

IBM DATABASE 2 concepts and Facilities Guide

Document Number GG24-1582-00

Ueli Wahli, IBM Switzerland

International Systems Center - Santa Teresa
San Jose, California

This publication was produced using the "t~,

IBM Document Composition Facility
(Program number 5748-XX9) and ..J

the master was printed on the IBM 3800 Printing Subsystem

The information contained in this document has not been submitted
to any formal IBM test and is distributed on an "As Is" basis
without any warranty either expressed or implied~ The use of this
information or the implementation of any of these techniques is a
customer responsibility and depends on the customer's ability to
evaluate and integrate them into the customer's operat i onal
environment. While each item may have been reviewed by IBM for
accuracy in a specific situation, there is no guarantee that the
same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environment do
so at their own risk.
In this document, any references made to an IBM licensed program
are not intended to state or imply that only IBM's licensed
program may be used; any functionally equivalent program may be
used instead.
The products referenced in this document may not be available in
all countri es.
Any performance data contained in this document was determined in
a controlled environment; and therefore. the results which may be
obtained in other operating environments may vary significantly.
Users of this document should verify the applicable data in their
specific environment.

First Edition (June 1983)

This edition applies to IBM DATABASE 2 (DB2) Release 1 (Program
Number 5740-XYR), Query Management Facility (QMF) Release 1
(5668-972), and Data Extract (DXT) Release 1 (5668-973).

Requests for copies should be made to the IBM branch office that
serves you.

Forms for reader's comments are provided at the back of the
publication. If the forms have been removed, comments may be
addressed to:

IBM Corporation
International Systems Center - Santa Teresa
Department 471
P.O. Box 50020
San Jose. California 95150, U.S.A.

IBM may use or distribute any of the information you supply in any
way it bel i eves appropr i ate wi thout i ncurr i ng any obI i gat ion
whatever. You may, of course, continue to use the information you
supply.

Copyright International Business Machines Corporation 1983.

IBM DATABASE 2 Concepts and Facilities Guide

International Systems Center - Santa Teresa

ii

ACKNOWLEDGEMENT

This guide is
International S

the result
ystems Center

of
-

a
Santa

residency
Teresa.

conducted at the

We would
author:

1 i ke to acknowledge the excellent work done by the

• Ueli Wahli. IBM Switzerland

Peter Backlund
Wes Dayton
Coll n Whi te

International Systems Center - Santa Teresa
June 1983

Acknowledgement iii
International Systems Center - Santa Teresa

IBM DATABASE 2 Conc~pts and Faciliti~s Guid~
Int~rnational Syst~ms Cent~r - Santa Teresa

iv

PREFACE

Thi s document:

• GG24-l582 IBM DATABASE 2 concepts and Facilities Guide

gives a functional overview of the IBM DATABASE 2 (DB2)
relational data base management system. It is intended to be
read by all DP Professionals who wish to obtain a good
functional knowledge of the product.

It is one in a series produced by International Systems Center
Santa Teresa. Other documents in the series are:

• GG24-l58l IBM DATABASE 2 Relational Concepts

which describes the relational approach to data base systems
in general and to IBM DATABASE 2 in particular. The
relationship between IMS/VS Dl/I and DB2 applications is also
covered. The intended audience is DP Professionals who wish
to understand the relat i onal model of data and how it is
implemented in DB2.

• GG24-l58l IBM DATABASE 2 SQL Usage Guide

whi ch demonstrates the power of Structured Query language
(SQL>, a data base management language whi ch permi ts IBM
DATABASE 2 users to access and manipulate data in relational
data bases. The document is Intended for DP Professionals who
wish to obtain a good functional knowledge of SQl. It covers
SQl by using a series of exampl~s starting with the very basic
and becoming increasingly complex.

Preface
International Systems Center - Santa Teresa

v

IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

vi

CONTENTS

Chapter 1. Introduction
Organization of the Book
Related IBM Program Products

Chapter 2. The DB2 Environment
System Environment

Chapter 3. Relational Data Hodel
Tables

Columns
Rows

Data Types
Nulls

Primary Key
Uniqueness

Related Tables
Foreign Key

Views .•..
Table Subsets
Derived and Calculated Fields
Table Combinations

Table Design
Flexibility

Chapter ~. SQL Data Hanfpulation
SQl Introduction

Automatic Navigation •••••
Automatic Access Path Selection

Interactive SQl
Embedded SQl

Data Manipulation language CDMl)
Data Retrieval •••.

SElECT Statement
Updating Data

UPDATE Statement
Deleting Data

DELETE Statement
Inserting Data

INSERT Statement
Search Conditions

USER Keyword
Builtin Functions
Grouping - GROUP BY Clause

HAVING Clause
Ordering - ORDER BY Clause
Use of Nulls
Combining Data

Simple Join
Using Views

Updating through Views

1
1
3

5
5

7
7
8
8
8
9
9
9
9

10
10
11
12
12
12
13

15
15
15
16
16
16
17
17
17
19
19
20
20
21
21
22
24
24
25
26
26
26
27
28
29
29

Contents vi i
International Systems Center - Santa Teresa

With Check Option 30

Advanced DML 30

Advanced Join ••••••••••••••• 30

Joining tables with identical column names •••• 30

Joining a table to itself • • •• • ••• 31

Subselect •••..••.•• 31

ALL and AHY with Subselects 32

Correlated Subselects 33

Subselects with EXISTS Keyword 34

Union 35

Chapter S. Data Definition 37

DB2 Objects 37

Tables 37

Views 39

Table Spaces 39

Simple Table Spaces 40

Partitioned Table Spaces 40

Table Pages 41

Indexes ..•• 41

Clustering Index 42

Index Spaces and Pages 42

Data Bases 43

Storage Groups 43

Bufferpools 44

Synonyms • • • • 45

Data Definition Language •••• 45

Haming Conventions 45

CREATE Statement •••• 46

Defining a Storage Group 46

Defining a DB2 Data Base 46

Defining a Table Space 47

Defining a Partitioned Table Space 48

Defining a Table 49

Defining an Index , . . . 50

Defining a Partitioning Index 51

Defining a View 52

Defining a Synonym 53

ALTER Statement 54

Changing a Storage Group 54

Changing a Table Space 54

Changing a Table 54

Changing an Index 55

DROP Statement 55

COMMENT ON Statement 56

Modifying the Design 56

Modifying Tables 57

Table Re-Creation Procedures 57

Modifying a View ••••••• 58

Modifying the Definition of Table Spaces 58

Modifying and Adding Indexes 58

Chapter 6. Data Hanagement S9

Data Space Management 59

viii IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

letting DB2 manage the Data Sets
VSAM Datasets • • • •

Simple Table Spaces
Partitioned Table Spaces

User defined Datasets
Data Page Management

Row Format
Free Space Management
Index Management
Buffer Management

Concurrency Control - locking
Table Space locks

lock Statement
Page Locks
Commi t/Rollback
Deadlocks
Data Definition Effect on Concurrency

loading Tables
Load Utility
Data Extract CDXT)

Chapter 7. APplication Program.ing Environment
Language Support
Subsystem Support •
Application Development Cycle
Program Structure
Embedded SQL .•••

SQL Statement Format
INCLUDE Statement

SQL Communication Area (SQLCA)
Table Declaration •...•

Generate Declarations CDCLGEN)
Retrieving Data into Host Variables
Updating, Inserting and Deleting Data
CURSOR Operations

DECLARE Cursor
OPEN Cursor
FETCH a Row
Updating or Deleting a Row
CLOSE Cursor

Error Handling
WHENEVER Statement

Concurrency Support - Locking
Commi t/Rollback

Host Variables
Handling Null Values
Data Definition Statements

Dynamic SQl •••••.•.
SQL Descriptor Area (SQLDA)
PREPARE Statement
DESCRIBE Statement
EXECUTE Statement

Parameterized Execution
Immediate Execution

59
60
60
60
61
62
63
65
65
66
67
67
69
69
69
70
70
71
71
74

77
77
77
77
79
79
79
80
80
81
82
82
83
83
83
84
84
84
84
85
85
86
86
87
89
90
90
91
91
92
92
93
93

Contents ix
International Systems Center - Santa Teresa

93 Using Cursors with Dynamic SQL
Program Preparation •.••

Precompile ••••

Compilation and Link-Edit
 •••. 95

95
96
97

FREE Command

Program Execution

Automatic Bind

Dynamic Bind

Testing Facilities

Creating an Application Plan
(BIND)
BIND Command . • • •
 • 	
REBIND Command • • •
 • 	

Chapter 8. TSD Environment
 ••• 99
The DB2 T50 Command Procassor
(DSN) 99
ISPF Support - DB2I

The DB21 Option Menu
 100
Online Help ••••

94
94

97
97
97
98
98

100

101
SPUFI •••••.• ••••• 101

SPUFI Execution Flow 102

Generate Declarations (DCLGEN) 103

Binding 104

Program Preparation ••.•. 104

Execute an Application Program 105

DB2 Commands 105

Utilities 105

TSO Batch Work 105

Query Management Facility (QMF) 106

QMF Objectives .••• 106

QMF Languages . • • • • • 106

Use of SQl . . . • • . • 107

Use of QBE style Language 107

QMF Command Language 107

Tailored Reports 109

Comparison of QMF with DB21 110

Chapter 9. security and Authorization . . . 111

Views and Security•.. 111

Column Subset •...•• 111

Row Subset by Field Value 111

Statistical Summary 112

Authorization 112

Resources ..••.•.. 112

Users and Authorization-IDs 113

Capabilities ...•..•. 113

Single Capabilities .••. 114

Group Capabilities or Administrative Authorities 115

Explicit Authorization .•••• 116

GRANT .•.•..•. .•.• 116

REVOKE 117

Implicit Authorization 118

Operation - what is checked when? •••• 118

Data Set Protection ..•••••. 119

VSAM Password Protection 119

x IBM DATABASE 2 Concepts and FacHities Guide
International Sy.tems Center - Santa Teresa

RACF

Chapter 10. The DB2 Catalog
Catalog Structure

Data Definition
Application Plans
Authorization Definition
Image Copy Data Sets

Using the DB2 Catalog

Chapter 11. operation and Recovery
Operation of DB2 •••••.•

Command and Message Support
Startup and Shutdown
Controlling Data Bases

Starting a Data Base
Stopping a Data Base
Displaying the Status of a Data Base

The DB2 Log
Log Operation

Active Log Data Sets
Archive Log Data Sets

Boot Strap Data Set
Log Processing Options
Log Utilities ••.•

Print Log Map Utility
Change Log Inventory Utility

DB2 Data Base Utilities
Invocation and Control

Utility Job Status
Forced Utility Termination

Reorganization
Data Base Backup and Recovery

Image Copy
Incremental Image Copy
Merge Copy
Recoveryr Index Recovery

~ Repair Utility
Catalog Usage

Catalog Maintenance
Catalog Backup and Recovery

System Restart and Recovery
MVS Failure ••••
DB2 Subsystem Failure
Resource Recovery

log Data Sets
Boot Strap Data Set
Catalog
Data Base

Utility Recovery

Chapter 12. Architecture
DB2 Structure

119

121
121
121
122
124
124
125

127
127
127
128
129
129
129
129
130
130
130
131
132
132
133
133
133
134
134
135
136
136
137
138
139
139
140
141
141
142
142
142
143
143
143
143
143
144
144
145
145

147
147

Contents xi
International Systems Center - Santa Teresa

DB2 System Services
DB2 Data Base Services
IRLM • • • •

Interfacing to DB2 '.
TSO ••••••
IMS and CICS

Attach Architecture
Thread •••••

Thread Identification
Unit of Recovery

Commi t

Two Phase Commi t .• • •

TSO/Batch Attachment Facility

Chapter 13. "onttortng and Accounttng • •
Optimization

System Parameters
Data Base Parameters

Monitoring
Display Command
STOSPACE Utility
RUNS TA TS Ut 11 i ty
Statistics Facility

Accounting Facility
Auditing ••••••

Log Access Services

Chapter I~. 1"5 Environ ..nt
Overview ..•.••.
IMS Attachment of DB2

IMS Control Region
IMS Dependent Region
Authorization

Application Programming
Transaction Processing ••••
Commit ••••••••••

In-doubt Threads
Application Testing

Operation •••••
IMS Commands
Issuing DB2 Commands from IMS

Monitoring the IMS Attachment

Chapter 15. CICS Environment
Overview ...•....•.
CICS Attachment of DB2

CICS Resource Control Table
Authorization

Application Programming
Transaction Processing
Commit

In-doubt Threads
Application Testing

Execution Diagnostic Facility

xii IBM DATABASE 2 Concepts and Facilities Guide

148
149
150
150
150
150
151
151
152
153
155
155
156

157
157
157
158
159
159
159
160
160
161
162
162

163
163
163
164
165
166
166
167
167
168
168
168
169
169
170

171
171
171
172
175
175
176
176
176
177
177

International Systems Center - Santa Teresa

Operation .•.•• 177

CICS Commands 178

Issuing DB2 Commands from CICS 179

Monitoring the CICS Attachment 179

Chapter 16. Installation and servicing 181

Prerequisites 181

Hardware 181

Software 181

Tape Content 182

SMP Considerations 183

Installation Tasks 183

Installation using ISPF 183

Post Installation Tasks 185

Enabling the TSO/Batch Attachment 185

IRlM Considerations 185

IMS Considerations 186

CICS Considerations 187

Updating Installation Parameters 187

Installation Verification 188

Sample Appli cati on ••... 189

Serviceability no

Problem Determination Tools 190

Formatted Dump 190

Trace 190

LOGREC Recording 191

Appendix A. Compatibility between DB2 and SQL/DS 193

SQl/DS Statements and Options not found in DB2 193

Statements that have different Effects in SQl/DS and DB2 194

Contents xiii

International Systems Center - Santa Teresa

xiv IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

LIST OF ILLUSTRATIONS

/

'-'
Figure 1. The DB2 Environment 6

· · · ·Figure 2. The EMPLOYEE Table 7

Figure 3. The DEPARTMENT Table 10· · · · Figure 4. Join of EMPLOYEE and DEPARTMENT tables 12· · · · Figure 5. A simple SELECT statement 18·· · · Figure 6. Simple Join 28· · · · · · · · · Figure 7. DB2 Objects 38·· · Figure 8. Views of Tables . . 39· · · · · · Figure 9. Humber and Size of Partitions 61

· · ·Figure 10. Row Addressing within Page by Record-ID 63
· Figure 11. Field Formats used by DB2 64· · · · · · Figure 12. Index Tree Structure (Clustering Index) 66

.10' · · · · ·Figure 13. Types of Table Space locks 68

Figure 14. Table Space locking 68· · · · · · · · · · · ~ Figure 15. Data Extract (DXT) 75· ·· · · · · · Figure 16. Application Development Cycle 78· · · · Figure 17. SQl Communication Area (PUr Format) 81

· · · · Figure 18. Data Types of Host Variables 88

Figure 19. SQl Descriptor Area (Pl/I Format) 91

· · · ·Figure 20. DB2 ISPF Menus 100

Figure 21. DB21 Main Option Menu 101

· · · · · · · ·Figure 22. SPUFI Execution Flow 102

Figure 23. DB2 Authorization-IDs 113

Figure 24. DB2 log Hierarchy 131

Figure 25. DB21 Utilities Menu 135

· · · ·Figure 26. Data Base Recovery Cycle 138

Figure 27. The MVS DB2 Environment 147

Figure 28. Subsystem and Batch Connection to DB2 151

· · · · ·Figure 29. Thread Identification 153

Figure 30. Communication Protocol with DB2 154· · · · · · · Figure 31. IMS Environment with DB2 164

· · · ·Figure 32. CICS Environment with DB2 172

Figure 33. CICS Resource Control Table 173

]' ""
\..,

list of Illustrations xy
International Systems Cent.r - Santa Teresa

xvi IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

./

.~

ORGANIZATION OF

CHAPTER 1. INTRODUCTION

This book introduces IB" DATABASE 2 (DB2J, a data base management
system that provides a relational model of data. DB2 runs as a
subsystem of MVS. The book's purpose is to enable managers,
system programmers, data base support personnel, and other
interested persons to evaluate DB2 for use in their organization.
The book explains the Concepts and Facilities of the DB2 product.

THE BOOK

The remaining chapters of this book are as follows:

"Chapter 2. The DB2 Environment": This chapter introduces DB2
and the environment in which it is intended to run.

"Chapter J. Relational Data Hodel": This chapter explains the
fundamental i dess of the relati onal data model. Most of the
content is independent of the actual implementation of the model
by DB2.

"Chapter 4. SQL Data "anipulation": This chapter introduces the
Structured Query Language (SQL) which is used for retrieval and
update of relational data. A number of small examples is included
to illustrate major aspects of the language.

"Chapter S. Data Definition": This chapter explains the physical
and logical objects used to define and store relational data, and
the Data Definition Language (DDL) of SQL which is used to perform
these tasks.

"Chapter 6. Data "anagement": Thi s chapter descri bes how DB2
manages the physical data of relational tables. Physical data
management, techniques for concurrent access. and initial loading
of data is presented. An additional program product to extract
data from exi st i ng DLI'I. VSAM and SAM files. the Data Extract
CDXT), is introduced.

"Chapter 7. APplication Programming Environment": This'chapter
explains how application programs are coded and executed in a DB2
environment. The usage of SQL in application programs is
introduced. and the process of binding (finding the best access
paths) is described.

"Chapter 8. TSO Environment": This chapter explains how DB2 fits
into the TSO environment under MVS. The interactive facility of
DB2 CDB2I) under TSOI'SPF, and an additional program product, the
Query Management Facility (QMF), are introduced.

"Chapter 9. security and Authortza~ion": This chapter describes
the security and authorization facilities of DB2.

Chapter 1. Introduction
International Systems Center - Santa Teresa

1

"'Chapter 10. The DI2 Catalog": This chapter introduces the OB2
catalog. The catalog is a set of relati onal tables used to
describe and document all the objects (tables, etc) used by 082.

"Chapter 11. Operation and Recovery": This chapter presents tho
operational aspects of 082. The commands to control and operate
OB2, the logging function and recovery of system and data, and all
the DB2 utilities are described.

"Chapter 12. Archi tecture": Thi s chapter explai ns the
architectural structure of the OB2 system. The MVS address spaces
and the functions they provide are presented.

"Chapter 13. Monitoring and Accounting": This chapter describes
the parameters which allow the user to influence the performance
of the system, as well as the faci 1 i ti es used to gather the
required data for monitoring and accounting purposes.

"Chapter 1~. IHS Environment": This chapter explains how
application programs running under IMS may access OB2 relational
data. It also shows how both systems (082 and IMS) are
synchronized to commit or roll back data changes.

"Chapter 15. CICS Environment": This chapter explains how
application programs running under CICS may access OB2 relational
data. It also shows how both systems (082 and CICS) are
synchronized to commit or roll back data changes.

"Chapter 16. Installation and servfcing": This chapter describes
the installation process for OB2.

"APpendix A. compatibilfty between DI2 and SQL/DS": In this
appendix the differences in the implementation of the relational
model and of the SQl language between DB2 and SQl/DS are
explained.

IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

2

RELATED 18" PROGRA" PRODUCTS

The following acronyms will be used throughout the document and
always refer to the product mentioned below:

CICS Customer Information Control System / Operating System /
Virtual Storage, Program Number 5740-XXI

DXT Data Extract, Program Number 5668-973

I"S Information Management System /
Number 5740-XX2

Virtual Storage, Program

Q"F Query Management Facility, Program Number 5668-972

ISPF Interactive System Productivity Facility, Program Number
5668-960, and Interactive System Productivity Facility /
Program Development Facility, Program Number 5665-268.

SQL/DS Structured Query language /
5748-XXJ

Data System, Program Number

Chapter 1. Introduction
International Systems Center - Santa Teresa

3

.."

~

IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

4

CHAPTER 2. THE DB2 ENVIRONMENT

IBM DATABASE 2 (DB2) is IBM's relational data base product for MVS
establishments. D82's primary direction is as an integral part of
the data system in the MVS environment. As such, it can coexist
as a Data Base Management System (DBMS) with IMS D8 (DL/I) and in
addition can be become the initial D8MS for new users.

The DB2 subsystem may be accessed concurrently by the IMS and CICS
transaction managers. by TSO terminal users. or by TSO batch jobs.
DB2 gives the IMS and CICS user the ability to access both DB2 and
DL/I data from within the same ap~lication program. DB2 is used
in the MVS envi ronment as the base D8MS for the new Query
Management Facility (QMF).

D82 provi des a relati onal data model. Data is defi ned and
accessed in terms of tables. Tables consist of columns and rows.
Since tables are si mple and fami Ii ar. most users can easi ly
understand them. Vi ews may be defi ned on tables such that
user/application "logical" tables need not conform to actual
stored tables and may subset tables by rows and/or columns. This
allows security to be controlled at the field content level.

Data definition. access, manipulation and authorization
operations are supported by the structured Query language (SQL).
SQL is also used by SQL/DS. which is a relational system for the
DOS/VSE and VM environments. SQL is a high level data language
available to users through a TSO/ISPF interactive terminal
interface (D82I) and application programs written in Assembler,
COBOL, PL/I. or FORTRAN.

DB2 promotes the continuous operation environment by providing
dynamic creation and modification of descriptors. dynamic
security definition, and on-line execution of utilities. The D82
utilities (recovery. reorganization. etc) can operate on a
complete table or a subset of a table (partition).

DB2 provides a recovery mechanism that ensures the integrity and
recoverability of data regardless of the presence or absence of
any other subsystem. Services such as logging and recovery are an
integral part of the DB2 SUbsystem i tsel f and opera;te ina
coordinated manner with any transaction manager(s) which may be
present.

One of the main objectives of D82 is to reduce application design
and development effort and to provide Ease of Use capabilities.

SYSTEM ENVIRONMENT

The DB2 subsystem may be accessed concurrently by IMS and/or CICS
as transaction managers, by TSO on-line users, or by TSO batch

Chapter 2. The DB2 Environment
International Systems Center - Santa Teresa

5

jobs. Fi gura 1 on paga 6 shows the confi gurat ions that are
possible using IMS DB (Dl'I) and DB2 as data base managers (QMF is
the new query product and DB2I is a DB2 supplied interactive front
end). The detailed components of

I
the diagram are discussed in

later sections of this document.

TsonSPF TSO IMS DC CICS IMS DB

On- Batch DUI

QMF DB21 line Appl BMP MPP IFP Appl Appl Batch

APPl CTMP)

v v v v

DB2 IMS DB DUI

..J
V V

I I

DB2 DUI

Data Data

Figure 1. The DB2 Environment

IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

6

CHAPTER 3. RELATIONAL DATA HODEL

/

TABLES

This Chapter describes the fundamental ideas of the relational
data model used by DB2. A relation in the relational data model
can be thought of as a simple two-dimensional table having a
specific number of columns and some number of unordered rows.
Each row contains either a value or a null entry in each column.

Data is defined and accessed in terms of tables and operations on
tables. The tabular format of data is easy to use. Simple data
needs can be implemented very easi ly, and complex ones can be
handled through a powerful set of operations on tables. Thus, the
relational model supports a broad range of data requirements.

In OB2 all data is presented as tables consi sti ng of rows
(horizontally) and columns (vertically), as shown in Figure 2.

EMPNO lASTNAME WORKDEPT PHONENO JOBCODE EDUCLVL SALARY

000010 Haas AOO 3978 66 18 52750
000020 Thompson B01 3476 61 18 41250
000030 Kwan COl 4738 60 20 38250,
000050 Geyer EOI 6789 58 16 40175
000060 Stern D11 6423 55 16 32250
000070 Pulaski 021 7831 56 16 36170
000100 Spenser E21 0972 54 14 26150
000140 Ni cholls COl 1793 56 18 28420
000150 Adamson 011 4510 55 16 25280
000220 lutz 011 0672 55 18 29840
000260 Johnson 021 8953 52 16 17250
000270 Perez 021 9001 55 15 27380
000300 Smith Ell 2095 48 14 17750
000310 Setright Ell 3332 46 12 15900

Figure 2. The EMPLOYEE Table

Table5 in a relational data base are no different from any other
tables. They are the same familiar and easy-to-use data
structures you see and use every day in telephone books, airline
schedules, newspapers, and many other places. Tables physically
stored in DB2 relational data bases are called base tables.

Chapter 3. Relational Data Model
International Systems Center - Santa Teresa

7

Colullns

Columns typically describe various aspects of some thing (such as
a person). Each of the columns of Figure 2 on page 7 describes
one aspect of an employee. The order of the columns is not
significant since they are identified by their names and not by an
implied column-order. Each column name may appear only once in a
table. All values in a column have the same characteristics; for
example all values in the JOBCODE column are integers.

Rows

A row in a table corresponds very much to a record of a file. A
table row is the smallest unit of insertion and deletion. An
insert operation adds one or more rows to a table, and a delete
operation removes one or more rows from a table. Rows have no
inherent order. Users have the flexibility to retrieve rows in
the order they choose on individual requests. D82 provides
facilities to enforce uniqueness of rows.

Data Types

DB2 supports the following data types as field values:

INTEGER 	 Fullword 31-bit signed binary values.

SHALLINT 	 Halfword IS-bit signed binary values.

FLOAT 	 Double word long floating point values.

DECIHAL(P,q) 	 Packed decimal values of "p" (1 to 15) digits. A
number of decimals "q" (0 to "p") to the right of
an implied decimal point may be specified.

CHAR(n) 	 Fixed length character value of "n" (1 to 254)
characters.

VARCHAR(n) 	 Variable length character value of up to "n" (1 to
32674) characters. The actual maximum length is
dependent on physical storage characteristics and
is about 4K (or optionally 32K).

LONG VARCHAR 	 This specification is equivalent to VARCHAR with a
system calculated maximum and is supported for
compatibility with the SQl/DS product.l

1 Structured Query Language/Data System,
Program Number 5748-XXJ

IBM DATABASE 2 Concepts and Fac;ilities Guide
International Systems Center - Santa Teresa

8

Nulls

Prfmary Key

unfqueness

Related Tables

Any field value in a table, regardless of its data type, may have
the special value null. Null represents a value that is unknown
or not applicable. A null value may be thought of as an empty
space, or a space reserved for later insertion of data. Nulls can
occur in a table by explicit user request through an insert or
update operation, or implicitly when a new column is added to an
existing table. Null values can be prohibited for specific
columns when a table is created.

A primary key is a column, or a combination of multiple columns,
that distinguishes a specific row from all other rows. A primary
key provi des uni queness for that row. In most tables a si ngle
column will be enough to serve as the kQy, in some tables however
it may be required to combine all the columns to form the key.

There may be more than one column that may serve as a possible
primary key. Such columns (or combination of columns) are then
called candi date keys, and one of them is normally chosen as
primary key. The remaining candidate keys are called alternate
keys.

Note: Primary key is nbt a DB2 term. The concept of uniquQness is
supported in DB2 through indexes.

As just seen above a candidate key provides uniqueness of rows
within a table. In DB2 an index built on one or more columns is
the vehicle to enforce this uniqueness. Indexes are discussed in
more detail in "Chapter 5. Data Definition" under the heading
"Indexes" on page 41.

Two tables may be related when they have a similar set of field
values in a column. Since this is a crucial facility of the
relational data base model it is easier to understand with an
example as shown in Figure 3 on page 10.

Chapter 3. Relational Data Model
International Systems Center - Santa Teresa

9

Foreign Key

DEPTNO DEPTNAME 	 MGRNO

AOO Spiffy Computer Co 000010
BOI Planning 000020
COl Info Center 000030
001 Dev Center
E01 Support Services 000050
Dll Manufacturing 000060
021 Admin 	 000070
D31 Order Processing
Ell Operations 000090
E2l Software Support 000100

Figure 3. The DEPARTMENT Table

The DEPTNO column of the department table consists of department
numbers which are also used in the WORKDEPT column of the employee
table in Figure 2 on page 7.

This relationship between the employee and the department table
is through field values only. There are no physical links (like
pointers> between the two tables.

• 	 In a relational data model all relationships are represented
through field values

• 	 A tabl e may have many such i mpli ed relat i onsh ips to other
tables

Nate: There is another relationship between the employee and the
department table through the columns EMPNO (in employee table>
and MGRNO (managers employee number in department table>.

When the values of a primary key of one table is used in another
table. the value of the key is referred to as a foreign key in the
second table. In the department table of Figure 3 DEPTNO will
most likely be the primary key for that table. Whenever the
DEPTNO value is used in another table it is a foreign key (e.g.
WORKDEPT in the employee table>.

Although VIEWS are not part of the relational data model they are
an important concept within the implementation of these concepts
in DB2. For this reason the term VIEW is introduced here in the

IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

10

conceptual overview chapter so that later chapters may refer to
this definition.

A view is a logical (or "virtual") table that is derived from one
or more tables. Views can also be derived from other views or
combinations of views and tables. Views look like stored tables.
They have rows and columns, and do not have an inherent order of
rows. In general views can be used as if they were tables. Data
in a view is not stored as a separate set of rows but is retrieved
from the underlying base tables when the view is used for data
manipulation.

Common uses of vi ews are:

• 	 To simplify data retrieval commands

Data retrieval commands can be based on views such that data
access requests made by termi nal users or programs can be
expressed in si mpler terms. Thi s capabi I lty can decrease
both keystrokes and errors, especially in the use of complex
data retrieval commands. Views reduce complexity by
presenting a smaller and simpler version of the table upon
whi ch they are based.

• 	 To limit user (or program) access to data

A view can be used like a mask or filter to limit a user's
perception of the stored data. For example. if a table holds
a vari ety of data about employees, only speci fi c persons
should have access to salary data in the table. Views can be
defined so that each user of the table is permitted to access
and manipulate only specific parts of the table.

Table Subsets

Many vi ews are subsets of base tables. These include:

• 	 Subset of the rows of a base table. Such subsets are normally
formed by selecting only certain values within one or more
columns. An example would be all the employees of Figure 2 on
page 7 with an education level (EDUClVl) of 18.

• 	 Subset of the columns of a base table. Such subsets are
formed by selecting only certain columns of the base table.
An example would be the employee table reduced to the columns
EMPNO, lASTNAME, and WORKDEPT.

• 	 Rowand column subset. Any combination of row selection (by
values) and column selection.

Chapter 3. Relational Data Model 11
International Systems Center - Santa Teresa

Derived and Calculated Fields

Views may include fields which are not part of the underlying base
tables. Such fields include:

• 	 Virtual fields where the field value is based on other fields
within the same row (e.g. sum of quantity in stock plus
quantity on order).

• 	 Deri ved fi elds where the fi eld vah,e is calculated from a
group of rows. An example would be the average salary by
department. calculated from all the rows (employees) of each
department.

Table Combinations

Views may be formed by a combination of multiple tables. Very
often such a combination is formed using a common field. The
operation involved here is called a jotn of tables.

An example of a view formed by joining the employee table
(Figure 2 on page 7) with the department table (Figure 3 on page
10) based on the common fi eld "department number" is shown in
Figure 4. The resulting table includes selected columns of the
employee table combined with the department name from the
department table.

EMPHO LASTNAME DEPTNO DEPTNAME

000010 Haas AOO Spiffy Computer Co
000020 Thompson BOI Planning
000030 Kwan COl Info Center
000050 Geyer EOI Support Services
000060 Stern Dll Manufacturing

Figure 4. Join of EMPLOYEE and DEPARTMENT tables

TABLE DESIGN

From a theoretical standpoint the design of a data base on a
logical level should be the same for any data base management
system. The logical design effort should resolve questions on
which records are best suited to model the real business. which
fields should go together in a record type. and what relationships
exist between record types.

12 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

Flexibility

The responsi bi li ty of the physi cal desi gn task is to structure
these record types into physi cal data bases accordi ng to the
requirements and facilities of the actual data base management
system. An experienced designer, however, will take into account
the available physical options already during the logical design
phase.

With this reality applied to relational data base design a very
important character i st i c of the relat i onal data base approach
stands out. Here all relationships between data are modelled in
the same way: as values in fields in the actual tables that are
stored as physical data bases. This eliminates many complex
considerations like which relationships should be implemented in
the data structures (hierarchies or networks) and which should
still be implemented as values. This leads to a simplification
going from logical to physical design. The set of records derived
in the logical design maps directly into relational tables.

The advantage of the relational approach with respect to data base
design activity is that table structures will have a better chance
to survive changing requirements and needs.

The relational approach gives full flexibility in regard to
changing data requirements.

• 	 Addi ti onal columns can be added to a table at any time wi thout
the requirement to unload and reload the table. Any existing
method of working with the data (program or terminal user
command) need not be changed unless they are to use the data
in the new column. Values in new columns are null (absent)
until some user or program fills values into each row that
needs one.

• 	 View definitions may insulate a design from subsequent
changes. Users of an exi st i ng view are in general not
impacted when the underlying base tables are changed.

• 	 There will be less impact due to changes because all
relationships are already carried through actual data values
in the tables and not through 1 inks in an expl i ci t data
structure.

• 	 If the data base design is not perfect from the very
beginning, a relational data base system makes it easier to
correct. A relational data base system is more forgiving to
an incomplete data base design.

Chapter 3. Relational Data Model
International Systems Center - Santa Teresa

13

14 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

L

CHAPTER 4. SQL DATA HANIPULATION
! "

SQl, the structured Query Language is intended to provide access
to data for users who have little training in computer
programmi ng. SQl is a hi gh-Ievel language for handl i ng data
stored in the form of tables as introduced in "Chapter 3.
Relational Data Model." SQl is high-level in that data requests
in SQl specify only the desired results, not data paths to effect
the desired results. In other words, with SQl you specify what
you want and not how to get it.

The full SQl as implemented in DB2 consi sts of three major
components:

1. 	 The Data Hanipulation Language which is described in this
chapter.

2. 	 The Data Definition Language as presented in the next
chapter.

3. 	 The Authorization Language as presented in "Chapter 9.
Security and Authorization."

SQL 	 INTRODUCTION

SQl is the language used in DB2 for data manipulation. This
language not only includes statements for retrieval operations as
the acronym might suggest, but also modification operations for
replace, insertion, and deletion of data.

SQl is a powerful language. One SQL request may deal with all or
selected rows of a table (or multiple tables> and access all or
selected columns within these rows.

The result of a SQl retrieve operation is again a table which is
presented to the terminal user as a table, or to a user program
one row at a time.

Automatic Navigation

DB2 uses the SQl statements provided by users to "automatically
navigate" to the requested data. Users do not have to know how
data is represented in storage in order to retrieve and use it.
DB2 finds its own way to the data. When DB2 locates the requested
data, it returns. updates, or deletes the entire collection of
data that meets the conditions specified by the user.

As DB2 operates on collections of data and automatically selects a
path to that data, DB2 users can be more productive. Automatic
navigation allows them to concentrate on the essential logic and

Chapter 4. SQl Data Manipulation 15
International Systems Center - Santa Teresa

data requirements of their application, instead of concerning
themsel ves with the deta i Is of data representat i on and access
paths.

Auto.atic ACcess Path Selection

Interactive SQL

Embedded SQL

In many data base management systems the application programmer
must decide whether to process data sequentially or use one of
possibly several indexes that the installation may have defined
for that data. DB2 makes these decisions automatically. In fact,
programmers never reference indexes in their programs.

DB2 selects an access path on request after the program has been
written, or when changes to the underlying tables and indexes
invalidate the current access path.

This ability to select an access path minimizes program
maintenance for the installation. For example if the data base
administrator decides to drop a seldom used index, DB2 will
automat i cally select a new access path for those transact ions
that made use of that specific index. The logic of application
programs themselves is unaffected and no program maintenance is
required to cope with this change.

SQl statements may be issued interactively from a terminal, and
the results may be browsed afterwards. Thi s i nteracti ve SQL
facility is available to authorized TSO SPF users. The technique
is described in detail in "Chapter 8. TSO Environment" section
"ISPF Support - DB2I" on page 100.

SQl statements may be embedded in application programs written in
COBOL, Pl/I. FORTRAN. and Assembler.

When SQl statements are embedded in programs they have a slightly
different format. This format is described in "Chapter 7.
Application Programming Environment" section "SQL Statement
Format" on page 79.

IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

16

DATA MANIPULATION LANGUAGE (DHL)

The data manipulation part of SQl deals with retrieving,
updating, inserting, and deleting of data stored in tables. In
the following sections each major aspect of the language will be
covered.

The SQl language presented here appli es to interact i ve SQl as
entered from a TSO terminal, as well as to embedded SQl used in
application programs.

Data Retrieval

Data retrieval is by far the most basic task of D82. Most
programm i ng and data languages process a record at a time. To use
them, you code a sequence of instructions explaining how to get to
data, what to look for, and what to do with it. With SQl you don't
have to specify all this information. You select data with a
single powerful SELECT statement and specify just what data you
want.

SELECT Statement

To retri eve data SQl provi des the SELECT statement. The basi c
form of the SELECT statement is:

SELECT what data
FROM which tables

WHERE search conditions

This format is similar to the kind of thinking one might use in
retrieving specific information from some collection of data. A
SELECT statement is just a formal i zed shorthand notati on for
asking questions about data. It is divided into three clauses,
each of which helps to specify what you are looking for. The
SELECT clause specifies the columns and the FROM clause the table
or view from which you are going to retrieve data. The WHERE
clause specifies all the conditions the data must meet in order to
be retrieved.

Let us look at a simple example in Figure 5 on page 18. From the
employee table we want to retrieve the last name, employee number,
and work department of employees with an education level of 16.

Thi 5 si mple example shows selection of columns in the order
wanted, and selection of rows through a condi ti on on fi eld
EDUCLVL.

Notice the result of the SELECT statement. It is a set of rows,
all of which satisfy the conditions specified in the WHERE clause.
SQl works with sets of data, it retrieves or modifies all the rows
in a tabla that meet the specifications of a single WHERE clause.

Chapter 4. SQL Data Manipulation 17
International Systems Center - Santa Teresa

The 	SELECT statement:

SELECT LASTHAME, EMPHO, WORKDEPT

FROM EMPLOYEE

WHERE EDUCLVL=16

The 	 resulting table:

LASTNAME EMPNO WORKDEPT

Geyer 000050 EOI

stern 000060 Dll

Pulaski 000070 D21

Adamson 000150 Dll

Johnson 000260 D21

Figure 5. A simple SELECT statement

All the rows of a table qualify if no WHERE clause has been
specified. More details of the WHERE clause will be presented
later in this chapter in section "Search Conditions" on page 22
because the WHERE clause appl i es to other SQL statements as well.

SELECT Clause: The SELECT clause specifies the fields (columns)
to be selected or calculated. The format of the SELECT clause is:

SELECT [DISTINCT] expression, expression , ...
• 	 If DISTINCT is specified it means that duplicates are to be

eliminated from the query result as a whole. The resulting
set of rows wi 11 therefore not include any dupl i cate rows.
SELECT DISTINCT JOBCODE will get all the different JOBCODEs
from the employee table.

• 	 Each expression in the SELECT clause may be a simple column
name or an arithmetic expression involving constants and
column names from the selected table. Examples are:

EDUCLVL

PRICE * 0.85

QOHHAHD + QOHORDER

• 	 Expressions in the SELECT clause may also involve builtin
functions. These will be presented later in this chapter in
section "Builtin Functions" on page 24.

• 	 To select all columns from a table you can use the shorthand
notation SELECT * FROM table.

18 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

FRO" Clause: The FROM clause specifies one or more tables from
which data is selected. Examples of selections from multiple
tables are presented later in thi3 chapter in sections "Simple
Join" on page 28 and "Advanced DML" on page 30.

Updating Data

You update data in tables using the SQL UPDATE statement. The
purpose of the UPDATE statement is to update one or more fields in
one or more rows of a table. In general the UPDATE statement
changes a set of rows and not just a single row (record).

UPDATE statement

The SQL UPDATE statement is very similar to the SELECT statement.
You must specify the same information about the data you wish to
update, that is, the table that contains the data, the columns in
which the data occurs, and a qualifying WHERE clause to select the
proper rows. The basic form of the UPDATE statement is:

UPDATE which table
SET new field values

WHERE search conditions

The UPDATE clause speci fi es the table to be updated. The SET
clause specifies one or multiple new field values, which may be
constants or arithmetic expressions. The WHERE clause specifies
all the condi t ions to be met by the rows to be updated. The
details of the WHERE clause will be covered later in this chapter.

Let us look at some examples of UPDATE statements.

• To change the department number for all employees of
particular department in the employee table you would enter:

a

UPDATE EMPLOYEE
SET WORKDEPT

WHERE WORKDEPT
= 'E31'
= 'EOI'

• To update multiple field values for a
would enter:

particular employee you

UPDATE EMPLOYEE
SET PHOHEHO = '3623', JOBCODE = 64,

EDUCLVL = 22
WHERE EMPHO = '000030'

• 	 To update all the rows of a table and gi va all the employees a
5Y. rise you would enter:

UPDATE EMPLOYEE
SET SALARY = SALARY * 1.05

Chapter 4. SQL Data Manipulation 19
International Systems Center - Santa Teresa

Deleting Data

You delete data in tables using the SQl DELETE statement. Tha
purpose of the DELETE statement is to delete one or mora rows of a
table.

DELETE statement

The SQl DELETE statement uses a syntax simi lar to the SELECT
statement. You must specify which table contains the rows to be
deleted and a qualifying WHERE clause to select the proper rows.
The basic form of the DELETE statement is;

DelETE
FROM which table

WHERE search conditions

The FROM clause specifies the table from which one or multiple
rows will be deleted. The WHERE clause specifies all the
conditions to be met by the rows to be deleted. The details of
the WHERE clause will be covered later in this chapter.

let 	us look at some examples of DELETE statements.

• 	 To delete all the rows of a particular department from the
employee table you would enter:

DelETE
FROM EMPLOYEE

WHERE WORKDEPT = 'B01'

• 	 To delete all the departments which have no manager assigned
from the department table you would enter:

DElETE
FROM DEPARTMENT

WHERE MGRNO IS NUll

• 	 To delete all the data (rows) from a table you would enter:

DELETE
FROM table

Note that although all data has been deleted from the tabla,
it would still exist and new data could be entered
immediately.

IBM DATABASE 2 Concepts and Faci H ti es Gui de
International Systems Center - Santa Teresa

20

Inserting Data

To insert data into a table you use the SQL INSERT statement. The
purpose of the INSERT statement is to add one new row to a table,
or to add a whole set of rows selected from other tables.

INSERT statement

The INSERT statement has two basic formats to add either one row,
or multiple rows, to a table.

1. 	 Simple insertion of one new row to a table:

INSERT INTO which table
(list of columns>

VALUES (list of values)

In this format of the INSERT statement a single new row is
added to a table. The new row is formed by placing various
data-values into the named fields (columns), in the order
named. All fields of the given row which are not named
receive the null value. The list of columns may be omitted
which is the same as naming all the columns in their normal
order. Another way to force the insertion of null values is
to use the keyword NULL in the value list.

2. 	 Insertion of multiple rows selected or computed from other
tables by a SELECT statement:

INSERT INTO which table
(list of columns)

SELECT columns
FROM table(s)

WHERE search conditions

In thi s format of the INSERT statement many rows may be
selected (and computed) from other tables and inserted into
the target table. Rows whi ch already exi st in the target
table are not affected by the insertion. The table(s) from
which the inserted rows were selected are not affected at all.
The number of fi elds selected must agree wi th the number of
columns named in the list. The fields selected must be
type-compatible with the target fields into which they are to
be inserted. Data conversions between different numeric
formats will be performed.

Note: DB2 does not impose any logical ordering on the rows of a
table, and therefore no faci I i ty is provi ded to speci fy the
"position" in the table of the newly inserted rows.

Chapter 4. SQL Data Manipulation 21
International Systems Center - Santa Teresa

Mow 	 let us look at some examples of INSERT statements.

• 	 Insertion of a new employee into the employee table

INSERT INTO EMPLOYEE
(EMPNO, LASTNAME, WORKDEPT,

PHONEND, EDUClVL)
VALUES ('000330', 'lEE', 'E21',

'2103'. 14)

The field JOBCODE is set to null since it is not in the list
of columns. The same result may be achieved through an INSERT
statement wi thout a column-l i st and marki ng the null fi eld
wi th the keyword NUll:

INSERT INTO EMPLOYEE
VALUES ('000330', 'LEE'. 'E21',

'2103', NULL, 14)

• 	 Insert selected employees with an education level of 18 into a
work table for further evaluation:

INSERT INTO EMPWORK
(EMPNO. NAME, DEPARTMENT)

SELECT CEMPHD. LASTNAME. WDRKDEPT)
FROM EMPLOYEE

WHERE EDUClVL = 18

Search Conditions

One of the basic operation in SQl is to search through a table,
choosing certain rows for processing. The criterion for choosing
rows is called a "search condition." A search condition is
specified in the WHERE clause of SELECT. UPDATE. and DELETE
statements.

A search condition is a collection of one or more "predicates",
connected by the logical connectors AND, OR, and NOT. Each
predicate specifies a test to be applied to the rows of the table.
For example the following search condition contains three
predicates to find employees of department EOI with an education
level greater than 20 or a job code of 54:

WHERE 	 WORKDEPT = 'EO!' AND
CEDUClVL > 20 OR JOBCODE = 54)

The basic format of a predicate is a comparison between two values
or express; ons. We represent thi s format as follows:

<expression> <comp-operator> <expression>

An <expression> may consist of a field name, a constant. or any
combinations of these connected by one of the four arithmetic

22 IBM DATABASE 2 Concepts and Faci Ii ti es Gui de
International Systems Center - Santa Teresa

operators (+ - * /) . A <comp-operator> is one of the comparison
operators (> >= = <= <= ... > ... <).

Parentheses may be used in arithmetic expression and to group
predi cates to overri de precedence rules of operators. Si ngle
quote-marks must be used around character strings.

In constructing search conditions, the user should be careful to
perform arithmetic only on numeric data types. and to make
comparisons only between compatible data types.

SQL provides four special kinds of predicates which may be used in
search condi t ions. in addi t i on to the standard predi cates whi ch
compare two expressions. These special predicates are:

BETWEEN 	 The format of the BETWEEN predicate is as follows:

<expr> [NOT] BETWEEN <exprl> AND <expr2>

BETWEEN is therefore a shorthand notation for a
greater-equal and a less-equal comparison. Example:

EDUCLVL BETWEEN 15 AND 20

IN 	 The format of the IN predicate is as follows:

<expr> [NOT] IN <constant-list>

Thi 5 type of predicate makes it possible to quickly
compare the value of an expressi on wi th ali st of
constants. Example:

JOBCODE IN (54, 56, 60)

NULL 	 The format of the NULL predi cate is as follows:

<field-name> IS [NOT] NULL

A row of a table satisfies this predicate if the value of
the designated field is (or is not) null.

LIKE 	 The speci al LIKE predi cate enables a user to search
character string data which partially matches a given
string. Its format is as follows:

<field-name> [NOT] LIKE 'string'

The quoted string on the right side of the LIKE is called
a "pattern." The pattern may conta i n any character
string, with special meanings for the characters "_" and
"X". The "_" character represents any single character
and the "X" character represents any string of zero or
more characters. Examples:

Chapter 4. SQL Data Manipulation 23
International Systems Center - Santa Teresa

LASTNAME LIKE 'XMITX'
(would select SMITH, SCHMIT, MITTERAND, •••)

LASTNAME LIKE 'L__
(would select LEE, LEY, LOU, ••.)

All possible predicates may be used in one single WHERE search
condition as illustrated in the following example:

SELECT EMPND, LASTNAME, JDBCDDE,
EDUCLVL, WDRKDEPT

FROM EMPLOYEE
WHERE EMPND BETWEEN '000010' AND '002000'

AND (LASTNAME LIKE 'KX' DR
LASTNAME LIKE 'LX')

AND JOBCODE NOT NULL
AND EDUCLVL IN (16, 18, 20)
AND WORKDEPT > '001'

USER Keyword

The special keyword USER may be used within search conditions. It
is set equal to the user-id of the user who is issuing the SELECT
statement. USER behaves exactly like a fixed length character
string constant of length 8, with trailing blanks if the user-id
has less than eight characters.

Suppose the user-i dis the employee number then the followi ng
SELECT will return the employee data of the issuing user:

SELECT IE

FROM EMPLOYEE

WHERE EMPNO = USER

The user-id is identical to the T50 logon-id, the IM5 5IGN-ON-id
(or logical terminal name), and the CICS sign-on-id (or
transaction code, terminal name, etc).

Builtin Functions

The following builtin functions can be used in the SELECT clause
in addition to simple field-names and arithmetic expressions:

AVG SUM MIN MAX COUNT

The argument of a builtin function may be a field name (optionally
preceded by DISTINCT), or an expression. DISTINCT means that
duplicate values are to be eliminateci before the function is
applied. For example, COUHT(DISTINCT JOBCODE) computes the
number of different job codes in the row~ that satisfy the search
condition.

24 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

L
AVG Computes the average of a numeric field

SUM 	 Computes the sum of a numeric field

Grouping

HIN 	 Finds the minimum value of any field

HAX 	 Finds the maximum value of any field

COUNT 	 Counts either different field values when used as
COUNTCDISTINCT field> or counts the number of qualifying
rows when used as COUNTOO.

Since builtin functions compute a result over a set of rows they
cannot be mixed with expressions which do not contain builtin
functions. That is. every expression in the SELECT clause must
use one of the builtin functions. or none can. Null values are

----,--" -_.
ignored by builtin functions. Example:

SELECT COUNTC*>, AVGCPRICE>, MINCPRICE>,

MAXCPRICE>, SUMCPRICE * QUANTITY)

FROM QUOTATIONS

GROUP BY Clause

The grouping feature of DB2 permits a table to be conceptually
divided into groups of rows with matching values in one or more
fields, and then applies one or more builtin functions for each
group. The fields which form the definition of the groups are
listed in a special GROUP BY clause. The following example query
finds the number of employees and their average salary for each
department:

SELECT WORKDEPT, COUNTC*>, AVGCSALARY)

FROM EMPLOYEE

GROUP BY WORKDEPT

A SELECT statement using the grouping feature returns only one row
for each group. Therefore, the items selected by such a query
must be properties of the group, not properties of individual
rows. The SELECT clause may contain the fields contained in the
GROUP BY clause, together with builtin functions on any other
fields.

A grouping SELECT may have a standard WHERE clause whrch serves as
a filter, keeping only those rows which satisfy the search
condition. For example, to find the number of high skilled
employees grouped by department and sex.

SELECT 	 WORKDEPT, SEX, COUNT<*>
FROM EMPLOYEE

WHERE EDUCLVL > 17

GROUP BY WORKDEPT, SEX

Chapter 4. SQL Data Manipulation 25
International Systems Center - Santa Teresa

HAVING Clause

It is also possible to apply a qualifying condition to groups,
causing the system to return a result only for those groups which
satisfy the condition. This is done by a special HAVING clause
which is written after the GROUP BY clause. The HAVING clause
contains one or more group-qualifying predicates, connected by
AND's and OR's. Each group-qualifying predicate compares some
property of the group such as AVGCPRICE) wi th another group
property or constant. The following example will only return
results for departments with more than 5 employees:

SELECT WORKDEPT, COUNT(W), AVG(EDUCLVL)
FROM EMPLOYEE

WHERE JOBCODE > 15

GROUP BY WORKDEPT

HAVING COUNTCW) > 5

Ordering - ORDER BV Clause

The results of a SELECT may be returned in a user defined order
through an ORDER BY clause. Ascending and descending ordering is
supported. Ordering may be requested by one or more items (fields
or expressions) of the SELECT clause. These items are specified
either by field name or by an integer number denoting an item
number.

The ORDER BY clause is the last clause specified on a SElECT
statement. If no orderi ng is requested rows are returned in
system-determined order.

In the following example all employees are selected and returned
in order of education level (descending) and salary (by default
ascendi ng).

SELECT EMPNO, LASTNAME, EDUCLVL, SALARY
FROM EMPLOYEE

ORDER BY 3 DESC, SALARY

Use 	of Nulls

Tables may be defined to allow null values in certain columns. If
null values are allowed then users must be very clear about the
distinction between null and the zero (for numeric fields) or
blank (for character fields) value. A null value can signify that
the value is not yet assigned. is unknown. or is not applicable.

Here are some considerations which must be taken into account when
null values are allowed in a column:

• 	 Null values can add complexity to the programming (or
retrieving) task.

IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

26

Combining Data

• 	 Null values act in special ways when using search conditions.

1. 	 A null value never qualifies in a comparison predicate of
a search condition. A null value is not greater, smaller,
equal, or not equal than any other value.

2. 	 A null value is not even equal to another null value.

3. 	 A null value can only qualify when using the special null
predicate:

fieldname IS [HOT] HULL

• 	 When inserting a row into a table values must be provided for
all the columns where nulls are not allowed.

The relational operation that allows you to retrieve data from two
or more tables by matching them on a common column is called a
join.

Let us review the join operation we have performed in Figure 4 on
page 12. We combined the employee table with the department table
based on the common values of "department numbers" whi ch are
called WORKDEPT in the employee table and DEPTHO in the department
table.

The SELECT statement whi ch performs thi s operati on reads as
follows:

SELECT EMPHO, LASTHAME,

DEPTHO, DEPTHAME

FROM EMPLOYEE,

DEPARTMENT

WHERE WORKDEPT = DEPT NO

In the SELECT clause we specify the names of the columns we want
to retrieve. In the FROM clause we specify the two table names
where these columns exist. In the search condition of the WHERE
clause we specify the compare operation to be performed. For all
the matching department numbers the SELECT statement will
retrieve EMPNO and lASTNAME from the employee table, DEPTNO and
DEPTNAME from the department table, and merge them into the
resulting table of Figure 4.

Rules for row qualification:

• 	 A row from one of the participating tables which does not
qualify the join-condition will not appear in the result of
the join.

• 	 A join condition is never satisfied by a null value.

Chapter 4. SQl Data Manipulation 27
International Systems Center - Santa Teresa

silllPle Join

• 	 If no join-condition is given in the WHERE clause, all
possible combinations of rows from tables in the FROM clause
will be returned. This type is called "Cartesian Product" and
does not usually produce a meaningful result.

Simple joins are combinations of two tables based on one common
column as the example shown above.

The same employee and department tables may also be j 0 i ned by
another common set of values. These are "employee numbers" called
EMPNO in the employee table and MGRNO in the department table.

Such a join may be used to get a table of the departments with the
name of the manager replacing the managers personnel number. See
Figure 6 for the required SElECT statement and the resulting
table.

The 	SELECT statement:

SELECT DEPTNO, DEPTNAME, LASTNAME

FROM DEPARTMENT, EMPLOYEE

WHERE MGRNO = EMPNO

The 	resulting table:

DEPTNO DEPT NAME 	 LASTNAME

AOO Spiffy Computer Co Haas

BOI Planning Thompson

COl Info Center Kwan

Dll Manufacturing Stern

D21 Admin Pulaski

EOI Support Services Geyer

E21 Software Support Spencer

Figure 6. Simple Join

Note: This table includes only departments which have a manager
assigned (null values cannot qualify) and for which the managers
number is actually included in the employee table.

More about joins is presented later in this chapter in section
"Advanced Join" on page 30.

IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

28

USING VIEWS

Views as described in "Chapter 3. Relational Data Model" in
section "Views" on page 10 may be used in SQl statements the same
way as tables are used.

Assumi ng that a vi ew has been defi ned for the employee table
including only columns EMPNO, lASTNAME, and PHONENO, then the
following SELECT statements are identical:

SELECT
FROM

WHERE

SElECT
FROM

WHERE

The same

EMPNO, LASTNAME
EMPLOYEE
EMPNO > 100

EMPNO, LASTNAME
view-name
EMPNO > 100

rules apply to views and tables when retrieving data
through SELECT statements.

Updating through Views

Views may also be used to update tables. However this facility is
limited to views that are simple subsets of a single base table.
The view must consist of a subset of the columns and/or the rows
of a single table. A view which contains data from more than one
table (e.g. a join) cannot be updated.

DELETE: Simple views (single table subsets) may be used
unrestricted in DELETE statements. Any row which qualifies for
the view may be deleted.

UPDATE: Simple views may be used in UPDATE statements to change
field values of selected rows. If a view is a subset of rows it is
possible that the changed row does not qualify for the view any
more.

Suppose that the view includes only employees of department E01.
An update statement is used to change the department number for
one employee. This changed row no more qualifies for the view and
cannot be retrieved through the view following the update. Such
updates which invalidate rows according to the view definition
may be prevented through the specification of a "check option".
This is described in the next section.

INSERT: Simple views may be used in INSERT statements to add new
rows to the underlying base table. The view must include all the
columns which do not allow null values, otherwise an INSERT
through the view is impossible. Field values must be specified
for all columns whi ch do not allow nulls.

Chapter 4. SQl Data Manipulation 29
International Systems Center - Santa Teresa

You may insert a row which does not qualify to the view definition
(row subset), unless the "check option" is applied to prevent such
inserts.

with Check option

When defining a view as a subset of rows a "check option" may be
activated. This specification will prevent any UPDATE's or
INSERT's of rows whi ch do not quali fy accordi ng to the vi ew
definition.

Suppose the view includes only rows of the employee table with a
JOBCODE between 50 and 60. In thi s case the "check opt ion"
prevents from changing an employees job code outside the
specified limits, and from inserting new rows with job codes
outside these limits.

Note: The default is no checking, and therefore allows inserts of
rows outside the view definition, and changes to rows 50 that the
resulting row disappears from the view.

ADVANCED D"L

The data manipUlation language presented so far is just a subset
of the enormous potential of SQl. SQl provides several features
which enable complex data base queries, possibly involving
several tables, to be expressed in a single SQl statement. These
features, which are described in this section, may be used in
combination with each other and with simpler language features
described previously.

Advanced Join

The join operation which we have seen earlier in this chapter in
section "Simple Join" has many more possibilities. More than two
tables may be joined in a single operation. and the search
condition may involve compare operators other than equal (e.g >.
>=, etc>.

Some of the advanced possibilities are presented here in form of
examples, for the full details of the language consult the STSC
SQl Usage Guide and/or the DB2 reference manuals.

Joining tables with identical column names

When joining two tables by a common column which has the same name
in both tables we have to identify the individual columns used in
the SElECT and WHERE clause.

IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

30

Suppose the department column of the employee table had the name
DEPTNO (instead of WORKDEPT). To perform the join illustrated in
"Combining Data" on page 27 we would use the following SELECT
statement:

SELECT EMPNO, LASTNAME,
EMPLOYEE.DEPTNO, DEPTNAME

FROM EMPLOYEE,
DEPARTMENT

WHERE EMPLOYEE.DEPTNO = DEPARTMENT.DEPTNO

By qualifying the column names with the table name we properly
identify the identical column names in the SELECT clause
(EMPLOYEE. DEPTNO) and in the WHERE clause (EMPLOYEE. DEPTNO =
DEPARTMENT.DEPTNO).

Joining a table to itself

A similar technique as above must be used when joining a table to
itself. The table name is repeated two or more times in the FROM
clause, indicating that the join consists of combinations of two
(or more) rows from the same table. Because the table name is no
longer unique, each table name in the FROM clause must be given a
unique table label of I to 18 characters.

Suppose we have to report pai rs of employees wi th the same
JOBCODE, but whose salaries differ by more than 1000. The
following SELECT statement would perform this task:

SELECT 	 El.JOBCODE,
EI.LASTNAME, EI.SEX, EI.SALARY,
E2.LASTNAME. E2.SEX, E2.SALARY

FROM EMPLOYEE El,
EMPLOYEE E2

WHERE EI.JOBCODE = E2.JOBCODE
AND EI.SALARY > E2.SALARY + 1000

This SELECT would return rows containing the job code and names,
sex, and salari es of two employees where the fi rst earns much more
than the second.

Note: The EMPLOYEE table is labeled El and E2. and this label is
used as column qualifier when comparing field values for employee
"El" with employee "E2".

Subselect

SQL allows a value or set of values in the search condition of a
SElECT, UPDATE, or DELETE statement to be computed by another
SELECT statement called a SUBSELECT. The result of a subselect is
effectively substituted directly into the search condition (or
HAVING clause) in which it appears.

Chapter 4. SOL Data Manipulation 31
International Systems Center - Santa Teresa

If the subselect returns a si ngle value, it can be used on the
right-hand side of any comparison. If it may return more than one
value the special predicate IN can be used, or one of the special
funct ions ANY or ALL.

Subselect with single value: The following SELECT statement
finds employees of job code 58 with a less than average salary for
that job code:

SELECT EMPNO. LASTNAME. SALARY
FROM EMPLOYEE

WHERE JOBCODE = 58
AND SALARY < (SELECT AVGCSAlARY)

FROM EMPLOYEE
WHERE JOB CODE = 58)

The subselect returns the average salary which is then used to
find employees whose salary is less than this average.

Subselect with IN predicate: The followi ng SElECT statement
reports project activities for employees of department Ell:

SElECT *
FROM PROJECT

WHERE EMPNO IN (SELECT EMPNO
FROM EMPLOYEE

WHERE WORKDEPT = 'Ell')

The subselect returns a list of employee numbers which is
substituted into the IN predicate of the search condition.

ALL and ANY with Subselects

In the search condition the comparison operators =, --, >, etc.
can be modi fi ed by the keyword All or ANY when used wi th a
subselect. These keywQrds permit the subselect to return a set of
values, and they determine how the set is to be treated in the
search condition. Let us look at the comparison operator ,<, as
an example, but the remarks below apply to the other operators as
well :

expression < subselect 	 Subselect must return exactly one
value to be compared agai nst the
expression (mostly a field name).

expression < ALL subselect 	 Subselect may return multiple
values. The expression must be
smaller than each of the values
returned to qualify.

expression < ANY subselect 	 The expression must be smaller than
at least one of the values returned
to qualify.

32 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

The following example finds an employee of job code below 54,
whose salary is greater than any other employees of job code below
58.

SELECT LASTNAME, SALARY
. FROM EMPLOYEE

WHERE JOB CODE < 54
AND SALARY> ALL (SELECT SALARY

FROM EMPLOYEE
WHERE JOBCODE < 58)

Correlated Subselects

In all the examples of subselects above, the subselect 15
evaluated once and the resul t i ng value (or set of values) is
substituted into the outer-level predicate. The correlation
feature of DB2 permits a subselect to be executed repeatedly, once
for each row of the outer-level select. This type of correlated
subselect is used to compute some propert~ of the outer-level row
which is needed to evaluate a predicate.

The techni que used is the same as for advanced J01 ns. A
correlation name is added to the table name in the FROM clause
(same as table label) and used to qualify a column name with the
outer level table name in the subselect.

The followi ng SELECT returns departments from the department
table which have more than 5 employees:

SELECT DEPTNO, DEPTNAME
FROM DEPARTMENT D

WHERE 5 < (SELECT COUNT(*)
FROM EMPLOYEE

WHERE WORKDEPT = D.DEPTNO)

Subqueries may be nested to multiple levels. The next example
returns employees who earn more than their managers:

SELECT EMPNO, LASTNAME
FROM EMPLOYEE E

WHERE E.SALARY >
(SelECT SALARY

FROM EMPLOYEE M
WHERE M.EMPNO =

(5 El ECT MGRNO
FROM DEPARTMENT

WHERE DEPTNO = E.WORKDEPT))

Chapter 4. SQL Data Manipulation 33
International Systems Center - Santa Teresa

The same question may be answered by using a join in the
subselect=

SELECT EMPNO, LASTNAME
FROM EMPLOYEE E

WHERE E.SALARY >
(SELECT M.SALARY

FROM DEPARTMENT D,
EMPLOYEE M

WHERE D.MGRNO = M.EMPNO
AND D.DEPTNO = E.WORKDEPT)

Subselects with EXISTS Keyword

A subselect can be used to test for the exi stence of a row
sati sfyi ng some condi ti on. The subselect is connected to the
outer level SELECT through the special search condition EXISTS.
The subselect does not return a value. It only indicates if the
subselect search was successful or not.

In the following example we look for departments in the department
table which have an invalid manager number assigned, one that does
not exist in the employee table.

SELECT DEPTNO, DEPTNAME
FROM DEPARTMENT D

WHERE NOT EXISTS
(SELECT *

FROM EMPLOYEE
WHERE EMPNO = D.MGRNO)

The next statement deletes departments whi ch have no manager
assigned and have no employees either. This example illustrates
the use of a correlated subselect with the EXISTS keyword in a
DELETE statement:

DELETE
FROM DEPARTMENT D

WHERE MGRNO IS NULL
_AND·· NOT EXISTS

(SelECT *
FROM EMPLOYEE

WHERE WORKDEPT = D.DEPTHO)

."

~

IBM DATABASE 2 Concepts and Faci Ii ti es Gui de
International Systems Center - Santa Teresa

34

Union

The UNION operator of SQL provides a way of combining two or more
SElECT statements into a si ngle SELECT statement. Each of the
SELECT's is executed to produce an answer set, then these sets are
combined and duplicate rows are eliminated.

The UNION operator is often useful to merge 1 i sts of values
derived from two or more different tables. The following example
merges employees who work in '0' departments with employees who
work on 'AD' projects:

SELECT EMPNO

FROM EMPLOYEE

WHERE DEPT NO LIKE 'DY.'

UNION

SELECT DISTINCT EMPNO

FROM PROJEMPS

WHERE PROJNO LIKE 'ADY.'

ORDER BY 1

Rules for connecting SELECT statements through the UNION
operator:

• 	 The data types of correspondi ng items selected by all the
SELECT statements must be identical (not just compatible),
e.g. SMALLINT is not identical to INTEGER, character data
must be of same type and length, and matching columns must
obey the same rules regarding nulls.

• 	 The ORDER BY clause must follow all the SELECTS if an order is
requested for the union, and the ordering must be expressed in
terms of column numbers (not names).

• 	 UNIONs are not allowed in subselects.

• 	 UNIONs are not allowed in the definition of views.

Chapter 4. SQL Data Manipulation 35
International Systems Center - Santa Teresa

IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

36

DB2 OBJECTS

Tables

CHAPTER S. DATA DEFINITION

In "Chapter 4. SQL Data Manipulation" we have seen the language to
retrieve and update data in relational tables. The purpose of
this chapter is to present the language used to define the logical
and physical characteristics of tables, associated indexes, and
views based upon these tables.

The chapter is structured into two parts. The first part
describes the DB2 Objects used to store data of relational tables,
and in the second part the Data Definition Language (DDL) of SQL
is presented.

The term "082 Objects" applies to data bases, storage groups,
tables spaces, tables, indexes, and vi ews. Thi s term is just a
convenient way of referring to anything you can define or
manipulate with SQL. All these objects serve to define important
characteristics of a DB2 data base.

This section gives a brief description of each object. This
description is merely to give you a conceptual view of how each
object fits into the overall DB2 pi cture. Fi gure 7 on page 38
shows you how they relate to each other.

Note: Only data base designers and administrators need to know
all the DB2 objects. Users of SQL data manipulation only deal
with tables and views, and are not concerned with the physical
characteristics of these objects.

All data in OB2 is stored in tables. A table is a collection of
rows that have certain columns (fields). When you define a table
in 082, you're defining an ordered set of columns. In the
employee table of Figure 3 on page 10 the ordered set of columns
includes DEPTNO, DEPTNAME, and MGRNO representing the department
number, department name, and the employee number of the manager.

The terms "fields" and "columns" are used interchangeably. At the
intersection of a column and a row we have a "field value". The
storage representation of a row is called a record.

SQl is used to retrieve or change data in a table. A value is the
smallest unit of data that can be retrieved and updated. A row is
the smallest uni t of data that can be inserted or deleted. SQL
can also be used to add a new column to a table.

Chapter 5. Data Definition 37
International Systems Center - Santa Teresa

••

•
•

•
•

• •

•••

< >

I <--------------->STORAGE

< > GROUP 2

Tablespace B <
STORAGE partition 2

-> Tablespaca A GROUP 1

- ~> Index 1

Index 3

Tablespace 8 < part 2 A

partition 1

Index Index 3

- > 2 part 1<

• D A T A BAS E •

• Tablespace A Tablespace B •
4-+----+-> ~ •

• T •
a L- > Table 3 ••
b partition 1 •
I r-> •

•
•

e •
• A 2 •
•

'-- ·. •
• A Table 3 <+-+----'
• partition 2 •

• A •
•• V •

4---:-->IIndex 11 •

V V V •

• v •
Index 3 Index 3 < •

~-:------->IIndex 21 part I part 2 •
•

Figure 7. DB2 Objects

38 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

Views

Table Spaces

A view is an alternate way of representing table data. Views are
derived from one or more tables. Views may also be derived from
other views, or a combination of views and tables. The tables
from which views are derived are referred to as base tables. See
Figure 8 for the relationship between views and tables. Views are
used in SQl data manipulation statements just like tables.

The definition of a view is stored by OB2. A view, on the other
hand, has no separate storage representation. When creating a
view you define an alternate representation of the data that is
stored in tables.

USER

Figure 8. Views of Tables

You defi ne a table space to hold tables. Each table space is
divided into equal-sized units, called pages, which contain table
data. A table space consists of I to 64 VSAM entry-sequenced data
sets (ESDS) and can contain up to 64 gigabytes of information. A
gigabyte is roughly 1,000,000,000 (or 10**9) bytes.

Table spaces are important operational structures. In DB2 they
are the recoverable units, that is you recover table spaces, not
data bases. Very large table spaces (up to 64 gigabytes) would

Chapter 5. Data Definition 39
International Systems Center - Santa Teresa

howeve~ be imp~actical fo~ ~ecove~y. To make la~ge table spaces
p~actical, DB2 optionally p~ovides Partitioned Table Spaces.
Tables spaces are divided into partitions on the basis of ranges
of data values.

StMPle Table Spaces

Table spaces which are not pa~titioned a~e referred to as "simple"
table spaces. A simple table space can hold one or more tables.
Followi ng are some consi derati ons about when to have just one
table in a simple table space and when to have multiple tables:

• 	 The time to scan a table will probably be longe~ when tables
are inte~mixed in the table space.

• 	 If there are many small tables you may gai n a pe~formance

advantage and save storage space if they are together in one
table space.

• 	 If two tables a~e related through the same o~ simila~ primary
key, and are mainly used together, it might be an advantage to
have them in one table space.

• 	 You mi ght want to Ihave one table space per user department.

• 	 When ce~tain DB2 utilities are executing, the entire table
space is unavailable.

• 	 If an application requires exclusive use of a table by issuing
a LOCK TABLE statement, the entire table space will be locked,
preventing other tables from being accessed. This is due to
the fact that data pages mi ght contai n data from mult i pIe
tables. The LOCK statement is presented in "Chapter 6. Data
Management" sect i on "Table Space locks" on page 67.

Partitioned Table Spaces

A partitioned table space holds exactly one table. The table
space is divided into partitions, and each partition is stored in
one VSAM ESDS. The partitions are defined as ranges of an index
based on one or multiple columns.

The 	principal benefits of partitioned table spaces are:

• 	 Very large tables can be split into manageable units.

• 	 Part it ions are independent from each other. They can be
reorganized and re90vered individually (but the entire table
space is locked during that time).

• 	 They can be assigned to different storage groups each of which
may be assigned to a diffe~ent device type. This allows

40 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

Table Pages

Indexes

installations to store active data on faster devices than
history data.

Tables spaces are physically divided into storage units called
pages. Each page holds one or more rows of a table (or multiple
tables for simple table spaces). Two page sizes are available, 4K
and 32K. The larger page si ze must be chosen if rows wi th a
length of more than 4K bytes exist in the table.

The si ze of the pages is selected through the assi gnment of a
Bufferpool to the table space. Bufferpools are presented later in
this chapter. The VSAM control interval size of data sets holding
DB2 data pages is equal to 4K bytes.

You use indexes to get to data in different ways. Suppose you
have a phone number and need to fi nd the correspondi ng name.
Since the regular phone book is ordered by name, you would have to
scan the phone numbers in sequence to find the given number. If
you could reorder the entries according to phone numbers your task
would be easy.

Indexes in DB2 logically reorder data so that DB2 can get to data
without a lengthy sequential search. Indexes are based on one or
more columns of a table. Programs or users accessing DB2 data
never explicitly specify indexes. Indexes are only used by DB2.

There are four reasons for having indexes:

1. 	 To ensure unique values in a column, or in a combination of
multiple columns. Unique indexes can be used to force
un i queness of the rows of a table. To enforce that no
duplicate employee numbers are put into the employee table,
you define a unique index based on employee number.

2. 	 To improve performance. In most cases when there ;s an index
on a column, access to data is faster than without an index.
You should define an index on columns which are often used in
search conditions or joins. #

3. 	 To cluster data of a table in a certain order. See
"Clustering Index" below.

4. 	 A part it i oned tabl e must have an index whi ch defi nes the
partition ranges.

You can have multiple indexes for a table. Each index is based on
the values of data in one or more columns of the table, with a

Chapter S. Data Definition 41
International Systems Center - Santa Teresa

total length not exceeding 255 bytes. An index may be defined
ascending (default) or descending on each column involved.

An index is an object completely separate from the data in your
table. It is a structure that DB2 builds for you in response to
your request to create an index. DB2 automatically maintains the
index after creation.

Even though you may have many indexes to a tabl e, you cannot
assume that good performance is just dependent on the number of
indexes. If a table is constantly having rows inserted, deleted,
or updated, its indexes must always be updated. Thus too many
indexes may degrade performance. Remember also that each index
requires external storage.

An index on a table can be created any time after the table is
created. Except for changes in performance users of the table
will be unaware of the existence of the index. It is only DB2s
deci si on whether or not to use an index to access the table.

Clustering Index

DB2 indexes can also cluster data. A clustering index is an index
which causes the rows of the table to be stored in a physical
order that approximates the order of the indexed column(s). You
use a cluster i ng index to store data the way it wi 11 be most
frequently accessed, that is, by employee number, account number.
or alphabetically by name.

Since a clustering index defines the way data is stored. you can
define only one clustering index per table. If no index has the
clustering attribute, then DB2 uses the first index defined as a
clustering index. In a table space with only one table. the data
is in exact clustering sequence after a reorganization.

It is mandatory to have a clustering index for a partitioned table
(space). The table is divided into partitions by ranges of this
clustering index. The index itself is physically partitioned
too.

Index Spaces and Pages

An index space is automatically allocated when an index is
created. Index data is stored in index pages within the index
space. The physical page size on external storage is always 4K.
A physi cal page can consi st of between I and 16 subpages. A
subpage is the unit of index locking.

42 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

Data Bases

storage Groups

A DB2 data base names a collection of tables and indexes, and the
spaces that contain them. The DB2 data base is not the same as a
DL/I data base. It serves as an operational object for start/stop
(availability of data> and for authorization (accessibility of
data) •

A DB2 data base is therefore a convenient way of referring to a
set of tables and its associated indexes. It is recommended that
a data base contains related tables - related by application,
department, etc.

D82 provides defaults for both data base and table space
membershi p. These defaults permi t authori zed users to defi ne
tables without explicitly specifying a data base or table space.
The default data base (named DSNDB04> is setup at installation
time and may be tailored to the installation needs.

Appl i cat ions programmers need not be concerned wi th DB2s data
base structure. They only deal with tables and views in their
programs.

A storage group is a set of DASD volumes to which you assign a
name. Storage groups allow you to delegate to DB2 some of the
responsi bi Ii ty for managi ng the external storage used for DB2
data bases. When external DASD storage space is required for a
table space, DB2 allocates the space from the volumes previously
specified for the associated storage group.

Rules for storage groups:

• 	 All the volumes in a storage group must be of the same device
type.

• 	 Storage groups may overlap. The same volume may belong to
more than one storage group.

• 	 Volumes can have standard OS or VSAM data sets allocated on
them.

Storage groups simplify the allocation of data sets. By letting
DB2 handle your storage, you are reI i eyed of the burden of
defining and deleting data sets yourself.

You have the option to manage external storage yourself. This is
necessary when there is a need to control data set placement
within a volume.

,

Chapter S. Data Definition 43

International Systems Center - Santa Teresa

Bufferpools

Rules for user controlled space allocation:

• Defi ne requi red VSAM data sets

• Follow DB2 data set naming convention

• Add secondary data sets when table expands

DB2 provides a default storage group (named SYSDEFLT) at
i nstallati on time. Table Spaces wi 11 be allocated wi thi n thi s
group if the user does not explicitly request otherwise.

Bufferpools are areas of virtual storage which DB2 uses during the
execution of an application program or an interactive SQL request
to temporarily store pages of table spaces. When an application
program needs access to a row of a table, the page containing that
row is brought into a buffer. If data is changed, that buffer
must be wri tten back to the table space. If the data the
application requires is already in the buffer, it can be used
immediately.

DB2 has four different bufferpools to choose from. They are named
BPO, BPI, BP2, and BP32K. Your choice of bufferpool when definjng
a table space implicitly determines the page size of the table
space. If you choose bufferpool BPO, BPI, or BP2, the page size
will be 4K bytes. Selecting bufferpool BP32K gives a page size of
32K bytes. The only time you should consider using bufferpool
BP32K is when the total length of the rows in your table exceeds
4K bytes.

Bufferpools of 4K buffers are assigned to table spaces depending
on application requirements. Critical application tables might
be assigned to a bufferpool of their own.

The actual number of buffers ina bufferpool is dynami cally
assigned by DB2, between a minimum and a maximum number defined in
the DB2 installation module DSNZPARM (see "Chapter 16.
Installation and Servicing" on page 181>. The installation
default bufferpool size for bufferpool BPa is a minimum of S6
pages, and a maximum of 112 pages. The other bufferpools are by
default inactive.

The lower limit of buffers is 14 for a 4K buffer pool, and 3 for
BP32K. The upper limits are 1029 for a 4K buffer pool, and 133
for BP32K.

IBM DATABASE 2 Concepts and Faci! i ti es Gui de
International Systems Center - Santa Teresa

44

Synonyms

Synonyms ara alternate names for tables or views. Each user may
individually assign a synonym to any table or view. By doing this
a user can raf·er to a table through a short identification.

A synonym is only effective for the user who created it. If many
users want to use the same synonym, they must each define that
synonym.

DATA DEFINITION LANGUAGE

The Data Definition statements of SQl provide facilities for
creating, changing, and deleting all tha DB2 objects. One of the
unique advantages of SQl is that these Data Definition statements
may be used in a normal user session and mixed together with other
types of statements, such as data manipulation statements. It is
not necessary to stop DB2 or to invoke special utility programs to
create new tables in one of the data bases. Thus a user may
create a table for storing and manipulating some temporary
result, and drop the table when it is no longer needed.

Data Definition statements automatically update the DB2 catalog,
where the definitions of all DB2 objects are maintained. See
"Chapter 10. The DB2 Catalog" for further information.

Naming Conventions

DB2 uses naming conventions for its objects. Within the
explanation given below we use the following terms:

• 	 A "short-id" is up to 8 characters, 1st alphabetic
(A-Z,a,',$), rest alphabetic or numeric.

• 	 A "long-i d" is up to 18 characters, 1st alphabeti c, rest
alphabetic, "_", or numeric.

Following are the DB2 naming conventions:

storage Group short-id

Data Base short-id

Table space short-id

The full name for table spaces however is formed
by qualification with the DB2 data base name
[db-name. space-name], and allows for table spaces
with the same name in different DB2 data bases.

Bufferpool BPO, BPI, BP2, BP32K

Chapter 5. Data Definition 45
International Systems Center - Santa Teresa

Table

The full name fo~ tables
qualification with the
[auth-id.tablenameJ, and allows
tables wi th the same name for
The authorization-id (user-id) o
table is automatically added by D

i s
aut

di fferent

B2.
f th

fo~med by
horization-id
for multiple

users.
e creator of a

View long-i d, same rule as for table

Index long-id, same rule as for table

synonym long-id

Columns long-id, unique within a table

CREATE 	 statement

SQL CREATE statements are used to define DB2 objects. The general
format of a CREATE statement is:

CREATE 	 object name
parameters ...

For each of the different objects of DB2 which can be defined a
different format of the CREATE statements applies. The following
subsections present the important aspects of the different CREATE
statements but not all possibilities and options will be
explained.

DB2 provides defaults for most of the parameters of the CREATE
statement. In the given examples the default is always the first
option listed for a parameter.

Defining a storage Group

The CREATE STOGROUP statement defines a set of volumes, on which
DB2 may allocate space for table spaces and indexes.

CREATE 	 STOGROUP stogroup-name
VOLUMES (volser,yolser, .•.)
VCAT Ysam-catalog-name
PASSWORD Ysam-cat-control-password

Defining a DB2 Data Base

You use the CREATE DATABASE statement to define a data base.

IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

46

CREATE 	 DATABASE db-name
STOGROUP stogroup-name
BUFFERPOOL BPx

The opti onal STOGROUP and BUFFERPOOL parameters are used to
establ ish default values to be used in subsequent create table
space statements. If a create table space does not expli c i tly
name a storage group or bufferpool then the values from its data
base will be used.

Defining a Table Space

Table Spaces are the physical spaces that hold tables. The CREATE
TABL ESP ACE statement is used to predefi ne space on DASD for
subsequent table definition.·

CREATE 	 TABLESPACE space-name
IN db-name
USING STOGROUP stogroup-name

PRIQTY 	 k-bytes SECQTY k-bytes
ERASE NO I YES

BUFFERPOOl BPx
CLOSE YES NO
LOCKSIZE ANY PAGE I TABLESPACE

IN: Names the DB2 data base the table space belongs to. The data
base name defaults to the DB2 default data base DSNDB04 if not
given.

USING: MainlY used to define the primary and secondary space
allocation (in kilo-bytes) on volumes of a named storage group.
The default and minimum sizes are 3 pages (12 or 96 KB) each if
omitted. the maximum sizes are 131a68. The maximum data set size
is 2 gigabytes (GB), and you may have up to 32 data sets per table
space. The maximum table space size therefore is 64 GB.

ERASE: Allows the user to have the data sets of the table space
physi cally erased when the table space is dropped (through the
DROP statement).

BUFFERPOOL: Assigning a specific bufferpool to override the
bufferpool specification which applies to the data base.

CLOSE: This options allows the user to specify if VSAM data sets
should remai n open or be closed at the end of an appl i cati on
usage. Closing the data sets allows the table space to be taken
off-line and also frees resources within DB2.

LOCKSIZE: Specifies the level of locking for the table space. If
your design involves sharing of tables among several application
programs, you need to be aware of the options available to you to
control the degree of concurrency.

Chapter 5. Data Definition 47
International Systems Center - Santa Teresa

DB2 uses locks to minimize the interference between concurrent
users. locks are a mechanism which DB2 uses to prevent concurrent
users from accessi ng i nconsi stent data. Locks apply to table
spaces or pages. As long as a page or table space is locked,
other application programs that need to use the data in that page
or table space must wait until the lock is released. Notice that
DB2 does not lock a specific table. If a table space contains
more than one table, then all tables are locked when the table
space is locked.

If an application merely needs to access (not change) the data,
the lock is known as a shared lock. A shared lock allows other
applications to access the table space or page, but not to change
it. If an application needs to change the data, the lock is known
as an exclusive lock. An exclusive lock prohibits all access to
the table space or page until the lock is released.

You can choose one of three different locking options when you
define a tabla space:

TABLES PACE The entire table space is locked when an application
program is using it. Good for the performance of one
application, but others will be locked out.

PAGE IOnly pages that contain, referenced data are locked.
This allows more concurrent usage than table space

. locking, but at a higher resource utilization.

ANY Let DB2 choose the most appropriate mode of locking.
This is the default and normally the most effective
opti on. DB2 deci des whi ch locksi ze to apply when
analyzing the SQl statements of an application
program.

Deffning a Partitioned Table Space

Partitioned Table Spaces contain multiple VSAM ESDS's. The
partitions are defined through additional parameters of the
CREATE table space statement.

CREATE 	 TABLESPACE space-name
IN db-name
USING STOGROUP stogroup-ndme

PRIQTY kb SECQTY kb
ERASE NOIYES

NUMPARTS number-of-partitions
(PART n USING STOGROUP stogroup-name

PRIQTY kb SECQTY kb,
PART mUSING STOGROUP stogroup-name

PRIQTY 	 kb SECQTY kb)

IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

48

NUHPARTS: Defines the number of partitions (2 to 64). The actual
dividing into partitions by keyrange is done later by defining the
clusteri ng index belong; ng to the table stored in thi stable
space.

The number of partitions implicitly defines the maximum size of
each partition. This maximum size is 4 gigabytes (per partition)
for 1 to 16 partitions, 2 GB for 17 to 32 partitions, and 1 GB for
33 to 64 partitions. The total maximum number of bytes stored in
a partitioned table space is 64 GB, the same as for a simple table
space.

PART: This subclause defines these partitions which use a
different storage group, or have a different size (PRIQTY,
SECQTY) than the defaul ts defi ned in the USING clause of the
CREATE TABLESPACE statement. The list may be omitted if all
partitions are stored in the same storage group and use the same
primary and secondary allocations.

Defintng a Table

The CREATE TABLE statement is used to defi ne a new table to DB2.

CREATE TABLE table-name
(column-namel data-type [NOT NULL],

column-name2 data-type [NOT NULL],
column-...)

IN db-name.table-space-name
EDITPROC edit-routine
VALIDPROC validation-routine

Tablename: Is either a user name of up to 18 characters, or a
qualified name in the format auth-id.tablename. An unqualified
user name will be prefi xed by DB2 wi th the "auth-i d" of the
i ssui ng user.

Columns: After the tablename we define all the columns of the
table, wi th thei r data types, and opti onally followed by the
specification NOT NULL. Data types were presented in "Chapter 3.
Relational Data Model" in section "Data Types" on page 8. The
specification of HOT NULL prohibits fields without a value.

IN: Defines the DB2 data base and the table space the table is
assigned to. If no table space name is given (clause omitted or
entered as IN DATABASE db-name), then DB2 will define and allocate
a default table space for the table.

EDITPROC: Defines an editing routine to be invoked just after a
record (corresponding to a table row) is retrieved, and just
before a record is stored. Editing routines allow for data
compression/decompression and encrypting.

Chapter S. Data Definition 49
International Systems Center - Santa Teresa

VALIDPROC: Defines a validation routine to ba invoked just before
a record is stored in the tabla space. Validation routines allow
user checking of data entared into tables.

Some rules 	for edit- and validation routines:

• 	 DB2 passes the row and a description of tha row with all the
column names and data types to edit- and validation routines.

• 	 Routines set a return code to signal DB2 if the row may ba
inserted (or changed) into the table space.

• 	 Fialdslused for indexes are extracted by DB2 before passing
the row to the edi trout i ne for encodi ng. Index keys are
therefore always stored in external data format.

• 	 Routines may not invoke SVC or DB2 services.

The CREATE statement below is used to define the sample employee
table used in the previous chapters. See Figure 2 on page 7 for
reference.

CREATE 	 TABLE EMPLOYEE
(EMPNO CHAR(6) HOT HULL ,

LASTHAME VARCHARClS) HOT HULL,
WORKDEPT CHAR(3) NOT HULL,
PHOHEHO CHAR(4),
JOBCODE DECIMAl(3),
EDUCLVL SMALLINT.
SALARY DECIMALC8,2))

IN DSN8DAPP.DSN8SEMP

Defining an Index

Indexes are dafi ned to force uni queness wi thi n a table and to
improve performance. Multiple indexes may be defined per table.
An index may be defined on a single column or multiple columns.

The 	CREATE INDEX statement has the following format:

CREATE 	 [UNIQUE]
INDEX index-name
ON table-name

(column-name! [DESC],
column-name2)

USING 	 STOGROUP stogroup-name
PRIQTY kb SECQTY kb
ERASE NO I YES

BUFFERPOOL 	 BPx
CLOSE 	 YES NO
SUBPAGES 	 1 I 2 I 4 I 8 I 16
[CLUSTER]

IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

50

UNIQUE: If you want your table to contain only unique rows with
respect to the values of a column or multiple columns, you have to
specify UNIQUE. For example you want the employee numbers of the
employee table to be unique, whereas the last names tend not to be
unique.

Index name and Table name: Both follow the explanation given for
table names in section CREATE TABLE.

USING, BUFFERPOOL, CLOSE, and ERASE: Same explanation as for
CREATE TABLESPACE.

ON: Defines the column or columns on which the index is based.
By default the ordering is ascending (ASC), but individual
columns may be ordered in descending order (DESC).

SUBPAGES: Each physi cal page can be defi ned as consi st i ng of
between 1 and 16 subpages. A subpage is the uni t of index
locking. Physically, however. index pages are always stored as 4K
blocks. Physi cal blocks are the un its for data transfer.

CLUSTER: This optional specification defines the index as a
clustering index. DB2 will try to store the data rows of the base
table in sequence of the clustering index for faster sequential
access. A table may have only one clustering index. The first
index defined will be used as a clustering index if CLUSTER is not
specified.

A CREATE INDEX statement automatically allocates an index space,
scans the table, and bu i Ids the actual index. Indexes should
normally be defined before a table is loaded with data.

The following statement is used to define a unique index on
employee numbers for the employee table:

CREATE 	 UNIQUE INDEX XEMPNO
ON EMPLOYEE (EMPNO)

Defining a Pa~titiDning Index

A partitioned table (space) must have a clustering index which
defi nes the keyranges to be used to di vi de the table into
partitions.

The CLUSTER clause is extended for the specification of the
keyrange of each partition:

Chapter 5. Data Definition
International Systems Center - Santa Teresa

51

Deffnfng a

CREATE [UHIQUE]
INDEX index-name
ON table-name

(column-specification)

CLUSTER
(PART

PART
I
2

VALUES
VALUES

(limit-keyl-coll,
(limit-key2-coll.

colm),
colm) .

PART n VALUES (limit-keyn-coll, colm))

The number of partitions must match the NUMPARTS specification of
the associated table space. For each partition the limit-keys of
all the columns involved are specified. These are the highest key
values (for descending columns the lowest key values) to be stored
in that partition of the table (space).

View

A view is nothing more than a "virtual" table which is derived
from one or more base tables. The definition of a view is stored
in the form of a SQL SELECT statement. The view appears to be a
table which can be queried and in certain cases updated in the
same way as a real table.

The CREATE VIEW statement is used to store the definition of the
view:

CREATE VIEW view-name
(column-name, .••)

AS SELECT
[WITH CHECK OPTION]

Viewname: Is handled exactly like a table name. The viewname is
prefixed with an authorization-id either explicitly by the user,
or automatically by DB2.

Columns: Optional, used to substitute one or more names for
columns in the view. If no column names are given, the columns of
the view will have the same names as the columns of the underlying
base table(s). If the view is a join of two tables which include
identical column names then new column names must be assigned.

AS SELECT ••• : Substitute a SELECT statement that defines the
view. This SELECT statement may include a WHERE clause with a
search condition, a GROUP BY clause. a HAVING clause, but no ORDER
BY clause. The SELECT statement may be based on multiple tables
and/or other views.

WITH CHECK OPTION: Indicates that all updates and inserts using
the view are to be checked against the view definition. The
checking involved was presented in "Chapter 4. SQL Data
ManipUlation" section "Using Views" on page 29.

52 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

Note: Remember that only simple views which are rowand/or column
subsets of one base table may be updated.

Examples of Views

• Column subset

CREATE VIEW EMPNAME
AS SELECT EMPNO, LASTNAME

FROM EMPLOYEE

A SELECT without a WHERE clause retrieves all the rows of a
table.

• Row subset

CREATE VIEW DEPTDII
AS SElECT *

FROM EMPLOYEE
WHERE WORKDEPT=Dll

If the view definition has a SELECT * clause, the view will
have as many columns as the underlyi ng table. New columns
added later to the table will not appear in this view.

• statistical data

CREATE VIEW AVGSAL (DEPT, AVGSAl)
AS SELECT WORKDEPT, AVG(SALARY)

FROM EMPLOYEE
GROUP BY WORKDEPT

This view includes one row per department, with two columns
containing the department number and the average salary.

Defining a synonym

Synonyms are alternate names for tables or views. The format of
the CREATE SYNONYM statement is:

CREATE 	 SYNONYM synonym
FOR authorization-id.table-name

A common use of synonyms is when a group of users all wi sh to
share a table. One user, JONES, creates a table called TEMPL.
Each other user can refer to that table using the fully qualified
name JONES.TEMPL, or each user defines a synonym for the table as
shown below, and refers to it as EMPLOYEE.

CREATE 	 SYNONYM EMPLOYEE
FOR JONES.TEMPL

Chapter 5. Data Definition S3
International Systems Center - Santa Teresa

ALTER 	 Statelllent

SQL ALTER statements are used to modi fy attri butes of the physi cal
design. Hot all changes of the physical design may be implemented
through an ALTER statement. Some changes may only be executed by
deleting the current definitions (SQL DROP Statement) and
redefining the objects.

Changing a storage Group

DASD volumes may be added to or removed from a storage group by an
ALTER STOGROUP statement:

ALTER 	 STOGROUP stogroup-name
ADD VOLUMES (volser, •••)
REMOVE VOLUMES (volser, •••)

Data (table spaces) which already exists on volumes being removed
from a storage group is not affected by the ALTER statement.
However, a new table space wi 11 no longer be allocated to a
"removed" volume.

Changing a Table Space

The ALTER TABLESPACE statement is used ~o change the processing
options associated with a table space:

ALTER 	 TABLESPACE db-name. space-name
BUFFERPOOL BPx
LOCKSIZE ANY PAGE I TABLESPACE
CLOSE YES NO

Changing a Table

The ALTER TABLE statement is used to add one new column to an
existing table, or to change the name of the validation routine
associated with the table.

ALTER 	 TABLE table-name
ADD column-name data-type
VALIDPROC validation-routine I NULL

When a column is added to a table, all values of this column are
implicitly set to the null value. A new column cannot be defined
with the NOT NULL option. Non null values are stored in existing
rows of the table through SQL UPDATE statements.

Other modifications to a table like deleting a column, changing
the data type of a column, or changing the edit-routine, are not
allowed through an ALTER statement. For these changes the table
must be deleted (DROP statement) and recreated. This is presented

S4 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

later in this chapter in section "Modifying the Design" on page
56.

Changing 	an Index

Minor changes to the definition of an index can be applied with
the ALTER INDEX statement:

ALTER INDEX index-name
BUFFERPOOL BPx
CLOSE YES I NO

DROP statement

The SQL DROP statement is used to remove permanently from DB2 the
specified object, and all other objects which are directly or
indirectly dependent on the one being dropped.

DROP STOGROUP: DB2 does not allow a DROP STOGROUP as long as
there is a table space associated with it. You must first drop
all the table spaces (and probably save the table data before
that), before you are allowed to drop the storage group.

DROP DATABASE: Removes all the data (table spaces, tables,
indexes) associated with the data base.

DROP TABLESPACE: Removes all the tables of the table space, and
all the indexes and views based on these tables.

DROP TABLE: The specified table is deleted from the table space,
and all indexes and views based on the table are removed too. The
contents of the table are lost. If the associ ated table space was
created implicitly together with the table, it is dropped too.
The physi cal storage of the table is recla i med when the table
space is reorganized.

DROP INDEX: Removes the definition and the data of an index. For
applications which were using the index DB2 will automatically
re-evaluate the data needs at their next usage and find alternate
paths to access the required data.

DROP VIEW: Removes the definition of the specified view, and of
all other vi ews based on thi s vi ew, from the system. The
underlying table(s) on which the view is defined are not affected.
Applications using the view are invalidated and may not be
executed any more.

Chapter S. Data Definition SS
International Systems Center - Santa Teresa

To enable these appl i cat ions aga i n you have to:

• 	 change the SQL statements in the appli cati on to use base
tables or other vi ews, or

• 	 redefi ne vi ews wi th the same name, Or

• 	 assign synonyms with the deleted views names to other views,
and

• 	 have the appl i cat i on data access paths re-evaluated (thi s
process i s ca11 ed B I NO and i s expl a i ned in "Chapter 7.
Appli cat ion Programmi ng Env ironment" sect ion "Creat i ng an
Application Plan (BIND)" on page 95).

DROP SYNONYM: Removes an alternate table or view name from the
system. Applications using this name are affected in the same way
as when views are dropped.

COMMENT ON 	 Statement

To document the desi gn of tables SQL provides the COMMENT ON
statement. This allows the user to associate one line of text
with a table, and one line of text with each column of a table.

COMMENT ON 	 TABLE table-name
IS 'text-string'

COMMENT ON 	 COLUMN table-name. column-name
IS 'text-string'

The text may be up to 254 characters. It is stored in the DB2
Catalog and may be queried by SQL SELECT statements on catalog
tables. The DB2 Catalog is presented in "Chapter 10. The DB2
Catalog" on page 121.

MODIFYING THE DESIGN

Modifying a data base is an extension of data base design and
implementation. The primary means of changing a DB2 data base is
either by using the ALTER statement or by dropping an object and
re-creating it with different specifications.

As we have seen in a previous section, the possibilities of the
ALTER statement are limited to the changing of processing options
(locking, bufferpools, etc) and adding new columns to a table.
Other changes can only be implemented by deleting (dropping)
existing definitions, and creating new ones.

56 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

Modifying Tables

Modi fyi ng a table does not mean changi ng the data wi thi n the
table. It means to change the original specifications used when
creating the table. The scope of the ALTER statement is limited
to adding new columns, and to change validation routines. See
"Changing a Table" on page 54.

The following definitional changes to a table must be performed by
dropping the table and recreating it:

• 	 Changi ng the data type of a column

• 	 Changing the precision/length of a column

• 	 Changi ng if nulls are allowed or not allowed

• 	 Changing the edit-routine specification

• 	 Removing a column

Table Re-Creat;on Procedures

As presented in "DROP TABLE" on page 55, dropping a table deletes
the table data and removes all the indexes and views based on the
table. Therefore the following steps are necessary when changing
the definition of a table:

1. 	 Defi ne a new table wi th all the changes usi ng a di fferent
name. Column names may be the same or different, but data
types must be compatible.

2. 	 Define all the necessary indexes on the new table.

3. 	 Copy the old data into the new table:

INSERT 	 INTO new-table
SELECT * or SelECT columns

FROM old-table

4. 	 Drop the old table (this deletes all the views too).

5. 	 Restore the original table name as a view of the new table:

CREATE 	 VIEW old-table
AS (SELECT *

FROM new-table)

6. 	 Define views corresponding to those of the old table. They
can be defined based on the new table, or based on the view
wi th the old table name.

7. 	 Recreate the authorization for the table and views.

Chapter 5. Data Definition
International Systems Center - Santa Teresa

57

"odlfylng a vleN

In many cases, changing user requirements could be satisfied by
modifying an existing view. For example, the user wants to change
the names of columns.

You cannot change a vi ew di rectly, there is no ALTER VIEW
statement. You have to drop the view and redefine it. This will
i nvali date appli cat ions usi ng the view and DB2 wi 11 dynami cally
re-evaluate the access paths of these applications when they are
invoked the next time.

"odifying the Definition of Tabla Spaces

Some of the processing options for table spaces may be changed by
the ALTER TABLESPACE statement presented earlier in this chapter.

Any other change to the table space must be done by dropping and
redefining it. The steps involved are similar to those involved
in dropping and redefining a table.

"odifylng and Adding Indexes

Only the CLOSE and BUFFERPOOL option of an index may be changed by
the ALTER INDEX statement. Any other change to the definition of
an index must be done by dropping the index and recreating it.

All applications using a table should have their access paths
re-evaluated when an index is dropped or added. This is done
automatically at the next invocation of the application when an
index has been dropped. However, existing applications are not
re-evaluated when new indexes are added. It is the users or data
base administrators responsibility to have these applications
re-evaluated (by using the REBIND command).

58 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

CHAPTER 6. DATA MANAGEMENT

In thi s chapter we look how DB2 manages the physi cal data of
relational tables. The physical data management is presented in
the first section, then we look at the management of concurrent
access (locking), and finally how data is loaded into DB2 data
bases.

DATA SPACE MANAGEMENT

In "Chapter 5. Data Definition" we have seen the logical objects
DB2 uses to manage table data. Now we look more into the physical
organiZation.

All the data in a DB2 data base is stored in VSAM entry-sequenced
data sets (ESDS). You can define and maintain these VSAM data
sets yourself or let DB2 do it. If you wish to do it yourself, you
will need to use the VSAM Access Method Services to define and
delete the data sets. If you let DB2 take care of your external
storage, you will need to create one or more storage groups. A
storage group is a DB2 object that is a set of DASD volumes of a
single device type, to which a name is assigned.

letting DB2 manage the Data Sets

Hav i ng defi ned one or more storage groups as presented in the
previous chapter in section "Defining a Storage Group" on page 46,
DB2 wi 11 handle your external storage sati sfactori ly for most
cases. Here is what DB2 does for you when you use storage groups:

• 	 Defines the necessary VSAM data sets using VSAM Access Method
Services

• 	 The data sets are automatically deleted when a table space is
dropped

• 	 A new data set is automatically allocated when the limit
number of bytes of a data set is reached for a simple table
space

You should make use of storage groups whenever you can. Letting
DB2 manage your external storage will make data management
easier.

Chapter 6. Data Management
International Systems Center - Santa Teresa

59

YSAH Datasets

Data of relational tables is stored in VSAM ESDSs. A data space
used by DB2 to store data can be:

• 	 A table space wi th one or more tables

• 	 An index space containing one index

DB2 uses VSAM for DASD space management and data set cataloging.
However, after the data sets are created, they are formatted and
used by DB2 and are not processable by YSAM services.

simple Table Spaces

Simple table spaces contain one or more tables. The size of a
simple table space is limited to 32 YSAM ESDSs of up to 2 GB
(gigabytes) each, thus allowing for a total of 64 GB.

How 	 DB2 manages a simple table space:

• 	 Initially DB2 allocates one data set of the size given in the
PRIQTY parameter of the CREATE TABLESPACE statement.

• 	 Secondary extents are allocated as necessary up to the YSAM
limit of 123 extents. or until the limit size of 2 GB is
reached. Each secondary extent is of the size given in the
SECQTY parameter (CREATE statement).

• 	 If, and only if, the 2 GB limit size of one data set is
reached, DB2 allocates another data set up to the maximum of
32 data sets.

Partitioned Table Spaces

Partitioned table spaces contain a single partitioned table.
They are divided into up to 64 partitions with a total size of up
to 64 GB. Each partition is one VSAM ESDS, and all the partitions
have the same maximum size. The relationship between number of
partitions and the maximum partition size is illustrated in
Figure 9 on page 61.

IBM DATABASE 2 Concepts and Facilities Guide
International Systems Canter - Santa Teresa

60

Number of partitions Maximum partition size

1 	 16 4 GB (gigabytes)

17 32 	 2 GB

33 64 	 1 GB

Figure 9. Number and Size of Partitions

How 	 DB2 manages a partitioned table space:

• 	 Initially DB2 allocates a data set of the size given in the
PRIQTY parameter of the CREATE TABlESPACE statement.

• 	 Secondary extents are allocated as necessary up to the VSAM
limit of 123 extents, or until the limit size of the partition
is reached. Each secondary extent is of the size given in the
SECQTY parameter (CREATE statement).

User defined Datasets

You may elect to control the external storage of table spaces
yourself by defining and maintaining data sets using VSAM Access
Method Services. Some reasons why you want to do that are:

• 	 Depending on your requirements you may wish to allocate data
sets on specific cylinders of a volume.

• 	 The defaul t stagi ng parameters DB2 uses for MSS data sets
(STAGE, HODESTAGEWAIT) may not satisfy your requirements.

• 	 DB2 does not use TO and FOR parameters when defining a data
set. Thi s means that clusters may be deleted any time. If
you wish to prevent deletion of a data set before a specific
date or before a certain number of days have elapsed, then you
must create and manage your own VSAM data sets.

Managing DB2 external storage yourself involves a number of
steps:

1. 	 Defi ne the requi red data sets before you issue a CREATE
TABlESPACE or CREATE INDEX statement. You need a data set for
each simple table space, each non-partitioned index, each
partition of a partitioned table space, and each partition of
the index of a partitioned table space.

Chapter 6. Data Management
International Systems Center - Santa Teresa

61

• 	 Data set naming conventions must be strictly followed:

Ysamcat.DSNDBx.dbname.spacename.IOOOI.Annn

ysamcat = VSAM catalog name
DSNDBC = for cluster
DSHDBD = for data component
dbname = name of DB2 data base
spacename = name of tablespace or indexspace
10001 = constant
Annn = AOOI for first data set or partition

= A002 for second ...

• 	 The data set must be defi ned as NONlNDEXED, wi th a
RECORDSlZE of 4089, a CONTROLlNTERVALSlZE of 4096, and
SHAREOPTlONSC3,3).

• 	 Some options may be specified but will be ignored by DB2
during processing: SPAHHED, REUSE, SPEED, BUFFERSPACE,
WRlTECHECK, EXCEPTIOHEXIT.

• 	 Example:

DEFINE CLUSTER
(HAMECCAT1.DSNDBC.PERSOHHEL.EMPlOYEE.l0001.A001)

CYlINDERSCIOO 10) VOLUMESCWORKOl) HOHlNDEXED
COHTROllHTERVAlSlZE(4096) RECORDSlZE(4089)
UHIQUE MASTERPW(ZUERICH) ERASE
SHAREOPTlOHS(3 3))

DATA SN.
(HAMECCATI.D~SDBD.PERSOHHEl.EMPlOYEE.l0001.A001» -

CATAlOGCCATl/BARBARA)

2. 	 Define additional data sets for expanding tables. Increment
the data set number at the end of the data set name. DB2
issues a warn i ng message when the si ze of the data set
approaches 2 GB.

Data Page "anagement

The rows of the relational tables are stored in data pages. A
data page is either 4K or 32K bytes, and is stored as 1 or 8 VSAM
control intervals of 4K bytes.

The rows stored ina page are also called records. A row is
always fully contained within a page, no row (or record) will span
across two pages.

Records within a page are addressed by a 4-byte Record-ID (RID) as
illustrated in Figure 10 on page 63.

62 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

Row 	 Format

> PAGE

page
identification Row/RecordI I

A
..................

free space

I
I I I I I I I I I I I I

3 1 	 A

IRID

(Record-ID) offset from page foot

Figure 10. Row Addressing within Page by Record-ID

This record addressing schema combines the speed of direct
addressing with the flexibility of indirection. Records may be
moved within a page without any restriction.

Records are added to pages in load sequence. For a table space
with one single table the rows may be physically stored in the
sequence of a clustering index through the reorganization
utility.

Rows or records are stored in a data page as a contiguous string
of characters. Rows may be encoded through a user written edit
routine defined with the CREATE TABLE statement (see "Defining a
Table" on page 49).

Non-encoded rows are stored in one of two basic formats:

1. 	 Fixed length rows (of tables without varying length character
fields) are just byte strings. All fields in the row are
fixed length and byte aligned.

Note: When a new column is added to a table with fixed length
rows, the rows will be treated as variable length rows, even
if the column is of fixed length.

Chapter 6. Data Management 63
International Systems Center - Santa Teresa

Fixed length field. nulls not allowed:

Fixed 	length field. nulls allowed:

IX'OO'I value not null

null

Variable length field, nulls not allowed:

IX'OOI2'IDEVElOPMENT CENTERI

IX'FF'I

VARCHAR value of zero length

Variable length field. nulls allowed:

IX'OOOI'IX'FF'1 null

Figure 	II. Field Formats used by DB2

2. 	 Variable length rows contain one or more varying length
character fields. Each varying length field has a two-byte
length prefix. The value of the length prefix does not
include this prefix. There are no gaps after varying length
fields. All fields are stored contiguously, each one is byte
aligned.

If null values are allowed for a field. an extra indicator byte is
stored in front of the field value. This byte is X'OO' if the
field value is not null, and X'FF' if the field value is null.
For a varying length field which allows null, the indicator is
stored after the length prefix in front of the data value. The
length does include the indicator byte.

64 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

See Figure 11 on page 64 which summarizes the different field
formats used.

All numeric fields are encoded by DB2 so that the logical compare
(ClC) instruction can be used to compare field values for all data
types. INTEGER fields for example are encoded by inverting the
high order sign bit.

Free Space Management

Free space within a page is handled by DB2 and not by VSAM. Rows
deleted from the table are noted as free space within the page.
When space is required for new rows or lengthened rows, DB2 will
use the page's free space, or gather free space of deleted rows by
packing active rOW5 together. If not enough space is available
within the page, the row i5 stored according to an insert
strategy.

Index Management

DB2 indexes are stored in index spaces. An index space is similar
to a si mple table space, except that each index space handles
exactly one index. The index space is created with the CREATE
INDEX statement, there are no DDl statements for index spaces as
such. Indexes and table data are stored in separate data sets.
They logically belong to the same DB2 data base.

The physical page size in an index space is always 4K bytes. Each
physical page consists of between 1 and 16 subpages.

Indexes are implemented as tree structures resembling the VSAM
index implementation. See Figure 12 on page 66 illustrating an
index tree structure for a clustering index. For a non-clustering
index the arrows (pointers) from the index leaf pages would point
to data pages in random order.

Sequential access of the table data in index sequence is using
leaf pages only, whereas di rect access uses all levels of the
index tree.

Three levels of an index structure can handle approximately 8
mill i on records (rows). The index tree remai ns balanced even
after insertions and deletions.

Chapter 6. Data Management
International Systems Center - Santa Teresa

65

2 6 9 Root
5 6 9 Paga

>I I

v v

1 2 3 4 6 Intarmadiata
865 6 4 6 Pages

I I I I
v V V V V V

Laaf
1 •.. 8 >U->~>~>Lj->U-> Pagesg nnnnn

~ ~ ~ ~
V VV VVVV V VVV VV VVVVVVV V v

CJ D D Data
PagesCJ o DO CTABlESPACE)

Figura 12. Index Traa Structura (Clustaring Indax)

Buffer Hanagement

DB2 can handla up to four bufferpools CBPO,8PI, 8P2, and 8P32K),
each of whi ch may conta ina large number of buffers.

Within a buffarpool, all tha buffers ara of tha sama siza.
Buffers are chainad together on a "use chain," that is, they are
chained together in the order in which they have been last used.
More recently used buffers are at the top of the use chain; less
recently used buffers are at the bottom. When a buffer is needed,
DB2 5elects the buffer at the bottom of the chain.

IBM DATA8ASE 2 Concepts and Facilities Guide
International Systems Center - Santa Tarasa

66

CONCURRENCY CONTROL - LOCKING

DB2 allows any number of readers and updaters simultaneously
against tables. The necessary locking/unlocking is performed
automatically by the system (at table space or page level); the
user does not have to request and/or release locks explicitly.

The 	general rules for data consistency are:

• 	 All modifications are subject to commitment.

• 	 An application can never access data which has been updated by
another application and is not yet committed.

• 	 All pages updated are locked for exclusive use until
commitment, at which time all page locks will be released.

DB2 employs locks to support data integrity, that is, to ensure
that there is no undesi rable interference between concurrent
usage of data. While this mechanism guarantees the integrity of
data it also affects the availability of the data to applications.

The data uni ts of locks are table spaces and pages. Pri or to
accessing a table. DB2 will acquire a lock on the table space.
The level of locki ng is dependent on the type of SQL request
against the table. The level determines whether the table space
is to be shared concurrently with other users, and what operations
(read-only or update) other users may perform.

In addition to the locks at the table space level, individual
pages may be locked when they are referenced.

Table Space Locks

The 	 types of table space locks are summarized in Figure 13 on page
68. Table space locks are acquired during allocation of DB2
resources. e.g. normally when the application program issues the
fi rst SQL call.

The actual level of table space locking is dependent on the intent
of the application (reference or change) against the table, and
the LOCKSIZE attribute of the table spaCQ. The LOCKSIZI;.. is
specified with either the CREATE or ALTER TABLESPACE statement.
The matrix of Figure 14 on page 68 shows the choice of lock
acquired at the table space level.

Chapter 6. Data Management
International Systems Center - Santa Teresa

67

S Share - Application references
only), and shares it with other
No page locks are necessary.

the table space (read
read-only applications.

X Exclusive -
table space.

Application requests exclusive
No page locks are necessary.

use of the

IS Intent Share - Application only references the table
space, and tolerates other updating applications.
Individual page locks at share level are necessary.

IX Intent Exclusive - Application makes changes to the
table space, and tolerates other updating applications.
Individual page locks at share or exclusive level are
necessary.

SIX Share with Intent Exclusive - Application makes changes
to the table space, and tolerates other read-only
applications. Individual page locks at exclusive level
are necessary for pages being updated.

Figure 13. Types of Table Space Locks

When the LOCKSIZE has been set to ANY, DB2 wi 11 select the
appropri ate locki ng level. Thi s level is determi ned by the
request, whether a few or many pages of the table space will be
involved in the satisfaction of the request. If only a few pages
are affected, page locking protocols will be employed; if many
pages are affected, table space locking is selected.

Application LOCKSIZE of CREATE TABLESPACE
Intent

I
V TABLESPACE PAGE ANY

Reference
S IS S or IS

(Read-only)

Change
X IX X or IX

(Update) or SIX or SIX

Figure 14. Table Space locking

68 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

Lock statement

Page Locks

COlllmit/Rollback

Hote: In certain circumstances DB2 may decide to override
LOCKSIZE=PAGE and use table space locking (only S or X locks).
The user is always informed on this decision.

The user is allowed to request an explicit lock on the table space
through the SQL LOCK statement.

LOCK TABLE table-name IN SHAREIEXCLUSIVE MODE

Although a table is named in the LOCK statement the table space is
actually locked at share (S) or exclusive (X) level. SHARE mode
allows concurrent readers (but not updaters), whereas EXCLUSIVE
will not permit any other application to access the table space.

By acquiring a single lock on a table space performance may be
enhanced consi derably compared to the locki ng of i ndi vi dual
pages. On the other hand. the LOCK statement in general delays
other applications until the program has terminated.

Page locks are essentially concerned with concurrent usage of a
table space where at least one user is updating. A page lock is
for shared (5) use (other applications may concurrently read), or
exclusive (X) use (no other application may access the page in any
way). The choice of shared or exclusive is made depending on
whether the operation performed is read (share lock) or update
(exclusive lock).

Page locks are also appl i ed to index pages. Index pages may
contain data (keys) whi ch are uncommi tted. and are therefore
locked individually. Index locks are on a subpage rather than a
physical page (4K bytes).

Changes in DB2 tables must ei ther be commi tted or di scarded.
Committed changes are final and the changed data is available to
other appl i cat ions. Di scarded changes are removed from the
tables and the original data is available again to other
applications.

COHHIT: Is automatically executed at the "normal" end of an
application. It can also be invoked through the SQL COMMIT
statement:

COMMIT

Chapter 6. Data Management
International Systems Center - Santa Teresa

69

COMMIT releases all locks on pages acquired since the last commit
point. All changes to table data are available to other users.
Changes can no longer be backed out."

ROLLBACK: Is invoked through the SQL ROLLBACK statement:

ROLLBACK

ROLLBACK removes all changes done by the appl i cat i on from the
tables. All locks on pages are freed as for COMMIT. The original
data in the tables is available to other users.

Note: The COMMIT and ROLLBACK statements are only available in
the TSO environment. Similar functions with an identical effect
are available in IMS and CICS environments (see "Commit/Rollback"
on page 86).

Note: Tablespace locks are only freed when the application
terminates. The exception to this is in CICS, where in certain
situations tablespace locks may be freed at commit time.

Deadlocks

In acquiring locks dynamically with DB2 it is possible that two
(or more) requesters will become involved in a deadlock
situation. Such a deadlock is resolved by DB2 based on the number
of log records written on behalf of each requester.

In the TSO environment the reque~ter with the least number of log
records written since the last commit point will receive an error
return code to the SQL request which caused the deadlock.

In IMS and CICS environments the selected requester is abended
(with possible ROLLBACK) as in current DL/I application programs.

Data Definition Effect on Concurrency

Data definition operations (CREATE, ALTER, etc) performed on a
data base can lock out the following activities until the work is
committed or rolled back:

• 	 Other definitional operations on that data base.

• 	 Utility operations on that data base. Those already in
progress are NOT suspended.

• 	 Any dynamic SQL statements being prepared/executed.

• 	 Any BIND operations against that data base. (BINDing is the
process of finding the best access paths to table data and is
presented in "Chapter 7. Appl i cati on Programmi ng
Environment").

7~ IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

LOADING TABLES

Data can be loaded into DB2 tables by two different methods:

1. 	 Using the LOAD utility. The LOAD utility loads data from a
sequential data set into DB2 tables.

• 	 Input from the sequential data set may be reformatted.

• 	 Input data set may be created by SQL/DS.

• 	 Input may be created by the DXT program product.2

2. 	 Using SQl INSERT statements ina user program or
interactively.

Load ut il i ty

The LOAD utility loads data from a BSAM sequential data set or
SQL/DS unload tapes into DB2 tables. Like all DB2 utilities it
runs as a JES- or TSO-initiated batch job under MVS.

You can use the uti Ii ty to load an empty table, or to resume
loading a table that has already been partially loaded. LOAD both
loads records into one or more tables and builds any indexes you
have defined for the table(s). The utility executes in three
phases:

1. 	 The load phase is a sequential pass through the input data set
loading the table and writing work records for indexes.

2. 	 The sort phase sorts the work records.

3. 	 The build phase creates all the indexes from the sorted work
file.

Before updating a table built using the LOAD utility, you should
make an image copy of it using the COpy utility. This
requirements ensures that you can recover that data to its loaded
state. The recovery utilities (including COpy> are presented in
"Chapter 11. Operation and Recovery."

2 	 Data Extract (DXT), Program Number 5668-973

Chapter 6. Data Management 71
International Systems Center - Santa Teresa

Formatting capabilities of tha LOAD utility:

• 	 Load multiple table5 from one sequential input data sat.

• 	 Load one field of the input records into multiple tables.

• 	 Truncate input data to fit into table column width.

• 	 Select which fields in the input data set contain data for
tables, loading from some and ignoring others.

• 	 Convert from external print format into internal table
format.

• 	 Load fields of one data type into columns of another
compatible data type (e.g. INTEGER into flOAT). The LOAD
utility automatically performs conversion.

• 	 Load only from selected input records through the
specification of a search condition.

The 	LOAD utility is controlled through a LOAD statement:

LOAD 	 DATA
INDDN ddname
RESUME NO I YES
LOG YES I NO
WORKDDN SYSUTl I ddname
SORTDEVT device-type
SORTNUM number-of-sort-ds
CONTINUE IF (startpos:endpos) = [Xl'string'

INTO 	 TABLE table-name
(fieldname,

fieldname datatype,
fieldname POSITION(start:end) datatype,
fieldname •.• NUlLIF(start:end) = [Xl'string',
...)

PART partition-number
FORMAT UNLOAD I SQUDS
WHEN (startpos:endpos) = [Xl'string'

fieldname = [Xl'string'

INDDN: Names the DDNAME of the input data set.

RESUHE: loading into an empty table, or resume loading into an
existing table.

LOG: Logging may be suppressed to speed up the load process, but
the utility must be restarted from the beginning if loading fails.

WDRKDDN: Ddname of the work file when loading an indexed table.

SDRTDEVT and SDRTNUH: Specification of number and device type of
SORT work data sets.

72 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

CONTINUE IF: Specifies which input ~eco~ds of the input data set
a~e followed by continuation ~eco~ds.

INTO TABLE: Hames a table to be loaded. Multiple INTO TABLE
statements may follow a LOAD statement, each identifying a table
to be loaded f~om the input data set. The list of field names
specifies the table columns to be loaded, and the position and
data type of these fields in the input data set. If the POSITION
is not. specified it is assumed to be just after the previous
fi eld, if the data type is not speci fi ed it is assumed to be
identical to the column in the table. In addition to the data
types supported for table columns, the data type of numeric fields
may be qual i fi ed by the keywo~d EXTERNAL. Fi elds in EXTERNAL
format are printed numbers with optional sign and decimal point
(e.g. 234, -3.5). If the data types of input and table column are
different the load utility will conve~t the input into the table
format.

PART: Specifies that only one partition of a tablespace is
loaded.

FORHAT: If FORMAT is specified then no field list is allowed
since the format is uniquely predefined to be either the DB2
UNLOAD format, or the SQL/DS unload format. No data conve~sions
may be performed with FORMAT specified.

WHEN: Optionally specifies which records of the input data set
are to be loaded into the table. The condition may be exp~essed
as either a field of the table or a position in the input record
to be compared to a constant.

Example: Load of the employee table from records of an 'EMPDS'
input data set which have 'ZCH' in position 7 to 9. The sequence
of the fields in the input records is: EMPHO, constant, WORKDEPT,
LASTNAME, PHONENO, JOBCODE. EDUCLVL, and SALARY. All the numeric
fields are in printable format.

LOAD DATA
INDDN EMPDS
STATS DETAIL

INTO TABLE EMPLOYEE
(EMPNO.

lASTNAME CHAR(15) POSITION(13:27).
WORKDEPT POSITION(lO:12)
PHONENO POSITION(28:31),
JOBCODE DECIMAL EXTERNAl(3),
EDUCLEVL SMALLINT EXTERNAL(2),
SALARY DECIMAL EXTERNAL(lO»

WHEN (7:9) = 'ZCH'

Chapter 6. Data Management
Inte~nat;onal Systems Center - Santa Teresa

73

Data Extract (DXT)

The Data Extract (DXT), program ~umber 5668-973, extracts data
from files resi di ng in IMS DL/I data bases, VSAM and SAM data
sets. The extracted data ;s collected into files meeting the
input format for the DB2 load utility.

DXT operates in an MVS environment. For processing VSAM and SAM
data sets, DXT runs as a standard batch job. When processi ng DLI'I
data, DXT runs as ei ther an IMS batch or BMP job. DXT can
communicate with a user or product executing on another processor
be means of RSCS, JES2, or JES3 networking. See Figure 15 on page
75 for the operating environment.

DXT dialogs enable users of DXT to interactively construct
extract requests through ISPF menu driven screen facilities. The
dialog feature includes:

• model extract requests that the user may tailor to his needs

• panels that help the user with execuH on JCL

• facilities to automatically submit DXT jobs for execution

Data descriptions stored in the DB/DC Data Dictionary are
optionally available to the DXT user via a DXT interface program.

DXT is not desi gned for use by cmd users. Normally a DP
professional would define and set up extract requests.

IBM DATABASE 2 Concepts and Fac; Ii ti es Gui de
International Systems Center - Santa Teresa

74

MVS
I I
DVI (V)SAM Operating

Data Base - Fi les ~ System

~
I

!V

DXT

Data Extract

I
> DB2 > DB2

load Utllity Tables

V J
> SQVDSI SQL/DS

OBS Ut1l1ty Tables r-I
DOSI'VSE or VM

Figure 15. Data Extract CDXT)

Chapter 6. Data Management
International Systems Canter - Santa Teresa

75

IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

76

CHAPTER 7. APPLICATION PROGRAMMING ENVIRONMENT

In this chapter we look at application programming in a DB2
environment. The most important difference between application
programming with DB2 and application programming with other data
base systems is the data manipulation language. The same language
introduced in "Chapter 4. SQl Data Manipulation"and "Chapter 5.
Data Definition" is used in DB2 application programs. Some
further SQl statements may only be used in application programs.

LANGUAGE SUPPORT

DB2 application programs may be written in PL/I, COBOL, FORTRAN,
and ASSEMBLER LANGUAGE. The same SQl statements may be embedded
in any of the supported languages.

SUBSYSTEM SUPPORT

An application program using DB2 tables can be written as IM5/VS
BMP (Batch Message Processing Pro~ram), MPP (Message Processing
Program), or MFP (Message dri yen Fast Path Program) , a CIC~/V5

transaction, or a T50 batch job. The DB2 data base requests:are
the same in all these environment~. Special considerations
regarding the different environments will be presented in later
chapters.

APPLICATION DEVELOPMENT CYCLE

Figure 16 on page 78 shows the flow of how an application program
is prepared, compi led, and executed ina DB2 envi ronment. The
steps, each of which will be presented in more detail in this
chapter, are:

DCLGEN: Generation of declarations of tables as source language
data structures. From table definitions stored in the DB2
Catalog, declarations of rows as source language structures are
generated for Pl/I or COBOL programs, and stored as members of a
partitioned data set.

PRECOMPILE: The DB2 precompiler analyzes the application source
program, and includes table declarations from a partitioned data
set. SQl statements are saved as a DBRM CData Base Request
Module) in a partitioned data set, and replaced in the source
program by calls to a DB2 interface module.

Chapter 7. Application Programming Environment
International Systems Center - Santa Teresa

77

••••••••••••

• •••••••••••

••••• ••••••

• •••••••• •

• •••••••• • ••••••••••••

• •
• •

• •

• •
• •
• •••••••••

• •••••••••
• •
•••••••••••

••••••••••••

••••••••••••

••••••••••••

• •••••••••••

• •••••••••••

••••••••••••

• •••••••••••

••••••••••••

••••••••••••

CREATE
tables
views
etc.

• v •

• ITable
• Def I •

•

• CATALOG •

· I Appl 1<
• Plan •

>

Figure 16.

tCLGENI-->·I··;:~;:····I-->
Structures

I
r
V

v ••••••••••••
D.t. B.s.

<-- RequestIBIND
Module

DBRM

I Tables IInterface I
(Data) Module -->I

I

V

Application

Program <

EXECUTION

SQL - Calls

Application Development Cycle

.."AppHc.

Program

Source

v

PRECOMPILE

1-___--....1

V

Modi fhd

Source

I
V

COMPILE/
LINK

V

Load

Module

IBM DATABASE 2 Concepts and Fact I; ties Gui de
International Systems Center - Santa Teresa

78

BIND: The BIND process finds the access paths for the SQl
requests of the DBRM. based upon table definitions. available
indexes, etc. The results of BIND are stored in the catalog as an
application PLAN.

COHPILE and LINK: Standard compilation by a language processor
and subsequent linkage editing. A DB2 language interface module
is link edited to the application load module.

EXECUTION: The load module is executed. With the first SQl call
the application PLAN is loaded and tables are accessed using the
search strategy established during BIND.

PROGRAM STRUCTURE

The structure of a SQl application program does not differ from
the structuring of any other program. In the following sections
the actual techniques and facilities of SQL specific coding are
presented.

EMBEDDED SQL

SQL statements are embedded in application source code anywhere
in the program. They wi 11 be analyzed by the PRECOMPILER and
replaced by valid statements in the host language.

In addition to the SQL data manipulation and data definition
statements presented in earlier chapters. SQl statements unique
to application program coding are available. These include
special support for declarations of tables, SQl communications
area, and usage of host variables within SQl statements.

SQL Statement Format

When SQl statements are embedded in programs they requi re some
delimiters to set them apart from programming language
statements. Followi ng are the convent ions used in programmi ng
language source code:

PL/I: SQL statements are preceeded by EXEC SQL and terminated
with a semicolon (;). They must be within columns 2 to 72.

*EXEC SQl SELECT
FROM EMPLOYEE

WHERE EMPNO = '00010'

Chapter 7. Application Programming Environment 79
International Systems Center - Santa Teresa

COBOL: SOL statements are preceeded by EXEC SOL and terminated by
END-EXEC. They must be within columns 12 to 72.

EXEC SQL SELECT M
FROM EMPLOYEE

WHERE EMPNO = '00010'
END-EXEC

ASSEMBLER: SOL statements are preceded by EXEC SOL and continued
on subsequent cards by standard practice with a non-blank
character in column 72.

EXEC SQL 	 SELECT M

FROM EMPLOYEE
WHERE EMPNO = '00010'

FORTRAN: SQL statements follow FORTRAN coding conventions with a
continuation indicator in column 6. They must be within columns 7
to 72.

EXEC SOL SELECT *
C FROM EMPLOYEE
C WHERE EMPNO = '00010'

Note: All the examples presented later in this chapter are coded
as EXEC SQL statements without the language specific terminator
or continuation character.

INCLUDE Statement

DB2 provides a facility to include source code from a library into
the program. This function is very similar to XINCLUDE in PL/I
programs, and COpy in COBOL and ASSEMBLER.

EXEC SQL INCLUDE member-name

Any kind of source code may be included through the SOL INCLUDE
statement. The included code may contain language source and/or
SQL statements. One restriction must be noted however:

• 	 Nested INCLUDE's are not supported. that is, the included
code must not contain EXEC SQL INCLUDE statements.

SQL 	 Communication Area (SQLCAl

Each program using DB2 must include the SQL Communication Area
(SQLCA). The SQLCA is the means by which DB2 communicates with
the application program. The structure of the SQlCA is shown in
Figure 17 on page 81. Of all the fields within the SQlCA note
that SQLCODE will contain a return code after execution of any SOL
statement.

80 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

DCL 1 	SQLCA,
2 SQLCAID CHAR(8), <-- 'SQLCA'
2 SQLCABC BIN FIXED(31), <-- length (136)
2 SQLCODE BIN FIXED(31), <-- return code
2 SQLERRM CHAR(70) VAR, <-- error message
2 SQLERRP CHAR(8), <-- module (error)
2 SQLERRD(6) BIN FIXED(31), <-- special codes
2 SQLWARN, <-- warning codes

3 SQLWARHO CHAR(1), <-- 'W' any warning
3 SQLWARNI CHAR(1), <-- truncated string
3 SQLWARN2 CHAR(!), <-- null val elimin.
3 SQLWARN3 CHAR(1), <-- I hostvar wrong
3 SQLWARN4 CHAR(1), <-- upd/del all rows
3 SQLWARN5 CHAR(1), <-- used SQUDS
3 SQLWARH6 CHAR(l),
3 SQLWARN7 CHAR(l),

2 SQLEXT CHAR(8); <-- reserved

Figure 17. SQL Communication Area (PL/I Format)
....

The SQLCA may be explicitly coded by the programmer, included by
means of source COpy or YoINCLUDE, or generated by the special SQL
INCLUDE statement:

EXEC SQL INCLUDE SQLCA

Table 	Declaration

Tables and vi ews used in SELECT statements may opti onally be
declared in the source program in the format of a SQL DECLARE
statement.

EXEC SQL DECLARE table-name TABLE
(EMPNO CHAR(6) NOT NULL,

LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3) NOT NUll,
PHONENNO CHAR(4),
JOBCODE DECIMAL(3),
EDUCLVL SMALLINT,
SALARY DECIMAL<8,2))

This declaration allows the precompiler to check SQl data
manipulation statements against the table declaration. Incorrect
usage 	of SQL may thus be detected before the BIND process.

Note: The field definition part of the table is identical to the
format used in the CREATE TABLE statement shown in "Defining a
Table" on page 49.

Normally the SQl table declarati on is followed by a structure
declaration using the host language. The host language

Chapter 7. Application Programming Environment
International Systems Center - Santa Teresa

81

declaration is used to ectually store end access dete retrieved by
SQL SELECT statements. The PL/I declaration of the employee table
would look like:

DECLARE
1 EMPLOYEE,

3 EMPNO CHAR(6),
3 LASTNAME CHAR(lS) VARYING,
3 WORKDEPT CHARD) ,
3 PHONENNO CHAR(4),
3 JOB CODE DEC FIXED (3),

3 EDUCLVL BIN FIXED (15)

3 SALARY DEC FIXED (8,2);

Generate Declarations (DCLGEN)

DB2 provides the DCLGEH facility to create the SQL declaration of
a table or vi ew and the host language declarati on of the same
table for PL/I and COBOL source programs. The TSO subcommand
DCLGEN may be invoked after a table has been defi ned to DB2
through a CREATE TABLE statement.

DCLGEN 	 TABLE (table-name)
LIBRARY (library-name(member-name»
LANGUAGE CPU I COBOL>
ACTION (ADD I REPLACE)
NAMES (prefix)
STRUCTURE (structure-name)

The output of DCLGEH is stored in a partitioned (or sequential)
data set with a data set name built as auth-id.library-name.PLI
(or COBOL>. If no STRUCTURE name is given, the host language
structure is named 'DCLtable-name'. The fields will be named as
the columns of the table or view. By specifying NAMES the fields
may be numbered sequentially as 'prefix!' etc.

The output of DCLGEN thus comprises the EXEC SQL DECLARE statement
for the table and the PL/I or COBOL structure declaration
representing a table row.

Retrieving Data into Host Variables

An expansion of the SELECT statement allows you to retrieve one
row of data directly into host variables.

EXEC SQL SELECT *
INTO :EMPLOYEE
FROM EMPLOYEE

WHERE EMPHO = '000260'

The INTO clause of SELECT directs DB2 to retrieve the requested
row of data into the host structure 'EMPLOYEE'. Host variables

82 IBM DATABASE 2 Concepts and Faci 1 i ti es Gui de
International Systems Center - Sante Teresa

are identified by the preceding colon (:). This prefix is
opt i onal when no nami ng confl i cts exi st, but as a rule host
variables should be prefixed. DB2 supports two level structures
only.

The INTO clause may also be coded to put field values into a set
of non-contiguous host variables:

EXEC SQL SELECT LASTNAME, SALARY
INTO :NAME, :MONEY
FROM EMPLOYEE

WHERE EMPNO = '000260'

Normally a SELECT statement retrieves a set of rows. SELECT with
the INTO clause will return an error code if more than one row is
retrieved. A WHERE clause referencing a column having a unique
index can insure that exactly one row qualifies. SQL provides the
CURSOR facility to deal with multiple rows.

Updating, Inserting and Deleting Data

SQL UPDATE, DELETE, and INSERT statements as presented in
"Chapter 4. SQL Data Manipulation" may be used unrestricted in
application programs. In addition variations of UPDATE and
DELETE statements may be used to change or delete one single row
of data retrieved. These are described in the next section.

CURSOR Operations

The SQL cursor operations allow application programs to
manipulate tables or views one row at a time. The program can
step through the set of rows retrieved by a SELECT statement, and
UPDATE or DELETE that specific row.

The result table of a cursor operation is conceptually a
sequential data set containing the rows retrieved as a result of a
SELECT statement. The application program then "reads" each row
until "end-of-file" is reached. The set of rows can contain from
zero to many rows.

DECLARE Cursor

The first step in a cursor operation is to declare the cursor and
associate a SELECT statement with it.

EXEC SQL DEGLARE cursor-name CURSOR FOR
SELECT columns ...

FROM/WHERE/GROUP BY/HAVING
FOR UPDATE OF column, column,

ORDER BY column, ...

Chapter 7. Application Programming Environment
International Systems Center - Santa Teresa

83

Declaring a cursor does not retrieve any data. Data manipulation
is performed through OPEN, FETCH, UPDATE, DELETE, and CLOSE
statements. Updates to a row are only allowed if the 'FOR UPDATE
OF' clause has been included in the cursor declaration. Rows may
be presented to the application program in a specified order by
using the 'ORDER BY', but this prevents updating.

OPEN cursor

The OPEN statement is used to prepare for data retrieval by DB2.
No data is returned to the program yet.

EXEC SQL OPEN cursor-name

FETCH a Row

The FETCH statement returns the fields of one row into the host
variables. Each execution of the FETCH statement returns the data
of one row qualifying the WHERE search condition of the SELECT
statement declared with the cursor. Normally the FETCH statement
is imbedded into a loop running as long as data is available.

EXEC SQl FETCH cursor-name
INTO :variable, •••

Updating or Deleting a Row

The retrieved row may optionally be updated or deleted. Updating
is only allowed for fields specified in a FOR UPDATE OF clause
when the cursor is defined.

EXEC SQL UPDATE table-name
SET field = value,

WHERE CURRENT OF cursor-name

EXEC SQL DELETE table-name
WHERE CURRENT OF cursor-name

CLOSE Cursor

After having finished the handling of data the cursors operation
is terminated by a CLOSE statement. The same cursor may then be
opened again.

EXEC SQL CLOSE cursor-name

84 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

Error Handling

When DB2 processes a SQl statement of the program. it places a
return code into the SQlCODE variable of the SQlCA (see Figure 17
on page 81). The return codes are:

<0 	 Error in execution of SQl statement.

>0 	 Exceptional but valid condition. e.g. no row qualifies for a
SELECT statement.

o 	 All OK. no errors or exceptional conditions. However, some
conditions (like truncation of character data when the host
variable is too short). give a return code of zero but set
flags in SQlWARNx of the SQlCA.

The return code may be tested through normal programming language
statements. or actions may be taken automaticallY by setting up a
WHENEVER statement prior to data manipulation.

WHENEVER statement

The WHENEVER statement allows for automatic testing of SQl return
codes on all subsequent SQl statements (appearing later in the
source program). Usi ng WHENEVER you do not have to test the
return code yourself after each SQl statement execution.

You may have up to three WHENEVER statements active. each of them
testing for one of the possible conditions.

EXEC 	 SQl WHENEVER NOT FOUND CONTINUE GOTO :label

EXEC 	 SQl WHENEVER SQLWARNING CONTINUE GOTO :label

EXEC 	 SQl WHENEVER SQlERROR CONTINUE GOTO :label

The NOT FOUND condition tests for a retrieval which could not find
any qualifying rows. the SQlWARNING condition tests for all other
positive return codes (or zero with SQlWARNx flags set). and the
SQlERROR condition tests for all negative return codes.

Chapter 7. Application Programming Environment
International Systems Center - Santa Teresa

85

Concurrency Support - Lacking

Comll'li t/Rollback:

In general the appli cat i on programmer is not concerned about
locks. DB2 handles all the locking automatically. Every row that
has been updated is locked (actually the whole page containing the
row is locked) until the next commit (synchronization) point.

The application program may lock a whole table by using the SQL
LOCK statement.

EXEC SQL LOCK TABLE table-name IN SHAREIEXCLUSIVE MODE

SHARE mode allows other read-only programs, whereas EXCLUSIVE
does not allow any concurrent access to the table space containing
the named table.

The scope of locking may also be influenced by parameters defined
during the BIND process for the application program. The BIND
ISOLATION parameter identifies the degree to which the program
wants to be isolated from the effects of other programs. It
specifies how long any row retrieved by the program can be
guaranteed not to change.

Cursor Stability (CS): This specification indicates that any row
retrieved can not be changed by other programs until this program
moves off the row (or closes the cursor). This choice has the
least impact on performance of other programs.

Repeatable Read (RR): Indicates that any row retrieved is locked
until this program reaches a synchronization point (commit
po i nt) • No other' program may change any row whi ch has been
retrieved already by this program. Repeatable Read (RR) should be
specified when your program needs to process several rows before
making a decision to update, or when the same set of rows must be
retrieved multiple times with no changes guaranteed in the mean
time.

Nate: Since Cursor Stability and Repeatable Read are specified at
BIND time for the whole program, they affect all the tables
accessed by the application program.

Changes made by an application program to the various tables it
uses may be committed (made permanent) at a certain time through
the SQL COMMIT statement. This occurs automatically at the end of
the program, or by request one or multiple times during execution
of the application program. If committing can take place early,
then the resources locked because of pending changes will be freed
earlier, resulting in greater system throughput.

86 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

HOST VARIABLES

Similarly, if the application decides that changes made to tables
are not valid, it must "rollback" those changes, resulting in the
same state as they were prior to the updates.

The 	SQL COMMIT and ROLLBACK statements as introduced in "Chapter
6. Data Management" section "Commit/Rollback" on page 69 can be
expl i ci tly invoked from a TSO appli cati on program through the
appropriate SQL statements:

EXEC SQL COMMIT

EXEC SQL ROLLBACK

Changes to DB2 tables are either committed or removed. All locks
are released and changed (or original) data is available to other
application programs. Any open cursors are closed.

In the IMS envi ronment COMMIT is requested by an IMS
synchronization point (e.g. GU/CHKP call), and ROLLBACK by a DL/I
ROLL call.

In the CICS environment COMMIT is requested by a CICS
synchronization point, and ROLLBACK by a transaction abend or
CICS ROLLBACK.

Host variables are variables of the programming language used for
the application. They provide selection values for search
conditions and storage areas for results of retrieve operations.
They are declared like any other variable used in the program.
Here are some of the rules regarding the usage of host variables:

• 	 Host variables are prefixed by a colon C:) when used in SQL
statements. Although the colon is optional inmost cases, it
is recommended to have the colon coded for clari ty and
differentiation from table column names.

• 	 The host variable must be of a data type compatible to the
data type of the table column. Conversi ons between
compatible data types are supported by DB2.

• 	 Host variables may be two level structures. This is very
conveni ent for the retri eval of one row of dil+a into a
structure. An example was shown in "Retrieving Data into Host
Variables" on page 82.

Chapter 7. Application Programming Environment
International Systems Center - Santa Teresa

87

Pl/I SMALLINT BIN FIXED(15)
INTEGER BIN FIXED(31)
DECIMAUp,q) DEC FIXEDCp,q)
FlOAT BIN FlOAH53)

CHARCn) CHARCn)
VARCHARCm) CHARCm) VAR
LONG VARCHAR CHARCx) VAR

COBOL SMALLINT PIC S9(4) COMP
INTEGER PIC S9(9) COMP
DECIMAUp,q) PIC S9Cr)V9Cq) COMP-3. Cr=p-q)
FlOAT COMP-2.

CHARCn) PIC XCn)
VARCHARCm) xx struct

49 PIC S9(4) COMPo < length
49 PIC XCm) < data

LONG VARCHAR as VARCHAR

ASSEMBLER SMALLINT DS H
INTEGER DS F
DECIMAUp,q) DS PLp'OOOO.OOO' Cp=7 and q=3)
FlOAT DS D

CHARCn) DS CLn
VARCHARCm) DS H,CLm < length

and data
LONG VARCHAR as VARCHAR

FORTRAN SMALLINT INTEGER*2
INTEGER INTEGER
DECIMALCp,q) .. no equivalent
FLOAT REAl*8

CHARCn) CHAR*n
VARCHARCm) .. no equivalent, use CHAR*n
LONG VARCHAR as VARCHAR

Figure 18. Data Types of Host Variables

88 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

• 	 A host variable may be qualified by a higher level structure
identifier which is exactly one level higher.

DCL 1 	 STR,
2
2 EMPDA TA,

3 MONEY BIN FIXED,
3 •..

SElECT SALARY FROM EMPLOYEE
INTO :EMPDATA.MONEY;

See Figure 18 on page 88 for host variable data types in the
supported languages.

• 	 You need an indicator variable for each host variable where
the value retrieved might be the null value. This technique
is presented below.

Handling Null Values

Null values are NOT returned into host variables. You must set up
an additional indicator variable (binary halfword) for each field
which may have a null value. If a null value must be returned to
the program, DB2 will mark the indicator variable with a negative
value and leave the data variable untouched. An error results
when no indicator variable is available to DB2.

The i ndi cator vari able is speci fi ed in the INTO clause of the
SELECT statement immediatelY following the host variable:

DCL 	 MGRNO CHAR(6),
XMGRNO BIN FIXED; /M NULL INDICATOR M/

EXEC SQL SELECT MGRNO
INTO :MGRNO:XMGRNO
FROM DEPARTMENT

WHERE DEPTNO = '001'

IF XMGRNO < 0 THEN

If the host variable is a structure you need an indicator variable
for each field of the structure. The indicator variable is coded
as an array of hal fwords, where each element of the array
corresponds to one of the fields of the structure. The dimension
of the indicator array is equal to the number of fields, even if
nulls are not allowed for some of the fields.

Chapter 7. Application Programming Environment
International Systems Center - Santa Teresa

89

DCL 1 	 EMPLOYEE,
3 EMPNO CHAR(6),
3 LASTNAME CHAR(15) VARYING,
3 WORKDEPT CHAR(3),
3 PHONENNO CHAR(4),
3 JOBCODE DEC FIXED (3),
3 EDUCLVL BIN FIXED (15)
3 SALARY DEC FIXED (8,2),

EMPIND(7) BIN FIXED (15) ,
EMPLNUMBER CHAR(6);

EXEC SQL SELECT M

INTO :EMPLOYEE:EMPIHD
FROM EMPLOYEE

WHERE EMPHO = :EMPLNUMBER;

Data Definition statements

All SQL data definition statements introduced in "Chapter 5. Data
Definition"may also be executed from a program. This includes
creation and definition of tables and other DB2 objects.

For example, an application program might store the result of a
SELECT statement into a "temporary" work table for further
analysis and selection.

EXEC SQL CREATE TABLE TEMP
(EMPNO CHAR(6) NOT NULL,

JOBCODE DECIMAL (3»
EXEC SQL INSERT INTO TEMP (EMPNO. JOBCODE)

SELECT EMPNO. JOBCODE
FROM EMPLOYEE

WHERE EDUCLVL > 16

DYNAMIC SQL

For some kind of appl i cat ions it is desi rable to execute SQL
statements whi ch are not known unti I the program is actually
running. An example is a program to support an interactive user
who wishes to enter requests and receive results at a terminal.
In thi s case, the SQL statements can not be imbedded in the
program and recognized by the precompiler. since the statements
are read from a terminal when the program is running. To support
applications such as this. SQL provides facilities for
translating and executing SQL statements at run-time. These
facilities are provided by the dynamic SQL statements PREPARE.
DESCRIBE. and EXECUT~. in conjunction with a structure called the
SQL Descriptor Area (SQLDA).

IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

90

SQL Descriptor Area (SQLDA)

The SQL Descriptor Area is a control block that DB2 uses to pass
information concerning the dynamic SQL statement to the
application program. A declaration of a SQLDA may be included in
a program by means of a SQL INCLUDE statement.

For PL/I, the SQLDA structure shown in Figure 19 is generated
through:

EXEC SQL INCLUDE SQLDA;

The SQLDA basi cally descri bes all the columns returned by a SElECT
statement to allow an application program to deal easily with
individual values.

DCL 1 	 SQLDA BASEDCSQlDAPTR),
2 SQLDAID CHAR(8), <-- 'SQlDA'
2 SQLDABC BIN FIXED (31) , <-- length
2 SQLN BIN FIXED (15) , <-- max nr of fields
2 SQLD BIN FIXED (15) , <-- actual nr
2 SQLVAR (SQlSIZE REFERCSQlN»,<-- fields

3 SQLTYPE BIN FIXEDC 15), <-- data type
3 SQllEN BIN FIXED(15), <-- field length
3 SQLDATA PTR, <-- ptr to data
3 SQLIHD PTR, <-- ptr to indicator
3 SQLHAME CHAR(30) VARYING, <-- column name

DCL 	 SQLSIZE BIN FIXEDCI5); <-- nr of fields
DCl 	 SQlDAPTR PTR; <-- ptr to sqlda

Figure 19. SQL Descriptor Area (PL/I Format)

PREPARE statement

The SQL PREPARE statement is used to "prepare" a SQl statement for
execution, and associate a statement name with it. A prepared
statement may then be referenced by name in DESCRIBE and EXECUTE
statements, and in cursor declarations.

EXEC SQL PREPARE statement-name
INTO :sqlda-structure
FROM :string-expression

PREPARE causes the string expression to be parsed and checked for
errors. If the optional INTO clause is provided then a
description of the sizes and types of variables needed to receive
the results of the SELECT statement is generated in the named
structure (which should be an SQlDA).

Chapter 7. Application Programming Environment
International Systems Center - Santa Teresa

91

For documentat i on purposes it i s suggested to "declare" the
statement name:

EXEC SQL DECLARE statement-name STATEMENT

Example of a SQL PREPARE statement:

EXEC SQL DECLARE SRCSTMT STATEMENT;
DCL SOURCE CHAR(255) VAR;

/* assume source read from input */

SOURCE = 'SELECT EMPNO. LASTNAME
FROM EMPLOYEE

WHERE EMPNO="OOOOlO" ';
EXEC SQL PREPARE SRCSTMT

INTO :SQLDA
FROM :SOURCE;

DESCRIBE statement

If the dynamically supplied statement might be a SELECT, then the
program may requi re i nformati on about the si zes and types of
variables needed to receive the results of the SELECT. The SQL
DESCRIBE statement may be used to obtain this information in a
SQLDA, so that the program can dynamically allocate buffers of the
correct size and type to receive the results.

EXEC SQL DESCRIBE statement-name
INTO :sqlda-structure

The statement must have been PREPAREd as above. The SQLDA
structure contains an indicator telling if the statement was a
SELECT. and if yes. the si zes and types of all values to be
returned if the SELECT is executed.

The INTO clause of the PREPARE provides the same function as a
subsequent DESCRIBE statement.

EXECUTE Statement

The SQL EXECUTE statement allows you to execute a dynami c SQL
statement that has previously been PREPAREd.

The SQL statement must not be a SELECT statement. These must be
handled by extensi ons of cursor operat ions whi ch are descri bed
later in this section.

EXEC SQL EXECUTE statement-name
USING :hostvar, ..•
USING DESCRIPTOR :sqlda-structure

92 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

The optional USING clause is used to pass parameter values to be
substituted into the SQL statement. Parameters are passed either
as a list of host variables, or via an SQLDA host variable list.

Parameterized Execution

Some values of the dynami c SQL statement may be left open
(unknown) when the statement is prepared. Such "parameters" are
coded as question marks 0) in the SQL statement, and actual
values are suppl i ed wi th the EXECUTE statement. Thi s techni que is
demonstrated in the example below:

EXEC SQL DECLARE PARMSTMT STATEMENT;
DCL SOURCE CHAR(255) VAR,

DEPART CHARD); /* set by program */

SOURCE = 'DELETE FROM EMPLOYEE WHERE WORKDEPT = ? ';
EXEC SQL PREPARE PARMSTMT I

FROM :SOURCE I
EXEC SQL EXECUTE PARMSTMT ____________________JI

USING :DEPART

Immediate Execution

Dynami c SQL statements wi thout any reference to host vari abIes
may be executed immediately without previous preparation. The
statement is analyzed, translated, and executed.

SOURCE = 'DELETE FROM EMPLOYEE WHERE EMPNO="OOOOlO"';

EXEC SQL EXECUTE IMMEDIATE :SOURCE ; J

Using Cursors with Dynamic SQL

The cursor operations introduced earlier in this chapter must be
used to execute a dynamic SQL SELECT statement. Since the coding
is just a minor variation of the cursor technique described above,
only an overview of the required statements is shown below.

EXEC SQL DECLARE stmt STATEMENT
EXEC SQl DECLARE cursor CURSOR FOR stmt

EXEC SQl PREPARE stmt INTO :sqlda FROM :source

/* examine and fi 11 SQLDA */

EXEC SQL OPEN cursor USING :hostvar-parameter,
EXEC SQL FETCH cursor USING :sqlda
EXEC SQL CLOSE cursor

The cursor is declared FOR a dynami c statement. The statement
must be PREPAREd before the cursor can be opened. Parameter

Chapter 7. Application Programming Environment
International Systems Center - Santa Teresa

93

values can be passed through the OPEN statement to replace
question marks in the SQL statement. The FETCH statement
retri eves a row of data into host vari ables, whi ch have been
defined in an SQLDA structure.

PROGRAM PREPARATION

precompile

When your application program design and coding are complete, you
are ready to prepare the source statements for execution. The
steps necessary for program preparation were introduced briefly
at the beginning of this chapter in section "Application
Development Cycle" on page 77.

8efore a program can be executed. it must be compi led by a
compi ler of the appropri ate host language. Before compi lati on
can occur, however, the SQL statements imbedded in the host
language program must first be prepared by the DB2 Precompiler for
compilation as host language statements.

The D82 Precompi ler scans every statement of the program and
produces a modified program in which every SQL statement has been
replaced by one or more statements of the host language.

Below is a list of some of the acti ons the Precompi ler performs:

• 	 Matching host variables with SQL statements. The variable
names and definitions are used to check the validity of the
SQL statements.

• 	 Validation and syntax checking of SQL statements. Some
validation of the SQL statement is possible if declarations
of the tables used are included in the source program.

• 	 Replace the SQL statements by host language statements. Some
statements (I i ke WHENEVER and DECLARE) are replaced by a
comment only, other statements are replaced by a call to the
SQL language interface module.

CALL DSNHLI (SQLPlISTn)

• 	 Store extracted SQL statements in the format of a Data lase
Request Module (DBRM). The DBRM contains information about
each precompiled SQL statement. It is put into a partitioned
data set, where it is available for a later process, called
the BIND process.

The DB2 Precompiler can be invoked at any time to compile embedded
SQL statements. DB2 does not have to be acti ve, because the
precompiler does not refer to any DB2 data. This means that the
names of tables and fi elds used in SQL statements are not

IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

94

val i dated agai nst the current DB2 data bases. These checks are
performed at BIND time.

Compilation and Link-Edit

After precompilation the application program is compiled using
the standard compilation procedure suitable for the host
language.

link-editing is performed after compilation. The DB2 language
interface module must be included during this phase.

Creating an APplication Plan (BIND)

After compilation and link-editing, the application program is
almost ready for execution. Before you can execute the program,
however, you must establ ish a relat i onshi p between the program
and its DB2 data. Thi s process is called binding. B i ndi ng a
program must occur on the same system that invokes DB2, and DB2
must be active. Binding does four things:

1. SQL statement validation:

All SQl statements of the DBRM are validated against the table
definitions. The program cannot be executed until all SQl
statements are syntactically correct.

2. Authorization checking:

The BIND authorization process checks if the person invoking
the BIND is authori zed to access the tables the program
requests. More about the securi ty and authori zati on
mechan ism is presented in "Chapter 9. Securi ty and
Authorization."

3. Access path selection:

The BIND process selects the path to the data. It considers
all indexes available to access the data, and decides which
ones (if any) to use when building a path to the data.

4. Application plan creation:

If all SQl statements are correct, and authorization to
access the data is ava i lable, the BIND process bui Ids an
application plan.

An application plan contains information about the program
and about the data the program intends to use. It also
contains the access modules the program will call to access
data in a table. The application plan is stored in the DB2
Catalog.

Chapter 7. Application Programming Environment
International Systems Center - Santa Teresa

95

Because appli cat i on plans are stored by DB2, an appli cat i on
program that uses a plan can be executed many times wi thout
repeating the BIND process. However, rebinding occurs
automatically if attributes of the data change and cause the plan
to become invalid. For example. deletion of an index which is
used in an access path will invalidata the application plan.

BIND 	 COlllland

The BIND process is invoked through the TSO BIND subcommand. or an
SPF full screen menu provided by DB2:

BIND 	 PLAN (plan-name)
MEMBER (dbrm-member-name, ...)
LIBRARY (dbrm-lib-name••..)
ACTION (ADD , REPLACE)
RETAIN (NO I YES)
VALIDATE (RUN I BIND)
ISOLATION (RR I CS)
FlAG (l I W I E I C)

PLAN: Gives the name of the plan to be stored by DB2.

MEMBER: Names the member (or members) of the DBRM library to be
included in the plan. Multiple members are used if application
modules have been independently (pre-)compi led and then link
edited together.

LIBRARY: Names the libraries containing the DBRM members
selected. A library defi ned through a DBRMLIB DD statement is
searched if no LIBRARY parameter is given.

ACTION: Indicates if a new plan is added, or an existing plan
replaced.

RETAIN: YES must be specified to keep (retain) existing EXECUTE
authority for the plan in the case of a replace action. If not
specified only the person invoking BIND is authorized to execute
the program (use the plan).

VALIDATE: Indicates if full validity checking can be deferred to
run time, or must be applied already during BIND. The checks
whi ch can be deferred to run t j me are "table exi stence" and
"access authority."

ISOLATION: Indicates the degree to which the program wants to be
isolated from the effects of other programs. The two opti ons,
which were presented in section "Concurrency Support - Locking"
on page 86, are Repeatable Read (RR) and Cursor Stabil ity (CS L

FLAG: Indicates the level of messages (Informational, Warning,
Error, Completion) to be produced by BIND.

IBM DATABASE 2 Concepts and Facilities Guide

International Systems Center - Santa Teresa

96

REBIND Collllftand

Und'!r som'! ci rcumstanc'!s you mi ght want to invoke the rebi nd
process directly. REBIND '!valuates all currently availabl'!
indexes to sel'!ct an access path to the data. Chang'!s that might
prompt you to r'!bind an application plan include: n'!w or d'!leted
i nd'!x'!s, n'!w columns added to a table, and a droPP'!d tabl'! or
vi'!w.

REBIND PLAN
FLAG
VALIDATE
ISOLATION

(plan-name, .•.)
c. .)
c. .)
(.. >

I PLAN(*>

R'!binding may occur for s'!l'!ct'!d plans ("plan
all the plans th'! user has BIND authority for
oth'!r options are '!qual to the BIND command.

name, .• "),
("PLAN(*)").

or for
All

FREE Command

Application plans may b'! explicitly d'!leted when the
corresponding application programs ar'! not used any more. The DB2
FREE command is used to del'!te one or more application plans from
the catalog:

FREE PLAN (plan-nam'!)

PROGRAM EXECUTION

Once an application plan has b'!en cr'!ated with the BIND process,
th'! program can be ex'!cut'!d. Each time that th'! program is
ex'!cuted, DB2 verifi'!s that the information in the application
plan is consistent with the corresponding information in the DB2
catalog. Some of the validation checking may occur at run time,
e.g. the testing for the existence of a table may b'! deferr'!d to
run time.

In the TSO environment the program may be '!xecut'!d through the RUN
command:

RUN 	 PROGRAM (program-name>
PLAN (plan-name)

Automatic Bind

If changes have occurred to the access path a program uses with
its application plan, the BIND process is automatically initiated
at run time. This automatic binding is triggered by an
invalidated application plan. For example, an application plan
is i nval i dated if an index is dropped whi ch was used by the plan.

Chapt'!r 7. Application Programming Environment
International Systems Center - Santa Teresa

97

Dynamic Bind

Dynamic BIND occurs during execution when dynamic SQL statements
are executed. Since these statem~nts are not known in advance (at
precompilation time), no data base request module (DBRM) was
available for BIND. Dynamic SQL statem~nts ara bound just when
they are executed from the application program. No application
plan is generated by dynamic bind.

Testing Facilities

Programs using DB2 data bases are tasted like any other programs.
You have to set up a Test Environment for DB2 application testing.
This includes:

• 	 Test JeL procedures for precompile, compile, link-edit,
binding, and execution.

• 	 Test data as subsets of production data. This is very easy
using DB2 CREATE TABLE and INSERT statements.

• 	 Test input data to test each path and error routine in the
program.

• 	 TSO interactive SQL execution. The SQl statements used in an
application program can be tested from TSO terminals using a
tailored DB2 facility. This is presented in "Chapter 8. TSO
Environment."

• 	 TSO Test command.

• 	 Interactive compilers like TESTCOB for COBOL programs.

IBM 	 DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

98

CHAPTER 8. TSO ENVIRONMENT

This chapter describes how DB2 fits into the TSO environment of an
MVS system. The following items were the main considerations in
the implementation of the interface between TSO and DB2:

• Usage of ISPF

ISPF is used as base of interaction between a terminal user
and DB2. This dialog is supported through a number of ISPF
panels attached to an extension of the ISPF main option menu.
ISPF is not required for DB2, but access to DB2 is much easier
with ISPF than without it.

• Ease of use

The TSO/ISPF support was designed as a user friendly
interface for a terminal user. All tasks necessary to design,
implement, and run an application using DB2 data sets are
fully supported through this interface.

• Designed for DBAs and programmers

The interface supports the tasks of a DBA, which are: data
base design, implementation, backup, recovery, etc. It also
supports the whole application programming cycle (precompile,
compile, link-edit, bind, execute> presented in "Chapter 7.
Application Programming Environment."

• Interactive execution of SQL

SQL statements may be submi tted to DB2 in an i nteracti ve
manner and the resulting output is displayed at the terminal.
This facility allows the testing of a sequence of SQL
statements as they will appear in an application program,
before any actual coding has been done.

The TSO support of DB2 consists of a DB2 command processor (DSN),
a number of TSO CLISTS, and ISPF panels to invoke the DB2
functions interactively.

THE DB2 TSO COMMAND PROCESSOR (DSN)

DB2 provides a TSO command processor as an interface between TSO
terminal users and DB2. Under this command processor the user may
invoke the DB2 subcommands DCLGEN, BIND, REBIND, FREE, and RUN.

The DSN command processor may also be invoked in batch as
described in section "TSO Batch Work" on page 105.

Chapter 8. TSO Environment 99
International Systems Center - Santa Teresa

ISPF SUPPORT - DB2I

The ISPF support of DBZ consists of a set of ISPF panels. from ~
whi ch the di fferent DBZ funct ions ara i nyoked. The funct ions
(panels) ara selectable from one main DBZI option menu. which
itself is attached to tha ISPF primary option menu through a usar
extension. Tha hierarchy of the most frequently used menus is
shown in Figure ZOo

ISPF Primary

Option Menu

Other ISPF

Functions <--------------~

DB21 Main Tutorial
Option Menu Help

DEFAULT BIND Precomp
EDIT REBIND Bind
BROWSE F~EE Comp/Link

Run

Figure 20. DB2 ISPF Menus

The DB21 Optian Menu

All the functions of DB2 supported through ISPF are available from
the main DB21 option menu. The layout of this menu is shown in
Figure 21 on page 101.

100 IBM DATABASE 2 Concepts and Faci 1it i es Gui de
International Systems Center - Santa Teresa

1

DSNEPRI DB2I MENU

===>

SELECT ONE OF THE FOLLOWING DB2 FUNCTIONS:

SPUFI Process SQL statements.

2 DCLGEN Generate SQL and source language declarations.

3 BIND/REBIND/FREE Issue BIND, REBIND, FREE for application plans.

4 PROGRAM PREPARATION PRECOMPILE, BIND, COMPILE, LINK, and RUN.

5 RUN Run 8 SQL program.

6 DB2 COMMANDS Issue DB2 commands.

7 UTILITIES Invoke DB2 utilities.

X EXIT Leave DB2I.

PRESS: END to exit HELP for more information

Figure 21. DB2I Main Option Menu

Online Help

To give DB2I users quick access to in~ormation about the system,
DB2 provides ISPF tutorial information that supports application
programming and data base administration tasks. Specifically,
ISPF tutorial information is provided for all the tasks described
in the following sections.

TSO HELP panels are also provi ded wi th the system to ai d the
application programmer or data b~se administrator who is entering
commands, precompiling or binding, or using utilities without
usi ng DB2I.

spun

SPUFI (SQL Processor Using File Input) is an interactive facility
available under ISPF through which DB2 application programmers
can submi t and test SQL statements. Usi ng SPUFI, appli cati on
programmers can create and edi t SQL statements they plan to
include in their programs and then execute those statements and

Chapter 8. T50 Environment 101
International SYstems Center - Santa Teresa

receive the results at the terminal. SPUFI makes it easy to test
the SQl parts of the programs before the programs are compi led and
run (maybe even before the programs are coded).

SPUFI is also a very important tool for data base administration
and mai ntenance. The followi ng tasks can be performed usi ng
SPUFI:

• 	 Executi on of SQl data defi ni ti on statements COOl), such as
creating a table, an index, etc.

• 	 Retrieving information from the DB2 catalog. The catalog
contains all the information about DB2 objects (tables, data
bases. indexes, etc), and SQl may be used to access the
catalog. SPUFI provides a convenient vehicle for entering
and executi ng those queri es. Queri es can be stored and
executed whenever you want.

• 	 To control authorization to DB2 data.

• 	 To copy and load test data from operational tables to use for
testing application programs that modify data.

SPUFI Execution Flow

Execution of SQl statements from the SPUFI ISPF panel invokes the
steps shown in Figure 22. All the steps are optional and are
selected on the SPUFI menu.

SPUFI
Selection

Set ISPF SQl COMMIT/ ISPF

DEFAULTS -> Editor -> Execution -> ROllBACK -> BROWSE

Figure 22. SPUFI Execution Flow

102 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

DEFAULTS: Setting of defaults for SQL execution. These defaults
include parameters like isolation level (repeatable read or
cursor stability), maximum rows returned by a SELECT, output data
set characteristics (record format and length), number of lines
per page, and maximum sizes for fields on the output listing. The
defaults step can be skipped in most instances.

EDIT: Editing of an input data set with the ISPF editor. The
input data set may be a sequenti al data set or a member of a
partitioned data set. The name of the input data set is entered
on the SPUFI menu. The user enters or modifies SQL statements to
be executed. A library of input streams may be maintained and
selected for execution.

SQL EXECUTION: The SQL statements of the input data set are
submitted to DB2 for execution. Execution of SQL statements
continues until either all input has been processed, or a SQL
statement terminates with an error return code.

COMMIT/ROLLBACK: Commit or Rollback of the data base changes is
either automatic or user controlled. By choosing automatic
commit on the SPUFI menu, the user requests that all changes are
committed after successful processing, or all changes are rolled
back after an error has been encountered in a SQL statement.

With the user controlled commit option SPUFI will ask the user
after processing of the SQL statements about his intention. The
user may then select commit, rollback, or wait (decide later>.
Waiting with commit/rollback leaves all the changed data locked
and inaccessible by other users.

BROWSE: The ISPF BROWSE program is invoked to display the output
data set. The output data set contains echoed SQL input
statements, resul ts from SQL SELECT statements, and a message
line indicating success or failure for each SQL statement. The
SQLCA (communication area) is displayed if the statement was not
successful.

If the user has chosen auto-commit, the first output screen from
BROWSE is displayed after signalling END to the ISPF editor. ISPF
provides an exit via the TSO attention key (PAl), which causes the
end of the dialog, and in SPUFI's case a rollback of all data base
changes.

Generate Declarations (DCLGEN)

An ISPF menu is provided to submit a DCLGEN command to DB2.
DCLGEH will generate the declaration of a table (EXEC SQL DECLARE
TABLE statement) and its corresponding host structure for COBOL
or PL/I, and store these source statements ina sequent i al or
partitioned data set. These declarations may then be included
into a source program with the EXEC SQL INCLUDE statement.

Chapter 8. TSO Environment 103
International Systems Center - Santa Teresa

DCLGEN was presented in "Chapter 7. Appli cati on Programmi ng
Environment" section "Table Declaration" on page 81.

Binding

All the functi ons of bi ndi ng are supported through four ISPF
panels. Refer to "Chapter 7. Application Programming
Envi ronment" secti on "Creati ng an Appl i cati on Plan (BIND)" on
page 95 for a description of the BIND process. The first panel
provides selection for BIND, REBIND, or FREE.

BIND: The BIND panel allows binding of one application plan from
a set of DBRMs (data base request modules). All the options for
the BIND command submitted to DB2 may be specified on this manu.

REBIND: The REBIND panel allows to rebind one or more application
plans. It supports all the options of the REBIND command.

FREE: The FREE panel allows to submit a FREE command to DB2. The
FREE command deletes one or more application plans from tha DB2
catalog.

PrDgraM preparatiDn

Program preparation as presented in "Chapter 7. Application
Programming Environment" is supported by two ISPF panels.

The first panel invokes the DB2 Precompiler and contains all the
necessary specifications like host language, input data set, DBRM
output data set, include library, and output print options.

The second panal is used to invoke, in sequence, the following
processes:

1. 	 BIND, to create an appl i cati on plan from the precompi ler
output DBRM.

2. 	 Compiler (or Assembler), to compile the modified source
program.

3. 	 Linkage editing, to create a load module.

4. 	 Run, to execute the application program.

All processes may be run in T50 foreground, as one batch job, or
the panel may be used to build the batch JCl without submitting
the job.

104 IBM DATABASE 2 Concepts and Faci lities Guide
International Systems Center - Santa Teresa

Execute an APplication PrograM

DB2 Commands

uti! ities

ISO BAlCH WORK

The RUN panel is used to execute a user program (in TSO
foreground) that contains SQL calls. It can also be used to
invoke a TSO command that in turn invokes a program containing SQL
calls.

•
The COMMAND panel is used to execute a DB2 command from a TSO
terminal. DB2 commands are used to start or stop DB2 data bases,
di splay current status, or recover a table space. Most DB2
commands may be submitted from the COMMAND panel. More details
about DB2 commands will be presented in "Chapter 11. Operation and
Recovery."

The UTILITY panel allows you to submit and control DB2 utilities.
Utilities may be started by preparing and submitting a job,
restarted after a failure, displayed (current status), or
terminated prematurely.

More about individual utilities will be presented in "Chapter 11.
Operati on and Recovery"(see the UTILITY panel in Fi gure 25 on
page 135) and "Chapter 13. Monitoring and Accounting."

Batch work can be run in TSO background under the TSO Terminal
Monitor Program (TMP)' The input stream invokes TSO command
processors, in parti cular the DB2 command processor DSN. DSN
subcommands like RUN, DCLGEN, and BIND, are then used to execute
an appl i cati on program, or to generate table declarati ons or
application plans. An example of a TMP job is shown below:

//jobname JOB ••• ,USER=userid, •••
//GO EXEC PGM=IKJEFTOl,DYNAMBR=20
//ddname DD DSN= •.•• , ••• user OS files
//SYSTSPRT DD SYSOUT=A
//SYSTSIN DD * DSN
DCLGEN TABLE (EMPLOYEE) LANGUAGE(PLI)
BIND PLAN(EMPPLAN) MEMBERCEMPPROG)
RUN PROGRAMCEMPPROG) PLAN(EMPPLAN)
END
/*

The program invoked on the EXEC card is the TMP and DYNAMBR is the
maximum number of dynamically allocated data sets.

Chapter 8. TSO Environment 105
International Systems Center - Santa Teresa

QHF Languages

Batch programs invoked through the RUN subcommand are subject to
the following restrictions:

• 	 No parameters may be passed

• 	 No checkpoint/restart faci lities are provided (no restart
from a commit point)

• 	 No capability to use SPUFI.

The Query Management Facility (QMF). program number 5668-972, is
a strategic end user query and report writer facility for
relational data base management systems. It is designed to assist
end users in the composition and execution of "queries" written in
either the SQL or QBE-style languages. These queries permit the
user to create, retrieve. and modify data in relational tables
managed by OB2. QMF al so conta ins the abi I i ty to produce ta i lored
reports.

QMF provides a "full screen" interface and makes extensive use of
menus. It uses the Interactive System Productivity Facility
(ISPF) and GODM. Hence. QMF can be used from an ISPF terminal but
not from a CICS or IMS terminal.

QMF has been developed primarily for non-OP professionals. The
main objective of QMF is to provide the terminal user with the
maximum amount of function in manipulating a OB2 database. while
reducing to a minimum the knowledge that the user must have of any
other program. The intent i on is that the end user should not
require any understanding of programming or computers. The user
should only need to learn the languages requi red to create.
manipulate and execute QMF queries. Additionally. QMF users are
expected to have some understanding of the meaning of the data to
be manipulated.

The 	QMF user needs to know the following languages:

• 	 the QMF command language, plus

• 	 the Structured Query Language (SQL). and/or

• 	 the Query By Example (QBE) style language

106 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

Use 	of SQL

The obj ect i ve of QMF is to prov i de an easy to use "front end"
interface to DB2 for the composition and execution of SQL queries.
This interface has the following characteristics:

• 	 allows full screen entry and editing of all DB2 interactive
SQL statements:

Data Manipulation Statements (DML) - SELECT, UPDATE,
INSERT and DELETE

Data Definition Statements (DDL) - CREATE, DROP, ALTER

Control Statements - GRANT, REVOKE, LOCK, etc.

• 	 provides model queries which can be modified and executed

• 	 allows the user to create and save SQL queries that contain
parameters that can be varied (substituted) at execution time

• 	 allows the user to execute the query and format the results at
the terminal or on hardcopy (see "tailored reports" below)

A sample SQL query follows:

SELECT DEPTNO, DEPTNAME, MGRNO
FROM DEPARTMENT

WHERE ADMRDEPT = 'AOO'

Use 	of QBE style Language

QMF will provide a QBE style syntax to perform a subset of the SQL
functions. An example of a QBE query equivalent to the SQL one
above ;s shown below:

DEPTNO DEPTNAME MGRNO ADMRDEPT

P. P. 	 P. =AOO

The QBE style language wi 11 gi ve the user the capabil i ty to
retrieve, insert, update and delete data in relational tables.
All of the QMF facilities provided to create, edit, execute and
format SQl queries and results are also available to users of QBE
style queries. QBE is a graphic language supplied by QMF to give
users an alternative language to SQL.

QHF 	 Command Language

The QMF command language is used to mani pulate and manage QMF
objects. QMF objects are the user's representation of SQL/QBE
queries, relational tables, query results, session

Chapter 8. TSO Environment 107
International Systems Center - Santa Teresa

characteristics, etc. QMF objects are normally stored in DB2
relational tables. During QMF operation these objects are read
into a virtual storage area known conceptually as the QMF work
area.

The termi nal is a wi ndow through whi ch QMF objects can be
examined, altered or executed. By entering QMF commands at the
terminal, the user can cause data to move from user or QMF data
bases to corresponding objects in the work area and vice versa.
Objects in the work area represent the latest object being used by
the user or the QMF system. The objects that can be manipUlated
are:

QUERY 	 A QUERY is a request in SQL or QBE describing the action
to be performed on usar data by DB2.

DATA 	 The DATA object is a table that is produced by the
execution of the most recent retrieval query. This
table is shown to the terminal user in the form of a
REPORT. The REPORT object is not separately stored but
is produced by formatting the DATA object based on
definitions contained in the FORM object.

FOR" 	 A FORM describes the formatting to be given to a query
result before it is displayed or printed.

PROC 	 A PROCedure is a sequence of QMF commands that ara
stored and executed as a group. QMF commands are
discussed in more detail below.

PROFILE 	 The user PROFILE specifies certain default parameters
to be used by QMF when the user issues commands. The
user can modify the profile dUring the session.

The user "moves the wi ndow" from one object to another by
executing the QMF DISPLAY command. If the user wishes to update
an existing object, the DISPLAY command is entered with the name
of the object. The data base object is copied from the data base
into the corresponding work area object and then the work area
copy is displayed. The user can alter the object simply by typing
over data to be changed or by typing new data into blank areas.

The user can request help at any time by pressing a PF key. The
help panel displayed is appropriate to the work area object that
the user is viewing or the command that is being used.

QMF wi 11 di splay a prompt panel ; f a QMF command is entered
incorrectly. Thi s panel contai ns an appropr i ate error message
and the parameters that the user has supplied. The panel also
contains reminders of what the parameters mean. The user can then
correct the data in error and/or add any missing data and then
enter the command for execution.

108 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

Standard ISPF scrolling facilities are available for the user to
browse through multiple screen data.

The main QMF commands are:

DISPLAY 	 Thi s command is used to di splay QMF objects. It is also
used to list the contents of a relational table.

RUN 	 This command is used to initiate the execution of a SQl
or QBE QUERY or QMF command PROCedure.

SAVE 	 This command is used to save a work area object in the
data base.

ERASE 	 This command is used to delete an object from the data
base.

PRINT This command is used to prepare a
object on a system printer.

hardcopy listing of an

IMPORT Thi s command is used to read a TSO
QUERY, FORM or PROC work area object.

data set into a

EXPORT This command is used to write a QUERY, DATA,
PROC work area object into a TSO data set.

FORM or

Tailored Reports

As has already been di scussed above, the output of a query is
stored in the DATA object. The DATA object can either be
di splayed on the screen or sent to a pr inter. The format of
displayed or printed data is controlled by an associated FORM
object. QMF wi 11 always produce a default FORM for the user.
Thus, a user only has to be concerned about FORM objects if he
wishes to change the default format of the displayed or printed
data.

Th~ee types of format or report can be produced by QMF:

LISTING 	 This report is equivalent to listing all of the fields
specified in a retrieval query. For every row passed to
QMF from DB2, a row of output will be produced.
Variations on this report include establishing control
breaks and computing summaries.

SUMMARY 	 This report summarizes the rows passed to QMF based on
specifications in the FORM object. With this type of
report all the data retri eved from the data base is
summar i zed, i. e. no deta ill i nes are produced. like
the listing report, variations can include control
breaks and summaries, i.e. summary of a summary.

Chapter 8. TSO Environment 109
International Systems Center - Santa Teresa

ACROSS 	 The across report ;5 very similar to the summary report
in that table data is being summarized, but the data is
summarized in two dimensions. Another way of looking
at this type of report is to say the data is summarized
based on two groups. Like the other report types,
control breaks and subtotals can be produced.

COMPARISON OF QMF WITH DB2I

QMF is provided to support end users having little or no knowledge
of data processing. QMF contains an easy to use interface to
formulate queries in the graphic Q8E type language, or the SQL
language. A data base of queries, results, etc, can be
maintained, and any of these objects may subsequently be
formatted and printed.

The user has full control over the formatting of results. He can
maintain a library of predefined requests and formatting rules. A
fixed sequence of requests may be saved as a procedure which may
be executed any time.

The ISPF support of OB2, called DB2I, is desi gned for use by
appl i cati on programmers and data base admi ni strators. It
supports execution of application development tasks (precompile,
bind, etc), testing SQL statements, and administrative work in
regard to the definition and maintenance of OB2 data bases and the
installations authorization mechanism.

Predefined files of SQL statements may be submitted for execution
using the SPUFI technique. Input and output data sets are user
specified. ISPF edit is used to compose the input, whereas ISPF
browse is used to view the results. The user has to be familiar
with the TSO/ISPF file system. The results are formatted by OB2,
the user has no formatting or reporting capabilities.

conclusion: There is very little overlap between the purpose of
OB21 and QMF.

• 	 OB21 (SPUFI) is the right tool for the data base administrator
and the application programmer

• QMF is 	the right product for general users

110 IBM DATABASE 2 Concepts and FacHities Guide
International Systems Center - Santa Teresa

CHAPTER 9. SECURITY AND AUTHORIZATION

The 	main objectives of DB2 security and authorization are

• 	 to provide effective control over the data resources at the
required level (e.g. control at field value level) and

• 	 to allow centralization or decentralization of control at the
required level, e.g. DB2 users may wish to control the use of
thei r resources wi thout the permi ssi on or assi stance of
administrative personnel.

The fulfillment of these objectives makes it possible to
implement a secured system without putting a burden on the end
user of DB2 data.

VIEUS AND SECURITY

The authorization mechanism of DB2 provides access control at the
level of a table or view. To protect individual values within a
table, a view must be defined to exclude all the columns and/or
rows containing these protected values. Views, therefore,
provide security at the field value level.

Column Subset

A view defined as a column subset is used to protect sensitive
data stored in columns of a table. For example, the following
view protects JOBCODE and SALARY data in the employee table:

CREATE VIEW EMPll
AS SELECT EMPHO, lASTHAME, WORKDEPT,

PHOHEHO, EDUCLVl
FROM EMPLOYEE

Row 	 Subset by Field Value

A view defined as a row subset is used to restrict access to a
table based on one or multiple field values. For example, the
following view allows access to employees of department 'Dll'
only:

CREATE VIEW EMPLDII
AS .SElECT *

FROM EMPLOYEE
WHERE WORKDEPT = 'DIl'

Chapter 9. Security and Authorization III
International Systems Center - Santa Teresa

statistical Summary

AUTHORIZATION

Resources

A view may also be used to present summary data only to the user,
thus protecti ng i ndi vi dual values. For example, the followi ng
view provides average salaries by department:

CREATE VIEW EMPlAVGSAl
AS SELECT WORKDEPT, AVG(SALARY)

FROM EMPLOYEE
GROUP BY WORKDEPT

The authorization mechanism of DB2 is based on resources to be
protected. and capabilities assigned to an authorization-ID
(user). The comprehensive and flexible authorization schema does
not rely on the concept of a central, all powerful "data base
administrator". Each "owner" of a resource may delegate
capabilities (privileges) to other users. and revoke them again
at a later time.

The followi ng li st contai ns all the DB2 resources that can be
protected against unauthorized access:

Tables, Views Access to the data in each table or view can be
protected. Users may be allowed to use SELECT.
DELETE. INSERT. and UPDATE statements against the
table or view. With UPDATE one may even control
which columns can be updated. Changing a table
definition (ALTER) may also be controlled.

Data Base Creation and deletion of tables and table spaces
within a data base. starting/stopping of the data
base, etc., can be controlled.

util ities The invocation of each utility can be protected
by data base.

APPI. Plan Creation (BIND), replacement (REBIND). deletion
(FREE), and i nvocat ion (execut i on) may be
controlled.

DB2 Catalog 	 The catalog is automatically protected against
update through SQL statements. By default users
are allowed read-only access to the catalog. An
installation may further protect catalog data by
providing selective views only.

Table Spaces 	 Use of a table space may be controlled.

112 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

storage groups Use 	of a storage group may be controlled.

Buffer Pools Use 	of a buffer pool may be controlled.

DB2 Commands Issuing of each command can be protected.

Users and Authorization-IDs

All DB2 users are identified by an authorization-IDe An
authorization-ID can be up to 8 characters in length. A DB2 user
may have more than one authorization-ID. and several users may
share an authorization-ID at the same time.

Figure 23 shows the origin of authorization-IDs for the different
kinds of DB2 users. DB2 assumes that the attaching subsystem has
validated the authorization-ID, so there is no additional
check i ng in DB2. DB2 does not check from wh i ch SUbsystem the
authorization-ID is coming. The same authorization-ID may be
used in di fferent subsystems for the same or for di fferent
persons.

User Type 	 Authorization-ID

TSO terminal user 	 T50 logon-ID or
sign-on exit value

Batch Job 	 USER parameter of job card.
sign-on exit value. or
installation default.

IMS 	 Sign-on user-id, or
logical terminal name

IMS BMP (non MSG) 	 USER parameter of job card.
or PSB name

CICS 	 AUTH parameter in RCT
(Resource Control Table):

user-ID. terminal name.
transaction-ID. etc.

Figure 23. DB2 Authorization-IDs

Capabtl Utes

The authorization of a user to access a certain resource can be
done for a single capability or for a group capability.

Chapter 9. Security and Authorization 113
International Systems Center - Santa Teresa

Single capabilities

There are different capabilities for which users may be
authori zed wi th respect to the resources ment i oned earl i er in
thi s chapter.

General Capabiltties: Give the user the authority for an action
that ;s not related to a specific resource, but applies to all the
resources of a certain category. A selection of general
capabilities follows:

ALTERBP 	 The attributes of any buffer pool may be altered.

BINDADD 	 Creation of a new application plan.

CREATEDBA 	 Hew data bases may be created. The user
automatically gets DBADM authority (described later
in section "Group Capabilities or Administrative
Authorities" on page 115) for all the data bases
created.

CREATEDBC 	 New data bases may be created. The user
automatically gets DBCTRL authority (described later
in section "Group Capabilities or Administrative
Authori ti es" on page 115) for all the data bases
created.

Resource-specific capabilities: Give the user the authority for
an action that is related to the specified resource(s). A
selection of resource-specific capabilities follows:

ALTER 	 The definition of the specified tables may be
altered.

DELETE 	 Rows may be deleted from the speci fi ed tables or
views.

INDEX 	 Indexes may be created for the specified tables.

INSERT 	 Rows may be inserted into the specified tables or
views.

SELECT 	 Rows may be selected from the speci fi ed tables or
views.

UPDATE 	 The values for the specified list of columns within
the specified tables or views may be updated.

BIND 	 Binding, rebinding, and freeing of an existing
application plan.

EXECUTE 	 Execut i on of an appl i cat i on plan (program) is
allowed.

114 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

CREATETAB 	 New tables may be created within the specified data
bases.

CREATETS 	 New table spaces may be created within the specified
data bases.

DROP 	 The specified data bases may be dropped. This also
drops all the contained tables. An object (e.g.
table) within a data base can only be dropped by the
creator, or an administrative authority.

IHAGCOPY 	 The COpy utility may be run against table spaces and
indexes within the specified data sets. Similar
resource specific capabilities exist for all the
other utilities.

USE OF 	 The specified objects (buffer pool, storage group,
table space) may be used.

Group capabilities or Administrative Authorities

Some of the single capabilities have been grouped together and may
be assigned to special DB2 users for administrative purposes.
These administrative authorities are:

SYSADH 	 System Administration:

A user with this authority has total control over any
DB2 resource. Such a user may grant to or revoke from
any user the authority to access any resource. When
DB2 is installed one user is the initial SYSADM. He
may grant this authority to other users.

DBAD'" 	 Data Base Administration.

This kind of data base administrator has total
control over those data bases he is responsible for.
For these data bases he can create tables, alter
table definitions, see and modify data in the tables,
and run utilities.

DBCTRL 	 Data Base control.

Th; s ki nd of data base adm; n; strator has the same
capabilites as DBADM, except that he is not allowed
to see and modify table definitions and data in the
tables. He may run read-only and updating utilities.

DBHAINT 	 Data Base Haintenance.

This kind of data base administrator has the same
level of control as DBCTRL, except that he is only

Chapter 9. Security and Authorization 115
International Systems Center - Santa Teresa

authorized to run read-only utilities (e.g. image
copy and statistics).

SYSOPR system operator.

The system operator is only authori zed to issue
selected DB2 operational commands. This user has no
access to data bases (DB2 data).

Explicit Authorization

Authorization is explicitly GRANTed to or REVOKEed from a user
through two SQL statements.

GRANT

The SQL GRAHT statement is used to give a certain capability to a
DB2 user. The format of GRANT is:

GRAHT capability resource-list

TO authorization-lD-Iist

[WITH GRAHT OPTION]

The capability. is either a single or a grouped capability, as
listed earlier in this chapter. Depending on the capability none.
one or more resources can be specified. Resources may be data
bases. tables, vi ews, columns, table spaces, storage groups.
buffer pools, or application plans. The authorization is granted
to one or more users identified by their authorization-lOs.
Authorization may also be granted to all the users:

GRAHT capability resource-list
TO PUBLIC

An authorization may be granted to a user WITH GRANT OPTION. It
allows the user to pass this authority further to other users.
Followi~g are the main rules for granting authorization:

• 	 A capability can be given to (or revoked from) a user at any
time.

Authorization for an object cannot be done before the
creation of that object.

• 	 Authorization for an object is automaticallY revoked (deleted
from the catalog) when the object is dropped.

• 	 To issue the GRANT statement requires an explicit or implicit
authorization. Explicit authorization to issue the GRAHT
statement for the same capabilities and resources is obtained
through: WITH GRANT OPTION. Implicit authorization is
explained later in this chapter.

116 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

REVOKE

Examples of GRANT

• 	 All the users are allowed to look into the employee table:

GRANT SELECT ON TABLE EMPLOYEE TO PUBLIC

• 	 Allow an appl i cati on programmer to j nsert rows j nto an
existing table:

GRANT 	 INSERT ON TABLE EMPLOYEE TO PROGOI

• Two 	 users are allowed to change definitions of two tables:

GRAHT 	 ALTER ON TABLE EMPLOYEE, DEPARTMENT

TO PROG02, PROG03

• 	 A user is allowed to execute a program (application plan):

GRANT EXECUTE ON PLAN EMPMUT TO TERM33

• 	 A second system administrator is enabled:

GRANT SYSADM TO SECADM

• 	 A data base administrator is given control over the personnel
data base. and he is allowed to grant authori ty to other
users:

GRANT 	 DBADM ON DATABASE PERSONNEL

TO ADMIH2 WITH GRAHT OPTION

The SQL REVOKE statement is used to take away a certain capability
from a DB2 user. The format of REVOKE is:

REVOKE capability resource-list

FROM authorization-ID-list

Following are the main rules for the REVOKE statement:

• 	 A REVOKE may only be issued by the grantor (who GRANTed the
capability earlier), or by a SYSADM user.

• 	 There is a cascading effect for the REVOKE statement. If a
capability is granted WITH GRANT OPTION from one user to the
next in a sequence, then a REVOKE of the same capability from
the first user results in REVOKE's for all dependent users.

Chapter 9. Security and Authorization 117
International Systems Center - Santa Teresa

UserO: GRANT SELECT ON TABLE EMPLOYEE
TO USERl WITH GRANT OPTION

User!: GRANT SELECT ON TABLE EMPLOYEE
TO USER2 WITH GRANT OPTION

User2: GRANT SELECT ON TABLE EMPLOYEE
TO USER3 WITH GRANT OPTION

UserO: REVOKE SELECT ON TABLE EMPLOYEE FROM USERl
(revokes all the above authorizations)

• Only a capability that has been granted can be revoked.
example, if DBCTRL has been granted, you cannot revoke
IMAGCOPY capability individually.

For
the

Implicit Authorization

There are three user categories which are implicitly authorized,
i.e. authorized without GRAHT/REVOKE statements.

The creator of an object is automat i cally gi yen full authori ty
WITH GRAHT OPTIOH on that object. Thi s access to the object
cannot be revoked, unless the object itself is deleted.

Every SYSADK administrative authority has by default full access
to any DB2 resource. He may also DROP (delete> the resource, but
he cannot revoke the authority to access the resource from the
creator.

A DBADK user has implicit access to all the tables created by
other users in the data bases he is controlling. He cannot grant.
however, capabilities on these tables to other users.

Operation - what is checked when?

There are different events when authority is checked. The
following section describes the events that are of importance for
authority checking.

pre-compile: Since DB2 is not required at precompile time, no
authority checking is done at that time.

DCLGEH: SELECT authority is required for all tables whose
declarations are to be generated.

ALTER or DROP of definition: When a table. view. or index
definition is changed or dropped. all application plans dependent
on it will be marked invalid. Automatic bind is called the next
time the application is used.

BIND (TSO subcommand): To issue a BIND command the user must be
authorized with the BINDADD (new plan) or BIND (existing plan)
capability. The binder must have the proper authority for all the

118 IBM DATABASE 	 2 Concepts and Facillties Guide
International Systems Center - Santa Teresa

tables and views used in this application plan. Dependent on the
VALIDATE option of the BIND command (section "BIND Command" on
page 96 in "Chapter 7. Application Programming Environment") some
authorization checking may be delayed to execution time.

Automatic bind: The latest binder (user who issued BIND the last
time) is checked again for authorization on used tables and views.

Dynamic bind: Is called for dynamic SQl statements. The user
execut i ng these SQL statements must be properly authori zed to
access the tables and views referenced.

Execution time: The user who executes the program (plan) must
have EXECUTE authority on that application plan. In addition it
is possible that authorization must be checked for the latest
binder of the plan if that authority was missing at BIND time.

DATA SET PROTECTION

The DB2 security and authorization mechanism is of value only if
the active data base and the DB2 system data sets are properly
protected. This may be accomplished by VSAM password protection
and/or RACF.

VSAH Password Protection

Act i ve DB2 data base data sets may be protected by a VSAM
password.

User defined VSAH data sets are password protected through the
VSAM DEFINE statement. The MASTER password must then be specified
in the CREATE TABLESPACE or CREATE INDEX statement.

CREATE 	 TABlESPACE space-name
etc.
DSETPASS dataset-password

Data sets defined using DB2 storage groups are password protected
by specifying a password (DSETPASS) in the CREATE statement as
shown above.

RACF

In addition to or in place of VSAM password protection, RACF may
be used to limit access to DB2 data sets. All the DB2 system data
sets and libraries (e.g. INCLUDE libraries) may be RACF
protected.

Individual users (authorization-IDs) must be given RACF ALTER
access 	to user defined VSAH data sets prior to creating the table
space or index.

Chapter 9. Security and Authorization 119
International Systems Center - Santa Teresa

Data sets in storage groups may be automaticallY RACF protected by
assigning the RACF ADSP (Automatic Data Set Protection) attribute
to DB2 authorization-IDs.

120 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

CHAPTER 10. 	THE DB2 CATALOG

The DB2 system catalog contains data about all the data DB2
manages. This includes:

• 	 Descriptors for all the DB2 objects defined and used by the
Data Definition language (DDl)

• 	 Application plans created by the BIND process

• 	 Authorization privileges granted to DB2 users

• 	 Data set names and volume-ID's of image copy data sets

Another portion of system data managed by DB2 ;5 stored in the
Directory. 	 This part of DB2s system data is not accessible by the
user. and is 	therefore not presented here.

CATALOG STRUCTURE

The system catalog is stored as a set of DB2 tables. These tables
of the catalog are like any other tables in DB2. You can use SQl
SELECT statements to look at data in the catalog tables the same
way you use them to retrieve data from any other table in the
system. Examples of catalog usage through SQL statements are
presented later in this chapter.

The catalog cannot be updated using the SQl data manipulation
language. The catalog is maintained through the SQl data
definition language (DOL). authorization language (GRANT and
REVOKE), and the BIND process.

The next sections describe the different types of data stored in
DB2 catalog tables. Some tables will be presented conceptually,
but not all the catalog tables will be mentioned. and none of them
will be explained in detail.

Data Definition

Descriptors of all the DB2 objects defined through the SQl data
definition language are stored in catalog tables. To illustrate
this facility a small selection of the catalog tables used to
describe DB2 objects is shown below:

SYSTABLES 	 The SYSTABlES table contains one row for every table
or view defined in the system. Some of the fields of
SYSTABlES are the NAME of the table (or view), the
CREATOR (user-ID), the TYPE (table or view), the
DBNAME (data base name), the TSNAME (table space

Chapter 10. The DB2 Catalog 121
International Systems Center - Santa Teresa

name), and the COLCOUNT (numbe,. of columns in the
defi ned table).

Additional statistical information like the number of
data rows, the number of pages holding rows of this
table, and the percentage of the total number of
pages of the table space holding rows of this table,
can be stored in SYSTABLES (using the RUNSTATS
utility) after data has actually been loaded.

An additional field called REMARKS holds text
information associated with the table through the
"COMMENT ON Statement" on page 56.

SYSCOLUHNS 	 The SYSCOLUMNS table holds ~ne row for every column
of each table that has been created or defined. Some
of the fi elds of SYSCOLUMNS are the NAME of the
defined column, the T8NAME (name of the table which
contains this column), the COLTYPE (data type of
defined column), and the LENGTH of the column.

Other catalog tables hold i nformat i on about buffer pools, DB2
data bases, storage groups, table spaces, indexes and synonyms.

SQL SELECT statements may be used to retrieve information from
catalog tables. The following examples retrieves the definition
of all the columns of the employee table (SYSI8M is the creator of
catalog tables):

SELECT NAME, COLTYPE, LENGTH
FROM SYSIBM.SYSCOLUMNS

WHERE TBNAME = 'EMPLOYEE'

Application 	Plans

The BIND process presented in "Chapter 7. Application Programming
Environment" section "Creating an Application Plan (BIND)" on
page 95 creates entries in several catalog tables:

SYSDBRtt 	 The SYSDBRM table contai ns i nformati on about the
programs which constitute an application plan; there
is one entry for each program. It includes the name
of the DBRM, the time and date of the precompile run,
the host language, and the name of the appl i cat ion
plan of which this DBRM is a part. The SQl text of
the DBRM is stored in a separate catalog table
SYSSTMT.

SYSPLAN 	 The SYSPlAN table contains one row for every
application plan. It contains the NAME of the plan,
the CREATOR (user-ID), the BINDDATE (date of last
bind operation of this plan), the VALIDATE and
ISOLATION options of the BIND command, and a flag

122 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

indicating if the plan is valid or must be rebound
dynamically.

SYSUSAGE 	 The SYSUSAGE table contains information about
dependencies that application plans have on storage
objects and views. For example an application is
dependent on an index of a certain table.

The catalog tables holding information about application plans
may be used, for example, to find which plans need a REBIND after
an index is deleted, or for whi ch plans a REBIND mi ght be
worthwile after a table space has been reorganized.

• 	 Find all application plans (DliAME is the dependent object
name), dependent on the index (SHAME is the base object)
before deleting the index:

SELECT DNAME

FROM SYSIBM.SYSUSAGE

WHERE BHAME = 'index-name'

AND BCREATOR = 'auth-id'

• 	 Find invalid application plans (VALID equal N) after deleting
the index:

SELECT NAME

FROM SYSIBM.SYSPLAN

WHERE VALID = 'N'

Another example of catalog usage is to find all the application
plans which use a certain table. This is useful when the table
has been reorgani zed, or when an index has been added, and a
REBIND might find better access paths to the data:

SELECT DNAME

FROM SYSIBM.SYSUSAGE

WHERE BNAME = 'table-name'

AND 8CREATOR = 'auth-id'

AND DTYPE = 'P'

Chapter 10. The DB2 Catalog 123
International Systems Center - Santa Teresa

Authorization Definition

A number
granted from

of catalog tables hold information about authorization
one user to another.

SYSTABAUTH The SYSTABAUTH table records information about
pri vi leges held by users over tables and vi ews.
Each row contains the GRANTOR and the GRANTEE, the
name of the table or view, the timestamp when the
capability was granted, and the functions which may
be performed (SELECT, INSERT, etc.).

SYSPLANAUTH The SYSPLANAUTH table records the DB2 users holding
authority to BIND or EXECUTE an application plan.

other tables record the authorization on DB2 data bases,
individual table column update, general capabilities, and usage
of buffer pool, storage groups, and table spaces.

SQL SELECT statements may be used to find all the users having
access to a certain resource. The following SELECT retrieves all
the users who may update the employee table:

SELECT DISTINCT GRAHTEE
FROM SYSIBM.SYSTABAUTH

WHERE (DELETEAUTH = 'V' OR DELETEAUTH = 'G' OR
INSERTAUTH = 'V' OR IHSERTAUTH = 'G' OR
UPDATEAUTH = 'V' OR UPDATEAUTH = 'G')

AND TTNAME = 'TEMPL'
AHD TCREATOR = 'DSH8'

Image Copy Data sets

The SYSCOPY table contains records showing the latest image copy
taken for each table space ; n every data base. Informati on
maintained in SYSCOPY includes the table space name, the run date,
and all the information where the image copy data set is stored.

This information is used by the recovery utility to automatically
allocate the latest image copy when recovery of a DB2 data base
data set is necessary.

The ; nformat; on may be used by a data base admi ni strator to
retrieve the inventory of image copies of a table space:

SELECT rCDATE, DEVTYPE, DSNAME, DSVOLSER
FROM SYSIBM.SYSCOPY

WHERE TSNAME = 'table-space-name'
AND DB NAME = 'data-base-name'

ORDER BY DSHAME, ICDATE

124 IBM DATABASE 2 Concepts and FaciHties Guide
International Systems Center - Santa Teresa

USING THE DB2 CATALOG

In the prey i ous secti ons some small examples were presented to
illustrate the use of SQl SELECT statements on catalog tables.
However. since some of the catalog tables contain sensitive
information. the authority to issue SELECT statements should not
be granted to every user on all the catalog tables.

To allow a more selective access of catalog data. an installation
may define a number of views restricting users to data they are
allowed to see. For example:

• 	 A view TABAUTH defined on the SYSTABAUTH table selects rows
which describe authorizations the user has been granted by
others. or has granted to others. He may not see
authorization records where both the grantor and the grantee
are other users.

• 	 A view D8AUTH defined on the SYSD8AUTH table (authorization
on data bases> selects rows on authorization granted to the
user by others. or granted by the user to others.

The OB2 catalog may therefore be used as a tool for the Data Base
Administrator (08A) to manage all the 082 objects. the
application plans. and the user authorizations. An installation
should carefully control the access to the 082 catalog using the
082 Authorization mechanism.

Chapter 10. The DB2 Catalog 125
International Systems Center - Santa Teresa

126 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

CHAPTER 11. OPERATION AND RECOVERY

In this chapter we look at the operational environment of DB2.
Thi s includes:

• 	 Commands to control and operate a DB2 system and its data
bases

• 	 The logging function which provides a base for system and data
base recovery

• 	 DB2 operational utilities for reorganization, backup and
recovery

OPERATION OF DB2

DB2 must be defined as a formal MVS sUbsystem in order that it may
use the services provided by the MVS Sub-systems Interface (551).
This is done at DB2 installation time by creating an entry in the
SYSl.PARMlIB member IEFSSHxx. This entry is used by MVS to

• 	 acti vate a DB2 "early processing module" when the master
scheduler is initialized, and to

• 	 define the subsystem recognition character (SRC) which
identifies DB2 commands issued at an MVS console

The DB2 "early processing module" is activated at master
scheduler initialization time. It waits for a DB2 START command
to startup the whole DB2 system.

DB2 commands are identified by a I_I preceding the command verb.
This is the subsystem recognition character (SRC) assigned to
DB2. When running multiple DB2 systems in one MVS system, each
DB2 system must have its own SRC.

Command and Message Support

DB2 commands may be issued from an MVS console, a TSO terminal, or
an authorized IMS or CICS terminal. The IMS and CICS facilities
will be presented in special chapters devoted entirely to the IMS
and eIeS environments.

Users of TSO terminals may enter DB2 commands either through the
DB2 command processor (DSN), or through the ISPF menu presented in
"Chapter 8. TSO Environment." RACF may be used to ensure that a
TSO user is author i zed to connect to DB2.

Responses to DB2 commands are sent back to the termi nal (or
console) issuing the command. DB2 unsolicited system messages

Chapter 11. Operation and Recovery 127
International Systems Center - Santa Teresa

are sent to the MYS console only (or secondary consoles defined at
D82 installation time). DB2 messages are prefixed by DSHcxxxt.
where "c" is the DB2 component, "xxx" the message number. and "t"
the message type (A, E, or I).

startup and Shutdown

DB2 is started from an MVS console through the START command:

-START DB2

The start command is processed by the "early processing module" of
D82, whi ch wi 11 interface wi th JES to start the DB2 address
spaces. More details on the DB2 address spaces is presented in
"Chapter 12. Architecture."

There are no parameters on the start command to indicate normal or
emergency (re-)start. The necessary restart processing is
determined by DB2. Transactions (application programs) which
were active at the last DB2 shutdown are automaticallY recovered.

DB2 is stopped from an MYS console. or any authorized terminal
attached to D82, through the STOP command.

-STOP DB2 or

-STOP DB2 MODE (QUIESCE)

In this normal mode of stopping the SUbsystem all current work is
allowed to finish. No new transactions (application programs)
are allowed to start processing.

DB2 may be forced to shutdown fast through the FORCE mode of the
stop command:

-STOP DB2 MODE (FORCE)

In this mode all current work is aborted at the first opportunity.
Active work is rolled back. and no new transactions are allowed to
start.

Immediate termination of DB2 is available through the MYS cancel
command. Active work is interrupted immediately and rolled back
at the next DB2 startup.

128 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

controlling Data Bases

DB2 data bases, table spaces and index spaces are controlled
through DB2 start, stop, and display commands. The unit of these
commands is normally a DB2 data base, but it is also possible to
act on individual table space or index spaces.

starting 	a Data Base

A DB2 data base is made available for processing through the start
command:

-START DB (db-name-list)
ACC (RW I RO I un
SPACE (table-space-list, index-space-list)

DB or DATABASE: Speci fi es one or more DB2 data bases to be
started. All data bases may be started as DB (*).

ACCess: Specifies the level of access allowed. The default
access is read-write (RW)' The access may be restricted to
read-only (RO), or utilities only (UT).

SPACE: Thi s optional parameter allows to restrict the start
command to individual table spaces and/or index spaces of one data
base named with the DB keyword.

stopping 	a Data Base

A DB2 data base is made unavailable for processing through the
stop command.

-STOP 	 DB (db-name-list)
SPACE (table-space-list. index-space-list)

One or more DB2 data bases, or individual table spaces and/or
index spaces, may be stopped.

Displaying the Status of a Data Base

The status of a DB2 data base, or the stat~s of i ndi vi dual
table/index spaces, may be displayed through the DISPLAY command:

-DISPLAY 	 DB (db-name-list)
SPACE (table-space-list, index-space-list)
ACTIVE
RESTRICT

The optional keywords ACTIVE and RESTRICT allow the user to
display information about data bases allocated to applications
(ACTIVE), or data bases which are in a status that restricts their

Chapter 11. Operation and Recovery 129
International Systems Center - Santa Teresa

use (RESTRICT). An example of a restricted data base is a data
base started for read-only processing. The default is display ,
information on ACTIVE and RESTRICTed data bases. ~

THE 	 DB2 LOG

The DB2 Log contains all the necessary information for data base
recovery, application recovery, and system recovery. The log
does not contain records for accounting, traces, and performance
evaluation.

Log 	records fall into different categories. Some of these are:

• 	 Data set contr~l, recording open and close of DB2 data sets.

• 	 Transaction related records, marking the beginning and end of
processing, as well as "before" and "after" update images of
table records.

• 	 DB2 system checkpoint records.

Log 	Operation

The log is implemented as a three level hi erarchy as shown in
Figure 24 on page 131.

Log records are placed sequentiallY into log buffers. Log buffers
are formatted as VSAM CI's of 4K bytes. Log records longer than
256 bytes may span into the next CI. Each log record is assigned
a continuously increasing relative byte address (RBA) in a linear
address range from 1 to 2**48 (log RBA's are 6 bytes long). Log
RBA's are therefore not RBA's of a physical VSAM data set.

Active Log Data sets

Log buffQrs (CI's) are written to a set of predefined DASD active
log data sets which are used on a cyclic basis. Active log data
sets are VSAM ESDS's, and 2 to 53 may be defined. Optionally a
second set of VSAM ESDS may be defined to support a dual copy of
the active log.

Log 	buffers are wri tten to the acti ve log when

• 	 all log buffers are full

• 	 a user specified number of log buffers is full (1-256)

• 	 the log buffer is forced by the log write ahead facility

The log wri te ahead faci 1 i ty enforces that recoverable
information is written to the log data set before the associated

130 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

•••
•••

••••
••••

1 Resource Managers I

log records
v

1_ log Manager J

I
V

log DDDDDDDDDDBuffers

I l~ log wri te

Active wrap-around9 I
log Data Sets v V V usage

I

Offload fuction

Archive
log Data Sets V

I I I I I I I I I I I I I I I I
new allocated

Figure 24. DB2 log Hierarchy

action is performed (e.g. a table page change is logged before the
page is written back to the table space).

Archive Log Data sets

Whenever an active log data set is full, its CI's are off loaded to
a new archive log data set. Archive log data sets are sequential
data sets (BSAM/QSAM), which are dynamically allocated and
optionally cataloged by DB2 during the offload operation. The
blocksize of archive data sets is a multiple of 4K in the range of
8K to 28K. Each record in the archive data set corresponds to a
VSAM CI of an active log data set.

Up to 1000 archive log data sets may be controlled by DB2. Dual
mode is also available for archive data sets and DB2 will maintain
two sets of archive logs.

Chapter 11. Operation and Recovery 131
International Systems Center - Santa Teresa

Boot strap Data set

The DB2 Boot strap Data Set CBSDS) is a VSAM key sequenced data
set that contains an inventory of all log data sets.

• 	 All the available active log data sets are recorded in the
BSDS at installation time. Data sets may be added and removed
when DB2 is not running.

• 	 Each newly allocated archive log data set is reflected in the
BSDS.

The BSDS therefore maps each log RBA into an active log data set
and/or into an archive data set. Using the BSDS the log manager
may dynamically allocate a required log data set to retrieve any
log record with a given log RBA.

A dual option is supported for the BSDS, and all changes are made
to both data sets. An error on one BSDS disables dual mode and
the erroneous data set is unallocated. The installation may then
redefine the VSAM data set using access method services CAMS), and
tell DB2 to reestabl i sh dual mode through the -RECOVER BSDS
command. The new data set is dynamically allocated and all the
information copied from the good BSDS.

Whenever an archive log is created by the log offload function, a
copy of the BSDS is created as well. This may be used in case of
an error with single BSDS or when both BSDS are damaged.

Log 	 processing options

An installation has the following control over the DB2 logging
function:

• 	 Humber of active logs

The number of act i ve log data sets may be defi ned by the
installation in the range between 2 and 53 inclusive.

• 	 Dual active log

Dual copies of active log data sets may be handled by DB2. In
case of an error on one set of active logs DB2 will continue
to run with a single active log. The two copies are not
synchronized. A data set full condition on either copy will
trigger the offload function, and a range of log RBA's will be
offloaded to an archi ve data set. Log records from both
copies may be used to offload the RBA range.

• 	 Dual BSDS

The BSDS may be 	 maintained in dual mode. 082 provides a
command to reinstate dual 8SDS's after an error on one copy.

132 IBM DATABASE 	 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

• Log write control

The interval between writes to the active log is controlled
through a threshold number of buffers which must be full.

• Number of log buffers

The installation may specify the amount of output log buffers
(32K 4000K), and the amount of input log buffers (28K
60K). Input log buffers are used for the offload process and
for data base recovery.

• Dual archive log

Dual copi es of archi ve logs may be wri tten by the offload
function. This dual mode is independent from dual active
logs. The records contained on a pair of archive data sets
are identical. Archive logs may be automatically cataloged.

• Archive log attributes

The unit type, blocksize, and space allocation parameters for
archive logs, as well as the maximum number of archive logs to
be recorded in the BSDS before wrap-around occurs, are all
user specifiable.

Log util tti es

Two DB2 utilities are available to manage the recording of log
data set in the BSDS.

Print Log Hap utility

The Print Log Map Utility lists the log inventory information
stored in the BSDS. For both copies of every active and archive
log data set the log RBA range which is stored on that data set is
printed.

The utility may be run when DB2 is up or when DB2 is stopped. The
BSDS is accessed through JCL specification.

Change Log Inventory utility

The Change Log Inventory Utility is an offline utility which may
only be run when DB2 is stopped. Utility statements are provided
to:

• Define a new active log data set for DB2 usage

• Delete an act; ve log data set whi ch had an error

Chapter 11. Operation and Recovery 133
International Systems Cen~er - Santa Teresa

• Replace an active log data set of a given RBA range

• Define an archive log data set of a given R8A range

• Delete an archive log data set

The utility is used to reflect normal changes to the BSDS like
adding a new active log data set, or as a 8SDS recovery tool in
case the only 8SDS, or both dual 8SDS, are inaccessible.

DB2 DATA BASE UTILITIES

A set of utilities is provided to support the D82 data base
environment. The following design consideration were taken into
account:

• Improved availability of data

All utilities are executed when D82 is running. Depending on
the utility function, data remains available to applications
for update or for read-only access. Some utilities allow the
invoker to tradeoff availability with utility performance.
If utility execution time is to be minimized, the utility will
make the entire data object unavailable, where as if
availability is critical the util1ty will make only small
amounts of data unavailable at anyone time.

• Improved usability

logical functions may be invoked via one utility, instead of

having JCl for a number of steps (e.g. reorganization). The

utility itself will determine the steps and sequence

necessary to perform the desired function. DB2 incorporates

a mechanism in the catalog to keep track of backup copies.

All utilities have a builtin checkpoint/restart function.

Checkpoints are taken frequently during execution and restart

may be performed in case of a utility or system failure. The ~.

checkpoint feature is implemented in DB2, no OS checkpoint is

involved.

DB2 utilities use a special low-level interface to get D82 data.
This allows for fast sequential processing of table data.

Invocation and control

DB2 utilities are invoked via batch jobs. The simplest way to run
a utility job is by using the appropriate TSO command procedure
(CLIST) provi ded by DB2. You invoke the CLIST usi ng the DB2I
interactive menu facility, or directly under TSO. The DB2
provided menu is shown in Figure 25 on page 135.

134 IBM DATABASE 	 2 Concepts and Faci Ii ti es Gui de
International Systems Center - Santa Teresa

DB2 	 UTILITIES
===>
SPECIFY THE FOLLOWING TO EXECUTE A DB2 UTILITY:

1 SPECIFY UTILITY ===> 	 Enter code letter of desired utility
a REORG d MERGECOPY g RUNS TATS
b LOAD e RECOVER h STOSPACE
c COPY f REPAIR

2 CONTROL CARDS DS ===>
3 EDIT JCL FIRST .. ===> Enter YES to EDIT JCL before submitting
4 SUBMIT JCL ===> Enter YES to submit JCL for execution
5 UTIlITY-ID ===> Enter a unique identifier string
6 DB2 NAME ===> Enter DB2 subsystem name

ENTER NAME OF DATASET FOR COPY, MERGECOPY, LOAD, OR REORG:

7 RECDSN OR COPYDSN ===>

SPECIFY OPTION FOR RESTARTING UTILITY:
8 AFTER LAST COMMIT ===> Enter YES to start after last commit point
9 AT START OF PHASE ===> Enter YES for beginning of next phase

ENTER QUALIFIER TO DISPLAY OR TERMINATE A UTILITY:

10 DISPLAy ===> Enter UTILITY 10 string or *.

11 TERMINATE ===> Unter UTILITY 10 string or *.

PRESS: ENTER to process END to exit HELP for more information

Figure 25. DB21 Utilities Menu

To submit a job for a DB2 utility via the CLIST you:

• 	 Define the utility control statements in a standard ISPF data
set.

• 	 Invoke the CLIST, supplying the name of the input data set as
one of the parameters.

The job will be built, optionally edited by the invoker, and
submitted for execution.

utility Job status

You can query the status of utility jobs by issuing the DB2
DISPLAY UTILITY command. or using the ISPF utility control menu:

-DISPLAY UTILITY (utility-ID)

The utility-ID is the identification which was supplied in the
utilities menu when the utility job was started.

Chapter 11. Operation and Recovery 135
International Systems Center - Santa Teresa

Forced utility Ter.tnatlon

Reorganization

A long running utility may be forced to terminata through the TERM ~
UTILITY command, or using the ISPF utility control menu:

-TERM 	 UTILITY (utility-ID)

Thi s command may be used by the user who submi ttad the uti! i ty
job, and by a SYSADM or SYSOPR user.

The reorganization utility is used to reorganize a table space, an
index, or a partition of a partitioned table or index space.
Reorganization operates in up to four phases:

UNLOAD 	 The table space (or index, or partition) is read and
written to a sequential data set. Unloaded data is in
clustering index sequence for a simple table space with
one table only, or in physical sequence otherwise.

RELOAD 	 The unloaded data is read from the sequential data set and
loaded into the table space. Work records are generated
for indexes defined on tables within the table space.

SORT 	 If there are indexes this phase will sort the index work
records before updating the indexes.

BUILD 	 After the sort phase the indexes are updated to reflect
the new location of records.

An i mage copy must be taken after reorgan i zat i on before any
updates are allowed on the table space. Physical space of dropped
tables is reclaimed by reorganization.

The reorganization control statement to reorganize a table space
is:

REORG 	 TABLESPACE table-space-name

PART partition-number

UNLDDN SYSREC I ddname

WORKDDN SYSUTl I ddname

SORTDEVT device-type

SORTNUM numer-of-sort-ds

UNLOAD CONTINUE I PAUSE ONLY

The reorganization control statement to reorganize an index is=

REORG 	 INDEX index-name

.. etc.

TABLESPACE or INDEX. PART: Identifies the space or partition to
be reorganized.

136 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

UNLDDN and WORKDDN: Define the "ddnames" for the sequential
output files for table data and index data.

SORTDEVT and SORTNUH: Define the number and device type of sort
work data sets.

UNLOAD: Specifies actions to take place after the data has been
unloaded. The default CONTINUE will immediately reload the table
data. PAUSE will cause the utility to end after unload. User
defined VSAM data sets may now be redefined (e.g. to increase
space, change the volume). Th~ utility job may then be
resubmitted with the RESTART option to reload the data. OHLY will
cause the utility to end after unload and remove the status of the
utility completely. The table definition may now be changed with
the ALTER TABLE statement to change the name of the validation
procedure. The data may then be reloaded using the LOAD utility
(See "Load Utility" on page 71 in "Chapter 6. Data Management")
with the 'FORMAT UHLOAD' option. This is a way to enforce
validation of existing data.

Data Base Backup and Recovery

The DB2 Backup and Recovery concept allows to recover a table
space, partition, or a group of pages. It is based on:

• 	 Logging: All the changes to data pages are logged on the DB2
system log.

• 	 Image copies: Two utilities are provided to maintain image
copies of table spaces.

• 	 The Recovery utility may be used to recreate a table space
from an image copy and log records.

The cycle and data flow of the data base recovery system is shown
in Figure 26 on page 138.

Index spaces are not recovered using image copies and log records.
They are re-created usi ng the CREATE INDEX funct i on, either
explicitly by the user, or by the index recovery function of DB2.

Chapter 11. Operation and Recovery 137
International Systems Center - Santa Teresa

-~"'1

Table ..,J
Space DB2>1 I >BJ

A I ,
V

I Image Copy I
1 2 13 ..

V

Incremental
Image CopiesSJ

V

~
V V ...""

IMerge Copy
1

I

9
V

Full
Image
Copy

V

I Recovery 1<I

Figure 26. Data Base Recovery Cycle

Image copy

The image copy utility makes a page image copy of a DB2 table
space (or data set of a table space) to a sequential data set.
The table space remains available (read-only or update) to
applications during that time. Allowing read-only access during
the copy will provide best performance. The sequential output
data set (image copy) is recorded in the catalog table SYSCOPY.

138 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

The image copy utility statement is:

COpy 	 TABLESPACE table-space-name
DEVT image-copy-device-type
DSNUM ALL I data-set-number
COPYDDN SYSCOPY I ddname
SHRLEVEL REFERENCE I CHANGE

TABLESPACE: Identifies the table space to be image copied.

DSNUH: Used to copy one data set only. This is supported for
partitioned table spaces (fixed number of data sets), as well as
for simple table spaces (number of data sets may increase).

COPYDDN and DEVT: Specify the "ddname" and device type of the
image copy data set.

SHRLEVEL: Specifies if read-only (REFERENCE) or update (CHANGE)
applications are allowed during the image copy time.

Incremental Image copy

A significant option of the image copy utility is the incremental
image copy. Incremental image copy allows the user to copy only
those data pages which have been changed since the last image copy
(full or incremental). In most cases, only a limited number of
pages wi 11 have been changed si nee the last incremental image
copy, and therefore only a small percentage of the entire table
space will have to be copied. Incremental image copies are also
recorded in the catalog table SYSCOPY.

The utility statement for incremental image copy has the FULL NO
opt i on added:

COPY 	 TABLESPACE table-space-name
FULL NO
... etc.

Merge Copy

The merge copy utility allows the user to merge multiple
incremental image copi es together into one incremental image
copy, or to merge all incremental image copies with the latest
image copy into a new full image copy. The usage of merge copy is
optional, however, it may provide the basis for faster recovery.

Chapter 11. Operation and Recovery 139
International Systems Center - Santa Teresa

The utility statement for merge copy is:

MERGECOPY 	 TABLESPACE table-space-name
DEVT device-type
DSNUM ALL I data-set-number
COPYDDN SYSCOPY I ddname
WORKDD ddname
NEWCOPY NO I YES
DELETE YES I NO

NEWCOPY: Specifies if a full new image copy is to be created
(YES), or if only incremental image copies are merged into a new
incremental image copy.

DELETE: Specifies if the old full image copy record in the
catalog may be deleted after a new full image copy has been
created (applies to NEWCOPY YES only). If NO is specified then
image copy information prior to the old full image copy is deleted
only. Merged incremental image copy records in the catalog are
always replaced by the new information.

WORKDD: A work data set is needed if many incremental image
copies must be merged. If omitted only some incremental image
copies may have been merged and another execution of the merge
copy utility is required.

Recovery

The recovery utility is used to recover a damaged table space, a
partition or data set of a table space, or a range of pages
(tracks) of a table space.

Recovery consists of up to three distinct phases. They are:

ICREST 	 The latest full image copy is restored. If the latest
full image copy is unreadable recovery wi 11 use the
previous image copy.

ICHERG 	 If incremental image copies are outstanding they are
applied next. The user does not have to run the merge
copy utility before starting recovery.

LOGAPPLY 	 The last phase applies all outstanding log changes.
The log manager will retrieve the required change log
records from current log buffers, acti ve log data
sets, and if required even from archive log data sets.

selective data recovery is used to replace erroneous tracks of a
table space data set. DB2 keeps track of the range of damage in
case of I/O errors on data pages. DB2 then recovers these tracks
by recovering the pages into alternate tracks. This option
provides the fastest recovery possible.

140 IBM DATABASE 	 2 Concepts and Faci 1 i ti es Gui de
International Systems Center - Santa Teresa

Index Recovery

Repai r uttl ity

The 	utility statement for recovery is:

RECOVER 	 TABlESPACE table-space-name

DSNUM ALL I data-set-number

[ERROR RANGE]

TABlESPACE and DSNUH: Specify the data setes) to be recovered.

ERROR RANGE: Optionally specifies that erroneous tracks are to be
recovered only using alternate track assignment.

There is no image copy - recovery mechanism for indexes. Indexes
may be recovered in two ways:

1. 	 DROP the damaged index, and use the CREATE INDEX function to
recreate the index. Note that all the application plans which
are dependent on that index will be automaticallY rebound at
their next usage.

2. 	 Use the RECOVER INDEX command which wi 11 internally invoke
the INDEX build function:

RECOVER 	 INDEX index-name

The REPAIR utility allows the user to repair data in pages,
whether it is user data (table data) or D82 control data. Data
may be examined by clustering index key, RID (record identifier),
or page number/offset, and discrepancies may be repaired.

The whole utility execution is one "unit of work". At the end of
execution either all the work is committed (if no errors
occurred), or all the work is rolled back.

The 	utility statement for the repair utility is:

REPAIR

Addi ti onal control statements are used to LOCATE data, VERIFY
existing values, DELETE a record (row), REPLACE data with new
values, and DUMP data in printable format.

Chapter 11. Operation and Recovery 1~1

International Systems Center - Santa Teresa

These statements are shown in the format of an example and the
detailed options are not explained.

LOCATE TABLESPACE table-s~ace-name
PAGE X'xxxxxx' to access whole page
RID X'xxxxxxxx' to access a record (row)
KEY data to access a record (row)

VERIFY OFFSET offset
DATA X'xxxx •• ,

DELETE

REPLACE 	 OFFSET offset
DATA X'xxxx •• '

DUMP 	 OFFSET offset
LENGTH length

catalog 	Usage

The backup and recovery utilities use the DB2 catalog to record
information about image copies, incremental image copies, and
ranges of inaccessible pages.

SQL SELECT statements may be used by authorized users to retrieve
data from these catalog tables.

CATALOG 	 "AINTENANCE

As presented in "Chapter 10. The DB2 Catalog," the catalog
consists of a number of tables. These tables may be accessed by
SQL SELECT statements, but they cannot be modified by other SQL
data manipulation statements.

It is therefore very cruc i a I to prov i de a backup and recovery
mechanism for the catalog itself.

catalog 	Backup and Recovery

The catalog tables must be backed up by the image copy utility as
any other tables. This is the DB2 administrators responsibility.
Image copies and incremental image copies of catalog tables will
be recorded in the SYSCOPY table (same as for any table). The
recovery utility may be used to recover a catalog table in the
same way as to recover a user table.

Image copy descriptors of the SYSCOPY table itself are recorded on
the DB2 log. This permits recovery of the SYSCOPY table, without
which no other recovery operation is possible.

142 IBM DATABASE 	 2 Concepts and Faci 1 i ti es Gui de
International Systems Center - Santa Teresa

SYSTEH RESTART AND RECOVERY

In the following section some information is presented on how to
recover in case of failures of components of the DB2 system or its
MVS environment.

HVS 	 Failure

In case of an MVS fai lure due to software, hardware, or power
supply, the following steps are requi red to restart the DB2
environment:

1. 	 IPl MVS

2. 	 START DB2. This will backout uncommitted work and make data
available again.

3. 	 Start other subsystems elMS, CICS) connecting to DB2. The
synchronization required between DB2 and IMS and CICS will be
presented in later chapters.

DB2 	 Subsystem Failure

If the DB2 subsytem fails it is restarted through the DB2 START
command. Uncommitted work will be backed out and synchronization
with IMS or CICS is performed as explained under MVS failure.

Resource Recovery

On a failure of one of the system resources, in most cases, DB2
will be able to continue with processing, and the error may be
corrected. Some of the situations are explained in the following
section, but not all the possible cases are listed here.

Log 	 Data Sets

There are a number of possible problems with log data sets. Some
of the actions performed are:

• 	 Running out of space on active log:

The system issues warnj ng messages when the last avai lable
active log data set is 75Y. full. DB2 continues until no more
space is available, then it will stop and wait until the log
offload function terminates and frees one active log data
set. Probably the user should define more active log space
when DB2 is shutdown the next time.

Chapter 11. Operation and Recovery 143
International Systems Center - Santa Teresa

• 	 Read I/O error on act i ve log:

If during offload then DB2 will offload from the dual copy
acti ve log. If no dual log e>fi sts, then the archi ve log has a
discontinuity. Probably the user should image copy all data
bases to insure recoverability.

If an I/O error occurs during recovery, DB2 will try to locate
the required log records on dual copy log, or on archive logs.
If unsuccessful, recovery fails. Same situation if read I/O
error on archive log.

• 	 Wri te I/O error on archi ve log:

Offload dynamically allocates a new archive log and restarts
offload from beginning again. User might change the offload
unit (disk, tape).

Boot strap Data set

The BSDS is crucial to log operation. Dual mode is suggested for
secure operation.

• 	 In case of I/O errors on a BSDS, DB2 falls back into single
mode. The administrator must redefine the damaged BSDS with
VSAM AMS, and then reinstate dual mode using the DB2 RECOVER
BSDS command.

• 	 The BSDS should never become full. Dummy records are inserted
at DB2 installation time for the number of archive log data
set defined.

If both BSDS are lost, they may be recovered from an archive copy.
As explained in the logging section, an archive copy of the BSDS
is automatically created whenever an active log is offloaded into
an archive log. The change log inventory utility may be used to
update information about active and archive log data sets.

catalog

Catalog recovery is performed using the DB2 recovery utility.
Since there exist dependencies between some of the catalog tables
(e.g. any catalog table is dependent on a correct SYSCOpy table),
the "higher" level catalog table must always be recovered first.
Details about dependencies in the catalog are not presented here,
but the reader should be aware that catalog recovery might require
some more understandi ng and knowledge of the structure of DB2.
For a more complete discussion of this subject, please see IBM
DATABASE 2 Operation and Recovery Guide.

144 IBM DATABASE 2 Concepts and Faci Ii ti es Gui de
International Systems Center - Santa Teresa

Data Base

Data base recovery is performed using the DB2 recovery utility.
Some of the reasons for data base recovery are:

• Write I/O error:

DB2 keeps track of an error range of bad pages. If thi s range
is small in regard to the table space "error range" recovery
may be performed. Applications are not stopped and no return
code is passed back to an SQL statement in case of a write
error. Other applications may not access the bad pages until
recovery has been completed.

• Read I/O error:

A return code is passed back to the SQL statement. The
DISPLAY DB command may be used to find if an error range is
recorded. Recovery may be delayed unless many read errors
occur. The table space must be recovered fully, or with the
"error range" option.

• Logical error in a data page:

The page is flagged as broken, and the application program is
abended. The data set may be recovered, or the REPAIR utility
must be used to "fix" the broken page.

utility Recovery

When a utility fails, its status is recorded in the system. The
utility may be restarted using the same ClIST with the RESTART
option. Utilities use a DB2 checkpoint/restart facility and the
restart will automatically be from the last checkpoint.
Optionally restart may be forced to the beginning of the current
(fai led) phase.

Chapter 11. Operation and Recovery 145
International Systems Center - Santa Tere~a

146 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

DB2 STRUCTURE

CHAPTER 12. ARCHITECTURE

In this chapter we look at the overall architecture of DB2, and at
how other subsystems (TSO, IMS, CICS) attach to DB2. The product
structure and attach architecture is presented at an externalized
level without going into implementation internals.

The address space structure of a DB2 system under the MVS
operating system is shown in Figure 27.

DB2
<--------------------->

TSO user addr space

IRLM DB2 DB2

CICS address space

IMS Data Base System IMS IMS IMS
lock ••
Mgr Services Services CTl MPP BMP

Catalog Log

BSDS

Data

Bases

Figure 27. The MVS DB2 Environment

Chapter 12. Architecture 147
International Systems Center - Santa Teresa

The address spaces and thei r major functi ons are:

The IMS Resource Lock Manager provides locking
services to the DB2 address spaces. Locks are used to
isolate different DB2 users from each other. IMS may
use the IRLM as well for its own locki ng.

DB2 DB services: Provides the access to the DB2 catalog and all
user tables.

DB2 Systea Services: Provides logging. restart. and operational
control services.

TSO User 	 Any number of TSO users may concurrently access DB2
data.

CICS 	 Transacti ons runni ng ina CICS address space may
access DB2 data.

Transact ions runni ng in message processi ng programs
(MPP). batch message programs (BMP). and Fast Path
programs (IFP). may access DB2 data.

DB2 systeM services

Thi s address space provi des the overall DB2 executi on
environment. and the set of servi ces and functi ons whi ch are
required by the DB2 DB Services. A selection of functions
provided is:

• Attachment oriented functions are those required to create
and maintain a connection between DB2 and the other
subsystems in which application programs are executing.
These include connection protocols for TSO (through the DB2
command processor and SPUFI>, JES batch (through the D82
command processor under the TSO TMP), IMS, and CICS.

• Service oriented functions. such as:

Logging
Serialization of functions
System messages
Virtual storage management
DB2 command support
Trace, statistics, and accounting

148 IBM DATABASE 2 Concepts and Facilities Guide
International SysteMS Center - Santa Teresa

• 	 coordination oriented functions are functions which require
coordination among several DB2 components, such as

Allocation/deallocation
Commi t and abort
Recovery
Checkpoint
Startup and shutdown

DB2 	 Data Base Services

This address space, in combination with the DB2 System Services,
provides a relational data base management capability.
Application programs requiring access to data which is under the
control of DB2 may execute in any of the environments supported by
DB2. This access is established via DB2 System Services, which
uses the MVS SUbsystem Interface (551).

DB2 	 DB Services provides facilities for definition of data bases
(table spaces, tables, etc) and thei r access control, and for
manipulation of the data. Some of the subfunctions are:

• 	 Data space management controls storage groups, volumes, and
all the VSAM data sets used to hold the data of relational
tables.

• 	 The stand-alone precompiler scans the application source code
and converts SQl statement into host language calls. The SQl
statements are extracted into a data base request module
(DBRM), which is input to the binding process.

• 	 The relational data system i neludes the bi nd functi on to
convert a DBRM into an application plan. During execution it
receives the application's manipulative or definitional SQl
requests from the plan, or as dynamic SQl statements.

• 	 The data manager processes the SQl requests, and performs the
necessary locking (using the IRlM), logging (using DB2 System
Services), and path maintenance.

• 	 The buffer manager controls the movement of data pages
between auxiliary storage and virtual storage buffers.

• 	 The uttl tty component prov i des all the data base ut iii ties
(reorganization, backup, recovery, statistics). For improved
performance the utilities use internal protocols rather than
the application program interface. These internal protocols
provide fast sequential access.

Chapter 12. Architecture 149
International Systems Center - Santa Teresa

The I"S Resource Lock "anagel" prov i des the lock i ng sery ices on DB2
resources. One IRLM may servi ce both DB2 (for locks on DB2
resources) and IMS (for locks on DLI'I resources). or separate
IRLM's may each service either DB2 or IMS.

The IRLM. in regard to DB2 resources, provides locking within one
MVS system. The IRLM, and hence DB2, does not provide data
sharing between multiple DB2 systems running in one or multiple
MVS systems.

The IRLM may be started automatically when DB2 is started and the
IRLM is not present.

INTERFACING TO DB2

Transact ions entered by IMS, CICS, or TSO users may issue SQL
requests for DB2 data. DB2 provides modules called 'attach
facilities' which, running under an IMSI'CICSI'TSO subtask, use MVS
sub-system interface (551) protocols to interface requests from
IMSI'CICSI'TSO to DB2, and to coordinate resource commitment.

TSO

In the TSO environment the Terminal Monitor Program CTMP)
attaches the DB2 supplied DSH command processor which links to the
user application.

A range of DB2 functions, including the running of TSO
applications. may be invoked from the DB2 Interactive Interface
(DB2I) as presented in "ISPF Support - DB2I" on page 100. One DB2
function which may be invoked is called SPUFI. This provides the
capability to execute a file of SQL statements.

I"S and CICS

In the IMS environment the transactions using SQL calls run in
MPP. BMP or Fast Path reg; ons. In the CICS env; ronment the
transactions run as normal CICS applicacions.

In addition to the SQL requests. the IMS and CICS transactions
(but not TSO) may also issue DLI'I calls. An application program
may therefore access DL/I and DB2 data in parallel. DL/I batch
jobs and eICS shared data base regions may not issue SQL calls.

150 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

ATTACH ARCHITECTURE

DB2 provides attachment facilities that allow other subsystems or
batch address spaces to access DB2 resources. A conceptual view
of these facilities is shown in Figure 28.

Multi Thread
CICS or IMS

Subsystem
Transaction

Subsystem
Transaction

< Thread

< Thread

DB2

8<
>B
8<
>8
8<

Single Thread

TSO or BATCH

Thread

Thread

Thread

~
>L:J

~
>L:J

~
>LJ

Thread

Figure 28. Subsystem and Batch Connection to DB2

Attachment facilities are provided for TSO, Batch jobs (running
under the TSO TMP), IMS, and CI CS.

A thread can be considered as a path from the sUbsystem or batch
address space to a specific application plan. When an application
makes its first SQl call DB2 is aware that an external subsystem
is starting a piece of work for DB2. It will require certain DB2
resources, and wi 11 have to be tracked. Just as an operati ng
system uses the term 'job' to describe work coming in from the
external environment, so DB2 uses the term thread to describe a
unit of work which originates in an external subsystem.

A thread is begun with the first SQl call of an application. DB2
sets up control blocks and allocates resources to the thread.

• 	 The data base resources are described in the application plan
which is created by the bind process. The plan contains
details of DB2 data to be accessed, and the calls to the data
manager used to execute the SQl calls.

Chapter 12. Architecture 151
International Systems Center - Santa Teresa

Dur i ng execut i on of the appli cat i on program DB2 tracks the
progress of the thread through its interactions with D82 data and
points of resource commitment.

D82 supports two types of connections:

Sfngle thread connections Only one tl-:read is allowed per
connection. This is the case for TSO
and batch address spaces.

Multi-thread connections Multiple threads can be established
between a connected subsystem and DB2.
Each thread servi ces the requests of a
specific subsystem transaction. This
connect i on type is used for IMS and
CICS.

A thread is ended when the application program terminates and all
changes made by it have either been committed or rolled back.

Thread Identffication

When a thread is created through the first SQL call the user (or
appli cat i on program) must i dent i fy i tsel f to DB2. The
identifiers associated with a thread are defined below and shown
in Figure 29 on page 153:

Connection-ID 	 Identifies the connecting subsystem (e.g. the
IMSID of the stage-l generat i on of the IMS
system) •

Authorfzatfon-ID 	 Identifies the user who is making the request.
This ID is used for authorization checking as
described in "Chapter 9. Security and
Authorization." A user exit (sign-on exit) is
available and allows the user in certain
situations to change the authorization-IDe

Plan-ID 	 Identi fi es the name of the appl i cati on plan
that is executed. Predefi ned plan names are
used for SPUFI and DCLGEN from a TSO terminal.

Correlation-ID 	 Uniquely identifies the thread and correlates
it with the requester. In IMS and CICS the same
application program may exist concurrently.
The plan-ID is therefore not specific enough to
identify the thread.

152 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

BATCH TSO IMS CICS

Connection-IO 'BATCH' 'TSO' imsid cicsid

Authorization-IO USER-ID Logon-IO Message Region: USER-IO or
on - LTERM or Terminal-IO or
jobcard - SIGNON-ID Transact-IO or

other
or Non-message

driven Region: Specified in
Install. - Jobcard USER Resource Control
Oefault - or PSBNAME Table (RCT)

Plan-ID Plan name Plan name Program name RCT speci fi cati on
(modifiable by or

Special user module) Transaction-IO
for SPUFI

Correlation-IO Jobname Logon-IO PSTi.PSBNAME threadl.tran-IO

Figure 29. Thread Identification

unit of Recovery

An application issues SQL calls, and in the case of IMS and CICS
may also issue OL/I calls. An application may regard all calls
between two synchronization points as being part of the same unit
of recovery.

The fi rst uni t of recovery is started wi th the fi rst SQL call
(thread creation). The unit of recovery ends at the next
synchronization point, and a new unit of recovery is started at
the next SQL call.

TSO: A unit of recovery is ended explicitly through a COMMIT or
ROLLBACK SQL statement. When an application program terminates
normally, a COMMIT is invoked automatically. In case of an
abnormal termination of the application program an automatic
ROLLBACK is invoked. The thread is terminated when the
application program ends. Several units of recovery of one user
may be processed serially in one thread.

Chapter 12. Architecture 153
International Systems Center - Santa Teresa

SUBSYSTEM 	 DB2

~CONNECTION-ID____>

A A f--AUTH-ID--'UU'--> A A

I ~--------->
User SQl Requests and
'UU' Responses Unit of

<:--------------------~ Recovery

~---COMMIT------> I
Appl. v <-----Process--------~ V
Program
'AA' Thread

A f--AUTH-ID--'YV'----> A

~--------------------->
SQl Requests and

Responses Unit of

<--------------------~ Recovery

~--COMMIT----,> I
<-----Process--------~ V

User

'VV'

A~--------------------->
SQl 	 Requests and

Responses I
Unit of<--------------------~
Recovery

~--COMMIT----> I

v v <-'----Process V

A A f--AUTH-ID--'WW'--> A A

I 	 IUser
'WW' ~--------------------> Unit of

SQL Requests and Recovery
Appl. Responses
Program <
'BB' Thread

Figure 30. Communication Protocol with DB2

154 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

v

COMMIT

Two Phase Commit

IMS and CICS: A unit of recovery is ended when a synchronization
point is reached in the IMS or CICS subsystem. Application
programs may not issue SQL COMMIT or ROLLBACK statements
directly. More details about these environments are presented in
later chapters.

Protocol: The commun i cat i on protocol used between a subsystem
(e.g. IMS) and DB2 is illustrated in Figure 30 on page 154.

Multiple users may be identified in one application program (e.g.
multiple IMS transactions executed in one program scheduling).
Each user has at least one uni t of recovery. Many uni ts of
recovery may be executed serially in one thread. In TSO and IMS a
thread corresponds to the execution of one application program.
In CICS many application programs may serially use the same
thread.

When an application program positions itself on a table row the
page containing that row is locked. This guarantees integrity
(the current row cannot be modified).

When an application program updates a table row the page
containing that row is locked exclusively until the next
synchronization point is reached.

When a synchronization point is reached all updates within the
un it of recovery must be commi tted in DB2 and the connected
SUbsystem. To assist in achieving this, a protocol called two
phase commit is provided. The ability of the different external
subsystems to guarantee unified commit depends on their
implementation of the protocol.

This protocol recognized the existence of two distinct phases of
processing required to establish a new point of consistency
(synchronization point). One of the connected subsystems is the
"coordinator", the others are "participants". In connections
with IMS and CICS, DB2 is a participant. In connections with
TSO/Batch, DB2 is the coordinator and no participant outside of
DB2 exists.

Phase 1 Commit preparation and vote collection

The coordinator assumes the role of the vote collector
and notifies all participants. Each participant must
declare whether or not it agrees to continue with the
commit process. If one participant disagrees, it
returns a negati ve vote and the uni t of recovery must be
rolled back by all the subsystems involved. Each

Chapter 12. Architecture 155
International Systems Center - Santa Teresa

participant that agrees to commit must prepare to do
the second phase (e.g. by completing its loggingduring
phase 1), but still be capable of reversing the changes
if a negative vote is cast by some other participant.

Phase 2 Must-complete processing

The coordinator, having received all positive votes
from phase 1, notifies the participants to start phase
2. Each participant then commits the unit of recovery
and makes the new committed form of the objects (e.g.
data base records> accessi ble to other appl i cati ons.
There are no voting options in phase 2.

If any vote from phase 1 was negative the coordinator
notifies all participants to abort (rollback the
changes).

If any subsystem abends after phase 2 commit has been started,
that SUbsystem must be able to recover to the synchronization
point with the unit of recovery completed, that is, the commit
phase 2 must be executed during the restart.

TSO/BATCH ATTACHMENT FACILITY

The T50 attach package is initiated via the T50 Terminal Monitor
Program CTMP). It attaches a task which passes the
authorization-IO (logon-IO or batch USER-IO) to OB2. A single
thread is created, and the user program is invoked through os
LINK. The user program communicates with OB2 through a language
interface link edited with the program.

The appl i cati on program has access to OB2 resources and MVS
services. Requests for DB2 resources must only be made from one
MV5 task, either the task which was current when the application
received control, or one of its subtasks. Work is committed when
the application returns control to the attachment facility, or
through intermediate 5QL COMMIT statements. The application
program may request a rollback of all the data base changes
through an SQL ROLLBACK statement.

The TSO/Batch attachment faci! i ty does not part i c i pate in any
commit, rollback or restart scenarios with resources outside of
the OB2 domain. An application may access recoverable resources
outside of OB2, however, there is no DB2 support for coordination
and synchronization of the consistency of those resources.

156 IBM DATABASE 2 Concepts and Faci Ii ti es Gui de
International Systems Center - Santa Teresa

CHAPTER 13. HONITORING AND ACCOUNTING

In this chapter we look at OB2 facilities in the areas of:

• optimization

What are the parameters of 082 which allow us to influence the
performance characteristics of the system?

• Monitoring

How can we measure OB2 performance ? What statistical
facilities are available?

• Accounting

What accounting information is available on a user and
application basis?

OPTIHIZATION

Performance of a 082 system is influenced by a number of
parameters. Some of them have a system wide function, and others
may be changed for i ndi vi dual data base objects 1 i ke tables
spaces. The data base parameters may be changed dynamically when
the system is running, whereas most of the system parameters are
defined at 082 installation time.

system Parameters

Following is a list of some of the system parameters which are
defined at installation time. They are all contained in a
parameter module (OSNZPARM), and when D82 is started a version of
the parameter module may be selected through the START OB2
command. New versions of the parameter module may be generated at
any time, but will not be active until 082 is stopped and started
again.

Logging 	 Selection of total number of log buffers, number of
full buffers before wri te, archi ve log blocksi ze,
si ngle or dual acti ve log, opt i onal offload
function, and all the attributes of archive logs.
See section "The OB2 Log" on page 130 in "Chapter 11.
Operation and Recovery" for details.

Operation 	 Checkpoint frequency, optional SMF statistics and
accounting information, size of instorage trace
tables, optional security.

Chapter 13. Monitoring and Accounting 157
International Systems Center - Santa Teresa

Buffer pool 	 The minimum and maximum size of the DB2 buffer pools
may be modified.

Data Base Parameters

The DB2 objects used to store and manipulate table data allow for
a number of options which may influence the performance
characteristics of a DB2 system. The list below is a selection of
DB2 functions or options. which may be changed during execution.
Some changes require a redefinition of DB2 objects and data may be
unavailable during that time.

Indexes 	 Indexes may be added on table columns which are
often used in WHERE search conditions or joins
of tables.

Index subpages 	 The number of index subpages may vary between 1
and 16. The index must be redefined to change
this.

Buffer pool 	 The buffer pool assigned to a table space may
be dynamically changed.

LOcking 	 The locking strategy assigned to a table space
may be dynamically changed. Changing the size
of the locks (page or table space) may
influence other applications and therefore the
performance characteristics of the system.

close 	 Table space and index data sets may be closed
when users are not accessing the data.

Clustering 	 A clustering index on a column which is often
used for sorting (ORDER BY) should improve
performance.

Bind consistency 	 The bind isolation parameter defined as
repeatable read or cursor stability for all the
tables used by an application.

Authorization 	 Performance may be improved when authorization
can be checked at bind time instead of delaying
it to execution.

Rebind 	 Rebinding application plans may improve
performance when new access paths are evaluated
based on current statistics (e.g. number of
pages) and available indexes.

158 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

MONITORING

Display Cammar,

STOSPACE utili

DB2 provides a number of facilities which assist the installation
in monitoring subsystem activities and performance.

The DISPLAY command can be used to di splay i nformat i on about
current usage of DB2 data bases. and about users (or application
programs) currently running DB2 work.

The display command shown below is used to list the current usage
of a table space:

-DISPLAY 	 DB (data-base-name)

ACTIVE

SPACE Ctable-space-name)

The output contains status information about the DB2 data base and
the named table space, as well as SUbsystem names (called
connecti on-ID) and correlati on-ID' s of users or appli cati ons
currently using the named table space. A correlation-ID is a TSO
logon-ID, IMS region and PSB-name, or a CICS transaction name.

TO,list all the users or programs currently executing work using
DB2 use the display command shown below:

-DISPLAY 	 THREAD (*)

The output lists the connection-ID (subsystem name),
correlation-ID (userid, PSBHAME, or transaction name), and
application plan name of all currently active users of DB2.

The STOSPACE utility provides information about the actual space
allocated for storage groups, table spaces, and indexes. The
information is gathered from the VSAM catalog. Actual table data
is not accessed and does not have to be avai lable.

The STOSPACE is invoked through the TSO SPF utilities panel (shown
in Figure 25 on page 135) using the following utility statement:

STOSPACE 	 STOGROUP (storage-group-name-list)

The output of the STOSPACE utility is stored in the DB2 catalog;
it includes:

• 	 The number of ki lobytes allocated to each table space and
index associated with the named storage group(s). This value
is stored in the SPACE column of the catalog tables
SYSTABLESPACE and SYSIHDEX.

Chapter 13. Monitoring and Accounting 159
International Systems Center - Santa Teresa

• 	 The total number of kilobytes allocated for the storage group
(column SPACE), and the run date (column SPCEDATE) is stored
in the SYSTOGROUP catalog table.

RUNSTATS 	 utility

The RUHSTATS utility collects statistical information for one
table space and its associated indexes. The output of the utility
is stored in the DB2 catalog.

The statistical data stored in the catalog is used by the bind
process to select the best access path for SQl data manipulation.
It includes:

• 	 For each index: the number of levels, the number of leaf
pages, the number of distinct key values, and if the table
space is clustered by this index.

• 	 For the table space: the number of acti ve pages.

• 	 For each table of the table space: the number of rows, and the
number and percentage of pages in the table space that contai n
rows of that table.

• 	 Reorganization information about the number of rows whose RID
position is in a page different from its record.

The RUHSTATS utility is invoked as a stand-alone utility using the
TSO SPF utility panel with a utility statement as shown below:

RUNSTATS 	 TABlESPACE table-space-name
INDEX (All I index-names)
SHRLEVEl REFERENCE I CHANGE

RUNSTATS 	 INDEX index-names

TABLESPACE and INDEX: The utility is run for one table space and
associated indexes, or for one or more indexes alone.

SHRLEVEL: Specifies if other applications may use the data at
read-only (REFERENCE) or update (CHANGE) level during the
execution of the RUNSTATS utility.

statistics Facility

You can have statistical information written to a System
Management Facility tSMF) data set by specifying the appropriate
parameter at installation time.

Two type of SMF records are generated and written at DB2
checkpoints. They contain subsystem summary data sections of all
the components of DB2.

160 IBM DATABASE 	 2 Concepts and Faci 1 i ti es Gui de
International Systems Center - Santa Teresa

L
1. SMF record type 100 subtype 0

• 	 Subsystem Servi ce Component (SSSC): si gn-on, connect,
commit, abort, etc

• 	 Command: counts per DB2 command

• 	 latch manager: serialization contention

• 	 Storage manager: getmain, freemain, pool expansion

• 	 Trace data: on/off counts

• 	 log manager: count of buffers filled, wai t for buffer,
timer exit, log reads from active/archive log, etc

2. 	 SMF record type 100 subtype 1

• 	 SQl data: count per SQl st~tement type

• 	 Bind data: count of bind invocation and affected plans

• 	 Buffer manager: count of page requests, I/O's, pool
expansions, paging required for buffer read/write, etc

• 	 lock usage data: count of wait, deadlock, timeout

Note: All the counts in these SMF records are accumulated totals.
The values are only reset to zero when DB2 is started.

ACCOUNTING FACILITY

The 	accounting facility collects data on an authorization-ID and
work basis, and writes them as SMF type 101 subtype 0 records. A
record is wr i tten each time a user (or subsytem appl i cat ion
program) disconnects from DB2.

Accounting records are identified by authorization-ID (userid),
connection-ID (subsystem name), correlation-ID (e.g. an IMS
PSTnumber and PSBHAME), and plan-ID (IMS program name).

The 	SMF record contains

• 	 The reason the record was written (normal termination, abend>

• 	 Connection time (elapsed)

• 	 CPU time

• 	 SQl data: counters per SQl statement type

• 	 Commit and abort counts

Chapter 13. Monitoring and Accounting 161
International Systems Center - Santa Teresa

• Buffer manager: page requests. buffer expansi ons. updated
rows

• lock usage: wait. deadlock. timeout

Installations have to write there own programs to process SMF data
for their accounting.

AUDITING

DB2 provides no explicit support relative to an installation
developi ng and util i zi ng audi t procedures. However, the DB2
recovery log contains useful audit information.

Installations may write their own programs to merge information
from the DB2 log and data base image copies to reconstruct which
user updated certain tables.

Lag 	Access Services

DB2 provides log access services which allow user written
programs to access the DB2 log, without explicit allocation of
active and/or archive log data sets by the user.

• 	 With a log OPEN request the user specifies the range of log
RBA's which he wants to access. DB2 will dynamically allocate
the required log data sets (active and/or archive).

• 	 The user program then uses log GET requests to sequentiallY
access all the log records of the specified range.

• 	 A log CLOSE request dynami cally deallocates the log data
sets.

These si mple log macros allow users to eff1 ci ently access log
records, with all the control and management done by D82. The
only data set required in user Jel is the Boot Strap Data Set.

162 IBM DATABASE 2 Concepts and Facilities Guide
International SysteMS Center - Santa Teresa

CHAPTER 14. IHS ENVIRONHENT

In this chapter we look at how application programs running under
IMS:5 may access DB2 data, and how an IMS terminal user may
interact with DB2.

OVERVIEW

An IMS system is structured into multiple address spaces. The
control region communicates with the terminals, queues
transacti ons and responses, schedules appl i cati on programs in
dependent regions, and provides recovery logging and
checkpoint/restart. Application programs run in dependent
regions and are called message processing programs (MPP), batch
message programs (BMP), and Fast Path programs (IFP).

An IMS application program may access Dl/I data bases and/or DB2
tables. Older programs might access Dl/I data bases only, whereas
new programs may require access to both Dl/I and DB2 data, or a
program might access DB2 tables only.

The overall structure of an IMS system connected to DB2 is shown
in Figure 31 on page 164.

The IMS Resource lock Manager (IRlM) provi des the resource
locking function for DB2 and optionally also for IMS.

Note: Dl/I batch regions, which operate independently from the
control region, may not access DB2 data.

IHS 	 ATTACHHENT OF DB2

DB2 table data is accessed from IMS application programs through
the IMS attachment of DB2. This attachment facility allows:

• 	 an application program (MPP, BMP, or IFP) to issue SQl
statements to access DB2 data (data manipulation), to define
DB2 objects (data definition), to grant/revoke security
capabilities, and

• 	 a terminal user to enter DB2 commands

:5 Information Management System/Virtual Storage, Program Humber
S740-XX2

Chapter 14. IMS Environment 163
International Systems Center - Santa Teresa

•
•

•
•

<l 	r+·rminal l
IMS

v v

IMS IMS IMS IMS DUI
••• data

BMP IFP 	 eTl <---->MPP base
IRlM •

~ 	 • • one
• • prog
••••• ••• • •••••••••••••• may

Threads • access
• both
•
•
•

IRlM
plan

<------->1 tabl•• I
Plan/

System DB2 Data Base
Services Services

Figure 31. IMS Environment with DB2

The IMS attachment consists of multiple connections between IMS
and DB2:

• 	 The IMS control regi on must be connected to DB2 if any
application program accesses DB2 data.

• 	 Each dependent region running application programs which use
DB2 data must be connected to DB2.

IHS 	 Control Region

A connection is established between the IMS control region and DB2
at startup, or later through an IMS command. The connection-ID
associated with the connection is the "IMSID" of the IMS stage 1
IMSCTRl macro.

164 IBM DATABASE 	 2 Concepts and Faci I i ti es Gui de
International Systems Center - Santa Teresa

The connection is used for subsystem coordination. commit
synchronization, and to pass DB2 commands entered from an IMS
terminal to DB2, and receive the responses to the command from
DB2.

Attachment control parameters are specified in a subsystem member
(SSM) in the IMS PROCLIB. The name of this member is the
concatenation of the IMSID with a suffix specified in the EXEC JCl
statement. The member contai ns a record wi th the followi ng
values:

• 	 DB2 subsystem name

• 	 language interface token used in the IMS language interface
module (DFSlIOOO), normally SYSI.

• 	 Hame of the attachment initialization module, must be
DSHMIN10.

• 	 Hame of a resource translation table. This (optional) table
may be used to map an application load module name to a DB2
application plan if they are not the same.

• 	 Error opt ion if an appl i cat i on program wants to access a
non-operational DB2 system: return code. abend with/without
queueing the input message.

• 	 Command recogni ti on character (CRC) whi ch i denti fi es DB2
commands entered from an IMS terminal.

An IMS system may be connected to multiple DB2 systems. Each DB2
system will be identified in a separate record of the above SSM
member.

INS 	 Dependent Regfon

Each dependent region running application programs which use DB2
d~ta must be connected to that DB2 system. The connections are by
default the same as for the control region. unless a separate SSM
member is specified in the EXEC JCl statement of the dependent
region to activate a subset of the available connections.

• 	 A connection from the control region must exist in order that
a dependent region may communicate with a DB2 system.

• 	 A dependent region may be connected to multiple DB2 systems,
but a specific application program may only access data from
one DB2 system. The DB2 system to be connected is identified
by a token in the language interface module and the DB2
subsystem name in the corresponding SSM.

A thread is created for each application program (which issues SQl
calls) being scheduled in the dependent region. The thread is

Chapter 14. IMS Environment 165
International Systems Center - Santa Teresa

terminated at program end. For MODE=SNGl programs, each
transaction is a unit of recovery, whereas multiple transactions
may be in one unit of recovery for MODE=MUlT programs. A unit of
recovery is terminated by an IMS synchronization point in the
dependent region. The protocol between an IMS dependent region
and DB2 was shown in Figure 30 on page 154.

Authorization

The Authorization-ID for an IMS transact; on is any of the
following:

• 	 The USER-IO if the application or command is invoked from a
terminal which has used IMS SIGN-ON.

• 	 The IMS logical terminal name (LTERM) if the application or
command is invoked from a termi nal wi thout previ ous IMS
SIGN-ON.

• 	 For non-message driven programs the USER-ID on the job card
CASXBUSER).

• 	 The PSBNAME for non-message driven programs where the USER-ID
field CASXBUSER) is null.

DB2 checks the authorization-IO before accessing an
appl i cati on-plan or executi ng a DB2 command. A user must be
authorized (GRANTED) to the application plans he is accessing.
DB2 authorization must also be granted for users entering DB2
commands from IMS termi nals. DB2 cannot val i date the
authorization-ID itself, no password is available to OB2. IMS
security checking must be used for this purpose.

APPLICATION PROGRAHHING

An application program in the IMS environment uses the techniques
presented in "Chapter 7. Appl j cat ion Programm i ng Env ironment. "
Accesses to Dl/I data may be intermixed with accesses to DB2 data.
Application programs must be link edited with a new IMS/VS Release
1.3 	language interface module (DFSLIOOO) if they access DB2 data.

The two SQL statements COMMIT and ROLLBACK cannot be used in an
IMS application program:

• COHHIT is
termination,
single mode
call) .

automatically
through a DL/I

when the next tra

invoked at normal program
checkpoint call (CHKP), or in
nsaction is received (via a GU

• ROLLBACK is
termi nat ion,
ROLB)'

automatically
or through the

invoked at abnormal program
Dl/I rollback call s (ROll and

166 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

An application program will receive an SQl return code when DB2
data is not available (data base stopped). or when authorization
does not allow the access. These situations may be reflected back
to the terminal by the application program.

An appli cati on program mi ght be subject to deadlock abend. A
deadlock may occur within DL/I or DB2 data only, or a combination
of DL/I and DB2 data requests may be the cause for a deadlock.
One of the contestants is selected and its changes rolled back. A
message dr i ven program is abended and requeued; a non-message
driven gets a SQL return code of -911.

Transaction Processing

Communication with an IMS terminal uses the DL/I mechanism.
Transaction input is received using the DL/I 'GU' or 'CHKP' call.
and messages are sent to terminals using 'ISRT' and 'PURG' calls.

The IMS end user at the terminal should note no differences if a
transact i on accesses DB2 data. No message relat i ng to DB2 are
sent to the end user by IMS.

Application programs running transactions which use DB2 data may
be displayed using the DB2 DISPLAY THREAD command:

-DISPLAY THREAD (imsid)

commit

As presented above COMMIT of changes of DB2 resources is invoked
through an IMS synchron i zat i on po i nt. IMS uses the two phase
commit protocol to synchronize committing of DL/I and DB2
changes. This protocol was introduced in "Two Phase Commit" on
page 155(IMS is the coordinator, DB2 is a participant).

After IMS has deci ded to commi t changes and commi t phase 2 is
started. both IMS and DB2 will commit the changes and make them
available to other users. At the instant of the decision an IMS
type '37' log record is written. If any system should abend
during commit phase 2 then commit is finished at restart time.

COMMIT ends a unit of recovery. Data which was changed is made
available to other applications and users. Note, however, if
locking is at the level of the table space (see section "Defining
a Table Space" on page 47 in "Chapter 5. Data Definition"), locks
are freed only when the application program is terminated.

Chapter 14. IMS Environment 167
International Systems Center - Santa Teresa

In-doubt 	Threads

A thread is in-doubt from the moment DB2 has voted positively in
commit phase 1. untH the notiification is received from IMS to
execute commit phase 2. If during that time interval either IMS
or D8? fails the thread remains in-doubt until both systems are up
again.

The thread is in-doubt because D82 does not know what decision was
taken by IMS. IMS may already have committed or rolled back the
DL./I changes, or wHI fi ni sh its process when bei ng restarted
after a failure. When both systems are up again they communicate
about these in-doubt threads. and IMS w:ll notify DB2 about the
action to be taken. DB2 will then either commit or roll back the
changes.

In-doubt 	threads can be displayed through:

-DISPLAY THREAD (imsid) TYPE (IHDOUBT)

In case of an IMS cold start it may be required that the system
administrator resolves in-doubt threads through a DB2 command:

-RECOVER 	 INDOU8T (imsid) ACTION (COMMITIA80RT)
ID (correlation-ID)

Application Testing

The SQL portion of a program may be tested using SPUFI from a TSO
SPF terminal. This may even be done before the program is coded.
Indi y i dual SQL statements may be submi tted, or streams of SQL
requests may be passed to D82 through SPUFI. Different versions
of the same SQL function may be tested against each other. and the
best then selected for actual application coding.

For detailed testing both DB2 and IMS must be up. IMS application
programs 	may not be tested in batch if they access DB2 data. SQL
cursor operations cannot be tested using SPUFI.

OPERATION

An IMS system connected to DB2 is controlled by the IMS master
termi nal operator or another authori zed termi nal users. The
connection with D82 is controlled through IMS commands. and once
established may be used to route D82 commands from IMS to 082.

168 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

I"S Commands

The connection between IMS and DB2 is established automaticallY
when IMS is started and DB2 is UP already, or when DB2 is started
and IMS is up already.

The followi ng commands may be used to control the connect; on
("sysid" is the DB2 subsystem name):

/DIS 5UB5Y5 sys;d Displays the connection status and activity
of the control reg; on and each dependent
region to the named DB2 system.

/510 SUBSYS sysid Stops the connect i on
DB2 system.

from IMS to the named

/S1A SUBSYS sysid Starts the connection from IMS to the named
DB2 system. Used after a /STO SUBSYS command
or when automatic connection failed for some
reason.

The usage of these IMS commands may be controlled through the
standard IMS security mechanism. Ho authorization checking by
DB2 is involved.

ISsufng DB2 Commands from I"S

Once a connection between IMS and DB2 is established authorized
terminal users and programs (by IMS security) may use the IMS /SSR
command to route a DB2 command to the DB2 system.

/SSR -DB2-command

The DB2 command is routed to DB2 for processing. All DB2 commands
except START DB2 are available. DB2 checks if the user (or
program) is authorized to issue the DB2 command. Responses are
routed back to the or; gi nat i ng IMS user. The correct command
recognition character (CRC) must be used to route the command to
the destination DB2 system. The default CRC is the "-" sign. It
must be specified in the SSM entry.

Examples are:

/SSR -DISPLAY DB (data-base-name) SPACE(*)
/SSR -START DB (data-base-name)
/SSR -DISPLAY THREAD

Chapter 14. IMS Environment 169
International Systems Center - Santa Teresa

MONITORING THE IMS ATTACHMENT

The following facilities ara available to monitor IMS Attach
related events:

• 	 The IMS DC Monitor facility records DB2 subsystem exit
activity (interactions with OB2) if the monitor has been
started by the IMS master terminal operator.

• 	 The IMS DISPLAY Command provi des ; nformati on on SUbsystem
connections and active threads.

• 	 The IMS LOG contains records of all indoubt situations, and
may also contain IMS TRACE data relating to DB2 avents.

• 	 The DB2 TRACE facility monitors events within OB2 and writes
records to in-storage tables or GTF. The trace facility 15
presented in "Chapter 16. Installation and Servicing" section
"Trace" on page 190.

• 	 The DB2 Accounting facility collects statistics on an
authorization-ID and work basis and writes them to SMF. See
"Chapter 13. Monitoring and Accounting" section "Accounting
Facility" on page 161.

• 	 The DB2 Statistics facility collects system wide statistics
about thread connections and usage. These are useful when
only one subsystem is connected to 082. See "Chapter 13.
Monitoring and Accounting" section "Statistics Facility" on
page 160.

• 	 The IMS TRACE command.

170 IBM DATABASE 2 Concepts and Facilities Guide
Internatlonal Systems Center - Santa Teresa

CHAPTER 15. CICS ENVIRONMENT

In this chapter we look at how application programs running under
CICS4 may access DB2 data, and how a CICS terminal user may
interact with DB2.

OVERVIEW

A CICS system runs in one address space. Transactions are started
as CICS subtasks within this address space.

A CICS application program may access Dl/I data bases, VSAM data
sets, ISAM and DAM data, and D82 tables. Older programs might
access Dl/I data bases and other CICS data sets only, whereas new
programs may requi re access to Dl/I, VSAM, and DB2 data, or a
program might access DB2 tables only.

The overall structure of a CICS system connected to DB2 is shown
in Figure 32 on page 172.

A CICS subsystem can only be connected to one DB2 system at any
one time. A connection may be started and stopped, and a new
connection may be established to a different DB2 system.

CICS MRO (multi-region operation) and ISC (inter system
communication> may be used to execute transactions in another
CICS address space. These transactions may access DB2 data
through a connect i on between thei r CICS address space and DB2.
Individual SQl calls may not be shipped from one CICS system to
another. Batch programs using the CICS shared data base support
may not access DB2 data.

CICS ATTACHMENT OF DB2

DB2 table data is accessed from CICS appli~ation programs through
the CICS attachment facility of DB2. This facility allows:

• 	 an application program to issue SQL statements to access DB2
data (data manipulation) and to define D82 objects (data
definition), and

• 	 an authorized terminal user to enter DB2 commands

4 	 Customer Informati on Control System / Operati ng System /
Virtual Storage, Program Number 5740-XXI

Chapter 15. CICS Environment 171
International Systems Center - Santa Teresa

•
•

•
•

/

<l,+··m;n.,!

CICS

v v

Transactt <--->~ITransactI 	 • ~ •

• • one
• • prog

Threads •••••••••••••• ••••••••••••••• may

• access
;-- • both

•
•
•

: PlanI
<-------,\ Tabl•• \~Planl

DB2 Data Base
Services

Figure 32. CICS Environment with D82

The CICS attachment faci 1 i ty consi sts of multi pIe connect; ons
between CICS and DB2:

• 	 One connection is used to pass operator commands from CICS to
D82.

• 	 A predefined number of connections are used for application
programs which use DB2 data.

CICS Resource Control Table

The CICS DB2 Resource Control Table (RCT) predefines the maximum
number of connections (threads) which may exist at anyone time
between CICS and DB2. The table is set up through macros provided
with the CICS attachement facility and is structured into three
parts:

172 IBM DATABASE 	 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

Resource Control Table Communication Control Table

RCT CCT

Command Command Entry

Pool Pool Entry 1

Tran: aaaa •••

Tran: bbbb cccc r-- Entry x

L...-Tran: zzzz f-- Tran: aaaa Entry 1

Plan: aaaa •••

Entry y

- Tran: bbbb cccc Entry 1

Plan: cccc •••

Entry z

Tran: zzzz Entry 1

Plan: wwww •••

Entry n

Possible
Threads

Figure 33. 	 CICS Resource Control Table

Command 	 One thread is reserved for command usage. For heavy
command usage pool threads are additionally used.

Pool 	 Shared threads in a pool to be used by all
transactions not having dedicated threads. Only one
pool wi th a user speci fi ed number of threads is
defined.

Dedtcated 	 Groups of threads. each servicing one or more
predefined transactions using the same application
plan. Each group consists of a user specified number
of threads. All the threads of the group wi 11 use the
same application plan. Pool threads will be used in
addition if all threads of a group are busy and more
transactions of the group are active. The user may
defi ne as many groups as needed.

Chapter 15. CICS Environment 173
International Systems Center - Santa Teresa

When the CICS Attach is started it bui Ids the Communication
Control Table (CCT) from the Resource Control Table (RCT). Each
entry in the CCT is a possible thread. The two tables are
illustrated in Figure 33 on page 173.

A selection of parameters which are specified in the Resource
Control Table follows:

1. 	 Subsystem wide values:

• 	 The CICS subsystem name (connection-ID) under which the
CICS system is known to DB2.

• 	 The name of the DB2 subsystem to which CICS is connected.

• 	 Maximum number of active threads. Each active thread is
an MVS 5ubtask within the CICS address space.

• 	 The CICS destination for attachment related messages and
statistics reports.

2. 	 Values per RCT entry:

• 	 Name of the appl i cati on plan, and one or more
transaction-IO's for transaction dedicated RCT entries.

• 	 Number of threads (entries in CCT), and how many of them
should be initialized as MVS subtasks at CICS startup.
Additional tasks will be set up as required.

• 	 Dispatching priority limit for thread subtasks. May be
specified as higher, equal, or lower than the CICS
priority. CICS does its own subtask management for
transacti ons, and wi 11 not gi ve up control unt il all
scheduled work is done, unless threads have higher
priority than CICS.

• 	 Action to be taken when no thread is available: wait, try
pool, or abend.

• 	 Authorization-ID to be used for the thread. This may be
specified as USER (the sign-on-ID of a terminal user),
TERM (the terminal-IDl, TXID (transaction-ID), CICS-ID,
or a constant.

A thread to DB2 is created when an entry in the CCT is selected.
The thread remains active as long as the same application plan is
accessed, or until inactive threads must be terminated because
the maximum number of threads has been reached.

174 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

Authorization

The Authorization-ID for a CICS transaction is any of the
following:

• 	 User-ID specified in the CICS s~gn-on transaction
• 	 Terminal-ID
• 	 Transaction-ID
• 	 CICS-IO
• 	 Constant

A different authorization-ID may be selected for each entry of the
Resource Control Table. A list like (USER,TERM,TXIO) may be
specified to select an authorization-ID to be used. In this case
the USER-IO is used if the terminal user has used CICS sign-on,
the terminal-IO is used otherwise, and the transaction-IO is used
when the transaction is not connected to a terminal.

OB2 checks the authorization-IO before accessing an
application-plan or executing a OB2 command. A user must be
authorized (GRANTED) to all the application plans he is

\
access; ng. DB2 authori zati on must also be granted for users
entering DB2 commands from CICS terminals. CICS should check the
authorization-lD, DB2 cannot validate it since no password is
available to DB2.

APPLICATION PROGRAMMING

An application program in the CICS environment uses the
techniques presented in "Chapter 7. Application Programming
Env ironment." Accesses to Dt./I and other CICS data may be
intermixed with accesses to DB2 data. DB2 data is available only
through the command level interface using EXEC SQl statements.

The two SQl statements COMMIT and ROLLBACK must not be used in a
CICS application program:

• 	 COMMIT is automatically invoked at normal program
termination, or through a CICS synchronization point call
(SYNCPOINT> •

• 	 ROLLBACK is automatically invoked at abnormal program
termination. or through a CICS rollback call (ROLLBACK).

An application program will receive an SQl return code when DB2
data is not available (data base stopped). or when authorization
does not allow the access. These situations may be reflected back
to the terminal by the application program.

Appl i cati on programs must be 1 i nk-edi ted wi th a DB2 language
interface module (DSHCLl) if they access DB2 data; this in
addition to the OL/I language interface module if they access DL/I
data.

Chapter 15. CICS Environment 175
International Systems Center - Santa Teresa

Transaction processing

Commit

In-doubt Threads

Communication with a CICS terminal uses the normal CICS
mechanism. Transaction input is received using the CICS RECEIVE
function, and messages are sent to terminals using the CICS SEND
function.

The CICS end user at the terminal should note no differences if a
transaction accesses DB2 data. No messages relating to DB2 are
sent to the end user by CICS.

Application programs running transactions which use DB2 data may
be displayed using the DB2 DISPLAY THREAD command:

-DISPLAY THREAD (cicsid)

As presented above, COMMIT of changes of DB2 resources is invoked
through a eICS synchron i zat i on po i nt. CICS uses the two phase
commit protocol to synchroniza committing of Dll'I changes (or
othar CICS data) and D02 changes. This protocol was introduced in
"Two Phase Commit" on page 155 (CICS is the coordinator, DB2 is a
participant).

After CICS has decided to commit changes and commit phase 2 is
started, both CICS and DB2 will commit tha changes and maka them
ava i lable to other users. If any system should abend duri ng
commit phase 2 then commit is finished at restart time.

COMMIT ends a unit of recovery. Data which was changed is meda
available to other applications and users. Note, however, if
locking is at the level of the tabla space (sea section "Defining
a Table Space" on page 47 in "Chapter 5. Data Definition"), locks
are freed only when the application program is terminated.

A thread is in-doubt from the moment DB2 has voted positively in
commit phase 1, until tha notification is received from CICS to
execute commit phase 2. If during that time interval either CICS
or DB2 fails the thread remains in-doubt until both systems are up
and reconnected again.

The thread is in-doubt because DB2 does not know what CICS's final
decision was relative to the commit process. CICS may already
have committed or rolled back the Dl/I changes, or will finish its
process when being restarted after a failure. When both systems
are up again they communicate to resolve the in-doubt situations.
DB2 will then either commit or roll back the changes based on the
eICS dedsion.

176 IBM DATABASE 2 Concepts and Facilities Guide
International Systern~ Center - Santa Teresa

In-doubt 	threads can be displayed through:

-DISPLAY THREAD (cicsid) TYPE (INDOUBT)

In case of a CICS cold start it may be required that the system
administrator resolves in-doubt threads through a DB2 command:

-RECOVER 	 INDOUBT (cicsid) ACTION (COMMITIABORT)
ID (correlation-ID)

Application Testing

The SQL portion of a program may be tested using SPUFI from a TSO
SPF terminal. This may even be done before the program is coded.
Individual SQL statements may be submitted, or streams of SQL
requests may be passed to DB2 through SPUFI. Di fferent
combinations of the same SQl function may be tested against each
other, and the best then selected for actual application coding.

For detailed testing both DB2 and eIeS must be up. eIeS
application programs may not be tested in batch if they access DB2
data.

Execution Diagnostic Facility

The Execution (Command-Level) Diagnostic Facility (EDF) enables
an appl i cati on programmer to test a command-level appl i cati on
program onl i ne wi thout mak i ng any modi fi cat ions to the source
program or the program preparation procedure. The facility
intercepts execution of the program at various points and
displays information about the program at these points. Also
displayed are any screens sent by the user program, so that the
programmer can converse wi th the appl i cat i on program duri ng
testing just as a user would on the production system.

The EDF may thus be used to trace all the SQL calls issued by a
eIeS application program. Information will be displayed at the
terminal before each SQL call is passed to DB2, and after DB2 has
executed the SQL call.

OPERATION

A eIeS !System connected to DB2 is controlled by an authori zed
terminal operator. The connection with DB2 is controlled through
eIeS commands, and once establ i shed may be used to route DB2
commands from CICS to DB2.

Chapter 15. eICS Environment 177
International Systems Center - Santa Teresa

CICS Camunds

The connection between CICS and DB2 requires the activation of the
CICS attachment facility. This activation can either be
automatic, using the CICS Program List Table (PLT); or manual.
using the DSNC STRT command (described below).

The following commands
between CICS and DB2:

DSNC DISP PLAN plan

DSNC DISP TRAN tran

DSNe DISP STAT

DSNe DISP xxxx dest

DSNe DISC plan

DSNe STOP QUIESCE

DSNe STRT x

may be used to control the connection

Displays the threads being used to access
an application plan. The plan name,
transaction name, status (active,
inactive), and the authorization-ID are
displayed.

Same as DISP PLAN for a transaction name.

Displays statistics collected for each
entry in the RCT. These include the
number of SQL calls. COMMITs, ROLLBACKs,
authorizations, and the number of times
more threads were requested than
available for this RCT entry. The output
of any of the above DISP commands may be
routed to a specified destination of the
CICS system.

The output of the above DSNC DISPlay
commands may be routed to another CICS
terminal ("dest"l.

Disconnects all the threads which access
an application plan as soon as no
transaction is using the thread. New
threads are allowed to be started.

Stops the CICS attachment when all
currently running transactions have
terminated. FORCE in place of QUIESCE
will terminate the connection to DB2
immediately regardless of running
transactions.

Requests the CICS attachment to be
started. The RCT named DSNCRCTx will be
loaded, where "x" is the suffix given in
the STRT command (default 0) . By
specifying a suffix a connection to a
selected DB2 system may be started.

DSNe HODI TRAN tran n 	 Changes the maximum number of active
threads for the named transact i on (RCT
entry) to the new value "nne

178 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

DSNC HODI DEST old new 	 Changes the CICS destination for
attachment related messages and
statistics.

The usage of these CICS commands may be controlled through the
standard CICS security mechanism. No authorization checking by
DB2 is involved.

Issuing DB2 Co.mands from CICS

Once a connection between CICS and DB2 is established authorized
terminal users (by CICS security) may use the CICS DSNC command to
route a DB2 command to the DB2 system.,

DSNC -DB2-command

The DB2 command is routed to DB2 for processing. DB2 checks if
the user is authorized to issue the DB2 command. Responses are
routed back to the originating CICS user. The command recognition
character (CRC) "-" must be used to route the commartd to the
destination DB2 system.

Examples are:

DSNC -DISPLAY D8 (data-base-name) SPACE(M>

DSNC -START D8 (data-base-name)

DSNC -DISPLAY THREAD

HONITORING THE CICS ATTACHHENT

The following facilities are available to monitor CICS Attach
related events:

• 	 The CICS Auxil iary Trace faci Ii ty and the CICS Honftorfng
facility (CMF) may be used to trace and monitor SQL calls
issued by a specific CICS application program.

• 	 The DB2 TRACE facility monitors events within DB2 and writes
records to in-storage tables or GTF. The trace facility is
presented in "Chapter 16. Installation and Servicing" section
"Trace" on page 190.

• 	 The CICS DISPLAY Command provides information on subsystem
connections and active threads.

• 	 The DB2 Accounting facility collects statistics on an
authorization-ID and work basis and writes them to SMF. See
"Chapter 13. Monitoring and Accounting" section "Accounting
Facility" on page 161.

• 	 The DB2 statistics facility collects system wide statistics
about thread connections and usage. These are useful when

Chapter 15. CICS Environment 179
International Systems Center - Santa Teresa

only one sUbsystem ; s connected to DB2. Sea "Chapter 13.
Monitoring and Accounting" section "Statistics Facility" on
page 160.

130 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

CHAPTER 16. INSTALLATION AND SERVICING

In thi s chapter we look at the DB2 i nstallat i on process, how
system parameters may be modified after installation, and at how
the installed product is serviced. Special consideration is
given to the IMS and CICS attachments.

PREREQUISITES

The 	prerequisites listed below are required for DB2 execution.

Hardware

Processor 	 DB2 operates on 308x, 303x, S/370 158/168, or
4300 systems given sufficient real storage to
satisfy the combined requirements of DB2, the
host operating system (MVS or MVS/XA),
appropriate Data Facility Product, access
methods, batch requirements and other
customer-required applications. The use of
System/370 Dual Address Space hardware is
recommended, since the software simulation of
this feature may severly impact performance.

DASD 	 DB2 is independent of DASD device type. Any disk
devices supported by DFP (Data Facility Product)
access methods may be used. DB2 uses disk
devices for the active recovery logs, BSDS, and
Data base data sets, optionally also for archive
logs, image copies, and utility work data sets.

Tape 	 DB2 is independent of tape device type. Tape (or
MSS) may be used for archive logs, image copies,
unloaded tables, and utility work data sets.

communication 	 An MVS supported console is used for messages.
DB2 operation may be controlled from TSO, IMS, or
eIeS termi nals.

Software

Required

• 	 MVS/SP VI R3 or a subsequent release for the MVS/370
environment

• 	 MVS/SP V2 RI or a subsequent release for the MVS/XA
environment

Chapter 16. Installation and Servicing 181
International Systems Center - Santa Teresa

TAPE CONTENT

• 	 DFP/370 (Data Facility Product) Rl for MVS

• 	 DFP/XA (Data Facility Product) Rl.! for MVS/XA

• 	 TSO/E (Extension) Rl or TSO Command Package for MVS

• 	 TSO/E (Extension) Rl for MVS/XA

• OS/VS Sort/Merge R5

optional (recommended)

• 	 ISPF (Interactive System Productivity Facility) for
installation and interactive access, both the Dialog Manager
and the Program Development Facility

• 	 RACF (Resource Access Control Facility) R5

• 	 QMF (Query Management Facility)

• 	 DXT (Data Extract)

• 	 IMS VI R3 or CICS VI R6 for transaction oriented applications

DB2 	 is distributed on four standard label tapes in SMP4 format:

• 	 DB2 tape
• 	 IMS attach tape
• 	 CICS attach tape
• IRlM tape

Each tape contains the following files:

1. 	 SMP control statements and system library allocation JCl.

2. 	 Unloaded libraries containing source of macros and samples.
The DB2 tape also contains TSO ClISTs, ISPF panels, and
initialization data. No such file on the IRLM tape. No
source of DB2 modules is provided.

3. 	 Unloaded library containing DB2 object modules.

4. 	 Unloaded library containing TSO HELP information (DB2 tape).

182 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

S"P 	CONSIDERATIONS

OB2 can share SMP data sets wi th IMS/VS VI R3 and subsequent
releases, unless otherwise specified. (However, DB2 cannot use
the same SMP data sets as MVS). If the installation is not using
IMS/VS or is using a version prior to IMS/VS VI R3, unique SMP
data sets are required.

INSTALLATION TASKS

The 	OB2 installation process consists of a series of tasks:

1. 	 Allocate the system data sets: BSOS, active logs, DB2
catalog, directory, and temporary data base.

2. 	 Initialize the catalog and the directory.

3. 	 Initialize the BSDS.

4. 	 Customize MVS for OB2.

5. 	 Assemble and link edit the OB2 initialization module
(DSNZPARM) which contains the user specified system
parameters (see "Chapter 13. Monitoring and Accounting").

6. 	 Image copy the catalog and the di rectory.

7. 	 Create a default storage group.

To ease the installation OB2 provides a CLIST which creates
jobstreams that perform all of the above tasks. During invocation
of the CLIST the user must change the supplied default values to
suit installation requirements.

Installation using ISPF

A series of ISPF panels may be used for a tailoring installation
of DB2. All the i nstallati on parameters are presented on full
screen menus for easy selection, and the installation job stream
is generated accordingly.

Chapter 16. Installation and Servicing 183
International Systems Center - Santa Teresa

The 	tailoring session flows through the following panels:

1. 	 Installation lIain panel for specification of data set
prefixes and names. Selection of long session (all menus),
short session (only selected main parameters, rest default to
system supplied values or values specified in an earlier
session), or individual panels (for updating). The short
session should be adequate for an initial installation.

2. 	 Installation data paralleters defi nes the VSAM catalog and
volumes for the DB2 subsystem data sets.

3. 	 Installation sizes defines a rough number of DB2 objects to be
used to calculate the si zes of the DB2 catalog, di rectory,
temporary data base, and regi on si ze for the DB2 address
spaces.

4. 	 Installation log data sets defines the active log processing
options (dual, number of data sets, b~ffer size, etc).

s. 	 Installation archive log defines the archive log processing
options (dual, device type, space, blocksize, etc).

6. 	 Installation Boot strap Data set defines the options for the
BSDS (dual, dsname, volume).

7. 	 Installation operator functions defines the console routing
codes, SMF statistics and accounting, trace table size, and
system checkpoint frequency.

8. 	 Installation IRLH defines the name and options for the IMS
Resource lock Manager. DB2 and IMS data sharing options may
be specified.

9. 	 Installation HVS PARHLIB updates defines member names and
options to be included in the MVS PARMlIB (e.g. DB2 subsystem
name, SRC subsystem recognition character, etc).

10. 	Installation protection defines passwords for data set
password protection, optionally enables DB2 security, and
defines the authorization-ID of the system administrator.

11. 	Installation data bases to be started automatically defines a
list of DB2 data bases, table spaces, and indexes to be
started automatically when DB2 comes up. This panel is only
presented in an update session.

The jobstream generated by this installation process consists of
a number of jobs which are stored as members of a partitioned data
set. The jobs are run after the tailoring session is ended.

184 IBM DATABASE 2 Concepts and Faci Ii ti es Gui de
International Systems Center - Santa Teresa

- -------~"

'"

Post Installation Tasks

Post installation tasks include:

• 	 Setting up system security using either RACF or MVS data set
password protection.

A RACF user-ID for the two DB2 start procedures provides
automatic protection of new DB2 data base data sets.
Adequate authorization for users of log utilities.
Automatic protection of image copies.

• 	 Changing the DB2 supplied user-ID exit, which sets the
user-ID used by DB2 to the job card user-ID or TSO logon-ID if
RACF is not used.

• 	 Installation of DB2 data base exits for validation or editing
of table data.

• 	 SMF conditioning to allow DB2 to generate SMF records for
statistics and accounting.

Enabling the TSO/Batch Attachment

The TSO/Batch attachment is an integral part of DB2 that provides
a~cess to DB2 data from TSO terminals and batch address spaces.
The attachment is enabled by providing:

• 	 access to DB2 provi ded TSO ISPF panels, CLISTs, and help
information.

DB2 authorization must be coordinated with TSO 10gon-ID's and
batch user-ID's (job card).

Batch programs accessi ng DB2 data must follow the appli cati on
development cycle presented in ,"Chapter 7. Application
Programming Environment" on page 77. The DB2 1S0 language
interface module CDSNELI) must be link edited with the program.

IRLM Considerations

The 	 IMS Resource Lock Manager (IRLM) release 2 is used by DB2 for
its 	operation. DB2 uses the IRlM to provide a locking function
for 	DB2 resources.

IMS 	 may also use the IRlM for block level sharing, and if used the
IRlM will also provide local locking for IMS. Alternately IMS
provides its own locking mechanism (i.e. program isolation>. IMS
1.3 	requires IRlM release 2 for block level sharing.

Chapter 16. Installation and Servicing 185
International Systems Center - Santa Teresa

• 	 One IRLM may serve both DB2 and IMS for all locki ng purposes.

• 	 Separate IRLM's may each individually serve DB2 or IMS.

• 	 IRLM may be used for DB2 only, and IMS provi des its local
locking through program isolation.

When DB2 and the IRLM are installed, IRLM release 2 will replace
any IRLM already installed for IMS (unless separate SMP datasets
are used for DB2 and IMS).

1"5 	considerations

The following tasks must be performed to install and enable the
IMS attachment of DB2:

• 	 IMS address spaces must have access to DB2 libraries for the
attachment modules which execute in the IMS address spaces.

• 	 Create the subsystem members (SSM) which define the
connections between DB2 and IMS.

• 	 Add the SSM parameter to IMS EXECs.

• 	 The application plan names in DB2 are assumed to be identical
to the IMS program names. If not, a resource translat ion
table must be created.

• 	 Coordinate DB2 and IMS security. The authorization-ID used
by DB2 is the sign-on user-ID or logical terminal nama for
message driven programs, and the job card USER or PSBNAME for
batch programs (BMP).

• 	 Optionally restrict the usage of the IMS /SSR command to route
DB2 commands from an IMS terminal to OB2.

• 	 Define programs and transaction using DB2 data to IMS.
Application programs must be link edited with the IMS/DB2
language interface module (DFSLIOOO).

• 	 Test the IMS attachment during Installation Verification (see
below) .

186 IBM DATABASE 2 Concepts and Facilities Guide
International Systems CQnter - Santa Teresa

CICS Considerations

The following tasks must be performed to install and enable the
CICS attachment of DB2:

• 	 The CICS address space must have access to DB2 libraries for
the attachment modules whi ch execute in the CICS address
spaces.

• 	 Define the connections between DB2 and CICS in the Resource
Control Table (RCT). The application plan names in DB2 are
given in the RCT or default to the transaction name.

• 	 Coordinate DB2 and CICS security. The authorization-ID used
by DB2 is specified in the RCT and may be the sign-on user-ID,
terminal-ID, transaction-ID, or a constant.

• 	 Increase the OSCORE value in the CICS SIT since each thread is
an MVS subtask and requires approximately 1500 bytes.

• 	 Optionally restrict the usage of the CICS DSNC command to
route DB2 commands from a CICS terminal to DB2.

• 	 Define the DB2 attachment facilities in the CICS PPT and PCT.

• 	 Define programs and transaction using DB2 data to CICS.
Appl i cat i on programs must be link edi ted wi th the CICS/DB2
language interface module (DSNClI).

• 	 Test the CICS attachment during Installation Verification
(see below).

Updating Installation Parameters

An update process may be required after DB2 installation to:

• 	 Tune the system
• 	 Change operation/monitoring options
• 	 Change authorization
• 	 Change system data sets
• 	 Change system data bases (catalog)

An ISPF session provides individual panels to modify installation
parameters. and generates a job stream to be executed. A new
version of the system initialization module may be generated and
activated the next time DB2 is started.

Chapter 16. Installation and Servicing 187
International Systems Center - Santa Teresa

INSTALLATION VERIFICATION

The objective of DB2 Installation Verification is to verify the
correct installation of DB2. Installation Verification consists
of a set of jobs which are intended to be run by an administrator
or programmer after installation of DB2. The installer is not
required to become familiar with DB2. The jobs are run only to
verify the successful installation. The jobs can be run with
minimal online script entry. Results can be verified by comparing
the output against the installation publications.

Installation Verification is composed of six phases. Most of the
phases are batch jobs. The last phase resets the catalog and data
base back to thei r i ni tial state at the end of phase 1. Thi s
permits the user to invoke the whole process again. Installation
Verification is simply a fixed path through the sample
application shipped with DB2.

The 	six Installation Verification phases are:

• 	 Phase 1 prepares the system. Sample libraries are allocated,
DB2 storage groups, data bases, tables, indexes, and views
are created. Edi t and val i dati on exi ts are compi led and
link-edited. The tables are loaded, and the DB2 utilities for
statistics, reorganization, and image copy are executed.

• 	 Phase 2 demonstrates the application development cycle for
batch programs written in Assembler Language, COBOL, FORTRAN,
or PL/I. Each program runs through precompi Ie, compi Ie,
link-edit, bind, and execution.

• 	 Phase 3 is a SPUFI session. Temporary tables are created and
loaded. SQL SELECT's and UPDATE's are executed on temporary
tables and on the system catalog.

• 	 Phase 4 validates the IMS attachment. Programs, PSB's,
transactions, and MFS formats must be defined in IMS. The IMS
transactions may then be executed online.

• 	 Phase 5 validates the CICS attachment. Programs,
transactions, and maps must be defined in CICS. The CICS
transactions may then be executed online.

• 	 Phase 6 restores the DB2 system and catalog. DB2 objects used
by the process are dropped, and the status of the system after
phase 1 is rebuilt.

188 IBM DATABASE 2 Concepts and Faci lities Guide
International Systems Center - Santa Te~esa

SAMPLE APPLICATION

A sample application is shipped with DB2. It consists of several
tables, and programs which retrieve and manipulate data in these
tables. Subsets of two of the tables (EMPLOYEE and DEPARTMENT)
were introduced in "Chapter 3. Relational Data Model" and
subsequently used in many examples throughout this book.

Application programs in Pl/I, FORTRAN, and COBOL demonstrate many
di fferent techn; ques used to access the tables through SQl
statements. Some of the programs are executed during the
Installation Verification.

The 	objectives of the sample application are:

• 	 To provi de a common resource for appl i cat i on and system
programmers, and all others who are interested in how
application programs work in OB2.

• 	 To assist verification that DB2 works after it has been
installed.

The 	sample application consists of three actual applications:

1. 	 The organization application manages information about a
sample company's employees, departments, and department
structure. Two tables for employees and departments are
used.

2. 	 The project application manages information about the
company's projects. Thi s includes project structures,
project activities, project staffing by employees, and
project estimates and processing. Four tables holding
projects, activity types, project - activities, and project
employee assignments are used.

3. 	 The phone application manages individual employees phone
numbers.

The applications may be used interactively from IMS and CICS, or
in batch under TSO. The ISPF interactive support (SPUFI) may be
used to retrieve and manipUlate data in the sample tables. An
additional consistency checking program is provided to match
information in the above sample tables. It tells the user if data
stored about departments, employees, projects, or activities is
missing or appears inconsistentlY in the sample applications
tables.

Chapter 16. Installation and Servicing 189
International Systems Center - Santa Teresa

SERVICEABILITY

DB2 is consistent with the MVS philosophy of establishing
recovery exits at each major functional interface. These
recovery exi ts are desi gned to handle unexpected error
conditions. Functional Recovery Routines (FRRJ are established
by all components at initial entry. These routines gain control
from MVS in case of an error in that component. The FRR calls a
Procedure Recovery Routine (PRRJ which provides error diagnostics
and attempts to recover the component. This mechanism guarantees
a specialised routine for each error or exceptional condition.

Proble. Deter.tnation Tools

DB2 prov i des a number of problem determi nat i on tools to be used in
analyzing certain error conditions.

Formatted Dump

Two 	 types of formatted dumps are produced by DB2:

1. 	 The online format dump program executes as an exit of the MVS
SNAP/DUMP faci Ii ty al')d produces a summari zed ou'tput of the
major DB2 control blocks and data structures. These dumps are
recorded in SYSABEND/SYSUDUMP data sets.

2. 	 The DB2 formatt i ng exi t of the MVS dump format program
(AMDPRDMP) allows the user to format DB2 information from a
dump recorded in a SYSl.DUMP data set. A control statement
provided to the MVS format program allows to select
information to be formatted.

Trace

DB2 has a TRACE faci I i ty that traces the control flow at an
internal component (resource manager) level. The scope of
information traced may be specified as GLOBAL (whole DB2
subsystem), or LOCAL (events associated with certain application
plans). Traci ng can be done in-storage ; n a wrap-around table
(RESi dent), or vi a GTF (GLOBAL only>. In-storage tables are
formatted by the DB2 formatted dump facility, each entry is 32
bytes long.

190 IBM DATABASE 2 Concepts and Facilities Guide
International SysteM~ Center - Santa Teresa

The DB2 trace is started through the DB2 start command, and
stopped through the stop command (with the same options):

-START TRACE (GLOBAL) DEST (RES I GTF)

-START TRACE (LOCAL) PLAN (plan-name, •.•)

Trace facilities are also available for IRLM and the attaches.

LOGREe Recording

When DB2 detects a subsystem error the following information is
recorded in SYSl.LOGREC:

• Fai lure type

• DB2 subsystem and component name

• Resource manager and recovery routine name

• Load module name

• Possibly additional information like control blocks, etc.

Chapter 16. Installation and Servicing 191
International Systems Cantar - Santa Tarasa

192 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

APPENDIX A. COMPATIBILITY BETUEEN DB2 AND SQL/DS

SQL/DS is a data base product di rected at the DOS and VM user. It
will normally be run in conjunction with eIeS or eMS. A SQL/DS
appl i cati on program interfaces to both CICS or CMS (for system
serv ices) and SQL/DS (for data base serv ices) through a SQL
interface.

The SQL/DS interface for data base services approximates the SQL
supported by DB2. The major differences between the SQl supported
by the two products are described below.

Migrating an application program from SQl/DS to DB2 will require
little or no modifications if the program uses only the SQL
statements supported by both systems. All migration will involve
precompilation and recompilation of the program. An installation
will choose either:

1. 	 To run the application under CICS which will communicate with
DB2. SQl statement s whi ch are env i ronmental under SQl/DS,
and not part of the common subset, will have to be converted
to CIeS statements.

2. 	 To convert the application to run as an IMS application and
issue Dl/I calls for system services and communication. This
approach involves more changes than the first approach.

In either of the above approaches the data must be converted from
SQl/DS format to DB2 format. The DB2 load utility (see "Load
Ut iii ty" on page 71) is prepared to accept data from a SQl/DS
"unload" data set. In addition the data base declarative
information must be entered through the DB2 definitional process.
No uti I i ti es for descri ptor conversi on from SQl/DS to DB2 are
provided.

SQL/DS statements and options not found in DB2

• 	 SQl/DS definitional statements which do not apply to DB2
objects will be diagnosed as errors by the DB2 precompiler:

ACQUIRE DBSPACE
AL TER DBSPACE
DROP DBSPACE
LOCK DBSPACE
DROP PROGRAM

Appendix A. Compatibility between DB2 and SQL/DS 193
International Systems Center - Santa Teresa

• 	 Options on GRANT and REVOKE statements which do not apply to
DB2 are:

RUN privilege to run a program
DBA data base administrative privilege
RESOURCE privilege to create tables, etc
CONNECT privilege to connect program to SQL

• 	 DB2 assumes that environmental operations are carried out via
interfaces from the application program to the transaction
manager (IMS or CICS). SQL/DS provides SQL statements for
these operations. DB2 will generate diagnostics
(precompiler) and warning return codes (execution) for these
statements:

BEGIN DECLARE SECTION
END DECLARE SECTION
CONNECT
UPDATE STATISTICS
WHENEVER ... STOP
RELEASE option of COMMIT/ROLLBACK

• 	 The following statements are only supported in the TSO/Batch
environment of DB2. A return code is generated when issued in
IMS or eICS environments:

COMMIT
ROllBACK

• 	 DB2 does not allow the user to speci fy or change the amount of
free space within tables or indexes:

CREATE INDEX PCTFREE
AL TER DBSPACE PCTFREE

statements that have different Effects in SQL/DS and DB2

• 	 DROP TABLE drops synonyms in DB2.

• 	 COMMIT and ROLLBACK drops prepared statements in DB2.

• 	 LOCK TABLE locks a table space in DB2. SQL/DS allows the
locking of individual tables.

• 	 CREATE INDEX supports different maximum key lengths.

• 	 Comparison of varying length strings of different length.
DB2 always pads with blanks, SQL/DS does not. In SQL/DS if
the shorter string is identical to the longer string (in the
positions of the shorter string) then the shorter string is
assumed to be "less" in comparison.

194 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

• 	 UPDATE: SQL.lDS allows a string literal to update a nume";c
field.

• 	 The maximum row size is approximately 32K in DB2, but 255 x
32K in SQl.IDS.

• 	 In SQL.lDS multiple row INSERTs, UPDATEs, and DELETEs are left
inserted, updated, or deleted when an error is encountered
during execution. The user must use ROLLBACK or WHENEVER STOP
to roll back the work. In DB2 the table is unchanged when an
error is detected dur i ng execut i on of such a multi pIe row
statement.

• 	 Different number and contents of system catalog tables.

• 	 Implementat i on dependent codes wi 11 be used in the SQLCA
feedback area. The layout of the SQLCA is identical.

• 	 Incompatibilities in SQL return codes. Successful execution
of SQL statements is hi ghly compati ble, but error return
codes might be different due to differences in the underlying
data management structure and system services.

Appendix A. Compatibility between DB2 and SQL.lDS 195
International Systems Center - Santa Teresa

196 IBM DATABASE 2 Concepts and Facilities Guide
International Systems Center - Santa Teresa

GG24-1S82-00 READER'S COMMENT FORM
IBH DATABASE 2 concepts and Facilities Guide

This form may be used to communicate your views about this publication. They will
be sent to the author's department for whatever review and action, if any, is
deemed appropriate. Comments may be written in your own language; use of English
is not required.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever.

Note: Copies of IBM publications are not stocked at the location to which this
form is addressed. Please direct any requests for copies of pUblications, or for
assistance in using your IBM system, to your IBM representative or to the IBM
branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval legibility

If you wish a reply, please give
your name and mailing address:What is your occupation?

Number of latest TNl applied:

Thank you for your cooperation.

- - - ---

Reader's Comment Form ~
~

i
•1
i
I
I
I
I
I
I
r

Fold

.--~

IBM INTERNATIONAL SYSTEMS CENTER
Department 471
Building F27
555 Bailey Avenue
P. O. Box 50020
San Jose, California 95150
U.S.A.

Fold

--...-
- ---.- --..-- -. ----- .. ---_.

