
Program Product

OS
PL/I Optimizing Compiler:
eMS User's Guide

Program Numbers 5734-PL 1
5734-LM4
5734-LM5

(These program products are available
as composite package 5734-PL3)

--...- --=--=-= -:. =-- ~--- -. ---- - - ------_ ... -
-~-.-®

Fourth Edition (October 1976)

This is a major revision of and obsoletes SC33-0037-2. This
edition applies to Version 1, Release 3, Modification 0 of
OS PL/I Optimizing Compiler, Program Products 5734-PL1,
5734-LM4, and 5734-LM5, and to any subsequent version,
release, and modification.

Changes made for this edition

Information has been included on the facilities that have
been introduced with release 3 of the compiler, notably
the INTERRUPT option and attention handling. The SHORT and
FULL suboptions of XREF and ATTRIBUTES are introduced. In
addition, a number of editorial changes and technical
corrections have been made throughout the manual.

Information in this publication is subject to significant
change. Any such changes will be published in new editions
or technical newsletters. Before using the publication,
consult the latest IBM System/370 Bibliography, GC20-0001,
and the technical newsletters that amend the bibliography,
to learn which edition and technical newsletters are
applicable and current.

Requests for copies of IBM publications should be made to
the IBM branch office that serves you.

Forms for readers comments are provided at the back of the
publication. If the forms have been removed, comments may
be addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California. All comments and
suggestions become the property of IBM.

© Copyright International Business Machines Corporation 1971,
1973,1974,1975,1976

(

Preface

This manual explains, for the users of the Conversational Monitor System
<CMS> component of the IBM Virtual Machine Facility/370, how to invoke
the PL/I Optimizing Compiler and use its conversational I/O
capabilities.

The reader is assumed to have a basic knowledge of PL/I and of CMS.

Chapter 1 is an introduction to PL/I under CMS. It aims to give enough
information to allow the reader to enter, compile, and execute a
straightforward PL/I program under CMS. It also aims to act as a guide
to further sources of information and to provide enough background
material to allow the reader to make full use of the potentialities of
the optimizing compiler under CMS.

Chapter 2 is the reference source for the special restrictions and
conventions that apply to PL/I when it is compiled by the optimizing
compiler and executed under CMS.

Chapter 3 is the reference source for the PLIOPT command and its
options.

Chapter 4 is the reference source for the execution time options that
are available when executing programs compiled by the PL/I Optimizing
Compiler.

Figure P.l is a guide to using this book.

REFERENCE PUBLICATIONS

This book makes reference to the following publications for related
information that is beyond its scope.

IBM Virtual Machine Facility/370:

CMS User's Guide, Order No. GC20-1819

CMS Command and Macro Reference, Order No. GC20-l818

CP Command Reference for General Users, Order No. GC20-1820

Planning and System Generation Guide, Order No. GC20-1801

Terminal User's Guide, Order No. GC20-l810

OS PL/I Checkout and Optimizing Compilers: Language Reference Manual,
Order No. SC33-0009-l

OS PL/I Optimizing Compiler: Programmer's Guide, Order No. SC33-0006-1

OS PL/I Optimizing compiler: program Logie, Order No. SC33-0006-0

AVAILABILITY OF PUBLICATIONS

The availability of a publication is indicated by its use key, the first
letter in the order number. The use keys are:

G - General: available to users of IBM systems, products, and
services without charge, in quantities to meet their normal
requirements; can also be purchased by anyone through IBM
branch offices.

S - Sell: can be purchased by anyone through IBM branch offices.

L - Licensed materials, property of IBM: available'only to
licensees of the related program products under the terms of
the license agreement.

CHAPTER 1: WRITING AND RUNNING A
PL/I PROGRAM UNDER CMS • • • • • •• 1

INTRODUCTION • • • • • • • • • • •• 1
Starting the Session - the LOGON

Command • • • • • • • •• 2
Summary • • • • • • • •• 2

Example of use of the LOGON
Conunand • • • • • • • • • • . 2-

BACKGROUND • • • • • • • • • • •• 3
CP and Your Virtual Machine 3

sources of Further Information •• 3
Invoking CMS - the IPL Command 4

Summary • • • • • • 4
Example of use of the IPL

command • • • • • • • • • 4
Background • • • • • • • • • 4

Entering Data Under CMS • • •• 4
Profile EXEC • • • • • • • 6

Sources of Further Information •• 6
Entering the Program ~ The Edit and
File Commands ••• • • • • •• 1

Summary • • • • • • • • • •• 1
Examples of Use of the EDIT and

FILE Commands • • • 8
Background • • • • • • • • • 9

The EDIT Facility of CMS • 9
correcting Typing Errors • 10
Format of PLIOPT files • • • • • 10

special Considerations • • • 10
Lowercase Character String

Constants • • • • • • • • 10
Sources of Further Information • • 12

compiling the Program - the PLIOPT
command • • • • • • • • 13

Summary • • • • • • • • 13
Example of Use of the PLIOPT

Command • • • • • • • • • • 14
Background Information • • • • • • 14

Compiler output and its
Destination • • • • • • • • 14

Choosing the Information to be
sent to your Terminal - Listing
Options • • • • • • • • • 15

Compiler Options • • • • • 16
Files used by the compiler 16

Special Considerations • 11
Secondary Input Text - ~INCLUDE
Statements •• • • • 17

Compiling a Program to be
Executed Under OS • • 18

The INTERRUPT oPtion and
Attention Interrupts ••••• 18

sources of Further Information •• 19
Executing a PL/I Program • • • • • • 20

summary • • • • • • • • • • • •• 20
Examples of Executing a PL/I

Program • • • • • • • • 21
Back~round • • • • • • • • • • •• 24

MODULE and TEXT Files 24

Contents

Using CMS Files and OS Data Sets 24
Assigning Files to the Terminal 27
An Alternative Method of

Executing a MODULE File • 27
Attention Interrupts ••••• 27

How to Cause an Attention
Interrupt • • • • • • • • 28

How to use Attention Interrupts 28
Background to Attention Handling 29

Special Considerations • • • • •• 31
passing Parameters and Execution

Time Options •• • • • • • •• 31
Executing a File Not Compiled

Under CMS or compiled with the
OSDECK Option • • • • • • • 31

Sources of Further Information •• 32
Ending the Terminal Session - The

LOGOFF Command • • • • • • • • • 33
Summary • • • • • • • • • 33

Example of ending the session 33
Background • • • • • • • 33

Deleting Files • • • 33
Special Considerations 34

Retaining a Switched Line
Connection • • • • 34

Source of Further Information 34

CHAPTER 2: PL/I CONVENTIONS AND
RESTRICTIONS UNDER CMS • • • • • 35

Restrictions •• • • • • • • • • 35
Using Record I/O at the Terminal 37
Interlanguage Communication 37

Conventions • • • • • • • • • • • 39
Stream I/O Conventions at the
Terminal •• • • • • • 39
Formatting Conventions for PRINT
Files • • • • • • • • • • 39

Automatic Prompting 40
Spacing and punctuation
Conventions for Input • 41

Simplified punctuation for GET
LIST and GET DATA statements 41

Endfile ••• • • • • • • 42
Display and Reply Under CMS 42

CHAPTER 3: THE PLIOPT COMMAND AND
ITS OPTIONS • • • • 43

Syntax Notation • • • • 43
PLIOPT Command • • • • • • 45

Usage • • • •• 46
PLIOPT Options and Compiler
Options • •.• • • • • • 46
Relationship of statement

Numbering Options • • • • 46
Alphabetical List of Options • 51

CHAPTER 4: EXECUTION TIME OPTIONS 65
List of Execution Time Options 65
INDEX • • • • • • • • • • • • • • •• 69

Figure P.l. How to use this book • • vii
Figure 1.1. The steps involved in
entering and executing a PL/I
program under CMS • • • • • • • viii

Figure 1.2. The disks on which the
compiler output is stored 15

Figure 1.3. Files that may be used
by the compiler • • • • • • • • •• 16

Figure 2.1. Restrictions on the PL/I

Figures

that can be executed under CMS •• 36
Figure 2.2. PAGELENGTH defines the
size of your paper, PAGESIZE the
number of lines printed in the main
printing area. • • • • • • • • • •• 40

Figure 3.1. (Part 1 of 3) Compiler
options arranged by function • • 48

Figure F.1. A sample terminal
session • • • • • • • • • • • • 75

Start

Yes

No

:>--------------... The PL/I language is described in
No the PL/I Checkout and Optimizing

Compilers Language Reference Manual.

.>-------------.... This publication gives a brief introduction.
No Further information is available in VM/370:

CMS User's Guide

~-N-O------------... These are described in chapter 2 of this
manual.

>-------------.... These are described in chapter 3 of this
Yes manual. An example and description of

the PLiOPT command is given in chapter
1, and in a foldout at the end of this manual.

>-------------~ These are described in chapter 4 of this
Yes manual.

Figure P.l. How to use this book

Return to correct errors

Start

LOGIN command

Starts the terminal
session

IPL eMS command
Makes your eMS virtual
machine available

EDIT & FILE commands

Enable you to enter
or correct your PL/I
program and store it
as a eMS PLiOPT file

PliOPT command

Enables you to compile
your PL/I program
producing a eMS TEXT
file of machine code

GLOBAL command
Makes the PL I
library available

LOAD & START commands

Resolve addresses
(LOAD), and execute the
program (START) *

LOGOUT command
Ends the terminal
session

END

Return to correct errors

r -----l
I * The program can be retained I
I in an executable form by use I

of the GENMOD command
I to create a MODULE file I L _______ J

Figure 1.1. The steps involved in entering and executing a PL/I
program under eMS

Chapter 1:

Introduction

Writing and Running a PL/I Program
Under CMS

Executing a PL/I program under CMS is a very simple process. You will
need to carry out the following six steps using CMS commands at a
terminal.

1. LOGIN at the terminal.

2. IPL CMS.

3. Write or alter a source program using the CMS editor.

4. Compile the source program using the PLIOPT command.

5. Execute the compiled program using the GLOBAL command to access the
PL/I libraries followed by the LOAD and START commands. Or create
a MODULE file using the GLOBAL, LOAD, and GENMOD commands for
subsequent execution without further use of the LOAD command.

6. End the session.

The remainder of this chapter leads you through the steps listed above
one by one. A standard approach has been adopted for each step. The
format is:

1. Summary and example. These give you the essential information to
run straightforward programs ahd list any speCial cases that
require additional action. These are the only sections you will
need to look at during your first CMS sessions.

2. Background information. This amplifies the information in the
summary and is intended to enable the user to get the best possible
results from using PL/I under CMS.

3. Special considerations. This explains what to do in the special
cases listed in the summary. Special cases have been kept separate
to prevent them making a simple process appear complex. This
section is omitted where there are no speCial cases.

4. Sources of further information. This lists the manuals that you
will require for any further information you may need.

A sample terminal session can be folded out from the end of the book.
This shows all seven steps involved on One page and can be used for
quick reference.

other chapters in this book are for reference. Chapter 2 lists the
special restrictions and conventions that apply to PL/I that is compiled
by the optimizing compiler and executed under CMS. Chapter 3 lists the
options and syntax of the PLIOPT command. Chapter 4 lists the execution
time options that are available for programs compiled by the optimizing

I compiler. The manual was written with users of a 2141 terminal in mind.
ICertain information has been included for the 3277. For other terminals
IYoU may need the terminal manual.

System requirements: The PL/I Optimizing Compiler requires a minimum of
320K bytes of virtual storage for the CMS virtual machine. This figure
is the same as the suggested minimum for CMS.

The next page shows you how to start a CMS session.

Starting the Session - The LOGON Command

SUMMARY

To start a terminal session, you switch on the terminal 'and enter the
LOGON command, specifying the identifier of your virtual machine. The
terminal responds by requesting your password if One is required by your
installation. After you have entered the password, the system responds
with a log message. You are now in the control program environment of

IVM/370, and can invoke CMS. (LOGIN is an alias for LOGON and can be
lused with identical effects.)

Examp~e of use of tne LOGON Command

r--, I EXAMPLE OF LOGON
1--
ITerminal Printout' - Notes and comments
I-------------------~--
I (you switch on the terminal)
I
VM/370 ONLINE
(you may have to press attention

Message shows a virtual machine
is available.

key to unlock the terminal keyboard.)
I

logon skylark
I
I
I

ENTER PASSWORD:
(password entered here)
I
I
I
I

LOGMSG - 09:12:09 04/02/72
RUNNING SYS010 - COLD START AT 09:00
LOGON AT 09:13:04 THURSDAY 04/02/72

I

Conventions:

LOGON command followed by
identifier for your virtual
machine.

System requests password.
You enter password. The printing
of the password will normally be
suppressed or overprinted for
security.

Log message showing time and
date of message, system identi­
fication and start time, time

_ and date of sig~ing on.

1. A carriage return, or equivalent, is assumed after all programmer
input.

2. The character I in column two implies spacing has been added to
accommodate notes.

3. System response is in upper case (capital) letters; programmer
input, in lower case.

L--J

2

BACKGROUND

CP and Your Virtual Machine

When you have keyed in your LOGON'command and your password, you are in
control of a virtual machine. Your terminal can be considered as the
console of your virtual machine. You can thus carry out many of the
operations of the operator of the real machine. This includes the
ability to invoke a number of operating systems, among them CMS.

Your virtual machine is controlled in the real machine by a control
program known as Control Program/370 (CP/370). When you have received
the log message, you are in control of your virtual machine and said to
be in the "CP environment".

SOURCES OF FURTHER INFORMATION

Topic

LOGON command

LOGMSG meaning

Reference Source

VM/370: CP Command Reference for General
Users

VM/370: Terminal User's Guide

Chapter 1: Writing and Running a PL/I Program Under eMS 3

Invoking CMS - The IPL Command

SUMMARY

To invoke CMS, you issue the IPL (Initial Program Load) command.

Example' of use of the IPL command

r--,
EXAMPLE OF IPL

Terminal Printout Notes and comments
---------------------------------~------------------------------------
ipl cms The IPL CMS command.
I
CMS 1.0 PLC 5 WEDNESDAY 04/01/12 09.13.50
I
I Message confirms CMS is invoked and
I that CMS commands may be entered.

conventions:

1. A carriage return is assumed after all programmer input.

2. System response is in upper case (capital) letters, programmer
input in lower case.

l--J

BACKGROUND

Entering Data Under CMS

Unless you are operating in a submode of CMS, such as INPUT mode within
the editor, everything you enter at the terminal is taken to be a CMS
command. If the command is correct, it is carried out and a READY
message typed to confirm that the command is complete and that the

. system is ready for further commands. If the command is not correct, an
error message is typed. Data is transmitted to the system when you press
the carriage return key. .

, When a CMS command is being executed, the terminal keyboard is locked
so that you cannot enter any .further data until· the system is ready to
receive it.

Line editing characters

VM/310 provides four characters to alter, delete, or split up the line
you key in at· the terminal. These four characters are known as line "
editing characters and are Q, ~, #, and • by default. For some
terminals ~ becomes [or (. They are removed from your inpu~ and
'treated as editing characters .unless they are preceded by the escape
character (see ·Using line editing characters as normal characters·
below). The line editing characters can be used to alter or delete
lines before you press the carriage return key, or to enter a number of
commands on one line to save time.

4

I

Deleting a line: If you wish to delete a line you are typing and to
reenter it completely you should use the logical line delete character
and then press the carriage return key. By default the logical line
delete character is~. Thus-to delete a line you might enter:

this is an example of deleting a line ~

(~ becomes [or (on some terminals.)

Altering a ~1ne: If you wish to alter a line and then transmit it to
the system, you must use the logical character delete character,
(sometimes called the logical backspace character). By default the
logical character delete character is~. If the logical character
delete character is entered once it deletes the previous character, if
it is entered twice it deletes the previous two characters, and so on.
Thus to alter the line you are typing you might enter:

this is an example of altering a wine~~~~line

Many programmers prefer to use the actual backspace key on the terminal
as the character delete character. This saves the troubl~ of having to
count back to the character you wish to change. Instead you can just
backspace to the incorrect character and reenter the line from that
point. To set the backspace as the character delete character you must
use the terminal command thus:

TERMINAL CHARDEL (you press the backspace key at this point)

(Note: This cannot be done in EDIT mode.)

Entering more than one command per line: If you want to save time at
the terminal by entering more than one command per line you must use the
logical line end character. By default this is #. The characters
following the # are treated as a new line. The line end character can
be used to split any type of input although its chief use is for
commands. For example if you wanted to split a line you might enter:

this is an example of splitting#a line

using line editing characters as normal characters: If you wish to use
any of the line editing characters as a normal character you must
precede it with the escape character. By default this is". For
example to enter the line 'this is an example of using the escape
character to enter ~, you would enter:

this is an example of using the escape character to enter "~

The escape character can be used preceding itself.

IAttention Interrupts. Under CMS, attention interrupts can be used
leither to halt processing of the current CMS command or to return
Icontrol to CP. To halt processing of the current CMS command you must
Ireflect an interrupt to your virtual machine. Unless the current
Icommand has its own attention processing, this will allow you to key in
Ifurther commands. Most such commands will be executed when the current
Icommand is completed. However, there are a number of immediate commands
Ithat will be executed immediately. The most useful are: HT - halt
I typing, HX - halt execution, and RT - resume typing. If"a CMS command
lis not being executed, an attention interrupt deletes anything on the
Icurrent line but otherwise has no effect. If you cause an attention
linterrupt during execution of a PL/I program, the result depends on
Iwhether it was compiled with the INTERRUPT option (see the section
Iheaded "Compilirig the Program - the PLIOPT Command", later in this
Ichapter). -
I
I To return to CP, you must reflect an interrupt to CP. When this has
Ibeen done, you can return to the pOint where you were executing in CMS

Chapter 1: Writing and Running a PL/I Program Under CMS 5

Iby use of the BEGIN command.
I
I The method of causing attention interrupts varies according to the
Itype of terminal you are using. On a 2741, an interrupt is reflected to
Iyour virtual machine by pressing the ATTN key once, and to CP by
Ipressing it twice. On a 3277 you reflect an interrupt ~o your virtual
Imachine by pressing the ENTER key, first moving the cursor one space to
Ithe left if the screen status message reads VMREAD. You reflect an
lattention interrupt to CP by pressing the PAl key.

Profile EXEC

When the first CMS command after IPL is executed, a CMS disk must be
accessed. If the first command is an ACCESS command, the disk accessed
will be the disk named in the ACCESS command. If any other command is
used, the 191 disk will be accessed by default and set up as your A
disk.

When the first disk is accessed, the disk 1ssearched for a CMS EXEC
procedure with the name PROFILE. (An EXEC procedure is a set of CMS
commands that, typically, carry out repet1tivehousekeeping tasks such
as defining files. These commands are executed by calling the EXEC
procedure.) If an EXEC procedure with the .name PROFILE is found on the
first disk accessed, it is automatically executed. Many installations
use this featUre to handle repetitive housekeeping tasks that need to be
done at the start of every session.

Information on issuing and writing a PROFILE EXEC is given in the
VM/370: CMS User's Guide.

SOURCES OF FURTHER INFORMATION

Topic

eMS background

IPL command

PROFILE EXECs

ACCESS command

Reference source

VM/370: CMS User's Guide

VM/370: CP Command Reference for
General Users

VM/370: CMS User's' Guide

VM/370: CMS User's Guide

Entering the Program - The EDIT and FILE Commands

SUMMARY

To enter or alter a PL/I source program under CMS, it is necessary to
use the CMS editor. You enter the EDIT command followed by the file
name of your choice and the file type PLIOPT or PLI. You then use the
editing facilities either to enter new input or, if you are updating, to
alter the existing program. The facilities available tor manipulating
and altering text using the editor are not described in this manual. If
you are not aware of them, you will find them in the VM/310: CMS User's
Guide. The facilities for correcting lines before you press the
carriage return key are described in the previous section under the
heading "Line Editing Characters·.

When you are satisfied with your input or alterations, you use the
FILE subcommand to create a CMS file that can be compiled using the
PLIOPT command. In addition to creating a file, the FILE SUbcommand
also ends the edit submode.

If you are entering a new PL/I program you must choose ~ new filename
which follows the CMS conventions. That is, the name can consist of up
to eight characters, which may be any alphameric character plus the
special characters $, a, and i. (Remember however that a and i are
default line editing characters and special action may be required if
you wish to use them. Also care should be taken not to choose a CMS or
CP command as a name, because this can cause problems if you wish to
create a module file.) If you are altering an existing program, you
specify the existing filename. Your input must be typed in columns 1
through 71. The editor will insert one blank to the left of your input
so that the actual margins will be 2,72. You can type your input in
either capitals or lowercase letters or any combination of the two.

If you intend to execute your program under CMS, you should be aware
of the special conventions and restrictions that apply to PL/I when it
is used under CMS. These are listed in chapter 3 of this manual. If
you intend to compile your program under CMS but to execute it under the
control of OS then there are no special restrictions on the language you
may use.

Special action will be required in the following circumstances

1. tf your program uses lower case character string constants.

2. If you wish to use a *PROCESS statement.

3. If you wish to use any of the line editing characters as normal
characters in your program. The line editing characters are a, i, ~,
and " by default.

4. If you wish to create a file of secondary input text for inclusion by
use of the % INCLUDE statement.

The action is described under the heading ·Special Considerations~
below.

Examples of Use of the EDIT and FILE Commands

r--, I ' EXAMPLE OF ENTERING A NEW PROGRAM
I--------~---
Terminal Printout Notes and comments

edit, rabbit pliopt
I
I

NEW FlLE:-
I
I -

EDIT:
I

input
I
I

INPUT:
-rabbit:proc options (main);

The EDIT command followed by file
name and file type.

Message shows that you have no PLIOPT
file called "rabbit".

Message shows you are in EDIT mode.

INPUT -subcommand causes the INPUT
mode to be entered.

Message shows you are in INPUT mode.
PL/I must appear in columns 1 through
71. display

('the rabbit squeaks to the world');

I
I
I

end:

EDIT:
I

Itop
I I
ITOF
I I
I I
type *

I
RABBIT: PROC OPTIONS (MAIN);

Null line (carriage return only on a
line) causes return from INPUT to
EDIT mode.

Message shows change of mode.

Places the line pOinter at the
top of the file.
Message shows pOinter is at top of
file.

Have the contents of the file
displayed at ,: the terminal.

~DISPLAY ('THE RABBIT SQUEAKS TO THE WORLD');
END:

FOF
file

I
I
I

R;
I

Means end of file reached
',FILE command results in your input

being st-ored with the filename and
type you specified. -It also -ends EDIT
mode.
READY message indicates further
commands can be entered.

------------~-------------------~-------------------------------------I Conventions: :
I
11.
I
I
12.
1
I

A carriage return, or equivalent, is assumed after all programmer
input~ v-.-

The character I in column two implies spacing has been added to
accommodate notes in the right hand column.

13. System response is in uppercase (capital) letters, programmer
I input in lowercase. L---__ ----------~------J

r--, I EXAMPLE OF ALTERING AN EXISTING PROGRAM
I-------------------------------~---~---------------------------------
Terminal Printout - Notes and comments

(This example assumes that you are correcting an error on line 10)

edit dig pliopt
I

EDIT: , ,
. , , , ,
next 10 ,

PHT EDIT (X) (A): ,
c/ht/ut

I
I
I ,

PUT EDIT (X) (A):

'file
I ,
I I
, I
I I

Issue EDIT command specifying exist­
ing PLIOPT file "dig".

System confirms that it is in EDIT
mode with a copy of the file
available. (If there was no PLIOPT
file "dig" it would respond "NEW
FILE:".) The line pointer is placed
at the top of the file.

position line pOinter to incorrect
line.
The tenth line beyond the original
line pointer position is displayed.
CHANGE subcommand.
Corrected line displayed. For
details of CHANGE and other edit
subcommands see the VM/370: CMS
Command and Macro Reference.

FILE command requests that the
altered copy be stored as the file
"dig" and that the previous copy be
discarded.

1
I ,
1

:R: READY message indicates further CMS ,
I commands may be entered. 1

--1
Conventions: 1

1.

2.

3.

A carriage return is assumed after all programmer input.

The character I in column two implies spacing has been added to
accommodate notes in the right hand column.

System response is in upper case (capital) letters, programmer

'1
1
I
1
I
I ,

input in lowercase. . ,
L--_______ -----------------J

BACKGROUND

The EDIT Facility of CMS

The EDIT facility of CMS allows you to create and update sequential
files from your terminal. It is used to create PLIOPT or PLI files
which can be compiled by the PL/I Optimizing Compiler. (PLI files were
the filetype available for PL/I under CP/67 and can still be used under
the VM/370 system. Their format is identical to PLIOPT files.) The EDIT
facility has two modes, the EDIT mode and the INPUT mode. The EDIT
mode allows you to use various EDIT subcommands to change, rearrange, or
add to the copy of the file in main storage. The INPUT mode assumes
that all items keyed in at the terminal are· to be included in the file
you are creating. To enter the INPUT mode, you issue the subcommand
INPUT. To return from the INPUT mode to the EDIT mode, you enter a null
line: that is, a line that consists only of a carriage return. (If you
want a blank line in your PLIOPT file you must, therefore, key in at

least one blank in the line.>

When you issue the EDIT command, you must specify a file name and a
file type. CMS searches your disks for the file and if you have such a
file brings a copy of it into main storage and types the message "EDIT:"
indicating that you are in EDIT mode. If you do not have such a file,
it a.ssumes you intend to create one and types the message "NEW FILE" and
"EDIT". To enter the INPUT mode you must enter the INPUT subcommand.

To return from the EDIT mode to CMS, you must issue a command ~hat
specifies what is to be done to the copy of the file that you have been
editing. This can be done by using either the FILE command or the QUIT
command. The FILE command stores the copy of the file you have been
creating and discards the previous copy, if any. The QUIT command
discards the copy of the file that you have been editing. If you wish
to retain both the original copy of the file and the copy of the file
that you have been editing, you can use the FNAME subcommand to rename
the copy of the file on which you are working. You could enter:

fname rabbit2

Then, when you issued the FILE command, the altered file would be stored
with the name rabbit2 and the original file rabbit would still be
available.

If you wish to save your input and still remain in EDIT mode you can use
the SAVE command.

A full description of the EDIT command and EDIT subcommands is given
in the VM/370: CMS Command and Macro Reference.

correcting Typing Errors

If you wish to correct a line before pressing the carriage return key
you can use the line editing characters described under the heading
"Line Editing Characters" in the previous section of this chapter. If
you wish to correct a l'ine when it has been transmitted, you must use
the editing facilities which are described in the VM/310: CMS User's
Guide •

. ,c>::: ,PLIOPT and PLI files created by the editor have SO byte fixed length
records. Sequence numbers are in columns 13 through SO. Further
information can be found in the VM/310: CMS User's Guide. PLI files are
an alternative type' of file that can be handled by the optimizing
compiler.

CONSIDERATIONS

Lowercase Character' String Constants .. ','

When you are editing a PLIOPT file, the CMS editor automatically
translates any lower case characters you enter to upper case. If you
wish to enter lower case character string constants in your program it
is necessary to take special action. Enter:

CASE M

This must be done when you are in EDIT mode. Your input will then be
transmitted as entered. As the PL/I optimizing compiler accepts both
upper and lowercase input, y~u can still enter your program in either
uppercase or lowercase. During compilation the compiler will translate
all PL/I into uppercase. Items appearing 'between quotes or comment
delimiters will not be translated. The listing·will show your program
with everything except comments and data between quotes in upper case.

To return to automatic translation to upper case during your edit
session issue a CASE U subcommand. First enter a null line (carriage
return only on a line) to return to the edit mode, then enter:

CASE U

Use of *PROCESS Statements

Special action is required if you use the *PROCESS statement. This is
because the * must appear in column 1 and, by default, the editor moves
all input to PLIOPT files one column to the right. Accordingly the
backspace key must be used before the *. The *PROCESS statement takes
the form:

(you press the backspace key>*process attributes xref;

If you are using the backspace as a character delete character it must
be preceded by the escape character. (See "Line Editing Characters·
under "Invoking CMS - the IPL Command" earlier in this chapter.)

Use of the line editing characters in your program

If you wish to use any of the line editing characters as normal input to
your program you must precede them by the escape character. By default,
the line editing characters are ~, #, ~, ", but all or any of them may
be changed with the TERMINAL cOIrunand, and ~ becomes [or (on certain
terminals. If the defaults are in effect, and you wish to refer to a
variable called DOCUMENTI2, it is necessary to enter the I, which is the
default line-end character, preceded by " which is the def~nlt escape
character, thus:

DOCUMENT" 12

Details of the line editing characters are given in the previous section
of this chapter under the _heading "Line Editing Characters".

Creating a file for inclusion by ~INCLUDE statement

If you wish to create a file of secondary input text that you will
subsequently be able to include in your program by use of the %INCLUDE
statement, you will need to create a COpy file and to store it on a
macro library by use of the MACLIB command. ~

creating a copy file is similar to creating a PLIOPT file, however,
data must be typed in columns 2 through 12 if you intend to use the
standard PL/I margiris. This is necessary because the text is not
shifted one column to the right as it is for PLIOPT files.. When you
have created your copy file and used the FILE command to store it, you
will need to issue a MACLIB command to place it on a macro library. The
MACLIB command takes the form:

MACLIB ADD file-name macro-library-name
GEN

If you are adding a new file to an existing library you use "ADD" as the
second operand. If you are creating the macro library you use "GEN" as
the second operand. An example of creating a file of inclusion by the

use of ~INCLUDE statements is shown below.

r--,
EXAMPLE OF CREATING SECONDARY INPUT TEXT FOR INCLUSION I
BY ~INCLUDE STATEMENTS I

==
edit cuckoo copy Filetype COpy must be used
NEW FILE:
EDIT: Enter EDIT mode
input Enter INPUT submode
INPUT:

DISPLAY('TEST DATA FOR ~INCLUDE')i Column 1 must be left blank to
I allow for standard PL/I margins
I

EDIT
file

IRi
Imaclib add mylib cuckoo
I I
I I
I I
1 I
IRi

Null line causes return to EDIT mode.
Return from INPUT to EDIT mode.
store the file.

Store the file on the macro library mylib.
If the macro library did not exist, you
would use "GEN" instead of "ADD" this
would generate a macro library called
"mylib".

1--
I Conventions:
1
11.
I
I
12 •
I
I

A carriage return, or equivalent, is assumed after all programmer
input.

The character 1 in column two implies spacing has been added to
accommodate notes in the right hand column.

13. System response is in upper case (capital) letters, programmer
1 input in lower case.
L--J

SOURCES OF FURTHER INFORMATION

TOpic Reference source

Format of PLIOPT and PLI files VM/370: CMS User's Guide

Using the VM/370 editor VM/370: CMS User's Guide

.. Using your terminal VM/370: Terminal User's Guide

Compiling the Program - The PLIOPT Command

SUMMARY

TO compile a program under CMS, you use the PLIOPT command fo1lowed by
the name of the file that contains the source program. If you wish to
specify any compiler or PLIOPT options, these must follow the file name
and be preceded by a left parenthesis. 'Options are separated from each
other by blanks, the abbreviated forms should always be used.

If the file containing the source program is not a PLIOPT or PLI
file, it will be necessary to specify the filetype after the filename.
If the file is not on the A disk it will also be necessary to specify
the filemode for the file naming the disk where the file is held.
Chapter 3 shows the syntax for the PLIOPT command.

During compilation, two new disk files will be produced. They will
have the file types TEXT and LISTING and the same file name as the file
specified in the PLIOPT command. The TEXT file contains the compiled
code. The LISTING file contains the listings produced during
compilation. Any error messages produced will be transmitted to your
terminal.

If compilation reveals source program errors, you can alter the
PLIOPT file that contains the source by use of the CMS editor. You can
then reissue the PLIOPT command. This results in the creation of new
TEXT and LISTING files corresponding to the newly edited source program.
If previous versions were available they will be overwritten. When you,
have a satisfactory compilation, you can execute the program, which is
nOW in the form of a TEXT file. The next section of the chapter tells
you how to do this.

'"
Special action will be required in the following circumstances:

1. If your source uses the %INCLUDE statement to incorporate secondary
input text.

2. If your source program is not on a CMS disk.

3. If you intend to execute your program under the control of OS.

4. If you wish to place the compiled program On a text library as you
may if you want to use separately compiled subroutines.

5. If you wish to use attention interrupts as an integral part of your
program.

The action required is described in the sections below under the
heading "Special Considerations."

"

Example of Use of the PLIOPTCommand

r---~----------------------, 1 EXAMPLE OF USE OF THE PLIOPT COMMAND I
1--1 Terminal Printout Notes and comments I
--1 pliopt rabbit (xref The PLIOPT command I

I
.1. Options must appear after a left I

parenthesis and be separated by blanks.
If any exceed 8 characters see "Special
Considerations" below.

2. The right parenthesis is not necessary.

3. During compilation the system will
issue an in-operation signal for every

, 2 seconds of virtual CPU time used,
this is known as the BLIP signal.

NO MESSAGES PRODUCED FOR THIS COMPILATION
COMPILE TIME 0.01 MINS SPILL FILE 0 RECORDS SIZE 4051

I
R~

1
I

conventions:

READY message. If the compiler failed or
found errors of severity W or higher, CMS
responds R(return code)~

1. A carriage return, or equivalent, is assumed after all programmer
input.

2. The.character I in column two implies spacing has been added to
accommodate notes in the right hand column.

, ..
3. System response is in upper case (capital) letters, programmer

input in lower case.
L--------------------_---J

BACKGROUND INFORMATION

Compiler output and its Destination

When you issue the PLIOPT·command, CMS calls the PL/I Optimizing
Compiler to·compile your source program. The compiler creates two new
files during its execution. One file contains the compiled code that
will be executed when you wish to execute your program. 'The other file
contains diagnostic messages about the compilation, and, optionally,
listings of your source program and the compiled code. (The various
options controlling the listing produced by the compiler are described
in chapter 3 of this manual.)

By default, the two newly created files will be placed on CMS disks.
They will have the same file name as the file that contains the source
program but a different file type. The.compi1ed code will have the file
type TEXT and the listing will have the file type LISTING. Thus, if you
compiled a PLIOPT file called ROBIN you would, by default, create two
further files called ROBIN; .a TEXT file containing the compiled code and
a LISTING file containing the listing information. These files would be
placed on your CMS disks according to the.rules shown in figure 1.2.
(The relationship between CMS disks is explained in the VM/310: CMS
User's Guide.)

It is possible to specify a name for the TEXT file other than that of
the file compiled in the PLIOPT command by specifying a filename with
the OBJECT option.

The creation of the LISTING file can be suppressed by use"of the
NOPRINT option of the .PLIOPT command. (See below under "Listing
Options".) The creation of the TEXT file can be suppressed by us~ of
the NOOBJECT option of the PLIOPT command.

r--,
SOURCE DISK OUTPUT DISK

==
source disk read/write

source disk read/only with
parent disk read/write

source disk read/only with
parent disk read/only and
A disk read/write

source disk read only with
no parent and A disk read/write

source disk read/only with no
parent disk or parent disk
read/only and A disk read/
only

source disk

parent disk

A disk

A disk

program terminates unless you
have directed output to a non
DASD device by using a CMS
FILEDEF command. (See VM/370:
CMS User's Guide for information
on how to do this)

l----.:..- -------- --- - --- --------------- ---------- - ---- - ----- - - ----- - ~ .. -"'I'-- J

Figure 1.2. The disks on which the compiler output is stored

Choosing the Information to be sent to your Terminal - Listing
.Qp.tions

Options Qf the PLIOPT command and other CMS facilities offer you a wide
choice in the amount of listing information that can be made available

. to you at the terminal.

Three factors are relevant:

1. The compiler option TERMINAL which allows you to have sections of
the listing printed at the terminal as well as being included in
the normal listing file. TERMINAL can be followed by a
parenthesized options lists specifying those parts of the listing
that you wish to be transmitted to your terminal. Chapter 3 of
this manual. gives details. By default the TERMINAL option is
specified without an options list and compiler diagnostic messages
are transmitted to the terminal.

2. The CMS option PRINTIDISKITYPEINOPRINT, which allows you to direct
the listing file to a printer (PRINT), to a-CMS file (DISK ••• this
is the default) to the terminal (TYPE), or to be discarded
(NOPRINT).

The TERMINAL and PRINT options are described in chapter 3 of this
manual. The FILEDEF command is described in the VM/370: CMS User's
Guide.

The CMS defaults are TERMINAL with no options-list and DISK. When
you have received the messages passed to your file as specified in the

TERMINAL option, you can decide whether to examine the LISTING file
using the EDIT mode, to pass it to a printer, or to discard it.

Only one copy of the listing is transmitted to the terminal if you
use both the TERMINAL option and assign the listing file t.o the
terminal.

Compiler options

The PLIOPT command expects all options to be not more than eight
characters long. It is therefore, necessary to use the abbreviated form
of certain compiler options such as ATTRIBUTES, and advisable always to
use the abbreviated form. All options and sub-options must be separated
by "blanks. Parentheses need not be separated from options or suboptions
even if the option has a length of more than 8 characters. Thus
TERMINAL(XREF A) is acceptable, although the total length is greater
than 8 characters.

Files used by the compiler

During compilation the compiler uses a number of files. These files are
allocated by the interface module that invokes the compiler. The files
used are shown in figure 1.3.

r-----------------------
1 Name Function
1-------- --------------
IPLIOPT
1
1
1 .
1 LISTING
1
1
1

I 1 TEXT
II

1

System input

system print

Object module
output

ISYSPUNCH System punch
I
I
I
ISYSUT1
I
I
IMACLIB
I
I

Spill

preprocessor
~INCLUDE

--,
Device Type 1 When Required

-------------------1--------------------------
DASD, I Always
magnetic tape, 1
card reader I

DASD,
magnetic ~ape,
printer

DASD,
magnetic tape

DASD,
magnetic tape,
card punch

DASD

DASD

Always

When object module is to
be created

When object module
required in card image
format

When insufficient main
storage available

When %INCLUDE is used
from CMS disks

ISYSLIB Preprocessor DASD When %INCLUDE is used
I ~INCLUDE from os Library L--__ ~ ___________ J

Figure 1.3. Files that may be used by the compiler

SPECIAL CONSIDERATIONS

Se'condary Input Text - "INCLUDE Statements

If your program uses %INCLUDE statements to include previously written
PL/I statements or procedures, the libraries on which they are held must
be made available to CMS before issuing the PLIOPT command. To do this
you must insert the statements into a CMS MACLIB using the MACLIB
command. You then issue a GLOBAL command taking the form "GLOBAL MACLIB
filename." For example, if your secondary input text was held in MACLIB
called "mylib" you would enter:

global maclib mylib

before issuing the PLIOPT command. The PLIOPT command must specify
either the INCLUDE or the MACRO option.

IIf your "INCLUDE statement takes the form 'INCLUDE MYLIB CUCKOO,
las opposed to "INCLUDE CUCKOO, you will also need to specify a FILEDEF command
Ifor MYLIB. This should take the form:
I
I filedef mylib disk mylib maclib
I
IIf in the maclib the LRECL is not 80 and the BLOCKSIZE not 400, format
linformation must be included in the filedef command.

Source Program not on a CMS Disk

If your source program is not held on a CMS disk you can either read or
move it to a CMS disk from a card reader, OS disk, or tape using the
READCARD or MOVEFILE commands of CMS, or issue a FILEDEF command to
define the PL/I source as coming from the reader, OS disk, or tape
device and then compile it~

Moving the file onto a CMS disk offers the advantage that the source
can subsequently be altered from the terminal. This may be necessary if
compilation reveals errors in th~ source program. The method is given
in the VM/310: CMS User's Guide. .

To compile a program held on card or tape it .is necessary to issue a
FILEDEF command before the PLIOPT command. Thus to compile a program
held on card you might use the following sequence:

FILEDEF PLIOPT READER (LRECL 80 RECFM F

PLIOPT fname (option 1 •••• option n)

If the source program is on an OS disk, issue the following commands:

ACCESS 290 D
FILEDEF PLIOPT DISK D DSN?

[then key in the data set name]
PLIOPT fname

The keywords 'PLIOPT DISK D' in the FILEDEF command tells CMS that the
PL/I source statements are to be read in from the user's D-disk.

Any filename can be used for "fname". The name specified will be
given to the LISTING, TEXT, and UTILITY files produced by the compiler.

A description of the FILEDEF command is given in the VM/310: CMS
Command and Macro Reference.

compiling a Program to be Executed Under OS

If you intend to execute your program under os, you should specify the
OSDECK option thus:

PLIOPT RABBIT (OSDECK

This prevents the compiler from issuing a CMS loader ENTRY command,
specifying the CMS execution time interface module. An attempt to
execute a program compiled without the OSDECK option under OS, results
in an OS linkage editor error of severity level 8.

It is possible to execute a program compiled with the OS DECK option
under CMS, but special action is required. See "Executing a File not
Compiled Under CMS or Compiled with the OSDECK option" in the following
section, "Executing a PL/I Program."

Compiling a program to be placed on a TEXT library

If you intend to include the compiled TEXT file as a member of a text
library it is necessary to use the NAME option when you specify the
PLIOPT command. This is because members of a TXTLIB file are given the
name of their primary entry pOint if they have no external name. The
primary entry point of every TEXT file produced by the optimizing
compiler is the same, consequently only one compiled program can be
included in a TXTLIB if the NAME option is not used. (The NAME option
gives the TEXT file an external name.)

I Commands required to create a TEXT file suitable for including in a
TXTLIB is shown below. This code gives the file the external name used
in the PLIOPT command. However any other name can be used, provided
that it does not exceed S1X characters. It should ne noted that, if the
name exceeds six characters the NAME option will be ignored.

I The advantage of using a TXTLIB is that files On the TXTLIB will
lautomatically be linked when a LOAD command is issued if a GLOBAL for
Ithe TXTLIB has been issued. Thus separately compiled subroutines are
Imost easily managed if they are held on a TXTLIB.

1 The commands below compile a PLIOPT file RABBIT with the external
name RABBIT and adds it to an existing text library called BIOLIB.

pliopt rabbit (name('rabbit'

(compiler messages etc)

txtlib add biolib rabbit

IIf the TXTLIB did not yet exist GEN would be used instead of add.
I
I
I
IThe INTERRUPT Option and Attention Interrupts
I
I
IIf you have written a program that relies on the ra1s1ng of the
IATTENTION condition, it must be compiled with the INTERRUPT option, for
I example:
I
I PLIOPT BLUETIT (INT
I
IFUll details of how to use the INTERRUPT option and attention interrupts
lare given in the next section under the heading "Attention Interrupts".
I

SOURCES OF FURTHER INFORMATION

Error message explanations
CMS (numbered DMSxxxx)

PL/I (numbered IELxxxx)

FILEDEF command

GLOBAL command

MOVEFILE command

PL/I language

PLIOPT command

READ CARD command

TXTLIB command

Reference source

VM/370: system Messages

PL/I Optimizing Compiler Messages

VM/370: CMS Command and Macro Reference

VM/370: CMS Command and Macro Reference

VM/370: CMS Command and Macro Reference

PL/I Checkout and Optimizing Compilers
Language Reference Manual

Chapter 3 of this manual

VM/370: CMS Command and Macro Reference

VM/370: CMS Command and Macro Reference

Executing a PL/I Program

'-
SUMMARY

, "

To execute a PL/I program under CMS, you must have either a CMS TEXT
file or a CMS MODULE file. If your program is not in either of these
forms, see the earlier sections of this chapter. (A MODULE file is
created by using the LOAD command to resolve addresses in a TEXT file.
Details are given below.)

If you have a TEXT file execution requires three steps:

1. Issuing a GLOBAL command for the PL/I libraries.

2. Issuing the LOAD command with the START option if you wish
execution to begin.

3. If the START option was not issued with the LOAD command,
issuing the START command.

These steps are shown in example 1 below.

If you have a MODULE file execution requires 2 steps:

1. Issuing a GLOBAL command for the PL/I libraries •

. 2. Issuing the filename as a eMS command.

These steps are shown in example 3 below.

To create a MODULE file, you issue the GENMOD command after issuing the
GLOBAL and LOAD commands. Because of the structure of the the PL/I
object program, you must include the operand (FROM PLISTART and if you
do not include a filename, the resulting module file will be called
DMSIBM. To produce a MODULE file you must therefore issue a GENMOD
command of the form:

GENMOD filename (FROM PLISTART

where filename is the file name of your choice.

The PL/I standard files, SYSIN, SYSPRINT, and PLIDUMP are automatically
assigned before the PL/I program begins execution. SYSIN and SYSPRINT
are assigned to the terminal, and PLIDUMP is assigned to a printer. If
you wish to override these assignmentslyou must issue FILEDEF commands
before the start of execution. see "PL/I Files and CMS Defaults" below.

Special action will be required in the following circumstances:

1. If you wish to pass parameters to your program.

2. If your program uses any PL/I files that do not match the CMS
default definitions.

3. If you wish to execute a program that was compiled under OS, or was
compiled under CMS with th~ OSDECK option.

The action required is described in the sections below under the heading
"Special Considerations."

Examples of Executing a PL/I Program

r--,
I EXAMPLE 1. EXECUTING A TEXT FILE
1--
ITerminal printout Notes and comments
I-~---~--------------------------
I
Iglobal txtlib plilib
I I
I I
IR;
I I
Iload rabbit
I I
I I
I I
I I
I I
R;

I
start

I
I
I
1
I
I
I

EXECUTION BEGINS •••
I
I
I

THE RABBIT SQUEAKS TO THE
WORLD

I
R;

I

Conventions:

GLOBAL command makes the PL/I libraries
available.

READY message.

LOAD command generates an executable
program in main storage from the TEXT
file. (An alternative is
LOAD RABBIT (START, if you want immediate
execution) •

READY message.

START command starts execution

1. If you wish to pass parameters, follow
"start" with a blank, an asterisk,
another blank, and then the parameters;
thus: start * / 123. see "Special
Considerations" below.

Message at start of execution. For every
2 seconds of CPU time used an in-operation
signal is given.

The message in the sample program is
passed to the terminal.

The READY message indicates that further
CMS commands may be entered.

1. A carriage return is assumed after all programmer input.

2. The character I in column two implies spacing has been added to
accommodate notes in the right hand column.

3. System response is in upper case (capital) letters, programmer
input in lower case.

L--J

\

r--, I EXAMPLE 2. CREATING A MODULE FILE .
I--~-----------------------
ITerminal Printout Notes' and Comments

. 1--
Iglobal txtlib plilib Make PL/I libraries available
1 I
IRJ
Iload rabbit
I I
I I
I I
Igenmod rabbit(from plistart
I I
I I
I I
I J
, I
I I
I I
, 1
I 1
1 1
IR;

LOAD command creates an executable
program from TEXT file and library
modules.

Creates a copy of the loaded program
as a CMS MODULE file called rabbit.
The program can now be executed by
use of the file name as a command.
Because of the structure of compiler
output, the operand (·FROM PLISTART
must be included, if it is not, the
file will not be executable. If the
name of the file is omitted it will
be called DMSIBM.

I-----------------------------~--
,Conventions:
I
11.
I
12.
I
I

A carriage return is assumed after all programmer input.

The character I in column two implies spacing has been added to
accommodate notes in the right hand column.

13. System response is in upper case (capital) letters, programmer
I input in lower case •
. l--J

r--, 1 EXAMPLE 3. EXECUTING A MODULE FILE 1
I-------------------------------~--------------------------------------1
ITerminal Printout Notes and comments 1
I--~-------------------------{
Iglobal txtlib plilib GLOBAL command makes the PL/I
1 1 libraries avai1able. This is
1 , necessary as some library modules are
1 1 loaded dynamically.
1 I
R~

1
rabbit

1
1
1
1
I
1
1
1

READY message

For a MODULE fi1e the fi1ename can be
used as a CMS command.

1. If you wish to pass parameters,
they must appear after the file­
name and be preceded by a b1ank
thus: rabbit / 1234. see ·Specia1
Considerations· below.

THE RABBIT SQUEAKS TO THE WORLD The message in the sample program is
1 passed to the terminal.
I

IR~
, I
1

The READY message indicates that
further CMS commands may be entered.

1--1
Iconventions: 1
I I
11. A carriage return is assumed after all programmer input. I
I I
12. The character 1 in column two implies spacing has been added tb I
I accommodate notes. I
I I
13. System response is in upper case (capita1) letters, programmer 1
1 input in lower case. I
l--J

r--,
I EXAMPLE 4. COMPILING AND EXECUTING A PROGRAM WITH AN EXTERNAL
1 SUBROUTINE
1--
Ipliopt rabbit Compile main PL/I program.
1 (compiler messages omitted)
IR;
Ipliopt subrab(name('subrab'
1 (compiler messages omitted)
IR:
Itxtlib add biolib subrab
I I
I 1
1 I
IR:
Iglobal txtlib plilib biolib
I 1
IR:
Iload rabbit(start
1 1
I 1
I I
I 1
1 1

Compile subroutine. Use of NAME
option necessary or all members will
be called DMSIBM.
Include the subroutine in the
existing TXTLIB BIOLIB. This simpli­
fies linking. If the TXTLIB did not
exist,GEN would be used in place of
ADD.
Issue GLOBAL command for TXTLIBs that
hold PL/I library (PLILIB) and sub­
routine (BIOLIB).
The load command can now be issued
and linkages will be automatic
because the TXTLIB is globalled. If
it was not, it wou1d be necessary
to specify the TEXT file SUBRAB in
the LOAD command thus:

IR: load rabbit subrab(start l ___ -----------------J

BACKGROUND

'-
MODULE and TEXT Files

During compilation the PL/I optimizing compiler produces code that
requires fUrther processing before it can be 'executed. Addresses within
the code must be resolved and external modules referenced within the
code must be included. These references will always include modules
from the PL/I library.

The resolution of addresses is initiated by the LOAD command. The
processed data can then be retained with the addresses resolved by the
use of a GENMOD command specifying the filename. This command produces
a CMS MODULE file that can be executed without going through the process
of issuing the LOAD command on each occasion. Because of the structure
of compiler output it is necessary to specify a name for the file
explicitly and to include the operand (FROM PLISTART.

Using CMS Files and OS Data sets

CMS files, and other OS data sets can be written and read by programs
executed under CMS with varying restrictions.

CMS files are completely accessible to programs running under CMS to
read, write, and update. Such files can be made available to a number
of virtual machines, but are not accessible from outside the CMS system
except by copying and recreation. (It should be noted that ISAM files
are not supported under eMS, but VSAM is supported and that there are
restrictions on the use of REGIONAL files. The restrictions are
descri,bed in chapter 2.)

VSAM data sets are available both to CMS virtual machines and to the OS
system proper. DOS VSAM data sets are also available because DOS and OS
VSAM data sets are compatible. VSAM data sets provide a method of
sharing data betwen eMS and outside systems. However, under eMS they
are handled by the DOS data management routines which must be
incorporated under eMS during eMS system generation. The user's program
will not be affected by the use of DOS routines, but certain OS Access
Method Services functions will not be available for data set handling.
Full details of this and other aspects-of eMS VSAM are given in the CMS
Users Guide.

OS data sets are available on a read-only basis to eMS programs,
provided they are sequential.

Two elements are used under eMS to associate PL/I files with 'external
data. Within a program, the file is identified by the declared name or
the title option. (The title option allows a file name to be associated
with different sets of external data throughout the program.) Outside
the program, the FILEDEF command, or the DLBL command for VSAM,
associates the filename with a particular data set and provides the
function of the DD statement under OS.

VSAM data sets differ from other types in that they have their
housekeeping handled by a set of programs known as Access Method
Services, the DOS/vS versions of these programs are available to the CMS
user by use of the AMSERV command which uses a previously created file
containing Access Method Services statements to specify the services
required.

Three examples follow, showing the PL/lstatements and the eMS
commands necessary to access eMS files, VSAM data sets, and non-VSAM OS
data sets respectively.

Accessing CMS Files

To access a CMS file you issue a FILEDEF command associating the PL/I
file identifier with a particular CMS' file.

In the example that follows, the PL/I program reads the file known in
the program as OLDRAB. fhis refers to the file RABBITl DATA on the CMS
B-disk. The program writes the file known in the program as NEWRAB,
creating On the A-disk a CMS file that will be known as RABBIT2 DATA. A
third file, PL/I file RABPRNT is assigned to the virtual printer.

PL/I Program statements

DCL OLDRAB FILE RECORD INPUT ENV (F RECSIZE(40»,
NEWRAB FILE RECORD OUTPUT ENV (F RECSIZE(40»,
RABPRNT FILE STREAM PRINT;

CMS COinmands

filedef
R;
filedef
R;

fileaef
R;

and Res20nses

oldrab disk rabbitl

newrab disk rabbit 2

rabprnt printer

data b

data a

Associate OLDRAB with
RABBITl DATA on B-disk
Associate NEWRAB with the
file RABBIT2 to be placed
on the A-disk
Associate the file RABPRNT
with the virtual printer

If no FILEDEF command is explicitly issued, one is issued by eMS, this
assumes that the CMS file has the filename FILE, has a filetype the same
as the name of the PL/I file, and the location is the A-disk. . ..

The full syntax of the FILEDEF and other commands is given in VM/370':
CMS Command and Macro Reference.

Accessing VSAM Data Sets

VSAM data sets can be read, written, and updated, both from within, and
from outside the CMS system. VSAM data sets differ from other data sets
in that they are always accessed through a catalog and that they have
their routine housekeeping carried out by Access Method Services. The
CMS user uses the AMSERV command to access Access Method Services
functions and DLBL command to associate an actual VSAM data set with the
file identifier in a PL/I program.

To use the AMSERV command, a file of the filetype AMSERV must be
created using the CMS editor. The file should contain the necessary
Access Method Services statements. An AMSERV command specifying the
name of this file is then issued and the appropriate Access Method
Services are carried out. Such services must always be used for
cataloging and formatting purposes before creating a VSAM data set.
They are also used for deleting, renaming, making portable copies, and ~.
other routine tasks.

For VSAM data sets, information normally supplied in the ENVIRONMENT
option of the PL/I file or the JCL DD statement is· placed in the VSAM
catalog. Catalogue entries are created by the DEFINE statement of
Access Method Services, they contain such information as the space used
or reserved for the data set, the record size, and the position of a key
within the record. The catalog entry also contains the address of the
data set.

To use a VSAM data set, the CMS user has to identify the catalog to
be searched, and to associate the PL/I file with the VSAM data set. The
DLBL command is used for both these purposes. Where the data set is
being newly created, the AMSERV command must be specified to catalog and
define the data set before the PL/I program is executed. Details of how

to use VSAM under CMS are given in the VM/370: CMS User's Guide.

The relevant PL/I statements and CMS 'commands to access an existing
VSAM data set and to create a new VSAM data set are shown in the example
that follows.

The PL/I program reads the file OLDRAB from the VSAM data set called
RABBITl on the CMS B-disk. It writes the file NEWRAB onto the data set
RABBIT2 also on the CMS B-disk. RABBIT2 is defined using an AMSERV
command. In the example it is assumed that this master catalog is
already assigned and that VSAM space is also already assigned.

PL/I File Declarations

DCL OLDRAB FILE RECORD SEQUENTIAL KEYED INPUT ENV(VSAM);
·DCL NEWRAB FILE RECORD SEQUENTIAL KEYED OUTPUT ENV(VSAM);

CMS Commands

dlbl ijsyscat b dsn mastcat (perm
R;

edit amsin
NEWFILE
EDIT
input
INPUT

amserv

Issue a DLBL for the
master catalog.
Note that this need only
be done once for terminal
session if PERM is specified.
Create an AMSERV file to
contain Access Method
Services statements.

define cluster(name(rabbit2) vol(mama12» -
data (cyl(4,1) keys(20,O) recsz(23,23) -
freespace(20,30» -

EDIT
file
R;

index(cyl(l,l»

amserv amsin
R;

dlbl oldrab b dsn rabbitl (vsam)
R;
dlbl newrab b dsn rabbit2 (vsam)
R;

Notes:

Execute statements in the
AMSERV file to catalog
and format data set.
Issue DLBL commands to
associate PL/I files with
the VSAM data sets.

1. The clOSing parenthesis is optional in eMS commands but required in
Access Method Services commands.

2. OS PL/I programs with files declared with ENV(INDEXED) may in
certain instances execute VSAM I/O requests if the library routines
detect that the data set being accessed is a VSAM data set. Refer to
the OS PL/I Programmer's Guide under the heading 'The Compatibility
Interface' for information on obtaining 'native VSAM' support.

Accessing OS Data Sets

Before you access an OS data set it must be made available to your
virtual machine. Then using the ACCESS command, it can be accessed as
one of your CMS disks. Once this has been done, a FILEDEF command can
be used to access the disk in the usual manner. .' ,

In the example that follows, the PL/I file OLDRAB is used to access
the OS data set RABBIT.OS.DATA. It is assumed that the disk containing
the data set has been mounted an~ is known to the user as virtual disk
number 196.

PL/I statement

DCL OLDRAB FILE RECORD ENV (F RECSIZE(40»;

CMS Commands
access 196 g
196 G R/O
R;

I
filedef oldrab g dsn rabbit os data

Assigning Files to the Terminal

Connect disk containing data
set to your virtual machine.
Message confirms that it is
accessed in read/only mode.
Associate PL/I file OLDRAB
with OS data set RABBIT.OS.DATA

To assign the terminal to a file it is necessary only to use TERM in
your FILEDEF command. For example if you wished to assign a file called
OUTPUTl to the terminal you would do it as follows:

FILEDEF OUTPUTl TERM

Because synchonization is only automatically handled for STREAM
files, RECORD files should not normally be assigned to the terminal.

A number of FILEDEF commands are issued by the interface module
DMSIBM. They assign SYSIN and SYSPRINT to the terminal for
conversational I/O and PLIDUMP to a printer. If you wish to override
these default assignments, you must issue suitable FILEDEF commands
before starting the execution o'f the PL/I program.

An Alternative Method of Executinq a MODULE File

A module file can be executed_by a LOADMOD command followed by a START
command.

I Attention Interrupts
I
I
IThe INTERRUPT option allows attention interrupts to become an integral
Ipart of programming with the optimizing compiler, and this gives the
Iprogrammer considerable interactive control of the program.
I --
I If the INTERRUPT option is in effect during compilation, the compiled
Iprogram will respond to one attention interrupt by searching ,for an
lestablished ATTENTION on-unit, executing it if it finds one, and
Icontinuing with the processing if it does not. When the execution of an
IATTENTION on-unit is complete, control will return to the point of
linterrqpt unless directed elsewhere by means of a GOTO statement. Two
lattention interrupts. return you to CP.
I
I If NOINTERRUPT was in effect during compilation, the compiled program
Iwill be halted if one attention interrupt occurs.

IHow to Cause an Attention Interrupt
t
I ~
An attention interrupt to your virtual machine is caused On a 2741 by
pressing the attention button once. An attention interrup~ to CP is
caused by pressing the attention button twice in quick succession. On a
3277, an attention to your virtual machine is caused by pressing the
ENTER key (first moving the cursor one column left if the screen status
messag.e reads "VMREAD"), and an attention to CP by pressing the PAl key.
For other terminals see the appropriate manuals.

How to use Attention Interrupts

The' ability given by the INTERRUPT option to respond or not respond to
attention interrupts allows for two possible uses:

1. Attention interrupts can be used purely as a debugging feature with
ATTENTION on units used to supply debugging data. The program can
finally be compiled with NOINTERRUPT for production purposes.

2. Attention interrupts' can be used to produce an interactive system
in which attention interrupts are used to control execution of the
program.

IAttention on-units used for Debugging
I
I
IWhen debugging under the optimizing compiler, ATTENTION on-units can be
lused to transmit values to the terminal when an attention interrupt is
1 caused. For example, an ATTENTION on-unit might read:
I .
I ON ATTENTION PUT DATA(A,B,C,ICOUNT);
I
IThese v~lues would then be transmitted to the terminal when an attention
linterrupt was caused. When the program had been debugged, the unit
Icould be retained and the program compiled with the NOINTERRUPT option.
IThis would prevent code to poll for attention interrupts being included
lin the load module and so there would be no time overhead, there would,
I however, be a small space over.head because the on-unit itself would be
I compiled.
I .
I The use of NOINTERRUPT also allows programs compiled on the checkout
,compiler with debugging ATTENTION on-units to be compiled on the
loptimizing compiler without producing an execution time overhead.
I
I
J
IAttention on-units used for Interactive Systems
I ,
IThe availability of attention interrupt also makes it possible to write
Ifully interactive programs in PL/I and execute them when compiled by the
loptimizing compiler.
I
I Typically the ATTENTION on-unit will prompt the user for input and
Icarry out some action determined Py that input. For example: , ,
I
I
'¥ .,

ON ATTENTION BEGIN;
ERRCOUNT=O;

FIRST:
PUT EDIT
('ENTER 1 FOR NEXT TABLE, 2 FOR REPETITION OF CURRENT TABLE 3 TO END OUTPUT:')

GET LIST(NUM);
SELECT(NUM);

WHEN(l) GOTO NEXT;
WHEN(2) GOTO START;
WHEN(3) GOTO FINAL:

OTHERWISE DO;
ERRCOUNT=ERRCQUNT+l;
IF ERRCOUNT<3 THEN DO;

PUT EDIT('INCORRECT INPUT. TRY }'I~l'T"l') (1\):
GOTO FIRST;
END;

ELSE SIGNAL ERROR;
END; /*OTHERWISE CLAUSE*/

END; /*SELECT*/
END; /*ON-UNIT*/

The terminal interaction resulting from causing an attention interrupt
could be as follows:

call bicent
THIS PROGRAM LISTS TABLES OF DATA RELATING

ITO AMERICAN BICENTENNIAL CELEBRATIONS
IUSE ATTENTION INTERRUPT TO CHANGE TABLE
ILIST OF STATE BIRDS
I
lAMERICAN ROBIN CONNECTICUT, MICHIGAN, WI,SCONSIN

MARYLAND IBALTIMORE ORIOLE
IBLACK CAPPED CHICKADEE MAINE,MASSACHUSETS
I (Attention interrupt here)
I
IENTER 1 FOR NEXT TABLE, 2 FOR REPEAT OF CURRENT TABLE, 3 TO END OUTPUT:1
I
ILIST OF STATE FLOWERS
AMERICAN BEAUTY ROSE
APPLE BLOSSOM
ARBUTUS
etc

DISTRICT OF COLUMBIA
ARKANSAS,MICHIGAN
MASSACHUSETS

Background to Attention Handling

If you are going to make extensive use of attention interrupts, it is
important to understand something of how they are implemented by the
optimizing compiler.

Essentially, causing an attention interrupt sets a switch immediately
and this switch is tested by means of .polling at suitable poin~s in the
compiled program.

In procedures compiled with the INTERRUPT option, polling takes place
Ibetween PL/I statements at branch-in points. Polling also takes place
tin all" stream I/O statements to and from the terminal if any procedure
lin the load module was compiled with the INTERRUPT option. This ~
larrangement allows maximum control of terminal input and output with
minimum performance overheads. It also ensures that the ATTENTION
condition is raised between PL/I statements.

pitfalls when using Attention Interrupts

The synchronization of terminal printout and processing by the CPU and
the method used of implementing the ATTENTION condition cause various
pitfalls for the user of attention interrupts. These are described
below.

Synchronization

IWhen output is being transmitted to the terminal, the statement being
lexecuted in the CPU may be well beyond the pOint where the output is
I transmitted. (The number of buffers al.located determines how far.)
IConsequently an attention interrupt will often cause loss of output that
lis held in buffers. In addition an attempt to end excessive output to
lthe terminal by use of an attention interrupt may have unexpected
Iresults if the program is not actually executing the output statement
Iwhen the attention interrupt is caused.
I
Gonsider the on-unit

ON ATTN BEGIN;
/*Unit illustrates a potential pitfall*/

ON ATTN GOTO ENDUNIT; /*Second ON statement kills the
output if too long, by allowing
attention interrupt during output*/

PUT DATA;
ENDUNIT:END;

An attention interrupt entered when you have seen enough output may
in fact occur when the unit has completed executing. Thus the attention
far from ending the output will just cause another set of output to
begin. '

Synchronization is only carried out when a GET statement to the
terminal is executed. Therefore a GET statement at the end of the unit
would solve the problem. A corrected on-unit could read:

ON ATTN BEGIN;
ON ATTN GOTO ENDUNIT;
PUT EDIT

('TO END OUTPUT CAUSE ATTENTION. THEN ENTER GO TO CONTINUE OR STOP TO STOP')CA);
DCL ANS CHAR(4);
PUT DATA;

ENDUNIT:
/*Execution will wait here to synchronise the GET statement.*/ ;
/*Therefore attention interrupts entered during output of data*/
/*will occur within the scope of the on-unit, so output will be*/
/*ended by second ON ATTN statement*/
GET EDIT CANS) CA (4')) ;
UNSPECCANS) =UNSPEC(ANS)I (4) '01000000'B;

/*Fold to upper case because input may be in upper or lower*/
IF ANS='STOP' THEN STOP;

END;

Note that the prompt for the GET statement must appear .before the PUT
DATA or it will be lost when an attention interrupt occurs.

IPrograms Partly Compiled with the INTERRUPT Option
I
IIf any procedures within a load module have been compiled with the
IINTERRUPT option, a STAX macro instruction is issued at the start of
I execution. Consequently, an attention interrupt will be noted whenever
lit is caused and will raise the ATTENTION condition when polling occurs.
IThis will be during stream I/O to or from the terminal in all procedures
land at branch-in points in procedures compiled witht the INTERRUPT
I option. If you wish to use attention interrupts principally to control
Istream I/O, this can be very useful, as it achieves your requirements
Iwith the minimum performance overhead. However, if you wish to use
lattention interrupts for debugging purposes the results may be
lunexpected because any attention on units will be executed regardless of
Ithe option with which the procedure that contains them was compiled.

SPECIAL CONSIDERATIONS

-
Passing Parameters and Execution Time Options

When passing parameters two ~ets of restrictions have to be
born in mind, those that are imposed by eMS, and those imposed by the
PL/I optimizing compiler.

Under CMS, parameters must be passed to the program in
tokens containing no more than eight characters. These
tokens must be separated by blanks.

The PL/I Optimizing Compiler allows you to pass two types of
parameters to a PL/I program. The first is a set of execution time
options, sometimes called program management parameters (these are
listed in Chapter 4 of this manual). The second is a single parameter
that is passed to the PL/I main procedure. The two types of parameter
are separated by a / symbol which must itself have a blank on either
side. Anything preceding this symbol is taken to be an execution time
option. If no execution time option is passed, the main procedure
parameter must be preceded by the three characters
blank, oblique ·stroke, and blank(/).

Under the PL/I Optimizing Compiler, the main procedure parameter must
be a character string, and, because blanks are used as delimiters in CMS
blanks cannot be passed in the string. Blanks are removed from the
string and the two separated items concatenated.

Suppose you wished to pass to a program the execution time options:
NOSPIE AND REPORT and a character string consisting of a name of more
than eight characters and three sets of figures, this could be passed in
the form:

start * NOSPIE REPORT / CARPENTE R,38,24, 38

this would be passed to the program in the form of

CARPENTER, 38,24, 38

Executing a File Not Compiled Under CMS or Compiled with the OSDECK
Option

If you wish to execute under CMS a program that was compiled under OS
or was compiled under CMS with the OSDECK option, it is necessary to
explicitly load the execution time interface module. (An entry
statement for this module is automatically included in the TEXT file for
any PL/I program compiled under CMS without the OSDECK option.)
Assuming the program that you wish to execute is On a CMS TEXT file and
is called SEAGULL, the following commands are required.

global txtlib plilib
load seagull dmsibm
start dmsibm

The GLOBAL and LOAD commands make the PL/I library available and load
the program and the interface module. The START command passes control
to the interface module, which, in turn, passes control to the program.

If yoti wish to create a MODULE file from the load module you have
created, you must issue a GENMOD command after the LOAD command. This
will produce a MODULE file with the name of the file used in the LOAD
command (SEAGULL in the example). The MODULE file can then be executed
in the normal manner.

SOURCES OF FURTHER INFORMATION

-
Topic Reference Source

FILEDEF command VM/370: CMS Command and Macro Reference
and VW370: CMS User's Guide

filename as a command VM/370: CMS User's Guide

GENMOD command VM/370: CMS Command and Macro Reference
and VW370: CMS User's Guide

GLOBAL command VM/370: CMS Command and Macro Reference
and VM/370: CMS User's Guide

LO~DMOD command VM/370: CMS Command and Macro Reference
and VM/370: CMS User's Guide

I START command VM/370: CMS Command and Macro Reference
and VM/370: CMS User's Guide

lEnding the Terminal Session - The LOGOFF Command

SUMMARY

To end a CMS session you enter the CP LOGOFF command from the CMS or the
ICP environment. (LOGOUT is an alias that can be used instead of
LOGOFF.)

Before finishing the session you may wish to erase some of the files.
This is done by using the ERASE command.

Special action will be required if you are using a switched line
connection and you do not wish to be disconnected. See ·Special
Considerations· below.

Example of ending the session

r---~
EXAMPLE OF LOGOFF

Terminal Printout Notes and comments

logoff You enter the LOGOFF command.

CONNECT=hh:mm:ss VIRTCPU=mm.ss.ss TOTCPU=mm:ss.ss
I
I
I
I
I
I
LOGOFF AT hh:mm:ss (time-zone)
I
I
I
(you switch off terminal)

Conventions:

Message tells you the connect time
The actual length of the session.
and virtual and the real CPU time in
minutes, seconds, and hundredths
of seconds.

day-of-week mm/dd/yy

Message shows time and date of
logging off.

1. A carriage return is assumed after all programmer input.

2. The character I in column two implies spacing has been added.

3. System response is in upper case (capital) letters, programmer
input in lower case.

L---------------~-------------------------------------_________________ J

BACKGROUND

Deleting Files

If you wish to delete files you use the ERASE command. The command must
specify the file name and the file type. For example if you wished to
delete the PLIOPT file "rabbit", you would enter:

erase rabbit pliopt

If you wished to delete all the files called "rabbit" you would ente'r:

erase rabbit *

SPECIAL CONSIDERATIONS

Retaining a Switched Line Connection

If you are using a switched line to a computer, the use of the LOGOFF
command as shown results in the connection to the computer being broken.
If you wish to retain the connection, you must enter "logoff hold". The
action is the same as for logout except that the switched line is not
disconnected.

SOURCE OF FURTHER INFO~TION

Topic

ERASE command

LOGOFF (or LOGOUT) command

Reference source

VM/370: CMS Command and Macro Reference

VM/370: CP Command Reference for
General User's

Chapter 2: PL/I Conventions and Restrictions Under
CMS

Restrictions

The PL/I features that may not be used under CMS and restrictions on
other features are shown in figure 2.1.

The results of using PL/I features that are not available under CMS are
summarized below.

MULTITASKING

SORT

FETCH/RELEASE

PL/I error message number IBM5761 will be generated.
This reads "ATTEMPT TO CALL A TASK IN NON-TASKING
ENVIRONMENT" The associated ONCODE is 3915.

The ERROR condition will be raised and PL/I error
message 8811 will be generated. This reads "SORT/MERGE
NOT SUPPORTED IN CMS". The associated ONCODE is 9201.

The ERROR condition will be raised and PL/I error '
message 5921 will be generated. This reads
"FETCH/RELEASE NOT SUPPORTED IN CMS". The associated
ONCODE is 9252.

CHECKPOINT/RESTART

ISAM FILES

PL/I error message 9261 will be generated and execution
will continue without a checkpoint being taken. The
message reads "CHECKPOINT RESTART NOT SUPPORTED IN
CMS". There is no ONCODE as the ERROR condition is not
raised.

The UNDEFINEDFILE condition is raised.

use of TCAM, or spanned records on BDAM, or the BACKWARDS attribute.

eMS error message number DMSOPO 63E will be g'enerated.
This reads "OPEN ERROR CODE x ON ddname."

IDELAY statement The statement is executed without raising an error
message but does not cause a delay. I

r------~---, DO NOT USE UNDER CMS

ASCII data sets
BACKWARDS attribute with magnetic tapes
DELAY statement
FETCH and RELEASE statements
INDEXED files (Except for use with VSAM)
PL/I checkpoint restart facilities (PLICKPT)
PL/I sort facilities (PLISORT)
Tasking
Teleprocessing files
VS or VBS record formats

OTHER RESTRICTIONS UNDER CMS

READ •••• EVENT can only be used if the NCP parameter is included in
the ENVIRONMENT option of the PL/I file.

Blanks

TIME

cannot be passed in the parameter string to the main
procedure. The blanks are removed from the string and
the items separated by them are concatenated.

The TIME-builtin function returns values calculated to
the nearest second.

IRestrictions On REGIONAL files and VSAM
I
REGIONAL files More than one regional file with keys may not

VSAM

Interlanguage

be open at the same time.
The minimum logical record length for REGIONAL
2 and 3 files is 8 bytes.
Files must not be written with a dependancy
on the physical track length of a direct access
device.

REGIONAL 3 files with varying length records
BLKSIZE specified in the FILEDEF command must
be 8 bytes longer than logical record length.

KEY (TRACKID/REGION NUMBER) must not be
incremented unless 255 records are written on
the first logical track, and 256 records on
each subsequent logical track.

When a file is created, the XTENT option of
the FILEDEP command must be specified and it
must be equal to the number of records in the
file to be created.

VSAM data sets can be used only if DOS/VS
VSAM was incorporated into CMS during CMS
system generation procedure. DOS VSAM is
used and any features not available to DOS
VSAM cannot be used. CMS/DOS must also be
generated into CMS. For details of how
to do this, see VM/370: Planning and System
Generation Guide. Environment options: SIS ,.
cannot be used, SKIP cannot be used on ESOS.

See section headed "Interlanguage communic-

t
I
I
I

I communication ation" later in this chapter. I
L--J
Figure 2.1. Restrictions on the PL/I that can be executed under CMS

IUsing Record I/O at the Terminal
I
I
INO prov1s10n is made for automatic prompting or synchronization of
loutput for RECORD files at the terminal. It is envisaged that stream
II/O will normally be used. If you do use record I/O at the terminal the
Ifollowing points should be born in mind.
I
I Output: Output files should be declared with BUFFERS(l) if you are
lusing them for prompting. Otherwise messages may be' held in the butter
Iwhen you expect a prompt. V-format records should be used otherwise
Itrailing blanks will be printed.
I
I Input: V-format records should be used, as otherwise the RECORD
condition will be raised unless the record is filled out with trailing
blanks. Note that when V-format records are used, and the data is read
into a fixed length string, the string is not padded with blanks. By
default, RECORD files assigned to the terminal are given F-format
records with the record length the same as the linesize for the
terminal.

Interlanguage Communication

Interlanguage facilities are restricted under CMS, and speCial action is
required to execute programs that contain them.

The restriction is that all calls must be in one direction only.
(This is caused because a loader restriction on CMS prevents the fuil
implementation of the PL/I scheme, which requires the resolution of ~ne
control section that appears in a number of library modules.) The
restriction means that:

1. A PL/I program can call either FORTRAN or COBOL subroutines, but
not both.

2. A COBOL or FORTRAN program can call PL/I subroutines.

3. In neither case can the subroutines make any further interlanguage
calls.

Non-standard action is required when PL/I calls a FORTRAN subroutine,
and when PL/I is called from FORTRAN or COBOL. It ensures that the
correct entry point is used for the program. The action required is
described below.

PL/I Program with FORTRAN Subroutines

To run a PL/I program with one or more FORTRAN subroutines, you must
specify DMSIBM (the PL/I-CMS interface) as the starting point.
Otherwise entry statements in the FORTRAN can result in entry to a
FORTRAN routine. DMSIBM can be specified either in the start command or
in the RESET operand of the LOAD command. The latter should be used if
you wish to create a module file. Commands to execute a PL/I program
(PPROG) with FORTRAN subroutine (FSUB) might take the form shown below:

pliopt pprog
fortgi fsub
global txtlib plilib ppfortg1
load pprog fsub or load pprog fortsub reset(dmsibm
start genmod intprog (from plistart

intprog

lAs can
I module
I module

be seen in the example on the righ~ LOAD ••• RESET ••• allows a
file to be created that will have the correct entry pOint. The
file is called intprog in the ~xample._

I
I
I
IFORTRAN or COBOL with PL/I subroutines
I
I
IWhen FORTRAN or COBOL routines are to be executed with PL/I subroutines,
Ispecial action must he taken to avoid entry being made through the PL/I­
ICMS interface, DMSIBM. The PL/I program should be compiled with the
IOSDECK option to prevent entry via DMSIBM. The fact that DMSIBM is not
lused, means that FILEDEF commands are not issued for SYSIN, SYSPRINT,
land PLIDUMP, and that formatting of stream I/O will not always be
correct. You can issue your own FILEDEF commands but there is no
satisfactory solution to the stream I/O problem.

Commands to execute a FORTRAN program (FPROG) with a PL/I subroutine
(PSUB) are shown below. FILEDEF commands normally executed inDMSIBM
are included.

fortgi fprog
pliopt plisub(osdeck
filedef sysin term
filedef sysprint term
filedef plidump printer
global txtlib plilib ppfortgl
load fprog plisub
start

Conventions

Two types of convention apply to PL/I~when used under CMS. The first
are those adopted to make input/output simpler and more efficient at the
terminal. The second type are those that result from the terminal being
considered as the console of a virtual machine. These affect the DISPLAY
statement and the REPLY option.

No prompting or other facilities are provided for record ~/O at the
terminal. You are therefore strongly advised to use stream I/O Lor any
transmission to or from a terminal.

STREAM I/O CONVENTIONS AT THE TERMINAL

To simplify input/output at the terminal various conventions have been
adopted for stream files that are assigned to the terminal. Three areas
are affected.

1. The formatting of PRINT files

2. The automatic prompting feature

3. The spacing and punctuation rules for input

Formatting Conventions for PRINT Files

When a PRINT file is assigned to the terminal, it is assumed that it
will be read as it is being printed. Spacing is therefore reduced to a
minimum to reduce printing time. The following rules apply to the PAGE,
SKIP, and ENDPAGE keywords.

• PAGE options or format items result in three lines being skipped.

• SKIP options or format items larger than SKIP (2) result in three
lines being skipped. SKIP (2) or less is treated in the usual manner.

• The ENDPAGE condition is never raised.

overriding the formatting conventions for PRINT files: If you wish
normal spaCing to apply to output from a PRINT file at the terminal, it
is necessary to supply your own tab table for PL/I. This is done by
declaring an external structure called PLITABS in the program and
initializing the element PAGELENGTH to the number of lines that can fit
on your page. This value differs from PAGESIZE which defines the number
of lines you want to be printed on the page before ENDPAGE is raised, .~
see figure 2.2. If you required a pagelength of 64 lines you would
declare PLITABS thus:

DCL 1
(2

'2
2
2
2
2
2
2
2
2

PLITABS STATIC EXTERNAL,
OFFSET INIT (14),

PAGESIZE IN IT (60),
LINESIZE INIT (120),
PAGELENGTH INIT (64),
FILL1 INIT (0),
FILL2INIT (0),
FILL3INIT (0),
NUMBER OF TABS INIT (5),
TAB1 INIT-(25),
TAB2 INIT (49),

2
2
2

TAB3 INIT (13),
TAB4 INIT (91),
TABS INIT (121» FIXED BIN (1!?,O);

This declaration gives the standard page size, line size a~d tabulating
positions.

PAGESIZE <
> PAGELENGTH

----19

PAGELENGTH: is the number of lines that could be printed on a page.

PAGESIZE: is the number of lines that will be printed on a page before the
ENDPAGE condition is raised.

PAGELENGTH defines the size of your paper, PAGESIZE
the number of lines printed in the main printing area.

When the', program requires input from a file that is associated .wi th a
terminal, it issues a prompt. This takes the form of printing a colon On
the next line and then skipping to column 1 on the line following the
colon. This gives you a full line to enter your input thus:

. .
(space for entry of your data)

This type of prompt is referred to as a primary prompt.

If the data you transmit frqm the terminal does not complete the
requirements of the GET statement, a further prompt is issued.' This
takes the form of printing .~ plus sign followed by a colon thus:

+:(space for entry of your data)

This type of prompt is referred to as the secondary prompt.

overriding Automatic Prompting: It is possible to override the primary
prompt by making a colon the last item in the request for the data. The
secondary prompt cannot be overridden. Take the two PL/I statements

PUT SKIP EDIT ('ENTER TIME OF PERIHELION');
GET EDIT (PERITIME) (A(lO»;

As they stand they would result 'in the terminal printing

ENTER TIME OF PERIHELION
(automatic prompt)

(space for entry of data)

However, if the first statement had a colon at the end of the output
thus:

PUT EDIT ('ENTER TIME OF PERIHELION:') (A);

the sequence would be:

ENTER TIME OF PERIHELION: (space for entry of data)

Note: The override remains in force for only one prompt. You will be
automatically prompted for the next item unless the automatic prompt is
again overridden.

Spacing and Punctuation conventions for Input

Line continuation character. If you wish to transmit as one data item
data that requires 2 or more lines of space at the terminal a hyphen
must be typed as the last character in each line except the last line.
For example, if you wanted to transmit the sentence
enter:

this data must be transmitted -
as one unit.

Transmission would not occur until the carriage return after the word
"unit". The hyphen would be removed. The item transmitted is referred
to as a "logical line".

Note: This convention means that a line whose last character is a hyphen
or a PL/I minus sign can only be transmi tt.ed by entering two hyphens at
the end of the line and following them by a carriage return only on the
next line thus: -

xyz--
(carriage return only on this line.)

Simplified Punctuation for GET LIST and GET DATA Statements

For GET LIST and GET DATA statements, a comma is added tp the end of
each logical line transmitted from the terminal if it is omitted by the
programmer. Thus there is no need to enter blanks or commas to delimit
items if they -are entered on separate logical lines. For the PL/I
statement GET LIST(A,B,C); you could enter at the·terminal.

1
+:2
+:3

However this rule also applies when entering character string data. A
character string must therefore be transmitted as one logical line,
otherwise commas are placed at the break points. For example. if you
entered:

'COMMAS SHOULD NOT BREAK
+: UP A CLAUSE'

The result1ng string would read 'COMMAS SHOULD NOT BREAK, UP A CLAUSE'

Automatic Padding for GET EDIT: For a GET EDIT statement there is no
need to enter blanks at the end of the line. The item will be padded to
the specified length. Thus for the PL/I statement GET EDIT (NAME)
(A(lS»; you could enter SMITH followed immediately by a carriage
return. The item would automatically be padded with ten blanks so that
the.program received the fifteen characters "SMITH "

Note: This means that a single item must be transmitted as a logical
line, otherwise the first line transmitted will be padded with the
necessary blanks and considered to be the complete item.

Use of SKIP for terminal input: SKIP in a GET statement has little
meaning if the file involved is allocated to a terminal. The program is
apparently being asked to skip data that has not yet been keyed in. For
this reason, all uses of SKIP for input are taken to be SKIP(l) when the
file is allocated to the terminal. SKIP(l) is treated as an instruction
to ignore all unused data on the currently available logical line.

Endfile

The end of file can be entered at the terminal by keying in a logical
line that contains the characters "/*" followed by a carriage return.
Any further attempts to use the file without closing it result in the
ENDFILE condition being raised.

DISPLAY AND REPLY UNDER CMS

Because the terminal is considered to be the console of the virtual
machine, the DISPLAY statement and the REPLY option can be used to
create conversational programs. The DISPLAY statement transmits the
message to your terminal, and the REPLY option allows you to respond.
For example, the PL/I statement:

DISPLAY (' ENTER NAME') REPLY (NAME);

would result in the message "ENTER NAME" being printed at your terminal.
The program would then wait for your response and your data would be
placed in the variable NAME after you pressed the carriage return key.
The terminal printout would look like this:

ENTER NAME
IJohn Karpinski

Chapter 3: The PLIOPT Command and its Options

How to Use This Chapter

This chapter shows the syntax of the PLIOPT command, the options that
can be used with the command, and the standard defaults that will apply
if you do not specify values for certain options.

There are five sections:

1. A summary of the syntax notation used.

2. A description of the PLIOPT command and its options showing the
default option values suggested by IBM.

3. A discussion of two general pOints. First the differences
between options of the PLIOPT command and options of the PL/I
Optimizing Compiler, and, second, the relationship between the
various statement numbering options.

4. A table of options listed by function.

5. An alphabetical list of options with detailed descriptions and
syntax notation.

If you wish to accept the default options, you will only need to look
at the section on the PLIOPT command and possibly the section on syntax
notation if you are not already familiar with this. It should be noted
that the default values may have been altered by your installation and
may not correspond to those shown in the table. If you wish to look up
a particular option, you should look for it in the alphabetical section.
If you want a summary of the options that are available, or if you are
looking for an option to serve a specific purpose, you should look in
the table of options listed by function. Before using an option found
in this table you should check in the alphabetical section to discover
the syntax.

If you intend to use options in a *PROCESS statement, you should read
the discussion headed "PLIOPT Options and Compiler Options". It should
not be necessary to read the section headed "Relationship of Statement
Numbering Options" unless you need amplification of the information
supplied in the descriptions of the statement numbering options in the
alphabetical section.

A general discussion of the PLIOPT command is given in chapter 2
under the heading "Compiling the Program the PLIOPT Command".

Syntax Notation

The syntax notation used to illustrate the command in this part of the
manual is the same as that used in the VM/370: CMS Command and Macro
Reference. Briefly, the conventions are as follows:

Items in brackets] are optional.

Items in braces { } are alternatives; choose only one.

An item underlined applies unless an alternative is specified.

Note: Defaults shown are suggested defaults and may have been changed
for your system.

Items written in uppercase (capital) letters are keywords and must be
spelled as shown.

Items written in lowercase letters must_be replaced by appropriate names
or values.

Separate the command name from the operands, options and suboptions by
one or more blanks.

The four special characters I(). (single quote, left parenthesis, right
par~nthesis and asterisk) must be included where shown.

44

PLIOPT Command

The PLIOPT command invokes 'the PL/I~Optimizing Compiler to compile a
program written in PL/I source language. The compiler produces a TEXT
file containing machine code and a LISTING file containing listings and
diagnostics. other files may be produced depending on compiler options.

FORMAT:

r--,
PLIOPT filename lfiletype[filemode]] (optionl option 2 •••)

Options: AGI~
A[(FULL I SHORT)] 1 NA
CHARSET «(48160] [EBCDICIBCD])
COMPILE 1 NC [(W IE 1.2)]
CONTROL('password')
COUNT I NOCOUNT
DECI<INODECK
DUMP 1 NODUMP
ESDINOESD
~[(IIWIEIS)]
FLOW[(n m)]INOFLOW
GONUMBERINGN
GOSTMTINOGOSTMT
INCLUDEI~
IMPINIMP
INTININT
INSOURCEINIS
LC(n)ILC(55)
LIST[(m nl] 1 NOLIST
LMESSAGEISMESSAGE
MACRO 1 NOMACRO
MAP I NOMAP
MARGINI (. c') I NMI
MARGINS(m n[c]) 1 MARGINS (2 72)
-MDECKI NOMDECK
NAME ('name')
.NEST I NONEST
NUMBER I NONUMBER
OBJECT[Cfilename)] 1 NOOBJECT
OFFSET 1 NOOFFSET
OPTIMIZE (TIME 1 01 2) rOPTIMISE (TIME I 0 I 2) 1 NOPT
OPTIONS I NOP
OSDECK 1
PRINT IDISK I TYPE 1 NOPRINT1
SEQUENCE(m n) 1 NOSEQUENCE
SIZE (YYYYYYYYlyyyyyKI~)
SOURCE I NOSOURCE
STMTINOSTMT ~
STORAGEI~

I SYNTAX I NSYN [(WIE 12)]
I TERMINAL(opt-list)]INTERM

I I XREF ((FULL I SHORT)] I NOXREF
I
I 1Note: These are options of the PLIOPT command ,. and not
I compiler options, see discussion below.
l--J

filename(filetype(filemodell

'-
is the file identification of the file that contains the PL/I source
program. If filetype is omitted, a search will be made first for
PLIOPT files 6f the specified filename and then for PLI files of the
specified filename. If filemode is omitted, A will. be assumed.

option1 option2

USAGE

are a series of compiler or PLIOPT options. They must be
separated from each other by at least one blank. The right
hand parenthesis is optional. If contradicting options are
specified, the rightmost option applies.

The PLIOPT command compiles a PL/I program or a series of PL/I programs
into machine language object code. If the program is held as a CMS file
on disk it must have the file type PLIOPT or PLI. If it is not on disk,
it must be defined to the system with a FILEDEF command.

The options governing compiler operation and output are specified in any
order. Any combination of options is accepted. When conflicting options
are specified, the last speCified option is used. The majority of
options have positive and negative forms one of which is used by default

'~,:":\,~::~;:;:+: if neither form is specified. Figure 3.1 summarizes the compiler
options by fUnction and enable you to quickly grasp the possibilities
available with the PL/I optimizing Compiler •

. '":"":'

:;Nf'& PLIOPT OPTIONS AND COMPILER OPTIONS
!~,""':~: -

.'.::":J.

" ':::{i;:;' The majority of options of the PLIOPT command are options of the
'!'/,> optimizing compiler. This means that they can be specified in the

::::,;t,~~(*PROCESS statement as well as in the PLIOPT command. All options
"';i:;:!F1iXl except DISK, NOPRINT, OSDECK, and PRINT can be specif ied in the * . .

.<>';)::~:}:;:-:·.(.\:PROCESS statement. DISK, NOPRINT, OSDECK, and PRINT cannot be spec~f~ed
;i&;:¥i'~~'(because they are PLIOPT options and not a compiler options. DUMP cannot
~"::i·./::.L/ be specified in the * PROCESS statement unless it is also specified in

'. "::';;<:";', the PLIOPT command •. This is because extra space must be acquired for
. , "'.;' the DUMP option before the * PROCESS statement is processed.
'i'f,,<.~,?'·-

,H'X':~ Where options of thePLIOPT command contradict those of the *PROCESS
statement, the options in the *PROCESS statement override those in the
PLIOPT command. For options whose length is greater than eight

.:,"" characters, i-..be abbreviation for that option must be used in the PLIOPT
E/'. command.

,", . .' 'r .. ~.~ i ~

Relationship of statement Numbering Options

The optimizing compiler provides two methods of numbering statements.
Statements can have their numbers taken from the sequence field of the
record; this is the method used When NUMBER or GONUMBER is specified and
is the default for CMS. Alternatively, they can be numbered
sequentially starting from 1; this is the method used when STMT or
GOSTMT is specified.

The numbers of the statements are used in compiler diagnostic messages
and listings. If the GONUMBER or GOSTMT option is specified, the
numbers are retained in a table generated by the compiler and are used
in execution time diagnostic messages. When numbers are required during
execution, the same numbering system as that which applied during
compilation will be used. This means that specifying certain options
implies that certain other 6ptions will be used. Three rules apply:

1. Because one or other statement numbering system must be used during
compilation, NOSTMT is taken as equivalent to NUMBER; and
similarly, NONOMBER is taken as equivalent to STMT.

2. Because the same numbering system must be used during compilation
and execution, either of the GO options is taken to imply that the
corresponding numbering system is to apply during compilation.
Thus GONUMBER implies NUMBER and GOSTMT implies STMT.

3. It is not possible to use both numbering systems in one compilation
therefore GOSTMT implies NOGONUMBER, and GONUMBER implies NOGOSTMT.

If contradictory options are specified, the last option found is used
and any implications are taken from that option~

The use of GONUMBER or GOSTMT involves a space overhead because the
numbers are retained in a table generated by the compiler. If statement
numbers are not retained into execution, execution-time diagnostic
messages identify the location of the error by an offset from a
procedure entry point. The use of the OFFSET option results in the
generation of a listing at compile time that associates statement
numbers with offsets and consequently enables you to identify the ~L/I
statement mentioned in an execution time error message.

The OFFSET option is separate from the numbering options and must be
specified if required.

Examples:

To compile a PLIOPT or PLI file called rabbit on the A disk: with the
options TYPE and SOURCE.

plic rabbit (type source

To compile a file with the name rabbit and the type FORMAT on the B disk
with the options PRINT, XREF and ATTRIBUTES. Note that the
abbreviations are used for these options.

plic rabbit format b (x a pri

·",'<t;'1
:":':~",i' I

;':::",' .' I
,:"", I

,; 1

Control listings

, PRINT I DISK I TYPE
I NOPRINT*

produced AGGREGATE

ATTRIBUTES

ESD

INSOURCE

FLAG(IrWIEIS)

LIST

MAP

OPTIONS

SOURCE

STORAGE

XREF

Determine whether listing goes
to printer (PRINT), CMS disk
(DISK), the terminal (TYPE), or
is discarded.

list of aggregates and their
sizes.

list ,of attributes of all
identifiers.

list of external symbol
dictionary.

list of preprocessor input.

suppress diagnostic messages
below a certain severity.

list of, compiled code produced
by compiler.

list offsets of variables in
static control section and DSAs.

list of options used.

list of source program or
preprocessor output.

list of storage used.

list of statements in which each
identifier is used.

Improve readibility of source listing

NEST

MARGINI

indicates do-group and block
"level J;>y numbering in margin.

highlights any source outside
margins.

'i:"'} I
IControl lines per page of l~sting

. ,,:.;1 r I
'r<'11 LC specifies number of lines per
,/.,;i" I page on listing.
;:;:S:;i',::'+~:'.;I--,--.---------------------~--
,;,;,>'/: 1* Options marked thus are ignored if used in the *PROCESS statement
, ;·';:i~.;\:.;\·:,'ii. L-- ---- J

3.1. (Part 1 of 3) Compiler options arranged by function

I

r--, I OPTIONS LISTED BY FUNCTION PART 2
I-----------------------------------~----------------------------------
IINPUT OPTIONS
I
To define character set and/margins

CHARSET

MARGINS

SEQUENCE

of input'
identify the character set used
in source.
identity the column~ used for
source program, and
identify position of a carriage
control character
identify the columns used for
sequence numbers.

OPTIONS TO PREVENT UNNECESSARY PROCESSING

IControl whether
I are found

compilation should end if errors above a certain level

I
I
I

NOSYNTAX(WIEIS)

NC(WIEIS)

OPTIONS FOR PREPROCESSING

MACRO

INCLUDE

MDECK

stop processing after errors are
found in preprocessing.

stop processing after errors are
found in syntax checking.

allows full use of the
preprocessor facility.

allows inclusion of text without
overheads incurred MACRO.

produces a source deck from
preprocessor output.

OPTIONS TO USE WHEN PRODUCING AN OBJECT MODULE

OBJECT

NAME

DECK -

OPTIONS TO CONTROL STORAGE USED

SIZE

produce an object module from
translated output.

specify the name of the object
module produced.

produce an object module on
punched cards.

controls the amount of storage
used by the compiler.

OPTIONS TO IMPROVE USABILITY AT A TERMINAL

TERMINAL specifies how much of listing is
transmitted to terminal.

SMESSAGE/LMESSAGE enables you to specify concise
or full message format.

L--J
Figure 3.1. (part 2 of 3) Compiler options arranged by function

r--, I OPTIONS LISTED BY FUNCTION PART 3
I------------~-------------------------------~-------------------------
OPTIONS TO SPECIFY STATEMENT NUMBERING·SYSTEM USED

NUMBER , GONUMBER

STMT & GOSTMT

OFFSET

OPTIONS FOR USE WHEN DEBUGGING

FLOW

COUNT .

numbers statements .according to
line on which they start.

numbers statements sequentially.

specifies that a listing
associating statement numbers
with offsets will be generated
Thus enabling you to identify
statements from offsets given
in execution time messages.

generate code that will result
in a trace of executed
statements being retained.

generate code that will result
in a count of the number of
times each statement is executed
being printed.

10PTION TO IMPROVE COMPILATION/EXECUTION SPEED
I
I
I
I

I I

OPTIMIZE (TIME)

NOP!'

reduce execution time at the
expense of compilation.

reduce compilation time at the
I expense of execution.
1--I 10PTION TO CONTROL EFFECT OF ATTENTION INTERRUPTS

II
II INT specifies that the ATTENTION
II condition will be raised when
II the attention interrupt occurs.
II For NINT, attention halts
I execution.
1--
10PTION TO ALLOW EXECUTION UNDER OS .
I
I OSDECK* specifies that compiler will
I produce OS compatible code.

1--
IOPTION FOR USE WHEN DEBUGGING THE COMPILER
I
I DUMP produces a dump if the compiler
I terminates abnormally.

:1--
10PTION FOR USE ON IMPRECISE INTERRUPT MACHINES
I

II IMP allows imprecise interrupts
I to be correctly handled.

I--~---------------------------
IOPTIONS FOR SYSTEMS PROGRAMMING
I
I CONTROL('password') gives access to deleted.options.

1--
'* Options marked thus are ignored if used in the *PROCESS statement L----------------------_______________________________ ~-----~----------J
Figure 3.1. (Part 3 of 3) Compiler options arranged by function

ALPHABETICAL LIST OF OPTIONS

AGGREGATE I NOAGGREGATE
AGI~

.-

The abbreviated form must be used in PLIOPT command. ,.

The AGGREGATE option specifies that the compiler is to produce
an aggregate length table, giving the lengths of all arrays and
major structures in the source program.

IATTRIBUTES[(~ISHORT)]INOATTRIBUTES
A[(FIS)]INA

The ATTRIBUTES option specifies that the compiler is to include
in the compiler listing a table of source-program identifiers
and their attributes. If both ATTRIBUTES and XREF apply, the
two tables are combined.

If SHORT is specified, unreferenced identifiers are omitted,
making the listing more manageable.

If both ATTRIBUTES and XREF apply, and there is a conflict
between SHORT and FULL, the usage is determined by the last
option found. For example, ATTRIBUTES(SHORT) XREF (FULL)
results in FULL applying to the combined listing.

The default FULL means that FULL applies if the option is
specified with no sub-option.

CHARSET([4816011 [EBCDICIBCD])
CS([48160]1 [~IB])

The CHARSET option specifies the character set and data code
that you have used to create the source program. The compiler
will accept source programs written in the 60-character set or

,the 48-character set, and in the Extended Binary Coded Decimal
~nterchange Code (EBCDIC) or Binary Coded Decimal (BCD).

60- or 48-character set: If the source program is written in
the 60-character set~ specify CHARSET (60); if it is written in
the 48-character set, specify CHARSET (48). The language
reference manual for this compil·er lists both of these
character sets. (The compiler will accept source programs
written in either character set if CHARSET(48) is specified.
However, if the reserved keywords, for example CAT or LE are
used as identifiers in a program using the 60 character set,
errors may occur if it is compiled with the CHARSET(48)
opti~~) .,;

BCD or EBCDIC: If the source program is written in BCD, specify
CHARSET (BCD); if it is written in EBCDIC, specify CBARSET
(EBCDIC). The language reference manual for this compiler lists
the EBCDIC representation of both the 48-character ~et and the
60-character set.

If two arguments (48 and BCD or 60 and EBCDIC) are specified,
either argument may appear first. One or more. blanks must
separate tbe arguments.

.. ~

COMPILEINOCOMPILE[(WIEI~)]
CI!!£I [CWIEIS)]

The abbreviated form must be used in PLIOPT command for
NOCOMPILE.

The COMPILE option specifies that the compiler is to compile
the source program unless an unrecoverable error was detected
during preprocessing or syntax checking. The NOCOMPILE option
without an argument causes processing to stop unconditionally
after syntax checking. with an argument, continuation depends
on the severity of errors detected after the syntax checking
phase as follows:

NOCOMPILE(W) No compilation if a warning, error,
severe error, or unrecoverable
error is detected.

NOCOMPILE(E) No compilation, if error, severe
error, or unrecoverable error is
detected.

NOCOMPILE(S) No compilation if a severe error or
unrecoverable error is detected.

CONTROL('password')

The CONTROL option specifies ~hat any compiler
options deleted for your installation are to be
available for this compilation. You must still be
specify the appropriate keywords to use the
options. The CONTROL option must be specified with
a 'password that is established for each
installation; use of an incorrect password will
cause processing to be terminated.

, "password' is a character string, not exceeding six characters
in' length.

If the option is specified in the PLIOPT command, the 'password
may not contain a left parenthesis "(" or a right parenthesis
"In.

~~e.COUNT option specifies that code will be generated to allow
a count to be kept of the number of times each statement is
executed in a particular run of a program to be generated at
the end of the run.

Unless overridden at execution time by the NOCOUNT option, it
". will result in a count of the number of times each statement in

\.i;';;>·~~a program has been executed being printed On the PLIDUMP file
c or, if there is none, on the SYSPRINT file, after the execution

. :. ':"')'~'of the' compiled program. ,.'
<;? ,"',"fI""' <' ·'~·i.r:;·, ... ,' '.'c.";"';' ~ ,".' "

The CODE generated for the COUNT option also allows a trace of
the most recently executed statements to be retained if the
FLOW option,is specified at execution time.

The COUNT option implies the GONUMBER option if the NUMBER
option is in effect and the GOSTMT option if the STMT option is
in effect.

DECK I NODECK
DIND

The DECK option specifies that the compiler is to produce an
object module in the form of SO-column card images and store it
in the data set defined by the DD statement with the name
SYSPUNCH. Columns 73-76 of each card contain a code to
identify the object module; this code comprises the first four
characters of the fi~st label in the external procedure
represented by the object module. Columns 77-80 contain a 4-
digit decimal number: the first card is numbered 0001, the
second 0002, and so On.

DUMP I NODUMP
DUlllim

ESDINOESD

Do not use in *PROCESS statement unless also used in the PLIOPT
command

The DUMP option specifies that the compiler is to produce a
formatted dump of main storage if the compilation terminates
abnormally (usually due to an I/O error or compiler error).
This dump is written on the file associated with ddname
SYSPRINT. Details of the suboptions of DUMP are given in the
OS PL/I Optimizing Compiler Program Logic.

The ESD option specifies that the external symbol dictionary
(ESD) is to be listed in the compiler listing.

FLAG(II!iIEIS)
F(II!!IEIS)

The FLAG option specifies the minimum severity of error that
requires a message to be listed in the compiler listing. The
format of the FLAG option is:

FLAG (I)

FLAG(W)

FLAG (E)

FLAG(S)

FLOW(n m)INOFLOW

List all messages.

List all except informatory
messages. If you specify FLAG,
FLAG(W) is assumed.

List all except warning and
informatory messages.

List only severe error and
unrecoverable error messages.

The FLOW COMPILER OPTION SPECIFIES THAT CODE WILL BE PRODUCED
ENABLing the transfers of control most recently ·executredin a
program to be listed when an ON statement with the SNAP option,
or when a CALL PLIDUMP statement is executed. This enables you
to follow the path through the most recently executed
statements. The format of the FLOW option'is:

FLOW(n m)

where "n" is the number of transfers of control that
will be listed with associated statement
numbers.

where "m" is the number of transfers of control
between procedures that will be listed with
associated procedure_names.

nand m must be decimal integers and may not exceed 32768. If
either value is zero, the associated listing will not be
produced.

~The list will start with the earliest available information and
continue to the point where the CALL PLIDUMP statement or the
ON statement with the SNAP option was executed.

The code generated for the FLOW compiler option allows the
COUNT execution time option to be used if it is specified at
execution time.

GONUMBERINOGONUMBER
GNI!§!!

The abbreviated form must be used in the PLIOPT command for
, NOGONUMBER.

"

The GONUMBER options specifies that the compiler is to produce
additional information that will allow line numbers from the
source program to be included in execution-time messages.
Alternatively, these line numbers can be derived by using the
offset address, which is always included in execution-time -
messages, and the table produced by the OFFSET option.

Use of the GONUMBER option implies that the NUMBER option will
apply. See "Relationship of statement Numbering Options" at
the start of this chapter~

The GOSTMT option specifies that the compiler is to produce
additional information that will allow statement numbers from
the source program to be included in execution-time messages.
Alternatively, these statement numbers can be derived by using
the offset address, which is always included in execution-time
messages, and the table produced by the OFFSET ?ption.

Use of the GOSTMT option-implies that the STMT option will also
apply. See "Relationship of Statement Numbering Options" at
the start of this chapter.

IMPRECISE I NOIMPRECISE
-IMPI~

The abbreviated form must be used in the PLIOPT command.

The IMPRECISE option specifies that the compiler is to include
extra text in the object module to localize imprecise ,-
interrupts when executing the program with an IBM System/360
Model 91 or 195, or System 370 model 195. This extra text
ensures that if inter~upts occur, the correct on-units -will be
entered.

INCLUDE I NOINCLUDE
INCININC

The INCLUDE option specifies that ~INCLUDE statements are to be
handled without the overhead of using the full preprocessor
facilities. If preprocessor-statements other than %INCLUOE are
used in the program the MACRO option must be used.

The INCLUDE option will be overridden if the MACRO option is
also specified.

INSOURCEINOINSOURCE
!2INIS

The abbreviated form must be used in the PLIOPT command for
NOINSOURCE.

The INSOURCE option specifies that the compiler is to include a
listing of the source program (including preprocessor
statements) in the compiler listing. This option is applicable
only when the preprocessor is used, therefore the MACRO option
must also apply.

INTERRUPT I NOINTERRUPT
INTI!ill'!!

The abbreviated form must be used in the PLIOPT command. This
option determines the effect of attention interrupts when the
compiled PL/I program is being executed.

If INTERRUPT was in effect during compilation, an established
on ATTENTION on-unit will be executed when one attention
interrupt is caused. If there is no such on-unit, processing
will continue. Two attention interrupts will cause control to
return to CP.

If NOINTERRUPT was in effect during compilation, one attention
interrupt will end the execution of the program and cause
control to return to CMS.

It should be noted that if any procedure within a load module
was compiled with the INTERRUPT option, an attention interrupt
at any time will lead to the ATTENTION condition being raised
if polling is carried out, and execution continuing with no
apparent effect if polling is not carried out. Polling is
carried out during the execution of stream I/O for all modules,
and, additionally, at branching pOints for modules compiled
with the INTERRUPT option. Because the ATTENTION condition is
raised when polling is done, an attention interrupt in a
program partly compiled with the INTERRUPT option can lead to
unexpected results.

LINECOUNT(n)ILINECOUNT(SS)
LC(n)

The abbreviated form must be used in the PLIOPT command.

The LINECOUNT option specifies the number of lines to be
included in each page of the compiler listing, including
heading lines and blank lines. The format of the LINECOUNT
option is:

LINECOUNT(n)

where "n" is the number of lines. It must be in the
range 1 through 32767, but if y.ou specify less than
7, only the heading of the listing will be printed.

I
I
I

I
I
I
I
I
I

I

LIST(m n)]INOLIST

The LIST option specifies that the compiler is to include a
listing of the object module (in a form similar to IBM
System/360 assembler language instructions) in the compiler
listing. When used in conjunction with MAP it increases the
information generated by MAP (see MAP later in this section).

m and n are statement numbers which allow you to specify the
range of statements for which the list will be produced. If m
and n are omitted, the complete program is included in the
listing. If only one statement number is specified, that
statement only will be listed.

LMESSAGEISMESSAGE
LMSGI SMSG

The LMESSAGE and SMESSAGE options specify that the compiler is
to produce messages in a long form (specify LMESSAGE) or in a
short form (specify SMESSAGE). Short messages save printing
time at the terminal.

MACRO I NOMACRO
MINM

MAP I NOMAP

The MACRO option specifies that the source program is to be
processed by the preprocessor. '

The MAP option specifies that the compiler is to produce tables
showing the organization of storage for the object module.
These tables show how variables are mapped in the static

.,internal control section and in DSAs, thus enabling STATIC
,INTERNAL and AUTOMATIC variables to be found in a PLIDUMP.

If LIST is also specified, the MAP op~ion produces tables
showing constants, control blocks, and INITIAL variable values.
,~IST generates a listing of the compiled code in pseudo
,~ssembler language format. If you want' a complete MAP but not
'a complete LIST, you can specify a single statement number as
an argument for LIST. For example:

. * PROCESS MAP LIST (1) ;

MARGINI('c') I NOMARGINI
MI (, c') I NMI

The abbreviated form must be used in the PLIOPT command for
NOMARGINI.

The MARGINI option specifies that the compiler is to indicate
the pOSition of the margins by including in the listings of the
PL/I program a specified character in the column preceding the
left-hand margin, and in the column following the r~ght-hand
margin. Any text in the source input which p~ecedes the left­
hand margin will be shifted left one column, and any text that
follOWS the right-hand margin will be shifted right one column.
Thus the text outside the source margins' can be easily
detected. The MARGINI option applies to both the SOURCE and
INSOURCE listings.

The MARGINI option has the format:

MARGINI (• c')

where Wc" is the character to be printed as the margin
indicator. If the option is specified in the
PLIOPT command, the charater may not be left
parenthes~s "(" or right parenthesis .)".

MARGINS (2,72,1) (F-format records)
MARGINS (10,100,0) (V-format records)

MAR(m n [cl)

The MARGINS option specifies which part of each compiler input
record contains PL/I statements, and the position of the ANS
control character that formats the listing. The MARGINS option
is used to override the default margin positions that are set
up during compiler installation by the FMARGINS and VMARGINS
options.

The-FMARGINS default applies to F-format records and the
VMARGINS ,default applies to V-format or U-format records. Only
one of these defaults is overridden by the MARGINS option. If
the first input record to the compiler is F-format, the
FMARGINS default is overridden. If the first input record to
the compiler is a V- or U-format record the VMARGINS default is
overridden by the MARGINS option. Default values are assumed
if a record with a different type of format is encountered by
the compiler.

The format of the MARGINS options is:

MARGINS (m,n,c)

where:

m is the column number of the leftmost column that will be
scanned by the compiler. m must not exceed 100.

n is the column number of the rightmost column that will be
scanned by the compiler. n must not be less than m, nor
greater than 100.

c is the column of the ANS printer control character. It must
not exceed 100 and it must be outside the values specified for
m and n. A value of 0 for c indicates that no ANS control
character is present. The control character applies only to
listings on a line printer; it is ignored in conversationa'I­
mode listings at the terminal. Only the following control can
be used:

(blank) Skip one line before printing.

o Skip two lines before printing.

Skip three lines before printing.

+ Skip no'lines before printing.

1 Start new page.

Any other character is taken to be blank. If the value c is
greater than the maximum length of a sonrce statement record
the compiler will not be able to recognize ito; consequently the

listing will not have the required format.

'-
MDECKINOMDECK
MDI~

The MDECK option specifies that the preprocessor is to produce
a copy of its output (see MACRO option) and write it to the
file defined by the ddname SYSPUNCH. The MACRO option produces
a4 byte records; however, the last four bytes, which contain
sequence numbers, are ignored for the output from MDECK option.
Thus MDECK allows you to retain the output from the
preprocessor as a deck of aO-column punched cards.

NAME I ('object-module-name')
N('object-module-name')

NO default applies. NAME must be specified if required.

The NAME option specifies that the TEXT file created by the
compiler will be given the specified external name. This
allows you to create more than one text file when doing batch
compilation and also allows you to produce TEXT files suitable
for inclusion ina text library (see section headed "Compiling
the Program - the PLIOPT Command".>

The name option has the format:

NEST I NONEST

NAMEC'object-module-name')

where "object-module-name" has from one through six
alphabetic or numeric characters, and
begins with an alphabetic character.

The NEST option specifies that the listing resulting from the
SOURCE option will indicate, for each statement, the begin­
block level and the do-group level.

The NUMBER option specifies that the numbers specified in the
sequence fields in the source input records are to be used to
derive the statement numbers used in the compiler listings.

The P9sition of the sequence field can be specified in the
SEQUENCE option. Alternatively, the following default positions
are assumed:

• Last a columns for fixed-length source input records •

• First a columns for undefined-length or variable-length
source input records. In this case, 8 is added to the
values used in the MARGINS option.

These defaults are the positions used for line numbe~s
generated by CMS; thus it is not necessary to specify the
SEQUENCE option, or change the MARGINS defaults when using the
line numbers generated by CMS. Note that the preprocessor
output has fixed-length records irrespective of the format of
the primary input. Any sequence numbers in the primary input

are repositioned in columns 73-80.

The line number is calculated from the five right-hand
characters of the sequence number (or the number specified, if
less than five). These characters are converted to decimal
digits if necessary. Each time a line number is found which is
not greater than 'the preceding one, 100000 is added to this and
all following line numbers.

If there is more than one statement on a line, a suffix is used
to identify the actual statement in the messages. For example,
the second statement beginning on the line 40 is numbered 40.2.
The maximum value for this suffix is 31. Thus the thirty-first
and subsequent statements on a line have the same number.

The use of NONUMBER is equivalent to the use of STMT, and
GONUMBER implies NUMBER see "Relationship of statement
Numbering options" at the start of this chapter.

OBJECT(filename)] I NOOBJECT
OBJ(filename)] I NOBJ

The OBJECT option specifies that the compiler is to create an
object module and store it on a TEXT file.

filename is the name that will be given to the text file. If
it is omitted, the text file will be given the same name as the
file specified in the PLIOPT command. The TEXT file will be
placed on one of your disks in accordance with the rules shown
in figure 1.2.

OFFSET I NOOFFSET
OFI~

The OFFSET option specifies that the compiler is to print a
table of statement numbers for each procedure with their offset
addresses relative to the primary entry pOint of the procedure.
This table can be used to identify a statement from an
execution-time error message if the GONUMBER or GOSTMT option
is not in effect.

OPTIMIZE (TIME I 012) I NOOPTIMIZE
OPT(TIMEIQI2) I NOPT -

The abbreviated form mu~t be used in the PLIOPT command for
NOOPTIMIZE.

The OPTIMIZE option specifies the type of optimization
required:

NOOPTIMIZE specifies fast compilation speed, but inhibits
optimization for faster execution and reduced
main storage requirements.

OPTIMIZE (TIME) specifies that the compiler is to optimize the
machine instructions generated to produce a very
efficient object program. A secondary effect of
this type of optimization can be a reduction in
the amount of main storage required for the
object module. The use of OPTIMIZE(TIME) could
result in a substantial increase in compile time
over NOOPTIMIZE.

Chapter 3: The PLIOPT Command and its Options 59

OPTIMIZE (0) is the equivalent of NOOPTIMIZE.

OPTIMIZE (2) is the equivale~t of OPTIMIZE(TIME).

The language reference manual for this compiler i~cludes a full
._discussion of optimization. OPTIMIZE will be accepted if
spelled OPTIMISE.

OPTIONS I NOOPTIONS
OPI~

OSDECK
OSD

The abbreviated form must be used in the PLIOPT command for
NOOPTIONS.

The OPTIONS option specifies that the compiler is to include in
the compiler listing a list showing the compiler option used
during this compilation. This list includes all those options
applied by default, those specified in the PARM parameter of an
EXEC statement, and those specified in a *PROCESS statement.

This is a PLIOPT option and is ignored if used in the *PROCESS
statement.

The OSDECK option specifies that the compiler will produce
output that can be executed under the control of os. If the
OSDECK option is not used, the first record in the TEXT and
SYSPUNCH files is a CMS loader control card specifying the
execution time interface module as the entry point. This
record results in an error of severity level 8 if it is passed
to the os linkage editor.

~here is no negative form, and OSDECK must be specified
'.': if it <is, required.

PRINTI~ITYPEINOPRINT
': '.):: PRI I Q!.I TY I NOPRI or NPRI

This is a PLIOPT option and is ignored if used in the *PROCESS
statement.

Directs the compiler listing file to the 'printer (PRINT), a CMS
disk (DISK -- this is the default), or to the terminal (TYPE).
If NOPRINT is specified, the file is not written.

See figure 1.2 in chapter 1 to determine on which disk the
listing file will be placed when you use the DISK option.

SEQUENCE(m n)INOSEQUENCE
SEQ(m n)INSEQ

IBM-default: F-format records SEQUENCE(73 80)
V-or U-format records SEQUENCE(l 8)

The SEQUENCE option defines the section of the input record
from which the compiler will take the sequence number.­
(Sequence numbers are used to calculate statement numbers if
the NUMBER option is in effect.)

During compiler installation, two default values are set up.
One value is for F-format records, the other is for V- or U­
format records. The SEQUENCE option overrides only one of

these values. The value overridden is the value that applies
to the first record read by the compiler. If a second type of
record is found the default sequence values will apply to this
type of record.

SEQUENCE(n m)

where:

m specifies the column number of the leftmost d~git of the
sequence number.

n specifies the column number of the rightmost digit of the
sequence number

SIZE(YYYYYYYYlyyyyyKI~)
SZ(yyyyyyyylyyyyyKIMAX)

This option can be used to limit the amount of main storage
used by the compiler. This is of value, for example, when
dynamically invoking the compiler, to ensure that space is left
for other purposes. The SIZE option can be expressed in three
forms:

SIZE(yyyyyyyy)

SIZE (yyyyyK)

specifies that the compiler should attempt
to obtain YYYYYYYY bytes of main storage
for compilation. Leading zeros are not
required.

specifies that the compiler should attempt
to obtain YYYYYK bytes of main storage for
compilation (lK=1024). Leading zeros' are
not required.

SIZE (MAX) obtain as much main storage as it can.

The IBM default, and the most usual value to be used, is
SIZE(MAX), which permits the compiler to use as much main
storage in the partition or region as it can.

When a limit is specified, the amount of main storage used by
the compiler depends on how the operating system has been
generated, and the method used for storage allocation. The
compiler assumes that buffers, data management routines, and
processing phases take up a f~xed amount of main storage, but
this amount can vary unknown to the compiler.

Note: Under CMS, SIZE(MAX) should always be used unless it is
essential to limit the space used. If a limit is set in the
SIZE option, the value used will exceed that which is
specified. This is because storage is handled by a
CMS/compiler interface routine and not directly by the
compiler.

The value specified in the SIZE option cannot exceed the main
storage available for the job step and cannot be changed after
processing has begun. This means that in a batched compilation
the value established when the compiler is invoked cannot be
changed for later programs in the batch. Thus it is ignored if
specified in a *PROCESS statement.

SOURCEINOSOURCE SI~

The SOURCE option specifies that the compiler is tC>,'·i:hclude in
the compiler listing a listing of the source program. The
source program listed is either the original source input or,

if the MACRO option applies, the output from the preprocessor.

'-
STMTINOSTMT -kh

The STMT option specifies that statements in the source program
are to be counted, and that the resulting number is to be used
to identify statements in the compiler listings. If NOSTMT is
specified, NUMBER is implied. STMT is implied by NON UMBER or
GOSTMT. (For further information see "Relationship of
statement Numbering Options" earlier in this chapter.)

STORAGE I NOS TORAGE
STGI~

The abbreviated form must be used in the PLIOPT command for
NOSTORAGE.

The STORAGE option specifies that the compiler is to include in
the compiler listing a table giving the main storage
requirements for the object module.

SYNTAXINOSYNTAX[(WIEIS)]
SYNINSYN[(WIEIS)]

The SYNTAX option specifies that the compiler is to continue
into syntax checking after initialization (or after
preprocessing if the MACRO option applies) unless an
unrecoverable error is detected. The NOSYNTAX option without an
argument causes processing to stop unconditionally after
initialization (or preprocessing). With an argument,
continuation depends on the severity of errors detected during
preprocessing, as follows:

NOSYNTAX(W)

NOSYNTAX(E)

NOSYNTAX(S)

No syntax checking if a warning, error, severe
error, or unrecoverable error is detected.

No syntax checking if an error, severe error, or
unrecoverable error is detected.

No syntax checking if a severe error or
unrecoverable error is detected.

If the SOURCE option applies, the compiler will generate a
source listing even if syntax checking is not performed.

The use of this option can prevent wasted runs when debugging a
PL/I program that uses the preprocessor.

TERMINAL[(opt-list)] I NOTERMINAL
~ [(opt-list)] I NTERM

The abbreviation must be used in the PLIOPT command for
NOTERMINAL.

The TERMINAL option is applicable only in a conversational
environment. It specifies that some or all of the compiler
listing is to be printed at the terminal. If TERMINAL is
specified without an options list, diagnostic and informatory
messages are printed at the terminal. You can add an argument,
which takes the form of an option list, to specity other parts
of the compiler listing that are to be printed at the terminal.

The listing at the terminal is independent of that written on
the LISTING file. However, if the ddname LISTING is associated

with the terminal, only one copy of each listing requested will
be printed, even if it is requested in the TERMINAL option and
also as an independent option. The following option keywords,
their negative forms, or their abbreviated forms, can be
specified in the option list:

AGGREGATE, ATTRIBUTES, ESD, INSOURCE, LIST, MAP, OPTIONS,
SOURCE, STORAGE, and XREF.

If the option does not apply to the compiler listing,
specifying it in the TERMINAL option has no effect. In the
PLIOPT command, abbreviations must be used for any option that
exceeds eight characters in length. Values for the other
options and suboptions that relate to the listing (that is,
FLAG, NUMBER, STMT, LINECOUNT, LMESSAGE/SMESSAGE, MARGINI,
NEST, NUMBER and the SHORT and FULL suboptions of ATTRIBUTES
and XREF) will be the same as for the LISTING file.

IXREF[(FULLISHORT)] I NOXREF
X[(KIS)ll~

The XREF option specifies that the compiler is to include in
the compiler listing a list of all identifiers used in the PL/I
program, together with the numbers of the statements in which
they are declared or referenced. (The only exception is that
label references on END statements are not included.
For example, assume that statement number 20 in the procedure
PROCl is END PROC1;. In this situation statement number 20
will not appear in the cross reference listing for PROC1.)',

If SHORT is specified, unreferenced identifiers are omitted~
making the listing more manageable.

If both ATTRIBUTES and XREF apply, and there is a conflict
between SHORT and FULL, the usage is determined by the last
option found. For example, ATTRIBUTES(SHORT) XREF(FULL)
results in FULL applying to the combined listing.

The default suboption FULL means that FULL applies if the
option is specified with no sub-option.

Chapter 4: Execution Time Options

The PL/I Optimizing Compiler produces compiled code to which various
execution time options may be passed. These options enable you to
control the amount of storage used during execution, and to override the
PL/I error handler's attempts to intercept program check interrupts and
ABENDs. and, provided that either FLOW or COUNT HAS BEEN SPECIFIED as a
compiler option, to specify that a count of the number of times each
statement has been executed be generated or that a trace of the most
recently executed statements be retained, or both. Execution time
options are sometimes called program management parameters.

A set of default execution time options are established during system
generation. These can be overridden by options specified in a PL/I
variable PLIXOPT, and these in turn can be overridden by options
specified with the START command or with the filename when it is used as
a command.

To specify execution time options within a PL/I program, you must use
the following declaration:

DCL PLIXOPT CHAR(len) VAR INIT ('strg') STATIC EXTERNAL;

where "strg" is a list of options separated by blanks or commas, and
"len" is a constant equal to or greater than the length of "strg".

ISimilarly PLIXHD allows you to specify headings for REPORT and COUNT
I output. For example:

DCL PLIXHD CHAR(SO) VAR STATIC EXTERNAL INIT('RUN WITH DUMMY DATA');

If more than one external procedure in a job declares PLIXOPT as
STATIC EXTERNAL, the PLIXOPT value in the first program passed to the
loader will be taken as the list of options and the second and

Isubsequent PLIXOPT values~ ignored. The same is true of PLIXHD.

The execution time options can be specified with the START command or
with the filename of a MODULE file when it is used as a command. If a
parameter is also being passed to the main procedure, it must follow any
execution time options and be preceded by the characters blank, oblique
stroke, blank(/). Program management parameters must be separated
from each other by blanks.-

A typical START command specifying execution time options (NOSPIE and
REPORT) and a main procedure parameter (734) might be:

start * nospie report / 734

List of Execution Time Options

The following is a list of execution time options:

COUNT

specifies that a COUNT of the number of times each statement in
the program was executed will be produced if either the COUNT
or FLOW· option was specified at as a compiler option. (If
neither was specified as a compiler option, an error message is
issued and the request for COUNT is ignored.)

The count is transmitted to the PLIDUMP file when the program
has completed execution. To highlight statements that have not

NOCOUNT

FLOW

NOFLOW

been executed, a separate list of such statements is produced.
output is neaded by the name of the main procedure, the date
and time of the start of execution, and the value of PLIXHD if
PLIXHD is used. '~

specifies that a count of the number of times each statement
has been executed will not be produced. NOCOUNT is used to
prevent a program compiled with the COUNT option from producing
count information. Even when NOCOUNT is specified, a
considerable time and space overhead is incurred by a program
compiled with the COUNT option. To get the best performance a
debugged program must be recompiled without the COUNT option.

specifies that a trace of the most recently executed sta~ements
will be retained and that this will be printed when an on-unit
with the SNAP option is entered or when a call to PLIDUMP with
the trace option is made. The option is only effective if
either FLOW or GOUNT was specified as a compiler option. (If
neither was specified an error message is issued and the option
is ignored.)

The format of the FLOW option is FLOW [(n m)] where n specifies
the number of branch-out/branch-in statement number pairs to be
retained, and m specifies the number of changes of procedure or
on-unit that are retained. nand m can have different values
from those specified in the compiler FLOW option. If nand m
are omitted both at compiler time and at execution time,
default values of 25 for nand 10 for m are assumed.

The trace is transmitted to SYSPRINT and takes the form:

3 TO 8 IN TESTER
12 TO 17
22 TO 3 IN DRIVER

Meaning that a branch was made from statement three to
statement 8 which is in the procedure named TESTER, than ran
sequentially to statement 12 when a branch to 17 was made then
ran sequentially to 22 where a branch to statement 3 which is
in DRIVER was made.

Specifies that a trace of the most recently executed statements
will not be retained. It is used to override the FLOW compiler
option.

Even when NOFLOW is specified, considerable time and space
overheads are incurred by programs compiled with the FLOW
option. When a program has been debugged it should be
recompiled without the FLOW COMPIler option to achieve maximum
efficiency.

IISASIZE ([-] yyyyy 1[-] yyyyyK)

specifies the amount of main storage initially acquired for
automatic, controlled, and based variables, and compiled code
workspace. The area obtained is known as the ISA (initial
storage area).

REPORT

If a negative value is specified, all available storage minus
the amount specified is used. "Available storage" is what is
left in the region when the load module has been allocated.

Allocation of PL/I dynamic storage when PROCEDURE or BEGIN
blocks are entered or BASED or CONTROLLED variables are
allocated storage is allocated as far as possible within the
ISA. When there is insufficient room, storage is acquired from
the system and a time overhead is involved. However if a large
value is specified in ISASIZE, storage may be wasted, and there
may be insufficient storooe for I/O buffers and transient
library routines.

If ISASIZE is not specified, a default value is applied. This
value is half of the storage remaining in the region after
storage for the load module has been allocated rounded up to
the nearest 2K bytes.

The REPORT execution time option can be used to help work out
th~ optimum ISASIZE.

specifies that a table showing the use of storage by the
program will be transmitted to the PLIDUMP file at the end of
the execution of the program. Under CMS the PLIDUMP file is
assigned to the printer by default. output is headed by the
name of the main procedure, the date and time of the start of
execution and the value of PLIXHD if PLIXHD is used.

The REPORT option should be used to help calculate the best
value to specify in ISASIZE. The value given in the REPORT
table "Amount of PL/I storage Used" would give the fastest
execution with the minimum total waste of storage if s'pecified
as the ISASIZE. However, if a number of PL/I blocks or .
controlled or based variables are little used during the
program, the programmer may prefer to have storage for some of
these allocated by the system. In this situation, specifying a
smaller ISASIZE value may enable the program to run in a
smaller region, although execution time may increase. For a
fuller discussion see the Programmer's Guide for the compiler.

~: The use of the REPORT option considerably slows
execution. It is intended as an aid for program development,
not for regular use.

NOREPORT specifies that a report table will not be generated. It is the
default.

STAE

NOSTAE

SPIE

NOSPIE

specifies that when an ABEND occurs, an attempt will be made to
call the PL/I error handler and raise the PL/I ERROR'condition.
It is the default.

specifies that on program initialization, a STAE macro
instruction is not to be issued, and consequently the PL/I
error handler will not be called to attempt to raise the ERROR
condition when an ABEND occurs.

specifies that when a program interrupt occurs, an attempt will
be made to call the PL/I error handler to raise the ERROR
condition. It is the defaUlt.

specifies that on program initialization, a SPIE macro
instruction is not to be issued, and consequently the PL/I
error handler will not be called to raise the ERROR condition
when a program check interrupt occurs.

(as line editing character 13

*PROCESS statement 11,46

- ~s line continuation character

/ in execution time options 65
/* as endfile marker 42

%INCLUDE data 55
without using preprocessor 55

%INCLUDE statements 12,11

: as prompt 40
:+ as prompt 40

as line editing character 5

0) as line editing character 5

" as line editing character 5

as line editing character 5

1\ disk 6,15
Access Method Services 25
AG abbreviation of AGGREGATE 51
AGGREGATE option 51
AMS see Access Method Services
AMSERV command 25 -
ANS printer control character 57
ASCII data sets 31
asterisk

*PROCESS statement 11
/* as endfile marker 42

at character (0» as line editing
character 5

attention interrupts
how they work 29
how to cause 28

41

how to cause on 2741 and 3277 5
how to use in a PL/I program 27
potential errors when using 29

attention key 6
ATTN key, (see attention key)
ATTRIBUTES option 51
automatic padding for GET EDIT 42
automatic prompting 40,41

overriding 41

backspace character 5
BACKWARDS attribute 37

BCD 51
BEGIN command 6
blanks

removal from main procedure
parameter 31

blanks in main procedure parameter
bracket as line editing character
BUFFERS (1) 31

c as line editing character 5
capital letters 1,11
card 17

source program on 11
case M and U 11

Index

31
5

cent sign as line editing character 5
CHANGE subcommand of EDIT 9
character deletion 5
CHARDEL, character delete character 5
CHARSET 51
checkpoint/restart facility 31
CMS files 25
CMS, system requirements 1
code, source 51

position in record 57
colon as prompt 40
colon plus as prompt 40
commands and subcommands

AMSERV 25
BEGIN 6
CASE M 11
CASE U 11
CHANGE 9
DLBL 25
EDIT 1
ERASE 33
FILE 1,10
FILEDEF 15
filename as 20
FNAME 10
GENMOD 20
GLOBAL 20
HT 5
HX 5
immediate 5
IPL 4
LOAD 20
LOGOFF 33
LOGON 2
LOGOUT 33
MACLIB 12,11
PLIOPT 13
QUIT 10
RT 5
SAVE 10
START 20
TERMINAL 5
TXTLIB 18

commas
insertion in conversational I/O 41
insertion in main procedure,
parameter 31

compilation 13
for execution under OS 18

COMPILE option 52
compiler 45

files generated by 14
... invoking 13

LISTING file 14
output 14
PLIOPT command 45
TEXT file 14

compiler files 16
compiler options

~see also options, compiler) 16'
alphabetical list 51
length restriction 16
list of defaults 45
listed by function 49
specifying in PLIOPT commands 16

compiling non-CMS source programs 17
CONTROL option 52
conventions, PL/I

conversational I/O 39
DISPLAY and REPLY 42

conversational I/O 39,42
assigning SYSIN to terminal 27
automatic padding with blanks 42
ENOFILE 42
ending file 42
GET DATA 41
GET EDIT 41,42
GET SRIP 42
line continuation character 41
PRINT file formatting 39
simplified punctuation 41
SRIP for input 42
with DISPLAY and REPLY 42

COpy files 12
correcting typing errors 5
COUNT option

compile time 52
execution time 66

CP environment 3
returning to 6

CP/370 3
cross reference listing 63
CT abbreviation of COUNT 52

data
entering 4
transmitting 4

data sets and PL/I programs 24
DECK option 53
DELAY statement, restriction 37
deleting

erasing 34
files (see ERASE command)
incorrectly typed characters (see
logical character delete characte

incorrectly typed lines (see logical
line delete character)

disk
A disk 15
output disk 15
parent disk 15
source disk 15
source program not on 17
transferring source to 17

DISK option 15,60
DISPLAY statement 42
DLBL command·. 25
DMSIBM, interface module 21,31
DUMP option 53

EBCDIC 51
EDIT command 7
edit mode ·10
editor, CMS 7
ENDFlLE marker 42
ending input on file 42
ENDPAGE in conversational I/O 39
entering data 4
ERASE command 33
escape character 5
ESO option 53
EVENT option 37
EXEC, profile 6
execution

compiled program 20
file compiled under OS 31
file compiled with OSOECR option 31
MODULE file 20
TEXT file 20
under OS 18

external subroutine 23

fast ~INCLUDE compiler option 55
FETCH statement 37
FILE command 7,10
filename 7

as command 20
naming PLIOPT files 7

files
CMS and PLII defaults 27
COpy 12
creating 14
deleting 34
example of use of CMS file 25
for secondary input text 12
LISTING 14
MODULE 20
OS data sets, accessing 26·
PL/I and CMS defaults 27
PLI 10
PLIOPT 10
PRINT, formatting conventions 39
TEXT 14,20
use of in PL/I program 24
used by compiler 16

FLAG option 53
FLOW option 53

compile time 53
execution time 66

FNAME command 10
forty eight character set 51
FULL

suboption of ATTRIBUTE 51
suboption of XREF 63

GENMOO command 20
GET SKIP 42
GLOBAL command 20
GONUMBER option 54

GOSTMT option 54

halting execution, HX command
halting typing, HT command 5
HT (halt typing) command 5
HX (halt execution) command 5
hyphens at ·end of lines 41

identifier, virtual machine 2
immediate commands 5
IMPRECISE option 54
INCLUDE compiler option 55
INCLUDE statements 12,17
included text 17

5

information sent to terminal 15
INPUT mode 10
INSOURCE option 55
INT abbreviation of INTERRUPT 55
interface module, DMSIBM 27,31
interlanguage communication,
restrictions 37

INTERRUPT option 55
potential errors when using 29
programming with 27
programs partly compiled with 30

IPL command 4
ISASIZE option 67

keyboard, locking 4

line deletion 5
line editing characters 5
LINECOUNT option 55
LIST option 56
LISTING file 14

choosing destination for 60
listing options, choosing 15
LMESSAGE option 56
LOAD command 20
locking of keyboard 4
logical character delete character 5
logical line 41
logical line delete character 5
logical line end character 5
LOGIN command alias for LOGON 2
LOGOFF command 33
LOGOFF HOLD command 34
LOGON command 2
LOGOUT as alias for LOGOFF 33
lower case 7

character string constants 11
input 11

MACLIB 17
MACLIB commands 12
macro library

creating 12
MACRO option 55,56

INCLUDE as alternative 55
MAP option 56

interaction with LIST 56
MARGINI option 57

MARGINS
columns for entering

MARGINS compiler option
margins of PL/I program
MDECK option 58
MODULE file 20

creating 20
executing 20

PL/I
57
7

7

NAG abbreviation of NOAGGREGATE 51
NAME option 18,58
NCT abbreviation of NOCOUNT 52
NEST option 58
NINT abbreviation of NOINTERRUPT 55
NOAGGREGATE option 51
NOATTRIBUTES option 51
NOCOMPILE option 52
NOCOUNT option

compile time 52
execution time 66

NODECK option 53
NODUMP option 53
NOESD option 53
NOFLOW option 53

execution time 66
NOGONUMBER option 54
NOGOSTMT option 54
NOIMPRECISE option 54
NOINCLUDE compiler option 55
NOINSOURCE option 55
NOINTERRUPT option 55
NOLIST option 56
NOMACRO option 56
NOMAP option 56
NOMARGINI option 57
NOMDECK option 58
non-CMS source programs 17
NONEST option 58
NONUMBER option 58
NOOBJECT option 59
NOOFFSET option 59
NOOPTIMIZE option 59
NOOPTIONS option 60
NOPRINT option 15,60
NOREPORT option 67
NOSEQUENCE option 61
NOSOURCE option 62
NOSPIE option ~7
NOSTAE option 67
NOSTMT option 62
NOSTORAGE option 62
NOSYNTAX option 62
NOTERMINAL option 62
NOXREF option 63
null line 10
NUMBER option 58
number sign (#) as line editing
character 5

numbering options, discussion 47

OBJECT option 59
OFFSET option 59
OPTIMIZE option 59
Optimizing Compiler (see compiler)
options 57

options (continued)
comparison between compiler and

PLIOPT 46
compiler 47,57

AGGREGATE 51
ATTRIBUTES 51
CHAR SET 51
COMPILE 52
CONTROL option 52
COUNT 52
DECK 53

-DUMP 53
ESD 53
FLAG 53
FLOW 53
GONUMBER 54
GOSTMT 54
IMPRECISE 54
INCLUDE 55
INSOURCE 55
INTERRUPT 55
LINECOUNT 55
LIST 56·
LMESSAGE 56
MACRO 56
MAP 56
MARGINI 57
MARGINS 57
MDECK 58
NAME 18,58
NEST 58
NOAGGREGATE 51
NOATTRIBUTES 51
NOCOMPILE 52
NOCOUNT 52
NO DECK 53
NODUMP 53
NOESD 53
NOFLOW 53
NOGONUMBER 54
NOGOSTMT 54
NOIMPRECISE 54
NOINSOURCE 55
NOINTERRUPT 55
NOLIST 56
NOMACRO 56
NOMAP 56
NOMARGINI 57
NOMDECK 58
NONEST 58
NONUMBER 58
NOOBJECT 59
NOOFFSET 59
NOOPTIMIZE 59
NOOPTIONS 60
NOSOURCE 62
NOSTMT 62
NO STORAGE 62
NOSYNTAX 62
NOTERMINAL 62
NOXREF 63
NUMBER 58
numbering 47
OBJECT 59
OFFSET 59
OPTIMIZE 59
OPTIONS 60

options (continued)
compiler (continued)

SEQUENCE
SIZE 61
SMESSAGE 56
SOURCE 62
STMT 62
STORAGE 62
SYNTAX 62
TERMINAL 15,62
XREF 63

execution time 67
COUNT 66
FLOW
ISASIZE 67
NOCOUNT 66
NOREPORT 67
NOSPIE 67
NOSTAE 67
REPORT 67
SPIE 67".
STAE 67
using 31

list of defaults 45
listed by function 49
PLIOPT

DISK 15,60
NOPRINT 15,60
OSDECK 18,31,60
PRINT 15,60
TYPE 60

summary of functions 49
OPTIONS option 60
OS data sets 26

example of use 27
OSDECK option 18,31,60
output disk 15

page br~aks at terminal 39
PAGE option and format item 39
PAGELENGTH 39.
PAGESIZE 39
parameters . 31

blanks in 31
length restrictions 31
main procedure 31
passing to a PL/I program 31
program management 31
restrictions 31

parent disk 15
parenthesis as line editing character 5
password

virtual machine 2
PL/I Optimizing Compiler (see compiler)
PL/I program 7

columns for input 7
PL/I restrictions 36,37

ASCII data sets 37
BACKWARDS attribute 37
blanks in main procedure parameter 36
checkpoint restart facility 37
DELAY statement 37
EVENT option 37
FETCH statement 37 ,
interlanguage cominunication 37
REGIONAL files 37
RELEASE statement 37

PL/I restrictions (continued)
SIZE option, space used exceeding that
specified 61

sort facility 37
tasking 37
teleprocessing files 37
TIME builtin function 37
VBS-format records 37
VS-format records 37

PL/I source code 57
position in record 57

PLI files 10
PLICKPT 37
PLIDUMP, assigning to terminal 27
PLIOPT command 45

example and discussion 13
options and defaults 45

. syntax 45
PLIOPT file 10
PLISORT 37
PLISTART as name of TEXT file 18
PLITABS 39
PLIXOPT 65

execution time 65
pound sign (#) as line editing character 5
preprocessor statements 55

%INCLUDE without using preprocessor 55
primary prompt 40
PRINT file 39

conversational formatting
conventions 39

overriding formatting conventions 39
PRINT option 15,60
printer control character 57
PROCESS statement 11,46
profile EXEC 6
prompting, conversational I/O 40

QUIT command 10
quotes as line editing character 5

RECORD condition 37
record I/O

restrictions at the terminal 37
records

VBS-format 37
VS-format 37

REGIONAL file restrictions 37
RELEASE statement 37
REPLY option 42
REPORT option 67
restrictions

PL/I, (see PL/I restrictions) 37
REGIONAL files 37
VSAM 37

RT (resume typing) command 5

SAVE command 10
secondary input text 12,17

creating 12
secondary input to compiler
secondary prompt 40
SEQUENCE option 61
SHORT

suboption of ATTRIBUTES

55

51

SHORT (continued)
suboption of XREF 63

XREF 63
sixty character set 51
SIZE option 61
SKIP on input 42
SKIP option and format item 39
SMESSAGE option 56
sort facility 37
source code 57

position in record 57
source disk 15
SOURCE option 62
SPIE option 67
STAE option 67
star PROCESS statements 11
START command 20
STMT option 62
stopping 5

execution 5
typing (terminal printout) 5

STORAGE option 62
storage requirements for CMS 1
stream I/O

DATA directed conventions 41
EDIT directed 42
LIST directed conventions 41

subcommands (see commands and subcommands)
switched line connection, retaining 34
syntax conventions, summary 43
SYNTAX option 62
SYSIN, assigning to terminal 27
SYSPRINT, assigning to terminal 27
system requirements for CMS 1

tabs 7,39
tape 17,37

BACKWARDS attribute 37
source program On 17

tasking 37
teleprocessing files 37
TERMINAL command 5
TERMINAL option 15,62
terminal session

ending 33
starting 2

terminal, listings transmitted to 15
terminal, type of 1
TEXT file 20

creating 14
executing 20

text libraries 18
TIME builtin function, restriction 37
transmitting data 4
TXTLIB command, troubles with 18
TXTLIB, use of 23
TYPE option 60
typing errors, correcting 5

upper case 7,11

V-format records
VBS-format records
VS-format records

37
37

37

VSAM
example of use 26
restrictions 37
use of files and data sets 25

workfiles, compiler 16

XREF option 63

2741 terminal 1
attention interrupts on 28

3277 terminal 1
attention interrupts on 28

48-character set 51

. 60-character set 51

Explanation of sample terminal session
The terminal session has been planned to
show various features of CMS. The program
is a simple conversational program that
responds with one of two well known
quotations when the correct author is
specified. It has been written to show the
conversational I/O and parameter
conventions of PL/I under CMS.

The first column in the figure shows
whether the terminal print out is entered
by the user or is transmitted by the
system. The second column shows the
terminal printout. Where an action from
the user would not result in .words
appearing on the terminal printout, the
action to be taken is placed in
parentheses. For example "(you switch on
terminal)" in line 1. The third column
contains notes and comments. The fourth
column gives the page of the book where a
fuller explanation of the point being
illustrated can be found. Throughout the
example certain blank lines have been
omitted to allow the complete session to
appear on one page.

,~-,r

Action I Terminal Printout Notes and comments I Page for
by I I more data
--
user
system
user

system
user
system

user
system
user
system

user
system
user

user
system
user
system
user
system

system
user
system
user
system
user

system

user
system

user
system

user

I
I (you switch on terminal)
Id'x38z irvy; vm370 online
I (you press attention key to unlock terminal)
I login robin
I ENTER PASSWORD:
I (you enter password)
ILOGMSG 08:09:08 GMT MONDAY 05/13/73
ILOGON AT 08:25:34 GMT MONDAY 05/13/73
lipl cms
I CMS 1. 0 PLC 5
ledit skylark pliopt
INEW FILE:
IEDIT:
I input
I INPUT:
Iskylark:proc (charparm) options (main);
I dcl (charparm,quotation,string) char (100) var;
I string=translate(charparm,' ',',');
I on endfile (sysin) goto finis;
I start:
I if string='percy bysshe shelley' then quotation=
I 'hail to thee blythe spirit';
I eslSslse if string='william blake' then quotation=
I 'a skylark wounded on the wing/a cherubim doth cease
I else quotation='no known quotation';
I put skip edit (quotation, 'enter new name or endfile')
I (a,skip(5»;
I get edit (string) (a(BO»; goto start;
Ifinis: display('thank you for your company');
lend skylark;
I (you press carriage return key)
IEDIT:
I file
IR; T=0.35/0.91 08.26.32
Ipliopt skylark (xref a
IPL/I OPTIMIZING COMPILER Vl Rl.2 TIME 08.34.51 DATE 13
10PTIONS SPECIFIED
IXREF,A,TERM
I
INO MESSAGES PRODUCED FOR THIS COMPILATION
ICOMPILE TIME 0.02 MINS SPILL FILE 0 RECORDS SIZE 4051
IR; T=2.74/4.41 OB.3B.37
Iglobal txtlib plilib
IR; T=0.03/0.04 OB.41.49
I load sky lark "
IR;T=1;11/1.850B.50.06
I start • / percy, bysshe, shelley
I
I
IEXECUTION BEGINS •••
IHAIL TO THEE BLYTHE SPIRIT
I
I .
I ENTER NEW NAME OR ENDFILE
I:
I j.
I THANK YOU FOR YOUR COMPANY
I R;T=1.52/2.46 08.45.06
I logout
ICONNECT=00.33.59 VIRTCPU=000:09.ll TOTCPU=000:16.55
ILOGOFF AT 08:59:33 GMT MONDAY MAY 13 1973
I (you switch off terminal)

Figure F.1 A sample terminal session

Message when you switch on

I
I
I
I

Enter 'login' followed by name of virtual machine I

Printing of password normally suppressed
I
I
I

Log message from system I
Invoke CMS I
Message shows CMS version in use I
Edit mode to enter program as a CMS PLIOPT file I
Shows that you have no PLIOPT file called skylark,
Shows that you are in edit mode I
Tell system further input will be part of file I
Shows that you are in input submode ,
PL/I program entered in either capitals or lower ,
case letters. Use column 1 through 71 ,
CMS interface removes blanks from main procedure ,
parameter. Program uses commas and translates. ,

SS deletes two previous incorrect characters
to sing'. .

Skip(5) is interpreted as skip(3) at terminal

Sent to terminal (console of virtual mac~ine)

Ends input submode
Message confirms you are back in edit mode
Stores input as PLIOPT file skylark
Ready message, CMS ready for further commands
Compile command, options preceded by (

MAY 1973

TERM specified by CMS Interface module

Make the PL/I library available

resolve addresses in PL/I program

Note parameter must be divided into 8 character
tokens. Blanks are removed. Note also blanks
after • and /
Message from CMS
Output from program

Prompt shows input required from terminal
Endfile marker
Message from DISPLAY statement

Command ends terminal session

Logoff message

, , ,
I , , ,
I , , ,
I
I
I
I ,
I , , , , ,
I ,

Page 2

Page

Page

Page 8

Page 4

Page 39

Page 42

Page

Page 14

Page 21

Page 40

Page 42

Page 33

A Sample Terminal Session 75

OS
PL/I Optimizing Compiler:
CMS User's Guide

Order No. SC33-0037-3

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name and address
(including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM rep~esentatiye wilt be happy to fC'r'"v'~:;' VOl'! ':C:';'11T:.'~~C":.\ 7"~.~;<k '.fO\', hr "0'.,7

Reader's
Comment
Form

SC33-0037 -3

.~

Fold and Staple

""II
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO, 40

POSTAGE WILL BE PAID BY ADDRESSEE:

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

ARMONK, N,Y,

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

...
Fold and Staple

---- -.. -.-..-- - - ----~- .. -:'.~-~ _.-
," . (,International Business Machines Corporation

. Data Processing Division
1133 Westchester Avenue. White Plains. N.Y. 10604

IBM World T r8de .t\mericas/Far East CX?Drat.ion
Town of

o
en
." r :::
o
"0
.-+

3'
N'
5'
cc
("')
o
3
~,
CD
:-!
("')

s:
en
C
~ .,
rn"
G')
c
c:
Cb

" .,
5'
.-+ a
5'
c
en
~
en
("')
eN
eN
6 o
~
W

