660303. 055. 16 M 410529. 27740.00
790411. 052. 17 M 530223. 18270.00
680829. 055. 18 F 480319. 29840.00
661121. 053. 14 M 350530. 22180.00
791205. 055. 17 M 540331. 28760.00
691030. 052. 15 M 391112. 19180.00
750911. 052. 16 F 361005. 17250.00
800930. 055. 15 F 530526. 27380.00
670324. 054. 17 F 360328. 26250.00
800530. 042. 12 M 460709. 15340.00
720619. 048. 14 M 361027. 17750.00
640912. 043. 12 F 310421. 15900.00
650707. 052. 16 M 320811. 19950.00
760223. 055. 14 M 410718. 25370.00
470505. 054. 16 M 260517. 23840.00

Figure 37. Employee Base Table (DSH8.TEMPl) - Part 2

Appendix E. Organization Application Base Tables 131
International Systems Center - Santa Teresa

http:23840.00
http:25370.00
http:19950.00
http:15900.00
http:17750.00
http:15340.00
http:26250.00
http:27380.00
http:17250.00
http:19180.00
http:28760.00
http:22180.00
http:29840.00
http:18270.00
http:27740.00
http:20450.00
http:21340.00
http:24680.00
http:22250.00
http:25280.00
http:28420.00
http:23800.00
http:29250.00
http:46500.00
http:26150.00
http:29750.00
http:36170.00
http:32250.00
http:40175.00
http:38250.00
http:41250.00
http:52750.00

132 IBM DATABASE 2 SQL Usage Guida
International Systems Center - Santa Teresa

APPENDIX F. PROJECT APPLICATION BASE TABLES

This appendix lists the contents of the four project application
base tables.

ACTNO ACTKWD ACTDESC

10 MANAGE MANAGE/ADVISE
20 ECOST ESTIMATE COST
30 DEFINE DEFINE SPECS
40 LEADPR LEAD PROGRAM/DESIGN
50 SPECS WRITE SPECS
60 LOGIC DESCRIBE LOGIC
70 CODE CODE PROGRAMS
80 TEST TEST PROGRAMS
90 ADMQS ADM QUERY SYSTEM

100 TEACH TEACH CLASSES
110 COURSE DEVElOP COURSES
120 STAFF PERS AND STAFFING
130 OPERAT OPER COMPUTER SYS
140 MAINT MAINT SOFTWARE SYS
150 ADMSYS ADM OPERATING SYS
160 ADMDB ADM DATA BASES
170 ADMDC ADM DATA COMM
180 DOC DOCUMENT

Figure 38. Activity Type Base Table (DSN8.TACTYPE)

Appendix F. Project Application Base Tables 133
International Systems Center - Santa Teresa

PROJNO PROJNAME

MA2100 WElD LINE AUTOMATION
MA2110 W L PROGRAMMING
MA2111 W L PROGRAM DESIGN
MA2112 W L ROBOT DESIGN
MA2113 W L PROD CONT PROGS
PL2l00 WELD LINE PLANNING
!FlOOO QUERY SERVICES
IF2000 USER EDUCATION
AD3100 ADMIN SERVICES
AD3110 GENERAL AD SYSTEMS
AD3111 PAYROLL PROGRAMMING
AD3112 PERSONNEL PROGRAMMG
AD3113 ACCOUNT.PROGRAMMING
OP1000 OPERATION SUPPORT
OP1010 OPERATION
OP2000 GEN SYSTEMS SERVICES
OP2010 SYSTEMS SUPPORT
OP20 11 SCP SYSTEMS SUPPORT
OP2012 APPLICATIONS SUPPORT
OP2013 DB/DC SUPPORT

PRENDATE

830201.
830201.
821201.
821201.
821201.
820915.
830201.
830201.
830201.
830201.
830201.
830201.
830201.
830201.
830201.
830201.
830201.
830201.
830201.
830201.

DEPTNO

001
011
D11
D11
011
B01
COl
COl
001
D21
D21
D21
D21
E01
Ell
E01
E21
E21
E21
E21

MAJPROJ

MA2100
MA2110
MA2110
MA2110
MA2100

AD3100
AD3110
AD3110
AD3110

OP1000

OP2000
OP2010
OP2010
OP2010

RESPEMP

000010
000060
000220
000150
000160
000020
000030
000030
000010
000070
000230
000250
000270
000050
000090
000050
000100
000320
000330
000340

PRSTAFF PRSTDATE

12.00 820101.
9.00 820101.
2.00 820101.
3.00 820101.
3.00 820215.
1. 00 820101.
2.00 820101.
1. 00 820101.
6.50 820101.
6.00 820101.
2.00 820101.
1. 00 820101.
2.00 820101.
6.00 820101.
5.00 820101.
5.00 820101.
4.00 820101.
1. 00 820101.
1. 00 820101.
1. 00 820101.

Figure 39. Project Base Table (DSN8.TPROJ)

134 IBM DATABASE 2 SQL Usage Guide
International Systems Center - Santa Teresa

PROJNO ACTHO ACSTAFF ACSTOATE ACEHOATE

MA2100 10 .50 820101. 821101.

MA2100 20 1. 00 820101. 820301.

MA2110 10 1. 00 820101. 830201.

MA2111 40 1. 00 820101. 830201.

MA2111 50 1. 00 820101. 820601.

MA2111 60 1. 00 820601. 830201.

MA2112 60 2.00 820101. 820701.

MA2112 180 1. 00 820701. 830201.

MA2112 70 1. 50 820215. 830201.

MA2113 80 1. 50 820901. 830201.

MA2113 60 1. 00 820215. 820901.

MA2113 70 2.00 820401. 821215.

MA2113 180 . 50 821001 . 830101.

Pl2100 30 1. 00 820201. 820901.

IFlOOO 90 1. 00 820101. 830101.

IFI000 100 .50 821001. 830101.

IFI000 10 .50 820101. 830101.

IF2000 10 . 50 820101 . 830101.

IF2000 100 . 75 820101 . 820701.

IF2000 110 .50 820301. 820701.

IF2000 110 . 50 821001. 830101 .

A03100 10 .50 820101. 820701.

A03110 10 1. 00 820101. 830101.

A03111 60 . 80 820101. 820415 .

A03111 10 1. 50 820215. 821015.

A03111 180 1. 00 821015. 830115.

A03111 80 1.25 820415. 830115.

A03112 60 .75 820101. 820315.

A03112 60 .75 821201. 830101.

A03112 70 .75 820101. 821015.

A03112 80 . 35 820815 . 821201.

A03112 180 .50 820815. 830101.

A03113 60 .75 820301. 821015.

A03113 70 1.25 820601. 821215.

A03113 80 1. 75 820101. 820415.

A03113 180 .75 820301. 820101.

OPI000 10 . 25 820101. 830201 .

OP2000 50 . 75 820101 . 830201.

OPI010 10 1. 00 820101. 830201.

OPI010 130 4.00 820101. 830201.

OP2010 10 1. 00 820101. 830201.

OP2011 140 . 75 820101 • 830201.

OP2011 150 .25 820101. 830201.

OP2012 160 1. 00 820101. 830201.

OP2013 170 1. 00 820101. 830201.

Figure 40. Project-Activity Base Table CDSH8.TPROJAC)

Appendix F. Project Application Base Tables 135
International Systems Center - Santa Teresa

EMPHO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

000010 AD3100 10 . 50 .820101 . 820701.

000070 AD3110 10 1. 00 820101. 830201.

000230 AD3111 60 1. 00 820101. 820315.

000240 AD3111 70 1. 00 820215. 820915.

000230 AD3111 60 . 50 820315 . 820415.

000230 AD3111 70 . 50 820315 . 821015.

000230 AD3111 80 . 50 820415 . 821015.

000240 AD3111 80 1. 00 820915. 830101.

000230 AD3111 180 1. 00 821015. 830101.

000250 AD3112 60 1. 00 820101. 820201.

000250 AD3112 60 .50 820201. 820315.

000250 AD3112 70 .50 820201. 820315.

000250 AD3112 70 1. 00 820315. 820815.

000250 AD3112 70 . 25 820815. 821015 .

000250 AD3112 80 .25 820815. 821015.

000250 AD3112 180 .50 820815. 830101.

000250 AD3112 80 . 50 821015. 821201 .

000250 AD3112 60 .50 821201. 830101.

000250 AD3112 60 1. 00 830101. 830201.

000260 AD3113 80 1. 00 820101. 820301.

000270 AD3113 80 1. 00 820101. 820301.

000270 AD3113 60 .50 820301. 820401.

000260 AD3113 80 .50 820301. 820415.

000270 AD3113 80 .50 820301. 820401.

000260 AD3113 180 .50 820301. 820415.

000270 AD3113 60 1. 00 820401. 820901.

000260 AD3113 180 1. 00 820415. 820601.

000260 AD3113 180 .50 820601. 820701.

000260 AD3113 70 .50 820615. 820701.

000260 AD3113 70 1. 00 820701. 830201.

000270 AD3113 60 . 25 820901. 821015 .

000270 AD3113 70 . 75 820901. 821015 .

000270 AD3113 70 1. 00 821015. 830201.

000130 !FI000 90 1. 00 820101. 821001.

000030 IFI000 10 . 50 820601 . 830101.

000140 IFI000 90 .50 821001. 830101.

000130 IFI000 100 .50 821001. 830101.

000030 IF2000 10 .50 820101. 830101.

00a140 IF2000 100 1. 00 820101. 820301.

000140 IF2000 100 . 50 820301 . 820701.

000140 IF2000 110 .50 820301. 820701.

000140 IF2000 110 .50 82100!. 830101.

...

continue

Figure 41. Employee-Project-Activity Base Table (DSH8.TEMPRAC) - Part 1

136 IBM DATABASE 2 SQL Usage Gui de
International Systems Center - Santa Teresa

000010 MA2100 10 .50 820101. 821101.

000110 MA2100 20 1. 00 820101. 820301.

000010 MA2110 10 1. 00 820101. 830201.

000220 MA2111 40 1. 00 820101. 830201.

000200 MA2111 50 1. 00 820101. 820615.

000200 MA2111 60 1. 00 820615. 830201.

000150 MA2112 60 1. 00 820101. 820715.

000170 MA2112 60 1. 00 820101. 830601.

000190 MA2112 70 1. 00 820201. 821001.

000170 MA2112 70 1. 00 820601. 830201.

000150 MA2112 180 1. 00 820715. 830201.

000190 MA2112 80 1. 00 821001. 831001.

000170 MA2113 80 1. 00 820101. 830201.

000180 MA2113 70 1. 00 820401. 821215.

000160 MA2113 60 1. 00 820715. 830201.

000210 MA2113 80 . 50 821001 . 830201.

000210 MA2113 180 .50 821001. 830201.

000050 OPI000 10 . 25 820101 . 830201.

000090 OPI0I0 10 1. 00 820101. 830201.

000280 OPI0I0 130 1. 00 820101. 830201.

000290 OPI0I0 130 1. 00 820101. 830201.

000300 OPI0I0 130 1. 00 820101. 830201.

000310 OPI0I0 130 1. 00 820101. 830201.

000050 OP2010 10 . 75 820101 . 830201.

" 000100 OP2010 10 1. 00 820101. 830201.

\w- 000320 OP2011 140 . 75 820101 . 830201.

000320 OP2011 150 . 25 820101 . 830201.

000330 OP2012 160 1. 00 820101. 830201.

000340 OP2013 170 1. 00 820101. 830201.

Figure 42. Employee-Project-Activity Base Table (DSN8.TEMPRAC) - Part 2

Appendix F. Project Application Base Tables 137
International Systems Center - Santa Teresa

138 IBM DATABASE 2 SQL Usage Gui de
International Systems Center - Santa Teresa

GG24-1583-00 READER'S COMMENT FORM

IBM DATABASE 2 SQL Usage Guide

This form may be used to communicate your views about this publication. They will
be sent to the author's department for whatever review and action, if any, is
deemed appropriate. Comments may be written in your own language; use of English
is not required.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever.

Note: Copies of IBM publications are not stocked at the location to which this
form is addressed. Please direct any requests for copies of publications, or for
assistance in using your IBM system, to your IBM representative or to the IBM
branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval legibility

If you wish a reply, please give
your name and mailing address:What is your occupation?

Humber of latest TNl applied:

Thank you for your cooperation.

---- - - ---------

Reader's Comment Form

I
I
I
I
I
I
r

Fold

IBM INTERNATIONAL SYSTEMS CENTER
Department 471
Building F27
555 Bailey Avenue
P. O. Box 50020
San Jose, California 95150
U.S.A.

Fold

--- -.
-------­

---- _.

GGZ4-1583-00 READER'S COMMENT FORM

IBM DATABASE Z SQL Usage Guide

This form may be used to communicate your views about this publication. They will
be sent to the author's department for whatever review and action, if any, is
deemed appropriate. Comments may be written in your own language; use of English
is not required.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever.

Note: Copies of IBM publications are not stocked at the location to which this
form is addressed. Please direct any requests for copies of publications, or for
assi stance in usi ng your IBM system, to your IBM representati ve or to the IBM
branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval legibility

If you wish a reply, please give
your name and mailing address:What is your occupation?

Number of latest TNl applied:

Thank you for your cooperation.

------- - ---- ----

Reader's Comment Form

Fold

Fold

- -. --­- - - -,..­--_ ... ­---- _.­

IBM INTERNATIONAL SYSTEMS CENTER
Department 471
Building F27
555 Bailey Avenue
P. O. Box 50020
San Jose, California 95150
U • S • A •

GG24-1S83-00 READER'S COMMENT FORM

IBM DATABASE 2 SQL Usage Guide

Thi~ form may be used to communicate your views about this publication. They will
be sent to the author's department for whatever review and action, if any, is
deemed appropriate. Comments may be written in your own language; use of English
is not required.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever.

Note: Copie5 of IBM publications are not stocked at the location to which this
form is addressed. Please direct any requests for copies of publications, or for
assistance in using your IBM system, to your IBM representative or to the IBM
branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval legibility

If you wish a reply, please give
your name and mailing address:What is your occupation?

Humber of latest THl applied:

Thank you for your cooperation.

------- - ---- ----- - - ---------

Reader's Comment Form

Fold

"

IBM INTERNATIONAL SYSTEMS CENTER
Department 471
Building F27
555 Bailey Avenue
P. O. Box 50020
San Jose, California 95150
U.S.A.

Fold

- ---. --­
---- -.

